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Abstract

Operations Research (OR) has offered invaluable knowledge and methodolo-
gies so as various fields of everyday life, such as businesses for instance, have
the opportunity to ameliorate their operations and management techniques.
One fundamental concern of businesses is the fact that customers are satisfied
and it is this satisfaction which comes strictly in accordance with the time
spent on queues. The queuing theory has been developed in order to study
the performance measures of businesses so as to give indicators, as far as the
number of customers and the time spent on waiting lines are concerned. In
order to face the uncertainty of the number of customers within a certain
period of time, Markov chains, as a great tool of OR, are used in order to
predict efficiently the arrival and service rates. By depicting transitions from
state to state in matrices, Markov chains are used to prove evidence for the
evolution of a process over time. Queuing theory and Markov chains have led
to the construction of a plethora of Queuing models. Each queuing model
corresponds to different cases of businesses queuing systems.
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Περίληψη

Η επιστήμη της Επιχειρησιακής έρευνας προσφέρει πολύτιμες γνώσεις και μεθο-

δολογίες που αφορούν διάφορους τομείς της καθημερινότητας. Ο πιο βασικός

τομέας στον οποίο συνεισφέρει, είναι αυτός των επιχειρήσεων με στόχο τη

βελτίωση της λειτουργίας, της οργάνωσης και της απόδοσης τους. Βασικότερος

στόχος κάθε επιχείρησης είναι η ικανοποίηση των πελατών της, μια παράμετρος

η οποία επηρεάζεται σημαντικά από το χρόνο αναμονής για απόκτηση μιας

υπηρεσίας. Η θεωρία των Ουρών Αναμονής έχει αναπτυχθεί με σκοπό να

βελτιώσει τις παραμέτρους απόδοσης μιας επιχείρησης, όπως είναι η εκτίμηση

του αναμενόμενου χρόνου αλλά και του αριθμού των πελατών σε μια ουρά

αναμονής. Η αντιμετώπιση της αβεβαιότητας ύπαρξης συγκεκριμένου αιρθμού

πελατών στο σύστημα για συγκεκριμένο χρονικό διάστημα έγκειται στην χρήση

των Μαρκοβιανών αλυσίδων. Οι Μαρκοβιανές αλυσίδες, ως βασικό εργαλείο

της επιχειρησιακής έρευνας, δίνουν τη δυνατότητα αποτελεσματικής πρόβλεψης

των ρυθμών άφιξης και εξυπηρέτησης ενός συστήματος. Οι μεταβάσεις από

μια κατάσταση σε μια άλλη απεικονίζονται με τη βοήθεια πινάκων, μέσω των

οποίων οι Μαρκοβινές αλυσίδες δίνουν πληροφορίες για την εξέλιξη μιας δι-

αδικασίας μέσα στο χρόνο. Ο συνδυασμός της θεωρίας των Ουρών Αναμονής με

τις Μαρκοβιανές αλυσίδες οδήγησε στη δημιουργία μοντέλων ουρών αναμονής.

Κάθε μοντέλο ουρών αναμονής αποσκοπεί στην μοντελοποίηση διαφορετικών

περιπτώσεων συστημάτων ουρών αναμονής για τις επιχειρήσεις.
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Introduction

Queuing theory is widely used in many aspects of our every day life. From
waiting lines in supermarkets and banks to queues in manufacturing pro-
cedures, queues are embedded in performance and time management as far
as daily schedule is concerned. It is therefore crucial that a queuing theory
be studied, analyzed and improved continuously. This thesis constitutes a
representation of the basic knowledge needed in order to comprehend how
queuing systems are formed and applied. In the first chapter, an introduction
to Operations Research (OR) is presented. Not only the origin and the def-
inition of this special scientific field be illustrated, but also the definition of
the basic steps of a successful implementation of OR. In the second chapter,
a great tool of OR is introduced, the Markov chains. Through Markov chains
an evolution of a process can be predicted by taking into consideration only
the present state of the process and by ignoring the past events. Transitions
from state to state are depicted as transition matrices in order to calculate the
probability a specific transition may occur within a specific period of time, a
methodology which can be applied in various fields. Queuing theory is one
of this fields, whose a great insight of the basics are illustrated extensively
in chapters 3 and 4. The core of queuing models is being analyzed as well
as the most popular tools of queuing theory, exponential distribution and
Poisson process. Next, in Chapter 5, Birth and Death process is introduced
as a special case of Markov chains with continuous time parameter. Then on
Chapter 6 some basic queuing models are presented such asM/M/1,M/M/c
and Er/M/1 queuing model. Finally, the thesis is completed with an applica-
tion of the theory presented in the previous chapters. A case study is formed
regarding a bakery’s queuing system where M/M/1 and Er/M/1 queuing
models are applied and then compared in terms of efficiency.
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Chapter 1

Introduction to Operations
Research

1.1 Operations Research: Origin

The industrial revolution was the initial cause for remarkable changes in the
way of how organizations operate. The management responsibilities have
been more and more focusing on the division of labor and segmentation,
although certain problems have occurred.
One drawback lies on the fact that “the components of an organization grow
into relatively autonomous” [14, p.1] sub organizations which set their own
goals. This fact has shown that there has been some incapacity to mesh
with the overall organization, its activities and objectives. In order to deal
with this complexity and specialization in an organization, a need for the
emergence of a new field has occurred. The new field is known as Operations
Research or commonly referred to as OR.
OR holds its origin to the military services early in World War II. Scientists
were asked at that time to invent new methods so as to deal with strategic
and tactical methods. These methods successfully applied to fields outside
military after the end of the war.
By the early 1950’s, the bloom of OR was evident. Linear programming,
dynamic programming, queuing theory as well as inventory theory evolved
adequately during that era. Last but not least, the computer revolution has

2
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been a crucial element taken into consideration so as to solve complex issues
efficiently and rapidly. The tremendous rise of computer technology and
especially the use of personal computers after the 1980’s have enhanced the
implementation of OR methods in dealing with large amount of computation
data.

1.2 Operations Research: Definition

The term “Operations Research” refers to how operations (i.e. activities)
within an organization can be managed and organized. Several areas such
as financial planning or telecommunications are based on OR. The term
“research” itself applies to scientific areas where certain steps are followed.
From collecting data and setting the hypothesis of the solution that a certain
problem might have to conducting experiments so as to test this hypothesis,
all this process follows a scientific model (typically mathematical).
Moreover, OR focuses on finding solutions in order to encounter possible
opposing obligations occurring among components of the organization. It
must be pointed out that the main goal of the OR is to attempt to find a best
solution to occurring problems among various optimal solutions. This is the
reason why a team approach is necessary for OR. A number of highly trained
individuals in various fields such as Mathematics, Statistics and Probability
theory or Economics can work together combining the necessary experience
and the variety of skills suitable so as to deal with the certain consequences
the organization might have to face.

1.3 Operations Research: Construction

The success of OR in practice is based on the combination of the mathemat-
ical techniques with the creativity and experiences the OR members share.
The value of teamwork is evident. As Willemain (1994) points out and is
mentioned in Taha’s work [25, p.40], “effective [OR] practice requires more
than analytical competence: it also requires among other attributes, tech-
nical judgement (e.g. when and how to use a given technique) and skills
in communication and organizational survival”. The steps of a successful

Chapter 1 3
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implementation of OR in practice are listed as follows:

1. Definition of the problem

2. Construction of the model

3. Solution of the model

4. Validation of the model

5. Implementation of the solution

Definition of the problem
In order to define the problem, the team has to:

i. Present the problem after a thorough technical analysis and make sug-
gestions to management in order to propose associated alternatives

ii. Set the objectives the management needs to accomplish and

iii. Set the limitations the modeled system needs to apply.

It must be pointed out that the success of OR system also depends on the
quality of the data that the management will provide.

Construction of the model
This stage entails the modification of the problem into mathematical rela-
tionships. If a standard mathematical model can be applied, then a solution
is achieved by using available algorithms. For more complex models, a com-
bination of simplified models is required or the use of simulation or any
heuristic models can be effective, as well.

Solution of the model
The outcome of well-defined optimization algorithms entails the model so-
lution. It is crucial that the solution be accompanied with the sensitivity
analysis, a term which refers to the behavior of the optimal solution if the
parameters have to undergo any changes.

Chapter 1 4
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Validation of the model
Validation refers to the valid results which occur after the process of testing
and improving a model in order for the model to be reliable used.

Implementation of the solution
This is the final step after the team has developed a certain model and
reached an optimal solution. The model, the solution procedure and oper-
ating procedures for implementation will follow a system which is usually
computer-based. The operating instructions extracted through this system
are to be issued to the people who will put them into use under real condi-
tions.

Chapter 1 5



Chapter 2

Markov Chains

Operations Research (OR) is all about finding a way to make the right deci-
sions. The decisions made within an environment of uncertainty concerning
a future event follow probabilistic models for processes that evolve over time
and which are called stochastic processes. One of the most known is the
Markov Chains due to their special characteristics, which make them a great
tool of OR. Markov Chains are capable of calculating probabilities of how a
process will evolve in the future taking into consideration only the present
state of the process, ignoring the past events.

2.1 Discrete time Markov Chains

A stochastic process describes the relation between random variables Xt

where the index t runs through a given set T. T is often a period of time
where a system operating is being observed and Xt represents the state of
the system at time t. A discrete-time stochastic process is a Markov Chain
if, for t = 0, 1, 2, ... and every sequence i, j, k0, k1, ..., kt−1:

P{Xt+1 = j|X0 = k0, X1 = k1, ..., Xt−1 = kt−1, Xt = i}
= P{Xt+1 = j|Xt = i}

The above mathematical representation is known as Markovian property and
indicates that conditional probability of any future "event" is independent

6
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of a given past "event" and depends only upon the present state Xt = i.
In this special case conditional probabilities, P{Xt+1 = j|Xt = i}, are known
as transition probabilities. If for each i and j,

P{Xt+1 = j|Xt = i} = P{X1 = j|X0 = i}

for all t = 1, 2, ..., it is conclude that the probability law relating to the next
period’s state to the current state does not change over time. For this reason,
they are called stationary transition probabilities.
To simplify notation with transition probabilities, let for each i, j, n :

Pij = P{Xt+1 = j|Xt = i}
P

(n)
ij = P{Xt+n = j|Xt = i}

The P (n)
ij represents the n-step transition probability which gives us the prob-

ability of the system’s state j after n steps (units of time), given that it starts
in state i at any time t. It is also important to underline some crucial prop-
erties as the P (n)

ij are conditional probabilities. These are:

• P
(n)
ij ≥ 0 for all i, j, n = 0,1,2,...

•
∑M

j=0 P
(n)
ij = 1 for all i, j, n = 0,1,2,...

•
∑j=s

j=1 P (Xt+n = j|P (Xt = i)) = 1 for all i, j, n = 0,1,2,...

It is usually preferable to use matrix form so as to present all the n-step
transition probabilities as they are shown bellow:

State 0 1 · · · M

0 p
(n)
00 p

(n)
01 · · · p

(n)
0M

1 p
(n)
10 p

(n)
11 · · · p

(n)
1M

... · · · · · · · · · · · ·

M p
(n)
M0 p

(n)
M1 · · · p

(n)
MM

Chapter 2 7
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where the horizontal line refers to present state ’i’ and the vertical line refers
to the future state ’j’.

A great example of application of Markov chains is proposed by M. Grin-
stead and J. Snell in their book Introduction to Probability [2, ex.13, p.424]

Example 2.1.1. Suppose Smith is in jail and has 3 dollars. Given the bail
out fee is 8 dollars, a guard agrees to make a series of bets with him. If Smith
bets A dollars, he wins A dollars with probability 0.4 and loses A dollars with
probability 0.6.[12, ex.13, p.9]

(a) The probability that he wins 8 dollars before losing all of his money
if he bets 1 dollar each time (timid strategy) is:
The Markov chain (Xn, n = 0, 1, ...) representing the evolution of Smith’s
money has diagram

Figure 2.1: The transition diagram for Example 2.1.1

Let φ(i) be the probability that the chain reaches state 8 before reaching
state 0, starting from state i. In other words, if Sj is the first n ≥ 0 such
that Xn = j then

φ(i) = Pi(S8 < S0) = P (S8 < S0|X0 = i)

Using Markov property at time n = 1 :

φ(i) = 0.4φ(i+ 1) + 0.6φ(i− 1), i = 1, 2, 3, 4, 5, 6, 7

φ(0) = 0

φ(8) = 1

By solving the system of the previous linear equations it is concluded that

φ = (φ(1), φ(2), φ(3), φ(4), φ(5), φ(6), φ(7))

= (0.0203, 0.0508, 0.0964, 0.1649, 0.2677, 0.4219, 0.6531, 1)

Chapter 2 8
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Thus, the probability of reaching state 8 before reaching state 0 starting from
state 4 is only 16.49%.

(b) The probability that he wins 8 dollars before losing all of his money
if he bets, each time, as much as possible but not more than necessary to
bring his fortune up to 8 dollars (bold strategy) is:
The transition diagram takes a new form

Figure 2.2: The transition diagram for question b

The new equation are:

φ(3) = 0.4φ(6)

φ(6) = 0.4φ(8) + 0.4φ(4)

φ(4) = 0.4φ(8)

φ(0) = 0

φ(8) = 1

By solving these equations the results are

φ(3) = 0.256, φ(4) = 0.4, φ(6) = 0.64,

(c) Which strategy gives Smith the better chance of getting out of jail?
By comparing the fourth components of the vector φ it is concluded that the
bold strategy gives Smith a better chance to get out jail.

Chapter 2 9
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2.2 Chapman - Kolmogorov Equations

A great method for computing these n-step transition probabilities is by using
the Chapman-Kolomogorov equations:

P
(n)
ij =

M∑
j=0

P
(m)
ik P

(n−m)
kj

for all i = 0, 1, ...,M, j = 0, 1, ...,M and
any m = 1, 2, ..., n− 1, n = m+ 1,m+ 2, ...
These equations rely on the fact that between i and j states there is a state k
after exactly m states. Thus, the conditional probability P (m)

ik P
(n−m)
kj states

that, given a starting point i, the process goes to state k after m steps and
then to state j after n − m steps. In this way, P (n)

ij can be computed by
summing conditional probabilities over all possible k. The expressions for
m = 1 and m = n− 1 are presented below:

P
(n)
ij =

M∑
j=0

Pikp
(n−1)
kj

and

P
(n)
ij =

M∑
j=0

P
(n−1)
ik Pkj

for all states i and j.
It is evident that ,by using Chapman-Kolomogorov equations, the n-step
probabilities can be obtained from the one-step ones recursively.
For a homogeneous discrete-time Markov chain these equations have the
following form:

P
(n)
ij = P{Xn = j|X0 = i}

=
∑
all k

P{Xn = j,Xm = k|X0 = i} for 0<m<n

=
∑
all k

P{Xn = j|Xm = k,X0 = i}P{Xm = k|X0 = i}

Chapter 2 10
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By applying the Markov property,

P
(n)
ij =

∑
all k

P{Xn = j|Xm = k,X0 = i}P{Xm = k|X0 = i}

=
∑
all k

P
(n−m)
kj P

(m)
ik for 0<m<n

In matrix notation the Chapman-Kolmogorov equations are written as

P (n) = P (m)P (n−m)

where, by definition, P (0) = I the identity matrix.
It is also given that

P (n) = PP (n−m) = P (n−m)P

Regarding the previous property , the matrix of n-step transition probabilities
is calculated by multiplying the matrix of one-step transition by itself (n−1)
times. In other words, P (m) = Pm.
For a nonhomogenous discrete time Markov chain, the matrices P (n) may
depend on the particular time step n. In this case the product P 2 will be
equal to P (n)P (n+ 1), P3 will be equal to P (n)P (n+ 1)P (n+ 2) and so on.
As a result a new matrix arises:

P (n)(m,m+ 1, · · · ,m+ n− 1) = P (m)P (m+ 1) · · ·P (m+ n− 1)

whose ij element refers to P{Xn+m = j|Xm = i}.
The notation used for the probability a Markon chain begins in state i is π(0)

i

and π(0) is the row vector whose ith element is π(0)
i . The probability of being

in state j after the first step is given by:

π(1) = π(0)P (0)

For a homogeneous Markov chain

π(1) = π(0)P

The elements of the vector π(1) give the probability of being in the various
states of the Markov chain after the first step.
The probability of being in state j after two time steps is given by:

π(2) = π(1)P (1) = π(0)P (0)P (1)

Chapter 2 11
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And for a homogeneous Markov chain

π(2) = π(1)P = π(0)P 2

In general, the probability distribution after n steps is given by

π(n) = π(n−1)P (n− 1) = π(0)P (0) · · ·P (n− 1)

Accordingly, for a homogeneous Markov chain

π(n) = π(n−1)P = π(0)P n

Letting n→∞ then
lim
n→∞

π(n) = π(0) lim
n→∞

P n

where the limit does not necessarily exists for all Markov chains, not even
for all finite-state ones.

2.3 Classification of states of a Markov Chain

It is evident that the relation between transition probabilities and states
plays an important role in understanding the Markov Chains. The states of
a Markov Chain can be classified based on the transition probability Pij of
P [25, p.633].

