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CHAPTER 1 

INTRODUCTION 

 The wide usage of thin-walled slender steel members in constructions has 
made necessary the study of their behavior under any type and kind of loading. 
These members are preferred because they lead to leight-weightend constructions 
with more economic design and are proven to have a more efficient load-carrying 
behavior especially under bending.  

 The total strength of a thin-walled I-section can be easily affected by 
imperfections that are created in the web and the flanges during the manufacturing 
process, their transportation and the placement in the building site. These 
imperfections are classified in geometric imperfections, that refer to the deviation of 
the geometry from the perfect to the imperfect shape of the member, the thickness 
imperfections that refer to the changes from the nominal thickness and the so-called 
material imperfections that refer to the deviation of the material parameters 
(Young’s modulus, Poisson’s ratio etc.). Finally there are two more kinds of 
imperfections: the residual stresses that are local tension stresses around the web-
flange junctions and are caused during the cooling process or after rolling and the 
boundary imperfections that refer to imperfections in support and loading 
conditions. 

 It is noticed that these imperfections lead to second order phenomena that 
reduce the load carrying capacity of the member under compression or/and bending 
and also reduce the critical buckling load. These reduces of the critical loads vary 
between nominally identical members. Many researchers have studied the influence 
of these imperfections, such as Becque and Rasmussen (2007), Degee et al. (2008), 
Schillinger and Papadopoulos (2008), Papadopoulos and Papadrakakis (2005) and 
others. Respectively in frames instability can be caused before any of the cross 
sections of the members misses by compression or bending or a combination of 
both. So, it is of important matter to investigate the behavior and the influence of  
imperfections upon the critical load that leads to instability. 

1.1 Modeling of Imperfections 

  The determination of imperfections at each and every steel member is 
generally time-consuming and uneconomical. On the other hand, the assumption 
that imperfections can be described by deterministic values leads to non-reliable 
results, because they vary between identical members and take place in different 
combinations. 



 

7 
 

 Many researchers in the past have suggested a stochastic approach of 
imperfections against the deterministic one. The main idea is that through a small 
specimen of measurements of imperfections of steel members a stochastic field can 
be generated, that represents possible values of imperfections. From these groups 
generated, a sample can be chosen through the Monte Carlo Simulation by entering 
in the perfect geometry. A combination of non-linear finite element method, 
advanced stochastic methods such as spectral representation and Monte Carlo 
Simulation has proven to be very effective in buckling analysis of imperfect 
members. 

 There are only two published articles that refer to the deterministic approach 
of imperfections of I-sections by Rasmussen and Hancock (1998,2000)  and only a 
few that refer to the stochastic approach of imperfections and examine the behavior 
of shells and plates for variable values of several parameters such as height, width, 
thickness, Young’s modulus etc. The most recent study that enters global and local 
imperfections in the geometry of thin-walled I-sections, thickness imperfections and 
residual stresses is Schillinger’s (2008) and Schillinger and Papadopoulos (2008). In 
this study short length columns are examined under axial compression and bending 
in order to derive the stochastic interaction curve and the histogram that shows the 
variance of the critical buckling loads. There have also been published articles that 
refer to the buckling behavior of shells with random imperfections by Schenk and 
Schueller (2003), Stefanou and Papadrakakis (2004), Papadopoulos and Papadrakakis 
(2004,2005) and Papadopoulos and Iglesis (2007), while the general methodology 
has been described by Argyris et al. (2002). At last in Dinis and Camotim (2011) the 
local, distortional and global buckling loads of cold-formed steel U cross-section 
columns are defined taking under consideration initial geometric imperfections of 
10% of the wall thickness and L/1000 on the global mode. 

1.2 Scope of the Present Study 

Scope of the present study is to determine the influence of local and global 
imperfections of a thin-walled I-section in buckling analysis of frames and columns. 
The members will be 4m long and the other geometric and material properties will 
be the same with those used in Schillinger (2008). A histogram of the critical buckling 
loads of columns and a histogram that shows the critical loads that lead to instability 
of frames are about to be determined. 

A data base for the imperfections is provided by Hasham and Rasmussen (1997), 
which have measured the imperfections of 6 identical columns. Using the as above 
described power spectrum method on the real measurements and the Monte Carlo 
Simulations result imperfections that correspond to a more realistic approach of the 
shape of a member and so the results of the analysis are closer to the real behavior 
under any kind of boundary and loading conditions. The measurements refer to a 2m 
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long column, so by energy scaling they can be transformed to correspond on a 4m 
long column.  

Based on these experimental data the appropriate stochastic model is being 
chosen in order to represent their stochastic properties. More specific, geometric 
imperfections are described as non-homogeneous Gaussian fields. Through a simple 
method that is based on the harmonic wavelet method and is described in Schillinger 
(2008) the evolutionary power spectra are estimated. After that, the spectrum 
representation method is applied for the digital sampling of imperfections. 
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CHAPTER 2 

NON-LINEAR ANALYSIS 

2.1 Introduction 

 Non-linear analysis is a very precise method that allows us to compute the 
inner forces, moments, displacements and rotations that develop in a construction 
under any type of loading and corresponds to its real behavior. As known, there are 
two types of non-linearity: material and geometric. The first one takes under account 
the plastic behavior of the material and the second one considers any kind of 
geometric imperfections as far as changes – distortions – from the perfect shape of 
the structure during the development of the loading. 

 The Finite Element Method, using the triangular shell element for the 
modeling of the structure’s geometry and the Arc-Length Method for the solution of 
the non-linear equilibrium equations, represent a reliable method for the 
determination of the force-displacement curve for such kind of problems.  

2.2 The triangular shell element 

 The triangular shell element is a 3-node element with 6 degrees of freedom 
at each node: three dimensional and three rotational at each axe. It combines the 
membranic behavior of a disk and the bending behavior of a plate and is based on 
the classic theory of thin shells, in which the transverse shearing displacement is 
ignored.  

 Generally, this kind of elements can be enrolled in the following categories: 

1) Planar elements that combine the properties of a plain stress element and a 
plate element 

2) Curved elements formulated by the classic theory of shells 
3) Elements that result from the degeneration of three dimensional elasticity 

finite elements.  
 

The combination of a triangular plate element and a triangular element of plain 
stress with transverse rotational degrees of freedom is proved to be very effective 
on the formulation of a planar triangular shell element with 18 degrees of freedom. 
So, the vector of displacements can be written as: 

 

{ } [ ][ ][ ][ ][ ]{ }' i i zi i xi yi

t
u v wd θ θ θ  =

                   
(2.1)

 

With i=1,2,3 denotes the 3 axes. 
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 The stiffness matrix results from the combination of the two sub matrices km 

(membranic) and kb (bending): 

[ ]
( )

[ ]

[ ]

0

018 18

m

b

k
k

k

  
  ′ =
  ×                                            

(2.2)
 

2.3 The Arc Length Method 

 The Arc Length Method is inducted in the iterative Newton-Raphson Method 
that is used for the solution of non linear equations with many degrees of freedom 
and has the advantage to overcome critical points of the force-displacement curve 
and follow/attend instable branches of equilibrium (snap back, snap through). 

