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Abstract 

Prioritizing chemical structures based on their exhibition of desired biological behaviors could be of great 

significance in the early stages of drug discovery. In this study, a platform was developed that screens 

unknown compounds and selects chemical structures that are most likely to display sought after biological 

effects, based on their transcription factor activity. To make this possible, the compound differences were 

translated into compound distances on biological and structural levels and assigned a numerical value 

accordingly. The model incorporates several criteria to evaluate the known and unknown chemical 

structures and allocate the ones that approximate the required biological effect. Most importantly, the 

platform makes use of a deep learning model to predict the biological distances of the unknown 

compounds and map their effect. The proposed model was able to select unknown compounds that 

portrayed desired biological activity with high precision and accuracy. 
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Περίληψη  

Στη πρώτα στάδια ανακάλυψης φαρμάκων, όταν και οι επιστήμονες έρχονται αντιμέτωποι με την 

επιλογή δραστικών ουσιών, η εναπόθεση προτεραιότητας σε ορισμένες χημικές ενώσεις, που θα έχουν 

την απαραίτητη βιολογική συμπεριφορά, θα μπορούσε να είναι καίρια. Στην παρούσα μελέτη, 

αναπτύχθηκε ένα μοντέλο το οποίο αξιολογεί την βιολογική συμπεριφορά άγνωστων χημικών ενώσεων 

και επιλέγει ενώσεις που πιθανότατα θα εμφανίζουν τα επιθυμητά βιολογικά χαρακτηριστικά, με 

γνώμονα τη δράση μεταγραφικών παραγόντων. Για την μοντελοποίηση του προβλήματος, οι διαφορές 

μεταξύ ενώσεων μαθηματικοποιήθηκαν ως αποστάσεις σε λειτουργικό επίπεδο και αναπαραστάθηκαν 

από μία τιμή αντίστοιχα.  Στο μοντέλο έχει ενταχθεί πλήθος κριτηρίων αξιολόγησης των ουσιών με σκοπό 

τον ακριβέστερο εντοπισμό κατάλληλων χημικών ενώσεων. Ταυτόχρονα γίνεται χρήση ενός μοντέλου 

βαθιάς εκμάθησης για τον προσδιορισμό των βιολογικών αποστάσεων αγνώστων ουσιών από την 

επιθυμητή συμπεριφορά. Συνολικά, το μοντέλο αποδείχθηκε ικανό να αναγνωρίζει και να θέτει 

προτεραιότητα σε χημικές ενώσεις, οι οποίες προσεγγίζουν την απαιτούμενη βιολογική δράση, με 

μεγάλη ακρίβεια. 
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1. Introduction 

 

1.1. Current Drug Discovery Process and Possibilities 
 

The current state of the world finds our species most resilient than ever. Since the dawn of ages, 

humankind has struggled to survive. And that survival has never been easy. Water and food shortage, 

predators, wars, and many other obstacles stood in the way of humankind’s survival and prosperity. 

Evolution has been kind to our species though, and century by century we have come to outlast our 

predators, cure our weaknesses, and prove -mostly to ourselves- that humans can beat all obstacles. The 

proof for the human ascendance is all around us; over the last century we have quadrupled our population 

on the planet, while our life expectancy has steadily been on the rise. The one enemy that has proven 

impossible to exterminate, and is quite relevant today, is diseases. 

Diseases are conditions that interfere with an organism’s homeostasis and affect its structure or function. 

We cannot “see” them, but rather spot them out by the symptoms of the affected organism. Diseases can 

be caused by external (e.g. pathogens) or internal (e.g. immune system disorders) factors. Humankind has 

come to identify death by disease, as “death by natural cause.” This statement of causality between 

disease and “natural death” suggests that the natural barrier that must be overcome for humankind to 

reach a longer and better life -even immortality- is diseases. And the 20th century has paved the way with 

great victories over this everlasting enemy. With the boom of the drug industry and the vaccination 

against the worst diseases, life expectancy nearly doubled in most parts of the world.  

In the field of pharmacology, drugs are chemical substances which, when administered to an organism, 

produce a biological effect. Drugs for humans are used to cure or prevent diseases, alleviate pain, and set 

the table for longer and better lives [1]. The most fundamental process that allows continuous progress 

of drugs is drug discovery.  

Drug discovery is the process that aims for the identification of new candidate medications that could be 

valuable for the cure and combat the symptoms of a specific disease. Throughout history, humankind has 

been using traditional remedies like plants and powders retrieved from nature. Though enterprising, this 

method lacked medical basis and was mostly ineffective. Thus, it was replaced by the identification of the 

active ingredients and the effort to connect these ingredients and specific diseases. Over the past century, 

the drug discovery process has evolved, and we can now reap its benefits. Early stage drug discovery 

involves the connection of the right compound to the right target (disease). The sequencing of the human 

genome has also allowed researchers to study the proteins of the human body and their role in every 

process [3]. This led to the construction of large compound libraries, most significant for the widely used 

method of High Throughput Screening (HTS). High Throughput Screening makes use of technology (data 

processing, robotics, chemical tests, ea.) to conduct millions of experiments at the same time and identify 

hits, compounds with strong binding affinity to the target. Hits from these in-vitro experiments are 

prioritized for further in-vivo testing to analyze their effects and discover their efficacy. It is easy to 

conclude that the millions of tests conducted in the HTS combine for a huge cost, while the results are not 

guaranteed [2]. 
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The accumulating possibilities and computational strength of computers has forwarded the rise of a new 

method of drug discovery, called Computer Aided Drug Design (CADD), that uses computational systems 

to perform in-silico tests. Such methods tend to focus on the structural and biological effects (e.g. 

similarities and distances) of tested compounds against the target. This method is highly successful and 

can perform much faster and effortlessly, conducting billions of otherwise time-consuming experiments 

in the blink of an eye. The results are then used for further testing and optimization. 

 

1.2. Computer Aided Drug Design 
 

Computer Aided Drug Design (CADD) was incepted in 1981 and since then it has continuously been 

growing, following the fast-paced growth of technology, computer hardware and software. Lately, CADD 

has become a trustworthy tool to forward the selection, development and design of novel compounds 

that could potentially evolve into disease battling medication. As mentioned earlier, CADD was developed 

as an advancement to HTS, because it is cost-effective, timesaving and it requires little prior knowledge 

of the compounds.  Typically, CADD is based on screening large compound libraries (e.g. their binding 

affinity, structural or biological effect distances to the tested function or characteristic) and can return 

multiple hit compounds. These compounds are amongst the most promising candidates and are to be 

selected for further testing and development. The hits are usually categorized into smaller clusters of 

predicted compounds (Figure 1). Those clusters are afterwards studied closer, and the lead compounds 

are optimized by improving their biological properties or combining whole compounds or parts of them 

to reach a desired function [4]. 

 

Figure 1: Hits being clustered to recognise their biological and structural parts [4] 
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The two main categories of CADD approaches are the structure-based and the ligand-based.  

Structure-based CADD requests the finding of the target protein’s structure to determine its interaction 

levels with the compounds found in the libraries. X-ray crystallography or NMR spectroscopy are usually 

used to attain the 3D structure of the target protein and simulate each protein-compound structure as a 

complex. Ligand-based CADD involves the chemical similarity of the target and the compounds. It is largely 

based on predictive models of quantitative structure–activity relationship (QSAR) models that are created 

in order to judge the activity strength (or inactivity) of the compounds. This type of models (QSAR) connect 

the structural elements of compounds to their biological activity and can be further used in the 

construction of compounds with optimal biological activity [4]. In the case of ligand-based virtual 

screening, the 3D structure of the target is not available, and the similarity is calculated between an active 

ligand and the compounds of a selected library [5]. The idea behind the ligand-based approach is that 

similarity in structures leads to similarity at the biological effect level. At this point, there needs to be a 

separation so that this hypothesis stands. Similar structures lead to similar biological effects, but the 

opposite does not stand. For example, two compounds may share completely different chemical 

structures, but have the same biological effect, due to the way they target the proteins or because of off 

target effects [6]. 

 

 

Figure 2: Combining two structures into one to optimize the desired effect [4] 

 

1.3. Systems Biology 
 

Systems biology is the scientific approach of complex biological systems through the means of 

mathematics and computational analysis. As systems biology evolves it has come to attract many more 

fields of study such as engineering, physics, and chemistry, all under the wide umbrella of biology. The 

result is a biology-focused interdisciplinary field with boundaries that are not quite defined. Such an 

approach examines every aspect and element of the complex biological systems under study, without 
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making mathematical admissions like in the traditional method of reductionism. The holism, that stems 

from the examination of every element of the system, contributes to the increase of both the complexity 

of the problem -thus the complexity of computations- and the accuracy of the results [7]. We mainly focus 

on the contribution of computer science to systems biology, that allows the analysis and use of large 

experimental data to simulate biological functions, understand complex systems and phenomena, and 

predict biological behaviors.  

Systems biology offers new possibilities on the testing of simple or more complex hypotheses, with a new 

way of experimental validation and modelling. The quantitative description of systems and processes 

allows the control of interactions within the system and the formation of more dynamic models. A main 

field of interest for systems biology is the single cell and its biological behavior, with transcriptomics, 

proteomics and metabolomics playing a crucial role to the understanding and modelling the quantitative 

dynamics of the cell. This focus on the dynamic evolution within biological systems constitutes the main 

difference between bioinformatics and systems biology [8]. 

