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ABSTRACT 

In pumping optimization of coastal aquifers, often the objective is to mitigate the phenomenon of 

saltwater intrusion while satisfying the demands for freshwater extraction. This management task 

is typically formulated as a nonlinear constrained optimization problem where the individual 

pumping rates are the decision variables. Evolutionary algorithms are considered highly competent 

to find a near global optimum to this difficult optimization problem, at the expense of thousands 

of function evaluations with the physics-based seawater intrusion model. To solve a pumping 

optimization problem of that type using variable-density flow and solute transport numerical 

models, leads to a computational cost of many hours, days or even months in the case of an 

extremely time-consuming simulation, depending on the number of abstraction wells and the 

length of the simulation period considered.  

 To that end, the present thesis focused on the use of surrogate modelling techniques as a 

realistic approach to computationally expensive problems of pumping optimization of coastal 

aquifers. The aim was to develop surrogate-based optimization methods that can realistically be 

applied in real-world coastal aquifer management problems. In surrogate-based optimization, fast 

approximation models, commonly called surrogate models or metamodels, are built using input-

output data from the computationally intensive physics-based model that simulates the system 

under study. Then, the surrogate models are used in lieu of the physics-based model to search for 

the optimum in the decision variable space. Here, radial basis functions and Kriging models were 

selected to develop surrogate-based optimization frameworks. While these surrogate models have 

been fairly utilized in other fields of engineering optimization, their use is scarce in aquifer 

management studies. As interpolating surrogate models, they can exactly predict the response of 

the physics-based model to points that exist in the training dataset. This was considered as a 
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preferable feature for emulating the deterministic response of the seawater intrusion models 

utilized in this work. Individual surrogate models were constructed to approximate each nonlinear 

constraint function included in the pumping optimization problems defined in this thesis. 

 Emphasis was given on the development of online surrogate-based optimization methods 

where the accuracy of the surrogate models was further enhanced during the operations of the 

optimization process. That is, additional points were selectively evaluated with the physics-based 

model to update the surrogate models after the initial training. This approach, typically called infill 

strategy, allowed for a more efficient and effective search of feasible optimal solutions, as opposed 

to offline methods that typically require large training datasets to develop accurate surrogate 

models in the whole decision variable space. 

 Different infill strategies were investigated within the proposed surrogate-based optimization 

methods. One approach utilized a pure exploitation infill strategy that was embedded in the 

operations of an evolutionary algorithm (surrogate-assisted evolutionary strategy). This 

optimization framework adopts an aggressive strategy where the physics-based model evaluates a 

candidate solution only at the current optimum located by the surrogate models. Here, it was 

implemented by either using single predefined surrogate models for the constraint functions or via 

a multiple surrogate approach. In the latter case, a cross-validation strategy was employed to select 

the best surrogate model for each constraint function or to construct an ensemble surrogate model 

of weighted prediction. To the best of author’s knowledge, the use of an ensemble surrogate with 

optimal weights in a surrogate-assisted evolutionary strategy was applied for the first time in 

pumping optimization of coastal aquifers. Another popular infill strategy in surrogate-based 

optimization, is to employ various criteria for balancing exploration and exploitation using the 

metamodels. That is, to evaluate certain points with the physics-based model away from the current 
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optimum (exploration step) that can improve the global accuracy of the metamodel and increase 

its efficacy to locate near-optimal solutions. Such methods have received little attention in 

pumping optimization of coastal aquifers despite their proven success in the broader engineering 

optimization literature. In this thesis, a new surrogate-based optimization algorithm was developed 

which aims to balance exploration with exploitation within an adaptive-recursive optimization 

framework. 

 The surrogate-based optimization methods developed here, were applied in pumping 

optimization problems for a hypothetical and a real-world coastal aquifer case. By using several 

independent optimization trials, extensive comparisons were conducted to assess the effectiveness 

and the efficiency of the proposed surrogate-based methods in coastal aquifer management. In 

overall, results showed that the optimization methods based on surrogate models drastically 

reduced the computational cost of the corresponding optimization that was based solely on the 

variable-density flow and solute transport model. For pumping optimization problems of moderate 

dimensionality (i.e., 10 decision variables), all methods approached the region of the global 

optimum while those balancing exploration with exploitation provided near-optimal solutions 

within just 100 evaluations with the variable-density flow and solute transport model.  

 For pumping optimization problems of a larger dimensionality (i.e., 20 decision variables), the 

performance of the surrogate-assisted evolution framework, which utilized a pure exploitation 

infill strategy, was negatively affected. The use of the multiple-surrogate approach within this 

evolutionary strategy did not outperform the corresponding implementation with the single 

surrogate models. However, the optimization schemes which balance exploration and exploitation 

had a consistent performance independent of the initial training sample, particularly when the 

number of evaluations with the physics-based model was increased to 300. The new surrogate-
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based optimization method that balances exploration with exploitation and was developed in this 

thesis, performed better or comparable to other published surrogate-based optimization algorithms 

that have been successfully applied in the water resources optimization literature. 

 The present thesis also addressed those cases where the variable-density flow and solute 

transport models are extremely time-consuming and it is unrealistic to run more than a limited 

number of simulations. In such cases, the development of conventional surrogate-based 

optimization methods that utilize training points solely obtained from the high-fidelity simulation 

model are either impractical or of limited efficacy. Multi-fidelity optimization methods are 

considered a useful alternative for these problems, yet this approach is largely unexplored in 

coastal aquifer management. In practice, multi-fidelity optimization utilizes a large number of low-

fidelity but computationally cheap simulations while only a limited number of runs with the high-

fidelity model is used. A correction process is established via the development of a surrogate model 

which combines the abundant low-fidelity data and the limited high-fidelity data. This correction 

aims to smooth out the inaccuracies from the low-fidelity model and to enable the search for 

optimal solutions in a computationally affordable manner.  

 In this thesis, a novel multi-fidelity optimization method was developed based on an adaptive-

recursive framework and co-Kriging surrogate models. Two levels of model fidelity were 

considered, the high-fidelity variable-density flow and solute transport model and a low-fidelity 

and computationally inexpensive sharp interface model. This was the first time that a multi-fidelity 

optimization approach based on co-Kriging surrogate models was developed for coastal aquifer 

management. The proposed multi-fidelity optimization framework delivered good local solutions 

by using as few as 21 simulations with the variable-density flow and solute transport model and 

200 simulations with the sharp interface model for a pumping optimization problem of 10 decision 
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variables. Additionally, the multi-fidelity optimization method outperformed conventional 

surrogate-based optimization for such a limited number of simulations with the high-fidelity 

seawater intrusion model. 
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EXTENDED ABSTRACT -ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ 

«Μέθοδοι βελτιστοποίησης βασισμένες σε μετα-μοντέλα στην 

διαχείριση παράκτιων υδροφορέων» 

Η ραγδαία αύξηση της υπολογιστικής ισχύος διεύρυνε την δυνατότητα ανάπτυξης αριθμητικών 

μοντέλων υψηλής πιστότητας στην προσομοίωση των φυσικών συστημάτων. Η ενσωμάτωση 

πολύπλοκων διεργασιών στην ανάπτυξη ενός μαθηματικού μοντέλου οδηγεί αναπόφευκτα σε 

χρονοβόρες αριθμητικές επιλύσεις. Ωστόσο, η λήψη αποφάσεων, η ανάλυση αβεβαιότητας, η 

βελτιστοποίηση και άλλες επαναληπτικές μεθοδολογίες βασίζονται στην χρήση πολλαπλών 

προσομοιώσεων υψηλής πιστότητας για μια αποτελεσματική προσέγγιση στην επίλυση 

προβλημάτων σε πολύπλοκα φυσικά συστήματα. Η σύζευξη των εν λόγω μεθοδολογιών με 

λεπτομερή αριθμητικά μοντέλα συχνά κρίνεται ως μη πρακτική λόγω του μεγάλου υπολογιστικού 

φόρτου. Ένα αντίστοιχο πρόβλημα πραγματεύεται και η παρούσα διατριβή στην οποία η χρήση 

μοντέλων υψηλής πιστότητας για την προσομοίωση της παράκτιας υπόγειας ροής σε προβλήματα 

βελτιστοποίησης αντλήσεων, εμποδίζει την εφαρμογή καθιερωμένων σχημάτων προσομοίωσης-

βελτιστοποίησης λόγω αυξημένου υπολογιστικού φόρτου.  

 Μια διαθέσιμη μέθοδος, αναγνωρισμένη στην βιβλιογραφία για την επιτυχή μείωση του 

υπολογιστικού κόστους κατά την βελτιστοποίηση, είναι η χρήση μετα-μοντέλων στην οποία 

εστιάζει η παρούσα διδακτορική διατριβή. Τα μετα-μοντέλα είναι μαθηματικά μοντέλα ικανά να 

περιγράφουν την σχέση μεταξύ των δεδομένων εισόδου-εξόδου ενός υπολογιστικού μοντέλου 

φυσικής βάσης. Βασικό χαρακτηριστικό τους είναι ότι εφόσον εκπαιδευτούν στην απόκριση του 

υπολογιστικού μοντέλου για διάφορους συνδυασμούς των μεταβλητών εισόδου, μπορούν να 
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γενικεύσουν την ικανότητα πρόβλεψης μιας αντίστοιχης απόκρισης για νέα δεδομένα εισόδου. Η 

εκτέλεση ενός υπολογισμού με τα μετα-μοντέλα γίνεται σε πολύ μικρό υπολογιστικό χρόνο, ενώ 

η ακρίβεια της πρόβλεψης ενισχύεται με την συγκέντρωση μεγάλου αριθμού δειγμάτων εισόδου-

εξόδου από το ακριβές υπολογιστικό μοντέλο.  

 Ωστόσο, σε προβλήματα βελτιστοποίησης η δημιουργία ενός μετα-μοντέλου υψηλής 

ακρίβειας σε ολόκληρο τον χώρο των μεταβλητών απόφασης συνεπάγεται υψηλό υπολογιστικό 

κόστος και καθιστά μη πρακτική την χρήση των μετα-μοντέλων. Η προσέγγιση που συνήθως 

προκρίνεται είναι η αρχική επίτευξη μιας μερικής ακρίβειας των μετα-μοντέλων, η οποία 

βελτιώνεται στην συνέχεια ανάλογα με την μεθοδολογία ανανέωσης του δείγματος εκπαίδευσης 

(δειγματοληψία) του μετα-μοντέλου. Μια αποτελεσματική στρατηγική δειγματοληψίας στοχεύει 

στην αναζήτηση ισορροπίας μεταξύ ευρείας εξερεύνησης (exploration) και στοχευμένης 

εκμετάλλευσης (exploitation) στον χώρο των μεταβλητών απόφασης, στηριζόμενη στην 

πληροφορία εισόδου-εξόδου που παρέχει η προσομοίωση με το υπολογιστικό μοντέλο φυσικής 

βάσης. Μια ικανοποιητική ακρίβεια του μετα-μοντέλου σε συνδυασμό με μια αποτελεσματική 

στρατηγική δειγματοληψίας, αναμένεται να οδηγήσει σε λύσεις πολύ κοντά στο ολικό βέλτιστο 

μειώνοντας δραστικά τον απαιτούμενο υπολογιστικό χρόνο.  

 Η παρούσα διατριβή εστιάζει στην ανάπτυξη μεθόδων βασισμένων σε μετα-μοντέλα για την 

επίλυση προβλημάτων βελτιστοποίησης αντλήσεων σε παράκτιους υδροφορείς. Δίνεται έμφαση 

στην ανάπτυξη και ταυτόχρονα διεξοδική σύγκριση ανάλογων μεθόδων σε προβλήματα 

βελτιστοποίησης με διαφορετική διάσταση αλλά και διαφορετικό αριθμό προϋπολογισμένων 

διαθέσιμων προσομοιώσεων με το υπολογιστικά απαιτητικό αριθμητικό μοντέλο. Το περιεχόμενο 

των κεφαλαίων της διατριβής περιγράφεται παρακάτω: 
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 Στο κεφάλαιο 2 περιγράφεται το φυσικό φαινόμενο της υφαλμύρωσης που αφορά την 

προσομοίωση της παράκτιας υπόγειας ροής και δίνεται μια σύντομη περιγραφή των μαθηματικών 

μοντέλων που χρησιμοποιήθηκαν στην παρούσα έρευνα. Επίσης περιγράφεται η δυνατότητα να 

οριστούν μοντέλα διαφορετικής πιστότητας στην προσομοίωση της υφαλμύρωσης το οποίο 

αξιοποιείται στα επόμενα κεφάλαια κατά την ανάπτυξη των μεθόδων βελτιστοποίησης με  μετα-

μοντέλα. Ως υψηλής πιστότητας μοντέλο υφαλμύρωσης θεωρήθηκε το μοντέλο μεταβλητής 

πυκνότητας και μεταφοράς ρύπου ενώ ως χαμηλότερης πιστότητας αλλά και χαμηλότερου 

υπολογιστικού κόστους θεωρήθηκε το μοντέλο απότομης διεπιφάνειας κατά Strack (1976). 

Το κεφάλαιο 3 περιλαμβάνει αρχικά μια σύντομη βιβλιογραφική ανασκόπηση του 

προβλήματος της βελτιστοποίησης αντλήσεων στους παράκτιους υδροφορείς. Στην συνέχεια, 

ορίζεται μαθηματικά το πρόβλημα βελτιστοποίησης με μη-γραμμικούς περιορισμούς που 

εξετάζεται στην παρούσα διατριβή για την εύρεση των βέλτιστων παροχών άντλησης με την 

χρήση εξελικτικών αλγορίθμων. 

 Το κεφάλαιο 4 περιλαμβάνει μια εκτενή αναφορά στις υπάρχουσες πρακτικές βελτιστοποίησης 

με μετα-μοντέλα σε άλλους κλάδους της μηχανικής αλλά και στην διαχείριση παράκτιων 

υδροφορέων. Γίνεται λεπτομερής συζήτηση για την διαφορά στην χρήση των μετα-μοντέλων όταν 

ενυπάρχουν μη-γραμμικοί περιορισμοί στην διατύπωση του προβλήματος βελτιστοποίησης και 

περιγράφονται οι δυνατότητες διαφορετικών μεθοδολογιών για την στρατηγική δειγματοληψίας 

με το υπολογιστικά απαιτητικό μοντέλο. Στην συνέχεια περιγράφονται τα μετα-μοντέλα που 

επιλέχθηκαν για την παρούσα έρευνα, τα οποία είναι οι συναρτήσεις ακτινικής βάσης (radial basis 

functions) και η μεθοδολογία Kriging. Παρουσιάζονται επίσης τα σχήματα που αναπτύχθηκαν για 

την αναζήτηση βέλτιστης λύσης με χρήση μετα-μοντέλων τα οποία συνοψίζονται στα ακόλουθα: 
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1. Σχήμα βελτιστοποίησης βασισμένο σε μετα-μοντέλα ενσωματωμένο στις διαδικασίες 

εξελικτικού αλγόριθμου και εφαρμογή στρατηγικής στοχευμένης εκμετάλλευσης. 

2. Σχήμα βελτιστοποίησης βασισμένο σε πολλαπλά μετα-μοντέλα (επιλογή καλύτερου 

μετα-μοντέλου ή δημιουργία συνόλου μετα-μοντέλων με υπολογισμό βέλτιστων 

βαρών) ενσωματωμένο στις διαδικασίες εξελικτικού αλγόριθμου και εφαρμογή 

στρατηγικής στοχευμένης εκμετάλλευσης. 

3. Αλγόριθμοι βελτιστοποίησης βασισμένοι σε μετα-μοντέλα και στρατηγική 

αναζήτησης ισορροπίας μεταξύ ευρείας εξερεύνησης και στοχευμένης εκμετάλλευσης. 

4. Βελτιστοποίηση βασισμένη σε μοντέλα υφαλμύρωσης πολλαπλής πιστότητας με 

χρήση της μεθοδολογίας co-Kriging. 

Στο κεφάλαιο 5 πραγματοποιούνται εκτεταμένες συγκρίσεις των μεθοδολογιών που 

αναπτυχθήκαν, σε προβλήματα βελτιστοποίησης διαφορετικής διάστασης με χρήση υποθετικών 

μοντέλων παράκτιων υδροφορέων. Όλες οι συγκρίσεις βασίστηκαν σε πολλαπλές ανεξάρτητες 

δοκιμές επίλυσης της βελτιστοποίησης προκειμένου να αποδοθεί μια στατιστική σημαντικότητα 

στα αποτελέσματα. Οι αδυναμίες και οι δυνατότητες των μεθοδολογιών αναλύονται τόσο μέσω 

των στατιστικών χαρακτηριστικών του δείγματος όσο και με χρήση κριτηρίων που αξιολογούν 

την πορεία της επίδοσης των αλγορίθμων καθώς αυξάνονται τα δείγματα με το υπολογιστικά 

απαιτητικό μοντέλο. Τέλος, η βελτιστοποίηση βασισμένη σε μοντέλα πολλαπλής πιστότητας με 

χρήση της μεθοδολογίας co-Kriging, εφαρμόζεται ξεχωριστά υποθέτοντας σενάρια όπου η 

δυνατότητα προσθήκης νέων δειγμάτων είναι εξαιρετικά περιορισμένη. Ο συνδυασμός των 

μοντέλων πολλαπλής πιστότητας αφορά το μοντέλο μεταβλητής πυκνότητας και μεταφοράς 

ρύπου και το μοντέλο απότομης διεπιφάνειας κατά Strack (1976). 
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Βάσει των αποτελεσμάτων που παρουσιάστηκαν στο κεφάλαιο 5, ένα υποσύνολο των 

μεθοδολογιών με τις καλύτερες επιδόσεις αξιοποιήθηκε στο κεφάλαιο 6  για την εύρεση βέλτιστων 

παροχών άντλησης σε μοντέλο πραγματικού παράκτιου υδροφορέα, συγκεκριμένα στο Βαθύ 

Καλύμνου. Οι προτεινόμενες μεθοδολογίες παρείχαν λύσεις στην περιοχή του ολικού βέλτιστου 

όταν αυτές συγκρίθηκαν με την βέλτιστη λύση που υπολογίσθηκε με το αριθμητικό μοντέλο 

μεταβλητής πυκνότητας και μεταφοράς ρύπου. 

Το κεφάλαιο 7 παρουσιάζει μια σύνοψη των αποτελεσμάτων από την εφαρμογή των 

προτεινόμενων μεθοδολογιών σε υποθετικούς και πραγματικούς υδροφορείς. Αναφέρονται οι 

προτάσεις για την εφαρμογή των μετα-μοντέλων στην διαχείριση παράκτιων υδροφορέων όπως 

προέκυψαν από την παρούσα έρευνα και συζητιούνται δυνατότητες περαιτέρω εμβάθυνσης στην 

εν λόγω ερευνητική περιοχή. 

Όσον αφορά την συμβολή της παρούσας εργασίας στην επιστημονική περιοχή της διαχείρισης 

των υδατικών πόρων, αναφέρονται παρακάτω συνοπτικά τα κύρια σημεία πρωτοτυπίας αλλά και 

προτάσεις ή πρακτικές που προτείνονται ως αποτέλεσμα της συγκεκριμένης έρευνας. Ως κύριος 

στόχος της εργασίας είναι η ανάπτυξη νέων αποτελεσματικών σχημάτων προσομοίωσης-

βελτιστοποίησης με χρήση μετα-μοντέλων, στην διαχείριση παράκτιων υδροφορέων. Σημαντικό 

βαθμό πρωτοτυπίας παρουσιάζει η μεθοδολογία LR-RSRBF (Local Refinement Random Search 

with RBF models) που αναπτύχθηκε στα πλαίσια της διατριβής. Η LR-RSRBF υλοποιεί μια 

αλγοριθμική διαδικασία προσαρμοστικής αναζήτησης ισορροπίας μεταξύ ευρείας εξερεύνησης 

και στοχευμένης εκμετάλλευσης, συνδυάζοντας αποτελεσματικά κριτήρια και βήματα 

προηγούμενων μεθοδολογιών βελτιστοποίησης με μετα-μοντέλα. Η ύπαρξη μη-γραμμικών 

περιορισμών στο πρόβλημα βελτιστοποίησης αντλήσεων που εξετάζεται, αντιμετωπίστηκε 

επιτυχώς με το εν λόγω σχήμα και την χρήση συναρτήσεων ακτινικής βάσης (RBF) ως μετα-
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μοντέλων. Προέκυψαν αξιόπιστες λύσεις στην περιοχή του ολικού βέλτιστου, ικανοποιώντας 

ταυτόχρονα την ανάγκη για μικρό αριθμό προσομοιώσεων με το υπολογιστικά απαιτητικό 

μοντέλο μεταβλητής πυκνότητας και μεταφοράς ρύπου. Επιπλέον η προτεινόμενη μεθοδολογία 

συγκρίνεται επαρκώς με δημοσιευμένες τεχνικές βελτιστοποίησης με χρήση μετα-μοντέλων που 

χαίρουν ευρείας αποδοχής στην αντίστοιχη επιστημονική περιοχή για προβλήματα που 

περιλαμβάνουν μη-γραμμικούς περιορισμούς (Γράφημα 1). 

 

Γράφημα 1: Δειγματοληπτικός μέσος όρος (από 30 ανεξάρτητες δοκιμές βελτιστοποίησης) της σχετικής 

βελτίωσης της απόδοσης του αλγορίθμου έναντι του αριθμού προσομοιώσεων με το μοντέλο μεταβλητής 

πυκνότητας και μεταφοράς ρύπου.  Όταν ο λόγος  maxIr I I=  πλησιάζει την τιμή 1 για όσο το δυνατόν 

μικρότερο αριθμό προσομοιώσεων, είναι ένδειξη ότι ο αλγόριθμος είναι αποτελεσματικός στην προσέγγιση 

λύσεων στην περιοχή του ολικού βέλτιστου και αποδοτικός όσον αφορά την ταχύτητα εντοπισμού τους. 

Το παραπάνω γράφημα αφορά πρόβλημα βελτιστοποίησης παροχών αντλήσεων 20 πηγαδιών, θεωρώντας 

την τιμή 300 ως τον μέγιστο επιτρεπτό αριθμό προσομοιώσεων με το μοντέλο μεταβλητής πυκνότητας και 
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μεταφοράς ρύπου. Η προτεινόμενη μεθοδολογία LR-RSRBF παρουσιάζει καλύτερη απόδοση σε σχέση με 

τους συγκρινόμενους αλγορίθμους στο συγκεκριμένο πρόβλημα που εξετάστηκε. 

Σημαντικό βαθμό πρωτοτυπίας παρουσιάζουν επίσης τα σχήματα προσομοίωσης-

βελτιστοποίησης που αναπτύχθηκαν στην παρούσα διατριβή για μαθηματικά μοντέλα 

υφαλμύρωσης πολλαπλής πιστότητας. Στην διεθνή βιβλιογραφία σε διάφορους κλάδους της 

μηχανικής, η σύνδεση δύο ή και περισσότερων μοντέλων διαφορετικής πιστότητας που 

προσομοιώνουν ένα σύστημα, παρουσιάζει αυξανόμενο ενδιαφέρον ιδιαίτερα για τις περιπτώσεις 

που η προσομοίωση με ένα αριθμητικό μοντέλο υψηλής πιστότητας είναι πολύ υψηλού 

υπολογιστικού κόστους. Η βελτιστοποίηση με μοντέλα πολλαπλής πιστότητας στηρίζεται στην 

θεώρηση πως μοντέλα φυσικής βάσης ή ακόμα και εμπειρικές σχέσεις χαμηλότερης πιστότητας 

αλλά και χαμηλότερου υπολογιστικού κόστους, μπορούν να παρέχουν χρήσιμη πληροφορία για 

την γενική απόκριση του συστήματος, παρά την έλλειψη ακρίβειας σε σχέση με το λεπτομερές 

αλλά και υπολογιστικά ακριβό μοντέλο φυσικής βάσης. Κατά αυτόν τον τρόπο, τα χαμηλότερης 

πιστότητας μοντέλα χρησιμοποιούνται για ένα μεγάλο αριθμό προσομοιώσεων ενώ ένας 

σημαντικά μικρότερος αριθμός προσομοιώσεων με το μοντέλο υψηλής πιστότητας διορθώνει τις 

αποκρίσεις των μοντέλων χαμηλής πιστότητας. Αυτή η προσέγγιση, που συνήθως εφαρμόζεται 

ως μια επαναληπτική διαδικασία, δημιουργεί ένα μετα-μοντέλο το οποίο ενσωματώνει γνώση από 

μοντέλα φυσικής βάσης διαφόρων επίπεδων πιστότητας. Θεωρείται ότι ως μέθοδος προσφέρει 

πλεονεκτήματα στις περιπτώσεις που οι διαθέσιμες προσομοιώσεις με το μοντέλο υψηλής 

πιστότητας είναι μη πρακτικό να υπερβούν έναν ορισμένο αριθμό ή δεν επαρκούν για την 

ανάπτυξη συμβατικών μεθόδων βελτιστοποίησης με μετα-μοντέλα. 

