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Abstract in English

Friction is one of the most important causes of energy losses and wear in all mechanical systems.
In ships, substantial friction losses are present in the propulsion system, both in the engine and in the shaft
arrangement. Guided by the 2030 and 2050 environmental goals set by IMO, the maritime industry is
challenged to utilize advanced technologies for optimal energy consumption and minimum power losses.

Journal bearings are mechanical components used to support the radial loads of rotating shafts.
During operation, a thin lubricant film is generated and maintained hydrodynamically between the shaft
and the bearing, preventing metal to metal contact and minimizing the friction losses. The performance of
journal bearings is commonly quantified in terms of minimum film thickness, friction losses and
maximum pressure of the lubricant. All of the above vary substantially at different operating conditions,
such as radial load, shaft rotational speed and lubricant viscosity. Additionally, an important factor that
needs to be taken into account is the micro differences in the surface geometry of the stator and the rotor
(due to machining), which may significantly affect the performance of the bearing, its total load capacity
and friction losses, as well as the subsequent wear rates of the bearing.

In the present work, a novel semi — stochastic solution of the Reynolds Equation for
hydrodynamic lubricated journal bearings with stochastic surface roughness is presented. On the basis of
stochastic theory, an advanced form of Reynolds Equation is derived. The mathematical formulation of
this new equation yields the original deterministic Reynolds Equation for smooth surfaces, by removing
the terms used to describe the roughness standard deviation

The derived differential equations are solved using the Finite Difference Method (FDM),
developed as in house software. The obtained results are compared with (a) bearing performance results
using the deterministic solution of the Reynolds Equation for smooth bearings, and (b) with results for
bearings with surface roughness reported in the relevant literature, aiming at quantifying the extent of the
roughness impact to different operational states of the bearing. Further, by assigning different values to
the standard deviations of the roughness, we seek to optimize bearing performance by maximizing load
carrying capacity and minimizing the total friction losses.

The proposed methodology has been validated against relevant results in other literature works,
and a comparison of different numerical approaches for the treatment of the stochasticity of roughness
profile and subsequent correlated bearing parameters has been performed. The effect on bearing
performance of different roughness profiles for different bearing geometries and bearings operational
parameters has been quantified. The ultimate goal of the present dissertation is to examine, evaluate and
optimize bearings performance, by applying the optimum surface roughness during the manufacturing
process of the bearing.

KEYWORDS:

Journal Bearings, Hydrodynamic Lubrication Theory, Reynolds Equation, Stochastic Roughness, Finite
Difference Method



Abstract in Greek

H tpiff amoteAel tv mo cvviOn Kol GNUOVTIKN OITi0L EVEPYEINKADV OTMAEIOV GE OAO TO
UNYOVIKA GLGTAUOTO. XTO GUOTNHO TPOMONG €VOC TAOIOVL, VYNAEG OMMAELES EVEPYEWS AOY® TPIPNG
mopovotdloviol 1000 oTNV KLPL Unyovn 000 Kot oto afovikd cvotnua Tov mAoiov. H vavtidia,
kaBodnyodpevn omd Tovg mePPaAilovtikovg otoxovg tov 2030 kot 2050 mov tébnkav and tov IMO,
KOAEITOL VO YPNOCILOTOMGEL Kol Vo OELOTOGEL TPONYUEVO TEYVOAOYIKA GULOGTALOTA Yo TN
BeltioTomoinon TG KATavAA®MOTG EVEPYELNG KL TNV EAUYICTOTOINGT TOV ATOAEIDV 10YDOG.

To aktvikd €dpovo etvor UnyovoAoyikd KOUUATIO, TOV YPNCUYLOTOLOVVTOL Y10 TNV TOPaAap TV
AKTIVIKGOV QopTiov Tov a&ovav. Katd tnv Aeitovpyio Tovg, £va AETTO GTPOUO AMTOVTIKOD dnpiovpyeitol
Kol St peitan VOPOSVVAUIKAE HETAED TOV AEOVA KOl TOV £0PAVOV, OMOTPEMOVTAG TNV EMAPT LETAAMK®DV
EMPOVEIDY KOl EANYIOTOTOLDVTOG TIS EVEPYEINKEG amMAeleg A0y TpiPfnc. O Pabuog amddoong twv
OKTIVIKOV €0pvav oLviBwg mocoTikomolgitor pe PAaon To €AAYIOTO TAYOG TOV AITOVIIKOV, TIG
EVEPYELOKEC amMAElEg AOY® TPIPNG Kot v péytotn mieon Mmovtikov. Olo to Topamdvm, TPENEL va
onuewmbel, 60t aAldlovv og onuavtikd PBabud avordywg TV KoTaoTtaomn Aettovpyiag, Om®S ival to
OKTIVIKO QOPTio, 1 T OTNTA TEPIGTPOPNG TOV GEova Kabmg Kot To 1E®mOeg Tov Mmavtikov. Emimpocshétmg
T TPONYOOUEVA, VOGS CUAVTIKOC TAUPAYOVTAS, O 0TT0T0G TPEMEL VO AapPaveTal VT’ oYLy, gival ovToG TOV
YEQUETPIKAOV IKPOIOPOPAV OTIS EMPAVEIEG TOL AEOVA Kot TOv €dpdvov. Avtég, Umopovv va
EMNPEAGOVY CNUAVTIKG TNV OmOS0CT, TNV YOPNTIKOTNTA QOPTIOL KOl TIG EVEPYEWNKES ATMAEEG AOY®
TPPNG oL €dpdvov, kabdg emiong kot Tov puBud eBopdg Tov.

Yy mapovoo gpyacio, mapovoldletor pio véa emilvon g e&icoong Reynolds e aktvikd
£dpava vopoduvapkng Aitavong, ta omoia mapovoldlovy 6ToXaoTIKN TpayvTnTe. Me Bdon v Bswpia
OTOYOOTIK®V podnpotikav, eEdyetol o kovovpyla eEicmon Reynolds. O pofnpotikdg tHmog avtie g
véag e€iomong mopdysl ¢ Klaowkn vietepuwviotikny eiowon Reynolds yw Aeieg empdveieg, pe tov
UNOEVIGUO, Kol Apa OmaAOLpY], TNG TUTIKNG OTOKALONG TV 0V0 TPAYLTHTOV.

O1 Sopopikés eElomaelg mov eppavifovral, Aovovton pe v Borfea g peBoddov memepacpuévev
dagopmv. Ta anotelécpoto mov wpokdmTovy yia v véa eEicmon Reynolds cuykpivovtal pe avtd tng
apyikng eiowong Reynolds koBd¢ kot pe dAleg mpooeyyicelg mov éxovv viomomBel, oToxELOVTAG TNV
TOGOTIKOTOINOT Kol TPOGOIOPIGUO TNG EMOPUCTG TNG TPAXVTNTOS GE SAPOPES KATOOTAGELS AELTOVPYiog
TOV OKTWIKOV €dpdvav. Emione, pe v avdbeorn Sla@opeTikdV TUTIKOV OmOKAICEDV OTIG TPAYVTITEG
7660 T0L G&ova 6GO KOl TOV E5PAVOV, GKOTEDOVILE VO, BEATICTOTOGOVE TNV amdS0CT] TOV GUOTHUATOG.
N omoilo. emMTVYYAVETOL LE TNV UEYICTOMOINGT TNG OVOTTUVGOOUEVNC dvvaung Kobd¢ Kot pHe TNV
EAAYLOTOTTOINGT) TOV EVEPYELNKDY OTWOAEIDV AOY® TPPG.

H mpotewvopevn pebodoroyio emoindevetor pécm TV amoteAespdtov oe PMoypapikés myEs,
kaOag emiong Tifevtal 6€ GUYKPION SLUPOPETIKEG TPOCEYYIGELG Yo TNV UeTayEipion Ko Bedpnon g
EMPAVELNKNG TPAUYLTNTOS, KAODC KAl GAA®V 0KOAOVO®V TAPAUETPO®V TOV €OPAVOV, MG CTOYACTIKMV
mocotitev. Etc1, 6toygdovye oty m0c0TIKOTOINoN TG EXIOPACTC TOV £XOVV TOGO 1) TPAYVTNTO OGO Kol
N YeOUETPiOL TNG EYKATACTOONG OTIS MAPOUETPOVS AELTOVPYIONG TOL €JPAVOVL. ATMTEPOG OKOTOG TNG
TAPOVGAS SIMAMUATIKNAG elval 1 diepedivnon, ekTiunon katl BEATIoTOTOINGN NG ATOd00NE TOV E3PAVOV,
HEG® TNG amOI0GNG TNG TAEOV KATAAANANG TPUYVTNTOG KATH TNV S1APKELD TNG TOPAYOYNG TOV VAIK®OV Kol



UEG® TNG KOTNYOPLOTOINONG TV E3PAVMY GE OUAOES, Ol OTMOIEC VIO TNV 110 EMPOVEINKT TPOYVLTNTO
amodidovv 1d1eg cvvOnKeg Aettovpyiag.

AEZEIX KAEIAIA:

Axtwvikd 'Edpava, Oswpio Yopodvvapukng Aimavong, E&iocwon Reynolds, Ztoyactikr Tpayvtnra,
MébBodoc [Nemepacuévov Alapopaov
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Nomenclature

B:

bearing width
Bearing clearance

Covariance of (.) variable
Bearing diameter
Shaft diameter

Eccentricity

Average operator

: Correlation coefficient of mean pressure and mean film thickness
. First negative power coefficient

: Second negative power coefficient

Friction force
Dimensionless friction force

Probability distribution function of (+) variable
Relative rotation of shaft and bearing

Stochastic film thickness

Deterministic film thickness
Dimensionless film thickness
Minimum film thickness

Maximum film thickness

Convergence ratio
Bearing length

Mean value of (.) variable
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Shaft rotational speed

Shaft center
Bearing center

External force

X - axis external force component
y - axis external force component

Pressure

Maximum pressure
Inlet flow rate
Outlet flow rate

Roughness ratio

:Bearing roughness

. Shaft roughness

Lubricant inlet flow rate per unit length

Lubricant outlet flow rate per unit length

Bearing radius
Shaft radius

Sommerfeld number
Time variable
Shaft linear velocity

X - axis bearing speed
X - axis shaft speed

X - axis fluid velocity
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y - axis bearing speed

y - axis shaft speed

y - axis fluid velocity

Total hydrodynamic force
Dimensionless hydrodynamic force

X - axis hydrodynamic force component
z - axis hydrodynamic force component

z - axis fluid velocity
X - axis coordinate

y - axis coordinate
z - axis coordinate
Standard deviation ratio for bearing

Standard deviation ratio for shaft

Stochastic Variable

Eccentricity Ratio

Fluid dynamic viscosity

Hydrodynamic film angle

Friction Coefficient
Lubricant density

Standard deviation

Standard deviation of bearing
Standard deviation of shaft

Shear stress in x direction
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vy

Y-

Shear stress in y direction
Shear stress in z direction

Attitude angle

Lateral misalignment

Vertical misalignment

14



1. Introduction

Tribology, the collective name given to the science and technology of interacting surfaces in
relative motion, is a relatively new diverse science branch that studies the phenomena of friction,
lubrication and wear. The application area of tribology is quite extensive, including, among others, the
understanding and modeling of phenomena in lubrication, the optimization of tribological elements such
as journal and thrust bearings, piston rings, mechanical seals, etc., the development of novel lubricants
and methods of surface treatment and modeling, as well as the minimization of power losses, wear and
associated maintenance and replacement costs of mechanical components.

The term tribology, apart from its conveniently collective character describing the field of friction,
lubrication and wear, could also be used to coin a new word — Tribodesign[1]. It is, thus, obvious that the
practical aim of tribology lies in its successful application to machine design. From the beginning of the
20th century, extended research and experiments have been performed to better understand the
mechanisms of tribology.

The frictional and wear behavior of materials is greatly dependent upon the surface material used,
as well as its topography. Since the early 1930s scientists had come to the conclusion that they need to
better understand the surface topography, so to be able to grasp the way materials interact [2]; thus the
assumption of smooth surfaces in the analysis of engineering surfaces was gradually replaced by rough
surfaces. Evident of roughness is that engineering surfaces are created in various ways, typically by
machining, surface treatment and coating, which produce surface topographies that deviate from smooth
surfaces.

A considerable amount of research effort has gone into studying the true topography of solid
surfaces. A surface profile was found to be composed of a range of frequency components. The high
frequency components correspond to those that are perceived to be rough and hence called "roughness™ or
"asperities". The low frequency components correspond to more gradual changes in the profile and are
often associated with the terms "waviness" or "“form". The waviness component of a surface is periodic in
nature, while the roughness has a random distribution in the surface.

Initially discreet roughness profiles were analyzed by Michell [3] and others [4], [5], [6], but in
due course it became evident that statistical treatments were necessary to take account of the influence of
real surface topography upon lubricating film performance. Greenwood &Williamson[7] using
information obtained by digital analysis of profile meter outputs have shown that for many surfaces the
distribution of height and the distribution of height peaks is very close to Gaussian; enabling the use of
stochastic mathematical simulations. In 1981, volume (5) of the Tribology Series[8] was published, and
was entirely devoted in the surface effects in adhesion, friction, wear and lubrication.
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1.1. Literature Overview
Basedon[91,[10] and [11]

Tribology research has been extensive during the last decades, focusing on several mechanical
components that have an interesting frictional behavior. One of the oldest and most important ways to
reduce friction and its associated wear is to separate the two surfaces in relative motion by a thin fluid
film. To this end, lubricating oils and other liquids, such as water, emulsions or even gases, can be
utilized. It is therefore very important that models which can simulate accurately the tribological behavior
of mechanical components such as bearings, piston rings and seals during hydrodynamic lubrication are
developed in order to utilize the components in terms of friction losses and wear.