 

Figure 3: The Process of Systems Biology Analysis [9] 

 

1.4. Gene Expression 
 

Genes are sequences of nucleotides of DNA or RNA that include the genetic information to synthesize 

gene products (RNA or proteins). DNA and RNA serve as the mediators for the production of proteins, 

which in turn are the most significant mediators of the biological behavior of the cell and its functions. 

Most biological traits and cell functions are directly influenced by the genes along with the gene-

environment interactions. That extends to other levels of biological organization, even as high as the 

organism level. For example, genes dictate the levels of production for a certain protein in a cell, but they 

also dictate the color of people’s eyes, their blood type, sensitivity to certain substances and all their other 

traits [10]. 
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Gene expression (GEx) is the process by which the encoded information hidden in a gene is converted into 

products with specific biologic functions. Of all these products, the most important for the regulation of a 

cell’s functions are proteins. These proteins are the offspring of the transcription operation, as it is 

elaborately described in the Central Dogma of Biology (Figure 4) [11]. 

 

Figure 4: The Central Dogma of Biology [12] 

Gene expression is the most important function of every living cell, since it connects the genotype (the 

genetic information within a cell) and the phenotype (every trait and function that can be observed when 

the cell is under study). The phenotype is often expressed by the synthesis of proteins. Such proteins 

control the structure, the growth, the development, and the total of functions of the cell. Therefore, it is 

only logical that anomalies in the gene expression of certain genes lead to differentiation of the cell’s 

biological function.  

In systems biology, gene expression data analysis focuses on the identification of genes that are over- or 

under- expressed on the phenotypic level or during an experiment. This search for anomalies of the 

expression level is called Differential Gene Expression Analysis. Such an analysis is the basic tool for in-

silico and in-vitro experiments, targeting the detection of connections between genes and biological 

functions. The basis for the Differential Gene Expression Analysis is the fact that alterations in a cell’s 

functions are either internally or externally caused. This causality of factors and biological perturbations, 

when studied, can create useful conclusions. For example, Differential Gene Expression after the 

administration of a drug on a cell could prove that the active ingredient of the drug creates perturbations 

on the expression of certain genes. Processes like the aforementioned have contributed to the integration 

of the human knowledge on topics like chemical intervention on cells through drugs or how the cell can 

regulate its functions when its biological processes are damaged.  

 

1.5.  Transcriptomics 
 

Transcriptomics focuses on the transcriptome—the complete set of RNA transcripts produced by the 

genome, in a single cell or under specific circumstances—using high-throughput methods. After 
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comparing transcriptomes in distinct cell populations, one can identify the Differentially Expressed Genes 

in response to specific drugs or to the change of external factors (e.g. radiation, heat levels, etc.) [13]. 

The progress of high-throughput technologies and computer science has allowed the obtaining and 

tracking of the transcriptome and how it changes over time within cell populations. Data that is retrieved 

from the transcriptome, mainly through the techniques of DNA microarray and RNA-seq [13], has quite a 

large range of use. It can be used to gain knowledge on the structure and functions of the single cell, along 

with the problems it may face (cellular differentiation, transcription regulation, carcinogenesis, etc.). The 

transcriptome and its analysis have allowed a deeper understanding of the cell and its behavior and 

contributed greatly to the evolution of systems biology. 

 

1.6. Transcription Factors & Transcriptomic Signatures 
 

Two of the most significant elements that participate in the vital process of transcription are transcription 

factors and transcriptomic signatures. In molecular biology, transcription factors (TFs) are proteins that 

control the rate of transcription of genes from DNA to messenger RNA. That process is the result of the 

TFs (proteins) binding to specific parts of the DNA sequence, so that certain genes can be expressed. 

Consequently, transcription factors are the main regulators of the protein levels in a cell, as the over- and 

under- expression of these proteins is based on transcription factors turning on and off genes, affecting 

their over- or under- expression. Of course, transcription factors can trigger the transcription of proteins 

that can multiply or destroy the TF itself. As a result, groups of TFs act in a coordinated way, to regulate, 

promote or demote basic cellular functions, such as growth, movement, metabolism etc. Surprisingly 

enough, TFs are responsible for even the death of the cell. All in all, this regulation of protein production 

by the TFs is a basic weapon for the understanding of how the cell works. In human cells, about 1600 

transcription factors can be found. These TFs are the point of focus in the medicinal field, because of the 

role they play in the cells, since TF mutations can cause regulatory problems and disrupt the homeostasis 

of the cell and consequently the organism resulting into diseases. The regulation of the TFs and the 

avoidance of those mutations offer a promising insight on the future of medicines [14][15]. 
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Figure 5: The function of the Transcription Factors during the transcription process [16] 

On the other hand, transcriptomic signatures are perturbations in the process of transcription. Mutations 

in TFs, errors in the genome and small mistakes in the binding process of proteins to the genome can lead 

to such perturbations. 

 

1.7. Systems Pharmacology 
 

Pharmacology is the study of the action that certain medication induced to an organism. It is a significant 

branch of medical sciences since it provides vital information on drugs and their effect. Systems 

pharmacology uses the mechanisms and methods of systems biology to produce results in the field of 

pharmacology. Examining the human organism as a complex biological system and taking into account all 

its parameters, systems pharmacology can suggest new medication, reveal new actions of medications, 

and help understand the human-medication interactions better [17]. This broader understanding of the 

human organism and its complexity, drives this method away from the classic drug-protein interaction 

assumption, and creates new paths of perceiving the biological effects of drugs through a large base of 

interactions that they have with different factors that regulate the well-being of the human body. 

Therefore, systems pharmacology examines protein-protein, signaling, chemical or even genetic 

interactions on all levels of biological complexity – from the small atom system to the large organism.  

The examination of such interactions has been continuously approached through gene expression 

methods and the perturbations that compounds have on the expression of genes. This examination is 

assisted by large-scale perturbation databases, like the Connectivity Map (CMap) and the Library of 

Integrated Network-based Cellular Signatures (LINCS). These databases make the processes of drug design 

and pharmacogenomics possible, by facilitating transcriptomics profiles, used on the pathway and 

networks levels through several systems biology approaches [18]. The basis of the CMap approach are the 



 

19 
 

transcriptomic signatures and their biological effects, under the assumption that similarity in 

transcriptomic signatures equals similarity in biological effect. Such a theory is short-sighted as it 

conscientiously lacks basic information concerning the biological structure of compounds, their binding 

affinity to the target and other factors that could counter its effect.  

 

Figure 6: How the CMap method works [19] 

On this matter, a helping hand has been lent to scientists by Artificial Intelligence (AI). More accurately, 

machine learning methods have managed to include the structure and binding affinity of compounds to 

the target as inputs, enhancing this way the predictive strength of models and enabling the drug discovery 

and drug repurposing branches of pharmacology. 

 

1.8. Machine Learning in Drug Discovery 
 

Machine learning is a broad scientific field that uses computer algorithms to gain knowledge from a set of 

data and optimize the predictions of new data. These algorithms try to adjust the weights of the proposed 

set of mathematical functions based on sample data (training set) and optimize them to acquire the best 

results over the training set. The whole purpose of machine learning is the implementation of these 

adjusted functions over new, raw data of the same kind to make the best possible predictions and help in 

any decision-making process. The most exciting machine learning branch is Deep Learning.  

Deep Learning is a machine learning method based on artificial neural networks (ANNs); algorithms that 

assimilate the information processing and communication nodes in cells and biological systems. As shown 

in Figure 7, an artificial neural network can receive many inputs, process them, and determine the correct 

way (function) to connect these inputs into the desired output. This flexibility and ability to translate 

inputs of all different kinds into an output gives ANNs a respectable predicting power.  
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Figure 7: The parallelization of Artificial Neural Networks and a Human Neuron. Notice how both systems have the ability to 
receive a large number of input data and translate it into an output [20]. 

 
ANNs consist of layers that are densely connected. The layers contain several neurons that receive input 

from the former layer and, after adjusting the weights of the function sought after, give their output to 

the next layer. This process is dynamic, meaning that the true output regulates the weights of the neuron 

functions, so that the error of the true output and the prediction of the neural network is minimized. All 

in all, the importance of ANNs is vast, since they can handle big data, extract useful information, and help 

in predicting future interactions in any field [21]. 

Deep learning is a great weapon for the drug discovery process. Over the past decade, the rising abilities 

of computing systems, along with the multiplication of available data, has allowed that interaction to 

expand. Deep learning methods can utilize a big range of input of biological importance, encoded in the 

right way, and extract useful information or make predictions for the system under review. Deep learning 

libraries and architectures have provided scientists the ability to progress the drug discovery process, by 

predicting interactions between compounds and targets and selecting compounds for biological testing. 

Inputs such as chemical structures, biological effect, binding affinity, molecular interactions, and 

geometries et.al has helped both in the drug discovery and drug repurposing domains, minimizing the 

time and resources needed.  

