EONIKO METZOBIO NOAYTEXNEIO
ZXOAH MHXANOAOIMQN MHXANIKQN
TOMEAZ BIOMHXANIKHZ AIOIKHZHZ &
EMNIXEIPHZIAKHZ EPEYNAZ

Development of a configurable Virtual Environment
for studying Human-Robot collaboration

Avamtuén mapapeTPLKOU ELKOVIKOU TEpLBAANOVTOC YL
TN HEAETN cuvepyaoiag AvBpwrmou-Poumnot

AINMAQMATIKH EPTAzIA
Owovopou Mrswpylog

EmBAENwY KAONyNnTAG:
NaBavanA AnpnteLog

AOHNA
®deBpouvaplog 2021

Euxaplotieg

ApPXLKA, XpWOTAW EVa LEYAAO EUXAPLOTW OTNV OLKOYEVELA HOU KOl OAOUG OU
TouC diAoUG. Z€ TIOANEG OTLYUEG OTn SLapkeLa TNG Ppoltnong pou Kal eLOIKA KaTtd
TNV €KMOVNON TNG SUTAWHATIKAC pou, ouvavinoa MoAAEC SuokoAieg. OAol Tav
ouvexwc¢ StmAa pou va pe BonBricouv va cuvexiow Kal va pe utootnpiéouv.

AT 6Aouc auTtoug, €va oLaltepa HEyAAO EuXapLOTW oTouC Gpiloug pou Xprioto
Matowo kot Anunten MNamadnuntpdkn. Xwpic e0dg, umnpéav oTypég mou Ba
niAnaoiada oAU KOVTA 0TO va Ta mopathow. Eva akopa euxaplotw otn Zwn, yla
TN OETIKN EVEPYELA KAL TNV UTIOOTHPLEN TTIOU HOU Ttapeixeg 600 mAnaciala pog to
TENOG TNG SUTAWMUATLKAG HOU.

Ev cuveyxela, éva peyadAo suxaplotw otov kadnynti pou k. NaBavanA. Yripxav
OPKETOL CUUGOLTNTEG TTOU HE TIPOETPEP OV VO CUVEPYAOTW Hall TOU Kal gixav
armoAuto &ikto. OuL oUpPoUAEC Tou Kal ot Bfpata SUTAWHATIKAG aAAQ
Slaxelplong opLOHEVWY KATAOTACEWV cUVERAAaV TTOAU oTo va $pTaow 56w Tou
Bplokopal Twpa.

Euxaplotw moAv tov Aotlo Wapakn, mou NTav cuveXxwc SUmAa Lou o€ OAEG TIG
SoKLUEG, KoL oxedlaoe Kal mapapeTponoinon oAa ta oevapla. Evxaplotw oAU
kot Tov Avtpéa Moupehdto. Ot duo toug pe BonBnoav TOAU va okedTw
edapUOoW TG LOEEC pou ota TtpoBAnpata tou Kaloupaotav vo AUGOUUE, XWPLG
va pou Sivouv £Tolueg AUOELG.

Euxaplotw tov K.Ikika, yla tn peyain mpoooxn otn AemtouépeLla kot tn fonBeld
TOU VO KATAVONOW TOV TPOTIO OKEYNG o TNV TAEUPA TOU XPHOTN, KAL VO KAVW
TOL OEVAPLO TIOU SnULoUpynoa 000 TILO CWOTA UIMOPoUCA, EPYOVOULKAL.

TENoG, éva euxaplotw otov K. Alan Zucconi. H emikowvwvia pall tou, mépa ano
™ OSOUAELd TOU TAVW OTNV KIWVNUOTIKA TWV POMUTOT, ouVvEBaAe oto va
Katovonow ypnyopa Kat afiacta SUCKOA GEVAPLA KLVNUOTLKAG.

Makapt 6Aa ta potlekt mou Ba avaAdBw otnv KaplEpa HoU va eival T0oo
wpaia kat ot cuvadeAdol pou va eival téco avBpwrivol, 600 O AUTA TN
SUTAwPATLK..

Abstract

Virtual Reality (VR) is nowadays a tool established as a powerful but cheap
means of using a virtual world to create and study real world scenarios and
situations.

At the same time, the advanced technology of robotics is being put to a lot of
use, both industrially and individually, due to the robots immense capabilities
for speed, accuracy and repeatability in movements and calculations.

This thesis’s intention is to create an easily modifiable industrial working
environment that implements human — robot collaboration (HRC) to complete
simple assembly tasks, in a Virtual Environment.

The scenarios created for this purpose are intended to be as parametrical as
possible, in order to be easily modified for future tests. At the same time they
have the ability to calculate metrics and provide results based on those
parameters.

The basic and most important options of these scenarios, are

e The robots’ velocity

e The number of objects assigned to the person or the robots

e The placement sequence of the above objects for the assembly to be
completed

e An anticipation indicator for the robots’ movements and current targets

All the above have been designed with the primary result in mind, being their
ability to be parametrical (easily changed/modified).

NepiAnyn

H glkovikA payuatikotnta, £XEL KOOLEPWOEL OTIC LEPEG LAG WG EVA LOXUPO Ha
$OnVvo epyaleio TOU XPNOLUOTIOLEL £vVaV ELKOVIKO KOO0 yLa T Snuloupyla Ko
HUEAETN TTPOYHATIKWY OEVAPLWY KOl KATAOTACEWV.

Tautoxpova, n TMPOoNYHEVN TeEXVOAOyla TNC POMTIOTIKAG £XEL OEL EKTETAUEVN
Xprnon, o€ PBopnxavikd aAAd Kol QTOULKO emimedo, XAPn OTI(TEPAOTLEG
SuvaTOTNTEC TWV POUMOT MAVW OTNV TaXUTNTA, akpiBela kat emavaAnPuotnta
KLWVAOEWV KOl UTTOAOYLOHWV.

H OSutAwpotikl aut amookomel oto va &nuloupynost €va gUKOAQ
TIOPALLETPOTIOLGLUO BLOUNXAVIKO €pyacLako TepLBAAAov, To omoio edpapuodlel
TN ouvepyaoia AvBpwrou — Poumot yia tnv oAokARpwaon amlwyv Kadnkovtwv
ouvapuoAoynong, os éva Eltkovikod MeptBaAiov.

Ta ogvapla tou dnuloupyndnkav yla autd tov okormod npoopilovtal va eivat 600
TILO TIOPOAUETPLKA YIVETAL, TIPOKELUEVOU va €lval gUKOAa puBuLlOpeva yLa
pHeAAOVTIKA TeoT. Tautoxpova, £XOuV Tn SuVATOTNTA VA UTIOAOYLOOUV UETPLKEC
KOLL VO TTALPEXOUV QTTOTEAECHATA BACLOMEVA OE QUTEG TLG TIAPAUETPOUC.

OL TtLo BOIOLKEG KOIL ONUAVTLKEG TIAPAUETPOL AUTWV TWV CEVApPLwY Elval

e Htax0TNTA TWV POUTOT
e O aplBuoC TwWV AVTIKELUEVWVY TIoU €xouv avatebel otov avBpwro 1 ta
POUTIOT
e H ocelpd TOMOBETNONG TWV TOPATAVW Yl TNV OAOKANPwWON NG
ouvoppoAOynong
e ‘Evag Selktng MPOoopovC yla TG KIVAOEL TWV POUTTOT KOL TOUG OTOXOUG
TOUG
OAa ta mopamavw oxedldotnkav HE KUpLO €mMOUUNTO OMOTEAECUA, TN
duvatotnTd Toug va ival TapapeTpLlka (eUkoAa puBulopeva).

Contents

0T o To 110 4 ' o POt 1
2 Human - robot collaboration in Virtual Realityccccccceereeiirecreecreniciencennnnns 2
2.1 Human-Robot collaborationooueiiiiiiiieeee et s 2
2.2 Regulations and STaNardsccociiiiiiiiiii e e e e 3
2.3 HR leVels Of INTEIACtION ...ccviiiiiiieiteee ettt s e 4
2.4 Ergonomics OF HRC....ooiiiiiiie ettt ettt e e et e e e s etae e e s eat e e e e eeabe e e e eeabaeeeesnseeeeenarenas 5
2.5 ViIrtUAl REAIIEY .uveeee ettt te e e e et re e e s eta e e e e aba e e e e eabeeesennbaeeeennreeeeennrenas 6
DA SR I G D11 = o PP 8

3 Hardware-Software SetUP.....ccccciieiiteirteiienieteeieteneetenerenserensesenneransesnssesnnens 8
BLL VR HANOWAIE ittt ettt ettt ettt s e sttt e s bt e s bt e e sab e e s bt e e sabeesabeesabaeesabeesabeesneeesasaeennnes 8
3.2 Unity for the 3D environment simulation.........c.oeiieciieiicciiee e 9
3.3 AdditioNal SOFEWATIE ..cc.eeeiiiiieiee ettt et esbe e e s e e sbeessateesbeeenes 10

4 Robotic arm movement ...t 11
4.1 Forward Kinematics for robotic armscoouiiiiiiiiiiiieee e 12
4.2 Forward Kinematics iN UNITYcccueeeeiiiiiccciee et e e et e e e e arae e s e abe e e e e ntae e e ennnaeas 14
4.3 Gradi@Nt DESCEONT ...ttt ettt ettt ettt st sttt e b e s bt e s bt e s at e et e e beesbeesaeesanesabeebe e beens 15
4.4 Implementing Inverse Kinematics in CH COEoouiriiriiiiiieenee e 16

5 Environment configurations.....c.cccceeeeeeeiieniiteiiennetenierencerencrennceensesenserensenes 17
5.1 The initial ENVIFONMENTttt sttt et es 18
5.2 InCreasing the COMPIEXITYuuiiiciiii et e e et e e e sata e e e s sataeeessnereeaeas 19
5.2.1 Adjusting Grabbable ObJECEScccccuiiiiieiiii e 19
5.2.2 HaNdlNG COllISIONSeeiiiiieeceiiee ettt ettt e et e e e e ette e e e eatae e e eeabee e e enbaeeeeeabeneeennrenas 20
5.2.3 AchieVing COOPEIAtiONcciiiiiieeecieee ettt e ettt e et e e e e etee e e e ta e e e e e abe e e e e abaeeeennraeeeennsenas 21

6 Calculating the MetriCS....cccireeeiirieeiireccreec e e s e ene s ren s e sennsenens 21
6.1 Creating Options for @aCh tasK........cccuiii i et eaae e 22
(SN A A o) Aol T o -1 [Y o (SRR 22
B.3 LOBEINEG ceeeeeeeeeeeeieieieieieieeeiseeeeeeeeeeeeeeeseeesesesaaesasasasasesssesesssssssesssssssssesssssssessssssssessessenssssssseseesseesesens 22
6.4 Additional adjUSTMENTSvviiiicieie et e e et e e e e sra e e e s atre e e eaaraeeean 23

7 Algorithmic LOgIC in COAING ...cc.eiienriiieeiiiiiiiteeccrrecrreecrree e reeeessensneens 24
A R L= T 1 e Yo T o =3 o] o Lo | SRR 24
A 1Y oY= o] o Yo ARSI 25

7.3 Grabbing and DIOPPING.......uuiiiieee ettt e e e e e e e e e e e e st ee e e e e s e e snarre e e e e e e e eeannrraaaees 26

N 200] oYo] KN o T=T= | i olo] | [Ty o) o L3RR 28

7.5 HUMaN-RODOL COIISIONS ...ttt ettt st e s e s ne e e sbee e 29
IO oY [Tt al o =T o 11 V- 31
A 5 10T 0 g =Y B] o [=Tot d T} €=T = ot 4o o U 33
R 3 e] oTo) ate] o] 1ot AT o A=Y Tt o] o - PPN 34
7.9 NAMING CONVENTIONS ittt e ettt e ettt e e s e e st e e e e e e e s s aabebeeeeeesessnabeteeeeeeesannnreaaeeens 35
8 Iterative improvement operationsc..cccveeiiriniinieiiiniciiinin. 37
9 Future possSibilities...c.ccccciiieiiieiiiieiiiiiiieiircrrcrrecreeereecrenesesesnnessnsesenns 40
00 0o T od 17 ' o 41
2T] [ToT=d =T] 1 VSRRt 42

12 Code APPENdiX...ccceereeiireniereerrnereeerencerensernsesrasersssersssessssssasessnsessnsessnseses 44

1 Introduction

Nowadays, commercial use of VR technology is something that has become
easily achievable, compared to previous years. Major factor to this result was
the use of VR applications for the creation of video games and other forms of
entertainment, which created a need in the market for VR technology to be
easily acquired by individuals.

This low-priced technology first appeared in 2015, and since then, in conjunction
with many development platforms that have implemented it in their
environments, it has become a common option for research purposes by a lot
of scientific fields, mainly the medical field, and training simulators.

At the same time, the study of the interactions between humans and robots,
and the possibilities that this produces for advancements industrially, as well as
in our everyday lives, has seen a lot of benefit from the above technology.
Robots are very commonly used in our everyday lives, but also in industrial
operations. Robots are strong units that can operate very fast and precisely, and
have proven to be a great solution to very difficult tasks to be human performed,
very mundane and repeatable operations, but also in very fast production
facilities. The study of these interaction in a virtual reality environment, has
proven to be an easily repeated, low-cost and safe method to optimize the
functionalities of robots, as well as their anticipatory danger functions, and
without actually consuming the robots worktime.

This thesis however is focused on the ergonomic aspect of the cooperation
possibilities between humans and robots in an industrial working environment.

The scenarios created to simulate the above concern a basic assembly task of an
electrical board with different kinds of devices.

The human has to collaborate with the robots in completing the assembly in the
least amount of time and with as few collisions with them, as possible.

The robots used have 5 degrees of freedom and their movement is based on the
implementation of inverse and forward kinematics. As a result modifications in
any target’s position can happen instantaneously.

2 Human — robot collaboration in Virtual Reality

2.1 Human-Robot collaboration

Human-Robot collaboration is a part of the research and studying of Human-
Robot Interaction. We currently live in an era of huge technological
advancements, and the field of A.l. (Artificial Intelligence) and Robotics are no
exceptions. Robots have become parts of our everyday lives, for both
commercial and industrial purposes. HRI researchers are thus aiming to perfect
the interaction between robots and humans, and to primarily establish and
deliver a safe, high performance and robust environment of continuous
cooperation and improvement, while at the same time optimizing costs and/or
time spent on tasks, and making a human’s task easier to perform.

