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Abstract

In this diploma thesis we introduce a novel framework for detecting ridges and bi-
lateral symmetry in natural images using supervised learning. Since there is no ex-
isting ground truth dataset for ridges, we begin by constructing a preliminary one
automatically, using images from the Berkeley segmentationdataset(BSDS300).
Motivated by the work of Martin et al. on boundary detection,we use different
combinations of low-level brightness, color and texture cues, collected at multiple
scales and orientations, to train a ridge classifier. The learning algorithms we con-
sider are logistic regression and multiple instance learning, and the training data
consist of natural images taken from the Berkeley segmentation dataset.

For the evaluation of our method we use precision-recall curves. Qualitative
and quantitative results for the various algorithms and feature combinations used
are presented. We also compare our results to those obtainedby the ridge detec-
tion with automated scale selection algorithm by Lindeberg, and we observe that
our approach performs better. Finally, we discuss possiblehigher-level applica-
tions where our method could prove useful as a front-end step.

Key words: computer vision, machine learning, classifier, ridge detection, sym-
metry, features, ground truth, evaluation, logistic regression, multiple instance
learning, precision, recall, training.



Περίληψη

Σε αυτή τη διπλωματική εργασία εξερευνούμε το πρόβλημα της ανίχνευσης
αξονων συμμετριας και κορυφογραμμων (ridges)σε εικονες, από μία νέα σκοπιά,
χρησιμοποιώντας επιβλεπόμενη μάθηση (supervised learning).Εφόσον δεν υπ-
άρχει κάποιο σύνολο δεδομένων επαλήθευσης (ground truth)για κορυφογραμ-
μές, αρχικά κατασκευάζουμε ένα για προκαταρκτική χρήση, βασιζόμενοι στο
σύνολο δεδομένων κατάτμησης του Berkeley (Berkeley segmentation dataset–
BSDS300).Ακολουθώντας τα βήματα των Martin et al.για ανίχνευση συνόρων,
χρησιμοποιούμε διαφορετικούς συνδυασμούς χαρακτηριστικών φωτεινότητας,
χρώματος και υφής, τα οποία συλλέγονται σε πολλαπλές κλίμακες και κατευ-
θύνσεις, για την εκμάθηση του ανιχνευτή κορυφογραμμων. Οι αλγοριθμοι εκ-
μάθησης που χρησιμοποιούμε είναι λογιστική παλινδρόμηση (logistic regression)
και εκμάθηση από πολλά στιγμιότυπα (multiple instance learning,ενώ το σύνολο
δεδομένων εκπαίδευσης αποτελείται από φυσικές εικόνες του BSDS300.
Για την αξιολόγηση της μεθόδου μας, χρησιμοποιούμε καμπύλες ακρίβειας-

επανάκλησης (precision-recall curves).Επιπρόσθετα, παρουσιάζονται ποιοτικά
και ποσοτικά αποτελέσματα για τους διαφορετικούς αλγορίθμους και συνδυασ-
μούς χαρακτηριστικών που χρησιμοποιούνται. Συγκρίνουμε επίσης τα αποτελέσ-
ματά μας με αυτά που δίνει η εφαρμογή ανίχνευσης κορυφογραμμών με χρήση
της μεθόδου με αυτόματη επιλογή κλίμακας, του Lindeberg,και παρατηρούμε
ότι η προσέγγισή μας αποδίδει καλύτερα. Τέλος, συζητούμε πιθανές εφαρμογές
υψηλότερου επιπέδου, όπου η μέθοδός μας θα μπορούσε να αποδειχθεί χρήσιμη
ως ένα αρχικό βήμα προεργασίας.

Λέξεις κλειδιά: όραση υπολογιστών, εκμάθηση μηχανών, ταξινομητής, ανίχνευση
κορυφογραμμών, συμμετρία, χαρακτηριστικά, σύνολο δεδομένων επαλήθευσης,
αξιολόγηση, λογιστική παλινδρόμηση, εκμάθηση από πολλά στιγμιότυπα, ακρίβεια,
επανάκληση, εκπαίδευση.
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Chapter 1

Introduction

1.1 Statement of the problem

Despite the role of symmetry in human perception, it still remains a cue that is
rarely used in recognition, classification and scene understanding systems. The
latter, along with the fact that symmetry is considered a pre-attentive feature that
enhances object recognition [8, 22, 44] were our main motivations in trying to
develop a system that detects ridges and symmetry axes in natural images.

Specifically, this diploma thesis deals with the problem of automatic ridge
and symmetry axis detection in natural images, using an appropriately trained
detector, that can decide if a pixel belongs to a symmetry axis or not by using
features extracted from the input image, which can be eithercolor or grayscale.
Given a new image, the detector extracts the same features and calculates the
probability for a pixel to belong on a symmetry axis at some scale and orientation,
classifying it accordingly. The novelty in our approach lies in the fact that we use
supervised learning to train our detector; although similar approaches have been
adopted for boundary detection [12, 20, 29] and corner detection [37] yielding
useful results, there seems to be no relevant work that we know of for symmetry
and ridge detection.

This formulation differs from previous attempts to tackle the problem, which
use mostly geometric methods, and are based for the largest part only on the
brightness or boundary cues. On the other hand, our method exploits the ad-
ditional features of texture and color, which enable the detector to discriminate
symmetry in image regions that share a common brightness content or boundary
features. Another advantage of our approach is that we can increase the number
and nature of features used to perform the training, in orderto improve the results,
the only limitation being keeping the computational cost tractable. In this thesis,
we use a small number of features for the sake of simplicity. We believe that



8 Introduction

incorporating a statistical framework in our approach can lead to better results,
approximating the decisions a human subject would take, with greater success.

Due to the way we model symmetry and extract features (explained in chap-
ter 4), our detector is mainly focused on detecting ridges of elongated shapes
along one dimension, such as human or animal body parts, treetrunks, and rivers
or roads in a topographical top view of an area. We use the terms ridge andsym-
metry axisinterchangeably throughout the whole document and rely on aground
truth dataset of annotated positives to train the detector.This way we maintain the
flexibility to specialize the parameters of the detector forapplications aiming at
detecting ridges of specific objects or structures.

Applications that could exploit our symmetry axis detection system include
pose estimation, where the classifier could be trained to detect human parts ex-
hibiting symmetry (limbs, torso, head), and medical imaging, where ridge detec-
tion in MRI or PET scans can offer important knowledge concerning pathological
conditions. Moreover, our detector could be trained using aerial images, aiming
to extract ridges in landscape top views; this step can be of use in topography, e.g.
in automatic topographic map extraction.

1.2 Computer vision

This diploma thesis belongs in the research field ofcomputer vision. Computer
vision aims at developing methods that use two-dimensionalimages to extract
information concerning the part of the3-dimensional world that is depicted in
them [28]. In order to fulfill this goal, research in the field of computer vision
is focused mostly on the development of artificial vision techniques, the use of
computational models for the study of biological vision, and finally, understanding
the sensory and perception processes of the brain that are connected to vision.

Computer vision is an interdisciplinary field born in the decade of 1960 mainly
by the contribution of three domains: signal processing, pattern recognition and
artificial intelligence. Nowadays it has evolved into an independent and signifi-
cantly active scientific field that uses techniques from various other domains such
as psychology, neurobiology and applied mathematics. Despite the rapid develop-
ment of Computer vision over the last years, some of the basic problems remain
unsolved and even the most sophisticated methods of vision are still far from
reaching human vision levels. This indicates that there is alot of progress still
to be made in the years to come, even though that making machines “see” was
originally considered to be an undergraduate student summer project.

Finally, considering the crucial role vision has played in the evolution and de-
velopment of mankind, we can imagine that granting automated systems a similar
ability is justified by a plethora of possible applications,the most notable of which
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include: mobile robot navigation, industrial inspection and military intelligence,
medical image analysis, object recognition, human-computer recognition, and the
realistic rendering of synthetic scenes in computer graphics.

1.3 Machine Learning

Machine Learning is a scientific discipline that can be mostly related to artificial
intelligence and statistics, and its main purpose is to explore ways and algorithms
that grant computer systems the ability to evolve behaviorsand make choices
based on empirical data, such as data from sensor or databases. This can be ac-
complished by using a set of observed examples (training data) as input to the
learning system, and a procedure calledtraining so that the learning system can
capture underlying statistical laws the data obey.

A crucial trait that is sought after in a learning system is good generalization.
The latter represents the ability of a learner to make “intelligent” decisions and
provide useful output in new test cases, by using just a smallsubset of the possible
inputs as training data, hence making training a feasible task in terms of time and
computational resources.

Learning problems can be divided into two main categories:supervisedand
unsupervised:

Supervised learning, or “learning with a teacher”, is the task of inferring a func-
tion from supervised training data. In this case, the training data consist
of a set oftraining examplesand each example comprises apair of an in-
put object and a desired output value. The input object is usually a vector
in a d-dimensional space, while the ouputs are usually categorized as ei-
ther quantitativeor qualitative. Qualitative outputs are also referred to as
categoricalor discretevariables, as well as factors. This distinction in the
output type has led to a naming convention for the predictiontasks: re-
gressionwhen we predict quantitative outputs, andclassificationwhen we
predict qualitative outputs [16]. Supervised learning is the type of learning
we use in this project.

Unsupervised learning attempts to capture the hidden structure in data that have
not been labeled. The usual setting for this problem is that one has a set of
N observations of a randomp-vectorX, having joint density P(X) and the
goal is to infer the properties of this probability density without the help of
a labeling providing correct answers or a measure of error that needs to be
minimized.
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Well-known approaches to unsupervised learning include clustering meth-
ods like k-means and dimensionality reduction techniques like principal
component analysis and independent component analysis.

