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Abstract

Ocean wave interaction with flexible floating structures finds numerous applications in marine
science and technology as well as in ocean and polar engineering. The adjacent fields focus on
the study of wave-structure-seabed interaction, targeting man-made structures and geophysical
formations, such as ice shelves and ice floes, respectively. Very Large Floating Structures and
ice formations share two distinct hydrodynamic features; their large dimensions compared
to the incident wavelengths and their relatively low bending rigidity which renders flexural
modes dominant. The foundations of the aforementioned problems in both fields are set in
hydroelasticity and are characterised by challenges like the inherently large computational
domains and the heterogeneity manifested in both the ocean waveguide and the structure.
The treatment of heterogeneity in terms of variable bathymetry for the ocean environment
and varying material properties and geometry for the structure remain formidable tasks even
in the linear regime.

The thesis focuses on the treatment of hydroelastic interaction between ocean waves and
large floating structures in an inhomogeneous setting. While both time and frequency domain
analyses were undertaken, the present focuses primarily on the latter. Parts I-III, representing
the bulk of the conducted research, are set in the frequency domain, while Part IV outlines
developed numerical tools targeting transient phenomena.

In the frequency domain, confined in the linear regime potential theory is employed for the
hydrodynamic modelling. The floating body is assumed to be thin and within the limits of
elastic plate models. Depending on the structure slenderness and the excitation wavelength-
to-plate thickness ratio, the elastic body is modelled using either the Classical Thin Plate
Theory (CPT) or the higher order Reissner-Mindlin Plate theory accounting for first order
shear deformation effects (FSDT).Furthermore, The slenderness of the structure justifies the
adopted negligible-draft assumption. An in vacuo modal expansion for the plate deflection
is employed to partially decouple the hydrodynamics from structural mechanics. The modal
decomposition allows for the formulation of a series of component hydrodynamic subproblems
in the inhomogeneous setting, posed only on kinematic considerations posed on the upper
surface. Furthermore, by considering domain partitioning the typical radiation-type problem
is written in terms of the velocity potential restrictions in the plate-covered and free-surface
subregions supplemented by transmission conditions on the fictitious cylindrical interface.
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For the numerical treatment, a weighted residual approach is subsequently employed to
derive a permissive form of the hydrodynamic problems facilitating the construction of a FEM-
based scheme. To this end, the typical radiation-type problem is re-cast into a mixed weak form
by means of a Lagrange multiplier function defined on the interface between the plate-covered
and free surface regions. The two-field formulation aims at the weak satisfaction of the essential
continuity requirement across the transmission interface. The latter approach circumvents the
complexity of constructing appropriate finite element subspaces that would ab initio satisfy the
Dirichlet type constraint. Subsequently, the dimensionality reduction of the problems at hand
is achieved by the introduction of suitable local-mode vertical representations for the velocity
potentials in each subregion that enable the consistent satisfaction of the upper surface and
seabed boundary conditions, respectively. The reduction ultimately yields the variational form
of coupled-mode systems defined on the horizontal plane. The deduced weak forms permit the
development of FEM schemes that employ conventional Lagrange elements, capable of ℎ − 𝑝
refinement. Moreover, the numerical tool incorporates a Perfectly Matched Layer, featuring an
unbounded absorbing function, to achieve the efficient truncation of the computational region.
The convergence properties of the proposed PML-FEM scheme are initially investigated by
means of the scalar Helmholtz equation and then extended to treat the single-mode vertical
expansion for the velocity potential, reducing to the Modified Mild Slope Equation in the
frequency domain, and finally to the multi-modal representation.

Finally, numerical results for a number of configurations are presented in both the 2D and
3D ocean waveguide. Extensive verification against 2D results found in the literature illustrate
the accuracy of the method and showcasing its capabilities in modelling inhomogeneity.

In the time domain, the analysis is restricted to shallow water environment. Considering the
2D ocean strip, the structure is assumed to extend indefinitely in the direction normal to wave
incidence, thus performing cylindrical bending under long wave action. The Shallow Water
Equations are employed for the hydrodynamic modelling while the floating body response in
waves is simulated with both CPT and Gao’s beam model (Gao, 1996) in plain strain. The
latter is able to account for moderately large deflections and strains. The proposed hydroelastic
element able to treat the coupled equations feature 𝐶1 interpolation for the strip response and
𝐶0 for the velocity potential. Thus, the hydroelastic element incorporates cubic Hermite-shape
functions for the approximation of the beam deflection/upper surface elevation and the strip
slope, while quadratic Lagrange shape functions are employed for the approximation of the
unknown velocity potential. The derived schemes can be employed in a number of applications
in (a) ice shelf research and (b) marine technology. Details of the analysis are provided in the
included scientific contributions (Part V).



Eκτεταμένη Περίληψη

Η παρούσα διατριβή πραγματεύεται το πρόβλημα της αλληλεπίδρασης μεγάλων πλω-
τών κατασκευών με κυματισμούς βαρύτητας στο ανομοιογενές θαλάσσιο περιβάλλον. Αντι-
κείμενο της διδακτορικής διατριβής είναι η μελέτη του προβλήματος με έμϕαση στις
επιδράσεις της ανομοιογένειας, καθώς και η παραγωγή αποδοτικών εργαλείων για τον
υπολογισμό των χαρακτηριστικών του πεδίου σε χωρία μεγάλων διαστάσεων. Επιπλέον,
επιδιώκεται η συστηματική εϕαρμογή των παραπάνω στην προσομοίωση των κυματικών
ϕαινομένων και στην διερεύνηση των παραμέτρων ιδιαίτερα σε ότι αϕορά τις ελαστικές
αποκρίσεις σωμάτων με γενικά χαρακτηριστικά και περιοχές μεταβαλλόμενης βαθυμε-
τρίας. Βασικός ερευνητικός στόχος είναι η υποστήριξη της τεχνολογίας κατασκευής Με-
γάλων Πλωτών Κατασκευών (Very Large Floating Structures ή VLFS), και η παράλληλη
αξιοποίηση των αποτελεσμάτων στην πρόβλεψη των μηχανισμών διέγερσης υδροελαστι-
κών ϕαινομένων σε ροές πάγου και καταστάσεων απόσχισης πάγου στη συνοριακή ζώνη
μεταξύ παγετώνων και θάλασσας (Squire, 2018).

Η μελέτη των VLFS βρίσκει πληθώρα εϕαρμογών στην παράκτια μηχανική με κοινά
παραδείγματα των παραπάνω να είναι πλωτές εξέδρες ανεϕοδιασμού, μαρίνες καθώς και
πλωτοί αεροδιάδρομοι και κυματοθραύστες (Wang et al., 2006). Οι μεγάλες οριζόντιες
διαστάσεις των κατασκευών ενδιαϕέροντος, καθιστά τις ελαστικές παραμορϕώσεις υπό
κυματική καταπόνηση σημαντικές σε σχέση με τις κινήσεις στερεού σώματος. Επομένως, η
μελέτη της απόκρισης των μεγάλων πλωτών κατασκευών εμπίπτει στην επιστημονική πε-
ριοχή της υδροελαστικότητας, δηλαδή της συζευγμένης αλληλεπίδρασης του ροϊκού πεδίου
με την ελαστική παραμόρϕωση του πλωτού σώματος. Επιπροσθέτως, οι Μεγάλες Πλω-
τές Κατασκευές μοιράζονται κοινά υδροδυναμικά χαρακτηριστικά με γεωϕυσικές μορϕές
όπως τα στρώματα πάγου. Η έντονη κυματική διέγερση στρωμάτων πάγου έχει συνδεθεί
με ϕαινόμενα αποσταθεροποίησης και κατακερματισμού τραπεζών πάγου και παγοκρι-
πίδων. Η παλιρροϊκή δράση και η συνεχής καταπόνηση των γεωϕυσικών μορϕών, σε συν-
δυασμό με τις εγγενείς ατέλειες του πάγου οδηγεί σε καμπτική αστοχία και την τελική
απόσχιση τμημάτων υλικού με προϕανές περιβαλλοντικό κόστος και επίδραση στην τοπική
ανθρώπινη δραστηριότητα. Ο καταγεγραμμένος κατακερματισμός των στρωμάτων πάγου
στην Ανταρκτική και η σημαντική μείωση του θαλάσσιου πάγου στην Αρκτική, ϕαίνονται
να επηρεάζουν άμεσα τις εμπορικές δραστηριότητες και να επιβεβαιώνουν την αρχή μιας
σειράς κλιματικών διαταραχών χρίζοντας επομένως εντατικής μελέτης. Τέλος, τα κοινά
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χαρακτηριστικά των δύο ϕαινομενικά ασύνδετων πεδίων εϕαρμογής της υδροελαστικό-
τητας πλωτών σωμάτων οδηγεί στην συχνή απο κοινού αντιμετώπιση στην επιστημονική
βιβλιογραϕία (Squire, 2008).

Σημειώνεται ότι λόγω έλλειψης χώρου η παρούσα εστιάζει στην ανάπτυξη αριθμητικής
μεθοδολογίας για την μελέτη του υδροελαστικού προβλήματος στο πεδίο συχνοτήτων, ενώ
στο τελευταίο μέρος του τεύχους παρουσιάζονται περιληπτικά σχήματα πεπερασμένων
στοιχείων υψηλής τάξης που αναπτύχθηκαν κατά τη διάρκεια των διδακτορικών σπουδών
με στόχο την μελέτη μεταβατικών ϕαινομένων σε περιβάλλον ρηχών υδάτων. Επισυνάπτο-
νται οι σχετικές δημοσιεύσεις σε επιστημονικά περιοδικά.

Οι ϕυσικές ανομοιογένειες των συνόρων του θαλάσσιου κυματοδηγού και της γενικής
γεωμετρίας του ελαστικού σώματος, καθώς και η ύπαρξη χωρίων μεγάλων διαστάσεων
καθιστούν ιδιαίτερα πολύπλοκο τον χειρισμό ακόμα και του γραμμικοποιημένου προ-
βλήματος. Με στόχο την ανάπτυξη αποδοτικών τεχνικών επίλυσης για το τρισδιάστατο
πρόβλημα, παρουσιάζεται μια αριθμητική μεθοδολογία βασισμένη σε σχήματα πεπερα-
σμένων στοιχείων σε συνδυασμό με συστήματα συζευγμένων ιδιομορϕών που βασίζονται
σε κατάλληλες κατακόρυϕες αναπαραστάσεις του μιγαδικού δυναμικού.

Πιο συγκεκριμένα, στο πεδίο συχνοτήτων το τρισδιάστατο πρόβλημα διατυπώνεται με
χρήση της θεωρίας απειροστού πλάτους για την μοντελοποίηση του υδροδυναμικού πεδίου,
ενώ για την απόκριση του ελαστικού σώματος εξετάστηκαν οι θεωρίες λεπτής πλάκας
Kirchhoff (CPT) καθώς και θεωρία Mindlin (Mindlin, 1951) για σώματα παραμορϕώσιμα
σε διάτμηση (FSDT). Υποθέτουμε την ύπαρξη στρώματος νερού με πεπερασμένο τμήμα της
πάνω επιϕάνειας να δεσμεύεται απο την παρουσία του ελαστικού σώματος. Οι μεγάλες
οριζόντιες διαστάσεις της κατασκευής επιτρέπουν επιπροσθέτως την υπόθεση αμελητέας
βύθισης, έτσι ώστε η άνω επιϕάνεια του ρευστού να ακολουθεί την ουδέτερη γραμμή
του πλωτού σώματος στο πεπερασμένο τμήμα της επιϕάνειας σύζευξης που οριοθετεί την
υδροελαστική περιοχή. Επομένως, η παρουσία του πλωτού σώματος δημιουργεί τις ιδεατές
υποπεριοχές ελεύθερης επιϕάνειας και υδροελαστικής σύζευξης. Εν συνεχεία, η ελαστική
απόκριση αναπτύσσεται στις in vacuo ιδιομορϕές της κατασκευής με στόχο την μερική
αποσύζευξη της υδροδυναμικού πεδίου και του πεδίου παραμορϕώσεων. Το συνολικό
πεδίο αποσυντίθεται στις συνιστώσες του διαδιδόμενου κυματισμού (χωρίς την παρουσία
του σώματος), του πεδίου περίθλασης καθώς και του πεδίου ακτινοβολίας λόγω της κίνησης
του ελαστικού κινήσεων σώματος. Επιπροσθέτως, η συνιστώσα της ακτινοβολίας γράϕεται
ως επαλληλία λύσεων σε προβλήματα που αντιστοιχούν στην μοναδιαία ϕόρτιση από την
εκάστοτε ιδιομορϕή του ελαστικού σώματος, επιτρέποντας την διατύπωση μιας σειράς
υπο-προβλημάτων ακτινοβολίας. Τα ανωτέρω προβλήματα ικανοποιούν στην ουσία μόνο
τις κινηματικές παραδοχές του προβλήματος, συγκεκριμένα την εξίσωση των κάθετων
ταχυτήτων για το ρευστό και το σώμα πάνω στην υδροελαστική επιϕάνεια. Η σύζευξη
που επιτρέπει τη σύνθεση της τελικής λύσης επιτυγχάνεται μέσω της ικανοποίησης της
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δυναμικής συνθήκης στην βρεχόμενη επιϕάνεια του σώματος που εκϕράζει την ισορροπία
των πιέσεων.

Σημειώνεται ότι η γενική τρισδιάστατη διατύπωση του υδροελαστικού προβλήματος
(3D) εκϕυλίζεται στο κατακόρυϕο δισδιάστατο πεδίο (2D) με την υπόθεση κυματοδη-
γού με μη μεταβαλλόμενα χαρακτηριστικά κατά τη μία οριζόντια διεύθυνση ενώ γα την
ελαστική πλάκα ισχύει επιπλέον η υπόθεση ότι η διάσταση της κατά την ανωτέρω διεύ-
θυνση είναι σημαντικά μεγαλύτερη οδηγώντας σε κατάσταση κυλινδρικής κάμψης. Στην
παρούσα διατριβή εξετάζονται και οι δυο περιπτώσεις 3D και 2D μοντελοποίησης του
προβλήματος.

Δεδομένης της παραπάνω διατύπωσης του ολικού προβλήματος σε σειρά υπο-
προβλημάτων, η προτεινόμενη στρατηγική επίλυσης συνίσταται από διακριτά βήματα.
Αρχικά επιζητείται η αριθμητική εύρεση των in vacuo ιδιομορϕών για την περίπτωση ανο-
μοιογενούς κατασκευής γενικού σχήματος, έπειτα η επίλυση του προβλήματος διάδοσης
στον ανομοιογενή κυματοδηγό και στη συνέχεια ο χειρισμός του πεπερασμένου πλήθους
προβλημάτων ακτινοβολίας που προκύπτουν από την περικομμένη αναπαράσταση της
ελαστικής απόκρισης. Τέλος, για την ολοκλήρωση της σύζευξης επιδιώκεται η ικανοποί-
ηση του ισοζυγίου των πιέσεων στην υδροελαστική επιϕάνεια με δεδομένες τις λύσεις των
ανωτέρω προβλημάτων. Η επίλυση των υδροδυναμικών προβλημάτων στον ανομοιογενή
κυματοδηγό αλλά και του προβλήματος ελεύθερης ταλάντωσης της κατασκευής γενικού
σχήματος επιτυγχάνεται αριθμητικά με τη μέθοδο των πεπερασμένων στοιχείων.

Με στόχο την κατασκευή των αριθμητικών σχημάτων υιοθετείται η μέθοδος Σταθμικών
Υπολοίπων για την παραγωγή κατάλληλων ασθενών μορϕών των επιμέρους υδροδυναμι-
κών προβλημάτων. Για τη σειρά των προβλημάτων ακτινοβολίας απαιτείται επιπροσθέτως
η ικανοποίηση συνθηκών συνέχειας για το δυναμικό της ταχύτητας και της κάθετης παρα-
γώγου στην κυλινδρική διεπιϕάνεια ανάμεσα στις περιοχές ελεύθερου ρευστού και υδρο-
ελαστικής σύζευξης. Για την αποϕυγή της ab initio ικανοποίησης της ουσιώδους απαίτησης
συνέχειας στην διεπιϕάνεια, επιλέγεται η ασθενής ικανοποίηση της παραπάνω μέσω μιας
συνάρτησης πολλαπλασιαστή Lagrange. Επομένως, το τυπικό πρόβλημα επανατοποθετεί-
ται σε μικτή μορϕή που επιτρέπει την επιλογή συμβατικών χώρων για τις συναρτήσεις
δοκιμής και την κατασκευή ενός ευέλικτου αριθμητικού σχήματος.

Εν συνεχεία, επιχειρείται η μείωση της διάστασης των ασθενών προβλημάτων που πα-
ρήχθησαν, υιοθετώντας κατάλληλες κατακόρυϕες αναπαραστάσεις για το υδροδυναμικό
πεδίο. Οι επιλεγμένες αναπαραστάσεις που καλούνται να ικανοποιούν τις κινηματικές
συνθήκες της στήλης του ρευστού διαϕέρουν στις δυο υποπεριοχές. Για την περιοχή ελεύ-
θερης επιϕάνειας χρησιμοποιείται η κλασσική κατακόρυϕη αναπαράσταση που προκύ-
πτει από χωρισμό μεταβλητών στο στρώμα ρευστού. Η ϕυσική αναπαράσταση ενισχύεται
από πρόσθετη μορϕή που στοχεύει στην συνεπή ικανοποίησή της κινηματικής συνθήκης
στον κεκλιμένο πυθμένα ακολουθώντας την εργασία των Athanassoulis and Belibassakis
(1999). Στην υδροελαστική περιοχή επιλέχθηκε εναλλακτικά η βάση του προκύπτει από
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το κατακόρυϕο πρόβλημα ιδιοτιμών με επιβαλλόμενες ομογενείς Dirichlet συνθήκες. Στην
αναπαράσταση, εκτός από τον πρόσθετο όρο για την ικανοποίηση της συνθήκης του πυθ-
μένα προστίθεται και μια μορϕή που επιτρέπει την ικανοποίηση της κινηματικής συνθήκης
στην άνω επιϕάνεια. Η παραπάνω διαδικασία παράγει ασθενή συστήματα συζευγμένων
ιδιομορϕών, ενώ η γεωμετρικά σύμμορϕη διεπιϕάνεια επιτρέπει ομοίως την ανάπτυξη
των συναρτήσεων Lagrange (που ορίζονται στη διεπιϕάνεια) σε οποιαδήποτε απο τις δύο
βάσεις οδηγώντας ετσι στη μικτή ασθενή διατύπωση των παραπάνω. Τέλος, έχοντας απο-
ϕύγει την πολυπλοκότητα της κατάλληλης κατασκευής υπόχωρων συναρτήσεων δοκιμής
με ενσωματωμένες ουσιώδεις συνθήκες, χτίζεται ενα 𝐶0 σχήμα πεπερασμένων στοιχείων
που χαρακτηρίζεται απο ℎ − 𝑝 προσαρμοστικότητα.

Για την αριθμητική επίλυση των προβλημάτων ακρινοβολίας εϕαρμόστηκε επιπροσθέ-
τως ενα στρώμα απορρόϕησης PML με σκοπό την ελαχιστοποίηση των αριθμητικών ανα-
κλάσεων. Στα πλαίσια της παρούσας εργασίας επιλέγεται μια συνάρτηση απορρόϕησης με
ιδιομορϕία για το στρώμα. Οι ιδιότητες του σχήματος πεπερασμένων στοιχείων με PML
εξετάζονται αρχικά στο εξωτερικό πρόβλημα Helmholtz με κυκλικό σκεδαστή, ενώ στη
συνέχεια επεκτείνεται στην περίπτωση της εξίσωσης Mild Slope στο πεδίο συχνοτήτων και
τέλος στην περίπτωση της κατακόρυϕης αναπαράστασης του δυναμικού.

Στη συνέχεια, η μέθοδος των πεπερασμένων στοιχειών εϕαρμόζεται επίσης για την
επίλυση του προβλήματος ελεύθερης ταλάντωσης της ανομοιογενούς κατασκευής με γενική
γεωμετρία. Κατα την μοντελοποίηση του δισδιάστατου υδροελαστικού προβλήματος (2D),
η θεώρηση ημιάπειρης πλάκας υπό κυλινδρική κάμψη επιτρέπει τη χρήση κλασσικών 𝐶1

προσεγγίσεων. Στην περίπτωση ανομοιόμορϕης, παραμορϕώσιμης σε διάτμηση δοκού, η
κατακόρυϕη κίνηση εκϕράζεται μέσω των συζευγμένων εξισώσεων ισορροπίας δυνάμεων
και ροπών που επιδέχεται 𝐶0 προσέγγιση υψηλής τάξης. Για τον αριθμητικό υπολογισμό
των ιδιομορϕών κατασκευών με πεπερασμένες διαστάσεις, χρησιμοποιούνται δισδιάστατα
στοιχεία πλακών. Συγκεκριμένα χρησιμοποιούνται τρίγωνα Discrete Kirchhoff (DKT) και
Discrete Shear (DST) (𝐶0 προσέγγισης). Η ιδιαιτερότητα των παραπάνω στοιχείων είναι
η διακριτή ικανοποίηση των κινηματικών συνθηκών που αντιστοιχούν στις θεωρίες λεπτής
πλάκας (CPT) και πλάκας σημαντικού πάχους (FSDT) αντίστοιχα.

Αριθμητικά αποτελέσματα παρουσιάζονται στις δύο και τις τρεις διαστάσεις. Η μεθο-
δολογία, συγκρινόμενη με πειραματικά δεδομένα και πληθώρα αριθμητικών αποτελεσμά-
των από τη βιβλιογραϕία κατέγραψε ικανοποιητική ακρίβεια στις δύο διαστάσεις, ενώ
καταδεικνύεται το βασικό πλεονέκτημα της που είναι ο χειρισμός ανομοιογενείων στις
ιδιότητες του ελαστικού σώματος, του γενικού σχήματος και των μεταβολών της βαθυμε-
τρίας.
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Introduction

This introductory chapter explores the problem of floating-body hydroelasticity
in the ocean setting. The latter constitutes the theme of the present thesis and
is highly relevant to marine engineering applications as well as to the study of
ice formations in Polar Regions. A general introduction to the context, research
questions and outline of the present thesis are given. Furthermore, a literature
review on floating-body hydroelasticity is attempted, followed by the statement
of thesis objectives and proposed methodology. Finally, the novelties and original
contributions of the present work are summarized at the end of the chapter.

Context and Aim of the Thesis

In the past decades, in line with advancements in marine engineering and technology, the study
of hydroelastic interaction between large floating elastic bodies, commonly referred as Very
Large Floating Structures (VLFSs), and ocean waves has received great scientific attention.

VLFSs begun as a futuristic vision, documented as early as the late 1800s, when a man-
made island became the centerpiece of the Jules Verne novel ’Floating island’. The VLFS
concept was inspired by population densification in coastal areas and the bitter realization
of its detrimental effects on both social and environmental grounds. The numerous socio-
economic drives facilitating the conceptual maturity of VLFS is thoroughly explored in Wang
et al. (2006). Initially the need for commercial space in congested port areas led to costly land
reclamation solutions. Soon however, the use of multi-purpose ballast structures, servicing as
operational docks, was proved to be an environmentally-friendly and versatile alternative that
gained traction as marine technology evolved. Subsequently, the VLFS idea was extended
to fit military applications, civil infrastructure and other facets of industry. Typical project
examples include bridges, breakwaters, solar and wind power plants, oil and gas drilling and
storage facilities, emergency bases and generic industrial space. VLFS applications also ex-
tend to aquaculture and recreational activities. Famous examples of existing VLFS projects
include the 1km long floating test runaway known as the Mega-Float deployed in Tokyo Bay,
the floating oil storage bases in Shirashima and Kamigoto islands, the floating Washington
bridge in Seattle and the floating piers in Ujina port (Wang and Tay, 2011; Watanabe et al.,
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(i) Mega-Float, Tokyo Bay. (ii) Oil storage base, Kamigoto island.

Figure 1 Notable applications of pontoon type VLFSs. Source: Watanabe et al. (2004)

2004). Notably, VLFS can be classified in numerous ways, the majority of them based on
technological features. However, since VLFS technology is outside the scope of this thesis, the
following discussion adopts an angle suitable to drive the relevant research points. For a better
insight into VLFS technology the interested reader is directed to the informative state-of-the
art reviews found in the literature, i.e. Dai et al. (2018), Lamas-Pardo et al. (2015), Wang
and Tay (2011), Ohmatsu (2005),Kashiwagi (2000) among others. Following Lamas-Pardo
et al. (2015) principal VLFS design concepts are, also to the author’s opinion, most conve-
niently distinguished by deployment location, namely whether the structure is to be deployed
near-shore or offshore. The ocean environment plays a profoundly critical role in the design
of floating structures. When deployed in sheltered near-shore regions, like bays or lagoons,
floating structure design can assume a shallow draft and structures are commonly referred as
pontoon type or ’mat-like’ in the literature. The latter design features a ballast substructure
with large horizontal dimensions compared to thickness offering stability in calm environments
while minimising manufacturing and maintenance costs. The flexibility of such structures is
significantly increased which renders the hydroelastic effects dominant over rigid body motions,
leading to the given floating structure-wavefield interaction to be suitably treated within the
realm of hydroelectricity.

When offshore deployment is considered, the semi-submersible design type is more suitable
for open ocean applications, such as oil and gas platforms, as it can sustain large amplitude
wave forcing. These structures are significantly thicker and do not reach the same slenderness
ratios as their near-shore counterparts. The semi-submersible design type is exemplified in
the literature by the Mobile Offshore Base or MOB referring to modular barge-like structures
where modules are hinged together to form multi-purpose offshore spaces employed for landing,
docking and vessel maintenance. While MOBs are often classified as VLFS in the literature,
e.g. Ding et al. (2017), it is not straightforward that they share the same unique hydrodynamic
features with near-shore applications of the latter. As the number of modules increases however,
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(i) Gentz Ice Shelf, West Antarctica,
Image Credit: NASA/J. Harbeck.

(ii) Saline Ice, Arctic, Image Credit: AWI/M.
Hoppmann.

Figure 2 Images of Gentz Ice Shelf in West Antarctica and saline ice fields in the Arctic.

the response of a homogenised MOB structure can be calculated by the same methodologies
founded in floating body hydroelasticity.

In a related note, the same hydrodynamic features are exhibited by geophysical formations
such as ice shelves and ice floes floating in Polar Regions Fig. 2. Similarly to VLFS, ice
formations feature long horizontal dimensions and undergo oscillatory flexural motions under
wave excitation. Despite the inherent similarities the scientific fields of marine engineering
and sea-ice modelling progressed in parallel for decades mainly disregarding each other, as
illustrated in Squire (2008).

To delve further into the motivation behind sea-ice research it is noted that Polar Regions
form a transient terrain, hosting crucial climate regulating mechanisms. The scientific attention
received by ice self ‘disintegration’, referring to sudden ice shelf retreat events, is indicative of
the grave importance of the matter (Brunt et al., 2011). Calving of glaciers and ice shelves is
a phenomenon endorsed by simultaneous processes, the primary factor being the ice structure
itself, along with local temperature. Tidal effects and wave excitation add to the inherent
structural imperfections in the ice body, while oscillatory bending caused by the excitation
ultimately leads to the break off of ice shelves or the splitting of ice sheets. The detrimental
effects of gravity wave forcing on Antarctic ice shelves, are explored in Bromirski and Stephen
(2012). Moreover, the adverse effects of climate change are linked to increasingly energetic
seas (Young et al., 2011), which pose a major threat for saline ice formations (floes) located
at the Marginal Ice Zone (MIZ). The MIZ, located in the periphery of an ice shelf, essentially
buttresses the large geophysical formations by attenuating incoming wavetrains. When the
MIZ is reduced larger sums of energy ultimately reach the ice shelf increasing the likelihood of
its destabilisation and eventual collapse. Apart from the obvious environmental hazard, caused
by sea ice depletion, the floating ice formations are also endangering commercial ship-routes
and the presence of off-shore structures.

To summarise the above points, floating-body hydroelasticity encapsulates the basic prin-
ciples involved in the technological advancement and design of Very Large Floating Structures
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(VLFS) as well as in sea ice modelling. Wave-induced structural response and its underlying
effect on the hydrodynamic field are important for the in-depth understanding of physical pro-
cesses like ice shelf calving events (Ilyas et al., 2018; Papathanasiou and Belibassakis, 2018;
Papathanasiou et al., 2019) and valuable for the robust design of engineering structures oper-
ating nearshore (Karperaki et al., 2016; Nguyen et al., 2019). The similarities shared between
the aforementioned geophysical and man-made structures are (a) their low bending rigidity,
(b) their inherently complex geometries and material inhomogeneity and (c) their deployment
over large horizontal dimensions where the inhomogeneous ocean setting must be addressed,
i.e. bathymetric variations. The above common ground allows for the development of joint
computational tools for the general treatment of the coupled wave-structure-seabed interaction.

The intricacies found in the numerical treatment of the above mentioned problems lay
on the very same distinct features. Namely, complexity is raised by the large domains of
interest and the inherent geometric and material inhomogeneity found in the both structure
and waveguide. It is the aim of the present thesis to address the aforementioned complexities
and propose novel methodologies for the treatment of the hydroelastic problem featuring an
elastic floating body with large horizontal dimensions in the inhomogeneous ocean setting. To
formulate the specific research objectives, an account of the relevant literature follows.

Background Literature

As already stressed, the foundations of wave-floating structure interaction are set in the field of
hydroelasticity which is concerned with the coupled fluid and deformable body motions. There
exists an established corpus of relevant work focusing on a number of applications ranging from
ship hydroelasticity (Bishop and Price, 1976; Jiao et al., 2019; Kim et al., 2013) to the study
of VLFS and floating ice sheet response.

In the literature, in order to treat the coupled problem at hand, potential theory is com-
monly employed for the hydrodynamics while reduced elasticity theories are adopted for the
structural modelling. There are several works that opt for higher fidelity in their physical
modelling, as in Huang et al. (2019) where an OpenFOAM based methodology is proposed for
the treatment of wave-sea ice coupling. The work features the Navier-Stokes equations for the
description of the flow field, while coupled with Volume of Fluid methodologies a simulation
of overwash phenomena is achieved. In the same note, Kalyanaraman et al. (2020) employ the
linear elasticity equations for the structure coupled with potential theory for the hydrodynamic
field. These attempts in higher fidelity modelling are significantly aided by the maturity of
modular multi-physics software packages and the availability of open source numerical tools
and are valuable in providing an insight into complex physical phenomena. As mentioned in
Korobkin et al. (2011) however, CFD and elasticity codes coupling is far from trivial and need
rigorous theoretical reasoning. To the author’s opinion the above claim is still relevant to this
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day which illustrates the merit of theoretical and numerical studies based on lower fidelity
physical modelling.

Returning to the bulk of floating-body hydroelasticity research, physical modelling is pre-
dominantly based on potential flow theory for the hydrodynamics and structural mechanics
theories for the elastic body response. Literature can be most efficiently divided into linear and
non-linear approaches, with a viable subsequent separation into time and frequency domain
methods. The non-linear approach targets large flexural motions in moderate seas, irregu-
lar waves and other transient phenomena crucial to VLFS design like wave drift forces and
slamming loads. In Cheng et al. (2017) the 2D non-linear interaction of regular waves with a
floating elastic plate over non-uniform topography is examined in a fully non-linear numerical
wave tank. Generally, a varying degree of either structural or fluid non-linearity is included in
the modelling. Notable examples are the works of Sturova et al. (2009), Xia et al. (2004) and
Ertekin and Xia (2014) where the linear plate is directly coupled with Boussinesq-type models,
and the Green-Naghdi equations. In Hegarty and Squire (2004, 2008) a perturbation approach
is adopted to derive non-linear models for the study of the hydroealastic interaction between
large amplitude ocean waves and a thin solitary ice floe. In Belibassakis and Athanassoulis
(2006) a weakly non-linear, coupled-mode technique is proposed for the hydroelastic analysis
of a thin plate over a general bottom topography. In Chen et al. (2003) the non-linear Von
Karman plate is coupled with Airy’s theory to account for large deflections and assess the
influence of membrane forces. Finally, the relevant literature also focuses on the consideration
of a non-linear coupling mechanism, separate from field modelling, leading to the simulation
of slamming related phenomena (Sun et al., 2021).

Focusing in the linear regime, the commonly adopted small wave amplitude assumption
leads to the exclusion of non-linear and viscous effects, and is further justified by structural
slenderness. In conjunction to the above kinematic considerations for the fluid, plate theories
like the Classical Thin Plate (Kirchhoff-Love plate) are widely employed for the dynamic
response of the floating body (Faltinsen, 2015; Wang et al., 2006; Watanabe et al., 2004).
The linearized problem is effectively treated in the frequency domain with the majority of
published works in the field employing a modal expansion technique, aiming at the decoupling
of the structural response and the hydrodynamics, or proposing a direct solution of the coupled
equations (Watanabe et al., 2004). In modal expansion techniques, the structural oscillation is
expressed as a series expansion involving a class of basis functions. By means of the underlying
linearity assumption, the problem is decomposed into component diffraction and a series of
radiation problems corresponding to structural oscillations (Newman, 1994; Taylor and Waite,
1978). For the modal expansion of the floating body response, the ‘dry’ in vacuo modes of
the unconstrained structure constitute a natural and common choice (Kashiwagi, 1998; Wu
et al., 1995). The hydrodynamics and the elastic response are fully decoupled allowing for
the adoption of different analytical or numerical tools, facilitating the emergence of numerous
computational schemes in the frequency domain (see Squire (2008); Wang et al. (2006) for a
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more thorough literature review). In this decomposed regime, the motion equation of the plate
needs to be satisfied in order to complete the fluid-structure coupling.

While in the majority of published works on hydroelasticity, the structure is modelled as a
thin plate, attempts have been made to account for the rotary inertia and shear deformation
effects under wave forcing by means of Mindlin’s shear deformable plate theory (Mindlin,
1951), e.g. Fox and Squire (1991), Zhao et al. (2008) and Praveen et al. (2019). Recently,
Praveen and Karmakar (2019) considered the hydroelastic behaviour of a floating Mindlin
plate over variable bathymetry. The latter work however, confined in the 2D strip, allows for a
stepwise variation of the seabed. Considering general bathymetric profiles, Kyoung et al. (2005)
employed a modal expansion of the elastic response in terms of the in vacuo bending modes
of a rectangular Kirchhoff plate in conjunction with FEM discretization in the 2D fluid region
in order to capture the general waveguide boundary. Thus, the bottom boundary condition �n
the varying seabed is explicitly satisfied. It is noted that extrapolated in the 3D setting, the
latter method would require the 3D meshing of the waveguide which raises the computational
cost considerably. In Liu et al. (2020), the variable bathymetry is approximated by a series of
flat steps while local, multi-modal vertical eigenfunction expansions are employed for the wave
potential representation. The aforementioned method employs a discrete modules approach for
the structure simulation, which although intuitive for marine structures is not convenient for
geophysical formation modelling. Belibassakis and Athanassoulis (2005) proposed a continuous
coupled-mode technique for the hydroelastic analysis of a uniform thin, semi-infinite plate with
shallow draft, floating over variable bathymetry regions. The bottom boundary condition in
the non-separable domain is consistently satisfied by means of an additional ’sloping bottom
mode’ employed in the potential representation Athanassoulis and Belibassakis (1999). A
highly desirable feature of the above work is that it leads to dimensionality reduction with no
underlying assumptions with respect to the bottom slope or curvature. The method was later
extended for the treatment of the full 3D bathymetric effects in Gerostathis et al. (2016). The
latter analysis was restricted however to rectangular, homogeneous plates.

In a related note, single-mode and multi-mode vertical expansions were also employed
by Porter and Porter (2004) and Bennetts et al. (2007) respectively in the 2D scattering
problem by a thin plate of variable thickness and non-negligible draft. In the aforementioned
works a variational principle is appropriately augmented by an auxiliary functional featuring
a Lagrange multiplier function in order to weakly satisfy continuity conditions across the
fluid-structure interface. Finally, in Belibassakis and Athanassoulis (2009) the continuous
coupled-mode formulation, introduced in Belibassakis and Athanassoulis (2005), is extended
for the case of an infinite thin plate with variable thickness and non-negligible draft, while in
Athanassoulis and Belibassakis (2009) the formulation is further extended to account for an
infinite structure of moderate thickness.
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Thesis Overview

Objectives and Methodology

The present thesis aims at the development of novel methods for the simulation and study
of the hydroelastic interaction between linear ocean waves and large, floating bodies in a
general inhomogeneous setting. The main objective is the derivation of suitable mathematical
formulations for the problem at hand, targeting the development of robust numerical tools
based on the FE method. More specifically the proposed methods, constructed to treat both
frequency domain and transient hydroelastic problems, account for;

• geometric and material inhomogeneity in the floating, elastic body.
• shear deformation effects, that become significant as the incident wavelength to the

structure is comparable to its thickness.
• general bathymetric profiles and the consistent treatment of their effects.

In the frequency domain, the general 3D ocean waveguide with a finite section of the
upper surface constrained by the presence of a floating elastic body is considered. Subse-
quently, instead of directly tackling the coupled equations of structural and fluid motion, the
modal expansion technique is employed to express the plate response as a series representation.
The aforementioned expansion, allows for the formulation of a series of component radiation
problems corresponding to the unit-amplitude modal flexure of the inhomogeneous structure
(Bishop and Price, 1976; Taylor and Waite, 1978). Such ’component’ radiation problems are
derived on solely kinematic considerations, which are posed on the hydroelastic surface, thus
achieving the decoupling of structural dynamics and fluid flow. Furthermore, the plate modal
expansion is prolific in a regime where the unknown velocity potential is decomposed into its
radiation and diffraction components (Taylor and Eatock Taylor, 2007), which is a common
in seakeeping practices. The combined approach permits the total wavefield solution to be
expressed as the summation of component solutions to distinct hydrodynamic subproblems.
Such decomposition techniques, as opposed to hydroelastic schemes that consider the coupled
equations of motion directly, employ a suitable set of basis functions to represent the elastic
body response. The ’dry’, in vacuo modes of the structure present a natural choice. The basis,
as opposed to ’wet’ modes, essentially neglects the hydrodynamic pressure field effects which
are not known a priori (Newman, 1994). The choice implicitly leads to all hydrodynamic loads
to be externally applied to the structure (Bishop and Price, 1976).

The benefits of the employed decomposition approach, featuring the ’dry’ modes for plate
response representation, over hydroelastic schemes are listed below;

� The ab initio satisfaction of the free plate edge conditions. The employment of ’dry’ flex-
ural modes in the deflection representation guarantees the satisfaction of zero-moment
and zero-shear conditions on the plate edges. Considering finite structures of general
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geometry, the explicit satisfaction of free-edge conditions can become computationally
cumbersome. Additionally, the ’dry’ mode approach bypasses the impediment of refor-
mulating the free edge-conditions when different plate theories are employed for structural
modelling, thus enhancing the versatility of the method. Notably, the relevant complex-
ity is transferred to the in vacuo basis calculation, i.e. the solution of a free vibration
problem for the unconstrained, inhomogeneous structure.

� The decomposition, apart from the partial decoupling of structural motion from the hy-
drodynamics, allows for the formulation of a series of significantly ’simpler’ subproblems.
These subproblems are posed solely on kinematic considerations for the hydrodynamics
and straightforwardly assume generalizations in an inhomogeneous setting. Another re-
lated benefit is the parallelisation potential of the proposed method since in general the
formulated subproblems can be tackled independently.

As mentioned in the prequel, plate response decomposition leads to the formulation of a
series of component hydrodynamic problems. The total wavefield is expressed as the summa-
tion of component solutions corresponding; to the propagating wavefield, computed over the
inhomogeneous waveguide without the presence structure, the diffracted solution due to the
body remaining fixed in waves and a series of radiation component solutions corresponding to
the unit-amplitude flexural modes of the structure. Notably, all of the component subproblems
are treated numerically due to the inherent inhomogeneity. Since the total solution accuracy
is heavily dependent on the achieved accuracy in each component solution the approach could
be labelled ’inefficient’ in terms of computational resources compared to a direct approach.
However, mature modular methods developed separately for the treatment of hydrodynamics
and reduced elasticity theories serve well the proposed approach. Additionally as the series of
problems are essentially decoupled, parallel processing can significantly accelerate the proposed
method and make it competitive.

Next, towards the construction of FEM-based schemes a Weighted Residuals approach is
adopted for the derivation of suitable permissive weak forms of the component hydrodynamic
problems. For the radiation-type subproblems, referring to those that assume radiative so-
lutions at infinity, continuity restrictions must hold on the cylindrical interface between the
free-surface and plate-covered subregions. To circumvent the complexity of constructing suit-
able FEM subspaces that ab initio satisfy the essential conditions on the interface, a constrained
reformulation of the above typical problem is considered. To this end, a Lagrange multiplier
function, defined on the fictitious interface, is employed to derive an alternative mixed-field
variational formulation aiming at the weak satisfaction of continuity requirements across the
interface.

Subsequently, appropriate multi-modal representations for the unknown velocity poten-
tial functions are employed to achieve the dimensionality reduction of the deduced varia-
tional forms, valid on the prismatic waveguide. The vertical representations are appropriately
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constructed as to explicitly satisfy the kinematic conditions on the fluid column, in both
free-surface and plate covered subregions. Moreover, both employed vertical structures are
enhanced by an additional mode that aims at the consistent satisfaction of the boundary con-
dition on the sloping seabed, originally introduced in Athanassoulis and Belibassakis (1999).

Concerning the modelling of the floating body, the Kirchhoff-Love thin plate theory (CPT)
and the First Order Shear deformation theory (FSDT), able to simulate the dynamics of
moderately thick plates by accounting for first order shear deformation effects and rotary
inertia, are employed. In the context of the proposed method, structural modelling is essentially
reduced to the consideration of a free vibration problem for the unconstrained inhomogeneous
body and the satisfaction of pressure equilibrium on the wetted surface. The former is solved
numerically by means of the finite element method to account for material and geometric
inhomogeneity, while the latter completes the coupling. Enforcing the dynamic condition
weakly by a Galerkin scheme deduces the complex amplitude coefficients employed in the
plate and radiation wavefield expansions that facilitate the final solution composition.

In the time domain, the analysis is restricted to the 2D inhomogeneous ocean waveguide.
In this case, the coupled equations of fluid and structural motion are tackled directly. The
slender, elastic body is modelled again by means of reduced elasticity theories, while pressure
equilibrium is considered as the coupling mechanism. Confined in shallow depth, the Shallow
Water Equations are employed for the hydrodynamic modelling. The thin, inhomogeneous
elastic strip structure that is assumed to undergo cylindrical bending under wave excitation,
is modelled by the CPT and Gao’s nonlinear theory under plane strain assumptions (Gao,
1996). The latter, formulated with large deflection but small strains assumption, was chosen
as to conduct a preliminary assessment of nonlinear effects in the structural modelling. The
Weighted Residuals Method is once again employed for the derivation of an equivalent weak
coupled problem for the solution of which a FE scheme is subsequently devised. Special hy-
droelastic elements are constructed for the spatial discretization of the 1D system of equations.
The elements implement a 𝐶0 approximation for the unknown velocity potential function and
𝐶1 for the beam deflection. The discrete system is subsequently integrated in time by means
of a time marching scheme.

It is noted that due to space considerations, the analysis of the transient problem is only
briefly delineated at the last part of the thesis, while the corresponding research contributions
in scientific journals are also included for the reader’s reference.

Outline

The thesis is divided in five Parts. Parts I-III, contemplate the problem formulation in the
frequency domain which is the main focus of the present manuscript. In Part IV, the modelling
of transient hydroelastic phenomena in a shallow-water regime is examined. The final part is
comprised of Appendices with relevant added content.
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Part I, containing Chapters 1–4, focuses on the physical and mathematical modelling of
the problem at hand.

In Chapter 1, the physical considerations and assumptions employed in the mathematical
modelling of the linear hydroelastic problem are explored in detail. The linear problem in the
frequency domain is decomposed in its radiation and diffraction components while the plate re-
sponse in expanded in its in vacuo flexural modes. The latter results in a series of hydrodynamic
subproblems assuming radiative solutions to infinity, coined under the term ’radiation-type’
for simplicity, and a transmission problem in terms of the unknown propagating wavefield so-
lution in the 3D waveguide, neglecting the structure. The employed solution strategy focuses
on the numerical treatment of the aforementioned subproblems and is presented at the end of
the chapter.

In Chapter 2, the basic physical considerations describing the structural motion of the
floating body in the adopted regime are discussed. For completion, CPT and FSDT theories,
along with the corresponding free vibration problems employed in the thesis context, are briefly
presented.

In Chapter 3, the decomposed hydrodynamic subproblems are recast in a weak form as
a stepping stone towards the construction of a FEM-based numerical scheme. The Weighted
Residuals Method is adopted for the weak form derivation. Radiation-type problems assume
a mixed, two-field variational formulation by means of a Lagrange multiplier function which is
employed for the weak satisfaction of transmission conditions across subdomain interfaces.

Chapter 4 presents the dimensionality reduction of the deduced weak problems by means
of a vertical multi-mode representation for the wave potential.

The next part, Part II (Chapters 5–7) focuses on the implementation of the Finite Element
Method for the solution of the reduced weak problems and other computational aspects of the
proposed numerical scheme.

In Chapter 5, the finite element approximation spaces and domain partitions for the 1D
and 2D formulations of the reduced hydrodynamic subproblems are constructed. The discrete
weak problems are derived and discussed. Moreover, the adopted 𝐶1 and 𝐶0 approximations
for the 1D and 2D structural eigenvalue problems respectively are briefly presented.

Chapter 6 focuses on domain truncation techniques. An Optimal Perfectly Matched Layer
is implemented in the mixed weak forms. Numerical investigation of the PML-FEM scheme
is carried out for the scalar Helmholtz equation in the 2D plane featuring a circular inclusion.
Applications in the inhomogeneous ocean waveguide are also examined to assess the robustness
of the numerical scheme.

In Chapter 7, Galerkin schemes aiming at the satisfaction of the pressure condition on the
wetted surface and the calculation of the complex amplitude coefficients is presented.

Part III, summarizes the numerical results obtained in the 2D and 3D ocean wave guide.
In Chapter 8, numerical results for a series of configurations are presented in the 2D waveg-

uide, while Chapter 9, focuses on results derived in the 3D setting. A series of comparisons
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against results obtained in the literature are carried out in 2D, showing the excellent agreement
of the present method with established research.

The last part of the thesis, Part IV summarizes the key elements of the proposed methods
for time domain analysis of the hydroelastic problem.

All produced algorithms were implemented in Matlab and the thesis manuscript was
compiled in LATEX.

Original Contributions

The present thesis introduces FEM-based numerical schemes for the hydroelastic interactions
in the inhomogeneous ocean wave guide.

In the frequency domain, a novel solution strategy is proposed for the treatment of the
hydroelastic interactions between linear waves and floating, elastic bodies of a general geometry
in the inhomogeneous ocean environment. Notable contributions in the field are given in the
points below,

• A mixed formulation is introduced to recast variational, ’radiation-type’ subproblems
as saddle-point. The latter is explored in Chapter 3. By considering a mixed weak
form of the problem at hand, the complexity of constructing conforming trial function
spaces that ab initio satisfy the Dirichlet type conditions on the interface between free-
surface and plate-covered regions is avoided. The employed Lagrange multiplier function
allows for the weak satisfaction of transmission on the interface, while the alternative
formulation permits the construction of conventional approximation subspaces for FE
implementation. The latter approach leads to flexible FEM-based schemes, susceptible
to h-p refinement. Moreover, the formulation hold value for the theoretical investigation
of stability conditions.

• Towards the dimensionality reduction of the problems defined in the prismatic waveg-
uide, enhanced multi-modal vertical representations for the velocity potential functions
are employed following the works of Athanassoulis and Belibassakis (1999), Belibassakis
and Athanassoulis (2005) and Gerostathis et al. (2016). The constructed FEM-based
scheme targets leads to the relaxation of the 𝐶2 smoothness requirement introduced
in the latter contributions, thus enabling the treatment of more general bathymetric
profiles, while the numerical scheme remains rapidly convergent. The generalised multi-
modal Kantorovich approach for the dimensionality reduction of the weak hydrodynamic
problems is examined in Chapter 4).

• A PML-FEM scheme is introduced for computational domain truncation. Following
the work of Bermúdez et al. (2004) on the exterior Helmholtz problem, an unbounded
absorbing function is employed for solution attenuation in the inhomogeneous waveguide.
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The scheme is initially adapted to treat the Modified Mild Slope Equation (MMSE) and
subsequently for intermediate depth and the multi-modal representation of the unknown
velocity potential. In Chapter 6, numerical investigation of the proposed scheme and its
convergence properties are discussed.

• Finally, the proposed method is able to treat structural inhomogeneity and capture shear
deformation effects while accounting for general geometry in a straight forward manner.
Due to the adopted decoupling approach that is employed for the hydrodynamics and
structural mechanics, higher-order plate theories can be incorporated for the latter with
minor adjustments to the methodology.

It is mentioned that the mixed-formulation proposed for the radiation-type subproblems
confined in the 2D setting, is presented in Karperaki and Belibassakis (2021). In the same work,
the details of the employed dimensionality reduction are given. Finally, a series of validations
and numerical experiments provide an insight into the developed methodology.

Moreover, the optimal PML-FEM scheme for linear water wave (MMSE) and hydroacous-
tic propagation and scattering in the truncated 2D plane is presented in Karperaki et al.
(2019). The convergence characteristics of the method and a range of numerical experiments
are included in the aforementioned contribution.

In the time domain, special hydroelastic elements were proposed for the treatment and
investigation of the coupled problem in the shallow water limit. Notable contributions in the
field are given in the points below,

• Novel conforming hydroelastic elements were constructed, featuring different approxima-
tions for the velocity potential and the structural deflection. The developed FEM tools,
able to account for inhomogeneities, are employed for the study of the underlying physics
and provide insight into hydroelastic phenomena.

• The developed numerical tools are employed in the assessment of non-linear effects in-
corporated by means of the coupled Shallow Water Equations and the non-linear Gao
beam (Gao, 1996) accounting for moderately large deflections.

In Papathanasiou et al. (2015b), extending a previous work by Papathanasiou et al. (2015a),
the developed numerical schemes are applied in the transient, hydroelastic modelling of ice
shelves under long-wave excitation. Motivated by the 2011, Sultzberger Ice Shelf calving event
(Brunt et al., 2011), a time-domain analysis was carried out to determine the critical bending
moment profiles under excitation. The ice shelf was modelled as a thin, inhomogeneous, can-
tilever beam and the linearised shallow water equations were employed for the hydrodynamics.
Subsequently, the hydroelastic analysis of an inhomogeneous, thin structure, elastically con-
nected to the seabed is presented in Karperaki et al. (2016). In the aforementioned paper,
the numerical tools are employed in the study of response mitigation and energy extraction
potential of elastic connectors mounted on the edges of elastic, floating bodies.
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To summarize the author’s contributions, scientific publications produced in the context of
the present thesis are listed below,

(P1): Karperaki, A. (2015). FEM Hydroelastic Models with Application to the Nonlinear
Response of Large Floating Bodies in Shallow Wave Conditions. Procedia Computer
Science, 66:122–131, https://doi.org/10.1016/j.procs.2015.11.015.

(P2): Karperaki, A., Belibassakis, K., and Papathanasiou, T. (2016). Time-domain, shallow-
water hydroelastic analysis of VLFS elastically connected to the seabed.Marine Struc-
tures, 48:33-51, ttps://doi.org/10.1016/j.marstruc.2016.04.002.

(P3): Karperaki, A. E., Papathanasiou, T. K., and Belibassakis, K. A. (2019). An optimized,
parameter-free PML-FEM for wave scattering problems in the ocean and coastal environ-
ment. Ocean Engineering, 179:307–324, https://doi.org/10.1016/j.oceaneng.2019.03.036.

(P4): Karperaki, A. E. and Belibassakis, K. A. (2021). Hydroelastic analysis of Very Large
Floating Structures in variable bathymetry regions by multi-modal expansions and FEM.
Journal of Fluids and Structures, 102:103236,https://doi.org/10.1016/j.jfluidstructs.
2021.103236.

Moreover, the author collaborated in a number of themes, relevant to the broad context of
the thesis. The aforementioned collaborations led to the following,

(CO1): Papathanasiou, T. K., Karperaki, A. E., Theotokoglou, E. E., and Belibassakis,
K. A. (2015b). Hydroelastic analysis of ice shelves under long wave excita-
tion.Natural Hazards and Earth System Sciences, 15(8):1851–1857,https://doi.org/10.
5194/nhess-15-1851-2015.

(CO2): Papathanasiou, T. K., Karperaki, A. E., and Belibassakis, K. A. (2019b). On the
resonant hydroelastic behaviour of ice shelves. Ocean Modelling, 133:11–26, https:
//doi.org/10.1016/j.ocemod.2018.10.008.

(CO3): Anevlavi, D. E., Filippas, E. S., Karperaki, A. E., and Belibassakis, K. A. (2020).
A nonlinear BEM-FEM coupled scheme for the performance of flexible flapping-foil
thrusters. Journal of Marine Science and Engineering, 8(1), 56, https://doi.org/10.
3390/jmse8010056.

(CO4): Karathanasi, F., Karperaki, A., Gerostathis, T., and Belibassakis, K. (2020). Offshore-
to-Nearshore transformation of wave conditions and directional extremes with application
to port resonances in the bay of Sitia-Crete. Atmosphere 11(3), 280, https://doi.org/10.
3390/atmos11030280.

Finally, the following collaborative works, relevant to the context of the present thesis were
published in international conference proceedings,

(CP1): Karperaki, A. E., Belibassakis, K. A. and Papathanasiou, T. K. (2015). Propagation
of acoustic-gravity waves in inhomogeneous ocean environment generated by sea bottom
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deformation, 8th GRACM International Congress on Computational Mechanics, Volos,
Greece, July 12-15, 2015.

(CP2): Karperaki, A.E., Belibassakis, K. A., Papathanasiou,T. K. Markolefas, S. I. (2015).
Higher-order FEM for nonlinear hydroelastic analysis of a floating elastic strip in shallow-
water conditions, VI International Conference on Coupled Problems in Science and En-
gineering (COUPLED PROBLEMS 2015), B. Schrefler, E. Onate and M. Papadrakakis
(Eds.), San Servolo, Venice, Italy, May 18-20 2015.
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mode system for the near-trapping of water waves in the presence of variable bathymetry,
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Physical and Mathematical
Modelling





Chapter 1

Mathematical Description

The hydroelastic problem, relevant to floating elastic body applications in the in-
homogeneous ocean waveguide, is derived from the coupling of Airy’s water wave
theory and reduced elasticity models governing the flexural motion of the structure.
The present chapter explores the governing equations of the underlying phenom-
ena, as well as the coupling between hydrodynamics and the structural response of
the floating body. An insight into the adopted solution strategy is also provided
at the end of the chapter.

1.1 Statement of the Hydroelastic problem

Modelling wave-structure-seabed interaction dictates the simulation of complex hydrodynamic
transformations, such as refraction due to a varying seabed, diffraction due to the presence of
the floating body and radiation due to the excitation-induced flexural motion. In a linearised
regime, the hydroelastic problem, defined in the inhomogeneous ocean waveguide can be effec-
tively treated in the frequency domain. To this end, the present analysis is restricted to the
implementation of small-amplitude wave theory for the hydrodynamic modelling and linear
reduced elasticity models for the simulation of the structural response. The floating body is
assumed to be slender within the limits of reduced plate models as discussed in the sequel,
while slenderness justifies the adopted negligible-draft assumption.

The examined configurations consider the two and three-dimensional ocean waveguide, with
a part of the free surface constrained by a thin floating body. Regular waves propagate from
the open water region and interact with the seabed and structure. Within the scope of the
present thesis, a Cartesian coordinate system (x, 𝑧) is adopted, with x ∈ ℝ𝑑, 𝑑 = 1, 2, denoting
the horizontal coordinates vector (𝑥1, 𝑥2). Moreover, when purely two-dimensional motions are
considered, i.e. 𝑑 = 1, 𝑥2-dependence is omitted and the notation simplifies to 𝑥1 ≡ 𝑥. Time
dependence is denoted with 𝑡. Focusing on linear water wave propagation, the unbounded fluid
layer in two and three dimensions is considered. An inviscid and incompressible fluid occupies
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Figure 1.1 Domain Configuration (3D)

the layer, which is confined above by a free material surface and below by a fixed impermeable
seabed described by ℎ(x). Towards the reduction of computational efforts, the bathymetry
without any loss of generality is considered as a superposition of a background, parallel contour
bathymetry ℎ𝑖(𝑥) and a variable bathymetry containing 3D bathymetric features ℎ𝑑(x). Thus,
it generally holds that ℎ(x) = ℎ𝑖(𝑥)+ℎ𝑑(x). This assumption is not restrictive in any way and
will be revisited in the sequel. Following classical conventions, the z-axis is directed vertically
upward, while surface 𝑧 = 0 coincides with mean water level. Assuming furthermore that fluid



1.1 Hydroelastic Problem | 19

motion is irrotational, velocity u can be expressed by the scalar potential Φ(x, 𝑧; 𝑡), such as
u = ∇Φ.

