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ABSTRACT

In pumping optimization of coastal aquifers, often the objective is to mitigate the phenomenon of
saltwater intrusion while satisfying the demands for freshwater extraction. This management task
is typically formulated as a nonlinear constrained optimization problem where the individual
pumping rates are the decision variables. Evolutionary algorithms are considered highly competent
to find a near global optimum to this difficult optimization problem, at the expense of thousands
of function evaluations with the physics-based seawater intrusion model. To solve a pumping
optimization problem of that type using variable-density flow and solute transport numerical
models, leads to a computational cost of many hours, days or even months in the case of an
extremely time-consuming simulation, depending on the number of abstraction wells and the
length of the simulation period considered.

To that end, the present thesis focused on the use of surrogate modelling techniques as a
realistic approach to computationally expensive problems of pumping optimization of coastal
aquifers. The aim was to develop surrogate-based optimization methods that can realistically be
applied in real-world coastal aquifer management problems. In surrogate-based optimization, fast
approximation models, commonly called surrogate models or metamodels, are built using input-
output data from the computationally intensive physics-based model that simulates the system
under study. Then, the surrogate models are used in lieu of the physics-based model to search for
the optimum in the decision variable space. Here, radial basis functions and Kriging models were
selected to develop surrogate-based optimization frameworks. While these surrogate models have
been fairly utilized in other fields of engineering optimization, their use is scarce in aquifer
management studies. As interpolating surrogate models, they can exactly predict the response of

the physics-based model to points that exist in the training dataset. This was considered as a
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preferable feature for emulating the deterministic response of the seawater intrusion models
utilized in this work. Individual surrogate models were constructed to approximate each nonlinear
constraint function included in the pumping optimization problems defined in this thesis.

Emphasis was given on the development of online surrogate-based optimization methods
where the accuracy of the surrogate models was further enhanced during the operations of the
optimization process. That is, additional points were selectively evaluated with the physics-based
model to update the surrogate models after the initial training. This approach, typically called infill
strategy, allowed for a more efficient and effective search of feasible optimal solutions, as opposed
to offline methods that typically require large training datasets to develop accurate surrogate
models in the whole decision variable space.

Different infill strategies were investigated within the proposed surrogate-based optimization
methods. One approach utilized a pure exploitation infill strategy that was embedded in the
operations of an evolutionary algorithm (surrogate-assisted evolutionary strategy). This
optimization framework adopts an aggressive strategy where the physics-based model evaluates a
candidate solution only at the current optimum located by the surrogate models. Here, it was
implemented by either using single predefined surrogate models for the constraint functions or via
a multiple surrogate approach. In the latter case, a cross-validation strategy was employed to select
the best surrogate model for each constraint function or to construct an ensemble surrogate model
of weighted prediction. To the best of author’s knowledge, the use of an ensemble surrogate with
optimal weights in a surrogate-assisted evolutionary strategy was applied for the first time in
pumping optimization of coastal aquifers. Another popular infill strategy in surrogate-based
optimization, is to employ various criteria for balancing exploration and exploitation using the

metamodels. That is, to evaluate certain points with the physics-based model away from the current
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optimum (exploration step) that can improve the global accuracy of the metamodel and increase
its efficacy to locate near-optimal solutions. Such methods have received little attention in
pumping optimization of coastal aquifers despite their proven success in the broader engineering
optimization literature. In this thesis, a new surrogate-based optimization algorithm was developed
which aims to balance exploration with exploitation within an adaptive-recursive optimization
framework.

The surrogate-based optimization methods developed here, were applied in pumping
optimization problems for a hypothetical and a real-world coastal aquifer case. By using several
independent optimization trials, extensive comparisons were conducted to assess the effectiveness
and the efficiency of the proposed surrogate-based methods in coastal aquifer management. In
overall, results showed that the optimization methods based on surrogate models drastically
reduced the computational cost of the corresponding optimization that was based solely on the
variable-density flow and solute transport model. For pumping optimization problems of moderate
dimensionality (i.e., 10 decision variables), all methods approached the region of the global
optimum while those balancing exploration with exploitation provided near-optimal solutions
within just 100 evaluations with the variable-density flow and solute transport model.

For pumping optimization problems of a larger dimensionality (i.e., 20 decision variables), the
performance of the surrogate-assisted evolution framework, which utilized a pure exploitation
infill strategy, was negatively affected. The use of the multiple-surrogate approach within this
evolutionary strategy did not outperform the corresponding implementation with the single
surrogate models. However, the optimization schemes which balance exploration and exploitation
had a consistent performance independent of the initial training sample, particularly when the

number of evaluations with the physics-based model was increased to 300. The new surrogate-
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based optimization method that balances exploration with exploitation and was developed in this
thesis, performed better or comparable to other published surrogate-based optimization algorithms
that have been successfully applied in the water resources optimization literature.

The present thesis also addressed those cases where the variable-density flow and solute
transport models are extremely time-consuming and it is unrealistic to run more than a limited
number of simulations. In such cases, the development of conventional surrogate-based
optimization methods that utilize training points solely obtained from the high-fidelity simulation
model are either impractical or of limited efficacy. Multi-fidelity optimization methods are
considered a useful alternative for these problems, yet this approach is largely unexplored in
coastal aquifer management. In practice, multi-fidelity optimization utilizes a large number of low-
fidelity but computationally cheap simulations while only a limited number of runs with the high-
fidelity model is used. A correction process is established via the development of a surrogate model
which combines the abundant low-fidelity data and the limited high-fidelity data. This correction
aims to smooth out the inaccuracies from the low-fidelity model and to enable the search for
optimal solutions in a computationally affordable manner.

In this thesis, a novel multi-fidelity optimization method was developed based on an adaptive-
recursive framework and co-Kriging surrogate models. Two levels of model fidelity were
considered, the high-fidelity variable-density flow and solute transport model and a low-fidelity
and computationally inexpensive sharp interface model. This was the first time that a multi-fidelity
optimization approach based on co-Kriging surrogate models was developed for coastal aquifer
management. The proposed multi-fidelity optimization framework delivered good local solutions
by using as few as 21 simulations with the variable-density flow and solute transport model and

200 simulations with the sharp interface model for a pumping optimization problem of 10 decision
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variables. Additionally, the multi-fidelity optimization method outperformed conventional
surrogate-based optimization for such a limited number of simulations with the high-fidelity

seawater intrusion model.

Page | xxii



EXTENDED ABSTRACT -EKTETAMENH IIEPIAHPH
«MéBooo1 BertioTonoinong PaCIGUEVEC GE LETO-LLOVTEAD GTIV

OLOLYEIPIOT TOPAKTIDV VOPOPOPEMVH

H paydaio avénon ¢ vTOAOYIGTIKNG 10YVOG d1EhpLVE TV dLVOTOTNTA AVATTVENG OPLOUNTIK®OV
LOVTEA®V LYNANG TIGTOTNTOG GTNV TPOGOUOIMON TOV QLGIKGOV cuotnudtov. H evooupdtoon
TOAOTAOK®V SlEPYASLOV GTNV OVATTLEN €vOC LaBNUATIKOD HOVIEAOL 0ONYEL AVATOPELKTO GE
xPOovoPopec aplBuntikés emidoels. Qotdc0, N ANYN anoeacewv, N avaivon afefoatdotnTog, M
BeAtiotomoinon kot dAleg emavoinmikég pebodoroyieg Pacilovior omnv ypnon TOAAATAGDV
TPOCOUOIDGEMY VYNANG MOTOTNTOG YO L0 OTOTEAEGUATIKY] TPOGEYYIOT, oIV emilvom
npofAnpdtov ce moAvmAoka @uowkd cvotiuate. H oblevén tov ev Aoyo pebodoroyidv pe
Aemtopepn aplOunTikd povtéda cuyva KPIvETOL G LN TPAKTIKT AOY® TOL LEYAAOV VITOAOYIGTIKOV
@optov. 'Eva avtictoyo npofAinua mpaypatedetor kot 1 wapovsa datpiPn otnyv omoia 1 ypnon
LOVTEAWDV DYNANG TIGTOTNTOS Y10, TV TPOCOUOIMGT TG TaPAKTIOG VITOYELNG PONG GE TPOPAN AT
BeAtioTonoinong aviAncemv, eumodilel TNV €QOPUOYN KOOIEPOUEVOV GYNUATOV TPOGOUOI®MONG-
BeAtioTomoinong A0y avENUEVOL VTTOAOYIGTIKOD GOPTOVL.

M dwbéoun pébodog, avayvopiopévn omv Piproypoeio yuoo v emtuyn peiowon Tov
VTOAOYIGTIKOD KOGTOVG Katd TV PeAtioTonoinom, &ivar 1 xpnon HETO-UOVIEA®V GTNV omoia
eotidlel  Tapovoa d1akToptky| dtatpPn. Ta peta-poviéda ivar pabnuoatikd povtédo tkova vo
TEPLYPAPOVY TNV GYECT HETOED TMV OEOOUEVDV EGOJ0V-EAO0V EVOG VTOAOYIGTIKOD HOVIELOL
QLOKNG Paonc. Baoikd yopaktplotikd Toug gival 0Tt EpOcOV EKTAOEVTOVV GTNV ATOKPICT) TOV

VTOAOYIGTIKOD HOVTEAOL Y10 SAPOPOVS GLVOLOCUOVS TV UETAPANTOV €1G030V, UTOPOVV Vi
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YeEVIKEHGOVVY TNV KAVOTNTO TPOPAEYNG LIOG OVTIOTOLYNG OOKPIoNS Yo VEQ dedopéva e166oov. H
EKTELEDT] EVOG VTTOAOYIGLOV LE TO LETO-LLOVTEAQ YIVETOL GE TOAD UIKPO VITOAOYIGTIKO ¥POVO, EVOD
N okpifeta ™ TPOPAEYNG EVIOYDETAL LLE TNV CLYKEVIP®OT LEYAAOV aplOUOD SEYUATOV E16OO0V-
€E600V amd 10 aKPPEC VITOAOYIGTIKO LOVTEAO.

Qot6c0, oe mpoPAnuata PeAticTomoinong 1 OMovpyio €vOG UETO-LOVIEAODL VYNANG
akpipelag oe OLOKANPO TOV YDOPO TOV UETOPANTOV ATOPACTG CLVETAYETOL VYNAO VTOAOYIOTIKO
KOGTOg Kot KoO1oTd Un mpaKTikny v ¥pnon tov peta-poviédmv. H mpocéyyion mov cuvibwg
npokpivetor eivar M oapywn emitevén pog pepkng axpifelog tov peta-poviéAwv, m omoin
BeAtidveTan oty cvvéyela avaroya e v peBodoroyia avavéwong tov detypatog ekmaidevong
(detypoatoinyia) Tov peta-poviélov. Mo OmOTEAEGLOTIKY CTPATNYIKN Oy LOTOANYI0G GTOYEVEL
omv avalnton tooppomiag petald evpeiog eEepevvnong (exploration) kot ctoyevuéving
ekpetdddevong (exploitation) otov ydpo TV peTOPANTOV 0moOQAcNg, OTNPWOUEVH OTNV
TANPoeopia €16050V-££600V TOV TOPEYEL 1| TPOGOUOIMON LE TO VTOAOYIGTIKO HOVIELO PLGIKNG
Baonc. Mo ikavoromTiky] akpifelo Tov HETA-UOVIEAOV GE GUVOVOGUO LE U0 OMOTEAEGLOTIKT
OTPATNYIKN OELYLATOANYING, OVOUEVETOL VO 0OONYNCEL G€ AVGELS TOAD KOVTA 6TO 0AMKO PBEATIGTO
LLELOVOVTOG OPUCTIKA TOV ATOITOVUEVO VITOAOYIGTIKO YPOVO.

H mopovca swtpiPn eotidlel oty avantuén pebddmv Pacicuévev e PETA-LOVTEAN Y10l TV
enthivon mpofAnudtov BeATicTonoinomg avIANcE®Y 6 TaPAKTIONS VOPOPOpPElS. Atvetor Eppaon
omv avantuén Kot tovtodypova 01eodikn] cvykplon avaioywmv peBddwV ce mpoPAnpata
BeAtioTomoinong pe SpopeTIK) SAoTAON OAAG Kot O10popeTikd aplud mTpolmoAoyloHEVOV
OLBECIU®V TPOGOUOLDGEMY LE TO VITOAOYIGTIKA oot TIKO aptOuntiko poviéro. To mepleydpevo

TOV KEQPOAOI®MV TNG TP TEPLYPAPETOL TOPAKAT®:
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210 KePAAOO 2 TEPYPAPETOL TO QUOIKO QAVOUEVO TNG VOOAUVPMONG TOL OPOPH TNV
TPOGOUOIWON TNG TOAPAKTLOG VITOYELNG POTG KO STVETOL LU0 GOVTOUN TEPTYPAPT] TOV LOONUATIKOV
HOVTEL®V OV ypnoipomodnkay oty mapovca Epevva. Emiong meprypdpeton 1 duvatdtnto vo
0p1oTOHV HOVTELN OLOPOPETIKNG MOTOTNTOS OTNV TPOGOUOIMGN TNG VOOAUVP®ONG TO OmOoi0
a&lomolEiToL 6TO ETOUEVO KEPAAOLO KOTA TNV avATTLUEN TV HeBddwV PerTioTomoinoNG UE METO-
povtédla. Q¢ vYNANG ToTOTNTAG HOVTEAD LOAAUDPOONG BempnOnke to HOVIELO pETOPANTIG
TUKVOTNTOG KOl UETAPOPES POTOL VO O YOUNAOTEPNG MoTOHTNTAG OAAL Kot YOUNAOTEPOL
VIOAOYIGTIKOV KOGTOVG BempriOnke To poviédo andtoung dempavelag katd Strack (1976).

To xepdrowo 3 mephopfdver apywd e ovvioun PiPAloypagiky avockKOTnon Tov
TPOPANUATOG TG PEATIGTOMOIMNGNG AVIANCE®Y GTOVG TOPAKTIOVS VOPOPOPELS. ZTNV GLVEYELQ,
opifetar pobnuoatikd to mpOPANUE PeEATIOTOMOINGONG HE UN-YPOUUIKOVS TEPLOPIGHOVS TOL
e€etdleton otV mapovoa STPIPN Yo TNV €0PECT] TOV PEATIOCTOV TOPOXDV AVIANGNG LE TNV

XPNOM EEEMKTIKAOV aAyopiOpmy.

To xkepdroro 4 mepthapfaver o EKTEVY] aVaPOPE OTIS VITAPYOVGES TPOKTIKEG PEATIGTOTOINGNG
pe pHeTo-povTéAD € GAAOLG KAGOOVLS TNG UNYOVIKNG OAAG Kol GTNV OlElpIon TopaKTIOV
vdpopopémv. I'ivetar Aemtopepng culfTnon yio v Slpopd GTNV P1oN TOV UETA-LOVIEA®Y OTOV
EVOTTAPYOLV UN-YPOLLUIKOT TTEPLOPIGHOL TNV STOTTOGCT TOL TPOPANLATOg BeATicTOTOINOTG KOt
TEPLYPAPOVTOL OL SVVATOTNTES SLUPOPETIKMOV LEBOSOAOYIDV Y10 TNV GTPATNYIKY OryLOTOANYi0G
LE TO VTOAOYICTIKG OmouTnTIKO HOVIEAO. ZTNV GUVEXEWD TEPLYPAPOVTIOL TO UETO-LOVTEAL TOL
eMAEYOMKAY Y10 TNV TOPOVGA EPEVVA, TO OTTOLO EIVaL O GUVAPTHGELS akTvViKNG Pdong (radial basis
functions) ko n pebodoroyia Kriging. ITapovsialovral eniong ta oxfiLoTo TOV ovarTOyOnKay yio

v avalntnon BEATIGTNG AVomg e ¥pron HeTa-HovTEA®VY To omoia cuvoyilovtot ota akdiovda:
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1. Zynuo Bertiotomoinomng POCICUEVO GE PETO-LOVTEAN EVOMUATOUEVO OTIC OLOIKAGTIEG

eEEMKTIKOD OAYOPIOLOL KOl EPOPLLOYY] OTPOTNYIKNG GTOYEVUEVG EKUETAAAEVONC.

2. Xynua Bertiotonoinong Paciopévo 6€ TOALOTAG HETO-HovTELD (ETAOYY KAADTEPOV
LETA-HOVTELOL 1] ONUIOVPYIOL GUVOAOL HETO-HOVTEA®V HE VLTOAOYIGUO PBEATIGTOV
Bapav) evoopatopévo otig dadikacieg eSehiktikod oAyoplOuov Kol epoapuoyn

OTPATNYIKNG GTOYXEVUEVNC EKUETAAAELONC.

3. AlyopiOupor PeAtiotomoinong Pociopévol G UETO-UOVTEAN KOl  GTPOTNYIKY

avalntnong tooppomiog LeETaED gvpeing eEepedvoNG Kol GTOYEVUEVNG EKUETAAAEVONC.

4. Beltiotonoinomn Poaciopévn o€ HOVIEAN VOOAUDP®OONG TOAAATANG TICTOTNTOS WE

xpnon g nebodoroyiag co-Kriging.

210 KeQAAOMO 5 TPOYUATOTOOVVTIOL EKTETAPEVES CLYKPIGES TV pHeBOdOLOYIDV OV
avamTuyOnKay, og TPoPALaTe BEATIGTONOINGNG OLPOPETIKNG O1AGTACTG LE XPNOT VIODETIKADV
LOVTEAWDV TTAPAKTIOV VOpopopeémv. OAeg ot cuykpicelg Paciotnray oe mOALATAEG aveEdpTnTeS
doKéG emilvomng g PEATIGTONOINGNG TPOKEUEVOL VO a0d00EL Lol GTATIGTIKY GNUAVTIKOTHTO
ota amoteréopata. Ot advvopieg kol ot duvaTdTTEG TOV HeBOdOLOYIDV avarldovTol TOGO HECH
TOV GTATICTIK®OV YOPOKTNPIOTIKAOV TOL delylaTog OGO Kol pe yprion Kpttnpiov mov aEloAoyodv
v mopeia g enidoons TV aAyopiBumv Kabdg avédvovtal Ta detylato e TO VITOAOYIGTIKA
amortnTikd poviéro. Télog, | Bertictomoinon Paciopévn oe LOVTEAD TOALATTANG TOTOTNTOG LIE
xpnon g pebodoroyiog co-Kriging, spopuoletor Eeympiotd vrobétovtag cevaplo 6mov m
duvatdtto TpocsHnkng véwv detypdtov sivar eEapetikd mepropopévn. O cvvovacuds twv
LOVTEAW®V TOAAUTANG TOTOHTNTAG OPOPE TO HOVIEAO UETOPANTAG TLUKVOTNTOG KOl HETOPOPES

POTOV KoL TO LOVTELO amdToUNG dlempavetlag katd Strack (1976).
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Bdoel tov omotelecUATOV TOL TOPOVLGLACTNKAV GTO KEPAAOO 5, €vo VTOGHVOAO T®V
HeBOB0AOYIDV LE TIC KOADTEPES EMOOGELS aSlomomOnKe 6TO KEPAAMLO 6 Yo TNV gVpeon BEATIOTOV
TOPOY®V AVIANCTNG GE HOVIEAO TPOYLOTIKOD TOPAKTION LOPOPOPEN, GVYKEKPIUEVE 6To Babh
Koardpvov. Ot mpotevopeveg pebodoroyieg mapelyov AVGEIS GTNV TEPLOYT TOV OAKOV BEATIGTOV
otov avtég ovykpinkav pe v PértioTn Abon mov vroAoyicOnke pe to aplOuNTIKO HOVTELO

HETOPANTNAG TUKVOTNTAG Kol LETAPOPAS pOTOV.

To kepdrlowo 7 mopovcldlel (o GOVOYTN TOV OTOTEAEGUATOV OO TNV EQUPUOYYT TOV
TPOTEWVOUEV®DV HEBOJOAOYIDV GE VTODETIKOVG KOl TPOYUATIKOVG VOPOPOPEIS. AvapépovTal ot
TPOTAGELG Y10 TNV EQPOPUOYN TOV UETA-LOVIEA®V GTNV SLXEIPIOT TAPAKTIOV VOIPOPOPEWV OTWG
TPOoEKLYOV amtd TV TAPOLGA £PgLVa Kot u{NTIOVVTOL SVVATOTNTES TEPATEP® EUPABVVOTG oTNV

eV AOY® £PELVITIKN TTEPLOYN.

Ocov apopd v cuUPoAr TS TapoVoG EPYNCING TNV EXIGTNUOVIKY TEPLOYN TNG OlaXEIPLONG
TOV VOUTIKOV TOPOV, OVOPEPOVTOL TOPAKAT® GLVOTTIKE T KOPLOL SNUEID TPMOTOTLTTIOG AAAA Ko
TPOTACELG N TPAKTIKEG TTOL TPOTEIVOVTOL (G AMOTEAECOL TG CLYKEKPIUEVNG EpEvVag. LG KOP1Og
o1dY0¢ NG epyaciag elvar 1 avamTTLEN VE®V OTOTEAEGUOTIKOV GYNUATOV TPOGOUOImoNS-
BeAtiotomoinong pe xpnon HETA-HOVTEL®Y, TNV SLoEPIoT TOPAKTIOV VOIPOPOPEMY. ZNUAVTIKO
Babuod mpwtotumiog Tapovoialel n pebodoroyia LR-RSRBF (Local Refinement Random Search
with RBF models) mov avamtdydnke ota mhaicio g dwatpipng. H LR-RSRBF viomotel o
alyoplOkn SadKacion TPOCAUPUOGTIKNG oval|TNoNG 100ppoTiag LETAED eVPElng eEEPEVVIONG
KOl OTOYELUEVNG EKUETAAAELONG, GLVOLALOVTOG ONOTEAECUOTIKA KPITNP. Kot Pripoto
wponyovueveoy pebodoroyidv Peltiotomoinong pe peta-poviéda. H vmoapén un-ypoppukov
TEPLOPICUDOV 6TO TPOPANUE Pedtiotomoinong aviAncemv mov eEeTdleTOl, OVIIUETOMIOTNKE

EMTVYADG HE TO €V AOY® CYNUO Kol TNV XpNon cvvaptnoemv axtvikng Paong (RBF) wg peta-
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povtédov. Tlpoékvyav a&lomoteg AOGES GTNV TEPLOYN] TOV OAKOV PBEATIGTOV, TKOVOTOIDVTOG
TAVTOYPOVA. TNV OVAYKN Yo, UIKPO apldud TPOGOUOIMCEMY UE TO VITOAOYICTIKA OTTOLTNTIKO
HOVTELO UETOPANTNG TLUKVOTNTOG Ko LETOPOPAS pumov. EmmAéov n mpotetvopevn pebodoroyia
OLYKPIVETOL EMOPKMG E ONUOGIEVUEVEG TEXVIKEG PEATIOTOTOINGNG LLE YPT|OT| LETO-LOVIEAWDV TOVL
Yoipovv €vpeiog amodoyNG OTNV OVIIGTO(N EMIGTNUOVIKY TEPLOYN Y. TPOPAALOTO OV

nepAapavouy un-ypaputkove neplopiopove (Kpaenua 1).

