
Neural Networks
for the Prediction of Fuel Oil Consumption for Containerships

Orfeas Bourchas

Diploma Thesis

School of Naval Architecture and Marine Engineering
National Technical University of Athens

Supervisor: Assistant Prof. George Papalambrou

Committee Member : Prof. N. Kyrtatos

Committee Member : Associate Prof. C. Papadopoulos

November 2020



2



Contents

1 Abstract 7

2 Introduction 9

2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Fuel Oil Consumption Prediction related work . . . . . . . . . . . . . . . . 9

2.2.1 The Ahlgren and Thern approach [1] . . . . . . . . . . . . . . . . . . 9

2.2.2 Anan, Taizo, Higuchi, Hiroyuki, Hamada, Naoki Approach [2] . . . . 14

2.2.3 The Pedersen Approach [3] . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3.2 Regression methods . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Analysis of Ship Data 33

3.1 Brief Introduction of Pandas, Jupyter Notebook & TensorFlow . . . . . . . 33

3.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Neural Network Design 41

4.1 First approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Simple RNN [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 LSTM [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 The final approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Results 49

5.1 One variable : Fuel Oil Consumption . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 1 Lookback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.2 5 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.3 10 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.4 15 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.5 20 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.6 50 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Two variables:Fuel Oil Consumption and Fuel Oil Temperature . . . . . . . 71

5.2.1 1 Lookback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 5 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.3 10 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.4 15 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3



4 CONTENTS

5.2.5 20 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.6 50 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Three variables: Fuel Oil Consumption,Fuel Oil Temperature and Main
Engine RPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.1 1 Lookback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 5 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.3 10 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.4 15 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.5 20 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.6 50 Lookbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusions and Future Work 115
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 117



Acknowledgments

This work has been carried out at the Laboratory of Marine Engineering (LME) at the
School of Naval Architecture and Marine Engineering of the National Technical University
of Athens, under the supervision of Assistant Professor George Papalambrou.

I would first like to thank my thesis supervisor Assistant Professor George Papalam-
brou for giving me the chance and motivation to work on this topic. I would also like
to thank him for his patience, continuous support and immense knowledge. His guidance
helped me in all the time working on this thesis.

I would like thank Professor Nikolaos Kyrtatos for evaluating my work and being a
member of my supervisors committee.

I would also like to thank Associate Professor Christos Papadopoulos for evaluating
my work and being a member of my supervisors committee.

I would like to express my sincere gratitude to Mr. Nikolaos Planakis, PhD candidate
of School of Naval Architecture and Marine Engineering for sharing expertise, and sincere
and valuable guidance during my last years in the institute.

I would also like to thank Bernhard Schulte Shipmanagement Hellas for providing me
with the necessary data to carry out my thesis.

I am also sincerely grateful to my family, for the unceasing encouragement, support,
motivation and attention throughout my studies.

I also place on record, my sense of gratitude to one and all, who directly or indirectly,
have lent their hand in this venture. This accomplishment would not have been possible
without them. Thank you.

5



6 CONTENTS



Chapter 1

Abstract

In this thesis, a Neural Network for predicting the Fuel Oil Consumption (F.O.C.) of three
containerships, two sister ships and another containership was studied and implemented.
For this purpose several models were tested. The parameters that were used are:

• The variables that were used in each model,

• The number of steps back or lookbacks, as they are called in this thesis and

• The number of epochs that each model was trained.

The aim was to find the best parameters and create models that could not only predict
well on the training dataset but also on the other ships’ datasets. Initially the data of all
three ships were preprocessed the same way. Then one of the sister ships was chosen to
be the one which the dataset would be used for training,and some testing.

The Neural Networks are a sophisticated part of Machine Learning. There are a lot of
types/categories of N.N. based on the architecture, the supervision and the way they train.
In this thesis, the focus was on the Recurrent Neural Networks (R.N.N.) since these are
the ones that tackle the timeseries problems such as the prediction of a value,in this case
the FOC. Initially a simple RNN was the first thought to approach the problem. However,
due to the large amount of data and some of the weaknesses of the simple RNNs the more
advanced LSTM architecture was chosen due to its ability to cope with the simple RNNs
problems.

After the model was selected and the hyper parameters were tuned the model began
training on the 90% of the first ship’s dataset. After the completion of each training the
model’s ability to predict was tested. First on the remaining 10% of the first ship’s dataset.
Then the % difference was calculated and plotted. Moreover, the model’s performance
was also tested on the second (sister ship) and on the third ships in order to evaluate it
ability to generalize. The process was repeated for variety of combinations of variables
and lookbacks and epochs. On each combination of variables and lookbacks the model’s
performance was tested using the epochs parameters to differentiate the models. So the
best number of epochs to train a model ,based on the number of lookbacks and the number
of variables, was chosen. The results of the best models, showed that most of them were
able to generalize and achieve almost 0% errors on the first ship and below 5% on the
other two.
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Chapter 2

Introduction

2.1 The Problem

The international shipping industry is responsible for the carriage of around 90% of world
trade. Despite that, the impact of ship operations on the environment and the economics
are major issues in the maritime industry. Based on a study carried out by the IMO
the annual CO2 emissions from ship operations reached approximately 800 million tons,
which represents about 3% of worldwide CO2 emissions during the year 2012. Moreover,
the fuel expenses are the major costs for every shipping company, ranging from hundreds of
millions to billions of dollars every year. Therefore, there is a need to reduce the excessive
use of fuel oil. The main way of achieving it is by the accurate prediction of the fuel oil
consumption which will result in better operational planning (such as dry docking).

2.2 Fuel Oil Consumption Prediction related work

There have been several attempts to accurately predict the Fuel Oil Consumption, as well
as other variables. In the next few paragraphs some of this work will be briefly presented.
Also, all of the tables, figures and equations in this section have been taken from the
related papers-articles.

2.2.1 The Ahlgren and Thern approach [1]

As part of their paper Mr. Ahlgren and Mr. Thern tried to predict the fuel oil consumption
using three different ML algorithms. The data were manually collected by extracting data
from the Valmarine machinery logging system and the ships logbook, for a period of 14-
months, and were also validated by the ships schematics and they machinery crew. The
Valmarine machinery logging system logs the temperatures, fuel flows and engine variables
in the ship. The fuel oil consumption was mainly measured with volume flow meters.

The training process depended on the quality of the data. If the data were poor and
full of noise, then the ML model being trained in wrong data. This would result in the
model trying to minimise the error on the wrong data and thus probably being unable
to accurate predict the future fuel flow. So as part of the preprocessing they tried to
overcome the uncertainty of the fuel-flow by fitting the volume flow meter to the mass
flow meter. In that way, it was possible to verify and thus minimize the uncertainty of
the mass flow data.Moreover, all data was filtered for NaN (not a number), and as they
assumed there was no back blow and all values below zero was set to zero. As final part
of preprocessing analysis, they observed that during December 2014 and January 2015

9
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the correlation between the flow meters are consistent within 0.003113-0.002274 standard
deviations if the outliers were filtered out.

A supervised learning model was chosen for the purpose of this study. Supervised
learning is the concept of manually choosing the best algorithm for a machine learning
task, and this relies much on the experience of the data scientist as well as trying different
setups. The ML-algorithms also has a large number of parameters that can be tuned,
and some algorithms perform better with a scaling in the input data. For this reason two
AutoML libraries were used in order to automate this process. The first one was Tree
Pipeline Optimisation Tool (TPOT) library and the second one was the Auto Sklearn
library. These tools optimise the supervised part of the ML-process and programmed to
minimise the error for a machine learning pipeline. Both of the libraries were utilising the
extensive Python Scikit-learn library as the ML-algorithm toolbox.

test no no vars var 1 var 2 var 3 var 4 vars

1 and 16 1 frp frp

2 and 17 1 exh T exh T

3 and 18 1 TC rpm TC rpm

4 and 19 2 rpm frp rpm, frp

5 and 20 2 rpm exh T
rpm,
exh T

6 and 21 2 rpm TC rpm
rpm,
TC rpm

7 and 22 2 frp exh T frp, exh T

8 and 23 2 frp TC rpm
frp,
TC rpm

9 and 24 2 exh T TC rpm
exh T,
TC rpm

10 and 25 3 rpm frp exh T
rpm, frp,
exh T

11 and 26 3 rpm frp TC rpm
rpm, frp,
TC rpm

12 and 27 3 rpm exh T TC rpm
rpm,
exh T,
TC rpm

13 and 28 3 frp exh T TC rpm
frp,
exh T,
TC rpm

14 and 29 4 rpm frp exh T TC RPM
rpm, frp,
exh T,
TC RPM

Table 2.1: Test, training setup and ML features.

The parameters that were available were fuel rack position (frp), exhaust gas temper-
ature (exh T), engine RPM (rpm) and turbo charger RPM (TCrpm). These parameters
were also chosen because they are often available in a standard logging engine system
setup. Using these features it was possible to form a set of different input data. These
combinations are given in Table 2.1 above. The test setup consists of 30 possible com-
binations for each model setup, and a total of 90 models for linear, TPOT and AutoSk.
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Each of these combinations were trained with a ML, a linear model, and by two AutoML
tools, TPOT and auto-sklearn.

A total of 90 models were trained by linear regression, TPOT optimisation for 10
generations and auto-sklearn regression. The training was fed into the fitting function
with the corresponding features for each run and the corresponding measured fuel flow
for the FO meter. The dataset was split, with the sklearn train test split tool, into 75%
train data and 25% test data. The random seed for splitting the train and test set was
manually set to 42 as to get a reproducibility.

The results demonstrate that the TPOT models are within 0.004833624 standard de-
viations and auto-sklearn 0.005572236 standard deviations of the measured value in all
tests, in comparison with the linear models with 0.025050563. In Fig. 2.1 below it is
demonstrated that the linear models show poor performance against the auto-ML meth-
ods. Note that the tests 0-14 are identical to 15-29 but on different fuel lines. The model
trained on fuel line 2/4 (tests 15-29) demonstrated better performance. All AutoML model
performed significantly better than the linear model baseline, which is also what could be
expected.

Figure 2.1: Mean squared error test results

In Fig. 2.2 the test numbers are sorted on TPOT mean squared error (MSE) from
best to worst performance, in a comparison with the auto-sklearn. The TPOT models
demonstrated better performance than auto-sklearn.