The fluid region of interest is defined as the layer,

D(x, 𝑧) = {(x, 𝑧) ∈ ℝ𝑑+1, −ℎ(x) < 𝑧 < 0}.

Towards the aim of formulating the hydroelastic problem in a general topography setting,
the naturally unbounded domain of interest is decomposed into a finite, closed subdomain
Ω ⊂ D ⊂ ℝ𝑑+1, with smooth boundary Γ ≡ 𝜕Ω, and its exterior Ω∗. The co-joint, lateral
boundary between Ω and Ω∗ is denoted as Γ𝑐, such that D = (Ω\Γ𝑐)∪Ω∗. Without any loss of
generality, inhomogeneity in the form of abrupt seabed variations and the presence of a localised
scatterer that is the floating structure, is assumed to be contained within Ω. Beyond Γ𝑐, the
seabed remains generally constant 1. Moreover, the upper and bottom surface boundaries,
restricted in Ω are denoted as Γ𝑓 and Γ𝑏 respectively (Fig. 1.1(i)). A section of Γ𝑓 , is occupied
by an arbitrarily-shaped, zero-draft floating body. Thus, The mean water level is assumed to
coincide with the mid-plane of the body. The boundary of its orthographic projection on the
(𝑥1, 𝑥2) plane is denoted as 𝑃 (see Fig. 1.1(ii)). The presence of the structure leads to the
further decomposition of Ω into two non-overlapping subdomains, Ω1 and Ω2. The projector
lines constitute a geometrically conforming cylindrical interface between subregions denoted as
𝑆, such as 𝑆 = 𝜕Ω1 ∩ 𝜕Ω2, and Ω = (Ω1 ∪ Ω2) \𝑆. Subregion Ω1 corresponds to the free fluid
surface region of the waveguide, while Ω2 to the plate-covered enclosed region (Fig. 1.1(i)). An
analogous decomposition is adopted for the upper and bottom surface boundaries, hence Γ𝑓=
Γ1

𝑓 ∪ Γ2
𝑓 and Γ𝑏= Γ1

𝑏 ∪ Γ2
𝑏 . Finally, the projections of Ω1 and Ω2 on (𝑥1, 𝑥2) are denoted as Ω̆1

and Ω̆2 respectively (Fig. 1.1(ii)).
Under the small-wave amplitude and structural motion assumptions, the time harmonic

fluid motion is described by means of Φ(x, 𝑧; 𝑡) = Re (−𝛼0𝑔
𝜔 𝜑(x, 𝑧) exp(−i𝜔𝑡)) for a single radian

frequency 𝜔 and amplitude 𝛼0. Furthermore, the plane wave excitation is assumed to propa-
gate at an oblique direction 𝜃 with respect to the bottom contours. Similarly, all oscillatory
quantities are multiplied by a complex factor to eliminate time-dependence. A pair of functions
are employed for the description of the mean upper surface elevation in the two subregions,
𝜁(x, 𝑧; 𝑡) = Re (𝜂(x, 𝑧) exp(−i𝜔𝑡)) , ∀x ∈ Γ1

𝑓 and 𝑊(x, 𝑧; 𝑡) = Re (𝑤(x, 𝑧) exp(−i𝜔𝑡)) , ∀x ∈ Γ2
𝑓 .

Throughout this work, the wavenumber of an oscillation is denoted with 𝑘 and the wavelength
as λ = 2𝜋𝑘−1.

Following the above assumptions, the boundary-value problem corresponding to the coupled
fluid-structure motion is formulated in Ω. Considering mass conservation in the region of
interest, the fluid incompressibility assumption leads to the Laplace equation, with the velocity

1The adoption of a PML layer for computaional domain truncation, described in Chapter 6 allows for the
relaxation of the constant depth assumption in the exterior region which will be characterised by parallel,
straight bathymetric contour lines that span between regions of constant depth
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potential function satisfying,

∇2𝜑 = 0, (x, 𝑧) ∈ Ω. (1.1)

The above field equation is supplemented by boundary conditions on the unconstrained upper
surface and seabed. For the free-surface region, linearised kinematic and dynamic conditions
read respectively,

𝜕𝑧𝜑 + i𝜔𝜂 = 0, (1.2)
i𝜔𝜑 + 𝑔𝜂 = 0, on Γ1

𝑓 (𝑧 = 0). (1.3)

The above Eqs. (1.2) and (1.3) are combined in the following condition valid once again on
the free fluid surface,

𝜕𝑧𝜑 − 𝜇𝜑 = 0, on Γ1
𝑓 (𝑧 = 0), (1.4)

with 𝜇 = 𝜔2𝑔−1. On the wetted surface of the floating structure, the normal fluid velocity
must equal the structural velocity in the same direction. In the linearised regime, the above
kinematic condition is applied on the mid-plane (neutral line) of the structure. The equilibrium
surface coincides with the section of the upper boundary occupied by the floating body and
thus the aforementioned condition is reduced to,

𝜕𝑧𝜑 = −i𝜔𝑤, on Γ2
𝑓 (𝑧 = 0). (1.5)

The wave-structure coupling is completed by means of the pressure equilibrium equation, valid
on the constrained section of the free-surface,

L(w) = i𝜌𝜔𝜑 − 𝜌𝑔𝑤, on Γ2
𝑓 (𝑧 = 0), (1.6)

where 𝜌 denotes the fluid density. The notation L(⋅) is used to imply the reduced elasticity
operator governing structural motion, while w = (𝑤, 𝜃𝑥1

, 𝜃𝑥2
) is the vector containing the

degrees of freedom of the plate, namely the deflection 𝑤 and the rotations 𝜃𝑥𝑑
, 𝑑 = 1, 2

about the 𝑥1 and 𝑥2 axes. The employed plate models simulating flexural motion under wave
excitation and the final form assumed by L(w) is the focus of Chapter 2.

Moreover, on the impermeable, variable seabed the kinematic condition reads,

𝜕𝑛𝜑 = 0, on Γ𝑏. (1.7)
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The above problem is forced by an oblique-incident wave propagating from the exterior region
Ω∗, assuming a velocity potential of the form,

𝜑∗(x, 𝑧) = cosh (𝑘 (𝑧 + ℎ))
cosh (𝑘ℎ) exp{i𝑘 (𝑥1 cos(𝑎) + 𝑥2 sin(𝑎))}, (x, 𝑧) ∈ Ω∗. (1.8)

In Eq. (1.8), the wavenumber 𝑘 is the real root of the local dispersion relation in the region of
incidence 𝜇ℎ = 𝑘ℎ tanh(𝑘ℎ).

Finally, to ensure the solvability of the above BVP, bounded outgoing solutions at infinity
are assumed,

thus |𝜑| , |∇x𝜑| bounded as |x| → ∞. (1.9)

Following Mei et al. (2005) and others, a mathematically rigorous expression of the above
condition is formulated by means of the superelement exterior region Ω∗. As Ω∗ does not
support inhomogeneity, closed form analytic expressions for the wave field that explicitly satisfy
radiation conditions at infinity can be written. Subsequently, matching of pressure and velocity
conditions at the contour surface Γ𝑐 are transformed into approximate termination conditions
similar to Dirichlet-to-Neumann (DtN) formulations. The above truncation technique involving
the super element concept is further discussed in Section 3.2.

1.2 Problem Decomposition

The present section focuses on the proposed treatment of the hydroelastic problem defined in
the frequency domain. As previously mentioned an incident wavetrain propagating in layer D

undergoes a number of complex transformations. The refracted wave field, due to the varying
seabed topography, will be diffracted to produce a scattered wave field and induce the flexural
motion of the deformable body which in turn produces a radiating field.

In an attempt, to partially decouple fluid dynamics and structural mechanics the underlying
linearity imposed by the modelling assumptions outlined in Section 1.1 is invoked. The plate
response is represented by means of its in vacuo flexural modes, denoted as 𝑤ℓ, and complex
amplitude coefficients 𝑐ℓ. The decomposition is conveniently placed in a regime where the
wave field solution is decomposed into its radiation and scattered components. Hence, by
the superposition principle, the unknown velocity potential is decomposed in a propagating, a
diffraction and a radiation component. next To this end, the classical decomposition (Newman,
1994) is followed in Section 1.2.1 and the eigenfunction expansion approach is followed in
Section 1.2.2.
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1.2.1 Decomposition in Radiation and Diffraction Components

By means of the imposed linearity assumptions the velocity potential function 𝜑(x, 𝑧) is de-
composed into a scattered and a radiation potential as,

𝜑 = 𝜑𝑆 + 𝜑𝑅. (1.10)

The scattered solution 𝜑𝑆, represents the generated wave field in the presence of the floating
body, assumed to remain fixed in waves, while the radiation potential, 𝜑𝑅, is generated by
the wave-induced flexural motion of the elastic body. The scattered wave field can be further
decomposed into a propagating and a diffracted component as,

𝜑𝑆 = 𝜑𝑃 + 𝜑𝐷. (1.11)

In the above, the propagating component solution 𝜑𝑃 carries the transformations due to seabed
refraction, while the diffracted potential 𝜑𝐷, represents the disturbance of the propagating wave
field 𝜑𝑃 due to the presence of the presumed fixed body.

The propagating wave field 𝜑𝑃 is calculated as the solution of a transmission problem,
formulated in the region of interest in absence of the elastic body. Potential solution 𝜑𝑃 satisfies
the Laplace equation Eq. (1.1), and the kinematic bottom boundary condition Eq. (1.7), while
in absence of the constrained section of the upper surface boundary, the free-surface condition
Eq. (1.4) is enforced on the entire Γ𝑓 . More details are given in Section 3.3.1.

The diffracted potential 𝜑𝐷, also satisfies the field equation Eq. (1.1), the bottom boundary
condition Eq. (1.7) and the free-surface boundary condition Eq. (1.4). On Γ2

𝑓 the kinematic
condition, Eq. (1.5), is substituted with,

𝜕𝑧𝜑𝐷 = −𝜕𝑧𝜑𝑃 , on Γ2
𝑓 (𝑧 = 0). (1.12)

To ensure a unique solution, 𝜑𝐷 must also satisfy radiation conditions at the far field. It is
obvious from condition (Eq. (1.12)) that the solution of the reflection-transmission problem in
Ω, precedes the treatment of the diffraction problem, as the latter requires the 𝜑𝑃 Neumann
data on the constrained section of the free-surface modelled as a fully reflective boundary.

Finally, the radiation potential 𝜑𝑅 is naturally expected to also satisfy the field equation
Eq. (1.1), the bottom boundary condition (1.7), the upper surface kinematic conditions (1.4)
and (1.5), and remain bounded at infinity. The kinematic condition Eq. (1.5) is rewritten for
the radiation component of the total solution 𝜑𝑅,

𝜕𝑧𝜑𝑅 = −i𝜔𝑤, on Γ2
𝑓 (𝑧 = 0). (1.13)

The satisfaction of the above boundary condition involves the solution of the equation of
motion for the structure. Employing a modal expansion for the plate deflection will reformulate



1.2 Problem Decomposition | 23

Eq. (1.13) as examined in the sequel and allow and circumvent the complexity of solving the
plate equation of motion.

Notably, the dynamic condition Eq. (1.6) on the coupling surface that is valid for the total
wave field further binds the decomposed solutions 𝜑𝑅 and 𝜑𝐷.

1.2.2 Modal Expansion for Plate Motion

Next, the following series expansion for the plate deflection in terms of the structural modal
functions {𝑤ℓ}, and the complex amplitudes {𝑐ℓ},

𝑤(x) =
∞

∑
ℓ=1

𝑐ℓ𝑤ℓ(x). (1.14)

A natural choice for {𝑤ℓ} is the in vacuo eigenbasis of the inhomogeneous structure, gen-
erated as the solution of the corresponding eigenvalue problem. Thus, it is understood that
the synchronous treatment of the coupled equation for vertical motion on the hydroelastic
surface is overly avoided. The latter is now substituted with the free vibration problem of an
unconstrained inhomogeneous plate. In a general setting the eigenvalue problem can only be
treated numerically. To this end, FEM based solutions are considered as examined in a sub-
sequent section of the present thesis (Section 5.2). Furthermore, the employment of expansion
Eq. (1.14) allows for the corresponding representation for the radiation potential,

𝜑𝑅(x, 𝑧) =
∞

∑
ℓ=1

𝑐ℓ𝜑ℓ(x, 𝑧). (1.15)

where 𝜑ℓ denote the unit-amplitude fluid motion generated by the ℓth modal function 𝑤ℓ.
Since, the kinematic condition Eq. (1.13) must hold for 𝜑𝑅 upon substitution of expansions
(1.14) and (1.15), as well as for every pair (𝜑ℓ, 𝑤ℓ) forming a radiation subproblem, the complex
amplitudes {𝑐ℓ} employed in the aforementioned representations must be the same. Thus for
each radiation wave field 𝜑ℓ, excited by modal function 𝑤ℓ, the kinematic condition (1.13) now
reads,

𝜕𝑧𝜑ℓ = −i𝜔𝑤ℓ, on Γ2
𝑓 (𝑧 = 0), for ℓ = 1, ...∞. (1.16)

Revisiting the expressions in Eqs. (1.10) and (1.11), the solution of the hydroelastic problem
presented in Section 1.1 is expressed based on the above as,

𝜑(x, 𝑧) = 𝜑𝑆 +
∞

∑
ℓ=1

𝑐ℓ𝜑ℓ(x, 𝑧). (1.17)

Notably, the above decomposition (Eq. (1.17)) is a corollary of the underlying linearity assump-
tion. The diffraction and radiation subproblems assume radiative solutions at infinity and will
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be referred as radiation-type subproblems henceforth. For brevity, the aforementioned prob-
lems will be presented in a unified manner implying that 𝜑0 ≡ 𝜑𝐷 for ease in presentation.
The component, radiation-type hydrodynamic subproblems satisfy a kinematic condition on
the coupling surface and are essentially decoupled from the dynamics of the structural re-
sponse. It is stressed that the wave-structure coupling is completed by the enforcement of the
pressure equation Eq. (1.6), involving the total potential.

1.3 Solution Strategy

By implementing the total wave field decomposition, expressed in Eq. (1.17) the treatment
of the full hydroelastic problem, presented in Section 1.1, is reduced to that of a series of
’simpler’ hydrodynamic subproblems which are decoupled from structural dynamics. The
aforementioned radiation-type problems are essentially formulated based on the kinematic
restrictions imposed on the coupling surface.

As already mentioned, for the ’dry’ mode series representation of the plate deflection
(Eq. (1.14)) the flexural modes {𝑤ℓ} and fundamental frequencies {𝜔ℓ} need to be calcu-
lated as the solutions of an in-vacuo eigenvalue problem for the inhomogeneous structure.
Subsequently, the eigensolutions {𝑤ℓ, 𝜔ℓ} are employed in the kinematic condition Eq. (1.13),
allowing for the formulation of the radiation-type subproblems 𝜑ℓ for ℓ = 1, ...∞.

Linear water wave propagation in the region of interest, in absence of the floating body
is treated independently from the above subproblems. The derived solution 𝜑𝑃 is similarly
employed in the formulation of the diffraction subproblem 𝜑ℓ for ℓ = 0. After the calculation of
𝜑ℓ, ℓ = 0, 1...∞ and 𝜑𝑃 , the only remaining unknowns in Eq. (1.17) are the complex amplitude
functions 𝑐ℓ, which are finally computed by enforcing the pressure Eq. (1.6) and implementing
the calculated solutions 𝜑ℓ, (ℓ = 0, 1...∞), 𝜑𝑃 and {𝑤ℓ, 𝜔ℓ}.

Based on the above discussion, a solution strategy with several discrete steps linked with
the treatment of formulated subproblems is adopted. The solution strategy is outlined in the
mindmap of Fig. 1.2 showing the interrelations between calculation steps. In the scope of the
present thesis, each of the steps comprising the strategy are addressed separately.

These solution steps are summarised as,

1. Treatment of the structural eigenvalue problem and the calculation of eigenpairs {𝑤ℓ, 𝜔ℓ}.
2. Treatment of the component radiation-type hydrodynamic problems:

• Propagation subproblem. Calculation of 𝜑𝑃 .
• Diffraction subproblem. Calculation of 𝜑ℓ for ℓ = 0, drawing from the calculated

𝜑𝑃 Neumann data.
• Radiation subproblems. Calculation of 𝜑ℓ for ℓ = 1, ...∞, utilizing computed eigen-

modes 𝑤ℓ.
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Solution Strategy

In vacuo
Structural
Eigenvalue
Problem
{𝑤ℓ, 𝜔ℓ}

Diffraction
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𝜑0

Water-Wave
Propagation

𝜑𝑃

Wave-
Structure
Coupling

𝜑, 𝑤, 𝜂

Radiation
subproblems

𝜑ℓ, ℓ =
1, ..., ∞

Figure 1.2 Solution Strategy for the linear hydroelastic problem

3. Satisfaction of the dynamic condition condition (1.6), by means of calculated solutions
𝜑ℓ, 𝜑𝑃 and {𝑤ℓ, 𝜔ℓ}

The numerical calculation of the defined subproblems pose several challenges. It is noted
that in the field of wave-seabed-structure interaction domains of interest inherently span over
large horizontal dimensions, hence capturing the effects of inhomogeneity for a range of exci-
tation wavelengths can become computationally daunting even in the 2D case. In the context
of the present work, FEM based schemes are proposed for solving the reduced weak formu-
lations of the hydrodynamic subproblems at hand. Dimensionality reduction is achieved by
the employment of a multi-mode vertical expansion for the potential functions in Ω1 and Ω2.
Finally, closure conditions are achieved by a Cartesian PML featuring unbounded absorbing
functions.





Chapter 2

Structural Motion

The structural motion of large floating structure is modelled by means of reduced
elasticity theories in the context of the present thesis. The following chapter at-
tempts a brief presentation of the employed structural plate theories for pure bend-
ing. The corresponding structural eigenvalue problems for both finite plates (2D
structure) and elastic strips (1D) under cylindrical bending assumptions are also
provided as a reference.

2.1 Structural Modelling

Within the scope of the present work the floating, elastic structure is modelled as a structural
plate. A plate is a flat solid, bounded by two parallel faces, which are considerably larger than
its thickness and a cylindrical surface (edge). In hydroelasticity, the aforementioned modelling
assumption is justified by the large plan form dimensions compared to the thickness of the
assumed floating structure. Homogeneous plates carry lateral loads by bending with zero
axial strain, while in-plane motions are completely decoupled by vertical motion in the linear
case implying small deflections. In the examined regime, the freely floating plate structure
undergoes pure bending under ocean wave excitation.

In structural elements modelled as plates the thickness-to-principal length ratio is no greater
than 1/10 allowing for the reduction of the 3D elasticity equations, since the horizontal di-
mensions can be considered prevalent. To derive the reduced elasticity theories of plates, a
justified assumption is made for the functional form of the vertical displacement field or the
stress field. Detailed accounts and investigations of established plate models are provided in
Reddy (2006). The present thesis considers the Classical Plate theory (CPT) or Kirchhoff’s
Thin Plate theory and the First-order shear deformation theory proposed by Mindlin (1951).
The two theories differ on the kinematic assumption for the rotation of the transverse nor-
mal section to the mid-plane of the structure. The CPT neglects the deformation caused by
transverse shear stress and is thus limited to slender plate applications. In the plate model
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by Mindlin, the CPT deficiency is remedied by refined kinematic assumptions that allows for
the consideration of first-order shear effects, making the model applicable to moderately thick
plates. The reader is directed for more details in the works of Fung et al. (2003); Reddy (2006).

2.2 Classical Plate Theory-(CPT)

The CPT is formulated under Kirchhoff’s hypotheses for plate kinematics. Assuming that the
neutral-plane coincides with the structure’s mid-line, i.e. is equidistant form the upper and
lower faces of the plate, the primary employed assumptions are summarised,

1. Straight transverse normals (perpendicular lines on the neutral mid-plane) remain straight
and normal after deformation -normal orthogonality assumption.

2. The points on the neutral-line move only vertically.
3. Transverse normals do not elongate after deformation.
4. Normal transverse stresses are assumed negligible -plane stress assumption.

The above assumptions allow the expression of all stress components in terms of vertical
displacement or deflection 𝑤(x) and the derivation of a partial differential equation governing
the vertical motion of the plate. Assumptions 1-3 are the kinematic constraints that lead to the
definition of the displacement fields, while point 4 simplifies the stress-strain relationship. More
specifically, statements 1 renders shear deformation effects negligible. Assumption 4 essentially
carries the dimensionality reduction of the formidable 3D case. The geometrical interpretation
of the kinematic assumptions is depicted in Fig. 2.1(i). Under the introduced assumptions
the rotations 𝜃𝑥1

(x), 𝜃𝑥2
(x) about the 𝑥1 and 𝑥2 axes respectively, coincide with the transverse

normals angles after deformation, restricted to the planes 𝑥1𝑧 and 𝑥2𝑧 respectively. Moreover,
due to the orthogonality assumption it holds,

𝜃𝑥1
= 𝜕𝑥1

𝑤, 𝜃𝑥2
= 𝜕𝑥2

𝑤. (2.1)

The above kinematic constraints lead to the equations of motion. Horizontal displacements
remain uncoupled from vertical motion in linear theory and thus they can be treated separately.
The equation governing the vertical motion of a thin plate with variable rigidity 𝐷(x) under
generalised normal action 𝑞(x; 𝑡) is written as,

𝐷∇4𝑊 + ∇2𝐷 ⋅ ∇2𝑊 + 2∇𝐷 ⋅ ∇(∇2𝑊)
−(1 − 𝜈) (𝜕2

𝑥1
𝐷𝜕2

𝑥2
𝑊 − 2𝜕𝑥1

𝜕𝑥2
𝐷𝜕𝑥1

𝜕𝑥2
𝑊 + 𝜕2

𝑥2
𝐷𝜕2

𝑥1
𝑊) + 𝜌𝑒𝜏𝜕2

𝑡 𝑊 =𝑞(x; 𝑡), (2.2)

with 𝐷 = 𝐸𝜏(x)3/12(1 − 𝜈2) involving plate thickness 𝜏(x) and the Young’s modulus 𝐸 and
Poisson’s ratio 𝜈 of the elastic material. The material density is given by 𝜌𝑒. In Eq. (2.2),
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(i) Classical Plate Theory (ii) 1st Order Shear Deformation Theory

Figure 2.1 Geometric illustration of kinematic considerations

the flexural rigidity inhomogeneity is attributed to thickness variation. Horizontal variability
of the material properties can also be considered without any added complexity.

Remark 1. Notably, in the pure bending regime where solely vertical motion is considered thick-
ness and material variations must be smooth enough to validate the expressions for bending and
twisting moment resultants employed in the homogeneous case Timoshenko and Woinowsky-
Krieger (1959). Consistent treatment of general heterogeneity would invalidate assumption 2,
implying that the neutral plane undergoes negligible in-plane deformations, and would require
the coupling of bending and membrane forces.

Solving, Eq. (2.2) would retrieve the vertical deflection distribution 𝑤(x). The employed
kinematic assumptions of CPT, and Hooke’s constitutive law for elastic materials leads to well-
defined variations through thickness for the stresses. It is convenient to address the stress-state
of a plate by means of the thickness integrated stress resultants, namely the bending 𝑀𝑥1

, 𝑀𝑥2

and twisting 𝑀𝑥1𝑥2
moments and shear forces 𝑄𝑥1

, 𝑄𝑥2
. Thus, for an isotropic plate with

smoothly varying flexural rigidity the bending moments are written in terms of 𝑤(x) as,

𝑀𝑥1
= −𝐷(x)(𝜕2

𝑥1
𝑤 + 𝜈𝜕𝑥1𝑥2

𝑤), (2.3)
𝑀𝑥2

= −𝐷(x)(𝜕𝑥2
𝜕𝑥1

𝑤 + 𝜈𝜕2
𝑥1

𝑤), (2.4)
𝑀𝑥1𝑥2

= −𝐷(x)(𝜈 − 1)𝜕𝑥2
𝜕𝑥1

𝑤. (2.5)

Additionaly, the shear forces are defined as,

𝑄𝑥1
= −𝜕𝑥1

[𝐷(x)(𝜕2
𝑥1

𝑤 + 𝜕2
𝑥2

𝑤)] , (2.6)

𝑄𝑥2
= −𝜕𝑥2

[𝐷(x)(𝜕2
𝑥2

𝑤 + 𝜕2
𝑥1

𝑤)] . (2.7)

The solution of the differential equation (2.2) requires the specification of two boundary
conditions on the plate edges, which are states for the deflection and slope or moment and
shear force or a combination of the two. For a completely free plate (unrestrained), all stress
resultants must vanish at the cylindrical surface, forming its edge. Next, considering the
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appropriate edge conditions for the completely free plate, the unit normal vector on the edge
surface n = [𝑛𝑥1

, 𝑛𝑥2
]𝑇 , pointing towards the edge exterior is defined. The moment and shear

force due to the normal and tangential stresses on the boundary edge are denoted as 𝑀𝑛, 𝑀𝑛𝑠
and 𝑄𝑛. All of the above stress resultants vanish on a free edge thus the corresponding
boundary conditions read,

𝑀𝑛 = 𝑀𝑥1
𝑛2

𝑥1
+ 2𝑀𝑥1𝑥2

𝑛𝑥1
𝑛𝑥2

+ 𝑀𝑥2
𝑛2

𝑥2
= 0, (2.8)

𝑀𝑛𝑠 = −𝑀𝑥1
𝑛𝑥1

𝑛𝑥2
+ 𝑀𝑥1𝑥2

(𝑛2
𝑥1

− 𝑛2
𝑥2

) + 𝑀𝑥2
𝑛𝑥1

𝑛𝑥2
= 0, (2.9)

𝑄𝑛 = 𝑄𝑥1
𝑛𝑥1

+ 𝑄𝑥2
𝑛𝑥2

= 0. (2.10)

The incorporation of the three boundary conditions (2.8-2.10) in the differential equation
(2.2) can not be carried out in a consistent manner. Kirchhoff showed that in the small-
deflection regime, the conditions on on the twisting moment and the shear force are not in-
dependent. Employing the effective shear force 𝑉𝑛, the conditions on a free edge are written
as,

𝑀𝑛 = 0, (2.11)
𝑉𝑛 = 𝑄𝑛 + 𝜕𝑠𝑀𝑛𝑠 = 0. (2.12)

The dynamic response of an elastic, thin structure is also supplemented by prescribed initial
conditions for 𝑤 and 𝜕𝑡𝑤.

In the frequency domain, which remains the focus of the present work, the pure bending
equation (2.2) is reduced to,

𝐷∇4𝑤 + ∇2𝐷 ⋅ ∇2𝑤 + 2∇𝐷 ⋅ ∇(∇2𝑤)
−(1 − 𝜈)(𝜕2

𝑥1
𝐷𝜕2

𝑥2
𝑤 − 2𝜕𝑥1

𝜕𝑥2
𝐷𝜕𝑥1

𝜕𝑥2
𝑤 + 𝜕2

𝑥2
𝐷𝜕2

𝑥1
𝑤) − 𝜔2𝜌𝑒𝜏(x)𝑤 =𝑞(x; 𝜔). (2.13)

And finally the free flexural vibration problem of the unrestrained, thin plate is posed by means
of the following eigenvalue problem,

𝐷∇4𝑤 + ∇2𝐷 ⋅ ∇2𝑤 + 2∇𝐷 ⋅ ∇(∇2𝑤)
−(1 − 𝜈)(𝜕2

𝑥1
𝐷𝜕2

𝑥2
𝑤 − 2𝜕𝑥1

𝜕𝑥2
𝐷𝜕𝑥1

𝜕𝑥2
𝑤 + 𝜕2

𝑥2
𝐷𝜕2

𝑥1
𝑤) − 𝜔2𝜌𝑒𝜏(x)𝑤 =0. (2.14)

supplemented by free edge conditions Eqs. (2.11) and (2.12). The eigensolutions of Eq. (2.14)
𝑤ℓ(x) and 𝜔𝑙(x) are the natural modes and 𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 of the structure respectively
and are functions of the inherent properties of the plate, i.e. elastic material characteristics
and geometry. The above eigenvalue problem with variable coefficients can only be treated
numerically. To this end, the Finite Element method will be employed for the approximation
of the unknown eigenpairs. The latter is explored in Chapter 5.
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2.3 First-Order Shear Deformation Theory-(FSDT)

The first-order deformation theory by Mindlin relaxes the orthogonality restriction on the
straight transverse normals which support constant rotation. Thus, statement 1 is rephrased
as,

1. Straight transverse normals (perpendicular lines on the neutral mid-plane) remain straight
but not orthogonal after deformation.

The rest of the kinematic assumptions introduced in CPT hold. The alleviation of the or-
thogonality constraint on the transverse normal introduces additional rotation, due to shear
deformation 𝛾𝑥1

, 𝛾𝑥2
referred as the shear angle. The geometric illustration of the kinematic

assumption is shown in Fig. 2.1(ii). Thus, the rotations 𝜃𝑥1
, 𝜃𝑥2

are independent of deflection
derivatives and defined as,

𝜃𝑥1
= 𝜕𝑥1

𝑤 + 𝛾𝑥1
, 𝜃𝑥2

= 𝜕𝑥2
𝑤 + 𝛾𝑥2

. (2.15)

Notably, the adopted kinematic assumption lead to the formulation of a theory that fails
to satisfy the zero shear force condition that the top and bottom plate surfaces. A shear
correction factor 𝜅𝑠 is introduced to remedy the above and compensate for the constant-
through-thickness shear stress assumption. The employed shear correction factor depends
on material properties, geometry and also loading and boundary conditions. The kinematic
assumption renders three independent degrees of freedom for the Mindlin plate, its deflection
𝑤(x) and rotations 𝜃𝑥1

, 𝜃𝑥2
, that include shear deformations in this case, and thus vertical

motion is expressed by three coupled equations expressing forces and moments equilibrium.
For the isotropic Mindlin plate with smoothly varying flexural rigidity the bending moments
are written in terms of the primary unknown fields,

𝑀𝑥1
= 𝐷(x)(𝜕𝑥1

𝜃𝑥1
+ 𝜈𝜕𝑥2

𝜃𝑥2
), (2.16)

𝑀𝑥2
= 𝐷(x)(𝜕𝑥2

𝜃𝑥1
+ 𝜈𝜕𝑥1

𝜃𝑥1
), (2.17)

𝑀𝑥1𝑥2
= 𝐷(x)(1 − 𝜈)

2 (𝜕𝑥2
𝜃𝑥1

+ 𝜕𝑥1
𝜃𝑥2

). (2.18)

Similarly, the shear forces are defined as,

𝑄𝑥1
= 𝜅𝑠𝐺𝜏(x) (𝜃𝑥1

+ 𝜕𝑥1
𝑤) , (2.19)

𝑄𝑥2
= 𝜅𝑠𝐺𝜏(x) (𝜃𝑥2

+ 𝜕𝑥2
𝑤) . (2.20)
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For free harmonic vertical motion the governing equations equations of an isotropic Mindlin
plate including the rotary inertia effects are written as,

𝜕𝑥1
[𝐷(𝜕𝑥1

𝜃𝑥1
+ 𝜈𝜕𝑥2

𝜃𝑥2
)] + 𝜕𝑥2

[𝐷(1 − 𝜈)
2 (𝜕𝑥2

𝜃𝑥1
+ 𝜕𝑥1

𝜃𝑥2
)]

−𝜅𝑠𝐺𝜏 (𝜃𝑥1
+ 𝜕𝑥1

𝑤) + 𝜔2𝐼𝑟(x)𝜃𝑥1
=0, (2.21)

𝜕𝑥2
[𝐷(𝜕𝑥2

𝜃𝑥2
+ 𝜈𝜕𝑥1

𝜃𝑥1
)] + 𝜕𝑥1

[𝐷(1 − 𝜈)
2 (𝜕𝑥2

𝜃𝑥1
+ 𝜕𝑥1

𝜃𝑥2
)]

−𝜅𝑠𝐺𝜏 (𝜃𝑥2
+ 𝜕𝑥2

𝑤) + 𝜔2𝐼𝑟(x)𝜃𝑥1
=0, (2.22)

𝜕𝑥1
[𝜅𝑠𝐺𝜏 (𝜃𝑥1

+ 𝜕𝑥1
𝑤)] + 𝜕𝑥2

[𝜅𝑠𝐺𝜏 (𝜃𝑥2
+ 𝜕𝑥2

𝑤)] + 𝜔2𝜌𝑒𝜏𝑤 =0, (2.23)

In the above system of equations, 𝐺 = 𝐸/2(1 + 𝜈) is the shear modulus and 𝐼𝑟 = 𝜌𝑒𝜏(x)3/12
is the secondary moment of inertia. The free edge conditions along the cylindrical boundary
of the plate read,

𝑀𝑛 = 𝐷(x) (𝜕𝑛𝜃𝑛 + 𝜈𝜃𝑠) = 0, (2.24)
𝑀𝑛𝑠 = 𝐷(x) (𝜕𝑛𝜃𝑛 + 𝜈𝜃𝑠) = 0, (2.25)
𝑄𝑛 = 𝜅𝑠𝐺𝜏(x) (𝜃𝑛 + 𝜕𝑛𝑤) = 0, (2.26)

where Eqs. (2.8)–(2.10) for the normal and tangential counterparts for the stress-resultants
hold.

2.4 Plate Strip theories

The reduced, 2D hydroelastic problem (𝑑 = 1) features an elastic floating structure extending
indefinitely in the direction vertical to the page i.e. in 𝑥2. In that case, the floating structure
is modelled as a plate strip undergoing cylindrical bending. The plane strain problem of
cylindrical bending under ocean wave action is formulated by means of the CPT and FSDT
examined in the previous subsections. In direct analogy the reduced equations are given below.

For a thin strip the governing equation of vertical motion reduces to,

𝜕2
𝑥 (𝐷(𝑥)𝜕2

𝑥𝑤) − 𝜔2𝜌𝑒𝜏(𝑥)𝑤 = 0, (2.27)

with free edge conditions,

𝑀𝑥 = 𝑀 = −𝐷(𝑥)(𝜕2
𝑥𝑤) = 0, (2.28)

𝑄𝑥 = 𝑄 = −𝜕2
𝑥 (𝐷(𝑥)𝜕2

𝑥𝑤) = 0. (2.29)
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For a moderately thick strip, the governing equations of vertical motion reduce to the
system corresponding to the Timoshenko beam model in plain strain,

𝜕𝑥 [𝜅𝑠𝐺𝜏(𝑥)( 𝜕𝑥𝑤 − 𝜃 )] + 𝜔2𝜌𝑒𝜏(𝑥)𝑤 =0, (2.30)

𝜅𝑠𝐺𝜏(𝑥) (𝜕𝑥𝑤 − 𝜃) + 𝜕𝑥 (𝐷𝜕𝑥𝜃) + 𝜔2 𝜌𝑒𝜏(𝑥)3

12 𝜃 =0, (2.31)

The corresponding free-end conditions now read,

𝑀𝑥 = 𝑀 = −𝐷(𝑥)(𝜕𝑥𝜃) = 0, (2.32)
𝑄𝑥 = 𝑄 = 𝜅𝑠𝐺𝜏(𝑥) (𝜕𝑥𝑤 − 𝜃) = 0. (2.33)





Chapter 3

Weak Formulation of the
Hydrodynamics

The component hydrodynamic problems introduced in Chapter 1 are cast in a
more permissive integral form suitable for numerical approximation techniques, i.e.
FEM. The weak formulations for both propagating and radiation-type subproblems
are produced.

3.1 Introduction and some preliminaries

A convenient basis for numerical approximation methods lays in a more permissive integral
form of the problem at hand. This integral form, referred as the variational or weak form of
the BVP can be recovered by either,

• variational principles, obtained in general by means of an energy-type functional for
which stationarity is sought,

• or the Method of Weighted Residuals (WRM) that handles the differential form directly.
A discussion of the two alternative routes can be found in the works of Finlayson (2013),

Brezzi and Fortin (1991), Finlayson and Scriven (1967) and others. The question of optimal-
ity when constructing a numerical approximation is heavily problem-dependent and it often
becomes a matter of which route is less laboured. Notably, the strong form of a given problem
can be linked with several weak forms that give rise to different approximation techniques.
The Finite Element Method, which is employed in the present thesis, considers the weak form
of a given problem and seeks an approximate solution in a given finite dimensional Hilbert
setting. It is important to note that the approximate solution function space and the vari-
ational form of the problem are interconnected with the FE approximation. Thus, different
variational forms would require solutions to be sought in a particular trial space leading to
distinct FEM approximations (Brezzi and Fortin, 1991). In the course of this thesis, the weak
formulations of the considered radiation-type problems are written in a mixed form expressing
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a saddle-point instead of a stationarity condition for their solution. Such mixed formulations
rise naturally in computational physics and engineering when additional constraints need to
be satisfied along with field equations, boundary and initial conditions. The latter is based on
either (i) modelling grounds or (ii) computational methods.

In the first category, the constraint expresses a physical law that is crucial to the physical
modelling of the underlying phenomena. Such examples can be found in fluid mechanics, e.g
Stoke’s incompressible flow problem. Saddle-point problems also rise in two-field formulations
common for example in elasticity and other fields, where the second variable is introduced
on the grounds of its natural significance and computational ease in results post-processing.
The obtained mixed-formulations, stemming from physical modelling considerations, are ei-
ther natural as in the case of Stoke’s problem or constructed-to-fit a purpose like the stress-
displacement formulation in elasticity. Other examples where mixed-formulations rise is when
interface problems are considered. Such cases are common in multi-physics modelling where
different field equations rise on subdomains of interest while coupling conditions based on
physical considerations like mass conservation need to hold on the interface. The reader is re-
ferred to the work of Toselli and Widlund (2005) for a thorough review in subdomain methods.
The latter mixed-formulations are particularly important when synchronous computational
coupling schemes are explored (Peterson et al., 2019). Finally, subdomain partitioning lead
to mixed-formulations formed purely for the development of refined computational methods
irrespective of the physical problem. For example classical parallelisation schemes by means
of FETI-type algorithms in mechanics requires the development of pseudo interface problems
and is the cornerstone of subdomain methods.

Returning to the derivation of suitable weak forms for the produced hydrodynamic sub-
problems the standard Sobolev space notation is followed. For a bounded domain Ω ∈ ℝ𝑑,
𝑑 = 1, 2 , with sufficiently smooth (Lipschitzian) boundary 𝜕Ω we initially consider the space
od square integrable functions defined in Ω

𝐿2(Ω) = {𝑢 ∣ ∫
Ω

|𝑢|2 = ‖𝑢‖2
𝐿2

< +∞} .

Subsequently we define the general Hilbert space for 𝑚 > 0

𝐻𝑚(Ω) = {𝑢 | 𝐷𝛼 ∈ 𝐿2(Ω) < ∞} .

Next we consider the following trace operators for the sufficiently smooth boundary 𝜕Ω and
its partition Γ0 ⊂ 𝜕Ω,

𝛾0 ∶ 𝐻𝑚(Ω) ↦ 𝐻𝑚−1/2(Γ0).



3.2 Propagating Wave field | 37

By means of the above, the restriction of an element 𝑢 ∈ 𝐻𝑚 is denoted as 𝛾0𝑢 =
𝑢 ∣Γ0

∈ 𝐻𝑚−1/2(Γ0)

3.2 Propagating Wave field

The differential form of the linear water wave propagation problem defined in layer D and in
terms of the propagating wave field 𝜙𝑃 is repeated below,

∇2𝜙𝑃 = 0, for (x, 𝑧) ∈ D, (3.1)
𝜕𝑧𝜑𝑃 − 𝜇𝜑𝑃 = 0, on Γ𝑓 (𝑧 = 0), (3.2)

∇nb
𝜑𝑃 = 0, on Γ𝑏 (𝑧 = −ℎ(x)), (3.3)

with |𝜑𝑃 | , |∇𝜑𝑃 |bounded as |x| → ∞. (3.4)

The above is formulated by means of the field Eq. (3.1), free surface condition Eq. (3.2) on Γ𝑓
and the seabed boundary condition Eq. (3.3) on Γ𝑏. As mentioned in 1.1, enforcing conditions
Eq. (3.4) ensures the solvability of the problem. A mathematically rigorous version of the above
is derived by considering a homogeneous, exterior region to the region of interest Ω∗, referred
as the super-element in earlier works (Bai, 1972; Mei and Chen, 1976). The assumption of
homogeneity at the far-field allows for the implementation of analytical representations for the
exterior wave potential, and thus matching conditions can be enforced on the shared boundary
between the interior Ω and exterior Ω∗ regions. By means of the matching, transmission
conditions that link solutions 𝜑 and 𝜑∗ on Γ𝑐 the following transmission problem defined in
the bounded subregion Ω is written as,

∇2𝜙𝑃 = 0 for (𝑥, 𝑧) ∈ Ω, (3.5)
𝜕𝑧𝜙𝑃 − 𝜇𝜙𝑃 = 0 on Γ𝑓 (𝑧 = 0), (3.6)

∇nb
𝜙𝑃 = 0 on Γ𝑏, (3.7)
𝜙𝑃

∞ = 𝜙∗ and (3.8 a)
𝜕𝑥𝜙𝑃

∞ = 𝜕𝑥𝜙∗ on Γ𝑐. (3.8 b)

The above alternative formulation for the problem at hand allows for the development of
numerical procedures that are able to consistently treat inhomogeneity in a bounded subregion
of layer D, i.e. Ω. Naturally, the exterior solution 𝜑∗(x, 𝑧)∀(x, 𝑧) ∈ Ω∗ satisfies field Eq. (3.5)
and free-surface Eq. (3.6) condition on Γ∗

𝑓 , while Eq. (3.7) is reduced to,

𝜕𝑧𝜑∗ = 0 on Γ∗
𝑏. (3.9)

Analytical expressions for 𝜑∗ are available in either integral or series representation form and
satisfy explicitly the radiation conditions at infinity Eq. (1.9)(Mei and Chen, 1976).The enforce-
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ment of transmission conditions Eqs. (3.8 a) and (3.8 b) on the artificial termination boundary
Γ𝑐 is in fact equivalent to a DtN mapping (Zienkiewicz and Taylor, 2005).

In the present case, the transmission conditions on Γ𝑐 can be satisfied naturally by means
of a contrived variational principle (Mei et al., 2005; Zienkiewicz and Taylor, 2005) giving rise
to hybrid numerical schemes. Notable works that employ this variational approach, built on
contrived principles, for either 2D or 3D radiation, scattering and propagation problems are
Aranha et al. (1979), Mei and Chen (1976) and Athanassoulis and Belibassakis (1999).

In the sequel, the contrived variational principle introduced in the works of Bai and Ye-
ung (1974) and Mei and Chen (1976) and the WRM are presented in parallel for the weak
formulation of the transmission problem of Eqs. (3.5), (3.8 a) and (3.8 b).

3.2.1 Variational formulation

As mentioned in the introductory section of this chapter, the weak form of a differential problem
can be derived by means of variational principle. The latter is produced by the theorisation
of a functional whose stationarity will yield an integral form of the problem essential to the
implementation of an approximate numerical method, i.e. finite differences, least-squares, FEM
etc. A variational principle is said to be natural when the derived Euler equations match the
governing equations of the problem at hand while the corresponding boundary terms reflect
the imposed boundary conditions (Zienkiewicz and Taylor, 2005).

The existence of natural variational principles for self-adjoint, linear operators like the
Laplacian with homogeneous or inhomogeneous Dirichlet, Neumann or Robin type conditions
valid on sections of the boundary is ensured (Norrie and Vries, 1980). For example, we consider
the Laplace equation with an inhomogeneous mixed-type condition valid on the entire boundary
Γ ≡ 𝜕Ω,

∇2𝜑(x, 𝑧) = 0 in Ω (3.10 a)
and 𝜕𝑛𝜑 + 𝛼𝜑 + 𝛽 = 0 on Γ, (3.10 b)

for known coefficients 𝛼 and 𝛽, a variational principle is formulated by the extremisation of
the following functional,

𝐼(𝜑) = 1
2 ∫

Ω
∇𝜑 ⋅ ∇𝜑 𝑑Ω + ∫

Γ
(1

2𝛼𝜑2 + 𝛽𝜑) 𝑑𝑠

Mikhlin (1964) showed that the function 𝜑 that renders the above functional stationary (min-
imum), is also the solution to the BVP described by Eqs. (3.10 a) and (3.10 b) and vice versa.
Hence, the variational principle 𝛿𝐼 = 0, retrieves Eq. (3.10 a) as the Euler-Lagrange equation
and Eq. (3.10 b) as the Robin type natural boundary condition.

A suitable variational principle can be derived for the transmission problem defined by
Eqs. (3.5), (3.8 a) and (3.8 b) in a similar manner. The above functional is properly amended
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to account for the parts of the boundary Γ𝑓 and Γ𝑐 where the Robin condition Eq. (3.6) and
the non homogeneous Neumann condition Eq. (3.8 b) on Γ𝑐 are valid. Hence, the following
functional is constructed,

𝐽(𝜑𝑃 , 𝜑∗) = 1
2 ∫

Ω
∇𝜑𝑃 ⋅ ∇𝜑𝑃 𝑑Ω − 1

2𝜇 ∫
Γ𝑓

(𝜑𝑃 )2𝑑𝑠 − ∫
Γ𝑐

𝜑𝑃 ∇nc
𝜑∗𝑑𝑠. (3.11)

The solution to Eqs. (3.5), (3.8 a) and (3.8 b) is given by an admissible function 𝜑𝑃 that renders
𝐽 stationary and for which the principal condition 𝜑𝑃 = 𝜑∗ on the lateral interface Γ𝑐 holds.
The variational form of the problem by means of functional Eq. (3.11) is written as,

𝛿𝐽(𝜑𝑃 , 𝜑∗) = ∫
Ω

∇𝜑𝑃 ⋅ 𝛿 (∇𝜑𝑃 ) 𝑑Ω − 𝜇 ∫
Γ𝑓

𝜑𝑃 𝛿𝜑𝑃 𝑑𝑠

− ∫
Γ𝑐

𝛿𝜑𝑃 ∇nc
𝜑∗ 𝑑𝑠 = 0,

subject to 𝜑𝑃 − 𝜑∗ = 0 on Γ𝑐.

(3.12)

Equations (3.8 a) and (3.8 b) express continuity of pressure and velocity between interior
and exterior solutions. While, natural conditions are satisfied implicitly by means of the
variational principle, any admissible trial function must be a priori chosen as to satisfy the
inhomogeneous Dirichlet condition Eq. (3.8 a) which introduces the complexity of properly
constructing the admissible functions space.

To circumvent the above complexity Mei and Chen (1976) and Bai and Yeung (1974),
introduced a contrived (or restricted) variational principle based on the following augmented
functional,

̂𝐽 (𝜑𝑃 , 𝜑∗) = 1
2 ∫

Ω
∇𝜑𝑃 ⋅ ∇𝜑𝑃 𝑑Ω − 1

2𝜇 ∫
Γ𝑓

𝜑2
𝑃 𝑑𝑠

+ ∫
Γ𝑐

∇𝑛𝜑∗ (1
2𝜑∗ − 𝜑𝑃 ) 𝑑𝑠.

(3.13)

The above functional enables the implicit coupling of interior and exterior solutions through
the weak satisfaction of Eqs. (3.8 a) and (3.8 b). Comparing the above functional with the one
in Eq. (3.11) it is observed that the final boundary integral term is enhanced. The additional
term allows for the natural satisfaction of both transmission conditions. The contrived or
restricted variational principle is deduced as,

𝛿 ̂𝐽(𝜑𝑃 , 𝜑∗) = ∫
Ω

∇𝜑𝑃 ⋅ 𝛿 (∇𝜑𝑃 ) 𝑑Ω − 𝜇 ∫
Γ𝑓

𝜑𝑃 𝛿𝜑𝑃 𝑑𝑠

− ∫
Γ𝑐

(𝜑∗ − 𝜑𝑃 ) 𝛿 (∇𝑛𝜑∗) 𝑑𝑠 − ∫
Γ𝑐

𝛿𝜑𝑃 ∇𝑛 𝜑∗ 𝑑𝑠 = 0
(3.14)
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Setting the first variation equal to zero, 𝛿𝐽 = 0 and applying the Green-Gauss theorem retrieves
Eq. (3.5) as the Euler-Lagrange equation and Eqs. (3.6), (3.7), (3.8 b) and (3.8 a) as the natural
boundary conditions. More details on the above calculations can be found in Mei et al. (2005).

Notably, the variational formulation of Eqs. (3.6), (3.7), (3.8 b) and (3.8 a) is equivalent to
the implementation of a Lagrange multiplier formulation for the constrained principle. In the
latter case an auxiliary function 𝜆, resembling the Lagrange multiplier is identified as 𝜆 = ∇𝑛𝜑∗

(Finlayson, 2013; Zienkiewicz and Taylor, 2005).
The value of such contrived principles is assessed in terms of the numerical tools developed

for the approximate solution of the variational form at hand. For instance, Eq. (3.14) restores
continuity at the lateral interfaces with the exterior region and allows for consistent domain
truncation. However, as stressed in the literature such principles are equivalent to a Weighted
Residuals approach Finlayson (2013). Direct handling of the differential equations without
the need to construct an appropriately tuned functional and establish a contrived variational
principle is more often than not preferable. Apart from the case of linear, self-adjoint oper-
ators an example of which was discussed earlier, a WRM for the derivation of finite element
formulations is commonly more expeditious and general (Norrie and Vries, 1980; Washizu,
1975).

3.2.2 Weighted Residuals Method

Next, the weak form of the transmission problem by Eqs. (3.6), (3.7), (3.8 b) and (3.8 a) is
equivalently derived by a weighted residual approach. Initially the space of square integrable
functions with square integrable gradient is considered,

𝑉 = {𝐻1(Ω; ℂ) ∶ 𝑣(x, 𝑧) ∈ 𝐿2(Ω; ℂ) and ∇𝑣(x, 𝑧) ∈ 𝐿2(Ω; ℂ)}. (3.15)

The above defined space 𝑉 is considered throughout the thesis. Multiplying the field Eq. (3.5)
by 𝑣(x, 𝑧) ∈ 𝑉 and integrating over the domain results in,

∫
Ω

𝑣∇2𝜑𝑃 𝑑Ω = 0 (3.16)

By means of the Green-Gauss theorem the above becomes,

∫
Ω

∇𝑣 ⋅ ∇𝜑𝑃 𝑑Ω − ∫
Γ

𝑣 ∇n𝜑𝑃 = 0. (3.17)
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Substituting the boundary conditions Eqs. (3.6), (3.7) and (3.8 b) reduces into the above weak
form,

∫
Ω

∇𝑣 ⋅ ∇𝜑𝑃 𝑑Ω − 𝜇 ∫
Γ𝑓

𝑣 𝜑𝑃 𝑑𝑠 − ∫
Γ𝑐

𝑣 ∇nc
𝜑∗ 𝑑𝑠 = 0,

subject to ∫
Γ𝑐

𝑣 (𝜑∗ − 𝜑𝑃 ) 𝑑𝑠 = 0.
(3.18)

It is clear that the above expression Eq. (3.18) is equivalent to the variational form Eq. (3.12)
with the added constraint imposed by the continuity requirement Eq. (3.8 a). Notably, the
above weak form is derived by setting 𝑣 ≡ 𝛿𝜑𝑃 in Eq. (3.12) and imposing a weak satisfaction
of the Dirichlet type condition . Adjusting the trial function space to incorporate the constraint,

𝑉 = {𝑣 ∈ 𝑉 , |𝑣 − 𝜑∗ = 0 on Γ𝑐},

allows for the following reformulation of Eq. (3.18).

Weak Problem 3.1. Find 𝜑𝑃 (x, 𝑧) ∈ 𝑉 (Ω) such that it holds,

∫
Ω

∇𝑣 ⋅ ∇𝜑𝑃 𝑑Ω − 𝜇 ∫
Γ𝑓

𝑣 𝜑𝑃 𝑑𝑠 − ∫
Γ𝑐

𝑣 ∇nc
𝜑∗ 𝑑𝑠 = 0,

∀𝑣(x, 𝑧) ∈ 𝑉 .

Weak Problem 3.1 is equivalent to the variational form of Eq. (3.12) as well as the weak
form Eq. (3.18). The satisfaction of the essential condition Eq. (3.8 a) is achieved through
the construction of the affine trial function space 𝑉 . Note that 𝑉 , unlike 𝑉 , is not a vector
space since the sum of two elements is not an element. The above restricts the suitability of
conventional trial spaces. A means to tackle the above complexity is to weakly satisfy the
essential boundary condition in order to derive a constrained alternative of Weak Problem 3.1
in a similar manner as to the one employed in the derivation of Eq. (3.14). The latter is
achieved by the introduction of Lagrange multiplier function 𝜆, defined on Γ𝑐 that allows the
satisfaction of continuity requirement naturally.

Mixed Weak Problem 3.1. Find (𝜑𝑃 (x, 𝑧), 𝜆(Γ𝑐)) ∈ 𝑉 (Ω) × (𝐻−1/2(Γ𝑐)) such that it
holds,

⎧{{
⎨{{⎩

∫
Ω

∇𝑣 ⋅ ∇𝜑𝑃 𝑑Ω − 𝜇 ∫
Γ𝑓

𝑣 𝜑𝑃 𝑑𝑠 − ∫
Γ𝑐

𝜆𝑣 𝑑𝑠 = 0,

∫
Γ𝑐

𝜉 (𝜑∗ − 𝜑𝑃 ) 𝑑𝑠 = 0,

∀(𝑣(x, 𝑧), 𝜉(Γ𝑐)) ∈ 𝑉 (Ω) × (𝐻−1/2(Γ𝑐))
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It is immediately observed that setting 𝑣 ≡ 𝛿𝜑𝑃 and the Lagrange Multiplier function
has a clear physical meaning in the present case, i.e. 𝜆 = ∇nc

𝜑∗, the above weak problem
is equivalent to the variational form Eq. (3.14). It is thus far illustrated that the WRM in
conjunction with a Lagrange multiplier function facilitates the derivation of a weak formulation
for the transmission problem. Additionally, the WRM is proved more expeditious in this case
since the theorisation of a contrived variational principle is avoided. The latter is also employed
for the radiation-type problems.

3.3 Reduction of the 3D transmission problem

To decrease the computational effort involved in the treatment of the 3D transmission problem
described above, a non-restrictive assumption was introduced for the depth function ℎ(x) =
ℎ𝑖(𝑥) + ℎ𝑑(x) in Section 1.1. Due to the underlying linearity of the modelled phenomena,
the total solution can be decomposed into a part that is refracted due to the parallel contour
bathymetry, represented by 𝜙𝑖(x, 𝑧) and a diffracted component due to the presence of the 3D
morphology of the seabed, 𝜙𝑑(x, 𝑧), thus it holds,

𝜑𝑃 = 𝜙𝑖(x, 𝑧) + 𝜙𝑑(x, 𝑧). (3.19)

To this end, the 2D vertical cross section of layer D terminated below by the parallel contour
bathymetry ℎ𝑖(𝑥) is considered,

D𝑐(𝑥, 𝑧) = {(𝑥, 𝑧) ∈ ℝ2, −ℎ𝑖(𝑥) < 𝑧 < 0}.

In analogy with the 3D case, the bounded subdomain Ω𝑐 and its exterior Ω𝑐∗ are defined
(Fig. 3.1). The domain boundaries are projections of the contour boundaries defined earlier on
the (𝑥, 𝑧) plane and are denoted as 𝜕Γ (as opposed to Γ in the 3D regions) to avoid confusion.
Thus in accordance to the notation introduced in Section 1.1 it holds D𝑐 = (Ω𝑐\𝜕Γ𝑐) ∪ Ω𝑐∗.
Furthermore, it is 𝜕Γ𝑐 = 𝜕Γ1 ∪ 𝜕Γ2 for the lateral termination boundaries, and the exterior
region is composed of the right and left half-strips as Ω𝑐∗ = Ω1

∞ ∪ Ω2
∞ (see Fig. 3.1(i)).

