NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF INFORMATION TRANSMISSION SYSTEMS AND

MATERIAL TECHNOLOGY

Development of Stochastic Dynamical Models for Optimization
of Deep Brain Stimulation in Movement and Neuropsychiatric

Disorders

DOCTORAL DISSERTATION

Sofia D. Karamintziou

Doctoral Advisor: Prof. Konstantina S. Nikita

Athens, 2015






EGNIKO METZOBIO IIOAYTEXNEIO
2 XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON
YTIOAOTIETON

TOMEAX XYSTHMATON METAAOZHX [IAHPO®OPIAY KAI
TEXNOAOTTAX Y AIKQON

Avartrtuén MovTéAwv ZTOX0OTIKAG AUVAUIKAG YIO TN
BeATioTOTTOINON
TNG &V Tw BdaBel Eyke@aAikng AiEyepong o€ KivnTikEG Kal
NeupowuxiaTpikég AlaTapaxég

AIAAKTOPIKH AIATPIBH

Yooia A. KapapiviClov

EmBiénovoa: Kadnynirpio Kovotavtiva Xr. Nwkrta

Abnva, 2015






NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

5

oS
o
A
2
&
a.
>
C

DI1VISION OF INFORMATION TRANSMISSION SYSTEMS AND
MATERIAL TECHNOLOGY

Development of Stochastic Dynamical Models for Optimization
of Deep Brain Stimulation in Movement and Neuropsychiatric

Disorders

DOCTORAL DISSERTATION

Sofia D. Karamintziou

Advisory Board:  Prof. Konstantina S Nikita
Prof. Nikolaos Uzunoglou

Prof. Dimitrios Koutsouris

Approved by the Review Board on .....

Konstantina S Nikita Dimitrios Koutsouris Nikolaos K Uzunoglou
Professor, NTUA Professor, NTUA Professor, NTUA
Constantinos Siettos Andreas-Georgios Stafylopatis  Eustathios J Boviatsis
Associate Professor, Professor, NTUA Associate Professor,
NTUA UOA

Traianos V Yioultsis
Associate Professor,

AUTH



Sofia D Karamintziou

Copyright © Sofia D Karamintziou, 2015.
All rights reserved.

No part of this thesis may be reproduced or transmitted in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval) for
any commercial purposes without permission in writing from the author. Parts of this thesis may
be reproduced, stored or transmitted for any non-commercial purposes provided that the source
is referred to and the present copyright notice is retained.

Theses and conclusions included in this manuscript are the author’s own and do not necessarily

reflect the official opinion of the National Technical University of Athens.

Yoopia A. Kapapiviliov

Copyright © Zoopia A. Kapapivtiiov, 2015.

Me empuAaén Tovtog SIKOUMUOTOC.

AmayopedeTal 1) avTypaer], onobnkevon Kot dtovoun g Tapovoag EpYaciog, €& oAokANpov 1
TUNLOTOG OVTNG, YO EUTOPIKO okomd. Emtpémeton ) avatummon, arofnkevon kot dtoavoun yio
OKOTLO L] KEPOOGKOMIKO, EKTOOEVTIKNG 1] EPEVVNTIKNG PVONG, VIO TNV TpodTodecn va
avaPEPETAL 1 TYN TPOEAELGNC Kot va, dtatnpeitol To Tapov pinvopa. Epotmuoate tov apopodv
TN (PNON NG EPYACING YI0L KEPOOGKOTIKO GKOTO TPEMEL VAL OTELHVVOVTOL TPOG TO GLYYPOAPEQ.
O1 amOYELC KOl TO GOUTEPAGILOTO TOV TEPIEXOVTUL GE 0LTO TO EYYPAPO EKQPALOVV TO
oLYYPOPEN KOl OEV TPETEL VA, epunveLDEL OTL avTimpocwnevovy Tig enionueg BEaeig Tov EBvikov

Metoofrov TToivteyveiov.



There was a time I could see!

And I have seen boys like these, younger than these, their arms torn out, their legs ripped off!

But there is nothin like the sight of an amputated spirit. There is... no prosthetic for that.

Al Pacino as Lieutenant Colonel Frank Slade - Scent of a Woman (1992)
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Abstract

The use of electrical deep brain stimulation (DBS), during approximately the last thirty years,
has been proven to provide striking benefits for patients with advanced Parkinson’s disease
(PD), essential tremor (ET) and dystonia who have failed conventional therapies. In the interim,
extended applications of this technique for the treatment of neuropsychiatric disorders have
emerged, including treatment-refractory obsessive-compulsive disorder (OCD), Tourette’s
syndrome (TS), major depressive disorder (MDD), drug addiction and anorexia nervosa (AN).
Challenges however exist and are principally related to the optimization of the efficiency of
stimulation through refined strategies at multiple peri-operative levels. Particularly, in addition
to appropriate patient selection and anatomical target determination, the outcome of DBS may
be strongly influenced by the quality of post-operative clinical management, i.e. the adjustment
of stimulation parameters and the selection of the optimal contact, usually over periods of weeks
to months. This trial-and-error procedure entails important disantvantages: (a) it may not
necessarily yield the optimal therapeutic window (i.e. the ratio of the threshold for stimulation-
induced side-effects to the induction threshold for therapeutic benefit) (b) it is considerably
time-consuming, while movement and neuropsychiatric disorder symptoms may fluctuate over
time-scales of seconds to days (c) the open-loop nature and monomorph pattern of standard
high-frequency stimulation (regular, 130Hz) appears chronically to favor tolerance/habituation
phenomena, while being associated with maximal energy consumption. Against this
background, closed-loop neuromodulation is emerging as a more robust alternative and one of
the most promising breakthroughs in the field of DBS. Principally, any algorithm designed for a
maximally efficient closed loop DBS system shall conceptually satisfy two core specifications:
the reliable assessment of optimal biomarkers for feedback control that capture the patient’s
clinical state in real time and the identification of temporally alternative stimulation protocols
that may be more therapeutically- and energy-efficient compared with the conventional pattern

of stimulation.

In the framework of the current doctoral dissertation, stochastic dynamical models for the

optimization of the clinical outcome of DBS in movement and neuropsychiatric disorders are



being developed. The ultimate goal is to algorithmically design a closed-loop DBS system for
advanced PD and treatment-refractory OCD, ensuring optimal performance in terms of both
efficiency and selectivity of stimulation, as well as in terms of computational speed. The main
hypothesis we build upon is that temporally alternative DBS waveforms hold the potential to
drive the neuronal dynamics within the basal ganglia back to the normal desynchronized state,
thereby outperforming the action of standard DBS waveforms, the mechanism of which has
been principally attributed to the reinforcement-driven regularization of neural firing patterns in
the vicinity of the stimulated nucleus. On grounds of a stochastic phase model describing an
ensemble of globally coupled chaotic oscillators driven by common noise, independent noise,
and external forcing, and fitted to subthalamic MERs acquired during surgical interventions for
PD and OCD, we first prove that the desynchronizing and probably also the therapeutic effect of
low-frequency stochastic DBS waveforms may be significantly stronger compared with the
effect of standard stimulation. Subsequently, relying upon a series of methods robust to the
presence of measurement noise, we assess the presence of significant nonlinear coupling
between beta and high-frequency subthalamic neuronal activity, as a biomarker for feedback
control in the proposed closed-loop neuromodulation scheme, and further present a strategy,
incorporating the application of a modified version of the stochastic phase model (phase-
reduced bursting neuron model) and a derivative-free optimization algorithm (direct search
optimization based on quadratic modeling), through which optimal stochastic patterns and
parameters of stimulation for minimum energy desynchronizing control of neuronal activity are
being identified. Cross-frequency coupling proves to be a consistently appropriate biomarker for
feedback control in case of PD, but may display subject-specific applicability in case of OCD.
We demonstrate the ability of the presented modeling approach to identify, at a relatively low
computational cost, stimulation settings associated with a significantly higher efficiency and
selectivity compared with stimulation settings determined during post-operative clinical
management of patients with advanced PD and treatment-refractory OCD. Together, our data
provide strong evidence for the applicability of computational neurostimulation to real-time,

closed-loop DBS systems for movement and neuropsychiatric disorders.

Keywords: electrical deep brain stimulation, Parkinson’s disease, obsessive-compulsive
disorder, subthalamic nucleus, microelectrode recordings, stochastic dynamical model,
desynchronizing effect of stimulation, invariant density measure, clinical effectiveness,
temporally alternative stimulation protocols, closed-loop neuromodulation, biomarkers for
feedback control, nonlinear coupling, efficiency of stimulation, selectivity of stimulation,

computational speed, computational neurostimulation



IHepiinyn

H ypfion g nlextpirnc ev T faber eykepalikns 01€yepons, KATo, T S1APKELN TOV TEAELTAIOV
TPLAVTO ETOV TTEPITOV, el omodel el OTL Tapéyel a&loonueinTo oPéAN o€ acbeveig pe
TPOY®PNUEVO 6Téd10 TG vooouv Tldpkivaov (NII), 1dtomadr| Ttpdpo 1 Sustovia Tov dev
avtamokpivoviol og cupPatikég Bepaneies. [lapaiinia, avadeucviovtol oTadO0KE EKTETANEVES
EQOPLOYEC TNG TEYVIKNG ALTNG Y1, TN Bepameio VEVPOYLYLATPIKDY SATOPAYDV,
ovumepthapavopévng g avlektixng oty Gepameia idsoyvyovaykaotikns otatapoyns (IYA),
oL cLVOpOLoL Tourette, Tne peilovog KaTaOAMTTIKNG dloTapaynG, TOL €01GLOV GE 0VGIES Kot
g veupikng avopetiag. QoTOG0 LILAPYOVY TPOKANGELS 01 0Toieg oYETILOVTAL TPMTAPYIKA LE TN
BeAticTomoinon g amodoTIKOTNTAG TNG OLEYEPONG LECH EKAETTUGUEVMV GTPUTNYIKAOV GE
TOALOTTAG TEPLEYYELPNTIKA EMUTES L. ZVYKEKPIUEVA, EKTOG OO TNV KATAAANAN ETAOYT TOV
acBevav kot Tov kafopiopd Tov avatopkov otdyov, 1 EKPfaocn g ev To PAbet eykepalkng
déyepong ennpedletal oNUAVTIKAE omd TNV TOOTNTA TNG LETEYXEPNTIKNG KAWVIKNG dtayeipiong,
ONA. TNV TPOGOPLOYT| TOV TOPOUETPOV OEYEPCTG KL TNV ETAOYT TNG PEATIOTNG EMAQT|S ,
ouvnbog og pia ypovikn mepiodo efdouddwv-unvov. Avth 1 dadikacio SOKIUNG-GPAANATOG
GUVETAYETOL OTLOVTIKG LEIOVEKTAILOTOL: TPAOTOV, EVOEXOUEVMG VO UV ETPEPEL ATAPAITITO TO
Bértioto Oepamevtind mapabvpo (SnA. TO AOYO KATOOAOL Y10, TOPEVEPYELES TPOKOAOVUEVES OO
1 S1€yEPOT TPOG TO KOTMPAL ELPaVIoNS Oepamevticod opéhovg). Aghtepov, eival dtaitepa
YPOVOPOPa, EVD TO GUUTTMLOTO TOV VELPOAOYIKADV KOl VEVPOWYVYLULTPIKDV SLOTOPOY DV
TapoLG1aLovv cUVNOMG SOKVUAVGELS GE YPOVIKEC KAILAKEG deVTEPOAETTOV-NEPGOV. Tpitov, N
@VoT 0vVoLYTOV BPpdYov KOl TO LOVOUOPPIKO TPOTLTO TG GCLUPATIKNG SIEYEPCNG VYNANG
ovuyvottog (meplodikn| 01éyepon 130Hz) paiveton ypdvia vo evVOEl PAIVOLEVO AVEKTIKOTNTOG,
evd ovoyetiletal pe péylom Katavdlmon evépyesloc. Evavtia oe avtd 1o miaiclo, n
VEVPOILAUOP PN KAEIGTOD Ppoyon eVOEXOUEVAS VO OTTOTEAEL Lial TTO 1GYVPY| EVOAAAKTIKY Kol
pia amod Tic onpovtikotepeg e€ehilelg oto medio ¢ v To Pabet yKEPAAKNG S1€YEPONC.
[Mpwtapykd, onolocdnmote ahydpidpog mov oyedidleton Yo Eva HEYIGTA 0mod0TIKO GUGTN LA EV
T Pabel eykePaAIKng d1€yepong KAEIGTOO Ppoyov Ba TPEmel va tKavomolel V0 oTUAVTIKEG
TPOJAYPAPEG: TOV 0ELOTIOTO TPOGOOPIGHO BEATIOTOV SiodeikT@V Yio. TOV EAEyy0 avadpoaoHg, Ol

0T0101 V0L ATOTVTTOVOVY TNV KAVIKN KATAGTAOT TOL 000EVT] G€ TPAYUATIKO YpOVO KOl TOV



KaBopiopd ypovika evaliaxtik@v TpwToKoAiwy digyepong To, 0moio, va eivat OgpamenTikd Kot

EVEPYELNKA TTLO OTOSOTIKA GE GUYKPLION LLE TO TUTOTOMUEVO TPOTLTO SEYEPOT|G.

210 mAaic1o TG TapoVGaG SIOAKTOPIKNG SaTPIPNG, AVOTTOGGOVIOL GTOYOGTIKA OVVOUIKA.
Hovreda yuo T PEATIOTOTOINGT TOL KAVIKOD ATOTEAEGLLOTOG TNG €V TM PAOEL EYKEPAAIKNG
S€yepong oe KvnTikég Kot veupoyuytaTpikés dtatapayés. O andtepog 61d)0g sival va
oyedraotel alyoplBuikd éva choTnpa eV 1o PAdetl yKePAAIKNG d1€yEPONS KAELGTOV PpoYov Yo
wpoympnuévo otddio tng NII ko avBextikn otn Oepancio IYA, Sruceparilovrag féErTiom
eMid0oN TOGO MG TPOG TNV ATOIOTIKOTHTO. KO EMAEKTIKOTHTO, TNG SIEYEPOTG, OGO KOl MO TPOG
v vmoloyiatikn toydTnTe. H Pacikn vrobeon méve otnv onoia otnpldpacte etvor 0Tt o1
YPOVIKA EVOALUKTIKES KOUOTOUOPPEG €V TM PaOel yKeQOAKNG d1EYEPONC £XOVV T dSuVATOTN T
Vo ETOVoONYOHV TN VEVPMVIKT SVUVOUIKT EVTOC TOV PAGIKOV YOyyAI®V 6TN QUGIOAOYIKN
OTOCLYYPOVICUEVT KOTAGTAOT, EEMEPVAOVTOS LLE TOV TPOTO OVTO TNV EMIO0CT) TOV GUUPATIKOV
KUHOTOUOPPDV €V T PAOEL EYKEPAAIKNC SIEYEPOTG, O UNYOUVICUOC TOV OTOI®V EXEL TPOTAPYIKA
amod00el GTNV KAVOVIKOTOINGN T®V TPOTHTIM®V VELPOVIK®Y EKPOPTIGEDY GTT) YEITOVIH TOV
dteyeppévou mopnva. Baoetl evOg 6TOY0GTIKOD GAGIKOV LOVTEAOL TO 0010 TEPLYPAPEL £Vl
GUVOAO OMK(A GLLEVYHEVOV YOOTIKMV TAAAVTOTMOV, 00NYOLLEV®DY ard kKovd 06pufo,
aveEdptnto B6puPo Ko eEwtepikn enidpaocn, Kot To onoio TpocaproleTot 6€ VTOBUAAUIKES
UIKPONAEKTPOSIOKEG KOTAYPOUPES OVOKTNLEVES KATA TN OLAPKELN EYXEPNTIKOV EXEUPACEDV Y10
NIT kon WA, amodeikvietal mpadTo 6TL 1 amocvyypoviatixy Kol mBavov emiong 1 Oepomevtiky
ETIOPAOH TOV YOUNAOGVYVOV GTOYUCTIKMOV KVUATOUOPPAOV gV T® PAOEL £YKEQPUMKNG S1EYEPONS
€lval GNUOVTIKA IO 10YVPT CLYKPLTIKE [LE TNV aVTIoTOLYN EMOPACT) TNG GUUPATIKTG S1EYEPTTG.
Axorovbac, Bacel piog oepds peBddmV evpwoTmV oty mapovaic tov BopHov pétpnong,
poodtopileTal 1 TOPOLGio CNUOVTIKNAG ui ypouuikis (evéne peta&d g vrodalopikng
VEVPOVIKNG OpOacTNPOTNTOS BT0 KOl TG dPASTNPIOTNTOS VYNANG GLUYVOTNTAS, MG PlodeikTn
Y10 TOV EAEYYO AVASPACTG GTO TPOTEWVOUEVO GYTLLOL VEVPOIIOUOPP®CTC KAEIGTOV Ppdyov, Kot
TOPOVGIALETOL TEPULTEPM IO GTPATNYIKT, 1] OO0 EVOMUATAOVEL TNV EPOPHOYN piog
TPOTOTONUEVTG £KOOGTG TOV GTOYUGTIKOD PAGIKOD LOVTELOL (EPAPUOYT POCIKMG OVOYOLEVOD
UOVTELOV VELPGOVO, EECTOGUAT®V) Kot Evay adyopdpo Bedtiotonoinong ave&aptnTo Tapaydyou
(BeAtiotomoinon amevbeiag avalftnong Pacilopevn oe TETPAYOVIKTY LOVIEAOTOINGT), LEC® TNG
omoiag kafopilovtal BELTIOTO 0TOYAGTIKG TPOTLTIA Kol PEATIOTEC TAPAUETPOL SIEYEPOTG YO TOV
UTOCLYYPOVIGTIKO EAEYYO TNG VEVPMVIKNAG dPAGTNPLOTNTAG IUE EAGYLOTI KATUVAA®GCT) EVEPYELQG,.
H dwaovyvotikn {évén amodeucvoetan 6Tt givat évog otabepd katdAiniog Plodeiktng yia tov
Eleyyo avadpaong oty mepintwon e NI, addd evdeyopuévag va mapovctdlet
gpopuocipnotta e&edikevpévn Kat’ actevn oty mepintwon g WA, AmodeikvioeTon n
KavOTNTO TNG TOPOVCALOUEVNG TPOCEYYIONG LOVTEAOTOINOTG VA, Tpocdiopiletl, Le oyeTIKA

YOUNAS VTOAOYIOTIKO KOGTOC, pLOUicELg d1€yepong Tov cuoyeTilovTaL LE Lo ONUOVTIKA



VYNAOTEPT QOSOTIKOTITO, KOl EXIAEKTIKOTNTO GE GUYKPLOT WE TIG pLOuicelc di€yepong mov
kaBopilovtat Katd TN SLAPKELN TNG LETEYYEPNTIKNG KAWVIKNG dlaxeiptong acbevav pe
mpoympnuévo otddto ¢ NIT kat avBektikny ot Ogpameio [PA. Zvvoiikd, ta dedopéval
TAPEXOVV 1oYVPES AmOdEIEELS Y10 TNV EQAPUOCIUITNTA TNG VTOAOYIOTIKHS VEDPOOLEYEPGHS GE
TPAYLLOTIKOV YPOVOV GCLUGTHLATO €V T® PAOEL eYKEPUMKNC d1EyEPONG KAEIGTOD Ppdyov yio

KWV TIKEG KOl VEVPOYLYLOTPIKES SLOTAPUYEC.

AEEE1G KAEWO1A: NAEKTPIKY] €V TO Pabet eykepaiikn d1éyepor), Nocog [dpkiveov,
10E0OYLYOVOYKAGTIKT SATOPYT], VITOOUACLUKOG TUPAVAG, UIKPONAEKTPOOIOKES KATAYPUPES,
GTOYOOTIKO dUVAIIKO LOVTELD, OTOGVYYPOVIOTIKY| EXIOPACT TNG IEYEPONC, LETPO AUETAPANTNG
TUKVOTNTAG, KAWVIKY] OMOTEAECUATIKOTNTA, ¥POVIKE EVOAAOKTIKE TpdTLTO S1EYEPONC,
VEVPOSIAUOPPMOOT] KAEIGTOV PBpoyov, Prodeites o Tov EAeyy0 avadpaongs, un ypouukn Cevén,
OTOJOTIKOTNTO SIEYEPOT|G, EMAEKTIKOTITO SIEYEPONG, VTOAOYIGTIKT TOLYVTNTO, VITOAOYIOTIKY|

VEVPOOLEYEPTT






Extetopévn [epiinyn

Ot xKowvovieg pecaiov kot VYNAOD glG00NUTOC YapokTnpilovtat amd évay agloonueimto Kot
AVEAVOLLEVO (POPTO VEVPOLOYIKMDV KOl VEVPOWLYLOTPIKAV 0GOEVEIDYV, KUPImG AOY® TNg amovsiog
AmOTEAESULATIKGV Bgpamelmv, aAld Kot evog av&avopeva ynpacskovtog mAnbucpov (Vos et al.
2012, Murray et al. 2012, World Health Organization 2004, Kowal et al. 2013). Zvvendac,
TPOPEALEL EMTOKTIKN 1) AVAYKT] Y10 KOVOTOUEG LeBOSOVS TPOANYNG Kot Bepaneing Twv
acBeveldv avtdv. H ypromn g xpoviac, ev tw Pabet eyxepalikng NASKTPIKNG O1€yepons VYNNG
oLYVOTNTOG KaTd TN d1dpKeld TV TeElevTaimy 30 eT@v Tepimov £yl amoderyOel 0TL Tapéyet
a&loonueimta o@EAN Yo acbeveic pe voco [apkveov (NIT) (Deuschl et al. 2006), 1010madn
tpopo (Zhang et al. 2010) kot dvctovia (Kumar et al. 1999), ot onoiot dev avtamoxpivovial oe
ovppartikég Oepaneiec. [apayovreg-kKAeWdi avanTLENG AVTAE TNE TPMOTOTOPLUKNG EPAPUOYNS
omotédecay ol afloonueimteg eEeAlEELg TNV SOUIKT| KOl AEITOVPYIKT] EYKEPAAIKT OMEIKOVION
KOL TNV EYYEPTTIKY TEYVOAOYiQ, AAAG Kol 1) KOAALEPYELD oG Pabbtepng KaTovonong e
opyavmong Kot g Ttabopucioroyiog tov Pacikmy yayyAlwv (Lozano and Lipsman 2013).
AvT1oi 01 Tapdyovteg TPOETOILAGOY TO £D0(POC Y10 TNV LETUTPOTY| OVOTOUKO-AEITOVPYIKAOV
apyav og BérTioTa Bepamevtiké eyyelpnTiké otpatnywés (Benabid 2012). [TapdAinAa pe v
KafiEpwon g ev T Padel eykeaikng d1€yepoNg MG Piag AoOAAOVS KOl OTOTEAEGLOTIKNG
BepamenTikng nebod0v Yo KIvNTIKEG dATOPAYEG, KUVOTOUESG EPAPUOYES CVTNG TG TEXVIKNG Yol
TNV OVTILETMIOT] VELPOYVYLOTPIKADV SULTUPOYDV ELPAVICTIKAY KOTA T1 OEPKELD TOV
terevtoinv 15 etdv cvumepiiapfavopévng g weoyuyovaykaotikng datapoyng (IYA) (Nuttin
et al. 1999), tov cvvdpopov Tourette (Vandewalle et al.1999), tng peiCovog katabOMmTikng
dwtapayne (Mayberg et al. 2005), tov eBicpov o€ ovaieg (Muller et al. 2009) Kot TG VELPIKNAG
avopeéiog (Lipsman et al. 2013). H un-aeaipetikn von g ev T PAdet eyKePoAIKNG
déyepong , 1 TPOCUPHOCTIKOTNTA Kol 1] POLVOUEVIKT avaoTpeyipnotnta (Benabid et al. 2009)
€xovv PETOTPEYEL VTN TN BEPATELTIKN ETAOYT| GTO TLO TAYXEMG S1EVPLVVOUEVO TTEDTIO TG
VEVPOYEPOLPYIKNC. Méypt onuepa, o aplBudg tav acbevav mov Exovv vroPAnbei o eyyeipnon
gv T Pabdel eykepaiikng diéyepong ektipdrorl Tog £xel Eemepacet Tovg 100,000 toaykoouiog.
ATo EMGTNUOVIKNG TAEVPAC, 1) €V T® PdOet eykepulikn| d1€yepon £xel UTOTEAEGEL GNUEID

avaPOPAG SUKPITMOV EMIGTNHOVIKOV Kol EPEVVNTIKOV KAGSwV. Kotd KOplo Adyo duwmg €xet



GUVTEAEGEL GNUOVTIKG GTNV ‘avayEvynon’ TV VEVPOETIGTNUMV, TOPEYOVTUG TN dSuvaTOTNTA
SteEoywyng in vivo peuvag 6€ EYKEPUATKA OIKTLO KIVITIKDV, SIOVONTIKOV Kot
ouvalcONUaTIK®OV Asttovpyldv. To yeyovoc avtd avtikatontpileTal oTig TeplocoTePe amd 700
UeAETEC OYETILOUEVES LLE TNV €V T® PAOEL EYKEQAALKT S1€YEPON, O1 OTTOIEC OSNUOGIEVOVTAL KAOE
ypovo (Lozano and Lipsman 2013). Qo1600, av1d¢ 0 £€vBoLG1aGHOS Elvar amapaitnto vo
LETPLOCTEL LEGH U10IG TPOGEKTIKNG Bedpnong tv oyetilopevav noikodv apyodv. [apdro mov ot
vIapyovTeS ol Kavoveg Ko to pubuotikd TAaicto dtac@aiilovy oe KavoromTikod Baduod
v opO1| LeTayelpion TNG VELPOYELPOVPYIKNG Y10 KIVITIKEG KO VEDPOYLYLOTPIKES SLOTAPAYEG
(Greenberg et al. 2010 (a)), Topopével aKOUN ETTAKTIKY 1) AVAYKY| Vo oKLy papnBovv TApG
01 OYETIKES MNOKES KOl KOWMVIKES TPOKANGELS Kot va kabiepwBolv o maykdouio eninedo nbucol
KavovIopol Yl Tig peAlovtikég kKAvikég dokipég (Bell and Racine 2012, Fins et al. 2011,
Lipsman et al. 2010). H npoctacia tov acbevn Oa npénet avapueifoia vo amotelécel Tov
KeEVIPIKO AEOVO EVOG GTEPEOD TAALGTIOV AmOTVI®GNG NOIKOV KavovieTiK®V apy®dv (Clausen

2010).

H &v 10 Babet eyxepaikn diéyepon anotelel pia Oepanevticn mpocéyyion Paclopevn otnv
apyn TG VELPOTPOTOTOINoNG, ONA. TNG HETAPOANS TNG TABOAOYIKNG VEVPOVIKNIG
dpacTNPIOTNTOG GTOV TVPHVOA-GTOYO KoL TO GUVIEOEUEVA VEVPOVIKA JTKTLO LE PO
NAEKTPIKOD PEOHUOTOG TAPEYOUEVOD LECH EVOOEYKEPUAIKH ELLPVTEVUEVOV NAEKTPOSIOV
GLVOESEUEVOV GE EVOV EULPVTEVGIUO TOAL00OTT. To chotnua ev T PAOEL EYKEQPOMKNG
déyepong Medtronic amotedeiton amd Evay (] 600 TNV TEPITTOOT AUPITAELPNG EYEPONC)
ay@y6 (aymyoig) pe 4 koAvdpukég emapég (Sapétpov 1.27mm, Hyovug 1.5mm kot andeTaceng
1.5mm 1} 0.5mm peta&l T006) TOL EUPVTEVOVTOL EYYEIPNTIKA GTOV EMAEYUEVO TVPVA, TOV
EYKEPAAOL Kol GLVOEOVTOL LTOJOPLO. LLE TOV EUPVTEVCLUO TAALOSOT GTIV VITOKAEISLO TEPLOYN.
O enPLTEVGOG TOALOSOTNG eivar pio TPOYPOUPOTILOHEVT] KO EVOEXOLEVA ETAVAPOPTILOUEV
S1ataln mapdol e TOVG LOVTEPVOUG KOPOLoKoVE TAALOJOTEC TOV TTapEyeL cuveyn diéyepor. H
gyyeipnon ev 1o Paber eykepatkng diéyepong Paciletal oTig apyég TG CTEPEOTOKTIKNG Ko
AEITOLPYIKNG VELPOYELPOVPYIKNG Ko propel va dteEayBel pe M yopic mhaioto (Lozano et al.
2009). Xe omoladNmote Ao TIC SVO TPOUVOUPEPOLEVES TEPITTAGELS, 1] AKPIPNG TOTOOETN G TOV
NAektpodiov Paciletor oTNV TPOEYYXEIPNTIKT] CTEPEOTAKTIKY GTOYELCT KUl OE JIEYXELPTIKES
TEYVIKEG NAEKTPOPVGIOAOYIKNG YAPTOYPAPNONG TOV SLVIOWS EPaprOlovToL LITO TOTIKT
avarsOnoio (Abosch et al. 2013). H mpogyyelpntikny GTEPEOTAKTIKY GTOYEVGT EMITVYYAVETOL
LEC® HOVTEPVMV TEYVIKOV OTTIKOTOINGONG (ATEIKOVIOT] HLOYVITIKOD GUVTOVIGHOV Y®Pig TANIG10
KoL VTOAOYIOTIKT TOpOYpapia PactlOpevn o€ TANIGL0), EVD 01 SIEYYEPTTIKES TEYVIKES
NAEKTPOPVGIOAOYIKNG YOPTOYPAPNONG TOV GVVHO®OE YPNCILOTOLOVVTAL OPOPOVY GTIG
HIKPONAEKTPOOIOKES KOTAYPOPES VEVPMVIKNG dPAGTNPLOTNTAG GTOV TUPT VA GTOXO KOl GTNV
HOKPOSIEYEPOT], ONA. TN JlEYYEITNPIKT O1€yEPOT e avEavOuevn Taon ePapuolopevn LEGM EVOG

eEmTEPIKOV TOALOOOTT Y10 TOV KAOOPIGUS TOV oMpeiov epPUTEVONE TOV GVOYETILETOL LE TO



BértioTo Oepamevtind mapdbvpo (AOYOG TOL KATOEAOL EUPAVIOTIG SVGUEVAY OTOTEAEGLATMOV-
TOPEVEPYELDV TPOG TO KOTOPAL ELPEVIONG KAVIKNG amotedecpatikdtntoc) (Abosch et al. 2013,
Marceglia et al. 2010, Krack et al. 2002). Qotoco a&ilel va onuelwdei 6t o opiopéva
YEPOLPYIKA KEVTPO ExovV LIoBeTNBel oTpOTNYIKEG TTOV o€ Pacilovtal otnyv
niektpopuotoroyikn yaptoypdenon (Foltynie et al. 2010). Extoc amd v akpipn tonobétnon
oV NAekTPodiov, To anotéhespa g ev To Pabel eykepatkng diéyepong kabopiletat
OTUOVTIKA amd TNV HETEYXEPNTIKN KAvikn dayeipion (Volkmann et al. 2004, Benabid et al.
2009). Zuykekpipuéva, LETA TNV ELPVTEVCT) TOV GLOTHHATOS £V T Pabet eykeaAkng di€yepong,
Ol TOPAUETPOL SIEYEPONG KOL 1] PAPUOKEVTIKN aywyn Oo mpénet va KabopioTtovv e TpOTo doTE
va 0dnyovv 610 BEATIoTO BEpamenTikd anotélespa. Ot SOGELS PAPUAKEVTIKNG 0y ®YNG, TOV
£yovv NON pelmbel TpoeyyEPNTIKA, LELDVOVTOL TEPULTEP® Kot puOuilovtat pe Tpdmo
oLUPIPacTIKS. AVAQOPIKA UE TIG TUPUUETPOVG OLEYEPONC, AVTEG GE TPAOTH PACT] GUVIHOWC
weprropfavouy didpketo Tapov 60us, cuyvotnta diéyepong 130 Hz kot Kopotvopev téon
(Volkmann et al. 2004).

Katd xdpro Adyo, 1 ev 1o Babet eykepaiikn S1€yepon Exel 01 LOVO OTOTEAEGEL Lt SUVOLLKY
KAWVIKT TPOOTITIKY Y10 TIV GVTLULETMIOT] KIVITIKOV KOl VEVPOWVYLITPIKADV S10TopaydV — BAcEt
NG OVTIGTPEYIUOTNTAG, TNG TPOGOPLOCTIKOTNTAG KOl TG GLOYETIONG TNG UE XOUNAog dgikTeg
BvnodTTag — CAAG Kol GUVTEAEGEL GTNV ATOKPVTTOYPAPT|GN TOGO TNG AELTOVPYIKOTNTOS TOV
TUPNVOV-GTOY®V KATA T1 SLAPKELN TNG EKONAMGTG 1 TNG VTOYDPNONG TOV CUUTTOUAT®V OGO
KOl TOV UNYOVICUOV 0paong e diéyepong avtnig kabeovtng (Lozano et al. 2010 (a), Pollak et
al. 2002). Avtéc o1 povadikég duvaToTTES TOPACYEOMKAY TPOTAPYIKE LECH TOV
SLEYYEPNTIKOV LIKPONAEKTPOIOKDV KATOYPOPDV KOl TOV TEXVIKMY AEITOVPYIKNG O1EYEPOTC,
OTMG EMIONG KOl LECH TMOV KOTAYPUPDOV SVVOUK®Y TOTIKOD eSOV KOl TNG LETEYYEIPTTIKE
epopuocuEVNG 01Eyepons. Katapyv, Katd T S1dpKeLo TOV SEYYEPNTIKOV
UIKPONAEKTPOSIOKDV KATOYPAPDOV TOV AAUPAVOVTOL O KATAGTACT) NPERLG 1] ©¢ amdKplon G€
SLAPOPOLS KIVNTIKOVG KOl S10VOT|TIKOVG YEPLGULOVS, UTOPOHV VO TPOGIOPLIGTOVY PUGLOAOYIKA
Kot TaoA0YIKA HoTiPa VELPMVIKNG dpacTnPlOTNTAG Kot vV anodoBohv og £vav GUYKEKPIUEVO
PNV 6TOYO N o€ pia vo-mepoyn avtov (Levy et al. 2000, Weinberger et al. 2006, Piallat et
al. 2011, Wong et al. 2009, Rodriguez-Oroz et al. 2001, Lozano et al. 2010 (a), Zaghoul et al.
2009, 2012; Patel et al. 2012). Agvtepov, Katd TN SLdpKeLn TNG SLEYXEPNTIKNAG KoL TNG
LETEYYEPNTIKNG LOKPOSIEYEPONG HTOPOVV VO ATOTIUNB0VV TOGO oL wQEAEG OGO Kol Ot
duopevelg emOPACELS TNG S1EYEPCTNG GTOVS TVPNVEG-GTOYOVG KOl KOT 0VTOV TOV TPOTO V.
avadelydei o Aertovpyiodg porog Tav dopav avtov (Pollak et al. 2002, Nuttin et al. 2003,
Greenberg et al. 2006, Mayberg et al. 2005, Vandewalle et al. 1999, Lipsman et al. 2013,
Mallet et al. 2008, Hershey et al. 2010, Greenhouse et al. 2011). Téhog, N ektipunon g
dpaoTNPIOTNTOG SVVOUIK®OY TOTIKOD TESIOV LETEYYEIPNTIKA, ONA. 6TO ST HETAED TNG

EUPVTEVOTG TOV NAEKTPOOIOL S1€yEPOTG KOl TN GLVOKOAOLONG GVVIEGNG TOV GTOV VITOSOPLO
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TOAUOOOTN OTOTELEL o TPOGEYYION TTOV £XEL 0ONYNGEL GE OTUAVTIKEG SOTIGTOCELS AVOPOPIKE,
TOGO L€ TO YOPAKTNPIGLO TV TOOOPLGLOAOYIKOV UNYOVIGUOV TOV GUVOEOVTOL LLE TNV ELGAVIOT
TV vELPOoLOYIK®V dtatapaydv (Brown et al. 2001, Lopez-Azcarate et al. 2010), 660 Kot pe

TOVG UNYOVIoLOVG dpdong tng oeyepong (Kiihn et al. 2008).

Aocbeveig pe 10omadn mpoympnpévo otddio e NIT ko pe papprokoroykd avOeKTiKEG
KIWNTIKES O10KVUAVOELS, AvOEKTIKO TPOLO, | 1] OVEKTIKOTNTO OTIG SUGLEVELG EMOPACELS TG
QoppoKoroyIKNG Bepameiac, Tov emmALoV dev TOPOLGIALOVY CIUOVTIKA EVEPYE S10VONTIKA 1|
YoyLaTPKd TpoPAnpaTa, anotelovV KatdAANAOVG VITOYNEIoVS Yo eV T® PAbel eykeQaiikn
déyepomn vyning ovyvotnroc. H eyyeipnon Oa mpénet va deEdryeton and Eumeipeg
moAvemoTnHovikég opddeg (Bronstein et al. 2011, Lozano 2012). O vroBolaptkdg Topfivog
glvatr cuvnbécTePO 0 TPOTEIVOUEVOC GTOYOG OLEYEPTNC Y10l TPOXWPNUEVO 6TAd10 TNG NIT
(Benabid et al. 2009, Schuurman and Bosch 2007, Lozano 2012, Albanese and Romito 2011,
Oderkerken et al. 2013, Foltynie and Hariz 2010). MeydAeg Toyoomoinuéveg eEAeYYOLEVEG
peAéteg €xovv vrodeiet pio oNUOVTIKA VYNAOTEPT] UTOTEAECUATIKOTNTO TNG EV T® PAbet
EYKEPAAIKNG O1€YEPONG VTTOOUALLIKOD TVPN VAL Yo TPOoy®PNHEVO otddto TG NIT o€ chykpion e
TNV amoKAEIGTIKY otpiky dwoyeipion (Williams et al. 2013, Deuschl et al. 2006, Weaver et al
2009, Okun et al. 2012). Zvykekpuéva 1 v 1o Padet eyke@aAtk| d1€yepon tov vrobalaptkon
mopnva &xel amoderydel 6T emeépet aloonueiot kot pakpdc dtaupkeiag Pertioon tov
CUUTTOUATOV TOL avtarokpivoviatl 6t levodopa kot Tov Tpopov, Kabog eniong ot e&aieipet
ONUOVTIKA T1) SLOKIVNGIO KOl TIG KIVNTIKEG SIOKVUAVOELS o€ acBeveis pe Tpoywpnuévo oTddo
tng NII (Bronstein et al.2011, Castrioto et al. 2011 (a), Zibetti et al. 2011, Fasano et al. 2010,
Rizzone et al. 2014, Moro et al. 2010, Vitek 2012 (a), Sturman et al. 2004, Hamani et al. 2011,
Krack et al. 2003). X¢ avtifeon e Ta TEPLPEPIKE CVUTTAOUATO, ®GTOGO, 1 eEEMEN TOV
a&OVIKOV KIVITIKOV CUUTTOUAT®OV, cupreptlopfavouévev g aviektikng ot levodopa
droTapayn ™ Padiong kot tng aotdbelog g oTdons, TaPAPEVEL AVEEEAEYKTT OKOUT KOl LETA
v enéuPacn g ev T Padel eykepaiixng di€yepong tov vrobarapkov Tuprva (Castrioto et
al. 2011 (a), Zibetti et al. 2011, Fasano et al. 2010, Rizzone et al. 2014, Moro et al. 2010, Krack
et al. 2003, Rodriguez-Oroz 2012). 'Exet eniong avapepfel n avantuén pun-kKivntikov
CUUTTOUATOV GUUTEPIAAUPBAVOUEVOV CNUOVTIKAV SIOVONTIKGV S10Topay®dV, KaTadAnyng 1
ayyovg, kat pio agloonueimt endeivecn TG KATOANTTOTNTOS TG OMAMOG KATd T S1dpKELL
U0 LoKPAG TEPLOS0L UETH TNV emépUPacn ev T Pabel eykeaAikng d1€yepong virobaAaikon
mopfva (Rizzone et al. 2014, Zibetti et al. 2011, Tripoliti et al. 2011, Moro et al. 2010,
Klostermann et al. 2008, Temel et al. 2006 (a), Voon et al. 2006, 2008, Guehl et al. 2006, Krack
et al. 2003, Rodriguez-Oroz et al. 2012). Ot Rizzone et al (2014) £yovv avagépetl 6TL 1M
TPOY®PNUEVT NAKIQ KaTd TNV Evapén Tng acBévelag, VYMASO aEovikd GKop 6TV KOTAcTAo™ Off

KOIL 1] TOPOVGTN GUUTEPIPOPIKNG OLATOPAYG TOL VTVOL GLGYETILOVTOL LE EVOV VYNAOTEPO



Kivduvo avantuéng avammpiog e TNy mdpodo Tov ¥pOvoL Vo TNV £V TO PAOEL eYKEPAATKN
dtéyepon tov vrobalopkov Toprva. Haporavtd, n ev T Pabel eyke@alikn d1€yepon Tov
VIOBaAALLIKOV TTVPNVO el 0modeLyOel OTL omoTeAel pia o amotelecuatikn Bepameio
ocvykprtikd pe v taddotoun (Esselink et al. 2009). T'evikéd, extipdron 6TL Arydtepo omd 1o 5%
tov acBevov pe NIT tAnpodv Ta kpiripla emAoyng yio Tnv ev To Padel eykepaikn d1€yepon
Tov vroBoraptkod Tuprva. To peyaddtepo PEPOG TV OMOKAEIGU®V OPEIAETAL GE TP PAoN
g vocov (Morgante et al. 2007). Q61660, 600 AVOLEVOUEVES, TUYOOTOMLLEVES KAVIKEG
dokpLég TposavatoMEoVToL TPOG TV OmOTIUNGN TG EMIOPACNG €V T® PAOEL EYKEPAAIKNG

déyepomng tov vrobarapkod Tuprva Yo acbeveic oe mpdun eaor e vosov (Deuschl et al.

2013, Kahn E et al. 2012). H npdn doxyn opiet og acOeveig pe npowun NII 6covg eppdvicay

TPOSPUTN Evopén KIVNTIKGOV EMmAOK®V Tpokaroduevay arnd levodopa (<3 ypévia) (Deuschl et

al. 2013), evd 1 devtePN dokun ovumepirappavel acbeveic mov Bpickovtar vto Oepameia e

avtmapkiveovikn ayoyn (levodopa 1 ayovietég viomapuivig) yio pio tepiodo peyoaivtepn omd 6

UveS Kot ukpoTepn amd 4 ypdvia, ympic EKKIvoTN KIVITIKGOV ETTAOK®V TPOKAAOVUEVOV OO
levodopa (Kahn E et al. 2012). Ta counepdopuato-kAEWDi TV HEAETOV QUTOV AVOUEVETAL VO
apopécovy, omd TN pio TAELPE, 6ToV KOBOPIGHS TNG AGPAAELNG KOl OVEKTIKOTNTOG TNG EV TMO
BaOet eykepalikng d1€yepong Tov VITOBUAAUIKOD TVPTVA EPOPUOGIEVNG OE TPMIUN GAoT) TNG
NIT ko, amd v GAAN Thevpd, oty emPePainon piog eVOEXOUEVIC VOCOTPOTOTOUTIKNG
emidpaong, Paoet evoeiewv VELPOTPOGTUTEVTIKNG OPACTC TNG £V T® PAOEL EyKEPUAKNC
déyepong tov vrobarapkov wopnva (Temel et al. 2006 (b), Harnack et al. 2008, Wallace et al.
2007, Spieles-Engemann et al. 2010, deSouza et al. 2013, Albanese and Romito 2011).
Avopopikd pe TNV povomievpn ev T Padet eykepaiikn di€yepon Tov vobaAapkoD Tupva,
ot €xel vodeybel 6T ferTidvel Ta eTepOTALLPA KIVNTIKA cuprTdpota g NIT kot 6T
amotelel pio EVOAAAKTIKY TG AppimAeupns di€yepons, Wiaitepa yio acOeveis e eppavn
acvppetpio copntopdtov (Alberts et al. 2008 (a), Alberts et al. 2008 (b), Castrioto et al.
2011(b), Walker et al. 2009, Brun et al. 2012), aAAG kot Yo nAMKIOPEVOVG acbeveic, Kabmg

cuvdéeTar pe vav yapnAdtepo Pabuod davontikav emmAokav (Slowinski et al. 2007).

[opd ™ cvveyn avamTuén TV CLGTNUATOV gV TO PAbsl eyKePAAKNG d1€yEPONG , TA. TOGOGTA
TOV OLGUEVAOV ETOPAGENDY TOL GLVOEOVTOL LLE TNV EYYELPNTIKT] SL0OIKAGI0 KL TOV TEXVIKO
eEOoTAMOUO TOPAUEVOVY OKOUN OYETIKH DYNAL, 0moTEA®VTOG Eva LEIl®V PELOVEKTIILOL TNG
Oepamevtikng avtig duvatdtntag (Shih and Tarsy 2011, Burdick et al. 2010, Lozano 2012,
Morishita et al. 2013, Vergani et al. 2010, Chan et al. 2009, Rezai et al. 2006). Ot emurhokég
OV GLVOEOVTOAL LLE TNV EYXELPNTIKT SL0dIKOGi0 SLVIOWE APOPOVY GTNV EVOOKPOVIOKT|
ooppayia, v £xovv avapepbel akOUN TEPMTOOELS SIEYYEPNTIKNG GVYYVLONG, HETATOTIONG
TOV Ay®yoL, LOVIUNG VELPOAOYIKNG PAAPNG 1 Bavdtov (Zrinzo et al. 2011, 2012;Voges et al.
2007, Favre et al. 2002, Boviatsis et al. 2010, Pepper et al. 2013, Oh et al. 2002, Guridi et al.

xiii



2012, Linchares et al. 2013). Ot ducpeveic EMOPACELS TOV GLUVOLOVTAL LE TNV EYXELPTTIKN
Sdwdkacio Kot Tov Texvikd eEomhond Tapatnpodviot tepimov 610 6.5 kKot 9% twv acbevav,
avtiotoiyws (Vergani et al. 2010, Hamani et al. 2004). Emnpoc0eta, nepimov oto 19% twv
acBevdv Eyovv KaTaypapel SuCUEVELS EMOPAGELG TOV GLVIEOVTAL e TN JEYEPSN, OGS OL
napoicdnoieg, 1 dvsapOpia Kot ot Kivntikég emmAokég (Hamani et al. 2004). Qotdco, ot
emdpdoeis avTég eivarl NITLEg Kol LITopovV Vo ovaGTPOPOVY HECH TNG 0pONG TPOGUPLOYNG TMV
wapapéTpov di€yepong. H e101k1| Tepintmon Tov LETEYXEPNTIKOD EYKEPAALKOD OO1LOTOG
TEPLPEPIKE TOV ay®YoD eV T® PAbet eykepaiikng diéyepong Bewpeiton pio petafotikny SuoUEVNC
emidpaon pe adevkpiviotn arttonabopucioroyia (Deogaonkar et al. 2011, Morishita et al.

2010).

Extipdron 611 mepimov 10 10% tv acbevav pe IPA exdnidvovy cofapd, avOektikd ot
Oepancio copntodpato (Denys 2006). o pio emtheypévn opddo avTdv TV acbevav 1
VEVPOYEIPOVPYKN AVTIUETOTION EVOEYOUEVMG VO OTOTEAEL IO OTOTELEGOTIKT] EVOAAOKTIKTY
Oepamneio. A&ilel vo onuelmbel 6Tl 6TV TPEYOLGO TPAKTIKY TNG WUYINTPIKNG XEPOVPYIKAG , M
avOektikn ot Bepaneia WA eivar 1 Katdotoon mov avapépetor cuyvotepa (Lipsman et al.
2011). Qot660, Tapdyovteg OTMG TO KOWMVIKO GTiylo acBeEVOV e yuylatpikn voGo, o
SoTay oG YOYLATP®Y VO TOPATELLYOVY TOVG acbevelg o vevpoyelpovpyikn Bepameio, aALE Kot
N 1GTOPIKN OTOTPOTALOL YPTOT| TNG YVYOYEPOVPYIKNG EUTOIGOV TNV EKTEVH EPAPLOYT TNG
VEVPOYEPOLPYIKNG Y1 eVOEiEeLS avBekTiKNG 0T Begpaneia yoytoTpikng vocov. H acedieta Kot
1 ATOTEAEGUATIKOTITO TMV TAPASOCLOKADY OLPOIPETIKMY S10d1KAGLDV, GUUTEPIAAUPAVOUEVIS
g TPOGHLOG KAWOTOUNS, TNG TPOGHLNG TPOGAYMYLOTOUNGS, TNG VITOKEPKOPOPAS SEGUOOTOUNG
KoL TG petaryakng Aofotoung yia cofapn, avlektikn ot Bepancio YA vrootnpilovton
poMg and emmédov 11 evdeilelg kot mapapévouy oTnv epevvnTIKy KALaKao ‘anddeEng e
opBOTNTOG TNG aPYNS’, EVO Y10 TNV OKTIVOXEPOVPYIKN gamma knife kot Tov 6Tepe0TaKTIKA
ECTIOCUEVO VTLEPN YO VILAPYEL TANPNG EALEWYN evdeiewv (Nuttin et al. 2014, National
Collaborating Centre for Mental Health 2006). EmutAéov, n epappoyn g ev 1o Pdbdet
EYKEPAAKNG O1€yeponG Yo TV avBektikn ot Bepoameio [YA ko n emikdpmon TV KaTdAAnAov
UVOTOLK®V OTOYWOV TUPOUEVOVY OKOUT KOTO LEYOAO UEPOC GE TEPAATIKT Pabuida
(Blomstedt et al. 2013, Kohl et al. 2014, Morishita et al. 2014, Figee et al. 2010, de Koning et
al. 2011, Lapidus et al. 2013, Williams and Okun 2013, Krack et al. 2010). ['a ™ dnpiovpyia
KAVIKN G amddeENG emmédov I avapopikd e TIG VEVPOYEPOVPYIKES OLUOIKAGIES Y10 YVYLATPIKEG
SoTapayEC, AmULTEITOL O OYEOLUGUOG TLYUOTTOINUEVAOV KOl TVPADY EAEYXOUEVOV OOKIU®DY
Stuoearilovtog TapdAANAo TNV NOIKN dtaywyn Kot SvovTag TPOTEPALITNTO GTNV UCPUAN
OepamevTIKY AVTILETOMION. AVTIGTOTY®OC, OTOLTOOVTAL AVEEAPTNTOL EIOKOL Y100 EVOV
OALOKANPOUEVO TTPOEYYEIPNTIKO EAEYYO YPNOUOTOIDVTAG TPOTVTES Pobideg aglohdynong kat

ovumeptlopPdvovtog Tov Tpocdlopicid Tov fabpov avOekTikotnTag 0TN Bepameia, aAAd Kot
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TNV TPOGEKTIKY EKTIUNGN TOL KIvdOVOL avtoktoviac. Oa wpémnel exiong va dtuopoiilovtal
opBég TpaxTikég cuvaiveong . EEicov onpavtikn ivol n dteEaymyn e VELPOYXELPOLPYIKNG
Stadkaciog amd EUTELPT) TOAVETIGTUOVIKTY OLLAS0 OTOTEAOVUEVT ATTO KOTAAANAL
EKTTALOEVILEVOVG VEVPOYELPOVPYOVS, YUYLATPOLS, VEVPOAOYOLS KOl VEULPOPLGLOAOYOVS. TéNog, Ba
TPENEL OMWGONTOTE VoL SacParileTar Evag oAokANpmpévog peteyyelpnTikdc Eleyyoc (Nuttin et

al. 2014).

Ao 10 1999, 1 ev o Pabet eykepaiikn o1éyepon €xel aloroynOel pe Pdomn éva cuvoro mepimov
100 acBevdv ¢ pio mAeovekTIKOTEPT BEPATEVTIKY] SVVATOTNTO GUYKPITIKA LLE OLPOLPETIKES
Sdwdkacies v coPapr|, avlektikn otn Oepaneia [PA, Adym TG avaoTpeyLOTNTOS KoL TNG
TPOcapUOCTIKOTNTAG TG (Sakas et al. 2007 (b)). EEoutiog meplopiopévng yvoong e
mado@uotoAoyiag TS Slatapayns, 1 EMA0YN TOV GTOYOV £YEL KAt KUpLo AOYo Paciotel oty
eunelpio. and TopadoctaKkés S1001KAGIEG OTEPEOTAKTIKNG TPMOTG 1| OE TOPUTNPNOELS KATA TN
dbpkera g emépPaonc ev T Pader eyke@oAkng diéyepong yro KivnTikég S1oTapoyég
(Blomstedst et al. 2013, Benabid and Torres 2012). Ztnv mp®dtn dNUOCLELHEVT AVAPOPE
apoeimievpng ev T Pabet eykepolikng diéyepong yio avlektikn ot Oepancio IYA, o
EMAEYHEVOC OTOYOG PPLOKOTAV OTNV €6 KAYA, akpPOG puyYoedds TG Tpdchiag cuppicemg
EMEKTEWVOUEVOG GTNV TPOCKEILEVT KOIALOKT KOO Kol TO KOIAMOKO pafowtd copa (Nuttin et al.
1999). O erkeypévog 6TOYOC NTOV TOVLTOGTLOG TG GTOYXEVUEVNG TEPLOYNG TTOL YPNCIUOTOLEITOL
GTNV KOWYOTOUN. ZOUPOVA [LE TNV OVOPOPE AVTH, ToPATNPNONKAV GUEGEG EVVOIKEG ETIOPAGELS
oV Katdotaon ‘stimulation-on’ o€ 3 amd tovg 4 acbeveic. AkolovOwg, N pakpomopddesun
OTOTEAEGLATIKOTNTO TNG O1EYEPONG TG TPOGHaG KAWaG Kot TOV KOtAMakoD pafdmTod 6mUATOg
emuvupmdnke omd pio Tepaltépm oelpd peretmdv pukpng KAipakag (Nuttin et al. 2003, Gabriels et
al. 2003, Abelson et al. 2005, Greenberg et al. 2006, Goodman et al. 2010). Z¢ pia
GUYKEVIPMTIKT EKTIUNGT TOV KMVIKOD OTOTEAECUATOS OVTOV TV LEAETOV o1 Greenberg et al.
(2010 (b)) avépepav OTL KaTA TN S1GPKELN TG TEAELTALOG TOPAKOAOVONGNG KoTaypdonKe
TAnpng anokpopotnta (72% >35% peimon oty Khpoke YBOC-S) oty ev 1o Bdabet
EYKEPAAIKT] S1E€YEPOT] KOTMOKNG KAWYAG/ KOIAMOKOD pafdmTo OUATOS, 0E0CTLEI®TN
VIOYDPNOT TOV CUUTTOUATOV TNG KOTAOAYNG, TOL AyXovG Kot BEATIOOT TG CUVOAKNG
AertovpykotnTog ota tepimov 2/3 (17/26) tov acbevav, e&aitiog TG 6TASLOKNG
BeAtioTomoinong Tov onpeiov EPPLTEVOTG. ZVYKEKPIUEVE, 0 BEATIOTOC GTOYOG BPlokdTay OTN|
GLUPoAT TNg TPOGOilag KAWC, TN TPOGHING CUUEVGEMG KOl TOV VAOTLAIOV KOIAAKOD paPdmTon
ocopotog. Kataypdenkav eniong SLGUEVH] GUUTTOUATA GUUTEPIAAUPAVOUEVEOVY SO
EVOOKPOVIOK®Y OLOPPUYIDV, piog Kpion eminyiag, piog POALVETNG, 000 ETITAOK®OVY e&0tTiog
TEYVIKOV €EOMAMGUOD, AAAG KOl OVOSTPEYILO, CUUTTOUATO, TPOKAAOVUEVE aTd TN S1€yepon,
omm¢ N vropovio. QotdG0, S10VONTIKN KOTATTMGN dEV TPOKAAEITAL 0o TNV €V T™ Pdbet

EYKEPOAIKT S1E€YEPOT] TNG KOIALKNG KAy o/ KotAlakoy pafdwntod chpatog (Kubu et al. 2013).
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To 2003, 1 enthoyn NG KEAVPOTNG TEPLOYNS TOV S€EI0D ETIKALVI TUPNVOL OC GTOYOV YLOL TNV EV
T Pabel eykepoikn di€yepon avapépOnke OTL TPOKAAEL oNUOVTIKY BeATimon g
ovuntopotoroyiog g IPA (Sturm et al. 2003). H ouykekpipévn avtn eTA0y) 6100V
Bacionke o€ KAMVIKES mapaTNPNGELS Yot TOV THAVO pOLO TOV KOWALKOV-0Vpaiov LEPOVG TNG
€00 KOOGS TPOCKEILEVG OTOV EMKAN VI TUPVA 0TO KAVIKO amoTtélecpa g Tpochiog
KOWOTOUNG, 0AAE Kol o€ TaB0PUGLOAOYIKEG EVOEIEELS VIO TO POAO TOV ETKANVY VPNV MG piag
KEVTPIKT OOUNG OVAUESH OTO OLLLYOAAOEDES COUTAEY L KO TOV VITEPUEGOAOPL0 EAtka (de
Koning et al. 2012). Ze peténetta SOKIHES, | EQAPLOYT| TNG LOVOTAELPNG €V T® PAOe
€YKEPUMKTG O1€yepong Tov de&100 emukAnvi Topiva Yo TNV avBektikn ot Oepancio [YA,
ovpmepthapBavopévng piog mepintmong ['YA pe cuvvoonpotnta oyloppévelag, katéinée oe
pétplo poakporpodecspa evvoikd amotedéopato (Huff et al. 2010, Plewnia et al. 2008), evd 1
aueimievpn ev T Padel eyKePAAIKT OLEYEPGT TOL EMIKANVI] TUPNVO GLGYETIOTNKE UE EVaV
ONUOAVTIKG LEYOAVTEPO PaBUO HOKPOTPODECUNG OTOKPIGIUOTNTOG TAPEYOVTOG EVOEIEEIC
emmédov 11 yua ) ypion avthg g dwdikaciog oty KAk tpaén (Denys et al. 2010, Hamani
et al. 2014, Franzini et al. 2010, Mantione et al. 2014). A&ilel va onuelmdel Twg o€ OAEG TIG
TPOOVOQEPOLLEVEC KAVIKEG SOKIUES, amattOnkay vymAég mAdtn Taong o1éyepong (Léxpt 10.5V)

YL TNV EMITELEN GNUOVTIKOD KAVIKOD OTOTEAEGILATOG.