Human-Robot Interaction is thus defined as: “A scientific field of study that aims
to understand, design and configure robotic systems that are operate with or by
a human.” [A.C. Schultz (2008)].

HRIis a multidisciplinary field. Additions-contributions to this study are made by
a variety of scientific researches and studies, in the fields of robotics, artificial
intelligence, design and even social sciences.

HRC is therefore a child domain of the above field of study. Collaboration
specifically occurs when humans and robots strive to complete a task that
involves both of them, and which takes place in a domain that they share. There,
sharing rules and structures, they approach or decide on situations regarding
the interactive process that takes place in that domain.

The above marks the primary aim of HRC research, which is to establish a safe
and efficient environment, where human and robots work together, and not just
coexist, to complete their tasks. Robots have the upper hand in operations when
it comes to speed, accuracy, efficiency, power and adaptability, whereas a
human is more flexible, and has high dexterity and problem solving skills. As
their collaboration combines all of the above and provides a lot more efficiency,
providing rules to ensure a safe environment is essential.

2.2 Regulations and Standards

Granted the fact that robots apply very advanced and complex operations, their
application had to be defined by a set of regulation and standards to ensure their
safe function.

The standard ISO 10218-1 firstly in 2006 (and revised in 2011), introduced the
concept of Human-Robot collaboration, with its main purpose to define the
required precautions. In its introduction, ISO 10218-1 created the following
definitions:

» Collaborative robot: A robot that is used in a collaborative operation.

» Collaborative operation: An operation in which a robotic design and a
human-user together in a common workspace.

» Collaborative workspace: A workspace (including the operating segments)
inside which a robot and a human can execute tasks at the same time,
during a productive operation.

Additionally, supplemental regulation ISO/TS 15066:2016 focuses more on
human-robot collaborative applications in industrial environments. Human-
robot collaboration in a common workspace is allowed for the first time, though
not without offering rules, regarding the environmental design and common
workspace, with safety in mind. According to those, HRC can implement one or
more of the below safety precautions.

e Safety based observation and interruption: A method used to stop the
movement of the robot while inside the common workspace, before the
user enters it in order to interact with the robotic system and complete a
task.

e Hand based guidance: In this method of operation, the user operates on
a manual device to transmit movement commands to the robot.

e Speed and separation observation: Here, the robotic system and the user
can work simultaneously on the common workspace. The danger of
collision is avoided in this scenario by always keeping a minimum amount
of distance between the robot and the human.

Force and power restrictions: In this method, physical contact between
the user and the robot is allowed to occur both intentionally and not. Any
danger possibilities are controlled either by safety precautions
implemented in the robot, or by an external safety control system. The
latter keeps measurements that are related to the robotic system under
certain values, which are obtained during the danger evaluation.

2.3 HR levels of interaction

Humans and robots can coexist with one another and work together in a variety
of tasks. This is not always achieved safely by the same type of interaction
between them. In the figure below the different levels of interaction (Bauer et
al. (2006)) can be observed, varying from simple coexistence and individual
workspaces, to not only operating in a shared workspace but also cooperating
and implementing teamwork to complete specific scenarios' these levels of
interaction are also defined as:

Cell: The robot is contained in a traditional safety cage, cooperation is not
so direct.

Coexistence: The robot and the user exist in the same space, with no
safety cage, but they do not share their workspace.

Synchronized: The robot’s and the user’s workspaces are connected.
However, only one of the two is allowed to operate on the shared part, at
a time.

Cooperation: Both the user and the robot can operate on the shared
workspace simultaneously, but they cannot work on the same
product/object.

Collaboration: The user and the robot can share the workspace and also
work on the same object simultaneously.

Cell Coexistence Synchronized Cooperation Collaboration

P A

Bauer et al. (2006)

2.4 Ergonomics of HRC

One of the bigger problems that robots need to tackle and improve on, is the
ergonomic aspect of HRC, whether a robot operates in a home or in an industrial
or production environment. Achieving a more ergonomic functionality in any
task provides a better experience for the user. Also, in the long run, and
especially for an industry, a faster production would be achieved, and less
physical and mental strain would affect the employees.

Ergonomic benefits are directly connected to the user experience. Areas the see
benefits from a workspace that is designed better ergonomically and
implements robots are briefly described here:

Postural optimization: Robot assistants are primarily designed to help
humans perform task that they previously found tiring or could not
complete at all. One of the main causes for this, is that in certain everyday
tasks and even more so in a productive environment, the tasks that are to
be performed inflict strain on the users’ posture. This issue, combined
with other health issues a user may already have, or simply a user’s age,
factors heavily in the his/her ability. Static or unnatural positions and
postures, far reaching positions, overhead or very low position of working,
are primary causes of discomfort in a user/worker.

Physically demanding operations: One of the main issues encountered
that heavily affect both a worker and the overall production are physical
injuries. Heavy lifting of big objects, continuous lifting or reaching for

objects in a production line, and even falls, after using a forklift or
reaching for high shelves, are actions performed by people that can prove
dangerous and damaging.

® Hazardous environments: Especially in an industry or research facility,
working in unhealthy environments is very common. Radiation,
contamination, very bright lights, heavy noises, or operations that
produce particles mixed with the breathing air, or that come into contact
with a person’s eyes, nose and ears (for example, a welding operation),
despite inflicting an immense amount of strain on a human’s health, have
no implications to a specially designed robot, that can be instead operated
by a user in a safe environment.

= Mentally draining operations: Long hours in very repeatable operations,
in a fast product line, operations that require a lot of calculations with
speed and precision, or fast thinking, can inflict a lot of fatigue on a
person. This can lead to mistakes, that could produce a faulty product, or
maybe errors that can be seen in long term results and evaluations. At the
same time, strain in a person’s mental activity can add to the physical
demand of operations, and increase the possibilities of physical injuries.

Tackling the above can help humans work on their strengths instead.

2.5 Virtual Reality

VR refers to Virtual Reality. This technology immerses a human into a computer
generated world, and was a concept introduced by Rheingold (1991). Using this
technology, a human could not only experience real world environments and
locations, but could also study non — realistic microscopic or macroscopic
scenarios. Even at the time though, a head mounted display (HMD) was not an
unknown technology. It was developed in the 1960s and introduced as a display
option in 1965 (Sutherland).

It was as late as 2015 that the technology became available to the public, with
mainly entertainment purposes in mind. It was however being used extensively
already by many scientific fields, and mainly the medical and engineering field.
In addition, it had a lot of purpose and was found very useful in military training,
and even more broadly in simulation running. It was also a major option in
education and even rehabilitation and psychological evaluation and research.

Testing and evaluating Human-Robot collaboration in a Virtual Reality
environment becomes relevant due to its simplicity. Especially after its major
success in the entertainment market, it has become a very easy to use device.
Installing and modifying it to suit any experiment is very well documented for
every device by its producers, and programming it is easy as well. At the same
time, setting up such an environment can be achieved in a small space, and only
requires a somewhat capable computer.

Using virtual reality as a tool removes the need for actual robots. Providing,
transporting and setting up robots for these tests would be an expensive and
tedious task that would also require a lot of space. At the same time, an
industrial robot has pre-programmed capabilities, meaning that its installments,
freedom of movement, speed and power, precision, cannot be changed, even if
its programming can be altered or modified in some ways. VR removes this
barricade. A robot model here can be altered on the spot, adding all kinds of
functionalities, and even modifying its appearance, adding different end effector
tools, adding or removing joints, simulating different kinds of movements. This
proves most powerful during test, where problem that have not been foreseen
might appear, or if a robot model has to be used for more than one scenario,
each of them serving a different purpose. It was as late as the 2000s when the
first application of robotics in visual reality was introduced. Visualizing and
designing a VR environment where a human could experience and train with
robots without actually coming into contact with them proved to be an effective
way of education. It was resulted in being a very low-cost and safe way of
introducing the idea of human-robot collaboration to a human, in both physical
and mental aspects of a person’s health, and at the same time teaching him how
to operate or cooperate with robots, that have high speed capabilities and very
accurate operations.

Except from the low — cost and accident free training of a human, before he
actually comes into contact with a robot, simulating HRC in VR also played a
major partin a more ergonomic and optimized environment. Having workspaces
assembled and operated in virtual reality simulations could greatly reduce an
operations design errors, resulting in lower effort required for tasks to be
completed, and better optimized actions and tasks for the occupied person,
resulting in minimizing a task’s completion time, by making it easier to
understand and rendering the actions needed less stressful to complete.

2.6 Task Design

Creating a human-robot collaborative task in a virtual reality environment is a
challenging task. These are mainly described below:

o The task has to be as close to realism as possible, being similar to real life
application while being engaging at the same time, so the user can
maintain focus on the task.

o The participants need to be able to understand and/or feel when a
collision occurs.

o Participants have to understand and believe that there was actually
collaboration with the robot.

o The task should be short, to prevent motion sickness from the head
mounted display, but also long enough, for the metrics of the scenario to
be able to provide sufficient amount of data.

3 Hardware-Software Setup

3.1 VR Hardware

In our lab, theses studying the concept of human —robot collaboration up to this
point, were using a motion tracking and head display solution. However, as
technology saw great advancements at the same time, before starting this thesis
a commercial device was provided instead. The VR solution used is the Oculus
Rift, developed by Oculus in 2016.

Oculus Rift with motion sensors and touch controllers — from Oculus website)

The above VR hardware proved very easy to implement and gave the ability to
be used instantly in the 3D application environment. At the same time, the
motion sensors give the ability to track movement in a certain space and not
only shoulder to hand motion.

3.2 Unity for the 3D environment simulation

Unity is a cross-platform game engine, introduced in June 2005 as a game design
solution. It has since then evolved and extended to support a great amount of
platforms, and has seen a big variety of applications, for games, animations or
film, but at the same time for architectural, engineering, construction and
manufacturing purposes.

It is widely used for creating and studying real life scenarios, and its ability to
implement large CAD assemblies make it an amazing tool for the engineering or
manufacturing fields. The above solution was achieved by Unity’s partnership
with PiXYZ.

10

Unity was a tool used in this laboratory before the thesis took place, so
additional experience along with its many great features provided an easy
implementation of the Oculus Rift device into the 3D environment that was
created.

For the purposes of this thesis, Unity version 2019.2.f8 was used.

R | \\r I

CAD imported assembly (from Unity website)

3.3 Additional Software

Unity is a game engine based on the programming languages C++ and CH#. While
Unity itself provides a great amount of tools and features, the logic and behavior
of the models in any environment can be greatly upgraded through scripting.

For the purpose of this thesis, the programming language used for scripting is
C#, and the software used to develop on is Microsoft’s Visual Studio 2017.

In addition, while many of the objects presented in each scenario where created
in Unity, since this thesis does not have 3D modeling as a primary focus, some
models where imported from Blender, while the robot model was imported
from a SketchUp export (Petr P.).

11

4 Robotic arm movement

As mentioned before, the robotic arms used in the simulation are 5 dof (degrees
of freedom) models.

Up to this thesis, when running a HRC simulation, the movement of the robots
was based on animations, thus making it time consuming to alter the
environment, as it resulted in having to redo the animations, for the new
positions the end effector of the robotic arms was supposed to target.

Therefore, to improve on this, the robotic arms in this thesis implement inverse
kinematics (IK) and forward kinematics (FK). As a result, assigning a new target
position to a robotic arm is now as simple as moving the target object in the 3D
space. It is also possible for the robots to pursue a moving object within their
range.

Also, with more details to follow, the use of 2 robotic arms instead of 1 that was
being used so far, served as to improve the complexity and interaction that was
achievable in a working scenario, while in the meantime the 2 robotic arms can
be programmed to execute different kinds of operations, creating even more
possibilities.

Since the kinematics focus on the reaching movement, of the end effector to the
target location, the end effector does not have any movement itself and does
not implement grabbing, so it is not considered a joint or the 6 degree of
freedom, while it could, in different context.

12

4.1 Forward Kinematics for robotic arms

A 2D schematic of the robotic arms would be the following.

oth axis

4th axis

end effector

3rd axis

2nd axis

1st axis

base 777

Robotic arm sketch (from alanzucconi.com)

Forward Kinematics for a robotic arm starts by knowing the position of the end
effector in space and are given specific rotations for all the joints of the robotic
arm.

Then, by applying these joint rotations, we are given the result, which is the new
position of the end effector.

In a robotic arm, limbs and put together by the robot’s joints, therefore a chain
is created. As a result, when a joint is rotated, all the joints that are part of the
continuation of this chain, starting with the position of the joint rotating, are all
also affected by this action. Visualizing this action in a 2D sketch would look like
the following

13

Example of rotating joints (alanzucconi.com)

As shown above, a al rotation of P1 joint would affect P2, but a a0 rotation of
PO joint would affect both P1 and P2.

Mathematically, these rotation would look like this:
Py, = Py + rotate (Dy, Py, ayg)

But for the second joint, we would have to calculate both rotations, so it would
look like this:

Py = P| + rotate (Da, Py, o + o)

Generalizing the above in order to apply it to all joints the following is derived

i—1
P = P,_y + rotate (D;, Pi_q. Zr.v.,r,.)

k=10

In the above examples, Di is used as the distance between the 2 joints.

14

4.2 Forward Kinematics in Unity

Unity has a very important feature that allows for the creation of this chain
between the joints and limbs of the robotic arm. This is called “Parenting”.

Parenting allows us to assign an object as the child of another. A child object
automatically inherits the position, rotation and scale of the parent object. By
changing the position or rotation of the parent object, the child object is also
moved. At the same time though, the child object has its own local coordinates.
Changing those will affect the position/rotation of the child and all subsequent
children, but will not affect the father, therefore the above mentioned kinematic
chain is achieved.

¥ JOINT 0
» hdjointd
¥ JOINT 1
» Agjointl
¥,/ JOINT 2
» hjoint2
¥ J0INT 3
» hgyjoint3
v JOINT 4
» hdioint4
HAND

» i base2

ry OVRPlayerController Edit
Directional Light

» lane

YYVYYVYYVYY

v I
A OPTIONS

(An image of the robotic arm parenting configuration in Unity

To apply the given rotation, we use Unity’s Quaternion.AngleAxis(angle, axis)
function. Quaternions are mathematical objects that represent rotations, and
are much easier to use in Unity that Euler angles. The AngleAxis functions
rotates a single joint of the robotic arm by the specified degrees, in the specified
axis X,Y or Z.

Our point starts from the base and adds the joints’ rotations to itself, while also
adding the distance between the current and the previous joint. Finally, when
all the joints have been rotated according to the solution, our point will actually
be position of the effector.