1. A state j is absorbing if it is certain to return to itself in one transition.
The transition probability of an absorbing state is Pjj = 1.

2. A state j is transient if it can reach another state but cannot be
reached back from another state. The transition probability in this
case will follow the condition limn→∞ P

(n)
ij = 0, for all i.

3. A state j is recurrent if the probability of being revisited from other
states is 1. This is possible only if the state is not transient.

4. A state j is periodic with period t > 1 if a return is possible only in
t,2t,3t,...steps. The transition probability of a periodic state is P (n)

jj = 0
when n is not divisible by t.

Chapter 2 12
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For a better comprehension regarding the classification of states the following
illustration is being explained.

Figure 2.3: Transient & Recurrent states

States 1 and 6 are defined as transient. It is also observed that the Markov
chain can be in state 1 or 6 only for the first time step thus they are also char-
acterized as ephemeral states according to William j. Stewart [22, p.207].
States 2 and 3 are also transient states as the Markov chain can enter from
state 2 and move to one from the other for a number of time steps but it will
eventually exit from state 3 to 4.
States 4 and 5 are recurrent states . Once the Markov chain reaches state 4
then all subsequent transitions will take it from one to the other. It is also
worth mentioning that each state 4 or 5 is reached after two time steps thus
these states are defined also as periodic with period 2. Positive recurrent
states are the states whose mean recurrence time is finite so states 4 and 5
are characterized positive recurrent as well. Recurrent states with infinite
recurrent time are known as null recurrent states and this is feasible when
the Markov chain has a infinite number of states. Furthermore, a state whose
period p=1 is defined as aperiodic. A state that is positive recurrent and
aperiodic is said to be ergodic.

Chapter 2 13
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State 7 is a transient state. Once the Markov chain enters state 7 may, for
some finite number of time steps, remain in state 7, but eventually it will
move on to either state 5 or state 8.
Finally state 8 is a recurrent state but also it is defined as absorbing. It is
evident that if a Markov chain enters state 8 it will remain there forever and
thus Pii = 1. If Pii < 1 then the state will be defined either as recurrent or
as transient.

It is also required to pinpoint the need for a new quantity fjj which is
going to give the probability of the first return to state j after leaving it
before exactly n steps [22, p.207].This quantity is defined as:

f
(n)
jj = P[Xn = j,Xn−1 6= j, ..., X1 6= j|X0 = j}]

for n = 1, 2, ..
The probability P (n)

jj is not the same with the probability f (n)
jj , as the first

one calculates the probability of returning to state j, without taking into
consideration if the state j was visited again at one or more intermediate
steps.
Based on the definition of f (n)

jj it is evident that f (1)
jj = P

(1)
jj = Pjj as the

probability that the first return to state j demands one step as the single
step transition probability. The relation between these two probabilities is
given by the following form, using P (0)

jj = 1:

P
(n)
jj =

n∑
l=1

f
(l)
jj P

(n−l)
jj

for n ≥ 1.
or respectively

f
(n)
jj = P

(n)
jj −

n−1∑
l=1

f
(l)
jj P

(n−l)
jj

for n ≥ 1.
For example,

P
(1)
jj = f

(1)
jj P

(0)
jj for n = 1,

P
(3)
jj = f

(1)
jj P

(2)
jj + f

(2)
jj P

(1)
jj + f

(3)
jj P

(0)
jj for n = 3.
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The second example gives the probability a process is in state j three steps
after leaving it. The first term gives the probability of the first return to
state j after just one step and the probability it returns to state j by the end
of two steps remaining. The second term gives the probability the process
returns to state j after exactly two steps for the first time and in the third
step remains to state j and the third term gives the probability the process
returns to state j after exactly three steps for the first time.
The probability of returning to state j is given by:

fjj =
∞∑
n=1

f
(n)
jj

• If fjj = 1, the state is denoted as recurrent as it will inevitably return
to this state in the future. The expected returns to state j of a Markov
chain is equal to

∑∞
n=0 P

(n)
jj =∞.

Let In = 1 if the Markov chain is in state j at step n and In = 0
otherwise. Then the total time steps that state j is occupied is

∑∞
n=0 In.

Given the Markov chain starts in state j, the expected number of visits
the Markov chain makes to state j is [22, p.209]:

E[
∞∑
n=0

In|X0 = j] =
∞∑
n=0

E[In|X0 = j]

=
∞∑
n=0

Prob{Xn = j|X0 = j}

=
∞∑
n=0

P
(n)
jj

Thus, when state j is recurrent,

(n)∑
n=0

P
(n)
jj =∞

• If fjj < 1, the state is denoted as transient. The probability of never
returning to this state is nonzero so the expected number of returns to
state j is finite. The probability that the Markov chain is in state j and
it will never return is 1 − fjj and it can be described with a sequence
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of Bernoulli trials, where "success" is considered as the never return of
the Markov chain to state j. The probability the Markov chain returns
to state j, n−1 times after leaving it and never return (n ≥ 1), is equal
to (1− fjj)fn−1

jj , as the geometric probability mass function. Thus, the
mean number of returns to state j is equal to 1/(1−fjj) ,which is finite
and as a result [22, p.209]:

∞∑
n=0

Pjj(n) <∞

When state j is recurrent, the mean recurrence time Mjj of state j, in other
words the mean time steps it takes to return to state j for the first time after
leaving it, is defined as

Mjj =
∞∑
n=1

nf
(n)
jj

If Mjj is finite, is called positive recurrent state and if Mjj = ∞ is called
null recurrent state.

Theorem. In a finite Markov chain

• No state is null recurrent

• At least one state must be positive recurrent, in other words not all
states can be transient.

Assuming a Markov chain has all its states transient then it would spend
an finite amount of time in each of its states. This assumption though is
impossible as after a finite period of time it will have nowhere to go.

2.3.1 Stationary Distribution

Let X denote a Markov chain with state space E and π a measure on E.
If P(Xn = i) = P(X0 = i) = πi for all n ∈ N and i ∈ E, then Xπ is
called stationary and π is called a stationary measure for X. In case π is a
probability measure then π is the stationary distribution for X [13, p.21].
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Theorem. Let X denote a Markov chain with state space E and transition
matrix P . Furthermore, let π denotes a probability distribution on E with
πP = π, i.e.

πi =
∑
j∈E

πjPji and
∑
j∈E

πj = 1

for all i ∈ E. Then π is a stationary distribution for X. If π is a stationary
distribution for X, then πP = π holds.

Example 2.3.1. A four-state Markov chain has the transition matrix :

T =


0 1

3
0 1

3

0 0 1 0

1 0 0 0

0 1 0 0


Show that all states have period 3.
Regarding the transformation of a transition matrix to a transition diagram,
it is important to mention that rows in a transition matrix represent inputs
and columns represent outputs. So the transition diagram depicts the prob-
abilities transitions are made between states. For example, probability a
transition occurs from state E1 to E1 is 0, from state E1 to E2 is 1/3, from
state E1 t state E3 is 0 and from state E1 to E4 is 1/3 . In this case, if
the chain starts in E1, then returns to state E1 are only possible at steps
3, 6, 9, · · · either through E2 or E3.

Figure 2.4: The transition diagram for Example 2.3.1
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A suspected periodicity can be checked by direct computation as follows:

S = T 3 =


1 0 0 0

0 1
2

0 1
2

0 0 1 0

0 1
2

0 1
2


In this example,

S2 = T 6 = SS = S

so that
Sr = T 3r = S, (r = 1, 2, ...)

which always has non zero diagonal elements. On the other hand,

Sr+1 = SrS =


0 1

2
0 1

2

0 0 1 0

1 0 0 0

0 0 1 0


, Sr+2 = SrS2 =


0 0 1 0

1 0 0 0

0 1
2

0 1
2

1 0 0 0


Both of these matrices have zero diagonal elements for r=1,2,3,... . Therefore,
for i = 1, 2, 3, 4, ...

P
(n)
ii = 0, for n6= 3, 6, 9, ...

P
(n)
ii 6= 0, for n = 3, 6, 9, ...

which means that all states are period 3.

Example 2.3.2. A three-state Markov chain has the transition matrix

T =


p 1− p 0

0 0 1

1− q 0 q


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where 0 < p < 1, 0 < q < 1. Show that the state E1 is recurrent.[8, p.86]
The transition diagram of this example is illustrated below:

Figure 2.5: The transition diagram for Example 2.3.2

If a sequence begins at state E1 it can return to state E1 at every step except
for n=2 since after two steps the chain must be in state E3. From the figure
it can be argued that

f
(1)
1 = p, f

(2)
1 = 0, f

(3)
1 = (1− p) · 1 · (1− q),

f
(n)
1 = (1− p) · 1 · qn−3 · (1− q), (n ≥ 3)

The last result is derived from the following sequence of transitions:

E1 E2

(n-3) times︷ ︸︸ ︷
E3 E3 E3 · · ·E3 E1.

The probability f1 that the state E1 is reached at least once after the sequence
begins is:

f1 =
∞∑
n=1

fn1 = p+
∞∑
n=3

(1− p)(1− q)qn−3

= p+ (1− p)(1− q)
∞∑
s=0

qs, (s=n-3)

= p+ (1− p)(1− q)
(1− q)

= 1
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Therefore, the f1 = 1 and the state E1 is characterized as recurrent. The
mean recurrence time is given by

µ1 =
∞∑
n=1

nf
(n)
1 = p+ (1− p)(1− q)

∞∑
n=3

nqn−3

= p+ (1− p)(1− q)

[
3− 2q

(1− q)2

]
=

3− 2p− 2q + pq

1− q

which is finite, so the E1 state is called positive recurrent state.

Example 2.3.3. A three-state inhomogenous Markov chain is described by
the transition matrix presented below:

Tn =


1
2

1
2

0

0 0 1

1/(n+ 1) 0 n/(n+ 1)


where Tn is the transition matrix at step n. Show that E1 is a null recurrent
state [8, p.87].
From the figure 2.6 it can be argued that

f
(1)
1 =

1

2
, f

(2)
1 = 0, f

(3)
1 =

1

2
· 1 · 1

4
,

f
(n)
1 =

1

2
· 1 · 3

4
· 4

5
· · · n− 1

n
· 1

n+ 1
=

3

2n(n+ 1)
, (n ≥ 4)

Figure 2.6: The transition diagram for Example 2.3.3
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Thus,

f1 =
1

2
+

1

8
+

3

2

∞∑
n=4

1

n(n+ 1)

But since,
1

n(n+ 1)
=

1

n
− 1

n+ 1

then

∞∑
n=4

1

n(n+ 1)
= lim

N→∞

N∑
n=4

(
1

n
− 1

n+ 1

)
= lim

N→∞

(
1

4
− 1

N + 1

)
=

1

4

So it is concluded that
f1 =

5

8
+

3

8
= 1

which means that the state E1 is recurrent.
Furthermore, the mean recurrence time

µ1 =
∞∑
n=1

nf
(n)
1 =

7

8
+

3

2

∞∑
n=4

n

n(n+ 1)

=
7

8
+

3

2

(
1

5
+

1

6
+

1

7
+ · · ·

)

=
7

8
+

3

2

∞∑
n=5

1

n

The last series in the previous equation are known as Harmonic series which
are divergent. As a result the mean recurrence time is µ1 =∞ and the state
E1 is characterized as null recurrent.

Example 2.3.4. A four-state Markov chain is described by the transition
matrix

T =


0 1

2
1
4

1
4

1
2

1
2

0 0

0 0 1 0

0 0 1
2

1
2


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Show that E1 is a transient state [8, p.89].
The transition diagram of Example 2.3.4 is illustrated below:

Figure 2.7: The transition diagram for Example 2.3.4

From the figure it can be argued that

f
(1)
1 = 0, f

(2)
1 =

1

2
· 1

2
=
(1

2

)2, f
(3)
1 =

(1

2

)3, f
(n)
1 =

(1

2

)n
Thus,

f1 =
∞∑
n=1

f
(n)
1 =

∞∑
n=2

(1

2

)n
=

1

2
< 1

Regarding the previous results the state state E1 is characterized as transient.
The transience of E1 is also evdent from the figure as transitions from states
E3 or E4 to states E1 or E2 are not feasible.

2.4 Renewal Processes

A renewal process is a special case of counting process. A counting process,
{N(t), t ≥ 0}, as Stewart W. defines in his book, is a stochastic process which
counts the number of events that occur up to (and including) time t. Thus
N(t) is expected to be integer valued with the properties that N(t) ≥ 0 and
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N(t1) ≤ N(t2) if t1 ≤ t2 [22, p.267].

Renewal process
Let Xn, n ≥ 1 be non negative random variables that represent the time be-
tween successive events. If a sequence consists of Xn which are independent
and identically distributed then the counting process {N(t), t ≥ 0} is defined
as renewal. Sometimes recurrent process and renewal process are considered
as identical.
It is also important to underline that although the option Xn = 0 is feasible,
events which occur simultaneously will not be examined.

Example 2.4.1. Suppose there is an infinite supply of lightbulbs whose
lifetimes are independent and identically distributed. Given that only one
lightbulb is used at a time when one fails then it is replaced by a new one
immediately. Under these conditions, {N(t), t ≥ 0} is a renewal process
when N(t) represents the number of lightbulbs that have failed by time t.
[20, p.417]

Given X1,X2,X3,... are interarrival times, let

S0 = 0, Sn =
n∑
i=1

Xi, n ≥ 1

The illustration presented below, suggested by Sheldon M. Ross [20, p.418],
depicts renewal and interarrival times

Figure 2.8: Renewal & Interarrival times

The time of the first renewal is S1 = X1. The time of the second renewal is
S2 = X1 +X2, in other words, the time until the first renewal plus the time
between the first and the second renewal. In general Sn denotes the time of
the n-nth renewal.
Given that F denotes the interarrival distribution, it is assumed that F (0) =
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P{Xn = 0} < 1. Furthermore, the mean time between successive renewals is
given by

µ = E[Xn], n ≥ 1

It also important to pinpoint that an infinite number of renewals can not
occur in a finite amount of time. Given that Sn denotes the time of the
n-nth renewal then

N(t) = max{n : Sn ≤ t}

Supposing that S4 ≤ t and S5 > t, it concluded that the fourth renewal had
occurred by time t but the fifth renewal occurred after time t. By using the
strong law of large numbers it follows that:

P

[
lim
N→∞

f(X1) + f(X2) + · · ·+ f(XN)

N
= Eπ[f ]

]
= 1

The non negativity of Xn and the fact that Xn is not identically 0 follows
that µ > 0 and as result Sn must be going to infinity as n goes to infinity.
Therefore, Sn can be less than or equal to t for a finite number of values of
n and as a result N(t) must be finite.
On the other hand, even though N(t) <∞ for each t, it is a fact that, with
probability 1,

N(∞) ≡ lim
t→∞

N(t) =∞

In other words, the only way to achieve N(∞) is for one of the interarrival
times to be infinite.
Consequently,

P{N(∞) <∞} = P{Xn =∞ for some n}

= P{
∞⋃
n=1

{Xn =∞}}

≤
∞∑
n=1

P{Xn =∞}

= 0
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2.5 Continuous time Markov chains

In a discrete time Markov chain, there is an infinite sequence of time steps
where a change of state may occur or the chain may remain in its current
state. There are situations though, that a continuous time parameter is re-
quired so as to observe possible changes of state at any point of time.

A stochastic process {X(t), t ≥ 0} is a continuous time Markov chain,
if for all states n (n∈ Z) and for any sequence t0, t1, t2, .., tn, tn+1 where
t0 < t1 < ... < tn+1 :

P{X(tn+1) = xn+1|X(tn) = xn, X(tn−1) = xn−1, ..., X(t0) = x0}
= P{X(tn+1) = xn+1|X(tn) = xn}

It is important to mention that not only does this definition not affect the
future evolution of the chain but also does not take into consideration the
time spent in the current state.
An alternative definition could be according to W.J. Stewart [22, p.253]:
The stochastic process {X(t), t ≥ 0} is a continuous Markon chain if for
states i, j, k and for all instants s, t, u with t, s ≥ 0 and 0 ≤ u ≤ s :

P{X(s+ t) = k|X(s) = j,X(u) = i} = P{X(s+ t) = k|X(s) = j}

where i represents the state at time u (past time)
j represents the state at time s (current time)
k represents the state at time s+t (future time)
A continuous time Markov chain is called nonhomogeneous when, given t ≥ s:

Pij(s, t) = P{X(t) = j|X(s) = i}

On the other hand, a continuous time Markov chain is homogeneous when:

Pij(τ) = P{X(s+ τ) = j|X(s) = i} for all s ≥ 0

It is important to underline that in a homogeneous Markov chain, the differ-
ence τ = t− s affects the transition probabilities, not the values s, t.
A transition probability is defined as stationary transition probability if the
probability is independent of s so that:

Pij(t) = P{X(t) = j|X(0) = i}
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and as a result:

lim
t→ 0

Pij(t) =

{
1 if i=j
0 if i 6= j

It is assumed that the continuous time Markov chains are referred to have
a finite number of states and the transition probabilities are considered as
stationary.
Let the random variable Ti denote the amount of time a process spends in
state i before moving to another, where i = 0, 1, 2, ..., M. Supposing the
process enters a state i at time s, then according to Markovian property:

P{Ti > t+ s|Ti > s} = P{Ti > t}

In other words the remaining time until the process leaves from the current
state is the same as the process is not affected by the time already spent,
due to its memoryless property. The only continuous probability distribu-
tion that follows this property is the exponential, whose parameter will be
denoted as q. So a continuous time Markov chain can have a new form ,where
the random variable Ti follows an exponential distribution with a mean 1/qi.

