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Abstract

This study investigates and test solutions for automated corrosion
detection processes that focus on the visual attributes of corrosion. Artifi-
cial intelligence methods are employed to extract information from images.
Corroded surfaces have two visually identified attributes color and texture.
To detect corrosion based on color, a color tracking algorithm is created
and tested using images from different compartments of vessels. To de-
tect corrosion based on texture, deep learning algorithms are used, and two
approaches are tested. The first approach is a binary classification model
trained using a Convolutional Neural Network (CNN) architecture employ-
ing transfer learning. The model is also used by a sliding algorithm to allow
detection and localization in large corroded plates. The second approach
treats corrosion detection as an object detection problem. A Single Shot
Detector (SSD) is trained using transfer learning to detect corrosion on real
world images. To support training and testing of all models two datasets
are created. The first dataset consists of images of metals corroded in a
laboratory environment, while the second dataset from real world images of
corroded compartments from bulk carriers’ inspections. The study finds all
three methods capable to perform corrosion detection with the deep learn-
ing approaches yielding better results. Comparing the two deep learning
approaches, object detection is found to be more suitable for real world
examples.
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Chapter 1

Introduction

The word corrosion is derived by the Latin word corrodere which
means “to wear away gradually”. Science defines corrosion as the electro-
chemical reaction of a metal or an alloy with its environment [1]. It consti-
tutes one of the two main causes of metal deterioration alongside mechanical
loss by erosion, abrasion, or wear. All metal structures are prone to corro-
sion. Sometimes it can be prevented but economically it makes more sense
to control it. Therefore, engineers choose materials based on the assumption
that the structure will be maintained during its life cycle.

In the shipping industry maintenance of ships is regulated through
the international maritime treaty SOLAS (International Convention for the
Safety of Life at Sea) and individual class rules. Ships are subject to a
through-life survey regime to remain class approved. There are class surveys,
intermediate surveys, annual surveys, and bottom/docking surveys of the
hull that indicate the needed maintenance of the ship’s structure. Surveys
can be costly and time-consuming processes exposed to human error.

In recent years, the prospect of automated inspections is gaining
ground. Advancements in drone technology and Artificial Intelligence promise
solutions where drones will inspect ship structures more efficiently for a frac-
tion of the time and cost that currently are needed. These practices meet
classification societies and owners’ vision for the future of inspections. A
drone flying in the ship mounted with a camera identifying structural issues
such as corrosion and reporting them is closer to the present than ever.

The purpose of this study is the detection of corrosion in images.
This is implemented using algorithms that quantify the two main visual
characteristics of corrosion, color and roughness/texture. Three different
methods are tested. The first method employs computer vision algorithms to
detect corrosion’s color. The other methods utilize deep supervised learning
techniques, with one of them treating detection as a binary classification
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CHAPTER 1. INTRODUCTION 10

problem and the other as an object detection one.

In the following chapters, an overview of the literature is presented.
Key theoretical concepts regarding computer vision and deep learning are
discussed and defined. A presentation of the datasets that were created
to support the algorithms that are utilized. The methodology is explained
and discussed. Results are presented including visual examples of what the
study achieved. Finally, the conclusion of this study with proposals for
future projects.



Chapter 2

Literature Review

Studies regarding visual corrosion detection used to focus mainly on
computer vision and machine learning approaches that were tasked with
identifying the key characteristics of corrosion in digital images. But break-
throughs in the field of deep learning refocused the interest of researchers
to deep learning approaches for corrosion detection. In this section previ-
ously published works on automated visual corrosion detection from digital
images are presented and discussed.

B. B. Zaidan, A. A. Zaidan, Alanazi, and Alnaqeib (2010) [2] pro-
posed a texture analysis method to detect corrosion on metals. Using a
standard deviation filter their method focused on the rough texture of the
corroded area, and identified the simple texture as not corroded. Bonnin and
Ortiz (2014) [3] used vision-based corrosion detection algorithms developed
on the European project MINOAS. The algorithms were a weak classifier
color-based corrosion detector (WCCD) and an AdaBoost based corrosion
detector (ABCD), which both combine weak classifiers to achieve good per-
formance. The first algorithm is compromised of two stages with the first
using the energy of the symmetric gray level co-occurrence matrix to extract
pixels with rough texture and the second classifying extracted pixels based
on their color information. The second algorithm uses the Adaptive Boost-
ing paradigm to classify corroded areas based on their texture using decision
trees as weak classifiers. Then stage two of the WCCD is used to classify
the extracted pixels. The authors tested the algorithms using images from
vessels and concluded that WCCD outperforms ABCD. Petricca and Moss
(2016) [4] compared standard computer vision and deep learning techniques.
They created a color tracking application and retrained a model called bvlc-
reference-caffenet employing transfer learning to detect corrosion. Their
applications were tested using data from various sources and concluded the
deep learning approach yields greater results. Bondada, Pratihar, and Ku-
mar (2018) [5] worked on a computer vision approach for detection and
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quantitative assessment of corrosion on pipelines. Their method detected
corrosion based on the saturation of its color using various threshold values
and identified the most damaged regions using the k-means clustering algo-
rithm. Gibbons, Pierce and their colleagues (2018) [6] created a probabilis-
tic process for detecting corrosion in remanufacturing. A Gaussian mixture
model was trained using images of used parts achieving a 85% accuracy on
the test set.

Following works focused mostly on deep learning approaches. Atha
and Jahanshahi (2017) [7] evaluated the use of CNNs for corrosion detec-
tion. They tested for different color space input images and multiple ar-
chitectures. Evaluating both proposed and well-known architectures of the
ImageNet, VGG16 architecture with RGB or YCbCr input images was found
to perform better. Hoskere and Narazaki (2017) [8] worked on vision-based
structural inspection, utilizing data from inspections of civil infrastructure,
that included corrosion. They employed two CNNs one to classify the im-
age as damaged or not and the other to classify the type of damage. The
study yielded great results achieving 86.7% accuracy across the 7 classes
of damages, for whom they trained their model. Yao and Yang (2019) [9]
studied an AI based hull structural plate corrosion damage detection ap-
proach employing a CCN based on the AlexNet architecture achieving an
accuracy of 98.9%.Bastian, Jaspreeth and their collegues (2019) [10] pro-
posed an inhouse CNN architecture combined with a localization algorithm
that achieved 98.8% accuracy for detecting corrosion on pipelines. The CNN
was trained to classify between 4 classes (no, low-level, medium-level, and
high-level corrosion). Finally, Nash and Powell (2020) [11] created a crowd
sourced web site, where users labeled and uploaded images with whom an
original CNN model was retrained. This led to an increase of the initial 66%
accuracy of the model to 93% after 37 days.

This study will test both computer vision and deep learning ap-
proaches. First, the accuracy of a color-based approach on images from
vessels employing standard computer vision techniques will be explored.
Then a texture-based approach employing a CNN for a binary classifica-
tion of corroded and clean metals. Finally, another texture-based approach
treating the corroded regions found on images from vessels’ compartments,
as objects that need to be detected and located.



Chapter 3

Theoretical Background

Alan Turin in his paper ”Computing Machinery and Intelligence”
(1950) set the foundation of what we call today Artificial Intelligence (AI).
The term can be described as the field of computer science that answers the
Turin test question “Can a machine exhibit intelligent behavior equivalent
to that of a human?”. There is not a clear definition of the field that is
universally accepted. Notable definitions are given by Russel and Norvig in
their book “Artificial Intelligence: A Modern Approach”, where they define
AI as ”the study of agents that receive percepts from the environment and
perform actions”, and by Professor Patrick Winston of MIT, who defines
it as ”algorithms enabled by constraints, exposed by representations that
support models targeted at loops that tie thinking, perception and action
together”. AI incudes a variety of subcategories, as shown in figure 3.1,
including computer vision, machine, and deep learning.

Figure 3.1: Venn diagram of artificial intelligence

In recent years, advancement in Graphics Processing Unit (GPU)
technology have provided researchers the computational power needed to
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create the one-layer artificial neural network in the 60s, three-layers in the
80s and 50 plus layers today. Deep neural networks promise to solve several
issues and have successfully dealt with problems previously regarded to be
of the computer vision domain.

This study utilizes relevant research for the purpose of corrosion de-
tection. In this chapter computer vision and deep learning concepts are
discussed and defined.

3.1 Computer Vision

3.1.1 Digital Image

Computer vision is a scientific field concerned with the undertesting
of digital images by computers. According to Richard Szeliski [12] “com-
puter vision tries to describe the world that we see in one or more images
and to reconstruct its properties, such as shape, illumination, and color
distributions”. To do that an image is described as a function [13]:

f : R2 → R (3.1)

where f(x,y) is the intensity of position (x,y). Computers operate on digital
(discrete) images that sample the 2D space of regular images on a grid
and quantize (round to the nearest integer) each sample. The equation
expressing this process is:

f [i, j] = Quantizef (i∆, j∆) (3.2)

where ∆ is the distance of samples. This way an image is described as a
matrix of integers, as shown in figure 3.2.

Figure 3.2: Image matrix representation

Grayscale Image

The image as described above represents the grayscale image. Its ele-
ment on the image matrix represents a pixel (short for picture element) and
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describes the intensity of gray to be displayed. The range of gray intensity,
figure 3.3, has 256 possible values with 0 being black and 255 white.