The Newton-Rapshon Method then takes the form: 

( ) ( ) 1- ,T k k k kK x u r x x x u+⋅ = = +
%% % % % % %                       

(2.3)  

where: ( ) ( )k kF Rr x x= −
% %% % %

 

 

Fig. 2.1 The Arc Length Method. 

The value of the external load is being controlled by a coefficient λ, in order to 
converge the solutions in instable regions of the equilibrium curve, so that:  

( ) ( ), ,F Rr x x λλ λ= − ⋅
% %% % %                                         

(2.4)  

R→
%

 representable load vector  

 

The incrementing loading within an iteration in the step i is: 
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R Rλ∆ = ∆ ⋅
% %

 , iλ λ λ∆ = −                            (2.5)  

And the respective increment of displacement is:  

ix x x∆ = −
% % %                                                       (2.6)  

Spherical arc length from which Δλ results: 

2 2 2T Tx x R R sλ ψ∆ ∆ +∆ =
% %% %                             (2.7)  

Where s is the value of the generalized vector:          

x
s

Rλψ
 
 
 

∆
=

∆
%

%
%                                                     

(2.8)  

Based on the above, the Newton-Raphson Method can be formulated as: 

( ) ( )1 1,-k kT k kK x u r x λ+ +⋅ =
%% % %                        

(2.9)  

where: 

( ) ( ) ( )1, kkk k kF F Rr x x x γλ +
 = − +
 % % %%% % % %         

(2.10)  

1 1 1 1

1 1

,

,
k k k k k k

k k k k k k

x x u x x u

λ λ γ λ λ γ
+ + + +

+ +

= + ∆ = ∆ +

= + ∆ = ∆ +
% % % % % %

% %                    
(2.11)

 

Combining the above equations comes up a second order equation of the form: 

2
1 2 3 0k ka a aγ γ+ + =                                           (2.12)  

with coefficients: 

( )
( ) ( )

( ) ( )

2
1 1 1

2
2 1

3 1 1

2 2

2

T T
k k

T T
k k k k

T
k k k

a u u R R

a u x u R R

a u x u

ψ

λ ψ

+ +

+

+ +

′ ′= +

′′ ′= ∆ + + ∆

′′ ′′= ∆ +

% %% %

% %% %

% %          

(2.13)  

and from which result the two solutions : (1) (2),k kγ γ  

that define the generalized vectors : 
(1) (2),k ks s

% % . 

As a solutions is being chosen the one that forms the smallest angle θ with the 

generalized vector ks
% : 
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( )
( ) 1

2cos
T j

j k ks s
s

ϑ += % %
                                      

(2.14)  

where: 

( )
( )

1( )
1 ( )

,
j

k kk j
k k j

k k k

x ux
s s

R Rλψ λ γ ψ
+

+

 ∆ +∆   = =   ∆ ∆ +    

% %%
% %

% %              

(2.15)  

With parameter ψ taking the values 0 or 1. 

2.4 Von Mises Plasticity 

 For the inelastic analysis of a structure it is necessary to define a yield 
criterion. The von Mises criterion is described by the axial strain yield stress σy and 
the second deviatoric stress invariant J2. 

 If σ1, σ2, σ3 are the main stresses and the hydrostatic component is equal to: 

1 2 3

3m

σ σ σ
σ

+ +
=

                             
(2.16)

 
Then, the divergent stresses are given by the relation: 

ij ij ij mσ σ δ σ′ = −
                                   

(2.17)

 
From which the second deviatoric stress invariant J2 can be computed as:  

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
2 1 2 3 2 3 3 1 1 2

1 1
2 6

J σ σ σ σ σ σ σ σ σ′  ′ ′ ′= + + = − + − + −              
(2.18)

 

The von Mises criterion can be formulated as: 

( ) ( ) ( )2 2 2
1 2 2 3 3 1 2 0M

y yf σ σ σ σ σ σ σ= − + − + − − =
                        

(2.19)
 

 The geometric representation of this criterion is shown in the Figure 2. … and 

represents a cylinder around the axis σ1=σ2= σ3=0. Alternative, by using the second 

derivative of the diverge tensor of the stresses it results: 
 

2
2

1
0

3
M
y yf J σ′= − =

                         
(2.20)

 

 The von Mises yield criterion considers that the wastage happens when the 

second derivative of the divergent tensor of the stresses in multiaxial tension 

becomes equal to this in uniaxial and therefore it is also known as J2
’ plasticity. 
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Fig. 2.2 Cylindrical von-Mises yield surface in the principal stress space. 

2.5 Non-linear Analysis using ABAQUS 

 Abaqus gives the opportunity of running a material and geometric non-linear 
model using the as above described Arc Length Method through the *STATIC, RIKS 
command available by increasing the loads that act on the structure until it becomes 
instable. Through this procedure the critical load can be obtained and furthermore 
the displacements, rotations and stresses. 

 The geometry - described by the nodal coordinates, that have resulted by the 
stochastic analysis - the connectivity matrix, the properties of the material, the 
external forces and the supports are given through an input file (*.inp). Then follows 
the non-linear analysis and at last the results that are stored in an *.odb file 
automatically by the program. From this file we obtain the results of our interest to 
compose the force-displacement curve and establish the critical buckling load. 

 Abaqus has the ability to solve non-linear equations through a number of 
non-linear iterations that are given by the user, depending on the desirable 
precision. 

 The finite element used for the analysis is the shell element S3 available in 
Abaqus. It is also cited sententiously that the geometry is given by the coordinates of 
the nodes that have occurred by the discretization of the structure and these nodal 
coordinates differ for every Monte Carlo Simulation. More information is given in 
Chapters 3 and 4.   
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CHAPTER 3 

STOCHASTIC FEM 

3.1 Introduction 

 Stochastic FEM represents a combination of two important methods that are 
used for the solution of complicated problems of modern mechanics: 

a) The finite element method and 
b) The stochastic analysis 

 As known, the Finite Element Method is the quickest, most reliable and 
effective method for the solution of complicated problems of mechanics with the 
assistance of computer. This method can handle problems with complex geometry, 
while it has the ability to take under consideration the material and geometric non-
linearities. One the other hand, the stochastic analysis allows us to manage 
numerically many uncertainties, videlicet parameters whom the exact values are 
unknown – such as for example the alteration of Young’s modulus or the variation of 
the area of a cross-section, the wind and seismic loads, the geometric imperfections 
of a member etc. – and are not taken into account in the deterministic analysis. The 
variability of these values may cause effects on the structure’s response and must be 
entered in the computations. 

 The uncertainties of these parameters are simulated as stochastic fields 
(stochastic procedures in space), are entered in the analysis and then the variance of 
the response is being computed. The method of Stochastic FEM is based on the 
representation of the stochastic as a random numbers series. One of the already 
known methodologies to manage this kind of problems is the spectral representation 
method, combined with the Monte Carlo Simulation (MCS). 

3.2 Stochastic Fields 

 Every function, whose variables’ values are random variables, is called 
stochastic. Examples of stochastic functions are the area of a cross-section, the wind 
and seismic loading, the imperfections of a structure, the temperature etc. the 
difference between them and real functions relies on the fact that stochastic 
functions consist of a set of sample-functions and are not univocal. 