1 . : . [ .
EAS-PB(CUB)
0.9 CSEEAS o B |
ConstrLMSRBF ' e
0.8 r LR-RSRBF : —— i
0.7 B 7 |
0.6 d ~ -
—Eost |
0.4 ¢ |
.' r‘"
0.3 | ‘l |
i ‘I)
0.2r . lf' |
.. /
0.1r I‘ |
(|
0 | 1 | \ ‘ |

Number of VDST model evaluations

Ipaonpa 1: Astypotoinmtikog pécog 6pog (amd 30 avelaptnteg SoKIuéG BEATIOTONOINGNG) TS GYETIKNAG
Bedtiwong ¢ anddoong ToL aAYopifpov Evovtt Tov aplduol TPOGOUOUDGEDY [LE TO LOVTELO UETOPANTAS
TUKVOTNTOG Kot PETaQopag pomov. Otav o Adyog I, = | / | mAnocwalet v Tipn 1 yo 660 T0 duvatdv
piKpoTEPO 0plOUd TPOCOUOIDCEMV, eivar EVOEIEN OTL 0 AAYOPIOLOG EIVOL OTOTELEGUATIKOG GTIV TPOGEYYION
AboE®V 6TV TEPLOYT] TOL OAKOV BEATIGTOV KOl OTOSOTIKOG OGOV 0POPA TNV TAYVTNTO EVIOTIGHOD TOVG.
To mapamdve ypaenua apopd TpdPAnua Beitiotonoinong mapoydv aviincemv 20 anyadimv, Beopoviog

v T 300 og Tov péyioto emTpentd aplpd TPOGOUOIDGEMV LE TO LOVTELO PETAPANTHG TUKVOTITOG KOl
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petapopdg pomov. H mpotevopevn pebodoroyia LR-RSRBF mapovcialet kakvtepn amddoon ce oxéon pe

TOVG GLYKPIVOLEVOVS 0AyopiBove 6T0 GLYKEKPIUEVO TPOPAN U TTOV eEETAGTNKE.

nuovtikd  Pabud  mpwtotumiog mapovotdlovv  emiong T GYNUOTO  TPOGOUOI®MONG-
BeAltiotomoinong mov avomtuxOnkav otV mopovco  STpPn Yo pobnUoaTikKd  povtéla
VEOAUVPMONG TOAMOTANG TioTdTToC. 2TV 01Ebv) BipMoypapio o ddpopovg KAGOOLS TNG
UNYOVIKNG, 1 obvdeon 0600 1 Kol TEPIOCOTEP®V HOVIEA®V OLUPOPETIKNG TIGTOTNTOS 7OV
TPOGOLOIMVOLV £VO GUGTNUA, TAPOVGLALEL AVLEAVOUEVO EVOLOPEPOV IOLITEPX Y10 TIC TEPIMTMGELS
TOL 1 TPOCOUOIWOoN HE €va oplunTiKd HOVIEAO VYNANG moTdTNTOG £ivol TOAD LYNAOL
VTOAOY10TIKOD KOGTOVG. H Pedtiotomoinon pe povtédla moAlamAr|g ToToTToG oTnpileTon 6TV
Bempnon mmwg povtéla UOIKNG PACNC 1 AKOUO Kol EUTEIPIKEG GYEGELS YOUNAOTEPNS TIGTOTNTOG
OAAG KOl YOUNAOTEPOV VTTOAOYIGTIKOD KOGTOVGS, UTOPOVV VO, TOPEXOVY YPNGUUN TApopopia Yo
TNV YEVIKT OmOKPIGT TOV GLGTNUATOS, TApA TNV EAAEWYT akpifelog o€ oy€on LE TO AETTOUEPES
OALG KoL VTOAOYIGTIKA akpPO povTédo @uaikng Pdong. Katd avtdv tov tpdmo, ta yopmAdtepng
TOTOTNTOC HOVIEAD YPNOULOTOOVVTOL Yio &va UEYEAO aplfud TPOCOUOIDCEDV VA £VOG
ONUOVTIKA LKPOTEPOS aPtOUOS TPOGOUOIDMCEMV LLE TO LOVTEAD LYNANG ToTOTNTOG dopHmVver Tig
OTOKPIGELS TOV HOVTEA®MV YOUNANG ToTOTNTOS. AVTYH 1| TPOGEYYIoT, TOL GLVIO®G epapuoOleTan
®G L0 ETOVOANTTIKY] dlod1KaGia, ONUIovpYEel £vor LETA-IOVTELD TO OO0 EVOMUATMVEL YVMOGT] 0o
povtéla @LoIKNG Pdomg dopdpwy enimedmv moToTNTaG. Ocmpeitan 6Tt WG HEBOSOC TPOCPEPEL
TAEOVEKTNUOTO OTIC TEPIMTMOELS TOV Ol OOECIUEG TPOGOUOIDGELS HE TO HOVTEAO VYNANG
moToOTTOG €lvol PN TPOKTIKO Vo vepPovv €vav oplopévo aplBud M dev emapkodV Yoo TV

avamtuén cvppotikdv pebddowv Pertiotomoinong e pHeta-pLoviELa.

Ocov apopd oty PeATioTonoinon TOAAUTANG TOTOTNTOS, LEAPYEL Evag UIKPOS aptOpdc

ONUOGIEVGEMY GTNV EMICTNUOVIKY TEPLOYN TNG OAXEIPIONG TOV VOUTIKOV TOPMV EVAD EOIKOTEPQ
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oTNV OEIPLON TOPAKTIOV VOIPOPOPEMVY U0 TPDTH TOPOLGINCT AVAAOY®OV HEBOOMV £Yive OTIg
gpyaocieg Christelis and Mantoglou (2016) kot Christelis and Mantoglou (2019). Xtnv napovca
dwtppn mapovoraletarl £va véo oynuo BEATIGTOTOINONG e LOVTEAN TOAAATANG TIGTOTNTOG TTOV
oLVVOLALEL TO VYNANG TOTOTNTOG HOVTEAO UETOPANTIG TUKVOTNTOG KOl LETOPOPAS pOTOL LE TO
YOUNAOTEPNC TIOTOTNTOC OAAG KO DITOAOYIGTIKA [T OTOLTNTIKO LOVTELD QITOTOUNG OLETPAVELOG
katd Strack (1976). H mpotewvopevn pebodoroyio avamtoydnke oe évo Gy TPOCUPUOGTIKNG-
avadpopKng detypatolnyiog aglomoimvog tig duvatdtnteg e pebodoroyiog co-Kriging yio v
avantuén peta-poviédwv. Ta anotedAéopata mov Tpoékvyay eivor wiaitepa evBoppuVTIKE Yio TNV
xPNOMN NG TPoTEVOUEVIG HeBodoroyiag o mpoPAnaTe BEATIGTOTOINGNS AVIANCEMV TOPAKTIOV

VOPOPOPEMV e TOAD LYNAO VITOAOYIGTIKO KOGTOG.

Onwg eaiveron otov Ilivaxa 1, n peBodoroyio AR-COKRG mov mpoteivetal otnv mapovoa
SwTpif] mapelye KAVOTOMTIKEG AVGELS LLE EVPECT] TOMIKAOV OKPOTUTOV Yio VTOOeon akpaiov
oevapiov 0mov povo 21 TPocoHOIDGELS NTa SBECIIEG PE TO HOVTELDO LETOPANTAG TUKVOTNTOG
Kot petapopdg pomov. Ta dedopéva VYNANG TGTOTNTAG Ao TO LOVTEAD UETAPANTG TLUKVOTNTOG
KOl HETAPOPES pOTOV GLVOVAGTNKAV LE TO OEOOUEVO XOUNADTEPTG TGTOTNTOS TOV TPOEKLY OV
and évav opiud 200 TPOGOUOIDCEMY HE TO HOVTEAO amoToung olempdvelas. H pébodog
ovykpidnke évavtt Tov adyopiBuov ConstrLMSRBF mov avorticoet peta-pHovtéda yio évo Lovo
enminedo motOTNTOS Kot Bewpeitor Wiaitepo amotelecnatikdc 610 TpOPANUe PeAtioTonoinong
avtAnoemv Tapdktiov vopopopémv (Christelis and Mantoglou 2018). Ta aroteréopata deiyvouv
TG Yo £va 6OVoAo 30 aveEapTnT®V SOKIU®V PEATIGTOTOINONG, O SEIYUATOANTTIKOG HEGOG OPOG
TV Aoewv pe v pebodoroyion AR-COKRG vreptepel évavtt tov ALV mpoceyyicewmv yio
TEPLOPICUEVO OPOUO TPOCOUOIDGEWY HE TO HOVTEAO UETOPANTNAG TUKVOTNTOGC KOl LETAPOPAS

pOTOVL.
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Mivoxog 1: Zvykprtikd amotedéopota tov BEATIoTOV Aoewv petald g pebodoroyiog AR-COKRG pe
AVTEG TOL TTPOEKLYOV OO TO YOUNAOTEPNG TIoTOTNTOG HOoVTELD amdToung dempavetag (EAS-SH) ko tov
alyopiBpo ConstrLMSRBF mov ypnoipomotel peta-poviédo yoo évo povo emimedo miototrag. To
aroteléopata apopovv mpdPfAnua Pertictomoinong mapoymdv aviAnocemv 10 mnyadidv. Ot kodvtepeg
Aboelg aneikoviCovtal pe Lovpo EOVIO VD TO KTPUYUATIKO» PEATIOTO e TO VYNANG TOTOTNTOG LOVTELD

HETAPANTG TUKVOTNTOG Ko peTopopdg pvmov (EAS-VDST) agpopd 4967 mpocopotdoels.

Optimization method  Worst Best Mean StDev VDST Sharp Time (hr)
runs runs
EAS-VDST 4857.5 4967 NA* 14.45
EAS-SH 4049.2 NA* 4164 16
AR-COKRGCONS 3966.3  4815.1 4605.0 187.38 21 200 0.56
ConstrLMSRBF 4004.8 4740.6 4397.3 205.94 21 NA* 0.095

* NA: Not Applicable

Evdwpépov ocvumépacpa aute mg epyaciog omotehel 1o OTL Yoo €vav pETplo apBpuo
petafintav anoeoaong (m.y. 10 mnyddio dviAnong), n xpnon ami®dV HETA-UOVTEA®V, OT®S Ot
OLUVOPTNOELS OKTWVIKNG Pdong kuPfikod TOTOL, HE GTPATNYIKY] GTOYELUEVNG EKUETAAAELONG
EVOOUATOUEVN OTIG Oadtkacieg e&elMitikod aAydpBuov, amodidel AVGES TNV TTEPOYN] TOL
OAKOV BEATIGTOV PEI®VOVTAG dPAcTIKE TOV VTOAOYIGTIKO XpOvo kotd 90-95%. H 1610 otpatnykn
avortOxOnke Kot Yoo TNV TEPITT®ON GLVOVAGUOD TOMATAGDY HETA-HOVTIEA®V (GUVOPTHGELS
aktvikng Paong kot Kriging) mov, katd v yvdon TOV GLYYPOQE®MY, OIOTEAEL KOl TV TPAOTN
gpappoyn avtng ¢ pebodoroyiag oty dwyeipion mapdaktiov vopogopiéwv (Christelis et al.
2019). Ipémer emiong va onuelmOet 6tL N Tapovoa StaTpPn TAPOVGINGE TV ATOTEAEGUATIKOTNTA
Kol TG OLYKPIoE TV Seopwv HeBOdOAOYIOV PAcel TOAAATADV aveEdpTNTOV OOKIUOV
BeAtioTomoinong 1 onpacio TV omoiwv £yl YeVIKOTEPA TAPOUAEIPOEL GE TPONYOVUEVEG LEAETES
OTO GLYKEKPIUEVO avTiKEipEVO, mapd TOo OTL Kpivetor ovoykoaio yw Tnv OlEpevvNnon g

apepoAnyiog tv odyopiBuwv ©¢ mpog TV mEPLOYN eKkiviiong tng dladikaciog avalnnong
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Moewv. Eryepndnke eniong po extevig avaokonnon tov pebodoroyidv Peltiotonoinong pe
YPNOT UETO-LOVIEAW®V TOGO GTOVS SLAPOPOLS KAAGOVG TG UNYXAVIKNG 0G0 Kol omd TOV YDPO NG
dtayeipiong TV VOUTIKOV TOP®V. G AMOTEAEGHO OVTNG TNG AVAAVONG, EMUEPOVS TEYVIKEG TOV
viobeTobvtan ¢ state-of-the-art pedetnOniay kot 6o amd avtég kpidnkay KaTdAAniec yo to
wpoPAuato PEATIGTOMOINONG AVIANCEMY EVIAYONKOV GTNV TAPOVCH £PEVVO. LNUEIOVETAL OTL
otV dwtpPn dev emyelpeitan Kamoo euPfdbvvon amd TV KoM TS LOONUATIKNAG TEPLYPOPTG
TOV HETO-PoVIEA®V Kot TG Bempiag Pektiotomoinong. O kbplog ckonds g epyaciag eivar va
depguvnBovv ot dvvaTdTNTES TG PEATIOTOMOINONG LE XPNON UETA-HOVTIEA®V GTO TPOPANLaTOL
Jlxelptong mopAKTIOV VOPOPOPEMY Kol GTO MG €EEWOIKEVOVTAL AapPavoviog vrdym Tig

WTEPOTNTEG NG TPOGOUOIMONG TOV PVGIKOV GLGTNILATOG TNG TAPAKTIOG POTIC.
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Chapter 1

Introduction

1.1 Background

Groundwater is often the main resource of freshwater in many coastal regions around the world.
This is particularly the case for arid and semi-arid areas due to low rainfall and limited availability
of surface water bodies. Approximately 60% of the world’s population resides within coastal zones
and exploits aquifers for domestic water supply, agricultural and industrial purposes (Essink 2001).
As coastal groundwater is in hydraulic contact with seawater, uncontrolled groundwater
abstraction is considered as the main driver for triggering the landward movement of seawater
(Ferguson and Gleeson 2012). This phenomenon, known as seawater intrusion (SWI1), results in
the reduction of freshwater volumes and in the contamination of pumping wells. To prevent and
manage SWI in coastal aquifers, several mitigation actions have been proposed such as, freshwater
injection barriers, artificial recharge mechanisms or groundwater abstraction control
(Georgopoulou et al. 2001; Schwartz and Zhang 2003; Mantoglou et al. 2004; Pool and Carrera
2010). The present thesis focuses on the development of optimal groundwater abstraction
strategies to control SWI by means of simulation-optimization methods.

Simulation-optimization techniques have long been used in coastal aquifer management to
deliver sustainable groundwater extraction plans. A standard class of such applications is the
pumping optimization of coastal aquifers under environmental constraints which protect the

coastal groundwater resources. The main objective is to control the landward movement of
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seawater due to pumping while satisfying the demands for freshwater. The implementation of a
simulation-optimization routine to address this management problem is based on the coupling of
a coastal aquifer flow model with an optimization algorithm. There is a wide body of literature in
coastal aquifer management which combines seawater intrusion models with a variety of
optimization algorithms and different formulations of the objective functions and constraints.
Many of those methods are summarized in the review papers of Singh (2014) and Sreekanth and
Datta (2015). The formulation of such management problems involves two primary decisions:

1. To define the level of model fidelity which would be considered adequate to simulate

seawater intrusion for the coastal aquifer under study.

2. To select an appropriate optimization algorithm which is capable to find a near global

optimum, given the mathematical formulation of the pumping optimization problem.

The next two sections shortly discuss these decisions whereas more details are given in the

following chapters.
1.2 The fidelity concept in seawater intrusion modelling

As is the case with many other complex physical systems, a variety of mathematical models is also
available to simulate coastal aquifer flow. Not all of them describe the coastal aquifer processes in
the same detail and a hierarchy can be defined based on their complexity and accuracy. Variable
density flow and solute transport (VDST) numerical models simulate the density variability in
space and the saltwater movement which constitute key features for the realistic prediction of SWI
(Simmons 2005; Abarca et al. 2007; Dausman et al. 2010; Pool and Carrera 2011; Dokou and
Karatzas 2012). Thus, VDST models represent a high-fidelity choice for simulating SWI. A short
classification may set as low-fidelity SWI models those that neglect dispersion mechanisms but
simulate saltwater movement (Essaid 1986) or incorporate density effects in coastal aquifer flow

Page | 2



(Bakker 2003). An additional simplification and thus an even low-fidelity level, can be introduced
by those sharp interface models which assume static seawater (e.g., Strack 1976; Mantoglou et al
2004; Koussis et al. 2012). Obviously, depending on the specifications of each SWI modelling
study, further refinements within the same fidelity level can be defined. For example, VDST
models with a coarser discretization, two-dimensional instead of three-dimensional VDST models,

steady-state flow modelling instead of transient flow, etc.
1.3 Problem statement and optimization algorithm selection

In the present thesis, focus is given on single-objective pumping optimization problems of coastal
aquifers. Here, it is described as a nonlinear constrained optimization problem of the following

form:

min f (x)
s.t. g (x)<0,i=1..k (1.1)
l, <x<u,, XxeR"
where f, g, represent the deterministic objective function and the ith nonlinear inequality

constraint function, respectively. The decision variable vector x takes values in the k-—
dimensional continuous space [l,,u,] = R*. A real vector x is sought so that f (x) =min f (x)
subject to (s.t.) the constraints defined in problem (1.1). It is assumed that the derivatives of f
and g, are not available, the bound constraints |, and u, define the search space of the
optimization problem while the set of the inequality constraints g;, i =1,...,k define the feasible

solution space.
Nonlinear programming methods, such as sequential quadratic programming (SQP), that

directly handle the constraint functions, have been applied in past coastal aquifer management
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studies. However, it has been observed that they might easily get trapped in local optima
(Mantoglou et al. 2004). Pumping optimization problems of coastal aquifers, have been generally
identified as a non-convex optimization problem with multiple local optima and the relevant
literature suggests the use of global optimizers based on evolutionary principles (Ketabchi and
Ataie-Ashtiani 2015). Thus, evolutionary algorithms have been increasingly used for coastal
aquifer management problems although they require much larger number of objective function
evaluations compared to the gradient-based optimizers (Mantoglou et al. 2004; Sreekanth and
Datta 2015). Nevertheless, and depending on the optimization problem complexity and
dimensionality, some evolutionary algorithms may increase the computational cost whilst failing
to locate near global optimal solutions for SWI management problems (Karpouzos and

Katsifarakis 2013; Ketabchi and Ataie-Ashtiani 2015).

1.4 Motivation

It is acknowledged that the combination of VDST models with evolutionary algorithms can
potentially deliver a high-fidelity optimization outcome (Sreekanth and Datta 2015; Ketabchi and
Ataie-Ashtiani 2015). However, the computationally burdensome runtimes of VDST simulations
hinder the application of standard simulation-optimization routines for coastal aquifer
management. The optimization task can be further challenged by the presence of many decision
variables and nonlinear constraints which in turn increase the function evaluations required by the
evolutionary algorithm to converge. As a result, solving a pumping optimization problem of
coastal aquifers may lead to a computational cost of many hours, days or even months in the case
of extremely time-consuming simulations.

A pragmatic approach to confront the computational cost in such cases, is to employ fast

approximation models, commonly called surrogate models or metamodels, to search for promising
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solutions in the decision variable search space. Surrogate models are initially trained with input-
output data obtained from simulations with the physics-based model. This is an essential step
where the metamodels acquire a certain accuracy to predict outputs of the original model to unseen
input data. Then, the metamodels may be used in lieu of the computationally expensive physics-
based model to explore the search space. However, due to limitations on the computational cost,
itis unlikely that a single initial training set will provide a globally accurate surrogate model. Thus,
a framework should be designed to efficiently sample the physics-based model at additional points
that are considered informative for updating the surrogate models while keeping the number of
model simulations at a minimum. This framework is commonly implemented in an iterative
fashion and constitutes the basic structure of an online surrogate-based optimization (SBO)
method. The advantages of SBO have been well-documented and acknowledged in engineering
optimization literature (Forrester and Keane 2009; Asher et al. 2015; Bhosekar and lerapetritou
2018; Yondo et al. 2018). In general, a fair metamodel accuracy combined with an effective
sampling strategy can possibly steer the SBO algorithm to locate near optimal solutions in a
fraction of the time required with the costly physics-based model. Nevertheless, every engineering
optimization problem involves unique features which may favor the use of specific surrogate
modelling approaches or their use might not even recommended at all (Razavi et al. 2012a).
Although SBO has gained increased interest in coastal aquifer management literature during
the last 15 years, there are still techniques and approaches which are largely unexplored. The
present thesis addresses specific issues in the implementation of SBO methods for the problem of
pumping optimization of coastal aquifers. These are mainly focused on the following two aspects

of SBO methods and set the motivation for this work.
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First, the application and development of SBO frameworks which balance exploration and
exploitation has not received the required attention in coastal aquifer management. A more crude
and aggressive approach evaluates a candidate solution with the physics-based model only at the
current optimum located by the surrogate models. This strategy aims to quickly improve the
accuracy of the metamodel in the optimum region (exploitation step). However, the global
improvement of the metamodel is neglected and depending on the problem at hand, the search
might get stuck in local optima (Forrester et al., 2008). Evaluating certain points with the physics-
based model away from the current optimum (exploration step) can improve the global accuracy
of the metamodel and it can potentially locate better solutions as new samples are added. Based
on findings in the engineering optimization literature, such methods can converge to high quality
solutions using a relatively small number of evaluations with the physics-based model. This is
particularly desirable due to the generally time-consuming VDST simulations. Therefore, the
present thesis focused on the development and application of SBO methods that balance
exploration with exploitation and investigated their performance against less comprehensive infill
strategies.

Second, there is a gap in coastal aquifer management research regarding multi-fidelity
optimization methods. There is often a variety of mathematical models that describe a physical
process at different levels of fidelity. The idea pursued by multi-fidelity methods in general, is to
exploit information from available low-fidelity models which usually are much faster than the
computationally intensive high-fidelity model. Multi-fidelity optimization is considered
advantageous over the conventional SBO methods when only a few high-fidelity simulations can
be conducted in a manageable computational time. In those cases, either the number of simulations

might not be sufficient to train a surrogate model or the available high-fidelity simulations after

Page | 6



the initial surrogate model training, are too few to successfully apply a standard SBO framework.
Several models of lower fidelity have been presented in the literature to simulate coastal aquifer
flow in a computationally affordable manner (e.g. Strack 1976; Essaid 1986; Bakker 2003;
Mantoglou 2003; Bakker 2006; Pool and Carrera 2011; Koussis et al. 2012; Koussis et al. 2015;
Lu et al. 2015; Lu et al. 2016; Werner 2017). Yet, only a few papers have combined low-fidelity
(LF) and high-fidelity (HF) data to solve pumping optimization problems of coastal aquifers (e.g.
Christelis and Mantoglou 2016; Christelis and Mantoglou 2017; Christelis and Mantoglou 2019;
Dey and Prakash 2020). In the present thesis, a new multi-fidelity optimization framework is
developed for coastal aquifer management to tackle hypothetical cases where only limited high-

fidelity data can be obtained (i.e., less than 30 simulations available with the VDST model).
1.5 Key objectives, assumptions, and thesis overview

The main aim of the present thesis is to develop new SBO methods that provide a computationally
affordable route to high-fidelity solutions for pumping optimization problems of coastal aquifers.
Furthermore, it is anticipated that some conclusions and methodologies from the present analysis
can be generalized and be applied for similar computationally expensive optimization problems in
groundwater management. The accomplishment of the above objectives is pursued through:

e Thedevelopment of efficient and effective SBO methodologies using appropriate surrogate

models and sampling strategies.

e The development of SBO methods which provide near optimal solutions using a relatively
small number of VDST simulations which is convenient for real-world pumping

optimization problems.
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e The exhaustive comparison of the various SBO methods to identify limitations and
advantages depending on the dimensionality and the characteristics of the present

optimization problem.

The analysis conducted in this thesis involves hypothetical as well as real-world coastal aquifer
case studies. The seawater intrusion modelling and the optimization methods were based on the
following assumptions:

e Seasonal variations of recharge are not considered in the coastal aquifer simulations.
e The parameter uncertainty in coastal aquifer simulations is not considered.

e Constant pumping rates over the specified management plan.

e Two levels of model fidelity are employed to simulate seawater intrusion.

e The seawater intrusion simulation models will not crash for any input xe [l,,u,].

The thesis is organized as follows. Chapter 2 presents the mathematical modelling of seawater
intrusion for VDST and sharp interface models. In chapter 3, previous works in coastal aquifer
management are discussed and the mathematical formulation of the present optimization problem
is presented, along with the specifications related to each simulation model. Chapter 4 includes a
detailed discussion of metamodelling in the broader engineering optimization literature as well as
in the field of coastal aquifer management. Furthermore, the chosen surrogate models are presented
along with the details of the SBO frameworks implemented in this thesis. To the best of our
knowledge, the proposed SBO algorithms are presented for the first time in coastal aquifer
management. In chapter 5, we demonstrate and discuss the results based on a thorough comparison

of the various SBO methods under alternative computational budgets (the total number of runs
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with the VDST model) and different dimensionalities of the pumping optimization problem (the
number of decision variables). The main issues which are discussed include:
1) The importance of choosing appropriate sampling strategies as the dimensionality of the

optimization problem increases.

2) To what extent the sophistication of the developed surrogate models affects the

optimization outcome.

3) The choice of approximating each nonlinear constraint function using an individual
surrogate model over that of a single surrogate model of the penalized objective function

and what is the impact on the efficiency and effectiveness of the SBO methods.

4) How multi-fidelity optimization is compared to conventional SBO methods when only a

few VDST model runs are available.

In chapter 6, the best SBO methods, as identified from the comparisons conducted in
chapter 5, are employed to solve a real-world pumping optimization problem for a coastal
aquifer in the Greek island of Kalymnos. Finally, chapter 7 discusses the main conclusions of
this thesis and presents some thoughts for further research and future applications of the

developed SBO methods.

Page | 9



Chapter 2

Seawater intrusion modelling

2.1 Conceptual models

The mathematical formulation of SWI models is mainly based on two different conceptualizations
of the freshwater/saltwater interactions. As discussed previously, the model fidelity is also related
to these conceptual models. Accordingly, the high-fidelity (HF) modelling approach aims to a
more realistic representation of coastal aquifer flow where between the two fluids a transition zone
is formed and is controlled by hydrodynamic dispersion mechanisms. Within this zone the fluid
density and salt concentration gradually vary from that of freshwater to seawater. The lower-
fidelity (LF) modelling approach is a simplification of the physical system where the dispersion
zone is idealized as a sharp interface. It is a reasonable approximation in regional coastal aquifers
where the dispersive zone is narrow compared to the scale of the problem (Mantoglou et al. 2004).
The sharp interface approximation can be either formulated on the assumption that only flow in
the freshwater zone is modelled (one-fluid approach) or on the two-fluid approach where a coupled
system of flow equations in the salt and fresh water zones is solved (Essaid 1986). They are both
simplifications of the dispersive flow, as simulated by the VDST models, however, the one-fluid
approach is mostly limited to reproduce long term responses in coastal aquifer systems. Figure 2-1

demonstrates the two conceptual approaches for modelling seawater intrusion in coastal aquifers.
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Figure 2-1 A typical unconfined coastal aquifer under natural undisturbed conditions considering a

dispersive zone (left) and a sharp interface (right).