Oblique wave, forming angle 𝜃 with 𝑥1 axis, is assumed to propagate from a homogeneous
region of incidence, Ω𝑖𝑛𝑐 into the region of interest Ω and transmits in Ω𝑡𝑟 (see Fig. 3.1(ii)).
Assuming that the oblique-incident plane wave is 𝑥2-periodic, the refracted wave field in Ω
is written as 𝜙𝑖(x, 𝑧) = ̂𝜙𝑖(𝑥, 𝑧) exp(i𝑘𝑥2

𝑥2). The latter is founded on the fact that the con-
sidered waveguide is terminated below by the parallel contour bathymetry in essentially 𝑥2-
independent. This allows for the formulation of a transmission problem in the 2D Cartesian
strip D𝑐, in terms of ̂𝜙𝑖(𝑥, 𝑧) in D𝑐. The composition of 𝜙𝑖(x, 𝑧) by means of the 𝑥2 wavenumber
component 𝑘𝑥2

is straightforward. Subsequently, obtained incident Cauchy data on the sup-
ported 3D morphological features of the seabed are utilised in the formulation of a diffraction
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Figure 3.1 Water wave propagation over a general, mildly sloped bathymetry featuring localised shoals

problem in terms of 𝜙𝑑(x, 𝑧) in Ω. The 3D solution is finally composed by means of Eq. (3.19).
Appropriate closure conditions for the diffraction problem is derived by means of a Perfectly
Matched Layer (PML). The weak forms of the involved transmission (2D) and diffraction (3D)
problems are examined in the sequel.

3.3.1 Transmission Problem

For ease in presentation the hat notation introduced above is dropped. Henceforth, the 2D and
3D refracted wave field solutions 𝜙𝑖 will be distinguished by the context and their arguments.
The strong form of the 2D transmission problem is straightforwardly derived from Eqs. (3.5)–
(3.7). Transmission conditions are expressed on the lateral boundaries of the strip 𝜕Γ𝑗, while
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the half-strip potentials are denoted as 𝜙𝑗
∞, 𝑗 = 1, 2.

∇2𝜙𝑖 = 0 for (𝑥, 𝑧) ∈ Ω𝑐, (3.20)
𝜕𝑧𝜙𝑖 − 𝜇𝜙𝑖 = 0 on 𝜕Γ𝑓 (𝑧 = 0), (3.21)

∇nb
𝜙𝑖 = 0 on 𝜕Γ𝑏, (3.22)

𝜙𝑗
∞ = 𝜙𝑖 and (3.23 a)

𝜕𝑥𝜙𝑗
∞ = 𝜕𝑥𝜙𝑖 on 𝜕Γ𝑗, 𝑗 = 1, 2. (3.23 b)

A refinement of the conditions on the lateral boundaries requires an a priori knowledge of the
far-field potential solution behaviour. To this end,the following series representations, obtained
by separation of variables in the half-strips, are employed 𝜙𝑗

∞, 𝑗 = 1, 2,

𝜙1
∞(𝑥, 𝑧) = (𝐴0 exp (i𝜅(1)

0 𝑥) + 𝐴𝑅 exp (−i𝜅(1)
0 𝑥)) 𝑍(1)

0 (𝑧)

+
∞

∑
𝑛=1

𝐶(1)
𝑛 𝑍(1)

𝑛 (𝑧) exp (𝜅(1)
𝑛 (𝑥 − x1)), (𝑥, 𝑧) ∈ Ω1

∞, (3.24)

𝜙2
∞(𝑥, 𝑧) = 𝐴𝑇 exp (i𝜅(2)

0 𝑥)𝑍2
0(𝑧) +

∞
∑
𝑛=1

𝐶(2)
𝑛 𝑍(2)

𝑛 exp (𝜅(2)
𝑛 (x2 − 𝑥)), (𝑥, 𝑧) ∈ Ω2

∞. (3.25)

In the above representations for the wave potential in the half-strips, the terms
(𝐴0 exp (i𝜅(1)

0 𝑥) + 𝐴𝑅 exp (−i𝜅(1)
0 𝑥)) 𝑍(1)

0 (𝑧) and 𝐴𝑇 exp(i𝜅(2)
0 𝑥)𝑍2

0(𝑧) are the propagating
modes while the remaining terms 𝑛 = 1, 2, ...∞ correspond to the evanescent modes (Athanas-
soulis and Belibassakis, 1999; Massel, 1993). The above suggest propagation from a region
of incidence , i.e. Ω𝑖𝑛𝑐 , corresponding to the left half-strip in D towards a transmission re-
gion Ω𝑡𝑟 corresponding to the right half-strip The effective wavenumbers 𝜅(𝑗)

0 , are the 𝑥1−
component of the local wavenumber 𝑘(𝑗)

0 in Ω𝑗
∞, 𝑗 = 1, 2. Hence, 𝜅(𝑗)

0 = 𝑘(𝑗)
0 cos(𝜃) and

𝜅(𝑗)
𝑛 = √(𝑘(𝑗)

𝑛 )
2

+ (𝑘(𝑗)
0 cos(𝜃))

2
. The sets of vertical structures {𝑍(𝑗)

𝑛 , 𝑛 = 0, 1, ...∞} and

wavenumbers {i𝑘(𝑗)
0 , 𝑘(𝑗)

𝑛 , 𝑛 = 1, ...∞} are the eigenvalues and eigenvectors of the locally de-
fined Sturm-Liouville problems in Ω𝑗

∞, 𝑗 = 1, 2. The eigenvalues are the roots of the dispersion
relation defined at local depth

𝜇ℎ = −𝑘𝑛ℎ tan(𝑘𝑛ℎ) (3.26)

Notably, the representation 𝜙𝑗
∞, 𝑗 = 1, 2 explicitly satisfy the condition for bounded solutions

at the farfield. Equations (3.24) and (3.25) can be utilised in the construction of boundary
conditions of the form,

𝜕𝑛𝜙𝑖 − T𝑡𝜙𝑖 = 𝑔 on 𝜕Γ𝑗. (3.27)
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In the above, T𝑡 represents an appropriate DtN mapping constructed determines by the satisfac-
tion of the transmission conditions Revisiting the constrained Weak problem 3.1, and consider-
ing the physical interpretation of the identified Lagrange Multiplier functions 𝜆𝑗 ≡ 𝜕𝑥𝜙𝑗

∞(𝑥, 𝑧)
and its variations 𝜉, defined on the lateral boundaries 𝜕Γ𝑗, it is deduced,

Weak Problem 3.2. (2D Transmission) Find 𝜙𝑖(𝑥, 𝑧) ∈ 𝑉 (Ω𝑐) such that it holds,

⎧{{{
⎨{{{⎩

∫
Ω𝑐

∇𝑣 ⋅ ∇𝜙𝑖 𝑑Ω − 𝜇 ∫
𝜕Γ𝑓

𝑣 𝜙𝑖 𝑑𝑠 −
2

∑
𝑗=1

∫
𝜕Γ𝑗

𝜕𝑥𝜙𝑗
∞𝑣 𝑑𝑠 = 0,

2
∑
𝑗=1

∫
𝜕Γ𝑗

𝛿(𝜕𝑥𝜙𝑗
∞) (𝜙𝑗

∞ − 𝜙𝑖) 𝑑𝑠 = 0,

∀𝑣(𝑥, 𝑧) ∈ 𝑉 (Ω𝑐).

The series representations Eqs. (3.24) and (3.25) will be employed for the derivation of
explicit boundary conditions of the form of Eq. (3.27) that ensure inflow and outflow on the
lateral boundaries. Applying the Green-Gauss theorem on the first equation of Weak Problem
3.2, results in the following lateral boundary terms,

∫
𝜕Γ𝑗

(𝜕𝑥𝜙𝑖 − 𝜕𝑥𝜙𝑗
∞) 𝑣 𝑑𝑠 for 𝑗 = 1, 2. (3.28)

It is noted that the above boundary term expresses the flux continuity requirement across
the lateral boundary, while the second equation of Weak Problem 3.2 expresses the continuity
requirement on interior and exterior solutions.

3.3.2 3D Diffraction Problem

The strong form of the diffraction wave field problem in D requires the incident wave field 𝜑𝑃
Cauchy data on the supported 3D bathymetric features, which are considered known. Thus it
must hold,

∇2𝜙𝑑 = 0 for (x, 𝑧) ∈ Ω, (3.29)
𝜕𝑧𝜙𝑑 − 𝜇𝜙𝑑 = 0 on Γ𝑓 (𝑧 = 0), (3.30)

∇nb
𝜙𝑑 + 𝑓(x) = 0 on Γ𝑏, (3.31)

𝜑∗ = 𝜙𝑑 and (3.32 a)
∇nc

𝜑∗ = ∇nc
𝜙𝑑 on Γ𝑐. (3.32 b)

lim
|𝑟|→∞

|𝑟|(𝜕|𝑟|𝜙∗ − i𝑘𝜙∗) = 0. (3.33)

In the above 𝑓 = ∇nb
𝜙𝑃 (x, 𝑧). Radiation condition at infinity Eq. (3.33) must be satisfied by

exterior solution 𝜑∗ at infinity. As previously discussed, the a priori knowledge of the wave
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field structure in Ω∗ allows for the derivation of appropriate termination conditions on Γ𝑐 It is
noted here that when considering the 2D Cartesian strip, refined matching conditions between
interior and exterior solutions can be derived by means of the following series representation
of out-going solutions at infinity in line with the discussion in Section 3.3.1,

𝜙1
∞(𝑥, 𝑧) = 𝐶0 exp (−i𝑘(1)

0 𝑥)𝑍(1)
0 (𝑧) +

∞
∑
𝑛=1

𝐶𝑛𝑍(1)
𝑛 (𝑧) exp (i𝑘(1)

𝑛 (𝑥 − 𝑥1)), (𝑥, 𝑧) ∈ Ω1
∞, (3.34)

𝜙2
∞(𝑥, 𝑧) = 𝐶0 exp (i𝑘(2)

0 𝑥)𝑍2
0(𝑧) +

∞
∑
𝑛=1

𝐶𝑛𝑍(2)
𝑛 (𝑧) exp (i𝑘(2)

𝑛 (𝑥2 − 𝑥)), (𝑥, 𝑧) ∈ Ω2
∞. (3.35)

The sets of vertical structures {𝑍(𝑗)
𝑛 , 𝑛 = 0, 1, ...∞} and wavenumbers {i𝑘(𝑗)

0 , 𝑘(𝑗)
𝑛 , 𝑛 = 1, ...∞}

are the eigenvalues and eigenvectors of the locally defined Sturm-Liouville problems in Ω𝑗
∞, 𝑗 =

1, 2. The introduction of a suitable DtN mapping, exploiting expansions Eqs. (3.34) and (3.35)
can be used to substitute Eqs. (3.33), (3.32 a) and (3.32 b) with the following condition on the
truncated boundary,

∇n𝜙𝑑 − T𝜙𝑑 = 0 on Γ𝑐. (3.36)

The latter approach will be adopted when considering 2D diffraction and radiation-type prob-
lems. The treatment of radiation condition Eq. (3.33), for the considered 3D problems, assum-
ing radiative conditions at infinity will be the focus of a subsequent chapter exploring PML-
FEM formulations for wave scattering problems in the ocean environment. Alternatively, the
solvability of the above boundary value problem is ensured by extending the truncated bound-
aries within the homogenous region (at least a distance of the order of one wavelength) and
imposing the Sommerfeld radiation conditions. hence, for the derivation on the weak form,
Eq. (3.33) is replaced with,

∇n𝜙𝑑 − i𝑘(x)𝜙𝑑 = 0 on Γ𝑐. (3.37)

The Robin type approximate condition Eq. (3.37) is employed for the derivation of a conven-
tional weak form which will be substituted in the sequel by a PML formulation. The present
choice of termination condition on the truncated boundary is made towards the simplification
of the mathematical treatment of radiation-type problems,

Weak Problem 3.3. (3D Diffraction) Find 𝜙𝑑(x, 𝑧), ∈ 𝑉 (Ω) such that it holds,

∫
Ω

∇𝑣 ⋅ ∇𝜙𝑑 𝑑Ω − 𝜇 ∫
Γ𝑓

𝑣 𝜙𝑑 𝑑𝑠 + ∫
Γ𝑏

𝑣 𝑓 𝑑𝑠 − ∫
Γ𝑐

i𝑘(x)𝜙𝑑𝑣 𝑑𝑠 = 0,

∀𝑣(x, 𝑧) ∈ 𝑉 (Ω).



3.4 Radiation-type Wave field | 47

3.4 Radiation-type Wave field

The notions introduced in the previous subsections are transferred to the case of radiation-type
problems following the decomposition discussed in Section 1.3. The strong formulation of the
ℓth radiation-type problem is presented along with the corresponding weak form in both 3D
and 2D strips. It is reminded that for this type of subproblem the radiative solutions are
produced due scattering in the presence of a floating, elastic body supported in the region
on inhomogeneity or due to its wave-induced flexural motion. Due to the above, the domain
of interest was decomposed into two regions,the free-surface region Ω1 and the plate-covered
region Ω2, creating the interface 𝑆 between subregions. Considering the formulation of the
given problem in the 2D Cartesian strip, the decomposition of region Ω𝑠, generates the free-
surface regions, Ω𝑠

1,2 the plate-covered region Ω𝑠
3 and the interfaces 𝑆1,2

In the 3D strip D the strong form of the decomposed ℓth radiation-type problem is written
as,

∇2𝜑ℓ
(𝑗) = 0, for (x, 𝑧) ∈ Ω𝑗, 𝑗 = 1, 2 (3.38)

𝜕𝑧𝜑(1)
ℓ − 𝜇𝜑(1)

ℓ = 0, on Γ1
𝑓 (𝑧 = 0), (3.39)

𝜕𝑧𝜑(2)
ℓ + 𝑓ℓ = 0, on Γ2

𝑓 (𝑧 = 0) (3.40)
∇nb

𝜑ℓ = 0, on Γ𝑏, (3.41)
𝜑(1)

ℓ = 𝜑(2)
ℓ , and (3.42 a)

∇n12
𝜑(1)

ℓ = −∇n21
𝜑(2)

ℓ on 𝑆, (3.42 b)
𝜑∗ = 𝜑(2)

ℓ and (3.43 a)
∇nc

𝜑∗ = ∇nc
𝜑(2)

ℓ on Γ𝑐. (3.43 b)

For the Neumann condition on Γ2
𝑓 , it holds that 𝑓0 = 𝜕𝑧𝜑𝑃 and 𝑓ℓ = i𝜔𝑤ℓ for ℓ = 1, 2, ...∞.

Regarding the radiation condition Eq. (3.33), the same comments as in Section 3.3.2 can be
made. Hence, in the 2D strip, by means of representations Eqs. (3.24) and (3.25), boundary
conditions of the form Eq. (3.36) for 𝜑ℓ can be derived on Γ. Employing Eq. (3.37) for now,
the following weak formulations are derived. The restrictions of the ℓth velocity potential
solutions in each subregion is denoted as 𝜑ℓ|Ω𝑗

≡ 𝜑(𝑗) for simplicity. The subscript ℓ is implied
henceforth.

Next, the following tensor product space is defined

H = {(𝜑(1), 𝜑(2)) ∣𝜑(𝑗) ∈ 𝐻1(Ω𝑗; ℂ) 𝑗 = 1, 2}.

And the affine space,

H = {(𝜑(1), 𝜑(2)) ∈ H ∣𝜑(2) − 𝜑(1) = 0 on 𝑆}.
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Employing the constructed space H that incorporates the essential continuity requirement
results is the following weak problem.

Weak Problem. (3D Radiation) Find 𝜑(𝑗)(x, 𝑧) ∈ H such that it holds,

2
∑
𝑗=1

(∫
Ω

∇𝑣(𝑗) ⋅ ∇𝜑(𝑗) 𝑑Ω) − 𝜇 ∫
𝜕Γ1

𝑓

𝑣(1) 𝜑(1) 𝑑𝑠 + ∫
𝜕Γ2

𝑓

𝑣(2) 𝑓ℓ 𝑑𝑠

+ ∫
𝑆

(𝑣(2) − 𝑣(1))∇n12
𝜑(1) 𝑑𝑠 − ∫

Γ𝑐

i𝑘(x)𝜑(𝑗)𝑣(𝑗) 𝑑𝑠 = 0,

∀𝑣(𝑗)(x, 𝑧) ∈ H.

The above Problem is per the previous discussion transformed by means of a Lagrange
multiplier function leading to the following two-field formulation,

Mixed Weak Problem 3.2. (3D Radiation) Find (𝜑(𝑗)(x, 𝑧), 𝜆(𝑆)) ∈ H × (𝐻−1/2(𝑆))
such that it holds,

⎧{{{{
⎨{{{{⎩

2
∑
𝑗=1

(∫
Ω

∇𝑣(𝑗) ⋅ ∇𝜑(𝑗) 𝑑Ω) − 𝜇 ∫
Γ1

𝑓

𝑣(1) 𝜑(1) 𝑑𝑠 + ∫
Γ2

𝑓

𝑣(2) 𝑓ℓ 𝑑𝑠

+ ∫
𝑆

(𝑣(2) − 𝑣(1))𝜆 𝑑𝑠 − ∫
Γ𝑐

i𝑘(x)𝜑(𝑗)𝑣(𝑗) 𝑑𝑠 = 0,

∫
𝑆

𝜉 (𝜑(2) − 𝜑(1)) 𝑑𝑠 = 0,

∀ (𝑣(𝑗)(x, 𝑧), 𝜉(𝑆)) ∈ H × (𝐻−1/2(𝑆)).

Next, the corresponding weak form for the typical radiation-type subproblem confined
in the 2D plane is derived. Considering again the 2D waveguide D𝑐, with the addition of
a floating strip on a finite subsection of 𝜕Γ𝑓 . The presence of the structure facilitates the
decomposition of Ω𝑠, restricted below by the variable seabed 𝑧 = ℎ(𝑥) (boundary 𝜕Γ𝑏), into
the free-surface and plate-covered subregions denoted as Ω𝑠

𝑗 , 𝑗 = 1, 2 and Ω𝑠
3 it is noted that

the velocity potential function is now decomposed into the free surface wave fields 𝜑(𝑖), 𝑗 = 1, 2
and the plate-covered region solution 𝜑(3) (see Fig. 3.2). The subdomains are separated by the
geometrically conforming interfaces 𝑆𝑗, 𝑗 = 1, 2. The corresponding tensor product and its
affine function space, equipped with the essential conditions on the interfaces 𝑆𝑗 are redefined
as,

H = {(𝜑(1), 𝜑(2), 𝜑(3)) ∣𝜑(𝑗) ∈ 𝐻1(Ω𝑠
𝑗 ; ℂ) 𝑗 = 1, 2, 3} and

H = {𝜑(𝑗) ∈ H|𝜑(𝑗) − 𝜑(3) = 0 on 𝑆𝑗 for 𝑗 = 1, 2}.

By means of the revised H the following weak form is straightforwardly derived for the 2D
radiation-type problem,
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∞
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Figure 3.2 Radiation in the inhomogeneous 2D waveguide due to the floating structure

Weak Problem. (2D Radiation) Find 𝜑(𝑗)(x, 𝑧) ∈ H such that it holds,

3
∑
𝑗=1

(∫
Ω𝑠

𝑗

∇𝑣(𝑗) ⋅ ∇𝜑(𝑗) 𝑑Ω) −
2

∑
𝑗=1

(𝜇 ∫
𝜕Γ𝑗

𝑓

𝑣(𝑗) 𝜑(𝑗) 𝑑𝑠) + ∫
𝜕Γ3

𝑓

𝑣(3) 𝑓ℓ 𝑑𝑠

+
2

∑
𝑗=1

(∫
𝑆𝑗

(𝑣(3) − 𝑣(𝑗))∇nj3
𝜑(𝑗) 𝑑𝑠) −

2
∑
𝑗=1

(∫
𝜕Γ𝑗

i𝑘(𝑗)
0 (x)𝜑(𝑗)𝑣(𝑗) 𝑑𝑠) = 0,

∀𝑣(x, 𝑧) ∈ H.

The Lagrange functions that are employed to enable the satisfaction of the continuity
requirement in a weak sense across on the interfaces 𝑆𝑗 are now denoted with 𝜆(𝑗), 𝑗 = 1, 2

Mixed Weak Problem 3.3. (2D Radiation) Find (𝜑(𝑗)(𝑥, 𝑧), 𝜆(𝑗)) ∈ 𝑉 (Ω𝑠
𝑗)×(𝐻−1/2(𝑆𝑗))

such that it holds,

⎧{{{{{
⎨{{{{{⎩

3
∑
𝑗=1

(∫
Ω𝑠

𝑗

∇𝑣(𝑗) ⋅ ∇𝜑(𝑗) 𝑑Ω) −
2

∑
𝑗=1

(𝜇 ∫
𝜕Γ(𝑗)

𝑓

𝑣(𝑗) 𝜑(𝑗) 𝑑𝑠) + ∫
𝜕Γ(3)

𝑓

𝑣(3) 𝑓ℓ 𝑑𝑠

+
2

∑
𝑗=1

(∫
𝑆𝑗

(𝑣(3) − 𝑣(𝑗))𝜆(𝑗)𝜑(𝑗) 𝑑𝑠) −
2

∑
𝑗=1

(∫
𝜕Γ𝑗

i𝑘(𝑗)
0 (x)𝜑(𝑗)𝑣(𝑗) 𝑑𝑠) = 0,

2
∑
𝑗=1

∫
𝑆𝑗

𝜉(𝑗) (𝜑(3) − 𝜑(𝑗)) 𝑑𝑠 = 0,

∀ (𝑣(𝑗)(x, 𝑧), 𝜉(𝑗)(𝑆𝑗)) ∈ 𝑉 (Ω𝑠
𝑗) × (𝐻−1/2(𝑆𝑗)).

In the sequel, the dimensionality reduction of the produced Mixed Weak Problems 3.1–3.3 is
sought out by appropriately chosen vertical multi-modal expansions.





Chapter 4

Dimensionality reduction

A semi-analytical approach will be employed for the dimensionality reduction of
the defined weak problems. The approximate solution in each subregion is sought
in a separable form, where the vertical structure of the solution, is chosen a priori.
The approach resembles the Kantorovich method for the dimensionality reduction
of prismatic problems Kantorovich and Krylov (1960). The application of a multi-
term version of Kantorovich’s method will allow the reformulation of the previously
derived weak forms in horizontal coordinates only.

4.1 The Kantorovich Method

The MWR was employed in the previous chapter to derive the weak formulations of the hy-
drodynamic subproblems following the decomposition introduced in Section 1.3. The MWR
presents a powerful tool for the derivation of approximate methods for PDEs. Depending on
the choice of the employed weight functions 𝑣(x, 𝑧) one can derive approximating methods like
the Collocation method, the Subdomain Method the Galerkin Method and others (Finlayson,
2013; Finlayson and Scriven, 1967; Washizu, 1975; Zienkiewicz and Taylor, 2005). Addition-
ally, assuming the trial function in a separable form, ODE-oriented methods are derived. One
example is the Ritz method, where the equivalent integral equation, coinciding with a min-
imisation principle, is reduced to the minimisation of a function of several variables. The
trial function assumes a separable form and is represented by a series of products of unknown
coefficients and a priori chosen functions of principal coordinates. Finally, the associated in-
tegral form of the problem is reduced to a function that needs to be minimised in terms of
the involved, unknown coefficients. In the sense that no discretisation is required, Ritz is an
analytical method. In the work of Kantorovich and Krylov (1960) a method of dimensionality
reduction is proposed for prismatic problems that lays between the Ritz and Galerkin meth-
ods. The approximate solution is again sought in a separable form, but only a function of one
variable is chosen a priori, leading to a dimensionality reduction of the problem at hand. The
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reduced weak formulation of the problem often needs to be solved numerically, leading to a
semi-analytical numerical scheme.

4.2 Multi-Mode representation of the wave potential functions

In the following section, a semi-analytical approach will be employed for the approximate solu-
tion of the weak hydrodynamic problems defined in Chapter 3. The unknown velocity potential
in each subregion is sought in a separable form, where the vertical structure of the solution,
is chosen a priori. The approach resembles a multi-term Kantorovich method for the dimen-
sionality reduction of boundary value problems, relevant to prismatic domains Kantorovich
and Krylov (1960). The approximate solution in each subregion is expanded as a series in
terms of the vertical eigenmodes, calculated as solutions to vertical eigenvalue problems. The
employed eigenmodes must satisfy the imposed conditions on the vertical water column. In
the free-surface region, the employed vertical modes need to satisfy the Robin-type upper sur-
face condition Eq. (1.4), and the homogenous Neumann condition Eq. (1.7) on the seabed.
Accounting for the inhomogeneous waveguide, a series of local Sturm-Liouville problems are
employed. In essence, the vertical structure of the approximate solution is parametrically de-
fined with horizontal position, and thus features implicit dependence on horizontal coordinates.
In a similar manner, the vertical structure employed for the plate-covered region must satisfy
Eq. (1.5) along with Eq. (1.7).

The above technique has been employed for the treatment of linear water wave propagation
in variable bathymetry regions by Athanassoulis and Belibassakis (1999) and later extended for
wave interaction with thin floating elastic plates Belibassakis and Athanassoulis (2005). One
advantage of the above choice, is that that the vertical structure of the specific representation
is close to the solution of the studied wave problem, as it will be discussed in more detail in
the sequel.

In the scope of the present work, the following local-mode series expansion for the unknown
wave fields are considered in the free-surface and plate covered subregions respectively,

𝜑(1) (x, 𝑧) =
∞

∑
𝑛=0

𝜑(1)
𝑛 (x, 𝑧)𝑍𝑛(𝑧; x), for (x, 𝑧) ∈ Ω1 (4.1)

𝜑(2) (x, 𝑧) =
∞

∑
𝑛=0

𝜑(2)
𝑛 (x, 𝑧)𝑌𝑛(𝑧; x) + 𝜑̃0, for (x, 𝑧) ∈ Ω2. (4.2)

Remark 2. Considering the field equation is each subregion, there is a 𝐶0 continuity require-
ment for the trial functions Eqs. (4.1) and (4.2) across the common boundary. This is violated
by the above choices, but is remedied by the enforcement of the continuity requirement as a
constraint.
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Remark 3. The choice of the above vertical structures 𝑍𝑛 and 𝑌𝑛 are by no means unique. As
long as completeness requirements are met to validate the employment of expansions Eqs. (4.1)
and (4.2) and the boundary conditions on the upper and lower strip boundaries are satisfied,
other families of factions can be considered. The performance of the method heavily relies on
the choice of the above functions.

Vertical Expansion for free-surface region Ω1

The functions 𝑍𝑛(𝑧; x), chosen as the vertical structure of the potential in the free-surface
regions are obtained as the solutions of the following, locally-defined vertical Sturm-Liouville
problem,

𝜕2
𝑧 𝑍𝑛(𝑧; x) + 𝑘2

𝑛𝑍𝑛(𝑧; x) = 0 for (x, 𝑧) ∈ Ω1, (4.3)
𝜕𝑧𝑍𝑛(𝑧; x) − 𝜇𝑍𝑛(𝑧; x) = 0 on Γ1

𝑓 (𝑧 = 0), (4.4)
𝜕𝑧𝑍𝑛(𝑧; x) = 0 on Γ1

𝑏 (𝑧 = −ℎ(x)). (4.5)

The eigenfunction solutions of the problem, also briefly discussed in Section 3.3.1 are given as,

𝑍0(𝑧; x) = cosh (𝑘0(ℎ(x) + 𝑧))
cos (𝑘0ℎ(x)) , 𝑍𝑛(𝑧; x) = cos (𝑘𝑛(ℎ(x) + 𝑧))

cos (𝑘𝑛ℎ(x)) for 𝑛 = 1, 2, ..., ∞ (4.6)

The eigenvalues {i𝑘0, 𝑘𝑛} are calculated as the roots of the local dispersion relation defined in
the free surface region,

𝜇ℎ(x) = −𝑘𝑛(x)ℎ(x) tan(𝑘𝑛(x)(x)) (4.7)

Remark 4. There is a discrepancy between the kinematic condition Eq. (4.5) satisfied by the
employed vertical eigenfunctions and the imposed condition involving the normal derivative
of the velocity potential on the variable seabed Eq. (1.7). The above is remedied by the
introduction of an additional term in the representation Eq. (4.1) for the treatment of the
sloping bottom effects, referred as the sloping bottom mode following the work Athanassoulis
and Belibassakis (1999). The aforementioned, added mode to the classical representation,
denoted as 𝜑−1𝑍−1 accounts for the incompatibility of the vertical modes and leads to the
consistent satisfaction of the kinematic boundary condition on the sloping seabed. The extra
horizontal mode, 𝜑−1, acts as a set of additional degrees of freedom that account for the non-
homogeneity of the vertical derivative on the seabed. It is evident that the choice for 𝑍−1
must lead to solutions that satisfy the upper surface condition Eq. (4.4) and render 𝜑−1 a
free variable at the bottom boundary. A convenient, but certainly not unique, choice for the
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structure is,

𝑍−1(𝑧; x) = ℎ(x) [( 𝑧
ℎ(x))

3
+ ( 𝑧

ℎ(x))
2
] . (4.8)

The added mode vanishes at constant depth where retrieving the classical standard represen-
tation for the wave potential in the homogeneous strip.

Vertical Expansion for plate-covered region Ω2

The vertical functions 𝑌𝑛(𝑧; x) are similarly obtained by addressing the following, locally-
defined vertical Sturm-Liouville problem in the plate-covered region,

𝜕2
𝑧 𝑌𝑛(𝑧; x) + ϑ2

𝑛𝑌𝑛(𝑧; x) = 0 for (x, 𝑧) ∈ Ω2, (4.9)
𝜕𝑧𝑌𝑛(𝑧; x) = 0 on Γ2

𝑓 (𝑧 = 0), (4.10)
𝜕𝑧𝑌𝑛(𝑧; x) = 0 on Γ2

𝑏 (𝑧 = −ℎ(x)), . (4.11)

The solutions are given as,

𝑌𝑛(𝑧; x) = cos(ϑ𝑛𝑧) with ϑ𝑛 = 𝑛𝜋
ℎ(x) . (4.12)

Remark 5. It is observed that the homogeneous Neumann condition Eq. (4.10), satisfied by the
vertical modes 𝑌𝑛(𝑧; x), is incompatible with the imposed kinematic boundary condition of the
hydroelastic problem Eq. (1.5). The latter is remedied by the inclusion in the representation
Eq. (4.2) of an upper surface mode 𝜑̃0 = 𝑔(x)𝑞(𝑧; x). The additional mode must satisfy the
boundary conditions on the entire boundary of the plate-covered region Γ2. A judicious choice
for the vertical structure of 𝑞(𝑧) is,

𝑞(𝑧; x) = (𝑧 + ℎ(x))2

2ℎ(x) . (4.13)

Furthermore, setting 𝑔(x) = −𝑓ℓ, for the ℓth radiation-type problem allows for the consistent
satisfaction of the upper surface condition Eq. (1.5) and the homogeneous Neumann conditions
on the seabed, by the trial function Eq. (4.12).

Remark 6. The addition of the sloping bottom mode in series expansion Eq. (4.12), allows for
the consistent satisfaction of Eq. (4.5) as described above.
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Based on the above, the representations for the weight functions are,

𝑣(1) (x, 𝑧) =
∞

∑
𝑛=0

𝑣(1)
𝑛 (x, 𝑧)𝑍𝑛(𝑧; x) (4.14)

𝑣(2) (x, 𝑧) =
∞

∑
𝑛=0

𝑣(2)
𝑛 (x, 𝑧)𝑌𝑛(𝑧; x) (4.15)

The coupling between subdomains is achieved, as previously discussed, by means of the intro-
duced Lagrange multiplier functions that resemble the normal trace of the unknown velocity
potential on interface 𝑆,

𝜆 (𝑆, 𝑧) =
∞

∑
𝑛=0

𝜆𝑛(𝑆, 𝑧)𝑍𝑛(𝑧; 𝑆) (4.16)

𝜉 (𝑆, 𝑧) =
∞

∑
𝑛=0

𝜉𝑛(𝑆, 𝑧)𝑍𝑛(𝑧; 𝑆) (4.17)

Remark 7. The geometrical conformity of the interface 𝑆, allows for the employment of either
𝑍𝑛 or 𝑌𝑛 for the vertical expansion of 𝜆.

Keeping a finite number of modes 𝑁𝑚 ∈ ℕ in both expansions and employing the additional
sloping bottom mode the truncated series are summarised as,

𝜑(1) (x, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝜑(1)
𝑛 (x, 𝑧)𝑍𝑛(𝑧; x) = ZT𝜑𝜑𝜑(1) and (4.18)

𝑣(1) (x, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝑣(1)
𝑛 (x, 𝑧)𝑍𝑛(𝑧; x) = ZTv(1), for (x, 𝑧) ∈ Ω1 (4.19)

𝜑(2) (x, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝜑(2)
𝑛 (x, 𝑧)𝑌𝑛(𝑧; x) = YT𝜑𝜑𝜑(2) and (4.20)

𝑣(2) (x, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝑣(2)
𝑛 (x, 𝑧)𝑌𝑛(𝑧; x) = YTv(2), for (x, 𝑧) ∈ Ω2 (4.21)

Similarly for the Lagrange multipliers defined on interface bondary 𝑆 it holds,

𝜆 (𝑆, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝜆𝑛(𝑆, 𝑧)𝑍𝑛(𝑧; 𝑆) = ZT𝜆𝜆𝜆 and (4.22)

𝜉 (𝑆, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝜉𝑛(𝑆, 𝑧)𝑍𝑛(𝑧; 𝑆) = ZT𝜉𝜉𝜉 for (x, 𝑧) ∈ 𝑆. (4.23)
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4.3 Reduction of the 2D Transmission Problem

The representations Eqs. (4.18) and (4.19) are straight forwardly defined in the 2D strip Ω𝑐

and the transmission problem, defined in terms of the velocity potential 𝜙𝑖 in Section 3.3.1.
Particularly, representations for the 2D transmission subproblem are adapted as,

𝜙𝑖 (𝑥, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝜙𝑛(𝑥)𝑍𝑛(𝑧; 𝑥) = ZT𝜙𝜙𝜙 and (4.24)

𝑣 (𝑥, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝑣𝑛(𝑥)𝑍𝑛(𝑧; 𝑥) = ZTv, for (𝑥, 𝑧) ∈ Ω𝑐. (4.25)

4.3.1 Boundary conditions at the lateral boundaries

Revisiting Weak Problem 3.2, the Green-Gauss theorem was employed in the first equation,
resulting in the lateral boundary terms Eq. (3.28). Exploiting the above representation of the
free surface potential and the exterior solution representations Eqs. (3.24) and (3.25), boundary
terms Eq. (3.28) become,

at 𝑥 = x1
𝑁𝑚

∑
𝑚=0

𝑣𝑚(x1) ∫
𝑧=0

𝑧=−ℎ(x1)
{𝜕𝑥𝜙0(x1)𝑍0 − (i𝜅(1)

0 𝐴0 exp(i𝜅(1)
0 x1) + i𝜅0𝐴𝑅 exp(i𝜅(1)

0 x1))𝑍(1)
0

+ (𝜕𝑥𝜙𝑛(𝑥1)𝑍𝑛 − 𝜅(1)
𝑛 𝐶(1)

𝑛 𝑍(1)
𝑛 )}𝑍𝑚(𝑧; x1) = 0, (4.26)

at 𝑥 = x2
𝑁𝑚

∑
𝑚=0

𝑣𝑚(x2) ∫
𝑧=0

𝑧=−ℎ(x2)
{𝜕𝑥𝜙0(x2)𝑍0 − i𝜅(2)

0 𝐴𝑇 exp(i𝜅(2)
0 x2)𝑍(2)

0

+ (𝜕𝑥𝜙𝑛(x2)𝑍𝑛 − 𝜅(2)
𝑛 𝐶𝑛𝑍𝑛))}𝑍𝑚(𝑧; x2) = 0. (4.27)

Following the same line of thought, the continuity constraints on the lateral boundaries read,

at 𝑥 = x1
𝑁𝑚

∑
𝑚=0

∫
𝑧=0

𝑧=−ℎ(x1)
{(𝐴0 exp(i𝜅(1)

0 x1) + 𝐴𝑅 exp(i𝜅(1)
0 x1))𝑍(1)

0 − 𝜙0(x1)𝑍0

+ (𝐶(1)
𝑛 𝑍(1)

𝑛 − 𝜙𝑛(x1)𝑍𝑛)}𝛿(𝜕𝑥𝜙1
∞) = 0, (4.28)
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at 𝑥 = x2
𝑁𝑚

∑
𝑚=0

∫
𝑧=0

𝑧=−ℎ(x2)
{(𝐴𝑇 exp(i𝜅(2)

0 x2))𝑍(2)
0 − 𝜙0(x2)𝑍0

+ (𝐶(2)
𝑛 𝑍(2)

𝑛 − 𝜙𝑛(x2)𝑍𝑛)}𝛿(𝜕𝑥𝜙2
∞) = 0. (4.29)

Noting that the local basis, 𝑍𝑛 and 𝑍(𝑗)
𝑛 converge on the lateral boundaries as 𝑥 → xj and

taking into account the arbitrariness of 𝑣𝑚(xj) and 𝛿(𝜕𝑥𝜙𝑗
∞) for 𝑗 = 1, 2.

I(𝑁𝑚+2) 𝜕𝑥𝜙𝜙𝜙 − T𝑗
𝑡𝜙𝜙𝜙 = g𝑗 on 𝜕Γ𝑗. (4.30)

with T1
𝑡 = diag(−i𝜅(1)

0 , 𝜅(1)
1 , 𝜅(1)

2 , ⋯ , 𝜅(1)
𝑁𝑚

) and T2
𝑡 = diag(i𝜅(2)

0 , −𝜅(2)
1 , −𝜅(2)

2 , ⋯ , −𝜅(2)
𝑁𝑚

) and
vectors g1 = (2𝐴0i𝜅(1)

0 , 0, ⋯ , 0), g2 = (0, 0, ⋯ , 0).

4.3.2 Reduced Weak Form

The derived boundary conditions Eq. (4.30) in terms of the unknown modal amplitude func-
tions 𝜙𝑛(𝑥) at the lateral boundaries ensure the continuity of pressure and momentum between
exterior solutions and solutions in the region of interest. The former allows for a reformulation
of Weak Problem 3.2 defined in Ω𝑐 to the following,

Weak Problem 4.1. (2D Transmission) Find 𝜙𝑖(𝑥, 𝑧) ∈ 𝑉 (Ω𝑐) such that it holds,

∫
Ω𝑐

∇𝑣 ⋅ ∇𝜙𝑖 𝑑Ω − 𝜇 ∫
𝜕Γ𝑓

𝑣 𝜙𝑖 𝑑𝑠 −
2

∑
𝑗=1

∫
𝜕Γ𝑗

𝜕𝑥𝜙𝑖𝑣 𝑑𝑠 = 0,

∀𝑣(𝑥, 𝑧) ∈ 𝑉 (Ω𝑐).

The last boundary terms defined on 𝜕Γ𝑗 are to be substituted with the derived matching
conditions Eq. (4.30).

Next, by substituting the representations Eqs. (4.24) and (4.25) in Weak Problem 4.1 results
in the following reduced form in interval 𝐼 = [x1, x2],

∫
𝑥2

𝑥1

(𝜕𝑥vTA𝜕𝑥𝜙𝜙𝜙 + vTB1𝜕𝑥𝜙𝜙𝜙 + 𝜕𝑥vTB2𝜙𝜙𝜙 + vTC𝜙𝜙𝜙) 𝑑𝑥 −
2

∑
𝑗=1

[𝜕𝑥vTA𝜕𝑥𝜙𝜙𝜙]𝑥=xj
= 0 (4.31)

with matrix coefficients,

A(𝑥) =
0

∫
−ℎ

ZZT𝑑𝑧, B1(𝑥) =
0

∫
−ℎ

(𝜕𝑥Z)ZT𝑑𝑧, B2(𝑥) =
0

∫
−ℎ

Z(𝜕𝑥Z)T𝑑𝑧, and

C(𝑥) =
0

∫
−ℎ

((𝜕𝑥Z)(𝜕𝑥Z)T + 𝜕𝑧Z(𝜕𝑧Z)T)𝑑𝑧 − 𝜇[ZZT]𝑧=0.
(4.32)
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The above 𝑥-dependent matrix coefficients, with size (𝑁𝑚 + 2) × (𝑁𝑚 + 2), are defined
parametrically along 𝐼 = [x1, x2]. Coefficients involve the basis functions {Ζ𝑛} and their first
derivative {𝜕𝑥Ζ𝑛} suggesting a 𝐶1 continuity requirement for the depth function ℎ(𝑥). The
new reduced integral form, now defined over the interval 𝐼 , is supplemented with conditions
Eq. (4.30) at the lateral boundaries 𝑥 = xj, 𝑗 = 1, 2. The employed vertical representations lead
to the reduction of Weak Problem 3.2 into a weak system of coupled equations in 𝐼 , written
in terms of the unknown 𝑥-dependent modal amplitude functions �.

Remark 8. The reformulation of Weak Problem 4.1, in light of the reduced integral form
Eq. (4.31) requires the definition of the compound vector space 𝑉 𝑛 = 𝑉 × 𝑉 × ⋯ × 𝑉⏟⏟⏟⏟⏟⏟⏟

𝑛
. Thus,

the weak problem is now posed as: Find 𝜙𝜙𝜙 ∈ 𝑉 (𝐼)𝑁𝑚+2 such that Eqs. (4.31) and (4.32)
hold ∀v ∈ 𝑉 (𝐼)𝑁𝑚+2.

4.4 Reduction of the weak 3D Diffraction Problem

Following the same process, the representations Eqs. (4.18) and (4.19) are employed for the
diffracted velocity potential 𝜙𝑑(x, 𝑧) and the weight function 𝑣(x, 𝑧) defined in Ω and are
subsequently substituted Weak Problem 3.3, resulting in the following integral form over the
projected area Ω̆ on the horizontal 2D plane,

∫
Ω̆

{
2

∑
𝑗=1

(𝜕𝑥𝑗
vTA𝜕𝑥𝑗

𝜙𝜙𝜙𝑑 + vTB𝑗
1𝜕𝑥𝑗

𝜙𝜙𝜙𝑑 + 𝜕𝑥vTB𝑗
2𝜙𝜙𝜙𝑑) + vTC𝜙𝜙𝜙𝑑} 𝑑x = − ∫

Γ𝑏

𝜕𝑛𝜙𝑖vTZ|−ℎ 𝑑𝑠,

(4.33)

with matrix coefficients in accordance with Eq. (4.32) for 𝑗 = 1, 2,

A(x) =
0

∫
−ℎ

ZZT𝑑𝑧, B𝑗
1(x) =

0
∫

−ℎ
(𝜕𝑥𝑗

Z)ZT𝑑𝑧, B𝑗
2(x) =

0
∫

−ℎ
Z(𝜕𝑥𝑗

Z)T𝑑𝑧 and

C(x) =
0

∫
−ℎ

(∑2
𝑗=1( (𝜕𝑥𝑗

Z)(𝜕𝑥𝑗
Z)T )+𝜕𝑧Z(𝜕𝑧Z)T) 𝑑𝑧 − 𝜇[ZZT]𝑧=0.

(4.34)

The rhs of Eq. (4.33) is essentially known as the a priori calculated incident 𝜙𝑖 Cauchy
data on the seabed surface. The reduced integral form of Eq. (4.33) and matrix coefficients
Eq. (4.34) are defined in Ω̆(𝑥1, 𝑥2).

4.5 Reduction of the weak Radiation-type Problem

4.5.1 3D Formulation

Next, revisiting the radiation-type subproblem defined in the 3D waveguide a reduced expres-
sion on the projected region Ω̆ is sought. The reader is referred to Fig. 1.1(ii) Considering once
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again Mixed Weak Problem 3.2, the boundary term on Γ𝑐 is ignored at this point, as numerical
truncation of the computational region is the subject of a following chapter. Upon substitution
of series Eqs. (4.18) and (4.19) the integral terms corresponding to the free-surface region Ω1
read,

∫
Ω̆1

{
2

∑
𝑗=1

((𝜕𝑥𝑗
v(1))TA(𝜕𝑥𝑗

𝜑𝜑𝜑(1)) + (v(1))TB𝑗
1(𝜕𝑥𝑗

𝜑𝜑𝜑(1))

+(𝜕𝑥v(1))TB𝑗
2𝜑𝜑𝜑(1)) + (v(1))TC𝜑𝜑𝜑(1)} 𝑑x

(4.35)

The matrix coefficients A, B𝑗
1, B𝑗

2 and C are defined in Eq. (4.34). Similarly, in the plate-
covered region the integral terms become,

∫
Ω̆2

{
2

∑
𝑗=1

((𝜕𝑥𝑗
v(2))TĂ(𝜕𝑥𝑗

𝜑𝜑𝜑(2)) + (v(2))TB̆𝑗
1(𝜕𝑗𝜑𝜑𝜑(2))

+(𝜕𝑥v(2))TB̆𝑗
2𝜑𝜑𝜑(2)) + (v(2))TC̆𝜑𝜑𝜑(2) +

2
∑
𝑗=1

(𝜕𝑥𝑗
v(2)TG𝑗

1 + (v(2))TG𝑗
2) } 𝑑x

(4.36)

The matrix coefficients employed above for 𝑗 = 1, 2 are,

Ă(x) =
0

∫
−ℎ

YYT𝑑𝑧, B̆𝑗
1(x) =

0
∫

−ℎ
(𝜕𝑥𝑗

Y)YT𝑑𝑧, B̆𝑗
2(x) =

0
∫

−ℎ
Y(𝜕𝑥𝑗

Y)T𝑑𝑧,

C̆(x) =
0

∫
−ℎ

(∑2
𝑗=1( (𝜕𝑥𝑗

Z)(𝜕𝑥𝑗
Y)T )+𝜕𝑧Y(𝜕𝑧Y)T) 𝑑𝑧

G𝑗
1(x) = 𝜕𝑥𝑗

𝑓ℓ
0

∫
−ℎ

𝑞Y𝑑𝑧 + 𝑓ℓ
0

∫
−ℎ

(𝜕𝑥𝑗
𝑞)Y𝑑𝑧 and

G𝑗
2(x) = 𝜕𝑥𝑗

𝑓ℓ
0

∫
−ℎ

𝑞(𝜕𝑥𝑗
Y)𝑑𝑧 + 𝑓ℓ

0
∫

−ℎ
(𝜕𝑥𝑗

𝑞)(𝜕𝑥𝑗
Y)𝑑𝑧 + 𝑓ℓ

0
∫

−ℎ
(𝜕𝑧𝑞)(𝜕𝑧Y)𝑑𝑧 + [𝜕𝑧𝑞Y]𝑧=0.

(4.37)

Remark 9. The terms in Eq. (4.36) including the vectors G𝑗
i , 𝑖, 𝑗 = 1, 2 carry no unknowns and

will be moved in the rhs of the final system.

Next, the interface term found in Mixed Weak Problem 3.2 involving the Lagrange multi-
plier function is considered next,

∫
𝑆

(𝑣(2) − 𝑣(1))𝜆 𝑑𝑠 (4.38)

Following the familiar process the above term is reduced in,

∫
𝑃

((v(2))TP − (v(3))TΑ)𝜆𝜆𝜆 𝑑x (4.39)
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with matrix coefficient Α(x) matching the above definition and

P(x) =
0

∫
−ℎ

YZT𝑑𝑧. (4.40)

The second equation, expressing the constraint on the interface, in Problem 3.2 becomes,

∫
𝑃

(𝜉𝜉𝜉)T(PT(𝜑𝜑𝜑(2)) − A(𝜑𝜑𝜑(3))) 𝑑x = F, (4.41)

with,

F = ∫𝑃 (𝑓ℓ(𝑃 )
0

∫
−ℎ

𝑞Z 𝑑𝑧) 𝑑x. (4.42)

Adding expressions Eqs. (4.35), (4.36), (4.39) and (4.41) results to a reduced system of integral
equations on the horizontal plane. The new weak problem reads,

Find (𝜑𝜑𝜑,𝜆𝜆𝜆) ∈ H(Ω̆)𝑁𝑚+2 × 𝐻−1/2(𝑃 )𝑁𝑚+2 such that,
⎧{{{{{{{{{{
⎨{{{{{{{{{{⎩

∫
Ω̆1

{
2

∑
𝑗=1

((𝜕𝑥𝑗
v(1))TA(𝜕𝑥𝑗

𝜑𝜑𝜑(1)) + (v(1))TB𝑗
1(𝜕𝑥𝑗

𝜑𝜑𝜑(1)) + (𝜕𝑥v(1))TB𝑗
2𝜑𝜑𝜑(1))

+(v(1))TC𝜑𝜑𝜑(1)} 𝑑x + ∫
Ω̆2

{
2

∑
𝑗=1

((𝜕𝑥𝑗
v(2))TĂ(𝜕𝑥𝑗

𝜑𝜑𝜑(2)) + (v(2))TB̆𝑥𝑗
1 (𝜕𝑥𝑗

𝜑𝜑𝜑(2))

+(𝜕𝑥v(2))TB̆𝑥𝑗
2 𝜑𝜑𝜑(2)) + (v(2))TC̆𝜑𝜑𝜑(2) +

2
∑
𝑗=1

(𝜕𝑥𝑗
v(2)TG𝑥𝑗

1 + (v(2))TG𝑥𝑗
2 ) } 𝑑x

+ ∫
𝑃

(P(v(2))T − Α(v(3))T)𝜆𝜆𝜆 𝑑x = 0

∫
𝑃

(𝜉𝜉𝜉)T(PT(𝜑𝜑𝜑(2)) − A(𝜑𝜑𝜑(3))) 𝑑x = F

∀(v, 𝜉𝜉𝜉) ∈ H(Ω̆)𝑁𝑚+2 × 𝐻−1/2(𝑃 )𝑁𝑚+2 .

(4.43)

4.5.2 2D Formulation

In this subsection, focusing on the 2D radiation-type subproblem, the Mixed Weak Problem 3.3
is similarly reduced by means of the multi modal representations. In reference with Section 3.4
and Fig. 3.2 the projected 1D intervals 𝐼1 = [x1, a1], 𝐼2 = [a2, x2] and 𝐼3 = [a1, a2] are devised.
With 𝐼𝑗, 𝑗 = 1, 2 corresponding to free-surface regions Ω𝑠

𝑗 and 𝐼3 to Ω𝑠
3 the representations

reduce to,



4.5 Reduction of the weak Radiation-type Problem | 61

𝜑(𝑗) (𝑥, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝜑𝑛(𝑥)𝑍𝑛(𝑧; 𝑥) = ZT𝜑𝜑𝜑(𝑗) and (4.44)

𝑣(𝑗) (𝑥, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝑣𝑛(𝑥)𝑍𝑛(𝑧; 𝑥) = ZTv(𝑗), for (𝑥, 𝑧) ∈ Ω𝑠
𝑗 , 𝑗 = 1, 2. (4.45)

𝜑(3) (𝑥, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝜑𝑛(𝑥)Υ𝑛(𝑧; 𝑥) = YT𝜑𝜑𝜑(3) and (4.46)

𝑣(3) (𝑥, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝑣𝑛(𝑥)Υ𝑛(𝑧; 𝑥) = YTv(3), for (𝑥, 𝑧) ∈ Ω𝑠
𝑗 , 𝑗 = 1, 2. (4.47)

with the Lagrange multiplier functions 𝜆𝑗, corresponding to 𝑆𝑗 and 𝑥 = 𝑎𝑗, 𝑗 = 1, 2 given as,

𝜆(𝑗) (𝑥, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝜆(𝑗)
𝑛 (𝑎𝑗)𝑍𝑛(𝑧; 𝑎𝑗) = ZT𝜆𝜆𝜆(𝑗) and (4.48)

𝜉(𝑗) (𝑥, 𝑧) =
𝑁𝑚

∑
𝑛=−1

𝜉(𝑗)
𝑛 (𝑎𝑗)𝑍𝑛(𝑧; 𝑎𝑗) = ZT𝜉𝜉𝜉(𝑗), for (𝑥, 𝑧) ∈ 𝑆𝑗, 𝑗 = 1, 2. (4.49)

The reduced system of integral equations and the refined weak problem is given below,
Find (𝜑𝜑𝜑(𝑗),𝜆𝜆𝜆(𝑗)) ∈ 𝑉 (𝐼𝑗)𝑁𝑚+2 × 𝐻−1/2(𝐼3)𝑁𝑚+2 such that it holds,

⎧{{{{{{{{{{
⎨{{{{{{{{{{⎩

2
∑
𝑗=1

∫
𝐼𝑗

{(𝜕𝑥v(𝑗))TA(𝜕𝑥𝜑𝜑𝜑(𝑗)) + (v(𝑗))TB1(𝜕𝑥𝜑𝜑𝜑(𝑗)) + (𝜕𝑥v(𝑗))TB2𝜑𝜑𝜑(𝑗)

+(v(𝑗))TC𝜑𝜑𝜑(𝑗)} 𝑑𝑥 + ∫
𝐼3

{(𝜕𝑥v(3))TĂ(𝜕𝑥𝜑𝜑𝜑(3)) + (v(3))TB̆1(𝜕𝑥𝜑𝜑𝜑(3))

+(𝜕𝑥v(3))TB̆2𝜑𝜑𝜑(2) + (v(3))TC̆𝜑𝜑𝜑(3) + 𝜕𝑥v(3)TG1 + (v(2))TG2} 𝑑𝑥

+
2

∑
𝑗=1

[P(v(𝑗))T − Α(v(3))T]
𝑥=𝑎𝑗

𝜆𝜆𝜆(𝑗) 𝑑x = 0

2
∑
𝑗=1

𝜉𝜉𝜉(𝑗)T[PT(𝜑𝜑𝜑(𝑗)) − A(𝜑𝜑𝜑(3))]
𝑥=𝑎𝑗

= F𝑗.

∀(v(𝑗), 𝜉𝜉𝜉(𝑗)) ∈ 𝑉 (𝐼𝑗)𝑁𝑚+2 × 𝐻−1/2(Ι3)𝑁𝑚+2 .

(4.50)

with,

F𝑗(x) = 𝑓ℓ(𝑎𝑗)
0

∫
−ℎ

𝑞Z 𝑑𝑧. (4.51)
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For the 1D discretization case (𝑑 = 1), the interface is reduced to single nodes (𝑑 − 1), located
at 𝑥 = 𝑎𝑗, 𝑗 = 1, 2.



Part II

FEM Implementation and
Computational Aspects





Chapter 5

Finite Element Implementation

The Finite Element Method is employed for the solution of the hydrodynamics
and the structural eigenvalue problems. A conforming approach is followed for the
construction of versatile FEM schemes for the approximate solution of the reduced
weak problems defined in Chapter 3.

5.1 Hydrodynamic Subproblems

In the following sections, the FEM is applied for the treatment of the reduced weak formula-
tions presented in Chapter 4. Discrete FE schemes for the approximate solution of the posed
weak hydrodynamic problems will be considered. Employing a conforming approach, the ap-
proximate solution is sought in a finite dimensional subspace of 𝑉 and H, corresponding to
reduced weak problems in Eqs. (4.31) and (4.33) and Eqs. (4.43) and (4.50) respectively. It
is reminded that the reduced problems of Eqs. (4.31) and (4.50) are defined in one horizontal
dimension (1D), while Eqs. (4.33) and (4.43) are defined on the horizontal plane (2D).

The principle idea is to devise appropriate 1D and 2D partitions of the domain of interest
and construct the approximate solution subspaces 𝑉 ℎ ⊂ 𝑉 and Hℎ ⊂ H composed of piecewise
polynomials defined on each element of the partition. For the solution of the aforementioned
weak hydodynamic problems, the classical Bubnov-Galerkin FEM approach is followed (see
Zienkiewicz and Taylor (2005)). In a conforming approach, the interpolation functions em-
ployed by the FEM need to chosen on the grounds of permitting natural embedding into the
solution function space dictated by the weak form. For the problems at hand, the finite element
spaces need to be embedded in 𝐻1, thus 𝐶0 continuity is required. Based on their conformity,
𝐶0 Lagrange Elements are employed. The continuity requirement is expressed by sharing the
degrees of freedom across element boundaries.
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5.1.1 1D FEM Implementation

A partition Iℎ of the 1D domain of interest 𝐼[x1, x2] ⊂ ℝ into 𝑁𝑒 subintervals of size ℎ is
considered, leading to a number of discrete nodes 𝑁𝑡. Hence, Iℎ ∶ x1 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁𝑡

= x2

and each subinterval is I𝑒
ℎ = (𝑥𝑖, 𝑥𝑖+𝑁−1), 𝑖 = 1, 2, ⋯ , 𝑁𝑒. The 1D Lagrange element in exploits

the space of polynomial functions of degree 𝜅 = 𝑁 −1, as the finite dimensional approximation
space,

ℙ𝑘 = {𝑝(𝑥) =
𝜅

∑
𝑖=0

𝑎𝑖𝑥𝑖, 𝑎𝑖 ∈ ℝ, 𝑥 ∈ I𝑒
ℎ}

Notably, 𝑑𝑖𝑚(ℙ𝑘) = 𝑁 , corresponding to the element nodes. The finite element subspace
𝑉 ℎ ⊂ 𝑉 is the space of globally continuous 𝐶0 affine functions in each subinterval,

𝑉 ℎ = {𝑢ℎ ∶ 𝑢ℎ ∈ 𝐶0(𝐼; ℂ), 𝑢ℎ|𝑒 ∈ ℙ𝑘}.