The six best performing tests are plotted in Fig. 2.3 as the difference between the model
estimate and the measured value during an arbitrary day (2014-04-06 00:00 to 2014-04-07
00:00), it can be seen that there are some larger deviations of the model predictions at
15:00 and at 18:00. This is when the ship is manoeuvring in port, which means a lot of
manoeuvring and as the data input for the model are averaged in 15-min interval dynamics
from shorter time intervals are missed. As shown in Fig. 2.4, where only the TPOT and
auto-sklearn models are shown, the model test TPOT 29 stands out.
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Figure 2.2: Mean squared error, comparison TPOT and autosk-learn

Figure 2.3: Best performing models, showing model difference

In Fig. 2.5 the fuel consumption of fuel line 2/4 is shown in absolute terms during the
same time period, plotted with the model value over the measured value.
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Figure 2.4: Best model performance TPOT and auto-sklearn

Figure 2.5: TPOT and auto-sklearn models compared to measured flow

In the table 2.2 below they ranked the features starting from the ones with the lowest
MSE. From that table it is clear that if only using one variable, then the turbocharger
RPM is the best model performing one. When using two variables, the engine fuel rack
position provides the best addition. Both one and two variables show consistency in
ranking between all tests, but when training with three variables the linear model gives
best performance with the addition of the exhaust gas temperature. The TPOT model
for both fuel lines and the auto-sklearn 2/4 give better results with the addition of the
engine rpm. It is only the auto-sklearn model for the fuel line 1/3 which stands out in the
AutoML models in the three-variable ranking.
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no vars
Linear
1/3

Linear
2/4

TPOT
1/3

TPOT
2/4

auto-
sklearn
1/3

auto-
sklearn
2/4

1 TC rpm TC rpm TC rpm TC rpm TC rpm TC rpm

2 frp,TC rpm frp,TC rpm frp,TC rpm frp,TC rpm frp,TC rpm frp,TC rpm

3 frp,exh T, frp,exh T, rpm,frp, rpm,frp, rpm,frp, rpm,frp,
TC rpm TC rpm TC rpm TC rpm exh T TC rpm

Table 2.2: Features for best ranked MSE.

To sum up the AutoML methods have demonstrated a large advantage over a standard
linear regression training, and by only using a few features from the engines it was still
possible to train a model which predicts consistently within a very small margin. By using
AutoML methods, the time needed for manually evaluating and trying different machine
learning algorithms was by far reduced and have also provided a very accurate model.

The AutoML models used in this study are open source and freely available to use as
a concise and straight forward method for further refining the baseline for other black box
ML-models, or real world predictions. The models can estimate the performance of each
engine without installing flow meters for each individual engine. It is also possible given
enough data, to use data of a lower interval such as daily or weekly bunker data, to train
a model on engine features in which are recorded with a higher interval to make dynamic
predictions.

2.2.2 Anan, Taizo, Higuchi, Hiroyuki, Hamada, Naoki Approach [2]

As it is commonly known, fuel costs and CO2 emissions are the biggest concerns of shipping
companies. For the last decades shipping companies have create performance departments
with the goal to simulate the performance of the ship from the soar and use those sim-
ulations to reduce both fuel oil consumption and CO2 emissions. However, most of the
methods they use do not take into account the complex nature of the problem such as
the complex interactions between wind, waves and sea currents that influence the state
of the ship at real sea waters resulting in large margins of error. In their approach they
present the technology that Fujitsu Laboratories have developed in order to cope with
these discrepancies and better visualize the ship performance.

Over the past few years the maritime industry has been focused on developing energy
saving technologies for ships varying from combustion efficiency to hull resistance. One
of the most remarkable ones, is the weather routing technology. The aim of which is to
select the route that minimizes the fuel consumption thus improving the fuel efficiency.
It takes into consideration both the weather and the sea state and forecasts them and
their anticipated impact on the ship resistances which impact the ship’s speed and fuel
consumption. The most common technique to calculate those resistances was by using
existing physics models representing the hull, the waves and the winds. However, most
of these models fail to represent precisely all the variables above and thus create large
margins for error.

To cope with these problems the Fujitsu Laboratories used both their huge amount
of stored data and implement their own AI called ”Human Centric AI Zinrai”. By using
their technology Fujitsu Laboratories managed to estimate the ship’s performance in real
sea waters with a margin of error of 5% or less, which is an incredible level of accuracy.
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Besides their AI technology, Fujitsu Laboratories also abandoned the conventional
physics models and prioritizing high dimensional statistical analysis to determine the ac-
tual impact of the winds and waves on ship. This was accomplished by using the huge
amount of stored data the Fujitsu Laboratories have acquired over the last years. The
data were collected both from the operational reports and from engine logs. The data used
were consisted of weather, sea states and ocean currents as well as of engine log variables
and ship’s speed.

As it is stated in their paper the features of the present technology are as follows:

1. Analysis based on actual ship operation data without physics models. The above
mentioned high dimensional statistical analysis technology was implied and simulta-
neous analysis of various influences such as weather and sea conditions was success-
fully carried out using measurement data obtained from ship operation. This made
it possible to estimate ship performance taking into account the complicated inter-
actions of winds, waves,sea currents and the like, based on the raw data obtained in
real sea waters, not data from water tank experiments.

2. Automatic grouping of actual measurement data and learning level adjustment. As
shown in the figure 2.6, in a conventional physics model, the estimation accuracy
cannot be improved because the physics phenomena are represented by a model
that simplifies, for example,by classifying wind strength as either uniformly ”weak”
or ”strong”. By contrast, as shown in figure 2.7 the present technology automatically
groups high dimensional data integrating various measured data by similarity, such
as weather and sea conditions, allowing learning estimation according to each group.
As a result, suppression of estimation errors due to averaging over the whole range
was achieved.

Figure 2.6: Conventional technology (physics model)

Regarding the system configuration and models of operation, the Fujitsu Laboratories
included the previous technology into Fujitsu Intelligent Society Solution SPATIOWL,
which is a cloud service that utilizes the location information to create a system for
providing various ship related services. The Figure 2.8 demonstrates an example, in which
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Figure 2.7: Newly developed technology

the AI and a weather routing simulator are mounted on SPATIOWL. This visualization
provided by SPATIOWL allowed the organization to harvest accurate data that were after
used to determine the best route for the selected ship, resulting in a lower fuel consumption.
Last but not least this technology could also make a comparison of ship performance before
and after maintenance.

Figure 2.8: Example of incorporation of developed technology into SPATIOWL

During the development of the previous technology the Fujitsu Laboratories collabo-
rated with Tokyo University of Marine Science and Technology. They collected data from
several navigation, off the coast of Tateyama, from a ship owned by the University. The
acquired variables where the following:

• Bow direction

• Speed Through Water

• True Wind Direction

• True Wind Speed

• Rudder Angle

• Controllable Pitch Propeller blade angle

• Shaft Revolutions
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• Shaft Power

• Main Engine Revolutions

• Fuel Consumption

The performance of the ship was calculated using the obtained variables from the
measurements. Since the developed method did not use any physics model any addi-
tional measured variable could be added to the analysis. The data was measured and
accumulated at one second intervals during the ship operation.

In this evaluation the acquired data was divided into two sets one to be used for
learning and one to be used for estimation. The ship’s performance was visualized using
only the learning data. The relationship between STW and nine other items was visualized.
Similarly, with regard to the fuel consumption, the relationship between fuel consumption
and nine other variables was visualized.

Whether fuel cost and ship’s speed could be estimated from the visualization of the
ship’s and the performance was verified using the test data set. The results are shown in
the graphs below. The horizontal axis of the first graph indicates the actual measured ship
speed and the vertical axis represents the estimated ship speed. The closer the plotted
points are to the diagonal line the closer the estimated value is to the measured one. On
the left part of the graph shows the the measure values and the estimated ones arranged
in chronological order. The more the 2 lines overlap the higher the accuracy.

Figure 2.9: Estimated accuracy of ship speed

The horizontal axis of the second graph indicates the actual measured fuel consumption
and the vertical axis represents the estimated fuel consumption. The closer the plotted
points to are along to the diagonal line the closer the estimated value is to the measured
one. Similarly to the previous graph the left part shows the the measure values and the
estimated ones arranged in chronological order. The more the 2 lines overlap the higher
the accuracy.

Figure 2.10: Estimated accuracy of fuel consumption
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MAPE% Calculation
Average Standard Deviation Max. Min. time(s)

STW(knot) 2.8 0.0001 3.0 2.6 11

Fuel Consumption(Lh) 4.4 0.0002 4.8 4.3 11

Table 2.3: Evaluation results of ship performance estimation.

On the table 2.3 below there are listed the results of the evaluation of the estimation
error using cross validation.

The ten fold cross validation is a validation method that repeats verification a total
of ten times, by dividing the entire data into ten blocks, selecting and learning nine out
of these ten blocks and using the data of the remaining block in order to evaluate the
estimation error in all blocks. As error index, the mean absolute percentage error(MAPE)
was obtained by the following equation

MAPE =
1

T

T∑
t=1

|f(xt)− yt|
|yt|

where T is the number of samples of evaluation data, t is the ordinal number among all T
samples, xt is the input data used for estimation of the t-th sample, f(xt) is the estimated
value of the STW or the fuel consumption relative to xt and yt is the measured value of
the STW or the fuel consumption of the t-th sample. The mean absolute percentage error
with respect to the estimation of the STW was 2.8% and the mean absolute percentage
error with respect to the estimation of the fuel consumption was 4.4%, showing that the
proposed technology is capable of high accuracy estimation in both cases with an error of
less than 5%. Generally, although it depends on the nature of the data and the accuracy,
3,000 data were found in this experiment to be the number of samples required to estimate
both the STW and the fuel consumption with an error of less than 5%.

As shown in the previous table, the calculation time required for learning was just 11
seconds for both STW and fuel consumption, a level that qualifies as high-speed learning.
The proposed technology was also applied in merchant ships actually carrying cargoes to
verify its accuracy. From the merchant ships operation data and engine log data, the ship’s
speed and fuel consumption were visualized and the ship’s speed and fuel consumption on
actual routes were estimated. As a result similarly to the verification described above, it
was found that both speed and fuel consumption can be estimated with an error of 5% or
less.

Based on the results above, usage of this technology allows prediction of ship’s speed
and fuel consumption with high precision on routes to be travelled. Thus, the proposed
technology is considered to be more suitable for optimum route selection than traditional
weather routing algorithms that use physics models.

The results of the demonstration off Tateyama were incorporated into the weather
routing of the TUMSAT and the fuel consumption reduction effect of this technology
was evaluated. It was confirmed that when navigating optimum routes based on the ship
performance visualized based on this technology, fuel consumption can be reduced by
about 5% compared with navigation of the shortest route and significant reductions in
fuel costs and CO2 emissions can be achieved as a result.

As part of their future work the Fujitsu Laboratories plan to continue the research of
this topic with collaboration with TUMSAT and also try to demonstrate the application
of this technology to various types of ships.
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2.2.3 The Pedersen Approach [3]

2.2.3.1 Introduction

In his paper Mr. Pedersen shows how the Gaussian Process Regression (GPR) can be
used equally good or better than the Artificial Neural Networks (ANN) for short and long
term predictions of the energy consumption on a ship.

Once more, the increase in fuel prices in combination with the need to be more eco-
nomical as well as the environmental regulation have led the maritime industry in search
for increased fuel efficiency on ship operations. This created the need for both long and
short term prediction of energy consumption.

According to Mr. Pedersen, Energy and fuel efficient operations of ships have many
facets. Both comprise voyage planning, efficient loading and discharging, if possible op-
timal trim of the loading conditions, and long term factors as wear on the engines and
other mechanical part together with fouling of the hull and propeller. Since the conditions
of the hull and propeller are difficult to assess it is also difficult to estimate the effect of
fouling of the propulsion power. Traditionally the effect of fouling has been evaluated by
comparing for example the actual fuel consumption with a theoretical estimate based on
empirical methods and other available data such as model tests. Two well-known and
robust methods are Holtrop (1984) and Harvald (1983) that are based on statistical data
from model tests of a large number of ships, which makes them more suitable for ship
models and loading conditions resembling to the ones tested. This is often not the case
since model tests usually only are performed at the design and/or one ballast condition.