1.4 Thesis outline

Chapter 2 provides a short review on the previous work on symmetry axisand
ridge detection. It also present work that is relative on a machine learning
level and that motivated our approach.

Chapter 3 describes the construction of the ground truth dataset usedto train of
the classifier. It analyzes the steps involved in its construction and presents
an interface that includes supervision by a human user.

Chapter 4 presents the features that were used in the training of the ridge de-
tector, as well as the method we used for their collection. Weintroduce
an adaptation of the gradient-based operators that were formulated in [29],
which we use to compare the extracted features and detect symmetry.

Chapter 5 provides the theoretical background for the tools which areused for
the detector training, namelylogistic regressionandMultiple Instance Learn-
ing. The details of the training procedure are explained and thedifferent
configurations for the problem parameters are explored.

Chapter 6 describes the testing procedure using the training methodspresented
in chapter 5. The evaluation method in theprecision-recallcurves frame-
work is explained and used to compare the results quantitatively. Logistic
regression and multiple instance learning results are alsocompared to Lin-
deberg’s automatic scale selection technique. In this chapter we also include
indicative qualitative detection results.

Chapter 7 summarizes the thesis and presents the conclusions we have reached.
In this last chapter we also propose possible practical applications where
our work could be useful, and finally, we list improvements and alternative
approaches that we intend to explore in the future.



Chapter 2

Symmetry and previous work

This chapter is composed of two parts. In the first part we provide some general
information on basic symmetry concepts that are useful in understanding the prob-
lem we are trying to tackle. In the second part, we go on makinga short review of
the previous work on symmetry axis detection and ridge detection. Since there is
not a single accepted definition for what a ridge is, we list the various definitions
we encountered in the bibliography and the respective algorithms.

2.1 Symmetry

The scientific interpretation views symmetry as the repetition of patterns or self-
similarity. This property can be demonstrated in a variety of scientific fields and
various forms. Below we list basic types of symmetry, which provide a better
understanding of the problem we are trying to tackle.

2.1.1 Symmetry in Euclidean Space

Symmetry in the Euclidean space is formally defined in the following manner:
Consider a subset ofℜn, S. A distance preserving mapping (isometry) g is asym-
metryof S, if and only if g(S) = S. Additionally, a symmetryg for a setS ∈ ℜn,
is called aprimitive symmetry, if and only if for any non-trivial decompositions of
g = g1g2, neitherg1 norg2 is a symmetry ofS.

For example, given a functionf(x, y) in 2D Euclidean spaceℜ2, which is the
Euclidean space of interest in our work, four basic types [9,11,50] of symmetries
are:

1. Reflection:If f(x, y) is a function that is symmetric along axisy, the fol-
lowing relationship holds:f(x, y) = f(−x, y). If f is the image brightness
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function for example, the image is symmetric along a specificaxis. The
reflection (symmetry) axis is the set of points remaining invariant under the
reflection.

2. Rotation: Rotational symmetry is described by the relationshipf(x, y) =
f(
√

x2 + y2 cos(2π/n)),
√

x2 + y2 sin(2π/n), wheren is an integer. For
this type of symmetry, the point remaining invariant under the rotation is
the rotation center.

3. Translation: In this case, iff(x, y) is a function exhibiting translational
symmetry,f(x, y) = f(x+∆x, y+∆y). The quantities∆x, ∆y belong to
ℜ and there are no invariant points.

4. Glide Reflection:A glide reflection can be expressed asg = t⊙r, a transla-
tion t followed by reflectionr, whose axis of reflection is along the direction
of the translation. For example, for a glide reflection, where the translation
and reflection are along the horizontal axis,f(x, y) = f(x + ∆x,−y), for
some∆x ∈ ℜ.

2.1.2 Local and Global Symmetry

Symmetry in natural images can be viewed both as a global and alocal phe-
nomenon, depending on the scale at which we are looking for it. For example we
consider a simple image containing a foreground object, shown in figure2.2. For
the left object, global symmetry is highlighted; in this case all the object points
contribute to the determination of the symmetry along the vertical axis. In the
right object of the image, we view symmetry as a local featureand the points
composing the illustrated symmetry axes are only supportedby a subset of the
object. This discrimination can be better clarified by taking a look at Figure2.2

Global symmetry detection methods are in general much more efficient in run
time, usually having linear time complexity [24]; they are, however, sensitive to
noise and occlusion. On the other hand, local symmetry detection methods are
usually more robust to noise and occlusion, but have high time complexity. One
factor that somewhat balances this high time complexity is that most of the times
they can also be easily parallelized.

2.1.3 Importance of symmetry

Symmetry is a phenomenon that presents itself in all forms and scales in both natu-
ral and man-made environments, extending from biological structures to galaxies,
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(a) Rotational symmetry (b) Translational symmetry

(c) Reflection symmetry (d) Glide reflection symmetry

Figure 2.1: Symmetry in 2D Euclidean space.

or even the arts (Figure2.3). Repeated patterns appear constantly in our surround-
ings and compose a fundamental element of our perception andunderstanding of
the world. Humans and animals are able to perceive the existence of symmetry in
their environment innately, but this is an ability that machine intelligence has not
been able to harness yet.

Symmetry has also played a prevalent role in the basic sciences throughout
history. Examples vary in the fields of mathematics, geometry, physics, crys-
tallography and biology (Figure2.4), with some of the most important being the
theory of relativity (the discovery of the isometries of Minkowski spacetime under
the Poincaŕe group, the full symmetry group) [31], the double helix structure of
DNA (two-fold rotational symmetry) [49] and the discovery of quasi-crystals [39]
and their mathematical counterpart, Penrose tiles [34].
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Figure 2.2: Global symmetry (left) compared to local symmetry (right).Figure
taken from [24].

2.2 Ridge and symmetry axis detection in 2D images

2.2.1 Binary images

One of the primary works that made use of symmetry axes for shape description
was byBlumandNagelin 1973 [4]. In this article, Blum used the locus of centers
of maximal inscribed circles to define thesymmetric axis transformof a shape
(also calledmedial axisor skeleton), previously introduced by the same author
in [5]. The function that corresponds the centers of the maximal inscribed circles
to their respective radii is called theradius function, R. An alternative description
of the skeletal axis employs an analogy to grassfire, starting from the boundary of
the shape and propagating at unit velocity towards the interior. The quench points
of the fire represent the symmetric axis.

In [6] BradyandAsadause simple geometrical tools to introduce a represen-
tation of two-dimensional shapes calledsmoothed local symmetries(SLS),shown
in 2.5. The geometry of a local symmetry requires the existence of apair of points
A andB on the shape boundary, such that the following condition holds: The
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Figure 2.3: Symmetry in nature and in man-made constructions. In the left col-
umn from top to bottom, a snowflake, milky way, the galaxy thatcontains our
solar system, and a libelula. In the right column, from top tobottom, the Taj
Mahal in India, a modern painting exhibiting symmetry, and yin-yang.

angle formed by the outward normal vectornA at A and the line AB that connects
the two points must be equal to the angle that is formed by the respective normal
vectornB at B and line AB. Of course, this implies that the boundary of the shape
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Figure 2.4: Symmetry in sciences.

has been already extracted and that the tangent angle can be computed sufficiently
accurately.

As shown in figure2.5, there may be several pointsBi forming a local sym-
metry with a given pointA. The points considered to form theaxesor spines
of the shape are the loci of local symmetries forming a smoothcurve. Each axis
constructed that way, constitutes an alternative way of describing some part of the
boundary contour, along with some portion of the region subtended by the axis.
This fraction of the shape is called acoverof the shape and an hierarchical ap-
proach that assigns less importance to axes whose cover is wholly contained in
the covers of others is adopted. This also forms an hierarchyamong the spines of
the shapes according to their rate of locality.

The algorithm for locating the smoothed local symmetries ina binary image,
and consequently the medial axes, straightforwardly consists in fixing a bounding
contour pointA and testing all other pointsB of the contour for a local symmetry
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Figure 2.5: Geometry of Smoothed Local Symmetry (left). PointP belongs to a
local symmetry axis, with respect to the pointsA andB. In the right figure, point
A forms local symmetries with pointsB1 andB2, illustrating that in general there
may be several pointsBi forming local symmetries with a given pointA (taken
from [6]).

with A. This process is repeated for every point in the bounding contour, resulting
in O(n2) complexity. An obvious modification in this algorithm in order to make
it more efficient is to test just a subset of the boundary points for local symmetries
by sampling the contour. This results in a number of discretemedial points that
are an approximation of the continuous medial axis we would get if we used the
full contour.

Recent work [45] views the skeleton construction as an optimization prob-
lem, trying to prune undesired branches caused by minor boundary deformations,
while maintaining a low reconstruction error. This approach results intocanonical
skeletonsthat are used for shape matching

2.2.2 Grayscale images

Haralick in [17], gives a joint definition for ridges and valleys in grayscale im-
ages, using vector analysis concepts. To achieve detectionHaralick first translates
the notion of ridge and valley to a continuous surface perspective. The concepts
that are used for the detection are directional derivatives. More specifically, a
two-variable cubic polynomial is first fit to a neighborhood of a pixel, using a
coordinate frame whose center runs through the center of thepixel. Ridges and
valleys are then found by looking for zero crossings in the first directional deriva-
tive, taken in a direction that minimizes (valley) or maximizes (ridge) the second
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directional derivative.Saddle pointsare also defined as the points where the con-
ditions for both a ridgeandvalley are satisfied.

