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Abstract in English           

 Friction is one of the most important causes of energy losses and wear in all mechanical systems. 
In ships, substantial friction losses are present in the propulsion system, both in the engine and in the shaft 
arrangement. Guided by the 2030 and 2050 environmental goals set by IMO, the maritime industry is 
challenged to utilize advanced technologies for optimal energy consumption and minimum power losses. 

 Journal bearings are mechanical components used to support the radial loads of rotating shafts. 
During operation, a thin lubricant film is generated and maintained hydrodynamically between the shaft 
and the bearing, preventing metal to metal contact and minimizing the friction losses. The performance of 
journal bearings is commonly quantified in terms of minimum film thickness, friction losses and 
maximum pressure of the lubricant. All of the above vary substantially at different operating conditions, 
such as radial load, shaft rotational speed and lubricant viscosity. Additionally, an important factor that 
needs to be taken into account is the micro differences in the surface geometry of the stator and the rotor 
(due to machining), which may significantly affect the performance of the bearing, its total load capacity 
and friction losses, as well as the subsequent wear rates of the bearing. 

 In the present work, a novel semi – stochastic solution of the Reynolds Equation for 
hydrodynamic lubricated journal bearings with stochastic surface roughness is presented. On the basis of 
stochastic theory, an advanced form of Reynolds Equation is derived. The mathematical formulation of 
this new equation yields the original deterministic Reynolds Equation for smooth surfaces, by removing 
the terms used to describe the roughness standard deviation 

 The derived differential equations are solved using the Finite Difference Method (FDM), 
developed as in house software. The obtained results are compared with (a) bearing performance results 
using the deterministic solution of the Reynolds Equation for smooth bearings, and (b) with results for 
bearings with surface roughness reported in the relevant literature, aiming at quantifying the extent of the 
roughness impact to different operational states of the bearing. Further, by assigning different values to 
the standard deviations of the roughness, we seek to optimize bearing performance by maximizing load 
carrying capacity and minimizing the total friction losses. 

 The proposed methodology has been validated against relevant results in other literature works, 
and a comparison of different numerical approaches for the treatment of the stochasticity of roughness 
profile and subsequent correlated bearing parameters has been performed. The effect on bearing 
performance of different roughness profiles for different bearing geometries and bearings operational 
parameters has been quantified. The ultimate goal of the present dissertation is to examine, evaluate and 
optimize bearings performance, by applying the optimum surface roughness during the manufacturing 
process of the bearing. 

 

KEYWORDS: 

Journal Bearings, Hydrodynamic Lubrication Theory, Reynolds Equation, Stochastic Roughness, Finite 
Difference Method  
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Abstract in Greek           

 Η τριβή αποτελεί την πιο συνήθη και σημαντική αιτία ενεργειακών απωλειών σε όλα τα 
μηχανικά συστήματα. Στο σύστημα πρόωσης ενός πλοίου, υψηλές απώλειες ενέργειας λόγω τριβής 
παρουσιάζονται τόσο στην κύρια μηχανή όσο και στο αξονικό σύστημα του πλοίου. Η ναυτιλία, 
καθοδηγούμενη από τους περιβαλλοντικούς στόχους του 2030 και 2050 που τέθηκαν από τον IMO, 
καλείται να χρησιμοποιήσει και να αξιοποιήσει προηγμένα τεχνολογικά συστήματα για τη 
βελτιστοποίηση της κατανάλωσης ενέργειας και την ελαχιστοποίηση των απωλειών ισχύος. 

 Τα ακτινικά έδρανα είναι μηχανολογικά κομμάτια που χρησιμοποιούνται για την παραλαβή των 
ακτινικών φορτίων των αξόνων. Κατά την λειτουργία τους, ένα λεπτό στρώμα λιπαντικού δημιουργείται 
και διατηρείται υδροδυναμικά μεταξύ του άξονα και του εδράνου, αποτρέποντας την επαφή μεταλλικών 
επιφανειών και ελαχιστοποιώντας τις ενεργειακές απώλειες λόγω τριβής. Ο βαθμός απόδοσης των 
ακτινικών εδράνων συνήθως ποσοτικοποιείται με βάση το ελάχιστο πάχος του λιπαντικού, τις 
ενεργειακές απώλειες λόγω τριβής και την μέγιστη πίεση λιπαντικού. Όλα τα παραπάνω, πρέπει να 
σημειωθεί, ότι αλλάζουν σε σημαντικό βαθμό αναλόγως την κατάσταση λειτουργίας, όπως είναι το 
ακτινικό φορτίο, η ταχύτητα περιστροφής του άξονα καθώς και το ιξώδες του λιπαντικού. Επιπροσθέτως 
στα προηγούμενα, ένας σημαντικός παράγοντας, ο οποίος πρέπει να λαμβάνεται υπ' όψιν, είναι αυτός των 
γεωμετρικών μικροδιαφορών στις επιφάνειες του άξονα και του εδράνου. Αυτές, μπορούν να 
επηρεάσουν σημαντικά την απόδοση, την χωρητικότητα φορτίου και τις ενεργειακές απώλειες λόγω 
τριβής του εδράνου, καθώς επίσης και τον ρυθμό φθοράς του. 

 Στην παρούσα εργασία, παρουσιάζεται μια νέα επίλυση της εξίσωσης Reynolds σε ακτινικά 
έδρανα υδροδυναμικής λίπανσης, τα οποία παρουσιάζουν στοχαστική τραχύτητα. Με βάση την θεωρία 
στοχαστικών μαθηματικών, εξάγεται μια καινούργια εξίσωση Reynolds. Ο μαθηματικός τύπος αυτής της 
νέας εξίσωσης παράγει της κλασική ντετερμινιστική εξίσωση Reynolds για λείες επιφάνειες, με τον 
μηδενισμό, και άρα απαλοιφή, της τυπικής απόκλισης των δύο τραχυτήτων. 

 Οι διαφορικές εξισώσεις που εμφανίζονται, λύνονται με την βοήθεια της μεθόδου πεπερασμένων 
διαφορών. Τα αποτελέσματα που προκύπτουν για την νέα εξίσωση Reynolds συγκρίνονται με αυτά της 
αρχικής εξίσωσης Reynolds καθώς και με άλλες προσεγγίσεις που έχουν υλοποιηθεί, στοχεύοντας την 
ποσοτικοποίηση και προσδιορισμό της επίδρασης της τραχύτητας σε διάφορες καταστάσεις λειτουργίας 
των ακτινικών εδράνων. Επίσης, με την ανάθεση διαφορετικών τυπικών αποκλίσεων στις τραχύτητες 
τόσο του άξονα όσο και του εδράνου, σκοπεύουμε να βελτιστοποιήσουμε την απόδοση του συστήματος. 
η οποία επιτυγχάνεται με την μεγιστοποίηση της αναπτυσσόμενης δύναμης καθώς και με την 
ελαχιστοποίηση των ενεργειακών απωλειών λόγω τριβής. 

 Η προτεινόμενη μεθοδολογία επαληθεύεται μέσω των αποτελεσμάτων σε βιβλιογραφικές πηγές, 
καθώς επίσης τίθενται σε σύγκριση διαφορετικές προσεγγίσεις για την μεταχείριση και θεώρηση της 
επιφανειακής τραχύτητας, καθώς και άλλων ακολούθων παραμέτρων του εδράνου, ως στοχαστικών 
ποσοτήτων. Έτσι, στοχεύουμε στην ποσοτικοποίηση της επίδρασης που έχουν τόσο η τραχύτητα όσο και 
η γεωμετρία της εγκατάστασης στις παραμέτρους λειτουργίας του εδράνου. Απώτερος σκοπός της 
παρούσας διπλωματικής είναι η διερεύνηση, εκτίμηση και βελτιστοποίηση της απόδοσης των εδράνων, 
μέσω της απόδοσης της πλέον κατάλληλης τραχύτητας κατά την διάρκεια της παραγωγής των υλικών και 
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μέσω της κατηγοριοποίησης των εδράνων σε ομάδες, οι οποίες υπό την ίδια επιφανειακή τραχύτητα 
αποδίδουν ίδιες συνθήκες λειτουργίας. 

 

ΛΈΞΕΙΣ ΚΛΕΙΔΙΑ: 

Ακτινικά Έδρανα, Θεωρία Υδροδυναμικής Λίπανσης, Εξίσωση Reynolds, Στοχαστική Τραχύτητα, 
Μέθοδος Πεπερασμένων Διαφορών  
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Nomenclature            

 B : bearing width 

 c : Bearing clearance 

 ( )C : Covariance of ( )


 variable 

 BD : Bearing diameter 

 SD : Shaft diameter 

 e : Eccentricity 

 [ ]β
 : Average operator 

 ( )0 h0 : Correlation coefficient of mean pressure and mean film thickness 

 ( )1 h : First negative power coefficient 

 ( )2 h : Second negative power coefficient 

 F : Friction force 

 *F : Dimensionless friction force 

 ( )f


: Probability distribution function of ( )  variable 

 ( )g t : Relative rotation of shaft and bearing 

 Th : Stochastic film thickness 

 h : Deterministic film thickness 

 *h : Dimensionless film thickness 

 minh : Minimum film thickness 

 maxh : Maximum film thickness 

 k : Convergence ratio 

 L : Bearing length 

 ( )m : Mean value of ( )


 variable 
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 N : Shaft rotational speed 

 SO : Shaft center 

 BO : Bearing center 

 P : External force 

 xP : x - axis external force component 

 zP : y - axis external force component 

 p : Pressure 

 maxp : Maximum pressure 

 inQ : Inlet flow rate 

 outQ : Outlet flow rate 

 r : Roughness ratio 

 ( )Br β : Bearing roughness 

 ( )sr β : Shaft roughness 

 xq : Lubricant inlet flow rate per unit length 

 yq : Lubricant outlet flow rate per unit length 

 BR : Bearing radius 

 SR : Shaft radius 

 S : Sommerfeld number 

 t : Time variable 

 U : Shaft linear velocity 

 1U : x - axis bearing speed 

 2U : x - axis shaft speed 

 u : x - axis fluid velocity 
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 1V : y - axis bearing speed 

 2V : y - axis shaft speed 

 v : y - axis fluid velocity 

 W : Total hydrodynamic force 

 *W : Dimensionless hydrodynamic force 

 xW : x - axis hydrodynamic force component 

 zW : z - axis hydrodynamic force component 

 w : z - axis fluid velocity 

 x : x - axis coordinate 

 y : y - axis coordinate 

 z : z - axis coordinate 

 1α : Standard deviation ratio for bearing 

 2α : Standard deviation ratio for shaft 

 β : Stochastic Variable 

 ε : Eccentricity Ratio 

 η : Fluid dynamic viscosity 

 θ : Hydrodynamic film angle 

 µ : Friction Coefficient 
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 σ : Standard deviation 

 Bσ : Standard deviation of bearing 
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 xτ : Shear stress in x direction 
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 yτ : Shear stress in y direction 

 zτ : Shear stress in z direction 

 ϕ : Attitude angle 

 yy : Lateral misalignment 

 xψ : Vertical misalignment 
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1. Introduction            
 Tribology, the collective name given to the science and technology of interacting surfaces in 
relative motion, is a relatively new diverse science branch that studies the phenomena of friction, 
lubrication and wear. The application area of tribology is quite extensive, including, among others, the 
understanding and modeling of phenomena in lubrication, the optimization of tribological elements such 
as journal and thrust bearings, piston rings, mechanical seals, etc., the development of novel lubricants 
and methods of surface treatment and modeling, as well as the minimization of power losses, wear and 
associated maintenance and replacement costs of mechanical components. 

 The term tribology, apart from its conveniently collective character describing the field of friction, 
lubrication and wear, could also be used to coin a new word – Tribodesign[1]. It is, thus, obvious that the 
practical aim of tribology lies in its successful application to machine design. From the beginning of the 
20th century, extended research and experiments have been performed to better understand the 
mechanisms of tribology.  

 The frictional and wear behavior of materials is greatly dependent upon the surface material used, 
as well as its topography. Since the early 1930s scientists had come to the conclusion that they need to 
better understand the surface topography, so to be able to grasp the way materials interact [2]; thus the 
assumption of smooth surfaces in the analysis of engineering surfaces was gradually replaced by rough 
surfaces. Evident of roughness is that engineering surfaces are created in various ways, typically by 
machining, surface treatment and coating, which produce surface topographies that deviate from smooth 
surfaces.  

 A considerable amount of research effort has gone into studying the true topography of solid 
surfaces. A surface profile was found to be composed of a range of frequency components. The high 
frequency components correspond to those that are perceived to be rough and hence called "roughness" or 
"asperities". The low frequency components correspond to more gradual changes in the profile and are 
often associated with the terms "waviness" or "form". The waviness component of a surface is periodic in 
nature, while the roughness has a random distribution in the surface. 

 Initially discreet roughness profiles were analyzed by Michell [3] and others [4], [5], [6], but in 
due course it became evident that statistical treatments were necessary to take account of the influence of 
real surface topography upon lubricating film performance. Greenwood &Williamson[7] using 
information obtained by digital analysis of profile meter outputs have shown that for many surfaces the 
distribution of height and the distribution of height peaks is very close to Gaussian; enabling the use of 
stochastic mathematical simulations. In 1981, volume (5) of the Tribology Series[8] was published, and 
was entirely devoted in the surface effects in adhesion, friction, wear and lubrication.  
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1.1. Literature Overview          
Basedon[9],[10] and [11] 

 Tribology research has been extensive during the last decades, focusing on several mechanical 
components that have an interesting frictional behavior. One of the oldest and most important ways to 
reduce friction and its associated wear is to separate the two surfaces in relative motion by a thin fluid 
film. To this end, lubricating oils and other liquids, such as water, emulsions or even gases, can be 
utilized. It is therefore very important that models which can simulate accurately the tribological behavior 
of mechanical components such as bearings, piston rings and seals during hydrodynamic lubrication are 
developed in order to utilize the components in terms of friction losses and wear. 