In a continuous time Markov chain the interactions between the states are
not described by transition probabilities as in a discrete time Markov chain,
but in terms of the rates at which transitions occur [22, p.254]. The transi-
tion of a process from state i to state j at time t is described from the rate
qij(t) per unit time. The transition rates are defined as:

qi = − d

dt
Pii(0) = lim

t→ 0

1− Pii(t)
t

for i = 0, 1, 2, ..., M

and
qij = − d

dt
Pij(0) = lim

t→ 0

Pij(t)

t
= qiPij for all i 6= j

where qi is the transition rate out of state i and refers to the expected time
that the process spends in state i per visit to state i (qi = 1/E[Ti]). The
transition rate qij refers to the expected number of times there is a transition
from state i to state j per unit of time spent in state i. It is evident that
qi =

∑
j 6=i qij. The transition rate equivalent to the system remaining in

place is defined by
qii(t) = −

∑
j 6=i

qij(t)
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When state i is an absorbing state, qii(t) = 0. The reason why qii(t) is nega-
tive is that this quantity denotes a transition rate and as such is defined as
a derivative. "Given that the system is in state i at time t, the probability
that it will transfer to a different state j increases with time, whereas the
probability that it remains in state i must decrease with time. It is appro-
priate in the first case that the derivative at time t be positive, and in the
second that it be negative" [22, p.255].
The matrix Q(t) is called the infinitesimal generator or transition-rate matrix
and its ijth element is qij(t). The matrix form is calculated by

Q(t) = lim
∆t→0
{P (t, t+ ∆t)− I

∆t
}

where P(t,t+∆t) is the transition probability matrix, its ijth element is
qij(t, t + ∆t), and I is the identity matrix. The sum of all elements in any
row of Q(t) must be zero. Furthermore, given a homogeneous continuous-
time Markov chain , the transition rates qij are independent of time and the
matrix of transition rates is denoted as Q.

Example 2.5.1. Cars arrive at a service center at an average rate of five per
hour and it takes on average ten minutes to service each car. To represent this
situation as a homogeneous continuous-time Markov chain, the state space
of the model must be specified. It will be assumed that the non-negative
integers 0, 1, 2, 3,... will represent the situation in which there are 0, 1, 2,
3,... cars in the center. Additionally, it will be assumed that no more than
one car can arrive at any moment, no more than one car can exit from service
at any moment and that cars do not arrive or depart simultaneously. Taking
into consideration that transitions can only be made among nearby states,
an illustration of possible transitions is depicted below:

Figure 2.9: Transitions diagram

When a car arrives then a transition is made from state i to the next highest
neighbor i+1, given that the mean arrival time is 1/5 hours. In terms of sat-
isfying the Markov property (exponentially distributed interarrival time with

Chapter 2 27



Tzimi Katerina Markov Chains & Queueing Theory

mean 1/5), the rate of transition from any state i to state i+1 is qi,i+1 =5/hour
for i ≥ 0. Additionally, based on the Markov property again, the mean ser-
vice time will be equal to 10 minutes (exponential distribution). Thus the
rate of transition from state i+1 to state i is qi+1,i =6/hour for i ≥ 0. The
transition rate matrix Q must be tridiagonal with superdiagonal elements all
equal to 5 and subdiagonal elements all equal to 6. Its form is

Q =



−5 5 0 0 0 · · ·

6 −11 5 0 0 · · ·

0 6 −11 5 0 · · ·

0 0 6 −11 5 · · ·
...

...
... . . . . . . . . .


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Chapter 3

Queueing Theory

Waiting for service is part of the everyday life. Not only are queues being
observed among human services but also in machine, vehicle, or even airport
services. The aim of queueing theory is finding a balance between the cost
of offering a service and the cost of waiting experienced by customers. Daily
queueing systems have led to the creation and evolution of various queueing
models so as to enhance their operation. Too much service capacity as well as
excessive waiting lines can prove both negative as far as costs are concerned.
The goal is to make as less as possible the effects of the cost of service and
waiting.

3.1 Structure of a Queueing model

In order to create a queueing model the definition of several terms must
be specified. It is important to understand how a queueing system works.
For the characterization of a queueing situation, it is necessary to define cus-
tomers and servers. Customers arriving at a queueing system are generated
by an input source and the size of this source defines the total number of
customers that will require potential service. The interarrival time is the
time between successive arrivals of customers and the offered service is mea-
sured by the service time per customer. Generally, the interarrival and
service times are probabilistic or deterministic.
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Once the customer enters the system, the service itself will either start right
away (no queue) or the customer will have to wait in queue. A queue can
be finite or infinite regarding the maximum permissible number of customers
that it can contain. Usually the selection of a customer to be served from
a queue follows a queue discipline, which defines the selection order of
customers from a queue. The most common disciplines are first-in, first-out
(FIFO), last-in, first-out (LIFO) and service in random order (SIrO). Cus-
tomers may also be selected from the queue based on some order of priority
[23]. Then the required service is performed for the selected customer by the
service mechanism, after which the customer leaves the queueing system.

Figure 3.1: The basic Queueing Process

There are several assumptions that need to be taken into consideration for a
better understanding of the Queueing theory, which are listed below:

� If the server is free, an arriving customer goes immediately into service
without waiting in the queue.

� If the server is busy, then the arriving customer joins a queue and stays
there until entering service.
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� The time, between a customer leaves the service and eventually the
system and a new customer entering a service, is considered as zero.
The customers are ordered according to a queue discipline and they are
distributed to the servers immediately.

� The system does not take into consideration human parameters, such as
impatience. Customers remain in the system until they receive service.

A cost based queuing decision model is also presented below according to
Hamdy A. Taha [25, p.654]:

Figure 3.2: Cost-Based Queueing decision model

3.2 Terminology & Notation

The structure of queueing models uses a standard terminology and notation
which is presented below:

State of system = n
= number of customers in queueing system (both in queues and servers)
Queue length =
number of customers in waiting lines
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N(t) =
number of customers in queueing system at time t (t ≥ 0)
Pn(t) =
probability n customers are in queueing system at time t, given number at
time 0
c =
number of servers (service channels) in queueing system
λn =
mean arrival rate (arrivals per unit time) of new customers entering the sys-
tem, given n customers are already in it
µn =
mean service rate (served customers per unit time) given n customers are in
system
λ =
λn, when the mean arrival rate is constant for all n
µ=
µn = cµ (when n ≥ c), when the mean rate service per busy server is con-
stant for all n ≥ 1
αn = time of arrival of the nth customer
dn = time of departure of the nth customer
An = αn − αn−1 = time between two successive arrivals of the n− 1th and
the nth customer
µA = mean time of arrivals (random variable A) = 1

λ

σA = standard deviation of random variable A (arrivals)
CVA = σA

µA
= coefficient of variation of A

Sn = time of service required for the nth customer
µs = mean time of required service (S random variable) = 1

µ

σS = standard deviation of random variable S (service time)
CVS = σS

µS
= coefficient of variation of S

WTM = waiting time multiple = Wq

µS

ρ = λ/(cµ)
is the load factor, which gives the system’s service capacity (cµ) that is
being utilized on the average by arriving customers (λ). [23]

Furthermore, in order to describe state results the following notations are
used:
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Pn=
probability of exactly n customers in the system
L=
expected number of customers in queueing system
Ln=
expected queue length excluding the customers being served
W =
waiting time in system, both in queue and in service, for each customer
Wq =
waiting time in queue (ignoring service time) for each customer

3.3 Arrival & Service Processes

In a queueing system, the queue length depends on the arrival and service
processes. If the rate of arriving customers is greater than the channels offered
for service, the system will eventually break down, as unbounded queues will
form. On the other hand, if there is a low arrival rate then the number of
channels will be reduced in order to avoid further costs, thus queues will
form again. In order to regulate queues in a manner that there won’t be a
problem neither for customers nor for systems, probability distributions are
being used in order to predict average waiting times, average queue length
or even expected service times. It is important to identify:

• the arrival rate of customers to the system

• the service pattern of customers

• the way customers are being selected and distributed to service channels

in order to make valuable predictions. A queue is considered "full" when
all channels are occupied and the customers arriving in this situation are
identified as "lost".

The arrival process
The customer arrival process can be defined either as the number of arrivals
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per unit time, known as arrival rate, or as the time between successive ar-
rivals, known as the interarrival time. Given that λ is the mean arrival rate,
the mean time between arrivals will be defined as 1/λ. In case the arrival
process is stochastic, the probability distribution of the interarrival time is
given by:

A(t) = P[ time between arrivals ≤ t]

and
1

λ
=

∫ ∞
0

tdA(t)

where dA(t) is the probability that the interval time is between t and t+dt
and assuming that interval times are independent and identically distributed.
An arrival process is denoted as homogeneous when A(t) does not change
over time.

The service process
The service process is defined by the number of customers served per unit
time from the available channels of the system or by the time required to
serve a customer. Given that µ is the mean service rate, the mean service
time is denoted as 1/µ. If B(x) denotes the probability of the service time
required then:

B(x) = P[ Service time ≤ x]

and
1

µ
=

∫ ∞
0

xdB(x)

where dB(x) is the probability that the service time is between x and x+dx.
It is important to pinpoint that the service time does not include the time
spent in waiting lines. Furthermore, the service rates are calculated based
on the time spent for a customer to be served, given that the channel is not
idle and the channel not empty. The channels may be batch or single. A
batch channel could be a train station, as multiple citizens are being served
when the train arrives. The service rate may also be affected from everyday
life factors such as:

• The number of customers in the system. There are cases where a server
will slow down when a queue starts to empty or speed up the process
when the arriving rate is increasing.
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• The time when customers arrive to the system in order to receive ser-
vice. For example, the service channels of a supermarket (cashiers) may
start slowly in the morning and speed up gradually during the day due
to the increasing number of customers especially during noontime.

The total number of servers or channels is denoted by c. When c>1 then
there are two possibilities:

1. Each server has its own queue but that is not always fixed. There
are several situations such as supermarkets where, when a line is more
empty than another, the customers change their waiting lines in order
to leave the system as soon as possible. In this case, a model computing
waiting time for a single queue could be more accurate.

2. There are many examples in the everyday life where a single queue will
be formed for distribution to multiple queues. A classic example could
be the waiting line in a bank or at a mall.

3.4 Forms of Disciplines

In chapter 3.1, Queue discipline is mentioned as one of the crucial structural
parts of a Queueing model. The way customers are allocated in a queue,
in order to have a desired service, plays an important role in the accurate
operation of a queueing system. Scheduling disciplines are categorized based
on the preemptive or nonpreemptive policies. Preemptive policies refer to
the priority a customer has. If a high priority customer enters a system
then the service of a low priority customer is postponed and priority is given
to the first one. The preempted customer is reinserted into the queue and
when he returns to a service channel, he either returns to the previous service
point (preempt - resume) or his service has to begin all over again (preempt
- restart).
On the other hand, in a nonpreemptive system, service channels are commit-
ted to serve the selected customer, regardless his priority type and a possible
arrival of a high priority customer during his service. The most common
scheduling disciplines are:
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• FIFO (first-in, first-out) or FCFS (first come, first served)
The customer that has waited the longest in the queue is the next one
to be served. (nonpreemptive system)

• LIFO (last-in, first-out) or LCFS (last come, first served)
The last customer to arrive in the queue is the next one to be served.
(nonpreemptive system)

• SIRO (service in random order) or ROS (random order of service)
The next customer to be served is selected from the queue in a random
order. (nonpreemptive system)

• RR (round robin)
The service channels of this category provide a fixed service time,
known as time slice. If a customer completes his service within the
fixed duration then he immediately leaves the system. If a customer
does not manage to complete his service at any point during the time
slice then he is reinserted back in the queue as many times as the service
needs to be completed. (nonpreemptive system)

• GD (General discipline)
The customers waiting to receive service are allocated to service chan-
nels according to general discipline. (nonpreemptive system)

• TQ (truncated queues)
The queue of this category can include a fixed number of customers
waiting for service.(nonpreemptive system)

• SPTF (shortest processing time first)
The customers that require minimum service time are given prior-
ity.(preemptive system)

• PRI (priority scheduling)
The first customer to be selected from the queue is the one with the
highest priority service. In case there are multiple high priority cus-
tomers then the queue follows FCFS discipline. (preemptive system)
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3.5 Kendall’s Notation

In order to define a queueing system, Kendall’s notation is used. D. G.
Kendall in 1953 devised the first three elements of the notation (a/b/c), in
1966 A. M. Lee added the symbols d and e and in 1968 Hamdi A. Taha added
the last element f. This special notation sums up the main characteristics of
a queueing system such as interarrival and service time distribution, number
of servers and queue discipline. Kendall’s notation format is:

(a/b/c) : (d/e/f)

where:
a = arrivals distribution
b = service time distribution
c = number of channels available for service
d = queue discipline
e = maximum number of customers allowed in the system
f = size of the calling population where customers come from

The arrivals and service time distributions (symbols a, b) may be repre-
sented by one of the following notations:
M = Markovian or Poisson distributions regarding arrivals or departures (in
other words exponential interarrival or service time distribution)
D = constant (deterministic) time
Ek = Erlang or Gamma distribution of time (in other words the sum of in-
dependent exponential distributions)
Hk = Hyperexponential distribution of time
GI = General distribution of interarrival time
G = General distribution of service time

Symbol d refers to the queue discipline in a queueing system and it can
be represented by one of the eight notations of scheduled disciplines which
were mentioned in 3.4.

For example, the model (M/Ek/2) : (FIFO/100/∞) refers to a queueing
system whose arrivals follow a Poisson distribution or exponential interar-
rival time, service times follow an Erlang distribution and the availability of
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parallel service channels is 2. Furthermore, the queue discipline is FIFO, the
maximum capacity of the system is 100 customers and the size of the calling
population is infinite.

3.6 Performance measures at steady state

In order to analyze the performance of a queueing system, the definition of
the measures of effectivness is important. These measures of performance
are:
L = expected number of customers in system
Lq = exxpected number of customers in queue
W = expected waiting time in system, known as response or sojourn time
Wq = expected waiting time in queue
c = expected number of busy servers

Let N (random variable) be the number of customers in the system. The
probability there are n customers in the system at equilibrium is:

Pn = P{N = n}

The average number of customers in the system is:

L = E[N ] =
∞∑
i=0

nPn

and the average number of customers in the waiting line is:

Lq =
∞∑

n=c+1

(n− c)Pn

The relationship between L,W,Lq,Wq is defined by Little’s formula :

L = λeffW

Lq = λefffWq

where λeff represents the effective arrival rate at the system. If all arriving
customers can join the system then λeff = λ, otherwise λeff < λ.
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A relationship between W and Wq can also be defined as:

W = Wq +
1

µ

where the sum of expected waiting time in queue (Wq) and expected service
time (1/µ) gives the total expected waiting time in the system (W).
By multiplying the previous equation by λeff a new relationship arises:

Wλeff = Wqλeff +
λeff
µ

a relationship between L and Lq can be defined, taking also into consideration
Little’s formula:

L = Lq +
λeff
µ

Expected number of busy servers must be the difference between the average
number in system (L) and the average number in the queue (Lq). Thus,

c = L− Lq =
λeff
µ

3.7 Little’s Law

W. S. Jewel in his research "A simple proof of L = λW" stated that J.D.C.
Little’s proof of "L = λW" ranks as one of the most important unifying re-
sults of queueing theory. According to Jewel, as Little himself has remarked,
in a private communication: "the author must be congratulated for the rigor
of his presentation, but he might have explained the ideas a little more"[7,
p.1].