2.2 Mathematical modelling of seawater intrusion

In this thesis, the VDST models and the one-fluid sharp interface models based on the flow
potential formulation of Strack (1976) are utilized. The two modelling approaches have been
widely used to study several aspects of coastal aquifer processes. Some examples are:
e The influence of hydraulic and transport properties on SWI (e.g. Dagan and Zeitoun 1998;
Simmons et al. 2001; Al-Bitar and Ababou 2005; Abarca et al. 2007; Kerrou and Renard

2010; Chang and Yeh 2010; Walther et al. 2017).

e The impacts of climate change on coastal aquifer systems for various sea-level rise
scenarios (Bobba 1993; Sherif and Singh 1999; Werner and Simmons 2009; Watson et al.

2010; Chang et al. 2011; Webb and Howard 2011; Mazi et al. 2013; Yang et al. 2015).

e The response of coastal aquifers to seasonal variations of groundwater recharge and
pumping (e.g. Mahesha and Nagaraja 1996; Paniconi et al. 2001; Michael et al. 2005;
Gingerich and Voss 2005; Prieto et al. 2006; Kopsiaftis et al. 2009; Mazi et al. 2014;

Kopsiaftis et al. 2017).

The following sections present in more detail the mathematical formulation of these SWI models.

Page | 11



2.2.1 Variable density flow and solute transport models

A coupled system of nonlinear partial differential equations governs the mathematical description
of the transition/mixing zone between freshwater and saltwater (Pool and Carrera 2011). The
solution of this coupled system of equations is obtained by applying numerical models and a
detailed analysis of the mathematical formulation can be found in Kolditz et al. (1998). Here, a

brief description of the governing equations is presented as per Frind (1982):

9|k ahf+ n |[|+Q =S on, (2.1)
x| ek, T T A |

0 oc | 0o o(c)

=D, = |-—(vc)+Q, =—2 2.2
axi[ ! aij 8xi( )+ ot 22)

In flow Equation (2.1), the variable h, [L] is the equivalent freshwater head defined as:

hy =(p/ps0)+2 (2.3)

where p [ ML'T | is the fluid pressure, p, [ ML ] is the reference freshwater fluid density

while p, is the relative density defined as:

pp =L~ (2.4)
Pt

Also, g [LT‘Z] is the gravity acceleration constant and z [L] is the elevation above horizontal

datum. K; [LT*] are the coefficients of the freshwater hydraulic conductivity tensor, Q,
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[(L3T’1) L’3] is a volumetric fluid source/sink term per unit aquifer volume, t [T] is time, n; =1

indicates the vertical direction, n; =0 indicates the horizontal directions and S [L’lj is the

specific storage. Under isothermal conditions and neglecting viscosity effects, fluid density

depends only on concentration and this relation can be defined as:
p=p; (1+ec) (2.5)

where p [ ML ] is the fluid density, & =(,,/p; )—1 is a constant derived from the maximum

fluid density p,., (seawater density) and c is the relative concentration (dimensionless) which
varies between 0 and 1 for fluid densities varying from p, to p, ...

Similarly, the transport equation (2.2), is conveniently written in terms of the dimensionless

relative concentration ¢ [-] where D [LZT ‘1] are the coefficients of the dispersion tensor and

Q. [ (LT™)L* ] is a solute source/sink term per aquifer volume. The fluid velocity v, [ LT ] is

defined as:

v=3 (2.6)

where v [~] is the porosity while the Darcy flux g; [ LT | is expressed in the case of variable-

density flow as:

oh;
q =—K; §+prnj (2.7)
i
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Equation (2.7) describes the relation of fluid flow and solute transport based on the Boussinesq

approximation where the only changes in density appear in the buoyancy term pg of Darcy’s

flow in the z-direction.

Some examples of numerical codes that can simulate variable-density flow and solute transport
are SUTRA (Voss, 1984), CODESA-3D (Gambolati et al. 1999), SEAWAT (Guo and Langevin
2002), FEFLOW (Diersch and Kolditz 2002), HydroGeoSphere (Therrien, et al., 2006), etc. In the
present thesis the academic version of HydroGeoSphere code (HGS) was used to simulate seawater
intrusion. The HGS code uses the control volume finite element method to solve the above system
of partial differential equations and employs a Picard iteration scheme with adaptive time-stepping
to cycle between the solutions of the flow equation and the transport equation (Thompson et al.
2007).

It is noted that VDST modelling is a computationally expensive task, as fine spatial and time
discretizations are required for accurate representation of the flow and transport processes. To take
full advantage of the simulation capabilities of VDST models, plenty of field data are required and
together with the associated computational cost, their application in regional-scale coastal aquifer
models is not straightforward (Sanford and Pope 2010). Nevertheless, VDST models have been
successfully used in the past for gaining insights in real-world coastal aquifers (e.g. Gingerich and

Voss 2005; Kopsiaftis et al. 2009; Kerrou et al. 2013; Giambastiani et al. 2017).
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2.2.2 Sharp interface models

In the present thesis, the sharp interface model based on the single-potential formulation of Strack
(1976) is also used to simulate SWI as a low-fidelity model. It is based on the Ghyben-Herzberg
relation and Dupuit approximation and neglects density variability in space as well as mixing
between freshwater and saltwater. The saltwater is assumed static and aquifer flow is assumed
horizontal and steady-state. The depth of the interface is estimated using the Ghyben-Herzberg
approximation which assumes that horizontally flowing freshwater floats above static saltwater

(Essaid 1986b).
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Figure 2-2 Schematic vertical cross-sections of a confined (upper figure) and an unconfined (lower figure)

coastal aquifer, based on the sharp interface approximation.
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As shown in Figure 2-2, two vertical cross-sections for both confined and unconfined coastal
aquifers are presented, and a sharp interface is assumed to separate freshwater from saltwater. Two
distinct zones are developed in both coastal aquifer types. In zone 1, the aquifer behaves as a
confined (upper view) or as an unconfined (lower view) while in zone 2 a freshwater lens floats

above the static saltwater layer. In zone 1, fresh groundwater is pumped by fully penetrating

pumping wells. Variable d [L] represents the depth from sea level to the aquifer base and variable

£(x,y) [L] is the freshwater depth from sea level to the interface. Point z indicates the point

where the interface intersects the base of the coastal aquifers. It is usually called “toe” of seawater

wedge and comprises a typical measure of the extent of seawater intrusion.

A freshwater discharge volume rate per unit width of aquifer [L‘“’/LT} , recharges the aquifer
from the east inland boundary. Variable b(x, y) [L] is the thickness of the confined flow region.
In zone 1,b = Bwhere B [L] is aquifer thickness defined by the two confining boundaries, while

In zone 2, b(x,y)=&(x y)—(d—B). Variable h, (x,y) [L] is the freshwater piezometric head
with reference to the impermeable aquifer base. In the case of the unconfined aquifer, a

groundwater recharge rate N [LT*] replenishes the aquifer. Variable b(x,y) [L] is the total
freshwater depth where in zone 1, b=h, andinzone 2, b(x,y)=h, —d +&(x,y), whereh; (x,y)
[L] is the freshwater head with reference to the impermeable aquifer base. The Ghyben-Herzberg

relation links the hydraulic head h, (x,y) and depth &(x,y) via the saltwater/freshwater density

ratio & =(p, - p; )/ p; according to (Y/e)(h, —d)=&(x,y).

Page | 16



The following differential equations govern the steady-state flow applicable for both zones of

the aquifer (Strack 1976; Mantoglou et al. 2004):

g[K Z_¢j+£[K 8¢j—Q(x, y)=0, confined interface flow
X
(2.8)
%j+g K% +N-Q(x,y)=0, unconfined interface flow
ox) oy\ oy

where ¢ [L2] is the flow potential and K [LT ’1] is the aquifer’s hydraulic conductivity. The

M

distributed pumping rate Q(x,y) [ (LT )L?] is Q(x,¥)=2 Q; &(X=X,;,y~V,;) Where

i1
(X5 Yu;) are the coordinates of pumping wells j=1,..M withrates Q; and &(X—X,;,y~Yy;)

is the Dirac delta function. In the case of confined aquifers, the flow potential is defined as (Bear

et al. 1999):

2

$=Bh, + 2 _(1+¢)Bd zone 1
2 (2.9)

1 2
(175=2—g[hf +gB—(1+g)d} zone 2

while in the case of unconfined aquifers the flow potential is expressed as (Bear et al. 1999),

I\)II—\

[h2 1+¢ d] zone 1
te

. (2.10)

—

¢ =

» )(h —d) zone 2

At the location of the toe, the flow potential is calculated based on the following equations for

each coastal aquifer type (Mantoglou 2003):
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Broe = %BZ, confined aquifer
(2.11)

Bop = {g(g;lqdz, unconfined aquifer

The sharp interface model of Strack (1976) has been widely used to simulate coastal aquifer
flow due to its simplicity and low computational cost. The flow equations presented above can be
easily solved numerically using a groundwater flow code with a rather coarse spatial discretization.
However, the sharp interface assumption might introduce significant errors in the estimation of the
extent of seawater intrusion under pumping conditions (Dausman et al. 2010; Christelis and
Mantoglou 2013; Llopis-Albert and Pulido-Velazquez 2014; Koussis et al. 2015). On the other
hand, VDST models usually provide a benchmark estimation of the SWI extent when pumping is
present since they are considered more accurate (high-fidelity) models.

To improve the accuracy of sharp interface models, recent studies have proposed correction
formulas to mitigate the overestimation of SWI by implicitly incorporating dispersion effects (e.g.
Pool and Carrera 2011; Koussis et al. 2015; Lu and Werner 2013; Werner 2017; Koussis and Mazi
2018). A particular correction is the one proposed by Pool and Carrera (2011) who developed an
empirical equation for the sharp interface model of Strack (1976). Practically, a modified density
ratio for the sharp interface model is calculated, based on the aquifer thickness B and the

transverse dispersivity value a; as follows:

%
* aT
£ =5[1[Ej } (2.12)

where ¢ denotes a modified saltwater-freshwater density ratio. Lu and Werner (2013) conducted
a series of numerical experiments with VDST models and they suggested that the exponent in
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Equation (2.12) should be replaced with 1/4. The above correction of the density ratio has

motivated many studies to search for improved versions of correcting the sharp interface model
and match the salinity profiles of VDST models. Procedurally speaking, the density ratio is
reduced in Equation (2.12) and thereby the toe location is moved seawards allowing for larger
extraction of groundwater volumes. As it will be discussed later, this concept can be effectively
implemented through a dynamic adjustment of the density ratio which is more suitable for

problems of pumping optimization (Christelis and Mantoglou 2016a).
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Chapter 3

Simulation-optimization in coastal aquifer management

3.1 Previous pumping optimization studies
As mentioned before, simulation optimization methods in coastal aquifer management require the

coupling of a SWI model with an optimization algorithm (Figure 3-1).

Define optimization problem: objective
function, decision variables (bounds),
constraints

Optimization algorithm operations

Y

Y

Proposed decision variable vector

\
Evaluation with the SWI model

v

Calculation of constraints and objectives

No Convergence

criteria met?

C Optimal solution )

Figure 3-1 Typical workflow for coupling an optimization algorithm with a SWI model.

In brief, the optimization algorithm calls the SWI1 model to evaluate the decision variable vector

(e.g., pumping rates) and return the simulated state variables (e.g., hydraulic heads, salinity
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concentrations). Then, based on the values of the state variables at certain points of interest, the
constraint and the objective functions are calculated. This procedure is repeated many times until
specific convergence criteria are met, as defined by the operation rules of the optimization
algorithm.

Several formulations of optimization problems have been adopted by using SWI models of
various fidelities (e.g. Katsifarakis and Petala 2006; Ferreira da Silva and Haie 2007; Karterakis
et al. 2007; Uddameri and Kuchanur 2007; Kacimov et al. 2009; Sedki and Ouazar 2011;
Doulgeris and Zissis 2014; Karatzas and Dokou 2015). The sharp interface model based on the
Strack’s (1976) single-potential formulation, has been coupled with nonlinear programming
methods as well as evolutionary algorithms to calculate optimal pumping rates. Cheng et al.
(2000), extended the single-well analysis of Strack (1976) for the case of multiple wells and they
calculated optimal pumping rates using a genetic algorithm. Mantoglou (2003) used the method of
images and the single-potential formulation to develop analytical solutions for coastal aquifers of
finite size. The SQP algorithm was employed to solve a nonlinear pumping optimization problem
with inequality constraints to control SWI. Mantoglou et al. (2004) applied a numerical solution
for the sharp interface model of Strack (1976) to account for spatial variations of hydraulic
conductivity and recharge and solved a pumping optimization problem. They also compared the
performance of SQP and genetic algorithms. They found that using a genetic algorithm, provided
better optimal solutions than the SQP method, at the expense of increased computational cost.

In a follow-up paper, Mantoglou and Papantoniou (2008) used the same numerical solution of
the sharp interface model to find optimal pumping rates and optimal well locations based on a
hybrid scheme with evolutionary algorithms and SQP. Ataie-Ashtiani and Ketabchi (2011) utilized

a numerical solution of the sharp interface approximation and investigated the applicability of
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ant-colony optimization algorithms to solve coastal aquifer management problems. Christelis et
al. (2012) solved a pumping optimization problem of coastal aquifers assuming different statistical
properties of hydraulic conductivity random fields. They used SQP and the model of Strack (1976)
to reduce the computational cost within a Monte-Carlo based optimization framework. Kourakos
and Mantoglou (2015) developed an efficient coupling scheme between the same sharp interface
model and an evolutionary algorithm to enable fast calculation of optimal pumping rates for a real-
world coastal aquifer management problem.

Although the sharp interface models have been a popular choice in coastal aquifer
management, the corresponding studies based on VDST models are limited mostly due to the
increased requirements in computational resources. Das and Datta (1999) explored different SWI
management models, based on VDST simulations, and demonstrated the complexity of attaining
optimal solutions under various objective function formulations. Qahman et al. (2005) coupled
VDST models with genetic algorithms to solve hypothetical coastal aquifer management problems
considering different formulations of the objective functions. A strategy to control SWI while
reducing the cost of operating pumping wells was proposed in Abd-Elhamid and Javadi (2011).
They coupled a transient VDST model with a genetic algorithm. Javadi et al. (2015) developed a
multi-objective management model based on VDST models to investigate the effectiveness of
combined strategies for SWI mitigation.

Regardless of the management model or the selection of the optimization algorithm, the
simulation-optimization routines developed in the relevant literature demonstrate their efficacy to
cope with the complex decision-making problems in coastal aquifer management. The unavoidable
uncertainties and limitations related to the application of SWI models for regional coastal aquifer

systems may hinder the accuracy of the optimal designs obtained through simulation-optimization.
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Nevertheless, it is rather unrealistic to explore systematically the best actions to control SWI

without the use of simulation-optimization methods.
3.2 Definition of the pumping optimization problem

VDST and sharp interface models do not share the same physics and thus they differ in terms of
input parameters and output variables. VDST simulations provide a salinity concentration field for
the calculation of SWI. On the contrary, the output from the sharp interface model of Strack (1976)
is a single-potential flow field which is used to define the sharp interface location and thereby to
calculate SWI (Mantoglou 2003; Mantoglou et al. 2004). Hence, the optimization problem is
presented separately for each SWI model. The VDST-based optimization is mathematically

defined as follows (Kourakos and Mantoglou 2009):

min—zk:Qi
st.C(Q-. Q) <C,Vi=1..k (3.1)
Qmin < Qi < Qmax

or by expressing the constraint functions in terms of iso-salinity contours,

min—Zk:Qi
st X (Q,,-Q) < xw, Vi=1,..k (3.2)

Qmin SQi SQmax;i =1,...,k

The overall goal is to maximize (the reason for the negative sign in the objective function) the
total groundwater extraction, subject to constraints that do not allow the salinity levels in pumped

groundwater to exceed a specified salinity concentration threshold C, . Based on that, the salinity

concentration C, in (3.1) for each pumping well is not allowed to exceed a maximum
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concentration of C, =0.1kg/m®which was chosen as an acceptable limit for drinking water

according to World Health Organization guidelines (1996). The objective of pumping

maximization is similarly achieved with the alternative expression of constraints in (3.2), where

the variable xw; is the pumping well location and x* represents the horizontal distance of the iso-
salinity C, from the coast, as a function of the pumping rates.

With Q representing the decision vector of pumping rates Q=(Q,,...,Q,), the objective
k

function f(Q):—ZQi is linear in respect to the decision variables Q,, i=1,...,k, that is, the
i=1

individual pumping rates. Q_. and Q__ define the lower and upper bounds of pumping rates,

respectively. In the following sections and depending on the settings of the developed simulation-
optimization methods, either (3.1) or (3.2) can be used to solve the pumping optimization

problems. The corresponding optimization formulation for the sharp interface models is:

min—iQi
st X (Qp Q) < xw;,Vi=1,..,k (3.3)

Quin £Q < Quu 1=1...,K

where the set of the constraint functions here do not allow the “toe” of the interface x'™° to reach

the pumping wells (Mantoglou et al. 2004). The variable Xitoe is the horizontal distance of the toe

from the coast, as a function of the pumping rates. The inequality constraints defined in problems
(3.1) and (3.2) are nonlinear due to the inherent nonlinear equations involved in the VDST model
formulation (Dhar and Datta 2009). The nonlinearity of the optimization problem (3.3) is due to
the nonlinear relationship between the pumping rates and the variable x*¢ (Mantoglou 2003;

Mantoglou et al. 2004).
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3.3 Constraints handling with evolutionary algorithms

As discussed in the introduction part of this chapter, evolutionary algorithms are preferred over
the gradient-based optimizers in coastal aquifer management studies, due to their ability to handle
the presence of multiple local optima (Ketabchi and Ataie-Ashtiani 2015). Typically, in
evolutionary optimization, the nonlinear constraints are embedded into the objective function
using penalty terms. Therefore, the optimization problems defined in (3.1), (3.2) and (3.3) are
translated to bound-constrained optimization problems. Here, the objective function corresponding
to (3.1) is penalized according to the following formulation for the VDST model (Christelis et al.

2018):

S QUi Vi =L kiC, (Qurn Q) C
min f (Q)=1 " (3.4)
M, Y [max((C,~C,).0)] ,if 3i=1...k;C,(Q....Q,)>C

<
T'Mx
JUN

1

while in the case of (3.2) the objective function is similarly defined as:

Zk:Q if Vi=1., k0 (Qn Q) < W,
min (@)= " : (35)
M, [ (X6 —xw,), )J i 30 =1, kXS Qo Q) > XW

i=1

where M, represents the number of pumping wells that the constraint is violated. The above

formulation attributes a separate score for each violated constraint. Furthermore, the penalized

objective function is multiplied by M, to include the number of constraint violations for the case

of a non-feasible vector Q (Forrester et al. 2008). It is noted that the number of the constraint

functions equals the number of pumping wells. Therefore, each constraint function is associated
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with an individual pumping well and they all contribute to the objective function score. A similar

formulation is defined for the sharp interface model for problem (3.3):

Kk

Z if Vi=1..,k;x*(Q,...Q )< xw,
min f (Q)=4 ", , (3.6)
MVZ[ (( X% — vvi),O)J Jf 3i=1,., k%% (Qy, .., Q) = Xw,

The pumping optimization problems defined in this section can be directly solved by
combining the VDST or the sharp interface model with an evolutionary algorithm. Although the
development of efficient and robust optimization algorithms is a very active research field, it is
rather unrealistic to expect that a specific evolutionary algorithm will always provide the best
optimal solutions for optimization problems with different characteristics (Behrangi et al. 2008).
In this work, a probabilistic heuristic global optimization algorithm, namely the evolutionary
annealing-simplex (EAS) algorithm (Efstratiadis and Koutsoyiannis 2002) is employed to solve
the optimization problems defined above. EAS combines the concepts of the downhill simplex
method and simulated annealing to improve efficiency and effectiveness in smooth and rugged
search spaces, respectively (Tsoukalas et al. 2016). Details on the principles and steps for the
implementation of EAS can be found in Efstratiadis and Koutsoyiannis (2002), Rozos et al. (2004),
Kourakos and Mantoglou (2009) and Tsoukalas et al. (2016). A few parameters need to be

initialized before applying EAS, that is, the initial population size mpop, the annealing schedule
parameter ¢ , a mutation probability criterion p, and a convergence criterion ¢, . The initial

population size is one of the EAS parameters that has a considerable impact on the global
exploration capabilities of the algorithm (Kourakos and Mantoglou 2009). The EAS parameters

were set to mpop =8xk , where K is the number of the decision variables, £ =2, p, =0.1 and
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£,, =107, according to the suggestions in Rozos et al. (2004). The EAS algorithm has

demonstrated comparable performance against well-established optimization algorithms often
used in water resources and has been successfully applied in problems of automated calibration
(e.g. Rozos et al. 2004; Efstratiadis et al. 2015; Tigkas et al. 2016; Christelis et al. 2016c).
Recently, EAS has been also applied in coastal aquifer management problems demonstrating
robust performance (Kourakos and Mantoglou 2009; Christelis and Mantoglou 2016b; Christelis
et al. 2018; Kopsiaftis et al. 2019a). The solution of problems (3.4) and (3.5) using the VDST
model and an evolutionary algorithm is computationally expensive and hinders the implementation
of simulation-optimization routines for coastal aquifer management. The following chapter
presents various optimization frameworks based on the use of surrogate models which enable a

high-fidelity solution of the present problem in a computationally manageable manner.
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Chapter 4

Surrogate modelling and optimization

4.1 Literature review on surrogate-based optimization

4.1.1 Metamodels and optimization
The reliable solution of engineering optimization problems typically requires the use of high-
fidelity, yet computationally expensive numerical models (Koziel and Leifsson 2016). Despite the
advances in computer power, a robust decision-making process requires hundreds to thousands of
numerical simulations to gain an understanding of the system’s response to various inputs and
stresses. One option to cope with these computationally demanding tasks, is the development of
fast mathematical approximations of the original physics-based simulation models. These
approximation models are typically called surrogate models or metamodels and their function is
to mimic the responses of the time-intensive original model in a variety of input variables of
interest. Henceforth, the term surrogate models or metamodels will be used interchangeably.
Popular examples of surrogate models presented in the engineering optimization literature are
Kriging, radial basis functions, support vector machines, artificial neural networks and Gaussian
processes (Forrester and Keane 2009; Asher et al. 2015). While it is generally accepted that
surrogate modelling can alleviate the computational burden associated with the physics-based
numerical simulations, its success and effectiveness depends on the problem at hand (Razavi et al.
2010). The use of surrogate models for the various engineering optimization problems is

commonly reported as surrogate-based optimization (SBO).
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There are mainly two ways to implement SBO methods which share a common step at the

beginning. First, an initial set of input-output data from the physics-based models is obtained to

train the surrogate models and attain a certain level of accuracy for predicting responses to unseen

data (Solomatine and Ostfeld 2008). These initial training points are usually derived from space-

filling designs, such as Latin Hypercube Sampling, to achieve a better understanding of the

variability of the unknown original model response surface (Razavi et al. 2012b). However, after

the initial training procedure either an offline or an online framework might follow (Figure 4-1).
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with the original model
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Figure 4-1 Generic workflow examples of an offline and an online SBO method.

As shown in Figure 4-1, the offline or basic sequential approach is the simplest one and

assumes that the surrogate model can be used alone to search for the optimal solution after having
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been trained once with the available input-output data from the original model (Razavi et al.
2012b). It is noted though that the accuracy of the surrogate models generally depends on the
available training data, both in terms of size and quality. An empirical rule suggests that the initial

training sample could be in the order of m . =10k although this might lead to unaffordable

init
computational cost as the number of design/decision variables k increases (Jones et al. 1998). In
real-world applications, there is often a practical limit on the number of runs with the expensive
physics-based model. Therefore, it is unlikely that a single training set will provide a globally
accurate surrogate model to explore the search space (Forrester et al. 2008). In that case, the
optimization process will probably suffer from false optima, introduced due to inaccurate surrogate
model predictions of the original model responses (Jin 2011). Therefore, the optimal solution
found with the metamodels should be evaluated using the original model at the end of this
framework.

On the contrary, the online SBO method allows for a selective communication between the
surrogate model and the original model during the optimization steps. If the online framework is
embedded within the operations of an evolutionary algorithm, is usually called surrogate-assisted
evolutionary strategy (Jin 2011). Certain criteria are employed in a surrogate-assisted evolutionary
algorithm to define whether any promising solutions obtained with the metamodels, during the
operations of the evolutionary algorithm, should also be evaluated with the original model (Jin
2011; Karakasis and Giannakoglou 2006). Another common online SBO method is the so-called
adaptive-recursive framework which starts with an initial fit of the metamodels to a set of points
generated from a space-filling design. Then, the metamodels are used to search for new promising
points based on an optimization step or a random sampling procedure combined with distance

metrics, probability criteria, etc., (e.g. Regis and Shoemaker 2007; Miller and Woodbury 2017).