 Όσον αφορά στην βελτιστοποίηση πολλαπλής πιστότητας, υπάρχει ένας μικρός αριθμός 

δημοσιεύσεων στην επιστημονική περιοχή της διαχείρισης των υδατικών πόρων ενώ ειδικότερα 
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στην διαχείριση παράκτιων υδροφορέων μια πρώτη παρουσίαση ανάλογων μεθόδων έγινε στις 

εργασίες Christelis and Mantoglou (2016) και Christelis and Mantoglou (2019). Στην παρούσα 

διατριβή παρουσιάζεται ένα νέο σχήμα βελτιστοποίησης με μοντέλα πολλαπλής πιστότητας που 

συνδυάζει το υψηλής πιστότητας μοντέλο μεταβλητής πυκνότητας και μεταφοράς ρύπου με το 

χαμηλότερης πιστότητας αλλά και υπολογιστικά μη απαιτητικό μοντέλο απότομης διεπιφάνειας 

κατά Strack (1976). Η προτεινόμενη μεθοδολογία αναπτύχθηκε σε ένα σχήμα προσαρμοστικής-

αναδρομικής δειγματοληψίας αξιοποιώντας τις δυνατότητες της μεθοδολογίας co-Kriging για την 

ανάπτυξη μετα-μοντέλων. Τα αποτελέσματα που προέκυψαν είναι ιδιαίτερα ενθαρρυντικά για την 

χρήση της προτεινόμενης μεθοδολογίας σε προβλήματα βελτιστοποίησης αντλήσεων παράκτιων 

υδροφορέων με πολύ υψηλό υπολογιστικό κόστος. 

 Όπως φαίνεται στον Πίνακα 1, η μεθοδολογία AR-coKRG που προτείνεται στην παρούσα 

διατριβή παρείχε ικανοποιητικές λύσεις με εύρεση τοπικών ακρότατων για υπόθεση ακραίου 

σεναρίου όπου μόνο 21 προσομοιώσεις ήταν διαθέσιμες με το μοντέλο μεταβλητής πυκνότητας 

και μεταφοράς ρύπου. Τα δεδομένα υψηλής πιστότητας από το μοντέλο μεταβλητής πυκνότητας 

και μεταφοράς ρύπου συνδυάστηκαν με τα δεδομένα χαμηλότερης πιστότητας που προέκυψαν 

από έναν αριθμό 200 προσομοιώσεων με το μοντέλο απότομης διεπιφάνειας. Η μέθοδος 

συγκρίθηκε έναντι του αλγορίθμου ConstrLMSRBF που αναπτύσσει μετα-μοντέλα για ένα μόνο 

επίπεδο πιστότητας και θεωρείται ιδιαίτερα αποτελεσματικός στο πρόβλημα βελτιστοποίησης 

αντλήσεων παράκτιων υδροφορέων (Christelis and Mantoglou 2018). Τα αποτελέσματα δείχνουν 

πως για ένα σύνολο 30 ανεξάρτητων δοκιμών βελτιστοποίησης, ο δειγματοληπτικός μέσος όρος 

των λύσεων με την μεθοδολογία AR-coKRG υπερτερεί έναντι των άλλων προσεγγίσεων για 

περιορισμένο αριθμό προσομοιώσεων με το μοντέλο μεταβλητής πυκνότητας και μεταφοράς 

ρύπου. 
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Πίνακας 1:  Συγκριτικά αποτελέσματα των βέλτιστων λύσεων μεταξύ της μεθοδολογίας AR-coKRG με 

αυτές που προέκυψαν από το χαμηλότερης πιστότητας μοντέλο απότομης διεπιφάνειας (EAS-SH) και τον 

αλγόριθμο ConstrLMSRBF που χρησιμοποιεί μετα-μοντέλα για ένα μόνο επίπεδο πιστότητας. Τα 

αποτελέσματα αφορούν πρόβλημα βελτιστοποίησης παροχών αντλήσεων 10 πηγαδιών. Οι καλύτερες 

λύσεις απεικονίζονται με μαύρο φόντο ενώ το «πραγματικό» βέλτιστο με το υψηλής πιστότητας μοντέλο 

μεταβλητής πυκνότητας και μεταφοράς ρύπου (EAS-VDST) αφορά 4967 προσομοιώσεις. 

Optimization method Worst Best Mean StDev VDST 

runs 

Sharp 

runs 

Time (hr) 

EAS-VDST  4857.5   4967 NA* 14.45 

EAS-SH  4049.2   NA* 4164 1.6 

AR-coKRGCONS 3966.3 4815.1 4605.0 187.38 21 200 0.56 

ConstrLMSRBF 4004.8 4740.6 4397.3 205.94 21 NA* 0.095 

*  NA: Not Applicable 

Ενδιαφέρον συμπέρασμα αυτής της εργασίας αποτελεί το ότι για έναν μέτριο αριθμό 

μεταβλητών απόφασης (π.χ. 10 πηγάδια άντλησης), η χρήση απλών μετα-μοντέλων, όπως οι 

συναρτήσεις ακτινικής βάσης κυβικού τύπου, με στρατηγική στοχευμένης εκμετάλλευσης 

ενσωματωμένη στις διαδικασίες εξελικτικού αλγόριθμου, αποδίδει λύσεις στην περιοχή του 

ολικού βέλτιστου μειώνοντας δραστικά τον υπολογιστικό χρόνο κατά  90-95%. Η ίδια στρατηγική 

αναπτύχθηκε και για την περίπτωση συνδυασμού πολλαπλών μετα-μοντέλων (συναρτήσεις 

ακτινικής βάσης και Kriging) που, κατά την γνώση των συγγραφέων, αποτελεί και την πρώτη 

εφαρμογή αυτής της μεθοδολογίας στην διαχείριση παράκτιων υδροφορέων (Christelis et al. 

2019). Πρέπει επίσης να σημειωθεί ότι η παρούσα διατριβή παρουσίασε την αποτελεσματικότητα 

και τις συγκρίσεις των διαφόρων μεθοδολογιών βάσει πολλαπλών ανεξάρτητων δοκιμών 

βελτιστοποίησης η σημασία των οποίων έχει γενικότερα παραλειφθεί σε προηγούμενες μελέτες 

στο συγκεκριμένο αντικείμενο, παρά το ότι κρίνεται αναγκαία για την διερεύνηση της 

αμεροληψίας των αλγορίθμων ως προς την περιοχή εκκίνησης της διαδικασίας αναζήτησης 
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λύσεων. Επιχειρήθηκε επίσης μια εκτενής ανασκόπηση των μεθοδολογιών βελτιστοποίησης με 

χρήση μετα-μοντέλων τόσο στους διάφορους κλάδους της μηχανικής όσο και από τον χώρο της 

διαχείρισης των υδατικών πόρων. Ως αποτέλεσμα αυτής της ανάλυσης, επιμέρους τεχνικές που 

υιοθετούνται ως state-of-the-art μελετήθηκαν και όσες από αυτές κρίθηκαν κατάλληλες για τα 

προβλήματα βελτιστοποίησης αντλήσεων εντάχθηκαν στην παρούσα έρευνα. Σημειώνεται ότι 

στην διατριβή δεν επιχειρείται κάποια εμβάθυνση από την σκοπιά της μαθηματικής περιγραφής 

των μετα-μοντέλων και της θεωρίας βελτιστοποίησης. Ο κύριος σκοπός της εργασίας είναι να 

διερευνηθούν οι δυνατότητες της βελτιστοποίησης με χρήση μετα-μοντέλων στα προβλήματα 

διαχείρισης παράκτιων υδροφορέων και στο πως εξειδικεύονται λαμβάνοντας υπόψη τις 

ιδιαιτερότητες της προσομοίωσης του φυσικού συστήματος της παράκτιας ροής.
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Chapter 1  

Introduction 

1.1 Background 

Groundwater is often the main resource of freshwater in many coastal regions around the world. 

This is particularly the case for arid and semi-arid areas due to low rainfall and limited availability 

of surface water bodies. Approximately 60% of the world’s population resides within coastal zones 

and exploits aquifers for domestic water supply, agricultural and industrial purposes (Essink 2001). 

As coastal groundwater is in hydraulic contact with seawater, uncontrolled groundwater 

abstraction is considered as the main driver for triggering the landward movement of seawater 

(Ferguson and Gleeson 2012). This phenomenon, known as seawater intrusion (SWI), results in 

the reduction of freshwater volumes and in the contamination of pumping wells. To prevent and 

manage SWI in coastal aquifers, several mitigation actions have been proposed such as, freshwater 

injection barriers, artificial recharge mechanisms or groundwater abstraction control 

(Georgopoulou et al. 2001; Schwartz and Zhang 2003; Mantoglou et al. 2004; Pool and Carrera 

2010). The present thesis focuses on the development of optimal groundwater abstraction 

strategies to control SWI by means of simulation-optimization methods. 

 Simulation-optimization techniques have long been used in coastal aquifer management to 

deliver sustainable groundwater extraction plans. A standard class of such applications is the 

pumping optimization of coastal aquifers under environmental constraints which protect the 

coastal groundwater resources. The main objective is to control the landward movement of 
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seawater due to pumping while satisfying the demands for freshwater. The implementation of a 

simulation-optimization routine to address this management problem is based on the coupling of 

a coastal aquifer flow model with an optimization algorithm. There is a wide body of literature in 

coastal aquifer management which combines seawater intrusion models with a variety of 

optimization algorithms and different formulations of the objective functions and constraints. 

Many of those methods are summarized in the review papers of Singh (2014) and Sreekanth and 

Datta (2015). The formulation of such management problems involves two primary decisions: 

1. To define the level of model fidelity which would be considered adequate to simulate 

seawater intrusion for the coastal aquifer under study. 

2. To select an appropriate optimization algorithm which is capable to find a near global 

optimum, given the mathematical formulation of the pumping optimization problem. 

The next two sections shortly discuss these decisions whereas more details are given in the 

following chapters. 

1.2 The fidelity concept in seawater intrusion modelling 

As is the case with many other complex physical systems, a variety of mathematical models is also 

available to simulate coastal aquifer flow. Not all of them describe the coastal aquifer processes in 

the same detail and a hierarchy can be defined based on their complexity and accuracy. Variable 

density flow and solute transport (VDST) numerical models simulate the density variability in 

space and the saltwater movement which constitute key features for the realistic prediction of SWI 

(Simmons 2005; Abarca et al. 2007; Dausman et al. 2010; Pool and Carrera 2011; Dokou and 

Karatzas 2012). Thus, VDST models represent a high-fidelity choice for simulating SWI. A short 

classification may set as low-fidelity SWI models those that neglect dispersion mechanisms but 

simulate saltwater movement (Essaid 1986) or incorporate density effects in coastal aquifer flow 
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(Bakker 2003). An additional simplification and thus an even low-fidelity level, can be introduced 

by those sharp interface models which assume static seawater (e.g., Strack 1976; Mantoglou et al 

2004; Koussis et al. 2012). Obviously, depending on the specifications of each SWI modelling 

study, further refinements within the same fidelity level can be defined. For example, VDST 

models with a coarser discretization, two-dimensional instead of three-dimensional VDST models, 

steady-state flow modelling instead of transient flow, etc.  

1.3 Problem statement and optimization algorithm selection 

In the present thesis, focus is given on single-objective pumping optimization problems of coastal 

aquifers. Here, it is described as a nonlinear constrained optimization problem of the following 

form: 

 

( )

( )

min

. . 0, 1,...,

,

i

k

b b

f

s t g i k

l u

 =

  

x

x

x x

 (1.1) 

where f , ig  represent the deterministic objective function and the ith  nonlinear inequality 

constraint function, respectively. The decision variable vector x  takes values in the k −

dimensional continuous space  , k

b bl u  . A real vector *
x  is sought so that ( ) ( )* minf f=x x  

subject to ( . .s t ) the constraints defined in problem (1.1). It is assumed that the derivatives of f  

and ig  are not available, the bound constraints bl  and bu  define the search space of the 

optimization problem while the set of the inequality constraints , 1,...,ig i k=  define the feasible 

solution space. 

 Nonlinear programming methods, such as sequential quadratic programming (SQP), that 

directly handle the constraint functions, have been applied in past coastal aquifer management 
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studies. However, it has been observed that they might easily get trapped in local optima 

(Mantoglou et al. 2004). Pumping optimization problems of coastal aquifers, have been generally 

identified as a non-convex optimization problem with multiple local optima and the relevant 

literature suggests the use of global optimizers based on evolutionary principles (Ketabchi and 

Ataie-Ashtiani 2015). Thus, evolutionary algorithms have been increasingly used for coastal 

aquifer management problems although they require much larger number of objective function 

evaluations compared to the gradient-based optimizers (Mantoglou et al. 2004; Sreekanth and 

Datta 2015). Nevertheless, and depending on the optimization problem complexity and 

dimensionality, some evolutionary algorithms may increase the computational cost whilst failing 

to locate near global optimal solutions for SWI management problems (Karpouzos and 

Katsifarakis 2013; Ketabchi and Ataie-Ashtiani 2015).  

1.4 Motivation 

It is acknowledged that the combination of VDST models with evolutionary algorithms can 

potentially deliver a high-fidelity optimization outcome (Sreekanth and Datta 2015; Ketabchi and 

Ataie-Ashtiani 2015). However, the computationally burdensome runtimes of VDST simulations 

hinder the application of standard simulation-optimization routines for coastal aquifer 

management. The optimization task can be further challenged by the presence of many decision 

variables and nonlinear constraints which in turn increase the function evaluations required by the 

evolutionary algorithm to converge. As a result, solving a pumping optimization problem of 

coastal aquifers may lead to a computational cost of many hours, days or even months in the case 

of extremely time-consuming simulations.  

 A pragmatic approach to confront the computational cost in such cases, is to employ fast 

approximation models, commonly called surrogate models or metamodels, to search for promising 
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solutions in the decision variable search space. Surrogate models are initially trained with input-

output data obtained from simulations with the physics-based model. This is an essential step 

where the metamodels acquire a certain accuracy to predict outputs of the original model to unseen 

input data. Then, the metamodels may be used in lieu of the computationally expensive physics-

based model to explore the search space. However, due to limitations on the computational cost, 

it is unlikely that a single initial training set will provide a globally accurate surrogate model. Thus, 

a framework should be designed to efficiently sample the physics-based model at additional points 

that are considered informative for updating the surrogate models while keeping the number of 

model simulations at a minimum. This framework is commonly implemented in an iterative 

fashion and constitutes the basic structure of an online surrogate-based optimization (SBO) 

method. The advantages of SBO have been well-documented and acknowledged in engineering 

optimization literature (Forrester and Keane 2009; Asher et al. 2015; Bhosekar and Ierapetritou 

2018; Yondo et al. 2018). In general, a fair metamodel accuracy combined with an effective 

sampling strategy can possibly steer the SBO algorithm to locate near optimal solutions in a 

fraction of the time required with the costly physics-based model. Nevertheless, every engineering 

optimization problem involves unique features which may favor the use of specific surrogate 

modelling approaches or their use might not even recommended at all (Razavi et al. 2012a). 

 Although SBO has gained increased interest in coastal aquifer management literature during 

the last 15 years, there are still techniques and approaches which are largely unexplored. The 

present thesis addresses specific issues in the implementation of SBO methods for the problem of 

pumping optimization of coastal aquifers. These are mainly focused on the following two aspects 

of SBO methods and set the motivation for this work. 
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 First, the application and development of SBO frameworks which balance exploration and 

exploitation has not received the required attention in coastal aquifer management. A more crude 

and aggressive approach evaluates a candidate solution with the physics-based model only at the 

current optimum located by the surrogate models. This strategy aims to quickly improve the 

accuracy of the metamodel in the optimum region (exploitation step). However, the global 

improvement of the metamodel is neglected and depending on the problem at hand, the search 

might get stuck in local optima (Forrester et al., 2008). Evaluating certain points with the physics-

based model away from the current optimum (exploration step) can improve the global accuracy 

of the metamodel and it can potentially locate better solutions as new samples are added. Based 

on findings in the engineering optimization literature, such methods can converge to high quality 

solutions using a relatively small number of evaluations with the physics-based model. This is 

particularly desirable due to the generally time-consuming VDST simulations. Therefore, the 

present thesis focused on the development and application of SBO methods that balance 

exploration with exploitation and investigated their performance against less comprehensive infill 

strategies. 

 Second, there is a gap in coastal aquifer management research regarding multi-fidelity 

optimization methods. There is often a variety of mathematical models that describe a physical 

process at different levels of fidelity. The idea pursued by multi-fidelity methods in general, is to 

exploit information from available low-fidelity models which usually are much faster than the 

computationally intensive high-fidelity model. Multi-fidelity optimization is considered 

advantageous over the conventional SBO methods when only a few high-fidelity simulations can 

be conducted in a manageable computational time. In those cases, either the number of simulations 

might not be sufficient to train a surrogate model or the available high-fidelity simulations after 
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the initial surrogate model training, are too few to successfully apply a standard SBO framework. 

Several models of lower fidelity have been presented in the literature to simulate coastal aquifer 

flow in a computationally affordable manner (e.g. Strack 1976; Essaid 1986; Bakker 2003; 

Mantoglou 2003; Bakker 2006; Pool and Carrera 2011; Koussis et al. 2012; Koussis et al. 2015; 

Lu et al. 2015; Lu et al. 2016; Werner 2017). Yet, only a few papers have combined low-fidelity 

(LF) and high-fidelity (HF) data to solve pumping optimization problems of coastal aquifers (e.g. 

Christelis and Mantoglou 2016; Christelis and Mantoglou 2017; Christelis and Mantoglou 2019; 

Dey and Prakash 2020). In the present thesis, a new multi-fidelity optimization framework is 

developed for coastal aquifer management to tackle hypothetical cases where only limited high-

fidelity data can be obtained (i.e., less than 30 simulations available with the VDST model). 

1.5 Key objectives, assumptions, and thesis overview 

The main aim of the present thesis is to develop new SBO methods that provide a computationally 

affordable route to high-fidelity solutions for pumping optimization problems of coastal aquifers. 

Furthermore, it is anticipated that some conclusions and methodologies from the present analysis 

can be generalized and be applied for similar computationally expensive optimization problems in 

groundwater management. The accomplishment of the above objectives is pursued through: 

• The development of efficient and effective SBO methodologies using appropriate surrogate 

models and sampling strategies. 

• The development of SBO methods which provide near optimal solutions using a relatively 

small number of VDST simulations which is convenient for real-world pumping 

optimization problems. 
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• The exhaustive comparison of the various SBO methods to identify limitations and 

advantages depending on the dimensionality and the characteristics of the present 

optimization problem. 

The analysis conducted in this thesis involves hypothetical as well as real-world coastal aquifer 

case studies. The seawater intrusion modelling and the optimization methods were based on the 

following assumptions: 

• Seasonal variations of recharge are not considered in the coastal aquifer simulations. 

• The parameter uncertainty in coastal aquifer simulations is not considered.  

• Constant pumping rates over the specified management plan. 

• Two levels of model fidelity are employed to simulate seawater intrusion. 

• The seawater intrusion simulation models will not crash for any input  ,b bl ux . 

The thesis is organized as follows. Chapter 2 presents the mathematical modelling of seawater 

intrusion for VDST and sharp interface models. In chapter 3, previous works in coastal aquifer 

management are discussed and the mathematical formulation of the present optimization problem 

is presented, along with the specifications related to each simulation model. Chapter 4 includes a 

detailed discussion of metamodelling in the broader engineering optimization literature as well as 

in the field of coastal aquifer management. Furthermore, the chosen surrogate models are presented 

along with the details of the SBO frameworks implemented in this thesis. To the best of our 

knowledge, the proposed SBO algorithms are presented for the first time in coastal aquifer 

management. In chapter 5, we demonstrate and discuss the results based on a thorough comparison 

of the various SBO methods under alternative computational budgets (the total number of runs 
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with the VDST model) and different dimensionalities of the pumping optimization problem (the 

number of decision variables). The main issues which are discussed include: 

1) The importance of choosing appropriate sampling strategies as the dimensionality of the 

optimization problem increases.  

2) To what extent the sophistication of the developed surrogate models affects the 

optimization outcome.  

3) The choice of approximating each nonlinear constraint function using an individual 

surrogate model over that of a single surrogate model of the penalized objective function 

and what is the impact on the efficiency and effectiveness of the SBO methods. 

4) How multi-fidelity optimization is compared to conventional SBO methods when only a 

few VDST model runs are available.  

 In chapter 6, the best SBO methods, as identified from the comparisons conducted in 

chapter 5, are employed to solve a real-world pumping optimization problem for a coastal 

aquifer in the Greek island of Kalymnos. Finally, chapter 7 discusses the main conclusions of 

this thesis and presents some thoughts for further research and future applications of the 

developed SBO methods. 
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Chapter 2  

Seawater intrusion modelling 

2.1 Conceptual models 

The mathematical formulation of SWI models is mainly based on two different conceptualizations 

of the freshwater/saltwater interactions. As discussed previously, the model fidelity is also related 

to these conceptual models. Accordingly, the high-fidelity (HF) modelling approach aims to a 

more realistic representation of coastal aquifer flow where between the two fluids a transition zone 

is formed and is controlled by hydrodynamic dispersion mechanisms. Within this zone the fluid 

density and salt concentration gradually vary from that of freshwater to seawater. The lower-

fidelity (LF) modelling approach is a simplification of the physical system where the dispersion 

zone is idealized as a sharp interface. It is a reasonable approximation in regional coastal aquifers 

where the dispersive zone is narrow compared to the scale of the problem (Mantoglou et al. 2004). 

The sharp interface approximation can be either formulated on the assumption that only flow in 

the freshwater zone is modelled (one-fluid approach) or on the two-fluid approach where a coupled 

system of flow equations in the salt and fresh water zones is solved (Essaid 1986). They are both 

simplifications of the dispersive flow, as simulated by the VDST models, however, the one-fluid 

approach is mostly limited to reproduce long term responses in coastal aquifer systems. Figure 2-1 

demonstrates the two conceptual approaches for modelling seawater intrusion in coastal aquifers. 
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Figure 2-1 A typical unconfined coastal aquifer under natural undisturbed conditions considering a 

dispersive zone (left) and a sharp interface (right). 

2.2 Mathematical modelling of seawater intrusion 

In this thesis, the VDST models and the one-fluid sharp interface models based on the flow 

potential formulation of Strack (1976) are utilized. The two modelling approaches have been 

widely used to study several aspects of coastal aquifer processes. Some examples are:  

• The influence of hydraulic and transport properties on SWI (e.g. Dagan and Zeitoun 1998; 

Simmons et al. 2001; Al-Bitar and Ababou 2005; Abarca et al. 2007; Kerrou and Renard 

2010; Chang and Yeh 2010; Walther et al. 2017).  

• The impacts of climate change on coastal aquifer systems for various sea-level rise 

scenarios (Bobba 1993; Sherif and Singh 1999; Werner and Simmons 2009; Watson et al. 

2010; Chang et al. 2011; Webb and Howard 2011; Mazi et al. 2013; Yang et al. 2015).  

• The response of coastal aquifers to seasonal variations of groundwater recharge and 

pumping (e.g. Mahesha and Nagaraja 1996; Paniconi et al. 2001; Michael et al. 2005;  

Gingerich and Voss 2005; Prieto et al. 2006; Kopsiaftis et al. 2009; Mazi et al. 2014; 

Kopsiaftis et al. 2017).  

The following sections present in more detail the mathematical formulation of these SWI models.  
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2.2.1 Variable density flow and solute transport models 

A coupled system of nonlinear partial differential equations governs the mathematical description 

of the transition/mixing zone between freshwater and saltwater (Pool and Carrera 2011). The 

solution of this coupled system of equations is obtained by applying numerical models and a 

detailed analysis of the mathematical formulation can be found in Kolditz et al. (1998). Here, a 

brief description of the governing equations is presented as per Frind (1982): 
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  (2.2) 

 In flow Equation (2.1), the variable fh  L  is the equivalent freshwater head defined as: 

 

 ( )f fh p g z= +  (2.3) 

 where p
1 2ML T− −    is the fluid pressure, f 3ML−    is the reference freshwater fluid density 

while r is the relative density defined as: 

 1r

f





= −  (2.4) 

Also, g
2LT −    is the gravity acceleration constant and z  L  is the elevation above horizontal 

datum. ijK 1LT −    are the coefficients of the freshwater hydraulic conductivity tensor, Q
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3 1 3( )L T L− −    is a volumetric fluid source/sink term per unit aquifer volume, t  T  is time, 1jn =  

indicates the vertical direction, 0jn =  indicates the horizontal directions and sS 1L−    is the 

specific storage. Under isothermal conditions and neglecting viscosity effects, fluid density 

depends only on concentration and this relation can be defined as: 

 ( )1f c  = +  (2.5) 

where  3ML−    is the fluid density, ( )max 1f  = −  is a constant derived from the maximum 

fluid density max  (seawater density) and c  is the relative concentration (dimensionless) which 

varies between 0 and 1 for fluid densities varying from f  to max .  