2.2.3.2 Regression methods

Gaussian Processes, GP, is a non-parametric model that provides a flexible framework for
regression. The regression function does not take a predetermined form but is constructed
from information derived from the data. The definition by Rasmussen and Williams (2006)
is: ”A Gaussian process is a collection of random variables, any Gaussian process finite
number of which have a joint Gaussian distribution”. GP is the most flexible class of
non-parametric function estimators which can be interpreted as an infinite ANN, Neil
(1994).

A GP can also be described as a multivariate Gaussian distribution over functions
(instead of a scalar or vectors) and the general form can be written as in:

f(x) ≈ GP (m(x), k (x,x’)) or N(µ,Σ) (2.2.1)

where m(x) or µ was the mean function E[f(x)] and k (x,x’) or Σ was the covariance
function E[(f(x)−m(x))(f ′(x)−m′(x))]. The mean function can be set to zero, and the
covariance function used for this problem was the Squared Exponential (KSE).

cov(y) = KSE(x,x’) + σ2n (2.2.2)

KSE(x,x’) = σ2f exp

[
−1

2

D∑
d=1

(
xd − x′d
ld

)2
]

(2.2.3)

where σ2f was the predictive variance, σ2n was the noise variance, and l was the charac-

teristic length-scale, D was the dimension of the input variables x, σ2f , σ
2
n and l were also

referred to as the hyperparameters.
The length-scale can be thought of as the distance you have to move in input space for

the function value to change. In the present problem, the input is multi-dimensional and
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thus there is one length scale for each of the input variables and the hyperparameters thus
defined as: θ = l1, l2, . . . , ld, σ2f , σ

2
n. The model was trained by optimizing the covariance

function with respect to the hyperparameters by maximum likelihood also referred to as
Automated Relevance Determination routine, ARD. This left one optimum length-scale
for each of the input variables l1, l2, . . . , ld.

Predictions by GPR were found by making a joint distribution of the training target
values y = [y1, . . . , yN ]and the test values yt(xt), and from this the predictive function
value and variance can be derived to 2.2.4 and the predictive variance σ2t can be found as
the sum of the predicted covariance matrix cov(f(xt)) and the variance σ2n.

f(xt) = xt (2.2.4)

σ2
t = K(xt, xt) −K(xt, x)αK(x, xt) (2.2.5)

where

α =
(
K(x, x) + σ2

n I
)−1

(2.2.6)

GPR was a fast method, but the complexity increases with the amount of input O(N3),
so it was not appropriate for analysis of large data sets. The training data were explicitly
used for prediction, so these could be computationally expensive.

One of the strengths of GPR was that from ARD, the length-scale was found, which
determines how relevant each input variable was for the regression. Input variables with
a small length-scale had a higher influence than the variables with high length-scales due
to the short distance the input had to move in order to change the function. In the
variable analysis all the length-scales were presented as the logarithm log(l) due to the
large variation in the length-scales. Furthermore the prediction variance was calculated
for every prediction.

2.2.3.3 Training

In order to maximize the efficiency of the data, Mr. Pedersen divided them into several
training/test sets. According to his research, the most efficient use was by training with
all the data except one (N-1) and test with the single remaining input/output variable
that was not used for training. This could be done alternately N times so all data points
were used for test at a time. This was referred to as ”Leave-One-Out” (LOO). Prediction
errors were calculated for each training/test set, and the mean value of the test error from
all the test sets was referred to as the ”Cross-validation error”.

The input xdi was normalized by the mean and standard deviation: x̃di =
xd
i−xd

std(xd)
. This

was done in order to avoid too large variations in the input variables leading to large
variations in the length-scale and hence the predictions. Since GPR with zero-mean was
assumed, the output variable was centred around 0 with following normalization: ỹ =
yi − y.

The initial guess of the hyperparameters occasionally resulted in local minima depend-
ing on the data length which was discovered by the prediction variance being very small or
zero. To overcome this, the training/test set was also split up into MS parts accumulating
to the full dataset 2.2.7. Each training was restarted with the final hyperparameters from
the previous run in total MS-times as in 2.2.8. After a few tests, it was concluded that it
was sufficient to restart the training twice depending on the data size, i.e. three trainings
of the GPR, subsequently two restarts were used for all the trainings.

θ
(
xmsi+1

)
= θ (xmsi) (2.2.7)
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xmsi ∈ x

(
0 : i

|x|
MS

)
(2.2.8)

Where x was the total input data set and xmsi was the multi start subset.

2.2.3.4 Data

From the existing empirical methods for predicting the propulsion power, it was clear that
the necessary input variables where the following:

1. Draught midship [m]

2. Trim Ta-Tf (Draught aft- draught fore) [m]

3. Ship speed [knots]

4. Relative wind speed [m/s]

5. Relative wind direction [degree]

6. Wave height [m]

7. Relative wave direction [degree]

8. Water temperature [degree C]

9. Air temperature [degree C]

The output variable was either the propulsion power measured by a torsiometer or the
specific fuel consumption.

Container ship data The data were systematically collected from 5 sister container
ships for a period up to 10 years. The logging periods were long and contained both
dry-docking and hull cleanings, which gave an interesting insight into how these oper-
ations influenced the performance. The data were well organized,purged of irrelevant
data and seemed to be very consistent, especially the manual observations of the wave
height/direction and wind speed/direction.

The figure 2.11 shows the distribution of the logged speed and shaft power, it indicates
a narrow speed profile with a mean around 23 knots and with almost no occurrences
of speeds out of the range of 20-25 knots. The power distribution was much broader
which indicates that the power was adjusted to meet the speed for different draught,
environmental conditions, etc. On the table 2.4 below there is an overview of the datasets
where the logging period until the first dry-docking is presented together with the total
number of data points, number of dry dockings and hull cleanings within the period.

Ship ID Period year to first docking Total no. of No. Docking No. Hull
NR cleaning

1 0-4.5 2337 2 7
2 0-4.5 2283 2 2
3 0-4.9 2268 1 3
4 0-5.0 2679 2 3
5 0-5.0 2564 2 4

Table 2.4: Noon reports from the container ships
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(a) The first Container ship (b) The second Container ship

(c) The third Container ship (d) The fourth Container ship

(e) The fifth Container ship

Figure 2.11: Speed and power distribution for the five container ships

In order to supplement the noon report hindcast data were used. Hindcasts are
weather information at a certain time and position in the past. The data is received by
a tool developed for Seatrend(Performance Monitoring tool developed at FORCE Tech-
nology, www.force.dk) at FORCE Technology based on weather information from the
NOAA(National Oceanic Atmospheric Administration, US Dept. of Commerce) data
base. This added several new variables to the noon reports, but it also limited the number
of data, since not all areas were covered by the NOAA database. Many of the smaller
seas i.e. the Mediterranean, North sea, Baltic sea, were not included. This reduced the
number of data,approximately, by half.

Since the weather observations were instantaneous values, usually taken around the
reporting time, and other important variables were average values from the previous noon
report time, it was not correct to use them together. It would have been ideal to have ”noon
reports” for every hour to increase the accuracy of the hindcast weather information. As
this was not possible, hindcasts were made between every noon report, but with one-hour
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x Data variable Source ID Unit

1 Speed through water Noon report NRxls.Ulog knots

2 Speed over ground Noon report NRxls.Uobs knots

3 Sea water temperature Noon report NRxls.Tsw deg

4 Mean draught (Ta+Tf)/2 Noon report NRxls.Tm m

5 Trim, Ta-Tf Noon report NRxls.Trim m

6 True wind speed Noon report NRxls.WindSpeed m/s

7 Relative wind direction Noon report NRxls.WindDir deg

8
Average relative winds
speed during report period

Hindcast HC. Vrel m/s

9
Average relative winds di-
rection during report pe-
riod

Hindcast HC.gammarel deg

10
Average significant wave
height during report period

Hindcast HC.mean.Hs m

11
Average wave period dur-
ing report period

Hindcast HC.mean.Tp s

12
Variance of the significant
wave height during report
period

Hindcast HC.var.Hs xm2

13
Variance of the wave pe-
riod during report period

Hindcast HC.var.Tp s2

14
Variance of the wave direc-
tion during report period

Hindcast HC.var.Td deg2

15
Variance of the winds
speed during report period

Hindcast HC.var.Ws m/s

16
Variance of the winds di-
rection during report pe-
riod

Hindcast HC.var.gamma deg

17
Report date and tim (Mat-
lab numeric value)

Noon report NRxls.UTC numeric

18
Average winds speed dur-
ing report period

Hindcast HC.Ws m/s

19
Average winds direction
during report period

Hindcast HC.gamma deg

27 Sea state Noon report NRxls.SeaState m

28 Relative sea direction Noon report NRxls.True deg
RelativeSeaDirection

36 Average shaft power Noon report NRxls.PropPower kW

Table 2.5: Container ship input data

intervals and equivalent position, and then the average of the values between the present
and the previous noon report were found.

Similarly, the variance of the hindcasts for every noon report period was determined
and made available for input to give more detailed weather information. The goal was to
find weather that was equivalent to the effect spent in the same period, but since this was
not possible, it was believed to be better than using only one observation (noon report
time) to represent the past 24 hours. Table 2.5 shows the list of the data used for the
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analysis.

2.2.3.5 Results

The evaluation was done by comparing the relative prediction errors of energy consump-
tion. As described above, the cross-validation had been performed by Leave-One-Out.
The cross-validation error ωk was the mean error of the mean from the k’th subsets of all
the relative tests errors ωnk

. For LOO, K was equal to the length of the total data set N .
In a similar way the cross-validation value of the relative predictive standard deviations
had been determined.

Similarly the cross-validation value of the relative predictive standard deviations σk
had been determined:

ωnk
=
ÊCnk

− ECnk

ECnk

(2.2.9)

ωk =
1

Nk

Nk∑
nk=1

|ωnk
| (2.2.10)

ωK =
1

K

K∑
k=1

|ωk| (2.2.11)

σk =

√√√√ 1

Nk

Nk∑
nk=1

(ωnk
− ωk|)2 (2.2.12)

ωk =
1

K

K∑
k=1

σk (2.2.13)

Where:
ÊCnk

was the predicted energy consumption of the n’th input data for data subset k.
EC was the measured energy consumption of the n’th input data for data subset k
Nk was the number of data points within each subset
K was the number of subset, K = N for for LOO, N being the number data in the full
data set
ωnk

was the relative prediction error of the n’th input data for data subset k
ωk was the average of the relative prediction errors for the k’th subset
ωK was average of the relative prediction error.

Results from Container ship #1 The data from Container ship #1 were used to make
initial tests in order to determine the best combinations of the input variables. Table 2.6
shows the input variable combinations tested, with the cross validation errors and standard
deviations listed in Table 2.7. From that the best prediction of the energy consumption
(the lowest prediction error) was found by using the input combination 13, 14and21, all
having relative prediction error around 4% they all had in common that they were based
on noon reports and hindcasts, and that the time was included as a variable. Omitting
the time increased the prediction errors of up to 2.4% (input combination 14 and 15).
Using input data from the noon reports only, the best prediction error was found to be
4.9% with input variable combination 18, where all available noon report input, except the
speed over ground, was used including the time variable. Without the time variable the
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input combination 18 was identical to 17 which gave significant higher errors of 6.7%, for
the noon reports data without time the rather simple input combination 9, including only
the logged speed, sea water temperature and the mean draught,yields the best prediction
of an error of 5.5%.