Haralick’s idea is extended tod dimensional images byEberly et al. in [13],
under the termheight condition. Consider ad-dimensional functionL (i.e. for
d = 2 the intensity function of an image) and a set of indices from 1to n − d,
denotedId−n. If |λ1| ≥ . . . ≥ |λd| are the eigenvalues of∇2L andv1, . . . , vd

their corresponding eigenvectors, then an-dimensional crease is characterized by
the equation

∀i ∈ Id−n : ∇L · vi = 0 (2.1)

Creaseis a term used by the authors to collectively refer to both ridges and
valleys. Whether then-dimensional crease is a ridge or valley, depends on the
sign of the respective eigenvalue. Ifλi < 0, then we have a ridge, while ifλi > 0,
we have a valley. In the same article additional definitions for creases are given,
like theprincipal directiondefinition, which views creases as loci of extrema of
principal curvatures along associated lines of curvature in a manner similar to the
work of Haralick.

In [25], López et alclassify the different ridge/valley characterizations accord-
ing to the area that must be examined for the classification. Ridges/valleys can be
characterized aslocal when the classification ox a pointx as ridge/valley depends
on a local test, orglobal when the classification of the point depends on image
features arbitrarily far away fromx. Ridges/valleys that are defined by a local
test are calledcreases. There is also themultilocal characterization, when the
classification of a pointx depends whether on features of points in a predefined
neighborhood or on the particular geometry of the image.

In [35], Pizer et al. introduce a new type of medial loci that are calledcores.
Cores are defined as generalized maxima in scale space and their main charac-
teristic is that they convey medial information that is invariant to translation, ro-
tation, and resolution. Given the space of all positions andscalesℜn × ℜ+ →
ℜ, the authors associate a measure of medial behavior to each point, denoted
M(x, σ) : ℜn × ℜ+ → ℜ. The medial loci are then extracted by finding the
generalized maxima of these measurements.

The functionsM satisfying the invariance conditions stated before, are pro-
duced by convolving the image with appropriate kernels, based on measures of
boundarinessat each positionx, scaleσ, and orientationu, denoted asB(x, σ, u).
A simple choice forB can be a measure of luminance change likeB(x, σ, u) =
u · σ∇L(x, σ).

FunctionsM are classified as eithercentralor offset. Central medialness func-
tions attempt to localize object boundaries by averaging spatial information about
a point x over some region whose average radius is proportional toσ. On the
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other hand, offset functions attempt to localize object boundaries by accumulat-
ing information of a relatively small scaleσ,at neighbors which are at a distance
proportional toσ from the test pointx.

Similar work byLindebergcan be found in [23], where he jointly addresses the
problems of edge and ridge detection with automatic scale selection. At each im-
age point(x0, y0), a local coordinate system(p, q) is introduced, which is aligned
to the eigendirections of the Hessian matrix of the brightness function. The way
he formulates a ridge(valley) is in terms of local differential geometric proper-
ties of image brightness a connected set of points for which the intensity assumes
a local maximum (minimum) in the main eigendirection of the Hessian matrix.
In order to formulate a scale selection method for ridge detection, Lindeberg de-
fines the notion of thescale-space ridge, as well as a normalized measure of ridge
strengthRnormL, in analogy to other measures of creaseness that have previously
been defined for then-dimensional plane. A scale-space ridge is considered to
be the intersection of the ridge surface with the surface defined byRnormL being
locally maximal over scales.

Stegerin [41] proposes an algorithm that uses an explicit model for linesand
their surroundings in the image. Additionally, the algorithm does not aim to sim-
ply extract the location of a ridge on the 2D image, but to extract the line position
along with the line width, with sub-pixel accuracy. Ridges are located using Gaus-
sian convolution masks and a scale-space analysis. In comparison to other similar
approaches though, the existence of an explicit model for the lines and their width
extraction, the bias in the extracted line can be predicted analytically and thus be
removed. This way, the ridges that are extracted are in semantically meaningful
locations in the image. This algorithm is gives as a result the positions of individ-
ual ridge pixels in the image. For that reason, after the individual pixels have been
extracted, a linking algorithm is used to connect the pixelsinto lines.

A common framework for edge and line extraction is also derived in the work
of Buschin [7]. The line model that is used there is a second order polynomial
function of the row and column coordinates that is fitted to the grey levels in an
image window. Line (ridge) pixels are recognized using the intersecting parabolic
function which falls in the direction of the maximal curvature. A pixel is classi-
fied as a ridge pixel if the extremum of the parabola falls inside the pixel and the
parabola’s curvature is sufficiently large. Artifacts and spurious details are sep-
arated from salient ridges using hypothesis testing to estimate robust thresholds
and additional processing steps like skeletonization and the detection of node and
end pixels follow, to improve the results.

Bilateral symmetry and approximate bilateral symmetry is examined in [32].
A measure of symmetry that can be used for grayscale images isproposed. This
degree of symmetry is calculated with respect to a certain hyperplane of symmetry
and ranges from 0 to 1. Perfect symmetry is achieved when every point on the
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one side of the hyperplane has the same intensity value as itssymmetric. On
the other hand, perfect asymmetry is achieved when every point in one side of
the hyperplane has maximum intensity and its symmetric one has the minimum
possible intensity value. This algorithm has computational complexityO(n) and
is used to measure symmetry only in respect to the principal axes of the object, as
notall possible planes of a bilateral symmetry are found. The principal axes of the
object are extracted automatically too, based on the centroid and the eigenvectors
of the covariance matrix of the object.



Chapter 3

Groundtruth construction

In all supervised learning problems, the first step towards the inference of a sat-
isfactory classification function is using a well-constructed ground truth dataset.
This dataset consists of a set of inputs and their respectivelabels, which associate
to each input point the appropriate class of the output space.

In the field of Computer Vision, where the ultimate goal is understanding the
information that is carried through the optical path, we useannotations by human
subjects as ground truth. For example, in the case of the boundary detection learn-
ing problem addressed in [29], 300 images with human-marked boundaries from
the Berkeley Segmentation Dataset(see [30]) were used as ground truth. From
the 300 images, 200 and the associated segmentations (5-10 for each image) were
used as the training data, and the rest 100 and associated segmentations were used
as the test data (we will refer to this specific dataset as theBSDS300from now
on).

Our goal is to train a binary classifier for ridge detection. We would ide-
ally want a ground truth dataset similar to the BSDS300, comprising images with
human-marked ridges. Such a dataset does not exist to our knowledge and its
construction would be outside the scope of this thesis. Instead, we combine the
information by BSDS300 with a modern skeletonization algorithm based on the
work of Telea et al.[42,43,45] in order to construct fast and automatically a sat-
isfactory ground truth dataset of binary images for training.

We divide the procedure we just described into three main steps:

• Segmentation of input image.

• Skeletonization of every segment separately.

• Union of skeletons for all segments.

Below we describe in more detail each one of these steps.
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3.1 Using image segmentations to construct ground
truth ridge maps

Image segmentation aims at partitioning an image into a number of segments (sets
of pixels) which share some common visual characteristics.Color, intensity and
texture are used to quantify the similarity between pixels and ultimately lead to
a realistic segmentation which is a simplification of the representation of the ini-
tial image. Pixels belonging to the same region have a high degree of similarity
between the values of these features, while pixels belonging to adjacent regions
have a low degree of similarity.

The problem of image segmentation is closely related to the problem of object
recognition, as objects themselves are sets of pixels that usually share common
visual characteristics and together form a semantically salient and independent
part of the image for the human observer. Natural images are made up of seg-
ments such as object parts, animal or human limbs, and others, which are less
important, for example large, uniform segments, which usually compose the back-
ground (grass, sky or sea). Speaking from a perception standpoint, Adelsonhas
referred to this as the distinction betweenthingsandstuff [2].

In order to construct the ground truth for ridges, we use human segmentations
taken from BSDS300 such as the one shown in figure3.1. For each segmentation,
we sequentially examine its composing segments and form their skeletons, which
will later be used in for the detector training. Segments forming the background
do not convey information that can be used in a higher level task like object recog-
nition, so we would like to be able to exclude them from the whole process. To
do that automatically we use thefigure-ground labeling datashown in fig3.2,
which are provided online together with the Berkeley Segmentation Dataset and
Benchmark (see also [15]). To decide if a particular segment belongs to the fore-
ground or the background, we take its intersection with bothfigure contour (fc)
and background contour (bc). Since the contours encoding this information are
adjacent to each other, if the segment has more mutual pixelswith the background
contour than with the figure contour, then that segment belongs to the background
and must be excluded from the skeletonization process. Otherwise, it belongs to
a figure and we must take it into account when we create the ground truth.

Applying the skeletonization algorithm sequentially to each one of the seg-
ments that compose a specific segmentation, we get several binary images of seg-
ment skeletons. In order to form the final skeleton corresponding to the input
picture, we have to take the union of all these binary images.An example of the
partial skeletons as well as the total skeleton we get for an image segmentation
are shown in figure3.3.

Of course, the above procedure is based on the segmentation of a single human
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Figure 3.1: Segmentations made by different human subjects for the sameimage.
The varying coloring across the image plane is used to separate segments from
one another (a uniformly colored area implies an independent segment).

subject. If we want to take into account different segmentations from other human
subjects, we have to repeat the three steps for all the segmentations available for
the image and “average” the result in some way. Indeed, what we have done is to
repeat the three steps previously described for the segmentations of each image in
our training set. This way we get an equal number of differentskeletons, whose
union we show in figure3.4.

