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Περίληψη

Η υπολογιστική όραση είναι ένας ευρύτατα µελετηµένος κλάδος της τεχνητής νοηµο-
σύνης ο οποίος µε τη αξιοποίηση αλγορίθµων στοχεύει στην ερµηνεία και την κα-
τανόηση του οπτικού κόσµου. Συνδυάζοντας την ψηφιακή επεξεργασία εικόνας, την
αναγνώριση µοτίβου (pattern) και την µηχανική µάθηση επιδιώκει µέσα από ακατέρ-
γαστα δεδοµένα να εξάγει χρήσιµες πληροφορίες. Η µηχανική όραση στοχεύει στην
ανάπτυξη συστήµατος ώστε τα ϱοµπότ να κατανοήσουν τις εικόνες µε τρόπο παρόµοιο
µε αυτόν των ανθρωπων.

Σε αυτή τη διπλωµατική ϑα επικεντρωθούµε στην σηµασιολογική τµηµατοποίηση, τη
διαδικασία διαχωρισµού (labelling) κάθε περιοχής –ή pixel– µιας ψηφιακής εικόνας σε
συγκεκριµένες περιοχές ή αντικείµενα. Κάνουµε χρήση ϐαθιών νευρωνικών δικτύων
(Deep Neural Networks), τα οποία τα τελευταία χρόνια έχουν αποδειχθεί ότι υπερτε-
ϱούν των προηγούµενων τεχνικών µηχανικής µάθησης σε διάφορους τοµείς, µε την
υπολογιστική όραση να είναι µια απο τις πιο εµφανής περιπτώσεις. Τα ϐαθιά νευρωνι-
κά δίκτυα µπορούν να εκπαιδευτούν να αναγνωρίζουν και να οµαδοποιούν αντικείµενα
σε µια εικόνα και πιο συγκεκριµένα τα συνελικτικά νευρωνικά δίκτυα (Convolutional
Neural Networks (CNN)), µια κατηγορία των νευρωνικών δικτύων που χρησιµοποιείται
συνήθως για την εξαγωγή χαρακτηριστικών στην περίπτωση των εικόνων, έχει αποδει-
χθεί ότι µπορούν να εξάγουν σηµαντικά οπτικά χαρακτηριστικά που µοιάζουν µε αυτά
που δηµιουργούνται στον οπτικό ϕλοιό του ανθρώπου.

Συγκεκριµένα αναπτύσσουµε µια πρωτότυπη συνελικτική αρχιτεκτονική νευρωνικών
δικτύων για σηµασιολογική τµηµατοποίηση στα πλαίσια υποβοήθησης της ανθρώπινης
δραστηριότητας στην καθηµερινή Ϲωή, µε έµφαση στην σηµασιολογική τµηµατοποίηση
εικόνων σε ένα σενάριο πρωινού. Χρησιµοποιούµε εικόνες RGB και RGB-D (εικόνες µε
4 κανάλια : RGB και ϐάθος) ως σήµατα εισόδου και εξετάζουµε τα οφέλη της προσθήκη
της πληροφορίας του ϐάθος κατά την εκπαίδευση του δικτύου. Σε επόµενο ϐήµα,
εξετάζουµε την επίδοση του νευρωνικού δικτύου µας οταν εκπαιδευτεί σε δεδοµένα από
διαφορετικές οπτικές γωνίες. Χρησιµοποιούµε δύο κάµερες που στοχεύουν το τραπέζι
από διαφορετικές οπτικές γωνίες. Η πρώτη κάµερα τοποθετείται σε headset (οπτική
του χρήστη) και η δεύτερη στο τραπέζι.

Επιπλέον για την παρούσα έρευνα δηµιουργήσαµε ένα νέο σύνολο δεδοµένων χρησι-
µοποιώντας δύο Intel RealSense κάµερες στην δοµή που ήδη αναφέρθηκε. Τα πρώτα
δύο συνελικτικά νευρωνικά δίκτυα (CNN) εκπαιδεύτηκαν µε το σύνολο δεδοµένων που
συλλέξαµε από το headset (ένα µε RGB και το επόµενο µε RGB-D). Το τρίτο νευρωνικό
δίκτυο εκπαιδεύτηκε µε το σύνολο δεδοµένων που συλλέχθηκε από τη δεύτερη κάµερα
και το τελευταίο µε το σύνολο δεδοµένων και από τις δύο οπτικές.

Ο προσδιορισµός της σηµασίας χρήσης εικόνων από διαφορετικές οπτικές γωνίες και
της πληροφορίας του ϐάθους στη σηµασιολογική τµηµατοποίηση, ϑα ϐοηθήσει στην
ανάπτυξη ισχυρών, γρήγορων και ακριβέστερων αλγορίθµων για την αναγνώριση αντι-
κειµένων σε εφαρµογές υποβοήθησης της ανθρώπινης δραστηριότητας στην καθηµε-
ϱινή Ϲωή (ADL). Αυτό είναι ένα σηµαντικό ϐήµα για την επίτευξη του τελικού στόχου
της δηµιουργίας ϱοµπότ (π.χ. ϱοµποτικούς ϐραχίονες, αναπηρικές καρέκλες και ε-
ξωσκελετούς) που µπορούν να ϐοηθήσουν τα άτοµα µε σοβαρές κινητικές ϐλάβες να
απολαύσουν το πρωινό τους.
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Abstract

Computer vision, the field of artificial intelligence that develops computational al-
gorithms to interpret and understand the visual world, has been studied in many
perspectives. It expands from raw data recordings into techniques and ideas com-
bining digital image processing, pattern recognition, machine learning and computer
graphics. As its extensive usage has attracted many scholars to integrate with many
disciplines and fields, in assistive robotics, computer vision aims to develop systems
to help robots understand images in a similar way humans do.