Figure 3.3: Grayscale range intensity

Coloured Image and Colour Models

Coloured images include colour information in each one of their pixels.
Colour is used to facilitate further processing of images. Depending on the
application different colour models are used.

� RGB model:

RGB representation [12] was standardized by the Commission of Inter-
nationale d’Eclairage (CIE) in 1930 after conducting colour matching
experiments using the primary colours red, green, and blue. This
standardization quantifies the tri-chromatic theory of perception by
reproducing all monochromatic colours as a mixture of three chosen
primaries, therefore RGB is considered as an “additive” model. It has
found applications on colour images on screens such as TVs, computer,
and smartphone monitors.

An RGB image is an M×N×3 array of colour pixels, as shown in figure
3.4. Every pixel holds three values (3 channels) from the RGB space
corresponding to the red, green, and blue intensity. The RGB space is
represented graphically as cube, figure 3.4. Assuming a common colour
depth of 24 bits, also known as “true colour”, this model provides 256
possible values for red, green, and blue or 256× 256× 256 = 16777216
possible colours. Mixing large quantities provides light colours with
100% mixture of all colours creating white light, while small quantities
provide dark colours with a 0% mixture created black.

Colour cameras integrate light according to the spectral response func-
tion of its sensors. For RGB the equations describing this process are:

R =

∫
L (λ)SR (λ) dλ (3.3)

G =

∫
L (λ)SG (λ) dλ (3.4)

B =

∫
L (λ)SB (λ) dλ (3.5)
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(a) RGB Image (b) RGB cube

Figure 3.4: RGB image representation and colour space

where L(λ) the incoming spectrum of light of a pixel and SR, SG, SB
spectral sensitivities of red, green, and blue sensors, respectively.

� HSV model:

Hue, Saturation, Value colour model (HSV) [12] is a projection of the
RGB cube to a non-linear chroma angle, radial saturation percentage
and luminance value. Hue defines the colour range from 0 to 360
degrees. Saturations is a measure of dilution by white light with a
range [0,1]. Value is the brightness of the colour with a range [0, 1].
The HSV space is represented graphically as cylinder, figure 3.5. It is
useful to applications such as colour tracking.

HSV parameters can be calculated by converting RGB values. The
first step to this process is the normalization of R, G, B to [0,1] and
calculation of max = max (R, G, B) and min = min (R, G, B).
Then the following procedure is applied[14]:

1. H =


undefined or 0 if max=min

60× (0 + G−B
max−min) if R=max

60× (2 + B−R
max−min) if G=max

60× (4 + R−G
max−min) if B=max

2. if (H < 0) then H = H + 360

3. S =

{
0 if max=0

100× max−min
max else

4. V = 100×max

Notable conditions are when R=G=B where no Hue value can be
assigned and R=G=B= 0 where no saturation can be assigned and is
set to zero. It is important to remember that for every HSV colour
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there is an RGB equivalent but HSV only describes 1/256th of RGB
colours.

Figure 3.5: HSV colour space

3.1.2 Image Filtering

Filters are used to perform a variety of image transformations such
as accentuating edges, sharpening details, reducing noise etc. There are two
types of filters, linear and non-linear.

Linear Filters

Neighbourhood operator[12] is a linear filtering process that outputs
a pixel as the weighted sum of input pixel values. This is described by the
correlation operator:

g = f
⊗

h (3.6)

g (i, j) =
∑
k,l

f (i+ k, j + l)h (k, l) (3.7)

where the matrix h is called kernel or mask and its entries filter coefficients.
By reversing the sing of the offsets in f we get:

g (i, j) =
∑
k,l

f (i− k, j − l)h (k, l) =
∑
k,l

f (k, l)h (i− k, j − l) (3.8)

g = f ∗ h (3.9)

This gives us the convolution operator where h is called the impulse
response function. It provides the addition of shifted impulse response func-
tions h (i− k, j − l) multiplied by the input pixel matrix f (k, l).

Correlation and convolution are linear shift invariant operators mean-
ing that they obey:
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� The linear superposition principle, where the net output of two or more
operations is the sum of the outputs if every operation is performed
individually.

� The shift invariance principle, where shifting the input entries of the
vector then the output is shifted by the same amount.

Well known and commonly used linear filters are:

� The moving average or box filter that averages the pixel values in a
K ×K frame.

� The Bartlett filter that provides a smoother image. The filter is also
known as a piecewise linear “tent” function.

� The Gaussian filter used to reduce noise. A combination of two of those
filters can be used for edge detection by subtracting their outputs.

Non-Linear Filters

Non-linear filters [12] tend to perform better than linear ones. They
follow an alternative approach by thinking the filter as a statistical estima-
tor. Their goal is to estimate the value of a pixel in the presence of noise.
Commonly used non-linear filters are the median filter, which selects the
median value from each pixel’s neighbourhood and the bilateral filter which
drops pixels whose values are significantly different than that of the central
pixel.

Non-linear filters are also used in the processing of binary images.
These images have pixels that output only two colours, usually black and
white. They are created by thresholding operations:

θ (f, t) =

{
1 if f ≥ t

0 else
(3.10)

Binary image operations are called morphological operations as they alter
the shape of objects. They take as an input the binary image and a struc-
turing element and convolute them. Then the output is the threshold result
of the convolution. Standard operations include dilation, erosion, majority,
opening and closing.

3.1.3 Open CV Library

OpenCV or Open-Source Computer Vision Library [15] is an open-
source computer vision and machine learning library. It provides infrastruc-
ture to build computer vision applications with more than 2500 optimized
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computer vision and machine learning algorithms. It is developed using
C++ and it has C++, Python, Java, and MATLAB interfaces. This study
employs OpenCV for the task of corrosion colour tracking and processing of
an image dataset.

3.2 Deep Learning

Deep learning (deep structured learning) is part of machine learning
methods for feature learning based on neural networks.

To discuss deep learning, we first must explain what a neural network
(NN) is. NNs are computing systems that try to copy the working process
of biological neural networks find in brains of humans and animals. They
manage to learn through their interaction with data during a process called
training.

There are three main approaches to NN learning. The most common
is supervised learning, where the task of learning a function that maps an
input to an output is achieved by using input and output pairs (labeled data)
for training. Semi-supervised learning that is performed using labeled and
unlabeled data simultaneously. Finally, there is unsupervised learning that
approaches the task by trying to identify patterns in unlabeled data with
minimum human supervision. This study focuses on supervised learning
techniques.

NNs solve two main categories of problems, regression, and classifica-
tion. Regression is the process in which data are mapped into continues real
values. Classification is the process of mapping data into multiple discrete
values (categorical classes).

Below key concepts of artificial neural networks will be discussed.

3.2.1 Artificial Non-Linear Neurons

A neuron is an information-processing unit fundamental to the design
of an artificial neural network [16]. A representetion of the neuronal model
is shown in figure 3.6. Its basic elements are:

� The synapses (or connection links) that accept the input signal xj and
multiply it with their individual weight (or strength) wkj .

� The summing junction that adds all signal and weight products.

� The externally applied bias bk that is added to increase or lower the
net input of the activation function.
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� The activation function that limits the amplitude of the neuron’s out-
put. Typically, the range of the amplitude is normalized to be [0,1] or
[-1.1].

Figure 3.6: Artificial neural neuron representation

The equations describing a neuron are the following:

uk =
m∑
j=1

wkj xj (3.11)

yk = ϕ (uk + bk) (3.12)

where xj the input signals; wkj the weights of neuron k; uk the linear com-
bination of summing junction; bk the bias; ϕ the activation function; yk the
output of neuron k. The bias applies an affine transformation vk = uk + bk
to the output that increases the activation potential of the neuron.

We may add the synapse x0 = 1 and wk0 = bk to introduce the bias
as an internal parameter. So, the equivalent equations are:

vk =

m∑
j=0

wkj xj (3.13)

yk = ϕ (vk) (3.14)

Activation function ϕ (vk) limits the output of the neuron as already
mentioned, but it also provides non-linearity to the neuronal model which
is needed to solve nontrivial problems. Here we discuss the most common
activation functions, and plot them in figure 3.7:

� Sigmoid Function: The most widely used activation function that
provides great balance between linear and non-linear behaviour. It is
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described by the logistic function:

ϕ (v) =
1

1 + e−λv
∀v ∈ R→ ϕ ∈ [0,1] (3.15)

where λ ∈ R the slope of the function. The main drawback of the
function is the “vanishing gradient”. Near the edges of the function
the gradient tends to minimize and changes in the Y do not respond
to changes in X axis, the neuron stops learning.

� Tanh Function: The hyperbolic tangent function is a scaled sigmoid
defined by:

ϕ (v) =
2

1 + e−2v
− 1 ∀v ∈ R→ ϕ ∈ [−1, 1] (3.16)

It presents the same useful non-linear properties but has a steeper
derivative amplifying the “vanishing gradient” issue.

� ReLU: The rectified linear unit (ReLU) is defined by:

ϕ (v) = max (0, v) ∀v ∈ R→ ϕ ∈ [0,∞) (3.17)

It is mainly used in CNNs that will be discussed further below. It
converges fast, requires little computational power, and is activated
sparsely since its zero for all negative inputs. However, being zero for
negative inputs comes with a drawback called “Dying ReLU”. If a
neuron is stuck to negative values, it always outputs zero. This makes
the neuron passive and does not contribute to the learning process.
Several variants are found in the bibliography that deal with this is-
sue like Leaky ReLU, Scaled ELU (SELU) and Concatenated ReLU
(CReLU).

