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Introduction

The purpose of this thesis is the development of a numerical schema, based on the lifting surface
theory, for the prediction of lifting or thrust forces produced by a single lifting surface (wing) or
multiple surfaces arranged symmetrically (propeller).

Historically the first methods were based on the lifting line theory and were basically reversing the
procedure used for the design problem (Kerwin [1959]). Although a simple and fast method, the
lifting line theory could not describe the complex forms of propeller blades or new wing designs.
Nevertheless this method is still being used as first approximation.

A better approximation to the problem was achieved by the use of the lifting surface theory, around
1960. The process was based on the linearization of the wing geometry, which was represented by a
reference surface. Using this method the actual problem could be split into a camber and thickness
problem.

Tsakonas et al [1968, 1973, 1983] developed the acceleration potential method for the steady and
unsteady flow. A set of spanwise and chordwise mode functions were used to approximate the
unknown loading distribution, whose amplitude could be determined.

Kerwin and Lee [1978], Van Gent [1977] and Greeley [1982] focused on the vortex lattice method.
Here, the continuous distribution of vorticity is approximated by a set of line vorticies placed on the
mean surface of the blade or wing (linearized lifting surface theory). The unknowns in this case are
the intensities of the vorticies, which can be calculated by the implementation of the no-entrance
boundary condition at specific points of the reference surface.

In the mode analysis method, developed by Cummings [1973], the vorticity distribution is ap-
proximated by six mode functions with unknonw amptitudes Am. Each mode is the product of
a trigonometric mode in the spanwise direction a two modes in the chordwise direction (the first
corresponds to the flat plate loading and the second one to the loading of the camber surface). The
amplitudes are determined by the no-entrance b.c at 8 spanwise and 4 chordwise positions and the
system is solved with a least squares method.

In later years the non-linear problem was solved using a Boundary Elements Method (B.E.M).
According to that method the real surface of the wing is approximated with a series of panels.

Hess and Valarenzo [1985] developed a B.E method, where the four-sided panels where used to
approximate the upper and lower surface of the blade. Inside each panel is assumed a constant
source-sink distribution and a dipole distribution which constant along the chord of the blade. The
wake on the other hand is approximated like in the vortex lattice method. The contribution of non-
lifting surfaces like the hub of the propeller is modeled using only a source-sink distribution. All
control points are placed in the middle of the panels and implementing the no-entrance boundary
condition they calculate the dipole and source-sink intensities.
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The present analysis is based on the Segkos’ work [1986] who studied the mode analysis method
for the steady problem using a double Fourier series. The premise of this work is to generalize the
theory to include the unsteady case of a freely moving body. Specifically the problem is no longer
described using the moving coordinate system, xi, but the inertial system xi

on
. This allows us, to

examine the ’general’ motion (high amplitudes compared to the chord) of the wing and solve the
unsteady lifting surface problem. As a result, the program is divided into two separate programs.
The first handles the geometry and motion of the wing and provides the input for the second
program to solve the problem using the mode analysis method. At this point we mention that for
simplicity we use the frozen wake model, although a free wake model could be also implemented.

The basic advantages of the mode analysis method compared to the vortex lattice method are :

– The approximation of the unknown lifting surface vorticity by a C∞ dipole distribution
function and not by C0 dipole patches used in vortex lattice numerical approximation.

– The accurate satisfaction of the surface and vorticity and continuity equation.

– The analytical calculation of the self induction factors using the Glauert integral methodology.

The main disadvantage is the complexity in the required mathematical formalism to derive the
proper expressions for all conditions entered (no entrance, pressure Kutta condition at the trailing
edge and calculation of forces and momments) for the case of a Riemann surface (which mathe-
matically is the lifting surface) embedded in a 3D Cartesian space.

The thesis consists of 8 sections :

Section 1, introduces the basic theory of tensor analysis and the tensorial notation which will be
used systematically for the description of the coordiante systems.

Section 2, deals with the various coordinate systems which will be used to describe the motion and
the geometry of the lifting surface. Specifically section 2.1 introduces the inertial system x

on
i and the

relative to it moving system xi. We split the motion into transitional and rotational and describe
the quantities needed to represent each one of them. Furthermore, we define the absolute and
relative velocities to a point M. In section 2.2 the rest of the coordinate systems, used to describe
the geometry of the lifting surface, are introduced. We examine the geometries of a propeller and
a wing and give the relation connecting the coordinates of the various systems.

Section 3, examines the physical problem and make the necessary simplifying assumptions to derive
the relations for the boundary conditions. It focuses on the no-entrance b.c, the continuity of
vorticity and the pressure kutta condition at the trailing edge. Specifically, in section 3.2 we use
the assumptions of perturbation theory to split the no entrance b.c into a thickness and a camber
b.c and use the mean velocity (and velocity jump) on the reference surface to describe them. In
section 3.3 we derive the exact relation for the pressure difference on the lifting surface and then
linearize it. In section 3.4 we apply the Bernoulli ’s equation on the vortex sheet and examine the
kinematic and dynamic conditions on it. In section 3.5 we examine the kinematic conditions on
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the blade by applying the continuity of vorticity on the outline of the surface. Finally in section
3.6 we apply the representation theorem of velocity on the reference surface.

Section 4, applies the mode analysis method to each boundary condition examined in the previous
section and derives the relations for the numerical solution of the problem. We start in section 4.1
by taking the results of the 2D lifting line theory referring to the (bound) vorticity and apply them
in the 3D problem to get double Fourier series for the modified vorticity. In chapters 4.3, 4.4, 4.5
and 4.6 we substitute this series in the kinematic, dynamic and no entrance boundary conditions to
get a more useful expression. It is worth noting that although we study the full series only a part
of it (sinus terms) are needed to describe the problem at hand. In fact the selection of terms of the
series should be examined for the general case, to ensure the speed and stability of the solution.
In section 4.7 we introduce the numerical scheme for the specific case of the sinus bound vorticity
series, for the blade and the wake. In section 4.8 we describe the contribution of the wake (Kutta
strip and free wake) as well as the boundary of the lifting surface, using a lattice of vortexes. The
contribution of the Kutta strip is split between the boundary of the lifting surface and the free
wake. The first part is described using mode velocities which will be added to the mode velocities
of the inner part of the lifting surface, in the no entrance b.c. The other part of the Kutta strip
contribution is combined with the wake and is known at every instant. Finally in section 4.9 we
create the linear system for the solution of the coefficients, A, of the modified bound vorticity.

Section 5, deals with the calculation of the pressure distribution and forces on the lifting surface.
It includes the general description of the forces acting on the body, which is simplified to give the
forces acting on the camber surface. In the next subsection we correct the produced force by adding
the leading edge suction force, which cannot by calculated by the lifting surface theory.

Section 6, examines the Filon integration method (a modified Simpsons method) for the calculations
of mode velocities. In section 6.2 we develop the general Filon method by approximating the
integrand function (without the trigonometric term) using a Lagrange polynomial of any order.

Section 7, includes the the summary of the programs along with a description of their variables.
There are also example of input and output files for each one of them.

Section 8, includes the results of the program for three different problems. First we compare lift
coefficient as a function of angle of attack of a chordwise cross section with the 2D steady case
experimental results of NACA 4412 airfoil. Next we take the theoretical results of the 2D heaving
and pitching potion of a flat plate and compare the lifting coefficient and its phase with respect to
the motion as functions of the reduced frequency. Finally we examine the thrust coefficient of a 3D
flapping hydrofoil for various geometries and motion combinations. Those results are compared to
the respective results of the UBEM program designed by G.Politis.
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1 Brief review of tensor analysis

The introduction of the indicial notation and tensor algebra is necessary in order to cope with the
complex relations that describe the physical problems. A formal approach to tensor analysis can
be found in [1]. In this section we will mention only a few basic properties and relations of the
tensors needed for the better understanding of the following analysis.

Since we use both space and surface tensors, for the distinction between the two will use the usual
convention : Latin indices for the space tensors with values 1, 2, 3 and Greek indices for the surface
tensors with values 1 and 2. Depending on the position of the index we distinguish two cases :

• Covariant component of a tensor : When the index is in the lower right part of the variable,
as a subscript e.g. xi, xα.

• Contravariant component of a tensor : When the index is in the upper right part of the
variable, as a supersctipt e.g. xi, xα

1.1 Space tensors

Supposing two oblique coordinate systems xr and xr, and the using the summation convention the
transformations between the two systems are :

xr = crs · xs (1.1 α)

xr = γrs · xs (1.2 α)

The general case of nonlinear transformation is given by relations :

xr = f r(x1, x2, x3) (1.1 β)

xr = gr(x1, x1, x1) (1.2 β)

Note that relations (1.2) are valid only in case the Jacobian of the direct transformation

c =

∣∣∣∣∂xr∂xs

∣∣∣∣ (1.3)

is non-zero. By differentiating relations (1.1α), (1.2α) or taking the differentials of relations
(1.1β),(1.2β) we get:

crs =
∂xr

∂xs
, γrs =

∂xr

∂xs
(1.4)

In case of linear transformation ((1.1α), (1.2α)), crs, γ
r
s are constant. Otherwise in the general

transformation case of (1.1β) and (1.2β), crs, γ
r
s are functions of xr (and thus of xr). A useful

relation which connects crs ,γrs is :
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crm · γms = γrm · cms = δrs (1.5)

where δrs is Kronecker’s delta :

δrs =

{
1, if r = s

0, otherwise

Let α be a number which in general can be a function of position. If α is constant under linear
transformation

α = α (1.6)

then it’s called a scalar or an invariant or a tensor of zero order.

A system of numbers or functions of position αr = (α1, α2, α3), is called a contravariant vector, or
contravariant tensor of first order if :

αr = crs · αs (1.7)

and a covariant tensor of first order, if:

αr = γsr · αs (1.8)

It can be proven that :

αr = γrm · αm (1.9)

αr = cmr · αm (1.10)

Generalizing the definition of the tensor, we call the system αr1r2...rms1s2...sn , a covariant tensor of order
n, with respect to the lower indices and contravariant tensor of order m, with respect to the upper
indices, when :

αr1r2...rms1s2...sn =
(
cr1p1 · c

r2
p2 ...c

rm
pm

) (
γq1s1 · γ

q2
s2 ...γ

qn
sn

)
· αp1p2...pmq1q2...qn (1.11)

Next we define the relative tensors of weight M. For the sake of simplicity we assume a mixed
triple tensor, contravariant with respect to the upper index and covariant with respect to the lower
indices, then the following relation should hold :

αrst = (γ)M · crm · γns · γ
p
t · αmnp (1.12)

where

γ =

∣∣∣∣∂xi∂xj

∣∣∣∣ (1.13)

When M=0 we have the absolute tensors or simply tensors.

By the same logic, we define the general tensors, which are tensors under the linear transformation
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connecting the differentials between the initial and the final variables. In other words, general
tensors are defined locally, with respect to a single point in space.

A basic concept, of the tensor analysis is that of the metric tensor. Referring to relations (1.1 α),
(1.2 α), the metric tensor gmn, is defined by the relation:

δ2 = gmn · xm · xn (1.13 α)

where δ, is the distance from the origin point O, to a point P = xr, of a linear coordinate system.
Otherwise in case of the general coordinate system the metric tensor is defined by the relation :

ds2 = gmn · dxm · dxn (1.13 β)

where ds is the differential distance between two points.

If xi is an orthonormal system and xi is a general curvilinear system, then it can be shown that
the metric tensor in the xi system is given by:

gmn =
∂xi

∂xm
∂xj

∂xn
δij

which shows that the metric tensor is symmetric. Obviously for an orthonormal coordinate system
the metric tensor takes the oversimplified form :

gmn = δmn , gmn = δmn (1.14)

A useful type of tensor, is the e-system :

erst =


+1, if (r,s,t) is an even permutation of (1,2,3)

−1, if (r,s,t) is an odd permutation of (1,2,3)

0, otherwise

In a similar manner we define erst. It can be easily proved that the permutation symbols erst, e
rst

are relative tensors of weight -1 and +1 respectively.

Below we list some very useful relations of δrs , erst and erst :

δrr = 3 (1.15 α)

ermnerst = δms δ
n
t − δmt δns (1.15 β)

ermnerms = 2!δns (1.15 γ)

ermnermn = 3! (1.15 δ)

erstδsr = 0 (1.15 ε)
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erstAst = erstA
st (1.15 ζ)

where Ast , Ast are symmetric tensors.

The determinant α ≡ |αmn | of the second order tensor αmn is given by the relation :

α =
1

3!
δijkrst α

r
i a

s
j α

t
k

or alternatively (1.16)

eijk αri α
s
j α

t
k = α erst

eijk α
i
r α

j
s α

k
t = α erst

where the generalized Kronecker’s delta has been used

δijkrst ≡ eijk erst

Using relation (1.16) we can calculate the determinant of the metric tensor (or metric for short):

g =
1

3!
erst emnp grm gsn gtp (1.17)

It can be shown that the metric is a relative invariant of weight 2, since erst, emnp are relative
tensors of weight 1. Therefore we can define the ε-systems as :

εrst =
√
g erst , εrst =

1
√
g
erst (1.18)

which are absolute tensors

The magnitude, A, of a contravariant vector Ar, is an invariant defined by the equation

A = (gmnA
mAn)1/2 (1.19)

or similarly for the covariant vector Br

B = (gmnBmBn)1/2

The angle θ between the directions defined by two unit vectors λm and µn is:

cos θ = gmn λ
m µn (1.20)

The last two relations show the importance of the metric tensor, namely that gmn provides infor-
mation about the scaling of the axes and the angles between them. For the first, g11, g22 ,g33 are
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necessary, while for the second the g12, g23, g13 are needed. Of course the opposite is also true.
Knowing the scaling of the axes and the angle between them, we immediately know gmn, through
the following relations :

εr(1) =
1
√
g11

δr1 , εr(2) =
1
√
g22

δr2 , εr(3) =
1
√
g33

δr3

and

cos θ12 =
g12√
g11g22

, cos θ23 =
g23√
g22g33

, cos θ13 =
g13√
g11g33

where εr(m) is the unit vector of the (m) axis (or their tangent in a point P in the case of a curvilinear

system) and θmn is the angle between the (m) and (n) axes (or their tangents at P).

With the help of the metric tensor we can define the inner and the cross product.

Inner product of Ar, Br : AB cos θ = gmnA
mBn = AmBm = AmB

m (1.21)

where relation (1.20) and the following identities have been used :

Am = gmnA
n , Am = gmnAn (1.22)

Cross Product of Ar, Br : AB sin θ vr = εrmnAmBn (1.23)

where vr is a unit vector normal to the Am, Bm.

An other important concept is that of the physical component of a vector xr in the direction of the
unit vector qr. It is defined as the projection of xr in the qr direction and it is independent of the
components of xr :

x[φ] = gmnx
mqn = gmnxmqn (1.24)

The physical component of a contravariant vector in the (i) axis is given by the relation :

x
(i)
[φ] = gri x

r/
√
gII (1.25)

which can be written as:

x
(i)
[φ] = xi/

√
gII (1.26)

which shows that the covariant components, xi, of a vector are the scaled physical components with
respect to the contravariant axis. Similarly we get :

x[φ] (i) = grixr/
√
gII = xi/

√
gII (1.27)

Note that in the above relations the summation convention doesn’t apply for the capital letter
indicies (i ≡ I in arithmetic value )
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1.2 Surface Tensors

Let xr be a cooridinate system in space. A surface, S, is defined as the geometrical set of points
whose coordinates are functions of two independent variables u1, u2. The equations of a surface
are:

xr = xr(u1, u2) (1.28)

Taking the differential of the relation (1.28), on a certain point we get:

dxr =
∂xr

∂uα
duα

thus in every direction
duα

ds
tangent to the surface in a certain point in space, corresponds the :

dxr

ds
= xrα

duα

ds
(1.29)

where ds is the differential physical length along duα on the surface and

xrα ≡
∂xr

∂uα
(1.30)

is at the same time a contravariant space vector and a covariant surface vector. For every surface
vector Aα (or tensor of any order), we can assign a space vector Ar through the relation :

Ar = xrαAr =⇒ Aα = xrαAr (1.31), (1.32)

The surface metric tensor, ααβ, is defined as:

ds2 = ααβ du
α duβ (1.33)

or using relation (1.32)

ααβ = gmn x
m
α x

n
β (1.34)

Furthermore we can define the surface tensors δαβ , eαβ and εαβ :

δαβ =

{
1, α = β

0, α 6= β

eαβ =


+1, α = 1, β = 2

−1, α = 2, β = 1

0, α = β

εαβ =
1√
α
eαβ


(1.35)

13



and in a similar manner the δαβ, δαβ, eαβ, εαβ.

Let ξr be a unit vector normal to a point on a surface. Then it can be shown that:

ξr =
1

2
εαβ εrst x

s
α x

t
β (1.36)

Finally we give the relation for the divergence of :

a) space vector Xr : div Xr ≡ Xr
.,r =

1
√
g

∂

∂xr
(
√
g Xr) (1.37)

b) surface vector Xα : div Xα ≡ Xα
.,α =

1√
α

∂

∂xα
(
√
αXα) (1.38)

Note that the symbol Xα
.,β is defined as :

Xα
.,β ≡

∂Xα

∂uβ
+

{
α
σ β

}
Xσ

where {
α
β γ

}
≡ ααδ [β γ , δ ]

and

[αβ , γ ] ≡ 1

2

(
∂αγα
∂uβ

+
∂αγβ
∂uα

−
∂ααβ
∂uγ

)

It can be shown that :

{
γ
γ β

}
=

1√
α

∂
√
α

∂uβ

Closing this section notice that almost all of the above relations can be found with proofs in [1].
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2 Preliminaries for Geometry and Motion

In this section we discuss the preliminary ideas used in the module of ”Geometry and Motion
Preprocessor”, which provides the necessary input for the main program, ”Solver”.

2.1 Lifting Surface Motion - Coordinate Systems

In order to describe the unsteady problem for the lifting surface we have to define first an inertial
coordinate system, which we denote by x

on
i. All velocities are measured relative to this coordinate

system unless it is specified otherwise. We then define a moving coordinate system relative to x
on
i,

which we denote by xi. Both systems are considered to be orthonormal with their axis initially
(t=0) coinciding.

Figure 2.1.1

The moving coordinate system is used to describe the general motion of the lifting surface. Specifi-
cally we assume that the lifting surface has a fixed position relative to xi, which is used in the next
section to describe the geometry of the surface.

Suppose a point M fixed on the wing’s surface (moving with xi system), then the following velocities
can be defined.

~uM −→ velocity of M, relative to the inertia system (2.1.1)

~V∞ −→ undisturbed fluid velocity at M, relative to the inertial system (2.1.2)

~q = ~V∞ − ~uM −→ undisturbed fluid velocity relative to M (2.1.3)
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~v −→ perturbation velocity relative to the inertial system (2.1.4)

~V∞ + ~v −→ total fluid velocity relative to the inertial system. (2.1.5)

~w = ~q + ~v −→ total fluid velocity relative to M (2.1.6)

The movement of xi system is described by a parallel transition and a rotation around a fixed point
relative to xi, named PIVOT. In other words the motion of the moving system can be described
by the motion of PIVOT and the rotation vector θ(t) · ~E1 at PIVOT, where θ(t) is the angle of
rotation and ~E1 the direction of rotation.
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2.2 Lifting Surface Geometry - Coordinate Systems

Here we will describe the Lifting surface of two different bodies. The first one is the propeller
which practically consists of multiple blades - lifting surfaces placed symmetrically around the axis
of rotation. In this analysis we don’t include the contribution of the hub and therefore we don’t
model it. Next we examine the case of a single wing which can be view as a special case of the
propeller, as far as the description of the geometry goes (not the motion).

In order to describe the geometry of the propeller we use three space and two surface coordinate
systems, all moving (i.e. non-inertia), according to the discussion of the previous section. The
distinction between them is accomplished with the different underline symbols. Referring to Figure
2.2.1, of the propeller we define the following coordinate systems for the reference blade :

a) The orthonormal coordinate system, xi, with the x1 axis coinciding with the propeller axis
and x2, x3 axes completing the right hand system.

b) The cylindrical coordinate system, x
∧
i, with x

∧
1 ≡ x1 and x

∧
2, x
∧

3 according to figure 2.2.1,

which is also a right hand system.

c)The general curvilinear system, xi, with the x1 axis coinciding with the blade reference line
1 and parametrized with the radial coordinate x

∧
2, the x2 axis coinciding with the helicoidal lines

through the blade reference line with pitch angle φ(x
∧

2) and parametrized with the distance from the

blade reference line expressed as a fraction of chord. Finally x3 coincides with the helicoidal lines
with pitch φ(x

∧
2) − π/2. Notice that this is a left hand system. With the previous considerations

in mind the three coordinate systems are connected by the following relations :

x1 = x
∧

1 (2.2.1)

x2 = x
∧

2 cosx
∧

3 (2.2.2)

x3 = x
∧

2 sinx
∧

3 (2.2.3)

and

x
∧

1 = X(x1) + c(x1)
[
x2 sinφ(x1)− x3 cosφ(x1)

]
(2.2.4)

x
∧

2 = x1 (2.2.5)

x
∧

3 = Θ(x1) + c(x1)
[
x2 cosφ(x1) + x3 sinφ(x1)

]
/x1 (2.2.6)

1For the propeller performace problem we are studying, blade reference line is usually selected to be the locus
of blade section midchord points. For the design problem it is selected to differ from the unknown locus of blade
midchord points by a first order quantity. Other choices of blade reference line are also possible.
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where X(x1) and Θ(x1) are the rake and skew angle of the blade reference line respectively and
c(x1) is the chord length, at the radial position x1.

We also introduce two surface coordinate systems which describe the intrinsic geometry of the blade
reference surface, according to the following relations :

a) The uα ≡ (xi)i=α

b) The yα , which is defined through the relations :

u1 =
1

2
(Ro +RH)− 1

2
(Ro −RH) cos y1 (2.2.7)

u2 = −1

2
cos y2 (2.2.8)

where RH , is the radius of the hub and Ro is the radius of the propeller. The difference Ro −RH ,
is the span of the blade.

The range of values, for the y1, y2 is [0, π] where :

y1 = 0↔ u1 = RH

y1 = π ↔ u1 = Ro

and

y2 = 0↔ u2 = −1/2 (leading edge)

y2 = π ↔ u2 = 1/2 (trailing edge)

The surface coordinate systems have axes, that coincide with the x1 and x2 axes of the general
curvilinear system, so we define them as left hand systems. This is induced by the properties of xi

as left handed. For the sake of uniformity we introduce the x
`

i, coordinate system as :

x
`

α ≡ yα , x
`

3 = x3

The introduction of three different coordinate systems in our development was necessary since each
coordinate system has some special advantages over the others for some part of the subsequent
analysis. Thus, the orthonormal system is necessary for the introduction of the representation
theorems of potential theory, the cylindrical system is helpful in the case of the propeller since it
simplifies the representation of its geometry and finally the general curvilinear coordinate system
is very useful in deriving the linearized no entrance blade surface boundary condition since the
equations of blade surface for this coordinate system become particularly simple. Finally the yα

surface coordinate system is necessary for the application of the mode analysis method. With the
help of the equations (2.2.7) and (2.2.8), the integral equations of the perturbation velocities, with
the Cauchy kernel, can take a simplified form using the familiar Glauert integrals.
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Figure 2.2.1

As an other example of lifting surface geometry is that of the a wing. The main difference between
the propeller and the wing is that the blade sections of the first lie on cylindrical surfaces while the
blade sections of the later are flat and therefore there is no need for the cylindrical coordinates.

Figure 2.2.2
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The parameters of skew and pitch in the case of the wing are replaced by sweep-back and twist
angle respectively. Normally a wing with no twist lies on the x2, x3 plane. Furthermore, similarly
to the propeller geometry we can add an extra degree of freedom, X(x2), denoting the distance of
each cross section from the x2, x3 plane which is the wing skew-back. In fact changing the point of
view in figure 2.2.2 we could view the wing like in figure 2.2.3. Notice that figures 2.2.1 and 2.2.3
are very similar and in fact we can use the slightly modified equations to (2.2.1)-(2.2.6) to describe
the reference surface of the wing, as follows.

x1 = X(x1) + c(x1)
[
x2 sinφ(x1)− x3 cosφ(x1)

]
(2.2.9)

x2 = x1 (2.2.10)

x3 = x1 tan(Θ(x1)) + c(x1)
[
x2 cosφ(x1) + x3 sinφ(x1)

]
(2.2.11)

Figure 2.2.3

In the sequel we use the following conventions:

We underline each quantity with the symbol of the coordinate system to which this quantity refers,
as well as double underlining for quantities that connect two coordinate systems (transformation
matrices). For example :

gij , g, εijk, the metric tensor , the metric tensor determinant and the alternating symbol respectively
in the cartesian coordinate system.
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gij
∧

, g
∧
, εijk
∧

, the metric tensor, the metric tensor determinant and the alternating symbol respectively

in the cylindrical coordinate system.

As for the transformation matrices between two coordinate systerms e.g xi, x
∧
i there are two con-

ventions. In the first one we underline the quantities (tensors, transormation matricies etc). We
use c and γ to denote the direct and inverse transformation respectively.

Am = cmj
∧

A
∧
j , A

∧
j = γjm

∧
Am (transformation by contravariance)

An = γmn
∧

Am
∧

, An
∧

= cmn
∧

Am (transformation by covariance)

In the second one we underline the indicies associated with each coordinate system, thus we use
the same symbol for both the direct and inverse transformation.

Am = c
m
j
∧
A
j
∧ , A

j
∧ = c

j
∧
m Am (transformation by contravariance)

An = c
m
∧
n Am

∧
, An

∧
= cmn

∧
Am (transformation by covariance)

In the following pages we use the first convention. The trasformation matrices between the various
coordinate systems are shown in the following figure. The analytic relations for the transformation
matrices as well as the metrics of the coordinate systems are shown in Appendix A.

Figure 2.2.4
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3 Linearised Lifting Surface Theory

Here we will present the basic parts of the linearised lifting surface theory, on which the present
study is based on. In this chapter we shall present the various quantities used to formulate the prob-
lem and work out the form of the boundary conditions using basic assumptions to linearise them.
In the next chapters we shall review the same boundary conditions and make further assumptions
to acquire more useful expressions to use for the program.

3.1 Velocity field and the cross section geometry

The basic assumptions for the development of the theory are that the fluid surrounding the propeller
extends infinitely in all directions (open region) with boudaries consisting of a finite number of
smooth (Lyapunov) surfaces. Moreover the flow is considered to be frictionless and irrotational for
the whole region except for the trailing vortex sheet of each blade. Thus it is possible to describe
the flow using a potential (scalar function) and the representation theorem.