 

1.9. GO Terms and GO Term Enrichment  
 

Gene Ontology (GO) is an effort to connect the representation of gene and gene product attributes. The 

GO project has its own vocabulary, with specific terms and ways to annotate data and genes. Moreover, 

GO provides the tools to understand the function of genes through experimental data, like enrichment 

analysis, through which the effects on compounds on cells are determined. The GO syntax is built using 

specific representations of either cellular components, molecular functions, or biological processes, called 
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GO-Terms. Each GO-Term within GO has a term name, which may be a word or string of words, and a 

unique alphanumeric identifier (e.g. id: GO:0000016, name: lactase activity). These GO-Terms are used 

instead of words, to indicate functional or structural characteristics of the cell and quantify them [22]. 

The GO-Term Enrichment Analysis is used to specify which GO terms are over-represented (or under-

represented) in a gene set under certain conditions and is a great method to quantify the biological 

functions of a cell, along with the effects of compounds and make them more computationally trackable. 

Furthermore, such a controlled biological method can provide information on functional similarity or 

distance of gene products. For this thesis, the GO-Term Enrichment Analysis was performed using the 

FGSEA package in Bioconductor in R [23].  

 

1.10. Gene and TF-Knockdowns 
 

Gene knockdown is the process by which the expression of an organism’s gene is reduced or even 

completely blocked. Such a perturbation to the gene expression can happen either through genetic 

modification of the organism, or through the treatment with a compound designed to have gene specific 

knockdown abilities [24]. As mentioned earlier, transcription factors (TFs) help with the quantification of 

the gene expression process as well as the function of the single cell through proteins, since they regulate 

the production of proteins. The conclusion that can be drawn, that directly affects the thought process of 

drug discovery, is that sustaining or changing the levels of the TFs in a single cell could be the way to 

keeping the cell healthy and well-functioning.  

Since transcription factors are proteins that bind on specific parts of the genome, their production is either 

triggered or suspended in turn by the expression of respective genes. A basic term used in this diploma 

thesis is “TF-knockdowns”, meaning compounds responsible for the reduction or suspension of the 

expression of the gene that will later produce the transcription factor we want to eliminate. Essentially, 

TF-knockdowns are compounds that suspend the production of a TF. Since the connection between 

protein production and transcription factors is direct, we focus on blocking TFs and not on blocking the 

effects of proteins. Therefore, TF-knockdowns are important in the efforts to monitor and control the 

cell’s interior.  

 

1.11. Current study 
 

In this diploma thesis, a model is developed that aims to prioritize unknown compounds for further testing 

based on their transcription factor activity. Since researchers possess large libraries of compounds and 

compounds’ interactions, when in need to create a new drug, they refer to these libraries to detect the 

compounds that could work as active ingredients in the drug under development. To replace the costly 

and time-consuming process of high throughput screening, that tests a large number of compounds in 

parallel, we created a model that can virtually perform screening of the compounds and propose a number 

of compounds that biologists are to run tests on first. It is most probable that the proposed compounds 

contain a desired chemical structure that would have the sought-after biological effects.  
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The model that was developed takes as input a transcription factor that needs to be suspended or 

knocked-down, along with a library of data in which to pursue the search, and returns a set of compounds 

that could perform this knockdown. This process essentially consists of four stages: knockdown 

availability, neighbor selection, inference selection and evaluation. In the first step, we indicate which 

transcription factor knockdowns are available to work with in the given data library. Secondly, we try to 

find “neighbors” of the knockdown in the known data, meaning compounds that are virtually close to the 

knockdown at the biological effect level. Later, we use a set of criteria and a deep learning model to screen 

unknown compounds and select the ones closest to the neighbors that came up in the former step. Finally, 

we conclude the model with an overall evaluation of the process, by proposing several compounds and 

judging their performance.  

To justify the selection of the criteria used in this model, we present the results of the criteria selection 

and optimization, along with the weight of each criterion and the role it plays in the boosting of the 

model’s performance. Finally, we prove the statistical significance of our model and confirm that our 

model should indeed be used to prioritize compounds for further testing.  

 

2. Data 
 

2.1. Data Preprocessing 
 

The latest version of CMAP (GSE92742) provided data for transcriptomic signatures after compound 

application and the L1000 assay the 978 landmark genes of which the differential expression was 

examined. The L1000 assay is a high-throughput gene expression assay that measures the mRNA 

transcript quantity of 978 landmark genes in human cells. The name L1000 derives from L for landmark 

and 1000 for the approximate number of landmark genes. Proceeding with these signatures, a quality 

score was calculated for each one. Only the best quality signatures (quality 1) were considered.  

Biological functions and their significance in perturbations are represented in whole gene sets. For this 

specific analysis, GO-Terms for biological processes of the landmark genes of the L1000 assay were used 

[25]. Bioconductor’s package TopGo was used to recover the data [26]. Afterwards, GO-Term enrichment 

was applied for every signature through the FGSEA package of Bioconductor in R [23]. The outcome of the 

enrichment was a vector of Normalized Enrichment Scores (NES) at the GO-Term level (meaning 

representing to the biological function of the signature) for each signature.  

Given that the proposed model is based on differences on the biological function level, that difference 

was to be quantified through some form. We chose to quantify these differences as GO-Term level 

distances of pairs, in accordance with Iorio et al. [27]. More information on the subject of distance is 

offered in the Methods chapter.  
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2.2. Training Sets and Test Sets 
 

The structure of the model under construction strongly depends on the data that is being used. On that 

front, we split the available data into a training set and a test set for each cell line used. The training set 

essentially consists of pairs of drugs with their distance. We chose to operate on a GO-Term distance level 

and a transcription factor distance level. To create a test set, we excluded a number of drugs from the 

training set and moved all their pairs to the test set. In conclusion, the test set comprises of pairs of drugs 

with one of them being “cold,” meaning a compound not included in the training set. The application of 

the model on the test set, provides useful information on the effectiveness and the robustness of the 

model when coming across totally unknown structures. 

To create efficient test sets and training sets for the data, we took into consideration the distribution of 

the distances and the chemical structure of the compounds. Firstly, to check the behavior of the model to 

the data provided, we tried to make the test set as difficult for the model as possible, by excluding drugs 

that don’t have chemical similarity to the compounds in the training set, so that the test set comprises of 

drugs with low structural similarity to the training set. Moreover, to test the model’s performance in a 

just way, we prohibited the creation of totally random test sets, meaning we tried to have matching 

distributions of distances in the test set and the training set. An example of these similar distance 

distributions for the a375 cell line is available in Figure 8.  

 

Figure 8: Similarity between the distributions of the test set and the training distances. In particular, these sets are representative 
of the distances in the a375 cell line. The training and test split was produced heavily on the premise that the these distributions 
should be as similar as possible.  

Finally, the results of the splitting process produced the following results for the three cell lines that are 

of interest, shown in Tables 1&2. The most useful information on each split is the number of pairs and the 

number of unique compounds in each set. It is important to mention that the data that was kept was of 

the highest quality, as described in the previous chapter.  
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Cell Line Number of Pairs 
Number of 

Compounds 

A375 174936 592 

PC3 184528 608 

MCF7 253828 713 
Table 1:Training Set pairs and compounds quantity for the three cell lines 

 

Cell Line Number of Pairs 
Number of 

Compounds 

A375 45584 77 

PC3 44992 74 

MCF7 49910 70 
Table 2: Test Set pairs and compounds quantity for the three cell lines 

In parallel, we worked the same way by utilizing the transcription factor distance of pairs of compounds. 

These distances were calculated with a Gene Set Enrichment method, similarly to the GO-Term 

enrichment method, by substituting the GO-Terms with transcription factors and considering the 

enrichment of the transcription factors. As a result, one more training set and test set was created for 

each cell line, including the transcription factor distances of the pairs of compounds.  

 

2.3. Complementary Data 
 

For the development of the model described in this thesis, there were plenty of complementary data used 

to connect and be able to transition through different fields of interest. The most important of these data 

were: 

• The knockdown-signature connection data frame: This dataframe provided useful information 

about which transcription factors knockdowns are included in each cell line and what their 

respective transcriptomic signature is. 

 

• The knockdown-transcription factor enrichment scores in each cell line: The enrichment scores 

were calculated using the FGSEA package in R. Every transcriptomic signature respective to the 

known transcription factor knockdowns in each cell line resulted in an enrichment score for each 

transcription factor, to be used later, to extract information about which knockdowns would be 

useable. For example, the transcriptomic signatures of the knockdown named MYC caused quite 

different enrichment scores throughout several cell lines.  
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• GO-Term enrichment scores for all the available compounds: This dataframe contains the 

enrichment scores of the 2105 GO-Terms examined after the application of 90,000 compounds.  

 

• GO-Term enrichment scores for all the available knockdowns: This dataframe contains the 

enrichment score of the 2105 GO-Terms examined connected with the knockdown signatures in 

each cell line.  

 

• The enrichment ranks of all the transcription factors for each compound: This dataframe was 

created through a simple enrichment analysis and a ranking procedure. More accurately, for each 

compound, a enrichment score was calculated with FGSEA for each transcription factor. Later on, 

these enrichment scores were ranked signature-wise, meaning that each transcription factor got 

a rank (from 1 to 175, since the included transcription factors are 175) for each compound 

signature.   