Avagopikd pe Evay daKpLtd oTdY0 Kol COLPOVO UE [ TPOGPATT CLGTNHATIKY AVOGKOTNON
tov Hamani et al. (2014), vtdpyovv evoeifeig emmédov 1 yia ) yprion g apeimievpng ev T
Babet éykepaiikng diéyepong Tov vrobaAapkon mopiva oty avlektikn otn Bepaneio YA,
Avtég o1 evoeileig Pacilovtar oty épevva g epevvnTikng opddag ‘French Stimulation dans le
Trouble Obsessionnel Compulsif (STOC)’ (Mallet et al. 2008), 1 omoia TpoTELVE TN
BepamenTiKy OLTH ETAOYN UETE TV TAPATHPNOT OTL 1] SIEYEPST LVYNANG GLYVOTNTOG TOV
vroBodopikod TVPNVE LETPIOCE IOE0WYVYAVOYKAGTIKG cuuntopate o€ 2 aceveic pe NIT ko
1otopkd coPapnc WA (Mallet et al. 2002, Haynes and Mallet 2012). [Tepartépw @bnon yio ™
GLYKEKPIUEVT EMAOYT 000NKE 0md TOAAATAEG eVOEi&ELg Yia TNV EUTAOKT TOL VITODAACpLKOD
TupNVa, O¢ Pactkod KOUPBOL TOL EUIECOV povomaTion, oty mabopuctoloyia g ['PA Kot
AoV cvumeprpopikdv dwtapaymv (Mallet et al. 2007, Winter et al. 2007, Winter et al.
2008(a), Haynes and Mallet 2012), 6nw¢ eniong Kot 0o TNy amodedetypévn
OTOTELECUATIKOTNTO TNG O1EYEPONG VYNANC GLYVOTNTOS TOV VITOOUAOUIKOD TUPVO GTO LOVTELOD
YA apovpaiov kot Onractucod (Winter et al. 2008(b), Winter 2012, Klavir et al. 2009, Kupsch
et al. 2004, Winter et al. 2007, Baup et al. 2008). ZOpupovo pe T0 amoTEAEGLO TG LEAETNG TNG
yorAkng STOC gpeuvnTiKiG OpdOaG, Ol EVEPYEC EMaPEG 6TO LeTeYYEpNTIKO MRI ftav
TOmODETNUEVEG 0TO PEGOTPAGO10 (CLVEIPUIKO-UETOLYUIOKO) LEPOG TOV VTTOOAAALLIKOD TVPTVO,
2mm Ttpo6cHio Kot Imm pecaio Tov 6TdYoL TOV ¥PNCUYLOTOIEITOL KATH TN SLAPKELDL TNG EV TMO

BaOet eykepaiikng di€yeponc Tov vwoBorapkov Tuprva yio NI ‘Eneita and 3 unqveg evepyng
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déyepong mapatnpndnke onuavtiky (p=0.01) peioon kotd 31% oy Khipoka YBOC-S. Ot

Chabardés et al (2013) arotiuncav v entloyn Tov idov 6todYov o€ 4 acbeveig pe cofapn I'PA.

e 3 and Tovg 4 acbeveis, avapépOnke peiwon 71-78% otnv khipaxoe YBOC-S petd ond 6
unveg diéyepong, evd otny 4" nepintwon emredyOnke pikpdtepn kAvikn Pertioon (~34%
peiowon oty KAipoka YBOC-S), akoun Kot Eetta amd Ty TPOSapUOYT TOV TAPOUETPOV
d1éyepong, n ool amodideTal 6T AEITOVPYIKADC ECQAALEVT] TOTOBETNON TV NAEKTPOdimy. Ot
GLYYPOPELS EMOTHAVAY OYL LOVO TO KAIVIKG OTOTEAEGLOTA TNG EV T® PAOEL eYKEPAAKNG
déyepomng tov vrobaiapkod Tupiva Yo TNV avBekTikh ot Bepaneio [YA, aArd Kot Ta
TAEOVEKTILOTO TTOV GLVOEOVTOL LLE Ui EVPEWMS YVMOOTY| TEPLOYN - GTOYO, OTMG EMIONG TG
YOUMAOTEPES EVEPYELNKES OMOLTNOELS GE GUYKPLIOT| LE TN XP1ON TWV TPOUVAPEPOUEVOV

EVOALOKTIK®V GTOY®V.

Onwg &yl avapephel, ekTOC 0md TNV KATAAANAN ETAOYN TV aoBevdv Kot T BEATIO
LLETEYXEPNTIKT dlayelptom, 1 TOOTNTA TOV KAVIKOD OOTEAEGUOTOG TG EMEUPAONS TNG EV TM
Baber eykepaikng Siéyepons cvoyetiletan 6TeVA e ToV Kabopiopd Tov KATdAAN Ao
GVOTOULIKOU GTOYOV Kot TNV aKpPn] TomobETnon Tov NAEKTPodiov S1€yepong otV TEPLOYN AVTH
(Lozano et al. 2010 (a), Volkmann et al. 2006). Ze avtd T0 TAAIGL0, HETA TNV EPAPLOYT| TOV
GTEPEOTUKTIKOD TANLIGIOV, O1 TPOEYYEPNTIKEG LEBOJOL AUESC GTOYEVOTG, OTA. 1] VTOAOYIOTIKY|
topoypaio, n 1.5T-amekdviorn poyvntikod GUVTOVIGHOD Kot 1 KotAoypapio &yl amoderyOel
OTL €ivol oTEPEOTAKTIKG akpiPeic oty Khipoko Tov yiioot®v (Rezai et al. 2006). Av kot
KATO1ES YEPOVPYIKEG OUADEG EMAEYOVV OMOKAEIGTIKA QVTEG TIG AMEIKOVIOTIKEC LeBOIOVG, oTNV
TAELOYN QL0 TOV KAVIKOV KEVTPOV £xel vioBetnBel 1 emmpdobetn ypiion Tov
UIKPONAEKTPOSIOKDV KATAYPAPDV G pia Eppeon péBodog otdyevong yuo T Pertiotonoinon
¢ akpPovc tomoBEnong tov niektpodiov (Abosch et al. 2013, Weaver et al. 2009). H
eMAOYN NG HEBOOOV AVTNG ATOPPEEL OO GUYKEKPILEVO LELOVEKTNLLOITO TTOV GUVOEOVTAL LLE TNV
GLLECT] OTOYEVGT], CUUTEPIAAUPOUVOUEVNG TNG EYKEPAAIKNG LETATOTIONG: 1 B€0T TOV GTOYOL
omwg kafopiletor Katd Tn SidpkeLn TNG ATEIKOVIONG LAYV TIKOD GUVTOVIGHOV, OTOV 0 acBevig
Bpioketar og vTa BEom, dev givor 1 o pe T B€om Tov oTOYOL TOL KaBopileTon dlEYYEPNTIKG,
otav to kepAAl Tov acbevn Bpioketal o pia wo 6pOua Béon (Abosch et al. 2010). Qotdc0, dev
€xovv akoun degoyBel avapeEVOLEVES TUXAOTOMNIEVEG UELETES TOV VAL GLYKPIVOLV TNV
LOKPOTTPODEG T ATOTELEGLLOTIKOTITO TOV UIKPONAEKTPOSIOKADV KOTOYPOPDV EVAVTL TV
OTEKOVIOTIKOV nefddmv mov mpoavapépOnkav (Rezai et al. 2006, Senatus et al. 2006, Mc-
Clelland II1 2011, Gross and McDougal M E 2013). X¢ k40 mepintoon, n ek Totodétnon
Tov NAektpodiov kabopiletal pe faon tnv andkpion Tov achevi otV Sley EPNTIKN

pakpodiéyepon (Lozano 2012, Bour et al. 2010).

O1 J1eYYEPNTIKEG LUKPONAEKTPOIIOKEG KOTAYPOAPES OpobvTal £va GYETIKA 0oPUAES KOt

€0poTo gpyaleio Yo TN HEI®OT TOL KIvOOVOL €VOG UN PEATIOTOL TPOGOIOPIGHOD TOL TLPTVOL-
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otoyov (Rezai et al. 2006, Reck et al. 2012, Lanotte et al. 2002, Chen et al. 2006, Schlaier et al.
2013). Apov avorytovv onég Tpdchia TN otepaviaiag tepimaponc, tpowbovviat 1 mg 5
UIKPONAEKTPOSLN TAPAAANAQ TTPOG TOV GTOYO YPNOYLOTOIDVTOG £VAV UIKPo-00nYo. Katd
dugpkela avTrg TG dradtkaciog, propel va ontikomombel 1 LGLOAOYIKN TAVTOTNTO KAOE
dlamepvopevng TupnVIKNG dopng, vtootnpilovtag Le ToV TPOTO AVTO TNV KAVIKY] 0TO(QAoT
aVAPOPIKA LE TN PEATIGTN TPOYLYL KOTAYPAPTS, ONA. TNV TPOYLAL TTOL SUTEPVA TOV TVPTVA KATA
10 peyarvtepo pnKog (Lozano et al. 2010 (a), Marceglia et al. 2010). Avagpopikd e Tov
vrofarapkd Topnva, Eva avavopevo eninedo BopvBov vrofabpov, Evag vynAds puiudc
EKQOPTICEMV KOl EVOL TPOTLTO LT ORLOANG dPACTNPLOTNTAS T} dPACTNPLOTNTAS EECTACHATMV
OTOTEAOVV SO MPIOTIKA YOPOUKTNPIOTIKA TG GTOXEVUEVTS QTG OOUNG CUYKPITIKA LLE
yerrovikég eykepaitkéc dopég (Bour et al 2010). Metd Tov Tpocdlopiopd TV AEITOVPYIKOV
opi®v Tov vobHaiapcol Tupnva, propet va kaBoplotel T0 GUVOAIKO TOV UNKOG Yo KEOe
TPOYLA Kataypapng. Mio amodekt Tpoyld Oa mpénet va, damepvd >= 3 mm ToL TVPNVO
(Marceglia et al 2010). H enéufoon ev 1o Babet eykepolikng d1€yepong Pacilopevn o€ mAaiclo
KOl TIG LIKPONAEKTPOSIOKESG KOTAYPAPEG EYEL TUPOUOLO ATOTEAEGO, GUYKPITIKA LE TN
otepeotatia ympig miaicto (Tai et al. 2010, Holloway et al. 2005, Bronte-Stewart et al. 2010,
Rezai et al. 2006). Qot600 €l TOL TAPOVTOC, dEV LLAPYOVY TEICTIKEG 0modei&elc Yo pio BeTikn
GVOYETION HETAED TOV aplBoD TV NAEKTPOSI®V KATOYPAPHC TOV YPNGLLOTOLOVVTOL KOl TOV
Babuov Peitioong TOV KIVITIKGOV GCUUTTOUATOV 1] TOV KIVODVOL EVOOKPAVINKNG OLLoppoyiog
(Temel et al. 2007, Gross et al. 2006, Chang et al. 2011, Zibetti et al. 2014). EmmAéov, dev
&xovv e€ayBel axoUN GTEPEN CLUTEPAGLOTO CYETIKA LLE TIG EMOPAGELS TNG avarcOnoiog ot

pcponiektpodiaxn yaptoypaenon (Lettieri et al. 2012, Maltete et al 2004, Rezai et al. 2006).

Ev 1o petagd, ot teyvikég GpeESNS OTTIKOTOINGONG Y10 TPOEYYEPNTIKY 1| JIEYXEPNTIKN ¥PNoN
BeAtimvovtal cuvey®g pe ondTEPO 6TOYO TN PerTicoon ¢ akpifeag Tov TPosdlopiopol TOV
OVOTOLKOD GTOYOL 1) AKOUT TOV OTOKAEIGUO EVOG EVOEYOLEVOL KIVODVOL aptoppayiog
oyxeTllOpeVOL e T S10d1Kacio TOV IKPONAEKTPOSIOKAOY KOTAYpapdV (Zrinzo et al 2012). Xe
avtd 10 TAaic10, 1 OKPIPELR TOV EMTVYYAVETAL YPNCULOTOIDOVTIOS OTEIKOVIOT] LOPLOKNG
emdektikonTog ota 3 (3.0T-amewkdvion poyvntikod cuvtovicpov) 1 7 Tesla (7.0T-ameucovion
LLOYyVITIKOD GUVTOVIGUOV), EMEUPOTIKT OTEIKOVIOT] LAYV TIKOD GUVTOVIGHOD DYNAOD TEGIOV,
SLEYYEPNTIKT] VTOAOYIOTIKT] TOHOYPAPia, omekdvion Ppayiova O Kot TpaKToypopic
OTEIKOVIOTG TOVIOTH OAXVOoTG POIvVETOL Vo £Vl TOVANYIGTOV GUYKPIGIUN He TNV aKkpifela Tov
€xel avapephel ypMNOILOTOIOVTOG GUUPOTIKEG HeBODOVEC GTEPEOTAUKTIKNG VEVPOYELPOVPYIKNG
Bacilopeveg og pikponiextpodiakég Kotaypapég (Patil et al. 2012, Abosch et al. 2010, Cho et
al. 2010, Toda et al. 2009, Liu et al. 2013, Larson et al. 2012, Starr et al. 2010, Ostrem et al.
2013, Burchiel et al. 2013, Fiegele et al. 2008, Coenen et al. 2011, Holloway and Docef 2013,
Henderson 2012, D’ Albis et al. 2014, Sudhyadom et al. 2009). Q61060 Y10 TOVG AVATOUIKOVG



G6THYOVG TTOL OVOUEVETOL VO, TTPOKVYOLV GE VEEG EPOPLOYES TNG CTEPEOTAKTIKNG
VEVPOYEPOVPYIKNG, 1) ATOKAEIGTIKY] YPNOT TEXVIKOV GLEGTC ONTIKOTOINOTG EVOEXOUEVMS VO
glval AyotePo KATAAANAN amd TV NAEKTPOPLGLOAOYIKE 0N YOVUEVT) VELPOYEPOLPYIKT (Starr et

al. 2010).

®a Tpémel vo TOVIoTEL OTL, AveEAPTNTA OO TNV TEYVIKT GTOYEVONG TOV YPTCLOTOIEITAL, 1)
SlEYYEPNTIKN KAVIKN SOKIUT TG LOKPOSIEYEPGNG ATOTEAEL EVAL 1GYVPO TPOATOLTOVIEVO Y10 TN
Bértiotn Teln tomoBEtnon Tov niektpodiov, dStacporilovrag v enitevén PEATIoTOV
OepamevTIKOV EMOPAGEMV KoL TNV ELOAVIOT EAAYIOTOV TAPEVEPYELDV TNG dEYEPONG G pia
ovykekpuévn Béon (Rezai et al. 2006, Abosch et al. 2010, Starr et al. 2010, Pollak et al. 2002,
Kinfe and Vesper 2013). H pokpodiéyepon epapuoletal cuvibmg pécm g amoAnéng xauning
avtiotaong tov pkponiektpodiov (Sakas et al. 2007 (a)), Tov poakponiektpodiov (Coenen et al.
2011), 1 Tov nAextpodiov gv o Pabet eykepaiikng diEyepong (Chen C C et al. 2006) ¢
TOAMOTAEG OEaELG, TPOKEUEVOD VO TPOGdI0pLoTEL 0 BEATIOTOC AGYOG HETAED TOV KATOPAIOV TNG
£VTOOTG Y10 TNV EULPAVIOT] TOPEVEPYELDY KOL TOV KOTOPAIOV TNG £VTOOTG Y10 KAVIKN
omoTeEAECHATIKOTNTA, ONA. TO BEATIOTO OepamenTivd mapdbvpo (Marceglia et al. 2010).
Koat’avtdv 1oV TpOTo 1) S1EYYEPNTIKY] LOKPOIIEYEPST TTAPEYEL EVO TEPALTEP®D VEVPOPLGLOAOYIKO
‘OIMTPAPICHO’ TOV GTOYOV Y1 TNV TEMKT TOTOOETN oM Tov NAEKTPodiov. H dronsOntikn
ortohoyio Tow amd AT TNV TPOGEYYIoT EYKELTOL GTO YEYOVOS OTL Ol EMOPAUCELS
TPOKOAOVUEVESG OO TN SIEYYXEPTINIKN LOKPOJIEYEPOT| VAL TAPOUOLES LE TIG LETEYYEIPNTIKEG
eMOPACES TPOKOAOVHEVES OO TO LOVILO NAEKTPOSI0 d€yepons. [ Tov Adyo avtd, ot
TOPAUETPOL SIEYEPTTG TOL YPNCUYLOTOLOVVTOL SLEYYEPTTIKA TPOGOUOLDVOVV TIG AVTIGTOYES
TOPOUETPOVS TOV EPAPUOLOVTOL PETEYYEPNTIKA, ONA. cuVIBmG TEpAapPivouy cuyvoThTa
130Hz, e0pog maipod 60us ko wAdtn téong puéypt SV (Pollak et al. 2002). H deyyeipntiky
KAV dokyn de&ayetal enl ToV TAPOVTOG OO VELPOYELPOVPYOVS, VELPOADYOVS KOl KAIVIKOVG
vevpoucloddyovg (Rezai et al. 2006). 'Evag a&l0miotog Tpocdioptoplds TV KAMVIKGOY 0PEADY
KaTd TN S1apKeLd TG &V T PABEL YKEQUMKNG S1€YEPONS TOV VTOOAAAUIKOD TVPTVO GLVIO®G
Baciletar oty extipunon tov Babpod Pedtiwong T SuoKapyiag, Tng TUNHATIKNG 0KvNnoiog 1
NG EUPAVIOTG SVOKIVIGLOV TPOKAAOVIEVMV OO T1) OLEYEPGT|, Ol OTOIEG TPEMEL VAL YivovTal
aoOntég oe yaunAiég nhektpikég evrdoelc (Houeto et al. 2003, Pollak et al. 2002, Gross et al.
2006). Avopopikd e GUYKEKPIUEVES KIVNTIKEG Kot 0QOOALOKIVITIKEG TopEVEPYELES ( KIVITIKES
GLOTAGEIS GTOV ETEPOTAELPO YEIAKO GUVOEGHO , TO TPOSMTO N TO XEPL, Kol LOVOPOAALIKY
TapEKKAIoN 1 LOVOTTAELPN LETABOAT GT SIAUETPO TNG KOPNG), aVTEC Oo Tpémel va
mpokalovvtal og enimedo vymAng évtaong (Pollak et al. 2002, Tommasi et al. 2008). Katd
duapketo TG emépPaong £xovv mapatnpndei PeAtinoelg o KivnTikd coprtopato g NIT 11/kon
EUGAVION SVOKIVNGLOV UOALS LETA TNV ERPVTEVOT) TOL NAEKTPOdIoV &V T PAOEL eyKEPAAKNG

d1éyepong 6tov LIOBAAAUIKO TVPNVA, PALVOLEVO TOL OTOKOAEITAL ‘EMIOPAOT LUKPOTPDCEMG’
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(Chen C C et al. 2006, Yoshida et al. 2010). Av Kot avTd T0 PAVOUEVO QaiveTal Vo givarl

TPOYVMOOTKNG ONUACiaG, dev Exovv e&oyBel axoun oplotikd cvpnepacpota (Rezai et al. 2006).

270 YeVIKO TANIG10 TV HEBOSd®V GTOXEVOTG TTOV YPNGUOTOLOVVTOL KOTA T1) SLAPKELL TNG
emépPaong g ev T Pabetl eykepalikng diéyepong Exet avamtuydel pio mowidio alyopiOuwv
KOl TPOYMPNUEVOV GUCTNHATOV AOYICUIKOD Y10 TV OEYXEPNTIKY VTOGTHPIEN 1 KO THV
OVTOHOTOTOINOT TNG KAWVIKNG OmOPaoNG. ZVYKEKPUUEVO, PLodelkTeC Kl TPOsEYYIoELS
povtelomoinong Pacilopeveg oe NAEKTPOPUGIOAOYIKA SEGOUEVA 1) TPOGAVATOMGUEVEG GTNV
avémtuén eEedikevpévov Kot actevr] TPIodIAcTATOV LOVTEA®Y TNG AVATOMKNS TEPLOYXNG-
GTOYOV SLEVKOAVVOLV GNUOVTIKA TOV TPocdoplopd g PéATIoTNG TpoyLds (Wong et al. 2009,
Cagnan et al. 2011, Falkenberg et al. 2006, Chan et al. 2010, Novak et al. 2011, Pesenti et al.
2004, Pinzon-Morales et al. 2011, Holdefer et al. 2010, Danish et al. 2008, Snellings et al. 2009,
Zaidel et al. 2009, 2010, Chen C C et al. 2006, Taghva et al. 2011, Abosh et al. 2013, Beriault et
al. 2012). EmmAéov, eEgldikevpéves kot aoevi mpooeyyloelg LovIEAOTOINONG EQAPUOCIUEG KOt
o1 SadtKasion TG KAVIKNG LOKPodEYeponG TapExovv T duvatdtnta PelTicTonoinong kot
EMTAYLVONG TNG TEMKNG TOToBETNONG TOL NAeKTpodiov diéyepong (Miocinovic et al. 2007,

Butson et al. 2011, D’Haese et al. 2012, Maedler and Coenen 2012).

O vrobarapkdg mopnvag (corpus Luysii) givar pio apeikopt doun tomobetuévn 6to
oLVOEGO OleyKe@ALov-peceykepaAiov (Luys 1865, Yelnik and Percheron 1979). Ta 6pio Tov
vrofodapkod Tuprva opilovor amd v aféfom Lovrn, Eva TUHE TG POKOELO0VG dEGLIBAC,
vnudrio g oo kdyag , To medio H tov Forel, tov omicBomievpikd vmobdrapio, To eyKe@oilkod
OTEAEYOG, T OIKTLOTN poipa pEAaIVAG ovaiag kot Tov epuBpd mupnva (Schaltenbrand and
Wahren 1977). Ot {dvec vnuotiov Tov tepvovy TANGIOV ToV 0piov TOL VTOOAAULLKOD TLPTVOL
TEPAAUPAVOLY TNV LTOBAANUIKY] OEGUIOM, TN PAKOELDN OEGHION, TN BOAQIKY dECUId,
VTOTOLLVEPYIKEG LEAOVOPUPOIMTES dEIdES, TO PECHio ANUVIcKO Kot TNV omovoviloBalapik,
tpdvpoborapky| kot aktivofaiapkn {dvn (Hamani et al. 2004). O 6ykog tov avOpdmivov
vroBakapikod muprva Exel avopepbei 6Tt kopaivetat petatd 175mm’ kat 240 mm® kat o1t
meprropfavet katd péso 0po 240,000-560,000 vevpmveg (Hardman et al. 2002, Levesque and
Parent 2005). To punkog, mAdrog kot Vyog tov givon 9.8 £ 1.6, 11.5 £ 1.6, xon 3.7 +£0.7 mm,
avtiotoiywg (Patil et al. 2012). A&ilet va avapepbei 6TL VTAPYOLV EVOEIEEIG OTULOVTIKDV
SOTOUIK®V SLOKVUAVOEMV TG OVOTOUIKNG 0E0MG Kot TovY 8106TAGE®V TOL VITOHAANpLKOD

mopnva (Daniluk et al. 2010, Reese et al. 2012).

O vrobarapkdg Topnvag givatl 0 Hdvog TuPNVaAG 6TO SIKTVO TOV PUCIK®V YoryyAimv
UTOTELODUEVOC TPMTAPYIKA OO TPOPAAOVTEG VEVPDVEG TOL AOKOLV i VIOV J1EYEPTIKY

enmidpacn o€ AAAEG OoUEG AOYM TNG VITAPENG YAOLTOUIVIKOD 0EEMG. ZVYKEKPUUEV, Ol VEVPAOVEG



TPOPALOVY KATE KOPLO AOYO GTNV @YPA 6(aipa, TO pafdmTO GO, T LEANVE, OVGIN, TO
OKEAOYEPLPIKO TLPTVA KL TO paytoio mupnva paeng (Parent and Hazrati 1995, Hamani et al.
2004, Marani et al. 2008, Nambu et al. 2002, Levesque and Parent 2005). A&ilet va onuelwdei
TG M Tpofoir] vrobalapkod Tupnva-wypds ceaipag anoteiel Eva Pacikd cTotyElo Tov
éupecov povomratiot (Parent and Hazrati 1995, Karachi et al. 2005). H dopikn| kot Aettovpyikn
VIOSLOUPEST) TV PACIKOV YOyYAI®V GTNV 0UGONTNPIOKIVITIKY , GUVELPLUKT KO LETOLYLLOKT
meployn avtikorontpiletal 6Ny VIapén TPIOV aVTICTOlYOV AETOVPYIKOV (OVAOV GTOV
vrofadapko Tupnva, SNA. TNV aeONTPLOKIVNTIKY, GUVEPUIKY Kol petaypiokn {dvn Tov
Bploxovtatl oto omichio (poyionomhevpicd), HEGO (LEGOKOIALNKO) Kot TpdGOo (pecaio) LEPOGC
Tov mopnva, avtictotyo (Alexander and Crutcher 1990, Lambert et al. 2012, Hamani et al. 2004,
Karachi et al. 2005, Parent and Hazrati 1995, Brunenberg et al. 2012, Tan et al. 2006,
Sudhyadhom et al. 2007, Stathis et al. 2007). Zvvenmg, 0 VIOBUAAUIKOC TVNVAG EUTAEKETOL
gvepPYa Oy LOVO otn puduion g kivnong, GAAG Kot TNV VONTIKY Kol GUVOGOLOTIKY
enekepyaocio (Péron et al. 2013, Le Jeune et al. 2010, Benedetti et al. 2004, Greenhouse et al.
2011, Drapier et al. 2008, Balaz et al. 2011, Bockova et al. 2011, Buot et al. 2013, Kopell and
Greenberg 2008, Baunez et al. 2011, Burbaud et al. 1994). Qot600, gvdlopépov mapovotdlel To
veyovdg OTL 01 TPELG AVTOL INYOVIGHOT EVOEXOUEV®MS VO UV AABAvVOLY Ydpa Kot Evay
TOTOYPOUPIKA OLGTNPO SLOYOPIOTIKO TPOTO, OAANL VO OPOVV GLVEPYIGTIKA GTOV LUKPO OYKO TOV
vroBaiapikov Toprva (Mallet et al. 2007, Hershey et al. 2010, Balaz et al. 2011, Haynes and
Haber 2013, Lalys et al. 2013).

[dwitepn avapopd Bo Tpémel va YiveL GTNV TOTOYPAPIKT] OPYAVMOT| TOV TPOTOHTW®V TNG
TABOLOYIKNG VEVPWOVIKNG dpacTnPLOTNTOC 6TOV VITOBaAApIKS TVPTVa acBevdy pe NIT. H
ene&epyncio LOVOKVTTUPIKAOV KATOYPOPDV Kol KOTOYPUP®OY OVVOLK®Y TOTIKOD TTedion £xel
vrodei&el TNV VIOPEN AVENUEVOV EKQOPTICEMV EECTACUAT®VY, CLENUEVIC VEVPOVIKNIG
dpaoctnprotnTog oXeTOUEVNC LLE TNV KivNoN, PNTA TOAXVTOTIKNG SpOcTNPLOTNTOS Kol
TAAOVTOTIKNG dpaoTNPlOTNTaG OXETILOUEVNC LE TOV TPOUO, OAAL Kot TaHOAOYIKOD
GULYYPOVIGLOV GTO POYLOIO0 GUYKPLTIKA LE TO KOIAMOKO UEPOG TOV VILOBOAAULIKOD TVPTVE
acBevav pe NII (Kiihn et al. 2005, Weinberger et al. 2006, Seifried et al. 2012, Contarino et al.
2011, Rodriguez-Oroz et al. 2001, Hamani et al. 2004, Guo et al. 2013, Lourens et al. 2013). X¢
GUUPOVIM [LE VTN TNV TOTOYPAPIKT 0PYAVEOOT], GALL KOl TO TPOOVAPEPOUEVO TPOTVTO
AELTOVPYIKNG GUVEKTIKOTNTAG GTOV VIToBaAapicd Topnva Ppicketal To Yeyovog 0Tt Ta
NAekTpodia ev To Pabel eykepaiikng d1€yepong mov Ppickovtal TomodeTnuéva 6To KOIAMOKO 1
HEGO HEPOC Tov VoBodapikod Tupniva acbevav pe NIT evdéyetor va feATIdVOLY To KV TIKA
GUUTTOMOTO TG VOGOV, OALA LE TO TIUNUA TNG ELPAVIONG AEKTIKNG, VONTIKNG 1)
cvvateOnuoatikng BAaPng (Hershey et al. 2010, Astrom et al. 2010, Mikos et al. 2011, Mallet et

al. 2007, Paek et al. 2008). Avtifétmc, T0 poylooTAEVPIKO OPLO TOV VTTOOUAAUIKOD TVLPTVEL
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yopoaktnpiletal otabepd g 1 otepeoTOaKTIKN BE0M OV GLoYETI(ETAL e TNV pEeyaAvTEPY
BeAtimon oty kAipaxo UPDRS-IIT (Herzog et al. 2004, Guo et al. 2013, Johnsen et al. 2010,
Godihno et al. 2006, Lanotte et al. 2002, Maks et al. 2009, Zaidel et al. 2010), av Kot vEapyoLV
KON Kdmoteg evOeiEelg OTL 1) S1€yEPOT GTNV TEPLOYN LT UTOPEL VAL EXNPEAGEL APVNTIKA TNV
KkataAnmrotta tov Adyov (Lalys et al. 2013). EmumAéov, 1 61€yepomn tov mAEVPIKOL HEPOLS TOV
VTOOAAALLKOD TUPTVOL EXEL CUCYETIOTEL e Lo YoUnAOTEPT BEpOmenTIKY EMIdpaoT OTN
Bpadvkvnoia cvykprtkd pe t dvokapyio (Cooper et al. 2011), éva pavopevo Tov Katd TACO
mBavotnTa Tpokaieiton amd Ty evepyonoinon vnuatiov g rupapdtkng {ovng oy
nwpookeipevn éow kaya (Xu e al. 2011). H npoxaiovpevn amod t diéyepor evepyomoinon
vnuatiov g Tupapdkig Lovng éxet avapepbel 6Tt Tpokaiel Kpoviakég KVNTIKEG GUOTACELG
7OV OTOTEAOVV [i0L OTO TIG TLO KOWVEG TOPEVEPYELEG TTOV TTAPATIPOVVTOL KATA TN SIEPKELD TNG EV
T Babdel eykepaAikng di€yepong tov vrobarapkov woprva Yo NIT (Tommasi et al. 2008,

2012).

H amocaprvion Tov unyovicpol tov cuoyetiletal Pe TNV KAVIKA 0moTELECUATIKN €V T® PAaOet
€YKeQAAIKY 01€yepon givar Kpioung onposciog yio ) fabvtepn kaTavonomn Tov AEITovpyKon
ofaBpov avTHG TG TEYVOAOYIaG Kot TOV KABOPIGHO TOL TANPOVS BepamevTIKOD TNG
SVVOULKOV, TTOL EVOEXETAL EV GVVEXELN VO EDVOTICOVY TNV AVATTLEY Kol eEEMEN TPOTOTLIOV Kol
KAWVIKG 10 aTOTEAEGLOTIKMVY TPOTOT®V d1€yepong. [laparilayés oty Tposéyyion mov
YPNOLOTOLEITAL (ATELKOVIOT], VEVPOPVGIOAOYiM, UIKPOdIdALGT), 6TOo €id0g (Le xprion Tov
cuppatikov niektpodiov ev T Pabel eyKeaikng diEyepong EvavTL ¥prong evog
pKponAeKTPodiov 1| Tov fonbnticod aymyod wg evepyol NAEKTPOOIo) Kot TIG TUPAUETPOVS TG
Sdtéyepong 1 T AavBavovca mepiodo (pukpn Evavtt Heyding) Tov TapatnpoVUEVOY ETOPACEDY
ATOTELOVV TOVG KUPLOVG TAPBEYOVTEG AVOPOPAS CYETIKE OVTIKPOLOUEV®VY DTOBETIKDY
UINYOVICUGY dpAcng TG €V To Pabet eykepaiikng 61éyepong (Lozano and Lipsman 2013). H
VO0ECT TNG “AEITOLPYIKNG TPDOGENDS’, ONA. 1) LTOBEGT OTL | d1EYEPOT AOPOVOTOLEL TOVG
TaBOAOYIKA VITEPIPACTPLOVS VEVPAOVES, TPOEKVLYE OO TNV TOPATHPNOT LOG GUYKPIGIUNG
eMidpaong tng d1€yEPONG LE TNV EMOPAOT] TNG EKTOUNG 6T0 BAAa0, TOV LTOOBUAAUIKO TVPTVE 1|
v é0m wypd opaipa (Benabid et al. 2000, Benazzouz et al. 1995, Beurrier et al. 2001). H
apykn ovth vtobeon vroatnpiydnke ev cuveyeia amd mo TPOoPUTES PEAETEG Poc1lOpEVES
pefodoroyikd ot SlEYYEPNTIKN KATAYPAPT TNG VEVPMVIKNG dPASTNPLOTNTOC KoL TNV
TAVTOYPOVT EQUPLOYN TNG O1€YEPONG VYNANG cuyvotntag (Welter et al. 2004, Meissner et al.
2005, Filali et al. 2004, Toleikis et al. 2012). X& yevikég YPOUUES, 1) OVOGTOAN TNG
SpaCTNPLOTITOG TV GTOYXEVUEVOV VELPOV®Y TOV VITOBOANLIKOD TUP VA 1 TNG £60 WYPEG
opaipoc pmopel va opeiletal 6 OTOTOAMTIKO amokAelouo (emdpacelc Na, K), cuvontiki
OVETAPKELD, EEAVTIANGT TOV JIEYEPTIKMY VEVPOSUPIPACTIKOV 0VGLmV (YAOLTOUIVIKOD 0EE0C),

VIEPTOAWDCT] TOV VEVPOVIKADOV KVTTUPIKMDY COUATMV KOl dEVOPITOV, anelevfipmon twv
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UVOGTAATIKGV VEVPOSOPIPACTIKOV 0VG1OV (YappHo-apvoBoutuptkod 0&Eme,adevoaivig) 1 o€
GUVOTTIKT OVOGTOAN TV Tpocaywy®dv mtpofoidv (Lozano and Lipsman 2013). Amo tnv dAAn
TAEVPA, TEPAPATIKEG LEAETEG KOl LEAETEG VTOAOYIOTIKNG LOVIELOTTOINGNC KAl AEITOVPYIKNG
OTEIKOVIOTG EYOVV LLOOEIEEL Lo TPOTAPYLKE SLEYEPTIKT EMIOPACT TNG EV T PAOEL EYKEPAAIKNG
d1éyepong Tov VITOOUALLKOD TVPNVA, GTN dPASTNPLOTNTO TOL GTOYEVEVOL Tupnva (Garcia et
al. 2005, Hilker et al. 2008, Garraux et al. 2011, Novak et al. 2009, So et al. 2012) 7}, o¢
onuovTkotepo Pabuod, pio dtoympioTikn dpaon e S1EyEPoTNg 0TI COUATIKY Kot AE0VIKN
dpacTNPLOTNTA, SNA. COUATIKY AVOGTOAN KOl AdPOVOTOINGCT|] TMV TPOSUYWOYMV, KOl AEOVIKN
diéyepon kar dpactnpromoinon tev anayoy®v (Mclntyre and Grill 2000, 2002, Mclntyre et al.
2004 (a),(b),(c), Mclntyre and Hahn 2010, Vitek 2002, Deniau et al. 2010, Johnson et al. 2013,
Kringelbach et al. 2007, Grill and Mclntyre 2001). X¢ eninedo diktdmv vnuatiov Exovv TAéov
KATOYPOUQEL EVPEWMC 1) AVTIOPOUIKT] EVEPYOTOINGT 1) Ol GUVOTTIKES EMOPACELS GE VELPOVIKES
doUEC GUVOEDENEVEG GTOV VITOOUAUUIKO TUPTVA, CUUTEPIAAUPOVOUEVIG TG CLUTAYOVS KOl
SIKTLMOTNG Hoipag TG HEAALVOG OLGIOGC, TNG ®YPAS GPAIPOC, TOV ETEPOTAELPOV VTOOAAAUIKOD
TLPTVA, TOL CKELOYEPLPLKOD TVPNVA, TOV EYKEPOAIKOD PAO10V, TOV HOAGLOL Kot TOL AV®
dwdvpiov (Burbaud et al. 1994, Benazzouz et al. 1995, 2000, Windels et al. 2005, Maurice et al.
2003, Tai et al. 2003, Degos et al. 2005, Shi et al. 2006, Maltete et al. 2007, Hashimoto et al.
2003, Dorval et al. 2010, Hahn et al. 2008, Hahn and Mclntyre 2010, Hilker et al. 2008, 2004,
Reese et al. 2008, 2011, Meissner et al. 2002, Lee et al. 2004, 2006 , Li et al. 2012, Gubellini et
al.2006, Novak et al. 2009, Florio et al. 2007, Jech et al. 2006, Li et al. 2006, Potter-Nerger et
al. 2008, Eusebio et al. 2009, Kuriakose et al. 2010, Lehmkuhle et al. 2009, Xu et al. 2008,
Bressand et al. 2002, Garraux et al. 2011, Geday et al. 2009, Guo et al. 2008, Moran et al. 2012,
Rubin and Terman 2004, Santaniello et al. 2010, Sotiropoulos and Steinmetz 2007, Volonte et
al. 2012, Walker et al. 2011, Whitmer et al. 2012, Zheng et al. 2011, Lafreniere-Roula et al.
2012).

Me Bdon ta Tapandve, 1] GUVOVOGCTIK ETIOPACT] TNG OEYEPCTC GE VITOKVTTAPIKO/VELPOVIKO
eninedo 1 enimedo SIKTLOV VNUOTIOV (CUVOTTIKY AVOGTOAY], GUVOTTIKN KOl OVTIOPOIKY|
déyepon) evoeyopEVmS Vo, aoterel Tn Pdomn TG TAPATNPOVUEVIG TPOTOTTOINGNG TV
Ta00PLGIOAOYIKOV TPOTHTMOV TNG VEVPMVIKNG dPAGTNPLOTNTAG TOGO GTOV JEYEPUEVO TVPNVO,
0G0 Kol 670 KOKA®Uo Boctkd yayyAlo-0diapog-erotdg (Mclntyre and Hahn 2010, Grill et al.
2004, Montgomery and Gale 2008, Rosenbaum et al. 2014, Carlson et al. 2010, Deniau et al.
2010). ZvyKekpluéva, 0 UNYoVIGHOg 0pacng TS v T® Padel eykepaiiknc diéyepong yio NI,
umopet vo amodobel TpmTopy KA 6TV KAVOVIKOTOINGT TV TPOTUTMY VEVPOVIKOV EKPOPTIGEMV
KoL TN ONUovpYia oG ‘IANPoPOPLOKNAG TPMOGEMS’ GTNV TEPLOYN TOV JEYEPUEVOD TUPTVA
(McConnell et al. 2012, Santaniello et al. 2015, Grill et al. 2004), evéd vapyovv axoun

evOElEELG TOV dTvoLV EUPOCT) OTNV UVOCTAATIKY OpAcN TNG SIEYEPCNC GTNV LT OUAAT VELPOVIKN



dpaotnprotnta tov eAotov (de Hemptinne 2015). A&ilel va onueimBel, 6Tt }pnoIUOTOIOVTIS TIG
oVUPOTIKEG KMVIKEC TOPAUETPOLS O1Eyepong, ot Carlson et al. (2010) mopatipnoav 6Tt £val
VITOGVVOAO VELPDV®OV TOV VITOOUAAUIKOD TUPNVO, TOV EKONAMVE APYLIKE EKPOPTICELS
EEOTAGLATOV 1| TOVIKEG EKQOPTIOELC, TAPOLGINGE LETA TN S1EYEPON £Val TVYALO TPOTLTO
expopticemv. To anoTEAEGUA AVTO GUVOEETAL GTEVE LLE TIC TAPATNPOVUEVES LETAPOAES GTO
TPOTLTTO VEVPMOVIKMOV EKQPOPTIGEDV TOV VTOHALULIKOD TVPTVO LETA TNV €V TM PAOEL EYKEPAAIKT
Séyepon tov etepodmievpov muprva (Walker et al. 2011), v avagepbeica anocvyypovieTikn
dpdomn g cupPatikng dEyepons vyning cvyxvotntog (Hauptmann et al. 2007, Rubin et al.
2012), aAid kot pe TNV vOdEEN OTL 1 eV T® PAbet eykepaiikn Si€yepon Tov VITOHAAAUKOD
TUPNVa TPOTONOEL T TABOAOYIKE TPOTLTTO GLYYPOVIGUEVMV TOAOVIMGEMV GTOV VITOHAAAUIKO
mopnva (Bronte-Stewart et al. 2009, Eusebio et al. 2011, 2012, Meissner et al. 2002, Whitmer et
al. 2012, Wingeier et al. 2006), emdpdvTog pe ToV TPOTO 0L Td 670 KvnTikd amotédeoua (Kuhn
et al. 2008). Akoun o GNUAVTIKO €ival TO YEYOVOG OTL KAMVIKEG LEAETEC Kol LEAETEG
VTOAOYIGTIKNG LOVTEAOTIOINGNC VITOSEIKVOOLV OTL TO YPOVIKG EVOALGKTIKG TPOTOTO. OLEYEPTNG
EVEYOLV TN SLVOTOTNTO VO 0N YHGOVV TN VELPOVIKT SUVOUIKT TOV BacIK®V YayyAlov Ticm ot
QLGLOAOYIKY aroovyypoviouévy kataotooy (Feng et al. 2007(a),(b), Adamchic et al. 2014). Ev
TO PETAED, OTTMC £xel avapepbet, pio evogyOeEVT) VOGOTPOTOTOMTIKT KOl VEVPOTPOGTOTEVTIKN
dpdiomn ¢ ev T Pabet eyKeaAKNG 01€yepong Tov vrrobaiapkov toprva (Temel et al. 2006
(b), Harnack et al. 2008, Wallace et al. 2007, Spieles-Engemann et al. 2010, deSouza et al.
2013, Albanese and Romito 2011, Shon et al. 2010, Van Gompel et al. 2010, Grahn et al. 2014)
Bpioketon emi Tov TAPOHVTOC VIO £pguva amd pio avapevopevn kKiwvikn dokuy (Kahn et al.

2012).

AVOQOopIKd [LE TOVS UNYOVIGHOVS TOV GUGYETICOVTOL LUE TIC VEDPOWYLYLOTPIKES TOPEVEPYELEG TNG
&v T Pabel eykepaiikng di€yepong Tov vrobaAapkoy TPV, o1 VITOBEGELS TOIKIAOVY O
peydro fodpod. Yrapyovv otolygio Tov vTodEKVOOUY T HETOPOAN TNG eneéepyaciog
GLVUGONUOTIKTG TANPOPOPIaG MG VOV VTOOAATTOVTO UNYOVIGUO TNG O1EYEPCTG TOL 001 YEL OE
dloTapayég copmeplpopdc. Avth N petafoAir propel vo mocotikomombel pécsm tov
oxeTILOUEVOL UE YEYOVOTO OTOGVYYPOVIGHOD NG vtobaiapikng dAea dpactnpiotnrog (Briicke
et al. 2007, Huebl et al. 2011). Aliec peréteg Exovv TOViceL TNV TPOKAAOVUEVN A0 T O1€YEPOT
amooTo0EPOTOINGT TOL GLGTHIATOS S-VOPOEVLTPVTTAUIVIG MG TAPAYOVTH EUPAVIOTG
yoylotpikov mapevepyelmv (Hartung et al. 2011, Tan et al. 2012 (a), (b)). Mia dtapopeTikn
oAra e€icov €00y dmoym givatl OTL 1| SlapPOT PEOUATOG TTPOG [N KIVITIKG dlicTua, EVTOC Kot
mePt TOV LTOBAAOUIKOD TVPTVA PTOPEL va. givort vTELOLYN Yo pia EvOEYOUEVT] SVONTIKNY KoL
ovoeOnpatiky PAAPN petd v apeitievpn ev to Pabel eykepoiikn d1€yepon Tov

vroBaAapikov mopnva (Frankemolle et al. 2010, Alberts et al. 2010, Hershey et al. 2010, Mallet
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et al. 2007, Daniels et al. 2012). Xtnv {010 attio pmopel va amwodobei | TpokaAovdpev amd T

déyepon emdeivoon ¢ kataAnmtoétnTog TG opuiiog (Mikos et al. 2011).

Onwg &rel avapepbel, 0To TAIG10 TNG MKPONAEKTPOOLAKTG XOPTOYPAPNONS, £XO0VV epeuvnOet
Kol TpoTabel EKTEVAS OLTONATOTONUEVES LLEBODOL TOV TOPEYOVY AVENUEVT] AVTIKELLEVIKOTI T
KoL LELOVOLVY TN GLVOALIKT dtdpketa TG emépPaong (Falkenberg et al 2006, Danish et al 2008,
Zaidel et al 2009, Wong et al 2009, Novak et al 2011, Cagnan et al 2011, Pinzon-Morales et al
2011). Zuykekpipéva, Exel 0E10A0YNOEL 1 GLVOLACTIKY EQPOPLOYT TOCOTIKMV YOLPUKTNPICTIKOV
oxeTllOpEVMV e Ta duvapkd Tomkov Ttediov kavn To vyicuyvo onpa (nA. TNV vyicuyvn
dpactnprotnta tov vroPddpov N T SPACTNPIOTNTO TV SLVAMIK®OV EVEPYELNG). AV Kot Ot
TPOCEYYITELG TOALUTADY YUPUKTNPICTIKOV TOPEYOLY avENUEVT akpifela kot a&lomioTio yio ™
GTOYEVOT| TOV VTTOOUAOUIKOD TVPNVE, 1 ¥PTIOT EVOG LOVASTKOD £0poToL Prodeiktr Oa
amTAOTTO100GE ONUAVTIKA Kot Bo emttdyvve TN SlEyYEPNTIKY aviyvevon tov mopnva. Emmiéov,
pio GupIANPOUATIKN TPocEyyion e Bdor Evay povadikd Plodeiktn epapudoiun ot
dwadkacio g deyyepntikng diéyepong Ba 0dnyovce oe onuavtikn PeAtiwon oAOGKANPNG NG
NAEKTPOPLVCIOAOYIKNC O10d1KUGT0G, PEATIOTOTOI®VTOC TV KMVIKY OTOQOCT KOl LELOVOVTAG TN

GUVOAIKY] d1dpKela TG eméuPoong.

Yrdpyovv av&avopeveg evoeiEelc ouoyETiong Tov VITOBAAAUIKOD TOANVTMTIKOD GUYYPOVIGLOV
pe v Kawvikn avarnpio otn NIT (Kiihn et al 2009, Pogosyan et al 2010), kat, avtioTpoe®g,
OT®G TPOoavaPEPONKE, EVOEIEELG GLGYETIONG TOV ATOGVYYPOVIGHOD TNG VEVPOVIKNG
dpaoTnPOTNTOG HE TO UNYaVIcHd dpdong tng ev 1o Pabel eyKepaMKnG d1€yEPONG TOV
vroBolaptkod Tuprva (Carlson et al 2010, Walker et al 2011, Hauptmann et al 2007, Modolo
and Beuter 2009, Wilson et al 2011, Johnson et al 2013). Mg Bdon Tig evdei&elg avtég, 0 KOpPLog
o1OY0¢ 0V 4°° Kepaiaiov ¢ datpiPng NTav N aEloAdYNGT GLALOYIK®OY SUVAUIK®V 1310THTOV
Kol W10TATOV ardKpIoNS TG VTOOUAOUIKNG TOACVTOTIKNAG dPAGTNPLOTNTOG O KPIGIU®Y
YOPUKTNPLOTIKDV YVOPIGUATOV Yo TNV ETLOYT TG PEATIOTNG BEonC enpdTEVOTG TOV
niektpodiov di€yepong ot NII. Edwotepa, emyeipndnke o Tpocdlopiopdc g
EQUPUOCIUOTNTOG V0 GUUTANPOUATIKOV TPOCEYYIGEDV Baci{OUeEVmOV G€ POVaSTKO Blodeitn
GTO TAQIGLO TV TPOTUPYIKDV TEYVIKDV YOPTOYPAPNGNG TOV YPNGLULOTOIOVVTOL KOTR KOPOV
SLEYYEPNTIKA: TOV HWKPONAEKTPOSIOKADV KOTAYPOPOV Kol TNG eEETAONC TG HoKkpodiéyeponc. Ot
npooeyyicelg faciomkav o€ HeBOS0VE GTOYAGTIKNG UN-YPOUUIKNAG SUVOUIKNG. AVOAVTIKE, pe
Béon Tic LKpONAEKTPOSIOKES KATOYPAUPEG AVAKTNUEVES KaTd, TN didpkela 10 yeipovpyikdv
enepuPdoewv, TpocdlopicTnke apytkd £voc OeikTng TOAVUETAPANTOD GUYYPOVIGLOV PACTG
(Carmeli et al 2005, Allefeld et al 2007, Polychronaki 2011) w¢ évol cuvoLOGTIKO LETPO TOTIKOV
KO YOPIKA EKTETOUEVOD TOAAVTMOTIKOV cuyypovicrov (Moran and Bar-Gad 2010), dtatnpovtog

v gvaioOncio oto B6pvPo pétpnong oto eldyioto (Rossberg et al 2004, Sun et al 2008). O



TPOTEWOUEVOG OEIKTNG EPAPUOGTNKE LE GTOYO TMV TPOGIIOPIGUO TV OTOSEKTOV
UIKPONAEKTPOSIOKDV TPOYLDV, ONA. TOV TPOYIDOV OTIG 0moieg B pmopovce o€ devTEPT PACT VO
gpopuootel pakpodieyepon (Marceglia et al 2010). Avto T0 YOpAKTNPIGTIKO Yp1CLLOTOMONKE
GTN CLVEXELD MG L0 GLOTATIKY TAPAUETPOS EVOG OTOYATTIKOD PAGIKOD HOVTEAOD TO OTOT0
TPOCAPUOCTNKE KATUAANAQ GE TPOEMAEYUEVES LIKPONAEKTPOSIOKES KaTtaypapés. Me Bdaomn to
povtélo avtd, mpocdopiotnke o ekBétng Lyapunov (Pikovsky et al 2001), wg pio mocdtta
OV AVTIKOTOTTPILEL TN SUVOUIKT VTTOBAAQUIKOD CUYYXPOVIGUOV GE ATOKPICT] TEPLOSTKMV
waApmv diéyepong (130Hz), ko a&roroynOnke 1 tpoPfrentik| ToL KAVOTNTO GTOV
TPOGO0PIoUO TV BEGEMY OOV 1 JEYEPCT| AMEPEPE TO KAADTEPO KAVIKO OOTEALEGHLOL. XN
Bewpia g pn ypappkng duvapukng, o ekfétng Lyapunov yopoktnpilet g 1010t teg
amoKAIoNG/chYKAIoNG 000 KOVIIVAYV TpoYIdV 6T0 Y®po TV ¢dcewv (Pikovsky et al 2001).
Oetikég TIRES Tov ekBETN Lyapunov vmodnidvouy amocuyypovicid. MEGm TOV GTOY0GTIKOD
QOGTIKOV LOVTEAOV TTPOGOUOIMONKE 1) TOPOVGIO TOGO TOL EVOOYEVODG OGO Kol TOV e£MYEVONC
BopvPov. H avtopatomompévn pebodoroyia a&loroynonie pe Baon Tig KAVIKEG ATOPACELS TOV

AEONKOV SEYYEPNTIKG OO EIOTLOVEG.

Ta amotedéspota TG AvAAVONG ALTHG VIESEIEAY TNV VYNAT SLOKPLTIKT IKOVOTNTO TOL deikTn
TOAVUETABANTOO GLYYPOVIGHOD PACNG GTO TANIGLO TNG JAOIKAGI0G EVTOTIGHOD TOV
VROOAAALLIKOD TUPTVO, ONA. TOV TPADTOV LEPOVS TNG NAEKTPOPLGIOAOYIKNG Tapakoiovdnong. H
EQUPHOYN VOGS KATAAANAOL Iyad1KoD GIATPOL 6T GUVOETIKA GTOLXEID TV KATAYPAPOUEVOV
onudrtwv (Rossberg et al 2004) oe cuvovaoud pe ) péBodo extiunong edaong Pacilopevng ot
yerrovid (Sun et al 2008) sacpdiicav a&loonueimtn otabepotnta g eEEMENG TOL deikTn
€vT0OG T0L VoA pKoD TVPHVA EvavTl TG Tapovsiag BopHPov. Aghtepov, T0 TPOTEVOUEVO
OTOYOOTIKO LOVTELO OVOTTOPTYOYE EMITVYMG TNV LTOTIOEUEVT AMOGVYYPOVIGTIKY OpAGCT] TNG
neplodikng di€yepongs. To yeyovog avtd emkup®Onke 1060 HECH TOL LETPOL TNG QUETASANTHS
TOKVOTNTOS, ONA. TNG KATOVOUNG Ao G oTabepng Katdotaong, 060 Kot Tov ekfétn Lyapunov
VTOAOYILOUEV®V PAGEL TOV GTOYUGTIKOD PAGIKOD XApTN. YTAPYovV dV0 TPOTOPYLKOL AOYOL TOV
umopel va 0dMynoav o€ avtod 1o amotédecua. [Ipdtov, 1 emthoyn piog KapumoAng amoKpiong
@aong tomov Il wg suvdptnong eacikng evasneciog otov Koo (ewyeviy) B6pvpo (Abouzeid
and Ermentrout 2009), dtacpdiice o€ peydro fabud v tkovotnTo TOL LOVTEAOL VO
TPOGOUOLOVEL TNV TAHOAOYIKT KOTAGTOGT VEVPMVIKOD GUYYPOVIGHOD 0TOLGio S1EYEPGNG,
amodidovrag apvnTikd ex0étn Lyapunov. Avtifétwmc, pia kapmvAin andkpiong eaong tomov I Oa
oLOYETILOTAV LE TN PLGLOAOYIKT] 0ocLYYpovicuévn Katdotaon (Farries and Wilson 2012).
Ag0TEPOV, 1| EPOPUOYT OGS KAUTOANG amdKpiong ¢dong Tomov 0, Tov evogyorévmg vo. tvat
BéATiot Yo oToY0oTIKO amocvyypovioud (Hata et al 2011), cuvelcépepe 6TV TPoGopoimon

€VOG Ao TOLG LTOBETIKOVE UNYAVIoHOVE OpAonc TG d1€yeponc VYNANG cuyvotntas. Ev téhet,
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BacEL TV TPOTEWVOUEV®V TPOGOUOIDCEMY, VOGS VEVPOYEIPOLPYOS EVOEXOUEVOC VO, Eival G

0éon va kabopioet Tic BEATIOTEC BETEIC d1EyEpONG e avEnpévo deiktn evatoOnacioc.

To mpotevdpevo QOoIKO HOVTEAD avaTTUYONKE EVOOUATMOVOVTOG TOAAATAOVS TALPAYOVTES TOV
EMOPOVV GTI VEVPWOVIKT] SLVOULKT: VEVPOVIKT (EOEN, TNYEC EvOOYEVODC aveEApTNTOL KOt
eEwyevoig kotvov BopvPov, kot Teplodikn diyepon. Mia cuvémela ool Tov YeyovoTOog eivat
ot 0 e€aryopevog exBémng Lyapunov Gucyetiotnke GUVIVOGTIKG LLE TO GUVOLO TMV AVTIGTOLY WV
TapapETpmV Kot dev Kobopiotnke povadikd and tov delktn moAveTafANTO0 GUYYPOVIGHLOD
(AoT S OV TOCOTIKOTOEL TN vevpwVIKN LeVEN. Mepikéc mponyovueves perétes (Tass et al 2006,
Nabi et al 2013) éxovv mpoteivel maPOHOLN LOVIELX GTO TAAICLO TNG OTOCLYYPOVIGTIKNG
SEyepPoNg, EVOOUATMOVOVTOC MGTOGO LOVO TNV ETIOPACT TOV EVO0YEVOLG Bopvov Kot
napaPrémovrag Tic Tnyéc e€wyevoig BopHPov (Teramae and Tanaka 2004). Emumiéov, Ta
HoVTELD 0VTd o8 cuvekTiumoay ) pacikn e&dptnon tov BopvPov (Ermentrout and Saunders
2006) kot koTd cuvETEL 1) ETidpact Tov Bopvfov dev Ntav arapaitnta ToAlomAacioctiky (Ly
and Ermentrout 2011). [Siaitepng onuociag sivot exiong to yeyovog 6ti, GTNV TOPOVGA
avaivon, o Kowog 86puvPog BewpnOnke Eyypmuog, OnA. oc pio dwudwkacio Ornstein-Uhlenbeck
HE ouyKekpIéVo xpdvo cuoyétiong (Galan 2009). I'a 1o Adyo avtd, KOTEGTH OmOPOITITOC £VOC
UETOCYNHATIGLOC TOV apYIKoD (acikol poviélov o€ eicmon Aevkol BopHPov Langevin

€100YOVTOG TOVG GUVTEAECTEG TPAYLLATIKNG 0AicONoNg kot didyvong (Nakao et al 2010).

Y10 5° kepahato g SratpiPrc emyepeitar n 0ELOAGYNON TNG ATOTELEGUOTIKOTNTAG
EVOALOKTIK®V TPOTUTI®V €V T PAbeL eykeaiikng d1€yepong Tov vrobaiapkov mopiva yro NIT
Kot avOektikny ot Bepomeio [YA. T'iveton mAéov av&avopeva amodektod To yeyovog Ot n
EQUPLOYN YPOVIKA EVOAAAKTIKOV TPOTO®V JIEYEPONG UTOPEL EVOEXOUEVMG VO 0N YN OEL G
£VOV O TOTELEGHOTIKO EAEYYO TOV CUUMTOUATOV, LEIOUEVEG TUPEVEPYELES, KOl YAUNAOTEPES
gvepyelokég omarthoelg (Sarem-Aslani and Mullet 2011, Gross et al. 2013, Hess et al. 2013).
[pdypott, vadpyovy aVEAVOUEVES TEPAUATIKEG ATOOEIEEIC TOV DTOSEIKVOOLV i, IGOdVVAUN 1|
aKOUT PEATIOUEVT] KAVIKT] OTOTEAECUATIKOTITO GUYKEKPIUEV@V YOPOKTIPICTIKAOV YPOVIKA 1N
OLLOA®V TPOTOTTMV GE GUYKPLOT| LUE OUAAL TPOTLTIO SIEYEPONG. ZVYKEKPIUEVA, 1] YPOVIKA UT|-
oA &V T Pabdel eykepaAikn d€yepon Tov Boddaov Exel avapepbel 6TL Teplopilet Tov TpdUO
€€lo0V OTOTEAECUATIKA e TNV OLOAN SIEYEPGT], OTNV TEPITTMAN TTOL OEV VILAPYOVY HOKPEG
navoelg (Birdno et al. 2012, Swan et al. 2013). Avtibétmg, ot Kuncel et al. (2012) éyovv
avapépel 0TL 1 adapkn d1éyepon mov yapaktnpiletot amd mavoelg puéylotng diapketag 40%
TOL GLUVOALKOV YPOVOL TOPOYNG EVOEYOUEVMC VO Elval €£IGOV OTOTEAECUATIKT LLE TV OUOAN
déyepon o1 peiwon tov Tpdpov. IToAd evdiapépov elvar emiong To YeEyovog OTL 1 U1 OUAAT €V
T BdOel eyke@aAkn S1€YEPOT LYNANG CLYVOTNTAC TOV LITOOAAUIKOD TVPNVA, AV OYL

e€alpeTikd avapoln, amaivvel T Bpadvkivinoio otn NII T0 0moTeEAECUATIKA 0O TNV OLLOAN



déyepon (Brocker et al. 2013, Swan et al. 2013). EmmAéov, khvikég pedétec mov a&loroyodv
™V amoTeAespOTIKOTNTA TG VYicvyvns (= 130 Hz) évavtt e younidcvyvng (< 80 Hz) ev 1o
Babet eykepaiikng di€yepong Tov vwodoiapikos Topnva yio NIT vrodetkvoouvv pio pdAiov
mapopota N eEeldtkevévn kot acbevn enidpact TS YOUNAOGVYVG SIEYEPONC GE CUYKPLOT LLE
™V vyiovyvn d1€yepor, 6cov apopd ota abovikd copntopata (Sidiropoulos et al. 2013,
Vallabhajosula et al. 2014, Ricchi et al. 2012), tig axobdoieg kKvioelg (Merola et al. 2013)
yevikotepn kvntikn Asttovpyia (Tsang et al. 2012, Khoo et al. 2014).