In this thesis, we focus on semantic segmentation, the process of labelling each area
–or pixel– of a digital image according to a representation class. We make use of
deep learning methods, which, over the last years, have been shown to outperform
previous state-of-the-art machine learning techniques in several fields, with com-
puter vision being one of the most prominent cases. Deep learning models can be
trained to identify and classify objects in an image, and, in particular, Convolutional
Neural Networks (CNN), a class of deep neural networks most commonly used in
visual imagery, has been shown to be able to extract important visual features that
resemble the ones generated in the visual cortex of humans.

In particular, we develop a novel convolutional neural network architecture for se-
mantic segmentation in the framework of Activity of Daily Life (ADL), with focus on
semantic segmentation of images in a breakfast scenario. We use RGB and RGB-D
images as input signals (images with 4 channels: RGB colors and Depth) and quan-
tify the benefits of the additional information of depth in object classification. As
a next step, we evaluate the performance of our deep neural network when trained
with data from multiple viewpoints. We make use of two cameras pointing on the
table with a different field of view. The first camera is placed on a headset (user’s
point of view) and the second on the table.

Furthermore, for this project we create a new dataset using two Intel RealSense cam-
era sensors, in the apparatus mentioned above. This dataset is used to train three
different convolutional neural networks for semantic segmentation. The first two
CNNs are trained with the dataset collected from the headset (one with RGB and one
with RGB-D information). The third CNN is trained with the dataset collected from
the second camera, and the last one with the dataset from both camera views.

Quantifying the importance of multiple viewpoints and depth information in seman-
tic segmentation will help in developing robust, fast, and more precise perception
algorithms for object recognition in ADL applications. This is an important step to-
wards the final goal of creating assistive robot agents (e.g. robotic arms, wheelchairs,
and exoskeletons) that can help people with severe motor impairments enjoy their
first meal of the day.
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Chapter 1

Introduction

Image segmentation is an essential component in many visual understanding sys-
tems. It involves partitioning images (or video frames) into multiple segments or
objects [1]. Segmentation plays a central role in a broad range of applications [2], in-
cluding medical image analysis (e.g., tumor boundary extraction and measurement
of tissue volumes), autonomous vehicles (e.g., navigable surface and pedestrian de-
tection), video surveillance, and augmented reality to count a few. Numerous image
segmentation algorithms have been developed in the literature, from the earliest
methods, such as thresholding [3], histogram-based bundling, regiongrowing [4],
and k-means clustering [5], to more advanced algorithms such as conditional and
Markov random fields [6], and sparsity based [7, 8] methods. Over the past few
years, however, deep learning (DL) models have yielded a new generation of image
segmentation models with remarkable performance improvements —often achieving
the highest accuracy rates on popular benchmarks— resulting in a paradigm shift in
the field [9]. For example, Figure presents image segmentation outputs of a popular
deep learning model, DeepLabv3 [10].

Figure 1.1: Segmentation results of DeepLabV3 [10] on sample images.
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Image segmentation can be formulated as a classification problem of pixels with se-
mantic labels (semantic segmentation) or partitioning of individual objects (instance
segmentation). Semantic segmentation performs pixel-level labelling with a set of
object categories (e.g., human, car, tree, sky) for all image pixels, thus it is generally
a harder undertaking than image classification, which predicts a single label for the
entire image. Instance segmentation extends semantic segmentation scope further
by detecting and delineating each object of interest in the image (e.g., partitioning of
individual persons).

In this thesis, we will focus on semantic segmentation, the process of labelling each
area –or pixel– of a digital image according to a representation class. We will make
use of deep learning methods, which, over the last years, have been shown to out-
perform previous state-of-the-art machine learning techniques in several fields, with
computer vision being one of the most prominent cases. Deep learning models can
be trained to identify and classify objects in an image, and, in particular, Convolu-
tional Neural Networks (CNN), first proposed by Lecun in [11]. CNNs are a class of
deep neural networks most commonly used in visual imagery, and has been shown
to be able to extract important visual features that resemble the ones generated in
the visual cortex of humans [12,13].

In this regard, we will develop a novel convolutional neural network architecture,
based on the MobileNetV2 framework [14], for semantic segmentation in the frame-
work of assistive robotics for Activities of Daily Living (ADL) [15,16]. In particular, we
will focus on semantic segmentation of images in a breakfast scenario. We will use
RGB-D images as input signals (images with 4 channels: RGB colors and Depth) and
quantify the benefits of the additional information of depth in object classification.
We will then evaluate the performance of our deep neural network when trained
with data from multiple viewpoints. We will make use of two cameras pointing on
the table with a different field of view. The first camera will be placed on a headset
(user’s point of view) and the second on the table.