A more in-depth analysis of the aforementioned data, along with their use in the model will be given in 

the Methods chapter. 

 

3. Methods 
 

The model that was created in this thesis is a combination of logical hypotheses and biological 

prerequisites. To back our hypotheses, we used analytical data and performance evaluation, labelling the 

project and the central hypothesis successful. The model was built in four stages briefly: knockdown 

availability, neighbor selection, inference selection, evaluation. As most models that are built on training 

and test data, it makes use of a deep learning model to learn relationships between data and implement 

them on other data to predict missing values. Through the predicted data, and with a series of biological 

thresholds in mind, the finally selected compounds confirm the success of the model.  

The main target of this thesis is to identify compounds that approximate the biological effect of certain 

transcription factor knockdowns, in order to be able to create drugs that contain these compounds and 

suspend the effect of specific transcription factors. Such a method could be vital in the field of drug 

discovery and play an important role in developing target-specific drugs.  

On this front, the logical steps of the model along with the methods that were used to draw logical 

conclusions and proceed from one step to the next were the following: 

 

3.1. Knockdown Availability 
 

As mentioned earlier, the prime goal of the model is to find compounds with close biological effects to 

certain knockdowns to suspend the effect of desired transcription factors. When dealing with big data 

libraries where not all relations between variables are comprehensible, it is important to try to understand 

the data essence and decipher its meaning through deliberate analysis and clustering. In this case, the 



 

26 
 

large data libraries that were used are three cell lines (A375, MCF7, PC3). To be able to run our model and 

detect drugs with close effects to certain knockdowns in these cell lines, there first needed to be proof 

that these cell lines included these particular knockdowns, or to be more accurate, their transcriptomic 

signatures. This knowledge was provided through the knockdown-signature connection data frame (See 

Complementary Data chapter) that pointed which knockdowns were included in each cell line. Of the 

knockdowns that were included in the three cell lines we decided to work only with the ones that were of 

quality 1, to build a more robust and accurate platform, through working with the best quality data. The 

results of this enquiry are shown in Table 3: 

 

 
Cell Line 

Number of 
knockdowns 

included 

Number of 
knockdowns with 

quality 1 

A375 125 32 

MCF7 117 20 

PC3 123 28 

Table 3: Number of knockdowns included in each cell line 

Moreover, the three cell lines that were used had 2 common knockdowns of quality 1– meaning 

knockdowns that were included in every cell line. These were knockdowns of transcription factors that 

are quite important to the functions of the organism and thus they are more frequent in cell lines. In total, 

there were 130 unique knockdowns throughout the three selected cell lines, of which 61 were of quality 

1. It is important to note that data of another cell line was available (the VCAP cell line), but since it 

included only one knockdown, it was decided that it was of no computational importance and it was better 

if it were excluded from the platform.  

Quality aside, it was decided that there needed to be a more complex criterion to determine which 

knockdowns would be acceptable to work with. On this front, we decided to use the enrichment 

calculations of the transcription factors over the respective knockdown signatures in the cell lines and 

decipher which knockdowns’ enrichment score was tolerable. Using the FGSEA package in R, we created 

the knockdown-TF enrichment scores in each cell line dataframe (See more in Complementary Data). We 

then ranked the enrichment scores of each transcription factor over the knockdowns’ transcriptomic 

signatures in the cell lines available and kept only the pairs of knockdowns and transcription factor of said 

knockdown in every cell line. This diagonalization of the enrichment scores ranks allowed deeper 

knowledge on which knockdowns of the available were over – or under – represented in the three cell 

lines. 

In general, low rank meant that the enrichment score was negative, and that the transcription factor was 

downregulated. This, of course, meant that the respective knockdown was over-represented in the cell 

line, while high rank indicated the opposite. This over-representation was what we were seeking to 

complete a first screening on the given quality 1 knockdowns of each cell line. In this context, a threshold 

was introduced, that allowed only a limited number of the best (over-represented) knockdowns to pass. 

That threshold was determined to keep only the best 20% of knockdowns in each cell line, which were 

the knockdowns that we decided to keep working with to reach the best possible results.  
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All in all, for this first step of the model, a function was created named available_tfs_in_cell_line. Its main 

purpose was to interpret the data given and work out which knockdowns would be acceptable to use in 

the next steps. Its inputs are: 

• The knockdown-signature connection data frame  

• The knockdown-transcription factor enrichment scores in each cell line 

• The cell line under review 

• The threshold for the enrichment scores ranks, which will determine which knockdown we can 

work with 

In accordance with the inputs, the output of the function created is a vector with the names of the 

knockdowns that are guaranteed to give the most accurate results.  

 

3.2. Neighbor Selection 
 

The second part of the model, which is called neighbor selection, can overall be described as the function 

to allocate the compounds in the training set that have the closest biological effect to the selected 

knockdown. This step utilizes the known data of the training set to find the relations between the 

transcriptomic signature of the knockdown and those of the rest compounds. Moreover, it makes use of 

different criteria to determine which compounds are the neighbors of the knockdown. These criteria 

derive mainly by the understanding of biological and structural differences of compounds, as well as 

implementing strict and targeted computational processes.  

Having already run the first step of the model, we have determined which knockdowns are available to 

work with in each cell line. By selecting one of the available knockdowns in a cell line we will try to find 

which of the known compounds in the training set shares biological activity with this particular 

knockdown. This process takes into consideration the following aspects of the compounds: 

 

3.2.1. GO-Term level distance of knockdown and compounds 
 

The earliest concept that one naturally refers to when trying to decipher relations between compounds 

is a way to quantify their similarity or dissimilarity on the structural or biological level. Since we care to 

find compounds that share similar biological effect with the knockdown whatever their structure may be, 

we concentrated on the biological distance of the compounds and the knockdown. This biological distance 

was derived as distance between GO-Term-level vectors for every compound in the training set, calculated 

similar to Iorio et al. The data for the GO-Term enrichment scores of the compounds were available by 

the respective dataframe, described in the Complementary Data chapter. In parallel, the GO-Term 

enrichment scores of the knockdowns were available in the respective dataframe, described in the same 

chapter. By using the Gene Expression Signature package in Bioconductor in R we were able to compute 

every distance between the training set’s compounds and the knockdown of interest.  
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For every pair of knockdown and compound, two feature vectors ranked by NES are considered, called A 

and B, GSEA is used to calculate the enrichment scores of a number of top and bottom GO-Terms of A  in 

B and vice versa. The calculation of the distance between the two vectors is given by the averaging of the 

two enrichment scores, a method that gives a result in range of 0 to 2. To have a more precise calculation 

of distances we repeated the process by creating an ensemble of 5 different ES, respective to 5 different 

numbers of top and bottom GO-Terms considered (10, 20, 30, 40, 50). The ensemble distance was a result 

of the averaging of these 5 ES and normalized between 0 and 1. The outcome of this process was a vector 

of the GO-Term distances of the selected knockdown and all the compounds in the training set.   

The following Figure 9 depicts an example of the output of this process. The vector of the biological 

distances shows the relevance of each compound of the training set to the knockdown on the biological 

effect level. From such a histogram one can draw many conclusions about the quality of the data and the 

proximity of compounds to the knockdown. For example, in Figure 9 the MYC knockdown has many 

compounds with similar biological effect (small distance), since it is quite a common knockdown.  

 

Figure 9: Histogram of biological distances between the MYC knockdown and the compounds of the a375 cell line. Notice how the 
distances of the compounds are strongly shifted to the left, meaning that many compounds show similar biological effects to the 
knockdown. This happens because the MYC knockdown is a quite common knockdown relevant to the survival of the organism. 

The whole premise that smaller GO distances equal similarity in biological effects deeply influenced our 

search. Therefore, by observing the histogram in Figure 9, a decision had to be made on which distances 

would be considered close enough, to label a compound as a neighbor. After a lot of tampering and 

parameter exploration, which is best described in the Results chapter, we came to the conclusion that the 

threshold for the distance would be 0.15. It is important to note that the platform analyzed in this thesis 
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tries to assign the right priority to compounds to be used in further research. Since every knockdown has 

a different distribution of distances - most of them being shifted to the right – this threshold had to be 

judged accordingly. It was decided that at this point, the best threshold parameter for the go distances 

would be 0.15. Thus, by applying this threshold to the compounds of the training set, we excluded most 

of the compounds and kept only the best and closest to the knockdown compounds to continue our search 

for neighbors.  

 

3.2.2. Transcriptional signature distance of knockdown and compounds 
 

For the compounds that had quite low GO-Term distance and passed the aforementioned threshold, there 

needed to be a better and more precise screening. To exact the first screening, we utilized the GO-Term 

enrichment scores of the compounds to create vectors of GO-Term distances. In this second layer of 

screening, we chose to make use of the knockdowns enrichment score of each signature and create a 

similar kind of method to calculate compound-knockdown distances and make use of a second threshold 

to close in on better neighbors.  