 The basis of hydrodynamic lubrication is the theory introduced in 1886 by Osborne Reynolds. 
According to the theory, pressure can be transferred through a thin lubricating layer located between two 
sliding surfaces, which should not be parallel in order to create the necessary geometry of a 
hydrodynamic wedge. In journal bearings, which are the main subject of the present study, the shaft is 
supported by a cylindrical bearing. The shaft has by construction a diameter slightly smaller than that of 
the bearing. During operation, the shaft is eccentric with respect to the bearing; therefore wedge geometry 
is generated between the bearing and the shaft, leading to lubricant pressure build up and load support. 

 Since Osborne Reynolds introduced the theory of hydrodynamic lubrication, numerous studies 
have been performed, aiming to further explain the tribological characteristics of lubricated bearings. 
Several books and papers, concerned with the operational characteristics of journal bearings under a 
variety of running conditions, were published through the last century. One of the early papers to deal 
specifically with the effects of surface roughness on hydrodynamic lubrication was that of Tzeng and 
Saibel[12], who solved the problem for the case of a finite slider bearing and then averaged the 
corresponding solution. However, the difficulty of solving analytically the Reynolds Equation restricts the 
usage of the previous attempt to the case of transverse roughness in infinitely long bearings. Another 
approach, that is to make some heuristic assumptions concerning the pressure gradient and the flow rates 
and obtain an averaged equation, was followed by Christensen[13] and Tønder[14], who proposed three 
averaged equations for longitudinal, transverse and isotropic roughness. Following a similar approach, 
Patir and Cheng[15] and [16] deducted a Reynolds type equation, which used "flow factors". 

 However, these results have given rise to many controversies both in view of the numerical 
results and for the heuristic assumptions on which they are based on, i.e. [17] and [18], and it is claimed 
that the physical justification of these assumptions bring the applicability of the Reynolds Equation itself 
in question, i.e. [19]. 
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1.2. Goals of the present study          
 The main goal of the current dissertation is to derive a novel solution of the Reynolds Equation 
for hydrodynamic lubricated bearings with stochastic surface roughness on both the stator and the rotor 
component of the bearing. To this end, an advanced form of the Reynolds Equation is derived.  

 In Chapter 2, the basics of the hydrodynamic lubrication theory are presented, followed by the 
derivation of the Reynolds Equation for journal bearings with surface roughness. Also, an analysis on the 
nature of the stochastic surface roughness is presented, alongside with its implications on the stochasticity 
of the film thickness. 

 In Chapter 3, the finite difference method and the adopted solution algorithm is developed and 
presented. Also, the solution matrices for a smooth and a rough bearing are calculated, both for the 
proposed approach and other approaches found in literature. 

 In Chapter 4, the validation of the proposed model is presented for both slider and journal 
bearings. The results for the operational parameters of the bearing, i.e. film thickness geometry, mean 
pressure distribution, load carrying capacity, friction force and coefficient of friction, are compared with 
literature findings and verified.  

 In Chapter 5, simulations of a journal bearing in various realistic operational conditions are 
presented. Using the proposed algorithm, the bearing performance parameters are calculated and 
discussed. 

 In Chapter 6 and 7, the main results of the present work are summarized, and conclusions and 
future work are drawn. Finally, the main mathematical analysis needed for the derivation of the proposed 
approach is summarized in the Appendixes (A) ~ (C). 
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2. Journal Bearings           

2.1. Introduction            
 Journal bearings, based on [20], are the most common type of radial bearings with extended use 
in the maritime industry. They are used in a variety of applications and are extensively used for the 
support of the propulsion shaft of a vessel, to support radial loads and to guide a smooth transmission of 
torque from the engine to the propeller. A journal bearing consists of two parts; the stator or bushing, 
which is a stationary sleeve, and the rotor, which is the propulsion shaft in our case. The shaft rotates 
inside the bushing and between them a thin film of lubricant fills the gap. The lubricant is supplied to the 
system from arrangements such as inlet holes and grooves. 

 As the shaft is rotating, it drags lubricant which is forced to fill the converging (wedge- shaped) 
geometry between the shaft and the stator. The incompressible lubricant develops the desired pressure to 
preserve the hard metal shaft separated from the soft metal bushing. This is essential in order to avoid 
“dry friction” which is disastrous for the lifespan of the bearing. At the initiation of a rotary motion the 
shaft is forced, due to friction, to roll at the opposite direction within the bearing sleeve. This motion, 
accompanied with adequate lubricant supply, helps to immediately form a lubricant film and lift the shaft 
into steady state position. Lubrication starts taking effect at any relative rotational velocity greater than 
zero and is also very steady in sudden impulses or vibrations. A common instability that journal bearings 
face over the years, also known as self-excited oil whirl, is constrained using tilting- pads, elliptical, 
pressure dam and offset split bearings. 

 Once the shaft is operating in “steady state”, it is located at a position within the bearing 
clearance and at some angle along the circumference. This position can be defined by the eccentricity e  
and the attitude angle ϕ , as shown in Figure (2.1). Attitude angle is the angle between the centers of the 
bore and the shaft and eccentricity is the distance between these points. 

 

Figure 2.1: Cross Section of a typical Journal Bearing[9] 
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Figure 2.2: Typical Journal Bearing Geometry[20] 

 Journal bearings can be constructed quite simply and with very small tolerances, therefore they 
are used for high precision projects that also demand minimum wear and increased lifespan. Such 
bearings are quite economical, especially when they are produced massively. Additionally they have high 
capacity in sense of absorbing and damping vibrations, impulses or sudden force variation. On the other 
hand, journal bearings require frequent maintenance and special care against dust in the lubricant area. 
Furthermore they require a significant amount of lubricant and the friction coefficient during the startup 
process is inevitably high. According to[20], journal bearings can be subjected to six different ways of 
lubrication. Those categories are the below: 

 Hydrodynamic Lubrication: When the relative rotation speed surpasses a certain margin, a 
hydrodynamic pressure film is developed separating the two surfaces. A constant supply of lubricant is 
necessary, but there is no requirement for a certain inlet pressure.  

 Hydrostatic Lubrication: High pressure lubricant is fed to the system in order to separate the 
facing edges. There is no need for relative motion.  

 Elastohydrodynamic Lubrication: This is an extension of hydrodynamic lubrication, taking into 
account the elastic deformations of the shaft and the bore during operation.  

 Thermoelastohydrodynamic Lubrication: This is an extension of elastohydrodynamic lubrication, 
taking into account the thermal deformations of the shaft and the bore during operation.  

 Boundary Lubrication: This type takes place when the lubricant thickness is inadequate, due to 
small bearing surface, low rotational speed, inadequate amount of lubricant or high applied load. The 
transition between boundary and hydrodynamic lubrication occurs gradually and the intermediate 
condition is called mixed lubrication.  

 Solid- film Lubrication: A solid type of lubricant is used in applications where mineral oils 
cannot be used, or in cases of excessive heating of the interacting components.  

 In the present thesis, only the hydrodynamic lubrication of journal bearings will be treated. The 
fundamentals of hydrodynamic lubrication will be further analyzed in the current chapter.  
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2.1.1. Bearing Materials           
Based on[21], [22], [23] and [24] 

 Materials used in tribological applications are, for the most part, common materials used 
generally in engineering applications, though there are some materials designed specifically for bearings. 
The selection of journal bearing material should be a careful process, since the chosen material should 
possess a combination of properties from compatibility, conformability, embeddability, fatigue strength, 
cavitation erosion resistance and corrosion resistance. In general, bearing materials can be either metallic 
or non-metallic materials. 

 Metallic material bearings are based on powder - metallurgy, and are made of white metal (tin 
and lead based), copper or aluminum based bronzes, porous metals and coated metals. They are relatively 
economical, suitable for high production rates and can be manufactured to precision tolerances. 
Nonmetallic material bearings are made of polymers, elastomers, ceramics and composites. Some 
significant characteristics of non-metallic materials are they are characterized by low wear rates, 
relatively high performance rating and the ability to conform under load. The non-metallic materials have 
been increasingly used as self-lubricating bearing. Their composition has been over refined so as to obtain 
favorable bearing characteristics, such as low friction and corrosion resistance. 

 The overlay selection process depends on the conformability required for the application. 
Conformability, in bearing materials, is the ability of the material to adapt to any geometry misalignments 
that might exist in the bearing. Depending on its nature, materials have different conformabilities, and 
thus are susceptible to different finishing works. This results in different surface roughness topography, 
yielding divergent standard deviations. 
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2.1.2. Bearing Lubricants          
Based on[9] and[22] 

 The function of a lubricant is to control friction and wear in a given system. The basic 
requirements therefore relate to the performance of the lubricant, i.e. its influence upon friction and wear 
characteristics of a system. In journal bearings, the shaft rotates at sufficient speed to force the lubricant 
to move between the conforming surfaces of the shaft and the bearing, creating an oil wedge and a 
hydrodynamic oil film. This film is responsible for the support of extremely heavy loads and the 
operation of the system in high rotational speeds. 

 The parameter which plays a fundamental role in lubrication is oil viscosity. Different oils exhibit 
different viscosities. In addition, oil viscosity changes with temperature, shear rate and pressure;for 
engineering applications the oil viscosity is usually chosen to give optimum performance at the required 
temperature. Since the 1950s, additives began to be widely used in varying quantities, targeting the 
improvement of the oil properties and its life extension. Those additives can be listed in the following 
categories 

 Antioxidants: Antioxidant additives are used in order to delay the severe oxidation of the oil. 
They can be classified into 
 Metal deactivators 
 Radical inhibitors 
 Peroxide decomposers 

 Corrosion Control Additives: Those are additives that protect surfaces and components from 
corrosion. They are split into two categories 
 Corrosion inhibitors 
 Rust inhibitors 

 Contamination Control Additives: Those additives are used to control the acidity of the products 
of sulfurous combustion and to prevent agglomeration of the soot. There exist two types of these 
additives 
 Mild dispersants 
 Over - based dispersants 

 Foam Inhibitors: The main task of these additives is to destabilize the foam generation during 
machinery operations. 

 Pour Point Depressants: Those additives help prevent the formation of wax structures at low 
temperatures. 

 Viscosity Improvers: These additives are used to arrest the decline in oil viscosity with 
temperature. 

 Wear & Friction Improvers: Probably the most important of all the additives, these chemicals 
control the lubricating performance of the oil. They can be divided into 
 Adsorption or boundary additives 
 Anti - wear additives 
 Extreme pressure additives 
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2.1.3. Common Bearing Damages         
 The most common bearing damages found in engines are the following 

 Abrasion: It's the most common type of damage in bearings. Abrasion is caused by debris and 
foreign materials rotating alongside with the oil in the lubricant film. These substances include 
dirt, abrasive grit or dirt. 

 Fatigue: Fatigue, or spalling, is often the result of overloading, an excessive preload, tight inner 
ring fits and using the bearing beyond its calculated fatigue life. In general, fatigue can be 
indicated by the fracture of running surfaces and subsequent removal of small discrete particles of 
material, and is always accompanied by a noticeable increase in vibrations and noises. Fatigue 
can be avoided if stronger bearing linings are used and a more cautious design is set. 

 Corrosion: Corrosion depends on both the bearing material and the operating conditions of the 
bearing. Moisture, acid, low – quality or broken down grease, poor wrappings and condensation 
from excessive temperature reversals can cause corrosion that is abrasive to the surfaces of the 
bearing.  

 Wiping: Wiping occurs in any kind of lining material if insufficient lubrication or cooling of the 
oil takes place. Wiping results in melting of the lowest melting point phase of lining alloys. 

 Cavitation: Cavitation risk increases with rising bearing speeds and loads. 
 Fretting: Fretting occurs due to insufficient contact pressure, local welding and tearing having 

taken place between the bearing back and housing bore. 
 Static fretting: Fretting can take place whenever low amplitude vibratory sliding takes place 

between two surfaces. Fretting is common because most of the machinery is subject to vibrations, 
both in transit and in operation conditions. 

 Incorrect assembly: This factor is associated with locating devices. Incorrect positioning results in 
oil feed connections being misplaced, which can block it off. Excessive care needs to be taken 
when locating the shaft correctly into the housing. Fretting of the bearing may occur if there is 
insufficient bolt load, while on the other hand, excessive dynamic stressing in the bolts can cause 
fatigue fractures. 

 Misalignment: Misalignment in bearings consists of bent shafts, out of square shaft shoulders, 
clamping nuts that are not positioned in order and improper installation due to loose fits. Those 
factors may result in overheating and separator failure. 

 Smearing: When two inadequately lubricated surfaces slide against each other, material is 
transferred from one surface to the other. This mechanism is commonly known as smearing. 
When smearing occurs, the material is generally heated to such temperatures that rehardening 
takes place. This process produces localized stress concentrations that may cause cracking of 
flaking to the bearing materials. 