As seen in chapter 2.1 the undisturbed fluid velocity relative to a point M on the propeller blade
is denoted by ~q and its projection on the cylindrical coordinate system has the simple form :

q
∧
i =

{
Ux , UR , U t

}
(3.1.1)

where Ux is the axial wake velocity, UR the radial wake velocity and U t the tangential wake velocity,
which, for compatibility with the tensor notation, has dimensions of radial velocity [rad/sec]. Note
that in order for the propeller to rotate correctly (with the leading edge preceded), U t, should be
negative.

The perturbation velocity due to the existence of blades and the trailing vortex sheets emanating
form each blade shall be denoted by vi.

Total velocities relative to M are denoted by wi and the following relation holds :

wi = qi + vi (3.1.2)

Let Ec(u
1, u2) be the blade camber distribution and ET (u1, u2) the blade thickness form nondi-

mensionalised with the chord length. The following order of magnitude estimates shall be used
repeatedly in the sequel as a part of the linearised lifting surface theory.

Ec = O(ε) (3.1.3)

ET = O(ε) (3.1.4)

v
∧
i

Ux
= O(ε) (3.1.5)

tanφ− tanβ = O(ε) , (or φ− β = O(ε)) (3.1.6)
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where tanβ = Ux/(ωx
∧

2) and ε is a small parameter, for example ε=camber/chord). Relations

(3.1.3) to (3.1.5) express the fact that the propeller blade camber and thickness which is the cause
of fluid disturbance and perturbation velocity vi are first order quantities. Finally relation (3.1.6)
expresses the fact that the blade reference surface which by assumption is selected near the real
blade surface (since using the blade reference surface propeller geometry is expressed by the first
order quantities Ec and ET ) differs by a first order quantity from the undisturbed flow surface.

We shall assume that the derivatives with respect to the independent variables of the previous
quantities conserve the order of magnitude estimates although this is not generally true near the
blade leading edge and tips.

Knowing the camber and thickness distribution of the blade we can construct the blade surface
as shown in Figure 3.1. By definition the camber surface is the set of points in the middle of
the thickness, measuring vertically from the camber surface. Thus the blade surface geometry in
the general curvilinear coordinate system xi can be described in parametric form by the following
relations :

For the back of the blade (upper side) :{
x2
u = u2 − 1

2ET (u1, u2) sinψ

x3
u = Ec(u

1, u2) + 1
2ET (u1, u2) cosψ

For the face of the blade (lower side) :{
x2
L = u2 + 1

2ET (u1, u2) sinψ

x3
L = Ec(u

1, u2)− 1
2ET (u1, u2) cosψ

where ψ = ∂Ec
∂u2

is the slope of the camber surface. Using the previous assumptions we get, ψ = O(ε),
sinψ = O(ε), cosψ = 1 +O(ε).

Figure 3.1
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Keeping only the first order terms we end up with the simpler relations :

x1 = u1

x2
u,L = u2

x3
u,L = E(u1, u2)

 (3.1.7)

where E(u1, u2) = Ec(u
1, u2)± 1

2ET (u1, u2) (3.1.8)
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3.2 Blade surface boundary condition

The no entrance blade boundary condition expressed in the xi coordinate system reads :

(vi + V i
∞)N i = uiM N i ⇔ wiN i = 0 (3.2.1)

where N i is a unit vector normal to the blade surface and wi is the corresponding total fluid velocity
relative to M.

Boundary condition (3.2.1) refers to the real blade surface and in order to linearize we have to
transfer it to the blade reference surface x3 = 0. Applying Taylor’s expansion theorem around the
blade’s reference surface (the quantities of which shall be denoted with the overline symbol ”∼” we
get :

wi =
∼
w
i

+
∂
∼
w
i

∂xj
δxj + O(ε2) (3.2.2)

where δxj = (0, 0, E) and
∂
∼
w
i

∂xj
≡ lim

x3→0

∂wi

∂xj

Relation (3.1.2) expressed in the xi coordinate system reads :

∼
w
i

=
∼
q
i

+
∼
v
i

(3.2.3)

or taking the partial derivatives :

∂
∼
w
i

∂xj
=

∂
∼
q
i

∂xj
+ O(ε) (3.2.4)

Substituting relations (3.2.3) and (3.2.4) to (3.2.2) we get :

∼
w
i

=
∼
q
i

+
∼
v
i

+
∂
∼
q
i

∂xj
δxj + O(ε2) (3.2.5)

A unit vector normal on the blade’s surface can be found using relation (1.36) :

N i =
1

2
εαβ εijk x

j
α x

k
β (3.2.6)

where xsα =
∂xsu,L
∂uα

(3.2.7)

Since both xi, uα are left handed coordinate systems we get εαβ = −eαβ/
√
α′ and εijk = −eijk

√
g′,

where α′ and g′ refer to the real blade surface. Instead of N i we will use the non-unit vector ni :
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ni =
1

2
eαβ eijk x

j
α x

k
β =

=
[(
x2

1 x
3
2 − x3

1 x
2
2

)
,
(
x3

1 x
1
2 − x1

1 x
3
2

)
,
(
x1

1 x
2
2 − x2

1 x
1
2

)]
=

=
(
−x3

1 ,−x3
2 , 1

)
=

(
− ∂E
∂u1

,− ∂E
∂u2

, 1

)
(3.2.8)

Alternatively if E(u1, u2) is the parametric blade surface, then:

dE =
∂E

∂u1
du1 +

∂E

∂u2
du2 ⇒

0 =

(
− ∂E
∂u1

,− ∂E
∂u2

, 1

)(
du1, du2, dE

)
⇒ ni dx

i = 0

where dxi, is a differential on the blade surface. Note also that the transition from the first to the
second equation is valid since

(
− ∂E
∂u1

,− ∂E
∂u2

, 1
)

are the covariant components of the normal vector
while

(
du1, du2, dE

)
are the contravariant components of the differential.

Using the non-unit ni vector has the advantage of simplifying taylor expansion for ni. Specifically
ni does not depend on the coordinate x3 in the xi coordinate system and thus its taylor expansion
has the form :

ni =
∼
ni (3.2.9)

where
∼
ni refers to points of the blade reference surface. The disadvantage of using ni instead of

N i is that boundary condition (3.2.1) has lost its invariant character and this has to be taken into
consideration in the interpretation of the final result.

Substituting relations (3.2.8) to (3.2.9) and using (3.1.8) we get :

∼
n

+,−
i = ±

o∼
ni ±

c∼
ni +

1

2

t∼
ni (3.2.10)

where

o∼
ni =

o
ni = {0, 0, 1} (3.2.11)

c∼
ni =

c
ni =

{
−∂Ec
∂u1

,−∂Ec
∂u2

, 0

}
(3.2.12)

t∼
ni =

t
ni =

{
−∂ET
∂u1

,−∂ET
∂u2

, 0

}
(3.2.13)

and
∼
n

+

i denotes a vector normal to the upper blade surface transferred to the blade reference surface

whereas
∼
n
−
i is a vector normal to the lower blade surface transferred to the blade reference surface.
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Obviously
∼
ni is not normal to the blade reference surface. On the other hand

o∼
ni lies on the x3 axis

which is reciprocal and thus by definition perpendicular to the x1, x2 axes. Note that although x2

and x3 are perpendicular (g
23

= 0 (A78)) the reference line which coincides with the x1 axis is not
perpendicular to the other two axes (g

12
6= 0 (A75), g

13
6= 0 (A76)).

Substituting relations (3.2.10) to the boundary condition (3.2.1) we get :

wi+,−
∼
n

+,−
i =

(
qi+,− + vi+,−

)(
±

o∼
ni ±

c∼
ni +

1

2

t∼
ni

)
= 0 (3.2.14)

which can be written as : (
qi+ + vi+

)( o∼
ni +

c∼
ni +

1

2

t∼
ni

)
= 0 (3.2.15)

(
qi− + vi−

)(
−

o∼
ni −

c∼
ni +

1

2

t∼
ni

)
= 0 (3.2.16)

By adding and subtracting relations (3.2.15) and (3.2.16) we get :

[(
qi+ − qi−

)
+
(
vi+ − vi−

)]( o∼
ni +

c∼
ni

)
+
[(
qi+ + qi−

)
+
(
vi+ + vi−

)] 1

2

t∼
ni = 0 (3.2.17)

[(
qi+ + qi−

)
+
(
vi+ + vi−

)]( o∼
ni +

c∼
ni

)
+
[(
qi+ − qi−

)
+
(
vi+ − vi−

)] 1

2

t∼
ni = 0 (3.2.18)

Applying Taylor’s expansion Theorem for the undisturbed velocities on the upper and lower surfaces
of the blade we get :

qi+ =
∼
q
i

+
∂
∼
q
i

∂xj
δxj + O(ε2) =

∼
q
i

+
∂
∼
q
i

∂x3
E + O(ε2) (3.2.19)

qi− =
∼
q
i

+
∂
∼
q
i

∂xj
δxj + O(ε2) =

∼
q
i
−

∂
∼
q
i

∂x3
E + O(ε2) (3.2.20)

where δxj = (0, 0,±E) and
∂
∼
q
i

∂xj
≡ lim

x3→0

∂qi

∂xj

By adding and subtracting relations (3.2.19) and (3.2.20) we get the jump and the mean value of
the velocity between the two sides of the blade.

〈qi〉 def
=

(
qi+ − qi−

)
= 2

∂
∼
q
i

∂x3
E + O(ε2) = O(ε) (3.2.21)

〉qi〈 def=
1

2

(
qi+ + qi−

)
= 〉∼q

i
〈+O(ε2) (3.2.22)
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In the actual program the undisturbed velocities on the upper and lower surface are know and
thus, in calculating the jump and the mean value of qi, from relations (3.2.21) and (3.2.22) we use
only their definition (first equation). Nevertheless the above relations provide us with the physical
meaning that for thin blade the jump in the undisturbed velocity is negligible while the mean
velocity can be approximated by the undisturbed velocity on the reference surface.

In a similar manner we can take the Taylor’s expansion of the perturbation velocity and considering
the assumption that the derivatives of the perturbation are also first order quantities, we get:

vi =
∼
v
i

+
∂
∼
v
i

∂xj
δxj + O(ε2) =

∼
v
i

+ O(ε2) (3.2.23)

therefore

〈vi〉 def
=

(
vi+ − vi−

)
= 〈∼v

i
〉 + O(ε2) (3.2.24)

〉vi〈 def=
1

2

(
vi+ + vi−

)
= 〉∼v

i
〈+O(ε2) (3.2.25)

where
∼
v
i+

and
∼
v
i−

denote the perturbation velocities on upper (x3 = 0+) and lower (x3 = 0−) faces
of the blade reference surface. This means that the jump and the mean value of the perturbation
velocity between the surfaces of the blade can be approximated by the respective values on the
reference surface.

Substituting relations (3.2.21),(3.2.22),(3.2.24) and (3.2.25) to relations (3.2.17) and (3.2.18) we
get :

〈qi 〉
o∼
ni + 〈vi 〉

o∼
ni + 〉qi 〈

t∼
ni + O(ε2) = 0 (3.2.26)

〉qi〈
(
o∼
ni +

c∼
ni

)
+ 〉vi 〈

o∼
ni + O(ε2) = 0 (3.2.27)

Relations (3.2.26) and (3.2.27) are linearized forms of the blade boundary condition of the lifting
surface theory. We usually say that equation (3.2.26) defines the ’thickness problem’ of LST while
equation (3.2.27) defines the ’camber problem’ of LST.

Multiplying relation (3.2.26) by
√

∼
g /
√
α ,where

∼
g is the metric tensor determinant at a point of

the blade reference surface and α is the surface metric tensor determinant, and introducing :

o∼
N i =

o∼
ni

√
∼
g /
√
α (3.2.28)

c∼
N i =

c∼
ni

√
∼
g /
√
α (3.2.29)

t∼
N i =

t∼
ni

√
∼
g /
√
α (3.2.30)
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where

o∼
N i is a unit vector normal to the blade reference surface, we get :

〈qi〉
o∼
N i + 〈vi〉

o∼
N i + 〉qi〈

t∼
N i + O(ε2) = 0 ⇒

⇒ σ = −〉qi 〈
t∼
N i − 〈qi 〉

o∼
N i + O(ε2) ⇒

⇒ σ =

(
〉q1 〈∂ET

∂u1
+ 〉q2 〈∂ET

∂u2
− 〈q3 〉

) √∼
g

α
+ O(ε2) (3.2.31)

where σ is the source intensity on the reference surface, defined as :

σ
def
= 〈∼v

i
〉

o∼
N i = 〈∼v

3
〉 (3.2.32)

From the relation (3.2.27) of the camber problem we get:

〉v3〈 = −〉qi〈
(
o∼
ni +

c∼
ni

)
⇒

⇒ ∼
c

3

1 〉v1〈 +
∼
c

3

2 〉v2〈 +
∼
c

3

3 〉v3〈 =

(
〉q1 〈∂Ec

∂u1
+ 〉q2 〈∂Ec

∂u2
− 〉q3〈

)
(3.2.33)

since from relation (3.2.25) we get:

〉vi〈 = 〉∼v
i
〈 + O(ε2) =

∼
c
i

j 〉
∼
v
j
〈 + O(ε2) =

∼
c
i

j 〉vj〈 + O(ε2) (3.2.34)

We emphasize the fact that relations (3.2.31) and (3.2.33) hold for points away from the blades’
leading edge.
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3.3 Prediction of pressure distribution

For the inertial reference frame, x
on
i, since the perturbation velocity field is irrotational, we can

define the

Φ(x
on
i) −→ perturbation potential

where Φ,i
on

= vi
on

is the (absolute) perturbation velocity with regard to the inertial reference frame,

projected on the inertial system.

Let Sb be the surface of a blade and M a point on Sb. Let uα be the curvilinear (surface) coordina-
tization of Sb, as described in section 2.2 and t the time. Then the following analytical description
of Sb is valid :

~xM = ~xM (uα, t) (3.3.1)

where ~xM is a continuous function of the position of M on the surface with regard to the inertial
frame.

The trace of Φ on S is denoted by the function of φ(uα, t). The total differential of trace φ with
respect to uα and t as a function of Φ and x

on
i(uα, t) (i.e φ(uα, t) = Φ(x

on
i(uα, t), t), is given by:

dφ =
∂Φ

∂x
on
i

 ∂x
on
i

∂uα
duα +

∂x
on
i

∂t
dt

 +
∂Φ

∂t
dt (3.3.2)

For a fixed point M on Sb (uα = const), with velocity uiM
on

, relation (3.3.2) gives :

dφ =
∂Φ

∂x
on
i

∂xiM
on

∂t
dt +

∂Φ

∂t
dt ⇒ dφ

dt

∣∣∣∣
M

= Φ,i
on
uiM
on

+
∂Φ

∂t
⇒

⇒ ∂Φ

∂t
=

dφ

dt

∣∣∣∣
M

− vi
on
uiM
on

(3.3.3)

where ∂
∂t → derivative at fixed x

on
i

d
dt → derivative at fixed uα

Let ~V∞ be the (absolute) backround velocity of the fluid at M, with regard to the inertial reference
frame and Φ∞ the corresponding potential, then Φ∞,i

on
= V∞ i

on
and :

Φ + Φ∞ −→ total potential of the flow at M

Applying Bernoulli’s theorem at M and using the definitions of chapter 2.1, we get :
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p

ρ
+

∂(Φ + Φ∞)

∂t
+

1

2
(v
on
i + V i

∞
on

)(vi
on

+ V∞ i
on

) = const⇒

⇒ p

ρ
+

d(φ+ φ∞)

dt
− (vi

on
+ V∞ i

on
)uiM

on
+

1

2
(v
on
i + V i

∞
on

)(vi
on

+ V∞ i
on

) = const⇒

⇒ p

ρ
+
d(φ+ φ∞)

dt
+

1

2
(v
on
i + V i

∞
on
− uiM

on
)(vi

on
+ V∞ i

on
− uMi

on
) − 1

2
uiM
on
uMi
on

= const (3.3.4)

Since all of the terms are tensor invariants (scalar), any coordinate system can be used for their
representation. Using the curvilinear coordinate system xi (see Section 2.2), we get :

p

ρ
+
d(φ+ φ∞)

dt
+

1

2
wiwi −

1

2
uiM uMi = const (3.3.5)

Applying relation (3.3.5) on both sides of blade’s reference surface, we get:

p+ − p−

ρ
+
d(φ+ − φ−)

dt
+

1

2

∼
w
i+ ∼
w

+

i −
1

2

∼
w
i− ∼
w
−
i = 0 (3.3.6)

since both φ∞ and uiM , are continuous through the reference surface.

Using relations (3.1.2) and (3.2.24) we arrive at the linearized form of the Bernoulli’s theorem :

p+ − p−

ρ
+
d(φ+ − φ−)

dt
+

1

2

∼
v
i+ ∼
v

+

i +
∼
q
i
(∼
v

+

i −
∼
v
−
i

)
− 1

2

∼
v
i− ∼
v
−
i = 0 ⇒

⇒ p+ − p−

ρ
+
d(φ+ − φ−)

dt
+

∼
q
i
〈∼vi〉 + O(ε2) = 0 (3.3.7)

We can now develop
∼i
q and 〈∼iv 〉 into their normal and tangential components to the blade reference

surface :

∼i
q =

N∼i
q +

T∼i
q (3.3.8)

〈∼vi〉 = 〈
N∼
vi〉 + 〈

T∼
vi〉 (3.3.9)

where the overscore N or T denotes the normal and tangential component respectively (see Ap-
pendix B)

We shall now try to derive an expression for each of the components of
∼
q
i
〈∼vi〉 in terms of the

surface (blade reference surface) coordinates, starting with
T∼ i
q 〈

T∼
vi〉. Therefore we introduce the

blade reference surface vorticity vector γi :

γ
i

def
= εijk 〈

∼
v
j
〉

o∼ k
N (3.3.10)
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which is a space vector tangent to the blade reference surface and

o∼ k
N a space vector normal to

the surface under consideration. In the case of the blade’s reference surface the normal vector is

defined by the relations (3.2.11) and (3.2.28). The tangent vector 〈
T∼ i
v 〉 in terms of γi is given by

the relation (B13) :

〈
T∼ i
v 〉 = εijk γ

j

o∼
Nk (3.3.11)

With the help of relation (3.3.11), we get:

T∼ i
q 〈

T∼
vi〉 =

T∼
q
i
〈

T∼ i
v 〉 =

T∼
q
i

(
εijk γ

j

o∼
Nk

)
(B4)
=

T∼
q
i
γ
j

(
xiα x

j
β ε

αβ
)

= εαβ

T∼α
q γβ (3.3.12)

where (using relation (B15))

T∼
q
α

= xjα
T∼
q
j

γ
β

= xkβ γk (3.3.13),(3.3.14)

are the surface components of the space vectors
T∼
q
j
, γ

k
, which are tangent to the blade reference

surface.

Similarly for the rest of the components :

N∼i
q 〈

N∼
vi〉 =

[
o∼i
N

(
∼
q
j

o∼
N j

)][
o∼
N i

(
〈∼vj〉

o∼j
N

)]
=

(
∼
q
j
o∼
N j

)
· σ =

∼
q

3

√
∼
g

α
σ (3.3.15)

N∼i
q 〈

T∼
vi〉 =

[
o∼i
N

(
∼j
q

o∼
N j

)][
εijk γ

j
o∼ k
N

]
=

(
εijk

o∼ i
N γj

o∼ k
N

)(
∼
q
j
o∼
N j

)
= 0 (3.3.16)

T∼ i
q 〈

N∼
vi〉 =

[
εijk γ(q)

j

o∼
Nk

] [
o∼
N i

(
〈∼vj〉

o∼ j
N

)]
=

(
εijk γ(q)

j

o∼
Nk

o∼
N i

)(
〈∼vj〉

o∼ j
N

)
= 0 (3.3.17)

where

γ(q)
i

= εijk
∼
q
j

o∼ k
N (3.3.18)

〈∼v
i
〉 =

o∼ i
N σ + εijk γ

j

o∼
Nk (3.3.19)

with σ =

o∼
N i 〈

∼
v
i
〉 , γ

i
= εijk 〈

∼
v
j
〉

o∼ k
N

Substituting relations (3.3.12),(3.3.15),(3.3.16) and (3.3.17) to the linearized bernoulli equation
(3.3.7):
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p+ − p−

ρ
+

d(φ+ − φ−)

dt
+ εαβ

T∼α
q γβ +

∼
q

3

√
∼
g

α
σ + O(ε2) = 0 (3.3.20)

For a further simplification of relation (3.3.20) we shall try to find an order of estimate for
T∼α
q .

To this respect we have :

T∼α
q = ααβ

T∼
q
β

= ααβ xrβ

T∼
q
r

= ααβ xrβ
∼
q
r

(3.3.21)

In order to prove the last equation of (3.3.21) we note that ααβ xrβ N r = ααβ xrβ
(

1
2 ε

γδ εrst x
s
γ x

t
δ

)
while εrst x

r
β x

s
γ x

t
δ = εβγδ = 0 , since β, γ, δ range only from 1 to 2 and

T∼α=1
q = α1β xrβ (g

rj

∼
q
j
) = (α1β g

βj
)
∼
q
j

= δ1
j
∼
q
j

(3.3.22)

since xαβ = δαβ and x3
β = 0

ααβ g
βj

= gαβ g
βj

= δαj where α = 1, 2 j = 1, 2, 3 (3.3.23)

Repeating the same process for
T∼α=2
q we get the obvious results :

T∼α=1
q =

∼ 1
q ,

T∼α=2
q =

∼ 2
q (3.3.24) ,(3.3.25)

Substituting relations (3.3.24) and (3.3.25) to (3.3.20) we get :

p+ − p−

ρ
= −d(φ+ − φ−)

dt
− ε12

∼ 1
q γ2 − ε21

∼ 2
q γ1 − ∼

q
3

√
∼
g

α
σ + O(ε2) (3.3.26)

Given that εαβ = −√α eαβ we introduce the following notation :

Γ1 =
√
αγ1 −→ Modified bound vorticity (3.3.27)

Γ2 =
√
αγ2 −→ Modified trailing vorticity 2 (3.3.28)

Thus relation (3.3.26) becomes :

p+ − p−

ρ
= −d(φ+ − φ−)

dt
+

∼ 1
q Γ2 − ∼ 2

q Γ1 − ∼
q

3

√
∼
g

α
σ + O(ε2) (3.3.29)

2Notice that since γα is an absolute tensor and α is a relative invariant of weight two, Γα should be a relative
tensor of weight one.
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where σ is the source intensity on the surface under consideration, defined by relation (3.2.32) as

σ = 〈∼v
i
〉

o∼
N i. In the case of the blade’s reference surface, the source intensity is calculated as :

σ =

(
〉q1 〈∂ET

∂u1
+ 〉q2 〈∂ET

∂u2
− 〈q3 〉

) √∼
g

α
(3.2.31)*

The components of vorticity (bound vorticity γ2 and trailing vorticity γ1) are connected with the
continuity of the surface vorticity distribution expressed in the intrinsic blade reference surface
coordinate system (Appendix C) :

γα
,α

=
∂

∂u1

(√
αγ1

)
+

∂

∂u2

(√
αγ2

)
= 0 (3.3.30)

or using relations (3.3.27) and (3.3.28)

∂

∂u1

(
Γ1
)

+
∂

∂u2

(
Γ2
)

= 0 (3.3.31)
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3.4 Trailing vortex sheet

At the trailing edge of a lifting body, the meeting of the two different layers (one from the face and
the other from the back) gives rise to a surface of fluid where a tangential discontinuity of fluid
velocity exists. At the limit of high Reynolds numbers the thickness of the free shear layer becomes
small and thus we arrive at the prototype of a surface of discontinuity in a flow field.

A surface of discontinuity of flow can be introduced by considering that the surface of the free shear
layer SF , is a two sided surface with sides S+

F and S−F , in each side of which a different potential
exists. Both sides of SF are parts of the fluid and thus are free to move with the fluid. Since the
sides S+

F and S−F constitute always the same surface SF , S+
F is allowed to slip with respect to S−F

but S+
F cannot separate from S−F to form a different surface. Thus the normal to SF fluid velocities

on the two sides S+
F and S−F should be equal. This is termed the kinematic boundary condition of

the free shear layer and reads :

∼
N i(

∼
v
i+

+ V i
∞) =

∼
N i(

∼
v
i−

+ V i
∞) ⇔

∼
N i 〈

∼
v
i
〉 = 0 (3.4.1)

where
∼
N i is the normal vector on a point M on the free shear layer expressed in the components of

the xi curvilinear system and
∼
v
i±

are the traces of the velocity field on the free shear layer.

According to relation (3.4.1) the source intensity of the wake is zero :

σ =
∼
N i 〈

∼
v
i
〉 = 0 (3.4.2)

which means that the normal component of the perturbation velocity is continuous through the
free shear layer:

〈
N∼i
v 〉 = σ

∼i
N = (0, 0, 0) (3.4.3)

Furthermore since SF is a fluid surface, it cannot carry loading. This is usually termed dynamic
loading condition of the free shear layer and it reads :

p+ = p− (3.4.4)

Applying relation (3.3.7) to a point on the free shear layer we get:

p+ − p−

ρ
+

d(φ+ − φ−)

dt
+

∼i
q 〈∼vi〉 + 〉 ∼iv 〈 〈∼vi〉 = 0 ⇒

⇒ p+ − p−

ρ
+

d(φ+ − φ−)

dt
+
( ∼i
q + 〉 ∼iv 〈

)
〈∼vi〉 = 0 (3.4.5)

Applying both the kinematic and dynamic conditions of the free shear layer we get :

d(φ+ − φ−)

dt
+
( ∼i
q + 〉 ∼iv 〈

)
〈
T∼
vi〉 = 0 (3.4.6)
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Given that for the inertial system (φ,i
on

+ − φ,i
on

−) = ∂(φ+−φ−)
∂xi

on
= 〈

T∼
vi
on
〉 from relation (3.3.3) we get :

∂(φ+ − φ−)

∂t
+ uiM

on
〈
T∼
vi
on
〉 +

(
∼
q
on

i
+ 〉∼v

on

i
〈
)
〈
T∼
vi
on
〉 = 0 ⇒

⇒ ∂(φ+ − φ−)

∂t
+

(
uiM
on

+
∼
q
on

i
+ 〉∼v

on

i
〈
)
〈
T∼
vi
on
〉 = 0 ⇒

⇒ ∂µ

∂t
+

(
V i
∞
on

+ 〉 ∼iv
on
〈
)
〈
T∼
vi
on
〉 = 0 (3.4.7)

where µ = φ+ − φ− is the dipole intensity on the free shear layer.