O1 katdAAN Ao GYESIOCUEVES KULATOLOPPEG EVOEXOUEVAS VO EIVOL TAEOVEKTIKOTEPES GE
oUYKPLON LLE TOV TOPASOGLUKO TETPAYMOVIKO TOAULO OGOV apopd TOGO GTNV KAVIKY|
OUTOTELECUATIKOTNTA OGO KOl otV kKotoviimon evépyelag (Foutz and Mclntyre 2010, Hofmann
et al. 2011, Wongsarnpigoon and Grill 2010). Eniong, o évBetog Tpoypappoticpuog pe 6vo
SloKpLTa TAATY O1EYEPCNG EVOEYOUEVMG VO PEATIGTOTOIEL TO KAVIKO OTOTEAEGLOL TG EV TMO
Baber eykepaiikng diéyepong Tov vrobarapkov mopiva yuo NIT (Wojtecki et al. 2011). Tékog,
TO TPOTOKOAAO TNG ‘SEYEPOTG GLVTOVIOUEVNC ETOVOPOPAS’ amoterel pio prlikn amdKAlon amd
Ta. cLpPaTkd TpoTLTO €V TO PAOEL eyKeEPUAMKNC d1€yepong Kol XL GYESNGTEL LE GTOYO TNV
TPOKANGN 10YLVPOD VELPOVIKOD OTOGVYYPOVIGHOD Kol LOKPOTPOBEGUNG TpOTOToinoNg e
ouvantikng mAactikotntog (Tass 2003, Tass et al. 2006, 2012, Tass and Hauptmann 2007,
2009, Tass and Majtanik 2006, Hauptmann et al. 2009, Hauptmann and Tass 2007, 2009, 2010,
Hauptmann et al. 2007, Lucken et al. 2013, Lysyansky et al. 2011 (a), (b), Popovych and Tass
2012). H evdgyopevn amoTteAEGLATIKOTTO 0VTOD TOL TOPASELYLOTOG VEVPOTPOTOTOINGNG, TTOV
OmOoTA ALEAVOLEVT] TPOCOYN 6TOo TTedio NG ev T Pabel eykepaiikng di€yepong Ta terevTaio
yxpovia (Rubin et al. 2012, DeLong and Wichmann 2012, Mclntyre et al. 2014, Lourens et al.
2015), &xet vmoderybel amd 600 peréteg ‘anddeiéng g opbotntag g apyng’ (Tass et al. 2012,
Adamchic et al. 2014).

A&gdopévov Tov YEYOVATOG OTL T, XPOVIKE EVAALAKTIKA TPOTLTO, S1EYEPTTG EVOEYOUEVMS VAL
OTOTEAEGOVV TOV TLUPTVO EQAPLOYDV €V T® PAOEL eYKEPAAIKNG S1€yEPONG KAEIGTOV PpoyOV
(Feng et al. 2007 (b), Wilson and Moehlis 2014), ot omoieg £xovv amodetyfel amodotikdtepeg
o1 Bepaneio Tov mapkivoovicpov (Rosin et al. 2011), mepattépm £pguves paivetar va givan
OTOPOLTNTEG Y10 TOV KOOOPIGUO TOV 1310UTEPOV YOPAKTNPIOTIKAOV TOL KOBIGTOOV 0VTd Ta!
TPOTLTOL ATTOTEAEGLLOTIKG GTNV OVTIUETOMTIGT KIVITIKOV KO VEDPOYVYIATPIKDV SLOTOPOYDV.
Xrtifovtog Tave oty vodeon Ot Ta GUUPOTIKE Kol YPOVIKE EVOALOKTIKA TPOTLTTA O1EYEPCNG
aoKOUV TNV TOTIKOV EMTESOV EMIOPUGCT TOVS HEGH TOV ATOGVYYPOVIGLOD TNG VITOOAAUIKNG
VEVPWVIKNG dpacTtnpldtnTag , otn ueétn tov 5% kepaiaiov, ypnotpomotovvrat pébodot
GTOYOOTIKNG UN Ypappkng duvaukng (Gardiner 1985, Kuramoto 1984, Winfree 2001,

Pikovsky et al. 2001) kot 600 6GOVOAQ SESOUEVOV UIKPONAEKTPOSIOKDY KATOYPUPDY Y10, TO
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GLYKPITIKO TPOGIOPICUO TNG OTOGVYYPOVIGTIKNG EXIOpAONC TNG ovuPatikng (OpaAng ot
130Hz) évovti évteka Ypovikd eVOAAAKTIKOV TPOTOTMV £V T PAOeL eyke@alkng diéyepong
Tov voBodapkov Topnva yio NIT kot WA, kat yio tov mepattép® Kabopiopd Tmv
GUYKEKPUEVOV YOPUKTPLOTIKOV T®V TPOTOIIMV TOL GLCYETICOVTAL [IE Liol OTLLOVTIKA
LGYVPOTEPT] ATOGVYYPOVIOTIKY| EXIOPACT]. ZVYKEKPIUEVA, LE BACT TO GTOYAUCTIKO PUCIKO
LOVTELO TTOL avamTuyONke 670 4° KeQAAL0, TO OTOI0 TEPLYPAPEL £VOL GVVOLO OAKAL
oLLEVYHEVOV YAOTIKAOV TOAXVIMTAOV 031 YOOUEV®V amd Koo, aveEdptnto B0pufo Kot
eEmtepkn) enidpact), EKTHATOL Yo Vo GUVOAO 2X96 LIKPONAEKTPOSIIKDV KATAYPAPADV (KAOE
VTOGUVOLO dedOpEVMV avakTHONKe Kotd T S1dpkeln ev T@ PAbel eykeaAkng S1Eyepong Yo
NITI ko YA, avtiotolyme) n apetdPAintn Tukvotnta (Qacikn Katavoun otadepic KatdoTaomng)
(Hata et al. 2010, Yamanobe 2011), ®g pio T0GOTNTO TOV OTNV TOPOVGO, LEAETT
AvTIKOTOTTPILEL TNV ATOGVYYPOVIGTIKT OPAGCT) TOV EPAPUOLOUEVOV TPOTOTMV JIEYEPCTG TNV
vrofodatkn vevpovikn dpactnpiotnta. Etikupdveral n evpootio Tov HETPOL ALTOV OTN
SLIKPIOT GEVAPIMV OTOCVYYPOVIGHOV HECH GUYKPICEMV LE Pt EVOALOKTIKT HETAPBANTY, TOV
ex0étn Lyapunov, kot mapéyovtor evOei&elg yio TNV eVOEYOUEVT] GUGYETIOT TOV LE TNV KAVIKE
OTOTEAEGHLATIKY O1EYEPOT|. XT0 1010 TANIG10, EIGAYOVTOL GUYKEKPIUEVEG TPOTOTTOGELG
OVOPOPIKA LE TN GLAAOYIKN SVVOULKY], TIG TAPAUETPOVS KOl TIC GUVAPTHCELS TOL LOVTEAOV, Ol
omoieg avEAavouy oNUOVTIKA TV gvaicincia Tov. I'ia v eykupdTnTa TNG TPOGEYYIoNC,

TOPEYOVTOL CTUOVTIKG ELLLEGO OTOOEIKTIKA OTOUXE DL

Ta wpoTLTO S1€YEPONC GYESALOVTAL UE GTOYO TO GLYKPITIKO TPOGOIOPIGHO TNG
OTOGVYYPOVIGTIKNG OpAong TG S1€yepong Le LETOPAAAOLEV YXPOVIKE YOPAKTPIOTIKA
SLVUTEPIAOUPAVOLEV®Y TG GLUYVOTNTOG O1EYEPONG KOl TNG XPOVIKNG OHOAITNTOC. AVTIOTOY®G,
TO, YPOVIKA EVOAAOKTIKA TPpOTLTIA d1€yepomg Tepthappdvouy gite vyiovyves (130Hz) pn opaiég
glte yapnAoovyvec (80Hz), oparég 1 un opaAés, ypovooelpés. 1o id1o mAaiotlo, emyelpeital o
KaBoplopdG TOV CLYKEKPILEVOV YOPOKTNPLOTIKMY TOV TPOTOHTMOV U1 OUOANG O1€yepong
oxeTlOUEVOV [LE Pi0 CTILOVTIKA 1GYXVPOTEPT] ATOCVYYPOVICTIKY| EMIOPACN: 1) AVOUOALL CLTY|
ka0’ v, o1 pokpég Tacelg 1 o Eeomdopata. AvIieToliy®e, To U OLOAG TPOTLTO TAPAyYOVTOL
gite and pia dSdwkaocio yappa pe av&avopevous Babuovg ypovikng petafintotrag (Dorval et
al. 2010) eite amotehovvtan 0md ToApoHS oTafepol pLOUOL SOKEKOUUEVOVG OO LOKPES
ndvoelg (Kuncel et al. 2012) 1§ and Eeondopoata toipmy (Birdno et al. 2012, Brocker et al.
2013). H amocvyypoviotikn| dpdon Tov e&etaldpuevev TpoTummv di€yepong tpocdtopiletan
TEPALTEP® € BEGEIC TOAAVTOTIKNG OPUGTNPLOTNTAG GTI POYLOLOTAEVPIKT] OGO TNPLOKIVITIKY
meployn EvovTt 0EGE@V UN TOAOVTOTIKAG dPUGTNPLOTITAG OTN LEGOKOIAIOKT LETOLYIOKT

mepoyn Tov vrrobarapkov TopNva acbevav e NII.



Ta GUYKEVIPOTIKA OTOTEAEGUATO, TNG TPOOVAPEPDEICUC AVAAVLGNC TAPEYOVY CTUAVTIKES
TANPOPOPIEC GYETIKA LE TNV AVATTLEN DEPATEVTIKA KOl EVEPYELOKE OTTOOOTIKOV GLGTNUATMOV EV
T Pabel eyke@oAknc S1€yepong KAEIGTOD Ppodyov. ZuyKEKPIUEVQ, OIVETUL ELPOCT) CTNV
ovOTEPN ATOTEAEGLATIKOTNTO TV VYicvyvav (130Hz) kot yapnAdcvyvev (80HZ) un opoiodv
TPOTOHTTWV SLEYEPSNG, KOL TNG YOUUNAOGVUYVIG TEPLOSIKNG OEYEPONC OLUKEKOUUEVTG OO
EeoMAGLLOTA TOALDV, GUYKPITIKA [e TNV cvuPatik| diéyepon (opaAn, 130Hz) kot pe
GUYKEKPIUEVO EVOAAOKTIKA TPOTLTA, CUUTEPTAAULBAVOUEVIC TNG VYICLYVNG KoL YAUNAOGVYVNG
S1€yepomng SLOKEKOULILEVIG amd LLaKPEG TADOELS, TNG YOUUNAOGUYVIG TEPLOOIKTG H1EYEPONC KA TNG
vyioVyVNG B1EYEPONG SloKEKOUUEVTS 0o Egomaopata TaApdy. Idaitepa onpavtico givat To
YEYOVOG OTL OUTO TO GUYKEKPLUEVO OMOTELECILO NTAV AVEEAPTNTO TNG VIOKEILEVNC SLATAPAYNG
(NII/IYA), evd 1 av@OTEPT ATOTEAEGLATIKOTITO TOV UVAOUUIADY TPOTO®V JIEYEPCNG NTOAV
emmALov ave&ApTNTI TNG VTOKEIUEVTG VEVPMVIKNG OpUGTNPLOTNTAG. X& GUVETELD JE TO
amoteléopata avtd, ot Birdno ef al. (2012) kot Brocker ef al. (2013) vrédei&av 6t1L 001E T01
Eeomdopata oVTE 1 UN OOAGTNTO 0LTH Kafeaw Ty oyeTilovTal Pe HEIWUEVT] KAVIKNY
OUTOTELECUATIKOTNTO TNG VWioLYVTG Oadapikng Kot viToBaAaukng ev To PABEL EYKEQPOMKNG
dtéyepong yio 1d10mafn Tpopo Kot Tpoympnuévo otdoto g NII, aviictoiywe. Emnpdcbeta, o
pia ocvvtoun kowomoinon, ot Baker et al. (2011) vroypdppicoy v omoTeAEGUATIKOTITO TNG
yopnAdovyvng (80Hz) wypocs@atptkng d1€yepons LETAIIOOUEVNG KOT akoAovBia vOg opaiol
TPOTOHTOV e EECTACUATO GTOV TEPLOPIGHO THE Ppadvkivnoiag 6To un avlpdmivo OnAactikd
povtédo g NIT. H avéivon tov 5% kepolaiov ng dtatpiPfic copminpdvel Tig
TPOAVAPEPOUEVES LEAETEC EMEKTEIVOVTOG TNV EYKLPOTNTA TOVS GTNV TEPIMTMOON TNG
YOUNAOGVYVG VTOBOAQKNG £V T® PAOet eYKEQOAKY] H1€yEPOT) Y10 TPOYDPNLUEVO GTASI0 TNG
NIT kon wapéyxovtag eVOEIEEIS Y1 TV OMOTEAEGUATIKOTNTA EVAALOKTIK®V TPOTOTMV
vroBolopikng v T Padet eykepaiikng diéyepong yia avBektikn ot Oeponeio [YA. [Saitepa
EVOLLPEPOV ElVaL TO YEYOVOS OTL 1] ATOGLYYPOVIGTIKY OpaoT TV e&eTalOUEVOV TPOTOTOV
déyepong otn NIT amodeiybnie BEATIOT GTNV POYLOIOTAELPIKT TOAUVIOTIKY] TEPLOYH TOV
vrofodoptkod TVPNVE Kot OTL EVOEXOUEVOG TO TPAOTAPYIKO UETPO EkPaong die&ayouevo and 1o
TPOTEWOUEVO HOVTEAD, ONA. TO PETPO TNG GUETAPANTIG TUKVOTNTOG, VO GUGYETILETAL pe TNV

KAVIKT] OTOTEAECUATIKOTNTO TG O1EYEPTTC.

X avtifeon pe tovg Brocker et al. (2013) xon Kuncel et al. (2012), o1 Birdno et al. (2012)
avé@epay OTL 1) LYioLYVI, YOPOKTNPILOUEVT] 0O TOVGELC S1EYEPOT] EIVOL GNUAVTIKA ALyOTEPO
OTTOTELECUOTIKNY AtO TV OUOAT S1€YEPOT Y10 TOV TEPLOPIoUO TOL TPOOL. H vddeién avty
EMKVPMVETOL KO ETEKTEIVETAL PESH TNG avdAvonc Tov 5% kepoaiov, cOupmva pe v oroio
1660 1 LYioVYVN 0G0 KoL 1) YOLUNAOGLYVI] OIUKEKOUUEVT AT LAKPEG TADOELS OLEYEPTN
GUOYETIOTNKOV LE L0 0oOEVESTEPT] ATOGVYYPOVIGTIKY| EXIOPOCT GE CUYKPLOT LE T1 GUUPOATIKY

diéyepon ot NI Qotdco, oty wepintmon g YA dev Tpoékuye TaPOLOI0 GUUTEPAGLLAL.
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SuyKeKpEVA, 1) YOPUKTNPLOUEVT amtd TaGELS 01€yEPOT amodeiyOnKe va 0loKel Uio GNUAVTIKA
1GYLPOTEPT ETIOPACT| OT VEVPMOVIKT SPUCTNPIOTNTO GUYKPITIKA LE T1 SLUPOTIKN £V T Pdbet
gyke@aAkn oéyepon yuo IWA, dwitepa av petadidetol o younin cvyvornta. Iloiw
EVOLOPEPOV gival TO YeYovOG OTL Tpocpata o1 Gazit ef al. (2015) vrédei&av Ot 1 younAdcvyv,
yopaxTNPlopevn omd TavcELS SIEYEPON EVOEYOLEVMG VO, ATOADVEL T, GCUUTTMLOTO 1O
OTOTEAECLLATIKA OO TNV OUOAT 01€yepoT o€ Eva LK LOVIELD VELPOYVYLATPIKTG SLOTALPOYNG.
Tomg axoun o onpavtikd etvor To Yeyovog 0Tt OA TO EVIALAKTIKE TPOTLTO S1EYEPOTG TOV
BepnOniav oty perémn pog amodelydnkav va cuoyetiCovror pe pio 1oyvpoTepn
QTOGLYYPOVICTIKY EXLOPAOT) CLYKPLTIKG [E TN CLUUPATIKY €V T PdOel eykepalikn d1€yepon Yo
IYA. Emméov, n cupPotikn ev to Pabet eyke@olikn 01€yepon CLGYETIOTNKE LE pio ONHOVTIKA
1oYLPOTEPT OTOGLYYPOVIGTIKT eTidpact ot NII oe cuykpion pe v [PA. Avtictpoemg, N
YOUNAOGVY VT TEPLOOIKT O1€yEPOT amodeiydnke o amotelecpatiky oty IWA cuykprtikd pe ™
NII. Avtf 1 e€optdpevn omd T daTapoyn EXIOPUCT) GUYKEKPIUEV®Y YOUPOUKTIPLOTIKMOV
TPOTUTI®V SIEYEPCTG, TOV ATOKUAVPONKE At TO VITOAOYIGTIKO LOVTELOD, EVOEXOUEVMG VO,
7nyadel amd Evo avOUOoL0 TPOPIA VEVPOVIKTG OpacTNPLOTNTAS GTIG dV0 LVITd eE€Taon
TABOLOYIKEG KOTAGTACELS, ONA. TNV VTAPEN ONUAVTIKE YOUNASTEP®V PLOUDY EKPOPTIONG Kot
TOAOVTAOGELS YOUNAOTEPTG cLYVOTNTOG OTNV avBekTikn otn Bepameio ['PA cuykpitikd pe v

mpoympnuévo otdoto g NIT (Piallat et al. 2011, Welter et al. 2011).

Extég and ta mpoavapepdpeva yevikd copmepdopata, o Tpémel va TovioTel To yeyovog 0T, e
e€aipeon 10 avOUOAN TPOTLTO, 1 CYETIKN ATOGVYYPOVIOTIKY EMIdpacn TV eEeTalOUEVmV
EVOALOKTIK®V TPOTOT®V S1EYEPOTG, LUE ONUEio avapopdg T cvpuPatikn ev T PaBel eyKepakn
diéyepon, eEaptNONKE OTOLYEWWOMG AId TNV KATAYPUPOUEVT] VEVP®VIKT dpactnpotnta. To
OTOTELEC O OVTO VITOSEIKVVEL OTL KATO TO GYESIAGILO OTOIOVONTOTE CUGTNHOTOS €V T PAbOeL
EYKEPOAKNG O1€yEPONG KAEIGTOV Ppdyov, Oa mpémel va eEetdleTon mpooekTikd Kibe
TANPOQOPIn Yi0 TNV VITOKEILEVT] VEVPOVIKT] SVVOLIKT, TEPIKAEIOUEVT] OE KATAYPUPEG
TPOYUATIKOD YPOVOV, TPOTOL KaHOP1oTOOV T, BEATIOTA YOPUKTNPIOTIKA TOV TPOTOT®Y

déyepong.

H mtpocéyyion tov 5% ke@oAiaiov vroypappilel TV avdTEPT AMOTEAEGHATIKOTITO TNG
YOUNAOGVYVTG TEPLOOIKNC SIEYEPOTG CLYKPITIKG [LE TNV OMOTEAEGUAUTIKOTITA TG GLUUPATIKNG
déyepong t6co ot NII 660 ko v IWA, av kot — 6mwg £xel ON Tpoavapepbel — o évtova
o1 dgbtepn mepintworn. H khvikn epappoyn g xapumAiocuyvng Teplodikng S1€yEPONS OVTL TOV
VYiovyvoL OHOAOYOL TNG £xEl amoTeELEoEL BEpa avTimapdbeong oto medio e v T Pabet
EYKEPUAIKNG 01€YEPONG TOL VITOOAAAULKOD TVPTVA, KOTH TN OEPKELN TOV TEAELTAUIOV ETOV
(Sidiropoulos and Moro 2014). Av kot pepikd KAk ototyeia aivetal va cuyKAivouy Ttpog

TaPOUOLa ETIOPOOT TOV dVO TPOTMV d1Eyepang o€ a&ovikd (Sidiropoulos et al. 2013,

XXXi



Vallabhajosula et al. 2015) 1 mepipepikd copntdpata (Tsang et al. 2012), dAiec peréteg
VTOSEIKVOOVVY OTL o HEYaADTEPT PEATIOON AEOVIKMOV GUUTTOUATOV 1| AKOVGLOV KIV|GEDYV,
UETA TNV peTaPorn e ovuyvotntag diéyepong and 130 o 80Hz, evdeyopévmg va sivor mhovi,
oAAG va eEapTdTon emiong og peydro Pabud omd tov acbevn (Ricchi et al. 2012, Merola et al.
2013). H mapovoialduevn mpocéyyion HovieAonoinong eVioyDEL TEPIGGOTEPO T SEVLTEPT
VIOSEEN, AoV, and TN pio TAELPA Sivel ELPACT) GTNV OMOTEAEGUATIKOTNTA TG XOUUNAOCLYVNG
déyepomng, kot amd TV GAAN TAELPE VTTOSEIKVVEL OTL 1] EXLOPAOT TOV EVIALUKTIKOV TPOTOTOV
Séyepong eEapTATOL OO TNV VELPMVIKT] dPAGTNPLOTNTA KOl GLVETADG KOl 0 ToV acHevn.
AKOUN o oNUavVTIKO EVOL TO YEYOVOG OTL 1] TAPOLGLALOUEVT] TPOGEYYIOT| TAPEYEL TPOTOTVTES
evdeiels yo pio a&loonpelmTn OmMOTEAEGLATIKOTITA TNG YAUNAOCLYVIG €V T® PdAbet

EYKEPOAKNG O1€yepong Yo TV avOektikn ot Oepameia IPA.

To 6° ke@dlato g daTpiPrg TPayuaTeLETAL TOV AAYOPIOHIKO GYESLUGHO EVOG GLGTNLOTOG EV
T Padel eykePaAIKNC d1€yepoTg KAEIGTOL Ppoyov Yo Tpoy®pnuévo 6tddio e NIT kot
avBextikn otn Oepaneio 10E0YVYAVUYKAGTIKY dlaTapoyn, Stc@orilovtag mapdiinia
BéATIOTEG EMOOGEIS WG TTPOG TNV ATOIOTIKOTHTO. KO ETIAEKTIKOTHTO TNG OIEYEPONGC, KL OC TTPOG

TNV DTOAOYIGTIKY TOYXDTHTA.

Ot dtodkocieg IOV aPopovY 6ToV KOBOPIGHS TNG PEATIOTNG EMOENS TOL NAEKTPOSIOV Yid
povoroAkn| (pe avagopd Tov TaApodoTn) 1 SIMOAKY S1€yepa, OT®G emiong oTov Kabopiopd
TOV TOPAUETPOV S1EYEPCTC TOL GLVOEOVTAL LE TO PEATIOTO BepamevTikd Tapdbupo
GULVETAYOVTOL EVOV PeYOAo aplOud SOKILMV-COOALAT®OV GE £VOL LOKPD XPOVIKO SLAGTN L
efoopddwv-unvov (Hunka et al. 2005, Kuncel et al. 2004). EmutAéov, n Stadwkacio avtr dgv
oonyei mavta oto PérTIoTo cuUPiPacud peTa&d PEYIoToL BEpAmELTIKOD 0PELOVG KOl EAAYICTMOV
TapEVEPYELDV TTPpoKoroOpEVOV amd T diéyepor (Kuncel and Grill 2004), eved 6e cupPadilet pe
TO YEYOVOG OTL TOL CUUTTMOUOTO TOV KIVITIKOV KOl VEDPOYVYLUTPIKAV S1TOPUYDV Topovucldaovy
SLOKVUAVOEIS GE ONUOVTIKE PKPOTEPEG YPOVIKEG KATLOKEG OEVTEPOLENTAOV-T|LLEPDV.
MokpompdBecpa 10 LOVOROPOIKO TPOTVTO KOl 1] 0voLyTOV Bpoyov @HoN TG GLUPATIKNG
vyiovyvng S1€YEPONG PAIVETOL VO, EVVOEL PAIVOUEVA OVEKTIKOTNTAG, EVD GLOYETIETOL
TapdAnia pe péyiotoug pubpotc katavdiwong toyvog (Carron et al. 2013). Evavrtia o€ avto
70 TAiG10, 1 ‘KAEIGTOV Ppoyov’, ‘eheyyduevn pe avadpacn’ N ‘mpocappolopevn’ diéyepon
amoTeELEl KOTOAANAOTEPT] EVOALOKTIKN Kot £VO 0T TO, TLO KAVOTOUO GEVAPLO GTO TEDIO TNG €V
T Badel eykeparikng diéyepong (Leondopoulos and Micheli-Tzanakou 2010, Hariz et al.
2013).

e évo PEATIOTO GEVAPLO €V TO PABeL eykeQUAKNG O1Eyepomng KAEIGTOO Bpdyov, 1) Topoyn

BéATIOTOV TPOTOTTOV d1€YEPONC TPOGUPUOLETUL GTI] OLVOLLIKT] TV CUUTTOUATOV KIVITIKOV Kot
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VEVPOYVYLATPIKOV STOpay®dV LEGH TNG a&loToinoNg GVYKEKPIUEV®Y PLOSEIKTMV TOL
OTTOTLTMOVOLV TNV KAWVIKT KATAGTACT] TOVL aoBevi] og Tpaypotikd xpovo (Rise and King 1998).
To yeyovog avtd Ba Stuc@AALle LE TN CEPA TOL EAAYLOTH KOTOVAAW®GT EVEPYELNS Kot Ba LelwVE
10 QVoKO péyedog g uratopiog (Grill 2015), ™ cvyvotTTa TOV ENEUPACEDY OVTIKATACTOONG
OV TOALOSOTN, TO GVVAKOAOVOO Kivduvo poAvvong Ady® teyvikov eEomlopov (Boviatsis et al.
2010, Pepper et al. 2013), 1] To pOud TOV SLOSKAGUDV ETOVAPOPTMOOTS TOV TOALOIOTY. Oa
ovoyetilotav emiong e T onpavtikn e£otkovopnon Khvikadv ndopwv (Gross and McDougal
2013, Mclntosh et al. 2003). Kat’apynv, oroltoconmote adyoptOog oyedlacévog yio Eva
LEYIOTA 0m0d0TIKO UGN €V T® Pébet eykepoikng di€yepong KAeloTov Ppoyov Ba mpémetl va
Kavomotlel Vo ovotaotikég Tpodiaypapés (Afshar et al. 2013): tov a&OmoTo TPOGIOPIGHO
BéATIoTOV PLOSEIKTOV Y10 TOV EAEYYO OVASPOGTC KO TOV KOOOPIGUO EVAALOKTIKOV TPOTOTMV
déyepong ta omoio va eivat OEpOmEVTIKA Kol EVEPYELOKA IO ATOSOTIKG GE GUYKPLGT] LE TO
tunonomuévo pdtuno di€yepong (Little and Brown 2012, Feng et al. 2007(a)).

"Evag amd toug mpotevopevous Plodeikteg yio v ev T Padel eykepaAikn d1€yepon KAEIGTOD
Bpoyov yo NIT, kotaypoapdpevog amevbeiag amd To NAEKTPOSI0 S1€YEPONG, O OTOI0G
YPNOOTOLEITAL EMIGNC MG VITOKATAGTOTO TOV VEVPMOVIKOD GUYYPOVIGLOV, vl 1) VITOOAAGUIKY
prta dpactnprdtTnTa TV duvapkdv Tomtkov mediov (Brittain et al. 2014), Bdcetl 1oyvpdv
evoei&emv OTL 1) TPOKOAOVLEVT OO TN O1EYEPST KATOGTOAN TG TafdoAoyikng fita
TOAOVTOTIKNG OpacTNPLOTNTOS cLoYETICETON e PEATIOGELS TG PpadvKivnolag Kot TG
dvokopyiog (Kuhn et al. 2008, Eusebio et al. 2010, Priori et al. 2013). EmutAéov, n avédivon
TOV VTOOUAQIKAOV SUVOUIK®OV TOTKOV TTediov pmopel va enektafel ot gpdvia KaTdoTooN
(Rosa et al. 2010). H gkeyydpevn péow avadpaong 6iéyepon mov Paciletor otn frta 1oyd Tov
SVVOUIKAOV TOTIKOV TEdIov £xet amodetyfel 0Tt eivat KAVIKA O OTOTEAEGUATIKY] 0 OTL TOGO M
ouuPaTiki] 6GO KOl 1) TUYOLOTOMUEVT SLOKOTTTOUEVT OLEYEPTT), KOl £(EL GUGYETIOTEL LE YOUNAESG
EVEPYELNKEG oot oElg o€ pio mhoTikn kKAwvikn pedétn (Little et al. 2013). TTapod’avtd,
TAPOLGia, KATA T S1apKELN TNG SEYEPONC, LEYOADMY GOPOAUATOV GTIC KOTAYPAPEG SUVOUIKDOV
TOTIKOV eSOV, 1) GYETIKA YAUNAT] SUVOLUIKT TOAVTAOKOTITO TOV GTLLOTOG OLTOV, TO POIVOLEVO
NG KOTOGTOANG TNG dpactnplotnTag frita {dvng Tov SUVOUIK®V TOTKOD TEdiov 6TOV
vrofodapkd Topnva kot 1 PeATiocn atov TPOWO 1 T dSvoKvnoia TP 7 KOTd T SIEPKELD TNG
Kivnong, kabog Kot 1 amovoio avagopdg yia pio 0etikny cvoyétion HeTa&d TG KATAGTOANG TNG
Pt TOACVTOTIKAG dpacTNPLOTNTAG GTOV VITOOUAAUIKO TVPNVE TPOKOAODUEVNG A0 TN
déyepon kot TN PeATioon oTov TPOUO 1 T1 SVCKIVIGIO, VTOSEIKVOOVV TIV OVAYKT SlEPEDVNONG

w0 evaicOntev Prodeiktadv (Starr and Ostrem 2013, Little and Brown 2012).

Mio evaAdlakTikn elvar n HoKpompoBeoun KoTaypapn eAOIK®Y SUVOK®V TOTIKOV TEdIO
(Ryapolova-Webb et al. 2014) ypnowonotdvtag tov vevpodieyéptn Activa ® PC + S
(Medtronic, Inc., Minneapolis, MN) (Afshar et al. 2013, Rouse et al. 2012), o omoiog amoteAel
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pia gpguvnTikn d1dtaén dmAng Katevbuveng mapéyovtog T dSuvatoTnTo, TO60 OEPATEVLTIKNG
d1éyepong 660 Kol KATaypoeng Suvaptkov Tomkob ediov (Sun and Morrell 2014). H
TPOGEYYIOT OVTH TPOEKVYE MO TO YEYOVOS OTL TOL PAOTIKE OUVOLUKA TOTKOV TEHIOV UTOPOVV
VoL KOTOypa@ovV e EAGYLOTN ETEUPAOT KO CPAALLO SLEYEPONG , KOl EVOEYOUEVAOC VO
OTOTLMVOLV OMOTEAECUATIKA TO Pobpd maboloyikng vevpwvikng dpaoctnpotntag ot NII, n
omoia avtikatontpileTor otn Levén PriTa EASNG-YAULo TAGTOVG GTOV TPMTOYEVH KIVITIKO AOLO
(de Hemptinne et al. 2013, Starr and Ostrem 2013). EmumAéov, 1 xp1ion @AOUKOV KAToypop®V
WG ONUOTOG EAEYYXOL 0T S1€YEPOT KAEGTOV PPOYoL £xel GLGYETIOTEL e ALENHEVT KAMVIKT
QTOTEAECLATIKOTITO GUYKPLTIKA UE T cupUPatikn S1€yepon avolytov Ppoyov o€ pio TPOKAVIKY
peAén “‘amodeEng g opbotntag g apyng’ (Rosin et al. 2011). H avéioon
NAEKTPOULOYPUPIKADV CMULATOV KATA TN S1GPKELN TEPLOSWMV KIVIONG KOl AVATAVONG ATOTEAEL
pio TeEpAITEP® GMUOAVTIKT SLVOTOTNTO TOV TAPEXETAL 0O TOV vevpodieyéptn Activa PC + S
(Ryapolova-Webb et al. 2014). Mio tpocéyyion oyetil{OMeVN He TOV un-emePotikd ELeyyo
avddpaong Exet mpotabdei og pio TAOTIKY KAVIKT peAétn mov deé&nydn amd tovug Basu et al
(2013), kotd Vv omoia ¥pNooTOMONKE TO NAEKTPOLVOYPAPTLLO ETLPOVEING G GUVOVAGUO LE
£vay KOTIAMA®G 6YeS0GUEVO aAYOPIOLO LE GKOTO TNV TPOPAEYT TG OTaPYNS TPOUOL KATd
TN OEPKELD YPOVIKDVY JACTNHATOV Ywpic diéyepon. Ev to petad, etodyoviotl 6TadiaKd
KOLVOTOLOL VEVPWVIKOT KABETAPES 01 OTTO10L TPOGPEPOVY T SVVATOTNTO TAVTOHYPOVNG EV TM
Babet eykepalikng diéyepong kot kKataypoeng (Lai et al. 2012, Stypulkowski et al. 2013). Mg
Baon evoei&elg mov amodidovv Tov BepamevTIKO PNXOVIGHO TNG SEYEPONG OTNV UTOJEGEVGN
vevpodiafifactav, ta ‘€Evmva’ cuoTiaTa eV T PABEL eyKePUAMKNG d1Eyepong e
NAEKTPOYNLUKT 0VASPOCT] EVOEYOUEVMS VO OTOTEAEGOVV HiOl TEPALTEP® EVOLAPEPOVTAL
€QapLOYN vevpodopdpemong kAeliotol Ppdyov (Behrend et al. 2009, Grahn et al. 2014, Farina
et al. 2014, Jackowska and Krysinski 2013, Gross and McDougal 2013). Z& avt6 to TAaictlo
dlepguvatal 1 epapproyn Tov Acppotov AleOntiplov Xvotiuotog Ztiypaiog Nevpoynkng
ZVYKEVIPMOTNG TOL EVGMUATOVEL TOGO TNV in Vivo KUKAIKN BoAtapetpio tayeiog obpmong Kot
OQUTEPOUETPIO VIO TNV TPAYLLATIKOD YPOVOL QVixVELGT) VTOTAUIVIG, 0OEVOGIVIG KOl GEPOTOVIVIG

(Van Gompel et al. 2010, Parpura et al. 2013).

Mopdaiinia, divetal EQEOCT GE AKOUN TTLO 1GYVPOVS TPOYVOGTIKOVS PlodeikTeg TNG
nafopuctoroyiog e NIT ko g IWA, dnwg o un ypouaxi (edén oo moAlarniaov {wvdv
ovyvotHTwVY ota Pacikd yayyio kot o Aotikég douég (Lopez et al. 2010, Yang et al. 2014, de
Hemptinne et al. 2013, Shimamoto et al. 2013, Connolly et al. 2015(a), Bahramisharif et al.
2015). O mpocdioptopdg Tov Prodeiktn avtov Paciletor katd Eva peydlo LEPOG OTNV EKTIUNON
¢ Levéng paonc-mhdtoug pécm tov petaoynuaticpov Hilbert (Tort et al. 2010). A&iler va
onuelwdel ®otd00, 6TL M avticToyn HEBOOOG AVAKOTAGKELNG PACTG EVOEXOLEVMG VO,

yopaxtnpiletor amd Eva vynio eminedo evatsOnoiog oto BopvPo pétpnong (Sun et al. 2008).
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IMa tov Aoy0 avto, o mepropiopds g evaicinciog oto B0pvPo pétpnong (Sun et al. 2008,
Rossberg et al. 2005) kow 1 yprion peboddwv mov de Pacilovtol 6TV OVOKATUCKELT ACTG
(Gottwald and Melbourne 2009) cg £va avTOHOTO CUGTNA €V T BAOEL EYKEPAAKNG d1€yEPONC
KAEGTOD PPpOyov EVOEXOUEVMG VO SIEVKOADVOLV GTLLAVTIKA TOV 0EOMIGTO TPOGIOPITUO

SL0GVYVOTIKOV OAANAETIOPAGEDV.

Ev 1o petagp, diepevvdvtal moMtikég eAEYY0oL PacilOeEVES O LOVTELOTOINOT| Y10 TOV
KaBopiopd ¥povikd EVOAAUKTIKGOV TPOTOKOAL®Y d1€yepons (Wilson and Moehlis 2014, Danzl et
al. 2009, Liu et al. 2011, Nabi et al. 2013, Lourens et al. 2015, Gorzelic et al. 2013, Dasanayke
and Li 2015, Iolov et al. 2014, Tass and Hauptmann 2007, Tass et al. 2003, Hauptmann and
Tass 2010, Tukhlina et al. 2007, Montaseri et al. 2015, Su et al. 2014), evd pio Oetikn
‘amodeln g opbdtTag TG apyng’ Topoac EONKE TPOGPUTO Y10 TI VELPOTPOTOTOINGN
GLVTOVIGUEVTG emavaeopag (Adamchic et al. 2014). O KowvOg TOPOVOLOGTNG GTNV TAELOYNPia
TOV TPOGEYYIGEDV QVTAOV VUL O ATOGLYYPOVIGTIKOC EAEYYOC TNG VEVPOVIKNG OpUcTNPLOTNTOS
HE KaTavaiwmor erdyiotng evépyetog. H Aoyikn Ticm arnd 10 oKomd autd £YKEITOL GE EVOEIEELG
OTL O1 YPOVIKA EVOAAOKTIKES KULLOTOLOPPEC €V TM PAOEL EYKEQPAAIKNG O1EYEPONG £XOVV TN
duvaTdTNTO VoL 00N YOOV T VELP®VIKT SVVAULKT EVIOC TV PACIKMOV YoyyAlwV oW 6TN
QLGLOAOYIKT amocvyypovicpuévn katdotaon (Feng et al. 2007(a), (b)), Eemepvmdvtog kat’ ovTtdV
TOV TPOTO TNV EMIO0CT TWV GUUPATIKOV KUUATOLOPPOV €V T® PABeL eykepoMKnig 01€yepong, O
UNYOVICUOG TV OTOLmV £XEL TPMTAPYIKA Amod00el GTNV KAVOVIKOTOINGT TMV VELPOVIKOV
TPOTUTI®V GTNV TTEPLOYN ToV deyeppuévov mopnva (McConnell et al. 2012, Grill et al. 2004,
Santaniello et al. 2015 ). Towg axdpn 7O oMNUAVTIKO VO Eival TO YEYOVOG OTL 1] (p1on
EVOALOKTIK®V TPOTOTI®V SIEYEPOTG VO EVVOELTAL, MG TPOG TN PpayvrpodOecun Kot
LOKPOTTPODEG T KAVIKT] OTOTEAEGUOTIKOTNTA, OO TN 6TafEPOTOMTIKN EMOPACT) TNG
eEQPTMUEVNG A0 TO YPOVICUO SUVOLIKOV EVEPYELNG TAUOTIKOTNTOG (Spike-timing dependent

plasticity, STDP) otnv anocvuyypovicuévn vevpovikn opactpidtra (Lourens et al. 2015).

Me Bdon tig Topandve evdeitelg, oty avdAvon Tov kKepoiaiov 6 Tapabétovue pia oepd
uefddmv evpwotwv oty mapovaia Bopvfov pétpnong (Rossberg et al. 2005, Gottwald and
Melbourne 2009), mov ¥pnNoLUOTOI0HVTOL PE GKOTO TOV TPOGOLOPIGUO TNG TUPOVGIOG
ONUOAVTIKNG Un Ypappukng Cevéne peta&d e vrobaiapikng dpactnptotntag frta Kot g
dpaoTnPIOTNTAG VYNANG GUYXVOTNTOS, MG Brodeiktn eAéyyov avadpacns. Emumiéov, Tpoteivoupe
pia otpatnyikn Pacilopevn oe povielomoinon pécm g omoiag tpocdiopilovrar férTioTa
TPOTLTTO, KOl TOPAUETPOL SLEYEPSTG Y10 TOV OTTOGVYYPOVIGTIKO EAEYYO VEVPMVIKNG
SpaocTNPLOTNTOG LE EAAYIOTN KATAVAAWDOT eVEPYELNS. EmAEyouLe éva QACIKOG OvoryOLEVO
povtélo vevpava yapaktnpiiopevov anod Eeondopata (Sherwood and Guckenheimer 2010,

Mauroy et al. 2014), dedopévov 6TL 1 AVENUEVT VEVP®VIKT dpacTNPLOTNTA YopakTnPLOUEVN
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amo Eeondopota £xEl cLOYETIOTEL pe TV Tadoguaioroyia tdco g NIT 6co kot e YA
(Piallat et al. 2011, Welter et al. 2011). Ta ypovikd tpoTLTTA d1€yEPONG TOpdyovTal BAcEL piog
tuyaiog (Poisson) dtadikaciag, apol 1 AmTocLYYPOVICTIKY KOl EVOEXOUEVMSG 1) BepamenTiKy
EMIOPAON TOV GTOYOCTIKOV KUUATOHOPPDOV €V TM PdOet eykepalikng d1€yepong £xet amoderyDet
GTIV AVAALGT] TOV KEQOUAOIOV 5 OTL VOl GNUOVTIKA 1GYVPOTEPT] GE GUYKPLOT) LLE TNV ENIOpOON
g ovpPatikng di€yepons. Emumiéov, n amodoTikdTNTo TOV GTOXAGTIKMV KUUATOUOPPADV EYEL
amodetyfel e0pmOTN OTIC LETAPOAES TNG VEVPWVIKNG dPACTNPLOTITAS Kot EVOEYOUEVMG EMLONG
o115 aotafeic cuvinKeg Tov avapEvovtat oty KAwikn tpaén. O kabopiopog Tov axpBoic
BéATioTOoU YPOVIKOL TPOTHTTOL KO TOV PEATICTMV TAPAUETPWV SLEYEPOTS TPOYLATOTOLEITOL
LEC® TNG EPAPLOYNGS EVOG aAyopifov BedtioTomoinong pun Pacilopevou og Topaywyo,
ovykekpléva g fertictomoinong ansvbeiog avalnmong Paci{Opevng o€ TETPAY®VIKN
povtehonoinon (Custodio et al. 2010), Bacel Tov yeyovoTOg OTL 1] VEVP®VIKY OTOKPIGT OTIC
TOPUUETPOVS €V TO PAOEL eYKEPAAIKNG O1€YEPONG EVOEYOUEVMG VO, Eivar piot TOADTAOKT, Un
dwpopicun cvvaptmon (Feng et al. 2007(a)). Ot TPOGOUOIDCELS TPOALYLOTOTOLOVVTL
YAPNOUYLOTOIDOVTOS IKPONAEKTPOSIOKES KATOYPUPEG AVAKTNUEVES KATE, TN d1dpKeLa 8 Kot 8
enepPdoewv ev o Pdbel eykepoakng 61€yepong Tov vobaiapkod Topiva yio NIT kot I'PA,
avtiotolywe. TéNog, emekTelvovTag To AmOTEAECUATA TG OVAAVGTG TOL TPOTYOVUEVOD
KePaAaiov, oV avaAlvon Tov keparaiov 6, emtyelpodiie va mopdoyovpe eVOEEELS Yo pLio
EVOEYOLLEVT] CLGYETIOT TOL TPOTAPYKOV HETPOL EKPaong SteEayOEVOL OO TO TPOTEWVOUEVO
LOVTEAO, OMA. TNG OUETAPANTNG TUKVOTNTOG, LLE TNV KAWVIKY] OTOTEAECUATIKOTNTA TG OLEYEPONG

otV avlextikn otn Oegpaneio ['PA.

Ot Bikson et al. (2015) onpewdvovv: «O1 tpoceyyioelg d1€yepong KAelotov Ppdyov givar
EYYEVOS EEUPTMOUEVEG OO TNV KAVIKY] KATAGTAOT] KO OTOLTOVY DVITOAOYLIOTIKT] VEUPOIIEYEPOT».
Avoivovtag TV VTOSEIET QLTI GE GLUVOVOAGHO LLE TOV OVTIKTUTO TG TOPOVGOS TPOGEYYIONG
Kévovpe TG akoAovbeg 600 PaciKEg TOPATNPNCEIS: TPMTOV, AV Kol Ol EVOEIEELS Yo TNV
nafopucioroyio ToV avleKTIK®V 6N Bepomeio VEVPOLOYIKAOV KOl VEVPOWVYIUTPIKDV
STOPOY DY TAPAUEVOLY, EMG TNV TOPOVGO GTIYUT, KOTE Evay peydio Babud un tpocodopopeg,
av&ovopeveg HeAéTeg VTOGTNPILOVY TO GNUAVTIKO POAO TNG KN YPOUMIKAG LeVéNe peTa&d g
dpaoctnprotnTeg PrTa Kot Tng OpacTNPOTNTAS VYNANG cLYVOTNTUG TNV TodoPLGIoA0Yia TG
NIT (Voytek and Knight 2015), vrodeikvboviog Katd avtdv Tov TpOTo TNV eVOgXOLEV
YPNOWOTNTO TOV UETPOL OVTOV MG PLOSEIKTN ‘KAVIKNG KOTAGTAGNG GE TPOGEYYIoELS
VEVPOOLAUOPPMOTG KAEIGTOV Bpdyov yio NII. Ta amoteAéopato TG avaAvong Tov Keaiaiov 6
TEIVOLV TTPOG TNV VTOJEIEN QVTY| EXKVPMDVOVTOS TV TOPOVCia S1cvyvoTIKNG (eHENG Yo kKdOE
aoBevn pe mpoympnuévo otddto ¢ NII. Avtifétme, 1 KOTOAANAOTITO TOL YOPUKTPLOTIKOV
oVt ®¢ Prodeiktn ‘KMVIKNG KoTaoTaong amodelyOnke paAlov eEgdikevévn Kot acbevn

otV mepinton ¢ avOektikng ot Bepamneia [YA. I'a tov Adyo avtd, kpibnke amapaitnn n
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€QappoYN evoc evarloktikod Prodeiktn coPapdmrag g IPA, dnA. g évrovng vroBolapixng
dpaoctnpotntog yopaktnpiopuevng amod Eeondopata (Welter et al. 2011). Agdtepov, péow tng
OVAAVONG TOV KEQUANIOV 6 EMLYEIPOVLE VO TAPAGYOVLLE TELGTIKES OOOEIEELS Yo TV
EQUPLOCIUATNTO TNG “DVIOAOYIGTIKNG VEVPOIIEYEPONS' GE GLGTNLATA €V T® PAOEL EYKEPUAKTG
déyepong Khelotol Bpodyov. ATodetkvhovEe OTL 1| TPOTEWVOLEVN oTpUTNYIKN PBactlouevn g
LOVTEAOTIOINOT| EVIEXOUEVMS VA VTTEPPaivEL TNV EMIBOOT TNG UETEYXEPNTIKNG KAVIKNG
dwayeiprong og mpog T BepanevtiKy anodoTikoTnTe TG d€yEPonG Kot yia Tig 600 Taboroyikes
KOTOOTAGELS. ATOPEPOVTOG VA LEGO PBEATIOTO €VPOG TAALOD 160 pe 33us, TIHES CLYVOTNTOGC
S1éyepomng oNUAVTIKG YOUNAOTEPES GE GUYKPIOT HE TN CUUPATIKY d1€YEPOT) Kot S1ATHPOVTOS TO
BéAtioTo mAdTOg évTaomg S1€yepong otV gAdoTN TN, | oTPATI YK Bacilopevn oe
LOVTEAOTIOINOT] OTOOEIKVVETAL TEPALTEP® VO, EXITVYYOVEL Hi0l CTULOVTIKG VYNAOTEPT) ENTLO0GT (G
TPOG TNV EMAEKTIKOTITO KOl EVEPYELNKT ATOSOTIKOTNTA TNG O1€yepong. Extog amod tn ypron tov
POGTK®OG AVOYOLEVOL LOVTEAOD VELPOVE XOPAKTNPLLOUEVOD a0 EECTAGUATO, 1] EVOMUATOOT)
¢ Peltiotonoinong angvbeiog avalntnong Pacilopevns o€ TETPAY®VIKT LoVIELOTOINGN
ouppdArel onuavtikd otTny e£opETIKN EXIO00N TNE TAPOVOIALOUEVIG TPOGEYYIONG.
ZVYKEKPIUEVA, EKTOG OO TO TPOAVAPEPOUEVO, OTLLOVTIKE OTOTEAECUATA, 1) EQAPLOYT] TNG
peBooov amevbeiag avalntmong Pacilopevng oe poviehonoinon cvoyetiletal pe pio onpovTiKd
VYNAGTEPT] DTOAOYIGTIKY] TAXVTNTO GUYKPLTIKA e OLOAOYOVG alyopifuovg BertioTonoinong

(yevikeopévn péBodog avalntnong TpoTuT®V, YEVETIKOG aAlyOp1OLoG).
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Figure 1.1. (a) Example of preoperative radiographic control and postoperative magnetic resonance imaging control
scans in a patient with treatment-refractory OCD. A 3389 electrode (Medtronic, Minneapolis, Minnesota, USA) was
used for deep brain stimulation (Chabardes et al. 2013) (b) Medtronic DBS lead (Medtronic Inc.) .......ccccceceveeennneee 3
Figure 1.2. (a) General device architecture for a bi-directional neural interface system incorporating the built-in
capability to make real-time therapy adjustments in a closed-loop mode (Rouse et al. 2011) (b) The Activa® PC+S
deep brain neurostimulator (Medtronic,Minneapolis, MN, USA) (c) The Activa® RC neurostimulator, the first
rechargeable deep brain stimulation device and the thinnest available on the market today with 9-year longevity
(Medtronic,Minneapolis, MIN, USA) ....ccooiiiiiiiiiiintieet ettt sttt st b e sttt ebe e e aen 5
Figure 1.3. (a) Significant DBS milestones since 1980 (b) Registered Phase 1 to Phase III DBS Trials as of
September 2012 (adapted from Lozano and Lipsman 2013). PD+: PD plus an additional disorder (depression,

AYSEOMIA, TTINIOT) ...euteiuiitieiierteeite ettt ettt ettt st e st e bt et e st e e st e s bt eabe s bt eateeb e eabesbeeat e bt eabesbeemeeabe e st e bt eat e bt esbesbeemtesbeensenbeeneennes 7
Figure 2.1. Neurologist Jean-Martin Charcot (1825-1893) ......coiriiiiiiiiiiiieee e e 16
Figure 2.2. Striatal hand in PD (Adapted from Spagnolo et al. 2014) ........cccccovimiminiiiiiiiineeecceee e 17
Figure 2.3. The Movement Disorder Society - Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (adapted
FTOM GOCLZ €1 AL 2007) .nvreevievienieeeieteettete et ete et e bt et e e st e e teestesbesseesseeseesseesaensaessensesssenseessansesseenseestensesssanseansensesssensenn 21
Figure 2.4. Detailed schematic of the sensorimotor network (adapted from Johnson et al. (2008)) ........ccccceereennen. 26

Figure 2.5. (a) Extracellular electrophysiologic recordings in the GPe, STN, and GPi of normal and MPTP-treated
non-human primates. Each data segment is 5 s in duration (Galvan et al. 2008). (b) First report on the assessment of
LFP recordings from the STN and Gpi of patients with PD (Brown et al. 2001). Autospectra of STN LP power (A, B)
coherence spectra between STN and GPi (C, D), and respective phase spectra (E, F) after withdrawal (A, C, E) or

reinstitution (B, D, F) of levodopa treatment. Data pooled from records at rest in four patients with PD ................... 28
Figure 2.6. Medical costs of PD over time, including self/family (dark brown), commercial (grey), public (green)
and Medicaid (light brown) costs (adapted from Kowal et al. 2013) ....c..ccccieiiiirininiiiiiinnereeceeee e 32

Figure 2.7. Suggested guidelines for the treatment of (a) early to advanced staged PD and (b) levodopa-related motor
fluctuations and dyskinesias. DA, dopamine; DAT,dopamine transporter; DBS, deep brain stimulation; MAO,
monoamine oxidase; VMAT2, vesicular monoamine transporter type 2. COMT, catechol-Omethyl transferase; CR,
controlled release; DA, dopamine; ER, extended release; GPi, globus pallidus interna; MAO, monoamine oxidase;
STN, subthalamic nucleus (Jankovic and POEWeE 2012) .........ccuiiiiiiiieeiieiie ettt e siee et e e esteesveesaeeesbeesaneenns 33
Figure 2.8. Main anatomical structures targeted by deep brain stimulation on T2-weighted brain MRI (Fasano et al.
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Figure 2.9. (a) CT scan images depicting examples of intracerebral hemorrhage following DBS lead implantation :
intracerebral hemorrhage (A) intraventricular hemorrhage (B) subdural hemorrhage (C) and venous infarction (D)
(Morishita et al. 2010) (b) IPG implantation site infection (Boviatsis et al. 2010) (c) Erosion of retroauricular skin due
to implanted DBS system (Linchares et al. 2013) (d) Postoperative T1-weighted MRI showing hyperintense signal
due to infection of the right electrode (Vergani et al. 2010) (¢) Axial CT scan without contrast on post-operative day 4
at (a) the tip of the electrode showing a large hypodense area (edema) around the left deep brain stimulation electrode
(DE0ZAONKAT € A1, 20T 1) ..0cuiieiieiieiieiieiieteeteie ettt et e e et e e et esbesteesbeestessessaesseessensesssenseessensesssenseassensesssensenssensensaensens 39
Figure 3.1. (a) Seminal work of Janet P, ‘Les obsessions et la psychasthénie’ 1903 and Freud S, ‘Totem and taboo:
some points of agreement between the mental lives of savages and neurotics’ 1913 (b) Cognitive-behavioural model
of OCD (adapted from AbramowitZ 2009) .......ccceeierierieriieierieeieesteeteteetesteestesesteeseestessesseesseessessesssesseessessesssensens 43
Figure 3.2. Symptom dimensions and suggested core affective-motivational dimensions underlying obsessive-
compulsive symptom manifestation. Solid curves indicate symptom dimensions, while dotted curves indicate the
association of affective-motivational dimensions with obsessive-compulsive symptom manifestation....................... 45
Figure 3.3. Comorbidity in obsessive-compulsive disorder and the role of affective-motivational dimensions. ....... 49
Figure 3.4. (a) Key structures and pathways involved in neuropsychiatric disorders. Arrows illustrate projections
(adapted from Haber and Rauch 2010) (b) General diagram of the disruption in the different types of information
processing involved in the pathogenesis of OCD on grounds of the anatomical and neurochemical interconnections

within distinct cortico-subcortical networks (Aouizerate et al. 2004) .....c..oooveiiirieriiierieiereeee s 53
Figure 3.5. Algorithm for the Treatment of Obsessive-Compulsive Disorder (OCD) *Treatment with little supporting
evidence (Koran €t al. 2007) ...cc.ecieriieierieeieiesterteettete st ete et etestteseestestesstenseeseensesseenseeseanseestenseenseseenaenseensaseenaensean 57

Figure 3.6. Three-dimensional illustration of DBS in ventral capsule/ventral striatum. Leads and brain structures are
located on the axial plane 5 mm below the intercommisural plane as viewed posterior to anterior (Lapidus et al. 2013)

Figure 4.1. Multi-scale neuronal activity and optimal filtering. (a) Example of a raw extracellular signal recorded in
the right STN, case 2 (recording site depth: A +0.5). (b) — (d) The three derived signals: LFPs, spiking activity (a.u. =
arbitrary units) and background unit activity, respectively. (e)—(g) The trajectories of the filtered signals z (¢) (see
section 7.2.4.2) obtained from series (b)—(d), respectively, after low frequency amplitude modulation (of series (c)
and (d)) and down-sampling t0 1 KHZ.......cc.ooiiiiiiiiiiiiieeeee ettt sttt ettt e b ssae e 79
Figure 4.2. Selection of optimal parameters for the NPE method and reconstruction of the relative phase series. (a)
Mean value of synchronization index Q within the STN boundaries for a range of combinations of embedding
dimension d and number of neighbors », averaged over 21 MER trajectories to which a positive detection was
ascribed by the clinical experts. (b) The top panel shows the unwrapped relative phase series A¢, » corresponding to
the pair of the oscillatory signals presented in figures 7.1. (¢) — (d). The red line indicates the result obtained based on
combinatorial application of data-driven optimal filtering and the NPE method. The black line indicates the result that
would be obtained, in case a traditional linear band-pass filter in combination with the Hilbert transform were
applied. In the lower panel, the respective distributions P(A¢, ») of the wrapped relative phase series are depicted ... 81
Figure 4.3. Assessment of the multivariate phase synchronization index Q along the lateral trajectory in the right
hemisphere of case 1 (a) Planning of the target based on the image fusion hardware system (StereoPlan; Integra
Radionics, Burlington, MA, USA). (b) 10 s MER epochs obtained in sub-millimeter steps. Depth value 0 corresponds
to the anatomical target point determined preoperatively. (c) — (d) Respective changes in firing rate and noise level (e)
— (g) The mean amplitudes p1,2, p1,3 and p2,3 of the bivariate phase synchronization indices as a function of the
recording site depth. (h) The multivariate phase synchronization index Q. The dashed horizontal line indicates the
generic threshold QOthres = 0.37. The dark region corresponds to the STN length determined intraoperatively by the
CHIICAL EXPETES. woevvertieriiitieieeiteteett et e et et e et et e st este e st esse st e esseessessassaesseassasseessensaessasseessenseessasseessenseessessenssesseassansansaensens 82
Figure 4.4. (A) Two trajectories of a spontaneously active neuron firing with period 7c are shown, one unperturbed
(black) and one perturbed by the stimulus presented at period 7s. The phase-dependent change in the period caused
by the stimulus is 4¢. Stimulation latencies relative to cell firing are indicated by s, and response latencies relative to
the stimulus are labeled 7. (Wilson et al. 2011) (B) Types of phase resetting curves (Ly 2014). .....ccccecevirviinenneenne. 84
Figure 4.5. Block diagram of the stochastic phase model ............cccooerieiiiiiiiiiic e 85

Figure 4.6. (a)-(i) Stochastic kernel functions A(¢,¢') based on MERs at: (a)-(c) C 0, right STN, case 1,
for f=0,F=5and =10, respectively, (d)-(f) P +2, right STN, case 5, for f=0,F=5and f=10,
respectively and (g)-(i) P +2, right STN, case 6, for S =0, =5and f =10, respectively. (j)-() Steady-state
phase distributions for =0 (red line), =35 (gray line) and =10 (black line), corresponding to the cases

described in (2)-(C), (d)-(£) ANA (Z)-(1)- +errerverrereeeemieieteeere ettt ettt sttt ettt e bbbt e et neene b e ae b nenes 90
Figure 4.7. The Lyapunov exponent, A as a function of stimulus amplitude f for a pair of acceptable trajectories in

two distinct cases. (a) Left panels: the Lyapunov exponent, A at three pre-selected sites of central (upper) and lateral
(lower) trajectory, right hemisphere, case 1. Asterisks denote significant differences. Right panel: sites where the
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highest values of A were obtained for each of the acceptable trajectories. At these sites, values of 4 between the 2
trajectories were not significantly different. Circled is the optimal target point according to clinical decision. (b) Left
panels: the Lyapunov exponent, A at three pre-selected sites of lateral (upper) and central (lower) trajectory, left

hemisphere, case 4. Right panel: sites where the highest values of A were obtained for each of the acceptable

trajectories. At these sites, values of A between the 2 trajectories were not significantly different. Circled is the
optimal target point according to clinical dECISION. .......cc.eeruiruiiiiirieiiiiee ettt 91
Figure 4.8. Parameter values based on MERs along 21 trajectories selected for macrostimulation testing by the
clinical experts. For each trajectory, parameters are assessed at 3 site depths selected for intraoperative
macrostimulation. Parameters depicted are (a) effective drift coefficient, v (b) effective diffusion coefficient, D (c)

coupling strength, K (d) modulus of the order parameter, 7 (e) intensity of common noise, o and (f) intensity of

INAEPENAENt NOISE, O] . cvviviuiiiiieicicicc ettt 92

Figure 4.9. Standard deviation of the normalized firing rate, noise level and multivariate phase synchronization
measures within the intraoperatively determined STN length, for 40 trajectories to which a positive detection was
ascribed by the clinical experts. Principally, Q displayed significantly higher stability within the STN compared with

firing rate and noise level measures (P < 0.05 ). 95

Figure 4.10. The proposed scheme for clinical decision making during DBS surgery for PD, based on the stochastic
dynamical model. (a) Assessment of the multivariate phase synchronization index () across 5 trajectories of left

STN, case 4. (b) Determination of the 2 acceptable trajectories, including the one traversing the broadest extent of the
nucleus. Biomarker (J was subsequently used as one of the constituent parameters of the stochastic phase model

through which we defined (c) the Lyapunov exponent, A as a function of stimulus amplitude /3 , at 3 pre-selected
recording sites, for both acceptable trajectories. Asterisks denote significant differences. (d) Sites where the highest
values of A were obtained according to (c) for each of the acceptable trajectories. At these sites, values of A between
the 2 trajectories were not significantly different. Circled is the site finally selected by the clinical experts............... 98
Figure 4.11. Increased effectiveness of high frequency stimulation corroborated by the stochastic phase model. The
Lyapunov exponent A as a function of stimulus amplitude /3, at sites (a) C 0, right STN, case 7 and (b) C -1.5, right

STN, case 9, for three different stimulation frequencies (20 Hz, 75 Hz and 130 HZ) ...ccooovveieiiviiiicicecieeeeee 99
Figure 5.1. The proposed stochastic dynamical model. Determination of the collective dynamics, parameters and
functions of the model, based on each MER, was improved in order to more realistically capture the underlying
neuronal dynamics. Patterns of stimulation are detailed in figure 5.2.........cccooiiiiiiiiiiniiiniieeeeee e 108
Figure 5.2. Exemplary temporal patterns of stimulation designed to determine the specific characteristics correlated
with a strong desynchronizing effect of STN-DBS for PD and OCD. (A) Patterns 1 and 7: regular stimulation at 130
Hz and 80 Hz, respectively; Patterns 2 and 8 : irregular stimulation with a mean frequency of 130 Hz and 80 Hz,
respectively, and 25% temporal variability; Patterns 3 and 9: irregular stimulation with a mean frequency of 130 Hz
and 80Hz, respectively, and 50% temporal variability; Patterns 4 and 10: irregular stimulation with a mean frequency
of 130 Hz and 80 Hz, respectively and 75% temporal variability; Patterns 5 and 11: periodic stimulation with a mean
frequency of 130 Hz and 80Hz, respectively, interrupted by bursts of pulses; Patterns 6 and 12: periodic stimulation
with a mean frequency of 130 Hz and 80Hz, respectively, interrupted by pauses (B) Respective probability density
FUNCHIONS. ...ttt et st b bt st b ettt ae 110
Figure 5.3. (A) The phase sensitivity function, RC(¢) (type-1I PRC), deforming with increasing common noise
intensity, oc (left) and the phase response curve, A(¢, ﬂ) (type 0 PRC), used to simulate the desynchronizing effect
of DBS (right). (B) Stochastic kernel function, A(¢’, ¢), for increasing stimulus amplitude, S, of irregular stimulation
with a mean frequency of 130Hz and 25% temporal variability, based on the analysis of the recording ‘Medial -
3.653mm, left STN, case O1’ acquired during DBS for OCD. The desynchronizing effect of stimulation is reflected
in the increasing split width, w, with increasing stimulus amplitude, . ........cccoeeeriiriiniininieeeeee e 112
Figure 5.4. Example (A) and cumulative results (B) providing a first piece of evidence for the realistic substructure
of the stochastic phase model based on differences in neuronal synchronization dynamics within vs. outside the STN,
in the pathological unstimulated state. (A) Neuronal activity (left) recorded along the posterior trajectory of the right
hemisphere during STN-DBS for PD - case 8. Evaluation of the synchronization index, Q, (upper right panel)
indicated the presence of increased neuronal synchronization within the STN borders (depth value 0 corresponds to
the anatomical target point determined preoperatively). This dynamics was corroborated by the use of the Lyapunov
exponent, A, calculated on the basis of the stochastic phase model (lower right panel). (B) Assessment of the
mean t standard error mean Lyapunov exponent, 4, based on the stochastic phase model and a total of 16 acceptable
MER trajectories acquired during eight STN-DBS interventions for PD (left) (in 8 out of 16 MER trajectories
neuronal activity was in addition recorded below the STN). Statistical analysis corroborated the propensity of the
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model to simulate significant differences in the mean neuronal synchronization dynamics within vs. outside the STN

borders (* p<.05, Wilcoxon rank sum test). Notably, there was no significant difference of the Lyapunov exponent at
oscillatory compared with non-oscillatory regions of the STN (p=0.42, Wilcoxon rank sum test) (right)................. 116
Figure 5.5. Mean  standard deviation variance of the invariant density, Var(p st (¢)), for the examined patterns of

stimulation, derived by fitting the phase model to MERs acquired at (A) Medial -0.5 mm, right STN - case 8 and (B)
Central -0.5 mm, right STN - case 6 during STN-DBS for PD, and at (C) Lateral -6.359 mm, right STN - case O1 and
(D) Central -5.369 mm, right STN - case O4 during STN-DBS for OCD. Lower values of the invariant
density, Var(p, (#)), indicate a stronger desynchronizing effect of stimulation. Stimulation conditions that do not
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Introduction

1.1. Deep Brain Stimulation

1.1.1. Introduction

...never before have practicioners and scientists been able to actively intervene in, modulate, correct, and
investigate dysfunctional neuroanatomical circuits believed to underlie much of human thought and

behavior...