 Geometric factors: Geometric factors of bearings, if not properly selected, can lead to many 
damages. Such factors are the radial or axial clearance, bearing diameters or fits. 
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2.2. Journal Bearing Geometry         
 The geometry of a journal bearing is depicted in Figure (2.3). The journal bearing radius is 1R  

and the shaft radius is 2R , while BO  and SO  are the bearings and shafts center respectively. The distance 

between these centers is called eccentricity, denoted by ε  and the angle between the y y′  axis and the line 
defined by the centers is called attitude angle, ϕ . At this specific angle we can calculate the maximum 
and minimum of the film thickness. 

 

Figure 2.3: Typical journal bearing geometry[9] 

 

 

Figure 2.4: Details of geometry for the evaluation of film shape in journal bearing[9] 

 The film thickness geometry can be derived by basic geometric calculations presented in Figure 
(2.4). According to this figure the mathematical expression of the film thickness is given by the equation 
(2.1). 

 ( ) ( ) ( ) ( ) ( )S S SO A O C CA O B BA= + = +  (2.1) 

 ( ) ( )2 1cos cosR h e Rθ α+ = ⋅ + ⋅   

Thus 

 ( ) ( )1 2cos cosh e R Rθ α= ⋅ + ⋅ −  (2.2) 
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 Applying the sine rule in the triangles BACO  and S BO CO  we get that ( ) ( )sin sine
R

α θ= ⋅ . 

Using that ( ) ( )2 2sin cos 1α α+ =  we get that 

 ( ) ( )
2

2cos 1 sine
R

α θ = − ⋅ 
 

  

 Since e R  we know that 0e
R

≅  and thus we get that ( )cos 1α = . Substituting into equation 

(2.2) yields 

 ( ) 1 2cosh e R Rθ= ⋅ + −  (2.3) 

 Substituting 1 2c R R= − , the clearance of the bearing, and e
c

e = , the eccentricity ratio, we 

get equation (2.4). 

 ( )( )1 cosh c ε θ= ⋅ + ⋅  (2.4) 

 Equation (2.4) gives a description for the film thickness in journal bearings to within 0.1 %  
accuracy. 
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2.3. Hydrodynamic Lubrication         
 According to [9] Hydrodynamic lubrication is the phenomenon in which two relative moving 
surfaces are separated by a pressurized thin lubricating fluid film. The upper surface is called the stator 
while the bottom surface is the rotor. This lubricating film allows the transfer of forces without direct 
metal to metal contact of the surfaces, reducing the friction coefficient at very low levels. Depending on 
the relative velocity of the surfaces and the lubricant properties, no additional agency is required to create 
and maintain a load - carrying film, provided that adequate lubricant is made available. The mathematical 
expression of hydrodynamic lubrication in the form of an equation has been first derived by simplifying 
the Navier-Stokes momentum and continuity equations, and is commonly known as the Reynolds 
Equation. Another, typical approach is by considering the equilibrium of an element of liquid subjected to 
viscous shear, and applying the continuity of flow. According to Osborne Reynolds, the conditions 
necessary for the hydrodynamic lubrication to occur are the below 

(C1). The two surfaces must move relatively to each other with sufficient speed in order to 
generate a lubricating film that can carry the normal load 

(C2). Surfaces must be inclined at some small angle, so that a hydrodynamic wedge is 
generated, and a pressure field is developed in the lubricating domain. A pressure field can be 
also generated between moving parallel stepped surfaces, as well as between surfaces that move 
towards each other 

 In figure (2.5) a sketch of a simple slider with inclined surfaces is presented. The motion of the 
top surface drags lubricant into the converging geometry, generating a pressure field. If pressure was not 
generated there would be more lubricant entering the wedge than leaving it. Therefore, pressure increases 
at the beginning of the wedge, restricting inflow, while it decreases near the end of the wedge boosting 
outflow. The existence of a pressure gradient causes the fluid velocity profile to bend inwards at the 
entrance and to bend outwards at the exit. The pressure generated is able to separate the two surfaces and 
support a certain load in the z direction 

 

Figure 2.5: Hydrodynamic pressure generation between the non-parallel surfaces of a simple slider 

 Before starting to analyze the theory of hydrodynamic lubrication, there are some simplifying 
assumptions that need to be made: 
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(A1). Body forces acting on the fluid are neglected 
(A2). Pressure is constant throughout the film thickness 
(A3). No - slip condition is assumed at the slider surfaces 
(A4). Oil lubricant behaves as a Newtonian fluid 
(A5). Fluid flow is laminar 
(A6). Fluid inertia is neglected 
(A7). Viscosity is constant throughout the fluid film 

2.3.1. Equilibrium of an element         
 For simplicity we assume that the forces of the element are only acting in the x x′  axis. Since the 
element of figure (2.6) is in equilibrium, then we know that 

 x
x x

ppdydz dz dxdy p dx dydz dxdy
z x
τ

τ τ
∂  ∂ + + = + +   ∂ ∂  

 (2.5) 

 

Figure 2.6: Equilibrium Of An Element Of Fluid From a Hydrodynamic Film 

 After simplifying the terms in equation (2.5) we get 

 x

z x
τ∂ ∂

=
∂ ∂

p   

 In the previous equations we know that p  is the pressure and xτ  is the shear stress acting in the 

x x′  axis. The factor dxdydz  is obviously positive, because the element has a volume, and thus we can 

neglect it. A similar expression can be obtain for forces acting in the y y′  axis, while in the z z′  axis we 

get that 0p
z
∂

=
∂

 because of the assumption (A2). Thus for the equilibrium of the element we get the 

system of equations (2.6). 
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 By using that ( )
( )u

z
τ η

∂
= ⋅

∂




, where ( )u


 is the velocity in direction ( ) , we get that 

 

0

p u
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p v
y z z
p
z

η

η
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∂

=
∂

 (2.7) 

By integrating equations (2.7) we get that 

 

2
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∂
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 (2.8) 

2.3.2. Continuity of Flow          
 Let us consider a column of lubricant as shown in figure (2.7). The principle of continuity of flow 
requires that the influx of a liquid must be equal to its efflux from a control volume under steady 
condition. Thus we get equation (2.9) 

 

u vudydz vdxdz wdxdy u dx dydz v dy dxdz
x y

ww dz dxdy dxdydz
z t

ρ ρρ ρ ρ ρ ρ

ρ ρρ

 ∂ ∂ + + = + + +  ∂ ∂   
∂ ∂ + + + ∂ ∂ 

 (2.9) 

After simplifying the terms in equation (2.9) we get 

 0u v w
x y z t
ρ ρ ρ ρ∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

 (2.10) 
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Figure 2.7: Continuity Of Flow In A Column 

By using the Leibniz's rule for differentiation we get that 

 ( )0 0
|

h h

z h
u hdz u udz

x x x
ρ ρ ρ=

∂ ∂ ∂
= − +

∂ ∂ ∂∫ ∫  (2.11) 

 ( )0 0
|

h h

z h
v hdz v vdz

y y y
ρ ρ ρ=

∂ ∂ ∂
= − +

∂ ∂ ∂∫ ∫  (2.12) 

 00
| |

h

z h z
w dz w w
z
ρ ρ ρ= =

∂
= −

∂∫  (2.13) 

 ( )0 0
|

h h

z h
hdz dz

t t t
ρ ρ ρ=

∂ ∂ ∂
= − +

∂ ∂ ∂∫ ∫  (2.14) 

By differentiating equation (2.10) in respect to z  we get that 

 
0

0
h u v w dz

x y z t
ρ ρ ρ ρ ∂ ∂ ∂ ∂

+ + + = ∂ ∂ ∂ ∂ 
∫  (2.15) 

Or else, by using equations (2.11), (2.12), (2.13) and (2.14) 

 ( ) ( ) ( ) 00 0 0
| | | |

h h h h
z h z h z h

h h hudz vdz dz u v w
x y t x y t

ρ ρ ρ ρ ρ ρ ρ= = =

∂ ∂ ∂ ∂ ∂ ∂
+ + = + + −

∂ ∂ ∂ ∂ ∂ ∂∫ ∫ ∫  (2.16) 

By using equations (2.8) we get that 
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 
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 (2.17)  
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2.3.3. Initial Values           
 Equation (2.17) yields the Reynolds Equation. Before reaching the final form of Reynolds 
Equation we have to find the values of iC , { }1,2,3,4i ∈ . Those values will be calculated by the system 

of equations (2.8). Since there is no slip or velocity discontinuity between liquid and solid at the 
boundaries of the wedge, according to (A3), for that system of equations we know that 

 for 0z = , 2u U=  

 for z h= , 1u U=  

 for 0z = , 1v V=  

 for z h= , 2u V=  

Thus the system of equations (2.8) results in system (2.18) 
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h

=

∂ + + =∂

 =
∂ + + =
∂

 (2.18) 

or else 

 

( )

( )

1 1 2

2 2

3 1 2

4 2

2

2
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h
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h

h

∂ = − − ∂
=

 ∂ = − −
 ∂
 =

 (2.19) 

 If we assume that 1 0U = , 2U U= , 1 0V = , 2 0V = , 0| 0w =  and | h
hw
t

∂
=

∂
, then equation 

(2.17) turns into equation (2.20). 

 ( ) ( )
3 3

0
12 12 2 2

h p h p U V hh h
x x y y x y t

ρ ρ ρ ρ ρ
hh

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − + + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (2.20) 

 Further rearranging and simplifying yields equation (2.21), which is the Reynolds Equation 
that is going to be treated accordingly in the current thesis. 

 ( )
3 3

12 12 2
h p h p U hh

x x y y x t
ρ ρ ρ ρ
hh

   ∂ ∂ ∂ ∂ ∂ ∂
+ = +   ∂ ∂ ∂ ∂ ∂ ∂   

 (2.21) 
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2.4. The Stochastic Film Thickness         
 The current thesis applies the concept of stochastic process to the problem of the surface 
roughness in hydrodynamic lubricated bearings. Under this scope, the geometry of the lubricant film in 
the bearing is considered to be made up of two parts, which are demonstrated in equation (I) 

 ( ) ( )
( )

( ) ( ) ( ) ( )
( )1 2

, , ; , ,T B Sh x y t h x y t r g t r g tβ β β= + +
((

((((((((

 (2.22) 

In equation (I), ( ), ,h x y t  is the nominal film thickness, measuring the large scale part of the film 
thickness geometry. This part is equivalent to the deterministic film thickness present in hydrodynamic 
lubrication if there was no surface roughness. The variables ( )Br β  and ( )Sr β  are the stochastic 

variables that represent the surface roughness in the bearing and the shaft respectively, while ( )g t  is a 
deterministic function of time representing the relative motion of the two surfaces. 

 The two surface roughness random variables are considered to be of such form that the 
application of the Reynolds Equation is still valid. Meaning, the surface roughness is a Reynolds type 
roughness; the heights of the two surface roughness should not be of the same order as h . For the two 

random variables we know that ( ) ( )2~ 0 ,B Br β σ and ( ) ( )2~ 0 ,S Sr β σ , having the following 

distribution probability function. 

 ( ) ( )
2

2
1 1exp

22r
wwβ σpσ

ì üï ïæ öï ï÷ç= - ÷í ýç ÷çï ïè øï ïî þ
f   

 For the two random variables we can normalize their standard deviations by using 
2 2 2

S Bσ σ σ= + , meaning that 1Bσ α σ= ⋅ , 2Sσ α σ= ⋅ ; with 2 2
1 2 1α α+ = . This normalization is 

taken into account to quantify the effect of each one of the two surface roughness components in the 
performance parameters of the bearing; load carrying capacity, friction force, friction coefficient and flow 
rates. 
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2.5. The Stochastic Reynolds Equation for constant viscosity & density   

2.5.1. Averaging the Reynolds Equation        
 The current approach is considering an incompressible fluid of constant viscosity, thus we denote 
that ( ), , ,x y z tη η≡ and ( ), , ,x y z tρ ρ≡ . We also assume that ( )g t const= , to simplify the 
calculations. Inserting the above assumptions in equation (2.21) we derive the Stochastic Reynolds 
Equation that will be treated in the current thesis, given by equation (2.23). 