A proof is represented according to J.D. Little and W.S. Jewel.
Given that queue discipline is FIFO, let:
a(t) = number of arrivals during [0,t]
d(t) = number of departures during [0,t]
η(t) = number of customers in the system at time t
τi = interval time between successive arrivals of the (i−1)st and ith customer
ωi = waiting time in the system of the ith customer
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Supposing that the queueing system is idle at t=0, then the customers in the
system derive from:

N(τ) = a(τ)− d(τ)

Let γτ be the area which is defined from the variables aτ and dτ in [0,t], as it
is represented in figure 3.3. The integral of this area gives the total waiting
time of the ith customer in the system:

γτ =

∫ t

0

N(t)dτ

Figure 3.3: Representation of a busy system

Supposing λt represents the mean of arrivals in the system in [0,t], then:

λt =
a(t)

t

Supposing Wt is the mean waiting time of customers in the system in [0,t],
then:

Wt =
γt
a(t)

Combining the relations above, Nt which represents the mean number of
customers in the system in [0,t] can be defined as:

Nt =
1

t

∫ t

0

N(t)dτ =
1

t
γ(t) =

λt
a(t)
· γ(t) = λt ·Wt
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Let t→∞, then the following limits are assumed:

lim
t→∞

Nt = lim
t→∞

(λt ·Wt), limt→∞λt = λ, limt→∞Wt = W

Thus, Little’s law formula is deduced:

L = λW

where the number of customers in the system can be defined by multiplying
the average arrival rate of the customers to the system with the average sys-
tem time per customer.
A great characteristic of Little’s law is that it may be applied individually
regarding the queue and the service channels. Supposing Lq and Ls repre-
sent the average number of customers in the waiting line and in the service
channels, respectively and Wq and Ws the average time spent in the queue
and for receiving service, then according to Little’s formula:

Lq = λWq and Ls = λWs

and
L = Lq + Ls = λWq + λWs = λ(Wq +Ws) = λW

It is also important to mention that the proof of Little’s law is independent
of [22, p.401]:

• specific asumptions regarding the arrival distribution

• specific asumptions regarding the service time distribution

• the number of servers

• the particular queueing discipline
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Chapter 4

The Exponential Distribution and
the Poisson Process on Queues

The arrivals in a queueing system are considered to occur randomly. The
arrival of a customer or the completion of a service channel are not influenced
by the period of time that has elapsed since the last event. Thus, a probability
distribution of interarrival times and a probability distribution of service
times are essential in order to determine a queueing system.
In order to formulate a valid queueing theory model, not only should its form
be realistically applicable but also mathematically tractable.

4.1 The Exponential Distribution

Exponential distributions are considered ideal for the description of totally
random phenomena and as a result for a plethora of queueing systems.

Supposing that a random variable T represents either interarrival or ser-
vice times. This random variable is defined, by the exponential distribution,
as

f(t) =

{
λe−λt, t ≥ 0

0, otherwise
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where f(t) is the probability density function with parameter λ > 0.
The respective cumulative distribution function is

P{t ≤ T} = F (t) =

∫ t

0

f(t)dt =

{
1− e−λt, t ≥ 0

0, otherwise

The mean of the exponential distribution, E[T ], is given by

E[T ] =

∫ ∞
−∞

tf(t)dt

=

∫ ∞
0

λte−λtdt

= −te−λt|∞0 +

∫ ∞
0

e−λtdt

=
1

λ

The moment generating function φ(t) is given by

φ(t) = E[etX ]

=

∫ ∞
0

etxe−λxdx

=
λ

λ− t
for t< λ

By using the previous equation, E[X2] can be calculated as

E[T 2] =
d2

dt2
φ(t)|t=0

=
2λ

(λ− t)3
|t=0

=
2

λ2

Consequently,

V ar(T ) = E[T 2]− (E[T ])2

=
2

λ2
− 1

λ2

=
1

λ2
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4.1.1 Exponential Distribution: Ideal for Queueing the-
ory models

The exponential distribution is best suitable for a queueing theory model
because of its six characteristic properties as Hillier F. and Lieberman G.
state in their book "Introduction to Operations Research" [14].

1. The probability density function fT (t) is a strictly decreasing function
of t (t≥0). This, in terms of probability is presented as :

P{0 ≤ T ≤ ∆t} > P{t ≤ T ≤ t+ ∆t}

for any positive values of ∆t and t. If the service time required is
essentially the same for each customer then the actual service times
are expected to take values near the expected service time. A special
case where the service time is far lower than the mean time is considered
impossible as even a top speed service channel needs time to complete a
required service operation. This special situation can not be predicted
by using exponential distribution.
On the other hand, in situations where the nature of service may be the
same there are infrequent cases where the type and amount of service
may differ. A real-life example could be bank tellers, as most of the time
the required service is rather brief, there are situations where extensive
service is required.
If T represents interarrival times, the case where potential customers
postpone their entry to a queueing system if they see another customer
precede can not be predicted by applying the exponential distribution.
On the other hand, it is important to mention the plethora of common
phenomena of arrivals which occur randomly.

2. Forgetfulness or lack of memory
In mathematical terms this property is stated as

P{T > t+ ∆t|T > ∆t} = P{T > t}

for any positive quantities t and ∆t.
In other words, the probability distribution of the remaining arrival or
service time T does not depend on how much time (∆t) has passed until
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the event occurs, thus the probability is going to be always the same.
The process seems to forget its past and with the help of exponential
distribution is stated that

P{T > t+ ∆t|T > ∆t} =
P{T > ∆t, T > t+ ∆t}

P{T > ∆t}

=
P{T > t+ ∆t}
P{T > ∆t}

=
e−λ(t+∆t)

e−λ∆t

= e−λt

= P{T > t}

If T represents interarrival time then this property states that the next
arrival does not depend on the last arrival occurred. Furthermore, if T
represents the service time it is important to underline that the type of
service varies for each customer and as a result the service operations
are not fixed. In case a long duration of a service occurs then the only
implication is that the specific customer requires extensive service and
it will not affect or be affected from service times of other customers.

3. The minimum of several independent exponential random variables has
an exponential distribution.
Let T1, T2, ..., Tn be independent exponential random variables with pa-
rameters λ1, λ2, ..., λn respectively and U be a random variable that
takes the minimum value of T1, T2, ..., Tn.That is
U = min{T1, T2, ..., Tn}
Given that Ti represents the time an event occurs then U represents
the time until the first of the n events occurs.Thus, for any t ≥ 0,

P{U > t} = P{T1 > t, T2 > t, ...., Tn > t}
= P{T1 > t}P{T2 > t}...P{Tn > t}
= e−λ1te−λ2t...e−λnt

= exp(−
n∑
i=1

λit)

Regarding the results, it is deduced that U indeed has an exponential
distribution with parameter λ =

∑n
i=1 λit.
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In the matter of queueing models, suppose that there are n different
types of customers and the interarrival time of each type follows an
exponential distribution with parameter λi. Taking into consideration
Property 2, the remaining time from any specified moment until the
next arrival of a customer has the same distribution. Thus, Ti can
be the remaining time measured from the instant a customer of any
type arrives. Taking a step further according to Property 3 U, which is
represented as the interarrival times of a queueing system as a whole,
follows an exponential distribution with parameter λ =

∑n
i=1 λit. As

a result, this property gives the opportunity to ignore the distinction
between customers and still have exponential interarrival times. On
the other hand, regarding the service times in multiple servers, let c
be the number of channels that currently provide service and let Ti be
the remaining service time for server i, which follows an exponential
distribution with parameter λi = µ. By using Property 3, U has an ex-
ponential distribution with parameter λ = cµ, as the queueing system
is currently performing as a single server system. Variable U can also
be used to determine the probability an exponential random variable
will turn out to be the one with the minimum value. This probability
can be calculated by:

P{Tj = U} = λj/
n∑
i=1

λi

for j = 1,2,...,n.

4. Relationship between Exponential and Poisson distribution
Suppose that the time between consecutive arrivals or service comple-
tions follows an exponential distribution with parameter λ. Let N(t)
be the number of events by time t (t ≥ 0), then the probability distri-
bution of the number of times an event occurs within a specific period
of time is given by:

P{N(t) = n} =
(λt)ne−λt

n!

for n = 0,1,2,...
Variable N(t) is defined as a renewal process whose distributions of
time are exponential. This special renewal process which is discrete-
state and continuous parameter is known as Poisson process.
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The mean of Poisson distribution is

E{X(t)} = λt

which states that the expected number of events per unit time is λ. If
N(t) represents the number of service operations completed by a busy
channel by time t then λ = µ and if completed by multiple channels
λ = cµ, where c = continuously busy channels.
If N(t) represents the number of arrivals until time t, where interar-
rival times have an exponential distribution with parameter λ then this
queueing model is said to have a Poisson input.

5. For t>0, P{T ≤ t+ ∆t|T > t} ≈ λ∆t, where ∆t is considered small.
In other words, the probability an event will occur within time of fixed
length ∆t (∆t > 0) is a constant. Given λ is the mean rate an event
occurs, the expected number of events within time of length ∆t is λ∆t.

P{T ≤ t+ ∆t|T > t} = P{T ≤ ∆t}
= 1− e−λ∆t

for any t ≥ 0.
Using the series expansion of ex for any exponent x:

ex = 1 + x+
∞∑
n=2

xn

n!

The probability will now be equal to:

P{T ≤ t+ ∆t|T > t} = 1− 1 + λ∆t−
∞∑
n=2

(λ∆t)n

n!

≈ λ∆t

as for small values of λ∆t the summation terms becomes insignificant.
Regarding queueing models, this property can be used for predicting if
an event will occur in the next small interval of time ∆t.

6. Cases of aggregation or disaggregation leave it unaffected
Let n different types of customers (customer of type i) arrive in a queue-
ing system according to a Poisson input process with parameter λi.
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Given that the customers arrivals are independent Poisson processes
then the aggregate input process must be Poisson with parameter the
arrival rate λ =

∑n
i=1 λi. The aggregate process is eventually Poisson

as it is deduced from Properties 3,4 & 5.
On the other hand, supposing the aggregate input process is Poisson
with parameter λ then the disaggregated input processes must be Pois-
son according to this property. Given that each arriving customer of
type i (i =1,2,..., n) has a fixed probability Pi with

λi = Piλ and
n∑
i=1

Pi = 1

then each customers input process is Poisson with parameter λi and
thus the Poisson process is unaffected by disaggregation.
William J. Stewart also refers to cases of aggregation and disaggrega-
tion as superposition (pooled stream) and decomposition of Poisson
streams respectively [22, p.393-4].

Example 4.1.1. Suppose that the mean time a customer spends in a bank
is ten minutes and the time follows the exponential distribution. What is
the probability that a customer will spent more than fifteen minutes in the
bank? What is the probability that a customer will spend more than fifteen
minutes in the bank given that he is already in the bank for ten minutes?
[20, p.285]
Let X represent the amount of time a customer spends in the bank, then the
probability he spends more than fifteen minutes in the bank is given by

P{X > 15} = e−15λ = e−3/2 ≈ 0.220, where λ = 1/10

Regarding the second question, due to the memoryless property of the expo-
nential distribution, the probability will be equal to the probability that a
new customer will spend at least five minutes in the bank. Thus the required
probability is

P{X > 5} = e−5λ = e−1/2 ≈ 0.604
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4.2 Poisson Queueing model

The general queueing model refers to both interarrival and service times that
follow the exponential distribution. In order to develop a general model,
a queueing system in equilibrium is assumed, where the system is said to
achieve a steady state behaviour after it operates for a long duration. Fur-
thermore, arrivals and departures are assumed to be state dependent as the
number of customers in the system affects them. Let
n = number of customers in the system
λn = arrival rate, given n customers in the system
µn = departure rate, given n customers in the system
Pn = Probability there are already n customers in the system (in equilib-
rium)
In order to make it more clear, a transition-rate diagram is used in order to
explain the probabilities Pn, where n represents the state of the system in
other words, its customers.

Figure 4.1: Transistion-rate diagram

For example, in state n, a step forward can be made to state n+1 where
an arrival occurs at rate λn or a step back to state n-1 where a departure
occurs at rate µn. The term λ0 refers to the transition from state 0 to state
1 when an arrival at rate λ0 occurs. On the other hand, µn stops at n=1 as
µ0 can not be defined if the system is empty and as a result no departures
can occur.
If a queueing system is at equilibrium (n>0), it is expected that the arrival
and departure rates are going to be equal.
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The expected rate for transition to state n regardless the way it reaches
state n is:

( Rate for transition into state n ) = λn−1Pn−1 + µn+1Pn+1

Accordingly, the expected rate for transition out of state n regardless the
way it leaves state n is:

( Rate for transition out of state n ) = (λn + µn)Pn

The previous equations are more understandable by observing the Figure 4.1.
Given that the queueing system is in steady-state then the balance equation
will be:

λn−1Pn−1 + µn+1Pn+1 = (λn + µn)Pn for n=1, 2, ...

For n=0:
λ0P0 = µ1P1

Thus, given P0, for n=0:

P1 = (
λ0

µ1

)P0

By induction, a general form of Pn is achieved:

Pn = (
λn−1λn−2...λ0

µnµn−1...µ1

)P0 for n=1, 2, ...

where the value of P0 is determined by using the property
∑∞

n=0 Pn = 1.

4.2.1 Counting Process

A stochastic process {N(t), t ≥ 0} is denoted as a counting process if N(t)
represents the total number of events that have occurred by time t. For
example, supposing N(t) is the number of customers who enter a store at
or prior to time t, then {N(t), t ≥ 0} is a counting process and a customer
entering the store is denoted as an event. It is important to pinpoint that if
N(t) was set equal to the number of customers in the store at time t, then
N(t) could not be characterized as a counting process.
A counting process N(t) must satisfy the properties presented below:
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i. N(t) ≥ 0.

ii. N(t) is integer valued.

iii. If s<t, then N(s) ≤ N(t).

iv. For s<t, N(t)−N(s) gives the number of events that occur in the interval
(s,t].

A counting process is said to posses independent increments if the number of
events that occur in disjoint time intervals are independent [20, p.303]. For
example, the number of events that have occurred by time t = 10, N(10),
must be independent of the number of events that have occurred between
times 10 and 15, in other words, N(15)−N(10).
A counting process is said to posses stationary increments, if the number of
events that occur in any interval of time follows a distribution that depends
only in the length of the time interval. In other words, if the number of
events in the interval (s, s+ t) follows the same distribution for all s.

4.2.2 Poisson Process

A Poisson process is a counting process {N(t), t ≥ 0} with rate λ, λ > 0, if
[20, p.305]

i. N(0) = 0.

ii. The process has independent and stationary increments.

iii. The number of events in any interval of length t follows a Poisson dis-
tribution with mean λt. In other words, for all s, t ≥ 0

P{N(t+ s)−N(s) = n} = e−λt
(λt)n

n!
, n=0,1,...

and as result
E[N(t)] = λt

An alternative of Property iii is:

Chapter 4 51



Tzimi Katerina Markov Chains & Queueing Theory

• P{N(h) = 1} = λh+ o(h)

• P{N(h) ≥ 2} = o(h)

The following graph shows the probabilities of Pn(t) for various values of n.

Figure 4.2: Probabilities Pn(t) for n=0,1,2,3

4.2.3 Distributions of Interarrival and Waiting time

For n > 1, let Tn denote the elapsed time between the (n − 1)st and the
nth. The sequence of interarrival times is denoted as {Tn, n = 1, 2, ..}. For
instance, if T1 = 2 and T2 = 4, then the first event would have occurred at
time 2 and the second at time 6.
Given the event {T1 > t} takes place if and only if no events of the Poisson
process occurs in the interval [0,t] then

P{T1 > t} = P{N(t) = 0} = e−λt

which means that T1 follows the exponential distribution with mean 1/λ.
For event T2 > t,

P{T2 > t} = E[P{T2 > t|T1}]
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However,

P{T2 > t|T1 = s} = P{0 events in (s, s+ t]|T1 = s}
= P{0 events in (s, s+ t]}
= e−λt

Therefore, it is concluded that T2 also follows the exponential distribution
with mean 1/λ. As a result, T2 is independent of T1. In general, it is con-
cluded that Tn, n = 1, 2, 3, ... are independent identically distributed expo-
nential random variables with mean 1/λ.
The arrival time of the nth event, also known as the waiting time, is denoted
as Sn and is calculated by

Sn =
n∑
i=1

Ti, n≥ 1

The quantity Sn follows a gamma distribution with parameters n and λ.
Thus the probabaility density of Sn is given by

fSn(t) = λe−λt
(λt)n−1

(n− 1)!
, t ≥ 0

The equation above can also be derived by noting that the nth event will
occur prior to or at time t if and only if the number of events occurring by
time t is at least n [20, p.308]. In other words, the following relation must
be applicable

N(t) ≥ n⇔ Sn ≤ t

Hence,

FSn(t) = P{Sn ≤ t} = P{N(t) ≤ n} =
∞∑
j=n

e−λt
(λt)j

j!

Consequently, by differentiating,

fSn(t) = −
∞∑
j=n

λe−λt
(λt)j

j!
+
∞∑
j=n

λe−λt
(λt)j−1

(j − 1)!

= λe−λt
(λt)n−1

(n− 1)!
+
∞∑
j=n

λe−λt
(λt)j−1

(j − 1)!
−
∞∑
j=n

λe−λt
(λt)j

j!

= λeλt
(λt)n−1

(n− 1)!
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Proposition. Given {N1(t), t ≥ 0} is a Poisson process where each event
occurs with probability p and {N2(t), t ≥ 0} is a Poisson process where each
event occurs with probability (1-p) then these two processes have rates λp and
λ(1− p) respectively. They will also be independent.

