

<u>ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ</u> <u>ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ</u> ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

«Διερεύνηση επίδρασης φυσικών παραμέτρων στα γεωμετρικά χαρακτηριστικά φωτιάς εξερχόμενης από άνοιγμα»

Συγγραφή:

ΚΩΝΣΤΑΝΤΙΝΟΣ ΓΛΕΝΗΣ

Επιβλέπουσα καθηγήτρια: Δρ. Φούντη Μαρία

ΑΘΗΝΑ (Φεβρουάριος 2021)

ΠΕΡΙΕΧΟΜΕΝΑ

ПЕРІЛНѰН	5
ABSTRACT	5
КЕФАЛАЮ 1 ⁰	6
1.1 Εισαγωγή	6
1.2 Φωτιά σε διαμέρισμα με άνοιγμα	8
1.3 Φωτιά εξερχόμενη από άνοιγμα	12
1.3.1 Γενικά χαρακτηριστικά	12
1.3.2 Παράμετροι επίδρασης	
КЕФАЛАЮ 2 ⁰	19
2.1 Δοκιμές μικρής κλίμακας φωτιάς εξερχόμενης από άνοιγμα	20
2.1.1 Συσκευές μέτρησης	21
2.1.2 Παράμετροι δοκιμών - Φορτίο πυρκαγιάς και διαστάσεις ανοίγματος	22
2.1.3 Ρυθμός κατανάλωσης καυσίμου	23
2.1.4 Θερμοκρασίες αερίων EVF	24
2.1.5 Θερμοκρασίες στην εξωτερική επιφάνεια του προσόψεως	
2.1.6 Θερμική ροή στην εξωτερική επιφάνεια της πρόσοψης	
2.2 Δοκιμές μεγάλης κλίμακας φωτιάς εξερχόμενης από άνοιγμα	
2.2.1 Διάταξη πειράματος	
2.2.2 Συνθήκες πειράματος	
2.2.3 Συμπεράσματα	
2.3 Βασικά χαρακτηριστικά φωτιάς εξερχόμενης από άνοιγμα	
2.3.1 Δυναμικά φαινόμενα και μόνιμες συνθήκες	
КЕФАЛАЮ 3 ⁰	
3.1 Σχέσεις προσδιορισμού γεωμετρικών χαρακτηριστικών εξερχομένης φλόγας	
3.1.1 Σύγκριση αποτελεσμάτων πειράματος μικρής κλίμακας με Eurocode	
3.1.2 Σχέσεις προσδιορισμού ύψους εξερχόμενης φλόγας	
3.1.3 Σχέσεις προσδιορισμού προέκτασης εξερχόμενης φλόγας	40

КЕФАЛАЮ 4 ⁰	41
4.1. Επεξεργασία της εικόνας	41
4.1.1 Η εικόνα	41
4.2 Χρωματικά Μοντέλα	42
4.2.1 Εισαγωγικά	42
4.2.2 Μοντέλο RGB	43
4.2.3 Μοντέλο CMY	45
4.2.4 Μοντέλο YCbCr ή Y´CbCr	45
4.2.5 Μοντέλο HSI	47
4.3 Μεθοδολογίες οπτικής ανίχνευσης φλόγας	
4.3.1 Ανίχνευση πυρκαγιάς με χρήση βιντεοσκόπησης σε ορατό	ό φασματικό εύρος 50
4.4 Προσδιορισμός γεωμετρικών χαρακτηριστικών εξερχόμενης α	ρλόγας56
4.4.1 Πιθανότητα παρουσίας φλόγας (flame intermittency)	
4.5 Ανάπτυξη λογισμικού	58
4.5.1 Λογισμικό MATLAB	Error! Bookmark not defined.
4.5.2 Ο αλγόριθμος	Error! Bookmark not defined.
4.5.3 Επεξεργασία εικόνας	Error! Bookmark not defined.
КЕФАЛАЮ 5 ⁰	
5.1 Δοκιμές ΕΜΠ σε φωτιά εξερχόμενη από άνοιγμα	
5.1.1 Δοκιμές φωτιάς μικρής κλίμακας (small scale)	
5.1.2 Δοκιμές φωτιάς μεγάλης κλίμακας (Large scale)	
5.2 Προσδιορισμός γεωμετρικών χαρακτηριστικών φλόγας	
5.2.1 Επίδραση θερμικής ισχύος φωτιάς	
5.2.2 Επίδραση γεωμετρίας ανοίγματος	
5.2.3 Επίδραση θέσης καυστήρα	
5.2.4 Επίδραση χρόνου (δυναμικά φαινόμενα)	
КЕФАЛАЮ 6 ⁰	
6.1 Εισαγωγή	
6.2 Παρουσίαση, σύγκριση αποτελεσμάτων γεωμετρικών χαρακτ για πειράματα μικρής κλίμακας	ηριστικών εξερχομένης φλόγας 106
6.2.1 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματο φλόγας.	α Eurocode για το μέγιστο ύψος 106
6.2.2 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα εξερχόμενη φλόγας	α Eurocode για την προβολή της 108

6.3 Παρουσίαση, σύγκρισή αποτελεσμάτων γεωμετρικών χαρακτηριστικών εξερχομένης φλόγας για πειράματα μεγάλης κλίμακας110
6.3.1 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode σχετικά με το μέγιστο ύψος φλόγα για το 1º Πείραμα Μεγάλης Κλιμακας
6.3.2 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode σχετικά με την οριζόντια προβολή της φλόγας για το 1º Πείραμα Μεγάλης Κλίμακας
6.3.3 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode σχετικά με το μέγιστο ύψος της φλόγας για το 2º Πείραμα Μεγάλης Κλίμακας
6.3.4 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode σχετικά με την οριζόντια προβολή της φλόγας για το 2º Πείραμα Μεγάλης Κλίμακας
КЕФАЛАЮ 7°
7.1 Γενικά Συμπεράσματα121
ΒΙΒΛΙΟΓΡΑΦΙΑ125
ПАРАРТНМА А130
ПАРАРТНМА В131
Β.1 Γεωμετρική θέση θερμοστοιχείων131
B.2 Υπολογισμός πυκνότητας για γεωμετρία πόρτας για small scale πειράματα
B.3 Υπολογισμός πυκνότητας για γεωμετρία πόρτας παραθύρου για small scale πειράματα 139
B.4 ΔΙΑΔΙΚΑΣΙΑ ΣΥΓΚΡΙΣΗΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ME EUROCODE Error! Bookmark not defined.
B.4.1 Ύψος εξερχόμενης φλόγαςΒΕrror! Bookmark not defined.
Β.4.2 Οριζόντια προβολή φλόγαςΕrror! Bookmark not defined.
ΠΑΡΑΡΤΗΜΑ Γ Error! Bookmark not defined.
Γ.1 Υπολογισμός πυκνότητας για large scale πειράματα146
Γ.2 Υπολογισμός Ισχύος για τα Πειράματα Μεγάλης Κλίμακας (Large Scale Experiments)150
ПАРАРТНМА Δ
Δ.1 Πειράματα Small Scale151
Δ.2 Πειράματα Large Scale156

ΠΕΡΙΛΗΨΗ

Σκοπός της παρούσας διπλωματικής εργασίας είναι η διερεύνηση της επίδρασης των φυσικών παραμέτρων στα γεωμετρικά χαρακτηριστικά φλόγας εξερχόμενης από άνοιγμα. Αρχικά, στο πρώτο κεφάλαιο γίνεται εισαγωγή στην έννοια της πυρκαγιάς σε διαμέρισμα με άνοιγμα, και επεξηγείται η απαιτούμενη ορολογία και θεωρία πίσω από αυτό το φαινόμενο. Στη συνέχεια, στο δεύτερο κεφάλαιο γίνεται βιβλιογραφική ανασκόπηση και περιγραφή πειραμάτων τα οποία έχουν εκτελεστεί σε μικρή αλλά και μεγάλη κλίμακα και αναλύονται τα βασικά χαρακτηριστικά που περιγράφουν την γεωμετρία της φλόγας εξερχόμενης από άνοιγμα. Ακολούθως, στο επόμενο κεφάλαιο παρουσιάζονται οι εξισώσεις μέσω των οποίων υπολογίζονται οι θεωρητικές τιμές των ανωτέρω χαρακτηριστικών των φλογών, (ύψος εξερχόμενης φλόγας οριζόντια προβολή και πλάτος) σύμφωνα με τον Eurocode EN 1991-1-2, 2002. Στο τέταρτο κεφάλαιο γίνεται αναφορά της μεθοδολογίες οπτικής ανίχνευσης φλόγας που υπάρχουν καθώς της και στον τρόπο με τον οποίο μπορεί να χρησιμοποιηθεί το υπολογιστικό πρόγραμμα MATLAB για την ανίχνευση φλόγας για την εξυπηρέτηση των αναγκών της παρούσας διπλωματικής εργασίας. Τέλος γίνεται αναλυτική παρουσίαση των πειραμάτων που αναλύθηκαν και των αποτελεσμάτων αυτών καθώς και σύγκριση με τα θεωρητικά αποτελέσματα που προκύπτουν για τα δεδομένα των συγκεκριμένων πειραμάτων.

ABSTRACT

The purpose of this dissertation thesis is to investigate the effect of physical parameters on the geometric characteristics of externally venting flames. Initially, the first chapter introduces the concept of fire in an apartment with an opening and provides the required terminology and theory behind this phenomenon. Then, in the second chapter, a literature review and description of experiments that have been performed on a small and large scale, is being presented and the basic characteristics that describe the geometry of externally venting flames are analyzed. Following, in the next chapter the equations according to Eurocode EN 1991-1-2, 2002 are presented, which calculate the theoretical values of the geometrical characteristics of externally venting flames (height of outgoing flame horizontal projection and width). In the fourth chapter reference is being made to the current methodologies of optical detection of flame, and the way in which the MATLAB software can be used to serve the needs of this dissertation is explained. Finally, a detailed presentation of the experiments that were analyzed and their results, as well as a comparison with the theoretical results that emerge for the data of these specific experiments are being presented.

ΚΕΦΑΛΑΙΟ 1⁰

1.1 Εισαγωγή

Η πρόβλεψη της εξέλιξης μιας πυρκαγιάς είναι αναπόφευκτα το πρώτο βήμα οποιασδήποτε μορφής σχεδιασμού που βασίζεται στην αποδοτικότητα (performance-based design). Ο καθορισμός της χρονικής εξέλιξης όλων των σχετικών μεταβλητών (θερμοκρασία, ταχύτητα, είδη κ.λπ.) είναι η αρχική πρόκληση που αντιμετωπίζει ένας μηχανικός όταν επιχειρεί να υπολογίσει όλα τα αντίμετρα που πρέπει να δημιουργηθούν για να μετριαστούν οι επιπτώσεις μιας πυρκαγιάς. Δεκαετίες έρευνας επικεντρώθηκαν στις διάφορες διαδικασίες που συνδέονται με τον χαρακτηρισμό του περιβάλλοντος μιας πυρκαγιάς και έχουν αναπτυχθεί πολυάριθμες μέθοδοι που επιτρέπουν στους μηχανικούς να εκτελέσουν τους ανωτέρω υπολογισμούς. Αυτό ισχύει ιδιαίτερα σε ότι αφορά την εξέλιξη της πυρκαγιάς μέσα σε κάποιο κτίριο.

Η εξέλιξη μιας πυρκαγιάς μέσα σε ένα κτίριο χαρακτηρίζεται από τη σύζευξη μεταξύ του κτιρίου και της διαδικασίας καύσης. Το περιβάλλον που προκύπτει από την αλληλεπίδραση του κτιρίου και της καύσης μπορεί στη συνέχεια να χρησιμοποιηθεί για να διαπιστωθεί η επιρροή του στην εκκένωση των ανθρώπων, τα αντίμετρα (ανίχνευση και καταστολή) ή στη δομική συμπεριφορά του κτηρίου. Κάθε στοιχείο μιας στρατηγικής πυρασφάλειας είναι δραστικά διαφορετικό από τα άλλα, ως εκ τούτου η αξιολόγηση της απόδοσης κάθε επιμέρους στοιχείου πρέπει να γίνει με τρόπο συμβατό με τις συγκεκριμένες διεργασίες. Μια περιεκτική αξιολόγηση της εξέλιξης της πυρκαγιάς και των αλληλεπιδράσεών της με τους ανθρώπους και τα κτίρια έχει αναγνωριστεί από καιρό ως ένα δύσκολο πρόβλημα. Ενώ τα τελευταία χρόνια έχουν αναπτυχθεί πολύπλοκα υπολογιστικά εργαλεία για όλες τις πτυχές μιας πυρκαγιάς, είναι ακόμα απαραίτητο, για το σχεδιασμό, να αναπτυχθούν απλοποιημένες μέθοδοι που να επιτρέπουν μια αποτελεσματική αλλά και διαχειρίσιμη διαδικασία σχεδιασμού.

Ένας κοινός μηχανισμός για την απλοποίηση της διαδικασίας σχεδιασμού είναι ο διαχωρισμός των διαφόρων συνιστωσών του προβλήματος συνδέοντας συγκεκριμένες διεργασίες με συγκεκριμένους χαρακτηριστικούς χρόνους μέσα σε ένα χρονοδιάγραμμα πυρκαγιάς. Για

παράδειγμα, τα χαρακτηριστικά χρονοδιαγράμματα που σχετίζονται με την έξοδο και την ενεργοποίηση των αντιμέτρων είναι σχετικά μικρά, επομένως η αξιολόγηση της απόδοσής τους θα δώσει έμφαση στην κατανόηση των παλαιότερων φάσεων μιας φωτιάς, δηλ. στον χρόνο ανάπτυξης της φωτιάς και στον χρόνο για την δημιουργία του φαινομένου flashover. Αντίθετα, κατά την αντιμετώπιση της δομικής συμπεριφοράς, η ανάπτυξη και η φλόγα εμφανίζονται μέσα σε χρονικές κλίμακες πολύ μικρότερες από εκείνες που απαιτούνται για να επηρεάσουν σημαντικά τη μηχανική αντοχή των δομικών συστημάτων, με αποτέλεσμα η ανάλυση να επικεντρώνεται στις πλήρως ανεπτυγμένες πυρκαγιές.

Η κατανόηση της θερμικής αλληλεπίδρασης μεταξύ πυρκαγιάς και κατασκευής έχει εξερευνηθεί από τα τέλη του 19ου αιώνα. Οι Bisby et al [1] παρέχουν μια συνολική ανασκόπηση της σχετικής βιβλιογραφίας. Το κύριο επίτευγμα των προηγούμενων σταδίων της έρευνας ήταν ο ορισμός της τυπικής καμπύλης θερμοκρασίας / χρόνου ως γενική περιγραφή του περιβάλλοντος της φωτιάς [2]. Αυτός ο ορισμός επέτρεψε στους μηχανικούς δόμησης να καθιερώσουν μεθόδους για την προστασία των δομικών συστημάτων από πυρκαγιά.

Η αναγνώριση ότι η περαιτέρω κατανόηση του περιβάλλοντος πυρκαγιάς είναι απαραίτητη για την ποσοτικοποίηση της δομικής συμπεριφοράς, προκύπτει από 30 χρόνια έρευνας που καλύπτουν την περίοδο 1960-1990. Σε αυτή την περίοδο, μια σειρά από μελέτες που συντάχθηκαν από τους πατέρες της επιστήμης της πυρασφάλειας, παρείχαν τα θεμέλια για τις τρέχουσες μεθόδους σχεδιασμού. Ο Kawagoe αμφισβητεί τη φυσική βάση της σταθερής θερμοκρασίας έναντι της καμπύλης του χρόνου και είναι ο πρώτος που εισήγαγε διαισθητικά την έννοια της φωτιάς στο διαμέρισμα [3]. Μέσω πειραματικών παρατηρήσεων ορίζει τη σχέση μεταξύ εξαερισμού, θερμοκρασιών αερίου φάσης και ρυθμού καύσης. Ο Thomas και οι συνεργάτες του [4, 5] επεκτείνουν και τυποποιούν την πειραματική βάση δεδομένων σε μια σειρά αλγεβρικών εκφράσεων που χαρακτηρίζουν τη μέγιστη θερμοκρασία μέσα σε ένα διαμέρισμα λαμβάνοντας υπόψη το φορτίο καυσίμου και την πιθανή διάρκεια της πλήρως αναπτυγμένης πυρκαγιάς.

Το 1998, η ομάδα εργασίας της SFPE για τις εκθέσεις πυρκαγιάς σε δομικά στοιχεία υπό την προεδρία του καθηγητή J.G. Η Quintiere άρχισε να αναπτύσσει τον Οδηγό Μηχανικής της SFPE για την έκθεση σε πυρκαγιά των δομικών στοιχείων, ο οποίος δημοσιεύθηκε τελικά το 2004 [6]. Αυτός ο οδηγός παρέχει μια περιεκτική ανασκόπηση των διαφόρων μεθόδων που χρησιμοποιούνται για τον υπολογισμό του τρόπου με τον οποίο οι πυρκαγιές επηρεάζουν θερμικά τις κατασκευές. Αυτός ο οδηγός ακολουθήθηκε το 2011 με το πρότυπο SFPE Engineering για τον υπολογισμό των εκθέσεων πυρκαγιάς σε κατασκευές [7] που εκπονήθηκε από την Επιτροπή Προτύπων για τον Υπολογισμό των Εκθέσεων Φωτιά σε Κατασκευές της SFPE, υπό την προεδρία του J. K. Richardson. Το Τεχνικό Πρότυπο SFPE βασίζεται στις πληροφορίες του SFPE Engineering Guide για να παρέχει μια μέθοδο που επιτρέπει στον μηχανικό να καθορίσει την εξέλιξη των θερμικών συνόρων για μια κατασκευή που υπόκειται σε πυρκαγιά. Λαμβάνοντας υπόψη ένα καλά καθορισμένο σύνολο οριακών συνθηκών, η εξέλιξη της μεταβατικής κατανομής θερμοκρασίας μιας κατασκευής μπορεί να καθοριστεί μέσω ανάλυσης θερμικής αγωγιμότητας [4, 5, 7-12]. Αυτές οι κατανομές θερμοκρασίας χρησιμοποιούνται στη συνέχεια ως εισροές για μια δομική ανάλυση που καθορίζει την απόδοση ενός δομικού συστήματος στη φωτιά [12,13].

Παράλληλα με την ανάπτυξη μεθόδων σχεδιασμού, έχουν αναφερθεί σημαντικές εξελίξεις στην ανάπτυξη μοντέλων υπολογιστικής ρευστοδυναμικής (CFD) για εφαρμογές πυρκαγιάς. Αυτά τα μοντέλα επιτρέπουν ένα σημαντικό επίπεδο βελτίωσης που επιτρέπει μια πολύ πιο λεπτομερή επεξεργασία των θερμικών οριακών συνθηκών για την κατασκευή.

1.2 Φωτιά σε διαμέρισμα με άνοιγμα

Ο όρος "φωτιά διαμερίσματος" χρησιμοποιείται συνήθως για να περιγράψει μια πυρκαγιά σε ένα δωμάτιο ή "διαμέρισμα" μέσα σε ένα κτίριο. Αν αφεθεί να καεί ολοκληρωτικά το διαμέρισμα, τότε υποθέτοντας επαρκή καύσιμο και εξαερισμό, μια τέτοια πυρκαγιά θα προχωρήσει σε τρία κύρια στάδια:

- Η φάση ανάπτυξης, ή το pre-flashover στάδιο, όταν η φωτιά εντοπίζεται κοντά στην προέλευσή της και η μέση θερμοκρασία στο διαμέρισμα παραμένει σχετικά χαμηλή.
- Η πλήρως ανεπτυγμένη πυρκαγιά (ή post-flashover φάση) κατά τη διάρκεια της οποίας εμπλέκονται όλα τα εύφλεκτα στοιχεία και οι φλόγες φαίνεται να γεμίζουν ολόκληρο τον όγκο και να βγαίνουν από τα ανοίγματα εξαερισμού του κλειστού χώρου.

Η περίοδος σβέσης, όταν η φωτιά αρχίζει να μειώνεται καθώς καταναλώνεται το καύσιμο. Αυτή η φάση αναγνωρίζεται επισήμως ως η περίοδος μετά τη μείωση της μέσης θερμοκρασίας στο 80% του μέγιστου που επιτεύχθηκε κατά το στάδιο 2.

Αυτά τα στάδια υποδεικνύονται στην Εικ. 1.1 στην οποία το μέγεθος της φωτιάς (που ορίζεται από το ρυθμό έκλυσης θερμότητας (σε kW)) παρουσιάζεται ως συνάρτηση του χρόνου. Η μέση θερμοκρασία στο κάτω μέρος του διαμερίσματος θα παραμείνει χαμηλή κατά τη διάρκεια της περιόδου ανάπτυξης, αν και ένα στρώμα θερμού καπνού θα συσσωρευτεί κάτω από την οροφή και θα αυξάνεται σε βάθος και σε θερμοκρασία καθώς η φωτιά θα μεγαλώνει σε μέγεθος. Η ανάπτυξη αυτού του στρώματος είναι ο βασικός παράγοντας στον τρόπο με τον οποίο μια φωτιά προχωράει στο πλήρως ανεπτυγμένο στάδιο. Ωστόσο, είναι πιθανό μια πυρκαγιά να σβήσει χωρίς κάποια παρέμβαση, αν το αντικείμενο που έχει αναφλεγεί στερήσει τελείως την πυρκαγιά από τον αέρα (οξυγόνο). Αυτό μπορεί να συμβεί σε χώρο όπου υπάρχει ανεπαρκής αερισμός, όπως συμβαίνει εάν οι πόρτες και τα παράθυρα είναι κλειστά και εφαρμόζουν αεροστεγώς.

Αυτό το σενάριο είναι ενδεχομένως επικίνδυνο για πυροσβέστες και άλλους. Αυτό επειδή υπό συνθήκες έλλειψης οξυγόνου, το καύσιμο μπορεί να συνεχίσει να καίει, αργά και ανεπαρκώς, δημιουργώντας εύφλεκτους ατμούς που θα συσσωρευτούν μέσα στο διαμέρισμα. Εάν ανοίξει μια πόρτα (ή σπάσει ένα παράθυρο), θα υπάρχει μια εισροή καθαρού αέρα και εκροή θερμών φλογών.

Ακολούθως η πυρκαγιά θα αυξηθεί σε ένταση και οι εύφλεκτοι ατμοί που έχουν παγιδευτεί στο διαμέρισμα θα αναφλεγούν καθώς αναμειγνύονται με τον αέρα, εξαλείφοντας τα καυσαέρια μέσω του ανοίγματος παράγοντας μια πύρινη δέσμη ικανή να προκαλέσει σοβαρό τραυματισμό σε οποιονδήποτε βρεθεί στο πέρασμα της. Αυτό το φαινόμενο είναι γνωστό ως "backdraft".

Εάν το διαμέρισμα διαθέτει "επαρκή" αερισμό και επαρκή και καλά κατανεμημένη παροχή καυσίμου υλικού, μια πυρκαγιά από την αρχική στιγμή που αναφλέγεται είναι ικανή να αναπτυχθεί στο πλήρως ανεπτυγμένο στάδιο. Η μετάβαση από την περίοδο ανάπτυξης στην πλήρως ανεπτυγμένη πυρκαγιά αναφέρεται ως flashover. Οποιοσδήποτε δεν έχει διαφύγει από το διαμέρισμα πριν από την ανάφλεξη είναι απίθανο να επιβιώσει, καθώς οι υψηλές θερμοκρασίες και οι έντονες ροές ακτινοβολίας θερμότητας θα αναπτυχθούν πολύ γρήγορα και θα υπάρχουν

υψηλά επίπεδα τοξικών και επιβλαβών αερίων. Τα άτομα που βρίσκονται άλλα μέρη του ίδιου κτιρίου είναι πιθανό να είναι απειλούνται αμέσως μετά το ξέσπασμα στο χώρο έναυσης, καθώς ο ρυθμός καύσης της πλήρως ανεπτυγμένης φωτιάς επαρκεί για να δημιουργήσει θανατηφόρα επίπεδα θερμότητας, καπνού και τοξικών αερίων σε σημεία μακριά από την πυρκαγιά, εάν υπάρχει μια διαδρομή με την οποία μπορούν να εισέλθουν σε διαδρόμους, διαδρόμους διαφυγής και κλιμακοστάσια.

Είναι σαφές ότι είναι σημαντικό να γίνει εκκένωση του κτιρίου από τους κατοίκους του, το συντομότερο δυνατό μετά την ανάφλεξη. Η έγκαιρη ανίχνευση θα αυξήσει τις πιθανότητες επιτυχούς διαφυγής, αλλά αυτό μπορεί να τεθεί σε κίνδυνο, εάν η περίοδος ανάπτυξης της πυρκαγιάς είναι μικρή. Ως εκ τούτου, είναι σημαντικό να είναι έχει γίνει πρόβλεψη για τέτοιου είδους σενάρια (που θα μπορούσαν να οδηγήσουν σε ταχεία ανάπτυξη πυρκαγιάς) και να σχεδιάζονται χώροι και να επιλέγεται το περιεχόμενό τους έτσι ώστε ο χρόνος που θα οδηγήσει στο flashover να μεγιστοποιηθεί σε περίπτωση πυρκαγιάς.

Η ακολουθία που οδηγεί από την ανάφλεξη στο flashover μπορεί να περιγραφεί με την έννοια μιας πυρκαγιάς που σταδιακά αυξάνει την ισχύ της (ρυθμός έκλυσης θερμότητας). Το στρώμα από τα καυτά αέρια που συσσωρεύονται κάτω από την οροφή προκαλεί την αύξηση της θερμοκρασίας των επιφανειών που βρίσκονται άνωθεν του διαμερίσματος. Αυτές οι επιφάνειες και το στρώμα καπνού ακτινοβολούν προς τα κάτω, με αποτέλεσμα την περαιτέρω αύξηση της θερμοκρασίας των καύσιμων υλικών που βρίσκονται στο χαμηλό επίπεδο του διαμερίσματος με ρυθμό ο οποίος αυξάνεται αναλόγως με τον ρυθμό που η φωτιά μεγαλώνει σε μέγεθος. Αυτό θα οδηγήσει σε αυξημένους ρυθμούς καύσης και σε υψηλούς ρυθμούς εξάπλωσης της φλόγας σε καύσιμες επιφάνειες. Το Flashover είναι η μετάβαση από μια σχετικά τοπική καύση στο στάδιο όπου η φλόγα εξαπλώνεται γρήγορα και καταλαμβάνει όλα τα εύφλεκτα υλικά στο διαμέρισμα.

Αυτό το φαινόμενο φαίνεται σαφώς στην Εικόνα 1.2 η οποία συγκρίνει τους ρυθμούς καύσης μάζας δύο πλακών πολύ μεθακρυλικού μεθυλίου, εκ των οποίων η πρώτη καίγεται σε μια μη περιορισμένη ατμόσφαιρα και η άλλη κάτω από ένα περίβλημα που προορίζεται για την προσομοίωση του περιορισμού που επιφέρει η οροφή ενός διαμερίσματος. Η παρουσία του περιβλήματος προκαλεί εκτροπή του πλουμίου της πυρκαγιάς και δημιουργεί τελικά μια δεξαμενή καυτού αερίου καύσης, η οποία ενεργεί ως μια έντονη πηγή (Qe'') ακτινοβολούμενης θερμότητας

για την οριζόντια πλάκα καυσίμου. Δεν είναι μόνο ο τελικός ρυθμός καύσης αρκετές φορές μεγαλύτερος από εκείνον για την πλάκα ελεύθερης καύσης, αλλά και ο ρυθμός ανάπτυξης είναι επίσης σημαντικά ενισχυμένος.

Αυτή η συμπεριφορά θεωρείται ότι είναι χαρακτηριστική των διαδικασιών που συμβαίνουν στην ανάπτυξη μιας πραγματικής πυρκαγιάς στο διαμέρισμα. Λόγω της σημασίας του "flashover" στο διαμέρισμα έναρξης της πυρκαγιάς για την ασφάλεια των κατοίκων του κτιρίου, υπήρξε μεγάλο ενδιαφέρον για την κατανόηση της διαδικασίας σε ένα θεμελιώδες επίπεδο. Το βασικό ερώτημα είναι εάν μια πυρκαγιά σε ένα διαμέρισμα θα προχωρήσει ή όχι στο flashover. Η επέμβαση από εκπαιδευμένους πυροσβέστες μπορεί να αποτρέψει το φλόγα, αλλά αυτό είναι επικίνδυνο εάν η φωτιά είναι μεγάλη. Τα τελευταία χρόνια, η κατανόηση του ανωτέρω μηχανισμού συνδυάστηκε με προηγμένη τεχνολογία (χρήση μηχανημάτων ψεκασμού νερού και ομίχλης) έτσι ώστε να δημιουργηθεί μια τεχνική για την αποτροπή του flashover.

Εικ. 1.1 Η πορεία μιας φωτιάς σε διαμέρισμα, εκφραζόμενη ως μέση θερμοκρασία αερίου σε συνάρτηση του χρόνου. Η διακεκομμένη γραμμή μπορεί να αντιπροσωπεύει την εζάντληση του καυσίμου πριν ζεκινήσει η ανάφλεζη ή την εζάντληση του οζυγόνου λόγω του πολύ χαμηλού εζαερισμού. [70]

Εικ. 1.2 Η επίδραση του περιβλήματος στην ταχύτητα καύσης μίας πλάκας από πολυ μεθακρυλικό μεθύλιο (0,76 × 0,76 m). [71]

Η πρώιμη εργασία του Waterman [76] εστίασε την προσοχή στο γεγονός ότι το flashover δεν θα συμβεί εκτός αν η φωτιά ξεπεράσει ένα ορισμένο κρίσιμο μέγεθος. Διάφοροι "δείκτες" έχουν χρησιμοποιηθεί σε πειραματικές πυρκαγιές για να καθορίσουν την εμφάνιση του flashover, ή το ίδιο το flashover. Ο Waterman κατέληξε στο συμπέρασμα σχετικά με τις πυρκαγιές μικρών διαμερισμάτων, ότι είναι ένα ικανοποιητικό κριτήριο για την εμφάνιση του flashover να υπάρχει ακτινοβολούμενη ροή θερμότητας στο επίπεδο του δαπέδου της τάξης των 20 kW/m². Αυτή η τιμή είναι ουσιαστικά μεγαλύτερη από τα ελάχιστα επίπεδα που απαιτούνται για την ανάφλεξη των περισσότερων στερεών καυσίμων ενώ είναι κάπως μικρότερη από τις τιμές που σχετίζονται με την αυθόρμητη ανάφλεξη.

1.3 Φωτιά εξερχόμενη από άνοιγμα

1.3.1 Γενικά χαρακτηριστικά

Σε μια πλήρως ανεπτυγμένη πυρκαγιά σε συνθήκες χαμηλού αερισμού, οι φλόγες μπορεί να διέλθουν από εξωτερικά ανοίγματα (π.χ. παράθυρα), σε περίπτωση αποτυχίας των υαλοπινάκων.

Αυτού του είδους οι φλόγες ονομάζονται Externally Venting Flames (EVF) και ενέχουν σημαντικό κίνδυνο εξάπλωσης της πυρκαγιάς σε παρακείμενα δάπεδα ή κτίρια. Αυτός ο κίνδυνος αυξάνεται διαρκώς λόγω της αυξανόμενης χρήσης καυσίμων μονωτικών υλικών στις προσόψεις των κτιρίων [14] (White and Delichatsios, 2014). Ωστόσο, στην πλειονότητα των σημερινών κωδικών πυρασφάλειας δεν υπάρχουν ακριβείς μεθοδολογίες για την αξιολόγηση των κινδύνων που σχετίζονται με τις EVF, ειδικά σε μια συνεχώς μεταβαλλόμενη αγορά κατασκευών, όπου οι νέες απαιτήσεις σχεδίασης των προσόψεων και τα κατασκευαστικά υλικά αποτελούν πρόκληση για τις καθιερωμένες λύσεις πυρασφάλειας.

Προκειμένου να γίνει αποτελεσματική πρόληψη των EVF και άμβλυνση της εξάπλωσης της εξωτερικής πυρκαγιάς, είναι απαραίτητο να ερευνηθούν τα θεμελιώδη φυσικά φαινόμενα που σχετίζονται με τις EVF. Η έρευνα για τις EVF, η οποία εστιάστηκε στην αναγνώριση των κύριων φυσικών παραμέτρων που διέπουν την πυρκαγιά σε διαμέρισμα και το επακόλουθο αυτής που είναι οι EVF, ξεκίνησε στις αρχές της δεκαετίας του 1960 από τον Yokoi (1960) [15] και επεκτάθηκε περαιτέρω από άλλους (Asimakopoulou et al., 2016a [16], Oleszkiewicz 1989 [17], Tang et al., 2012 [18]).

Ορισμένα ευρήματα της έρευνας γύρω από τις EVF και τις επιπτώσεις τους στις προσόψεις ενσωματώθηκαν σταδιακά σε κώδικες πυρασφάλειας και κατευθυντήριες γραμμές σχεδιασμού του Eurocode (EN 1991-1-2, 2002), που εφαρμόζονται σήμερα στην Ε.Ε., παρέχουν γενικές αρχές και κανόνες σχετικά με τις θερμικές και μηχανικές δράσεις στις κατασκευές που εκτίθενται στη φωτιά. Οι πυροσβεστικές ενέργειες για τον σχεδιασμό φέρουσας δομής προδιαγράφονται στο EN 1991-1-2 (2002). Ωστόσο, η διάδοση της πυρκαγιάς λόγω των καύσιμων υλικών των προσόψεων δεν αντιμετωπίζεται καθόλου στις κατευθυντήριες γραμμές του Eurocode και υπάρχει μόνο τυχαία αναφορά στους κινδύνους που σχετίζονται με αυτό το φαινόμενο.

1.3.2 Παράμετροι επίδρασης

Η ανάγκη για μελέτη του ανωτέρω φαινομένου των EVF έγκειται στον αυξανόμενο αριθμό πρόσφατων αναφορών (Klopovic και Turan, 2001a[19], 2001b [20] · Empis, 2010 [21]· Himoto

et al., 2009 [22]· Ασημακοπούλου κ.ά., 2016b) [16] που υποδηλώνουν ότι οι υπάρχουσες μεθοδολογίες μηχανικού σχεδιασμού δεν μπορούν να περιγράψουν με αρκετή ακρίβεια τα χαρακτηριστικά των EVF κάτω από ρεαλιστικές συνθήκες φωτιάς.

Μέσω πειραμάτων τα οποία μπορούν να πραγματοποιηθούν, το λαμβανόμενο σύνολο των πειραματικών δεδομένων σχετικά με τα θερμικά και γεωμετρικά χαρακτηριστικά των EVF μπορεί να χρησιμοποιηθεί περαιτέρω για την επικύρωση των εργαλείων Computational Fluid Dynamics (CFD) ή για την αξιολόγηση της ακρίβειας άλλων σχέσεων σχεδιασμού έναντι πυρκαγιάς. Υπάρχουν αρκετές αλγεβρικές σχέσεις (correlations) σχεδίασης έναντι πυρκαγιάς (Yokoi, 1960 [15]· Asimakopoulou et al., 2016a [16], 2016b [31] · Oleszkiewicz, 1989 [17] · Klopovic και Turan, 2001a, 2001b[19,20]), με στόχο την περιγραφή των κύριων χαρακτηριστικών των EVF που μπορεί να επηρεάσουν τον σχεδιασμό πυρασφάλειας σε ένα κτιρίου, όπως το ύψος, η προβολή, η θερμοκρασία και η ροή θερμότητας των EVF στην πρόσοψη. Αυτές οι ημι-εμπειρικές σχέσεις έχουν προκύψει χρησιμοποιώντας απλοποιημένες θεωρητικές αναλύσεις σε συνδυασμό με πειραματικά δεδομένα (Yokoi, 1960 [15]· Law, 1978 [23]).

Η εκτίμηση των διαστάσεων των EVF και των κυριότερων θερμικών χαρακτηριστικών τους βασίζεται συνήθως στη χρήση των νόμων διατήρησης της μάζας, της ορμής και της ενέργειας για ανωστικές ροές (Yokoi, 1960 [15], Himoto et al., 2009 [22], Beyler, 1986 [24]). Κατά τη διάρκεια των αρχικών σταδίων ανάπτυξης της πυρκαγιάς, η καύση περιορίζεται στο εσωτερικό του θαλάμου. Ο εισερχόμενος αέρας εισέρχεται στο διαμέρισμα μέσω του κάτω τμήματος του ανοίγματος, ενώ τα θερμά αέρια προϊόντα καύσης εξέρχονται από το άνω μέρος του ανοίγματος. Ανάλογα με το μέγεθος του διαμερίσματος και το φορτίο πυρκαγιάς, είναι πιθανό να υπάρχει μια πυρκαγιά που δεν μπορεί να περιοριστεί μέσα στο διαμέρισμα. Σε αυτήν την περίπτωση, οι φλόγες εκτοξεύονται διαμέσου του ανοίγματος (Klopovic and Turan, 2001a, 2001b [19,20], Asimakopoulou et al., 2016b[31]).

Τα γεωμετρικά χαρακτηριστικά των EVF έχει βρεθεί ότι επηρεάζονται (EN 1991-1-2, 2002 · Beyler, 1986 [24]) από τον ρυθμό έκλυσης της φωτιάς, το μέσο ύψος του ανοίγματος, τη συνολική επιφάνεια του ανοίγματος και την εξωτερική ταχύτητα του ανέμου. Παρόλο που τα γεωμετρικά όρια των EVF αλλάζουν δυναμικά με το χρόνο, οι σχέσεις που διέπουν την πυρομηχανική θεωρούν συνήθως σταθερό σχήμα των EVF, το οποίο καθορίζεται μέσω του ύψους των EVF (L_L), της προβολής (L_H) και του πλάτους (W_f) (Εικόνα 1.3).

14

Εικ. 1.3. Γενική σχηματική απεικόνιση των κύριων χαρακτηριστικών του EVF. [16]

Οι EVF θεωρείται συνήθως ότι προεξέχουν από το ανώτερο τμήμα του ανοίγματος, αρχικά υπό γωνία, αλλά, λόγω των επιδράσεων της θερμικής άνωσης, το πλούμιο της πυρκαγιάς μετακινείται κατακόρυφα, παράλληλα προς το τοίχωμα της πρόσοψης (Εικ. 1.3). Μια σειρά από ημι-εμπειρικές σχέσεις σχεδίασης έναντι πυρκαγιάς που χρησιμοποιούνται για την εκτίμηση του ύψους (L_L) και της προβολής (L_H) EVF παρουσιάζονται στον Πίνακα 1.1 (Yokoi, 1960 [15], Tang et al., 2012, EN 1991-1-2, 2002 [18] · Asimakopoulou et al., 2016b [31] · Heskestad, 1983 [25] · Law, 1978 [23] · Hasemi and Tokunaga, 1984 [26]· McCaffrey, 1983 [27]· Beuther and George, 1982 [28]).

Η πλειοψηφία αυτών των συσχετίσεων έχει προκύψει με τη χρήση πειραματικών δεδομένων από πυρκαγιές σε εξωτερικό χώρο, αλλά μπορούν επίσης να χρησιμοποιηθούν με ασφάλεια για τον προσδιορισμό του σχήματος EVF, υποθέτοντας ότι η πηγή καυσίμου αντιστοιχεί στο άνω μισό του ανοίγματος (Asimakopoulou et al., 2016b [31], Beyler, 1986 [24]). Στην περίπτωση αυτή, η ροή έξω από το περίβλημα θεωρείται ότι προέρχεται από έναν "πλασματικό" ορθογώνιο καυστήρα τοποθετημένο κατακόρυφα στο άνω μισό του ανοίγματος. Όλες οι σχέσεις, με μόνη εξαίρεση τη συσχέτιση H3, μπορούν να χρησιμοποιηθούν τόσο για συνθήκες υπο-αερισμού (under ventilated) όσο και για επαρκώς αεριζόμενους χώρους (over ventilated). Οι σχέσεις H1 και P1, που προτάθηκαν στο EN 1991-1-2 (EN 1991-1-2, 2002), βασίζονται στις σχέσεις που προτείνονται από την Law (1978) [23].