 Stochastic functions are called stochastic procedures, if their variables tie up 
with time, and stochastic fields, if their variables refer to space. In the case of a 
structure’s geometric imperfections the clause ‘stochastic fields’ is used. 
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 A continuous variable Y is a function, when for every real number y there is a 
probability P[Y<y], whose distribution is given by a density probability function. A 
random variable Y is called Gaussian if its density probability function is of the form: 

( ) ( )2
2

1
exp

22

y
p y

µ
σπ

 −
=  

                                 

(3.1)  

Where μ is mean value and σ the standard deviation. Gauss distribution – or also 
normal distribution – is very important, because of the central limit theorem, which 
is very useful in our study. 

 A stochastic field f(x) can be considered as a random variables series f(x1), 
f(x2),…,f(xn), while it can also be easily managed statistically. This means that a 
stochastic field can be considered as a function of a deterministic variable x, whose 
results are random variables. 

 A stochastic field can be mathematically described by the multidimensional 
summative probability function: 

( ) ( ) ( ){ }1 1 1 1 1 1,..., ... | ... |n n n n n nF x x dx dx P x f x x dx x f x x dx= ≤ ≤ + ≤ ≤ +
        

(3.2)
 

Which can be mathematically approximated by two functions:
 

a) the mean value 

( ) ( )( ) ,f x E f x f p f x dfµ
+∞

−∞

= = ⋅   ∫
                           

(3.3)
 

b) and the autocorrelation function:
 

( ) ( ) [ ] ( )2 *
1 2 1 2 1 2 1 1 2 2( , ) , ; ,ffR x x E f x f x E f f f p f x f x

+∞ +∞

−∞ −∞

= = = ⋅   ∫ ∫
            

(3.4)  

Instead of the autocorrelation function, most commonly is used the autocovariance 
function that refers to the variance of a random variable: 

( ) ( ) ( ) ( ){ } [ ] ( ) ( )

( ) ( ) ( )

1 2 1 1 2 2 1 2 1 2

2 *
1 1 2 2 1 2

( , )

, ; ,

ff f f f f

f f

K x x E f x x f x x E f f x x

f p f x f x x x

µ µ µ µ

µ µ
+∞ +∞

−∞ −∞

   = − ⋅ − = ⋅ − ⋅   

= ⋅ − ⋅∫ ∫
                   

(3.5)  

A stochastic field f(x) can be expressed as the sum of a zero-mean stochastic 
field and its mean function μ(x), then the stochastic field: 
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( ) ( ) ( )fg x f x xµ= −
                           

(3.6)  

Will have a zero mean function and will keep the statistical properties of the field 
f(x). 

Stationary are called the stochastic fields for whom the  multidimensional 
summative probability function does not change its value, which mean that: 

( ) , ( )f f f fx xµ µ σ σ= =
                        

(3.7)  

 The fact that the mean and the standard deviation of these fields are 
constant and independent from the variable x leads us to the following conclusion: 

1 2 1 1

1 2 1 1

( , ) ( , ) ( ) ( )

( , ) ( , ) ( ) ( )
ff ff ff ff

ff ff ff ff

R x x R x x R R

K x x K x x K K

τ τ τ

τ τ τ

= + = = −

= + = = −
                   

(3.8)  

And: 

( )2 (0)f ffx Kσ =
                   

(3.9)
  

( ) 0,ffK τ τ→ →∞
              

(3.10)  

 A stochastic field is called ergodic when the mean function and the 
autocorrelation function of the sample are identified with the mean value and the 
autocorrelation function of the whole set. This means that the mean function of a 
sample is identified with the mean function of all the samples of the set, as seen in 
the Fig.3. … . 

 

Fig. 3.1 Μέση τιμή κατά μήκος ενός δείγματος και συνολική μέση τιμή. 

  

Frequency Analysis 

Frequency or Fourier analysis is a power tool for solving engineering problems by 
transforming a random field to a frequency spectrum through Fourier transform: 



 

17 
 

( ) ( )1
2

i xf f x e dxωω
π

+∞
−

−∞

= ∫
                 

(3.11)
 

While the inverse Fourier transform is: 

( ) ( ) i xf x f e dωω ω
+∞

−∞

= ∫
                         

(3.12)
 

 The analytical evaluation of the above integrals is genrally veru difficult, if not 

possible, and so there are usually used discrete Fourier transforms such as the fast 

Fourier transform (FFT). 

 Applying the Fourier transform on the autocorrelation function we obtain the 

power spectra density function, also known as power spectrum: 

( ) ( )1
2

i x
ff ffS R e dωω τ τ

π

+∞
−

−∞

= ∫
                   

(3.13)
 

And by applying the inverse Fourier transform we obtain: 

( ) ( ) i x
ff ffR x S e dωτ τ

+∞
−

−∞

= ∫
                          

(3.14)
 

Because the autocprrelation function is even it can be written as: 

( ) ( )1
cos( )

2ff ffS R dω τ ωτ τ
π

+∞

−∞

= ∫
              

(3.15)
 

 To the effect that the power spectrum is y-symmetric it is called two-sided. It 
is always also positive defined and therefore it can represent the energy function of 
the imperfect geometry. It has also been proved that there can be defined an upper 
limit of the frequency, beyond which the power spectrum can be considered as zero, 
due to its small contribution. 

  In the case of stochastic zero mean fields we have that: 

( ) ( ) ( )2 20ff ff fE f x R S dω ω σ
+∞

−∞

  = = =  ∫
                  

(3.16)
 

 In this study, that deals with geometric imperfections, where the stochastic 

filed f(x) represents the imperfect geometry of a member from its perfect geometry, 

we have two categories: 
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o If the stochastic field is homogeneous then the power spectrum is relative 

only to the frequency ω: S(ω). 

o  If the stochastic field is non-homogeneous then the power spectrum is of the 

form: S(ω,x).  

 In the case of the non-homogeneous stochastic fields the computation of the 

power spectrum S(ω,x) is very difficult by using the Fourier transform, so another 

method is used, that is described by Schillinger 2008 and is called Wavelet-based 

Estimation of the Power Spectrum. 

3.3 Monte Carlo Simulation 

 In the present study, the Monte Carlo Simulation is used in order to carry out 
a large number of iterated solutions with the Finite Elements Method – taking into 
account randomly every time a different sample of geometric imperfections – that 
compute the limit stability loading.  

 Because of the random value of the imperfections, the limit load differs at 
each MCS. By using the spectral representation method, there can be many 
specimens of imperfections through the experimental measurements produced, in 
order to create a data space, from which a sample is being randomly selected at 
every MCS. For every MCS we obtain a different limit load. The whole number of the 
limit load values constitute the result of the stochastic procedure. 

 Monte Carlo Simulation is used for solving many kinds of problems through 
random or pseudo-random numbers, videlicet through a statistical procedure, which 
numbers are considered as independent variables with the same possibility in the 
space [0,1]. The vocable “simulation” means the sampling experiments on the model 
of a physical system, which model represents the geometric and mechanical 
properties of the system with finite numerical data, so that they can be 
administrated by computing means. Because of the big computing effort needed to 
solve such kinds of problem, there have been many sampling techniques developed 
that increase the effectiveness of the method and decrease statistical error. 
Consequently, the number of simulations needed reduces for the same statistical 
precision. These techniques are also called dispersion reducing techniques. 

 

Spectral representation method 

 The methods that are used for the simulation of stochastic fields are those 
with a series of discretized random variables (point discretization, local average, 
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interpolation and series development) or methods of producing sampling functions, 
such as spectral representation method. 