3.2 Manual screening

In figure 3.5 we see that the resulting skeletons are not always appropriate for
training, usually in the case of a segment that is not elongated along some direc-
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(a) (b)

(c) (d)

Figure 3.2: Figure-ground labeling encoded as two adjacent contours. (a): Origi-
nal image. (b): Figure-ground contours, labeled by different human subjects than
those who made the segmentations. (c): Figure-ground contours. Figure contours
are denoted in red, while their adjacent ground contours aredenoted in blue color.
(d): Zoomed portion of picture (c).

tion. To deal with this problem, we have created an interfacethat allows a human
user to supervise the creation of the ground truth, by controlling which of the seg-
ments will contribute to the creation of the final skeleton. Given a segmentation
for the input image, each of the segments is examined separately and shown to
the human user, who decides if it should be included in the skeleton or not. This
way, we offer the possibility to create a ground truth that approximates the quality
of a human-made labeling. In figure3.6 we show the improvement that can be
achieved through human supervision.

3.3 Summary

In this chapter we presented an automated procedure that turns a segmentation
problem by a human into a skeleton extraction problem for a given image. This
skeleton is used to create the necessary ground truth dataset for the training of the
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Figure 3.3: Image skeleton composed of the partial skeletons for singlesegments.
This skeleton corresponds to one of the available semgentations for that image.

detector. We went on to analyze the three steps of this procedure, as well as its
inherent drawbacks, due to the skeletonization step. Finally, we proposed an alter-
native approach to the construction of the ground truth, that involves supervision
by a human user and can lead to more useful and realistic results.
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Figure 3.4: Ridge maps derived by using the skeletonization algorithm ondiffer-
ent segmentations of the same image. The initial image is illustrated in the top
left figure. The large, bottom figure shows the result of the union of the five ridge
maps obtained.
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(a) (b)

(c) (d)

Figure 3.5: Example of the unrealistic result we can sometimes get usingthe au-
tomated skeleton extraction. (a) Original image. (b) Segmentation that contributes
negatively to the average skeleton. (c) Ridge map of the largecentral segment. (d)
Union of all ridge maps for the initial image.

Figure 3.6: Improved union as a result of human user supervision during the
selection of the segments contributing to the ridge map.



Chapter 4

Feature extraction

In this chapter we describe the features used to train the ridge detector and the
method used to collect them. Our work is inspired mainly by [29], where the au-
thors use features extracted locally from image patches to determine the existence
of a boundary in some orientation. Based on the success of the boundary model
presented in that paper, we examine if similar local features are exploitable for
ridge detection. One significant difference is that in the problem we are address-
ing we cannot confine our search in a small neighborhood around each point; in
figure4.1we can see that it is necessary to examine features in multiple scales for
each pixel.

4.1 Histogram-based operators and features

We consider a circle of radiusr, centered at location(x, y) on the image plane.
Drawing two chords along orientationθ and at distances = r

2
from the center

divides the circle into three parts as shown in figure4.2.
Given two of these three parts of the circle, we define the histogram func-

tion HDi,Dj
(x, y, θ, s) that reflects the dissimilarity of the contents of the two

parts. Indicesi, j are used to denote which two areas of the disk are compared,
according to the labeling used in figure4.2, while quantitiesθ ands represent
the orientation and scale respectively at which we are examining the existence
of symmetry. FunctionH is symmetric with respect to the disk parts, hence
HDi,Dj

(x, y, θ, s) = HDj ,Di
(x, y, θ, s). Note that the scale at which we search

for symmetryis notequal to the radius of the circle shown in figure4.2; the two
quantities are connected through the relationships = r

2
.

In order to compare the two parts, we make use of color and texture features
based on the empirical distribution of pixel values averaged over some neighbor-
hood. There are several approaches which can be used to characterize the differ-



4.1 Histogram-based operators and features 29

s
2

s
1

Figure 4.1: Symmetry depends on the bilateral distance of the pixel to the bound-
ary. The same pixel can belong to a symmetry axis with respectto some scale
s1 (red vectors), but not with respect to another scales2 (yellow vectors). The
vertical symmetry axis is illustrated as a white dashed line.

ence between color distributions of two sets of pixels. TheMallows distance[27]
and theEarth Mover’s distance(EMD) [21] are common tools for comparing
color distributions. Although the latter takes into account the “ground distance”
between the points, which can be a desirable property if we are handling data from
a color space where nearby points appear perceptually similar, it remains compu-
tationally expensive, thus discouraging us from using it. In our attempt to retain a
low computational cost, we decided to use theχ2 difference [38] to compare the
histograms. Theχ2 difference measure is described by the following equation,
whereg andh denote the histograms that are compared andk is the bin index.

χ2(g, h) =
1

2

∑

k

(g(k)− h(k))2

g(k) + h(k)
(4.1)

Using the notation we introduced for the similarity function between features of
different disk parts (fig.4.2), we have:

HDi,Dj
(x, y, θ, r) =

1

2

∑

k

(Di(k)−Dj(k))
2

Di(k) +Dj(k)
(4.2)

The computation of the histograms and their comparison is executed for eight ori-
entations in the interval[0, π) and ten circle radii. These are set from 0.02 to 0.2 as
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s=r/2

1

2
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(a) (b)

Figure 4.2: (a) Disk used to collect the features. The disk is divided into three
parts, whose brightness, color and texture contents are compared. The radius of
the disk is denoted asr, while the scale at which the symmetry is detected, is
denoted ass. The center of the disk is the point associated with the collected
features. (b) Example of symmetry detection using the disk.Feature contents
of the middle part(1) show high dissimilarity to the contents of the “left”(2) and
“right”(3) parts. Thus, the symmetry response in the vertical diameter, illustrated
in yellow, is high.

a percentage of the image diagonal for all three pairs of circle regions; that means
we calculate quantitiesHD1,D2

(x, y, θ, r),HD1,D3
(x, y, θ, r) andHD2,D3

(x, y, θ, r).

The color space we use is the CIELAB color space. CIELAB consists of three
channels, theL* channel for brightness, and channelsa* andb* for color. For
the brightness gradient we compute histograms of the binnedL* values. The total
color gradient is formed by channelsa* andb*, so the color value for each pixel
lies in a 2D space. According to [33], the a* andb* channels correspond to the
perceptually orthogonal red-green and yellow-blue color opponents found in the
human visual system. This fact motivates the calculation and use of thea* and
b* gradients as separate features for training. Another option is replacing the
joint color gradientCGab with the sum of the partial color gradients,CGa+b =
CGa+CGb, whose calculation is much easier; this is again based on thesame fact.
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In the end of the chapter we include images showing the valuesof the histogram
differences between pairs of circle regions for the brightness and color channels.

In the same spirit as for the brightness and color operators we described in
the previous section, we formulate an operator that measures the texture dissim-
ilarity between two areas of the circle disk, at scales and orientationθ. For the
texture feature, we first convolve the image with a bank of filters of various orien-
tations and spatial frequences, as there are several previous works [14,36], which
indicate that the use of such a preprocessing step exhibits good discrimination re-
sults. Figure4.3 shows the filterbank that is used for the texture processing.It
contains six even/odd quadrature pairs of elongated, oriented filters, as well as a
center-surround filter, the even symmetric filters being Gaussian second deriva-
tives, and the odd-symmetric filters, their corresponding Hilbert transform. Fi-
nally, the center-surround filter is a difference of Gaussians.

The 13 filter responses define a13-dimensional feature space, and each pixel
in the two disk regions associated with this vector of responses, represents a
point in this space. Following thetextonapproach, as in [29], we cluster the
13-dimensional response vectors usingk-means (we usedk = 64 for our exper-
iments). The cluster centers are thetextons, and we can see examples of what
they look like (fork = 64) in figure4.3. After the textons have been identified,
each pixel is assigned to nearest texton, according to its filter response vector.
Now texture dissimilarities can be computed by comparing the histograms of tex-
ton labels in the two regions of the disk, with theχ2 difference operator. Figures
4.15-4.17show some examples of texture gradient features in various scales and
orientations.

4.1.1 Boundary Validation Feature

So far we have discussed features which are extracted from animage and used to
detect symmetry. Local symmetry in the form of a ridge is alsoclosely related to
the existence of boundaries at equal (or approximately equal) distances, on both
sides of the symmetry axis. For that reason we associate eachpixel to a boundary
map response at scales and orientationθ, and create this way a new symmetry
feature.

Specifically, we first extract the boundary map out of the initial image, using
the boundary detector formulated in [3]. After that, we filter the boundary image
with the masks shown in Fig.4.4. Each one of these masks is nonzero only in two
bilateral areas, centered at distances = r

2
(wherer is the radius of the circular

disk), and along angleθ. We denote these two nonzero areas asM s,θ
L andM s,θ

R ,
whereL,R stand forLeft andRight and s, θ imply the scale and orientation
respectively.
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Figure 4.3: The filterbank used to compute textons, composed of 13 filters(left)
and an example of computed textons (right). The images are taken from [29].

If there is a high boundary response in both nonzero areas of the mask, then
this pixel is likely to belong to a symmetry axis. On the otherhand, if the re-
sponse is low in any of the areas, then the probability of symmetry on the pixel
is weakened. The value assigned to each pixel due to the existence of bilateral
boundary at scales and orientationθ is the product of the maximum boundary
values found in the nonzero areas. IfBF (x, y, θ, s) is the boundary feature at
scales and orientationθ for pixel (x, y), andBR is the output of the boundary
detector, we have:

BF (x, y, θ, s) = max
BR⊆M

s,θ
L

(BR) · max
BR⊆M

s,θ
R

(BR) (4.3)

This process is repeated for all scales and orientations. Some of the results are
shown in figures4.18-4.20.