Page | 30



The best points found with the metamodels are evaluated using the original model, the new training
data are added to the initial design and the metamodel is updated. Stopping criteria, such as
maximum number of evaluations with the original model, are usually applied to mark the
termination of the adaptive-recursive framework. Both the surrogate-assisted evolutionary strategy
and the adaptive-recursive framework ensure that the original model evaluates the feasibility of

candidate solutions and the SBO method delivers reliable objective function values.

4.1.2 Exploration, exploitation, and infill criteria

With online SBO methods, sampling strategies are developed where the available runs with the
expensive numerical model are split to evaluate a set of initial training points and sequentially
another set of additional points (also called infill or update points). The additional points are chosen
by using infill strategies based on various criteria. One type of infill criteria is the so-called
prediction-based exploitation which adds points at the current optimum found by the metamodel.
It is a greedy approach that aims to quickly improve the accuracy of the surrogate models in the
optimum region. However, it neglects the global improvement of the metamodel and can
potentially weaken the effectiveness of the SBO methods and get stuck in local optima (Forrester
et al. 2008).

Other more comprehensive infill criteria seek to find a balance between exploration and
exploitation using the metamodels. An exploration step calls the original model to evaluate points
away from the current optimum which are then added to the training dataset and further improve
the global predictions skills of the metamodel. The probability of improvement and the expected
improvement, are popular criteria in SBO that guide the search with a metamodel to new points
that show increased probability to improve the current known best solution as well as to regions

where the metamodel’s prediction uncertainty is significant (Jones et al. 1998; Forrester and Jones
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2008; Couckuyt et al. 2010). This is a beneficial characteristic of specific metamodels, such as
Kriging, where their prediction is accompanied with an estimated error and thus allows for locating
sampling points where uncertainty is higher. Another approach is to utilize weighted distance
metrics from previously evaluated points and probabilistic criteria for generating new sampling
points to be evaluated with the original model (e.g. Regis and Shoemaker 2007; Regis and
Shoemaker 2013).

There is a wide body of literature that focuses on the development of infill strategies that
effectively utilize the physics-based model simulations to update the surrogate model. Typically,
the aim is to start with a small initial training sample and then sequentially increase the accuracy
of the surrogate model within regions of interest as well as globally in the decision variable space
(e.g. Jones et al. 1998; Leary et al. 2004; Queipo et al. 2005; Mugunthan et al. 2005; Regis and
Shoemaker 2007; Forrester and Keane 2009; Villemonteix et al. 2009; Jin 2011; Kleijnen et al.
2012; Yao et al. 2014; Tsoukalas et al. 2016; Yang et al. 2020). The efficient global optimization
algorithm (EGO) (Jones et al. 1998), is one of the most popular SBO algorithms that deals with
unconstrained optimization problems for computationally expensive numerical models. EGO, in
its original version, utilizes Kriging metamodels to emulate the response of the objective function
to the input variables and it is usually implemented with the expected improvement criterion to
maintain a balance between exploration and exploitation. It is noted that since the introduction of
EGO, the development of SBO algorithms on bound constrained problems continues to flourish
and numerous papers have been published proposing improved versions of EGO or EGO-like
algorithms (e.g. Huang et al. 2006; Knowles 2006; Forrester and Jones 2008; Villemonteix et al.
2009; Kleijnen et al. 2012; Viana et al. 2013; Couckuyt et al. 2014; Sun et al. 2020). Recently, the

EAS algorithm, which is utilized in this thesis, was also modified to develop a surrogate-assisted
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version, namely, SEEAS (Tsoukalas et al. 2016). SEEAS is a surrogate-assisted evolutionary
algorithm which employs a cubic RBF metamodel to emulate the response of the objective
function to decision variables and utilizes a weighted acquisition function to generate new

sampling points within the operations of the original EAS algorithm.

4.1.3 The presence of nonlinear inequality constraints
The majority of the SBO algorithms found in the literature, deal with computationally expensive
problems where the only constraints are bound constraints (Muller and Woodbury 2017). An
example is the calibration of a simulation model where its decision variables are restricted to
certain lower and upper limits. However, most engineering optimization problems involve
constraints which may or may not be computationally expensive (Forrester et al. 2008). In the
presence of expensive-to-evaluate constraint functions, surrogate models are required to emulate
their response. However, one could argue that if the number of constraints is large then building
separate surrogate models for each one of them can be complicated or costly. Surely, the use of
cheap-to-train surrogate models is essential to alleviate the overall computational burden,
assuming that their prediction capability is acceptable for a specific optimization problem.
Another way to deal with the case of multiple constraints is to build a metamodel only for the
penalized objective function. However, it has been realized in the literature that building
metamodels for the penalized objective function only, limits the capabilities of SBO to approach
the region of global optimum (Regis 2011; Dong et al. 2018). This is even more evident when a
prediction-based exploitation infill strategy is selected for the SBO algorithm (Forrester et al.
2008). Ignoring the information provided by the constraints, hinders the effectiveness of SBO for

optimization problems with inequality constraints (Jiao et al. 2019).
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Several studies have suggested modifications to the expected improvement criterion to
accommodate a faster and more accurate solution of nonlinear constrained optimization problems
(e.g. Sasena et al. 2002; Basudhar et al. 2012; Li et al. 2017; Bouhlel et al. 2018; Dong et al. 2018;
Jiao et al. 2019). The development of generic convergent schemes for nonlinear constrained SBO,
is an active research area where studies aim to develop efficient algorithms for cases where the
constraints are correlated, their number is large or an initial feasible solution is not known (Regis
2011; Basudhar et al. 2012; Regis 2014; Datta and Regis 2016). Sometimes it is possible for an
analyst/engineer to eliminate a few constraints prior to any optimization runs, assuming that some
of those are not active or are not essential for deriving an optimal result (Forrester et al. 2008).
Generally, the presence of nonlinear inequality constraints might further complicate the
development of SBO methods and many studies discuss how to specifically handle these
difficulties (e.g. Forrester et al. 2008; Regis 2011; Parr et al. 2012; Boukouvala and lerapetritou
2014; Datta and Regis 2016; Li et al. 2017; Miller and Woodbury 2017; Regis and Wild 2017;

Bouhlel et al. 2018; Dong et al. 2018; Nufiez et al. 2018; Wu et al. 2018; Li et al. 2019).

4.1.4 Multiple surrogates

Instead of employing a single type of surrogate models to approximate the responses of an
expensive physic-based model, various researchers in engineering optimization have investigated
the use of multiple surrogates to improve accuracy and effectiveness (e.g. Viana et al. 2009; Acar
2010; Miiller and Piché 2011; Viana et al. 2013; Nikolos 2013; Miller and Shoemaker 2014; Jiang
etal. 2015; Shi et al. 2016; Hou et al. 2017; Bhosekar and lerapetritou 2018). The generic approach
in a multiple surrogate framework is to identify a suite of reliable surrogates for the problem at
hand. This is usually achieved through a cross-validation process and then either the best or an

ensemble of surrogates (e.g. weighted average surrogate) may be utilized (Viana et al. 2010).

Page | 34



The superiority of employing multiple against single type surrogates is somewhat debatable,
since the nature of each optimization problem may favor the one approach or the other (Viana et
al. 2009; Babaei and Pan 2016). It should be also considered that the use of multiple surrogates
might increase the effort and computational time in SBO. For example, the analyst has to decide
whether a cross-validation strategy will identify the best surrogate models or it is known a priori
which surrogates should work best based on previous experience with the optimization problem
(Viana et al. 2009). In the first case, it remains to be defined how many surrogates should be
explored and what computational budget is available to apply an efficient and informative cross-
validation framework. Furthermore, the training time of surrogate models varies and exploring
more sophisticated surrogate models will eventually add considerable computational time.

4.1.5 Multi-fidelity optimization

Thus far, the discussion considered only a single, high-fidelity (HF) level for the physics-based
model. Often, the exploration of the search space may be facilitated by using simpler,
computationally cheap models which simulate the physical system at low-fidelity (LF) levels
(Forrester et al. 2008). This possibility has motivated the development of the so-called multi-
fidelity or variable-fidelity optimization (Robinson et al. 2006). Within this context, surrogate
models are built upon faster LF models which may be simplifications of the physical system or
might share the same physics with the HF models, but, are less accurate in terms of grid resolution,
convergence criteria, dimensionality, etc., (Razavi et al. 2012a). LF models utilize their embedded
knowledge of the physical system to produce an output and potentially can offer additional benefits
for the implementation of SBO methods, particularly when the available HF model runs are limited
(Koziel and Leifsson 2016). The main hypothesis is that an analyst can only afford to run the HF

model a few times but it is affordable to run LF models many times and gather enough samples to
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acquire useful information for a computationally demanding optimization problem (Fernandez-
Godino et al. 2019).

There is variety of multi-fidelity modelling approaches presented in the literature. Many
examples can be found in electromagnetic simulations through the application of the space
mapping technique (Bandler et al. 1994; Bakr et al. 2000; Bandler et al. 2004; Koziel et al. 2008;
Koziel et al. 2009; Cervantes-Gonzalez et al. 2016; Feng et al. 2019), as well as, in aerospace
engineering (e.g. Alexandrov et al. 2001; Gano et al. 2004; Marduel et al. 2006; Forrester et al.
2007; Karakasis et al. 2007; Han et al. 2013; Leifsson and Koziel 2015; Tyan et al. 2015; Zhou et
al. 2016; Cheng et al. 2019; Shu et al. 2019). The usefulness of multi-fidelity surrogates in cases
where only a few HF data can be obtained, is rather unquestionable (Koziel et al. 2011). Various
multi-fidelity methodologies have been successfully developed in the literature to integrate the
information from both HF and LF models (e.g. Gano et al. 2004; Forrester et al. 2007; Koziel et
al. 2008; Leifsson and Koziel 2015; Zaefferer et al. 2016; Liu et al. 2016; Zhou et al. 2017).
However, there is some ambiguity regarding their success and the computational gains in cases
where it is affordable to gather enough HF data and thus a conventional surrogate model can be
constructed instead (Fernandez-Godino et al. 2019).

4.2 SBO in coastal aquifer management

Metamodels have been used in coastal aquifer management to approximate the responses of
VDST models and alleviate the computational burden which results from coupled simulation-
optimization routines (Singh 2014). Artificial Neural Networks is a popular example of surrogate
model selection in pumping optimization problems of coastal aquifers (e.g. Rao et al. 2004; Dhar
and Datta 2009; Kourakos and Mantoglou 2009; Sreekanth and Datta 2010; Sreekanth and Datta

2011; Grundmann et al. 2012; Kourakos and Mantoglou 2013). Recent studies have also proposed
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other surrogate models such as, evolutionary polynomial regression (Hussain et al. 2015),
polynomial chaos expansions (Rajabi et al. 2015), Gaussian process models (Rajabi and Ketabchi
2017; Kopsiaftis et al. 2019), fuzzy inference systems (Roy and Datta 2017a), multivariate
adaptive regression splines (Roy and Datta 2017b), extreme learning machine (Yadav et al. 2018)
and support vector machine regression (Lal and Datta 2018).

Former SBO applications in coastal aquifer management have mostly implemented the offline
approach. Rao et al. (2004), first replaced a VDST numerical model with Artificial Neural Network
(ANN) models for coastal aquifer management. They solved the optimization problem with a
simulated annealing algorithm. Also, they discussed the limitations of fully replacing the VDST
model with the surrogate model for the accurate exploration of the search space. Bhattacharjya and
Datta (2005) approximated a three-dimensional VDST model using a trained ANN model which
provided considerable computational savings in the search for optimal solutions. The impact of
the large training sample size on the performance of a global ANN model was also addressed.

Kourakos and Mantoglou (2006) substituted a VDST model with a trained ANN model in a
pumping optimization problem of coastal aquifers. Their optimization approach was based on a
nonlinear programming algorithm and results were in good agreement with the VDST-based
optimization. Furthermore, they mentioned the necessity to explore the structure of the ANN
model to improve its generalization capabilities. It is noted that with the above offline SBO
methods large training data sets were generated to construct accurate surrogate models.
Nevertheless, large training sets have been utilized in coastal aquifer modelling to exhaustively
compare the performance and prediction skills of different metamodeling techniques (e.g.

Kopsiaftis et al. 2019b).
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Kourakos and Mantoglou (2009) developed an online approach that aimed to bypass the large
training time required for a global ANN model and the results showed a significant computational
gain. Modular neural sub-networks were selectively trained in a surrogate-assisted evolutionary
strategy and the VDST model evaluated only the current best solution during the operations of an
evolutionary algorithm. Sreekanth and Datta (2010) and Sreekanth and Datta (2011), used Genetic
Programming as a metamodelling method in coastal aquifer management and compared it with the
widely used ANN. Their results showed advantages of Genetic Programming over ANN
metamodels, in terms of number of model parameters, parameter estimation and training data
requirements, as well as in finding the global optimal solution. Christelis and Mantoglou (2016)
compared the performance of the surrogate-assisted evolutionary framework against the adaptive-
recursive approach for pumping optimization of coastal aquifers. Both frameworks were based on
the prediction-based exploitation infill method. Their results showed that the surrogate-assisted
evolutionary framework outperformed the adaptive-recursive approach in computational
efficiency while it successfully located feasible optimal solutions. In general, the use of online
SBO frameworks for coastal aquifer management, significantly improved the exploration of the
search space within reasonable computational times (e.g. Kourakos and Mantoglou 2009;
Papadopoulou et al. 2010; Song et al. 2018). Nevertheless, the application of SBO strategies which
utilize the information obtained from the surrogate models to balance exploration and exploitation
is rather limited in pumping optimization of coastal aquifers.

Despite the recognized success of surrogate modelling in computationally demanding tasks,
the benefit from its use in optimization problems with increased dimensionality and under limited
computational budgets is controversial according to Razavi et al. (2012b). Such limitations are

also investigated in the present thesis while in the recent work of Christelis et al. (2018) it was
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found that SBO methods outperform the direct optimization with the VDST model, particularly as
dimensionality and number of constraints are increased.

Regarding the multiple surrogate approach in coastal aquifer management, there are fewer
applications in the literature compared to the use of single surrogate models. Sreekanth and Datta
(2011) first utilized an ensemble of genetic programming surrogate models in lieu of a VDST
model, to solve a multi-objective pumping optimization problem. Their study showed that the
ensemble performed better than using a single genetic programming surrogate model. Recently,
Roy and Datta (2017a) and Roy and Datta (2017b), solved multi-objective pumping optimization
problems by utilizing ensembles of fuzzy inference systems and of multivariate adaptive
regression splines, respectively. Their approach reduced the uncertainty in the prediction of the
surrogate models while the multivariate adaptive regression splines provided a more efficient
ensemble surrogate model. Recently, Roy and Datta (2020) utilized an illustrative coastal aquifer
model and developed ensembles of metamodels based on the Dempster-Shafer theory to predict
SWI under pumping conditions. Their results showed some advantage of the ensemble over the
standalone metamodels, yet, in overall the performance of the ensemble was comparable to the
metamodel identified as best. On a similar study, Lal and Datta (2020) concluded that, for their
case study, a homogeneous ensemble of Gaussian process regression models performed better than
standalone models of artificial neural networks, support vector regression, genetic programming
and Gaussian process regression, or any heterogeneous combination of the above in the form of
an ensemble. In the present thesis, the performance of multiple and single surrogates in pumping
optimization is also compared based on previous results published in Christelis et al. (2019b). A

surrogate-assisted evolutionary framework is implemented using heterogeneous and homogeneous

Page | 39



ensembles of surrogate models. Their performance is compared against the corresponding single-
type surrogate approach.

To the best of our knowledge, the combined use of multi-fidelity models for SWI management
has received little attention so far. Also, in their review paper, Sreekanth and Datta (2015) do not
report any multi-fidelity optimization methods developed for coastal aquifer management.
Although a considerable number of papers compares or develops faster low-fidelity models to
better approximate the VDST model responses, only few have proposed a combined use for
pumping optimization problems.

In the broader context of multi-fidelity optimization for coastal aquifer management, Christelis
and Mantoglou (2016a) and Christelis and Mantoglou (2017) developed methods which
adaptively correct the parameters of a LF SWI model, to mimic the response of a HF SWI model.
Specifically, Christelis and Mantoglou (2016a) have developed an optimization strategy to
improve the calculated maximum pumping rates within the operations of an evolutionary
algorithm. Their approach was based on the concept proposed by Pool and Carrera (2011) to
correct the density ratio in the sharp interface model of Strack (1976) (practically reducing it) and
allow for larger maximum pumping rates. Using a one-off correction of the density ratio cannot
ensure that the resulting optimal solution would be comparable with that obtained from the VDST
model, given that a specific iso-salinity contour is usually set as a threshold in the constraint
functions (Christelis and Mantoglou 2016a). On the contrary, it is possible that such a correction
would result in non-feasible solutions when the optimal pumping rates will be evaluated using the
VDST model (Kopsiaftis et al. 2019a). Therefore, instead of using the corrected LF sharp interface
model alone, it was proposed to selectively call the VDST model during optimization and

adaptively correct the density ratio. The main purpose was to locate feasible solutions for the
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VDST model, based on the computationally efficient sharp interface model and only on a small
number of the expensive VDST simulations. In other words, a limited number of VDST
simulations were utilized to evaluate the sharp interface predictions, adjust the density ratio, and
control the optimization search towards feasible solutions. During optimization, the SWI models
simulate the impact of numerous combinations of groundwater extraction rates on the development
of the seawater intrusion front. Several density ratio corrections of the sharp interface model might
be required to approximate the response of the VDST model. To that end, it was suggested that
the density ratio can be treated as a black-box parameter, with no physical meaning, subjected to
a form of calibration process where an optimal value of this ratio is sought.

This adaptive adjustment of the density ratio proposed by Christelis and Mantoglou (2016a),
was probably the first attempt to combine SWI models of different fidelity for solving pumping
optimization problems in coastal aquifers. It involves two fidelity levels, the sharp interface model
and the VDST model. The advantage of the method is that it provides a steep improvement of the
objective function within a few iterations of the optimization algorithm. It has similarities to the
implicit space mapping techniques (Bandler et al. 2004) where fixed parameters of the HF model
are iteratively adjusted in the LF model to minimize the differences between their responses.
However, it should be noted that the sequential adjustment of the density ratio, during the
operations of the evolutionary algorithm, does not imply a continuous improvement of the sharp
interface model. The evaluation with the VDST model and the updated density ratio only allows
the algorithm to search for better solutions with the computationally cheap sharp interface model.
At a certain number of function evaluations with the VDST model, the updated density ratio will

oscillate around a set of values where the sharp interface model matches the VDST output. Thus,
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it will eventually update the density ratio only in the search region that the evolutionary algorithm
has located as more promising.

In general, the method proposed by Christelis and Mantoglou (2016a) can be useful in the case
of limited computational budgets but it is not expected to outperform conventional surrogate
methods when it is affordable to get more samples from the VDST model. Furthermore, if the two
SWI models are in good agreement for a certain range of pumping rates, the algorithm might
unnecessarily call the expensive VDST model for evaluation. It should be noted that the success
of this multi-fidelity optimization strategy is strongly depended on the parameterization of the SWI
models as well as, the type of constraints utilized in the pumping optimization problem. Kopsiaftis
et al. (2019a), examined the concept of density ratio modification by forming ensembles of
corrected sharp interface models to approximate the optimal solution of the VDST model. Their
results showed that a combination of three density modifications could mitigate the errors
produced by sharp interface models for pumping optimization.

Recently, Christelis and Mantoglou (2019a) used simple response correction techniques
between a sharp interface model and a VDST model in a multi-fidelity optimization framework.
Their work showed that multi-fidelity SBO methods could be, under conditions, a promising
choice for coastal aquifer management. Nevertheless, in a series of independent runs presented in
that work, there was no evidence that this multi-fidelity method can outperform the conventional
data-driven approach if an adequate humber of HF samples can be obtained. Dey and Prakash
(2020) applied a similar methodology to Christelis and Mantoglou (2016a) by developing an
iterative process where the density ratio is optimized to update the sharp interface predictions and
calculate optimal solutions, using a particle swarm optimization algorithm. Their results showed

computational gains within a few iterations and their algorithm quickly located local optima of the
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VDST model. In general, as multi-fidelity optimization has received little attention in coastal
aquifer management, further research should follow to identify cases or problems which could be

benefit from this approach.
4.3 Types of surrogate models utilized in this thesis

The nonlinear constraints described in chapter 2 are computationally expensive to evaluate. The
VDST numerical simulations compute the distribution of the salinity concentration for a specified
management period and then the constraints are calculated. Even for an optimization problem of
moderate dimensionality, the task is considered impractical given the computational cost of VDST
simulations and the thousands of runs required by an evolutionary algorithm to converge. To
reduce the computational burden, surrogate models are employed to approximate the VDST model
response to pumping and enable an efficient simulation-optimization routine.

Two types of surrogate models were chosen to develop SBO methods for coastal aquifers,
namely, radial basis functions (RBF) and Kriging (KRG). While these surrogate models have been
fairly utilized in other fields of engineering optimization, their use is scarce in aquifer management
studies. Their interpolating capabilities allow for an exact estimation of the previously evaluated
sampling points with the physics-based model. This is considered beneficial in terms of surrogate
model accuracy for deterministic computer simulations (Kleijnen 2009) which is the case for the
present thesis. Both RBF and KRG are very popular choices in SBO (Jin et al. 2001). An increasing
interest in these metamodels is also observed in the broader field of water resources optimization

(e.g. Bau and Mayer 2006; Shoemaker et al. 2007; Razavi et al. 2012b; Tsoukalas et al. 2016).

4.3.1 Radial basis functions (RBF)
The radial basis functions were originally developed for the purpose of scattered multivariate data

interpolation (Hardy 1971). One attractive characteristic is that RBF models can express highly
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nonlinear responses, a common case in engineering optimization, while they still preserve a simple
mathematical formulation (Forrester et al. 2008). The construction of RBF surrogate models in
this thesis is based on the MATLAB codes developed for MATSuMoTo toolbox by Mller (2014).
In the pumping optimization problem described in chapter 2, the objective function is a linear

function of the k decision variables Q,,...,Q, that is, the pumping rates. A unique RBF model is

constructed for each one of the k inequality constraints associated with each one of the k pumping

wells. Let the decision vector of pumping rates denoted by Q =(Q,,...,Q,) . Then, given a set of

m training points QY,Q?,...Q™ eR¥, the corresponding responses obtained from the

evaluation with the VDST model are either G.{Ci(Q(l)),...Ci(Q(m))T,i=1,...,k or

:
G = [X-CT (Q(l)),..., X" (Q(m)ﬂ 1 =1,...,k (the reader is referred to chapter 3 for the definition of

these quantities). The following RBF model is employed (Powell, 1992):
5(Q)=> 42(1R-QY 1)+ p(Q) (4.1)
j=1

where s(Q) in our case denotes the prediction of the RBF model for an input vector of pumping

rates Q, A=[4,..,4,] eRare coefficients to be determined, (-)" represents the transpose of a

m

vector or a matrix , go() denotes the form of the radial basis function, ||-|| is the Euclidean distance

and p(Q)=p'Q+f, isalinear polynomial tail with = (4,...., B, )" whose coefficients also need

to be determined such that the resulting RBF model passes through all the m design points. The

coefficients A, p and £, are obtained by solving a linear system of equations:
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i WEH 2

where @ isa mxm matrix with entries @, =(]|Q” Q" |[), Pisa mx(k +1) matrix whose
ith row is [1,(Q“))T] W= [ﬂl,...,ﬂk,ﬂo]T and 0 denotes a matrix with all entries equal to zero.

The interpolation matrix is invertible if and only if rank(P) =k +1 which in turn implies that at

least k +1points are required to train the RBF model (Muller and Woodbury 2017). Here, two

types of basis functions are considered, the cubic form where ¢(r)=r® and a thin plate spline

where ¢(r)=r?Inr . The construction time for the RBF models is negligible in comparison to the

VDST simulation time even for large number of training points. To facilitate the presentations of
the results in the following chapters, the cubic and the thin plate spline RBF models will be
abbreviated as CUB and TPS, respectively.