Υποθέτοντας ένα άξονο-συμμετρικό πλούμιο, η σχέση H2 (Heskestad, 1983 [25]) χρησιμοποιεί την "ενεργή" περιοχή της πηγής πυρκαγιάς (Dv) για να υπολογίσει το μέσο ύψος των EVF. Η τελευταία ποσότητα αντιπροσωπεύει την περιοχή του ανοίγματος μέσω του οποίου εκτοξεύονται οι EVF και θεωρείται ότι αντιστοιχεί στο άνω μισό της περιοχής ανοίγματος (Εξίσωση (1)) (Asimakopoulou et al., 2016a [16], Tang κ.ά., 2012 [18]).

$$D_{v} = A_{v} / 2 \tag{1}$$

Ένα τροποποιημένο μοντέλο για την εκτίμηση του ύψους EVF, που εκφράζεται μέσω της συσχέτισης H3, προτάθηκε πρόσφατα (Tang κ.ά., 2012 [18]). Η χαρακτηριστική κλίμακα μήκους l υπολογίζεται χρησιμοποιώντας την εξίσωση (2). Ο ρυθμός έκλυσης του περισσεύματος θερμότητας (\dot{Q}_{ex}) που εμφανίζεται στο συσχετισμό H3, αντιστοιχεί στο κλάσμα του συνολικού ρυθμού έκλυσης θερμότητας που οφείλεται στην καύση που λαμβάνει χώρα αποκλειστικά εκτός του θαλάμου φωτιάς (EVF). Για τις συνθήκες υπο-αερισμού (Tang et al., 2012 [18]), το \dot{Q}_{ex} μπορεί να εκτιμηθεί ως η διαφορά μεταξύ του συνολικού ρυθμού έκλυσης θερμότητας στο εσωτερικό του θαλάμου φωτιάς ($\dot{Q}_{in,max}$) (Εξίσωση (3)). Οι τελευταίες ποσότητες μπορούν να εκτιμηθούν χρησιμοποιώντας τις εξισώσεις (4) και (5).

$$l = \left(A\sqrt{h_{eq}}\right)^{2/5} \tag{2}$$

$$\dot{Q}_{ex} = \dot{Q}_{tot} - \dot{Q}_{in,\max} \tag{3}$$

$$\dot{Q}_{tot} = \dot{m}_f H_u \tag{4}$$

$$\dot{Q}_{in,\max} = 1500 A_{\nu} \sqrt{h_{eq}} \tag{5}$$

16

OI σχέσεις P2 (Yokoi, 1960 [15]), P3 (McCaffrey, 1983 [27]) και P4 (Beuther and George, 1982 [28]), που χρησιμοποιούνται για την εκτίμηση της προβολής των EVF, βασίζονται σε μεθοδολογίες ανάλυσης της ροής, υποθέτοντας πηγές θερμότητας (οχι-ακτινοβολίας) που βρίσκονται στο άνω μισό άνοιγμα. Αν και ορισμένοι συσχετισμοί προέρχονται από πειραματικά δεδομένα φωτιάς σε εξωτερικό περιβάλλον, μπορούν να χρησιμοποιηθούν και για τον προσδιορισμό των μέσων διαστάσεων των EVF, αν υποτεθεί ότι το ανώτερο το ήμισυ του ανοίγματος αποτελεί πηγή καυσίμου (Εξίσωση (1)) (Beyler, 1986 [24]). Σε αυτή την περίπτωση, λαμβάνεται υπόψη μόνο το κλάσμα μεταφοράς του ρυθμού έκλυσης θερμότητας κατά το άνοιγμα (Korhonen and Hietaniemi, 2005 [29]). Το εύρος EVF (w_f) θεωρείται συνήθως ότι είναι ίσο με το πλάτος ανοίγματος (w_t) (EN 1991-1-2, 2002, Law, 1978). Μόνο λίγες αναφορές στη βιβλιογραφία διαστάσεων του ανοίγματος (w_t / h_{eq}).

Έχει παρατηρηθεί ότι όταν το φορτίο πυρκαγιάς καίγεται ανομοιογενώς, μπορεί να οδηγήσει σε ασύμμετρη προβολή και πλάτος των EVF (Law, 1978 [23]). Αυτή η συμπεριφορά δεν λαμβάνεται υπόψη σε κανέναν από τους συσχετισμούς που υπάρχουν σήμερα. Σε όλες τις περιπτώσεις, οι εξωτερικές διαστάσεις ενός EVF θεωρούνται σταθερές στο χρόνο (συνθήκες σταθερής κατάστασης) που επιτρέπουν την εκτίμηση των γεωμετρικών ιδιοτήτων χρησιμοποιώντας απλούς κανόνες τριγωνομετρίας (EN 1991-1-2, 2002 · Himoto et al., 2009 [22] Law, 1978 [23]).

Κάποιες από τις πιο γνωστές πρόσφατες πυρκαγιές σε πολυώροφά κτίρια με εμφάνιση EVF φαίνονται στον πίνακα 1.2 και οι βασικοί μηχανισμοί σχηματισμού EVF και παράμετροι που επηρεάζουν την ανάπτυξή τους αναφέρονται στην εικόνα 1.4.

Abbr.	Ref.	$L_L(\mathbf{m})$	UV	OV
H1	(EN 1991-1-2, 2002)	$h_{eq} \left[2.37 \left(\frac{\dot{Q}_{tot}}{\rho_{\infty} A_{\nu} \sqrt{h_{eq}}} \right)^{2/3} - 1 \right], \text{when} \begin{array}{c} q_{f,d} > 200 \text{ MJ/m}^2\\ 0.02 \le \frac{A_{\nu} \sqrt{h_{eq}}}{A_T} \le 0.20 \end{array}$	<i>✓</i>	1
H2	(Heskestad, 1983)	$D_{\nu} \left(-1.02 + 0.23 \left(rac{\dot{Q}_{tot}^{2/5}}{D_{\nu}} ight) ight), { m when} rac{\dot{Q}_{tot}^{2/5}}{D_{\nu}} \geq 16.5$	\checkmark	1
H3	(Tang et al., 2012)	$Z_n + 2l \left(\frac{\dot{Q}_{ex}}{\rho_{\infty} c_p T_{\infty} g^{1/2} l^{5/2}} \right)^{0.44}, \text{when} \frac{\dot{Q}_{ex}}{\rho_{\infty} c_p T_{\infty} g^{1/2} l^{5/2}} > 1.3$	\checkmark	_
Abbr.	Ref.	$L_H(\mathbf{m})$	UV	OV
P1	(EN 1991-1-2, 2002)	$\begin{cases} h_{eq}/3, & \text{when } h_{eq} \leq 1.25w_t \\ 0.3h_{eq}(h_{eq}/w_t)^{0.54}, & \text{when } h_{eq} > 1.25w_t \text{ and } w_d > 4w_t \\ 0.454h_{eq}(h_{eq}/2w_t)^{0.54}, & \text{when } h_{eq} > 1.25w_t \text{ and } w_d < 4w_t \end{cases}$	1	~
P2	(Yokoi, 1960)	$0.13 L_L$	1	1
Р3	(McCaffrey, 1983)	$0.195 L_L$	1	1
P4	(Beuther and George, 1982)	0.119 L _L	1	1

Πίνακας 1.1 Σχέσεις για την εκτίμηση του ύψους EVF (L_L) και της προβολής EVF (L_H). [16]

Εικ. 1.4 Βασικοί μηχανισμοί σχηματισμού EVF και παράμετροι που επηρεάζουν την ανάπτυξή τους. [16]

Πίνακας 1.2 . Πρόσφατες π	υρκαγιές σε πολυώροφά	κτίρια με εμφάνιση	EVF [72]
----------------------------------	-----------------------	--------------------	----------

Κτίριο	Τοποθεσία	Έτος	Τύπος συστήματος πρόσοψης	Λεπτομέρειες
Ajman One residential cluster	Ajman, United Arab Emirates	2016	Πολύ εύφλεκτα πλαστικά σύνθετα πάνελ από αλουμίνιο	Η πυρκαγιά ξέσπασε σε ένα κτίριο στο συγκρότημα κατοικιών Ajman One και εξαπλώθηκε σε τουλάχιστον έναν άλλο συγκρότημα0, 1 τραυματισμούς, εξάπλωση εξωτερικής πυρκαγιάς (McKirdy, 2016).
Address Hotel	Dubai, United Arab Emirates	2016	Πολύ εύφλεκτα πλαστικά σύνθετα πάνελ από αλουμίνιο	Η πυρκαγιά ξεκίνησε στον 20ο όροφο του κτιρίου και επηρέασε μόνο το εξωτερικό της κατασκευής, 16 τραυματισμούς, εξάπλωση εξωτερικής πυρκαγιάς (Hanna et al., 2016).
Docklands Apartment Tower	Melbourne, Australia	2015	Σύνθετα πάνελ αλουμινίου	Η πυρκαγιά ξεκίνησε από ένα αναμμένο τσιγάρο μπαλκόνι του έκτου ορόφου, κανένας θάνατος η τραυματισμός, εξωτερική εξάπλωση φωτιάς (Toscano and Spooner, 2015)
Marina Torch Tower	Dubai, United Arab Emirates	2015	Πολύ εύφλεκτα πλαστικά σύνθετα πάνελ από αλουμίνιο	Η πυρκαγιά ξεκίνησε στη μέση του πύργου πριν εξαπλωθεί προς τα κάτω, Κανένας θάνατος ή τραυματισμός, εξωτερική εξάπλωση πυρκαγιάς (Gray,2015).
Residential Building	Grosny, Russia	2013	Αεριζόμενη πρόσοψη	Η πυρκαγιά ξεκίνησε από βραχυκύκλωμα σε κλιματισμό, χωρίς θάνατο ή τραυματισμό, εξωτερική εξάπλωση πυρκαγιάς (Antonatus, 2013).
Al Baker Tower 4	Sharjah, United Arab Emirates	2012	Πολύ εύφλεκτα πλαστικά σύνθετα πάνελ από αλουμίνιο	Πυρκαγιά ξεκίνησε από ένα αναμμένο τσιγάρο που ρίχτηκε σε μπαλκόνι, χωρίς θάνατο ή τραυματισμό, εξάπλωση εξωτερικής πυρκαγιάς (CW Staff, 2012).
Polat Tower	Istanbul, Turkey	2012	Αεριζόμενη πρόσοψη	Η πυρκαγιά διαδόθηκε μέσα από την εξωτερική μόνωση του κτιρίου, χωρίς θανάτους ή τραυματισμούς, εξωτερική εξάπλωση πυρκαγιάς (Antonatus, 2013).
Mermoz Tower	Roubaix, France	2012	Επένδυση με κενό πίσω από αυτό (όπως αεριζόμενη πρόσοψη)	Η πυρκαγιά ξεκίνησε στον δεύτερο όροφο και εξαπλώθηκε ταχύτατα προς τα πάνω, 1 θάνατος, 10 τραυματισμοί, εξωτερική εξάπλωση πυρκαγιάς (Antonatus, 2013).
Wanxin Complex Fire	Shenyang, China	2011	Σύνθετα πάνελ αλουμινίου	Πυρκαγιά από εκρηκτικά πυροτεχνήματα, εξωτερική εξάπλωση πυρκαγιάς (Peng et al., 2013).
Residential Building	Dijon, France	2010	ETICS με μόνωση EPS από ορυκτοβάμβακα	Πυρκαγιά ξεκίνησε στη βάση του κτιρίου από δοχεία απορριμμάτων, 7 θάνατοι (Antonatus, 2013).
Residential Building	Shanghai, China	2010	ETICS υπό	Η πυρκαγιά ξεκίνησε κατά την ανακαίνιση για την τοποθέτηση εξωτερικών μονωτικών τοίχων, 58

			κατασκευή	θάνατοι, 71 τραυματισμοί εξωτερική εξάπλωση πυρκαγιάς (Peng et al., 2013).
Beijing Television Cultural Centre (CCTV)	Beijin, China	2009	Αεριζόμενη πρόσοψη με μόνωση από πολυστυρένιο	Πυρκαγιά που προκλήθηκε από την παράνομη χρήση πυροτεχνημάτων υψηλής εκρηκτικότητας στο εργοτάξιο στην οροφή και εξαπλώθηκε από τους ανώτερους ορόφους σε χαμηλότερα επίπεδα και από εξωτερικά σε εσωτερικά τμήματα, 1 θάνατος, 7 τραυματισμοί, εξάπλωση εξωτερικής πυρκαγιάς (Glancey, 2009).

ΚΕΦΑΛΑΙΟ 20

2.1 Δοκιμές μικρής κλίμακας φωτιάς εξερχόμενης από άνοιγμα

Στο παρών κεφάλαιο θα γίνει αναφορά σε μια σειρά πειραμάτων τα οποία διεξήχθησαν στην Εργαστηριακή Μονάδα Πυρομηχανικής του Ε.Μ.Π., σε μια πειραματική διάταξη (ένα διαμέρισμα) μικρής κλίμακος [73]. Το διαμέρισμα ήταν ένα μοντέλο κλίμακας ¼ σύμφωνα με τις προδιαγραφές του ISO 9705. Οι διαστάσεις του εσωτερικού διαμερίσματος ήταν 0,60 m x 0,90 m x 0,60 m. Το εξωτερικό τοίχωμα πρόσοψης μετρήθηκε 0.658 m x 1.8 m. Ένα διπλό στρώμα πάχους 0.0125 m πυρίμαχων γυψοσανίδων χρησιμοποιήθηκε ως εσωτερικό και εξωτερικό υλικό επένδυσης. Το άνοιγμα του διαμερίσματος, που βρίσκεται στη μέση του βόρειου τοίχου, μετρήθηκε 0,20 m x 0,50 m. Στην Εικόνα 2.1 παρουσιάζεται μια σχηματική αναπαράσταση (πλάγια όψη και κάτοψη) της πειραματικής συσκευής και μια χαρακτηριστική φωτογραφία που απεικονίζει τις θέσεις των συσκευών μέτρησης.

Εικ. 2.1 Γενική διάταζη (αριστερά) και χαρακτηριστική φωτογραφία (δεξιά) της πειραματικής διάταζης [73]

2.1.1 Συσκευές μέτρησης

Η συνολική θερμική συμπεριφορά της διάταξης του διαμερίσματος - πρόσοψης ερευνήθηκε με τη μέτρηση των θερμοκρασιών και των ροών θερμότητας σε διάφορες θέσεις. Δέκα θερμοστοιχεία τύπου-Κ, διαμέτρου 1,5 mm, τοποθετημένα στην εμπρόσθια και την οπίσθια γωνία του διαμερίσματος και τέσσερα θερμοστοιχεία κατανεμημένα κάθετα στον κεντρικό άξονα του ανοίγματος, χρησιμοποιήθηκαν για την παρακολούθηση των κατανομών θερμοκρασίας που αναπτύσσονται στο εσωτερικό του θαλάμου όπου υπήρχε η φλόγα. Δόθηκε έμφαση στη μελέτη της θερμοκρασίας περιβάλλοντος δίπλα στο τοίχωμα της πρόσοψης και δεξιά του κεντρικού άξονα (164,5 mm μακριά από τον κεντρικό άξονα). Για το σκοπό αυτό, τοποθετήθηκαν δεκατέσσερα θερμοστοιχεία σε διάφορα σημεία του τοιχώματος της πρόσοψης, ενώ είκοσι-επτά πρόσθετα θερμοστοιχεία διανεμήθηκαν μεταξύ δύο «δέντρων» θερμοστοιχείων, τοποθετημένων σε απόσταση 123 mm και 246 mm από το τοίχωμα της πρόσοψης, αντίστοιχα (Εικόνα 2.1).

Ένας αισθητήρας ροής θερμότητας Schmidt-Boelter διαμέτρου 25 mm τοποθετήθηκε στον κεντρικό άξονα της επιφάνειας πρόσοψης οπού υπήρχε η EVF, 110 mm πάνω από το άνοιγμα. Όλες οι μετρήσεις θερμοστοιχείων και ροής θερμότητας καταγράφηκαν χρησιμοποιώντας μια διεπαφή Universal Logging Interface που σχεδιάστηκε στο λογισμικό LabView. Η συχνότητα δειγματοληψίας ήταν 1 δευτερόλεπτο. Μια θερμική κάμερα τοποθετήθηκε σε απόσταση 6,0 m μακριά από τη συσκευή, με θέα προς την πρόσοψη για να καταγράψει πρόσθετες πληροφορίες σχετικά με τη θερμική απόκριση της επιφάνειας της πρόσοψης. Δύο ψηφιακές βιντεοκάμερες τοποθετήθηκαν σε δύο θέσεις, απέναντι και σε ορθή γωνία ως προς το άνοιγμα, καταγράφοντας το αναπτυσσόμενο σχήμα της EVF, στα 30 καρέ ανά δευτερόλεπτο. Οι χρονοσειρές των στιγμιότυπων των βίντεο ελήφθησαν και υποβλήθηκαν σε επεξεργασία χρησιμοποιώντας έναν κώδικα MATLAB που αναπτύχθηκε εσωτερικά, με σκοπό τον προσδιορισμό των γεωμετρικών χαρακτηριστικών του περιβλήματος της EVF [19].

2.1.2 Παράμετροι δοκιμών - Φορτίο πυρκαγιάς και διαστάσεις ανοίγματος

Οι καυστήρες χρησιμοποιούνται συνήθως σε σχετικά πειράματα πυρκαγιάς διαμερίσματος [4, 5, 20], με στόχο την παροχή μιας σταθερής πηγής πυρκαγιάς (συνθήκες σταθερής κατάστασης). Ωστόσο, προκειμένου να επιτευχθούν περισσότερο "ρεαλιστικές" συνθήκες πυρκαγιάς, που σχετίζονται με τις πραγματικές πυρκαγιές κτιρίων, στα πειράματα χρησιμοποιήθηκε μία πηγή καυσίμου "αναλώσιμη" (παροδική). Ένα ορθογώνιο δοχείο από ανοξείδωτο χάλυβα, με διαστάσεις 0,25 m x 0,25 m x 0,10 m, τοποθετήθηκε στο γεωμετρικό κέντρο του δαπέδου του διαμερίσματος. Το η-εξάνιο χρησιμοποιήθηκε ως το υγρό καύσιμο επιλογής. Η μάζα της πηγής καυσίμου παρακολουθείτο συνεχώς μέσω ενός στοιχείου φορτίου (load cell), το οποίο τοποθετήθηκε κάτω από το δοχείο. Το μέγεθος του δοχείου καυσίμου επιλέχθηκε προκειμένου να επιτευχθούν ανεπαρκώς αεριζόμενες συνθήκες φωτιάς, διευκολύνοντας έτσι την εμφάνιση της EVF.

Έτσι διεξήχθη παραμετρική μελέτη, μεταβάλλοντας το συνολικό φορτίο καυσίμου (περιπτώσεις δοκιμής 1, 2 και 3) και τις διαστάσεις του ανοίγματος (περίπτωση δοκιμής 4). Οι περιπτώσεις δοκιμής 2, 3 και 4 αντιστοιχούσαν σε συνθήκες ανεπαρκούς αερισμού. Στην περίπτωση 1,

αναπτύχθηκε μια ελαφρώς υπερ-αεριζόμενη πυρκαγιά, λόγω του χαμηλού φορτίου πυρκαγιάς που χρησιμοποιήθηκε.

Περίπτωση	Нv (m)	Wv (m)	<i>T</i> ∞ (oC)	<i>RH</i> ∞ (%)	<i>tdur</i> (s)	<i>mf</i> (kg)	GER (-)	Qins, m (kW)	Qex (kW)
1	0.5	0.2	25.8	42.0	372	0.655	0.735	-	-
2	0.5	0.2	26.7	42.0	525	1.539	1.224	106.5	25.5
3	0.5	0.2	26.5	47.0	595	6.078	2.159	106.5	126.5
4	0.3	0.2	26.3	37.2	664	1.539	2.081	49.35	54.65

Πίνακας 2.1 Παράμετροι τεσσάρων δοκιμών [73]

Στον ανωτέρω πίνακα [73] παρουσιάζονται τα επιμέρους χαρακτηριστικά του κάθε πειράματος για κάθε περίπτωση που μελετήθηκε.

2.1.3 Ρυθμός κατανάλωσης καυσίμου

Ο ρυθμός κατανάλωσης καυσίμου επηρεάζεται από μια ποικιλία παραμέτρων όπως ο εξαερισμός, η ακτινοβολία από τα περιβάλλοντα τοιχώματα και τα θερμικά χαρακτηριστικά του δημιουργούμενου χείλους πάνω από το καύσιμο [2, 15]. Αυτές οι επιδράσεις απεικονίζονται στην Εικ. 2.2, όπου φαίνονται οι μετρήσεις του στιγμιαίου ρυθμού κατανάλωσης μάζας καυσίμου για όλες τις εξεταζόμενες περιπτώσεις δοκιμής. Είναι προφανές ότι η υψηλότερη αρχική μάζα καυσίμου οδηγεί σε αυξημένες ταχύτητες καύσης καυσίμου, (Εικόνα 2.2, αριστερά). Επιπλέον, καθώς ο χρόνος προχωράει, η σταδιακή μείωση της στάθμης του υγρού καυσίμου οδηγεί σε ελαφρά αύξηση της στιγμιαίας ταχύτητας καύσης καυσίμου. Το μέγεθος του ανοίγματος επηρεάζει κυρίως τη διάρκεια της πυρκαγιάς (Εικ. 2.2, δεξιά). η περίοδος καύσης στην περίπτωση δοκιμής 4 παρατείνεται λόγω του μειωμένου παράγοντα εξαερισμού. Η πυρκαγιά παρατηρείται να καίει σταθερά και στις δύο περιπτώσεις δοκιμής 2 και 4, έως ότου εισέλθει στο στάδιο σβέσης μετά από περίπου 500 s και 650 s αντίστοιχα.

Εικ. 2.2. Μετρήσεις στιγμιαίας κατανάλωσης μάζας καυσίμου. επίδραση του φορτίου πυρκαγιάς (αριστερά) και του παράγοντα ανοίγματος (δεζιά) [73].

2.1.4 Θερμοκρασίες αερίων EVF

Η εξέλιξη της θερμοκρασίας των αερίων μέσα στο διαμέρισμα παρουσιάζει παρόμοια χαρακτηριστικά σε όλες τις περιπτώσεις δοκιμής. Τα τρία στάδια της ανάπτυξης της πυρκαγιάς, η φάση ανάπτυξης, ή το preflashover στάδιο, η πλήρως ανεπτυγμένη πυρκαγιά (ή postflashover φάση) και η περίοδος αποσύνθεσης, όταν η φωτιά αρχίζει να μειώνεται καθώς καταναλώνεται το καύσιμο, που τυπικά συναντώνται στις πυρκαγιές των διαμερισμάτων, μπορούν εύκολα να ταυτοποιηθούν (Εικ 2.3). Μέσες τιμές θερμοκρασίας αερίου που μετρήθηκαν 300 mm, 400 mm και 500 mm πάνω από το δάπεδο του διαμερίσματος πυρκαγιάς, στις θέσεις CB και CF (βλέπε εικόνα 2.1), χρησιμοποιήθηκαν για τον υπολογισμό της χρονικής μεταβολής της θερμοκρασίας αερίου ανώτερου στρώματος που φαίνεται στην Εικ 2.3. Όπως αναμένεται, τα υψηλότερα φορτία πυρκαγιάς και το αυξημένο μέγεθος ανοίγματος οδηγούν σε υψηλότερες θερμοκρασίες αερίου ανώτερου στρώματος στο χώρο φωτιάς.

Εικ. 2.3. Χρονική μεταβολή της θερμοκρασίας αερίου ανώτερου στρώματος στο εσωτερικό του χώρου φωτιάς. επίδραση του φορτίου πυρκαγιάς (αριστερά) και του παράγοντα ανοίγματος (δεζιά).[73]

Η κατακόρυφη κατανομή της θερμοκρασίας του αερίου στην εμπρόσθια πλευρά του διαμερίσματος, κοντά στο άνοιγμα (θέση CF), είναι αισθητά υψηλότερη στη δοκιμαστική περίπτωση 3, γεγονός που υποδηλώνει ότι η καύση εξακολουθεί να συμβαίνει μακρύτερα από τον χώρο του καυσίμου (εικόνα 2.4, αριστερά). Το αυξημένο φορτίο καυσίμου έχει ως αποτέλεσμα να μετατοπίζονται φλόγες προς το πίσω μέρος του διαμερίσματος, δημιουργώντας ένα μοτίβο ανακύκλωσης ροής μέσα στο διαμέρισμα, με αποτέλεσμα μεγαλύτερη εξαέρωση EVF από το άνοιγμα (Εικόνα 2.4, αριστερά). Στην δοκιμαστική περίπτωση 4, η μείωση της περιοχής ανοίγματος οδηγεί σε αυξημένες θερμοκρασίες στην οπίσθια πλευρά του χώρου πυρκαγιάς (θέση CB), σε σύγκριση με την περίπτωση δοκιμής 2. Επιπλέον, οι διακυμάνσεις της θερμοκρασίας κατά μήκος του διαμερίσματος είναι πιο μέτριες στην περίπτωση δοκιμής 4 (Εικ. 2.4, δεξιά). Η περιοχή ανοίγματος λειτουργεί ως εξάτμιση για τα καυτά αέρια. στην δοκιμαστική περίστων καύσης σε υψηλές θερμοκρασίες στο πίσω μέρος, τα οποία συμβάλλουν στις παρατηρούμενες υψηλές θερμοκρασίες αερίου στη θέση CB.

2.4. Κατακόρυφη κατανομή της μέσης θερμοκρασίας του αερίου στο εσωτερικό του θαλάμου φωτιάς.
 επίδραση του φορτίου πυρκαγιάς (αριστερά) και του παράγοντα ανοίγματος (δεζιά). [73]

2.1.5 Θερμοκρασίες στην εξωτερική επιφάνεια του προσόψεως

Η κατακόρυφη κατανομή της μέσης θερμοκρασίας του τοιχώματος στον άξονα (θέση F) και το ¹/₄ του πλάτους (θέση FM) της πρόσοψης (βλ. Εικ. 2.1) απεικονίζονται στη Εικόνα 2.5. Οι θερμοκρασίες της επιφάνειας της πρόσοψης γενικά αυξάνονται με την αύξηση του ύψους, μέχρι να φτάσουν στη μέγιστη τιμή τους, όπου αρχίζουν να μειώνονται ξανά. Όπως αναμενόταν, οι θερμοκρασίες των τοιχωμάτων συσχετίζονται άμεσα με τις θερμοκρασίες της κεντρικής γραμμής EVF, όσο υψηλότερη ήταν η τελευταία, τόσο μεγαλύτερη ήταν η πρώτη. Οι θερμοκρασίες επιφανείας στην κεντρική γραμμή της πρόσοψης (θέση F) που είναι άμεσα εκτεθειμένες στην EVF παρουσιάζουν υψηλότερες τιμές σε σύγκριση με τις τιμές στο ¹/₄ του πλάτους της πρόσοψης (θέση FM).

Στην δοκιμαστική περίπτωση 3, η οποία χαρακτηρίζεται από σχετικά μεγαλύτερες τιμές ρυθμού έκλυσης θερμότητας που καταλήγει σε μεγαλύτερη ακτινοβολία της EVF, καταγράφονται υψηλότερες θερμοκρασίες επιφανείας προσόψεως. Η χρονική εξέλιξη των επιφανειακών θερμοκρασιών των προσόψεων σε δύο χαρακτηριστικά ύψη από το έδαφος, 0,6 m (Εικόνα 2.6) και 1,2 m (Εικόνα 2.7), δείχνουν ότι η μειωμένη περιοχή ανοίγματος της δοκιμαστικής περίπτωσης 4 έχει ως αποτέλεσμα αυξημένες θερμοκρασίες στην κεντρική γραμμή της πρόσοψης, σε σύγκριση με την περίπτωση δοκιμής 2. Αυτό δεν συμβαίνει στην περίπτωση της θέσης FM, όπου οι θερμοκρασίες τοιχώματος στη δοκιμαστική περίπτωση 2 εμφανίζουν υψηλότερες τιμές κατά την

περίοδο της πλήρως αναπτυγμένης φάσης πυρκαγιάς. Η κατανομή της θερμοκρασίας στην εκτεθειμένη επιφάνεια της πρόσοψης, που καταγράφηκε από μια θερμική κάμερα στο τέλος των περιπτώσεων δοκιμής 2 και 4 (Εικόνα 2.8), απεικονίζει την τελευταία διαπίστωση.

Εικόνα 2.5. Κατακόρυφη κατανομή της μέσης θερμοκρασίας του τοίχου στην επιφάνεια της πρόσοψης που εκτίθεται σε EVF. Επίδραση του φορτίου πυρκαγιάς (αριστερά) και του ανοίγματος (δεζιά).[73]

Εικόνα 2.6. Χρονική μεταβολή των θερμοκρασιών των τοιχωμάτων στην εκτεθειμένη επιφάνεια πρόσοψης, σε ύψος 0,6 μ.[73]

Εικόνα 2.7. Χρονική μεταβολή των θερμοκρασιών των τοιχωμάτων στην εκτεθειμένη επιφάνεια πρόσοψης, σε ύψος 1,2 μ.[73]

Εικόνα 2.8. Προφίλ θερμοκρασίας της εκτεθειμένης επιφάνειας της πρόσοψης που καταγράφηκε με θερμική κάμερα στο τέλος της δοκιμαστικής περίπτωσης 2 (αριστερά) και 4 (δεζιά).[73]

2.1.6 Θερμική ροή στην εξωτερική επιφάνεια της πρόσοψης

Η χρονική εξέλιξη των υπολογιζόμενων τιμών ροής θερμότητας στην εκτεθειμένη επιφάνεια απεικονίζεται στην Εικ. 2.9. Μπορεί να παρατηρηθεί μια τυπική συμπεριφορά μιας πυρκαγιάς σε

διαμέρισμα με εξαερισμό [15, 21] που χαρακτηρίζεται από 3 διακεκριμένες φάσεις που εμφανίζονται διαδοχικά [22].

Αρχικά, η καύση περιορίζεται στο εσωτερικό του διαμερίσματος ("εσωτερική φλόγα") και κοντά στην δεξαμενή καυσίμου δημιουργώντας ένα ρεύμα προσαγωγής. Σταδιακά, το μέτωπο της φλόγας απομακρύνεται από την επιφάνεια του καυσίμου, επεκτεινόμενο ακτινικά και οριζόντια προς το άνοιγμα. Σε αυτή τη φάση, στο εξωτερικό του διαμερίσματος εμφανίζονται εξωτερικοί πίδακες φλόγας, γεγονός που σηματοδοτεί την έναρξη της φάσης "διαλείπουσας εκτόξευσης φλόγας". Καθώς ο χρόνος περνάει, παρατηρείται συνεχής εξωτερική φλόγα (Consistent External Flaming-CEF) λόγω της συνεχιζόμενης εξωτερικής καύσης πτητικών ουσιών κατά τη διάρκεια της σχεδόν σταθερής φάσης. Σε όλη τη διάρκεια της τελευταίας φάσης, η EVF καλύπτει σταθερά την περιοχή πάνω από το άνοιγμα με αποτέλεσμα υψηλότερες τιμές ροής θερμότητας στην επιφάνεια της πρόσοψης.

	CEF period (s)	212 - 372	108 - 525	55 - 595	124 - 659
	Heat Flux (kW/m ²)	Test case 1	Test case 2	Test case 3	Test case 4
	t = 100 s	1.41	8.51	25.36	8.84
	t = 300 s	21.23	53.79	64.37	47.08
Measured	t = 500 s	-	14.37	63.75	51.91
	t = 600 s	-	-	-	50.41
	Maximum value	24.32	53.79	89.33	64.48
	Average value	12.88	23.67	48.63	44.68
	Method HF1	8.38	15.92	28.99	17.43
Predictions	Method HF2	7.46	14.32	26.97	16.43
	Method HF3	17.40	39.74	81.03	40.44
	Method HF4	14.74	20.80	28.30	19.85
	Method HF5	3.60	7.30	13.90	6.42

Πίνακας 2.2: Μετρηθείς τιμές και προβλέψεις για την ροή θερμότητας σε απόσταση 0,11 m πάνω από το σκελετό του ανοίγματος.[73]

Εικόνα 2.9. Χρονική εξέλιζη των τιμών και των προβλέψεων της ροής θερμότητας στην εκτεθειμένη επιφάνεια της πρόσοψης. [73]

2.2 Δοκιμές μεγάλης κλίμακας φωτιάς εξερχόμενης από άνοιγμα

Παρόλο που υπάρχει μεγάλος αριθμός μελετών οι οποίες αφορούν πειράματα και δοκιμές μεγάλης κλίμακος για φωτιά εξερχόμενη από άνοιγμα, σε αυτό το κεφάλαιο θα γίνει αναφορά στη μελέτη των S. Klopovic, O, .F. Turan οι οποίοι διεξήγαν το πείραμα μεγάλης κλίμακος το οποίο αναφέρεται παρακάτω

Οι επιδράσεις του αερισμού του πυροδιαμερίσματος και των περιβαλλοντικών συνθηκών στους αεραγωγούς εξετάστηκαν κατά την διάρκεια του ανωτέρω πειράματος στην Πυροσβεστική Εγκατάσταση πειραματικών κτιρίων του CESARE (Κέντρο Περιβαλλοντικής Ασφάλειας και Μηχανικής Κινδύνου) του Πανεπιστημίου Τεχνολογίας της Βικτώριας.

2.2.1 Διάταξη πειράματος

Η εγκατάσταση είναι ένα τριώροφο κτίριο από χάλυβα και σκυρόδεμα, ύψους 12 μ. με συνολική επιφάνεια δαπέδου 12 m x 15 m. Ένα δάπεδο ημιώροφου περιλαμβάνεται μεταξύ του πρώτου και του δεύτερου ορόφου, ώστε να παράγεται ένα κατάλληλο ύψος δωματίου. Το κτίριο είναι αντιπροσωπευτικό μιας πολυκατοικίας. Η εξωτερική πρόσοψη του νότιου τοίχου αποτελείται από 9 mm συμπιεσμένων φύλλων και κατά μήκος αυτού του τοίχου μετριούνται οι επιπτώσεις του πυρκαγιάς. Επίσης, τοποθετήθηκε ένα μονό στρώμα πυρίμαχου πλαστικού με πάχος 16 mm πίσω από το δάπεδο στο πατάρι, (Floor 1M), για την αποφυγή βλάβης στα ανώτερα επίπεδα του κτιρίου. Το πυροδιαμέρισμα έχει διαστάσεις 5,3 m x 3,6 m x 2,4 m. Τα τοιχώματα και η οροφή του είναι επενδυμένα με δύο και τρία στρώματα, αντίστοιχα, πυρίμαχου υλικού 16 mm.

Ένα άνοιγμα παραθύρου 1,5 m x 2,4 m τοποθετείται στο κέντρο του νότιου τοίχου, 0,5 μέτρα πάνω από το δάπεδο, απέναντι από το οποίο βρίσκεται μια πόρτα μήκους 2,0 m x 0,8 m και βρίσκεται στο κέντρο του βόρειου τοίχου όπως φαίνεται στην Εικ. 2.10. Η θέση του πυροδιαμερίσματος στο επίπεδο του εδάφους δίνεται επίσης σε αυτή την εικόνα.

Το παράθυρο αποτελείται από ένα πλαίσιο από αλουμίνιο με δύο ολισθητήρες των 600 mm, πάχους 3 mm, τοποθετημένων σε κάθε πλευρά και κεντρικού υαλοπίνακα 1200 mm πλάτος και πάχους 4 mm όπως φαίνεται στην Εικ. 2.11. Το πυροδιαμέρισμα είναι εφοδιασμένο με δύο πλατφόρμες απώλειας μάζας (2.74 m x3 .52 m και 2.32 m x 3.52 m με χωρητικότητα 600 kg και 102 kg αντίστοιχα) όπως φαίνεται στην Εικ. 2.10.

Για τα πειράματα τοποθετήθηκαν στη μικρή πλατφόρμα, ένας καναπές τριών θέσεων με την πλάτη του στο παράθυρο και ένα τραπέζι, ενώ δύο μονά καθίσματα, δύο βιβλιοθήκες και βιβλία καθώς και ένα τραπέζι τοποθετήθηκαν στη μεγάλη πλατφόρμα. Ολόκληρη η επιφάνεια του δαπέδου καλύφθηκε επίσης από υπόστρωμα και χαλί. Όλα αυτά τα στοιχεία αντιστοιχούσαν σε πυκνότητες φορτίου καυσίμων 28,05 και 28,32 kg/m2 (ισοδύναμο ξύλου ανά περιοχή δαπέδου) για τις περιπτώσεις 1 και 2, αντίστοιχα. Τα αντικείμενα που τοποθετήθηκαν στο πυροδιαμέρισμα βρισκόταν στους 20°C για επτά ημέρες πριν από τη δοκιμή και η πηγή ανάφλεξης ήταν ένα ξύλινο προσάναμμα βάρους 150 g, τοποθετημένο στο κέντρο του τριθέσιου καναπέ.

Εικ. 2.10. Κάτοψη του χώρου στον πρώτο όροφο του κτιρίου. [75]

Εικ. 2.11. Νότιο παράθυρο τοίχου. [75]

2.2.2 Συνθήκες πειράματος

Περίπτωση 1: Το πρώτο πείραμα (πείραμα 1) ξεκίνησε στις 7:20 μ.μ. στις 22 Φεβρουαρίου 1996 και πήρε 32 λεπτά. Ο άνεμος ήταν νότιος - νοτιοανατολικός και είχε μέσες και μέγιστες ταχύτητες 1,6 και 2,8 m/s, αντίστοιχα. ενώ η θερμοκρασία περιβάλλοντος ήταν 12,1 ± 2 °C. Όταν ξεκίνησε

η δοκιμή, η πόρτα στο πυροδιαμέρισμα ήταν ανοιχτή. Το παράθυρο κατέβηκε 5 λεπτά και 25 δευτερόλεπτα μετά την έναρξη της καύσης σύμφωνα με το κριτήριο Window Lowering Criterion #1.

Περίπτωση 2: Το δεύτερο πείραμα (πείραμα 2) άρχισε στις 5.44 μ.μ. στις 3 Μαΐου 1996 και διήρκεσε 32 λεπτά. Ο άνεμος ήταν βορειοανατολικός και είχε μέσες και μέγιστες ταχύτητες 1,6 και 2,9 m/s, αντίστοιχα, ενώ η θερμοκρασία περιβάλλοντος ήταν 11,8 \pm 2 °C. Όταν ξεκίνησε η δοκιμή, η πόρτα στο πυροδιαμέρισμα έκλεισε όπως και το παράθυρο. Το παράθυρο κατέβηκε 9 λεπτά 45 δευτερόλεπτα μετά την έναρξη της καύσης σύμφωνα με το κριτήριο Window Lowering Criterion #2.

Αυτές οι αντιπροσωπευτικές περιπτώσεις επελέγησαν, διότι απεικόνισαν με σαφήνεια τα χαρακτηριστικά των αντίστοιχων κατηγοριών εξαερισμού.

Το χρονοδιάγραμμα – ιστορικό των επιμέρους γεγονότων, για τα πειράματα 1 και 2 παρουσιάζονται στον πίνακα 2.3. Επίσης στον πίνακα 2.4 παρουσιάζονται τα διαθέσιμα πειραματικά δεδομένα άλλα και τα δεδομένα που συλλέγονται από κάθε περίπτωση από την αντίστοιχη βιβλιογραφία.