4.2 Feature vector combinations

The process described in the previous section results in a13-dimensional vector
of features for each pixel at a specific scale and orientation. That is, threeL*
channel histogram-difference features, one for every pairof disk areas (HL

i,j), nine
morea*, b* and texture gradient features (Ha

i,j , H
b
i,j , H

t
i,j respectively), plus the
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Figure 4.4: Masks used to detect boundary response at distances from the pixel
for all eight orientations. Note that in order to validate the existence of symmetry
along angleθ, we examine the existence of boundary at angleθ + π

2
(angles are

counted clockwise).

boundary validation feature. This13-dimensional vector of features is extracted at
8 orientations and 10 scales. In the case of grayscale images, we omit the features
corresponding to thea* andb* color channels, which results in a7-dimensional
feature vector. Also, if we use the sum of the color channel histogram differences
Ha+b as a single feature we get a10-dimensional feature vector. To sum up, we
consider the following three feature configurations for training:

• Brightness, color, texture and boundary features. Color channel histogram
differences are treated as separate features (we will referto this as thecolor
configuration).

• Brightness, color, texture and boundary features. The sum ofthe color chan-
nel histogram differences is treated as a single feature (wewill refer to this
as thefullcolor configuration).

• Brightness, texture and boundary features (we will refer to this as thegray
configuration).

The optimal way to combine these features in order to detect ridges in new inputs
is learned via the learning methods discussed in chapter5. Intuitively, we believe
that points lying on a symmetry axis at orientationθ and scales exhibit high
dissimilarity in the collected features in comparison to their surroundings. That
means that for a pixel at position(x, y), HD1,D3

(x, y, θ, r) andHD2,D3
(x, y, θ, r)

have high values. If the bilateral regions of the pixel (areas 1 and 2 of the disk in
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fig. 4.2) have similar feature content, we expect that classification becomes easier.
This is not always the case though as we can see in figure4.5, where these two
cases are illustrated.

(a) (b)

Figure 4.5: Color and texture features in the two lateral sides of the disk(blue
color parts of the disk) can be similar (a) or very different (b). Detection of the
symmetry axis is easier in the first case.

4.3 Summary

In this chapter we discussed the features we use for the detector training and the
way we extract them. We also introduced a histogram-based operator that uses
theχ2 difference to measure dissimilarity between brightness, texture and color
content of two image areas, and added an extra training feature based on the image
boundary. Finally, we listed three different feature combinations that will be used
for the training of the detector in chapter5.
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(a) HL
D1,D2

(b) HL
D1,D3

(c) HL
D2,D3

Figure 4.6: Brightness features, collected at the smallest scale for thefirst five
orientations. (a): Histogram differences between the left(D2) and the central (D1)
part of the disk. (b): Histogram differences between the right(D3) and central (D1)
disk parts. (c): Histogram differences between the left (D2) and right (D3) disk
parts. Orientation starts at zero degrees (top) and increases clockwise byπ

8
as we

move downwards, untilπ
2

(bottom row).
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(a) HL
D1,D2

(b) HL
D1,D3

(c) HL
D2,D3

Figure 4.7: Brightness features, collected at a middle scale for the firstfive orien-
tations. (a): Histogram differences between the left (D2) and the central (D1) part
of the disk. (b): Histogram differences between the right(D3) and central (D1)
disk parts. (c): Histogram differences between the left (D2) and right (D3) disk
parts. Orientation starts at zero degrees (top) and increases clockwise byπ

8
as we

move downwards, untilπ
2

(bottom row).
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(a) HL
D1,D2

(b) HL
D1,D3

(c) HL
D2,D3

Figure 4.8: Brightness features, collected at a large scale for the first five orienta-
tions. (a): Histogram differences between the left (D2) and the central (D1) part
of the disk. (b): Histogram differences between the right(D3) and central (D1)
disk parts. (c): Histogram differences between the left (D2) and right (D3) disk
parts. Orientation starts at zero degrees (top) and increases clockwise byπ
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(bottom row).



38 Feature extraction

(a) Ha
D1,D2

(b) Ha
D1,D3

(c) Ha
D2,D3

Figure 4.9: Color channela* gradient features, collected at the smallest scale for
the first five orientations. (a): Histogram differences between the left (D2) and the
central (D1) part of the disk. (b): Histogram differences between the right(D3) and
central (D1) disk parts. (c): Histogram differences between the left (D2) and right
(D3) disk parts. Orientation starts at zero degrees (top) and increases clockwise
by π
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(bottom row).
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(a) Ha
D1,D2

(b) Ha
D1,D3

(c) Ha
D2,D3

Figure 4.10: Color channela* gradient features, collected at a middle scale for
the first five orientations. (a): Histogram differences between the left (D2) and the
central (D1) part of the disk. (b): Histogram differences between the right(D3) and
central (D1) disk parts. (c): Histogram differences between the left (D2) and right
(D3) disk parts. Orientation starts at zero degrees (top) and increases clockwise
by π
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(bottom row).
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(a) Ha
D1,D2

(b) Ha
D1,D3

(c) Ha
D2,D3

Figure 4.11: Color channela* gradient features, collected at a large scale for the
first five orientations. (a): Histogram differences betweenthe left (D2) and the
central (D1) part of the disk. (b): Histogram differences between the right(D3)
and central (D1) disk parts. (c): Histogram differences between the left (D2)
and right (D3) disk parts. Orientation starts at zero degrees (top) and increases
clockwise byπ
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(bottom row).
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(a) Hb
D1,D2

(b) Hb
D1,D3

(c) Hb
D2,D3

Figure 4.12: Color channelb* gradient features, collected at the smallest scale for
the first five orientations. (a): Histogram differences between the left (D2) and the
central (D1) part of the disk. (b): Histogram differences between the right(D3) and
central (D1) disk parts. (c): Histogram differences between the left (D2) and right
(D3) disk parts. Orientation starts at zero degrees (top) and increases clockwise
by π
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(bottom row).
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(a) Hb
D1,D2

(b) Hb
D1,D3

(c) Hb
D2,D3

Figure 4.13: Color channelb* gradient features, collected at a middle scale for
the first five orientations. (a): Histogram differences between the left (D2) and the
central (D1) part of the disk. (b): Histogram differences between the right(D3) and
central (D1) disk parts. (c): Histogram differences between the left (D2) and right
(D3) disk parts. Orientation starts at zero degrees (top) and increases clockwise
by π
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(bottom row).
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(a) Hb
D1,D2

(b) Hb
D1,D3

(c) Hb
D2,D3

Figure 4.14: Color channelb* gradient features, collected at a large scale for the
first five orientations. (a): Histogram differences betweenthe left (D2) and the
central (D1) part of the disk. (b): Histogram differences between the right(D3)
and central (D1) disk parts. (c): Histogram differences between the left (D2)
and right (D3) disk parts. Orientation starts at zero degrees (top) and increases
clockwise byπ
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(bottom row).
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(a) Ht
D1,D2

(b) Ht
D1,D3

(c) Ht
D2,D3

Figure 4.15: Texture channel gradient features, collected at the smallest scale for
the first five orientations. (a): Histogram differences between the left (D2) and the
central (D1) part of the disk. (b): Histogram differences between the right(D3) and
central (D1) disk parts. (c): Histogram differences between the left (D2) and right
(D3) disk parts. Orientation starts at zero degrees (top) and increases clockwise
by π
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(bottom row).
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(a) Ht
D1,D2

(b) Ht
D1,D3

(c) Ht
D2,D3

Figure 4.16: Texture channel gradient features, collected at a middle scale for
the first five orientations. (a): Histogram differences between the left (D2) and the
central (D1) part of the disk. (b): Histogram differences between the right(D3) and
central (D1) disk parts. (c): Histogram differences between the left (D2) and right
(D3) disk parts. Orientation starts at zero degrees (top) and increases clockwise
by π
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(bottom row).
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(a) Ht
D1,D2

(b) Ht
D1,D3

(c) Ht
D2,D3

Figure 4.17: Texture channel gradient features, collected at a large scale for the
first five orientations. (a): Histogram differences betweenthe left (D2) and the
central (D1) part of the disk. (b): Histogram differences between the right(D3)
and central (D1) disk parts. (c): Histogram differences between the left (D2)
and right (D3) disk parts. Orientation starts at zero degrees (top) and increases
clockwise byπ
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(bottom row).
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(a) θ = 0 (b) θ = π/8

(c) θ = π/4 (d) θ = 3π/8

(e) θ = π/2 (f) θ = 5π/8

(g) θ = 3π/4 (h) θ = 7π/8

Figure 4.18: Boundary validation feature at the smallest scale for all orientations.
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(a) θ = 0 (b) θ = π/8

(c) θ = π/4 (d) θ = 3π/8

(e) θ = π/2 (f) θ = 5π/8

(g) θ = 3π/4 (h) θ = 7π/8

Figure 4.19: Boundary validation feature at a middle scale for all orientations.
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(a) θ = 0 (b) θ = π/8

(c) θ = π/4 (d) θ = 3π/8

(e) θ = π/2 (f) θ = 5π/8

(g) θ = 3π/4 (h) θ = 7π/8

Figure 4.20: Boundary validation feature at a large scale for all orientations.



Chapter 5

Learning

In this chapter we provide the theoretical background forlogistic regressionand
multiple instance learning, which are the classification methods we are going to
use in order to train the ridge detector. We also describe thetraining procedure for
both methods.