4.2.4 Conditional distribution of Arrival times

Due to the characteristic of Poisson process of having independent and sta-
tionary increments, it can be concluded that each interval in [0,t] of equal
length has the same probability of an event occurring during this interval.
This conclusion is confirmed, for s ≤ t,

P{T1 < s|N(t) = 1} =
P{T1 < s,N(t) = 1}

P{N(t) = 1}

=
P{1 event in [0, s), 0 events in [s, t]}

P{N(t) = 1}

=
P{1 event in [0, s)}P{0 events in [s, t]}

P{N(t) = 1}

=
λse−λse−λ(t−s)

λte−λt

=
s

t

A graph of arrival times in Poisson process is presented below

Figure 4.3: The Poisson process and some arrival times Tn
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In order to generalize the previous results, it is important to mention a tool
of statistics the order statistics.
Let Y1, Y2, ..., Yn be n random variables. The terms Y(1), Y(2), ..., Y(n) are
known as the order statistics corresponding to Y1, Y2, ..., Yn if Y(k) is the kth
smallest value among Y1, ..., Yn, where k = 1, 2, ..., n. For example, if n=4 and
Y1 = 3, Y2 = 5, Y3 = 7 and Y4 = 1 then Y(1) = 1, Y(2) = 3, Y(3) = 5, Y(4) = 7. If
the Yi, i=1, 2,..., n are independent, identically distributed continuous ran-
dom variables with probability density f , then the joint density of the order
statistics Y(1), Y(2), ..., Y(n) is given by [20, p.317]

f(y1, y2, ..., yn) = n!Πn
i=1f(yi), y1 < y2 < ... < yn

As

1. (Y(1), Y(2), ..., Y(n)) will equal (y1, y2, ...yn) if (Y1, Y2, ..., Yn) is equal to
any of the n! permutations of (y1, y2, ..., yn)

2. the probability density that (Y1, Y2, ..., Yn) is equal to yi1 , yi2 , ..., yin is
Πn
j=1f(yj) when i1, ..., in is permutation of 1,2,...,n.

Given Yi, i = 1, 2, ..., n are uniformly distributed over (o,t), the joint density
function of the order statistics Y(1), Y(1), ...Y(n) is

f(y1, y2, ..., yn) =
n!

tn
, 0 < y1 < y2 < ... < yn < t

Theorem. Given that N(t) = n, the n arrival times S1, S2, ..., Sn have the
same distribution as the order statistics corresponding to n independent ran-
dom variables uniformly distributed on the interval (0,t).

Proof. Given that N(t) = n, for 0 < S1 < S2 < ... < Sn < t the event that
S1 = s1, S2 = s2, ..., Sn = sn is equivalent to the event that the first n+1 in-
terarrival times satisfy T1 = s1, T2 = s2−s1, ..., Tn = sn−sn−1, Tn+1 > t−sn.
Therefore, the conditional joint density of S1, ..., Sn is
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f(s1, ..., sn|n) =
f(s1, ..., sn, n)

P{N(t) = n}

=
λe−λs1λe−λ(s2−s1)...λe−λ(sn−sn−1)e−λ(t−sn)

e−λt(λt)n/n!

=
n!

tn
, 0 < s1 < ... < sn < t

Proposition. If Ni(t), i=1,...,k represents the number of type i (type I event
with probability p or type II event with probability (1-p)) events occurring by
time t then Ni(t), i=1,...,k are independent Poisson random variables having

E[Ni(t)] = λ

∫ t

0

Pi(s)ds

Proof. In order to compute the joint probability P{Ni(t) = ni, i = 1, ..., k}
there must have been a total of

∑k
i=1 ni. Hence, conditioning on N(t) yields

P{N1(t) = n1, ..., Nk(t) = nk}

= P{N1(t) = n1, ..., Nk(t) = nk|N(t) =
k∑
i=1

ni} × P{N(t) =
k∑
i=1

ni}

Let an arbitrary event that occurred in the interval [0,t] have probability
Pi(s) for being an event of type i. According to a previous theorem, this
event will have occurred at some time uniformly distributed on (0,t) and the
probability that this event will be type i is given by

Pi =
1

t

∫ t

0

Pi(s)ds

independently of the other events. Therefore

P{Ni(t) = ni, i = 1, ..., k|N(t) =
k∑
i=1

ni}
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will equal the multinomial probability of ni type i outcomes for i = 1, ..., k
when each of

∑k
i=1 ni results in outcome i with probability Pi, i = 1, ..., k.

That is

P{N1(t) = n1, ..., Nk(t) = nk|N(t) =
k∑
i=1

ni} =
(
∑k

i=1 ni)!

n1! · · ·nk!
P n1

1 · · ·P
nk
k

Therefore,

P{N1(t) = n1, ...Nk(t) = nk}

=
(
∑

i ni)!

n1! · · ·nk!
P n1

1 · · ·P
nk
k e−λt

(λt)
∑
i ni

(
∑

i ni)!

= Πk
i=1e

−λtPi(λtPi)
ni/ni!

4.2.5 PASTA: Poisson Arrivals See Time Averages

A great property of the Poisson arrival process is that this process, once the
queueuing system enters a steady state, sees the same distribution as a ran-
dom observer. Supposing Pn represents the probability a balanced queueing
system contains n number of customers and an represents the probability n
customers are already in a queueing system when a new customer is about
to enter it, then according to PASTA when the system is at equilibrium
Pn = an.

Proof. Given
N(t) = number of customers in system at time t
Pn(t) = P{System in state n (n customers) at time t} = P{N(t)=n}
an(t) = P{Arrival at time t when the system is in state n}
A(t,t+δt] = an arrival occurs within (t,t+δt]
The probability a customer arrives in the system at time t, given the system
already includes n customers is:

Chapter 4 57



Tzimi Katerina Markov Chains & Queueing Theory

an(t) = lim
δt→ 0

P{N(t) = n|A(t, t+ δt]}

= lim
δt→ 0

P{N(t) = n and A(t, t+ δt]}
P{A(t, t+ δt]}

= lim
δt→ 0

P{A(t, t+ δt]|N(t) = n}P{N(t) = n}
P{A(t, t+ δt]}

= lim
δt→ 0

P{A(t, t+ δt]}P{N(t) = n}
P{A(t, t+ δt]}

= P{N(t) = n} = Pn(t)

Since the Poisson arrival process has the memoryless property then P{A(t, t+
δt} is independent of the history and the current state of the arrival process
N(t), thus:

P{A(t, t+ δt]|N(t) = n} = P{A(t, t+ δt]}

It is important to mention that for M/·/· systems, that special property holds
that arriving customers find on average the same situation in the queueing
system as an outside observer looking at the system at an arbitrary point in
time. In general this property is not true. For instance, in a D/D/1 system
which is empty at time 0, and with arrivals at 1, 3, 5, . . . and service times
1, every arriving customer finds an empty system, whereas the fraction of
time the system is empty is 1/2. [6, p.27]
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Chapter 5

Birth & Death Process

The birth and death process constitutes a special case of Markov chains with
continuous time parameter. The name "birth and death process" derives
from the applications of these processes in the study of biological processes
such as the growth of bacteria populations (Bailey, 1964) [3, p.62]. Regarding
queueing systems, arrivals to the system are referred to as births and depar-
tures as deaths. Furthermore, variables λn and µn are now defined as birth
rate and death rate, respectively. For all n, it is assumed that λn and µn are
independent of time, in other words they are Markov chains with stationary
transition probabilities, but they frequently depend on the occupied state of
the system n.

5.1 Definition

A Markov chain {xt, t∈ [0,∞)} with state space the set of non negative
integers where [3, p.61]:

λi = qi,i+1 i = 0, 1, 2, ...,

µi = qi,i−1 i = 1, 2, ...,

qij = 0 for j 6= i and j 6= ±i+ 1 , i = 0, 1, 2, ...

qi = λi + µi i = 0, 1, ... and µ0 = 0
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is called: a birth process if all µi = 0, for i = 1, 2, ..., a death process if all
λi = 0, for i = 0, 1, 2, ..., a birth and death process if at least some of the λi
and µi are positive.

In terms of queueing theory, birth is assumed when a new customer ar-
rives in the queueing system and death is assumed when a customer exits
the system after a successful service. This process describes probabilistically
how the number of customers in the system denoted by N(t) (t ≥ 0) changes
during a period of time. The probability distribution of the remaining time
until the next arrival, in other words birth, occurs is considered exponential
with parameter λn, where n = 0, 1, 2, ... . The probability distribution of the
remaining time until the next completed service (death) occurs is considered
exponential with parameter µn, where n = 1, 2, 3, ... . The results of the
analysis of a birth and death process, in this chapter, are deduced based on
a steady state condition of the system, in other words λn and µn are consid-
ered independent of time. Some results of a birth and death process when
the system is in transient condition are given by S. Karlin and J. McGregor
[11].
Given pn(t) is the probability there are n customers in the system at time t,
the probabilities of births and deaths in the system are given below:

P{One birth in (t, t+ h]|N(t) = n} = λnh+ o(h)

P{One death in (t, t+ h]|N(t) = n} = µnh+ o(h)

P{Zero births in (t, t+ h]|N(t) = n} = 1− λnh+ o(h)

P{Zero deaths in (t, t+ h]|N(t) = n} = 1− µnh+ o(h)

It is evident that a death can occur only after a birth, so the process must
move from state i to state i+1. Based on the research paper of Okoro O.
Joshua [9] the proof of the probability a birth occurs in (t, t+ h), where h is
considered to be a negligible small interval of time, is :

Pi,i+1(h) = P (X(t+ h)−X(t) = 1|X(t) = i) =
(λih)1e−λih

1!

(µih)e−µih

0!
+ o(h)

= (λih)e−λihe−µih + o(h) = (λih)e−h(λi+µi) = (λih)
∞∑
n=0

(−h(λi + µi))
n

n!

= (λih)(1− h(λi + µi)−
1

2!
(h)2(λi + µi)

2 − ...) + 0(h)

= λih+ o(h)
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The probability a death occurs is equal to the transition from state i to state
i-1 and is given by:

Pi,i−1(h) = P (X(t+ h)−X(t) = −1|x(t) = i) = µih+ o(h)

for µ0 = 0,λ0 ≥ 0 and µi,λi ≥ 0 for i =1, 2, 3, ... by following the steps of
the previous proof accordingly. The probability of having any other moves
other than this two is non-zero and is given by

P (X(t+ h)−X(t) > 1|X(t) = i) = o(h)

for µ0 = 0, λ0 > 0 and µi, λi > 0 for i=1,2,3,... . This also implies that

P (X(t+ h)−X(t) = 0|X(t) = 1) = 1− h(λi + µi) + o(h)

Generally, the probability a birth and death process will occur, from state i
to state j and within a small interval of time h, is represented by:

Pi,j(h) =


λih+ o(h), if j=i+1
µih+ o(h), if j=i-1
1− h(λi + µi) + o(h) if j=i
o(h), otherwise

This can also be written as Pij(h) = δi,j+ri,j(h)+h(0), where δi,j =

{
1 j=i
0 j 6=i

the Kronecker’s delta

gi,j(h) =


λi if j=i+1
µi if j=i-1
−(λi + µi) if j=i
0 otherwise

According to the above results, the matrix G is the infinitesimal generator of
the process X(t) defined by gi,j, where gi,j is called transition rate. [9, p.5]

G =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ0 λ0 0 0 · · ·

µ1 −(λ1 + µ1) λi 0 · · ·

0 µ2 −(λ2 + µ2) λ2 · · ·

0 0 µ3 −(λ3 + µ3) · · ·
...

...
...

... · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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It is also important to mention that δi,j = Pi,j(0), since the probability of a
process remaining in the same state at zero step is 1 and the probability a
transition occurs to another state in zero step is also 1. By using the form
of gi,j

gi,j =
Pi,j(h)− δi,j

h
=
Pi,j(h)− Pi,j(0)

h
= P ′i,j(0)

Hence, by differentiating term by term for t=0 and
∑

j gi,j(0) = 0 it is
concluded that

gi,j(t) =

{
P ′i,j(0) ≥ 0 for i 6= j

P ′i,j(0) ≤ 0 otherwise

Additionally,
∑

j Pi,j(t) = 1

The state transition diagram presented below depicts the rate transitions
among the states in a birth-death process.

Figure 5.1: Transistion-rate diagram in birth-death process

Probability transition of birth-death process can be described by Kolmogorov
backward differential equation on the initial point i [9]:

Pij(t+ h) =
∞∑
k=0

Pik(h)Pkj(t)

= Pi,i−1(h)Pi−1,j(t) + Pi,i+1(h)Pi+1,j(t) + Pi,i(h)Pi,j(t) +

′∑
k

Pik(h)Pkj(t)

The last summation of the form is written in this way so as to exclude k =
i-1,i and i+1.

Pij(t+ h) =(µih+ o(h))Pi−1,j(t) + (λih+ o(h))Pi+1,j(t)+

(1− h(λi + µi) + o(h))Pi,j(t) +

′∑
k

Pik(h)Pkj(t)
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But
′∑
k

Pik(h)Pkj(t) ≤
′∑
k

Pik(h) = 1− (Pi,i(h) + Pi,i+1(h))

= 1− (1− h(λi + µi) + o(h) + (µih+ o(h) + (λih+ o(h))

= o(h)

So the new form is :

Pij(t+ h) = µihPi−1,j(t) + λihPi+1,j(t) + (1− h(λi + µi))Pi,j(t)

+ o(h)(Pi−1,j(t) + Pi+1,j(t) + Pi,j(t) + 1)

= µihPi−1,j(t) + λihPi+1,j(t) + (1− h(λi + µi)Pi,j(t) + o(h)

= µihPi−1,j(t) + λihPi+1,j(t) + Pi,j(t)− Pi,j(t)h(λi + µi) + o(h)

Also,

Pi,j(t+ h)− Pi,j(t)
h

=
µihPi−1,j(t) + λihPi+1,j(t)− Pi,j(t)h(λi + µi) + o(h)

h
= µiPi−1,j(t) + λiPi+1,j(t)− Pi,j(t)(λi + µi) + o(1)

So,
P
′

i,j(t) = µiPi−1,j(t) + λiPi+1,j(t)− Pi,j(t)(λi + µi)

Given that there is no birth without death, in other words µ0 = 0:

P
′

0j(t) = µ0P0−1,j(t) + λ0P0+1,j(t)− P0,j(t)(λ0 + µ0)

= λ0P1,j(t)− λ0P0,j(t)

It is known from Chapman-Kolmogorov equation that:

Pij(s+ t) =
∑
k

Pik(s)Pkj(t)

By differentiating with respect to s a new form develops:

P
′

ij(s+ t) =
∑
k

P
′

ik(s)Pkj(t)

Setting s = 0:
P
′

ij(t) =
∑
k

P
′

ik(0)Pkj(t)
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While the probability distribution of a state in time t can be described by
the forward Kolomogorov differential equation, given that the initial point is
fixed [9]:

Pij(t+ h) =
∞∑
k=0

Pik(t)Pkj(h)

= Pi,j−1(t)Pj−1,j(h) + Pi,j+1(t)Pj+1,j(h) + Pi,j(t)Pj,j(h) +

′∑
k

Pik(t)Pkj(h)

The last summation of the form is written in this way so as to exclude k =
i-1,i and i+1.