The process followed at this step was similar to the last one. The key difference was that the enrichment 

scores for the signatures of the compounds and the knockdowns were expressed over transcription 

factors and not GO-Terms. The data for these processes were available from the enrichment ranks of all 

the transcription factors for each compound and the knockdown-transcription factor enrichment scores 

in each cell line as described in the Complementary Data chapter. After using the Gene Expression 

Signature package again, the ensemble provided distances at the transcription factor level for every 

knockdown and every compound. To distinguish the two kinds of distances we named the new ones 

tf_distances, since they were derived not from GO-Terms, but from knockdowns. 

These distances presented a kind of similarity to the GO-Term distances of the last step, dew to them both 

being indicators of the biological distance between compounds. The following Figure 10 depicts a typical 

distribution of the distances of the MYC signature and the signatures of the training set of the a375 cell 

line. Notice that the new distances follow virtually the same distribution as the go_distances, but with a 

visible shift to the right, meaning our second threshold must be more relaxed. 
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Figure 10: The distances between the transcriptomic signature of the MYC knockdown and the transcriptomic signatures of the 
compounds in the a375 training set. Notice how the distribution follows the same pattern as before but is shifted to the right. 

To extract a threshold for the tf_distances of the compounds there needed to be a closer examination of 

how the threshold affects the accuracy of the model and the number of neighbors. This analysis will be 

presented in the Results chapter. It was clear though, that running the two thresholds in parallel and 

keeping strict values for both would result in picking no neighbors for the knockdown. In this regard, we 

decided to apply a looser threshold for the tf_distances at 0.25. Of course, this threshold could change 

depending on the circumstances of the prioritization and the quality of the data.  

All in all, the neighbor finding process was strongly based on the biological understanding behind 

computational data. By utilizing computational processes, we managed to find distances on the biological 

level and show the relations between knockdowns and compounds. For this whole purpose, a function 

was built that had as inputs: 

• The selected knockdown and its transcriptomic signature which should be included in the 

available knockdowns presented by the first step (See former chapter) 

• The cell line on which we want to work 

• The training set of the cell line containing pairs of compounds and their biological distance 

• The dataframes with the GO-Term enrichment scores for all the available compounds and the 

knockdowns 
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• The dataframe with the enrichment ranks of all the transcription factors for each compound 

• The threshold for the go_distance 

• The threshold for the tf_distance 

The outcome of this function is a vector of compounds that are considered neighbors of the knockdown. 

These are the compounds of the training set that have passed all the thresholds and are believed to have 

the greatest biological similarity to the knockdown of interest. These neighbors will be utilized in the next 

steps. 

 

3.3. Inference Selection 
 

The third step – and the most important one – in this model is the selection of compounds from an 

unknown library to prioritize for further testing in the drug discovery process. More accurately, the model 

can process unknown compounds with high precision and propose several compounds that approximate 

the effect of the selected knockdown as closely as possible. As expected, the current step of the platform 

is strongly dependent on the neighbors that were selected in previous step. We will be trying to utilize 

the predictions of a deep learning model on the test set, which includes all the unknown compounds, to 

locate chemical structures that show great similarity with the neighbors we have already suggested. 

Therefore, we are using the neighbors as a medium to detect unknown compounds with biological 

similarities to the selected knockdown.  

 

3.3.1. The deepSIBA Model & GO-Term distance 

 
The most significant predictive model that was used during this diploma thesis was the deepSIBA model 

(Fotis, Meimetis, et al.) [28]. DeepSIBA stands for Deep Learning for Chemical Structure-based Inference 

of Biological Alterations. This deep learning model was constructed by my fellow colleagues at the 

BioSysLab and can predict the biological similarity of chemical structures with great precision. 

DeepSIBA uses representations of the compound structures given as graphs and then draws links to their 

biological effect distances. These compound differences were connected to their subsequent biological 

effect differences through the use of Siamese Graph Convolutional Neural Networks (GCNNs).(Figure 12) 

GCNNs in this case worked on molecules of chemical structures represented as graphs, containing nodes 

and bonds. The nodes represented the atoms and the edges represented the bonds between these atoms. 

(Figure 11). It is important to note that the present model succeeds in learning neighborhood level 

representations of the input graphs and link them to respective biological effects. Moreover, the model 

managed to learn and identify structurally dissimilar compounds that share biological effects. The 

application of model ensembles provided both greater accuracy and precision, while calculating the 

uncertainty of the predictions.  
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Figure 31: Graph encoding of compounds pairs as nodes and edges and connection of structures to biological function distance 

The model is trained on pairs of compound structures and their biological effect distance. Predictions are 

made only by supplementing pairs of compounds, similar or completely dissimilar to the training set’s 

structures. The reliability and flexibility of the model make possible its use for any set of structural pairs 

and a value connecting that pair. To achieve maximal precision and ensure the best performance of the 

model, we used training sets and test sets whose distributions of distances was similar.   

 
 

 
Figure 14: The architecture of the deepSIBA model 

In our case, the deepSIBA was used to learn representations from the compounds in the training set and 

predict the biological distances of the compounds in the test set based on their structure. Such a predictive 

tool was quite useful, since it made it possible to predict, with high precision, the biological distances of 

all the unknown compounds and the neighbors that were suggested in the former step. For example, on 

the a375 cell line, the model was used to predict the distance of the neighbors and 77 cold compounds, 

giving us the opportunity to pass judgement on totally unknown compounds up to that point.  
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The deepSIBA model presents the results with both the average value of the prediction and the standard 

deviation of that value. For our purposes we used the average predicted value to compare the biological 

effects of the neighbors and the cold compounds. Through that average value was it possible to screen 

the unknown compounds and choose the ones that approximate the neighbors on a biological level. On 

that front, we introduced a threshold to keep only compounds with low distances to the suggested 

neighbors. This threshold was decided to equal 0.22. This way, there was a first screening of the 

compounds that resulted in keeping the ones that presented low distance to at least one neighbor (they 

were neighbors of a neighbor of the knockdown). That first screening, although it eliminated many 

compounds, was not enough to conclude the model accurately. 

 

3.3.2. Majority 

 
Since the predictions of the deepSIBA model along with the last threshold provided a number of cold 

compounds that could potentially be neighbors to the selected knockdown, the next step was to elaborate 

on these compounds and provide a more precise way in order to pick the best of them.  

The logical conclusion that was drawn from the relations between the cold compounds and the neighbors 

is that the more the compounds resemble the biological effects of most of the neighbors, the more they 

are bound to resemble the biological effect of the knockdown. In short, strong relations to more neighbors 

means stronger relations to the knockdown. 

In this respect, we were concerned with the number of the neighbors each compound had a close distance 

to. Therefore, the concept of majority was born, meaning the percentage of neighbors each cold 

compound resembled closely enough. For example, if a knockdown had 5 neighbors and a compound 

resembled the effect of 3 of them ( they passed the threshold of the last step for 3 out of the 5 neighbors), 

then the majority of this compound would be 0.6. Consequently, we tried to screen the cold compounds 

deeper, by introducing a new threshold concerning the majority of each compound, as it was defined 

above.  

This majority threshold was the way to select the best compounds, the ones that showed resemblance to 

the most neighbors. Therefore, after a parameter exploration, as presented in the Results section, we 

determined that the majority threshold should allow only the top 30% of the compounds concerning their 

majority. This way we deepened the screening and made it more robust.  

 

3.3.3. Transcription factor distance  
 
To add another layer to the inference selection and make it even more precise, we decided to expand the 

model based on the predictive power of the deepSIBA model. In this context, we created a new training 

set and a test set by replacing the GO-Term distances with the transcription factor distances, as they were 

calculated in the neighbor selection chapter. A new deepSIBA model was trained based on the new data 

and new transcription factor distances were predicted for the test set.  
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Accordingly, based on these predictions we eliminated a few more compounds from the finally inferred 

ones. This happened exactly in the same manner as when handling the GO-Term distances. We introduced 

a threshold and when exploring it we settled on the threshold value of 0.25 for the transcription factor 

distances.  

In parallel with the majority threshold for the GO-Term distances, we tried to integrate a similar majority 

threshold for the transcription factor distances, but the more the thresholds, the more difficult it was to 

locate any compounds that fulfilled them all. Thus, we propose a majority threshold of 0.7 for the 

transcription factor distances, the same way as before, in libraries that include much more data. 

All in all, to select the “cold” compounds that had the smallest distance to the desired knockdown, a 

function was created that had the following inputs: 

 

• The neighbors of the selected knockdown as they were calculated in the former step 

• The predictions of the deepSIBA model on the test set for the GO-Term distances of pairs of 

compounds 

• The predictions of the deepSIBA model on the test set for the transcription factor distances of 

pairs of compounds 

• A GO-Term distance threshold to keep “cold” compounds that have close go_distance to 

neighbors of the knockdown 

• A TF distance threshold to keep “cold” compounds that have close tf_distance to neighbors of the 

knockdown 

• A majority threshold to keep the “cold” compounds that show similarity to most neighbors 

 
The output of this function is a list of the “cold” compounds that are most likely to approximate the 

biological effect of the selected knockdown. The whole model is a method to prioritize certain compounds 

in the drug discovery process.   