Comparing relations (3.3.3) and (3.4.7) we see that the dipoles on the free shear layer move with

the mean total flow velocity (V i
∞
on

+ 〉∼v
on

i
〈) as seen from the inertial frame system.

Relation (3.4.7) examines the dipole intensities µ instead of the vorticity distribution γi that we
examined in the previous paragraphs. The latter includes information about the geometry of the
trailing vortex sheet, which in the general case cannot be described analytically as it contains insta-
bilities especially away from the trailing edge. Moreover as we will show in a following paragraph
the contribution of the free shear layer can be calculated separately from the contribution of the
blade’s vorticity distribution.

Assuming that both velocities 〉∼v
on

i
〈 and 〈

T∼
vi
on
〉 are of first order O(ε), relation (3.4.7) becomes :

∂µ

∂t
+ 〈

T∼
vi
on
〉 V i
∞
on

+ O(ε2) = 0 (3.4.8)

This means that the dipole distribution moves with the absolute undisturbed velocity of the flow,
which corresponds to the frozen wake.

Assuming (functional) continuity of the field variables in passing from Sb to SF through a point
on the trailing edge, both kinematic and dynamic conditions (3.4.2) and (3.4.4) of the free shear
layer can be applied on the trailing edge. Substituting the two previous relations in the Bernoulli
equation (3.3.29) we get :

−d(φ+ − φ−)

dt
+

∼ 1
q Γ2 − ∼ 2

q Γ1 + O(ε2) = 0 (3.4.9)

Consider a closed curve with all its points entirely into the fluid with the exception its starting and
ending points which coincide with a point on the trailing edge. The direction of C is clockwise, so
that it starts on the side of SF− with potential φ− and ends on the side of SF+ with potential φ+,
as shown in figure 3.4.1. Then the circulation Γ around the curve, with tangent vector dli is:
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Γ =

∮
C

(V∞ i + vi) dl
i =

∮
C

vi dl
i (3.4.10)

Figure 3.4.1

Since the undisturbed fluid field velocity with regard to the inertial system is supposed to be
irrotational, so for every closed curve in it

∮
C

V∞ i dl
i = 0. Therefore :

Γ =

∮
C

vi dx
i =

∮
C

φ,i dx
i = φ+ − φ− = µ (3.4.11)

Note that in order to find the dipole intensity at a given point, the curve should only intersect
with the reference blade surface (or the trailing vortex sheet) at that particular point, as shown in
Figure 3.4.1, in the case of the trailing edge.

If the curve C belongs on the reference surface of the blade, then by definition dli should be tangent

to the surface and thus
N∼±
vi dl

i = 0. Assuming also that the path lies parallel to the x2 axis, then
dli = δi2 dx

2, for the part of the curve tangent to the upper surface and dli = −δi2 dx2, for the part
of the curve tangent to the lower surface. Using relations (3.2.24) and (3.3.11) :

φ+ − φ− =

∮
C

T∼
vi dl

i =

T.E∫
L.E

〈
T∼
v2〉 dx2 =

T.E∫
L.E

ε2jk γ
j

o∼k
N dx2 (3.4.12)

where

o∼
Nk = (0, 0, 1)

√
∼
g

α is the normal unit vector on the blade reference surface. Since γ3 = 0 :

φ+ − φ− =

T.E∫
L.E

ε213 γ
1

o∼3
N dx2 (3.4.13)
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Figure 3.4.2

but

ε213

o∼3
N = −e213

√
∼
g

(
∼i3
g

o∼
N i

)
=

√
∼
g

 ∼33
g

√
∼
g

α

 =

=

∼33
G
√
α

=
α11 α22 − α12 α21√

α
=
√
α (3.4.14)

since g
ij

∣∣∣
i,j=1,2

= g
αβ

= ααβ

Substituting relations (3.4.14) and (3.3.27) to (3.4.13) we get :

φ+ − φ− =

T.E∫
L.E

Γ1 dx2 =

1/2∫
−1/2

Γ1 dx2 (3.4.15)

Substituting relation (3.4.15) to (3.4.9) we get :

−
1/2∫
−1/2

dΓ1

dt
dx2 +

∼ 1
q Γ2 − ∼ 2

q Γ1 + O(ε2) = 0 (3.4.16)

According to relation (A95),
√
α and therefore Γ1 and µ are proportional to the chord length.

This means that for c −→ 0 the inertial term (first term) of (3.4.16) tends to zero while the
dynamic pressure introduced by the second and third term are invariant. Therefore equation
(3.4.16) degenerates to the steady case.

The pressure distribution on any point on the reference blade is given by the relation :

p+ − p−

ρ
= −

x2∫
−1/2

dΓ1

dt
dx2 +

∼ 1
q Γ2 − ∼ 2

q Γ1 −

∼
q

3

√
∼
g

α
σ

 + O(ε2) (3.4.17)
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3.5 No entrance of vorticity boundary condition

Let S be a part of the reference blade surface, and C a curve entirely in it. If λα and µα are the
tangent and normal vector of C on particular point, then using Green’s theorem we get :∫∫

S
γα
,α
dS = −

∮
C
γα µαdl = −

∮
C
εαβγ

αλβ dl = 0 (3.5.1)

γα
,α

= 0 expresses the continuity of vorticity in a differential form, while
∮
C εαβγ

αλβ dl = 0 does

so in an integral form. Obviously the second one is a weak form of the continuity since it doesn’t
demand that the vorticity is a differentiable function. In our theory we have assumed the validity
of γα

,α
= 0 for points in or out of the reference surface. At boundary points of the lifting surface

(i.e. the blade outline) the differential form for γα has meaning only in sense of trace. Thus at
those points we have to use the integral form, to manage vorticity continuity. Based on 2D flat
plate results, which has been embodied in our mode function approximation for bound vorticity,
the γ1 component tends to infinity as we approach the leading edge (γ1 = A0/ tan(y2) + ...). More
specifically, γ1 could be a non-continues function at the leading edge. Therefore approaching the
boundary of S, relation γα

,α
= 0 has not meaning and we are forced to use the integral expression

of the continuity of vorticity.

Suppose now a curve C with points A, B and Γ where the first two lie outside of S and the third

inside. We assume that the
_
AB part of the curve lies outside the leading edge of the reference

surface and it’s parallel to it.

Figure 3.5.1

Given that approaching the leading edge from the outside we have continuity of velocities
∼
v
i+

=
∼
v
i−

,

the vorticity distribution will be zero. Thus there will be no vorticity entering S from
_
AB.∮

C
εαβγ

αλβ dl =

∮
_
AB

εαβ���
0

γαλβ dl +

∮
_

AΓB
εαβγ

αλβ dl = 0 (3.5.2)
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Assuming that S → 0 ,but with the
_
AB part of the curve remaining the same, then

_
AΓB →

_
AB.

Therefore the tangent vector λβ on
_

AΓB will be parallel with the tangent vector on
_
AB, and thus

:

εαβγ
αλβ = 0 (3.5.3)

with λβ tangent to
_
AB.

Relation (3.5.3) means that the vorticity γα on the blade is tangent to the L.E.

We observe that a unit vector across the leading edge u2 = −1
2 is λα = 1√

α11
δα(1), where α11 has to

be evaluated at the leading edge points. Therefore relation (3.5.3) becomes :

γ2(u1, u2 = −1

2
) = 0 (3.5.4)

In other word we have proven the continuity of γ2 at the leading edge. Using again relation (3.5.1)
and (3.5.4) it’s easy to prove that γ1 = constant at the leading edge. In fact it’s zero as we approach
the L.E outside of S and non-zero (infinite for the linearized theory) as we approach the L.E from
the inside of S.

The tip of the blade is usually considered the point where the leading edge meets the trailing edge
which emits the trailing vortex sheet. In our case though we assume that the reference surface of
the blade ends prior to the actual tip of the blade. In other words we cut the end of the blade so
that the tip is now a line of finite length (chord>0) parallel to the x2 axis. This is essential for the
numerical calculations, since according to relation (A95) the surface metric tensor goes to zero for
c=0.

Figure 3.5.2

In order to characterize the tip as part of the leading edge or the trailing edge we examine if it emits
a trailing vortex sheet. Supposing that the mean total velocity relative to a point M on the tip is
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pointing away from the reference surface ((
∼
q

3
+ 〉∼v

3
〈) 6= 0 or (

∼
q

1
+ 〉∼v

1
〈)µ1 < 0), then according to

relation (3.4.7) there is a surface of discontinuity, with dipole intensity µ, which follows the total

flow velocity. That makes the tip part of the trailing edge, meaning that
∼
v
i+
6= ∼
v
i−

. Otherwise if

the flow is point inwards or if it’s parallel to the chord ((
∼
q

1
+ 〉∼v

1
〈)µ1 ≥ 0 and (

∼
q

3
+ 〉∼v

3
〈) = 0),

the tip is a part of the leading edge and so
∼
v
i+

=
∼
v
i−

outside of the tip. In that last case, we can
apply the no entrance vorticity condition (3.5.3), which reads :

γ1(u1 = Ro, u
2) = 0 (3.5.5)

In the program we assume for the sake of simplicity that the flow is parallel to the tip, (
∼
q
i
+ 〉∼v

i
〈) =

(
∼
q

2
+ 〉∼v

2
〈)δi2. Therefore relation (3.5.5) is always valid at the tip. Although this limits the range of

movements of the blade, it is pretty accurate in the context of the small perturbations of linearized
theory where the angle of attack and the direction of the flow have a very short range. Assuming

that (
∼
q
i
+ 〉∼v

i
〈) = (

∼
q

2
+ 〉∼v

2
〈)δi2 at the tip, then by substituting (3.4.15) to (3.3.7) :

p+ − p−

ρ
+
d(φ+ − φ−)

dt
+

1

2

∼
v
i+ ∼
v

+

i +
∼
q
i
(∼
v

+

i −
∼
v
−
i

)
− 1

2

∼
v
i− ∼
v
−
i = 0 ⇒

⇒ p+ − p−

ρ
= −

x2∫
−1/2

�
�
��7

.(3.5.5)

dΓ1

dt
dx2 −

(
〉∼v
i
〈+ ∼

q
i
)
〈∼vi〉 ⇒

⇒ p+ − p−

ρ
= −

(
〉∼v

2
〈+ ∼

q
2
)
ε2jk γ

j Nk (3.5.5)
= 0 (3.5.6)

Relation (3.5.6) of the equalization of pressure, guaranties the compatibility of the boundary con-
ditions at the junction of the trailing edge with the tip and hub and should always be valid near the

tips (or tip and hub in case of the propeller), unless (
∼
q

1
+ 〉∼v

1
〈)µ1 > 0. The physical interpretation

of this, in the case of the hub, is that a secondary flow from the back of one blade equalizes the
pressure on the face of the neighboring blade. When there is no vortex sheet emanating form the

tip and flow is pointing towards the inside of the blade (
∼
q

1
+ 〉∼v

1
〈)µ1 > 0, then the tip is a part of

the leading edge and the pressure difference there assumes infinite values in the linearized theory.

41



Figure 3.5.3

When the wing has a burst start, at t=0 there is no trailing vortex sheet even behind the trailing

edge. Therefore, due to the continuity in velocity around the blade (
∼
v
i+

=
∼
v
i+

), we can apply the
no entrance vorticity condition.

γ2(u1, u2 = −1

2
) = 0→ Zero free vorticity at the leading edge (3.5.7)

γ2(u1, u2 =
1

2
) = 0→ Zero free vorticity at the trailing edge (3.5.8)

γ1(u1 = Ro, u
2) = 0→ Zero bound vorticity at the (upper) tip (3.5.9)

γ1(u1 = 0, u2) = 0→ Zero bound vorticity at the (lower) tip (3.5.10)

According to relations (3.5.7) - (3.5.10), the vorticity vector, γα = (γ1, γ2), is tangent to the
outline of the blade, meaning that this is a vortex line. Due to the continuity of vorticity (3.5.1),
the modified vorticity should be constant on the blade’s outline. In the case of the lifting surface
theory Γ1 is infinite at the leading edge and as we will see in chapter 4, Γ2 assumes also infinite
values at the tips. This agrees with experiments where we have spikes in the pressure distribution
near the L.E and strong vortices starting at the tips. The physical interpretation of relation (3.5.8)
is that the starting vortex is strong in the case of burst start. In fact according to the linearized
theory Γ1 →∞, for t=0, making necessary the use of a mollifier.

For t > 0 all of the above relations should hold with the exception of (3.5.8). Specifically, following
the Kutta-Joukowski hypothesis, we assume that the bound vorticity at the trailing edge has a
finite value.

|γ1(u1, u2 = 1
2)| <∞ (3.5.11)

Obviously if the tip is a part of the trailing edge then a similar relation should hold. In general if
at the tip or hub γ1 6= 0, then they are not part of the leading edge’s vortex line. Therefore :

γ1(u1 = RH , Ro, u
2) 6= 0 ⇒ |γ2(u1 = RH , Ro, u

2)| <∞ (3.5.12)

Both relations (3.5.11),(3.5.12) are important because they allow us to apply the Bernoulli’s equa-
tion at the blades outline.
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3.6 Calculation of the perturbation velocity field

In the general case of the propeller, we assume that the fluid extends to infinity and we omit any
contribution from the hub. In other words we model the propeller as NBL (Number of Blades) 3

wings placed symmetrically around the x1 axis. Supposing that the flow field is potential in nature
apart from the NBL trailing vortex sheets emanating from the trailing edges of the NBL blades,
the representation theorem for the potential function can be proved to be :

−4πΦ(P ) =

∫
Sb

Φ(Q),iN
i(Q)

dS

r
+

∫
Sb

Φ(Q)
xi(Q) − xi(P )

r3
Ni(Q)dS +

+

∫
SF

µ(Q)
xi(Q) − xi(P )

r3
Ni(Q)dS, Q ∈ Sb ∪ SF (3.6.1)

where r =
[
(xi(Q)− xi(P )) (xi(Q)− xi(P ))

]1/2
(3.6.2)

Sb = ∪ [SuZ ∪ SlZ ], Z =1 to NBL (3.6.3)

SF = ∪
[
S+
WZ
∪ S−WZ

]
, Z =1 to NBL (3.6.4)

and SuZ ,SlZ ,S+
WZ

,S−WZ
denote the upper blade surface, lower blade surface and the two sides of

the trailing sheet respectively for Zth blade.

The existence of the finite distance term xi(Q) − xi(P ), which is not tensorial in character under
generalized coordinate transformations avoids relation (3.6.1) to be tensorial in the generalized
sense. This is not obviously the case if only Cartesian tensor transformation are allowed. Thus
the validity of the representation theorem, relation (3.6.1), is limited to Cartesian only coordinate
system such as the system xi of our application.

Taking the covariant derivative of relation (3.6.1) and after some algebra we get :

−4πvj(P ) =

∫
Sb

vk(Q)Nk(Q)
xj(Q)− xj(P )

r3
dS +

+

∫
Sb

εjil
(
εipkN

p(Q) vk(Q)
) xl(Q)− xl(P )

r3
dS +

∫
SF

εjil γj
xl(Q)− xl(P )

r3
dS

−
∫
L

µ εjil
xl(Q)− xl(P )

r3
dli (3.6.5)

where L = ∪LZ = ∪∂(SuZ ∪ SlZ ∪ S
+
WZ
∪ S−WZ

), Z=1 to NBL (3.6.6)

3We try to make use of the same symbols as in the program.
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while vk = Φ,k and Φ have been assumed continuous 4 functions of position for points on SuZ , SlZ ,
S+
WZ

, S−WZ
. Note that no vertical velocity jump on the vortex sheet can occur. 5

To proceed further we shall transfer the integration on SuZ , SlZ , S+
WZ

, S−WZ
to the blade and wake

reference surfaces SRZ and SRWZ
. Since vk is already of first order, only zero order terms in the

Taylor expansions of the quantities entered in the surface integrations should remain. Assuming
that the equation of the blade surface is given by :

xi(Q) =
∼ i
x (u1, u2) + δxi(u1, u2) (3.6.7)

where
∼
x
i

=
∼
x
i
(u1, u2) is the equation of the blades’ reference surface and :

δxi = O(ε) (3.6.8)

we get (Appendix D):

dSuZ = dSRZ + O(ε) (3.6.9)

vk =
∼
v
k

+ O(ε2) (3.6.10)

1/r3 = 1/
∼
r

3
+ O(ε) (3.6.11)

where
∼
r =

[
(
∼
x
i
(Q) − xi(P )) (

∼
xi(Q) − xi(P ))

]1/2
(3.6.12)

and similarly for dSlZ and dSWZ
. Substituting relations (3.6.7), (3.6.9), (3.6.10) and (3.6.11) to

relation (3.6.5), the velocity representation theorem becomes:

−4π vj(P ) =

∫
∪
Z
SRZ

σ(Q)
xj(Q)− xj(P )

r3
dS +

+

∫
∪
Z

(SRZ∪SRWZ )

εjilγi(Q)
xl(Q)− xl(P )

r3
dS −

∫
LZ

µ εjil
xl(Q)− xl(P )

r3
dli (3.6.13)

where γi is the surface vorticity tensor and σ is the surface intensity of sources and sinks defined
by the relations (3.3.10) and (3.2.32) respectively.

The wave overscore for xj(Q) and r in the representation theorem, relation (3.6.13), has been
omitted since their meaning is obvious from the integration domain.

Formula (3.6.13) holds for points off blade reference surface. In the case of P ∈ SRZ the respective
formula can be proved to be the same as relation (3.6.13) apart from a change of the left hand side

4if Φ has a line of discontinuity on S then this can proved to be equivalent to a singular vortex line coinciding
with the line of potential discontinuity

5This is a result of the continuity of velocity field on points of the trailing edge sheets
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from 4π vj to 4π 〉vj〈 (Appendix D) :

−4π 〉vj(P )〈 =

∫
∪
Z
SRZ

σ(Q)
xj(Q)− xj(P )

r3
dS +

+

∫
∪
Z

(SRZ∪SRWZ )

εjilγi(Q)
xl(Q)− xl(P )

r3
dS −

∫
LZ

µ εjil
xl(Q)− xl(P )

r3
dli (3.6.14)

The main difference between relations (3.6.13) and (3.6.14) lays in the existence of a Cauchy type
surface singularity in the Kernel of the surface integral in the right hand side of equation (3.6.14).
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4 Application of ”Mode Analysis Method”

4.1 Approximation of the vorticity distribution with double Fourier Series

In the theory of 2D airfoils in the steady potential flow, the (bound) vorticity, γ, on the reference
line is considered to be a function of position x, with domain restricted between the leading and
trailing edge (−1/2 ≤ x ≤ 1/2).According to the solution of the zero thickness problem, using
complex functions the vorticity should approach infinity near the leading edge while being zero at
the trailing edge. The first condition is met by assuming that γ is consisted of a regular and an
irregular part, which behaves like the 1/ tan(θ) function. As for the regular part, it is approximated
by a sinus Fourier series.

Figure 4.1.1

γ(x(θ)) = A′0
1

tan(θ/2)
+
∞∑
n=0

(An sin(nθ)) (4.1.1)

where x(θ) = −1
2 cos θ is the non dimensional chord length and 0 ≤ θ ≤ π

Notice that the relation (4.1.1) satisfies implicitly both boundary conditions at the leading and
trailing edge. Although the simplest, (4.1.1) is not the only representation of the solution to the
problem. In fact both

γ(x(θ)) = A′0
1

tan(θ/2)
+
∞∑
n=0

(Bn cos(nθ)) (4.1.2)

and

γ(x(θ)) = A′0
1

tan(θ/2)
+

∞∑
n=0

(An sin(nθ) +Bn cos(nθ)) (4.1.3)

with
∞∑
n=0

(Bn cos(nπ)) = 0 (4.1.4)
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are valid representations of the solution of the steady problem. Specifically since the (bound)
vorticity γ is defined only in [0, π], it’s not a periodical function and thus we should expanded
across all R. In fact (4.1.1) is the sinus expansion (odd function), (4.1.2) is the co-sinus expansion
(even function) and (4.1.3) is the full expansion of γ.

In the case of the unsteady problem of a 2D airfoil, the vorticity is a function of time and so
the coefficients in the Fourier representation should also be function of time. Assuming the same
boundary condition at the leading edge, the irregular part stays as is. However the boundary
condition at the trailing edge demands a non zero value for the vorticity, much like relation (3.4.16).
This could be achieved by using either relations (4.1.2) or (4.1.3) with the condition γ = c(t), where
c is a given value, instead of (4.1.4). Another interesting solution is to take the relation (4.1.1) and
add the constant c(t), which is effectively the same as taking (4.1.3) and setting Bn = 0 for n ≥ 1.

Choosing the full expansion, (4.1.3), of γ we get :

γ(x(θ), t) = A′0(t)
1

tan(θ/2)
+

∞∑
n=0

[An(t) sin(nθ) +Bn(t) cos(nθ)] (4.1.5)

We emphasize the fact that by expanding the regular part of γ periodically as an odd function,
there will be a discontinuity at the multiples of π. Therefore the Fourier series shows a difficulty
in convergence at those points due to the Gibbs phenomenon. Adding those extra co-sinus terms
is not a matter of convergence, but they are dictated by the physical problem at hand. In other
words, given the real solution to the unsteady problem we could approximate it infinitely close with
the sinus series, but starting with only the sinus factor solves a different problem.

Since the problem we are dealing with is the exact analog in 3D space, we assume the solution
(4.1.5) for every cross section of the blades. In a particular blade section x1 of the propeller the
bound vorticity is (using the symbols of chapter 2.2) :

γ1(x1, x2(y2), Z, t) =

= A′0Z(x1, t)
1

tan(y2/2)
+

∞∑
n=0

[
AnZ(x1, t) sin(ny2) + BnZ(x1, t) cos(ny2)

]
(4.1.6)

where AnZ , BnZ are the coefficients of the Zth blade .

Writing the coefficients Anz and Bnz as fourier series with respect to y1, we get:

A′0Z =
∞∑
m=0

[
Asm0Z(t) sin(my1) +Acm0Z(t) cos(my1)

]
(4.1.7)

AnZ =

∞∑
m=0

[
AssmnZ(t) sin(my1) +AcsmnZ(t) cos(my1)

]
(4.1.8)

BnZ =

∞∑
m=0

[
AscmnZ(t) sin(my1) +AccmnZ(t) cos(my1)

]
(4.1.9)
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Substituting relations (4.1.7),(4.1.8) and (4.1.9) to (4.1.6):

γ1(y1, y2, Z, t) =

=
∞∑
m=0

[
Asm0Z(t) sin(my1) + Acm0Z(t) cos(my1)

] 1

tan(y2/2)
+

+
∞∑
m=0

∞∑
n=0

[
AssmnZ(t) sin(my1) sin(ny2) + AcsmnZ(t) cos(my1) sin(ny2)

]

+
∞∑
m=0

∞∑
n=0

[
AscmnZ(t) sin(my1) cos(ny2) + AccmnZ(t) cos(my1) cos(ny2)

]
(4.1.10)

According to relation (3.3.31), the continuity of vorticity using the surface coordinate system reads:

∂

∂u1

(
Γ1(yα(uα), t)

)
+

∂

∂u2

(
Γ2(yα(uα), t)

)
= 0 (4.1.11)

Given that relation (4.1.10) expresses the bound vorticity using the parametric surface coordinate
system yα, we rewrite the continuity of vorticity using the same coordinate system.

∂

∂y1

(
Γ
`

1(y1, y2, t)

)
+

∂

∂y2

(
Γ
`

2(y1, y2, t)

)
= 0 (4.1.12)

Since the modified vorticity is a relative tensor, using relations (A52),(A53) and (A97) we get:

Γ
`

1 def
=
√
α
`
γ
`

1 =

(
1

4
sin y1 sin y2√α

)(
2

(Ro −RH) sin y1
γ1

)
=

1

2
sin y2 Γ1 (4.1.13)

Γ
`

2 def
=
√
α
`
γ
`

2 =

(
1

4
sin y1 sin y2√α

)(
2

sin y2
γ2

)
=

1

2
(Ro −RH) sin y2 Γ2 (4.1.14)

Notice that the bound modified vorticity Γ
`

α doesn’t have an irregular part and it has finite values

in all of [0, π], since :(
1

2
sin y2

)
1

tan(y2/2)
=

(
1

2
sin y2

)
cos y2 + 1

sin y2
=

cosy2 + 1

2

Both the T.E b.c and the continuity of vorticity equation make use of the modified vorticity
Γα =

√
αγα, instead of the γα. Multiplying by the surface metric

√
α, the manipulation of

the modified vorticity (e.g integration, derivation) becomes too complicated. Therefore instead of
expressing γa though relation (4.1.10) we choose to represent the modified bound vorticity Γ

`

α, as

a double Fourier series, since according to relations (4.1.13) and (A95) both
√
α and 1

2 sin y2 γ1 are
regular functions. Thus :
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Γ
`

1(y1, y2, Z, t) =
∞∑
m=0

[
A′sm0Z(t) sin(my1) + A′cm0Z(t) cos(my1)

]
+

+

∞∑
m=0

∞∑
n=1

[
AssmnZ(t) sin(my1) sin(ny2) + AcsmnZ(t) cos(my1) sin(ny2)

+ A′scmnZ(t) sin(my1) cos(ny2) + A′ccmnZ(t) cos(my1) cos(ny2)
]

(4.1.15)

The coefficients A of relation (4.1.15) are different from those of relation (4.1.10), but we keep the
same symbols for the sake of simplicity. Furthermore we set the following relations :

A′scm1Z = Ascm1Z +
1

2
Asm0Z , A′ccm1Z = Accm1Z +

1

2
Acm0Z (4.1.16)

A′sm0Z =
1

2
Asm0Z , A′cm0Z =

1

2
Acm0Z (4.1.17)

Substituting the above relations to (4.1.15) we get:

Γ
`

1(y1, y2, Z, t) =

=
∞∑
m=0

[
Asm0Z(t) sin(my1) + Acm0Z(t) cos(my1)

] cos y2 + 1

2
+

+
∞∑
m=0

∞∑
n=1

[
AssmnZ(t) sin(my1) sin(ny2) + AcsmnZ(t) cos(my1) sin(ny2)

+ AscmnZ(t) sin(my1) cos(ny2) + AccmnZ(t) cos(my1) cos(ny2)
]

(4.1.18)

Solving (4.1.12) for Γ
`

2, we get:

Γ
`

2(y1, y2, Z, t) =
���

���
���

�:
.(3.5.4)

Γ
`

2(y1, y2 = 0, Z, t) −
y2∫

0

∂Γ
`

1

∂y1
dy2

=

∞∑
m=1

[
−mAsm0Z(t) cos(my1) + mAcm0Z(t) sin(my1)

] y2 + sin y2

2
+

+
∞∑
m=1

∞∑
n=1

[
−m
n
AssmnZ(t) cos(my1)(1− cos(ny2)) +

m

n
AcsmnZ(t) sin(my1)(1− cos(ny2))

−m
n
AscmnZ(t) cos(my1) sin(ny2) +

m

n
AccmnZ(t) sin(my1) sin(ny2)

]
(4.1.19)

Notice that although relation (4.1.18),(4.1.19) are regular double Fourier Series we choose to sepa-
rate the terms n=0, so that they resemble the original relation (4.1.10).
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Solving relations (4.1.13) and (4.1.14) for Γ1 and Γ2 respectively we get :

Γ1(y1, y2, Z, t) =

=

∞∑
m=0

[
Asm0Z(t) sin(my1) + Acm0Z(t) cos(my1)

] 1

tan(y2/2)
+

+ 2
∞∑
m=0

∞∑
n=1

[
AssmnZ(t) sin(my1)

sin(ny2)

sin y2
+ AcsmnZ(t) cos(my1)

sin(ny2)

sin y2

+ AscmnZ(t) sin(my1)
cos(ny2)

sin y2
+ AccmnZ(t) cos(my1)

cos(ny2)

sin y2

]
(4.1.20)

Using D’ Hospital’s rule lim
y2→0

sin(ny2)/ sin(y2) = n. Apart from the first sum with the 1/ tan(y2/2)

factor, the two last terms of this relation exhibit the same infinity behavior near the leading edge
since cos(ny2)→ 1.