15

4.3 Gradient Descent

During the scenarios, the need for the robots is to have the result position in
space as input, and afterwards calculate the appropriate rotations for each joint,
in order to reach that point. Thus, the need for inverse kinematics appears.
Inverse kinematics in this thesis are applied using a simple implementation of
the Gradient Descent algorithm, as analyzed in programming with C#, in Unity,
by Alan Zucconi.

Gradient descent was preferred for this thesis, as its research provided more
information and it proved easier to implement in comparison to another
common inverse kinematics method, the Denavit-Hartenberg matrix.

Gradient descent is an optimization algorithm. It takes a function F() and leads
to its local minimum. The idea is that we have to move in the opposite direction
of the approximate gradient, because it will lead to the steepest descent, thus
reduce the value of the function faster.

While the gradient is connected to the derivative of a function, it is not the same.
It could be described as a directional derivative. The derivative of a function is
given with the use of a limit :

Jon e Fp AT~ [()
fp) = fim, Az

Depending on its value, the result that can be obtained is that:

e f'(p) > 0= fisgoing up, locally;
e f'(p) < 0= fis going down, locally;
e f'(p) =0= fisflat, locally.

Because the derivate requires the usage of a limit, our gradient will be calculated
as an estimation of the derivate, like so :

16

fip+Azx)— f(p)

Vfp) = A

The value of the derivative will point towards the steepest ascend from the point
we are currently in, so we are heading towards minimizing our function as long
as we move in the opposite direction.

All that remains is to update our point p; by —rviw) ,

where “L” is a constant called LearningRate. This will be what we use in the
scenarios to control the speed that the robots’ joints are rotating with.

4.4 Implementing Inverse Kinematics in C# code

To implement the above described inverse kinematics logic in our code, it is also
required that a forward kinematics logic is used, for evaluation purposes. A brief
description of the implementation follows below.

We firstly need an array that contains all the current rotations of each of the
joints of the robot, which in our case is defined as “Solution[]” .

After getting a target location, we cycle through each one of the robot’s joints,
starting from the top.

Taking the Solution[i] value for the i-th joint, we increase it by a constant value.
Using forward kinematics, we calculate the distance of the effector with the
current rotations, and afterwards we calculate the distance the effector would
be in, if the above rotation of the i-th joint was to take place.

If the current distance is f_x, and with a delta = const > 0 rotation we get a new
hypothetical distance f_x_plus_d,

the gradient would be : (f_x_plus_d - f_x)/delta .

Our desired new value for Solution[i], after restoring its initial value would then
be

Solution[i] = Solution[i] — L * Gradient, where L is our LearningRate of choice.
The code for calculating the gradient is shown below.

17

public fleat CalculateGradient(Vector3 target, fleat[] Solutien, int i, fleat delta)
1

// Saves the angle,

// it will be restored later

float scluticnAngle = Sclution[i];

{/ Gradient : [F(x+th) - F(x)] / h
/! Update : Solution -= LearningRate * Gradient
float f_x = ErrorFunction(target, Solution)}; // ErrorFunction is DistanceFromTarget!!!!

Solution[i] += delta;
float f_x plus_h = ErrorFunction{target, Solution);

float gradient = (f_x plus h - f x) / delta;

/! Restores
Selution[i] = soluticnAngle;

return gradient;

Calculating gradient, as implemented by Alan Zucconi

The kinematic algorithm also implements a threshold for stopping. This
threshold is the value of the distance that has to occur between the end effector
of the robot and the target position, in order to assume that the robot has
reached its destination. Otherwise, because the robot makes iterations in every
frame, it would be very possible that it would overreach its target position,
which would cause it to wiggle around it, never actually reaching it.

5 Environment configurations

In the Unity engine, each model that is included in the scene (a Scene represents
the total of the environment) is considered an object. That includes the floor,
walls etc.

Objects in Unity can be assigned components, which allow them to perform an
extended number of operations and hold a variety of properties.

The Transform component is automatically assigned to a new object, as it
contains all the info regarding its position, rotation and scale in space, both
locally if it is a child object, and globally.

18

Some other important components are the Collider, which allows Unity to
detect collisions between objects, the RigidBody, which gives a physical aspect
to the object and instructs Unity to calculate kinematics and dynamics on the
model, the Material, which gives object properties like color, the Animator,
Mesh etc. Another really important and much used in this thesis component, is
the Script, which allows the user to program more functions for a specific model
or groups of models through coding.

5.1 The initial environment

The initial idea for this project was that an HRC environment would be created,
where a human and a robot would cooperate in an assembly task in a shared
table. All the objects would be grabbable by the human for the assembly to
work.

Since the robot would be moving by implementing an inverse kinematics
algorithm and not by animations, it had to be assigned the targets at startup.
For this reason, the robot is made to carry a List of GameObject (the target
objects), which is defined in the Start() function of Unity (Start() is a Unity
function that is called once for every object, after it is initiated).

The robot removes the first GameObject of the list every time. Accessing its
Transform component, it uses the inverse kinematic algorithm to reach its
position. The object also has other components that declare its drop location
and orientation.

The above meant that the robot has to Grab and Drop an object. In the
meantime, the human has his/her own objects to place in the table and can also
interact with the robots.

19

5.2 Increasing the complexity

Increasing the complexity of the environment, to make it accept more
parameters and require more focus by the human was required.

To address this, we decided that the environment would implement 2 robots
instead of one. Both robots implement the same movement algorithm, but they
execute a slightly different task.

The task at this point was decided to be an assembly task of an electrical board.

To this thought, the first robot was assigned to place electrical devices on the
board, like resistors and capacitors. The second robot places screws on the
board, on top of objects placed by the human.

The human’s task is to place his own list of objects, one at a time, while being
careful of the robotic arms. When the human picks up the designated object, its
location on the board is rendered.

5.2.1 Adjusting Grabbable Objects

In order to reduce the complexity of the above changes, only the human’s initial
targets are Grabbable. In addition, he can only Grab the object that he is
supposed to grab, defined by the task’s order of object placement. While the
object is grabbed, he can see its target location on the board, and only after he
places the object, is he able to grab the next one.

Programming wise, there were some adjustments made to the oculus
integration, because in the version used by this thesis, there was not an option
to render an object Grabbable and NOT Grabbable at will.

20

5.2.2 Handling Collisions

On the context that 1 human and 2 robots are now participating in the assembly,
there are two kinds of collisions that can occur. The first one is a collision
between the human’s hands and a robot, and the second is a collision between
the two robotic arms, which is not realistic in a productive environment and has
to be avoided.

After a robot and a human hand collide, at first the robot would stay still until
the human would remove his hand from the specified collision range. As this
was not safe enough, on collision, both robots retreat to a designated retreat
position. A button was firstly placed near the assembly table, and when it is
pressed, the robots would continue their task. The human could still place the
object he was currently holding in the designated slot, but until he pressed the
button, he was not able to pick another one, and at the same time he was not
able to pick the current one again, if he released it in a position other that the
designated one.

The traditional start-stop method described above provides safety and at the
same time gives the user more control over the pacing of the scenario. However,
collaborative robots (Cobots) nowadays implement a lot of sensors in their
functionality and can safely know when the workspace has been cleared.

To simulate the above functionality, the start-stop button was ultimately
removed. In its place, the robots will still retreat to the designated safety
position. Upon reaching it, however, they will instantly continue their
interrupted task, as they will assume that the workspace has been cleared.

The robot — robot collision has to be handled as a near collision, in order to be
more realistic. To this end, the robots have a volume bigger than their own (in
order to not actually touch), which is specified as a collider only for the specific
kind of collision. Once this occurs, the robot that is the furthest from the
electrical board stops, and only the other robot continues its task, until the
aforementioned volumes stop touching.

21

5.2.3 Achieving Cooperation

To achieve the desired level of cooperation, a degree of verticality was given to
the assembly. The robots and the human can place and/or screw objects on top
of each other. For that to happen, sometimes a robot has to wait for the human
or for the other robot to complete an action, and also the human may have to
wait for the robots to place an object, in order for his target location to render
his target.

To achieve this, the objects assigned to the human have a new property that
designates if they have to wait for a certain object to be placed, in order to
activate the target locations rendering.

In addition, the robots both have an intermediate position (ldle Position) in the
form of an empty object. After grabbing an object, they pass this new location.
Before moving on the board, they check if they need to wait for an object to be
placed before they continue. If they do, they are rendered idle until that object
is placed.

Finally, to complement all the above, each object that is to be placed on the
board, has a property called “IsDone” that designates when its placement is
completed.

6 Calculating the metrics

For the calculation of the metrics, it was decided that the parameters studied
would be based on :

e The speed of the robots’ end effector
e The anticipation on the robots’ movements

22

6.1 Creating Options for each task

An object called “OPTIONS” exists in each of the scenes, that contains the
parameters that have to be selected or activated/deactivated before running
the task.

The OPTIONS object contains the LearningRate parameter of each robot, which
controls the speed of its joints’ rotations. By altering this, the robots operate on
a different average and maximum speed of the end effector.

This object also contains a setting for the name of each participant. Finally, it
contains a Boolean that designates if the task is to run with Anticipation enabled
or disabled.

6.2 Anticipation

Anticipation in these scenarios refers to the following adjustment.

In the case in is enabled, the target location that each robot is moving onto at
the current time, will begin flashing until the object is placed on it and the
“IsDone” property of it will be set to true. Afterwards, the next target of the
robots will begin flashing and so on.

The locations targeted will be flashing with a different color, to designate which
robot is targeting it. In addition, the second robot, which has the screwing
function assigned to it, will make the hole that it is targeting with a screw, flash.

6.3 Logging

In order to log all the calculations made during runtime, a separate logging class
was created, that is called by different scripts on different objects, to write
specific calculations.

These logs contain:

e The real time that the task was started on. At this point a timer starts
counting the seconds the task is running.

23

e Time of each near-collision of the robots, in seconds since the startup.

e Time of each collision of a robot with a hand, in seconds since the startup.

e The delay each of the above collisions applied on the task, in seconds.

e The total idle time of each robot.

e The count of total near-collisions of the robots.

e The count of total robot-hand collisions.

e The time it took for each robot to complete its task, in seconds.

e The time it took the human to complete his task, in seconds.

e The average and maximum speed each of the robots achieved, in m/s .

e The time of completion since the startup, in seconds.

e The total time the human was idle, meaning that he was outside the
workspace.

It is important to note here that the task is considered to have started when the
human picks up the first objects. Before this occurrence, the robots are inactive
and the timer has not started counting.

6.4 Additional adjustments

In order to provide better feedback to the user and get more realistic reactions,
and as a result metrics, about the task or events that have occurred, some
additional adjustments have been made:

I. The object that nextin order for the human to grab is flashing green
as an indicator.

II. A sound is implemented when the human places an object in the
correct position.

lll. An alert sound is played if the human’s hands collide with any of
the robots.

IV. If a collision has occurred, the continuation button flashes instead
of the next human target object. Only one flash at a time is used as
an indicator for the human to take action.

V. Aclicking sound is played to designate the pressing of the button
by the human.

24

7 Algorithmic Logic in coding

As this thesis main purpose is to have the creation of scenarios for future testing
be as parametric as possible, it is a big project code wise. Therefore, some
further explanation of the logic behind the main functionalities were the means
to this end, should be provided.

7.1 Transporting robot

This robot (Robot 1) transfers electronic devices from its picking table to the
working electrical board. It implements forward and inverse kinematics as
previously described, for its movement. In addition it has some functionalities
for implemented a sequence of actions and placing many objects in a specified
order.

At the start of a run, it is provided with a list of game objects that consist the
total of its targets. It will iterate through this list each times it places an object
on the table to find its new target. After the last placement, the list will be
empty, and the robot will log its metrics and retreat to a specific position.
However, if the human has not picked up his/her first object, the robot will not
begin its task, even if there are no pre-requirements to its first object’s placing.
After it starts, it continuously checks the distance its effector has from its current
target, and moves accordingly. The target itself is not always the object it has to
transfer to the board. The robot passes through 4 different states that change
its targets accordingly, before going for the next target:

e Picking up the target: At this stage, the robots position is the position of
the target it has to transport to the board.

e Picked up the target: After the target is picked up, the robot targets the
intermediate position.

e Reached mid-way: The robot now targets the position that it has to
release the object in. However, once it reaches this point, there is a
possibility that the item it is carrying is placed after an object that is not
yet placed, by the human or the other robot. Each object has a property

25

that designates the game object has to wait for, before placing continuing
to place its own.

e Released object: At this point the robot targets the intermediate position
once more, and after it reaches it, it will aim for the next object from the
list, and the next cycle of phases.

The robot also calculates its own idle time, using the timer that times the whole
project, and subtracting between the times and the start and end of its idle
state.

7.2 Screwing robot

This robot (Robot 2) places screws on top of objects that were previously placed
by either Robot 1 or the human user. It also implements the forward and inverse
kinematics mentioned for its movement. Additionally, it makes use of the same
principle for the 4 phases of moving before completing an action, and logs its
metrics the same way.

A difference in its functionality is that it does not pick up screws from a table. It
reaches to the same target (and therefore same position) every time and
Instantiates a screw from a given model. In order for the user not to see the
instantiation, a short wall is placed in front of its reaching position. At the same
time, this robot does not take a list of objects, because the screws are
instantiated. Therefore, Robot 2 uses a list of target locations as the targets for
placing the screw. This list is defined on startup. Since the target locations
belong to empty objects, the list contains only the names of these objects and
not the object itself. Finally, to simulate the time it takes to actually screw, the
robot will wait after releasing each screw for at least 1 second before continuing.

26

The screw inside the "half" cube is used as Grab position as well as model for the instantiation

7.3 Grabbing and Dropping

Grabbing is essentially the same for both robots, but has a slightly different
implementation. The Grab method is though run for both robots, once they have
reached the corresponding object position.

For Robot 1, grabbing means a couple of actions. The algorithm finds the item
that is to be grabbed, and assigns it as a child to the robots end effector, while
making it a kinematic object, because if in a scenario it isn’t already, we don’t
want it to be moving apart from its parent object’s movements. Then, through
a property set in another script, it gets the target location that the object needs
to reach. This location though will be used as a target after it reaches the
intermediate position. The aforementioned object’s location is a component in
the so called Release object. This object is the exact duplicate of the grabbed
object. Though the renderer of this object is disabled in runtime, it is used in
designing to give easily the rotation and position that we want to have in our
grabbed object at release. Finally before returning to the main code, it render a
Boolean as “true”, designated that the object is now grabbed by its effector.