 Similarly, the transport equation (2.2), is conveniently written in terms of the dimensionless 

relative concentration c  −  where ijD  2 1L T −    are the coefficients of the dispersion tensor and 

cQ 3 1 3( )L T L− −    is a solute source/sink term per aquifer volume. The fluid velocity iv  1LT −    is 

defined as: 

 i
i

q
v


=  (2.6) 

where    −  is the porosity while the Darcy flux iq 1LT −    is expressed in the case of variable-

density flow as: 

 
f
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  (2.7) 
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Equation (2.7) describes the relation of fluid flow and solute transport based on the Boussinesq 

approximation where the only changes in density appear in the buoyancy term g  of  Darcy’s 

flow in the z-direction. 

 Some examples of numerical codes that can simulate variable-density flow and solute transport 

are SUTRA (Voss, 1984), CODESA-3D (Gambolati et al. 1999), SEAWAT (Guo and Langevin 

2002), FEFLOW (Diersch and Kolditz 2002), HydroGeoSphere (Therrien, et al., 2006), etc. In the 

present thesis the academic version of HydroGeoSphere code (HGS) was used to simulate seawater 

intrusion. The HGS code uses the control volume finite element method to solve the above system 

of partial differential equations and employs a Picard iteration scheme with adaptive time-stepping 

to cycle between the solutions of the flow equation and the transport equation (Thompson et al. 

2007).  

 It is noted that VDST modelling is a computationally expensive task, as fine spatial and time 

discretizations are required for accurate representation of the flow and transport processes. To take 

full advantage of the simulation capabilities of VDST models, plenty of field data are required and 

together with the associated computational cost, their application in regional-scale coastal aquifer 

models is not straightforward (Sanford and Pope 2010). Nevertheless, VDST models have been 

successfully used in the past for gaining insights in real-world coastal aquifers (e.g. Gingerich and 

Voss 2005; Kopsiaftis et al. 2009; Kerrou et al. 2013; Giambastiani et al. 2017).  
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2.2.2 Sharp interface models 

In the present thesis, the sharp interface model based on the single-potential formulation of Strack 

(1976) is also used to simulate SWI as a low-fidelity model. It is based on the Ghyben-Herzberg 

relation and Dupuit approximation and neglects density variability in space as well as mixing 

between freshwater and saltwater. The saltwater is assumed static and aquifer flow is assumed 

horizontal and steady-state. The depth of the interface is estimated using the Ghyben-Herzberg 

approximation which assumes that horizontally flowing freshwater floats above static saltwater 

(Essaid 1986b). 

 

Figure 2-2 Schematic vertical cross-sections of a confined (upper figure) and an unconfined (lower figure) 

coastal aquifer, based on the sharp interface approximation. 
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As shown in Figure 2-2, two vertical cross-sections for both confined and unconfined coastal 

aquifers are presented, and a sharp interface is assumed to separate freshwater from saltwater. Two 

distinct zones are developed in both coastal aquifer types. In zone 1, the aquifer behaves as a 

confined (upper view) or as an unconfined (lower view) while in zone 2 a freshwater lens floats 

above the static saltwater layer. In zone 1, fresh groundwater is pumped by fully penetrating 

pumping wells. Variable d  L  represents the depth from sea level to the aquifer base and variable 

( ),x y  L  is the freshwater depth from sea level to the interface. Point   indicates the point 

where the interface intersects the base of the coastal aquifers. It is usually called “toe” of seawater 

wedge and comprises a typical measure of the extent of seawater intrusion.  

 A freshwater discharge volume rate per unit width of aquifer q  3L LT   , recharges the aquifer 

from the east inland boundary. Variable ( ),b x y  L  is the thickness of the confined flow region. 

In zone 1, b B= where B  L  is aquifer thickness defined by the two confining boundaries, while 

In zone 2, ( ) ( ) ( ), ,b x y x y d B= − − . Variable ( ),fh x y   L  is the freshwater piezometric head 

with reference to the impermeable aquifer base. In the case of the unconfined aquifer, a 

groundwater recharge rate N 1LT −    replenishes the aquifer. Variable ( ),b x y  L  is the total 

freshwater depth where in zone 1, fb h=  and in zone 2, ( ) ( ), ,fb x y h d x y= − + , where ( ),fh x y  

 L  is the freshwater head with reference to the impermeable aquifer base. The Ghyben-Herzberg 

relation links the hydraulic head ( ),fh x y  and depth ( ),x y  via the saltwater/freshwater density 

ratio ( )s f f   = − according to ( )( ) ( )1 ,fh d x y − = .  
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 The following differential equations govern the steady-state flow applicable for both zones of 

the aquifer (Strack 1976; Mantoglou et al. 2004): 

 

( )

( )
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, 0,  unconfined interface flow
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(2.8)  

where  2L    is the flow potential and K
1LT −    is the aquifer’s hydraulic conductivity. The 

distributed pumping rate ( ),Q x y
3 1 2( )L T L− −    is ( ) ( )
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( , )w j w jx y  are the coordinates of  pumping wells 1,...j M=  with rates jQ  and  ( ),w j w jx x y y − −  

is the Dirac delta function. In the case of confined aquifers, the flow potential is defined as (Bear 

et al. 1999): 
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  (2.9) 

while in the case of unconfined aquifers the flow potential is expressed as (Bear et al. 1999), 
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  (2.10) 

At the location of the toe, the flow potential is calculated based on the following equations for 

each coastal aquifer type (Mantoglou 2003): 
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 The sharp interface model of  Strack (1976) has been widely used to simulate coastal aquifer 

flow due to its simplicity and low computational cost. The flow equations presented above can be 

easily solved numerically using a groundwater flow code with a rather coarse spatial discretization. 

However, the sharp interface assumption might introduce significant errors in the estimation of the 

extent of seawater intrusion under pumping conditions (Dausman et al. 2010; Christelis and 

Mantoglou 2013; Llopis-Albert and Pulido-Velazquez 2014; Koussis et al. 2015). On the other 

hand, VDST models usually provide a benchmark estimation of the SWI extent when pumping is 

present since they are considered more accurate (high-fidelity) models.  

 To improve the accuracy of sharp interface models, recent studies have proposed correction 

formulas to mitigate the overestimation of SWI by implicitly incorporating dispersion effects (e.g. 

Pool and Carrera 2011; Koussis et al. 2015; Lu and Werner 2013; Werner 2017; Koussis and Mazi 

2018). A particular correction is the one proposed by Pool and Carrera (2011) who developed an 

empirical equation for the sharp interface model of Strack (1976). Practically, a modified density 

ratio for the sharp interface model is calculated, based on the aquifer thickness B  and the 

transverse dispersivity value Ta  as follows: 

 

1
6

* 1 Ta

B
 

  
 = − 

   

  (2.12) 

where *  denotes a modified saltwater-freshwater density ratio. Lu and Werner (2013) conducted 

a series of numerical experiments with VDST models and they suggested that the exponent in 
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Equation (2.12) should be replaced with 1 4 . The above correction of the density ratio has 

motivated many studies to search for improved versions of correcting the sharp interface model 

and match the salinity profiles of VDST models. Procedurally speaking, the density ratio is 

reduced in Equation (2.12) and thereby the toe location is moved seawards allowing for larger 

extraction of groundwater volumes. As it will be discussed later, this concept can be effectively 

implemented through a dynamic adjustment of the density ratio which is more suitable for 

problems of pumping optimization (Christelis and Mantoglou 2016a).  
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Chapter 3  

Simulation-optimization in coastal aquifer management 

3.1 Previous pumping optimization studies 

As mentioned before, simulation optimization methods in coastal aquifer management require the 

coupling of a SWI model with an optimization algorithm (Figure 3-1). 

 

 

Figure 3-1 Typical workflow for coupling an optimization algorithm with a SWI model. 

 

 In brief, the optimization algorithm calls the SWI model to evaluate the decision variable vector 

(e.g., pumping rates) and return the simulated state variables (e.g., hydraulic heads, salinity 
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concentrations). Then, based on the values of the state variables at certain points of interest, the 

constraint and the objective functions are calculated. This procedure is repeated many times until 

specific convergence criteria are met, as defined by the operation rules of the optimization 

algorithm.  

 Several formulations of optimization problems have been adopted by using SWI models of 

various fidelities (e.g. Katsifarakis and Petala 2006; Ferreira da Silva and Haie 2007; Karterakis 

et al. 2007; Uddameri and Kuchanur 2007; Kacimov et al. 2009; Sedki and Ouazar 2011;  

Doulgeris and Zissis 2014; Karatzas and Dokou 2015). The sharp interface model based on the 

Strack’s (1976) single-potential formulation, has been coupled with nonlinear programming 

methods as well as evolutionary algorithms to calculate optimal pumping rates. Cheng et al. 

(2000), extended the single-well analysis of Strack (1976) for the case of multiple wells and they 

calculated optimal pumping rates using a genetic algorithm. Mantoglou (2003) used the method of 

images and the single-potential formulation to develop analytical solutions for coastal aquifers of 

finite size. The SQP algorithm was employed to solve a nonlinear pumping optimization problem 

with inequality constraints to control SWI. Mantoglou et al. (2004) applied a numerical solution 

for the sharp interface model of Strack (1976) to account for spatial variations of hydraulic 

conductivity and recharge and solved a pumping optimization problem. They also compared the 

performance of SQP and genetic algorithms. They found that using a genetic algorithm, provided 

better optimal solutions than the SQP method, at the expense of increased computational cost.  

 In a follow-up paper, Mantoglou and Papantoniou (2008) used the same numerical solution of 

the sharp interface model to find optimal pumping rates and optimal well locations based on a 

hybrid scheme with evolutionary algorithms and SQP. Ataie-Ashtiani and Ketabchi (2011) utilized 

a numerical solution of the sharp interface approximation and investigated the applicability of  
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ant-colony optimization algorithms to solve coastal aquifer management problems. Christelis et 

al. (2012) solved a pumping optimization problem of coastal aquifers assuming different statistical 

properties of hydraulic conductivity random fields. They used SQP and the model of  Strack (1976)  

to reduce the computational cost within a Monte-Carlo based optimization framework. Kourakos 

and Mantoglou (2015) developed an efficient coupling scheme between the same sharp interface 

model and an evolutionary algorithm to enable fast calculation of optimal pumping rates for a real-

world coastal aquifer management problem. 

 Although the sharp interface models have been a popular choice in coastal aquifer 

management, the corresponding studies based on VDST models are limited mostly due to the 

increased requirements in computational resources. Das and Datta (1999) explored different SWI 

management models, based on VDST simulations, and demonstrated the complexity of attaining 

optimal solutions under various objective function formulations. Qahman et al. (2005) coupled 

VDST models with genetic algorithms to solve hypothetical coastal aquifer management problems 

considering different formulations of the objective functions. A strategy to control SWI while 

reducing the cost of operating pumping wells was proposed in Abd-Elhamid and Javadi (2011). 

They coupled a transient VDST model with a genetic algorithm. Javadi et al. (2015) developed a 

multi-objective management model based on VDST models to investigate the effectiveness of 

combined strategies for SWI mitigation.  

 Regardless of the management model or the selection of the optimization algorithm, the 

simulation-optimization routines developed in the relevant literature demonstrate their efficacy to 

cope with the complex decision-making problems in coastal aquifer management. The unavoidable 

uncertainties and limitations related to the application of SWI models for regional coastal aquifer 

systems may hinder the accuracy of the optimal designs obtained through simulation-optimization. 
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Nevertheless, it is rather unrealistic to explore systematically the best actions to control SWI 

without the use of simulation-optimization methods. 

3.2 Definition of the pumping optimization problem 

VDST and sharp interface models do not share the same physics and thus they differ in terms of 

input parameters and output variables. VDST simulations provide a salinity concentration field for 

the calculation of SWI. On the contrary, the output from the sharp interface model of  Strack (1976)   

is a single-potential flow field which is used to define the sharp interface location and thereby to 

calculate SWI (Mantoglou 2003; Mantoglou et al. 2004). Hence, the optimization problem is 

presented separately for each SWI model. The VDST-based optimization is mathematically 

defined as follows (Kourakos and Mantoglou 2009): 
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or by expressing the constraint functions in terms of iso-salinity contours, 
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 The overall goal is to maximize (the reason for the negative sign in the objective function) the 

total groundwater extraction, subject to constraints that do not allow the salinity levels in pumped 

groundwater to exceed a specified salinity concentration threshold tC . Based on that, the salinity 

concentration iC  in (3.1) for each pumping well is not allowed to exceed a maximum 
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concentration of 30.1tC kg m= which was chosen as an acceptable limit for drinking water 

according to World Health Organization guidelines (1996). The objective of pumping 

maximization is similarly achieved with the alternative expression of constraints in (3.2), where 

the variable ixw  is the pumping well location and tC

ix  represents the horizontal distance of the iso-

salinity tC  from the coast, as a function of the pumping rates.  

 With Q  representing the decision vector of pumping rates 1( ,..., )kQ Q=Q , the objective 

function ( )
1

k

i

i

f Q
=

= −Q  is linear in respect to the decision variables , 1,...,iQ i k= , that is, the 

individual pumping rates. minQ  and maxQ  define the lower and upper bounds of pumping rates, 

respectively. In the following sections and depending on the settings of the developed simulation-

optimization methods, either (3.1) or (3.2) can be used to solve the pumping optimization 

problems. The corresponding optimization formulation for the sharp interface models is: 

 ( )
1

1

min max

min

. . ,..., , 1,...,

, 1,...,

k

i

i

toe

i k i

i

Q

s t x Q Q xw i k

Q Q Q i k

=

−

  =

  =



  (3.3) 

where the set of the constraint functions here do not allow the “toe” of the interface toex  to reach 

the pumping wells (Mantoglou et al. 2004). The variable 
toe

ix is the horizontal distance of the toe 

from the coast, as a function of the pumping rates. The inequality constraints defined in problems 

(3.1) and (3.2) are nonlinear due to the inherent nonlinear equations involved in the VDST model 

formulation (Dhar and Datta 2009). The nonlinearity of the optimization problem (3.3) is due to 

the nonlinear relationship between the pumping rates and the variable toex  (Mantoglou 2003; 

Mantoglou et al. 2004). 
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3.3 Constraints handling with evolutionary algorithms 

As discussed in the introduction part of this chapter, evolutionary algorithms are preferred over 

the gradient-based optimizers in coastal aquifer management studies,  due to their ability to handle 

the presence of multiple local optima (Ketabchi and Ataie-Ashtiani 2015). Typically, in 

evolutionary optimization, the nonlinear constraints are embedded into the objective function 

using penalty terms. Therefore, the optimization problems defined in (3.1), (3.2) and (3.3) are 

translated to bound-constrained optimization problems. Here, the objective function corresponding 

to (3.1) is penalized according to the following formulation for the VDST model (Christelis et al. 

2018): 
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while in the case of (3.2) the objective function is similarly defined as: 
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where vM  represents the number of pumping wells that the constraint is violated. The above 

formulation attributes a separate score for each violated constraint. Furthermore, the penalized 

objective function is multiplied by vM  to include the number of constraint violations for the case 

of a non-feasible vector Q  (Forrester et al. 2008). It is noted that the number of the constraint 

functions equals the number of pumping wells. Therefore, each constraint function is associated 
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with an individual pumping well and they all contribute to the objective function score. A similar 

formulation is defined for the sharp interface model for problem (3.3): 
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 The pumping optimization problems defined in this section can be directly solved by 

combining the VDST or the sharp interface model with an evolutionary algorithm. Although the 

development of efficient and robust optimization algorithms is a very active research field, it is 

rather unrealistic to expect that a specific evolutionary algorithm will always provide the best 

optimal solutions for optimization problems with different characteristics (Behrangi et al. 2008).  

In this work, a probabilistic heuristic global optimization algorithm, namely the evolutionary 

annealing-simplex (EAS) algorithm (Efstratiadis and Koutsoyiannis 2002) is employed to solve 

the optimization problems defined above. EAS combines the concepts of the downhill simplex 

method and simulated annealing to improve efficiency and effectiveness in smooth and rugged 

search spaces, respectively (Tsoukalas et al. 2016). Details on the principles and steps for the 

implementation of EAS can be found in Efstratiadis and Koutsoyiannis (2002), Rozos et al. (2004), 

Kourakos and Mantoglou (2009) and Tsoukalas et al. (2016). A few parameters need to be 

initialized before applying EAS, that is, the initial population size mpop , the annealing schedule 

parameter 
an , a mutation probability criterion 

m
p  and a convergence criterion cov . The initial 

population size is one of the EAS parameters that has a considerable impact on the global 

exploration capabilities of the algorithm (Kourakos and Mantoglou 2009). The EAS parameters 

were set to 8mpop k=  , where k  is the number of the decision variables, 2an = , 0.1mp =  and 
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4

cov 10 −= , according to the suggestions in Rozos et al. (2004). The EAS algorithm has 

demonstrated comparable performance against well-established optimization algorithms often 

used in water resources and has been successfully applied in problems of automated calibration 

(e.g. Rozos et al. 2004; Efstratiadis et al. 2015; Tigkas et al. 2016; Christelis et al. 2016c). 

Recently, EAS has been also applied in coastal aquifer management problems demonstrating 

robust performance (Kourakos and Mantoglou 2009; Christelis and Mantoglou 2016b; Christelis 

et al. 2018; Kopsiaftis et al. 2019a). The solution of problems (3.4) and (3.5) using the VDST 

model and an evolutionary algorithm is computationally expensive and hinders the implementation 

of simulation-optimization routines for coastal aquifer management. The following chapter 

presents various optimization frameworks based on the use of surrogate models which enable a 

high-fidelity solution of the present problem in a computationally manageable manner. 

 

 

 

 

 

 

 

 

 



Page | 28 
 

Chapter 4  

Surrogate modelling and optimization 

4.1 Literature review on surrogate-based optimization 

4.1.1 Metamodels and optimization 

The reliable solution of engineering optimization problems typically requires the use of high-

fidelity, yet computationally expensive numerical models (Koziel and Leifsson 2016). Despite the 

advances in computer power, a robust decision-making process requires hundreds to thousands of 

numerical simulations to gain an understanding of the system’s response to various inputs and 

stresses. One option to cope with these computationally demanding tasks, is the development of 

fast mathematical approximations of the original physics-based simulation models. These 

approximation models are typically called surrogate models or metamodels and their function is 

to mimic the responses of the time-intensive original model in a variety of input variables of 

interest. Henceforth, the term surrogate models or metamodels will be used interchangeably. 

 Popular examples of surrogate models presented in the engineering optimization literature are 

Kriging, radial basis functions, support vector machines, artificial neural networks and Gaussian 

processes (Forrester and Keane 2009; Asher et al. 2015). While it is generally accepted that 

surrogate modelling can alleviate the computational burden associated with the physics-based 

numerical simulations, its success and effectiveness depends on the problem at hand (Razavi et al. 

2010). The use of surrogate models for the various engineering optimization problems is 

commonly reported as surrogate-based optimization (SBO). 
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 There are mainly two ways to implement SBO methods which share a common step at the 

beginning. First, an initial set of input-output data from the physics-based models is obtained to 

train the surrogate models and attain a certain level of accuracy for predicting responses to unseen 

data (Solomatine and Ostfeld 2008). These initial training points are usually derived from space-

filling designs, such as Latin Hypercube Sampling, to achieve a better understanding of the 

variability of the unknown original model response surface (Razavi et al. 2012b). However, after 

the initial training procedure either an offline or an online framework might follow (Figure 4-1). 

 

 

Figure 4-1  Generic workflow examples of an offline and an online SBO method. 

 

 As shown in Figure 4-1, the offline or basic sequential approach is the simplest one and 

assumes that  the surrogate model can be used alone to search for the optimal solution after having 
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been trained once with the available input-output data from the original model (Razavi et al. 

2012b). It is noted though that the accuracy of the surrogate models generally depends on the 

available training data, both in terms of size and quality. An empirical rule suggests that the initial 

training sample could be in the order of 10initm k=  although this might lead to unaffordable 

computational cost as the number of design/decision variables k  increases (Jones et al. 1998). In 

real-world applications, there is often a practical limit on the number of runs with the expensive 

physics-based model. Therefore, it is unlikely that a single training set will provide a globally 

accurate surrogate model to explore the search space (Forrester et al. 2008). In that case, the 

optimization process will probably suffer from false optima, introduced due to inaccurate surrogate 

model predictions of the original model responses (Jin 2011). Therefore, the optimal solution 

found with the metamodels should be evaluated using the original model at the end of this 

framework. 

 On the contrary, the online SBO method allows for a selective communication between the 

surrogate model and the original model during the optimization steps. If the online framework is 

embedded within the operations of an evolutionary algorithm, is usually called surrogate-assisted 

evolutionary strategy (Jin 2011). Certain criteria are employed in a surrogate-assisted evolutionary 

algorithm to define whether any promising solutions obtained with the metamodels, during the 

operations of the evolutionary algorithm, should also be evaluated with the original model (Jin 

2011; Karakasis and Giannakoglou 2006). Another common online SBO method is the so-called 

adaptive-recursive framework which starts with an initial fit of the metamodels to a set of points 

generated from a space-filling design. Then, the metamodels are used to search for new promising 

points based on an optimization step or a random sampling procedure combined with distance 

metrics, probability criteria, etc., (e.g. Regis and Shoemaker 2007; Müller and Woodbury 2017). 
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The best points found with the metamodels are evaluated using the original model, the new training 

data are added to the initial design and the metamodel is updated. Stopping criteria, such as 

maximum number of evaluations with the original model, are usually applied to mark the 

termination of the adaptive-recursive framework. Both the surrogate-assisted evolutionary strategy 

and the adaptive-recursive framework ensure that the original model evaluates the feasibility of 

candidate solutions and the SBO method delivers reliable objective function values. 

4.1.2 Exploration, exploitation, and infill criteria 

With online SBO methods, sampling strategies are developed where the available runs with the 

expensive numerical model are split to evaluate a set of initial training points and sequentially 

another set of additional points (also called infill or update points). The additional points are chosen 

by using infill strategies based on various criteria. One type of infill criteria is the so-called 

prediction-based exploitation which adds points at the current optimum found by the metamodel. 

It is a greedy approach that aims to quickly improve the accuracy of the surrogate models in the 

optimum region. However, it neglects the global improvement of the metamodel and can 

potentially weaken the effectiveness of the SBO methods and get stuck in local optima (Forrester 

et al. 2008).  

 Other more comprehensive infill criteria seek to find a balance between exploration and 

exploitation using the metamodels. An exploration step calls the original model to evaluate points 

away from the current optimum which are then added to the training dataset and further improve 

the global predictions skills of the metamodel. The probability of improvement and the expected 

improvement, are popular criteria in SBO that guide the search with a metamodel to new points 

that show increased probability to improve the current known best solution as well as to regions 

where the metamodel’s prediction uncertainty is significant (Jones et al. 1998; Forrester and Jones 
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2008; Couckuyt et al. 2010). This is a beneficial characteristic of specific metamodels, such as 

Kriging, where their prediction is accompanied with an estimated error and thus allows for locating 

sampling points where uncertainty is higher. Another approach is to utilize weighted distance 

metrics from previously evaluated points and probabilistic criteria for generating new sampling 

points to be evaluated with the original model (e.g. Regis and Shoemaker 2007; Regis and 

Shoemaker 2013). 

 There is a wide body of literature that focuses on the development of infill strategies that 

effectively utilize the physics-based model simulations to update the surrogate model. Typically, 

the aim is to start with a small initial training sample and then sequentially increase the accuracy 

of the surrogate model within regions of interest as well as globally in the decision variable space 

(e.g. Jones et al. 1998; Leary et al. 2004; Queipo et al. 2005; Mugunthan et al. 2005; Regis and 

Shoemaker 2007; Forrester and Keane 2009; Villemonteix et al. 2009; Jin 2011; Kleijnen et al. 

2012; Yao et al. 2014; Tsoukalas et al. 2016; Yang et al. 2020). The efficient global optimization 

algorithm (EGO) (Jones et al. 1998), is one of the most popular SBO algorithms that deals with 

unconstrained optimization problems for computationally expensive numerical models. EGO, in 

its original version, utilizes Kriging metamodels to emulate the response of the objective function 

to the input variables and it is usually implemented with the expected improvement criterion to 

maintain a balance between exploration and exploitation. It is noted that since the introduction of 

EGO, the development of SBO algorithms on bound constrained problems continues to flourish 

and numerous papers have been published proposing improved versions of EGO or EGO-like 

algorithms (e.g. Huang et al. 2006; Knowles 2006; Forrester and Jones 2008; Villemonteix et al. 

2009; Kleijnen et al. 2012; Viana et al. 2013; Couckuyt et al. 2014; Sun et al. 2020). Recently, the 

EAS algorithm, which is utilized in this thesis, was also modified to develop a surrogate-assisted 
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version, namely, SEEAS (Tsoukalas et al. 2016). SEEAS is a surrogate-assisted evolutionary 

algorithm which employs a cubic RBF metamodel to emulate the response of the objective 

function to decision variables and utilizes a weighted acquisition function to generate new 

sampling points within the operations of the original EAS algorithm. 