N. Lipsman et al. (2010)

Middle- and high-income societies are being characterized by a considerable and rising burden
of neurological and psychiatric disorders, mainly due to an absence of effective treatments along
with an increasingly elderly population (Vos et al. 2012, Murray et al. 2012, World Health
Organization 2004, Kowal et al. 2013). Accordingly, there is an urgent need for innovative
treatments to prevent, delay onset, or alleviate symptoms of the respective diseases. With
respect to the latter, the use of chronic, high-frequency, electrical deep brain stimulation (DBS),
during approximately the last 30 years, has been proven to provide striking benefits for patients

with Parkinson’s disease (PD) (Deuschl et al. 2006), essential tremor (ET) (Zhang et al. 2010)
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and dystonia (Kumar et al. 1999) who have failed conventional therapies. Key factors for the
emergence of this groundbreaking application have been considerable advances in
structural/functional brain imaging and surgical technology coupled with the development of a
deeper understanding of the organization and the pathophysiology of the basal ganglia (Lozano
and Lipsman 2013). These factors paved the way for the translation of the anatomofunctional
concepts into therapy-oriented surgical strategies (Benabid 2012). Further, while DBS has been
established as a safe and effective therapeutic option for movement disorders (Williams et al.
2010), novel applications of this technique for the treatment of neuropsychiatric disorders have
emerged over the last 15 years, including treatment-refractory obsessive-compulsive disorder
(OCD) (Nuttin et al. 1999), Tourette’s syndrome (TS) (Vandewalle et al.1999), major
depressive disorder (MDD) (Mayberg et al. 2005), drug addiction (Muller et al. 2009) and
anorexia nervosa (AN) (Lipsman et al. 2013). Eventually, ‘just as DBS has revolutionized the
practice of movement disorder surgery, its application to psychiatric illness has become the
cutting edge of functional neurosurgery’ (Kopell and Greenberg 2008). The non-ablative nature
of DBS, its adaptability and virtual reversibility (Benabid et al. 2009) have converted this
treatment option into the most rapidly expanding field in neurosurgery. As yet, the number of
patients who have undergone deep brain stimulation surgery is estimated to have exceeded
100,000 worldwide. From a scientific point of view, DBS has provided a common touchstone of
hitherto separate disciplines and research areas. Ultimately, it has significantly contributed to a
‘renaissance’ in systems neuroscience offering the potential for conducting in vivo research on
specific brain networks subserving motor, affective and cognitive function. The above facts are
being reflected within the over 700 DBS-related manuscripts being published every year
(Lozano and Lipsman 2013). Meanwhile, however, this enthusiasm needs to be tempered by a
careful consideration of ethical principles. Though the existing ethical norms and regulatory
context provide certain safeguards against misuse of neurosurgery for movement and
neuropsychiatric disorders (Greenberg et al. 2010 (a)), there is still a need in this field to more
clearly address the related ethical and social challenges and to establish universal ethical
guidelines for the newly emerging clinical trials (Bell and Racine 2012, Fins et al. 2011,
Lipsman et al. 2010). Undoubtedly, patient protection should be the kingpin of a solid

framework for ethical evaluation (Clausen 2010).

1.1.2. What is Deep Brain Stimulation?

Undoubtedly the most striking progress in neuromodulation using DBS can be attributed to the enormous

progress in anatomical, functional, and network visualization provided by MRI techniques.

F.L.H. Gielen and G.C. Molnar (2012)
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Figure 1.1. (a) Example of preoperative radiographic control and postoperative magnetic resonance
imaging control scans in a patient with treatment-refractory OCD. A 3389 electrode (Medtronic,
Minneapolis, Minnesota, USA) was used for deep brain stimulation (adapted with permission from

Chabardes et al. 2013) (b) Medtronic DBS lead (Medtronic Inc.-Lapidus)

Deep brain stimulation is a therapeutic approach based on the concept of neuromodulation, i.e.
the alteration of pathological neuronal activity in the target nucleus and associated neural
networks by means of an electric current delivered through intracerebrally implanted electrodes
that are connected to an implantable pulse generator (IPG). The Medtronic DBS system consists
of one (or two in case of bilateral stimulation) lead(s) with four cylindrical contacts (each 1.27
mm diameter, 1.5 mm height, 1.5 mm or 0.5 mm spacing between contacts) that is (are)
surgically implanted in the selected brain nucleus (or nuclei) (figure 1.1) and subcutaneously
connected in the subclavicular region to an IPG. The IPG is a programmable and possibly
rechargeable device similar to modern cardiac pacemakers that delivers continuous stimulation.
Deep brain stimulation surgery embraces the principles of stereotactic and functional
neurosurgery and may be frameless or frame-based (Lozano et al. 2009). In either case, precise
electrode localization is based on pre-operative stereotactic targeting and intra-operative
electrophysiological mapping techniques usually applied under local anesthesia (Abosch et al.

2013). Pre-operative stereotactic targeting is achieved via modern visualization techniques
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(frameless magnetic resonance imaging (MRI) and frame-based computed tomography (CT)),
while electrophysiological mapping techniques most commonly applied are microelectrode
recording (MER) of neuronal activity in the target area and intra-operative macrostimulation,
i.e. stimulation at increasing voltage applied through an external pulse generator for
determination of the site associated with the best therapeutic window (i.e. threshold for adverse
effects/ threshold for clinical effects) (Abosch et al. 2013, Marceglia et al. 2010). Importantly,
non-MER strategies have also been adopted (Foltynie et al. 2010). In addition to precise
electrode localization, post-operative clinical management strongly influences the outcome of
DBS for a specific treatment (Volkmann et al. 2004, Benabid et al. 2009). Thus, following the
implantation of a DBS system, stimulation parameters and medication are optimally adjusted.
Medication doses, already reduced pre-operatively, are further decreased, and set at a
compromise level. With respect to stimulation settings, a pulse width of 60us, a stimulation
frequency of 130 Hz and a variable voltage amplitude are commonly applied at initial stages
(Volkmann et al. 2004). The procedures related to the determination of the optimal contact
within the electrode array for monopolar (against the IPG case) or bipolar stimulation, as well as
to the determination of the stimulation parameters that produce the best therapeutic window
(Marceglia et al. 2010, Krack et al. 2002) entail a great amount of trials and errors and are
therefore considerably time consuming (Hunka et al. 2005, Kuncel et al. 2004). Against this
framework, the concepts of ‘closed-loop’, ‘feedback controlled’, or ‘adaptive’ stimulation are
interchangeably emerging as robust ‘on-demand’ alternatives, constituting one of the most
revolutionary scenarios in the field of DBS (Leondopoulos and Micheli-Tzanakou 2010, Hariz
et al. 2013) (figure 1.2).

Principally, DBS has not only constituted a dynamic clinical perspective for the treatment of
movement and refractory neuropsychiatric disorders - by virtue of its reversibilty, adaptability
and association to a low morbidity - but also a powerful tool for delineating the functionality of
the targeted nuclei in the course of symptom manifestation and remission, as well as for
disentangling the effects and mechanisms of stimulation per se (Lozano et al. 2010 (a), Pollak et
al. 2002). These unique opportunities have been primarily provided through both intraoperative
MER and functional stimulation techniques, as well as local field potential (LFP) recordings
and stimulation applied post-operatively. First, during intraoperative microelectrode recording
performed at rest or in response to various motor and cognitive tasks, physiological and
pathological patterns of neuronal activity can be assessed and ascribed to a specific targeted
nucleus or nucleus subterritory (Levy et al. 2000, Weinberger et al. 2006, Piallat et al. 2011,
Wong et al. 2009, Rodriguez-Oroz et al. 2001, Lozano et al. 2010 (a), Zaghoul et al. 2009,
2012; Patel et al. 2012). Secondly, during intraoperative and postoperative macrostimulation,

the beneficial, but also adverse effects of stimulation on the target nuclei can
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Figure 1.2. (a) General device architecture for a bi-directional neural interface system incorporating the
built-in capability to make real-time therapy adjustments in a closed-loop mode (Rouse et al. 2011) (b)
The Activa® PC+S deep brain neurostimulator (Medtronic, Minneapolis, MN, USA) (c) The Activa® RC
neurostimulator, the first rechargeable deep brain stimulation device and the thinnest available on the
market today with 9-year longevity (Medtronic, Minneapolis, MN, USA).

be evaluated, thereby elucidating the functional role of these structures (Pollak et al. 2002,
Nuttin et al. 2003, Greenberg et al. 2006, Mayberg et al. 2005, Vandewalle et al. 1999,
Lipsman et al. 2013, Mallet et al. 2008, Hershey et al. 2010, Greenhouse et al. 2011). Finally,
the assessment of LFP activity post-operatively, i.e. in the interval between DBS electrode
implantation and subsequent connection to the subcutaneous stimulator, is an approach that has
yielded important findings with respect to the characterization of pathophysiological
mechanisms underlying neurological disorders (Brown et al. 2001, Lopez-Azcarate et al. 2010),

as well as the mechanisms of action of stimulation (Kiihn et al. 2008).

1.1.3. From Ablation to Stimulation

Although the enthusiasm with which psychiatric neurosurgery is sometimes greeted hearkens back to that
in the beginning of the era of freehand ‘psychosurgery’, when prefrontal lobotomy saw wide,
indiscriminate use, the parallels are quite limited. Those crude operations had some therapeutic effects,
but were accompanied by unacceptable and even tragic adverse effects. Techniques, procedures, and

practices have evolved steadily since then.
B. Greenberg et al. (2010 (a))

Surgery for movement and neuropsychiatric disorders was initiated in the late 19" century
involving distinct ablative procedures that, although being unrefined, were correlated with

certain therapeutic effects. These procedures included the removal of the motor cortex for the
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treatment of chorea by neurosurgeon Victor Horsley (Horsley 1890) and the excision of sections
of the frontal, temporal or temporoparietal lobe for the treatment of chronic mania, primary
dementia and schizophrenia by the Swiss psychiatrist Gottlieb Burckhardt (Kotowicz 2005).
Almost half a century later, in 1949, the Portuguese neurologist Egas Moniz was awarded the
Nobel Prize in Physiology and Medicine for performing a surgical intervention in patients with
certain neuropsychiatric disorders (Moniz 1936), that was subsequently modified in an
uncritical and erratic manner by neurologist Walter Freeman evolving into the most maligned

medical practice in history: the prefrontal lobotomy (Malone and Pandya 2006).

In the meantime, with the groundbreaking introduction of stereotactic functional neurosurgery
by neurologist Ernst Spiegel and neurosurgeon Henry Wycis (Spiegel et al 1947), and the
subsequent work of neurosurgeon Lars Leksell (Bingley et al 1977), substantially more refined
ablative interventions, first for neuropsychiatric disorders and later for movement disorders,
were becoming possible: thalamotomy, pallidotomy, capsulotomy and subthalamotomy were
some of the stereotactic surgical procedures performed based on the principle of making focal
lesions in the pertinent nuclei, while resulting in significant improvements without producing

paralysis and the unacceptable or even tragic adverse effects of prefrontal lobotomy.

During approximately the same period, the use of temporary electrodes for the application of
DBS in patients with neuropsychiatric, pain or movement disorders was being reported for the
first time (Hariz et al. 2010). In almost all of these cases, stimulation was performed
intraoperatively as a means of physiological evaluation of the subcortical brain target prior to
lesioning, but also in order to assess its possible therapeutic value for the treatment of the
respective disorders. With respect to the application of DBS in neuropsychiatric disorders, as
opposed to Spiegel and Wycis who performed ethically and scientifically sound trials (Spiegel
et al. 1947), psychiatrist Robert Heath was rightfully criticized for acting in isolation and for
violating ethical principles (Laitinen 1977). In the mid-1970s, as a consequence of studies
related to the assessment of the therapeutic value of stimulation in the treatment of chronic pain
(Reynolds 1969), the term ‘DBS’ was trademarked by Medtronic, Inc. (Minneapolis, MN, USA)
for the first commercially marketed devices (Coffey 2009). Paradoxically, however, DBS for
chronic pain has not been to date approved by the US Food and Drug Administration (FDA) due
to the absence of controlled trials demonstrating its clinical efficacy. In 1974, Quadee reported
on the application of stimulation and lesion of the lateral hypothalamic area in patients with
comorbid obesity (Quadee 1974). During the period 1972-1977, neurophysiologist Bechtereva
and colleagues aimed at chronic stimulation of the ventrolateral and the centromedian thalamus
as a ‘permanent’ therapy for patients with PD, without however reaching this end due to poor

technological equipment in the USSR at that time (Bechtereva et al. 1975, Hariz et al. 2010).
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In 1977, Professor Fritz Mundinger reported on the permanent implantation of a Medtronic
DBS system for the treatment of cervical dystonia. Stimulation was intermittently delivered via
a radiofrequency coupled external stimulator, at frequencies of up to 390 Hz (Mundinger 1977).
In fact, however, the introduction of two major breakthroughs, the chlorpromazine- and the
levodopa-based pharmacological therapy, during the 1950s (Turner 2007) and 1960s (Cotzias et
al. 1069), respectively, along with the virtual abandonment of surgery for psychiatric disorders
due to the wide and indiscriminate use of prefrontal lobotomy, were pushing surgical therapy
for movement and neuropsychiatric disorders, by the 1970s, almost completely into the

background.

In the 1980s, the awareness of the fact that many patients with advanced PD showed reduced
clinical benefit with levodopa therapy or developed medication-related adverse effects began to
increase. This evolution combined with significant technological and functional imaging
breakthroughs and a vastly superior knowledge of neural pathophysiology was setting

the stage for a resurgence of interest for functional neurosurgical and deep brain stimulation
approaches (Starr et al. 1998). In the early 1980s, Cooper, Brice and Andy evaluated

the therapeutic effectiveness of DBS for intractable movement disorders reporting its
reversibility and superiority to lesioning for the first time (Cooper 1980, Brice and McLellan
1980, Andy 1983). Against this background, the modern form of DBS was heralded in 1987, by
the French neurosurgeon/neurologist team of Benabid and Pollak and their colleagues who
applied thalamic DBS at frequencies higher than 100Hz in the one side and thalamotomy in the
most disabled side in patients with tremor due to PD (Benabid et al. 1987) (figure 1.3). The
team corroborated the triad of hallmarks characterizing modern DBS: reversibility, adaptability
and low morbidity. Thereby, they portended the potential to establish thalamic DBS as an
alternative equally effective to ablative stereotaxy for PD (Schuurman et al. 2008). Importantly,
several years before, Burns et al (1983) had developed the non-human primate model of PD on
the basis of the discovery of the neurotoxin 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine
(MPTP) by Langston et al (1983). This model, as well as the functional model of the basal
ganglia established by Alexander and colleagues (Alexander et al. 1986, Alexander and
Crutcher 1990) are considered major milestones in the development of new approaches in the
field of DBS. In 1990, Hagai Bergman reported the reversal of parkinsonism by focal lesions
and electrical stimulation of the subthalamic nucleus (STN) in MPTP-treated non-human
primates. On the basis of this observation, in 1993, Benabid et a/ corroborated the effectiveness
of STN DBS in two patients with PD (Benabid et al. 1994).The Grenoble group established 130
Hz as the ‘ideal’ stimulation frequency. The documentation of the safety and efficacy of this
method eventually led to the displacement of the posteroventral pallidotomy for PD in the 1990s
(Limousin et al. 1995, Limousin et al. 1998, Laitinen 1977). In 1997, the US FDA issued an

8
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approval for the use of thalamic DBS for ET (Koller et al. 1997), while DBS of the STN or
globus pallidus for the treatment of PD was approved in 2002 (Deep Brain Stimulation for
Parkinson’s Disease Study Group 2001). In 2000, Coubes and colleagues reported on the
effectiveness of DBS of the internal globus pallidus (GPi) for the treatment of DYT1
generalized dystonia (Coubes et al. 2000). Three years later, a Humanitarian

Device Exemption (HDE) was granted by the FDA for pallidal DBS for the treatment of
primary dystonia (Coubes et al. 2004).

Undoubtedly, the current era of DBS has been principally characterized by applications for the
treatment of movement disorders. Nonetheless, the corroboration of the safety and clinical
effectiveness along with the evolving refinement of this technology have served as an impetus
for the resurgence of psychiatric neurosurgery and the initiation of clinical trials exploring
application of DBS for treatment-refractory neuropsychiatric disorders. A synergetic factor for
this evolution has been the exponentially growing literature correlating dysfunctional
neuroanatomical and physiological circuits to psychiatric symptoms and explicitly pointing to
the biological roots of psychiatric disorders (Kopell and Greenberg 2008). In 1999, Nuttin and
colleagues observed beneficial effects of DBS of the anterior limbs of the internal capsule (IC)
in three of four patients with treatment-refractory OCD (Nuttin et al. 1999). In the same year,
Vandewalle and colleagues reported on the effectiveness of thalamic DBS in one patient with
TS (Vandewalle et al. 1999).Ten years later, a humanitarian device exemption was granted by
the FDA for DBS of the anterior limb of the IC for the treatment of OCD, an action that has
been fiercely criticized by Fins and colleagues for entailing great risks for patient safety and
research integrity (Fins et al. 2011(b)). In 2005, Mayberg and colleagues stated that DBS of the
subgenual cingulate white matter (Cg25) effectively reversed symptoms in four of six patients
with treatment-refractory MDD (Mayberg et al. 2005). The first report on the clinical
effectiveness of DBS of the nucleus accumbens (NAcc) for the treatment of refractory addiction
was published in 2009 by Miiller and colleagues (Miiller et al. 2009) following an observation
of remarkable alleviation of a patient’s comorbid alcohol dependency after DBS of the NAcc
(Kuhn et al. 2007). Finally, in 2013, Lipsman et a/ designed a phase I pilot trial through which
they assessed the safety and the clinical benefits of subcallosal cingulated DBS in patients with
treatment-refractory AN (Lipsman et al. 2013). Remarkably, Laxton ef a/ had meanwhile
conducted the first phase I pilot trial of fornix/hypothalamic DBS for the treatment of
Alzheimer’s disease (AD) (Laxton et al. 2010), thereby extending the spectrum of DBS

applications to cognitive disorders (figure 1.3).
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1.2. Thesis Structure

The ultimate objective of this dissertation is the algorithmic design of a therapeutically- and
energy-efficient closed-loop DBS system for movement and neuropsychiatric disorders, with
special focus on advanced PD and treatment-refractory OCD, through the employment of

stochastic dynamical modeling.

The dissertation is organized as follows.

Chapter 2 presents an analysis of the symptomatology, the pathophysiology and the

neurocircuitry of PD, as well as of DBS for the advanced clinical stage of this condition.

Chapter 3 presents an analysis of the symptomatology, the pathophysiology and the

neurocircuitry of OCD, as well as of DBS for the treatment-refractory form of this condition.

Chapter 4 introduces a data-driven model of stochastic nonlinear dynamics and evaluates
collective dynamical and response properties of the subthalamic oscillatory activity in the
pathological state, as crucial hallmarks for the selection of the optimal stimulation site during
DBS for advanced PD. Specifically, the objective is to determine the applicability of the model
within the framework of the principal mapping techniques that are commonly used

intraoperatively: MER and macrostimulation testing.

Chapter 5 focuses on the evaluation of the efficiency of alternative STN-DBS protocols for
advanced PD and treatment-refractory OCD. A modified version of the model introduced in
chapter 4 is employed along with two MER datasets for the comparative assessment of the
desynchronizing and therapeutic effect of standard (regular at 130Hz) versus eleven temporally
alternative patterns of STN-DBS for PD and OCD, and for the determination of the particular
pattern characteristics correlated with a significantly stronger desynchronizing and therapeutic

effect.

Chapter 6 is devoted to the algorithmic design of a closed-loop STN-DBS system for advanced
PD and treatment-refractory OCD, ensuring optimal performance in terms of both efficiency
and selectivity of stimulation, as well as in terms of computational speed. The system
incorporates the application of a phase-reduced bursting neuron model and direct search
optimization based on quadratic modeling, through which optimal stochastic patterns and
parameters of stimulation for minimum energy desynchronizing control of neuronal activity are

being identified.

10
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Chapter 7 concludes the dissertation with a summary of the main contributions of the thesis

and a reference to future perspectives.
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Parkinson’s Disease

... the aspect of the patient is very characteristic. The head is bent forward, and the expression of the face
is anxious and fixed, unchanged by any play of emotion. The arms are slightly flexed at all joints from
muscular rigidity, and (the hands especially) are in constant rhythmical movement, which continues when
the limbs are at rest so far as the will is concerned. The tremor is usually more marked on one side than
on the other. Voluntary movements are performed slowly and with little power. The patient often walks

with short quick steps, leaning forward as if about to run...

Gowers (1901)

2.1. Definition, Classification and Epidemiology

Parkinson’s disease (PD), also known as idiopathic or primary parkinsonism, hypokinetic rigid
syndrome (HRS), or paralysis agitans is the second most common neurodegenerative disorder
after Alzheimer’s disease (AD), pathologically characterized by the loss of dopaminergic cells
of the substantia nigra pars compacta (SNc) in association with the presence of alpha-synuclein
deposits (Lewy bodies) in the cytoplasm of neurons, and clinically by four cardinal symptoms:
resting tremor, bradykinesia, rigidity, and postural instability (de Lau and Breteler 2006, Lang
and Lozano 1998, Nussbaum and Ellis 2003). First descriptions of parkinsonian symptoms are
found in ancient Egyptian and ayurvedic literature, but also in the Bible (Manyam 1990, Garcia

Ruiz 2004). In 1817, the English scientist and political activist James Parkinson, published his


http://en.wikipedia.org/wiki/Parkinsonism
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seminal work ‘An Essay on the Shaking Palsy’, describing the characteristic resting tremor, the
abnormal posture and gait, paralysis and the diminished muscle strength in six cases (Parkinson
1817). In the second half of the nineteenth century, Jean-Martin Charcot pioneered in making
the distinction between rigidity, weakness and bradykinesia, and further suggested the disease to

be renamed in honor of James Parkinson (Charcot 1872).

Prevalence of PD in industrialised countries is generally estimated at 0,3% of the entire
population with rates increasing to 1% to 2% and 4% to 5% for persons over age 65 and over
85, respectively (de Lau and Breteler 2006, Lang and Lozano 1998, Kowal et al. 2013).
According to Zhang and Roman (1993), with the exception of China, Japan and Africa, which
have the lowest prevalence ratios, the actual prevalence variation for PD in geographically
diverse populations is relatively low. However, ratios may be significantly influenced by local
environmental risk factors. Five to ten percent of patients displays initial symptoms of PD
between ages 21 and 39 (young-onset PD) (Bhidayasiri and Tarsy 2012). The significantly
higher incidence of PD in men than in women has been attributed to the neuroprotective effects
of estrogens, the higher frequency of intensity of occupational toxin exposure as well as of
minor head trauma in men, and to recessive susceptibility genes on the X chromosome

(Saunders-Pullman 2003, Wooten et al. 2004).

2.2. Clinical Signs and Symptoms

Resting tremor is the most easily recognized motor symptom of PD, occurring at a frequency of
3-8 Hz in the distal part of an extremity and disappearing with action or during sleep (Jankovic
2008). James Parkinson described tremor as ‘involuntary tremulous motion, with lessened
voluntary muscular power, in parts, not in action...” (Parkinson 1817). Resting tremor is
substantially differentiated from ET. About 69% of patients with PD demonstrate rest tremor at
disease onset, 75% have tremor during the course of the disease, while tremor vanishes in 9% of
patients in late-stage disease (Hughes et al. 2001). In addition to resting tremor, postural tremor

may also occur in patients with PD (Jankovic et al. 1999).

Bradykinesia refers to the slowness of a performed movement or prolonged reaction time to
initiate a movement (Hallett and Khoshbin 1980) and is often used as a synonym of akinesia
and hypokinesia, despite certain differences in the meaning of these terms. Specifically akinesia
refers to a reduction in the amount of spontaneous or associated movements and to freezing,
while hypokinesia refers to the performance of slow and small movements. Difficulty in
sustaining complex movements, i.e. repetitive, sequential or simultaneous movements, is a

further characteristic of bradykinesia in PD (Agostino et al. 1994, Benecke et al. 1986, Scwab et
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al.1954). Notably, while in PD bradykinesia may coexist with akinesia and hypokinesia, in
dystonia and in Huntington’s disease bradykinesia occurs in conjunction with hyperkinesia.
Muscle weakness, rigidity, tremor, movement variability and bradyphrenia may contribute to
bradykinesia in PD (Berardelli et al. 2001). Bradykinesia can be assessed through finger
tapping, hand gripping or hand pronation-supination (Jankovic 2008, Kiihn et al. 2008). It has
been reported that bradykinesia is the motor manifestation of PD that correlates best with the

degree of nigrostriatal dopaminergic deficiency (Vingerhoets et al. 1997).

Rigidity is defined as an increase in muscle tone and enhanced resistance to passive movements
(Broussolle et al. 2007). It may occur proximally (neck, shoulders) or distally (ankles, wrists)
(Jankovic 2008). Two types of parkinsonian rigidity exist: the leadpipe rigidity that is uniform
throughout the entire movement and the cog-wheel rigidity that is regularly interrupted at the
frequency of resting or postural temor (Broussolle et al. 2007). Rigidity was first recognized by
Charcot (Charcot 1872) (figure 2.1) and further investigated at the beginning of the twentieth
century by Negro, Moyer and Froment (Negro and Treves 1901, Moyer 1911, Froment and
Gardere 1926). The ‘Froment maneuver’ facilitates the detection of rigidity through a voluntary
movement of the contralateral limb (Froment and Gardere 1926a, Froment and Gardere 1926b).
Shoulder pain is a clinical manifestation of PD associated with rigidity (Stamey and Jankovic

2007).

Postural instability, or impaired balance, can be present at early stages of untreated idiopathic
PD, but becomes inevitably more prevalent with disease progression (Kim et al. 2013). In the
Sydney Multicentre Study of Parkinson’s disease, 34% of patients demonstrated postural
instability within 2 years of diagnosis (Hely et al. 1989), while symptom manifestation was
reported in 71% of the surviving patients within 10 years of diagnosis (Hely et al. 1999) and in
92% of the surviving patients within 15 years of diagnosis (Hely et al. 2005). Principally,
postural instability along with freezing of gait are the motor manifestations of PD that are least
responsive to dopaminergic medication and have been characterized as risk factors for PD
dementia and falls, hence constituting two of the most disabling features of the disease (Miiller
et al. 2013, Plotnik et al. 2011, Kim et al. 2013, Bloem et al. 2004). It has been suggested that
non-dopaminergic mechanisms, like increased neocortical b-amyloid deposition, even at low-
range levels, are associated with higher severity of postural instability and cognitive impairment
(Miiller et al. 2013). Long latency to onset, but not duration, of recurrent falls is a characteristic
with significant diagnostic validity, as it differentiates PD from other neurodegenerative
disorders, such as progressive supranuclear palsy (PSP), multiple system atrophy (MSA),
dementia with Lewy bodies (DLB), and corticobasal degeneration (CBD) (Wenning et al.
1999).
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Figure 2.1. Neurologist Jean-Martin Charcot (1825-1893)

Freezing of gait is a form of akinesia typically manifested as a sudden and transient inability to
initiate walking or to continue to move forward (Jankovic 2008, Bloem et al. 2004). Schaafsma
et al (2003) described five subtypes of freezing: start hesitation, turn hesitation, hesitation in
tight quarters, hesitation upon reaching a destination and hesitation in an open runway.Most
freezing of gait episodes last less than 10 seconds, however with disease progression they
become more frequent and disabling, and a greater risk factor for falls (Bloem et al. 2004).
Levodopa helps in reducing the frequency and duration of off- but not on- related

freezing of gait episodes (Schaafsma et al. 2003). About 47% of patients experience freezing
regularly, while patients with the tremor dominant form of PD are likely to experience freezing

less frequently (Macht et al. 2007).

Other postural deformities include rigidity of the neck and trunk (axial rigidity) (Jankovic
2008). Striatal hand represents an abnormal hand posture in PD, unresponsive to medication
treatment (Spagnolo et al. 2014) (figure 2.2). Camptocormia, is a condition characterized by the
extreme forward flexion of the thoracolumbar spine, which increases during walking and abates
in the sitting and recumbent positions. In addition to PD, other causes of camptocormia include
dystonia, myasthenia gravis, amyotrophic lateral sclerosis and extensor truncal myopathy (Sakas

et al. 2010).

Other motor abnormalities include dysarthria, hypophonia, dysphagia and sialorrhoea, neuro-
ophthalmological abnormalities and respiratory disturbances (Hoehn and Yahr 1967, Jankovic
2008). Many of these complications are equally or more disabling than the cardinal motor

symptoms.

Non-levodopa responsive non-motor symptoms dominate the clinical picture of advanced PD,
and have been classified among its most disabling features (Hely et al. 2005). Non-motor
symptoms include sleep disturbances, cognitive and neuropsychiatric symptoms, autonomic

dysfunction, and sensory symptoms (Chaudhuri et al. 2006).
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Figure 2.2. Striatal hand in PD (adapted with permission from Spagnolo et al. 2014)

Sleep disturbances in PD most commonly refer to rapid eye movement (REM) sleep behavioral
disorder (RBD) and insomnia (Chaudhuri and Schapira 2009). RBD is a form of parasomnia
characterized by an increase in frightening dream content accompanied by simple or complex
movements (Schenck et al. 1986). Symptoms of RBD can predate the diagnosis of PD and may
be associated with degeneration of the pedunculopontine and peri-ceruleal nucleus (Chaudhuri
and Schapira 2009). Sleep-onset insomnia and sleep-maintenance insomnia are common in PD,

but their occurrence is highly variable among patients (Gjerstad et al. 2006).

Cognitive decline has been reported to occur in about 84% of patients with advanced PD (Hely
et al. 2005), while prevalence of dementia in advanced PD ranges from 48%-80% (Hely et al.
2005, Aarsland et al. 2011). The risk for developing dementia in PD-patients is up to six times
higher compared to controls (Aarsland et al. 2001). A progressive dysexecutive syndrome,
hallucinations, attentional deficits and fluctuating cognition characterize the neuropsychological
profile of PD-related dementia (PDD) (Bosboom et al. 2004). Age-related neuropathological
processes, cortical Lewy bodies, degeneration of the nucleus basalis of Meynert, and diseases

like stroke and AD are correlated with the pathology of PDD (Helly et al. 2005).

Neuropsychiatric symptoms most commonly include depression, anxiety, apathy and
hallucinations (Chaudhuri et al. 2006, Chaudhuri and Schapira 2009, Gallagher and Schrag
2012). These symptoms are more common in patients with PDD (Aarsland et al. 2007).
According to a systematic review on the prevalence rates of depression in PD, the weighted
prevalence of MDD appears to be about 17%, which is substantial, but less than the prevalence
rates that are usually quoted (Reijnders et al. 2008). According to the same study the weighted
prevalence of minor depression is 22% and of clinically significant depressive symptoms 35%.

In cross-sectional studies, prevalence of anxiety in PD ranges from 20% to 49% (Aarsland et al.
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2007, Dissanayaka et al. 2010, Negre-Pages et al. 2010, Riedel et al. 2010, Chen Y K et al.
2010). Generalized anxiety disorder, panic disorder and social phobia are the most common
subtypes of anxiety in PD (Dissanayaka et al. 2010, Chen Y K et al. 2010). Comorbid
depression and anxiety before the appearance of motor symptoms has also been reported (Shiba
et al. 2000). It is generally considered that depression and anxiety in PD are more than just a
reaction to the limitations of the disease, as there is evidence for a significant role of
dysfunctional dopaminergic, serotoninergic, and norepinephrinergic pathways in manifestation
of these symptoms (Gallagher and Schrag 2012, Remy et al. 2005, Chaudhuri and Schapira
2009). Apathy has been established as a distinctive feature of PD, whose underlying
pathophysiological mechanism most probably involves limbic and ventral striatal dopamine
deficiency (Czernecki et al. 2008) and contributions from cholinergic mechanisms (Gallagher
and Schrag 2012). Visual hallucinations in PD have been reported to occur in 30-60% of treated
patients, whereas auditory hallucinations occur more rarely and are almost always accompanied
by visual hallucinations (Diederich et al. 2005). Moreover, delirium can occur in advanced
dementia (Chaudhuri et al. 2006). There is no clear association between dopaminergic
medication and the development of visual hallucinations (Papapetropoulos et al. 2005).
Impaired visual input, cognitive impairment and impairment of the brainstem-regulated sleep-
wake cycle are considered contributing factors for the development of psychosis in PD

(Gallagher and Schrag 2012).

Autonomic dysfunction is a key feature in MSA, but occurs with varying severity in PD. The
prevalence of orthostatic hypotension, bladder dysfunction, constipation, erectile dysfunction
and hyperhidrosis has been reported to be significantly higher in PD compared with controls
(Magerkurth et al. 2005).

Sensory symptoms in PD refer to olfactory dysfunction, visual impairment, central pain and
pain related to motor fluctuations or dyskinesias secondary to dopaminergic treatment
(Chaudhuri and Schapira 2009). According to the cross-sectional french DoPaMiP survey, about
39.3% of patients with PD have chronic pain related to PD (Negre-Pages et al. 2008).

2.3. The Hoehn and Yahr Scale, and the Unified Parkinson’s Disease
Rating Scale (UPDRS)

At present, there exists no single gold standard index to evaluate the severity of the motor and

non-motor symptoms of PD. Instead, clinically based rating tests are employed. The
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Hoehn and Yahr Scale was introduced in 1967, classifying disease progression into five stages
based on the severity of motor impairment and compromised balance/gait (Hoehn and Yahr
1967). Thereby the disorder could be charted from unilateral (Stage 1) to bilateral disease
without balance difficulties (Stage 2), to bilateral disease with postural instability (Stage 3),to
severely disabling disease with loss of physical independence (Stage 4), and being wheelchair-
or bed-bound (Stage 5) (Goetz et al. 2004). This five-point scale was subsequently modified to a
seven-point scale during the 1990s (Jankovic et al. 1990) (table 2.1). Though over 40 years old,
the scale continues to be used widely (Zhao et al. 2010). The Unified Parkinson’s Disease
Rating Scale (UPDRS) was originally developed in 1987 (version 3.0) evolving into the most
widely used and tested clinical rating scale for comprehensive evaluation of both motor
impairment and disability in PD, by virtue of its high internal consistency and inter-rater
variability, moderate construct validity and stable factor structure (Fahn et al. 1987, Ramaker et
al. 2002). In 2003, the Movement Disorder Society (MDS) sponsored Task Force for Rating
Scales in PD suggested the development of an improved version of the UPDRS that would
retain the strengths of the original version, but would further display a higher sensitivity
incorporating the assessment of many important non-motor symptoms of PD (Movement
Disorder Society Task Force on Rating Scales for Parkinson's Disease 2003). This modified
version, termed the MDS sponsored UPDRS revision (MDS-UPDRS) (Goetz et al. 2007)
(figure 2.3), successfully passed initial clinimetric testing in a series of over 800 native English-
speaking patients, evolving into the official benchmark scale for PD (Goetz et al. 2008).
According to Gallagher et al (2011), the MDS-UPDRS Part I total score has a strong

relationship with a composite score of validated scales for the non-motor symptoms of PD.

Remarkably, reviews based on the use of the UPDRS or other rating scales to track the
progression of PD (Post et al. 2007, Marras et al. 2002), or findings based on longitudinal
follow-up data (Jankovic and Kapadia 2004), have suggested that the rate of progression of the
disease may be nonlinear. Particularly higher age, postural instability/gait difficulty (PIGD) and

lack of rest tremor at onset have been associated with a higher rate of disease progression.

2.4. Mortality

An approximately two-fold increased mortality rate (1.3-2.3) among patients with PD compared
with the general population has been reported by studies referring to cohorts of patients with
symptom onset after the introduction of the levodopa treatment (de Lau et al. 2005, D’ Amelio et

al. 2006, Herlofson et al. 2004, Driver et al. 2008). Different methodologies may account for the
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Table 2.1. Comparison between the original and modified Hoehn and Yahr scale (adapted with

permission from Goetz et al. 2004)

Hoehn and Yahr scale Modified Hoehn and Yahr scale

1:Unilateral involvement only usually with 1.0: Unilateral Involvement only
minimal or no functional disability 1.5: Unilateral and axial involvement
2: Bilateral or midline involvement without 2.0: Bilateral involvement without
impairment of balance impairment of balance

2.5: Mild bilateral disease with

recovery on pull test
3: Bilateral disease: mild to moderate disability EEEIBYHRTR (IS IR DIk

with impaired postural reflexes, disease; some postural instability;
physicallyindependent physically independent

4: Severely disabling disease; still able to walk 4.0:Severe disability; still able to

or stand unassisted walk or stand unassisted
5:Confinement to bed or wheelchair unless 5.0:Wheelchair bound or bedridden
aided unless aided

observed rate variability. A systematic review conducted by Ishihara et al (2007) showed that
life expectancy in PD compared with the general population is reduced for all onset ages but
this reduction is higher in individuals with young-onset PD: for patients with PD diagnosed
between age 25 and 39 mean life expectancy was 38 years versus 49 years for the general
population; for patients with PD diagnosed between age 40 and 64, life expectancy was 21 years
versus 31 years for the general population and for patients with PD diagnosed at age 65 years or
above, life expectancy was 5 years versus 9 years. Dementia, PIGD and lack of rest tremor at
onset are associated with a significantly increased mortality risk (de Lau et al. 2005, de Lau and
Breteler 2006, Diem-Zangerl et al. 2009). Specifically, the development of dementia is
associated with a twofold increased mortality risk in PD (Levy G et al. 2002).

2.5. Pathophysiology of Parkinson’s Disease

A hallmark pathologic feature of idiopathic PD is a selective degeneration of neuromelanin-
laden dopaminergic neurons in the SNc (Zigmond and Burke 2002), that project to the striatum,
but also to other basal ganglia nuclei, such as the external and internal segments of the globus
pallidus (GPe, GPi, respectively), the subthalamic nucleus (STN), and the substantia nigra pars
reticulata (SNr) (Mclntyre and Hahn 2010). This feature has been correlated with a decrease in
the level of expression of mMRNA encoding the dopamine D1 receptor and an elevation in
expression of mRNA encoding the dopamine D2 receptor (Gerfen et al. 1990). There is
evidence pointing to the loss of dopaminergic neurons exclusively within the SNc, as the

underlying cause of the cardinal motor manifestations of PD, based on
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Nonmotor Aspects
of Experiences of Daily
Living

Cognitive impairment
Hallucinations and
psychosis
Depressed mood
Anxious mood?®
Apathy
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dysregulation
syndrome
Sleep problems
Daytime sleepiness
Pain and other
sensations
Urinary problems®

Constipation problems®

Lightheadedness on
standing
Fatigue

Part Il:
Motor Experiences of
Daily Living

Speech
Saliva and drooling
Chewing and
swallowing
Eating tasks
Dressing
Hygiene
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Doing hobbies and
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Getting in and out of
bed
Walking and balance
Freezing

Part IV:
Motor Complicatios

Dyskinesias: time spent
with dyskinesias
Dyskinesias: functional
impact of dyskinesias
Dyskinesias: painful off
state dystonia
Motor fluctuations:
time spent in the off
state
Motor fluctuations:
functional impact of
fluctuations
Motor fluctuations:
complexity of motor
fluctuations
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Part lli:
Motor Examination

Speech
Facial expression
Rigidity
Finger tapping
Hand movements
Pronation—supination
movements of hands
Toe tapping®
Leg agility
Arising from chair
Gait
Freezing of gait
Postural stability
Posture
Global spontaneity of
movement (body
bradykinesia)
Postural tremor of
hands
Kinetic tremor of hands
Rest tremor amplitude
Constancy of rest
tremor

Figure 2.3. The Movement Disorder Society - Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz et

al. 2007)
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observations that the N-methyl- 4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), a neurotoxin
selective for dopamine neurons of the SN¢ in humans and nonhuman primates, induces the
development of the full spectrum of motor signs of PD (Langston et al. 1983). The greater
neuronal loss in the ventrolateral tier (average loss 91%) of the SNc, compared with the medial
ventral and dorsal tier (average loss 71% and 56%, respectively) of the nucleus (Fearnley and
Lees 1991), is specific to PD, and accounts for a more severe loss of dopamine in the caudal
portions of the putamen. These data suggest that the motor symptoms of PD are for the most
part a consequence of dopamine loss in the putamen (Kish et al. 1988). Neuronal loss in PD,
however, is not restricted to dopaminergic neurons, but also to populations of neurons in the
locus coeruleus, the hypothalamus, the cingulate gyrus and entorhinal cortex, the olfactory bulb,
sympathetic ganglia and parasympathetic neurons in the gut, as well as to serotoninergic
neurons of the raphe nuclei and cholinergic neurons of the nucleus basalis of Meynert (Lang and
Lozano 1998, Zigmond and Burke 2002). These neurodegenerative changes have been
correlated with the development of the non-motor symptoms of PD (Lang and Lozano 1998,
Zigmond and Burke 2002). However, there is evidence that a host of active compensatory
processes serve to delay the onset of motor and non-motor symptoms in PD and that gross
neurological deficits do not occur until the loss of dopamine is extreme (Zigmond 1997).
Among the factors that have been implicated in neuronal degeneration in PD are mitochondrial
dysfunction, oxidative stress, excitotoxins, deficient neurotrophic support, and immune
mechanisms, probably induced by non-genetic factors in interaction with susceptibility genes

(Lang and Lozano 1998, de Lau and Breteler 2006).

Another salient pathologic feature of idiopathic PD is the presence of Lewy bodies,
eosonophilic inclusions that occur in the cytoplasm of selectively vulnerable neurons (Pollanen
et al. 1993) and the presence of Lewy neurites, thread-like proteinaceous inclusions observed in
affected brainstem regions, particularly in the dorsal motor nucleus of the vagus (Gai et al.
1995). Lewy bodies are generally 5 to 25 um in diameter, with an electron dense granular core,
a clear halo, and often a targetoid appearance. They are composed of radially oriented
neurofilaments and are commonly observed in the SN, locus coeruleus, the dorsal motor nucleus
of the vagus, the nucleus basalis of Meynert, the hypothalamus, but also in the neocortex,
diencephalon, spinal cord, and peripheral autonomic ganglia (Gibb and Lees 1988). It has been
hypothesized that formation of Lewy bodies from neurofilament subunits could alter the critical
structural functions of neurofilaments in axons, leading to a disruption of axonal connections
from the SNc to the striatum in PD (Lang and Lozano 1998, Trojanowski and Lee 1994).
Neurofilaments of Lewy bodies in PD are tagged with ubiquitin, an antigen involved in protein
degradation (Kuzuhara et al. 1988), and aggregates of a-synuclein (Spillantini et al. 1998,
Spillantini et al. 1997, Mezey et al. 1998, Baba et al. 1998). Both proteins are found in the
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core of Lewy bodies, but tendrils of synuclein make up the periphery (Mezey et al. 1998). The
discovery of abnormal accumulations of a-synuclein in Lewy bodies along with the
identification of mutations in the gene for a-synuclein in familial forms of PD (Polymeropoulos
et al. 1997, Kriiger et al. 1998) have highlighted the central role of this protein in the
pathogenesis of PD. Notablly, a-synuclein has been identified not only in Lewy bodies of PD,
but also the Lewy bodies of Hallervorden—Spatz syndrome (Arawaka et al. 1998), AD
(Hamilton, Lippa), and diffuse Lewy body disease (Baba et al. 1998). In addition to a-synuclein,
B-synuclein and y-synuclein have also been implicated in the onset/progression of PD (Galvin et
al. 1999). Besides, proteasomal proteins, synphilin, neurofilaments and microtubule-associated

proteins have been identified within Lewy bodies in PD (Maries et al. 2003).

2.6. Neurocircuitry of Parkinson’s Disease

...the basal ganglia can no longer be thought of as an unidirectional linear system that transfers
information based solely on a firing-rate code. Rather, we propose that the basal ganglia are a highly

organized network, with operational characteristics that simulate a non-linear dynamic system.

J. Obeso et al (2000)

Selective degeneration of heterogeneous populations of neurons in PD has proven to induce
electrophysiological changes in the basal ganglia, thalamus and cortex. These changes include
altered firing rates, altered processing of proprioceptive input, increased incidence of burst
discharges, abnormal oscillatory activity, synchrony and cross-frequency coupling (Galvan and
Wichmann 2008, Wichmann and DeLong 2002, Bergman and Deuschl 2002, DeL.ong and
Wichmann 2009, Rubin et al. 2012, Lopez-Azcarate et al. 2010). Propagation of this abnormal
activity throughout neural networks of the basal ganglia-thalamo-cortical loops has been
suggested to be strongly correlated with the cardinal motor symptoms of PD (Bergman and
Deuschl 2002, Kiihn et al. 2009). The significant progress in our understanding of the
mechanisms underlying the motor abnormalities of PD, through which parkinsonism has
emerged as a complex network disorder (DeLong and Wichmann 2007), has been achieved on
the basis of three notable accomplishments: the development of models of the functional
organization of the basal ganglia (Alexander et al. 1986, Alexander and Crutcher 1990, Penney
and Young 1986, Albin et al. 1989, DeLong 1990), the discovery that nonhuman primates
treated with MPTP develop behavioral alterations that closely mimic motor symptoms of PD in
humans (Burns et al. 1983), and the unique opportunity provided by functional neurosurgery to

directly record from the human basal ganglia (Brown and Williams 2005).
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The basal ganglia are a group of functionally related subcortical nuclei that include the
neostriatum (composed of the caudate nucleus and the putamen), the GPe, the GPi, the STN, the
SNr, and the SNc. The basal ganglia participate in anatomically and functionally segregated
loops that subserve the function of the ‘motor’, ‘associative’ and ‘limbic’ cortical areas. The
striatum and, to a less extent, the STN are the main entries for cortical and thalamic inputs into
the basal ganglia. The main basal ganglia output nuclei are the GPi and the SNr, that project to
the ventral anterior and ventrolateral nuclei of the thalamus (VA/VL), which then send efferents
back mainly to frontal cortical areas (Alexander et al. 1986, Alexander and Crutcher 1990). The
projections between the striatum and GPi/SNr are thought to be organized into two distinct
pathways, a monosypatic ‘direct’ pathway, and a polysynaptic ‘indirect’ pathway involving the
GPe and the STN (Alexander and Crutcher 1990, Penney and Young 1986, Albin et al. 1989,
DeLong 1990). These pathways originate from separate populations of striatal medium spiny
neurons (MSNs), whose activity is differentially modulated by prominent dopaminergic input
from the SNc. The direct pathway is an inhibitory projection from MSNs that include
neuropeptides (substance-P and dynorphin) and dopamine D1-receptors to the GPi/SNr. The
indirect pathway is a polysynaptic inhibitory projection from MSNs that contain dopamine D2-
receptors and enkephalin to the GPe followed by inhibitory projections between GPe and
GP1/SNr, either directly or via the glutamatergic STN. The segregation of D1and D2 receptors
reflects the dual action of striatal dopamine release that over the direct pathway reduces the
inhibitory output from GPi/SNr, thereby disinhibiting the activity of thalamocortical projection
neurons and facilitating movements, and over the indirect pathway increases the inhibitory
output from GPi/SNr, inhibiting the thalamocortical activity and suppressing movements
(Gerfen et a. 1990). Eventually, the net effect of dopamine release from the nigrostriatal
projection is the reduction of basal ganglia output to the thalamus, disinhibiting thalamocortical
activity, and, through greater activation of the cerebral cortex, facilitating movement
(Wichmann and DeLong 2002). In addition to the direct and indirect pathways, the hyperdirect
pathway, a cortico-subthalamic projection, evokes an increase of the basal ganglia output,
producing the same effect as the indirect pathway, but in significantly less time (Wichmann et

al. 2011, Nambu et al. 2002) (figure 2.4).

Studies of dopamine-depletion induced metabolic changes in the basal ganglia of MPTP-treated
non-human primates carried out by Alan Crossman and colleagues demonstrated that 2-
deoxyglucose (2DG) is increased in both pallidal segments (Crossman et al. 1985, Mitchell et
al. 1989, Scwartzman and Alexander 1985). Subsequent microelectrode recordings of neuronal
activity showed that MPTP-induced parkinsonism in nonhuman primates is associated with
reduced spontaneous neuronal activity in the GPe and increased neuronal discharge in the STN

and GP1, as compared to normal controls (Miller and DeLong 1985, Filion and Tremblay 1991).
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Analogous studies pointed to reduced basal ganglia output in nonhuman primate models of
experimentally induced chorea, hemiballism, and dyskinesias (Crossman 1990, Mitchell et al.
1985). Together, these important early studies gradually led to the development of the ‘rate
model’ of the pathophysiology of movement disorders by Albin et al. (1989) and DeLong
(1990). In this seminal work, firing rate changes observed in basal ganglia nuclei in movement
disorders are considered to reflect a modulated inhibitory output from the GPi to the thalamus,
resulting from unbalanced activity in the basal ganglia-thalamo-cortical ‘motor’ circuit. In
particular, striatal dopamine depletion leads to increased inhibitory activity over the indirect
pathway and decreased activity over the direct pathway, resulting in inhibition of the GPe, and
subsequent disinhibition of the STN and the GPi/SNr. Conversely, decreased output from the
GPi to the thalamus underlies the manifestation of hyperkinetic disorders. Thereafter, further
insights into the pathophysiology of PD corroborated the findings of increased neuronal activity
in the GPi and STN (Bergman et al. 1994, Hassani et al. 1994). Moreover, lesions of the STN or
GPi were proven to reverse the cardinal motor disturbances of parkinsonism in MPTP-treated
non-human primates, thereby implicitly supporting the postulated role of excessive activity in
the GPi and STN in PD (Bergman et al. 1990, Wichmann et al. 1994(b), Aziz et al. 1991, Guridi
et al. 1996). Despite these breakthroughs, however, the main assumptions and predictions of the
classical Albin-Delong rate model were contradicted by a number of additional observations,
including evidence that GPe or thalamic lesions may not consistently induce parkinsonism
(Soares et al. 2004, Marsden and Obeso 1994), and that DBS may ameliorate parkinsonian
symptoms by increasing the GPi output to the thalamus (Hashimoto et al. 2003) or by
suppressing pathological synchronization (the ‘noisy signal’ hypothesis) (Brown and Eusebio
2008), suggesting a pivotal role of additional contributing factors in the development of the

behavioral manifestations of PD .

One of the most prominent pattern abnormalities in MPTP-treated nonhuman primates and in
patients with PD is a greater incidence of burst discharges in the GPe, STN,GPi, SNr, and basal
ganglia-receiving areas of the thalamus compared to the physiological state (Miller and DeLong
1987, Filion and Tremblay 1991, Wichmann et al. 1999, Wichmann and Soares 2006, Bergman
et al. 1998, Hutchison et al. 2004, Magnin et al. 2000), observed early in the course of dopamine
depletion (Ni et al. 2001, Vila et al. 2000, Breit et al. 2007) (figure 2.5(a)). Post-inhibition
rebound bursting due to dopamine depletion, demonstrated to occur in the GPe, GPi, STN, and
thalamic neurons (Bevan et al. 2006, Bevan et al. 2007, Shen and Johnson 2005, Beurrier et al.
1999, Cooper and Stanford 2000, Gillies et al. 2002), and modulation of the function of the
STN-GPe ‘pacemaker’ (Plenz nad Kitai 1999) are considered the main physiological

mechanisms underlying the development of neuronal burst firing in PD.
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o

Figure 2.4. Detailed schematic of the sensorimotor network (adapted with permission from Johnson et
al. (2008))
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Secondly, the presence of abnormal oscillatory activity in single neurons of the basal ganglia,
thalamus and cortex, particularly in the alpha (~4-8Hz) and beta (~11-30Hz) frequency bands,
has been documented based on microelectrode recordings obtained during DBS surgery for PD
(Levy et al. 2000, Weinberger et al. 2006, Moran et al. 2008), and MPTP-treated nonhuman
primates (Bergman et al. 1994, Rivlin-Etzion et al. 2006, Raz et al. 2000). Furthermore, in local
field potential (LFP) recordings, considered to reflect the synaptic input to a large neuronal
population (Logothetis 2002), prominent beta oscillatory activity in the STN and GPi of patients
with PD undergoing functional neurosurgery has also been demonstrated (Brown et al. 2001).
LFP recordings are either obtained intraoperatively from microelectrodes or postoperatively
from DBS macroelectrodes, in the interval between implantation and subsequent connection to a
subcutaneous stimulator (Brown and Williams 2005). According to Brown et al (2001), who
originally assessed LFP recordings from the STN and GPi in patients with PD (therein referred
to under the term ‘local potentials’ (LPs)), beta oscillatory activity in these nuclei is reduced by
levodopa treatment, whereas gamma-band (>30Hz) oscillatory activity is increased (figure
2.5(b)). This latter finding is in agreement with evidence that the degree of pallidal gamma
oscillations is positively correlated with basal ganglia control of motor performance (Briicke et
al. 2012). Further studies have corroborated the presence of abnormal oscillatory activity in PD
based on LFP recordings obtained either intra- or postoperatively (Weinberger et al. 2006,
Moran and Bar-Gad 2010, Kiihn et al. 2004, Kiihn et al. 2005, Kiihn et al. 2008, Kiihn et al.
2009, Pogosyan et al. 2006 ). Remarkably, the LFP spectrum at rest may be characterized by a
‘signature’ rhythm for an individual with PD (Tsirogiannis et al. 2009). Despite data that
abnormal oscillations do not develop in the early phase of parkinsonism (Leblois et al. 2007),
the existence of a possible correlation between alpha- and beta-band oscillatory activity and
specific motor and non-motor manifestations in PD has been well documented. In this regard, it
has been reported that anticholinergics, which fail to treat bradykinesia, but can ameliorate
rigidity and tremor, do not suppress beta LFP activity in the STN of patients with PD. This
implies that dopaminergic suppression of beta oscillatory activity is selective and may be linked
to bradykinesia, but not to tremor (Priori et al. 2004, Brown and Williams 2005). This
assumption has been validated and extended by further studies that have reported a positive
correlation between treatment-induced suppression of beta oscillatory activity in the STN and
improvement in both bradykinesia and rigidity, but not tremor (Kiihn et al. 2006, Kiihn et al.
2008, Kiihn et al. 2009, Ray et al. 2008). Additionally, it has been proven that the complexity of
LFPs in the beta-frequency band correlates negatively with bradykinesia and rigidity in
untreated patients (Chen C C et al. 2010), and that 10- or 20-Hz DBS stimulation of the STN in
patients with PD results in deterioration of akinesia/bradykinesia (Timmermann et al. 2004,
Timmermann and Florin 2012, Chen C C et al. 2007). On the other hand, though parkisonian

tremor may not be strictly correlated with
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Figure 2.5. (a) Extracellular electrophysiologic recordings in the GPe, STN, and GPi of normal and
MPTP-treated non-human primates. Each data segment is 5 s in duration (reproduced with permission
from Galvan et al. 2008). (b) First report on the assessment of LFP recordings from the STN and Gpi of
patients with PD (reproduced with permission from Brown et al. 2001). Autospectra of STN LP power
(A, B) coherence spectra between STN and GPi (C, D), and respective phase spectra (E, F) after
withdrawal (A, C, E) or reinstitution (B, D, F) of levodopa treatment. Data pooled from records at rest in

four patients with PD.
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oscillations in basal ganglia networks (Rivlin-Etzion et al. 2006, Wichmann and DeLomg
2002), oscillatory activity in the alpha and theta frequency ranges appears to play an efferent
role in rest tremor generation (Levy et al. 2000, Levy R et al. 2002 (a), Hurtado et al. 1999, Raz
et al. 2000, Bergman et al. 1994, Contarino et al. 2011, Tass et al. 2010). Last, the development
of certain dopaminergic-mediated motor or behavioral abnormalities, namely dyskinesias and
impulse control disorders, has been reported to be significantly correlated with 4-10Hz
oscillations in the STN of patients with PD (Alonso-Frech et al. 2006, Rodriguez-Oroz et al.
2010). The presence of abnormal oscillatory activity in basal ganglia neurons or neuronal
populations may be attributed to the interplay in the STN-GPe network (Tsirogiannis et al.
2009, Pavlides et al. 2012, Galvan and Wichmann 2008, Nevado Holgado et al. 2010).