Input combination ID 3 9 11 12 13 14 15 17 18 20 21

1 NR.Ulog x x x x x x X x x x x

2 NR.Uobs x x x X x x

3 NR.Tsw x x x x x x x x x x x

4 NR.Tm x x x x x x x x x x x

5 NR.Trim x x x x x x x x x x

6 NR.True wind speed m s x x x x x x x x x x

7 NR.True relative wind x x x x x x x x x x
direction deg

8 HC.Vrel x x x x

9 HC.gammarel x x x x

10 HC.mean.Hs x x x x x x

11 HC.mean.Tp x x x x x x

12 HC.var.Hs x x x x x x

13 HC.var.Tp x x x x x x

14 HC.var.Td x x x x x x

15 HC.var.Ws x x x x x x

16 HC.var.gamma x x x x x x

17 NR.UTC x x x x x

18 HC.Ws x x

19 HC.gamma x x

27 NR.Sea state m x x x x

28 NR.True relative sea x x x x
direction deg

Table 2.6: Input variable setup combination for Noon Report data of the containership
data

Input variable ωK σK
setup % %

3 5.81 6.11
9 5.45 6.76
11 8.01 9.59
12 5.40 5.22
13 3.96 3.99
14 4.00 3.96
15 6.43 6.21
17 7.64 7.81
18 4.92 5.45
20 4.52 5.05
21 3.98 4.03

Table 2.7: Relative cross validations errors predictive standard deviations.
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Fig. 2.12 shows the relative prediction error with error bars based on the predicted
standard deviation. It is seen how the error bars generally increase with high prediction
errors or areas with sparse data density.

Figure 2.12: Relative prediction errors with error from the predicted standard deviation
(input 21, 0-4.5 years)

Figure 2.13: Comparison of prediction methods GPR and ANN)

In order to validate the prediction errors, an Artificial Neural Network (ANN) had
been trained and tested with the same setups as the GPR. The ANN was a feed forward
network as described in PedersenandLarsen(2009). Comparing the prediction methods
in Fig. 2.13 showed that the cross validation errors for GPR in most cases were lower or
in the same order of magnitude as ANN, was satisfactory for the further study of GPR
with performance data.

Results from Container ship #1-#5 Based on the findings of the previous sections,
the remaining 4 container ships were trained and evaluated similarly as for container ship
#1, i.e. using input variable combination 9, 18, 20 and 21, in order to represent data with
and without hindcast data, and with and without time as a variable. Furthermore each
of the data set was split into five subset: one for the first year, another for the first two
years of data, a third one for the first three year and so forth until the first dry-docking.
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Fig. 2.14 shows that for the data with hindcast input (20 and 21) were only affected very
little by the increasing number of data and the ended up with prediction errors between
4 and 6%. For the data set using noon reports without the hindcast data there seemed to
be a significant benefit using more data, since the prediction errors decreased with time
for most of the data set.

Figure 2.14: Cross-validation errors of container ship #1-#5

In order to evaluate the influence of each of the input variables, different trainings had
been performed with Container ship #1. The length-scales for each of the input variables
had then been evaluated for the different training setups. Initially the first year of container
ship #1 data were used with all the relevant input variables including the hindcast data,
see Table 2.7. In Fig. 2.15a the length-scales are illustrated in a bar diagram for the input
variable setup where time was included in variable setup 21 and the one without time
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20 after training the data from the launching until the first dry-docking. Here all the
available input variables were used, i.e. many data points were dismissed due to lack of
hindcast availability. For both input 20 and 21 the figure shows a clear trend of the logged
speed having the highest influence (input1). The speed over the ground (input2) is slightly
higher together with hindcast wind speed and direction, and significant wave height have
an equally influence. The hindcast wave period was generally less important. When the
time (input17) was introduced in variable setup 21, it had a significant influence itself,
but was also influenced the influence of other variables. The most dramatic drop between
variable setup 20 and 21 was the seawater temperature (input3). The time was introduced
as an estimator for the hull fouling since the propulsion performance was expected to drop
over time of this. The significant influence of the time variable confirmed the strong
relation between the expected to change in the performance over time. The draught and
trim (input4and5) had a smaller impact than expected but this might be due to, only,
small variation for these variables in the current data set.

(a) Logarithmic length-scales of input vari-
able setups 20 and 21 (with time as a vari-
able)

(b) Logarithmic length-scales of input vari-
able setups 17 and 18(with time as a vari-
able), using only noon report data.

(c) The accumulated length-scales of input
variable setup 20 (without time), trained for
the three periods of time 0-1, 0-2, 0-4.5 years
(4.5 year is the time of the first dry docking).

(d) The accumulated length-scales of input
variable setup 21 (including time – input
variable 17), trained for the three periods
of time 0-1, 0-2, 0-4.5 years (4.5 year is the
time of the first dry docking).

Fig. 2.15b is presenting the length-scales based on the training of data with all noon
report data available and no hindcast data, input variable setup 17 and 18, without and
with the time as input variable. Again it was confirmed that the ship speed is the variable
with the most significant influence with very small length-scales for both the input combi-



2.2 1 29

nations. For the variable setup 18, with time, the remaining input variables were all with
the same order of magnitude. For input variable setup 17, the seawater temperature (input
3) and the trim (input 5) indicated to have more influence than the remaining variables.
In order to assess the trend for shorter logging periods the model was also trained in data
of 0− 1 year, 0− 2 years and 0-until the first dry-docking about 4.5 years. This had been
performed for the variable setups 20 and 21 and the accumulated bars are shown in Fig.
2.15c and Fig. 2.15d. The figures shows that except for a few incidents the length-scales
becomes shorter for longer data series.

The overall propulsion performance of a ship was expected to decrease over time mainly
due to fouling of the hull and propeller. The change in performance can be determined
by comparing the actual measured energy consumption EC propulsion power or fuel con-
sumption with a calculated or predicted energy consumption ÊC of how the vessel should
be able to perform.

With GPR, ÊC predictions can be based on training of a previous period of time.
The difference between the predicted and actual values, i.e. the prediction error, is thus a
measure of the vessel propulsion performance.

In the analysis, the relative prediction error ω =
(
ÊC − EC

)
/EC was used to evalu-

ate the behaviour of the performance. The actual energy consumption EC was expected
to increase over time due to the fouling, while ω was expected to decrease since the pre-
dicted values were based on the training data which were assumed not to be affected by
fouling. It was thus desirable to train on the shortest possible period of time in order
to limit the effect of a trend in the training data. Yet the training set should include a
reasonable variation in the input variables.

The training was performed on the entire training set and the testing on the remaining
data set resulting in a predicted energy consumption ÊC. The change in propulsion
performance due to fouling was assumed to be linear, and the relative prediction error
ω was estimated as a linear function of the time. In order to account for the predicted
variance, a ”weighted least square” regression was performed on ω as a function of the
time where the weights, w, were the inverse relative predicted variance

(
1/σ2R

)
. This gave

the prediction errors with large variance less influence on the linear regression model. As
discussed previously the majority of the larger prediction errors also had a large standard
deviation sigma2R, so letting the inverse variance being the weights made these prediction
errors less relevant.

Weighted least square regression was similar to normal least square, but with the
residual (ωi − f(x, a)) multiplied by the weights, wii in the sum of square errors 2.2.14
which was minimized with respect to α. The x-axis was represented by the time ti.

E(α) =
n∑

i=1

wii (ωi − f(ti, α))2 (2.2.14)

The function values of the performance trend could be define as a Vessel Performance
Index, VPI:

V PI(t) = αt + β (2.2.15)

The performance trend was only continuous in periods without external disturbances
that changed the propulsion performance. External disturbances could be known or un-
known. The known disturbances were e.g. dry-docking and hull and propeller cleaning,
and unknown disturbances could e.g. be sudden unknown damage of the propeller or
rudder.
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All known disturbances or events were available for the container ships and the trend
was thus found between the known events, including dry-docking DD, hull cleaning HCL
and propeller cleaning PCL for the container ship. All these events were expected to
increase the relative prediction error ω, because the energy consumption was expected to
drop. But for the hull and propeller cleaning, this effect could sometimes be difficult to
detect due to its limited impact on the relatively large data scatter. Therefore the trend
detection had been performed both between all the known events and the dry-docking
only.

Figure 2.16: Performance trends for containership #1−#5

The time variable in input variable setups 18 and 21 increased linearly with time. This
means that if time had relevance for the regression model, it would be dominant for pre-
diction far into the future. Input combinations including the time were thus inapplicable
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for the trend detection. The best input variable setups without time was previously found
to be 17 and 20, with 17 based exclusively on noon report data, and 20 including the
hindcast data.

Given the considerations described above, ÊC for the five container ships was predicted
based on two training periods, one and two years from launching, two input variable set-
ups, 17 and 20. The trends were detected only between all the known events and the
dry-dockings.

The performance trends of container ship #1 − #5 are illustrated in Fig. 2.16. For
container ship #1 the intermediate events with short intervals gave too few data to make
reasonable trends from and subsequently only the dry-docking was used, which gave a good
picture of how the performance increased after a dry-docking, but afterwards dropped with
a higher rate than before. Container ship #2 had fewer events and thus more continuous
development where only a small increase in the performance was detected.

Container ship #3 had more events, but with reasonable time between and it thus
became easier to develop trend for after the first hull cleaning there was a drop in the
performance, indicating that the hull cleaning had actually had a negative effect on the
propulsion performance. The following drydocking had a small positive effect.

Container ship #5 showed a very clear trend of the second hull-cleaning having a
temporary significant positive effect, but the slope of the performance trend droped dra-
matically, indicating that the anti fouling paint might had been damaged. The following
dry-docking was bringing the vessel back to state which was actually better than at new.

With the methods described above, it was possible to detect the general trends of the
change in the performance over time without any predefined definitions of the vessel. Using
a combination of noon report data and hindcast data increased the prediction performance
significant, even though it reduced the number of inputs.

The dry-docking, hull and propeller cleanings did not always have the intended effect.
The hull cleanings may have a positive immediate effect, but the long-term trend can be
negative. It might also be that the event has no immediate effect, but the long-term effect
can be beneficial. In order to evaluate this, detailed information about the event is needed
such as what part of the ship was cleaned and what equipment was used.

In general, the dry-docking had a more consistent effect with a positive change in VPI
after the docking, but the slope afterwards varied from being steeper than before, as for
Container ship #1, to being flatter than the previous trend, as for Container ship #4.

2.2.4 Other related work

The rest of the related work,such as [5], [6], [7] to [17], that was either the same as the one
presented above or was not taken into consideration for the data processing of the thesis
and thus was not presented, can be found in the bibliography.
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Chapter 3

Analysis of Ship Data

As stated before, the target of this thesis was to train a NN that would be able to predict
the future fuel oil consumption using numerous variables. However in order to train any
NN data are needed. In the case of this thesis the data were provided by the performance
department of Bernhard Schulte shipmanagement Hellas.