Pij(t+ h) = Pi,j−1(t)λj−1h+ Pi,j+1(t)µj+1h+ Pi,j(t)(1− h(λj + µj)) + o(h)

Following the same steps as in Kolmogorov back differential equation :

P
′

ij(t) = Pi,j−1(t)λj−1 + Pi,j+1(t)µj+1 − Pi,j(t)(λj + µj)

P
′

i0(t) = Pi,1(t)µ1 − Pi,0(t)λ0

It is known from Chapman-Kolmogorov equation that:

Pij(s+ t) =
∑
k

Pik(s)Pkj(t)

By differentiating with respect to t a new form develops:

P
′

ij(s+ t) =
∑
k

Pik(s)P
′

kj(t)

Setting t = 0:
P
′

ij(s) =
∑
k

Pik(s)P
′

kj(0)

therefore
P ′(t) = P (t)G

For

P (0) = 1

P (t) = eGt

where

eGt =
∞∑
n=0

Gntn

n!
= 1 +

∞∑
n=1

GnT n

n!
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5.2 The birth process

In the birth process everyone lives forever, there are no deaths. For instance,
a colony of bacteria could be modeled as a birth process, as each cell ran-
domly and independently divides into two cells at some future time. This
cell dichotomy replicates over time, for each divided cell. It is assumed that
births start at time t=0 with n0 cells. It is also assumed that any cell division
in the time interval (t, t+ δt) is proportional to the time interval δt, where h
is considered small. If λ is the birth rate of the process, then the probability
a cell divides in the interval is λδt. For n cells divisions the probability will
be λnδt. Furthermore, the probability that two or more births occur in the
time interval δt is o(δt) and the probability of no dichotomies at all during
this period will be 1 − λnδt − o(δt). This simple birth process described is
also known as the Yule1 process, name after one of its originators.
If N(t) is the random variable then

P{N(t) = n} = pn(t)

where pn(t) is the probability that the population size is n at time t. If the
initial population size is n0 ≥ 1 at time t=0 then

pn0(0) = 1 and pn0 = 0 for n > n0

If the size population is n-1 at time t then the probability a birth occurs is

λ(n− 1)δt+ o(δt)

Accordingly, for n ≥ n0 + 1

pn(t+ δt) = pn−1(t)[λ(n− 1)δt+ o(δt)] + pn(t)[1− λnδt+ o(δt)]

pn(t+ δt)− pn(t)

δt
= λ(n− 1)δtpn−1(t)− λnpn(t) + o(1)

For n = n0 then

pn0(t+ δt) = pn0(t)[1− λn0δt+ o(δt)]

pn0(t+ δt)− pn0(t)

δt
= −λn0pn0(t) + o(1)

1George Undy Yule (1871-1951), Scottish statistician
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As δt→ 0 they become derivatives in the limit so that

dpn0(t)

δt
= −λn0pn0(t) (5.1)

with solution
pn0(t) = e−λn0t

and by putting n = n0 + 1 in

dpn0(t)

δt
= λ(n− 1)pn−1(t)− λnpn(t) (5.2)

its solution is
pn0+1(t) = n0e

−λn0t(1− e−λt)

It is importnat to pinpoint that since this process is a simple birth process
then pn(t) = 0 for n<n0.
The probability generating function is

G(s, t) =
∞∑

n=n0

pn(t)sn

A proof of the final form of the probability generating function G(s,t) is
presented by Jones, and Smith in their book "Stochastic Processes: An In-
troduction" [8, p.121-123]. For simple birth process

G(s, t) =
1[

1 + (1−s)
s
eλt
]n0

=
sn0e−λn0t[

1− (1− e−λt)s
]n0

The mean population size at time t is given by

µ(t) = n0e
λt

5.3 The death process

In the death process no birth occurs and the population numbers decline
through deaths. The probability a death occurs in a short time interval δt
is µnδt, where µ is the death rate and the size population is n. In case of
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multiple deaths in time interval δt the probability is negligible. By arguments
similar to those for the birth process

p0(t+ δt) = [µδt+ o(δt)]p1(t) + [1 + o(δt)]p0(t)

For 1 ≤ n ≤ n0 − 1

pn(t+ δt) = [µ(n+ 1)δt+ o(δt)]pn+1(t) + [1− µnδt− o(δt)]pn(t)

If the initial population size is n0, then for all t, pn(t) = 0 for n > n0 and

pn0(t+ δt) = [1− µn0δt+ o(δt)]pn0(t)

Thus
p0(t+ δt)− p0(t)

δt
= µp1(t) + o(1)

(1 ≤ n ≤ n0 − 1),
pn(t+ δt)− pn(t)

δt
= µ(n+ 1)pn+1(t)− µnpn(t) + o(1)

pn0(t+ δt)− pn0(t)

δt
= −µn0pn0(t) + o(1)

Let δt→ 0
dp0(t)
dt

= mp1(t)
dpn(t)
dt

= µ(n+ 1)pn+1(t)− µnpn(t) (1 ≤ n ≤ n0 − 1)
dpn0 (t)

dt
= −µn0pn0(t)

If the initial population size is n0 at time t=0 then pn0(0) = 1.
The probability generating function G(s,t) is defined as

G(s, t) =

n0∑
n=0

pn(t)sn

and its final form is [8, p.126]

G(s, t) =

n0∑
n=0

 n0

n

 e−nµt(1− e−µt)n0−nsn
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5.4 The birth-death process

Given a population of size n can arise at time t+ δt

p0(t+ δt) = [µδt+ o(δt)p1(t)] + [1 + o(δt)]p0(t)

For n ≥ 1 pn(t+ δt) = [λ(n− 1)δt+ o(δt)]pn−1(t) + [1− (λn+ µn)δt+ o(δt)pn(t)]

+ [µ(n+ 1)δt+ o(δt)]pn+1(t)

For δt→ 0, pn(t) satisfies{
dp0(t)
dt

= µp1(t)
dpn(t)
dt

= λ(n− 1)pn−1(t)− (λ+ µ)npn(t) + µ(n+ 1)pn+1(t), n ≥ 1

The death process equations result if λ = 0 and the birth process equations
result from µ = 0. Given a birth occurs, the probability generating function
is

G(s, t) =
∞∑
n=0

pn(t)sn

Its final form is

G(s, t) =

[
µ(1− s)− (µ− λs)e−(λµ)t

λ(1− s)− (µ− λs)e−(λµ)t

]n0

The expected population size at time t, for λ 6= µ is

µ(t) =
∞∑
n=1

npn(t) = Gs(1, t)

=
n0(−µ+ λe−(λ−µ)t)

−(µ− λ)e−(λ−µ)t)
− n0(−λ+ λe(λ−µ)t)

−(µ− λ)e−(λ−µ)t)

In case the birth rate equals the death rate, in other words λ = µ, then the
probability generating function is given by

G(s, t) =

[
1 + (λt− 1)(1− s)

1 + λt(1− s)

]n0
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Furthermore, in case λ = µ the probability of extinction at time t is given
by

p0(t) = G(0, t) =

[
1 + (λt− 1)

1 + λt

]n0

=

[
λt

1 + λt

]n0

As t→∞ it is assumed that

lim
t→∞

p0(t) = lim
t→∞

[
1

1 + 1
λt

]n0

= 1

The previous results indicate that the birth and death rates are in balance,
then the ultimate extinction is certain. An example of a birth and death
process is given in the article "The numerical solution of a birth-death process
arising in multimedia synchronization". [17]

5.5 Balance Equation

According to Hillier in his book ’Introduction to Operations Research’ [14,
p.850] the balance equation for state n is based on a key principle:

Rate In = Rate Out

which states that the mean birth rate equals mean death rate for any state
of the system n (n = 0,1,2,..).
The rate at which the process enters a state n at time t is given by:

λn−1Pn−1(t) + µn+1Pn+1(t)

and the rate at which the process leaves a state n at time t is given by:

(λn + µn)Pn(t)

For example, supposing the process wants to enter state 0, the only way to
enter it is from state 1. The probability P1 represents the possible transition
from state 1 to state 0 within a period of time. The mean rate of entering
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state 0 from state 1 is µ0 and from any other state the transition rate is 0.
Consequently, the mean entering rate is:

µ1P1 + 0(1− P1) = µ1P1

and the mean leaving rate must be:

λ0P0

Combing the above information, the balance equation for state 0 is:

µ1P1 = λ0P0

It is important to underline that the transition to state 0 is a unique case as
for every other transition between states there are two possibilities into or
out of the state.

Balance equations for the birth-death process

State 0:

µ1P1 = λ0P0 ⇒ P1 =
λ0

µ1

P0

State 1:

λ0P0 +mu2P2 = (λ1 + µ1)P1 ⇒ P2 =
λ1

µ2

P1 +
1

µ2

(µ1P1 − λ0P0)

⇒ P2 =
λ1λ0

µ2µ1

P0

State 2:

λ1P1 +mu3P3 = (λ2 + µ2)P2 ⇒ P3 =
λ2

µ3

P2 +
1

µ3

(µ2P2 − λ1P1)

⇒ P3 =
λ2λ1λ0

µ3µ2µ1

P0

... ... ...
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State n-1:

λn−2Pn−2 + µnPn = (λn−1 + µn−1)Pn−1 ⇒ Pn =
λn−1

µn
Pn−1 +

1

µn
(µn−1Pn−1 − λn−2Pn−2)

⇒ Pn =
λn−1λn−2...λ0

µnµn−1...µ1

P0

State n:

λn−1Pn−1 + µn+1Pn+1 = (λn + µn)Pn ⇒ Pn+1 =
λn
µn+1

Pn +
1

µn+1

(µnPn − λn−1Pn−1)

⇒ Pn+1 =
λnλn−1...λ0

µn+1µn...µ1

P0

... ... ...

Let:
Cn =

λn−1λn−2...λ0

µnµn−1...µ1

for n=1,2,..

Then, the general form of steady-state probabilities is:

Pn = CnP0 for n=1,2,..

The property
∑∞

n=0 Pn = 1 is modified to (
∑∞

n=0 Cn)P0 = 1 so that:

P0 = (
∞∑
n=0

Cn)

−1

It is also necessary to adjust the key measures of a queuing system such as
L, Lq, W and Wq when a queueing model follows a birth-death process.
Thus, the new forms of L and Lq are:

L =
∞∑
n=0

nPn and Lq =
∞∑
n=s

(n− s)Pn

Furthermore, taking into consideration the relationships among the key mea-
sures which are:

W =
L

λ
and Wq =

Lq

λ

where λ constitutes the average arrival rate and its form is given by:

λ =
∞∑
n=0

λnPn
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Chapter 6

Some queueing models

In 1909, Agner K. Erlang published ’The Theory of Probabilities and Tele-
phone Conversations’ in which he proposed models that would describe the
Copenhagen telephone exchange [5]. His research formed the base for the
evolution of Queueing theory. In queueing systems, it is important that the
utilization time of each server be determined. In a multiserver queueing sys-
tem with unlimited waiting time, the level of service utilization increases in
proportion to the number of servers and the arrival rate. The simplest mul-
tiserver system is the single server, which is known as the M/M/1 queue and
the multiserver queueing systems are denoted by the notation M/M/c, where
c stands for the number of channels. Given a birth and death process, there is
a great flexibility in modeling systems where Poisson input and exponential
arrival times are considered.

6.1 The M/M/1 queueing system

The most simple queueing system is the Single Server one, which is denoted
as the M/M/1 system. Suppose that a single server service station follows a
Poisson process with arrival rate λ. The mean rate of successive arrivals is
1/λ, where each arrival is considered as an independent exponential random
variable. When a customer arrives in the system, he either goes directly
into service if the server is idle or he either joins the waiting line. Once
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a customer is served he leaves the system (death occurs) and the next one
enters the service. The mean rate of successive service times is 1/µ and each
service time is considered as an independent exponential random variable.
The previous process depicts a M/M/1 queueing system. The first letter M
stands for the Markovian interarrival process since it is a Poisson process
and the second M stands for the exponential service distribution and, hence,
Markovian. The number 1 shows the number of servers in the system. A
representation of how a single server queueing system works is presented
below.

Figure 6.1: The M/M/1 queue

Results for the Single Server Queueing system

The Cn factors of this process reduce to [14, p.879]:

Cn =

(
λ

µ

)n

= ρn for n=0, 1, 2, ...

Therefore,

Pn = ρnP0 for n=0, 1, 2, ...

where

P0 = (
∞∑
n=0

ρn)−1

= (
1

1− ρ
)−1

= 1− ρ
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Thus,
Pn = (1− ρ)ρn for n=0, 1, 2, ...

Furthermore,

L =
∞∑
n=0

n(1− ρ)ρn

= (1− ρ)ρ
∞∑
n=0

d

dρ
(ρn)

= (1− ρ)ρ
d

dρ
(
∞∑
n=0

ρn)

= (1− ρ)ρ
d

dρ
(

1

1− ρ
)

=
ρ

1− ρ
=

λ

µ− λ
Accordingly,

Lq =
∞∑
n−1

(n− 1)Pn

= L− 1(1− P0)

=
λ2

µ(µ− λ)

Supposing the mean arrival rate λ is greater or equal to the mean service rate
µ (λ ≥ µ) then the queueing system would grow endlessly. In case the system
starts operating without customer presence then the system would operate
properly only for a short period of time but eventually would be impossible
to avoid breakdown. Even when λ = µ the probabilities of rising number of
customers in the system increases significantly over time. On the other hand,
when the mean service rate µ is greater than the mean arrival rate λ (µ > λ)
and the queue discipline is FIFO then a new arriving customer in the system
would have to wait through n+1 exponential service times including his own.
Let T1, T2, ... represent the service time random variables which follow an
exponential distribution with mean service rate µ, then the total service
time is represented by:

Sn+1 = T1 + T2 + ... + Tn for n =0, 1, 2, ...
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The probability that a random arriving customer will wait more than time t
in the system, taking into consideration that there are already n customers
in it, is given by:

P (W > t) =
∞∑
n=0

PnP (Sn+1 > t) = e−µ(1−ρ)t for t ≥ 0

The waiting time in the system, including waiting and service time, follows
an exponential distribution with parameter µ(1− ρ) and is given by:

W = E(W ) =
1

µ(1− ρ)
=

1

µ− λ
The waiting time in the queue regarding a random arrival when the queue
discipline is FCFS (or FIFO) is denoted asWq. Supposing a customer arrives
in an idle system then he will be served immediately, it is concluded that:

P (Wq = 0) = P0 = 1− ρ
In case there are already n customers in the system then the probability the
waiting time in queue line is more than t is given by:

P (Wq > t) =
∞∑
n=1

PnP (Sn > t)

=
∞∑
n=1

(1− ρ)ρnP (Sn > t)

= ρ
∞∑
n=0

PnP (Sn+1 > t)

= ρP (W > t)

= ρe−µ(1−ρ)t , for t ≥ 0

It is important to underline that Wq does not follow an exponential distribu-
tion as P (Wq = 0) > 0. The conditional distribution of Wq is the one that
follows an exponential distribution, because

P (Wq > t|Wq > 0) =
P (Wq > t)

P (Wq > 0)
= e−µ(1−ρ)t , for t ≥ 0

The waiting time in queue results from the mean of the distribution of Wq

or by applying Lq = λWq or Wq = W − 1/µ and the final form of Wq is:

Wq = E(Wq) =
λ

µ(µ− λ)
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6.2 The M/M/c queueing system

This queue model constitutes a special birth and death process where the
mean arrival rate λn and the mean service rate µn are considered constant
as λ and µ per busy server, regardless of the system state.

Theorem. The process {N(t), t ≥ 0} is a birth and death process with birth
rate λn = λ for all n ≥ 0 and with death rate µn = µ for all n ≥ 1.[15, p.4]

Proof. The process {N(t), t ≥ 0} is a Markov process as its interarrival and
its service times follow the exponential distribution. Given 0(∆t) is the
probability of two events occurring in a small time interval (t, t + ∆t), the
following transitional probabilities are applied:

P[N(t+ ∆t) = n+ 1/N(t) = n] = λ∆t+ 0(∆t) , n ≥ 0

P[N(t+ ∆t) = n− 1/N(t) = n] = µ∆t+ 0(∆t) , n ≥ 1

P[N(t+ ∆t) = n/N(t) = n] = 1− (λ+ µ)∆t+ 0(∆t) , n ≥ 1

P[N(t+ ∆t) = n/N(t) = n] = 1− λ∆t+ 0(∆t) , n = 0

P[N(t+ ∆t) = n/N(t) = n] = 0(∆t) , |k − n| ≥ 2

The term 0(∆t) is a quantity so that lim∆t→∞0(∆t) = 0. Consequently, it
is assumed that the process N(t) is a birth-death process. The first equation
gives the probability when the state variable increases by one (a single birth).
The parameter λi = λ is considered as the instantaneous birth rate. Likewise,
the second equation gives the probability when the state variable is reduced
by one (a single death). The parameter µi = µ denotes the instantaneous
death rate. The third equation refers to the case where the state variable
does not change. More precisely, the term [1− (λi + µi)]dt reflects the prob-
ability that neither a single birth nor a single death may occur during this
infinitesimal period of time. Furthermore, multiple single births and single
deaths as well as simultaneous births and deaths are being calculated by the
0(dt) terms of the equations. It is also important to underline the fact that
the probability for these events to occur is negligible as dt→ 0.

The M/M/c queueing system is similar to the M/M/1 but in this case there
are c identical channels for service. This queue is also known as a queue
with parallel servers. The arrival rate of customers follows a Poisson process
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with λn = λ for all n and the service discipline is FIFO (or FCFS) with
service rate µ. In case the number of customers is greater or equal to the
number of servers (n ≥ c) then all the service channels are occupied and
the service rate will now be equal to cµ. The effective service rate in also
called the mean system output rate (MSOR) [22, p.419]. On the other hand
if the number of servers is greater than the number of customers (c ≥ n) in
the system then the MSOR will be equal to nµ. Furthermore, a new term
needs to be mentioned the load dependent service center which is a center
where the customers departure rate is described as a function of the number
of customers in the system. The load dependent service center is given by
µn = min(n, c)µ where µ =service rate, n=customers in the system and c
the number of channels [22, p.419]. A representation of this kind of queueing
system is presented below:

Figure 6.2: The M/M/c queue

The M/M/c queueing system is defined by its birth and the death rates which
are :

λn = λ for all n,

µn =

{
nµ , 1 ≤ n ≤ c

cµ , n ≥ c

Based on the general equations of a birth - death process :

Pn = P0

n∏
i=1

λi − 1

µi

The equations for the M/M/c queue become:

Pn = P0

n∏
i=1

λ

iµ
= P0 (

λ

µ
)n

1

n!
if 1 ≤ n ≤ c,
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and

Pn = P0

c∏
i=1

λ

iµ

n∏
i=c+1

λ

cµ
= P0 (

λ

µ
)n

1

c!
(
1

c
)n−c if n ≥ c

The state transition diagram of the M/M/c queueing system depicts the
behaviour of birth and death rates during a period of time:

Figure 6.3: The M/M/c state transition diagram

The load factor in this kind of system derives from the relation ρ = λ/cµ.
Additionally, the condition ρ < 1 is required, in order to have a system in
equilibrium. By applying this condition, the maximum number of busy ser-
vice channels is set to cρ = λ/µ, which means that the mean arrival rate
must be less than the mean service rate.