Figure 3.7: Plotted activation functions

Choosing the correct activation function is a complex task that re-
quires experience. The main idea is to try and find one that better approx-
imates the characteristics of the function the neuron is tasked to describe.
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3.2.2 Neural Network Architecture

After discussing the neuron, we understand the fundamental block
of neural networks. NNs can be described as architectural graphs where
information is transmitted through neurons towards the output and is used
to learn the desired function.

Figure 3.8: Feed-Forward Neural Network graph

Neurons, or computation nodes as they called, are organized in layers
[16]. The simplest implantation is the single layer feed-forward network that
has an input layer of source nodes that provides data to the output layer of
computation nodes. To increase performance, we can add layers between the
input and output layers, as shown in figure 3.8. They are called hidden layers
or hidden units and enable the network to extract higher order statistics, an
attribute especially valuable when the size of the input layer is large. They
sequentially process the input signal and project onto the next layer until
it reaches the output layer. NNs that their layers nodes are connected to
every node in the adjacent and forward layer are called fully connected. If
some links are missing, then they are called partially connected.

There are many variations to the feed forward neural network. One of
them is the recurrent neural network (RNN). It has at least one feedback loop
that provides extra input to a layer’s neurons the output of a forward layer.
This study focuses on another variant the Convolutional Neural Network
(CNN) that will be discussed in depth in later sections.

3.2.3 Neural Network Training

So far, we have described NNs as a series of functional transforma-
tions where parametric non-linear functions provide an output vector y given
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an input vector x. A NN has “learned” the function in question when its
parameters are tuned to the desired values. This happens during a process
called training.

Neural networks are trained by dynamically calibrating their param-
eters through the minimization of an error function. Let us discuss a re-
gression problem to show why we minimize the error function[17]. Assume
we have an input vector xn and a target vector tn (n =1,. . . ,N) that has a
normal distribution with mean y(x,w). The probability that the NN output
describes the relationship of the two variables is given by:

p(t|x,w) = N(t|y(x,w), σ2) (3.18)

Assuming that x and t are independent and identically distributed observa-
tions we get the likelihood function:

p

(
t

∣∣∣∣x,w, 1

σ2

)
=

N∏
n=1

p

(
tn

∣∣∣∣ xn, w, 1

σ2

)
(3.19)

and the logarithmic function

ln (p (t|x,w)) = − 1

2σ2

N∑
n=1

{
(y (xn, w)− tn)2 +

N

2
ln

(
1

σ2

)}
− N

2
ln(2π)

(3.20)
Our goal is to calculate the optimum weights w that maximizes the prob-
ability of x describing t. By maximizing the likelihood function (p=1) we
take the error function

1

2σ2

N∑
n=1

{
(y (xn, w)− tn)2 − N

2
ln

(
1

σ2

)}
+
N

2
ln (2π) = 0 (3.21)

and by ignoring constant values, we get the mean square error function

E (w) =
1

2

N∑
n=1

(y (xn, w)− tn)2 (3.22)

So, when the error function minimizes, E (w)→ 0, probability of the inde-
pendent variable being significant to describe the dependent variable maxi-
mizes. The same conclusion can be drawn from a classification problem such
as a binary classification that is solved by minimizing the cross-entropy func-
tion

E (w) = −
N∑
n=1

(ln (yn + (1− tn) ln (1− yn))) (3.23)

where t the target variable, y(x,w) output of a sigmoid function and the
conditional probability of targets described by the Bernoulli distribution.
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Figure 3.9: Error function represantation as a surface of the weight space

As we already mentioned our goal is to find a weight vector w that
minimizes the chosen error function. It is common in the bibliography to
visualize the error function as a surface of the weight space, like the one in
figure 3.9. We can change the value of w by δw to change the error function
by δE ∼= δwT∇E (w). Error is a smooth continuous function; it minimizes
when the gradient vanishes so that:

∇E (w) = 0 (3.24)

It is not always possible to find a vector w that returns a zero gradient. As
a result, we try to identify one for whom E(w) takes its smallest value. This
task is difficult since the error function has a high non-linear dependence
on weights and biases. There will be many points at which the gradient
vanishes where we will have multiple inequivalent minima. The optimum
result is to find the global minimum but in practice we will not be able
to know if it has been found. To deal with this, we compare several local
minima and chose the one with the smallest value as a sufficient solution.

There is no analytical solution to the gradient equation of the error
function. We use iterative numerical procedures to solve it and tune our
NN’s parameters. Optimization of continuous nonlinear function is a widely
discussed issue and many algorithms and techniques exist to solve it. It
is common to initialize the weight vector to an initial value w(0) and then
make use of the gradient information to update the weight vector. Important
optimization algorithms for NNs like gradient decent, AdaGrad, RMSProp
will be discussed further below.
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For the network to use the gradient, information should be able to
travel forwards and backwards through it. This happens during a process
called error backpropagation or backprop. First the derivative of the error
function is evaluated and then it is used to compute the adjustments to be
made to weights. This process happens for every iteration.The steps of the
error backpropagation are the following:

� Apply an input vector xn and compute the activations for all hidden
and output neurons.

� Calculate the error of all output neurons δk = yk − tk.

� Backpropagate output errors using the backpropagation formula:

δj = ϕ′ (vj)
n∑
k=0

wkj δk (3.25)

to obtain the error δj of each hidden neuron.

� Evaluate the required error function derivatives using:

∂En (w)

∂wkj
= δj yk (3.26)

where δj = ∂En(w)
∂vj

and yk =
∂vj

∂En(w)
.

For batch methods, the derivative of the total error is calculated as the sum
of all derivatives.

3.2.4 Optimization Algorithms

Gradient Decent

Gradient decent or batch gradient decent[18] is an iterative optimiza-
tion algorithm used to minimize the objective function J(θ) where θ the
model’s parameters. The algorithm updates the parameters θ in the op-
posite direction of the gradient of the objective function. The equation
describing the relationship is:

θ = θ − η∇θJ (θ) (3.27)

where η the learning rate that determines the step size at each iteration while
moving toward the minimum. The tuning of the learning rate is crucial as
small values will require much time for the model to train and large values
will cause the model to converge too quickly to a suboptimal solution, as



CHAPTER 3. THEORETICAL BACKGROUND 26

Figure 3.10: Learning rate values movements on the error function

shown in figure 3.10. The gradient of the objective function is calculated for
the entire dataset.

There are many variations of this algorithm that improve its output.
Like stochastic gradient decent (SGD) that instead of performing calcula-
tions for the whole dataset, it performs one update at a time for each training
example x(i) and y(i) label:

θ = θ − η∇θJ
(
θ;x(i); y(i)

)
(3.28)

This allows the optimizer to fluctuate on the surface describing the param-
eter space and potentially find a better local minimum. Another variation
is the Mini-batch gradient where updates happen for a batch of n training
examples:

θ = θ − η∇θJ
(
θ;x(i:i+n); y(i:i+n)

)
(3.29)

It reduces the variance of the parameters making the convergence more
stable and is computationally efficient.

AdaGrad

The AdaGrad algorithm [19] is an improvement of the gradient de-
cent. Gradient decent tends to go quickly down towards the steepest slope
making it difficult later to find the global minimum since the original tra-
jectory does not point to it, as shown in figure 3.11. This algorithm corrects
its direction earlier by scaling down the gradient vector along the steepest
dimensions.

The process is performed on two steps. Firstly, s = s + ∇θJ (θ) ⊗
∇θJ (θ) is computed that accumulates the squares of the gradients of all iter-
ations where ⊗ is the element wise multiplication. Secondly, the parameter
θ is calculated

θ = θ − η∇θJ (θ)√
s+ ε

(3.30)
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where ε is a smoothening term to avoid division with zero and � is the
element wise division. One of the main benefits is that this optimizer decays
the learning rate requiring less tuning of this parameter. But this holds the
risk of the algorithm stopping early since the learning rate is scaled down
so much.

Figure 3.11: AdaGrad versus Gradient decent movements

RMSProp

RMSProp [20] deals with the issue of adaGrad that slows down to
fast and misses the optimum converges, by only accumulating gradients of
the most recent iterations. It achieves that by using exponential decay, so
the equations are:

s = βs+ (1− β)∇θJ (θ)⊗∇θJ (θ) (3.31)

θ = θ − η∇θJ (θ)√
s+ ε

(3.32)

where β is the decay rate.

3.2.5 Neural Network’s Performance Evaluation

Residuals Evaluation

As we discussed the main goal when training a NN is to minimize
the error function. But the performance of a network is based on its correct
predictions during training and how well it predicts previously unseen data.
Creating an optimized network (model) requires us to monitor its bias and
variance.

When we created the error function for the regression example, we
ignored two constant values which refer to the variance and irreducible error
of the mean square error function. Therefore, a form that better represents
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the total error of NN is:

Total Error = Bias+ V ariance+ Irreductible Error (3.33)

Figure 3.12: Total Error and model complexity relationship for the MSE
function

Bias is the target value minus the average predicted value the model
is tasked to map and it is inherent to the optimizer we used during training.
Models with high bias make incorrect assumptions about the data and are
oversimplified. They are unable to predict the target value on the training
data.