Closely related to the incidence of burst and oscillatory discharges, is the marked change in the
synchronization of discharge of basal ganglia and thalamic neurons in the parkinsonian state,
thought to reflect a breakdown of functional segregation in the basal ganglia-thalamo-cortical
circuitry (Levy et al. 2000, Raz et al. 2000, Moran et al. 2008, Moran and Bar-Gad 2010,
Weinberger et al. 2006, Hammond et al. 2007, Terman et al. 2002, Heimer et al. 2002, Goldberg
et al. 2010, Bergman et al. 1994, Bergman and Deuschl 2002, Pessiglione et al. 2005). This is
in contrast to the virtual absence of correlated activity between these neurons under normal
conditions (Wichmann et al. 1994(a), Nini et al. 1995, Heimer et al. 2002, Raz et al. 2000, Bar-
Gad et al. 2003). LFPs are considered a surrogate marker of synchronization of neuronal
discharge within and between basal ganglia nuclei (Brown et al. 2001). Thereupon, beta-band
oscillatory synchronization has been reported in the STN of patients with PD (Levy R et al.
2002 (b), Weinberger et al. 2006, Moran and Bar-Gad 2010, Kiihn et al. 2005). Interestingly, in
the same studies it is further suggested that neuronal discharges in the STN of patients with PD
are locked to beta oscillatory activity in the LFPs, thereby pointing to an even stronger
biomarker of pathological synchronization. Moran et al (2008) and Moran and Bar-Gad (2010)
have originally introduced the term ‘background unit activity’ considered to reflect spiking
activity of small localized subpopulations, in order to estimate the degree of coherence between
the respective signal and single-unit activity or LFPs, and thereby to optimally evaluate
synchronization in the STN of patients undergoing functional neurosurgery for PD. Treatment-
induced modulation of pathological patterns of synchronized oscillations in the STN of patients
with PD, specifically the suppression of beta oscillatory activity, has been correlated with
improvement in bradykinesia and rigidity (Kiihn et al. 2008, Eusebio et al. 2010), while a direct
association between finely tuned oscillatory synchronization in the beta frequency band and
motor impairment in PD has also been reported (Kiihn et al. 2009, Pogosyan et al. 2006). In
addition, there is a substantial body of evidence that the degree of synchronization of

subthalamic nucleus activity in the beta frequency band is strongly involved in motor

29



2 Parkinson’s Disease

programming, movement initiation and REM sleep (Levy R et al. 2002 (b), Williams et al.
2010, Cassidy et al. 2002, Doyle et al. 2005, Kiihn et al. 2004, Joundi et al. 2012, Jenkinson and
Brown 2011, Tzagarakis et al. 2010, Foffani et al. 2005, Androulidakis et al. 2008 (a),
Amirnovin et al. 2004, Urrestarazu et al. 2009). Striatal dopamine depletion has been suggested
as an underlying cause of pathological synchronization in the basal ganglia in PD, on the basis
of the observation that dopaminergic medication reverses abnormal synchrony in MPTP-treated
nonhuman primates and patients with PD (Heimer et al. 2002, Levy et al. 2002 (b), Brown et al.
2001). Similar to the previous cases, the coupling architecture and dynamic interactions within
the subthalamopallidal circuit appear to be additional self-sustaining mechanisms for the
emergence of correlated rhythmic activity in the pathological condition (Terman et al. 2002,

Tsirogiannis et al. 2009).

Documentation of excessive and unselective neuronal responses to passive joint manipulation in
the STN, GPi and thalamus of patients with PD, raises the hypothesis that a loss of functional
segregation in the basal ganglia-thalamo-cortical circuitry and the disinhibition of competing
motor mechanisms underlie the core signs of parkinsonism (Mink 1996). In particular, studies
on movement-related neuronal activity based on microelectrode recordings in the basal ganglia
or the thalamus of MPTP-treated nonhuman primates, demonstrated an increase in number,
amplitude and non-specificity of movement-related responses, compared with the normal
untreated state (Filion et al. 1988, Bergman et al. 1994, Boraud et al. 2000, Pessiglione et al.
2005, Leblois et al. 2007).

Last, special reference should be made to the pathophysiological changes observed outside the
basal ganglia-thalamo-cortical network, specifically in the PPN. The PPN is a component of the
reticular formation located at the junction of the midbrain and pons (Olszewski and Baxter
1954) involved in the processing of gait (Piallat et al. 2009). It has been suggested that factors
including disruption of the extensive interconnections between this brainstem region and the
basal ganglia or the spinal cord, along with significant degeneration of cholinergic PPN neurons
are associated with postural instability and gait dysfunction in PD (Pahapill and Lozano 2000,
Mena-Segovia et al. 2004, Nandi et al. 2002, Rinne et al. 2008, Karachi et al. 2010).
Furthermore, it has been demonstrated that administration of levodopa strongly promotes
oscillatory synchronization in the alpha frequency band, in the PPN of patients with PD
(Androulidakis et al. 2008 (b), Androulidakis et al. 2008 (c), Fraix et al. 2013), while
attenuation of this oscillatory activity has been associated with gait freezing (Thevathasan et al.
2012, Fraix et al. 2013). Thus, synchronization in the alpha frequency band in the PPN area may
represent a physiological pattern of activity substantially correlated with regulation of

locomotion.
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2.7. Current and Projected Economic Burden in the USA

The progressive nature of PD, with respect to the severity of both motor and non-motor
disabilities, exerts a major negative impact on activities of daily living and health —related
quality of life (Rahman et al. 2008). Absence of pharmacological interventions with enduring
disease-modifying properties, along with an increasing longevity and ageing population,
translates into a substantial and growing economic burden on patients, care-givers and the
healthcare system, due to both medical (direct) and non-medical (indirect ) costs (Chen J J
2010) (figure 2.6). Medical (direct) costs mainly refer to expenditures on hospitalization,
nursing home care and pharamaceutical therapies, whereas non-medical (indirect) costs
principally refer to economic costs due to reduced employment, workdays lost because of
illness, reduced household income, higher disability payments, adult day or formal care, and
household expenditures (Kowal et al. 2013, Huse et al. 2005, Zhao et al. 2013, O’Brien et al.
2009). According to Kowal et al (2013), the national economic burden of PD in the United
States exceeded $14.4 billion in 2010 (approximately $22,800 per patient), $8.1 billion higher
($12,800 per capita) than expected for a population without PD. Indirect costs were estimated at
$6.3 billion (approximately $10,000 per patient).Nursing home care was found to be a major
medical cost, whereas reduced employment a major indirect cost of PD. Disease prevalence and
economic burden are projected to increase considerably over the next decades (Dorsey et al.
2007, Kowal et al. 2013). Therefore, there is an urgent need for continuous refinement of
treatment interventions to slow or disrupt the progression of motor and nonmotor disabilities in

PD (Chen J J 2010).

2.8. Nonsurgical Management

Despite steady advances, no neuroprotective or disease-modifying therapy has yet been
established (Rascol et al. 2011, Meissner et al. 2011).The revolutionary introduction of
dopamine precursor levodopa (L-dopa) for the treatment of parkinsonism, more than forty years
ago (Cotzias et al. 1969), clearly set the stage for the use of this pro-drug as a gold standard for
symptomatic treatment of PD. Nonetheless, since dopaminergic dysfunction is not an exclusive
underlying pathophysiologic mechanism of PD, certain motor manifestations, including gait
impairment and postural instability, as well as the majority of non-motor manifestations (table
3.1) cannot be effectively treated with levodopa monotherapy (Post et al. 2011, Gallagher and
Schrag 2012). Essentially, these symptoms constitute the most disabling long-term problems in
PD (Hely et al. 2005). Moreover, levodopa-related motor complications, particularly motor
fluctuations (wearing-off episodes) and dyskinesias, are experienced by approximately 40% of

the patients within 4-6 years after starting levodopa therapy (Fahn 1999, Rascol et al. 2011,
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Figure 2.6. Medical costs of PD over time, including self/family (dark brown), commercial (grey),

public (green) and Medicaid (light brown) costs (adapted with permission from Kowal et al. 2013).

Ahlskog and Muenter 2001). Several lines of evidence indicate that younger patients have a
higher risk of levodopa-induced dyskinesias (Warren Olanow 2013, Jankovic and Poewe 2012).
The above limitations emphasize the need for improved pharmacologic options and therapeutic
strategies individualized to the patient’s particular needs, age and other characteristics (Brichta

et al. 2013, Jankovic and Poewe 2012, Fox et al. 2011, Seppi et al. 2011).

Inhibitors of monoamine oxidase type B (MAO-b) have received renewed attention over the last
decade, based on a possible neuroprotective and disease-modifying effect of rasagiline and its
implication in numerous mitochondrial mechanisms (Jenner and Langston 2011). Symptomatic
therapy with MAO-b inhibitors is considered necessary for the treatment of PD in early stages
(Jankovic and Poewe 2012) (figure 3.1(a)). Early monotherapy with dopamine receptor
agonists, like pramipexole, ropinirole and rotigotine, provides sufficient symptomatic benefit
over periods of up to 5 years and a significantly reduced risk of motor complications compared
with levodopa (Fox et al. 2011, Brichta et al. 2013, Antonini et al. 2009). This fact suggests
that dopamine agonists could be used in order to delay levodopa therapy in young patients with
PD (Jankovic and Poewe 2012). However, compared with levodopa, dopamine agonists are
associated with a higher incidence of dopaminergic adverse effects such as edema, somnolence,
hallucinations and impulse control disorder (Antonini et al. 2009). Therefore, levodopa may be
appropriate as an early symptomatic therapy in elderly patients who are more susceptible to

neuropsychiatric side effects of dopamine agonists



2 Parkinson’s Disease

Treatment of Parkinson’s disease (PD)
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Figure 2.7. Suggested guidelines for the treatment of (a) early to advanced staged PD and (b) levodopa-
related motor fluctuations and dyskinesias. DA, dopamine; DAT,dopamine transporter; DBS, deep brain
stimulation; MAO, monoamine oxidase; VMAT?2, vesicular monoamine transporter type 2. COMT,
catechol-Omethyl transferase; CR, controlled release; DA, dopamine; ER, extended release; GPi, globus
pallidus interna; MAO, monoamine oxidase; STN, subthalamic nucleus (reproduced with permission

from Jankovic and Poewe 2012).
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(Jankovic and Poewe 2012). With disease progression, however, dopamine diffusion
extracellularly and its catabolism by MAO and catechol-O-methyl transferase (COMT) might
trigger the manifestation of motor complications (Troiano et al. 2009). Adjunctive therapy for
the control of motor fluctuations in levodopa-treated patients with advanced PD is principally
based on COMT or MAO-b inhibitors, dopamine agonists, duodenal infusions of levodopa, and
apomorphine (Brichta et al. 2013, Jankovic and Poewe 2012, Fox et al. 2011, Talati et al. 2009),
while amantadine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is so far the only
approved compound providing a durable, yet modest, antidyskinetic benefit (Gottwald and
Aminoff 2011) (figure 3.1 (b)). Notably, clinical efficacy of amantadine is being evaluated for
the therapy of gait abnormalities (Chan et al. 2013, Lee et al. 2013).

Non-motor symptoms of PD, although frequently under-reported, are highly debilitating in
advanced PD and exert significant impact on health-related quality of life (Politis et al. 2010,
Rahman et al. 2008). The pathogenesis of some non-motor symptoms in PD is likely to differ
substantially from non-PD patients (Gallagher and Schrag 2012). Therefore the development of
disorder-specific management strategies is highly important (table 3.1). To date, efficacy of
dopamine agonist pramipexole for the treatment of depressive symptoms, clozapine for the
treatment of psychosis and rivastigmine for the treatment of dementia in PD has been well-
established (Seppi et al. 2011). Evidence for the efficacy of repetitive transcranial magnetic
stimulation (rTMS) for the treatment of depression or depressive symptoms in PD remains

inconclusive (Seppi et al. 2011, Gallagher and Schrag 2012).

Gene therapy refers to the delivery of therapeutic proteins to a target region. The safety and
efficacy of bilateral, intrastriatal delivery of ProSavin®, a lentiviral vector-based gene therapy
aiming at restoring dopamine production in patients with advanced PD, has been recently
corroborated by an open-label study, but further confirmation of these results in double-blind

trials is required (Palfi et al. 2014).

2.9. Neurosurgery for Parkinson’s Disease

We need to refocus our efforts by exploring new targets, stimulation parameters and paradigms, and
technology that takes into account the anatomic variations of different targets and begin to explore the
possibility of targeting locomotor centers and fiber tracts for gait and balance problems associated with

PD.

J. L. Vitek (2012)
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2.9.1. Deep Brain Stimulation for Parkinson’s Disease

High frequency deep brain stimulation, as an adjunct to medical management, is an established
and cost-effective treatment for advanced PD (Fox et al. 2011, Hickey and Stacy 2011,
Williams et al. 2003, Eggington et al. 2014). Particularly, eligible for this procedure are patients
with idiopathic, advanced PD who have medically intractable motor fluctuations, intractable
tremor, or intolerance to medication -related adverse effects and no significant active cognitive
or psychiatric problems. Surgery should be conducted by experienced multidisciplinary teams
(Bronstein et al. 2011, Lozano 2012). The STN is generally the preferred target for stimulation
(Benabid et al. 2009, Schuurman and Bosch 2007, Lozano 2012, Albanese and Romito 2011,
Oderkerken et al. 2013, Foltynie and Hariz 2010).Significantly higher efficiency of STN-DBS
for advanced PD versus medical management alone has been documented by large randomized
controlled studies (Williams et al. 2013, Deuschl et al. 2006, Weaver et al 2009, Okun et al.
2012). Particularly, STN-DBS has been proven to induce remarkable and long-lasting
improvement on levodopa-responsive symptoms and tremor, but also to significantly suppress
dyskinesia and motor fluctuations in patients with advanced PD (Bronstein et al.2011, Castrioto
etal. 2011 (a), Zibetti et al. 2011, Fasano et al. 2010, Rizzone et al. 2014, Moro et al. 2010,
Vitek 2012 (a), Sturman et al. 2004, Hamani et al. 2011, Krack et al. 2003). In contrast to
appendicular signs, however, progression of axial motor signs including levodopa-resistant gait
impairment and postural-instability remains uncontrolled after STN-DBS surgery (Castrioto et
al. 2011 (a), Zibetti et al. 2011, Fasano et al. 2010, Rizzone et al. 2014, Moro et al. 2010, Krack
et al. 2003, Rodriguez-Oroz 2012). Development of non-motor symptoms including a
significant cognitive decline, incidence of depression or anxiety, and a remarkable decline in
speech intelligibility, over a long period after STN-DBS, has also been reported (Rizzone et al.
2014, Zibetti et al. 2011, Tripoliti et al. 2011, Moro et al. 2010, Klostermann et al. 2008, Temel
et al. 2006 (a), Voon et al. 2006, 2008, Guehl et al. 2006, Krack et al. 2003, Rodriguez-Oroz et
al. 2012). Rizzone et al (2014) reported that advanced age at disease onset, a high axial subscore
in the off-condition and the presence of RBD at baseline are associated with a higher risk of
developing disability over time under STN-DBS. Nevertheless, STN-DBS has proven to be a
more effective treatment compared with pallidotomy (Esselink et al. 2009). In general, it is
estimated that less than 5% of patients with PD meet eligibility criteria for STN-DBS, with an
early stage of disease severity accounting for the largest part of exclusions (Morgante et al.
2007). Currently, however, two prospective, randomized clinical trials are evaluating the effect
of STN-DBS at an early stage of PD (Deuschl et al. 2013, Kahn E et al. 2012). The first defines
patients with early PD as those with recent onset of levodopa-induced motor complications (<3
years) (Deuschl et al. 2013), while the second includes patients treated with antiparkinsonian

medications (levodopa or dopamine agonists) for a period greater than 6 months and less than 4
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Figure 2.8. Main anatomical structures targeted by deep brain stimulation on T2-weighted brain MRI

(reproduced with permission from Fasano et al. 2012).

years, without initiation of levodopa-induced motor complications (Kahn E et al. 2012). Key
endpoints of these studies are, on the one hand, the determination of the safety and tolerability
of STN-DBS in early stage PD and, on the other hand, the corroboration of a possible disease-
modifying effect of stimulation, in light of evidence pointing to a neuroprotective effect of
STN-DBS (Temel et al. 2006 (b), Harnack et al. 2008, Wallace et al. 2007, Spieles-Engemann
et al. 2010, deSouza et al. 2013, Albanese and Romito 2011). Furthermore, unilateral STN-DBS
has been suggested to improve contralateral motor symptoms in PD and provide an alternative
to bilateral stimulation, specifically for patients with pronounced asymmetry (Alberts et al. 2008
(a), Alberts et al. 2008 (b), Castrioto et al. 2011(b), Walker et al. 2009, Brun et al. 2012) and for
elderly patients, since it seems to be associated with a lower degree of cognitive complications

(Slowinski et al. 2007).

With respect to alternative targeting options (figure 3.2), bilateral stimulation of the GPi has
also been established as an adjunctive treatment to medical therapy for advanced PD

(Fox et al. 2011), and proven to be equally efficacious for the control of motor symptoms,
dyskinesia and motor fluctuations as STN-DBS (Anderson et al. 2005, Oyama et al. 2012, Follet
et al. 2010, Moro et al. 2010, Oderkerken et al. 2013, Bronstein et al. 2011). However, GPi-

DBS seems to be associated with a lower long-term decline in postural instability and gait
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disability (George et al. 2010, Burchiel et al. 1999) and a lower degree of speech impairment
than STN-DBS (Robertson et al. 2011). On the other hand, in contrast to pallidal stimulation,
dopaminergic medication is substantially reduced after STN-DBS, albeit this is correlated with a
higher incidence of treatment-related adverse effects (Moro et al. 2010, Follet et al. 2010).
Eventually, target selection should be tailored to an individual patient’s needs (Williams et al.
2014). There is also some evidence pointing to GPe as a potential therapeutic target for DBS in
the treatment of PD (Vitek et al. 2004, Vitek et al. 2012 (b)). Medication-resistant tremor in PD
can be equally effectively treated with unilateral thalamotomy or DBS of the thalamic
ventrointermediate nucleus (Vim) (Schuurman et al. 2008, Fox et al. 2011). Besides, DBS of the
posterior subthalamic area or the caudal zona incerta (cZi) is generally safe and effective for the
treatment of tremor-dominant PD (Blomsted et al. 2010, 2012, Plaha et al. 2006, Fytagoridis
and Blomstedt 2010). Stimulation of the pedunculopontine tegmental nucleus (PPTg) at low
stimulation frequencies (10-70 Hz) has been consistently stated to significantly improve
levodopa-resistant gait disturbances, including freezing of gait, and postural instability, as well
as oromotor movements in patients with PD (Mazzone et al. 2005, 2012, 2014, Plaha and Gill
2005, Stefani et al. 2007, Moro et al. 2010, Thevathasan et al. 2010, Hamani et al. 2011,
Benabid and Torres 2012, Pereira et al. 2011) (figure 3.3). However, criteria for patient
selection and subtle differences in target location may in some cases have accounted for a less
favorable evaluation (Ferraye et al. 2010, Mazzone et al. 2011). Interestingly, Stefani and
colleagues have reported on an ameliorative effect of 25 Hz PPTg-DBS on RBD and cognitive
symptoms of PD (Stefani et al. 2009, 2010). On the other hand, however, the same surgery has

been recently associated with a marked deterioration of speech intelligibility (Pinto et al. 2014).

Given the incomplete effectiveness and risks of unifocal DBS as a treatment option of advanced
PD, new strategies, related to combined multifocal DBS targeting, are emerging as promising
alternative options (Vingerhoets et al. 1997). Within this framework, PPN-DBS in combination
with either STN-DBS,cZi-DBS or pallidal DBS has been shown to induce significant
cumulative improvement of axial and appendicular motor symptoms of PD (Stefani et al. 2007,
Schrader et al. 2013, Kahn S et al. 2012) (figure 3.4). In addition, recent studies suggest a
possible significant effect of concomitant STN/SNr stimulation on freezing of gait (Weiss et al.
2011, 2013). Furthermore, the possible improvement of both motor and cognitive symptoms of
PD based on tandem DBS, involving, in addition to STN (or GPi)-DBS, stimulation of the
fornix /hypothalamus, has been recently suggested (Uitti 2012). Several years before, Freund et
al (2009) reported on a case of concomitant STN-DBS and stimulation of the nucleus basalis of
Meynert in a patient with PDD, whereby marked amelioration of cognitive impairment was

observed.
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In relation to other types and symptoms of parkinsonism, STN-DBS for spinocerebellar ataxia
type 3 (Freund et al. 2007), unilateral thalamic DBS for benign tremulous parkinsonism (Savica
etal. 2011) and PPN-DBS for primary progressive freezing of gait (Wilcox et al. 2010) have
also been reported, while the optimal target for the treatment of camptocormia in PD has yet to

be defined (Capelle et al. 2011, Lyons et al. 2012).

2.9.2. Surgical and Hardware Complications of Deep Brain Stimulation

Despite the continuous development of DBS systems, rates of surgical procedure - and
hardware - related adverse effects are still relatively high, constituting a major shortcoming of
this therapy option (Shih and Tarsy 2011, Burdick et al. 2010, Lozano 2012, Morishita et al.
2013, Vergani et al. 2010, Chan et al. 2009, Rezai et al. 2006) (figure 3.5). Surgical-procedure
related complications most frequently include intracranial hemorrhage, permanent neurological
deficit or death (Zrinzo et al. 2011, 2012, Voges et al. 2007, Favre et al. 2002), while cases of
intraoperative agitation, epileptic seizure, respiratory distress, postoperative psychosis and
neuroleptic malignant syndrome (NMS) have also been reported (Boviatsis et al. 2010).
Hardware-related complications are defined as those related to the implanted leads, the
extension wire or the IPG, i.e. infection and/ or skin erosion, electrode breakage, electrode
impendance increment, lead migration or displacement and stricture formation (Boviatsis et al.
2010, Pepper et al. 2013, Oh et al. 2002, Guridi et al. 2012, Linchares et al. 2013). Surgical
procedure- and hardware-related adverse effects are observed in about 5.6% and 9% of patients,
respectively (Vergani et al. 2010, Hamani et al. 2004). In addition, in about 19% of patients
stimulation-related adverse effects, such as paraesthesias, dysarthria, and motor contractions are
documented (Hamani et al. 2004). Nonetheless, these are mild and may be reversed by properly
adjusting stimulation settings. The specific case of post-operative brain edema around DBS
leads is considered a transient adverse effect with obscure underlying etiopathophysiology
(Deogaonkar et al. 2011, Morishita et al. 2010). Still, there is evidence pointing to brain tissue
penetration during hardware insertion as the most conspicuous risk factor (Holloway et al.

2014).
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Figure 2.9. (a) CT scan images depicting examples of intracerebral hemorrhage following DBS lead
implantation : intracerebral hemorrhage (A) intraventricular hemorrhage (B) subdural hemorrhage (C) and
venous infarction (D) (reproduced with permission from Morishita et al. 2010) (b) IPG implantation site
infection (reproduced with permission from Boviatsis et al. 2010) (c) Erosion of retroauricular skin due to
implanted DBS system (reproduced with permission from Linhares et al. 2013) (d) Postoperative T1-
weighted MRI showing hyperintense signal due to infection of the right electrode (reproduced with
permission fromVergani et al. 2010) (e) Axial CT scan without contrast on post-operative day 4 at (a) the
tip of the electrode showing a large hypodense area (edema) around the left deep brain stimulation
electrode (reproduced with permission from Deogaonkar et al. 2011).
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Obsessive-Compulsive Disorder

A 33-year-old woman presents with a seven-year history of hand washing for two to six hours a day, as

well as urges to check doors and stoves extensively before leaving her home...

M. A. Jenike (2004)
3.1. Definition, Classification and Epidemiology

Obsessive-compulsive disorder (OCD) is an heterogeneous, generally chronic psychiatric
condition with an estimated prevalence of 1- 2.5 % in the general population (Rasmussen and
Eisen 1992, Sasson et al. 1997, Ruscio et al. 2010, Kessler et al. 2005, Hollander et al. 2005,
Skoog G and Skoog I 1999, Karno et al. 1998, American Psychiatric Association [APA] 2013).
Prevalence rates are characterized by a low cross-national variability (Weissman et al. 1994)
and are almost twice those reported for schizophrenia (Goodman and Wayne 1999). OCD has
been suggested as the fourth most common mental disorder following substance abuse, phobias
and major depression (Kaplan et al. 1994), associated with a significant impairment in health-
related quality of life (Hollander et al. 2010), and is considered one of the leading causes of

years lived with disability in 15-44-year-old individuals (WHO 2001, Murray and Lopez 1996).
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Although previously classified as an anxiety disorder, the Diagnostic and Statistical Manual of
Mental Disorders-Fifth Edition (DSM-V) has categorized OCD within a new category of
Obsessive-Compulsive and Related Disorders (OCRDs) (APA 2013). The mean age of onset of
OCD is 20 years (Ruscio et al. 2010, Anholt et al. 2014), while onset after the early 30s is very
rare (Rasmussen and Eisen 1992). Despite an almost even sex distribution, males tend to have
an earlier age of onset than females. Particularly, nearly one quarter of males with OCD display
the condition before age 10 (Ruscio et al. 2010). Juvenile-onset OCD appears to be genetically
related to tic disorders (Eichstedt and Arnold 2001). Most commonly, onset is gradual, but acute
onset has also been reported. The majority of patients have a chronic waxing and waning course
(Rasmussen and Eisen 1992), while about 35% of patients experience an episodic course of the

disorder with partial or complete remission (Demal et al. 1993).

3.2. Clinical Signs and Symptoms

Obsessional prohibitions involve just as extensive renunciations and restrictions in the lives of those who
are subject to them as do taboo prohibitions; but some of them can be lifted if certain actions are
performed. Thereafter, these actions must be performed: they become compulsive or obsessive acts, and
there can be no doubt that they are in the nature of expiation, penance, defensive measures and

purification. The commonest of these obsessive acts is washing in water ...
S. Freud (1913)

Principal clinical symptoms of OCD are obsessions that cause marked distress or anxiety, and
compulsions, the outcome of which is interpreted by patients with OCD as a necessary
condition for anxiety reduction. Thereby, there exists a dynamic functional relationship between
obsessions and compulsions that form part of a self-perpetuating cycle (Abramowitz and
Deacon 2005, Stein 2002, Okasha 2002) (figure 3.1). Obsessions are recurrent mental events,
like persistent ideas, thoughts, impulses, or images that are experienced as intrusive, and are
essentially anxiety-evoking (APA 2013). Obsessions have been characterized as egodystonic,
i.e. in conflict with the patient’s self-image, contrary to the egosyntonic nature of delusions
(Denys 2011). In addition, they are unlikely to be related to a real-life problem. Differently,
most commonly they involve contamination concerns, repeated doubts, an excessive need for
symmetry or exactness, unwarranted fear about aggressive behavior toward self or others,
sexual imagery and obsessions related to moral rightness or religion (APA 2013, Heyman et al.
2006, Leckman et al. 2005). About 80 to 90% of the general population experiences
unreasonable intrusive thoughts identical to those reported by patients with OCD.

Notwithstanding, whereas in healthy controls these events can be easily bypassed, in the
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Figure 3.1. (a) Seminal work of Janet P, ‘Les obsessions et la psychasthénie’ 1903 (Janet 1903) and
Freud S, ‘Totem and taboo: some points of agreement between the mental lives of savages and neurotics’
1913 (Freud 1913) (b) Cognitive-behavioural model of OCD (adapted with permission from Abramowitz
2009).
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pathological condition intrusive thoughts are evaluated as highly significant (Rachman and
deSilva 1978, Salkovskis et al. 1997, Abramowitz et al. 2003 (a), Abramowitz 2009). Patients
with OCD often consider a thought about a negative event synonymous with its occurrence in
reality (Rachman and deSilva 1978, Amir et al. 2001, Abramowitz and Deacon 2005).
Compulsions (rituals) are either overt, repetitive stereotyped behaviors or covert (mental) acts in
which patients engage in order to be temporally relieved by anxiety or distress that accompanies
an obsession. For example, contamination obsessions and obsessions related to moral rightness
in OCD may be accompanied by washing and checking compulsions, respectively (APA 2013,
Parrish and Radomsky 2010, Okasha 2002, Abramowitz and Houts 2005) (figure 3.2). Covert
compulsions, also referred to as mental rituals or covert neutralizations, include strategies like
avoidance, concealment, mentally reviewing, excessive reassurance seeking and thought
suppression, and are considered functionally equivalent to overt compulsions. The occurrence of

mental rituals invalidates the hypothesis of a ‘pure obsessional’ subtype (Williams et al. 2011).

3.3. The Diagnostic and Statistical Manual V (DSM-V) and the Yale
Brown Obsessive-Compulsive Scale (Y-BOCYS)

Superstitions and repetitive checking behaviors are commonly encountered in everyday life. A diagnosis
of Obsessive-Compulsive Disorder should be considered only if they are particularly time consuming or

result in clinically significant impairment or distress.
American Psychiatric Association (2013)

The Diagnostic and Statistical Manual of Mental Disorders (DSM) (American Psychiatric
Association 2013) and the Yale—Brown obsessive compulsive scale (Y-BOCS) (Goodman et al.

1989 (a), (b)) are well established indices of the presence and severity of OCD symptoms.

According to the DSM, obsessions or compulsions have to provoke significant distress, be time
consuming (more than 1 hour per day) and lead to functional disability and impairment of the
patient’s professional and socioeconomic status. This impairment may be intensified by the
distracting impact of obsessive intrusions and the tendency of patients to systematically avoid
objects or situations that provoke obsessions or compulsions. It has been argued that still in the
newest edition of the DSM (DSM-V; APA 2013) the definition of compulsions focuses on their
repetitive form instead of their functionality, thereby disregarding the high incidence rate of
covert compulsive acts or neutralizing strategies (Abramowitz and Jacoby 2014, Shavitt et al.
2014, Gillan et al. 2014) (figure 3.2). On the other hand, the transition from the DSM-IV to the
DMS -V has allowed for the introduction
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of a distinct dimensional specifier, i.e. a refined definition of global insight into the irrationality
of obsessions and compulsions, under the rationale to improve the differential diagnosis of the
clinical presentation of OCD. In particular, this construct facilitates a distinction between
individuals with excellent, good, fair, poor, and absent/delusional insight (APA 2013). The two
latter categories are identified with the lowest frequency rates across patients with OCD, yet
they are associated with a greater symptom severity (Shavitt et al. 2014, Philips et al. 2012,
Catapano et al. 2010). Particularly, the specifier ‘with poor insight’ refers to patients that
maintain that obsessive thoughts or compulsive behaviors are not unreasonable or excessive

(American Psychiatric Association 2013).

The Y-BOCS was originally designed by Goodman et al (1989 (a), (b)) in order to provide a
reliable measure of the severity of symptoms of OCD according to the DSM-III, unbiased
towards the number and the type of obsessions and compulsions present (Frost et al1995, Kim
et al. 1990, Woody et al. 1995). Nevertheless, it soon became intensely evident that though
OCD had been diagnostically classified as a unitary nosological entity, symptom manifestation
of the disorder might be essentially heterogeneous varying within and across patients over time,
thereby suggesting a multidimensional model of OCD (Mataix-Cols et al. 2005). This evolution
combined with numerous requests for revision of the original Y-BOCS in terms of the symptom
checklist content, the content of the item severity scale and the scoring framework (Deacon and
Abramowitz 2005, Steketee et al. 1996, Federici et al. 2010) led to the formulation of the
Dimensional Y-BOCS (DY-BOCS) (Rosario-Campos et al. 2006) and eventually the Y-BOCS-
II (Storch et al. 2010). The Y-BOCS-II is intended for use as a semi-structured interview,
wherein the items depend on the patient's report, but the final rating is based on the clinical
judgment. More than sixty items are included in the symptom checklist, while the severity scale
evaluates the degree of impairment in terms of time occupied, functional impairment, mental
distress, degree of resistance, degree of control, insight, avoidance, indecisiveness, pathologic
responsibility, slowness and pathologic doubting. Storch et al (2010) have attributed excellent
psychometric properties to the Y-BOCS-II with respect to the assessment of the presence and
severity of OCD symptoms. Except Y-BOCS, other scales employed for the diagnosis of OCD
include the comprehensive psychopathological rating scale (CPRS), the national institute of
mental health (NIMH)-global obsessive-compulsive scale (GOCS), the clinical global
impression (CGI) scales, the Brown assessment of beliefs scale, the overvalued ideas scale
(OVIS) (Okasha 2002) and the global assessment of functioning (GAF) scale. Remarkably,
however, despite the variety of available diagnostic tools, the level of recognition of outpatients

with OCD remains substantially low (Wabhl et al. 2010).
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3.4. Potential Dimensions Underlying Heterogeneity of Obsessive-

Compulsive Disorder

In the framework of the symptom-based subtyping of OCD (Baer 1994, Khanna and Mukherjee
D 1992, Calamari et al. 1999, Abramowitz et al. 2003 (b), Leckman et al. 1997, Mataix-Coils et
al. 1999, Summerfeldt et al. 1999, 2004; Tek and Ulug 2001, Hantouche and Lancrenon 1996,
McKay et al. 2004, Abramowitz and Houts 2005, Bjorgvinsson et al. 1997, Murphy et al. 2010)
and following the classification of hoarding as a distinct diagnostic entity in the DSM-V, at
least three symptom dimensions may be eventually considered on grounds of factor analysis:
symmetry obsessions/ ordering, repeating or counting compulsions, contamination obsessions/
cleaning or washing compulsions, and (aggressive, sexual, somatic and religious)
obsessions/checking compulsions. Miscellaneous obsessions (e.g. the need to know/remember
details or the fear of not saying just the right thing) have been linked to miscellaneous
compulsions including cognitive rituals and neutralizing (Summerfeldt et al. 2004). Importantly,
however, the aforementioned symptom dimensions may exhibit a high degree of overlap, while
symptom associations may vary significantly (Summerfeldt et al. 1999, 2004). Likewise,
symptom dimensions are rooted in both distinct and overlapping neural correlates (van den
Heuvel et al. 2009, Harrison et al. 2012). This implies that the characterization of OCD as a
phenotypically and etiologically heterogeneous condition cannot be exclusively based on

symptom-classification schemes.

Toward an alternative approach, harm avoidance and incompleteness have been suggested as
core affective-motivational dimensions that underlie obsessive-compulsive symptom
manifestation (Rasmussen and Eisen 1992, Summerfeldt et al. 2014, Ecker et al. 2014(a), Taylor
et al. 2014) (figure 3.2). Though this refined and structurally validated (Summerfeldt et al.
2014) dimensional perspective is not addressed in the DSM-V, it might be employed as a key
etiological substrate for the classification of OCD into the new category of OCRDs, but still
adjacent to the chapter of Anxiety Disorders (APA 2013). Harm avoidance is associated with
three-factor analytically types of dysfunctional beliefs including excessive personal
responsibility and amplified threat estimation, perfectionism and fear of uncertainty, in addition
to over-control of thoughts (Taylor et al. 2006). Fundamentally, this profile is dominated by
anxious apprehension and may therefore constitute a common motivational underpinning of
OCD and anxiety disorders (Summerfeldt et al. 2014, Ecker et al. 2014(a)). Nonetheless,
specific obsessive-compulsive symptom expressions may not be attributable to harm avoidance
per se, rather to an inner sense of dissatisfaction and imperfection with respect to perceptions or

performed actions, an experience pertaining to the broader concept of incompleteness (Janet
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1903) and commonly characterized by the notion of ‘Not Just Right’ (NJRE) (Coles et al. 2005).
Remarkably, there is preliminary evidence for a unique association between incompleteness -
but not harm avoidance - and symptom severity in OCD (Ecker and Gonner 2008), a fact
reinforcing the conceptualization of OCD as a non-anxiety disorder in the DSM-V. Based upon
analysis of a large clinical sample, Ecker and Gonner (Ecker and Gonner 2008) highlighted the
motivational heterogeneity of checking, which predicted both core dimensions, and further
pointed to the need for an in-depth assessment of the interplay between the two underlying
vulnerabilities in compulsive checking behavior. On the other hand, unique correlations were
identified between incompleteness and symmetry/ordering, and between harm avoidance and
(aggressive, sexual, somatic and religious) obsessions. They could not, however, provide strong
support for any association between either harm avoidance or incompleteness and neutralizing

or the contamination/washing dimension.

With respect to the contamination/washing dimension, disgust propensity (the tendency to
respond with disgust) is emerging as a distinct core dimension significantly and uniquely
predicting washing compulsions, as opposed to disgust sensitivity (emotional sensitivity
towards the experience of disgust) that is inclusively linked to anxiety sensitivity (Olatunji et al.
2011, Goetz et al. 2013). Further evidence in favor of the existence of this dimension would
corroborate the prominent role of disgust in the psychobiology of OCD (Stein et al. 2001). Last,
a fourth affective component is related to deontological guilt, a type of guilt descending from
the violation of an inner moral rule, as opposed to altruistic guilt. This component appears to
play a significant role in obsessive-compulsive symptom manifestation, but robust associations
have yet to be established in the clinical population (Basile et al. 2013, D’Olimpio and Mancini
2014).

3.5. Comorbidity in Obsessive-Compulsive Disorder

Severity of OCD has been associated with a highly complex lifetime comorbidity of Axis I and
II disorders (Hofmeijer-Sevinik et al. 2013, Ruscio et al. 2010, Hollander et al. 2005, Hollander
et al. 2009, Miguel et al. 2005, O’Brien and Vincent 2003, Eisen et al. 2004, Masi et al. 2004,
Angst et al. 2004, Merikangas et al. 2007) (figure 3.3), whereas diagnosis of lifetime ‘pure’
OCD is limited to a rate ranging from approximately 8 to 22 % (Torres et al. 2013, Hofmeijer-
Sevinik et al. 2013, Ruscio et al. 2010, Pinto et al. 2006). Lifetime comorbid Axis I disorders
include obsessive-compulsive spectrum disorders (OCSDs), in addition to mood, anxiety,
substance use and psychotic disorders (Lochner et al. 2014, Hofmeijer-Sevinik et al. 2013,

Ivarsson et al. 2008, Ruscio et al. 2010, Pinto et al. 2006). Within the obsessive-compulsive
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spectrum, highest comorbidity rates have been reported for tic disorder, body dismorphic
disorder (BDD), self-injurious behavior (e.g. excoriation disorder), compulsive shopping,
intermittent explosive disorder and trichotillomania (TTM) (Lochner et al. 2014, Nestadt et al.
2009, du Toit et al. 2001). Noteworthily, among the aforementioned disorders, BDD,
excoriation disorder and TTM are included in the category of OCRDs (APA 2013). Major
depressive disorder (MDD), generalized anxiety disorder, social anxiety disorder, specific
phobia, dysthymic disorder, panic disorder (with/out agoraphobia) and bipolar disorder are most
commonly diagnosed as lifetime comorbid mood or anxiety disorders (Lochner et al. 2014,
Fineberg et al. 2013, Hofmeijer-Sevinik et al. 2013, Ruscio et al. 2010, Nestadt et al. 2009,
Pinto et al. 2006, LaSalle et al. 2004). There is also some evidence for high rates of comorbid
substance use disorders (alcohol abuse or dependence/drug abuse or dependence) (Mancebo et
al. 2009, Adam et al. 2012, Ruscio et al. 2010, Pinto et al. 2006). Further, the most commonly
diagnosed comorbid Axis II disorder appears to be obsessive-compulsive personality disorder
(OCPD) (Nestadt et al. 2009, Pinto et al. 2006, Denys et al. 2004(b), Starcevic et al. 2012,
Garyfallos et al. 2010, Coles et al. 2008).

In light of the described comorbidity patterns, as well as of specific clinical characteristics, the
existence of at least two subtypes of OCD has been suggested, i.e. tic-related OCD (de
Alvarenga et al. 2012, Lochner et al. 2014, Nestadt et al. 2009) and the OCD-OCPD subtype
(Coles et al. 2008, Garyfallos et al. 2010, Diedrich and Voderholzer 2015). Tic-related OCD
principally involves comorbidity of OCD and either chronic motor tic disorder, chronic vocal tic
disorder or Tourette syndrome (de Alvarenga et al. 2012). In the context of tic-related OCD, the
core dimension of NJREs and feelings of incompleteness appears to be more frequently present
than in the context of tic disorders without comorbid OCD (Ferrao et al. 2012, Neal and
Cavanna 2013, Reese et al. 2014). In particular, these robust sensory phenomena plausibly
account for the presence of ordering symptoms in tic-related OCD (Ferrdo et al. 2012), but they
do not concurrently reinforce some limited evidence for the presence of the
contamination/washing symptom dimension or a higher severity of (aggressive, sexual, somatic
and religious) obsessions (Ferrdo et al. 2012, de Alvarenga et al. 2012). This implies that some
additional affective-motivational dimensions may partially underlie symptom manifestation in
tic-related OCD. Furthermore, it has been argued that NJREs and feelings of incompleteness
may serve as an explanatory basis for the association observed between obsessive-compulsive
personality traits (rigid perfectionism, perseveration, intimacy avoidance and restricted
affectivity) and the checking or, more robustly, the symmetry/ordering symptom dimension
(Ecker et al. 2014(b), Wetterneck et al. 2011, Lee et al. 2009, Coles et al. 2008). However,
contrary to the case of tic-related OCD, there exists no association between obsessive-

compulsive personality traits and the contamination/washing dimension or (aggressive, sexual,
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somatic and religious) obsessions (Ecker et al. 2014(b)). These facts highlight the key role of
the sensory-affective component in the framework of the OCD-OCPD subtype. Finally, though
evidence for an OCD-MDD subtype is substantially limited (Nestadt et al. 2009), there is some
indication for a correlation between a diagnosis of MDD and both incompleteness and harm
avoidance severity (Ecker et al. 2014(a)). This fact may account for the lack of any observation
of a weighted association between MDD and a specific OCD symptom dimension in a large-

scale Brazilian clinical study (Quarantini et al. 2011).

3.6. Pathophysiology of Obsessive-Compulsive Disorder

Dysfunctions of the serotonergic, GABAergic and dopaminergic neurotransmitter systems have
been implicated in the pathophysiology of OCD (Westenberg et al. 2007, Nikolaus et al. 2010,
Pauls et al. 2010, Berlin et al. 2008, Bloch et al. 2006, Greenberg et al. 2010 (a)). The
fundamental role of serotonin (5-HT) in the pathogenesis of OCD was first acknowledged based
on observations that the tryciclic antidepressant clomipramine and selective serotonin reuptake
inhibitors (SSRIs) exerted a significant antiobsessional and anticompulsive effect (Yaryura-
Tobias et al. 1977, Goodman et al. 1989 (c), Jenike et al. 1989, Clomipramine Collaborative
Study Group 1991). Nonetheless, even after the introduction of SRIs for the treatment of OCD
in the mid-1980s, increasing documentation that a considerable number (40-60%) of patients
failed to respond to SSRI treatment, partially or completely, or even demonstrated acute
exacerbation of symptom severity, was pointing to the possible role of other neurotransmitter
systems in the pathogenesis of OCD (Stein et al. 1999, Stein 2002, Goodman et al. 1989 (¢),
Goodman et al. 1990, Skoog G and Skoog I 1999). Indeed, it soon became evident that addition
of antipsychotic augmentation agents, namely low-dose dopamine antagonists for treatment-
refractory OCD resulted in remarkable clinical efficiency. This fact suggested that the
dopaminergic neurotransmitter system was also involved in the pathophysiology of OCD (Stein
et al. 1997, McDougle et al. 1995, Jacobsen 1995, Denys et al. 2003, Dougherty et al. 2004).
The presence of obsessive-compulsive symptoms in the clinical presentation of disorders
associated with dysregulation of the dopaminergic system, including TS, has further pointed to
the role of dopamine in OCD (Lochner et al. 2005). Eventually, direct evidence that
serotonergic, dopaminergic and even GABAergic perturbations are implicated in the
pathophysiology of OCD has been provided by neuroimaging and neurochemical studies (van
der Wee et al. 2004, Denys et al. 2004(a), Nikolaus et al. 2010, Koo et al. 2010). Importantly,
Nikolaus et al. (2010) suggested that decreased inhibition of dopaminergic neurotransmission by

GABAA and 5-HT may underlie the pathogenesis of the disorder.
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3.7. Neurocircuitry of Obsessive-Compulsive Disorder

Given the focus of psychiatry on the interface of motivation, emotion, and cognition, psychiatric
neuroscience has progressively highlighted brain networks that subserve these functional domains and

their interactions.

S. Haber and S. Rauch (2010)

Converging lines of evidence have underscored the pivotal role of cortico-striato-thalamo-
cortical (CSTC) circuits in the pathology and pathophysiology of OCD. Specifically, the
associative and limbic CSTC circuits, known to subserve executive (attentional control,
cognitive flexibility and goal-directed behavior) and modulatory functioning, respectively
(Friedlander), appear to be at the core of symptom manifestation (Alexander et al. 1989, Saxena
et al. 1998, Kopell and Greenberg 2008, Greenberg et al. 2006, Berlin et al. 2008, Stathis et al.
2007, Aouizerate et al. 2004, Chamberlain et al. 2005, Velikova et al. 2010, Harrison et al.
2009, Rotge et al. 2009, Beucke et al. 2013, Sgambato-Faure et al. 2014, Lapidus et al. 2013,
Haber and Greenberg 2012) (figure 3.4).

The associative or dorsolateral prefrontal CSTC loop involves the dorsolateral prefrontal cortex
(DLPC) and the lateral orbitofrontal cortex (LOFC) projecting either directly, via the anterior IC
and the inferior thalamic peduncle (ITP), or indirectly, via the basal ganglia, to the thalamus
(ventral anterior parvocellularis and magnocellularis (VApc and mc) and dorsomedial (DM)
thalamic nuclei). The basal ganglia structures involved in the indirect connection include the
central striatum, i.e. the head of the caudate and the central/rostral areas of the putamen, as well
as the dorsomedial GPi and the rostrolateral SNr. The limbic CSTC loop involves the anterior
cingulate cortex (ACC), the medial orbitofrontal cortex (MOFC), and the agranular insular
cortex (Brodmann areas 10, 11, 12, 13, 24, 25, 32), projecting either directly, via the anterior IC
and the inferior thalamic peduncle, or indirectly, via the basal ganglia, to the DM thalamic
nucleus. The indirect connection in this circuit involves the ventromedial striatum, i.e. either the
ventromedial caudate and the NAcc core component that receive all the above - mentioned
cortical projections, or the NAcc shell that receives projections predominantly from the
subgenual cingulate (Brodmann area 25). In turn, the ventromedial caudate and the NAcc core
component project to the dorsal SNr, the ventral tegmental area (VTA) and the ventromedial
GPi, while the NAcc shell projects to the dorsal SNr, the VTA and a separate branch of the
pallidum, the ventral pallidum (VeP). All of these output structures eventually project to the DM
thalamus (Kopell and Greenberg 2008). Notably, similar to the motor CSTC loop, the indirect

connections within both the associative and limbic CSTC loops involve a
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Figure 3.4. (a) Key structures and pathways involved in neuropsychiatric disorders. Arrows illustrate
projections (adapted from Haber and Rauch 2010) (b) General diagram of the disruption in the different
types of information processing involved in the pathogenesis of OCD on grounds of the anatomical and
neurochemical interconnections within distinct cortico-subcortical networks (reproduced with permission
form Aouizerate et al. 2004)
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further subdivision into a monosynaptic ‘direct’ and a polysynaptic ‘indirect’ pathway through

the GPe and the STN, detailed in section 2.6.

It has been proposed that different subtypes of OCD have distinct neorocognitive basis and
neural correlates (McKay and Storch 2013, Phillips and Mataix-Cols 2004). A deeper insight to
this suggestion has been gained on the basis of fMRI, whereby abnormal activity in the LOFC
and DLPC has been related to cognitive dysfunction (Page et al. 2009, Chamberlain et al. 2008),
while abnormal patterns of connectivity from the dorsal ACC to left DLPC have been
documented to suppress responses during decision making in patients with OCD (Schlosser et
al. 2010). Hyperactivity in the ACC or the DLPC may also account for dysfunctional working
memory, associated with checking rituals in OCD (Nakao et al. 2009, Zhang et al. 2008, van der
Wee et al. 2003). Furthermore, dysfunctional reward processing, behavioral addiction, as well
as enhanced action monitoring in OCD have been correlated with altered activation of the NAcc
(Figee et al. 2011, Miinte et al. 2007). In general, regional cerebral blood flow in ventral
striatum, ACC, and bilateral OFC appears to be significantly increased in patients with OCD
(Baxter et al. 1987, 1988, Rauch et al. 1994, Kwon et al. 2003). These structures have been
further implicated in the pathophysiology of OCD on the grounds of indirect evidence including
neurosurgical lesions (Maia et al. 2008), electrostimulation (Van Laere et al. 2006, Le Jeune et
al. 2010, Aouizerate et al. 2009), or SSRI and behavior modification treatment (Baxter et al.
1992, Schwartz et al. 1996, Bolwing et al. 2007, Benkelfat et al. 1990). Differently, in patients
with OCD and comorbid MDD significantly lower metabolism in the thalamus, caudate and

hippocampus than in patients with primary OCD has been reported (Saxena et al. 2001).

Special reference should be made to a distinct subcortical area outside the traditional CTSC
circuits, but strongly implicated in the psychopathology of OCD, the amygdala (McLean 1952).
This structure is divided into a basolateral and a centromedial component, the former projecting
to the NAcc core and related cortical regions, whereas the later projecting in tandem

with the bed nucleus of the stria terminalis to the NAcc shell, area 25 and hypothalamic areas
(Kopell and Greenberg 2008). Decreased frontostriatal control of the amygdala has been
implicated in anxiety-driven symptoms and inadequate fear responses in OCD (van den Heuvel
et al. 2004, Simon et al. 2014, Via et al. 2014, Milad and Rauch 2012), while the reciprocal
connections of this structure with the NAcc point to its possible role in dysfunctional reward
and motivational control observed in patients with OCD (Baxter and Murray 2002, Aouizerate

et al. 2004).

Similar to the research on pathological patterns of neuronal activity in the basal ganglia nuclei

of patients with PD, the presence of abnormal neuronal activity in the STN and the bed nucleus
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of the stria terminalis of patients with OCD is being intensively explored over the last years
(Piallat et al. 2011, Welter et al. 2011, Bastin et al. 2014 (a), (b) ; Neumann et al. 2014) based
on electrophysiological recordings acquired during or after DBS surgery of the respective target
regions (Cohen 2012). Particularly, Piallat et al (2011) and Welter et al (2011) reported on the
high incidence of burst discharges in neuronal activity of the limbic-associative functional
territory of the STN in patients with OCD, with a similar proportion to burst activity in the STN
of patients with PD. On the other hand, according to the same studies, firing rate in the STN of
patients with OCD appears to be significantly lower than firing rate in the STN of patients with
PD. Furthermore, Welter et al (2011) described the presence of abnormal oscillatory activity in
the limbic-associative functional territory of the STN in patients with OCD and highlighted the
clinical relevance of increased delta and alpha oscillatory activity. Some evidence for the
presence of abnormal oscillatory activity in the STN of patients with OCD has also been
provided by Bastin et al (2014 (a), (b)). Notably, there are also indications for the clinical
relevance of reduced coupling across the delta and beta frequency bands reflecting a frontal—
subcortical functional disconnection (Velikova et al. 2010), and for the clinical relevance of
increased coupling between beta or low-gamma and broadband gamma-frequency activity
(Bahramisharif et al. 2015). Last, there is some evidence that abnormal neuronal activity in the
STN of patients with OCD may be hemisphere-specific (Piallat et al. 2011, Bastin et al. 2014
(a), Eitan et al. 2013).

3.8. Nonsurgical Management

First-line treatment options usually involve either cognitive-behavioral therapy (CBT) or
pharmacological therapy for mild to moderate severity of illness (Y-BOCS score of 8 to 23), or
a combination of both for patients with severe OCD (National Collaborating Centre for Mental

Health 2006, Schruers et al. 2005, Seibell and Hollander 2014, Koran et al. 2007) (figure 3.5).

Exposure and response prevention (ERP) is a behavioral therapy with well-established
effectiveness in reducing OCD symptoms, reflected in response rates of up to 85% in patients
who complete the therapy (Meyer 1996, The Expert Consensus Panel for obsessive-compulsive
disorder 1997, Abramowitz et al. 2003(c), Foa and Goldstein 1978, Foa et al. 2005, Koran et al.
2007). This first-line treatment is a time-limited therapy of 13 to 20 sessions performed over a
weekly or even daily basis (Abramowitz et al. 2003(c), Koran et al. 2007) and involves
systematic exposure to anxiety-eliciting stimuli or situations, i.e. patient-specific symptom
triggers that have been previously hierarchized on a scale from 0 to 100. Two types of exposure
are commonly used: situational (in vivo) and imaginal exposure. Situational exposure refers to a

confrontation with actual anxiety-provoking stimuli, while imaginal exposure refers to a
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confrontation with anxiety-provoking thoughts, images or doubts, until substantial reduction of
anxiety is achieved. Response prevention is a further essential component of this treatment
wherein the patient desists from yielding to the performance of a compulsion or an avoidance
behavior. The core function of ERP is to teach the patient that provoked anxiety will gradually
decrease without the urge of performing overt or covert compulsive rituals and without relying
on avoidance or safety-seeking behavior (Seibell and Hollander 2014, Abramowitz 2006,
Abramowitz et al. 2009, Bjorgvinsson et al. 2007, de Silva et al. 2003). This process is referred
to as habituation. Remarkably, despite the well-documented and long-lasting efficiency of ERP,
a substantial minority of patients (~25%) either refuses treatment or drops out prematurely
(Abramowitz 2006). An equally effective psychoanalytical treatment that can be used
alternatively or in order to facilitate compliance with ERP is cognitive therapy (CT) that is
based on the concept of modification of dysfunctional cognitive reasoning pertaining to the
overestimation of threat, overimportance of intrusive thoughts as well as inflated responsibility
(Salkovskis 1999, Obsessive Compulsive Cognitions Working Group 1997, Abramowitz 1997,
Wilhelm et al. 2005, Schruers et al. 2005, Emmelkamp et al. 1980, Nerizoglou et al. 2006).
Furthermore, in the last few years, internet-based CBT with therapist support is emerging as a
potentially more accessible treatment option (Andersson et al. 2012). Notably, despite the high
effect size of CBT in the treatment of OCD (Abramowitz 1997), a considerable number of
patients remains symptomatic after treatment (Abramowitz 2002). In this regard, initial
symptom severity or initial depression severity seem to be implicated in the treatment outcome
of CBT for OCD. However, the exact degree of correlation of these factors with the outcome of
different CBT options remains controversial (Olatunji et al. 2013). On the other hand, in the
framework of OCD symptom subtypes, it has been suggested that patients with cleaning and/or
checking compulsions may respond better to CBT (McKay et al. 2004).

The FDA has approved five agents for the pharmacological treatment of OCD: clomipramine
and four SSRIs (fluoxetine, fluvoxamine, paroxetine, and sertraline). Due to a more troublesome
side-effect profile of clomipramine, an SSRI is preferred as a first-line pharmacological
treatment. However, the response to each SSRI may be patient-specific. Twelve weeks is the
minimal duration of therapy necessary to correctly estimate the response to a drug, while it is
often necessary to prescribe the maximal dose in order to obtain a good response in the acute
phase of the disorder (Koran et al. 2007). There is also sufficient evidence that supports the
efficacy of citalopram and escitalopram (Pallanti et al. 2011), though these compounds are not
FDA-approved. For patients with partial response to first-line treatment, augmentation of SRIs

with CBT or with an antipsychotic agent (dopamine antagonist) including
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Switch to a different augmenting second-generation antipsychotic.
Switch to a different SSRI.
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Augment with buspirone*, pindolol, morphine sulfate*, inositol* or a
glutamate antagonist (e.g. riluzole, topiramate)*.

Switch to D-amphetamine monotherapy*.
Switch to tramadol monotherapy*.
Switch to ondasetron monotherapy*.
Switch to an MAOL*,

Figure 3.5. Algorithm for the Treatment of Obsessive-Compulsive Disorder (OCD).
*Treatment with little supporting evidence (Koran et al. 2007)
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haloperidol, risperidone, or aripiprazole, may be considered. Patients with little (<25%
reduction in Y-BOCS score) or no response to the initial SSRI may have their medication
switched to a different SSRI or clomipramine, or to a serotonin—norepinephrine reuptake
inhibitor (SNRI) including venlafaxine or mirtazapine. Augmentation strategies with an
antipsychotic agent may be considered for these patients as well. Less supported second-line
strategies include augmentation of SSRIs with clomipramine, buspirone, pindolol, riluzole (a
glutamate modulating agent), or morphine sulfate. Exlusively for non-responders to second-line
treatment, monotherapies with d-amphetamine, tramadol, monoamine oxidase inhibitors
(MAOIs), or ondansetron may be considered (Koran et al. 2007, Seibell and Hollander 2014,
Schruers et al. 2005, Bloch et al. 2008, Pittenger et al. 2006) (figure 3.5).