Moreover, for this project we will create a new dataset for assistive robotics ap-
plications, inspired by [16, 17], using two Intel RealSense camera sensors, in the
apparatus mentioned above. This dataset will be used to train four different con-
volutional neural networks for semantic segmentation. The first two CNNs will be
trained with the dataset collected from the headset (one with RGB and one with
RGB-D information). A third CNN will be trained with the dataset collected from the
second camera and the last one with the dataset from both cameras.

Quantifying the importance of the information of depth in semantic segmentation in
object recognition, will help in developing robust, fast, and more precise perception
algorithms for object recognition in ADL applications [18]. This is an important step
towards the long-term goal of creating assistive robot agents (e.g. robotic arms,
wheelchairs, and exoskeletons) [16, 19, 20] that can help people with severe motor
impairments enjoy their first meal of the day.

4



Finally, the contribution of this work can be summarised in the following:

• We introduce a deep convolutional neural network to be used for semantic
segmentation in assistive robotics for activities of daily living

• We create a high-quality real-life labeled dataset of images from a breakfast
table scenario multiple views are provided with potentially partial visibility

• We evaluate the performance of the proposed learning architecture for semantic
segmentation in these new real-life data, and compare it to simulation results

• We quantify the effect of multiple views and depth in the performance of the
proposed algorithms.
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Chapter 2

Technical Background

2.1 Computer Vision and Object Recognition

Computer vision has been expanded into the vast area of field ranging from recording
raw data into the extraction of image pattern and information interpretation [21]. It
has a combination of concepts, techniques, and ideas from digital image processing,
pattern recognition, artificial intelligence and computer graphics [22]. Most of the
tasks in computer vision are related to the process of obtaining information on
events or descriptions, from input scenes (digital images) and feature extraction.
The methods used to solve problems in computer vision depend on the application
domain and the nature of the data being analysed.

In the context of assistive robotics, the goal of computer vision algorithms is to
develop systems that can help robots understand images as human vision system
does. There is a variety of computer vision techniques that are widely used today
and choosing the right one for each purpose may sometimes be challenging. These
include:

• Image Classification

• Object Detection

• Instance Segmentation

• Semantic Segmentation

2.1.1 Image Classification and Object Detection

Image classification refers to classifying an image as a whole into different categories.
While many applications are based in classification algorithms such as these [23],
the context of an image cannot be directly interpreted [24].

Object detection, also known as bounding-box detection, involves outputting bound-
ing boxes and labels for each object found inside an image. The difference between
object detection and image classification method is that the first approach classifies
and localise many objects instead of a single one. Object detection is used in vast
domains like scene understanding, self-driving, quality control of parts in manufac-
turing etc [25].
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2.1.2 Semantic and Instance Segmentation

Image segmentation is an essential component in many visual understanding sys-
tems. It involves partitioning images (or video frames) into multiple segments or
objects [1]. Segmentation plays a central role in a broad range of applications [2], in-
cluding medical image analysis (e.g., tumor boundary extraction and measurement
of tissue volumes), autonomous vehicles (e.g., navigable surface and pedestrian de-
tection), video surveillance, and augmented reality to count a few.

Image segmentation can be formulated as a classification problem of pixels with se-
mantic labels (semantic segmentation) or partitioning of individual objects (instance
segmentation). Semantic segmentation performs pixel-level labelling with a set of
object categories (e.g., human, car, tree, sky) for all image pixels, thus it is generally
a harder undertaking than image classification, which predicts a single label for the
entire image. Instance segmentation extends semantic segmentation scope further
by detecting and delineating each object of interest in the image (e.g., partitioning of
individual persons).

Numerous image segmentation algorithms have been developed in the literature,
from the earliest methods, such as thresholding [3], histogram-based bundling, re-
giongrowing [4], and k-means clustering [5], to more advanced algorithms such as
conditional and Markov random fields [6], and sparsity based [7,8] methods. Over
the past few years, however, deep learning (DL) models have yielded a new genera-
tion of image segmentation models [26] with remarkable performance improvements
–often achieving the highest accuracy rates on popular benchmarks– resulting in a
paradigm shift in the field [9,13,18].

Sensor Inputs

Semantic segmentation approaches have been traditionally focused on two- dimen-
sional images [27–31]. The sensor information typically involves three colour chan-
nels (RGB) –which constitute a complete basis in the colour space– where each
channel consists of a 2D array of pixel values, usually in the range of (0,255). Ad-
ditional depth information can be added in the form of an extra channel to form the
so called 2.5D data (RGB-D), which, however, are still in the minority compared to
the RGB datasets available today [32–36].

2.1.3 Semantic Segmentation for Assistive Robotics in Activities
of Daily Living

In the recent years, the adoption of robotic devices in rehabilitation and assistive field
is widely increased for a number of reasons; they can assure a high repeatability of
movements and intensity of treatment, an active role of the patients and an enhance-
ment of their level of independence and social participation. Robot motion planning
plays an important role in the interaction between user and assistive technology,
especially for the execution of Activities of Daily Living (ADLs) [16, 17, 37], which
are fundamentals for a social and professional reintegration. Since shared robotic
schemes heavily rely on image sensory for decision making, object recognition and
semantic segmentation stand at the core of most assistive robotics problems.
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In order to deal with semantic segmentation in assistive robotics, however, one needs
to employ advanced notions and algorithms from the field of machine learning, which
is the topic of the next section.