 The geometric imperfections of a member can be generally considered as 
stochastic fields. Through this methodology, homogeneous samples can be 
generated, that will be used as data for the Monte Carlo Simulation. 

More specifically, there can be generated many imperfection functions f(i)(x) 
through the already known power spectra functions S(ω) and S(ω,x) of the f(x) 
functions – that have been generated by the experimental measurements of the 6 
samples – through the equation:  

( )
1

0

ˆ 2 cos( )
N

n n n
n

f x A xω ϕ
−

=

= +∑
                     

(3.17)
 

Where: 

0 0

2 ( ) , 0,1,..., 1

, 0,1,..., 1

0, ( 0) 0

n n

n

up

A S n N

n n N

N
A S

ω ω

ω ω
ω

ω

ω

= ∆ = −

= ∆ = −

∆ =

= = =

 

It has already been cited that the parameter ωup refers to an upper limit of 

the frequency, beyond which the autocorrelation function is supposed to be zero. 

Parameter φn expresses random phase angles and takes values in the field [0,2π] so 

that: 

( )
1 ,0 22

0,

n
np

else

ϕ ππϕ
 ≤ ≤= 
                     

(3.18)
 

 The as above described method can also be applied on non-stationary 

stochastic fields, for which the power spectrum function is dependent from 

frequency and space, by substituting the S(ωn) function  with the S(ωn,x). 
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Chapter 4 

  ESTIMATION OF EVOLUTIONARY 
POWER SPECTRA 

 

 

4.1 Introduction 

 As already known, the evolutionary power spectra of global imperfections are 
non-homogeneous random fields with two variables: the spatial variable x and the 
frequency ω. In order to estimate this kind of power spectra, a wavelet theory has 
been developed, which then applied to the geometric imperfection data gives us the 
evolutionary power spectra S(ω,x). 

4.2 Harmonic Wavelet Analysis 

 According to the wavelet transform a single mother wavelet function is being 
dilated and then translated in space in a basis of orthogonal functions. Through the 
parameter a, that controls the frequency, dilation is achieved and through 
parameter b spatial translation is achieved. This transform has a benefit on Fourier 
analysis, which uses a single function of a single spatial content x, because it can 
distinguish local events at different locations at the same frequency, see Schillinger 
(2008). 

The general form of the wavelet transform of a process f(x) is: 

( ) *1
, ( )

x b
w a b f x dx

aa
ψ

+∞

−∞

− =  
 ∫             

(4.1)
 

Where: 

ψ(x) → the mother wavelet 

w(α,b) → the wavelet coefficient at scale α and spatial position b 

(*) → complex conjugation 

 While the imperfection signal f(x) is known, our first purpose is to choose a 
suitable for our case mother wavelet, which meets certain criteria, from a variety of 
mother wavelets mentioned in global bibliography. Newland has developed the 
harmonic wavelet transform w(x) for the estimation of power spectra, whose 
mother wavelet is: 
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( )
1/ 2 ,2 4

0,
W

elsewhere

π π ω π
ω

≤ ≤
= 
                   

(4.2)
 

and has occurred by the Fourier transform of w(x). Applying the inverse Fourier 
transform on the mother wavelet we obtain the harmonic wavelet representation as 
follows: 

( ) ( ) i xw x W e dxωω
+∞

−∞

= ∫                                 
(4.3)

                             

and consists of a real and an imaginary part, shown in Fig……..  

 

Fig. 4.1 Real and imaginary part of the mother wavelet. 

 The generalized harmonic wavelet, on the basis of the mother wavelet, in the 
frequency domain is defined as: 

( , ),

1
, 2 2

( ) 2 ( )
0,

i k
nm

m n k

e m n
W n m

elsewhere

ω

π ω π
ω π

−
≤ ≤= −




         
(4.4)  

Where the scale (m,n) represents the frequency dilation and position k represents 
the spatial translation. 
  
 The complex harmonic wavelet coefficients of f(x) are: 

*
( , ), ( ) ( )m n k

k
a n m f x w x dx

n m

+∞

−∞

 = − − − ∫                      
(4.5)

 

Because of the orthogonality between the mother wavelets that correspond to 
different scales (m,n) and wavelets of the same scale at different positions k, the 
imperfection signal can be written as: 

* *
( , ), ( , ) ( , ), ( , )

,

( ) m n k m n m n k m n
m n k

k k
f x a w x a w x

n m n m

+∞

=−∞

   = − + −   − −   
∑∑

         
(4.6)

 

Where the first Σ denoted summation over pairs (m,n). 
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Fig. 4.2 Single and Complex Harmonic Wavelet. 

 

4.3 Wavelet Based Estimation of Evolutionary Power Spectra 

 A non-homogeneous random field f(x) can be expressed using its harmonic 
wavelet coefficients α(m,n),k as: 

( )

( )
( )

1

( , ), ( , ),
0 ,

sin
( ) 2 cos

n m

m n k m n k
k n m

k
n m x

n m k
f x a n m x

k n mn m x
n m

π
π φ

π

− −

=

  − −  −     = + − +  −    − − − 

∑ ∑

                                                                                                                                                           
(4.7)  

Where: 
φ(m,n),k → random phase angles 
and 

ˆˆ
,

x
x

NT NT
ωω= =

 

are the dimensionless space and frequency, where N is the number of sample points 
and T is the sampling period of the imperfection signal. 
 The non-normalized local spectrum is of the form: 

2

( , ), ( , ),4m n k m n kH E a =                           
(4.8)

 
Where: 
E → the operator of mathematical expectation 
 
 The normalized local spectrum of the generalized harmonic wavelet scheme 
is: 

2

( , ),

( , ),

4 m n k

m n k

E a
S

n m

 
  =
−                          

(4.9)
 

And is defined in the regions: 

2 2
1

m n
k k

x
n m n m

π ω π≤ ≤


+
≤ ≤ − −
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The as above described method has been compared by Schillinger (2008) to the 
exact evolutionary spectrum which is of the form: 
 

( ) ( ) ( )hom, *S x S g xω ω=
                   

(4.10)
 

 
Where in the place of Shom(ω) has been used the homogeneous Kanai-Tajimi 
spectrum SKT(ω) and g(x) is a specific envelope function. 
 
 The results of the performing test can be seen in the next Fig. 4.3: 

 
Fig. 4.3 Exact and Harmonic Wave Based Estimate of Evolutionary Power Spectrum. 

  
 This performance test has proved that the wavelet based estimation of 
power spectra approximates the evolutionary trend from the exact solution (5.10) 
really well.  
It has been proved through the instantaneous mean square values: 

( ) ( )2 2

1

1
( ) , ( )

1

n

i
i

x S x dx E f x f x
n

χ ω
+∞

=−∞

 = = =  − ∑∫                       
(4.11)  

that the generalized harmonic wavelet scheme can detect changes of the energy 
across the spatial content x and approximately preserves the energy of the process, 
see Fig 4.4. The only disadvantage of the method lies on the discretization of the 
space-frequency domain, which cannot be small in both domains at the same time. 
This means that small changes in the space domain lead to large in the frequency 
one and reversely.  