Pallanti et al (2002) have introduced operational criteria for discriminating between seven stages
of response to treatment (Pallanti et al. 2002, Pallanti and Quercioli 2006) (table 3.1). The
authors suggest use of the characterization ‘refractory’ only after at least three trials with SRI
agents (including clomipramine), two augmentation trials with atypical antipsychotics, and at
least 20-30 hours of CBT, while the term ‘recovery’ should be applied to indicate an almost
complete absence of symptoms corresponding to an Y-BOCS value of 8 or below. Notably,
recovery occurs only in an episodic course. Thus, the term ‘remission’ characterizes the most
successful outcome in a non-episodic course. In an adequate trial of an SSRI, a 35% or greater
Y-BOCS reduction could be considered a ‘full response’, between 25% and 35% a ‘partial
response’, and less than 25% a ‘non-response’. Off note, the term ‘resistant’ should be used

after fail of one trial of therapy with a first-line treatment (Pallanti et al. 2011).

Electroconvulsive therapy (ECT) and transcranial magnetic stimulation (TMS) constitute non-
surgical approaches for treatment-refractory OCD (National Collaborating Centre for Mental
Health 2006). Particularly, ECT has been recommended by the Expert Consensus Guideline for
treatment-refractory OCD and comorbid depression. Nevertheless, its efficiency exclusively for
treatment-refractory OCD has not been established due to lack of convincing evidence. It has
been reported that ECT may act by reducing comorbidity of depression, TS or schizophrenia,
rather by treating OCD symptoms directly (Berlin et al. 2008, Lins-Martins et al. 2014). TMS
for OCD involves the use of a pulsed magnetic field to induce changes in prefrontal cortical
activity and thereby to ameliorate obsessive-compulsive symptoms. However, similar to ECT,
there is inconclusive evidence upon which to base a recommendation for the use of TMS for
treatment-refractory OCD. Future studies should be oriented towards the optimization of
treatment duration and stimulation parameters as well as the determination of standardized

stimulation sites (Berlin et al. 2008, Seibell and Hollander 2014).
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Table 3.1. Stages of response (adapted form Pallanti et al. 2011)

Stage of response Stage Description
[ Recovery Not at all ill; less than 8 on Y-BOCS
II Remission Less than 16 on Y-BOCS
I Full response 35% or greater reduction of YBOCS and CGI 1 or 2
v Partial response Greater than 25% but less than 35% YBOCS
reduction
\' Non-response Less than 25% YBOCS reduction, CGI 4
VI Relapse Symptoms return (CGI 6 or 25% increase in Y-

BOCS from remission score) after 3+ months of

‘adequate’ treatment
VII Refractory No change or wosening with all available therapies

3.9. Neurosurgery for Treatment-Refractory Obsessive Compulsive

Disorder

It is estimated that about 10% of patients with OCD demonstrate severe treatment-refractory
symptoms (Denys 2006). For a select group of these patients, neurosurgical treatment may
represent an effective alternative. Notably, in the current practice of psychiatric surgery
treatment-refractory OCD is the condition most commonly referred (Lipsman et al. 2011).
However, factors like cultural stigma surrounding psychiatric disease, reluctance of psychiatrists
to refer patients and the historical misuse of psychosurgery have prevented widespread use of
neurosurgery for treatment-refractory psychiatric indications. The safety and efficiency of
traditional stereotactic ablative procedures, including anterior capsulotomy, anterior
cingulotomy, subcaudate tractotomy and limbic leucotomy, for severe, treatment-refractory
OCD, are supported just by level Il evidence and remain at a ‘proof-of-principle’ investigational
stage, while gamma knife and stereotactic-focused ultrasound lack evidence completely (Nuttin
et al. 2014, National Collaborating Centre for Mental Health 2006). Furthermore, application of
DBS for treatment-refractory OCD and validation of appropriate targets still remain at an
experimental stage (Blomstedt et al. 2013, Kohl et al. 2014, Morishita et al. 2014, Figee et al.
2010, de Koning et al. 2011, Lapidus et al. 2013, Williams and Okun 2013, Krack et al. 2010).
For the generation of level I clinical evidence with respect to neurosurgical procedures for
psychiatric disorders, design of randomized and blinded controlled trials is required ensuring
ethical conduct and giving priority to individual patient’s safety and treatment. Accordingly,

independent experts are needed for a comprehensive preoperative assessment using standardized
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rating scales, including evaluation of treatment refractoriness, and carefully considering
suicidality. Proper consent procedures have to be ensured. Equally important is the application
of the neurosurgical procedure by an experienced multidisciplinary team, including trained
neurosurgeons, psychiatrists, neurologists and neuropsychologists. Finally, a comprehensive

postoperative assessment should be definitely warranted (Nuttin et al. 2014).

Since 1999, DBS has been evaluated in a total of approximately 100 individual patients as an
advantageous treatment option over ablative procedures for severe, treatment-refractory OCD,
by virtue of its reversibility and adjustability (Sakas et al. 2007 (b)). Due to limited knowledge
of the pathophysiology of the disorder, target selection has been principally based on experience
from traditional stereotactic lesioning procedures or on observations during DBS surgery for
other disorders (Blomstedt et al. 2013, Benabid and Torres 2012). In the first published report of
bilateral DBS for treatment-refractory OCD, the selected target was situated in the IC,
immediately rostral to the anterior commissure extending into adjacent ventral capsule/ventral
striatum (VC/VS) (Nuttin et al. 1999) (figure 3.6). The selected target was identical to the target
region in capsulotomy. According to this report, in three of four patients beneficial acute effects
were observed in the stimulation-on condition. Subsequently, long-term efficiency of anterior
capsular and ventral striatal stimulation was being corroborated by a further series of small-
scale studies (Nuttin et al. 2003, Gabriels et al. 2003, Abelson et al. 2005, Greenberg et al. 2006,
Goodman et al. 2010). In a comprehensive evaluation of the clinical outcome of these studies
Greenberg et al. (2010 (b)) reported during the last follow-up full responsiveness (72% >35%
reduction in YBOC-S score) to VC/VS-DBS and remarkable improvements in depression,
anxiety and global functioning in about two thirds (17/26) of patients, attributable to the gradual
refinement of the implantation site within and across centers. Particularly, the optimal target
was situated in the junction of the anterior capsule, anterior commissure and posterior ventral
striatum. Adverse events reported included two intracranial hemorrhages, one seizure, one
wound infection, two hardware-related complications, and stimulation-induced reversible
effects, such as hypomania. Yet, cognitive decline is not induced by VC/VS-DBS (Kubu et al.
2013). In 2003, selecting the shell region of the right NAcc as a target for DBS was reported to
induce significant improvement in OCD symptomatology (Sturm et al. 2003). This specific
target choice was based on clinical observations about the possible role of the ventral-caudal
part of the IC adjacent to the NAcc in the clinical outcome of anterior capsulotomy, but also on
pathophysiological evidence pointing to the role of the NAcc as a central-relay structure
between the amygdaloid complex and the subgenual cingulate (de Koning et al. 2012).
Thereafter, application of unilateral DBS of the right NAcc for treatment-refractory OCD,
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Figure 3.6. Three-dimensional illustration of DBS in ventral capsule/ventral striatum. Leads and brain
structures are located on the axial plane 5 mm below the intercommisural plane as viewed posterior to

anterior (reproduced with permission from Lapidus et al. 2013).

including a case of OCD with comorbid schizophrenia, resulted in moderate long-term
beneficial effects (Huff et al. 2010, Plewnia et al. 2008), while bilateral DBS of the NAcc was
associated with a significantly greater degree of long-term responsiveness yielding a level 11
evidence for the use of this procedure in clinical practice (Denys et al. 2010, Hamani et al. 2014,
Franzini et al. 2010, Mantione et al. 2014). Notably, in all of the above-mentioned clinical trials
high voltage amplitudes of stimulation (up to 10.5 V) have been required for significant clinical

benefit.

With respect to a distinct target and according to a recent systematic review of Hamani et al
(2014), there is level I evidence for the use of bilateral STN-DBS for treatment-refractory OCD.
This evidence is based on the study of the French Stimulation dans le Trouble Obsessionnel
Compulsif (STOC) Study Group (Mallet et al. 2008) that proposed this therapeutic option, after
the observation that high frequency stimulation of the STN alleviated obsessive-compulsive
symptoms in 2 patients with PD and a history of severe OCD (Mallet et al. 2002, Haynes and
Mallet 2012). A further impetus to this specific selection was provided by multiple lines of
evidence of the involvement of the STN, as a major node of the indirect pathway, in the
pathophysiology of OCD and other behavioral disorders (Mallet et al. 2007, Winter et al. 2007,
Winter et al. 2008(a), Haynes and Mallet 2012), as well as the proven efficiency of STN-HFS in
the rat (Winter et al. 2008(b), Winter 2012, Klavir et al. 2009, Kupsch et al. 2004, Winter et al.
2007) and primate model of OCD (Baup et al. 2008) . According to the outcome of the study of
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the French STOC Study Group, active contacts on postoperative MRI were placed in the
anteromedial (associative-limbic) part of the STN, 2mm anterior and 1 mm medial to the target
used during STN-DBS for PD. The YBOC-S score was reduced significantly (p=0.01) by 31%
on average after 3 months of active stimulation. Chabardés et al (2013) evaluated the selection
of the same target in four patients with severe OCD. In three of the four patients a 71-78%
decrease in the YBOC-S score was reported at 6 months of stimulation, while in one case a
lower clinical improvement (~34% decrease in the YBOC-S score) was achieved, even after
adjustment of stimulation parameters, attributable to the functional misplacement of the
electrodes. The authors remarked not only on the clinical effects of STN-DBS for treatment-
refractory OCD, but also on the advantages associated with a well-known target region, as well

as the lower energy requirements compared to the use of the aforementioned alternative targets.

Further target regions reported in the literature, in the framework of DBS for OCD, include the
ITP, the bed nucleus of the stria terminalis and the anteromedial GPi (Jimenez-Ponce et al.
2009, Denys et al. 2003, Nair et al. 2014, Klavir et al. 2011, Gabriels et al. 2003). Jimenez-
Ponce et al. (2009) observed a 49% reduction in the YBOC-S score of 5 patients after 12
months of stimulation of the I'TP. Remarkably, however, ethical conduct in the framework of
this study has been heavily criticized (Meyerson 2009). The bed nucleus of the stria terminalis
as a clinical target for OCD is currently under evaluation by a multi-center study (Nuttin et al.
2013, Neumann et al. 2014). Thus far, surgical targeting of this nucleus has been associated

with a significant posterior deviation from the original anatomical position.



Supporting Clinical Decision Making During Deep
Brain Stimulation Surgery by means of a Stochastic

Dynamical Model

Following the demonstration of the control of chaos in arrhythmic cardiac tissue, there are no longer any

technical barriers to applying these techniques to neural tissue.

S J Schiff et al. (1994)

Abstract

Objective. The development of automatic methods for clinical decision making during deep
brain stimulation (DBS) surgery for the treatment of advanced Parkinson's disease (PD) has to
date been characterized by the absence of a robust single-biomarker approach. Moreover, it has
only been restricted to the framework of microelectrode recording (MER) without
encompassing intraoperative macrostimulation. Here, an integrated series of novel single-
biomarker approaches is proposed applicable to the entire electrophysiological procedure by
means of a stochastic dynamical model. Approach. The methods are applied to MER data
pertinent to 10 DBS procedures. Considering the presence of measurement noise, a multivariate
phase synchronization index is initially employed for automatic delineation of the functional
boundaries of the subthalamic nucleus (STN) and determination of the acceptable MER
trajectories. By introducing the index into a nonlinear stochastic model, appropriately fitted to

pre-selected MERs, the neuronal response to periodic stimuli (130 Hz) is simulated, and the
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Lyapunov exponent is examined as an indirect indicator of the clinical effectiveness yielded by
stimulation at the corresponding sites. Main results. Compared with the gold-standard dataset of
annotations made intraoperatively by clinical experts, the STN detection methodology
demonstrates a false negative rate of 4.8% and a false positive rate of 0%, across all trajectories.
Site eligibility for implantation of the DBS electrode, as implicitly determined through the
Lyapunov exponent of the proposed stochastic model, displays a sensitivity of 71.43%.
Significance. The suggested comprehensive method exhibits remarkable performance in
automatically determining both the acceptable MER trajectories and the optimal stimulation
sites, thereby having the potential to accelerate precise target finalization during DBS surgery

for PD.

4.1. Targeting Modalities in Deep Brain Stimulation Surgery for

Parkinson’s Disease

In addition to appropriate patient selection and optimal postoperative management, the quality
of the clinical outcome of DBS surgery is strongly correlated with appropriate anatomical target
determination and accurate electrode placement in the targeted nucleus (Lozano et al. 2010 (a),
Volkmann et al. 2006). In that vein, upon application of the stereotactic frame, pre-operative
direct targeting modalities, namely CT, 1.5 T-MRI, and ventriculography have all been shown
to be stereotactically accurate in the millimeter range (Rezai et al. 2006). However, while some
surgical teams exclusively opt for these image-guided approaches, in the majority of clinical
centers the additional use of microelectrode recording (MER) as an indirect targeting modality
has been adopted in order to optimize accurate electrode localization (Abosch et al. 2013,
Weaver et al. 2009). The latter option is justified on the grounds of specific drawbacks related to
direct targeting, including brain shift: the target location determined during MRI, when the
patient lies in the supine position, is not the same as the target location determined intra-
operatively, when the patient lies in a more upright position (Abosch et al. 2010). Nevertheless,
prospective randomized studies comparing the long-term efficiency of MER vs. the
aforementioned image-guided approaches are still lacking (Rezai et al. 2006, Senatus et al.
2006, Mc-Clelland II1 2011, Gross and McDougal M E 2013). In either case, final electrode
placement is ultimately determined on the basis of the patient’s response to intraoperative

macrostimulation (Lozano 2012, Bour et al. 2010).

Intraoperative MER is considered a relatively safe and robust tool for reducing the risk of
suboptimal localization of the targeted nucleus (Rezai et al. 2006, Reck et al. 2012, Lanotte et
al. 2002, Chen et al. 2006, Schlaier et al. 2013). After burr holes are made anterior to the
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coronal suture, one to five microelectrodes are (concurrently) advanced towards the targeted
nucleus using a microdrive. During this process, the physiological ‘signature’ of each penetrated
nuclear structure can be visualized thereby assisting clinical decision with respect to the optimal
recording trajectory, i.e. the trajectory traversing the broadest extent of the nucleus (Lozano et
al. 2010 (a), Marceglia et al. 2010). With respect to the subthalamic nucleus (STN) (see section
4.2), an increased background noise level, a high discharge rate and an irregular or bursting
pattern of activity, are distinguishing features of this target structure compared with surrounding
brain structures (Bour et al 2010). Following delineation of the functional boundaries of the
STN, its total length for each recording track can be defined. An acceptable track should pass
through >= 3 mm of the nucleus (Marceglia et al 2010). Framebased DBS surgery including
MER has a similar outcome when compared with frameless stereotaxy (Tai et al. 2010,
Holloway et al. 2005, Bronte-Stewart et al. 2010, Rezai et al. 2006). However, there is currently
no compelling evidence for a positive correlation between the number of recording electrodes
used and the degree of improvement of motor symptoms or the risk of intracranial hemorrhage
(Temel et al. 2007, Gross et al. 2006, Chang et al. 2011, Zibetti et al. 2014). In addition, firm
conclusions about the effects of anesthesia on microelectrode mapping have not been yet drawn

(Lettieri et al. 2012, Maltete et al. 2004, Rezai et al. 2006).

Meanwhile, direct visualization techniques for preoperative or intraoperative use are being
optimized with the ultimate goal of improving the accuracy of anatomic target

localization or even excluding a possible hemorrhage risk associated with microelectrode
penetrations (Zrinzo et al 2012). Within this framework, the accuracy achieved using
susceptibility-weighted imaging at 3 (3.0T-MRI) or 7 Tesla (7.0T-MRI), high-field
interventional MRI (iMRI), intra-operative CT ,0-arm images, or diffusion tensor imaging
(DTI) tractography appears to be at least comparable to the accuracy reported when using
standard MER stereotactic methods (Patil et al. 2012, Abosch et al. 2010, Cho et al. 2010, Toda
et al. 2009, Liu et al. 2013, Larson et al. 2012, Starr et al. 2010, Ostrem et al. 2013, Burchiel et
al. 2013, Fiegele et al. 2008, Coenen et al. 2011, Holloway and Docef 2013, Henderson 2012,
D’Albis et al. 2014, Sudhyadom et al. 2009). Notwithstanding, for the emerging targets the
exclusive use of direct visualization techniques may be less appropriate than

electrophysiologically guided neurosurgery (Starr et al. 2010).

Importantly, irrespectively of the targeting modality used, intraoperative clinical testing of
macrostimulation is a strong prerequisite for optimal lead finalization, ensuring that maximal
therapeutic effects of stimulation at a specific site are achieved along with minimal side-effects
(Rezai et al. 2006, Abosch et al. 2010, Starr et al. 2010, Pollak et al. 2002. Kinfe andVesper

2013). Macrostimulation is most commonly applied through the low-impendance shaft of the
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microelectrode (Sakas et al. 2007 (a)), a macroelectrode (Coenen et al. 2011), or the DBS
electrode (Chen C C et al. 2006) at multiple sites, in order to assess the optimal ratio between
the intensity threshold for the appearance of side-effects and the intensity threshold for clinical
effectiveness, i.e. the optimal therapeutic window (Marceglia et al. 2010). Thus, intraoperative
stimulation provides a neurophysiological refinement of the targeted nucleus for lead
finalization. The intuitive justification behind this approach lies in the fact that intraoperative
macrostimulation-induced effects are similar to the postoperative effects induced by the chronic
DBS electrode. Therefore, stimulation parameters utilized intraoperatively simulate the
respective parameters applied postoperatively, i.e., most commonly, a frequency of 130 Hz, a
pulse width of 60 1 s and amplitudes up to 5 V (Pollak et al. 2002). Intraoperative clinical
testing is currently being performed by neurosurgeons, neurologists, and clinical
neurophysiologists (Rezai et al. 2006). A reliable assessment of the clinical benefits during
STN-DBS, most frequently involves evaluation of rigidity improvement, improvement of
segmental akinesia and/or stimulation-induced dyskinesias, which should be noticeable at low
electrical intensities (Houeto et al. 2003, Pollak et al. 2002, Gross et al. 2006). Regarding
certain motor and oculomotor side-effects (motor contractions in the contralateral labial
commissure, face, or hand, and monocular eye deviation or unilateral change in the pupil
diameter), these should be induced at high intensity levels, whereas for sensory and vegetative
adverse effects a narrow therapeutic window is acceptable (Pollak et al. 2002, Tommasi et al.
2008). During surgery, improvements in motor symptoms of PD and/or onset of dyskinesias
have been observed by simply implanting the DBS electrode at the STN, the so-called
microlesion effect (Chen C C et al. 2006, Yoshida et al. 2010). Though this effect seems to be of

positive prognostic significance, no definite conclusions have been reached (Rezai et al. 2006).

Within the general framework of targeting modalities used during DBS surgery, there exists a
variety of algorithms and advanced software systems designed to support or even automate
clinical decision making intraoperatively. Specifically, biomarkers and modeling approaches
based on electrophysiological data or oriented to the development of patient-specific 3-
dimensional models of the target area significantly facilitate optimal trajectory identification
(Wong et al. 2009, Cagnan et al. 2011, Falkenberg et al. 2006, Chan et al. 2010, Novak et al.
2011, Pesenti et al. 2004, Pinzon-Morales et al. 2011, Holdefer et al. 2010, Danish et al. 2008,
Snellings et al. 2009, Zaidel et al. 2009, 2010, Chen C C et al. 2006, Taghva et al. 2011, Abosh
et al. 2013, Beriault et al. 2012). In addition, patient-specific modeling approaches being
inclusively applicable to clinical macrostimulation testing encompass the potential to optimize
and accelerate lead finalization (Miocinovic et al. 2007, Butson et al. 2011, D’Haese et al. 2012,

Maedler and Coenen 2012).
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4.2. The Subthalamic Nucleus Target: Topographic Organization and

Functionality

The STN, also known as the corpus Luysii, is a biconvex-shaped structure situated at the
diencephalo-mesencephalic junction (Luys 1865, Yelnik and Percheron 1979). The borders of
the STN are defined by the zona incerta, a portion of the fasciculus lenticularis, fibers of the IC,
the field H of Forel, the postero-lateral hypothalamus, the cerebral peduncle, the substantia nigra
pars reticulata and the red nucleus (Schaltenbrand and Wahren 1977). Fiber tracts coursing near
the border of the STN include the subthalamic fasciculus, the ansa lenticularis, the lenticular
fasciculus, the thalamic fasciculus, dopaminergic nigrostriatal fibers, the medial lemniscus, the
spinothalamic tract, the trigeminothalamic tract and the reticulothalamic tract (Hamani et al.
2004). The volume of human STN has been reported to range between 175mm” and 240 mm’
and to include an average of 240.000-560.000 neurons (Hardman et al. 2002, Levesque and
Parent 2005). Its length, width, and height are 9.8 + 1.6, 11.5 + 1.6, and 3.7 £0.7 mm,
respectively (Patil et al. 2012). Notably, there is some evidence of a significant inter-individual
variability in anatomical position and dimensions of the STN (Daniluk et al. 2010, Reese et al.
2012). The vascular supply to the STN is mediated by branches of the anterior choroidal artery,

the posterior communicating artery and posteromedial choroidal arteries (Hamani et al. 2004).

The STN is the only nucleus within the basal ganglia network principally composed of
projection neurons exerting an intense glutamate-mediated excitatory effect upon other
structures. Particularly, these neurons project mainly to the pallidum, striatum, substantia nigra,
PPN and cortex. Notwithstanding, GABAergic interneurons also appear to play a role in the
intrinsic organization of the STN. The STN receives its afferents from the cerebral cortex, the
thalamus, the GPe, the substantia nigra, the PPTg and the dorsal raphe nucleus (Parent and
Hazrati 1995, Hamani et al. 2004, Marani et al. 2008, Nambu et al. 2002, Levesque and Parent
2005). As stated in section 2.6, the pallidosubthalamic projection constitutes an essential
component of the indirect pathway (Parent and Hazrati 1995, Karachi et al. 2005). Importantly,
the structural and functional subdivision of the basal ganglia into the sensorimotor, associative
and limbic regions is reflected in the existence of three corresponding functional zones in the
STN, i.e. the sensorimotor, the associative and the limbic zone residing in the posterior
(dorsolateral), mid (ventromedial) and anterior (medial) part of the nucleus, respectively
(Alexander and Crutcher 1990, Lambert et al. 2012, Hamani et al. 2004, Karachi et al. 2005,
Parent and Hazrati 1995, Brunenberg et al. 2012, Tan et al. 2006, Sudhyadhom et al. 2007,
Stathis et al. 2007). Accordingly, the STN is not only actively involved in the regulation of



4 Supporting Clinical Decision Making During Deep Brain Stimulation Surgery | 68

movement, but also in cognitive and emotional processing (Péron et al. 2013, Le Jeune et al.
2010, Benedetti et al. 2004, Greenhouse et al. 2011, Drapier et al. 2008, Balaz et al. 2011,
Bockova et al. 2011, Buot et al. 2013, Kopell and Greenberg 2008, Baunez et al. 2011, Burbaud
et al. 1994). Interestingly, however, these three functional modalities may not be processed in a
strictly topographically segregated manner, but may be integrated within the small volume of
the STN (Mallet et al. 2007, Hershey et al. 2010, Balaz et al. 2011, Haynes and Haber 2013,
Lalys et al. 2013). The existence of this functional connectivity pattern within the borders of the
STN may explain the absence of an academic consensus in support of a strictly tripartite

functional subdivision of this core structure (Alkemade and Forstmann 2014).

While pathological patterns of neuronal activity in the STN of patients with PD have been
extensively described in section 2.6, special reference should be made to the topographic
organization of these patterns. In this respect, single-cell and LFP recordings have revealed a
higher incidence of burst discharges, of movement-related neuronal activity, of beta and tremor-
related oscillatory activity, and of pathological synchronization in the dorsal compared with the
ventral part of the STN of patients with PD, although this difference has not always reached
statistical significance (Kiihn et al. 2005, Weinberger et al. 2006, Seifried et al. 2012, Contarino
etal. 2011, Rodriguez-Oroz et al. 2001, Hamani et al. 2004, Guo et al. 2013, Lourens et al.
2013). In accordance with this topographic organization but also with the functional
connectivity pattern of the STN stays the fact that DBS electrodes positioned at the ventral or
medial part of the STN of patients with PD may improve motor symptoms, but at the expense of
inducing speech, cognitive or emotional impairment (Hershey et al. 2010, Astrom et al. 2010,
Mikos et al. 2011, Mallet et al. 2007, Paek et al. 2008). On the other hand, the dorsolateral
margin of the STN has consistently been characterized as the stereotactic position correlated to
the greatest improvement of the UPDRS-III-on score (Herzog et al. 2004, Guo et al. 2013,
Johnsen et al. 2010, Godihno et al. 2006, Lanotte et al. 2002, Maks et al. 2009, Zaidel et al.
2010), though there is also some evidence that stimulation in that area may negatively affect
speech intelligibility (Lalys et al. 2013). Moreover, stimulation of the lateral STN has been
associated with a lower therapeutic effect on bradykinesia as opposed to rigidity (Cooper et al.
2011), a phenomenon possibly invoked by activation of pyramidal tract fibers in the adjacent IC
(Xu e al. 2011). Besides, stimulation-induced activation of pyramidal tract fibers, including
corticobulbar and corticospinal pathways, has been reported to induce cranial motor
contractions that constitute one of the most common side effects observed during STN-DBS for

PD (Tommasi et al. 2008, 2012).

4.3 Mechanisms of Action of Deep Brain Stimulation
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‘The mechanism of action is not well understood’ - no phrase is repeated more often in reports on deep
brain stimulation in psychiatry and neurology.

M. G. P. Feenstra and D. Denys (2012)

The elucidation of the mechanism associated with clinically effective DBS is crucial to a deeper
understanding of the functional underpinnings of this technology, as well as to the determination
of its full therapeutic potential, that may in turn favor the development and advancement of
novel and clinically more efficient stimulation patterns. Variations in the approach used
(imaging, neurophysiology, microdialysis), in the mode of stimulation (using the standard
multicontact DBS electrode versus using a microelectrode or the guide-tube as the active
electrode) and stimulation parameters, or in the latencies (short versus long-term) of the
observed effects are the main synergetic factors towards relatively contradictory hypothetical
mechanisms of action of DBS (Lozano and Lipsman 2013). The ‘functional lesion’ hypothesis,
i.e. the hypothesis that stimulation evokes silencing of pathologically hyperactive neurons,
originated in the observation of a comparable effect of stimulation to ablation in the thalamus,
STN and GPi (Benabid et al. 2000, Benazzouz et al. 1995, Beurrier et al. 2001). This initially
postulated mechanism of action has been further corroborated by more recent studies
methodologically based upon concomitant intraoperative recording of neuronal activity and
application of high frequency stimulation (Welter et al. 2004, Meissner et al. 2005, Filali et al.
2004, Toleikis et al. 2012). Overall, inhibition of the activity of subthalamic or pallidal target
neurons may be due to depolarization blockade (K, Na effects), synaptic failure, excitatory
neurotransmitter depletion (glutamate), hyperpolarization of neuronal cell bodies and dendrites,
release of inhibitory neurotransmitters (gamma-aminobutyric acid (GABA), adenosine) or
synaptic inhibition of afferent projections (Lozano and Lipsman 2013). On the other hand,
experimental, computational modeling and functional imaging studies have highlighted a
predominantly excitatory effect of subthalamic high-frequency stimulation (STN-HFS) on the
output of the target nucleus (Garcia et al. 2005, Hilker et al. 2008, Garraux et al. 2011, Novak et
al. 2009, So et al. 2012) or, most importantly, a decoupling effect of stimulation on somatic and
axonal activity, i.e. somatic inhibition and deactivation of afferents, and axonal excitation and
activation of efferents (McIntyre and Grill 2000, 2002, McIntyre et al. 2004 (a),(b),(c),
Mclntyre and Hahn 2010, Vitek 2002, Deniau et al. 2010, Johnson et al. 2013, Kringelbach et
al. 2007, Grill and Mclntyre 2001). At a fiber-pathway level, antidromic activation or synaptic
effects on neuronal structures connected to the STN, including the SNr, the globus pallidus, the
SNc, the contralateral STN, the PPN, the cerebral cortex, the thalamus and the superior
colliculus are well-documented (Burbaud et al. 1994, Benazzouz et al. 1995, 2000, Windels et
al. 2005, Maurice et al. 2003, Tai et al. 2003, Degos et al. 2005, Shi et al. 2006, Maltete et al.
2007, Hashimoto et al. 2003, Dorval et al. 2010, Hahn et al. 2008, Hahn and Mclntyre 2010,
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Hilker et al. 2008, 2004, Reese et al. 2008, 2011, Meissner et al. 2002, Lee et al. 2004, 2006 , Li
et al. 2012, Gubellini et al.2006, Novak et al. 2009, Florio et al. 2007, Jech et al. 2006, Li et al.
2006, Potter-Nerger et al. 2008, Eusebio et al. 2009, Kuriakose et al. 2010, Lehmkuhle et al.
2009, Xu et al. 2008, Bressand et al. 2002, Garraux et al. 2011, Geday et al. 2009, Guo et al.
2008, Moran et al. 2012, Rubin and Terman 2004, Santaniello et al. 2010, Sotiropoulos and
Steinmetz 2007, Volonte et al. 2012, Walker et al. 2011, Whitmer et al. 2012, Zheng et al. 2011,
Lafreniere-Roula et al. 2012).

Ultimately, the combinatorial effect of stimulation on a sub-cellular, neuronal, and fiber-
pathway level (synaptic inhibition, excitation and antidromic activation) may underlie the
observed modulation of pathophysiological patterns of neuronal activity within both the
stimulated nucleus and the basal ganglia-thalamo-cortical circuit (McIntyre and Hahn 2010,
Grill et al. 2004, Montgomery and Gale 2008, Rosenbaum et al. 2014, Carlson et al. 2010,
Deniau et al. 2010). In particular, the mechanism of action of DBS for PD, may be primarily
attributed to the reinforcement-driven regularization of neural firing patterns and the creation of
an ‘informational lesion’ in the vicinity of the stimulated nucleus (McConnell et al. 2012,
Santaniello et al. 2015, Grill et al. 2004), while there are also new indications emphasizing the
disruptive effect of stimulation on abnormal cortical neural activity (de Hemptinne 2015).
Noteworthily, using standard therapeutic stimulus parameters, Carlson et al (2010) observed
that a subset of STN neurons, originally exhibiting bursting or tonic firing, shifted to a more
random pattern after stimulation. This result is closely linked to the observed alterations in the
discharge pattern of STN neurons in response to contralateral STN-DBS (Walker et al. 2011)
and the reported desynchronizing effect of standard HFS (Hauptmann et al. 2007, Rubin et al.
2012), but also to the concept that STN- DBS modulates pathological patterns of synchronized
oscillations in the STN (Bronte-Stewart et al. 2009, Eusebio et al. 2011, 2012, Meissner et al.
2002, Whitmer et al. 2012, Wingeier et al. 2006), thereby controlling motor output (Kuhn et al.
2008). Most importantly, computational modeling and clinical studies indicate that temporally
alternative patterns of stimulation hold the potential to drive the neuronal dynamics within the
basal ganglia back to the normal desynchronized state (Feng et al. 2007(a),(b), Adamchic et al.
2014). Meanwhile, a possible disease-modifying and neuroprotective effect of STN-DBS
(Temel et al. 2006 (b), Harnack et al. 2008, Wallace et al. 2007, Spieles-Engemann et al. 2010,
deSouza et al. 2013, Albanese and Romito 2011, Shon et al. 2010, Van Gompel et al. 2010,
Grahn et al. 2014) is currently under investigation by a prospective clinical trial (Kahn et al.

2012).

In relation to the mechanisms associated with the neuropsychiatric side effects of STN-DBS,

hypotheses vary to a great extent. There is evidence suggesting the alteration of valence-related
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emotional information processing within the STN as an underlying mechanism of stimulation
leading to behavioral complications. This alteration can be quantified by means of the event-
related desynchronization of subthalamic alpha activity (Briicke et al. 2007, Huebl et al. 2011).
Other studies have emphasized the destabilization of the 5-hydroxytryptamine (5-HT) system
induced by STN-HFS, as a contributing factor to the development of psychiatric side-effects
(Hartung et al. 2011, Tan et al. 2012 (a), (b)). From an alternative but equally plausible view,
spread of current to non-motor pathways within and around the STN may be responsible for the
cognitive and emotional impairment following bilateral STN-DBS (Frankemolle et al. 2010,
Alberts et al. 2010, Hershey et al. 2010, Mallet et al. 2007, Daniels et al. 2012). The latter
mechanism may also underlie the stimulation-induced decrease of verbal fluency performance

(Mikos et al. 2011).

Regarding stimulation effects on alternative targets, evidence is relatively limited. GPi
stimulation has been proven to abolish low-frequency synchronized oscillations and to rather
entrain (Cleary et al. 2013, Mc-Cairn and Turner 2009, Bar-Gad et al. 2004, Agnesi et al. 2013)
than to silence neuronal activity (Dostrovsky et al. 2000, Pirini et al. 2009). On the other hand,
thalamic DBS may lead to tremor arrest through masking and/or blocking rhythmic firing of
tremor cells (Kiss et al. 2002). Finally, in relation to the underlying mechanism of action of
PPTg-DBS, imaging studies have suggested that neuromodulation of the PPN activity may
induce functional changes in areas of the cerebello-thalamo-cortical circuit involved in the

control of lower limb movements (Ballanger et al. 2009).

4.4. Rationale and Objective of the Current Analysis

As stated in section 4.1, in the context of microelectrode mapping, automated methods aiming at
enhanced objectivity and reduced operation time have been extensively investigated
(Falkenberg et al 2006, Danish et al 2008, Zaidel et al 2009, Wong et al 2009, Novak et al
2011, Cagnan et al 2011, Pinzon-Morales et al 2011). In that respect, combinatorial application
of quantitative features related to the local field potential (LFP) and/or the high-pass filtered
signal (i.e. the high-frequency background activity or the spiking activity), has been evaluated.
Whereas multi-feature approaches provide increased accuracy and reliability for STN targeting,
the use of an unique robust biomarker would substantially simplify and accelerate intraoperative
nucleus detection. In addition to the aforementioned perspective, a complementary single-
biomarker approach applicable to the process of intraoperative stimulation would lead to
significant improvement of the entire electrophysiological procedure, by optimizing clinical

decision making and decreasing total surgical time.
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There is emerging evidence suggesting correlation of subthalamic oscillatory synchronization
with clinical impairment in PD (Kiihn et al 2009, Pogosyan et al 2010), and, conversely,
desynchronization of the neuronal activity as a possible mechanism of action of STN-DBS
(Carlson et al 2010, Walker et al 2011, Hauptmann et al 2007, Modolo and Beuter 2009, Wilson
etal 2011, Johnson et al 2013). In light of this evidence, the main objective of this study was to
evaluate collective dynamical and response properties of the subthalamic oscillatory activity as
crucial hallmarks for the selection of the optimal stimulation site during DBS for PD.
Specifically, the goal was to assess the applicability of two complementary single-biomarker
approaches within the principal mapping techniques that are commonly used intraoperatively:
MER and macrostimulation testing. Within this frame of reference, based upon MERs acquired
during 10 surgical interventions, a multivariate phase synchronization index (Carmeli et al 2005,
Allefeld et al 2007, Polychronaki 2011) was initially assessed as a combined measure of local
and spatially extended oscillatory synchronization (Moran and Bar-Gad 2010), keeping
susceptibility to measurement noise to a minimum (Rossberg et al 2004, Sun et al 2008).
Implementation of the proposed index was intended to point to the acceptable trajectories, i.e.
the trajectories that would be the best candidates for macrostimulation (Marceglia et al 2010).
This feature was subsequently employed as one of the constituent parameters of a stochastic
phase model appropriately fitted to pre-selected MERs. Based on this model, the Lyapunov
exponent (Pikovsky et al 2001) was assessed as a quantity reflecting subthalamic
synchronization dynamics in response to periodic inputs (130 Hz) and further evaluated its
predictability in identification of the sites where stimulation yielded the best clinical benefit.
The entire automatic methodology was evaluated based on the decisions made intraoperatively

by clinical experts.

4.5. Patients and Methods

4.5.1. Patients and Surgery

During a 1-year period, 10 patients underwent implantation of DBS electrodes in the STN, at
the Department of Neurosurgery at Evangelismos General Hospital of Athens. Three women
and seven men participated with informed consent and the permission of the local ethics
committee. Their ages ranged from 50 to 70 years, with a mean of 60 years. The clinical criteria
included idiopathic PD (as documented by a positive response to levodopa) with motor
fluctuations and/or dyskinesias. The mean disease duration was 14.5 years (range: 10—19 years).
The mean motor Unified Parkinson’s Disease Rating Scale (UPDRS) score preoperatively in the

off-medication state was 61.5 (range: 40-75) and 22.9 (range: 12-32) in the on-medication state.
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Anti-parkinsonian medication was withdrawn at least 12 hours before surgery. Table 4.1
summarizes patient clinical characteristics.Stereotactic surgery was based on pre-operative
anatomical targeting of the STN, MER and high frequency test stimulation (Sakas et al 2007(a),
Boviatsis et al 2010). Patients underwent application of a CRW stereotactic frame (Cosman—
Roberts—Wells — Radionics Inc., Burlington, MA, USA) under local anesthesia and in a way that
the anterior commissure/posterior commissure (AC-PC) plane was approximately parallel to the
base plane of the frame. Anatomical targeting of the STN was achieved via both indirect
visualization according to a stereotactic atlas (Schaltenbrand and Wahren 1977) and direct
visualization according to an image fusion technique. This technique involved a combination of
frameless T2-weighted magnetic resonance imaging (MRI) and framebased computed
tomography (CT) and was developed on a Radionics hardware/ software system (StereoPlan,
Integra Radionics, Burlington, MA, USA). The coordinates obtained with both indirect and
direct methods were combined for determination of the anatomical target point used during
microelectrode mapping. The surgical procedure was performed under local anesthesia.
Fourteen mm diameter, burr holes were centered over a point anterior to the coronal suture and
3.4 cm lateral to midline. Stereotactic arc settings ranged from 55° to 70° for declination, and
slide settings were 10°-15°. Microelectrodes were placed on a five-channel holder with central,
lateral, medial, anterior and posterior positions, 2 mm apart (Ben’s gun). The initial point of
MER was typically within the white matter, superior and rostral to the thalamic reticular shell.
A micropositioner system (Microtargeting Drive —Medtronic Inc., Minneapolis, MN) was used
to advance the microelectrode in submillimeter steps. At each site, signals were recorded

for <10s. Visual and auditory analyses were performed on-line by two clinical experts. The
electrophysiological criteria used to distinguish the STN were an increased background noise
level and neuronal firing rate, an irregular pattern of activity and/or cellular responses to passive
movements of the patients’ extremities. At the end of MER mapping, the total penetrated length
of the STN was noted for each recording track. Following determination of the trajectories
traversing the broadest extent of the nucleus, macrostimulation was performed usually at 3
selected depth positions with an external pulse generator (Medtronic Screener Model 3625;
Medtronic, Inc., Minneapolis, MN). The stimulation parameters utilized were a frequency of
130 Hz, a pulse width of 60 ps and amplitudes up to 5V. Rigidity improvement was judged on
passive movements of the contralateral wrist, whereas the assessment of side-effects was mainly
based on observation of certain motor contractions and/or of tonic eye deviation and/or blurred
vision. Once the site with the best therapeutic window was identified, the DBS lead (Medtronic
electrodes 3389 and 3387) was advanced 2 mm, in order for the contacts to ‘encompass’ the
optimal target point, and finally anchored with a Navigus cap (Image Guided Neurologics, FL,
USA). Final lead placement was confirmed with fluoroscopy. The same procedure was then

repeated for the other side, in cases of bilateral surgery. Post-operative MRI was performed
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Table 4.1. Clinical details of patients with advanced PD

Motor Motor
UPDRS UPDRS Site with the
Disease ON/OFF  ON/OFF Lev. equiv. best .

Age (years) duration drugs drugs pre-op/post- therapeutic Clinical
Case and sex (years) Hemisphere(s) tested pre-op post-op op window” Outcome
1 59.f 11 Right STN/Left STN 12/40 14/38 850/750 C0/A-0.5 Moderate
2 53,f 16 Right STN 16/52 8/18 1450/600 A-1.0 Excellent
3 66,m 19 Left STN 28/72 24/62 1000/600 P-2.0 Moderate
4 53,m 10 Right STN/Left STN 16/53 18/24 1100/300 PO/L-2.0 Excellent
5 62,m 18 Right STN/Left STN 23/68 18/38 1400/500 M -1.0/P 0 Excellent
6 50,m 16 Right STN 26/66 24/28 1400/450 PO/CO Excellent
7 70,m 13 Right STN 24/58 20/34 750/450 C-1.0 Excellent
8 62,m 15 Right STN/Left STN 32/70 30/41 1800/750 P-1.0/P +1.0 Excellent
9 64,m 14 Right STN 28/75 22/32 1600/600 L-15 Excellent
10 67,f 13 Left STN 24/61 26/54 1150/850 M-1.0 Moderate

m,male; f,female; pre-op, preoperatively; post-op, postoperatively; C,Central; L,Lateral; A,Anterior; P,Posterior; M,Medial.
* -, mm above anatomical target point (0 mm); +, mm below anatomical target point (0 mm).
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within 2 days to confirm the location of the DBS electrodes before they were connected to the

internal pulse generator (IPG) (Kinetra, Medtronic Inc., Minneapolis, MN).

4.5.2. Data Description

A commercially available microrecording system (Leadpoint TM Neural Activity Monitoring
System, Medtronic Inc., Minneapolis, MN) was used to acquire and store data. Five tungsten
microelectrodes (2mm apart, tip diameter < 25 um, Medtronic Inc., Minneapolis, MN) were
used for recording. The recorded signal was pre-amplified, band-pass filtered between 0.1 Hz
and 10 kHz and 1000 x amplified (Nicolet Vicking IV; Nicolet Biomedical, Madison,
USA).The signal was sampled at 24 kHz using a 16-bit A/D converter (CED Power1401,
Cambridge Electronic Design, Cambridge, UK). In total, data from 70 MER trajectories
obtained from 10 STN-DBS procedures were retrospectively analyzed in Matlab (Mathworks,
Inc., Natick, MA), (table 4.1). Initially, the acquired signals were digitally band-pass filtered at
1-141 Hz and 0.5-10 kHz applying 4-pole Butterworth filters.

4.5.3. Signal Preprocessing

The extracellular signal recorded from the microelectrode (figure 4.1(a)) conveys the sum of
two complementary signals acquired by the aforementioned frequency-band separation: the
multi-unit activity reflected in the high frequency signal component and the local field
potentials (LFPs) reflected in the low-frequency signal component (Logothetis 2002). The LFPs
predominantly represent synaptic events in a neural population within a large radius (0.5-3mm)
of the electrode tip (Mitzdorf 1987). By contrast, the multi-unit activity reflects the spiking
activity of a neural population within a small radius (200-300um) of the electrode tip
(Logothetis 2002). The multi-unit activity actually consists of spiking activity of one or just a
few large isolated cells and background unit activity, which represents the sub-noise level

spiking activity of the surrounding neural population (Moran and Bar-Gad 2010).

Accordingly, the methods presented here were based on the assessment of multi-scale neuronal
activity: a. spiking activity quantified through the spike detection process, b. activity of small
neural populations quantified through the background unit activity extraction process (Moran et

al 2008), and c. activity of large neural populations reflected in the LFPs (figures 4.1(b)-(d)) .

4.5.3.1. Mechanical Artifacts - Extraction of Spiking and Background Unit Activity
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Occasional events, like vibrational effects, 50/60 Hz power-line interference and static
discharge may result in high amplitude artifacts (Dolan et al 2009). Automatic detection and
elimination of high amplitude artifacts was based on noise level estimation, as proposed by
Dolan et al (2009). Low amplitude artifacts were also detected and excluded from further
analysis as described by Cagnan et al (2011).

The spike detection process involved application of morphological criteria based on a five-point
spike template (Wong et al 2009, Cagnan et al 2011). Specifically, an amplitude threshold set at
3.5 times the estimated noise level was employed, and hard-coded thresholds for the peak-to-

peak spike width and the distance between zero crossings flanking the candidate spike.

Reconstruction of the background unit activity (figure 4.1(d)) was performed eliminating the
bias of dominant spikes (Moran et al 2008).Thus, following identification of the spiking
activity, the surrounding time windows (—0.5to + 2.5ms around the spike identification point)
were removed and the empty segments were replaced by randomly chosen 3-ms spike-free
windows from the same recorded trace. Small inconsistencies between the real and the inserted
spike-free segments were considered negligible for power alterations in the low-frequency range

(Moran and Bar-Gad 2010).

4.5.4. MER - Automatic Detection of STN Borders and Identification of

Acceptable Trajectories

For automatic delineation of the functional boundaries of the STN during MER based on a
single-biomarker approach, dynamic interactions were quantified and integrated between pairs
of the three distinct signals: (1) the spiking activity (2) the background unit activity and (3) the
local field potentials (figures 4.1(b)-(d)). To this end, phase synchronization analysis was
performed (Tass et al 1998, Carmeli et al 2005, Allefeld et al 2007, Polychronaki 2011),
restricted to the beta frequency band, in light of strong evidence that beta oscillatory
synchronization in the STN is dramatically increased in the pathological state (Kiihn et al 2005,

Weinberger et al 2006, Moran and Bar-Gad 2010).

4.5.4.1. Envelope Extraction

Importantly, in addition to the LFPs, the envelope of the high-frequency signal component may
also yield power in the low-frequency range (1-141Hz) (Logothetis 2002, Moran and Bar-Gad
2010). In that respect, the low-frequency envelope of the background unit activity signal was
extracted employing the full-wave rectification (FWR) method, before a 4-pole Butterworth

filter was applied (passband 1-141Hz). This filter was also used in order to recover the low-
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frequency amplitude modulation of the spiking activity. All signals were further down-sampled

to 1 kHz.

4.5.4.2. Data-driven Optimal Filtering

On account of the presence of measurement noise (Hurtado et al 2004, Rossberg et al 2004, Sun
et al 2008), a complex —valued, linear bandpass filter was applied, prior to the phase
reconstruction procedure as described by Rossberg et al (2004). Particularly, optimization was
performed under the constraint of a spectral window ranging within 10-33 Hz, taking into
consideration that beta band activity may also be expressed at frequencies below 13 Hz or above

33 Hz (Tsirogiannis et al 2009). Exemplary trajectories of the filtered signals ( z(z) )

corresponding to the multi-scale neuronal activity are illustrated in figures 4.1(e)-(g).

4.5.4.3. Instantaneous Phase Reconstruction

In order to maximize reliability in the detection of phase synchronization, phase evolution ¢
was obtained from the complex magnitude of the filtered signal ( z(¢) ) by means of the method

of neighbourhood-based phase estimation (NPE) proposed by Sun et al (2008). Adoption of this
method was motivated by its improved efficacy over application of the Hilbert transform (figure
4.2(b)). The principle of NPE is based on Takens’ theorem (Takens 1981) and on the fact that in
the phase space reconstructed by time-delay embedding, the state recurrences of a reference
vector are represented by its nearest neighbours. Selection of embedding dimension d and

number of neighbours N (figure 4.2(a)) is discussed in section 7.2.4.6.
4.5.4.4. Bivariate Phase Synchronization Index

An index based on the Shannon entropy (Tass et al 1998) was employed as a measure for
bivariate phase synchronization. Specifically, due to the non-stationarity of the data, the analysis
was performed over a sliding window of 1 s (M =1000samples) (Hurtado et al 2004) and for
every sampling point ¢, the distribution of the relative phase series A¢ of the interacting

oscillators was computed, using 7 =exp(0.626+0.4In(M —1))=30 bins (Gross et al 2000). The

entropy of the distribution was calculated as

ht)==2 pi(k)in p; (k). (.1)
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where p; is the probability corresponding to the izh bin. The synchronization index used was

equal to the normalized entropy of the distribution
pli)==m0 =, 4.2)

where 4, =In7.Obviously,0< p(z, )<1, where the value p(t, )=0 corresponds to a uniform

max

distribution (unsynchronized time series), whereas the value p(#,) =1 corresponds to perfect

synchronization.

Eventually, at each recording site along a specific trajectory, a set of synchronization index
time series p) , (t) s P13 (t) and p;3 (Z) corresponding to the pairs of the oscillatory signals
(spiking activity - background unit activity, spiking activity - LFPs and background unit activity

- LFPs) was assessed and their mean amplitudes p, 5, 0 3, 0,3 were retrieved (figures 4.3(e)

- (@)

4.5.4.5. STN Detection and Determination of Acceptable MER Trajectories

For delineation of the STN borders based on a robust single biomarker, a multivariate phase
synchronization measure was used (figure 4.3(h)) as a means to quantify dynamic interactions

between the three scales ( K =3) of neuronal populations (Carmeli et al 2005) given by

K ' '
> A; log 4,
Q=1+

odk) , (4.3)

where /1;- are the normalized eigenvalues (/Il = %) belonging to the K x K matrix of

bivariate phase synchronization indices (Allefeld et al 2007, Polychronaki 2011). In particular,

eigenvalue decomposition was applied on the following matrix:

1 P2 P13
P=lp 1 pyy (4.4)
P13 P23 1

78



4 Supporting Clinical Decision Making During Deep Brain Stimulation Surgery

79

200
% 100
[1F]
S o
=
=
£ -100
Lo
-200 !
0 4 6 10
time (s)
(a)

_ 200
= —
2 2. 100 ]
[:F]
- :F]
=] £
£ £ 100 ]
< <
: ‘ : -200 : : : :
0 2 4 6 10 0 2 4 G 8 10 0 2 4 G 8 10
time (s) time (s) time (s)
(b) (©) (d)
20 0.5 100
~10r1 ol
N N
E E
ol
‘ . . . -100
i . = . 0.5
10 10 0 10 20 02 01 0 01 02 03 5 RS, 50
Rez, Rez, 3
Q) (M (2

Figure 4.1. Multi-scale neuronal activity and optimal filtering. (a) Example of a raw extracellular signal recorded in the right STN, case 2 (recording site depth: A +0.5). (b)-(d) The three derived
signals: LFPs, spiking activity (a.u.=arbitrary units) and background unit activity, respectively. (¢)-(g) The trajectories of the filtered signals z(¢) (see section 7.2.4.2) obtained from series (b)-(d),

respectively, after low-frequency amplitude modulation (of series (c) and (d)) and down-sampling to 1 kHz
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A MER trajectory was considered acceptable if there existed a distance >= 3mm(Marceglia et al

2010) along which O remained above the synchronization index threshold Q.. (evaluation of

Oqres 18 described in the next paragraph).The first site (located dorsally) along that distance was
defined as the dorsal border of the STN, whereas the last site (located ventrally) was defined as
the ventral border of the STN. The detection process described is evaluated in section 3 with
respect to its efficacy to point to acceptable MER trajectories that are likely to be further

considered during macrostimulation testing.

4.5.4.6. Optimal Embedding Parameters and Threshold Calculation

In order to determine the optimal embedding dimension and number of nearest neighbors for the
NPE method, the evolution of the mean value of synchronization index Q within the STN
boundaries as a function of these parameters was examined, in a total of 21 trajectories defined

as acceptable by the clinical experts (figure 4.2(a)). Results showed that O increased very

slowly after NV had reached particular values (40< N <50) even for small values of
embedding dimension (4 =3 ). On the other hand, over-embedding ( 4 >11) reduced markedly
the performance of the method. N was set at 70 and d at 3, since these values yielded the
maximal estimate of synchronization index Q .Synchronization index threshold Q... was
determined by optimizing the performance of the STN-detection method with respect to the
annotations made intraoperatively. Specifically, Qy,.. was defined as the maximum threshold
whose application minimized the false negative and false positive rates in the 70 - MER -

trajectories data set ( Qg =0.37).

4.5.5. Macrostimulation - Automatic Assessment of the Sites Related to the Most

Beneficial Clinical Response

Automatic determination of the sites where intraoperative test macrostimulation conferred
greater clinical effectiveness, was based on increasing evidence that the beneficial effects of
STN-DBS are mediated by modification of the abnormal firing pattern in the STN and
disruption of neural population synchrony (Carlson et al 2010, Walker et al 2011, Hauptmann et
al 2007, Modolo and Beuter 2009, Wilson et al 2011, Johnson et al 2013). Thereupon,
employing a stochastic phase model and using the multivariate phase synchronization index Q
as one of its constituent parameters, the neuronal response to macrostimulation at selected
recording sites was simulated. This response could be quantified by means of a distinct single
biomarker, the Lyapunov exponent. In the context of nonlinear dynamics, the Lyapunov

exponent characterizes the convergence/divergence properties of two nearby trajectories in the
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Figure 4.2. Selection of optimal parameters for the NPE method and reconstruction of the relative phase series. (a) Mean value of synchronization index () within the STN boundaries for a range of
combinations of embedding dimension d and number of neighbours NV , averaged over 21 MER trajectories to which a positive detection was ascribed by the clinical experts. (b) The top panel shows
the unwrapped relative phase series A¢172 , corresponding to the pair of the oscillatory signals presented in figures 4.1. (¢)-(d).The red line indicates the result obtained based on combinatorial

application of data-driven optimal filtering and the NPE method. The black line indicates the result that would be obtained, in case a traditional linear band-pass filter in combination with the Hilbert
transform were applied. In the lower panel, the respective distributions P(A¢1,2 ) of the wrapped relative phase series are depicted
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phase space (Pikovsky et al 2001). Positive values of the Lyapunov exponent indicate
desynchronization. Based on the aforementioned facts, the Lyapunov exponent was examined as

an implicit indicator of the clinical effectiveness of stimulation during DBS surgery.
4.5.6. Phase Reduction: Some Basic Concepts

In the context of phase reduction, neural oscillators can be described by a single phase variable,

6 (Izhikevich 2007). In case of tonic spiking, the definition of the phase of an oscillation is
associated with the parametrization of its limit-cycle attractor, i.e. the phase may be considered as
a circular variable representing how far the oscillation has progressed along its limit cycle. The

phase is usually dimensionless and defined on [0, 1) or [0, 2n) (Ermentrout et al. 2011).

Neural oscillators are characterized by an associated phase-resetting curve (PRC) (Kuramoto
1984, Winfree 2001), which is ‘a vital entity for modeling the biophysical dynamics of
oscillators’ (Ly 2014). Particularly, it quantifies the magnitude of the phase shift of a spike train
due to the implementation of an external perturbation. This magnitude, A, depends on the exact
timing of the stimulus relative to the phase of oscillation (Izhikevich 2007) (figure 4.4):

A(0) =100, — 0} (4.5)

ew

The infinitesimal phase response curve (iPRC) gives the phase sensitivity to an infinitesimal

perturbation.
Though PRCs are highly heterogeneous, since they crucially depend on the neuron’s biophysical
profile (ionic currents, firing rate etc.), they may be generally classified into two board categories

in the context of weak resetting: type I (1+cos(270)) and type II (-sin(270)). These categories may
be condensed by means of the following formula (Ly 2014) (figure 4.4):

AO) = k[-sinz6+ y) +siny]  ye[0,7/2] (4.6)

1 . .
and kK = —————— 1is a normalizing constant.

\Jsin? (y)+1

Strong resetting may result in a type 0 (discontinuous) PRC with mean slope 0.

It has been proven that oscillators with Type II PRCs receiving common noisy input sychronize

more readily than those with Type I PRCs (Abouzeid and Ermentrout 2009). In addition to
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Figure 4.4. (A) Two trajectories of a spontaneously active neuron firing with period 7c are shown, one unperturbed
(black) and one perturbed by the stimulus presented at period 7s. The phase-dependent change in the period caused by
the stimulus is 4¢. Stimulation latencies relative to cell firing are indicated by s, and response latencies relative to the
stimulus are labeled 7r (Wilson et al. 2011) (B) Types of phase resetting curves (Ly 2014).

common noise, however, global coupling may also exert a significant effect on neuronal

synchronization (Nagai and Kori 2010).
4.5.6.1. The Phase Model

The following Langevin equation (by virtue of the Stratonovich interpretation (Gardiner 1994))
describing an ensemble of N globally coupled identical phase oscillators, driven by intrinsic
independent and extrinsic common noises, but also subject to periodic forcing is considered

(figure 4.5):

W K S sinlonly, )+ ok (06 0+ o Re (0 00+ Al IS Sl —47) @)

d = 3

Here ¢, € [0,1) is the phase variable of the its oscillator, @ is its natural frequency and K >0 is

the coupling strength. &,(¢) is assumed to be zero mean Gaussian white noise, added

independently to each oscillator, with correlation specified by <§,- (t)§ J (t')> =0, 5(t - t'), where

oy =1ifi=jand Oif i=j. 7(¢)is regarded as colored noise with zero mean and unitary
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Figure 4.5. Block diagram of the stochastic phase model

I

variance, i.e. with autocorrelation function C(¢)= <77(t)r7(0)> = % e_fC . Thus, 7(¢) can be
tc

regarded as an Ornstein-Uhlenbeck process with correlation time 7 (Gardiner 1994). o and
o are small parameters representing the intensity of independent and common noise,

respectively. R (¢, ) and R; (¢, ) are phase sensitivity functions that represent the linear response

of the phase variable ¢; to the respective infinitesimal noise perturbations, while A(¢;, 3) is the
phase response curve (PRC) to a single (DBS) impulse (Kuramoto 1984, Winfree 2001). 8

represents the stimulus amplitude, 7, =130Hz is the period of the stimulation and 0 <k <oo.

Taking into consideration that for weak Gaussian common driving noise, a Type-I1I PRC is
optimal for stochastic synchronization (Abouzeid and Ermentrout 2009), this shape is used for the
phase sensitivity to common noise in order to simulate the state of pathological synchronization

in PD. A Type-I PRC is selected for the phase sensitivity to independent noise. Both PRCs are

1
normalized as “ R? (¢}1¢ =1.
0

Accordingly the following functions are considered:
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Re(¢)=2(=sin(279)) (4.8)
2
Ry (¢)=\g(1—cos(2fr¢)) 4.9)

Differently, there is evidence that the type 0 PRC may be optimal for stochastic
desynchronization (Hata et al 2011). Hence, in order to simulate the desynchronizing effect of

DBS, 4(p,0) is considered equal to zero and

¢ ell0-plp-0.5) 0<¢<0.5

A, B)= .
4.5) (p—1)e10-Al6-05)  0.5<4<1 (410

where 0 < £<10.