 

3.4. Evaluation 
 

To conclude a model like the one developed in this thesis, there needs to be an evaluation of its 

performance and its accuracy. Having already selected a number of “cold” compounds through the rest 

of the model, there needs to be testing to determine whether the selected compounds actually have a 

biological proximity to the desired knockdown. For this purpose, we developed the following evaluation 

metrics: 
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3.4.1. GO-Term distance accuracy 
 

This evaluation metric tests whether the proposed compounds’ GO-Term distances to the knockdown are 

actually little enough so that they would be described as neighbors. It is based on a proposed threshold 

largely affected by the biological perception of the data distribution. The go_distance accuracy of the 

model is defined as the percentage of the GO-Term distances of the proposed compounds and the 

knockdown are below the threshold. We decided that for the model to be characterized as accurate over 

this metric, the evaluation threshold should ensure that the cold compounds are only of the top 

performing compounds as far as distance to the knockdown is concerned. For this purpose, this evaluation 

threshold was set to be 0.23 for the MYC knockdown, from the distribution shown in Figure 13. The 

go_distances were calculated as before, through the GO-Term Gene Expression Signature package of 

Bioconductor. Naturally, every knockdown has its own distribution of go_distances and the threshold 

should be adjusted accordingly. 

 

Figure 53: Histogram of the GO-Term distances of the cold compounds in the test set of the a375 cell line and the MYC knockdown. 
We can see that the distribution of the values is highly shifted to the left, as they were in the training set for this knockdown. For 
this purpose, we chose to set the evaluation threshold at 0.23. Of course, this evaluation threshold should be different for each 
knockdown. 

3.4.2. TF distance accuracy 
 

In parallel to the last accuracy metric, the TF distance accuracy measure the proposed compounds’ TF 

distances to the knockdown and deciphers if they are actually neighbors based on a threshold. This 
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threshold is suggested from the distribution of the tf_distances of the cold compounds, to judge whether 

the selected compounds are included in the best possible ones (have the lowest tf_distance to the 

knockdown). The tf_distance accuracy of the model is defined as the percentage of the tf_distances of 

the proposed compounds and the knockdown are below this threshold. For this purpose, this evaluation 

threshold was set to be 0.27 for the MYC knockdown, from the distribution shown in Figure 14. The 

tf_distances were calculated as before. Of course, every knockdown has its own distribution of 

tf_distances and the thresholds should be adjusted accordingly. 

 

Figure 14: Histogram of the tf_distances of the cold compounds of the a375 test set and the MYC knockdown. Notice that the 
distribution resembles the respective distribution of the GO-Term distances. This distribution suggests that the evaluation metric 
for the tf_distances should be around 0.25-0.27 

 

3.4.3. Combined Accuracy 
 

This was a general accuracy metric that stemmed from the last two metrics. It is a way to generalize the 

go_distance accuracy and the tf_distance accuracy. In short, it returns the percentage of the compounds 

that fulfill both the evaluation thresholds that were described above. 
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4. Results 
 

Throughout this thesis our goal was to develop a valid model that would effectively prioritize unknown 

compounds that resemble the biological effect of a transcription factor knockdown. This prioritization 

would offer a helping hand to biologists’ efforts to discover new drugs and combat diseases through 

transcription factor activity. The performance of such a model is complicated to map, but this chapter 

offers proof that the method that was followed produces high quality results.  

Judging the effectiveness of a method is not solely based on its results. To conclude that a series of 

computational steps have biological basis and play a role in the compounds’ screening, there needs to be 

proof that the criteria which performed the screening are strict and produce results accordingly. The 

success on the selection of these criteria will be discussed through a parameter exploration. Moreover, 

the optimal values of the thresholds performing the screening and how we arrived at them will be 

discussed. In addition, to prove the methods generalization, its performance over different cell lines is 

considered along with the behavior of the parameters in parallel. Finally, we will present evidence that 

the model has strong computational value and that the prioritization of compounds helps select 

compounds with the desired characteristics. 

  

4.1. Available knockdowns per cell line  
 

Working with knockdowns in cell lines prerequisites that the knockdown is over-represented in that 

particular cell line. As described in the respective chapter in methods, this knowledge stems from the 

enrichment scores of transcription factors over their knockdown’s signature in the cell line. Low 

enrichment score means that the transcription factor is downregulated and therefore the knockdown has 

a strong effect in that cell line. Keeping only the 20% of the best represented knockdowns in each cell line 

to make our model more robust and dependable we found that the cell lines provided the following 

numbers of knockdowns to work with. (Table 4) 

 

Cell Line Number of Knockdowns Available 

Α375 6 

MCF7 4 

PC3 3 
Table 4: The number of knockdowns available to work with in each cell line. The most common knockdown present in the cell 
lines is the knockdown of the MYC transcription factor 

Provided that the most common knockdown in these cell lines is the one controlling the MYC transcription 

factor, we decided to present most of the results focusing on MYC.  
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4.2. Parameter Exploration 
 

Creating a model that utilizes biological data prerequisites knowledge and understanding of the biology 

behind the data, but most importantly it requires a clear path to connect the computational data and the 

biology. In this compound screening platform we developed a model that prioritizes chemical compounds 

over others with the main criterion being the compounds’ similarity of biological effect to a transcription 

factor’s knockdown (a structure that suspends the transcription of certain genes). To create the platform, 

there needed to be a connection between the data available and the biology. This connection was 

attempted with a series of parameters-thresholds throughout the span of the platform, that essentially 

were the ones to perform the screening. 

The parameters that were included in the model were: 

• The GO-Term distance threshold between the training compounds and the knockdown in the 

neighbor selection 

• The TF-distance threshold between the training compounds and the knockdown in the neighbor 

selection 

• The GO-Term distance threshold between the cold compounds and the neighbors of the 

knockdown in the training set 

• The majority threshold to select only cold compounds that had similarity to most of the neighbors 

of the knockdown in the training set 

• The TF-distance threshold between the cold compounds and the neighbors of the knockdown in 

the training set 

The aforementioned parameters performed the neighbor selection and the inference selection. One could 

argue though, that although the motives and the biology of the reasoning behind the selection of these 

thresholds were correct, the whole computational process and the intervention on the data through 

several functions would alter the outcome of the platform and make it ineffective. To cast away any 

arguments of disbelief that the thresholds chosen are random or dysfunctional, we will present evidence 

that shows how each parameter regulates the results of the platform and how we worked to determine 

the optimal value of each threshold. This parameter exploration and evaluation will have to be conducted 

in a way that clearly cements the role of each threshold in the successful outcome of the model. Therefore, 

we will pass judgement on every threshold by linking its value to the accuracy metrics of the evaluation. 

To perform this task, we will be freezing every time the rest of the parameters at logical values and 

presenting how the accuracy metrics differentiate over different values of said threshold. We will consider 

a threshold successful only if there is clear evidence that its relaxation results in worse model 

performance.  

 

 



 

39 
 

4.2.1. GO-Term distance threshold in neighbor selection 
 

The first case where we made use of a threshold was in the neighbor selection process. The neighbor 

selection is the process of screening training set compounds that are considered neighbors to the 

knockdown. This consideration of a compound being a neighbor of the compound stems from both the 

biological perception of the data and the threshold we apply for this purpose. Having already settled on 

the evaluation parameter for the GO-Term distance of the inferred compounds, there needs to be an 

obvious link between the neighbor selection GO distance threshold and the GO accuracy of the model, to 

be able to conclude that the threshold indeed has a positive effect on the model. While keeping the rest 

of the parameters frozen at normal values, we investigated the effect of the GO distance threshold of the 

neighbor selection on the GO accuracy of the model. This investigation is pictured in the following Figure 

15: 

 

Figure 15: Diagram of the effect of the GO-Term threshold in the neighbor selection to the GO-distance accuracy of the model. It 
is obvious that the stricter this threshold is, the better the model performs. Thus, we conclude that the threshold is indeed working. 

The Figure 15 above really does credit to our selection of the GO distance threshold as a neighbor selection 

mechanism. It is obvious that the threshold is working, since the accuracy of the model is deeply affected 

by it. We can see that the stricter the value of the threshold is the better the model performs. The simple 

explanation behind this fact is that a more relaxed GO-distance threshold in the neighbor selection 

process leads to more and worse performing neighbors, as shown in the next Figure 16. These new 
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neighbors later, in the inference selection, will result in more cold compounds being screened, and since 

the neighbors are of lower quality, the inferred cold compounds are also of low worse quality than before.  

  

 

4.2.2. Transcription Factor distance threshold in neighbor selection 
 

The second threshold used in the neighbor selection process integrates the distance of the compounds 

from the knockdown based on transcription factors. This time around, we made use of the TF-distance 

accuracy of the evaluation and tried to prove that after the GO-distance, the TF-distance threshold plays 

an important role in the neighbor selection. The same way as before, this strong link between the 

threshold and the biology of the problem can be proven only through the examination of the effect of the 

loosening of the parameter on the performance of the model.  

Thus, by following a similar approach as with the GO-distance threshold, we focused on the effect of the 

parameter shift on the TF-accuracy in the evaluation. By freezing the rest of the parameters, we managed 

to create the chart in Figure 17. This diagram strongly proves that the stricter the threshold for the TF-

distance of the compounds and the knockdown in the neighbor selection is, the better the model 

performs.  