 
Fig. 4.4 Instantaneous  Mean Square of the Exact (1) and Estimated (2) Power Spectra.  
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4.4 Estimation of Evolutionary Power Spectra of Separable Random 
Fields 

 It has already been mentioned that the Wavelet Based Estimation of Power 
Spectra cannot reach great accuracy in both space and frequency simultaneously. 
Schillinger and Papadopoulos (2009) make the assumption that the power spectra 
referred to the geometric imperfections can be handled as separable processes. This 
method was developed in order to handle the space and frequency resolution 
separable, in order to accomplish better accuracy. This assumption is based on the 
fact that the input files f(i)(x) of geometric imperfections represent separable or 
approximately separable random fields.  According to the above, the power 
spectrum can be defined with the method of separation as: 

( ) ( ) ( ),S x S g xω ω= ⋅
                      

(4.12)   

 In order to estimate the evolutionary power spectrum from Eq. (4.12) , group 
of pairs [S’,g’] can be arbitrarily chosen, so that they can satisfy the original 
components [S,g]: 

( ) ( )

( ) ( )1

S S

g x g x

ω λ ω

λ

′ = ⋅

′ =                                
(4.13 , )a b  

Where λ is an arbitrary positive number. 

 Eq. (4.13a,b) constitute sets of geometrically similar functions. This means 
that the relative shapes of the curves remain the same, but the area under these 
curves, that indicates the energy component, varies by the scaling factor λ. In the 
method of separation the spectrum component of Eq. (4.13a) is chosen as the 
homogeneous Fourier power spectrum: 

( ) ( )
0

1
, ( )

L

h hS S x dx S
L

ω ω λ ω= ⋅ = ⋅∫                   
(4.14)  

 The function gh(x) can be obtained from Eq. (4.13b) by factor: 

( )
0

1 L

h g x dx
L

λ = ⋅ ∫                      
(4.15)  

And so, the evolutionary power spectrum is decomposed into: 

( ) ( ) ( ), h hS x S g xω ω= ⋅
            

(4.16)  

 An estimate of the homogeneous Fourier power spectrum Sh(ω) can be 
obtained from the periodogram of a series of samples f(i)(x): 
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( ) ( )
2

( )

0

1
2 2

L i i x
h

L
S E f x w x e dx

L
ωω

π
−

  = ⋅ − ⋅  
   

∫         
(4.17)  

 An estimate of the spatial envelope g(x) can be obtained by the mean square 
of samples  f(i)(x), which is: 

 

 

 

Fig. 4.5 Evolutionary Power Spectrum generated by the method for separable processes.  

4.5 Evolutionary Power Spectra of Global and Local Imperfections 

 According to the methods that have been described in this – for non-
homogeneous random fields – and the previous – for homogeneous random fields - 
chapter for the estimation of the evolutionary power spectra, it is time to extract 
these of our interest for the 4m long columns. 
  
 For the global imperfections it has been used the previous method for 
separable processes (4.12), where the normalized spectrum Shom

*(ω) has been 
calculated by the Fourier transform and the normalized envelope g*(x) by the 
wavelet based estimation. 
 
 For the local imperfections the homogeneous power spectrum has been 
estimated by the following formula (Papadopoulos and Papadrakakis 2008): 
 

( )
2

0
0

1
( )

L i xS E f x e dx
L

ωω − 
= ⋅ 

 
∫

                      
(4.13)  

 The length of the column is supposed to be L0=4,00m=4000mm and for local 
imperfections the space domain has been discretized in 8192 points and the 
frequency domain in 512 with upper limit ωup=0.0502, as shown in Fig. 4.6. The 
estimated power spectra, according to (4.13) are shown in Fig. 4.7 and Fig. 4.8. 
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 For global imperfections, the space domain has been discretized in 2048 
points and the frequency domain in 512, while ωup=0.0125, as shown in Fig. 4.9. At 
last evolutionary power spectra S(ω,x) are shown in Fig. 4.10. 
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Fig. 4.6 Space and frequency domains discretization for local imperfections.  
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Fig. 4.7 Power spectra of local imperfections δ1, δ2, δ3.  
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Fig. 4.8 Power spectra of local imperfections δ4, δ5.  
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Fig. 4.9 Space and frequency domains discretization for global imperfections.  
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Fig. 4.10 Evolutionary power spectra of global imperfections u,v and θ. 
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Chapter 5 

COLUMNS BUCKLING ANALYSIS 

 

 

5.1 Introduction 

 In order to examine long columns’ buckling behavior it is firstly necessary to 
discretize their perfect geometry with a certain number of finite elements and then 
enter the imperfections in the nodal coordinates of the perfect shape. The loading 
and supporting conditions are then entered in the model and the material properties 
as well. In the present study, the stochastic analysis is referred only to the geometric 
imperfections and all the other properties of the members are defined 
deterministically by specific values. The main purpose is to define the level of 
effectiveness that imperfections have on the buckling loads towards the buckling 
load of the perfect column. 

5.2 Discretization 

 The cross-sections of the examined columns are considered as thin walled 
and have the following geometric properties: 

Βf=175mm 

D=260mm 

tf=tw=5mm και tweld=5.9mm 

L=4000mm 

 

Figure 5.1 Cross-section geometric properties 
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 The mesh of the finite elements is designed on the perfect column and 
consists of three-nodal triangular finite elements with a total of 18 degrees of 
freedom, which means 6 per node (three displacements and three rotations). The 
nodal coordinates of the elements are given by Matlab and the imperfections are 
being entered on them. The discretization of the perfect column is shown in the Fig. 
4.2.a. It consists of 250 elements on column’s length direction, 12 elements on its 
width direction and 16 elements on its height direction, as shown in Fig.4.2.b.    

 

 

Fig. 5.2 Column FE discretization 
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 The web-flange junctions have been also simulated by triangular elements of 
a smaller side compared to the main elements used for the whole discretization as 
shown in Fig.4.2.b. The elements that are used have the following dimensions: 

• Main flange elements: 
EleL=4000/250=16mm 
EleB=175/10=17.5mm 
 

• Centre flange elements 
EleL=4000/250=16mm 
EleB=(175/10)/2=8.75mm 
 

• Main web elements: 
EleL=4000/250=16mm 
EleB=255/14=18.214mm 
 

• Web-flange junctions: 
EleL=8.75mm 
EleB=9.107mm 

 According to the above, the model consists of 21000 elements, which 
corresponds to 10291 nodes and 30873 degrees of freedom.  

 The thickness of the cross-section and so the thickness of the elements is 
assumed to be 5mm. Even though there is data available for thickness imperfections, 
in this study such kinds of imperfections are not being entered in the computations. 

5.3 Imperfections 

 The experimental measurements of the imperfections provided by Hasham 
and Rasmussen refer to a total number of nine global and local imperfections of the 
cross-sections, as shown in figure 4.3 (δ1-δ9). These measurements have been done 
on the free edges of the flanges (δ1,δ3,δ5,δ7), on the centre of the cross-section (δ4), 
on web-flange junctions (δ2,δ6) and on the outer edges of the flanges (δ8,δ9). From 
δ2,δ6,δ8 and δ9 we extract the three global imperfections u,v and θ, that refer to the 
global displacements and the global rotation of the cross-section, while the local 
imperfections are considered to be the measurements of δ1, δ3, δ4 , δ5 and δ7.    
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Fig. 5.3 Local and global imperfections. 