 ( )3 12 6T T
T

h h
h p U

t x
hh
∂ ∂

∇ ∇ = +
∂ ∂

 (2.23) 

 The film thickness is given as ( ) ( ) ( ) ( ) ( ) ( ), , ; , ,T S Bh x y t h x y t r g t r g tβ β β= + +  and thus we 

know that 

 ( ) ( ) ( ) ( ) ( )( ), ,T
S B

h hh x y t r g t r g t
x x x

β β
∂ ∂ ∂

= + + =
∂ ∂ ∂

  

 ( ) ( ) ( ) ( ) ( )( ), ,T
S B

h hh x y t r g t r g t
y y y

β β
∂ ∂ ∂

= + + =
∂ ∂ ∂

  

 ( ) ( ) ( ) ( ) ( )( ), ,T
S B

h hh x y t r g t r g t
t t t

β β
∂ ∂ ∂

= + + =
∂ ∂ ∂

  

 Expanding the film thickness Th  in its terms and substituting the previous into equation (2.23) 

yields equation (2.24). 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3 3 2 3 3 2

2 2

2 2 2 2

3 2 2 3 2 2

2

3 3

3 3 12 6

3 3

6

S B

S B

S B

B S S B

S B

h p g t r p g t r p

g t r h p g t r h p
h hg t r h p g t r h p U
t x

g t r r p g t r r p

g t r r h p

β β

β β

β β hh

β β β β

β β

 ∇ ∇ + ∇ + ∇
 
 + ∇ ∇ + ∇ ∇
  ∂ ∂ + ∇ ∇ + ∇ ∇ = +
  ∂ ∂
 + ∇ + ∇
 
+ ∇ ∇ 

 

 (2.24) 

 Solving equation (2.24) requires the exact topography of the two roughness ( )Sr β and ( )Br β . In 

order to avoid this, we will use the statistical representation of those variables. Applying the average 
operator in equation (2.24), remembering that since h  is a deterministic function thus k∀ ∈

k kh hβ   =  , yields equation (2.25). 
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[ ]( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

3 3 2 3 3 2 3

2 2

2 2 2 2

3 2 2 3 2 2

2

3 3

3 3

3 3

6

S B

S B

S B

B S B S

S B

h p g t r p g t r p

g t h r p g t h r p

g t h r p g t h r p

g t r r p g t r r p

g t h r r p

β β β

β β

β β

β β

β

β β

β β

β β

β β β β

β β

    ∇ ∇ + ∇ + ∇    
    + ∇ ∇ + ∇ ∇    
    + ∇ ∇ + ∇ ∇    
    + ∇ + ∇    
 
  + ∇ ∇   

  

 

 

 



12 6h hU
t x

hh ∂ ∂
= +

∂ ∂
 (2.25) 

 The next step is to formally calculate the averages of the equation (2.25). Those averages 
represent various moments of the roughness and the pressure. The terms that are to be calculated are listed 
below, in ascending order in respect to h  for simplicity. 

  [ ]( )3
1T h pβ= ∇ ∇  

  ( ) ( )( )2
2 3 BT g t h r pβ β = ∇ ∇   

  ( ) ( )( )2
3 3 ST g t h r pβ β = ∇ ∇   

  ( ) ( )( )2 2
4 3 BT g t h r pβ β = ∇ ∇   

  ( ) ( ) ( )( )2
5 6 B ST g t h r r pβ β β = ∇ ∇   

  ( ) ( )( )2 2
6 3 ST g t h r pβ β = ∇ ∇   

  ( ) ( )3 3 2
7 BT g t r pβ β = ∇   

  ( ) ( ) ( )3 2 2
8 3 B ST g t r r pβ β β = ∇   

  ( ) ( ) ( )3 2 2
9 3 B ST g t r r pβ β β = ∇   

  ( ) ( )3 3 2
10 ST g t r pβ β = ∇   

 Applying Stein's Lemma in each one of the above terms yields the following form for the terms. 

  ( )3
1 pT h= ∇ ∇m  

  ( ) ( )
2 2

2 3 B
B

pT g t h
r

βσ
β

  ∂ ∇
 = ∇   ∂   

  
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  ( ) ( )
2 2

3 3 S
S

pT g t h
r

βσ
β

  ∂ ∇
 = ∇   ∂   

  

  ( ) ( ) ( ) ( )
2

2 2 4 2
4 23 3B p B

B

pT g t h g t h
r

βσ σ
β

  ∂ ∇
 = ∇ ∇ + ∇   ∂   

m   

  ( ) ( ) ( )
2

2 2 2
5 6 S B

S B

pT g t h
r r

βσ σ
β β

  ∂ ∇
 = ∇   ∂ ∂   

  

  ( ) ( ) ( ) ( )
2

2 2 4 2
6 23 3S p S

S

pT g t h g t h
r

βσ σ
β

  ∂ ∇
 = ∇ ∇ + ∇   ∂   

m   

  ( ) ( ) ( ) ( )
2 3 2

4 3 6 3
7 33 B B

B B

p pT g t g t
r r

β βσ σ
β β

   ∂ ∇ ∂ ∇
= +   

∂ ∂      
   

  ( ) ( ) ( ) ( ) ( )
2 3 2

2 2 3 4 2 3
8 23 3B S B S

S B S

p pT g t g t
r r r

β βσ σ σ σ
β β β

   ∂∇ ∂ ∇
= +   

∂ ∂ ∂      
   

  ( ) ( ) ( ) ( ) ( )
2 3 2

2 2 3 4 2 3
9 23 3S B S B

B S B

p pT g t g t
r r r

β βσ σ σ σ
β β β

   ∂∇ ∂ ∇
= +   

∂ ∂ ∂      
   

  ( ) ( ) ( ) ( )
2 3 2

4 3 6 3
10 33 S S

S S

p pT g t g t
r r

β βσ σ
β β

   ∂ ∇ ∂ ∇
= +   

∂ ∂      
   

 Categorizing the previous terms into groups in respect to the order of the variational derivative of 
the pressure in respect to the roughness, using that 1Bσ α σ= ⋅ and 2Sσ α σ= ⋅ , yields the following 

terms 

  ( )( )( )3 2 2
1 3 pT h g t hσ= ∇ + ∇ m  

  ( ) ( )( ) ( )
2 2 2 2 2

2 23
S

pT g t h g t
r

βα σ σ
β

  ∂
 = ∇ + ∇   ∂   

   

  ( ) ( )( ) ( )
2 2 2 2 2

3 13
B

pT g t h g t
r

βα σ σ
β

  ∂
 = ∇ + ∇   ∂   

   

  ( ) ( )
2

4 4 2
4 2 23

S

pT g t h
r

βα σ
β

  ∂
 = ∇ ∇   ∂   

   
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  ( ) ( )
2

4 4 2
5 1 23

B

pT g t h
r

βα σ
β

  ∂
 = ∇ ∇   ∂   

   

  ( ) ( ) ( )
2

2 2 4 2
6 1 26

S B

pT g t h
r r

βα α σ
β β

  ∂
 = ∇ ∇   ∂ ∂   

   

  ( ) ( ) ( )
3

4 2 4 3 2
7 1 2 23

B S

pT g t
r r

βα α σ
β β

 ∂
= ∇  

∂ ∂  
   

  ( ) ( ) ( )
3

2 4 6 3 2
8 1 2 23

S B

pT g t
r r

βα α σ
β β

 ∂
= ∇  

∂ ∂  
   

  ( ) ( )
3

3 6 6 2
9 2 3

S

pT g t
r

βα σ
β

 ∂
= ∇  

∂  
   

  ( ) ( )
3

3 6 6 2
10 1 3

B

pT g t
r

βα σ
β

 ∂
= ∇  

∂  
   

 

Remark 2.1: The term 1T  is the exact and only term that appears in previous literature findings for 

isotropic roughness. All the other terms are zero, meaning that the mean values of the variational 
derivatives of the pressure in respect to the roughness are equal to zero. 
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2.5.2. Variational Derivatives of Pressure        
If we differentiate Equation (2.23) in respect to the roughness of the shaft ( )Sr β  we get that 

 
( ) ( )3 23 0T T

S

ph g t h p
r β

 ∂
∇ ∇ + ∇ =  ∂ 

  

The previous equation after manipulations results in: 

 
( ) ( )3 2

13T T
S

ph g t h p C
r β
∂∇

+ ∇ =
∂

  

 Since p  is a continuous function and since ( )0, , ; 0p y t β = and ( ), , ; 0p D y tp β = , we know 
that p  has a maxima or minima (from previous works we know that it's a maxima). Then there exists a 

[ ]* 0x Dπ∈  such as ( )* , , ; 0p x y t β∇ = and ( )
( ) ( )* , , ; 0

p
x y t

r
β

β
∂∇

=
∂

. So we get that 1 0C =  and the 

previous equation turns into 

 
( )

( ) ( )3

S T

g tp p
r hβ

 ∂
∇ = − ∇  ∂ 

 (2.26) 

If we repeat the same for the roughness of the bearing we get that 

 
( )

( ) ( )3

B T

g tp p
r hβ

 ∂
∇ = − ∇  ∂ 

 (2.27) 
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2.5.3. Final Form of the Stochastic Reynolds Equation       
 Using Equations (2.26) and (2.27) and Stein's Lemma for negative powers, and categorizing the 
terms in respect to the averages that appear, yields the following terms 

  ( )( )( )3 2 2
1 3 pT h g t hσ= ∇ + ∇m  

  ( ) ( )( )2 2 2 2 2
2 9

T

pT g t h g t
h

βσ σ
  ∇
 = − ∇ +      

  

  ( )2 2 2
3 9 p

T

pT g t h h
h

βσ
  ∇
 = ∇ − ∇     

 m  

  ( ) ( )2 2 2 2 2
4 3 4 p

T T

p pT g t h g t h
h h

β βσ σ
    ∇ ∇
 = − ∇ − − ∇           

  m  

 Combining the previous terms and inserting them into Equation (2.23) yields Equation (2.28). 

 ( )( )( ) ( ) ( )( )3 2 2 2 2 2 2 23 3 12 6p
T

p h hh g t h g t g t h U
h t x

βσ σ σ hh
   ∇ ∂ ∂  ∇ − ∇ + ∇ − = +    ∂ ∂    

m  (2.28) 

 Equation (2.28) is exact, but yet not closed. In order to get the final form of the Stochastic 

Reynolds Equation we make the assumption that ( ) [ ]0 ,
T

p h p
h

β βσ
 ∇

= ⋅ ∇ 
  

 0 , which yields equation 

(2.29). 

 ( ) ( ) ( )( )( )( )3 2 2 2 2 2 4 4
0 03 3 3 12 6p

h hh g t h g t h g t U
t x

σ σ σ hh ∂ ∂
∇ − − + ∇ = +

∂ ∂
0 0 m  (2.29) 

 The coefficient ( )0 ,h σ0 , as well as the coefficients ( )1 ,h σ  and ( )2 ,h σ , are calculated 

numerically in Appendix B and C respectively. From this point on we will denote ( ),n nh σ ≡   for 

simplicity in equations. 

 

Remark 2.2: Equation (2.29) is the Stochastic Reynolds Equation that we propose. We can see that by 
eliminating the terms including the standard deviation of the roughness, taking 0σ = , yields the 

Deterministic Reynolds Equation ( )3 12 6p
h hh U
t x

hh ∂ ∂
∇ ∇ = +

∂ ∂
m , where p p∇ = ∇m . 
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2.5.4. Boundary Conditions          
Based on [9] 

 In order to solve the proposed Reynolds Equation, appropriate boundary conditions for the 
pressure distribution must be set. The most notable of them are 

 The Full Sommerfeld Boundary Condition: This condition assumes that the pressure is equal to 
zero at the edges of the unwrapped journal bearing geometry, meaning that ( )0, , ; 0p y t β = and 

( ), , ; 0p D y tp β = . 

 

Figure 2.8: Solution of the Reynolds Equation with the Full Sommerfeld Boundary Condition 

 The Half Sommerfeld Boundary Condition: This condition neglects negative pressures in the 
divergent region of the bearing, by setting them equal to zero, meaning that ( )0, , ; 0p y t β = , 

( ), , ; 0p D y tp β =  and ( ), , ; 0 ,
2
Dp x y t x Dpβ p = ∈  

 
. 

 

Figure 2.9: Solution of the Reynolds Equation with the Half Sommerfeld Boundary Condition 
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 Reynolds Boundary Condition: Reynolds suggested that no negative pressures can be sustained 
by the lubricant film in the diverging region, and that at the boundary between zero and non‐zero 

pressure the following condition should apply 0pp
x
∂

= =
∂

. The Reynolds boundary condition 

gives more accurate results in comparison to the Full and Half Sommerfeld conditions, and it is 
used for the pressure calculations of the present work. 

 

Figure 2.10: Solution of the Reynolds Equation with the Reynolds Boundary Condition 
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2.6. Design and Performance Parameters        

2.6.1. Load Carrying Capacity          
 The total hydrodynamic load supporting the rotating shaft can be found by integrating the 
pressure exerted on the shaft surface. This load can be resolved into two mutually perpendicular 
components, one acting on the z z′  axis and one on the x x′  axis. The total force component projected 
along the line of centers is expressed by equations (2.30) and (2.31). 

 ( ) ( )( )2

0 0
sin

2
S

L

z S S S
S

W p dS p R g t r dyd
p pϕ ω β ω = ⋅ = ⋅ + − + 

 ∫∫ ∫ ∫


  (2.30) 

 ( ) ( )( )2

0 0
cos

2
S

L

x S S S
S

W p dS p R g t r dyd
p pϕ ω β ω = ⋅ = ⋅ + − + 

 ∫∫ ∫ ∫


  (2.31) 

Averaging the previous equations yields equations (2.32) and (2.33). 