2.2 Machine Learning

Machine Learning, the study of computer algorithms that improve automatically
through experience, has been established as an integral part of the research focus
in a wide range of fields, including computer science, mathematics and neuroscience.
As a sub-field of Artificial Intelligence it is associated with computational algorithms
that try to recognise patterns, approximate functions, learn data representations and
automatically make decisions. Due to the interdisciplinary nature of these problems,
Machine Learning has adopted mathematical models and methods from functional
analysis, optimisation and systems theory, and has taken inspirations from biology
and neuroscience, the scientific study of the nervous system of humans towards the
understanding of the biological basis of learning, memory, behavior, perception, and
consciousness.

2.2.1 A Historical Retrospective of Machine Learning.

What came to be known as “Machine Learning” starts in the 1950’s and 1960’s
with statistical methods for probabilistic inference. At the same time, digital signal
processing methods and system identification and filtering are introduced for linear
systems [38,39], as well as a mathematical model for a biologically inspired artificial
neural network with the Hebbian and perceptron learning rules [40, 41]. In the
1970’s, limitations of the perceptrons and neural networks, such as the famous
XOR problem, trigger a pause phase for neural networks called the “AI winter”.

In the 1980’s the rediscovery of the backpropagation algorithm [42] causes a resur-
gence in machine learning research, and the concepts of reinforcement learning and
convolutional neural networks are first introduced [43,44].

In the 1990’s, the work on Machine Learning shifts from a knowledge-driven ap-
proach to a data-driven approach. Support vector machines (SVMs) [45] and re-
current neural networks (RNNs), such as Long Short-Term Memory (LSTM) net-
works [46], become popular, and the fields of computational complexity via neural
networks and super-Turing computation start. At the same time, a hierarchical
vision system, is suggested as a working model of biological vision [47], based on
a pre-configured hierarchy of modules, such as Gabor edge detectors, which are
well represented by wavelet transforms [48], a mathematical theory that gives new
insights in signal decomposition.

In the 2000’s, kernel methods [49,50] and unsupervised methods for learning sparse
features and representations become widespread [51–53], and, the existence of an
intrinsic universal learning architecture is strongly supported by a groundbreaking
neuroscientific study [54] which shows that not only can the rewired auditory cortex
develop the specific Gabor features characteristic of visual cortex, but it can also
become functionally visual [55,56]. Along those lines, in 2006, a greedy algorithm is
proposed to train Deep Belief Networks (DBNs) [57] in what is considered to be the
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breakthrough that initiated the third wave of neural networks and introduces the
term Deep Learning.

In the 2010’s, Deep Learning becomes feasible and is scaled up on fast parallel
hardware (GPUs). Deep Convolutional Networks [43], Variational Autoencoders [58]
and Generative Adversarial Networks (GANs) [59] are employed to learn hierarchical
sparse representations that are structurally and functionally similar to represen-
tations in analogous regions of biological cortex, improving the state-of-the-art in
speech and visual object recognition, and, as will be discussed, semantic segmenta-
tion as well.

2.3 Deep Convolutional Neural Networks

Deep learning is a rich family of methods, encompassing neural networks, hierar-
chical probabilistic models, and a variety of unsupervised and supervised feature
learning algorithms. The recent surge of interest in deep learning methods is due
to the fact that they have been shown to outperform previous state-of-the-art tech-
niques in several tasks, including semantic segmentation.

In particular, Convolutional Neural Networks (CNN), first proposed by Lecun in [11],
are a class of deep neural networks most commonly used in visual imagery, and has
been shown to be able to extract important visual features that resemble the ones
generated in the visual cortex of humans [12,13].

Convolutional Neural Networks (CNNs) were inspired by the visual system’s struc-
ture, and in particular by the models of it proposed in [60]. A CNN has a hierarchical
architecture. It comprises three main types of neural layers, namely,

• convolutional layers

• pooling layers, and

• fully connected layers.

Each type of layer plays a different role. Figure 2.1 shows a CNN architecture for
an object detection task, and Figure 2.2 shows a CNN architecture for an image
segmentation task.

Figure 2.1: Example architecture of a CNN for a computer vision task (object detec-
tion) [13].
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Starting from the input signal x, each subsequent layer xj is computed as

xj = ρWjxj−1 (2.1)

Here Wj is a convolutional operator and ρ is a rectifier function, usually the ReLU
function max(x,0), or the sigmoid function s(x) = 1

1+e−x . Because Wj represents a
convolution, it is easier to think of it as a stack of convolutional filters, such that the
layers become filter maps and each layer can be written as a sum of convolutions of
the previous layer, i.e.

xj(u, kj) = ρ

∑
k

(xj−1(·, k) ∗Wj,kj(·, k))(u)

 (2.2)

where ∗ represents the discrete convolution operator:

(f ∗ g)(x) =
∞∑

u=−∞

f (u)g(x − u) (2.3)

Typically a downsampling step is implemented after the application of the non-linear
rectifying function ρ, and the downsampling is done by max-pooling.

We note that convolution operators that take place inside the neural network are
represented by Wj, which, for inputs of one dimension takes the form of a matrix,
but for higher dimensions, including the two-dimensional images, takes the form of
a general tensor.