The new form of the probabilities is now:

Pn =


P0

(cρ)n

n!
for n ≤ c,

P0
(cρ)n

cn−cc!
= P0

ρncc

c!
for n ≥ c

In order to calculate P0, the property
∑∞

n=0 Pn = 1 is used:

∞∑
n=0

Pn = 1 = P0 +
∞∑
n=1

Pn

= P0

[
1 +

c−1∑
n=1

(cρ)n

n!
+
∞∑
n=c

ρncn

c!

]
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So, the new form of P0 is:

P0 =
[
1 +

c−1∑
n=1

(cρ)n

n!
+
∞∑
n=c

ρncn

c!

]−1

=
[
1 +

c−1∑
n=1

(cρ)n

n!
+

1

c!

∞∑
n=c

ρncn
]−1

=
[
1 +

c−1∑
n=1

(cρ)n

n!
+

(cρ)c

c!

∞∑
n=c

ρn−c
]−1

=
[
1 +

c−1∑
n=1

(cρ)n

n!
+
cρc

c!

1

1− ρ

]−1

Results for the M/M/c Queueing system

The expected queue length Lq has meaning only when n ≥ c, in other words
only when customers wait in the queue and is given by:

Lq =
∞∑
n=c

(n− c)Pn

where
Pn =

(ρc)n

cn−cc!
P0 for n ≥ c

So the expected queue length Lq in the M/M/c queue is given by:

Lq =
∞∑
n=c

n

cn−cc!
(ρc)nP0 −

∞∑
n=c

c

cn−cc!
(ρc)nP0

In order to achieve a more elegant form, the right hand terms are going to
be analyzed separately according to William J. Stewart’s proof [22, p.421].
The first term is:

P0

c!

∞∑
n=c

n(ρc)n

cn−c

where
nρncn

cn−c
= nρncc =

nρn−c−1ρc+1cc+1

c
=

(ρc)c+1

c
nρn−c−1
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According to the above and by using derivatives of the geometric series, the
first term is modified to :

P0

c!

∞∑
n=c

n(ρc)n

cn−c
=
P0

c!

[
(ρc)c+1

c

]
∞∑
n=c

[
(n− c)ρn−c−1 + cρn−c−1

]
=
P0

c!

[
(ρc)c+1

c

]{
∞∑
n=c

(n− c)ρn−c−1 +
∞∑
n=c

cρn−c−1

}

=
P0

c!

[
(ρc)c+1

c

]{
1

(1− ρ)2
+
c

ρ

1

1− ρ

}

=
P0

c!

[
(ρc)c+1

c

]{
1

(1− ρ)2
+

c/ρ

1− ρ

}

The second term is modified to:
P0

c!

∞∑
n=c

c(ρc)n

cn−c
=
P0

c!

∞∑
n=c

cρcρn−ccc =
P0

c!
c(ρc)c

∞∑
n=c

ρn−c

=
P0

c!

c(ρc)c

1− ρ
=
P0

c!

[
(ρc)c+1

c

]
c/ρ

1− ρ

By combining the modified terms, the mean number of customers waiting in
the queue can now be calculated by:

Lq =
P0

c!

[
(ρc)c+1

c

]{
1

(1− ρ)2
+

cρ

1− ρ
− c/ρ

1− ρ

}
Thus, the final form of Lq is :

Lq =
(ρc)c+1/c

c!(1− ρ)2
P0

or
Lq =

(λ/µ)cλµ

(c− 1)!(cµ− λ)2
P0

The mean time a customer spends in the queue waiting to receive service is
calculated with the help of Little’s Law and the new form is:

Wq =

[
(λ/µ)cµ

(c− 1)!(cµ− λ)2

]
P0

Chapter 6 80



Tzimi Katerina Markov Chains & Queueing Theory

In order to calculate W, in other words the mean time spent in the system
(waiting and service time), the relationship W = Wq + 1/µ is used. Thus,
the new form is:

W =

[
(λ/µ)cµ

(c− 1)!(cµ− λ)2

]
P0 +

1

µ

Finally, the mean number of customers in the system L is also calculated
with the help of Little’s Law and the new form is:

L =

[
[

(λ/µ)cµ

(c− 1)!(cµ− λ)2

]
P0 +

λ

µ

]
In case an arriving customer is forced to wait for service due to lack of
available servers then the ’Erlang-C formula’ will be used in order to calculate
this probability, which is:

P{queueing} =
∞∑
n=c

Pn = P0

∞∑
n=c

cc

c!

[
ρc

1− ρ

]

=
(cρ)c

c!(1− ρ)
P0 =

(λ/µ)cµ

(c− 1)!(cµ− λ)
P0

The Erlang-C formula is denoted by C(c, λ/µ) and the performance measures
of this special system are:

Lq =
(ρc)c+1/c

c!(1− ρ)2
P0 =

(ρc)c

c!(1− ρ)
P0 ×

ρ

(1− ρ)
=

ρ

(1− ρ)
C(c, λ/µ) =

λ

cµ− λ
C(c, λ/µ)

Wq =
1

λ

ρC(c, λ/µ)

(1− ρ)
=
C(c, λ/µ)

cµ− λ

W =
1

λ

ρC(c, λ/µ)

(1− ρ)
+

1

µ
=
C(c, λ/µ)

cµ− λ
+

1

µ

L =
ρC(c, λ/µ)

(1− ρ)
+ cρ =

λC(c, λ/µ)

cµ− λ
+
λ

µ

6.3 The M/M/∞ queueing system

The M/M/∞ queueing system is considered to be the system where the
number of servers is unlimited. This is the reason why the M/M/∞ queue

Chapter 6 81



Tzimi Katerina Markov Chains & Queueing Theory

is also known as the infinite server.
Let:

λn = λ for all n, µn = nµ for all n

The new form of the probabilities is:

Pn =
λn

nµ(n− 1)µ · · · 2µ1µ
P0 =

λn

n!µn
P0

By taking into consideration the property:

∞∑
n=0

Pn = 1

The probability a system is empty, P0, is given by:

P0 =

[
∞∑
n=0

λn

n!µn

]−1

= e−λ/µ

Therefore, the final form of the probability Pn is:

Pn =
(λ/µ)ne−λ/µ

n!

Inferring from the above, the probability Pn follows the Poisson distribution
with parameter λ/µ.
In an infinite server, the waiting time for customers does not have any mean-
ing at all, because no one will ever wait for service. The waiting time in this
system will be:

L =
∞∑
n=1

nPn = e−λ/µ
∞∑
n=1

(λ/µ)n

(n− 1)!
= e−λ/µ

λ

µ

∞∑
n=1

(λ/µ)n−1

(n− 1)!
=
λ

µ

In other words the mean time spent in the system will be the mean service
time (1/µ) times the mean number of customers in the system λ. It is obvious
that in a M/M/∞ queue the measures Lq and Wq will be equal to 0 as the
meaning of waiting time is considered non-existent.

Chapter 6 82



Tzimi Katerina Markov Chains & Queueing Theory

6.4 The Er/M/1 queue (Erlang-r Arrival model)

In the previous queues, the only probability distribution used to define ar-
rival and service times was the exponential distribution. In these queueing
systems, which are referred to as birth and death processes, the transitions
from state to state are only allowed between adjacent states. In everyday life
though, the need for queueing models with phase-type laws is crucial. For ex-
ample, there are many real time queueing systems whose services need to be
completed in many phases such as inventory and distribution systems. The
most common distributions used in this kind of systems are the Erlang and
hypergeometric distributions. Queueing systems with phase-type service or
arrival mechanisms are known as quasi-birth-death QBD processes. Solution
on these systems used to be given by ζ-transform but now Neut’s method is
used.

The Er/M/1 queue refers to a single server queue whose service time fol-
lows an exponential distribution with rate µ and the arrival process follows
an Erlang-r distribution. An illustration of how an Erlang-r arrival model
works is shown below:

Figure 6.4: The Er/M/1 queue

The density functions of the arrival and service processes are given by:

a(t) =
(rλ)rtr−1e−rλt

(r − 1)!
, t ≥ 0

b(x) = µe−µx, x ≥ 0

When a customer arrives in an Er/M/1 queue, there are certain r phases to
be passed through, which follow an exponential distribution with parameter
λ, until the next customer begins the left-most exponential phase. Thus,
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only one customer is able to enter the system at any given instant time and
only after all the r-phases are completed can a new one begin the process.
In order to accomplish a successful description of an Erlang-r arrival model,
the k number of customers present in the system, the current phase i an
arriving customer is found is important information. A state of the system is
depicted by the pair (k,i), where k is the number of customers in the system
and i is the current phase of service. The transition state diagram proposed
by William J. Stewart [22, p.451] is ideal for depicting the transition rate
matrix form of this kind of queues. The diagram shows how the phases of
arrival are arranged according to number of customers in the system.

Figure 6.5: State transition diagram - Er/M/1 queue

Based on the previous framework, the transition rate matrix will have a
block-tridiagonal (or quasi birth-death) form, where all the subblocks are
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square and of order r:

Q =



B00 A2 0 0 0 0 · · ·

A0 A1 A2 0 0 0 · · ·

0 A0 A1 A2 0 0 · · ·

0 0 A0 A1 A2 0 · · ·
...

... . . . . . . . . . ...


Service completions at rate µ are represented by the matrices A0 showing
the transition from a state at some level k where i-1 arrival phases have
already been completed to the state with the same number of completed
arrival phases but with one customer less.

A0 = µI

Arrivals to the system are represented by the matrices A2. If an arrival
completes successfully its last phase at rate rλ then the arrival process begins
immediately again but this time the number of customers in the system will
be increased by 1. Consequently, the matrices A2 will have one nonzero
element A2(r, 1) with value rλ, representing the transition from state (k,r)
to (k+1,1).

A2 =



0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

... . . . ...

rλ 0 0 0 · · · 0


Furthermore, the superdiagonal elements of the matrices A1 depict the com-
pletion of one arrival phase i < r at rate rλ and the beginning of the next
one. In other words, these matrices represent the transition from state (k,i)
to state (k,i+1). The only nonzero elements are the diagonal ones which are
equal to the sum of the off-diagonal elements of Q.
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A1 =



−µ− rλ rλ 0 0 · · · 0

0 −µ− rλ rλ 0 · · · 0

0 0 −µ− rλ rλ · · · 0
...

...
... . . . . . . ...

0 0 0 0
... rλ

0 0 0 0 · · · −µ− rλ


The diagonal elements of the matrix B00 are all equal to −rλ and verify that
the sum of elements across each row of Q is equal to zero.
Next step is the computation of the stationary probability vector π, with
πQ = 0 using the matrix geometric method. This vector π is written as

π = (π1, π1, π2, ..., πk, ...)

where k = 0, 1, 2, .. is a row vector of length r whose ith component gives
the probability of the arrival process having completed exactly i-1 phases,
given there are k customers in the system waiting for service. The successive
subvectors of π satisfy the relationship

πi+1 = πiR for i =1,2,...

where R, known as Neuts’ rate matrix, is given by

Rl+1 = −(V +R2
lW ) l=0,1,2,...

where V = A2A
−1
1 , W = A0A

−1
1 and R0 = 0 is set as the initiative term. The

sequence Rl is motone increasing and converges to R, according to Neut.
The inverse of A1 is an upper triangular matrix, whose non-zero ij elements
are given by

(A−1
1 )ij = (−1)j−i

1

d
(
a

d
)j−i for i ≤ j ≤ r

where d = −(µ+ rλ) and a = rλ. Also,

Vri = −

(
rλ

µ+ rλ

)i

for 1 ≤ i ≤ r
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and Vki = 0 for i ≤ k < r and 1 ≤ i ≤ r.
After that there is the calculation of the subvector π0 by using:

πi+1 = πiR = π0R
i+1 for i = 0, 1, 2, ..

and from πQ = 0 it is concluded that

(π0, π1, π2, ..., πi, ...)



B00 A2 0 0 0 0 · · ·

A0 A1 A2 0 0 0 · · ·

0 A0 A1 A2 0 0 · · ·

0 0 A0 A1 A2 0 · · ·
...

... . . . . . . . . . ...


= (0, 0, 0, ..., 0, ...)

As a result a new form is created:

π0B00 + π1A0 = π0B00 + π0RA0

with constraint

1 =
∞∑
k=0

πke =
∞∑
k=0

π0R
ke = π0(I −R)−1e

The system is homogeneous without a unique solution. By taking π01 = 1 a
specific solution is achieved, which is then normalized according to the given
constraint.
An alternative approach of E(r)/M/1 queue is proposed by M.P.Wiper in his
article "Bayesian analysis of Er/M/1 and Er/M/c queues" [28].

Performance Measures The probability that there are k customers in the
queuing system is given by the sum of components of the kth subvector

Pk =‖πk‖1 =
∥∥∥π1R

k−1
∥∥∥

1

The probability the system is empty is given by P0 =‖π0‖1 and in case of a
busy system by 1− P0, accordingly.
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By using Neut’s R matrix, the average number of customers in the queuing
system is obtained as

E[N ] =
∞∑
k=1

k‖πk‖1 =
∞∑
k=1

k
∥∥∥π1R

k−1
∥∥∥

1
=

∥∥∥∥∥∥π1

∞∑
k=1

d

dR
Rk

∥∥∥∥∥∥
=

∥∥∥∥∥∥π1
d

dR

(
∞∑
k=1

Rk

)∥∥∥∥∥∥
1

=

∥∥∥∥π1
d

dR
((I −R)−1 − I)

∥∥∥∥
1

=
∥∥π1(I −R)−2

∥∥
1

Let E[Nq] the mean number of customers in the waiting line then

E[Nq] = E[N ]− λ/µ

Furthermore, the average response time E[R] is calculated by

E[R] = E[N ]/λ

and the average time spent in waiting is given by

E[Wq] = E[Nq]/λ
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Chapter 7

Application of queueing theory in
small business – A Case study of
Bougioukos Bakery

In order for small businesses to survive it is essential that the development of
certain factors be applied. These factors concern a good strategy, principles
and tactics. Of these three, the strategy and principles have to be carefully
taken into consideration since they are really important so as the business
can flourish. In case of violating or trying to run a business without taking
the fundamental principles into account, this might lead to company failure
[26]. Companies which follow the fundamental principles of business are cer-
tain to survive both in good and hard times.

Company competitiveness is determined by the strength and steadiness of
the possessed competitive advantages [18]. Companies which are successful
in cost and quality based competitions, are looking for ways that will pro-
vide them further competitive advantage. Time has turned into a strategic
resource and as a consequence, its importance has become equivalent to the
significance of money, productivity and innovation (Stalk, 1988). Conse-
quently time has turned into a strategic resource.

Waiting in lines constitutes a part of the everyday life. Queues form when the
demand for a service exceeds its supply [10]. For many patients or customers,
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waiting in lines or queuing is annoying [16] or negative experience [21]. The
unpleasant experience of waiting in line may adversely affect a customer’s
experience with a particular firm. The way in which managers address the
waiting line issue is critical to the long term success of their firms [4].

This case study comes to ascertain that difficulties such as providing enough
capacity for sufficient service and refrain from unnecessary expenses can be
controlled by using queuing models. Average arrival rate of customers, aver-
age service rate, system utilization factor, cost of service and the probability
of a specific number of customers in the system can be calculated and used
for achieving a better waiting line performance. The aim is to find balance
between minimizing operation costs which derived from optimization of a
queuing system and minimizing the cost of waiting of the customers.

7.1 Information about Bougioukos bakery

7.1.1 Operating time

Bougioukos bakery opens from 5:00 am to 21:00 pm, however business hours
are from 7:00 am to 21:00 pm. This means that the bakery is open to
customers 14 hours a day, all the week. The rest of the hours remaining are
for preparation and cleaning. The peak hour of customers arrival is between
11:00 am to 14:00 pm.

7.1.2 Customer serving procedure

Nowadays due to the pandemic, bakery stores are obliged to receive a cer-
tain amount of customers inside the store according to the square meters of
the store. As a result, customers have to queue so as to enter the bakery,
especially during peak hours.

In the present case study, Bougioukos bakery is 60 square meters so it can
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accept up to 2 customers. The rest of the customers must wait in queue
outside the store. The typical procedure of entering a bakery in order to buy
bread, relevant baking and pastry goods and coffee is as follows:

• Customer arrives, places the order, receives the traded good and pays
for the order at the cash desk.

• In case of buying a cup of coffee, the customer arrives, places and pays
for the order at the cash desk. By using the receipt, the customer
waits until the product is ready. The receipt is used as a proof to
which customer is first, second, third etc. according to the time and
number of the receipt each customer has received.

It has to be taken into consideration the fact that as far as buying a cup
of coffee is concerned, the orders can be also placed over the phone. Conse-
quently, when these customers arrive to collect their order, this means that
they are not obliged to wait in the waiting line. Their order has already
been completed, they just pay, receive their receipt and leave. The whole
procedure reduces the queue size.

Another issue to be taken into account is that the bakery is situated on
a central street, really close to a supermarket. This means that during peak
hours, waiting lines can be really long since customers try to combine their
shopping in the supermarket with buying pastry goods and bread.

The bakery staff consists of one cashier who is also in charge of the ser-
vice and three employees who are actually the bakers. In some cases, when
there is great demand of service, there is an extra employee helping with the
service. Therefore, it is assumed that a single channel system is used and
hence a M/M/1 queuing model is the one that describes the way the bakery
operates. In other words, the customers visiting the bakery join the queue
or in case of idle system they proceed directly to service.