For Robot 2, there are very slight differences. First, it instantiates a screw
according to the position and rotation of the initial object. After that, it assigns
it as a child of the effector and continues its function as with Robot 1. However,
as the grabbed object is just instantiated, it uses the object from the list to get

27

information regarding the release position’s location, and also designates the
object from the list as grabbed, for convenience in the calculations.

Robot 1 has grabbed a capacitor and is moving to the intermediate position

Dropping has the same functionality for both objects. Essentially, once the robot
has reached its release position for the specific objects, it firstly removes it from
the effectors children. Now, since the robots have a stop threshold, the current
object position is not 100% accurate to the designated. For this purpose, the
Drop function assigns the intended position to the object, taken from the object
containing the information for the release. After that, it empties some variables,
in order to have them cleared for the next object, and marks the one just placed
as “Done” in some scripts to enable and disable corresponding functionalities.

28

7.4 Robots’ near-collisions

Robots colliders (green capsules) are touching, indicating that there is a near-collision occurring.

Collisions between robots, as seen above, are handled differently from human-
robot ones. The main reason here, is that in a real time scenario, robots, and
especially cobots (collaborative robots) would never collide with each other,
considering they are programmed for their task in the specific environment, and
make use of a lot of sensors. Therefore, to simulate this, the robots in our
scenarios use capsule collider to ensure that they don’t collide.

When the colliders touch, a near collision occurs. Through different scripts, each
robot calculates for itself the distance it has from its target, as well as the other
robot’s distance from its own target. The robot that is the further form its target
is the one that acknowledges the near collision occurrence. In the rare scenario
that the two distances are exactly equal, Robot 2 is selected in a hardcoded
fashion to acknowledge the collision.

The touching of the colliders is realized in the OnCollisionEnter() function
provided by Unity. Until the OnCollisionExit() is called, meaning that the
colliders are no longer touching at any point, the selected from the above logic
robot, will enter a near-collision state. What this basically does is enable a
Boolean in the main script of the robot that declares the occurrence of a near-
collision for this robot. The result is that as long as this Boolean is true, the robot

29

will stop executing any code after that check, in the specific script, therefore
halting its movement in the scenario.

7.5 Human-Robot collisions

Robot 1's colliders used for human-robot collision (same for robot 2)

Both hands' colliders used for the human-robot collision event

30

As it can be seen in the above figures, the robots use different colliders for the
human-robot interaction. The thought behind this is that the user must actually
come in contact with the robot, to indicate a collision. Therefore the capsule
colliders from the near-collision calculation are not preferable here, because
they are not tangential to the robots actual volume. The cube colliders seen here
are as tangential as possible. Thus the hand of the user will actually be colliding
with a robot’s effector in the event of a collision. The above statement has
however one exception, that is the fingers of the hands. If the fingers are
pointing out, they are outside the collider and will be slightly inside the effector
before a collisions is triggered. But the colliders cannot be bigger because if the
fingers are not pointing, the collision would occur before a hand actually touches
an effector. Therefore there is a small percentage of error here that does not
affect, however, the scenarios designed.

The human-robot collision is handled differently than that of a near-collision.
OnTriggerEnter() is the method used here to acknowledge a collision. This
function is different because the hands’ colliders are declared as triggers. Trigger
colliders are used because Unity will not calculate collisions with other colliders
and apply physical restrictions, it will only inform of a collision and let the coding
decide how to interpret it. Except from an integer variable, used to count how
many times a collision of this kind has occurred, the corresponding script
informs a Boolean variable that a collision has occurred. This variable is read by
the 2 robots’ main scripts. When it is true, it overrides that main code in a way,
and executes another small part that only runs while a state of collision is
present. The script logs the collision, writing when it occurred, with which hand
and which robot, and will also give new target positions to both robots,
regardless of the position they are in at the moment. The initial position they
had will be kept to be restored after the collision. Both robots will therefore
have specified positions to go to, designated as “HandCollisionResetl” and
“HandCollisionReset2”. These are the retreat positions. This method is
implemented in the Robot 2’s main script. This part of code will wait until both
robots have reached their retreat positions. After this happens, it will render the
collision state as false, at the same time restoring the initial targets to both
robots. Finally it will keep time of the delay that occurred because of the
collision, as well as add to the total delay time.

31

7.6 Object Flashing

Object flashing is a function used to inform the subject of the sequence with
which he has to pick his own objects, as well as the position and rotation he has
to place them in. Additionally, if the Anticipation mode is enabled, this method
is used to pinpoint where the robot is heading on the board, after it has picked
up its target object, and until it places it. Finally, if Anticipation is enabled, both
robots will be able to flash a message that says “Waiting..” above their base.
The flashing of this message designates that the robot it currently in idle state,
meaning it is either waiting directly for the subject to place more objects in order
to continue with its own, or indirectly by waiting for the other robot to place an
object, which will be delayed by the human.

1 - Object to be picked up by human is flashing
2 - Position robot 1 is moving into is flashing
3 - Position the human has to place his object (It is considered grabbed here for showing purposes.)

32

Waiting message appearing in robot 2 during runtime.

Object flashing is done by changing their color by accessing their material
component, or by enabling and disabling their renderer component, with the
use of Coroutines. Coroutines are parts of code in a script that are executed
asynchronously with the rest of the code, and usually have a logical condition
that enables them to complete their functionality. The condition in these scripts
is:

e The human object will be flashing until it is picked up.

e The target position for the human object’s placement will be flashing until
the object is placed correctly by the subject. An object is considered
placed correctly when its collider at least touches a collider with same
shape, in the designated position, and it is not being grabbed.

e The robot’s targets for placing their objects will be flashing from the
moment they grab their object, up to the moment they place it and mark
it as “Done”

Each object in the sequence that has to be flashing, has a child object inside it
that is a 2D plane with the same shape as the object, like a top-down view. This
is the object that is actually flashing each time.

33

7.7 Human-object interactions

In the scenarios, the subject can only interact with objects that are modified as
grabbable, and can only grab and release them. However, there is an algorithm
that enables objects to be picked up, or disables that functionality, and also
enables or disables their flashing functionality. Same as for the robot objects,
there also exists a list that contain all the objects that are to be picked up by the
human. For convenience in coding, the first and last objects are also designated
through a Boolean property, as they have to be treated slightly differently. The
first object to be picked up is also assigned the script “Timing”. This script marks
the start of the scenario, which occurs when the first object in the subject’s
sequence is picked up for the first time, and it also keeps track of the scenarios
total time, and logs some metrics at the end.

There is also another script (“HTargets”) that makes use of the list of objects
mentioned above, to handle functionalities for all human objects at the same
time. This script is responsible for checking if the next object in the human’s
sequence is able to be placed on the board. If it is, it will enable the flashing of
the corresponding placement position.

It should be noted that a collision occurrence will override the above
functionality. It its presence, the subject is not able to pick up anything, until the
robots reach their retreat positions and the collision state is completed. This
means that if he forced a collision after placing his object, he/she will briefly be
unable to continue with the next object. However, if the collision occurred while
he was already holding one, he/she will be able to place it, as long as he does in
the correct position. If he/she places it in a wrong position or lets it go, he/she
will have to wait for the collision phase to end before picking it up again, adding
to his total completion time.

34

& [HZ

Tag | Untagged i | Layer | Default

Ak

O
| n
4
o
0
1

b~ Transform 2] 5! %,
.. Cube (Mesh Filter) e
b ¥ Mesh Renderer L 3! &,
b iy v Bou Collider L+ 8
=} Rigidbody 2l ! %,
o Screws (Script) e
w = [« Human Targets (Script) (] e 8

=it Humanlalragets o]

Enable If This Is Done IRAZ o

Clip .—?cggle—écundﬁlble.cnm—231290292 [

Blink Material W HumanBlink o

Force Start -

Is First One]

Started]

Is Last One -

Time Visible 0.3

Time Invisible 0.3

Start State [

End State [

The Humans 2nd object has to wait for Robot 1's 2nd object to be placed, before its placement position
will start flashing.

7.8 Robot-object interactions

The interaction between each robot and its corresponding objects is the same
at its root for both robots, however it has small differences due to the
aforementioned fact that Robot 2 instantiates objects, and keeps values of the
release positions in empty objects. At the same time, the screw holes that need
to be flashing, are not on the board this time, but instead exist on objects
handled by the other robot, or the human. Therefore it required more scripting
to complete the same functionality.

e Robot 1: This is a pretty straight forward functionality. When the robot
grabs an object, it renders it as grabbed. When this situation is read in
another script, another variable is enabled, that enables the object’s
position on the board to start flashing. The coroutine that does the
flashing ends when the initial object is marked as “IsDone”.

35

e Robot 2: Robot 2’s 2D planes are placed as children in human or Robot 1’s
objects. At the same time, the grabbed object is instantiated. To address
this, first when a screw is instantiated, it marks a variable in the target
location’s object that renders it as grabbed. Continuing, this empty object
has a new script (“EnableHoleRendering”) that contains the object which
has to flash. This object contains a script that enables its corresponding
2D plane, placed as its child, to start flashing. However, since this whole
interaction is much less direct, each hole contains some additional
information. This information refers to the previous screw’s objects, and
checks if they are done flashing. It also has a property that declares an
object the screw has to wait for to be completed, before it starts flashing.
Finally the last hole that has to flash is marked for convenience, and all
holes except for the first one have information on the previous screw
hole, to make it easier to check its current state.

It should be noted that the 2D plane is actually another object placed as child in
the object that has to flash. The script that does the flashing is placed in the
father object. The child object has the same name as the father plus the word
“Outline”. For example, the first human object, named “H1” flashes the
“H1O0utline” object.

7.9 Naming conventions

Naming conventions that are implemented in this thesis are not obligatory and
were created for coding convenience. That being said, there are hardcoded
names of objects in few scripts, so the code has to be altered slightly to
implement new names or modifications of the existing ones.

The naming conventions that are used in the objects participating in the
sequence are presented below:

e Human objects in the sequence are called “H” plus the position that they
are in, in the sequence. Therefore they are called “H1”, “H2”, “H3” and so
on.

e The objects that represent the position the human has to place his objects
in, inherit the sequence’s object name plus the work “target”. So “H1”

36

object is placed in “Hltarget” object’s location, “H2” in “H2target”
object’s location etc.

e Robot 1’s objects are called “RA” plus their number in the sequence,
meaning the names are “RA1”, “RA2” and so on.

e Robot 1’s objects that represent the placing location inherit the initial
objects name plus the work “Release”. Thus, the “RA1” placement is in
“RA1Release” object’s position and so on.

e The second robot’s object names are irrelevant, as the objects are
instantiated. The placing location objects are named after their sequence,
like so: “ScrewlLoc”, “Screw2Loc”, “Screw3Loc” etc.

e The actual holes that exist on the first robot’s and the human’s objects
have a similar name, indicating their sequence. These are called
“ScrewHolel”, “ScrewHole2” and so on.

Finally all objects that participating in some sort of flashing have child objects
that inherit their names plus the work “Outline”. The correspondence is as seen
below:

H1->H1Outline
Hltarget -> HltargetOutline
RA1Release -> RA1ReleaseOutline
ScrewHolel -> ScrewHole1Outline
The same goes for the continuation of the sequence.

It should be noted that the lists are filled at startup will up to 12 objects for each
of the 3 sequences, if that many exist. If the sequence should contain more than
12 objects, they also have to be added in the script. Grouping them was avoided
to make changing conventions easier to understand and implement.

37

8 Iterative improvement operations

After running several tests with the aforementioned settings, faults and room
for improvements appeared to be present, mainly regarding the optimization of
the task, with the purpose to give better, clearer signals and indications to the
user, and also to differentiate the task in regards to what actions has each of the
agents to execute, while enforcing the collaboration aspect of the whole
scenario, wherever the individual tasks get involved with one another.

To achieve this, modifications where made to some aspects of the scenarios that
were mentioned in previous parts of this thesis. Additionally, new and improved
functions were implemented.

These changes are described below.

Correction of the scale of objects for more realism: The scale of the tables,
objects participating in the assembly, as well as the height and width of
the Oculus avatar were modified, to give a more realistic feeling. Still in
order to maintain a task that is not really hard to perform, objects such as
resistors or capacitors are larger than usual, commercially, but the size is
still realistic in some applications. The robot model however does not
have a modifiable size. The reason behind this is the in a 1:1:1 scale (in X,
Y and Z), when calculating metrics, the units per second that Unity counts
as speed, can be translated to meters per second.

Narrowing the robot’s effector speed options: Since the end effector’s
speed is adjusted by changing the Learning Rate factor, it is made to be
modified easily. However, the regulations and the scare factor of the
problem have been accounted, and therefore, a range has been
implemented in the Learning Rate options. This way the scenario has a
more realistic speed of execution, and the subject is not scared of the
robot’s movements at the same time.

Texture and color adjustments: The textures and colors of all the in game
objects have been considered. Changes were made so that every in game
model will have a friendly and not very bold color, so that the task is more
realistic, but also the user’s focus is constantly maintained. At the same

38

time, different objects can be easily distinguished, to avoid confusion
about the sequence of tasks.

Positions adjusted with user’s field in mind: During the test, while the user
would turn the table where his objects were placed, to pick them up, the
assembly table was out of his field of view. This would result in the user
missing some indicators of events occurring, but also missing the robots’
movements, adding to his confusion. Finalizing the environment, actions
were taken to move every object as close to his field of view as possible.

Object flashing reworks: Due to the different textures and colors of
objects, the flashing of objects did not appear consistent enough, and was
thus removed. In its place, a 2D was placed under the human objects, and
at the bottom of all the colliders on the tables, for the placement of
objects. The planes geometry was in alignment with the objects top down
view. The indicator of the next in sequence object for the user, as well as
its placement position, and the anticipation of the robot’s objects’
positions on the board were now made apparent by the flashing of this
planes.

Color consistency: In order for the task to be easily identified, and for the
user to be able to distinguish between his tasks and each of the robot’s
sequence, a certain coloring configuration was introduced. The users in
game avatar’s hands were colored blue, as well as the 2D planes that
referred to his sequence’s objects and board positions. The screwing
robot’s base and end effector were painted green, as well as the
indicators of the screw hole it is targeting next. The other robot’s base
and end effector were painted yellowish, as well as the indicator planes
for the positions it is targeting next.