Variance is the error due to sensitivity to small fluctuations of the
training dataset. Models with high variance tend to map the noise of the
data rather than the intended function. They fail to generalize meaning
that they have great performance of the training data but high error on test
data.

Irreducible error represents the amount of noise in our training data.
It cannot be reduced by any algorithm as it is the natural variability in a
system.

Monitoring bias and variance is about finding a good balance between
them. The two variables have an inverse relationship, as shown in figure 3.12.
When bias minimizes the variance is increased in relation to our model’s
complexity and vice versa. We want to tune our model, so the sum of bias
and variance terms minimizes the total error. In case we fail our model will
either under-fit or over-fit. Under-fitting happens when a model fails to map
the underlying pattern of the training data and over-fitting happens when
a model maps the noise of the training data. Under-fitting is associated
with high bias and low variance while over-fitting with low bias and high
variance. In the field of machine learning, the inverse relationship of the
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two variables its consequences are called bias-variance tradeoff [21], and is
visually identified as shown in figure 3.13.

Figure 3.13: Bias-variance tradeoff

A graphical illustration of the relationship between bias and variance
is shown in the bull eye diagram, figure 3.14, where the center target is a
model that adequately maps the depended variables.

Figure 3.14: Bull eye diagram

Cross Validation

The main problem with residuals validation is that it does not give an
indication on how well the model will perform when exposed to previously
unseen data. The idea is that part of the dataset removed before training
then when training is finished the model is evaluated on the remaining data.

A widely used method is hold out [22]. In this method data are
separated into two sets, called training and testing. The neural network is
trained only using the training set and then the model is used to predict
the output values for the test data it has never seen before. The errors are
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accumulated and used to evaluate the model. The issue with the method is
that it can have a high variance. The evaluation is heavily depended on how
data are split. If data points in the training set and test set are significantly
different then the results will vary. It is best for the data to be shuffled
randomly and then split. A common split is 80% to 70% training and 20%
to 30% test data.

An improvement of the holdout method is K-folds cross validation
[22]. Data are divided into k subsets and holdout method is repeated k
times. For every fold, one of the k subsets is used as test set while the other
k-1 are joined to form the training set. Then the average error of all trials is
computed. K value is preferred to be between 5 and 10. This method deals
with the issue we mentioned about hold out since it matters less how the
data are divided. Every data point is used k-1 times as training data and
one as testing data. The disadvantage is that the model must be trained
k times from scratch meaning that the method is slower and requires more
computational power.

3.2.6 Neural Networks and Deep Learning

Having discussed neural networks, we now understand the key com-
ponent of deep learning. Deep learning can be described as large neural
networks, architectures with large numbers of layers, that are trained on
huge amounts of data. In contrast to other machine learning algorithms the
more the data the greater the performance of the deep neural networks [23],
as shown in figure 3.15.

Figure 3.15: Machine and deep learning performance with regards to the
amount of data
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3.2.7 Convolutional Neural Networks

Convolutional neural networks [24] emerged while studying the visual
cortex. David Hubel and Torsten Wiesel in their studies found that neurons
in the visual cortex have a small local receptive field. They react to visual
stimulations in a limited region of the visual field. Different neurons overlap
their receptive field and combined they create the visual field. Also, they
argued that neurons only react to images with a specific orientation of lines
like horizontal or vertical. They noticed that neurons receptive field varies
with some having large ones that can detect complex patterns as combi-
nation of low-level patterns. Their studies and the idea that neurons may
be able to detect complex patterns using the output of neurons detecting
simple patterns led to what we now call Convolutional Neural Network.

They create models that are invariant to transformations of the in-
put by building invariance properties to their architecture. Also, they are
preferred to deep fully connected neural networks for a variety of tasks, be-
cause they are partially connected and require less parameters to be trained.
Therefore, they are widely used to computer vision tasks. They employ a
key attribute of images, pixels close together are highly correlated in con-
trast to the distant ones. So, in the first stages they detect local features on
small sub regions of the image and then merge them to obtain higher order
features that yield information about the input image. This happens with
the use of two new building blocks the convolution layer and pooling layer.

Convolution Layers

The convolution layer[24] is the most important building block of the
CNN. The input image, one-layer image like grayscale or multi-layer like
RGB, is connected to a convolution layer and every neuron receives pixels
corresponding to its receptive field. Neurons of those layers maintain this
architecture of partial connections throughout the network.

They receive data from a rectangular receptive fielding in the previous
layer. This architecture allows the network to identify low-level features
in the first hidden layers and then assemble them into larger higher-level
features in the last ones.

Convolution layers can be visualized as a 2D vector of neurons. As
shown in the figure 3.16, a neuron in row i, column j is connected to neurons
in rows i to i+ fh–1, columns j to j + fw–1 of the previous layer, where fh
and fw are the height and width of the receptive field. This process raises
dimensionality issues between layers. To deal with them it is common to add
a border of pixels with value zero around the edges of the image, as shown in
figure 3.16, in a technique known as zero padding. This allows a layer to have
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the same height and width as the previous layer. However, occasionally it is
useful to reduce the dimensions of layers to reduce computational complexity
of the model. This is possible by spacing out receptive fields while connecting
large layers to smaller ones. This is achieved by tuning the stride of the layer
where stride is the shift from one perceptive field to the next one, as shown
in figure 3.17.

Figure 3.16: Connections between layers with zero padding

Figure 3.17: Dimensionality reduction

Weights of neurons are represented as 2D vectors that have the size
of the receptive field. These vectors are called convolution kernels or filters.
A layer full of neurons returns a feature map that indicates the areas in an
image which activated the filter the most. During training the convolution
layers tune their filters to create the best filters for the task of the model.

In general, convolutional layers have multiple filters and output one
feature map per filter, as shown in figure 3.18. A feature map’s neurons share
the same parameters such as weights and biases and every pixel correspond
to a neuron. Neurons in different feature maps use different parameters. A
neuron’s receptive field contains all the feature maps of the previous layers.
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In short, the layer applies at the same time multiple trainable filters to its
input. This gives CNNs one of their key capabilities, to detect multiple
features regardless of where they are in the input image.

Figure 3.18: Convolutional layers with multiple feature maps and RGB input
image

The equation describing the output of a neuron in feature map k of
a convolution layer is:

yi,j,k =

fh−1∑
u=0

fw−1∑
v=0

fn′−1∑
k′=0

xi′,j′,k′ wu,v,k′,k + bk (3.34)

where sh and sw are the vertical and horizontal strides. fh and fw are the
height and width of the receptive field. fn′ is the number of feature maps in
the previous layer. xi′,j′,k′ is the output of the neuron located in the previous
layer. bk is the bias term for feature map k. wu,v,k′,k is the connection weight
between any neuron in feature map k of the layer and its input located at
row u, column v (relative to the neuron’s receptive field), and feature map
k’.

Pooling Layers

The goal of a pooling layer [24] is to reduce the number of parameters.
It shrinks the image to reduce computational load and make the model less
prone to overfit. Its architecture is similar to the one of the convolution
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layers. Its neurons receive data from a receptive field in the previous layer
and it has its own filter/kernel size, stride, and padding parameters. It
works as an aggregation function, like max or mean and its neurons have
no weights meaning it is not trained during backpropagation. For example,
a max pooling layer holds the max value of each kernel and drops the rest.
Other common max pooling layers are the min pooling that holds the min
values, the average pooling that calculates and hold the mean value of each
kernel and L2 pooling that applies the Euclidean norm to each kernel and
holds its value.

Figure 3.19: MaxPooling with a 2x2 kernel and stride 2

Max pooling layers are commonly used in CNNs and provide the
model with some level of invariance to certain small distortions. Transfor-
mations like shifting, rotation and scaling of an object in an image can be
dealt with because the layer will output an identical or similar feature map,
since it keeps only the pixel with that has the biggest activation from the
filter of the previous layer. This attribute is useful in classification tasks that
the prediction should not be depended on these transformations. However,
it is important to keep in mind that by using this technique we cast out huge
amounts of information that could be useful to certain tasks, for example
with a max pooling layer of a kernel 2× 2 and stride 2 we drop 75% of the
variables, as shown in figure 3.19.

3.2.8 Convolutional Neural Network Architectures

CNNs are compromised from a convolution base and at the top a
classifier, as shown in figure 3.20. The convolution base consists of the
input layer that gives the image to a first block of stacked convolution layers,
whose neurons are activated by an activation function (commonly ReLU for
computer vision tasks). Then a pooling layer, another stack of convolution
layers and so on. During this phase features are extracted, and useless
parameters are dropped. Finally, at the top of the base there is a regular
neural network that receives the data and tunes its parameters to make
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correct predictions.

Figure 3.20: Typical CNN architecture

In recent years there have been great advancement in the architec-
tures of CNNs. Academia and industry come together and test their ad-
vancements in the field in the ImageNet Large Scale Visual Recognition
Challenge or ILSVRC [25]. They compete on a dataset of millions of images
and thousands of classes on tasks such as:

� Image classification: Predict the classes of objects present in an image.

� Single-object localization: Image classification and drawing a bound-
ing box around one example of each object present.

� Object detection: Image classification and drawing a bounding box
around each object present.