From a designer’s viewpoint, the effect of the various hyper-parameters of the net-
work needs to be considered. A brief overview is presented next.

Figure 2.2: Fully Convolutional Network figure by Long et a [9].

2.3.1 Hyper-parameters

In this section, we discuss the effect of various parameters of the convolutional
neural network from a practitional standpoint.

Input layers

The input layer brings the information into the system for further processing. For
images as inputs the input layer typically consists of three channels (RGB) of arrays
of pixel values. Depth, as well as different viewpoints may be used as additional
channels.

10



Convolutional layers

Convolutional layers are usually the first layers after the input layer as they has
the advantage that it scales nicely with the size of the input images. Convolutional
layers are filters of certain dimension that is being applied to the whole image in the
entire depth and compute the output of neurons that are connected to local regions
in the input. They compute a dot product between their convolution filter and a
small region they are connected to in the input image matrix. A convolutional filter
or kernel decodes the informations in pixels. Each matrix element in the convolution
filter is the weights that are being trained. These weights will impact the extracted
convolved features. An example of an image with one channel can be seen in figure
2.3 where we apply a filter to extract vertical edges. By convolving the defined filter
over the image and calculating the results we get the activation map that give us the
information of where the vertical edges are.

Figure 2.3: An example of a 2D convolution operation.

Convolutional layers are defined using several parameters tree of which will be ex-
plained in depth in the following:

• Depth

• Stride

• Zero Padding

The depth parameter corresponds to the number of filters we want to apply in an
image. Different filters extract different information for the image region such as
edges or colors. The term stride indicates the step that the filter uses when it
interacts with input image. For example a stride with value 1 indicated that the
filter interacts with the image by passing one pixel per time. Convolutional layers
create a very precise output (feature map) where a change in the input image can
generate a fully different feature map. Increasing the stride parameter is a solution
to this problem. Bigger stride values jumps more pixel and the result is smaller
outputs. By changing the stride of the convolution filter along the input matrix we
achieve down-sampling. As a result a lower resolution matrix of the input matrix is
created that still contains the important structural elements, without the fine detail
that may not be as useful to the task.

The zero padding parameter is a way to “resize” the output image by symmetrically
adding zeros to an image tensor in order to adjust the matrix. With this technique
we can control the size of the output so it will have the same height and width with
the input.
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Among the different convolutional neural network approaches, in this work we adopt
the key ideas from the MobileNetV2 network [14] which based on depthwise sepa-
rable convolutions. The basic idea of separable convolutions is that they split the
convolution into two separable layers. The first layer is the depthwise convolution
and the second the pointwise. With depthwise convolution, a single convolutional
layers is being applied thought all the input channels and collects spatial features
from each one of them and with pointwise we can compute linear combinations of
the input channels and extract new features.

Activation layers

Activation layers provide a non linearity to the model and are an important part of
the architecture. The activation functions ρ are often rectifying functions, usually
the ReLU function max(x,0), or the sigmoid function s(x) = 1

1+e−x .

For multiclass classification problems, however, the softmax operator is widely used,
as it translates to conditional probabilities, i.e. probabilities for a data point to belong
to a specific class. The softmax operator is defined as follows:

ρ(x)i =
exi∑d
j e

xj
, x = [x1, . . . , xd]T (2.4)

Softmax is also the only activation function that can be used with the categorical
crossentropy loss function.

Pooling layers

Pooling layers are usually added after a convolutional layers or a ReLU layer. They
reduce the parameters to learn and as a result the computation of the network. Like
convolutional layers, pooling operations are also like filters and they are applied
along to each feature map. The difference between the convolutional layers and
pooling layers is that the last summarise features lying within the region covered
by the filter instead of precisely positioned as the first do. This makes the model
more robust to variations in the position of the features in the input image. They
usually reduce the dimensions of the feature map by half and there are two common
operations :

• Max Pooling

• Average Pooling

Max Pooling filters performs a downsampling in the feature map and they divide it
in smaller parts where then they compute the maximum value in these part.

Figure 2.4: Max-Pooling (left) and AVerage-pooling (right) filters.
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Average pooling compute the average values present in the region of feature map
covered by the filter.

Fully connected layers

The structure of the fully connected layers is represented in figure 2.5 where each
colored circle is a neuron and the lines in between show the connections.

Figure 2.5: Fully connected layers.

Fully connected layers takes the output from the previous layers and turns them
into a single vector. If we assume that we want to extract features from a color im-
age (RGB) that has a size 25*25*3 (width*height*channels) then we have an image of
1,875 pixels where each pixel is an input ( X ) in the input layer. If we assume that
the next layer has a 4 neurons then the system has 1875 * 4 = 7500 parameters to
calculate. More complex images and more dense networks requires more computa-
tional cost. For that reason in complex networks fully connected layers are usually
used only as last layers in a dense network.

2.3.2 Training Algorithms and Evaluation

Deep neural networks are trained with the Backpropagation algorithm [42], which
is a stochastic gradient descent algorithm [61] that tries to minimize the expected
error:

E(X,w) =
1
n

∑
n

d(yd − y) (2.5)

with respect to the weights w of the neurons. Here yd is the desired output of the
network and y the actual output. The dissimilarity metric d, which is called the
loss function, is usually chosen to be the Euclidean distance, but can be some other
measure, such as the categorical crossentropy, which is the one that we are going
to be using in this work.