Γεγονός	Case 1	Case 2
Ανάφλεξη	0:00	0:00
Οι φλόγες απλώνονται και καίνε τον καναπέ	2:15	_
Το στρώμα καπνού έφθασε στην κορυφή του παραθύρου	3:30	0:55
Ο καπνός έφτασε στο κάθισμα του καναπέ (1,95 μ. Από την οροφή) –(Μόνο για περίπτωση 2)		2:10
Το κεντρικό τμήμα του παραθύρου υποχώρησε σημαντικά	4:25	na
Αρχική ρωγμή στο κέντρο του παραθύρου στο δωμάτιο καύσης	4:40	4:55
Ο καπνός έφτασε στο κάθισμα του καναπέ (1,95 μ. Από το ταβάνι) –(Μόνο για περίπτωση 1)	5:00	
Ο καπνός έφτασε κάτω από το κάτω μέρος του παραθύρου / στο πάτωμα	5:20	6:40
Άνοιξε το παράθυρο και ο καπνός άρχισε να εξέρχεται από το άνοιγμα	5:25	9:35

Πίνακας 2.3	Ιστορικό	γεγονότων	πειραμάτων	l και 2	[75]
-------------	----------	-----------	------------	---------	------

Ο καπνός καθάρισε και οι φλόγες εμφανίστηκαν πρώτα στον καναπέ – (Μόνο για περίπτωση 2)	na	10:10
Φλόγες έφτασαν στο άνοιγμα	6:20	11:50
Flashover: όπου οι θερμοκρασίες χώρου καύσης έφτασαν τους 600 ° C	7:20	13
Αρχική απομάκρυνση του παραθύρου 1Μ-Περίπτωση 2		13:20
Οι φλόγες έφτασαν κατά μέσο όρο μεταξύ F2-3 και μέχρι L2-3	9	13:30
Συνεχής εξερχόμενες φλόγες	11	14
Φλόγες σε F2-3 έως L4 για περίπτωση 1 και F2-3 έως L5-6 για περίπτωση 2	15	14:30
Αρχική μετατόπιση του παραθύρου 1Μ - Περίπτωση 1	16:10	
Το παραμένον γυαλί στο παράθυρο του δαπέδου 1Μ μετατοπίστηκε τελείως	na	17:15
Η δύναμη των εξωτερικών φλογών άρχισε να μειώνεται	17:25	22
Το εσωτερικό του χώρου καύσης έγινε σαφώς ορατό	17:30	22
Μόνο μικρές φλόγες εξέρχονται από το άνοιγμα, (κυρίως καυτά αέρια)	19:30	23
Τα περιεχόμενα στην αίθουσα συνέχισαν να καίγονται	19:30	23
Η επάνω αριστερή γωνία του παραθύρου του δεύτερου ορόφου μετατοπίζεται	na	25:10
Η δοκιμή ολοκληρώθηκε χειροκίνητα	32	32

Πίνακας 2.4 Διαθέσιμα πειραματικά δεδομένα και δεδομένα που συλλέγονται από κάθε περίπτωση

από βιβλιογραφία [75]

Ref.	Average/Max Burn Compartment Temperature	EVF Dimensions	EVF Centerline Temperature	Heat Flux on the Façade	Velocity at the EVF opening	Fuel Type
(Klopovic and Turan, 2001a; Klopovic and Turan, 2001b)	\checkmark	~	\checkmark	~	х	Real Furniture
(Lin, 2000)	\checkmark	\checkmark	Х	Х	Х	Wood Cribs
(Oleszkiewicz, 1989)	х	х	Х	~	х	Propane Gas
(Empis, 2010)	\checkmark	х	х	✓	х	Real Furniture
(Yoshioka et al., 2012)	~	х	X	~	х	Methane Gas
Asimakopoulou, 2012	\checkmark	~	~	~	~	Hexane

2.2.3 Συμπεράσματα

Οι ακόλουθοι παράγοντες καθορίζουν με θεμελιώδη τρόπο τις EVF:

• Οι παράγοντες που ελέγχουν το σχήμα της φλόγας είναι : οι συνθήκες αερισμού, το σχήμα του παραθύρου, οι προεξοχές (οριζόντιες και κάθετες), η ταχύτητα ανέμου και η διεύθυνση.

 Παράγοντες που επηρεάζουν τη διάδοση της φωτιάς: Η κατασκευή των τοίχων (αν αναφλέγονται η όχι), οι επενδύσεις των χώρων και τα μονωτικά υλικά, το φορτίο καυσίμου, ο αερισμός καθώς και τέλος οι προεξοχές.

Παράγοντες που επηρεάζουν την πιθανότητα έναρξης πυρκαγιάς στο παραπάνω όροφο:
 Οι συνθήκες αερισμού, το άνοιγμα του παραθύρου στον πάνω όροφο, το φορτίο καυσίμου και η γειτνίαση του με το παράθυρο, η απόσταση μεταξύ των ανοιγμάτων των παραθύρων και η απόσταση μεταξύ των παρακείμενων κτιρίων και η εξωτερική ακτινοβολία.

2.3 Βασικά χαρακτηριστικά φωτιάς εξερχόμενης από άνοιγμα

2.3.1 Δυναμικά φαινόμενα και μόνιμες συνθήκες

Προκειμένου να επιτευχθεί αποτελεσματικά η πρόληψη των EVF και η άμβλυνση της εξάπλωσης της εξωτερικής πυρκαγιάς, είναι σημαντικό να κατανοηθεί η φύση των θεμελιωδών φυσικών φαινομένων που τις επηρεάζουν.

Οι EVF είναι ουσιαστικά φλόγες που διασχίζουν ένα άνοιγμα του διαμερίσματος πυρκαγιάς και εμφανίζονται στο περιβάλλον (Thomas and Heselden, 1972, Delichatsios, 2014). Οι EVF μπορεί να περιγράφουν ως ένας κατακόρυφος αυξανόμενος τυρβώδης όγκος θερμών προϊόντων καύσης και φλόγες οι οποίες ξεπηδούν μέσω του ανοίγματος ενός διαμερίσματος (Quintiere, 2006, Hu et al., 2015). Το πλούμιο των EVF, κοινώς θεωρούμενο ως ασυμπίεστο ρευστό, οδηγείται κυρίως από τη θερμική άνωση και η τροχιά του δεν είναι εντελώς κατακόρυφη, όπως έχει αποδειχθεί από τον Himoto et al. (Himoto κ.ά., 2009).

Είναι γνωστό ότι ο τρόπος αερισμού, τα γεωμετρικά χαρακτηριστικά του χώρου πυρκαγιάς και οι επικρατούσες συνθήκες αερισμού επηρεάζουν σημαντικά την ανάπτυξη των EVF (EN 1991-1-2, 2002, Klopovic και Turan, 2001a, Klopovic and Turan, 2001b, Law, 1978; Law and O'Brien, 1981). Η έρευνα σε πειραματικές διατάξεις μέσης κλίμακας διαμερισμάτων-προσόψεων (Himoto et al., 2009, Delichatsios et al., 2009) καθιέρωσε την άμεση σχέση του σχήματος των EVF με τον ρυθμό έκλυσης θερμότητας και την απόσταση από την πρόσοψη. Νέες κλίμακες μήκους για την περιγραφή της απόστασης της κεντρικής γραμμής EVF από την πρόσοψη έχουν πρόσφατα προταθεί από τους Delichatsios et al. (Delichatsios et al., 2009) με βάση τα ευρήματα αυτά. Όταν δημιουργούνται οι EVF, δεν είναι εύκολο να χαρακτηριστούν τα φαινόμενα καύσης που συμβαίνουν στο εξωτερικό του πυροδιαμερίσματος (Yokoi, 1960 · Delichatsios et al., 2009 · Hurley, 2016). Ιδιαίτερα στις περιπτώσεις όπου ο αερισμός στο κύριο πυροδιαμέρισμα είναι περιορισμένος (συνθήκες υπό αερισμού) η καύση δεν μπορεί να ολοκληρωθεί μέσα στο διαμέρισμα (Delichatsios et al., 2009). Στην τελευταία περίπτωση, μια αυξανόμενη ποσότητα των εκτοξευμένων εύφλεκτων αερίων τελικά καίγεται όταν αναμιγνύονται με τον πλούσιο σε οξυγόνο αέρα περιβάλλοντος, με αποτέλεσμα μεγαλύτερο συνολικό όγκο των EVF.

Όπως έχει αποδειχθεί και σε προηγούμενες μελέτες (Klopovic και Turan, 2001a, Klopovic και Turan, 2001b, Empis, 2010), οι επικρατούσες συνθήκες αερισμού και φορτίου πυρκαγιάς έχουν σημαντικό αντίκτυπο στην πυρκαγιά και στη μετάβαση της από συνθήκη υπερ – αερισμού σε συνθήκη υπο- αερισμού.

Αν και διεξήχθησαν σημαντικές έρευνες με έμφαση στην επίδραση της EVF στην πρόσοψη και τις παραμέτρους που επηρεάζουν την ανάπτυξή της (Oleszkiewicz, 1989, Delichatsios et al., 2009, Klopovic and Turan, 2001a, Klopovic και Turan, 2001b, Empis, 2010) υπάρχουν σπάνιες αναφορές που επικεντρώνονται στα δυναμικά (χρονικά μεταβατικά) χαρακτηριστικά των EVF. Πρόσφατα, οι Hu et al. (Hu et al., 2012) υπογράμμισαν τη δυναμική συμπεριφορά του EVF και τόνισαν την αναγκαιότητα προσδιορισμού των συνθηκών που επιτρέπουν τη διατήρηση των EVF στο εξωτερικό του πυροδιαμερίσματος.

Μια από τις κύριες παραμέτρους που επηρεάζουν τα δυναμικά χαρακτηριστικά των EVF είναι ο ρυθμός κατανάλωσης καυσίμου (Hu et al., 2012). Ωστόσο, στην πλειονότητα των ερευνητικών εργασιών που σχετίζονται με την EVF, χρησιμοποιήθηκαν καυστήρες αερίου, παρέχοντας συνθήκες σταθερής κατάστασης (Oleszkiewicz, 1989 · Delichatsios et al., 2009 · Quintiere, 2006
· Hu et al., 2012 · Hu et al., 2015). Μόνο μερικές μελέτες (Hu et al., 2012 · Hu et al., 2015 · Klopovic και Turan, 2001a · Klopovic και Turan, 2001b · Empis, 2010) έχουν υιοθετήσει μια διαφορετική προσέγγιση χρησιμοποιώντας πιο ρεαλιστικές, "αναλώσιμες" πηγές, όπως πραγματικά έπιπλα ή υγρά καύσιμα. Σε αυτές τις περιπτώσεις, έχει αποδειχθεί ότι η καύση αρχικά περιορίζεται στο εσωτερικό του πυροδιαμερίσματος (εσωτερική φάση φλόγας, IF). Καθώς το μέτωπο φλόγας απομακρύνεται από την πηγή καυσίμου, λόγω της βαθμιαίας κατανάλωσης οξυγόνου στο εσωτερικό του διαμερίσματος, εμφανίζονται περιοδικά στο εξωτερικό του πυροδιαμερίσματος εξωτερικοί πίδακες φλόγας. Αργότερα, η ροή θερμότητας στην πρόσοψη φτάνει σε μια μέγιστη τιμή και διατηρείται σχεδόν σταθερή για παρατεταμένο χρονικό διάστημα μέχρι να φθάσει η φάση σβέσης της φωτιάς. Αυτή η χρονική περίοδος αντιστοιχεί ουσιαστικά στην πλήρως ανεπτυγμένη φάση πυρκαγιάς σε σταθερή κατάσταση (Quintiere, 2006). Σε όλη αυτή τη φάση, οι EVF καλύπτουν σταθερά την εξωτερική περιοχή πάνω από το άνοιγμα (συνεχής εξωτερική φάση φλόγας, (Consistent External Flaming phase- CEF). Οι Klopovic και Turan (Klopovic και Turan, 2001a, Klopovic και Turan, 2001b) ήταν οι πρώτοι που πρότειναν την ιδέα της CEF. Στην έρευνά τους, οι θερμοκρασίες των διαμερισμάτων, οι ρυθμοί απώλειας μάζας, οι εξωτερικές θερμοκρασίες και οι οπτικές παρατηρήσεις χρησιμοποιήθηκαν για να προσδιοριστεί η έναρξη της CEF.

ΚΕΦΑΛΑΙΟ 3⁰

3.1 Σχέσεις προσδιορισμού γεωμετρικών χαρακτηριστικών εξερχομένης φλόγας

3.1.1 Σύγκριση αποτελεσμάτων πειράματος μικρής κλίμακας με Eurocode

Στην παρούσα ενότητα γίνεται σύγκριση των αποτελεσμάτων της οπτικής επεξεργασίας των πειραματικών video με τα αποτελέσματα που προέρχονται από την εφαρμογή του τυπολογίου του Eurocode.

Οι υπο-αεριζόμενες συνθήκες που επικρατούν εντός του πυροδιαμερίσματος εξαναγκάζουν τη φωτιά να εξέλθει του ανοίγματος, δημιουργώντας EVF. Όπως είναι αναμενόμενο, τα γεωμετρικά χαρακτηριστικά της εξερχόμενης φλόγας και κατ' επέκταση οι εξισώσεις που τα διέπουν, διαφέρουν κατά περίπτωση. Οι τιμές των μετρούμενων μεγεθών που προκύπτουν από την ανάλυση των πειραματικών δεδομένων συγκρίνονται με τις εμπειρικές συσχετίσεις του Ευρωκώδικα, προκειμένου να διαπιστωθεί εάν υφίστανται αποκλίσεις μεταξύ τους.

3.1.2 Σχέσεις προσδιορισμού ύψους εξερχόμενης φλόγας

Βάση για πολλές μελέτες σχεδιασμού πυροπροστασίας κατά την κατασκευή νέων κτιρίων αποτελεί ο Ευρωκώδικας (EN 1991-1-2). Σύμφωνα με την παράγραφο B.4.1 του Παραρτήματος B (Annex B), το ύψος της φλόγας εξερχόμενης από άνοιγμα περιγράφεται από την Εξίσωση (3.1):

$$L_{L} = \max\left[0; h_{eq}\left(2, 37\left(\frac{Q}{A_{\nu}\rho_{g}(h_{eq}g)^{1/2}}\right)^{2/3} - 1\right)\right]$$
(3.1)

Όπου:

• g: H epitácunst the barúthtae (m/s^2)

- Q : Ρυθμός έκλυσης θερμότητας (kW)
- Α_ν: Συνολικό εμβαδόν όλων των κατακόρυφων ανοιγμάτων των τοίχων (m²)
- h_{eq}: Σταθμισμένος μέσος των υψών των κατακόρυφων ανοιγμάτων όλων των τοίχων (m)
- ρ_g: πυκνότητα του καυσαερίου στο εσωτερικό του διαμερίσματος (kg/m³)

Για τυπική τιμή πυκνότητας καυσαερίου ρ_g =0.45 kg/m³ και για g=9.81 m/s² η Εξίσωση (3.1) απλοποιείται ως εξής:

$$L_{L} = 1.9 \left(\frac{Q}{W_{t}}\right)^{2/3} - h_{eq}$$
(3.2)

Στο Σχήμα 3.1 παρουσιάζονται τα γεωμετρικά χαρακτηριστικά της φλόγας που εξέρχεται από άνοιγμα. Αριστερά απεικονίζεται η περίπτωση της γεωμετρίας του παραθύρου και δεξιά η περίπτωση της γεωμετρίας της πόρτας, κατά την οποία ισχύει η ανισότητα h_{eq} >1.25 * w_t

Εικ. 3.1 Σχήμα φλόγας εξερχόμενης από άνοιγμα για την περίπτωση γεωμετρίας παραθύρου (αριστερά) και γεωμετρίας πόρτας (δεξιά)

3.1.3 Σχέσεις προσδιορισμού προέκτασης εξερχόμενης φλόγας

Η οριζόντια προέκταση της εξερχόμενης φλόγας (P = projection) υπολογίζεται κατά περίπτωση από τις Εξισώσεις 3.3-3.5, όπως περιγράφονται στον Ευρωκώδικα.

- Στην περίπτωση που υπάρχει τοίχος πάνω από το άνοιγμα:
 - Eáv $h_{eq} \le 1,25 * W_t$,

$$L_{H} = \frac{h_{eq}}{3} \quad \text{av} \quad h_{eq} \le 1,25W_{t} \tag{3.3}$$

• Εάν $h_{eq} > 1,25 * W_t$ και η απόσταση από οποιοδήποτε άλλο άνοιγμα > 4 * W_t ,

$$L_H = 0.3h_{eq}(h_{eq}/2W_t)^{0.54}$$
(3.4)

• Σε οποιαδήποτε άλλη περίπτωση $L_H = 0.6 h_{eq} (L_L / h_{eq})^{1/3}$ (3.5)

ΚΕΦΑΛΑΙΟ 4⁰

4.1. Επεξεργασία της εικόνας

4.1.1 Η εικόνα

Το ανθρώπινο οπτικό σύστημα μπορεί να ξεχωρίσει εκατοντάδες χιλιάδες διαφορετικές αποχρώσεις και εντάσεις χρώματος αλλά μόνο περίπου 100 αποχρώσεις του γκρι. Επιπλέον, σε μία εικόνα, μεγάλη ποσότητα επιπλέον πληροφορίας μπορεί να περιέχεται στο χρώμα, και αυτή η πληροφορία μπορεί να χρησιμοποιηθεί για να απλοποιηθεί η ανάλυση της εικόνας, π.χ. αναγνώριση αντικειμένου και απομόνωσή του βασισμένο στο χρώμα.

Τα ορατά χρώματα βρίσκονται μεταξύ των 400nm (βιολετί) και 700nm (κόκκινο) στο ηλεκτρομαγνητικό φάσμα, όπως φαίνεται και στην εικόνα (4.1). Τρεις ανεξάρτητες ποσότητες χρησιμοποιούνται για να περιγράψουν το κάθε χρώμα. Η απόχρωση (hue), καθορίζεται από το κυρίαρχο μήκος κύματος.

Εικ. 4.1: Το ορατό φάσμα [77]

Ο κορεσμός (saturation), καθορίζεται από την καθαρότητα της διέγερσης και εξαρτάται από το μέγεθος του λευκού φωτός που αναμιγνύεται με την απόχρωση. Μια καθαρή απόχρωση είναι ολοκληρωτικά διεγερμένη όταν π.χ. δεν αναμιγνύεται με καθόλου λευκό φως. Η απόχρωση και ο κορεσμός αποτελούν μαζί την ποιότητα του χρώματος (chromaticity), που δεν εξαρτάται από το φωτισμό.

Τέλος, η ένταση (intensity) καθορίζεται από την αντικειμενική ποσότητα του φωτός, με περισσότερο φως να αντιστοιχεί σε πιο έντονα χρώματα. Το αχρωματικό φως δεν έχει χρώμα – το μόνο του χαρακτηριστικό είναι η ποσότητα ή η ένταση. Το επίπεδο του γκρίζου είναι ένα μέτρο έντασης. Η ένταση καθορίζεται από την ενέργεια, και είναι προφανώς μία φυσική ποσότητα. Από την άλλη πλευρά, η λάμψη ή η φωτεινότητα (luminance) καθορίζεται από την αντίληψη του χρώματος, και είναι περισσότερο ψυχολογική. Με δοσμένα ίδιο έντονα μπλε και πράσινο, το μπλε γίνεται αντίληπτό ως πολύ πιο σκούρο από το πράσινο. Εδώ αξίζει να σημειωθεί ότι η αντίληψή του ανθρώπου για την ένταση είναι μη γραμμική, με αλλαγές της ομαλοποιημένης έντασης από 0.1 εώς 0.11 και 0.5 μέχρι 0.55 να γίνονται αντίληπτές σαν ίδιες αλλαγές της φωτεινότητας.

Το χρώμα εξαρτάται κυρίως από τις ανακλαστικές ιδιότητες ενός αντικειμένου. Γίνονται αντιληπτές οι ακτίνες που αντανακλώνται ενώ άλλες απορροφώνται. Παρόλα αυτά, πρέπει να ληφθεί υπόψιν και το χρώμα της πηγής του φωτός, καθώς και η φύση του ανθρώπινου συστήματος όρασης. Για παράδειγμα, ένα αντικείμενο που ανακλά και κόκκινο και πράσινο θα φανεί πράσινο όταν υπάρχει πράσινο αλλά όχι κόκκινο φως που το φωτίζει, και αντίθετα θα φανεί κόκκινο με την απουσία πράσινου φωτός. Σε καθαρό λευκό φως, θα φανεί κίτρινο (κόκκινο + πράσινο).

4.2 Χρωματικά Μοντέλα

4.2.1 Εισαγωγικά

Τα χρωματικά μοντέλα παρέχουν ένα βασικό τρόπο απομόνωσης ενός συγκεκριμένου χρώματος, ορίζοντας ένα τρισδιάστατο σύστημα συντεταγμένων, και ένα υποσύνολο που περιέχει όλα τα κατασκευάσιμα χρώματα μέσα στο συγκεκριμένο μοντέλο. Κάθε χρώμα που μπορεί να αναγνωριστεί χρησιμοποιώντας κάποιο από τα υπάρχοντα μοντέλα αντιστοιχεί σε ένα μοναδικό σημείο μέσα στην αντίστοιχη περιοχή που ορίζεται. Κάθε χρωματικό μοντέλο είναι προσανατολισμένο είτε προς ένα συγκεκριμένο μοντέλο (RGB, CMY, YIQ) ή προς συγκεκριμένη εφαρμογή επεξεργασίας εικόνας (HSI).

4.2.2 Μοντέλο RGB

Στο συγκεκριμένο μοντέλο, το οποίο είναι και το βασικότερο, η εικόνα αποτελείται από τρία ανεξάρτητα επίπεδα, το καθένα σε ένα από τα βασικά χρώματα: Κόκκινο (R), πράσινο (G) και μπλε (B). (Τα βασικά μήκη κύματος για τα τρία βασικά χρώματα φαίνονται στο σχήμα 4.2). Ο προσδιορισμός ενός συγκεκριμένου χρώματος γίνεται με τον προσδιορισμό της ποσότητας του κάθε βασικού χρώματος.

Η Εικόνα 4.2 δείχνει τη γεωμετρία του RGB χρωματικού μοντέλου για να προσδιορίζονται τα χρώματα χρησιμοποιώντας σύστημα Καρτεσιανών συντεταγμένων. Το φάσμα της κλίμακας του γκρι, όπως τα χρώματα που φτιάχνονται από ίσες ποσότητες του κάθε βασικού χρώματος, βρίσκεται πάνω στη γραμμή που ενώνει την μαύρη και την άσπρη κορυφή.

Εικ. 4.2: Ο κύβος RGB [77]

Αυτό είναι ένα προσθετικό μοντέλο, αφού τα παρόντα χρώματα στο φως ενώνονται για να σχηματίσουν νέα χρώματα και είναι κατάλληλα για την μίξη χρωματιστού φωτός για παράδειγμα. Στην Εικόνα 4.3 (αριστερά) απεικονίζεται η προσθετική μίξη του κόκκινου, του πράσινου και του μπλε χρώματος για τη δημιουργία τριών δευτερευόντων χρωμάτων κίτρινο (κόκκινο + πράσινο), θαλασσί (μπλε + πράσινο), μωβ (κόκκινο + μπλε) και λευκό (κόκκινο + πράσινο + μπλε). Το μοντέλο RGB χρησιμοποιείται σε χρωματιστές οθόνες και στις περισσότερες βιντεοκάμερες.

Εικ. 4.3 Προσθετικό (RGB) / αφαιρετικό μοντέλο (CMY) [77]

4.2.3 Μοντέλο CMY

Το CMY μοντέλο (cyan – magenta - yellow,) είναι ένα αφαιρετικό μοντέλο κατάλληλο για απορρόφηση χρωμάτων. Ενώ στο μοντέλο RGB τίθεται το ερώτημα του τι προστίθεται στο μαύρο για να παραχθεί ένα συγκεκριμένο χρώμα, στο CMY μοντέλο τίθεται το ερώτημα του τι αφαιρείται από το λευκό για να προκύψει το αποτέλεσμα. Σε αυτήν την περίπτωση τα βασικά χρώματα είναι το γαλάζιο, το μωβ και το κίτρινο και αντίστοιχα το κόκκινο, πράσινο και μπλε είναι δευτερεύοντα. Αυτό απεικονίζεται αναλυτικά στην Εικόνα 4.3.

4.2.4 Μοντέλο YCbCr ή Y'CbCr

Το μοντέλο YCbCr ή Y'CbCr είναι ουσιαστικά μια οικογένεια μοντέλων που χρησιμοποιούνται σαν μέρος της κατηγορίας της έγχρωμης εικόνας στα βίντεο και την ψηφιακή φωτογραφία.

Το στοιχείο Υ αποτελεί τη φωτεινότητα (luminance) ενώ το Υ΄ αποτελεί το στοιχείο luma, και τα Cb και Cr είναι η μπλε και κόκκινη διάσταση της ποιότητας του χρώματος (chroma/chrominance).

Αυτό πρακτικά σημαίνει ότι αν ένα χρώμα έχει υψηλή ποιότητα, δεν περιέχει σκιές λευκού και γκρι φωτός. Το μοντέλο αυτό δεν είναι ένα βασικό αλλά είναι ουσιαστικά μια κρυπτογράφηση της RGB πληροφορίας. Στην εικόνα 4.4 φαίνεται σχηματικά η μετατροπή των επιπέδων RGB μιας εικόνας σε επίπεδα YCbCr:

Εικ 4.4 Σχηματικός τρόπος μετατροπής του RGB σε YCbCr [77]

Τα YCbCr και Y'CbCr είναι μια πρακτική προσέγγιση στην επεξεργασία του χρώματος και την αντιληπτική ομοιομορφία, όπου τα βασικά χρώματα που αντιστοιχούν στο κόκκινο, το πράσινο και το μπλε υφίστανται επεξεργασία και μετατρέπονται σε πολύ χρήσιμη πληροφορία. Με αυτή την πληροφορία, κατά την επακόλουθη επεξεργασία εικόνας/βίντεο, και την μετατροπή και φύλαξη αυτής, μπορούν να εντοπίστουν μεταβολές με πολλούς τρόπους. Ένα παράδειγμα θα ήταν, η μείωση του φάσματος της συχνότητας ή της ανάλυσης που είναι επιμερισμένη στο 'χρώμα' σε σχέση με το 'ασπρόμαυρο', δεδομένου ότι το ανθρώπινο μάτι είναι πιο ευαίσθητο στην πληροφορία που περιέχεται στο δεύτερο, κάτι που φαίνεται και στην εικόνα 4.5.

Εικ 4.5 : Μία έγχρωμη εικόνα και οι Υ, Cb και Cr συνιστώσες της. Η εικόνα Υ είναι ουσιαστικά μια αντιγραφή της αρχικής εικόνας στην κλίμακα του γκρι [77]

4.2.5 Μοντέλο HSI

Όπως αναφέρθηκε προηγουμένως, το χρώμα μπορεί να προσδιοριστεί από τρεις ποσότητες, την απόχρωση, τον κορεσμό και την ένταση. Αυτό είναι το HSI μοντέλο, και ολόκληρο το διάστημα των χρωμάτων που μπορεί να προσδιοριστεί με αυτόν τον τρόπο δίνεται από την Εικ 4.6.

Εικ 4.6 Το μοντέλο HSI [77]

Το μοντέλο HSI, απεικονίζοντας το HSI συμπαγές στερεό στα αριστερά, και το HSI τρίγωνο στα δεξιά, το οποίο δημιουργήθηκε παίρνοντας μια οριζόντια τομή κατά μήκος του συμπαγούς στερεού/μοντέλου σε μια συγκεκριμένη ένταση. Η απόχρωση υπολογίζεται από το κόκκινο και ο κορεσμός από την απόσταση από τον άξονα. Τα χρώματα στην επιφάνεια του στερεού είναι τελείως κορεσμένα, όπως τα καθαρά χρώματα και το φάσμα της κλίμακας του γκρι είναι πάνω στον άξονα του στερεού. Για αυτά τα χρώματα, η απόχρωση είναι ακαθόριστη.

Η μετατροπή μεταξύ του μοντέλου RGB και του HSI είναι αρκετά πολύπλοκη. Η ένταση δίνεται από τον τύπο 4.1:

$$I = (R + G + B)/3 \tag{4.1}$$

όπου οι ποσότητες R,G,B είναι οι ποσότητες του κόκκινου, πράσινου και μπλε κανονικοποιημένες στο εύρος τιμών [0,1]. Η ένταση είναι λοιπόν απλά ο μέσος όρος αυτών των τιμών. Ο κορεσμός δίνεται από τον τύπο 4.2

$$S = \frac{\min(R, G, B)}{I} = 1 - \frac{3}{R+G+B}\min(R, G, B)$$
(4.2)

όπου ο όρος min(R,G,B) απλά δείχνει την ποσότητα της παρουσίας λευκού χρώματος. Αν κάποιο από τα R,G,B είναι μηδέν, τότε δεν υπάρχει καθόλου λευκό κι υπάρχει καθαρό χρώμα.

4.3 Μεθοδολογίες οπτικής ανίχνευσης φλόγας

Οι κάμερες παρακολούθησης βίντεο χρησιμοποιούνται ευρέως σε εφαρμογές ασφάλειας. Ο εντοπισμός και η εξαγωγή των σχετικών πληροφοριών αποτελεί τη μεγαλύτερη πρόκληση που αντιμετωπίζουν σήμερα οι διαχειριστές συστημάτων ασφάλειας και παρακολούθησης βίντεο. Υπάρχει μια πραγματική ανάγκη για έξυπνη ανάλυση περιεχομένου βίντεο για την υποστήριξη των χειριστών ώστε να ανιχνευθούν ανεπιθύμητες συμπεριφορές και ασυνήθιστη δραστηριότητα προτού προκύψουν. Παρά την αξιοσημείωτη έρευνα στον τομέα της ηλεκτρονικής όρασης, οι εμπορικές εφαρμογές για την αυτοματοποιημένη ανάλυση βίντεο σε πραγματικό χρόνο περιμετρικά συστήματα ασφαλείας, περιορίζονται σε εφαρμογές και συστήματα παρακολούθησης, συστήματα μέτρησης και μετακίνησης αντικειμένων. Αυτό οφείλεται κυρίως στο γεγονός ότι θα ήταν πολύ δύσκολο να αναπαραχθεί η γενική ανθρώπινη νοημοσύνη.

Η φωτιά είναι ένας από τους μεγαλύτερους κινδύνους που επηρεάζουν την καθημερινή ζωή σε όλο τον κόσμο. Οι έξυπνες τεχνικές επεξεργασίας βίντεο για την ανίχνευση και την ανάλυση του φαινομένου είναι σχετικά νέες. Για την αποφυγή ζημιών μεγάλης κλίμακας και καπνού, η έγκαιρη και ακριβής ανίχνευση πυρκαγιάς είναι κρίσιμη. Όσο νωρίτερα ανιχνεύεται η πυρκαγιά, τόσο μεγαλύτερη είναι και η πιθανότητα επιβίωσης. Επιπλέον, είναι επίσης σημαντικό να αποκτάται

μια σαφής κατανόηση της ανάπτυξης και της τοποθεσίας της φωτιάς. Η αρχική τοποθεσία, το μέγεθος της φωτιάς, η κατεύθυνση της διάδοσης του καπνού, ο ρυθμός ανάπτυξης της φωτιάς είναι σημαντικές παράμετροι που διαδραματίζουν σημαντικό ρόλο στην ανάλυση και τον περιορισμό / μετριασμό της ασφάλειας και είναι ουσιώδεις για την εκτίμηση του κινδύνου κλιμάκωσης.

Ωστόσο, η πλειονότητα των ανιχνευτών που χρησιμοποιούνται σήμερα είναι "ανιχνευτές σημείων" και απλώς εκπέμπουν συναγερμό [32]. Δεν έχουν πολύ μεγάλη χρησιμότητα για την εκτίμηση της εξέλιξης της φωτιάς και δεν παρέχουν καμία πληροφορία σχετικά με τις συγκεκριμένες περιστάσεις. Οι πρόσφατα προτεινόμενες τεχνικές ανίχνευσης πυρκαγιάς μέσω βίντεο (Video Fire Detection - VFD) είναι βιώσιμες εναλλακτικές λύσεις ή συμπληρώματα στις υπάρχουσες τεχνικές ανίχνευσης πυρκαγιάς και έχουν αποδειχθεί χρήσιμες για την επίλυση αρκετών προβλημάτων που σχετίζονται με τους παραδοσιακούς αισθητήρες. Οι συμβατικοί αισθητήρες περιορίζονται γενικά σε εσωτερικούς χώρους και δεν λειτουργούν σε μεγάλους ανοικτούς χώρους όπως εμπορικά κέντρα, αεροδρόμια, χώρους στάθμευσης αυτοκινήτων και δάση. Απαιτούν άμεση γειτνίαση με το φως και οι περισσότεροι δεν μπορούν να παράσχουν πρόσθετες πληροφορίες σχετικά με τη θέση της φωτιάς, τη διάσταση της, κ.λπ. Ένας από τους κύριους περιορισμούς των εμπορικά διαθέσιμων συστημάτων συναγερμού είναι ότι μπορεί να χρειαστεί πολύς χρόνος για σωματίδια αιθάλης και καπνό μέχρι να φτάσουν στον «σημειακό» ανιχνευτή. Αυτό ονομάζεται καθυστέρηση μεταφοράς. Η ανάλυση βίντεο μπορεί να εφαρμοστεί σε συνθήκες όπου οι συμβατικές μέθοδοι αποτυγχάνουν. Το VFD έχει τη δυνατότητα να ανιχνεύει το φως από απόσταση σε μεγάλους ανοικτούς χώρους, επειδή οι κάμερες μπορούν να παρακολουθήσουν "όγκους". Ως αποτέλεσμα, η VFD δεν έχει την καθυστέρηση μεταφοράς και κατωφλίου που υφίστανται οι παραδοσιακοί «σημειακοί» αισθητήρες. Μόλις εμφανιστούν καπνός ή φλόγες σε μία από τις προβολές της κάμερας, είναι δυνατό να ανιχνευθεί αμέσως το φως.

Η έρευνα στον τομέα αυτό ξεκίνησε στα τέλη της δεκαετίας του 1990. Τα περισσότερα από τα άρθρα VFD που είναι διαθέσιμα στη βιβλιογραφία επηρεάζονται από την έννοια του πλαισίου της τεχνητής νοημοσύνης (AI), που εισήχθη αρχικά από τον Hubert L. Dreyfus [33,34].

Ο Dreyfus παρουσιάζει ισχυρά φιλοσοφικά και επιστημονικά επιχειρήματα σχετικά με το γιατί η αναζήτηση για «γενικευμένη» ΑΙ είναι μάταιη [35]. Επομένως, κάθε συγκεκριμένο πρόβλημα, συμπεριλαμβανομένου του VFD, θα πρέπει να αντιμετωπιστεί ως μεμονωμένο πρόβλημα

μηχανικής που έχει τα δικά του χαρακτηριστικά [36]. Είναι δυνατό να μοντελοποιηθεί η συμπεριφορά μιας πυρκαγιάς σε βίντεο χρησιμοποιώντας διάφορες μεθόδους επεξεργασίας σημάτων και εικόνων ώστε να ανιχνεύεται αυτόματα η φωτιά με βάση τις πληροφορίες που προέρχονται από το βίντεο.

Οι τρέχοντες διαθέσιμοι αλγόριθμοι VFD επικεντρώνονται κυρίως στην ανίχνευση και ανάλυση του καπνού και των φλογών σε διαδοχικές εικόνες βίντεο. Στα πρώιμα άρθρα διερευνήθηκε κυρίως η ανίχνευση φλογών. Πρόσφατα, εξετάζεται επίσης το πρόβλημα ανίχνευσης καπνού. Ο λόγος για αυτό μπορεί να βρεθεί στο γεγονός ότι ο καπνός εξαπλώνεται γρηγορότερα και στις περισσότερες περιπτώσεις εμφανίζεται πολύ πιο γρήγορα στην οπτική γωνία των καμερών.

Η πλειοψηφία των καινοτόμων τεχνικών ανίχνευσης επικεντρώνεται στα χαρακτηριστικά χρώματος και σχήματος μαζί με τη χρονική συμπεριφορά του καπνού και της φλόγας. Ωστόσο, λόγω της μεταβλητότητας του σχήματος, της κίνησης, της διαφάνειας, των χρωμάτων και των μορφών καπνού και ρευμάτων, πολλές από τις υπάρχουσες προσεγγίσεις VFD εξακολουθούν να είναι ευάλωτες σε ψευδείς συναγερμούς. Λόγω του οπτικού θορύβου, των σκιών, των αλλαγών φωτισμού και άλλων οπτικών αντικειμένων στα βίντεο, η ανάπτυξη ενός αξιόπιστου συστήματος ανίχνευσης αποτελεί πρόκληση για την κοινότητα επεξεργασίας εικόνων και υπολογιστικών αναλύσεων.

4.3.1 Ανίχνευση πυρκαγιάς με χρήση βιντεοσκόπησης σε ορατό φασματικό εύρος

Τα τελευταία χρόνια, ο αριθμός των μελετών σχετικά με την ανίχνευση πυρκαγιάς με χρήση βιντεοσκόπησης στη βιβλιογραφία αυξάνεται εκθετικά [32]. Η συμπεριφορά του καπνού και των φλογών μιας ανεξέλεγκτης πυρκαγιάς διαφέρει με την απόσταση και τον φωτισμό. Επιπλέον, οι κάμερες δεν είναι συσκευές έγχρωμης ή / και φασματικής μέτρησης. Έχουν διαφορετικούς αισθητήρες και αλγόριθμους εξισορρόπησης χρώματος και φωτισμού. Μπορούν να παράγουν διαφορετικές εικόνες και βίντεο για την ίδια σκηνή λόγω των εσωτερικών ρυθμίσεων και αλγορίθμων.

Ανίχνευση χρωμάτων

Η ανίχνευση χρώματος ήταν μία από τις πρώτες τεχνικές ανίχνευσης που χρησιμοποιήθηκαν στην VFD και εξακολουθεί να χρησιμοποιείται σε όλες σχεδόν τις μεθόδους ανίχνευσης. Η πλειοψηφία των προσεγγίσεων με βάση το χρώμα στη VFD χρησιμοποιεί την ανάλυση χρώματος RGB, μερικές φορές σε συνδυασμό με την μέθοδο HSI / HSV κορεσμού [40,52, 54,55]. Ο κύριος λόγος για τη χρήση του RGB είναι ότι σχεδόν όλες οι ορατές κάμερες έχουν αισθητήρες που ανιχνεύουν βίντεο σε μορφή RGB και υπάρχει το προφανές φασματικό περιεχόμενο που σχετίζεται με αυτό το χώρο χρωμάτων. Οι τιμές RGB των εικονοστοιχείων πυρκαγιάς είναι κόκκινου χρώματος που υποδεικνύεται από τον κανόνα (R > G > B) όπως φαίνεται στην Εικ. 4.7.