3.1 Brief Introduction of Pandas, Jupyter Notebook & Ten-
sorFlow

The Pandas Library is a powerful data manipulation library that allows data engineers to
visualize, filter and perform any actions needed on the data. It can better be explained in
a few useful points

1. Pandas is a library that is used for data manipulation and analysis using powerful
data structures.

2. The types of the data structures vary in Pandas, there can be Series 1-D ( labelled
homogeneous array, size immutable) DataFrames2-D (labelled, size- mutable tabular
structure with potentially heterogeneously typed columns) or Panels 3-D (labelled,
size- mutable array.).

3. While the 1&2 -D are self-explanatory the Panel is a three-dimensional data structure
with heterogeneous data. It is hard to represent the panel in graphical representa-
tion. But a panel can be illustrated as a container of DataFrame.

4. A Data frame is a two-dimensional data structure, i.e., data is aligned in a tabular
fashion in rows and columns. Features of DataFrame: Potentially columns are of
different types, Size – Mutable Labelled axes, (rows and columns), Can Perform
Arithmetic operations.

5. In Pandas the data takes various forms like ndarray, series, map, lists, dictionaries,
constants and also another DataFrame.

Pandas also provides some useful built-in functions. Some of the most common ones are
:index, columns, dtype etc. to name a few. For more information the reader is encouraged
to visit the pandas website Pandas

The TensorFlow is a subclassing API, created by Google, that provides a define-by-run
interface for advanced research and especially Machine Learning research. Moreover, Ten-
sorFlow’s high-level APIs are based on the Keras API standard for defining and training
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neural networks. Keras enables fast prototyping, state-of-the-art research and production.
For more information the reader is encouraged to visit the TensorFlow website TensorFlow.

The Jupyter Notebook is an open-source web application that allows the user, as seen
in the figure 3.1, to create and share documents that contain live code, equations, visu-
alizations and narrative text. Uses include: data cleaning and transformation, numerical
simulation, statistical modeling, data visualization, machine learning, and much more. For
more information the reader is encouraged to visit the Jupyter Notebook website Jupyter
Notebook.

Figure 3.1: Jupyter Notebook demo

https://www.tensorflow.org/
https://www.jupyter.org/
https://www.jupyter.org/
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3.2 Data Analysis

3.2.1 Data Acquisition

As mentioned in the previous chapter the variables that were needed to carry out a good
predictive model were:

1. The Fuel Oil Consumption(FOC) [kg orm3]

2. The Ship’s Speed Through Water (STW) [kn]

3. The Main Engine Shaft Power [kW ]

4. The Main Engine Speed or RPM

5. The Fuel Oil Temperature oC

6. The True Wind Speed at Anemometer Height

7. The True Wind Direction at Anemometer Height

The data were collected from three containerships, the names and specific details of
which will remain anonymous for confidential reasons.

Two of the ships were considered to be sister ships. Sister ships are called the ships
that share the shame design, shame Main and Auxiliary Engines, shame DWT and operate
with approximately the shame Service Speeds. According to the performance department
two of the three ships shared these traits and were qualified to be sister ships.

The variables that were provided from the three ships were the following:

1. Id,

2. Vessel Object Id, (first ship 864911, second ship 864637, third ship 629311)

3. Entry Date,

4. ME Speed (Avg.),

5. ME Shaft Power (Avg.),

6. True Wind Speed at Anemometer Height (Avg.),

7. True Wind Direction at Anemometer Height (Avg.),

8. Speed Through Water (Avg.),

9. ME Mass FO Consumption (Cnt.),

10. ME Volume FO Consumption (Cnt.),

11. ME FO Temperature at Inlet Flowmeter (Avg.)

The amount of data acquired was, approximately, 1 million for each variable and 1
3 for

each ship respectively. The Vessel Object Id was the ship’s code and was used to match
that values of the variables to each ship. The sister ship’s Vessel Object Id began with
the same two digits (86). The Entry Date was given with a minute accuracy and was
used to sort the data of each ship to prepare them for the timeseries. The ME Speed
(Avg.) was the average value of the ME’s rpm in 1 minute interval. The same ap-
plied for the ME Shaft Power (Avg.), True Wind Speed at Anemometer Height (Avg.),
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True Wind Direction at Anemometer Height (Avg.), ME FO Temperature at Inlet
Flowmeter (Avg.) and the Speed Through Water (Avg.). The ME Mass FO Consumption
and the ME Volume FO Consumption (Cnt.) on the other hand represented the total
Mass and Volume (respectively) measured in that 1 minute interval.

3.2.2 Data Preprocessing

The data that were acquired, were measured using a variate of measurements. As a result
the data contained a lot of noise and thus needed to be filtered. First of all, the data
were uploaded using the pandas framework where each variable was in a separate column.
Then, all the NaN data were deleted as it was considered that using the mean value would
result in inconstancies and ruining the ability of the ANN to train properly.

After the removal of the NaN values, the remaining data were split into 3 datasets,
one for each ship, using the Vessel Object Id to separate them. The next step was to sort
the variables using the Entry Date, which was the only one with no missing values.

Next, a new variable was created. This was the True ME FO Cons which was created
with the following method. The first value of the ME Mass FO Consumption remained
the same however every next value was created by subtracting from the ME Mass FO
Consumptioni value the ME Mass FO Consumptioni−1:

True ME FO Cons0 = ME Mass FO Consumption0 (3.2.1)

for i > 0 :

True ME FO Consi = ME Mass FO Consumptioni−ME Mass FO Consumptioni−1
(3.2.2)

This new variable was created with the perspective to filter the data even more. Since
the ME Mass FO Consumption would be the main variable to be used in this project, the
newly created variable would help as an indicator of when there is any fuel oil consumption.
This was a very important filter since despite the fact that all of the ships spent some
time in a harbour the data were still recorded. As a result a huge chunk of the data did
not have any fuel oil consumption rendering it useless for this thesis task. Moreover, the
new variable also filtered the negative fuel oil consumption which was of course wrong and
needed to either be removed or to be replaced by some median value. In this thesis it was
considered that replacing it a median value would not provide any extra aid so it the data
that had a negative fuel oil consumption were removed.

Next, the following variables were removed from the :

1. Id,

2. Vessel Object Id,864911,864637,629311

3. Entry Date,

4. ME Shaft Power (Avg.),

5. True Wind Speed at Anemometer Height (Avg.),

6. True Wind Direction at Anemometer Height (Avg.),

7. ME Volume FO Consumption (Cnt.),
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The reason the ME Mass FO Consumption was kept instead of the ME Volume FO Consumption
because of the better representation of the consumption due to different density of the fu-
els that were probably used. At this point it is worth to see the difference in the data
before and after the preprocessing that are presented in the figures 3.3 & 3.4 below.

As it is clearly notice the fuel oil consumption in the figure 3.4 does not have any
straight lines meaning that the 0 values had been successfully removed. Also the differences
in the two figures arise from the removal of the NAN values and the 0FOC values.

The next feature that was used was the correlation, functions of pandas framework
were used and the results are shown in the figure 3.2 below. From these results it was
clear that for a model to successfully generalise more than one variable had to be used.

Figure 3.2: Correlation between Fuel Oil Consumption and the other variables

The last step of the preprocessing was to scale the data. This was accomplished by
using the built in MinMaxScaler function of sklearn from the preprocessing library. This
function-transformation transforms the data into new data that had a specified Max and
Min values. The transformation is given by the the following equations :

X std = (X −X.min(axis = 0))/(X.max(axis = 0)−X.min(axis = 0)) (3.2.3)

X scaled = X std ∗ (max−min) +min (3.2.4)

where min and max are the desired values.
In this project the min value was chosen to be 0 and the max value 1. As a result all the

data would be between the values of 0, 1 which would accelerate the computation in the
following steps. Since the data were filtered to be above zero, in the previous steps, the
transformation is just a division with the max value of each variable respectively. These
values, for each variable, were saved since at the final part of processing the data would
need to be scaled back to the original value in order to interpret the results. These values
were the following :

[0.00013181, 0.01113438, 0.00400021, 0.04059073, 0.00237815]
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Figure 3.3: The data before preprocessing
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Figure 3.4: The data after preprocessing
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Chapter 4

Neural Network Design

4.1 First approach

As we have seen before the data were in chronological order which meant we were dealing
with time-series data. The best way to tackle problems that are consisting of this type of
data, is to use a recurrent neural network. The reason is pretty simple. Imagine a ball in
one frame. If you were asked where is the ball going to be in the next frame you could not
decide. However if you were also given the previous position of the ball and more frames
of the previous positions of the ball you probably would be able to accurately predict
its position in the next frame or even in the next several frames. The same reasoning is
applied in time-series data. Since the data are connected by the time parameter one can
understand that the estimation of the fuel oil consumption value is not affected only from
the present values of the speed, main engine’s rpms and temperature but also from their
previous values. Moreover this approach allows us to use the previous values of the fuel
oil consumption as a variable that will help us make the prediction. To be more precise
the previous values of the fuel oil consumption were the main variable of this thesis.

4.2 Simple RNN [4]

The keras backend provides the option to use the simpleRNN layer to tackle time-series
problems. The RNN is similar to the feedforward neural network, with the exception
that it also has connections pointing backwards. The simplest possible RNN is shown in
the figure 4.1 below. This neural network consists of only one neuron. This one neuron
receives inputs, produces the outputs and then feeds the output back to itself as shown
in the figure 4.1. At each time step t, which is also called a frame, this recurrent neuron
receives the inputs x(t) as well as its own output from the previous time step y(t-1). Since
there is no previous output for t = 0 the ”previous output” is set to 0 for this frame only.
We can represent this tiny network against the time axis, as shown in figure 4.1. This
is called unrolling the network through time (it’s the same recurrent neuron represented
once per time step).

A layer of recurrent neurons can easily be created. At each time step t, every neuron
receives both the input vector x(t) and the output vector from the previous time step
y(t-1), as shown in figure 4.2. Note that both the inputs and outputs are vectors now
(when there was just a single neuron, the output was a scalar).
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Figure 4.1: Simplest RNN (left) unrolled through time (right)

Figure 4.2: A layer of recurrent neurons (left) unrolled through time (right)

Each recurrent neuron has two sets of weights: one for the inputs x(t) and the other
for the outputs of the previous time step, y(t-1). Let’s call these weight vectors wx and
wy. If we consider the whole recurrent layer instead of just one recurrent neuron, we can
place all the weight vectors in two weight matrices, Wx and Wy. The output vector of the
whole recurrent layer can then be computed pretty much as you might expect, as shown
in Equation 4.2.1 (b is the bias vector and φ(·) is the activation function).

y(t) = φ
(
WT

xx(t) + WT
y y(t−1) + b

)
(4.2.1)

Just as with feedforward neural networks, we can compute a recurrent layer’s output
in one shot for a whole mini-batch by placing all the inputs at time step t in an input
matrix X(t)(see equation 4.2.2).

Y(t) = φ
(
X(t)Wx + Y(t−1)Wy + b

)
= φ

([
X(t) Y(t−1)

]
W + b

)
with W =

[
Wx

Wy

]
(4.2.2)

In this equation:

• Y(t) is an m × nneurons matrix containing the layer’s outputs at time step t for
each instance in the mini-batch (m is the number of instances in the mini-batch and
nneurons is the number of neurons).

• X(t) is an m × ninputs matrix containing the inputs for all instances (ninputs is the
number of input features).

• Wx is an ninputs × nneurons matrix containing the connection weights for the inputs
of the current time step.