4.1.3 The presence of nonlinear inequality constraints 

The majority of the SBO algorithms found in the literature, deal with computationally expensive 

problems where the only constraints are bound constraints (Müller and Woodbury 2017). An 

example is the calibration of a simulation model where its decision variables are restricted to 

certain lower and upper limits. However, most engineering optimization problems involve 

constraints which may or may not be computationally expensive (Forrester et al. 2008). In the 

presence of expensive-to-evaluate constraint functions, surrogate models are required to emulate 

their response. However, one could argue that if the number of constraints is large then building 

separate surrogate models for each one of them can be complicated or costly. Surely, the use of 

cheap-to-train surrogate models is essential to alleviate the overall computational burden, 

assuming that their prediction capability is acceptable for a specific optimization problem.  

 Another way to deal with the case of multiple constraints is to build a metamodel only for the 

penalized objective function. However, it has been realized in the literature that building 

metamodels for the penalized objective function only, limits the capabilities of  SBO to approach 

the region of global optimum (Regis 2011; Dong et al. 2018). This is even more evident when a 

prediction-based exploitation infill strategy is selected for the SBO algorithm (Forrester et al. 

2008). Ignoring the information provided by the constraints, hinders the effectiveness of SBO for 

optimization problems with inequality constraints (Jiao et al. 2019).  
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 Several studies have suggested modifications to the expected improvement criterion to 

accommodate a faster and more accurate solution of nonlinear constrained optimization problems 

(e.g. Sasena et al. 2002; Basudhar et al. 2012; Li et al. 2017; Bouhlel et al. 2018; Dong et al. 2018; 

Jiao et al. 2019). The development of generic convergent schemes for nonlinear constrained SBO, 

is an active research area where studies aim to develop efficient algorithms for cases where the 

constraints are correlated, their number is large or an initial feasible solution is not known (Regis 

2011; Basudhar et al. 2012; Regis 2014; Datta and Regis 2016). Sometimes it is possible for an 

analyst/engineer to eliminate a few constraints prior to any optimization runs, assuming that some 

of those are not active or are not essential for deriving an optimal result (Forrester et al. 2008). 

Generally, the presence of nonlinear inequality constraints might further complicate the 

development of SBO methods and many studies discuss how to specifically handle these 

difficulties (e.g. Forrester et al. 2008; Regis 2011; Parr et al. 2012; Boukouvala and Ierapetritou 

2014; Datta and Regis 2016; Li et al. 2017; Müller and Woodbury 2017; Regis and Wild 2017; 

Bouhlel et al. 2018; Dong et al. 2018; Nuñez et al. 2018; Wu et al. 2018; Li et al. 2019).  

4.1.4 Multiple surrogates 

Instead of employing a single type of surrogate models to approximate the responses of an 

expensive physic-based model, various researchers in engineering optimization have investigated 

the use of multiple surrogates to improve accuracy and effectiveness (e.g. Viana et al. 2009; Acar 

2010; Müller and Piché 2011; Viana et al. 2013; Nikolos 2013; Müller and Shoemaker 2014; Jiang 

et al. 2015; Shi et al. 2016; Hou et al. 2017; Bhosekar and Ierapetritou 2018). The generic approach 

in a multiple surrogate framework is to identify a suite of reliable surrogates for the problem at 

hand. This is usually achieved through a cross-validation process and then either the best or an 

ensemble of surrogates (e.g. weighted average surrogate) may be utilized (Viana et al. 2010).  



Page | 35 
 

 The superiority of employing multiple against single type surrogates is somewhat debatable, 

since the nature of each optimization problem may favor the one approach or the other (Viana et 

al. 2009; Babaei and Pan 2016). It should be also considered that the use of multiple surrogates 

might increase the effort and computational time in SBO. For example, the analyst has to decide 

whether a cross-validation strategy will identify the best surrogate models or it is known a priori 

which surrogates should work best based on previous experience with the optimization problem 

(Viana et al. 2009). In the first case, it remains to be defined how many surrogates should be 

explored and what computational budget is available to apply an efficient and informative cross-

validation framework. Furthermore, the training time of surrogate models varies and exploring 

more sophisticated surrogate models will eventually add considerable computational time.  

4.1.5 Multi-fidelity optimization 

Thus far, the discussion considered only a single, high-fidelity (HF) level for the physics-based 

model. Often, the exploration of the search space may be facilitated by using simpler, 

computationally cheap models which simulate the physical system at low-fidelity (LF) levels 

(Forrester et al. 2008). This possibility has motivated the development of the so-called multi-

fidelity or variable-fidelity optimization (Robinson et al. 2006). Within this context, surrogate 

models are built upon faster LF models which may be simplifications of the physical system or 

might share the same physics with the HF models, but, are less accurate in terms of grid resolution, 

convergence criteria, dimensionality, etc., (Razavi et al. 2012a). LF models utilize their embedded 

knowledge of the physical system to produce an output and potentially can offer additional benefits 

for the implementation of SBO methods, particularly when the available HF model runs are limited 

(Koziel and Leifsson 2016). The main hypothesis is that an analyst can only afford to run the HF 

model a few times but it is affordable to run LF models many times and gather enough samples to 
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acquire useful information for a computationally demanding optimization problem (Fernández-

Godino et al. 2019). 

 There is variety of multi-fidelity modelling approaches presented in the literature. Many 

examples can be found in electromagnetic simulations through the application of the space 

mapping technique (Bandler et al. 1994; Bakr et al. 2000; Bandler et al. 2004; Koziel et al. 2008; 

Koziel et al. 2009; Cervantes‐González et al. 2016; Feng et al. 2019), as well as, in aerospace 

engineering (e.g. Alexandrov et al. 2001; Gano et al. 2004; Marduel et al. 2006; Forrester et al. 

2007; Karakasis et al. 2007; Han et al. 2013; Leifsson and Koziel 2015; Tyan et al. 2015; Zhou et 

al. 2016; Cheng et al. 2019; Shu et al. 2019). The usefulness of multi-fidelity surrogates in cases 

where only a few HF data can be obtained, is rather unquestionable (Koziel et al. 2011). Various 

multi-fidelity methodologies have been successfully developed in the literature to integrate the 

information from both HF and LF models (e.g. Gano et al. 2004; Forrester et al. 2007; Koziel et 

al. 2008; Leifsson and Koziel 2015; Zaefferer et al. 2016; Liu et al. 2016; Zhou et al. 2017). 

However, there is some ambiguity regarding their success and the computational gains in cases 

where it is affordable to gather enough HF data and thus a conventional surrogate model can be 

constructed instead (Fernández-Godino et al. 2019). 

4.2 SBO in coastal aquifer management 

Metamodels have been used in coastal aquifer management to approximate the responses of  

VDST models and alleviate the computational burden which results from coupled simulation-

optimization routines (Singh 2014). Artificial Neural Networks is a popular example of surrogate 

model selection in pumping optimization problems of coastal aquifers (e.g. Rao et al. 2004; Dhar 

and Datta 2009; Kourakos and Mantoglou 2009; Sreekanth and Datta 2010; Sreekanth and Datta 

2011; Grundmann et al. 2012; Kourakos and Mantoglou 2013). Recent studies have also proposed 
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other surrogate models such as, evolutionary polynomial regression (Hussain et al. 2015), 

polynomial chaos expansions (Rajabi et al. 2015), Gaussian process models (Rajabi and Ketabchi 

2017; Kopsiaftis et al. 2019), fuzzy inference systems (Roy and Datta 2017a), multivariate 

adaptive regression splines (Roy and Datta 2017b), extreme learning machine (Yadav et al. 2018) 

and support vector machine regression (Lal and Datta 2018). 

 Former SBO applications in coastal aquifer management have mostly implemented the offline 

approach. Rao et al. (2004), first replaced a VDST numerical model with Artificial Neural Network 

(ANN) models for coastal aquifer management. They solved the optimization problem with a 

simulated annealing algorithm. Also, they discussed the limitations of fully replacing the VDST 

model with the surrogate model for the accurate exploration of the search space. Bhattacharjya and 

Datta (2005) approximated a three-dimensional VDST model using a trained ANN model which 

provided considerable computational savings in the search for optimal solutions. The impact of 

the large training sample size on the performance of a global ANN model was also addressed. 

 Kourakos and Mantoglou (2006) substituted a VDST model with a trained ANN model in a 

pumping optimization problem of coastal aquifers. Their optimization approach was based on a 

nonlinear programming algorithm and results were in good agreement with the VDST-based 

optimization. Furthermore, they mentioned the necessity to explore the structure of the ANN 

model to improve its generalization capabilities. It is noted that with the above offline SBO 

methods large training data sets were generated to construct accurate surrogate models. 

Nevertheless, large training sets have been utilized in coastal aquifer modelling to exhaustively 

compare the performance and prediction skills of different metamodeling techniques (e.g. 

Kopsiaftis et al. 2019b). 
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 Kourakos and Mantoglou (2009) developed an online approach that aimed to bypass the large 

training time required for a global ANN model and the results showed a significant computational 

gain. Modular neural sub-networks were selectively trained in a surrogate-assisted evolutionary 

strategy and the VDST model evaluated only the current best solution during the operations of an 

evolutionary algorithm. Sreekanth and Datta (2010) and Sreekanth and Datta (2011), used Genetic 

Programming as a metamodelling method in coastal aquifer management and compared it with the 

widely used ANN. Their results showed advantages of Genetic Programming over ANN 

metamodels, in terms of number of model parameters, parameter estimation and training data 

requirements, as well as in finding the global optimal solution. Christelis and Mantoglou (2016) 

compared the performance of the surrogate-assisted evolutionary framework against the adaptive-

recursive approach for pumping optimization of coastal aquifers. Both frameworks were based on 

the prediction-based exploitation infill method. Their results showed that the surrogate-assisted 

evolutionary framework outperformed the adaptive-recursive approach in computational 

efficiency while it successfully located feasible optimal solutions. In general, the use of online 

SBO frameworks for coastal aquifer management, significantly improved the exploration of the 

search space within reasonable computational times (e.g. Kourakos and Mantoglou 2009; 

Papadopoulou et al. 2010; Song et al. 2018). Nevertheless, the application of SBO strategies which 

utilize the information obtained from the surrogate models to balance exploration and exploitation 

is rather limited in pumping optimization of coastal aquifers. 

 Despite the recognized success of surrogate modelling in computationally demanding tasks, 

the benefit from its use in optimization problems with increased dimensionality and under limited 

computational budgets is controversial according to Razavi et al. (2012b). Such limitations are 

also investigated in the present thesis while in the recent work of Christelis et al. (2018) it was 
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found that SBO methods outperform the direct optimization with the VDST model, particularly as 

dimensionality and number of constraints are increased.  

 Regarding the multiple surrogate approach in coastal aquifer management, there are fewer 

applications in the literature compared to the use of single surrogate models. Sreekanth and Datta 

(2011) first utilized an ensemble of genetic programming surrogate models in lieu of a VDST 

model, to solve a multi-objective pumping optimization problem. Their study showed that the 

ensemble performed better than using a single genetic programming surrogate model. Recently, 

Roy and Datta (2017a) and Roy and Datta (2017b), solved multi-objective pumping optimization 

problems by utilizing ensembles of fuzzy inference systems and of multivariate adaptive 

regression splines, respectively. Their approach reduced the uncertainty in the prediction of the 

surrogate models while the multivariate adaptive regression splines provided a more efficient 

ensemble surrogate model. Recently, Roy and Datta (2020) utilized an illustrative coastal aquifer 

model and developed ensembles of metamodels based on the Dempster-Shafer theory to predict 

SWI under pumping conditions. Their results showed some advantage of the ensemble over the 

standalone metamodels, yet, in overall the performance of the ensemble was comparable to the 

metamodel identified as best. On a similar study, Lal and Datta (2020) concluded that, for their 

case study, a homogeneous ensemble of Gaussian process regression models performed better than 

standalone models of artificial neural networks, support vector regression, genetic programming 

and Gaussian process regression, or any heterogeneous combination of the above in the form of 

an ensemble. In the present thesis, the performance of multiple and single surrogates in pumping 

optimization is also compared based on previous results published in Christelis et al. (2019b). A 

surrogate-assisted evolutionary framework is implemented using heterogeneous and homogeneous 
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ensembles of surrogate models. Their performance is compared against the corresponding single-

type surrogate approach.  

 To the best of our knowledge, the combined use of multi-fidelity models for SWI management 

has received little attention so far. Also, in their review paper, Sreekanth and Datta (2015) do not 

report any multi-fidelity optimization methods developed for coastal aquifer management. 

Although a considerable number of papers compares or develops faster low-fidelity models to 

better approximate the VDST model responses, only few have proposed a combined use for 

pumping optimization problems.  

 In the broader context of multi-fidelity optimization for coastal aquifer management, Christelis 

and Mantoglou (2016a) and Christelis and Mantoglou (2017) developed  methods which 

adaptively correct the parameters of a LF SWI model, to mimic the response of a HF SWI model. 

Specifically, Christelis and Mantoglou (2016a) have developed an optimization strategy to 

improve the calculated maximum pumping rates within the operations of an evolutionary 

algorithm. Their approach was based on the concept proposed by Pool and Carrera (2011) to 

correct the density ratio in the sharp interface model of Strack (1976) (practically reducing it) and 

allow for larger maximum pumping rates. Using a one-off correction of the density ratio cannot 

ensure that the resulting optimal solution would be comparable with that obtained from the VDST 

model, given that a specific iso-salinity contour is usually set as a threshold in the constraint 

functions (Christelis and Mantoglou 2016a). On the contrary, it is possible that such a correction 

would result in non-feasible solutions when the optimal pumping rates will be evaluated using the 

VDST model (Kopsiaftis et al. 2019a). Therefore, instead of using the corrected LF sharp interface 

model alone, it was proposed to selectively call the VDST model during optimization and 

adaptively correct the density ratio. The main purpose was to locate feasible solutions for the 
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VDST model, based on the computationally efficient sharp interface model and only on a small 

number of the expensive VDST simulations. In other words, a limited number of VDST 

simulations were utilized to evaluate the sharp interface predictions, adjust the density ratio, and 

control the optimization search towards feasible solutions. During optimization, the SWI models 

simulate the impact of numerous combinations of groundwater extraction rates on the development 

of the seawater intrusion front. Several density ratio corrections of the sharp interface model might 

be required to approximate the response of the VDST model. To that end, it was suggested that 

the density ratio can be treated as a black-box parameter, with no physical meaning, subjected to 

a form of calibration process where an optimal value of this ratio is sought.  

 This adaptive adjustment of the density ratio proposed by Christelis and Mantoglou (2016a), 

was probably the first attempt to combine SWI models of different fidelity for solving pumping 

optimization problems in coastal aquifers. It involves two fidelity levels, the sharp interface model 

and the VDST model. The advantage of the method is that it provides a steep improvement of the 

objective function within a few iterations of the optimization algorithm. It has similarities to the 

implicit space mapping techniques (Bandler et al. 2004) where fixed parameters of the HF model 

are iteratively adjusted in the LF model to minimize the differences between their responses. 

However, it should be noted that the sequential adjustment of the density ratio, during the 

operations of the evolutionary algorithm, does not imply a continuous improvement of the sharp 

interface model. The evaluation with the VDST model and the updated density ratio only allows 

the algorithm to search for better solutions with the computationally cheap sharp interface model.  

At a certain number of function evaluations with the VDST model, the updated density ratio will 

oscillate around a set of values where the sharp interface model matches the VDST output. Thus, 



Page | 42 
 

it will eventually update the density ratio only in the search region that the evolutionary algorithm 

has located as more promising.  

 In general, the method proposed by Christelis and Mantoglou (2016a) can be useful in the case 

of limited computational budgets but it is not expected to outperform conventional surrogate 

methods when it is affordable to get more samples from the VDST model. Furthermore, if the two 

SWI models are in good agreement for a certain range of pumping rates, the algorithm might 

unnecessarily call the expensive VDST model for evaluation. It should be noted that the success 

of this multi-fidelity optimization strategy is strongly depended on the parameterization of the SWI 

models as well as, the type of constraints utilized in the pumping optimization problem. Kopsiaftis 

et al. (2019a), examined the concept of density ratio modification by forming ensembles of 

corrected sharp interface models to approximate the optimal solution of the VDST model. Their 

results showed that a combination of three density modifications could mitigate the errors 

produced by sharp interface models for pumping optimization. 

 Recently, Christelis and Mantoglou (2019a) used simple response correction techniques 

between a sharp interface model and a VDST model in a multi-fidelity optimization framework. 

Their work showed that multi-fidelity SBO methods could be, under conditions, a promising 

choice for coastal aquifer management. Nevertheless, in a series of independent runs presented in 

that work, there was no evidence that this multi-fidelity method can outperform the conventional 

data-driven approach if an adequate number of HF samples can be obtained. Dey and Prakash 

(2020) applied a similar methodology to Christelis and Mantoglou (2016a) by developing an 

iterative process where the density ratio is optimized to update the sharp interface predictions and 

calculate optimal solutions, using a particle swarm optimization algorithm. Their results showed 

computational gains within a few iterations and their algorithm quickly located local optima of the 
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VDST model. In general, as multi-fidelity optimization has received little attention in coastal 

aquifer management, further research should follow to identify cases or problems which could be 

benefit from this approach. 

4.3 Types of surrogate models utilized in this thesis 

The nonlinear constraints described in chapter 2 are computationally expensive to evaluate. The 

VDST numerical simulations compute the distribution of the salinity concentration for a specified 

management period and then the constraints are calculated. Even for an optimization problem of 

moderate dimensionality, the task is considered impractical given the computational cost of VDST 

simulations and the thousands of runs required by an evolutionary algorithm to converge. To 

reduce the computational burden, surrogate models are employed to approximate the VDST model 

response to pumping and enable an efficient simulation-optimization routine.  

 Two types of surrogate models were chosen to develop SBO methods for coastal aquifers, 

namely, radial basis functions (RBF) and Kriging (KRG). While these surrogate models have been 

fairly utilized in other fields of engineering optimization, their use is scarce in aquifer management 

studies. Their interpolating capabilities allow for an exact estimation of the previously evaluated 

sampling points with the physics-based model. This is considered beneficial in terms of surrogate 

model accuracy for deterministic computer simulations (Kleijnen 2009) which is the case for the 

present thesis. Both RBF and KRG are very popular choices in SBO (Jin et al. 2001). An increasing 

interest in these metamodels is also observed in the broader field of water resources optimization 

(e.g. Baú and Mayer 2006; Shoemaker et al. 2007; Razavi et al. 2012b; Tsoukalas et al. 2016). 

4.3.1 Radial basis functions (RBF) 

The radial basis functions were originally developed for the purpose of scattered multivariate data 

interpolation (Hardy 1971). One attractive characteristic is that RBF models can express highly 
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nonlinear responses, a common case in engineering optimization, while they still preserve a simple 

mathematical formulation (Forrester et al. 2008). The construction of RBF surrogate models in 

this thesis is based on the MATLAB codes developed for MATSuMoTo toolbox by Müller (2014). 

In the pumping optimization problem described in chapter 2, the objective function is a linear 

function of the k  decision variables 1,..., kQ Q  that is, the pumping rates. A unique RBF model is 

constructed for each one of the k  inequality constraints associated with each one of the k  pumping 

wells. Let the decision vector of pumping rates denoted by 1( ,..., )kQ Q=Q . Then, given a set of 

m  training points 
( ) ( ) ( )1 2

, ,...,
m kQ Q Q , the corresponding responses obtained from the 

evaluation with the VDST model are either 
( )( ) ( )( )1

,... , 1,...,
T

m

i i iG C C i k = =
 

Q Q  or

( )( ) ( )( )1
,..., , 1,...,T T

T
mC C

i i iG x x i k = =
 

Q Q  (the reader is referred to chapter 3 for the definition of 

these quantities). The following RBF model is employed (Powell, 1992): 

 ( ) ( ) ( )( )

1

m
j

j

j

s p 
=

= − +Q Q Q Q  (4.1)  

where ( )s Q  in our case denotes the prediction of the RBF model for an input vector of pumping 

rates Q ,   1,...,
T

m R = λ are coefficients to be determined, ( )
T

 represents the transpose of a 

vector or a matrix , ( )   denotes the form of the radial basis function,   is the Euclidean distance 

and ( ) 0

Tp = +Q β Q  is a linear polynomial tail with ( )1,...,
T

k =β whose coefficients also need 

to be determined such that the resulting RBF model passes through all the m  design points. The 

coefficients λ , β  and 0  are obtained by solving a linear system of equations: 
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i

T

G     
=     

     

Φ P λ

P 0 w 0
 (4.2) 

where Φ  is a m m  matrix with entries ( )( ) ( )

,

j l

j l = −Φ Q Q , P is a ( )1m k +  matrix whose 

ith  row is ( )( )1,
T

i 
  

Q ,  1 0,..., ,
T

k  =w and 0  denotes a matrix with all entries equal to zero. 

The interpolation matrix is invertible if and only if ( ) 1rank k= +P  which in turn implies that at 

least 1k + points are required to train the RBF model (Müller and Woodbury 2017). Here, two 

types of basis functions are considered, the cubic form where ( ) 3r r =  and a thin plate spline 

where ( ) 2 lnr r r = . The construction time for the RBF models is negligible in comparison to the 

VDST simulation time even for large number of training points. To facilitate the presentations of 

the results in the following chapters, the cubic and the thin plate spline RBF models will be 

abbreviated as CUB and TPS, respectively.  

4.3.2 Kriging (KRG) 

Kriging was mainly introduced as an approximation model for multidimensional input-output data 

from a simulation model, in the original paper of Sacks et al. (1989). However, the origins of the 

Kriging method are generally attributed to the work of the South African mining engineer Krige 

(Kleijnen 2009). The concept utilized by the KRG surrogate models is that when the distance 

between two input vectors Q  and 'Q  is small, then the resulting scalar responses ( )iC Q  and 

( )'iC Q  (or ( )tC

ix Q  and ( )'tC

ix Q ) should be closely correlated (Forrester et al. 2008). Details 

about the mathematical background of Kriging in metamodeling can be found elsewhere in the 

literature (e.g. Jones et al. 1998;  Lophaven et al. 2002; Forrester et al. 2008). Here, we only briefly 

present the general concept of a KRG surrogate model as it applied in our problem. Kriging treats 
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the responses iG  from the VDST model to the input sample points ( ) ( ) ( )1 2
, ,...,

m kQ Q Q , as if 

they were generated from a stochastic process ( )Y Q defined as (Sacks et al. 1989): 

 ( ) ( ) ( )
1

p

i i

i

Y F Z
=

= +Q Q Q  (4.3) 

where ( )
1

p

i i

i

a F
=

 Q  is a regression model and ( )1,..., p =α  are the regression coefficients while 

( ), 1...iF i p=Q  are known basis functions. The second term ( )Z Q  is a zero mean Gaussian 

process, with variance 2  and a m m correlation matrix Ψ  with entries given by the correlation 

function ( ) ( )' '

1

, exp
k

j j j

j

corr Z Z Q Q



=

 
  = − −  

 
Q Q . A Gaussian correlation function is 

selected where 2 = . Although   is considered fixed here it can also be a parameter to be 

estimated. The set of parameters 1,..., k   is identified using the Maximum Likelihood Estimation 

method and numerical optimization techniques (Viana et al. 2010). In brief, a prediction ( )newy Q  

with the KRG surrogate model at a new point 
new

Q  is given by (Palar and Shimoyama 2018): 

 ( ) ( ) ( )1new new

iy r G−=  + −Q α Q Ψ Fα  (4.4) 

where ( ) ( )( )1 ...new new

pF F = Q Q , ( )
1

1 1T T

iG
−

− −=α F Ψ F F Ψ  denotes a 1p  vector of the 

coefficients of the regression function as obtained by the Generalized Least Squares procedure. It 

is reminded that iG  is a 1m  vector of the observed VDST model responses associated with the 

ith  constraint function, given the m  training points 
( ) ( ) ( )1 2

, ,...,
m kQ Q Q . Also, a 1 m  vector 

of correlations between the observed data and the new prediction is defined as 
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( ) ( )( ) ( ) ( )( ) ( )( )1
, ,

mnew new newr cor Y Y cor Y Y   =
   

Q Q Q Q Q . A m p  matrix F  of the 

regression functions of the form is also defined as: 

 

( ) ( )

( ) ( )

1 1

1

1

p

m m

p

F F

F F

 
 

=  
 
 
 

Q Q

F

Q Q

 (4.5) 

 The SURROGATES MATLAB toolbox (Viana 2011) was used to facilitate the construction 

of KRG surrogate models which are based on the DACE toolbox (Design and Analysis of 

Computer Experiments) developed by Lophaven et al. (2002). The toolbox allows for regression 

models of different order polynomials and correlation models of various structures. After 

performing several numerical tests, two KRG surrogate models were employed in this work, 

namely, Gaussian correlation models combined with zero-order (denoted henceforth as G0) and 

first-order regression models (denoted henceforth as G1). 