The basis of hydrodynamic lubrication is the theory introduced in 1886 by Osborne Reynolds.
According to the theory, pressure can be transferred through a thin lubricating layer located between two
sliding surfaces, which should not be parallel in order to create the necessary geometry of a
hydrodynamic wedge. In journal bearings, which are the main subject of the present study, the shaft is
supported by a cylindrical bearing. The shaft has by construction a diameter slightly smaller than that of
the bearing. During operation, the shaft is eccentric with respect to the bearing; therefore wedge geometry
is generated between the bearing and the shaft, leading to lubricant pressure build up and load support.

Since Osborne Reynolds introduced the theory of hydrodynamic lubrication, numerous studies
have been performed, aiming to further explain the tribological characteristics of lubricated bearings.
Several books and papers, concerned with the operational characteristics of journal bearings under a
variety of running conditions, were published through the last century. One of the early papers to deal
specifically with the effects of surface roughness on hydrodynamic lubrication was that of Tzeng and
Saibel[12], who solved the problem for the case of a finite slider bearing and then averaged the
corresponding solution. However, the difficulty of solving analytically the Reynolds Equation restricts the
usage of the previous attempt to the case of transverse roughness in infinitely long bearings. Another
approach, that is to make some heuristic assumptions concerning the pressure gradient and the flow rates
and obtain an averaged equation, was followed by Christensen[13] and Tander[14], who proposed three
averaged equations for longitudinal, transverse and isotropic roughness. Following a similar approach,
Patir and Cheng[15] and [16] deducted a Reynolds type equation, which used "flow factors".

However, these results have given rise to many controversies both in view of the numerical
results and for the heuristic assumptions on which they are based on, i.e. [17] and [18], and it is claimed
that the physical justification of these assumptions bring the applicability of the Reynolds Equation itself
in question, i.e. [19].
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1.2. Goals of the present study

The main goal of the current dissertation is to derive a novel solution of the Reynolds Equation
for hydrodynamic lubricated bearings with stochastic surface roughness on both the stator and the rotor
component of the bearing. To this end, an advanced form of the Reynolds Equation is derived.

In Chapter 2, the basics of the hydrodynamic lubrication theory are presented, followed by the
derivation of the Reynolds Equation for journal bearings with surface roughness. Also, an analysis on the
nature of the stochastic surface roughness is presented, alongside with its implications on the stochasticity
of the film thickness.

In Chapter 3, the finite difference method and the adopted solution algorithm is developed and
presented. Also, the solution matrices for a smooth and a rough bearing are calculated, both for the
proposed approach and other approaches found in literature.

In Chapter 4, the validation of the proposed model is presented for both slider and journal
bearings. The results for the operational parameters of the bearing, i.e. film thickness geometry, mean
pressure distribution, load carrying capacity, friction force and coefficient of friction, are compared with
literature findings and verified.

In Chapter 5, simulations of a journal bearing in various realistic operational conditions are
presented. Using the proposed algorithm, the bearing performance parameters are calculated and
discussed.

In Chapter 6 and 7, the main results of the present work are summarized, and conclusions and
future work are drawn. Finally, the main mathematical analysis needed for the derivation of the proposed
approach is summarized in the Appendixes (A) ~ (C).
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2. Journal Bearings

2.1. Introduction

Journal bearings, based on [20], are the most common type of radial bearings with extended use
in the maritime industry. They are used in a variety of applications and are extensively used for the
support of the propulsion shaft of a vessel, to support radial loads and to guide a smooth transmission of
torque from the engine to the propeller. A journal bearing consists of two parts; the stator or bushing,
which is a stationary sleeve, and the rotor, which is the propulsion shaft in our case. The shaft rotates
inside the bushing and between them a thin film of lubricant fills the gap. The lubricant is supplied to the
system from arrangements such as inlet holes and grooves.

As the shaft is rotating, it drags lubricant which is forced to fill the converging (wedge- shaped)
geometry between the shaft and the stator. The incompressible lubricant develops the desired pressure to
preserve the hard metal shaft separated from the soft metal bushing. This is essential in order to avoid
“dry friction” which is disastrous for the lifespan of the bearing. At the initiation of a rotary motion the
shaft is forced, due to friction, to roll at the opposite direction within the bearing sleeve. This motion,
accompanied with adequate lubricant supply, helps to immediately form a lubricant film and lift the shaft
into steady state position. Lubrication starts taking effect at any relative rotational velocity greater than
zero and is also very steady in sudden impulses or vibrations. A common instability that journal bearings
face over the years, also known as self-excited oil whirl, is constrained using tilting- pads, elliptical,
pressure dam and offset split bearings.

Once the shaft is operating in “steady state”, it is located at a position within the bearing
clearance and at some angle along the circumference. This position can be defined by the eccentricity e
and the attitude angle ¢, as shown in Figure (2.1). Attitude angle is the angle between the centers of the

bore and the shaft and eccentricity is the distance between these points.
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Figure 2.1: Cross Section of a typical Journal Bearing[9]
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Figure 2.2: Typical Journal Bearing Geometry[20]

Journal bearings can be constructed quite simply and with very small tolerances, therefore they
are used for high precision projects that also demand minimum wear and increased lifespan. Such
bearings are quite economical, especially when they are produced massively. Additionally they have high
capacity in sense of absorbing and damping vibrations, impulses or sudden force variation. On the other
hand, journal bearings require frequent maintenance and special care against dust in the lubricant area.
Furthermore they require a significant amount of lubricant and the friction coefficient during the startup
process is inevitably high. According to[20], journal bearings can be subjected to six different ways of
lubrication. Those categories are the below:

Hydrodynamic Lubrication: When the relative rotation speed surpasses a certain margin, a
hydrodynamic pressure film is developed separating the two surfaces. A constant supply of lubricant is
necessary, but there is no requirement for a certain inlet pressure.

Hydrostatic Lubrication: High pressure lubricant is fed to the system in order to separate the
facing edges. There is no need for relative motion.

Elastohydrodynamic Lubrication: This is an extension of hydrodynamic lubrication, taking into
account the elastic deformations of the shaft and the bore during operation.

Thermoelastohydrodynamic Lubrication: This is an extension of elastohydrodynamic lubrication,
taking into account the thermal deformations of the shaft and the bore during operation.

Boundary Lubrication: This type takes place when the lubricant thickness is inadequate, due to
small bearing surface, low rotational speed, inadequate amount of lubricant or high applied load. The
transition between boundary and hydrodynamic lubrication occurs gradually and the intermediate
condition is called mixed lubrication.

Solid- film Lubrication: A solid type of lubricant is used in applications where mineral oils
cannot be used, or in cases of excessive heating of the interacting components.

In the present thesis, only the hydrodynamic lubrication of journal bearings will be treated. The
fundamentals of hydrodynamic lubrication will be further analyzed in the current chapter.

19



2.1.1. Bearing Materials
Based on[21], [22], [23] and [24]

Materials used in tribological applications are, for the most part, common materials used
generally in engineering applications, though there are some materials designed specifically for bearings.
The selection of journal bearing material should be a careful process, since the chosen material should
possess a combination of properties from compatibility, conformability, embeddability, fatigue strength,
cavitation erosion resistance and corrosion resistance. In general, bearing materials can be either metallic
or non-metallic materials.

Metallic material bearings are based on powder - metallurgy, and are made of white metal (tin
and lead based), copper or aluminum based bronzes, porous metals and coated metals. They are relatively
economical, suitable for high production rates and can be manufactured to precision tolerances.
Nonmetallic material bearings are made of polymers, elastomers, ceramics and composites. Some
significant characteristics of non-metallic materials are they are characterized by low wear rates,
relatively high performance rating and the ability to conform under load. The non-metallic materials have
been increasingly used as self-lubricating bearing. Their composition has been over refined so as to obtain
favorable bearing characteristics, such as low friction and corrosion resistance.

The overlay selection process depends on the conformability required for the application.
Conformability, in bearing materials, is the ability of the material to adapt to any geometry misalignments
that might exist in the bearing. Depending on its nature, materials have different conformabilities, and
thus are susceptible to different finishing works. This results in different surface roughness topography,
yielding divergent standard deviations.
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2.1.2. Bearing Lubricants
Based on[9] and[22]

The function of a lubricant is to control friction and wear in a given system. The basic
requirements therefore relate to the performance of the lubricant, i.e. its influence upon friction and wear
characteristics of a system. In journal bearings, the shaft rotates at sufficient speed to force the lubricant
to move between the conforming surfaces of the shaft and the bearing, creating an oil wedge and a
hydrodynamic oil film. This film is responsible for the support of extremely heavy loads and the
operation of the system in high rotational speeds.

The parameter which plays a fundamental role in lubrication is oil viscosity. Different oils exhibit
different viscosities. In addition, oil viscosity changes with temperature, shear rate and pressure;for
engineering applications the oil viscosity is usually chosen to give optimum performance at the required
temperature. Since the 1950s, additives began to be widely used in varying quantities, targeting the
improvement of the oil properties and its life extension. Those additives can be listed in the following
categories

+« Antioxidants: Antioxidant additives are used in order to delay the severe oxidation of the oil.
They can be classified into
v Metal deactivators
v Radical inhibitors
v’ Peroxide decomposers
«»+ Corrosion Control Additives: Those are additives that protect surfaces and components from
corrosion. They are split into two categories
v" Caorrosion inhibitors
v Rust inhibitors
+«+ Contamination Control Additives: Those additives are used to control the acidity of the products
of sulfurous combustion and to prevent agglomeration of the soot. There exist two types of these
additives
v" Mild dispersants
v" Over - based dispersants
% Foam Inhibitors: The main task of these additives is to destabilize the foam generation during
machinery operations.
¢+ Pour Point Depressants: Those additives help prevent the formation of wax structures at low
temperatures.
¢ Viscosity Improvers: These additives are used to arrest the decline in oil viscosity with
temperature.
« Wear & Friction Improvers: Probably the most important of all the additives, these chemicals
control the lubricating performance of the oil. They can be divided into
v Adsorption or boundary additives
v' Anti - wear additives
v' Extreme pressure additives

7
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2.1.3.

Common Bearing Damages
The most common bearing damages found in engines are the following

Abrasion: It's the most common type of damage in bearings. Abrasion is caused by debris and
foreign materials rotating alongside with the oil in the lubricant film. These substances include
dirt, abrasive grit or dirt.

Fatigue: Fatigue, or spalling, is often the result of overloading, an excessive preload, tight inner
ring fits and using the bearing beyond its calculated fatigue life. In general, fatigue can be
indicated by the fracture of running surfaces and subsequent removal of small discrete particles of
material, and is always accompanied by a noticeable increase in vibrations and noises. Fatigue
can be avoided if stronger bearing linings are used and a more cautious design is set.

Corrosion: Corrosion depends on both the bearing material and the operating conditions of the
bearing. Moisture, acid, low — quality or broken down grease, poor wrappings and condensation
from excessive temperature reversals can cause corrosion that is abrasive to the surfaces of the
bearing.

Wiping: Wiping occurs in any kind of lining material if insufficient lubrication or cooling of the
oil takes place. Wiping results in melting of the lowest melting point phase of lining alloys.
Cavitation: Cavitation risk increases with rising bearing speeds and loads.

Fretting: Fretting occurs due to insufficient contact pressure, local welding and tearing having
taken place between the bearing back and housing bore.

Static fretting: Fretting can take place whenever low amplitude vibratory sliding takes place
between two surfaces. Fretting is common because most of the machinery is subject to vibrations,
both in transit and in operation conditions.

Incorrect assembly: This factor is associated with locating devices. Incorrect positioning results in
oil feed connections being misplaced, which can block it off. Excessive care needs to be taken
when locating the shaft correctly into the housing. Fretting of the bearing may occur if there is
insufficient bolt load, while on the other hand, excessive dynamic stressing in the bolts can cause
fatigue fractures.

Misalignment: Misalignment in bearings consists of bent shafts, out of square shaft shoulders,
clamping nuts that are not positioned in order and improper installation due to loose fits. Those
factors may result in overheating and separator failure.

Smearing: When two inadequately lubricated surfaces slide against each other, material is
transferred from one surface to the other. This mechanism is commonly known as smearing.
When smearing occurs, the material is generally heated to such temperatures that rehardening
takes place. This process produces localized stress concentrations that may cause cracking of
flaking to the bearing materials.

Geometric factors: Geometric factors of bearings, if not properly selected, can lead to many
damages. Such factors are the radial or axial clearance, bearing diameters or fits.
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2.2.  Journal Bearing Geometry
The geometry of a journal bearing is depicted in Figure (2.3). The journal bearing radius is R,

and the shaft radius is R,, while O, and Oy are the bearings and shafts center respectively. The distance

between these centers is called eccentricity, denoted by ¢ and the angle between the y'y axis and the line
defined by the centers is called attitude angle, ¢. At this specific angle we can calculate the maximum

and minimum of the film thickness.
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Figure 2.4: Details of geometry for the evaluation of film shape in journal bearing[9]

The film thickness geometry can be derived by basic geometric calculations presented in Figure
(2.4). According to this figure the mathematical expression of the film thickness is given by the equation

(2.1).
(05A) = (0,C) +(CA) = (0,B) +(BA) (2.1)

R, +h = e-cos(#) + R,-cos()

Thus
h = e-cos(6) + R,-cos(a) - R, (2.2)
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Applying the sine rule in the triangles ACO, and O,CO, we get that sin(a) = %-sin(@).