Anticipation rework: The anticipation option, meaning the timing at which
each of the robots target on the board would flash its appointed color,
slightly changed. With better correlation between the flashing and the
actual corresponding movement of the robot in mind, the 2D planes were
made to start flashing as soon as each robot picks up its next in sequence
object, and not when it places its previous object.

39

Robot’s idle state notification: Each of the robot has an object that
represents the word “Waiting” appointed on them. Each time the robot
enters idle state, meaning that it is waiting for the human user to perform
a task, or that it is waiting for the other robot, which is already in idle state
waiting for the user, this object is flashing above the corresponding
robot’s base, as a notification that the user has been left behind on his

sequence.

Screwing delay simulation: To make the screwing robot appear to
function more realistically and to improve on the complexity of the
sequence, since the robot is not implementing a screwing animation, it
was made to wait for at least one second, once it reaches its target
screwing hole, before continuing its task.

Human idle time: The workspace was defined by two cube colliders (game
object “Envelope”). At any point the human’s hands are not inside or
touching the colliders, he/she is considered to not be participating,
therefore idle.

40

9 Future possibilities

As the conclusion of this thesis is achieved, and results are delivered, there is
apparent room for improvements and optimizations that exceed this thesis’
targets and expectations. These are briefly described below:

e The implementation of inverse kinematics: Gradient descend, in the form
that was implemented in this thesis, would not be accurate in a much
more complicated scenario. For example, if the robots being used for this
scenarios had more than one degree of freedom in some of its joints, this
code would not be applicable, as the gradient descend in this form is
applicable in a 2D plane, and a more complex mathematical approach
would be required.

e |Improved robotic arm intelligence: Improving the intelligence of the
robotic arm algorithm would give a scenario a lot more possibilities to
improve on its complexity and realism. One example of improvement
would be object and human collision avoidance. In this thesis there times
when colliders have to be disabled and so, robots can at times pass
through objects. Additionally, a robot could be made to create its own
sequence of actions, based on choices on the human side.

e Use of space movement: The Oculus Rift used in this thesis produces no
motion sickness under sort periods of scenario executions. At the same
time, the motion sensors it has implemented give a big enough space for
movement. This would be well implemented in future scenarios, by
creating platforms and making the user or the robots move back and
forth, or by making the user perform more motions, such as reaching high
for an object or ducking for one. This would give the ability to create more
complex scenarios, or more implement more realistic applications.

41

10 Conclusion

Concluding, this thesis result is an easily modifiable and parametrical
environment in Unity that can be long term used to create various experiments
and scenarios that study and evaluate HRC.

Any user that picks up this project does not need to know coding to create
his/her own environment and use his/her own objects. The user can also use
different robot models with more or less joints, however they should be
configured like the ones seen in this project, and also have one degree of
freedom in every joint. The dof should be declared in the scripts.

Additionally, if the user wishes to add more than 12 objects, or change the
naming conventions for any reason, it is very easy to do so, and requires minimal
to no C# coding understanding.

Some functionalities that were created but not implemented in the end, are still
present in scripts. Such are an alert button, used to continue after collision, a
functionality where only the robot that collided with a hand would enter
collision state and the other would continue normally, the flashing of objects
themselves instead of their child “Outline” objects, and some smaller ones.

To enforce the above statements, all the scenarios ran during this thesis, even
as tests, and even if they were not kept, originated from one initial scene, in
which all the functionalities were set up, without adding any further coding,
except simply expanding the list of objects accordingly.

There was an intention for multiple subjects to test all the various scenarios
created and modified, as the logging system was extended and parametricitself,
at the same time. However, as time restriction were big, and this thesis was
developed simultaneously with the restrictions of the global Covid pandemic, it
proved impossible to do so.

42
11 Bibliography

Bauer, W., Bender, M., Braun, M., Rally, P., & Scholtz, O. (2016). Lightweight
robots in manual assembly—best to start simply. Examining companies’ initial
experiences with lightweight robots, Stuttgart, 1-32.

BSI Group. (2016). Robots and robotic devices—Collaborative robots (ISO/TS
15066: 2016). BSI Standards Publication.

Goodrich, M. A., & Schultz, A. C. (2008). Human-Robot Interaction: A Survey.
Foundations and trends in human-computer interaction. In Now Publishers
Inc..

Haddadin, S., Albu-Schiiffer, A., & Hirzinger, G. (2007, June). Safety Evaluation
of Physical Human-Robot Interaction via Crash-Testing. In Robotics: Science
and systems (Vol. 3, pp. 217-224).

Kim, Y. M., Rhiu, I, & Yun, M. H. (2020). A systematic review of a virtual reality
system from the perspective of user experience. International Journal of
Human-Computer Interaction, 36(10), 893-910.

Kontrazis (2018). Creating a virtual environment and scenarios for studying
human robot collaboration in virtual reality, Diploma Thesis, National
Technical University of Athens.

Kriiger,], Lien, T. K., & Verl, A. (2009). Cooperation of human and machines in
assembly lines. CIRP annals, 58(2), 628-646.

Matsas, E., Vosniakos, G. C., & Batras, D. (2017). Effectiveness and acceptability
of a virtual environment for assessing human-robot collaboration in
manufacturing. The International Journal of Advanced Manufacturing
Technology, 92(9), 3903-3917.

Matsas, E., & Vosniakos, G. C. (2017). Design of a virtual reality training system
for human-robot collaboration in manufacturing tasks. International Journal
on Interactive Design and Manufacturing (IJIDeM), 11(2), 139-153.

Oke, G., & Istefanopulos, Y. (2001, July). Gradient-descent based trajectory
planning for regulation of a two-link flexible robotic arm. In 2001 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics. Proceedings
(Cat. No. 01TH8556) (Vol. 2, pp. 948-952). IEEE.

43

Ottosson, S. (2002). Virtual reality in the product development process. Journal
of Engineering Design, 13(2), 159-172.

Oyekan, J. 0., Hutabarat, W., Tiwari, A., Grech, R, Aung, M. H., Mariani, M. P., ...
& Dupuis, C. (2019). The effectiveness of virtual environments in developing
collaborative strategies between industrial robots and humans. Robotics and
Computer-Integrated Manufacturing, 55, 41-54.

Ruder, S. (2016). An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747.

Unhelkar, V.V, Siu, H. C,, & Shah, J. A. (2014, March). Comparative performance
of human and mobile robotic assistants in collaborative fetch-and-deliver
tasks. In 2014 9th ACM/IEEE International Conference on Human-Robot
Interaction (HRI) (pp. 82-89). IEEE.

Weistroffer, V., Paljic, A, Callebert, L, & Fuchs, P. (2013, October). A
methodology to assess the acceptability of human-robot collaboration using
virtual reality. In Proceedings of the 19th ACM Symposium on Virtual Reality
Software and Technology (pp. 39-48).

Zucconi, A. (2017, April 6). Implementing Forward Kinematics.
https://www.alanzucconi.com/2017/04/06/implementing-forward-

kinematics/

Zucconi, A. (2017, April 10). An Introduction to Gradient Descent.
https://www.alanzucconi.com/2017/04/10/gradient-descent/

Zucconi, A. (2017, April 10). Inverse Kinematics for Robotic Arms.
https://www.alanzucconi.com/2017/04/10/robotic-arms/

https://www.alanzucconi.com/2017/04/06/implementing-forward-kinematics/
https://www.alanzucconi.com/2017/04/06/implementing-forward-kinematics/
https://www.alanzucconi.com/2017/04/10/gradient-descent/
https://www.alanzucconi.com/2017/04/10/robotic-arms/

12 Code Appendix

44

Below are provided most of the parts that were written for the completion of
this thesis. Scripts, or parts of scripts that were results of research, aside from
basic settings, are not presented here.

Inverse Kinematics

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using System.Ling;

using Assets.GD.IK.Scripts;

namespace GD

{

// Error function to minimise

public delegate float ErrorFunction(Vector3 target, float[] solution);

public struct PositionRotation

{

Vector3 position;
Quaternion rotation;
public PositionRotation(Vector3 position, Quaternion rotation)
{
this.position = position;
this.rotation = rotation;
}
// PositionRotation to Vector3

public static implicit operator Vector3(PositionRotation pr)

{

return pr.position;
}
// PositionRotation to Quaternion
public static implicit operator Quaternion(PositionRotation pr)

{

return pr.rotation;

}

//[ExecutelnEditMode]
public class InverseKinematics : MonoBehaviour
{
[Header("Joints")]
public Transform Baseloint;
//[HidelnInspector]
[ReadOnly]
public Robotloint[] Joints = null;
// The current angles
[ReadOnly]

public float[] Solution = null;

[Header("Destination")]

public Transform Effector;

[Space]

public Transform Destination = null;
public float DistanceFromDestination;

private Vector3 target;

[Header("Inverse Kinematics")]
[Range(0, 1f)]
public float DeltaGradient = 0.1f; // Used to simulate gradient (degrees)

//[Range(0, 100f)]

46

public float LearningRate; // How much we move depending on the gradient

[Space()]

[Range(0, 0.25f)]

public float StopThreshold = 0.1f; // If closer than this, it stops
[Range(0, 10f)]

public float SlowdownThreshold = 0.25f; // If closer than this, it linearly slows down

public ErrorFunction ErrorFunction;

[Header("Debug")]

public bool DebugDraw = true;

private Transform ActualTarget;

private GameObiject effector;

public List<GameObject> Targets;

private GameObject ToWaitFor;

void Start()// Use this for initialization

{

ToWaitFor = null;

ActualTarget = null;

Destination = null;

effector = GameObiject.Find("HAND");

if (Joints == null)

GetlJoints();

ErrorFunction = DistanceFromTarget;

Targets = new List<GameObject>();

Targets.Add(GameObject.Find("RA1"));
Targets.Add(GameObject.Find("RA2"));
Targets.Add(GameObject.Find("RA3"));

Targets.Add(GameObiject.Find("RA4"));

if (GameObiject.Find("RA5") != null)

{
Targets.Add(GameObject.Find("RA5"));

if (GameObiject.Find("RA6") != null)

{
Targets.Add(GameObject.Find("RA6"));

if (GameObiject.Find("RA7") != null)

{
Targets.Add(GameObject.Find("RA7"));

}
if (GameObiject.Find("RA8") != null)

{
Targets.Add(GameObject.Find("RA8"));

if (GameObiject.Find("RA9") != null)

{
Targets.Add(GameObject.Find("RA9"));

47

48

LearningRate = GameObject.Find("OPTIONS").GetComponent<OPTIONS>().R1_LearningRate;

[ExposelnEditor(RuntimeOnly = false)]
public void GetJoints()
{
Joints = BaseJoint.GetComponentsinChildren<RobotJoint>();

Solution = new float[Joints.Length];

/ 3k 3k >k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k %k %k 3k 3k 3k >k %k %k 3%k 3k 3k >k %k %k >k 3k 3k %k %k %k >k >k %k %k k k

//\dentifiers for the current task of the robot
//***************************************
private bool IsAvailable = true;

private bool IsCarryingTarget = false;

private bool IsMovingToTarget = false;

public bool MovingTolnnerl = false;

public bool MovingTolnner2 = false;

private bool MovingToStart = false;

public bool DontDrop = false; //dont drop object because it is avoiding collision with a hand

void Update() // Update is called once per frame

{

if (!GameObject.Find("H1").GetComponent<Timing>().StartedTask)

{

return;

49

if (GameObiject.Find("H1").GetComponent<Timing>().Robot1Done)

{

return;

if (GameObiject.Find("Button").GetComponent<ButtonStartAlert>().RobotHandCollision)

{

HandleldleState();

ActualTarget = GameObject.Find("HandCollisionReset1").transform;
Vector3 newdirection = (ActualTarget.position - transform.position).normalized;
target = ActualTarget.position - newdirection * DistanceFromDestination;
//if (Vector3.Distance(Effector.position, target) > Threshold)
if (ErrorFunction(target, Solution) > StopThreshold)
{
IsMovingToTarget = true;

ApproachTarget(target);

return;

if (IsAvailable)

{

SelectTarget();

IsAvailable = false;

if (Destination == null)

{

return;

50

else

ActualTarget = Destination;

if (ActualTarget == null)

{

return;

// Do we have to approach the target?
//Vector3 direction = (Destination.position - Effector.transform.position).normalized;
Vector3 direction = (ActualTarget.position - transform.position).normalized;
target = ActualTarget.position - direction * DistanceFromDestination;
//if (Vector3.Distance(Effector.position, target) > Threshold)
if (ErrorFunction(target, Solution) > StopThreshold)
{
IsMovingToTarget = true;

ApproachTarget(target);

}

else if (IsMovingToTarget)

{
if (!IsCarryingTarget && !MovingToStart)
{

IsMovingToTarget = false;

ActualTarget = null;

GrabObject();
IsCarryingTarget = true;

MovingTolnnerl = true;

}

else if (MovingTolnnerl)
{
if (IToWaitFor.GetComponent<Screws>().IsDone)
{
CountldleTimeR1();
return;

}

Deactivateldle();

Destination = ReleaseTransform;

MovingTolnnerl = false;
MovingTolnner2 = true;
}
else if (MovingTolnner2)
{
if (DontDrop)
{

return;

}
DropObject();

IsCarryingTarget = false;
MovingTolnner2 = false;
MovingToStart = true;

}

else if (MovingToStart)

{
Destination = null;

MovingToStart = false;

IsAvailable = true;

}
//if (DebugDraw)

A

// Debug.DrawlLine(Effector.transform.position, target, Color.green);

// Debug.Drawline(ActualTarget.transform.position, target, new Color(0, 0.5f, 0));

/1t

private string SelectedTargetsName = "";

private void SelectTarget()

{

var target = Targets.FirstOrDefault();

if (target == null)

{

Destination = GameObiject.Find("InnerHandInitialPosition").transform;

var hl = GameObject.Find("H1").GetComponent<Timing>();
h1.RobotlDone = true;
var time = h1.Timer.ReturnTime();

Logfile.Write($"{time.ToString()} sec : Robot1 - task FINISHED.");

var J4 = GameObject.Find("JOINT 4").GetComponent<EffectorCollision>();

float maxR1Speed = J4.maxspeed;

float speeds = J4.AllSpeeds;

int speedsCount = J4.SpeedsCount;

52

Logfile.Write($S"Robot1 (LearningRate = {LearningRate}) - max speed reached :
{maxR1Speed} m/s, average speed : {speeds/speedsCount} m/s.");

Logfile.Write($"Robot1 - waited human for {TotalldleTime} sec.");

return;

}

//else if
(GameObject.Find("Button").GetComponent<ButtonStartAlert>().RobotHandCollision)