Γ2(y1, y2, Z, t) =

=

∞∑
m=1

[
−mAsm0Z(t)

cos(my1)

sin y1
+ mAcm0Z(t)

sin(my1)

sin y1

]
y2 + sin y2

Ro −RH
+

+
2

Ro −RH

∞∑
m=1

∞∑
n=1

[
−m
n
AssmnZ(t)

cos(my1)

sin y1
(1− cos(ny2)) +

m

n
AcsmnZ(t)

sin(my1)

sin y1
(1− cos(ny2))

−m
n
AscmnZ(t)

cos(my1)

sin y1
sin(ny2) +

m

n
AccmnZ(t)

sin(my1)

sin y1
sin(ny2)

]
(4.1.21)

The free bound vorticity could assume infinite value 6 at the tips of the wing (or tip and hub for

the propeller) as implied by the first, third and fifth term, due to the cos(my1)
sin y1

factor. As mentioned
in section 3.5 this is expected in the linearized theory.

In order to solve the problem arithmetically we are obliged to truncate the Fourier series at some
harmonic. Assuming M0 spanwise and N0 chordwise harmonics we get :

m = 0, 1, 2, ...,M0 (4.1.22)

n = 0, 1, 2, ..., N0 (4.1.23)

Z = 1, 2, ... ,NBL (4.1.24)

This means that we have (2M0 +1)(2N0 +1) unknowns for each of the NBL blades. However under
center assumptions we can reduce the number of unknowns to just M0(N0 + 1) for each blade.

6For lim
y1→0,π

M∑
m=0

Am
cos(my1)

siny1
<∞, D’ Hospital’s rule must be valid, so lim

y1→0,π

M∑
m=0

Am cos(my1) = 0
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4.2 Kinematic b.c at the boundary of the reference surface

In this section we will apply each of the kinematic boundary conditions (3.5.7)-(3.5.12) to relations
(4.1.20) and (4.1.21) to extract the corresponding relations for the coefficients, A.

According to relation (3.5.7) the free bound vorticity should always be zero at the leading edge :

γ2(u1, u2 = −1

2
) = 0 ⇒ Γ2(y1, y2 = 0) = 0 (4.2.1)

Substituting y2 = 0 to (4.1.21), satisfies the above relation, which is a direct consequence of the
continuity of vorticity.

In the case where no free sheer layer is emitted from the tips, according to (3.5.9) and (3.5.10) the
bound vorticity is zero :

γ1(u1 = 0, Ro , u
2) = 0 ⇒ Γ1(y1 = 0, π , y2) = 0 (4.2.2)

Substituting to relation (4.1.20):

Γ1(y1, y2, Z, t) = 0⇒

⇒
∞∑
m=0

[
Acm0Z

1

tan(y2/2)
+ 2

∞∑
n=1

(
AcsmnZ

sin(ny2)

sin y2
+ AccmnZ

cos(ny2)

sin y2

)]
cos(my1)|y1=0,π = 0

⇒
∞∑
m=0

[
Acm0Z(cos y2 + 1) + 2

∞∑
n=1

(
AcsmnZ sin(ny2) + AccmnZ cos(ny2)

)]
cos(my1)|y1=0,π = 0

Since the functions 1, cos(ny2), sin(ny2) are functionally independent, each of their factors should
be zero.

∞∑
m=0

Acm0Z (±1)m = 0 , n = 0 (4.2.3)

∞∑
m=0

(���
�:
.(4.2.3)

Acm0Z + 2Accm1Z) (±1)m = 0 , n = 1 (4.2.4)

∞∑
m=0

AccmnZ (±1)m = 0 , n = 2, 3, ... (4.2.5)

∞∑
m=0

AcsmnZ (±1)m = 0 , n = 1, 2, ... (4.2.6)

At the intersections of tip-T.E and hub-T.E relations (4.2.3)-(4.2.6) should satisfy the pressure type
kutta boundary condition at the trailing edge, which according to relation (3.5.6) do only if the

flow is parallel to the surface (
∼
q
i
+ 〉∼v

i
〈= (

∼
q

2
+ 〉∼v

2
〈) δi2).
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For a burst start and t=0, according to relation (3.5.8) there should be zero free vorticity at the
trailing edge.

γ2(u1, u2 =
1

2
) = 0⇒ Γ2(y1, y2 = π) = 0 (4.2.7)

Substituting to relation (4.1.21) :

Γ2(y1, y2, Z, t) =

∞∑
m=1

[
−mAsm0Z

y2 + sin y2

2
+
∞∑
n=1

(−m
n
AssmnZ(1− cos(ny2))− m

n
AscmnZ sin(ny2))

]
2 cos(my1)

(Ro −RH) sin y1
+

∞∑
m=1

[
mAcm0Z

y2 + sin y2

2
+
∞∑
n=1

(
m

n
AcsmnZ(1− cos(ny2)) +

m

n
AccmnZ sin(ny2))

]
2 sin(my1)

(Ro −RH) sin y1
= 0

Since the trigonometric functions sin(my1), cos(my1) are functionally independent, each of their
factors should be zero at y2 = π.

Asm0Z

π

2
+
∞∑
n=1

(
AssmnZ

1− (−1)n

n

)
= 0 , m = 1,2,... (4.2.8)

Acm0Z

π

2
+

∞∑
n=1

(
AcsmnZ

1− (−1)n

n

)
= 0 , m = 1,2,... (4.2.9)

For t > 0 the Kutta-Joukowski hypothesis, (3.5.11), assumes finite value for the bound vorticity.

lim
u2→1/2

|γ1(u1, u2)| <∞ ⇒ lim
y2→π

|Γ1(y1, y2)| <∞ (4.2.10)

For relation (4.2.10) we should be able to apply D’ Hospital’s rule, which means that :

lim
y2→π

Γ
`

1(y1, y2, Z, t) = 0
(4.1.18)⇒

⇒
∞∑
m=0

∞∑
n=1

[
AscmnZ(t) sin(my1) cos(nπ) + AccmnZ(t) cos(my1) cos(nπ)

]
= 0

Since the trigonometric functions sin(my1), cos(my1) are functionally independent, each of their
factors should be zero at y2 = π.

∞∑
n=1

AscmnZ (−1)n = 0 , m = 1,2,... (4.2.11)

∞∑
n=1

AccmnZ (−1)n = 0 , m = 0,1,2,... (4.2.12)
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In case the hub or the tip are not part of the leading edge’s vortex line then relation (3.5.12) should
hold.

|γ2(u1 = RH , Ro, u
2)| <∞ ⇒ |Γ2(y1 = 0, π, y2)| <∞ (4.2.13)

For relation (4.2.13) we should be able to apply D’ Hospital’s rule, which means that :

lim
y1→0,π

Γ
`

2(y1, y2, Z, t) = 0
(4.1.19)⇒

⇒
∞∑
m=1

[
−mAsm0Z cos(my1)

] y2 + sin y2

2
+

+
∞∑
m=1

∞∑
n=1

[
−m
n
AssmnZ cos(my1)(1− cos(ny2)) − m

n
AscmnZ cos(my1) sin(ny2)

]
= 0

Choosing the 1, sin(my1), cos(my1) functions as our basis, then each of their factors should be zero
at y1 = 0, π.

∞∑
m=1

(
mAsm0Z

1

2
+
m

n
Ascm1Z + mAsm0Z Y

s
1

)
(±1)m = 0 , n =1 (4.2.14)

∞∑
m=1

(m
n
AscmnZ + mAsm0Z Y

s
n

)
(±1)m = 0 , n =2,3,... (4.2.15)

∞∑
m=1

(
−m
n
AssmnZ + mAsm0Z Y

c
n

)
(±1)m = 0 , n =1,2,... (4.2.16)

∞∑
m=1

[ ∞∑
n=1

(m
n
AssmnZ

)
+ mAsm0Z Y

c
n

[
(±1)m = 0 , (n = 0) (4.2.17)

where

y2/2 =
∞∑
n=0

(
Y c
n cos(ny2) + Y s

n sin(ny2)
)

is the Fourier series of y2/2, in the [0, π] (e.g we could expand y2/2 as an odd or even function)

As already mentioned in section 3.5, in the program we make the assumption that the flow is parallel

to the tips of the wing (
∼
q
i
+ 〉∼v

i
〈= (

∼
q

2
+ 〉∼v

2
〈) δi2), meaning that relation (4.2.2) is always valid. In

that case instead of using the full Fourier series in the y1 direction, we can expand periodically Γ1

as an odd function. Since Γ1 = 0 at y1 = 0, π we can approximate the bound vorticity infinitely
well using only the sinus part in the spanwise direction, y1. Therefore relation (4.1.20) becomes :
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Γ1(y1, y2, Z, t) =
∞∑
m=1

[
Asm0Z(t) sin(my1)

] 1

tan(y2/2)
+

+ 2

∞∑
m=1

∞∑
n=1

[
AssmnZ(t) sin(my1)

sin(ny2)

sin y2
+ AscmnZ(t) sin(my1)

cos(ny2)

sin y2

]
(4.2.18)

Notice that the terms AscmnZ(t) could give the infinite value at the leading edge, that the 2D theory
demands. Although, since the first term, Asm0Z(t), is dedicated for that singular part at the leading
edge, the last term, AscmnZ(t), is used to model the infinity of the bound vorticity at the trailing
edge for t = 0 (see section 3.5).Given that infinities introduce instabilities in the code, the results
at the start could be unreliable. Therefore instead of (4.2.7) at t = 0, we use relation (4.2.10). This
means that the terms in the double summation are used to model the regular part of the bound
vorticity. It is obvious that relation (4.2.18) is not a Fourier series in the chordwise direction, y2.
Instead using the parametric space :

Γ
`

1(y1, y2, Z, t) =
∞∑
m=1

[
Asm0Z(t) sin(my1)

] cos y2 + 1

2
+

+

∞∑
m=1

∞∑
n=1

[
AssmnZ(t) sin(my1) sin(ny2) + AscmnZ(t) sin(my1) cos(ny2)

]
(4.2.19)

According to relations (4.2.10) and (4.1.13), Γ
`

1(y1, y2 = π, t) = 0. Given that any non zero values

at the leading edge are given by the (dedicated for that reason) first part, the double summation
of (4.2.19) should also be zero at the leading edge. Therefore, we could approximate the double
summation part of (4.2.19) using only a sinus series in the y2 direction. Thus:

Γ
`

1(y1, y2, Z, t) =

∞∑
m=1

[
Asm0Z sin(my1)

] cos y2 + 1

2
+

∞∑
m=1

∞∑
n=1

[
AssmnZ sin(my1) sin(ny2)

]
(4.2.20)

or returning to the physical space:

Γ1(y1, y2, Z, t) =

∞∑
m=1

[
Asm0Z sin(my1)

] 1

tan(y2/2)
+ 2

∞∑
m=1

∞∑
n=1

[
AssmnZ sin(my1)

sin(ny2)

sin y2

]
(4.2.21)

Γ2(y1, y2, Z, t) =

∞∑
m=1

[
−mAsm0Z cos(my1)

] y2 + sin y2

Ro −RH
+

+
2

Ro −RH

∞∑
m=1

∞∑
n=1

[
−m
n
AssmnZ

cos(my1)

sin y1
(1− cos(ny2))

]
(4.2.22)

In summary, using only M0(N0+1) coefficients we can approximate the unsteady flow after the burst

start, with the assumption that
∼
q
i

+
∼
v
i

= (
∼
q

2
+

∼
v

2
) δi2, while implicitly satisfying the boundary

conditions (4.2.1), (4.2.2) and (4.2.10).

54



4.3 Dynamic b.c at the boundary of the reference surface

The Bernoulli equation (3.4.17) written for the tip and hub reads :

p+ − p−

ρ
= −

x2∫
−1/2

dΓ1

dt
dx2 +

∼ 1
q Γ2 − ∼ 2

q Γ1 −

∼
q

3

√
∼
g

α
σ

 + O(ε2) (4.3.1)

Applying conditions (3.4.2) and (3.4.4) we get :

−
y2∫

0

dΓ
`

1

dt
dy2 +

∼
q

1
Γ2 − ∼

q
2

Γ1 + O(ε2) = 0 (4.3.2)

First we examine the tip and hub at y1 = π and y1 = 0 respectively.In order to do so, we need to
express relation (4.3.2) as Fourier series in the y2 direction.Therefore we multiply the above relation
with sin y2 and analyze every part as a sum of cos(ny2) and sin(ny2). For the proof see Appendix
E.

y2∫
0

dΓ
`

1

dt
dy2 sin y2 (E12)

= (4.3.3)

=

∞∑
m=0

(
dAcm0Z

dt

1

2
+
dAccm1Z

dt

)
(±1)m

2
+

+

∞∑
n=1

[ ∞∑
m=0

(
dAcm0Z

dt

(−δ2
n)

2
+

1

n+ 1

dAccm,n+1,Z

dt
− 1− δ1

n

n− 1

dAccm,n−1,Z

dt

)
(±1)m

2

]
cos(ny2) +

+

[ ∞∑
m=0

(
dAcm0Z

dt
βn + 2

δ1
n

n

dAcsmnZ
dt

− 1− δ1
n

n− 1

dAcsm,n−1,Z

dt
+

1

n+ 1

dAcsm,n+1,Z

dt

)
(±1)m

2

]
sin(ny2)

Γ2(y1, y2, Z, t) sin y2 (E13)
=

=

∞∑
m=1

(
Acm0Z

1

2
+ Accm1Z

)
m (±1)m+1

Ro −RH
+

+

∞∑
n=1

[ ∞∑
m=1

(
Acm0Z

(−δ2
n)

2
+

1

n+ 1
Accm,n+1,Z −

1− δ1
n

n− 1
Accm,n−1,Z

)
m (±1)m+1

Ro −RH

]
cos(ny2) +

+

[ ∞∑
m=1

(
Acm0Z βn + 2

δ1
n

n
AcsmnZ −

1− δ1
n

n− 1
Acsm,n−1,Z +

1

n+ 1
Acsm,n+1,Z

)
m (±1)m+1

Ro −RH

]
sin(ny2) (4.3.4)
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Γ1(y1 = 0, π, y2, Z, t) sin y2 (E14)
=

=
∞∑
m=0

Acm0Z(±1)m +
∞∑
n=1

[ ∞∑
m=0

(
2AccmnZ +Acm0Zδ

1
n

)
(±1)m

]
cos(ny2) +

+

[ ∞∑
m=0

2AcsmnZ(±1)m

]
sin(ny2) (4.3.5)

Substituting (4.3.3), (4.3.4) and (4.3.5) to (4.3.2), for every y2 on the tip and hub, the coefficients
of the trigonometric functions cos(ny2), sin(ny2) should be zero.

For n = 0, (cos(0y2)) :

−

[ ∞∑
m=0

(
dAcm0Z

dt

1

2
+
dAccm1Z

dt

)
(±1)m

2

]
+

+
∼
q

1

[ ∞∑
m=1

(
Acm0Z

1

2
+ Accm1Z

)
m (±1)m+1

Ro −RH

]
− ∼
q

2

[ ∞∑
m=0

Acm0Z(±1)m

]
= 0 (4.3.6)

For n = 1, 2, ..., (cos(ny2)) :

−

[ ∞∑
m=0

(
dAcm0Z

dt

(−δ2
n)

2
+

1

n+ 1

dAccm,n+1,Z

dt
− 1− δ1

n

n− 1

dAccm,n−1,Z

dt

)
(±1)m

2

]
+

+
∼
q

1

[ ∞∑
m=1

(
Acm0Z

(−δ2
n)

2
+

1

n+ 1
Accm,n+1,Z −

1− δ1
n

n− 1
Accm,n−1,Z

)
m (±1)m+1

Ro −RH

]
−

− ∼
q

2

[ ∞∑
m=0

(
2AccmnZ +Acm0Zδ

1
n

)
(±1)m

]
= 0 (4.3.7)

For n = 1, 2, ..., (sin(ny2)) :

−

[ ∞∑
m=0

(
dAcm0Z

dt
βn + 2

δ1
n

n

dAcsmnZ
dt

− 1− δ1
n

n− 1

dAcsm,n−1,Z

dt
+

1

n+ 1

dAcsm,n+1,Z

dt

)
(±1)m

2

]

+
∼
q

1

[ ∞∑
m=1

(
Acm0Z βn + 2

δ1
n

n
AcsmnZ −

1− δ1
n

n− 1
Acsm,n−1,Z +

1

n+ 1
Acsm,n+1,Z

)
m (±1)m+1

Ro −RH

]
−

−∼
q

2

[ ∞∑
m=0

2AcsmnZ(±1)m

]
= 0 (4.3.8)
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Substituting y2 = π to relation (4.3.2) we get the Bernoulli equation at the trailing edge.

−
π∫

0

dΓ
`

1

dt
dy2 +

∼
q

1
Γ2 − ∼

q
2

Γ1 + O(ε2) = 0 (4.3.9)

Repeating the same process, we multiply (4.3.9) by sin y1 in order to express it as a Fourier series.
Analyzing each part as a sum of sin(my1) and cos(my1) we get (see Appendix E):

π∫
0

dΓ
`

1

dt
dy2 sin y1 (E18)

=

+
∞∑
m=0

{[
dAsm+1,0,Z

dt

π

4
+
∞∑
n=1

(
dAssm+1,n,Z

dt

1− (−1)n

2n

)]
−

−

[
dAsm−1,n,Z

dt

π

4
+
∞∑
n=1

(
dAssm−1,n,Z

dt

1− (−1)n

2n

)]
(1− δ0

m) +

+

[
dAs00Z

dt

π

4
+
∞∑
n=1

(
dAss0nZ
dt

1− (−1)n

2n

)]
δ1
m

}
cos(my1) +

+

{[
dAcm−1,0,Z

dt

π

4
+
∞∑
n=1

(
dAcsm−1,n,Z

dt

1− (−1)n

2n

)]
(1− δ0

m)−

−

[
dAcm+1,n,Z

dt

π

4
+
∞∑
n=1

(
dAcsm+1,n,Z

dt

1− (−1)n

2n

)]
+

+

[
dAc00Z

dt

π

4
+

∞∑
n=1

(
dAcs0nZ
dt

1− (−1)n

2n

)]
δ1
m

}
sin(my1) (4.3.10)

Γ2(y1, y2 = π, Z) sin y1 (E19)
=

=

∞∑
m=1

[
−mAsm0Z

y2 + sin y2

Ro −RH
+
∞∑
n=1

(
−m
n
AssmnZ(1− cos(ny2) − m

n
AscmnZ sin(ny2)

)]
cos(my1)

[
mAcm0Z

y2 + sin y2

Ro −RH
+

∞∑
n=1

(m
n
AcsmnZ(1− cos(ny2))− m

n
AccmnZ sin(ny2)

)]
sin(my1) (4.3.11)
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Γ1(y1, y2 = π, Z, t) sin y1 (E17)
=

=
∞∑
m=0

[ ∞∑
n=1

(
Assm+1,n,Z − Assm−1,n,Z(1− δ0

m) + Ass0nZ δ
1
m

)
(±1)m

]
cos(my1) +

+

[ ∞∑
n=1

(
Acsm−1,n,Z(1− δ0

m) − Acsm+1,n,Z + Acs0nZδ
1
m

)
(±1)m

]
sin(my1) (4.3.12)

Substituting (4.3.10),(4.3.11) and (4.3.12) to (4.3.9), for every y1 on the trailing edge, the coefficients
of the trigonometric functions cos(my1), sin(my1) should be zero.

For m = 0,1,... (cos(my1)) :

−

{[
dAsm+1,0,Z

dt

π

4
+
∞∑
n=1

(
dAssm+1,n,Z

dt

1− (−1)n

2n

)]
−

−

[
dAsm−1,n,Z

dt

π

4
+
∞∑
n=1

(
dAssm−1,n,Z

dt

1− (−1)n

2n

)]
(1− δ0

m) +

+

[
dAs00Z

dt

π

4
+
∞∑
n=1

(
dAss0nZ
dt

1− (−1)n

2n

)]
δ1
m

}
cos(my1) +

+
∼
q

1

[
−mAsm0Z

y2 + sin y2

Ro −RH
+
∞∑
n=1

(
−m
n
AssmnZ(1− cos(ny2) − m

n
AscmnZ sin(ny2)

)]
−

−∼
q

2

[ ∞∑
n=1

(
Assm+1,n,Z − Assm−1,n,Z(1− δ0

m) + Ass0nZ δ
1
m

)
(±1)m

]
= 0 (4.3.13)

For m = 1,2,... (sin(my1))

−

{[
dAcm−1,0,Z

dt

π

4
+
∞∑
n=1

(
dAcsm−1,n,Z

dt

1− (−1)n

2n

)]
(1− δ0

m)−

−

[
dAcm+1,n,Z

dt

π

4
+
∞∑
n=1

(
dAcsm+1,n,Z

dt

1− (−1)n

2n

)]
+

[
dAc00Z

dt

π

4
+
∞∑
n=1

(
dAcs0nZ
dt

1− (−1)n

2n

)]
δ1
m

}

+
∼
q

1

[
mAcm0Z

y2 + sin y2

Ro −RH
+
∞∑
n=1

(m
n
AcsmnZ(1− cos(ny2)) +

m

n
AccmnZ sin(ny2)

)]
−

−∼
q

2

[ ∞∑
n=1

(
Acsm−1,n,Z(1− δ0

m) − Acsm+1,n,Z + Acs0nZδ
1
m

)
(±1)m

]
(4.3.14)
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In the program we assume that
∼
q
i

+
∼
v
i

= (
∼
q

2
+

∼
v

2
) δi2, therefore instead of relations (4.3.6),(4.3.7)

and (4.3.8) for the tip/hub we use relation (4.2.2). Moreover instead of relations (4.3.13) and (4.3.14)
we can a take far simpler relation for the trailing edge. Specifically the Bernoulli ’s equation (4.3.9)
reads :

−
y2∫

0

dΓ
`

1

dt
dy2 +

�
��∼

q
1

Γ2 − ∼
q

2
Γ1 + O(ε2) = 0 ⇒

⇒ −

[ ∞∑
m=0

(
dAsm0Z

dt
sin(my1) +

dAcm0Z

dt
cos(my1)

)
y2 + sin y2

2
+

+

∞∑
m=0

∞∑
n=1

(
dAssmnZ
dt

sin(my1)
1− cos(ny2)

n
+
dAcsmnZ
dt

cos(my1)
1− cos(ny2)

n
+

+
dAscmnZ
dt

sin(my1)
sin(ny2)

n
+
dAccmnZ
dt

cos(my1)
sin(ny2)

n

)]
−

−∼
q

2

[ ∞∑
m=0

(
Asm0Z sin(my1) + Acm0Z cos(my1)

) 1

tan(y2/2)
+

+ 2

∞∑
m=0

∞∑
n=1

(
AssmnZ sin(my1)

sin(ny2)

sin y2
+ AcsmnZ cos(my1)

sin(ny2)

sin y2
+

+ AscmnZ sin(my1)
cos(ny2)

sin y2
+ AccmnZ cos(my1)

cos(ny2)

sin y2

)]
+O(ε2) = 0 ⇒

Using relations (4.2.11), (4.2.12) and applying D’ Hospital rule as y2 → π we get :

⇒
∞∑
m=0

{[
dAsm0Z

dt

π

2
+

∞∑
n=1

(
dAssmnZ
dt

1− (−1)n

n

)]
+

[
∼
q

2
∞∑
n=1

2AssmnZ n (−1)n+1

]}
sin(my1)

{[
dAcm0Z

dt

π

2
+

∞∑
n=1

(
dAcsmnZ
dt

1− (−1)n

n

)]
+

[
∼
q

2
∞∑
n=1

2AcsmnZ n (−1)n+1

]}
cos(my1) +

+O(ε2) = 0 (4.3.15)
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In order to implement the boundary condition (4.3.15) in a numerical scheme, we discretize the
time period of the simulation to small time steps, ∆t. The time, t, at the in-th instant is :

t = (in− 1) ∆t , in = 1, 2, ...,Moments (4.3.16)

where the variable Moments is the maximum number of instants used in the program

For a burst (step) start, at in=0 the blades are at their starting position with zero velocity while
at in=1 (t=0) the blades are also at their starting position but with ”maximum” velocity.