The nodal basis of ℙ𝑘, 𝐿𝑘 = {𝐿1, ⋯ , 𝐿𝑁} for which 𝐿𝑖(𝑥𝑗) = 𝛿𝑖𝑗, 𝑖, 𝑗 = 1, ⋯ , 𝑁 is proved to
span the element subspace thus,

𝑉 ℎ = {𝑢ℎ ∶ 𝑢ℎ ∈ 𝐶0(𝐼; ℂ), 𝑢ℎ|𝑒 =
𝑁

∑
𝑟=1

𝐿𝑟𝑢𝑟}.

Functions 𝐿𝑟 are the 𝑟th, 𝑁 − 1 order Lagrangian Shape function supported in 𝐾𝑗.

Remark 10. As the element number increases, i.e. 𝑁𝑒 → ∞, ℎ → 0 convergence is achieved,
i.e. 𝑢ℎ → 𝑢. Similarly, increasing the order of employed interpolation within each element
𝑘 leads to convergence without increasing the number of elements. The above strategies in
constructing proper finite element subspaces are refered as h- and p version respectively The
presented conforming FE approximation is h-p adaptive.

In the following section suitable finite element subspaces are defined and the corresponding
discrete weak forms of reduced 1D problems Eqs. (4.31) and (4.50) are considered.

Transmission Problem

Returning to the treatment of the weak transmission problem Eq. (4.31), the restriction of the
approximate modal amplitude solutions in the 𝑘th element 𝜙ℎ

𝑛|𝑒 ≡ 𝜙ℎ
𝑛 for 𝑛 = −1, 0, ⋯ , 𝑁𝑚 is

written as,

𝜙ℎ
𝑛(𝑥) =

𝑁
∑
𝑟=1

𝐿𝑟(𝑥)𝜙𝑟
𝑛 ∈ 𝑉 ℎ ∀𝑛 = −1, 0, ⋯ , 𝑁𝑚. (5.1)
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Thus, 𝜑𝜑𝜑 ∈ 𝑉 ℎ(𝐼)𝑁𝑚+2. The nodal unknowns at the 𝑟th node of the 𝑘th element contains the
𝑁𝑚 +2 unknown x-dependent modal amplitudes arranged in the following vector (see Fig. 5.1),

U𝑟 = [𝜙𝑟
−1 𝜙𝑟

0 ⋯ 𝜙𝑟
𝑁𝑚

]
T

Moreover, the compound vector of the 𝑘th element unknowns is written as

U𝑘
𝑁(𝑁𝑚+2)×1

= [U1 U2 ⋯ U𝑁]
T

while the approximate solution restriction is re written as,

𝑈ℎ
𝑘 (𝑥) = NU𝑘 (5.2)

by means of the array N
(𝑁𝑚+2)×𝑁(𝑁𝑚+2)

= [𝐿1I𝑁𝑚+2 𝐿2I𝑁𝑚+2 ⋯ 𝐿𝑁I𝑁𝑚+2] .
Allowing the weight functions v to coincide with the Lagrangian Shape functions, i.e.

v ≡ N, and substituting Eq. (5.2) in the integral form Eq. (4.31) results in the following
element stiffness matrix of size 𝑑 × 𝑑, with 𝑑 = 𝑁(𝑁𝑚 + 2)

k𝑒
𝑑×𝑑

= ∫
𝐾

(𝜕𝑥N)TA(𝜕𝑥N) + NTB1(𝜕𝑥N) + (𝜕𝑥N)TB2N + NTCN 𝑑𝑥 (5.3)

After the assembly of local matrices, following discrete system of nodal equations of size 𝑝 =
𝑁𝑡 × (𝑁𝑚 + 2) is derived,

𝕂
𝑝×𝑝

u
𝑝×1

= 𝔽 (5.4)

where vector u contains the global unknowns. The above system is sparse and diagonally
dominant.

Remark 11. The only non-zero element of the forcing vector 𝔽 is the first node entry which
springs form the imposition of the Robin-type conditions Eq. (4.30). Denoting 𝑙 = 𝑁𝑚 + 2,
the local forcing vector of the first element is,

𝔽𝑒 = {g1 0
𝑙×𝑙

⋯ 0
𝑙×𝑙}

T
.

The solution of the discrete system Eq. (5.16) recovers the unknown complex modal am-
plitudes 𝜙𝑛. Subsequently, exploiting the known vertical structure of the mode the total wave
field is constructed by means of Eq. (4.18)
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Figure 5.1 Nodal unknowns-dofs- for 𝑘th element
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Figure 5.2 Augmented interface dofs

Radiation-Type Problem

Distinct partitions I𝑗
ℎ are employed for the decomposed subregions 𝐼𝑗 for 𝑗 = 1, 2, 3. A different

number of elements can be employed in each subregion, leading to a total number of discrete
nodes 𝑁𝑡 = ∑3

𝑗=1 𝑁𝑗.
As already mentioned, in the 1D discretization case (𝑑 = 1), the interface boundaries

between subregions is reduced to single points (𝑑 − 1), corresponding to nodes located at
𝑥 = 𝑎𝑗, 𝑗 = 1, 2. The meshes are chosen as to match at the interface, thus adjacent subregions
share a common inter-facial node. Thus, the intersections 𝑑𝑖𝑗 = I𝑖

ℎ ∪ I
𝑗
ℎ for 𝑖 = 1, 2 and 𝑗 = 3

contain a single node.
The two inter-facial nodes carry degrees of freedom from both adjacent regions (Fig. 5.2) so

element interconnectivity is violated. The interfacial dofs are connected through the additional
discrete constraints that enforce the appropriate jump conditions.

Revisiting the reduced, two-field weak problem of Eq. (4.50), appropriate approximation
spaces for the pair 𝜑𝜑𝜑 and 𝜆𝜆𝜆, Hℎ and Λℎ need to be constructed. For Hℎ the Lagrangian
interpolation of the approximate solution within each element in the corresponding subregions
is considered,

Hℎ = {𝑢 ∈ H ∶ 𝑢ℎ|𝑒 =
𝑁

∑
𝑟=1

𝐿𝑟𝑢𝑟}.
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Thus employing Eq. (5.2) in the expressions Eqs. (4.35) and (4.36), results in the corre-
sponding element matrices,

k(𝑗)
𝑒 = ∫

𝐾
(𝜕𝑥N)TA(𝜕𝑥N) + NTB1(𝜕𝑥N) + (𝜕𝑥N)TB2N + NTCN 𝑑𝑥, for𝑗 = 1, 2. (5.5)

k(3)
𝑒 = ∫

𝐾
(𝜕𝑥N)TĂ(𝜕𝑥N) + NTB̆1(𝜕𝑥N) + (𝜕𝑥N)TB̆2N + NTC̆N 𝑑𝑥. (5.6)

The corresponding force vector, valid in the plate covered region,

F(𝑗)
𝑒 = − ∫

𝐾
(𝜕𝑥N)TG1 + NTG2 𝑑𝑥, (5.7)

The discrete trace space Λℎ for which it generally holds,

Λℎ = {𝑢 ∈ Λ ∶ 𝑢ℎ|𝑥=𝑎𝑗
=

𝑁
∑
𝑟=1

𝐿𝑟(𝑥)𝑢𝑟, 𝑥 ∈ 𝐾𝑖 ∩ 𝐾𝑗, 𝑗 = 1, 2 𝑖 = 3}.

Remark 12. The above choice for the multiplier interpolation space essentially allows for the
identification of employed shape functions 𝐿𝑟 with Dirac functions 𝛿(𝑥 − 𝑎𝑗). Thus, node
collocation is performed resulting in 𝑁𝑚 + 2 discrete multipliers at 𝑥 = 𝑎𝑗, 𝑗 = 1, 2.

At the ’interfacial’ nodes, located at 𝑥 = 𝑎𝑗, the discrete multipliers are contained in the
vectors 𝜆𝜆𝜆(𝑗), 𝑗 = 1, 2. The total additional dofs associated with discrete Lagrange multipliers
are contained in vector 𝜆𝜆𝜆 = (𝜆𝜆𝜆(1),𝜆𝜆𝜆(2))T. Next, we distinguish between the dofs in each of the
subregions as u(𝑗), 𝑗 = 1, 2, 3, contained in the vector of global unknowns u = (u(1), u(3), u(2))T.

After the assembly of local matrices, the following discrete saddle point problem with
respect to u and 𝜆𝜆𝜆 is derived. Denoting once again, 𝑝 = 𝑁𝑡 × (𝑁𝑚 + 2) and 𝑙 = 𝑁𝑚 + 2 leads
to,

⎧{
⎨{⎩

𝕂
𝑝×𝑝

u
𝑝×1

+ 𝔹
𝑝×2𝑙

T 𝜆𝜆𝜆
2𝑙×1

= 𝔽
𝑝×1

𝔹
2𝑙×𝑝

u
𝑝×1

= 𝕘
2𝑙×1

(5.8)

The above discrete system retains its symmetric form as seen by the blocked structure in
Fig. 5.3. Symmetry is preserved due to the employment of the Bubnov-Galerkin method and
the the geometric conformity of the interface boundaries.

5.1.2 2D FEM Implementation

For the 2D FEM implementation, triangular partitions denoted as {𝑇 ℎ} are considered for
Ω̆ ⊂ ℝ2. Triangular elements, 𝐾𝑗 are chosen for their ability to fit curved boundaries. For an
admissible partition, it must hold that the intersection of any two elements of {𝑇 ℎ} must be
either zero or reduce to a single vertex or a single side. Following the same trail of thought we
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Figure 5.3 Symmetric form of the discrete saddle point problem

consider the space of polynomial functions of order 𝑘 in two variables,

ℙ𝑘 = {𝑝(𝑥1, 𝑥2) = ∑
0≤𝑖+𝑗≤𝑘

𝑎𝑖𝑗𝑥𝑖
1𝑥𝑗

2 ∈ ℝ, 𝑥 ∈ 𝐾𝑗}

The conforming triangle 𝐾𝑗, features 𝑘 + 1 nodes along each edge. Throughout the present
thesis linear Lagrange triangles are considered for the FE approximation of hydrodynamic prob-
lems. The corresponding finite element subspace 𝑉 ℎ ⊂ 𝑉 is the space of globally continuous
𝐶0 affine functions in each subinterval,

𝑉 ℎ = {𝑢ℎ ∶ 𝑢ℎ ∈ 𝐶0(Ω; ℂ), 𝑢ℎ|𝑒 ∈ ℙ1}.

The nodal basis of ℙ1, 𝐿𝑘 = {𝐿1(𝑥1, 𝑥2), 𝐿2(𝑥1, 𝑥2), 𝐿3(𝑥1, 𝑥2)} is proved to span the element
subspace thus,

𝑉 ℎ = {𝑢ℎ ∶ 𝑢ℎ ∈ 𝐶0(Ω; ℂ), 𝑢ℎ|𝑒 =
3

∑
𝑟=1

𝐿𝑟𝑢𝑟}.

Linear Lagrange elements feature three nodes on each vertex, 𝑑𝑖𝑚(ℙ1) = 3. Next, the FEM ap-
proximation of the reduced weak diffraction and radiation-type problems Eqs. (4.33) and (4.43)
on the horizontal plane is presented. As in the 1D case, each problem is treated separately.

Diffraction Problem

In light of the above, the treatment of the diffraction problem Eq. (4.33), the restriction of the
approximate modal amplitude solutions in the 𝑘th element 𝜙ℎ

𝑛|𝑒 ≡ 𝜙ℎ
𝑛 for 𝑛 = −1, 0, ⋯ , 𝑁𝑚 is

written as,

𝜙ℎ
𝑛(𝑥1, 𝑥2) =

3
∑
𝑟=1

𝐿𝑟(𝑥1, 𝑥2)𝜙𝑟
𝑛 ∈ 𝑉 ℎ ∀𝑛 = −1, 0, ⋯ , 𝑁𝑚. (5.9)
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Figure 5.4 Linear Lagrange Triangle

Thus, 𝜙𝜙𝜙 ∈ 𝑉 ℎ(Ω)𝑁𝑚+2. As previously noted, the nodal unknowns at the 𝑟th node of the 𝑘th

element contains the 𝑁𝑚 + 2 unknowns,

U𝑟 = [𝜙𝑟
−1 𝜙𝑟

0 ⋯ 𝜙𝑟
𝑁𝑚

]
T

The compound vector of the 𝑘th triangle is now reduced to

U𝑘
3(𝑁𝑚+2)×1

= [U1 U2 U3]
T

while the approximate solution restriction is re written as,

𝑈ℎ
𝑘 (𝑥) = NU𝑘 (5.10)

by means of the array N
(𝑁𝑚+2)×3(𝑁𝑚+2)

= [𝐿1I𝑁𝑚+2 𝐿2I𝑁𝑚+2 𝐿3I𝑁𝑚+2] .
Allowing the weight functions v to coincide with the Lagrangian Shape functions, and

substituting the approximate solution Eq. (5.10) in the integral equation Eq. (4.33) results in
the following element stiffness matrix of size ̃𝑑 × ̃𝑑, with ̃𝑑 = 3(𝑁𝑚 + 2)

k𝑒
̃𝑑× ̃𝑑

= k1
𝑒

̃𝑑× ̃𝑑
+ k2

𝑒
̃𝑑× ̃𝑑

, (5.11)

while,

k𝑗
𝑒 = ∫

𝐾
(𝜕𝑥𝑗

N)TA(𝜕𝑥𝑗
N) + NTB𝑗

1(𝜕𝑥𝑗
N) + (𝜕𝑥𝑗

N)TB𝑗
2N + NTCN 𝑑x, 𝑗 = 1, 2. (5.12)

After the assembly of local matrices, following discrete system of nodal equations of size 𝑝 =
𝑁𝑡 × (𝑁𝑚 + 2) is derived,

𝕂
𝑝×𝑝

u
𝑝×1

= 𝔽 (5.13)
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where vector u contains the global unknowns. The above system remains sparse through the
diagonal dominance and of matrix 𝕂.

Radiation-Type problem

In accordance to 1D schemes, Distinct triangular partitions T
𝑗
ℎ are employed for the decom-

posed subregions Ω̆𝑗 for 𝑗 = 1, 2. The interface boundary between subregions is now a closed
curve composed of discrete nodes. The triangular meshes are chosen as to match at the inter-
face, thus adjacent subregions share common inter-facial node. Thus, the intersection of the
trace meshes on 𝑃 , T1

ℎ ∪ T2
ℎ contains a finite set of interfacial nodes referred as 𝑃𝑖.

As in the 1D case, the interfacial nodes carry degrees of freedom from both adjacent regions
(Fig. 5.2) so as to violate element interconnectivity. The interfacial dofs are connected through
the additional discrete constraints that enforce the appropriate jump conditions.

Revisiting the reduced, two-field weak problem of Eq. (4.43), appropriate approximation
spaces for the pair 𝜑𝜑𝜑 and 𝜆𝜆𝜆, Hℎ and Λℎ need to be constructed. For Hℎ the Lagrangian
interpolation of the approximate solution within each element in the corresponding subregions
is considered,

Hℎ = {𝑢 ∈ H ∶ 𝑢ℎ|𝑒 =
3

∑
𝑟=1

𝐿𝑟(𝑥1, 𝑥2)𝑢𝑟}.

Thus employing Eq. (5.10) in the expressions Eqs. (4.35) and (4.36), results in the corre-
sponding element matrices k(𝑗)

𝑒 in subregions Ω̆𝑗,

k(1)
𝑒 = ∫

𝐾

2
∑
𝑗=1

(𝜕𝑥𝑗
N)TA(𝜕𝑥𝑗

N) + NTB𝑗
1(𝜕𝑥𝑗

N) + (𝜕𝑥𝑗
N)TB𝑗

2N + NTCN 𝑑x, (5.14)

k(2)
𝑒 = ∫

𝐾

2
∑
𝑗=1

(𝜕𝑥𝑗
N)TĂ(𝜕𝑥𝑗

N) + NTB̆𝑗
1(𝜕𝑥𝑗

N) + (𝜕𝑥𝑗
N)TB̆𝑗

2N + NTC̆N 𝑑x. (5.15)

The corresponding force vector, valid in the plate covered region,

F𝑒 = − ∫
𝐾

2
∑
𝑗=1

(𝜕𝑥1
N)TG1 + NTG2 𝑑𝑥, (5.16)

The discrete trace space Λℎ for which it generally holds,

Λℎ = {𝑢 ∈ Λ ∶ 𝑢ℎ|𝑃 =
𝑁

∑
𝑟=1

𝐿𝑟(𝑥1, 𝑥2)𝑢𝑟, 𝑥 ∈ 𝑃}.

Remark 13. Again node collocation is performed resulting in 𝑁𝑚 + 2 discrete multipliers at
each interfacial node in set 𝑑
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The discrete multipliers are contained in the vector ΛΛΛ.
After the assembly of local matrices, the following discrete saddle point problem with

respect to u and 𝜆𝜆𝜆 is derived. Denoting once again, 𝑝 = 𝑁𝑡 × (𝑁𝑚 + 2) and 𝑙 = 𝑁𝑚 + 2 leads
to,

⎧{
⎨{⎩

𝕂
𝑝×𝑝

u
𝑝×1

+ 𝔹
𝑝×2𝑙

T 𝜆𝜆𝜆
2𝑙×1

= 𝔽
𝑝×1

𝔹
2𝑙×𝑝

u
𝑝×1

= 𝕘
2𝑙×1

(5.17)

The above discrete system retains its symmetric form as seen by the blocked structure in
Fig. 5.3. Symmetry is preserved due to the employment of the Bubnov-Galerkin method and
the the geometric conformity of the interface boundaries.

5.2 Structural Vibration

In Chapter 2, the Kirchoff-Love and Reissner-Mindlin equations describing the vertical motion
of thin and moderately thick plates respectively were briefly presented. In the context of the
proposed methodology, the focus is placed in the free flexural vibration problems of both finite
plates and plate-strips as previously discussed. The solutions to the inhomogenous eigenvalue
problems will be sought by means of the FE method.

Following the previous discussion on hydrodynamics, the numerical treatment of the struc-
tural eigenvalue problems by the FEM dictates the formulation of a variational problem. The
formulation in question is similarly derived by means of either a weighted residual approach
or a variational principle. In structural mechanics, the employment of classical principles, like
the minimisation of potential energy and the principle of least action has dominated the liter-
ature when it comes to the development of numerical schemes. It must be noted that the two
approaches are equivalent, and the popularity of variational principles is understood as the
involved PDEs are high-order, thus their direct tackling associated with the weighted-residuals
approach becomes more involved. The fourth-order PDE, linked with the motion of a thin
plate as seen in Chapter 2, presents a 𝐶1 variational problem, suggesting that shape functions
need to satisfy 𝐶1 continuity requirements across element edges. The Reissner-Mindlin theory
on the other hand, in its two-field form, poses a 𝐶0 problem and is relieved of the above com-
plexity. As the process of constructing conforming approximation spaces for thin plates is an
involved process, several approaches have been proposed historically. The interested reader is
directed to the works of Oñate (2010) and Zienkiewicz and Taylor (2005). These ideas range
from suitable mixed-formulations to ’non-conforming’ elements that violate inter-element con-
tinuity.

The question of optimality between available techniques for the structural modelling of
plates is not trivial. The choice is made on the grounds of versatility, as in whether the formu-
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lation is able to account for both ’thick’ and ’thin’ plates or a variety of support conditions,
simplicity in implementation and the total computational cost. As the focus of the present
thesis is the development of a monolithic strategy for the treatment of wave-floating structure
with emphasis on geometric and material inhomogeneity, triangular elements with a minimal
number of nodes and dofs per element, able to account for both thin and moderately thick
plates were considered.

5.2.1 𝐶0 approximation for plate bending

There are several strategies to bypass the complexity introduced by the 𝐶1 requirement in-
herent to the irreducible thin plate model. The majority of methods however falls into two
categories. The first considers the reducible, two-field Reissner-Mindlin theory as a starting
point and subsequently imposes discrete constraints on the strain definition that are satisfied
on given points. The second category introduces pseudo-variables to derive a convenient two-
field formulation that would allow 𝐶0 interpolation. Both of the above approaches assume
’mixed’ formulations and admit different interpolations for the deflection and rotations.

In the present work emphasis is placed in discrete triangular elements, namely the Discrete
Kirchhoff Triangle (DKT), and its extension the Discrete Shear Triangle (DKT) intoduced
for the treatment of thin and moderately thick plates respectively introduced in the works of
Batoz (1980) and Batoz and Lardeur (1989). Both non-conforming triangles employ,

• quadratic 𝐶0 interpolation for the unknown rotations 𝛽𝑥𝑗
within the elements. Linear

variation of rotation 𝛽𝑛 along the tangential direction is assumed along the edges of the
triangle.

• cubic 𝐶1 interpolation for the unknown displacement 𝑤 along the element edges.

To satisfy the kinematic assumptions, the following discrete constraints are imposed at the
vertices and the edge midnodes,

(𝜕𝑠𝑤)|𝑘 + (𝜕𝑠𝛽)|𝑘 = 𝐹(𝛽𝑥1
, 𝛽𝑥2

), 𝜅 = 4, 5, 6. (5.18)
(𝜕𝑥𝑗

𝑤)|𝑘 + (𝜕𝑥𝑗
𝛽)|𝑘 = 𝑆(𝛽𝑥1

, 𝛽𝑥2
), 𝜅 = 1, 2, 3. (5.19)

Implementing the above assumptions and imposing the constraints results in 9 elemental
unknowns. The DST (Fig. 5.5) triangle essentially reduces to DKT as element thickness
diminishes, i.e. 𝜏 → 0 the expressions for discrete shear strain 𝐹(𝛽𝑥1

, 𝛽𝑥2
), 𝐹 (𝛽𝑥1

, 𝛽𝑥2
) →

0 in Eqs. (5.18) and (5.19) vanish revealing Kirchhoff’s kinematic assumption. The above
considerations result in the following expressions involving the unknown dofs contained in
vector U,

𝛽𝑥1
= H1U

𝛽𝑥2
= H2U

(5.20)



5.2 Structural Vibration | 75

1

2 3

5

4

6

3 dofs: {𝑤, 𝛽𝑥1
, 𝛽𝑥2

}

constraints:
(𝜕𝑠𝑤)|𝑘 + (𝜕𝑠𝛽)|𝑘 = 𝐹(𝛽𝑥1

, 𝛽𝑥2
)

(𝜕𝑥𝑗
𝑤)|𝑘 + (𝜕𝑥𝑗

𝛽)|𝑘 = 𝑆(𝛽𝑥1
, 𝛽𝑥2

)

Figure 5.5 Discrete Shear Triangle-DST (Batoz and Lardeur, 1989)

The shape functions H1, H2 are given in Appendix Α�. Next, the potential energy, expressed
as the sum of bending and shear energy in the general case, is written in terms of the curvatures
𝜒𝜒𝜒T = [𝜕𝑥1

𝛽𝑥1
𝜕𝑥2

𝛽𝑥2
𝜕𝑥1

𝛽𝑥2
+ 𝜕𝑥2

𝛽𝑥1
] . and shear strains 𝛾𝛾𝛾T = [𝜕𝑥1

𝑤 + 𝛽𝑥1
𝜕𝑥2

𝑤 + 𝛽𝑥2
],

Π = 1
2 ∫

Ω̆2

(𝜒𝜒𝜒TDb𝜒𝜒𝜒 + 𝛾𝛾𝛾TDs𝛾𝛾𝛾) 𝑑x. (5.21)

In terms of the element unknowns U the latter are written as,

𝜒𝜒𝜒 = b𝑏
3×9

U
9×1

, 𝛾𝛾𝛾 = bs
2×9

U
9×1

. (5.22)

By means of Eqs. (5.21) and (5.22), the minimisation principle involving the potential energy
functional, 𝛿Π = 0 is employed in the following finite element model of static equilibrium,

(Kb + Ks)U = 0 (5.23)

with the element stiffness matrices defined,

Kb = ∫
𝐾

bT
𝑏 Dbb𝑏 𝑑𝐴 = 0, Ks = ∫

𝐾
bT

𝑠Dsb𝑠 𝑑𝐴 = 0. (5.24)

and for the isotropic case,

Db = 𝐸𝜏3

12(1 − 𝜈2)
⎡⎢⎢
⎣

1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎤⎥⎥
⎦

, Ds = 5𝐸𝜏
12(1 + 𝜈) [1 0

0 1] (5.25)

With the problem of free vibration in mind the inertial effects must be taken into account.

Remark 14. Since the deflection 𝑤 is only defined on the edges of the DKT and the DST,
a mass matrix cannot be defined consistently. Following the analysis in Sydenstricker et al.
(1995), a pseudo-consistent approach is followed. A cubic Lagrange interpolation 𝑤 is adopted
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for the interior of the triangle in order to match the adopted Hermite interpolation along the
edges. Furthermore, by preserving expressions Eq. (5.20) for the rotations pseudo consistent
expressions for the element mass matrix can be derived.

M = ∫
𝐾

bT
𝑏 Dbb𝑏 𝑑𝐴 = 0, (5.26)

Upon global assembly the free vibration problem is written as,

K̃u − 𝜔2
ℓ M̃u = 0, (5.27)

in terms of the global unknowns vector u and the natural frequencies 𝜔ℓ.

Evaluation for discrete elements (DKT/DST)-Eigenvalue problem

Considering the structural eigenvalue problem, the deviation of the numerically calculated
eigenvalues to the analytical or semi-analytical solutions are examined for the thick and thin
limit cases. To this end, the cases of a free-circular and rectangular plates are considered. First,
the DKT and DST elements are compared against semi-analytical solutions and other numer-
ical results obtained for the FFFF rectangular plate. Subsequently, the range of applicability
of the DKT and DST elements is tested for the case of a free circular plate.

In an attempt to establish the accuracy of the discrete elements, the simple free vibration
problem of a completely free, homogeneous rectangular plate is considered. It is noted here
that even for such reduced example as the case of a homogeneous rectangular plate, closed-
form solutions can be produced only for the scenarios where the opposite sides of the plate are
simply-supported. These are 6 out of the 21 classic scenarios where each edge is considered to
be either simply supported, clamped or free. The remaining 15 cases, including the one of a
completely free case FFFF, assume semi-analytical solutions (Leissa, 1973). Here, comparisons
are mande against the semi-analytical solutions presented in Leissa (1973). Additionally, the
natural frequencies are also compared against the calculated values obtained by means of the
elasticity toolbox available in Matlab R2016a, the Rayleigh-Ritz method employing the in-
vacuo thin beam modes as trial functions and finally the SHELL181 legacy element available
in ANSYS Workbench. The considered case is a 10×10×0.1m square plate and the computed
frequencies are tabulated below, while the produced eigenmodes are illustrated in Fig. 5.6.
Notably, the first three modes in the FFFF case are corresponding to rigid body modes linked
with zero eigenvalues. It is immediately observed in Table 5.1 that the calculated deviations
from the natural frequencies documented in Leissa (1973) are kept under 1% in all cases except
for the Rayleigh-Ritz method. The use of the in-vacuo beam modes as trial functions for an
R-R formulation, although straightforward yields slow conversion rates. This is attributed to
the inability of the beam mode products to satisfy the free edge conditions on the plate edges
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𝜔ℓ/2𝜋, (=0.3)
𝜏/a = 0.01 4 5 6 7 8 9

Leissa (1973) 3.289 4.826 5.958 8.542 8.542 15.005

DKT 3.285 4.78 5.919 8.488 8.4882 14.902
Dev.(%) 0.15 0.971 0.657 0.627 0.626 0.687

DST 3.285 4.78 5.92 8.488 8.488 14.9016
Dev.(%) 0.155 0.974 0.658 0.631 0.63 0.689

Matlab R2016a 3.278 4.779 5.920 8.479 8.479 14.918
Dev.(%) 0.341 0.974 0.645 0.735 0.731 0.577

R-R 3.369 4.921 6.087 8.728 8.7282 15.328
Dev.(%) 2.403 1.963 2.154 2.173 2.173 2.154

ANSYS, SHELL181 3.274 4.78 5.92 8.46 8.46 14.889
Dev.(%) 0.465 1.002 0.694 0.955 0.955 0.773

Table 5.1 Frequency parameters 𝜔ℓ/2𝜋, plate aspect ratio a/b=1

and corners. More efficient R-R schemes employ orthogonal polynomials or other appropriately
chosen bases (Bhat, 1985; Oosterhout et al., 1995). From a computational standpoint, R-R
formulations for general geometries accounting for inhomogeneity are not trivial to implement
which makes the latter inconvenient to use in the context of the present work. Matlab R2016a
linear elasticity toolbox solutions by means of quadratic tetrahedral elements are found in
excellent agreement. However as the thickness-to-primary length ratio diminishes, apart from
the computational cost that increases dramatically in the numerical treatment of 3D linear
elasticity, ill-conditioning issues rise (Zienkiewicz and Taylor, 2005). This is the essentially the
reasoning behind the employment of reduced elasticity theories and the popularity of shell and
plate elements for the modelling of relatively slender structures. ANSYS SHELL181 element
accounts for fist order shear deformation effects. Although a large number of elements was
employed in all FEM runs to ensure convergence, ANSYS vibration analysis was carried out in
the APDL environment employing a different mesh by default. Additionally the lumped mass
method was employed instead of the pseudo-consistent approach for the simulation of inertial
effects. The latter facts could explain the slight deviations between the discrete elements and
SHELL181.

It is illustrated how the in-vacuo vibration analysis of an elastic plate can be carried out
numerically, with an abundance of numerical tools available. For the scope of the present work
however, the discrete elements were opted due to their robustness which is well documented in
the literature and validated in a series of example cases where analytical solutions are available.

Next, the range of applicability for the DST and DKT elements is examined for the case
of an unconstrained circular plate. Results are tabulated in Table 5.2



78 | Finite Element Implementation

Ω = 𝜔𝑟2√𝜌𝜏/𝑟
𝜏/r = 0.001 4 5 6 7 8 9

Senjanović et al. (2014) 5.358 9.003 12.439 20.474 21.835 33.495
𝐷𝐾𝑇 5.359 9.004 12.411 20.426 21.832 33.459

Dev.(%) 0.015 0.010 0.228 0.237 0.013 0.107
𝐷𝑆𝑇 5.359 9.004 12.440 20.474 21.835 33.49

Dev.(%) 0.009 0.006 0.005 0.008 0.092 0.012

𝜏/r = 0.1 4 5 6 7 8 9

Senjanović et al. (2014) 5.318 8.869 12.227 19.771 21.188 31.994
𝐷𝐾𝑇 5.358 9.008 12.439 20.475 21.836 33.4977

Dev.(%) 0.0759 1.571 1.736 3.562 3.058 4.699
𝐷𝑆𝑇 5.334 8.934 12.336 20.183 21.553 32.879

Dev.(%) 0.305 0.735 0.892 2.085 1.722 2.767

𝜏/r = 0.2 4 5 6 7 8 9

Senjanović et al. (2014) 5.203 8.508 11.671 18.087 19.635 28.719
𝐷𝐾𝑇 5.358 9.003 12.439 20.475 21.836 33.4978

Dev.(%) 2.922 5.585 6.284 12.07 10.388 14.937
𝐷𝑆𝑇 5.261 8.735 12.0355 19.373 20.755 31.193

Dev.(%) 1.115 2.667 3.123 7.112 5.707 8.613

Table 5.2 Frequency parameter Ω and 𝜅𝑠 = 5/6

5.2.2 𝐶1 approximation for thin plate strips

A finite element approach is again adopted for the numerical treatment of the vibration prob-
lems plate strip introduced in Section 2.4 employed models under cylindrical bending of a
plate.

For the thin,inhomogeneous plate standard Euler-Bernoulli beam elements, featuring 𝐶1

Hermite interpolation are employed (Hughes, 2000; Oñate, 2010; Zienkiewicz and Taylor, 2005).
The weighted residual approach is followed and Eq. (2.27) is tackled directly. The following
analysis assumes a strip extending in 𝐼𝑝 = [−𝐿/2, 𝐿/2]. Introducing weight function 𝑣(𝑥) ∈
𝐻1(𝐼𝑝) multiplying each term and then integrating over the domain it is derived,

∫
𝐿/2

−𝐿/2
𝑣 𝜕2

𝑥 (𝐷(𝑥)𝜕𝑥
𝑤) 𝑑𝑥 − ∫

𝐿/2

−𝐿/2
𝜔2𝜌𝑒𝜏(𝑥) 𝑣 𝑤 𝑑𝑥 = 0. (5.28)

Integration by parts yields,

∫
𝐿/2

−𝐿/2
𝜕𝑥

𝑣 (𝐷(𝑥)𝜕𝑥
𝑤) 𝑑𝑥 − ∫

𝐿/2

−𝐿/2
𝜔2𝜌𝑒𝜏(𝑥) 𝑣 𝑤 𝑑𝑥

+ [𝑣 𝜕𝑥 (𝐷(𝑥)𝜕2
𝑥𝑤)]𝐿/2

−𝐿/2 − [𝜕𝑥𝑣 (𝐷(𝑥)𝜕2
𝑥𝑤)]𝐿/2

−𝐿/2 = 0.
(5.29)
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Figure 5.6 Calculated in-vacuo modes for the FFFF rectangular plate by the DKT.

The boundary terms vanish in the unconstrained case due to the zero shear force and bending
moment conditions Eqs. (2.28) and (2.29). Subsequently, as already mentioned in order to
satisfy the 𝐶1 conformity condition 1D Hermite elements are employed.

In general, 𝑘𝑡ℎ Hermite interpolation in the given reference interval [−𝐿/2, 𝐿/2] achieves
𝐶𝑙 continuity by means of polynomial functions 𝑝 ∈ (ℙ2𝑘+1). The derivatives up to 𝑙𝑡ℎ of
𝑝(𝑥) exist at the interval edges and become zero or unity at the edge nodes for 0 ≤ 𝑙 ≤ 𝑘.
For 𝐶1 requirement cubic Hermite interpolation (𝑘 = 1) is employed in the derivation of the
simplest element. By means of Hermite shape functions, 𝑤 is interpolated using Hermite shape
functions as,

𝑤(𝑥) =
𝑁

∑
𝑟=1

𝐻𝑟𝑤𝑟 + 𝐻𝑟+𝑁𝜕𝑥𝑤𝑟 = HU, (5.30)

where UT = [𝑤1 𝜕𝑥𝑤1 ⋯ 𝑤𝑁 𝜕𝑥𝑤𝑁] and H = [𝐻1 𝐻𝑁+1 ⋯ 𝐻𝑁 𝐻2𝑁+1]. Next,
substituting Eq. (5.30) in Eq. (5.29) results in the following local stiffness and mass matrices,

Kb = ∫
𝐾

LT𝐷(𝑥)L 𝑑𝑥, M = ∫
𝐾

LT𝜌𝑒𝜏(𝑥)L 𝑑𝑥. (5.31)
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Hence, once again upon global assembly the free vibration problem for the thin plate strip is
written as,

̃Kbu − 𝜔2
ℓ M̃u = 0 (5.32)

5.2.3 𝐶0 approximation for thick plate strips

The two-field formulation of the FSDT theory allows the employment of 𝐶0 Lagrange ele-
ments similarly to the 1D hydrodynamic problems that were discussed in Section 5.1.1. Thus,
considering again the finite element subspaces 𝑉 ℎ the weight functions 𝑣1, 𝑣2 ∈ 𝑉 ℎ(𝐼𝑝), each
multiplying Eqs. (2.30) and (2.31) are introduced. Integrating in the domain of interest 𝐼𝑝
yields,

∫
𝐿/2

−𝐿/2
𝑣1 𝜕𝑥 [𝜅𝑠𝐺𝜏( 𝜕𝑥𝑤 − 𝜃 )] 𝑑𝑥 + ∫

𝐿/2

−𝐿/2
𝜔2𝜌𝑒𝜏𝑣1 𝑤 𝑑𝑥 =0, (5.33)

∫
𝐿/2

−𝐿/2
𝑣2 𝜅𝑠𝐺𝜏 (𝜕𝑥𝑤 − 𝜃) + ∫

𝐿/2

−𝐿/2
𝑣2 𝜕𝑥 (𝐷𝜕𝑥𝜃) 𝑑𝑥 + ∫

𝐿/2

−𝐿/2
𝜔2 𝜌𝑒𝜏3

12 𝑣2 𝜃 𝑑𝑥 =0. (5.34)

Performing integration by parts yields,

− ∫
𝐿/2

−𝐿/2
𝜕𝑥𝑣1 [𝜅𝑠𝐺𝜏(𝑥)( 𝜕𝑥𝑤 − 𝜃 )] 𝑑𝑥 + ∫

𝐿/2

−𝐿/2
𝜔2𝜌𝑒𝜏(𝑥)𝑣1 𝑤 𝑑𝑥

+ [𝑣1 𝜅𝑠𝐺𝜏( 𝜕𝑥𝑤 − 𝜃 )]𝐿/2
−𝐿/2 =0, (5.35)

∫
𝐿/2

−𝐿/2
𝑣2 𝜅𝑠𝐺𝜏 (𝜕𝑥𝑤 − 𝜃) − ∫

𝐿/2

−𝐿/2
𝜕𝑥𝑣2 (𝐷𝜕𝑥𝜃) 𝑑𝑥 + ∫

𝐿/2

−𝐿/2
𝜔2 𝜌𝑒𝜏3

12 𝑣2 𝜃

+ [𝑣2 (𝐷𝜕𝑥𝜃)]𝐿/2
−𝐿/2 𝑑𝑥 =0, (5.36)

The boundary terms vanish once again since Eqs. (2.32) and (2.33) hold at the free ends. The
restrictions of the approximated solutions 𝑤ℎ, 𝜃ℎ in the 𝑘th element are written as,

𝑤ℎ(𝑥) =
𝑁

∑
𝑟=1

𝐿𝑟(𝑥)𝑤𝑟 ∈ 𝑉 ℎ, (5.37)

𝜃ℎ(𝑥) =
𝑁

∑
𝑟=1

𝐿𝑟(𝑥)𝜃𝑟 ∈ 𝑉 ℎ. (5.38)

Arranging the unknowns as UT = [𝑤1 𝜃1 ⋯ 𝑤𝑁 𝜃𝑁] allows for the above to be written
in matrix notation as,

𝑤ℎ(𝑥) = [𝐿1 0 𝐿2 ⋯ 𝐿𝑁 0] U = N1 U (5.39)

𝜃ℎ(𝑥) = [0 𝐿1 0 ⋯ 0 𝐿𝑁] U = N2 U. (5.40)
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Substituting the expressions Eqs. (5.39) and (5.40) in Eqs. (5.35) and (5.36)results in the
following local stiffness and mass matrices,

Kb = − ∫
𝐾

𝜕𝑥N2
T𝐷(𝑥)N2 𝑑𝑥

Ks = ∫
𝐾

𝜕𝑥N1
T𝜅𝑠𝐺𝜏N2 𝑑𝑥 − ∫

𝐾
𝜕𝑥N1

T𝜅𝑠𝐺𝜏N1 𝑑𝑥

− ∫
𝐾

𝜕𝑥N2
T𝜅𝑠𝐺𝜏N1 𝑑𝑥 + ∫

𝐾
𝜕𝑥N2

T𝜅𝑠𝐺𝜏N2 𝑑𝑥

M = ∫
𝐾

N1
T𝜌𝑒𝜏(𝑥)N1 𝑑𝑥 + ∫

𝐾
N2

T 𝜌𝑒𝜏(𝑥)3

12 N2 𝑑𝑥.

Hence, once again upon global assembly the free vibration problem for the thin plate strip is
written as,

( ̃Kb + ̃Ks)u + 𝜔2
ℓ M̃u = 0 (5.41)

The solution of the above system reduces the modal functions {𝑤ℓ, 𝜃𝑙} and natural frequen-
cies 𝜔ℓℓ.





Chapter 6

Computational Domain Truncation

The truncation of the inherently unbounded domain of interest, along with the ef-
ficient implementation of closure conditions at the fictitious boundary of the com-
putational region is the focus of the present chapter. The Optimal PML introduced
by Bermúdez et al. (2007) to treat the exterior Helmholtz problem is investigated,
in conjunction with the Finite Element Method (PML-FEM scheme), focusing on
water-wave and hydroacoustic scattering problems in the ocean and coastal en-
vironment. Under simplifying assumptions the physical phenomena are modelled
by the Mild-Slope (MS) and the Helmholtz equation with variable coefficients, re-
spectively. Furthermore, the PML-FEM scheme is extended to treat the vertical
multi-modal expansion of the velocity potential employed for dimensionality reduc-
tion in the context of the thesis.

6.1 Wave scattering in the Ocean Environment

The accurate prediction of wave fields in nearshore and coastal areas is crucial for several
applications, including the design and safe operation of marine structures and harbours, as well
as the stability of the coastal zone. In many cases, ranging from pile breakwaters to offshore
wind farms, the interaction of free-surface gravity waves with uneven bottom topography and
surface-piercing obstacles, like vertical cylinder arrays, is of great significance for engineering
studies; see, e.g., Guo et al. (2017). To facilitate the analysis in variable bathymetry regions
the assumption of moderate bottom slopes is usually adopted,and hence the wave conditions
are determined by means of reduced refraction-diffraction, mild-slope models; see, e.g., Mei
et al. (2005) and Dingenmanns (1997). Such models, typically involving only the horizontal
spatial variables, allow for the study of water wave diffraction in the presence of obstacles,
while accounting for refraction effects due to a mildly sloping bottom. In the work of Booij
(1983) (1983) it is shown that the applicability of the classical mild slope by Berkhoff (1972) is
limited to bottom slopes up to 1:3. Enhancements of the classical model, in order to account
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for stronger bottom variations, led to modified versions presented by various authors, e.g.,
Radder and Dingemans (1985), Massel (1993), Chamberlain and Porter (1995). Additional
effects concerning dissipation due to bottom friction and wave breaking, as well as wave-current
interaction, have also been presented in the works of , Tsay and Liu (1983) and Kirby and
Dalrymple (1984); see also Belibassakis et al. (2011). Notably, the elliptic mild slope models
are reduced to the Helmholtz equation with variable coefficients (see e.g., Mei et al. (2005)).
The above fact underlines the similarity between the combined refraction-diffraction problem
for water-waves on the horizontal plane and hydroacoustic wave propagation and scattering in
the inhomogeneous ocean and coastal waveguides (Jensen et al., 2011), and thus supporting
the development of common methods and techniques for numerical treatment; see also Chai
et al. (2016). Apart from being governed by the same equation, the above problems also
share the characteristic of being inherently formulated in unbounded or partially unbounded
domains. This class of problems is further complicated by the fact that the physical properties
of the medium (the propagation speed or the index of refraction) are variable at infinity, as
approached from different directions.

Next, a unified presentation is followed for problems of linear water-wave propagation in
nearshore regions, including the case of wave interaction with bottom founded obstacles, and
hydroacoustic wave propagation in the inhomogeneous ocean waveguide in the presence of
scatterers. Under specific simplifying assumptions, in the former case, water wave propagation
is manifested on the horizontal plane, while in the latter it takes place on the vertical plane.

6.1.1 Combined Reffraction-Diffraction

Assuming only a mildly sloping seabed, the Mild Slope Equation (MSE) is a classic model,
obtained by integration over the water depth leading a dimensionality reduction of the 3D
water wave problem; see e.g., Dingenmanns (1997). An enhanced version of the above classical
model, is the Modified Mild Slope equation (MMS), presented by Chamberlain and Porter
(1995); Massel (1993), able to account for higher-order effects involving the gradients of the
depth function. The latter elliptic model, supplemented by appropriate conditions at fixed
boundaries and the description of the incident wave field and/or radiation conditions at open
boundaries, is commonly applied to the study of wave transformations in coastal regions as well
as in harbor design. The considered marine environment is composed of a layer of inviscid and
irrotational fluid bounded above by a free surface and below by a rigid, impermeable bottom.
The latter are in agreement with the mathematical assumptions introduced previously and
the 3D transmission problem reduction approach discussed in Section 3.3, the decomposition
Eq. (3.19) is once again employed. Thus the total wave field solution is decomposed into an
unknown incident field 𝜙𝑖, carrying the imposed wave transformations due to the presence of
the parallel contour bathymetry ℎ𝑖(𝑥) and an unknown, diffracted field 𝜙𝑑 due the presence of
the localized scatterer corresponding to the depth function perturbation ℎ𝑑(x) .
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The MMS equation is employed for each of the reduced problems.Thus, the propagating-
refracted wave field over the parallel contour bathymetric profile satisfies the following one-
dimensional (𝑥-dependent) MMS equation,

𝜕𝑥 (𝑐𝑐𝑔 𝜕𝑥𝜙𝑖) + 𝑐𝑐𝑔 (𝑘2
0 + 𝜓 − 𝑘2

𝑥2
) 𝜙𝑖 = 0, 𝑥 ∈ Ω𝑐 (6.1)

The above is formulated as a transmission problem with appropriate inflow and outflow con-
ditions as described in Section 3.3.1. In Eq. (6.1), 𝑐(𝑥) = 𝜔/𝑘0(𝑥) is the phase velocity and
𝑐𝑔(𝑥) = 𝜕𝑘𝜔 is the group velocity. The function 𝜓 involves the terms of bottom slope and
curvature of the depth function ℎ𝑖(𝑥) (Massel, 1993; Miles and Chamberlain, 1998). The
diffraction problem on 𝜙𝑑, over the composed bathymetry ℎ(x) = ℎ𝑖(𝑥) + ℎ𝑑(x) behaves like a
radiating solution as discussed in Chapter 3, and it satisfies the MMSE in the horizontal plane
(𝑥1, 𝑥2),

∇ (𝑐𝑐𝑔 ∇𝜙𝑑) + 𝑐𝑐𝑔 (𝑘2
0 + 𝜓 − 𝑘2

𝑥2
) 𝜙𝑑 = 𝑓(x), x ∈ Ω̆ (6.2)

The forcing term 𝑓(x) in the right-hand side is obtained from the solution of the incident-
refracted wave field 𝜙𝑖 , as follows 𝑓(x) = − (∇ (𝑐𝑐𝑔 ∇𝜙𝑖) + 𝑐𝑐𝑔 (𝑘2

0 + 𝜓 − 𝑘2
𝑥2

) 𝜙𝑖) , and has
support on the projection of the depth inhomogeneity ℎ𝑑. The substitutions Φ𝑑 = √𝑐𝑐𝑔𝜙𝑑 and
Φ𝑖 = √𝑐𝑐𝑔𝜙𝑖 reduce Eqs. (6.1) and (6.2) to the Helmholtz equation with horizontally varying
coefficient 𝜅, corresponding to an effective wavenumber in 1D and 2D respectively.Thus focusing
in the diffraction problem, it is written as,

∇Φ𝑑 + 𝜅2Φ𝑑 = 𝑓(x)
√𝑐𝑐𝑔

, x ∈ Ω̆. (6.3)

with 𝜅2 = 𝑘2 + 𝜓 −
2√𝑐𝑐𝑔√𝑐𝑐𝑔

.
As mentioned above the total solution for the refracted-diffracted wavefield in the pre-

sented formulation is derived by the superposition of the incident-refracted wavefield Φ𝑖 and
the diffracted wavefield Φ𝑑. Next, the case of wavefield diffraction over a single or multiple
scatterers, which are assumed to be vertical cylinder(s) of general cross section, extending over
the whole length of the water column (from the seabed to the free surface) is considered. These
localised scatterers, denoted as 𝑆𝑖 , lay in the interior of the computational domain. The union
of the disjoint scatterer boundaries is given as Γ𝑆 ∪ Γ𝑠𝑖.The harmonic water wave diffraction
problem over the parallel contour bathymetry in the presence of the scatterers 𝑆𝑖, is again
governed by the MMS model on the horizontal plane which is now given by,

∇Φ𝑑 + 𝜅2Φ𝑑 = 0, x ∈ Ω � 𝑆𝑖. (6.4)
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supplemented by a suitable boundary condition on the body surfaces,

𝛼𝜕𝑛Φ𝑑 + 𝛽Φ𝑑 = − (𝛼𝜕𝑛Φ𝑖 + 𝛽Φ𝑖) , on Γ𝑆, (6.5)

where 𝛼 and 𝛽 are constants and in general dependent on the body properties. In the case of
rigid structures the selection 𝛼 = 1, 𝛽 = 0 reduces to the standard Neumann condition. The
known Cauchy incident data on Γ𝑆, employed in Eq. (6.5) are provided again by the solution
of the incident-refracted wavefield problem Φ𝑖, over the parallel contour bathymetry ℎ𝑖 in the
absence of the inclusions as in the prequel. The key difference between the above two problems,
posed by Eqs. (6.3)–(6.5), is that in the former case, wave diffraction is caused by the assumed
depth inhomogeneity ℎ𝑑(x), superimposed over the variable bathymetry, while in the latter
case wave scattering takes place because of the presence of the surface piercing bodies in the
region of interest. Notably, the present method is capable to treat the combined effects.

6.1.2 Hydroacoustic wave propagation and scattering in the ocean waveg-
uide

In the sequel, the problem of hydroacoustic wave propagation in the inhomogeneous ocean
waveguide is considered. Propagation and scattering problems in underwater acoustics, and
more specifically in range-dependent domains relevant to coastal applications, are frequently
formulated by using a point source (see e.g. Jensen et al. (2011) for field excitation. However,
as frequency increases, the problem becomes computationally demanding, and thus, for many
practical problems, as well as for inter-model comparisons, it is useful to work with a line source
in plane geometry. Assuming constant medium properties along the transverse 𝑥2 direction,
the line source can be visualised as a distribution of monopole sources along the 𝑥2 axis.
In this case, underwater acoustic wave propagation is governed by the Helmholtz equation
on the vertical plane, while the acoustic waveguide is formed by the free upper surface and
seabed boundaries. The domain of interest is thus the inhomogeneous strip Ω𝑐 matching the
2D vertical strip introduced in Section 3.3.1, featuring an acoustically hard seabed of varying
slope. Additionally, these areas are considered to be range independent, hence the acoustic
medium properties are assumed to exhibit only vertical variation. In the considered case, the
mathematical problem of hydroacoustic propagation in a range-dependent waveguide, excited
by a line source, is described by,

∇2Φ𝑐 + 𝜅2Φ𝑐 = 𝛿(𝑥 − 𝑥0, 𝑧 − 𝑧0) , (𝑥, 𝑧) ∈ Ω𝑐\𝑆. (6.6)

with Φ𝑐 denoting the acoustic wavefield and 𝑘 = 𝜔/𝑐(𝑥, 𝑧) the acoustic parameter in the
waveguide with a variable index of refraction. The line source location on the (𝑥, 𝑧) plane is
denoted by (𝑥0, 𝑧0). The field Eq. (6.6) is supplemented with the following conditions on the
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upper and bottom boundaries,

Φ𝑐(𝑥, 0) = 0 and 𝜕𝑛Φ𝑐(𝑥, 0) = 0. (6.7)

In the present work, the seabed is modeled as an acoustically hard boundary, however, extension
to treat a multilayered bottom is possible (Jensen et al., 2011). The total wavefield can be
once again split into a solution that carries the field transformations due to the variable index
of refraction of the medium, in the absence of the finite body(ies), and a scattered solution due
to the presence of the body (ies) in the waveguide. The total wavefield is decomposed to the
incident and scattered acoustic wavefields as, Φ𝑐 = Φ𝑐𝑖 + Φ𝑐𝑠. The former can be calculated
by several methods, as e.g., the coupled-mode method where the solution is represented as,

Φ𝑐𝑖(𝑥, 𝑧) =
∞

∑
𝑛=0

𝜑𝑛(𝑥) ̃𝑍𝑛(𝑧; 𝑥) (6.8)

while 𝜑𝑛(𝑥) are the modal amplitudes and ̃𝑍𝑛(𝑧; 𝑥) = 𝑍𝑛(𝑧; 𝑥)/ ‖𝑍𝑛‖ are the normalised local
vertical eigenmodes satisfying the boundary conditions Eq. (6.7). For a range independent
environment featuring a flat seabed ℎ , the expansion is reduced to

Φ𝑐𝑖(𝑥, 𝑧) = 2
∞

∑
𝑛=0

̃𝑍𝑛(𝑧; 𝑥) ̃𝑍𝑛(𝑧0; 𝑥)exp (i𝑘𝑥𝑛𝑥 − 𝑥0)
𝑘𝑥𝑛

(6.9)

where 𝑍𝑛(𝑧) = sin 𝑘𝑧𝑛, 𝑘𝑧𝑛 = (𝑛 − 0.5)𝜋/ℎ and 𝑘𝑥𝑛 = √𝑘2 − 𝑘2𝑧𝑛 are the horizontal wavenum-
bers. Additional details can be found in Appendix Β�.

The scattering problem in the waveguide containing the scatterer(s) 𝑆𝑖 is described by the
homogeneous Helmholtz equation,

∇2Φ𝑐𝑠 + 𝑘2Φ𝑐𝑠 = 0, (𝑥, 𝑧) ∈ Ω𝑐/𝑆𝑖. (6.10)

supplemented with the Robin-type condition Eq. (6.5) on Γ𝑆. Similarities between the ex-
amined refraction-diffraction problems for water-wave propagation on the horizontal plane,
Eq. (6.3) ,and hydroacoustic scattering on the vertical plane, Eq. (6.10), are profound. In both
cases the resulting Helmholtz-type problems with varying coefficients, defined in unbounded
domains and supplemented with appropriate conditions on the enclosed scatterer boundaries,
allow for the development and implementation of similar computational methods. A major
challenge in devising a numerical scheme for problems in (partially of totally) bounded do-
mains, governed by PDEs with variable coefficients, is to ensure energy absorption at the open
boundaries with minimum backscattering. An extended discussion of appropriate conditions
for the elliptic mild-slope equation can be found in the work of Oliveira (2004). In this di-
rection, Collino and Monk (1998) studied the PML model proposed by Berenger (1994) for
the numerical closure of the Helmholtz equation in acoustics and electromagnetics. Modesto
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et al. (2016, 2015) employed the same PML model for the case of the MSE in harbor agita-
tion studies.The effectiveness of the above PML is strongly dependent on the layer parameters
(thickness, absorbing function form). In the next section the parameter-free PML model by
Bermúdez et al. (2007) is applied, in conjunction with the FE method, for the optimal solution
of the present diffraction/scattering problems in the coastal environment.

6.2 Domain Truncation Techniques

This class of problems is further complicated by the fact that the physical properties of the
medium (the propagation speed or the index of refraction) are variable at infinity, as approached
from different directions. In this case, the far-field wave pattern is not known a priori, and
a standard radiation condition (e.g., Sommerfeld condition) is not available. The truncation
of the unbounded domain, in conjunction with efficient implementation of closure conditions
at the truncated boundary, is hence required. To this purpose, a number of strategies have
been developed in the literature, across disciplines. Absorbing Boundary Conditions (ABCs),
approximate DtN operators, infinite elements and boundary element methods have been widely
used to truncate problems that are naturally defined in infinite domains; see, e.g., Givoli (1991,
1992). ABC techniques are concerned with the development of radiation condition variants that
are able to model the effects of the exterior domain on the open boundary. Since the artificial
boundary conditions are constructed to approximately minimize spurious reflections, important
issues concerning the order of accuracy and its computational cost rise. Moreover, knowledge of
the solution characteristics in the far-field is frequently required for an effective implementation.
Additionally, the efficiency of lower order ABCs increases as the open boundary is positioned
further away from the scatterer, which makes accuracy a trade-off for computational labour.
On the other hand, the employment of the above models involving higher-order derivatives can
prove computationally tedious. Higher-order ABCs, able to achieve enhanced accuracy without
excessive computational cost, are reviewed in Givoli (2004). A commonly cited advantage of
ABCs is the ease of their implementation in FE solvers, since the produced sparse matrices
are preferable to the dense matrices produced by non-local DtN strategies.

Opposed to ABCs and DtN methods, perfectly-matched layer (PML) models do not in-
troduce approximate conditions at the external fictitious boundary but a layer with damping
qualities, enclosing the computational domain. The complex medium is constructed in such
a way that the solution at the interface between the absorber and the domain of interest are
perfectly matched, suppressing thus spurious reflections. The classical PML model by Berenger
(1994) imposed matching conditions between the incident wavefield and the attenuated solu-
tions for the time-dependent Maxwell equations. The initial split field approach employed is
equivalent to complex coordinate stretching as indicated in the works of Rappaport (1995) and
others. The rate of solution attenuation within the layer is dictated by the use of a suitable
absorbing function; see Abarbanel and Gottlieb (1997), Turkel and Yefet (1998). A unique and



6.2 Domain Truncation Techniques | 89

rather desirable quality of PML-based methods over most boundary termination techniques
is that their effectiveness is independent of the angle of incidence to the fictitious boundary
and the wave frequency. Since the original application by Berenger (1994) to the solution of
the Maxwell equations, PML models have been successfully implemented in the treatment of
several problems which are naturally defined in infinite domains, such as acoustic scattering
(e.g., Qi and Geers (1998)), elasticity (e.g.,Harari and Albocher (2006)) and water waves (e.g.,
Belibassakis et al. (2001); Modesto et al. (2015); Navon et al. (2004).