Εικ. 4.7 Ανίχνευση χρωμάτων [78]

Παρομοίως, σε εικονοστοιχεία καπνού, οι τιμές R, G και B είναι πολύ κοντά η μια στην άλλη. Τα πιο περίπλοκα συστήματα χρησιμοποιούν τεχνικές βασισμένες σε κανόνες όπως τα ιστογράμματα με λεπτές χρωματικές εκτυπώσεις Gauss [37], τα χρωματικά μοντέλα που έχουν δημιουργηθεί από στατιστικά [44] και οι λειτουργίες ανάμειξης [49]. Είναι προφανές ότι το χρώμα δεν μπορεί να χρησιμοποιηθεί από μόνο του για την ανίχνευση του φαινομένου λόγω της μεταβλητότητας του χρώματος, της πυκνότητας, του φωτισμού και του φόντου. Ωστόσο, οι πληροφορίες χρώματος μπορούν να χρησιμοποιηθούν ως μέρος ενός πιο εξελιγμένου συστήματος. Η τιμή φωτεινότητας των περιοχών καπνού πρέπει να είναι υψηλή για τις περισσότερες πηγές καπνού. Από την άλλη πλευρά, οι τιμές χρωματισμού πρέπει να είναι πολύ χαμηλές. Οι συνθήκες στο χώρο χρώματος YUV έχουν ως εξής:

Προϋπόθεση 1: $Y > T_Y$, Προϋπόθεση 2: $|U - 128| < T_U$ και $|V - 128| < T_V$,

όπου τα Υ, U και V είναι οι τιμές φωτεινότητας και χρώματος ενός συγκεκριμένου εικονοστοιχείου, αντίστοιχα. Η συνιστώσα φωτεινότητας Υ παίρνει τιμές στην περιοχή [0, 255] σε μία κβαντισμένη εικόνα 8-bit και οι μέσες τιμές των καναλιών χρωματισμού, U και V αυξάνονται σε 128, έτσι ώστε να λαμβάνουν επίσης τιμές μεταξύ 0 και 255. Τα όρια των τιμών κατωφλίου ((threshold values) των τιμών φωτεινότητας και χρώματος, T_Y , T_U και T_V , ορίζονται αναλόγως του πειράματος [60].

Ανίχνευση κινούμενων αντικειμένων

Η ανίχνευση κινούμενων αντικειμένων χρησιμοποιείται επίσης ευρέως στην VFD, επειδή οι φλόγες και ο καπνός είναι κινούμενα αντικείμενα. Για να προσδιοριστεί αν η κίνηση οφείλεται σε καπνό ή σε ένα κοινό κινούμενο αντικείμενο, είναι απαραίτητη η περαιτέρω ανάλυση των κινούμενων περιοχών στο βίντεο. Οι γνωστοί αλγόριθμοι ανίχνευσης κινούμενων αντικειμένων είναι οι μέθοδοι αφαίρεσης (BG) [45,50,47,42,43,46,49,51,54,55,57,59], χρονική διαφοροποίηση [48] και οπτικές ανάλυση ροής [39,38,56]. Μπορούν όλοι να χρησιμοποιηθούν ως μέρος ενός συστήματος VFD.

Στις μεθόδους αφαίρεσης υποβάθρου, θεωρείται ότι η κάμερα είναι ακίνητη. Στην Εικ. 4.8, ένα παράδειγμα ανίχνευσης κίνησης βασισμένο στην αφαίρεση υποβάθρου παρουσιάζεται χρησιμοποιώντας το μοντέλο δυναμικού υποβάθρου που προτείνεται από τους Collins et αϊ. [61].

Εικ. 4.8 Ανίχνευση κινούμενων αντικειμένων: αφαίρεση υποβάθρου χρησιμοποιώντας μοντέλο δυναμικού υποβάθρου.[78]

Αυτό το μοντέλο προσέγγισης βασισμένο στο Μοντέλο Γκαουσιανού Μίγματος χρησιμοποιήθηκε σε πολλές μελέτες την βιβλιογραφία. Ορισμένα από τα πρώιμα άρθρα VFD απλά ταξινομούν τα κινούμενα αντικείμενα ως φώτα αλλά η προσέγγιση αυτή οδηγεί σε πολλούς ψευδείς συναγερμούς, π.χ. τα χρωματισμένα συνηθισμένα αντικείμενα κ.λπ., μπορεί να ταξινομηθούν λανθασμένα ως φλόγες. Απαιτείται περαιτέρω ανάλυση της κίνησης σε βίντεο για την επίτευξη πιο ακριβών συστημάτων.

Ανάλυση κίνησης και ροής χρησιμοποιώντας μετασχηματισμούς Fourier και wavelet

Όπως είναι ευρέως γνωστό, οι φλόγες τρεμοπαίζουν με ανεξέλεγκτο τρόπο, επομένως η ανίχνευση αυτού του τρεμοπαίγματος [52,47,41,42,54,55,57] στην ανάλυση σήματος εικόνας και

κυματομορφής [50,43,49,53,58,62] μπορεί να χρησιμοποιηθεί για να διακρίνει τα συνηθισμένα αντικείμενα από τις φλόγες. Αυτές οι μέθοδοι επικεντρώνονται στην χρονική συμπεριφορά των φλογών και του καπνού. Ως αποτέλεσμα, εμφανίζονται και εξαφανίζονται έγχρωμα εικονοστοιχεία που φαίνονται στο άκρο των φλογών.

Ανίχνευση φλόγας με χρήση βίντεο σε υπέρυθρο φάσμα (IR)

Όταν δεν υπάρχει καθόλου η υπάρχει ελάχιστο ορατό φως ή το χρώμα του προς ανίχνευση αντικειμένου είναι παρόμοιο με το φόντο, τα συστήματα IR απεικόνισης παρέχουν λύσεις για την επίτευξη της αναγνώρισης της φλόγας[63-69]. Παρόλο που υπάρχει μια αυξανόμενη τάση στην ανάλυση εικόνων που βασίζεται στην κάμερα IR, ο αριθμός των μελετών στην περιοχή της ανίχνευσης πυρκαγιών με IR συστήματα είναι λίγες [65-69]. Αυτό οφείλεται κυρίως στο υψηλό κόστος των συστημάτων απεικόνισης IR σε σύγκριση με τις συνήθεις κάμερες. Οι κατασκευαστές προβλέπουν ότι οι τιμές των κάμερας IR θα μειωθούν στο εγγύς μέλλον.

Επομένως, αναμένεται ότι ο αριθμός των εφαρμογών απεικόνισης IR θα αυξηθεί σημαντικά [64]. Οι κάμερες Long-Wave Infrared (εύρος 8-12 μικρών) είναι οι πιο ευρέως διαθέσιμες κάμερες στην αγορά. Στις ανωτέρω κάμερες Long-Wave Infrared (LWIR) το φως περνάει από τον καπνό, επομένως είναι εύκολο να ανιχνευτεί ο καπνός χρησιμοποιώντας συστήματα απεικόνισης LWIR.

Συνοψίζοντας, πρέπει να επισημανθεί ότι δεν είναι εύκολο να ανιχνευθεί μια πυρκαγιά με την χρήση φωτογραφικών μηχανών ΙR. Δεν είναι όλα τα φωτεινά αντικείμενα στο βίντεο IR πηγή φυσικού φωτισμού. Είναι σημαντικό να αναφερθεί ότι η IR απεικόνιση έχει τους δικούς της περιορισμούς, όπως μπλοκάρισμα IR και προβλήματα θερμικής απόστασης. Σε ορισμένες περιπτώσεις, η ανίχνευση με βάση το IR θα έχει καλύτερη απόδοση από την ορατή VFD, αλλά υπό άλλες συνθήκες, η VFD μπορεί αντίστοιχα να είναι καλύτερη μέθοδος.

Στον Πίνακα 4.1, παρουσιάζεται μια βιβλιογραφική ανασκόπηση μελετών σχετικά με τα μοντέλα ανίχνευση φωτιάς μέσω ανάλυσης εικόνας και των αντίστοιχων κριτηρίων τους.

A/A	Τίτλος Άρθρου	Λεπτομέρειες εικόνας	Μέθοδος ανίχνευσης φλόγας	Κριτήρια
1	Vipin V., "Image Processing Based Forest Fire Detection", International Journal of Emerging Technology and Advanced Engineering 2 (2), 87-95 (2012)	200 εικόνες	RGB to YCbCr color space	R>G>B, R>190 & G>100 & B<140, Y>Cb, Cr>Cb, Y>=Ymean & Cb<=Cbmean & Cr>=Crmean /, Cb- Cr >=Th, Cb<=120 & Cr>=150
2	Celik T., "Fast and efficient method for fire detection using image processing", ETRI Journal 32 (6), 881-890 (2010)	30fps minimum, 320x240	RGB to CIE L*a*b*, Ανίχνευση κινούμενης εικόνας	
3	Celik T., Demirel H., "Fire detection in video sequences using a generic color mode", Fire Safety Journal 44, 147-158 (2009)	1000 εικόνες, 256x256	RGB to YCbCr	
4	Celik T., Demirel H., Ozkaramanli H., Uygurogly M., "Fire detection using statistical color model in video sequences", Journal of Cisual Communication and Visual Representation 18, 176-185 (2007)	40fps, 10^6 frames 176x144, Διακύμανση χρόνου (κινούμενη εικόνα)	RGB to YCbCr, probability density	
5	Celik T., Ozkaramanli H., Demirel H., "Fire and smoke detection without sensors: Image processing based approach", Proceeding of the 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, 3-7 September 2007	332 εικόνες	RGB to YCbCr	
6	Truong T.X., Kim J.M., "Fire flame detection in video sequences using multi-stage pattern recognition techniques", Engineering Applications of Artificial Intelligence 25, 1365-1372 (2012)		RGB to CIE L*a*b*, Moving region detection, FCM, SVM	
7	Chen J., Bao Q., "Digital Image processing based fire flame color and oscillation frequency analysis", PE45, 595-69, (2012)	30 διαφορετικά σενάρια ημέρας και νύχτας (3000 + 1500 εικόνες)	RGB to HSI color space	
8	Horng W.B., Peng J.W., "A fast image- based fire flame detection method using color analysis", Tamkang Journal of Science and Engineering 11 (3), 273- 285 (2008)	30fps, 12 βίντεο φλόγας πυρκαγιάς	Μοντέλο χρώματος RGB σε HSI, Τελικά δυαδική εικόνα (εικόνα διαφοράς περιγράμματος)	

A/A	Τίτλος Άρθρου	Λεπτομέρειες εικόνας	Μέθοδος ανίχνευσης φλόγας	Κριτήρια
9	Marbach G., Loepfe M., Brupbacher T., "An image processing technique for fire detection in video images", Fire Safety Journal 41, 285-289 (2006)	Σετ από 750 καρέ, 288x352, 25fps	Flickering, reaching maximum luminance, Time variation of luminance, chrominance	
10	Vicente J., Guillemant P., "An image processing technique for automatically detecting forest fire", International Journal of Thermal Sciences 41, 1113– 1120 (2002)	30fps	Local time varying grey levels in connected pixels, discrimination of natural phenomena, Manual isolation of fire, temporal variation	
11	Yadav G., Gupta V., Gaur V., Dr. Bhattacharya M., "Optimized flame detection using image processing based techniques", IJCSE,vol.3, no.2 (2012)	MATLAB code	RGB to binary, motion/edge/color detection	R>RT, R>G>B, S>(255-R)*ST/RT, RT ε [170,190], ST ε [40,60]
12	Patel P., Tiwari S., "Flame detection using image processing techniques", International Journal of Computer Applications 58 (18), 13-16 (2012)	Motion/ area detection	RGB to YCbCr color plane	R>G>B, R(x,y)>190, &G(x,y)>100 & B(x,y)<140, Y>=Cb , Cr>=Cb
13	Toreyin U., Dedeoglu Y., Cetin E., "Flame detection in video using hidden markov models", ???		RGB color plane, 320x240, 10msec, Markov models	R>G>B , T>RT , S>(255-R)*ST/RT

Πίνακα 4.1: Βιβλιογραφική ανασκόπηση μελετών σχετικά με τα μοντέλα ανίχνευση φωτιάς μέσω ανάλυσης εικόνας και των αντίστοιχων κριτηρίων τους.

4.4 Προσδιορισμός γεωμετρικών χαρακτηριστικών εξερχόμενης φλόγας

4.4.1 Πιθανότητα παρουσίας φλόγας (flame intermittency)

Η αβεβαιότητα στον προσδιορισμό του ύψους EVF (L_L) προκύπτει κυρίως από τους διαφορετικούς ορισμούς του μέσου ή του μέγιστου ύψους φλόγας (DiNenno et al., 2002; McCaffrey, 1983; Audoin et al., 1995). Οι οπτικές παρατηρήσεις τείνουν να δίνουν ελαφρές υπερεκτιμήσεις ύψους φλόγας, επομένως η ανάλυση επεξεργασίας εικόνας μπορεί να παρέχει πιο ακριβή αποτελέσματα, χρησιμοποιώντας μεθοδολογίες ανάλυσης υψηλού καρέ ανά δευτερόλεπτο για τον προσδιορισμό της τιμής intermittency. Η τελευταία ποσότητα είναι ουσιαστικά το κλάσμα του χρόνου που μέρος της φλόγας είναι πάνω από ένα ορισμένο ύψος (DiNenno et al., 2002).

Δεδομένου ότι η φλόγα είναι κυμαινόμενη, το L_L καθορίζεται συνήθως με τον υπολογισμό της μέσης πιθανότητας φλόγας (intermittency). Πρώιμη έρευνα (McCaffrey, 1983) έδειξε ότι η πυρκαγιά πάνω από μια πηγή καυσίμου μπορεί να χωριστεί σε τρεις κύριες περιοχές, που χαρακτηρίζονται από τη μέση πιθανότητα φλόγας. Χρησιμοποιώντας κριτήρια διακοπτόμενης φλόγας, αυτές οι τρεις ξεχωριστές περιοχές, είναι: α)«συνεχής φλόγα», β)«διαλείπουσα φλόγα» και γ)«μακρινό λοφίο», οι οποίες μπορούν επίσης να αναγνωριστούν στις EVF (Tang et al., 2012; Lee et al., 2008). Σε αυτό το πλαίσιο, το ύψος της φλόγας που αντιστοιχεί στη «συνεχή φλόγα» (LL_0.95, διαλείπουσα 95%), «διαλείπουσα φλόγα» (LL_0.50, 50% διακοπτόμενος χρόνος) και «μακριά λοφίο» (LL_0.05, 5 % διαλείπουσες περιοχές) μπορούν να ληφθούν, και πέρα από την τελευταία περιοχή δεν μπορεί να φανεί η φλόγα και υπάρχουν μόνο προϊόντα καυτής καύσης, Εικόνα 4.9.

Εικ. 4.9 Τρεις κύριες περιοχές της πυρκαγιάς πάνω από την πηγή καυσίμου. δηλαδή συνεχής φλόγα, διαλείπουσα φλόγα και μακρινού πεδίου λοφίο. [72]

Τα αποτέλεσμα της παρούσας διπλωματικής εργασίας που αφορούν τα πειράματα large και small scale λαμβάνοντας υπόψη την intermittency παρουσιάζονται αναλυτικά στο Παράρτημα Γ της παρούσας διπλωματικές εργασίας.

4.5 Ανάπτυξη λογισμικού

Η επεξεργασία εικόνας είναι μια αναπτυσσόμενη μέθοδος που χρησιμοποιείται σήμερα στην ανάλυση των πειραμάτων πυρκαγιάς, π.χ. όπως απεικονίζεται στην Εικ. 4.10, λόγω της ανάπτυξης ψηφιακών βιντεοκαμερών σε συνδυασμό με την αυξημένη υπολογιστική ισχύ (Vipin, 2012 [81]). Κάτωθι παρουσιάζεται λεπτομερώς το πρόγραμμα επεξεργασίας ψηφιακής εικόνας που έχει αναπτυχθεί στο εργαστήριο ΕΜΣΚ. Ο αλγόριθμος ΜΑΤLΑΒ χρησιμοποιήθηκε για τη δημιουργία αυτού του εργαλείου επεξεργασίας εικόνας, Καταγράφονται και επεξεργάζονται χρονολογικές σειρές ψηφιακών στιγμιότυπων από βίντεο πειραμάτων φωτιάς, με σκοπό τον προσδιορισμό των γεωμετρικών χαρακτηριστικών των EVF. Αυτή η ανάλυση μετά από τα βιντεοσκοπημένα πειράματα επιτρέπει τον οπτικό προσδιορισμό των γεωμετρικών χαρακτηριστικών EVF ως συνάρτηση του χρόνου.

Εικ. 4.10 Ανάλυση εικόνας των πειραμάτων φωτιάς, αριστερά (Vipin, 2012 [81]).

4.5.1 Λογισμικό MATLAB

Ο λογισμικό αναπτύχθηκε σε γλώσσα προγραμματισμού MATLAB. Η επιλογή της συγκεκριμένης γλώσσας προγραμματισμού παρουσιάζει μια σειρά από πλεονεκτήματα όπως:

- Ι. Απλότητα στην συγγραφή.
- ΙΙ. Συμβατότητα με όλα τα αρχεία εικόνας (όπως tiff, jpg, img, png) και δεδομένων (όπως dat., txt, xlx, xlsx).
- III. Διαθεσιμότητα της συγκεκριμένης γλώσσας προγραμματισμού.
- IV. Η συγκεκριμένη γλώσσα προγραμματισμού χρησιμοποιείται για την ανάπτυξη λογισμικού τόσο στην βιομηχανία όσο και στην ακαδημαϊκή κοινότητα.
- V. Καταλληλότητα της συγκεκριμένης γλώσσας προγραμματισμού για μαθηματικές εφαρμογές (π.χ. επεξεργασία και διαχείριση πινάκων).
- VI. Υπάρχουν διαθεσιμότητα έτοιμων ρουτίνων και συναρτήσεων που χρησιμοποιούνται σε αυτό τον αλγόριθμο (π.χ. imcrop)

4.5.2 Αντιστοίχιση των pixel της εικόνας με 'αλλα συστήματα διαστάσεων

Η θέση σε μία εικόνα αντιστοιχίζεται με του δείκτες των pixel. Δηλαδή, κάθε εικόνα αποτελείται από ένα σετ διακριτών στοιχείων όπως φαίνεται στην Εικ. 4.11.

Εικ. 4.11: Δείκτες των pixels [77]

Οι δείκτες των pixels είναι ακέραιοι αριθμοί, με πεδίο τιμών από 1 μέχρι τον αριθμό που υποδηλώνει τον αριθμό των σειρών/στηλών.

Υπάρχει 1 προς 1 αντιστοίχιση μεταξύ των δεικτών των pixels και των δεικτών της MATLAB για τις δύο πρώτες διαστάσεις του πίνακα στη MATLAB. Η αντιστοίχιση μεταξύ των δεικτών των pixels και των δεικτών της MATLAB κάνει την αντιστοίχιση μεταξύ του πίνακα των δεδομένων και του τρόπου απεικόνισης μιας εικόνας εύκολη στην κατανόηση.

Ένας άλλος τρόπος έκφρασης της θέσης σε μία εικόνα είναι μέσω ένας χωρικού συστήματος συντεταγμένων, στο οποίο, οι τοποθεσίες σε μια εικόνα είναι θέσεις σε ένα επίπεδο, και περιγράφονται με τη χρήση των x,y (όχι με τη σειρά και την στήλη όπως στο προηγούμενο σύστημα). Από αυτή την Καρτεσιανή οπτική, μία (x,y) θέση όπως η (3.2,5.3) είναι πολύ σημαντική και φυσικά διαφοροποιείται από το pixel (5,3).

Κατά σύμβαση, το MATLAB χρησιμοποιεί ένα χωρικό σύστημα συντεταγμένων που αντιστοιχεί στους δείκτες των pixels της εικόνας. Αυτό ονομάζεται σύστημα φυσικών συντεταγμένων και φαίνεται στην εικόνα 4.12. Σε αυτό το συγκεκριμένο σύστημα συντεταγμένων το y μεγαλώνει προς τα κάτω λόγω του ότι, ο προσανατολισμός είναι σχετίζεται με τον τρόπο με τον οποίον η ψηφιακή εικόνα διαβάζεται, τις περισσότερες φορές.

Οι φυσικές συντεταγμένες (x,y) του κέντρου του κάθε pixel είναι ίδια με τους δείκτες στήλης/σειράς του ίδιου pixel. Πρέπει να επισημανθεί ότι η σειρά της συγκεκριμενοποίησης των συντεταγμένων είναι ανεστραμμένη στις φυσικές συντεταγμένες σε σχέση με τους δείκτες του pixel.

Στο MATLAB, πολλές διεργασίες γίνονται καταρχήν με τις χωρικές συντεταγμένες αντί των δεικτών των pixels, αλλά όσο χρησιμοποιείται το προεπιλεγμένο χωρικό σύστημα συντεταγμένων (φυσικές συντεταγμένες) μπορούν να προσδιοριστούν θέσεις με βάση τη τοποθέτησή τους σε στήλες (x) και σειρές (y). Αυτό απεικονίζεται στην Εικ 4.12.

Εικ. 4.12 Απεικόνιση χωρικών συντεταγμένων [77]

Στο σύστημα φυσικών συντεταγμένων, η πάνω αριστερά γωνία της εικόνας βρίσκεται στο (0.5,0.5) και όχι στο (0,0) και το κάτω αριστερά άκρο της εικόνας βρίσκεται αντίστοιχα στο (αριθμ. στήλης+0.5, αριθμ. σειράς+0.5). Με βάση την Εικ.4.12, ισχύει ότι όλες οι συντεταγμένες των κέντρων των pixels έχουν ακέραιες τιμές. Δηλαδή, ο κέντρο του pixel με δείκτες (r,c) –όπου οι τιμές των r,c είναι ακέραιες εξ ορισμού- πέφτει στο σημείο x=c και y=r στο φυσικό σύστημα συντεταγμένων.

Ένας άλλο τρόπος έκφρασης της θέσης σε μία εικόνα είναι μέσω του παγκόσμιου συστήματος συντεταγμένων (ονομαζόμενο αλλιώς μη προεπιλεγμένο σύστημα συντεταγμένων) (Εικόνα 4.13). Η διαφορά μεταξύ αυτού του συστήματος και του συστήματος των φυσικών συντεταγμένων είναι ότι το πάνω αριστερά pixel της εικόνας δεν έχει την τιμή (0.5,0.5) αλλά την τιμή (19.0,7.5) που θα του έχει οριστεί. Αλλιώτικα, μπορεί να οριστεί ένα σύστημα συντεταγμένων στο οποίο κάθε pixel θα ορίζει ένα τμήμα επιφάνειας 5 x 5 m.

Ένας τρόπος για να οριστεί το παγκόσμιο σύστημα συντεταγμένων για μια εικόνα είναι να οριστούν οι τιμές XData και YData της εικόνας. Αυτές οι τιμές είναι ουσιαστικά διανύσματα δύο

στοιχείων που ελέγχουν το εύρος των συντεταγμένων στις οποίες εκτείνεται η εικόνα. Όταν γίνει αυτό, οι άξονες στη MATLAB ταυτοποιούνται με τις παγκόσμιες συντεταγμένες. Αν δεν οριστούν εξαρχής τα XData και YData, τότε οι συντεταγμένες των αξόνων ταυτοποιούνται με τις φυσικές συντεταγμένες της εικόνας.

Εικ. 4.13 Απεικόνιση εικόνας στο παγκόσμιο σύστημα συντεταγμένων [77]

Οι τιμές σε αυτά τα διανύσματα είναι στην πραγματικότητα οι συντεταγμένες των κέντρων των πρώτων και τελευταίων pixels (όχι των άκρων των pixels) έτσι ώστε το εύρος των τιμών που εκτείνεται η εικόνα να είναι ελαφρώς μεγαλύτερο.

Για τον προσδιορισμό του συστήματος των συντεταγμένων στο συγκεκριμένο κώδικα MATLAB, χρησιμοποιήθηκε η εντολή imref2d. Μέσω της οποίας αντιστοιχίζονται τα pixels μιας δυσδιάστατης εικόνας με τις χωρικές συντεταγμένες (Εικ. 4.14).

Εικ. 4.14 Αντιστοίχιση pixels με πραγματικές διαστάσεις [77]

4.5.3 Ο αλγόριθμος

Η μεθοδολογία που ακολουθείται για να βρεθούν τα εικονοστοιχεία "πυρκαγιάς", ο αλγόριθμος, βασίζεται σε μεγάλο βαθμό στο προηγούμενο έργο του Vipin (Vipin, 2012 [81]). Ο αλγόριθμος που αναπτύχθηκε ακολουθεί τα βήματα που περιγράφονται παρακάτω και οι βασικές λειτουργίες απεικονίζονται στην Εικ. 4.15.

Εικ. 4.15 Βασικές λειτουργίες του εργαλείου επεξεργασίας εικόνας ανίχνευσης πυρκαγιάς που αναπτύχθηκε στο MATLAB.

Χρησιμοποιήθηκε αλγόριθμος MATLAB, ο οποίος τροποποιήθηκε και προσαρμόστηκε κατάλληλα. Ο αλγόριθμος ακολουθεί τα βήματα που περιγράφονται αναλυτικά από κάτω:

- Οι εικόνες εξάγονται από τα αρχεία βίντεο. Ανάλογα με το ρυθμό λήψης του κάθε βίντεο αντιστοιχούν είτε 25 είτε 30 εικόνες για κάθε δευτερόλεπτο βίντεο. Εξάγονται όλες οι εικόνες του βίντεο
- Επεξεργασία της κάθε εικόνας ώστε ν επιτευχθεί η βέλτιστη χρωματική απόδοση. Με αυτό τον τρόπο είναι δυνατή η διόρθωση όλων των «καμένων»- λευκών pixel τα οποία αντιστοιχούν σε φλόγα. Για την επεξεργασία της κάθε εικόνας χρησιμοποιήθηκε το λογισμικό infranview.
- Εισαγωγή των εικόνων στη ΜΑΤLAB από τον ορισμένο φάκελο.
- Ορισμός της αντιστοιχίας των pixels κάθε εικόνας με τις πραγματικές διαστάσεις που τους αναλογούν.
- Περικοπή της εικόνας ώστε να γίνεται αντιστοίχιση των διατάσεων της εικόνας με τις φυσικές διστάσεις της πειραματικής διάταξης
- Δημιουργία μηδενικών πινάκων στο μέγεθος του αρχείου της εικόνας έτσι ώστε να αποθηκευτούν τα δεδομένα που θα προκύψουν στη συνέχεια.

• Ορισμός των τιμών των R,G,B για κάθε pixel που προέκυψαν από διάφορες δοκιμές, όπως και οι αντίστοιχες μέσες τιμές Red_mean, Green_mean και Blue_mean. Αρχικά χρησιμοποιήθηκαν οι

τιμές του (Vipin 2012 [81]), αλλά προσαρμόστηκαν στις τιμές που αντιπροσωπεύουν τα fire pixels των βίντεο του εργαστηρίου.

• Εφαρμογή των κανόνων του (Vipin 2012,[81]) στο κάθε σετ εικόνων. Αυτοί είναι αναλυτικά:

- R(m,n)>G(m,n)>B(m,n): η τιμή του κόκκινου χρώματος σε κάθε φωτεινή τιμή του pixel πρέπει να είναι μεγαλύτερη από την τιμή του πράσινου χρώματος. ή την τιμή του μπλε χρώματος. Αυτό το κριτήριο ισχύει για όλες τις περιοχές φλόγας.
- 2. R(m,n)>Red_Limit & G(m,n)>Green_Limit & B(m,n)<Blue_Limit: Η τιμή κάθε χρώματος πρέπει να είναι μεγαλύτερη από την αντίστοιχη τιμή ορίου, όπως καθορίζεται από τη στατιστική επεξεργασία μεγάλου αριθμού εικόνων πυρκαγιάς. Οι τιμές ορίων που χρησιμοποιήθηκαν: RLimit = 220, G Όριο = 200 και BLimit = 130.</p>

Ο κώδικας αναγνωρίζει ως pixels φωτιάς αυτά που πληρούν τους παραπάνω κανόνες και αποθηκεύει στον αντίστοιχο μηδενικό πίνακα που προϋπάρχει στην θέση τους τον αριθμό 1. Αλλιώς αν κατά τον κώδικα δεν υπάρχει φωτιά, παραμένει ο αριθμός 0. Στη συνέχεια σχεδιάζει τη φωτιά με βάση τα δεδομένα του πίνακα, προσαρμόζοντας την εικόνα σε πραγματικές διαστάσεις και δημιουργεί διάγραμμα με το μέσο και μέγιστο ύψος της φλόγας. Υπολογίζεται η πιθανότητα εμφάνισης φλόγας (Intermittency).

Τα βήματα υπολογισμού της πιθανότητας εμφάνισης φλόγας είναι τα ακόλουθα:

Δημιουργία ενός μηδενικού πίνακα intermittency στο μέγεθος της εικόνας που έχει υποστεί την περικοπή.

2. Έναρξη ελέγχου των ανωτέρω κριτηρίων του RGB μοντέλου.

Σε περίπτωση ικανοποίησης των συγκεκριμένων κριτηρίων, τότε για το εξεταζόμενο pixel της εικόνας δίνεται η τιμή 255 στην αντίστοιχη θέση του προσωρινού πίνακα με το όνομα OutImage.

Σε περίπτωση που οι τιμές των πινάκων ImageRed ,ImageBlue, Image Green για
 το συγκεκριμένο pixel είναι ίσες με 255, τότε δίνεται στο εξεταζόμενο pixel της εικόνας η
 τιμή 255 στην αντίστοιχη θέση του πίνακα OutImage.

Αυτός ο έλεγχος επαναλαμβάνεται για όλα τα pixel της εικόνας που έχει υποστεί περικοπή.

3. Όταν ο έλεγχος για την εικόνα ολοκληρωθεί, τότε τα στοιχεία του πίνακα OutImage διαιρούνται έκαστο με τον αριθμό 255. Εν συνεχεία, τα στοιχεία του πίνακα προστίθενται στο πίνακα intermittency.

Η ανωτέρω διαδικασία επαναλαμβάνεται για όλες τις εικόνες.

4. Όταν ολοκληρωθεί ο έλεγχος για όλες τις εικόνες, τότε τα στοιχεία του πίνακα intermittency, διαιρούνται έκαστος με τον αριθμό των εικόνων του βίντεο. Σε αυτό το σημείο ο πίνακας intermittency γίνεται πίνακας πιθανότητας.

5. Σε τελικό στάδιο γίνεται η αντιστοίχιση των θέσεων των pixel σε πραγματικές συντεταγμένες. Σε παράλληλο χρόνο, αντιστοιχίζονται και οι τιμές του πίνακα πιθανότητας intermittency με πραγματικές συντεταγμένες. Με αυτό τον τρόπο διαμορφώνεται το το αρχείο Intermittency.dat ως ένας πίνακας αποτελούμενος από τρεις στήλες. Η πρώτη στήλη αφορά τον άξονα x (m), η δεύτερη στήλη τον άξονα y(m) και η τρίτη στήλη την πιθανότητα (p) ύπαρξης φλόγας.

Σχεδιάζονται σε πραγματικές διαστάσεις και προκύπτουν διαγράμματα όπου απεικονίζονται οι τιμές της Intermittency για το συγκεκριμένο σετ κανόνων, η μορφή της φλόγας όπως την αντιλαμβάνεται κάθε φορά ο κώδικας, το μέγιστο ύψος της φλόγας. Ο κώδικας έτρεξε με τις επιλεγμένες τιμές τόσο για τα σετ των μπροστινών εικόνων όσο και για τα σετ των πλαγίων.

Ο κώδικας διάβαζε κάθε φορά τις εικόνες που είχαν προκύψει από τα βίντεο του κάθε πειράματος (μπροστινής και πλάγιας όψης) και υπολόγιζε τα pixels φωτιάς.

Ένα διάγραμμα ροής του αναπτυχθέντος αλγορίθμου απεικονίζεται στην Εικ. 4.16.

Προκειμένου να αποκτηθούν όλες οι απαραίτητες γεωμετρικές πληροφορίες, ο αλγόριθμος πρέπει να εφαρμοστεί σε δεδομένα εικόνας που έχουν καταγραφεί τόσο από την εμπρόσθια όσο και από την πλευρά των πειραματικών συσκευών. Οι εικόνες βιντεοκάμερας συγχρονίστηκαν με το σύστημα καταγραφής δεδομένων για κάθε πείραμα πριν από την ανάλυση των αποτελεσμάτων. Αυτή η διαδικασία εξασφάλισε ότι τα γεωμετρικά χαρακτηριστικά των EVF αντιστοιχούσαν στις υπόλοιπες πειραματικές μετρήσεις που πραγματοποιήθηκαν κάθε φορά (π.χ. θερμοκρασίες, ροές θερμότητας και συγκεντρώσεις αερίων). Αυτό το εργαλείο επεξεργασίας εικόνας χρησιμοποιήθηκε για την ανάλυση των γεωμετρικών χαρακτηριστικών EVF κατά τη διάρκεια πειραμάτων πυρκαγιάς διαμερισμάτων με μεσαία κλίμακα και μεγάλης κλίμακας. Οι επεξεργασμένες εικόνες και τα προκύπτωντα γεωμετρικά χαρακτηριστικά EVF ήταν συνεπή με την οπτική σύγκριση από τις δοκιμαστικές περιπτώσεις σε όλα τα πειράματα που διεξήχθη η ανάλυση εικόνας.

Εικ. 4.16 Διάγραμμα ροής της διαδικασίας αναγνώρισης των εικονοστοιχείων "πυρκαγιάς".

ΚΕΦΑΛΑΙΟ 5⁰

5.1 Δοκιμές ΕΜΠ σε φωτιά εξερχόμενη από άνοιγμα

5.1.1 Δοκιμές φωτιάς μικρής κλίμακας (small scale)

Με στόχο την πειραματική διερεύνηση των φυσικών χαρακτηριστικών των ΦΕΑ, έγινε χρήση πειραματικής διάταξης διαμερίσματος-πρόσοψης μικρής κλίμακας σύμφωνα με το πρότυπο ISO 9705 (1993). Στο παρόν κεφάλαιο αναλύεται το σύνολο της πειραματικής εγκατάστασης (διαμέρισμα, εξοπλισμός, λογισμικό) που χρησιμοποιήθηκε από τον Καλαμαρά (2017) [79] για την διεξαγωγή των πειραμάτων.

Γεωμετρικά χαρακτηριστικά

Για την πραγματοποίηση πειραμάτων που αφορούν στην εξάπλωση φωτιάς σε κλειστό χώρο, χρησιμοποιείται η μέθοδος που περιγράφεται στο πρότυπο ISO 9705 (ISO, 1993).

Οι διαστάσεις του τυπικού δωματίου, σύμφωνα με το ISO9705, είναι :

3.66 m (μήκος) x 2.44 m (πλάτος) x 2.44 m (ύψος).

Για άνοιγμα θεωρείται μια πόρτα διαστάσεων:

Τα πειράματα πραγματοποιήθηκαν στο Εργαστήριο Ετερογενών Μειγμάτων και Συστημάτων Καύσης, της Σχολής Μηχανολόγων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου, , στο πλαίσιο της διπλωματικής εργασίας του Χ. Καλαμάρα (2017) [79]. Η πραγματοποίηση τους έγινε σε γεωμετρία δωματίου υπό κλίμακα, με διαστάσεις συμβατές με τις αντίστοιχες του ISO 9705, με στόχο την όσο το δυνατόν πιο αντιπροσωπευτική απεικόνιση ενός τυπικού δωματίου.

Για το σκοπό αυτό δημιουργήθηκε δωμάτιο μεσαίας κλίμακας ¼ ως προς το πρότυπο δωμάτιο που ορίζεται στο ISO 9705. Το δωμάτιο έχει εσωτερικές διαστάσεις 900mm (μήκος) x 600mm (πλάτος) x 600mm (ύψος), και άνοιγμα διαφόρων διαστάσεων. Οι διαστάσεις της κατασκευής φαίνονται στον Πίνακα 5.1.

Πίνακας 5.1 Διαστάσεις δωματίου και ανοίγματος [79]

	Μήκος (mm)	Πλάτος (mm)	Ύψος (mm)
Δωμάτιο (εσωτερικές διαστάσεις)	900	600	600
Α' περίπτωση – Πόρτα	-	200	500
Β' περίπτωση – Παράθυρο	-	300	300
Πρόσοψη	-	658	1800

> Τοιχώματα

Ως πλαϊνά τοιχώματα, οροφή και δάπεδο του διαμερίσματος, χρησιμοποιήθηκαν δύο στρώσεις πυράντοχης γυψοσανίδας πάχους 12.5mm η καθεμιά, εσωτερικά του σκελετού. Πρώτα, τοποθετήθηκαν οι γυψοσανίδες του δαπέδου. Εν συνεχεία, τοποθετήθηκαν αυτές των πλαϊνών τοιχωμάτων με «συρταρωτό» τρόπο. Με αυτό τον τρόπο, επιτυγχάνεται η μη ύπαρξη ορατών μερών στο εσωτερικό της κατασκευής, γεγονός που θα είχε αρνητικές συνέπειες στις μετρήσεις, αφού θα μεταβάλλονταν η ακτινοβολία εντός του δωματίου. Οι γυψοσανίδες της οροφής βιδώθηκαν στην κάτω πλευρά του καπακιού, με τέτοιο τρόπο ώστε οι ακμές τους να εφάπτονται στις εσωτερικές πλευρές των πλαϊνών γυψοσανίδων. Η κατασκευή φαίνεται στην Εικόνα 5.1. Το άνοιγμα της διάταξης, έγινε στο νότιο τοίχο του δωματίου, ανεξαρτήτου εξεταζόμενης περίπτωσης. Ο Πίνακας 5.2 δείχνει τις διαστάσεις των γυψοσανίδων που χρησιμοποιήθηκαν.

Πίνακας	5.2	Διαστάσεις	ς γυψοσανίδων	[79]
-				

Γυψοσανίδες	Δαπέδου (x2)	Ανατολικής- Δυτικής (x4)	Νότιας- Βόρειας (x4)	Οροφής (x2)
Διαστάσεις (mm)	950x650	950x625	650x625	900x600

> Γεωμετρία ανοίγματος

Μέσω των πειραμάτων, εξετάσθηκαν τα ακόλουθα είδη γεωμετρίας ανοίγματος: α) Παράθυρο, β) Πόρτα. Οι διαστάσεις των συγκεκριμένων ανοιγμάτων, φαίνονται στον Πίνακα 5.3.

Πίνακας 5.3 Διαστάσεις του ανοίγματος [79]

	Πλάτος (mm)	Ύψος (mm)
Περίπτωση D: Πόρτα	200	500
Περίπτωση W: Παράθυρο	300	300

> Πρόσοψη

Η πρόσοψή, που προστέθηκε και τοποθετήθηκε στην εξωτερική πλευρά του ανοίγματος (νότιας πλευράς) του δωματίου, είναι μια πυράντοχη γυψοσανίδα με τα ακόλουθα γεωμετρικά χαρακτηριστικά:

- I. Πάχος: 12.5mm.
- II. Πλάτος: 658mm.
- III. Ύψος: 1.800mm.

Στο Εικόνα 5.1., φαίνεται η τοποθετούμενη πρόσοψη. Στις Εικόνες 5.2 – 5.4, φαίνεται η συνολική εγκατάσταση σε διάφορες όψεις.

Εικ. 5.1 Φωτογραφίες της πλάγιας όψης του διαμερίσματος (αριστερά) και της πρόσοψης του διαμερίσματος (δεξιά). [79]

Εικ. 5.2 Πλάγια όψη σε τομή του διαμερίσματος (αριστερά), πρόσοψη για την περίπτωση γεωμετρίας πόρτας (κέντρο), πρόσοψη για την περίπτωση γεωμετρίας παραθύρου (δεζιά). [79]

Εικ. 5.3 Κάτοψη του διαμερίσματος σε τομή [79]

Εικ. 5.4 Περίπτωση γεωμετρίας παραθύρου (αριστερά), περίπτωση γεωμετρίας πόρτας (δεζιά).[79]

> Πηγή φωτιάς

Η διοχέτευση του καυσίμου εντός του δωματίου επιτυγχάνεται με την χρήση ενός πορώδη καυστήρα με οπές διαμέτρου 1mm σε όλη την επιφάνειά του. Μέσω αυτού του καυστήρα επιτυγχάνονται μόνιμες συνθήκες στο πείραμα. Ο εν λόγω καυστήρας τοποθετήθηκε στο γεωμετρικό κέντρο του δαπέδου, σε δύο διαφορετικά ύψη. Πιο συγκεκριμένα, στο κέντρο του δωματίου τοποθετήθηκε ο καυστήρας με τη μεγάλη διάσταση του παράλληλη στη μεγάλη πλευρά του δωματίου και την κάτω επιφάνεια να εφάπτεται στο πάτωμα του δωματίου.