5.1 Logistic regression

Logistic regression uses a linear model to predict the posterior probability of the
occurrence of an event. Despite the simplicity of this model, logistic regression
has shown to perform similarly to other, more complex training methods in anal-
ogous problems [29]. In the general case of a classification task withK possible
classes, the event whose probability we want to measure, is the occurrence of each
of theK classes, given then-vector of independent input variables associated with
the output. Since we want to model probabilities, the model is formulated in such
a way that the linear functions used, sum to one and remain in [0,1]. In the case
of a binary classification problem, i.e. whenK = 2, there is only a single linear
function and the model has the following form:

log
Pr(G = 1|X = x)

Pr(G = 0|X = x)
= w10 + wT

1 x (5.1)

In the above equation,G = i denotes the occurrence of classi, andx is the vector
of input variables. It follows thatwT

1 is also a vector andw10 is the intercept,
which is often included in the parameter vectorw = w10, w1, by including the
constant term 1 in the input vector. A simple calculation shows that

Pr(G = 1|X = x) =
exp(w10 + wT

1 x)

1 + exp(w10 + wT
1 x)

(5.2)
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and of course

Pr(G = 0|X = x) = 1− Pr(G = 1|X = x) (5.3)

=
1

1 + exp(w10 + wT
1 x)

(5.4)

Finally, if we consider thatyi is the 0/1 response to thei-th observation, where
yi = 1 whengi = 1, andyi = 0 whengi = 2, the log-likelihood forN observa-
tions can be written:

L(w) =
N
∑

i=1

{

yi log p(xi;w) + (1− yi) log(1− p(xi;w))
}

(5.5)

=
N
∑

i=1

{

yiw
Txi − log(1 + ew

T xi)
}

(5.6)

In this equation, we assume the simplification mentioned earlier, with the intercept
included in the parameter vector and the constant term 1 included in the input
vector. The logistic regression model is fit to the data by maximum likelihood. To
maximize the log-likelihood, we set its derivatives to zero, gettingp+1 equations
nonlinearin w, which are called thescoreequations:

∂L(w)

∂w
=

N
∑

i=1

xi(yi − p(xi;w)) = 0 (5.7)

To solve the score equations, we use the Newton-Raphson algorithm, which, given
a starting valuewold, produces the updatewnew, using the Hessian matrix ofL(w):

wnew = wold −
(

∇2L(w)
)−1 ∂L(w)

∂w
, (5.8)

where the Hessian matrix is

∇2L(w) = −

N
∑

i=1

xix
T
i p(xi;w)(1− p(xi;w)) (5.9)

Following [29], for our experiments we set the initial value ofw atw = 0.

5.2 Multiple instance learning

Multiple instance learning (MIL) is a variation of supervised learning that is very
useful in applications in a number of domains, such as computer vision, bioin-
formatics and text processing. In comparison to logistic regression, MIL offers



52 Learning

the advantage of treating both scale and orientation as latent variables. This way
we do not have to search for the feature vectors corresponding to the actual scale
and orientation of each training sample; all the feature vectors that are associated
to it are used and the actual scale and orientation quantities are inferred by the
algorithm. Below we list the basic ideas of MIL, establish thenotation that will
be used, and compare it to standard supervised learning.

In traditional supervised learning we have a training dataset consisting of
input-output pairs. In a classification problem the inputs are the instance ex-
amples, denoted{x1, x2 . . . , xn}, and the outputs are labels that denote the class
among a set ofK possible classes; for these labels we use the notation{y1, y2 . . . , yn}.
Instance examples typically lie inℜd, yi in {0, 1}, and the goal is to construct
a classifier functionh(X) : ℜd → {0, 1} that can predict outputs/labels, for
novel inputs. In the MIL paradigm, instead of using single input-label pairs, la-
bels are assigned tosetsof inputs, calledbags. The training set consists of the
set of bags{X1, X2 . . . , Xn} and the bag labels{Y1, Y2 . . . , Yn}, whereXi =
{xi1, xi2 . . . , xim}, xij ∈ ℜd andYi ∈ {0, 1} for a binary classification problem.
A bag is consideredpositiveif it contains at least one positive single input; con-
sequently, a bag is considered negative if it does not contain any positive single
inputs.

This rule concerning the bag positiveness, can be expressedas follows:

Yi =

{

1 if ∃j s.t. yij = 1,

0 otherwise
(5.10)

and the goal of MIL is to ether train an instance classifierh(x) : ℜd → 0, 1, or a
bag classifierH(X) : (ℜd)m → 0, 1. We note thatyi can also be written this way:

Yi = max
j

yij, (5.11)

so a bag classifier can be easily constructed once the instance classifier is given.
As in the case of logistic regression, the classifier is trained via maximization

of the log likelihood function. However, the instance labels are not known during
training, so we need to take them into account when we calculate the cost function.
The likelihood assigned to a training bag under the multipleinstance learning
model is:

L =
∏

i

P Yi

i (1− Pi)
(1−Yi) (5.12)

whereYi ∈ 0, 1 is the label of bagi, from a set ofn bags andPi the probability of
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a bag being positive. Is it then straightforward to derive that the log-likelihood is

logL =
N
∑

i

log(P Yi

i ) + log((1− Pi)
(1−Yi)) (5.13)

=
N
∑

i

Yi log(Pi) + (1− Yi) log(1− Pi) (5.14)

This equation is similar to5.6with the difference that the instance posterior prob-
abilities have been replaced with the posterior probabilities of the bags, whose
labels are known during training. The relationship betweenthe bag probabilities
and the probabilities of their instances can be naturally defined by the following
formula

Pi = max pij, (5.15)

wherepij is the probability of thej-th instance of thei-th bag. Notice that the max
operator is not differentiable. To overcome this obstacle,we use a differentiable
approximation to themax, theNoisy-OR(NOR) [48]. The bag probability under
the NOR approximation is given by the relationship:

Pi = 1−
∏

j∈i

(1− pij), (5.16)

where the probability of an instance being positive is givenby the standard logistic
function

pij =
1

1 + e−(w10+wT
1
x)

(5.17)

Using the former differentiable definition of5.16for the bag probabilities, we can
now calculate analytically the log-likelihood gradient with respect to the weight
vectorw. To begin with, we use the chain law which gives:

∂ logL(w)

∂w
=

N
∑

i=1

∂ logL(w)

∂pi
·
∂pi
∂w

(5.18)

We now are going to calculate each term separately for simplicity.

∂ logL(w)

∂pi
= yi

1

pi
+ (yi − 1)

1

1− pi
=

yi(1− pi) + (yi − 1)pi
pi(1− pi)

(5.19)

=
yi − yipi + yipi − pi

pi(1− pi)
=

yi − pi
pi(1− pi)

(5.20)
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∂pi
∂w

=
∂
[

1−
∏

j∈i (1− pij)
]

∂w
= −

∂
[
∏

j∈i (1− pij)
]

∂w
(5.21)

= −
∂

∂w

[

ew
T (xi1+xi2+...+xim)

(1 + ewT xi1)(1 + ewT xi2) · · · (1 + ewT xim)

]

(5.22)

= −
∂

∂w

[

σ(wTxi1) · · · σ(w
Txim) · e

wT (xi1+xi2+...+xim)
]

(5.23)

In 5.23, xij is the feature vector corresponding to thej-th instance of thei-th bag,
andσ(x) = (1 + e−x)−1 = ex(1 + ex)−1 is the sigmoid function. We also usem
to denote the fixed number of instances per bag. Taking advantage of the property
of the sigmoid function, according to whichσ′(x) = σ′(x)(1 − σ(x)), equation
5.23becomes (we have omitted some intermediate calculation steps:

∂pi
∂w

= −ew
T (xi1+...+xim)σ(wTxi1) · · · σ(w

Txim) (5.24)

·

[

m
∑

j=1

xij +
m
∑

j=1

{

σ(wTxij)− 1)xij

}

]

(5.25)

= (1− pi)
m
∑

j=1

σ(wTxij)xij (5.26)

Finally, substituting5.26and5.20in 5.18, we get:

∂ logL(w)

∂w
=

yi − pi
pi

m
∑

j=1

σ(wTxij)xij (5.27)

This expression is used to minimize the likelihood functionand give us the optimal
weightsw.

5.3 Training

For the training of the classifier via logistic regression, we use a subset of 37 nat-
ural images from the BSDS300 dataset for which we have constructed the sym-
metry axis ground truth data, as described in chapter3.

Having in mind that the vast majority of the pixels in each training image are
labeled as negatives, and that using all the available pixel/label pairs as training
data would increase the computational cost, we pick a subsetof the available pix-
els using a sampling function. The sampling scheme is the following: The total
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number of pixels, along with their labelings to be used as training data, is speci-
fied as an input parameter for the training function. This total number of samples
is divided by the number of the training images to give the number of sampled
pixels per image. In our tests, the total number of training samples used (denoted
N ) was approximately2 · 107. Training the detector using fewer training sam-
ples, in the range of2 · 105 − 5 · 105, and there were not significant variations
in the results, neither qualitatively nor in the maximum f-measure attained (see
chapter6). Although the samples are randomly chosen, some constraints are ap-
plied. During our first tests, we noticed that boundary pixels are prone to giving a
high symmetry response at the smallest scale. This is an unwanted behavior, since
boundary pixels cannot by any chance belong to a symmetry axis. For that reason,
we emphasize the training against detecting boundary points by choosing half of
the boundary points in an image as training samples (labeledas negatives). The
labels of the total number of gathered samples that are used in the training do not
carry any information as to the orientation or the scale of the symmetry. We there-
fore have to find a way to select the correct features from the spectrum of collected
features at all scales and orientations, corresponding to each sample pixel. For the
selection of scale we use a simple approach, using the distance transform on the
thresholded boundary map of the image, which is computed by the BerkeleyPb
detector. Since the features have been collected in discrete scales and not over a
continuum, we pick features computed at the scale closest tothe distance trans-
form value. For the orientation we use an orientation estimation function using
the Hessian of the ground truth image, which gives us the orientation correspond-
ing to the all the positive samples. The default orientationvalue we use for the
pixels that are labeled negative is zero degrees. This way weare able to select
appropriate features for training, both in terms of scale and orientation.