4.3.2 Kriging (KRG)

Kriging was mainly introduced as an approximation model for multidimensional input-output data
from a simulation model, in the original paper of Sacks et al. (1989). However, the origins of the
Kriging method are generally attributed to the work of the South African mining engineer Krige

(Kleijnen 2009). The concept utilized by the KRG surrogate models is that when the distance

between two input vectors Q and Q' is small, then the resulting scalar responses C,(Q) and

C.(Q") (or x™(Q) and x™ (Q')) should be closely correlated (Forrester et al. 2008). Details

about the mathematical background of Kriging in metamodeling can be found elsewhere in the
literature (e.g. Jones et al. 1998; Lophaven et al. 2002; Forrester et al. 2008). Here, we only briefly

present the general concept of a KRG surrogate model as it applied in our problem. Kriging treats

Page | 45



the responses G, from the VDST model to the input sample points Q“,Q",....Q'™ eR*, as if

they were generated from a stochastic process Y (Q) defined as (Sacks et al. 1989):
p
Y(Q)=YaF (Q)+Z(Q) @3)
i=1

p
where ZaiFi (Q) is a regression model and a :(al,...,ap) are the regression coefficients while
i=1

F(Q),i=1..p are known basis functions. The second term Z(Q) is a zero mean Gaussian

process, with variance o and a mxm correlation matrix ¥ with entries given by the correlation
k

function corr[Z (Q),Z(Q')] =exp{—29j ‘Qj —Q}‘ } A Gaussian correlation function is
j=1

selected where 7 =2. Although 7 is considered fixed here it can also be a parameter to be

estimated. The set of parameters 6,,...,6, is identified using the Maximum Likelihood Estimation

method and numerical optimization techniques (Viana et al. 2010). In brief, a prediction y(Q”eW)

new

with the KRG surrogate model at a new point Q™" is given by (Palar and Shimoyama 2018):

y(Q™) = Aa+r(Q™)¥ (G, ~Fa) (4.4

where A :(Fl(Q”eW),__Fp (Q”e"")), a =(FT‘I"1F)71 F WG, denotes a px1 vector of the
coefficients of the regression function as obtained by the Generalized Least Squares procedure. It

is reminded that G; is a mx1 vector of the observed VDST model responses associated with the

(m)

ith constraint function, given the m training points Q(l),Q(z),...,Q eR", Also, a 1xm vector

of correlations between the observed data and the new prediction is defined as
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r(Q”eW)z(cor[Y(Q(l)),Y(Q”eW)}---cor[Y(Q(m)),Y(Q”eW)}). A mxp matrix F of the

regression functions of the form is also defined as:
F= : : : (4.5)

The SURROGATES MATLAB toolbox (Viana 2011) was used to facilitate the construction
of KRG surrogate models which are based on the DACE toolbox (Design and Analysis of
Computer Experiments) developed by Lophaven et al. (2002). The toolbox allows for regression
models of different order polynomials and correlation models of various structures. After
performing several numerical tests, two KRG surrogate models were employed in this work,
namely, Gaussian correlation models combined with zero-order (denoted henceforth as G0) and

first-order regression models (denoted henceforth as G1).
4.4 Surrogate-based optimization algorithms

The SBO algorithms developed in the present thesis employ individual surrogate models for each
constraint function instead of a single surrogate model that emulates the response of a penalized
objective function. This approach is expected to increase the accuracy of the SBO methods for
nonlinear constrained optimization problems. The SBO methods are developed either based on the
surrogate-assisted evolutionary strategy or the adaptive-recursive framework. The surrogate-
assisted evolutionary algorithms mainly utilize the prediction-based exploitation approach which
adds points at the current optimum found by the metamodel. On the contrary, the adaptive-
recursive SBO methods apply a balanced exploitation and exploration strategy for sampling the

VDST model.
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As it has been discussed before, despite the level of sophistication in VDST models, there are
still many limitations in their prediction skills particularly for regional coastal aquifers (Sanford
and Pope 2010). In that sense, the methodologies proposed in this thesis aim to efficiently solve
pumping optimization problems of coastal aquifers, assuming that the VDST models are as
accurate as possible. It is also noted that no attempt is being made in this thesis to delve into the
mathematical details of surrogate modelling theory and optimization. The aim is to understand
how surrogate modelling fits within the practical requirements of coastal aquifer management

plans and how the specifications of SWI modelling favor the use of one or the other SBO method.

4.4.1 Surrogate-assisted evolutionary strategy using single surrogate models

The method will be denoted throughout the thesis as EAS-PB followed by the type of the
metamodel used in the algorithm. The EAS component of EAS-PB means that the method is
embedded in the operations of the EAS algorithm and PB stands for prediction-based exploitation.
The steps of this SBO approach can be summarized as follows:

1. Create an initial experimental design (LHS in our case) to provide the set S, of training

points (e.g. Q(l) ) ...,Q(m)). Evaluate these initial points with the HF model (here, the VDST
model) and store the outputs related to the constraint functions (for example,

C,(QY)..C(QM),i=1...k)intheset C, .

2. Fit k surrogate models (e.g. k cubic RBF models), corresponding to the k pumping wells,

using the available training sets S, and C,,.

3. Run EAS algorithm based on the surrogate models and if during optimization a better

optimum is found do the following:

a) Re-evaluate the current decision vector of pumping rates with the VDST model.
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b) Replace the objective function value with that obtained from the VDST model.

c¢) Compute the minimum Euclidean distance of the current candidate point Q" from

previously evaluated points in the training sample S_ . If the distance criterion A .. is
satisfied, add the new input-output data into the training sets S, and C_, and retrain the
surrogate models.

4. Are stopping criteria of EAS algorithm met? If yes, return final solution; otherwise return
to step 3 and continue running EAS algorithm using the surrogate models.

At step 3c, a distance criterion A, from previously evaluated points with the VDST model is

calculated, before deciding to add the new sample point in the existing training dataset S, . This

is imposed because the accuracy of RBF and KRG models can be adversely affected by closely

sampled points. If A, denotes the minimum distance between the low and upper limits of the
decision variables and k represents the number of the decision variables, we set
A, =0.0005x A, xJk , as suggested in the implementation of the ConstrLMSRBF algorithm

(Regis 2011). The rest of the required parameters of EAS-PB were selected similarly to the original

EAS algorithm (see chapter 3). That is, the initial population mpop =8xk , the annealing schedule
parameter &, =2 and the mutation probability criterion p,, =0.1. In the present implementation
of EAS-PB, the initial m training points also serve as the initial population m_ . The EAS-PB

algorithm will terminate either if N

eval

=m,,, x100, which is the maximum number of objective

function evaluations using the metamodels or if £, <10 which is a convergence parameter
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defined in the original EAS algorithm. A schematic representation of EAS-PB is presented in

Figure 4-2 below.

LHS design to generate
initial training sample

v

Evaluate the initial training
sample with the VDST model

v

Train the surrogate models <

v

Optimization search based on EAS
operations and surrogate models

New
optimum

L Yes
' - Evaluate the solution with the |- . No
1 VDST model 1 -
1 — : 1 EAS Retrain Yes
! Replace the objective function ! ) 5 surrogate
: value with that calculated from : convergence odels?
1 VDST model |
1 1

( Optimal solution )

Figure 4-2 Optimization workflow for the EAS-PB method
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4.4.2 Surrogate-assisted evolutionary strategy using multiple surrogates

A similar optimization method to EAS-PB is presented here but it is based on the multiple
surrogate approach. Whether SBO methods using multiple surrogates derive better results than
using single type surrogate models is inconclusive in the existing literature (Viana et al. 2010). To
that end, two multiple surrogate approaches were developed here to examine their performance in
pumping optimization of coastal aquifers. One of them, selects the best surrogate model for each
constraint function and updates this knowledge as more evaluations with the VDST model are
added during optimization. The other, selects the two best surrogate models for each constraint
function and constructs an ensemble with weighted prediction. The weights are calculated through
an internal optimization scheme within the operations of the EAS-PB algorithm. The ensemble
means that the prediction of the approximation model is constructed from surrogates of different
type, for example, a KRG model and a RBF model or a cubic RBF and a TPS RBF model.

To assess the prediction skills of the surrogate models and identify the best for each constraint
function, a cross-validation strategy was employed. The RBF and KRG surrogates emulate the
scalar response of the VDST model to pumping rates. Thus, a total of k surrogate models
corresponding to the k pumping wells, need to be constructed. First, | roughly equal subsets
including m

training points are generated from the whole of the training sample points. Then,

sub
iteratively each surrogate model is fitted to |1 -1 subsets and provides predictions for the points
that were left out from the fitting process. This process is repeated | times to gather all the
predicted errors based on different validation datasets. The root mean squared error (RMSE) was
used as a cross-validation score between the known VDST responses and the predictions from the

surrogate models. It was defined as follows for the ith pumping well:
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RMSE(i)z\/ 1 %(yii—yij)z,iﬂ,...,k (4.6)

In the above RMSE definition, yij denotes the known value from the VDST model for the |
training point (the vector of pumping rates in our case) and W is the surrogate model prediction

(either C, or Xic ') for the same point. For the best surrogate model approach, only the surrogates

with the lowest RMSE values for each pumping well are selected. Within the EAS-PB optimization
framework the surrogate models are re-constructed as new training points become available
through the algorithm’s operations. Every m._, training points, the cross-validation score is
re-calculated and the best surrogates are identified again.

Apart from selecting the best surrogate model an ensemble formulation was also implemented.
The two best surrogate models identified for each constrained function from the cross-validation
strategy, were used to form an ensemble of surrogates by constructing a weighted average

surrogate. The prediction of the ensemble surrogate model is formulated as:
y=>wy, (4.7)

where ¥, is the prediction produced by the qth surrogate model, Ny, is the number of the
surrogate models which form the ensemble and in our case N, = 2. Variable W, denotes the

optimal weights attributed to the gth surrogate model prediction subject to the equality constraint

NSM
qu =1. The construction of the weighted average surrogate model was based on optimal
g=1

weights obtained through minimization of the cross-validation score. It is noted that the
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optimization task for the optimal weights was performed for each one of the constraint functions
to form the ensembles of surrogates. The relevant optimization problem is defined as (Zhou et al.

2013; Jiang et al. 2015):

2
. 1 Mgy R R
min f (w)= \/m_;(wlyl +W,¥,-Y)
sub J= (48)

NSM
sty w, =1
g=1
where §, and Y, are the individual predictions of the best two surrogate models for each constraint

function value and Y is the corresponding response of the VDST model. The above optimization

problem was solved using the SQP method provided in MATLAB. Since the number of constraint
functions might be large, the construction of the weighted average surrogate may add considerable

computational time. The optimal weights are also updated every m,, training points within the
operations of the EAS-PB method. Here, rather arbitrarily m,, was selected based on the

dimensionality D of the optimization problem. For example, if k =10 then the weights were re-

calculated every m_, =10 evaluations with the VDST model. Since the optimization framework

is the same with the EAS-PB method, a flow diagram of the multiple surrogate approach is

presented in Figure 4-3.
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Figure 4-3 Workflow diagram of the surrogate-assisted evolutionary framework using multiple surrogates

(using the best surrogate or an ensemble).

It is noted that the multiple surrogate approach is somewhat sample dependent which means
that using a different training sample may result in a different selection/combination of the best
surrogate models. If an ensemble is constructed by different instances of the same surrogate model,
resampling techniques may be beneficial to increase the diversity of the surrogate model response
(Roy and Datta 2017b). To distinguish the implementation of EAS-PB using multiple surrogates,

the abbreviation EAS-PB(BE) is used when only the best model for each constraint function is
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selected, and EAS-PB(OW) denotes the case where optimal weights are computed to obtain the

prediction of the ensemble surrogate model.

4.4.3 Modification to the SEEAS algorithm for nonlinear constrained optimization
Recently, EAS algorithm was enhanced with surrogate models to tackle computationally
expensive optimization problems with bound constraints (Tsoukalas et al. 2016). The resulting
SEEAS (Surrogate-enhanced evolutionary annealing simplex) algorithm, showed considerable
advantages over other widely used SBO algorithms for water resources optimization problems. A
main difference from EAS is that SEEAS employs an internal optimization task that minimizes an
acquisition function and generates candidate points, based on an efficient search with surrogate
models. The scope of the acquisition function is to balance exploration and exploitation using the
metamodel and locate promising areas of the original objective function landscape (Tsoukalas et
al. 2016). For the development of SEEAS, some modifications were also implemented to the
operations of the original version of EAS. Detailed steps and description of SEEAS can be found
in Tsoukalas (et al. 2016) and therefore we only refer here to the specific modification that was
done for the purposes of the present thesis.

Originally, in SEEAS algorithm, the acquisition function calculates a weighted score of

candidate points based on the predicted objective function value from the surrogate model and the

distance from previously evaluated points with the computationally expensive model. Let y, (x,)

be the standardized response value of a surrogate model to a set of candidate points X, where
Yo (XC)=[y(xc)—ymi” }/[ym""x —y™ |. The values y™ and y™ represent the minimum and

maximum values of the non-standardized response values y(x,), respectively. In addition, the

Euclidean distance d. is calculated, for each point in the set x_, from all previously evaluated
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points x, with the original physics-based model. The set of points x,, also serve as the existing

training points  for  the  surrogate model. The  standardized distance

dg =[d™ —d, |/[d™ —d™ | is also calculated and the weighted score of the acquisition

st

function is obtained as Sc=wy (X, )+@-w)dZ, where w is a dimensionless weighting

coefficient. The latter is dynamically adjusted based on the empirical formula

w = max[ 0.75,min (PI,0.95) ] (Tsoukalas et al. 2016).

The parameter Pl represents a dimensionless progress index calculated as

Pl =log(HFr)/log(MHFr), where HFr is the current number of runs with the HF model and

MHFr is the maximum allowed number of runs with the HF model or in other words the assigned
computational budget. This practically means that at the beginning, more weight (up to 0.25) is
assigned to the acquisition function to promote exploration using the metamodel and improve
global accuracy (for details, see Tsoukalas et al. 2016). The best point found from the minimization
of the acquisition function replaces the worst point of the population, if it is better than the existing
worst solution, and it is evaluated by the HF model. It also enters the archive of the training points
and the surrogate model is updated. As more iterations are carried out by the algorithm and thus
more HF model runs are added, the value of PI increases and the minimization of the acquisition
function focuses on exploitation. The algorithm stops iterating when the predefined computational
budget, i.e., the maximum number of HF model runs, is exhausted.

In our case, the pumping optimization problem includes nonlinear constraints and thus a slight
modification was done to SEEAS to accommodate surrogate models for each constraint function.
Thus, separate surrogate models associated with each pumping well were employed to

approximate the constraint functions of the VDST model. Accordingly, the calculation of the
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acquisition function value was modified to include the information from all the surrogate models
of the constraint functions and compute the weighted score. In SEEAS, the generated candidate
points that violate a distance criterion from previously evaluated points with the original model
are attributed a high score to drive the internal optimization away from these points. An additional
penalty was also attributed in the modified constrained version for those points that are infeasible
based on the predictions from the surrogate models of the constraint functions. In the next chapter,
we investigate the performance of the original SEEAS in coastal aquifer management, assuming
initially only a single surrogate model for the penalized objective function. Then, we test the
performance of the modified version of SEEAS using surrogate models for the constraints and for
convenience this approach will be denoted henceforth as CSEEAS (Constrained-Surrogate-
enhanced evolutionary annealing simplex). As in SEEAS, we also utilize RBF surrogate models

to run CSEEAS.

4.4.4 The ConstrLMSRBF algorithm
To further assess the SBO methods developed in this thesis, a comprehensive and effective SBO
method developed by Regis (2011) was also included in the comparison. Constr LMSRBF is a SBO
method which balances global and local improvement of the surrogate model and has been applied
in other engineering optimization problems successfully. Recently, it was applied in coastal aquifer
management problems showing very promising results (Christelis et al. 2018). The algorithm
simultaneously deals with the objective function and the constraints of the optimization problem,
by constructing RBF surrogate models for each one of them.

The version of ConstrLMSRBF applied in this thesis, requires that at least one feasible point
exists among the initial training points of the surrogate models. After evaluating the initial points

with the computationally expensive model (here, the VDST model) RBF models are fit for the
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objective and constraint functions using all available data points. Then, the algorithm goes through
a loop that involves generating a large number of random candidate points obtained by perturbing
some or all of the coordinates of the current best feasible point, using Gaussian distributions with
zero mean and with known standard deviations. The standard deviations can vary adaptively,
depending on the performance of the algorithm and based on heuristic rules, to facilitate either
local or global search. The algorithm gathers the candidate points that are predicted to be feasible
or that have the minimum number of predicted constraint violations. The next point where the HF
simulation will run is chosen to be the best point among all the valid candidate points according to
two criteria: predicted objective function value of the candidate point according to the RBF model
of the objective, and its minimum distance from previously evaluated points. Once the HF model
has evaluated the selected valid candidate point, the algorithm re-trains the RBF surrogate model
with the new data point included. Then it goes back to generating a new set of random candidate
points and continues the loop until the computational budget is exhausted, that is, the maximum
number of HF simulations has been reached. More details on the theoretical aspects of

ConstrLMSRBF can be found in Regis (2011).

445 LR-RSRBF (Local Refinement Random Search with RBF models)

In this section, a new optimization framework is presented which adopts and combines concepts
and steps from three different existing SBO algorithms, namely GOSAC, ConstrLMSRBF and
SEEAS. The general structure is based on the concept proposed by Muller and Woodbury (2017)
who developed GOSAC algorithm. GOSAC is a surrogate-assisted global optimization algorithm
for problems with computationally expensive constraint functions and computationally

inexpensive objective functions. This concept meets the specifications of the present pumping
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optimization problem where the objective function is calculated as a simple summation of the
decision variables and thus it has negligible computational cost.

In its original formulation, GOSAC algorithm includes two main optimization phases. The
first, seeks for a starting feasible point for those problems where an initial sampling design cannot
guarantee the existence of feasible points. To that end, a multi-objective optimization problem is
solved based on trained surrogate models with the initial sampling design. When a feasible point
is found, the second phase of the algorithm aims at improving the current best feasible point. This
is achieved by minimizing the objective function and evaluating the constraints using surrogate
models, for example, RBF models.

Each time a new infill point is proposed by the surrogates the original model evaluates the
solution and the point is added to the existing training sample. Since the second optimization phase
aims at exploitation using the surrogate models, if the proposed solution is too close to previously
evaluated points with the expensive computer model, another sample point is preferred which
maximizes the minimum distance from the existing sample. This step enables the sampling of the
original model in unexplored regions of the decision variable space and thus improves the global
accuracy of the surrogates while it may locate promising areas with local or global optima (Muller
and Woodbury 2017). GOSAC’s stopping criterion is based on the depletion of the available
computational budget.

Here, we implement another version of a GOSAC-like SBO method where the first phase is
omitted since it is generally easy to locate a feasible starting point. However, the structure of our
proposed method incorporates additional features from the SEEAS algorithm and the
ConstrLMSRBF algorithm presented previously. Specifically, we make use of a progress index as

in SEEAS while we also incorporate a specific part of the ConstrLMSRBF algorithm which
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appears to be highly effective for the present optimization problem. The latter involves generating
many random candidate points obtained by perturbing some (or all) of the coordinates of the
current best feasible point, using normal distributions with zero mean and with specified standard
deviations. As it will be shown later in the numerical application, this refinement of the current
best solution using perturbed points, leads to a steep improvement of the current best solution
within only few evaluations with the VDST model and is considered beneficial for the optimization
problem at hand. This exploitation step is further enhanced in the proposed algorithm by
selectively activate an optimization step using surrogate models and an evolutionary algorithm.
Apart from exploitation steps, the present methodology uses a criterion based on random number
generation and the number of HF model evaluations, to decide if a new point should be added that
maximizes the minimum distance from the existing sample, as in GOSAC algorithm. The method
is implemented using cubic RBF models, but other surrogates could be employed as well. The

steps of the proposed methodology are presented below:

1. Create an initial experimental design set S of training points (e.g. Q(l),---,Q(m)).

Evaluate the initial points with the HF model. Store the outputs related to the constraint

functions (for example, C, (Q(l)),...Ci (Q(m)),i —1,...,k)into C,.

2. Denote by X, that pointin S, which corresponds to the best feasible objective function

value fi.

3. Initialize the progress index PI =|og(HFr)llog(MHFr)which lies between zero and

one. Set a distance criterion A, (see section 3.4.1) for accepting a new entry in S and a

min
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tolerance criterion F

for the number of subsequent failures F_,, with the surrogate

ount

models to improve the current best solution .

4. Fitthe k cubic RBF models on the evaluated points S, .

5. while HF, < MHF,

6. Generate a random number r,, in [0,1],

7. if r, > Pl find point X, that maximises the minimum distance of x,., from previously

evaluated pointsin S_ .

8. else generate N, candidate points by perturbing the coordinates of x,., . Evaluate the

can

N Points using the RBF models and denote the best point found by x,,, and the best

temp

objective function value f.,, .

a. if f < f.qand F, <F

count tol ?

set X, =X

temp

b. else minimize the objective function f (x) subject to the RBF surrogate models of

the constraint functions and denote the optimum point by x... and the objective

temp

function value f

temp *

c. endif

9. if the distance criterion A . is violated find another point X, that maximises the

minimum distance of X, from previously evaluated points in Sm.
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10. else set Xy = Xigmp

11. end if

12. end if

13. Evaluate the point X, with the HF model, return the objective function value f_ . and

update HF,.

14. Add x,,, in S, and the corresponding constraint function outputs in C .

15.if f . < f,.,, update the values of x, and f

best ? best best

16. end if
17. end while

18. Return the best solution X, , f

best *

As described in the above optimization framework, there are two cases where an exploration
task takes place. First, it is decided based on the random number generation at step 7, if a new

point will be added far from the current best solution x,,, . However, the chance of implementing
this step is reduced as HF, increases and thus, Pl increases as well. This is a common practice in
SBO methods to allow more exploration at early stages and focus on exploitation as the size of the

training sample increases. The second time that exploration is selected regards the case where the

proposed point x... is close to the existing training points. In such cases, it is preferable to add

temp

another point x,,, to improve the global accuracy of the surrogate models as it is done in step 9.
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The exploitation part of the algorithm is implemented at steps 8 and 8b either with the
perturbation of the current best solution or by searching for a promising point using a global
optimization algorithm and the RBF models. The latter step is critical for the performance of the
proposed method. First, it adds considerable computational effort despite the exclusive use of
surrogate models. An evolutionary algorithm will evaluate the objective function a few thousand
times. Even using surrogate models, this implies an additional computational cost which depends
on the number of the decision variables and the type of surrogate models used. For example, KRG
models will lead to a slower optimization run than RBF models. Considering that in our case
separate surrogate models are constructed for each constraint function, step 8b will eventually add
some computational load, particularly if this step is repeated many times until the stopping
criterion is met. On the other hand, selecting a fast-convergent optimization algorithm but with
low robustness might adversely affect the progress of the proposed optimization framework.
Therefore, it is recommended that one should implement this SBO method using an evolutionary
algorithm with known global search capabilities for the problem at hand.

The increased computational load of step 8b can be treated effectively using vectorized
versions of evolutionary algorithms. Due to the large number of independent trials that we employ
in this thesis, the vectorized form of MATLAB’s particle swarm algorithm was found appropriate
to employ for the present optimization problem. Preliminary runs showed that the original EAS
algorithm can improve further the performance of this SBO method at the expense of increased
computational time. As mentioned before, EAS is a particularly robust choice for pumping
optimization in coastal aquifers. Obviously, if the single runtime of the VDST model ranges from
several minutes to hours, the additional computational effort contributed by step 8b is not as

noticeable as for a VDST model which runs in seconds or in few minutes. Furthermore, in practice,
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an analyst expects to obtain a good optimum with one or two runs of the SBO methods. Otherwise,
it might be worthless to use SBO algorithms and train surrogate models instead of directly using
the original HF model. For convenience, the proposed method will be denoted as LR-RSRBF

(Local Refinement Random Search with RBF models) and a schematic workflow is presented in
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)
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y A
Evaluate solution with the No
VDST model '
Retrain
surrogate
odels?

Replace the current best solution |
and current best vector if a I
better solution is found :

Figure 4-4 Workflow diagram of the LR-RSRBF optimization method.
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4.4.6 Multi-fidelity optimization using co-Kriging metamodels

As discussed previously, using LF models in optimization could be beneficial for those cases
where only limited data from the HF model can be obtained, due to extremely high computational
cost (Fernandez-Godino et al. 2019). There are different ways to define model fidelity levels,
depending on the physical problem at hand. Based on preliminary runs with the available SWI
models and the lack of studies that use multi-fidelity methods for pumping optimization in coastal
aquifers, some fidelity models for SW1 were not considered in this thesis.

For example, reducing the computational cost of the VDST model using coarser discretization
was considered as a problematic option for the HydroGeoSphere code. Although different codes
have different restrictions regarding the mesh Peclet number for transport solution (Essink, 2001),
here, the coarser model was prone to numerical errors while the saving in runtimes might not be
adequate. Other simpler SWI models that ignore salt transport mechanisms but consider saltwater
movement have not been widely tested in pumping optimization studies while their computational
cost, although much lower than VDST models, is still considerable. On the contrary, the one-fluid
approach using Strack’s potential (1976) is a very fast model of SWI that has been widely applied
in coastal aquifer management (e.g. Mantoglou 2003; Mantoglou et al. 2004; Ferreira da Silva and
Haie 2007; Mantoglou and Papantoniou 2008; Ataie-Ashtiani and Ketabchi 2011; Christelis et al.,
2012; Karatzas and Dokou 2015). Presently, this sharp interface model was selected as an
appropriate choice to explore multi-fidelity optimization in coastal aquifer management. As such,
two levels of fidelity for simulating SWI were considered in this thesis, the VDST model and the
sharp interface model of Strack (1976).