The exponential convergence of the PML to the exact solution of the reduced wave equation
as the layer thickness tends to infinity is shown by Lassas and Somersalo (1998). However, the
numerical treatment requires a truncated layer, thus introducing error due to reflection at the
exterior, termination boundary. Even so, the dissipative properties of a finite PML are ensured
by allowing for sufficient layer thickness or by the employment of an appropriate absorbing
function. Such a function should perform the complex coordinate stretching and minimize the
reflection at the outer boundary to eliminate contamination of the numerical solution. However,
in real applications numerical reflections do rise due to discretization. Collino and Monk (1998)
suggested that the numerical error is effectively contained by optimizing the absorbing function
controlling layer. In the same work, it was shown that the choice of the absorbing function
and the discretization within the layer affects the reflection coefficient in a non-trivial manner,
raising the question of an optimal or parameter-dependent PML at the discretized level. The
parameters for optimization are the employed mesh, the layer thickness and the functional
form of the absorbing function. Regarding the latter, constant and polynomial functions
of a varying degree have been proposed Berenger (1994); Collino and Monk (1998); Singer
and Turkel (2004). Recently, a novel PML formulation is proposed by Bermúdez et al. (2007)
featuring an unbounded absorbing function; see also Bermúdez et al. (2010) and references cited
there. It is shown that the latter singular PML model is able to recover the exact solution for
the unbounded Helmholtz equation. The formulation retains the desirable qualities of classical
PML approaches without the need to further optimize the parameters of the absorbing function
according to the employed mesh and problem data. Hence, by introducing an unbounded
absorbing function, PML thickness is the only parameter to be optimized as noted by Cimpeanu
et al. (2015), who also studied the thickness-error behaviour of the optimal PML Bermúdez
et al. (2007). Most interestingly they note the existence of an optimal normalised thickness
range where the numerical error remains insensitive to change, suggesting that within this range
the model is rendered parameter-free. Notably, the suggested thickness ranges are very small
reducing the computational cost and making the method further appealing. Finally, in the
work of Rabinovich et al. (2010) a comprehensive comparison between ABCs and PML models
is carried out, showing that the effectiveness of the singular PML is similar to higher-order
ABC. While the latter is insensitive to the employed discretization and requires no-tuning,
they remain considerably more complex in implementation than the singular PML, which is
straightforward to incorporate in a FEM solver.
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Figure 6.1 Configuration of the computational domain including the PML regions for the cases of (ii)
the MMS on the horizontal plane (left). (ii) the Helmholtz equation in the acoustic waveguide on the
vertical plane (right).

6.2.1 Optimal PML and FEM

The considered diffraction problems, in the framework of linear water wave and hydroa-
coustic wave propagation, are examined in the 2D horizontal space and the 2D vertical
strip, respectively. In this section, a unified approach in the truncation of the physical
domains and the application of a Perfectly Matched Layer (PML) is pursued first. Sub-
sequently, the weak forms of the truncated problems will be examined from the conver-
gence and accuracy point of view. The water-wave diffraction problem, governed by the
Helmholtz equation with variable coefficients formulated in a truncated domain by means
of a PML of finite thickness 𝜃𝑙. The introduced 2D layer is confined in the region denoted as,
Ω𝑝𝑚𝑙 = [−𝑋1 − 𝜃𝑙, 𝑋1 + 𝜃𝑙] × [−𝑋2 − 𝜃𝑙, 𝑋2 + 𝜃𝑙] ∩ [−𝑋1, 𝑋1] × [−𝑋2, 𝑋2]. The inner region
Ω𝑟 = [−𝑋1, 𝑋1] × [−𝑋2, 𝑋2] enclosing the scatterer constitutes the region of computational
interest (Fig. 6.1(i)). The fictitious, outer termination boundary is denoted by Γ𝑐 while the
interface between the computational region and the PML is Γ𝐼 . The outward normal vector
on the interface is denoted by v. For the hydroacoustic scattering problem, governed by the
Helmholtz equation in the infinite strip is similarly treated. The computational waveguide
of thickness h is confined in the strip Ω𝑠 = [−𝑋1, 𝑋1] × [−h/2, h/2] contained within two
layers of thickness 𝜃𝑙, thus Ω𝑝𝑚𝑙 = Ω1

𝑝𝑚𝑙 ∪ Ω2
𝑝𝑚𝑙 with Ω1

𝑝𝑚𝑙 = [−𝑋1 − 𝜃𝑙, −𝑋1] × [−h/2, h/2]
and Ω2

𝑝𝑚𝑙 = [𝑋1, 𝑋1 + 𝜃𝑙] × [−h/2, h/2]. A similar notation is employed for the boundaries
(Fig. 6.1(ii)). In PML-based methods, perfect matching of the solution on the absorber layer
interface with the computational region is guaranteed by the complex coordinate stretching
in the layer (Bermúdez et al., 2007; Collino and Monk, 1998). The notion behind the latter
approach is the analytic continuation of a real function into the complex plane. In the phys-
ical, unbounded domain, the analytically continuous, wave-like solutions are stretched in a
complex contour which allows for oscillating solutions to be turned into decaying waves out-
side the region of computational interest. The following complex coordinate transformation is
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introduced, supported in both vertical and horizontal PML regions,

̃𝑥𝑗 = 𝑋𝑗 + ∫
∣𝑥𝑗∣

∣𝑋𝑗∣
𝛾𝑗(𝑠) 𝑑𝑠, ∀x ∈ Ω𝑝𝑚𝑙 for 𝑗 = 1, 2. (6.11)

The complex functions 𝛾𝑗(𝑥𝑗) are of the general form,

𝛾𝑗(𝑥𝑗) =
⎧{
⎨{⎩

1, x ∈ Ω,
1 + i 1

𝑘(𝑥𝑗)𝜎𝑗(𝑥𝑗), x ∈ Ω𝑝𝑚𝑙.
(6.12)

where Ω refers to either Ω𝑠 or Ω𝑟. The combined region is denoted as Ω̃ = Ω ∪ Ω𝑝𝑚𝑙 Within
the computational region 𝛾𝑗(𝑥𝑗) reduces to unity, leaving the solution unchanged. Thus, at-
tenuation only takes place within the layer. The rate of decay is determined by the absorbing
functions 𝜎𝑗(𝑥𝑗). The choice of absorbing functions is independent of the presented analysis
and will be addressed in a following subsection. It is evident however that in order to ensure
decaying solutions within the perfectly matched layer, non-negative absorbing functions must
be considered. After performing the following change of variables in the layer,

𝜕𝑥̃𝑗
→ 1

𝛾𝑗(𝑥𝑗)
𝜕𝑥𝑗

, 𝑗 = 1, 2. (6.13)

The Helmholtz equation in Ω̃ reduces to,

∇ ⋅ (𝛾𝛾𝛾∇𝜑) + 𝑘2|𝛾+| = 0, ∀x ∈ Ω̃, (6.14)

with,

𝛾𝛾𝛾 = 𝛾+𝛾+𝛾+𝛾−𝛾−𝛾− = [𝛾𝑞
2 0
0 𝛾𝑟

1
] [𝛾−𝑟

1 0
0 𝛾−𝑞

2
] = [𝛾𝑞

2𝛾−𝑟
1 0

0 𝛾𝑟
1𝛾−𝑞

2
] .

The constants 𝑞, 𝑟 are employed for compact notation. It holds,

• 𝑞 = 1, 𝑟 = 1, for the problem formulation in the 2D plane,
• 𝑞 = 1, 𝑟 = 0, for the problem formulation the waveguide spanning along 𝑥1,
• 𝑞 = 0, 𝑟 = 1, for the problem formulation the waveguide spanning along 𝑥2.

When the truncated waveguide is considered, Eq. (6.14) is supplemented by appropriate con-
ditions at the upper and lower boundaries, 𝑥2 = ±𝑋2. These are commonly homogeneous
Neumann conditions in ocean acoustic applications.

On the scatterer boundary, a general mixed-type condition is given by,

𝛼∇n𝜑 + 𝛽𝜑 = −(𝛼∇n𝜑𝐼 + 𝛽𝜑𝐼) ≡ 𝑓, on Γ𝑠. (6.15)



92 | Computational Domain Truncation

In the above, 𝜑 denotes the known incident data on the scatterer. Setting the coefficients 𝛼 =
1, 𝛽 = 0 and 𝛼 = 0, 𝛽 = 1 reduces to Neumann and Dirichlet conditions respectively. On the
internal boundary between the PML and the computational domain, continuity requirement
poses on the solution and its normal derivative across the interface is required. Denoting the
PML solution as 𝜑− and the interior solution as 𝜑+, the following transmission conditions are
derived,

𝜑− = 𝜑+ and (6.16)
1
𝛾1

𝜕𝑣1
𝜑− + 1

𝛾2
𝜕𝑣2

𝜑− = 𝜕𝑣1
𝜑+ + 𝜕𝑣2

𝜑+ on Γ𝐼 . (6.17)

The above conditions are a priori satisfied by functions 𝛾𝑗.

Remark 15. As the present work focuses on problems that are governed by the Helmholtz
equation with spatially varying coefficients, the analytic continuation of the solution on the
interface boundary between the computational region and the PML must be ensured in order
for the latter to maintain its reflectionless properties. Hence, arbitrary variation of the effective
wavenumber is not technically allowed within the layer region. However, the PML is shown
to be reflectionless for inhomogeneous media as long as they remain range independent within
the layer along the direction perpendicular to the interface boundary Oskooi et al. (2008). In
the present study the above restrictions are easily met without any loss of generality.

Considering a the weight function 𝑢(𝑥1, 𝑥2) ∈ 𝐻1
0 (Ω̃; ℂ), the weak form of problem posed

by Eq. (6.14) is straightforwardly derived as,

∫
Ω̃

𝑢 𝛾𝛾𝛾∇2𝜑 + 𝑘2𝑢|𝛾+|𝜑 𝑑Ω̃ = 0 (6.18)

A decomposition into subregions and the Green-Gauss theorem application yields,

− (∫
Ω

∇𝑢 ⋅ (∇𝜑+) − 𝑘2𝑢𝜑+ 𝑑Ω) + ∫
Γ𝑠

𝑢∇n𝜑+ 𝑑𝑠 + ∫
Γ𝐼

𝑢∇v𝜑+ 𝑑𝑠

− (∫
Ω𝑝𝑚𝑙

∇𝑢 ⋅ (𝛾𝛾𝛾∇𝜑−) − 𝑘2𝑢|𝛾+|𝜑− 𝑑Ω𝑝𝑚𝑙) − ∫
Γ𝐼

𝑢𝛾𝛾𝛾∇v𝜑− 𝑑𝑠 + ∫
Γ𝑐

𝑢𝛾𝛾𝛾∇n𝜑− 𝑑𝑠 = 0
(6.19)

The terms on the interface Γ𝐼 vanish due to the explicit satisfaction of Eq. (6.17). The term
on the termination boundary Γ𝑐 vanishes due to the imposition of homogeneous Dirichlet
condition. Finally, the boundary integral on the scatterer is computed using the known incident
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𝑥1 = 𝑋1 𝑥1 = 𝑋1 + 𝜃𝑙

Figure 6.2 Complex co-ordinate stretching in 1D

wave field data, and hence the weak formulation of the considered problems is reduced to,

Find (𝜑+, 𝜑−) ∈ V such that,

(∫
Ω

∇𝑢 ⋅ (∇𝜑+) − 𝑘2𝑢𝜑+ 𝑑Ω) 𝑑𝑠

+ (∫
Ω𝑝𝑚𝑙

∇𝑢 ⋅ (𝛾𝛾𝛾∇𝜑−) − 𝑘2𝑢|𝛾+|𝜑− 𝑑Ω𝑝𝑚𝑙) = ∫
Γ𝑠

𝑢𝑓 𝑑𝑠,

∀ (𝑢+, 𝑢−) ∈ V.

(6.20)

The classical choices for the functional form of the non-negative absorbing functions 𝜎𝑗(𝑥𝑗)
are polynomials of a varying degree with respect to a normalized coordinate within the layer,
i.e. 𝜎𝑗(𝑥𝑗) = 1

𝑘𝜎 (𝑋𝑗−𝑥𝑗
𝜃𝑙

)
𝑛

, 𝑗 = 1, 2 with constant 𝜎𝑗 > 0 and 𝑛 ≥ 0. Increasing the value
of 𝜎 and/or the degree 𝑛 ensures a faster absorption within a given layer. However, increas-
ing 𝜎 and/or 𝑛 excessively results in an abrupt solution decay, increasing artificial numerical
reflections in the discrete form of the PML medium. Moreover, enhancing the layer thickness
is a means to achieve attenuation while keeping a slower decay rate, but would also result in
large computational domain and therefore enhanced computational cost. Collino and Monk
(1998) note the dependency of the optimal absorbing parameters on the employed mesh and
the problem data. Hence, the application of effective PML-based techniques for truncating
the computational domain, requires a priori tuning of those parameters. The criteria for es-
tablishing optimal PML parameters are not trivial and even then, the optimisation problem
needs to be solved again after re-meshing Bermúdez et al. (2007). In the present work, the
optimal PML model for the scalar, reduced wave equation proposed by Bermúdez et al. (2007)
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is adopted. The given model employs non-integrable absorbing functions of the form,

𝜎𝑗(𝑥𝑗) = 1
𝑘 ( 1

∣𝑋𝑗 + 𝜃𝑙 − 𝑥𝑗∣
) , 𝑥𝑗 ∈ Ω𝑝𝑚𝑙, 𝑗 = 1, 2. (6.21)

Instead of a bounded imaginary part, the absorbing function of Eq. (6.21) results to an infinite
integral in the complex coordinate stretching Eq. (6.13) as seen in the comparative sketch in
Fig. 6.2. The above has been proved to be optimal for the attenuation of plane wave solutions
for the Helmholtz equation in infinite resolution Bermúdez et al. (2006), and also compares
favorably against widely used polynomial functional forms; see Bermúdez et al. (2004, 2006,
2007, 2010, 2001). Naturally, the absence of tunable parameters in Eq. (6.21) overcomes a major
drawback of other PML methods. In Cimpeanu et al. (2015) the investigation of the above
singular PML model studied the effect of layer thickness, as the only remaining parameter
controlling the performance of the layer. A rather interesting finding of their work is the
existence of an optimal range of layer thickness values, within which the solution error becomes
independent of the chosen thickness, thus rendering the singular PML model parameter-free
for the scalar Helmholtz equation. In the present work the parameter-free, unbounded PML
model will be implemented in a FEM strategy for the solution of the linear elliptic problems
rising in the fields of water-wave propagation and hydroacoustics.

6.2.2 Adaptation for the multi-modal vertical representation of the wave
potential

In the previous section the PML-FEM formulation for the Helmholtz equation is explored in
detail. With the ease in implementation being particularly discernible, an adaptation is at-
tempted for the case of wave propagation in intermediate water depth targeting the radiation-
type problems defined in Chapters 3 and 4. To this end, the Cartesian PML defined in a
bounded subregion of ℝ2, as seen Fig. 6.1(i) is considered. Returning to the complex coordi-
nate stretching whithin the layer Eq. (6.13) introducing wave attenuation on the horizontal
directions and considering the Laplace equation results in the following field equation valid in
the PML region,

1
𝛾1

𝜕𝑥1
( 1

𝛾1
𝜕𝑥1

𝜑) + 1
𝛾2

𝜕𝑥2
( 1

𝛾2
𝜕𝑥1

𝜑) + 𝜕2
𝑧 𝜑 = 0 ∈ Ω𝑝𝑚𝑙. (6.22)

A similar manipulation as in the prequel allows recasting Eq. (6.22) in a divergence form,
convenient for FEM implementation. Thus, by multiplying Eq. (6.22) with 𝛾1𝛾2 and assuming
the notation 𝜑∗ for the potential function with support within the layer results in,

∇ ⋅ ( ̃𝛾̃𝛾̃𝛾∇𝜑∗) = 0 (6.23)
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Figure 6.3 Projection on the 2D plane

with ̃𝛾̃𝛾̃𝛾 =
⎡⎢⎢
⎣

𝛾2
𝛾1

0 0
0 𝛾1

𝛾2
0

0 0 𝛾1𝛾2

⎤⎥⎥
⎦

.

Revisiting the projection of the general domain of interest on the 2D plane (𝑥1, 𝑥2) in light
of the employed layer formulation, the relevant notation is refined in Fig. 6.3. Equation (6.23) is
straightforwardly implemented in Mixed Weak Problem 3.2. In the first equation of the mixed
weak form, the term on the numerical truncation boundary is substituted with an interfacial
term on Γ𝐼 ,while the field Eq. (6.23) valid in the PML region Ω𝑝𝑚𝑙. The revised integral form
reads ,

2
∑
𝑗=1

(∫
Ω

∇𝑣(𝑗) ⋅ ∇𝜑(𝑗) 𝑑Ω) − 𝜇 ∫
Γ1

𝑓

𝑣(1) 𝜑(1) 𝑑𝑠 + ∫
Γ2

𝑓

𝑣(2) 𝑓ℓ 𝑑𝑠 + ∫
𝑆

(𝑣(2) − 𝑣(1))𝜆 𝑑𝑠

− ∫
Γ𝐼

𝜕𝑛𝜑(𝑗)𝑣(𝑗) + ∫
Γ𝐼

̃𝛾̃𝛾̃𝛾𝜕𝑛𝜑∗𝑣(1) 𝑑𝑠 + ∫
Ω𝑝𝑚𝑙

∇𝑣(𝑗) ⋅ ̃𝛾̃𝛾̃𝛾∇𝜑∗ 𝑑Ω

+ ∫
Γ∗

𝑓

̃𝛾̃𝛾̃𝛾𝑣(1) 𝜕𝑛𝜑∗ 𝑑𝑠 + ∫
Γ∗

𝑏

̃𝛾̃𝛾̃𝛾𝑣(1) 𝜕𝑛𝜑∗ 𝑑𝑠 + ∫
Γ∗𝑐

̃𝛾̃𝛾̃𝛾𝑣(1) 𝜕𝑛𝜑∗ = 0. (6.24)

The terms on the interface Γ𝐼 vanish once again due to the matching property of the layer.
On the fictitious termination boundary Γ∗

𝑐 the solutions vanish due the enforcement of homo-
geneous Dirichlet conditions. Finally, the boundary term on the seabed in Ω𝑝𝑚𝑙 is dropped
since the Neumann conditions are met by the multi-modal representations. Subsequently, the
multi-modal expansions are substituted in Eq. (6.24) as described in Chapter 4. Upon FEM
discretization the stiffness matrices Eq. (5.14) valid in the PML region are modified accordingly
as in,

k𝑒 = ∫
𝐾

2
∑
𝑗=1

(𝜕𝑥𝑗
N)T(𝑔𝑔𝑔𝑗 ⊙ A)(𝜕𝑥𝑗

N) + NT(𝑔𝑔𝑔𝑗 ⊙ B𝑗
1)(𝜕𝑥𝑗

N)

+(𝜕𝑥𝑗
N)T(𝑔𝑔𝑔𝑗 ⊙ B𝑗

2)N + NT(𝑔𝑔𝑔3 ⊙ C)N 𝑑x
(6.25)
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with 𝑔𝑔𝑔𝑖, 𝑖 = 1, 2, 3, being (𝑁𝑚 +1)×(𝑁𝑚 +1) matrices containing the complex functions 𝛾1, 𝛾2
and ⊙ denoting Hadamard elementwise multiplication.

Remark 16. Since, the primary concern is the attenuation of the propagating mode. The
evanescent mode contributions can be left unaltered. Hence,

𝑔𝑔𝑔1 = ⎡⎢⎢
⎣

𝛾2
𝛾1

1 …
⋮ ⋱
1 1

⎤⎥⎥
⎦

, 𝑔𝑔𝑔2 = ⎡⎢⎢
⎣

𝛾1
𝛾2

1 …
⋮ ⋱
1 1

⎤⎥⎥
⎦

, 𝑔𝑔𝑔3 = ⎡⎢⎢
⎣

𝛾1𝛾2 1 …
⋮ ⋱
1 1

⎤⎥⎥
⎦

.

6.2.3 Numerical Investigation of Optimal PML-FEM

In this subsection we investigate the performance of the singular PML-FEM for the Helmholtz
equation governing the problems under consideration. A series of numerical tests are con-
ducted to determine the effectiveness of the method in simple configurations where analytical
solutions are available. The analysis aims at establishing the robustness and limitations of the
given methodology before its employment in the following applications of coastal engineering
interest, (a) linear water wave refraction over mildly sloping bathymetries and in the presence
of cylindrical bodies extending over the water column, and (b) acoustic wave propagation in
the inhomogeneous ocean waveguide. Standard conforming linear triangular elements (𝑝 = 1)
are used in all examined cases. The method is clearly not restrictive of p-refinement, how-
ever the latter is outside the scope of the present study. We define the family of triangular
partitions {𝑇 ℎ} in domain Ω̃ and 𝜙ℎ denotes the restriction of the approximate solution The
approximate solution, restricted in the 𝑘th 3-node triangular element is,

𝜙ℎ|𝑒 = LT𝜙𝜙𝜙 (6.26)

where 𝜙𝜙𝜙 denotes the vector of nodal unknowns 𝜙𝜙𝜙 = [𝜙1 𝜙2 𝜙3]T and L = [𝐿1 𝐿2 𝐿3]T is a
vector containing the linear Lagrange shape functions at the element. The discretised weak
formulation of Eq. (6.20) is given by,

∫
𝐾

((∇L)T𝛾𝛾𝛾(∇L) − 𝑘2(L)T𝛾𝑞
2𝛾𝑟

1)𝜑𝜑𝜑 𝑑𝑥1𝑑𝑥2 = f, (6.27)

where f assumes non-zero values when a element edge lays on the scatterer boundary Γ𝑠 as per
the enforced condition Eq. (6.15). A Delaunay mesh is used for the discretisation of the compu-
tational region while a regular triangular grid is employed within the layer. The discretisation
of the computational region is assessed by the number of employed elements per wavelength

̃𝑁𝑒 = 𝑁𝑒/λ , in order to associate maximum element size with examined frequency. For the
regular triangular mesh, the number of discrete segments, 𝑁𝑥𝑗

, employed along the transverse
direction of the layer boundary, is used to denote the refinement inside the PML. A single
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Figure 6.4 Hybrid triangular Mesh with PML

segment, as seen in Fig. 6.4, results in two triangle faces with a common edge, corresponding
to a diagonally divided quadrilateral partition.

The element matrices, in both the PML and the computational region, are computed
numerically. The former contain the absorbing functions 𝜎𝑗(𝑥𝑗) that become unbounded at the
outer boundary, and the corresponding integrals involving the elements with an edge or a vertex
on the outer boundary become singular. However, as shown in Bermúdez et al. (2007), these
integrals are either rendered finite due to the qualities of the Langragian shape functions which
diminish at the outer boundary or become zero due to the imposed homogeneous Dirichlet
condition at the external boundary Γ𝑐 , which is proven necessary for the well-posedness
of the discrete problem. Since the singularity is reached at the outer PML boundary the
Gauss-Legendre quadrature rule within the edge elements is applicable. A minimum of three
integration points per element is employed to ensure that the presented analysis will not be
polluted by numerical integration error. In order to assess the performance of the FEM/optimal
PML the relative 𝐿2 error norm of the approximation with respect to an available analytic
solution, is defined as,

Error = ∥𝜑ℎ − 𝜑∥
‖𝜑‖

In order to establish the robustness of the presented method, a series of numerical exper-
iments is carried out. First, the exterior scalar Helmholtz problem in Ω𝑟 ⊂ ℝ2 , featuring
a circular inclusion is considered. The investigation is carried out in the truncated domain
Ω𝑟 = [−5, 5] × [−5, 5], featuring a circular scatterer with radius 𝑎 centered at the axes origin.
Two cases of incident wave field data on Γ𝑠 are considered. The first is the case of parallel plane
wave incidence, i.e. Φ𝐼 = exp(i𝑘x), for which the singular PML is shown to be optimal, and
the second is the incidence of a wavefield generated by a monopole, i.e. Φ𝐼 = H(1)

0 (𝑘|x − xs|)
positioned at xs/𝑎 = (−3, 0). Assuming a uniform medium, i.e. 𝑘 =constant,the solutions for
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𝑘𝜃𝑙
(i) Soft scatterer Γ𝑠 ≡ Γ𝐷
and plane wave incidence.

𝑘𝜃𝑙
(ii) Hard scatterer Γ𝑠 ≡ Γ𝑁,

and plane wave.

𝑘𝜃𝑙
(iii) Soft scatterer Γ𝑠 ≡ Γ𝐷

and source excitation.

𝑘𝜃𝑙
(iv) Hard scatterer Γ𝑠 ≡ Γ𝑁,

and source excitation.

Figure 6.5 Calculated error of the scattered field by circular body, 𝑘𝑎 = 1, in the case of incident
plane waves. Results for various normalised PML thickness values and increasing PML discretisation

the two incident wave cases are calculated analytically and used for validation of the employed
PML-FEM. Analytical solutions are documented in Appendix Β�.

The effect of normalized absorbing layer thickness is initially considered. The relative errors
for solutions with a fixed discretization in the computational region are plotted against a range
of layer thickness values, 10−12 ⩽ 𝑘𝜃𝑙 ⩽ 101. Different curves correspond to an increasing
number of triangular elements in the PML region.Generally, the non-dimensionalised with
respect to scatterer radius is examined, namely the values 𝑘𝑎 = 1 and 𝑘𝑎 = 3 are considerd. In
all-examined cases the discretization of the internal computational region, ̃𝑁𝑒 is kept constant.
It is observed that foe the given discretization in both the internal region and in the PML, there
exists an optimal range of thickness values for which the error is independent of further increase
of layer thickness. The above result, which is in agreement with similar findings in Cimpeanu
et al. (2015), suggests that the singular PML is highly effective for rather small thicknesses
that are orders of magnitude smaller than the excited wavelength in this monochromatic case.
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(i) Soft scatterer Γ𝑠 ≡ Γ𝐷 (ii) Hard scatterer Γ𝑠 ≡ Γ𝑁

(iii) Soft scatterer Γ𝑠 ≡ Γ𝐷 (iv) Hard scatterer Γ𝑠 ≡ Γ𝑁

Figure 6.6 Calculated error of the scattered field by circular body, 𝑘𝑎 = 1, in the case of incident
plane waves. Results for various normalised PML thickness values and increasing PML discretisation

The significance of the above result lays in its immediate translation in reduced degrees if
freedom for a given level of accuracy. The present results in Fig. 6.5 show optimal thickness
values within the range 10−4 ⩽ 𝑘𝜃𝑙 ⩽ 10−1, depending on the discretization employed in the
layer, i.e. 𝑁𝑒 𝑝𝑚𝑙 . The error increases dramatically as becomes large (order 1 or higher) in
the given examples. This is attributed to the crude discretization in the layer, indicating that
the restriction on the upper boundary of accepted PML thickness values for a given 𝑘 is posed
by the number of employed elements in the layer. In fact, increasing the number of elements
in the layer resulted in enhanced optimal value ranges as seen in Fig. 6.6. Additionally, the
rapidly increasing error after the lower limit of the optimal value range is attributed to the error
associated with numerical integration. Furthermore, increasing the discretization within the
layer appears to improve the calculated error plateau for both plane wave and source excitation
cases. However, in finer meshes within the layer, employing 𝑁𝑒 𝑝𝑚𝑙 = 16 and 𝑁𝑒 𝑝𝑚𝑙 = 32, the
consistent reduction in the calculated error plateau reaches a halt, suggesting that the error
introduced by the discretization in the computational region becomes increasingly dominant.
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(i) Soft scatterer Γ𝑠 ≡ Γ𝐷 (ii) Hard scatterer Γ𝑠 ≡ Γ𝑁

(iii) Soft scatterer Γ𝑠 ≡ Γ𝐷 (iv) Hard scatterer Γ𝑠 ≡ Γ𝑁

Figure 6.7 Calculated error of the scattered field by circular body, 𝑘𝑎 = 3, in the case of incident
plane waves. Results for various normalised PML thickness values and increasing PML discretisation

The above observation is verified by the convergence of the method. For the previous cases,
log-log plots of the 𝐿2 relative error norm, against an increasing number of elements per
wavelength are shown in Figs. 6.6 and 6.7 for 𝑘𝑎 = 1 and 𝑘𝑎 = 3, respectively, for PML
thickness 𝑘𝜃𝑙 = 10−4 within the established optimal range. Notably, the chosen value of
normalised thickness corresponds to an extremely thin layer compared to wavelength as it
holds 𝜃𝑙 = λ/62800 [𝑚]. It is seen that, by refining the mesh in the computational region,
the error introduced by the PML discretisation becomes dominant. However, increasing the
number of elements within the layer further reduces the error and recovers the theoretically
expected convergence rate, which for linear elements is ∥𝜑ℎ − 𝜑∥ < 𝐶( ̃𝑁𝑒)−2 . The verified
theoretical convergence is depicted by the slope slope 2:1 is shown in Figs. 6.6 and 6.7. The
convergence rate depends on both the computational region discretisation and the refinement
within the layer. The fact that the effectiveness of the singular PML is independent of the
employed mesh structure and requires no a priori tuning, as opposed to polynomial choices for
the absorbing function, in conjunction with the above results, suggests that a required level of
accuracy can be achieved with little effort. Additionally, the calculated optimal range allows
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(i) Parametric PML thickness study Γ𝑠 ≡ Γ𝐷 (ii) Convergence Γ𝑠 ≡ Γ𝐷

Figure 6.8 Radiating field outside a circular scatterer in a planar waveguide, for 𝑘𝑎 = 1. (i) Parametric
study of the calculated error for a range of normalised PML thickness values and increasing PML
discretisation in the waveguide environment. (ii) Calculated error of the scattered field by circular
body, against the number of elements per wavelength, and for increasing number of elements employed
in the PML.

for a layer thickness value that is orders of magnitude smaller than the examined wavelength,
and thus, the present method does not result in an excessive augmentation of global FEM
matrices.

Next, the radiating field from a point source in a waveguide is considered. In absence of
analytical solutions for the scattering problem in simple waveguides featuring an inclusion, we
employ a radiating solution produced by a line source to compute the Dirichlet data on the
boundary of a fictitious scatterer enclosing the source. We consider the unbounded homoge-
neous waveguide with width h = 10 in Ω = [−∞, ∞] × [−5, 5] with imposed homogeneous
Neumann conditions on the top and bottom planar boundaries. The analytical solution of the
incident wave field is expressed by normal mode series, and the vertical structure of the modes
corresponding to the eigenvalues 𝑘𝑛 is chosen as 𝑍𝑛(𝑧) = cos (𝑘𝑛(𝑧 + h/2)) in order to satisfy
the Neumann conditions on the planar boundaries. Details are provided in Appendix Β�.The
employed series can be truncated, keeping the propagating and a number of evanescent modes
sufficient for rapid convergence in the whole region outside a small ball in the vicinity of the
line source, i.e. 𝑘𝑟 = √(𝑥1 − 𝑥0)2 + (𝑥2 − 𝑦0)2. Assuming the presence of a circular scatterer
with center (𝑥0, 𝑦0) enclosing the line source, boundary data are calculated at 𝑟 = 𝑎, the scat-
terer boundary. The computed PML-FEM solution for the waveguide with imposed Dirichlet
condition is compared with a seni-analytical solution (see Appendix Β�). Results are obtained
in the truncated domain Ω𝑠 = [−∞, ∞] × [−5, 5] for 𝑘𝑎 = 1, and the effect of normalized PML
thickness is initially examined in Fig. 6.6. Again, a range of optimal layer thickness values is
observed, which is now 10−10 ⩽ 𝑘𝜃𝑙 ⩽ 10−1. Similar to the previous example, the theoretical
rate of convergence is revealed by increasing the number of elements in the PML region.
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6.3 PML-FEM Applications

The presented PML-FEM strategy will be initially implemented in the study of linear wa-
ter wave propagation phenomena in a mildly sloping ocean environment. The modified-mild
slope equation (MMSE), as presented will be employed for the formulation of the combined
refraction-diffraction water wave problem in the truncated region of interest. The numerical
solution will be compared against a well-known benchmark case of diffraction by an elliptic
shoal superimposed over a sloping bottom. Next, the capabilities of the computational tool
will be demonstrated for the case of a single as well as multiple bottom founded cylinders.
Subsequently the numerical solution of the acoustic scattering problem by an elliptic obstacle
in the complex ocean waveguide will be considered.

6.3.1 Combined Refraction-diffraction of Linear Water waves

Propagation over an elliptic shoal

Assuming only a mildly sloping seabed, the Mild Slope Equation (MSE) is a classical model,
obtained by integration over the water depth leading to a dimensionality reduction of the 3D
water wave problem; see e.g., Ding et al. (2019). An enhanced version of the above model is
the Modified Mild Slope equation (MMS), presented by Massel (1993) and Chamberlain and
Porter (1995). This model is able to account for higher-order effects involving the gradients
of the depth function. The latter elliptic model, supplemented by appropriate conditions at
fixed boundaries and the description of the incident wave field and/or radiation conditions
at open boundaries, is commonly applied to study wave transformations in coastal regions
and in harbour design. In this case, the considered marine environment is composed of a
layer of inviscid and irrotational fluid bounded above by a free surface and below by a rigid,
impermeable bottom.

The MMS model featuring the unbounded PML will be tested against the laboratory data
concerning monochromatic wave propagation over a submerged elliptic shoal superimposed
over a sloping seabed, presented in Berkhoff et al. (1982) (see also Dingenmanns (1997)). The
elliptic shoal presents a standard benchmark problem for the validation of numerical schemes
aiming in the accurate prediction of combined refraction-diffraction phenomena. We follow
the analysis presented in Sections 6.1.1 and 6.2.1 for the case of a mildly sloping bathymetry
supporting a localised, submerged scatterer. A monochromatic wave with period 𝑇 = 1 s, and
initial wave amplitude 𝑎0 = 2.32 cm is allowed to propagate parallel to the x-axis in angle
𝜃 = 20° with respect to the minor axis of the elliptic shoal. The underlying plane slope is given
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(i) Modulus of the diffracted wave field. (ii) Modulus of the diffracted wave field.

Figure 6.9 Calculated solutions by means of the PML-FEM scheme. The sections corresponding to
the experimental setup in Berkhoff et al. (1982) are indicated by solid lines

by,

ℎ𝑖(𝑥1) =
⎧{{
⎨{{⎩

0.45 m, 𝑥1 < −5.85 m,
0.45 − 0.02(5.85 + 𝑥1)m, −5.85 ≤ 𝑥1 ≤ 14.15 m,
0.45 m, 𝑥1 > 14.15 m.

(6.28)

The localised elliptic shoal, seen as a disturbance on the background bathymetry is described
as,

ℎ𝑑(x) =
⎧{
⎨{⎩

0 m, (𝑥1/3)2 + (𝑥2/4)2 > 1,
0.3 − 0.5√1 − (𝑥1/3.75)2 − (𝑥2/5)2m, (𝑥1/3)2 + (𝑥2/4)2 > 1.

(6.29)

It is reminded that the MMS Eq. (6.2) is a quasi linear elliptic equation with the effective
wavenumber dependent on the depth function through the dispersion relation. The bathymetric
profile, defined as the superposition of Eqs. (6.28) and (6.29), satisfies the restrictions imposed
on the coefficients of the MMS in order to preserve solution analyticity within the PML.
The layer is used to truncate the computational region at and hence the depth function is kept
constant in the vertical PML regions. In the horizontal PML regions the depth function exhibits
variation only along the coordinate, remaining constant in the direction perpendicular to the
horizontal boundaries. The employment of the modified mild slope equation for modelling
combined refraction-diffraction phenomena subscribes to the limitations of small amplitude
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Figure 6.10 Normalised amplitude on selected sections over the elliptic shoal. Comparison of the
present PML-FEM solution, shown by dashed line, against the experimental data denoted by dots. In
the same plots the solution featuring the amplitude corrected dispersion relation are shown by using a
solid line

water wave theory, which struggles to capture the complex diffraction pattern behind the
elliptic shoal. For the numerical experiment a PML thickness 𝑘𝜃𝑙 = 4.210−4, corresponding to
the established optimal range is used and 16 line segments were employed for the discretisation
of the absorbing layer, while A total of 1.2 × 106 degrees of freedom were used to ensure the
convergence of the present numerical solution in this example.

The diffracted and total wave potential moduli, for the case of the wavenumber determined
by the dispersion relation of linearized water waves are plotted in Fig. 6.9. In particular, in
Fig. Fig. 6.9(i), the diffracted wavefield solution is illustrated which compares well with similar
solutions from the literature (e.g.,Panchang et al. (1991), Belibassakis et al. (2001)), exhibiting
smooth isolines for the modulus, suggesting that outgoing solutions are properly attenuated by
the present PML model. As expected, due to its inability to account for non-linear processes
such as energy dissipation mechanisms the MMS model overestimates the wave amplitude



6.3 PML-FEM Applications | 105

(i) Neumann boundary condition on Γ𝐷 (ii) Dirichlet boundary condition on Γ𝐷

Figure 6.11 A single vertical cylinder with rigid walls over a linear bottom slope for the case of an
incoming, incident wave of nondimensional frequency 𝜔2ℎ𝑔−1 = 1.81 and angle of incidence 𝜃 = 20°.

behind the shoal (sections 2, 3 and 4) while it attenuates the solution faster as we move
away from the shoal. Next, the computed wave amplitude for various sections is compared
against the experimental data in Fig. 6.10, for sections 2-4 and 6. Although present results
corresponding to linear solution shown by dashed lines reproduce fairly well the experimental
measurements, an updated prediction is also shown in Fig. 6.10 based on the work of Kirby and
Dalrymple (1986) who proposed a correction of the wavenumber-parameter of the mild-slope
equation in order to also take into account amplitude effects at first-order, as follows,

𝜔2 = 𝑔𝑘(1 + (𝑘𝐴)2𝑓1 tanh5(𝑘ℎ)) tanh(𝑘ℎ + 𝑘𝐴) 𝑓2, (6.30)

where 𝑓1 = (cosh(4𝑘ℎ) + 8 − 2 tanh2(𝑘ℎ))(8 sinh4(𝑘ℎ))−1 and 𝑓2 = (𝑘ℎ/sinh(𝑘ℎ))4 The above
amplitude-dependent dispersion relation generates results that compare more favourably with
measured data as shown in Fig. 6.10 by using solid lines. In particular, a number of 5 consec-
utive iterations were performed updating the predicted wave amplitude and the wavenumber
parameter; see also Panchang et al. (1991)). The nonlinear correction provides better matching
of the results with experimental data, particularly concerning the peak amplitude values for
sections 2, 3 and 4 and a marked improvement on the solution at section 6.

3D Scattering over an elliptic shoal - multi-modal vertical expansion

As discussed in Section 6.2.2, the unbounded PML is adapted to accommodate the proposed
intermediate depth analysis featuring the multi-modal vertical expansion for the velocity po-
tential.

To this end, the Berkhoff shoal case is once again considered. Revisiting the weak problem
Eq. (4.33), it is reminded that the calculation of the incident 𝜙𝑖 wavefield over the background
bathymetry ℎ𝑖 Eq. (6.28) precedes the 3D diffraction problem. The computational domain is



106 | Computational Domain Truncation

Figure 6.12 Array of vertical cylinders with rigid walls over a linear bottom slope for the case of an
incoming, incident wave of nondimensional frequency 𝜔2ℎ𝑔−1 = 1.81 and angle of incidence 𝜃 = 20°.
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(i) Modulus of diffracted solution 𝜙𝑑. (ii) 3D representation of the solution.

Figure 6.13 Calculated diffracted solution by an elliptic shoal and 𝑁𝑓 = 8

discretised with elements Eq. (5.14), while in the PML region matrices Eq. (6.25) are employed.
In Fig. 6.13 the diffracted solution over the elliptic shoal, with 𝑁𝑓 = 8 modes in the vertical
expansion is found is excellent agreement. For the above results, a layer of thickness 𝜃ℓ = 10−5

and 8 segments is employed.

Diffraction by an array of vertical cylinders over variable bathymetry

The accurate prediction of wave transformations and induced loads in the presence of man-
made structures or physical formations finds several engineering applications. In this subsec-
tion, the multiple scattering of an array of bottom-founded cylinders over a mildly sloping
seabed is considered. The bodies extend along the water column. For the following analysis,
the same bathymetric profile, defined by Eq. (6.28), i.e. a seabed with constant slope 2%
is used. An oblique incident wavefield with nondimensional frequency 𝜔2ℎ𝑔−1 = 1.81, prop-
agating from the deeper water region, is refracted over the sloping seabed topography and
interacts with a single bottom founded cylinder with circular cross section. As in the pre-
quel, the numerical solution for the diffracted wavefield 𝜑𝑑 is derived by means of the reduced
MMSE Eq. (6.3). Use is made of condition Eq. (6.5) on the scatterer surface boundary and
the propagating wavefield Φ𝑖 over Eq. (6.28). Again, a PML enclosing the region of interest,
defined in Eq. (6.14), models the absorption of wave energy reaching the exterior termination
boundary. Figure 6.11, depicts the real part of the total wave potential field for the cases of
imposed Neumann and Dirichlet conditions on the scatterer boundary. As in previous case,
a Delaunay-uniform triangular hybrid mesh is employed and as before, the thickness of the
employed PML is set to 𝑘𝜃𝑙 = 4.210−4, with 16 line segments in the direction normal to the
layer boundary. In this case, a total of 90163 dofs were employed for convergence. The drawn
axes are normalized with respect to the cylindrical scatterer (pillar) radius. The plotted so-
lutions show no contamination from spurious numerical reflections, suggesting once again the
effectiveness of the employed singular PML. The total wavefield is refracted as it propagates
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Figure 6.14 Real part of the scattered field and total wavefield solution in the case of an acoustically
soft body (Dirichlet boundary condition) with elliptic boundary, for 𝑘𝐴 = 1.7

towards shallower regions, with the wavelength decreasing up to the constant shallow depth
limit. Next, the robustness of the present model in multiple scattering problems within variable
bathymetry regions is demonstrated. Figure 6.12 depicts the complex total wavefield, result-
ing from the interaction of the same oblique, incident wave as in the previous example with
the same sloping bathymetry and an array of nine bottom founded cylindrical scatterers with
circular cross section. The layer thickness remains the same as in the previous example. The
entire domain is shown in the top of Fig. 6.12 , excluding the attenuating layer. The complex
amplified wavefield patterns that appear in the vicinity of the array, is shown at the bottom
of the figure with a separate focus illustrating the satisfaction of the imposed zero Neumann
conditions on the central scatterer boundary.

6.3.2 Ocean acoustics

Here, a homogeneous waveguide with planar boundaries Ω𝑠 = [0, 400m]×[100𝑚, 0] is considered
excited by a line source located at (0, 10𝑚). The acoustic medium in this example is water
and the phase speed is 𝑐 = 1500 m s−1. The scattering field from an elliptic body with major
and minor axis 𝐴 = 16 m and 𝐵 = 4 m respectively in the middle of waveguide is considered
Figs. 6.14 and 6.15. The elliptic geometry of the acoustic scatterer was chosen to both illustrate
the capability of the finite element mesh to capture curved boundaries and to simulate common
ocean underwater vehicle shapes. Solving the Helmholtz equation, Eq. (6.10), defined on the
vertical plane, and forced by a monochromatic point source yields the scattered field solution s.
Moreover, the conditions Eq. (6.7) and the PML Eq. (6.14) modelling absorption of wave energy
reaching the termination boundaries at the lateral edges of the domain, 𝑥 = 0 mand 𝑥 = 400 m
are employed. The boundary conditions, supplementing the hydroacoustic problem in the
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Figure 6.15 Real part of the scattered field and total wavefield solution in the case of an acoustically
hard body (Neumann boundary condition) with elliptic boundary, for 𝑘𝐴 = 1.7

waveguide correspond to a free upper surface boundary and an acoustically hard, impermeable
sea bottom. The real parts of the diffracted and total acoustic wavefields for the cases of an
acoustically hard and soft scatterer boundary, are shown in Figs. 6.14 and 6.15, for 𝑘𝐴 = 1.7.
PML regions with thickness 𝑘𝜃𝑙 = 10−6 are positioned at the lateral domain boundaries,
while 16 line segments along each region are employed. A total of 133856 dofs are employed
for this example. It is illustrated that the present PML-FEM strategy is able to handle
arbitrary scatterer shapes, with the tradeoff being the required h-refinement to handle complex
geometries. Moreover, it is clearly observed with the aid of the contour plots of the diffracted
wavefield in Figs. 6.14 and 6.15 that the boundary conditions on the surface of the body are
satisfied, and although this test case is a rather simplified example, the present method is
directly applicable to more realistic cases in general stratified environments and mixed–type
boundary conditions on the surface of the scatterer(s).





Chapter 7

Wave-Structure coupling

Wave-floating structure coupling is completed via the satisfaction of the pressure
equilibrium condition on the restriction of the upper surface in the hydroelastic
region. The satisfaction of the latter equilibrium condition leads to the calculation
of the complex amplitude functions 𝑐ℓ which is achieved by a Galerkin scheme.

7.1 Satisfaction of pressure equilibrium

The proposed monolithic approach in wave-structure coupling is completed with the satisfac-
tion of pressure equilibrium condition on the restriction of upper-surface on the hydroelastic
region Eq. (1.6). As presented in Chapter 1, the core of the present work is on the decoupling
of hydrodynamics and structural motion. The decomposed series of radiation-type problems
are posed as to satisfy the kinematic considerations. The final coupling however is completed
by calculating the complex amplitudes 𝑐ℓ

Revisiting the Eq. (1.6), and substituting the expansions for the total velocity potential
Eq. (1.17) and Eq. (1.15) results in,

L(wℓ, 𝑐ℓ) = i𝜌𝜔 (𝜑𝑆 +
∞

∑
ℓ=1

𝑐ℓ𝜑ℓ(x, 𝑧)) − 𝜌𝑔
∞

∑
ℓ=1

𝑐ℓ𝑤ℓ(x), on Γ2
𝑓 , (7.1)

Substituting the reduced elasticity operator L(wℓ, 𝑐ℓ) to express the vertical motion of
either Kirchhoff (CPT) or Reissner-Mindlin (FSDT) plates accordingly, as presented in Chap-
ter 2, would reduce to the system of equations for equilibrium. In the latter, amplitudes 𝑐ℓ
are the only remaining unknowns, since the velocity potential functions are calculated as the
solutions of the radiation-type subproblems examined in previous chapters and wℓ are the
eigensolutions of the free structural vibration problems. The satisfaction of Eq. (7.1) leads to
the calculation of the complex amplitude functions 𝑐ℓ which is finally achieved by a Galerkin
scheme. The two theories will be considered separately in the following sections.
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7.1.1 Pressure equilibrium for CPT

Substituting the irreducible form Eq. (2.14) in Eq. (7.1) straight forwardly results in an ex-
pression that involves higher order derivatives of the deflection function. Already computed
from the treatment of the inhomogeneous thin plates vibration, the higher-order derivatives
are obtained from processing. A more convenient form is derived however by considering that,

𝐷∇4𝑤ℓ + ∇2𝐷 ⋅ ∇2𝑤ℓ + 2∇𝐷 ⋅ ∇(∇2𝑤ℓ)
−(1 − 𝜈)(𝜕𝑥1𝑥1

𝐷𝜕𝑥2𝑥2
𝑤ℓ − 2𝜕𝑥1𝑥2

𝐷𝜕𝑥1𝑥2
𝑤ℓ + 𝜕𝑥2𝑥2

𝐷𝜕𝑥1𝑥1
𝑤ℓ) = 𝜔2

ℓ 𝜌𝑒𝜏(x)𝑤ℓ.
(7.2)

The above holds for every computed eigenpair {𝑤ℓ, 𝜔ℓ} for ℓ = 1, 2, ⋯ , 𝑁𝑓 . Exploiting Eq. (7.2)
results in the following convenient form,

𝑁𝑓

∑
ℓ=1

𝑐ℓ [(𝜌𝑒𝜏(x)(𝜔2
ℓ − 𝜔2) + 𝜌𝑔) 𝑤ℓ − i𝜔𝜌𝜑ℓ(x, 0)] = i𝜌𝜔𝜑𝑆(x, 0). (7.3)

Employing the computed eigenbasis as trial functions and integrating over the plate surface 𝑃
leads to the following system of equations in terms of the unknown 𝑐ℓ,

𝑁𝑓

∑
𝑚=1

𝑁𝑓

∑
ℓ=1

𝑐ℓ [(𝜔2
ℓ − 𝜔2) ∫

𝑃
𝜌𝑒𝜏(x)𝑤ℓ𝑤𝑚 𝑑𝐴 + ∫

𝑃
𝜌𝑔𝑤ℓ𝑤𝑚 𝑑𝐴 − i𝜔𝜌 ∫

𝑃
𝜑ℓ(x, 0)𝑤𝑚 𝑑𝐴]

− ∫
𝑃

i𝜌𝜔𝜑𝑆(x, 0)𝑤𝑚 𝑑𝐴 = 0
(7.4)

In matrix notation the above system of 𝑁𝑓 equations are re-written as,

(AK + BK)cℓ = FK (7.5)

with the matrix coefficients given,

AK
𝑚𝑙 = ∫

𝑃
(𝜔2

ℓ − 𝜔2)𝜌𝑒𝜏(x)𝑤ℓ𝑤𝑚 𝑑𝐴, BK
𝑚𝑙 = 𝜌𝑔 ∫

𝑃
𝑤ℓ𝑤𝑚 𝑑𝐴 − i𝜔𝜌 ∫

𝑃
𝜑ℓ(x, 0)𝑤𝑚 𝑑𝐴,

FK
𝑚 = ∫

𝑃
i𝜌𝜔𝜑𝑆(x, 0)𝑤𝑚 𝑑𝐴.

(7.6)

The above system is solved to derive the complex amplitude vector cℓ. Most conveniently,
the equation of vertical motion for a thin floating plate Eq. (7.3) and in turn the system
Eq. (7.5) are straightforwardly transferred to the 2D case and the motion of a thin plate
strip. It is easily noticed that in the 2D case, where the structural motion is described as
Eq. (2.27), the corresponding 𝑁𝑓 system of equations would involve integrals defined over
a single horizontal coordinate, while thickness variations in considered again along a single
dimension.
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7.1.2 Pressure equilibrium for FSDT

The satisfaction of pressure equilibrium condition when a moderately thick plate is considered
is slightly more involved that the CPT case, due to the two-field formulation of the Reissner-
Minlin model. It is deemed appropriate to address the 2D case, corresponding to the motion
of the plate strip first and then present the 3D case.

Considering again the dynamic condition Eq. (2.14) and substituting the reduced elasticity
operator with the coupled equations of flexural motion for the strip on Γ2

𝑓 Eqs. (2.30) and (2.31)
results in the following,

−𝜕𝑥 [𝜅𝑠𝐺𝜏(𝑥)( 𝜕𝑥𝑤 − 𝜃 )] − 𝜔2𝜌𝑒𝜏(𝑥)𝑤 = i𝜌𝜔𝜑(𝑥, 0) − 𝜌𝑔𝑤, (7.7)

𝜅𝑠𝐺𝜏(𝑥) (𝜕𝑥𝑤 − 𝜃) + 𝜕𝑥 (𝐷𝜕𝑥𝜃) + 𝜔2 𝜌𝑒𝜏(𝑥)3

12 𝜃 =0. (7.8)

In the above system, Eq. (7.7) expresses the pressure equilibrium while Eq. (7.8) corre-
sponds once again to moment balance on the upper surface of the hydroelastic region. In
the inhomogeneous setting the above equations cannot be uncoupled and need to be satisfied
simultaneously. To that end the following expansion for the unknown rotation in terms of the
computed modal functions 𝜃ℓ is also employed,

𝜃(𝑥) =
𝑁𝑓

∑
ℓ=1

𝑑ℓ𝜃ℓ(𝑥). (7.9)

Thus, substituting the field expansions Eq. (7.8) is written as,

𝑁𝑓

∑
ℓ=1

[𝜅𝑠𝐺𝜏(𝑥) (𝑐ℓ𝜕𝑥𝑤ℓ − 𝑑ℓ𝜃ℓ) + 𝜕𝑥 (𝐷𝑑ℓ𝜕𝑥𝜃ℓ) + 𝜔2 𝜌𝑒𝜏(𝑥)3

12 𝑑ℓ𝜃ℓ] =0 (7.10)

Testing the above equation with the modal functions 𝜃ℓ, reduces the following system of
𝑁𝑓 equations,

𝑁𝑓

∑
𝑚=1

𝑁𝑓

∑
ℓ=1

[− ∫
𝐿/2

−𝐿/2
𝜅𝑠𝐺𝜏(𝑥) (𝑐ℓ𝜃𝑚𝜕𝑥𝑤ℓ − 𝑑ℓ𝜃𝑚𝜃ℓ) 𝑑𝑥 − ∫

𝐿/2

−𝐿/2
𝜃𝑚𝜕𝑥 (𝐷𝑑ℓ𝜕𝑥𝜃ℓ) 𝑑𝑥

−𝜔2 ∫
𝐿/2

−𝐿/2

𝜌𝑒𝜏(𝑥)3

12 𝑑ℓ𝜃𝑚𝜃ℓ 𝑑𝑥] = 0
(7.11)
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Performing integration by parts will result in,

𝑁𝑓

∑
𝑚=1

𝑁𝑓

∑
ℓ=1

[− ∫
𝐿/2

−𝐿/2
𝜅𝑠𝐺𝜏(𝑥) (𝑐ℓ𝜃𝑚𝜕𝑥𝑤ℓ − 𝑑ℓ𝜃𝑚𝜃ℓ) 𝑑𝑥 + ∫

𝐿/2

−𝐿/2
𝜕𝑥𝜃𝑚 (𝐷𝑑ℓ𝜕𝑥𝜃ℓ) 𝑑𝑥

+ [𝜃𝑚𝑑ℓ (𝐷𝜕𝑥𝜃ℓ)]
𝐿/2
−𝐿/2 − 𝜔2 ∫

𝐿/2

−𝐿/2

𝜌𝑒𝜏(𝑥)3

12 𝑑ℓ𝜃𝑚𝜃ℓ 𝑑𝑥] = 0,
(7.12)

The boundary terms vanish since the computed eigen basis functions 𝜃ℓ satisfy the free edge
condition Eq. (2.32) a priori. The remaining terms in the system of equations can be manip-
ulated to derive an expression linking the complex amplitudes 𝑑ℓ, 𝑐ℓ,

(B𝑀 − 𝜔2C𝑀)dℓ = A𝑀cℓ (7.13)

The matrix coefficients are given as,

A𝑀
𝑚𝑙 = ∫𝐿/2

−𝐿/2 𝜅𝑠𝐺𝜏(𝑥)𝜃𝑚𝜕𝑥𝑤ℓ 𝑑𝑥, B𝑀
𝑚𝑙 = ∫𝐿/2

−𝐿/2 (𝜅𝑠𝐺𝜏(𝑥)𝜃𝑚𝜃ℓ + 𝜕𝑥𝜃𝑚𝐷𝜕𝑥𝜃ℓ) 𝑑𝑥,

C𝑀
𝑚𝑙 = ∫𝐿/2

−𝐿/2
𝜌𝑒𝜏(𝑥)3

12 𝜃𝑚𝜃ℓ 𝑑𝑥.
(7.14)

Next, substituting the modal expansions in Eq. (7.7) with the modal functions results in,

𝑁𝑓

∑
ℓ=1

−𝜕𝑥 [𝜅𝑠𝐺𝜏(𝑥)( 𝑐ℓ𝜕𝑥𝑤ℓ − 𝑑ℓ𝜃ℓ )] − 𝜔2𝜌𝑒𝜏(𝑥)𝑐ℓ𝑤ℓ(𝑥) + 𝜌𝑔𝑐ℓ𝑤ℓ(𝑥)

= i𝜌𝜔𝜑𝑆(𝑥, 0) + i𝜌𝜔
𝑁𝑓

∑
ℓ=1

𝑐ℓ𝜑ℓ(𝑥, 0)
(7.15)

Next, testing Eq. (7.7) with the modal functions 𝑤ℓ results in the following system of
equations,

𝑁𝑓

∑
𝑚=1

𝑁𝑓

∑
ℓ=1

∫
𝐿/2

−𝐿/2
−𝑤𝑚𝜕𝑥 [𝜅𝑠𝐺𝜏(𝑥)( 𝑐ℓ𝜕𝑥𝑤ℓ − 𝑑ℓ𝜃ℓ )] 𝑑𝑥 − 𝜔2 ∫

𝐿/2

−𝐿/2
(𝑤𝑚𝜌𝑒𝜏(𝑥)𝑐ℓ𝑤ℓ)

− ∫
𝐿/2

−𝐿/2
i𝜌𝜔𝑐ℓ𝑤𝑚𝜑ℓ(𝑥, 0) + 𝜌𝑔𝑐ℓ𝑤𝑚𝑤ℓ(𝑥) = i𝜌𝜔 ∫

𝐿/2

−𝐿/2
𝑤𝑚𝜑𝑆(𝑥, 0) 𝑑𝑥

(7.16)

An integration by parts can be performed at the first integral in the double sum-
mation and satisfies the above expression significantly. The produced boundary term
[𝑤𝑚 [𝜅𝑠𝐺𝜏(𝑥)( 𝜕𝑥𝑐ℓ𝑤ℓ − 𝑑ℓ𝜃ℓ )]𝐿/2

−𝐿/2 will vanish once again as functions 𝑤ℓ satisfy the free edge
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condition Eq. (2.33), refining Eq. (7.16) into,

𝑁𝑓

∑
𝑚=1

𝑁𝑓

∑
ℓ=1

∫
𝐿/2

−𝐿/2
𝜕𝑥𝑤𝑚 [𝜅𝑠𝐺𝜏(𝑥)( 𝑐ℓ𝜕𝑥𝑤ℓ − 𝑑ℓ𝜃ℓ )] 𝑑𝑥 − 𝜔2 ∫

𝐿/2

−𝐿/2
(𝑤𝑚𝜌𝑒𝜏(𝑥)𝑐ℓ𝑤ℓ) 𝑑𝑥

− ∫
𝐿/2

−𝐿/2
(i𝜌𝜔𝑐ℓ𝑤𝑚𝜑ℓ(𝑥, 0) 𝑑𝑥 + 𝜌𝑔𝑐ℓ𝑤𝑚𝑤ℓ) 𝑑𝑥 = i𝜌𝜔 ∫

𝐿/2

−𝐿/2
𝑤𝑚𝜑𝑆(𝑥, 0) 𝑑𝑥

(7.17)

And finally in matrix notation and by employing Eq. (7.13) the following system in terms on
the unknown cℓ is deduced,

(A + B − C(B𝑀 − 𝜔2C𝑀)−1A𝑀)cℓ = F, (7.18)

where the matrix coefficients are now given as,

A = −𝜔2 ∫𝐿/2
−𝐿/2(𝑤𝑚𝜌𝑒𝜏(𝑥)𝑤ℓ) 𝑑𝑥 + ∫𝐿/2

−𝐿/2(𝜅𝑠𝐺𝜏(𝑥)𝜕𝑥𝑤𝑚𝜕𝑥𝑤ℓ + 𝜌𝑔𝑤𝑚𝑤ℓ(𝑥)) 𝑑𝑥

B = − ∫𝐿/2
−𝐿/2 i𝜌𝜔𝑐ℓ𝑤𝑚𝜑ℓ(𝑥, 0) 𝑑𝑥C = ∫𝐿/2

−𝐿/2 𝜅𝑠𝐺𝜏(𝑥)𝜕𝑥𝑤𝑚𝜃ℓ 𝑑𝑥,

F = i𝜌𝜔 ∫𝐿/2
−𝐿/2 𝑤𝑚𝜑𝑆(𝑥, 0) 𝑑𝑥

(7.19)

Solving the system described by Eq. (7.18) retrieves the complex amplitude functions cℓ.
Subsequently, amplitudes dℓ are deduced by Eq. (7.18) and can be used to determine the
unknown rotation, Eq. (7.9).