Introducing the (complex) Kuramoto order parameter defined by re*™'¥ =— Ze2m¢f
j=1

(Kuramoto 1984), (4.7) can be rewritten as (Strogatz 2000):

99 _ o+ Krsin(2ly - 9)+ 1R (D)) + o R (Bnle) + Ap. )X 5 ~kT)  (@.11)

dt B

where r characterizes the degree of synchrony and ¥ is the mean phase of the oscillators. Next,

defining the effective drift and diffusion coefficients (Nakao et al 2010)

0 1 0 1
veoe’ [dsCls)[dgRE (@) Re(p—ws) and Dxoc? [dsCls)[dpRe(#)Re (4 - as) (4.12)
0 0 0

—00

the following white-noise Langevin equation is obtained:

% = o+ Kr(sin 22(y — )+ o Ry ($)E(0) + v+ NDE() + A, )Y 5t — kT, )
k (4.13)
% =+ Krsin(2z(y — ¢))+ v+ (crIRl (p)+ \/B)f(t) + Alg, B)> S(t —kT,)
I (4.14)

The Stratonovich eq. (4.14) is converted to an equivalent Ito stochastic differential equation

(Gardiner 1994):
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d¢ =w+ Kr sin(272'(l// . ¢))+ v+ (O'IRI (¢)+ \/B)§(t)+ ﬂR{ (¢) (O'IRI (¢)+ ‘/B)
dt 2 (4.15)

+ A(g, ﬂ)%, (e —kT,)

Phase eq. (4.15) is solved through the stochastic map from one stimulus cycle to the next (Nesse

and Clark 2010). The phase dynamics during the inter-impulse interval T, is described by

¢n+1 = ¢n + ((0 + Kr Sin(Zﬂ.(V/ - ¢n )) +v+ _R ¢n )(O-IRI ¢n \/—)]Ts
+ (018 (6,)+ D (T,)+ A, p) (316)

where () is a Wiener process with probability density function th , which is a Gaussian with
zero mean and variance 7, . The stochastic map is defined by the (“modulo-one”) Perron-
Frobenius operator F', that maps the density of phases at the time of the (n + l)th impulse,

Pas1 (), onto the density of phases at the time of the n#z impulse, p,(¢) (Ermentrout and
Saunders 2006, Nesse et al 2007, Yamanobe and Pakdaman 2002):

¢—¢'+j—(w+Krsin(zn(w—¢'))+v+‘;IRf(¢')(alRl(¢')+J5)J7; ~A¢.5)

Puni(#)= g j;zf W, loiRi(¢#)++D)
1 ' '
STTAIG @
Setting
A(g.¢')

$—¢'+ j—| o+ Krsin(2z(y - ¢))+v+—RI ¢)(O'IRI +\/_)T Alg', B)

:jéfW[ (GIRI (¢')+ \/5)

" (GIRI (¢')+ ‘/5)
(4.18)
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and discretizing the density into A7 =500bins of size 1/ As , we obtain:

i4¢¢)ww¢~lfiuﬂi-i}f (4.19)
ARG M MM} '

j=0

Hence, the stochastic map is approximated using a 500x 500 transition matrix (stochastic kernel)
having all positive entries and a spectral radius of 1 (figure 4.6). This matrix possessed the strong
Perron-Frobenius property (Noutsos and Tsatsomeros 2008). The iterated mapping (4.17)

converges to the steady-state phase distribution (invariant density) after # number of stimuli:

a(@)=[F"po J9) (4.20)

This distribution is represented by the eigenvector corresponding to the dominant (unit)
eigenvalue of 4 (figures 4.6 (j) - (1)).To quantify the stability of the synchronized states the
Lyapunov exponent is calculated (figure 4.7), using phase map (4.16), as (Pikovsky et al 2001,
Teramae and Tanaka 2004):

~ (Injdg,.1/dd,)
- T

N

N 1+ (— 27Kr cos(27(y — @) + % R"(¢)(<71R1 (¢)+ ‘/B)+ o (R (9))* ]TS

_1 2
T, ,
+ (o1, (9)+ VD) W(r,)+ 216, 5) o)
:F | d¢ln1+(—27rKrcos(27z(l// ¢)+—'R (o R (9)+ D ))T + 4, ﬂ){ @) @21
S 0

4.5.6.2. Determination of Model Parameters

For each depth position selected for macrostimulation, there are eight parameters that must be
estimated in the phase model (4.13): 0,7, K, ¥ ,00,v, D and o;. We set @=1 according to
Wilson et al (2011). We also consider 7 =0. The remaining parameters are estimated on the
basis of the respective signal acquired during MER, which is considered to reflect a no-input

stimulus epoch (figure 4.8). The modulus 7 of the order parameter is set equal to the value of the

phase synchronization index Q , estimated in 4.2.4.5. Coupling strength K is estimated by
(Allefeld and Kuhrts 2004, Allefeld et al 2007):
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K =u? (4.22)

where A >1 is the largest eigenvalue of matrix (4. 4) and u is the first element of the

corresponding eigenvector.

As indicated by (4.12), calculation of parameters v and D is dependent on estimation of o and
C(¢). The intensity of common noise o is determined through evaluation of the power

spectraldensity function of the background unit activity (Moran and Bar-Gad 2010) using

Welch’s method, while the autocorrelation function of this signal is used as an estimate of C(¢).

Once the above parameters were estimated, we proceed to evaluate the intensity of independent

noise oy, through definition of the first passage time problem for the phase model (4.15) with no
input; let p(g,7) represent the probability density function of phases at time ¢. The corresponding

Fokker-Planck equation is (Gardiner 1994)

D 2o ssintasty o)+ 5 £k 6)4) o]

; %%{(GIRI #)+Df o @23)

b

with periodic boundary condition
pl0.6)= p(1,1). (4.24)

Extending the definition of the phase from ¢ <[0,1) to ¢ <R and considering o; <<1 we obtain

the following approximations (Ly and Ermentrout 2011)
Ry (#) =~ R, (¢) and Krsin(27z(y — ¢)) =~ Kr sin(2z(y — 1)) (4.25)

The Fokker-Planck equation for the corresponding probability density function ¢(g,) is

o¢ : oy og (UIRI(t)JF\/B)Z 0°¢
o = {a)+ Kr sm(272'(1// —t))+ v+7 Ry (t)(O'IRI (t)+ \/5)} 8_¢ + 5 6¢2 (4.26)

£(9.0)=5(g) . peR (4.27)
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Figure 4.6. (a)-(i) Stochastic kernel functions A(¢, ¢') based on MERs at: (a)-(c) C 0, right STN, case 1,

for f =0, =5and =10, respectively, (d)-(f) P +2, right STN, case 5, for S =0, f =5 and # =10, respectively and
(g)-(1) P +2, right STN, case 6, for S =0, f=5and f =10, respectively. (j)-(1) Steady-state phase distributions for =10
(red line), f =5 (gray line) and £ =10 (black line), corresponding to the cases described in (a)-(c), (d)-(f) and (g)-(i).
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Case 1, Right STN
Trajectory traversing the broadest extent of the nucleus: Central
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Figure 4.7. The Lyapunov exponent, A as a function of stimulus amplitude /§ for a pair of acceptable trajectories in two

distinct cases. (a) Left panels: the Lyapunov exponent, A at three pre-selected sites of central (upper) and lateral (lower)
trajectory, right hemisphere, case 1. Asterisks denote significant differences. Right panel: sites where the highest values of

A were obtained for each of the acceptable trajectories. At these sites, values of 4 between the 2 trajectories were not
significantly different. Circled is the optimal target point according to clinical decision. (b) Left panels: the Lyapunov
exponent, A at three pre-selected sites of lateral (upper) and central (lower) trajectory, left hemisphere, case 4. Right panel:
sites where the highest values of A were obtained for each of the acceptable trajectories. At these sites, values of 4 between
the 2 trajectories were not significantly different.Circled is the optimal target point according to clinical decision.
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Figure 4.8. Parameter values based on MERs along 21 trajectories selected for macrostimulation testing by the clinical experts.

For each trajectory, parameters are assessed at 3 site depths selected for intraoperative macrostimulation. Parameters depicted are

(a) effective drift coefficient, v (b) effective diffusion coefficient, D (c) coupling strength, K (d) modulus of the order

parameter, 7 (e) intensity of common noise, o and (f) intensity of independent noise, o7 .
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An analytic solution to (4.26) is

1

[27{0’12 .t[ R} (s)ds+ 20, \/Bj‘ Ry (s)ds+ Dtﬂ

0

(g.1)=

27 4 2
xexp| — (4.28)

2[0‘12 j R} (s)ds+ 20, \/B.t[ Ry (s)ds + Dtj

[(mV)HlKr costanly —1) -+ L R2(0)+ TYP &, (z)}

Respectively, the first passage time distribution is simply
2()=¢(1,2). (4.29)

Finally, maximization of the log likelihood function L over o7, yields an estimate for o (Nesse

and Clark 2010):

9 o |{4t; v, K, r, D)= 4

il il ;m z(at;or,v,K,r,D)=0,  (430)

where {Ati} are the interspike interval (IST) data.

4.5.7. Performance Evaluation

To assess the performance of the entire automatic methodology, the dataset of the decisions made

intraoperatively by two clinical experts was used as the gold standard.

Significant changes in the multivariate phase synchronization index within the intraoperatively
determined STN length were evaluated by applying a two-sample t-test (statistical significance

was defined at p <0.05). Additionally, stability of the phase synchronization indices in the

presence of measurement noise was assessed and compared with the stability of firing rate and
noise level measures within the STN boundaries. Comparative assessment was based on
evaluation of the standard deviation of the corresponding normalized measures (two-sample t-

test, p < 0.05). Normalization was performed by dividing each measure by its mean value within
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the intraoperatively determined STN length. Finally the number of trajectories traversing the STN
according to the automatic method and the clinical experts was comparatively assessed and the

sensitivity of the method in detecting the dorsal and ventral borders of the STN was determined.

Performance of the stochastic dynamical model for designation of the sites where stimulation
yielded the best clinical benefit was assessed evaluating the sensitivity of the corresponding

method under two principal conditions (two-sample t-test, p < 0.05).

4.6. Results

4.6.1. Determination of Acceptable MER Trajectories

According to the annotations made intraoperatively by the clinical experts, 40 out of 70
trajectories penetrated a subthalamic dorsoventral extent greater than 3 mm. With reference to

these positive detections O displayed significantly higher average values within the STN

compared to its average values within neighboring structures ( p = 1071 ). Figure 4.3 displays an
application example of the STN detection methodology, i.e. on the lateral trajectory, in the right
STN of case 1. Importantly, there is a striking difference between the stability of firing rate and
noise level values and the stability of phase synchronization index Q, observed within the STN.
This result provides an indication for the robustness of phase synchronization index despite the

presence of measurement noise. Overall, multivariate phase synchronization index Q displayed
significantly higher stability within the STN compared with firing rate ( p = 107" and noise

level measures ( p = 10_8) (figure 4.9).

Principally, the STN detection methodology demonstrated a false negative rate (FNR) of 4.8%
and a false positive rate (FPR) of 0%. With reference to the true positive detections, the mean
depth of the STN dorsal border according to the automatic algorithm was 0.0357 = 0.1336 mm
above the STN entry designated by the clinical experts. The mean depth of the STN ventral
border was 0.0714 £ 0.3852 mm above the STN exit determined intraoperatively. Using a
precision criterion of 0.5 mm within the current gold standard, the STN detection methodology
yielded sensitivities of 100% and 92% for the STN dorsal and ventral border, respectively (table
4.2).

Interestingly, performance of the STN detection methodology based on the bivariate phase

synchronization indices p;, and p; 53, was identical to the one based on synchronization index
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Figure 4.9. Standard deviation of the normalized firing rate, noise level and multivariate phase
synchronization measures within the intraoperatively determined STN length, for 40 trajectories to which a
positive detection was ascribed by the clinical experts. Principally, Q displayed significantly higher stability

within the STN compared with firing rate and noise level measures ( p < 0.05).

Q (table 4.2). However, it should be pointed out, that the specific value of the multivariate

synchronization index Q lied in its particular utility as a model parameter (section 7.2.5.2).

On the other hand, phase synchronization index p, 5 displayed no discriminating power, as its

average values within the STN were not significantly different from the average values outside

the STN ( p =0.9893). This observation may reflect the fact that there exists a sparse correlation

within the surrounding neural population not only within but also across the STN boundaries

(Moran and Bar-Gad 2010).

4.6.2. Predictability of the Lyapunov Exponent of the Stochastic Model in
Identification of the Sites where Stimulation yielded the Best Clinical Benefit

Figure 4.6 depicts the stochastic kernel functions and invariant densities (obtained using (4.19))

for different values of stimulus amplitude 8, derived based on MERs at three distinct site depths
assessed for intraoperative macrostimulation. For =0, the proposed phase model the proposed

phase model reproduces the pathological synchronized state (¢ = ¢'), which appears to be more

intense in case 1 than in cases 5 and 6. With increasing  , the obtained states become gradually

less synchronized in all cases. This observation was general across all site depths examined and
strongly suggested that the desynchronizing effect of periodic stimulation was captured and
validated by the current model. Figure 4.8 depicts a set of parameter values, derived based on 21
MER trajectories considered appropriate for macrostimulation testing by the clinical experts. The
following observations are made: first and foremost, effective drift coefficient v was always

negative, as indicated by Nakao et a/ 2010. Secondly, coupling strength K was positive, a

95
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Table 4.2. Performance of the STN detection methodology.

Sensitivity for Sensitivity for
Index FPR FNR the STN the STN
dorsal border® ventral border®
0 0% 4.8% 100% 92%
P12 0% 4.8% 100% 92%
P13 0% 4.8% 100% 92%,

P23 - - - -

*within 0.5 mm accuracy of the current gold standard.

Table 4.3. Performance of the stochastic model under 2 principal

conditions™ for designation of the optimal stimulation site.

Measure Sensitivity
At 78.57%
AP 71.43%

*Values of A within the optimal trajectory were for no other site
significantly higher than the values derived for the optimal stimulation

site (according to clinical decision) ( p <0.05).

®In addition to a, there was no site along the alternative trajectory for
which the derived exponent was significantly higher than the one

corresponding to the finally selected site ( p <0.05).

criterion imposed on phase model (4.7). Last, the condition o7 <<1 was always satisfied, while

for common noise, moderate intensities were obtained.

Figure 4.7 displays the Lyapunov exponent as a function of stimulus amplitude, derived based on
the analysis of MERs, at different site depths and trajectories selected for intraoperative
macrostimulation. Overall, the Lyapunov exponent gradually increased with increasing stimulus
amplitude. This fact provided further corroboration that the proposed model held the ability to

simulate the desynchronizing effect of stimulation. For each case in figure 4.7, 2 trajectories
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traversing the broadest extent of the nucleus (i.e. defined as acceptable by the clinical experts) are
examined. The optimal target points according to clinical decision are C 0 (case 1) and L -2.0
(case 4) (table 4.1). In the aforementioned cases, values of the Lyapunov exponent are for no

other site significantly higher than values for the optimal stimulation site ( p < 0.05), within the

trajectory along which the best stimulation effects are obtained. Comparing results between
trajectories, there is no site along the alternative trajectory for which the derived exponent is

significantly higher than the one corresponding to the finally selected site ( p < 0.05).

In general, considering as true positive the result obtained under the condition that the derived
values of 1 were not significantly higher for the nearby sites than the values derived for the

optimal stimulation site ( p < 0.05), the proposed method yielded a sensitivity of 78.57%.

Strengthening the condition by including comparative assessment of the Lyapunov exponent

between two MER trajectories, the method yielded a sensitivity of 71.43% (table 4.3).

Figure 4.10 provides an integrated visualization scheme of the procedure of clinical decision
making during DBS surgery, based on the proposed stochastic model. Initially, synchronization

index, O was comparatively assessed for the five trajectories (central, anterior, posterior, medial

and lateral). Accordingly, the acceptable trajectories could be determined as described in 4.6.4.5.

Subsequently, values of biomarker Q at specific sites of the acceptable trajectories were

employed as one of the inputs (parameters) to the stochastic phase model, while the respective
values of biomarker 4 actually reflected the output of the model. Eventually, sites where the
highest positive values of 4 were obtained, were considered as the sites where stimulation

yielded the best clinical benefit.

Remarkably, the proposed stochastic model corroborated the increased effectiveness of high
frequency stimulation compared with low frequency stimulation in PD (Rizzone et al 2001, Moro
et al 2002), (figure 4.11). Importantly, however, stimulation at beta frequencies did not further
synchronize oscillatory activity, as indicated by positive values of the Lyapunov exponent. This
observation is in agreement with the study of Tsang et al (2012), who suggested that beta

frequencies did not worsen PD motor signs.
4.7. Discussion

Physiologically guided neurosurgery has been adopted by the majority of DBS centers and will
apparently continue to be a powerful practice in the field of stereotactic and functional
neurosurgery for many years to come (Lozano et al 2010 (b), Abosch et al 2013). Development of

related automatic methodologies having the potential to be intraoperatively incorporated, thereby
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Figure 4.11. Increased effectiveness of high frequency stimulation corroborated by the stochastic phase
model. The Lyapunov exponent A as a function of stimulus amplitude £ , at sites (a) C 0, right STN, case

7 and (b) C -1.5, right STN, case 9, for three different stimulation frequencies (20 Hz, 75 Hz and 130 Hz).

leading to significant reduction of surgical time and optimization of clinical decision making, is
therefore of practical importance. Several studies have suggested certain STN detection
algorithms, based mainly on combinations of quantitative measures (Falkenberg et al 2006,
Danish et al 2008, Zaidel et al 2009, Wong et al 2009, Cagnan et al 2011, Pinzon-Morales et al
2011). Nevertheless, application of a robust single-biomarker approach, having the inherent
potential to simplify and accelerate intraoperative nucleus detection, has not been reported in the
literature before. Most importantly, to the best of our knowledge, no extensive study has to date
been published on an automatic algorithm applicable to the entire electrophysiological procedure,
i.e. encompassing both MER and intraoperative stimulation, and pointing to the finally selected

site for implantation of the DBS electrode.

Pathological synchronization is considered to be related to the severity of motor impairment in
PD (Kiihn et al 2009, Pogosyan et al 2010). Furthermore, there is recent electrophysiological
evidence regarding patients with movement disorders but also modeling studies suggesting that
alterations in the abnormal discharge pattern of STN neurons and disruption of neuronal
synchronization probably explain the therapeutic mechanism of action of STN-DBS (Carlson et al
2010, Walker et al 2011, Hauptmann et al 2007, Modolo and Beuter 2009, Wilson et al 2011,
Johnson et al 2013). Both of the above facts implicitly point to the possible usefulness of methods
from stochastic nonlinear dynamics in the context of clinical decision making during surgical
implantation of the DBS electrode. In that vein, in the present work, an attempt was made to
develop a novel integrated approach based on two principal biomarkers, the multivariate phase
synchronization index, Q and the Lyapunov exponent, A of a stochastic phase model, for optimal
target identification during DBS surgery. To address this goal, we relied on the assessment of
multi-scale neuronal activity through MER. Essentially, the presence of noise constituted a key
factor for the twofold objective of the current study: on the one hand, application of phase

synchronization indices had to be robust against the impact of measurement noise, while on the
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other hand, intrinsic and extrinsic components of the noise were of paramount importance in the

phase model employed.

The results of this work signified the high discriminative power of multivariate phase

synchronization index, Q (as well as of the bivariate phase synchronization indices p, , and
P13) in the context of STN localization, a procedure forming the first part of

electrophysiological monitoring (Marceglia et al 2010). Application of data-driven optimal
filtering on the examined signal components (Rossberg et al 2004) in combination with
neighbourhood-based phase estimation (Sun et al 2008) ensured remarkable stability of feature
evolution inside the nucleus against the presence of noise. To the best of our knowledge a single-
biomarker approach displaying similar stability for intraoperative nucleus detection has not been
presented in the literature before. This biomarker was subsequently exploited as one of the
constituent parameters of the stochastic phase model. Principally, the proposed model held the
ability to reproduce the desynchronizing effect of periodic stimulation. This fact was validated
through both the invariant measure and the Lyapunov exponent, A of the stochastic phase map.
There are two principal reasons that could have contributed to this result. Firstly, selection of a
Type-II PRC as the phase sensitivity function to common (extrinsic) noise (Abouzeid and
Ermentrout 2009), guaranteed to a great extent that the model would simulate the pathological
synchronous state in the absence of any stimulus, yielding a negative Lyapunov exponent. On the
contrary, a Type- I PRC would rather be linked to the normal desynchronized state (Farries and
Wilson 2012). Secondly, application of a type 0 PRC, potentially optimal for stochastic
desynchronization (Hata et al 2011), contributed to simulation of one of the hypothetical
mechanisms of high frequency stimulation. Eventually, on the basis of the simulations proposed,

a neurosurgeon may be able to determine the optimal stimulation sites with enhanced sensitivity.

The proposed phase model was developed incorporating multiple factors affecting neuronal
dynamics: neuronal coupling, intrinsic independent and extrinsic common noise sources, and
periodic forcing. Thus, the derived Lyapunov exponent, A was combinatorially correlated with the
set of the respective parameter values and not uniquely determined by multivariate phase
synchronization index, Q. Some previous studies (Tass et al 2006, Nabi et al 2013) have
suggested similar models in the framework of desynchronizing stimulation, yet only embodying
the effect of intrinsic noise, disregarding extrinsic noise sources (Teramae and Tanaka 2004).
Additionally, the above models did not consider the phase dependence of the noise (Ermentrout
and Saunders 2006), thus noise forcing was not necessarily multiplicative (Ly and Ermentrout
2011). Most importantly, in this work, intending to implement a more realistic model, common
noise has been considered as colored, namely as an Ornstein-Uhlenbeck process with specific

correlation time (Galan 2009). For this reason, a transformation of the initial phase model to a
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white noise Langevin equation has been required, introducing the effective drift and diffusion

coefficients (Nakao et al 2010).

In what concerns the simplifications and limitations of the presented approach, first and foremost,
application of the proposed method cannot be regarded as a complete substitute for functional
stimulation techniques. Assessment of stimulation-induced side-effects is undoubtedly a
significant factor in clinical decision making during intraoperative macrostimulation (Schlaier et
al 2013) and was not quantitatively incorporated in the present study. However, it should be
pointed out that intraoperative quantification of the therapeutic window (intensity threshold for
side effects/intensity threshold for clinical effects) depends to a large extent on the assessment of
the therapeutic effects of stimulation (Marceglia et al 2010). Besides, a relatively low threshold
for the appearance of clinical effects is evidently associated with reduced probability that a side-
effect will be evoked at the same intensity, since the most common side effects induced by STN-
DBS, i.e. pyramidal tract side effects, occur at a median amplitude of 4.8V (Tommasi et al 2008).
The above facts in combination with the good consistency of the proposed scheme with expert
annotations, assign a specific value to the presented approach. Considering further the limitations
of this work, the fact that single units are not isolated prior to feature evaluation would likely
have influenced the results of our study. Still, similar approaches in the context of automatic
algorithms for nucleus localization have been adopted by other studies as well (Wong et al 2009,
Cagnan et al 2011). Last, it should be noted that the extent to which simulations of the stochastic
model would be distinct for different types of phase response functions to the noise sources was

not hereby characterized.

Further perspectives include assessment of the predictive value of the stochastic model
considering data from more patients and other clinical implementations of DBS (Mallet et al
2008, Chabardes et al 2013, Fytagoridis et al 2012). Particularly, in patients with obsessive-
compulsive disorder (OCD), evidence that the efficacy of STN-DBS probably lies in alteration of
the abnormal bursty activity pattern observed in the associative-limbic part of the nucleus (Piallat
etal 2010, Welter et al 2011) implicitly indicates possible suitability of the current approach for
DBS electrode localization. At the same time, appropriate modification of the presented
methodology to include quantitative measures reflecting the evaluation of stimulation-induced
side effects is expected to enhance its practicability in the surgical procedure. Furthermore, in
light of evidence pointing to a possible correlation between intra- and postoperative outcomes of
clinical evaluation (Xie et al 2010), proper adaptation of the proposed scheme to DBS
programming could potentially facilitate clinical decision making postoperatively. Finally, due to
the considerably realistic nature of the stochastic phase model employed, model variations could
prove useful for investigating the clinical efficacy induced by alternative patterns of DBS

stimulation (Brocker et al 2012), as described in the following chapter.
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Evaluating the Efficiency of Alternative Patterns of
Subthalamic Nucleus Deep Brain Stimulation for
Parkinson’s Disease and Obsessive-Compulsive

Disorder in a Data-Driven Computational Model

Temporal pattern of stimulation is a new dimension of therapeutic innovation.

W M Grill (2015)"

Abstract

Objective. Recent experimental and computational modeling evidence has signified the efficiency
of alternative patterns of stimulation; however, no indications exist for treatment-refractory OCD.
Here, we comparatively simulate the desynchronizing effect of standard (regular at 130Hz) versus
temporally alternative (in terms of frequency, temporal variability and the existence of bursts or
pauses) patterns of STN-DBS for PD and OCD, by means of a stochastic dynamical model and
two microelectrode recording (MER) datasets. Approach. The stochastic model is fitted to
subthalamic MERs acquired during eight surgical interventions for PD and eight surgical
interventions for OCD. For each dynamical system simulated, we comparatively assess the
invariant density (steady-state phase distribution), as a measure inversely related to the

desynchronizing effect yielded by the applied patterns of stimulation. Main results. We
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demonstrate that high (130 Hz) - and low (80 Hz) - frequency irregular patterns of stimulation,
and low-frequency periodic stimulation interrupted by bursts of pulses yield in both pathologic
conditions a significantly stronger desynchronizing effect compared with standard STN-DBS and
distinct alternative patterns of stimulation. In PD, values of the invariant density measure are
proven to be optimal at the dorsolateral oscillatory region of the STN including sites with the
optimal therapeutic window. Significance. In addition to providing novel insights into the
efficiency of low-frequency non-regular patterns of STN-DBS for advanced PD and treatment-
refractory OCD, this work points to a possible correlation of a model-based outcome measure
with the clinical effectiveness of stimulation and may have significant implications for an energy-

and therapeutically-efficient configuration of a closed-loop neuromodulation system.

5.1. Introduction

It is now increasingly being recognized that application of temporally alternative patterns of
stimulation could potentially lead to a more effective symptom control, reduced side-effects, and
lower energy requirements (Sarem-Aslani and Mullet 2011, Gross et al. 2013, Hess et al. 2013).
Indeed, there is currently a growing body of experimental evidence pointing to an equivalent or
even improved clinical efficacy of specific characteristics of temporally non-regular compared
with regular patterns of stimulation. Accordingly, temporally non-regular thalamic DBS has been
reported to suppress tremor equally effectively with regular stimulation, if there are no long
pauses (Birdno et al. 2012, Swan et al. 2013). On the contrary, Kuncel et al. (2012) reported that
thalamic stimulation characterized by pauses for a maximum duration of 40% of the total delivery
time may be as effective as regular stimulation on tremor reduction. Very interestingly, high-
frequency non-regular STN-DBS, if not highly irregular, has been documented to ameliorate
bradykinesia in PD more effectively than regular stimulation (Brocker et al. 2013, Swan et al.
2013). Furthermore, clinical studies addressing the efficacy of high (= 130 Hz) versus low-
frequency (< 80 Hz) STN-DBS for PD are pointing to a rather similar or patient-specific effect of
low-frequency stimulation compared with high-frequency stimulation, in reference to axial
symptoms (Sidiropoulos et al. 2013, Vallabhajosula et al. 2014, Ricchi et al. 2012), involuntary
movements (Merola et al. 2013) or overall motor function (Tsang et al. 2012, Khoo et al. 2014).

Appropriately designed waveforms may be advantageous over the traditional rectangular pulse in
terms of both clinical efficiency and energy consumption (Foutz and McIntyre 2010, Hofmann et
al. 2011, Wongsarnpigoon and Grill 2010). As well, interleaving programming with two distinct
amplitudes of stimulation may optimize the clinical outcome of STN-DBS for PD (Wojtecki et al.
2011). Finally, the protocol of coordinated reset stimulation constitutes a radical deviation from

standard DBS patterns and has been designed to induce strong neuronal desynchronization and
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long-term modulation of synaptic plasticity (Tass 2003, Tass et al. 2006, 2012, Tass and
Hauptmann 2007, 2009, Tass and Majtanik 2006, Hauptmann et al. 2009, Hauptmann and Tass
2007, 2009, 2010, Hauptmann et al. 2007, Lucken et al. 2013, Lysyansky et al. 2011 (a), (b),
Popovych and Tass 2012). Two proof-of-principle studies have pointed to the potential efficiency
of this neuromodulation paradigm (Tass et al. 2012, Adamchic et al. 2014) that is receiving
increasing attention in the field of DBS over the last years (Rubin et al. 2012, DeLong and
Wichmann 2012, McIntyre et al. 2014, Lourens et al. 2015).

In view of the fact that temporally alternative patterns of stimulation may lie at the core of closed-
loop DBS strategies (Feng et al. 2007 (b), Wilson and Moehlis 2014) that have been proven
superior in ameliorating parkinsonism (Rosin et al. 2011), further investigations seem to be of
importance, in order to gain additional insights into the specific characteristics that render these

patterns effective for the treatment of movement and neuropsychiatric disorders.

Building upon the hypothesis that standard and temporally alternative patterns of STN-DBS exert
their local-level effect through desynchronization of subthalamic neuronal activity, in this study,
we employ methods from stochastic nonlinear dynamics (Gardiner 1985, Kuramoto 1984,
Winfree 2001, Pikovsky et al. 2001) and two microelectrode recording (MER) datasets to
comparatively assess the desynchronizing effect of standard (regular at 130Hz) versus eleven
temporally alternative patterns of STN-DBS for PD and OCD, and to further determine the
particular pattern characteristics correlated with a significantly stronger desynchronizing effect.
Particularly, on grounds of the stochastic phase model developed in chapter 4, describing an
ensemble of globally coupled chaotic oscillators driven by common, independent noises, and
external forcing (figure 5.1), we evaluate, for a total of 2x96 subthalamic MERs (each dataset
acquired during STN-DBS for PD and STN-DBS for OCD, respectively) the invariant density
(steady-state phase distribution) (Hata et al. 2010, Yamanobe 2011), as a quantity herein
reflecting the desynchronizing effect of the applied patterns of stimulation on the subthalamic
neural population activity. We corroborate the robustness of this measure in discriminating
desynchronization scenarios through comparisons with an alternative outcome variable, the
Lyapunov exponent, and provide indications for its possible correlation with the clinical
effectiveness of stimulation. In the same framework, we introduce specific modifications with
respect to the collective dynamics, parameters and functions of the model, thereby significantly
increasing its sensitivity. The validity of our approach is supported through important indirect

evidence.

Stimulation patterns are designed to comparatively assess the desynchronizing effect of
stimulation with varying temporal characteristics including stimulation frequency and temporal

regularity. Accordingly, temporally alternative patterns of stimulation include either high-
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frequency (130 Hz) non-regular or low-frequency (80 Hz), regular or non-regular, pulse trains. In
the same context, we aim to determine the specific characteristics of non-regular stimulation
patterns correlated with a significantly stronger desynchronizing effect: irregularity per se, long
pauses or bursts. Respectively, non-regular patterns are either generated by a gamma process with
increasing degrees of temporal variability (Dorval et al. 2010) or composed of constant-rate
pulses interrupted by long pauses (Kuncel et al. 2012) or bursts of pulses (Birdno et al. 2012,
Brocker et al. 2013) (figure 5.2). The desynchronizing effect of the examined patterns of
stimulation is further assessed at locations of oscillatory activity within the dorsolateral
sensorimotor region versus locations of non-oscillatory activity within the ventromedial limbic
region of the STN of patients with PD. The results provide important information relevant to the

development of therapeutically- and energy-efficient closed-loop DBS systems.

5.2. Patients and Methods

5.2.1. Data Description

During an one-year period, 8 patients with idiopathic PD underwent bilateral STN-DBS at the
Department of Neurosurgery, Evangelismos General Hospital of Athens. Informed consent was
provided by each patient. Stereotactic surgery and patients’ clinical characteristics have been
described in chapter 4 (see also Table 4.1, cases 1-7). A commercially available MER system
(Leadpoint TM Neural Activity Monitoring System, Medtronic Inc., Minneapolis, MN) was used
intra-operatively for dadta acquisition. Five tungsten microelectrodes (2mm apart, tip diameter <
25 um, Medtronic Inc., Minneapolis, MN) were used for recording. The recorded signals were
pre-amplified, band-pass filtered between 0.1 Hz and 10 kHz, and sampled at 24 kHz. A total of
96 randomly selected, stable MERs corresponding to sites lying within the intraoperatively
defined borders of the STN, and acquired at rest, were initially digitally bandpass filtered off-line
at 1-300 Hz and 300 Hz - 6 kHz, applying four-pole Butterworth filters (Matlab, Mathworks,
Natick, MA).

Secondly, during an one-year period 8 patients with treatment-refractory OCD underwent
bilateral STN-DBS at the Grenoble University Hospital. Informed consent was provided by each
patient, while strict ethical guidelines and established inclusion criteria were considered (National
Consultative Ethics Committee). Patients’ clinical characteristics are provided in table 5.1
(including cases O1-06 and O9 (Piallat et al. 2011) and case P5 (Bastin et al. 2014 (b))).
Stereotactic surgery has been described in detail elsewhere (Piallat et al. 2011). The anatomical
target was placed in the anteromedial (associative-limbic) part of the STN, 2mm anterior and 1

mm medial to the target used during STN-DBS for PD (Mallet et al. 2008). Five tungsten
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Table 5.1. Clinical details of patients with treatment-refractory OCD.

Medication (Total
Daily Dose-mg)

Age Disease pre-op
(years) duration Hemisphere(s) oCD YBOCS  GAF CGI Other
Case and sex (years) tested Type pre-op  pre-op  pre-op SNRI and SRI FGA and SGA Medications
P5 34m 13 Right STN/Left SN~ 0ubvChecking 16416 35 B Coenie 105 Cormomngie 150 eddsinl LI
compulsions Buspirone 30
03 42.f 25 Right STN/Left STN 15+15 36 5 Fluoxetine 60 1 ./ epromazine 25 Bromazepam 6
Venlafaxine 50
06 37.f 5 Right STN 14+18 33 6 Venlafaxine 150 LA D
Hydroxizine 25
0Ol 39,m 18 Right STN Aggressive obsessions  18+19 26 6 Fluvoxamine 200 Pimozide 1 Clonidine 0.3
02 43f 32 Right STN/Left STN  Ordering obsessions/ 1o 32 6 Sertraline 100 Risperidone 4 Alprazolam 0.75
Checking compulsions
Clobazam 5
04 34,f 24 Right STN/Left STN 17+17 42 5 Escitalopram 30 Lamotrigine 75
Mianserine 20
Contamination
05 35,f 15 Right STN/Left STN  obsessions/ Washing 14+15 36 6 Paroxetine 60
compulsions
Contamination
09 36,m 17 Right STN/Left STN  obsessions/ Washing 17+15 45 5 Paroxetine 40
compulsions

m, male; f, female
YBOCS (Yale-Brown Obsessive Compulsive Scale) scores range from 0 to 40, with higher scores indicating worse function. The 2 YBOCS subscores (evaluating obsessions or
compulsions, respectively) range from 0 to 20.
GAF (Global Assessment of Functioning) scores range from 1 to 90, with higher scores indicating the normal global functional status.
CGI (Clinical Global Impression) scores range from 1 to 7, with higher scores indicating the severity of the disease.
SNRI: serotonin and norepinephrine reuptake inhibitors; SRI: serotonin reuptake inhibitors; FGA: first-generation antipsychotics; SGA: second-generation antipsychotics.
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Figure 5.1. The proposed stochastic dynamical model. Determination of the collective dynamics, parameters and
functions of the model, based on each MER, was improved in order to more realistically capture the underlying
neuronal dynamics. Patterns of stimulation are detailed in figure 5.2.

microelectrodes (2mm apart, tip diameter < 25 um, FHC Inc., Bowdoinham, ME, USA) were
used for recording. Intraoperatively, signals were amplified, band-pass filtered at two frequency
bands (1- 300 Hz and 300 Hz - 6 kHz) and sampled at 3 kHz and 48 kHz, respectively, using the
Neurotrek System (Alpha-Omega Engineering, Nazareth, Israel). A total of 96 stable
MERscorresponding to sites lying within the intraoperatively defined borders of the STN, and
acquired at rest, were randomly selected for off-line analysis (Matlab, Mathworks, Natick, MA).

For both data sets we proceeded to the assessment of three-scale neuronal activity as described in
chapter 4: (a) spiking activity of one or just a few large isolated cells quantified through the spike
detection process, (b) sub-noise level spiking activity of the surrounding neural population

extracted based on the background unit activity extraction process, and (c) activity of large neural

populations quantified through the LFPs. All signals were further down-sampled to 1 kHz.

5.2.2. The Phase Model
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We consider the following Langevin equation (by virtue of the Stratonovich interpretation
(Gardiner 1985)) describing an ensemble of N identical phase oscillators with global nonlinear
coupling, driven by intrinsic independent and extrinsic common noises, but also subject to

external forcing (figure 5.1):

dg:

dr :w+%§5in(2“(¢j - +a))+O-IRI(¢i)gi(t)+O-CRC(¢i)77(t)+A(¢i:ﬂ) St—1;)

J= k (5.1

where ¢, € [0,1) is the phase variable of the ith oscillator, @ is its natural frequency, K >0 is the

coupling strength and a is the phase shift, inherent to nonlinear coupling (Rosenblum et al. 2007,

Temirbayev et al. 2012, Baibolatov et al. 2009). We consider that &;(¢) is zero mean Gaussian
white noise, added independently to each oscillator, with correlation specified

by <§ ( )f ( )> O 5(t t) where 6; =1 if i=j and 0 if i # j .We regard n(t) as colored

noise with zero mean, unitary variance and autocorrelation function C(¢). Parameters o and
o are representing the intensity of independent and common noise, respectively. Phase
sensitivity functions R¢ (¢, ) and R;(¢; ) represent the linear response of the phase variable ¢, to
the respective infinitesimal noise perturbations, while A(¢I- , ,8) is the phase response curve (PRC)
to a single (DBS) impulse (Kuramoto 1984, Winfree 2001) (figure 5.3B). Parameter S represents

the stimulus amplitude and 7, are the input times. Introducing the Kuramoto order parameter

2

defined by re?™V = % z 279 (Kuramoto 1984, Strogatz 2000) where r characterizes the

degree of synchrony and i is the mean phase of the oscillators, and defining the effective drift

and diffusion coefficients, vand D, respectively (Nakao et al. 2010), the Stratonovich Eq. (5.1)

is converted to an equivalent Ito stochastic differential equation (Gardiner 1985):

%=a)+Krsin(Zn(l//—¢+a(K,r)))+v+(aIRI() D)+ L R(Nonl9)+D) 52
+A(¢,ﬂ)§5(t—rk)

0 1
where v~ oc? [ds C(s)[ dp R¢.(¢)Re (- ws) and D~ o jdsc jd¢R d)Rc (¢ - ws). (5.3)
0 0

—00
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Figure 5.2. Exemplary temporal patterns of stimulation designed to determine the specific characteristics correlated
with a strong desynchronizing effect of STN-DBS for PD and OCD. (A) Patterns 1 and 7: regular stimulation at 130 Hz
and 80 Hz, respectively; Patterns 2 and 8 : irregular stimulation with a mean frequency of 130 Hz and 80 Hz,
respectively, and 25% temporal variability; Patterns 3 and 9: irregular stimulation with a mean frequency of 130 Hz and
80Hz, respectively, and 50% temporal variability; Patterns 4 and 10: irregular stimulation with a mean frequency of
130 Hz and 80 Hz, respectively and 75% temporal variability; Patterns 5 and 11: periodic stimulation with a mean
frequency of 130 Hz and 80Hz, respectively, interrupted by bursts of pulses; Patterns 6 and 12: periodic stimulation
with a mean frequency of 130 Hz and 80Hz, respectively, interrupted by pauses (B) Respective probability density
functions.

5.2.3. Application of Stimulation Patterns

Phase eq. (5.2) is solved through the stochastic map from one stimulus cycle to the next (Nesse

and Clark 2010) (figure 5.3A). We consider that the inter-impulse interval (IP1) 4z, =7,,, — 7,

either obeys the gamma distribution and increasing degrees of temporal variability (Dorval et al.
2010), or forms a periodic stimulus train. Periodic stimulus trains are either uninterrupted (regular
stimulation) or interrupted by either periods of long pauses or periods of bursts of pulses for 30%
of the total delivery time (Kuncel et al. 2012, Birdno et al. 2012, Brocker et al. 2013) (figure
5.2). All stimulus trains have either a mean frequency of 130 Hz or a mean frequency of 80 Hz.

The phase dynamics during the IPI 47, is described by
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Buon =y +(0+ Krsin(2nly —4, +alK.r)+ v+ T Ri(,)x (o1 R:(8,)+ VD 4,
+ (o1, (9, )+ D)Wz, )+ 46, 5) 54
where W(t) is a Wiener process with probability density function (PDF) fo , which is a

Gaussian with zero mean and variance 47 . The stochastic map is defined by the Perron-
Frobenius operator, that maps the density of phases at the time of the (1 + 1)z impulse, p,,;(¢),
onto the density of phases at the time of the nth impulse, p, (¢) (Ermentrout and Saunders 2006,

Nesse et al. 2007, Yamanobe and Pakdaman 2002, Hata et al. 2010):

g g j_[mmn(zﬁ(w_¢'+a(1<,r)>>+v+‘;IR;(¢' alRl(¢')+«/5)ijr—A(¢’,ﬁ)
Pn+1(¢) = .([J(;d(d T)Z}fW’ (01R1<¢')+ \/5)

) ) 1 Ny o (5.5)
G(AT) (TIRI(¢')+\/B pn(¢)d¢

where G(Ar) is the PDF of the IPIs (figure 5.2B). Dicretizing the density into M =500bins of
size 1/ M , the stochastic map for each IPI is approximated using a 500x 500 transition matrix
(stochastic kernel) A(¢’,¢) having all positive entries, a spectral radius of 1 and possessing the

strong Perron-Frobenius property (Ermentrout and Saunders 2006, Yamanobe and Pakdaman
2002, Noutsos and Tsatsomeros 2008) (figures 5.4, 5.6). The iterated mapping (5.4) converges to
the steady-state phase distribution, i.e. the invariant density, p (¢), represented by the

eigenvector corresponding to the dominant (unit) eigenvalue of the transition matrix (figures 5.5,

1
5.7). This distribution is normalized as Id¢ Py (¢) =1. The variance of the invariant density,
0

Var(p, (¢)), across phase, ¢ , is a measure inversely related to the desynchronizing effect of the

applied pattern of stimulation. The Lyapunov exponent is an alternative measure reflecting the

neuronal (de)synchronization dynamics and can be calculated as

1 ©
A=(nldg,,, /dg,|) = [ dg[ d(47)xIn]l+ (- 2nKr cos(2n(y — ¢ +a(K, 7))
0 0

+ 2L Rl 7 (9)+D) )ar + 216, 5) Gl p 9
(5.6)
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Figure 5.3. (A) The phase sensitivity function, RC(¢) (type-1I PRC), deforming with increasing common noise
intensity, o (left) and the phase response curve, A(¢, ﬂ) (type 0 PRC), used to simulate the desynchronizing effect of

DBS (right). (B) Stochastic kernel function, A(¢’, ¢), for increasing stimulus amplitude, f, of irregular stimulation with

a mean frequency of 130Hz and 25% temporal variability, based on the analysis of the recording ‘Medial -3.653mm,
left STN, case O1’ acquired during DBS for OCD. The desynchronizing effect of stimulation is reflected in the
increasing split width, w, with increasing stimulus amplitude, 5.

A positive sign of the Lyapunov exponent indicates neuronal desynchronization, while a negative
sign indicates neuronal synchronization. Remarkably, Hata et al. (2010) suggested that subtle
differences between the desynchronizing effect of heterogeneous patterns of stimulation cannot
be optimally captured through the Lyapunov exponent. Instead, they demonstrated that the

variance of the Lyapunov exponent
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Var(1)= <{1n|d¢,,+1 /d¢, |}2> - {<ln |y |/dd, >}2

2
sty el 0
0 0 + A'(¢,ﬂ)l
X AT x pst
2
jd¢jd Ar In|l + ( 2nKr cos(2n(t//-¢ + a(Ki’)))+ %Rf(¢)(O-IRI (¢)+ ‘/B)JAT + A'(Qﬂ*
xG Ar x Py (4)
(5.7)

may potentially be a more appropriate outcome measure. In this study, we opt for the variance of

the invariant density, Var(p,, (#)), across phase, ¢, rather than the Lyapunov exponent, 4, or the

variance of the Lyapunov exponent, for the final comparative assessment. The rationale behind
this selection lies in the fact that the invariant density is a property inherent to the stochastic phase
transition operator employed in Eq. (5.5) (Yamanobe et al. 2011) and may therefore reliably
characterize the asymptotic dynamics of neuronal responses to distinct stimulation paradigms.
Results are compared with those obtained through the employment of the Lyapunov exponent and

the variance of the Lyapunov exponent for the PD dataset.

Furthermore, in view of evidence correlating locations of oscillatory activity in the dorsolateral
sensorimotor STN with the optimal site of DBS for PD (Guo et al. 2013, Herzog et al. 2004), we
assess the dependence of the desynchronizing effect of the examined patterns of stimulation on
the location of the recording site within the STN of patients with PD (i.e. dorsolaterally or
ventromedially) and on the presence or absence of oscillatory activity. We also consider the sites
having been verified intra-operatively to yield the optimal therapeutic window (Table 4.1).
Oscillatory regions are discriminated from non-oscillatory regions by means of the chaotic
attractor (Babloyantz and Destexhe 1986, Ott 2002) reconstructed from the optimally filtered
(Rossberg et al. 2004) spiking activity, using time delay, 7 =1 and embedding dimension, d =3
(see section 4.6.4.6).

Repeated measures analysis of variance (ANOVA) (Trujillo-Ortiz et al. 2004) with Tukey
honestly significant difference (HSD) post-hoc comparisons, and the two-sample t-test are used to

determine the statistical significance of the differential effect of stimulation.

5.2.4. Determination of Model Parameters and Functions
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Common noise has been proven to reinforce synchronization in populations of globally coupled
phase oscillators (Nagai and Kori 2010, Lai and Porter 2013). In line with these indications and in
order to simulate the presence of neuronal synchronization within the STN as a characteristic of
the pathological unstimulated state, we incorporate the effect of common noise in Eq. (5.1), in
addition to global coupling. Furthermore, adapting the stochastic dynamical model developed in
chapter 4, in this chapter, we improve the determination of the collective oscillatory dynamics, as
well as of specific parameters and functions so as to more realistically capture the underlying
neuronal activity corresponding to each MER. Accordingly, we allow for nonlinear coupling, i.e.
nonlinear dependence of phase shift, @ , on the amplitude of the collective oscillation
(a=a(K,r)), and set a equal to 1/4, so as to captivate the partially synchronous quasiperiodic
dynamics (0 < 7 < 1) of the subthalamic neuronal activity in the pathological unstimulated state
(Rosenblum et al. 2007, Temirbayev et al. 2012, Baibolatov et al. 2009). Mean phase, i , is set
equal to the mean phase of the MER signal components, while natural frequency, @, is estimated
using the mean firing rate of the recorded unit under examination. Extrinsic noise intensity, o¢,
and autocorrelation function, C(t), are evaluated on the basis of the respective LFP signal (Moran
and Bar-Gad 2010, Wang et al. 2004). Moreover, we consider R (¢) as a type-1I PRC, the shape
of which is modified according to the extrinsic noise intensity, o, (Abouzeid and Ermentrout
2010) in order to increase the phase sensitivity to common noise and to incorporate heterogeneity
as a physiological attribute of the PRC (Ly 2014) (figure 3B). After determining the above
parameters, the effective drift and diffusion coefficients, v and D, may be approximately
evaluated by applying Eq. (5.3). The remaining parameters, i.e. the degree of synchrony, », the
coupling strength, K , and the intrinsic noise intensity, oy, as well as the functions A(¢, ,B) (type O

PRC) (figure 3A) and R, (¢) (type-1 PRC) are determined according to the analysis in chapter 4.

In order to provide evidence for the realistic substructure of the proposed model, we consider null
stimulus amplitude (#=0) in Eq. (5.1) and assess the Lyapunov exponent along each MER
trajectory, as a quantity reflecting the neuronal synchronization dynamics in the pathological
unstimulated state. The Wilcoxon rank sum test is used to determine the statistical significance of

the differences within vs. outside the STN borders.

5.3. Results

5.3.1. Evidence for the Realistic Substructure of the Stochastic Phase Model

Figure 5.4A displays an example of neuronal activity recorded during a case of STN-DBS for PD.
Evaluation of the synchronization index, Q, indicated the presence of increased neuronal

synchronization within the STN. Similarly, on the basis of the stochastic phase model, higher
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negative values of the Lyapunov exponent, A, i.e. increased neuronal synchronization, were
obtained within the STN. This result was generalized for a total of 16 acceptable MER
trajectories acquired during eight STN-DBS interventions for PD (figure 5.4B). In particular,
statistical analysis corroborated the ability of the model to simulate the presence of significant
differences in the mean neuronal synchronization dynamics within vs. outside the STN borders
(p<.05, Wilcoxon rank sum test), in accordance with strong indications that neuronal
synchronization in the pathological unstimulated state is dramatically increased within the STN
compared with the dynamics outside the STN borders (Weinberger et al. 2006, Kuhn et al. 2005).
Notably, almost equivalent negative values of the Lyapunov exponent (i.e. equivalent neuronal
synchronization dynamics) were obtained for either oscillatory or non-oscillatory regions of the
STN (p=0.42, Wilcoxon rank sum test). This outcome is in line with evidence that non-oscillatory
synchronization may coexist with oscillatory synchronization within the dopamine-depleted basal
ganglia, pointing to the fact that synchronization and oscillatory activity might not share common
pathophysiological mechanisms in PD (Hammond et al. 2007, Heimer et al. 2002). Further
important evidence for the validity of the stochastic phase model is provided through the results

presented in section 5.3.4.

5.3.2. Neural Activity-Specific Degree of the Desynchronizing Effect of the Applied

Patterns of Stimulation

Figure 5.3B depicts an example of stochastic kernels, A(¢’,¢), derived based on the analysis of

subthalamic neuronal activity recorded at a specific site depth during a case of DBS for OCD and
simulating the application of increasing amplitude values, f, of irregular stimulation with a mean
frequency of 130 Hz and 25% temporal variability. Remarkably, the desynchronizing effect of
stimulation is reflected in the increasing split width, w, with increasing stimulus amplitude.
Results illustrated in figure 5.5 were obtained by application of the stochastic model to two pairs
of MERs corresponding to sites lying within the intraoperatively confirmed borders of the STN
and acquired during DBS for PD (figures 5.5A-B) and DBS for OCD (figures 5.5C-D),
respectively. Lower values of the variance of the invariant density, Var(p,, (¢)), indicate a
stronger desynchronizing effect of the applied pattern of stimulation. Principally, the
desynchronizing effect of the applied patterns of stimulation proved to be dependent on the

recording site, i.e. neural activity-specific.
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hemisphere during STN-DBS for PD - case 8. Evaluation of the synchronization index, O, (upper right panel) indicated
the presence of increased neuronal synchronization within the STN borders (depth value 0 corresponds to the
anatomical target point determined preoperatively). This dynamics was corroborated by the use of the Lyapunov
exponent, 4, calculated on the basis of the stochastic phase model (lower right panel). (B) Assessment of the

mean t standard error mean Lyapunov exponent, J, based on the stochastic phase model and a total of 16 acceptable
MER trajectories acquired during eight STN-DBS interventions for PD (left) (in 8 out of 16 MER trajectories neuronal
activity was in addition recorded below the STN). Statistical analysis corroborated the propensity of the model to
simulate significant differences in the mean neuronal synchronization dynamics within vs. outside the STN borders (*

p<.05, Wilcoxon rank sum test). Notably, there was no significant difference of the Lyapunov exponent at oscillatory
compared with non-oscillatory regions of the STN (p=0.42, Wilcoxon rank sum test) (right).
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5.3.3. Stronger Desynchronizing Effect of High- and Low-Frequency Irregular

Patterns of Stimulation compared with Standard Stimulation

Figure 5.6 displays, for each pattern of stimulation, the variance of the invariant density as a
function of stimulus amplitude and averaged across the datasets acquired during DBS for PD
(figure 6A) and DBS for OCD (figure 5.6B). Repeated measures ANOVA corroborated the
presence of statistically significant differences in the mean desynchronizing effect of the
examined patterns of stimulation (Fpp=4133.569, p<.0001 and Focp=2577.668, p<.0001). In case
of PD, Tukey-HSD post-hoc comparisons indicated statistically significant differences between
the desynchronizing effect of all patterns of stimulation (p<.0001), except within non-regular
patterns of stimulation generated by a gamma process (p>.05). In case of OCD, post-hoc
comparisons revealed statistically significant differences between the desynchronizing effect of
all patterns of stimulation (p<.01), except between low-frequency periodic stimulation and high-
frequency periodic stimulation interrupted by bursts of pulses (p>.05) and within non-regular
patterns of stimulation generated by a gamma process (p>.05). Most importantly, in either PD or
OCD, irregular patterns of stimulation and low-frequency periodic stimulation interrupted by
bursts of pulses yielded a significantly stronger desynchronizing effect compared with standard
stimulation (p<.0001) and distinct alternative patterns of stimulation (p<.0001). Furthermore, the
stronger desynchronizing effect of irregular patterns compared with standard stimulation was

verified to be consistent across MERs, i.e. not neural activity-specific.

5.3.4. Possible Correlation between the Invariant Density Measure and Clinical

Effectiveness of Stimulation in PD

Figure 5.7A displays an example of the attractor reconstructed in a three-dimensional phase space
from the spiking activity recorded at an oscillatory and a non-oscillatory region of the STN,
during a case of DBS for PD. In general, these regions could be differentiated by means of the
distinct spatial pattern of the reconstructed attractor. We subsequently assessed the variance of the
invariant density based on a total of 30 recordings of oscillatory activity at the dorsolateral STN,
including the sites having been verified intra-operatively to yield the optimal therapeutic window,
and a total of 30 recordings of non-oscillatory activity at the ventromedial STN, acquired during
eight DBS interventions for PD. Simulations revealed a significantly stronger desynchronizing
effect of each examined pattern of stimulation at oscillatory regions of the dorsolateral
sensorimotor STN, including the sites with the optimal therapeutic window, compared with non-
oscillatory regions of the ventromedial limbic STN (p<.0001, two-sample t-test) (figure 5.7B).
The significance of these results is multifold: first they provide a further important piece of
evidence in support of the validity of the stochastic phase model, since they are in line with strong

indications that locations of oscillatory activity at the dorsolateral STN are correlated with the
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the same letter are significantly different (p<.01). Principally, the desynchronizing effect of the examined patterns of
stimulation proved to be neural-activity specific.
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Figure 5.6. Variance of the invariant density, Var(pst (¢)), for the examined patterns of stimulation in PD (A) and OCD (B).
The upper panels in (A) and (B) display values of Var(p st (¢)) (mean * standard error mean) as a function of stimulus

amplitude, S, and averaged across the datasets acquired during STN-DBS for PD and STN-DBS for OCD, respectively. The
lower panels in (A) and (B) depict the respective mean + standard deviation Var(pst (¢)) Lower values of the invariant

density, Var(p st (¢)), indicate a stronger desynchronizing effect of stimulation. Repeated measures ANOVA indicated the

presence of statistically significant differences in the mean desynchronizing effect of the examined patterns of stimulation
(Fpp=4133.569, p<.0001 and Focp=2577.668, p<.0001). Stimulation conditions that do not share the same letter are
significantly different (p<.01, post-hoc analysis).

optimal site of 130Hz regular stimulation in PD (Guo et al. 2013, Herzog et al. 2004); second,
they highlight a further correlation of locations of oscillatory activity at the dorsolateral STN with
the optimal desynchronizing effect of alternative patterns of DBS for PD, including low-
frequency irregular stimulation; and, third, they point to a possible correlation of the principal
model outcome measure, the variance of the invariant density, with clinical effectiveness of
stimulation, since values of this measure are proven to be lower at the dorsolateral oscillatory
region of the STN that has been consistently correlated with the best clinical outcome of STN-
DBS for PD (Guo et al. 2013, Herzog et al. 2004), as well as at sites having been verified intra-

operatively to yield the optimal therapeutic window.

Remarkably, clinical effectiveness of low-frequency STN-DBS on axial parkinsonian symptoms
might not be sustained over time (Sidiropoulos and Moro 2014), while the therapeutic effect of
DBS for neuropsychiatric disorders manifests to the full extent only over a period of weeks to
months (Bourne et al. 2012, Kuhn et al. 2010, Lujan and McIntyre 2012). Lourens et al. (2015)
have recently proved, by means of a model describing the STN - GPe network dynamics, that
spike-timingdependent plasticity (STDP) stabilizes the desynchronized neural activity in the
healthy state and that this stabilizing effect of STDP may favor the use of alternative stimulation
protocols designed to induce neuronal desynchronization, in terms of both short- and long-term
clinical effectiveness. In view of this evidence, and given the fact that the model-based outcome
measure proposed in our study is a quantity directly related to the desynchronizing effect of
temporally alternative patterns of stimulation, the same measure may also reliably reflect short-
and long-term clinical effectiveness. Thus, high and lowfrequency irregular patterns of STN-DBS
for advanced PD and treatment-refractory OCD, that, according to the results of our study, have
been associated with a significantly stronger desynchronizing effect compared with standard
STN-DBS, may also be associated with sustained clinical effectiveness over both short and long

time scales, due to the existence of STDP.

5.3.5 Disorder-Specific Desynchronizing Effect of Stimulation

Comparing the optimal alternative patterns, irregular patterns significantly outperformed low-
frequency periodic stimulation interrupted by bursts of pulses (p<.0001, two-sample t-test) in

about 69% of the total simulations in case of PD and 46% of the total simulations in case of OCD
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a total of 30 recordings of oscillatory activity at the dorsolateral STN, incl. sites with the optimal therapeutic window, and a
total of 30 recordings of non-oscillatory activity at the ventromedial STN, acquired during eight DBS interventions for PD,
revealed a significantly stronger desynchronizing effect of each examined pattern of stimulation at oscillatory regions of the
dorsolateral sensorimotor STN, incl. sites with the optimal therapeutic window, compared with non-oscillatory regions of the
ventromedial limbic STN (* p<.0001, two-sample t-test).
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(example illustrated in figure 5.5C). In the remaining 31% of the total simulations in PD and 54%
of the total simulations in OCD low-frequency periodic stimulation interrupted by bursts of pulses
was significantly more efficient than at least one of the irregular patterns of stimulation for f< 5
(p<.001, two-sample t-test) (example illustrated in figure 5.5A). Interestingly, standard DBS was
associated with a significantly stronger desynchronizing effect in PD compared with OCD
(p<.0001, two-sample t-test). Results also underscored a more favorable response profile of low-
frequency periodic stimulation compared with standard stimulation (p<.0001, post-hoc analysis)
(figure 5.6), that was, however, more pronounced in case of OCD (p<.0001, two-sample t-test).
High-frequency periodic stimulation interrupted by bursts of pulses outperformed low-frequency
periodic stimulation in PD (p<.0001, post-hoc analysis), but both patterns yielded an equivalent
desynchronizing effect in case of OCD (p>.05, post-hoc analysis). Notably, high- and low-
frequency stimulation interrupted by long pauses were the alternative patterns associated with the
weakest desynchronizing effect in both pathologic conditions (figure 5.6). Nonetheless, while in
case of PD these patterns were significantly less efficient than standard stimulation (p<.0001,
post-hoc analysis) (figure 5.6A), the reverse held true in case of OCD (p<.01, post-hoc analysis)
(figure 5.6B). Thus, in OCD, all alternative patterns of stimulation proved to exert a stronger
desynchronizing effect on neuronal activity compared with standard DBS. Noteworthily,
however, the relative desynchronizing effect of the aforementioned patterns proved primarily to

be neural activity-specific, in both PD and OCD, as previously stated (figure 5.5).