Using that sin®(er) + cos?(ar) = 1 we get that

cos(a) = \/1— (%)2~sin2(0)

Since e <« R we know that % =~ 0 and thus we get that cos(a) = 1. Substituting into equation

(2.2) yields
h =e-cos(d)+ R, - R, (2.3)
Substituting ¢ = R, — R, , the clearance of the bearing, and ¢ = E, the eccentricity ratio, we
c
get equation (2.4).
h = c(1+&-cos(6)) (2.4)

Equation (2.4) gives a description for the film thickness in journal bearings to within 0.1 %
accuracy.
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2.3.  Hydrodynamic Lubrication

According to [9] Hydrodynamic lubrication is the phenomenon in which two relative moving
surfaces are separated by a pressurized thin lubricating fluid film. The upper surface is called the stator
while the bottom surface is the rotor. This lubricating film allows the transfer of forces without direct
metal to metal contact of the surfaces, reducing the friction coefficient at very low levels. Depending on
the relative velocity of the surfaces and the lubricant properties, no additional agency is required to create
and maintain a load - carrying film, provided that adequate lubricant is made available. The mathematical
expression of hydrodynamic lubrication in the form of an equation has been first derived by simplifying
the Navier-Stokes momentum and continuity equations, and is commonly known as the Reynolds
Equation. Another, typical approach is by considering the equilibrium of an element of liquid subjected to
viscous shear, and applying the continuity of flow. According to Osborne Reynolds, the conditions
necessary for the hydrodynamic lubrication to occur are the below

(C1). The two surfaces must move relatively to each other with sufficient speed in order to
generate a lubricating film that can carry the normal load
(C2). Surfaces must be inclined at some small angle, so that a hydrodynamic wedge is

generated, and a pressure field is developed in the lubricating domain. A pressure field can be
also generated between moving parallel stepped surfaces, as well as between surfaces that move
towards each other

In figure (2.5) a sketch of a simple slider with inclined surfaces is presented. The motion of the
top surface drags lubricant into the converging geometry, generating a pressure field. If pressure was not
generated there would be more lubricant entering the wedge than leaving it. Therefore, pressure increases
at the beginning of the wedge, restricting inflow, while it decreases near the end of the wedge boosting
outflow. The existence of a pressure gradient causes the fluid velocity profile to bend inwards at the
entrance and to bend outwards at the exit. The pressure generated is able to separate the two surfaces and
support a certain load in the z direction

A ’
P pressure profile

Patm

Figure 2.5: Hydrodynamic pressure generation between the non-parallel surfaces of a simple slider

Before starting to analyze the theory of hydrodynamic lubrication, there are some simplifying
assumptions that need to be made:
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(AL). Body forces acting on the fluid are neglected

(A2). Pressure is constant throughout the film thickness

(A3). No - slip condition is assumed at the slider surfaces

(A4). Oil lubricant behaves as a Newtonian fluid

(A5). Fluid flow is laminar

(AB). Fluid inertia is neglected

(AT). Viscosity is constant throughout the fluid film
2.3.1. Equilibrium of an element

For simplicity we assume that the forces of the element are only acting in the x'x axis. Since the
element of figure (2.6) is in equilibrium, then we know that

0
pdydz + | 7, + —dz |dxdy = (p + a—pdxjdydz + 7 dxdy 2.5)
0z OX
z
T+ t:jl—t“q:lzhﬂ::th‘ - =
* oz : '
I
o, =<+ i —al—}dxidvdz
pdydz ———= : st
| dx
W e s o X
,{1}-’; —~—— T, dxdy
i -~
¢

Figure 2.6: Equilibrium Of An Element Of Fluid From a Hydrodynamic Film

After simplifying the terms in equation (2.5) we get

or, _op
oz X

In the previous equations we know that p is the pressure and 7 is the shear stress acting in the

X'x axis. The factor dxdydz is obviously positive, because the element has a volume, and thus we can

neglect it. A similar expression can be obtain for forces acting in the y'y axis, while in the z'z axis we
get that Z—p = 0 because of the assumption (A2). Thus for the equilibrium of the element we get the
z

system of equations (2.6).
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By using that Ty = 776—() where u. is the velocity in direction (), we get that
z
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By integrating equations (2.7) we get that

2
%%+C12+C2= nu

2
a—p%+csz+c4 — v (2.8)
P _,
oz

2.3.2. Continuity of Flow

Let us consider a column of lubricant as shown in figure (2.7). The principle of continuity of flow
requires that the influx of a liquid must be equal to its efflux from a control volume under steady
condition. Thus we get equation (2.9)

pudydz + pvdxdz + pwdxdy = (pu + %dxj dydz + (pv + %dyjdxdz
X

(2.9)
+ (pw + a'O—Wdzjdxdy + a—'Ddxdydz
oz ot
After simplifying the terms in equation (2.9) we get
6pu+6pv+6pw+6_pzo (2.10)

ox oy o at
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Figure 2.7: Continuity Of Flow In A Column

By using the Leibniz's rule for differentiation we get that

hopu . oh 0 (¢h
J'Ogdz —pu|z=h&+&(.[opudz)

hopv oh 0 (¢h
J.OEdZ _pv|2h5+5(-|‘0 deZ)

h OpwW

J‘O a dZ—pW|Z h lez:O
jha—pdz = l,-n (I dz)
oot 8t at

By differentiating equation (2.10) in respect to z we get that

J-h opu N opv . opw +6_p dz
OX oy oz ot

Or else, by using equations (2.11), (2.12), (2.13) and (2.14)

oh

o o (" o on
&(.[opUdZ)JF@(J‘OdeZ)’Lg(LPdZ)=Pu|z=h&+Pv|z h Pl

oy

By using equations (2.8) we get that

9 hlp c'ipz +C,;z+C, |dz
ox ox 2

oy\"*n oy 2

S

OX oy
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2.3.3. Initial Values
Equation (2.17) yields the Reynolds Equation. Before reaching the final form of Reynolds

Equation we have to find the values of C,, i € {1,2,3,4} . Those values will be calculated by the system

of equations (2.8). Since there is no slip or velocity discontinuity between liquid and solid at the
boundaries of the wedge, according to (A3), for that system of equations we know that

for z = 0, u=u, for z = 0, v=V,
for z = h, u=u, for z = h, u=yV,

Thus the system of equations (2.8) results in system (2.18)

C,=nU,
gzh22+Ch+C = U, o1
C,=1nV, '
»h° o h+C, =V,
oy 2

or else
.= f0.0)-2
Co=m; - (2.19)
c, - itav)-23
C, =1V,

If we assume thatU, =0,U, =U,V, =0,V, =0, w|, =0 and w|, = Z—T then equation

(2.17) turns into equation (2.20).

G(ph ap] 6[,0_?136_pJ Uao V0 Lo

X 12rax) oyl 12y ) 2 PNy =0 (2.20)

Further rearranging and simplifying yields equation (2.21), which is the Reynolds Equation
that is going to be treated accordingly in the current thesis.

3 3
Ofphiop) ofph”op)_ Ei(ph)wa_h (2.21)
ox\ 127 ox ) oyl 12n oy )~ 2 ox ot
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2.4. The Stochastic Film Thickness

The current thesis applies the concept of stochastic process to the problem of the surface
roughness in hydrodynamic lubricated bearings. Under this scope, the geometry of the lubricant film in
the bearing is considered to be made up of two parts, which are demonstrated in equation (I)

h: (X,y,t;8) = h(x,y,t) + rz (B)a(t) + rs (B)a(t) (2.22)
@ (2

In equation (1), h(x,y,t) is the nominal film thickness, measuring the large scale part of the film
thickness geometry. This part is equivalent to the deterministic film thickness present in hydrodynamic
lubrication if there was no surface roughness. The variables r,(/3) and ry (/) are the stochastic
variables that represent the surface roughness in the bearing and the shaft respectively, while g(t) is a
deterministic function of time representing the relative motion of the two surfaces.

The two surface roughness random variables are considered to be of such form that the

application of the Reynolds Equation is still valid. Meaning, the surface roughness is a Reynolds type
roughness; the heights of the two surface roughness should not be of the same order as h. For the two

random variables we know that ry () ~ /\/(0 : aé)and rs(B) ~ /\/(O : 052), having the following

distribution probability function.

o) = oz -3 |

For the two random variables we can normalize their standard deviations by using

o’ = ol +0ol, meaning that o, = a,-0 , 05 = a,-0; with @/ + a? = 1. This normalization is

taken into account to quantify the effect of each one of the two surface roughness components in the
performance parameters of the bearing; load carrying capacity, friction force, friction coefficient and flow
rates.
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2.5. The Stochastic Reynolds Equation for constant viscosity & density

2.5.1. Averaging the Reynolds Equation
The current approach is considering an incompressible fluid of constant viscosity, thus we denote

that n(x,y,z,t) = n and p(x,y,z,t) = p. We also assume that g(t) = const, to simplify the
calculations. Inserting the above assumptions in equation (2.21) we derive the Stochastic Reynolds
Equation that will be treated in the current thesis, given by equation (2.23).

, oh, oh,
v(hivp) = 12776— + 6U778— (2.23)

The film thickness is given as h; (x,y,t;8) = h(x,y.t) + rs(B)a(t) + ry(4)g(t) and thus we

know that

a;xT ai(h(x V) +rs(B)a(t) + ra (£)g (1)) = Z_:
s

Expanding the film thickness h, in its terms and substituting the previous into equation (2.23)

yields equation (2.24).

V(h*Vp)+ g®(t)rd(B)Vip + g’ (t)rs (B)V p

+39(t)rs (B)V(h*Vp) + 39 (t)ry (B)V(h*Vp)

+3g2(t)r2(8)V (hvp) + 3% (t)r2 (B)V (hVp) :12’7?;; eunz—: (2.24)
+3g°(t)rg (B)rs (B)VZp +39° (1)1 (B)re (B)V*

+69°(t)rs (B)rs (8)V(hVp)

Solving equation (2.24) requires the exact topography of the two roughness ry(£)and ry (). In

order to avoid this, we will use the statistical representation of those variables. Applying the average
operator in equation (2.24), remembering that since h is a deterministic function thus Vk e R

Eﬁ[hk] = h*, yields equation (2.25).
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V(h3VE"[p])+gs(t)V2Eﬂ[ (ﬂ)p]+g (t VZEﬂ[r3 B) ]
+3g(t ( h2VE’[ 1, () p]) g(t)v ( h*vE’[ )

[rs
+39 (hvEﬁ[r (ﬂ p])+392(t (hVE”[ 13) p]) oh
) s

(

=12n E+6u = (2.25)
+3g°(t)V Eﬂ[ (B)rs ﬂ)p]+3g3 \% ]E”[r (B)re(B) ]
+6g°%(t)V (hVE rs(B)rs ﬁ)p)

The next step is to formally calculate the averages of the equation (2.25). Those averages
represent various moments of the roughness and the pressure. The terms that are to be calculated are listed
below, in ascending order in respect to h for simplicity.

T, = V(h* E’[Vp])

Applying Stein's Lemma in each one of the above terms yields the following form for the terms.

T, = v(h*vm,)
T, = 30§g(t)v{h2 E{;—ZZ)D
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T9

T, = 3049 3(t)]E{

terms

Tl

- 3G§g(t)V[h2 E”{

a2 2.2
= 605050

= 30¢0:9°(t)E’

ovp

AvAR
J’_
ors (B)
Categorizing the previous terms into groups in respect to the order of the variational derivative of
the pressure in respect to the roughness, using that o, = ;-0 and o4 = «, -0, yields the following

039

or (ﬂ)D

= 3059°(t)V(hvm, ) + 3059 z(t)V[h E{

p R
(t)V[h E {—ars(ﬂ)% (ﬂ)D

= 302g° ()V(hvm, ) + 30¢g 2(t)V[h Eﬂ|:

63

(t)E{ar

4 2.3

+30,0:9°(t)E”

+305059°(t)E”

org (

=
I__Im

ord(B)

- V((h3 +30g 2(t)h)Vmp)

= 3a’o’y

(H)v

= 3a/c’g (t)V

= 3a;0'9°

(h* +o%g?(t))VE’

(h* +o%g*(t))VE’

(t)V{hVE{ara

372
aSg"’(t)]E{—a v p}




N 4 4.2 8 62p
T, = 3a,0"g (t)V(hVE {al’;(ﬂ)D

. o?
T, = 6a12a226492(t)v{hVE{6r3(—pD

B)ors (B)
'|: _ 3a4a20493(t)V2Eﬁ_$'
, = 3afa] or (B)r, ()
~ 2 4 6.3 2 _ asp |
B B
T8 - 3051a20- Y (t)v . arsz (ﬂ)arB (ﬂ)

3
Ty = 93(t)a§aGV2E{—aa P )}

Remark 2.1: The term 'fl is the exact and only term that appears in previous literature findings for

isotropic roughness. All the other terms are zero, meaning that the mean values of the variational
derivatives of the pressure in respect to the roughness are equal to zero.
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2.5.2. Variational Derivatives of Pressure
If we differentiate Equation (2.23) in respect to the roughness of the shaft rg ( [)’) we get that

3 8p 2 —
V(hTVars ) +Bg(t)hTVp] =0

The previous equation after manipulations results in:

ovp

ars ()

Since p is a continuous function and since p(0,y,t;) = Oand p(zD,y,t;3) = 0, we know
that p has a maxima or minima (from previous works we know that it's a maxima). Then there exists a

n?