We can now calculate numerically the time derivatives assuming Lagrange interpolation (see Ap-
pendix F) of the variables in question. Therefore the time derivative of A(t) at tin is :

First order interpolation :

dAin
dt

≈ Ain −Ain−1

∆t
, in ≥ 2 (4.3.17)

Second order interpolation :

dAin
dt

≈ 3Ain − 4Ain−1 +Ain−2

2∆t
, in ≥ 3 (4.3.18)

where Ain = A(tin)

It’s obvious that for the calculation of the derivative (4.3.18), A(t) should be known for three
consecutive instants tin, tin−1, tin−2. This is not possible at the beginning of the calculations,
which is why the first order approximation, (4.3.17), is needed. Introducing the symbols

P =

{
1

∆t , 1st order interpolation
3

2∆t 2nd order interpolation
(4.3.19)

Q =

{
−Ain−1

∆t , 1st order interpolation
−4Ain−1+Ain−2

2∆t 2nd order interpolation
(4.3.20)

relations (4.3.17) and (4.3.18) become :

dAin
dt

= PAin + Q (4.3.21)

Given that relation (4.3.15) is valid of every y1, since the trigonometric functions are functionally
independent each of their coefficients should be zero. After substituting relation (4.3.21) we get :

60



For m = 0,1,... (cos(my1)) :

P Acm0Z,in

π

2
+
∞∑
n=1

(
P AcsmnZ,in

1− (−1)n

n

)
+

∼
q

2
∞∑
n=1

2AcsmnZ,in n (−1)n+1 =

= −

[
Qcm0Z,in

π

2
+
∞∑
n=1

QcsmnZ,in
1− (−1)n

n

]
(4.3.22)

For m = 1,2,... (sin(my1)) :

P Asm0Z,in

π

2
+

∞∑
n=1

(
P AssmnZ,in

1− (−1)n

n

)
+

∼
q

2
∞∑
n=1

2AssmnZ,in n (−1)n+1 =

= −

[
Qsm0Z,in

π

2
+

∞∑
n=1

QssmnZ,in
1− (−1)n

n

]
(4.3.23)

Using the simplified relation (4.2.21) for the bound vorticity we don’t need relation (4.3.22) and
the boundary condition at the trailing edge is only the (4.3.23).
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4.4 Calculation of the mode velocities fields

According to relation (3.6.14) the mean velocity of the disturbance is :

−4π 〉vj(P )〈 =

∫
∪
Z
SRZ

σ(Q)
xj(Q)− xj(P )

r3
dS +

+

∫
∪
Z

(SRZ∪SRWZ )

εjilγi(Q)
xl(Q)− xl(P )

r3
dS −

∫
L

µ εjil
xl(Q)− xl(P )

r3
dli (4.4.1)

For the components of the above equation that refer to the Cartesian coordinate system xi, the
following relations hold.

γi = γi , xi = xi , εjil = ejil , (4.4.2)

Furthermore since

dS =
√
α
`
dy1 dy2 (4.4.3)

and

γi(Q) = γi(Q) =
∼ i
γα
`
γ
`

α(Q) (4.4.4)

Relation (4.4.1) can be written as :

−4π 〉vj(P )〈 =

=

∫
∪
Z
SRZ

σ(Q)
√
α
`

xj(Q)− xj(P )

r3
dy1 dy2 +

+

∫
∪
Z

(SRZ∪SRWZ )

ejil
∼ i
γα
`
γ
`

α(Q)
√
α
`

xl(Q)− xl(P )

r3
dy1dy2 −

∫
L

µ ejil
xl(Q)− xl(P )

r3
dli =

=

∫
∪
Z
SRZ

S(Q)
xj(Q)− xj(P )

r3
dy1 dy2 +

+

∫
∪
Z

(SRZ∪SRWZ )

ejil

(
∼ i
γ1
`

Γ
`

1 +
∼ i
γ2
`

Γ
`

2

)
xl(Q)− xl(P )

r3
dy1dy2 −

∫
L

µ ejil
xl(Q)− xl(P )

r3
dli (4.4.5)
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where relation (4.1.13) and (4.1.14) have been used, as well as the :

S(Q)
def
= σ(Q)

√
α
`

(4.4.6)

The coordinates
∼
x
i
≡ xi(Q), xi(P ) for the reference surface x3 = 0 of the propeller are given by

relations (2.2.1) - (2.2.6):

∼
x

1
= x
∧

1(x3 = 0) = X(u1) + c(u1)u2 sinφ(u1) (4.4.7)

∼
x

2
= x
∧

2 cos
∼
x
∧

3
= u1 cos

∼
x
∧

3
(4.4.8)

∼
x

3
= x
∧

2 sin
∼
x
∧

3
= u1 sin

∼
x
∧

3
(4.4.9)

where

∼
x
∧

3
= x
∧

3(x3 = 0) = Θ(u1) + c(u1)
u2

u1
cosφ(u1) + δZ (4.4.10)

and

δZ =
2π

NBL
(Z − 1) (4.4.11)

is the angle of rotation of the xi system when Q belongs on the Z-th blade. Obviously for the
reference blade 7 δ1 = 0.

The coordinates of the reference surface of the wing, are given by the relations (2.2.9) - (2.2.11):

∼
x

1
= X(u1) + c(u1)u2 sinφ(u1) (4.4.12)

∼
x

2
= u1 (4.4.13)

∼
x

3
= u1 tan(Θ(u1)) + c(u1)u2 cosφ(u1) (4.4.14)

7For a symmetrical body like the propeller the mode velocities are calculated only for the reference surface.
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4.5 Introduction of Induction and Self Induction Factors of Vorticity

The contribution of the vorticity of the reference surface is given by the second term of relations
(4.4.5). Specifically the contribution of a single blade is :

−4 π〉vjΓ(P )
SRZ

〈=
∫∫
SRZ

ejil
(

1

2
(Ro −RH) sin y1 Γ

`

1 ∼
γ
i

1
+

1

2
sin y2 Γ

`

2 ∼
γ
i

2

)
δxl

r3
dy2 dy1 (4.5.1)

Substituting relations (4.1.18) and (4.1.19) :

=

∫∫
sRZ

1

2
(Ro −RH) sin y1

( ∞∑
m=0

Asm0Z sin(my1)
cos y2 + 1

2

)
ejil

∼
γ
i

1

δxl

r3
dy2 dy1

+

∫∫
sRZ

1

2
(Ro −RH) sin y1

( ∞∑
m=0

Acm0Z cos(my1)
cos y2 + 1

2

)
ejil

∼
γ
i

1

δxl

r3
dy2 dy1

+

∫∫
sRZ

1

2
(Ro −RH) sin y1

( ∞∑
m=0

∞∑
n=1

AssmnZ sin(my1) sin(ny2)

)
ejil

∼
γ
i

1

δxl

r3
dy2 dy1

+

∫∫
sRZ

1

2
(Ro −RH) sin y1

( ∞∑
m=0

∞∑
n=1

AcsmnZ cos(my1) sin(ny2)

)
ejil

∼
γ
i

1

δxl

r3
dy2 dy1

+

∫∫
sRZ

1

2
(Ro −RH) sin y1

( ∞∑
m=0

∞∑
n=1

AscmnZ sin(my1) cos(ny2)

)
ejil

∼
γ
i

1

δxl

r3
dy2 dy1

+

∫∫
sRZ

1

2
(Ro −RH) sin y1

( ∞∑
m=0

∞∑
n=1

AccmnZ cos(my1) cos(ny2)

)
ejil

∼
γ
i

1

δxl

r3
dy2 dy1

+

∫∫
sRZ

1

2
sin y2

( ∞∑
m=1

−mAsm0Z cos(my1)
y2 + sin y2

2

)
ejil

∼
γ
i

2

δxl

r3
dy1 dy2

+

∫∫
sRZ

1

2
sin y2

( ∞∑
m=1

mAcm0Z sin(my1)
y2 + sin y2

2

)
ejil

∼
γ
i

2

δxl

r3
dy1 dy2

+

∫∫
sRZ

1

2
sin y2

( ∞∑
m=1

∞∑
n=1

−m
n
AssmnZ cos(my1) (1− cos(ny2))

)
ejil

∼
γ
i

2

δxl

r3
dy1 dy2

64



+

∫∫
sRZ

1

2
sin y2

( ∞∑
m=1

∞∑
n=1

m

n
AcsmnZ sin(my1) (1− cos(ny2))

)
ejil

∼
γ
i

2

δxl

r3
dy1 dy2

+

∫∫
sRZ

1

2
sin y2

( ∞∑
m=1

∞∑
n=1

−m
n
AscmnZ cos(my1) sin(ny2)

)
ejil

∼
γ
i

2

δxl

r3
dy1 dy2

+

∫∫
sRZ

1

2
sin y2

( ∞∑
m=1

∞∑
n=1

m

n
AccmnZ sin(my1) sin(ny2)

)
ejil

∼
γ
i

2

δxl

r3
dy1 dy2 (4.5.2)

where SRZ is the reference surface of the Z-th blade. We also use the symbol δxl instead of the
difference xl(Q)− xl(P ).

We define the following quantities :

Bsj
m0Z =

π∫
0

π∫
0

(
sin(my1)

1 + cos y2

2

)
sin y1 ejil

∼
γ
i

1

δxl

r3
dy1 dy2 (4.5.3)

Bcj
m0Z =

π∫
0

π∫
0

(
cos(my1)

1 + cos y2

2

)
sin y1 ejil

∼
γ
i

1

δxl

r3
dy1 dy2 (4.5.4)

Bssj
mnZ =

π∫
0

π∫
0

(
sin(my1) sin(ny2)

)
sin y1 ejil

∼
γ
i

1

δxl

r3
dy1 dy2 (4.5.5)

Bcsj
mnZ =

π∫
0

π∫
0

(
cos(my1) sin(ny2)

)
sin y1 ejil

∼
γ
i

1

δxl

r3
dy1 dy2 (4.5.6)

Bscj
mnZ =

π∫
0

π∫
0

(
sin(my1) cos(ny2)

)
sin y1 ejil

∼
γ
i

1

δxl

r3
dy1 dy2 (4.5.7)

Bccj
mnZ =

π∫
0

π∫
0

(
cos(my1) cos(ny2)

)
sin y1 ejil

∼
γ
i

1

δxl

r3
dy1 dy2 (4.5.8)
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Csjm0Z =

π∫
0

π∫
0

(
cos(my1)

y2 + sin y2

2

)
sin y2 ejil

∼
γ
i

2

δxl

r3
dy1 dy2 (4.5.9)

Ccjm0Z =

π∫
0

π∫
0

(
sin(my1)

y2 + sin y2

2

)
sin y2 ejil

∼
γ
i

2

δxl

r3
dy1 dy2 (4.5.10)

CssjmnZ =

π∫
0

π∫
0

(
cos(my1)(1− cos(ny2))

)
sin y2 ejil

∼
γ
i

2

δxl

r3
dy1 dy2 (4.5.11)

CcsjmnZ =

π∫
0

π∫
0

(
sin(my1)(1− cos(ny2))

)
sin y2 ejil

∼
γ
i

2

δxl

r3
dy1 dy2 (4.5.12)

CscjmnZ =

π∫
0

π∫
0

(
cos(my1) sin(ny2)

)
sin y2 ejil

∼
γ
i

2

δxl

r3
dy1 dy2 (4.5.13)

CccjmnZ =

π∫
0

π∫
0

(
sin(my1) sin(ny2)

)
sin y2 ejil

∼
γ
i

2

δxl

r3
dy1 dy2 (4.5.14)

Notice that the dependence of B and C from the blade (index Z) comes from the difference δxl.

Introducing the induction factors :

Bsj
m

def
=
(
cosy2 − cosy2

P

) π∫
0

sin(my1) sin y1 ejil
∼
γ
i

1

δxl

r3
dy1 (4.5.15)

Bcj
m

def
=
(
cosy2 − cosy2

P

) π∫
0

cos(my1) sin y1 ejil
∼
γ
i

1

δxl

r3
dy1 (4.5.16)

Cj0
def
=
(
cosy1 − cosy1

P

) π∫
0

y2 + sin y2

2
sin y2 ejil

∼
γ
i

2

δxl

r3
dy2 (4.5.17)

Csjn
def
=
(
cosy1 − cosy1

P

) π∫
0

(
1− cos(ny2)

)
sin y2 ejil

∼
γ
i

2

δxl

r3
dy2 (4.5.18)

Ccjn
def
=
(
cosy1 − cosy1

P

) π∫
0

sin(ny2) sin y2 ejil
∼
γ
i

2

δxl

r3
dy2 (4.5.19)
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and the corresponding self-induction factors

Bsj
mself

def
= lim

y2→y2P
Bsj
m , Bcj

mself

def
= lim

y2→y2P
Bcj
m (4.5.20)

Cj0self
def
= lim

y1→y1P
Cj0 , Csjnself

def
= lim

y1→y1P
Csjn , Ccjnself

def
= lim

y1→y1P
Ccjn (4.5.21)

with y1
P = y1(P ) and y2

P = y2(P )

and substituting to relations (4.5.3) - (4.5.14) we get:

Bsj
m0Z =

π∫
0

1 + cos y2

2

Bsj
m −Bsj

mself

cos y2 − cos y2
P

dy2 + Bsj
mself

−
π∫

0

1
2 + 1

2 cos y2

cos y2 − cos y2
P

dy2 (4.5.22)

Bcj
m0Z =

π∫
0

1 + cos y2

2

Bcj
m −Bcj

mself

cos y2 − cos y2
P

dy2 + Bcj
mself

−
π∫

0

1
2 + 1

2 cos y2

cos y2 − cos y2
P

dy2 (4.5.23)

Bssj
mnZ =

π∫
0

sin(ny2) sin y2

Bsjm
sin y2

−
Bsjmself
sin y2P

cos y2 − cos y2
P

dy2 +
Bsj
mself

sin y2
P

−
π∫

0

sin(ny2) sin y2

cos y2 − cos y2
P

dy2 (4.5.24)

Bcsj
mnZ =

π∫
0

sin(ny2) sin y2

Bcjm
sin y2

−
Bcjmself
sin y2P

cos y2 − cos y2
P

dy2 +
Bcj
mself

sin y2
P

−
π∫

0

sin(ny2) sin y2

cos y2 − cos y2
P

dy2 (4.5.25)

Bscj
mnZ =

π∫
0

cos(ny2)
Bsj
m −Bsj

mself

cos y2 − cos y2
P

dy2 + Bsj
mself

−
π∫

0

cos(ny2)

cos y2 − cos y2
P

dy2 (4.5.26)

Bccj
mnZ =

π∫
0

cos(ny2)
Bcj
m −Bcj

mself

cos y2 − cos y2
P

dy2 + Bcj
mself

−
π∫

0

cos(ny2)

cos y2 − cos y2
P

dy2 (4.5.27)

Csjm0Z =

π∫
0

cos(my1)
Cj0 − C

j
0self

cos y1 − cos y1
P

dy1 + Cj0self−
π∫

0

cos(my1)

cos y1 − cos y1
P

dy1 (4.5.28)

Ccjm0Z =

π∫
0

sin(my1) sin y1

Cj0
sin y1

−
Cj0self
sin y1P

cos y1 − cos y1
P

dy1 +
Cj0self
sin y1

P

−
π∫

0

sin(my1) sin y1

cos y1 − cos y1
P

dy1 (4.5.29)
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CssjmnZ =

π∫
0

cos(my1)
Csjn − Csjnself

cos y1 − cos y1
P

dy1 + Csjnself−
π∫

0

cos(my1)

cos y1 − cos y1
P

dy1 (4.5.30)

CcsjmnZ =

π∫
0

sin(my1) sin y1

Csjn
sin y1

−
Csjnself
sin y1P

cos y1 − cos y1
P

dy1 +
Csjnself
sin y1

P

−
π∫

0

sin(my1) sin y1

cos y1 − cos y1
P

dy1 (4.5.31)

CscjmnZ =

π∫
0

cos(my1)
Ccjn − Ccjnself

cos y1 − cos y1
P

dy1 + Ccjnself−
π∫

0

cos(my1)

cos y1 − cos y1
P

dy1 (4.5.32)

CccjmnZ =

π∫
0

sin(my1) sin y1

Ccjn
sin y1

−
Ccjnself
sin y1P

cos y1 − cos y1
P

dy1 +
Ccjnself
sin y1

P

−
π∫

0

sin(my1) sin y1

cos y1 − cos y1
P

dy1 (4.5.33)

where the second terms of the right hand side of relations (4.5.22) - (4.5.33) are Cauchy Principal
Value integrals. These terms are identical or can be transformed to the known Glauert integral.

−
π∫

0

cos(nθ)

cos θ − cos θ0
= π

sin(nθ0)

sin θ0
(4.5.34)

Therefore :

−
π∫

0

1
2 + 1

2 cos y2

cos y2 − cos y2
P

dy2 =
π

2

sin(0 · y2
P )

sin y2
P

+
π

2

sin(y2
P )

sin y2
P

=
π

2
(4.5.35)

−
π∫

0

sin(ny2) sin y2

cos y2 − cos y2
P

dy2 =
1

2
−
π∫

0

cos((n− 1)y2)− cos((n+ 1)y2)

cos y2 − cos y2
P

dy2

=
π

2 sin y2
P

(
sin((n− 1)y2

P ) − sin((n+ 1)y2
P )
)

= −π cos(ny2
P ) (4.5.36)

Similarly,

−
π∫

0

cos(my1)

cos y1 − cos y1
P

dy1 = π
sin(my1)

sin(y1
P )

(4.5.37)

−
π∫

0

sin(my1) sin y1

cos y1 − cos y1
P

dy1 = −π cos(my1
P ) (4.5.38)
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Substituting relations (4.5.35) - (4.5.38) to (4.5.22) - (4.5.33) we get :

Bsj
m0Z =

π∫
0

1 + cos y2

2

Bsj
m −Bsj

mself

cos y2 − cos y2
P

dy2 +
π

2
Bsj
mself

(4.5.39)

Bcj
m0Z =

π∫
0

1 + cos y2

2

Bcj
m −Bcj

mself

cos y2 − cos y2
P

dy2 +
π

2
Bcj
mself

(4.5.40)

Bssj
mnZ =

π∫
0

sin(ny2) sin y2

Bsjm
sin y2

−
Bsjmself
sin y2P

cos y2 − cos y2
P

dy2 − π
cos(ny2

P )

sin y2
P

Bsj
mself

(4.5.41)

Bcsj
mnZ =

π∫
0

sin(ny2) sin y2

Bcjm
sin y2

−
Bcjmself
sin y2P

cos y2 − cos y2
P

dy2 − π
cos(ny2

P )

sin y2
P

Bcj
mself

(4.5.42)

Bscj
mnZ =

π∫
0

cos(ny2)
Bsj
m −Bsj

mself

cos y2 − cos y2
P

dy2 + π
sin(ny2

P )

sin y2
P

Bsj
mself

(4.5.43)

Bccj
mnZ =

π∫
0

cos(ny2)
Bcj
m −Bcj

mself

cos y2 − cos y2
P

dy2 + π
sin(ny2

P )

sin y2
P

Bcj
mself

(4.5.44)

Csjm0Z =

π∫
0

cos(my1)
Cj0 − C

j
0self

cos y1 − cos y1
P

dy1 + π
sin(my1

P )

sin y1
P

Cj0self (4.5.45)

Ccjm0Z =

π∫
0

sin(my1) sin y1

Cj0
sin y1

−
Cj0self
sin y1P

cos y1 − cos y1
P

dy1 − π
cos(my1

P )

sin y1
P

Cj0self (4.5.46)

CssjmnZ =

π∫
0

cos(my1)
Csjn − Csjnself

cos y1 − cos y1
P

dy1 + π
sin(my1

P )

sin y1
P

Csjnself (4.5.47)

CcsjmnZ =

π∫
0

sin(my1) sin y1

Csjn
sin y1

−
Csjnself
sin y1P

cos y1 − cos y1
P

dy1 − π
cos(my1

P )

sin y1
P

Csjnself (4.5.48)
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CscjmnZ =

π∫
0

cos(my1)
Ccjn − Ccjnself

cos y1 − cos y1
P

dy1 + π
sin(my1

P )

sin y1
P

Ccjnself (4.5.49)

CccjmnZ =

π∫
0

sin(my1) sin y1

Ccjn
sin y1

−
Ccjnself
sin y1P

cos y1 − cos y1
P

dy1 − π
cos(my1

P )

sin y1
P

Ccjnself (4.5.50)

We can now define the mode perturbation velocities :

T sjm0Z = − 1

4π

[
1

2
(Ro −RH)Bsj

m0Z −
1

2
mCsjm0Z

]
(4.5.51)

T cjm0Z = − 1

4π

[
1

2
(Ro −RH)Bcj

m0Z +
1

2
mCcjm0Z

]
(4.5.52)

T ssjmnZ = − 1

4π

[
1

2
(Ro −RH)Bssj

mnZ −
1

2

m

n
CssjmnZ

]
(4.5.53)

T csjmnZ = − 1

4π

[
1

2
(Ro −RH)Bcsj

mnZ +
1

2

m

n
CcsjmnZ

]
(4.5.54)

T scjmnZ = − 1

4π

[
1

2
(Ro −RH)Bscj

mnZ −
1

2

m

n
CscjmnZ

]
(4.5.55)

T ccjmnZ = − 1

4π

[
1

2
(Ro −RH)Bccj

mnZ +
1

2

m

n
CccjmnZ

]
(4.5.56)

Thus relation (4.5.1) can be written as :

〉vjΓ(P )〈=
NBL∑
Z=1

[ ∞∑
m=0

(
T sjm0Z A

s
m0Z + T cjm0Z A

c
m0Z

)
+

+

∞∑
m=0

∞∑
n=1

(
T ssjmnZ A

ss
mnZ + T csjmnZ A

cs
mnZ + T scjmnZ A

sc
mnZ + T ccjmnZ A

cc
mnZ

)]
(4.5.57)

The analytic expressions of the self induction factors can be proven to be (see Appendix G):

Bsj
mself

= − 8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2
sin(my1

P )

√
∼
g

11

α
(4.5.58)

Bcj
mself

= − 8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2
cos(my1

P )

√
∼
g

11

α
(4.5.59)
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Cj0self =
4

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2
(y2
P + sin y2

P )

√
∼
g

22

α
(4.5.60)

Csjnself =
8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2
(1− cos(ny2

P ))

√
∼
g

22

α
(4.5.61)

Ccjnself =
8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2
sin y2

P

√
∼
g

22

α
(4.5.62)

Alternatively by changing the integration order the induction factors become :

Bj
0
def
=
(
cos y1 − cos y1

P

) π∫
0

1 + cos y2

2
ejil

∼
γ
i

1

δxl

r3
dy2 (4.5.63)

Bsj
n

def
=
(
cos y1 − cos y1

P

) π∫
0

sin(ny2) ejil
∼
γ
i

1

δxl

r3
dy2 (4.5.64)

Bcj
n

def
=
(
cos y1 − cos y1

P

) π∫
0

cos(ny2) ejil
∼
γ
i

1

δxl

r3
dy2 (4.5.65)

Csjm
def
=
(
cos y2 − cos y2

P

) π∫
0

cos(my1) ejil
∼
γ
i

2

δxl

r3
dy1 (4.5.66)

Ccjm
def
=
(
cos y2 − cos y2

P

) π∫
0

sin(my1) ejil
∼
γ
i

2

δxl

r3
dy1 (4.5.67)

and the corresponding self-induction factors :

Bj
0self

def
= lim

y1→y1P
Bj

0 , Bsj
nself

def
= lim

y1→y1P
Bsj
n , Bcj

nself

def
= lim

y1→y1P
Bcj
n (4.5.68)

Csjmself
def
= lim

y2→y2P
Csjm , Ccjmself

def
= lim

y2→y2P
Ccjm (4.5.69)

Therefore relations (4.5.3) - (4.5.14) can be written as :
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Bsj
m0Z =

π∫
0

sin(my1) sin y1
Bj

0 −B
j
0self

cos y1 − cos y1
P

dy1 + Bj
0self
−
π∫

0

sin(my1) sin y1

cos y1 − cos y1
P

dy1 (4.5.70)

Bcj
m0Z =

π∫
0

cos(my1)
sin y1Bj

0 − sin y1
P B

j
0self

cos y1 − cos y1
P

dy1 + sin y1
P B

j
0self
−
π∫

0

cos(my1)

cos y1 − cos y1
P

dy1 (4.5.71)

Bssj
mnZ =

π∫
0

sin(my1) sin y1 Bsj
n −Bsj

nself

cos y1 − cos y1
P

dy1 + Bsj
nself
−
π∫

0

sin(my1) sin y1

cos y1 − cos y1
P

dy1 (4.5.72)

Bcsj
mnZ =

π∫
0

cos(my1)
sin y1Bsj

n − sin y1
P B

sj
nself

cos y1 − cos y1
P

dy1 + sin y1
P B

sj
nself
−
π∫

0

cos(my1)

cos y1 − cos y1
P

dy1 (4.5.73)

Bscj
mnZ =

π∫
0

sin(my1) sin y1 Bcj
n −Bcj

nself

cos y1 − cos y1
P

dy1 + Bcj
nself
−
π∫

0

sin(my1) sin y1

cos y1 − cos y1
P

dy1 (4.5.74)

Bccj
mnZ =

π∫
0

cos(my1)
sin y1Bcj

n − sin y1
P B

cj
nself

cos y1 − cos y1
P

dy1 + sin y1
P B

cj
nself
−
π∫

0

cos(my1)

cos y1 − cos y1
P

dy1 (4.5.75)

Csjm0Z =

π∫
0

(siny2)2

y2+sin y2

2 sin y2
Csjm −

y2P+sin y2P
2 sin y2P

Csjmself

cos y2 − cos y2
P

dy2 +

+
y2
P + sin y2

P

2 sin y2
P

Csjmself−
π∫

0

(sin y2)2

cos y2 − cos y2
P

dy2 (4.5.76)

Ccjm0Z =

π∫
0

(siny2)2

y2+sin y2

2 sin y2
Ccjm −

y2P+sin y2P
2 sin y2P

Ccjmself

cos y2 − cos y2
P

dy2 +

+
y2
P + sin y2

P

2 sin y2
P

Ccjmself−
π∫

0

(sin y2)2

cos y2 − cos y2
P

dy2 (4.5.77)

CssjmnZ =

π∫
0

(1− cos(ny2))
sin y2Csjm − sin y2

P C
sj
mself

cos y2 − cos y2
P

dy2 +

+ sin y2
P C

sj
mself

−
π∫

0

1− cos(ny2)

cos y2 − cos y2
P

dy2 (4.5.78)
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CcsjmnZ =

π∫
0

(1− cos(ny2))
sin y2Ccjm − sin y2

P C
cj
mself

cos y2 − cos y2
P

dy2 +

+ sin y2
P C

cj
mself

−
π∫

0

1− cos(ny2)

cos y2 − cos y2
P

dy2 (4.5.79)

CscjmnZ =

π∫
0

sin(ny2) sin y2 Csjm − Csjmself
cos y2 − cos y2

P

dy2 + Csjmself−
π∫

0

sin(ny2) sin y2

cos y2 − cos y2
P

dy2 (4.5.80)

CccjmnZ =

π∫
0

sin(ny2) sin y2 Ccjm − Ccjmself
cos y2 − cos y2

P

dy2 + Ccjmself−
π∫

0

sin(ny2) sin y2

cos y2 − cos y2
P

dy2 (4.5.81)

where the second terms of the right hand side of relations (4.5.70) - (4.5.81) are Cauchy Principal
Value integrals. These terms are identical or can be transformed to the known Glauert integral.