Competitors have achieved to reach a less that 2.3% error to classification
problems, giving us notable CNN architectures. The most important are:

AlexNet:

This architecture [26], shown in figure 3.21, won the 2012 ImageNet
ILSVRC challenge by achieving an error rate of 17%. It was developed by
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. It was the first CNN
architecture to stack convolutional layers on top of one another.

To avoid overfitting, two regularization techniques were used. Firstly,
dropout was applied with a 50% dropout rate during training to the outputs
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of the two fully connected layers. Dropout is a process where randomly dif-
ferent neurons in each epoch are turned off at a predetermined probability
rate. It allows the model to use different sample of parameters at every
iteration making the model more robust. Secondly, data augmentation was
performed. Images where randomly shifted by various offsets, flipped hori-
zontally, and their lighting conditions were altered.

It also used a competitive normalization step after the ReLU activa-
tions of the first and third convolution layers, called local response normal-
ization. This process improves generalization by allowing the most activated
neurons to constrain other neurons located at the same position in neigh-
boring feature maps. This makes feature maps to specialize by forcing them
to explore a wider range of features.

The model was trained across two GTX 580 GPUs hence the split
into two partitions of the architecture illustration below.

Figure 3.21: AleNet architecture

VGGNet:

This architecture [27], shown in figure 3.22, was the runner-up at
the ILSVRC 2014 competition. It was developed by the community and
was developed by Karen Simonyan and Andrew Zisserman of University of
Oxford in 2014. Images are passed through a stack of convolution layers.
There are 13 convolutional layers and 3 fully connected layers. It has small
filters 3×3 with more depth instead of having large filters. It is currently the
most preferred choice in the community for extracting features from images.
However, the model has 138 million parameters making it slow to train from
scratch. The original required 2-3 weeks of training on four NVIDIA Titan
Black GPUs.
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Figure 3.22: VGGNet architecture

ResNet:

The Residual Neural Network [28] won the ILSVRC 2015 challenge
and it was developed by Kaiming He. It managed to beat human level
performance on the trained dataset achieving a 3.57% error. Its success is
based on the use of skip connections. These connections instead of only
feeding the output of a layer to the next one, they also feed it as input to
layers higher in the architecture.

Figure 3.23: Residual Learning

Skip connections force the network to model a new function f(x) =
h(x) – x, as shown in figure 3.23, where h(x) the original excepted output
and x the original input. This practice is called residual learning. This
enables us to carry important information in the previous layer to the next
layers, preventing vanishing gradient problem. Also, it allows the network
to treat the number of layers as a hyperparameter to tune, since layers that
do not help the overall accuracy are skipped. Networks employing it can be
though as dynamic neural network.

ResNet architecture, shown in figure 3.24, is like that of other net-
works but it also has a deep stack of residual units. Each residual unit has
two convolutional layers (filters 3 × 3 and stride is one) with batch nor-
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malization (used to increases stability, it normalizes the input of a layer by
subtracting the mean and dividing by the standard deviation) and are acti-
vated using ReLU. Every few residual units the number of feature maps is
doubled but their dimensions are cut in half. This creates a shape compat-
ibility issue with the output of the residual units as they cannot be added
to the original inputs of the layers. It is dealt by using a convolutional layer
with a filter of 1× 1 and stride 2 for the inputs.

Figure 3.24: ResNet architecture

3.2.9 Transfer Learning

Transfer learning [24] in computer vision is a method that allows us to
build accurate models efficiently and fast. Usually, instead for the model to
be trained from scratch, it inherits pieces of its architecture and parameters
from previously pretrained models. These models where trained on large
benchmark datasets to solve several problems requiring various patterns
to be detected. This way the new model leverages previous trainings and
avoids learning already known patterns. The computational power and time
needed to train models exploiting this technique is minimum since only a
few parameters need to be tuned. Pretrained models are most of the times
published models like the ones from the ImageNet competition previously
discussed.

When transfer learning is employed the classifier of the pretrained
model is removed and the convolution base is fitted to the new model. There
are three strategies, figure 3.25, to repurpose the convolution base:

� Train all the model’s parameters both on the convolution base and
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classifier. Doing this only the original architecture of the base is reused,
and the model will need a large dataset to learn the needed task.

� Freeze the whole convolution base and only train the classifier. This
strategy is helpful when the dataset is small and there is shortage of
computational power or the pretrained model solves a similar problem.

� Freeze part of the convolution base and retrain the rest. This strat-
egy is based on the ability of CNNs to detect general features on the
lower convolution layers and specific to the problem features on higher
layers. So, we only adjust higher layers to identify problem related
features. This practice is helpful because it allows to train efficiently
on large datasets while training few parameters, making the model less
susceptible to overfitting.

Figure 3.25: Transfer learning strategies

3.2.10 Object Detection

Object detection is the task of classification and localization of mul-
tiple objects in an image. It allows the detection of different objects and
classes and assigns a bounding box in the region they are located. It is
possible to use object detection technics to solve a classification problem
more efficiently. An example is the classification of an image into a certain
category, when the characteristics required to be detected are small with
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respect to the image. In this case object detection would yield greater per-
formance even if there is no interest in identifying the exact location of the
characteristics.

As all supervised learning procedures, objects detection requires label
data. The dataset is compromised of the images with corresponding bound-
ing box coordinates (x, y) = (bottom left coordinate, top right coordinate)
and labeling for each box.

There are many architectures used for object detection such as the
Faster R-CNN, You Only Look Once (Yolo) and the Single Shot Multibox
Detector (SSD). This study uses SSD architecture [29] for object detection,
like the one shown in figure 3.26.

Figure 3.26: Single Shot Multibox Detector example with MobileNet

The SSD was published in 2016 from Google and uses a single deep
neural to predict bounding box coordinates and classify their regions in one
pass. The detector has a base model that extracts features followed by ad-
ditional convolutional layers that detect the objects. The convolution layers
decrease their size gradually to facilitate detection at different scales. Also,
progressively feature maps depth is increased. As a result, deeper layers have
larger receptive fields and more abstract representations are constructed. In
shorts, initial layers detect small objects and deep layers larger objects. Fi-
nally, non-maximum suppression is used to reduce the number of detections
to the actual number of objects present.

Non-maximum suppression (NMS) compares all detected boxes and
returns those that have detected the objects better. All boxes are gathered
in a list. The algorithm first selects the box with the highest accuracy and
adds it to a list of filtered boxes. Then for the previously selected box it
calculates the Intersection over Union ratio (IOU is the area of intersection of
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boxes divided by the area of their union) with all other boxes in the original
list. All boxes with ratio greater than a threshold value are removed. The
process is repeated by choosing the box with the highest accuracy from
the original list and performing the same calculation and tests. This is an
iterative process repeated until the original list is empty.

3.2.11 TensorFlow Deep Learning Framework

TensorFlow [30] is an end-to-end open-source platform for machine
learning. It was developed by researchers and engineers from Google to
conduct machine learning and deep neural networks research. It employs
Python for a convenient front-end API used to build applications, while
executing them in high-performance C++.

It allows developers to represent computations without performing
them until asked. This happens by creating dataflow graphs, like the one
in figure 3.27, that describe how data moves through a graph, or a series of
processing nodes. Nodes in the graph represent a mathematical operation,
and connections between nodes multidimensional data arrays, or tensors.
The computations of the graph are executed in a session that places the
graph operations on hardware and provides methods to execute them.

This study employs TensorFlow and its high-level API keras to create
deep convolutional neural networks used for image classification. It is also
used with its Object Detection API to create models able of localizing and
identifying objects in a single image.

Figure 3.27: TensorFlow dataflow graph
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Corrosion Datasets

To implement corrosion detection two image datasets were created.
The first one was created in a laboratory environment using metals from
previous experiments. Its purpose is to facilitate the creation of models able
to distinguish clean from corroded metals. The second dataset is made of
real-life inspection images of bulk carriers. This one is used to create models
able to detect corrosion from real life images. It treats corrosion detection
as an object detection problem.

4.1 GUI Application

To handle large numbers of images a graphical user interface (GUI)
application was created. Its layout can be found in figure 4.1. The app
allows the user to iterate fast through images and allocate them in folders.
It was created using python and Qt [31], which is a set of cross-platform
C++ libraries that implement high-level APIs for accessing many aspects of
modern desktop and mobile systems, like traditional UI development. Also,
Qt Designer is used to simplify the GUI creation. It includes GUI layout and
forms designer that allow the user to design the desired layout and retrieve
the code.

4.2 Laboratory Dataset

This dataset was created using corroded and clean metals from the
materials laboratory of the Department of Materials Science and Engineering
at the School of Chemical Engineering at the National Technical University
of Athens. The metals were corroded during various lab experiments. Three
hundred and sixty-six (366) metals were photographed on white background
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Figure 4.1: Gui application layout

(figure 4.2) using a NIKON D3400 mounted on a tripod. The original di-
mensions of the images are 6000 × 4000 pixels with vertical and horizontal
resolutions of 300 dpi. The images have 24bit depth, sRGB color represen-
tation and are JPG formatted.