It should be noted that previous SWI studies have shown that this sharp interface model leads

to conservative estimations of the optimal pumping rates compared to the VDST models (Pool and
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Carrera 2011; Christelis and Mantoglou 2013; Christelis and Mantoglou 2016a; Kopsiaftis et al.
2019a). Also, Llopis-Albert and Pulido-Velazquez (2014) have demonstrated that depending on
the hydraulic properties of the coastal aquifer, the sharp interface model may deviate significantly
from the SWI predictions provided by the VDST model. Finding those regions where the responses
between the LF and the HF model are significantly different and improving methods for multi-
fidelity modelling, is a research area of growing interest in the relevant literature (e.g. Han et al.
2013; Zhou et al. 2016).

For the numerical experiments that follow in the next chapter we focus on a new approach to
combine the outputs from the sharp interface and the VDST model. A special formulation of KRG
models is the method of co-Kriging (coKRG) which exploits the combination of large amounts of
LF data with few HF data to develop fast approximation models (Forrester et al. 2008). The
constructed coKRG model is expected to be more accurate than the LF model alone, in
approximating the HF responses. The success of a coKRG model also depends on the training
samples and the differences between the HF and the LF model. The method of co-Kriging can be
useful in cases where the HF model is very time-consuming and there is one or more LF models
available that can enhance the analysis on a much lower computational effort. On the other hand,
if the computational cost of running simulations with LF physics-based models is high or if the
dimensionality of the optimization problem is large, the development of co-Kriging models may
be an impractical choice (Forrester et al. 2008). The theory of co-Kriging dates back to 40 years
ago with pioneering published works in geostatistics (Matheron 1973; Matheron 1979; Journel and
Huijbregts 1978; Francois-Bongarcon 1981; Myers 1981). Here, the recent formulation presented

in Forrester et al. (2007; 2008) is followed. The concept of co-Kriging is briefly presented below
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with emphasis given to the next chapter where the practical aspects of its implementation for
coastal aquifer management is further discussed.

(Mye)

Consider a set of m,. HF training points QY,....Q™) R denoted as Q. , Which is a

subset of m . LF training points Q,...,Q"™) eR¥ denoted as Q,. . The associated HF and LF
responses of the models can be denoted by Y, ={Y (Q(l)),...,Y(Q(mHF)) and
Y. e :{Y(Q(l)),...,Y(Q(mLF)) , respectively. Then, let Z . () to represent a Gaussian process of the
LF model data (Q¢,Y.r), Z,x(-) @ Gaussian process of the HF model data (Q, Yy ) and

Z4(-) aGaussian process that represents the differences between pZ . (-) and Z,, (-). In essence,

the HF model is approximated as (Kennedy and O’Hagan 2000, Forrester et al. 2007):
Z: (Q)=pZ2:(Q)+Z,(Q) (4.9)

where p, is a scaling factor estimated as part of the Maximum Likelihood Estimation method

through optimization when the KRG model of the residuals between the LF and HF data is
constructed. The co-Kriging prediction at a new point has a similar definition to (4.4) but the
interested reader is referred to Forrester et al. (2007) and Forrester et al. (2008) for a proper
mathematical presentation of the method, as it involves a considerable amount of matrix algebra
for its derivation which is out of the scope of this work. The MATLAB implementation of coKRG
provided in Forrester et al. (2008) was used to develop the multi-fidelity optimization method for
this thesis. Also, the original version of the EAS algorithm was used to search for the optimal
parameter sets of the cOKRG model.

The multi-fidelity optimization framework using cOKRG models, was developed here based

on a specific loop included in the operations of the ConstrLMSRBF algorithm. As explained
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previously, ConstrLMSRBF goes through a loop that involves generating a large number of
random candidate points obtained by perturbing some (or all) of the coordinates of the current best
feasible point, using Gaussian distributions with zero mean and with standard deviations. We are
implementing the multi-fidelity method assuming a restrictive computational budget of HF runs,
and we utilize this concept aiming at a local search where all coordinates of the current best feasible
point are perturbed. The standard deviation remains constant throughout the iterations of the
method as opposed to the dynamic adjustment which is applied in the ConstrLMSRBF algorithm.

Initially, a space-filling design using the LHS method is created and the objective function
values are evaluated using the LF sharp interface model. The LHS points along with the responses
of the sharp interface model for each constraint function are stored in an archive which represents
the LF data. To build the coKRG model a set of HF data is then required. It is noted that selecting
those points for HF evaluation is not always straightforward (Forrester et al. 2008). In our case,
the HF VDST model first evaluates the best point identified from the LF model based on the LHS
design. Then the VDST model evaluates the worst point to gather the initial HF data. If, however,
there is no feasible point then an internal loop searches for the next best point to ensure that the
initial HF data include at least one feasible solution, before proceeding to the next steps of the
method. This initial search may lead to spending some HF runs but on the other hand it is essential
for the method to verify the feasibility of the current best point. A more conservative approach is
to add an evaluation of a vector of low pumping rates that can ensure feasibility after evaluation
with the VDST model. After gathering the HF and LF data, the coKRG models of the constraint
functions are constructed. Then, the current best solution is perturbed, and a random sample is
generated while the next point where the VDST simulation will run is the best point predicted from

the coKRG models among all the generated candidate points. This new training pattern is added
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to the HF archive, the coKRG models are re-trained and the current best solution is updated if the

new point is better.
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Figure 4-5 Workflow diagram of the multi-fidelity optimization framework using co-Kriging surrogate

models and an adaptive-recursive sampling strategy.

Note that if the new point violates the tolerance for the minimum required distance from
previously evaluated points with the HF model, then it does not enter the archive. However, with
such a limited computational budget this is unlikely to happen. The above iterative framework
stops when the maximum number of HF runs has been reached. As this framework follows an
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adaptive-recursive scheme, for convenience it is named as AR-coKRG (Adaptive-Recursive with

coKRG models).
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Chapter 5

SBO for hypothetical coastal aquifers

5.1 Settings and rationale of the numerical experiments

This chapter presents the findings from the several SBO frameworks that were developed for the
pumping optimization problem described in chapter 3. We investigate the usefulness of surrogate
modelling for this engineering optimization problem by conducting exhaustive comparisons
among the proposed SBO algorithms. As previously discussed, VDST numerical simulations are
associated with increased computational effort mainly originating from the spatial and time
discretization requirements of the solute transport step (Werner et al. 2013). To facilitate the
analysis, VDST models of simple geometry have been employed here and seawater intrusion is
simulated based on hypothetical coastal aquifer models.

To enable the computationally expensive comparisons among the SBO algorithms, the settings
of the numerical VDST model are chosen in such a way that a single simulation requires on average
11 seconds. Therefore, a relatively fast VDST model is utilized to perform such a demanding
computational task for the generic comparison purposes. The optimization runs were performed
on a 2.7 GHz Intel i5 processor with 8 GB of RAM in a 64-bit Windows 10 system. Furthermore,
to assess the impact of problem dimensionality on the performance of the SBO methods, two
scenarios are assumed, one with 10 operating pumping wells and the other with 20 operating
pumping wells. The comparisons include the types of SBO algorithms described in chapter 4 and

a summary is given also here for convenience.
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One category utilizes the concept of prediction-based exploitation infill strategy and is
implemented within the operations of the EAS algorithm. It is reminded that this approach aims at
a fast convergence to an optimal solution, by adding infill points at the current optimum predicted
by the surrogate models. This SBO method, which belongs to the broad group of surrogate-assisted
evolutionary strategies, utilizes the inherent convergence criteria of the EAS algorithm. The
surrogate-assisted evolutionary strategy is developed for both the single and the multiple surrogate
approach. The multiple surrogate approach is based on the hypothesis that the combined use of
surrogate models will smooth out the prediction errors from a single surrogate and thus will enable
a better exploration of the search space. However, this approach implies additional computational
effort.

The second category involves SBO algorithms that have been designed to balance local
exploitation and global exploration using the metamodels and thus, they can potentially explore
the search space with more accuracy. For the implementation of this type of SBO algorithms, we
rely on the concept of the available computational budget. That is, a certain number of VDST
simulations is available for evaluating the initial training points and the rest of VDST model runs
are utilized to update the surrogate models with additional sampling points through iterative
optimization procedures. Therefore, the depletion of the computational budget serves as a stopping
criterion for these SBO algorithms.

To ensure that the comparison is as fair as possible, and that it is not affected by the different
optimal choices for each algorithm, the following settings were employed. First, two alternative
budgets of 100 and 300 VDST model runs were tested for those SBO methods that utilize the
available computational budget as a stopping criterion. The computational budget of 100

simulations represents a hypothetical case where the VDST model is time-consuming and a
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restricted number of simulations is realistic to run. Furthermore, it serves the purpose of
challenging the capability of the algorithms to near-optimal solutions despite the small
computational budget. Based on preliminary runs, the computational budget of 300 simulations
with the VDST model, was considered sufficient for all SBO methods to search for optimal
solutions considering the dimensionality of the present optimization problems.

The size of the initial training points for fitting the KRG and RBF models was decided
according to the type of the SBO algorithm. The surrogate-assisted evolutionary strategy depends,
to some extent, on the evolutionary algorithm that is utilized (Razavi et al. 2012a). For example,
the size of the initial population of EAS algorithm is considered critical to ensure global search
capabilities and therefore the recommended value of m=8xk was selected (Kourakos and
Mantoglou 2009). It is reminded that k is the number of the decision variables (pumping rates)
and m denotes the number of the training points. Thus, the initial training points were associated
with the initial population of the EAS algorithm for the surrogate-assisted evolutionary strategy.
Obviously, this choice requires a substantial number of runs with the HF (high-fidelity) model.
When the dimensionality of the optimization problem is large, this might be a non-affordable
option in terms of computational cost. In those cases, one should reduce the initial population size
at the possible cost of affecting the algorithm’s capabilities for a global search.

The SBO algorithms that balance exploration and exploitation have been designed to perform
successfully based on initial training designs of smaller sizes, such as 2xk +1 points. In fact, they
may even perform worse in some cases, if a considerable number of HF runs is consumed on the
initial design instead of exploiting the computational budget within their iterations. As more
evaluations with the HF model are added, they have the potential to further improve the current

optimum and thus, there is a clear reasoning on testing their performance on the available
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computational budget. The empirical rule m= max[2>< K+1, O.lMHFr] as proposed by Razavi et

al. (2012b), was used to set the initial training points for this type of SBO algorithms. The variable
MHFr represents the maximum available runs with the HF model as defined in each computational
budget. Therefore, more weight is given on using the majority of the VDST simulations for the
sampling of the subsequent infill points instead of evaluating a large initial training sample.

It is noted that for all the SBO methods, multiple independent optimization runs are performed
to produce a statistically meaningful comparison, given the stochastic nature of the proposed
algorithms and the inherent randomness in sampling designs. To ensure a fair comparison, the
different SBO algorithms share the same initial training points for each optimization run whenever
this is possible. Their performance is evaluated based on the sample statistics calculated from these
independent optimization runs. Of course, in real world problems this luxury is not available but,
here, it serves the purpose of comparing the sample statistics of the surrogate-based optimal
solutions and assess the robustness of the SBO methods.

Finally, as a special case, we also examine the effectiveness of multi-fidelity optimization in
the hypothetical scenario where only a few VDST simulations are affordable, that is 11 and 21
VDST model runs. To construct the RBF and KRG surrogate models, a minimum of k+1 points
is required. Thus, the 11 sampling points with the VDST model are marginally sufficient to train
the metamodels for the case of 10 pumping wells. The case of 21 sampling points is utilized to
enable the performance comparison of multi-fidelity optimization against a conventional SBO
algorithm. Based on these extremely limited computational budgets, we develop an iterative multi-
fidelity optimization method utilizing co-Kriging models to search for an optimal solution. The

comparison of the multi-fidelity method against the ConstrLMSRBF algorithm is conducted to
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assess the practical importance of multi-fidelity optimization in the case of computationally heavy

VDST simulations.
5.2 Conceptualization of flow conditions and model description

A brief description of the hypothetical coastal aquifer geometry is presented herein. The
conceptual model is based on a real-world coastal aquifer in the Greek island of Kalymnos,
according to a previous work from Mantoglou et al. (2004). An orthogonal shape approximation
of the real aquifer was utilized to enable the setup of a convenient VDST numerical model to
support the exploratory nature of the optimization runs. Furthermore, the model assumes a
homogeneous, anisotropic coastal aquifer under unconfined saturated flow conditions. The aquifer
is replenished by both surface recharge and inland fluxes in the presence of multiple fully

penetrating pumping wells (Figure 5-1).

fully penetrating
pumping wells

T o inland inflow

sea surface /

seawater intrusion
wedge

Figure 5-1 Conceptual flow model for the numerical experiments.

The horizontal dimensions of the coastal aquifer model are x =7km, y =3km and the aquifer

base is at z=25m below sea-level. The hydraulic conductivities are set to K, =50m/day,
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K, =50m/day and K, =5m/day while dispersivity values are setto ¢, =100m, o, =10m and
ap, =1m. On the left side of the aquifer model a hydrostatic boundary condition is applied to
represent the sea-boundary with a constant specified salinity concentration of 35Kg/m® for a
saltwater density of 1025Kg/m® . The two lateral model boundaries are no-flow boundaries while

the aquifer receives a total recharge (surface + inland) of 5410m?®/day (Figure 5-2).
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\
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(sea boundary) Fully penetrating
pumping well

Figure 5-2 Representation of the applied boundary conditions on the numerical model and the

distribution of the pumping wells (the case of 10 pumping wells is presented here).

5.3 Optimal results from the direct optimization with the VDST model

Initially, coastal aquifer flow is simulated without pumping until hydraulic head and salinity
distribution reach steady-state conditions. The time horizon of the pumping management plan is
set to 30 years (10950 days). However, running the optimization using as initial conditions those
obtained without pumping, will result in a solution which is beyond the replenishment of the

aquifer. Therefore, to represent a more realistic management situation, an initial optimization run
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is performed with the VDST model, to set a scenario where the aquifer is already being heavily
pumped. The resulting head and salinity distributions from this first optimization run, are then used
as initial conditions for all the subsequent optimization runs.

For the following numerical experiments, the direct optimization with the VDST model is
solved once to provide benchmark solution and computational time. Henceforth, for convenience,
this approach is denoted as EAS-VDST. As discussed previously, two pumping optimization
problems were considered. The first scenario includes 10 pumping wells with lower and upper

bounds of pumping rates setat Q . =0m®/day and Q, =1000m?®/day, respectively. The second

scenario includes 20 pumping wells with lower and upper bounds of pumping rates set at
Q,,, =0m®/day and Q_, =500m?*/day, respectively. For this case, the upper bound of pumping

max

rates was reduced by half to allow for more pumping wells to remain active since the total recharge

remained the same. The salinity threshold was set to C, =0.1kg/m*® and this value was used to

calculate the nonlinear constraint functions.

Figure 5-3 and Figure 5-4 present the results from the two optimization scenarios with the
VDST model. In both cases, a similar pattern is developed where the three pumping wells closer
to the sea boundary are at more risk of contamination if the calculated optimal pumping scheme

operates for longer than the management period of 30 years. For the case of 10 pumping wells, the

total pumping rate evaluated by EAS algorithm is Q,, = 4857.5m®/day which corresponds to

89.8% of the total aquifer recharge whereas for the case of 20 pumping wells, the total pumping

rate evaluated by EAS algorithm is Q,, = 4832.2m?/day which corresponds to 89.4% of the total

aquifer recharge.
Obviously, these calculated high percentages of total pumping are not sustainable and

eventually after longer management periods more wells will be contaminated. However, for the
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numerical experiments designed in this section the scope is to investigate the performance of the

SBO methods and not to focus on the impact of pumping on aquifer’s sustainability. A longer

design period would ensure a better protection of the groundwater resources for this hypothetical

model, at the expense of more time-consuming simulations, which in turn, could hinder the

implementation of the present exhaustive comparisons. The EAS-VDST optimization framework

for the case of 10 pumping wells, converged after 4697 evaluations of the objective function

through the VDST model, resulting in a total computational time of 14.35 hours. For the case of

20 pumping wells, 11020 evaluations of the objective function through the VDST model were

required which resulted in a total computational time of 33.68 hours.
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Figure 5-3 Plan view of the simulated salinity distribution at the aquifer base, for the optimal vector of

pumping rates shown in the bar graph below (pumping wells are shown with numbers, i.e., wl). The results
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are from the direct optimization with the VDST model for 10 pumping wells. It is noted that the iso-salinity

representing C, = 0.1kg/m3 marginally reaches but does not intersect the pumping wells.
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Figure 5-4 Plan view of the simulated salinity distribution at the aquifer base, for the optimal vector of
pumping rates shown in the bar graph below (pumping wells are shown with numbers, i.e., wl). The results

are from the direct optimization with the VDST model for 20 pumping wells. It is noted that the iso-salinity

representing C, = 0.1kg/m3 marginally reaches but does not intersect the pumping wells.
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5.4 Optimal results with surrogate models of the penalized function only

Before proceeding to the main results from the SBO methods, it is presented how a single
metamodel of the penalized objective function would perform in pumping optimization of coastal
aquifers. Note that the scope is not to restate any difficulties that these SBO strategies encounter
when dealing with nonlinear constrained optimization. Instead, the following numerical
experiments are utilized to demonstrate their performance for the present pumping optimization
problem and to highlight the differences with the explicit handling of nonlinear constraints using
separate metamodels. In addition, it has not been shown before if any of these algorithms would
perform satisfactorily in a pumping optimization problem of coastal aquifers and if these methods
can successfully locate a good optimal solution. To that end, the pumping optimization problem
was solved using three well-documented SBO algorithms:

i. The classic EGO algorithm based on the expected improvement criterion as

implemented by Viana (2011) in SURROGATES MATLAB toolbox.

ii.  The Multistart Local Metric Stochastic RBF (MLMSRBF) method (Regis and

Shoemaker 2007).

iii.  The SEEAS algorithm (Tsoukalas et al. 2016a), the surrogate-enhanced version of EAS

for bound constrained problems.

All three algorithms above, have been applied successfully in a variety of optimization
problems where the only constraints are bound constraints on all the decision variables. The details
of each method can be found in the relative published papers and it is out of the scope of this work

to present the theory. The classic EGO algorithm was implemented using KRG surrogate models.
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Based on preliminary runs and literature examples of EGO algorithm in water resources
management (Tsoukalas and Makropoulos 2015), a KRG model of zero-order polynomial and
Gauss correlation function was selected to emulate the response of the objective function to
pumping rates. MLMSRBF and SEEAS are implemented using a cubic RBF metamodel.

A set of 30 independent optimization runs were performed for each algorithm to avoid
dependencies of the results on the random features of each method. The optimal results are
compared against the benchmark solution obtained from the single run based on EAS-VDST
optimization. The pumping optimization problem refers to the case of 10 pumping wells. The
above SBO methods utilize as a stopping criterion the maximum number of function evaluations
with the original computationally expensive model. Here, the limit is set to MHFr =300, that is,

300 VDST model runs. The initial training points were set to m=30 according to the rule

m=max[2xk+1,0.1MHFr]. The results are presented first in Figure 5-5 using a boxplot

visualization of the optimal solutions. The comparison demonstrates that MLMSRBF and SEEAS

had a more consistent performance than EGO as indicated by the boxplots.
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Figure 5-5 Comparison of direct optimization with the VDST model against the EGO, the MLMSRBF and
the SEEAS algorithms. (Surrogate models have been constructed only for the penalized objective function).

The more reliable performance of MLMSRBF and SEEAS, is further demonstrated in Table
5-1 when comparing their mean and standard deviation values. The non-parametric Wilcoxon rank
sum test, provided in the Statistics and Machine Learning MATLAB Toolbox, (2019b), was also
employed to test the statistical significance of the results. The null hypothesis for the test, is that
the data of two groups are independent samples from continuous distributions with equal medians.
The test returns the p-value and a logical value h which indicates a rejection of the null hypothesis
when h =1 and a failure to reject the null hypothesis when h=0 at the 5% significance level.
The calculated p-value of 0.652 and h=0 indicates that there is no statistically significant
difference between the medians of MLMSRBF and SEEAS algorithms. On the contrary, their p-
values against EGO were in the range of 10°with h =1indicating that the difference in their
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sample medians is statistically significant. Interestingly, all algorithms were able to locate at least
one good optimal solution not far from the benchmark optimal solution using the VDST model
alone.

Table 5-1 Sample statistics of the feasible optimal solutions obtained from the 30 independent optimization
runs (best results are in bold and the benchmark solution is underlined).

Optimization frameworks Worst Best Mean Median SD*
EAS-VDST** 4857.5
EGO 4158.5 4787.7 4488.4 4501.8 174.93
MLMSRBF 4326.1 4839.1 4670.3 4721.6 126.49
SEEAS 4413.1 4826.7 4663.2 4675.0 111.02

* SD stands for standard deviation, ** one run with EAS-VDST is available

MLMSRBF provided the best feasible optimal solution in one of the optimization trials, which
is remarkably close to the VDST-based solution. Figure 5-6 demonstrates the steep improvement
of the average best feasible objective function value for MLMSRBF and SEEAS, as the number
of VDST model runs increases. It appears that the infill strategy followed by these two algorithms
shows promise in improving the objective function value and probably more runs with the VDST
model could further improve their average performance, at the expense of additional computational
effort. Notwithstanding the results are problem dependent, MLMSRBF and SEEAS algorithms
showed that they have the potential to provide solutions of good quality. However, it should be
noted that the performance of these algorithms is hindered, mainly due to the limited knowledge
that the single surrogate model of the penalized function carries while searching the objective
function landscape. In real-world applications, more effective SBO frameworks should be chosen

for coastal aquifer management and this is pursued in the following numerical experiments where
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the surrogate models deal directly with the nonlinear constraints of the pumping optimization

problem.
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Figure 5-6 Convergence curves of the SBO methods, based on their average best feasible objective function

value from the 30 independent runs and for MHFr =300 (plotting starts at m =30 initial design points).
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5.5 Comparison of SBO methods using surrogate models for the constraints

It is worth reiterating that pumping optimization problems of coastal aquifers typically involve
nonlinear inequality constraints (Mantoglou et al. 2004b). There are examples in coastal aquifer
management that by using clustering/zonation methodologies the number of decision variables and
constraints were reduced to simplify the optimization problem and thereby facilitating the training
of surrogate models (e.g. Ataie-Ashtiani et al. 2014). In the present work, it is assumed that it is of
practical importance to include the operation of each pumping well in the management plan and
that all pumping wells are associated with nonlinear constraints (see Chapter 3).

In this section, the SBO frameworks focus on exploiting the information from each constraint
function by constructing individual surrogate models to predict the quantity of interest. In such
cases, one should consider the increase in computational effort to build separate surrogate models
for each constraint and the implications when the number of associated constraint functions is
large. However, the RBF models utilized in this thesis have small training time and there are
examples in the literature of their efficiency and effectiveness in high-dimensional nonlinear
constrained problems (e.g. Regis 2014). On the other hand, the KRG models are computationally
more intensive, especially in high dimensions, but possess other advantages such as the error
estimates calculated with each prediction. The latter feature of KRG models is utilized in the
implementation of EGO algorithm presented in the previous section.

It is reminded that the KRG models are utilized here within the surrogate-assisted evolutionary
strategy only. As this strategy focuses on local exploitation with the metamodels it is of interest to
examine if the predictions skills of the KRG models, which have a more sophisticated structure,
outperform the simpler RBF models. Clearly, using the KRG metamodels in a pure exploitation

infill strategy does not exploit their full potential in SBO, since the estimated error produced in
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each prediction is not considered. Nevertheless, keeping the computational effort to a minimum is
important and if simpler surrogate models can provide comparable optimal solutions, this is
preferable. Table 5-2 summarizes the abbreviated names for the SBO methods and for the
surrogate models that were described in chapter 4.

Table 5-2 List of abbreviations and short descriptions of the SBO methods and the surrogate models.

Abbreviation Description

EAS-PB Surrogate-assisted evolutionary strategy using the
prediction-based exploitation infill method

CSEEAS Constrained surrogate-enhanced evolutionary
annealing simplex algorithm, based on SEEAS
(Tsoukalas et al. 2016)

ConstrLMSRBF Stochastic surrogate-assisted algorithm based on
RBF models (Regis, 2011)

LR-RSRBF Random search surrogate-assisted algorithm based
on local refinement and exploration using RBF
models

cuB Cubic RBF model with polynomial tail
TPS Thin plate spline RBF model with polynomial tail
GO KRG model with Gauss correlation function and

zero-order polynomial

G1 KRG model with Gauss correlation function and
first-order polynomial

BE Only the best surrogate for each constraint function
is used
ow An ensemble surrogate model with optimal weights

is constructed for each constraint function

5.5.1 Optimal solutions for the case of 10 pumping wells

The results obtained from the SBO methods are discussed next for the case of 10 pumping wells
which sets the dimensionality of the optimization problem to k =10. A set of 30 LHS designs of
size mxk, were evaluated with the VDST model to provide the initial training points for all
algorithms and for all 30 individual optimization runs. The EAS-PB algorithms used an initial

training sample of m=80 points which also serves as an initial population for EAS and satisfies
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the 8x k recommended population size (Kourakos and Mantoglou 2009). For ConstrLMSRBF,

CSEEAS and LR-RSRBF two alternative computational budgets of MHFr =100 and

MHFr =300 were employed. That is, 100 and 300 VDST model runs were available for the

implementation of these methods. Based on the empirical rule m=max[2xk +10.1MHFr], the

initial training sample of m =21 was used in the case of MHFr =100 and m =230 for the case of

MHFr =300.