All the features are stacked in aN ×K, whereK is the length of the feature
vector taking into account the constant term. Their labels are also stacked in a
single column vector. The training is done using the Newton-Raphson iterative
algorithm described in the previous paragraph [16], giving us upon convergence
the vector ofwi coefficients.

Training with MIL is done in a similar way to the case of logistic regression,
with one basic difference. Recall that in the case of logisticregression, we used
estimations for both the scale and the orientation of each sampled pixel, in order
to use the correct features for training. In multiple instance learning scale and
orientation are treated as hidden variables, so these estimations are not necessary.

Linking the terms used in the previous paragraph to the components of our
problem, each pixel represents a bag of features. The instances contained in such
a bag are the feature vectors at all orientations and scales.To give a concrete
example, in our experiments we used features in eight different orientations and
ten different scales for each pixel, which makes for a total of eighty instances
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(a) Original image. (b) Ridge map union

(c) Orientation estimation (d) Orientation estimation detail

Figure 5.1: Orientation estimation of the ground truth ridge map union.The
orientation in each pixel is visualized by a vector pointingalong the respective
angle. In this figure, the angles visualized are in the interval [−π

2
, π
2
].

contained in each bag. Since all these features are used in the calculation of the
instance and bag probabilities, we are presented with the challenge of efficiently
manipulating a significant amount of data, both in terms of space and computa-
tional cost. In our logistic regression experiments, we used various numbers of
training samples, ranging from2 · 105 to 2 · 107. As explained in section5.3, there
was not substantial change of the testing results when we used fewer samples,
hence we settle forN = 5 · 105, which keeps the training procedure tractable.
The goal is once again the maximization of the log likelihood(or equivalently
the minimization of the minus log likelihood) of the set of the training bags. For
the multiple instance learning paradigm, we choose to perform the log likelihood
optimization step using conjugate gradients to compute search directions and on
quadratic and cubic polynomial approximations to perform line search.
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5.4 Summary

In this chapter we focused on the methods used to train the ridge detector: logistic
regression and multiple instance learning. We made a short introduction to the
theory lying behind each one of these methods and established the notation for
the most important quantities involved. We concluded the chapter describing the
training procedure for both cases.



Chapter 6

Testing and evaluation

In this chapter we present the testing results and the methodology used to eval-
uate the performance of our detector. We begin by briefly describing the testing
setup and the post processing performed in the output image.After that we re-
view theprecision-recallandF-measureframework which we use to evaluate the
performance of our detector. We present figures with the quantitative results for
logistic regression and multiple instance learning, concluding the chapter with a
comparison between the two methods and the ridge detection using automated
scale selection, presented in [23]. In the end of the chapter we also include some
indicative qualitative results obtained from both methods.

6.1 Testing

Testing the detector is performed on a test set of eight images, taken from the
BSDS300 test images. Once the detector coefficients have beencalculated, testing
is applied densely on a test image. Features at all scales andorientations are
collected, forming a4-dimensional space of symmetry response maps. Taking
the pixel-wise maximum on this space over all scales and orientations, gives a
portrait of the image ridges, like the one in figure6.1. This can be seen as a rough
qualitative depiction of the ridge locations but it has fat responses.

For that reason, we perform non-maximum suppression in order to thin blurry
responses and get a connected line marking the symmetry axis. Non-maximum
suppression is performed on a 2D input image orthogonally toan angleθ. Since
we want to suppress the false responses while keeping the salient ridges con-
nected, it is necessary to perform non-maximum suppressionin the correct orien-
tation, which varies from pixel to pixel. To create an orientation map that depicts
this change ofθ as we move on the image plane, we first compute the maximum
of the response probability maps over all scales. That givesus a3-dimensional
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array of maxima-over-scales for each pixel for all orientations. In this array, we
search for the orientation that gives the maximum probability for each pixel; this
is the orientation which is used to perform non-maximum suppression. Moreover,
we zero the weakest responses and keep only the ones that stand out after the non-
maximum suppression. This is done by thresholding the suppressed image, at a
threshold that is determined through the maximization of theF-measure.

6.2 Precision-recall curves

A high quality detector must meet two fundamental criteria.First of all we want
the detector to be reliable. That means that if the system marks a pixel as posi-
tive, i.e. belonging to a symmetry axis at some scaler and orientationθ, we want
this to be true with high probability. Another important property of the detector
is completeness, in the sense that if there are points showing symmetry at some
scale and orientation, we want our system to be able to detectthem and classify
them appropriately. These two concepts just described, aretermed as precision
and recall in the information retrieval community. Formally, precisionis the frac-
tion of the detections that are true positives, whilerecall is the fraction of true
positives that are detected. In probabilistic terms, precision is the probability that
the detector’s output is valid, and recall is the probability that the ground truth
data has been detected. Expressed in mathematical notation, that is:

Precision=
TruePositives

TruePositives+ FalsePositives
(6.1)

Recall=
TruePositives

TruePositives+ FalseNegatives
(6.2)

These two measures are competitive, meaning that if we want ahigh precision
value, we compromise the recall rate of the detector, while achieving high recall
rate means the detector will be less precise. To explain thisintuitively, a high
recall rate means that the detector hasn’t missed any positives, but it may have
also classified as positives a lot of other pixels, resultingin low precision. High
precision on the other hand, means that we are being very selective in our choice
of positives; hence most of the positives returned by the detector are indeed true,
but a lot of other positives may have not been detected, resulting in low recall.

Precision-recall curves are a common evaluation techniquein information re-
trieval and classification problems and they were first used to evaluate edge de-
tectors by Abdou and Pratt [1]. A similar evaluation technique is theReceiver
Operating Characteristic (ROC)curves, where the two axes arefallout and re-
call. Recall is defined in the same way as above and fallout is the probability
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(a) Original image (b) Posterior probability ridge map.

(c) Non-maximum suppression. (d) Filtering and thresholding.

(e) Detected ridges.

Figure 6.1: Processing steps from the initial image to the final ridge map.

that a true negative was falsely labeled as positive. Although both types of curves
qualitatively show the same trade-off between misses and false positives, ROC
curves are not appropriate for judging the quality of ridge detection. If the image
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resolution is increased by a resolution of factorn, the number of pixels grows as
n2. Applying the reasoning found in [29] for ridges this time, lines inℜ2 have a
fractal dimension less than 2, so the number of true positives will grow as slow
asn, while the number of true negatives will grow as fast asn2. As a result, the
fallout will decline by as much as1/n. We do not face the same problem with pre-
cision, because it is normalized by the number of positives rather than the number
of true negatives.

This trade-off between precision and recall can be capturedby the use of an ap-
propriate measure, called theF-measure, introduced in [46], which is the weighted
harmonic mean of these two measures. Denoting precision asP and recall asR
the F-measure is defined as:

F =
P ·R

aR + (1− a)P
(6.3)

wherea lies in [0,1]. In our experiments we usea = 0.5, which gives the
evenly weighted F-measure.

A precision-recall curve is formed by points representing the F-measure val-
ues, each one computed by theP andR values corresponding to the detector’s
output at a particular threshold. To computeP andR though, we need to be able
to determine how many of the pixels detected are true positives, and how many
are false positives. Adding to that, the constructed groundtruth data consist of
5-10 different symmetry axis maps per image, resulting fromthe available seg-
mentations for each image in the BSDS300, so we are first going to examine the
simpler case of pixel correspondence between a single binary ground truth ridge
map and a thresholded detector output. The obvious choice isto consider detected
positives as true if they can be corresponded to a pixel in theground truth image,
and declare all unmatched pixels either false positives or misses. This way, how-
ever, we don’t take into account the localization errors which exist in the ground
truth data. Showing intolerance towards these localization errors is bad practice,
because qualitatively useful detector results can be ratedas low quality and be
rejected. To avoid that, we allow correspondence between detected positives and
pixels neighboring to the ground truth positives. Details on the correspondence
computation can be found in [29].

As multiple humans annotate a single image, the precision-recall curves should
be based on all ground truth binary maps available for each image. The approach
we follow is to first match the detector result with each ground truth map sepa-
rately. If a detected positive is matched with at least with one of the binary maps,
it is classified as true positive. On the other hand, pixels that correspond to no
ground truth ridge map, are declared false positives. The hit rate is averaged over
the number of different ridge maps so, in order to achieve perfect recall, all the
ground truth data have to correspond to a positive detected by the system.
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Finally, since we do not possess a ground truth dataset made by human sub-
jects, we have to find an alternative way of comparing the results of our detector
to a “gold standard” F-measure, associated with the annotated set. Recall that for
every image of the training dataset, we have a number of segmentations by differ-
ent human subjects and an equal number of ground truth ridge maps, calculated
in the manner described in chapter3. We evaluate a ground truth F-measure by
sequentially treating each one of these ground truth ridge maps as a thresholded
detector output and comparing it to the rest. In the end we average the results
over the total number of ridge maps. The value that was calculated following this
methodology for our ground truth dataset wasF = 0.67.

6.3 Comparison

6.3.1 Quantitative results

In the figures that follow we compare the F-measure results for the three feature
configurations examined in chapter4, with color channel features used as a single
feature or separately, and for the case of gray features (brightness and texture
gradients only). Results for logistic regression, multipleinstance learning, and
ridge detection with automated scale selection are illustrated in the same figure
for easier comparison. The number of training samples used for both training
methods was5 · 105 samples.

As we can see in figure6.2, using multiple instance learning to train the detec-
tor, gives the better results compared to logistic regression and the automated scale
selection algorithm by Lindeberg (we are going to use the acronymLASSAto re-
fer to this algorithm from now on). In terms of the maximum F-measure attained,
our MIL detector performs better than LASSA, but stands really close to logistic
regression, which also outeperforms LASSA. This result is expected, since the
LASSA algorithm is applied on gray scale images, and does nottake advantage
of the color and texture cues, which play a important role in our approach.