4.4 Surrogate-based optimization algorithms 

The SBO algorithms developed in the present thesis employ individual surrogate models for each 

constraint function instead of a single surrogate model that emulates the response of a penalized 

objective function. This approach is expected to increase the accuracy of the SBO methods for 

nonlinear constrained optimization problems. The SBO methods are developed either based on the 

surrogate-assisted evolutionary strategy or the adaptive-recursive framework. The surrogate-

assisted evolutionary algorithms mainly utilize the prediction-based exploitation approach which 

adds points at the current optimum found by the metamodel. On the contrary, the adaptive-

recursive SBO methods apply a balanced exploitation and exploration strategy for sampling the 

VDST model. 
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 As it has been discussed before, despite the level of sophistication in VDST models, there are 

still many limitations in their prediction skills particularly for regional coastal aquifers (Sanford 

and Pope 2010). In that sense, the methodologies proposed in this thesis aim to efficiently solve 

pumping optimization problems of coastal aquifers, assuming that the VDST models are as 

accurate as possible. It is also noted that no attempt is being made in this thesis to delve into the 

mathematical details of surrogate modelling theory and optimization. The aim is to understand 

how surrogate modelling fits within the practical requirements of coastal aquifer management 

plans and how the specifications of SWI modelling favor the use of one or the other SBO method. 

4.4.1 Surrogate-assisted evolutionary strategy using single surrogate models 

The method will be denoted throughout the thesis as EAS-PB followed by the type of the 

metamodel used in the algorithm. The EAS component of EAS-PB means that the method is 

embedded in the operations of the EAS algorithm and PB stands for prediction-based exploitation. 

The steps of this SBO approach can be summarized as follows: 

1. Create an initial experimental design (LHS in our case) to provide the set mS  of training 

points (e.g. 
( ) ( )1

,...,
m

Q Q ). Evaluate these initial points with the HF model (here, the VDST 

model) and store the outputs related to the constraint functions (for example, 

( )( ) ( )( )1
,... , 1,...,

m

i iC C i k=Q Q ) in the set mC .  

2. Fit k  surrogate models (e.g. k  cubic RBF models), corresponding to the k  pumping wells, 

using the available training sets mS  and mC . 

3. Run EAS algorithm based on the surrogate models and if during optimization a better 

optimum is found do the following: 

a) Re-evaluate the current decision vector of pumping rates with the VDST model. 
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b) Replace the objective function value with that obtained from the VDST model. 

c) Compute the minimum Euclidean distance of the current candidate point *
Q  from  

previously evaluated points in the training sample mS . If the distance criterion min  is 

satisfied, add the new input-output data into the training sets mS  and mC , and retrain the 

surrogate models. 

4. Are stopping criteria of EAS algorithm met? If yes, return final solution; otherwise return 

to step 3 and continue running EAS algorithm using the surrogate models. 

 At step 3c, a distance criterion min  from previously evaluated points with the VDST model is 

calculated, before deciding to add the new sample point in the existing training dataset mS . This 

is imposed because the accuracy of RBF and KRG models can be adversely affected by closely 

sampled points. If D  denotes the minimum distance between the low and upper limits of the 

decision variables and k  represents the number of the decision variables, we set 

min 0.0005 D k =   , as suggested in the implementation of the ConstrLMSRBF algorithm 

(Regis 2011). The rest of the required parameters of EAS-PB were selected similarly to the original 

EAS algorithm (see chapter 3). That is, the initial population 8mpop k=  , the annealing schedule 

parameter 2an =  and the mutation probability criterion 0.1mp = . In the present implementation 

of EAS-PB, the initial m  training points also serve as the initial population popm . The EAS-PB 

algorithm will terminate either if 100eval popN m=  , which is the maximum number of objective 

function evaluations using the metamodels or if 4

cov 10 −  which is a convergence parameter 
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defined in the original EAS algorithm. A schematic representation of EAS-PB is presented in 

Figure 4-2 below. 

 

 

Figure 4-2 Optimization workflow for the EAS-PB method 
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4.4.2 Surrogate-assisted evolutionary strategy using multiple surrogates 

A similar optimization method to EAS-PB is presented here but it is based on the multiple 

surrogate approach. Whether SBO methods using multiple surrogates derive better results than 

using single type surrogate models is inconclusive in the existing literature (Viana et al. 2010). To 

that end, two multiple surrogate approaches were developed here to examine their performance in 

pumping optimization of coastal aquifers. One of them, selects the best surrogate model for each 

constraint function and updates this knowledge as more evaluations with the VDST model are 

added during optimization. The other, selects the two best surrogate models for each constraint 

function and constructs an ensemble with weighted prediction. The weights are calculated through 

an internal optimization scheme within the operations of the EAS-PB algorithm. The ensemble 

means that the prediction of the approximation model is constructed from surrogates of different 

type, for example, a KRG model and a RBF model or a cubic RBF and a TPS RBF model.  

 To assess the prediction skills of the surrogate models and identify the best for each constraint 

function, a cross-validation strategy was employed. The RBF and KRG surrogates emulate the 

scalar response of the VDST model to pumping rates. Thus, a total of k  surrogate models 

corresponding to the k  pumping wells, need to be constructed. First, l  roughly equal subsets 

including subm  training points are generated from the whole of the training sample points. Then, 

iteratively each surrogate model is fitted to 1l −  subsets and provides predictions for the points 

that were left out from the fitting process. This process is repeated l  times to gather all the 

predicted errors based on different validation datasets. The root mean squared error (RMSE) was 

used as a cross-validation score between the known VDST responses and the predictions from the 

surrogate models. It was defined as follows for the ith  pumping well: 
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 ( ) ( )
2

1

1
ˆ , 1,...,

subm
i j j

i i

jsub

RMSE y y i k
m =

= − =  (4.6) 

 In the above RMSE definition, 
j

iy  denotes the known value from the VDST model for the j

training point (the vector of pumping rates in our case) and ˆ j

iy  is the surrogate model prediction 

(either iC  or tC

ix ) for the same point. For the best surrogate model approach, only the surrogates 

with the lowest RMSE values for each pumping well are selected. Within the EAS-PB optimization 

framework the surrogate models are re-constructed as new training points become available 

through the algorithm’s operations. Every newm  training points, the cross-validation score is  

re-calculated and the best surrogates are identified again.  

 Apart from selecting the best surrogate model an ensemble formulation was also implemented. 

The two best surrogate models identified for each constrained function from the cross-validation 

strategy, were used to form an ensemble of surrogates by constructing a weighted average 

surrogate. The prediction of the ensemble surrogate model is formulated as: 

 
1

ˆ ˆ
SMN

q q

q

y w y
=

=  (4.7) 

where ˆ
qy  is the prediction produced by the qth  surrogate model, SMN  is the number of the 

surrogate models which form the ensemble and in our case 2SMN = . Variable qw  denotes the 

optimal weights attributed to the qth  surrogate model prediction subject to the equality constraint 

1

1
SMN

q

q

w
=

= . The construction of the weighted average surrogate model was based on optimal 

weights obtained through minimization of the cross-validation score. It is noted that the 
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optimization task for the optimal weights was performed for each one of the constraint functions 

to form the ensembles of surrogates. The relevant optimization problem is defined as (Zhou et al. 

2013; Jiang et al. 2015): 

 

( ) ( )
2

1 1 2 2

1

1

1
ˆ ˆmin

. . 1

sub

SM

m

jsub

N

q

q

f w w y w y y
m

s t w

=

=

= + −

=





 (4.8) 

where 1ŷ  and 2ŷ  are the individual predictions of the best two surrogate models for each constraint 

function value and y  is the corresponding response of the VDST model. The above optimization 

problem was solved using the SQP method provided in MATLAB. Since the number of constraint 

functions might be large, the construction of the weighted average surrogate may add considerable 

computational time. The optimal weights are also updated every newm  training points within the 

operations of the EAS-PB method. Here, rather arbitrarily newm  was selected based on the 

dimensionality D  of the optimization problem. For example, if 10k = then the weights were re-

calculated every 10newm =  evaluations with the VDST model. Since the optimization framework 

is the same with the EAS-PB method, a flow diagram of the multiple surrogate approach is 

presented in Figure 4-3. 
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Figure 4-3 Workflow diagram of the surrogate-assisted evolutionary framework using multiple surrogates 

(using the best surrogate or an ensemble). 

 It is noted that the multiple surrogate approach is somewhat sample dependent which means 

that using a different training sample may result in a different selection/combination of the best 

surrogate models. If an ensemble is constructed by different instances of the same surrogate model, 

resampling techniques may be beneficial to increase the diversity of the surrogate model response 

(Roy and Datta 2017b). To distinguish the implementation of EAS-PB using multiple surrogates, 

the abbreviation EAS-PB(BE) is used when only the best model for each constraint function is 
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selected, and EAS-PB(OW) denotes the case where optimal weights are computed to obtain the 

prediction of the ensemble surrogate model. 

4.4.3 Modification to the SEEAS algorithm for nonlinear constrained optimization 

Recently, EAS algorithm was enhanced with surrogate models to tackle computationally 

expensive optimization problems with bound constraints (Tsoukalas et al. 2016). The resulting 

SEEAS (Surrogate-enhanced evolutionary annealing simplex) algorithm, showed considerable 

advantages over other widely used SBO algorithms for water resources optimization problems. A 

main difference from EAS is that SEEAS employs an internal optimization task that minimizes an 

acquisition function and generates candidate points, based on an efficient search with surrogate 

models. The scope of the acquisition function is to balance exploration and exploitation using the 

metamodel and locate promising areas of the original objective function landscape (Tsoukalas et 

al. 2016). For the development of SEEAS, some modifications were also implemented to the 

operations of the original version of EAS. Detailed steps and description of SEEAS can be found 

in Tsoukalas (et al. 2016) and therefore we only refer here to the specific modification that was 

done for the purposes of the present thesis.  

 Originally, in SEEAS algorithm, the acquisition function calculates a weighted score of 

candidate points based on the predicted objective function value from the surrogate model and the 

distance from previously evaluated points with the computationally expensive model. Let ( )csty x

be the standardized response value of a surrogate model to a set of candidate points cx  where 

( ) ( ) min max min

c cst
y y y y y   = − −  

x x . The values miny  and maxy  represent the minimum and 

maximum values of the non-standardized response values ( )cy x , respectively. In addition, the 

Euclidean distance Ed  is calculated, for each point in the set cx , from all previously evaluated 
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points px  with the original physics-based model. The set of points px  also serve as the existing 

training points for the surrogate model. The standardized distance 

max max minst

E Ed d d d d   = − −     is also calculated and the weighted score of the acquisition 

function is obtained as ( ) (1 ) st

c EstSc wy w d= + −x , where w  is a dimensionless weighting 

coefficient. The latter is dynamically adjusted based on the empirical formula 

( )max 0.75,min ,0.95w PI=     (Tsoukalas et al. 2016).  

 The parameter PI  represents a dimensionless progress index calculated as

( ) ( )log / logPI HFr MHFr= , where HFr  is the current number of runs with the HF model and 

MHFr  is the maximum allowed number of runs with the HF model or in other words the assigned 

computational budget. This practically means that at the beginning, more weight (up to 0.25) is 

assigned to the acquisition function to promote exploration using the metamodel and improve 

global accuracy (for details, see Tsoukalas et al. 2016). The best point found from the minimization 

of the acquisition function replaces the worst point of the population, if it is better than the existing 

worst solution, and it is evaluated by the HF model. It also enters the archive of the training points 

and the surrogate model is updated. As more iterations are carried out by the algorithm and thus 

more HF model runs are added, the value of PI increases and the minimization of the acquisition 

function focuses on exploitation. The algorithm stops iterating when the predefined computational 

budget, i.e., the maximum number of HF model runs, is exhausted. 

 In our case, the pumping optimization problem includes nonlinear constraints and thus a slight 

modification was done to SEEAS to accommodate surrogate models for each constraint function. 

Thus, separate surrogate models associated with each pumping well were employed to 

approximate the constraint functions of the VDST model. Accordingly, the calculation of the 
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acquisition function value was modified to include the information from all the surrogate models 

of the constraint functions and compute the weighted score. In SEEAS, the generated candidate 

points that violate a distance criterion from previously evaluated points with the original model 

are attributed a high score to drive the internal optimization away from these points. An additional 

penalty was also attributed in the modified constrained version for those points that are infeasible 

based on the predictions from the surrogate models of the constraint functions. In the next chapter, 

we investigate the performance of the original SEEAS in coastal aquifer management, assuming 

initially only a single surrogate model for the penalized objective function. Then, we test the 

performance of the modified version of SEEAS using surrogate models for the constraints and for 

convenience this approach will be denoted henceforth as CSEEAS (Constrained-Surrogate-

enhanced evolutionary annealing simplex). As in SEEAS, we also utilize RBF surrogate models 

to run CSEEAS. 

4.4.4 The ConstrLMSRBF algorithm 

To further assess the SBO methods developed in this thesis, a comprehensive and effective SBO 

method developed by Regis (2011) was also included in the comparison. ConstrLMSRBF is a SBO 

method which balances global and local improvement of the surrogate model and has been applied 

in other engineering optimization problems successfully. Recently, it was applied in coastal aquifer 

management problems showing very promising results (Christelis et al. 2018). The algorithm 

simultaneously deals with the objective function and the constraints of the optimization problem, 

by constructing RBF surrogate models for each one of them.  

 The version of ConstrLMSRBF applied in this thesis, requires that at least one feasible point 

exists among the initial training points of the surrogate models. After evaluating the initial points 

with the computationally expensive model (here, the VDST model) RBF models are fit for the 
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objective and constraint functions using all available data points. Then, the algorithm goes through 

a loop that involves generating a large number of random candidate points obtained by perturbing 

some or all of the coordinates of the current best feasible point, using Gaussian distributions with 

zero mean and with known standard deviations. The standard deviations can vary adaptively, 

depending on the performance of the algorithm and based on heuristic rules, to facilitate either 

local or global search. The algorithm gathers the candidate points that are predicted to be feasible 

or that have the minimum number of predicted constraint violations. The next point where the HF 

simulation will run is chosen to be the best point among all the valid candidate points according to 

two criteria: predicted objective function value of the candidate point according to the RBF model 

of the objective, and its minimum distance from previously evaluated points. Once the HF model 

has evaluated the selected valid candidate point, the algorithm re-trains the RBF surrogate model 

with the new data point included. Then it goes back to generating a new set of random candidate 

points and continues the loop until the computational budget is exhausted, that is, the maximum 

number of HF simulations has been reached. More details on the theoretical aspects of 

ConstrLMSRBF can be found in Regis (2011). 

4.4.5 LR-RSRBF (Local Refinement Random Search with RBF models) 

In this section, a new optimization framework is presented which adopts and combines concepts 

and steps from three different existing SBO algorithms, namely GOSAC, ConstrLMSRBF and 

SEEAS. The general structure is based on the concept proposed by Müller and Woodbury (2017) 

who developed GOSAC algorithm. GOSAC is a surrogate-assisted global optimization algorithm 

for problems with computationally expensive constraint functions and computationally 

inexpensive objective functions. This concept meets the specifications of the present pumping 
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optimization problem where the objective function is calculated as a simple summation of the 

decision variables and thus it has negligible computational cost.  

 In its original formulation, GOSAC algorithm includes two main optimization phases. The 

first, seeks for a starting feasible point for those problems where an initial sampling design cannot 

guarantee the existence of feasible points. To that end, a multi-objective optimization problem is 

solved based on trained surrogate models with the initial sampling design. When a feasible point 

is found, the second phase of the algorithm aims at improving the current best feasible point. This 

is achieved by minimizing the objective function and evaluating the constraints using surrogate 

models, for example, RBF models.  

 Each time a new infill point is proposed by the surrogates the original model evaluates the 

solution and the point is added to the existing training sample. Since the second optimization phase 

aims at exploitation using the surrogate models, if the proposed solution is too close to previously 

evaluated points with the expensive computer model, another sample point is preferred which 

maximizes the minimum distance from the existing sample. This step enables the sampling of the 

original model in unexplored regions of the decision variable space and thus improves the global 

accuracy of the surrogates while it may locate promising areas with local or global optima (Müller 

and Woodbury 2017). GOSAC’s stopping criterion is based on the depletion of the available 

computational budget. 

 Here, we implement another version of a GOSAC-like SBO method where the first phase is 

omitted since it is generally easy to locate a feasible starting point. However, the structure of our 

proposed method incorporates additional features from the SEEAS algorithm and the 

ConstrLMSRBF algorithm presented previously. Specifically, we make use of a progress index as 

in SEEAS while we also incorporate a specific part of the ConstrLMSRBF algorithm which 
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appears to be highly effective for the present optimization problem. The latter involves generating 

many random candidate points obtained by perturbing some (or all) of the coordinates of the 

current best feasible point, using normal distributions with zero mean and with specified standard 

deviations. As it will be shown later in the numerical application, this refinement of the current 

best solution using perturbed points, leads to a steep improvement of the current best solution 

within only few evaluations with the VDST model and is considered beneficial for the optimization 

problem at hand. This exploitation step is further enhanced in the proposed algorithm by 

selectively activate an optimization step using surrogate models and an evolutionary algorithm. 

Apart from exploitation steps, the present methodology uses a criterion based on random number 

generation and the number of HF model evaluations, to decide if a new point should be added that 

maximizes the minimum distance from the existing sample, as in GOSAC algorithm. The method 

is implemented using cubic RBF models, but other surrogates could be employed as well. The 

steps of the proposed methodology are presented below: 

1. Create an initial experimental design set mS  of training points (e.g. 
( ) ( )1

,...,
m

Q Q ). 

Evaluate the initial points with the HF model. Store the outputs related to the constraint 

functions (for example, ( )( ) ( )( )1
,... , 1,...,

m

i iC C i k=Q Q ) into mC . 

2. Denote by bestx  that point in mS  which corresponds to the best feasible objective function 

value bestf . 

3. Initialize the progress index ( ) ( )log / logPI HFr MHFr= which lies between zero and 

one. Set a distance criterion min  (see section 3.4.1) for accepting a new entry in mS  and a 
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tolerance criterion tolF  for the number of subsequent failures countF  with the surrogate 

models to improve the current best solution . 

4. Fit the k  cubic RBF models on the evaluated points mS . 

5. while r rHF MHF  

6. Generate a random number ndr  in  0,1 , 

7. if  ndr PI , find point newx  that maximises the minimum distance of bestx  from previously 

evaluated points in mS . 

8. else generate candN  candidate points by perturbing the coordinates of bestx . Evaluate the 

candN  points using the RBF models and denote the best point found by tempx  and the best 

objective function value tempf . 

a. if temp bestf f  and count tolF F ,  set new temp=x x  

b. else minimize the objective function ( )f x  subject to the RBF surrogate models of 

the constraint functions and denote the optimum point by tempx  and the objective 

function value tempf .  

c. end if 

9. if the distance criterion min  is violated find another point newx  that maximises the 

minimum distance of tempx  from previously evaluated points in mS . 
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10. else set new temp=x x  

11. end if 

12. end if 

13. Evaluate the point newx  with the HF model, return the objective function value HFf  and 

update rHF .  

14. Add newx  in mS  and the corresponding constraint function outputs in mC . 

15. if HF bestf f , update the values of  bestx  and bestf  

16. end if 

17. end while 

18. Return the best solution bestx , bestf . 

 As described in the above optimization framework, there are two cases where an exploration 

task takes place. First, it is decided based on the random number generation at step 7, if a new 

point will be added far from the current best solution bestx . However, the chance of implementing 

this step is reduced as rHF  increases and thus, PI  increases as well. This is a common practice in 

SBO methods to allow more exploration at early stages and focus on exploitation as the size of the 

training sample increases. The second time that exploration is selected regards the case where the 

proposed point tempx  is close to the existing training points. In such cases, it is preferable to add 

another point newx  to improve the global accuracy of the surrogate models as it is done in step 9.  
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 The exploitation part of the algorithm is implemented at steps 8 and 8b either with the 

perturbation of the current best solution or by searching for a promising point using a global 

optimization algorithm and the RBF models. The latter step is critical for the performance of the 

proposed method. First, it adds considerable computational effort despite the exclusive use of 

surrogate models. An evolutionary algorithm will evaluate the objective function a few thousand 

times. Even using surrogate models, this implies an additional computational cost which depends 

on the number of the decision variables and the type of surrogate models used. For example, KRG 

models will lead to a slower optimization run than RBF models. Considering that in our case 

separate surrogate models are constructed for each constraint function, step 8b will eventually add 

some computational load, particularly if this step is repeated many times until the stopping 

criterion is met. On the other hand, selecting a fast-convergent optimization algorithm but with 

low robustness might adversely affect the progress of the proposed optimization framework. 

Therefore, it is recommended that one should implement this SBO method using an evolutionary 

algorithm with known global search capabilities for the problem at hand.  

 The increased computational load of step 8b can be treated effectively using vectorized 

versions of evolutionary algorithms. Due to the large number of independent trials that we employ 

in this thesis, the vectorized form of MATLAB’s particle swarm algorithm was found appropriate 

to employ for the present optimization problem. Preliminary runs showed that the original EAS 

algorithm can improve further the performance of this SBO method at the expense of increased 

computational time. As mentioned before, EAS is a particularly robust choice for pumping 

optimization in coastal aquifers. Obviously, if the single runtime of the VDST model ranges from 

several minutes to hours, the additional computational effort contributed by step 8b is not as 

noticeable as for a VDST model which runs in seconds or in few minutes. Furthermore, in practice, 
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an analyst expects to obtain a good optimum with one or two runs of the SBO methods. Otherwise, 

it might be worthless to use SBO algorithms and train surrogate models instead of directly using 

the original HF model. For convenience, the proposed method will be denoted as LR-RSRBF 

(Local Refinement Random Search with RBF models) and a schematic workflow is presented in  

 

 

Figure 4-4 Workflow diagram of the LR-RSRBF optimization method. 
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4.4.6 Multi-fidelity optimization using co-Kriging metamodels 

As discussed previously, using LF models in optimization could be beneficial for those cases 

where only limited data from the HF model can be obtained, due to extremely high computational 

cost (Fernández-Godino et al. 2019). There are different ways to define model fidelity levels, 

depending on the physical problem at hand. Based on preliminary runs with the available SWI 

models and the lack of studies that use multi-fidelity methods for pumping optimization in coastal 

aquifers, some fidelity models for SWI were not considered in this thesis.  

 For example, reducing the computational cost of the VDST model using coarser discretization 

was considered as a problematic option for the HydroGeoSphere code. Although different codes 

have different restrictions regarding the mesh Peclet number for transport solution (Essink, 2001), 

here, the coarser model was prone to numerical errors while the saving in runtimes might not be 

adequate. Other simpler SWI models that ignore salt transport mechanisms but consider saltwater 

movement have not been widely tested in pumping optimization studies while their computational 

cost, although much lower than VDST models, is still considerable. On the contrary, the one-fluid 

approach using Strack’s potential (1976) is a very fast model of SWI that has been widely applied 

in coastal aquifer management (e.g. Mantoglou 2003; Mantoglou et al. 2004; Ferreira da Silva and 

Haie 2007; Mantoglou and Papantoniou 2008; Ataie-Ashtiani and Ketabchi 2011; Christelis et al., 

2012; Karatzas and Dokou 2015). Presently, this sharp interface model was selected as an 

appropriate choice to explore multi-fidelity optimization in coastal aquifer management. As such, 

two levels of fidelity for simulating SWI were considered in this thesis, the VDST model and the 

sharp interface model of Strack (1976).  

 It should be noted that previous SWI studies have shown that this sharp interface model leads 

to conservative estimations of the optimal pumping rates compared to the VDST models (Pool and 
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Carrera 2011; Christelis and Mantoglou 2013; Christelis and Mantoglou 2016a; Kopsiaftis et al. 

2019a). Also, Llopis-Albert and Pulido-Velazquez (2014) have demonstrated that depending on 

the hydraulic properties of the coastal aquifer, the sharp interface model may deviate significantly 

from the SWI predictions provided by the VDST model. Finding those regions where the responses 

between the LF and the HF model are significantly different and improving methods for multi-

fidelity modelling, is a research area of growing interest in the relevant literature (e.g. Han et al. 

2013; Zhou et al. 2016).   

 For the numerical experiments that follow in the next chapter we focus on a new approach to 

combine the outputs from the sharp interface and the VDST model. A special formulation of KRG 

models is the method of co-Kriging (coKRG) which exploits the combination of large amounts of 

LF data with few HF data to develop fast approximation models (Forrester et al. 2008). The 

constructed coKRG model is expected to be more accurate than the LF model alone, in 

approximating the HF responses. The success of a coKRG model also depends on the training 

samples and the differences between the HF and the LF model. The method of co-Kriging can be 

useful in cases where the HF model is very time-consuming and there is one or more LF models 

available that can enhance the analysis on a much lower computational effort. On the other hand, 

if the computational cost of running simulations with LF physics-based models is high or if the 

dimensionality of the optimization problem is large, the development of co-Kriging models may 

be an impractical choice (Forrester et al. 2008). The theory of co-Kriging dates back to 40 years 

ago with pioneering published works in geostatistics (Matheron 1973; Matheron 1979; Journel and 

Huijbregts 1978; Francois-Bongarcon 1981; Myers 1981). Here, the recent formulation presented 

in Forrester et al. (2007; 2008) is followed. The concept of co-Kriging is briefly presented below 
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with emphasis given to the next chapter where the practical aspects of its implementation for 

coastal aquifer management is further discussed.  