Τα γεωμετρικά χαρακτηριστικά του καυστήρα είναι:

- I. Συνολικό ύψος: 55 mm.
- II. Μήκος: 175mm.
- III. Πλάτος :125mm.

Στην Εικόνα 5.5, φαίνεται ο καυστήρας που χρησιμοποιήθηκε και η γεωμετρική τοποθέτησή του.

Εικ. 5.5 Ο χρησιμοποιούμενος καυστήρας (αριστερά), τοποθετημένος εντός του διαμερίσματος (δεζιά), (φωτογραφία). [79]

> Ισχύς καυσίμου

Το καύσιμο που χρησιμοποιήθηκε σε όλα τα πειράματα ήταν μεθάνιο, το οποίο είχε σταθερή θερμογόνο δύναμη 55000kJ/kgr. Η ισχύς του καυστήρα μεταβάλλονταν λόγω αλλαγής στην ογκομετρική παροχή καυσίμου (V, ln/min)

> Μετρητικές διατάξεις

Τα θερμικά και ροϊκά χαρακτηριστικά της φωτιάς, μετρήθηκαν με την χρήση θερμοστοιχείων και δικατευθυντικών μετρητών ταχύτητας.

Θερμοστοιχεία:

Η μέτρηση της θερμοκρασίας επιτεύχθηκε με την χρήση θερμοστοιχείων. Η αρχή λειτουργείας της συγκεκριμένης μετρητικής συσκευής είναι το φαινόμενο του θερμοηλεκτρισμού. Πιο συγκεκριμένα, μετατρέπεται η θερμότητα σε ηλεκτρισμό, εξαιτίας της εμφάνισης διαφοράς δυναμικού σε μεταλλικό δείγμα, λόγω της θερμοκρασιακής διαφορά μεταξύ των δύο άκρων του (Εικ. 5.6).

Εικ. 5.6 Αρχή λειτουργίας θερμοστοιχείου [79]

Καθοριστικοί παράγοντες στην επιλογή ενός τύπου θερμοστοιχείου είναι :

- Ι. Το εύρος των θερμοκρασιών που θα μετρηθούν.
- II. Η ευαισθησία.

Στα συγκεκριμένα πειράματα χρησιμοποιήθηκαν μη-γειωμένα θερμοστοιχεία τύπου K (Εικ. 5.7), διαμέτρου 1.59mm (=0,062in.). Το υλικό συσκευασίας των θερμοστοιχείων είναι:

- Ι. Για θετικό πόλο: 90% Ni 10% Cr
- II. Για αρνητικό πόλο: 95% Ni 2% Al 3% Mn.

Χρησιμοποιήθηκαν θερμοστοιχεία δύο διαφορετικών μηκών, 450mm και 150mm (18in και 6in), τα οποία έχουν ως ανώτερο όριο θερμοκρασίας στην οποία μπορούν να λειτουργήσουν τους 1038°C (=1900°F).

Εικ. 5.7 Θερμοστοιχείο τύπου Κ [79]

Δικατευθυντικοί μετρητές ταχύτητας:

Η μέτρηση της ταχύτητας της ροής σε ένα πείραμα φωτιάς αποσκοπεί στην κατανόηση της συμπεριφορά της φλόγας και στον χαρακτηρισμό του περιβάλλοντος της.

Στα συγκεκριμένα πειράματα χρησιμοποιήθηκε ο κλασσικός μετρητής ταχύτητας διαφορικής πίεσης. Οι κύριοι λόγοι χρήσης αυτού είναι: α)ευκολία στη χρήση, β)ευρωστία και καταλληλόλητα στις δοκιμές μεγάλης κλίμακας.

Ο μετρητής ταχύτητας διαφορικής πίεσης, που χρησιμοποιήθηκε είναι ο σωλήνας Pito. Τα μειονεκτήματα του συγκεκριμένου μετρητή είναι: α)μεγάλη ευαισθησία στην κατεύθυνση της ροής, β)υψηλό κίνδυνο απόφραξης των οπών μέτρησης εξαιτίας της ροής των καυσαερίων. Συνεπώς, σε αρκετές δοκιμές φωτιάς, χρησιμοποιείται ο σωλήνας Pitot, με χρήση γεωμετρίας διπλής κατεύθυνσης (bi-directional probe), ο οποίος τοποθετείται ακριβώς στο άνοιγμα του διαμερίσματος.

Ο προσδιορισμός της στατικής ταχύτητας απαιτεί την μέτρηση της διαφοράς πίεσης μπροστά και πίσω από τον ανιχνευτή, καθώς και της στατικής πίεσης.

$$V = \frac{1}{k_p} \sqrt{\frac{2\Delta P}{\rho}}$$

Όπου:

V: η ταχύτητα (m/s)
kp : Σταθερά του ανιχνευτή
ΔP: διαφορά πίεσης (Pa)
ρ: στατική πυκνότητα (kg/m3)

Η πυκνότητα υπολογίζεται με μέτρηση της στατικής θερμοκρασίας στην αντίστοιχη θέση και χρήση στη συνέχεια της καταστατικής εξίσωσης τελείων αερίων (για τον αέρα):

$$\rho = \frac{352,8}{T}$$

όπου Τη θερμοκρασία σε Kelvin

Στο Παράρτημα B φαίνονται οι αναλυτικοί πίνακες από τους οποίους προέκυψε η τιμή της θερμοκρασίας T.

Για έναν ιδανικό σωλήνα Pitot η τιμή της σταθεράς *kp* είναι κοντά στη μονάδα, αλλά στην περίπτωση του δικατευθυντικού μετρητή η τιμή του εξαρτάται από πολλούς παράγοντες, ένας εκ τω οποίων είναι ο αριθμός Reynolds. Σύμφωνα με την έρευνα των McCaffrey και Heskestad (1976) η τιμή αυτή είναι περίπου 1,08 για μικρούς αριθμούς Reynolds (μεταξύ 40 και 3800).

Ο μετρητής (Εικ. 5.8) αποτελείται από ένα μικρό κομμάτι ανοξείδωτου χάλυβα με ένα διάφραγμα στη μέση και δύο οπές, οι οποίες διανοίγονται πλησίον της κάθε πλευράς του διαφράγματος. Ο άξονας του σωλήνα είναι παράλληλος με τη ροή, με την ανάντι οπή να μετρά την πίεση ανακοπής και την κατάντι να μετρά πίεση ελάχιστα μικρότερη της στατικής. Οι μικροί αγωγοί χρησιμεύουν τόσο για τη μεταφορά του σήματος πίεσης όσο και για τη στήριξη του μετρητή.

Εικ. 5.8 Τομή δικατευθυντικού μετρητή ταχύτητας (bidirectional probe) [79]

5.1.2 Δοκιμές φωτιάς μεγάλης κλίμακας (Large scale)

Οι δοκιμές μεγάλης κλίμακος που πραγματοποιήθηκαν ήταν δυο (Πειράματα : α) Μεγάλης Κλίμακας 1, β) Μεγάλης Κλίμακας 2, δηλ. Large scale 1 και Large scale 2). Αυτές πραγματοποιήθηκαν στις εγκαταστάσεις της Ελληνικής Πυροσβεστικής Ακαδημίας στην Αθήνα. Στη πρώτη δοκιμή, χρησιμοποιήθηκε ένα τυπικό σύστημα αεριζόμενης πρόσοψης (VF) ενώ η δεύτερη δοκιμή, πραγματοποιήθηκε χρησιμοποιώντας μια συμβατική (μη αεριζόμενη) απλή πρόσοψη (PF). Και οι δύο δοκιμές διεξήχθησαν στην ίδια διάταξη πειραματικής δοκιμής μεγάλης κλίμακας. Μια σχηματική απεικόνιση της εγκατάστασης των δοκιμών παρουσιάζεται στο Εικ. 5.9. Σύμφωνα με τα καταγεγραμμένα μετεωρολογικά δεδομένα, οι συνθήκες περιβάλλοντος που επικρατούσαν κατά τη διάρκεια της δοκιμής VF ήταν 21,30C μέση θερμοκρασία, 62% σχετική υγρασία και 3,1 km / h μέση ταχύτητα ανέμου με κατεύθυνση Βόρεια-Βορειοανατολική.

Εικ. 5.9 Γενικό σκαρίφημα της διάταξης δοκιμής και των θέσεων των οριζόντιων διάτρητων στηριγμάτων στην εκτεθειμένη όψη της γυψοσανίδας που χρησιμοποιείται στη δοκιμή VF. (Large scale 1) [80]

Η ημέρα που πραγματοποιήθηκε η δοκιμή πυρκαγιάς PF (large scale 2) έγινε με τις εξής συνθήκες: 19,5 oC μέση θερμοκρασία περιβάλλοντος, 68% σχετική υγρασία και 2,4 km / h μέση ταχύτητα ανέμου στην ανατολική κατεύθυνση. Κατά την έναρξη των δοκιμών πυρκαγιάς VF και PF, η μέση θερμοκρασία πυροδιαμερίσματος καταγράφηκε σε 25,3oC και 26,6oC, αντίστοιχα.

Οι εσωτερικές διαστάσεις του χώρου δοκιμής ήταν 1760 mm (πλάτος) × 800 mm (βάθος) × 2100 mm (ύψος) και ο χώρος ήταν επενδυμένος με ένα διπλό στρώμα τυπικών γυψοσανίδων πάχους 12,5 mm.

Το διαμέρισμα είχε ένα μόνο άνοιγμα τύπου παραθύρου, διαστάσεων 765 mm × 1100 mm. Το παράθυρο βρισκόταν στη νότια πλευρά. Η απόσταση του περβαζιού από το δάπεδο του διαμερίσματος ήταν 940 mm. Το εξωτερικό τοίχωμα της πρόσοψης, το οποίο ήταν προσαρτημένο στη νότια πλευρά του διαμερίσματος, είχε διαστάσεις 2614 mm × 5230 mm (Εικ. 5.10 A).

Χρησιμοποιήθηκαν ξυλεία και καρφιά στην κορυφή του διαμερίσματος για να στηρίξουν την πίσω πλευρά της πρόσοψης (Εικ. 5.10 B).

Εικ. 5.10 Α, Μπροστινή πλευρά, Β, στήριζη του συστήματος πρόσοψης, C, διάτρητα μεταλλικά στηρίγματα και D, άνω πλευρά του πλαισίου παραθύρου (υπέρθυρο) για τη δοκιμή [80]

Στην Εικ. 5.11, δίνεται ένα σχέδιο των διαφορετικών προσόψεων που χρησιμοποιούνται σε κάθε δοκιμή. Στην περίπτωση της δοκιμής PF (large scale 2) (Εικ. 5.11, αριστερά), η εξωτερική πρόσοψη περιλάμβανε μια τυπική τσιμεντοσανίδα πάχους 12,5 mm, καλυμμένη εξωτερικά από στρώμα κονιάματος πάχους 5 mm. Στην περίπτωση της δοκιμής VF (large scale 1) (Εικ. 5.11, δεξιά), η υποστήριξη της πρόσοψης (εσωτερικό μέρος) διαμορφώθηκε χρησιμοποιώντας μια γυψοσανίδα πάχους 15 mm, πάνω στην οποία τοποθετήθηκαν οριζόντια διάτρητα χαλύβδινα στηρίγματα, σε κάθετη απόσταση 600 mm, για τη στήριξη των εξωτερικών πάνελ επένδυσης. Το εξωτερικό μέρος της πρόσοψης ήταν πανομοιότυπο με τη δοκιμή PF, που περιλάμβανε μια τυπική τσιμεντοσανίδα επίστρωσης κονιάματος 5 mm.

Εικ. 5.11 Γενικό σχέδιο του συστήματος PF (αριστερά) και του συστήματος VF (δεζιά). PF, Απλή πρόσοψη; VF, αεριζόμενη πρόσοψη [80]

Το πλάτος της κοιλότητας αέρα που σχηματίστηκε μεταξύ του εσωτερικού και του εξωτερικού μέρους της πρόσοψης ήταν 25 mm. Τα διάτρητα μεταλλικά στηρίγματα μπορεί να θεωρούνται ως υποτυπώδης μορφή πυροπροστασίας. Δεν εγκαταστάθηκαν πρόσθετα φράγματα πυρκαγιάς, προκειμένου να επιτραπεί η διερεύνηση της ροής και των θερμικών χαρακτηριστικών μιας μάλλον «ανεμπόδιστης» κίνησης ροής αερίου στο εσωτερικό της κοιλότητας του αέρα, αντιπροσωπεύοντας έτσι το χειρότερο σενάριο. Στην περίπτωση VF, ένα άνοιγμα στην άνω πλευρά του πλαισίου παραθύρου (υπέρθυρο) παρείχε αέρα περιβάλλοντος στην κοιλότητα αέρα (Εικ. 5.10 C, D). Οι άλλες τρεις πλευρές του πλαισίου παραθύρου ήταν κλειστές.

Η κοιλότητα του αέρα ήταν επίσης ανοιχτή στο κάτω και πάνω άκρο του συστήματος VF, που απέχουν 5230 mm. Ένα ορθογώνιο δοχείο από ανοξείδωτο χάλυβα, διαστάσεων 700 mm × 700 mm × 250 mm, τοποθετήθηκε στο κέντρο του δαπέδου του διαμερίσματος, στο οποίο τοποθετήθηκαν 56,7 kg n-εξανίου που χρησιμοποιήθηκε ως το πυροθερμικό φορτίο. Η κάτω πλευρά του δοχείου βρισκόταν 100 mm πάνω από το δάπεδο (Εικ. 5.12). Η κατώτερη θερμογόνος δύναμη του n-εξανίου που χρησιμοποιήθηκε στις δοκιμές εκτιμήθηκε, χρησιμοποιώντας θερμιδόμετρο οξυγόνου σε 43521,17 kJ/kg. Αυτή η «αναλώσιμη» πηγή καυσίμου

χρησιμοποιήθηκε για την καλύτερη προσομοίωση της δυναμικής φύσης μιας πραγματικής πυρκαγιάς. Το πυροθερμικό φορτίο και οι διαστάσεις ανοίγματος επιλέχθηκαν προσεκτικά προκειμένου να δημιουργηθούν συνθήκες πυρκαγιάς με ανεπαρκή αερισμό, διασφαλίζοντας έτσι την ανάπτυξη μιας EVF. Η μέγιστη ισχύς πυρκαγιάς που επιτεύχθηκε, εκτιμώμενη χρησιμοποιώντας τις μετρήσεις του στιγμιαίου ρυθμού απώλειας μάζας, ήταν 4,5 MW. Η συνολική διάρκεια και των δύο δοκιμών πυρκαγιάς ήταν περίπου 880 δευτερόλεπτα.

Εικ. 5.12 Σχηματική διαμόρφωση πρόσοψης διαμερισμάτων μεγάλης κλίμακας, που απεικονίζει θέσεις εξοπλισμού μέτρησης (αριστερά) και χαρακτηριστική φωτογραφία κατά τη διάρκεια της δοκιμής πυρκαγιάς (δεζιά)[80]

Αισθητήρες και σύστημα καταγραφής δεδομένων

Εγκαταστάθηκε ένα εκτεταμένο σύνολο αισθητήρων τόσο εντός όσο και εκτός του πυροδιαμερίσματος, με στόχο την καταγραφή της χρονικής διακύμανσης πολλών σημαντικών

φυσικών παραμέτρων, όπως θερμοκρασίες αερίου και τοιχώματος, ταχύτητες αερίου, προσπίπτουσα ροή θερμότητας, ρυθμός απώλειας μάζας καυσίμου και γεωμετρία εξερχόμενης φλόγας. Οι ληφθείσες μετρήσεις παρείχαν μια λεπτομερή φυσική περιγραφή των κύριων χαρακτηριστικών του πεδίου ροής που αναπτύσσεται εντός και εκτός του χώρου δοκιμής. Έμφαση δόθηκε στο χαρακτηρισμό του θερμικού περιβάλλοντος που αναπτύσσεται κοντά στο τοίχωμα της πρόσοψης, κατά μήκος του ύψους ανάπτυξης της EVF.

Προς το σκοπό αυτό, 30 θερμοστοιχεία τύπου Κ, διαμέτρου 1,5 mm, χρησιμοποιήθηκαν για τη μέτρηση των θερμοκρασιών αερίου κοντά στη φωτιά. Επιπλέον 34 θερμοστοιχεία τύπου Κ εγκαταστάθηκαν σε επτά συγκεκριμένα ύψη καθ' ύψος της πρόσοψης, δηλαδή σε ύψος 0, 500, 750, 1000, 1500, 2000 και 2500 mm πάνω από το άνω μέρος του παραθύρου, με στόχο την καταγραφή των θερμοκρασιών στην επιφάνεια του τοίχου. Καταγράφηκαν θερμοκρασίες τοίχου στις εκτεθειμένες και μη εκτεθειμένες πλευρές των συστημάτων PF και VF, καθώς και θερμοκρασίες αερίου εντός της κοιλότητας του συστήματος VF.

Τρεις υδρόψυκτοι αισθητήρες θερμικής ροής, διαμέτρου 25 mm, Schmidt-Boelter τοποθετήθηκαν στο κεντρικό άξονα της επιφάνειας πρόσοψης του συστήματος PF που «βλέπει» την EVF σε ύψος 500 mm, 1000 mm και 2000 mm πάνω από το ανώφλι του παραθύρου. Οι αισθητήρες θερμικής ροής τύπου Schmidt-Boelter προορίζονται να χρησιμοποιηθούν σε θερμικά περιβάλλοντα που κυριαρχούνται κυρίως από ροή θερμότητας με ακτινοβολία.

Στην Εικ. 5.12, απεικονίζεται ένα γενικό σκαρίφημα, που απεικονίζει τις θέσεις του εξοπλισμού μέτρησης, κατά τη διάρκεια της δοκιμής πυρκαγιάς. Η αρχή του συστήματος συντεταγμένων θεωρείται ότι βρίσκεται σε ένα σημείο που βρίσκεται στο μεσαίο σημείο (y = 0) της εξωτερικής όψης της πρόσοψης, στο ύψος του άνω μέρους του παραθύρου. Οι πέντε θέσεις μέτρησης σε όλο το «βάθος» του συστήματος επισημαίνονται ως εξής: οι θέσεις 1 και 2 αντιστοιχούν στην μη εκτεθειμένη επιφάνεια της εσωτερικής γυψοσανίδας, η θέση 3 καταγράφει τις θερμοκρασίες αερίου στο μεσαίο εύρος του αέρα στην κοιλότητα και οι θέσεις 4 και 5 αντιστοιχούν στην μη εκτεθειμένη και εκτεθειμένη και εκτεθειμένη και εκτεθειμένη επιφάνεια της εσωτερικής συν δυλότητα και οι θέσεις 4 και 5 αντιστοιχούν στην μη εκτεθειμένη και εκτεθειμένη επιφάνεια την επίστρωση κονιάματος (Εικ. 5.11, δεξιά). Στο σύστημα PF, καταγράφηκαν οι θερμοκρασίες της πρόσοψης, μόνο στις θέσεις 4 και 5, που αντιστοιχούν στην μη εκτεθειμένη και εκτεθειμένη επιφάνεια της εποφοριάς ται στο μεσαίο εύρος του αιο αλαιτογράφης (Εικ. 5.11, αριστερά).

Όλες οι μετρήσεις θερμοστοιγείων καταγράφηκαν γρησιμοποιώντας το Universal Data Logging Interface που σχεδιάστηκε στο λογισμικό LabView. Η περίοδος δειγματοληψίας ήταν 1 δευτερόλεπτο. Η μάζα καυσίμου παρακολουθούνταν συνεχώς χρησιμοποιώντας κατάλληλη συσκευή μετρήσεως η οποία ήταν εγκατεστημένη κάτω από τη λεκάνη καυσίμου και είχε ευαισθησία 2 mV / V για μάζα 500 kg. Επιπλέον, καταγράφηκαν μετρήσεις ταχύτητας των αερίων που εισέρχονται και εξέρχονται από το διαμέρισμα πυρκαγιάς μέσω του ανοίγματος παραθύρου χρησιμοποιώντας μια κατακόρυφη σειρά τεσσάρων αμφίδρομων ανιχνευτών ταχύτητας, τοποθετημένων σε διάφορα ύψη (220, 440, 660 και 880 mm κάτω από το άνω μέρος παραθύρου) κατά μήκος της κεντρικής γραμμής του παραθύρου. Αυτά συμπληρώθηκαν από θερμοστοιγεία, που βρίσκονται στις ίδιες θέσεις (Εικ. 5.12), για να επιτρέπεται η μέτρηση θερμοκρασίας των μετρούμενων τιμών ταχύτητας. Οι μεταβολές στο σχήμα και στη θέση της φλόγας καταγράφηκαν χρησιμοποιώντας δύο οπτικές βιντεοκάμερες, μία τοποθετημένη ακριβώς απέναντι από την εκτεθειμένη επιφάνεια της πρόσοψης, σε απόσταση 8600 mm, και η άλλη σε ορθή γωνία προς την πρόσοψη, σε απόσταση 9400 mm. Μια θερμική κάμερα τοποθετήθηκε επίσης απέναντι από την πρόσοψη, σε απόσταση 8600 mm, για την καταγραφή πρόσθετων πληροφοριών σχετικά με τη θερμική απόκριση της επιφάνειας της πρόσοψης κατά τη διάρκεια κάθε δοκιμής.

5.2 Προσδιορισμός γεωμετρικών χαρακτηριστικών φλόγας

Σε αυτή την ενότητα παρουσιάζονται τα διαγράμματα προέκυψαν από τη επεξεργασία των αποτελεσμάτων για τα πειράματα μικρής κλίμακος. Σε κάθε διάγραμμα παρουσιάζεται και η μέγιστη οριζόντια προβολή της EVF (πράσινο χρώμα) αλλά επίσης και το μέγιστο ύψος της EVF (μπλε χρώμα).

5.2.1 Επίδραση θερμικής ισχύος φωτιάς

Αρχικά μελετάται η επίδραση της θερμικής ισχύος της φωτιάς του διαμερίσματος στα γεωμετρικά χαρακτηριστικά της εξερχόμενης φλόγας.

Στο Διαγράμματα 5.1 και 5.2 ,για γεωμετρία ανοίγματος πόρτας, παρουσιάζονται τα αποτελέσματα του πειράματος, για χαμηλή θέση καυστήρα (Διάγραμμα 5.1) και υψηλή θέση καυστήρα (Διάγραμμα 5.2).

Από το Διάγραμμα 5.1, για τον παράγοντα εξέτασης χαμηλής θέσης καυστήρα και γεωμετρία ανοίγματος πόρτας προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος EVF: είναι στην τιμή 1.41 m για ισχύς φλόγας 157.74 KW.
- ΙΙ. Μέγιστη τιμή οριζόντιας προβολής EVF: είναι στην τιμή 0,37 m,για ισχύ φλόγας 157,74
 KW.

Συνεπώς, στο συγκεκριμένο εξεταζόμενο σενάριο (γεωμετρία ανοίγματος: πόρτα, χαμηλή θέση καυστήρα), οι μέγιστες τιμές των γεωμετρικών χαρακτηριστικών στης EVF, παρατηρούνται στην μέγιστη ισχύ πυρκαγιάς. (157.74 KW). Επιπρόσθετα, φαίνεται ότι με την αύξηση της ισχύς της πυρκαγιάς αυξάνονται τα εξεταζόμενα γεωμετρικά μεγέθη της EVF.

Από το Διάγραμμα 5.2, για τον παράγοντα εξέτασης υψηλής θέσης καυστήρα και γεωμετρία ανοίγματος πόρτας προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος EVF: είναι στην τιμή 1.61 m για ισχύς φλόγας 157.74 KW.
- ΙΙ. Μέγιστη τιμή οριζόντιας προβολής EVF: είναι στην τιμή 0,446 m,για ισχύ φλόγας 157,74
 KW.

Συνεπώς, στο συγκεκριμένο εξεταζόμενο σενάριο (γεωμετρία ανοίγματος: πόρτα, υψηλή θέση καυστήρα), οι μέγιστες τιμές των γεωμετρικών χαρακτηριστικών στης EVF, παρατηρούνται στην μέγιστη ισχύ πυρκαγιάς. (157.74 KW). Επιπρόσθετα, φαίνεται ότι με την αύξηση της ισχύς της πυρκαγιάς αυξάνονται τα εξεταζόμενα γεωμετρικά μεγέθη της EVF.

Άρα: Μέγιστες τιμές των γεωμετρικών χαρακτηριστικών της εξερχόμενης φλόγας(EVF), ύψος και οριζόντια προβολή, επιτυγχάνονται, για την γεωμετρία ανοίγματος πόρτας ανεξαρτήτου υψηλής ή χαμηλής θέσης καυστήρα, στην μέγιστη τιμή ισχύος της πυρκαγιάς.

Διάγραμμα 5.1 Επίδραση ισχύος φωτιάς στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση γεωμετρίας πόρτας, χαμηλής θέσης καυστήρα

Διάγραμμα 5.2 Επίδραση ισχύος φωτιάς στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση γεωμετρίας πόρτας και υψηλής θέσης καυστήρα (κάτω).

Στα Διαγράμματα 5.3 και 5.4 (για γεωμετρία ανοίγματος παραθύρου), παρουσιάζονται τα αποτελέσματα του πειράματος, για χαμηλή θέση καυστήρα (Διάγραμμα 5.3) και υψηλή θέση καυστήρα (Διάγραμμα 5.4).

Από το Διάγραμμα 5.3, για τον παράγοντα εξέτασης χαμηλής θέσης καυστήρα και γεωμετρία ανοίγματος παραθύρου προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος EVF: είναι στην τιμή 1.36 m για ισχύς φλόγας 157.74 KW.
- ΙΙ. Μέγιστη τιμή οριζόντιας προβολής EVF: είναι στην τιμή 0,2 m,για ισχύ φλόγας 157,74
 KW.

Συνεπώς, στο συγκεκριμένο εξεταζόμενο σενάριο (γεωμετρία ανοίγματος: παράθυρο, χαμηλή θέση καυστήρα), οι μέγιστες τιμές των γεωμετρικών χαρακτηριστικών στης EVF, παρατηρούνται στην μέγιστη ισχύ πυρκαγιάς. (157.74 KW). Επιπρόσθετα, φαίνεται ότι με την αύξηση της ισχύς της πυρκαγιάς αυξάνονται τα εξεταζόμενα γεωμετρικά μεγέθη της EVF.

Από το Διάγραμμα 5.4, για τον παράγοντα εξέτασης υψηλής θέσης καυστήρα και γεωμετρία ανοίγματος παραθύρου προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος EVF: είναι στην τιμή 1.45 m για ισχύς φλόγας 157.74 KW.
- ΙΙ. Μέγιστη τιμή οριζόντιας προβολής EVF: είναι στην τιμή 0,334 m,για ισχύ φλόγας 157,74
 KW.

Συνεπώς, στο συγκεκριμένο εξεταζόμενο σενάριο (γεωμετρία ανοίγματος: παράθυρο, υψηλή θέση καυστήρα), οι μέγιστες τιμές των γεωμετρικών χαρακτηριστικών στης EVF, παρατηρούνται στην μέγιστη ισχύ πυρκαγιάς. (157.74 KW). Επιπρόσθετα, φαίνεται ότι με την αύξηση της ισχύς της πυρκαγιάς αυξάνονται τα εξεταζόμενα γεωμετρικά μεγέθη της EVF.

Άρα: Μέγιστες τιμές των γεωμετρικών χαρακτηριστικών της εξερχόμενης φλόγας (EVF), ύψος και οριζόντια προβολή, επιτυγχάνονται, για την γεωμετρία ανοίγματος παραθύρου ανεξαρτήτου υψηλής ή χαμηλής θέσης καυστήρα, στην μέγιστη τιμή ισχύος της πυρκαγιάς.

Εκ των ανωτέρω, προκύπτει το γενικό συμπέρασμα ότι οι μέγιστες τιμές των υπό εξέταση γεωμετρικών χαρακτηριστικών της εξερχόμενης φλόγας (EVF), ύψος και οριζόντια προβολή, επιτυγχάνονται στην μέγιστη τιμή ισχύος της πυρκαγιάς σε όλες τις περιπτώσεις, και για τις δύο υπό εξέταση γεωμετρίες ανοίγματος, παραθύρου και πόρτας.

Διάγραμμα 5.3 Επίδραση ισχύος φωτιάς στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση γεωμετρίας παραθύρου, χαμηλής θέσης καυστήρα.

Διάγραμμα 5.4 Επίδραση ισχύος φωτιάς στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση γεωμετρίας παραθύρου και υψηλής θέσης καυστήρα.

5.2.2 Επίδραση γεωμετρίας ανοίγματος

Στην παρούσα ενότητα μελετάται η επίδραση της γεωμετρίας του ανοίγματος στα χαρακτηριστικά της εξερχόμενης φλόγας. Στα διαγράμματα 5.5-5.9 παρουσιάζεται η επίδραση της γεωμετρίας του ανοίγματος (πόρτα ή παράθυρό) στο ύψος και την προβολή της εξερχόμενη φλόγας για διαφορετικές παροχές καυσίμου ανά περίπτωση.

Στο Διάγραμμα 5.5, για ισχύ πυρκαγιάς 131.45 KW και χαμηλή θέση καυστήρα ,παρουσιάζεται το μέγιστο ύψος και η μέγιστη οριζόντια προβολή. Από το εν λόγω διάγραμμα για το συγκεκριμένο σενάριο ελέγχου προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος EVF: προκύπτει στην περίπτωση γεωμετρίας ανοίγματος πόρτας με τιμή ίση με 1.289m.
- Π. Μέγιστη τιμή οριζόντιας προβολής EVF: προκύπτει στην περίπτωση γεωμετρίας ανοίγματος πόρτας με τιμή ίση με 0.332m.

Διάγραμμα 5.5 Επίδραση γεωμετρίας ανοίγματος στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση παραθύρου και πόρτας σε χαμηλή θέση καυστήρα, για επίπεδα ισχύος 131.45 KW

Στο Διάγραμμα 5.6, για ισχύ πυρκαγιάς 157,74 KW και χαμηλή θέση καυστήρα, παρουσιάζεται το μέγιστο ύψος και η μέγιστη οριζόντια προβολή. Από το εν λόγω διάγραμμα για το συγκεκριμένο σενάριο ελέγχου προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος EVF: προκύπτει στην περίπτωση γεωμετρίας ανοίγματος πόρτας με τιμή ίση με 1.41m.
- Π. Μέγιστη τιμή οριζόντιας προβολής EVF: προκύπτει στην περίπτωση γεωμετρίας ανοίγματος πόρτας με τιμή ίση με 0.37m.

Διάγραμμα 5.6 Επίδραση γεωμετρίας ανοίγματος στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση παραθύρου και πόρτας σε χαμηλή θέση καυστήρα, για επίπεδα ισχύος 157.74 KW

Στο Διάγραμμα 5.7, προβολή για ισχύ πυρκαγιάς 78.87 KW και υψηλή θέση καυστήρα, παρουσιάζεται το μέγιστο ύψος και η μέγιστη οριζόντια προβολή. Από το εν λόγω διάγραμμα για το συγκεκριμένο σενάριο ελέγχου προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος EVF: προκύπτει στην περίπτωση γεωμετρίας ανοίγματος παραθύρου με τιμή ίση με 1.06m.
- ΙΙ. Μέγιστη τιμή οριζόντιας προβολής EVF: προκύπτει στην περίπτωση γεωμετρίας ανοίγματος πόρτας με τιμή ίση με 0.383m.

Διάγραμμα 5.7 Επίδραση γεωμετρίας ανοίγματος στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση παραθύρου και πόρτας σε υψηλή θέση καυστήρα, για επίπεδα ισχύος 78.87 KW

Στο Διάγραμμα 5.8, για ισχύ πυρκαγιάς 98.58 KW και υψηλή θέση καυστήρα, παρουσιάζεται το μέγιστο ύψος και η μέγιστη οριζόντια προβολή. Από το εν λόγω διάγραμμα για το συγκεκριμένο σενάριο ελέγχου προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος EVF: προκύπτει στην περίπτωση γεωμετρίας ανοίγματος πόρτας με τιμή ίση με 1.32m.
- ΙΙ. Μέγιστη τιμή οριζόντιας προβολής EVF: προκύπτει στην περίπτωση γεωμετρίας ανοίγματος πόρτας με τιμή ίση με 0.408m.

Διάγραμμα 5.8 Επίδραση γεωμετρίας ανοίγματος στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση παραθύρου και πόρτας σε υψηλή θέση καυστήρα, για επίπεδα ισχύος 98.58 KW

Στο Διάγραμμα 5.9, για ισχύ πυρκαγιάς 157.74 KW και υψηλή θέση καυστήρα, παρουσιάζεται το μέγιστο ύψος και η μέγιστη οριζόντια προβολή. Από το εν λόγω διάγραμμα για το συγκεκριμένο σενάριο ελέγχου προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος EVF: προκύπτει στην περίπτωση γεωμετρίας ανοίγματος πόρτας με τιμή ίση με 1.61m.
- ΙΙ. Μέγιστη τιμή οριζόντιας προβολής EVF: προκύπτει στην περίπτωση γεωμετρίας ανοίγματος πόρτας με τιμή ίση με 0.446m.

Διάγραμμα 5.9 Επίδραση γεωμετρίας ανοίγματος στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση παραθύρου και πόρτας σε υψηλή θέση καυστήρα, για επίπεδα ισχύος 98.58 KW

Ως εκ των ανωτέρω, προκύπτει ότι, είναι ασφαλές, το συμπέρασμα ότι, για γεωμετρία ανοίγματος πόρτας ,το ύψος και η οριζόντια προβολή της εξερχόμενης φλόγας (EVF) έχουν μεγαλύτερες τιμές, σε σχέση με τις αντίστοιχες για γεωμετρία ανοίγματος παραθύρου.

5.2.3 Επίδραση θέσης καυστήρα

Στα διαγράμματα 5.10 έως και 5.14 γίνεται σύγκριση των χαρακτηριστικών της εξερχόμενης φλόγας με βάση την θέση του ύψους του καυστήρα. Πιο συγκεκριμένα,

- I. Στην 1^η Περίπτωση: Τα ύψη του καυστήρα που μελετήθηκαν αντιστοιχούν στην περίπτωση που η κάτω πλευρά του καυστήρα ήταν τοποθετημένη στο δάπεδο του δωματίου με αποτέλεσμα η άνω επιφάνεια του καυστήρα να απέχει 55mm.
- ΙΙ. Στην 2^η Περίπτωση: Η άνω πλευρά του καυστήρα βρίσκονταν σε ύψος 200 mm από το δάπεδο του διαμερίσματος.

Από το Διάγραμμα 5.10, το οποίο αναφέρεται στην επίδραση που έχει το ύψος του καυστήρα σε γεωμετρία ανοίγματος παραθύρου και ισχύς φλόγας 98.58 KW προκύπτουν τα ακόλουθα:

 Ι. Μέγιστο ύψος: στην υψηλή θέση του καυστήρα, για την γεωμετρία ανοίγματος παραθύρου, με τιμή 1.2 m. ΙΙ. Μέγιστη οριζόντια προβολή: στην υψηλή θέση του καυστήρα, για την γεωμετρία ανοίγματος παραθύρου, με τιμή 0.298m.

Διάγραμμα 5.10 Επίδραση ύψους καυστήρα στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση γεωμετρίας παραθύρου για επίπεδα ισχύος 98.58 KW

Από το Διάγραμμα 5.11 το οποίο αναφέρεται στην επίδραση που έχει το ύψος του καυστήρα σε γεωμετρία ανοίγματος παραθύρου και ισχύς φλόγας111.73 KW, προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος: στην υψηλή θέση του καυστήρα, για την γεωμετρία ανοίγματος παραθύρου, με τιμή 1.25 m.
- ΙΙ. Μέγιστη οριζόντια προβολή: στην υψηλή θέση του καυστήρα, για την γεωμετρία ανοίγματος παραθύρου, με τιμή 0.309m.

Διάγραμμα 5.11 Επίδραση ύψους καυστήρα στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση γεωμετρίας παραθύρου για επίπεδα ισχύος 111.73 KW

Από το διάγραμμα 5.12 το οποίο αναφέρεται στην επίδραση που έχει το ύψος του καυστήρα σε γεωμετρία ανοίγματος παραθύρου και ισχύς φλόγας131,45 KW, προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος: στην υψηλή θέση του καυστήρα, για την γεωμετρία ανοίγματος παραθύρου, με τιμή 1.31 m.
- ΙΙ. Μέγιστη οριζόντια προβολή: στην υψηλή θέση του καυστήρα, για την γεωμετρία ανοίγματος παραθύρου, με τιμή 0.31m.

Διάγραμμα 5.12 Επίδραση ύψους καυστήρα στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση γεωμετρίας παραθύρου για επίπεδα ισχύος 131.45 KW

Από το Διάγραμμα 5.13 το οποίο αναφέρεται στην επίδραση που έχει το ύψος του καυστήρα σε γεωμετρία ανοίγματος παραθύρου και ισχύς φλόγας 157,74 KW, προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος: στην υψηλή θέση του καυστήρα, για την γεωμετρία ανοίγματος παραθύρου, με τιμή 1.45 m.
- ΙΙ. Μέγιστη οριζόντια προβολή: στην υψηλή θέση του καυστήρα, για την γεωμετρία ανοίγματος παραθύρου, με τιμή 0.334m.

Διάγραμμα 5.13 Επίδραση ύψους καυστήρα στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση γεωμετρίας παραθύρου για επίπεδα ισχύος 157.74 KW

Διάγραμμα 5.14 Επίδραση ύψους καυστήρα στο ύψος και την προβολή της φλόγας στην πρόσοψη για την περίπτωση γεωμετρίας πόρτας για επίπεδα ισχύος 157.74 KW

Από το Διάγραμμα 5.14 το οποίο αναφέρεται στην επίδραση που έχει το ύψος του καυστήρα σε γεωμετρία ανοίγματος πόρτας και ισχύς φλόγας 157,74 KW, προκύπτουν τα ακόλουθα:

- Ι. Μέγιστο ύψος: στην υψηλή θέση του καυστήρα, για την γεωμετρία ανοίγματος πόρτας, με τιμή 1.61 m.
- ΙΙ. Μέγιστη οριζόντια προβολή: στην χαμηλή θέση του καυστήρα, για την γεωμετρία ανοίγματος πόρτας, με τιμή 0.446 m.

5.2.4 Επίδραση χρόνου (δυναμικά φαινόμενα)

Στα πειράματα μεγάλης κλίμακας η παροχή του καυσίμου και οι συνθήκες του πειράματος δεν ήταν σταθερές . επιπροσθέτως ο χρόνος λήψης του κάθε βίντεο (προφίλ και πρόσοψης) δεν ήταν ίδιος . σαν αποτέλεσμα αυτού έπρεπε ο τρόπος δειγματοληψίας και επεξεργασίας των βίντεο να αλλάξει.