 

Figure 16: Progression of the number of neighbors and the number of inferred compounds as the GO-distance threshold in neighbor selection is loosened. 
We can see that the number of inferred compounds rises significantly, triggered by the enlarged number of neighbors. Of course, it is topped at 17 
compounds, since the rest of the thresholds’ effect somehow confines this number.  
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Figure 17: Chart of the effect of the TF-distance threshold in the neighbor selection to the TF-distance accuracy of the model. One 
can notice that the more we loosen the threshold the worse the model performs. 

Figure 17 strongly suggests that the threshold selection is successful, since looser parameter results in 

worse performance for the model. As before, this occurs due to the bigger sample of neighbors’ 

compounds that are being screened which will in turn lead to a bigger sample of inferred compounds, 

which will undoubtedly be of lower quality (Figure 18).  

Figure 18: Progression of the number of neighbors and the number of inferred compounds as the TF-distance threshold in neighbor selection 
is loosened. The same way as with the GO-distance threshold, stricter threshold means lower number of cold compounds finally inferred, 
which of course have the best possible quality. 
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The results advocate that the TF-distance threshold in the neighbor selection process creates the basis for 

the screening of quality compounds. The steps in Figure 17 are due to the cold compounds passing 

through the “filtering” in a quantized form. 

All in all, we proved that both the thresholds used in the neighbor selection have a computational and 

biological basis, that is pictured in the model performance. These thresholds screen compounds with high 

precision and present the neighbors of the knockdown to be used for the inference selection. 

 

4.2.3. GO-Term distance threshold in inference selection 
 

After the neighbor selection process, the model proceeds with the selection of the cold compounds that 

approximate the biological effect of the knockdown. For that purpose, we followed the same approach as 

before and introduced a GO-Term distance threshold and a TF-distance threshold. The same as the GO-

Term distance threshold in the neighbor selection, here, the GO-Term distance threshold appears to be 

facilitating the model with the required accuracy. Figure 19 points out the change in the models’ accuracy 

based solely on that GO-distance threshold. 

 

Figure 19: Diagram of the relation between the GO-distance threshold and the GO-distance accuracy of the model. It is obvious 
that the threshold is working, since loosening it leads to worse model performance. To investigate this relation, the rest of the 
parameters were kept stable. 
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The observation of Figure 19 allows us to draw the same conclusions as before. Lower and more strict GO-

Term distance thresholds in the inference selection lead to better results. Moreover, we can see that there 

is an area in the left part of the chart where the accuracy remains steady at 100%. This means that the 

threshold has strong biological basis, since it screens the best possible cold compounds out of the test set. 

 

4.2.4. TF-distance threshold in inference selection 
 

To cement the performance of the model, we introduced the TF-distance threshold in the inference 

selection, the same as we did in the neighbor selection. Following the same mindset as before, we 

conclude that the threshold has actual importance in the model, since it affects its performance. The TF-

distance threshold in the inference selection improves the models’ accuracy as it becomes stricter. This 

proof of concept for the TF-distance threshold is clearly shown in Figure 20.  

 

Figure 20: Following the same trend as in the cases before, the TF-Term distance threshold proves its value for the model. Low TF-
distance threshold values in the inference selection process lead to better model performance, providing evidence for the 
successful selection of a concept threshold. 

 

 

 



 

44 
 

4.2.5. Majority Threshold 
 

The last parameter that must be evaluated is the majority threshold introduced in the inference selection 

process. As stated earlier, the majority threshold screens the top performing cold compounds based on 

the number of neighbors they show similarity to (similarity stems from the GO-Term distance threshold 

in the inference selection). The majority threshold selects the top tier of cold compounds that show 

similarity to most neighbors. It is natural, that since the GO-Term distance thresholds work, so will the 

majority threshold. In short, this parameter screens the compounds that are the closest to most of the 

knockdown neighbors. The higher the value of the parameter, the better top percent compounds are 

selected. 

To prove the usefulness of the majority threshold, we will once again demonstrate its effect on the 

optimization of the model’s performance. The next Figure 21 depicts the relation between the majority 

threshold and the GO-Term accuracy of the platform. It is obvious that the majority threshold improves 

the overall performance of the model. The GO-Term distance accuracy of the model is enhanced, as 

expected, through eliminating more cold compounds that show less similarity to most of the neighbors of 

the knockdown. At the high values area of Figure 21, only a few of the cold compounds are screened, thus 

optimizing the accuracy of the model. This analysis of the majority threshold was conducted by keeping 

the rest of the inference selection parameters generally idle, just to view the influence of the majority to 

the performance of the model. 

 

Figure 21: The representation of the relation between the majority threshold and the GO-Term distance accuracy of the model 
proves that the majority threshold is indeed a successful parameter for the cold compound screening process. Notice how the 
accuracy of the model reaches 100% as the majority threshold becomes strict. At around 0.85, the model selects only the top 15% 
of compounds with the best relations to most of the neighbors of the knockdown. 
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This effect of the majority threshold on the number of compounds being inferred is clearly pictured in 

Figure 22, since higher and stricter majority threshold values lead to less and better performing 

compounds.  

 

 

Figure 22: How the majority threshold affects the number of cold compounds being inferred by the model, strongly influences the 
performance of the model. The majority threshold selects the top tier compounds. The majority threshold organizes this “top tier” 
and selects only the exceptionally performing compounds. 

 

4.3. Parameter Optimization 
 

In the last chapter we explored every parameter of the model individually and proved the effectiveness 

and importance of each threshold to the performance of the model in general. The figures provided 

pictured the successful selection of each threshold and helped determine the best value for each 

threshold.  

To make the platform more robust and cement its validity and effectiveness, we decided to not only use 

a single threshold in every run of the model, but better create an ensemble based on these thresholds, as 

described in the methods chapter. By using the individually optimal value for each threshold, the model 
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struggled to find hits, and most of the times it did not return any results. For our model to have a statistical 

importance, there needed to be as many hits as possible while retaining maximal accuracy. On this front, 

after determining the individual worth of each parameter, we proceeded to examine the combined effect 

of all the thresholds, on which the model’s performance depends. 

Combining the thresholds and optimizing their combined value to extract the best possible results from 

was a challenge that required working on many different levels at the same time. The basic parameters 

were 5 (GO-distance threshold and TF-distance threshold in the neighbor selection, GO-distance 

threshold, TF-distance threshold, and Majority threshold in the inference selection). Judging the success 

of the model was based not only on the combined accuracy of GO- and TF-distances in the evaluation, but 

also on the number of compounds proposed. This interest for high number of compounds arose from the 

need to test the statistical importance of the model and the desire to propose several compounds that 

researchers could potentially work with. 

On this regard, we utilized a form of grid optimization on a 7-dimensional space defined by the 5 

thresholds, the combined accuracy, and the number of inferred compounds. By shifting the threshold 

values, we tried to maximize both the combined accuracy and the number of inferred compounds. 

  

 

 

 

 

In Figure 23 above, we can clearly spot the existence of clusters of high performing combinations of 

parameters. The trend that stems from the examination of Figure 23 is that smaller circles (lower majority) 

tend to perform quite worse than the larger ones. For this purpose, we decided to go with the majority 

threshold of 0.7, to select the top percentage of compounds, while attaining a number of hits. Having 

deciphered the majority threshold, we demoted the level of the optimization from 7 dimensions to 6.  

Following that, Figures 24 and 25 may suggest that we deliberately examined the effect of the inference 

selection parameters separately, but in truth, we optimized the 5 parameters simultaneously, along with 

Figure 23: Parameter evaluation in 5D space. The 5 
dimensions considered in this diagram are the GO-Term 
distance and TF-distance thresholds in neighbor selection (x 
and y axis), the GO-Term distance (lighter or darker blue)  
and the Majority (size of circle) thresholds in inference 
selection, and the GO-Distance Accuracy of the model 
(ranging from red to green as the circle perimeter).  

Majority 

Distance Acc. 
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the majority threshold we have seemingly already selected. The following Figures 24 and 25 were the only 

possible way of picturing in a comprehensible manner the relations of the parameters and the results of 

their selection. Figure 24 depicts the effect of the GO-Term distance in the inference selection, while 

Figure 25 the effect of the TF-distance. 

In Figure 24 one can more clearly point out the areas of interest and determine the effect of every 

threshold.  We see, that in the lower values of the thresholds of the neighbor selection the only way to 

find any neighbors is by loosening the GO-distance threshold in the inference selection. For that reason, 

the combined accuracy remains somewhat low in those areas, since large numbers of cold compounds 

are added to the inferred. At higher thresholds, the performance of the model is lowered significantly, 

and the number of inferred compounds is expanded.  

 

Figure 64: Parameter evaluation in 5D space. The 5 dimensions considered in this diagram are the GO-Term distance and TF-
distance thresholds in neighbor selection (x and y axis), the GO-Term distance in the inference selection(lighter or darker blue), 
and the combined accuracy(red to green scale) and number of inferred compounds(size of circles) from the evaluation. The best 
performing cluster is circled with red.  
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The cluster that seems to have the best performance is shown in Figure 24 within the red circle. There, 

the values of the thresholds have combined optimally, and that area of the chart has the best overall 

performance, while screening several compounds.  