 ( ) ( ) ( )
( )

2
22

2
0 0

sin
2z

L

z p SW
S

pW R g t dyd
r

β β
p

β
pβ α s ϕ ω ω

β

æ öé ù æ ö÷¶ç ê ú÷ ÷é ù çç= = + × + -÷ ÷ççê ú ê ú÷ ÷ë û çç è ø¶ ÷ç ê úè øë û
ò òm m   (2.32) 

 ( ) ( ) ( )
( )

2
22

2
0 0

cos
2x

L

x p SW
S

pW R g t dyd
r

β β
p

β
pβ α s ϕ ω ω

β

æ öé ù æ ö÷¶ç ê ú÷ ÷é ù çç= = + × + -÷ ÷ççê ú ê ú÷ ÷ë û çç è ø¶ ÷ç ê úè øë û
ò òm m   (2.33) 

The total load capacity W  is given by equation (2.34) 

 ( ) ( ) ( )
2 2

z xW W Wβ β β= +m m m  (2.34) 

 

Figure 2.11: Hydrodynamic Load Components in a Journal Bearing  
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2.6.2. Friction Force           
 The friction force can be obtained by integrating the x  component of the shear stress over the 
bearing area 

 
B B

x B B
S S

duF dS dS
dz

τ η= ⋅ = ⋅∫∫ ∫∫
 

    

If we expand the previous equation we get that 

 
( ) ( )( ) ( ) ( )( )2

0 0

2
2

L T
B B

TB B

z h p UF R g t r dyd
hR g t r

p h θ ω
ωθ

 − ∂ = + +
 ∂+ 

∫ ∫   

or else 

 ( ) ( )( )2 2

0 0 0 0

2
2

L LT
B B

T

z h p UF dyd R g t r dyd
h

p p hω θ ω
ω

− ∂
= + +

∂∫ ∫ ∫ ∫  (2.35) 

Averaging equation (2.35) and applying Stein's Lemma, yields equation (2.36) 

 
( ) ( )2 2 2 22

0
1 2

0 0

2 3
2

L
P B

F
B

z h g t U g t
U dydx

x R

π σ h σ
h

æ öæ ö- + ¶ ÷ç ÷ç ÷÷çç= + - ÷÷çç ÷÷çç ÷¶÷ç ÷çè øè ø
ò ò

m
m

0
0 0  (2.36) 

 

2.6.3. Friction Coefficient          
 The friction coefficients µ  can be calculated from equation (2.37), where Fm  is the mean 

friction force and Wm  the mean total load of the bearing. 

 F

W
µ =

m

m
 (2.37) 

 Since ( )1F F αºm m and ( )2W W αºm m , then we know that the friction coefficient is a 

function of the roughness coefficients, thus ( )1 2,aµµa  º . Assigning different values to the 

coefficients, under the restriction that 2 2
1 2 1α α+ = , gives us different values of the friction coefficient. 

The optimum operating point is the point where we have { }max Wm and { }min Fm . That point is equal to 

the optimization process of minimizing the friction coefficient { }min m . 
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2.6.4. Inlet and Outlet Flow Rates         
 For normal bearing operation, the lubricant must be supplied to the bearing at the same rate as 
that of the lubricant leakage. Otherwise lubricant starvation will occur, which will generally lead to 
smaller values of minimum film thickness and higher values of oil temperature. The inlet and outlet rate 
per unit length can be calculated by  

 
0

Th

inq udz= ∫   

 
0

Th

outq vdz= ∫   

By using equations (2.8) and (2.19) for the components u  and v  of the velocity and the initial conditions 
we get that 

 
3

12 2
T T

in

h hpq U
xh
∂

= − +
∂

 (2.38) 

 
3

12
T

out

h pq
yh
∂

= −
∂

 (2.39) 

 The lubricant inflow and lubricant side leakage can be calculated by the integrations given by 
equations (2.40) and (2.41) respectively 
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 By averaging equations (2.40) and (2.41), and following the same methodology, we get equations 
(2.42) and (2.43): 
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 For normal bearing operation, lubricant must be supplied to the bearing at the same rate as that of 
the lubricant leakage; otherwise lubricant starvation will occur, leading to smaller values of minimum 
film thickness and higher values of oil temperature 
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2.6.5. Sommerfeld Number          
 Sommerfeld number is a non - dimensional parameter that comprises both design and operation 
elements. It characterizes the performance of the bearing and is used to compare similar bearings in 
different operational conditions or different bearing designs for a precise operation. Sommerfeld number 
can be calculated according to the following equation 

 
2NDL RS

W c
η  =  

 
 (2.42) 

where c :  Bearing clearance 

 D :  Bearing diameter 

 L :  Bearing length 

 N :  Shaft rotational speed 

 R :  Bearing radius 

 W :  Total hydrodynamic force 

 η :  Fluid dynamic viscosity 

 Sommerfeld number is an important quantity in hydrodynamic lubrication analysis; proper values 
of Sommerfeld number assure that the shaft is rotating on a sufficient fluid film, thus avoiding direct 
contact with the bearing. 
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2.6.6. Advanced Film Thickness Geometry        
Based on [25] 

 The area between the rotating shaft and the bearing housing, filled with lubricant oil. will be 
geometrically modeled based on several parameters. Those parameters can either be the constant 
parameters of the system ( ), ,L R c  or their represented variables of the system ( ), ,eθ ϕ . It is evident 

that the film thickness h  is variable and has to be calculated at every time step of the solution, before 
solving the Reynolds Equation. Assuming that inertia effects in the film area are neglected, the flow is 
laminar, the fluid is Newtonian and incompressible and that the density, the heat and thermal conductivity 
are constants, the film thickness geometry for a journal bearing is given by equation (2.43). 

 N E T Mh h h h h= + + +  (2.43) 

where Nh : the nominal part of the film thickness, given by (2.4) 

 Eh : the elastic deformation of the bearing housing due to hydrodynamic pressure 

 THh : the thermal deformation due to thermal expansion of the shaft and the bearing housing 

 Mh : the misalignment of the shaft and bearing housing 

 The elastic deformation part of the film thickness occurs due to the hydrodynamic pressures 
applied on the housing of the bearing, assuming that the shaft is rigid. Since marine bearings are stiff 
structures, elastic deformations will generally be small. So, in the present thesis, we can ignore the elastic 
deformation by taking 0Eh = . 

 The modification of the thermal deformation part of the film thickness has two origins; the 
thermal expansion of the shaft, which leads to increased diameter, thus affecting clearance, and the 
corresponding deformation of the bearing housing, due to uneven temperature distribution in the bearing 
solid domain. In general, thermal deformations become critical in applications characterized by high 
values of rotational speed and/or high loads. Marine shaft bearings are generally operated at very low 
speeds (below 120 RPM), and eccentricity values are rarely above 0.6-0.7. Therefore, the part of thermal 
deformation in the formula for film thickness can be ignored, thus 0THh = . 

 Under ideal shaft alignment conditions, the bearing and the shaft centerlines are parallel. In this 
case, bearing misalignment is defined by the angle between the centerlines of the two components. 
Usually though misalignment values are not zero due to improper shaft alignment, excessive loading or 
other operational purposes. Misalignment angles can be resolved into two perpendicular angles, one for 
each one of the axes of the coordinate system. Lateral misalignment angles describe shaft rotations about 
the vertical axis and vertical misalignment angles describe rotations of the shaft about the horizontal axis. 
Taking the previous into consideration, and inserting them into equation (2.43), yield the final equation 
(2.44) for the film thickness 

 ( ) ( )( ) ( ) ( )( ), 1 cos cos siny xh z c e zθ θ y ϕ θ y ϕ θ= ⋅ + ⋅ + ⋅ ⋅ + + ⋅ +  (2.44)  
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3. Numerical Solution           

3.1. Solution Algorithm           
 The goal of the current study is to implement an algorithm capable of solving the problem of 
hydrodynamic lubrication for the main bearings of internal combustion engines in ships, which have 
roughness. Several algorithms have been developed to solve problems concerning hydrodynamic 
lubrication. In this current approach, we will solve the Reynolds Equation using an in-house algorithm 
developed in the section of Marine Engineering of NTUA, first introduced by Raptis[26]. Some 
modifications were made, to introduce the new terms for the Stochastic Reynolds Equation. 

 At the beginning of the algorithm, all the necessary geometric details for the bearing are read via 
a input file; the bearing length L , diameter D , clearance c , rotational speed N  and viscosity η . This 
file includes the solver parameters - grid points, solver type, convergence criteria - as well as the applied 
loads in the bearing XP and ZP . Also, an initial assumption is made for the eccentricity 0e  and attitude 

angle 0ϕ . 

 After reading the initial parameters, the algorithm discretizes the bearing in its unwrapped form 
into small divisions. Then, the film thickness geometry is calculated using equation (2.44), the 
Deterministic Reynolds Equation is solved numerically according to the Gauss - Seidel iterative method, 
and the pressure field is calculated. The hydrodynamic force components are then calculated, by 
integrating the pressure field on the shaft surface. If the initial assumptions of eccentricity and attitude 
angle are correct, then the equilibrium is attained and the algorithm ends. If not, new eccentricity and 
attitude angle values are estimated, using a Newton - Raphson method for two variables. At the end of the 
whole process, the bearings operational parameters are calculated and printed out on an output file. 

 A detailed description of the algorithm is presented in Figure (3.1), the additions or modifications 
to the initial algorithm include: 

1. The film thickness is calculated using equation (2.44) 
2. The solution of the Reynolds Equation is performed using Gauss - Seidel numerical method 
3. The hydrodynamic components are calculated by equations (2.33) and (2.34). The integrations 

were made using Simpson's rule. 
4. The inlet and leakage flow rates of the lubricant are calculated by equations (2.41) and (2.42). 

The integrations were made using Simpson's rule. 
5. The friction force is calculated by equation (2.37) and the friction coefficient by equation (2.38). 

The integrations were made using Simpson's rule. 

1-5 are marked in the respective sequence shown in Figure (3.1). 
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Figure3.1: Reynolds Equation - Solution Algorithm  
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3.2. The Finite Difference Method (FDM)        
 The journal bearing geometry is studied under its unwrapped domain. This unwrapped bearing is 
discretized by a finite element grid of divL  points in the y y′  axis and divD  points in the x x′ . The divL  

points represent the number of points alongside the length L  of the bearing, while the divD  alongside the 

diameter. The unwrapped journal bearing geometry is presented in figure (3.2). 

 

Figure 3.2: Unwrapped journal bearing geometry 

 In the previous figure, each point of the grid is identified by the coupled number ( ),i j , having 
four neighboring points - except for the boundary nodes. For this unwrapped journal bearing we know 
that 
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 The Reynolds Equation can be numerically solved over the lubricant domain with the use of the 
Finite Difference Method (FDM). The first step is to replace the derivatives of the Reynolds Equation 
with algebraic difference quotients which come for the Taylor series expansion 
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 For small x∆ , the terms of order 2n ≥  can be neglected and the finite central difference 
quotients for  the first and second derivative can be written in the following way, achieving second order 
accuracy: 
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3.2.1. Solution for the Deterministic Reynolds Equation      
 The Deterministic Reynolds Equation to be treated is given by equation (2.28) by setting equal to 
zero the terms containing the standard deviation of the roughness. This equation is listed below on 
equation (3.1) 
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 The terms that need to be calculated via the finite difference method are denoted on the equation. 
For those terms we know that 
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 The pressure of the deterministic Reynolds Equation at the node ( ),i j  comes from the solution 
of equation (3.2) 
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3.2.2. Solution for Christensen's Approach of the Reynolds Equation     
 Christensen's Approach of Reynolds Equation is given by equation (2.24) by setting equal to zero 
the terms containing any derivative of the pressure in respect to the roughness. This equation is listed 
below on equation (3.3) 
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 The terms that need to be calculated via the finite difference method are denoted on the equation. 
For those terms we know that 
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 The pressure of Christensen's approach of the Reynolds Equation at the central node comes from 
the solution of equation (3.4) 
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3.2.3. Solution for Proposed Approach of the Reynolds Equation     
 The current proposal of Reynolds Equation is given by equation (2.24). This equation is listed 
below on equation (3.5) 
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 The terms that need to be calculated via the finite difference method are denoted on the equation. 
For those terms we know that 
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 The pressure of the proposed approach of the Reynolds Equation at the central node comes from 
the solution of equation (3.6) 
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4. Validation of Modeling          
 The proposed approach solution for the Reynolds Equation will be validated against the results 
published in literature findings, [4], [12], [27] and [28]. This validation will be carried out for both a 
slider and a journal bearing. For each bearing, a comparison between the results of the proposed approach 
for a rough bearing and the results of a rough bearing under Christensen's approach will be held. The 
validation of the proposed approach will be performed, for both cases, in two separate steps. 

 Firstly, we will run the case of a slider bearing. The validation will be held for a constant 
geometric profile and roughness profile, and then the results will be generalized for different slider 
bearings geometry and surface roughness. Main findings and comparison between the rough and the 
smooth bearings will be summarized according to the operational parameter. 

 The second step is performing the previous validation for the case of a journal bearing. The 
results are compared with literature findings for each one of the operational parameters. Also, an 
approach to see the extension of the results from the slider bearing to a journal bearing is performed. 

 For each case, the basic geometric and operational parameters of the bearing are presented, 
alongside with the main equations for the calculation of the bearing parameters, the derivation of which is 
performed in Chapter 2. The Reynolds Equation is solved using the Finite Difference method, via the 
algorithm mentioned in Chapter 3. 