Now, stochastic gradient descent takes the form:

wt+1 = wt − αt
∂E(X,wt)
∂w

(2.6)

and the partial derivatives propagate through the network as a result of the chain
rule, which gives the training algorithm the name backpropagation.
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An important parameter for the convergence of the stochastic gradient descent al-
gorithms is the choice of the stepsizes αt, which are called the learning rates. In
particular, adaptive learning rates have been studied for accelerated learning, with
the Adam method [62] being one of the most widely used. We will adopt this method
as well.

Finally, in order to evaluate the performance of the network, we are going to be
using the classification loss and the precision measure (true positives over all posi-
tives).
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Chapter 3

Methodology

In this chapter we showcase our methodology, including the datasets used (sim-
ulated and real) and the proposed neural network learning architecture. We first
introduce a novel deep convolutional neural network to be used for semantic seg-
mentation in assistive robotics for activities of daily living, and test its performance
on a dataset of simulated RBG-D images. In order to assess our methodology in
real-life scenarios, we create a high-quality real-life labelled dataset of images from
a breakfast table scenario, that are generated from two different camera views.

3.1 Deep Learning for Semantic Segmentation

For our Breakfast scenario approach we need a lightweight neural network in order
to be easily used with mobile robots. Among the numerous deep learning architec-
tures that exist in the literature, we build upon the MobileNet V2 [14] architecture
for various reasons. MobileNetV2 is an optimised neural network for mobile devices,
offers high accuracy values and requires low computational power. The main idea
of MobileNetV2 is to use depthwise separable convolutions with residuals to build
lighter deep neural networks. In convolutional layers, as explained in Chapter 2,
the convolution filter is applied to each of the channels of the input image. Mo-
bileNetV2 uses convolution filter only in the first layer and the next layers consists
a 3x3 depthwise and 1x1 pointwise convolutions after one another. The depthwise
convolution does the convolution on each channel separately and is used to filter
the input channels. Pointwise convolution is similar to regular convolution and is
responsible for extracting new features from depthwise convolutions.

According to Sandeler et al. [14] depthwise separable convolutions is comparable in
performance to convolutional filters while, at the same time, reduce significant the
computational cost. In MobileNetV2, there are two types of blocks. One block is a
residual block with stride of 1 and a second block with stride of 2 for downsampling.
Both blocks include three layers mentioned above (see Figure 3.1 ). Finally, for
the activation function, the authors use a variant of ReLU, called Relu6 (ρ(x) =
min(max(0, x),6)) in an attempt to enhance the performance of the training rule
when faced with low-precision computations.
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Figure 3.1: MobileNetV2 blocks as proposed in [14].

In our implementation we use MobileNetV2 as a backbone with transferring knowl-
edge from ImageNet dataset [63]. The idea of transfer learning is to re-use model
weights from pre-trained models in order to minimise training time on large datasets.
In Figure 3.2 we can observe the architecture of our model with the simulated RGB
inputs. Our input dataset has input shape (240,424,3). After the backbone ar-
chitecture the output shape is (8,14,320). Before we start the upsampling we add
block17 and block18. Block 17 is consisted of a DepthwiseConv2D layer with stride
2 followed by a ReLU layer and a Convolutional 2D with ReLU activation function.
Block 18 is a zero Padding 2D layer needed in order to achieve the desired dimen-
sionality for upsampling layers. Each of the upsampling blocks from block 19 to 22
are consisted of 2 layers, an upsampling layer and a concatenate layer. There are
two methods for merging information between layers. Adding and concatenating.
Usually the first is used when we want to to interpret one of the inputs as a residual
correction to the other input. Concatenating on the other hand is more sufficient
when the two inputs aren’t very closely related. The last layer of our structure is a
convolutional 2D array with softmax activation function. As mentioned in chapter
2, the softmax function returns the conditional probability for a data point to be-
long to a specific class. Lastly, we use the Adam optimiser as a training rule, and
categorical crossentropy as a loss function.

In order to prevent overfitting, we randomly split our datasets to training and testing
sets. We manually set a 10% of data used for testing. Training with more data can
help the algorithms perform more accurate predictions.

The same blocks, as described above, were used for both the simulated and real
dataset 3.3 with different input and output layers. MobileNetV2 architecture re-
quires exactly 3 inputs channels, and, as a result training the network with RGB-D
datasets was not achievable. For this reason, we designed a new model based in
MobinetNetV2 blocks in order to be trained with RGB-D inputs. Our new model
accepts 4 channels as inputs and the rest architecture is the same as has already
described. For RGB-D input we did not use transfer learning.
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Figure 3.2: Block Diagram of the proposed architecture for simulated Dataset.

Figure 3.3: Block Diagram of the proposed architecture for real Dataset.

3.2 Simulated Dataset

The simulated data consist of RGB-D, segmented images that were produced by the
Unreal Engine. The dataset size is 18611 images (424 height x 240 width) and the
scene presents a breakfast scenario with 10 classes of objects. The objects presented
are "Standard", "Room", "Furniture", "Plate", "Fork", "Bottle", "Cup", "Robot", "Head",
"Food". The camera model used by the Unreal Engine in this scenario, emulates an
Intel RealSense camera, which is the model that we are going to use later to record
the real-life images for our real dataset. The camera is mounted on the robot’s
end-effector. This approach is adopted to examine how the network’s efficiency
in recognising objects is affected by different camera angles 3.5, and under what
conditions it fails to accurately classify them.