Ως εκ τούτου ακολουθήθηκε η παρακάτω μεθοδολογία ως προεργασία πριν την εισαγωγή των εικόνων στο αλγόριθμό :

 Για να εξασφαλιστεί ότι το βίντεο έχουν κοινή χρονικά αφετηρία και διάρκεια αφαιρέθηκαν από όλα τα βίντεο οι νεκροί χρόνοι δηλαδή οι λήψεις σε κάθε βίντεο πριν την έναρξη του πειράματος – πριν την έναυση της φλόγας

 Έγινε κατακερματισμός όλων των βίντεο σε βίντεο διάρκειας ενός λεπτού έκαστο. Για αυτή τη διαδικασία χρησιμοποιήθηκε το ελεύθερο λογισμικό VLC (record)

3) Από κάθε ένα από τα κατακερματισμένα βίντεο εξήχθησαν όλες οι εικόνες. Για αυτή τη διαδικασία χρησιμοποιήθηκε το ελεύθερο λογισμικό VLC. Ενδεικτικά σε κάθε δευτερόλεπτο βίντεο αντιστοιχούν περίπου 25 -30 εικόνες (καρε).

4) Έγινε επεξεργασία της κάθε εικόνας με το λογισμικό infranview, με σκοπό να βελτιωθούν τα χρωματικά χαρακτηριστικά των εικόνων. Έτσι ώστε το ανωτέρω λογισμικό να εντοπίσει με μεγαλύτερη ακρίβεια τα pixel της φωτιάς (fire pixels).

5) Δημιουργήθηκε φάκελος στον οποίο υπήρχαν οι επεξεργασμένες εικόνες και ο προαναφερθέν κώδικας Matlab.

 Για να έχουμε την βέλτιστή δυνατή αντιστοιχία μεταξύ των πραγματικών γεωμετρικών μεγεθών φλόγας και των συντεταγμένων που έχουν δοθεί στον κώδικα MATLAB για τα βίντεο πρόσοψης (front) έγινε περικοπή της κάθε εικόνας στα όρια της πειραματικής διάταξης και μόνο. Με δεδομένο ότι όλα τα γεωμετρικά χαρακτηριστικά της πειραματικής διάταξης (ύψος ,πλάτος, απόσταση εστίας από το έδαφος, ύψος και πλάτος ανοίγματος) είναι γνωστά επιτυγχάνεται με αυτό τον τρόπο ο μέγιστος βαθμός αναλογικότητας μεταξύ pixel και πραγματικών αποστάσεων /συντεταγμένων.

ii) Όμοια διαδικασία ακολουθήθηκε και για τα βίντεο πλάγιας όψης (profile).
 Συγκεκριμένα στον οριζόντιο άξονα αφού ήταν δεδομένη η απόσταση των θερμοστοιχείων μεταξύ
 τους και από την πειραματική διάταξη, η περικοπή έγινε μέχρι περίπου και το πιο απομακρυσμένο
 θερμοστοιχείο από την εστία.

Με την ανωτέρω διαδικασία, εξασφαλίστηκε ότι οι εικόνες των βίντεο της πρόσοψης και πλάγιας όψης έχουν το ίδιο ύψος.

6) Για κάθε ένα από τα «περικομμένα» βίντεο, εκτελέστηκε το προαναφερθέν λογισμικό επεξεργασίας (MATLAB).

Από αυτό το λογισμικό εξήχθη για κάθε ένα από τα βίντεο το αρχείο intermittency.dat.

 Το κάθε αρχείο intermittency.dat, εισάχθηκε στο λογισμικό στατιστικής επεξεργασίας δεδομένων, Origin, για να εξαχθεί η ισοϋψής καμπύλη/διάγραμμα intermittency contour.

9) Από την καμπύλη internmittency contour και για intermittency =50%, υπολογίστηκαν με γραφικό τρόπο:

I. Οι τιμές του μέγιστου ύψους (max height, m) για τα βίντεο πρόσοψής (front).

II. Οι τιμές της οριζόντιας προβολής (projection, m) για τα βίντεο πλάγιας όψης (side).

Στα κάτωθι διαγράμματα απεικονίζεται η οριζόντια προβολή της εξερχόμενης φλόγας συναρτήσει του χρόνου για τα πειράματα μεγάλης κλίμακος τα οποία εκτελέστηκαν (Large 1 και Large 2)

Διάγραμμα 5.15 Η οριζόντια προβολή της εξερχόμενης φλόγας συναρτήσει του χρόνου για το πείραμα Large scale 1.

Διάγραμμα 5.16. Η οριζόντια προβολή της εξερχόμενης φλόγας συναρτήσει του χρόνου για το πείραμα Large scale 2.

Από το Διάγραμμα 5.15, που αφορά την χρονική εξέλιξη της οριζόντιας προβολής της EVF για στο Πείραμα Μεγάλης Κλίμακας_1 προκύπτουν τα ακόλουθα συμπεράσματα:

- Ι. Οι τιμές της οριζόντιας προβολής της EVF διακυμαίνονται από 0.6 m έως και 1.053 m.
- II. Οι τιμές τις της οριζόντιας προβολής της EVF από την χρονική στιγμή t=1 min έως t=4 min οι τιμές της οριζόντιας προβολής αυξάνονται συνεχώς με μέγιστη τιμή το 1.053 m που παρουσιάζεται την χρονική στιγμή t=4 min.

III. Οι τιμές της οριζόντιας προβολής κατά διαστήματα παρουσιάζουν αυξητική τάση. Πιο συγκεκριμένα στην χρονική περίοδο από t=7-10min, και από t=11-13min. Στα ενδιάμεσα διαστήματα οι τιμές της οριζόντιας προβολής της EVF έχουν πτωτική τάση.

Από το Διάγραμμα 5.16, που αφορά την χρονική εξέλιξη της οριζόντιας προβολής της EVF για στο Πείραμα Μεγάλης Κλίμακας_2 προκύπτουν τα ακόλουθα συμπεράσματα :

- Ι. Οι τιμές της οριζόντιας προβολής της EVF διακυμαίνονται από 0.406 m έως και 0.89 m.
- II. Οι τιμές τις της οριζόντιας προβολής της EVF από την χρονική στιγμή t=1 min έως t=3 min οι τιμές της οριζόντιας προβολής αυξάνονται συνεχώς με μέγιστη τιμή το 0.829 m που παρουσιάζεται την χρονική στιγμή t=3 min.
- III. Οι τιμές της οριζόντιας προβολής κατά διαστήματα παρουσιάζουν αυξητική τάση. Πιο συγκεκριμένα, στην χρονική περίοδο από t=4-8min, από t=10-11min στην οποία προκύπτει η μέγιστη τιμή της οριζόντιας προβολής 0,89m, και από t=12-13 min. Στα ενδιάμεσα διαστήματα οι τιμές της οριζόντιας προβολής της EVF έχουν πτωτική τάση.

Στα κάτωθι διαγράμματα απεικονίζεται το μέγιστο ύψος της εξερχόμενης φλόγας EVF συναρτήσει του χρόνου, για τα πειράματα Μεγάλης Κλίμακας (Large Scale), τα οποία εκτελέστηκαν.

Διάγραμμα 5.17 Το μέγιστο ύψος της εξερχόμενης φλόγας συναρτήσει του χρόνου για το πείραμα Large scale 1.

Διάγραμμα 5.18 Το μέγιστο ύψος της εξερχόμενης φλόγας συναρτήσει του χρόνου για το πείραμα Large scale 2

Από το Διάγραμμα 5.17, που αφορά την χρονική εξέλιξη του μέγιστου ύψους της EVF για στο Πείραμα Μεγάλης Κλίμακας_1 προκύπτουν τα ακόλουθα συμπεράσματα :

- Ι. Οι τιμές του μέγιστου ύψους της EVF διακυμαίνονται από 3.874 m έως και 4.495 m.
- II. Οι τιμές του μέγιστου ύψους της EVF κατά διαστήματα παρουσιάζουν αυξητική τάση. Πιο συγκεκριμένα στην χρονική περίοδο από t=2-3min, από t=4-5min, από t=6-9min όπου και παρουσιάζεται η μέγιστη τιμή του μέγιστου ύψους της EVF ίση με 4.945m, από t=10-12min και από t=13-14min. Στα ενδιάμεσα διαστήματα οι τιμές του μέγιστου ύψους της EVF έχουν πτωτική τάση.

Από το Διάγραμμα 5.18, που αφορά την χρονική εξέλιξη του ύψους της EVF για στο Πείραμα Μεγάλης Κλίμακας_2 προκύπτουν τα ακόλουθα συμπεράσματα :

- Ι. Οι τιμές του μέγιστου ύψους της EVF διακυμαίνονται από 3.089 m έως και 5.194 m.
- II. Οι τιμές του μέγιστου ύψους της EVF κατά διαστήματα παρουσιάζουν αυξητική τάση. Πιο συγκεκριμένα στην χρονική περίοδο από t=2-6min όπου και παρουσιάζεται η μέγιστη τιμή του μέγιστου ύψους της EVF ίση με 5.194m, από t=8-9min, από t=11-13min .Στα ενδιάμεσα διαστήματα οι τιμές του μέγιστου ύψους της EVF έχουν πτωτική τάση.

Διάγραμμα 5.19. Συγκεντρωτικό διάγραμμα οριζόντιας προβολής συναρτήσει χρόνου πειραμάτων Large scale

Από το Διάγραμμα 5.19, που αφορά την σύγκριση σχετικά με την εξέλιξη της οριζόντιας προβολής συναρτήσει του χρόνου μεταξύ των πειραμάτων Μεγάλης Κλίμακας προκύπτουν τα ακόλουθα συμπεράσματα :

- Ι. Τα Διαγράμματα της οριζόντιας προβολής συναρτήσει του χρόνου για τα δύο Πειράματα
 Μεγάλης Κλίμακας έχουν παρόμοιες μορφές.
- II. Οι τιμές της οριζόντιας προβολής συναρτήσει του χρόνου για το Πείραμα Μεγάλης Κλίμακας 1 υπερέχουν σε σχέση με τις τιμές της οριζόντιας προβολής συναρτήσει του χρόνου για το Πείραμα Μεγάλης Κλίμακας 2. Με εξαιρέσεις τις χρονικές στιγμές t=2min, t=7min όπου ισχύουν τα αντίστροφα.

Διάγραμμα 5.20. Συγκεντρωτικό διάγραμμα εξερχόμενου μέγιστου ύψους φλόγας συναρτήσει χρόνου πειραμάτων Large scale

Από το Διάγραμμα 5.20, που αφορά την σύγκριση σχετικά με την εξέλιξη του εξερχόμενου μέγιστου ύψους της φλόγας (EVF) συναρτήσει του χρόνου μεταξύ των πειραμάτων Μεγάλης Κλίμακας προκύπτουν τα ακόλουθα συμπεράσματα :

- Τα Διαγράμματα του εξερχόμενου μέγιστου ύψους της φλόγας (EVF) συναρτήσει του χρόνου για τα δύο Πειράματα Μεγάλης Κλίμακας έχουν παρόμοιες μορφές.
- II. Οι τιμές του εξερχόμενου μέγιστου ύψους της φλόγας (EVF) συναρτήσει του χρόνου για το Πείραμα Μεγάλης Κλίμακας 2 υπερέχουν σε σχέση με τις τιμές της οριζόντιας προβολής συναρτήσει του χρόνου για το Πείραμα Μεγάλης Κλίμακας 1. Με εξαιρέσεις τις χρονικές στιγμές t=3min, όπου οι τιμή του εξερχόμενου μέγιστου ύψους της φλόγας EVF σχεδόν είναι ίδια και στα δύο Πειράματα Μεγάλης Κλίμακας.

Σε αυτό το σημείο και με βάση την συνολική ανάλυση των δυο Πειραμάτων Μεγάλης Κλίμακας, αξίζει να επισημανθούν τα ακόλουθα:

- I. Οι διαφορές που παρατηρούνται μεταξύ των γεωμετρικών χαρακτηριστικών της φλόγας (μέγιστο ύψος & οριζόντια απόσταση) από την σύγκριση των δύο πειραμάτων οφείλονται στους εξής παράγοντες:
 - Στις διαφορετικές κλιματικές συνθήκες που εμφανίζονται στα δύο πειράματα (διαφορετική ταχύτητα αέρα).
 - Στις διαφορετικές συνθήκες αερισμού που επικρατούν στα δύο πειράματα. Πιο συγκεκριμένα, στο Πείραμα Μεγάλης Κλίμακας 1, χρησιμοποιήθηκε αεριζόμενη πρόσοψη (ventilated façade), ενώ στο Πείραμα Μεγάλης Κλίμακας 2 χρησιμοποιήθηκε απλή πρόσοψη (plain façade).
- II. Τα δύο Πειράματα Μεγάλης Κλίμακας παρουσιάζουν μεταξύ παρόμοιες συμπεριφορές σχετικά με την χρονική εξέλιξη των γεωμετρικών χαρακτηριστικών της εξερχόμενης φλόγας EVF (μέγιστο ύψος και οριζόντια προβολή).
- III. Με την πάροδο του χρόνου, εμφανίζονται μόνιμα φλόγες από στο εξωτερικό του δωματίου και με βάση τα επεξεργασμένα βίντεο των Πειραμάτων Μεγάλης Κλίμακας, οι σχηματιζόμενες εξερχόμενες φλόγες καλύπτουν ολόκληρη την περιοχή πάνω από το άνοιγμα.

ΚΕΦΑΛΑΙΟ 6⁰

6.1 Εισαγωγή

Σε αυτό το κεφάλαιο, παρουσιάζονται τα αποτελέσματα που προέκυψαν από την ανάπτυξη του ανωτέρω λογισμικού επεξεργασίας εικόνας, σχετικά με τα γεωμετρικά μεγέθη της εξερχόμενης φλόγας (μέγιστο ύψος και οριζόντια προβολή), για τα πειράματα μικρής και μεγάλης κλίμακας. Επιπλέον, γίνεται σύγκριση των αποτελεσμάτων με τα αποτελέσματα που προκύπτουν από τις εξισώσεις του Eurocode για τα υπό εξέταση γεωμετρικά μεγέθη της εξερχομένης φλόγας για κάθε μελέτη περίπτωσης.

6.2 Παρουσίαση, σύγκριση αποτελεσμάτων γεωμετρικών χαρακτηριστικών εξερχομένης φλόγας για πειράματα μικρής κλίμακας.

6.2.1 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode για το μέγιστο ύψος φλόγας.

Οι εξισώσεις που χρησιμοποιήθηκαν, για κάθε πειραματικό σενάριο στον υπολογισμό του μέγιστού ύψους της εξερχόμενης φλόγας, μέσω του Eurocode αναλύονται διεξοδικά στο Κεφάλαιο 3 της παρούσας διπλωματικής εργασίας. Η μεθοδολογία υπολογισμού της πυκνότητας καυσαερίων (ρ_a , kgr/m^3),, για κάθε πειραματικό σενάριο αναλύεται στο Παράρτημα B.

Στον ακόλουθο Πίνακα, παρουσιάζονται τα αποτελέσματα σχετικά με το μέγιστο ύψος της εξερχόμενη φλόγας από την ανάπτυξη του λογισμικού επεξεργασίας εικόνας, καθώς και οι αντίστοιχες τιμές του Eurocode για κάθε εξεταζόμενο πειραματικό σενάριο.

Πίνακας 6.1 Σύγκριση οπτικής επεξεργασίας πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode για το μέγιστο ύψος της εξερχόμενης φλόγας

A/A	Test Case	Τύπος Ανοίγμ.	Απόστ. άνω επιφ. καυστήρα από δάπεδο (mm)	Ογκομ. Παροχή Καυσίμου (ltN/min)	Πειραματα καμερας Front Μέγιστο Υψος Φλόγας	Πειραματα καμερας Side Μέγιστο Ύψος Φλόγας y(m) (II)	ΣΦΑΛΜΑ(%) Μέγιστο Ύψος μεταξύ κάμερας side και front	Eurocode	
								Μέγιστο Υψος Φλόγας	Μέγιστο Υψος ΣΦΑΛΜΑ Δλόγας σε σχέση με Eurocode
					y(m) (I)			y(m)	
1	W55-150	Παράθυρο	55	150.00	1.01	1.01	0%	0.00	-
2	W55-170	Παράθυρο	55	170.00	1.15	1.15	0%	0.00	-
3	W55-200	Παράθυρο	55	200.00	1.19	1.19	0%	0.79	-34%
4	W55-240	Παράθυρο	55	240.00	1.36	1.36	0%	0.96	-29%
5	W200-120	Παράθυρο	200	120.00	1.06	1.06	0%	0.00	-
6	W200-150	Παράθυρο	200	150.00	1.2	1.2	0%	0.00	-
7	W200-170	Παράθυρο	200	170.00	1.25	1.26	1%	0.00	-
8	W200-200	Παράθυρο	200	200.00	1.31	1.31	0%	0.79	-40%
9	W200-240	Παράθυρο	200	240.00	1.45	1.45	0%	0.96	-34%
10	D55 -160	Πόρτα	55	160.00	1.06	1.06	0%	0.89	-16%
11	D55 - 200	Πόρτα	55	200.00	1.289	1.29	0%	1.13	-13%
12	D55 - 240	Πόρτα	55	240.00	1.41	1.42	1%	1.28	-9%
13	D200 - 120	Πόρτα	200	120.00	0.97	0.97	0%	0.00	-
14	D200 - 150	Πόρτα	200	150.00	1.32	1.33	1%	0.88	-33%
15	D200 - 240	Πόρτα	200	240.00	1.61	1.61	0%	1.28	-20%
						Μέσος Όρος:	0%		-25%

Από τον ανωτέρω Πίνακα μπορούν να εξαχθούν τα ακόλουθα ως συμπεράσματα σχετικά με το μέγιστο ύψος της εξερχόμενης φλόγας:

I. Για τα πιο πολλά εξεταζόμενα σενάρια δεν υφίσταται διαφορά ως προς το μέγιστο ύψος μεταξύ των πειραμάτων της πρόσοψης (front) και της πλάγιας όψης. Σφάλμα της τάξεως του 1%, ως προ της υπολογιζόμενη τιμή του μέγιστου ύψους, υφίσταται μόνο στα test cases Door c55 240 & Door c200 150 στα οποία ο κώδικας υπολογίζει 0,01m παραπάνω στα πειράματα πλάγιας όψης.

II. Ο μέσος όρος του σφάλματος, ως προς το υπολογιζόμενο μέγιστο ύψος, βάσει λογισμικού, μεταξύ των πειραμάτων πρόσοψης(front) και πλάγιας όψης (side) ανέρχεται σε 0%.

III. Για τα εξεταζόμενα σενάρια: α)Window c55-150, β)Window c55-170, γ)Window c200-120, δ)Window c200-150, ε)Window c200-170, ζ)Door c200-120, κώδικα επεξεργασίας εικόνας υπολογίζει τα ακόλουθα μέγιστα ύψη ανά περίπτωση: .1.01m, 1.15m, 1.06m, 1.2m, 1.25m, 0.36m. Αντίθετα ο Eurocode για τα εξεταζόμενα αυτά σενάρια έχει ως

αποτελέσματα μηδενικές τιμές. Δηλαδή για χαμηλές παροχές καυσίμου ο Eurocode έχει ως αποτέλεσμα μηδενικό μέγιστο ύψος, πράγμα το οποίο έρχεται σε αντίθεση με τα βίντεο πρόσοψης (front) και πλάγιας όψης (side), στα οποία υφίσταται εξερχόμενη φλόγα.

IV. Για τα εξεταζόμενα σενάρια: α)Window c55-200, β)Window c55-240, γ)Window c200-200, δ)Window c200-240, ε)Door c55-160, ζ) Door c55-200, η) Door c55-240, θ) Door c200-150, ι) Door c200-240, ο Eurocode υποεκτιμά το μέγιστο ύψος της εξερχόμενης φλόγας από 9%-40%.

V. Ο Eurocode υποεκτιμά το μέγιστο ύψος εξερχόμενης φλόγας σε σχέση με τον κώδικα επεξεργασίας εικόνας με μέσο όρο του σφάλματος 25%.

6.2.2 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode για την προβολή της εξερχόμενη φλόγας.

Οι εξισώσεις που χρησιμοποιήθηκαν, για κάθε πειραματικό σενάριο στον υπολογισμό του μέγιστού ύψους της εξερχόμενης φλόγας, μέσω του Eurocode αναλύονται διεξοδικά στο Κεφάλαιο 3 της παρούσας διπλωματικής εργασίας.

Οι εξισώσεις υπολογισμού Eurocode για την οριζόντια προβολή εξερχόμενης φλόγας (Projection), σε περίπτωση γεωμετρίας ανοίγματος παραθύρου, έχουν ως αποτέλεσμα, μια σταθερή ποσότητα, η οποία δεν εξαρτάται από το ύψος της φλόγας. Αντίθετα, οι εν λόγω εξισώσεις, σε περίπτωση γεωμετρίας ανοίγματος πόρτας , η οριζόντια προβολή της φλόγας δεν είναι μια σταθερή ποσότητα, αλλά εξαρτάται από το ύψος της εξερχόμενης φλόγας και στον Eurocode είναι υπολογισμένη στο μέγιστο ύψος της φλόγας. Ως εκ τούτου , τα αποτελέσματα από των κώδικα επεξεργασίας εικόνας που αφορούν το υπολογισμό την οριζόντιας προβολής θα πρέπει να μετασχηματιστούν δεδομένου ότι δεν αναφέρονται στο μέγιστο ύψος, μέσω κατάλληλου γεωμετρικού μετασχηματισμού, ώστε να είναι συγκρίσιμα με αυτά του Eurocode. Ο συγκεκριμένος γεωμετρικός μετασχηματισμός που χρησιμοποιήθηκε στα πλαίσια της παρούσας διπλωματικής εργασίας παρουσιάζεται στο Παράρτημα Α. Η μεθοδολογία υπολογισμού της πυκνότητας καυσαερίων (ρ_g , kgr/m^3), για κάθε πειραματικό σενάριο αναλύεται στο Παράρτημα Β.
Στον ακόλουθο Πίνακα, παρουσιάζονται τα αποτελέσματα σχετικά με την οριζόντιας προβολή (projection) της εξερχόμενης φλόγας από την ανάπτυξη του λογισμικού επεξεργασίας εικόνας, καθώς και οι αντίστοιχες τιμές του Eurocode για κάθε εξεταζόμενο πειραματικό σενάριο.

Πίνακας 6.2 Σύγκριση οπτικής επεξεργασίας πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode για την οριζόντια προβολή της εξερχόμενης φλόγας

					Πειραματα καμερας Side	Eurocode		
A/A	Test Case	Τύπος Ανοίγματος	Αποσταση άνω επιφάνειας καυστήρα από δάπεδο (mm)	Ογκομετρική Παροχή Καυσίμου (ltN/min)	Οριζόντια Προβολή Εξερχόμενης Φλόγας	Οριζόντια Προβολή Εξερχόμενης Φλόγας	ΣΦΑΛΜΑ σε σχέση με Eurocode (%)	
					x(m)	x (m)		
1	W55-150	Παράθυρο	55	150.00	0.134	-	-	
2	W55-170	Παράθυρο	55	170.00	0.18	-	-	
3	W55-200	Παράθυρο	55	200.00	0.19	0.10	-47%	
4	W55-240	Παράθυρο	55	240.00	0.2	0.10	-50%	
5	W200-120	Παράθυρο	200	120.00	0.29	-	-	
6	W200-150	Παράθυρο	200	150.00	0.298	-	-	
7	W200-170	Παράθυρο	200	170.00	0.309	-	-	
8	W200-200	Παράθυρο	200	200.00	0.31	0.10	-68%	
9	W200-240	Παράθυρο	200	240.00	0.334	0.10	-70%	
10	D55 -160	Πόρτα	55	160.00	0.3	0.28	-7%	
11	D55 - 200	Πόρτα	55	200.00	0.332	0.22	-32%	
12	D55 - 240	Πόρτα	55	240.00	0.37	0.23	-37%	
13	D200 - 120	Πόρτα	200	120.00	0.383		-	
14	D200 - 150	Πόρτα	200	150.00	0.408	0.32	-22%	
15	D200 - 240	Πόρτα	200	240.00	0.446	0.23	-49%	
						Μέσος Όρος:	-43%	

Από τον Πίνακα 6.2 μπορούν να εξαχθούν τα ακόλουθα ως συμπεράσματα σχετικά με την οριζόντια προβολής της εξερχόμενης φλόγας:

I. Για τα εξεταζόμενα σενάρια: α)Window c55-150, β)Window c55-170, γ)Window c200-120, δ)Window c200-150, ε)Window c200-170, ζ)Door c200-120, ο κώδικα επεξεργασίας εικόνας υπολογίζει ως οριζόντια προβολή εξερχόμενης φλόγας ανά περίπτωση τις τιμές: .1.01m, 1.15m, 1.06m, 1.2m, 1.25m, 0.36m. Αντίθετα ο Eurocode για τα εξεταζόμενα αυτά σενάρια έχει ως αποτελέσματα μηδενικές τιμές. Δηλαδή για χαμηλές παροχές καυσίμου ο Eurocode έχει ως

αποτέλεσμα μηδενική οριζόντια προβολή εξερχόμενης φλόγας, πράγμα το οποίο έρχεται σε αντίθεση με τα βίντεο πλάγιας όψης (side), στα οποία υφίσταται εξερχόμενη φλόγα.

II. Για τα εξεταζόμενα σενάρια: α)Window c55-200, β)Window c55-240, γ)Window c200-200, δ)Window c200-240, ε)Door c55-160, ζ) Door c55-200, η) Door c55-240, θ) Door c200-150, ι) Door c200-240, ο Eurocode υποεκτιμά την οριζόντια προβολή της εξερχόμενης φλόγας από 7%-70%.

III. Ο Eurocode υποεκτιμά την οριζόντια προβολή της εξερχόμενης φλόγας σε σχέση με τον κώδικα επεξεργασίας εικόνας με μέσο όρο του σφάλματος 43%.

IV. Με βάση του τύπους υπολογισμού της οριζόντιας προβολής φλόγας οι οποίοι αναφέρονται στο Κεφάλαιο 3 της παρούσας διπλωματικής εργασίας, η οριζόντια προβολή της εξερχόμενης φλόγας εξαρτάται αποκλειστικά από την γεωμετρία του ανοίγματος και είναι ανεξάρτητη της ισχύς της πυρκαγιάς. Όμως αυτό, έρχεται σε πλήρη αντίθεση με τα αποτελέσματα που προέκυψαν από το αναπτυσσόμενο λογισμικό επεξεργασίας εικόνας καθώς και από τα βίντεο πλαγίας όψης των πειραμάτων μικρή κλίμακας, στα οποία φαίνεται ξεκάθαρα ότι η οριζόντια προβολή της εξερχόμενης φλόγας εξαρτάται από την ισχύ της πυρκαγιάς. Πιο συγκεκριμένα, όσο αυξάνεται η ισχύς της πυρκαγιάς θα αυξάνεται και η οριζόντια προβολή της εξερχόμενης φλόγας.

6.3 Παρουσίαση, σύγκρισή αποτελεσμάτων γεωμετρικών χαρακτηριστικών εξερχομένης φλόγας για πειράματα μεγάλης κλίμακας.

6.3.1 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode σχετικά με το μέγιστο ύψος φλόγα για το 1° Πείραμα Μεγάλης Κλίμακας

Οι εξισώσεις που χρησιμοποιήθηκαν, για κάθε πειραματικό σενάριο στον υπολογισμό του μέγιστού ύψους της εξερχόμενης φλόγας, μέσω του Eurocode αναλύονται διεξοδικά στο Κεφάλαιο 3 της παρούσας διπλωματικής εργασίας. Η μεθοδολογία υπολογισμού της πυκνότητας καυσαερίων (ρ_g , kgr/m^3), και της παροχής ισχύος (Q, MW), για κάθε ένα λεπτό από τα επεξεργασμένα βίντεο, τα οποία προήλθαν από περικοπή του αρχικού βίντεο σε τμήματα διάρκειας 1 min, με το πρώτο βίντεο να ξεκινάει από την χρονική στιγμή που αρχίζει να παρουσιάζεται εξερχόμενη φλόγα στο πείραμα, παρουσιάζεται στο Παράρτημα Β.

Στον ακόλουθο Πίνακα, παρουσιάζονται τα αποτελέσματα σχετικά με το μέγιστο ύψος της εξερχόμενη φλόγας από την ανάπτυξη του λογισμικού επεξεργασίας εικόνας, καθώς και οι αντίστοιχες τιμές του Eurocode για επεξεργασμένα βίντεο που προέκυψαν από το βίντεο πρόσοψης (front) του 1^{ου} Πειράματος Μεγάλης Κλίμακας.

Πίνακας 6.3 Σύγκριση οπτικής επεξεργασίας πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode για το ύψος της εξερχόμενης φλόγας για το 1° Πείραμα Μεγάλης Κλίμακας.

A/A	Χρονικό Διάστημα Επεξεργασμένων Video FRONT	IΣXYΣ (Q, kW)	ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ (m)	ΑΠΟΤΕΛΕΣΜΑΤΑ EUROCODE (m)	Σφάλμα (%)
1	1min	2500	4.491	4.42	-1.57%
2	2min	3800	4.441	6.44	31.06%
3	3min	4100	4.638	6.95	33.24%
4	4min	3750	4.237	6.76	37.33%
5	5min	3800	4.32	7.00	38.25%
6	6min	3600	3.874	6.83	43.30%
7	7min	2750	4.214	5.69	25.99%
8	8min	2400	4.291	5.08	15.56%
9	9min	3600	4.945	6.90	28.36%
10	10min	3500	4.203	6.88	38.87%
11	11min	3000	4.237	5.99	29.23%
12	12min	1250	4.822	3.26	-47.69%
13	13min	500	4.481	1.65	-172.03%
14	14min	300	4.491	1.10	-310.13%
				Μέσος Όρος	-15.02%

Από τον Πίνακα 6.3 μπορούν να εξαχθούν τα ακόλουθα ως συμπεράσματα σχετικά με το μέγιστο ύψος της εξερχόμενης φλόγας:

Στις περισσότερες χρονικές στιγμές, τα αποτελέσματα του Eurocode, ως προς το μέγιστο ύψος της εξερχόμενη φλόγας, υπερτερούν σε σχέση με τις τιμές που έχει υπολογίσει το αναπτυσσόμενο υπολογιστικό πρόγραμμα, με εύρος απόκλισης από 25,99% έως 43,30%. Εξαίρεση αποτελούν τα χρονικά διαστήματα από:

α) t=0-1min, β) t=11-12 min, γ) t=12-13min,

δ) t=13-14min,

Σε αυτά, οι τιμές του μέγιστου ύψους εξερχόμενης φλόγας που δίνει το υπολογιστικό πρόγραμμα είναι μεγαλύτερες σε σχέση με αυτές του Eurocode κατά 1.57%, 47.69%, 172.03% & 310.13% αντίστοιχα.

- ΙΙ. Συνολικά, ο Eurocode υποεκτιμά το μέγιστο ύψος της εξερχόμενης φλόγας σε σχέση με τον κώδικα επεξεργασίας εικόνας με μέσο όρο του σφάλματος 15.02%.
- III. Οι ανωτέρω διαφορές που παρουσιάζονται μεταξύ του υπολογιστικού προγράμματος και του Eurocode οφείλονται στα ακόλουθα:
 - a. Ο Eurocode δεν λαμβάνει υπόψη τις περιβαλλοντικές συνθήκες που επηρεάζουν τα γεωμετρικά χαρακτηριστικά της εξερχόμενης φλόγας.
 - b. O Eurocode δεν λαμβάνει υπόψη την χρονική εξέλιξη του φαινομένου , της εξερχόμενης φλόγας.

Τα ανωτέρω συμπεράσματα μπορούν να επαληθευτούν και από το ακόλουθο Διάγραμμα 6.1, στο οποίο φαίνεται η σύγκριση των αποτελεσμάτων του υπολογιστικού προγράμματος με τις τιμές που προκύπτουν από το Eurocode για το 1° Πείραμα Μεγάλης Κλίμακας, ως προς το μέγιστο ύψος εξερχόμενης φλόγας.

Διάγραμμα 6.1 Σύγκριση αποτελεσμάτων 1ου Πειράματος Μεγάλης Κλίμακας (Large scale 1) με τα αποτελέσματα Eurocode ως προ το μέγιστο ύψος της εξερχόμενης φλόγας

6.3.2 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode σχετικά με την οριζόντια προβολή της φλόγας για το 1° Πείραμα Μεγάλης Κλίμακας.

Οι εξισώσεις που χρησιμοποιήθηκαν, για κάθε πειραματικό σενάριο στον υπολογισμό της οριζόντιας προβολής της εξερχόμενης φλόγας, μέσω του Eurocode αναλύονται διεξοδικά στο Κεφάλαιο 3 της παρούσας διπλωματικής εργασίας. Με βάση τις εξισώσεις υπολογισμού του Eurocode, η τιμή της οριζόντιας προβολής της εξερχόμενης φλόγας εξαρτάται αποκλειστικά και μόνο από την γεωμετρία του ανοίγματος. Ως εκ τούτου η τιμή της οριζόντιας προβολής της εξερχόμενης φλόγας ωλλάζει με την πάροδο του χρόνου του φαινομένου.

Στον ακόλουθο Πίνακα 6.4, παρουσιάζονται τα αποτελέσματα σχετικά με την οριζόντια προβολή της εξερχόμενη φλόγας από την ανάπτυξη του λογισμικού επεξεργασίας εικόνας, καθώς και οι αντίστοιχες τιμές του Eurocode για επεξεργασμένα βίντεο που προέκυψαν από το βίντεο πλάγιας όψης (side) του 1^{ου} Πειράματος Μεγάλης Κλίμακας.

Πίνακας 6.4 Σύγκριση οπτικής επεξεργασίας πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode για την οριζόντια προβολή της εξερχόμενης φλόγας για το 1° Πείραμα Μεγάλης Κλίμακας.

A/A	Χρονικό Διάστημα Κομμένων Video Side	IEXYE (Q, kW)	ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ (m)	AΠΟΤΕΛΕΣΜΑΤΑ EUROCODE (m)	Σφάλμα (%)
1	1 min	2500	0.6	0.402	-49.25%
2	2min	3800	0.69	0.402	-71.64%
3	3min	4100	0.982	0.402	-144.28%
4	4min	3750	1.053	0.402	-161.94%
5	5min	3800	1.023	0.402	-154.48%
6	6min	3600	1.023	0.402	-154.48%
7	7min	2750	0.743	0.402	-84.83%
8	8min	2400	0.936	0.402	-132.84%
9	9min	3600	0.9827	0.402	-144.45%
10	10min	3500	0.9873	0.402	-145.60%
11	11min	3000	0.9311	0.402	-131.62%
12	12min	1250	1.023	0.402	-154.48%
13	13min	500	1.048	0.402	-160.70%
14	14min	300	0.9985	0.402	-148.38%
				Μέσος Όρος:	-131.35%

Από τον ανωτέρω Πίνακα, μπορούν να εξαχθούν ως συμπεράσματα, σχετικά με την οριζόντια προβολή της εξερχόμενης φλόγας για το 1° Πείραμα Μεγάλης Κλίμακας τα ακόλουθα:

- I. Οι τιμές, για την οριζόντια προβολή της εξερχόμενης φλόγας, οι οποίες προκύπτουν από το υπολογιστικό πρόγραμμα είναι μεγαλύτερες από τις αντίστοιχες του Eurocode για τα υπο εξεταζόμενα χρονικά διαστήματα που προέκυψαν από το βίντεο πλάγιας όψης(side) του 1^{ου} Πειράματος Μεγάλης Κλίμακας. .Οι τιμές του Eurocode είναι μικρότερες σε σχέση με το υπολογιστικό πρόγραμμα, με εύρος αποκλίσεως μεταξύ των τιμών που συγκρίνονται να κυμαίνεται από 49.25% έως 148.38%.
- II. Με βάση τον Eurocode, η τιμή της οριζόντιας προβολής της εξερχόμενης φλόγας εξαρτάται αποκλειστικά και μόνο από την γεωμετρία του ανοίγματος. Δηλαδή η τιμή της οριζόντιας προβολής της εξερχόμενης φλόγας είναι μια σταθερή τιμή η οποία δεν αλλάζει με την πάροδο του χρόνου του φαινομένου.

- III. Οι ανωτέρω διαφορές που παρουσιάζονται μεταξύ του υπολογιστικού προγράμματος και του Eurocode, ως προς τον υπολογισμό του συγκεκριμένου γεωμετρικού χαρακτηριστικού της εξερχόμενης φλόγας, οφείλονται στα ακόλουθα:
 - A. O Eurocode δεν λαμβάνει υπόψη τις περιβαλλοντικές συνθήκες που επηρεάζουν τα γεωμετρικά χαρακτηριστικά της εξερχόμενης φλόγας.
 - B. O Eurocode δεν λαμβάνει υπόψη την χρονική εξέλιξη του φαινομένου , της εξερχόμενης φλόγας.

Τα ανωτέρω συμπεράσματα μπορούν να επαληθευτούν και από το ακόλουθο Διάγραμμα 6.2, στο οποίο φαίνεται η σύγκριση των αποτελεσμάτων του υπολογιστικού προγράμματος με τις τιμές που προκύπτουν από το Eurocode για το 1° Πείραμα Μεγάλης Κλίμακας, ως προς την οριζόντια προβολή εξερχόμενης φλόγας.

Διάγραμμα 6.2 Σύγκριση πειραματικών αποτελεσμάτων 1^{ου} Πειράματος Μεγάλης Κλίμακας, με τα αποτελέσματα Eurocode, ως προς την οριζόντια προβολή της εξερχόμενης φλόγας

6.3.3 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode σχετικά με το μέγιστο ύψος της φλόγας για το 2° Πείραμα Μεγάλης Κλίμακας.

Οι εξισώσεις που χρησιμοποιήθηκαν, για κάθε πειραματικό σενάριο στον υπολογισμό του μέγιστού ύψους της εξερχόμενης φλόγας, μέσω του Eurocode αναλύονται διεξοδικά στο Κεφάλαιο 3 της παρούσας διπλωματικής εργασίας. Η μεθοδολογία υπολογισμού της πυκνότητας καυσαερίων (ρ_g , kgr/m^3), και της παροχής ισχύος (Q, MW), για κάθε ένα λεπτό από τα επεξεργασμένα βίντεο, τα οποία προήλθαν από περικοπή του αρχικού βίντεο σε τμήματα διάρκειας 1 min, με το πρώτο βίντεο να ξεκινάει από την χρονική στιγμή που αρχίζει να παρουσιάζεται εξερχόμενη φλόγα στο πείραμα, παρουσιάζεται στο Παράρτημα Β.

Στον ακόλουθο Πίνακα 6.5, παρουσιάζονται τα αποτελέσματα σχετικά με το μέγιστο ύψος της εξερχόμενη φλόγας από την ανάπτυξη του λογισμικού επεξεργασίας εικόνας, καθώς και οι αντίστοιχες τιμές του Eurocode για επεξεργασμένα βίντεο που προέκυψαν από το βίντεο πρόσοψης (front) του 2^{ου} Πειράματος Μεγάλης Κλίμακας.

A/A	Χρονικό Διάστημα Κομμένων Video FRONT	IEXYE (Q, kW)	ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ (m)	AΠΟΤΕΛΕΣΜΑΤΑ EUROCODE (m)	Σφάλμα (%)
1	1 min	2500	3.202	3.43	6.59%
2	2min	3250	3.089	4.72	34.62%
3	3min	3300	4.567	4.92	7.12%
4	4min	3400	4.908	5.33	7.94%
5	5min	3550	5.052	5.47	7.59%
6	6min	3750	5.194	5.88	11.60%
7	7min	3250	4.996	5.43	8.00%
8	8min	3000	4.379	5.08	13.80%
9	9min	2600	5.093	4.67	-8.99%
10	10min	2500	4.874	4.51	-7.96%
11	11min	2000	4.616	3.86	-19.57%
12	12min	2100	5.021	4.17	-20.54%
13	13min	2500	5.193	4.29	-20.97%

Πίνακας 6.5 Σύγκριση οπτικής επεξεργασίας πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode για το ύψος της εξερχόμενης φλόγας για το 2° Πείραμα Μεγάλης Κλίμακας.