+3g(t)h’vp = C,

. € [0 zD] such as Vp(x*,y,t;ﬂ) = 0and zv((;))(x“y,t;ﬁ) = 0. So we get that C, = 0 and the
r
previous equation turns into
3g(t
I )V(p) (2.26)
ors (B) h,
If we repeat the same for the roughness of the bearing we get that
3g(t
v( P J __390y(p) (2.27)
org () h,
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2.5.3. Final Form of the Stochastic Reynolds Equation
Using Equations (2.26) and (2.27) and Stein's Lemma for negative powers, and categorizing the
terms in respect to the averages that appear, yields the following terms

T, = V((h3 +30292(t)h)Vmp)

T, = —90292(t)V((h2 + azgz(t))E{%D

—
Il

T T

4 _sazgzmv[m{%}_402920)@%}_me]
Combining the previous terms and inserting them into Equation (2.23) yields Equation (2.28).

v((h* -30%g(1)h)vm, ) + 30292(t)V[(0'2g 2(t) - hZ)E’}IZ%DJ = 1277%‘ + sunz—:(z.zs)

T
Equation (2.28) is exact, but yet not closed. In order to get the final form of the Stochastic

Reynolds Equation we make the assumption that E”li%} = IE‘O(h : a)-Eﬁ [Vp] , Which yields equation

T

(2.29).

oh oh

(v((ha ~30%g?(t)h?F, - 30%g2(t)h + 30—494('[)IF0)Vmp)) =12y +8Un— (229)

The coefficient F,(h, o), as well as the coefficients F,(h, o) and F,(h, o), are calculated

numerically in Appendix B and C respectively. From this point on we will denote Fn(h , 0') = [, for

simplicity in equations.

Remark 2.2: Equation (2.29) is the Stochastic Reynolds Equation that we propose. We can see that by
eliminating the terms including the standard deviation of the roughness, taking o = 0, yields the

Deterministic Reynolds Equation V(h*vm, ) = 1277%h +6U ng—h ,where Vm_ = Vp.
X
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2.5.4. Boundary Conditions
Based on [9]

In order to solve the proposed Reynolds Equation, appropriate boundary conditions for the
pressure distribution must be set. The most notable of them are

» The Full Sommerfeld Boundary Condition: This condition assumes that the pressure is equal to
zero at the edges of the unwrapped journal bearing geometry, meaning that p(O, y,t;ﬁ) = 0and

p(zD,y,t;8) = 0.

ho
0 (Dv2) U s

Figure 2.8: Solution of the Reynolds Equation with the Full Sommerfeld Boundary Condition

» The Half Sommerfeld Boundary Condition: This condition neglects negative pressures in the
divergent region of the bearing, by setting them equal to zero, meaning that p(0,y,t;3) = 0,

p(zD,y,t;8) = 0 and p(x,y,t;8) =0 XE(?,HD).

X
D

0 mp/2y U N

Figure 2.9: Solution of the Reynolds Equation with the Half Sommerfeld Boundary Condition
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» Reynolds Boundary Condition: Reynolds suggested that no negative pressures can be sustained
by the lubricant film in the diverging region, and that at the boundary between zero and non-zero

pressure the following condition should apply p = Z—p = 0. The Reynolds boundary condition
X

gives more accurate results in comparison to the Full and Half Sommerfeld conditions, and it is
used for the pressure calculations of the present work.

p

GConverging Diverging
region region
heu L
0 mDi2) u i

Figure 2.10: Solution of the Reynolds Equation with the Reynolds Boundary Condition
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2.6. Design and Performance Parameters

2.6.1. Load Carrying Capacity

The total hydrodynamic load supporting the rotating shaft can be found by integrating the
pressure exerted on the shaft surface. This load can be resolved into two mutually perpendicular
components, one acting on the z'z axis and one on the x'x axis. The total force component projected
along the line of centers is expressed by equations (2.30) and (2.31).

W, = gp-dgs _ IOZ”LLp'Si”(Ww_%j(RS +9(t)rs(B))dyde (2.30)
W, = !!'p.dgs _ ,[OMIOL p_cos(¢)+ a)—%)(RS + g(t)rs(ﬂ))dyda) (2.31)

Averaging the previous equations yields equations (2.32) and (2.33).

27 L o
My = B B) = [ [ myRs + adoa(y” e

-sin[(p to —%]dyda) (2.32)

~

2z L
= E/|W, = f f m,Rs + aZo’g(t)B” -COS[ +w—£]d dw (2.33
Mo = B W) = | meRs + adoa(s” S eosl o+ 0 = dyde 239
The total load capacity W is given by equation (2.34)

2 2
Mys) = M5 T M) (2.34)

A 5%

Figure 2.11: Hydrodynamic Load Components in a Journal Bearing
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2.6.2. Eriction Force
The friction force can be obtained by integrating the X component of the shear stress over the

bearing area

F = ”z’ dS, = Hn— ds,

If we expand the previous equation we get that

27 22— ap 77U
P =Ll S s sn@n i (Re o (0)dvdo
or else
<e122—h .
. _ IOZ IOL z : Tg_Zdydw+Ioz fOL%(RB +g(t)ra(6))dyde (2.35)

Averaging equation (2.35) and applying Stein's Lemma, yields equation (2.36)

2z —h+3 om Uoig?(t
me —f f [[ 2-h+ 3070 (Ul cur, M7 U o @as)

ax Rg

2.6.3. Eriction Coefficient
The friction coefficients , can be calculated from equation (2.37), where m. is the mean

friction force and m,, the mean total load of the bearing.

y=JF 2.37)
My

Since mg = m¢ (al) and m, = rmV(az), then we know that the friction coefficient is a
function of the roughness coefficients, thus u = ,u(al ,az). Assigning different values to the
coefficients, under the restriction that af + a§ =1, gives us different values of the friction coefficient.
The optimum operating point is the point where we have max{mW } and min{mF } That point is equal to

the optimization process of minimizing the friction coefficient min {y} .
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2.6.4. Inlet and Outlet Flow Rates

For normal bearing operation, the lubricant must be supplied to the bearing at the same rate as
that of the lubricant leakage. Otherwise lubricant starvation will occur, which will generally lead to
smaller values of minimum film thickness and higher values of oil temperature. The inlet and outlet rate
per unit length can be calculated by

i, = IOhT udz

Uou = IOhT vdz

By using equations (2.8) and (2.19) for the components u and v of the velocity and the initial conditions
we get that

he h
q, = 1Py (2.38)
12nox 2
h3
Qo = ——L P (2.39)
125 oy

The lubricant inflow and lubricant side leakage can be calculated by the integrations given by
equations (2.40) and (2.41) respectively

Qi = J.OLqin

dy (2.40)

x=0

(Re+g(Ora(B))de+ [ e

Qo = OZ”QM y:L(RB +g(t)rs(B))dx (2.41)

By averaging equations (2.40) and (2.41), and following the same methodology, we get equations
(2.42) and (2.43):

1 (L n
Mo = =5 b (1° = 30707 (Oh7F, ~ 309 (O)h +3g4g4(t)Fo)a_>:X=0dy
1 roef (Re 605" (R )0~ 3Rya 9" (DN'F, om, yLde
out 12570 —30-292(t)(RB _6Uégz(t)Fl)h+3RBg4g4(t)Fl Y
y=0

For normal bearing operation, lubricant must be supplied to the bearing at the same rate as that of
the lubricant leakage; otherwise lubricant starvation will occur, leading to smaller values of minimum
film thickness and higher values of oil temperature
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2.6.5. Sommerfeld Number

Sommerfeld number is a non - dimensional parameter that comprises both design and operation
elements. It characterizes the performance of the bearing and is used to compare similar bearings in
different operational conditions or different bearing designs for a precise operation. Sommerfeld number
can be calculated according to the following equation

s - ZNOL R’ e

where c¢: Bearing clearance

D: Bearing diameter

L: Bearing length

N : Shaft rotational speed

R: Bearing radius

W Total hydrodynamic force

n: Fluid dynamic viscosity

Sommerfeld number is an important quantity in hydrodynamic lubrication analysis; proper values
of Sommerfeld number assure that the shaft is rotating on a sufficient fluid film, thus avoiding direct
contact with the bearing.
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2.6.6. Advanced Film Thickness Geometry
Based on [25]

The area between the rotating shaft and the bearing housing, filled with lubricant oil. will be
geometrically modeled based on several parameters. Those parameters can either be the constant

parameters of the system (L, R, c) or their represented variables of the system (6, e, ¢). It is evident

that the film thickness h is variable and has to be calculated at every time step of the solution, before
solving the Reynolds Equation. Assuming that inertia effects in the film area are neglected, the flow is
laminar, the fluid is Newtonian and incompressible and that the density, the heat and thermal conductivity
are constants, the film thickness geometry for a journal bearing is given by equation (2.43).

h=hy,+h:+h; +h, (2.43)
where h,:  the nominal part of the film thickness, given by (2.4)
he:  the elastic deformation of the bearing housing due to hydrodynamic pressure
h,,: the thermal deformation due to thermal expansion of the shaft and the bearing housing
h,, : the misalignment of the shaft and bearing housing

The elastic deformation part of the film thickness occurs due to the hydrodynamic pressures
applied on the housing of the bearing, assuming that the shaft is rigid. Since marine bearings are stiff
structures, elastic deformations will generally be small. So, in the present thesis, we can ignore the elastic
deformation by taking h, = 0.

The modification of the thermal deformation part of the film thickness has two origins; the
thermal expansion of the shaft, which leads to increased diameter, thus affecting clearance, and the
corresponding deformation of the bearing housing, due to uneven temperature distribution in the bearing
solid domain. In general, thermal deformations become critical in applications characterized by high
values of rotational speed and/or high loads. Marine shaft bearings are generally operated at very low
speeds (below 120 RPM), and eccentricity values are rarely above 0.6-0.7. Therefore, the part of thermal
deformation in the formula for film thickness can be ignored, thus h,, = 0.

Under ideal shaft alignment conditions, the bearing and the shaft centerlines are parallel. In this
case, bearing misalignment is defined by the angle between the centerlines of the two components.
Usually though misalignment values are not zero due to improper shaft alignment, excessive loading or
other operational purposes. Misalignment angles can be resolved into two perpendicular angles, one for
each one of the axes of the coordinate system. Lateral misalignment angles describe shaft rotations about
the vertical axis and vertical misalignment angles describe rotations of the shaft about the horizontal axis.
Taking the previous into consideration, and inserting them into equation (2.43), yield the final equation
(2.44) for the film thickness

h(0,z) = c-(1+e-cos(0)) + z:(w,-cos(p + 0) + w, sin(p + 0)) (2.44)
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3. Numerical Solution

3.1. Solution Algorithm

The goal of the current study is to implement an algorithm capable of solving the problem of
hydrodynamic lubrication for the main bearings of internal combustion engines in ships, which have
roughness. Several algorithms have been developed to solve problems concerning hydrodynamic
lubrication. In this current approach, we will solve the Reynolds Equation using an in-house algorithm
developed in the section of Marine Engineering of NTUA, first introduced by Raptis[26]. Some
modifications were made, to introduce the new terms for the Stochastic Reynolds Equation.

At the beginning of the algorithm, all the necessary geometric details for the bearing are read via
a input file; the bearing length L, diameter D, clearance c, rotational speed N and viscosity 77. This
file includes the solver parameters - grid points, solver type, convergence criteria - as well as the applied
loads in the bearing P, and P, . Also, an initial assumption is made for the eccentricity €, and attitude

angle ¢, .

After reading the initial parameters, the algorithm discretizes the bearing in its unwrapped form
into small divisions. Then, the film thickness geometry is calculated using equation (2.44), the
Deterministic Reynolds Equation is solved numerically according to the Gauss - Seidel iterative method,
and the pressure field is calculated. The hydrodynamic force components are then calculated, by
integrating the pressure field on the shaft surface. If the initial assumptions of eccentricity and attitude
angle are correct, then the equilibrium is attained and the algorithm ends. If not, new eccentricity and
attitude angle values are estimated, using a Newton - Raphson method for two variables. At the end of the
whole process, the bearings operational parameters are calculated and printed out on an output file.

A detailed description of the algorithm is presented in Figure (3.1), the additions or modifications
to the initial algorithm include:

1. The film thickness is calculated using equation (2.44)

2. The solution of the Reynolds Equation is performed using Gauss - Seidel numerical method

3. The hydrodynamic components are calculated by equations (2.33) and (2.34). The integrations
were made using Simpson's rule.

4. The inlet and leakage flow rates of the lubricant are calculated by equations (2.41) and (2.42).
The integrations were made using Simpson's rule.

5. The friction force is calculated by equation (2.37) and the friction coefficient by equation (2.38).
The integrations were made using Simpson's rule.

1-5 are marked in the respective sequence shown in Figure (3.1).
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Figure3.1: Reynolds Equation - Solution Algorithm
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3.2. The Finite Difference Method (FDM)
The journal bearing geometry is studied under its unwrapped domain. This unwrapped bearing is
discretized by a finite element grid of L, points in the y'y axis and D, points in the x'’x. The L,

points represent the number of points alongside the length L of the bearing, while the D, alongside the

diameter. The unwrapped journal bearing geometry is presented in figure (3.2).