I
// SelectedTargetsName = target.name;

// GameObject.Find("Button").GetComponent<ButtonStartAlert>().R1Destination =
target.transform;

// ToWaitFor = Destination.GetComponent<Screws>().WaitForThis;
/1}
else
{
SelectedTargetsName = target.name;

Destination = target.transform;

ToWaitFor = Destination.GetComponent<Screws>().WaitForThis;

Targets.RemoveAt(0);

private Vector3 ReleasePosition;
private Quaternion ReleaseRotation;
private Transform ReleaseTransform;
public void DropObject()

{

53

effector.transform.GetChild(0).parent = null;

var target = GameObject.Find(SelectedTargetsName);

var targetRigidBody = target.GetComponent<Rigidbody>();

targetRigidBody.transform.position = ReleasePosition;

targetRigidBody.transform.rotation = ReleaseRotation;

targetRigidBody.isKinematic = true;

targetRigidBody.useGravity = false;

SelectedTargetsName ="";

ReleasePosition = default;

target.GetComponent<Screws>().IsDone = true;

GameObject.Find(target.name +

"Release").GetComponent<RenderRAReleases>().ReleaselsDone = true;

Destination = GameObject.Find("InnerPosition1").transform;

public void GrabObject()

if (string.IsNullOrEmpty(SelectedTargetsName))
{

return;

}

var target = GameObject.Find(SelectedTargetsName);

54

target.transform.SetParent(effector.transform);

target.transform.localRotation = effector.transform.rotation;

target.transform.position = effector.transform.position;

var script = target.GetComponent<ReleasePosition>();

Destination = GameObject.Find("InnerPosition1").transform;

ReleaseTransform = script.Position;
ReleasePosition = script.Position.position;

ReleaseRotation = script.Position.rotation;

public void ApproachTarget(Vector3 target)
{
// Starts from the end, up to the base
// Starts from joints[end-2]
// so it skips the hand that doesn't move!
for (int i = Joints.Length - 1; i >=0; i--)
//for (inti=0;i<Joints.Length - 1 - 1; i++)
{
// FROM: error: [0, StopThreshold, SlowdownThreshold]
//TO: slowdown: [0, 0, 1]
float error = ErrorFunction(target, Solution);

float slowdown = Mathf.ClampO01((error - StopThreshold) / (SlowdownThreshold -
StopThreshold));

// Gradient descent
float gradient = CalculateGradient(target, Solution, i, DeltaGradient);

Solution[i] -= LearningRate * gradient;/* * slowdown;*/ 11111//EXW
PEIRAKSEI AUTO//////

55

// Clamp

Solution[i] = Joints[i].ClampAngle(Solutionli]);

// Early termination
if (ErrorFunction(target, Solution) <= StopThreshold)

break;

for (inti=0; i< Joints.Length - 1; i++)
{

Joints[i].MoveArm(Solution[i]);

/* Calculates the gradient for the inverse kinematic.
* It simulates the forward kinematics the i-th joint,
* by moving it +delta and -delta.
* It then sees which one gets closer to the target.
* It returns the gradient (suggested changes for the i-th joint)
* to approach the target. In range (-1,+1)
*/
public float CalculateGradient(Vector3 target, float[] Solution, int i, float delta)
{
// Saves the angle,
// it will be restored later

float solutionAngle = Solution[i];

// Gradient : [F(x+h) - F(x)] / h
// Update :Solution -= LearningRate * Gradient

float f_x = ErrorFunction(target, Solution); // ErrorFunction is DistanceFromTarget!!!!

56

Solution[i] += delta;

float f_x_plus_h = ErrorFunction(target, Solution);

float gradient = (f_x_plus_h -f _x) / delta;

// Restores

Solution[i] = solutionAngle;

return gradient;

// Returns the distance from the target, given a solution
public float DistanceFromTarget(Vector3 target, float[] Solution)
{

Vector3 point = ForwardKinematics(Solution);

return Vector3.Distance(point, target);

/* Simulates the forward kinematics,
* given a solution. */
public PositionRotation ForwardKinematics(float[] Solution)
{
Vector3 prevPoint = Joints[0].transform.position;

//Quaternion rotation = Quaternion.identity;

// Takes object initial rotation into account
Quaternion rotation = transform.rotation;
for (inti=1; i< Joints.Length; i++)

{

57

// Rotates around a new axis
rotation *= Quaternion.AngleAxis(Solution[i - 1], Joints[i - 1].Axis);

Vector3 nextPoint = prevPoint + rotation * Joints[i].StartOffset;

if (DebugDraw)

Debug.DrawLine(prevPoint, nextPoint, Color.blue);

prevPoint = nextPoint;

// The end of the effector

return new PositionRotation(prevPoint, rotation);

private float TotalldleTime = 0;
private bool IdleTimeActivated = false;
private float IdleTimerStartingValue = 0;
public void CountldleTimeR1()
{

if (!ldleTimeActivated)

{

IdleTimeActivated = true;

var hl = GameObject.Find("H1").GetComponent<Timing>();

IdleTimerStartingValue = h1.Timer.ReturnTime();

}

public void Deactivateldle()
{

if (IdleTimeActivated)

58

var hl = GameObject.Find("H1").GetComponent<Timing>();

TotalldleTime += h1.Timer.ReturnTime() - IdleTimerStartingValue;

IdleTimerStartingValue = 0;

IdleTimeActivated = false;

}
public void HandleldleState()
{

if (IdleTimeActivated)

{

Deactivateldle();

IK2

using GD;

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using System.Ling;

using Assets.GD.IK.Scripts;

namespace GD

{

59

public class IK2 : MonoBehaviour
{
[Header("Joints")]
public Transform Baseloint;
//[HidelnInspector]
[ReadOnly]
public RobotJoint[] Joints = null;
// The current angles
[ReadOnly]

public float[] Solution = null;

[Header("Destination")]

public Transform Effector;

[Space]

public Transform Destination = null;
public float DistanceFromDestination;

private Vector3 target;

[Header("Inverse Kinematics")]
[Range(0, 1f)]

public float DeltaGradient = 0.1f; // Used to simulate gradient (degrees)

//[Range(0, 100f)]

public float LearningRate; // How much we move depending on the gradient

[Space()]

[Range(0, 0.25f)]

public float StopThreshold = 0.1f; // If closer than this, it stops
[Range(0, 10f)]

public float SlowdownThreshold = 0.25f; // If closer than this, it linearly slows down

60

public ErrorFunction ErrorFunction;

[Header("Debug")]

public bool DebugDraw = true;

private Transform ActualTarget;
private GameObiject effector;

public List<GameObject> Targets;

private int ScrewsCreated = 0;
private GameObject ToWaitFor;

public string CurrentScrewLocationName =

GameObject Screw;

void Start()// Use this for initialization

{
Screw = GameObject.Find("Screw");
ToWaitFor = null;

ActualTarget = null;

Destination = null;

effector = GameObject.Find("HAND2");

if (Joints == null)

GetJoints();

ErrorFunction = DistanceFromTarget;

’

61

Targets = new List<GameObject>();

Targets.Add(GameObject.Find("Screw1Loc"));
Targets.Add(GameObject.Find("Screw2Loc"));
Targets.Add(GameObject.Find("Screw3Loc"));

Targets.Add(GameObiject.Find("Screw4Loc"));

var S5 = GameObject.Find("Screw5Loc");
if (S5 != null)
{
Targets.Add(GameObject.Find("Screw5Loc"));

var S6 = GameObject.Find("Screw6Loc");
if (S6 != null)
{
Targets.Add(GameObject.Find("Screw6Loc"));

var S7 = GameObject.Find("Screw7Loc");
if (57 = null)
{

Targets.Add(GameObject.Find("Screw7Loc"));

var S8 = GameObiject.Find("Screw8Loc");
if (S8 1= null)
{
Targets.Add(GameObject.Find("Screw8Loc"));

var S9 = GameObject.Find("Screw9Loc");

62

63

if (S9 = null)
{

Targets.Add(GameObiject.Find("Screw9Loc"));
}

LearningRate = GameObject.Find("OPTIONS").GetComponent<OPTIONS>().R2_LearningRate;

[ExposelnEditor(RuntimeOnly = false)]
public void GetJoints()
{
Joints = BaseJoint.GetComponentsinChildren<RobotJoint>();

Solution = new float[Joints.Length];

//***************************************

//\dentifiers for the current task of the robot
//***************************************
private bool IsAvailable = true;

private bool IsCarryingTarget = false;

private bool IsMovingToTarget = false;

public bool MovingTolnnerl = false;

public bool MovingTolnner2 = false;

private bool MovingToStart = false;

public bool DontDrop = false; //dont drop object because it is avoiding collision with a hand

public bool LastScrew = false;

void Update() // Update is called once per frame
{

if (!GameObject.Find("H1").GetComponent<Timing>().StartedTask)

return;

if (GameObject.Find("H1").GetComponent<Timing>().Robot2Done)
{

return;

if (GameObiject.Find("Button").GetComponent<ButtonStartAlert>().RobotHandCollision)

{

HandleldleState();

ActualTarget = GameObject.Find("HandCollisionReset2").transform;
Vector3 newdirection = (ActualTarget.position - transform.position).normalized;
target = ActualTarget.position - newdirection * DistanceFromDestination;
//if (Vector3.Distance(Effector.position, target) > Threshold)
if (ErrorFunction(target, Solution) > StopThreshold)
{
IsMovingToTarget = true;
ApproachTarget(target);

}

return;

if (IsAvailable)
{
GoForScrew();

IsAvailable = false;

64

if (Destination == null)
{

return;

else

ActualTarget = Destination;

if (ActualTarget == null)

{

return;

// Do we have to approach the target?
//Vector3 direction = (Destination.position - Effector.transform.position).normalized;
Vector3 direction = (ActualTarget.position - transform.position).normalized;
target = ActualTarget.position - direction * DistanceFromDestination;
//if (Vector3.Distance(Effector.position, target) > Threshold)
if (ErrorFunction(target, Solution) > StopThreshold)
{
IsMovingToTarget = true;

ApproachTarget(target);

}

else if (IsMovingToTarget)

{
if (!IsCarryingTarget && !MovingToStart)
{

IsMovingToTarget = false;

ActualTarget = null;

65

GrabScrew();
IsCarryingTarget = true;
MovingTolnnerl = true;
}
else if (MovingTolnnerl)
{
if (IToWaitFor.GetComponent<Screws>().IsDone)
{
CountldleTimeR2();
return;

}

Deactivateldle();

GetScrewPlacement();

Destination = ReleaseTransform;

MovingTolnnerl = false;
MovingTolnner2 = true;
}
else if (MovingTolnner2)
{
if (DontDrop)
{

return;

}
DropObiject();

IsCarryingTarget = false;
MovingTolnner2 = false;

MovingToStart = true;

66

}

else if (MovingToStart)

{
Destination = null;
MovingToStart = false;

IsAvailable = true;

}
//if (DebugDraw)

/I

// Debug.DrawlLine(Effector.transform.position, target, Color.green);

// Debug.Drawline(ActualTarget.transform.position, target, new Color(0, 0.5f, 0));

/1}

private string SelectedTargetsName ="";

private void GoForScrew()

{

if (LastScrew)

{

Destination = GameObiject.Find("Hand2InitialPosition").transform;

var hl = GameObject.Find("H1").GetComponent<Timing>();
var time = h1.Timer.ReturnTime();
h1.Robot2Done = true;

Logfile.Write(S$"Robot2 - task FINISHED. Time : {time.ToString()} sec.");

var J24 = GameObject.Find("JOINT 24").GetComponent<Ik2EffectorCollision>();

float maxR2Speed = J24.maxspeed;

float speeds = J24.AllSpeeds;

67

int speedsCount = J24.SpeedsCount;

Logfile.Write($"Robot2 (LearningRate = {LearningRate}) - max speed reached :
{maxR2Speed} m/s, average speed : {speeds / speedsCount} m/s.");

Logfile.Write($"Robot2 - waited human for {TotalldleTime} sec.");

return;

Destination = GameObject.Find("Screw").transform;

return;

private void GetScrewPlacement()

{

var target = Targets.FirstOrDefault();

if (target == null)
{
Destination = GameObiject.Find("Hand2InitialPosition").transform;

return;

else

Destination = target.transform;

}

ReleaseTransform = target.transform;
ReleasePosition = target.transform.position;

ReleaseRotation = target.transform.rotation;

Targets.RemoveAt(0);

68

if (Targets.FirstOrDefault() == null)

{

LastScrew = true;

private Vector3 ReleasePosition;
private Quaternion ReleaseRotation;

private Transform ReleaseTransform;

private void DropObiject()
{

effector.transform.GetChild(0).parent = null;

var target = GameObject.Find(SelectedTargetsName);

//var targetRigidBody = target.GetComponent<Rigidbody>();

target.transform.position = ReleasePosition;

target.transform.rotation = ReleaseRotation;

//targetRigidBody.isKinematic = true;
//targetRigidBody.useGravity = false;
SelectedTargetsName ="";

ReleasePosition = default;

GameObject.Find(CurrentScrewLocationName).GetComponent<Screws>().IsDone = true;

CurrentScrewlLocationName ="";

69

Destination = GameObject.Find("InnerPosition3").transform;

private void GrabScrew()

{

if (LastScrew)

{

return;

}

var newScrew = Instantiate(Screw, Screw.transform.position, Screw.transform.rotation);
newScrew.tag = "Screw";
newScrew.name = $"Screw{ScrewsCreated}";

ScrewsCreated++;

SelectedTargetsName = newScrew.name;

newScrew.transform.SetParent(effector.transform);

newScrew.transform.localRotation = effector.transform.rotation;

newScrew.transform.position = effector.transform.position;

Destination = GameObject.Find("InnerPosition3").transform;

var target = Targets.FirstOrDefault();
CurrentScrewLocationName = target.name;
var tScript = target.GetComponent<Screws>();

ToWaitFor = tScript.WaitForThis;

public void ApproachTarget(Vector3 target)

{

70

// Starts from the end, up to the base

// Starts from joints[end-2]

// so it skips the hand that doesn't move!

for (int i =Joints.Length - 1; i >=0; i--)

//for (inti=0;i<Joints.Length - 1 - 1; i++)

{
// FROM: error: [0, StopThreshold, SlowdownThreshold]
//TO: slowdown: [0, 0, 1]
float error = ErrorFunction(target, Solution);

float slowdown = Mathf.ClampO01((error - StopThreshold) / (SlowdownThreshold -
StopThreshold));

// Gradient descent
float gradient = CalculateGradient(target, Solution, i, DeltaGradient);

Solution[i] -= LearningRate * gradient;/* * slowdown;*/ I111117EXW
PEIRAKSEI AUTO//////

// Clamp

Solution[i] = Joints[i].ClampAngle(Solution[i]);

// Early termination
if (ErrorFunction(target, Solution) <= StopThreshold)

break;

for (inti=0; i< Joints.Length - 1; i++)
{

Joints[i].MoveArm(Solution[i]);

/* Calculates the gradient for the inverse kinematic.