14	14min	2000	4.99	3.46	-44.25%
				Μέσος Όρος	-1.79%

Από τον ανωτέρω Πίνακα, μπορούν να εξαχθούν ως συμπεράσματα, σχετικά με το ύψος της εξερχόμενης φλόγας για το 2° Πείραμα Μεγάλης Κλίμακας τα ακόλουθα:

- Ι. Στα ακόλουθα χρονικά διαστήματα: α) Από t=8min έως t=9min, β) Από t=9min έως t=10min, γ) Από t=10min έως t=11min, δ) Από t=11min έως t=12min,ε) Από t=12min έως t=13min, ζ) Από t=13min έως t=14min, οι τιμές του υπολογιστικού προγράμματος, σε σχέση με τις τιμές του Eurocode ήταν μεγαλύτερες, σχετικά με το μέγιστο ύψος της εξερχόμενης φλόγας, κατά 8.99%, 7.96%,19.57%,20.54%,20.97% & 44.25% αντίστοιχα. Στα υπόλοιπα χρονικά διαστήματα, οι τιμές του Eurocode ήταν μεγαλύτερες σε σχέση με αυτές του υπολογιστικού προγράμματος κατά ένα εύρος αποκλίσεως από 6.59% έως34.62%.
- ΙΙ. Συνολικά, ο Eurocode δίνει μεγαλύτερες τιμές, σε σχέση με το υπολογιστικό πρόγραμμα, ως προς τον υπολογισμό του μέγιστου ύψους εξερχόμενης φλόγας, με μέσο όρο σφάλματος 1.79%.
- III. Οι ανωτέρω διαφορές που παρουσιάζονται μεταξύ του υπολογιστικού προγράμματος και του Eurocode, ως προς τον υπολογισμό του συγκεκριμένου γεωμετρικού χαρακτηριστικού της εξερχόμενης φλόγας, οφείλονται στα ακόλουθα:
 - A. O Eurocode δεν λαμβάνει υπόψη τις περιβαλλοντικές συνθήκες που επηρεάζουν τα γεωμετρικά χαρακτηριστικά της εξερχόμενης φλόγας.
 - B. O Eurocode δεν λαμβάνει υπόψη την χρονική εξέλιξη του φαινομένου , της εξερχόμενης φλόγας.

Τα ανωτέρω συμπεράσματα μπορούν να επαληθευτούν και από το ακόλουθο Διάγραμμα 6.3, στο οποίο φαίνεται η σύγκριση των αποτελεσμάτων του υπολογιστικού προγράμματος με τις τιμές που προκύπτουν από το Eurocode για το 2° Πείραμα Μεγάλης Κλίμακας, ως προς το ύψος της εξερχόμενης φλόγας.

Διάγραμμα 6.3 Σύγκριση αποτελεσμάτων 2ου Πειράματος Μεγάλης Κλίμακος, με αποτελέσματα Eurocode, ως προς το μέγιστο ύψος εξερχόμενης φλόγας.

6.3.4 Σύγκριση πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode σχετικά με την οριζόντια προβολή της φλόγας για το 2° Πείραμα Μεγάλης Κλίμακας.

Οι εξισώσεις που χρησιμοποιήθηκαν, για κάθε πειραματικό σενάριο στον υπολογισμό της οριζόντιας προβολής της εξερχόμενης φλόγας, μέσω του Eurocode αναλύονται διεξοδικά στο Κεφάλαιο 3 της παρούσας διπλωματικής εργασίας. Με βάση τις εξισώσεις υπολογισμού του Eurocode, η τιμή της οριζόντιας προβολής της εξερχόμενης φλόγας εξαρτάται αποκλειστικά και μόνο από την γεωμετρία του ανοίγματος. Ως εκ τούτου η τιμή της οριζόντιας προβολής της εξερχόμενης φλόγας ωλλάζει με την πάροδο του χρόνου του φαινομένου.

Στον ακόλουθο Πίνακα 6.6, παρουσιάζονται τα αποτελέσματα σχετικά με την οριζόντια προβολή της εξερχόμενη φλόγας από την ανάπτυξη του λογισμικού επεξεργασίας εικόνας, καθώς και οι αντίστοιχες τιμές του Eurocode για επεξεργασμένα βίντεο που προέκυψαν από το βίντεο πλάγιας όψης (side) του 2^{ου} Πειράματος Μεγάλης Κλίμακας.

Πίνακας 6.6 Σύγκριση οπτικής επεξεργασίας πειραματικών αποτελεσμάτων με αποτελέσματα Eurocode για την οριζόντια προβολή της εξερχόμενης φλόγας για το 2° Πείραμα Μεγάλης Κλίμακας.

A/A	Χρονικό Δίαστημα Κομμένων Video side	IEXYE (Q, kW)	ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ (m)	ΑΠΟΤΕΛΕΣΜΑΤΑ EUROCODE (m)	Σφάλμα (%)
1	1min	2500	0.406	0.402	-1.00%
2	2min	3250	0.724	0.402	-80.10%
3	3min	3300	0.829	0.402	-106.22%
4	4min	3400	0.763	0.402	-89.80%
5	5min	3550	0.779	0.402	-93.78%
6	6min	3750	0.805	0.402	-100.25%
7	7min	3250	0.83	0.402	-106.47%
8	8min	3000	0.88	0.402	-118.91%
9	9min	2600	0.825	0.402	-105.22%
10	10min	2500	0.699	0.402	-73.88%
11	11min	2000	0.89	0.402	-121.39%
12	12min	2100	0.767	0.402	-90.80%
13	13min	2500	0.84	0.402	-108.96%
14	14min	2000	0.828	0.402	-105.97%
				Μέσος Όρος	-93.05%

Από τον ανωτέρω Πίνακα, μπορούν να εξαχθούν ως συμπεράσματα, σχετικά με την οριζόντια προβολή της εξερχόμενης φλόγας για το 20 Πείραμα Μεγάλης Κλίμακας τα ακόλουθα:

- I. Οι τιμές, για την οριζόντια προβολή της εξερχόμενης φλόγας, οι οποίες προκύπτουν από το υπολογιστικό πρόγραμμα είναι μεγαλύτερες από τις αντίστοιχες του Eurocode για τα υπό εξεταζόμενα χρονικά διαστήματα που προέκυψαν από το βίντεο πλάγιας όψης (side) του 2ου Πειράματος Μεγάλης Κλίμακας. Οι τιμές του υπολογιστικού προγράμματος, υπερέχουν με εύρος αποκλίσεως μεταξύ των τιμών που συγκρίνονται να κυμαίνεται από 1.00% έως 121.39%.
- II. Με βάση τον Eurocode, η τιμή της οριζόντιας προβολής της εξερχόμενης φλόγας εξαρτάται αποκλειστικά και μόνο από την γεωμετρία του ανοίγματος. Δηλαδή η τιμή της

οριζόντιας προβολής της εξερχόμενης φλόγας είναι μια σταθερή τιμή η οποία δεν αλλάζει με την πάροδο του χρόνου του φαινομένου.

- III. Οι ανωτέρω διαφορές που παρουσιάζονται μεταξύ του υπολογιστικού προγράμματος και του Eurocode, ως προς τον υπολογισμό του συγκεκριμένου γεωμετρικού χαρακτηριστικού της εξερχόμενης φλόγας, οφείλονται στα ακόλουθα:
 - A. O Eurocode δεν λαμβάνει υπόψη τις περιβαλλοντικές συνθήκες που επηρεάζουν τα γεωμετρικά χαρακτηριστικά της εξερχόμενης φλόγας.
 - B. O Eurocode δεν λαμβάνει υπόψη την χρονική εξέλιξη του φαινομένου , της εξερχόμενης φλόγας.

Τα ανωτέρω συμπεράσματα μπορούν να επαληθευτούν και από το ακόλουθο Διάγραμμα 6.4, στο οποίο φαίνεται η σύγκριση των αποτελεσμάτων του υπολογιστικού προγράμματος με τις τιμές που προκύπτουν από το Eurocode για το 2° Πείραμα Μεγάλης Κλίμακας, ως προς την οριζόντια προβολή εξερχόμενης φλόγας.

Διάγραμμα 6.4 Σύγκριση αποτελεσμάτων 2^{ου} Πειράματος Μεγάλης Κλίμακας, με αποτελέσματα Eurocode, ως προς την οριζόντια προβολή της εξερχόμενης φλόγας

ΚΕΦΑΛΑΙΟ 7°

7.1 Γενικά Συμπεράσματα

Ο σκοπός της παρούσας διπλωματικής εργασίας ήταν η διερεύνηση της επίδρασης των φυσικών παραμέτρων στα γεωμετρικά χαρακτηριστικά της φλόγας εξερχόμενης από άνοιγμα. Πιο συγκεκριμένα, εξετάστηκε η μεταβολή του μέγιστου ύψους και της οριζόντιας προβολής της φλόγας εξερχόμενης από άνοιγμα, εξαιτίας μεταβολών στις αρχικές συνθήκες των πειραμάτων μικρής και μεγάλης κλίμακας, και η σύγκριση των πειραματικών αποτελεσμάτων με εμπειρικές σχέσεις του Eurocode EN 1991-1-2,2002.

Η ανίχνευσή της φωτιάς, στα υπό εξέταση πειραματικά σενάρια, επιτεύχθηκε μέσω υλοποίησης υπολογιστικού προγράμματος (κώδικα) σε περιβάλλον λειτουργίας MATLAB, το οποίο βασίστηκε στην μεθοδολογία οπτικής ανίχνευσής φλόγας του (Vipin V,2012 [81]. Τα πειραματικά αποτελέσματα που προέκυψαν, για τα περισσότερα πειραματικά σενάρια, ήταν ικανοποιητικά συγκρινόμενα και με τα βίντεο αυτών.

Σε όλα τα πειράματα μικρής κλίμακας (small scale), χρησιμοποιήθηκε ως καύσιμο το μεθάνιο και ένας πορώδης καυστήρα, ώστε να δημιουργηθούν μόνιμες (σταθερές) συνθηκές λειτουργίας, και να εξεταστούν οι επιδράσεις που έχουν συγκεκριμένοι παράγοντες , στο μέγιστο ύψος και στην οριζόντια προβολή της φλόγας εξερχόμενης από άνοιγμα. Οι παράγοντες που εξετάστηκαν ήταν οι ακόλουθοι:

- Θερμική Ισχύς Φωτιάς.
- Γεωμετρία Ανοίγματος
- Θέση Καυστήρα εντός Διαμερίσματος.

Τα αποτελέσματα που προέκυψαν από την επίδραση των ανωτέρων παραγόντων στα γεωμετρικά χαρακτηριστικά της εξερχόμενης φλόγας, είναι τα ακόλουθα:

 Θερμική Ισχύς φωτιάς: Με την αύξηση της Θερμικής Ισχύος της φλόγας, αυξάνονται και το μέγιστό ύψος αλλά και η οριζόντια προβολής της φωτιάς που εξέρχεται από άνοιγμα. Γεωμετρία Ανοίγματος: Για γεωμετρία ανοίγματος πόρτας ,το μέγιστο ύψος και η οριζόντια προβολή της φωτιάς που εξέρχεται από άνοιγμα έχουν μεγαλύτερες τιμές, σε σχέση με τις αντίστοιχες για γεωμετρία ανοίγματος παραθύρου.

3. Θέση Καυστήρα εντός διαμερίσματος: Για το σύνολο των πειραματικών αποτελεσμάτων, προέκυψαν υψηλότερες τιμές στην υψηλή θέση καυστήρα σχετικά με το μέγιστό ύψος αλλά και η οριζόντια προβολής της φωτιάς που εξέρχεται από άνοιγμα.

Σε όλα τα πειράματα μεγάλης κλίμακας (large scale), χρησιμοποιήθηκε «αναλώσιμη» πηγή θερμότητας (φωτιά υγρής κηλίδας, με καύσιμο το κανονικό εξάνιο), ώστε να προσομοιωθούν πραγματικές συνθήκες πυρκαγιάς, δηλαδή μη μόνιμες συνθήκες λειτουργίας, χρονικά μεταβαλλόμενες. Εξετάσθηκαν δύο πειράματα μεγάλης κλίμακας τα οποία διέφεραν μεταξύ τους ως προς τις περιβαλλοντικές συνθήκες και τον παράγοντα του αερισμού. Τα αποτελέσματα που προέκυψαν είναι τα ακόλουθα:

 Τα Διαγράμματα της οριζόντιας προβολής της φωτιάς που εξέρχεται από άνοιγμα, συναρτήσει του χρόνου για τα δύο Πειράματα Μεγάλης Κλίμακας έχουν παρόμοιες μορφές.

2. Οι τιμές της οριζόντιας προβολής της φωτιάς που εξέρχεται από άνοιγμα, συναρτήσει του χρόνου για το Πείραμα Μεγάλης Κλίμακας 1 υπερέχουν σε σχέση με τις τιμές της οριζόντιας προβολής συναρτήσει του χρόνου για το Πείραμα Μεγάλης Κλίμακας 2. Με εξαιρέσεις τις χρονικές στιγμές t=2min, t=7min όπου ισχύουν τα αντίστροφα.

3. Τα Διαγράμματα του μέγιστου ύψους της φωτιάς που εξέρχεται από άνοιγμα, συναρτήσει του χρόνου για τα δύο Πειράματα Μεγάλης Κλίμακας έχουν παρόμοιες μορφές.

4. Οι τιμές του μέγιστου ύψους της φωτιάς που εξέρχεται από άνοιγμα, συναρτήσει του χρόνου για το Πείραμα Μεγάλης Κλίμακας 2 υπερέχουν σε σχέση με τις τιμές της οριζόντιας προβολής συναρτήσει του χρόνου για το Πείραμα Μεγάλης Κλίμακας 1. Με εξαιρέσεις τις χρονικές στιγμές t=3min, όπου οι τιμή του μεγίστου ύψους της φλόγας που εξέρχεται από άνοιγμα σχεδόν είναι ίδια και στα δύο Πειράματα Μεγάλης Κλίμακας.

Τα πειραματικά αποτελέσματα, τα οποία προέκυψαν από το υπολογιστικό πρόγραμμα (κώδικα) συγκρίθηκαν με τις εμπειρικές σχέσεις του Eurocode EN 1991-1-2,2002, που αφορούν το μέγιστο

ύψος και την οριζόντια προβολή φωτιάς που εξέρχεται από άνοιγμα, και το αποτέλεσμα ανά κατηγορία εξεταζόμενου πειράματος είναι το εξής:

1. Πειράματα Μικρής Κλίμακας:

Α) Μέγιστος Ύψος φλόγας που εξέρχεται από άνοιγμα:

I. Ο Eurocode για χαμηλές παροχές καυσίμου έχει ως αποτέλεσμα μηδενικό μέγιστο ύψος, πράγμα το οποίο έρχεται σε αντίθεση με τα βίντεο πρόσοψης (front) και πλάγιας όψης (side)
 , στα οποία υφίσταται εξερχόμενη φλόγα, την οποία και υπολογίζει το υπολογιστικό εργαλείο Matlab.

II. Ο Eurocode υποεκτιμά το μέγιστο ύψος της φωτιάς που εξέρχεται από άνοιγμα σε σχέση με τον κώδικα επεξεργασίας εικόνας με μέσο όρο του σφάλματος 25%.

Β) Οριζόντια προβολή φλόγας που εξέρχεται από άνοιγμα:

I. Ο Eurocode έχει ως αποτέλεσμα μηδενική οριζόντια προβολή εξερχόμενης φλόγας, πράγμα το οποίο έρχεται σε αντίθεση με τα βίντεο πλάγιας όψης (side), στα οποία υφίσταται εξερχόμενη φλόγα, στα οποία υφίσταται εξερχόμενη φλόγα, της οποία την οριζόντια προβολή της υπολογίζει το υπολογιστικό εργαλείο Matlab.

II. Ο Eurocode υποεκτιμά την οριζόντια προβολή της φλόγας εξερχόμενης από άνοιγμα σε σχέση με τον κώδικα επεξεργασίας εικόνας με μέσος όρο σφάλματος 43%.

III. Με βάση τον Eurocode η οριζόντια προβολή της φλόγας εξερχόμενης από άνοιγμα εξαρτάται αποκλειστικά από την γεωμετρία του ανοίγματος και είναι ανεξάρτητη της ισχύς της πυρκαγιάς. Όμως αυτό, έρχεται σε πλήρη αντίθεση με τα αποτελέσματα του υπολογιστικού προγράμματος καθώς και από τα βίντεο πλαγίας όψης των πειραμάτων, βάση των οποίων, η οριζόντια προβολή της εξερχόμενης φλόγας εξαρτάται από την ισχύ της πυρκαγιάς.

2. Πειράματα Μεγάλης Κλίμακας:

Α) Χρονική μεταβολή του μέγιστου ύψους φωτιάς εξερχόμενης από άνοιγμα:

I. Συνολικά, ο Eurocode υποεκτιμά το μέγιστο ύψους φωτιάς εξερχόμενης από άνοιγμα σε σχέση με τον κώδικα επεξεργασίας εικόνας. Β) Χρονική μεταβολή της οριζόντιας προβολής φωτιάς εξερχόμενης από άνοιγμα:

I. Με βάση τον Eurocode, η τιμή της οριζόντιας προβολής της εξερχόμενης φλόγας εξαρτάται αποκλειστικά και μόνο από την γεωμετρία του ανοίγματος. Δηλαδή, η τιμή της οριζόντιας προβολής της εξερχόμενης φλόγας είναι μια σταθερή τιμή η οποία δεν αλλάζει με την πάροδο του χρόνου του φαινομένου. Ως εκ τούτου, το υπολογιστικό πρόγραμμα φαίνεται να υπερτιμά με μεγάλο μέσο όρο σφάλματος το συγκεκριμένο γεωμετρικό χαρακτηριστικό.

Συνοψίζοντας, οι ανωτέρω διαφορές, που παρουσιάζονται μεταξύ του υπολογιστικού προγράμματος και του Eurocode και στα δύο εξεταζόμενα γεωμετρικά χαρακτηριστικά φλόγας εξερχόμενης από άνοιγμα, οφείλονται κυρίως στα εξής:

I. Ο Eurocode, δεν λαμβάνει υπόψη τις περιβαλλοντικές συνθήκες.

II. Ο Eurocode, δεν λαμβάνει υπόψη την χρονική εξέλιξη του φαινομένου.

Το αντικειμένου της παρούσας διπλωματικής εργασίας θα μπορούσε να διευρυνθεί περαιτέρω μέσω της διερεύνησης επιπλέον παραμέτρων. Συγκεκριμένα είναι δυνατή η προσθήκη στο υπολογιστικό πρόγραμμα, νέων πιο σύνθετων κριτηρίων και μοντέλων επεξεργασίας εικόνας, ώστε η απεικόνιση της φωτιάς να είναι πιο ακριβής, έχοντας ως αποτέλεσμα μεγαλύτερη ακρίβεια στον προσδιορισμό των γεωμετρικών χαρακτηριστικών της φλόγας. Επιπρόσθετα, θα πρέπει να γίνει μελέτη υπό συνθήκες φωτιάς, της αντίδραση πιο πολύπλοκων τεχνικών δομών προσόψεων που αποτελούνται διαφορετικά δομικά υλικά. Τέλος, θα πρέπει να μελετηθούν σενάρια φωτιάς τα οποία στο εσωτερικό τους να αποτελούνται από πιο εύφλεκτα υλικά.

ΒΙΒΛΙΟΓΡΑΦΙΑ

- [1] L. Bisby, J. Gales, and C. Maluk, "A contemporary review of large-scale non-standard structural fire testing," Fire Sci. Rev., vol. 2, no. 1, p. 1, 2013.
- [2] Ingberg, S.H. "Fire loads," Quarterly Journal of The National Fire Protection Association, 22, 43-61.," Quaterly J. NFPA, vol. 22, pp. 43–61, 1928.
- [3] Kawagoe, K., "Fire Behaviour in Rooms Report No. 27," 1958.
- [4] Thomas, P.H., Heselden, A. J. and Law, M. "Fully-developed compartment fires -two kinds of behaviour," no. 18. 1967.
- [5] Thomas, P.H., and Heselden, A.J.M., "Fully developed fires in single compartments", CIB Report No 20. Fire Research Note 923, Fire Research Station, Borehamwood, England, UK, 1972.
- [6] "Engineering Guide Fire Exposures to Structural Elements," Society of Fire Protection Engineers, 2004.
- [7] "Engineering Standard Calculating Fire Exposures to Structures," Society of Fire Protection Engineers, 2011.
- [8] Harmathy, T.Z. "A New Look at Compartment Fires," Fire Technolgy, vol. 8, no. 3, pp. 196–217, Aug. 1972.
- [9] Harmathy, T. Z., "Design of Buildings for Fire Safety Part I," Fire Technol., vol. 12, no. 2, pp. 95–108, 1976.
- [10] Harmathy, T.Z., "Design of Buildings for Life Safety Part II," Fire Technol., vol. 12, no. 3, pp. 219–236, 1976.
- [11] Harmathy, T.Z., "Designers Option: Fire Resistance or Ventilation," in 6th CIB Congress The Impact of Research on The Built Environment, 1974, no. 436, pp. 277–282.
- [12] Buchanan, A., "The Challenges of Predicting Structural Performance in Fires," Fire Safety Science, 9: 79-90, 2008.
- [13] Franssen, J.M., "Structures In Fire, Yesterday, Today And Tomorrow," Fire Safety Science, 8: 21-35, 2005.
- [14] White, N., Delichatsios, M., 2014. Fire Hazards of Exterior Wall Assemblies Containing Combustible Components. Final Report. Fire Protection Research Foundation.
- [15] Yokoi, S., 1960. Study on the Prevention of Fire Spread Caused by Hot Upward Current. Report No. 34. Building Research Institute, Tokyo, Japan.\
- [16] Asimakopoulou, E., Chotzoglou K., Kolaitis, D., Founti, M., 2016a. Characteristics of Externally Venting Flames and their effect on the façade: a detailed experimental study. Fire Technol. http://dx.doi.org/10.1007/s10694-016-0575-5.
- [17] Oleszkiewicz, I., 1989. Heat transfer from a window fire plume to a building façade. In: Marner, W.J., Chen, T.C., Faghri, M., Peterson, G.P., Kuehn, T.H., Pate, M.B., Mahajan, R.L., Lavine, A.S. (Eds.), Reprinted from "Collected Papers in Heat Transfer", vol. 123. HTD. Book No. H00526.

- [18] Tang, F., Hu, L.H., Delichatsios, M.A., Lu, K.H., Zhu, W., 2012. Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire. Int. J. Heat Mass Transf. 55, 93e101.
- [19] Klopovic, S., Turan, O.F., 2001. A comprehensive study of Externally Venting Flames, Part I: experimental plume characteristics for through-draft and no throughdraft ventilation conditions and repeatability. Fire Saf. J. 36, 99e133.
- [20] Klopovic, S., Turan, O.F., 2001. A comprehensive study of Externally Venting Flames, Part II: plume envelope and center-line temperature comparisons, secondary fires, wind effects and smoke management system. Fire Saf. J. 36, 135e172.
- [21] Empis, C.A., 2010. Analysis of the Compartment Fire Parameters Influencing the Heat Flux Incident on the Structural Façade. Ph.D. thesis. University of Edinburgh, U.K. EN 1991-1-2, 2002. Actions on Structures, Part 1-2 e General Actions e Actions on Structures Exposed to Fire (Brussels, Belgium).
- [22] Himoto, K., Tsuchihashi, T., Tanaka, Y., Tanaka, T., 2009. Modeling thermal behaviors of window flames ejected from a fire compartment. Fire Saf. J. 44, 230e240.
- [23] Law, M., 1978. Fire safety of external building elements e the design approach. AISC Eng. J. (Second Quarter).
- [24] Beyler, C.L., 1986. Fire plumes and ceiling jets. Fire Saf. J. 11, 53e75.
- [25] Heskestad, G., 1983. Virtual origins of fire plumes. Fire Saf. J. 5, 109e114.
- [26] Hasemi, Y., Tokunaga, T., 1984. Flame geometry effects in the buoyant plumes from turbulent diffusion flames. Fire Saf. Sci. Technol. 4, 15e26.
- [27] McCaffrey, B.J., 1983. Momentum implications for buoyant diffusion flames. Combust. Flame 52, 149e156.
- [28] Beuther, P.D., George, W.K., 1982. Measurement of the turbulent energy and temperature balances in an axisymmetric buoyant plume in a stably stratified environment. In: Proceedings of the 7th International Heat Transfer Conference. Hemisphere Press, Munich, NY, pp. 163e178.
- [29] Korhonen, T., Hietaniemi, J., 2005. Fire Safety of Wooden Façades in Residential Suburb Multi-storey Buildings. VTT Working Papers 32, Finland.
- [30] Delichatsios, M., Lee, Y., Tofilo, P., 2009. A new correlation for gas temperature inside a burning enclosure. Fire Saf. J. 44, 1003e1009.
- [31] Asimakopoulou, E., Kolaitis, D., Founti, M., 2016b. Assessment of fire engineering design correlations used to describe the geometry and thermal characteristics of Externally Venting Flames. Fire Technol. http://dx.doi.org/10.1007/s10694-016-0594-2.
- [32] S. Verstockt, Multi-modal video analysis for early fire detection, PhD thesis, Universiteit Gent, 2011.
- [33] H.L. Dreyfus, What Computers Can't Do, MIT Press, 1972.
- [34] H.L. Dreyfus, What Computers Still Can't Do, MIT Press, 1992.
- [35] T. Pavlidis, Computers versus humans, http://www.theopavlidis.com/comphumans/comphuman.htm.

- [36] Pavlidis, Why machine intelligence is so hard A discussion of the difference between human and computer intelligence, http://www.theopavlidis.com/technology/MachineIntel/index.htm.
- [37] W. Phillips, M. Shah, N. da Vitoria Lobo, Flame recognition in video, Pattern Recogn. Lett. 23 (1–3) (January 2002) 319–327.
- [38] F. Gomez-Rodriguez, S. Pascual-Pena, B. Arrue, A. Ollero, Smoke detection using image processing, in: Proceedings of 4th International Conference on Forest Fire Research & Wildland Fire Safety, November 2002, pp. 1–8.
- [39] F. Gomez-Rodriguez, B.C. Arrue, A. Ollero, Smoke monitoring and measurement using image processing – Application to forest fires, in: Proceedings of SPIE AeroSense 2003: XIII Automatic Target Recognition, April 2003, pp. 404–411.
- [40] T.-H. Chen, P.-H. Wu, Y.-C. Chiou, An early fire-detection method based on image processing, in: Proceedings of IEEE International Conference on Image Processing (ICIP), vol. 3, October 2004, pp. 1707–1710.
- [41] G. Marbach, M. Loepfe, T. Brupbacher, An image processing technique for fire detection in video images, Fire Saf. J. 41 (4) (June 2006) 285–289.
- [42] B.U. Toreyin, Y. Dedeoglu, U. Gudukbay, A.E. Cetin, Computer vision based method for realtime fire and flame detection, Pattern Recogn. Lett. 27 (1) (Jan- uary 2006) 49–58.
- [43] B.U. Toreyin, Y. Dedeoglu, A.E. Cetin, Contour based smoke detection in video using wavelets, in: Proceedings of European Signal Processing Conference (EUSIPCO), September 2006.
- [44] T. Celik, H. Ozkaramanli, H. Demirel, Fire and smoke detection without sensors: Image processing based approach, in: Proceedings of 15th European Signal Pro- cessing Conference (EUSIPCO), September 2007, pp. 1794–1798.
- [45] Z. Xu, J. Xu, Automatic fire smoke detection based on image visual features, in: Proceedings of International Conference on Computational Intelligence and Security Workshops, December 2007, pp. 316–319.
- [46] T. Celik, H. Demirel, H. Ozkaramanli, M. Uyguroglu, Fire detection using statis- tical color model in video sequences, J. Vis. Commun. Image Represent. 18 (2) (January 2007) 176–185.
- [47] Z. Xiong, R. Caballero, H. Wang, A.M. Finn, M.A. Lelic, P.-Y. Peng, Video-based smoke detection: Possibilities, techniques, and challenges, in: Proceedings of Suppression and Detection Research and Applications (SUPDET) A Technical Working Conference, 2007.
- [48] B. Lee, D. Han, Real-time fire detection using camera sequence image in tunnel environment, in: Proceedings of International Conference on Intelligent Com- puting, August 2007, pp. 1209–1220.
- [49] S. Calderara, P. Piccinini, V. Cucchiara, Smoke detection in video surveillance: A mog model in the wavelet domain, in: Proceedings of 6th International Con- ference in Computer Vision Systems (ICVS), May 2008, pp. 119–128.
- [50] P. Piccinini, S. Calderara, R. Cucchiara, Reliable smoke detection system in the domains of image energy and color, in: Proceedings of International Conference on Image Processing, October 2008, pp. 1376–1379.

- [51] F. Yuan, A fast accumulative motion orientation model based on integral image for video smoke detection, Pattern Recogn. Lett. 29 (7) (May 2008) 925–932.
- [52] X. Qi, J. Ebert, A computer vision based method for fire detection in color videos, Int. J. Imag. 2 (S09) (Spring 2009) 22–34.
- [53] J. Gubbi, S. Marusic, M. Palaniswami, Smoke detection in video using wavelets and support vector machines, Fire Saf. J. 44 (8) (November 2009) 1110–1115.
- [54] J. Chen, Y. He, J. Wang, Multi-feature fusion based fast video flame detection, Build. Environ. 45 (5) (May 2010) 1113–1122.
- [55] Gunay, K. Tasdemir, B.U. Töreyin, A.E. Cetin, Fire detection in video using lms based active learning, Fire Technol. 46 (3) (2010) 551–577.
- [56] I. Kolesov, P. Karasev, A. Tannenbaum, E. Haber, Fire and smoke detection in video with optimal mass transport based optical flow and neural networks, in: Proceedings of IEEE International Conference on Image Processing (ICIP), September 2010, pp. 761–764.
- [57] B.C. Ko, K.H. Cheong, J.Y. Nam, Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian networks, Fire Saf. J. 45 (4) (June 2010) 262–270.
- [58] R.A. Gonzalez-Gonzalez, V. Alarcon-Aquino, O. Starostenko, R. Rosas-Romero, J.M. Ramirez-Cortes, J. Rodriguez-Asomoza, Wavelet-based smoke detection in outdoor video sequences, in: Proceedings of the 53rd IEEE Midwest Symposium on Circuits and Systems (MWSCAS), August 2010, pp. 383–387.
- [59] T. Celik, Fast and efficient method for fire detection using image processing, ETRI J. 32
 (6) (December 2010) 881–890.
- [60] B.U. Töreyin, Fire detection algorithms using multimodal signal and image analysis, PhD thesis, Bilkent University, 2009.
- [61] R.T. Collins, A.J. Lipton, T. Kanade, A system for video surveillance and moni- toring, in: Proceedings of American Nuclear Society (ANS) Eighth International Topical Meeting on Robotics and Remote Systems, 1999.
- [62] S. Calderara, P. Piccinini, R. Cucchiara, Vision based smoke detection system using image energy and color information, Mach. Vis. Appl. (May 2010) 1–15.
- [63] J. Han, B. Bhanu, Fusion of color and infrared video for moving human detection, Pattern Recogn. 40 (6) (June 2007) 1771–1784.
- [64] R. Vandersmissen, Night-vision camera combines thermal and low-light-level images, Photonik Int. 2 (August 2008) 2–4.
- [65] J.C. Owrutsky, D.A. Steinhurst, C.P. Minor, S.L. Rose-Pehrsson, F.W. Williams, D.T. Gottuk, Long wavelength video detection of fire in ship compartments, Fire Saf. J. 41 (4) (June 2006) 315–320.
- [66] .U. Toreyin, R.G. Cinbis, Y. Dedeoglu, A.E. Cetin, Fire detection in infrared video using wavelet analysis, SPIE Opt. Eng. 46 (6) (June 2007) 1–9.
- [67] I. Bosch, S. Gomez, R. Molina, R. Miralles, Object discrimination by infrared image processing, in: Proceedings of the 3rd International Work-Conference on the Interplay between Natural and Artificial Computation (IWINAC), June 2009, pp. 30–40.

- [68] O. Gunay, K. Tasdemir, B.U. Töreyin, A.E. Cetin, Video based wildfire detection at night, Fire Saf. J. 44 (6) (August 2009) 860–868.
- [69] S. Verstockt, R. Dekeerschieter, A. Vanoosthuyse, B. Merci, B. Sette, P. Lambert, R. Van de Walle, Video fire detection using non-visible light, in: Proceedings of the 6th International Seminar on Fire and Explosion Hazards, April 2010.
- [70] Drysdale, D. (1998). "Introduction to Fire Dynamics," John Wiley and Sons, Chichester.
- [71] Friedman (1975). International Symposium on Fire Safety of Combustible Materials, University of Edinburgh
- [72] Eleni Marina k. Asimakopoulou Development and assessment of experimental and numerical tools for characterization of externally venting flames and evaluation of their effect on building facades Doctoral dissertation
- [73] Eleni K. Asimakopoulou*, Dionysios I. Kolaitis and Maria A. Founti. .Experimental investigation of Externally Venting Flames in under-ventilated compartment fires
- [74] Eleni K. Asimakopoulou, Dionysios I. Kolaitis*, Maria A. Founti Geometrical characteristics of externally venting flames: Assessment of fire engineering design correlations using mediumscale compartment-façade fire tests
- [75] S. Klopovic, O, .F. Turan* Flames venting externally during full-scale βashover Pres: two sample ventilation cases
- [76] Pape R., Waterman T., Eichler T.V., "Development of a Fire in a Room from Ignition to Full Room Involvement – RFIRES", NBS-GCR 81-301, National Bureau of Standards (now National Institute of Standards and Technology), 1981
- [77] Κορδούλη Σοφια Χρήση λογισμικού για ανίχνευση και χαρακτηρισμό γεωμετρίας φωτιάς εξερχόμενης από κτίριο. 2014
- [78] A.Enis Çetina, Kosmas Dimitropoulos b, Benedict Gouverneurc, Nikos Grammalidisb, Osman Günaya, Y.Hakan Habibo `glua, B.U`gur Töreyind, *,StevenVerstockte Video fire detection –Review 2013
- [79] Καλαμαράς Χρήστος ,Πειραματική διερεύνηση θερμικών και ροϊκών χαρακτηριστικών φωτιάς εξερχομένης από άνοιγμα . Διπλωματική εργασία 2017
- [80] Eleni K. Asimakopoulou1,2 / Dionysios I. Kolaitis1 / Maria A. Founti. Performance of a ventilated-façade system under fire conditions: An experimental investigation, 2020
- [81] Vipin V Image Processing Based Forest Fire Detection Department of ECE, St. Joseph's College of Engineering, Palai, India

ПАРАРТНМА А

Από ιδιότητες όμοιων τριγώνων έχω ότι:

$$\frac{\Gamma\Delta}{\Gamma Z} = \frac{\Delta E}{Z\Delta} (1) \quad \kappa \alpha i \qquad \frac{AB}{\Delta E} = \frac{\Gamma B}{\Gamma\Delta} (2) \qquad \kappa \alpha i \qquad \Gamma B = 0,73 + L_L (3)$$
$$ZH = \frac{\frac{AB \cdot \Gamma\Delta}{\Gamma B} \cdot \Gamma Z}{\Gamma\Delta} (4)$$

Άρα :

$$ZH = \frac{AB \cdot \Gamma Z}{\Gamma B}$$

ПАРАРТНМА В

Β.1 Γεωμετρική θέση θερμοστοιχείων

Στο κάτωθι διάγραμμα φαίνονται οι θέσεις των θερμοστοιχείων τα οποία χρησιμοποιήθηκαν για τον υπολογισμό των μέσω θερμοκρασιών και κατ' επέκταση των πυκνοτήτων για τις διάφορες περιπτώσεις οπού απαιτήθηκε.