(a) Corroded metal (b) Clean metal (c) Corroded metal

(d) Clean metal

Figure 4.2: Laboratory dataset sample of original images

As discussed in previous chapters, deep learning algorithms, like those
that will employ this dataset, require large amount of data to be efficient.
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Hence, the number of images needs to be increased artificially. Firstly, parts
of the original images that included the metal plates were extracted. Then
the number of images on the dataset is increased by cropping the extracted
images to 300 × 300 pixels pieces. This process returned approximately
25000 images depicting corroded and clean metals. Using the GUI app, the
cropped images where classified to two classes Rust and NoRust. Images
that included metals with corroded and not corroded parts were dropped
(figure 4.3). This choice was made to avoid confusion and noise in the data
as the issue we want to solve using the dataset is a binary classification
between clean and fully corroded metals. Therefore, in the Rust class we
include images of metals that are 100% corroded and in the NoRust class we
include images of metals that are 100% not corroded. Finally, the dataset
is balanced as it includes 13200 images (dimensions 300× 300) from which
6600 are in the Rust class and 6600 are in the NoRust class. Sample images
can be found in figures 4.4 and 4.5.

Figure 4.3: Laboratory dataset sample of dropped images
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Figure 4.4: Laboratory dataset sample of Rust class
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Figure 4.5: Laboratory dataset sample of NoRust class
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4.3 Surveys Dataset

This dataset was created using images from bulk carriers’ inspec-
tions. Four thousand one hundred and one (4101) images (figure 4.6) were
provided to the school of Naval Architecture and Marine Engineering of the
National Technical University of Athens from KA-ENERGY shipbuilding
studies. Original images dimensions and resolutions vary as they were cre-
ated using multiple sources such as smartphones and a NIKON COOLPIX
S210. But all images have 24bit depth, sRGB color representation and are
JPG formatted. The GUI app was used to iterate though the images and
identify those that depict corrosion. Finally, 352 images were categorized as
corrosion depictions, a sample of the class can be found in figure 4.7 .

The purpose of this dataset is to be used from object detection algo-
rithms. As it is already mentioned datasets for object detection require the
image and coordinates of where the object is in the image. To create this
information a graphical image annotation tool called LabelImg[32] is used
(figure 4.8). The tool is open-source and is created using python and Qt.
Annotations that include the coordinates and the class information are saved
as XML files in PASCAL VOC format. Images were reshaped to 800× 800
pixels to decrease memory requirements per image and annotations were
created for every image.

Figure 4.6: Sample of images provided by KA-ENERGY
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Figure 4.7: Surveys dataset sample of Corrosion class
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Figure 4.8: LabelImg tool



Chapter 5

Methodology

In this chapter, three methods that will be used to detect corrosion
are defined and analyzed. This study focuses on visually detecting corrosion.
Corrosion is the deterioration of a metal and can be visually identified by
its color and texture. Therefore, the first method uses traditional computer
vision techniques to extract parts of images that include corrosion, based on
their color. The second method employs deep learning. While humans pay
attention to the shape of an object to identify it, deep learning computer
vision algorithms focus on their texture instead. Based on this attribute of
deep learning algorithms and the distinct texture of corrosion contrary to
other metals, deep convolutional neural networks are used to detect corro-
sion on a laboratory environment. The third method is also approaching
corrosion detection as a deep learning problem. It treats corrosion as an
object in an image where there are many other objects and backgrounds.
Using appropriate object detection algorithms, it tracks corrosion in real
world images.

5.1 Color Tracking for Corrosion Detection

This method tracks corrosion based on its color. The process is cre-
ated combining various traditional computer vision algorithms and is imple-
mented using python and OpenCV.

The method considers as input an RGB image. The first step is to
transform the color space of the image from RGB to HSV. The HSV color
model is preferred for color detection tasks as it is more robust to external
lighting changes. This characteristic is attributed to the separation of the
intensity-brightness (Value) from the color information (Hue). There are
many other models that separate intensity from color but HSV is favored
because transforming RGB to HSV is easily implemented as described in
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chapter 3. The next step is to define the HSV color range that describes
corrosion by setting a lower and upper limit of HSV values. Pixels con-
taining these values will be extracted from the image and be categorized as
corrosion. The extraction is performed by thresholding all values in the des-
ignated range. This returns a mask which is a binary image, where the pixels
containing values in the designated color range are white and the rest black.
To deal with holes in the regions containing corrosion a non-linear filter is
used to perform the morphological operation of dilation. The operation is
described mathematically by:

dilate(f, s) = θ(c, 1) (5.1)

c = f
⊗

s (5.2)

where θ the threshold operation as described by equation 3.10, f the mask
of the input image, s the structural element that for our process is a 5 × 5
filter with all its values being 1s.

The mask we created contains the information needed to find regions
in the image containing corrosion. To visualize the corroded areas in the
mask, the per-element bit-wise conjunction of the input image and the mask
is calculated. This process returns the pixels of the input image that their
coordinates correspond to pixels in the mask whose values are 1 (visually
identified as white) and keeps all other pixels’ values to 0 (visually identified
as black). To visualize the same areas in the input image the contours are
identified and drawn on it. Contours are defined as a curve joining all con-
tinuous points, along the boundary of an object in an image, that have the
same color or intensity. The contours are detected from the mask using the
algorithm of Satochi Suzuki and Keiichi Abe, that is described in their pa-
per ”Topological Structural Analysis of Digitized Binary Images by Border
Following” [33]. They are retrieved without establishing any hierarchical re-
lationship and to preserve memory only the two edge points of every contour
line are saved. Then the contours are drawn on the input image pointing
out the regions containing corrosion. Using the Green’s formula, the area
surrounded by contours is calculated to extract the percentage of corrosion
in the image. Results are returned on a .txt file.

Color detection applications sometimes require two HSV color ranges
to be extracted. This happens when tracking an object that its Hue range
is a combination of the upper and lower values of the HSV space (ex. Hue
is in the range of [350, 10]). In these cases, the threshold operation of the
input image takes place twice, once for each range, returning two masks.
Then the masks are added, and the process continues as explained above.

The steps of the process can be summarized in the following manner:

1. Input an RGB image
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2. Convert image to HSV color space

3. Define the color range to be tracked

4. Threshold the image to create a mask containing regions with the
previously defined colors

5. Dilate the mask’s detected regions to deal with missing pixels

6. Visualize the corrosion areas detected in the mask

7. Find the contours and draw them on the input image

8. Calculate the total corroded area of the image

9. Return the input image marking corroded regions

In figure 5.1 the data flow diagram of the method is presented.

Figure 5.1: Data flow diagram of color tracking method
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5.2 Deep Convolutional Neural Networks for Cor-
rosion Detection

This method employs Convolutional Neural Networks to detect cor-
rosion(rust). The goal is to determine which parts of a metallic surface are
corroded or not. Deep learning algorithms like CNNs focus on the texture
of the image. Corroded metals usually have rough surfaces, while clean ones
tend to be smooth. Hence, the method assumes that a CNN will detect
the texture of corroded regions and correctly classify them. The process is
implemented using python and the TensorFlow deep learning framework.

The CNN was trained using the laboratory dataset, where classes are
labeled as Rust and NoRust. The hold out method was used to split the
dataset into training, validation, and test sets. Due to the small number of
images and to reduce the time needed for training, transfer learning was em-
ployed. Different pretrained models were tested, like VGGNet and ResNet,
and it was decided to use parameters of ResNet50 for the convolution base.
The classifier consists of a flatten layer (arranges features extracted from the
convolution base to a 1-D array so they can be received by a layer of neu-
rons), one fully connected layer with 256 neurons using the ReLU activation
function, and an output layer with one neuron using the sigmoid activation
function. The sigmoid activation of the final neuron is appropriate since the
model is tasked with resolving a binary classification problem. When the
final neuron’s output is 0, it means the model classified the input image to
the NoRust class, while when the output is 1 it means the model classified
it to the Rust class. Results regarding the training process and the metrics
used to test the model are discussed in chapter 6.

For the model to be used with metals containing both corroded and
clean regions, a sliding algorithm to feed data to the CNN was created. The
algorithm assumes a window of M × N pixels that slides over an image
returning the pixels it slides over as an image with the dimensions of the
window. In our case, the window is 300×300 and slides over the image with
a horizontal and vertical step of 300-pixels returning the extracted part of
the image. Horizontal steps have priority meaning that if there is a 300-pixel
step for the algorithm to make horizontally, it will not take a vertical step.

The method combines the model with the sliding algorithm. An
input image is given to the algorithm and gets broken into pieces. Every
piece, once extracted, is fueled into the deep learning model and is classified.
Then if a piece is found to be corroded, it is marked accordingly to the input
image. Finally, the image is returned with the corroded regions annotated.
The dataflow diagram of the method is presented in figure 5.2.
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Figure 5.2: Data flow diagram of the method employing CNN architecture
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5.3 Corrosion Detection - Object Detection Ap-
proach

This method employs the Single Shot Multibox Detector to detect
corrosion in real world environments. By employing deep convolutional
neural networks for corrosion detection (section 5.2), the problem of mis-
classifying metallic surfaces due to their color was resolved as these algo-
rithms focus on the texture of the image. However, in real life applications
the binary classification approach of the previous method holds the risk of
misinterpreting other faults as corrosion. This happens because the model
has learned what corrosion is and what is not. But the class containing
not corroded images can not cover every state a metal may have and not
be corroded. Therefore, it is assumed that corroded regions are objects
in the image that need to be tracked. The advantage of this approach is
that the model does not train on a particular no rust class and assumes all
background regions to be not corroded. The method is implemented using
python and the TensorFlow Object Detection API.