71

* It simulates the forward kinematics the i-th joint,
* by moving it +delta and -delta.
* |t then sees which one gets closer to the target.
* It returns the gradient (suggested changes for the i-th joint)
* to approach the target. In range (-1,+1)
*/
public float CalculateGradient(Vector3 target, float[] Solution, int i, float delta)
{
// Saves the angle,
// it will be restored later

float solutionAngle = Solution[i];

// Gradient : [F(x+h) - F(x)] / h
// Update : Solution -= LearningRate * Gradient

float f_x = ErrorFunction(target, Solution);

Solution[i] += delta;

float f_x_plus_h = ErrorFunction(target, Solution);

float gradient = (f_x_plus_h -f x) / delta;

// Restores

Solution[i] = solutionAngle;

return gradient;

// Returns the distance from the target, given a solution

public float DistanceFromTarget(Vector3 target, float[] Solution)
{

Vector3 point = ForwardKinematics(Solution);

72

return Vector3.Distance(point, target);

/* Simulates the forward kinematics,
* given a solution. */
public PositionRotation ForwardKinematics(float[] Solution)
{
Vector3 prevPoint = Joints[0].transform.position;

//Quaternion rotation = Quaternion.identity;

// Takes object initial rotation into account
Quaternion rotation = transform.rotation;
for (inti=1; i< Joints.Length; i++)
{
// Rotates around a new axis
rotation *= Quaternion.AngleAxis(Solution[i - 1], Joints[i - 1].Axis);

Vector3 nextPoint = prevPoint + rotation * Joints[i].StartOffset;

if (DebugDraw)

Debug.DrawLine(prevPoint, nextPoint, Color.blue);

prevPoint = nextPoint;

// The end of the effector

return new PositionRotation(prevPoint, rotation);

private float TotalldleTime = 0;

private bool IdleTimeActivated = false;

73

private float IdleTimerStartingValue = 0;
public void CountldleTimeR2()
{

if (!ldleTimeActivated)

{

IdleTimeActivated = true;

var hl = GameObject.Find("H1").GetComponent<Timing>();

IdleTimerStartingValue = h1.Timer.ReturnTime();

}

public void Deactivateldle()
{

if (IdleTimeActivated)

{

var hl = GameObject.Find("H1").GetComponent<Timing>();

TotalldleTime += h1.Timer.ReturnTime() - IdleTimerStartingValue;

IdleTimerStartingValue = 0;

IdleTimeActivated = false;

!
public void HandleldleState()

{

if (IdleTimeActivated)

{

Deactivateldle();

74

TriggerRobotHandCollision

using Assets.GD.IK.Scripts;

using GD;

using System;

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

public class TriggerRobotHandCollision : MonoBehaviour

{
public AudioClip Clip;
// Start is called before the first frame update

void Start()
{

}

// Update is called once per frame
void Update()

{
}

private int HumanRobotCollisions = 0;
private void OnTriggerEnter(Collider other)
{
var btn = (GD.ButtonStartAlert)FindObjectOfType(typeof(GD.ButtonStartAlert));
//THELW NA STAMATANE KAI TA 2 ROBOT STO COLLISION
if ((other.gameObject.name == "HAND" | | other.gameObject.name == "HAND2" | |
other.gameObject.name == "Obstacle") && (!btn.RobotHandCollision))
{

HumanRobotCollisions++;
AudioSource.PlayClipAtPoint(Clip, other.gameObject.transform.position);

//var btn = (GD.ButtonStartAlert)FindObjectOfType(typeof(GD.ButtonStartAlert));
var iK = (GD.InverseKinematics)FindObjectOfType(typeof(GD.InverseKinematics));
var iK2 = (GD.IK2)FindObjectOfType(typeof(GD.IK2));

btn.RobotHandCollision = true;

btn.HaveToBlink = true;

btn.CurrentRobotHandCollisionNumber = HumanRobotCollisions;
btn.TotalCollisions++;

76

btn.R1Destination = iK.Destination;
btn.R2Destination = iK2.Destination;

iK.DontDrop = true;
iK2.DontDrop = true;

iK.Destination = GameObject.Find("HandCollisionReset1").transform;
iK2.Destination = GameObject.Find("HandCollisionReset2").transform;

if (other.gameObject.name == "HAND" | | other.gameObject.name == "Obstacle")
{

var hl = GameObject.Find("H1").GetComponent<Timing>();

var time = hl.Timer.ReturnTime();

Logfile.Write(S"{time.ToString()} sec : Collision {HumanRobotCollisions} occured between
Robot1 and hand.");
}
else if (other.gameObject.name == "HAND2")
{
var hl = GameObject.Find("H1").GetComponent<Timing>();
var time = h1.Timer.ReturnTime();

Logfile. Write($"{time.ToString()} sec : Collision {HumanRobotCollisions} occured between
Robot2 and hand.");
}
}
else
{
return;
1
}
}

Screws

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Screws : MonoBehaviour
{
[Header("Joints")]
public GameObject WaitForThis;
public bool IsDone = false;

}

77

Timing

using Assets.GD.IK.Scripts;

using GD;

using System;

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

public class Timing : MonoBehaviour

{
public bool StartedTask = false;

public bool StartedTimer = false;
public Timer Timer;

public bool Robot1Done = false;
public bool Robot2Done = false;
public bool HumanDone = false;

public bool TaskFinished = false;
// Start is called before the first frame update
void Start()

{
}

// Update is called once per frame
void Update()

{
if (IStartedTimer)
{
if (StartedTask)
{
StartedTimer = true;
Timer.Start();
Logfile.Write(Environment.NewLine + DateTime.Now.ToString() + " - TASK STARTED.");
}
}

if (Robot1Done && Robot2Done && HumanDone && !TaskFinished)
{

var totalCollisions =
GameObject.Find("Button").GetComponent<ButtonStartAlert>().TotalCollisions;

Logfile.Write($"{Timer.ReturnTime()} sec : TASK FINISHED. {totalCollisions} total collisions.");
TaskFinished = true;
1
}

RenderScrewHoles

using GD;

using System.Collections;

using System.Collections.Generic;
using System.Ling;

using UnityEngine;

public class RenderScrewHoles : MonoBehaviour

{

private bool AnticipationEnabled;

public GameObject PreviousLoc;

public GameObject CorrespondingScrew;
public bool LoclsDone;

private bool IsFirstLoc;

public bool IsLastLoc;

public GameObject WaitForDone;
// Start is called before the first frame update
void Start()
{
AnticipationEnabled =
GameObject.Find("OPTIONS").GetComponent<OPTIONS>().RobotAnticipation;

if (!IsLastLoc && PreviousLoc == null)

{

IsFirstLoc = true;

}
}

// Update is called once per frame
void Update()

{
if (/GameObject.Find("H1").GetComponent<Timing>().StartedTask)

{

return;

}

if (lAnticipationEnabled)
{

return;

}

78

if (!IsFirstLoc)
{
if (CorrespondingScrew.GetComponent<Screws>().IsDone)
{
PreviousLoc.GetComponent<RenderScrewHoles>().LoclsDone = true;
}
}

bool canEnable;
if (WaitForDone == null)
{
canEnable = true;
}
else
{
canEnable = WaitForDone.GetComponent<Screws>().IsDone;

}

Renderer renderer = GetComponent<Renderer>();

if (IsFirstLoc && canEnable)
{
var button = GameObject.Find("Button");
if (lbutton.GetComponent<ButtonStartAlert>().RobotHandCollision)
{
if (!IsFlashing)
{
StartCoroutine(ColorFlash());
}
//renderer.material.color = Color.blue;
return;
}

else

{

renderer.material.color = Color.black;

}
}

if (IsLastLoc)
{
if (LoclsDone)
{
renderer.enabled = false;
return;
}
!

if (PreviousLoc != null)

{

if (PreviousLoc.GetComponent<RenderScrewHoles>().LoclsDone && canEnable)

80

var button = GameObject.Find("Button");
if (Ibutton.GetComponent<ButtonStartAlert>().RobotHandCollision)

{
if (!IsFlashing)
{
StartCoroutine(ColorFlash());
}
return;
}
else
{
renderer.material.color = Color.black;
}

}
}
}

private bool IsFlashing = false;
public float timeVisible = 0.3f;
public float timelnvisible = 0.3f;
public bool startState = true;
public bool endState = true;
public IEnumerator ColorFlash()

{

IsFlashing = true;

Renderer renderer = GetComponent<Renderer>();
renderer.enabled = startState;

yield return new WaitForSeconds(0.1f);

while (IGameObject.Find("Button").GetComponent<ButtonStartAlert>().RobotHandCollision &&
ILoclsDone)
{
if (startState)
{
renderer.material.color = Color.blue;
yield return new WaitForSeconds(timelnvisible);
renderer.material.color = Color.black;
yield return new WaitForSeconds(timeVisible);

}

else
{
renderer.material.color = Color.black;
yield return new WaitForSeconds(timeVisible);
renderer.material.color = Color.blue;
yield return new WaitForSeconds(timelnvisible);
}
}

renderer.material.color = Color.black;

IsFlashing = false;

}
}

RenderRAReleases

using GD;

using System.Collections;

using System.Collections.Generic;
using System.Ling;

using UnityEngine;

public class RenderRAReleases : MonoBehaviour

{

private bool AnticipationEnabled;
public GameObject PreviousRARelease;
public bool ReleaselsDone;

private bool IsFirstRARelease;

public bool IsLastRARelease;

public GameObject WaitForDone;

private Color OriginalColor;
// Start is called before the first frame update
void Start()

{

OriginalColor = this.GetComponent<Renderer>().material.color;

AnticipationEnabled =
GameObject.Find("OPTIONS").GetComponent<OPTIONS>().RobotAnticipation;

GetComponent<Renderer>().enabled = false;

if (!IsLastRARelease && PreviousRARelease == null)
{
IsFirstRARelease = true;
!
}

// Update is called once per frame

void Update()

{
if (/GameObject.Find("H1").GetComponent<Timing>().StartedTask)
{

return;

}

81

if (!AnticipationEnabled)
{

return;

}

if (ReleaselsDone)

{
GetComponent<Renderer>().enabled = false;
return;

}

bool canEnable;
if (WaitForDone == null)
{
canEnable = true;
!
else
{
canEnable = WaitForDone.GetComponent<Screws>().IsDone;

}

Renderer renderer = GetComponent<Renderer>();
if (IsFirstRARelease)
{
var button = GameObject.Find("Button");
if (Ibutton.GetComponent<ButtonStartAlert>().RobotHandCollision)
{
if (!IsFlashing)
{
StartCoroutine(ColorFlashRA());
}
return;
}
else
{
renderer.material.color = OriginalColor;
}
}

if (IsLastRARelease)
{

if (ReleaselsDone)

{

renderer.enabled = false;
return;

}
}

if (PreviousRARelease != null)

{

82

83

if (PreviousRARelease.GetComponent<RenderRAReleases>().ReleaselsDone && canEnable)
{

var button = GameObject.Find("Button");

if (lbutton.GetComponent<ButtonStartAlert>().RobotHandCollision)

{
if (!IsFlashing)
{
StartCoroutine(ColorFlashRA());
}
return;
}
else
{
renderer.material.color = OriginalColor;
}

}
}
}

private bool IsFlashing = false;
public float timeVisible = 0.3f;
public float timelnvisible = 0.3f;
public bool startState = true;
//public bool endState = true;
private IEnumerator ColorFlashRA()

{

IsFlashing = true;

Renderer renderer = GetComponent<Renderer>();
renderer.enabled = startState;

yield return new WaitForSeconds(0.1f);

while (IGameObject.Find("Button").GetComponent<ButtonStartAlert>().RobotHandCollision &&
IReleaselsDone)

{
if (startState)

{
renderer.material.color = Color.cyan;
yield return new WaitForSeconds(timelnvisible);
renderer.material.color = OriginalColor;
yield return new WaitForSeconds(timeVisible);

}

else
{
renderer.material.color = OriginalColor;
yield return new WaitForSeconds(timeVisible);
renderer.material.color = Color.cyan;
yield return new WaitForSeconds(timelnvisible);

if (ReleaselsDone)

{

renderer.enabled = false;

}

else

{

renderer.material.color = OriginalColor;

}

IsFlashing = false;

IK2EffectorCollision

using Assets.GD.IK.Scripts;

using System;

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

public class Ik2EffectorCollision : MonoBehaviour

{

// Start is called before the first frame update
void Start()

{

prev = transform.position;
maxspeed = 0;
prevTime = Time.fixedTime;

AllSpeeds = 0;

SpeedsCount = 0;
}

public float AllSpeeds;
public int SpeedsCount;

private Vector3 prev;
private float prevTime;

private Vector3 curr;
private float currTime;

private float speed;

84

public float maxspeed;
private void FixedUpdate()
{

if (transform.position.y > 2)

{

return;

}

curr = transform.position;
currTime = Time.fixedTime;

if (curr == prev)
{

return;
}

speed = (curr - prev).magnitude / (currTime - prevTime);

if (speed > maxspeed)

{
maxspeed = speed;
!
if (speed > 0)
{
AllSpeeds += speed;
SpeedsCount++;
1
prev = curr;
prevTime = currTime;

}

// Update is called once per frame
void Update()

{
}

private int NearCollisions = 0;
private int Collisions = 0;
private Transform EffectorsTarget = null;

private void OnCollisionEnter(Collision collision)

{

if (collision.gameObject.name == "JOINT 4" && EffectorsTarget == null)

{
var hl = GameObject.Find("H1").GetComponent<Timing>();

var time = h1.Timer.ReturnTime();

85

86

NearCollisions++;
Logfile.Write($"{time.ToString()} sec : Near-collision {NearCollisions} between the robots.");

var oppositeRobotHand = GameObject.Find("JOINT 4");
if (this.transform.position.y >= oppositeRobotHand.transform.position.y)
{

Collisions++;

var iK2 = (GD.IK2)FindObjectOfType(typeof(GD.IK2));

EffectorsTarget = iK2.Destination;

iK2.Destination = null;