• Wy is an nneurons×nneurons matrix containing the connection weights for the outputs
of the previous time step.
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• b is a vector of size nneurons containing each neuron’s bias term.

• The weight matrices Wx and Wy are often concatenated vertically into a single
weight matrix W of shape (ninputs + nneurons)× nneurons.

• The notation
[
X(t) Y(t−1)

]
represents the horizontal concatenation of the matrices

X(t) and Y(t−1).

Notice that Y(t) is a function of X(t) and Y(t−1), which is a function of X(t−1) and
Y(t−2),which is a function of X(t−2) and Y(t−3), and so on. This makes Y(t) a function of
all the inputs since time t = 0

(
thatis,X(0),X(1), . . . ,X(t)

)
. At the first time step,t = 0,

there are no previous outputs, so they are typically assumed to be all zeros.

Since the output of a recurrent neuron at time step t is a function of all the inputs from
previous time steps, you could say it has a form of memory. A part of a neural network
that preserves some state across time steps is called amemorycell (or simply a cell). A
single recurrent neuron, or a layer of recurrent neurons, is a very basic cell, capable of
learning only short patterns (typically about 10 steps long, but this varies depending on
the task).

In general a cell’s state at time step t, denoted h(t) (the ”h” stands for ”hidden”),
is a function of some inputs at that time step and its state at the previous time step:
h(t) = f

(
h(t−1),x(t)

)
. Its output at time step t, denoted y(t), is also a function of the

previous state and the current inputs. In the case of the basic cells we have discussed so
far, the output is simply equal to the state, but in more complex cells this is not always
the case, as shown in figure 4.3.

Figure 4.3: A cell’s hidden state and its output may be different

A RNN can simultaneously take a sequence of inputs and produce a sequence of outputs
(see the top-left network in figure 4.4). This type of sequence− to− sequencenetwork is
useful for predicting time series such as stock prices: you feed it the prices over the last
N days, and it must output the prices shifted by one day into the future (i.e., from N – 1
days ago to tomorrow).

Alternatively, you could feed the network a sequence of inputs and ignore all outputs
except for the last one (see the top-right network in figure 4.4). In other words, this is a
sequence − to − vectornetwork. For example, you could feed the network a sequence of
words corresponding to a movie review, and the network would output a sentiment score
(e.g., from –1[hate]to+ 1[love]).

Conversely, you could feed the network the same input vector over and over again at
each time step and let it output a sequence (see the bottom-left network of figure 4.4).
This is a vector − to − sequencenetwork. For example, the input could be an image (or
the output of a CNN), and the output could be a caption for that image.

Lastly, you could have a sequence − to − vectornetwork, called an encoder, followed
by a vector − to − sequencenetwork, called a decoder (see the bottom-right network of
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figure 4.4). For example, this could be used for translating a sentence from one language
to another. You would feed the network a sentence in one language, the encoder would
convert this sentence into a single vector representation, and then the decoder would
decode this vector into a sentence in another language. This two-step model, called an
Encoder–Decoder, works much better than trying to translate on the fly with a single
sequence− to− sequence RNN (like the one represented at the top left):the last words of
a sentence can affect the first words of the translation, so you need to wait until you have
seen the whole sentence before translating it.

Figure 4.4: Seq-to-seq (top left), seq-to-vector (top right), vector-to-seq (bottom left),and
Encoder–Decoder (bottom right) networks

In this thesis, a sequence − to − sequencenetwork was used since the main purpose
was to predict the future fuel oil consumption using the previous fuel oil consumption, as
well as other variables, as inputs.

To train an RNN, the trick is to unroll it through time (like we just did) and then simply
use regular backpropagation (see figure 4.5). This strategy is called backpropagation
through time(BPTT).

Just like in regular backpropagation, there is a first forward pass through the unrolled
network (represented by the dashed arrows). Then the output sequence is evaluated using
a cost function C(Y(0), Y(1), ...Y(T) ) (where T is the max time step). Note that this
cost function may ignore some outputs, as shown in figure 4.5 (for example, in a sequence-
to-vector RNN, all outputs are ignored except for the very last one). The gradients of that
cost function are then propagated backward through the unrolled network (represented by
the solid arrows). Finally the model parameters are updated using the gradients computed
during BPTT. Note that the gradients flow backward through all the outputs used by the
cost function, not just through the final output (for example, in figure 4.5 the cost function
is computed using the last three outputs of the network, Y(2), Y(3), and Y(4), so gradients
flow through these three outputs, but not through Y(0) and Y(1)). Moreover, since the
same parameters W and b are used at each time step, backpropagation will do the right
thing and sum over all time steps.

There are two problems with the simple RNN. The first one is the unstable gradients
and the second one is the ”Short Memory”. The first problem is mostly tackled with the
use of normalized layers and dropout which is a technique that a random subset of all the
neurons is deactivated or else dropped out at each training iteration. In this thesis it was



4.3 1 45

Figure 4.5: Backpropagation through time

noticed that the implementation of these methods made little to no improvement.

However, the ”Short Memory” problem was the one that needed to be solved for this
thesis since the data for each ship were approximately 300k.

4.3 LSTM [4]

One of the few ways to tackle this problem is the use of a LSTM layer instead of a
simpleRNN one. The initials(LSTM) stand for Long-Short Term Memory.

The Long Short-Term Memory (LSTM) cell was proposed in 1997 by Sepp Hochreiter
and Jürgen Schmidhuber [4] and gradually improved over the years by several researchers.

LSTM cell as a black box, it can be used very much like a basic cell, except it will
perform much better since training will converge faster, and it will detect long-term de-
pendencies in the data. So let’s see how an LSTM cell works and what its architecture
looks like.

If you don’t look at what’s inside the box, the LSTM cell looks exactly like a regular
cell, except that its state is split into two vectors: h(t) and c(t) (”c” stands for ”cell”).
You can think of h(t) as the short-term state and c(t) as the long-term state. So let’s open
the box. The architecture of the LSTM cell is presented in the figure 4.6 below.

Figure 4.6: LSTM cell

The key idea is that the network can learn what to store in the long-term state, what to
throw away, and what to read from it. As the long-term state c(t–1) traverses the network
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from left to right, you can see that it first goes through a forget gate, dropping some
memories and then it adds some new memories via the addition operation (which adds
the memories that were selected by an input gate). The result c(t) is sent straight out,
without any further transformation. So, at each time step, some memories are dropped
and some memories are added. Moreover, after the addition operation, the long-term
state is copied and passed through the tanh function, and then the result is filtered by the
output gate. This produces the short-term state h(t) (which is equal to the cell’s output
for this time step, y(t)). Now let’s look at where new memories come from and how the
gates work.

First, the current input vector x(t) and the previous short-term state h(t−1) are fed to
four different fully connected layers. They all serve a different purpose:

• The main layer is the one that outputs g(t). It has the usual role of analysing the
current inputs x(t) and the previous (short-term) state h(t−1). In a basic cell, there
is nothing other than this layer, and its output goes straight out to y(t) and h(t). In
contrast, in an LSTM cell this layer’s output does not go straight out, but instead
its most important parts are stored in the long-term state (and the rest is dropped).

• The three other layers are gate controllers. Since they use the logistic activation
function, their outputs range from 0 to 1. As you can see, their outputs are fed to
element-wise multiplication operations, so if they output 0s they close the gate,and
if they output 1s they open it. Specifically:

– The forget gate (controlled by f(t)) controls which parts of the long-term state
should be erased.

– The input gate (controlled by i(t)) controls which parts of g(t) should be added
to the long-term state.

– Finally, the output gate (controlled by o(t)) controls which parts of the long
term state should be read and output at this time step, both to h(t) and to y(t).

In short, an LSTM cell learns to recognize an important input (that’s the role of the
input gate), stores it in the long-term state, preserves it for as long as it is needed (that’s
the role of the forget gate), and extracts it whenever it is needed. This explains why these
cells have been amazingly successful at capturing long-term patterns in time series, long
texts, audio recordings, and more.

The equation 4.3.1 summarizes how to compute the cell’s long-term state, its short-
term state, and its output at each time step for a single instance.

i(t) = σ
(
WT

xix(t) + Whih(t−1) + bi

)
f(t) = σ

(
WT

xfx(t) + Whfh(t−1) + bf

)
o(t) = σ

(
WT

xox(t) + Whoh(t−1) + bo

)
g(t) = tanh

(
WT

xgx(t) + Whgh(t−1) + bg

)
c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t)

y(t) = h(t) = o(t) ⊗ tanh
(
c(t)
)

(4.3.1)

In this equation:

• W(xi), W(xf), W(xo), W(xg) are the weight matrices of each of the four layers for
their connection to the input vector x(t).
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• W(hi), W(hf), W(xo), and W(hg) are the weight matrices of each of the four layers
for their connection to the previous short-term state h(t−1).

• bi, bf , bo, and bg are the bias terms for each of the four layers. Note that TensorFlow
initializes bf to a vector full of 1s instead of 0s. This prevents forgetting everything
at the beginning of training.

Besides all mentioned above, LSTM cells can be modified to run on the GPU instead
of the CPU, making them even faster as they utilize the parallel processing capabilities of
the GPU.

4.4 The final approach

As it was said before the aim of this thesis was to accurate predict the fuel oil consumption
one minute in the future, using different types of inputs.In order to achieve this goal a
recurrent neural network was chosen. From the previous paragraphs it was clear that the
LSTM cell was the one to be preferred. It must be said that a simple RNN was also used
but did not bear any fruits and will not be presented in this thesis.

Before the LSTM was created the first ship’s dataset was split into two parts one used
for training and one used for testing. Since the dataset had approximately 300k values for
each variable, 90% of it was used for training and the other 10% was saved for the testing
set. The datasets of the second and third ship would entirely be used for testing the ability
of the ship to generalize in a sister ship and in a ship of the same type respectively.

The first approach was to build an one LSTM layer with one input and of course one
output. In the figure 4.7 there is a representation of the model’s structure. This model
used only the previous FOC values as input and tried to predict the FOC value of the
next minute.

Figure 4.7: A NN with one input(FOC) one layer with 50 neuros and one output(FOC)

The reason 50 neurons were chosen was arbitrary, however most papers suggest the
use of 32 for simple problems with little data and few variables.
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This architecture, as well as the next ones, was tried in different models. To be more
specific, there are two key ”parameters” that needed to be tweaked. The first one was the
look-back parameter or time-steps. This parameter represented the amount of past data
that the model would see in order to determine the next value and the values that were
chosen for this variable were

[
1 5 10 15 20 50

]
.

The second parameter was the epochs. The term epoch refers to one cycle through the
full training dataset. The number of epochs plays an important role in the performance of
the model not only on the testing set but also on new data. In other words the amount of
epochs directly impact the model’s ability to regularize. If a model is trained on a dataset
for few epochs it might fail to find the patterns and thus fail to make accurate predictions
in the testing set. On the other hand if a model is let to train on a dataset for a lot of
epochs it can reach a point where it has memorize the whole training set. As a result it
might not be able to make good predictions for the testing set but will most likely fail to
make an accurate prediction on new data. This phenomenon is call overfitting in machine
learning. This is the reason why each NN was trained for

[
5 10 15 20 30 50

]
. This

way it was made possible to control if the model was overfitting.
After the training was finished(for each value of the epoch parameter) the model pre-

dicted the remaining 10% of the first ship’s dataset and the full dataset for the second and
third. The result were plotted in comparison of the real values for each ship respectively.
Moreover the % difference was plotted for each ship. This was very important since the
measured value of the last part of the datasets was in the order of 7000 kg a discrepancy
of 200 kg would not be easily spotted or would not appeared to be so big in the first plot.
This amount of an error would however not be acceptable in the first ship.
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Results

In this chapter the best results for each combination of variable and look-back will be
presented. Look-back is the parameter that indicates the number of values per time step.
In the table 5.1 a brief summary of the results is being presented.