Y A
Lax
y=L | I | | | | 1 |
| 1 | | | | | |
SR I N S Pl P d TS bt RO Y (TR | iy pomp e ___4___4.__4___|___..+..
»ED o |
_'l.L'J | i | | | | | l
E s
o L 0 & ] w. P IE ' 1 v v ]
JIBERE oy T,
=5 oa@m ¢ 3 1 |
y=0 I 1 I I 1 1 | ;x
x=0 S x=TD
8=0 Ddiv points g=2m

Figure 3.2: Unwrapped journal bearing geometry

In the previous figure, each point of the grid is identified by the coupled number (i, j), having

four neighboring points - except for the boundary nodes. For this unwrapped journal bearing we know
that

dx = ﬂ
Ddiv
L
dy = —
y I‘div
x(i) = i-dx
y(j) = j-dy
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The Reynolds Equation can be numerically solved over the lubricant domain with the use of the
Finite Difference Method (FDM). The first step is to replace the derivatives of the Reynolds Equation
with algebraic difference quotients which come for the Taylor series expansion

L o) axratt(iLi) axPatt(i,i)
f(i+1,j) = f(i, .
(i+1) (3)+ x|, BT ox? g BT ox® . "
o Co of(iL )| axrare(iLg)] axFatt(iL))
f(i=2,j)= f(i,])- —
(=L3) =100 -5 |i,-+ 20t | 3 i,-+

For small Ax, the terms of order n > 2 can be neglected and the finite central difference

guotients for the first and second derivative can be written in the following way, achieving second order
accuracy:

(i) fi+1j)-f(i-1])
ox |i,j - 2AX

0% (i, j)| _f(i+L ) -2f(i )+ F(i-1])
ox? |i’j AX?
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3.2.1. Solution for the Deterministic Reynolds Equation

The Deterministic Reynolds Equation to be treated is given by equation (2.28) by setting equal to
zero the terms containing the standard deviation of the roughness. This equation is listed below on
equation (3.1)

T, Ty Ts Te
— — — —
2
Q(hsa_ijrha@_ngﬁ P he 2P g, gy, (3.1)
OX oX oX oy oy oy? ot OX
T Ta

The terms that need to be calculated via the finite difference method are denoted on the equation.
For those terms we know that

h®(i+1,j)-h*(i-1,j) p(i+1,j)- p(i-1,j)

x(i+1) - x(i-1)  x(i+1) - x(i-1)

T = he(i ] p(|+1J) 2p(i, i)+ p(i-1,j)
? (X|+1—x ))(x(i) - x(i-1))

h*(i, j+1) = h*(i,j-1) p(i,j+1)- p(i, j-1)

T, =

BTG G () - v(-D)
o= (b (1:1) (,)()I(’J)+ p(i.J 1))
L ) R ) R
T = uy ML) = (i1 )

x(i+1) - x(i-1)

The pressure of the deterministic Reynolds Equation at the node (i, j) comes from the solution
of equation (3.2)
o(i. J) = G(i,j)—A(i,j)-p(i+1,j) = B(i,j)-p(i-1,j)—C(i,j)-p(i,j+1) - D(i, j)-p(i,j-1

-1)
- =00) (3.2)

AL ) = h(i+1,j)—h*(i-1,j)

h
(x(i+1) - x(i—l))2 ’ (X(i+1) - x(i))(x(i) - X(i_l))
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he(i+L§) =h*(i-L.J) |

.. _ h

B.0) = (x(i+1) - x(i-1))"  (x(i+1) = x(D))(x(i) - x(i-1))
() —h? (i) | h*(i. j)
(v(i+1)-y(i-0)"  (v(i+D)-y(D)(y(i) - y(i-))
(i, ) = _h3(i,j+1)—h3(i,j—1)+ h*(i, j)
(v(i+0)-y(i-0)"  (v(i+D) = y(D)(y(i) - ¥(i-1))

. he(i. j) B h°(i, j)
E(0.1) 2(x(i+1)—x(i))(x(i)—x(i—l)) 2(y(j+1)—y(i))(y(j)—y(j—l))
G(i,j) _ 1277.3h(i,j)|m _4h(i2'iz|m—1 + h(i’j)|m-2 +6U77h(::(_|1_;_3:25::151)
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3.2.2. Solution for Christensen's Approach of the Reynolds Equation

Christensen's Approach of Reynolds Equation is given by equation (2.24) by setting equal to zero
the terms containing any derivative of the pressure in respect to the roughness. This equation is listed
below on equation (3.3)

3T16°m - om - o’m
on® om, 3azgz(t)a—h(—p]+(h3+30292(t)h) L I T
OX OX OX | OX OX oh oh
on* om, oh( @ om | PV G
ay > + 302 2()ay( j+(h3+302g2(t)h) x
T4 Ts Tg

The terms that need to be calculated via the finite difference method are denoted on the equation.
For those terms we know that

hs(i+1, j) - hg(i—l, j)'mp(i+1, j) - mp(i—l, j)
x(i+1) - x(i-1) x(i+1) - x(i-1)

T, = 36292(t)h(i+11j) - h(i—l, j) mp(i-i-l,j) - mp(i—l, j)

x(i+1) - x(i-1) x(i+1) - x(i-1)

m, (i+1,j)—2m (i, j)+m_ (i-1,])
(x(i+2) = x()(x() - x(i-2))

R ) =R j=1) my (i j+) - my (i, i-1)
y(j+1)-y(i-1) y(j+1)-y(i-1)

T, =

T, = (*(i.]) + 307> ()i, ).

3 _ h(i,j+1)—h(i,j—l)'mp(i,j+1)—mp(i,j—l)
T =2 O T (-0 v+ - y(iD

m, (i, j+1) -

DTG0 D)

3n(i. j)],, - 4h(i.J),, +h(i. i),

T = (W(00) + 306" (On(in )

T, =127 o
T, - 6U77h(|+_1'1) - h(j—l, i)
x(i+1) - x(i-1)

The pressure of Christensen's approach of the Reynolds Equation at the central node comes from
the solution of equation (3.4)
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G(i,j)— Am,(i+1,j) - B-m (i-1,j) - C-m, (i, j+1) - D-m (i, j-1)

m, (i, ]) = =6 0) (3.4)
where
i) = h3(i+1,j)—h3(i—1,j)+ o2g? h(i+1,j)-h(i-1,j)
Al 1) (x(i+1)—x(i—1))2 o0’ () (x(i+1) - x(i-1))
(h*(i,j) +30°g*(t)h(i, j))
(x(i+2) = x(1))(x(1) = x(i-1))
- _ P+ ) -he(i-1 ) o2g? h(i+1,j) - h(i-1,j)
8 3) (x(i+1) - x(i-1))° ’ ()(x(i+1)—x(i—1))2
(h3(| j)+3c%g*(t)h(i j))
(x(i+2) = x(1))(x(1) = x(i-1))
L (Y B L O o2 (N0 0+ = h(i, j-1)
GG iy
N (h°(i.J) +3a%g*(t)h(i, }))
(y(i+2) = y(D)(y(i) - y(i-2))
D §) = _h3(i,j+1)—h3(i,j—1)_362 (N0 0+1) —h(i, j-1)
(v(i+D) - y(i-)’ (v(i+D) - y(i-1)’
. (h*(i, ) +3cg? (t)h(i, j))
(y(i+2) - y(D)(y(i) - ¥(i-1))
B ) = -2 (h*(i,§)+3c?g?(t)h(i, })) , (h*(i,§) +3c2g?(t)h(i, j))
| (x(i+2) = x(D)(x()) = x(i-2))  (y(i+1) = y(D))(v(J) - y(i-1))
h(i,j) —4h(i,j) . +h(i,j i+1 i) = h(i-1. i
-y I g
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3.2.3. Solution for Proposed Approach of the Reynolds Equation

The current proposal of Reynolds Equation is given by equation (2.24). This equation is listed

below on equation (3.5)

T Tz T3 T,
f_/%
oh® om, 2.2 , OF, om, oh? om 2 2,.,0N0OM,
- -3 t)h— - P_3 t)—
vt G Ol M UL vl MU v
Ts T
oF, om o*m
+30'g" (1) 2L+ (h* - 300" ()h"F, ~30°g* ()h + 309" ()F, ) —*
3 oF, 8 2 am 5
BT _aog2(in ST a2 (1, DT a2 (1 31 2
oy oy oy oy oy oy oy
T1 T Ty T
OF, om, 8?2
+304g4 () 22 4 (h? - 3020 (1)h?F —3azgz(t)h+304g4(t)F0)ay—r2
Tu Ty,

Tis

oh
= 1277§+6U77—(3 5)

T

The terms that need to be calculated via the finite difference method are denoted on the equation.

For those terms we know that

T - h3(i+1,j)—h3(i—1,j)‘mp(i+1,j)—mp(i—l,j)
' x(i+1) — x(i-1) x(i+1) - x(i-1)
) 2o o Fo(i+1,j) = Fy(i-1,j) m (i+1,j)-m (i-1,])
Te = = 307g"(O*(i.)) x(itD) - x(i-1)  x(i+1) - x(i-1)
. . hz(i+1,j)—h2(i—1,j) mp(i+1,j)—mp(i—l,j)
T =~ 30" (U5 (i.) x(i+1) - x(i-1)  x(i+1)— x(i-1)
_ _ h(i+1,j)—h(i—1,j) mp(i+1,j)—mp(i—l,j)
L= 3OS ) X —x(-D)
o B (i+1,§) = Fy (i1, §) m, (i+1,j) - m, (i-1, j)
T =3 O TG X+ —x(i-D)
. h(i,§) =309 * ()" (1, D)o (i) ) m,(i+1,j) - 2m, (i, j) + m, (i-L))
T30t (ON(i i)+ 30 g (OF (i,]))  (x(+1) = x(D)(x(i) - x(i-1)
T - h3(i,j+1)—h3(i,j—1).mp(i,j+1)—mp(i,j—l)
! y(i+1)-y(i-1) y(i+1)-y(i-1)
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_ _aprgz(ynz(i, i) Fell I+ ~ Fo (i i-1) m, (i, j+1) - m, (i, i-1)
Ty = —307g*(t)h* (i ) y(i+1) - y(i-1) v(i+1) - y(i-1)

-1) m, (i, j+1) - m,(i,j-1)

L y
Ty = =30°g" ()F, (i, ) ) y(i+1) - y(i-1)

h2(i, j+1) - h?(i
y(i+1) - y(]

e ML) = h(i-1§) m, (i+L )= m, (i-1, )
To =20 O TN TG vy - y(i)

4 'IFO(iJrl,j)—FO(i—l,j)‘mp(iJrl,j)—mp(i—l,j)
T =3 O DTG yG) - y(iD

12

h( i)—3c?g?(t)h?(i,j)F,(i.]) my (i, j+1) —2my (i, )+ m,(i,j-1)
=30%g* (ON(i, 1) + 309 (OF, (i.3) ) (v(i+2)=y(D))(y(3) - y(i-1))
3h(i j)|, = 4n(i3)],, +h(. ),
2At
h(i+1,j)-h(i-1,j)

x(i+1) — x(i-1)

The pressure of the proposed approach of the Reynolds Equation at the central node comes from
the solution of equation (3.6)

T, =127

T,, = 6Up

m (i, j) = S0 = Amy (i) - B-m, (i-1,§) - C-my (1, J+2) - D-my (1,5 1)

£ ) (3.6)
where
Ay 2 LD 0L g ey Felithd) - (' -1j)
() (x(i+1) - x(i-1))’ 9O (x(i+1) - x(i-1))°
3079 (0, (i, ) O gy ('+1 )=h(i-1.j)

(x(i+1) - x(i-1))° ) (x(i+1) - x(i-1))°
Fo(i+1,j) - Fo(i-1, )

(x(i+1) - x(i-1))°

L P(0d) ~307g " ()h (i, 1) Fo (i, )—309 ()('H+309 (H)Fo (i, 1)
(x(i+1) = x(i))(x(i -1))

+30'g 4('[)-
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h®(i+1,j)—h3(i-1, j) 30797 () (i, Fo(i+1,j) - F,(i-1, )

(x(i+1) - x(i-1))° 9" J) (x(i+1) - x(i-1))°

+ 30292 (O)F, (i, h?(i+1,j)—h?(i-1,]) \307g? h(i+1,j)-h(i-1,j)
9 OR{L) (x(i+1) - x(i-1))° t (x(i+1) - x(i-1))°

Fyo(i+1, j) - Fy (i-1,j)

(x(i+1) - x(i-1))’

h*(i.J) ~307g* ()h*(i, ) (i, J) ~ 30 () (i.§) +30 9" (V)F, (i, )

(x (i+1) - x(i) )( )
oy 2 P =00 e o Foll i+1) —Fo (i §-1)
ey (y(i+1) - y(i-1)’ o) (y(i+1) - y(i-1)’
_352q2 - hz(i,j+1)—h2(i,j—1)_ 522 h(i,j+1)—h(i,j—1)
e OREDT G Saay Yt Gy
Fo(i, j+1) - Fy (i, j-1)
(v(i+2)-y(i-1))°
h3(i,j)—30‘292(t)h2(i,j)FO(i,j)—30‘292(t)h(i,j)+3O‘4g4(t)Fo(i,j)

(y(i+1) - y(3)(y(i) - ¥(i-D)

h3(i,j+1)—h3(i,j—1)+ g2 2 (i Fo (i, j+1) - F, (i, j-1)
(y(i+1) - y(i-1)’ o (y(i+1) - y(i-1)’

+ 35202 i i hz(i,j+1)—h2(,j 1)+ o202 h( J+1) h('j_l)
ORI  Saay T Yt Gy
Fo(i,j+1) = Fy (i, i-1)

(y(i+1) - y(i-D)’

h®(i,j)—3c%g?(t)h*(i,j)F, (i, J) —BG%gZ(t)h-(i, j)+30%g* ()F,(i.])