Table 5-3 Sample statistics of the feasible optimal solutions obtained from the 30 independent optimization

runs for 10 pumping wells (best results are in bold and the benchmark solution is underlined).

Optimization method
EAS-VDST
EAS-PB(TPS)
EAS-PB(CUB)
EAS-PB(G0)
EAS-PB(G1)
EAS-PB(BE)
EAS-PB(OW)
CSEEAS!®
ConstrLMSRBF®
LR-RSRBF®
CSEEAS®®
ConstrLMSRBF3®
LR-RSRBF3%

Worst

4545.4
4700.2
4517.2
4491.7
4517.2
4545.4
4757.7
47236
4802.0
4783.9
4834.1
4821.6

Best
4857.5
4852.6
4853.9
4854.2
4852.2
4851.9
4858.5
4842.2
4850.6
4854.2
4852.1
4856.5
4856.3

Mean

4810.9
4823.4
4802.1
4797.5
4808.3
4810.5
4803.8
4813.8
4839.2
4828.1
4847.3
4846.1

StDev

69.12
36.38
81.57
102.18
81.81
75.42
22.66
25.72
12.32
19.57
5.17
7.29

VDST runs”

4967
193
181
175
160
210
186
100
100
100
300
300
300

Time (hr)™
14.45
0.84
0.81
0.79
0.76
111
1.35
0.35
0.31
0.33
0.95
0.93
1.10

“ For EAS-PB methods this is an average value from the 30 optimization runs, ** average computational time

Regarding computational savings, it is evident that SBO reduced the computational time

significantly compared to the direct optimization with the VDST model. A 90-98 percent reduction

in time was achieved, depending on the method used and the computational budget that was

specified to terminate the SBO algorithm. Obviously, forcing the algorithm to stop at 100 VDST
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model runs, produced the larger reduction in computational time. On the other hand, the EAS-PB
algorithms which employ the multiple surrogate approach required more computational time. This
is attributed to the extra steps included in the multiple surrogate approach, such as, the internal
optimization task for calculating optimal weights of the ensemble and the cross-validation method
to select the best surrogates for each constraint function. For LR-RSRBF, it has been already
discussed that the step which involves the search with a global optimization algorithm increases
the overall computational time. It is reminded that the number of evaluations with the VDST model
varies for the EAS-PB methods, since the stopping criteria of the algorithm are not based on
predefined computational budgets. Practically, this means that as the surrogate models predict
better optimum values than the current optimum, the VDST model is called by the EAS-PB
algorithm to evaluate the feasibility of the proposed solution regardless of the number of VDST
model runs.

What is important though, is to assess if the computational gains were associated with a
successful exploration of the search space by the SBO algorithms. A first thing to note, is that the
performance of the SBO algorithms was markedly improved by using separate surrogate models
for the constraint functions compared to just using a single surrogate for the penalized function
(see Table 5-1). This was also the case for the lower computational budget where MHFr =100, as
demonstrated with the results obtained from CSEEAS, ConstrLMSRBF and LR-RSRBF
algorithms. All SBO methods found an optimal solution which is notably close to the benchmark
optimum in at least one of the 30 trials, as indicated by the best value in Table 5-1. Given the
calculated sample statistics, the use of more sophisticated surrogate models, such as KRG or the
multiple surrogate approach, did not provide any noticeable advantages over the simpler single

surrogate approach using RBF models.
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However, if one should pick the most promising method from the multiple surrogate
frameworks, the case of the ensemble with optimal weights EAS-PB(OW) marginally outperforms
the EAS-PB(BE). Interestingly, EAS-PB(OW) in one of the optimization trials found an optimal
solution which is slightly better than that obtained from EAS-VDST. This is possible since the
direct optimization with the VDST model was performed only once to get the benchmark solution
and it cannot be concluded as the “true” global optimum. It is noted though, that the extra
optimization step for the weight calculation of the ensemble, complicates the algorithm and
increases the computational cost considerably. However, the solution found by EAS-PB(OW) is
an indication that the algorithm successfully located the region of the global optimum.

Among the EAS-PB algorithms, EAS-PB(CUB) had the best performance, as indicated by its
mean and standard deviation values. In fact, it performed well against CSEEAS, ConstrLMSRBF
and LR-RSRBF although it follows a less comprehensive infill strategy. It is reminded that EAS-
PB follows an aggressive sampling strategy focused on local exploitation and thus, there is a point
where a further increase in the VDST model runs will not improve the algorithm’s capability to
escape from a possible local optimum. Practically, the average value of 181 VDST model runs for
the EAS-PB(CUB) algorithm means that convergence is achieved around that number of VDST
evaluations for this specific problem. Adding more training points from VDST simulations will
only provide minor improvements on the current optimum and eventually will deteriorate the
prediction skills of the RBF models due to closely sampled points. That is also the reason for
setting a distance criterion from previously evaluated points as described in chapter 4. The fact
that EAS-PB(CUB) had a sample mean close to the benchmark solution and a relatively low

standard deviation, shows that for a moderate dimensionality of 10 pumping wells, this approach
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will likely provide optimal solutions of good quality in a fraction of the time required by the EAS-
VDST optimization.
The sample mean along with the standard deviation values are indicative of how consistent the

performance of each SBO algorithm is. A simple metric for the sample means can be defined as

F

nean = | Ve — Y mean|, Where Y, is the benchmark solution and Y mean is the sample mean of the

SBO method. The lower the value the closer is the sample mean to the solution with the VDST

model. In quantitative terms, also shows the difference of total pumping in cubic meters per

Fmean

day, between the benchmark solution and the sample mean.

StDev

Figure 5-7 The performance of all SBO algorithms based on the metric F_., (upper plot) and the calculated

standard deviation (lower plot) from the 30 independent optimization trials.
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Based on the ranking shown in Figure 5-7, the SBO algorithms which involve both exploration
and exploitation steps appear more reliable than the pure exploitation strategy which is pursued
with the EAS-PB methods. The most reliable performance is observed with the ConstrLMSRBF
algorithm when the computational budget increases to MHFr =300 (i.e., ConstrLMSRBF*%),
Interestingly, LR-RSRBF performed equally well with Constr LMSRBF for MHFr =300 while it
performed better than ConstrLMSRBF in the case of MHFr =100. CSEEAS also showed a
reliable performance especially for the computational budget of MHFr =300. In general,
CSEEAS, ConstrLMSRBF and LR-RSRBF algorithms had amongst the best mean values along
with the lowest standard deviation values, which indicates a reliable performance independent of
initial training designs and random operations of each algorithm. EAS-PB(CUB) was ranked 5"

and 7" for F__ and standard deviation values, respectively, which is the best rank among the

mean

EAS-PB methods.
Another useful metrics to compare the SBO algorithms are the actual relative improvement | |
the maximum possible relative improvement I, and the relative improvement ratio r, (Viana et

al. 2010a). These quantities are particularly useful in our case where the algorithms in comparison

have different convergence criteria. They are defined as follows:

| = Yie =Y :yinB_y*HF _ |

= , , h =
| yinB| i | yinB | | I max

(5.1)

where vy, is the initial best solution (could be the one from the initial design points), y* is the
actual solution found from the SBO algorithm and y;,. is the global optimum known from the

optimization with the HF model. If 1 =0 means that the SBO algorithm did not improve further
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from the known starting best feasible solution. When | >0 means that there is improvement over
the starting feasible solution which could be significant depending on the progress of the algorithm.

Accordingly, 1, sets a standard of how far the initial best feasible point from the “true” global
optimum is. Therefore, a ratio r, closer to 1 suggests an algorithm that produced significant

progress during optimization and found a solution in the region of the global optimum. These
measures can be used in a progress plot showing the improvement over the number of HF model

runs.

0.9+

0.8

0.7

0.6

S
_E 05F

0.4

03r — EAS-PB(CUB) |~
EAS-PB(GO0)

0.2+ EAS-PB(OW) | -
CSEEAS

01 ConstrLMSRBF
LR-RSRBF

0 1 1 1
0 50 100 150 200 250 300

Number of VDST model evaluations

Figure 5-8 Mean of the relative improvement ratio r, =1/l . (from the 30 optimization trials) for

MHFr =300. Plotting starts at m=21 initial design points for CSEEAS, ConstrLMSRBF and
LR-RSRBF while it starts at m =80 initial design points for the EAS-PB methods.
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As shown in Figure 5-8 the mean relative improvement ratio for six SBO algorithms for the
case of MHFr=300is demonstrated. Three of them belong to the EAS-PB method which
performed best in their category, given their sample statistics. Thus, we select the EAS-PB(CUB)
from the implementation with the RBF models, the EAS-PB(GO0) from the implementation with
the KRG models and the EAS-PB(OW) from the implementation with the multiple surrogate
models. It is reminded that these SBO algorithms do not terminate on a specific computational
budget and thus each trial may or may not have used 300 VDST model runs. However, as it was
explained earlier, by adding more HF runs only minor improvements are expected, if any at all.
As the plot indicates, at a certain number of VDST evaluations their progress has reached a plateau.
The other three methods in the plot are CSEEAS, LR-RSRBF and ConstrLMSRBF which utilize
the number of HF model runs as a stopping criterion.

Using 300 runs with the VDST model represents a moderate computational budget which
emulates the scenario of a relatively time-consuming VDST model. In such cases, finding good
solutions can be challenging. It appears that all six SBO methods performed well, exhibiting steep

improvements on their mean r, values within the first 100 function evaluations of the VDST
model. LR-RSRBF, climbs faster than other algorithms to r, =0.9 in fewer than 100 evaluations

with the VDST model, demonstrating its capability to guide the search to promising regions fast.
CSEEAS has the third best progress while the performance of ConstrLMSRBF, after 80 VDST
model runs, is markedly improved and is similar to LR-RSRBF. Among the EAS-PB methods the
EAS-PB(CUB) has the best progress and after 150 VDST model runs exhibits a good performance
closer to the CSEEAS algorithm.

Based on the present results, there is a strong indication that some of the proposed methods

deliver good and reliable solutions within much less computational effort than the EAS-VDST
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approach. There is always room for an improved performance for each of these SBO algorithms
by tuning specific parameters. This is especially the case for the more comprehensive approaches
such as ConstrLMSRBF, CSEEAS and LR-RSRBF. However, this would have made the
intercomparison even more complicated. As discussed in Razavi et al. (2012), this is one of the
puzzling things to consider when applying SBO methods and obviously the user’s experience with
each individual algorithm as well as with the design of the optimization problem might have a
positive or negative effect on the success of each method. Some aspects of the effect of parameter
tuning on the SBO algorithms performance are discussed below.

As mentioned before in chapter 4, the original SEEAS utilizes the dimensionless progress index

Pl =log(HFr)/log(MHFr), where HFr is the current number of runs with the HF model while

MHFr defines the available computational budget. The PI index, sets the weight for the

acquisition function based on the empirical formula w = max [0.75, min (PI ,0.95)] in the original

paper (Tsoukalas et al. 2016). As more iterations are carried out by the algorithm and thus more
HF model runs are added, the value of Pl increases and the minimization of the acquisition
function focuses on exploitation. For the present implementation of CSEEAS algorithm, it was

observed that the performance of the algorithm was sensitive to the contribution of exploration

through the weighting formula w=max[0.75,min(PI,O.95)]. In Tsoukalas et al. (2016),

SEEAS, initially designed for optimization problems with bound constraints only, was tested for
computational budgets of MHFr =500 and of MHFr =1000. As this is a first attempt to modify
SEEAS for nonlinear constrained optimization problems and its performance was tested for lower
computational budgets of MHFr =100 and MHFr =300, we examined different values of
weights given to exploration from the beginning of the optimization. For this specific optimization

problem and for the lower computational budget of MHFr =100, it was observed that CSEEAS
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performed better and more reliably when the minimization of the acquisition function was oriented

to exploitation from earlier stages of the optimization. Therefore, exploration was set to a

minimum by setting w =0.95. For the case of MHFr =300, we set w = max [0.85, min (PI ,0.95)]

as optimal choice. This selection for the weighted acquisition function could be problem
dependent, and thus, it cannot be concluded that the above settings for CSEEAS would also be
optimal in similar cases with small computational budgets.

ConstrLMSRBF algorithm is considered as a promising method for pumping optimization
problems in coastal aquifers as it was demonstrated in Christelis et al. (2018). It is expected that
the present optimization problem has multiple local optima and the stochastic features of
ConstrLMSRBF show promise in quickly improving the objective function value within a small
number of iterations. ConstrLMSRBF generates candidate points for evaluation with the RBF
metamodels, by applying normal random perturbations on all or on a subset of the coordinates of
the best feasible solution found so far (Regis 2011). By varying the algorithm settings for the
present optimization problem, it was observed that in our case the performance of ConstrLMSRBF
was better if all coordinates were perturbed to generate new candidate points. Since LR-RSRBF
adopts the perturbation scheme of ConstrLMSRBF is expected to be also sensitive to the same
parameters although in ConstrLMSRBF the standard deviation varies dynamically while in LR-

RSRBF remains constant during the optimization steps.

5.5.2 Increasing the dimensionality to 20 pumping wells

The increase in dimensionality of the optimization problem challenges the effectiveness of the
SBO algorithms in locating the region of the global optimum. Therefore, the comparison of
algorithms’ performance is also conducted for the case of 20 pumping wells. The computational

budgets are again MHFr =100 and MHFr =300 for CSEEAS, ConstrLMSRBF and LR-RSRBF.
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The initial training points this time are m=41 based on m:max[2><k+1,0.1MHFr] with

k =20. An initial training sample of m =160 points was created for the EAS-PB algorithms that

satisfies the 8x k criterion for the initial population size. It should be noted that although the

8x Kk value is selected as a preferable choice for EAS-PB, it does not mean that its performance

will necessarily degrade if smaller initial population sizes are selected. It is obvious though, that

as the dimensionality of the optimization problem increases, spending many HF model runs on the

initial population evaluation is not ideal and certainly puts a lot of effort on a random design instead

of a more guided search towards promising solutions.

Table 5-4 Sample statistics of the feasible optimal solutions obtained from the 30 independent optimization

runs for 20 pumping wells (best results are in bold and the benchmark solution is underlined).

Optimization method
EAS-VDST
EAS-PB(TPS)
EAS-PB(CUB)
EAS-PB(G0)
EAS-PB(G1)
EAS-PB(BE)
EAS-PB(OW)
CSEEAS0
ConstrLMSRBF
LR-RSRBF!®
CSEEAS®
ConstrLMSRBF*®
LR-RSRBF3®

Worst

4540.7
4545.7
4419.4
4465.0
4465.0
4465.0
4596.7
4546.4
4661.6
4697.1
4656.8
4729.0

Best
4832.2
4824.3
4815.0
4762.7
4813.0
4806.6
4804.6
4775.2
4768.5
4793.0
4822.1
4814.5
4829.5

Mean

4698.3
4718.5
4628.2
4662.4
4659.2
4672.5
4684.3
4690.4
4729.4
4763.0
4768.6
4792.5

StDev

73.90
68.82
71.46
99.39
91.38
92.28
44.33
60.72
40.70
33.67
31.19
23.19

VDST runs”

11020
244
243
231
215
218
186
100
100
100
300
300
300

Time (hr) ™
33.68
1.23
1.23
1.19
1.14
141
1.52
0.35
0.32
0.34
0.97
0.94
1.47

* For EAS-PB methods this is an average value from the 30 optimization runs, ** average computational time

Table 5-4 presents the sample statistics for the case of 20 pumping wells and for the same SBO

algorithms that were tested before. Notable computational savings are achieved despite that for
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each algorithm 20 separate surrogate models were constructed and updated during optimization.
However, the increased dimensionality affected the performance of the SBO algorithms. In the

previous case of 10 pumping wells, the maximum difference between the sample mean of EAS-

PB(G1) and the HF global optimum was 61.5m*/day. Now, the maximum difference is

204m?/day between the sample mean of EAS-PB(GO0) and the HF solution from the VDST model.

The best solution with the SBO algorithms was found in one of the optimization trials with LR-
RSRBF for MHFr =300. For the same computational budget, LR-RSRBF had the best lowest
feasible solution, the best mean value, and the lowest standard deviation. However, it was also the
second most expensive SBO algorithm due to the internal global optimization step which this time
involved 20 pumping wells (see 4.4.5 for details).

Based on the mean values, CSEEAS, LR-RSRBF and ConstrLMSRBF struggled to
approximate the region of global optimum for MHFr =100 as successful as in the case of 10
pumping wells. It is noted that for all SBO algorithms, we kept the same settings as in the
optimization problem with k=10. Apparently, tuning those settings may improve the
performance of the algorithms, however, this would further complicate the intercomparison. The
SBO methods based on the EAS-PB approach utilized generally a larger number of VDST model
evaluations than before until they converged to an optimum. Again, given the sample statistics,
EAS-PB(CUB) appears to perform better than the other EAS-PB algorithms.

As with the case of 10 pumping wells, Figure 5-9 illustrates the mean relative improvement
ratio. This time, only four SBO algorithms are compared for the case of MHFr =300. Only one
belongs to the EAS-PB method, namely, EAS-PB(CUB). The other three methods in the plot are
CSEEAS, LR-RSRBF and ConstrLMSRBF which utilize the number of HF model runs as a

stopping criterion and balance exploration and exploitation using the surrogate models.
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Figure 5-9 Mean of the relative improvement ratio r, =1/1 . (from the 30 optimization trials) for

MHFr =300. Plotting starts at m =41 initial design points for CEEAS, LR-RSRBF and ConstrLMSRBF
while it starts at m =160 initial design points for the EAS-PB methods.

While in the case where D =10 EAS-PB(CUB) approached a value of r, =0.9, here, it appears
that the algorithm hardly reaches a mean relative improvement ratio of r, =0.6. On the other hand,
CSEEAS, LR-RSRBF and ConstrLMSRBF performed much better by having an improvement of
r,=0.6 in fewer than 100 VDST model runs while LR-RSRBF exhibits the most promising
progress among the SBO algorithms reaching a mean improvement ratio of r, =0.9 at the end of

the 300 evaluations with the VDST model. A comparison between LR-RSRBF and
ConstrLMSRBF as well as between LR-RSRBF and CSEEAS, using the non-parametric Wilcoxon

rank sum test, returned in both cases h =1 and p-values in the range of 10™. Thus, at least for the
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present problem and for MHFr =300, LR-RSRBF is preferable over the other two SBO

algorithms.
5.6 Multi-fidelity optimization for limited computational budgets

In the previous numerical experiments, the available computational budgets were adequate to build
surrogate models and use a considerable number of HF VDST model evaluations to search for an
optimal solution within each SBO framework. Here, it is hypothesized that the VDST model is
extremely time-consuming and therefore we can only afford small computational budgets of
MHFr =11 and of MHFr =21. The MHFr =11 budget, marginally satisfies the requirement of
k +1 training points for the case of 10 pumping wells. Practically that means we certainly cannot
use the previous conventional SBO methods and thus we can either only evaluate a sampling
design of 11 points to look for a feasible solution or use a low-fidelity but computationally less
expensive model to run the optimization.

An alternative approach in such cases, is to combine the available HF model evaluations with
a substantially larger set of input-output data from low-fidelity (LF) models. As mentioned before,
we utilize here the method of co-Kriging to achieve this combination of training points from the
LF sharp interface model and the HF VDST model (see section 4.4.6). As it was shown previously,
in the presence of nonlinear constraints the SBO methods perform better when separate surrogate
models are built for each constraint function. However, training coKRG models for each constraint
function requires larger computational effort than the RBF and the KRG models. It involves
running first a considerable number of simulations with the LF model and then fit each coKRG
model on selected training points. It also includes a separate optimization task, like KRG models,
to estimate the required coKRG parameter set. Due to this increased computational cost, the same

problem is also solved by constructing only a single coKRG model for the penalized objective
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function of the VDST and the sharp interface models. This approach aims to investigate if the
errors from ignoring the constraint responses are smoothed out due to the knowledge-based
approach of the LF model despite its known inaccuracies.

In general, the multi-fidelity methodology developed here assumes that the sharp interface
model is capable to explain part of the VDST model behavior. Our effort was focused on using the
two models in an iterative multi-fidelity optimization framework for the case of limited VDST
samples. In the first scenario where MHFr =11, it was assumed that the available VDST model
runs are not adequate to construct conventional surrogate models and thus we need to resort to
multi-fidelity modelling. In the second scenario, where MHFr =21, it is possible to acquire
samples from the VDST model and construct surrogate models but the overall computational
budget is very low, meaning that only a few runs with the VDST model are available after the
initial training. For the second case, the multi-fidelity optimization approach is compared against
the robust ConstrLMSRBF algorithm. Therefore, a total of four optimization methods are
compared in this section:

i.  Optimization using the LF sharp interface model of Strack (1976) as an alternative to the

HF EAS-VDST approach. It will be denoted as EAS-SH.

ii.  Anadaptive-recursive (AR) optimization framework presented in chapter 4, using coKRG
models for each of the constraint functions. It is implemented for two computational
budgets, i.e., MHFr =11and MHFr = 21. For convenience, the method will be denoted as

AR-COKRGCONS,

iii.  Anadaptive-recursive (AR) optimization framework presented in chapter 4, using cOKRG
models only for the penalized objective function output. It is implemented only for

MHFr = 21. For convenience, the method will be denoted as AR-cOKRGC®,
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iv.  The ConstrLMSRBF algorithm as a conventional SBO method to compare against multi-
fidelity optimization, for the computational budget of MHFr = 21. Practically, 11 training
points are used to build the cubic RBF models and the rest 10 VDST simulations are

utilized to update the surrogates and evaluate promising points.

It is noted that apart from the known optimum obtained with the VDST model for the case of
10 pumping wells, the EAS-SH optimization was also run once to get the corresponding optimum.
The SBO methods run for a set of 30 independent optimization trials to obtain a statistical meaning

of algorithms’ performance.

Table 5-5 Comparison of optimal solutions found with the AR-coKRG SBO method, the sharp interface
model, the VDST model and the ConstrLMSRBF method for MHFr = 21 are also presented. (The optimal

solutions with the VDST model and the sharp interface model are underlined).

Optimization method  Worst Best Mean StDev VDST Sharp Time (hr)
runs runs
EAS-VDST 4857.5 4967 NA* 14.45
EAS-SH 4049.2 NA" 4164 1.6

AR-COKRGCONS 3866.0 4740.0 4363.2 241.96 11 100 0.12
AR-COKRGCONS 4155.7 4730.1 4480.9 150.82 11 200 0.18
AR-COKRGCONS 4201.9 4773.5 4552.3 144.51 21 100 0.31
AR-COKRGCONS 3966.3 4815.1 4605.0 187.38 21 200 0.56
AR-COKRGO® 4106.1 4763.6 4415.8 167.39 21 200 0.45
ConstrLMSRBF 4004.8 4740.6 4397.3 205.94 21 NA* 0.095

“ NA: Not Applicable

Based on the above results from Table 5-5, it is evident that on average the multi-fidelity
optimization provided a better solution than using the sharp interface model alone. The mean
values obtained from the AR-coKRG®®NS method are considerably higher than the EAS-SH
approach, even for the case of 11 model evaluations with the VDST model. This is also true for
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AR-COKRG®®, where only one surrogate model is constructed to combine the output of the
penalized objective function from the sharp interface model and from the penalized objective
function of the VDST model. Interestingly, in one of the optimization trials AR-coKRG®NS found

a solution equal to 4815.1m*/day which is close to the known optimum with the VDST model.

These generally promising results from the multi-fidelity optimization are attributed to the
capabilities of coKRG models as well as to the effectiveness of the local refinement sampling
strategy included in ConstrLMSRBF algorithm which is utilized in our multi-fidelity method (see
section 4.4.4 and 4.4.6).