 We conclude that from the nine measurements result eight values of 
imperfections: three global and five local. The global imperfections result as cited:  

( )

( )

( )

8 9

2 6

9 8

2

2

2

u

v

δ δ

δ δ

δ δ
ϑ

+
=

−
=

−
=

                                

(5.1)

                            

 

 

Fig. 5.4 Imperfection diagrams from Hasham and Rasmussen (1997) measurements. 

 It should be noticed that imperfections along the column are neglected. This 
means that the exact length does not change and imperfections refer to y and z 
directions and rotations on yz-plane. 

 There are also available measurements of the other geometric and 
mechanical properties, such as the thickness, the Young’s modulus and the yield 
stress, that could lead to the assumption that these values could be considered as 
stochastic procedures. In the present study it is investigated the behavior of a 
member with stochastic imperfections and so all the other properties of the 
geometry and the material are defined deterministically, so that: 
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• Thickness: t=5mm 

• Young’s modulus: E=210000N/mm2 

• Poisson’s ratio: ν=0,3 

• Yield stress: σy=400N/mm2 
  
 All the above measurements have been made on 2m long beams. The 
reduction to the 4m long members can be made by scaling the already known power 
spectra from Schillinger’s thesis (2008). Power spectra estimation is of great 
importance, because then the functions that describe the imperfections of the nodes 
can be extracted by them and be entered in the FE model.  

   
Fig. 5.5 Mapping from Perfect to Imperfect Geometry. 

 
 The functions of the 8 imperfections according to the spectral representation 
method are: 

( )
1

( ) ( )

0

2 2 ( ) cos( )
N

i i
n n n

n

f x S xω ω ω ϕ
−

=

= ∆ +∑

                        

(5.2)

          

:

0,1,..., 1

1,2,...,8

where

n N

i

= −

=  

 
 The devolvement from perfect to imperfect geometry is done by the 
following procedure. The affection of global imperfections u, v and θ on the perfect 
geometry is: 

( ) ( ) ( ) ( )
cos( ) sin( )

, ,
sin( ) cos( )

glob u

glob v

Y f f fU y
x y z x x x

Z f f fV z
θ θ

θ θ

∆ Θ+ − Θ+        
= + + ⋅        ∆ Θ+ Θ+               

(5.3)
      

 

Where: 
(x,y,z) → perfect geometry 
(X,Y,Z) → imperfect geometry 
x=X 
fu(x) = f6(x) 
fv(x) = f7(x) 
fθ(x) = f8(x) 
U(x),V(x),Θ(x) → mean values of global imperfections. 
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 The above equation expresses the distortion of the nodal coordinates from 
the perfect shape. So, the final geometry and coordinates are: 
 

( ) ( )
( )

( )
2

lg,

0 1
, , , ,

0

i
glob web

i
glob f i

zY Y xY y
x y z x y z HyZZ z Z x

w

   ∆ ∆ −        = + + +         ∆ ∆                    

(5.4)

     
 

Where: 
W=87.50mm 
H=127.50mm 

 
 

Fig. 5.6 Complete Imperfect Geometry. All local imperfections have been scaled by factor lambda=300. 

5.4 Boundary and Loading Conditions  

 The 4m long columns examined in this chapter are analyzed in compression 
according to two different boundary conditions. In the first case, all degrees of 
freedom of the left edge are constrained and in the second case the left edge is also 
tied and the middle node of the right edge is pinned. Furthermore, the 
displacements of the nodes of the right edge in both cases are related to the 
displacements of the middle node, where the loading is being applied on. 

 The loading at both cases is being applied on the right edge of the column as 
a concentrated force at the middle node of the I cross-section, which is the reference 
point. Using the ABAQUS, all the degrees of freedom of the nodes of the right edge 
have been related to the reference point. This means that the edge moves as a rigid 
body according to the displacements of the reference point. 

 This assumption describes better the real behavior of the structure than the 
distributed loads at the nodes of the right edge, because they affect locally the 
behavior of the structure. 
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(a)                                                     (b) 
Fig. 5.7 Boundary and Loading Conditions at both cases (a) one edge completely tied and (b) one edge 

tied and the other one pinned . 

The initial compressive loads are Pin,a=200kN and Pin,b=1500kN.    

5.5 Results 

 For the present chapter, 50 columns with random imperfections have been 
studied under axial compression in order to extract a stochastic evaluation of the 
critical buckling load. Here are presented the results for both boundary conditions. 

(a) Cantilever Columns  

At first the perfect column is being submitted in eigenvalue analysis in order to 
obtain the critical buckling load. It has been proved that the critical buckling load can 
be computed if the first eigenvalue (λ1) and the initial loading (Pin) are known, as 
follows: 

, 1cr eigen inP Pλ= ⋅

             

(5.5)  

In Fig. 5.8 are presented the first three eigenmodes and eigenvalues. It can 
be easily concluded that the first eigenmode describes the phenomenon of global 
buckling, with critical buckling load Pcr,eigen=149.08 kN, according to Eq. (5.5). The 
second eigenmode describes the torsional and the third the local buckling.  

 It has also been calculated the Euler critical buckling load, as: 

2

, 2(2 )cr Euler

EI
P

L
π

=
            

(5.6)  

that leads to: Pcr,Euler = 144.72 kN 
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                   (α) λ1=0.74542                      (b) λ2=4.4569                              (c) λ3=4.8131 

 Fig. 5.8 Three first eigenmodes and eigenvalues of the perfect column.  

The next step is to estimate the critical buckling load of the perfect column 
from the nonlinear analysis of it in axial compression. In Fig. 5.9 it is shown the force-
displacement diagram and the deformed shape. The critical buckling load from the 
nonlinear analysis is Pcr,perf = 149.19 kN. 

 

Fig. 5.9 Force-displacement diagram and deformed shape of the perfect column under axial 
compression. 

The same analysis has been applied on the sample of the 50 imperfect 
columns. In Fig. 5.10 it is shown the deformed shape and the force-displacement 
diagram of a random imperfect column. In Fig.5.11 it is shown a histogram of the 
stochastic critical buckling loads in Table 5.1 it is shown a comparison between the 
theoretical and the mean values. 

 

Fig. 5.10 Force-displacement diagram and deformed shape of a random imperfect column 
under axial compression. 
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Fig. 5.11 Histogram of the stochastic critical buckling loads of cantilever columns. 

 According to Fig.5.11 the statistical properties of the sample of the 
stochastic analysis are the following: 

Pcr,mean=149.05 kN 

StDev=0.23 kN 

CoV=0.15% 

 Euler Eigenvalue 
Analysis 

Perfect 
Column 

Mean value 
from the 

stochastic 
analysis 

Critical 
buckling load 

(kN) 

144.72 149.08 149.19 149.05 

Tab. 5.1 Comparison of the critical buckling loads. 

From the results presented above it can be easily concluded that in cantilever 
columns the influence of the imperfections is almost zero. It can be seen that the 
reduction of the strength is about 0.1%. All the columns of the sample are lead to 
global buckling. It can be observed from the statistical results that the influence of 
geometric imperfections in cantilever beams-columns is practical zero. All columns 
fail according to the first eigenmode, which is the mode that describes the global 
buckling failure. In opposition to short length members, imperfections do not 
activate any other mode of failure, except from the first one. It can be easily 
concluded from the really small values of the coefficient of variance which in our 
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case is 0.15% and in short long columns is about 2%, while in cylindrical shells under 
axial compression is between 6 and 8% (Papadopoulos and Papadrakakis 2005). 