B(i,J) = -

-30'g(t):

+

+30'g*(t):

+

D(i, j) = -

- 30'g 4(t

Fo(i,j)—3c?g?(t
|
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4. Validation of Modeling

The proposed approach solution for the Reynolds Equation will be validated against the results
published in literature findings, [4], [12], [27] and [28]. This validation will be carried out for both a
slider and a journal bearing. For each bearing, a comparison between the results of the proposed approach
for a rough bearing and the results of a rough bearing under Christensen's approach will be held. The
validation of the proposed approach will be performed, for both cases, in two separate steps.

Firstly, we will run the case of a slider bearing. The validation will be held for a constant
geometric profile and roughness profile, and then the results will be generalized for different slider
bearings geometry and surface roughness. Main findings and comparison between the rough and the
smooth bearings will be summarized according to the operational parameter.

The second step is performing the previous validation for the case of a journal bearing. The
results are compared with literature findings for each one of the operational parameters. Also, an
approach to see the extension of the results from the slider bearing to a journal bearing is performed.

For each case, the basic geometric and operational parameters of the bearing are presented,
alongside with the main equations for the calculation of the bearing parameters, the derivation of which is
performed in Chapter 2. The Reynolds Equation is solved using the Finite Difference method, via the
algorithm mentioned in Chapter 3.

In the figures presented in the current chapter, Christensen’s results are marked with a dashed line,
while the proposed approach’s results are marked with solid lines. The results for a smooth bearing are
denoted with a blue straight line.
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4.1. Slider Bearing
Validation based on[4], [9] and[12]

The present solution algorithm was validated by comparing the calculated operational
characteristics of the bearing with the expected results of literature. A comparison with Christensen's
approach of the Reynolds Equation is also presented. In the case of the slider bearing, we will use two
dimensionless ratios; one for the standard deviation and one for the film geometry, denoted as r andk
respectively. The ratios are given by equations (4.1) and (4.2).

r=— (4.1)

k — max min (42)

min

The slider bearing used in the calculations for the validation has the following geometric and
operating parameters:

e Slider Length L=005m
e Film thickness h,, =50 um

e Dynamic viscosity n = 0.037 Pa-sec

. _ m
e Sliding speed U =12 Aec

In general, literature findings suggest that an increase of the pressure profile, the load carrying
capacity and the friction force is anticipated, while the friction coefficient is expected to decrease. Each
one of the design and performance parameters of the slider bearing is calculated for the case of smooth
bearing, meaning no roughness, and for a rough bearing. The rough bearing consists of two parameters;
the roughness profile of the upper part and the roughness profile of the lower part, which is the moving
part of the bearing. In the case of rough bearing, the parameters are calculated for both Christensen’s
approach and proposed approach of the Reynolds Equation, and a comparison between the approaches is
held. Since each one of the approaches is based on different assumptions, we expect the equations used
for calculating the operational characteristics to differ. Thus the equations used for the calculations are
listed below for each one of the approaches.

For a Smooth Slider Bearing




For a Rough Slider Bearing (Christensen’s Approach)

B

m, = E’|W(B)| = f m,dx

0

B

h Omp
OX

+ nURBIFl]dx

m =8 [F(5) = |

Me
H=—
My

For a Rough Slider Bearing (Proposed Approach)

m, = Eﬂ[w(ﬁ)] = ﬁBmpdx

B(h —30%g°(t)F, om,
= E?|F = + U, |dx
Me
H=—
My
where
oy The standard deviation of the upper part of the slider bearing

Ow. The standard deviation of the lower, moving, part of the slider bearing
F,:  The correlation coefficient between the mean pressure and mean film thickness
F,:  The first negative moment of the stochastic film thickness

We observe that the equations based on Christensen’s approach differ from the equations
proposed in the current approach. Those differences are based on Christensen's assumption that the unit
flow rates in both directions are of zero (or negligible) variance ([13]). The previous assumption, as was

_9'p
9"rs (B)
Remark 4.1: We notice that both Christensen’s equations and the proposed equations for a rough

bearing yield the equations of a smooth bearing, by setting the deviations of each part equal to 0, as
proposed in Remark (2.2).

shown in Remark (2.1), is equal to assuming E” = Ofor n € N”, which resultsin F, = 0.
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4.1.1. Initial Validation of the Proposed Solution

First we will compare the results acquired for a slider bearing with convergence ratio k = 1 for a

smooth bearing and for a rough bearing with deviation ratios o,, = 0and o, = 0.2-h,. For the rough

bearing, we utilized both the proposed approach and Christensen's approach to compare the results. The
simulation results for the pressure profile are given in Figure (4.1), while the rest operational parameters

are summarized in Table (4.1).
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0.4 T = ieeeens
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X [m]

Figure 4.1: Pressure Profile for oy, = 0, o, = 0.2:h; and k =1
Units  Smooth Bearing Christensen’'s Proposed
Approach Approach
Maximum Pressure MPa 2.219 2.083 2.586
Non Dimensional Maximum Pressure ) 0.0417 0.0391 0.0485
Load Carrying kN 70.54 66.39 81.49
Non Dimensionless Load Carrying ) 0.0265 0.0249 0.0306
Friction Force N 342.92 347.52 351.58
Non Dimensionless Friction Force () 0.772 0.783 0.792
Friction Coefficient ) 0.0049 0.0054 0.0044
Non Dimensionless Friction Coefficient () 4.9820 5.3848 4.3970

Table 4.1: Operational parameters of a slider bearing for oy, = 0, o, = 0.2:h; and k =1

We notice that the proposed solution of the Reynolds Equation for rough bearings complies with
the findings in literature, while Christensen's approach is unsuited for calculating the increase in the
pressure and load carrying capacity, which results in a higher friction coefficient. To further quantify the
results for each approach, we have calculated and summarized the differences of the rough bearing

operational parameters, for both approaches, from those of a smooth bearing in Table (4.2).

Ratios Units Christensen's Approach  Proposed Approach
Maximum Pressure % -6.13 16.54
Load Carrying % -5.88 15.52
Friction Force % 1.34 2.52
Friction Coefficient % 8.09 11.74

Table 4.2: Difference in [%)] of operational parameters of a slider bearing for oy, = 0, o, = 0.2-h; and k=1
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4.1.2. Maximum Pressure
Figures (4.2) ~ (4.3) show the maximum value of non-dimensional pressure for a smooth bearing

and a rough bearing. Figure (4.2) was plotted for the case of convergence ratio k = [0 , 5], and for

deviation ratios r,,, = 0 and r,, = 0.2. In Figure (4.3) different deviation ratios are plotted in the same
plot, both for the proposed approach and for Christensen's approach.

We observe that the results of the previous validation can be extended for different values of
convergence ratio and deviation ratios. As expected from the previous validation, we notice that the

calculated maximum pressure of the proposed approach is of higher values than that of a smooth bearing,
while Christensen's approach is lower.
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Figure 4.3: Non Dimensional Maximum Pressure for I, = {0.01 , 0.1, 0.2}
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We also observe that while r — 0, i.e. the deviation is getting smaller, the differences for both

approaches are nearing the values of a smooth bearing. This can be seen in Figure (4.4), in which we have
plotted the difference of the maximum pressure in a rough bearing and a smooth bearing, for different
values of deviation ratios and for convergence ration k = 2. Figure (4.4) was plotted only for the

proposed approach.
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Figure 4.4: Non Dimensional Maximum Pressure for K = 2

We observe that while r,, — 0 and r,,, — 0 then the difference of the maximum pressure

reaches zero, meaning that the maximum pressure is equal to the maximum pressure of a smooth bearing.
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4.1.3. Load Carrying Capacity
Figures (4.5) ~ (4.6) show the normalized load carrying capacity for a smooth bearing and a

rough bearing. Figure (4.5) was plotted for the case of convergence ratio k = [0 , 5] , and for deviation

ratios r,,, = 0 and r,, = 0.2. In Figure (4.6) different deviation ratios are plotted in the same plot, both

for the proposed approach and for Christensen’s approach.

Similar to the maximum pressure case, the results of the initial validation can be extended for
different values of convergence ratio and deviation ratios. As expected, we notice that the calculated load
carrying capacity of the proposed approach is higher than that of a smooth bearing, while Christensen's
approach is lower.
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Figure 4.6: Non Dimensional Load Carrying Capacity for I, = {0.01 , 0.1, 0.2}
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We observe that while r — 0, i.e. the deviation is getting smaller, the differences for both

approaches are nearing the values of a smooth bearing, similar to the maximum pressure results. This can
be seen in Figure (4.7), in which we have plotted the difference of the load carrying capacity in a rough
bearing and a smooth bearing, for different values of deviation ratios and for convergence ration k = 2.

Figure (4.7) was plotted only for the proposed approach.
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Figure 4.7: Non Dimensional Load Carrying Capacity for K = 2

We observe that while r,, — 0 and r,,, — 0 then the difference of the maximum pressure

reaches zero, meaning that the maximum pressure is equal to the maximum pressure of a smooth bearing.

Remark 4.2: Although literature findings predict a pressure build up in the parallel slider bearing
(k = 0), both the previous approaches fail to predict this, as it can be seen in figure (4.6). This is due

to the assumption that the stochastic roughness is a stochastic variable and not a stochastic function of
space.
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4.1.4. Friction Force
Figures (4.8) ~ (4.9) show the normalized friction force for a smooth bearing and a rough bearing.

Figure (4.8) was plotted for the case of convergence ratio k = [0 , 5] , and for deviation ratios r,,, = 0

and r,, = 0.2. In Figure (4.9) different deviation ratios are plotted in the same plot, both for the

low

proposed approach and for Christensen's approach.

Similar to the other operational parameters, the results of the initial validation for the friction
force can be extended for different values of convergence ratio and deviation ratios. As expected, we
notice that the calculated friction force of the proposed approach is higher than that of a smooth bearing.
When it comes to Christensen's approach, we observe that the friction force starts from higher values up

to some convergence ratio k ~, after which lower values than that of a smooth bearing are calculated.
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Figure 4.8: Non Dimensional Friction Force for oy, = 0 ando,, = 0.2:h,
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Figure 4.9: Non Dimensional Friction Force for Iy, = {0.01, 0.1, 0.2}
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We observe that while r — 0, i.e. the deviation is getting smaller, the differences for both

approaches are nearing the values of a smooth bearing, similar to the results of the other operational
parameters. This can be seen in Figure (4.10), in which we have plotted the difference of the friction force
in a rough bearing and a smooth bearing, for different values of deviation ratios and for convergence
ration k = 2. Figure (4.10) was plotted only for the proposed approach.

Uup [#m] 0 0 T [pem]

Figure 4.10: Non Dimensional Friction Force for K = 2

We observe that while r,, — 0 and r,,, — 0 then the difference of the maximum pressure

reaches zero, meaning that the maximum pressure is equal to the maximum pressure of a smooth bearing.

64



4.1.5. Coefficient of Friction
Figures (4.11) ~ (4.12) show the value of non-dimensional coefficient of friction for a smooth

bearing and a rough bearing. Figure (4.11) was plotted for the case of convergence ratio k = [0 , 5] , and

for deviation ratios r,,, = 0 and r,, = 0.2. In Figure (4.12) different deviation ratios are plotted in the

same plot, both for the proposed approach and for Christensen's approach.

We observe that the results of the initial validation of the friction coefficient can also be extended
for different values of convergence ratio and deviation ratios. As expected from the previous validation,
we notice that the coefficient of friction calculated from the proposed approach has lower values than that
of a smooth bearing, while Christensen's approach is giving higher values. This is due to the fact that
Christensen's approach calculates smaller values for the load carrying capacity, which in addition to the
higher values of friction force result in a total higher coefficient of friction.
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Figure 4.12: Non Dimensional Coefficient of Friction for r,,, = {0.01, 0.1, 0.2}
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We also observe that while r — 0, i.e. the deviation is getting smaller, the differences for both

approaches, similar to the other operational parameters, are nearing the values of a smooth bearing. This
can be seen in Figure (4.13), in which we have plotted the difference of the friction coefficient in a rough
bearing and a smooth bearing, for different values of deviation ratios and for convergence ratio k = 2.

Figure (4.13) was plotted only for the proposed approach.
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Figure 4.13: Non Dimensional Coefficient of Friction for K = 2

We observe that while r,, — 0 and r,,, — 0 then the difference of the maximum pressure

reaches zero, meaning that the maximum pressure is equal to the maximum pressure of a smooth bearing.
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4.2. Journal Bearing
Validation based on [6], [27], [28] and [29]

Following the validation of the proposed solution of the Reynolds Equation in a wide slider
bearing, we now progress in the validation of the solution for a journal bearing. The present solution
algorithm was validated by comparing the calculated operational characteristics of the rough journal
bearing with the respective parameters of a smooth journal bearing for the same geometry, meaning the
same eccentricity ratio and attitude angle. The external load for the smooth bearing varied from 30 kN

to 120 kN so as to cover different values of Sommerfeld number S and eccentricity ratios € .