Διάγραμμα Β.1 Γεωμετρική θέση θερμοστοιχείων

Ογκομετρική παροχή καυσίμου (lt/min) mb	RS5-NI103 (K)	LM5-NI206 (K)	LB5-NI211 (K)	ΜΕΣΗ ΤΙΜΗ (K)	ρg (Kg/m³)
120	857.47	690.23	563.72	703.81	0.5012701
150	884.78	653.46	734.50	757.58	0.4656895
160	812.99	567.05	790.93	723.66	0.4875215
200	886.40	676.01	718.68	760.36	0.4639864
240	845.89	688.94	698.71	744.51	0.4738625

B.2 Υπολογισμός πυκνότητας για γεωμετρία πόρτας για small scale πειράματα

Ογκομε	τρική παροχή κ	<i>α</i> υσίμου	Ογκομετρική παροχή καυσίμου			
	(120 lt/min)			(150 lt/min)	I	
RS5-NI103	LM5-NI206	LB5-NI211	RS5-NI103	LM5-NI206	LB5-NI211	
(K)	(K)	(K)	(K)	(K)	(K)	
806.259299	665.801021	476.286567	875.313508	630.949959	713.86777	
809.917986	675.422964	488.321609	878.470647	629.834211	711.324134	
818.662285	663.695604	491.857019	878.570307	625.142431	725.1603	
825.333529	673.957618	491.734259	874.994614	626.816512	725.470748	
822.85185	682.325811	494.55986	876.3525	630.287368	719.694281	
829.003553	662.350381	492.729695	877.092213	631.127749	716.48373	
834.751221	666.274447	495.568129	869.639952	632.576282	734.007392	
837.730772	662.121519	499.46989	870.125274	638.697481	728.796325	
837.241426	660.287964	497.802315	876.742845	639.060505	726.072027	
827.089267	668.059607	496.060922	879.145767	639.785991	726.99602	
826.034265	661.983732	499.091156	884.721144	645.080908	722.675608	
833.949032	672.986552	505.206965	884.766744	652.986908	724.609882	
837.581255	660.835899	514.702808	885.689197	656.169601	729.553851	
834.596878	665.988756	516.665887	886.021646	648.344882	721.370979	
834.122581	681.785257	516.01052	883.695372	641.878504	721.714406	
836.51187	682.69552	518.160154	875.789948	637.572226	729.166367	
835.174699	675.064142	514.277143	878.751093	643.854662	735.583444	
830.574926	688.157226	516.764877	876.036576	649.422254	726.409187	
830.69886	669.280408	521.900577	889.143876	648.232266	726.36737	
831.056208	695.101386	528.181184	879.77644	648.069032	720.477838	
839.865632	677.691587	526.276181	881.189129	648.223204	716.818662	
840.493957	682.533242	522.302256	876.414404	648.377257	721.727811	
840.604942	671.550119	525.334203	880.555259	652.79702	721.37537	
843.414946	672.575019	520.375819	885.226826	652.915713	724.684754	

Ογκομε	πρική παροχή κ (120 lt/min)	καυσίμου	Ογκομετρική παροχή καυσίμου (150 lt/min)			
RS5-NI103	LM5-NI206	LB5-NI211	RS5-NI103	LM5-NI206	LB5-NI211	
(K)	(K)	(K)	(K)	(K)	(K)	
842.381564	668.760667	517.794125	882.615354	649.666395	731.495475	
840.220417	683.381515	514.39955	883.316544	649.079887	734.181551	
841.062078	693.712099	524.561163	877.853815	644.759223	730.015671	
844.568994	686.183819	524.648085	877.091133	649.238658	730.159027	
846.806348	681.623738	520.116264	879.927718	646.054497	726.106751	
845.728659	664.331824	518.16275	883.284995	644.556147	723.699317	
844.443216	703.99578	519.815799	882.678163	643.98381	723.37036	
842.309881	682.055295	530.950521	874.34456	645.001458	723.36275	
841.436562	682.995145	534.773101	875.604379	649.428249	725.767068	
840.149368	671.429624	531.231665	880.961685	649.911334	727.520391	
846.507179	681.876547	530.339654	888.912375	648.514292	726.093137	
847.032557	697.321023	537.925366	885.553751	649.428349	733.660673	
840.739759	678.109174	536.758239	886.055539	647.325376	729.711706	
843.461621	702.913502	533.628159	882.830883	649.518931	728.279571	
838.376846	689.807324	540.625493	891.508817	644.876	728.814174	
833.26488	670.053788	542.188568	889.285626	642.701911	718.46315	
839.800956	679.10229	533.723892	874.266274	644.323914	719.288005	
845.941852	669.0914	539.380084	875.648392	644.927833	722.832815	
841.001284	665.942102	539.965218	879.450039	646.895104	725.96967	
847.663319	648.746197	536.875977	877.301492	646.206767	728.934294	
855.93976	663.435697	537.48924	881.664753	647.799907	734.202625	
852.012766	670.284709	543.806919	882.071853	656.014316	738.077504	
864.475721	643.480469	539.599257	880.290738	655.634931	738.776027	
863.478384	624.56725	532.754835	886.625423	654.345259	743.794124	
868.669859	627.148279	527.68459	887.09636	654.089141	745.630784	
869.567793	645.319236	534.554677	880.743301	659.363915	740.162523	
866.655716	657.685866	528.707585	880.996035	660.884713	739.045309	
862.761917	670.587665	525.205148	887.879349	662.601417	739.911982	
863.834486	660.71738	523.447856	880.540643	656.055423	735.490333	
857.095061	662.300519	525.820051	881.507518	657.364469	733.708601	
857.378346	677.982324	531.030635	884.119529	656.94435	734.966895	
848.112943	664.227324	528.574004	889.703069	655.412213	736.157525	
847.731973	669.174979	528.177316	889.777695	657.444776	735.998525	
854.692384	687.240982	534.160729	891.695343	659.236904	740.448705	
847.316143	699.052262	544.936899	896.484742	665.199495	743.06676	
840.351781	721.791389	553.796159	889.551177	668.513668	741.814232	
850.345609	714.870501	576.556533	889.731917	667.286989	746.338959	
845.356372	701.14634	564.280033	891.75231	658.904659	733.947067	

Ογκομε	πρική παροχή κ (120 lt/min)	αυσίμου	Ογκομετρική παροχή καυσίμου (150 lt/min)			
RS5-NI103	LM5-NI206	LB5-NI211	RS5-NI103	LM5-NI206	LB5-NI211	
(K)	(K)	(K)	(K)	(K)	(K)	
849.43763	708.67623	557.51937	892.162572	652.235361	729.309514	
847.190702	719.834045	568.199203	888.900264	654.524839	736.695219	
853.755873	710.102658	578.165059	884.739235	655.688776	729.340266	
852.016941	697.448357	567.175236	884.12283	656.89995	727.204403	
857.232287	714.867781	564.220928	885.611564	654.496023	729.569928	
847.194486	702.336171	578.408996	893.122817	655.534864	726.576323	
854.698507	691.909928	572.549158	882.774722	656.884398	731.152162	
859.168136	691.582975	562.439652	882.328647	663.116702	735.564679	
860.883558	721.835189	563.852274	887.806541	660.542416	743.746704	
857.299571	696.444423	568.129468	888.477424	663.226676	753.024892	
851.476362	690.607954	563.829237	881.544447	668.212325	752.661187	
857.995367	692.426634	557.328187	891.50075	669.133817	753.556354	
865.916243	702.753865	562.549267	893.008984	671.131801	760.74328	
861.180429	693.383203	569.107124	899.156929	667.23564	753.112112	
860.950764	668.907308	563.152035	893.146703	671.491692	752.876436	
857.551194	666.703071	554.965972	898.341007	673.300422	754.385627	
853.860988	685.070615	558.125197	898.549279	676.808572	763.491341	
852.28989	678.264556	563.860077	890.442866	671.916047	755.319997	
858.575096	662.916946	559.271088	893.58378	673.899254	756.962975	
853.463884	688.499519	564.960763	891.564399	671.813812	753.9825	
854.533232	680.124422	571.202574	894.204237	671.804932	757.693056	
856.352739	676.851063	567.011158	889.948339	674.171707	751.20605	
866.629482	700.913855	561.560258	893.282361	678.53716	753.80776	
865.779187	715.341737	574.811575	892.173289	673.073096	768.082777	
854.910527	707.731484	570.727227	895.719747	675.381648	766.731502	
855.729991	697.918262	570.641102	898.537886	670.051696	744.537881	
850.863811	720.356446	572.414313	900.59027	666.137534	733.728857	
856.450719	717.66451	588.314398				
860.909567	696.647216	580.072176				
860.469334	662.292585	569.24844				
863.97299	680.797405	565.042821				
859.34564	681.909045	575.337028				
865.549371	679.926911	575.875101				
863.863628	682.971751	575.535879				
856.245684	683.269562	581.095469				
858.346974	664.338227	572.772145				
868.909371	667.679923	571.362608				
869.781019	668.408487	567.037847				

Ογκομετρική παροχή καυσίμου (120 lt/min)			Ογκομετρική παροχή καυσίμου (150 lt/min)			
RS5-NI103	LM5-NI206	LB5-NI211	RS5-NI103	LM5-NI206	LB5-NI211	
(K)	(K)	(K)	(K)	(K)	(K)	
872.27976	677.696774	561.479201				
867.267953	693.615764	567.497371				
869.566501	705.388069	567.37305				
874.574965	696.238305	586.873153				
877.503755	681.573115	579.475634				
867.709505	696.369089	584.1571				
848.597688	677.182972	582.057907				
859.990648	672.90478	573.806504				
861.417406	678.886136	579.892875				
862.919725	667.373969	576.704136				
869.577425	666.718587	569.947338				
866.564324	674.46892	581.912802				
864.271567	680.031376	581.346427				
864.578885	675.482295	575.486714				
862.768676	700.46001	574.464445				
866.947282	705.067803	581.673263				
876.327521	692.995899	590.756311				
872.788536	694.550484	586.349496				
868.282306	705.666739	588.358445				
870.485827	711.290808	600.480311				
865.016906	709.548361	602.681105				
865.643025	686.827355	593.433308				
877.636961	699.603964	582.955681				
878.730909	712.412058	592.441036				
857.688817	716.596657	599.304149				
866.547329	698.712298	602.026392				
863.020531	687.56099	592.171697				
871.998251	715.46742	588.848825				
870.86782	720.461391	595.115832				
869.498894	726.00239	602.259436				
856.820038	718.225833	596.837455				
856.460001	704.708368	588.290405				
857.516823	718.60912	593.768479				
863.162386	718.870494	604.220938				
874.124103	724.81629	614.100556				
876.440654	725.531564	606.201898				
875.014227	706.213693	598.527516				
882.179746	709.704006	597.797281				

Оукоµа	πρική παροχή κ (120 lt/min)	αυσίμου	Ογκομετ	ρική παροχή κα (150 lt/min)	αυσίμο υ
RS5-NI103	LM5-NI206	LB5-NI211	RS5-NI103	LM5-NI206	LB5-NI211
(K)	(K)	(K)	(K)	(K)	(K)
885.327373	716.72768	607.048861			
876.73114	709.831942	616.655309			
883.382153	698.932913	604.517818			
877.101354	711.954951	607.957658			
885.939357	720.754496	619.763618			
878.780457	703.102222	618.668239			
878.626592	713.135411	607.209116			
873.526022	722.234779	610.458352			
861.11328	720.957948	612.767291			
872.335718	696.841983	606.563592			
876.835417	706.433934	600.577046			
881.681821	711.667211	602.164181			
867.760184	711.612509	615.338934			
876.388738	699.024931	611.507124			
887.956324	704.7947	612.331402			
874.834376	714.086369	615.092889			
875.934074	703.941333	629.737045			
878.186317	716.120066	622.231296			
877.320602	735.059485	625.960349			
879.252934	719.719629	622.962589			
882.986519	705.24703	616.965552			
873.103554	702.892099	617.47158			
873.934555	717.050971	617.289867			
867.500376	721.284448	620.799293			
876.132884	737.167654	622.02467			
890.678549	724.1314	626.290354			
884.580511	718.954814	617.732113			

Ογκομετρική παροχή καυσίμου (160 lt/min)			Ογκομετρ	ική παροχή κα (200 lt/min)	υσίμου
RS5-NI103 (K)	LM5-NI206 (K)	LB5-NI211 (K)	RS5-NI103 (K)	LM5-NI206 (K)	LB5-NI211 (K)
801.057574	557.636946	825.751845	896.433647	669.176657	734.964858
805.786266	558.402601	808.052222	892.223177	666.651807	714.606096
802.596126	559.119297	811.474598	889.748069	670.602454	702.878026
802.943013	565.376063	807.80643	892.191363	670.304308	706.596002
803.863408	567.458949	811.635004	884.134044	670.032709	699.179207
805.004736	568.468127	806.203555	889.875766	671.537177	700.626052

Ογκομετρική παροχή καυσίμου (160 lt/min)		Ογκομετρι (κή παροχή κα (200 lt/min)	υσίμου	
RS5-NI103	LM5-NI206	LB5-NI211	RS5-NI103	LM5-NI206	LB5-NI211
(K)	(K)	(K)	(K)	(K)	(K)
808.861852	572.088452	814.816096	884.458855	673.537571	705.650073
809.406392	571.334928	800.512889	882.832872	673.543793	719.345085
818.769989	570.674246	804.182	883.238718	675.092513	716.897884
820.353204	569.113351	807.866408	885.210541	673.163718	716.206501
813.835003	567.791566	797.034916	891.698199	672.022207	712.462623
804.962384	570.041749	784.044405	882.244661	674.967801	719.4669
812.380373	567.68813	773.107432	891.972638	678.177278	727.603097
812.838292	568.357138	775.207054	890.296773	678.023666	734.777048
824.938989	568.325548	781.144861	889.955305	678.586242	723.00362
829.616418	570.595992	772.662771	882.17321	683.719227	722.386558
823.260797	568.358028	782.35437	875.666005	685.847215	722.278216
819.340697	567.066845	778.385876	867.012493	686.623951	728.717578
821.175639	566.645059	769.270255	881.217762	682.537267	727.836098
823.815086	565.840114	754.989307	882.860313	680.803037	725.795014
820.67625	567.054971	767.213926	883.149566	682.408048	720.878022
815.937697	570.993463	766.666887	889.140479	680.229234	727.400411
814.4317	572.289451	760.801817	882.528028	679.916643	714.889962

Ογκομετρική παροχή καυσίμου (240 lt/min)							
RS5-NI103 (K)	LM5-NI206 (K)	LB5-NI211 (K)					
870.669871	680.9095	694.30768					
860.574912	680.9044	686.856023					
860.228959	678.0686	688.960143					
863.575236	677.9324	687.510437					
859.940902	684.0943	696.361953					
855.122191	683.2448	697.473012					
859.746574	685.6117	698.311215					
851.719124	683.1369	695.408116					
853.861118	683.6501	693.325661					
841.598191	681.1233	693.488615					
844.895732	684.1679	681.790655					
842.898104	682.3422	681.126956					
845.074714	687.571	677.591833					
859.869593	685.9622	682.866315					
847.606129	685.6838	677.713206					
850.568253	685.156	683.357633					

Ογκομετρική παροχή καυσίμου (240 lt/min)						
RS5-NI103 (K)	LM5-NI206 (K)	LB5-NI211 (K)				
843.344843	684.9042	688.401879				
846.578002	681.1074	688.722492				
849.957943	681.1095	690.240706				
853.027992	684.0784	686.801554				
854.742165	683.3297	701.648646				
850.497652	692.879	702.731022				
848.629891	693.998	701.456748				
844.875215	693.6683	699.176844				
843.533331	688.9977	686.353258				
833.92123	688.8177	695.637807				
836.647765	689.2368	700.08536				
841.948603	687.4111	697.386208				
834.643237	687.2273	696.156192				
839.00903	689.7854	698.656654				
845.52164	690.8071	700.564372				
843.87075	696.3094	705.681001				
843.901116	700.6699	701.177827				
841.438894	698.4547	700.30365				
840.222657	693.916	700.038027				
846.388248	690.2103	703.442803				
840.555562	687.6286	710.701703				
842.44453	690.6727	708.456066				
838.744635	693.752	709.767215				
847.337261	695.84	714.325343				
855.047199	696.0849	714.922114				
849.294345	696.0799	714.76773				
847.005576	694.6835	715.729049				
846.507861	700.5716	715.413922				
847.048121	708.6983	737.319408				
815.87034	718.3914	740.094968				
747.673014	682.5242	695.235767				

Ογκομετρικ ή παροχή καυσίμου (lt/min) mb	RS5-NI103 (K)	LM5-NI206 (K)	LB5-NI211 (K)	ΜΕΣΗ ΤΙΜΗ (K)	ρg (Kg/m3)
120	739.395	550.31604	807.41453 89	699.0418338	0.504690825
150	806.538	608.45448	713.24693 98	709.4132312	0.497312405
170	810.444	615.54792	694.83257 15	706.9414445	0.499051234
200	833.713	691.78168	735.40651 01	753.6338348	0.468131848
240	848.227	755.79341	750.86565 23	784.9620693	0.449448469

B.3 Υπολογισμός πυκνότητας για γεωμετρία πόρτας παραθύρου για small scale πειράματα

Ογκομετρική παροχή καυσίμου (120 lt/min)			Ογκομετρική παροχή καυσίμου (150 lt/min)			
RS5-NI103	LM5-NI206	LB5-NI211		RS5-NI103	LM5-NI206	LB5-NI211
(K)	(K)	(K)		(K)	(K)	(K)
558.4769	497.9834	836.579585		788.900986	588.010212	786.416946
603.9427	519.8641	851.75247		795.792643	583.666845	752.707117
634.749	540.939	843.410896		805.430026	586.030615	732.36162
658.3791	542.4156	843.460786		817.774577	594.820453	724.693601
671.2774	547.3766	836.328983		830.832447	600.149261	710.554871
677.0581	557.5627	846.559415		819.611371	601.935755	720.492837
683.4739	549.3786	853.431838		805.106664	597.620069	769.017754
682.803	541.0288	870.088194		808.713318	593.778796	777.119785
686.4906	540.5822	875.22504		807.098168	605.245227	752.609502
690.3511	543.4208	880.063895		798.771961	598.765857	757.590531
706.3732	539.7546	864.232603		809.802767	599.746076	745.90301
708.293	541.1073	849.414023		817.841529	599.28026	715.106473
711.8513	547.3368	862.91767		819.258194	607.734041	698.255935
705.4772	540.5307	881.92951		815.234141	622.597468	724.031452
697.6555	542.0158	878.395756		824.0358	620.832545	714.941581
697.5155	551.2813	866.866541		814.010116	618.378379	751.274853
706.0595	548.5708	880.817357		808.690495	612.417545	736.752616
711.4756	552.9161	869.827504		808.25305	613.344886	731.536347
710.5801	548.9105	886.249543		813.147305	619.648587	722.797795

Ογκομετρική παροχή καυσίμου (120 lt/min)			Ογκομετρική παροχή καυσίμου (150 lt/min)		
RS5-NI103	LM5-NI206	LB5-NI211	RS5-NI103	LM5-NI206	LB5-NI211
(K)	(K)	(K)	(K)	(K)	(K)
705.4749	551.4261	880.821432	816.020563	617.324769	718.826295
701.0361	551.3233	882.630413	816.966975	616.367627	708.118336
701.7783	559.1211	869.786484	824.916066	619.401982	713.931244
706.1287	551.4195	872.182392	825.265237	624.587481	709.198082
704.7126	548.4972	874.973388	833.785529	617.182684	720.990804
701.0062	549.9231	868.753957	831.496256	619.206468	709.317515
700.1348	560.0423	857.879146	826.654783	616.958486	713.711058
701.9659	560.3637	863.656728	829.661546	610.716907	705.227889
714.4923	552.751	873.738879	831.032289	620.141965	700.494475
711.1885	548.9161	875.790716	830.936749	627.643625	707.252196
714.0985	554.8873	875.042071	839.794302	628.927044	691.595679
719.7471	554.6244	874.515355	838.458535	625.672737	694.679752
727.0341	545.1816	832.971094	832.40302	628.139691	731.077596
733.8111	540.6999	825.390545	818.615107	629.445714	739.10079
735.4925	533.8715	816.75721	811.547422	626.265759	734.972754
735.0018	536.7221	804.939453	812.340958	618.058125	721.932599
743.9722	536.7456	789.93177	816.364583	609.082766	699.612425
747.8756	538.3821	800.55854	814.56561	604.66812	690.108659
749.5537	537.0913	838.913512	814.229129	601.069374	708.714358
743.9458	536.2284	841.509923	821.161675	600.886997	711.76774
740.3794	538.17	846.769071	812.917592	604.12946	720.947744
731.4314	533.3768	848.517593	809.39651	602.354081	710.228464
741.836	530.6338	824.913131	799.972261	609.741313	707.369027
749.4769	535.4163	797.001649	794.451925	611.973017	721.389393
749.7856	540.6066	804.570473	789.740923	609.944809	740.371552
754.1072	552.2517	785.733035	790.563799	609.175963	719.082106
758.6035	547.4277	773.935022	798.905552	614.424216	721.771508
758.5615	553.9067	750.886538	801.533106	615.480775	705.844824
763.5326	559.008	762.674311	800.691301	609.98439	685.05617
761.5048	555.209	766.741791	803.780645	604.990134	675.199092
762.1128	556.4178	765.334975	804.084394	602.291768	678.170471
760.7269	551.8106	764.710405	777.400889	617.607933	669.125507
762.2951	549.5867	767.650046	750.279973	608.324549	654.544138
765.3829	545.4873	779.388623	744.063264	600.85794	640.260475
758.3822	538.5022	781.632102	723.070797	597.456465	629.747339
752.5551	535.5414	802.307266	741.838874	593.784348	623.5472
757.9106	530.6697	788.957449	758.029623	581.48448	613.83527
759.6344	532.4962	777.52464			

Ογκομετρική παροχή καυσίμου (120 lt/min)			Ογκομετρική παροχή καυσίμου (150 lt/min)		
RS5-NI103	LM5-NI206	LB5-NI211	RS5-NI103	LM5-NI206	LB5-NI211
(K)	(K)	(K)	(K)	(K)	(K)
763.6858	529.2264	764.105065			
764.1646	534.1363	766.215214			
761.3809	544.7408	774.275586			
759.8434	542.4373	796.444715			
763.6306	541.1293	794.299752			
769.3394	550.654	781.536414			
780.5551	560.5576	758.404262			
780.9482	577.4109	752.08577			
785.8089	575.889	745.575917			
779.7624	586.5301	748.393669			
781.0825	584.454	752.298051			
780.9032	579.12	761.90916			
776.7607	582.1124	768.786746			
778.1323	579.3743	764.627019			
783.5893	580.0491	752.379118			
789.3289	587.5907	750.138288			
792.3786	582.9595	751.364271			
782.7415	576.782	764.225211			
792.8197	566.0238	758.198068			
791.8778	575.7125	756.465043			
788.2293	574.1824	771.467263			
787.3747	562.208	756.250431			
780.6775	558.1819	768.8643			
781.9138	561.0878	768.898881			
788.3368	561.2298	755.322197			
787.1751	561.854	759.187852			
785.1409	555.0028	774.076108			
783.9741	555.8066	766.243357			
781.9911	550.5845	758.111318			
795.3551	549.8021	748.20714			
791.3707	546.5612	733.595641			
797.1484	544.055	740.633122			
786.9455	543.3517	753.318457			
783.4451	553.2689	783.485756			
787.5896	560.3668	793.670115			

Оукоµа	ετρική παροχή κ	αυσίμου	Ογκομετ	ερική παροχή κ	αυσίμου
DOC NULLOS	(170 lt/min)		 DC5 10102	(200 lt/min)	
KS5-N1103 (K)	LM5-N1206 (K)	LB5-NI211 (K)	KS5-N1103 (K)	LM5-N1206 (K)	LB5-NI211 (K)
766.4913	567.906939	611.568331	801.207449	652.867193	790.0728
780.0051	573.948784	610.075181	802.29095	655.335268	792.4819
782.2412	581.113233	610.344149	810.228043	656.884292	779.3725
782.4641	576.435921	617.360616	803.801561	658.057833	767.3476
774.5206	572.921707	619.95358	798.623887	656.988594	771.6066
786.373	577.246019	643.857738	802.5349	656.188636	751.6331
789.3794	571.388145	647.132804	808.588225	656.623127	756.8788
785.3005	571.564727	664.251938	816.771051	662.869987	735.7911
795.5755	578.778201	723.390247	822.855696	658.512459	724.7409
783.2529	588.099161	703.156757	825.263317	662.068882	710.4242
792.6606	586.20749	709.413509	818.020526	657.374536	699.4117
795.1063	585.301885	702.272124	825.072212	655.813527	698.6603
792.3015	594.532241	734.081403	825.30088	659.68075	689.1354
790.8625	603.398908	738.323801	827.109889	657.474623	676.9834
793.5848	606.199831	724.14669	829.929671	653.045556	686.3737
803.5174	605.871477	708.297513	827.759755	654.945551	683.6926
804.1503	605.112118	678.152455	831.521613	660.485903	691.8369
803.7713	605.827441	671.220791	823.837254	659.486188	737.6248
794.189	606.45438	713.074223	824.028915	658.637183	741.051
793.6197	610.202058	731.467933	825.098219	662.775244	728.0188
793.4168	616.95797	749.58169	823.501794	666.940832	716.8708
797.7538	618.553705	720.169744	829.169371	694.532563	706.7573
802.3175	613.209971	696.006813	826.652084	692.385987	708.5624
799.1383	610.246916	705.129265	826.177259	677.591546	704.9693
797.9259	611.153609	704.186198	841.845425	674.70821	708.5834
802.1672	606.777882	681.662193	840.601486	678.691803	705.5774
801.3118	607.938654	695.625419	836.113671	683.779422	695.7418
803.1145	609.054908	690.900157	834.073015	688.187318	688.8021
804.4022	613.519224	679.22166	837.092174	686.923162	679.1906
804.69	613.532903	685.751972	835.324936	691.904038	697.8983
798.2501	617.60142	694.955414	839.416893	717.692822	698.8161
802.2946	620.622263	697.564774	833.958328	717.481093	711.695
795.4697	620.315772	713.652838	833.472953	708.529264	705.962
814.7301	615.433249	692.956154	834.175862	693.432181	701.779
820.5253	615.93556	688.14473	838.830696	681.73436	697.0943
817.5348	618.652161	681.592047	835.864511	688.263262	736.9169
824.1402	614.723146	674.274198	838.042244	687.386735	742.153
830.5176	618.457749	669.123424	837.843528	685.879615	737.776

Оукоµа	ετρική παροχή κ (170 lt/min)	αυσίμου	Ογκομετ	ρική παροχή κ (200 lt/min)	αυσίμου
RS5-NI103	LM5-NI206	LB5-NI211	RS5-NI103	LM5-NI206	LB5-NI211
(K)	(K)	(K)	(K)	(K)	(K)
828.1222	620.453354	668.921746	833.843723	690.385875	730.4454
814.927	627.260102	710.199462	834.873556	685.18494	722.0647
821.6195	624.64658	739.196403	836.749263	686.990663	720.3064
813.8233	623.662103	715.565778	841.431331	686.647006	722.9348
821.1964	622.106818	692.528154	847.203277	689.579643	725.4753
820.7389	619.61925	678.839761	835.625848	710.776573	719.4948
818.3833	621.841218	681.001682	836.10407	704.916482	703.3916
810.591	619.730807	677.848071	833.273141	696.578144	720.0155
806.7814	616.387959	677.329977	831.942446	700.753888	743.1725
813.1321	616.761766	679.185773	842.124996	700.614474	741.7184
814.2778	616.83168	677.130485	835.370495	701.673152	729.8661
827.0917	626.867771	682.558595	836.471152	704.317184	726.8629
835.4651	626.17954	671.925769	831.88566	709.195803	730.0069
836.0635	627.033838	678.156116	840.54594	700.303174	729.7041
839.2483	626.608473	689.348335	838.926329	699.588078	754.9809
838.9038	635.647245	728.729805	833.886897	703.198831	770.6965
816.3837	638.958261	742.182205	832.56737	704.466839	773.3567
817.1356	636.411603	732.959154	843.54331	705.852494	784.792
815.207	629.903041	710.247329	845.642984	703.070816	782.0717
818.8524	622.564406	711.990475	836.821266	700.362644	767.6749
823.068	627.377758	703.515983	841.423343	699.114902	764.9452
832.8405	630.762975	691.288891	839.802359	717.05062	746.7434
828.2958	632.988637	676.350386	842.076759	713.570475	735.3528
837.3158	633.110284	674.814753	839.517511	705.004693	734.0903
837.9263	632.81069	667.976477	845.379489	711.765666	750.9917
846.2113	633.94958	675.436377	845.631987	721.998509	752.4284
849.7266	635.873207	672.829468	837.409393	713.328031	747.9354
852.2115	645.306131	700.398059	837.996945	706.450991	744.325
848.8765	647.48018	696.954552	845.679845	720.800897	730.2774
840.4483	649.206132	704.233667	850.940701	726.355675	740.1078
823.8338	647.270695	702.599216	856.592255	720.149841	720.1389
819.1653	649.309244	750.7055	856.762555	721.182308	730.9845
816.5123	648.39372	764.171353	845.789164	720.5314	750.2893
820.923	647.705703	798.208267	836.563764	721.327447	754.2558
814.622	648.310294	798.061199	841.701929	717.942987	765.2891
811.3062	653.271586	796.053392	842.027845	720.922741	785.8136
			839.060227	725.15845	792.8633
			847.749284	726.455061	801.0555

Ογκομετρική παροχή καυσίμου (170 lt/min)		Ογκομετρική παροχή καυσίμου (200 lt/min)			
RS5-NI103 (K)	LM5-NI206 (K)	LB5-NI211 (K)	RS5-NI103 (K)	LM5-NI206 (K)	LB5-NI211 (K)
			855.3448	726.002028	810.6357
			852.922923	731.20865	803.9205
			842.145769	727.814791	777.3549

Ογκομετρική παροχή καυσίμου (240 lt/min)						
RS5-NI103 (K)	LM5-NI206 (K)	LB5-NI211 (K)				
846.422795	721.370058	764.6276				
842.116399	719.370897	762.377				
844.701124	722.113199	757.691				
842.232873	720.281488	765.484				
846.336766	718.25342	751.2325				
847.823769	727.664122	730.8243				
854.236485	732.359141	742.5663				
861.277975	735.21264	725.1627				
846.326834	753.147768	733.0302				
840.184942	743.668295	734.3501				
834.295192	754.336881	725.0389				
840.36116	759.77867	730.7864				
842.807036	768.509909	742.4508				
843.130346	752.851688	750.4206				
849.600835	742.132405	738.1334				
853.229772	744.38145	754.6541				
847.263551	742.517595	762.4853				
844.287579	739.142491	758.0335				
847.947169	740.726317	758.6284				
847.836624	743.988019	759.625				
848.592307	745.309449	761.0693				
849.681912	752.519921	752.0629				
847.744754	743.747752	736.2938				
841.211232	751.105156	747.4603				
846.04743	749.639159	731.4619				
840.002771	752.966761	720.3093				
841.436037	744.598219	728.6478				
844.046544	745.448496	747.1162				
847.879971	738.896018	741.5175				
849.262438	742.527475	758.9914				
Ογκομετρική παροχή καυσίμου (240 lt/min)						
---	------------	--------------	--	--		
RS5-NI103	LM5-NI206	LB5-NI211				
(K)	(K)	(K)				
853.994912	751.637721	749.5732				
850.051865	752.239059	757.374				
852.265565	749.873881	760.8142				
859.479798	746.657651	747.2977				
850.618311	742.938431	739.1286				
846.635666	766.657682	748.2439				
849.150326	769.609197	754.5013				
837.435856	775.118327	757.9884				
834.148839	782.992006	743.039				
841.772153	779.168708	746.4037				
845.245509	779.125607	751.1571				
842.299473	775.046382	758.0527				
850.035191	764.440869	741.7029				
836.549382	767.709445	742.9672				
841.231801	770.967973	732.0831				
836.159264	770.133714	749.3892				
840.761098	763.857947	750.6482				
850.355539	764.501429	747.0366				
850.500862	761.345454	747.4873				
848.530404	764.015153	741.0394				
845.031698	773.261283	745.0321				
850.656286	765.74997	751.8856				
848.945065	770.122959	749.4014				
847.87346	771.572588	745.8239				
852.84024	773.174277	744.4798				
851.934164	771.527317	751.6434				
851.711843	764.025342	753.1958				
864.984296	768.487215	764.3884				
862.798346	763.761326	761.965				
862.137509	763.654415	779.1003				
864.485302	757.913321	784.6603				
854.616357	760.680149	775.8713				
858.640702	759.695542	765.4483				
869.555665	762.366062	761.5313				
862.853509	778.299658	756.2168				
847.861304	799.296329	789.5996				
838.746603	787.969186	789.2956				

1ο ΠΕΙΡΑΜΑ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ (LARGE SCALE 1)					
A/A	(s)	(°C)	К	ΜΕΣΟΣ ΟΡΟΣ (Κ)	Pg (Kg/m ³)
-	0	26.988	299.988		0.374596
	5.953125	27.576	300.576		
	11.92188	309.755	582.755		
	17.85938	596.8	869.8		
	23.84375	756.435	1029.435		
	29.78125	806.026	1079.026		
	35.73438	844.793	1117.793]	
	41.75	802.382	1075.382		
	47.6875	798.601	1071.601		
1 min	53.64063	802.141	1075.141	941.8153684	
	59.57813	831.34	1104.34		
	65.5625	790.01	1063.01		
	71.54688	773.298	1046.298		
	77.53125	744.824	1017.824		
	83.48438	729.765	1002.765		
	89.46875	755.748	1028.748		
	95.42188	775.178	1048.178		
	101.4688	761.456	1034.456		
	107.4219	774.376	1047.376		
	113.375	788.008	1061.008		
	119.3438	779.162	1052.162		
	125.3125	786.754	1059.754		
	131.3281	769.776	1042.776		
2 min	137.3125	780.102	1053.102	1060 0806	0.332805
2 11111	143.2656	789.463	1062.463	1000.0800	
	149.2344	789.627	1062.627		
	155.2031	793.02	1066.02		
	161.1563	784.418	1057.418		
	167.1875	810.476	1083.476		
	173.1875	817.181	1090.181		
	179.1719	785.674	1058.674		
3 min	185.1406	787.544	1060.544	1095.707	0.321984
	191.1094	811.876	1084.876		
	197.1563	815.548	1088.548		

B.4 Υπολογισμός πυκνότητας για large scale πειράματα

	203.1094	825.139	1098.139		
	209.0781	833.375	1106.375		
	215.1094	849.319	1122.319		
	221.0781	852.892	1125.892		
	227.0781	848.522	1121.522		
	233.0469	870.733	1143.733		
	239.0781	859.043	1132.043		
	245.0625	870.125	1143.125		
	251.0313	891.286	1164.286		
4	257.0625	901.141	1174.141	1151 0010	0.200225
4 min	263.0469	889.261	1162.261	1151.6819	0.306335
	269.0313	884.196	1157.196		
	275.0156	890.44	1163.44		
	281	875.348	1148.348		
	287.0469	855.246	1128.246		
	293.0469	889.073	1162.073		
	299.0781	918.922	1191.922		
	305.0625	923.833	1196.833		
	311.0625	922.593	1195.593		
	317.0625	915.303	1188.303		
5 min	323.1406	935.892	1208.892	1194.175545	0.295434
	329.125	947.539	1220.539		
	335.1094	925.771	1198.771		
	341.1719	911.393	1184.393		
	347.1719	907.37	1180.37		
	353.1563	935.242	1208.242		
	359.1875	918.191	1191.191		
	365.1875	942.011	1215.011		
	371.1719	943.939	1216.939		
	377.1719	942.516	1215.516		
	383.1719	968.956	1241.956		
6 min	389.1875	930.899	1203.899	1218.136364	0.289623
	395.1875	955.32	1228.32		
	401.2344	934.719	1207.719		
	407.2969	950.165	1223.165		
	413.2969	952.23	1225.23		
	419.375	957.554	1230.554		
	425.3594	917.631	1190.631		
	431.3594	909.843	1182.843]	
7 min	437.3594	933.006	1206.006	1226.981	0.287535
	443.3594	962.7	1235.7]	
	449.3906	962.743	1235.743	1	

	455.375	1006.468	1279.468		
	461.4375	999.273	1272.273		
	467.5	972.99	1245.99		
	473.5	939.347	1212.347		
	479.5625	935.809	1208.809		
	485.5625	942.505	1215.505		
	491.5625	950.911	1223.911	1405 0000	
	497.5625	939.019	1212.019		
	503.6094	953.658	1226.658		
0 min	509.625	958.172	1231.172		0.295206
0 11111	515.6406	899.25	1172.25	1195.0982	
	521.6406	880.735	1153.735		
	527.7188	875.768	1148.768		
	533.7344	897.57	1170.57		
	539.7813	923.394	1196.394		
	545.7969	900.136	1173.136		
	551.8125	900.931	1173.931		
	557.875	934.424	1207.424		
	563.8906	1001.047	1274.047	1236.2768	
0 min	569.9063	994.236	1267.236		0.285373
9 11111	575.9688	994.615	1267.615		
	582.0313	985.238	1258.238		
	588.1094	969.602	1242.602		
	594.1719	952.954	1225.954		
	600.1875	999.585	1272.585		
	606.2031	989.962	1262.962		
	612.2656	972.49	1245.49		
	618.2813	965.403	1238.403		
	624.3125	971.447	1244.447	1264.389556	0.279028
10 min	630.3906	1018.49	1291.49		
	636.4063	1002.524	1275.524		
	642.4531	1005.386	1278.386		
	648.6094	992.869	1265.869		
	654.625	1003.935	1276.935		
11 min	660.6563	995.489	1268.489		
	667.2188	960.664	1233.664		
	673.2344	945.597	1218.597		
	679.25	939.885	1212.885	4	
	685.3281	933.177	1206.177	1208.729333 0.29	0.291877
	691.3438	921.079	1194.079		
	697.3594	913.525	1186.525		
_	703.4531	940.59	1213.59		
	709.5469	948.521	1221.521		

	715.5625	931.544	1204.544		
	721.6563	890.044	1163.044		
	727.6875	908.637	1181.637		
- - 12 min -	733.7188	935.032	1208.032	1221 002275	0.286396
	739.7969	916.55	1189.55		
	745.8125	941.439	1214.439		
	751.8281	978.74	1251.74		
	757.8594	983.137	1256.137	1251.002575	
	763.875	983.861	1256.861		
	769.8906	974.274	1247.274		
	775.9844	957.866	1230.866		
	782	932.641	1205.641		
	788.0156	942.594	1215.594		0.286806
	794.0938	946.167	1219.167		
	800.125	931.725	1204.725	1230.099143	
	806.2188	952.046	1225.046		
	812.25	977.562	1250.562		
13 min	818.2813	956.691	1229.691		
13 1111	824.3906	945.001	1218.001		
	830.4219	937.953	1210.953		
	836.5313	926.627	1199.627		
	842.5781	960.026	1233.026		
	848.6094	1026.975	1299.975		
	854.6406	1015.403	1288.403		
	860.7188	947.977	1220.977		
	866.7344	936.586	1209.586		
	872.8281	935.488	1208.488	1231.6458	0.286446
	878.8594	925.873	1198.873		
	884.8906	942.394	1215.394		
	890.9844	947.528	1220.528		
	897.0625	976.894	1249.894		
	903.125	978.461	1251.461		
	909.25	959.409	1232.409		
	915.2656	974.59	1247.59		
	921.2969	1009.235	1282.235		

B.5 Υπολογισμός Ισχύος για τα Πειράματα Μεγάλης Κλίμακας (Large Scale Experiments)

Με βάση το κάτωθι διάγραμμα Γ.1 [80] έγινε ο υπολογισμός της ισχύος σε KW για κάθε εξεταζόμενο χρονικό λεπτό, ανάλογα με το είδος του πειράματος Μεγάλης Κλίμακας που εξετάζεται κάθε φορά.

Διάγραμμα Γ.1 Διάγραμμα HRR (KW) σε συνάρτηση με τον χρόνο (s) [80]

ΠΑΡΑΡΤΗΜΑ Γ

Από το υπολογιστικό πρόγραμμα (κώδικα) Matlab, προέκυψαν αρχεία intermittency.dat για κάθε ένα από τα υπό εξέταση πειραματικά σενάρια, τα οποία εν συνεχεία επεξεργάστηκαν χρησιμοποιώντας το πρόγραμμα OriginPro 9 ώστε να υπολογιστεί η πιθανότητα ύπαρξης φλόγας για intermittency =50%, τα διαγράμματα που προέκυψαν παρουσιάζονται κατωτέρω

2,5

height from the ground (m)

Γ.1 Πειράματα Μικρής Κλίμακας (Small Scale)

window c 200 150 front

window c 200 200 front

window c 200 240 side

Υψηλή θέση καυστήρα για γεωμετρία πόρτας

> Χαμηλή θέση καυστήρα για γεωμετρία πόρτας

door c 55 240 front

door c55 240 side

Γ.2 Πειράματα Μεγάλης Κλίμακας (Large Scale)

> Large scale 1 profile

Large scale 1 (4-5 min)

Large scale 1 (5-6 min)

Large scale 1 (6-7 min)

Large scale 1 (7-8 min)

Large scale 1 (8-9 min)

Large scale 1 (9-10 min)

Large scale 1 (10-11 min)

Large scale 1 (12-13 min)

Large scale 1 (11-12 min)

Large scale 1 (13-14 min)

Large scale 1 Front

Large scale 1 front (1-2 min)

Large scale 1 front (2-3 min)

Large scale 1 front (3-4 min)

4

Large scale 1 front (4-5 min)

Large scale 1 front (5-6 min)

Large scale 1 front (6-7 min)

Large scale 1 front (7-8 min)

Large scale 1 front (8-9 min)

Large scale 1 front (9-10 min)

5,0 -

Large scale 1 front (10-11 min)

Large scale 1 front (11-12 min)

4

Large scale 1 front (12-13 min)

Large scale 1 front (13-14 min)

Large Scale 2 profile

large 2 profile (0-1min)

large 2 profile (2-3 min)

large 2 profile (3 -4 min)

0,5000

1,000

0,5000

1,000

large 2 profile (4-5 min)

large 2 profile (5-6 min)

large 2 profile (6-7 min)

large 2 profile (8-9 min)

large 2 profile (9 -10 min)

large 2 profile (10-11 min)

large 2 profile (11-12 min)

large 2 profile (12-13 min)

large 2 profile (13-14 min)

> Large Scale 2 Front

Large scale 2 front (0-1 min)

Large scale 2 front (2-3 min)

Large scale 2 front (1-2 min)

Large scale 2 front (3-4 min)

Large scale 2 front (4-5 min)

Large scale 2 front (6-7 min)

Large scale 2 front (8-9 min)

0,7400

Large scale 2 front (5-6 min)

Large scale 2 front (7-8 min)

Large scale 2 front (9-10 min)

Large scale 2 front (10-11 min)

Large scale 2 front (12-13 min)

0.50

0,6320

Large scale 2 front (11-12 min)

Large scale 2 front (13-14 min)