Lookbacks

No. Variables Variables N.N. Type Best 1 5 10 15 20 50
1 F.O.C. L.S.T.M. Model in 15 30 50 5 50 5
2 F.O.C. L.S.T.M. 30 20 20 15 30 10

F.O.T. terms of
F.O.C. L.S.T.M.

3 F.O.T. Epochs 5 30 50 10 30 50
M.E.RPM

Table 5.1: Brief summary of the results

5.1 One variable : Fuel Oil Consumption

In this part the best results for each value of the look-back parameter will be presented.
Moreover these are models that used only the FOC variable as input and only one Layer,
more combinations of these parameters will be presented below.

5.1.1 1 Lookback

The best results for one lookback using only one 50 neuron LSTM layer were produced
when the model was trained for 10, 15 and 30 epochs for the first ship and for 15 epochs
for the second and third ship. So overall the best results were produced when the model
was trained for only 15 epochs.

In the figures below the following conclusions have been reached:

• First of all the model succeeded to train incredibly well for the first ship, with an
error almost 0%.

• Secondly, the model succeeded to generalize in sister ship level with an error below
0.5%.

• Thirdly, the model succeeded to generalize in type ship level with an error below 1%
for the first part but failed to keep it below that in the last third of the dataset.

49
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• Last but not least, the spikes that can be clearly seen in the 3 percentages plots
happened for the following reasons:

– As it was discussed in the preprocessing section, some of the values were re-
moved. As a result, there were some sudden changes in the values of the FOC
and are traced when the graph creates a step.

– Moreover, as the time progresses fouling is created around the ship increasing
the resistance of the ship and as a result increasing the consumption of the ship
”disrupting the pattern”.

Figure 5.1: Results of the first ship after 15 epochs for 1 lookback
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Figure 5.2: Results of the % difference of the first ship after 15 epochs for 1 lookback

Figure 5.3: Results of the second ship after 15 epochs for 1 lookback
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Figure 5.4: Results of the % difference of the second ship after 15 epochs for 1 lookback

Figure 5.5: Results of the third ship after 15 epochs for 1 lookback
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Figure 5.6: Results of the % difference of the third ship after 15 epochs for 1 lookback

5.1.2 5 Lookbacks

The best results for 5 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 5, 20 and 30 epochs for the first ship and for 10 and 30
epochs for the second and third ship. So overall the best results were produced when the
model was trained for 30 epochs.

From the figures below the following conclusions have been reached:

• First of all, as in the 1 lookback the model succeeded to train incredibly well for the
first ship, with an error almost 0%.

• However, it failed to generalize so well for the second ship(sister ship) and for the
third.

• Moreover, the spikes appear in the same places as before.
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Figure 5.7: Results of the first ship after 5 epochs for 1 lookback

Figure 5.8: Results of the % difference of the first ship after 30 epochs for 5 lookback
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Figure 5.9: Results of the second ship after 5 epochs for 1 lookback

Figure 5.10: Results of the % difference of the second ship after 30 epochs for 5 lookback
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Figure 5.11: Results of the third ship after 5 epochs for 1 lookback

Figure 5.12: Results of the % difference of the third ship after 30 epochs for 5 lookback
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5.1.3 10 Lookbacks

The best results for 10 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 10, 20, 30 and 50 epochs for the first ship and for 30 and
50 epochs for the second and 50 epochs for the third ship. So overall the best results were
produced when the model was trained for 50 epochs.

From the figures below the following conclusions have been reached:

• Once again the model was able to train very well for the first ship, with an error
almost 0%.

• The model’s results for the second and the third ship were satisfactory, since it
appears the model was able to generalize but not as well as for 1 lookback.

• Once again the spikes appeared to be in the same places as before.

Figure 5.13: Results of the first ship after 50 epochs for 1 lookback
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Figure 5.14: Results of the % difference of the first ship after 50 epochs for 10 lookback
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5.1.4 15 Lookbacks

The best results for 10 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 5, 10, 15, 50 and 50 epochs for the first ship and for 5 and
20 epochs for the second and for the third ship. So overall the best results were produced
when the model was trained for 5 epochs.

From the figures below the following conclusions have been reached:

• The results are similar to the results for 10 lookbacks meaning, the model was able
to train very well for the first ship and generalize for the second and third ship in
some degree.
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Figure 5.15: Results of the first ship after 5 epochs for 15 lookback

Figure 5.16: Results of the % difference of the first ship after 5 epochs for 15 lookback
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Figure 5.17: Results of the second ship after 5 epochs for 15 lookback

Figure 5.18: Results of the % difference of the second ship after 5 epochs for 15 lookback
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Figure 5.19: Results of the third ship after 5 epochs for 15 lookback

Figure 5.20: Results of the % difference of the third ship after 5 epochs for 15 lookback
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5.1.5 20 Lookbacks

The best results for 20 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 30 and 50 epochs for the first ship and for 15, 30 and 50
epochs for the second and 50 epochs for the third ship. So overall the best results were
produced when the model was trained for 50 epochs.

From the figures below the following conclusions have been reached:

• Once again the model succeeded to train incredibly well for the first ship, with an
error almost 0%.

• Moreover, the model achieve an incredible performance on the second ship’s dataset
with an error approximately 0.2%, even though as it can be seen from the plot it
overshooted a little bit in the last part of the dataset.

• The most impressive result though, was that on the third ship’s dataset, where the
model achieve a similar performance as in the second dataset meaning that the model
was able to generalize pretty well.

Figure 5.21: Results of the first ship after 50 epochs for 20 lookback
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Figure 5.22: Results of the % difference of the first ship after 50 epochs for 20 lookback

Figure 5.23: Results of the second ship after 50 epochs for 20 lookback
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Figure 5.24: Results of the % difference of the second ship after 50 epochs for 20 lookback

Figure 5.25: Results of the third ship after 50 epochs for 20 lookback
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Figure 5.26: Results of the % difference of the third ship after 50 epochs for 20 lookback

5.1.6 50 Lookbacks

The best results for 50 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 5 and 20 epochs for the first ship and for 30 epochs for the
second, with the 5 and 50 epochs being close, and 5 epochs for the third ship. So overall
the best results were produced when the model was trained for 5 epochs.

From the figures below the following conclusions have been reached:

• The results are similar to the results for 10 and 15 lookbacks meaning, the model
was able to train very well for the first ship and generalize for the second and third
ship in some degree.
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Figure 5.27: Results of the first ship after 5 epochs for 50 lookback

Figure 5.28: Results of the % difference of the first ship after 5 epochs for 50 lookback
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Figure 5.29: Results of the second ship after 5 epochs for 50 lookback

Figure 5.30: Results of the % difference of the second ship after 5 epochs for 50 lookback
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Figure 5.31: Results of the third ship after 5 epochs for 50 lookback

Figure 5.32: Results of the % difference of the third ship after 5 epochs for 50 lookback
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5.2 Two variables:Fuel Oil Consumption and Fuel Oil Tem-
perature

In the previous paragraph, the results of using only the FOC previous values. In this para-
graph the fuel oil temperature variable was also used, to examine if this addition would
increase the performance of the previous models. In the figure 5.33 the new layout of the
NN is presented.

Figure 5.33: A NN with two inputs(FOC,FOC tmp) one layer with 50 neurons and one
output(FOC)

5.2.1 1 Lookback

The best results for one lookback using only one 50 neuron LSTM layer were produced
when the model was trained for 30 and 50 epochs for the first ship and for 5 and 30
epochs for the second and for 30 epochs for the third ship. So overall the best results were
produced when the model was trained for 30 epochs.

In the figures below the following conclusions have been reached:

• First of all the model succeeded to train incredibly well for the first ship, with an
error almost 0%.

• Secondly, the model seemed to be able to generalize in sister ship level with an error
below 2%.

• Thirdly, the model succeeded to generalize in type ship level with an error below 1%
for the first half of the dataset but failed to keep it below that in the other half of
the dataset.
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Figure 5.34: Results of the first ship after 30 epochs for 1 lookback

Figure 5.35: Results of the % difference of the first ship after 30 epochs for 1 lookback
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Figure 5.36: Results of the second ship after 30 epochs for 1 lookback

Figure 5.37: Results of the % difference of the second ship after 30 epochs for 1 lookback
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Figure 5.38: Results of the third ship after 30 epochs for 1 lookback

Figure 5.39: Results of the % difference of the third ship after 30 epochs for 1 lookback
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5.2.2 5 Lookbacks

The best results for 5 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 20 epochs for the first ship and for 5, 20 and 50 epochs
for the second and for 15, 20 and 50 epochs for the third ship. So overall the best results
were produced when the model was trained for 20 epochs.

From the figures below the following conclusions have been reached:

• First of all, as in the 1 lookback the model succeeded to train incredibly well for the
first ship, with an error around 0%.

• However, it failed to generalize so well for the second ship(sister ship) and for the
third.

Figure 5.40: Results of the first ship after 20 epochs for 5 lookback
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Figure 5.41: Results of the % difference of the first ship after 20 epochs for 5 lookback

Figure 5.42: Results of the second ship after 20 epochs for 5 lookback
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Figure 5.43: Results of the % difference of the second ship after 20 epochs for 5 lookback

Figure 5.44: Results of the third ship after 20 epochs for 5 lookback



78 Chapter 5. Results

Figure 5.45: Results of the % difference of the third ship after 20 epochs for 5 lookback

5.2.3 10 Lookbacks

The best results for 10 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 15, 20, 50 and 50 epochs for the first ship and for 15,
20, 30 and 50 epochs for the second and 20 epochs for the third ship. So overall the best
results were produced when the model was trained for 20 epochs.

From the figures below the following conclusions have been reached:

• Once again the model was able to train very well for the first ship, with an error
around 0%.

• The model’s results for the second ship were satisfactory, with an error below 1.25%.

• The model’s result on the third ship are similar to the second in the first half of the
dataset with an error below 1% and then it drops to 3%



5.2 1 79

Figure 5.46: Results of the first ship after 20 epochs for 10 lookback

Figure 5.47: Results of the % difference of the first ship after 20 epochs for 10 lookback
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Figure 5.48: Results of the second ship after 20 epochs for 10 lookback

Figure 5.49: Results of the % difference of the second ship after 20 epochs for 10 lookback
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Figure 5.50: Results of the third ship after 20 epochs for 10 lookback

Figure 5.51: Results of the % difference of the third ship after 20 epochs for 10 lookback
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5.2.4 15 Lookbacks

The best results for 10 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 15, 20, 30, 50 and 50 epochs for the first ship and for 10
and 15 epochs for the second and for 15 and 30 epochs for the third ship. So overall the
best results were produced when the model was trained for 15 epochs.