An illustration of the dataset is provided in Figure 3.5, which shows the breakfast
scenario approach where the robot arm faces the scene, and in Figure 3.4, which
shows the camera view when the robot arm grabs the food from the table.
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Figure 3.4: RGB Image from simulated with normal scene view.

Figure 3.5: RGB Image from simulated data ( observation from an angle).

3.3 Real Dataset

In order to assess our methodology in real-life scenarios, we create a high-quality
real-life labeled dataset of images from a breakfast table scenario, that are generated
from two different camera views. RGB-Depth images were taken using two Intel
Realsense cameras pointing on the table, one from the long side and the other from
the short side as shown in figure 3.6. For this dataset 448 RGB-D images were
taken in total, 224 (1280*720 pixels) images from each side of the table. There are
9 distinct objects:

(background, table, cup, bottle, glass, fork, knife, food, plate)

The scene was in a room with yellow colored wall with partly artificial light, partly
sunlight. Lighting conditions poses a great challenge to the accuracy of object detec-
tion. The intensity of the light affects both the color and the texture characteristics of
objects. Moreover angle lighting can cause shadows which has also and import effect
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in network’s accuracy. In our collected dataset due to the nature of our research,
we couldn’t achieve to eliminate shadows from both table views. As we can see in
3.6 from the short side of the table the shadows are not visible while we can observe
them by the view from long side of the table. We will use these contours to asses the
network’s accuracy under real-life light artifacts.

Compared to the existing datasets, we have collected our dataset with:

• transparent glass

• overlapped objects

• objects what are not visible from both sides

• objects what are in different angles.

All the above assumptions could be seen in a Breakfast scenario and it’s interesting
to investigate network performance in these unusual cases. Some of the above
assumptions can be observed in figure 3.6. Finally, the labelling process was done
using the labelme tool [64]. An example of created labels is presented in figure
3.7.

Figure 3.6: Table side view.

Figure 3.7: Labeled scene.
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Chapter 4

Experimental Evaluation

In this section we evaluate the performance of the proposed neural network archi-
tecture in the simulated and real-life data, for RGB and RGB-D images. We also test
our learning algorithm in multi-view input images.

4.1 RGB Data

As shown in Table 4.1, the proposed learning architecture achieves state of the art
accuracy when trained and tested on the RGB images, regardless of whether these
are generated by simulation or captured in real life. The latter is very important
and is telling of the robustness of this architecture in sensor artifacts, especially in
those coming from strange light conditions or bad camera angles. We would like to
emphasize that this is a very encouraging result, since the end goal of the proposed
architecture is to be used in real-life assistive robotics scenarios.

Input Signals Dataset length Epochs s/step Duration loss precision
RGB simulated 1024 250 2s/step 500min 0.043 0.988

RGB real headset view 224 150 2s/step 300min 0.080 0.978
RGB real table view 224 150 2s/step 300min 0.157 0.980

Table 4.1: The loss and precision of the model across different epochs and inputs.

In the following figures, we present an example of the actual input and the produced
segmentation of (a) an RGB simulated image, (b) a real RGB image from the headset
view, and (c) a real RGB image from the table view.
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4.1.1 Simulated data

Figure 4.1: An example of an input simulated image and the model’s segmentation.

Figure 4.2: True segments values for standard and room.

Figure 4.3: Network results for standard and room.
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Figure 4.4: True segments values for cup and robot.

Figure 4.5: Network segments values for cup and robot.

Figure 4.6: True segments values for fork and bottle.

Figure 4.7: Network segments values for fork and bottle.
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Figure 4.8: True segments values for furniture and plate.

Figure 4.9: Network segments values for furniture and plate.

Figure 4.10: True segments values for head and food.

Figure 4.11: Network segments values for head and food.
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4.1.2 Real data (headset view)

Figure 4.12: An example of an input image (headset view) and the model’s segmen-
tation.

Figure 4.13: True segments value for background and table.

Figure 4.14: Network values for background and table.
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Figure 4.15: True segments for cup and bottle.

Figure 4.16: Network segments for cup and bottle.

Figure 4.17: True segments for glass and fork.

Figure 4.18: Network segments for glass and fork.
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Figure 4.19: True segments for knife food and plate.

Figure 4.20: Network segments for knife food and plate.

4.1.3 Real data (table view)

Figure 4.21: An example of an input image (table view) and the model’s segmentation.

Figure 4.22: True segments value for background and table.
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Figure 4.23: Network values for background and table.

Figure 4.24: True segments for cup and bottle.

Figure 4.25: Network segments for cup and bottle.

Figure 4.26: True segments for glass and fork.

27



Figure 4.27: Network segments for glass and fork.

Figure 4.28: True segments for knife food and plate.

Figure 4.29: Network segments for knife food and plate.