We also tested the impact of using more LF simulations on the accuracy and performance of
the AR-cOKRG*®NS method. Thus, we set two additional scenarios where the LF model runs are
set to 100 and 200, respectively. Notably, the increase in the LF simulations improved the
performance of the AR-cOKRG*°NS method. However, the non-parametric Wilcoxon rank sum
test returned h=0 with a p-value of 0.0679 for MHFr =11, and h=0 with a p-value of 0.0575
for MHFr =21, which means that the two groups are independent samples from continuous
distributions with equal medians, at the 5% significance level. Nevertheless, the comparison
between AR-cOKRG®® and AR-coKRG®NS for MHFr = 21, returned h =1 with a p-value of
9.21x107° indicating again the better performance of AR-coKRG method when using separate
coKRG models for the constraint functions. This improvement comes at the cost of increased
computational effort. This would have been more evident if more LF samples were used for an
optimization problem or in the case of a larger number of constraint functions. Finally, AR-
coOKRG®ONS gutperformed the data-driven ConstrLMSRBF algorithm for a computational budget

as small as MHFr = 21. The non-parametric Wilcoxon rank sum test returned h =1 with a p-value
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of 2.68x10™*, meaning that there is statistically significant difference between the medians of AR-

cOKRG®ONS and ConstrLMSRBF for the given budget.
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Chapter 6

Application of SBO to a real-world coastal aquifer model

6.1 Overview of the study area

In this chapter, a VDST numerical model is developed for the case of a real-world coastal aquifer.
It is an unconfined, elongated aquifer along the Vathi valley, located at the central part of the Greek
island of Kalymnos (Figure 6-1). The aquifer consists mainly of highly permeable limestone which
outcrops at the valley margins. The available borehole lithological data indicate that the aquifer’s
bottom is bounded by an impermeable schist formation which underlies the limestones. The
geological formations in the valley plain consist of high permeable scree, alluvium deposits of

medium permeability and almost impermeable volcanic formations (tuff) (Mantoglou et al. 2004).
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Figure 6-1 Hydro-lithological map of Kalymnos island (Hellenic Ministry of development, 2005).
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For the purposes of the present analysis, it is assumed that for the aquifer flow, which partially
takes place in the limestone fissures, the concept of equivalent porous medium is valid. Therefore,
although the carbonate rocks are characterized by secondary porosity, a uniform hydraulic
conductivity is considered to simplify the numerical model development. The aquifer is broadly

divided in four uniform hydraulic conductivity zones, as shown in Figure 6-2.
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Figure 6-2 Hydraulic conductivity zones of the Vathi aquifer

Figure 6-3 depicts the four different recharge zones of the aquifer, with the limestones receiving
the largest amount of recharge due to the presence of large crevices which facilitate the surface

water percolation (Mantoglou et al. 2004). On the contrary, the alluvium parts mixed with clay
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receive reduced recharge rates of R=30mm/yr while the tuffs are considered impermeable with
no recharge. Finally, the recharge rate at the scree area is estimated at R =70mm/ yr (Mantoglou

et al. 2004).

Figure 6-3 The spatial distribution of surface recharge rates across the Vathi aquifer into four different

zones (source: Mantoglou et al. 2004).

6.2 Numerical model development

A numerical coastal aquifer model was developed to perform the three-dimensional VDST
simulations. Initially, a two-dimensional irregular mesh composed of triangular elements was
generated to cover the area of interest and then it was further discretized on the vertical direction
to create a three-dimensional layered mesh. That resulted in a total of 44864 prism elements. As
illustrated in Figure 6-4, a denser discretization was applied to the east side of the model to simulate

more accurately the evolvement of the salinity plume close to the sea boundary. The aquifer’s
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bottom was approximated as horizontal, at a depth of -25 m below sea level. The north, south and
west boundaries are considered impermeable. At the east sea boundary, first-type (Dirichlet)
boundary conditions are applied. That is, a specified hydrostatic equivalent freshwater head and a
constant relative concentration corresponding to the maximum fluid density of seawater are
applied to represent sea-boundaries. The aquifer is pumped by 11 pumping wells of known

locations.

1o,
s

Figure 6-4 Three-dimensional view of the discretized model domain along with the location of the pumping

wells shown in red colour.

Due to the lack of hydrogeological data and hydraulic head measurements, it was not possible
to perform a reliable and accurate calibration of the aquifer model before optimization. Therefore,
the parameter values are rough estimates, based on a trial-and-error procedure (Mantoglou et al.,

2004). The aquifer is replenished by a total uniform surface recharge of approximately
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7849m®/day . A single run of the VDST simulation requires approximately 80.67 seconds (1.34

minutes) running on a 2.7 GHz Intel i5 processor with 8 GB of RAM in a 64-bit Windows 10

system.
6.3 Formulation of the pumping optimization problem

In Mantoglou et al. (2004), a pumping optimization problem was solved for the Vathi aquifer based
on the sharp interface model and a hybrid optimization scheme using SQP and genetic algorithms.
The authors observed that for the specific well coordinates in Vathi aquifer, the constraints
associated with the piezometric head at the wells are those which are active rather than the
constraints related to the toe location. Previous runs with the VDST model in our case, showed a
similar situation where a narrow salinity front is developed, if the imposed constraints are related
only to the salinity levels at the wells (Christelis et al. 2019b).

In the long run, a total pumping rate, based on the toe formulation of constraints, results in a
significant lowering of the piezometric head at the wells which is not a sustainable approach. On
the other hand, it is desirable to eliminate any inactive constraints from an optimization problem
at the outset, to ease the search with the optimization algorithm (Forrester et al. 2008). To that end,
instead of using the constraints which are related to salinity levels we reformulate here the
optimization problem and impose constraints which maintain the piezometric head at a level
greater than zero with respect to the sea level. Therefore, the objective function is penalized again

in a way that can be handled by the EAS algorithm as follows:

Qi Wi =Tk 1 (Qn Q) >0
min f (Q)=1 "% (6.1)
M, [max(h,0)] ,if Ji=1...k; h(Q,..Q)<0

i=1
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where M, represents the number of pumping wells that the constraint is violated while h, denotes

the piezometric head at the ith pumping well. The above formulation is similar to that presented
in chapter 3 (see equations 3.5 and 3.6) but this time, the nonlinear constraints require that the
piezometric head is maintained above zero with respect to sea level. However, it is noted that this
is a simpler optimization problem since the constraints based solely on the piezometric heads
formulate a less strong nonlinearity compared to the examples presented in chapter 5. Although
this is in favor of constructing surrogate models with good prediction skills, it can still provide
insights on the capabilities of the SBO algorithms.

The present optimization problem includes 11 pumping wells with minimum and maximum

pumping flow rates at Q. =0m?®/day andQ,, =1000m?®/day, respectively. Based on the direct

optimization with the VDST model, the total pumping rate for the Vathi aquifer is

Q,, = 6184.8m*/day , given a management plan of 30 years. The optimal solution obtained from

the EAS-VDST algorithm, converged after 5189 evaluations of the objective function with the
numerical VDST model. The overall computational cost was estimated at 116.28 hours (4.84
days).

The optimal solution from EAS-VDST corresponds to a 78.8% of the total recharge volume of

the aquifer which is 7849m® /day . The optimal solution found presently with the VDST model is

stressing the aquifer’s sustainability. Kourakos and Mantoglou (2013) discuss a framework which
is closer to sustainable groundwater extraction by performing a second optimization run by using
the optimal results from the first optimization run as initial conditions. This reduces significantly
the dependance on the initial aquifer storage and was also employed in the previous chapter with
the hypothetical aquifer models. It should be further noted that such an approach is more to the

safe side and it might provide a low total pumping rate which does not meet the freshwater
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demands (Kourakos and Mantoglou 2013). Here, it is assumed that the constraints related to the
piezometric heads in combination with the locations of the pumping wells maintain the salinity
front seaward while providing a reasonable rate of total groundwater extraction. Thus, only the
first optimization run is conducted.

Nevertheless, it is possible that in the event of a dramatic decrease in aquifer’s recharge, this
pumping scheme will result in a significant encroachment of seawater inland. For illustrative

purposes, Figure 6-5 compares two recharge scenarios for a 30-year management plan, one with

the present recharge and the other for the extreme case of a 35% reduction in total recharge.

Figure 6-5 Salinity distribution after 30 years of simulation with the optimal pumping rates for the present
recharge scenario (left view) and the corresponding output using the same optimal pumping rates for the
35% total recharge reduction (right view).

The above plots demonstrate that the piezometric head constraints apply a strict control on the
salinity front by maintaining it seaward. However, if recharge rates decrease significantly, the
present management plan is no longer sustainable as shown on the right view of Figure 6-5. The
saltwater front moves further inland while increased salinity levels are observed in a large part of

the aquifer.
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6.4 Optimal results from the SBO algorithms

Given the results from the numerical experiments presented in chapter 5, we employed four of the
most promising SBO algorithms, namely, EAS-PB(CUB), CSEEAS, LR-RSRBF and
ConstrLMSRBF. Therefore, one algorithm was selected to represent the prediction-based
exploitation infill strategy, i.e., EAS-PB(CUB), while the other three belong to methods that
balance exploration and exploitation. For those three algorithms a computational budget of
MHFr =300 was assumed. This time only one optimization run was conducted for each SBO
algorithm.

CSEEAS, LR-RSRBF and ConstrLMSRBF share the same 23 initial training points while the
rest 277 evaluations with the VDST model were utilized by the framework of each algorithm to
search for promising points and update the surrogate models. The EAS-PB(CUB) method used an
initial population of 88 points (vectors of pumping rates) which also served as initial training points
for the surrogate models. It is worth to mention that all SBO algorithms were based on cubic RBF
models. For this problem, the surrogate models were fitted on pumping rates as input data and the
corresponding piezometric heads at each one of the pumping wells as output data. In total, 11
surrogate models were employed to predict the hydraulic head values to unseen vectors of pumping
rates during the operations of the optimization frameworks.

Table 6-1 Optimal results from the optimization with the VDST model alone as well as with the SBO
methods. (Best result is in bold and the benchmark solution is underlined)

Optimization method Optimal solution (m3/day) VDST runs Time (hr)
EAS-VDST 6184.8 5189 116.28
EAS-PB(CUB) 6184.4 125 2.59
CSEEAS 6176.3 300 6.28
ConstrLMSRBF 6174.3 300 5.57
LR-RSRBF 6185.4 300 6.29
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The results presented in Table 6-1 demonstrate that all SBO algorithms found optimal solutions
which are remarkably close to that obtained from the EAS-VDST method. EAS-PB(CUB)
converged in only 125 evaluations with the VDST model and provided the largest reduction in
computational time which is almost 98% compared to EAS-VDST. It is reminded that EAS-
PB(CUB) relies on the convergence criteria of the original EAS algorithm and it does not use a
specific computational budget as a stopping criterion, unlike to the other three SBO methods.
These methods, due to the predefined computational budget of 300 VDST model runs, required
more time to converge providing a smaller reduction of 94% of the VDST-based optimization.

Given this single run for each SBO algorithm, the best optimal solution was found by LR-
RSRBF which is slightly better than the one obtained from EAS-VDST. Again, this is possible
since all algorithms involve random operations, and a single run cannot ensure finding the “true”
global optimum. Interestingly, EAS-PB(CUB) performed equally well with the other three more
comprehensive SBO algorithms and found a solution in the region of global optimum in only 125
VDST runs. To our understanding, this is attributed to the present formulation of the constraints
which are not as highly nonlinear as in the case with the salinity-based constraints used in chapter
5 while the number of decision variables is moderate. Here, the optimization problem has probably
fewer local optima and a less rugged objective function landscape which implies that a simpler
SBO algorithm like EAS-PB(CUB) might be quite adequate.

Figure 6-6 presents the optimal pumping rates from each optimization framework. The
distribution of the pumping rates from EAS-PB(CUB) and LR-RSRBF exhibit a notable similarity
with that obtained from EAS-VDST. The fact that LR-RSRBF found a slightly better solution with
similar distribution of pumping rates strengthens the possibility that this solution is near the global

optimum.
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Figure 6-6 Distribution of the optimal pumping rates. The number in the parenthesis corresponds to the

total pumping rate obtained from each optimization framework.

6.5 Testing the multi-fidelity approach

The multi-fidelity optimization framework that was developed for cases of extremely time-
consuming VDST models, is also tested here for the real-world coastal aquifer model. Although
in the previous numerical experiments AR-coOKRG®®NS performed better than AR-cOKRG®®, it
also increases the computational cost due to the separate construction of coKRG models for each
constraint function. Here, given that the nonlinearity in the constraints is less strong, the AR-
coOKRG®® approach was chosen as a simpler and faster implementation of the proposed multi-
fidelity optimization method. It is noted that if the implementation cost of a multi-fidelity method
is higher than a few runs of the VDST model, then it might worth spending this extra time to obtain

more HF samples and rely on a conventional SBO approach.
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Initially, 200 runs with the LF sharp model were conducted on a set of training points generated
by a LHS design. Then, a coKRG model was constructed based on the output values of the
penalized objective functions from the VDST and the sharp interface models. Similar to the
hypothetical examples presented in chapter 5, a computational budget of MHFr =21 was set for
the AR-coKRG®®’ algorithm, as a stopping criterion. Only one run of the AR-coKRG°®’ algorithm
was performed. To compare the effectiveness of AR-coKRG®®’, the optimization problem was
also solved using the sharp interface model alone. The sharp interface simulations were based on

the 2-D mesh of the VDST model and required 2.7 seconds for a single run.

Table 6-2 Comparison of optimal solutions found with the AR-coKRG®®’ method, the sharp interface model
and the VDST model for MHFr = 21. The optimal solutions with the VDST model and the sharp interface

model are underlined).

Optimization method Optimal solution (m3/day) VDST runs  Sharp runs Time (hr)
EAS-VDST 6184.8 5189 NA" 116.28
EAS-SH 5880.1 NA" 3800 281
AR-CoKRG®® 5993.1 21 200 1.05

“ NA: Not Applicable

As expected, the optimization with the sharp interface model provided a lower optimum than

the VDST model, due to an overestimation of the seawater intrusion. The difference here is less
than 300m?/day which from a practical perspective represents a safer extraction rate, given the

uncertainties related to the coastal aquifer model predictions. However, in terms of algorithmic
performance, AR-coKRG®® provided an even better outcome using only 21 VDST model
evaluations and 200 runs with the sharp interface model. It is mentioned herein that the AR-
coKRG®®? may depend on the initial training design and another run of the algorithm might not

necessarily provide a better optimal solution than EAS-SH. However, and based on the present
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results, the proposed AR-cOKRG optimization method appears as an efficient and effective
approach, particularly when the discrepancies between the VDST and the sharp interface model
are not large. As also mentioned previously, the fact that the present optimization formulation has
a smoother objective function landscape facilitates the search with the multi-fidelity approach

leading to a good local solution within a few HF model runs.
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Chapter 7

Conclusions and suggestions for further research

A summary of the present work as well as the main conclusions and contributions are discussed

next. Also, a section regarding suggestions for future research is included.

7.1 Summary

Pumping optimization based on the combination of variable density flow and solute transport
(VDST) numerical models with evolutionary algorithms, is considered an impractical task due to
the resulting computational burden. In this thesis, the development of surrogate-based optimization
(SBO) methods was proposed to alleviate the computational cost. Various types of surrogate
models, sampling strategies and adaptive optimization frameworks were developed and
extensively compared for the practical applications of coastal aquifer management.

SBO methods were tested either by using a single surrogate model of the penalized function or
by constructing individual surrogate models associated with each nonlinear constraint function. A
total of nine implementations of SBO algorithms were employed. Radial basis functions and
Kriging models were used to emulate the response of the nonlinear constraint functions to pumping
rates. They were chosen as appropriate surrogate model types for the current deterministic
numerical simulations due to their interpolating capabilities. Six out of these nine methods were
developed based on the surrogate-assisted evolutionary framework and the prediction-based
exploitation infill strategy. An evolutionary algorithm, namely EAS, was used as the optimization

platform where this online surrogate-assisted approach, denoted as EAS-PB, was developed. For
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this framework, radial basis functions (RBF), Kriging models (KRG) or a combination of those
via a multiple surrogate approach were utilized.

The other three SBO algorithms were based on infill strategies that balance exploration and
exploitation using the metamodels. One of them was the robust and well-documented
ConstrLMSRBF algorithm (Regis 2011). It was selected as a comprehensive method to compare
against those developed in this thesis, due to its promising performance for pumping optimization
problems of coastal aquifers with large dimensionalities and under limited computational budgets
(Christelis et al. 2018). A constrained version of the SEEAS algorithm (denoted as CSEEAS) was
also presented. CSEEAS was based on a short modification of the original SEEAS algorithm to
pass the information from the separate surrogate models of the nonlinear constraint functions
within the operations of SEEAS. Finally, a new adaptive-recursive surrogate-assisted framework,
denoted as LR-RSRBF, was developed combining features of exploitation and exploration steps
from three existing algorithms, namely, GOSAC, ConstrLMSRBF and SEEAS.

Also, a new adaptive-recursive optimization scheme was developed using co-Kriging models
for hypothetical cases where the VDST simulation is extremely time-consuming. A few high-
fidelity data from the VDST model were combined with a significantly larger number of lower-
fidelity data with the sharp interface model of Strack (1976), to investigate the effectiveness of

multi-fidelity optimization in coastal aquifer management.
7.2 Conclusions

The performance of all SBO algorithms was compared for multiple independent optimization trials
to attribute a statistically meaningful assessment. A first thing to note is that the proposed
surrogate-optimization algorithms reduced the overall computational cost by 90-98% of the direct

optimization with the VDST model. Furthermore, the comparison confirmed that individual
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surrogate models of the constraint functions outperform the choice of a single surrogate model for
the penalized objective function. However, it should be mentioned that MLMSRBF (Regis and
Shoemaker 2007a) and SEEAS (Tsoukalas et al. 2016b), designed originally for bound constrained
optimization problems, can potentially find good solutions for the present optimization problem.
The analysis of their average converge progress showed that for a moderate dimensionality of 10
pumping wells, there is a continuous improvement of the objective function value, provided that
the available computational budget is large enough.

Another finding is that as the dimensionality increases, the performance of the EAS-PB type
algorithms is adversely affected. For a moderate dimensionality of 10 pumping wells, the average
performance of EAS-PB algorithms was competent, delivered near-optimal solutions close to the
benchmark global optimum obtained from the VDST model. Thus, despite the greedy approach of
adding infill points only at the current optimum, EAS-PB algorithms are considered an efficient
and effective choice for pumping optimization problems with similar dimensionalities. On the
other hand, for the case of 20 pumping wells, all EAS-PB algorithms struggled to approach the
region of the global optimum and mainly returned local solutions of moderate quality.

In general, the inclusion of more sophisticated surrogate models in the EAS-PB method, either
KRG models or via the multiple surrogate approach, did not show any advantage in a consistent
manner over the simpler RBF models. Although it is difficult to generalize, due to the
specifications of each optimization problem, the use of cubic RBF models provided fair to notably
good solutions especially when they were included within the operations of the other type of
algorithms, namely, ConstrLMSRBF, SEEAS and LR-RSRBF. It is believed that cubic RBF
models are a fast and fairly accurate surrogate model type that fits conveniently within the

computational requirements of pumping optimization in coastal aquifers. The cubic RBF model is
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a favorable choice for problems with large number of constraint functions since their fitting time
to the input-output data is small compared to the single runtime of a VDST numerical model.
However, their use was investigated for adaptive online SBO frameworks in coastal aquifer
management and no recommendations can be made on their prediction skills for offline SBO
methods. The offline methods typically utilize large training datasets, and in such cases other
surrogate models may perform more accurately.

The performance of ConstrLMSRBF, SEEAS and LR-RSRBF algorithms was tested for two
alternative computational budgets. For the case of 10 pumping wells, these algorithms were able
to locate near-optimal solutions for a computational budget that included as few as 100 simulations
with the VDST model. This is a notable performance in both efficiency and effectiveness
suggesting a significant computational tool for pumping optimization problems with a similar
dimension. When the dimensionality was increased to 20 pumping wells, they were mainly trapped
to local solutions for the budget of 100 VDST simulations. However, for a larger budget of 300
VDST simulations, their performance was considerably improved and approached the region of
the global optimum. That was prominently the case for LR-RSRBF which is a newly introduced
optimization framework developed in the present thesis. For the cases examined here, LR-RSRBF
showed great promise for the efficient solution of coastal aquifer management problems.

The application of the above surrogate-assisted optimization schemes on a real-world coastal
aquifer case, successfully returned near global solutions for a problem of 11 pumping wells. The
EAS-PB and LR-RSRBF algorithms, both using cubic RBF models, provided the best optimal
solutions. Indicative of their successful application was that LR-RSRBF found an even better
solution than the one provided with the VDST model while both SBO methods returned optimal

solutions with a similar distribution of pumping rates against the benchmark solution. The
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computational gains were in the order of 95% reduction of the original optimization task with the
VDST model.

The multi-fidelity optimization framework developed in this thesis returned satisfactory
solutions with as few as 21 evaluations with the computationally expensive VDST model. This is
a very promising performance which could be potentially utilized in real-word coastal aquifer
models with remarkably high computational requirements. The use of multi-fidelity optimization
methods is largely unexplored in coastal aquifer management and, to the best of our knowledge,
this is one of the few attempts existing in the literature to combine the VDST model with low-
fidelity models for pumping optimization problems. This new multi-fidelity optimization method
outperformed conventional SBO algorithms which are designed for a single fidelity model in the

case of limited computational budgets.
7.3 Contributions

In short and to the best of the author’s knowledge, the contributions of this thesis in coastal aquifer
management research can be summarized as follows:
e The use of RBF and KRG surrogate models is scarce in coastal aquifer management despite
their successful application in many other engineering fields. In this thesis, they were
utilized for the first time in surrogate-assisted evolutionary frameworks for pumping

optimization of coastal aquifers.

e Heterogeneous ensembles of KRG and RBF models using optimal weights and online
updating within the operations of an evolutionary algorithm, is a new approach presented

for pumping optimization problems of coastal aquifers.

e Pumping optimization problems of coastal aquifers involve nonlinear constraints. The

standard choice is to develop individual surrogate models for each constraint function. In
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this thesis, a formal comparison was presented for the first time of this standard approach
against comprehensive SBO methods where a single surrogate model is developed only for

the penalized objective function.

Exhaustive comparisons were performed for SBO methods which follow different
sampling strategies, and this is a first presentation of such outcomes in coastal aquifer

management.

A constrained version of the SEEAS algorithm (Tsoukalas et al. 2016) was implemented

for the requirements of the pumping optimization problems of coastal aquifers.

A new adaptive-recursive SBO framework, denoted as LR-RSRBF, was developed to
balance exploration and exploitation using surrogate models for coastal aquifer
management. The new SBO method combines features from three existing algorithms,
namely, GOSAC (Miller and Woodbury 2017), ConstrLMSRBF (Regis, 2011) and

SEEAS (Tsoukalas et al. 2016).

A new adaptive-recursive optimization scheme was developed using co-Kriging models
for multi-fidelity optimization in coastal aquifer management. This is the first time such an

approach is developed for the purposes of pumping optimization of coastal aquifers.
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7.4 Some thoughts for future applications and further research

It is indisputable that for the present optimization problem, SBO methods offered a
computationally affordable route to locate near-optimal solutions depending on the method and
the available computational budget. As with all algorithms, tuning some parameters that are
expected to affect their performance is a practical thing to do although a second or even more runs
with the SBO methods is not always affordable.

Given the inherent random processes usually encountered in SBO frameworks, a series of
independent optimization trials is generally recommended. So far, only few works present such an
analysis in the relevant literature of coastal aquifer management for SBO methods. To our
understanding, if the task is affordable, research on SBO should include multiple independent runs
to avoid dependencies on initial training designs and to recognize the challenges that these
optimization problems might present for SBO.

The above optimization problems were set on the assumption that seasonal recharge variations
are not considered, and that constant pumping is assumed during the pumping management period.
This is justified in terms of long-term management plans and based on the assumption that coastal
aquifer response to normal fluctuations of recharge is relatively slow. However, it remains a
challenge to implement SBO methods considering time-variable flow conditions which represent
a more detailed management option of coastal aquifers. This might be particularly necessary given
the anticipated impacts of climate change on coastal aquifer systems, particularly during dry
months.

Regarding the implementation of SBO methods in coastal aquifer management, it is of practical
interest to test more algorithms that balance exploitation with exploration. These optimization

frameworks are expected to perform more reliably than offline or pure exploitation methods. While
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there is an increasing interest on these methods, their application for the nonlinear constrained
pumping optimization problems of coastal aquifers is still limited, compared to other engineering
fields.

Finally, multi-fidelity optimization methods deserve more attention for the efficient solution
of real-world coastal aquifer management problems. There are already various low-fidelity models
proposed in the literature but their inclusion in multi-fidelity optimization frameworks is mainly
unexplored. Although, the preparation of a multi-fidelity optimization framework requires
additional effort, at the same time some aspects might be beneficial. For example, in the case of
transient simulations or in the presence of spatial heterogeneity of aquifer parameters where the
use of conventional surrogate models might be inefficient or complicated. Two or more models of
different fidelity might return output variables with different physical meaning. In addition, the
HF model might need to run on a fine discretized grid compared to the grid requirements of the
LF model. Such dependencies may complicate the implementation and increase the analyst time
on developing a SBO method based on models of different fidelity. However, all these
specifications remain to be confronted with the expectation that multi-fidelity modelling could be

proved beneficial, especially for real-world optimization coastal aquifer management problems.
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