In parallel, the same chart with the effect of the TF-distance threshold in the inference selection is shown 

in Figure 25 depicts how the model performance is changed based on the TF-distance threshold of the 

inference selection. 

 

Figure 25: Parameter evaluation in 5D space. The 5 dimensions considered in this diagram are the GO-Term distance and TF-
distance thresholds in neighbor selection (x and y axis), the TF-Term distance in the inference selection(lighter or darker blue), and  
the combined accuracy(red to green scale) and number of inferred compounds(size of circles) from the evaluation. The best 
performing cluster is again circled with red. 

In this last figure, we focused on the effect of the threshold that we had not shown earlier, the TF- distance 

threshold in the inference selection. It is obvious, that in order to have a large number of inferred 

compounds, along with satisfactory combined accuracy, this threshold needs to be higher, at around 0.28. 

 

All in all, by discovering the effects of different threshold values and implementing a grid optimization 

method, we arrived at the conclusion that the optimal values for the four thresholds are: 

• 0.15 for the GO-Term distance threshold in neighbor selection 
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• 0.28 for the TF-Term distance threshold in neighbor selection 

• 0.22 for the GO-Term distance threshold in inference selection 

• 0.28 for the TF-Term distance threshold in inference selection 

• 0.7 for the Majority threshold in inference selection 

Of course, there was a small area around these values where the model performed at the best possible 

way, but we decided to use the rounded values of the thresholds. With these parameters in mind, we 

managed to get 100% combined accuracy for 4 cold compounds out of a total of 77.  

 

4.4. Model Generalization 
 

To test the performance of the model in the most challenging way, we decided to apply the model to the 

other cell lines. The results of this test were approximately the same. Our model predicted compounds 

with combined accuracy of 0.8-1 for each cell line for different compounds, at least where it could find 

any neighbors or cold compounds that fulfilled the parameters. By adjusting the thresholds around the 

selected area, we managed to boost the performance of the model over the two other cell lines and for 

the rest of the knockdowns in each cell line.  

Moreover, the performance of the DeepSIBA model over the rest of the cell lines is pictured in Table 5: 

Cell-Line MSE MSE @1% Pearson’s r Precision (%) 

a375 0.008 0.006 0.59 98.22 

pc3 0.011 0.007 0.53 89.29 

mcf7 0.012 0.007 0.56 61.03 
 

Table 5: The performance of the DeepSIBA model over the data of the three cell lines. The MSE is the mean squared error of the 
predictions of the distances for the pairs of compounds in the test set, and the real values of these distances. Furthermore, the 
MSE 1% is an MSE form that only considered a random 1% of the test samples. Finally, Pearson’s r is the correlation co-efficient 
used.  

From the Table 5 above, one can notice that the model handles the data of the test set for each of the cell 

lines performing exceptionally. For most of the data, the deepSIBA maps the relations between known 

compounds and applies the same rules over the cold compounds with great precision. Additionally, the 

mean squared error (MSE) proves that we can work on every cell line. The only problem we faced during 

the implementation of the model over other cell lines were the absence of low distance compounds for 

some transcription factor knockdowns, meaning the model returned no results.  

 

4.5. Statistical Importance 
 

One of the most important benchmarks, when developing a model that processes data and makes 

suggestions based on data characteristics and imposed criteria, is the statistical importance of the output. 
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For this thesis, we developed a model that is able to prioritize several compounds in a data library, based 

on their transcription factor activity. More accurately, in cases where there is a large number of 

compounds that needed to be tested to determine whether they can knockdown a transcription factor, 

our model can be used to assess these compounds and propose which compounds should be prioritized 

for further testing, thus saving hours of worthless and inefficient processing. 

To examine whether our model is actually worth implementing on data, instead of randomly selecting 

compounds to test, there needed to be proof that it would save time and resources. This comparison 

between random selection and screening with the use of the model happened with a use of a statistical 

test.  

More precisely, after determining the optimal parameters for each threshold, the model came up with 4 

compounds that had a combined accuracy of 100%, meaning that they all were within the GO-Term and 

TF-distances allowed. To show the value of the model, we compared these four compounds with a random 

selection of 4 compounds from the 77 cold compounds of the a375 test set. After running 10,000 random 

selections of 4-compound-sets, only 3 to 8 performed as well as the selected ones, meaning that the p-

value of the statistical test was at 0.03-0.08%.  

The fact that by choosing randomly from the test set, one has 0.03% to 0.08% chance to select as good a 

set of compounds as proposed through this model, is by itself a huge success. Further enhancements on 

the model discussed in the Future Works chapter, could possibly improve the p-value of the model and 

make it more robust to even bigger data.   

 

5. Discussion and Limitations 

 

The drug discovery process has made some great leaps forward over the past decades. With the 

introduction of computers, robotics and systems pharmacology, drug discovery has acquired weapons 

able to perform multi-dimensional analyses with the main target being selecting the active ingredients 

that could combat diseases. High throughput screening of compounds and their biological effect against 

diseases or conditions, though effective, has always proved to be a costly and time-consuming method. 

Instead of conducting the experiments in vitro, the new method for conducting high volume experiments 

is through computer simulations (in silico). The rise of computers has allowed the execution of millions of 

simulations within a matter of seconds and helped lower the costs and research duration for new drugs. 

On this front, we developed a model to assist with the screening of compounds used to discover new 

drugs or find new purposes for already existing ones. By using the transcription factor activity of 

compounds in experiments, we essentially created a model that can propose compounds for biologists to 

focus on during their research. More accurately, when given a large library of compounds, our model can 

select the compounds with close enough biological effect distance to a target and set them as high-priority 

compounds to focus on.  

Incorporating a realistic virtual high throughput screening allowed us to test our model’s performance 

based on known and unknown compounds. Across different cell lines, our model was able to select sets 

of chemical structures whose biological effect was close enough to the transcription factor knockdown, 
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meaning compounds that could halt the transcription of certain important gene sets. This prioritization 

feature of our model could facilitate drug discovery with a simple and easy to use platform to select 

compounds to focus on, during the first steps of the drug development process. The model’s worth is 

proven through its statistical significance. We found that the sets of compounds proposed by the model 

surpass the random selection of compounds from the same data library by a large factor. This means that 

selecting compounds through our platform greatly increases the probability to find compounds suitable 

for further testing, thus saving both resources and time.  

The fact that within the model we calculate every distance needed through functions we created or 

through packages in R, gives credence to our model and makes it more robust. Moreover, this 

independence in the distance calculations allows our model to be used by anyone, in any case, on any 

given library of data containing chemical structures. The only important limitation we faced during our 

efforts was the lack of a large number of training sets and test sets, for other cell lines. The training sets 

for each cell line contained on average 320,000 samples of pairings of around 750 compounds, thus 

providing a low coverage of the chemical space. To solve this problem one needs to facilitate larger 

databases of compounds that spread all over the chemical space. Such an expansion of the data would 

result in better performance of the deepSIBA model along with a greater diversification of the output of 

the platform.  

All in all, our model can make use of any given structures, to evaluate compounds and select ones with 

close biological effect to a target transcription factor knockdown. The prominent performance along with 

its statistical significance and its practicality render the model a useful tool for compound prioritization in 

the field of drug discovery.  

 

6. Conclusions 

 

In this study, we developed a model for the prioritization of compounds, within large libraries of chemical 

structures, to be used for further testing in the drug development process. Our model takes as inputs the 

transcription factor whose effect we aim to deactivate and uses a number of biological and logical criteria 

to screen compounds and select ones with close biological effect to transcription factor knockdowns. Our 

perception of proximity of the biological effects of compounds was heavily based on the distances at the 

GO-term and the transcription factor levels. By incorporating targeted thresholds and criteria, aiming to 

select the best possible compounds for each case, we managed to create a model that proposes sets of 

compounds having the desired effects, with high precision. We explored whether the criteria chosen had 

indeed significant impact on the compound selection process and the model’s performance, thus proving 

their worth and cementing the screening process.  

The evaluation of the performance of the model demonstrates its ability to screen large libraries of 

compounds and select ones with desired biological effects, with high precision, at low computational cost 

and within little time. Finally, the model’s statistical significance manifests that the use of the platform 

would benefit researchers at their efforts to detect desired compounds.  
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7. Future Work 

 

After the problems discussed in the sections above, it is apparent that there is room for improvement for 

our model. Firstly, there needs to be greater generalization of the model, by implementing it on more 

demanding and diverse datasets, defined by larger areas of the chemical space.  

To boost the performance of the model and make it even more robust and dependable, there have been 

thoughts for alternate criteria for compounds’ selection both in the neighbor selection and the inference 

selection steps. The one criterion that has been tampered with the most is the enrichment rank of the 

desired transcription factor over the compounds.  

In such a criterion, low rank would imply that the compound has acted in an antagonizing way toward the 

transcription factor, since the said transcription factor was down-regulated. For such a purpose, a triplet 

loss model could be developed, incorporating machine learning and the given compounds to extract 

useful results for the rank of the compounds.  

Finally, validating the results of our model with further testing could cement the model’s worth and give 

a metric for measuring the biological significance of the output of the platform.  
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