5.3.6 Limited Suitability of the Lyapunov Exponent for the Discrimination of

Desynchronization Scenarios

Figure 5.8A illustrates the desynchronizing effect of the examined patterns of stimulation in PD
based on the use of the Lyapunov exponent, 4. Repeated measures ANOVA corroborated the
presence of statistically significant differences in the mean desynchronizing effect of the
examined patterns of stimulation (F=1564.173, p<.0001). In particular, similar to the results
obtained through the employment of the invariant density measure (figure 5.6), high- and low-
frequency stimulation interrupted by long pauses proved to exert a significantly weaker
desynchronizing effect on neuronal activity (indicated by lower positive values of the Lyapunov
exponent) compared with standard stimulation (p<.0001, post-hoc analysis). Most importantly,
however, discrimination between the desynchronizing effect of patterns derived based on other
probability distributions (including irregular stimulation with 25% and 50% temporal variability
or stimulation characterized by bursts) and the desynchronizing effect of high-frequency periodic
stimulation was not possible through the employment of the Lyapunov exponent (p>.05, post-hoc
analysis). This equivalent desynchronizing effect on neuronal activity may be considered as a
rather implausible scenario, since in no way does it reflect the observed qualitative change of the

stochastic kernel function upon application of alternative patterns of stimulation (figures 5.9,
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Figure 5.8. Evaluation of the Lyapunov exponent, 1 , as an outcome measure for the assessment of the desynchronizing
effect of the examined patterns of stimulation in PD. (A) The upper panel displays the value of the Lyapunov exponent, 4 ,
for each pattern of stimulation, as a function of stimulus amplitude, S, and averaged across the dataset acquired during STN-
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values of the Lyapunov exponent, A , indicate a stronger desynchronizing effect of stimulation. Post-hoc analysis revealed no
significant differences between the effect of low-frequency periodic stimulation and high-frequency periodic stimulation
(p>.05), irregular stimulation with 25% and 50% temporal variability and high-frequency periodic stimulation (p>.05) or
stimulation characterized by bursts and high-frequency periodic stimulation (p>.05). Stimulation conditions that do not share
the same letter are significantly different (ANOVA: F=1564.173, p<.05). (B) No significant differences between the effect of
the examined patterns of stimulation were identified by means of the variance of the Lyapunov exponent, Var(Z) (ANOVA:
F=80.157, p>.05).
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5.10). Similar conclusions with respect to the limited suitability of the Lyapunov exponent for
characterizing differences between distinct synchronization scenarios corresponding to the
application of distinct patterns of stimulation have been derived in Hata et al. (2010). In the
current analysis, however, contrary to the conclusions in Hata et al. (2010), neither the variance of
the Lyapunov exponent proved to be an appropriate outcome measure for discriminating between
the desynchronizing effect of the examined patterns of stimulation (F=80.157, p>.05) (figure
5.8B).

5.4. Discussion

5.4.1 Significance and Clinical Implications

Closed-loop neuromodulation is emerging as one of the most revolutionary scenarios in the
continuously evolving field of DBS (Gross and McDougal 2013, Herron et al. 2015, Widge and
Moritz 2014). In this framework, model-based control systems are a powerful means for
determination of optimal feedback parameters (Schiff 2010; 2012, Little and Brown 2012, Tass et
al. 2003) and identification of novel stimulation protocols (Feng et al. 2007(a); b), Wilson and
Moehlis 2014, Nabi et al. 2013, Danzl et al. 2009, Gorzelic et al. 2013, Iolov et al. 2013, Lourens
et al. 2015). In the majority of the respective published approaches, minimum energy
desynchronizing control of neuronal activity has been the common touchstone. In line with these
indications, in this work, we employed methods from stochastic nonlinear dynamics in order to
provide deeper insights into the most effective patterns of subthalamic DBS for advanced PD and
treatment-refractory OCD, subsequently having the potential to be incorporated in an energy- and
therapeutically-efficient closed-loop neuromodulation system. To this end, the fact that the STN is
currently used as an anatomical target during DBS for both pathologic conditions (Williams et al.
2010, Hamani et al. 2014) merged with one of the hypotheses on the mechanisms of action of
standard and alternative patterns of STN-DBS at a local level (Carlson et al. 2010, Hauptmann
and Tass 2006, Rubin et al. 2012, Feng et al. 2007(a);(b), Adamchic et al. 2014) allowed for the
development of a common modeling approach. Respectively, we elaborated a stochastic
dynamical model having been previously designed to support clinical decision making during
STN-DBS surgery. Throughout this chapter, we provided evidence that the fundamental strength
of the proposed stochastic model lies in its realistic substructure: not only did we allow for global
nonlinear coupling, but we also incorporated the effect of common and independent noise sources
and considered the phase dependence of common noise with respect to each particular MER.
Likewise, parameters of the model were estimated on the basis of the recorded neural activity.
Upon constructing the stochastic model, the variance of the invariant density was employed as a
measure inversely related to the desynchronizing effect of each examined pattern of stimulation.

A quantitative comparison of the differential effect of stimulation patterns was thereby
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Figure 5.9. Stochastic kernels (left) and respective invariant densities (right) derived by fitting the phase model to a MER
acquired at ‘Lateral -2.852 mm, right STN - case O5’, during STN-DBS for OCD, and simulating application of the 12
patterns of stimulation with stimulus amplitude f=0.5. According to the simulations, high- and low-frequency irregular
patterns of stimulation exerted the strongest desynchronizing effect on neuronal activity, as reflected in the intense form of
the respective stochastic kernels, as well as the low variance of the respective invariant densities.

straightforward and reliable. On the contrary, application of the Lyapunov exponent as an
alternative variable reflecting neuronal desynchronization dynamics failed to be adequately
informative. Most importantly, the results highlighted a possible correlation between the invariant

density measure and clinical effectiveness of stimulation.

Our results emphasized the superior efficiency of high (130Hz) - and low (80Hz) - frequency
irregular patterns of stimulation, and low-frequency periodic stimulation interrupted by bursts of
pulses, compared with standard stimulation (regular, 130Hz) and distinct alternative patterns,
including high- and low-frequency stimulation interrupted by long pauses, low-frequency
periodic stimulation and high-frequency stimulation interrupted by bursts of pulses. Importantly,
this particular outcome was not disorder-specific, while the superior efficiency of irregular

patterns of stimulation was, moreover, not neural activity-specific. Consistently with these results,
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Figure 5.10. Stochastic kernels (left) and respective invariant densities (right) derived by fitting the phase model to a MER
acquired at ‘Anterior -3mm, right STN - case 2°, during STN-DBS for PD, and simulating application of the 12 patterns of
stimulation with stimulus amplitude f=0.5. According to the simulations, low-frequency irregular patterns of stimulation and
low-frequency periodic stimulation interrupted by bursts of pulses exerted the strongest desynchronizing effect on neuronal

activity, as reflected in the intense form of the respective stochastic kernels, as well as the low variance of the respective
invariant densities.

Birdno et al. (2012) and Brocker et al. (2013) suggested that neither bursts nor irregularity per se
are correlated with decreased clinical effectiveness of high-frequency thalamic and subthalamic
DBS for essential tremor and advanced PD, respectively. Additionally, in a short communication,
Baker ef al. (2011) underlined the effectiveness of low (80Hz) - frequency pallidal stimulation
delivered in a regular bursting pattern in ameliorating bradykinesia in the non-human primate
model of PD. Our work adds to the aforementioned studies by extending their validity to low-
frequency subthalamic DBS for advanced PD and by offering insights into the efficiency of
alternative patterns of STN-DBS for treatment-refractory OCD. Very interestingly, the
desynchronizing effect of the examined patterns of stimulation in PD proved to be optimal at the
dorsolateral oscillatory region of the STN. Overall, these results may be of particular importance

for the development of energy- and therapeutically-efficient closed-loop DBS systems.
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5.4.2 Disorder- and Neural Activity-Specific Effect of Stimulation

Contrary to Brocker et al. (2013) and Kuncel et al. (2012), Birdno et al. (2012) reported that
high-frequency stimulation characterized by pauses is significantly less effective than regular
stimulation for tremor suppression. This suggestion is corroborated and extended by our study,
wherein both high- and low-frequency stimulation interrupted by long pauses were associated
with a weaker desynchronizing effect compared with standard stimulation in PD. Nevertheless, in
case of OCD we could not reach a similar conclusion. Accordingly, stimulation characterized by
pauses proved to exert a significantly stronger desynchronizing effect on neuronal activity
compared with standard DBS in OCD, particularly if being delivered in a low-frequency mode.
Interestingly, Gazit ef al. (2015) have recently suggested that low-frequency stimulation
characterized by pauses may alleviate symptoms more effectively than regular stimulation in an
animal model of a neuropsychiatric disorder. Perhaps more importantly, all alternative patterns of
stimulation considered in our approach proved to be associated with a stronger desynchronizing
effect compared with standard DBS in OCD. In addition, standard DBS was associated with a
significantly stronger desynchronizing effect in PD compared with OCD. Conversely, low-
frequency periodic stimulation proved to be more efficient in OCD compared with PD. This
disorder-specific effect of certain stimulation pattern characteristics, revealed by the
computational model, may be rooted in a dissimilar profile of neuronal activity in the two
pathologic conditions, i.e. significantly lower discharge rates and ‘lower’- frequency oscillations

in treatment-refractory OCD compared with advanced PD (Piallat et al. 2011, Welter et al. 2011).

Apart from the aforementioned general conclusions, we ought to highlight the fact that, with the
exception of irregular patterns, the relative desynchronizing effect of the examined alternative
patterns of stimulation with respect to standard DBS was substantially dependent on the recorded
neural activity. Thereupon, we implicitly suggest that in any closed-loop DBS system
configuration, maximal information about the underlying neuronal dynamics captured by real-
time recordings should be carefully considered, before proceeding to define optimal stimulation

pattern characteristics.

5.4.4. Insights into the Efficiency of Low-Frequency Periodic Stimulation

Evidently, our approach underscores the superior efficiency of low-frequency periodic
stimulation to the efficiency of standard stimulation in both PD and OCD, albeit - as already
mentioned - more prominently in the latter disorder. Clinical application of low-frequency
periodic stimulation instead of its high-frequency counterpart has been a topic of controversy in
the field of STN-DBS for PD over the last years (Sidiropoulos and Moro 2014). Though some

clinical data seem to incline towards a similar effect of the two modes of stimulation on axial
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(Sidiropoulos et al. 2013, Vallabhajosula et al. 2015) or distal symptoms (Tsang et al. 2012),
some other studies suggest that a greater improvement of axial symptoms or involuntary
movements, after the switch of stimulation frequency from 130 Hz to 80 Hz, may be possible, but
also to a great extent patient-specific (Ricchi et al. 2012, Merola et al. 2013). Our modeling
approach is rather reinforcing the latter suggestion, since it is, on the one hand, giving
prominence to the efficiency of low-frequency periodic stimulation, and on the other hand
pointing to a neural activity- and thus potentially patient-specific effect of temporally alternative
patterns of STN-DBS. Most importantly, it provides novel evidence for an outstanding efficiency
of low-frequency DBS for treatment-refractory OCD. Certain limitations, however, should be

taken into consideration, as discussed in the next paragraph.

5.4.5 Study Limitations

One of the limitations of this study is rooted in the exclusion of the further hypotheses on the
therapeutic mechanisms of action of STN-DBS that go beyond the hypothesis of the local
desynchronizing effect (de Hemptinne et al. 2015, Li et al. 2012, Bahramisharif et al. 2015).
Accordingly, an intriguing perspective would be related to the consideration of these assumptions
that would in turn possibly provide more powerful clues for the degree of the efficiency of
alternative patterns of stimulation. A related limitation refers to the fact that the stochastic model
was not adapted to capture the neuronal interactions within the motor cortico—basal ganglia—
thalamo—cortical circuit (Tsirogiannis et al. 2009) or within key pathways involved in the
pathophysiology of OCD (Stathis et al. 2007). In this respect, the employment of a biophysically
plausible, conductance-based model would probably be a more appropriate alternative approach
for describing neuronal network dynamics and simulating neuronal responses to stimulation
protocols (Feng et al. 2007(b), Rubin and Terman 2004). Importantly, however, the latter
approach in the study of Feng et al. (2007(a); (b)) has led to similar conclusions regarding the
higher efficiency of non-regular patterns of stimulation. In general, despite the aforementioned
limitation, phase reduction remains a powerful method for describing the response dynamics of
local neuronal populations, while its validity is being extended beyond the supra-threshold regime
to account for the dynamics of neuronal bursting activity that constitutes a hallmark of PD and
OCD pathophysiology (Piallat et al. 2011, Sherwood and Guckenheimer 2010, Mauroy et al.
2014). Another challenge for the presented modeling approach would be to assess the
desynchronizing effect of individualized gamma frequencies (Tsang et al. 2012) and to allow for
the clinically used values of stimulus amplitude and stimulus pulse width, as well as the role of
electrode polarity, in view of the fact that these parameters are especially critical to the clinical
effectiveness of DBS (Volkmann et al. 2006). Last, on account of the heterogeneous nature of PD

and OCD symptoms (Summerfeldt et al. 1999, Feng et al. 2015), part of future research work
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should be directed towards the determination of optimal pattern characteristics for distinct

phenotypes of these disorders.

5.5. Conclusion

Temporally alternative patterns of DBS with the potential to generate maximal clinical benefit at
the lowest possible power consumption and reduce stimulation-related complications are being
intensively investigated over the last years. In this chapter, we provided model-based indications
for the optimal alternative patterns of STN-DBS for treatment-refractory OCD and extended the
validity of previous reports on the efficiency of temporally non-regular DBS for advanced PD.
Accordingly, on grounds of a data-driven stochastic dynamical model, we highlighted the pivotal
role of high-, and, most importantly, low-frequency variability, as well as of low-frequency
bursts of pulses in the efficiency of STN-DBS for both pathologic conditions. In PD, optimal
results were achieved at the dorsolateral oscillatory region of the STN. Moreover, we provided
indications for a possible correlation of the principal model-based outcome measure, the invariant
density, with clinical effectiveness of stimulation. Taking the modeling approach one step further,
our key priority should be the clinical validation of these predictions, potentially in patient
populations undergoing implantable pulse generator (IPG) replacement, since temporary
connection to the DBS electrode during this surgical procedure has been proven to provide

advantageous conditions for the analysis of novel stimulation protocols (Birdno et al. 2012).
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Algorithmic Design of a Therapeutically- and Energy-
Efficient Closed-Loop Deep Brain Stimulation System for

Parkinson’s Disease and Obsessive-Compulsive Disorder

Approaches using closed-loop stimulation are inherently state dependent and require computational

neurostimulation.

M Bikson et al. (2015)

Abstract

Objective. We elaborate on the algorithmic aspects of a closed-loop subthalamic nucleus (STN) deep
brain stimulation (DBS) system for advanced Parkinson’s disease (PD) and treatment-refractory
obsessive-compulsive disorder (OCD), ensuring optimal performance in terms of both efficiency and
selectivity of stimulation, as well as in terms of computational speed. Approach. Relying upon a
series of methods robust to the presence of measurement noise, we first assess the presence of
significant nonlinear coupling between beta and high-frequency subthalamic neuronal activity, as a
biomarker for feedback control in the proposed closed-loop neuromodulation scheme, and further
present a strategy, incorporating the application of a phase-reduced bursting neuron model and a
derivative-free optimization algorithm, through which optimal stochastic patterns and parameters of
stimulation for minimum energy desynchronizing control of neuronal activity are being identified.
Simulations are being performed utilizing microelectrode recordings (MERSs) acquired during 8 and

8 STN-DBS surgical interventions for PD and OCD, respectively. Main Results. Cross-frequency
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coupling proves to be a consistently appropriate biomarker for feedback control in case of PD, but
may display subject-specific applicability in case of OCD. In light of our previous report pointing to
a possible correlation of the principal model-based outcome measure with clinical effectiveness of
stimulation in PD, we demonstrate the ability of the presented modeling approach to identify, at a
relatively low computational cost, stimulation settings associated with a significantly higher
efficiency and selectivity compared with stimulation settings determined during post-operative
clinical management of patients with PD. The validity of these results is further corroborated in case
of treatment-refractory OCD. Significance. Together, our data provide strong evidence for the

applicability of computational neurostimulation to real-time, closed-loop DBS systems.

6.1. Introduction

As reported in chapter 1, in addition to appropriate patient selection and anatomical target
determination (Widge et al. 2015), the outcome of DBS may be strongly influenced by the quality of
post-operative clinical management, i.e. the adjustment of stimulation parameters and the selection
of the optimal contact, usually over periods of weeks to months (Benabid et al. 2009, Volkmann et
al. 2006). Apart from being considerably time consuming, this trial-and-error procedure may not
necessarily yield the optimal trade-off between maximal therapeutic benefit and minimal
stimulation-induced side-effects (Kuncel and Grill 2004). Moreover, it fails to keep pace with the
fact that movement and neuropsychiatric disorder symptoms may fluctuate over significantly shorter
time-scales of seconds to days. Chronically, the open-loop nature and monomorph pattern of
conventional high-frequency stimulation appears to favor tolerance/habituation phenomena, while

being associated with a maximal rate of power consumption (Carron et al. 2013).

Against this background, closed-loop neuromodulation is emerging as a more reliable alternative and
one of the most promising breakthroughs in the field of DBS (Metman and Slavin 2015, Hariz et al.
2013, Rosin et al. 2011) (figure 6.1). In an optimal closed-loop-stimulation scenario, delivery of
maximally efficient DBS patterns is adjusted to the fast dynamics of movement and neuropsychiatric
disorder symptoms through utilization of specific biomarkers that capture the patient’s clinical state
in real time (Rise and King 1998). This would, in turn, insure minimal energy consumption and
reduce the physical size of the battery (Grill 2015), the frequency of generator replacement surgery,
the concomitant risk of hardware infection (Boviatsis et al. 2010, Pepper et al. 2013), or the rate of
recharging procedures. It would moreover be associated with significant savings in clinical resources
(Gross and McDougal 2013, MclIntosh et al. 2003). Principally, any algorithm designed for a
maximally efficient closed loop DBS system shall conceptually satisfy two core specifications

(Afshar et al. 2013): the reliable assessment of optimal biomarkers for feedback control and the
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Figure 6.1. Simplified model of a closed-loop neuromodulation system (adapted from Afshar et al. 2013).

identification of alternative stimulation protocols that may be more therapeutically- and energy-
efficient compared with the conventional pattern of stimulation (Little and Brown 2012, Feng et al.

2007(a)).

One of the proposed biomarkers for closed-loop DBS for PD, recordable directly from the DBS
electrode and used as a surrogate of pathological neuronal synchronization, is the subthalamic LFP
beta activity (Brittain et al. 2014), in light of strong evidence that stimulation-induced suppression of
pathological beta oscillatory activity correlates with improvement in both bradykinesia and rigidity
(Kuhn et al. 2008, Eusebio et al. 2010, Priori et al. 2013). Moreover, analysis of subthalamic LFPs
may be extended to the chronic condition (Rosa et al. 2010). Feedback controlled stimulation based
on LFP beta power has been proven to be clinically more effective than both standard and random
intermittent stimulation, and has been correlated to lower energy requirements in a pilot clinical
study (Little et al. 2013). Nevertheless, the presence of large stimulation artifacts in LFP recordings,
the relatively low complexity dynamics captured by this signal, the normal phenomenon of
suppression of LFP beta-band activity prior to or during movement and the absence of a reported
positive correlation between treatment-induced suppression of beta oscillatory activity in the STN
and the improvement in tremor or dyskinesias point to the need for exploring more sensitive
biomarker approaches (Starr and Ostrem 2013, Little and Brown 2012). One alternative is the long-
term recording of cortical local field potentials (Ryapolova-Webb et al. 2014) using the Activa © PC
+ S neurostimulator (Medtronic, Inc., Minneapolis, MN) (Afshar et al. 2013, Rouse et al. 2012), a
bidirectional investigational device that provides the possibility of both therapeutic stimulation and
LFP recording (Sun and Morrell 2014). This approach has been motivated by the fact that cortical

LFPs may be recorded with minimal intervention and stimulation artifact, and may effectively
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capture the degree of pathological neuronal synchronization in PD, reflected in beta phase - gamma
amplitude coupling in the primary motor cortex (M1) (de Hemptinne et al. 2013, Starr and Ostrem
2013). Besides, employment of cortical recordings as a control signal in closed-loop stimulation has
been correlated to increased clinical effectiveness compared with standard open loop stimulation in a
pre-clinical proof-of-concept study (Rosin et al. 2011). Analysis of electromyography (EMG) signals
during periods of movement and rest constitutes a further significant possibility provided by the
Activa PC + S neurostimulator (Ryapolova-Webb et al. 2014). A related approach to non-invasive
feedback control has been suggested by a pilot clinical study conducted by Basu et a/ (2013),
wherein surface EMG in conjunction with an appropriately designed algorithm were used in order to
predict the onset of tremor during time intervals of no stimulation. Meanwhile, novel neural probes
offering the capability of concomitant DBS and recording are being gradually introduced (Lai et al.
2012, Stypulkowski et al. 2013). In light of evidence that the therapeutic mechanism of stimulation
may be partially explained by neurotransmitter release, ‘smart’ DBS systems with electrochemical
feedback may represent a further appealing option for closed-loop neuromodulation (Behrend et al.
2009, Grahn et al. 2014, Farina et al. 2014, Jackowska and Krysinski 2013, Gross and McDougal
2013). Within this framework, application of the Wireless Instantaneous Neurochemical
Concentration Sensing System (WINCS) that incorporates both in vivo fast-scan cyclic voltammetry
(FSCV) and amperometry for real-time detection of dopamine, adenosine, and serotonin is being
investigated (Van Gompel et al. 2010, Parpura et al. 2013). Integration of carbon nanofiber
nanoelectrodes in this system may allow for improved selectivity and sensitivity compared with

traditional carbon fiber microelectrodes (Zhang et al. 2013, Koehne et al. 2011).

At the same time, even more vigorous predictive biomarkers of PD and OCD pathophysiology are
being intensively highlighted, including nonlinear coupling across multiple frequency bands in the
basal ganglia and in cortical structures (Lopez et al. 2010, Yang et al. 2014, de Hemptinne et al.
2013, Shimamoto et al. 2013, Connolly et al. 2015(a), Bahramisharif et al. 2015). Assessment of the
latter biomarker has largely relied on the evaluation of phase-amplitude coupling by means of the
Hilbert transform (Tort et al. 2010). Remarkably however, the respective phase reconstruction
method may be characterized by a high level of susceptibility to measurement noise (Sun et al.
2008). We therefore suggest that by eliminating the sensitivity to measurement noise (Sun et al.
2008, Rossberg et al. 2005) and by employing phase reconstruction-free methods (Gottwald and
Melbourne 2009) in an automated closed- loop DBS system, the reliable assessment of cross-

frequency interactions may be substantially facilitated.

Meanwhile, model-based control policies for the determination of temporally alternative stimulation
protocols are being investigated (Wilson and Moehlis 2014, Danzl et al. 2009, Liu et al. 2011, Nabi
et al. 2013, Lourens et al. 2015, Gorzelic et al. 2013, Dasanayke and Li 2015, Iolov et al. 2014, Tass
and Hauptmann 2007, Tass et al. 2003, Hauptmann and Tass 2010, Tukhlina et al. 2007, Montaseri
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et al. 2015, Su et al. 2014), while a positive proof-of-concept has been recently provided for
coordinated reset neuromodulation (Adamchic et al. 2014). Very interestingly, a common
denominator across the majority of these approaches has been the minimum energy desynchronizing
control of neuronal activity. The rationale behind this objective lies in indications that temporally
alternative DBS waveforms hold the potential to drive the neuronal dynamics within the basal
ganglia back to the normal desynchronized state (Feng et al. 2007(a), (b)), thereby outperforming the
action of standard DBS waveforms, the mechanism of which has been principally attributed to the
reinforcement-driven regularization of neural firing patterns in the vicinity of the stimulated nucleus
(McConnell et al. 2012, Grill et al. 2004, Santaniello et al. 2015 ). Perhaps more importantly, the use
of alternative stimulation protocols may be favored, in terms of both short- and long-term clinical
effectiveness, by the stabilizing effect of spike-timing dependent plasticity (STDP) on the
desynchronized neuronal activity (Lourens et al. 2015). In our previous analysis (chapter 5), we
employed a data-driven stochastic dynamical model and provided evidence for a possible correlation
of the primary outcome measure, a quantity inversely related to the desynchronizing effect of

temporally alternative patterns of stimulation, with clinical effectiveness of stimulation in PD.

Relying upon the aforedescribed indications, in this study we elaborate on the algorithmic aspectst of
a therapeutically- and energy-efficient closed-loop neuromodulation system for advanced PD and
treatment-refractory OCD (figure 6.2). Specifically, we are first stating a series of methods robust to
the presence of measurement noise (Rossberg et al. 2005, Gottwald and Melbourne 2009) that are
employed in order to assess the presence of significant nonlinear coupling between beta and high-
frequency subthalamic activity, as a biomarker for feedback control, and further suggest a model-
based strategy through which optimal patterns and parameters of stimulation for minimum energy
desynchronizing control of neuronal activity are being identified. We opt for a phase-reduced
bursting neuron model (Sherwood and Guckenheimer 2010, Mauroy et al. 2014), given that
increased neuronal bursting activity in the basal ganglia has been related to the pathophysiology of
both PD and OCD (Piallat et al. 2011, Welter et al. 2011). Temporal patterns of stimulation are
generated based upon a random (Poisson) process, since the desynchronizing and probably also the
therapeutic effect of stochastic DBS waveforms has been previously proven to be significantly
stronger compared with the effect of standard stimulation. Moreover, the efficiency of stochastic
waveforms has been demonstrated to be robust against variations in neural activity and, therefore,
possibly also against the non-stationary settings expected in clinical conditions. Determination of the
precise optimal temporal pattern and parameters of stimulation is accomplished through the
application of a derivative-free optimization algorithm (Custodio and Vicente 2007; Custddio et al.
2010), in view of the fact that the neural response to DBS parameters may be a complex, non-
differentiable function (Feng et al. 2007(a)). Simulations are performed utilizing microelectrode
recordings (MERSs) acquired during 8 and 8 STN-DBS surgical interventions for PD and OCD,

respectively. Finally, extending the results of our previous work, in this study, we attempt to provide
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indications for a possible correlation of the principal model-based outcome measure, i.e. the
invariant density of the simulated dynamical system, with clinical effectiveness of stimulation in
treatment-refractory OCD. Overall, the results corroborate the ability of the presented modeling
approach to identify stimulation settings associated with a significantly higher efficiency and
selectivity compared with stimulation settings determined during post-operative clinical management
of patients with PD or treatment-refractory OCD, while guaranteeing a relatively low computational

cost.

6.2. Patients and Methods

6.2.1. Data Description

We used MER data acquired during 8 STN-DBS surgical interventions for advanced PD at
Evangelismos General Hospital of Athens and 8 STN-DBS surgical interventions for treatment-
refractory OCD at Grenoble University Hospital. This dataset was also used in our previous analysis
(chapter 5). A total of 31 acceptable MER trajectories acquired during STN-DBS for PD and 12
acceptable MER trajectories acquired during STN-DBS for OCD was selected for off-line analysis.
Preprocessing of each MER included its subdivision into three distinct neuronal populations: spiking
activity acquired employing a five-point spike template (Wong et al. 2009), background unit activity
reconstructed according to Moran ef al. (2008), and local field potential (LFP) activity (1-300Hz). In
order to keep pace with the proposed phase reduced bursting neuron model, following the assessment
of the biomarker for feedback control, optimal patterns and parameters of stimulation were assessed
only for sites at which bursting activity was recorded. A bursting or burst-like firing pattern of

neuronal activity was identified as described in Steigerwald et al. (2008).

6.2.2. Assessment of Cross-Frequency Coupling as a Biomarker for Feedback Control

On grounds of an extensive body of evidence pointing to increased nonlinear coupling between beta
and high-frequency activity in cortical and subcortical structures as a pathophysiological correlate in
PD and OCD (Lopez et al. 2010, Yang et al. 2014, Connolly et al. 2015 (a), Bahramisharif et al.
2015), the beta-band-frequency (13-30Hz) envelope of the high-pass filtered (200-300Hz) LFPs or of
the high-frequency signal component (300-500Hz) was first introduced as a biomarker for feedback
control in the proposed closed-loop DBS scheme (figure 6.2). Analytically, the high-pass filtered
signal was full-wave rectified, mean subtracted and downsampled to 1kHz. Subsequently, the
derived signal was band-pass filtered at 13-30Hz by applying a complex-valued filter proposed by
Rossberg et al. (2004). The robustness of this filter lies at its property to increase the signal to

measurement noise ratio with respect to the complete dynamics of its impulse response. Moreover,
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the filter has been proven to cope with strong internal noise that constitutes a prominent
characteristic of the recorded subthalamic neuronal activity.

Following the employment of the complex-valued filter, we applied the 0-1 test for chaos
(Gottwald and Melbourne 2009) to a logarithmic transformation of the complex magnitude of the
filter output in order to assess the presence of significant nonlinear coupling between beta and
high-frequency activity in the STN of patients with PD or OCD (figure 6.3). In addition to being a
phase reconstruction-free method for the determination of regular or chaotic dynamics in a
deterministic dynamical system, the 0-1 test for chaos retains the advantage, over the traditional
methods for detecting chaos (using the maximal Lyapunov exponent), of displaying reduced
sensitivity to measurement noise (Gottwald and Melbourne 2005). Briefly, for the first n=1,...,

nmax=1000 samples of the input signal and N,=100 values of ¢ chosen randomly in the interval
(0,7) we evaluated the translation variables
peln)= 37 reosljc) and q,(n)= 37 ()sin(je) 6.1

j=1 Jj=1

where V' is the amplitude of the input signal. Secondly, considering the presence of measurement

noise, we quantified for n < HILSX the damped mean squared displacement of the translation

variables, as follows

D} (n)= M, (n)-(EV)? =5 1)y (EV)? sin(V2n) , (6.2)
1—cosc

where M.(n) is the mean squared displacement of the translation variables, £V is the expectation

of V, while parameter 4 is optimized as described in the next paragraph. After computing the

strength of correlation of D (n) with linear growth, K., the outcome of the test, K, , was given by
K, = medialK ) (6.3)

With respect to parameter determination, parameter / in (6.2) was defined based upon
optimization of the outcome of the test across a subset of 12 MER trajectories in PD and 12 MER
trajectories in OCD (figure 6.4A). We also used 1s (i.e. 1000 samples) of the input signal, since
this value yielded the best trade-off between low computational cost and optimal outcome of the

test (data not shown). In addition, NV, =100 different values of ¢ have been explicitly suggested

to constitute an appropriate variable selection by Gottwald and Melbourne (2009).
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Figure 6.3: Exemplary results of the methodology applied for the assessment of cross-frequency coupling, as a biomarker
for feedback control, in the STN of a patient with (A) PD and (B) OCD. Employment of the 0-1 test for chaos, following
the application of the complex valued-filter proposed by Rossberg et al. (2004), singled out sites with significant cross-
frequency coupling (test outcome < 0.1). On the contrary, following the application of a conventional, Butterworth band-
pass filter, the 0-1 test for chaos did not discriminate sites with significant cross-frequency coupling from sites without.
Figures on the left display the power spectrum of the filtered signals (13-30Hz) along each exemplary trajectory.
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Figure 6.4: (A) Determination of parameter / (eq. (6.2)), based upon optimization of the outcome of the 0-1 test for
chaos across a subset of 12 MER trajectories in PD and 12 MER trajectories in OCD. According to the results, in case
of PD, sensitivity to measurement noise had to be further decreased by assigning a unitary value to parameter 4. (B)
Cross-frequency coupling was identified at at least 1 site within the STN of each patient with PD (total:18 MERs).

Approximately 67% of these sites were located at the dorsal border of the STN, while at 72.2% of these sites neuronal
activity followed a bursting or burst-like firing pattern and was considered for further processing in the phase-reduced
bursting neuron model. Contrary to the case of PD, cross-frequency coupling was identified within the STN of only 2
patients with treatment-refractory OCD (total:4 MERs).

6.2.3. Model-Based Strategy for the Identification of the Optimal Stimulation

Protocol
6.2.3.1 The Phase Model

We used the stochastic phase model presented in chapter 5, inclusively allowing for the phase
response dynamics of a bursting neuron in both weak and strong perturbation regimes (Sherwood
and Guckenheimer 2010, Mauroy et al. 2014). The phase model is described by an Ito stochastic

differential equation:

Do Krsin(anly - g +alkor)) +v+ R 9) VD)) D Riplor ¢)+ )

A6 PE o 1,) (6:4)

k

—00

0 1 0 1
where v ~ 0C2 J‘dsC(s)J.d¢Ré (¢5)RC (¢ - a)s), D~ O'C2 IdSC(S)I d¢Rc (¢)RC (¢ - C‘)S)
0 0 0
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and, considering rectangular stimulation waveform, f=w/,/C (Ermentrout et al. 2011),

C=1uF/cm’.

Variable ¢ e [0,1) denotes the oscillator’s phase, @ is its natural frequency (considered equal to
the mean firing rate), while K , I' and y symbolize the coupling strength, the degree of

synchrony and the mean phase of the oscillators in the surrounding neural population,
respectively. Also, a represents the phase shift (set equal to %), inherent to nonlinear coupling

(Rosenblum and Pikovsky 2007). §(t) is zero mean Gaussian white noise, added independently
to each oscillator, and 7(¢) is colored (common) noise with zero mean, unitary variance and
autocorrelation function C(z). Parameters o; and o denote the intensity of independent and
common noise, and are determined based on the spiking activity signal component and the LFP
signal component, respectively. Phase sensitivity functions R;(¢) and R.(¢) are evaluated
according to Sherwood and Guckenheimer (2010) and Abouzeid and Ermentrout (2009),
respectively. Function A(¢, ,B) represents the phase response curve (PRC) to a single (DBS)
impulse and is evaluated according to Mauroy et al. (2014) (figure 6.5B). Parameter w represents
the stimulus pulse width, 7, is the stimulus current amplitude and 7z, are the input times
(0<k <x). Values of § are appropiately scaled according to the size of perturbations upon
which the PRC is constructed. We consider that the inter-impulse interval (IPI) 47, =7, ,, — 7,

obeys a Poisson distribution with parameter 4 and that stimulus trains have a mean frequency f.

On grounds of the above assumptions, phase Eq. (6.4) was solved according to the analysis
described in chapter 5, i.e. by employing the Perron-Frobenius operator in order to extract the

stochastic phase map from one stimulus cycle to the next. The iterative process converges to the

1
steady-state phase distribution, i.e. the invariant density, py (¢), normalized as Jd(b ) (¢) =1.
0

Accordingly, we assessed the variance of the invariant density, Var(p,, (¢)), as a quantity

inversely related to the desynchronizing effect, but potentially also to the clinical effectiveness of
stimulation. Ultimately, identification of the optimal stimulation protocol was based on

minimization of the cost function
F(w, 1o, f,2)=Var(py(¢))+ gP (6.5)

where P=1 Ozwf - R is the stimulation power (Koss et al. 2005). Parameter g is a penalizing

scalar (we set g =0.25), while R represents the electrode impendance (we consider R=1000£).
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Figure 6.5: (A) Identification of a bursting firing pattern of neuronal activity at Central, -2.56mm, Left STN, case O2
(left) based on the interspike interval (ISI) histogram (right). The histogram is characterized by a positively skewed
distribution indicating a large fraction of short ISIs and a high intraburst frequency (u;5;= 0.0179s; Varig;= 0.00069).
(B) The phase response curve (PRC) evaluated according to Mauroy et al. (2014).

6.2.3.2. The Model-Based Direct Search Method

Cost function (6.5) is expected to exhibit a non-smooth behavior. We therefore employed a
derivative-free optimization algorithm, in particular, a model-based direct search method
(Custodio et al. 2010). This hybrid algorithm relies on the incorporation of minimum Frobenius
norm (MFN) quadratic modeling into a direct search method of directional type. Thereby, the
performance of the direct search method may be significantly improved. The respective code
(SID-PSM) is a MATLAB implementation of a generalized pattern search method wherein the
search step is enhanced by means of minimization of the MFN model and the pol! step is
evaluated according to a negative simplex gradient. The poll step will be only performed if the
search step is not successful in assessing a lower objective function value. A mesh is considered,
defined from a set of directions with proper descent properties. In case both search and poll steps
are unsuccessful, the mesh is contracted by decreasing the mesh size parameter. In case of

success, the mesh size parameter can be maintained or increased. During the course of
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Table 6.1. Stimulation settings determined Table 6.2. Stimulation settings determined
post-operatively during the last follow-up post-operatively during the last follow-up
visit for patients with PD visit for patients with treatment-refractory
OCD
case Brain pulse voltage frequency case Brain pulse voltage frequency
. width ) (Hy) . width ) (Hz?)
Hemi- ([ls) Hemi- (”S)
Right 60 3.8 140 Right 60 2 130
1 01
Left 60 2.6 140 Left 60 2 130
Right 60 1.8 130 Right 60 4 130
2 02
Left 60 1.7 130 Left 60 4 130
Right 60 2.2 130 Right 60 1.9 130
3 03
Left 60 2 130 Left 60 2 130
Right 60 1.5 130 Right 60 24 130
4 04
Left 60 1.3 130 Left 60 24 130
Right 60 34 130 Right 60 2 130
5 05
Left 60 2.2 130 Left 60 2 130
Right 90 2.7 150 Right 60 1.5 130
7 06
Left 90 2.9 150 Left 60 1.5 130
Right 60 3.7 150 Right 60 3 130
8 09
Left 60 2.9 150 Left 60 23 130
Right 90 3.2 140 Right 60 2 130
9 PS
Left 60 2.7 140 Left 60 2 130

iterations, a pattern search method generates a number of function evaluations (figure 6.6). For

the application of the algorithm, we consider the following constraints:

0.001< I, <0.0044, 30<w<210 s, 20< f <150Hz and 3< 1 <30. (6.6)

Determination of pulse-width constraints is based on evidence that pulse durations <60 us
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Figure 6.6: Progression of the model-based direct search method for a single trial (Central -4.3mm, Right STN, case
03). (A) Cost function minimization was achieved after a total of 13 iterations and approximately 38 function

evaluations. According to the algorithm, optimal stimulation settings for this particular example included a pulse width
of 30us (B), a current amplitude equal to 1mA (C), a stimulation frequency of 60Hz (D) and a Poisson parameter equal

to 13 (E).
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may lead to increased selectivity of stimulation, i.e. activation of the targeted neural elements
without activation of distant pyramidal tract fibers, and therefore possibly also to an increased

therapeutic window of DBS (Reich et al. 2015, Grill 2015).

The performance of the model-based direct search method (SID-PSM) in cases of PD and OCD
was compared with the performance of a non-model-based generalized pattern search method
(Matlab, Mathworks, Natick, MA), in terms of the resulting values of the invariant density
measure, the stimulation power and the total computation time. We also assessed differences in
terms of total computation time between the aforementioned methods and the genetic algorithm
that has been previously recommended as appropriate for closed-loop optimization of DBS for
PD (Feng et al. 2007(a)). Furthermore, stimulation settings determined by means of the presented
modeling approach (combined application of the stochastic phase model and the model-based
direct search method) were compared with stimulation settings determined post-operatively
during the last follow-up for patients having undergone STN-DBS for PD or treatment refractory-
OCD (tables 6.1-6.2). The Mann—Whitney U test was used to determine the statistical

significance of the differential performances.

6.2.4 Assessment of a Possible Correlation of the Model-Based Outcome Measure

with Clinical Effectiveness of Stimulation in OCD

In order to assess a possible correlation of the invariant density measure with clinical
effectiveness of stimulation in treatment-refractory OCD, we evaluated the variance of the
invariant density, Var(p,,(¢)), simulating the application of regular, 130 Hz stimulation, based on
a total of 39 MERSs of subthalamic neuronal activity acquired during DBS for OCD and
characterized by a high discharge rate, a high intraburst frequency and a short interburst interval
vs. a total of 39 MERs of subthalamic neuronal activity characterized by a low discharge rate, a
low intraburst frequency and a long interburst interval. This specific approach was based on
indications correlating the efficacy of standard STN-DBS for OCD with locations of neuronal
activity characterized by a high discharge rate and intraburst frequency, and a short interburt
interval (Welter et al. 2011). Statistical significance was determined by means of the Mann—

Whitney U test.

6.3. Results

6.3.1 Combined Application of Complex-Valued Filtering and the 0-1 Test for

Chaos for the Evaluation of Nonlinear Coupling
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Figure 6.3 depicts exemplary results of the methodology applied for the assessment of cross-
frequency coupling, in the STN of a patient with PD (figure 6.3A) and a patient with OCD (figure
6.3B), as a biomarker for feedback control in the proposed closed-loop neuromodulation schemes.
Employment of the 0-1 test for chaos following the application of the complex valued-filter
proposed by Rossberg et al. (2004) singled out sites with significant nonlinear coupling between
beta and high-frequency activity (test outcome<0.1). Conversely, following the application of a
conventional, Butterworth band-pass filter, the 0-1 test for chaos did not discriminate sites with
significant non-linear coupling from sites without. This result was corroborated across the total of
the MER trajectories examined and underscored the fact that the combined application of the
complex-valued filter and the 0-1 test for chaos may successfully lead to the assessment of cross-
frequency coupling within the STN of patients with PD or OCD. In case of PD, sensitivity to
measurement noise had to be further decreased by assigning a positive value to parameter / in eq.
(2) (h=1, figure 6.4A). On the contrary, this improvement did not prove to be a prerequisite in
case of OCD (h=0, figure 6.4A).

6.3.2 Nonlinear Coupling may be a Reliable Biomarker for Feedback Control in

case of PD

Cross-frequency coupling was identified at a total of 18 MERs - sites within the STN of 8 patients
with PD (casel: 2 sites; case 2: 1 site; case 3: 3 sites; case 4: 2 sites; case 5: 3 sites; case 7: 2
sites; case 8: 1 site; case 9: 4 sites). Approximately 67% of these sites (n=12) were located at the
dorsal border of the STN (figure 6.4B). These results are in line with evidence that beta-HFO
coupling is closely correlated with the pathophysiology of PD and strongest at the dorsal border
of the STN (Yang et al. 2014, Connolly et al. 2015 (a), Lopez et al. 2010), and further highlight
the appropriateness of nonlinear coupling between beta and high-frequency neuronal activity as a
biomarker for feedback control in PD. Neuronal activity at 13 out of the 18 sites with cross-
frequency coupling followed a bursting or burst-like firing pattern (figure 6.5A) (casel: 1 site;
case 2: 1 site; case 3: 3 sites; case 4: 1 site; case 5: 3 sites; case 7: 2 sites; case 8: 1 site; case 9: 1
site) and was considered for further processing in the bursting neuron model. At the remaining 5
sites a rather irregular firing pattern was observed, and therefore these sites were excluded from

subsequent analysis.

6.3.3 Nonlinear Coupling may display Subject-Specific Applicability as a
Biomarker for Feedback Control in case of OCD

Contrary to the case of PD, cross-frequency coupling was identified at only 4 MERs - sites within

the STN of 2 patients with OCD (case O2: 2 sites; case O3: 2 sites) (figure 6.5B). The latter fact
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may be attributable to the low number of acceptable MER trajectories in case of STN — DBS for
OCD. Otherwise, it may imply that nonlinear coupling between beta and high-frequency activity
is not consistently an appropriate biomarker for feedback control in closed-loop DBS for OCD
(Bahramisharif et al. 2015) and that an alternative biomarker should be additionally considered
(figure 6.2B). For this reason, on the basis of evidence pointing to a correlation of subthalamic
bursting neuronal activity, characterized by certain features, with symptom severity and
stimulation efficacy in OCD (Welter et al. 2011), we assessed, for the remaining of the cases
wherein no cross-frequency coupling could be identified (or, despite the presence of cross-
frequency coupling, no bursting activity was observed at the respective site), the presence of
bursting neuronal activity with specific characteristics, i.e. a short interburst interval and a high
intraburst frequency (u;5=0.0242 + 0.0113s, Varis=0.0059 +0.0083). Specifically, we
considered for further processing a total of 12 MERs (case O1: 1 site; case O2: 2 sites; case O3: 2

sites; case O4: 1 site; case OS5: 1 site; case O6: 1 site; case O9: 2 sites; case P5: 2 sites).

6.3.4 Performance of the Presented Modeling Approach in terms of Efficiency,

Selectivity of Stimulation and Computational Cost

Implementation of the model-based direct search method (SID-PSM) and the non-model-based
generalized pattern search method (Matlab, Mathworks, Natick, MA) for the determination of the
optimal temporal pattern and parameters of stimulation indicated that, except for the current

amplitude that was consistently maintained at its minimal value ( /, = 0.0014 ), both

optimization procedures may discover multiple parameter values for a specific site that are
considerably different. This result is in line with the conclusions reported in Feng et al. (2007(a)).
Accordingly, for each site, we acquired 5 sets of parameter values, by means of each distinct

solver, and assessed the respective mean values illustrated in figures 6.7 and 6.8.

Statistical analysis in cases of PD and OCD corroborated a significantly higher performance of
the model-based direct search method, in terms of both stimulation power and computation time
corresponding to the optimal stimulation settings, compared with the generalized pattern search
method (p< 0.0001, Mann—Whitney U test), while an almost equivalent effect was observed on
the invariant density measure (ppp=0.3299, pocp=0.4705, Mann—Whitney U test) (figures 6.9,
6.10). Remarkably, and contrary to the suggestion in Feng et al. (2007(a)), implementation of the
genetic algorithm was associated with prohibitively long execution times (> 1 hour). Optimal
stimulation settings determined by means of the model-based direct search method in case of PD
included a pulse width equal to 33.36 £ 1.06 us, a frequency equal to 39+ 3.43 Hz and a Poisson
parameter equal to 19.8 £0.92 (mean £ standard error mean), and in case of OCD, a pulse width

equal to 33.75% 1.29 us, a frequency equal to 53.24 1 5.2 Hz and a Poisson parameter

147



6 Design of a Therapeutically- and Energy-Efficient Closed-Loop DBS System

A

¢ MODEL-BASED
DIRECT SEARCH

Poisson parameter, A

DIRECT SEARCH

frequency (Hz)
pulse width (us)

& D,
pulse width (ps)

] ™ &0
pulse width (ps)

Figure 6.7: Implementation results of the model-based direct search method (SID-PSM) vs. a non-model-based direct
search method (Matlab, Mathworks, Natick, MA) for the determination of the optimal temporal pattern and parameters
of stimulation based on 13 MERs acquired during STN-DBS surgery for advanced PD. For each site, we acquired 5
sets of parameter values, by means of each distinct solver, and assessed the respective mean values displayed in (A)-
(D). The current amplitude, after application of both optimization procedures, was consistently maintained at its
minimal value (/g =0.0014).
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Figure 6.8: Implementation results of the model-based direct search method (SID-PSM) vs. a non-model-based direct
search method (Matlab, Mathworks, Natick, MA) for the determination of the optimal temporal pattern and parameters
of stimulation based on 12 MERs acquired during STN-DBS surgery for treatment-refractory OCD. For each site, we
acquired 5 sets of parameter values, by means of each distinct solver, and assessed the respective mean values depicted
in (A)-(D). The current amplitude, after application of both optimization procedures, was consistently maintained at its
minimal value (/g =0.0014 ). (E) Taking into consideration the results presented in figure 6.6, following the

application of the model-based direct search method, the mean optimal stimulation frequency proved to be significantly
higher in case of OCD compared with PD (*p=0.02, Mann—Whitney U test).
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Figure 6.9: Performance of the proposed modeling approach in terms of efficiency of stimulation and computational
speed in case of advanced PD. (A)-(C) Comparison of the model-based direct search method (SID-PSM) with a non-
model-based direct search method (Matlab, Mathworks, Natick, MA) corroborated a significantly higher performance
of the former method, in terms of both (B) stimulation power and (C) computation time (*p<0.0001, Mann—

Whitney U test) corresponding to the optimal stimulation settings, while an almost equivalent effect was observed on
the invariant density measure (ppp=0.3299, Mann—Whitney U test). (D)-(E) Statistical analysis corroborated the ability
of the proposed model-based strategy (combined application of the stochastic phase model and the model-based direct
search method) to identify stimulation settings that yield significantly lower values of the invariant density measure and
stimulation power compared with the stimulation settings determined post-operatively during the last follow-up
(*p<0.0001, Mann—Whitney U test). Errorbars indicate standard error mean.
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Figure 6.10: Performance of the proposed modeling approach in terms of efficiency of stimulation and computational
speed in case of treatment-refractory OCD. (A)-(C) Comparison of the model-based direct search method (SID-PSM)
with a non model-based direct search method (Matlab, Mathworks, Natick, MA) corroborated a significantly higher
performance of the former method, in terms of both (B) stimulation power and (C) computation time (*»<0.0001,
Mann—Whitney U test) corresponding to the optimal stimulation settings, while an almost equivalent effect was
observed on the invariant density measure (pocp=0.4705, Mann—Whitney U test). (D)-(E) Statistical analysis
corroborated the ability of the proposed model-based strategy (combined application of the stochastic phase model and
the model-based direct search method) to identify stimulation settings that yield significantly lower values of the
invariant density measure and stimulation power compared with the stimulation settings determined post-operatively
during the last follow-up (*p<0.0001, Mann—Whitney U test). Errorbars indicate standard error mean.
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equal to 19.81 £ 1.02 (mean * standard error mean) (figure 6.8E). In addition, statistical analysis
corroborated the ability of the proposed model-based strategy (combined application of the
stochastic phase model and the model-based direct search method) to identify stimulation settings
that yield significantly lower values of the invariant density measure and stimulation power
compared with the stimulation settings determined post-operatively (»p<0.0001, Mann—

Whitney U test) (figures 6.9D-E, 6.10D-E). Notably, the differential desynchronizing effect on
neuronal activity exerted by the model-based stimulation settings vs. the stimulation settings
determined post-operatively may be qualitatively reflected in the distinct form of the respective
stochastic kernels (figure 6.12). Overall, the above results combined with the reported possible
correlation of the invariant density measure with clinical effectiveness of stimulation in PD, but
probably also in OCD (see next paragraph), highlight an outstanding performance of the proposed
modeling approach not only in terms of efficiency and selectivity of stimulation (Grill 2015), but

also in terms of computational speed.

6.3.5 Possible Correlation between the Invariant Density Measure and Clinical

Effectiveness of Stimulation in OCD

Figure 6.11 displays the results obtained by assessing the variance of the invariant density based
on a total of 39 MERs of subthalamic neuronal activity acquired during DBS for OCD and
characterized by a high discharge rate, a high intraburst frequency and a short interburst interval
vs. a total of 39 MERs of subthalamic neuronal activity characterized by a low discharge rate, a
low intraburst frequency and a long interburst interval. Essentially, the desynchronizing effect of
standard 130Hz stimulation proved to be significantly stronger in the former case compared with
the latter (p< 0.01, Mann—Whitney U test). This result points to a possible correlation of the
principal model outcome measure, the variance of the invariant density, with clinical
effectiveness of stimulation in OCD, since values of this measure are proven to be lower at
locations of neuronal activity that have been correlated with the best clinical outcome of STN-

DBS for OCD (Welter et al. 2011).

Last, we should comment on the fact that, following the application of the model-based direct
search method, the mean optimal stimulation frequency proved to be significantly higher in case
of OCD compared with PD (p<0.05, Mann—Whitney U test), while a similar outcome was
obtained with respect to the mean optimal pulse width and the mean optimal Poisson parameter
(figure 6.8E). We suggest that differences in the underlying pathophysiology (Piallat et al. 2011,
Welter et al. 2011) may have led to the observed differences in optimal stimulation frequency in

case of PD vs. treatment-refractory OCD.
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Figure 6.11: Assessment of the mean * standard error mean variance of the invariant density based on a total of 39
MERs of subthalamic neuronal activity acquired during DBS surgery for treatment-refractory OCD and characterized
by a high mean discharge rate (39.7 £ 14.71Hz), a high intraburst frequency and a short interburst interval (u;5;=

0.0289 £0.0114s, Varg; = 0.0038 £0.0056) vs. a total of 39 MERs of subthalamic neuronal activity characterized by a
low mean discharge rate (13.53 £7.13Hz), a low intraburst frequency and a long interburst interval (zys;=

0.1072 £0.093s, Varg = 0.0265 £0.0542). The mean desynchronizing effect of standard, 130Hz stimulation proved
to be significanlty stronger in the former case compared with the latter (*p< 0.01, Mann—Whitney U test).

6.4. Discussion

Bikson et al. (2015) remark: “Approaches using closed-loop stimulation are inherently state
dependent and require computational neurostimulation.” Elaborating on this concept and
considering the implications of the current approach, we make the following two key
observations: first, though evidence about the pathophysiology of medically refractory
neurological and neuropsychiatric disorders remains to date to a large extent inconclusive, a
growing body of basic and clinical work supports the important role of nonlinear coupling
between beta and high-frequency activity in the pathophysiology of PD (Voytek and Knight
2015), thereby pointing to a possible utility of this measure as a state biomarker in closed-loop
neuromodulation approaches for PD. The results of this study incline towards this hypothesis by
corroborating the presence of cross-frequency coupling for each case with advanced PD. On the
contrary, the appropriatness of this feature as a state biomarker proved rather subject-specific in
case of treatment-refractory OCD. An alternative biomarker of OCD severity, intense subthalamic
bursting activity (Welter et al. 2011), had, therefore, to be applied. Second, throughout this
analysis, we attempted to provide compelling evidence for the applicability of computational
neurostimulation to real-time, closed-loop DBS systems (Little and Bestmann 2015). The
computational model used operates on the principles of phase reduction and phase- resetting

(Canavier 2015) that are inherently characterized by simplicity and analytical tractability (Kiss et
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Figure 6.12: Stochastic kernels derived by fitting the phase-reduced bursting neuron model to a MER acquired during
STN-DBS surgery for (A) PD and (B) OCD, and simulating application of post-operative (left panels) vs. model-based
stimulation settings (right panels). The stronger desynchronizing effect on neuronal activity exerted by the model-based
stimulation settings is qualitatively reflected in the intense form of the respective stochastic kernels.

al. 2007), and further incorporates the dynamics of neuronal bursting activity that comprises a

hallmark of PD and OCD pathophysiology.

In the previous chapter, we provided important indications for the realistic substructure of the
stochastic phase model and further highlighted a possible correlation of the primary outcome
measure with clinical effectiveness of stimulation in PD. By extending the latter result to the case
of treatment-refractory OCD, we here prove that the proposed model-based strategy may
outperform post-operative clinical management in terms of therapeutic efficiency of stimulation
for both pathologic conditions. By yielding a mean optimal pulse width equal to ~33us, values of
stimulation frequency significantly lower as compared to standard stimulation and by maintaining
the optimal current amplitude at its minimal value, the model-based strategy proves to further
achieve a significanlty higher performance in terms of both selectivity and energy efficiency of
stimulation compared with post-operative clinical management. In addition to the employment of

the phase-reduced bursting neuron model, the application of direct search optimization based on
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quadratic modeling has significantly contributed to the performance of the presented approach. In
particular, beyond the aforementioned outcome, application of the model-based direct search
method has been associated with a significantly higher computational speed compared with
alternative derivative-free optimization algorithms (generalized pattern search method, genetic

algorithm).

Modeling approaches similar to those proposed in this work may display greater fidelity in the
framework of constant current stimulation. The evolution from the use of constant-voltage to
constant-current DBS devices appears to have been motivated by the rationale that constant-
current stimulation would accommodate for inter-patient and temporal fluctuations in the
impedance of the tissue and electrode-tissue interface (Lempka et al. 2009;2010, Bronstein et al.
2014, Hartmann et al. 2015). Though no randomized trials comparing the effects of constant-
voltage vs current-controlled pulse generators have to date been conducted, it has been suggested
that a constant current device may be correlated with improved clinical effectiveness (Gross and

McDougal 2013, Okun et al. 2012, Timmermann et al. 2015).
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Contribution of the Dissertation and Research

Perspectives

Whereas DBS merits further study as a treatment for carefully selected patients with severe, chronic, and
treatment-resistant psychiatric illness, the long-term value of DBS might be to help elucidate the
underlying neurocircuitry of psychiatric syndromes so that new, less invasive but anatomically targeted

treatments can be developed.

W K Goodman and T R Insel (2009)

7.1. Contribution of the Dissertation

Optimization of stimulation parameters and patterns, as well as adaptive stimulation paradigms lie
within the core future developments in the field of DBS for neurological and psychiatric disorders
(Metman and Slavin 2015, Wojtecki et al. 2012). Moving into the mainstream, the principal
contribution of this dissertation has been the algorithmic design of a therapeutically- and energy-
efficient closed-loop deep brain stimulation (DBS) system for Parkinson’s disease (PD) and
treatment-refractory obsessive-compulsive disorder (OCD), by means of stochastic dynamical
modeling. In that respect, we provided strong indications for the applicability of computational
neurostimulation to the optimization of the clinical outcome of electrical DBS in movement and

neuropsychiatric disorders.
In particular, throughout this work we provided evidence
e for the realistic substructure of the developed stochastic dynamical models simulating the

collective dynamical and response properties of subthalamic oscillatory activity in the

pathological state.
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o for a possible correlation between the principal model-based outcome measure, a quantity
inversely related to the speculative desynchronizing effect of stimulation, and clinical

effectiveness of stimulation in advanced PD and treatment-refractory OCD.

e that the desynchronizing and probably also the therapeutic effect of low-frequency
stochastic DBS waveforms may be significantly stronger compared with the effect of

standard stimulation (periodic at 130Hz) in advanced PD and treatment-refractory OCD.

o for the ability of the presented model-based, closed-loop neuromodulation scheme to
identify, at a relatively low computational cost, stimulation settings associated with a
significantly higher efficiency and selectivity compared with stimulation settings
determined during post-operative clinical management of patients with advanced PD and

treatment-refractory OCD.

e that cross-frequency coupling may be an appropriate biomarker for feedback control in
closed-loop DBS for advanced PD, but may display subject-specific applicability in
closed-loop DBS for treatment-refractory OCD.

7.2. Research Perspectives

Advances in neuroengineering, neurosurgery and robotics coupled with a deeper understanding of
neuronal circuits underlying the pathophysiology of brain disorders have paved the way for
groundbreaking applications in a broad field of research termed neuroprosthetics (Borton et al.
2013, Patil and Turner 2008, Schwartz et al. 2006). One of the major approaches in this field
exploits electrical and/or chemical neuromodulation paradigms, aiming at the improvement of the
lives of people not only with movement and neuropsychiatric disorders, but also with spinal cord
injury (van den Brand et al. 2015), chronic pain (Al-Kaisy et al. 2014) and blindness (Lovell et al.
2007, Hadjinicolaou et al. 2015). If appropiately adapted, some of the methods elaborated in this

thesis may be applied to the optimization of stimulation in the aforementioned latter cases as well.

Further important considerations for efficient closed-loop neuromodulation include the
optimization of the stimulation waveform (Wongsarnpigoon and Grill 2010, Foutz and McIntyre
2010, Hofmann et al. 2011), of the circuit topology (Stanslaski et al. 2012, Rouse et al. 2011, Lee
et al. 2015) and of contact selection (Connolly et al. 2015(b)), as well as the incorporation of

158



7 Contribution of the Dissertation and Research Perspectives | 159

neurochemical control (Grahn et al. 2014, Ward and Irazoqui 2010) and the adjustment of closed-
loop neuromodulation systems to the phenotypical heterogeneity of neurological and
neuropsychiatric disorders (Connolly et al. 2015(c), Widge and Moritz 2014). Cumulative
research towards these directions may ultimately favor the optimization of less invasive,
groundbreaking treatment options including closed-loop optogenetic control (Nguyen et al. 2014,

Grosenick et al. 2015).

Finally, along other avenues of research, there exist especially optimistic perspectives for the
applicability of model-based feedback control principles to the control of epidemic infections

including neonatal sepsis, one of the leading killers of children worldwide (Schiff 2015").

'https://projectreporter.nih.gov/project_info_description.cfm?icde=0&aid=8754244
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