(b) Tied-pinned Columns  

The same procedure as described above has been followed on the stochastic analysis 
of tied-pinned columns. The boundary conditions described below are shown in Fig. 
5.12 as well as the initial loading Pin,b=1500kN and the first eigenmode. 

Edge 1: U1=U2=U3=UR1=UR2=UR3=0 

Edge 2: U2=U3=UR1=UR3=0 

This means that the left edge of the column is completely tied in all directions and 
the right one is pinned on the y-dimension. Rotations around the y axis are 
unconstrained and displacement along the longitudinal axis x. The force is also 
compressive with direction along the negative values of x-axis.   

 

Fig. 5.21 Boundary Conditions and 1st eigenmode. 

 The first eigenmode, with eigenvalue λ1=0.64175, describes the local buckling 
phenomenon. The critical buckling loads are shown in Tab. 5.2. In Fig.5.22 is shown 
the typical deformed shape of vast majority of the columns examined in this section, 
as well as the force-displacement diagram. 

 

Fig. 5.22 Deformed Shape of a random imperfect column and force-displacement diagram. 
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 In Fig.5.23 is shown the histogram of the stochastic critical buckling loads of 
tied-pinned columns. As we can see, the vast majority of the resulting loads are 
between 999 and 1016 kN and only a few of them have much greater values, closer 
to the critical buckling load of the perfect structure and the Euler critical buckling 
load, while the load resulting from the first eigenmode is much lower. 

 

Fig. 5.23 Histogram of the stochastic critical buckling loads of tied-pinned columns. 

 

 Euler Eigenvalue 
Analysis 

Perfect 
Column 

Mean value 
from the 

stochastic 
analysis 

Critical 
buckling load 

(kN) 

1181.38 962.63 1205.75 1014.24 
 

Tab. 5.2 Comparison of the critical buckling loads of tied-pinned columns. 

 The values of the first four classes of the histogram shown in Fig. 5.23 are 
really close to the critical load resulting from the 7th eigenvalue, which is λ7=0.67395 
and leads to a load of Pcd,eigen,7=1010.93 kN, while the values of the last two classes 
are close to the load resulting from the 16th eigenvalue λ16=0,79041 which leads to 
Pcr,eigen,16=1185.62 kN, that is also close to the Euler critical buckling load. It can be 
concluded that in tied-pinned columns under axial compression the mechanism of 
failure consists of local buckling according to the 7th eigenmode. According to 
eigenvalue analysis of the perfect column, the 5th and the 6th non-zero classes follow 
the equilibrium path of the 11th and 13th eigenmode. 
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The statistical properties of the sample are the following: 

Pcr,mean=1014.24 kN 

StDev=37.43 kN 

CoV=3.69% 

 From the value of the coefficient of variance it can be concluded that the 
scattering of the buckling loads of tied-pinned columns is much bigger than 
cantilever columns. This also indicates that imperfections have a great impact on the 
value of the buckling load in this kind of columns. The reduction of the column 
strength results to be about 19%.  This means that not only imperfections but also 
boundary conditions of an imperfect member play an important role on its total 
strength and the scattering of the buckling loads. 
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Chapter 6 

FRAMES BUCKLING ANALYSIS 

 

 

6.1 Introduction 

 This chapter examines the buckling behavior of imperfect frames, through 
the variation of the critical load of instability according to the members’ 
imperfections. In order to avoid instability of the frames because of a beam-column 
junction failure, they have been properly reinforced. There have been used the 
imperfections data that of the previous chapter that has to do with columns buckling 
analysis. The junctions are supposed to be perfect, which means that their shape is 
perfect, videlicet in the nodal coordinates of the junctions no imperfections are 
entered, as is done in the other nodes of the frame.  

6.2 Discretization 

 The discretization of the frames is the same as the one of the columns with 
the difference that there are some elements added in the beam-columns junctions. 
The frames consist of a total of 33723 nodes, 69268 elements and 202338 degrees of 
freedom, see Fig. 5.1. 

 The members of the frame have the same geometric properties with the 
columns examined in the previous chapter. The difference is that in order to use the 
same geometry in the members it was necessary to add some elements in the beam-
column junctions, so that it would not be needed to change the discretization of the 
members. The junctions added in order to create the frame have H=255mm height 
and B=175mm width, as shown in the Fig. 5.2. Apart from that, six flanges have also 
been added in order to reinforce the junctions and prevent their failure, before the 
collapse of the frame itself. Adding these flanges the junctions’ shape becomes 
cubical. 

 According to the above the total length of the frame becomes 
L+H+H=4510mm, the total height L+H=4255mm and width B=175mm, see Fig. 5.3. 



 

41 
 

 

Fig.6.1 Discretization of the frame. 

 

Fig. 6.2. Discretization of the beam-column junction. 

 

Fig. 6.3. Frame geometry. 
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6.3 Imperfections 

 The imperfections of the members are the same as these used in the 4 
meters long columns examined in the previous chapter. The beam-column junctions 
are supposed to be perfect, so the extra nodes that have been added have no 
imperfections. So, it is assumed that the imperfections do not take at the end of the 
members and the beam-column junctions’ shape is perfect. 

 It is also assumed that the imperfections of the three members of the frame 
are not the same. This means that a different set of imperfections is used per 
member. This assumption helps as to be more accurate on our computations and 
indicates the stochastic nature of the imperfections of a real structure. This also 
means that the imperfections of the members are independent from each other. 

 It should be noted that the imperfections included in the imperfect geometry 
of the frame have nothing to do with those referred to the Eurocode 3 about 
imperfections for global analysis of frames. The EC3 takes under consideration the 
global imperfections by an initial sway imperfection of the whole frame (φ) and 
individual bow imperfections of the members separately and the local imperfections 
of members for flexural torsion by a relative initial local bow imperfection (e0). 
Global imperfections may be disregarded when HED > 0.15VED and local imperfections 
should be accounted for in a member when NED > 0.25Ncr. 
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6.4 Boundary Conditions 

 All degrees of freedom of the nodes at both ends of the frame have been 
completely constrained. The other nodes are unconstrained, which means that the 
frame can deform in all directions. It can be led to an out of plane deformation; 
videlicet the frame is gone through a full 3D non linear analysis.  

 

Fig. 6.4. Fully constrained boundary conditions (a) at both ends of the frame and (b) zoom at the first 
end of the frame. 

 Degrees of freedom that have been constrained are, analytically: 

Ø U1=0 → transform along x-axis. 
Ø U2=0 → transform along y-axis. 
Ø U3=0 → transform along z-axis. 
Ø UR1=0 → rotation about x-axis. 
Ø UR2=0 → rotation about y-axis. 
Ø UR3=0 → rotation about z-axis. 
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6.5 Loading 

 A horizontal and a vertical load are supposed to be acting on the structure. 
These loadings have been equally contributed on the nodes of the frame that they 
act and correspond to the initial loads that are used by the Arc Length Method in 
order to define the critical buckling load of the frame. The loads have been equally 
distributed to the nodes that they act and the horizontal corresponds to 1000 
Newton per node and the vertical 12.5 Newton per node, see Fig. 5.6 and Fig. 5.7.   