As discussed in chapter 3, the SSD architecture is comprised of 3
parts. A base model tasked with feature extraction from the input image.
Stacked convolution layers that detect the position of object in the image.
A non-maximum suppression algorithm that drops detected boxes whose
content has already been detected.

To minimize the time needed to make a prediction and the number
of trainable parameters, the Mobile Net architecture [34] was used as base
model. The Mobile Net architecture uses depth-wise separable convolutions
to build light weight CNNs. Depth-wise separable convolutions are made
from two operations. First, a depth-wise convolution is performed without
changing the depth of the image. For example, assume a 3-channel image
with dimensions 12 × 12 for which 3 filters with dimension 5 × 5 × 1 are
used. Each filter convolves with one channel returning an image with one
channel. Stacking the products of all three convolutions we get a 3-channel
image, in our example assuming no padding and stride 1 we get an 8×8×3
image. Then, a point-wise convolution is used to increase the number of
channels. It uses a 1 × 1 × N kernel for the operation, where N is the
number of channels of the image returned from the depth-wise convolution.
The operation transforms the image to a 1-channel image. Multiple kernels
are used with their number determined by the depth we want to achieve
using the convolution layer. In our example, if 256 kernels were used, we
would get an image with dimensions 8× 8× 256. This way we get the same
result we would get performing normal convolutions, but the model requires
less computation.

For this application, the SSD MobileNet v1 is used to initialize our
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model using transfer learning and resume training for the model to learn the
“corrosion” object. This detection model is pre-trained on the COCO 2017
dataset. Its performance on the COCO dataset is a mean average precision
(mAP) of 21 and speed 30 ms. It outputs boxes to the detected regions.



Chapter 6

Results

In this chapter, results of the methods menthioned in chapter 5 will
be presented and discussed.

6.1 Corrosion Color Tracking Results

To test the color tracking method for corrosion detection images from
the Surveys Dataset (chapter 4.3) were used. For results presentation, 12
images are being displayed. The images were chosen to represent different
compartments of a bulk carrier to show the method’s performance under
various backgrounds. The 3 compartments described in the images are fuel
oil tanks, ballast tanks, and cargo holds.

The trial-and-error method was employed to decide the appropriate
HSV color range to be extracted from the images. The range needed to be
in the OpenCV format as this library was used for the implementation of
the process. Thus Hue takes values from [0, 180], Saturation from [0, 255]
and Value from [0, 255]. Finally, range’s upper limit was set to [H, S, V] =
[140, 255, 255] and the lower limit to [H, S, V] = [100, 50, 50].

The results are presented in the figures below. In figures 6.1, 6.2,
6.3, 6.4 corrosion is tracked from fuel oil tanks’ images. The precentages
of corroded areas in relation to the total area of the image for images 1
to 4 are 27.10 %, 48.06 %, 25.55 %, 38.27 % respectively. In figures 6.5,
6.6, 6.7, 6.8 corrosion is tracked from ballast tanks’ images with corrosion
precentages 85.27 %, 83.99 %, 93.09 %, 90.34 % respectively. In figures 6.9,
6.10, 6.11, 6.12 corrosion is tracked from cargo holds’ images with corrosion
precentages >95.00 %, >95.00 %, 79.90 %, >95.00 % respectively.

The efficiency of the method is closely related to the background
surrounding corroded areas and the dispersion of corrosion in the image.
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In images where the shade of corrosion is significantly different form the
background colors the color tracking process yields great results, like those
shown in the images from fuel oil tanks. In contrast, when the shade of
corrosion is similar to the background, the method assumes large parts of
the background to be corroded regions. This is shown in the cargo hold
images, where the red/maroon coating is misinterpreted by the process as
corrosion. In cases where corrosion is widely and densely dispersed over
the image, like the ballast tank images, small regions of clean metal on the
corroded borders tend to be characterized as corrosion. This diminishes
efficiency, but the process still successfully tracks corrosion.

Overall, the color tracking method can track corrosion on simple cases
but fails on demanding ones, where color is not the main characteristic of
identification. It also lacks generalization since the user should change the
color range to be extracted from the image for cases, where the color of
corrosion may differ (ex. The rust of ferrous materials and stainless steel
is visually identified with black color). Hence, solutions that consider the
texture of the corroded metals are needed. This approch is examined by the
deep learning methods of chapter 5.

(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.1: Color tracking results image 1 - Fuel Oil Tank
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(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.2: Color tracking results image 2 - Fuel Oil Tank

(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.3: Color tracking results image 3 - Fuel Oil Tank
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(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.4: Color tracking results image 4 - Fuel Oil Tank

(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.5: Color tracking results image 5 - Ballast Tank
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(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.6: Color tracking results image 6 - Ballast Tank

(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.7: Color tracking results image 7 - Ballast Tank



CHAPTER 6. RESULTS 62

(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.8: Color tracking results image 8 - Ballast Tank
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(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.9: Color tracking results image 9 - Cargo Hold
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(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.10: Color tracking results image 10 - Cargo Hold
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(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.11: Color tracking results image 11 - Cargo Hold
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(a) Input image (b) Dilated mask

(c) Extracted Rust (d) Image with drawn contours

Figure 6.12: Color tracking results image 12 - Cargo Hold
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6.2 Corrosion Detection with Deep Convolutional
Neural Networks Results

6.2.1 Corrosion detection model results

The model was trained using the laboratory dataset. The hold out
method was employed to spit the data into training, validation, and test
datasets containing 9760 images (4880 per class), 2440 (1220 per class) and
1000 (500 per class) respectively. The input pipeline reshaped the images to
150 × 150 dimensions and scaled pixels to [0,1] by dividing each pixel with
1/255. Neural networks use small values for processing data, so normaliza-
tion (scaling) of the inputs improve convergence speed and accuracy. Since
the dataset was created in a laboratory environment no image augmenta-
tion operations were performed. Transfer learning was employed freezing
the convolution base of ResNet50 and the classifier was trained after its
weights were randomly initialized. The summary of the model including the
number of trainable and non-trainable parameters is presented on table 6.1.
To train the model faster and reduce memory requirements a batch size of
16 is selected for the training dataset and 32 for the validation dataset. The
model was trained for 100 epochs using the RMSProp optimizer and the
cross-entropy loss function. It was trained on an Intel Core i7 6700 CPU for
7 hours.

Layer (type) Output Shape Parameters

ResNet50 (Functional) (None, 5, 5, 2048) 23587712

Flatten (Flatten) (None, 51200) 0

Dense Layer (Dense) (None, 256) 13107456

Output Layer(Dense) (None, 1) 257

Total params: 36,695,425
Trainable params: 13,107,713
Non-trainable params: 23,587,712

Table 6.1: Model’s summary

The model achieved a training accuracy of 95.75% with loss 0.1193
and a validation accuracy of 95.10% with loss 0.1257. Training results are
shown in figure 6.13.

The model was tested using the test dataset. To measure perfor-
mance the main classification metrics were calculated. Note that predicted
values are described as Positive and Negative and actual values as True and
False. Recall measures out of all positive classes; how many were predicted
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Figure 6.13: Model’s accuracy and loss graphs
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Class Precision Recall f1-score Support

Rust 0.94 0.94 0.94 500
No Rust 0.94 0.94 0.94 500

Accuracy 0.94 1000
Macro Avg 0.94 0.94 0.94 1000

Weighted Avg 0.94 0.94 0.94 1000

Table 6.2: Model’s classification report on test data

correctly. Precision measures out of all the positive classes predicted, how
many were positive. Accuracy measures out of all classes; how many were
predicted correctly. F-score measures the harmonic mean of recall and pre-
cision to make them comparable. The equations of the above metrics for
binary classification are:

Recall =
TP

TP + FN
(6.1)

Precision =
TP

TP + FP
(6.2)

Accuracy =
TP + TN

Total
(6.3)

F − score =
2×Recall × Precision
Recall + Precision

(6.4)

where TP is True Positive (predicted positive and it is true), TN is True
Negative (predicted negative and it is false), FP is False Positive (predicted
positive and it is false), FN is False Negative (predicted negative and it is
false). The results between predicted and actual values are presented on
the confusion matrix of figure 6.14 and the classification metrics results are
presented on table 6.2.

The AUC (Area Under the Curve) – ROC (Receiver Operating Char-
acteristics) curve is also plotted, on figure 6.15,to measure the performance
of the model. It measures the ability of the model to distinguish between
classes. The ROC curve is a probability curve plotted with TPR (True
Positive Rate) against FPR (False Positive Rate) at different classification
thresholds, where TPR is related to the sensitivity and FPR to the speci-
ficity. The equations for TPR and FPR are:

TPR = Sensitivity = Recall =
TP

TP + FN
(6.5)

FPR = 1− Specificity = 1− TN

TN + FP
=

FP

TN + FP
(6.6)

The area under the ROC curve (AUC) provides a measure of the perfor-
mance across all possible classification thresholds. It takes values from 0
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Figure 6.14: Model’s confusion matrix on test data

to 1 with models close to 1 having a good measure of separability between
classes.