−
π∫

0

sin(my1) sin y1

cos y1 − cos y1
P

dy1 =
1

2
−
π∫

0

cos((m− 1)y1)− cos((m+ 1)y1)

cos y1 − cos y1
P

dy1

=
π

2 sin y1
P

(
sin((m− 1)y1

P )− sin((m+ 1)y1
P )
)

= −π cos(my1
P ) (4.5.82)

−
π∫

0

cos(my1)

cos y1 − cos y1
P

dy1 = π
sin(my1

P )

sin y1
P

(4.5.83)

−
π∫

0

sin y2 sin y2

cos y2 − cos y2
P

dy2 = −π cos y2
P (4.5.84)

−
π∫

0

1− cos(ny2
P )

cos y2 − cos y2
P

dy2 = π
sin(0 · y2

P )

sin y1
P

− π
sin(ny2

P )

sin y2
P

= −π
sin(ny2

P )

sin y2
P

(4.5.85)

−
π∫

0

sin(ny2) sin y2

cos y2 − cos y2
P

dy2 = −π cos(ny2
P ) (4.5.86)

Therefore relations (4.5.70) - (4.5.81) can be written as :
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Bsj
m0Z =

π∫
0

sin(my1) sin y1
Bj

0 −B
j
0self

cos y1 − cos y1
P

dy1 − π cos(my1
P )Bj

0self
(4.5.87)

Bcj
m0Z =

π∫
0

cos(my1)
sin y1Bj

0 − sin y1
PB

j
0self

cos y1 − cos y1
P

dy1 + π sin(my1
P )Bj

0self
(4.5.88)

Bssj
mnZ =

π∫
0

sin(my1) sin y1 Bsj
n −Bsj

nself

cos y1 − cos y1
P

dy1 − π cos(my1
P )Bsj

nself
(4.5.89)

Bcsj
mnZ =

π∫
0

cos(my1)
sin y1Bsj

n − sin y1
PB

sj
nself

cos y1 − cos y1
P

dy1 + π sin(my1
P )Bsj

nself
(4.5.90)

Bscj
mnZ =

π∫
0

sin(my1) sin y1 Bcj
n −Bcj

nself

cos y1 − cos y1
P

dy1 − π cos(my1
P )Bcj

nself
(4.5.91)

Bccj
mnZ =

π∫
0

cos(my1)
sin y1Bcj

n − sin y1
PB

cj
nself

cos y1 − cos y1
P

dy1 + π sin(my1
P )Bcj

nself
(4.5.92)

Csjm0Z =

π∫
0

(siny2)2

y2+sin y2

2 sin y2P
Csjm −

y2P+sin y2P
2 sin y2P

Csjmself

cos y2 − cos y2
P

dy2 − π
y2
P + sin y2

P

2

cos y2
P

sin y2
P

Csjmself (4.5.93)

Ccjm0Z =

π∫
0

(siny2)2

y2+sin y2

2 sin y2
Ccjm −

y2P+sin y2P
2 sin y2P

Ccjmself

cos y2 − cos y2
P

dy2 − π
y2
P + sin y2

P

2

cos y2
P

sin y2
P

Ccjmself (4.5.94)

CssjmnZ =

π∫
0

(1− cos(ny2))
sin y2Csjm − sin y2

P C
sj
mself

cos y2 − cos y2
P

dy2 − π sin(ny2
P )Csjmself (4.5.95)

CcsjmnZ =

π∫
0

(1− cos(ny2))
sin y2Ccjm − sin y2

P C
cj
mself

cos y2 − cos y2
P

dy2 − π sin(ny2
P )Ccjmself (4.5.96)

CscjmnZ =

π∫
0

sin(ny2) sin y2 Csjm − Csjmself
cos y2 − cos y2

P

dy2 − π cos(ny2
P )Csjmself (4.5.97)

CccjmnZ =

π∫
0

sin(ny2) sin y2 Ccjm − Ccjmself
cos y2 − cos y2

P

dy2 − π cos(ny2
P )Ccjmself (4.5.98)
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The analytic expressions of the self induction factors can be proven to be (see Appendix G) :

Bj
0self

=
4

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2

1 + cos y2
P

sin y2
P

∼
g

12√
∼
g

22
α

(4.5.99)

Bsj
nself

=
8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2

sin(ny2
P )

sin y2
P

∼
g

12√
∼
g

22
α

(4.5.100)

Bcj
nself

=
8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2

cos(ny2
P )

sin y2
P

∼
g

12√
∼
g

22
α

(4.5.101)

Csjmself = − 8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2

cos(my1
P )

sin y1
P

∼
g

12√
∼
g

11
α

(4.5.102)

Ccjmself = − 8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2

sin(my1
P )

sin y1
P

∼
g

12√
∼
g

11
α

(4.5.103)
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4.6 Introduction of Induction and Self Induction Factors of Sources

The contribution of the surface source intensity of the reference surface is given by the first term
of relations (4.4.5). Specifically the contribution of a single blade is :

−4 π〉vjS(P )
SRZ

〈=
∫
SRZ

S(Q)
xj(Q)− xj(P )

r3
dy1 dy2 (4.6.1)

where according to relations (4.4.6), (3.2.31):

S = σ(Q)
√
α
`

(A97)
=

=

(
1

4
(Ro −RH) sin y1 sin y2

)
√
α

(
〉q1〈 ∂ET

∂x1
+ 〉q2〈 ∂ET

∂x2
− 〈q3〉

) √∼
g

α

(A83)
=

=

(
1

4
(Ro −RH) sin y1 sin y2

)
c2 fs(Q) (4.6.2)

with

fs(Q) =

(
〉q1〈 ∂ET

∂x1
+ 〉q2〈 ∂ET

∂x2
− 〈q3〉

)
(4.6.3)

Substituting (4.6.2) to (4.6.1) we get :

−4 π〉vjS(P )
SRZ

〈=
π∫

0

π∫
0

S(Q)
xj(Q)− xj(P )

r3
dy1dy2 =

=
c2

4
(Ro −RH)

π∫
0

π∫
0

fs(Q) sin y1 sin y2 δx
j

r3
dy1dy2 (4.6.4)

We define the induction factor :

Dj
Z

def
= (cos y2 − cos y2

P )

π∫
0

fS(Q) sin y1 sin y2 δx
j

r3
dy1 (4.6.5)

and the corresponding self-induction factor :

Dj
Zself

= lim
y2→y2P

Dj
Z (4.6.6)

Therefore relation (4.6.4) becomes :
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−4 π〉vjS(P )
SRZ

〈=

 π∫
0

Dj
Z −D

j
Zself

cos y2 − cos y2
P

dy2 + Dj
Zself
−
π∫

0

1

cos y2 − cos y2
P

dy2

 c2

4
(Ro −RH) (4.6.7)

where the second integral of the right hand side is the known Glauert integral.

−
π∫

0

1

cos y2 − cos y2
P

dy2 = −
π∫

0

cos(0 · y2)

cos y2 − cos y2
P

dy2 = π
sin(0 · y2

P )

sin y2
P

= 0 (4.6.8)

Therefore :

〉vjS(P )〈= − 1

4π

NBL∑
Z=1

c2

4
(Ro −RH)

π∫
0

Dj
Z −D

j
Zself

cos y2 − cos y2
P

dy2

 (4.6.9)
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4.7 Numerical Scheme

Before we examine the contribution of the wake we should first determine the numerical scheme,
since the surface of the wake cannot be described analytically. In that end we choose the boundary

conditions which will be used in the program. In particular given that
∼
q
i
+ 〉∼v

i
〈= (

∼
q

2
+ 〉∼v

2
〈) δi2 we

have :

• Zero bound vorticity at the tip and the hub

• Zero pressure difference at the trailing edge

• No-entrance condition at the inner points of the blade

As mentioned in chapter 4.2, relation (4.2.21) of the bound vorticity

Γ1(y1, y2, Z, t) =
∞∑
m=1

[
Asm0Z sin(my1)

] 1

tan(y2/2)
+ 2

∞∑
m=1

∞∑
n=1

[
AssmnZ sin(my1)

sin(ny2)

sin y2

]
(4.7.1)

can fully describe this particular problem while satisfying implicitly the first condition at the tip
and hub. The unknown variables are the coefficients, A, of relation (4.7.1). Assuming that all the
spanwise harmonics up to the M0-th and all the chordwise harmonics up to the N0-th satisfy the
linearized problem we have :

• Asm0Z , m = 1,2,...,M0

• AssmnZ , m = 1,2,...,M0, n = 1,2,...,N0

Therefore we have a total number of M0(N0 + 1) unknowns and need an equivalent number of
equations. Using the yα coordinate system of the blade we satisfy the above boundary conditions
in a set (lattice) of points consisting of M0 + 2 rows and N0 + 1 columns equally spaced as seen in
the figure below. These control points (C.P) span from the hub (y1 = 0) to the tip (y1 = π) and
from a point forward of the leading edge to the trailing edge (y2 = π).

Notice that there are no points on the leading edge because the determinant of the surface metric
tensor of the real surface goes to infty, when parametrized by u1,u2 (α′ → ∞), thus the normal
vector looses meaning in u1,u2 parametrization and cannot be approximated by relations (3.2.28) -
(3.2.30). This means that points near the leading edge cannot be used for the no-entrance bound-
ary condition, when solving in the parametrized space, however the zero-free vorticity boundary
condition (4.2.1) is implicitly satisfied.
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Figure 4.7.1

In the figure above, every point can be described by two integer numbers (i,j) which indicate the
number of row and column respectively. Starting form point (1,1) we move up the column to
(M0+2,1) and continue the same process form the bottom (y1 = 0) of the second column. Instead
of two variables we can use only one to describe the position of the C.P at each blade :

k = i + (j − 1)(M0 + 2) + (Z − 1)(M0 + 2)(N0 + 1) (4.7.2)

where

i = 1,2,...,(M0+2), j = 1,2,...,(N0+1)

Z = 1,2,...,NBL , k = 1,2,...,NBL(M0+2)(N0+1)

For the points on hub : MOD(k-1, M0+2) = 0, i=1 (4.7.3)

For the points on tip : MOD(k, M0+2) = 0, i=M0+2 (4.7.4)

For the points on the T.E : j = N0+1 (4.7.5)

Following the same logic, instead of using variables m,n,Z to describe the coefficients, A, we can
use the following variable :

l = m + nM0 + (Z − 1)M0 (N0 + 1) (4.7.6)
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where

m = 1,2,...,M0 , n = 0,1,2,...,N0

Figure 4.7.2
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4.8 Contribution of Wake to a control point

The contribution of the wake of each blade is given by the second and third terms of relation (4.4.5).

−4π 〉vjW (P )〈 =

∫
∪
Z
SRWZ

ejil γi
xl(Q)− xl(P )

r3
dS −

∫
∪
Z
LZ

µ ejil
xl(Q)− xl(P )

r3
dli (4.4.5)*

where LZ is the boundary line of the Z-th blade’s and its wake, LZ = ∂(SRZ∪SRWZ
) (Z=1,...,NBL).

In our case it’s useful to define a ”Kutta” strip, SKZ , behind each blade. This strip is narrow piece
of the wake connecting the trailing edge and the free part of the wake (see figure below). The
relative position of the Kutta strip to the blade’s real surface is examined in Chapter D - Section
3 of [3] but in the case of the lifting surface theory we assume it to be tangent to the reference
surface of the blade.

Notice that with the introduction of SKZ , the boundary LZ can be written as LZ = ∂(SRZ ∪SKZ ∪
SRWZ

), so the above relation can be written as :

−4π 〉vjW (P )〈 =

∫
∪
Z

(SRWZ∪SKZ )

ejil γi
xl(Q)− xl(P )

r3
dy1dy2

−

 ∫
∪
Z
∂(SRWZ∪SKZ )

µ ejil
xl(Q)− xl(P )

r3
dli +

∫
∪
Z
∂SRZ

µ ejil
xl(Q)− xl(P )

r3
dli

 (4.8.1)

Figure 4.8.1

For the wake of a single blade we take M0 + 2 control points in the y1 - spanwise direction, which
are as many as the control points in the same direction on the reference surface. Along the wake
(and the Kutta strip) we have in-1 control points excluding those on the trailing edge, where ”in”
is the current instant of the simulation (in=1,2,...,Moments).
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Figure 4.8.2

On each of the (M0 + 2)(in − 1) C.P on the wake we know the dipole intensity µ from relations
(3.4.7), (3.4.11). For every four nearby nodes on the wake, a surface boundary element (B.E) is
defined, with a closed curve, LMZT , as its boundary. We approximate this B.E using bi linear
polynomials, meaning that LMZT is consisted by four line segments connecting the four nodes.
Similarly we approximate the boundary LZ at the tip and hub as well as the T.E with linear
splines in between the nodes N = 1, 2, ..., N0 + 1 which we name LhubNZ , LtipNZ and LT.EMZ .

Figure 4.8.3

Using the modified Stokes theorem (see Chapter B - Section 7 of [3]) and assuming constant dipole
intensity within each B.E, the integration on the wake and kutta strip (two first terms of (4.8.1))
can be written as :

− 1

4π

∫
∪
Z

(SRWZ∪SKZ )

ejil γi(Q)
xl(Q)− xl(P )

r3
dS +

1

4π

∫
∪
Z
∂(SRWZ∪SKZ )

µ ejil
xl(Q)− xl(P )

r3
dli =

=

M0+1∑
M=1

NBL∑
Z=1

in−1∑
T=1

µMZT

4π

∮
LMZT

ejil dli
xl(Q)− xl(P )

r3
(4.8.2)

As for the third term on the right hand side of (4.8.1), it obviously includes the leading edge, which
doesn’t contribute to the perturbation velocity since according to (3.4.15) :
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µ(x2) =

x2∫
−1/2

Γ1 dx2 =

y2∫
0

Γ
`

1 dy2 =

=
∞∑
m=0

(
Asm0Z sin(my1) + Acm0Z cos(my1)

) sin y2 + y2

2
+

+
∞∑
m=0

∞∑
n=1

(
1

n
AssmnZ sin(my1) (1− cos(ny2)) +

1

n
AcsmnZ cos(my1) (1− cos(ny2))

+
1

n
AscmnZ sin(my1) sin(ny2) +

1

n
AccmnZ cos(my1) sin(ny2)

)
(4.8.3)

the dipole intensity is zero at the leading edge µ(y2 = 0). Therefore we are left only with the
LhubNZ , LtipNZ and LTEMZ . Assuming a constant dipole intensity on each line segment, the third term
of (4.8.1) can be written as :

1

4π

∫
∪
Z
SRZ

µ ejil dli
xl(Q)− xl(P )

r3
=

M0+1∑
M=1

NBL∑
Z=1

µT.EMZ

4π

∮
LTENZ

ejil dli
xl(Q)− xl(P )

r3
+

+

N0∑
N=0

NBL∑
Z=1

µtipNZ4π

∮
LtipNZ

ejil dli
xl(Q)− xl(P )

r3
+
µhubNZ

4π

∮
LhubNZ

ejil dli
xl(Q)− xl(P )

r3

 (4.8.4)

Note: The direction of the tangent vector dli on the boundary depends on the direction of the
normal vector on the B.E according to the right hand rule.

In the case of a line vortex extending between points A and B, with a unit dipole intensity, the
induced velocity at a point P is given by the relation :

~DAB def
=

1

4π

∫
AB

d~l × (~x(Q)− ~x(P ))

r3
= − 1

4πh
(cosα + cosβ)

~PA× ~PB

| ~PA× ~PB|
(4.8.5)

where h 6= 0 is the normal distance from control point P to the line AB. For h = 0, but P /∈ AB it
can be proved by the definition of (4.8.5) that ~DAB = ~0.

In the case of the wake B.E we get (M ≤M0 + 1 , T ≤ in− 1) :

~DMZT = ~DAB
MZT + ~DBC

MZT + ~DCD
MZT + ~DDA

MZT (4.8.6)

while for the tip, hub and T.E (M ≤M0 + 1 , N ≤ N0) :

~DNZ = ~DAB
NZ ,

~DMZ,IN = − ~DAB
MZ,IN = ~DCD

M,Z,IN (4.8.7)
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Figure 4.8.4

The constant value of the dipole intensity in the ABCD B.E is given by the mean value of dipole
intensity on each one of the four points :

µMZT =
1

4

(
µAMZT + µBMZT + µCMZT + µDMZT

)
, T ≤ IN − 1, M ≤M0 + 1 (4.8.8)

Similarly the constant value of dipole intensity on each line segment at the tip and hub is given as
the mean value of the dipole intensity at points A and B.

µNZ =
1

2

(
µANZ + µBNZ

)
, N ≤ N0 (4.8.9)

For the T.E :

µMZ,IN =
1

2

(
µAMZ,IN + µBMZ,IN

)
, M ≤M0 + 1 (4.8.10)

Since we are using boundary conditions (3.5.9) and (3.5.10), according to (4.8.3), µ = 0 at the tip
and hub. Nevertheless we include these extra terms for the sake of completeness.

Notice that, although we know analytically the dipole intensity,µ, at each point of the blade from
relation (4.8.3), we still choose to approximate it with constant values on the tip and hub. The main
reason for this is because the ~dl× (~x(Q)−~x(P )) depends on the shape of the blade, which although
has an analytic expression, makes the integration in (4.8.5) much more difficult. Furthermore, since
the difference (~x(Q)− ~x(P )) is finite the expression is not tensorial in the generalized sense.

For the wake B.E the following expressions are valid :

µAMZT = µ(M+1),Z,(T+1) , µDMZT = µ(M+1),Z,T (4.8.11)

µBMZT = µM,Z,(T+1) , µCMZT = µM,Z,T (4.8.12)

so µMZT =
1

4
(µM+1,Z,T+1 + µM,Z,T+1 + µM,Z,T + µM+1,Z,T ) (4.8.13)
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Figure 4.8.5

For the line segments on the tip, hub and T.E we have :

µANZ
∣∣
tip,hub

= µM,N,Z , µBNZ
∣∣
tip,hub

= µM,N+1,Z , M = 1,M0 + 2 (4.8.14)

µAMZ,IN

∣∣
T.E

= µM,Z,IN , µBMZ,IN

∣∣
T.E

= µM+1,Z,IN , N = N0 + 1 (4.8.15)

so µMNZ |tip,hub =
1

2
(µM,N,Z + µM,N+1,Z) (4.8.16)

µMZ,IN

∣∣
T.E

=
1

2

(
µM,Z,IN + µ(M+1),Z,IN

)
(4.8.17)

Setting :

µsm0 = sin(my1)
sin y2 + y2

2
, µcm0 = cos(my1)

sin y2 + y2

2
(4.8.18)

µssmn =
1

n
sin(my1) (1− cos(ny2)) , µcsmn =

1

n
cos(my1) (1− cos(ny2)) (4.8.19)

µscmn =
1

n
sin(my1) sin(ny2) , µccmn =

1

n
cos(my1) sin(ny2) (4.8.20)

relation (4.8.3) becomes :

µMNZT =
∞∑
m=0

(Asm0Z µ
s
m0|MNT + Acm0Z µ

c
m0|MNT ) +

∞∑
m=0

∞∑
n=1

(AssmnZ µ
ss
mn|MNT + AcsmnZ µ

cs
mn|MNT + AscmnZ µ

sc
mn|MNT + AccmnZ µ

cc
mn|MNT ) (4.8.21)

For T ≥ IN , the coefficients A are unknown.

For the B.E of the wake the dipole intensity is :

µMZT =
∞∑
m=0

(Asm0Z µ
s
m0|MT + Acm0Z µ

c
m0|MT ) +

∞∑
m=0

∞∑
n=1

(AssmnZ µ
ss
mn|MT + AcsmnZ µ

cs
mn|MT + AscmnZ µ

sc
mn|MT + AccmnZ µ

cc
mn|MT ) (4.8.22)
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with M = 1, ...,M0 + 1 , T = 1, ..., IN − 1 , Z = 1, ..., NBL

Similarly for the tip and the hub:

µNZ |tip,hub =

∞∑
m=0

(Asm0Z µ
s
m0|MN + Acm0Z µ

c
m0|MN ) +

∞∑
m=0

∞∑
n=1

(AssmnZ µ
ss
mn|MN + AcsmnZ µ

cs
mn|MN + AscmnZ µ

sc
mn|MN + AccmnZ µ

cc
mn|MN ) (4.8.23)

with M = 1,M0 + 2 , N = 1, ..., N0 , Z = 1, ..., NBL

For the T.E :

µMZ,IN |T.E =

∞∑
m=0

(Asm0Z µ
s
m0|M,IN + Acm0Z µ

c
m0|M,IN ) +

∞∑
m=0

∞∑
n=1

(AssmnZ µ
ss
mn|M,IN +AcsmnZ µ

cs
mn|M,IN +AscmnZ µ

sc
mn|M,IN +AccmnZ µ

cc
mn|M,IN ) (4.8.24)

with M = 1, ...,M0 + 1 , N = 1, ..., N0 , Z = 1, ..., NBL

Notice that for the B.E of the wake, the dipole intensity µMZT , with T=IN-1, refers to the B.E of
Kutta strip. Specifically in relation (4.8.13), the dipoles µAMZT = µM+1,Z,IN , µBMZT = µM,Z,IN are
on the trailing edge, so their value is unknown. Therefore we write:

− 1

4π

∫
∪
Z

(SRWZ∪SKZ )

ejil γi(Q)
xl(Q)− xl(P )

r3
dS +

1

4π

∫
∪
Z
∂(SRWZ∪SKZ )

µ ejil
xl(Q)− xl(P )

r3
dli =

=

M0+1∑
M=1

NBL∑
Z=1

in−1∑
T=1

µMZT

4π

∮
LMZT

ejil dli
xl(Q)− xl(P )

r3
=

=

M0+1∑
M=1

NBL∑
Z=1

µMZ,in−1

4π

∮
LMZ,in−1

ejil dli
xl(Q)− xl(P )

r3
+

+

M0+1∑
M=1

NBL∑
Z=1

in−2∑
T=1

µMZT

4π

∮
LMZT

ejil dli
xl(Q)− xl(P )

r3
=

=

M0+1∑
M=1

NBL∑
Z=1

∼
µMZ,in−1

~DMZ,in−1 +

M0+1∑
M=1

NBL∑
Z=1

in−1∑
T=1

µMZT
~DMZT (4.8.25)
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where

∼
µMZ,in−1

def
=

1

4
(µM+1,Z,in + µMZ,in)

(4.8.10)
=

1

2
µMZ,IN (4.8.26)

µMZ,in−1
def
=

1

4
(µM+1,Z,in−1 + µMZ,in−1) (4.8.27)

In the program, due to limitations in the symbols, we set for T < in− 1 :

~WAB
MZT = ~DAB

MZT , ~WBC
MZT = ~DBC

MZT , ~WCD
MZT = ~DCD

MZT , ~WDA
MZT = ~DDA

MZT (4.8.28)

and

~WP =

M0+1∑
M=1

NBL∑
Z=1

in−1∑
T=1

µMZT
~DMZT (4.8.29)

For T = in− 1 (for the unknown dipole intensity):

~EABMZT = ~DAB
MZT , ~EBCMZT = ~DBC

MZT , ~ECDMZT = ~DCD
MZT , ~EDAMZT = ~DDA

MZT (4.8.30)

and

~EPMZT = ~EABMZT + ~EBCMZT + ~ECDMZT + ~EDAMZT (4.8.31)

where P = Control Point

Similarly to (4.8.25) the expression for the blade’s outline (tip, hub, T.E, L.E) is :

1

4π

∫
∪
Z
∂SRZ

µ ejil
xl(Q)− xl(P )

r3
=

=

N0∑
N=0

NBL∑
Z=1

µtipNZ4π

∫
LtipNZ

ejil dli
xl(Q)− xl(P )

r3
+
µhubNZ

4π

∫
LhubNZ

ejil dli
xl(Q)− xl(P )

r3

 =

M0+1∑
M=1

NBL∑
Z=1

+
µT.EMZ,IN

4π

∫
LT.EMZ,IN

ejil dli
xl(Q)− xl(P )

r3

 =

=
∑

M=1,M0+2

N0∑
N=0

NBL∑
Z=1

µMNZ
~DMNZ +

M0+1∑
M=1

NBL∑
Z=1

µMZ,IN
~DMZ,IN (4.8.32)

In the program we set :

~EPMNZ = ~DAB
MNZ ,

~EPMZ,IN = − ~DAB
MZ,IN (4.8.33)
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Substituting (4.8.25) and (4.8.32) to relation (4.8.1) becomes :

〉vjW (P )〈 = − 1

4π

∫
∪
Z
∂(SRWZ∪SKZ )

ejil γi
xl(Q)− xl(P )

r3
dy1dy2

+
1

4π

∫
∪
Z
∂(SRWZ∪SKZ )

µ ejil
xl(Q)− xl(P )

r3
dli +

1

4π

∫
∪
Z
∂SRZ

µ ejil
xl(Q)− xl(P )

r3
dli =

=
∑

M=1,M0+2

N0∑
N=0

NBL∑
Z=1

µMNZ
~EPMNZ +

M0+1∑
M=1

NBL∑
Z=1

∼
µM,N0+1,Z ( ~EPM,N0+1,Z − 2 ~DMZ,IN ) + ~WP (4.8.34)

where
∼
µM,N0+1,Z =

∼
µMZ,in−1 , µM,N0+1,Z = µMZ,in−1 = 2

∼
µMZ,in−1 (4.8.35)

Analyzing the µMNZ unknowns with respect to their harmonics, using relations (4.8.18) - (4.8.20)
we get:

~THT
s

m0Z =
∑

M=1,M0+2

N0∑
N=1

µsm0|MN
~EPMNZ +

M0+1∑
M=1

∼
µ
s

m0|M,N0+1
~E′
P

M,N0+1,Z (4.8.36)

~THT
c

m0Z =
∑

M=1,M0+2

N0∑
N=1

µcm0|MN
~EPMNZ +

M0+1∑
M=1

∼
µ
c

m0|M,N0+1
~E′
P

M,N0+1,Z (4.8.37)

~THT
ss

mnZ =
∑

M=1,M0+2

N0∑
N=1

µssmn|MN
~EPMNZ +

M0+1∑
M=1

∼
µ
ss

mn|M,N0+1
~E′
P

M,N0+1,Z (4.8.38)

~THT
cs

mnZ =
∑

M=1,M0+2

N0∑
N=1

µcsmn|MN
~EPMNZ +

M0+1∑
M=1

∼
µ
cs

mn|M,N0+1
~E′
P

M,N0+1,Z (4.8.39)

~THT
sc

mnZ =
∑

M=1,M0+2

N0∑
N=1

µscmn|MN
~EPMNZ +

M0+1∑
M=1

∼
µ
sc

mn|M,N0+1
~E′
P

M,N0+1,Z (4.8.40)

~THT
cc

mnZ =
∑

M=1,M0+2

N0∑
N=1

µccmn|MN
~EPMNZ +

M0+1∑
M=1

∼
µ
cc

mn|M,N0+1
~E′
P

M,N0+1,Z (4.8.41)

where

~E′
P

M,N0,Z = ~EPM,N0,Z − 2 ~DMZ,IN = − ~EABMZT + ~EBCMZT + ~ECDMZT + ~EDAMZT (4.8.42)
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Note that the Z in ~THT
cc

mnZ refers to the blade of the integration point Q and not the blade of the
control point P.