A similar approach is followed for the 2D FSDT finite plate case where the equations
expressing vertical equilibrium on the upper surface of the coupling region are,

𝜕𝑥1
[𝜅𝑠𝐺𝜏 (𝜃𝑥1

+ 𝜕𝑥1
𝑤)] + 𝜕𝑥2

[𝜅𝑠𝐺𝜏 (𝜃𝑥2
+ 𝜕𝑥2

𝑤)]
+𝜔2𝜌𝑒𝜏𝑤 = i𝜌𝜔𝜑(𝑥, 0) − 𝜌𝑔𝑤, (7.20)

𝜕𝑥1
[𝐷(𝜕𝑥1

𝜃𝑥1
+ 𝜈𝜕𝑥2

𝜃𝑥2
)] + 𝜕𝑥2

[𝐷(1 − 𝜈)
2 (𝜕𝑥2

𝜃𝑥1
+ 𝜕𝑥1

𝜃𝑥2
)]

−𝜅𝑠𝐺𝜏 (𝜃𝑥1
+ 𝜕𝑥1

𝑤) + 𝜔2𝐼𝑟(x)𝜃𝑥1
=0, (7.21)

𝜕𝑥2
[𝐷(𝜕𝑥2

𝜃𝑥2
+ 𝜈𝜕𝑥1

𝜃𝑥1
)] + 𝜕𝑥1

[𝐷(1 − 𝜈)
2 (𝜕𝑥2

𝜃𝑥1
+ 𝜕𝑥1

𝜃𝑥2
)]

−𝜅𝑠𝐺𝜏 (𝜃𝑥2
+ 𝜕𝑥2

𝑤) + 𝜔2𝐼𝑟(x)𝜃𝑥1
=0, (7.22)

Working in a similar manner as in the 1D strip the modal expansions of the unknown
deflection are rotations are employed noting that it now holds,

𝜃𝑥1
=

𝑁𝑓

∑
ℓ=1

𝑑(1)
ℓ 𝜃1ℓ(x), 𝜃𝑥2

=
𝑁𝑓

∑
ℓ=1

𝑑(2)
ℓ 𝜃2ℓ(x). (7.23)
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Eqs. (7.21) and (7.22) are tested with the computed modal functions 𝜃1ℓ and 𝜃2ℓ respectively,
while pressure equilibrium Eq. (7.20) is tested with 𝑤ℓ.

Remark 17. The process, although more involved, is identical to the one followed for the FSDT
strip. Notably integration by parts will reveal terms involving rotations across the tangential
direction to the free edge that will eventually vanish due to conditions Eqs. (2.24)–(2.26).

The reduced coupled systems link 𝑑(1)
ℓ , 𝑑(2)

ℓ and 𝑐ℓ, and thus reduces Eqs. (7.20)–(7.22) to
the following systems of equations in terms of the complex amplitudes,

A1𝑑(1)
ℓ + B1𝑑(2)

ℓ + C1cℓ = F
A2𝑑(1)

ℓ + B2𝑑(2)
ℓ + C2cℓ = 0

A3𝑑(1)
ℓ + B3𝑑(2)

ℓ + C3cℓ = 0
,

(7.24)



Part III

Numerical Results





Chapter 8

Numerical Results in the 2D
waveguide

Focusing on the hydroelastic problem formulated in the 2D waveguide, the method
developed in the previous chapters is investigated in a series of numerical experi-
ments. Moreover, extensive comparisons with results from the literature are pre-
sented for validation purposes.

The performance and accuracy of the present method is examined in a series of 2D cases.
First, the hydroelastic response of a thin, homogeneous plate and the corresponding wave
field transformations in an example configuration featuring an abruptly varying seabed, are
considered in order to illustrate the key features of the method in isolation of other homogeneity,
i.e. variable thickness. Next, comparisons with published results for different configurations
and a range of parameters are carried out. Considered cases involve both Kirchhoff and Mindlin
plate models over constant (deep, intermediate and shallow water cases) as well as seabed and
thickness variability. Throughout this chapter and for all presented examples, the water density
is 𝜌𝑤 = 1025 kg m3, unless stated otherwise, and the acceleration of gravity 𝑔 = 9.81 m s2.

8.1 The case of a uniform, thin plate over arbitrarily varying
seabed

The case of a shoaling bathymetric profile is initially considered in order to illustrate the full
features of the proposed method. In the following example, the fluid region is defined as
Ω = [−230 m, 230 m] × [−ℎ(𝑥), 0] with the bathymetric profile expressed for simplicity as as



120 | Numerical Results in the 2D waveguide

Figure 8.1 Real part of the solutions to the component propagation (top), diffraction (middle) and
radiation problems (bottom)

the superposition ℎ(𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥), with

𝑔1 (𝑥) = (ℎ− + ℎ+)
2 − (ℎ− − ℎ+)

2 tanh (2𝜋 (𝑥/205 + 0.0014) − 0.5) (8.1)

𝑔2(𝑥) = 0.7 sin (𝑘𝑏𝑥) exp (−10−4𝑥2) where 𝑘𝑏 = 2𝜋/λ𝑏 and λ𝑏 = 25.625 m (8.2)

The profile corresponds to a corrugated, shoaling region seen in Fig. 8.1. In the above,
ℎ+ = 13 m and ℎ− = 7 m correspond to the constant depth data at the left and right half-strips
respectively. The homogeneous floating structure is extending in [−𝐿/2, 𝐿/2] with 𝐿 = 120 m
being the length of the plate. An incident wave field propagating towards the positive x
direction with frequency 𝜔 = 1.4 s−1 is considered to excite the floating structure. Since
𝑘−ℎ− = 2.6248 and 𝑘+ℎ+ = 1.5348, the set example falls outside the limits of either deep
or shallow water wave theory. The thickness of the employed structure is assumed constant
at 𝜏 = 1 m, suggesting a thickness-to-length ratio 𝜏/λ = 0.0083 well within the range of
application of the Classical Thin Plate theory, allowing the plate to be modeled under the
Kirchhoff-Love assumptions. The material properties of the structure are taken as 𝐸 = 5 GPa,
𝜈 = 0.3 and density 𝜌𝑒 = 922.5 kg m3, corresponding to sea ice (see for example Bennetts et al.
(2007); Porter and Porter (2000); Smith and Meylan (2011) and others).

The proposed method, keeping 𝑁𝑚 = 𝑁𝑓 = 15 number of terms in the series expansions
Eqs. (1.14) and (1.15) to ensure convergence, is employed for the calculation of the hydrody-
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Figure 8.2 Real part of the total solution (top), fictitious interfaces between subregions (bottom)

namic characteristics of the wave-field and the response of the structure. The latter suggests
the employment of 13 evanescent modes in the vertical hydrodynamic expansion, in addition to
the propagating and sloping bottom modes and 13 flexural modes in the elastic expansion, in
addition to rigid body modes. Linear Lagrange elements are used for the representation of the
discrete systems Eqs. (5.3) and (5.17) corresponding to the transmission and radiation-type
problem respectively, while a total of 44 elements per mean incident wavelength are employed.
Results convergence was assessed in the sense that consecutive mesh refinements rendered
negligible residuals. In Fig. 8.1 the equipotential lines, corresponding to the real part of the
computed solutions of the component hydrodynamic problems are shown, while in Fig. 8.2,
the corresponding plot for the composed total velocity potential is drawn. At the bottom of
Fig. 8.1, close-ups of the wave-field solution at the edges of the plate are given. Equipotential
lines in the above figures are seen to intersect the bottom normally, satisfying the Neumann
condition on the sloping seabed.

Moreover, the matching of the velocity potential and flux on the fictitious interfaces be-
tween subregions, depicted by dashed lines, is excellent for radiation-type and total wave-field
solutions, as illustrated in Fig. 8.2, suggesting that the weak satisfaction of transmission con-
ditions adequately captures local scattering phenomena at the plate edges and the employed
vertical expansion satisfies energy flux conservation across interfaces. Next, the normalized to
the wave amplitude modulus of the plate deflection, and the normalized absolute moment and
shear force for the given example are plotted in Fig. 8.3. Notably, the satisfaction of the zero
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(i) Non-dimensionalised moduli of plate deflection (left), bending moment (middle), shear force (right)

(ii) Real and imaginary parts of free surface elevation
and plate deflection

Figure 8.3 Plate response and upper surface elevation

moment and zero shear conditions at the free edges of the plate, observed at Fig. 8.3(i), is
a priori guaranteed by the employment of the in vacuo modes, which is an advantage of the
approach. The latter becomes more apparent in the 3D extension of the proposed method,
where the satisfaction of plate edge conditions is computationally intensive and not trivial in
general geometries.

Finally, in Fig. 8.3(ii) the real and imaginary parts of the solution for the normalized with
respect to incident amplitude free surface elevation 𝜂 (𝑥) = i𝜔𝑔−1𝜑 (𝑥, 0) , 𝑥 ∈ (x1, 𝑎1)∪(𝑎2, x2)
and plate deflection 𝑤 (𝑥) , 𝑥 ∈ (𝑎1, 𝑎2) are plotted.

Next, in order to explore the effects of modal truncation in the expansion Eq. (1.14), the
computed amplitudes 𝑐ℓ are considered for the above example. In Table 1, the first 11 moduli
of the computed mode amplitudes 𝑐ℓ are presented. For the presented computations, 𝑁𝑚 = 15
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|𝑐ℓ|
ℓ ∶ /𝑁𝑓 ∶ 1 2 3 4 5 6 7 8 9 10 11

15 13.7960 41.3947 20.6474 51.7936 23.5340 5.9249 0.4174 0.6211 0.0593 0.1287 0.0165
20 13.7961 41.3947 20.6474 51.7931 23.5341 5.9247 0.4174 0.6211 0.0593 0.1286 0.0165
30 13.7961 41.395 20.6475 51.7927 23.5339 5.9245 0.4174 0.6210 0.0593 0.1286 0.0165

Table 8.1 Non-dimensional complex amplitudes

vertical modes are employed for the hydrodynamic series expansion while a varying number
of flexural modes 𝑁𝑓 = 15, 20, 30 in the modal expansion is considered. It is evident, that in
the present case, fourth mode (2nd flexural mode) is dominant while after the 8th mode the
corresponding amplitudes are less than 1% of the maximum mode amplitude |𝑐4|, which is
indicative of the rapid convergence of the modal expansion.

Figure 8.4 Integrated moduli of the modal amplitude functions for component hydrodynamic solutions
vs mode number

Subsequently, in Fig. 8.4, the integrated over the spatial domain moduli of the complex

amplitude functions ‖𝜑𝑛‖1,(𝑥1,𝑥2) =
x2

∫
x1

|𝜑𝑛 (𝑥)| 𝑑𝑥 , calculated for the component hydrodynamic

problems (incident 𝜑𝑃 , diffraction 𝜑𝐷 and ℓth radiation 𝜑ℓ wave fields) as well as the total

solution amplitudes, calculated as 𝜑𝜑𝜑 = 𝜑𝜑𝜑𝑃 + 𝜑𝜑𝜑𝐷 +
𝑁𝑓

∑
ℓ=1

𝑐ℓ𝜑𝜑𝜑𝑅 are comparatively plotted. A

total of 𝑁𝑓 = 15 bending modes were employed in the modal expansion of the plate. The
𝑦-axis is in logarithmic scale while the 𝑥-axis shows the increasing number of vertical modes 𝑛.
Notably, the modal amplitude decay rate for the propagating wavefield 𝜑𝑃 is 𝒪𝑛−4, while the
corresponding rates of decay concerning the diffraction solution and the ℓth radiation potential
solution 𝜑ℓ appear to be smaller 𝒪𝑛−3+𝜖, 𝜖 < 1. In the case of the incident wavefield 𝜑𝑃 over
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an abruptly sloping seabed, the above is in agreement with the findings in Athanassoulis and
Belibassakis (1999).

In the aforementioned work, it was shown that the enhanced representation for the wave
potential, including the additional sloping bottom mode 𝑍−1 features an accelerated rate of
convergence 𝒪𝑛−4 , compared to the standard representation 𝒪𝑛−2 that fails to accurately
account for bottom slope effects. The inclusion of the additional mode allows for the consistent
satisfaction of the bottom boundary condition, ensuring the absolute and uniform convergence
up to the boundaries. The reduced order of decay of the modal amplitudes for the radiation-
type wavefields and in extend for the total solution is attributed to the weak satisfaction of
the interface conditions.

8.2 Numerical Validation of the Methodology

For the validation of the proposed methodology, a series of comparisons with results presented
in the literature are performed. For the numerical approximations presented in this section
by means of the proposed methodology, 𝑁𝑚 = 15 modes are kept in the vertical expansion,
including the additional sloping bottom mode, while 𝑁𝑓 = 15 bending modes are kept in the
deflection representation.

8.2.1 Constant depth

Homogenous Thin Plate

The hydroelastic response of a homogeneous thin plate over variable bathymetry is initially
compared against the results documented in Belibassakis and Athanassoulis (2005). In the
latter work, the consistent coupled mode system, proposed by the authors in an earlier con-
tribution, is extended to account for the hydroelastic problem. The analysis is restricted to
homogeneous, thin plates and bathymetric variations that are restricted to the plate-covered
region. In the following examples, the plate is assumed to extend infinitely in the 𝑦-direction,
undergoing cylindrical bending under harmonic wave action and the length of the plate is
𝐿 = 500 m. In the paper, the plate mass effect is considered negligible and ignored, thus
the available data for their analysis are limited to the flexural rigidity of the floating body,
𝐷/𝜌𝑤𝑔 = 105 m4. The above premise in unphysical is our case and thus, the above set flexural
rigidity is assumed to correspond to a body with constant thickness 𝜏 = 1.3 m and material
characteristics 𝐸 = 5 GPa, 𝜈 = 0.3 and density 𝜌𝑒 = 922.5 kg m−3 following Bennetts et al.
(2007). The slenderness of the structure falls well within the limits of the classical plate theory
while the material characteristics model sea ice. In the examined scenario, the incoming wave
frequency is 𝜔 = 0.4 s and the constant depth is ℎ = 10 m, which reduces the depth-to-incident
wavelength ratio to ℎ/λ = 0.066, approximating shallow wave conditions. Comparisons in
terms of the normalized plate deflection to the wave height |𝑤(𝑥)| /2𝑎0 and the modulus of
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Figure 8.5 Hydroelastic solution in constant depth and almost shallow water conditions. (a) Nor-
malised deflection to the waveheight (top). (b) Modulus of the velocity potential on the plate. Solid
line denotes the present mehtod, dashed line the solution of Stoker’s shallow raft model and squared
the solution by Belibassakis and Athanassoulis (2005)

the potential on the plate |𝜑(𝑥, 𝑧 = 0)| are shown in Fig. 8.5. For the discretization of the
hydroelastic region, 250 linear Lagrange elements were employed. The above figure illustrates
the results of the present method, shown by a solid line, against the hydroelastic CMS solution
by Belibassakis and Athanassoulis (2005) and shallow–water thin raft model by Stoker (1967)
denoted by a dashed line. The results are found in excellent agreement, verifying the behav-
ior of the proposed method in shallow water conditions. Next, a second case, corresponding
to deep water conditions, originally presented in Takagi et al. (2000) is examined. The case
explored in was validated against the eigenfunction matching technique by Yoshimoto et al.
(1997) and later found in good agreement with the results in Hermans (2003). The examined
plate has length 𝐿 = 1.4 m and flexural rigidity 𝐷/𝜌𝑤𝑔 = 1.74 ⋅ 10−3L4 m4, while it floats over
constant depth ℎ = 0.5 m . The normal incident wave-field has angular frequency 𝜔 = 4� m.
The plate parameters are chosen as 𝜏 = 5.2 ⋅ 10−3 m, with 𝐸 = 5 Pa,𝜈 = 0.3 and density
𝜌𝑒 = 922.5 kg m−3 to comply with case configuration as discussed in the previous example.
In Fig. 8.6, the modulus of the plate deflection normalized with respect to the incident wave
height is compared against the results presented in Takagi et al. (2000) denoted with crosses,
and once again the results are in very good agreement, indicating that the present method is
appropriate for all water-depth conditions. Next, in Fig. 8.7 the proposed method is compared
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Figure 8.6 Normalised deflection of floating elastic plate in deep water. Solid line denotes the solution
obtained by means of the present method, while crosses denote the solution in Takagi et al. (2000)

against the experimental results published in Wu et al. (1995), and originally presented in
Utsunomiya et al. (1995). Check veracity of references here from JFS 𝜏 = 1.3 m and material
characteristics 𝐸 = 5 GPa, 𝜈 = 0.3 and density 𝜌𝑒 = 922.5 kg m−3

The examined homogeneous, thin plate features length 𝐿 = 10 m, width 𝑊 = 0.5 m,
thickness 𝜏 = 0.038 m and draft 𝑑 = 8.36 ⋅ 10−3 m . The Young’s modulus 𝐸 = 103 MPa and
the density of the elastic material is 𝜌𝑒 = 922.5 kg m−3. The constant depth is set to ℎ = 1.1 m
. In the figure, the normalized plate displacement under three different incident wave periods
is illustrated. For 𝑇 = 1.429 s and 𝑇 = 0.7 s the present method, denoted by a continuous
line is compared against the converged results obtained by means of the vertical multi-modal
approximation, accounting for variable draft, in Bennetts et al. (2007), denoted by a dashed
line. Experimental results referenced in Wu et al. (1995) are noted by squares, triangles and
circles for periods 𝑇 = 2.875 s, 1.429 s and 𝑇 = 0.7 s respectively. Notably, the geometric
characteristics of the given structure suggest that its dynamic response is indeed accurately
described by means of the classical thin plate theory, since 𝜏/𝐿 = 0.0038. Furthermore even
in the higher frequency case, the incident wavelength is considerably larger than the plate
thickness (𝜏/λ ≈ 0.05) and thus shear deformation effects are rendered negligible. For 𝑇 =
1.429 s, the obtained solutions are almost identical while minor deviations of a quantitative
nature are observed for the high frequency case. This could be attributed to the fact that
the present work does not account for the constant draft. Results are generally found in very
good agreement with the results by Bennetts et al. (2007), illustrating the beneficial effects of
evanescent mode employment in capturing scattering effects due to the edges of the plate.
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Figure 8.7 Non-dimensional displacement amplitude for (a) T=2.875 s, (b) T=1.429 s and (c) T=0.7
s. Solid line denotes the solution of the present method while the dashed line indictes the results in
Bennetts et al. (2007). Experimental data are denoted by squares.

Homogeneous thick plate case

In all cases considered to this point, the CPT theory is employed and shear and rotary inertia
effects are neglected. Recently, several authors studied the diffraction of surface waves by the
presence of floating this elastic plates, e.g., Zhao et al. (2008). In the aforementioned paper,
comparisons against the small scale test documented above (Wu et al., 1995) were performed
for increasing thickness values, 𝑇 = 0.038 s, 0.075 s and 0.1 s. In Fig. 8.8, the present method
employing the Mindlin plate model compared favourably against the results in Zhao et al.
(2008), depicted with thinner lines for each thickness values and period 𝑇 = 1.429 s. Notably,
the dynamic response of the Kirchhoff and Mindlin plate models were almost identical even
in the thicker case for 𝜏 = 0.1 m, where thickness-to-incident wavelength ratio is an order of
magnitude smaller than thickness 𝜏/λ = 0.032. To illustrate the differences between the two
plate models a higher frequency case, for 𝑇 = 0.5 s is considered in Fig. 11. Again, three
thickness cases thickness values, 𝜏 = 0.038 m, 0.075 m and 0.1 m were considered for the same
plate configuration. In the figure, the non-dimensional deflection and bending moment are
calculated for both plate models, resulting to three pairs of curves corresponding to the three
thickness values. The pairs are given an increasing number that match increasing thickness
values. Solid lines denote the solutions obtained by the thin plate assumption, while the dashed
lines indicate Mindlin plate solutions. The thickness-to-incident wavelength ratios, ranging in
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Figure 8.8 Modulus of the non-dimensionalised deflection and moment for 𝑇 = 1.429 s and different
thickness values. Thick lines correspond to results obtained by the present method while thinner lines
indicate the results in Zhao et al. (2008)

magnitudes 𝜏/λ ≈ 0.01−0.25 are comparable to thickness in the examined cases, which justifies
thick plate assumptions while the structure remains slender. The plate deflection and bending
moment distributions shown in Fig. 8.9, indeed deviate due to the effects of rotary inertia and
shear deformation under high frequency excitation.

Variable Thickness Case

Next, the reflection and transmission coefficients for a floating structure featuring thickness
variation along its length are considered. A case considered in Smith and Meylan (2011) is
examined. In the aforementioned analysis the results concern the hydroelastic response of
a thin ice floe with length 𝐿 = 200 m with set parameters 𝜌𝑒 = 922.5 kg m−3,𝜈 = 0.3 and
fluid density 𝜌𝑤 = 1000 kg m−3. Concerning the employed Young’s modulus the referenced
work documents 𝐸 = 6 GPa, which corresponds to sea ice, however the provided details are
insufficient. Following, Iida and Umazume (2020) that replicated the above case, an unrealistic
Young’s modulus ̃𝐸 = 6 GPa is adopted for the structural modeling and deep water conditions
are assumed. Two thickness profiles as in Smith and Meylan (2011) 𝜏𝑖 = 𝑑0𝑞𝑖(𝑥) are examined,
employing the following distribution functions,

𝑞1(𝑥) = 1 and 𝑞2(𝑥) = 0.5 + 0.5 tanh(1.5 − 𝑥), −100 < 𝑥 < 100. (8.3)
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Figure 8.9 Modulus of the non-dimensionalised deflection and moment for different thickness values.
Solid lines correspond to results obtained by the Kirchhoff plate model, while dashed line indicate results
by Mindlin for thickness values (1)𝜏 = 0.038 m, (2) 0.075 m and (3) 0.1 m .

and a range of amplitudes 𝑑0. The functions 𝑞1 and 𝑞2 of Eq. (8.3) correspond to a homogeneous
thickness profile and a mollified step function distribution respectively, as seen in Fig. 12. The
mean thickness values of 𝜏2 is equal to corresponding constant thickness 𝜏1 for varying 𝑑0.
The reflection coefficient versus a range of wave periods is plotted for four thickness amplitude
values 𝑑0 corresponding to thickness profiles 𝜏1 and 𝜏2. It is observed in Fig.12, that the results
by the present method are found to be almost identical with Iida and Umazume (2020). The
figure illustrates that qualitative differences between constant and variable thickness profiles
become minor as 𝑑0 increases, indicating that thickness variations are important for thin plates.

8.2.2 Thin Plate Floating over Variable Bathymetry

Next, the variable bathymetry effects are considered. Up to this point, constant seabed cases
were considered for validation. In the sequel a series of comparisons with Belibassakis and
Athanassoulis (2005) are carried out.

In the following cases, the responses of the floating plate considered in Section 8.2.1, are
considered over different bathymetric profiles involving (a) a smooth shoaling (b) and undu-
lating seabed.
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Figure 8.10 Reflection coefficient vs period for thickness profiles 𝜏1, 𝜏2 and different values for 𝑑0. The
functions 𝑔𝑖 are shown in the upper left subplot. The solid and dashed lines correspond to the solution
obtained by the present method for the two thickness profiles, while the square solid line and circle
dashed line denote the corresponding results in Iida and Masuda 2020)

Smooth Shoaling

Initially, a bathymetric profile representing a smooth shoal restricted in the hydroelastic region
featuring the following depth function is considered,

ℎ(𝑥) = ℎ1 + ℎ2
2 − ℎ1 − ℎ2

2 tanh (3𝜋 (𝑥 − 𝑎1
𝑥 − 𝑎2

− 0.5)) (8.4)

In Eq. (8.4), ℎ1 and ℎ2 are the constant depth values that correspond to subregions 𝜔𝑗, 𝑗 = 1, 2.
An incident wave angular frequency is 𝜔 = 0.4 s−1. Two separate cases, with increasingly
sloping bathymetry, are considered. The normalized response of a plate floating over a shoaling
region with a slope of 3.8% corresponding to ℎ1 = 15 m and ℎ1 = 8 m in Eq. (8.4) and a shoal
with a steeper slope 9.4% corresponding to ℎ1 = 15 m and ℎ1 = 5 m are given in Fig. 8.11. The
solution by means of the present work is indicated by a solid line, while the results presented
in Belibassakis and Athanassoulis (2005) are shown with squares. The two solutions are found
in excellent agreement, noting the effectiveness of the method in variable bathymetry.

Undulating Shoaling

Next, the case of an undulating seabed is examined. The bathymetric profile is described by
means of the following depth function,

ℎ(𝑥) = 10 − 𝑔(𝑥)𝐴𝑏 sin (𝑘𝑏(𝑥 − 𝑎1)) , (8.5)
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Figure 8.11 Modulus of the normalised deflection to the waveheight for (top) ℎ1 = 15 m and ℎ1 = 8 m,
(bottom) ℎ1 = 15 m and ℎ1 = 5 m.

Figure 8.12 Modulus of the normalised deflection to the waveheight for 𝐴𝑏/ℎ = 15%.

where 𝑘𝑏 = 2𝜋/λ𝑏 is the wavenumber of the seabed disturbance, λ𝑏 = 125 m is the corresponding
wavelength and 𝐴𝑏 is the amplitude of undulations. The filtering function is given as,

𝑔 (𝑥) = (1 − exp (−(𝑥 − 𝑎1
𝜆𝑏

)
2
)) (1 − exp (−(𝑥 − 𝑎2

𝜆𝑏
)

2
)) (8.6)

The undulating profile is again restricted in the hydroelastic region, and disturbances are kept
around a mean depth ℎ = 10 m. The incident wave field angular frequency is kept to 𝜔 = 0.4 s−1

. In Fig. 8.12 the non-dimensional with respect to the wave height deflection corresponding
to a variable seabed profile with 𝐴𝑏/ℎ = 15% is plotted. The present method solution, drawn
with a solid line compares favorably once again, with the results documented in Belibassakis
and Athanassoulis (2005).





Chapter 9

Numerical Results in the 3D
waveguide

A series of 3D cases are explored in the present chapter, illustrating the simulation
capabilities of the proposed method.

9.1 Homogeneous plate over constant depth

The case of a circular, homogeneous thin plate floating over constant seabed is initially consid-
ered. The given case is chosen to illustrate the ability of the FEM-based scheme to straight-
forwardly capture curved boundaries. In the chosen configuration, plane wave incidence with
𝑇 = 1.5 s over the constant depth ℎ = 1 m are assumed. The depth-to-wavelength is re-
duced to ℎ/λ = 0.299 suggesting intermediate water depth conditions. The water density
is set to 𝜌 = 1000 kgm−3, while the chosen material properties in this example case are
𝜌𝑒 = 922.5 kgm−3, the Poisson’s ratio 𝜈 = 0.3 and Young’s modulus 𝐸 = 5 GPa, corresponding
to sea ice. The circular floating plate with radius 𝑟 = 2 m is positioned in the centre of the
computational region Ω = [−10 m, 10 m] × [−10 m, 10 m] × [−1 m, 0].

A hybrid mesh, featuring a PML region enclosing the computational domain Ω, as presented
in Sections 6.2.1 and 6.2.3 is implemented for the numerical simulation. The non-dimentional
layer thickness is kept at 𝑘𝜃𝑙 = 10−5 and discretised with 4 segments. To save computational
resources 𝑁𝑚 = 6 modes are kept in the vertical expansion for the velocity potential, while
𝑁𝑓 = 15 flexural modes were employed in the modal expansion of the plate deflection. The full
3D solution of the wave field can be constructed as shown in Fig. 9.1. Graphically, Fig. 9.1 is
comprised by a series of (𝑥1 − 𝑧) sections superimposed along the 𝑥2 direction, illustrating the
vertical structure of the solution and creating a 3D representation. The real part of the total
solution on the upper surface 𝑧 = 0 is shown in Fig. 9.2(i). In Fig. 9.2(ii) the corresponding
modulus of induced plate deflection under wave action is plotted. The symmetric configuration
of the chosen example and the comparable incident wavelength and plate diameter justify the
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Figure 9.1 Illustration of the 3D wave field solution in Ω

𝑠 𝑠′

(i) Real part of the total velocity potential. (ii) Modulus of plate deflection

(iii) Vertical section 𝑠 − 𝑠′

Figure 9.2 Real part of the total wave field solution 𝜑 for the case of a circular plate with radius
𝑟 = 2 m, 𝑇 = 1.5 s

calculated response. To demonstrate the solution matching between free-surface (Ω1) and
constrained subregion (Ω2), the total wave field on the vertical cross-section 𝑠 − 𝑠′ and 𝑦 = 0
is shown (see Fig. 9.2(i)). Excellent potential matching across the interface (depicted with
red dashed lines) is demonstrated with the employment of 𝑁𝑚 = 6 modes on the vertical
hydrodynamic expansion. Furthermore, the vertical structure of the solution is shown to
satisfy the condition on the flat seabed, while the upwave and downwave regions to the plate
correspond with the results shown in Fig. 9.2(i). The decomposed radiation 𝜑𝑅(x, 0) and
diffracted 𝜑𝐷(x, 0) solutions on the upper surface are also shown in Fig. 9.3 respectively. The
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(i) Real part of 𝜑𝑅(x, 0) (ii) 3D representation of the upper surface solu-
tion

(iii) Real part of 𝜑𝐷(x, 0) (iv) 3D representation of the upper surface solu-
tion

Figure 9.3 Real part of the radiation 𝜑𝑅 and diffracted wave field 𝜑𝐷 solutions for the case of a circular
plate with radius for the case of a circular plate with radius 𝑟 = 2 m, 𝑇 = 1.5 s

diffracted solution pattern features a zone of shielding in the downwave region to the structure
as well as a moderately amplified upwave front showing signs of reflection.

Next, the case of an L-shaped thin plate, floating over a flat seabed is chosen to display the
versatility of the proposed method. The L shape of the plate generates concave points for both
fluid and hydroelastic subdomains and is often employed as a benchmark case for restrictive
geometries. The same material properties, depth and excitation frequency are employed in this
second example. The total, radiated and diffracted wave field solutions are given in Fig. 9.4.
In Fig. 9.4(i) the subtle downwave pattern illustrates the compliant response of the structure.
In Figs. 9.4(iii) and 9.4(iv) and Figs. 9.4(v) and 9.4(vi) the rich decomposed solutions due to
the complex geometry of the structure are shown.
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(i) Real part of 𝜑(x, 0) (ii) 3D representation of the upper surface solu-
tion

(iii) Real part of 𝜑𝑅(x, 0) (iv) 3D representation of the upper surface radi-
ation solution

(v) Real part of 𝜑𝐷(x, 0) (vi) 3D representation of the upper surface diffrac-
tion solution

Figure 9.4 Real part of the wave field solutions for an L-shaped plate and 𝑇 = 1.5 s
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9.2 Homogeneous plate over variable depth

In this section, the case of a homogeneous rectangular plate over a shoaling seabed, introduced
in Gerostathis et al. (2016) is considered. The shoaling bathymetry is described once again
byEq. (8.4) with the local depth at the regions of incidence and transmission are set to ℎ1 =
15 m and ℎ2 = 5 m respectively. Plane wave incidence, 𝑇 = 15 s on a rectangular thin plate of
dimensions 250 m × 140 m is examined. The material properties of the homogeneous plate are
chosen so as to keep the flexural rigidity in accordance with the example found in the literature,
𝐷/𝜌𝑔 = 105 m4 and 𝑚 = 𝜔2𝜏𝜌𝑒/(𝜌𝑔) = 0.005. The latter choices correspond to 𝐸 = 5 GPa
𝜌𝑒 = 220.3 kgm−3 and 𝜏 = 1.2 m. The total solution on the upper surface is once again shown
in Fig. 9.5. A distinct diffraction pattern in the downwave region is observed. The wave
characteristics are found generally in good agreement with the case shown in Gerostathis et al.
(2016) but the structure appears to be significantly more compliant. The latter is attributed
to a potentially poor choice of dimensional parameters in the present calculations or the coarse
computational mesh. Notably, the employed irregular mesh resulted in about half a million
dofs for each hydrodynamic subproblem. Calculations in this chapter are kept to the above
standard.

Subsequently, motivated by the previous observation and in order to further investigate the
effects of bending rigidity on the structural hydroelastic response along with the total wave field
solution, three cases of increasing Young’s moduli are explored, namely 𝐸 = 5 MPa, 9 GPa,
210 GPa. In the context of the present dimensional analysis, the latter values correspond to a
flexible cork material, sea ice and structural steel respectively. For the first case material density
is set to 𝜌𝑒 = 220.3 kgm−3. For sea ice the value is set 𝜌𝑒 = 922.5 kgm−3 as previously discussed
, while the same value is employed for steel. This nonphysical assumption is employed to
maintain the buoyant action of the structure. It is stressed here that the aim of the investigation

(i) Real part of 𝜑(x, 0) (ii) 3D representation of the upper surface solu-
tion

Figure 9.5 Real part of the total wave field solution 𝜑(x, 0) for the case of a rectangular plate and
𝑇 = 15 s
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(i) 𝐸 = 5 MPa (ii) 𝐸 = 9 GPa (iii) 𝐸 = 210 GPa

Figure 9.6 Real part of 𝜑(x, 0), upper surface elevation 𝜂(x) and deflection 𝑤(x)for three stiffness
values

is to assess extreme cases on the flexibility spectrum. The real part of the total wave field
solutions in each explored case is plotted in Fig. 9.6. The sloping bathymetry of the previous
example is used. In Section 9.2 it is observed that the incident wavetrain to the extremely
compliant structure remains undisturbed. In the shoaling region the wavelength is shown to
decrease. The upper surface elevation 𝜂(x) and plate deflection 𝑤(x) for the corresponding
cases are also plotted. It is seen in Fig. 9.6(i) that the upper surface elevation and deflection
almost match showing the extremely compliant mode of the flexible structure. The second
case with geophysical significance is depicted in Section 9.2. The subtle diffraction pattern
and intense plate flexure are in accordance with examples in the previous subsection. In this
case, Fig. 9.6(ii), the interaction between plate response and surface elevation are shown to
interact and generate the diffracted pattern at the downwave region.

Similarly, the rich downwave structure in the stiffer case Section 9.2 is due to the intense
coupled interaction phenomena, further illustrated in Fig. 9.6(iii) where the subtle response
of the stiffer structure has a profound impact on the wave field (downwave structure). A
comparative illustration of the induced plate deflections are shown in Fig. 9.7. From the
extremely flexible (i) to the stiffer case (iii), the responses are gradually attenuated. In the
first case the upwave edge of the plate follows surface elevation while the increased response on
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(i)

(ii)

(iii)

Figure 9.7 Modulus of plate deflection for (i) 𝐸 = 5 MPa, (ii) 𝐸 = 9 GPa, (iii) 𝐸 = 210 GPa.

(i) 𝜃 = 0∘

(ii) 𝜃 = 45∘

(iii) Modulus of deflection for 𝜃 = 0∘ (up)
and 𝜃 = 45∘ (down)

Figure 9.8 Oblique wave incidence, 𝜃 = 0∘ (reference), 𝜃 = 45∘
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the downwave edge is justified by local wave amplitude increase. For the sea ice case, the plate
response on the upwave front is greater with the overall response being reduced compared to
the extremely flexible case. For the stiffer case response appears attenuated with the maximum
deflection appearing at the upwave front.

Finally, oblique wave incidence is examined for a rectangular plate of the same geometry
to further exhibit the potential of the proposed method to model 3D effects. For illustration
purposes the case of a very stiff structure, as explored in the prequel is used. The same sloping
seabed profile is employed to calculate the hydroelastic response of the structure and wave field
transformations with 𝜃 = 45∘ angle of incidence. Results, are plotted in Fig. 9.8. The total
solutions for the cases of 𝑥1−parallel plane wave and oblique incidence are shown in Figs. 9.8(i)
and 9.8(ii), while the effects on plate response in Fig. 9.8(iii).



Part IV

Time Domain Methods





Chapter 10

Shallow depth approximation

This final chapter is dedicated to time domain finite element schemes, targeting
shallow water environment. The research work is briefly outlined while selected
journal publications are included for the reader’s reference.

The transient hydroelastic response of an inhomogeneous thin, elastic structure under long
wave excitation is analysed by means of the finite element method. The analysis is restricted
in the 2D ocean strip while the structure is assumed to extend indefinitely in the direction
normal to wave incidence, thus performing cylindrical bending. The simple model is used for
the simulation of the generated kinematic and stress fields of the structure, when the latter
interacts with a long wave. The explored FEM scheme is able to treat the full equations for the
hydrodynamics and allow for non-linearity in the structure by employing Gao’s beam model
(Gao, 1996) to account for moderately large deflections and strains.

Initially, the governing equations of fluid and elastic motions, coupled through pressure
equilibrium on the section of the fluid surface occupied by the structure are considered. Domain
partitioning dictates the creation of two free-surface regions, denoted as Ω𝑖, 𝑖 = 1, 2 and Ω0, 𝑖 =
1, 2 while the region of hydroelastic coupling is Ω0.

For the hydrodynamics, the shallow water equations for long wave propagation are consid-
ered in free-surface regions Ω𝑖, 𝑖 = 1, 2,

𝜕𝑡𝑢 + 𝑢𝜕𝑥𝑢 + 𝑔𝜕𝑥𝜂 = 0, (10.1)
𝜕𝑡𝜂 + 𝜕𝑥 ((𝑏(𝑥) + 𝜂)𝑢) = 0 (10.2)

By assuming a velocity potential function 𝑢 = 𝜕𝑥𝜙, Eq. (10.1) can be combined in a single
evolution equation in terms of potential 𝜙. In the region of hydroelastic coupling Ω0, the
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following equations hold,

𝜌𝑝𝜏𝜕2
𝑡 𝜂 − Ι𝑟𝜕2

𝑡 𝜕2
𝑥𝜂 + 𝐷̃𝜕2

𝑥𝜂 − 𝑠 (𝜕2
𝑥𝜂) 𝜕2

𝑥𝜂 + 𝜌𝑤𝑔(𝜂 + 𝜕𝑡𝜙) + 𝜌𝑤
2 (𝜕𝑥𝜙)2) = −𝑞(𝑥; 𝑡) (10.3)

𝜕𝑡𝜂 + 𝜕𝑥 ((𝑏(𝑥) + 𝜂)𝜕𝑥𝜙) = 0 (10.4)

In Eq. (10.3), 𝐼𝑟 = 𝜌𝑝𝜏3/12 is the rotary inertia per width and 𝐷̃ = 𝐸𝜏3(1 − 𝜈)(1 + 𝜈)−1(1 −
2𝜈)−1/12 is the flexural rigidity per width of the model. Compared to the classical thin strip
the above model incorporates the effects of rotary inertia and the nonlinear term stemming
from considering the moderately large deflection of a thin beam, when non-negligible stress
variation in the lateral direction is considered. In addition, the non-linear pressure coupling
term 1

2𝜌𝑤(𝜕𝑥𝜙)2 which is significant when velocity becomes large is included. By excluding
the nonlinear terms and neglecting the rotary inertia in Eq. (10.3), the thin strip model cor-
responding to the Euler-Bernoulli under plane strain assumptions is deduced. Similarly, by
neglecting the nonlinear terms and employing the wave small amplitude assumption reduces
Eq. (10.1) to the linearised shallow water equations. To derive higher order FEM schemes
for the coupled problem in 1D, the weak forms of the systems of equations in each subre-
gion are derived. The weight functions 𝑣 ∈ 𝐻2(Ω0), that multiplies Eq. (10.3), and functions
𝑤0 ∈ 𝐻1(Ω0)and 𝑤𝑖 ∈ 𝐻1(Ω𝑖) for Eq. (10.4) and Eq. (10.1) are defined respectively. Next,
special hydroelastic elements are considered for discretization, featuring 𝐶1 approximation for
the plate deflection and 𝐶0 approximation for the velocity potential. Hence, the dofs in Ω0
include 𝜂, 𝜕𝑥𝜂 and 𝜙, while only 𝜙 is unknown in Ω𝑖, 𝑖 = 1, 2. Interelement connectivity ensures
the continuity for the potential function on the fictitious interface.

The specially constructed element incorporates cubic Hermite-shape functions for the ap-
proximation of the beam deflection/upper surface elevation (notably 𝜂 = 𝑤 in Ω0) and the
strip slope, while quadratic Lagrange-shape functions are employed for the the approximation
of 𝜙 in the middle region. In the free fluid regions Lagrange elements are used.

Upon discretisation, the following dynamic nonlinear system of equations is expressed in
terms of the vector u of global unknowns,

M𝜕2
𝑡 u + C(u)𝜕𝑡u + K(u)u = 0, (10.5)

supplemented by appropriate initial conditions. For the fully linear case (in both the elas-
tic response and hydrodynamic modelling) the dependence of the matrices on the solution is
eliminated. The implicit Crank-Nicolson time marching method in conjunction with Newton-
Raphson iteration scheme is subsequently used for the solution of Eq. (10.5). In post-
processing, the obtained solutions are used to derive the stress state of the elastic body.

Notably, the derived schemes can be employed in a number of applications in (a) ice shelf
research and (b) marine technology. In the sequel, contributions in scientific journals focusing
on the above are included instead of an in-depth analysis of the developed schemes.
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10.1 Publications in scientific journals

The following research contributions are included in this last section of the thesis to illus-
trate notable applications of the time-domain hydroelastic FEM schemes, which were breifly
delineated in the prequel. The referenced work focuses on the account of inhomogeneity ef-
fects, like variable bathymetry for the hydrodynamic modelling, and material and geometric
inhomogeneity for the elastic body.

1. Papathanasiou, T. K., Karperaki, A. E., Theotokoglou, E. E., and Belibassakis, K. A.
(2015b). Hydroelastic analysis of ice shelves under long wave excitation. Nat. Hazards
Earth Syst. Sci., 15(8):1851–1857, https://doi.org/10.5194/nhess-15-1851-2015.

2. Karperaki, A. (2015). FEM Hydroelastic Models with Application to the Nonlinear
Response of Large Floating Bodies in Shallow Wave Conditions. Procedia Computer
Science, 66:122–131, https://doi.org/10.1016/j.procs.2015.11.015.

3. Karperaki, A., Belibassakis, K., and Papathanasiou, T. (2016). Time-domain, shallow-
water hydroelastic analysis of VLFS elastically connected to the seabed.Marine Struc-
tures, 48:33-51, ttps://doi.org/10.1016/j.marstruc.2016.04.002.

In the first publication 1, the hydroelastic FEM are applied in polar research. Motivated by
the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami,
the SIS stable configuration is studied. In the fully, linear regime the extreme values of the
bending moment distribution in both space and time are examined. Finally, the location of
these extrema is investigated for different values of ice shelf thickness and tsunami wave length
are studied. In the latter, efforts are focused in the shallow water limit, while an initial attempt
to account for intermediate water made.

The second contribution 2, considers non-linear effects in both the hydrodynamic and
structural modelling by means of the non-linear shallow water equations and the Gao beam
in the 1D setting. The effects of the incorporated nonlineariry are assessed by means of a
numerical example featuring an elevation pulse of increasing steepness.

Finally, in contribution 3 an application in marine engineering is considered. In the linear
setting, the thin raft is equipped with linear connectors to the seabed resembled as dash-pot
configurations. The work attempts to assess the response mitigation and wave extraction
capabilities of such configurations under long wave excitation.

https://doi.org/10.5194/nhess-15-1851-2015
https://doi.org/10.1016/j.procs.2015.11.015
ttps://doi.org/10.1016/j.marstruc.2016.04.002
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Abstract. The transient hydroelastic response of an ice shelf

under long wave excitation is analysed by means of the finite

element method. The simple model, presented in this work, is

used for the simulation of the generated kinematic and stress

fields in an ice shelf, when the latter interacts with a tsunami

wave. The ice shelf, being of large length compared to its

thickness, is modelled as an elastic Euler-Bernoulli beam,

constrained at the grounding line. The hydrodynamic field

is represented by the linearised shallow water equations. The

numerical solution is based on the development of a special

hydroelastic finite element for the system of governing of

equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS)

calving event and its correlation with the Honshu Tsunami,

the SIS stable configuration is studied. The extreme values

of the bending moment distribution in both space and time

are examined. Finally, the location of these extrema is inves-

tigated for different values of ice shelf thickness and tsunami

wave length.

1 Introduction

The catastrophic impact of climate change on the Antarctic

Peninsula is examined in the works of Scambos et al. (2003)

and Skvarca et al. (1999), where attempts to identify the

mechanisms of climate-induced, ice shelf disintegration are

made. Ice shelf stability is being re-evaluated as wave trains

are becoming rougher and elevated temperatures lead to the

further weakening of ice formations (Young et al., 2011). In

fact, the question of whether ocean wave forcing acts as a

collapse triggering mechanism is thoroughly explored in the

literature. In particular, gravity wave forcing is depicted as a

major cause of rift propagation within an ice shelf, preceding

breakup events (Bromirski and Stephen, 2012). Additionally,

the effects of infra-gravity waves and intense storm activity

are also considered crucial for ice shelf stability (Bromirski

et al., 2010).

The present contribution is motivated by the calv-

ing event triggered by the Honshu earthquake-generated

tsunami, in March 2011. Observational data showed that

the Tsunami generated by the aforementioned earthquake in

Japan reached the Sulzberger Ice Shelf in Antarctica and

caused the formation of two icebergs, the largest being the

size of Manhattan island (Brunt et al., 2011). It is evident

that the oscillatory flexural bending, induced by wave exci-

tation, is a primary mechanism for ice shelf and ice tongue

calving. Ice-tsunami wave interaction is also manifested in

the run-up stage, when drifting ice formations are swept by

the incoming long wave. The Tohoku Tsunami exhibited the

rare feature of transporting large ice masses, causing signifi-

cant disruptions on the Kuril Islands shoreline as documented

in Kaistrenko et al. (2013).

Due to their structural characteristics, namely their neg-

ligible bending rigidity and large horizontal dimension, the

dynamic response of ice shelves when interacting with

the ocean wave field can be effectively modelled as an

initial–boundary value problem of hydroelasticity. Hydroe-

lastic analysis is also applied for the study of ice floes sub-

Published by Copernicus Publications on behalf of the European Geosciences Union.
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jected to ocean forcing (see Squire, 2007). Under the above

considerations, ice shelves can be modelled as constrained

semi-infinite plates floating over a water region with either

zero or non-zero draft (see Sergienko, 2010). Related to ice

shelf modelling, a recent work of Bhattacharjee and Guedes

Soares (2012) focuses on the frequency domain problem

of a floating semi-infinite plate in the vicinity of a vertical

wall. A variety of plate edge conditions are examined, in-

cluding a free, a fixed and a pinned condition at the vertical

wall interface. Brocklehurst et al. (2010) present an analyt-

ical solution to the problem of a clamped semi-infinite, ho-

mogeneous, elastic plate over a constant bathymetry region.

Tkacheva (2013) employs an eigenmode expansion for the

solution of a fixed plate on a vertical wall under regular wave

loading.

The majority of studies consider the case of harmonic

wave excitation, which enables the calculation of the float-

ing body response in the frequency domain. In this case,

a common line of work is the modal expansion technique,

where the elastic deformation is deduced by the superposi-

tion of distinct modes of motion (Belibassakis and Athanas-

soulis, 2005). The hydrodynamic forces are treated primarily

through the employment of the Green function method or

the eigenfunction expansion matching method. A number of

studies have focused on transient analysis of elastic floating

bodies, allowing for non-harmonic wave forcing and time-

dependant loads on the body. These attempts incorporate

direct time integration schemes, Fourier transforms, modal

expansion techniques and other methods (Meylan and Stur-

ova, 2009; Sturova, 2009; Watanabe et al., 1998). For a non-

uniform elastic plate floating on shallow waters of variable

depth, Papathanasiou et al. (2015) developed a higher-order

finite element for the time domain solution of the hydroe-

lastic problem composed of a freely floating or semi-fixed

body, while the non-linear transient response is examined in

Sturova et al. (2010) by means of a spectral–finite difference

method.

In the present contribution, the previous work of the au-

thors on higher order FE schemes (i.e. Papathanasiou et al.,

2015) will be applied in the hydroelastic analysis of ice-

shelves under long-wave excitation. In Sect. 2 the physical

domain and the governing equations are presented. The vari-

ational formulation of the previously defined initial bound-

ary value problem is discussed in Sect. 3. In Sect. 4 a case

study, with parameters resembling that of the Sulzberger Ice

shelf, is analyzed by means of the proposed methodology.

The temporal distributions of the maximum and minimum

bending moment values, along with their corresponding lo-

cation along the semi-fixed floating body are given. Finally,

a parametric analysis regarding the location of the occurred

extreme bending moment values is performed for different

ice shelf thickness and initial disturbance wavelength values.

2 Physical domain geometry and governing equations

The ice shelf is represented by an elastic, heterogeneous, thin

plate with a fixed edge, extending infinitely at the y direc-

tion (vertical to the page). The plate of horizontal length L,

rests on a layer of inviscid, incompressible fluid over an im-

permeable bottom. Assuming shallow water conditions, the

long wave approximation (i.e. wavelength much greater than

water depth) can be employed. The last assumption allows

for dimensionality reduction, resulting in a 1-D system of

equations, since now the z component of the fluid velocity

is considered negligible. The domain is divided into regions

S0≡ (0, L) and S1≡ (L,∞), with the hydroelastic coupling

taking place at the former (Papathanasiou et al., 2015). In

S0, the plate deflection coincides with the water upper sur-

face elevation η(x, t). The fluid velocity potential in the

two regions is denoted as ϕ0 and ϕ1 respectively. In order

to account for the draft of the plate, the variable bathymetry

function b(x)=H(x)− d(x), where B(x) is the water depth

and d(x)= τ(x)ρi/ρw the draft of the plate, τ(x) being the

plate thickness, is defined. The ice and water density are

ρi and ρw, respectively. The flexural rigidity of the plate is

given byD(x)=E τ 3/12(1− v2), with E being the Young’s

Modulus of ice and v the Poisson’s ratio. The mass per

unit length of the plate is denoted by m(x)= ρi τ . After in-

troducing the non-dimensional variables x̃= x/L, η̃= η/L,

t̃ = t
√
gL−1, ϕ̃0=ϕ0 g

−1/2L−3/2, ϕ̃1=ϕ1 g
−1/2L−3/2 and

dropping tildes, the governing system of differential equa-

tions is reduced to (see also Sturova, 2009),

Mη̈+ (Kηxx)xx + η+ ϕ̇0 = 0, x ∈ S0 (1)

η̇+ (Bϕ0x)x = 0, x ∈ S0, (2)

ϕ̈1− (Bϕ1x)x = 0, x ∈ S1, (3)

where a superimposed dot denotes differentiation with re-

spect to time while an index following the a function de-

notes differentiation with respect to the spatial variable. In

addition, the coefficients appearing in the above equations

are defined as

K(x)=D(x)/ρwgL
4, M(x)=m(x)/ρwL,

B(x)= b(x)/L.

The bending moment and shear force along the shelf are

given by the expressions Mb=K ηxx and V = (K ηxx)x , re-

spectively.

2.1 Stress distribution within the ice beam

In agreement with the Euler–Bernoulli beam model, the nor-

mal stress varies linearly along the z direction. The maximum

normal stress value at any given cross section is

σmax
xx =

Mb

K
|z|max = |z|maxηxx . (4)
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The shear stress distribution, as derived from equilibrium

relations, varies quadratically along the vertical direction.

Maximum shear stress, located at the neutral fibre is,

σmax
xz =

3

2

V

τ/L
=

3L

2

Kxηxx +Kηxxx

τ
. (5)

The above system of equations is supplemented with bound-

ary, interface and initial conditions. At the fixed end, simulat-

ing the ice shelf grounding line, the deflection and slope are

set to zero. At the free edge of the plate, representing the ice

shelf tip facing the ocean, zero bending moment and shear

force is imposed. These conditions read

η(0, t)= ηx(0, t)=Mb(1, t)= V (1, t)= 0. (6)

The water velocity is assumed zero underneath the grounding

line and thus the velocity potential gradient vanishes,

ϕ0x(0, t)= 0. (7)

At the interface between S0 and S1, assuming energy and

mass conservation, the following matching conditions are de-

rived (Stoker, 1957; Sturova, 2009):

B(1−)ϕ0x

(
1−, t

)
=B

(
1+
)
ϕ1x

(
1+, t

)
and

ϕ̇0

(
1−, t

)
= ϕ̇1

(
1+, t

)
. (8)

The ice shelf is assumed to be initially at rest, while an in-

coming long wave transverses region S1 and reaches the free

edge of the shelf. The initial boundary value problem formu-

lation is thus completed with the following conditions,

η(x,0)= η̇(x,0)= ϕ0x(x,0)= 0, x ∈ S0 and (9a)

ϕ1x(x,0)= 0, ϕ̇1(x,0)=−F(x), x ∈ S1. (9b)

In the last of Eq. (9b), F(x) denotes the free surface elevation

caused by the Tsunami wave at an initial time, at an area

distant to the ice shelf edge.

3 Finite elements – variational formulation of the

governing equations

In order to derive the variational formulation of the above

problem, Eqs. (1)–(3) are multiplied by the weight functions

ν, −w0 and w1, respectively. Integration by parts yields

1∫
0

Mνη̈dx+

1∫
0

Kνxxηxxdx+

1∫
0

νηdx+

1∫
0

νϕ̇0dx

+
[
ν(Kηxx)x

]1
0
+ [νxKηxx]1

0 = 0, (10)

−

1∫
0

w0η̇dx− [Bw0ϕ0x]1
0+

1∫
0

Bw0xϕ0xdx = 0, (11)

∞∫
1

w1ϕ̈1dx− [Bw1ϕ1x]∞1 +

∞∫
1

Bw1xϕ1xdx = 0. (12)

Using the conditions described in Eqs. (6)–(8), and adding

Eqs. (10)–(12) the equivalent semi-discrete variational prob-

lem is formulated as Papathanasiou et al. (2015).