 In the figures presented in the current chapter, Christensen’s results are marked with a dashed line, 
while the proposed approach’s results are marked with solid lines. The results for a smooth bearing are 
denoted with a blue straight line. 
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4.1. Slider Bearing           
Validation based on[4], [9] and[12] 

 The present solution algorithm was validated by comparing the calculated operational 
characteristics of the bearing with the expected results of literature. A comparison with Christensen's 
approach of the Reynolds Equation is also presented. In the case of the slider bearing, we will use two 
dimensionless ratios; one for the standard deviation and one for the film geometry, denoted as r  and k  
respectively. The ratios are given by equations (4.1) and (4.2). 

 
min

r
h
σ

=  (4.1) 

 max min

min

h h
k

h
−

=  (4.2) 

 The slider bearing used in the calculations for the validation has the following geometric and 
operating parameters: 

• Slider Length  0.05L m=  
• Film thickness  min 50h mm=  

• Dynamic viscosity 0.037 Pa secη = ⋅  

• Sliding speed  12 mU sec=  

 In general, literature findings suggest that an increase of the pressure profile, the load carrying 
capacity and the friction force is anticipated, while the friction coefficient is expected to decrease. Each 
one of the design and performance parameters of the slider bearing is calculated for the case of smooth 
bearing, meaning no roughness, and for a rough bearing. The rough bearing consists of two parameters; 
the roughness profile of the upper part and the roughness profile of the lower part, which is the moving 
part of the bearing. In the case of rough bearing, the parameters are calculated for both Christensen’s 
approach and proposed approach of the Reynolds Equation, and a comparison between the approaches is 
held. Since each one of the approaches is based on different assumptions, we expect the equations used 
for calculating the operational characteristics to differ. Thus the equations used for the calculations are 
listed below for each one of the approaches. 

For a Smooth Slider Bearing 
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For a Rough Slider Bearing (Christensen’s Approach) 
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For a Rough Slider Bearing (Proposed Approach) 
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where 

 upσ : The standard deviation of the upper part of the slider bearing 

 lowσ : The standard deviation of the lower, moving, part of the slider bearing 

 00 : The correlation coefficient between the mean pressure and mean film thickness 

 1 : The first negative moment of the stochastic film thickness 

 We observe that the equations based on Christensen’s approach differ from the equations 
proposed in the current approach. Those differences are based on Christensen's assumption that the unit 
flow rates in both directions are of zero (or negligible) variance ([13]). The previous assumption, as was 

shown in Remark (2.1), is equal to assuming 
( )

0
n

n
S

p
r

β

β

é ù¶ê ú =ê ú¶ê úë û
 for *n Î , which results in 0 0=0 . 

Remark 4.1: We notice that both Christensen's equations and the proposed equations for a rough 
bearing yield the equations of a smooth bearing, by setting the deviations of each part equal to 0, as 
proposed in Remark (2.2). 
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4.1.1. Initial Validation of the Proposed Solution       
 First we will compare the results acquired for a slider bearing with convergence ratio 1k =  for a 
smooth bearing and for a rough bearing with deviation ratios 0lowσ = and 00.2up hσ = × . For the rough 

bearing, we utilized both the proposed approach and Christensen's approach to compare the results. The 
simulation results for the pressure profile are given in Figure (4.1), while the rest operational parameters 
are summarized in Table (4.1). 

 

Figure 4.1: Pressure Profile for 0lowσ = , 00.2up hσ = ×  and 1k =  

 Units Smooth Bearing Christensen's 
Approach 

Proposed 
Approach 

Maximum Pressure MPa 2.219 2.083 2.586 
Non Dimensional Maximum Pressure (-) 0.0417 0.0391 0.0485 

Load Carrying kN 70.54 66.39 81.49 
Non Dimensionless Load Carrying (-) 0.0265 0.0249 0.0306 

Friction Force N 342.92 347.52 351.58 
Non Dimensionless Friction Force (-) 0.772 0.783 0.792 

Friction Coefficient (-) 0.0049 0.0054 0.0044 
Non Dimensionless Friction Coefficient (-) 4.9820 5.3848 4.3970 

Table 4.1: Operational parameters of a slider bearing for 0lowσ = , 00.2up hσ = ×  and 1k =  

 We notice that the proposed solution of the Reynolds Equation for rough bearings complies with 
the findings in literature, while Christensen's approach is unsuited for calculating the increase in the 
pressure and load carrying capacity, which results in a higher friction coefficient. To further quantify the 
results for each approach, we have calculated and summarized the differences of the rough bearing 
operational parameters, for both approaches, from those of a smooth bearing in Table (4.2). 

Ratios Units Christensen's Approach Proposed Approach 
Maximum Pressure  % -6.13 16.54 

Load Carrying % -5.88 15.52 
Friction Force % 1.34 2.52 

Friction Coefficient % 8.09 11.74 
Table 4.2: Difference in [%] of operational parameters of a slider bearing for 0lowσ = , 00.2up hσ = ×  and 1k =   
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4.1.2. Maximum Pressure          
 Figures (4.2) ~ (4.3) show the maximum value of non-dimensional pressure for a smooth bearing 
and a rough bearing. Figure (4.2) was plotted for the case of convergence ratio [ ]0 , 5k = , and for 

deviation ratios 0lowr =  and 0.2upr = . In Figure (4.3) different deviation ratios are plotted in the same 

plot, both for the proposed approach and for Christensen's approach. 

 We observe that the results of the previous validation can be extended for different values of 
convergence ratio and deviation ratios. As expected from the previous validation, we notice that the 
calculated maximum pressure of the proposed approach is of higher values than that of a smooth bearing, 
while Christensen's approach is lower. 

 

Figure 4.2: Non Dimensional Maximum Pressure for 0lowσ =  and 00.2up hσ = ×
 

 

Figure 4.3: Non Dimensional Maximum Pressure for { }0.01 , 0.1 , 0.2upr =  
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 We also observe that while 0r → , i.e. the deviation is getting smaller, the differences for both 
approaches are nearing the values of a smooth bearing. This can be seen in Figure (4.4), in which we have 
plotted the difference of the maximum pressure in a rough bearing and a smooth bearing, for different 
values of deviation ratios and for convergence ration 2k = . Figure (4.4) was plotted only for the 
proposed approach. 

 

Figure 4.4: Non Dimensional Maximum Pressure for 2k =  

 We observe that while 0upr ®  and 0lowr ®  then the difference of the maximum pressure 

reaches zero, meaning that the maximum pressure is equal to the maximum pressure of a smooth bearing. 
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4.1.3. Load Carrying Capacity          
 Figures (4.5) ~ (4.6) show the normalized load carrying capacity for a smooth bearing and a 
rough bearing. Figure (4.5) was plotted for the case of convergence ratio [ ]0 , 5k = , and for deviation 

ratios 0lowr =  and 0.2upr = . In Figure (4.6) different deviation ratios are plotted in the same plot, both 

for the proposed approach and for Christensen's approach. 

 Similar to the maximum pressure case, the results of the initial validation can be extended for 
different values of convergence ratio and deviation ratios. As expected, we notice that the calculated load 
carrying capacity of the proposed approach is higher than that of a smooth bearing, while Christensen's 
approach is lower. 

 

Figure 4.5: Non Dimensional Load Carrying Capacity for 0lowσ =  and 00.2up hσ = ×  

 

Figure 4.6: Non Dimensional Load Carrying Capacity for { }0.01 , 0.1 , 0.2lowr =
 



62 
 

 We observe that while 0r → , i.e. the deviation is getting smaller, the differences for both 
approaches are nearing the values of a smooth bearing, similar to the maximum pressure results. This can 
be seen in Figure (4.7), in which we have plotted the difference of the load carrying capacity in a rough 
bearing and a smooth bearing, for different values of deviation ratios and for convergence ration 2k = . 
Figure (4.7) was plotted only for the proposed approach. 

 

Figure 4.7: Non Dimensional Load Carrying Capacity for 2k =  

 We observe that while 0upr ®  and 0lowr ®  then the difference of the maximum pressure 

reaches zero, meaning that the maximum pressure is equal to the maximum pressure of a smooth bearing. 

 

Remark 4.2: Although literature findings predict a pressure build up in the parallel slider bearing 
( 0k = ), both the previous approaches fail to predict this, as it can be seen in figure (4.6). This is due 
to the assumption that the stochastic roughness is a stochastic variable and not a stochastic function of 
space. 
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4.1.4. Friction Force           
 Figures (4.8) ~ (4.9) show the normalized friction force for a smooth bearing and a rough bearing. 
Figure (4.8) was plotted for the case of convergence ratio [ ]0 , 5k = , and for deviation ratios 0lowr =  

and 0.2upr = . In Figure (4.9) different deviation ratios are plotted in the same plot, both for the 

proposed approach and for Christensen's approach. 

 Similar to the other operational parameters, the results of the initial validation for the friction 
force can be extended for different values of convergence ratio and deviation ratios. As expected, we 
notice that the calculated friction force of the proposed approach is higher than that of a smooth bearing. 
When it comes to Christensen's approach, we observe that the friction force starts from higher values up 
to some convergence ratio *k , after which lower values than that of a smooth bearing are calculated. 

 

Figure 4.8: Non Dimensional Friction Force for 0lowσ =  and 00.2up hσ = ×  

 

Figure 4.9: Non Dimensional Friction Force for { }0.01 , 0.1 , 0.2lowr =  
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 We observe that while 0r → , i.e. the deviation is getting smaller, the differences for both 
approaches are nearing the values of a smooth bearing, similar to the results of the other operational 
parameters. This can be seen in Figure (4.10), in which we have plotted the difference of the friction force 
in a rough bearing and a smooth bearing, for different values of deviation ratios and for convergence 
ration 2k = . Figure (4.10) was plotted only for the proposed approach. 

 

Figure 4.10: Non Dimensional Friction Force for 2k =  

 We observe that while 0upr ®  and 0lowr ®  then the difference of the maximum pressure 

reaches zero, meaning that the maximum pressure is equal to the maximum pressure of a smooth bearing. 
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4.1.5. Coefficient of Friction          
 Figures (4.11) ~ (4.12) show the value of non-dimensional coefficient of friction for a smooth 
bearing and a rough bearing. Figure (4.11) was plotted for the case of convergence ratio [ ]0 , 5k = , and 

for deviation ratios 0lowr =  and 0.2upr = . In Figure (4.12) different deviation ratios are plotted in the 

same plot, both for the proposed approach and for Christensen's approach. 

 We observe that the results of the initial validation of the friction coefficient can also be extended 
for different values of convergence ratio and deviation ratios. As expected from the previous validation, 
we notice that the coefficient of friction calculated from the proposed approach has lower values than that 
of a smooth bearing, while Christensen's approach is giving higher values. This is due to the fact that 
Christensen's approach calculates smaller values for the load carrying capacity, which in addition to the 
higher values of friction force result in a total higher coefficient of friction. 

 

Figure 4.11: Non Dimensional Coefficient of Friction for 0lowσ =  and 00.2up hσ = ×  

 

Figure 4.12: Non Dimensional Coefficient of Friction for { }0.01 , 0.1 , 0.2lowr =  
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 We also observe that while 0r → , i.e. the deviation is getting smaller, the differences for both 
approaches, similar to the other operational parameters, are nearing the values of a smooth bearing. This 
can be seen in Figure (4.13), in which we have plotted the difference of the friction coefficient in a rough 
bearing and a smooth bearing, for different values of deviation ratios and for convergence ratio 2k = . 
Figure (4.13) was plotted only for the proposed approach. 

 

Figure 4.13: Non Dimensional Coefficient of Friction for 2k =  

 We observe that while 0upr ®  and 0lowr ®  then the difference of the maximum pressure 

reaches zero, meaning that the maximum pressure is equal to the maximum pressure of a smooth bearing. 
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4.2. Journal Bearing           
Validation based on [6], [27], [28] and [29] 

 Following the validation of the proposed solution of the Reynolds Equation in a wide slider 
bearing, we now progress in the validation of the solution for a journal bearing. The present solution 
algorithm was validated by comparing the calculated operational characteristics of the rough journal 
bearing with the respective parameters of a smooth journal bearing for the same geometry, meaning the 
same eccentricity ratio and attitude angle. The external load for the smooth bearing varied from 30 kN  
to 120 kN  so as to cover different values of Sommerfeld number S  and eccentricity ratios e . 

 The journal bearing we test for this validation has the following geometric and operating 
parameters: 

• Bearing Diameter 1.0D m=  
• Bearing Length  2.1L m=  
• Radial Clearance 0.0005C m=  
• Rotational Speed 90N RPM=  
• Lubricant Viscosity 0.001 Pa secη = ⋅  

 In general, literature findings suggest that an increase of the pressure profile, the load carrying 
capacity and the friction force is anticipated, while the friction coefficient is expected to decrease. Each 
one of the design and performance parameters is calculated for the case of smooth bearing, meaning no 
roughness, and for a rough bearing. The rough bearing consists of two parameters; the roughness profile 
of the bearing and the roughness profile of shaft, which is the moving part of the bearing. In the case of 
rough bearing, the parameters are calculated for both Christensen’s approach and proposed approach of 
the Reynolds Equation, and a comparison between the two approaches is held. Since each one of the 
approaches is based on different assumptions, we expect the equations for calculating the operational 
characteristics to differ. Thus the equations used for the calculations are listed below for each one of the 
approaches. 

For a Smooth Journal Bearing 
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For a Rough Slider Bearing (Christensen’s Approach) 
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For a Rough Slider Bearing (Proposed Approach) 
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where Bσ : The standard deviation of the bearing 

 Sσ : The standard deviation of the shaft 

 00 : The correlation coefficient between the mean pressure and mean film thickness 

 1 : The first negative moment of the stochastic film thickness 

 2 : The second negative moment of the stochastic film thickness 

Remark 4.3:We notice that both Christensen's equations and the proposed equations for a rough 
bearing yield the equations of a smooth bearing, by setting the deviations of each part equal to 0, as 
proposed in Remark (2.2).  
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4.2.1. Maximum Pressure          
 Figures (4.14) ~ (4.16) show the maximum value of non-dimensional pressure for a smooth 
bearing and a rough bearing. Figure (4.14) was plotted for the case of external load [ ]30 , 120W kN= , 

and for shaft and bearing standard deviation 0Sσ =  and 10B mσ m=  respectively. In Figure (4.15) 

the maximum pressure value is plotted for different bearing standard deviations and for external loads 
[ ]30 , 120W kN= . 