Relations (4.8.32) - (4.8.36) give the contribution of the blade’s boundary (tip,hub,TE,LE) of the
Z-th blade to the perturbation at P. Substituting to (4.8.34)-(4.8.42) we get :

〉vjW (P )〈 = − 1

4π

∫
∪
Z
SRWZ

ejil γi
xl(Q)− xl(P )

r3
dy1dy2 +

1

4π

∫
∪
Z
LZ

µ ejil
xl(Q)− xl(P )

r3
dli =

=

NBL∑
Z=1

[ ∞∑
m=0

(
Asm0Z THT

js
m0Z + Acm0Z THT

jc
m0Z

)
+

+
∞∑
m=0

∞∑
n=1

(
AssmnZ THT

jss
mnZ + AcsmnZ THT

jcs
mnZ +

+ AscmnZ THT
jsc
mnZ + AccmnZ THT

jcc
mnZ

)]
+ W jP (4.8.43)

The above relation refers to the contribution of the wake and the blades’ boundary to the per-
turbation velocity at a single C.P. Notice that each blade contributes with each own coefficients
AmnZ .
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4.9 Calculation of Coefficients A

As we’ve seen in the previous chapters the total perturbation velocity is the sum of perturbation
velocities generated by the vorticity and sources on the reference surfaces of the blades as well as
the wake vorticity.

〉vj(P )〈 = 〉vjΓ(P )〈 + 〉vjS(P )〈 + 〉vjW (P )〈 (4.9.1)

Using relations (4.5.57),(4.6.9) and (4.8.43) :

〉vjΓ(P )〈=
NBL∑
z=1

[ ∞∑
m=0

(
T sjm0z A

s
m0z + T sjm0z A

s
m0z

)
+

+

∞∑
m=0

∞∑
n=1

(
T ssjmnz A

ss
mnz + T csjmnz A

cs
mnz + T scjmnz A

sc
mnz + T ccjmnz A

cc
mnz

)]
(4.9.2)

〉vjS(P )〈= − 1

4π

NBL∑
z=1

c2

4
(Ro −RH)

π∫
0

Dj
z −Dj

self

cos y2 − cos y2
P

dy2

 (4.9.2)

〉vjW (P )〈 = THT jP + W jP (4.9.3)

where

THT jP =

NBL∑
Z=1

[ ∞∑
m=0

(
Asm0z THT

js
m0z + Acm0z THT

jc
m0z

)
+

+
∞∑
m=0

∞∑
n=1

(
Assmnz THT

jss
mnz + Acsmnz THT

jcs
mnz + Ascmnz THT

jsc
mnz + Accmnz THT

jcc
mnz

)]
(4.9.4)

The no-entrance boundary condition for the camber problem, (3.2.33), becomes :

∼
c

3

1 〉v1〈 +
∼
c

3

2 〉v2〈 +
∼
c

3

3 〉v3〈 =

(
〉q1 〈∂Ec

∂u1
+ 〉q2 〈∂Ec

∂u2
− 〉q3〈

)
⇒

⇒ ∼
c

3

1

(
〉v1

Γ〈 +THT 1P
)

+
∼
c

3

2

(
〉v2

Γ〈 +THT 2P
)

+
∼
c

3

3

(
〉v3

Γ〈 +THT 3P
)

=

= −
[∼
c

3

1

(
〉v1
S〈 +W 1P

)
+

∼
c

3

2

(
〉v2
S〈 +W 2P

)
+

∼
c

3

3

(
〉v3
S〈 +W 3P

)]
+ 〉q1 〈∂Ec

∂u1
+ 〉q2 〈∂Ec

∂u2
− 〉q3〈⇒
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⇒
NBL∑
Z=1

[ ∞∑
m=0

(V T sm0ZA
s
m0Z + V T cm0ZA

c
m0Z) +

+
∞∑
m=0

∞∑
n=1

(V T csmnZA
ss
mnZ + V T csmnZA

cs
mnZ + V T scmnZA

sc
mnZ + V T ccmnZA

cc
mnZ)

]
= B (4.9.5)

where

V T sm0Z =
∼
c

3

1 (T s1m0Z + THT s1m0Z) +
∼
c

3

2 (T s2m0Z + THT s2m0Z) +
∼
c

3

3 (T s3m0Z + THT s3m0Z) (4.9.6)

V T cm0Z =
∼
c

3

1 (T c1m0Z + THT c1m0Z) +
∼
c

3

2 (T c2m0Z + THT c2m0Z) +
∼
c

3

3 (T c3m0Z + THT c3m0Z) (4.9.7)

V T ssmnZ =
∼
c

3

1 (T ss1mnZ + THT ss1mnZ) +
∼
c

3

2 (T ss2mnZ + THT ss2mnZ) +
∼
c

3

3 (T ss3mnZ + THT ss3mnZ) (4.9.8)

V T csmnZ =
∼
c

3

1 (T cs1mnZ + THT cs1mnZ) +
∼
c

3

2 (T cs2mnZ + THT cs2mnZ) +
∼
c

3

3 (T cs3mnZ + THT cs3mnZ) (4.9.9)

V T scmnZ =
∼
c

3

1 (T sc1mnZ + THT sc1mnZ) +
∼
c

3

2 (T sc2mnZ + THT sc2mnZ) +
∼
c

3

3 (T sc3mnZ + THT sc3mnZ) (4.9.10)

V T ccmnZ =
∼
c

3

1 (T cc1mnZ + THT cc1mnZ) +
∼
c

3

2 (T cc2mnZ + THT cc2mnZ) +
∼
c

3

3 (T cc3mnZ + THT cc3mnZ) (4.9.11)

and

B = −
[∼
c

3

1

(
〉v1
S〈 +W 1P

)
+

∼
c

3

2

(
〉v2
S〈 +W 2P

)
+

∼
c

3

3

(
〉v3
S〈 +W 3P

)]
+

+ 〉q1 〈∂Ec
∂u1

+ 〉q2 〈∂Ec
∂u2

− 〉q3〈 (4.9.12)

Notice that the VT factors of relations (4.9.6) - (4.9.11) depend only on the geometry of the body
which in this case is the reference surface and its boundary. If the geometry doesn’t change with
time the relative position between the reference surfaces and their form (e.g the metric) stays the
same, which is the case of the propeller and the wing. This means that we only have to calculate
them one time. In case of biomimetic movements like the flapping of a bird’s wings and movement
of a jellyfish, these factors change at each time step, however they might be periodic with time.

Relation (4.9.5) refers to a particular point on a blade and the contribution of all the blades (as well
as the wakes) to it. Having calculated the factors VT for each control point of the reference blade,
when the C.P moves to a different blade, we don’t have to repeat the same process. Specifically
due to the symmetry in the propeller’s blades around the rotation axis, C.P at similar positions
(same y1,y2) but on different blades we have the same VT factors.

For the C.P on the reference surface (Z=1), we calculate the factors VT with the integration point
Q on all KZ=1,...,NBL blades. 8 For the C.P on the Z-th blade the following relation is true :

8In the program the variable Z is reserved for the C.P while KZ is for the integration point,Q. However in relations
(4.9.5)-(4.9.11), Z refers to the integration point
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V Tmn,KZ |C.P at Z = V Tmn,KZZ |C.P at Z=1 (4.9.13)

where KZZ = KZ + NBL − (Z − 1) (4.9.14)

with Z,KZ = 1,..., NBL

If (KZZ > NBL) then we set KZZ = KZZ - NBL 9 (4.9.15)

Figure 4.9.1

In the program we assume that qi + 〉vi〈= (q2 + 〉v2〈) δi2 , so using the relation (4.2.21) for the
bound vorticity, relation (4.9.5) becomes :

NBL∑
Z=1

[ ∞∑
m=1

(V T sm0ZA
s
m0Z) +

∞∑
m=1

∞∑
n=1

(V T csmnZA
ss
mnZ)

]
= B (4.9.16)

where

B = −
[∼
c

3

1

(
〉v1
S〈 +W 1P

)
+

∼
c

3

2

(
〉v2
S〈 +W 2P

)
+

∼
c

3

3

(
〉v3
S〈 +W 3P

)]
+

+ 〉q1 〈∂Ec
∂u1

+ 〉q2 〈∂Ec
∂u2

− 〉q3〈 (4.9.17)

9KZZ = MOD(KZ + NBL − (Z − 1) , NBL)
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The satisfaction of the dynamic condition at the trailing edge is given by relation (4.3.23):

For m = 1,2,... (sin(my1)) :

P Asm0Z,IN

π

2
+

∞∑
n=1

(
P AssmnZ,IN

1− (−1)n

n

)
+

∼
q

2
∞∑
n=1

2AssmnZ,IN n (−1)n+1 =

= −

[
Qsm0Z,IN

π

2
+

∞∑
n=1

QssmnZ,IN
1− (−1)n

n

]
(4.9.18)

For the points on the trailing edge we set :

V T sm0Z = P
π

2
V T ssmnZ = P

1− (−1)n

n
+ 2

∼
q

2
n(−1)n+1 (4.9.19)

B = −

[
Qsm0Z,IN

π

2
+

∞∑
n=1

QssmnZ,IN
1− (−1)n

n

]
(4.9.20)

so relation (4.9.18) becomes :

V T sm0ZA
s
m0Z +

∞∑
n=1

(V T ssmnZA
ss
mnZ) = B , m = 1, 2, ... (4.9.21)

Assuming that m = 1, 2, ...,M0, n = 1, 2, ..., N0 and using relations (4.7.2) and (4.7.6), relation
(4.9.16) becomes:

MNT∑
l=1

V T (k, l)Asl = B(k) , MNT = NBL ·M0 · (N0 + 1) (4.9.22)

with

k = 1, 2, ..., NBL(M0 + 2)(N0 + 1), j 6= N0 + 1 (4.9.23)

and V T (k, l), B(k) defined by relations (4.9.6) - (4.9.12).

Similarly relation (4.9.21) for the trailing edge becomes :

N0∑
n=1

V T (k, l(n))Asl(n) = B(k) (4.9.24)

where V T (k, l), B(k) are defined by relations (4.9.19),(4.9.20) when the control point is on the
trailing edge (not the tip and hub). l(n) is a function of the chordwize harmonic and it’s calculated
by relation (4.7.6) by setting for m = i − 1, where i= spanwise position of the C.P in relation
(4.7.2). For m 6= i− 1 on the trailing edge, V T (k, l) = 0.
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5 Calculation of Forces

5.1 Forces on the camber surface

Let A be the surface of a body and V the volume enclosed in it. Let ~n be the normal vector on the
surface pointing outwards, then for constant pressure p∞, the net force acting on it is :

~L = −
∫
A

p∞ ~n dA = −
∫
V

5p∞ dV = 0 (5.1.1)

In the case of the wing where the upper and lower surface of the are near the reference surface we
get :

~L = −
∫
A

p~n dA = −
∫
A+

(p+ − p∞)~n+ dA −
∫
A−

(p− − p∞)~n− dA =

= −
∫
AR

(p+ − p∞)~n+ + (p− − p∞)~n− dA + O(ε2) (5.1.2)

Setting
∼
N i the normal vector on the real surface as described in section 3.2, the force acting on the

reference surface per unit of area is :

dLi = − p+
∼
N

+

i − p−
∼
N
−
i =

= − (p+ − p−)(

o∼+
N i +

c∼−
N i ) −

(
(p+ − p∞) + (p− − p∞)

) t∼+
N i /2 (5.1.3)

where

p− p∞
ρ

+
∂Φ

∂t
+

1

2
(~v + ~V∞)2 − 1

2
~V 2
∞ = 0⇒ p − p∞ = O(ε) (5.1.4)

Since we don’t calculate the the absolute values of pressure but only their differences we omit the
last term of (5.1.2) as a second order term. This term has significant contribution to the total force
only near the leading edge, where the linearized theory fails to give accurate results. Moreover

the description of

t∼+
N i in section 3.2 is not valid near the leading edge due to the infinite slope of

thickness at this region. Therefore, the contribution of the leading edge will be calculated directly
from the results of complex analysis of 2D airfoils and will be added as a correction in the final
result.

The approximation of the normal vector on the camber surface in the xi system is :

(

o∼+
N i +

c∼−
N i ) =

{
−∂Ec
∂u1

,−∂Ec
∂u1

, 1

}√∼
g

α
(5.1.5)
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the same vector in the cartesian system is
∼
c
i

j

∼
N i. The net force in the Cartesian system is :

Li = −
NBL∑
Z=1

∫∫
SRZ

(p+ − p−)
∼
N i dS = −

NBL∑
Z=1

∫∫
SRZ

(p+ − p−) (
∼
N i
√
α
`

) dy1 dy2

= −
NBL∑
Z=1

π∫
0

π∫
0

(p+ − p−) (
∼
ni

√
∼
g)
√
α
`
dy1 dy2 (5.1.6)

For the orthogonal Cartesian system Li = Li = Li|physical.

In order to calculate the pressure difference on the reference surface we use the Bernoulli ’s equation
(3.4.17) :

p+ − p−

ρ
= −

x2∫
−1/2

dΓ1

dt
dx2 − ∼

q
2
Γ1 +

∼
q

1
Γ2 −

∼
q

3

√
∼
g

α
σ

 + O(ε2) =

=

∞∑
m=0

(Asm0Z V T
s
m0Z + Acm0Z V T

c
m0Z) +

+

∞∑
m=0

∞∑
n=1

(AssmnZ V T
ss
mnZ + AcsmnZ V T

cs
mnZ + AscmnZ V T

sc
mnZ + AccmnZ V T

cc
mnZ) − B (5.1.7)

where V T smnZ , ..., V T
cc
mnZ , B are the coefficients defined in section (4.9) for the trailing edge.
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5.2 Correction for the leading edge suction force

In the case of a flat plate (zero camber and thickness) the force calculated by relation (5.1.6) is
always perpendicular to the surface. However in the case of a 2D airfoil (span = ∞) according to
Blasius’ theorem, the force is normal to the undisturbed flow velocity. This happens because apart
from ~L, there is a force parallel to the plate, so that the total force is normal to the flow at infinity.

This extra component is called leading edge suction force and cannot be calculated by the lifting
surface (or lifting line) theory, since its a result of infinite pressure and infinitesimal surface area
at the leading edge. In the case of a 2D airfoil the leading edge suction force is calculated using
complex functions and a proof can be found in [7] :

LE2D
SF = −ρ (Q∞ sinα)Γ (5.2.1)

where Q∞ is the velocity at infinity, α the angle of attack and Γ the circulation around the airfoil.
Using the symbols in this work we get :

LE2D
SF = −ρ∼

q
3

[φ]
Γ (5.2.2)

The above relations are valid for a uniform flow around the body which is not always the case for
our problem. Since in the proof the velocities around the leading edge are used, we set q3

[φ]
to be

the velocity at the leading edge of the chordwise section.

The total leading edge suction force is :

LEiSF =
NBL∑
Z=1

π∫
0

LE2D
SF εi(2)(

1

2
span sin y1) dy1 (5.2.3)

where εi(2) is the unit vector of the x2 axis with coordinates in the xi system.

εi(2) = εj(2)

∼
γ
i

j
=

δj2 1√
∼
g

22

 ∼
γ
i

j
=

∼
γ
i

2
/
√

∼
g

22
(5.2.4)

and

∼
q

(3)

[φ]
=

∼
g
r3

∼
q
r
/
√

∼
g

33
=

∼
g

11

∼
q

1
/
√

∼
g

33
+
√

∼
g

33

∼
q
r

(5.2.5)

since
∼
g

23
= 0
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6 Numerical Integration

6.1 Filon Method for integration f(x)cos(px), f(x)sin(px), p=0,1,... .[11]

The type of integrals that appear repeatedly throughout the calculations are :

I =

b∫
a

f(x) cos(px)dx , p = 0, 1, 2, ... (6.1.1)

J =

b∫
a

f(x) sin(px)dx , p = 1, 2, ... (6.1.2)

The numerical calculation of these kind of integrals with the usual Simpson’s rule or other similar
methods is quite difficult, especially when p is not small. This happens due to the rapid oscillations
of the cos(px) and sin(px) terms, meaning that a great number of integration points is required in
order to achieve a decent precision.

Filon’s method uses the simple idea that the function f(x) (without the trigonometric factor) can
be approximated by second order polynomials. Therefore the number of integration points needed
for the Filon method are the same as those needed for the integration of f(x). Essentially, Filon’s
method is a modified version of the Simpson’s rule, which takes into account the trigonometric
factors cos(px), sin(px) in its coefficients. The details of the method can be found in [11], while a
generalization of it using higher order Lagrange polynomials is discussed in the following section.

In the program we use Filon’s method for a second and first order polynomial interpolation of f(x).
Specifically, if n (n is assumed an odd number) the number of integration points in the interval
[a, b],

h =
b− a
n− 1

(6.1.3)

integration length and

θ = p h (6.1.4)

then, quantities I,J are given by the relations

I = h [α (fn sin(pb)− f1 sin(pa)) + βC2k−1 + γC2k] (6.1.5)

J = h [−α (fn cos(pb)− f1 cos(pa)) + βS2k−1 + γS2k] (6.1.6) 10

where

10Don’t confuse the greek coefficients α, β, γ with the latin boundary values a,b of the interval [a, b].
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C2k−1 =

n−2∑
i=3(2)

fi cos(pxi) +
1

2
(f1 cos(pa) + fn cos(pb)) (6.1.7) 11

C2k =
n−1∑
i=2(2)

fi cos(pxi) (6.1.8)

S2k−1 =
n−2∑
i=3(2)

fi sin(pxi) +
1

2
(f1 sin(pa) + fn sin(pb)) (6.1.9)

S2k =
n−1∑
i=2(2)

fi sin(pxi) (6.1.10)

Furthermore we use the following notation :

xi ≡ a + (i− 1)h , i = 1, ...n

fi ≡ f(xi)

Obviously x1 = a, xn = b. The coefficients a, b, γ are given by the relations :

a =
(
θ2 + θ sin θ cos θ − 2 sin2 θ

)
/θ3 (6.1.11)

b = 2
[
θ
(
1 + cos2 θ

)
− 2 sin θ cos θ

]
/θ3 (6.1.12)

γ = 4 (sin θ − θ cos θ) /θ3 (6.1.13)

For the small values of θ we need to use the Taylor’s expansion for sin θ, cos θ. Therefore (6.1.11)-
(6.1.13) can be written as:

a =
2θ3

45
− 2θ5

315
+

2θ7

4725
− 8θ9

467775
+ ... (6.1.14)

b =
2

3
+

2θ2

15
− 4θ4

105
+

2θ6

567
− ... (6.1.15)

γ =
4

3
− 2θ2

15
+

θ4

210
− θ6

11340
+ ... (6.1.16)

For p = 0 and thus for θ = 0, we get α = 0, β = 2/3, γ = 4/3 and relation (6.1.5) becomes :

I =
h

3
[2C2i−1 + 4C2i] (6.1.17)

which is the known Simplon’s rule.

11
n−1∑
i=3(2)

is the summation for the index i with initial value 3, step 2 and final value n-1
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6.2 General Filon Method

Here we will examine only the integral

I =

b∫
a

f(x) cos(px)dx (6.2.1)

the same are valid for J =

b∫
a

f(x) sin(px)dx

Suppose we approximate f(x) using series of Lagrange polynomials of order m (m = 1, 2, 3, ..). We
divide the integration interval [a, b] in n equal parts of length :

h =
b− a
n

(6.2.2)

where n = k ·m, k = 1, 2, ...

Then relation (6.2.1) becomes : I =
n∑

i=m(m)

Ii (6.2.3)

with Ii =

xi∫
xi−m

f(x) cos(px) dx , i = m, 2m, ..., n (6.2.4)

The approximation of f(x) in [xi−m, xi] with a Lagrange polynomial of order m, is :

f(x) =
i∑

j=i−m
f(xj) lj(x) (6.2.5)

where lj(x) =
(x− xi−m)...(x− xj−1)(x− xj+1)...(x− xi)

(xj − xi−m)...(xj − xj−1)(xj − xj+1)...(xj − xi)
(6.2.6)

Substituting relation (6.2.5) to (6.2.4), we get :

Ii =

xi∫
xi−m

i∑
j=i−m

f(xj) lj(x) cos(px) dx ≡
i∑

j=i−m
Jj (6.2.7)

We should therefore calculate the integrals :

Jj =

∫ xi

xi−m

fj lj(x) cos(px) dx , j = i−m, i−m+ 1, ..., i (6.2.8)
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where

fj ≡ f(xj) , xj = a+ j h (j = i−m, ..., i and i = m, 2m, ..., k · n)

and for i=m, j=i-m : x0 ≡ a, i=n, j=i : xn ≡ b

Integrating by parts multiple time, relation (6.2.8) becomes (for simplicity we set i1 ≡ i − 1,
im1 ≡ i−m+ 1) :

Ji = p−1 fi sin pxi +

+p−2 fi
Di

{
hm−1

[
m!

m−1∑
k=0

1

m− k
cos pxi − (−1)m−1(m− 1)! cos pxi−m

]
+ ...+

+ l hm−l

m!

l

m−1∑
k1=0

1

m− k1

m−1∑
k2=0∗

1

m− k2
...

m−1∑
kl=0∗

1

m− kl

 cos[l−1] pxi−

−(−1)m−l(m− 1)!

m−2∑
k1=0

1

m− k1 − 1

m−2∑
k2=0∗

1

m− k2 − 1
...

m−2∑
kl−1=0∗

1

m− kl−1 − 1

 cos[l−1] pxi−m


+ ... + m!

[
cos[m−1] pxi − cos[m−1] pxi−m

]}
(6.2.9)

Ji−m = −p−1 fi−m sin pxi−m +

+p−2 fi−m
Di−m

{
hm−1

[
(m− 1)! cos pxi − (−1)m−1

m−1∑
k=0

1

m− k
cos pxi−m

]
+ ...+

+ l hm−l

(m− 1)!

m−2∑
k1=0

1

m− k1 − 1

m−2∑
k2=0∗

1

m− k2 − 1
...

m−2∑
kl=0∗

1

m− kl−1 − 1

 cos[l−1] pxi−

−(−1)m−l
m!

l

m−1∑
k1=0

1

m− k1

m−1∑
k2=0∗

1

m− k2
...

m−1∑
kl−1=0∗

1

m− kl

 cos[l−1] pxi−m


+ ... + m!

[
cos[m−1] pxi − cos[m−1] pxi−m

]}
(6.2.10)
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In the above relations the summation symbol

m−1∑
ki=0∗

is the same as the

m−1∑
ki=0

but with the added

conditions that ki 6= ki−1, ki 6= ki−2, ..., ki 6= k1

Jj = p−2 fj
Dj

{
hm−1

[
m!

i− j
cos pxi − (−1)m−1 m!

j − (i−m)
cos pxi−m

]
+

+ 2hm−2

 m!

i− j

m−1∑
k1=0

1

m− k1
− 1

i− j

 cos[1] pxi−

− (−1)m−2 m!

j − (i−m)

m−1∑
k1=0

1

m− k1
− 1

j − (i−m)

 cos[1] pxi−m

 + ...+

+ l hm−l

 m!

i− j

 m−1∑
k1=0∗∗∗

1

m− k1

m−1∑
k2=0∗∗∗

1

m− k2
...

m−1∑
kl−1=0∗∗∗

1

m− kl−1

 cos[l−1] pxi

− (−1)m−l
m!

j − (i−m)

 m−1∑
k1=0∗∗

1

m− k1

m−1∑
k2=0∗∗

1

m− k2
...

m−1∑
kl−1=0∗∗

1

m− kl−1

 cos[l−1] pxi−m

+

+ ... + m!
[
cos[m−1] pxi − cos[m−1] pxi−m

]}
(6.2.11)

In relation (6.2.11) the summation symbol

m−1∑
kp=0∗∗

is the same as the

m−1∑
kp=0

but with the added

conditions that kp 6= kp−1, kp 6= kp−2, ..., kp 6= k1, m− kp 6= j − (i−m)

Similarly the summation symbol

m−1∑
kp=0∗∗∗

is the same as the

m−1∑
kp=0

but with the added conditions that

kp 6= kp−1, kp 6= kp−2, ..., kp 6= k1, m− kp 6= i− j

In relations (6.2.9)-(6.2.11) the index, l, represents the l−st term of the summation (l = 2, ...,m−1)
and

Dj = (m− (i− j))! (i− j)! hm (−1)i−j , for j = i−m, ..., i (6.2.12)

cos[k] px : k-th derivative
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Knowing Jj in every interval, [xi−m, xi], we can, by using relations (6.2.3) and (6.2.7) calculate I.
However, the algorithm for the calculation of I as given by relations (6.2.9)-(6.2.11) is not practical.
Specifying the order of polynomials, m, after some calculations we can produce some more useful
formulas for I. The procedure is as follows :

We set :

θ ≡ p · h (6.2.13)

For every integral Jj , we express pxi, pxi−m as a function of pxj , θ :

pxi = pxj + (i− j) θ (6.2.14)

pxi−m = pxj − (j − (i−m)) θ

and using the following trigonometric identities :

cos[n](x± y) = cos[n] x · cos y ∓ sin[n]x · sin y (6.2.15)

we calculate the integral in the form of :

Jj = h fj (Aj sin pxj + Bj cos pxj) (6.2.16)

where Aj and Bj are functions of θ (j=i-m,...,i). The number of functions Aj and Bj at every
interval, [xi−m, xi], is equal to the number of integration points, meaning we have (m+1) Aj and
(m+1) Bj functions. Due to the symmetry of relations (6.2.14) and (6.2.15), Aj and Bj have the
same absolute value for integration points, j, symmetrically to the middle of [xi−m, xi] (see Figure
6.2.1). Therefore the actual total number of Aj , Bj is (m+1).

Figure 6.2.1

Note that when the integration point coincides with the middle of the interval, like the case of
m = 2 in the Figure, we have the extra symmetry Aj = Bj .
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Finally the calculation of (6.2.3) and (6.2.7) is quite simple and the formula depends on the order,
m, of the Lagrange polynomial. Below we present the first three cases for m=1,2,3.