 

Fig. 6.6. Horizontal loading distributed on the nodes of the right beam-column junction. 

 

Fig. 6.7. Vertical loading distributed on the nodes of the upper flanges of the beam and the beam-
column junctions. 
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6.6 Results 

 Main purpose of this chapter is to extract the stochastic critical buckling loads 
of an imperfect frame using the Monte Carlo Simulation. There have been examined 
100 sets of imperfections, which means that there have been extracted 100 critical 
buckling loads by 100 different imperfect frames.  

 At first we obtain the Force-Displacement diagram of the structure on a 
specified reference point, see Fig. 6.8. According to Fig. 6.8 the critical buckling load 
of a frame is about 450N/node. The displacement increases with the force until the 
structure becomes unstable.  

 

Fig. 6.8 Reference Point of the Frame and force-displacement diagram. 

In Fig.6.9 is shown the deformed shape of the frame. When the force 
increases the right column fails in buckling and then the frame becomes instable and 
rotates around the y-axis. 

 

Fig. 6.9 Deformed Shape of a random imperfect frame. 
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In Tab.6.1 are shown the critical buckling loads of the perfect and imperfect 
frames (mean value). Comparing these values we see a reduction of the strength of 
the frame about 40%. This means that initial geometric imperfections have an 
impact of great importance on the total strength of frames. It should be noted here 
that initial angle imperfections of the frame, that are being cited as global 
imperfections in Eurocode 3, have been neglected. The most likely is that taking 
these extra imperfections under consideration, the reduction of the total strength 
becomes much bigger. 

In Fig. 6.10 is shown the histogram of the stochastic critical buckling loads. 
The statistical results are the following: 

Pcr,mean=101.51 kN 

StDev=6.34 kN 

CoV=6.24% 

The big value of the coefficient of variance indicates the important role of the 
initial imperfections in the variation of the critical buckling load.  

 

Fig. 6.10 Histogram of the stochastic critical buckling loads of imperfect frames. 

 Perfect Frame  Imperfect Frames (Mean 
Value) 

Critical Buckling Load (kN) 142.08 101.51 
Tab. 6.1 Critical buckling loads. 
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 The characteristic scattering of the buckling loads is much bigger than 
imperfect columns under axial compression. In the previous chapter it has been 
calculated the value of coefficient of variance for tied-pinned columns as 3.69%, 
while in two meters columns it is about 2% (Schilliger 2008). So, the dubiety in 
determining the exact buckling load of frames is proven to be much more difficult 
and complicated than in single members, such as beams and columns. Local 
imperfections seem to have a greater impact on the ultimate strength of frames. 
This means that common steel structures – whose beams-columns junctions react 
like frames – need to be very carefully designed. The reduction of the total strength 
is much greater too from single members. This means that global non-linear analysis 
approaches much better the real behavior than any other method proposed in EC 3.   
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Chapter 7 

CONCLUSIONS AND FUTURE PROSPECTS 

 

 

7.1 Conclusions of Accomplished Work 

 Main target of this work was to examine the buckling behavior of long length 
geometrically imperfect columns and frames by use of random process theory and 
advanced finite element methods. Imperfections generally reduce the ultimate 
strength of structures. By assuming that they can be expressed as stochastic random 
fields – Gaussian random fields – it is easier to define the level of scattering of the 
resulting critical buckling load. So, it was of great importance the correct and 
accurate modeling of the perfect, at first, and the imperfect geometry of the 
structures by entering the functions that imply the global and local imperfections. 

 By using the power spectra for 4m long columns, calculated by Schillinger D., 
it was easy to define the functions of imperfections with the spectral representation 
method. The values of these functions indicate the distortion of the nodes of the FE 
mesh from the perfect shape. After the definition of the imperfect geometry of the 
nodes of the columns, it was necessary to define the connectivity matrix – the matrix 
that defines the nodes of every single triangular shell element – for the Abaqus input 
file, as well as the material properties and the loading and boundary conditions. 

 There have been examined 4m long columns with two different types of 
boundary conditions (cantilever and tied-pinned columns), in order to study the 
influence of imperfections in buckling analysis. In frames, there have been used 4m 
long members with different sets of imperfections. In addition, the beam-column 
junctions have been reinforced with extra steel plates in all directions, so there 
shape would become cubical, in order to avoid its failure under any type of loading.  

 After that, there have been made 50 Monte Carlo Simulations for the two 
different types of beam-columns under axial compression and 100 for frames, from 
which the stochastic critical buckling load was extracted.  

 For the cantilever columns it has been clear that the influence of 
imperfection on the critical buckling load is almost zero. All simulated columns failed 
for the same axial load as the perfect-shaped one, which refers to the first 
eigenmode, videlicet all columns failed by global buckling. 

 For the tied-pinned columns, the scattering of the resulting buckling load was 
much higher than the cantilever ones and the coefficient of variance was about 
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3.7%. This indicated the influence of the boundary conditions in axial compression. 
Also, the vast majority of the simulated columns failed by local buckling, while the 
ultimate compression strength of imperfect columns was reduced about 20%, 
compared to the total strength of the perfect one.    

 For the frames, it has been observed a reduction of the total strength about 
40%, while the characteristic scattering of the critical load has proven to a little 
smaller than 7%. This indicates the important role of initial geometric imperfections 
in frames stability analysis. It can also be concluded that imperfections affect more 
the global stability of framed structure than the ultimate buckling strength of a single 
member. Frame structures are proven to be more sensitive in initial imperfections 
than any other kind of single member. 

7.2 Future Prospects 

 In this work have been examined 4m long imperfect columns under axial 
compression. Future research can be conducted in order to extract the stochastic 
interactive curve, which means that columns should be tested under combined 
compression and major axis bending. Also, more research is needed in order to 
examine the scattering of the resulting critical loads in proportion to the magnitude 
of imperfections. This means that a parametric analysis on imperfections would give 
very interesting results. A stochastic approach of thickness imperfections and other 
material properties, such as the Young’s modulus, the Poisson’s ratio and residual 
stresses that in this work have been defined deterministically or neglected at all, 
would describe much better the real behavior of thin-walled beam-columns.   

 In frames buckling analysis of the present study, the biggest witting omission 
is the luck of angle imperfections, which are in EC 3 cited as global imperfections. So, 
more research is available by adding this kind of imperfections, as well as changing 
the boundary conditions and the magnitude of imperfections. 

 Apart from that, no research has been made for steel truss systems, which 
are widely used in construction industry. Furthermore, boundary imperfections seem 
to be a great challenge for every researcher. 

 As far for the used methodology, there is much space to work on techniques 
that would reduce the large computational demand of the Monte Carlo Simulations. 
That was also a problem that occurred during the research of the present study, 
because of the high number of DOFs, especially in frames buckling analysis. 

 Another topic that would improve the accuracy of the results is the 
expression of imperfections as non-Gaussian random fields. This would lead in a 
more realistic modeling of the imperfect shape and so better results could be 
conducted. 
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 At last, it would be of great importance the existence of data for measured 
imperfections for long columns, with also experimental tests under different kinds of 
loading. Then the results of the simulations could be compared to the results of the 
experiments. This would be very helpful in order to check the reliability of the 
simulations.    
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