The journal bearing we test for this validation has the following geometric and operating
parameters:

e Bearing Diameter D=10m
e Bearing Length L=21m
o Radial Clearance C = 0.0005 m
e Rotational Speed N =90 RPM

e Lubricant Viscosity n = 0.001 Pa-sec

In general, literature findings suggest that an increase of the pressure profile, the load carrying
capacity and the friction force is anticipated, while the friction coefficient is expected to decrease. Each
one of the design and performance parameters is calculated for the case of smooth bearing, meaning no
roughness, and for a rough bearing. The rough bearing consists of two parameters; the roughness profile
of the bearing and the roughness profile of shaft, which is the moving part of the bearing. In the case of
rough bearing, the parameters are calculated for both Christensen’s approach and proposed approach of
the Reynolds Equation, and a comparison between the two approaches is held. Since each one of the
approaches is based on different assumptions, we expect the equations for calculating the operational
characteristics to differ. Thus the equations used for the calculations are listed below for each one of the
approaches.

For a Smooth Journal Bearing

2z oL R
W, = IO jo p-R-sm(go+a)—%jdyda)

27 oL
W, = Io J'O p-R-cos(¢+w—%)dyda)

7D L am
S
0 026X h

/’l:

dydx

F
w
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where og:

For a Rough Slider Bearing (Christensen’s Approach)

2z L ] P

My, () :j; fo mpRs-sm[goer—E]dydw
2z L T

My, () :j; j; mpRS-cos[¢+w—E]dyda)

7D L hamp
m = E’[F(p)] = J; fo [E oo +nUFl]dxdy

Me
= —
My

For a Rough Slider Bearing (Proposed Approach)

2r L 8 p - x
My, p) = j; j; m,Rs + o5g(t)E” or. (7] sin| g + o — - |dydo

27 L 8 p x
My, (p) = J; fo m,Rs + o5g(t)B” or. (7] 008| @ + @~ |dydw

2

™ rLh— 3029 (t)F, om o
[ (ﬂ)] j; j:) [ 2 ow et R 2

dxdy

lu:_
My

The standard deviation of the bearing

The standard deviation of the shaft

The correlation coefficient between the mean pressure and mean film thickness
The first negative moment of the stochastic film thickness

The second negative moment of the stochastic film thickness

Remark 4.3:We notice that both Christensen's equations and the proposed equations for a rough
bearing yield the equations of a smooth bearing, by setting the deviations of each part equal to 0, as
proposed in Remark (2.2).
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4.2.1. Maximum Pressure
Figures (4.14) ~ (4.16) show the maximum value of non-dimensional pressure for a smooth

bearing and a rough bearing. Figure (4.14) was plotted for the case of external loadW = [30 , 120] kN,

and for shaft and bearing standard deviation o3 = 0 and o, = 10 um respectively. In Figure (4.15)

the maximum pressure value is plotted for different bearing standard deviations and for external loads
W = [30,120] kN.

We notice that the proposed solution of the Reynolds Equation for rough journal bearings
calculates the expected pressure build up mentioned in literature findings, in contrast to Christensen's
approach which does not.
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Figure 4.14: Non Dimensional Maximum Pressure for o = 0 andog = 10 um
6
5
_:: 3
D-‘C

dC\’B [pem]
Figure 4.15: Non Dimensional Maximum Pressure for o5 = [0 ,10] 4m
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We also observe that while & — 0, i.e. the deviation is getting smaller, the differences for both

approaches are nearing the values of a smooth bearing. This can be also seen in Figure (4.16), in which
we have plotted the difference of the maximum pressure in a rough bearing and a smooth bearing, for
different values of deviation and for external load W = 120 kN . Figure (4.16) was plotted only for the

proposed approach.

de\"B [pem] dc\’s [pm]

Figure 4.16: Non Dimensional Maximum Pressure for W = 120 kN

We observe that while o, — 0 and oz — 0 then the difference of the maximum pressure

reaches zero, meaning that the maximum pressure is equal to the maximum pressure of a smooth bearing.
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4.2.2. Load Carrying Capacity
Figures (4.17) ~ (4.19) show the normalized load carrying capacity for a smooth and a rough

journal bearing. Figure (4.17) was plotted for the case of external load W = [30 , 120] kN, and for

standard deviations in the shaft and bearing o = 0 and o, = 10 um respectively. In Figure (4.18)

the value of the calculated load is plotted for different bearing standard deviations and for external loads
W = [30,120] kN.

Similar to the maximum pressure case, the results for the load carrying capacity of the proposed
approach of the Reynolds Equation are in harmony with literature findings. As expected, we notice that
the calculated load carrying capacity of the proposed approach is higher than that of a smooth bearing,
while Christensen's approach is lower.
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Figure 4.17: Non Dimensional Load Carrying Capacity for g = 0 andog = 10 um
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Figure 4.18: Non Dimensional Load Carrying Capacity for o = [0 , 10] Hum
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We observe that while & — 0, i.e. the deviation is getting smaller, the differences for both

approaches are getting closer to the values of a smooth bearing, similar to the maximum pressure results.
This can be seen in Figure (4.19), in which we have plotted the difference of the load carrying capacity of
a rough bearing from the one of a smooth bearing, for different values of deviation and for external load
W = 120 kN . Figure (4.19) was plotted only for the proposed approach.

W [%]

b2

10

4

dev,, [pm] dev [pm]

Figure 4.19: Non Dimensional Load Carrying Capacity for W = 120 kN

We observe that while o4 — 0 and oy — 0 the difference of the bearings load carrying

capacity reaches zero, meaning it is equal to the load carrying capacity of a smooth bearing.
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4.2.3. Friction Force
Figures (4.20) ~ (4.22) show the normalized friction force for a smooth bearing and a rough

bearing. Figure (4.20) was plotted for the case of external load W = [30 , 120] kN , and for deviation in

the shaft o = 0 and in the bearing o, = 10 um. In Figure (4.21) the friction force is plotted for
different bearing standard deviations and for external loads W = [30 ,120] kN .

We observe that the results calculated for the friction force by the proposed approach of the
Reynolds Equation are validated against literature findings. We also observe that the friction force

calculated by Christensen’s approach has increased values in relation to the friction force calculated for
the smooth bearing.
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Figure 4.20: Non Dimensional Friction Force for o3 = 0 andogz = 10 um

70

60 50
Wm [kN]

30 0 dch [p2m]

Figure 4.21: Non Dimensional Friction Force for g = [0 , 10] am
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We observe that while & — 0, i.e. the deviation is getting smaller, the differences for both

approaches are nearing the values of a smooth bearing, similar to the results of the other operational
parameters. This can be seen in Figure (4.22), in which we have plotted the difference of the friction force
in a rough bearing and a smooth bearing, for different values of standard deviation and for external load
W = 120 kN . Figure (4.22) was plotted only for the proposed approach.

0 0 N :
devy [pm] dev, [pm]

Figure 4.22: Non Dimensional Friction Force for W = 120 kN
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4.2.4. Coefficient of Friction
Figures (4.23) ~ (4.24) show the value of non-dimensional coefficient of friction for a smooth

bearing and a rough bearing. Figure (4.23) was plotted for the case of external load W = [30 , 120] kN,

and for standard deviation oy = 0 and o, =10 um. In Figure (4.24) the calculated value of the

coefficient of friction is plotted for different bearing standard deviations and for external loads
W = [30,120] kN.

We observe that, similar to the other operational parameters, the calculations are according to the
ones found in literature. As expected, we notice that the coefficient of friction calculated from the
proposed approach has lower values than that of a smooth bearing, while Christensen's approach is giving
higher values. This is due to the fact that Christensen's approach calculates smaller values for the load
carrying capacity, which in addition to the higher values of friction force result in a total higher
coefficient of friction.
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Figure 4.23: Non Dimensional Coefficient of Friction for cg = 0 andog = 10 um
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Figure 4.24: Non Dimensional Coefficient of Friction for o = [O ,10] um
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We also observe that while & — 0, i.e. the deviation is getting smaller, the differences for both

approaches, similar to the other operational parameters, are nearing the values of a smooth bearing. This
can be seen in Figure (4.25), in which we have plotted the difference of the friction coefficient in a rough
bearing and a smooth bearing, for different values of deviation and for external load W = 120 kN .

Figure (4.25) was plotted only for the proposed approach.
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Figure 4.25: Non Dimensional Coefficient of Friction for W = 120 kN
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5. Numerical Simulations

Following the validation of the proposed solution of the Reynolds Equation in both a slider and a
journal bearing, we now progress in numerical simulations of the solution for a journal bearing in real
operational conditions; meaning we kept the load constant while the geometric parameters could vary to
reach the hydrodynamic equilibrium. This was done in order to see how a rough journal bearing operates
in a specific external load in contrast to a smooth bearing, and how the operational parameters of the
bearing alter due to the constant external load. The external load varied from 30 kN to 110 kN so as to

cover different values of Sommerfeld number S and eccentricity ratios e, keeping in mind that the
bearing operates in the hydrodynamic regime.

The journal bearing we use in the below numerical simulation, is the same as the one used in
Chapter 4, and its geometric and operating parameters are listed below

e Bearing Diameter D=10m
e Bearing Length L=21m
¢ Radial Clearance C = 0.0005 m
¢ Rotational Speed N =90 RPM

e Lubricant Viscosity n = 0.001 Pa-sec

Each one of the design and performance parameters for the slider bearing is calculated for a
smooth bearing and for a rough bearing. The equations used for the calculations of both bearings are the
following.

For a Smooth Journal Bearing

2z L R T
W, = fo IO p-R-sm(¢+w—E)dyda)

2z L
W, = jo J.O p-R-COS(¢+w—%)dyda)

IZ'D Lhamp 77U
F = — —— |dydx
j; fo[28x+h 4
_F
Y

For a Rough Slider Bearing (Proposed Approach)

2 L
Mw,(p) = j; j;

ap
ors (B)

T

2

m,Rs + o5g(t)E’ -Sin[¢+a)— ]dyda)

77



dp

ors (B)

m,Rs + aszg(t)E”

-cos[go +o —%]dyda)

27 L
M, (p) = fo j;

7D '-h—36292(t)IF om Mol
:E'BF — 0 P UTF, — BF dxd
A F) j;j;[ 2 g0 T R, 2|
Me
H=—
My

where
og: The standard deviation of the bearing
og:  The standard deviation of the shaft
F,:  The correlation coefficient between the mean pressure and mean film thickness
F,:  The first negative moment of the stochastic film thickness

F,:  The second negative moment of the stochastic film thickness
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5.1.1. Attitude Angle

The first parameter that we will check is the one of the attitude angle. Figure (5.1) shows the
maximum pressure for W, = [30,120] kN and some selective standard deviations, while Figures (5.2)

and (5.3) depict the effect of the stochastic roughness for different external loads and standard deviations.
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Figure 5.1: Attitude Angle for oy = {0 ,2,4,6,8, 10} “m
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Figure 5.2: Attitude Angle for oy = [0 ,10] 4m

79



005
0.1

05

-0.05 .

-0.05

-0.1

Attitude Angle [%]

0,15 .

-02 0.1

20 ®

40
60 2015

80

o . — = 10
100 \ - . " 9

W oo [KN] 00~ P 3 *

dcv“ [fm]

Figure 5.3: Difference of Attitude Angle in [%] for o = [0 , 10] Hm

Generally, we see that the attitude angle tends to not alter significantly in respect to the attitude
angle a smooth bearing has. For external loads W, < 72 kN we see that the attitude angle tends to get

higher values, while for external loads W,,, > 72 kN higher values. For W,, = 40 kN we observe

that the attitude angle, for all the standard deviations, has a maximum value. Since attitude angle is highly
correlated with the hydrodynamic load and is a component strongly dependent from the numerical
execution of the solution algorithm, it cannot be further evaluated.

80



5.1.2. Geomet

ry Results

We know that the film thickness is a function of the eccentricity ratio € and the bearing clearance
. The analytical expression of the film thickness is given by equation (2.4), which is also given below.

Regarding the eccentricity ratio e figures (5.4) ~ (5.6) were plotted. Figure (5.4) displays the
values of eccentricity ratio, as well as their difference from their respective values of a smooth bearing,

for a selective set of standard deviations and for W, = [30 ,120] kN . In figure (5.5) we plotted the

values of eccentricity ratio for a rough journal bearing under different external load and for different
standard deviations, while in figure (5.6) we plotted the difference of the eccentricity ratio from the

smooth bearing.
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As far as the geometry profile of the film thickness is concerned, it is easy to observe that it
depends on the value of the eccentricity ratio. Thus, alongside with the results acquired for the
eccentricity ratio, we also plotted the results for the film thickness. In Figure (5.7) the minimum values of
the deterministic film thickness are displayed for a selective set of standard deviations, in respect to the
external load. In Figures (5.8) and (5.9) we plotted the dimensional values of minimum film thickness for
a rough journal bearing under different external load and for different standard deviations as well as their
difference from those of a smooth bearing. The values of the film thickness presented in the figures are
the values of the deterministic part, thus are the mean values of the film thickness.
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Figure5.7: Minimum Film Thickness for oy = {O ,2,4,6,8, 10} Hm
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Firstly we observe that as the standard deviation approaches zero, thus as the rough bearing is
getting smoother, the effect of the roughness tends to zero for both the eccentricity ratio and the film
thickness. This was expected from remark (2.2) as well as from the validation based on a rough slider
bearing; as deviation reaches zero the results acquired tend to reach those of a smooth bearing. We also
observe that as the standard deviation is going to higher values, the eccentricity ratio of the journal
bearing is decreasing and the minimum value of the film thickness is increasing. The effect of this
decrease and increase respectively is rising as we approach higher external loads. This means, that the
rough bearing tends to operate under more steady conditions, e.g. avoiding the possibility of metal to
metal contact between the shaft and the bearing.
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5.1.3. Maximum Pressure
In this sub section, the effects of stochastic roughness on the maximum pressure are plotted.