Overall, the model performs well on both the training and validation
datasets. There is not any indication of overfitting based on their accu-
racy and loss curves. Normally we would expect the training and validation
curves to deviate slightly more, but results are accepted as most of the im-
ages in the dataset are quite similar, since they were created on a laboratory
environment. Also, the model performs well on previously unseen test data
achieving an accuracy of 94%. Finally, it has excellent separability with the
AUC value being close to 0.99.

According to the above metrics, we managed to implement a model
capable of detecting corrosion using a CNN. The hypothesis is that the
CNN detects the texture of the corroded metal. As it is already discussed
the convolution base extracts the features used by the classifier to make the
prediction. To test the hypothesis, we extract the feature maps of the first
convolution layers of images that the model has predicted as rusted or not
rusted. Visualizing the results, we get the low-level features detected by the
model.

The images shown in figure 6.16 are given as input to the model
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Figure 6.15: Model’s AUC - ROC curve on test data

and the feature maps of the 2nd, 7th, and 10th layers, which are the first 3
convolution layers, are extracted. The feauture maps are visualized in figures
6.17, 6.18, 6.19. Note that the input layer has dimensions of 150×150, while
the 2nd layer 75 × 75, the 7th 38 × 38, and the 10th 38 × 38. We see that
the texture of the rusted image is activated as expected. The texture is
also found on the output of 7th and 10th layer, meaning that it travels as
information between layers and is not dropped. Therefore, by comparing
the feature maps of Rust and NoRust images our hypothesis that the model
does tracks the texture of the corrosion is supported.

(a) Rust (b) NoRust

Figure 6.16: Images used in feature maps visualization
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(a) Applied on Rust image

(b) Applied on NoRust image

Figure 6.17: ResNet50 - 2nd layer’s 64 feature maps
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(a) Applied on Rust image

(b) Applied on NoRust image

Figure 6.18: ResNet50 - 7th layer’s 64 feature maps
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(a) Applied on Rust image

(b) Applied on NoRust image

Figure 6.19: ResNet50 - 10th layer’s 64 feature maps
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6.2.2 Model’s deployment with sliding algorithm results

In this section the model is deployed utilizing the sliding algorithm
described in chapter 5.2. It is tested on previous unseen images of the
laboratory dataset. These images include both corroded and clean regions.
The results are presented in figures 6.20, 6.21, and 6.22. The areas included
in the blue rectangles are categorized by the model as corroded, while the
rest of the image as not corroded. In the result, there is a margin on the right
and bottom borders that is not tested, since their dimensions are smaller
than the window the algorithm extracts.

The combination of the model and the sliding algorithm achieves
detection and localization of corrosion in images containing both corroded
and clean regions. However, in cases where the window of the algorithm does
not land exactly on the corroded region it gets broken into pieces for other
windows to track. Hence, parts of the region are usually misclassified. For
this reason, other algorithms are needed that can perform a better search of
the image, like an object detection algorithm. This approach is tested from
this study as discussed in section 5.3.

Figure 6.20: Sliding algorithm result 1
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Figure 6.21: Sliding algorithm result 2
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Figure 6.22: Sliding algorithm result 3
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6.3 Corrosion Detection with Object Detection Al-
gorithm Results

The model was trained using the surveys dataset. As all object detec-
tion algorithms, the Single Shot Detector with Mobilenet v1 requires great
computational power. The model was trained on an Intel Core i7-7500U
CPU. Hence, to reduce the load for the CPU from the 352 images of the
dataset only 155 were used. They were split into training dataset with 130
images and test dataset with 25. The RMSProp optimizer was used for
training the model with an exponential decay learning rate and a batch size
of 10. The loss function is compromised of two terms. The first is a sigmoid
cross entropy loss function that measures the confidence level of the predic-
tion of the bounding box and is called classification loss. The second, the
location loss, is a L1-norm that measures the offset of the bounding box from
the ground truth. The total loss is the sum of the two losses with weights 1.
To inflate the number of images since the training dataset is small, image
augmentation operations were employed. The images were randomly flipped
and cropped. Only one class was tracked, named “Corrosion”. The model
was trained for 173614 epochs for 9 days 6 hour 34 minutes and 25 seconds.

The model achieves a total loss of 1.793175 with a classification loss
of 1.608378 and a localization loss of 0.143491. In figure 6.23 the losses are
presented versus iterations. With total loss being constantly below 2 the
model is considered acceptable. In the 25 images used for testing the model
detected corrosion in 19 (76%) of them. The mean accuracy score in the
images that corrosion was detected is 85%. Testing results are presented
in figures 6.24 to 6.33. Overall, although the model is trained with a small
amount of data it performs well.
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Figure 6.23: Loss graph of SSD Mobilenet v1
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Figure 6.24: SSD Mobilenet v1 result 1
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Figure 6.25: SSD Mobilenet v1 result 2
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Figure 6.26: SSD Mobilenet v1 result 3
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Figure 6.27: SSD Mobilenet v1 result 4
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Figure 6.28: SSD Mobilenet v1 result 5
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Figure 6.29: SSD Mobilenet v1 result 6
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Figure 6.30: SSD Mobilenet v1 result 7
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Figure 6.31: SSD Mobilenet v1 result 8
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Figure 6.32: SSD Mobilenet v1 result 9
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Figure 6.33: SSD Mobilenet v1 result 10



Chapter 7

Conclusion - Future work

This study focused on the topic of corrosion detection. The issue
was approached taking into consideration the visual attributes of corrosion,
which were identified as color and texture. Computer vision and deep learn-
ing algorithms were utilized to test three different solutions to the problem.

Computer vision processes were used to create a color detection al-
gorithm that detects corroded metallic surfaces based on their color. The
algorithm was tested on real world images depicting a bulk carriers’ compart-
ments. The images were taken during an inspection by seasoned surveyors.
The results vary depending on which compartment the images depict. For
example, in images of fuel oil tanks, the algorithm performs great, while
on cargo holds that are usually painted maroon, a color similar to the one
of corrosion, it fails to differentiate between the corroded region and the
background. This means that the process is overly sensitive to the noise
surrounding the region of interest. Therefore, the color tracking method can
not be used as a universal solution to the problem. But due to its straight-
forward implementation and low computational power requirements, it can
be applicable to certain compartments of a vesses yielding adequate results.

Considering the drawbacks of a color-based solution, the study also
tested textured based solutions. For this purpose, deep learning algorithms
were employed, who are well known for their ability to detect the texture of
images. To support training of supervised learning algorithms two datasets
were created. The first solution employed a Convolution Neural Network
that used transfer learning from ResNet50. The CNN was trained on lab-
oratory images for a binary classification problem, trying to classify rusted
and not rusted metals. The model achieved great performance of 94% on
test data. Its results supported the hypothesis that the texture of corrosion
was detected. To scale up the abilities of the model a sliding algorithm was
created that cropped images in pieces and fed them to the model. This way
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corrosion was classified and located in the image. However, this approach
failed to scale to real world images of vessels due to the noisy backgrounds
surrounding corroded regions. The laboratory dataset that was used for the
binary classification, assumed that a not corroded region is a clean shiny
metallic surface. The problem with this approach is that corrosion is usu-
ally surrounded by other structural and general failures, such as cracks,
deformation and coat failing, that could confuse the model. Hence, a better
algorithm is needed that does not assume the nature of a non-corroded re-
gion. It is preferred to assume during training that everything surrounding
the corroded area is not corrosion. Towards this end, corrosion detection
was approached as an object detection problem. A Single Shot Detector
with Mobilenet v1 was used and it achieved a loss of 1.6, 76% detection
success on the test data and a mean accuracy score of 85% on the detection
boxes of test data.

Overall, texture-based approaches are found to perform better than
color-based ones. Deep learning algorithms achieve great performance on
color detection with the object detection approach being superior to the bi-
nary classification approach. A key take away of this study is the importance
of training data for deep learning models that are to be used in real world
problems. Algorithms like the ones used are fine tuned in achieving great
performance but this only solves one part of the problem. With corrosion be-
ing a state of the metallic surface, its attributes differ over different metals,
conditions under which rust is created, the location of the rust in the vessel
etc. Thus, a great generalization of image examples is required to consider
all corrosion depictions that can be found onboard a vessel. Otherwise, a
model that performs perfectly on certain vessel would fail to generalize on
others.

Based on the above findings the following approaches are proposed for
future studies on the visual detection of corrosion. First, the same methods
could be used on different expanded datasets to test their validity on more
complex examples. The models used for transfer learning and the transfer
learning strategies that were employed could be altered. Also, an image
segmentation approach is proposed. This operation ties every pixel in an
image to an object. In the case of corrosion detection every pixel would
be categorized to three classes, pixels belonging to the corroded region,
pixels bordering the corroded region and surrounding pixels. As a result,
the region will be located, and the shape would be extracted. This could
be helpful in cases where small corroded regions are widely dispersed in
the image and bounding boxes of traditional object detection algorithms
fail to include them. Finally, it would be useful to extract the reduction
of thickness that has occurred to the metal due to corrosion. With this
information the corrosion could be classified as pitting or general corrosion,
which are the main corrosion phenomena on ships, and based on CSR rules
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a risk analysis of the corroded region could be performed. This is possible
following approaches like the unsupervised monocular depth estimation [35]
from researchers of the University College of London, where using data from
stereo cameras algorithms learn to predict the depth of the image.
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