 We notice that the proposed solution of the Reynolds Equation for rough journal bearings 
calculates the expected pressure build up mentioned in literature findings, in contrast to Christensen's 
approach which does not. 

 

Figure 4.14: Non Dimensional Maximum Pressure for 0Sσ =  and 10B mσ m=
 

 

Figure 4.15: Non Dimensional Maximum Pressure for [ ]0 , 10B mσ m=  
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 We also observe that while 0σ → , i.e. the deviation is getting smaller, the differences for both 
approaches are nearing the values of a smooth bearing. This can be also seen in Figure (4.16), in which 
we have plotted the difference of the maximum pressure in a rough bearing and a smooth bearing, for 
different values of deviation and for external load 120W kN= . Figure (4.16) was plotted only for the 
proposed approach. 

 

Figure 4.16: Non Dimensional Maximum Pressure for 120W kN=  

 We observe that while 0Sσ ®  and 0Bσ ®  then the difference of the maximum pressure 

reaches zero, meaning that the maximum pressure is equal to the maximum pressure of a smooth bearing. 

  



71 
 

4.2.2. Load Carrying Capacity          
 Figures (4.17) ~ (4.19) show the normalized load carrying capacity for a smooth and a rough 
journal bearing. Figure (4.17) was plotted for the case of external load [ ]30 , 120W kN= , and for 

standard deviations in the shaft and bearing 0Sσ =  and 10B mσ m=  respectively. In Figure (4.18) 

the value of the calculated load is plotted for different bearing standard deviations and for external loads 
[ ]30 , 120W kN= . 

 Similar to the maximum pressure case, the results for the load carrying capacity of the proposed 
approach of the Reynolds Equation are in harmony with literature findings. As expected, we notice that 
the calculated load carrying capacity of the proposed approach is higher than that of a smooth bearing, 
while Christensen's approach is lower. 

 

Figure 4.17: Non Dimensional Load Carrying Capacity for 0Sσ =  and 10B mσ m=  

 

Figure 4.18: Non Dimensional Load Carrying Capacity for [ ]0 , 10B mσ m=
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 We observe that while 0σ → , i.e. the deviation is getting smaller, the differences for both 
approaches are getting closer to the values of a smooth bearing, similar to the maximum pressure results. 
This can be seen in Figure (4.19), in which we have plotted the difference of the load carrying capacity of 
a rough bearing from the one of a smooth bearing, for different values of deviation and for external load 

120W kN= . Figure (4.19) was plotted only for the proposed approach. 

 

Figure 4.19: Non Dimensional Load Carrying Capacity for 120W kN=  

 We observe that while 0Sσ ®  and 0Bσ ®  the difference of the bearings load carrying 

capacity reaches zero, meaning it is equal to the load carrying capacity of a smooth bearing. 
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4.2.3. Friction Force           
 Figures (4.20) ~ (4.22) show the normalized friction force for a smooth bearing and a rough 
bearing. Figure (4.20) was plotted for the case of external load [ ]30 , 120W kN= , and for deviation in 

the shaft 0Sσ =  and in the bearing 10B mσ m= . In Figure (4.21) the friction force is plotted for 

different bearing standard deviations and for external loads [ ]30 , 120W kN= . 

 We observe that the results calculated for the friction force by the proposed approach of the 
Reynolds Equation are validated against literature findings. We also observe that the friction force 
calculated by Christensen’s approach has increased values in relation to the friction force calculated for 
the smooth bearing. 

 

Figure 4.20: Non Dimensional Friction Force for 0Sσ =  and 10B mσ m=  

 

Figure 4.21: Non Dimensional Friction Force for [ ]0 , 10B mσ m=  
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 We observe that while 0σ → , i.e. the deviation is getting smaller, the differences for both 
approaches are nearing the values of a smooth bearing, similar to the results of the other operational 
parameters. This can be seen in Figure (4.22), in which we have plotted the difference of the friction force 
in a rough bearing and a smooth bearing, for different values of standard deviation and for external load 

120W kN= . Figure (4.22) was plotted only for the proposed approach. 

 

Figure 4.22: Non Dimensional Friction Force for 120W kN=  
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4.2.4. Coefficient of Friction          
 Figures (4.23) ~ (4.24) show the value of non-dimensional coefficient of friction for a smooth 
bearing and a rough bearing. Figure (4.23) was plotted for the case of external load [ ]30 , 120W kN= , 

and for standard deviation 0Sσ =  and 10B mσ m= . In Figure (4.24) the calculated value of the 

coefficient of friction is plotted for different bearing standard deviations and for external loads 
[ ]30 , 120W kN= . 

 We observe that, similar to the other operational parameters, the calculations are according to the 
ones found in literature. As expected, we notice that the coefficient of friction calculated from the 
proposed approach has lower values than that of a smooth bearing, while Christensen's approach is giving 
higher values. This is due to the fact that Christensen's approach calculates smaller values for the load 
carrying capacity, which in addition to the higher values of friction force result in a total higher 
coefficient of friction. 

 

Figure 4.23: Non Dimensional Coefficient of Friction for 0Sσ =  and 10B mσ m=  

 

Figure 4.24: Non Dimensional Coefficient of Friction for [ ]0 , 10B mσ m=  
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 We also observe that while 0σ → , i.e. the deviation is getting smaller, the differences for both 
approaches, similar to the other operational parameters, are nearing the values of a smooth bearing. This 
can be seen in Figure (4.25), in which we have plotted the difference of the friction coefficient in a rough 
bearing and a smooth bearing, for different values of deviation and for external load 120W kN= . 
Figure (4.25) was plotted only for the proposed approach. 

 

Figure 4.25: Non Dimensional Coefficient of Friction for 120W kN=  
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5. Numerical Simulations          
 Following the validation of the proposed solution of the Reynolds Equation in both a slider and a 
journal bearing, we now progress in numerical simulations of the solution for a journal bearing in real 
operational conditions; meaning we kept the load constant while the geometric parameters could vary to 
reach the hydrodynamic equilibrium. This was done in order to see how a rough journal bearing operates 
in a specific external load in contrast to a smooth bearing, and how the operational parameters of the 
bearing alter due to the constant external load. The external load varied from 30 kN  to 110 kN  so as to 
cover different values of Sommerfeld number S  and eccentricity ratios e , keeping in mind that the 
bearing operates in the hydrodynamic regime. 

 The journal bearing we use in the below numerical simulation, is the same as the one used in 
Chapter 4, and its geometric and operating parameters are listed below 

• Bearing Diameter 1.0D m=  
• Bearing Length  2.1L m=  
• Radial Clearance 0.0005C m=  
• Rotational Speed 90N RPM=  
• Lubricant Viscosity 0.001 Pa secη = ⋅  

 Each one of the design and performance parameters for the slider bearing is calculated for a 
smooth bearing and for a rough bearing. The equations used for the calculations of both bearings are the 
following. 

For a Smooth Journal Bearing 
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where 

 Bσ : The standard deviation of the bearing 

 Sσ : The standard deviation of the shaft 

 00 : The correlation coefficient between the mean pressure and mean film thickness 

 1 : The first negative moment of the stochastic film thickness 

 2 : The second negative moment of the stochastic film thickness 
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5.1.1. Attitude Angle           
 The first parameter that we will check is the one of the attitude angle. Figure (5.1) shows the 
maximum pressure for [ ]30 , 120extW kN=  and some selective standard deviations, while Figures (5.2) 

and (5.3) depict the effect of the stochastic roughness for different external loads and standard deviations. 

 

Figure 5.1: Attitude Angle for { }0 , 2 , 4 , 6 , 8 , 10B mσ m=   

 

 

Figure 5.2: Attitude Angle for [ ]0 , 10B mσ m=  
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Figure 5.3: Difference of Attitude Angle in [%] for [ ]0 , 10B mσ m=  

 Generally, we see that the attitude angle tends to not alter significantly in respect to the attitude 
angle a smooth bearing has. For external loads 72extW kN£  we see that the attitude angle tends to get 

higher values, while for external loads 72extW kN³  higher values. For 40extW kN=  we observe 

that the attitude angle, for all the standard deviations, has a maximum value. Since attitude angle is highly 
correlated with the hydrodynamic load and is a component strongly dependent from the numerical 
execution of the solution algorithm, it cannot be further evaluated. 
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5.1.2. Geometry Results           
 We know that the film thickness is a function of the eccentricity ratio e  and the bearing clearance 
c . The analytical expression of the film thickness is given by equation (2.4), which is also given below. 

 ( )( )1 cosh c ε θ= ⋅ + ⋅   

 Regarding the eccentricity ratio e  figures (5.4) ~ (5.6) were plotted. Figure (5.4) displays the 
values of eccentricity ratio, as well as their difference from their respective values of a smooth bearing, 
for a selective set of standard deviations and for [ ]30 , 120extW kN= . In figure (5.5) we plotted the 

values of eccentricity ratio for a rough journal bearing under different external load and for different 
standard deviations, while in figure (5.6) we plotted the difference of the eccentricity ratio from the 
smooth bearing. 

 

Figure5.4: Eccentricity Ratio for { }0 , 2 , 4 , 6 , 8 , 10B mσ m=  

 

Figure5.5: Eccentricity Ratio for [ ]0 , 10B mσ m=  
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Figure5.6: Difference Eccentricity Ratio in [%] for [ ]0 , 10B mσ m=  

 As far as the geometry profile of the film thickness is concerned, it is easy to observe that it 
depends on the value of the eccentricity ratio. Thus, alongside with the results acquired for the 
eccentricity ratio, we also plotted the results for the film thickness. In Figure (5.7) the minimum values of 
the deterministic film thickness are displayed for a selective set of standard deviations, in respect to the 
external load. In Figures (5.8) and (5.9) we plotted the dimensional values of minimum film thickness for 
a rough journal bearing under different external load and for different standard deviations as well as their 
difference from those of a smooth bearing. The values of the film thickness presented in the figures are 
the values of the deterministic part, thus are the mean values of the film thickness. 

 

Figure5.7: Minimum Film Thickness for { }0 , 2 , 4 , 6 , 8 , 10B mσ m=  
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Figure5.8: Minimum Film Thickness for [ ]0 , 10B mσ m=  

 

Figure5.9: Difference of Minimum Film Thickness in [%] for [ ]0 , 10B mσ m=  

 Firstly we observe that as the standard deviation approaches zero, thus as the rough bearing is 
getting smoother, the effect of the roughness tends to zero for both the eccentricity ratio and the film 
thickness. This was expected from remark (2.2) as well as from the validation based on a rough slider 
bearing; as deviation reaches zero the results acquired tend to reach those of a smooth bearing. We also 
observe that as the standard deviation is going to higher values, the eccentricity ratio of the journal 
bearing is decreasing and the minimum value of the film thickness is increasing. The effect of this 
decrease and increase respectively is rising as we approach higher external loads. This means, that the 
rough bearing tends to operate under more steady conditions, e.g. avoiding the possibility of metal to 
metal contact between the shaft and the bearing.  
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5.1.3. Maximum Pressure          
 In this sub section, the effects of stochastic roughness on the maximum pressure are plotted. 
Figure (5.10) shows the maximum pressure for [ ]30 , 120extW kN=  and some selective standard 

deviations, while Figures (5.11) and (5.12) depict the effect of the stochastic roughness for different 
external loads and standard deviations.  

 

Figure5.10: Maximum Pressure for { }0 , 2 , 4 , 6 , 8 , 10B mσ m=  

 

 

Figure5.11: Maximum Pressure for [ ]0 , 10B mσ m=  
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Figure5.12: Difference of Maximum Pressure in [%] for [ ]0 , 10B mσ m=  

 From the previous figures we observe that for small external loads 50extW kN≤  the maximum 

pressure generated is slightly smaller ( 0.03 %≤ ) than that of a smooth bearing, while for 50extW kN≥  

the maximum pressure gradually increases.  

 The above observation can be explained by looking over the operational conditions of the bearing. 
In external loads 50extW kN≤ , the pressure build up in the journal bearing with constant geometry was 

of small values. Thus keeping the external load constant, a decreased pressure generation occurred in the 
bearing. For the journal bearing to withstand this lower load, a different pressure profile is generated that 
is characterized by smaller values of pressure. 
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5.1.4. Power Loss& Friction Torque         
 The extend of the effect of the surface roughness to the friction force, can be studied by analyzing 
the results for the Power Loss and Friction Torque, given by equations (5.1) and (5.2) respectively. 

 PL F U= ×m m  (5.1) 

 
2FT F
D

= ×m m  (5.2) 

 In respect to the previous equations, Figures (5.13) ~ (5.15) for the power loss and Figure (5.16) ~ 
(5.18) for the friction torque were plotted. Figures (5.13) and (5.16) display the values of power loss and 
friction torque, as well as their difference from their respective values of a smooth bearing, for a selective 
set of standard deviations and for [ ]30 , 120extW kN= . In figures (5.14) and (5.17) we plotted the 

mentioned values for a rough journal bearing under different external load and for different standard 
deviations, while in Figures (5.15) and (5.18) we plotted the difference of the values from the respective 
values of a smooth bearing. 