 Consider a set of  HFm  HF training points 
( ) ( )1

,..., HFm kRQ Q denoted as HFQ , which is a 

subset of LFm  LF training points ( ) ( )1
,..., LFm kRQ Q  denoted as LFQ . The associated HF and LF 

responses of the models can be denoted by 
( ) ( )1

{ ( ),..., ( )HFm

HF Y Y=Y Q Q  and 

( ) ( )1
{ ( ),..., ( )LFm

LF Y Y=Y Q Q , respectively. Then, let ( )LFZ   to represent a Gaussian process of the 

LF model data ( ),LF LFQ Y , ( )HFZ   a Gaussian process of the HF model data ( ),HF HFQ Y  and 

( )dZ   a Gaussian process that represents the differences between ( )LFZ   and ( )HFZ  . In essence, 

the HF model is approximated as (Kennedy and O’Hagan 2000, Forrester et al. 2007): 

 ( ) ( ) ( )HF s LF dZ Z Z= +Q Q Q  (4.9) 

where s  is a scaling factor estimated as part of the Maximum Likelihood Estimation method 

through optimization when the KRG model of the residuals between the LF and HF data is 

constructed. The co-Kriging prediction at a new point has a similar definition to (4.4) but the 

interested reader is referred to Forrester et al. (2007) and Forrester et al. (2008) for a proper 

mathematical presentation of the method, as it involves a considerable amount of matrix algebra 

for its derivation which is out of the scope of this work. The MATLAB implementation of coKRG 

provided in Forrester et al. (2008) was used to develop the multi-fidelity optimization method for 

this thesis. Also, the original version of the EAS algorithm was used to search for the optimal 

parameter sets of the coKRG model. 

 The multi-fidelity optimization framework using coKRG models, was developed here based 

on a specific loop included in the operations of the ConstrLMSRBF algorithm. As explained 
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previously, ConstrLMSRBF goes through a loop that involves generating a large number of 

random candidate points obtained by perturbing some (or all) of the coordinates of the current best 

feasible point, using Gaussian distributions with zero mean and with standard deviations. We are 

implementing the multi-fidelity method assuming a restrictive computational budget of HF runs, 

and we utilize this concept aiming at a local search where all coordinates of the current best feasible 

point are perturbed. The standard deviation remains constant throughout the iterations of the 

method as opposed to the dynamic adjustment which is applied in the ConstrLMSRBF algorithm. 

 Initially, a space-filling design using the LHS method is created and the objective function 

values are evaluated using the LF sharp interface model. The LHS points along with the responses 

of the sharp interface model for each constraint function are stored in an archive which represents 

the LF data. To build the coKRG model a set of HF data is then required. It is noted that selecting 

those points for HF evaluation is not always straightforward (Forrester et al. 2008). In our case, 

the HF VDST model first evaluates the best point identified from the LF model based on the LHS 

design. Then the VDST model evaluates the worst point to gather the initial HF data. If, however, 

there is no feasible point then an internal loop searches for the next best point to ensure that the 

initial HF data include at least one feasible solution, before proceeding to the next steps of the 

method. This initial search may lead to spending some HF runs but on the other hand it is essential 

for the method to verify the feasibility of the current best point. A more conservative approach is 

to add an evaluation of a vector of low pumping rates that can ensure feasibility after evaluation 

with the VDST model. After gathering the HF and LF data, the coKRG models of the constraint 

functions are constructed. Then, the current best solution is perturbed, and a random sample is 

generated while the next point where the VDST simulation will run is the best point predicted from 

the coKRG models among all the generated candidate points. This new training pattern is added 
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to the HF archive, the coKRG models are re-trained and the current best solution is updated if the 

new point is better. 

 

 

Figure 4-5 Workflow diagram of the multi-fidelity optimization framework using co-Kriging surrogate 

models and an adaptive-recursive sampling strategy. 

 Note that if the new point violates the tolerance for the minimum required distance from 

previously evaluated points with the HF model, then it does not enter the archive. However, with 

such a limited computational budget this is unlikely to happen. The above iterative framework 

stops when the maximum number of HF runs has been reached. As this framework follows an 
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adaptive-recursive scheme, for convenience it is named as AR-coKRG (Adaptive-Recursive with 

coKRG models). 
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Chapter 5  

SBO for hypothetical coastal aquifers 

5.1 Settings and rationale of the numerical experiments 

This chapter presents the findings from the several SBO frameworks that were developed for the 

pumping optimization problem described in chapter 3. We investigate the usefulness of surrogate 

modelling for this engineering optimization problem by conducting exhaustive comparisons 

among the proposed SBO algorithms. As previously discussed, VDST numerical simulations are 

associated with increased computational effort mainly originating from the spatial and time 

discretization requirements of the solute transport step (Werner et al. 2013). To facilitate the 

analysis, VDST models of simple geometry have been employed here and seawater intrusion is 

simulated based on hypothetical coastal aquifer models.  

 To enable the computationally expensive comparisons among the SBO algorithms, the settings 

of the numerical VDST model are chosen in such a way that a single simulation requires on average 

11 seconds. Therefore, a relatively fast VDST model is utilized to perform such a demanding 

computational task for the generic comparison purposes. The optimization runs were performed 

on a 2.7 GHz Intel i5 processor with 8 GB of RAM in a 64-bit Windows 10 system. Furthermore, 

to assess the impact of problem dimensionality on the performance of the SBO methods, two 

scenarios are assumed, one with 10 operating pumping wells and the other with 20 operating 

pumping wells. The comparisons include the types of SBO algorithms described in chapter 4 and 

a summary is given also here for convenience.  
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 One category utilizes the concept of prediction-based exploitation infill strategy and is 

implemented within the operations of the EAS algorithm. It is reminded that this approach aims at 

a fast convergence to an optimal solution, by adding infill points at the current optimum predicted 

by the surrogate models. This SBO method, which belongs to the broad group of surrogate-assisted 

evolutionary strategies, utilizes the inherent convergence criteria of the EAS algorithm. The 

surrogate-assisted evolutionary strategy is developed for both the single and the multiple surrogate 

approach. The multiple surrogate approach is based on the hypothesis that the combined use of 

surrogate models will smooth out the prediction errors from a single surrogate and thus will enable 

a better exploration of the search space. However, this approach implies additional computational 

effort.  

 The second category involves SBO algorithms that have been designed to balance local 

exploitation and global exploration using the metamodels and thus, they can potentially explore 

the search space with more accuracy. For the implementation of this type of SBO algorithms, we 

rely on the concept of the available computational budget. That is, a certain number of VDST 

simulations is available for evaluating the initial training points and the rest of VDST model runs 

are utilized to update the surrogate models with additional sampling points through iterative 

optimization procedures. Therefore, the depletion of the computational budget serves as a stopping 

criterion for these SBO algorithms.  

 To ensure that the comparison is as fair as possible, and that it is not affected by the different 

optimal choices for each algorithm, the following settings were employed. First, two alternative 

budgets of 100 and 300 VDST model runs were tested for those SBO methods that utilize the 

available computational budget as a stopping criterion. The computational budget of 100 

simulations represents a hypothetical case where the VDST model is time-consuming and a 
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restricted number of simulations is realistic to run. Furthermore, it serves the purpose of 

challenging the capability of the algorithms to near-optimal solutions despite the small 

computational budget. Based on preliminary runs, the computational budget of 300 simulations 

with the VDST model, was considered sufficient for all SBO methods to search for optimal 

solutions considering the dimensionality of the present optimization problems. 

 The size of the initial training points for fitting the KRG and RBF models was decided 

according to the type of the SBO algorithm. The surrogate-assisted evolutionary strategy depends, 

to some extent, on the evolutionary algorithm that is utilized (Razavi et al. 2012a). For example, 

the size of the initial population of EAS algorithm is considered critical to ensure global search 

capabilities and therefore the recommended value of 8m k=    was selected (Kourakos and 

Mantoglou 2009). It is reminded that k  is the number of the decision variables (pumping rates) 

and m  denotes the number of the training points. Thus, the initial training points were associated 

with the initial population of the EAS algorithm for the surrogate-assisted evolutionary strategy. 

Obviously, this choice requires a substantial number of runs with the HF (high-fidelity) model. 

When the dimensionality of the optimization problem is large, this might be a non-affordable 

option in terms of computational cost. In those cases, one should reduce the initial population size 

at the possible cost of affecting the algorithm’s capabilities for a global search.   

 The SBO algorithms that balance exploration and exploitation have been designed to perform 

successfully based on initial training designs of smaller sizes, such as 2 1k +  points. In fact, they 

may even perform worse in some cases, if a considerable number of HF runs is consumed on the 

initial design instead of exploiting the computational budget within their iterations. As more 

evaluations with the HF model are added, they have the potential to further improve the current 

optimum and thus, there is a clear reasoning on testing their performance on the available 
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computational budget. The empirical rule  max 2 1,0.1m k MHFr=  +  as proposed by Razavi et 

al. (2012b), was used to set the initial training points for this type of SBO algorithms. The variable 

MHFr represents the maximum available runs with the HF model as defined in each computational 

budget. Therefore, more weight is given on using the majority of the VDST simulations for the 

sampling of the subsequent infill points instead of evaluating a large initial training sample. 

 It is noted that for all the SBO methods, multiple independent optimization runs are performed 

to produce a statistically meaningful comparison, given the stochastic nature of the proposed 

algorithms and the inherent randomness in sampling designs. To ensure a fair comparison, the 

different SBO algorithms share the same initial training points for each optimization run whenever 

this is possible. Their performance is evaluated based on the sample statistics calculated from these 

independent optimization runs. Of course, in real world problems this luxury is not available but, 

here, it serves the purpose of comparing the sample statistics of the surrogate-based optimal 

solutions and assess the robustness of the SBO methods.  

 Finally, as a special case, we also examine the effectiveness of multi-fidelity optimization in 

the hypothetical scenario where only a few VDST simulations are affordable, that is 11 and 21 

VDST model runs. To construct the RBF and KRG surrogate models, a minimum of 1k +  points 

is required. Thus, the 11 sampling points with the VDST model are marginally sufficient to train 

the metamodels for the case of 10 pumping wells. The case of 21 sampling points is utilized to 

enable the performance comparison of multi-fidelity optimization against a conventional SBO 

algorithm. Based on these extremely limited computational budgets, we develop an iterative multi-

fidelity optimization method utilizing co-Kriging models to search for an optimal solution. The 

comparison of the multi-fidelity method against the ConstrLMSRBF algorithm is conducted to 
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assess the practical importance of multi-fidelity optimization in the case of computationally heavy 

VDST simulations. 

5.2 Conceptualization of flow conditions and model description 

A brief description of the hypothetical coastal aquifer geometry is presented herein. The 

conceptual model is based on a real-world coastal aquifer in the Greek island of Kalymnos, 

according to a previous work from Mantoglou et al. (2004). An orthogonal shape approximation 

of the real aquifer was utilized to enable the setup of a convenient VDST numerical model to 

support the exploratory nature of the optimization runs. Furthermore, the model assumes a 

homogeneous, anisotropic coastal aquifer under unconfined saturated flow conditions. The aquifer 

is replenished by both surface recharge and inland fluxes in the presence of multiple fully 

penetrating pumping wells (Figure 5-1).  

 

 

Figure 5-1 Conceptual flow model for the numerical experiments. 

 

 The horizontal dimensions of the coastal aquifer model are 7x km= , 3y km=  and the aquifer 

base is at 25z m=  below sea-level. The hydraulic conductivities are set to 50xK m day= , 
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50yK m day=  and 5zK m day=  while dispersivity values are set to 100L m = , 10T m =  and 

1TV m = . On the left side of the aquifer model a hydrostatic boundary condition is applied to 

represent the sea-boundary with a constant specified salinity concentration of 335 Kg m  for a 

saltwater density of 31025 Kg m . The two lateral model boundaries are no-flow boundaries while 

the aquifer receives a total recharge (surface + inland) of 35410m day  (Figure 5-2). 

 

 

Figure 5-2 Representation of the applied boundary conditions on the numerical model and the 

distribution of the pumping wells (the case of 10 pumping wells is presented here). 

 

5.3 Optimal results from the direct optimization with the VDST model 

Initially, coastal aquifer flow is simulated without pumping until hydraulic head and salinity 

distribution reach steady-state conditions. The time horizon of the pumping management plan is 

set to 30 years (10950 days). However, running the optimization using as initial conditions those 

obtained without pumping, will result in a solution which is beyond the replenishment of the 

aquifer. Therefore, to represent a more realistic management situation, an initial optimization run 
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is performed with the VDST model, to set a scenario where the aquifer is already being heavily 

pumped. The resulting head and salinity distributions from this first optimization run, are then used 

as initial conditions for all the subsequent optimization runs.  

 For the following numerical experiments, the direct optimization with the VDST model is 

solved once to provide benchmark solution and computational time. Henceforth, for convenience, 

this approach is denoted as EAS-VDST. As discussed previously, two pumping optimization 

problems were considered. The first scenario includes 10 pumping wells with lower and upper 

bounds of pumping rates set at 3

min 0Q m day=  and 3

max 1000Q m day= , respectively. The second 

scenario includes 20 pumping wells with lower and upper bounds of pumping rates set at 

3

min 0Q m day=  and 3

max 500Q m day= , respectively. For this case, the upper bound of pumping 

rates was reduced by half to allow for more pumping wells to remain active since the total recharge 

remained the same. The salinity threshold was set to 30.1tC kg m=  and this value was used to 

calculate the nonlinear constraint functions.  

 Figure 5-3 and Figure 5-4 present the results from the two optimization scenarios with the 

VDST model. In both cases, a similar pattern is developed where the three pumping wells closer 

to the sea boundary are at more risk of contamination if the calculated optimal pumping scheme 

operates for longer than the management period of 30 years. For the case of 10 pumping wells, the 

total pumping rate evaluated by EAS algorithm is 34857.5totQ m day=  which corresponds to 

89.8%  of the total aquifer recharge whereas for the case of 20 pumping wells, the total pumping 

rate evaluated by EAS algorithm is 34832.2totQ m day=  which corresponds to 89.4%  of the total 

aquifer recharge.  

 Obviously, these calculated high percentages of total pumping are not sustainable and 

eventually after longer management periods more wells will be contaminated. However, for the 
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numerical experiments designed in this section the scope is to investigate the performance of the 

SBO methods and not to focus on the impact of pumping on aquifer’s sustainability. A longer 

design period would ensure a better protection of the groundwater resources for this hypothetical 

model, at the expense of more time-consuming simulations, which in turn, could hinder the 

implementation of the present exhaustive comparisons. The EAS-VDST optimization framework 

for the case of 10 pumping wells, converged after 4697 evaluations of the objective function 

through the VDST model, resulting in a total computational time of 14.35 hours. For the case of 

20 pumping wells, 11020  evaluations of the objective function through the VDST model were 

required which resulted in a total computational time of 33.68 hours. 

 

Figure 5-3 Plan view of the simulated salinity distribution at the aquifer base, for the optimal vector of 

pumping rates shown in the bar graph below (pumping wells are shown with numbers, i.e., w1). The results 
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are from the direct optimization with the VDST model for 10 pumping wells. It is noted that the iso-salinity 

representing 
30.1tC kg m=  marginally reaches but does not intersect the pumping wells. 

 

Figure 5-4 Plan view of the simulated salinity distribution at the aquifer base, for the optimal vector of 

pumping rates shown in the bar graph below (pumping wells are shown with numbers, i.e., w1). The results 

are from the direct optimization with the VDST model for 20 pumping wells. It is noted that the iso-salinity 

representing 
30.1tC kg m=  marginally reaches but does not intersect the pumping wells. 
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5.4 Optimal results with surrogate models of the penalized function only 

Before proceeding to the main results from the SBO methods, it is presented how a single 

metamodel of the penalized objective function would perform in pumping optimization of coastal 

aquifers. Note that the scope is not to restate any difficulties that these SBO strategies encounter 

when dealing with nonlinear constrained optimization. Instead, the following numerical 

experiments are utilized to demonstrate their performance for the present pumping optimization 

problem and to highlight the differences with the explicit handling of nonlinear constraints using 

separate metamodels. In addition, it has not been shown before if any of these algorithms would 

perform satisfactorily in a pumping optimization problem of coastal aquifers and if these methods 

can successfully locate a good optimal solution. To that end, the pumping optimization problem 

was solved using three well-documented SBO algorithms: 

i. The classic EGO algorithm based on the expected improvement criterion as 

implemented by Viana (2011) in SURROGATES MATLAB toolbox. 

ii. The Multistart Local Metric Stochastic RBF (MLMSRBF) method (Regis and 

Shoemaker 2007). 

iii. The SEEAS algorithm (Tsoukalas et al. 2016a), the surrogate-enhanced version of EAS 

for bound constrained problems. 

 All three algorithms above, have been applied successfully in a variety of optimization 

problems where the only constraints are bound constraints on all the decision variables. The details 

of each method can be found in the relative published papers and it is out of the scope of this work 

to present the theory. The classic EGO algorithm was implemented using KRG surrogate models. 
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Based on preliminary runs and literature examples of EGO algorithm in water resources 

management (Tsoukalas and Makropoulos 2015), a KRG model of zero-order polynomial and 

Gauss correlation function was selected to emulate the response of the objective function to 

pumping rates. MLMSRBF and SEEAS are implemented using a cubic RBF metamodel.  

 A set of 30 independent optimization runs were performed for each algorithm to avoid 

dependencies of the results on the random features of each method. The optimal results are 

compared against the benchmark solution obtained from the single run based on EAS-VDST 

optimization. The pumping optimization problem refers to the case of 10 pumping wells. The 

above SBO methods utilize as a stopping criterion the maximum number of function evaluations 

with the original computationally expensive model. Here, the limit is set to 300MHFr = , that is, 

300 VDST model runs. The initial training points were set to 30m =  according to the rule 

 max 2 1,0.1m k MHFr=  + . The results are presented first in Figure 5-5 using a boxplot 

visualization of the optimal solutions. The comparison demonstrates that MLMSRBF and SEEAS 

had a more consistent performance than EGO as indicated by the boxplots.  
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Figure 5-5 Comparison of direct optimization with the VDST model against the EGO, the MLMSRBF and 

the SEEAS algorithms. (Surrogate models have been constructed only for the penalized objective function). 

 The more reliable performance of MLMSRBF and SEEAS, is further demonstrated in Table 

5-1 when comparing their mean and standard deviation values. The non-parametric Wilcoxon rank 

sum test, provided in the Statistics and Machine Learning MATLAB Toolbox, (2019b), was also 

employed to test the statistical significance of the results. The null hypothesis for the test, is that 

the data of two groups are independent samples from continuous distributions with equal medians. 

The test returns the p-value and a logical value h  which indicates a rejection of the null hypothesis 

when 1h =  and a failure to reject the null hypothesis when 0h =  at the 5% significance level. 

The calculated p-value of 0.652 and 0h =  indicates that there is no statistically significant 

difference between the medians of MLMSRBF and SEEAS algorithms. On the contrary, their p-

values against EGO were in the range of 510− with 1h = indicating that the difference in their 
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sample medians is statistically significant. Interestingly, all algorithms were able to locate at least 

one good optimal solution not far from the benchmark optimal solution using the VDST model 

alone.  

Table 5-1 Sample statistics of the feasible optimal solutions obtained from the 30 independent optimization 

runs (best results are in bold and the benchmark solution is underlined). 

Optimization frameworks 

EAS-VDST** 

EGO 

MLMSRBF 

           SEEAS 

Worst Best Mean Median SD* 

 4857.5    

4158.5 4787.7 4488.4 4501.8 174.93 

4326.1 4839.1 4670.3 4721.6 126.49 

4413.1 4826.7 4663.2 4675.0 111.02 

* SD stands for standard deviation, ** one run with EAS-VDST is available 

 

 MLMSRBF provided the best feasible optimal solution in one of the optimization trials, which 

is remarkably close to the VDST-based solution. Figure 5-6 demonstrates the steep improvement 

of the average best feasible objective function value for MLMSRBF and SEEAS, as the number 

of VDST model runs increases. It appears that the infill strategy followed by these two algorithms 

shows promise in improving the objective function value and probably more runs with the VDST 

model could further improve their average performance, at the expense of additional computational 

effort. Notwithstanding the results are problem dependent, MLMSRBF and SEEAS algorithms 

showed that they have the potential to provide solutions of good quality. However, it should be 

noted that the performance of these algorithms is hindered, mainly due to the limited knowledge 

that the single surrogate model of the penalized function carries while searching the objective 

function landscape. In real-world applications, more effective SBO frameworks should be chosen 

for coastal aquifer management and this is pursued in the following numerical experiments where 
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the surrogate models deal directly with the nonlinear constraints of the pumping optimization 

problem. 

 

Figure 5-6 Convergence curves of the SBO methods, based on their average best feasible objective function 

value from the 30 independent runs and for 300MHFr =  (plotting starts at 30m =  initial design points). 
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5.5 Comparison of SBO methods using surrogate models for the constraints 

It is worth reiterating that pumping optimization problems of coastal aquifers typically involve 

nonlinear inequality constraints (Mantoglou et al. 2004b). There are examples in coastal aquifer 

management that by using clustering/zonation methodologies the number of decision variables and 

constraints were reduced to simplify the optimization problem and thereby facilitating the training 

of surrogate models (e.g. Ataie-Ashtiani et al. 2014). In the present work, it is assumed that it is of 

practical importance to include the operation of each pumping well in the management plan and 

that all pumping wells are associated with nonlinear constraints (see Chapter 3).  

 In this section, the SBO frameworks focus on exploiting the information from each constraint 

function by constructing individual surrogate models to predict the quantity of interest. In such 

cases, one should consider the increase in computational effort to build separate surrogate models 

for each constraint and the implications when the number of associated constraint functions is 

large. However, the RBF models utilized in this thesis have small training time and there are 

examples in the literature of their efficiency and effectiveness in high-dimensional nonlinear 

constrained problems (e.g. Regis 2014). On the other hand, the KRG models are computationally 

more intensive, especially in high dimensions, but possess other advantages such as the error 

estimates calculated with each prediction. The latter feature of KRG models is utilized in the 

implementation of EGO algorithm presented in the previous section.  

 It is reminded that the KRG models are utilized here within the surrogate-assisted evolutionary 

strategy only. As this strategy focuses on local exploitation with the metamodels it is of interest to 

examine if the predictions skills of the KRG models, which have a more sophisticated structure, 

outperform the simpler RBF models. Clearly, using the KRG metamodels in a pure exploitation 

infill strategy does not exploit their full potential in SBO, since the estimated error produced in 
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each prediction is not considered. Nevertheless, keeping the computational effort to a minimum is 

important and if simpler surrogate models can provide comparable optimal solutions, this is 

preferable. Table 5-2 summarizes the abbreviated names for the SBO methods and for the 

surrogate models that were described in chapter 4. 

Table 5-2 List of abbreviations and short descriptions of the SBO methods and the surrogate models. 

Abbreviation Description 

EAS-PB Surrogate-assisted evolutionary strategy using the 

prediction-based exploitation infill method 

CSEEAS Constrained surrogate-enhanced evolutionary 

annealing simplex algorithm, based on SEEAS 

(Tsoukalas et al. 2016) 

ConstrLMSRBF Stochastic surrogate-assisted algorithm based on 

RBF models (Regis, 2011) 

LR-RSRBF Random search surrogate-assisted algorithm based 

on local refinement and exploration using RBF 

models 

CUB Cubic RBF model with polynomial tail 

TPS Thin plate spline RBF model with polynomial tail 

G0 KRG model with Gauss correlation function and 

zero-order polynomial 

G1 KRG model with Gauss correlation function and 

first-order polynomial 

 BE Only the best surrogate for each constraint function 

is used 

 OW An ensemble surrogate model with optimal weights 

is constructed for each constraint function 

 

5.5.1 Optimal solutions for the case of 10 pumping wells 

The results obtained from the SBO methods are discussed next for the case of 10 pumping wells 

which sets the dimensionality of the optimization problem to 10k = . A set of 30 LHS designs of 

size m k , were evaluated with the VDST model to provide the initial training points for all 

algorithms and for all 30 individual optimization runs. The EAS-PB algorithms used an initial 

training sample of 80m =  points which also serves as an initial population for EAS and satisfies 
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the 8 k recommended population size (Kourakos and Mantoglou 2009). For ConstrLMSRBF, 

CSEEAS and LR-RSRBF two alternative computational budgets of 100MHFr =  and 

300MHFr =  were employed. That is, 100 and 300 VDST model runs were available for the 

implementation of these methods. Based on the empirical rule  max 2 1,0.1m k MHFr=  + , the 

initial training sample of 21m =  was used in the case of 100MHFr =  and  30m =  for the case of 

300MHFr = . 

Table 5-3 Sample statistics of the feasible optimal solutions obtained from the 30 independent optimization 

runs for 10 pumping wells (best results are in bold and the benchmark solution is underlined). 