Combining the two color channels into a single feature decreases performance,
as we can see in figure6.3. Both logistic regression and MIL still perform better
than ASS, but the difference in the maximum f-measure is now smaller. Moreover,
the difference in the maximum f-measure between logistic regression and MIL
training has reduced to negligible levels, so practically in this case both methods
perform equally well.

Finally, in figure6.4 we present the results concerning the use of only gray
scale features; that is brightness, texture and the boundary validation feature. This
is the only case that our detector trained via logistic regression falls behind in
comparison to LASSA; the MIL-trained detector still stays ahead however, even
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LR (F=0.458 at (R,P)=(0.517,0.454) t=0.354)
MIL (F=0.466 at (R,P)=(0.546,0.456) t=0.29)
Lindeberg(F=0.42 at (R,P)=(0.453,0.426) t=0.115)

Figure 6.2: Results of evaluation for a detector trained using color channels as
separate features. In the legend we note the maximum f-measure achieved, the
respective precision and recall values, and the threshold at which it was achieved
for each method. Multiple instance learning outperforms all the other methods.

by a small margin. This verifies the importance of the color cue for determining
symmetry in the framework we are proposing, and we see that omitting it can lead
to great deterioration of the effectiveness of the classifier.

6.3.2 Qualitative results

We observe that there are not significant differences in the detected ridges be-
tween the two configurations that use color features. Using the two color channels
a∗ andb∗ as separate features, seems to yield slightly better responses, detecting
some parts of the ridges which are not detected when the two channels are used as
a single feature (e.g. hand of the person in fig.6.7). Moreover, both color config-
urations outperform the case where we use only brightness and texture features.
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LR (F=0.44 at (R,P)=(0.459,0.473) t=0.37)
MIL (F=0.441 at (R,P)=(0.506,0.446) t=0.274)
Lindeberg(F=0.42 at (R,P)=(0.453,0.426) t=0.115)

Figure 6.3: Results of evaluation for a detector trained using the sum of the two
color channels as single feature. In the legend we note the maximum f-measure
achieved, the respective precision and recall values, and the threshold at which
it was achieved. Multiple instance learning still performsbetter than the other
methods but at practically the same level as logistic regression.

We can see that the gray scale detector gives a lot of spuriousresponses; at the
same time, it faces difficulty detecting symmetry at larger scale, for example in
figure6.7. In this figure, we see that for color features, the symmetry axis of the
person’s yellow skirt is successfully located, while the gray scale detector fails to
recognize it. The same applies to the torso of the zebra in figure6.8.

Comparing the results taken from the two training methods, the advantage of
using MIL is shown in figure6.5where the ridge corresponding to the tail of the
plane is more accurately localized for the color feature configurations, whereas in
the gray feature case MIL gives fewer background responses.Another example
is in figure6.8 where the ridge corresponding to the torso of the zebra is again
detected more accurately. Overall, though, the results by the two methods are
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MIL (F=0.427 at (R,P)=(0.501,0.411) t=0.274)
Lindeberg(F=0.42 at (R,P)=(0.453,0.426) t=0.115)

Figure 6.4: Results of evaluation for a detector trained using the sum of the two
color channels as single feature. In the legend we note the maximum f-measure
achieved, the respective precision and recall values, and the threshold at which
it was achieved. Multiple instance learning remains the winner but this time au-
tomated scale detection algorithm performs better than ourdetector trained with
logistic regression.

similar.

6.4 Summary

In this chapter we presented the precision-recall framework and we used it to eval-
uate quantitatively our ridge detector. We presented the results in terms of maxi-
mum F-measure for the three different feature configurations used in the training
(color, fullcolor and gray scale), and we compared those with the automated scale
selection (LASSA) algorithm [23]. Our algorithm manages to outperform ASS,
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in most cases, with MIL training providing the best F-measure in all configura-
tions, and an overall maximum atF = 0.466 when we treat color channelsa∗
and b∗ as separate features. An important conclusion we reached isthat color
is a discriminative cue for symmetry detection, which has a considerable effect
on the performance of the detector. Furthermore, we notice that the performance
gap between logistic regression and multiple instance learning training methods is
not so large, making the former a rather attractive choice, considering its reduced
computational cost and complexity. We concluded the chapter presenting some
examples of detection results.

(a) Color (b) Fullcolor (c) Gray

Figure 6.5: Detected ridges for all three feature configurations shown on the ini-
tial image (iid = 3096 from the BSDS300). Top row shows results for logistic
regression and bottom row for MIL.
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(a) Color (b) Fullcolor (c) Gray

Figure 6.6: Detected ridges for all three feature configurations shown on the ini-
tial image (iid = 42049 from the BSDS300). Top row shows results for logistic
regression and bottom row for MIL.
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(a) Color (b) Fullcolor (c) Gray

Figure 6.7: Detected ridges for all three feature configurations shown on the ini-
tial image (iid = 101087 from the BSDS300). Top row shows results for logistic
regression and bottom row for MIL.
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(a) Color (b) Fullcolor (c) Gray

Figure 6.8: Detected ridges for all three feature configurations shown on the ini-
tial image (iid = 253027 from the BSDS300). Top row shows results for logistic
regression and bottom row for MIL.



Chapter 7

Conclusions and future work

7.1 Contribution of the thesis

In this thesis we introduced a novel approach to ridge and symmetry axis detection
for elongated image structures, motivated by the increasing popularity of learning
methods. More specifically, we developed a ridge detector that seeks symmetry at
various scales and orientations, and classifies pixels intoridge/non-ridge classes.

The main contribution of our work is the introduction of a machine learning
framework, that uses low-level features to train the detector; the detector then uses
the respective feature vectors extracted from a new input image, to decide if a pixel
belongs in a ridge. We have used two methods for learning, logistic regression
and multiple instance learning, and their results were compared both qualitatively
and quantitatively in chapter 6. We saw that multiple instance learning generally
performs better by a small margin for the maximum F-measure compared to sim-
ple logistic regression. Apart from that, both training methods give better results
when compared to Lindeberg’s automated scale detection method.

Although our approach seems to perform reasonably well on natural images,
using a relatively small training dataset, we believe that its potential would be
properly revealed in more targeted applications. Using features tailored to the
task and training the detector on a specific subset of objectswhose ridges we
would like to detect, could significantly improve its efficiency, as the variance in
the color and texture cues of the training examples would reduce. An interesting
application that could benefit by the use of a ridge detector trained in this fashion
is pose estimation, where for example the classifier could betrained to detect
the symmetry axes of a person’s limbs in an image (hands, legs, torso, head).
Our detector could also be trained on aerial images for the extraction of ridges in
landscape top views, which is a useful step in a higher level task such as automatic
topographic map extraction. Finally, medical imaging is another area where our
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method could prove fruitful, e.g. in the detection of ridgesin MRI or PET scans,
which can sometimes be related to pathological conditions.

7.2 Future work

The results of the method presented in this thesis are encouraging but there are
still many future paths that can be explored, and improvements that can be the
focus of future research on this work. We list some of the mostimportant below.

First of all, the construction of a human subject annotationdataset for ridges
is crucial for the robustness of our system. The ground truthset used in this thesis
serves only as a simple starting point in order to test the potential of our method.
Thus, building an annotation dataset constructed by real people is one of our first
priorities as far as future work is considered.

Secondly, an obvious way to enhance the performance of the detector is to
increase the number of features used in training. The most prominent areSIFT
features [26], which have already been used in learning approaches for boundary
detection [18].

Another future direction is using a more sophisticated learning approach, sim-
ilar to the one employed in [19], where a differentiable approximation of the F-
measure serves as the cost to be optimized. More ideas presented in the aforemen-
tioned paper could be considered, such as the use of theanyboostframework for
the classifier training, in conjunction with filtering of thetraining set via stochastic
gradient descent. This is especially useful in the case of multiple instance learn-
ing, when the training set is great in volume and selecting anappropriate subset
of training instances, without compromising the performance of the classifier.

Inspired by the success of normalized cuts application in image segmentation,
demonstrated in the influential paper by Shi and Malik [40], we believe that spec-
tral analysis can also provide us with useful cues for ridge detection. According
to the physical interpretation of the generalized eigenvalue problem, given in the
former paper, the graph nodes (image pixels) can be considered as physical nodes,
and the graph edges as springs connecting each pair of nodes.The affinity matrix,
which contains the information of similarity between imagenodes, can be ad-
justed and used as an extra feature in the training step. The boundary information
can also be taken into account when we calculate the affinity matrix, in the form
of Intervening Contours, as explained in [10]. This can be particularly valuable
in ridge detection for two reasons: first of all, because the boundary existence at
a certain distance and orientation is directly related to a ridge line or a symme-
try axis, and second, because sometimes background clutterhas similar intensity
values to a foreground object, making detection harder.

Finally, we can benefit in terms of time efficiency by porting our code onto the
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GPU. Let aside training, which is only performed once in order to determine the
beta coefficients of the classifier, the most time-consumingpart of the ridge ex-
traction is the collection of the features, which can take several hours in MATLAB
if we use a large training set. For example, extracting the features at 10 scales and
8 orientations from 37 images of321×481 or481×321 pixels, takes about 5 hours
on an Intel i7 processor. We can significantly reduce the timeneeded, drawing on
the fact that feature collection at some scale and orientation is a fully indepen-
dent process, hence our code can be parallelized. Since the most time-demanding
operation in the feature collection algorithm is the convolution of the image with
the disk masks, we can also reduce the time needed, applying the integral image
representation [47].
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