Find η, ϕ0 and ϕ1, such that for every ν, w0 and w1 at any

given moment in time it holds

1∫
0

Mη̈hνhdx+

1∫
0

νhϕ̇0
hdx−

1∫
0

wh0 η̇
hdx+

∞∫
1

wh1 ϕ̈1
hdx

+ a
(
ηh,νh

)
+ b0

(
wh0 ,ϕ

h
0

)
+ b1

(
wh1 ,ϕ

h
1

)
= 0, (13)

where

a
(
ηh,νh

)
=

1∫
0

(
Kνhxxη

h
xx + ν

hηh
)

dx,

b0

(
wh0 ,ϕ

h
0

)
=

1∫
0

Bwh0xϕ
h
0xdx,

and

b1

(
wh0 ,ϕ

h
0

)
=

∞∫
1

Bwh1xϕ
h
1xdx,

while superscript h denotes spatially discrete quantities.

A special hydroelastic element is developed and employed

for the solution of Eq. (13). The reader is directed to the

previous work by Papathanasiou et al. (2015) for more de-

tails concerning the proposed finite element scheme. The in-

terpolation degree selected features 5th order Hermite poly-

nomials for the beam deflection/upper surface elevation in

the hydroelastic region and 4th order Lagrange polynomials

for the approximation of the water velocity potential. Hence,

within each element, η(xt) and ϕ0(x, t) are approximated

by ηh=
6∑
i=1

ηi(t)Hi(x), ϕ
h
0 =

5∑
i=1

ϕi0(t)Li(x). Domain S1 is

discretized only in region [1, R], where the positive constant

R� 1 is selected large enough so that any disturbance prop-

agating inside S1 does not reach point R within the time in-

terval of interest. Fourth order Lagrange shape functions are

used for the interpolation of the velocity potential ϕ1. By sub-

stituting the above approximate solutions into Eq. (13) and

letting the weight functions ν assume the form of the Her-

mite C1 shape functions while w0 and w1 are substituted by

the Lagrange C0 shape functions, the resulting system is de-

rived in the form, M ü+C u̇+Ku= 0, with the vector of

unknowns being u= [η ηx ϕ0 ϕ1]
T .
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4 Results

In the present section, the simplistic, mechanical model de-

scribed above will be employed for the calculation of the hy-

droelastic response of the Sulzberger Ice shelf under long

wave forcing. The SIS is simulated by a semi-fixed plate

of 100 km in length. For the employed bathymetric profile,

mean depth values were used. In Brunt et al. (2011) it is men-

tioned that the water column depth in front of the ice-shelf is

150 m, while it increases to 800 m within 100 km from the

ice shelf front. Thus, the ocean depth under the ice shelf is

assumed to be 150 m, while a mildly sloping bottom is con-

sidered over a distance of 100 km from the edge of the ice

shelf (see Fig. 1). The water depth increases from 150 m, at

x= 1 to 800 m at x= 2 (Brunt et al., 2011). The initial, bell-

shaped free-surface elevation considered in the following ex-

amples is

η0 = Aexp
(
−x−µ(x0+w)

2

− x−µ(x−x0+w)(x−x0−w)
)
, (14)

where A represents the amplitude, x0 the origin loca-

tion, w the half-wavelength and µ a smoothness param-

eter controlling the steepness of the initial pulse. Finally,

the material constants selected are as follows: ice shelf

density ρi = 922.5 kg m−3, water density ρw= 1025 kg m−3,

Young’s modulus E= 5× 109 Pa and Poisson’s ratio v= 0.3

(see also Sturova, 2009). The acceleration of gravity is

g= 10 m s−2. In the following analysis 400 hydroelastic el-

ements have been used, while the number of elements in re-

gion S1 is selected such that the element size is the same for

both regions S0 and S1. Numerical experiments have shown

that this discretization ensures convergence, as any further re-

finement induces virtually no variation of the results. Finally,

the Newmark method has been employed for time integra-

tion. The non-dimensional time interval T = 70 (correspond-

ing to 7000 s) is considered.

At first, the effects of an initial pulse with A= 0.5 m,

µ= 50× 105 m−2 and w= 8000 m are considered. In Fig. 1,

a visual representation of the given pulse propagation is plot-

ted. The bell-shaped disturbance is split into two waves trav-

elling in opposite directions. The pulse propagating to the

left (towards the negative x axis) is partially reflected when

reaching the bathymetric variation at x= 2. As the wave

propagates over decreasing depth, its amplitude increases,

while the velocity decreases. The velocity reduction is evi-

dent in the curved trajectory path for 1≤ x ≤ 2, as shown in

Fig. 1. At x= 1, the wave impacts the ice shelf free edge,

initiating the propagation of the hydroelastic wave while it

is partially reflected. The hydroelastic wave, featuring dis-

persive characteristics, is fully reflected at the grounding line

(fixed end, x= 0), at t ≈ 67. The dispersive nature of the hy-

droelastic pulse can also be seen in Figs. 2 and 3, manifested

as the formation of smaller disturbances preceding the main

elevation wave. These disturbances reach the grounding line

at earlier times than the main pulse and lead to an increase of

Figure 1. Space-Time plot of the bell-shaped pulse propagation.

The bathymetric profile is shown in a schematic below. All dimen-

sions are normalized with respect to the plate length L= 100 km.

the bending moment locally. This phenomenon is displayed

in the maximum and minimum bending moment time pro-

files (Figs. 2 and 3) as spikes, located at x= 0 and appearing

in the time interval from t ≈ 55 to t ≈ 65.

The present analysis aims to provide some first and sim-

ple means for the estimation of long wave impact on float-

ing, slender formations and their response, as a first step to-

wards the hydroelastic modelling of ice shelves. As illus-

trated in Fig. 1, phenomena, such as wave reflection, hy-

droelastic dispersion, bending moment variation are well re-

produced. In order to investigate the generated stress field

within the floating body, the bending moment distribution is

examined. Bending moment distributions are directly linked

to maximum normal stress values. In particular, for notched

or pre-cracked specimens it is usually those normal stresses

that mostly influence crack initiation and propagation. The

latter phenomena are crucial when a pre-existing crack hap-

pens to be inside a tensile zone of large magnitude.

Typically, for the bending of thin beams, the normal

stresses due to bending are dominant and as a first approach,

shear stresses may be neglected. In Figs. 2 and 3 the max-

imum and minimum bending moment temporal and spatial

distributions are shown. For the maximum bending moment,

the temporal distribution is shown in a thick red line, while

the location of the corresponding values along the ice shelf is

given by the thin black line (Fig. 2). When at rest, the maxi-

mum bending moment is zero in absence of flexural effects.

Immediately after impact, t ≈ 30 the maximum bending mo-

ment is seen to increase. The location of the maximum bend-

ing moment value is found to follow the main pulse towards

the fixed end. At t = 34, the entire pulse has passed under-

neath the floating cantilever, causing an increase in maxi-

mum bending moment. At the same time, the location of the

maximum value for the bending moment is shifted back near

the free edge. This is due to the fact that the entire wave-

length of the initial pulse has passed underneath the float-

ing cantilever, causing the tip to bend again as it recovers
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Figure 2. Maximum bending moment temporal profile (red thick line) and location of corresponding values along the floating cantilever

(black line). A detailed figure of the profile after the wave impact is presented, along with representative snapshots of the deformed ice shelf.

Figure 3. Minimum bending moment temporal profile (blue thick line) and location of corresponding values along the floating cantilever

(black line). A detailed figure of the profile after the wave impact is presented, along with representative snapshots of the deformed ice shelf.

to the initial undeformed state. At t = 44 the location of the

maximum bending moment value is shifted towards the ice

shelf tip once again. The above can be attributed to flexu-

ral effects taking place at the right side of the propagating

disturbance. As the hydroelastic wave propagates away from

the free edge, the tip is restored to its original position caus-

ing additional flexing in the interior of the cantilever. Due to

the fact that, in the present work, the grounding line is sim-

plistically modelled as a fixed boundary, the global bending

moment extrema are found at the fixed edge, at the time of

reflection t = 67. Prior to full reflection, a series of spikes in

the maximum bending moment distribution are caused by the

dispersed hydroelastic waves reaching the fixed edge before

the main pulse.

As shown in Fig. 3, the minimum bending moment inten-

sifies until the entire pulse wavelength has passed under the

floating cantilever, at which point the minimum bending mo-

ment value remains virtually constant up to the arrival of the

dispersed wave train at the fixed edge.

Notably, the notion that the pulse will reach the fixed end

is rather unrealistic. The induced flexural effects will cause

the bending failure of the semi-fixed floating body long be-

fore the hydroelastic pulse arrives at the grounding line. As

seen in Figs. 2 and 3, the maximum and minimum bending
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Figure 4. Location of extreme bending moment along the semi-

fixed floating body for various values of thickness and initial distur-

bance wavelength. Variable ξ measures the distance of the point of

occurrence of the extreme value from the free edge.

moment values reach a plateau approximately after the full

disturbance passes underneath the ice shelf. Considering the

effects before the hydroelastic wave train reaches the ground-

ing line, namely for short times after the long wave impact,

the corresponding location of the given extreme bending mo-

ment value along the ice shelf may be linked to both ice shelf

thickness and initial disturbance form. Figure 4 displays a

parametric study of the extreme bending moment value lo-

cation for different ice shelf thickness and tsunami wave-

length values. Variable ξ denotes the distance from the free

edge up to the location of the extreme value along the semi-

fixed floating body x= 1. In all cases, the extreme bending

moment values have been considered in a time interval ex-

cluding the effects of the fixed end forcing (t ≥ 50). In that

manner, Fig. 4 demonstrates the location of extreme bending

moments for the phase during which the main pulse enters

the region of hydroelastic interaction. As can be seen in the

aforementioned figure, the location of the extreme bending

moment is relatively insensitive to variations of the wave-

length. For thickness values of 80 and 100 m, this location is

found to be at about 2 % of the ice shelf length (2 km into

the 100 km long ice shelf), calculated from the free edge.

The above results are found in agreement with the work of

Squire (1993), where the breakup of shore fast ice, modelled

as a semi-infinite, thin floating plate, is investigated in the

frequency domain. Furthermore, as thickness increases, the

location of extreme values seems to shift towards the inte-

rior of the ice shelf. For a thickness of 120 m, location ξ

is placed at approximately 10 % of the ice shelf length and

features a slight variation with increasing initial disturbance

wavelength. However, this variation is very small when com-

pared to the total length of the beam. Another interesting

feature is that in this last case (120 m thickness) the maxi-

mum absolute value found corresponds to negative values of

the bending moment (see Fig. 5), whereas for thickness val-

Figure 5. Plot of maximum and minimum bending moment value

distributions for w= 8000 m and τ/L= 0.0012. Extreme bending

moment value is negative, during the entry phase, for an ice shelf

thickness value of 120 m.

ues of 80 and 100 m the maximum absolute bending moment

values are found to be positive (sagging moments). This fea-

ture explains the different shape of the 120 m curve in Fig. 4,

when compared to the curves corresponding to 80 and 100 m,

which closely resemble one another. The fact that in the case

of 120 m the extreme bending moment values are negative

might be attributed to the beam thickness being very large

compared to the water depth under the ice shelf. Finally,

these results are strongly dependent on the form of the in-

coming wave, in the sense that if another wave profile in-

stead of an elevation pulse is chosen, the bending moment

fields will be of a different nature.

5 Conclusions

In the present work, the transient hydroelastic response of

a semi-fixed floating cantilever, resembling an ice shelf, is

studied by means of a higher order finite element scheme.

The simple model derived above is able to provide valuable

information regarding the kinematic and stress fields induced

by long wave forcing on an ice shelf. An illustrative case

study is presented with parameters selected so as to approx-

imately simulate the Sulzberger Ice Shelf topology and the

relevant calving event conditions, initiated by the 2011 Hon-

shu Tsunami. Bending moment profiles, as generated by

a long wavelength elevation pulse, are studied and critical

points of the induced stress field are located. During the

wave entry in the hydroelasticity dominated region, the loca-

tions of extreme bending moments is found to be relatively

insensitive to the excitation wavelength for given ice shelf

thickness values. Important extensions of the present study

include 3-D hydroelastic interaction, as well as the investiga-

tion nonlinearity effects of both in the hydrodynamic model

and in the elastic subregion. Finally, the study of tsunami-ice

interaction in the run-up stage constitutes another possible
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future research direction in the context of the present model

applications.
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Abstract 
A higher order finite element scheme is presented for the study of the transient hydroelastic response of 
a floating, thin, nonlinear strip in shallow wave conditions. First, nonlinear effects are introduced only 
in the elasticity model, where large deflections and non-negligible normal stress variation in the lateral 
direction are assumed. The nonlinear beam is initially coupled with the linearized and subsequently with 
the full nonlinear Shallow Water equations, introducing nonlinearity in both the hydrodynamics and the 
elasticity model. The effects of the incorporated nonlinear effects are assessed through a numerical 
example featuring an elevation pulse of increasing steepness. 
 
Keywords: transient hydroelasticity, large floating bodies, Shallow Water Equations, Galerkin FEM, nonlinear 
floating elastic strip 

1 Introduction 
The study of the hydroelastic interaction between ocean waves and large floating bodies is highly 

relevant to both marine engineering and polar science (Squire, 2008) . Geophysical formations and 
pontoon-type Very Large Floating Structures (or VLFS) exhibit large horizontal dimensions compared 
to thickness. Due to their slenderness, hydroelastic effects are dominant over rigid body motion (Wang, 
Watanabe, & Utsunomiya, 2008).  The majority of works on hydroelasticity consider the response of a 
thin, floating body in the frequency domain where eigenfunction expansion methods, Galerkin schemes 
and Green functions have been used (Chen, Wu, Cui, & Juncher Jensen, 2006). In order to account for 
irregular forcing however, transient analysis tools, like direct time integration schemes and Fourier 
transforms need to be employed. Some contributions in the study of the transient hydroelastic response 
of a floating strip include those of Papathanasiou et al. (2015 (a)), (2015 (b)) and Sturova et al. (2010). 
In the literature, floating bodies are most commonly modeled as thin plates under the Kirchhoff-Love 
assumptions ( (Meylan & Squire, 1994), (Sturova, A., Fedotova, Chubarov, & Komarov, 2010), 
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(Papathanasiou T. , Karperaki, Theotokoglou, & Belibassakis, 2015 (b))). However, several attempts 
have been made to include higher order elasticity models like the Reissner-Mindlin or the Von Karman 
plates (Chen, Juncher Jensen, Cui, & Fu, 2003). For the hydrodynamic modeling, small amplitude wave 
theory is most commonly used. Special attention is paid in shallow water models, since a variety of 
engineering applications positions floating structures nearshore, making shallow and variable 
bathymetry effects crucial. For the hydroelastic response of large floating bodies over general 
bathymetry, modelled as thin elastic plates, a coupled-mode system has been derived in Belibassakis 
and Athanassoulis in (2005) and Belibassakis and Athanassoulis (2006). This method is based on a local 
vertical expansion of the wave potential in terms of hydroelastic eigenmodes, extending earlier 
approaches for the propagation of water waves in variable bathymetry regions (Athanassoulis & 
Belibassakis, 1999). 

Several attempts have been made to study the dynamic response of floating plates within the scope 
of shallow water models; notably in Sturova et al. (2010) the linear plate is coupled with two 
Boussinesq-type models, and the Green-Naghdi equations, while in Hegarty and Squire (2004) nonlinear 
models are developed for the study of the hydroealstic interaction between large amplitude ocean waves 
and a thin ice floe. In this latter work, nonlinear terms are introduced in both the equations for the fluid 
and the plate model. 

In the present contribution, the finite element method is employed for the solution of the transient 
1D hydroelastic problem over variable, shallow bathymetry. At first, nonlinear effects are incorporated 
in the simplified elasticity model, while the linearized shallow water equations are employed for the 
hydrodynamic modeling. Considering large deflections and non-negligible lateral stress variation, the 
nonlinear beam introduced by Gao (1996), is considered. Next, nonlinearity is also incorporated in the 
hydrodynamic modeling through the employment of the full Shallow Water equations. The derived 
nonlinear models are compared against the Euler-Bernoulli floating beam model presented in 
Papathanasiou et al. (2015 (b)) 

In Sect. 2, after presenting the governing equations and the aforementioned nonlinear models, the 
corresponding initial-boundary value (IBV) hydroelastic problems are defined. Subsequently, in Sect. 3 
the variational equivalent of the IBV problems will be derived, while the higher-order finite element 
scheme used for the solution of these problems is presented. In Sect. 4 the solutions given by the 
nonlinear models are examined in a numerical example featuring variable bathymetry. Different 
excitation steepness values are considered in order to examine the dominance of the incorporated 
nonlinear terms.  

2 Governing Equations 
In the present section the mathematical formulation of the 1D hydroelastic model is presented. 

Consider a layer of inviscid and irrotational fluid of density w , confined in the domain  (see Figure 

1) in the xz  plane. The domain is decomposed into three regions, namely 1 ( ,0) , 0 (0, )L  and 

2 ( , )L , where L  is the length of the strip. Due to the fluid assumptions, a velocity potential 

function  can be defined as xu where u  denotes the horizontal fluid velocity. The floating plate 

is assumed to extend infinitely in the y  direction, vertical to the page, corresponding to a beam under 

normal incident wave loading. The beam deflection and the fluid upper surface elevation are assumed 
to coincide at all times. Additionally, the floating strip features uniform thickness  and density e .The 

bathymetry function is given as ( ) ( )b x h x d , where ( )h x  is the local depth and 1
w ed  is the 

plate draft, which is non-zero only at the region of the hydroelastic coupling. At the free water surface 
regions, the Shallow Water Equations (SWE) are considered, 
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0,t x xu u u g                                                                                                  (1) 

[ ( ) ] 0t x xb x                                                                                                            (2) 

With the added assumption of small steepness waves, the linearised Shallow Water Equations 
(LSWE) are straightforwardly derived by excluding the nonlinear terms in Eqs. (1) and (2).  In the 
hydroelasticity dominated region the coupling is accomplished through the dynamic pressure applied at 
the floating strip, given by 

 
2

2
w

w w t xp g                                                                                                           (3) 

 For the floating body, the nonlinear elastic beam model introduced by Gao (Gao, 1996) will be 
examined in the following analysis, while the floating Euler-Bernoulli beam (EB) will provide a linear 
benchmark solution.  In the classical beam theory, the deflection of a thin, elastic and homogeneous 
floating body under vertical loading, denoted by ( , )q x t ,and pressure forcing given by the linearized Eq. 

(3), is given by 

2 4 ( , )t x w w tm D g q x t                                                                                       (4) 

The fully linear EB-LSW model, presented in Papathanasiou et al. (2015 (b)) will provide the basis for 
the assessment of the incorporated nonlineariaty. The first term (LHS) in Eq. (4) accounts for inertial 
effects, where m is the mass per unit length of the floating body, while the second term accounts for 
flexural effects and D denotes the bending rigidity of the beam. The Gao beam (GB) model (Gao, 1996) 
accounts for moderately large deflections, where the deflection is assumed to be of the same order of 
magnitude as the strip slenderness ratio L  , and non-negligible normal stress variation in the lateral 

(axial) direction. In GB, with zero axial loading present, the deflection of the floating beam over shallow 
water is given by, 

22 2 2 4 2 2( ) ( , )
2

w
t r t x x x x w w t xm I D s g q x t                      (5) 

In addition to the inertial and bending rigidity terms, which are similar to EB, rotary inertia effects are 
accounted through the term 2 2

r t xI , where rI is the rotary stiffness coefficient. The nonlinear term
2 2( )x xs , with 2 13 (1 ) / 2s E v , is a product of the large deflection assumption, where up to 

second order strain terms are kept in the Green-St. Venant strain tensor.   

2.1 Initial Boundary Value problems 
In the following section, the IBV problems of a freely-floating nonlinear strip, interacting with a 

surface wave propagating in a shallow water environment, modeled first by the linearized and then by 
the full shallow water equations, are formulated. 

 The horizontal velocity vanishes at infinity, hence it holds  

1 2(| | , ) (| | , ) 0x xx t x t                                                                                           (6) 

The unconstrained floating body configuration results in vanishing conditions for the shear stress 
and bending moments at the beam edges, 

(0, ) (0, ) (1, ) (1, ) 0b bM t V t M t V t (0, ]t T                                                                        (7) 
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Figure 1 1D hydroelastic domain configuration 

Introducing the non-dimensional quantities 1x L x , 1/2 1/2t g L t , 1L and 1/2 3/2 ,g L
and considering the corresponding  non dimensional forms of the equations (1)-(5), two IBVPs can be 
defined. The problem defined by the weekly nonlinear GB-LSW model is given as, 

2
1 1( ) 0t x xB x   in 1 ,                                                                                            (8) 

2 3 2 2 3 4 2 2
0 0 0 0 0

0 0

( )

                                                 ( , )
t R t x x x x

t

M I K S

Q x t
                                                        (9a)               

0( ) 0t x xB x    in 0 ,                                                                                                       (9b) 

2
2 2( ) 0t x xB x  in 2 .                                                                                                             (10)               

with ,i t i 1,2i , /e wM , 1( ) ( )B x L b x , / 1L  and
1

( , ) ( , ) wQ x t q x t gL . 

At the interfaces, appropriate mass and momentum conservation conditions are expressed as 

1 00 0
(0 ) (0 ) ,x xx x

B B 1 00 0t tx x , (0, ]t T                                                      (11a) 

0 21 1
(1 ) (1 ) ,x xx x

B B 0 21 1t tx x (0, ]t T                                              (11b) 

Finally, the GB-SW hydroelastic model, where nonlinear terms are included in both hydrodynamic 
and elasticity models constitutes the following IBV problem, 

        
2 32 1

1 1 1 1 1 1

1
2 ( ) 0

2t t x x x x x x t xB x , in 1                     (12)          

        

2 3 2 2 3 4 2 2
0 0 0 0 0

2

0 0 0

( )

1
                                                 ( , )

2

t R t x x x x

t x

M I K S

Q x t
                                       (13a) 

        0 0[ ( ) ] 0t x xB x  , in 0 ,                                                                                   (13b) 
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2 32

2 2 2 2 2 2

1 1
( ) 0

2 2t t x x x x x x t xB x , in 2 .                  (14) 

with 
21

2i t i x i  , 1,2i , 
12

e
R

w

I , 2

3

2(1 ) w

E
S

v gL
 and 

(1 )

12(1 )(1 2 ) w

E v
K

v v gL
. 

The interface conditions (11) are reformulated as 

1 1 0 00 0
(0 ) (0 , ) (0 ) (0 , )x xx x

B t B t 1 00 0t tx x
                    (15a) 

0 0 2 21 1
(1 ) (1 , ) (1 ) (1 , )x xx x

B t B t  0 21 1t tx x
                      (15b) 

Initially the plate and fluid are assumed to be at rest while an upper surface elevation is imposed at the 
right half strip, corresponding to the following initial conditions 

       0 0( ,0) ( ,0) 0x x in 0 ,  1 1( ,0) ( ,0) 0tx x  in 1  and                                      

            2 2( ,0) 0, ( ,0) ( )tx x G x in 2                                                                                (16) 

where G x  is an upper surface elevation imposed in subregion 2 . 

3 Variational formulation 
In the present section, the equivalent variational formulations of the IBVPs defined previously will 

be presented. First, the systems of Eqs. (8) - (10) and (12)-(14) are multiplied by the weight functions
1

1 1( )w H , 2
0( )v H  and 1

2 2( )w H accordingly. Then, performing integration by parts, 

adding the corresponding equations and applying the appropriate  interface and farfield conditions, 
yields the following variational problem, 

Find 0  and i , 0,1,2i , such that for every 1( )i iw H , 0,1,2i  and 2
0( )v H  it is 

0 32 2
1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 2 3 2 2 3
0 0 0 00

1 2

0 0 0 0 0 0 0 00

2
2 2

( )
2

( )
3

[ ( ) ]
2

t x tx x x x x x t x

t R x t x x x x x

t x t x x

t

w w w B x w w dx

S
M v I v K v v dx

v v v w w B x dx

w
32

2 2 2 2 2 2 2 2 2 21

1

0

( )
2

( , ) , , 0, 1

x tx x x x x x t xw w B x w w dx

vQ x t dx

        (17)  

and 1 1 1 0 0 0 2 2 2( ( ,0), ) ( ( ,0), ) ( ( ,0), ) 0x w x w x w , 0 0 0 1 1 1( ( ,0), ) ( ( ,0), ) 0tx w x w , 

2 2 22 2
( ,0), ( ),t x w G x w , with ( , )i , 0,1,2i  being the 2L -inner product in region i .     
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Setting  0  and 1retrieves the variational formulation of the GB-LSW IBV problem, while 

setting 1  and 1 results in the variational equivalent of the GB-SWE IBV problem. Notably, 

setting 0 0 , Εq. (17) reduces to the variational equivalent of the linear hydroelastic problem 

formulated by means of the EB-LSW model. 
 

3.1 Finite element formulation 
Next, the finite element method will be employed for the numerical solution of the variational 

problem described by Eq. (17). The velocity potential of the free water surface regions are approximated 
by quadratic Lagrange elements while a special, 5-node element is introduced for the hydroelasticity 
dominated region. The reader is directed to the work of Papathanasiou et al. (2015 (b)) for a more in 
depth analysis. The hydroelastic element incorporates 5th order Hermite polynomials for the 
interpolation of the beam deflection/upper surface elevation in the middle region and 4th order Lagrange 
polynomials for the interpolation of the velocity potential. Hence the approximate solutions are taken 

as, 
6

1

h h
i i

i
H x t  for the middle region and 

5

1
, 1,2h h

j i ij
i

L x t j for the free water surface 

regions. A second order system of ordinary differential equation is derived when the approximate 
solutions are substituted into a discretized Eq. (17). In the weakly nonlinear GB-LSW model case, the 

system is given as 0u u u uM C Κ , where u  is the vector of the nodal unknowns, while a system 

of the form 0u u u u uM C Κ is produced by the GB-SW model. After setting u y  and 

taking T[ ]u yz  , the previous is reduced to the first order system of nonlinear equations , 

( ) 0z z zA B . This last equation is integrated in time using a Crank-Nicolson time marching scheme.  

4 Numerical Results 
In the present section, the three hydroelastic models are compared in a numerical example featuring 

variable bathymetry (see Figure 2). An incoming elevation pulse, typical in long wave modeling 
(Tadepalli & Synolakis, 1996), provides the initial excitation. Since the scope of the present work is to 
give a preliminary assessment of the accounted nonlinear effects, a single slenderness ratio / L for 
the floating body is investigated .The wavelength for both examined excitation scenarios is set at 

300W mand the amplitude is taken as 0.4A and 0.8m , thus the examined wave steepness ratios 

are set to 0.0013and0.0027.A W   

 

 
Figure 2 Numerical example configuration 
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Figure 3 Space time plot of the elevation pulse propagation 

The incoming forcing initially transverses over a flat bottom, set at a depth of 15 m, until it reaches 
a shoaling region where the depth is assumed to decrease linearly to 8 m, where it is kept constant 
(Figure 2). The strip is assumed to be floating over the shoaling region. The uniform thickness of the 
body is set at 3m , while its length was taken as 500L m , resulting in a slenderness ratio of 

0.006 . Finally, the material constants selected are; density 3922.5 /e kg m , water density
31025 /w kg m , Young’s modulus 95 10E Pa  and Poisson’s ratio 0.3v .  

For the given analysis, 150 special hydroelastic elements and 10000 time steps were employed for 
the approximation of the middle region and the calculation of the transient strip response. In Figure 3 a 
space time plot illustrating the propagation of the imposed upper surface elevation in 2  is shown. The 

initial pulse in split into two propagating waves, travelling in opposite directions. As the wave travelling 
towards the negative x-axis reaches the shoaling region it is partially reflected. When the wave impacts 
the free edge of the floating strip, the hydroelastic pulse begins to propagate showing dispersive 
characteristics. A reflected wave back propagating in 2 is formed at impact. 

In Figure 4 and Figure 5 , the solutions obtained by means of the fully linear (EB-LSW) and the two 
non-linear models are compared. The comparison is shown at three distinct moments in time 
representing the phases of wave impact, hydroelastic wave propagation and wave exit from the middle 
region. On the left column of the figures, the calculated strip responses are shown, while on the right 
the corresponding deviations from the linear model solution are presented. It is observed that the 
nonlinearity introduced by the GB-LSW is rather weak, since the strip response is essentially reduced 
to the EB-LSW solution for the examined excitation scenarios. The deviation between the GB-LSW and 
the EB-LSW models is kept under 10% in both cases. Moreover, the deviation increase with increasing 
excitation steepness is minimal. This is attributed to the fact that the floating strip is considered thin in 
this case. Since, 1 , the rotary inertia and nonlinear terms of the Gao beam model are rather weak 
(see Eq 9(a)) and the solution is reduced to the one calculated by the classical thin beam theory. The 
limitations posed by the linear model would become evident with increasing dimensionless parameter

.  On the other hand, the deviations between the GB-SW and the EB-LSW solutions seem to increase 
proportionally with excitation steepness. In Figure 4 the maximum deviation is seen to exceed 20 % 
while in Figure 5 it exceeds 40%. Hence, the nonlinearity introduced in the hydrodynamic modeling is 
dominant over the nonlinear effects incorporated by the large deflections assumption of the strip model. 
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Figure 4 (Left)Strip response at given moments in time, calculated by the EB-LSW , GB-LSW and GB-SW  

models  for an elevation pulse with a steepness ratio of 0.0013 .(Right) Deviations between the calculated solutions 
by the GB-LSW and GB-SW models and the fully linear EB-LSW model. 

 
Figure 5 (Left)Strip response at given moments in time, calculated by the EB-LSW , GB-LSW  and GB-SW  

models  for an elevation pulse with a steepness ratio of 0.0027 .(.  (Right) Deviations between the calculated 
solutions by the GB-LSW and GB-SW models and the fully linear EB-LSW model. 
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5 Conclusions 
 
In this contribution, a higher-order finite element scheme is employed for the solution of the 1D 

hydroelastic problem of a floating nonlinear strip in shallow water conditions. Two nonlinear 
hydroelastic models were considered. The Gao nonlinear beam is initially coupled with the linearized 
shallow water equations (GB-LSW model) and subsequently with the full nonlinear equations (GB-SW 
mode).  The variational equivalent of the defined IBV problems were solved by mains a special 5-node 
hydroelastic element, featuring 5th order Hermite polynomials for the interpolation of the upper surface 
elevation/strip deflection in the middle region, and 4th order Lagrange polynomials for the interpolation 
of the velocity potential function in the same region. The higher-order finite element scheme was first 
applied in the solution of the hydroelastic problem of a floating, linear, elastic strip under the classical 
beam theory assumptions in Papathanasiou et al. (2015 (b)) and is now extended to nonlinear strip 
modeling. 

In the present work, the nonlinear effects incorporated by the GB-LSW and GB-SW models were 
examined for a given floating body slenderness ratio and varying excitation steepness. When compared 
with the aforementioned linear model, the deviation between the calculated GB-SW and EB-LSW model 
solutions increases proportionally with increasing initial excitation steepness. In the case of the GB-
LSW, the obtained strip responses under the examined excitations were essentially reduced to the ones 
calculated by the fully linear model, with the deviation between the solutions being kept under 10%. 
Hence, the nonlinearity in the hydrodynamic equations appeared to be dominant over the nonlinear 
effects introduced by the large deflections assumption in the strip model, for the examined non-
dimensional slenderness parameter . 

The present contribution is a first step in the implementation of higher-order finite element schemes 
in the solution of the hydroelastic problem with incorporated nonlinearity. Although the presented 
results give a clear indication of the strength of the accounted nonlinear effects, further investigation is 
required in order to establish the range of validity for the presented nonlinear hydroelastic models. 
Possible future extensions include the study of higher order shallow water wave and plate models in a 
general bathymetry. 
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a b s t r a c t

In order to ensure the safe operation of a VLFS, a combination of mooring, breakwater and
other motion reducing systems is employed. In the present work, the transient hydroe-
lastic response of a floating, thin elastic plate, elastically connected to the seabed, is
examined. The plate is modelled as an Euler-Bernoulli strip, while the linearized shallow
water equations are used for the hydrodynamic modelling. Elastic connectors are
approximated by a series of simple spring-dashpot systems positioned along the strip. A
higher order finite element scheme is employed for the calculation of the hydroelastic
response of the strip-connector configuration over the shallow bathymetry. After the
definition of the initial-boundary value problem, its variational form is derived and dis-
cussed. Next, on the basis of the aforementioned formulation, an energy balance expres-
sion is obtained. The effect of variable bathymetry on the response of a two connector-strip
system is examined by means of three seabed profiles featuring a flat bottom, an upslope
and a downslope environment. For the flat bottom case, the strip response mitigating
effect exerted by the employment of two and three elastic connectors is considered.
Finally, by means of the derived energy balance equation, the energy exchange is moni-
tored, providing a valuable insight into the transient phenomena that take place in the
studied configurations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, due to the advances in marine technology, the hydroelastic response of Very Large Floating
Structures (VLFSs) has received great scientific attention. Population densification in coastal areas, along with the increasing
work load in major ports, has led to costly land reclamation solutions in order to accommodate the need for commercial
space, necessary for industrial growth [1]. Compared to expanding industrial zones inland or resulting to environmentally
hostile and costly land reclamation solutions, the employment of VLFS as operational docks constitutes an attractive
alternative. Pontoon type VLFSs are essentially floating plates of large horizontal dimensions resting on the water surface
[2]. With horizontal dimensions stretching from tens to hundreds of meters, VLFSs provide extended floor span, highly
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desirable for various applications ranging from storage, docking and military operation platforms to recreational facilities
and floating airport and helicopter bases [1,2]. Moreover, the ability to moor the structures at safe distances from the shore
makes them suitable for the accommodation of socially sensitive facilities, such as power and sewage treatment plants
[1e5].

The large length to thickness ratio of VLFSs makes elastic deformation dominant under ocean wave action. Hence, the
extensive study and comprehension of hydroelastic effects is essential in the development of robust VLFSs' design codes. Due
to their small rigidity, pontoon type VLFSs are most commonly modelled as thin, elastic, floating plates of either negligible or
non-negligible draft. Commonly the classical Kirchhoff plate theory is used for the approximation of the strip deflection [6,7],
while some works consider higher eorder [8] and nonlinear strip [9] theories.

Most tools developed for the study of hydroelastic effects employ either frequency domain or time-domain techniques.
Frequency domain tools employ Galerkin schemes [7], Green function methods [10] and eigenfunction expansion approaches
[11]. However, the treatment and analysis of transient phenomena, characterised by steep wave fronts, and strong nonlin-
earity effects, requires time domain methods. Analysis tools in the time domain include direct integration schemes [12,13]
and Fourier transform techniques [14,15]. Considering long wave excitation, Sturova [16] developed an eigenfunction
expansion technique for the calculation of the hydroelastic response of thin heterogeneous plates. In the same line of work,
Papathanasiou et al. [17] proposed a higher order finite element scheme for the solution of the initial-boundary value
hydroelastic problem of a thin plate floating over mildly sloped bathymetry in shallow water conditions.

Pontoon type VLFSs are suitable for calmwaters and are usually moored nearshore. The proximity to coastal areas and the
large horizontal dimensions make variable bathymetry effects important. In [18] the effects of a sloping sea bed are
considered, while a fastemultipole method is developed in [19] to account for variable bathymetry. Belibassakis & Atha-
nassoulis [20] have developed a coupledmodemethod for the calculation of the hydroelastic response of a floating, thin plate
over general bathymetry, which is recently extended to 3D by Gerostathis et al. [21].

In order to avoid drift off and reduce vibration effects of a VLFS, a combination of mooring, breakwater and other motion
reducing systems is employed [1e3]. The choice of the response mitigating system is dictated by the allowable displacement
values for the given configuration. Negata [22] and Seto& Ochi [23] showed that the motion of a floating plate surrounded by
bottom-founded breakwaters is considerably reduced in the case of incoming long waves. Numerical studies have confirmed
that the gravity type breakwater system is highly effective in reducing both drift forces on the floating structure and its
hydroelastic response [24,25].

On the other hand, bottom-founded breakwaters have a profound environmental impact, as they disrupt ocean currents,
and costly construction. Alternative breakwater systems, like the box-like floating breakwater [3], have been proposed as eco-
friendly alternatives. The need to mitigate the hydroelastic response of floating bodies has also led to the development of
auxiliary structural elements acting as motion reducing mechanisms. Such devices, attached at the free edges of the floating
structure, are able to dissipate the incoming wave energy and achieve the necessary hydroelastic response mitigation. The
devices range from submerged vertical or horizontal plates [26,27], acting as reflectors, to air cushions [28]. In order to derive
the optimal configuration for a given structure and environmental conditions, computationally intensive, parametric studies
must be carried out. Khabakhpasheva & Korobkin [29] underline the need for a simple model able to capture the effect of the
motion reducing device on the dynamic response of the structure. In the same work, the response mitigating effect of an
elastic spring, connecting one of the free edges of the floating strip to the seabed, is studied among other systems. Finally,
Karmakar & Guedes Soares [30] study the scattering of gravity waves by a moored elastic strip, floating over shallow ba-
thymetry, in the frequency domain. In Ref. [30] a thorough analysis of the vertical strip deflection, bending moment, strain
shear force and spatial distribution for moored configurations under harmonic excitation is presented.

In the presentwork, the time-domain hydroelastic response of a thin, elastic, floating plate, elastically connected to the sea
bed, is examined. The plate is modelled as an Euler-Bernoulli strip, while the linearized shallow water equations are used for
the hydrodynamicmodelling. Themain novelty of the present contribution, compared to the previous work carried out by the
authors [17], lays on the inclusion of multiple elastic connectors in the developed shallow-water, time-domain model. The
elastic connectors are represented by simple spring-dashpot systems distributed along the structure. The present study also
considers the effect of the number, arrangement, stiffness and damping coefficients of the connectors on the resulting
transient hydroelastic response of the strip-connector configuration, floating over shallow waters. The investigation finds
important applications in a number of fields, such as the design of mooring systems [30], the vibration reduction of a floating
structure [31] andwave energy harvesting [32]. The numerical solution is calculated bymeans of a higher order finite element
scheme.

In Section 2, the initial-boundary value problem is formulated. Next, in Section 3 the variational form of the above problem
is given. Subsequently, the energy balance expression is derived from the variational form, while the employed finite element
scheme is briefly introduced. Finally, in Section 4 a series of numerical results is presented. In order to explore the effects of
bathymetry, three seabed profiles are defined. Namely, a flat bottom, an upslope and a downslope environment were
considered. For the flat bottom case, the response reducing effects of elastic strip configurations employing two and three
connectors, are studied and compared against the freely floating case. Strip deflection and bending moment distributions in
given time instances are plotted for various elastic connector parameters. Finally, the energy exchange within the system is
monitored by means of the energy balance expression, providing a valuable insight into the physical phenomenon and the
effectiveness of the studied configurations.
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2. Governing equations

In this section, the hydroelastic problem of a thin, floating, strip that is elastically connected to the seabed is presented.
Shallow-water conditions are assumed in the following analysis. The general formulation of the above problem, for a freely-
floating elastic strip, has already been presented in Sturova [16] and Papathanasiou et al. [17]. In the present contribution, the
strip is assumed to be elastically connected to the bottom boundary, at both edges, while additional N�1 elastic connectors
are distributed along the strip length (see Fig. 1). A Cartesian coordinate system is introduced. The horizontal axis x coincides
with the meanwater level, while the vertical axis z is pointed upwards. The plate extends infinitely in the direction vertical to
the page, hence allowing the treatment of the floating body configuration in the xz plane.

The upper surface elevation is denoted by h(x,t). The thin, elastic strip of length L, thickness t(x) and density rp is resting
over a layer of water with density rw. The fluid layer is contained in the domain U:(�∞< x<∞, �b< z< h), where the depth
function is given by b(x)¼ h(x)� d(x), with h(x) being the depth measured up to the meanwater level and d(x)¼ t(x)rp/rw the
plate draft. The horizontal extent of the domain is decomposed into subregion S0:0< x< L, where the hydroelastic coupling
takes place, and the free fluid surface subregions, S1:(�∞,0] and S2:[L,�∞). In the middle region S0, the plate deflection and
the free surface elevation coincide. The velocity potential functions, defined in each sub domain, are denoted as 4i , i¼ 0,1,2
respectively. Assuming a thin body, the Euler-Bernoulli beam theory can be employed for the approximation of the floating
strip hydroelastic response. The resulting system of equations, valid in U, becomes

m xð Þvtthþ vxx D xð Þvxxh½ � þ rwghþ rwvt40 ¼
XN
n¼2

d x� xnð Þ knhþ cnvthð Þ; x2S0; (1)

vthþ vx b xð Þvx40½ � ¼ 0; x2S0; (2)

vtt41 � gvx b xð Þvx41½ � ¼ 0; x2S1; (3)

vtt42 � gvx b xð Þvx42ð Þ ¼ 0; x2S2; (4)

where g is the acceleration of gravity and m(x)¼ rpt(x) is the plate mass per unit length. The Dirac function is denoted by d.
The flexural rigidity of the plate is D(x)¼ Et(x)3/12(1� v2), with E being the Young's modulus, v the Poisson's ratio of the plate
material. Furthermore, it is assumed that t/L≪ 1 in order to comply with the Kirchhoff thin plate theory. Finally, the strip is
connected with the seabed, at xn horizontal locations, by elastic connectors with stiffness kn, and damping coefficients cn for
n¼ 1,…,Nþ 1, represented by simple spring-dashpot systems. Eq. (1) accounts for the deflection of the elastic strip, according
to the Kirchhoff plate theory assumptions, resting on a fluid layer described by the linearized shallow water equations. The
present model incorporates inertial and flexural effects by means of the terms m(x)vtth and vxx[D(x)vxxh], respectively. The
classical thin plate model is augmented by the hydroelastic coupling terms rwgh and rwvt40, rising from the linearized dy-
namic condition at the upper surface boundary of the middle regionS0.

The forcing term in the right hand side of Eq. (1) accounts for the collective restoring effect of the elastic connectors
distributed along the strip length (n¼ 2,…,N), excluding edge connectors. Notably, the restoring effect of the connectors
positioned at the free edges of the strip is accounted by the imposed non-zero shear force boundary conditions at the strip
edges and is thus not included in the aforementioned forcing term. Moreover, Eq. (2) expresses mass conservation in the
water region, under the plate, while Eqs. (3) and (4) are derived through a simple algebraic manipulation of the linearized
shallow water equations, modelling long wave propagation in the free water surface subregions Si, i¼ 1,2. For the given

Fig. 1. A floating elastic strip with multiple elastic connectors along its length.
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subregions, it holds that hi¼�g�1vt4i, i¼ 1,2 [16]. Hence, the upper surface elevation in the halfstrips is directly derived from
the corresponding velocity potential functions.

The system of Eqs. (1)e(4) is supplemented by the following conditions at infinity,

vx41 x/�∞; tð Þ ¼ 0 and vx42 x/∞; tð Þ ¼ 0: (5)

implying quiescence in the far field. At the interfaces between subregions mass and energy conservation is assumed, yielding
the following matching conditions,

b 0�ð Þvx41 0�; tð Þ ¼ b 0þ
� �

vx40 0þ; t
� �

and b Lþ
� �

vx42 Lþ; t
� � ¼ b L�ð Þvx40 L�; tð Þ;

vx41 0�; tð Þ ¼ vx40 0þ; t
� �

and vx40 L�; tð Þ ¼ vx42 Lþ; t
� �

:

At the free strip edges, located at x¼ 0 and x¼ L, zero-moment and non-zero shear force conditions are imposed,

D 0ð Þvxxh ¼ 0 and D 0ð Þvxxxh ¼ �k1h� c1vth at x ¼ 0;

D Lð Þvxxh ¼ 0 and D Lð Þvxxxh ¼ kNþ1hþ cNþ1vth at x ¼ L:

Initially, at t¼ 0, the plate is at rest, while a free water surface disturbance, denoted by S(x), begins to propagate in
subregion S2. Thus, the conditions that complete the initial-boundary value problem are given as

h x;0ð Þ ¼ vth x; 0ð Þ ¼ vx40 ¼ 0 for x2S0; 41 ¼ vt41 ¼ 0 for x2S1 and 42 ¼ 0; vt42 ¼ �S xð Þ for x2S2:

Using the following nondimensional variables ~x ¼ xL�1, ~h ¼ hL�1, ~t ¼ g1=2L�1=2t, ~4i ¼ g�1=2L�3=24i; for i ¼ 0;1;2, the
initial-boundary value problem under consideration is rewritten (after dropping tildes)

M xð Þvtthþ vxx K xð Þvxxh½ � þ hþ vt40 ¼
XN
n¼2

d x� xnð Þ k
_

nhþ c
_
nvth

� �
; x2S0; (6)

vthþ vx B xð Þvx40½ � ¼ 0; x2S0; (7)

vtt41 � vx B xð Þvx41½ � ¼ 0; x2S1; (8)

vtt42 � vx B xð Þvx42½ � ¼ 0; x2S2; (9)

where the following nondimensional quantities are involved,

M xð Þ ¼ m xð Þr�1
w L�1; K xð Þ ¼ D xð Þr�1

w g�1L�4 and B xð Þ ¼ b xð ÞL�1:

The corresponding interface conditions become

B
�
0�

�
vx41

�
0�; t

�
¼ B

�
0þ

�
vx40

�
0þ; t

�
; B

�
1�

�
vx40

�
1�; t

�
¼ B

�
1þ

�
vx42

�
1þ; t

�
; (10)

and

vt41 1�; tð Þ ¼ vt40 1þ; t
� �

; vt40 1�; tð Þ ¼ vt42 1þ; t
� �

; (11)

while the nondimensional boundary conditions read as follows

Kð0Þvxxh ¼ 0 and Kð0Þvxxxh ¼ �k
_

1hð0; tÞ � c
_
1vthð0; tÞ at x ¼ 0; (12)

Kð1Þvxxh ¼ 0 and Kð1Þvxxxh ¼ k
_

Nþ1hð1; tÞ þ c
_

Nþ1vthð1; tÞ at x ¼ 1: (13)

In the above equations k
_

n ¼ knðrwgÞ�1 and c
_

n ¼ cng1=2L�1=2ðrwgÞ�1, for n¼ 1,2,…,Nþ 1, are the nondimensional
connector stiffness and damping coefficients. For simplicity in presentation, the hat notation is omitted in the following
analysis.

3. Variational formulation

The variational form of the previously defined transient hydroelastic problem is derived and discussed in the present
section. For the derivation of the variational formulation of the problem the same standard process is followed as in Papa-
thanasiou et al. [17]. The reader is directed to the given work for a more detailed account. Concisely, it is mentioned that Eqs.
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(6)e(9) are multiplied by the weight functions v2H2(S0),�w02H1(S0),w12H1(S1), andw22H1(S2), respectively (where H
denotes the Sobolev spaces in the corresponding intervals). After performing integration by parts and adding the resulting
equations, the following variational problem is defined,

Find h(x,t), 40(x,t), 41(x,t) and 42(x,t) such that for every v2H2(S0), �w02H1(S0) , w12H1(S1) and w22H1(S2) it holds
that

Z1

0

Mvvtthdxþ
Z1

0

vvt40dx�
Z1

0

w0vthdxþ
Z0

�∞

w1vtt41dxþ
Z∞

1

w2vtt42dxþ

þaðh; vÞ þ b0ð40;w0Þ þ b1ð41;w1Þ þ b2ð42;w2Þ þ qðh; vÞ þ cðvth; vÞ ¼ 0;

(14)

where the bilinear functionals are given by

qðh; vÞ ¼
XNþ1

n¼1

vðxnÞknhðxn; tÞ (15a)

and

c vth; vð Þ ¼
XNþ1

n¼1

v xnð Þcnvth xn; tð Þ; (15b)

while as defined in [17],

aðh; vÞ ¼
Z1

0

ðKvxxvvxxhþ vhÞdx; (15c)

b0ð40;w0Þ ¼
Z1

0

vxw0Bvx40dx; (15d)

b1 41;w1ð Þ ¼
Z0

�∞

vxw1Bvx41dx; (15e)

b2 42;w2ð Þ ¼
Z∞

1

vxw2Bvx42dx: (15f)

3.1. Energy balance considerations

Following [17], an energy balance equation is derived from the variational formulation Eq. (14). The above result is
subsequently used in order to study the energy exchange between the defined subregions in the presence of nonconservative
restoring forces.

In order to derive the energy conservation principle, we set v ¼ vth, w0 ¼ vt40, w1 ¼ vt41 and w2 ¼ vt42 in Eq. (14). The
substitution is valid under sufficient regularity assumptions for the weak solution and the definition of the weight functions
given above. Hence, Eq. (14) is transformed into the following

1
2

d
dt

2
4Z1

0

MðvthÞ2dxþ
Z0

�∞

ðvt41Þ2dxþ
Z∞

1

ðvt42Þ2dxþ aðh; hÞ þ b0ð40;40Þþ

þb1ð41;41Þ þ b2ð42;42Þ þ qðh; hÞ þ 2
Zt

0

cðvsh; vshÞdt
3
5 ¼ 0;

(16)

where, Eq. (15a, b) take the form
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qðh; vthÞ ¼ 1
2

d
dt

XNþ1

n¼1

knh2ðxn; tÞ ¼ 1
2

d
dt

qðh; hÞ (17a)

and

cðvth; vthÞ ¼
XNþ1

n¼1

cn½vthðxn; tÞ�2; (17b)

while, after substitution, the functionals of Eq. (15c-f) are rewritten as in [17].
In Eqs. (16) and (17b) s denotes a dummy variable. Eq. (16) expresses the energy conservation principle for the studied

system. The quantity E(t)

EðtÞ ¼
Z1

0

MðvthÞ2dxþ
Z0

�∞

ðvt41Þ2dxþ
Z∞

1

ðvt42Þ2dxþ aðh; hÞ þ b0ð40;40Þþ

þb1ð41;41Þ þ b2ð42;42Þ þ qðh; hÞ þ 2
Zt

0

cðvsh; vshÞdt;
(18)

i.e. the quantity in the brackets in the left-hand side of Eq. (16) should remain constant in time, and equal the energy provided
by the initial free surface disturbance, E(t) ¼ E(0) for every 0� t� T. The above energy balance equation provides a valuable
tool in the study of the hydroelastic wave propagation in the defined strip-connector system.When the excitation reaches the
strip, the strain and kinetic energy of the plate will increase and eventually vanish as the wave exits the structure and a state
of rest is reached. The study of the initial excitation energy (E(0)) conversion, as the pulse propagates in S0, in correlationwith
the configuration material and geometry parameters, is indicative of the elastic connector effects on the strip response.
Following that line of thought, it is interesting to examine the quantities appearing in the energy balance equation (18). In the
free water surface subregions Si, i¼ 1,2 the total energy is defined as the sum of the kinetic and potential energy of the water
column given respectively as,

EK2 tð Þ ¼ 1
2

Z∞

1

vt42ð Þ2dx and EP2 tð Þ ¼ 1
2

Z∞

1

B vx42ð Þ2dx; for S2; (19)

EK1 tð Þ ¼ 1
2

Z0

�∞

vt41ð Þ2dx and EP1 tð Þ ¼ 1
2

Z0

�∞

B vx41ð Þ2dx; for S1: (20)

Additionally, the kinetic and strain energy of the strip are given by the following terms,

EK ðtÞ ¼
1
2

Z1

0

Mvth
2dx (21a)

and

ESðtÞ ¼
1
2

Z1

0

KðvxxhÞ2dx: (21b)

The total fluid energy in the subregion S0 is given as follows,

EPðtÞ ¼
1
2

Z1

0

h
Bðvx40Þ2 þ h2

i
dx: (22)

The quantity of Eq. (22) consists of the kinetic fluid energy in the middle subregion and the potential energy due to elastic
strip deflection. Furthermore, the elastic potential energy of the employed Nþ 1 connectors is given by
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WðtÞ ¼ 1
2

XNþ1

n¼1

knh2ðxn; tÞ; (23)

while the energy dissipation due to connector damping is expressed as

CðtÞ ¼
XNþ1

n¼1

Zt

0

cn½vshðxn; sÞ�2ds: (24)

Integrating Eq. (18) with respect to time from t¼ 0 to t¼ T, and using the fact that E(t) ¼ E0, the following holds

ZT

0

EðtÞdt ¼ E0T ; (25)

where E0 is the initial excitation energy, expressed as the sum of potential and kinetic energy of the water column, provided
by the imposed free surface disturbance S(x) in the right halfstrip S2. Eq. (25) is written in a more convenient form as,

X2
l¼1

EKl
þ EPl

� �þ EK þ ES þ EP þW þ 2C ¼ 1 : (26)

In Eq. (26) the following definitions are used for the time averaged energy quantities,EX ¼ 1
E0T

R T
0 EXðtÞdt, where subscript x

is interchanged to denote the kinetic, strain and potential energies in the respective subregions. Additionally,
W ¼ 1

E0T

R T
0 WðtÞdt and C ¼ 1

E0T

R T
0 CðtÞdt.

3.2. Finite element formulation

For the numerical solution of the equivalent variational problem (Eq. (14)), domainU is discretized and the unknown fields
are approximated by means of the higher order finite element scheme developed in [17]. The discrete approximate solutions
of the variational problem are given as,

hh ¼
X6
i¼1

Hi xð Þhhi tð Þ and 4h
j ¼

X5
i¼1

Li xð Þ4h
ij tð Þ; j ¼ 0;1; 2:

Substituting the above into the discretized variation problem defined by Eq. (14) results in a second order system of the
form Mvttuþ CvtuþKu¼ 0, where vector u contains the nodal unknowns hhj ;4

h
1j;4

h
2j and 4h

0j with j now being a global node
index. Subsequently, a Newmark time integration scheme (see [17]) is employed in order to calculate the solution.

4. Numerical results

In this section, a series of numerical results are presented using the physical parameters employed in the experiments
described in Wu et al. [33]. In the aforementioned work the length of the strip model was L¼ 10 m, its thickness t ¼ 0.038 m
and the material elastic modulus E¼ 103 MPa. Moreover, the strip material density was rp¼ 220 kg/m3, and thus, its draft
amounted to d¼ 0.084 m The experiment was performed in water depth of l.1 m, using incident wave heights of 5, 10 and

Fig. 2. (a) Flat bottom profile, (b) upslope and (c) downslope bathymetric profiles, with a mean bottom slope of 1%.
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20 mm and wave periods ranging from 0.5 to 3 s, corresponding to deep and intermediate water depth conditions,
respectively.

In order to comply with the shallow water assumption in the present work, the above physical data are used for calcu-
lations with a reduced water depth of h¼ 0.25 m (in nondimensional terms h¼ 0.025), as shown in Fig. 2(1). Moreover, in
order to illustrate the effects of variable bathymetry, two additional depth profiles, shown in Fig. 2(b) and (c) have been
considered, corresponding to an upslope and a downslope environment with a mean bottom slope of 1%. For the excitation
S(x) an incident wavepacket, with central wavelength l0¼ 4.5 m (in nondimensional terms l0 ¼ 0.45) and small amplitude
A¼ 0.0076 m, was considered in the following analysis. The imposed upper surface disturbance is described by,

hðx;0Þ ¼ AfRðx� x0;RÞcosð2px=l0Þ (27)

where fR is a symmetric envelope of bandwidth R with respect to x0, which is the initial position of the wavepacket.
In the following section, Section 4.1, a validation of the proposed methodology will be presented by comparing it against

the analytical solution for the time harmonic responses of an elastic, floating structure. Comparisons are made for a strip
employing an elastic connector at the upwave end of the structure and floating over constant shallow depth. Next, the effect
of multiple connectors on the elastic responses will be studied in the time domain. Both a constant depth (Section 4.2) and
two mildly sloped bottom environments (Section 4.3) will be considered.