Optimization method Worst Best Mean StDev VDST runs* Time (hr) ** 

EAS-VDST 

EAS-PB(TPS) 

EAS-PB(CUB) 

EAS-PB(G0) 

EAS-PB(G1) 

EAS-PB(BE) 

EAS-PB(OW) 

CSEEAS100 

ConstrLMSRBF100 

LR-RSRBF100 

CSEEAS300 

ConstrLMSRBF300 

LR-RSRBF300 

 4857.5   4967 

193 

181 

175 

160 

210 

186 

100 

100 

100 

300 

300 

300 

14.45 

0.84 

0.81 

0.79 

0.76 

1.11 

1.35 

0.35 

0.31 

0.33 

0.95 

0.93 

1.10 

4545.4 4852.6 4810.9 69.12 

4700.2 4853.9 4823.4 36.38 

4517.2 4854.2 4802.1 81.57 

4491.7 4852.2 4797.5 102.18 

4517.2 4851.9 4808.3 81.81 

4545.4 4858.5 4810.5 75.42 

4757.7 4842.2 4803.8 22.66 

4723.6 4850.6 4813.8 25.72 

4802.0 

4783.9 

4854.2 

4852.1 

4839.2 

4828.1 

12.32 

19.57 

4834.1 

4821.6 

4856.5 

4856.3 

4847.3 

4846.1 

5.17 

7.29 

* 
For EAS-PB methods this is an average value from the 30 optimization runs, ** average computational time  

 Regarding computational savings, it is evident that SBO reduced the computational time 

significantly compared to the direct optimization with the VDST model. A 90-98 percent reduction 

in time was achieved, depending on the method used and the computational budget that was 

specified to terminate the SBO algorithm. Obviously, forcing the algorithm to stop at 100 VDST 
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model runs, produced the larger reduction in computational time. On the other hand, the EAS-PB 

algorithms which employ the multiple surrogate approach required more computational time. This 

is attributed to the extra steps included in the multiple surrogate approach, such as, the internal 

optimization task for calculating optimal weights of the ensemble and the cross-validation method 

to select the best surrogates for each constraint function. For LR-RSRBF, it has been already 

discussed that the step which involves the search with a global optimization algorithm increases 

the overall computational time. It is reminded that the number of evaluations with the VDST model 

varies for the EAS-PB methods, since the stopping criteria of the algorithm are not based on 

predefined computational budgets. Practically, this means that as the surrogate models predict 

better optimum values than the current optimum, the VDST model is called by the EAS-PB 

algorithm to evaluate the feasibility of the proposed solution regardless of the number of VDST 

model runs.  

 What is important though, is to assess if the computational gains were associated with a 

successful exploration of the search space by the SBO algorithms. A first thing to note, is that the 

performance of the SBO algorithms was markedly improved by using separate surrogate models 

for the constraint functions compared to just using a single surrogate for the penalized function 

(see Table 5-1). This was also the case for the lower computational budget where 100MHFr = , as 

demonstrated with the results obtained from CSEEAS, ConstrLMSRBF and LR-RSRBF 

algorithms. All SBO methods found an optimal solution which is notably close to the benchmark 

optimum in at least one of the 30 trials, as indicated by the best value in Table 5-1. Given the 

calculated sample statistics, the use of more sophisticated surrogate models, such as KRG or the 

multiple surrogate approach, did not provide any noticeable advantages over the simpler single 

surrogate approach using RBF models.  
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 However, if one should pick the most promising method from the multiple surrogate 

frameworks, the case of the ensemble with optimal weights EAS-PB(OW) marginally outperforms 

the EAS-PB(BE). Interestingly, EAS-PB(OW) in one of the optimization trials found an optimal 

solution which is slightly better than that obtained from EAS-VDST. This is possible since the 

direct optimization with the VDST model was performed only once to get the benchmark solution 

and it cannot be concluded as the “true” global optimum. It is noted though, that the extra 

optimization step for the weight calculation of the ensemble, complicates the algorithm and 

increases the computational cost considerably. However, the solution found by EAS-PB(OW) is 

an indication that the algorithm successfully located the region of the global optimum.  

 Among the EAS-PB algorithms, EAS-PB(CUB) had the best performance, as indicated by its 

mean and standard deviation values. In fact, it performed well against CSEEAS, ConstrLMSRBF 

and LR-RSRBF although it follows a less comprehensive infill strategy. It is reminded that EAS-

PB follows an aggressive sampling strategy focused on local exploitation and thus, there is a point 

where a further increase in the VDST model runs will not improve the algorithm’s capability to 

escape from a possible local optimum. Practically, the average value of 181 VDST model runs for 

the EAS-PB(CUB) algorithm means that convergence is achieved around that number of VDST 

evaluations for this specific problem. Adding more training points from VDST simulations will 

only provide minor improvements on the current optimum and eventually will deteriorate the 

prediction skills of the RBF models due to closely sampled points. That is also the reason for 

setting a distance criterion from previously evaluated points as described in chapter 4. The fact 

that EAS-PB(CUB) had a sample mean close to the benchmark solution and a relatively low 

standard deviation, shows that for a moderate dimensionality of 10 pumping wells, this approach 
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will likely provide optimal solutions of good quality in a fraction of the time required by the EAS-

VDST optimization. 

 The sample mean along with the standard deviation values are indicative of how consistent the 

performance of each SBO algorithm is. A simple metric for the sample means can be defined as 

meanmean HFF Y Y= − , where HFY  is the benchmark solution and meanY  is the sample mean of the 

SBO method. The lower the value the closer is the sample mean to the solution with the VDST 

model. In quantitative terms, meanF  also shows the difference of total pumping in cubic meters per 

day, between the benchmark solution and the sample mean.  

 

 

Figure 5-7 The performance of all SBO algorithms based on the metric meanF  (upper plot) and the calculated 

standard deviation (lower plot) from the 30 independent optimization trials. 



Page | 91 
 

 Based on the ranking shown in Figure 5-7, the SBO algorithms which involve both exploration 

and exploitation steps appear more reliable than the pure exploitation strategy which is pursued 

with the EAS-PB methods. The most reliable performance is observed with the ConstrLMSRBF 

algorithm when the computational budget increases to 300MHFr =  (i.e., ConstrLMSRBF300). 

Interestingly, LR-RSRBF performed equally well with ConstrLMSRBF for 300MHFr =  while it 

performed better than ConstrLMSRBF in the case of 100MHFr = . CSEEAS also showed a 

reliable performance especially for the computational budget of 300MHFr = . In general, 

CSEEAS, ConstrLMSRBF and LR-RSRBF algorithms had amongst the best mean values along 

with the lowest standard deviation values, which indicates a reliable performance independent of 

initial training designs and random operations of each algorithm. EAS-PB(CUB) was ranked 5th 

and 7th for meanF  and standard deviation values, respectively, which is the best rank among the 

EAS-PB methods.  

 Another useful metrics to compare the SBO algorithms are the actual relative improvement I , 

the maximum possible relative improvement maxI  and the relative improvement ratio Ir  (Viana et 

al. 2010a). These quantities are particularly useful in our case where the algorithms in comparison 

have different convergence criteria. They are defined as follows: 

 

 

*
*

max

max

, ,inB inB HF
I

inB inB

y y y y I
I I r

y y I

− −
= = =   (5.1) 

where inBy  is the initial best solution (could be the one from the initial design points), 
*

y is the 

actual solution found from the SBO algorithm and *

HFy  is the global optimum known from the 

optimization with the HF model. If 0I =  means that the SBO algorithm did not improve further 
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from the known starting best feasible solution. When 0I   means that there is improvement over 

the starting feasible solution which could be significant depending on the progress of the algorithm. 

Accordingly, maxI  sets a standard of how far the initial best feasible point from the “true” global 

optimum is. Therefore, a ratio Ir  closer to 1 suggests an algorithm that produced significant 

progress during optimization and found a solution in the region of the global optimum. These 

measures can be used in a progress plot showing the improvement over the number of HF model 

runs.  

 

Figure 5-8 Mean of the relative improvement ratio maxIr I I=  (from the 30 optimization trials) for

300MHFr = . Plotting starts at 21m =  initial design points for CSEEAS, ConstrLMSRBF and  

LR-RSRBF while it starts at 80m =  initial design points for the EAS-PB methods. 
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 As shown in Figure 5-8 the mean relative improvement ratio for six SBO algorithms for the 

case of 300MHFr = is demonstrated. Three of them belong to the EAS-PB method which 

performed best in their category, given their sample statistics. Thus, we select the EAS-PB(CUB) 

from the implementation with the RBF models, the EAS-PB(G0) from the implementation with 

the KRG models and the EAS-PB(OW) from the implementation with the multiple surrogate 

models. It is reminded that these SBO algorithms do not terminate on a specific computational 

budget and thus each trial may or may not have used 300 VDST model runs. However, as it was 

explained earlier, by adding more HF runs only minor improvements are expected, if any at all. 

As the plot indicates, at a certain number of VDST evaluations their progress has reached a plateau. 

The other three methods in the plot are CSEEAS, LR-RSRBF and ConstrLMSRBF which utilize 

the number of HF model runs as a stopping criterion. 

 Using 300 runs with the VDST model represents a moderate computational budget which 

emulates the scenario of a relatively time-consuming VDST model. In such cases, finding good 

solutions can be challenging. It appears that all six SBO methods performed well, exhibiting steep 

improvements on their mean Ir  values within the first 100 function evaluations of the VDST 

model. LR-RSRBF, climbs faster than other algorithms to 0.9Ir =  in fewer than 100 evaluations 

with the VDST model, demonstrating its capability to guide the search to promising regions fast. 

CSEEAS has the third best progress while the performance of ConstrLMSRBF, after 80 VDST 

model runs, is markedly improved and is similar to LR-RSRBF. Among the EAS-PB methods the 

EAS-PB(CUB) has the best progress and after 150 VDST model runs exhibits a good performance 

closer to the CSEEAS algorithm.  

 Based on the present results, there is a strong indication that some of the proposed methods 

deliver good and reliable solutions within much less computational effort than the EAS-VDST 
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approach. There is always room for an improved performance for each of these SBO algorithms 

by tuning specific parameters. This is especially the case for the more comprehensive approaches 

such as ConstrLMSRBF, CSEEAS and LR-RSRBF. However, this would have made the 

intercomparison even more complicated. As discussed in Razavi et al. (2012), this is one of the 

puzzling things to consider when applying SBO methods and obviously the user’s experience with 

each individual algorithm as well as with the design of the optimization problem might have a 

positive or negative effect on the success of each method. Some aspects of the effect of parameter 

tuning on the SBO algorithms performance are discussed below.  

 As mentioned before in chapter 4, the original SEEAS utilizes the dimensionless progress index 

( ) ( )log / logPI HFr MHFr= , where HFr  is the current number of runs with the HF model while 

MHFr  defines the available computational budget. The PI  index, sets the weight for the 

acquisition function based on the empirical formula ( )max 0.75,min ,0.95w PI=     in the original 

paper (Tsoukalas et al. 2016). As more iterations are carried out by the algorithm and thus more 

HF model runs are added, the value of PI  increases and the minimization of the acquisition 

function focuses on exploitation. For the present implementation of CSEEAS algorithm, it was 

observed that the performance of the algorithm was sensitive to the contribution of exploration 

through the weighting formula ( )max 0.75,min ,0.95w PI=    . In Tsoukalas et al. (2016), 

SEEAS, initially designed for optimization problems with bound constraints only, was tested for 

computational budgets of 500MHFr =  and of 1000MHFr = . As this is a first attempt to modify 

SEEAS for nonlinear constrained optimization problems and its performance was tested for lower 

computational budgets of 100MHFr =  and 300MHFr = , we examined different values of 

weights given to exploration from the beginning of the optimization.  For this specific optimization 

problem and for the lower computational budget of 100MHFr = , it was observed that CSEEAS 
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performed better and more reliably when the minimization of the acquisition function was oriented 

to exploitation from earlier stages of the optimization. Therefore, exploration was set to a 

minimum by setting 0.95w = . For the case of 300MHFr = , we set ( )max 0.85,min ,0.95w PI=   

as optimal choice. This selection for the weighted acquisition function could be problem 

dependent, and thus, it cannot be concluded that the above settings for CSEEAS would also be 

optimal in similar cases with small computational budgets. 

 ConstrLMSRBF algorithm is considered as a promising method for pumping optimization 

problems in coastal aquifers as it was demonstrated in Christelis et al. (2018). It is expected that 

the present optimization problem has multiple local optima and the stochastic features of 

ConstrLMSRBF show promise in quickly improving the objective function value within a small 

number of iterations. ConstrLMSRBF generates candidate points for evaluation with the RBF 

metamodels, by applying normal random perturbations on all or on a subset of the coordinates of 

the best feasible solution found so far (Regis 2011). By varying the algorithm settings for the 

present optimization problem, it was observed that in our case the performance of ConstrLMSRBF 

was better if all coordinates were perturbed to generate new candidate points. Since LR-RSRBF 

adopts the perturbation scheme of ConstrLMSRBF is expected to be also sensitive to the same 

parameters although in ConstrLMSRBF the standard deviation varies dynamically while in LR-

RSRBF remains constant during the optimization steps.  

5.5.2 Increasing the dimensionality to 20 pumping wells 

The increase in dimensionality of the optimization problem challenges the effectiveness of the 

SBO algorithms in locating the region of the global optimum. Therefore, the comparison of 

algorithms’ performance is also conducted for the case of 20 pumping wells. The computational 

budgets are again 100MHFr =  and 300MHFr =  for CSEEAS, ConstrLMSRBF and LR-RSRBF. 
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The initial training points this time are 41m =  based on  max 2 1,0.1m k MHFr=  +  with 

20k = . An initial training sample of 160m =  points was created for the EAS-PB algorithms that 

satisfies the 8 k  criterion for the initial population size. It should be noted that although the 

8 k value is selected as a preferable choice for EAS-PB, it does not mean that its performance 

will necessarily degrade if smaller initial population sizes are selected. It is obvious though, that 

as the dimensionality of the optimization problem increases, spending many HF model runs on the 

initial population evaluation is not ideal and certainly puts a lot of effort on a random design instead 

of a more guided search towards promising solutions.  

Table 5-4 Sample statistics of the feasible optimal solutions obtained from the 30 independent optimization 

runs for 20 pumping wells (best results are in bold and the benchmark solution is underlined). 

Optimization method Worst Best Mean StDev VDST runs* Time (hr) ** 

EAS-VDST 

EAS-PB(TPS) 

EAS-PB(CUB) 

EAS-PB(G0) 

EAS-PB(G1) 

EAS-PB(BE) 

EAS-PB(OW) 

CSEEAS100 

ConstrLMSRBF100 

LR-RSRBF100 

CSEEAS300 

ConstrLMSRBF300 

 4832.2   11020 

244 

243 

231 

215 

218 

186 

100 

100 

100 

300 

300 

33.68 

1.23 

1.23 

1.19 

1.14 

1.41 

1.52 

0.35 

0.32 

0.34 

0.97 

0.94 

4540.7 4824.3 4698.3 73.90 

4545.7 4815.0 4718.5 68.82 

4419.4 4762.7 4628.2 71.46 

4465.0 4813.0 4662.4 99.39 

4465.0 4806.6 4659.2 91.38 

4465.0 4804.6 4672.5 92.28 

4596.7 4775.2 4684.3 44.33 

4546.4 4768.5 4690.4 60.72 

4661.6 

4697.1 

4793.0 

4822.1 

4729.4 

4763.0 

40.70 

33.67 

4656.8 4814.5 4768.6 31.19 

LR-RSRBF300 4729.0 4829.5 4792.5 23.19 300 1.47 

* 
For EAS-PB methods this is an average value from the 30 optimization runs, ** average computational time 

 Table 5-4 presents the sample statistics for the case of 20 pumping wells and for the same SBO 

algorithms that were tested before. Notable computational savings are achieved despite that for 
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each algorithm 20 separate surrogate models were constructed and updated during optimization. 

However, the increased dimensionality affected the performance of the SBO algorithms. In the 

previous case of 10 pumping wells, the maximum difference between the sample mean of EAS-

PB(G1) and the HF global optimum was 361.5m day . Now, the maximum difference is 

3204m day  between the sample mean of EAS-PB(G0) and the HF solution from the VDST model. 

The best solution with the SBO algorithms was found in one of the optimization trials with LR-

RSRBF for 300MHFr = . For the same computational budget, LR-RSRBF had the best lowest 

feasible solution, the best mean value, and the lowest standard deviation. However, it was also the 

second most expensive SBO algorithm due to the internal global optimization step which this time 

involved 20 pumping wells (see 4.4.5 for details).  

 Based on the mean values, CSEEAS, LR-RSRBF and ConstrLMSRBF struggled to 

approximate the region of global optimum for 100MHFr =  as successful as in the case of 10 

pumping wells. It is noted that for all SBO algorithms, we kept the same settings as in the 

optimization problem with 10k = . Apparently, tuning those settings may improve the 

performance of the algorithms, however, this would further complicate the intercomparison. The 

SBO methods based on the EAS-PB approach utilized generally a larger number of VDST model 

evaluations than before until they converged to an optimum. Again, given the sample statistics, 

EAS-PB(CUB) appears to perform better than the other EAS-PB algorithms.  

 As with the case of 10 pumping wells, Figure 5-9 illustrates the mean relative improvement 

ratio. This time, only four SBO algorithms are compared for the case of 300MHFr = . Only one 

belongs to the EAS-PB method, namely, EAS-PB(CUB). The other three methods in the plot are 

CSEEAS, LR-RSRBF and ConstrLMSRBF which utilize the number of HF model runs as a 

stopping criterion and balance exploration and exploitation using the surrogate models.  
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Figure 5-9 Mean of the relative improvement ratio maxIr I I= (from the 30 optimization trials) for

300MHFr = . Plotting starts at 41m =  initial design points for CEEAS, LR-RSRBF and ConstrLMSRBF 

while it starts at 160m =  initial design points for the EAS-PB methods. 

 While in the case where 10D =  EAS-PB(CUB) approached a value of 0.9Ir = , here, it appears 

that the algorithm hardly reaches a mean relative improvement ratio of 0.6Ir = . On the other hand, 

CSEEAS, LR-RSRBF and ConstrLMSRBF performed much better by having an improvement of 

0.6Ir =  in fewer than 100 VDST model runs while LR-RSRBF exhibits the most promising 

progress among the SBO algorithms reaching a mean improvement ratio of 0.9Ir =  at the end of 

the 300 evaluations with the VDST model. A comparison between LR-RSRBF and 

ConstrLMSRBF as well as between LR-RSRBF and CSEEAS, using the non-parametric Wilcoxon 

rank sum test, returned in both cases 1h =  and p-values in the range of 410− . Thus, at least for the 
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present problem and for 300MHFr = , LR-RSRBF is preferable over the other two SBO 

algorithms. 

5.6 Multi-fidelity optimization for limited computational budgets 

In the previous numerical experiments, the available computational budgets were adequate to build 

surrogate models and use a considerable number of HF VDST model evaluations to search for an 

optimal solution within each SBO framework. Here, it is hypothesized that the VDST model is 

extremely time-consuming and therefore we can only afford small computational budgets of 

11MHFr =  and of 21MHFr = . The 11MHFr =  budget, marginally satisfies the requirement of 

1k +  training points for the case of 10 pumping wells. Practically that means we certainly cannot 

use the previous conventional SBO methods and thus we can either only evaluate a sampling 

design of 11 points to look for a feasible solution or use a low-fidelity but computationally less 

expensive model to run the optimization.  

 An alternative approach in such cases, is to combine the available HF model evaluations with 

a substantially larger set of input-output data from low-fidelity (LF) models. As mentioned before, 

we utilize here the method of co-Kriging to achieve this combination of training points from the 

LF sharp interface model and the HF VDST model (see section 4.4.6). As it was shown previously, 

in the presence of nonlinear constraints the SBO methods perform better when separate surrogate 

models are built for each constraint function. However, training coKRG models for each constraint 

function requires larger computational effort than the RBF and the KRG models. It involves 

running first a considerable number of simulations with the LF model and then fit each coKRG 

model on selected training points. It also includes a separate optimization task, like KRG models, 

to estimate the required coKRG parameter set. Due to this increased computational cost, the same 

problem is also solved by constructing only a single coKRG model for the penalized objective 
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function of the VDST and the sharp interface models. This approach aims to investigate if the 

errors from ignoring the constraint responses are smoothed out due to the knowledge-based 

approach of the LF model despite its known inaccuracies.  

 In general, the multi-fidelity methodology developed here assumes that the sharp interface 

model is capable to explain part of the VDST model behavior. Our effort was focused on using the 

two models in an iterative multi-fidelity optimization framework for the case of limited VDST 

samples. In the first scenario where 11MHFr = , it was assumed that the available VDST model 

runs are not adequate to construct conventional surrogate models and thus we need to resort to 

multi-fidelity modelling. In the second scenario, where 21MHFr = , it is possible to acquire 

samples from the VDST model and construct surrogate models but the overall computational 

budget is very low, meaning that only a few runs with the VDST model are available after the 

initial training. For the second case, the multi-fidelity optimization approach is compared against 

the robust ConstrLMSRBF algorithm. Therefore, a total of four optimization methods are 

compared in this section: 

i. Optimization using the LF sharp interface model of Strack (1976) as an alternative to the 

HF EAS-VDST approach. It will be denoted as EAS-SH. 

ii. An adaptive-recursive (AR) optimization framework presented in chapter 4, using coKRG 

models for each of the constraint functions. It is implemented for two computational 

budgets, i.e., 11MHFr = and 21MHFr = . For convenience, the method will be denoted as 

AR-coKRGCONS. 

iii.  An adaptive-recursive (AR) optimization framework presented in chapter 4, using coKRG 

models only for the penalized objective function output. It is implemented only for

21MHFr = . For convenience, the method will be denoted as AR-coKRGOBJ. 
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iv. The ConstrLMSRBF algorithm as a conventional SBO method to compare against multi-

fidelity optimization, for the computational budget of 21MHFr = . Practically, 11 training 

points are used to build the cubic RBF models and the rest 10 VDST simulations are 

utilized to update the surrogates and evaluate promising points. 

 It is noted that apart from the known optimum obtained with the VDST model for the case of 

10 pumping wells, the EAS-SH optimization was also run once to get the corresponding optimum. 

The SBO methods run for a set of 30 independent optimization trials to obtain a statistical meaning 

of algorithms’ performance.  

 

Table 5-5 Comparison of optimal solutions found with the AR-coKRG SBO method, the sharp interface 

model, the VDST model and the ConstrLMSRBF method for 21MHFr =  are also presented. (The optimal 

solutions with the VDST model and the sharp interface model are underlined). 

Optimization method Worst Best Mean StDev VDST 

runs 

Sharp 

runs 

Time (hr) 

EAS-VDST  4857.5   4967 NA* 14.45 

EAS-SH  4049.2   NA* 4164 1.6 

AR-coKRGCONS 3866.0 4740.0 4363.2 241.96 11 100 0.12 

AR-coKRGCONS 4155.7 4730.1 4480.9 150.82 11 200 0.18 

AR-coKRGCONS 4201.9 4773.5 4552.3 144.51 21 100 0.31 

AR-coKRGCONS 3966.3 4815.1 4605.0 187.38 21 200 0.56 

AR-coKRGOBJ 4106.1 4763.6 4415.8 167.39 21 200 0.45 

ConstrLMSRBF 4004.8 4740.6 4397.3 205.94 21 NA* 0.095 

*  NA: Not Applicable 

 Based on the above results from Table 5-5, it is evident that on average the multi-fidelity 

optimization provided a better solution than using the sharp interface model alone. The mean 

values obtained from the AR-coKRGCONS method are considerably higher than the EAS-SH 

approach, even for the case of 11 model evaluations with the VDST model. This is also true for 
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AR-coKRGOBJ, where only one surrogate model is constructed to combine the output of the 

penalized objective function from the sharp interface model and from the penalized objective 

function of the VDST model. Interestingly, in one of the optimization trials AR-coKRGCONS found 

a solution equal to 34815.1m day  which is close to the known optimum with the VDST model. 

These generally promising results from the multi-fidelity optimization are attributed to the 

capabilities of coKRG models as well as to the effectiveness of the local refinement sampling 

strategy included in ConstrLMSRBF algorithm which is utilized in our multi-fidelity method (see 

section 4.4.4 and 4.4.6).  

 We also tested the impact of using more LF simulations on the accuracy and performance of 

the AR-coKRGCONS method. Thus, we set two additional scenarios where the LF model runs are 

set to 100 and 200, respectively. Notably, the increase in the LF simulations improved the 

performance of the AR-coKRGCONS method. However, the non-parametric Wilcoxon rank sum 

test returned 0h =  with a p-value of 0.0679 for 11MHFr = , and 0h =  with a p-value of 0.0575 

for 21MHFr = , which means that the two groups are independent samples from continuous 

distributions with equal medians, at the 5% significance level. Nevertheless, the comparison 

between AR-coKRGOBJ and AR-coKRGCONS for 21MHFr = , returned 1h =  with a p-value of 

59.21 10−  indicating again the better performance of AR-coKRG method when using separate 

coKRG models for the constraint functions. This improvement comes at the cost of increased 

computational effort. This would have been more evident if more LF samples were used for an 

optimization problem or in the case of a larger number of constraint functions. Finally, AR-

coKRGCONS outperformed the data-driven ConstrLMSRBF algorithm for a computational budget 

as small as 21MHFr = . The non-parametric Wilcoxon rank sum test returned 1h =  with a p-value 
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of 42.68 10− , meaning that there is statistically significant difference between the medians of AR-

coKRGCONS and ConstrLMSRBF for the given budget. 
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Chapter 6  

Application of SBO to a real-world coastal aquifer model 

6.1 Overview of the study area 

In this chapter, a VDST numerical model is developed for the case of a real-world coastal aquifer. 