}
}
}
private void OnCollisionExit(Collision collision)
{
if ((collision.gameObject.name == "JOINT 4") && (Collisions > 0))
{
Collisions--;
}

if (Collisions == 0 && EffectorsTarget != null)

{
var iK2 = (GD.IK2)FindObjectOfType(typeof(GD.IK2));

iK2.Destination = EffectorsTarget;

EffectorsTarget = null;

}
}

EffectorCollision

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class EffectorCollision : MonoBehaviour

{
// Start is called before the first frame update

void Start()
{

prev = transform.position;
maxspeed = 0;
prevTime = Time.fixedTime;

AllSpeeds = 0;
SpeedsCount = 0;
}

public float AllSpeeds;
public int SpeedsCount;

private Vector3 prev;
private float prevTime;

private Vector3 curr;
private float currTime;

private float speed;

public float maxspeed;
private void FixedUpdate()
{

if (transform.position.y > 2)

{

return;

}

curr = transform.position;
currTime = Time.fixedTime;

if (curr == prev)
{

return;
}

speed = (curr - prev).magnitude / (currTime - prevTime);

if (speed > maxspeed)

{
maxspeed = speed;
}
if (speed > 0)
{
AllSpeeds += speed;
SpeedsCount++;
}
prev = curr;

prevTime = currTime;

87

88

}

// Update is called once per frame
void Update()
{

}

private int Collisions = 0;
public Transform EffectorsTarget = null;

private void OnCollisionEnter(Collision collision)

{

if (collision.gameObject.name == "JOINT 24" && EffectorsTarget == null)
{
var oppositeRobotHand = GameObject.Find("JOINT 24");
if (this.transform.position.y > oppositeRobotHand.transform.position.y)
{
Collisions++;
var iK = (GD.InverseKinematics)FindObjectOfType(typeof(GD.InverseKinematics));

EffectorsTarget = iK.Destination;

iK.Destination = null;

}
1
}
private void OnCollisionExit(Collision collision)
{
if ((collision.gameObject.name == "JOINT 24") && (Collisions >0))
{
Collisions--;
}

if (Collisions == 0 && EffectorsTarget != null)

{
var iK = (GD.InverseKinematics)FindObjectOfType(typeof(GD.InverseKinematics));

iK.Destination = EffectorsTarget;
EffectorsTarget = null;
!

}
}

Timer

using System;
using UnityEngine;

[Serializable]
public struct Timer {

public float startTime;
public float duration;

public Func<float> GetTime;

public void Start (bool restart = true)

{

GetTime = () => { return Time.time; };

// Ifitis done
// Or ifitis not done, but it is set to restart anyway...
if (

IsDone()

|
(!1sDone() && restart)
)

startTime = GetTime();

}

public bool IsDone ()
{

return GetTime() >= startTime + duration;

}

// From zero to one, how complete is it
public float GetNormalised ()
{
if (duration == 0)
return 1f;
return Mathf.Clamp01((GetTime() - startTime) / (duration)

}

public float ReturnTime()
{

return GetTime() - startTime;

}
}

ButtonStartAlert

);

89

using Assets.GD.IK.Scripts;

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

namespace GD

{

public class ButtonStartAlert : MonoBehaviour

{

[Header("Ready")]
public bool Continue = false;

public bool RobotHandCollision;
public int CurrentRobotHandCollisionNumber;
public int TotalCollisions;

public AudioClip Clip;

public Transform R1Destination;
public Transform R2Destination;

private float TimingCollisionsStart;

// Start is called before the first frame update
void Start()

{

RobotHandCollision = false;

R1Destination = null;
R2Destination = null;

TotalCollisions = 0;

OriginalColor = this.GetComponent<Renderer>().material.color;

}

// Update is called once per frame
public bool HaveToBlink = false;
private bool StopBlinking = false;
void Update()
{

if (HaveToBlink)

{

HaveToBlink = false;

if (IsRunning)

{
try { StopCoroutine(buttonblink()); }
catch {}

}
var H1 = GameObject.Find("H1").GetComponent<Timing>();

90

91

TimingCollisionsStart = H1.Timer.ReturnTime();
StartCoroutine(buttonblink());
}
}

private void OnCollisionEnter(Collision collision)
{
if (collision.gameObject.name == "ButtonBase"
| | collision.gameObject.tag.Contains("RobotHandCollision"))

{

return;
}
1

private void OnTriggerEnter(Collider collision)

{
if (R1Destination == null && R2Destination == null)
{

return;

}

if ((collision.gameObject.name.Contains("GrabVolumeBig")) | | (Continue))
{
AudioSource.PlayClipAtPoint(Clip, gameObject.transform.position);

var hl = GameObject.Find("H1").GetComponent<Timing>();

var time = h1.Timer.ReturnTime();

Logfile.Write($"{time} sec : Continuing after robot-hand collision
{CurrentRobotHandCollisionNumber}. Delayed {(time - TimingCollisionsStart).ToString()} sec.");

Continue = false;
StopBlinking = true;

if (RobotHandCollision)

{
if (R1Destination != null)

{

var iK = (GD.InverseKinematics)FindObjectOfType(typeof(GD.InverseKinematics));
iK.Destination = R1Destination;

iK.DontDrop = false;
R1Destination = null;

}

if (R2Destination != null)

{
var iK = (GD.IK2)FindObjectOfType(typeof(GD.IK2));
iK.Destination = R2Destination;

iK.DontDrop = false;
R2Destination = null;

RobotHandCollision = false;
}
}
1

private Color OriginalColor;
private int Countdown = 0;
private float timeVisible = 0.3f;
private float timelnvisible = 0.3f;
private bool startState = true;
public bool IsRunning = false;
public IEnumerator buttonblink()

{

IsSRunning = true;

Renderer renderer = GetComponent<Renderer>();
renderer.enabled = startState;

yield return new WaitForSeconds(Countdown);

while (!StopBlinking)
{
if (startState)
{
renderer.material.color = Color.yellow;
yield return new WaitForSeconds(timelnvisible);
renderer.material.color = OriginalColor;
yield return new WaitForSeconds(timeVisible);

}

else
{
renderer.material.color = OriginalColor;
yield return new WaitForSeconds(timeVisible);
renderer.material.color = Color.yellow;
yield return new WaitForSeconds(timelnvisible);
}
}
StopBlinking = false;
renderer.material.color = OriginalColor;

IsRunning = false;

HTargets

92

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using System.Ling;

using Assets.GD.IK.Scripts;

using System;

public class HTargets : MonoBehaviour

{
public List<string> HObjects;

public bool ManuallyEnableCollider;

public bool IsConsideredGrabbed;

// Start is called before the first frame update
void Start()

{

HObjects = new List<string>();

HObjects.Add("H1");
HObjects.Add("H2");
HObjects.Add("H3");
HObjects.Add("H4");

if (GameObject.Find("H5") != null)
{ HObjects.Add("H5");
i}f (GameObject.Find("H6") != null)
{ HObjects.Add("H6");
i}f (GameObject.Find("H7") != null)
{ HObjects.Add("H7");
i}f (GameObject.Find("H8") != null)
{ HObjects.Add("H8");
i}f (GameObject.Find("H9") != null)
{ HObjects.Add("H9");

}

foreach (var item in HObjects)

{

GameObject.Find(item + "target").GetComponent<Renderer>().enabled = false;

94

GameObject.Find(item + "target").GetComponent<BoxCollider>().enabled = false;

}

//StartCoroutine(H1Started());
}

// Update is called once per frame
void Update()

{
var target = GameObject.Find(HObjects.FirstOrDefault());

if (target == null)
{

return;

}

GameObject waitingForDone = target.GetComponent<HumanTargets>().EnablelfThislsDone;

bool canEnable;
if (waitingForDone == null)

{
canEnable = true;
!
else
{
canEnable = waitingForDone.GetComponent<Screws>().IsDone;
}

if ((target.transform.GetComponent<OVRGrabbable>().isGrabbed && canEnable) | |
(IsConsideredGrabbed && canEnable))
{

var targetname = target.name + "target";
var targetplace = GameObject.Find(targetname);

if (targetplace == null) return;

var rend = targetplace.GetComponent<Renderer>();
var coll = targetplace.GetComponent<BoxCollider>();

rend.enabled = true;

coll.enabled = true;

}

if (Itarget.transform.GetComponent<OVRGrabbable>().isGrabbed &&
llsConsideredGrabbed)//&& Input.GetKeyDown(KeyCode.Alpha2))

{
var targetname = target.name + "target";
var targetplace = GameObject.Find(targetname);

if (targetplace == null) return;

var rend = targetplace.GetComponent<Renderer>();
var coll = targetplace.GetComponent<BoxCollider>();

if (rend.enabled)

{

rend.enabled = false;
}
if (coll.enabled)
{

coll.enabled = false;
}

}
}

private void LateUpdate()

{
var target = GameObject.Find(HObjects.FirstOrDefault());

if (target == null)
{
return;

}

if (target.GetComponent<Screws>().IsDone)
{
HObjects.RemoveAt(0);
1
}
}

HumanTargets

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using System.Ling;

using Assets.GD.IK.Scripts;

using System;

using GD;

public class HumanTargets : MonoBehaviour

95

public GameObject EnablelfThislsDone;
public AudioClip Clip;
public bool ForceStart = false;

private Color OriginalColor;

public bool IsFirstOne;

public bool Started = false;

public bool IsLastOne;

// Start is called before the first frame update
void Start()

{

OriginalColor = this.GetComponent<Renderer>().material.color;

this.GetComponent<OVRGrabbable>().allowOffhandGrab = false;
}

private bool Blinked = false;
// Update is called once per frame
void Update()
{
var currentTargetName =
GameObject.Find("HumanTask").GetComponent<HTargets>().HObjects.FirstOrDefault();

if (GameObiject.Find("Button").GetComponent<ButtonStartAlert>().RobotHandCollision)
{
if (Ithis.GetComponent<OVRGrabbable>().isGrabbed)

{

if (this.name == currentTargetName && Blinked)

{
this.GetComponent<OVRGrabbable>().allowOffhandGrab = false;

try { StopCoroutine(blink()); }
catch {}

Blinked = false;
}
}
}

if (this.name == currentTargetName && !Blinked &&
IGameObject.Find("Button").GetComponent<ButtonStartAlert>().IsRunning)

{

Blinked = true;
this.GetComponent<OVRGrabbable>().allowOffhandGrab = true;
StartCoroutine(blink());

}

if (IStarted)

96

{
if ((IsFirstOne && this.GetComponent<OVRGrabbable>().isGrabbed) || ForceStart)
{
Started = true;
try { this.GetComponent<Timing>().StartedTask = true; }
catch {}
}
}

}

//public int Countdown = 0;
public float timeVisible = 0.3f;
public float timelnvisible = 0.3f;
public bool startState = true;
public bool endState = true;
public IEnumerator blink()

{

Renderer renderer = GetComponent<Renderer>();
renderer.enabled = startState;

yield return new WaitForSeconds(0.1f);

while (!this.transform.GetComponent<OVRGrabbable>().isGrabbed &&
('this.GetComponent<Screws>().IsDone) &&
IGameObiject.Find("Button").GetComponent<ButtonStartAlert>().RobotHandCollision)

{
if (startState)

{
renderer.material.color = Color.green;
yield return new WaitForSeconds(timelnvisible);
renderer.material.color = OriginalColor;
yield return new WaitForSeconds(timeVisible);

}

else
{
renderer.material.color = OriginalColor;
yield return new WaitForSeconds(timeVisible);
renderer.material.color = Color.green;
yield return new WaitForSeconds(timelnvisible);
}
}

renderer.material.color = OriginalColor;

}

public IEnumerator blink2()
{

97

}

Renderer renderer = GetComponent<Renderer>();
renderer.enabled = startState;

yield return new WaitForSeconds(0.1f);
int blinks = 0;

while (blinks < 2)
{
if (startState)
{
renderer.material.color = Color.green;
yield return new WaitForSeconds(timelnvisible);
renderer.material.color = OriginalColor;
yield return new WaitForSeconds(timeVisible);

}

else
{
renderer.material.color = OriginalColor;
yield return new WaitForSeconds(timeVisible);
renderer.material.color = Color.green;
yield return new WaitForSeconds(timelnvisible);
}
blinks++;

}

renderer.material.color = OriginalColor;

private void OnCollisionStay(Collision collision)

{

if (Ithis.name.Contains("H") | | collision.gameObject.name == "HumanTask")

{

return;

}

else if ((this.name + "target") == collision.gameObject.name)

{
if (this.transform.GetComponent<OVRGrabbable>().isGrabbed)

{
StopCoroutine(blink());

this.transform.position = collision.gameObject.transform.position;
this.transform.rotation = collision.gameObject.transform.rotation;

collision.gameObject.SetActive(false);

this.GetComponent<Rigidbody>().useGravity = false;
this.GetComponent<Rigidbody>().isKinematic = true;

AudioSource.PlayClipAtPoint(Clip, this.transform.position);

this.GetComponent<Screws>().IsDone = true;
this.GetComponent<OVRGrabbable>().allowOffhandGrab = false;

98

99

if (IsLastOne)

{
var hl = GameObject.Find("H1").GetComponent<Timing>();
var time = h1.Timer.ReturnTime();

hl.HumanDone = true;
Logfile.Write(S"{time.ToString()} sec : Human - task FINISHED.");

LogFile

using System;

using System.Collections.Generic;
using System.lO;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

using UnityEngine;

using UnityEngine.SceneManagement;

namespace Assets.GD.IK.Scripts
{
static class Logfile
{
private static string SceneName;
private static string Name;
private static bool Anticipation;
private static string Task;
public static void Write(string log)
{

SceneName = SceneManager.GetActiveScene().name;

Name = GameObject.Find("OPTIONS").GetComponent<OPTIONS>().Participator;
Anticipation = GameObject.Find("OPTIONS").GetComponent<OPTIONS>().RobotAnticipation;

if (string.IsNullOrWhiteSpace(Name))
{

Name = "EmptyName";

}

if (Anticipation)
{

100

Task = "Anticipation";

}

else

{

Task = "Normal";

}

log += Environment.NewlLine;

string path = Environment.GetFolderPath(Environment.SpecialFolder.DesktopDirectory);
path += $"\\Vr Data\\{DateTime.Today.ToString("MM_dd_yyyy")\\{Name}";
Directory.CreateDirectory(path);

try

{
System.lO.File.AppendAllText(path + $"\\{SceneName} {Task}.txt", log);

}

catch

{}