The queuing system at Bougioukos bakery is illustrated as depicted below:
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Figure 7.1: The queuing system of Bougioukos bakery

In this case study, customers have been observed coming in pairs or single,
but due to Covid-19 restrictions, individual customers are the majority of
bakery’s daily clients. Arrivals occur randomly and independently and as
a result an estimation of arrival occurrence is difficult to be determined.
Therefore, the Poisson distribution constitutes the best way of describing an
arrival pattern [1].

7.2 Objectives of the Case study

The main goals of this study are :

• To examine the operation of a business through Queuing theory

• To define in numbers the waiting line performance

• To make remarks on the efficiency of the bakery’s organization flow
according to the results of the study

• To enhance the management of queues in order to avoid customer loss
and dissatisfaction
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The outcome of the study can be used to increase efficiency and decrease
cost in services. After all, the goal of every business is the fulfilment of the
requests of each customer and the gaining of new customers through allusions.

Scope of the study and limitations
The data used were collected within a period of four weeks where arrival and
departure times were recorded. It is important to mention that the survey
was conducted over a short period of time and some aspects may considered
to be under investigated.

7.3 Calculations

Weekly Customer Counts
By using the total daily receipts of the bakery a table of weekly customer
counts is shown below: According to the survey, during week days the num-

Week

Day
M T W T F S S

1st Week 108 103 94 99 112 208 170

2nd Week 102 109 92 89 107 214 183

3rd Week 113 110 100 96 111 217 189

4th Week 98 104 97 104 105 222 185

Table 7.1: Records from purchase receipts

ber of customers ranges between 80 to 120 customers per day while during
weekends the range is between 200 to 220 customers.

Arriving customers per hour
The arrivals occur, taking into consideration that 75% of daily customers
arrive between 11:00 am and 2:00 pm and supposing that they are uniformly
distributed. according to the table below. Results from Table 7.1 are used
for these calculations.
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Arrivals/hour

Day
M T W T F S S Average

1st Week 20 19 17 18 21 39 31 23.57

2nd Week 19 20 17 16 20 40 34 23.71

3rd Week 21 20 18 18 20 40 35 24.57

4th Week 18 19 18 19 19 41 34 24 23.96

Table 7.2: Records of arrivals per hour

Queue Length as per every twenty minutes
The table presented below shows how queue length is formed during rush
hours. The data were received every twenty minutes.

Day

Hour
11:00 am 12:00 am 13:00 pm 14:00 pm Average

Minutes 20 Min 40 Min 60 Min 20 Min 40 Min 60 Min 20 Min 40 Min 60 Min 20 Min 40 Min 60 Min

1st Day 2 3 3 5 6 5 6 4 4 6 5 4 4.4

2nd Day 4 2 3 5 6 6 6 5 5 4 3 3 4.3

3rd Day 3 4 2 6 6 4 5 4 5 3 2 2 3.8 4.16

Table 7.3: Queue length per twenty minutes during rush hours

According to the data, the bakery is the busiest between 12:00am to 13:00 pm
and as a result the queue length is the longest. There is also the necessity to
mention that some arrivals may occur as people in groups and consequently
a longer queue will be formed.

Service times
By observing the service time completions of six customers in a row the
results presented below were obtained:
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Time (min)

Customer No.
1st Cust. 2nd Cust. 3rd Cust 4th Cust 5th Cust. 6th Cust. Average

Completed service time 2 1.5 2.5 2 1.5 1 1.75

Table 7.4: Records of services per minutes

7.4 Implementation of M/M/1 queuing model

For this study customer arrivals are considered random and independent
and hence, a Poisson distribution is assumed. Furthermore, First Come First
Served (FIFO) scheduling discipline is assumed, let alone that in real life some
customers refuse to follow the queue, due to age or personal temperament.
Infinite population is also assumed.
The form of this queuing model is:

M/M/C : FIFO(or FCFS)/∞/∞

where :
M stands for Markovian or Poisson arrival and exponential service time,
C stands for multi-server,
FIFO for First In First Out,
∞ indicates infinite system limit and
∞ infinite source limit.

Taking into consideration the results of the survey it is concluded that :
Number of servers: c = 1
Arrival rate: λ = 23 customers per hour
Serving rate: µ = 34 customers per hour

Load factor: ρ = λ/µ = 67.64%
This factor shows that the serving rate is higher than the arrivals one. Con-
sequently, it is assumed that there is a bit of efficiency in this queuing system.
The probability the channel is idle: P0 = 1 - ρ = 0.3236
Average number of customers in the system: L = λW = 2.07 per hour
Average number of customers in the queue: Lq = λ2

µ(µ−λ)
= 1.41 per hour

Time spent in the waiting line: Wq = E(Wq) = λ
µ(µ−λ)

= 0.0614 hours or
3.684 minutes
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Total time spent in the queuing system: W = E(W ) = 1
µ−λ = 0.09 hours or

5.4 minutes

According to the table presented below, the probability of customers in the
waiting line decreases while the number of customers in the system increases.
It is also deducted that the cumulative probability is quickly approaching 1,
as for 10 customers P10 = 0.9861, implying that it is rare to have more than
10 customers in the queue.

N Probability P (n) Cumulative probability P (n)

0 0.3236 0.3236

1 0.2188 0.5424

2 0.1481 0.6905

3 0.1 0.7905

4 0.0677 0.8582

5 0.0458 0.904

6 0.0309 0.9349

7 0.0209 0.9558

8 0.0142 0.97

9 0.0096 0.9796

10 0.0065 0.9861

Table 7.5: Table of Probabilities

7.5 Implementation for Er/M/1 queuing model

As mentioned before, due to the pandemic, all businesses are obliged to follow
certain rules as far as the customers are concerned. A specific number of
customers is allowed inside the shop and consequently, a queue of customers
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is formed outside the shop. This process could be considered to have arrival
phases. For instance, a customer arrives at the bakery at half past eleven.
Since it is peak hour, all customers have to wait in queue outside the bakery
until the queue inside the shop decreases and is below two customers. This
is arrival phase 1. Once one customer enters the bakery, the waiting line has
to be followed until the bakery assistant serves the customer. This is arrival
phase two.
The arrival process, in this case, follows an Erlang-r distribution and the
service time follows an exponential one with parameter µ. Furthermore, First
Come First Served (FIFO) scheduling discipline and infinite population are
assumed.
The form of this queuing model is:

Er/M/1 : FIFO(or FCFS)/∞/∞

where :
Er stands for r-phase arrival process
M for exponential service time,
C stands for multi-server,
FIFO for First In First Out,
∞ indicates infinite system limit and
∞ infinite source limit.

The parameters of the queuing system according to the case study are λ = 23,
µ = 34 and r = 2. The occupation rate is calculated by:

ρ =
λ

cµ
= 0.6764 or 67.64%

According to section 6.4, the submatrices have the following form:

A0 =

34 0

0 34

, A1 =

−80 46

0 −80

, A2 =

 0 0

46 0

,

B00 =

−34 34

0 −34


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Based on the submatrices, then the form of infinitesimal generator is:

Q =



−34 34

0 −34

0 0

46 0

0 0

0 0
· · ·

34 0

0 34

−80 46

0 −80

0 0

34 0
· · ·

0 0

0 0

34 0

0 34

−80 −46

0 −80
· · ·

...
...

... . . .


Next step is the computation of the stationary probability vector π, with
πQ = 0. This vector π is written as

π = (π1, π1, π2, ..., πk, ...)

where k = 0, 1, 2, .. is a row vector of length r whose ith component gives the
probability of the arrival process having completed exactly r-1 phases, given
there are k customers in the system waiting for service. The steps presented
in chapter 6.4 are followed. The inverse of submatrix A1 is

A−1
1 =

−0.0125 −0.0072

0 −0.0125


hence

W = A0A
−1
1 =

−0.425 −0.2443

0 −0.425


and

V = A2A
−1
1 =

 0 0 0

−0.575 −0.3306


Given R0 = 0, Neuts’ rate matrix Rl+1 = −(V +R2

lW ) l=0,1,2,...
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R1 =

 0 0

0.575 0.3306

, R2 =

 0 0

0.6558 0.4235


and with help of python code it is concluded that Rl+1 converges into R.
Following the suitable calculations, it is considered that R ' R50

R50 =

 0 0

0.7661 0.5868

 ' R

The next step is the calculation of the subvector π0 by using:

πi+1 = πiR = π0R
i+1 for i = 0, 1, 2, ..

and from πQ = 0 it is concluded that

π0B00 + π1A0 = π0B00 + π0RA0

with constraint

1 =
∞∑
k=0

πke =
∞∑
k=0

π0R
ke = π0(I −R)−1e

The system is homogeneous without a unique solution so by taking π01 = 1
a specific solution is achieved:

π0(B00 +RA0) = (π01, π02)

 −34 1

26.0464 0

 = (0, 1)

The solution is π0 = (1, 1.3054). According to the restriction

(1, 1.3054)

 1 0

1.8543 2.4205


−11

1

 = 6.5802

By dividing each component of π0 by 7.0442 the normalized answer is:

π0 = (0.1519, 0.1984)
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The remaining subvectors are calculated by using πk = πk−1R = π0R
k

π1 = π0R = (0.1519, 0.1164)

π2 = π1R = (0.0891, 0.0683)

π3 = π2R = (0.0523, 0.04)

π4 = π3R = (0.0307, 0.0235)

· · ·

The probability of having 0,1,2,... customers in the system is given by the
sum of the previous subvectors:

p0 = 0.3503, p1 = 0.2683, p2 = 0.1574, p3 = 0.1628, ...

the average number of customers in the queuing system

E[N ] =
∥∥π1(I −R)−2

∥∥
1

= 1.5725

Let E[Nq] the mean number of customers in the waiting line then

E[Nq] = E[N ]− λ/µ = 0.8960

Furthermore, the average response time E[R] is calculated by

E[R] = E[N ]/λ = 0.0683

and the average time spent in waiting is given by

E[Wq] = E[Nq]/λ = 0.0389

7.6 Conclusions

This case study constitutes a comparative application of two queuing sys-
tems, using data collected within a four week period of time. The subject of
the study has been a queuing system of a bakery and the goal of the study is
to determine the performance of this special system through queuing theory.
The system’s performance is outlined by calculating the average arrival and
service rate of customers, the system utilization factor and the probability a
specific number of customers being present in the system during a period of
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time.
The bakery’s system is first described as an M/M/1 queuing model since
there is one channel of service, the cashier and exponential arrival and ser-
vice times are assumed. Then another queuing model, the Er/M/1 queuing
model is also assumed ideal for modeling this specific case study. Due to
the pandemic nowadays, businesses are obliged to adopt arrival phases, in
order to avoid customer crowding. As long as bakery’s queuing system is
considered, the model is constructed assuming there are two arrival phases.
The first arrival phase represents the waiting line outside the store until the
number of customers inside the store are lower than the customer limit (2
customers) inside and the second arrival phase represents the queue inside
the store until the customer is served.
Based on the previous results, a comparative table of the two queuing systems
is presented below:

Parameters ρ P0 L Lq W Wq

M/M/1 67.64% 0.3236 2.07 1.41 0.0614 0.09

M/Er/1 67.64% 0.3503 1.5725 0.8960 0.0389 0.0683

Table 7.6: Comparative table between M/M/1 and Er/M/1 queuing model

It is assumed that the Erlang arrival model is more efficient than the M/M/1
queue. Consequently, it is concluded that the new terms of our every day
life have ameliorated the performance of this queuing system.
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Chapter 8

Final Conclusions and Further
Work

The main goal of this thesis is to represent the most essential parts of Queu-
ing theory and the basic knowledge of Markov chains as used in favour of
queuing modeling. In Chapter 1, an introduction to Operations Research
(OR) is presented as both the origin and the definition of this special sci-
entific field are illustrated. The definition of the basic steps of a successful
implementation of OR is also presented. In Chapter 2, the basic terms and
concepts of Markov chains are introduced as a great tool of OR. Markov
Chains are ideal for defining how a process will evolve in the future taking
into consideration only the present state of the process and by ignoring the
past events. Chapters 3 and 4 contain the basic clues of Queuing theory.
A great insight of the basics of the structure and construction of a queuing
model is illustrated extensively, such as arrivals and service processes and
performance measures. Next, in Chapter 5 remarks are found on Birth and
Death process as one of the basic terms concerning queuing theory and then
on Chapter 6 some basic queuing models are presented. Finally, in Chapter
7, a case study of a bakery’s queuing system is illustrated and two different
queuing models are applied and then compared for efficiency.

Due to the pandemic, aspects of everyday life have changed dramatically
according to the restrictions humanity has to comply with. Businesses of
all kinds of forms have to adapt more effectively to different kind of queu-
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ing systems than the ones they were used to. Queuing models with arrival
phases are about to become more and more popular even in small businesses
and as a result, further improvements in this special queuing models should
be made. Simulation algorithms such as Discrete Event Simulation (DES)
or Metropolis-Hastings algorithm could be adapted and used for improving
the performance of various queuing systems, especially the phase type ones.
By achieving to predict efficiently the performance of a system, the busi-
nesses will have the opportunity to prepare against challenging situations
and improve even more their management and operations system. It is an
indisputable fact that the enhancement of businesses operation management
will lead to an elevating satisfaction rate of customers service which is, after
all, the number one goal of every organization.
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Appendix A

Python

Listing A.1: Python code
import numpy
from numpy . l i n a l g import matrix_power
c=1
lmd = 23
mu = 34
r = 2 # r−phases d e f i n e the matrix dimensions
#Check s t a b i l i t y
rho = lmd/mu
i f rho >= 0 . 9999 :

print ( ’ERROR: ␣System␣ i s ␣ unstab le ’ )
else :

print ( ’ System␣ i s ␣ s t ab l e ! ’ )
# submatr ices f o r Er/m/1
A0 = numpy . array ( [ [mu, 0 ] , [ 0 ,mu ] ] )
A1 = numpy . array ( [ [ −mu − r∗lmd , r ∗lmd ] , [0 , −mu − r∗lmd ] ] )
A2 = numpy . array ( [ [ 0 , 0 ] , [ r ∗lmd , 0 ] ] )
B00 = numpy . array ( [ [ −mu, mu] , [0 , −mu ] ] )
# inve r s e matrix o f A1
A11 = numpy . l i n a l g . inv (A1)
# Neuts ’ R Matrix
W = numpy . dot (A0 , A11)
V = numpy . dot (A2 , A11)
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Ra = numpy . z e r o s ( ( r , r ) )
R = −(V+numpy . dot (matrix_power (Ra , 2 ) , W) )
i=1
for i in range ( 1 , 5 1 , 1 ) :

Ra = R
R = −(V+numpy . dot (matrix_power (Ra , 2 ) , W) )
i = i+1

print ( ’R=’ ,R)
#Boundary equat ions , subvec to r p i
N = (B00 + numpy . dot (R,A0) )
## f i r s t component equa l to p01=1
N[0 , r −1] = 1
N[ 1 , r −1] = 0
print ( ’N=’ , N)
## un−normal ized pi0 , p i1
r e s = numpy . z e r o s ( ( r −1, r ) )
r e s [ 0 , r −1] = 1
print ( r e s )
unnormpi = numpy . dot ( res , numpy . l i n a l g . inv (N) )
print ( ’ un ’ , unnormpi )
## normal ized pi0 , p i1
e = numpy . ones ( ( r , 1 ) )
lp = numpy . l i n a l g . inv ( (numpy . i d e n t i t y ( r ))−R)
s o l = numpy . dot ( unnormpi , lp )
s o l 1 = numpy . dot ( so l , e ) #d i v i d e p0 by so l 1
#r e s u l t s o f p i
p0 = unnormpi/ s o l 1
p1 = numpy . dot (p0 ,R)
p i = numpy . dot (p0 , matrix_power (R, 1 ) )
k=1
for k in range ( 1 , 5 , 1 ) : #a l t e r range to f i nd exac t p i

p0 = pi
p i = numpy . dot (p0 , matrix_power (R, 1 ) )
k=k+1

print ( ’ p0 ’ , p0 , ’ p1 ’ , p1 , ’ number␣ to ␣ d iv id e ’ , s o l 1 )
print ( ’ p i ’ , p i )
#Measures o f e f f e c t i v e n e s s
z1=numpy . l i n a l g . inv (numpy . i d e n t i t y ( r)−R)
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z2= matrix_power ( z1 , 2 )
En = numpy . l i n a l g . norm(numpy . dot (p1 , z2 ) , 1 ) #mean number o f customers

#in the system
Eq = En − lmd/mu #mean number o f customers in the wa i t ing l i n e
Er = En/lmd #average response time
Ewq = Eq/lmd #average time in wa i t ing l i n e
print ( ’mean␣number␣ o f ␣ customers ␣ in ␣ the ␣ system ’ ,En ,

’mean␣number␣ o f ␣ customers ␣ in ␣ the ␣wai t ing ␣ l i n e ’ ,Eq ,
’ average ␣ response ␣ time ’ ,Er ,
’ average ␣ time␣ in ␣wai t ing ␣ l i n e ’ ,Ewq)
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