It is an unconfined, elongated aquifer along the Vathi valley, located at the central part of the Greek 

island of Kalymnos (Figure 6-1). The aquifer consists mainly of highly permeable limestone which 

outcrops at the valley margins. The available borehole lithological data indicate that the aquifer’s 

bottom is bounded by an impermeable schist formation which underlies the limestones. The 

geological formations in the valley plain consist of high permeable scree, alluvium deposits of 

medium permeability and almost impermeable volcanic formations (tuff) (Mantoglou et al. 2004).  

 

 

  Figure 6-1 Hydro-lithological map of Kalymnos island (Hellenic Ministry of development, 2005). 
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 For the purposes of the present analysis, it is assumed that for the aquifer flow, which partially 

takes place in the limestone fissures, the concept of equivalent porous medium is valid. Therefore, 

although the carbonate rocks are characterized by secondary porosity, a uniform hydraulic 

conductivity is considered to simplify the numerical model development. The aquifer is broadly 

divided in four uniform hydraulic conductivity zones, as shown in Figure 6-2. 

 

 

Figure 6-2 Hydraulic conductivity zones of the Vathi aquifer 

 Figure 6-3 depicts the four different recharge zones of the aquifer, with the limestones receiving 

the largest amount of recharge due to the presence of large crevices which facilitate the surface 

water percolation (Mantoglou et al. 2004). On the contrary, the alluvium parts mixed with clay 
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receive reduced recharge rates of 30R mm yr=  while the tuffs are considered impermeable with 

no recharge. Finally, the recharge rate at the scree area is estimated at 70R mm yr= (Mantoglou 

et al. 2004). 

 

 

Figure 6-3 The spatial distribution of surface recharge rates across the Vathi aquifer into four different 

zones (source: Mantoglou et al. 2004).  

6.2 Numerical model development 

A numerical coastal aquifer model was developed to perform the three-dimensional VDST 

simulations. Initially, a two-dimensional irregular mesh composed of triangular elements was 

generated to cover the area of interest and then it was further discretized on the vertical direction 

to create a three-dimensional layered mesh. That resulted in a total of 44864 prism elements. As 

illustrated in Figure 6-4, a denser discretization was applied to the east side of the model to simulate 

more accurately the evolvement of the salinity plume close to the sea boundary. The aquifer’s 
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bottom was approximated as horizontal, at a depth of -25 m below sea level. The north, south and 

west boundaries are considered impermeable. At the east sea boundary, first-type (Dirichlet) 

boundary conditions are applied. That is, a specified hydrostatic equivalent freshwater head and a 

constant relative concentration corresponding to the maximum fluid density of seawater are 

applied to represent sea-boundaries. The aquifer is pumped by 11 pumping wells of known 

locations. 

 

 

Figure 6-4 Three-dimensional view of the discretized model domain along with the location of the pumping 

wells shown in red colour.  

 Due to the lack of hydrogeological data and hydraulic head measurements, it was not possible 

to perform a reliable and accurate calibration of the aquifer model before optimization. Therefore, 

the parameter values are rough estimates, based on a trial-and-error procedure (Mantoglou et al., 

2004). The aquifer is replenished by a total uniform surface recharge of approximately
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37849m day . A single run of the VDST simulation requires approximately 80.67 seconds (1.34 

minutes) running on a 2.7 GHz Intel i5 processor with 8 GB of RAM in a 64-bit Windows 10 

system. 

6.3 Formulation of the pumping optimization problem 

In Mantoglou et al. (2004), a pumping optimization problem was solved for the Vathi aquifer based 

on the sharp interface model and a hybrid optimization scheme using SQP and genetic algorithms. 

The authors observed that for the specific well coordinates in Vathi aquifer, the constraints 

associated with the piezometric head at the wells are those which are active rather than the 

constraints related to the toe location. Previous runs with the VDST model in our case, showed a 

similar situation where a narrow salinity front is developed, if the imposed constraints are related 

only to the salinity levels at the wells (Christelis et al. 2019b).  

 In the long run, a total pumping rate, based on the toe formulation of constraints, results in a 

significant lowering of the piezometric head at the wells which is not a sustainable approach. On 

the other hand, it is desirable to eliminate any inactive constraints from an optimization problem 

at the outset, to ease the search with the optimization algorithm (Forrester et al. 2008). To that end, 

instead of using the constraints which are related to salinity levels we reformulate here the 

optimization problem and impose constraints which maintain the piezometric head at a level 

greater than zero with respect to the sea level. Therefore, the objective function is penalized again 

in a way that can be handled by the EAS algorithm as follows: 
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where vM  represents the number of pumping wells that the constraint is violated while ih  denotes 

the piezometric head at the ith  pumping well. The above formulation is similar to that presented 

in chapter 3 (see equations 3.5 and 3.6) but this time, the nonlinear constraints require that the 

piezometric head is maintained above zero with respect to sea level. However, it is noted that this 

is a simpler optimization problem since the constraints based solely on the piezometric heads 

formulate a less strong nonlinearity compared to the examples presented in chapter 5. Although 

this is in favor of constructing surrogate models with good prediction skills, it can still provide 

insights on the capabilities of the SBO algorithms. 

 The present optimization problem includes 11 pumping wells with minimum and maximum 

pumping flow rates at 3

min 0Q m day=  and 3

max 1000Q m day= , respectively. Based on the direct 

optimization with the VDST model, the total pumping rate for the Vathi aquifer is

36184.8totQ m day= , given a management plan of 30 years. The optimal solution obtained from 

the EAS-VDST algorithm, converged after 5189 evaluations of the objective function with the 

numerical VDST model. The overall computational cost was estimated at 116.28 hours (4.84 

days). 

 The optimal solution from EAS-VDST corresponds to a 78.8% of the total recharge volume of 

the aquifer which is 37849m day . The optimal solution found presently with the VDST model is 

stressing the aquifer’s sustainability. Kourakos and Mantoglou (2013) discuss a framework which 

is closer to sustainable groundwater extraction by performing a second optimization run by using 

the optimal results from the first optimization run as initial conditions. This reduces significantly 

the dependance on the initial aquifer storage and was also employed in the previous chapter with 

the hypothetical aquifer models. It should be further noted that such an approach is more to the 

safe side and it might provide a low total pumping rate which does not meet the freshwater 
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demands (Kourakos and Mantoglou 2013). Here, it is assumed that the constraints related to the 

piezometric heads in combination with the locations of the pumping wells maintain the salinity 

front seaward while providing a reasonable rate of total groundwater extraction. Thus, only the 

first optimization run is conducted.  

 Nevertheless, it is possible that in the event of a dramatic decrease in aquifer’s recharge, this 

pumping scheme will result in a significant encroachment of seawater inland. For illustrative 

purposes, Figure 6-5 compares two recharge scenarios for a 30-year management plan, one with 

the present recharge and the other for the extreme case of a 35% reduction in total recharge. 

 

 

Figure 6-5 Salinity distribution after 30 years of simulation with the optimal pumping rates for the present 

recharge scenario (left view) and the corresponding output using the same optimal pumping rates for the 

35% total recharge reduction (right view). 

 The above plots demonstrate that the piezometric head constraints apply a strict control on the 

salinity front by maintaining it seaward. However, if recharge rates decrease significantly, the 

present management plan is no longer sustainable as shown on the right view of Figure 6-5. The 

saltwater front moves further inland while increased salinity levels are observed in a large part of 

the aquifer.  
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6.4 Optimal results from the SBO algorithms 

Given the results from the numerical experiments presented in chapter 5, we employed four of the 

most promising SBO algorithms, namely, EAS-PB(CUB), CSEEAS, LR-RSRBF and 

ConstrLMSRBF. Therefore, one algorithm was selected to represent the prediction-based 

exploitation infill strategy, i.e., EAS-PB(CUB), while the other three belong to methods that 

balance exploration and exploitation. For those three algorithms a computational budget of 

300MHFr =  was assumed. This time only one optimization run was conducted for each SBO 

algorithm.  

 CSEEAS, LR-RSRBF and ConstrLMSRBF share the same 23 initial training points while the 

rest 277 evaluations with the VDST model were utilized by the framework of each algorithm to 

search for promising points and update the surrogate models. The EAS-PB(CUB) method used an 

initial population of 88 points (vectors of pumping rates) which also served as initial training points 

for the surrogate models. It is worth to mention that all SBO algorithms were based on cubic RBF 

models. For this problem, the surrogate models were fitted on pumping rates as input data and the 

corresponding piezometric heads at each one of the pumping wells as output data. In total, 11 

surrogate models were employed to predict the hydraulic head values to unseen vectors of pumping 

rates during the operations of the optimization frameworks.  

Table 6-1 Optimal results from the optimization with the VDST model alone as well as with the SBO 

methods. (Best result is in bold and the benchmark solution is underlined) 

Optimization method Optimal solution (
3m day ) VDST runs Time (hr) 

EAS-VDST 6184.8 5189 116.28 

EAS-PB(CUB) 6184.4 125 2.59 

CSEEAS 6176.3 300 6.28 

ConstrLMSRBF 6174.3 300 5.57 

LR-RSRBF 6185.4 300 6.29 
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 The results presented in Table 6-1 demonstrate that all SBO algorithms found optimal solutions 

which are remarkably close to that obtained from the EAS-VDST method. EAS-PB(CUB) 

converged in only 125 evaluations with the VDST model and provided the largest reduction in 

computational time which is almost 98% compared to EAS-VDST. It is reminded that EAS-

PB(CUB) relies on the convergence criteria of the original EAS algorithm and it does not use a 

specific computational budget as a stopping criterion, unlike to the other three SBO methods. 

These methods, due to the predefined computational budget of 300 VDST model runs, required 

more time to converge providing a smaller reduction of 94% of the VDST-based optimization.  

 Given this single run for each SBO algorithm, the best optimal solution was found by LR-

RSRBF which is slightly better than the one obtained from EAS-VDST. Again, this is possible 

since all algorithms involve random operations, and a single run cannot ensure finding the “true” 

global optimum. Interestingly, EAS-PB(CUB) performed equally well with the other three more 

comprehensive SBO algorithms and found a solution in the region of global optimum in only 125 

VDST runs. To our understanding, this is attributed to the present formulation of the constraints 

which are not as highly nonlinear as in the case with the salinity-based constraints used in chapter 

5 while the number of decision variables is moderate. Here, the optimization problem has probably 

fewer local optima and a less rugged objective function landscape which implies that a simpler 

SBO algorithm like EAS-PB(CUB) might be quite adequate. 

 Figure 6-6 presents the optimal pumping rates from each optimization framework. The 

distribution of the pumping rates from EAS-PB(CUB) and LR-RSRBF exhibit a notable similarity 

with that obtained from EAS-VDST. The fact that LR-RSRBF found a slightly better solution with 

similar distribution of pumping rates strengthens the possibility that this solution is near the global 

optimum. 
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Figure 6-6 Distribution of the optimal pumping rates. The number in the parenthesis corresponds to the 

total pumping rate obtained from each optimization framework. 

6.5 Testing the multi-fidelity approach  

The multi-fidelity optimization framework that was developed for cases of extremely time-

consuming VDST models, is also tested here for the real-world coastal aquifer model. Although 

in the previous numerical experiments AR-coKRGCONS performed better than AR-coKRGOBJ, it 

also increases the computational cost due to the separate construction of coKRG models for each 

constraint function. Here, given that the nonlinearity in the constraints is less strong, the AR-

coKRGOBJ approach was chosen as a simpler and faster implementation of the proposed multi-

fidelity optimization method. It is noted that if the implementation cost of a multi-fidelity method 

is higher than a few runs of the VDST model, then it might worth spending this extra time to obtain 

more HF samples and rely on a conventional SBO approach. 
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 Initially, 200 runs with the LF sharp model were conducted on a set of training points generated 

by a LHS design. Then, a coKRG model was constructed based on the output values of the 

penalized objective functions from the VDST and the sharp interface models. Similar to the 

hypothetical examples presented in chapter 5, a computational budget of 21MHFr =  was set for 

the AR-coKRGOBJ algorithm, as a stopping criterion. Only one run of the AR-coKRGOBJ algorithm 

was performed. To compare the effectiveness of AR-coKRGOBJ, the optimization problem was 

also solved using the sharp interface model alone. The sharp interface simulations were based on 

the 2-D mesh of the VDST model and required 2.7 seconds for a single run.  

 

Table 6-2 Comparison of optimal solutions found with the AR-coKRGOBJ method, the sharp interface model 

and the VDST model for 21MHFr = . The optimal solutions with the VDST model and the sharp interface 

model are underlined). 

Optimization method Optimal solution (
3m day ) VDST runs Sharp runs Time (hr) 

EAS-VDST 6184.8 5189 NA* 116.28 

EAS-SH 5880.1 NA* 3800 2.81 

AR-coKRGOBJ 5993.1 21 200 1.05 

*  NA: Not Applicable 

 As expected, the optimization with the sharp interface model provided a lower optimum than 

the VDST model, due to an overestimation of the seawater intrusion. The difference here is less 

than 3300m day  which from a practical perspective represents a safer extraction rate, given the 

uncertainties related to the coastal aquifer model predictions. However, in terms of algorithmic 

performance, AR-coKRGOBJ provided an even better outcome using only 21 VDST model 

evaluations and 200 runs with the sharp interface model. It is mentioned herein that the AR-

coKRGOBJ may depend on the initial training design and another run of the algorithm might not 

necessarily provide a better optimal solution than EAS-SH. However, and based on the present 
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results, the proposed AR-coKRG optimization method appears as an efficient and effective 

approach, particularly when the discrepancies between the VDST and the sharp interface model 

are not large. As also mentioned previously, the fact that the present optimization formulation has 

a smoother objective function landscape facilitates the search with the multi-fidelity approach 

leading to a good local solution within a few HF model runs.   
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Chapter 7  

Conclusions and suggestions for further research 

A summary of the present work as well as the main conclusions and contributions are discussed 

next. Also, a section regarding suggestions for future research is included. 

7.1 Summary  

Pumping optimization based on the combination of variable density flow and solute transport 

(VDST) numerical models with evolutionary algorithms, is considered an impractical task due to 

the resulting computational burden. In this thesis, the development of surrogate-based optimization 

(SBO) methods was proposed to alleviate the computational cost. Various types of surrogate 

models, sampling strategies and adaptive optimization frameworks were developed and 

extensively compared for the practical applications of coastal aquifer management.  

 SBO methods were tested either by using a single surrogate model of the penalized function or 

by constructing individual surrogate models associated with each nonlinear constraint function. A 

total of nine implementations of SBO algorithms were employed. Radial basis functions and 

Kriging models were used to emulate the response of the nonlinear constraint functions to pumping 

rates. They were chosen as appropriate surrogate model types for the current deterministic 

numerical simulations due to their interpolating capabilities. Six out of these nine methods were 

developed based on the surrogate-assisted evolutionary framework and the prediction-based 

exploitation infill strategy. An evolutionary algorithm, namely EAS, was used as the optimization 

platform where this online surrogate-assisted approach, denoted as EAS-PB, was developed. For 
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this framework, radial basis functions (RBF), Kriging models (KRG) or a combination of those 

via a multiple surrogate approach were utilized.  

 The other three SBO algorithms were based on infill strategies that balance exploration and 

exploitation using the metamodels. One of them was the robust and well-documented 

ConstrLMSRBF algorithm (Regis 2011). It was selected as a comprehensive method to compare 

against those developed in this thesis, due to its promising performance for pumping optimization 

problems of coastal aquifers with large dimensionalities and under limited computational budgets 

(Christelis et al. 2018). A constrained version of the SEEAS algorithm (denoted as CSEEAS) was 

also presented. CSEEAS was based on a short modification of the original SEEAS algorithm to 

pass the information from the separate surrogate models of the nonlinear constraint functions 

within the operations of SEEAS. Finally, a new adaptive-recursive surrogate-assisted framework, 

denoted as LR-RSRBF, was developed combining features of exploitation and exploration steps 

from three existing algorithms, namely, GOSAC, ConstrLMSRBF and SEEAS. 

 Also, a new adaptive-recursive optimization scheme was developed using co-Kriging models 

for hypothetical cases where the VDST simulation is extremely time-consuming. A few high-

fidelity data from the VDST model were combined with a significantly larger number of lower-

fidelity data with the sharp interface model of Strack (1976), to investigate the effectiveness of 

multi-fidelity optimization in coastal aquifer management.  

7.2 Conclusions 

The performance of all SBO algorithms was compared for multiple independent optimization trials 

to attribute a statistically meaningful assessment. A first thing to note is that the proposed 

surrogate-optimization algorithms reduced the overall computational cost by 90-98% of the direct 

optimization with the VDST model. Furthermore, the comparison confirmed that individual 
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surrogate models of the constraint functions outperform the choice of a single surrogate model for 

the penalized objective function. However, it should be mentioned that MLMSRBF (Regis and 

Shoemaker 2007a) and SEEAS (Tsoukalas et al. 2016b), designed originally for bound constrained 

optimization problems, can potentially find good solutions for the present optimization problem. 

The analysis of their average converge progress showed that for a moderate dimensionality of 10 

pumping wells, there is a continuous improvement of the objective function value, provided that 

the available computational budget is large enough. 

 Another finding is that as the dimensionality increases, the performance of the EAS-PB type 

algorithms is adversely affected. For a moderate dimensionality of 10 pumping wells, the average 

performance of EAS-PB algorithms was competent, delivered near-optimal solutions close to the 

benchmark global optimum obtained from the VDST model. Thus, despite the greedy approach of 

adding infill points only at the current optimum, EAS-PB algorithms are considered an efficient 

and effective choice for pumping optimization problems with similar dimensionalities. On the 

other hand, for the case of 20 pumping wells, all EAS-PB algorithms struggled to approach the 

region of the global optimum and mainly returned local solutions of moderate quality. 

 In general, the inclusion of more sophisticated surrogate models in the EAS-PB method, either 

KRG models or via the multiple surrogate approach, did not show any advantage in a consistent 

manner over the simpler RBF models. Although it is difficult to generalize, due to the 

specifications of each optimization problem, the use of cubic RBF models provided fair to notably 

good solutions especially when they were included within the operations of the other type of 

algorithms, namely, ConstrLMSRBF, SEEAS and LR-RSRBF. It is believed that cubic RBF 

models are a fast and fairly accurate surrogate model type that fits conveniently within the 

computational requirements of pumping optimization in coastal aquifers. The cubic RBF model is 
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a favorable choice for problems with large number of constraint functions since their fitting time 

to the input-output data is small compared to the single runtime of a VDST numerical model. 

However, their use was investigated for adaptive online SBO frameworks in coastal aquifer 

management and no recommendations can be made on their prediction skills for offline SBO 

methods. The offline methods typically utilize large training datasets, and in such cases other 

surrogate models may perform more accurately. 

 The performance of ConstrLMSRBF, SEEAS and LR-RSRBF algorithms was tested for two 

alternative computational budgets.  For the case of 10 pumping wells, these algorithms were able 

to locate near-optimal solutions for a computational budget that included as few as 100 simulations 

with the VDST model. This is a notable performance in both efficiency and effectiveness 

suggesting a significant computational tool for pumping optimization problems with a similar 

dimension. When the dimensionality was increased to 20 pumping wells, they were mainly trapped 

to local solutions for the budget of 100 VDST simulations. However, for a larger budget of 300 

VDST simulations, their performance was considerably improved and approached the region of 

the global optimum. That was prominently the case for LR-RSRBF which is a newly introduced 

optimization framework developed in the present thesis. For the cases examined here, LR-RSRBF 

showed great promise for the efficient solution of coastal aquifer management problems. 

 The application of the above surrogate-assisted optimization schemes on a real-world coastal 

aquifer case, successfully returned near global solutions for a problem of 11 pumping wells. The 

EAS-PB and LR-RSRBF algorithms, both using cubic RBF models, provided the best optimal 

solutions. Indicative of their successful application was that LR-RSRBF found an even better 

solution than the one provided with the VDST model while both SBO methods returned optimal 

solutions with a similar distribution of pumping rates against the benchmark solution. The 
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computational gains were in the order of 95% reduction of the original optimization task with the 

VDST model. 

 The multi-fidelity optimization framework developed in this thesis returned satisfactory 

solutions with as few as 21 evaluations with the computationally expensive VDST model. This is 

a very promising performance which could be potentially utilized in real-word coastal aquifer 

models with remarkably high computational requirements. The use of multi-fidelity optimization 

methods is largely unexplored in coastal aquifer management and, to the best of our knowledge, 

this is one of the few attempts existing in the literature to combine the VDST model with low-

fidelity models for pumping optimization problems. This new multi-fidelity optimization method 

outperformed conventional SBO algorithms which are designed for a single fidelity model in the 

case of limited computational budgets. 

7.3 Contributions 

In short and to the best of the author’s knowledge, the contributions of this thesis in coastal aquifer 

management research can be summarized as follows: 

• The use of RBF and KRG surrogate models is scarce in coastal aquifer management despite 

their successful application in many other engineering fields. In this thesis, they were 

utilized for the first time in surrogate-assisted evolutionary frameworks for pumping 

optimization of coastal aquifers. 

• Heterogeneous ensembles of KRG and RBF models using optimal weights and online 

updating within the operations of an evolutionary algorithm, is a new approach presented 

for pumping optimization problems of coastal aquifers. 

• Pumping optimization problems of coastal aquifers involve nonlinear constraints. The 

standard choice is to develop individual surrogate models for each constraint function. In 
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this thesis, a formal comparison was presented for the first time of this standard approach 

against comprehensive SBO methods where a single surrogate model is developed only for 

the penalized objective function. 

• Exhaustive comparisons were performed for SBO methods which follow different 

sampling strategies, and this is a first presentation of such outcomes in coastal aquifer 

management. 

• A constrained version of the SEEAS algorithm (Tsoukalas et al. 2016) was implemented 

for the requirements of the pumping optimization problems of coastal aquifers. 

• A new adaptive-recursive SBO framework, denoted as LR-RSRBF, was developed to 

balance exploration and exploitation using surrogate models for coastal aquifer 

management. The new SBO method combines features from three existing algorithms, 

namely, GOSAC (Müller and Woodbury 2017), ConstrLMSRBF (Regis, 2011) and 

SEEAS (Tsoukalas et al. 2016). 

• A new adaptive-recursive optimization scheme was developed using co-Kriging models 

for multi-fidelity optimization in coastal aquifer management. This is the first time such an 

approach is developed for the purposes of pumping optimization of coastal aquifers. 
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7.4 Some thoughts for future applications and further research 

It is indisputable that for the present optimization problem, SBO methods offered a 

computationally affordable route to locate near-optimal solutions depending on the method and 

the available computational budget. As with all algorithms, tuning some parameters that are 

expected to affect their performance is a practical thing to do although a second or even more runs 

with the SBO methods is not always affordable.  

 Given the inherent random processes usually encountered in SBO frameworks, a series of 

independent optimization trials is generally recommended. So far, only few works present such an 

analysis in the relevant literature of coastal aquifer management for SBO methods. To our 

understanding, if the task is affordable, research on SBO should include multiple independent runs 

to avoid dependencies on initial training designs and to recognize the challenges that these 

optimization problems might present for SBO.  

 The above optimization problems were set on the assumption that seasonal recharge variations 

are not considered, and that constant pumping is assumed during the pumping management period. 

This is justified in terms of long-term management plans and based on the assumption that coastal 

aquifer response to normal fluctuations of recharge is relatively slow. However, it remains a 

challenge to implement SBO methods considering time-variable flow conditions which represent 

a more detailed management option of coastal aquifers. This might be particularly necessary given 

the anticipated impacts of climate change on coastal aquifer systems, particularly during dry 

months.  

 Regarding the implementation of SBO methods in coastal aquifer management, it is of practical 

interest to test more algorithms that balance exploitation with exploration. These optimization 

frameworks are expected to perform more reliably than offline or pure exploitation methods. While 
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there is an increasing interest on these methods, their application for the nonlinear constrained 

pumping optimization problems of coastal aquifers is still limited, compared to other engineering 

fields.  

 Finally, multi-fidelity optimization methods deserve more attention for the efficient solution 

of real-world coastal aquifer management problems. There are already various low-fidelity models 

proposed in the literature but their inclusion in multi-fidelity optimization frameworks is mainly 

unexplored. Although, the preparation of a multi-fidelity optimization framework requires 

additional effort, at the same time some aspects might be beneficial. For example, in the case of 

transient simulations or in the presence of spatial heterogeneity of aquifer parameters where the 

use of conventional surrogate models might be inefficient or complicated. Two or more models of 

different fidelity might return output variables with different physical meaning. In addition, the 

HF model might need to run on a fine discretized grid compared to the grid requirements of the 

LF model. Such dependencies may complicate the implementation and increase the analyst time 

on developing a SBO method based on models of different fidelity. However, all these 

specifications remain to be confronted with the expectation that multi-fidelity modelling could be 

proved beneficial, especially for real-world optimization coastal aquifer management problems. 
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