 

Figure 5.13: Power Loss for { }0 , 2 , 4 , 6 , 8 , 10B mσ m=  
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Figure 5.14: Power Loss for [ ]0 , 10B mσ m=  

 

 

Figure 5.15: Difference of Power Loss in [%] for [ ]0 , 10B mσ m=  

 We observe that the power loss is decreasing with increasing values of standard deviation, which 
is due to a decreasing friction force. The same results can be also seen in Figures (5.16) ~ (5.18) regarding 
the friction torque. 
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Figure 5.16: Friction Torque for { }0 , 2 , 4 , 6 , 8 , 10B mσ m=  

 

Figure 5.17: Friction Torque for [ ]0 , 10B mσ m=  

 

Figure 5.18: Difference of Friction Torque in [%] for [ ]0 , 10B mσ m=   
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5.1.5. Friction Coefficient          
 Lastly we have quantified the effect that surface roughness has on the coefficient of friction. 
Since we have kept the external load, thus the load carrying capacity of the bearing, constant and the 
friction force is decreasing, we except that the friction coefficient will also decrease. In order to evaluate 
this, we have produced Figures (5.19) ~ (5.21). Figure (5.19) displays the values of the coefficient of 
friction, as well as their difference from their respective values of a smooth bearing, for a selective set of 
standard deviations and for [ ]30 , 120extW kN= . In figure (5.20) we plotted the values of friction 

coefficient for a rough journal bearing under different external load and for different standard deviations, 
while in figure (5.21) we plotted its difference of the from the smooth bearing. 

 

Figure 5.19: Normalized Friction Coefficient for { }0 , 2 , 4 , 6 , 8 , 10B mσ m=  

 

Figure 5.20: Normalized Friction Coefficient for [ ]0 , 10B mσ m=  
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Figure 5.21: Difference of Friction Coefficient in [%] for [ ]0 , 10B mσ m=  

 We observe that the friction coefficient is decreasing with increasing values of standard deviation, 
but in smaller rates compared to the results acquired in Chapter (4.2). This is because, by keeping the 
external load constant, a decreased pressure generation occurred in the bearing. This “reduced” profile 
pressure, results in smaller values of friction and load carrying capacity, which result in higher 
normalized friction coefficients. 

 We have to point out, that the friction coefficient in the case of rough bearing is still of smaller 
values than that of a smooth bearing. The previous comparison was held between the friction coefficient 
of the rough bearing in the case of constant geometry, i.e. e  and ϕ constant, and in the case of constant 
operational condition, i.e. extW  constant. 
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6. Results & Discussion           
 In the present thesis a novel stochastic solution of the Reynolds Equation for rough slider and 
journal bearings is derived and solved. Different geometric and roughness profiles, as well as operational 
conditions are tested, and the effect of stochastic roughness in hydrodynamic lubrication problems of 
journal bearings is quantified accordingly. The differential equations presented in the current analysis 
were solved using the Finite Difference method. 

 In the case of slider bearings, the introduction of surface roughness leads to an increase in the 
pressure and the load carrying capacity of the bearing. As the sliders convergence ratio tends to 0, thus the 
bearing tends to be parallel, we notice a significant increase in both those parameters, up to 35 %, which 
is in accordance with calculations for rough parallel bearings. The friction force calculated is also higher 
in comparison to that of a smooth bearing, exhibiting an increase of up to 4%. However, the friction 
coefficient of a rough bearing, being the ratio of friction force over load capacity, is smaller than that of a 
smooth bearing, exhibiting decrease which reaches 20%. We notice that the values of all the calculated 
operational parameters asymptotically tend to a constant value as the convergence ratio increase; 
physically this mean that as the bearing gets steeper the effect of the roughness tends to be constant. 

 As far as the journal bearing is taken into consideration, we observe that the mean pressure 
generated exhibits slightly higher values, in comparison to those of a smooth bearing, of the order of 1%. 
The minimum film thickness of a rough journal bearing tends to take higher values in comparison to that 
of smooth bearings, with difference reaching 6%. This means that the rough bearings tend to operate on 
higher minimum film thicknesses, aiding in avoiding the metal to metal contact. As a consequence, the 
rougher the bearing the more it operates on smaller eccentricity values. Furthermore, the friction force, 
and thus consequently the friction torque and power losses, takes lower values than the ones of a smooth 
bearing, with differences up to 1%. Lastly, the friction coefficient tends to decrease in value as the 
deviation is getting higher or the Sommerfeld number is decreasing. 

 At this point, we have to comment that, on first sight, the maximum differences calculated in the 
journal bearing were notably lower than those of a slider bearing. This can be explained by calculating the 
respective “convergence ratio” and “deviation ratio” of the journal bearing. Since the eccentricity varied 
from 0.4 to 0.8, the minimum film thickness took values in [ ]100 , 300 mm , and thus the maximum 

deviation ratio calculated was max 0.1r . , while the maximum convergence ration is max 8k = . So if we 

compare the results acquired for the same deviation ratio, we see that they are of the same level. 

  



92 
 

7. Future Work            
 Future work, in continuation of the present analysis, can include the following topics 

 Calculations for the variance of the stochastic quantities mentioned in the previous analysis, such 
as the pressure, the load capacity and the friction force. 

 Modification of the proposed solution by assuming the stochastic roughness as a stochastic 
function of space and time, rather than a stochastic variable 

 Extension of the present model to account for inertia effects, hydrophobic surfaces, thermal 
effects in the lubricant domain and elastic deformations of the bearing structure 

 Extension of the current approach to account for wear in the surfaces, via altering the statistical 
quantities of surface roughness; for example, the average of the surface roughness would be a 
time dependent function 

 Extension of the suggested Reynolds Equation to account for more complex, and realistic, 
operational conditions 
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Appendix A: The Stein's Lemma         

 Let ( )X β  be a stochastic variable, following the natural distribution with zero mean value and 

deviation 2σ , and ( )( )g X β  a function of that stochastic variable. It was proposed and proved by 

Charles M. Stein in [30], that the following equation is valid. 

 ( ) ( )( ) ( )( )
( )

2 g X
X g X

X
β β

β
β β σ

β

 ∂
  =    ∂  

    

 If we suppose that ( )X β  is the stochastic roughness and ( )( )g X β  is the stochastic pressure, 

then we can calculate the averages that appear in the proposed solution. Those integrals have the form of 

( )nr pβ β   , where { }0,1,2,3n = . The calculated averages are found below. 

 [ ] ppβ = m   

 ( ) ( )
2 pr p

r
β ββ σ

β
 ∂

  =    ∂  
    

 ( ) ( )
2

2 2 2
2p

pr p
r

β ββ σ σ
β

  ∂  = +     ∂   
 m   

 ( ) ( ) ( )
3

3 4 2
33 p pr p

r r
β β ββ σ σ

β β

    ∂ ∂  = +       ∂ ∂       
     

 By using Stein's lemma we can also calculate the negative averages ( ) ( )( ) n
h g t r pβ β

− +
 

 , 

where { }2,3n = , which are calculated below. 

 
( )( ) ( )( )2 2 2 2 2 2 2
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σ σ σ σ
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Appendix B: Moments Concerning The Stochastic Film Thickness    

 As mentioned in Chapter (2), the stochastic roughness are assumed to be random variables, each 
one following a different normal distribution. For those variables we know that their mean and standard 
deviation is given by equations (B.1) and (B.2) for ( )Br β and (B.3) and (B.4) for ( )Br β . 

 ( ) 0
Sr β =m  (B.1) 

 ( ) ( )
2

B Br rβ β σ B=C  (B.2) 

 ( ) 0
Br β =m  (B.3) 

 ( ) ( )
2

S S Sr rβ β σ=C  (B.4) 

 For the stochastic film thickness, we know that its two first central moments are given by 
equations (B.5) and (B.6) 

 [ ] ( ) ( )
Th T B Sh h r r hβ β β ββ βé ù é ù é ù= = + + =ê ú ê ú ê úë û ë û ë ûm      (B.5) 

 ( ) 22 2
T Th h T Th hβ β σé ù é ù= - =ê úê ú ë ûë ûC    (B.6) 

 In our approach, we propose to use the Taylor Expansion for calculating the factor 00  . 

According to [32] the Taylor Expansion for the moments of functions of random variables reads as 
following 

 Let ( )1 , Xf X Y
Y

=  be a function of the random variable X  and Y . Then by using the Taylor 

Expansion we know that  

 
[ ]
[ ]

( )
[ ]( )

[ ]
[ ]( )

( )2 3

,X XCov X YX Var Y
Y Y Y Y

β β
β

β β β

  = − + ⋅  

 


  
  

 Utilizing the Taylor Expansion for the correlation factor 00 , with X  being the pressure and Y  

the stochastic film thickness we get equations (B.7) 
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= − + 

             

 
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where  [ ] ppβ ∇ = ∇ m   

  Th hβ   =    

  ( ) [ ], T T TCov p h h p h pβ β β   ∇ = ⋅∇ − ∇       

  ( ) ( ) 22
T T TVar h h hβ β   = −       

 After calculations we get that  
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β σ
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= ∇ 

−  
 m   

or else 

 
( )
( )( )

2 2 2

0 2 2 23 p

h g t
h h g t

σ
σ

+
= ∇

−
0 m  (B.8) 

  



98 
 

Appendix C: Choosing the right approximation for the distribution   

 As mentioned in the introduction, it is known that the roughness height distribution is a Gaussian 
distribution, or is really close to it up to three standard deviations. Although this distribution allows us to 
use various mathematical tools, for instance the Stein's Lemma, in terms of calculating, the cost of the 
Gaussian probability density function is a rather incontinent one to use. So, we will try to approach the 
various moments found in the proposed analysis rather than calculating them directly. 

 In Christensen's papers (i.e. [13] and [31]), a polynomial form approximating the Gaussian 
distribution is chosen. Its mathematical expression is given by equation (C1), while an illustration of the 
function is given in Figure (C.1). 

 ( ) ( ) ( ) ( )
32 2

7
35 ,

, 332
0, elsewhere

r
C w C w C

w C g tCβ s
  





ìïï - £ £ï= =íïïïî

f  (C.1) 

 

Figure C.1: Probability Density Function (PDF) of roughness heights 

 Using the previous approximation of the Gaussian distribution, the first two negative moments of 
the stochastic film thickness, denoted as 1  and 2  respectively, are given by equations (C.2) and (C.3) 

 ( ) ( ) ( )32 2 4 2 2 4
1 7

35 2ln 15 40 33
1532

A h CC h Ch h C h C
h CC



   


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0  (C.2) 
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 In our approach, we propose to use the Taylor Expansion for the moments of functions of random 
variables. According to [32] the Taylor Expansion for the moments of functions of random variables 
reads as following 

 Let ( )1f X  be a function of a random variable X . Then by using the Taylor Expansion we know 

that  

 ( ) [ ]( ) [ ]( ) ( )1
2 Tf X f X f X Var hβ β β′′  = + ⋅      

 Utilizing the Taylor Expansion for the first and the second negative moment of the stochastic film 

thickness, meaning ( )1
1f x
x

=  and ( )1 2

1f x
x

=  respectively, we get equations (C.4) and (C.5). 

 ( ) ( )2 2 2

1 3
B h g t

h
σ+

=  (C.4) 

 ( ) ( )2 2 2

2 4

3B h g t
h
σ+

=  (C.5) 

 At first, we checked the coefficient of the first negative moment of the film thickness numerically 
in a rough slider bearing for deviation ratio [ ]0.02 , 0.2r = . Their numerical value in respect to x  and r  
was plotted in Figure (C.2), while in Figure (C.3) their difference was plotted. 

 

Figure C.2: Numerical Values For the First Negative Moment of The Film Thickness for [ ]0.02 , 0.2r =  
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Figure C.3: Difference of the two coefficients for [ ]0.02 , 0.2r =  

 We observe that their difference is negligible, and that they behave smoothly throughout the 
bearing, meaning in respect to x , and the deviation, meaning in respect to r . But when we tested the 
same moment for [ ]0.001 , 0.2r =  we get Figures (C.4) and (C.5). 

 

Figure C.4: Numerical Values For the First Negative Moment of The Film Thickness for [ ]0.0001 , 0.2r =  

 



101 
 

 

Figure C.5: Difference of the two coefficients for [ ]0.0001 , 0.2r =  

 In figure (C.4) we placed an upper limit of 4 110 m  in the values that coefficient ( )
1

A  could get. 

We observe that as 0σ → , coefficient ( )
1

A  tends to have either large values, i.e. values up to 1510  or 

negative values. Physically meaning, since this coefficient represents the average of the random variable 

( ) ( )
1

low uph r rβ β+ +
, which is always a positive number, we expect that it is a positive number.One way 

of proving that the coefficient is not suited for any further simulations, is to calculate its limit while 

0σ → , which should approach 1
h

. We will also calculate the limits of coefficient ( )
1

B , which should 

also approach 1
h

 and the limits of coefficients ( )
2
A  and ( )

2
B  which should approach 2

1
h

. The calculated 

limits are the following 

 ( )
10

lim A

σ®
= ¥0   

 ( )
10

lim A

σ®
= ¥0   

 ( )
10

1lim B

hσ®
=0   

 ( )
2 20

1lim B

hσ®
=0   

 Seeing that the coefficients acquired by the Taylor Expansion are in harmony with the limits, 

meaning that if we set 0σ =  we get 1
h

and 2

1
h

, those are the coefficients that we will use in the 

proposed approach simulations. 
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