From the figures below the following conclusions have been reached:

• The results are similar to the results for 10 lookbacks meaning, the model was able
to train very well for the first ship and generalize for the second and third ship in
some degree.

Figure 5.52: Results of the first ship after 15 epochs for 15 lookback
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Figure 5.53: Results of the % difference of the first ship after 15 epochs for 15 lookback

Figure 5.54: Results of the second ship after 15 epochs for 15 lookback
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Figure 5.55: Results of the % difference of the second ship after 15 epochs for 15 lookback

Figure 5.56: Results of the third ship after 15 epochs for 15 lookback
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Figure 5.57: Results of the % difference of the third ship after 15 epochs for 15 lookback

5.2.5 20 Lookbacks

The best results for 20 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 5, 20, 30 and 50 epochs for the first ship and for 5 and
30 epochs for the second and for 30 epochs for the third ship. So overall the best results
were produced when the model was trained for 30 epochs.

From the figures below the following conclusions have been reached:

• Once again the model succeeded to train incredibly well for the first ship, with an
error almost 0%.

• Moreover, the model achieve an good performance on the second ship’s dataset with
an error between (−0.5% and 0.5%).

• The model’s result on the third ship’s dataset was extremely well, with an error
ranging between ( − 0, 5% and 0.5%), like in the performance in the second dataset.
However in this one the overshoots were smaller than the ones the second.
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Figure 5.58: Results of the first ship after 30 epochs for 20 lookback

Figure 5.59: Results of the % difference of the first ship after 30 epochs for 20 lookback
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Figure 5.60: Results of the second ship after 30 epochs for 20 lookback

Figure 5.61: Results of the % difference of the second ship after 30 epochs for 20 lookback
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Figure 5.62: Results of the third ship after 30 epochs for 20 lookback

Figure 5.63: Results of the % difference of the third ship after 30 epochs for 20 lookback
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5.2.6 50 Lookbacks

The best results for 50 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 10, 20, 30 and 50 epochs for the first ship and for 5 and
10 epochs for the second and for 10, 20, 30 and 50 epochs for the third ship. So overall
the best results were produced when the model was trained for 10 epochs, due to the
difference between the 20, 30 and 50 epochs in the ability to generalize in the second ship.

From the figures below the following conclusions have been reached:

• Once again the model succeeded to train incredibly well for the first ship, with an
error almost 0%.

• On the second ship’s dataset the model was able to generalize very well with an error
below 1%.

• The model’s performance on the third dataset was the same as in the 10 and 15
lookbacks.

Figure 5.64: Results of the first ship after 10 epochs for 50 lookback
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Figure 5.65: Results of the % difference of the first ship after 10 epochs for 50 lookback

Figure 5.66: Results of the second ship after 10 epochs for 50 lookback
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Figure 5.67: Results of the % difference of the second ship after 10 epochs for 50 lookback

Figure 5.68: Results of the third ship after 10 epochs for 50 lookback
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Figure 5.69: Results of the % difference of the third ship after 10 epochs for 50 lookback

5.3 Three variables: Fuel Oil Consumption,Fuel Oil Tem-
perature and Main Engine RPM

Since the addition of only one extra variable did not improve the performance of the
model one more variable was tested to see if it would achieve any improvement. The
new variable was the ME rpm. This variable was chosen because there is a non linear
connection between it and the FOC. In the figure 5.70 the new layout of the NN is
presented.

Figure 5.70: A NN with three inputs(FOC,FOC tmp ,ME rpm) one layer with 50 neuros
and one output(FOC)
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5.3.1 1 Lookback

The best results for one lookback using only one 50 neuron LSTM layer were produced
when the model was trained for 5, 20 and 30 epochs for the first ship and for 5 and 15
epochs for the second and for 5 and 15 epochs for the third ship. So overall the best results
were produced when the model was trained for 5 epochs.

In the figures below the following conclusions have been reached:

• First of all the model succeeded to train incredibly well for the first ship, with an
error around 0%.

• Secondly, the model’s performance on the second dataset was decent even that at
the end it was around −2%.

• Lastly, the model was able to generalize very well on the first half of the third dataset,
with an error below−1% but then the error increased to around −4%.

Figure 5.71: Results of the first ship after 5 epochs for 1 lookback
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Figure 5.72: Results of the % difference of the first ship after 5 epochs for 1 lookback

Figure 5.73: Results of the first ship after 5 epochs for 1 lookback
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Figure 5.74: Results of the % difference of the second ship after 5 epochs for 1 lookback

Figure 5.75: Results of the third ship after 5 epochs for 1 lookback
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Figure 5.76: Results of the % difference of the third ship after 5 epochs for 1 lookback

5.3.2 5 Lookbacks

The best results for 5 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 15, 20 and 30 epochs for the first ship and for 20 and
30 epochs for the second and for 15 and 30 epochs for the third ship. So overall the best
results were produced when the model was trained for 30 epochs.

From the figures below the following conclusions have been reached:

• First of all, as in the 1 lookback the model succeeded to train incredibly well for the
first ship, with an error around 0%.

• However, it failed to generalize so well for the second ship(sister ship) with the error
starting from 3% and ending around −6%.

• On the third dataset however, the model was able to generalize on the first half but
then failed one the second half with the error ending being − 12%.
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Figure 5.77: Results of the first ship after 30 epochs for 5 lookback

Figure 5.78: Results of the % difference of the first ship after 30 epochs for 5 lookback
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Figure 5.79: Results of the second ship after 30 epochs for 5 lookback

Figure 5.80: Results of the % difference of the second ship after 30 epochs for 5 lookback
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Figure 5.81: Results of the third ship after 30 epochs for 5 lookback

Figure 5.82: Results of the % difference of the third ship after 30 epochs for 5 lookback
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5.3.3 10 Lookbacks

The best results for 10 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 10, 30, 50 and 50 epochs for the first ship and for 15, 30
and 50 epochs for the second and third ship, with 50 having the best. So overall the best
results were produced when the model was trained for 50 epochs.

From the figures below the following conclusions have been reached:

• Once again the model was able to train very well for the first ship, with an error
around 0%.

• The model’s results for the second and the third ship were satisfactory, since it
appears the model was able to generalize but not as well as for 1 lookback.

Figure 5.83: Results of the first ship after 50 epochs for 10 lookback
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Figure 5.84: Results of the % difference of the first ship after 50 epochs for 10 lookback

Figure 5.85: Results of the second ship after 50 epochs for 10 lookback
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Figure 5.86: Results of the % difference of the second ship after 50 epochs for 10 lookback

Figure 5.87: Results of the third ship after 50 epochs for 10 lookback
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Figure 5.88: Results of the % difference of the third ship after 50 epochs for 10 lookback

5.3.4 15 Lookbacks

The best results for 10 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 10, 20, 30 and 50 epochs for the first ship and for 5 and
15 epochs for the second and for 10 and 15 epochs for the third ship. So overall the best
results were produced when the model was trained for 10 epochs.

From the figures below the following conclusions have been reached:

• Once again the model was able to train very well for the first ship, with an error
around 0%.

• On the second dataset, the model was able to generalize pretty well with an error
between −0.5% and − 1%.

• Lastly, the model was able to generalize very well on the first half of the third dataset,
with an error below−1% but then the error increased to around −2.5%.
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Figure 5.89: Results of the first ship after 10 epochs for 15 lookback

Figure 5.90: Results of the % difference of the first ship after 10 epochs for 15 lookback
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Figure 5.91: Results of the second ship after 10 epochs for 15 lookback

Figure 5.92: Results of the % difference of the second ship after 10 epochs for 15 lookback
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Figure 5.93: Results of the third ship after 10 epochs for 15 lookback

Figure 5.94: Results of the % difference of the third ship after 10 epochs for 15 lookback
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5.3.5 20 Lookbacks

The best results for 20 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 20, 30 and 50 epochs for the first ship and for 20 and 30
epochs for the second and for 30 epochs for the third ship. So overall the best results were
produced when the model was trained for 30 epochs.

From the figures below the following conclusions have been reached:

• Once again the model succeeded to train incredibly well for the first ship, with an
error almost 0%.

• Moreover, the model achieve an incredible performance on the second ship’s dataset
with an error approximately 0.2%, even though as it can be seen from the plot it
overshooted a little bit in the last part of the dataset.

• The most impressive result though, was that on the third ship’s dataset, where the
error was between −0.5% and 0.5% despite the oscillation.

Figure 5.95: Results of the first ship after 30 epochs for 20 lookback
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Figure 5.96: Results of the % difference of the first ship after 30 epochs for 20 lookback

Figure 5.97: Results of the second ship after 30 epochs for 20 lookback
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Figure 5.98: Results of the % difference of the second ship after 30 epochs for 20 lookback

Figure 5.99: Results of the third ship after 30 epochs for 20 lookback
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Figure 5.100: Results of the % difference of the third ship after 30 epochs for 20 lookback

5.3.6 50 Lookbacks

The best results for 50 lookbacks using only one 50 neuron LSTM layer were produced
when the model was trained for 20, 30 and 50 epochs for the first ship and for 50 epochs
for the second and third ship. So overall the best results were produced when the model
was trained for 50 epochs.

From the figures below the following conclusions have been reached:

• Once again the model was able to train very well for the first ship, with an error
around 0%.

• On the second dataset, the model was able to generalize pretty well with an error
between 0% and − 0.5%.

• Lastly, the model was able to generalize very well on the first half of the third dataset,
with an error below −1% but then the error increased to around −2.5%.
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Figure 5.101: Results of the first ship after 50 epochs for 50 lookback

Figure 5.102: Results of the % difference of the first ship after 50 epochs for 50 lookback
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Figure 5.103: Results of the second ship after 50 epochs for 50 lookback

Figure 5.104: Results of the % difference of the second ship after 50 epochs for 50 lookback
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Figure 5.105: Results of the third ship after 50 epochs for 50 lookback

Figure 5.106: Results of the % difference of the third ship after 50 epochs for 50 lookback
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

From the overall results that were presented above the following conclusions can be drawn:

• First of all, it is possible to implement a neural network and predict the future value
of the Fuel Oil Consumption of a ship with and accuracy above 99, 5%.

• Moreover, this model can also predict fairly well the Fuel Oil Consumption of a sister
ship most of the time.

• It is also possible to predict the Fuel Oil Consumption of a ship that has the same
type as the one from which the training data was collected.

• Last but not least, it seems that when more variables are used for training and the
bigger the timestep - lookback is the result tend to improve.

6.2 Next steps

In this,last, part of the thesis the future work will be discussed. From the previous para-
graphs it is clear that the implementation of neural networks can increase the performance
of the common predictive methods. It is sure that the NN will be used in the near future,
especially, with the rapid development of the Performance department in most of the mar-
itime companies.

As it is clear from the result of this thesis, there is plenty of room for improvement.
First of all, it is very interesting to analyze the results using more variables, such as
the ship’s and wind direction, the sea state etc.. Moreover, a different architecture, like
increasing the layers,incraesing or decreasing the number of neurons per layer and exper-
imenting with the hyper parameters, might bear more fruits. Last but not least, it is of
great interest to examine the possibility of creating a model that can predict the best route
for the ship’s trip, with a specific loading condition, and optimizing the route on board
using the changing data of the sea state and weather conditions as well as the routes of
other ships.
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