4.2 RGB-D Data

In this section we test our model using the RGB-Depth dataset that we collected.
As shown in Table 4.2, the proposed learning architecture achieves state of the
art accuracy when trained and tested on the RGB-D images, regardless of whether
these are generated by simulation or captured in real life. The latter is very important
and is telling of the robustness of this architecture in sensor artifacts, especially in
those coming from strange light conditions or bad camera angles. We would like to
emphasize that this is a very encouraging result, since the end goal of the proposed
architecture is to be used in real-life assistive robotics scenarios.

Compared to the case of RGB input only, we conclude that the information of depth
adds no statistically significant benefits to the segmentation performance of our
model. This may be a characteristic of the datasets at hand, or a feature of the
model itself. Further experimentation needs to be conducted in order to deeply
understand this phenomenon. However, based on these results, an RGB-D camera
is not required for accurate image segmentation in our breakfast scenario.

In the following figures, we present an example of the actual input and the produced
segmentation of (a) an RGB-D simulated image, and (b) a real RGB-D image from
the headset view.
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Input Signals Dataset length Epochs s/step Duration loss precision
RGB-D simulated 18611 50 2s/step 100min 0.049 0.980
RGB-D simulated 1024 1000 2s/step 2000min 0.145 0.972

RGB-D real headset 224 1000 2s/step 2000min 0.229 0.958
RGB-D real headset+table 448 1000 2s/step 2000min 0.154 0.966

Table 4.2: The loss and precision of the model across different epochs and inputs.

4.2.1 Simulated data

Figure 4.30: Input RGB and Depth image.

Figure 4.31: True segments for standard and room.

Figure 4.32: Network segments for standard and room.
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Figure 4.33: True segments for cup and robot.

Figure 4.34: Network segments for cup and robot.

Figure 4.35: True segments for fork and bottle.

Figure 4.36: Network segments for fork and bottle.
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Figure 4.37: True segments for furniture and plate.

Figure 4.38: Network segments for furniture and plate.

Figure 4.39: True segments for head and food.

Figure 4.40: Network segments for head and food.
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4.2.2 Real data (headset view)

Figure 4.41: Input RGB and Depth image.

Figure 4.42: True segments for background and table.

Figure 4.43: Network segments for background and table.

Figure 4.44: True segments for cup and bottle.
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Figure 4.45: Network segments for cup and bottle.

Figure 4.46: True segments for glass and fork.

Figure 4.47: Network segments for glass and fork.

Figure 4.48: True segments for knife food and plate.

Figure 4.49: Network segments for knife food and plate.
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4.3 Multiple view images

In this section we test our model using RGB input images from different viewpoints.
As shown in Table 4.3, the proposed learning architecture achieves high precision
and low loss in less training time comparatively to 4.2 and 4.1 .

Compared to the case of RGB-D inputs (from headset and table view), we conclude
that using multiple view image dataset we achieved with less training data and also
in significant less time, almost the same precision and loss.

We would like to point out this part as a very interesting result, since the end goal
is to find a dataset for which our network performs with high precision, low loss in
low training time.

Summarising we would like to re-mention that we achieved very promising results,
since the end goal of the proposed architecture is to be used in real-life assistive
robotics scenarios.

Input Signals Dataset length Epochs Duration s/step loss precision
RGB 224 100 2s/step 200min 0.444 0.909
RGB 224 150 2s/step 300min 0.155 0.978

Table 4.3: The loss and precision of the model.

In the following figures, we present an example of the actual input and the produced
segmentation of a real RGB multi-view image.

Figure 4.50: Input RGB data.

Figure 4.51: True values for background and table.

34



/

Figure 4.52: Network values for background and table.

Figure 4.53: True values for cup and bottle.

Figure 4.54: Network values for cup and bottle.

Figure 4.55: True values for glass and fork.

Figure 4.56: Network values for glass and fork.

Figure 4.57: True values for knife food and plate.
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Figure 4.58: Network values for knife food and plate.
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Chapter 5

Conclusion

We focused on semantic segmentation, the process of labelling each area –or pixel–
of a digital image according to a representation class. We made use of deep learning
methods, which, over the last years, have been shown to outperform previous state-
of-the-art machine learning techniques in several fields, with computer vision being
one of the most prominent cases. In particular, we developed a novel convolutional
neural network architecture for semantic segmentation in the framework of Activity
of Daily Life (ADL), with focus on semantic segmentation of images in a breakfast
scenario. We used RGB and RGB-D images as input signals (images with 4 channels:
RGB colors and Depth) and quantified the benefits of the additional information
of depth in object classification. Next, we evaluated the performance of our deep
neural network when trained with data from multiple viewpoints. We made use of
two cameras pointing on the table with a different field of view. The first camera was
placed on a headset (user’s point of view) and the second on the table.

Furthermore, for this project we created a new dataset using two Intel RealSense
camera sensors, in the apparatus mentioned above. This dataset was used to train
three different convolutional neural networks for semantic segmentation. The first
two CNNs were trained with the dataset collected from the headset (one with RGB
and one with RGB-D information). The third CNN was trained with the dataset
collected from the second camera, and the last one with the dataset from both
camera views.

Quantifying the importance of multiple viewpoints and depth information in seman-
tic segmentation will help in developing robust, fast, and more precise perception
algorithms for object recognition in ADL applications. This is an important step to-
wards the final goal of creating assistive robot agents (e.g. robotic arms, wheelchairs,
and exoskeletons) that can help people with severe motor impairments enjoy their
first meal of the day.
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