4.1. Validation against analytic solution for harmonic responses in constant depth

For the case of thin, floating, elastic structures, in shallow water conditions and constant depth, the following ‘shallow-
wave equation of a freely floating board’ derived by Stoker [[34], Sec. 10.13, Eq. 10.13.74],

KB2
d6jðxÞ
dx6

þ
�
1�Mu2

�
B2

d2jðxÞ
dx2

þ mjðxÞ ¼ 0; (28a)

hðxÞ ¼ �iB
u

d2jðxÞ
dx2

(28b)

is used. The abovemodel refers to the linear harmonic responses of the structure. In the above expressions, the quantities K,M
and B correspond to the nondimensional plate stiffness, plate mass and depth function (as defined in Sect. 2), while m¼ u2B is
the frequency parameter. The nondimensional frequency u¼UL/g1/2 is used, whereU is the angular frequency. Variables j(x),
h(x) denote the complex amplitudes of the potential and the flexural deflection in the middle region S0,

40ðx; tÞ ¼ ReðjðxÞexpð�iutÞÞ; hðx; tÞ ¼ ReðhðxÞexpð�iutÞÞ: (29)

The dispersion relation of Eq. (28a) is

mB ¼ Kk6nB
2 þ

�
1�Mu2

�
k2nB

2; (30)

and its roots ±kn; n ¼ 0;1;2f g, the hydroelastic wavenumbers, are symmetrically distributed on the complex plane. The first
root k0, is real and positive while roots k1,k2 have opposite real parts and equal positive imaginary parts. The solution of Eq.
(28) a-b is given by (see also Belibassakis & Athanassoulis [20], Sec5.3]):

4ðxÞ ¼
Xn¼2

n¼0

an expðiknxÞ þ bn expð�iknxÞ: (31)

Similarly, in the free water surface subregions Si, i¼ 1,2, the harmonic solution of Eqs. (3) and (4) is given by

j1ðxÞ ¼ KT exp
�� ikw1 x

�
; j2ðxÞ ¼ exp

�� ikw2 x
�þ KR exp

�
ikw2 x

�
; (32)

where ji(x) denote the corresponding complex wave potentials, KT is the transmission coefficient of waves in S1 and KR is the
reflection coefficient of waves backscattered in S2, respectively. The wavenumbers kwi in the water subregions Si, i¼ 1,2 are
estimated by the asymptotic form of the water-wave dispersion relation in shallow conditions

ki ¼
ffiffiffiffiffi
mi

p 	
Bi; i ¼ 1;2: (33)

Finally, the coefficients an,bn of Eq. (31), are easily determined from the boundary conditions Eqs. 12e14, at x¼ 0 and x¼ 1.
These boundary conditions are expressed in terms of j(x) through Eq. (28b), in conjunctionwith the following end conditions
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dj
dx

þ ikw1 j ¼ 0; at x ¼ 0; and
dj
dx

� ikw2 j ¼ �2ikw2 exp
��ikw2

�
; at x ¼ 1: (34)

They provide the matching of the complex wave potential j(x) at the interfaces between the three subregions.
In order to calculate the harmonic responses of the hydroelastic system bymeans of the proposed time-domain method, a

very broad ramp function fR, containing a multiple number of wavelengths, is used. A comparison against the analytical
solution is presented in Fig. 3 for a frequency parameter m ¼ 0.117, corresponding to nondimensional depth B¼ 0.025 and
central wavelength l ¼ 0.45 m (nondimensional l ¼ 0.045), and thus ensuring shallow wave conditions.

More specifically, in Fig. 3 the harmonic responses of the freely floating board with an elastic connector located at its right
end, at x¼ 1, are shown. Results are calculated by the analytical solution of Stoker's model and by the presented FEM for a
various connector stiffness coefficients k and zero damping are plotted. These stiffness values include the freely floating case,
corresponding to k¼ 0, with increasing k¼ 0.01, 0.1, and 1 as shown in the figure. The proposedmethod solutions are found to
be in good agreement with the analytical solution, for all values of the examined connector stiffness. The small deviations are
attributed to the approximation of the harmonic response of the structure by means of the presented transient methodology.

Furthermore, in Fig. 3, it can be seen that for a very stiff connector (k¼ 1), the elastic deflection of the structure at the
upwave connected end (at x¼ 1) almost vanishes. The above fact leads to the conclusion that the wave induced vibration of
the elastic structure, in the vicinity of the elastic connector, becomes weaker (and eventually vanishes) with increasing
connector stiffness. We note here that this finding is in contradictionwith the corresponding results reported by Cunbao et al.
(2007) [31], although the latter studies are not directly comparable since they refer to intermediate and deep water
conditions.

4.2. Constant depth environment

The constant depth profile, illustrated in Fig. 2(a) is initially examined. The horizontal domain is appropriately truncated,
and the present system is integrated up to the time ensuring that no reflections from the computational domain boundaries
are backscattered, contaminating the numerical solution (T¼ 76). For the calculation of the plate response, 200 hydroelastic
elements were employed, along with 8000 timesteps. Initially, the freely floating strip response is examined. A series of
snapshots, showing the propagation of the initial disturbance, is presented in Fig. 4, for the freely floating case, i.e.
kn¼ cn¼ 0, n¼ 1,2,…,Nþ 1. For illustration purposes the nondimensional upper surface elevation is plotted ten times larger
in the given figure. The initial excitation (Eq. (28)) with fRðxÞ ¼ expðaðx� x0Þ2Þ, where a ¼ 11.5 and x0¼ 9.3, modelling a
narrow band pulse, is used in the calculations. The pulse is split into two waveforms traveling in opposite directions at
constant speed (Fig. 4(b)). As the two waveforms are not dispersive, their forms remain unaltered while traversing the
truncatedwater region S2(x> 1) In Fig. 4(c) thewaveform propagating towards the negative x axis, is seen to approach the free

Fig. 3. Harmonic responses of a thin elastic plate in constant depth and shallow water conditions, with an elastic connector of stiffness k located at x¼ 1. The
analytical solution is represented by solid lines, while the FEM solution is denoted by diamonds (k¼ 0), stars (k¼ 0.01), circles (k¼ 0.1), and squares (k¼ 1).
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edge of the elastic strip at x¼ 1. Subsequently, after wave impact, the propagation of the hydroelastic pulse is plotted in
Fig. 4(d)e(h). The incident wave is partially reflected, backpropagating in the right subregion S2(x> 1),

and partially transmitted in the left truncated subregion S1(x< 0), as seen in Fig. 4(h). The structure eventually approaches
a state of rest in Fig. 4(i). Next, the effect of the employed elastic connectors on the hydroelastic response of the strip is
investigated for the same environment and incident wave. In the following analysis two and three elastic connector-strip
configurations with kn¼ k, cn¼ c, where n¼ 1,2 for the former case and n¼ 1,2,3 for the later, are considered. In Fig. 5 the
deflection of a strip featuring two elastic connectors positioned at the free ends (x¼ 0 and x¼ 1), is plotted for an extended
range of characteristic nondimensional stiffness values k ¼ {1 0.1 0.01}, and zero damping, i.e. c¼ 0. Calculated results are

Fig. 4. Snapshots of the wavepacket propagation in domain U for the case of a constant depth profile (a). Note that for illustration purposes the nondimensional
free-surface elevation and the plate deflection are multiplied by 10.

Fig. 5. Nondimensional strip deflection (left subplots) and bending momentMb¼ Khxx, (right subplots) distribution for several connector stiffness values and zero
damping. Two connector configuration for bathymetric profile (a).
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compared against the freely floating case response. The deflection of the elastic strip for different elastic connector stiffness
values is shown at three distinct instances in time, representing the phases of wave entry in the middle subregion
S0(0< x< 1), the hydroelastic pulse propagation and the transmission into the downwave subregion S1(x< 0). The nondi-
mensional bending moment distributions along the elastic strip are also presented for the same time instances.

It is observed that during the wave entry phase, increasing the connector stiffness, reduces the deflection, and increases
the bending moment values in the vicinity of the strip end (x¼ 1), as indicated by the dashed circles in Fig. 5(a) and (a0).
Compared to the freely floating response at the given moment in time (t¼ 50), setting k¼ 0.01, 0.1 and k¼ 1 reduces the
maximum absolute strip deflection by 22.8%, 34.8% and 35.5%, respectively. On the other hand, the calculated maximum
absolute bendingmoments substantially increasewith increasing connector stiffness, at the vicinity of the free edge, reaching
an intensification of over 200% for k ¼ 1. This can be attributed to the local restriction imposed on the elastic motion of the
strip by the connector at x¼ 1. Next, in the hydroelastic pulse propagation phase, examined in Fig. 5(b) and (b0), themaximum
deflection reductions achieved by the employment of the edge connectors reaches 0.25%, 3% and 4.85% for k¼ 0.01,0.1 and
k¼ 1 respectively. The calculated, maximum bending moment at t¼ 55, also appears reduced by 0.4%, 5% and 8.2% for the
corresponding stiffness coefficient values.

During the wave transmission phase, increasing connector stiffness results in larger moduli of deflections and bending
moments, in the vicinity of the downwave end of the structure, as indicated by the dashed circles in Fig. 5(c) and (c0).
Particularly, for k¼ 0.01, 0.1 and k¼ 1 maximum absolute deflection increases by 4.31%, 13.45% and 15.9%, respectively.

The imposed restriction on strip deflection is magnified with increasing connector stiffness, causing the flexural response
of the strip to intensify locally at the strip edges during wave impact and hydroelastic pulse transmission. The latter has a
profound effect on both the flexural deflection of the structure and the induced bending moment profiles. Examining the
overall responses in time, the maximum absolute deflection was significantly reduced by 29.26% for k¼ 0.1 while the
maximum absolute bendingmoment of the elastic strip is increased by 35.4%, compared to the freely floating case. The overall
maximum absolute deflection was also effectively mitigated by setting k¼ 0.01 (22.36%) and k¼ 1 (27.49%). However,
increasing connector stiffness led tomagnification of themaximum absolute bendingmoment, by 0.21%, 35.4% and 62.47% for
increasing stiffness coefficients. The previous observation suggests that deflection mitigation through connector stiffening
might lead to undesirable, excessive stresses due to flexural motion.

In Fig. 6 a systemwith three elastic connectors is examined. The previous configuration is enhanced by a third connector,
positioned at themiddle of the elastic strip (x¼ 0.5). At wave entry, shown in Fig. 6(a), the deflection appears to be reduced by
35.5% for k¼ 1, compared to the freely floating case, while bending moment intensification is observed in Fig. 6(a0) in the
vicinity of the strip upwave edge (depicted once again by the dashed circle). In Fig. 6(b) (at t¼ 55) the strip deflection, once
again compared with the freely floating case, increases by 1.1%, 11%, and 30.1%, for k¼ 0.01, 0.1 and k¼ 1, respectively. At the
same instance, the calculated maximum absolute bending moment also appears to be magnified, as shown in 6(b0). This is
attributed to the overstiffening of the system due to the presence of the middle elastic connector. The kink in bending
moment distribution observed in Fig. 6(b0) for k ¼ 1, at the middle of the floating strip, is indicative of the induced, excessive
local stresses due to bending, attributed to the imposed restriction on deflection. At t¼ 58, (Fig. 6(c)) the deflection almost

Fig. 6. Same as Fig. 5 for the three connector-strip configuration.
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vanishes for k¼ 1, showing a reduction of 29% compared to the freely floating case. Maximum overall deflection reduction
(over time) is achieved for k¼ 0.01 (by 22.32%) when compared with the free strip response. On the other hand, overall
maximum, absolute bendingmoment is increased by 180%, 35% and 2% for stiffness coefficients k¼ 1, 0.1 and k¼ 0.01. Hence it
is deduced that the intensity of flexural effects, i.e. inducedmaximum bendingmoment values, rise with increasing connector
stiffness for both examined configurations when compared with the freely floating case.

Next, the combined stiffness and damping effects of the elastic connectors on the hydroelastic response of the studied
system, in constant depth, are studied. To this purpose, the resulting maximum absolute deflection and maximum absolute
bending moment values are calculated. The same set of damping coefficients c ¼ {1, 0.1, 0.01, 0} and an extended interval of
stiffness coefficient values 0< k< 10 are used. Notably, the above interval selection includes the values of interest for practical
applications. In Figs. 7 and 8 themaximum absolute deflection and themaximum absolute bendingmoment distributions are

Fig. 7. Semi-log plot of the maximum absolute deflection: (a) two edge connectors, (b) three connectors.
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presented for both examined configurations featuring two and three connectors. As expected, the calculated maximum
absolute deflection corresponds to the undamped case, i.e. c¼ 0, and small stiffness coefficient values (Fig. 7 a, b).

It is noted that for large stiffness coefficient values, the maximum absolute deflection is practically independent of the
studied damping parameter values. Additionally, it is observed in Fig. 7 (a) and (b), that the optimal damping parameter,
minimizing the maximum absolute deflection, is generally dependent on the stiffness of the connectors. In the overdamped
case (c¼ 1) the above correlation appears weaker. Thus, it is deduced that it is possible to achieveminimization of the flexural
deflections of a given configuration, for certain stiffness and damping coefficients (c¼ 0.01 and k~10�2 in the considered
examples), by means of the proposed methodology.

For the same example, in Fig. 8, it is shown that the maximum (absolute) bending moment, calculated for the
three-connector configuration (Fig. 8(b)) is larger than the obtained value for the two-connector strip configuration,

Fig. 8. Semi-log plot of the maximum absolute bending moment: (a) two edge connectors, (b) three connectors.
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examined in Fig. 8(a). The above is attributed to the system overstiffening due to the presence of the added middle
connector.

Furthermore, as the stiffness coefficients k, become very large, the maximum calculated (absolute) bending moment does
not depend on the damping coefficient. This phenomenon is illustrated by the plateau areas depicted in both Fig. 8(a) and (b).
Finally, the observable points of inflection in Figs. 7 and 8, noted by the circled areas, are associatedwith abrupt changes in the
location of the maxima values along the strip.

In order to gain a better understanding of the energy exchange between subregions, during the hydroelastic pulse
excitation and propagation, the various terms composing the total energy of the system are studied. An illustration of the
energy balance, expressed by Eq. (19), is shown in Fig. 9 for the case of a two-connector configuration, with k¼ c¼ 0.01. The
total energy of the system, including the dissipated energy due to connector damping effects, is denoted by the solid black
line, and remains constant in time. The energy of the water column in subdomain S2(x> 1) decreases after the moment of
wave impact. After the excitation of the floating strip, the hydroelastic pulse begins to propagate in the middle region.
Concurrently, the sum of the strain, kinetic and potential energy of the strip increases until a state of rest is reached and the
quantities vanish after the full transmission of the pulse into the left halfstrip. Although the elastic connector energy W(t)
vanishes, the dissipated energy due to connector damping, represented by quantity C(t), remains constant in time after the
strip reaches a state of rest once again. Hence, the total connector energy W(t)þ 2C(t), increases after wave impact and
remains constant after wave transmission into S1(x< 0). Finally, as the wave train enters the left half strip, the sum of the
kinetic and potential energy of the water column in this region increases until full wave transmission in S2(x> 1) is
achieved.

Next, a correlation between the energy quantities, defined in Sect. 3.1, and the elastic connector parameters is examined
for the studied thin, elastic strip, employing two and three connectors and floating over the constant depth profile (a).
Notably, the minimisation of the strip kinetic energy is important for the design of hydroelastic response mitigating devices
and systems. In addition, structural safety and robust design would be translated in strip strain energy minimisation, while
efficient wave energy harvest into dissipative energy maximisation. To this aim, the correlation between the energy quan-
tities and the elastic connector parameters is further investigated in Figs. 10 and 11, for the defined strip-connector config-
urations. In Figs. 10(a) and 11(a) the elastic spring energy averaged in time, W is examined for a range of spring coefficient
values. As expected, when the connector stiffness is small, less elastic energy is stored, while on the other hand, as the system
is over stiffened the strip deflection is restricted, resulting again in smaller potential energy sums. Additionally, the elastic
spring energy is found to increase with decreasing damping parameters in both cases.

Naturally, increasing the damping parameter results in a larger restoring force term which minimizes deflection.
Finally, the near resonance conditions concerning the entire system for a given elastic strip are dependent on both
connector stiffness and damping coefficients and is clearly depicted by the maxima of the W-curves concerning the elastic
connector energy. The damping energy is associated with the oscillatory speed of the strip (see Eq. (25)). In both cases,
featuring two and three connectors, overstiffening results in vanishing damping energy, regardless of the damping

Fig. 9. The energy balance for a two connector configuration with k¼ c¼ 0.01.
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parameter. The previous fact is straightforward, since in the presented 1-D hydroelastic system, the intensification of the
restoring force on the strip results in energy reflection back in the free surface region. This fact essentially leads to less
energy sums being transmitted into the middle subregion S0(0 < x< 1). Additionally, it is observed in Figs. 10(b) and 11(b)
that for a given configuration and connector stiffness parameter, there exist specific values of the damping coefficient for
which dissipated energy is maximized. This is expected to have an important effect on the kinetic energy of the elastic
stripEK . The kinetic energy is presented in 10 (c) and 11(c) for a combination of stiffness and damping coefficients for the
two and three connector configuration, respectively. Maximum kinetic energy is obtained when the restoring force is
minimal, hence for c¼ 0 and k~10�4 . Since the kinetic energy of the strip is also a function of oscillatory motion speed (see
Eq. (22a)), minimization is achieved for the damping parameter values maximizing energy dissipation, as previously
described.

Fig. 10. Semi-log plot of the averaged energy quantities for the two-connector case. Connector parameters (a) elastic W and (b) dampingC. Elastic strip energy
parameters (c) kinetic energyEK, (d) strain energy ES and (e) potential energy EP.
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The averaged strain energyES, which expresses the amount of flexural deformation undergone by the strip (defined by Eq.
(29b)), is examined in Figs. 10(d) and 11(d). It is observed in both cases that the minimum strain energy, for low values of
stiffness, is obtained for damping coefficient value c between 0 and 0.01. This is compatible with the fact that the maximum
absolute bending moment, as seen in Fig. 8(a) and (b), is minimal for the same values in both examined strip-connector
configurations. Notably, the strain energy of the strip, in both cases, becomes larger with increasing stiffness coefficients
which correlates with previous observations for the bending moment, illustrated in Fig. 8. Finally, the total energy EP in the
middle subregion is depicted in 10(e) and 11(e). Since the elastic strip deflection is generally very small, the energy sum
expressed by EP is dominated by the kinetic energy of the water column in the middle region (S0) and resembles the kinetic
strip energy plotted in Figs. 10(c) and 11(c).

Fig. 11. Same as Fig. 10 for the three connector-strip configuration.
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4.3. Sloping bottom profiles (b) and (c)

Variable bathymetric effects, as previously mentioned, are an important consideration in nearshore and coastal marine
structure design. The proposed computational tool, able to account for a variable seabed, could be found useful in the study of
bathymetric effects on the hydroelastic response of a floating strip with elastic connectors. In this section, numerical results
are presented and discussed for the two variable seabed profiles corresponding to an upslope (b) and a downslope (c)
environment (see Fig. 2).

Fig. 12. Nondimensional strip deflection (left subplots) and bending moment Mb¼ Khxx, (right subplots) distribution for several connector stiffness values and
zero damping. Two connector-strip configuration for bathymetric profile (b).

Fig. 13. Same as in Fig. 12 but for the downslope environment (c).
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More specifically, in Figs. 12 and 13, the strip responses and bending moment distributions for the two connector-strip
configuration are plotted at three distinct time instances for profiles (b) and (c) respectively. Curves corresponding to
various connector stiffness parameter values are presented, while zero damping effects are considered. In accordance with
previous observations (see Fig. 5), it is established that increasing connector stiffness, results in larger maximum absolute
bending moment values. The above leads to increased normal stresses induced by flexural motion, but to an overall reduced
hydroelastic response compared to the freely floating case, for both profiles of variable bathymetry.

In the case of the upslope environment, it is observed in Fig. 12(a) that at the wave entry phase (t¼ 48), the maximum
absolute strip deflection appears reduced by 19.24%, 54.5% and 55% for k¼ 0.01, 0.1 and 0.1 respectively, compared to the
freely floating case. Marginal response reduction is achieved at t¼ 50 (Fig. 12(b)), reaching 0.12%, 1.95% and 3.34% for k¼ 0.01,
0.1, when compared to the freely floating case. At the wave exit phase, the maximum absolute strip deflection is only slightly
reduced by 1.1% for k¼ 0.01, while it increases by 3.85% and 8% for k¼ 0.1 and k¼ 1. The overall (over time)maximum absolute
deflection is reduced by 22.36% 29.45% and 28.23% for k¼ 0.01, 0.1 and 1. In Fig.12(c), absolutemaximumdeflection increased
by 3.85% and 8% for k¼ 0.1, 1, while marginal reduction of 1.19% is achieved for k¼ 0.01. The above findings are in agreement
with previous observations for the constant depth case (see Fig. 5).

The corresponding bending moment distributions, presented in Fig. 12(a0)e(c0), exhibit intensification of flexural effects in
the vicinity of the strip edges during wave entry and exit (denoted by the dashed circles in Fig. 12(a0)e(c0)), which was also
observed in the constant depth case. However, maximum absolute bending moment intensification is reduced compared to
the constant depth profile calculations, reaching 48.2% and 93.7% for k¼ 0.1 and 1 at wave entry (i.e. Fig. 12(a0)), while a slight
decrease of 0.39% compared to the freely floating case, calculated for bathymetric profile (b), is achieved for k¼ 0.01. At wave
propagation phase t¼ 50 (i.e. Fig. 12(b0)), maximum absolute bending is slightly increased by 1.16%, 2.32% and 1.15% for
increasing stiffness. This can be attributed to the fact that the propagating pulse becomes steeper with decreasing depth
(profile b), causing an intensification of flexural effects. During the wave exit phase bending moment intensification is
observed (i.e. Fig. 12(c0)), with maximum increase reaching 66% for k¼ 1 compared to the freely floating case.

Finally, the hydroelastic responses of the two connector-strip configuration floating over the downslope bathymetric
profile (c) are examined in Fig. 13. Overall maximum strip deflection is once again reduced by 22.35%, 29.08 and 27.68% for
increasing connector stiffness values. Moreover, bending moment intensification is observed at the vicinity of employed
connectors at wave entry and transmission phases (i.e. Fig. 13(a0)e(b0)). Hence, bathymetric effects appear to have minimal
impact on the hydroelastic response of the examined configurations.

Increasing the connectors' damping parameter, while keeping the stiffness value constant was also found to reduce the
strip elastic motion. Examining the bending moment distributions for the varying damping analysis it was observed that
bending moment is magnified in the vicinity of the free edges during wave entry and exit. This were the case for both
considered profiles. Hence, the inclusion of dampers in the elastic connector designmight have an undesirable intensification
effect in the induced stresses on the strip. In conclusion, the design of an efficient elastic connector configuration constitutes a
multi-parametric optimization problem. The proposed methodology is able to provide useful information concerning the
vibration reduction of the structure and support the design of efficient mooring systems.

5. Conclusions

The time-domain hydroelastic response of a thin, floating strip, elastically connected to the seabed, is examined in the
present work. Based on the variational formulation of the initial-boundary value problem in shallow water conditions, an
energy balance equation is derived, while a higher-order finite element scheme is implemented for the numerical solution.
Results for various strip-connector configurations of interest, illustrating the response reducing effects of the employed
connectors, are presented. In addition to the flat bottom case, two variable bathymetric profiles (an upslope and a downslope
environment) were studied. Numerical results were obtained for the cases of two strip-connector configurations. The first
configuration employs two elastic connectors, positioned at the free strip ends, while the second features an additional
connector located at the middle of the structure. The study of the aforementioned configurations reveals that response
mitigation is possible through the increase the number and the stiffness of the employed connectors. However, deflection
mitigation through connector stiffening is associated with excessive maximum bending moment values, at the vicinity of the
connector locations along the strip. Hence, overstiffening can be correlated with undesirable bending induced local stresses.
Moreover, optimal damping coefficient for the minimization of the maximum absolute defection and bending moment is
found to be generally depended on connector stiffness. In conclusion, the design of an efficient elastic connector-strip
configuration constitutes a multi-parametric optimization problem. The proposed methodology is able to provide useful
information concerning the vibration reduction of the structure and support the design of efficient motion mitigating sys-
tems. Future research will focus on the treatment of the 3D problem and intermediate water depth effects. Finally, the
investigation of weak nonlinearity is of equal importance. An initial investigation in the latter direction has been presented in
Karperaki et al. [35].
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Conclusion and Future Research
Direction

The primary objective of the present thesis is the investigation of hydroelastic phenomena in
an inhomogeneous ocean setting. The conducted study led to different approaches targeting
frequency domain (which consists the bulk of the work presented in Parts I-III of the present),
and time domain analyses (delineated in Part IV). The main points and contributions are
summarised below,

In the frequency domain, the proposed methodology treats the hydroelastic interaction of
small amplitude incident waves with inhomogeneous plates of negligible draft floating over
regions characterized by variable bathymetry. Moreover, the method allows for the treatment
of thin to moderately thick plates modelled by the Kirchhoff (CPT) and Minldin’s (FSDT)
respectively. The wave field decomposition into diffraction and radiation components along
with a modal expansion for the plate deflection, employing the in vacuo flexural modes are
principal features of the work as seen in Chapter 1. The latter allows for the full decoupling
of structural mechanics to wavefield transformations generating a series of hydrodynamic sub-
problems which are formulated in terms of solely kinematic considerations Chapter 1. For the
component hydrodynamic problems, a weighted residuals approach is subsequently followed for
the derivation of suitable weak formulations for FEM implementation. For radiation-type prob-
lems the weighted residuals approach in conjunction with a Lagrange multiplier formulation
was followed to derive a series of saddle-point problems. The aim of the latter approach was to
weakly satisfy the continuity requirement across the fictitious sub-domain interface boundary
and alleviate the complexity of constructing suitable FEM spaces (Chapter 3) with integrated
essential conditions. Next, the dimensionality reduction of the derived weak formulations was
sought by means of an enhanced vertical representation for the wave potential, augmented by
the sloping bottom mode, originally proposed in Athanassoulis and Belibassakis (1999) for the
consistent treatment of sloping topography (Chapter 4). Finally, the FEM is employed for
the treatment of the reduced weak hydrodynamic problems in 1D and 2D, while the pressure
condition on the plate-covered part of the fluid surface is imposed by means of Galerkin’s
method, as presented in Chapters 5 and 7 respectively. Furthermore, towards a monolithic
approach, the free vibration problem of the inhomogeneous plates was treated by the FEM in
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1D and 2D, employing the same discretization for the domain of interest. Finally, in search of
appropriate closure conditions a PML-FEM scheme featuring unbounded absorbing functions
was implemented (Chapter 6).

In the 2D setting modelling a floating plate strip interacting with a range independent
waveguide, the proposed method is validated against a series of numerical cases, featuring a
range of configurations, and experimental data documented in the literature exhibiting excel-
lent performance (Chapter 8). The direct extension of the method to 3D illustrated the capa-
bility of the proposed method to treat inhomogeneity and general geometries while achieving
computational savings.

A major advantage of the proposed method is that it carries no simplifying assumptions
for the vertical structure of the wave-field or the bathymetric slope of the examined waveguide.
The characteristics of the wave-field, as well as the bending moment and shear force distribu-
tions of the structure, can be recovered either straightforwardly or by trivial post-processing.
Moreover, due to the treatment of the weak problem formulation, the smoothness require-
ment on the depth function, documented in Belibassakis and Athanassoulis (2005) is relaxed,
enabling the treatment of more general profiles, while the numerical scheme remains rapidly
convergent. Regarding the structural modelling, the method is able to account for both ma-
terial and geometric inhomogeneity, while first order shear effects and rotary inertia, relevant
in high-frequency excitation scenarios, are also taken into account by means of the FSDT.
Moreover, despite the augmented discretised system, the constrained formulation allows for
the employment of conventional trial spaces, and the final discretization is performed with
Lagrange elements. A major advantage of the present method is its versatility to treat general
bathymetry and structural shape. Finally, the method immediately allows for the structural
modelling by means of higher-order plate theories with minimal reformulation.

Several directions for future research can be outlined. In the sequel these are prioritised as
follows,

� Enhance the validation of the method in 3D. In the 2D setting all features of the proposed
methodology are extensively validated against both experimental and numerical results
published in the literature. The same was proven non-trivial for the 3D case. Verification
of 3D bathymetric effects can be achieved be considering published experimental results.

� Extend and implement the proposed method in the study of interesting technological and
physical features. The method can be straightforwardly extended to treat multi-body
configurations in the general 3D setting. Minimal reformulation would allow for the
consideration of technological features, like the treatment of multiple connected flexible
bodies (Ren et al., 2019; Zhang and Lu, 2018). Moreover the method can be extended
for modelling the hydroelastic interactions of 3D bodies in polynya (Li et al., 2020).
Finally, the method can be extended to treat the effects of elastic medium porosity.
Porous structures are implemented in energy dissipation applications relevant to ocean
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engineering. The recent works of Meylan et al. (2017), Zheng et al. (2020) and Koley
(2020) document the integration of porosity effects in established methods of floating
hydroelasticity by incorporating Darcy’s law on the boundary conditions of the wetted
surface of the structure.

� Incorporate finite draft effects. The assumption of shallow draft leads to the generation
of geometrically conforming interfaces. From a numerical point of view, deviating from
the latter would require the employment of ’mortar’ methods in the weak formulation
of radiation-type sub-problems. A stabilisation approach for the corresponding discrete
saddle-point problems will recover the method’s consistency (Barbosa and Hughes, 1991;
Burman, 2014).

� Extend and incorporate the developed tools for nonlinear analysis in the context of
Stokes theory following the work of Belibassakis and Athanassoulis (2002). In this case,
nonlinearity should also be introduced in the modelling of structural motion to account
for large deflections in accordance with the hydrodynamic assumption of greater wave
amplitude.

� Explore the parallelisation potential of the computational method. The employed de-
composition into subproblems and the developed FEM-based numerical schemes allow
for parallel computations, an alternative that promises accelerated runtime that has not
been exploited in the present version of the numerical tool.

� Numerical investigation of discrete inf-sup conditions for the formulated saddle point
problems. To ensure the numerical stability of the method, the proposed FEM spaces
pair for the primary variable and the Lagrange multiplier functions must be shown to
satisfy the discrete Babuska-Brezzi conditions.
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Appendix Α�

Plate element

The lock-free Discrete Shear Triangle (DST) for thick plates and its degeneration to thin plates,
the Discrete Shear Triangle (DKT) proposed in Batoz and Lardeur (1989) are considered. The
characteristics of the DST are summarised below :

• Deflection and rotations are independently approximated with a 𝐶0 underlying continuity
requirement springing from the Mindlin formulation

• The potential energy is expressed as the sum of the bending and shear energies.
• The kinematic requirement expressed at Eq. (2.15), is imposed discretely at the mid-point

of each edge, 𝑘 = 4, 5, 6. Setting

For sign compatibility it is set 𝜃𝑥1
= −𝛽𝑥2

, 𝜃𝑥2
= 𝛽𝑥1

for the rotations. Moving towards more
technical details for the DST its is noted that the total rotations 𝛽𝑥1

, 𝛽𝑥2
are approximated by

quadratic Lagrange shape functions within the element thus,

𝛽𝑥𝑗
(x) =

6
∑
𝑖=1

𝐿𝑖(x)𝛽𝑖
𝑥𝑗

, for 𝑗 = 1, 2. (Α�.1)

with 𝛽𝑖
𝑥𝑗

being the nodal values for rotations at the corners 𝑖 = 1, 2, 3 and mid-side points
𝑖 = 4, 5, 6. Simultaneously, the added assumption that rotations vary linearly along element
edges results in,

𝛽𝑛|𝑘 = 0.5 𝛽𝑛|𝑖 + 0.5 𝛽𝑛|𝑗, for 𝑘 = 4, 5, 6 and (𝑖, 𝑗) = (2, 3), (3, 1), (1, 2). (Α�.2)

The above relations along with the discrete satisfaction of the kinematic consideration
Eq. (2.15) on the edge mid-points, consistent with FSDT theory,

(𝜕𝑠𝑤)|𝑘 + (𝜕𝑠𝛽)|𝑘 = 𝐹(𝛽𝑥1
, 𝛽𝑥2

) for 𝑘 = 4, 5, 6 (Α�.3)
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1

2 3

5

4

6

3 dofs: {𝑤, 𝛽𝑥1
, 𝛽𝑥2

}

constraints:
(𝜕𝑠𝑤)|𝑘 + (𝜕𝑠𝛽)|𝑘 = 𝐹(𝛽𝑥1

, 𝛽𝑥2
)

(𝜕𝑥𝑗
𝑤)|𝑘 + (𝜕𝑥𝑗

𝛽)|𝑘 = 𝑆(𝛽𝑥1
, 𝛽𝑥2

)

Figure Α�.1 Discrete Shear Triangle-DST

leads to the following expressions involving the 9 element dofs contained in vector
U = [𝑤(1) 𝛽(1)

𝑥1 𝛽(1)
𝑥2 𝑤(2) 𝛽(2)

𝑥1 𝛽(2)
𝑥2 𝛽(2)

𝑥2 𝑤(3) 𝛽(3)
𝑥1 𝛽(3)

𝑥2 ].

𝛽𝑥1
= Hx1

U
𝛽𝑥2

= Hx2
U

(Α�.4)

To derive the expressions Hx1
and Hx2

we begin from examining 𝐹(𝛽𝑥1
, 𝛽𝑥2

) in Eq. (Α�.3).
Exploiting moment equilibrium relations for the plate cross section expressions for the shear

strains are derived,

𝑀𝑥1,𝑥1
+ 𝑀𝑥1𝑥2,𝑥1

− 𝑇𝑥1
= 0 → 𝛾𝑥1𝑧 = 1/(𝑘𝑠𝐺𝜏)𝑀𝑥1,𝑥1

+ 𝑀𝑥1𝑥2,𝑥1

𝑀𝑥1𝑥2,𝑥2
+ 𝑀𝑥2,𝑥2

− 𝑇𝑥2
= 0 → 𝛾𝑥2𝑧 = 1/(𝑘𝑠𝐺𝜏)𝑀𝑥1𝑥2,𝑥2

+ 𝑀𝑥2,𝑥2

(Α�.5)

Thus the discrete constraints on the vertices and midnodes, a direct expression of Eq. (2.15),
are written as,

𝛾𝑥1𝑧 = 𝐹𝑥1
= 𝜕𝑥1

𝑤 + 𝛽𝑥1

𝛾𝑥2𝑧 = 𝐹𝑥2
= 𝜕𝑥2

𝑤 + 𝛽𝑥2

(Α�.6)

For the isotropic case it is deduced that,

𝐹𝑥1
= 𝐷/(𝑘𝑠𝐺𝜏) (𝜕𝑥1𝑥1

𝛽𝑥1
+ 𝜈𝜕𝑥1𝑥2

𝛽𝑥2
+ 1 − 𝜈

2 (𝜕𝑥2𝑥2
𝛽𝑥1

+ 𝜕𝑥1𝑥2
𝛽𝑥2

))

𝐹𝑥2
= 𝐷/(𝑘𝑠𝐺𝜏) (𝜕𝑥2𝑥2

𝛽𝑥2
+ 𝜈𝜕𝑥1𝑥2

𝛽𝑥1
+ 1 − 𝜈

2 (𝜕𝑥1𝑥1
𝛽𝑥2

+ 𝜕𝑥1𝑥2
𝛽𝑥1

)) .
(Α�.7)
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Now considering the cubic approximation for the rotations Eq. (Α�.1) results in the following,

𝐹𝑥1
= 𝐷/(𝑘𝑠𝐺𝜏) (∑

𝑖=1
𝜕𝑥1𝑥1

𝐿𝑖(𝜉, 𝜂)𝛽(𝑖)
𝑥1 + 𝜈𝜕𝑥1𝑥2

𝐿𝑖(𝜉, 𝜂)𝛽(𝑖)
𝑥2

+1 − 𝜈
2 (𝜕𝑥2𝑥2

𝐿𝑖(𝜉, 𝜂)𝛽(𝑖)
𝑥1 + 𝜕𝑥1𝑥2

𝐿𝑖(𝜉, 𝜂)𝛽(𝑖)
𝑥2 ))

, 𝐹𝑥2
= 𝐷/(𝑘𝑠𝐺𝜏) (∑

𝑖=1
𝜕𝑥2𝑥2

𝐿𝑖(𝜉, 𝜂)𝛽(𝑖)
𝑥2 + 𝜈𝜕𝑥1𝑥2

𝐿𝑖(𝜉, 𝜂)𝛽(𝑖)
𝑥1

+1 − 𝜈
2 (𝜕𝑥1𝑥1

𝐿𝑖(𝜉, 𝜂)𝛽(𝑖)
𝑥2 + 𝜕𝑥1𝑥2

𝐿𝑖(𝜉, 𝜂)𝛽(𝑖)
𝑥1 ))

(Α�.8)

The above suggest that Eq. (Α�.8) can be in turn written as,

𝐹𝑥1
= ∑

𝑖=1
𝑎1(𝑖)𝛽(𝑖)

𝑥1 + 𝑎2(𝑖)𝛽(𝑖)
𝑥2

𝐹𝑥2
= ∑

𝑖=1
𝑏1(𝑖)𝛽(𝑖)

𝑥1 + 𝑏2(𝑖)𝛽(𝑖)
𝑥2

(Α�.9)

with the coefficients 𝑎1, 𝑎2 and 𝑏1, 𝑏2 given as functions of material parameters and Lagrangian
shape functions.

𝑎1(𝑖) = 𝐸𝜏2
12(1−𝜈)2𝜅𝑠𝐺 (𝜕𝑥1𝑥1

𝐿𝑖 + 1−𝜈
2 𝜕𝑥2𝑥2

𝐿𝑖) ,
𝑎2(𝑖) = 𝐸𝜏2

12(1−𝜈)2𝜅𝑠𝐺 (𝜈𝜕𝑥1𝑥2
𝐿𝑖 + 1−𝜈

2 𝜕𝑥1𝑥2
𝐿𝑖) ,

𝑏1(𝑖) = 𝐸𝜏2
12(1−𝜈)2𝜅𝑠𝐺 (𝜈𝜕𝑥1𝑥2

𝐿𝑖 + 1−𝜈
2 𝜕𝑥1𝑥2

𝐿𝑖) ,
𝑏2(𝑖) = 𝐸𝜏2

12(1−𝜈)2𝜅𝑠𝐺 (𝜕𝑥2𝑥2
𝐿𝑖 + 1−𝜈

2 𝜕𝑥1𝑥1
𝐿𝑖) .

(Α�.10)

Along each triangle side (𝑖𝑗) with length 𝑙𝑖𝑗 the following transformations hold,

[𝛽𝑛
𝛽𝑆

] = [ 𝐶𝑘 𝑆𝑘
−𝑆𝑘 𝐶𝑘

] [𝛽𝑥1
𝛽𝑥2

] (Α�.11)

with 𝐶𝑘 = 𝑥𝑗
2−𝑥𝑖

2
𝑙𝑖𝑗 and 𝑆𝑘 = 𝑥𝑗

1−𝑥𝑖
1

𝑙𝑖𝑗 are the directional cosine and sine of the given element edge.
Employing th above transformation the rotations can be shifted to the (𝑛, 𝑠) frame and vice
versa. Along with the assumption of linear variation along an edge Eq. (Α�.2) results in the
following refined expressions for Eq. (Α�.9),

𝐹𝑥1
=

3
∑
𝑖=1

𝑎′
1(𝑖)𝛽(𝑖)

𝑥1 + 𝑎′
2(𝑖)𝛽(𝑖)

𝑥2 +
6

∑
𝑘=4

𝑎′
𝑠𝛽(𝑘)

𝑠

𝐹𝑥2
=

3
∑
𝑖=1

𝑏′
1(𝑖)𝛽(𝑖)

𝑥1 + 𝑏′
2(𝑖)𝛽(𝑖)

𝑥2 +
6

∑
𝑘=4

𝑏′
𝑠𝛽(𝑘)

𝑠

(Α�.12)
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Next, the constraints along the edge mid-nodes 𝑘 = 4, 5, 6 read,

𝜕𝑠𝑤|𝑘 + 𝛽𝑠|𝑘 = −𝐶𝑘𝐹𝑥1
+ 𝑆𝑘𝐹𝑥2

(Α�.13)

Moreover the assumption of Hermite interpolation for the deflection 𝑤(𝑠) along the edges which
translates into,

𝜕𝑠𝑤|𝑘 = −1.5/𝑙𝑖𝑗(𝑤(𝑖) − 𝑤(𝑗)) − 0.25 𝜕𝑠𝑤|𝑖 − 0.25𝜕𝑠𝑤 |𝑗 (Α�.14)

By means of ?? and Eq. (Α�.14) new expressions can be derived for 𝛽𝑠|𝑘 at the mid points,

𝛽𝑠|𝑘 = 1.5/𝑙𝑖𝑗(𝑤(𝑖) − 𝑤(𝑗)) + 1.5𝐶𝑘𝐹𝑥2
− 1.5𝑆𝑘𝐹𝑥1

− 0.25𝐶𝑘𝛽(𝑖)
𝑥2

+0.25𝑆𝑘𝛽(𝑗)
𝑥1 − 0.25𝐶𝑘𝛽(𝑗)

𝑥2 + 0.25𝐶𝑘𝛽(𝑗)
𝑥1

(Α�.15)

Substituting the expressions Eq. (Α�.12) into Eq. (Α�.15) results in the following,

A𝛽𝑠𝛽𝑠𝛽𝑠|𝑘 = X𝑘, (Α�.16)

with matrix A given below,

⎡⎢⎢
⎣

1 − 1.5𝐶4𝑏′
𝑠(4) + 1.5𝐶4𝑎′

𝑠(4) −1.5𝐶4𝑏′
𝑠(5) + 1.5𝑆4𝑎′

𝑠(5) −1.5𝐶4𝑏′
𝑠(6) + 1.5𝑆4𝑎′

𝑠(6)
1.5𝐶5𝑏′

𝑠(4) + 1.5𝐶5𝑎′
𝑠(4) 1 − 1.5𝐶5𝑏′

𝑠(5) + 1.5𝑆5𝑎′
𝑠(5) −1.5𝐶5𝑏′

𝑠(6) + 1.5𝑆5𝑎′
𝑠(6)

−1.5𝐶6𝑏′
𝑠(4) + 1.5𝐶6𝑎′

𝑠(4) −1.5𝐶6𝑏′
𝑠(5) + 1.5𝑆6𝑎′

𝑠(5) 1 − 1.5𝐶6𝑏′
𝑠(6) + 1.5𝑆6𝑎′

𝑠(6)

⎤⎥⎥
⎦

The elements of the vector on the right hand side of Eq. (Α�.16) are reduced to,

𝑋𝑘 = 1.5/𝑙𝑖𝑗(𝑤(𝑖) − 𝑤(𝑗)) + 1.5𝐶𝑘 (
3

∑
𝑖=1

𝑏′
𝑥1

𝛽(𝑖)
𝑥1 +

3
∑
𝑖=1

𝑏′
𝑥2

𝛽(𝑖)
𝑥2 ) − 1.5𝑆𝑘 (

3
∑
𝑖=1

𝑎′
𝑥1

𝛽(𝑖)
𝑥1 +

3
∑
𝑖=1

𝑎′
𝑥2

𝛽(𝑖)
𝑥2 )

−0.25𝐶4𝛽(𝑖)
𝑥2 + 0.25𝑆4𝛽(𝑖)

𝑥2 − 0.25𝐶4𝛽(𝑗)
𝑥2 + 0.25𝑆4𝛽(𝑗)

𝑥2

(Α�.17)

Alternatively, X𝑘 = LU. Solving Eq. (Α�.16) for 𝛽𝑠𝛽𝑠𝛽𝑠,

𝛽𝑠𝛽𝑠𝛽𝑠 = H𝑠U (Α�.18)

with H𝑠 = A−1L. Returning to Eq. (Α�.12) and substituting the above,

𝐹𝑥1
=

3
∑
𝑖=1

𝑎′
1(𝑖)𝛽(𝑖)

𝑥1 + 𝑎′
2(𝑖)𝛽(𝑖)

𝑥2 +
6

∑
𝑘=4

𝑎′
𝑠(𝑘)H𝑠U,

𝐹𝑥2
=

3
∑
𝑖=1

𝑏′
1(𝑖)𝛽(𝑖)

𝑥1 + 𝑏′
2(𝑖)𝛽(𝑖)

𝑥2 +
6

∑
𝑘=4

𝑏′
𝑠(𝑘)H𝑠U.

(Α�.19)



| 201

Equation (Α�.19) can be written in matrix form as,

[𝐹𝑥1

𝐹𝑥2

] = {FX1
FX2

} U (Α�.20)

Based on the above, returning to Eq. (Α�.4), the arrays Hx1
, Hx1

expressing the rotations in
terms of the element unknowns are,

𝐻𝑥1
(1) = −𝐿4𝑆4𝐻𝑠4

(1) − 𝐿5𝑆5𝐻𝑠5
(1) − 𝐿6𝑆6𝐻𝑠6

(1)
𝐻𝑥1

(2) = 𝐿1 + 0.5𝐶2
5𝐿5 + 0.5𝐶2

6𝐿6 − 𝑁4𝑆4𝐻𝑆4
(2) − 𝑁5𝑆5𝐻𝑆5

(2) − 𝑁6𝑆6𝐻𝑆6
(2)

𝐻𝑥1
(3) = 0.5𝐶5𝑆5𝐿5 + 0.5𝐶6𝑆6𝐿6 − 𝐿4𝑆4𝐻𝑆4

(3) − 𝐿5𝑆5𝐻𝑆5
(3) − 𝐿6𝑆6𝐻𝑆6

(3)
𝐻𝑥1

(4) = −𝐿4𝑆4𝐻𝑠4
(4) − 𝐿5𝑆5𝐻𝑠5

(4) − 𝐿6𝑆6𝐻𝑠6
(4)

𝐻𝑥1
(5) = 𝐿2 + 0.5𝐶2

4𝐿4 + 0.5𝐶2
6𝐿6 − 𝐿4𝑆4𝐻𝑆4

(5) − 𝐿5𝑆5𝐻𝑆5
(5) − 𝐿6𝑆6𝐻𝑆6

(5)
𝐻𝑥1

(6) = 0.5𝐶4𝑆4𝐿4 + 0.5𝐶6𝑆6𝐿6 − 𝐿4𝑆4𝐻𝑆4
(6) − 𝐿5𝑆5𝐻𝑆5

(6) − 𝐿6𝑆6𝐻𝑆6
(6)

𝐻𝑥1
(7) = −𝐿4𝑆4𝐻𝑠4

(7) − 𝐿5𝑆5𝐻𝑠5
(7) − 𝐿6𝑆6𝐻𝑠6

(7)
𝐻𝑥1

(8) = 𝐿3 + 0.5𝐶2
5𝐿5 + 0.5𝐶2

4𝐿4 − 𝐿4𝑆4𝐻𝑆4
(8) − 𝐿5𝑆5𝐻𝑆5

(85) − 𝐿6𝑆6𝐻𝑆6
(8)

𝐻𝑥1
(9) = 0.5𝐶5𝑆5𝐿5 + 0.5𝐶4𝑆4𝐿4 − 𝐿4𝑆4𝐻𝑆4

(9) − 𝐿5𝑆5𝐻𝑆5
(9) − 𝐿6𝑆6𝐻𝑆6

(9)

and,

𝐻𝑥2
(1) = 𝐿4𝐶4𝐻𝑠4

(1) + 𝐿5𝐶5𝐻𝑠5
(1) + 𝐿6𝐶6𝐻𝑠6

(1)
𝐻𝑥2

(2) = 0.5𝐶5𝑆5𝐿5 + 0.5𝐶6𝑆6𝐿6 + 𝐿4𝑆4𝐻𝑠4
(2) + 𝐿5𝑆5𝐻𝑠5

(2) + 𝐿6𝑆6𝐻𝑆6
(2)

𝐻𝑥2
(3) = 𝐿1 + 0.5𝑆2

5𝐿5 + 0.5𝑆2
6𝐿6 + 𝑁4𝐶4𝐻𝑠4

(3) + 𝑁5𝐶5𝐻𝑠5
(3) + 𝑁6𝐶6𝐻𝑆6

(3)
𝐻𝑥2

(4) = 𝐿4𝐶4𝐻𝑠4
(4) + 𝐿5𝐶5𝐻𝑠5

(4) + 𝐿6𝐶6𝐻𝑠6
(4)

𝐻𝑥2
(5) = 0.5𝐶4𝑆4𝐿4 + 0.5𝐶6𝑆6𝐿6 + 𝐿4𝑆4𝐻𝑠4

(5) + 𝐿5𝑆5𝐻𝑠5
(5) + 𝐿6𝑆6𝐻𝑠6

(5)
𝐻𝑥2

(6) = 𝐿2 + 0.5𝑆2
4𝐿4 + 0.5𝑆2

6𝐿6 + 𝐿4𝐶4𝐻𝑠4
(6) + 𝐿5𝐶5𝐻𝑠5

(6) + 𝐿6𝐶6𝐻𝑠6
(6)

𝐻𝑥2
(7) = 𝐿4𝐶4𝐻𝑠4

(7) + 𝐿5𝐶5𝐻𝑠5
(7) + 𝐿6𝐶6𝐻𝑠6

(7)
𝐻𝑥2

(8) = 0.5𝐶5𝑆5𝐿5 + 0.5𝐶4𝑆4𝐿4 + 𝐿4𝐶4𝐻𝑠4
(8) + 𝐿5𝐶5𝐻𝑠5

(8) + 𝐿6𝐶6𝐻𝑠6
(8)

𝐻𝑥2
(9) = 𝐿3 + 0.5𝑆2

5𝐿5 + 0.5𝑆2
4𝐿4 − 𝐿4𝐶4𝐻𝑠4

(9) − 𝐿5𝐶5𝐻𝑠5
(9) − 𝐿6𝐶6𝐻𝑠6

(9)

The curvatures can now be computed as,

𝜒𝜒𝜒 = [𝜕𝑥1
𝛽𝑥1

𝜕𝑥2
𝛽𝑥2

𝜕𝑥2
𝛽𝑥1

+ 𝜕𝑥1
𝛽𝑥2

]
T

= BbU (Α�.21)

with Bb = ⎡⎢⎢
⎣

𝜕𝑥1
Hx1

𝜕𝑥2
Hx2

𝜕𝑥2
Hx1

+ 𝜕𝑥1
Hx2

⎤⎥⎥
⎦

.
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The shear strains are written as,

𝛾𝛾𝛾 = [𝛾𝑥1𝑧 𝛾𝑥2𝑧]
T

= B𝑠U (Α�.22)

The 𝑘thelement stiffness matrix is

k = k𝑏 + k𝑠, with (Α�.23)

k𝑏 = ∫
𝐾

Bb
TD𝑏Bb 𝑑𝐴 and (Α�.24)

k𝑠 = ∫
𝐾

Bb
TD𝑏Bb 𝑑𝐴 (Α�.25)



Appendix Β�

Perfectly Matched Layer

Analytical solutions for the exterior Helmholtz problem in (a) ℝ2 and (b) the infinite strip are
employed in the calculation of convergence results for the PML-FEM scheme introduced in
Chapter 6.

Analytical outgoing solutions are given for reference below. In particular, the scattered
wavefield solutions due to the circular inclusion are provided for the case of an incident plane
wave, and an incident wavefield generated by a point source located at a distance from the
centre of the circular scatterer. For the scattering problem in the infinite strip, with homoge-
neous Neumann conditions on the planar boundaries, a semi-analytical solution is devised by
means of a rapidly convergent normal mode series expansion.

(a) Exterior Helmholtz problem in ℝ2

The scattered wavefield by a circular inclusion with surface 𝑆 and radius 𝑎, is obtained as
the solution to the exterior Helmholtz problem with constant parameter 𝑘 in the 2D plane
Ω = {x ∈ ℝ2 ∶ 𝑟 = (𝑥2

1 + 𝑥2
2)1/2 > 𝑎}

∇2𝜑𝑠 + 𝑘2𝜑𝑠, inΩ. (Β�.1)
with 𝛼𝜕𝑛𝜑𝑠 + 𝛽𝜑𝑠 = − (𝛼𝜕𝑛𝜑𝑖 + 𝛽𝜑𝑖) on 𝑆. (Β�.2)

and lim
|𝑟|→∞

|𝑟|(𝜕|𝑟|𝜑𝑠 − i𝑘𝜑𝑠) = 0. (Β�.3)

General Robin type condition on the inclusion surface is assumed along with radiation con-
ditions at infinity. The incident wavefield data on the scatterer surface, 𝑓 are known.The
representation of the solution is given by means of Hankel functions of the first kind and 𝑚
order as in ,

𝜑𝑠(𝑟, 𝜃) =
∞

∑
𝑚=0

𝐴𝑚 cos(𝑚𝜃)𝐻(1)
𝑚 (𝑘𝑟) (Β�.4)
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(i) Plane wave incidence. (ii) Wavefield generated by a source

Figure Β�.1 Analytical solutions for 𝑘𝑎 = 1 and an imposed Dirichlet condition on the scatterer

Coefficients 𝐴𝑚 are dependent on the imposed boundary condition scatterer surface 𝑆 and the
incident wavefield. For the case of plane wave incidence (see Fig. Β�.1) the analytical solution
of the scattered field assuming an acoustically soft and hard boundary respectively, are given
by,

𝐴𝑚 = −𝑒𝑚i𝑚 𝐽𝑚(𝑘𝑎)
𝐻(1)

𝑚 (𝑘𝑎)
and 𝐴𝑚 = −𝑒𝑚i𝑚 𝐽𝑚(𝑘𝑎)′

𝐻(1)
𝑚 (𝑘𝑎)′

(Β�.5)

where 𝑒𝑚 denotes the Jacobi symbol. In the case of an incident wavefield generated by an
acoustic source located at a distance 𝑠 from the centre of the circular scatterer the correspond-
ing coefficients are (Martin, 2006),

𝐴𝑚 = −𝑒𝑚(−1)𝑚 𝐻(1)
𝑚 (𝑘𝑠)𝐽𝑚(𝑘𝑎)

𝐻(1)
𝑚 (𝑘𝑎)

and 𝐴𝑚 = −𝑒𝑚
𝐻(1)

𝑚 (𝑘𝑎)𝐽𝑚(𝑘𝑎)′

𝐻(1)
𝑚 (𝑘𝑎)′

(Β�.6)

(b) Analytical solution in a planar waveguide

Next, a scattering field in an infinite strip resembling a waveguide with planar boundaries is
generated to be used as reference data outside a circular inclusion. The domain is composed
of an infinite strip confined in Ω𝑠 = {𝑥1 ∈ ℝ2, 𝑥2 ∈ (−ℎ, 0)}. The Helmholtz equation defined
in Ω′ = Ω𝑠 𝑆𝑖, while boundary condition Eq. (Β�.2) holds on the surface of the scatterer.
Homogeneous Neumann boundary conditions are applied on both upper and bottom planar
boundaries. Hence it holds,

∇2𝜑𝑠 + 𝑘2𝜑𝑠, inΩ′, (Β�.7)
with 𝛼𝜕𝑛𝜑𝑠 + 𝛽𝜑𝑠 = − (𝛼𝜕𝑛𝜑𝑖 + 𝛽𝜑𝑖) on 𝑆. (Β�.8)

and 𝜕𝑥2
𝜑𝑠(𝑥1, 0) = 𝜕𝑥2

𝜑𝑠(𝑥1, −ℎ). (Β�.9)
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Figure Β�.2 Scattering in a simple waveguide in the absence of inclusions with the method of image

Tha above problem must assume outgoing solutions at the lateral open boundaries. Analytical
solutions corresponding to a radiating field in homogeneous waveguides with planar boundaries,
in the absence of inclusions, can be easily constructed by the method of multiple images (see
Brekhovskikh and Lysanov (1982); Jensen et al. (2011)). For simplicity, the field emitted by
an infinite series of 2𝑚 mirror sources positioned along the 𝑥2− axis at ℎ intervals, defined as
follows,

𝜑𝑠(x) =
∞

∑
𝑚=−∞

𝐻(1)
0 (𝑘𝑟𝑚), 𝑟𝑚 = √𝑥2

1 + (𝑥2 − 𝑚ℎ)2. (Β�.10)

The produced radiating wavefield satisfies the imposed homogeneous Neumann conditions
on the waveguide planar boundaries. However, it is known that the series Eq. (Β�.10) is slowly
convergent, hence an alternative representation can be obtained by separation of variables in
the form of a normal mode series (Jensen et al., 2011) where the wavefield potential is given
as a sum of eigenfunctions for the infinite strip Ω𝑠.

𝜑𝑠(x) = 2
∞

∑
𝑚=0

̃𝑌𝑛(𝑥2), ̃𝑌𝑛(𝑥𝑠
2)

exp(i𝑘𝑥1
)|𝑥1 − 𝑥𝑠

1|
𝑘𝑛𝑥1

. (Β�.11)

with the horizontal and vertical wavenumbers given as, 𝑘𝑛
𝑥1

= √𝑘2 − 𝑘𝑛𝑥2
and 𝑘𝑛

𝑥2
=

𝑛𝜋/ℎ.The functions ̃𝑌𝑛(𝑥2)/ ∥ ̃𝑌𝑛∥, represent the normalised vertical structure of the modes.
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The vertical modes, corresponding to eigenvalues 𝑘𝑛
𝑥2

are chosen as ̃𝑌𝑛 = cos(𝑘𝑥2
(𝑥2 + ℎ/2)) in

order to satisfy the planar boundary conditions. The latter series can be truncated, keeping the
propagating and a number of evanescent modes sufficient for rapid convergence in the whole
region outside a ball in the vicinity of the fictitious source, i.e. 𝑘𝑟0 > 𝜖. Indicative plots of the
waveguide solution are shown in Fig. Β�.2 with imposed Neumann Conditions on the planar
boundaries, for 𝑘𝑎 = 1 and 𝑘ℎ = 12.
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