Figure (5.10) shows the maximum pressure for W, = [30,120] kN and some selective standard

deviations, while Figures (5.11) and (5.12) depict the effect of the stochastic roughness for different
external loads and standard deviations.
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From the previous figures we observe that for small external loads W_, < 50 kN the maximum

> 50 kN

ext

pressure generated is slightly smaller (< 0.03 %) than that of a smooth bearing, while for W

ext

the maximum pressure gradually increases.

The above observation can be explained by looking over the operational conditions of the bearing.
In external loads W, < 50 kN, the pressure build up in the journal bearing with constant geometry was

of small values. Thus keeping the external load constant, a decreased pressure generation occurred in the
bearing. For the journal bearing to withstand this lower load, a different pressure profile is generated that
is characterized by smaller values of pressure.
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5.1.4. Power Loss& Friction Torque

The extend of the effect of the surface roughness to the friction force, can be studied by analyzing
the results for the Power Loss and Friction Torque, given by equations (5.1) and (5.2) respectively.

My, = M-U (5.1)

D

My, = Mg— (5.2)
2

In respect to the previous equations, Figures (5.13) ~ (5.15) for the power loss and Figure (5.16) ~

(5.18) for the friction torque were plotted. Figures (5.13) and (5.16) display the values of power loss and

friction torque, as well as their difference from their respective values of a smooth bearing, for a selective

set of standard deviations and for W, = [30 ,120] kKN . In figures (5.14) and (5.17) we plotted the

mentioned values for a rough journal bearing under different external load and for different standard

deviations, while in Figures (5.15) and (5.18) we plotted the difference of the values from the respective
values of a smooth bearing.
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We observe that the power loss is decreasing with increasing values of standard deviation, which

is due to a decreasing friction force. The same results can be also seen in Figures (5.16) ~ (5.18) regarding
the friction torque.

87



0.07

0.063

0.055

0.05

Friction Torque
[kNm]

0.045

0.04

0.035
30

40

50 60 70 80 90
W [kN]

—— Smooth Bearing

Friction Torque [%]

W [kN]

30 40 50 60 0 80

90 oo 110

Figure 5.16: Friction Torque for oy = {O ,2,4,6,8, 10} 4m

0.07 -

0.065 |

s = o
S 5 =
2 & =5

Friction Torque [kNm]
=
B

|:I-:\rh [pm]

Figure 5.17: Friction Torque for

&
i o

=
=

Friction Torque [%)]

W [kN]

ext

og =[0,10] um

10 dev, [um]

0.065

0.06

0.055

0.05

0.045

0.04

0

Figure 5.18: Difference of Friction Torque in [%] for o5 = [0 , 10] 4m

88



5.1.5.

Lastly we have quantified the effect that surface roughness has on the coefficient of friction.
Since we have kept the external load, thus the load carrying capacity of the bearing, constant and the
friction force is decreasing, we except that the friction coefficient will also decrease. In order to evaluate
this, we have produced Figures (5.19) ~ (5.21). Figure (5.19) displays the values of the coefficient of
friction, as well as their difference from their respective values of a smooth bearing, for a selective set of

standard deviations and for W, = [30 ,120] kN . In figure (5.20) we plotted the values of friction

coefficient for a rough journal bearing under different external load and for different standard deviations,

Friction Coefficient

while in figure (5.21) we plotted its difference of the from the smooth bearing.
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We observe that the friction coefficient is decreasing with increasing values of standard deviation,
but in smaller rates compared to the results acquired in Chapter (4.2). This is because, by keeping the
external load constant, a decreased pressure generation occurred in the bearing. This “reduced” profile
pressure, results in smaller values of friction and load carrying capacity, which result in higher
normalized friction coefficients.

We have to point out, that the friction coefficient in the case of rough bearing is still of smaller
values than that of a smooth bearing. The previous comparison was held between the friction coefficient
of the rough bearing in the case of constant geometry, i.e. € and ¢ constant, and in the case of constant

operational condition, i.e. W, constant.
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6. Results & Discussion

In the present thesis a novel stochastic solution of the Reynolds Equation for rough slider and
journal bearings is derived and solved. Different geometric and roughness profiles, as well as operational
conditions are tested, and the effect of stochastic roughness in hydrodynamic lubrication problems of
journal bearings is quantified accordingly. The differential equations presented in the current analysis
were solved using the Finite Difference method.

In the case of slider bearings, the introduction of surface roughness leads to an increase in the
pressure and the load carrying capacity of the bearing. As the sliders convergence ratio tends to 0, thus the
bearing tends to be parallel, we notice a significant increase in both those parameters, up to 35 %, which
is in accordance with calculations for rough parallel bearings. The friction force calculated is also higher
in comparison to that of a smooth bearing, exhibiting an increase of up to 4%. However, the friction
coefficient of a rough bearing, being the ratio of friction force over load capacity, is smaller than that of a
smooth bearing, exhibiting decrease which reaches 20%. We notice that the values of all the calculated
operational parameters asymptotically tend to a constant value as the convergence ratio increase;
physically this mean that as the bearing gets steeper the effect of the roughness tends to be constant.

As far as the journal bearing is taken into consideration, we observe that the mean pressure
generated exhibits slightly higher values, in comparison to those of a smooth bearing, of the order of 1%.
The minimum film thickness of a rough journal bearing tends to take higher values in comparison to that
of smooth bearings, with difference reaching 6%. This means that the rough bearings tend to operate on
higher minimum film thicknesses, aiding in avoiding the metal to metal contact. As a consequence, the
rougher the bearing the more it operates on smaller eccentricity values. Furthermore, the friction force,
and thus consequently the friction torque and power losses, takes lower values than the ones of a smooth
bearing, with differences up to 1%. Lastly, the friction coefficient tends to decrease in value as the
deviation is getting higher or the Sommerfeld number is decreasing.

At this point, we have to comment that, on first sight, the maximum differences calculated in the
journal bearing were notably lower than those of a slider bearing. This can be explained by calculating the
respective “convergence ratio” and “deviation ratio” of the journal bearing. Since the eccentricity varied

from 0.4 to 0.8, the minimum film thickness took values in [100 , 300] um, and thus the maximum
deviation ratio calculated was r,,, = 0.1, while the maximum convergence ration is k., = 8. So if we

compare the results acquired for the same deviation ratio, we see that they are of the same level.

91



7. Euture Work
Future work, in continuation of the present analysis, can include the following topics

» Calculations for the variance of the stochastic quantities mentioned in the previous analysis, such
as the pressure, the load capacity and the friction force.

» Modification of the proposed solution by assuming the stochastic roughness as a stochastic
function of space and time, rather than a stochastic variable

» Extension of the present model to account for inertia effects, hydrophobic surfaces, thermal
effects in the lubricant domain and elastic deformations of the bearing structure

» Extension of the current approach to account for wear in the surfaces, via altering the statistical
guantities of surface roughness; for example, the average of the surface roughness would be a
time dependent function

» Extension of the suggested Reynolds Equation to account for more complex, and realistic,
operational conditions
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Appendix A: The Stein's Lemma

Let X () be a stochastic variable, following the natural distribution with zero mean value and

deviation &, and g(X(ﬂ)) a function of that stochastic variable. It was proposed and proved by
Charles M. Stein in [30], that the following equation is valid.

ﬂ 7800
w[xiolx(o)] - o°e| 2|

If we suppose that X (/5’) is the stochastic roughness and g(X (,B)) is the stochastic pressure,
then we can calculate the averages that appear in the proposed solution. Those integrals have the form of
E’ [r " (,b’) p] , where n = {0,1, 2,3} . The calculated averages are found below.
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By using Stein's lemma we can also calculate the negative averages E”[(h + g(t)r(/;?))fn p},

where n = {2,3}, which are calculated below.
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Appendix B: Moments Concerning The Stochastic Film Thickness

As mentioned in Chapter (2), the stochastic roughness are assumed to be random variables, each
one following a different normal distribution. For those variables we know that their mean and standard
deviation is given by equations (B.1) and (B.2) for r,(4)and (B.3) and (B.4) for r (/).

2
Coatprre(s) = On (B2)

2
Cotpyrs(p) = s (B.4)

For the stochastic film thickness, we know that its two first central moments are given by
equations (B.5) and (B.6)

m, = E’|h;| = B’[h]+ E’[rg (B)] + B”[rs(8) = h (B.5)

T

Con = Eﬂ[hf]—(E/’[hT])z = o (B.6)

In our approach, we propose to use the Taylor Expansion for calculating the factor I, .

According to [32] the Taylor Expansion for the moments of functions of random variables reads as
following

Let fl(X ,Y) = é be a function of the random variable X and Y . Then by using the Taylor

Expansion we know that

X7 E’[X] Cov(X ’Y)+ B’ [X] ar
E {Yi| E'B[Y] (]E/}[Y])z (Eﬁ[Y])g V (Y)

Utilizing the Taylor Expansion for the correlation factor [F,, with X being the pressure and Y

the stochastic film thickness we get equations (B.7)

E{@] ) I]Sﬁ[Vp] . Cov(Vp, h,) . B’ [Vp] Var(n,)

3 O e

(B.7)
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where E’[Vp] = Vm,
E’[h; ] =h
Cov(Vp, hy) = B’ [h,-Vp]-E"[h; |E*[Vp]

var(b) = [0 - (=)

After calculations we get that

% h? + o%g?(t
B -2 = 2 2 E) m,
h, h(h? -35°g*(t))

or else

h2 2 Zt
B LTI
h(h* -352g*(t))

F, = (B.8)
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Appendix C: Choosing the right approximation for the distribution

As mentioned in the introduction, it is known that the roughness height distribution is a Gaussian
distribution, or is really close to it up to three standard deviations. Although this distribution allows us to
use various mathematical tools, for instance the Stein's Lemma, in terms of calculating, the cost of the
Gaussian probability density function is a rather incontinent one to use. So, we will try to approach the
various moments found in the proposed analysis rather than calculating them directly.

In Christensen's papers (i.e. [13] and [31]), a polynomial form approximating the Gaussian
distribution is chosen. Its mathematical expression is given by equation (C1), while an illustration of the
function is given in Figure (C.1).

35 “2 2 3 ~ =~
—(C* —w?) , c<w<cC
frim (W) = 27| | S

0, elsewhere

,C = 30g(t) (C.1)

fw)
=y
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\ Unit gaussian distribution

\ Un1t polynomial distribution

Figure C.1: Probability Density Function (PDF) of roughness heights

Using the previous approximation of the Gaussian distribution, the first two negative moments of
the stochastic film thickness, denoted as I, and IF, respectively, are given by equations (C.2) and (C.3)

Y = 2 )g2 —n2) i LS
32C

+ ic”h(15h4 — 40€%h? + 3364) (C.2)
h—-CJ| 15

h+C
e

Y = 2 {Gh(éz—hz)zln

= o7 - %C(lSh“ —25C%h? + 864)] (C.3)
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In our approach, we propose to use the Taylor Expansion for the moments of functions of random
variables. According to [32] the Taylor Expansion for the moments of functions of random variables
reads as following

Let fl(X) be a function of a random variable X . Then by using the Taylor Expansion we know
that

B[ 1(X)] = £(8/[X])+ 2 £(B [x])Var(h,)

Utilizing the Taylor Expansion for the first and the second negative moment of the stochastic film

thickness, meaning f,(x) = 1 and f,(x) = iz respectively, we get equations (C.4) and (C.5).
X X

h? 4+ o%g?(t
IE‘I(B) — —h3 (> (C4)
_ h? +3c%g?(t)

B
Fi? =

(C.5)

At first, we checked the coefficient of the first negative moment of the film thickness numerically
in a rough slider bearing for deviation ratio r = [0.02 , 0.2]. Their numerical value in respectto x and r

was plotted in Figure (C.2), while in Figure (C.3) their difference was plotted.

CoefMicient Assuming Polynomial Distribution < « Using Tuylor App

Figure C.2: Numerical Values For the First Negative Moment of The Film Thickness for I = [0.02 , 0.2]
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Figure C.3: Difference of the two coefficients for r = [0.02 , 0.2]

We observe that their difference is negligible, and that they behave smoothly throughout the
bearing, meaning in respect to x, and the deviation, meaning in respect to r. But when we tested the

same moment for r = [0.001, 0.2] we get Figures (C.4) and (C.5).
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Figure C.4: Numerical Values For the First Negative Moment of The Film Thickness for r = [0.0001 , 0.2]
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Figure C.5: Difference of the two coefficients for r = [0.0001 , 0.2]

In figure (C.4) we placed an upper limit of 10* %1 in the values that coefficient IFgA) could get.

We observe that as o —0, coefficient IFﬁA) tends to have either large values, i.e. values up to 10" or

negative values. Physically meaning, since this coefficient represents the average of the random variable
1
h + r-Iow(ﬁ) + rup(ﬂ)

of proving that the coefficient is not suited for any further simulations, is to calculate its limit while

, which is always a positive number, we expect that it is a positive number.One way

o — 0, which should approach % We will also calculate the limits of coefficient IFﬁB), which should

also approach % and the limits of coefficients F(2A> and IF(ZB) which should approach % The calculated

limits are the following

mmg’*) = %0
mwg‘\) = 00
tmE? =
e =

Seeing that the coefficients acquired by the Taylor Expansion are in harmony with the limits,

meaning that if we set o = 0 we get %and h—lz those are the coefficients that we will use in the

proposed approach simulations.
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