The trapezoidal rule (m=1)

Applying relations (6.2.9)-(6.2.12) we get :

Ji−1 = −p−1 fi−1 sin pxi−1 + p2 fi−1

−h
(cos pxi − cos pxi−1) =

= fi−1 (−θ sin pxi−1 − cos pxi + cos pxi−1) /p θ
(6.2.14)

=
(6.2.15)

= fi−1 (−θ sin pxi−1 − cos pxi−1 cos θ + sin pxi−1 sin θ + cos pxi−1) /p θ (6.2.17)

Similarly :

Ji = fi (θ sin pxi + cos pxi − cos θ cos pxi − sin θ sin pxi) /p θ (6.2.18)

Relations (6.2.17), (6.2.18) can be written as :

Ji−1 = h fi−1
1

θ2
(−(θ − sin θ) sin pxi−1 + (1− cos θ) cos pxi−1) (6.2.19)

Ji = h fi
1

θ2
((θ − sin θ) sin pxi + (1− cos θ) cos pxi) (6.2.20)

Setting

α = θ−1 − θ−2 sin θ β = 2 θ−2(1− cos θ) (6.2.21)

we get

Ii = h

[
α(fi sin pxi − fi−1 sin pxi−1) +

1

2
β(fi−1 cos pxi−1 + fi cos pxi)

]
(6.2.22)

Substituting (6.2.22) to (6.2.3) we get :

I = h [α(f(b) sin pb − f(a) sin pa) + β Ck] (6.2.23)

where

Ck =

n−1∑
i=2

fi cos pxi +
1

2
(f1 cos pa + fn cos pb) (6.2.24)

Following the same procedure for the integral (6.1.2), we get :
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J =

b∫
a

sin px dx = h [−α(f(b) cos pb − f(a) cos pa) + β Sk] (6.2.25)

where

Sk =

n−1∑
i=2

fi sin pxi +
1

2
(f1 sin pa + fn sin pb) (6.2.26)

Note that for θ −→ 0, coeffients α, β are :

α =
θ

6
− θ3

120
+

θ5

5040
− ... −→ 0 (6.2.27)

β = 1 − θ2

12
+

θ4

360
− θ6

20160
+ ... −→ 1 (6.2.28)

and thus relation (6.2.23) for p = 0 becomes :

I = h

[
1

2
f0 + f1 + f2 + ... + fn−1 +

1

2
fn

]
(6.2.29)

which is the know trapezoidal rule.

Simpson’s rule (m=2)

This case has been analyzed in section 6.1

Simpson’s 3/8 rule (m=3)

Following the same procedure, we calculate the following coefficients :

α = θ−1 − 1

3
θ−2 sin 3θ − 2 θ−3 − θ−3 cos 3θ + θ−4 sin 3θ (6.2.30)

β = 2

(
11

6
θ−2 − 1

3
θ−2 cos 3θ + θ−3 sin 3 θ − θ−4 + θ−4 cos 3θ

)
(6.2.31)

γ = 3θ−2 sin θ +
3

2
θ−2 sin 2θ + 5 θ−3 cos θ + 4 θ−3 cos 2θ − 3θ−4 sin θ − 3θ−4 sin 2θ (6.2.32)

δ = −3 θ−2 cos θ +
3

2
θ−2 cos 2θ + 5θ−3 sin θ − 4θ−3 sin 2θ + 3θ−4 cos θ − 3θ−4 cos 2θ (6.2.33)

then
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I = h [a (f(b) sin pb − f(a) sin pa) + β C3k + γ(S1k + S2k) + δC12k] (6.2.34)

where

C3k =
n−3∑
i=3(3)

fi cos pxi +
1

2
(f(a) cos pa+ f(b) cos pb) (6.2.35)

S1k =
n−1∑
i=2(3)

fi sin pxi (6.2.36)

S2k = −
n−2∑
i=1(3)

fi sin pxi (6.2.37)

S12k =
n∑
i=1

fi cos pxi , i 6= m, 2m, ..., k ·m = n (6.2.38)

At the limit, θ −→ 0, (p=0), it can be proven that :

α −→ 0 , β −→ 3

4
, γ −→ 0 , δ −→ 9

8
(6.2.39)

Therefore relation (6.2.34) becomes Simpson’s 3/8 rule :

Ii = h

[
3

8
(fi−3 + fi) +

9

8
(fi−2 + fi−1)

]
(6.2.40)
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7 Programs Wing, Solver

7.1 Wing - Variables and Subroutines Summary

In this thesis we are trying try solve the lifting surface problem of a single wing. In order to do so,
we use two separate programs. The first one is called ’Wing’ and consist of two basic subroutines,
which provide the geometric properties of the wing at number of points specified by the user and the
motion of the wing, meaning the velocities and position of the wing relative to the inertial system.
The program has a .txt file input named ’Input Wing’ containing the geometry of the wing. We
assume that every cross section is geometrically similar to a specific NACA 2D airfoil, minimizing
that way the degrees of freedom for the description of the wing. The current version doesn’t take
the motion of the wing as an input, instead the user must define the functions of path, rotation,
and direction of rotation inside the code. The output is a .txt file named ’Input for solver’ and can
be read directly by the second program (’Solver’), without any modification .

MODULE NRTYPE

The program consist of two modules. The first one is called ’NRTYPE’, and in that are defined
the basic constants like π, euler’s number etc. as well as the parameters used to describe the type
of variables (single precision, double precision, logical etc.) used in the subroutines.

MODULE GEOMETRY AND MOTION PRE-PROCESSOR

This module is main part of the program and contains all the necessary subroutines to describe the
geometry and motion of the wing. The global variables are :

NR = Number of spanwise positions of ouput data
NCH = Number of chordwise positions of ouput data
NBL = Number of blades (for the propeller problem)
MOMENTS = Number of (time) instants - (Size of varible T)
T = Array with the time at each instant
DT = Time step
SPAN = The span of the wing
TH = Angle of rotation

A = Parallel transition path Point (see chapter 2.1)
UNIT1 = Point on the x1 axis with coordinates in x

on
i system

UNIT2 = Point on the x2 axis with coordinates in x
on
i system

UNIT3 = Point on the x3 axis with coordinates in x
on
i system

ORIGIN= Origin point of the xi system with coordinates in the x
on
i system
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U1 = Spanwise position
U2 = Chordwise position (non dimesionalized with the chord) form -0.5 to 0.5
XS = Reference line distance from the origin point in the x1 direction (rake for the propeller)
SKEW = Sweep back angle (for the wing) or Skew (for the propeller)
FI = Twist angel (for the wing) or Pitch angle (for the propeller)
CHORD = Chord length at U1
DXS, DSKEW, DFI, DCHORD are the derivatives in the U1 direction
ECMAX = Maximum camber divided by chord in position U1
ETMAX = Maximum thickness divided by chord in position U1
CH = Chordwise position (non dimesionalized with the chord) form 0 to 1
ECCH = Camber at (U1,U2) divided by ECMAX at U1
ETCH = Thickness at (U1,U2) divided by ETMAX at U1

The above variables (U1, ..., ETCH) are calculated at the NR spanwise and NCH chordwise po-
sitions using a least square approximation of the data. The names of the respective input data
variables are the same with an added ’1’ in front (e.g XS1, SKEW1, CH1, U21). The input variable
of U1 is R1 and is non dimensionalized with the span. Variables used for reading the data are
allocatable.

FACE = Position vector of a point on the face of the wing relative to the inertial system
BACK = Position vector of a point on the back of the wing relative to the inertial system
VFACE = Velocity of point a point on the face of the wing relative to the inertial system
VBACK = Velocity of point a point on the back of the wing relative to the inertial system

SUBROUTINE MAIN

This subroutine calls ’WING GEOMETRY’ to calculate variables FACE and BACK and those
along with some other variables are written in the output file by calling ’OUTPUT GEOMETRY’.
After initiallizing variables UNITj, ORIGIN we calculate at every instant the velocities on the face
and back by calling ’VELOCITIES’. The position of the wing and the velocities are written in the
output file using ’OUTPUT POSITION VELOCITY’. The new position of the wing is calculated
by ’MOVEMENT’ and the process repeats for every instant.

SUBROUTINE VELOCITIES

In order to calculate the velocities on the wing we take as input the current position of the wing
and using the subroutine ’MOVEMENT’ we calculate the position of the wing at DDT seconds
later. The distance between each point divided by DDT is approximately the current velocity.
The greater the acceleration the smaller DDT should be. Variables for FACE, BACK, UNITj, and
ORIGIN are defined as locals in this subroutine because ’MOVEMENT’ changes their values.
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SUBROUTINE MOVEMENT

Figure 7.1.1

In order to describe the position of the moving coordinate system relative to the inertial, we use four
point on the xi axes whose coordinates are relative to x

on
i. In particular, we define points UNIT1,

UNIT2, UNIT3, which lie on each of the three axes x1, x2, x3 respectively, as well ORIGIN at their
intersection. If ~xUNITj (j=1,2,3) and ~xORIGIN are the position vectors of these points with regard
to the inertial system, then we demand that |~xUNITj − ~xORIGIN | = 1. In other words we have
defined the unit base of the moving system and expressed it in the x

on
i coordinate system. Obviously

at t=0, xiORIGIN
on

= 0 and xiUNITj
on

= δij .

The motion of the xi system, between two instants t1, t2 can be broken down to a parallel transition
and a rotation around a certain axis. Assuming that a point, denoted as PIVOT, makes only parallel
transitions, then then whole xi system should revolve around that point. Let ~R(t) be the parallel
transition path, which corresponds to the position vector of a specific point (not the position vector
of PIVOT) with regard to the inertial system for a non rotating motion. Then the parallel transition
of any point is defined as ~DR = ~R(t2)− ~R(t1). Notice that by using the parallel transition vector
~DR, there is no need for ~R(t) to point at the PIVOT.

For the rotation of the coordinate system xi we must define the axis and direction of rotation
Equivalently we can define a point of rotation (PIVOT) and a rotation vector, δ~θ, according to
the right hand rule. The direction of the rotation vector is defined by the unit vector ~E1, with
coordinates in the x

on
i system, which may vary with time. Therefore, if θ̇(t) is the magnitude of the

rotational speed, the rotation vector between t1 and t2 for ~E1 = constant is :
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δ~θ =

t2∫
t1

θ̇(t) ~E1 dt = ~E1

t2∫
t1

θ̇(t) dt = ~E1 (θ(t2) − θ(t1))

First we define the angle of rotation TH between each time step. The direction of rotation, E1, and
the parallel path, A, are defined by subroutines ’DIRECTION’ and ’PATH’. All three variables are
defined as functions of time by the user inside the code (no input data are given in this version).
Each point of the face and back as well as UNITj and ORIGIN are rotated around the PIVOT
point by calling ’ROTATION’. Then we add the parallel transition of every point using ’PATH’ for
the next instant.

SUBROUTINE WING GEOMETRY

PSI = Angle of camber line derivative in the U2 direction
ET = Half thickness of wing section at (U1,U2)
EC = Camber of wing section at (U1,U2)
X FACE = Horizontal position of a point on the face at U2 position on the reference surface (see
section 3.1)
Y FACE = Vertical position of a point on the face at U2 position on the reference surface (see
section 3.1)
X BACK = Horizontal position of a point on the back at U2 position on the reference surface (see
section 3.1)
Y BACK = Vertical position of a point on the back at U2 position on the reference surface (see
section 3.1)

Variables with the letter P at the end (e.g U1 P, CHORD P) refer to the properties at the pivot
point.

Subroutine ’WING GEOMETRY’, calls ’INPUT DATA’ to read the data from the file ’Input
Data.txt’. Using the subroutine ’INTERPOLATION’ we calculate the values of those variables

at specific points on the wing, and these are the values that we will use to make any other calcu-
lation. We then dimensionalize the variables and calculate the derivatives. Using the relations of
section 3.2 we calculate X FACE, X BACK, Y FACE and Y BACK. Similarly, using the relations
of section 2.2 we calculate variables FACE and BACK. Finally we repeat the calculations for the
PIVOT point which is set to be in the mid-span and mid-chord.

SUBROUTINE LSA

X I = x-coordinate of known point
Y I = y-coordinate of known point
X = x-coordinate of desired point
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LSAP= y-coordinate of desired point
FLAG= Variable that determines the type of funtions used by LSA M = degree of polynomial

Subroutine ’LSA’ takes as input a number of points (X I, Y I) and performs a least square approx-
imation. The type of function approximating this set of points is determined by the value of FLAG
and can be 1,2,3 or 4.

FLAG = 1 (for simple approximations)
f(x) = k0 + k1 x + k2 x

2 + ... + km x
m

FLAG = 2 (for zero values at x=0,1)
f(x) = x (1− x) (k0 + k1 x + k2 x

2 + ... + km x
m−2)

FLAG = 3 (for zero values at x=0,1 and infite derivative at x=0)
f(x) =

√
x (1− x) (k0 + k1 x + k2 x

2 + ... + km x
m−2)

FLAG = 4 (for zero values at x=0,1 and infite derivative at x=0,1)
f(x) =

√
x (1− x) (k0 + k1 x + k2 x

2 + ... + km x
m−2)

Coefficients, k, are determined by solving a linear system using ’DGAUSS’. Knowing kn (n = 0, 1,
..., m), we can calculate the values at any given point x.

SUBROUTINE DGAUSS

A = System Matrix
B = Right-hand side vector (Input) - System solution (Output)
D = Determinant of A
L = Vector of pivoting indicies
IOPT = 0, Decomposition of A and solution of the system
. = 1, Decomposition of A only
. = 2, Solution of the system (skips decomposition)
IREG = 0, singular matrix A
. = 1, regular matrix A

Subroutine ’DGAUSS’ uses the Gauss elimination method to determine the solution of a linear
system. Depeding on the value of ’IOPT’ the output can be the decomposed matrix A or the
solution of the system. The subroutine calculates also the determinant of the matrix A and checks
if the matrix is singular.
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7.2 Wing - Input file example

The input file for wing is called ’Input Wing.txt’ and contains the necessary parameters and values
to describe the geometry of a wing with cross-sections of NACA airfoils.

The first line of the file has the span of the wing (real), the desired number of spanwise NR (integer)
and chordwise NCH (integer) positions. Number NR and NCH do not refer to the spanwise and
chordwise positions of the input data, rather to the number of intermediate positions which will be
used for the description of the wing in the output file ’Input for Solver’. The number of spanwise
and chordwise positions of the input file ’Input Wing.txt’ are not determined.

Under the first line, there is an array with seven columns. The first column is the non-dimensional
spanwise position (form 0 to 1). The rest of the columns refer to variables CHORD1, XS1, SKEW1,
FI1, ETMAX1, ECMAX1 in order. Each row of this array refers to the geometric values of the
wing at the non-dimensional spanwise position of the first column.

Under that array, there is a second array with three columns. The first column is the non- dimen-
sional chordwise position (from 0 to 1). The rest of the columns refer to variables ETCH1, ECCH1
in order. Each row of this array refers to the geometric values of the wing at the non- dimensional
chordwise position of the first column.

An exaple of input data for wing is given in the next page. Note that the names of the variables
are not part of the file and are only included here as a description.
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SPAN NR NCH
6.0000 13 17

R1 CHORD1 XS1 SKEW1 FI1 ETMAX1 ECMAX1
0.0000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.0500 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.1000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.2000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.3000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.4000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.5000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.6000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.7000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.8000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.9000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
0.9500 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400
1.0000 1.0000 0.0000 0.0000 0.0000 0.1200 0.0400

CH1 ETCH1 ECCH1
0.0000 0.0000 0.0000
0.0100 0.1420 0.0494
0.0250 0.2179 0.1211
0.0500 0.2962 0.2344
0.1000 0.3901 0.4375
0.2000 0.4777 0.7500
0.3000 0.4992 0.9375
0.4000 0.4819 1.0000
0.5000 0.4385 0.9722
0.6000 0.3765 0.8889
0.7000 0.3002 0.7500
0.8000 0.2119 0.5556
0.9000 0.1121 0.3056
0.9500 0.0577 0.1597
0.9750 0.0293 0.0816
0.9900 0.0118 0.0330
1.0000 0.0000 0.0000
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7.3 Wing - Output file example

The output file of wing is called ’Input for solver.txt’ and contains the necessary parameters and
values to describe the geometry and motion of the wing. The two subroutines writing in that file
are ’OUTPUT GEOMETRY’ and ’OUTPUT POSITION VELOCITY’

’OUTPUT GEOMETRY’

The first line has the basic parameters. The first two numbers are the spanwise position of the
tips. We set the right tip a u1=span and the left tip at u1=0. The third number is the number of
wing or blades, which in our case is always 1. The forth and the fifth variables are the number of
spanwise and chordwise position where the geometric values of wing are known. The last variable
is the number of instants (MOMENTS).

After the first line follows an array with NR rows. The rows from left to right refer to the variables
U1, CHORD, XS, SKEW, FI, DCHORD, DXS, DSKEW, DFI. The variables in each row refer to
the spanwise position of the first column.

Below that, is another array with NCH columns and NR sets of 5 rows. Each of the five rows refers
to U2, DEC DU1, DEC DU2, DET DU1 and DET DU2, which are the chordwise position and the
derivative of camber and thickness in the u1 and u2 directions. Each row refers to the chordwise
position U2.

Below those two arrays there is a label saying ’MOMENTS’ followed by a list of all the instants (in
seconds) where the position and velocities of the wing are known.

’OUTPUT POSITION VELOCITY’

Next there is a label saying ’POSITION VECTOR FACE’ and a list of all the position vectors of
the points on the face of the wing. The first columns is the x

on
1 coordinate, the second is the x

on
2

coordinate and the third is the x
on

3 coordinate. The same list but with the position vector of the

points on the back follows.

Next there are the labels ’POSITION VECTOR PATH’, ’UNIT VECTOR 1’, ’UNIT VECTOR
2’ and ’UNIT VECTOR 3’ and under each one the respective vector coordinates in the inertial
system.

Finally we have the labels ’VELOCITIES FACE’, ’VELOCITIES BACK’ and under each one a list
of the velocities on every point.

The output of subroutine ’OUTPUT POSITION VELOCITY’ repeats for every instant.
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SPAN NBL NR NCH MOMENTS
6.0 0.0 1 100 17 200

U1 CHORD XS SKEW FI DCHORD DXS DSKEW DFI
0.000 0.357 0.000 0.000 0.000 2.234 0.000 0.000 0.000
1.510 0.360 0.000 0.000 0.000 2.226 0.000 0.000 0.000
.......................
6.000 0.301 0.000 0.000 0.000 -2.556 0.000 0.000 0.000

U2(1,J) , J=1,NCH
-0.50 -0.49 -0.48 -0.45 -0.42 -0.38 -0.33 -0.27 -0.20 -0.13 -0.05 0.02 0.11 0.20 0.30 0.40 0.50
DEC DU1(1,J) , J=1,NCH
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC DU2(1,J) , J=1,NCH
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DET DU1(1,J) , J=1,NCH
0.00 0.02 0.05 0.07 0.09 0.11 0.12 0.13 0.13 0.13 0.12 0.11 0.10 0.08 0.05 0.03 0.00
DET DU2(1,J) , J=1,NCH
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
.............................
U2(NR,J) , J=1,NCH
-0.50 -0.49 -0.48 -0.45 -0.42 -0.38 -0.33 -0.27 -0.20 -0.13 -0.05 0.02 0.11 0.20 0.30 0.40 0.50
DEC DU1(NR,J) , J=1,NCH
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DEC DU2(NR,J) , J=1,NCH
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DET DU1(NR,J) , J=1,NCH
0.00 -0.02 -0.04 -0.06 -0.08 -0.09 -0.10 -0.11 -0.11 -0.11 -0.10 -0.09 -0.08 -0.06 -0.04 -0.02 0.00
DET DU2(NR,J) , J=1,NCH
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MOMENTS
. 0.0000
. 0.0300
. ....
. 5.9700
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POSITION VECTOR FACE
. 0.00000 0.00000 -0.17861
. ................
. 0.00000 6.00000 0.12131
. 0.00000 6.00000 0.15088
POSITION VECTOR BACK
. 0.00000 0.00000 -0.17861
. ................
. 0.00000 6.00000 0.12131
. 0.00000 6.00000 0.15088

POSITION VECTOR PATH
. 0.00000 0.00000 0.00000
UNIT VECTOR 1
. 1.00000 0.00000 0.00000
UNIT VECTOR 2
. 0.00000 1.00000 0.00000
UNIT VECTOR 3
. 0.00000 0.00000 1.00000

VELOCITIES FACE
. 0.07565 0.00000 -2.00000
. ................
. 0.18405 0.00000 -2.00000
VELOCITIES BACK
. 0.07565 0.00000 -2.00000
. ................
. 0.18405 0.00000 -2.00000
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7.4 Solver - Variables and Subroutines Summary’

The second program is called ’Solver’ and interacts with ’Wing’ through the ’Input for Solver’.
Given the geometry, position and motion of the lifting surface, in our case a wing, it calculates
the pressure distribution, the lift of every 2D - cross section and the thrust (or total lift) of the
whole surface at every instant. The output of the program is chosen by the user in the code and
its written in a .txt file named ’Output of solver’. For example the output of the program could
be the total thrust of the wing at every instant. Furthermore, there is an extra output file called
’LS motion’ and contains the position of the lifting surface and its wake at every instant. The
results of ’LS motion’ are processed by a MATLAB programzz named ’Mat Fort Wing Graph’ to
produce a video of the wing’s motion.

MODULE SINUS SOLVER

This module is the main part of the program and contains all the necessary subroutines to solve the
lifting surface problem, using the modified vorticity of relation (4.2.21). Below we describe some
of the global variables used by the subroutines.

M0 = Maximum spanwise harmonic (e.g SIN(II*Y1) , II=1,...,M0)
N0 = Maximum chordwise harmonic (e.g SIN(JJ*Y2) , JJ=1,...,N0)
P0 = Extra chordwise control points (usually P0=0)
CPB= M0*(N0+1+P0)*NBL MAX , Number of C.P on wing (blades)
CPW= X*(M0+2-1)+1, Number of spanwise C.P on wake (we choose X=10)

WAKEP = Position Vector of a C.P on wake relative to the xi system, with coordinate in the
inertial system.
WAKE I = Position Vector of a C.P on wake relative to the inertial system, with coordinate in the
inertial system.
M WAKE= Dipole intensity of a C.P on wake.

IE1 = Number of integration points of outer integral for interval 1
IE0 = Number of integration points of outer integral for interval 0
IE2 = Number of integration points of outer integral for interval 2
AB1 = Length, in radians, of interval 1
F0 = Length, in radians, of interval 0
AB2 = Length, in radians, of interval 2
SS S01 = Double integral for Asm0Z of interval 1
SS S00 = Double integral for Asm0Z of interval 0
SS S02 = Double integral for Asm0Z of interval 2
SS S0 = Double integral for Asm0Z of interval [0, π] (only used for multiple blades).
SS SN1 = Double integral for AssmnZ of interval 1
SS SN0 = Double integral for AssmnZ of interval 0
SS SN2 = Double integral for AssmnZ of interval 2
SS SN = Double integral for AssmnZ of interval [0, π] (only used for multiple blades).
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EBS = Bsj
mself , Self nduction factor for Asmn(0)Z , due to bound vorticity

EC0 = Csj0self
, Self nduction factor for Asm0Z , due to free vorticity

ECS = Csjnself , Self nduction factor for AsmnZ , due to free vorticity
BSM0 = Bs

m0Z , Induction factor for Asm0Z , due to bound vorticity
CSM0 = Csm0Z , Induction factor for Asm0Z , due to free vorticity
BSSMN = Bss

mnZ , Induction factor for AssmnZ , due to bound vorticity
CSSMN = CssmnZ , Induction factor for AssmnZ , due to free vorticity

TS S0N = T sjm0Z , Mode velocity for AsmnZ
TS SMN = T sjm0Z , Mode velocity for AssmnZ
THTP = THT j , Contribution of tip, hub and trailing edge to the mode velocities

X1,X2,X3 = coordinates in the xi system
U1,U2 = coordinates in the ui system
Y1,Y2 = coordinates in the yi system

GIJ =
∼
γ
i

j
, transformation by covariance between the xi and xi coordiante systems

G = |∼γ
i

j
| , determinant of transformation

∼
γ
i

j

CIJ =
∼
c
i

j , transformation by contravariance between the xi and xi coordiante systems

GGIJ=
∼
g
i

j
, metric tensor of the xi coordiante systems

GP = g , metric tensor determinant of
∼
g
i

j
at C.P.

A12 = α12 , component surface metic tensor of the uα coordinate system
ALPHA = α , determinant of surface metric tensor ααβ
E2 = Unit vector of x2 axis on the leading edge
NP = Modified normal vector of camber surface, on the reference surface, with coordinates xi

VFACEP = Undisturbed fluid velocity relative to a point on the face with coordinates in the inertial
system
VBACKP = Undisturbed fluid velocity relative to a point on the back with coordinates in the
inertial system
WFACEP = Undisturbed fluid velocity relative to a point on the face with coordinates in the xi

system
WBACKP = Undisturbed fluid velocity relative to a point on the back with coordinates in the xi

system
Q(1) = 〉q1〈 Mean undisturbed fluid velocity in the x1 direction relative to the C.P on the reference
surface
Q(2) = 〉q2〈 Mean undisturbed fluid velocity in the x2 direction relative to the C.P on the reference
surface
Q(3) = 〉q3〈 Mean undisturbed fluid velocity in the x3 direction relative to the C.P on the reference
surface
Q(4) = 〈q3〉 Undisturbed fluid velocity jump in the x3 direction relative to the C.P on the reference
surface
S = σ , Source intensity at control point
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VT = Array of linear system
A = Coefficients of bound vorticity (unknowns)
B = Right hand side of the linear system

DPRES = (p+ − p−)/ρ ∗√α
`

, modified pressure difference on the reference surface

DL = 2D-force of a chordwise section in the NP j direction
LIFT = Force of z-th blade in the xj direction
THRUST = Force of all blades in the xj direction

SUBROUTINE MAIN

Subroutine ’MAIN’ is the main part of the program, which calls all the other subroutines in order
to solve a linear system and define the coefficients of the modified bound vorticity at every instant.
Initially, it calls ’INPUT GEOMETRY’ to read the geometric data at the NR spanwise and NCH
chordwise positions. These values will be used to calculate (approximate) the geometric features
of the wing at specific control points.

For every instant it calls ’INPUT POSITION VELOCITY’ to read the position and velocity of
every point on the face and the back of the wing. Then, uses ’WAKE POSITION’, ’WAKE INER-
TIAL’ and ’WAKE DIPOLE INTENSITY’ to calculate the new position of the wake relative to
the xi and the inertial system, as well as the intensity of the dipoles on the new spanwise wake
strip based on the coefficients A of the previous instant.

It then calculates the geometric and kinematic properties at all the control points using ’PROP-
ERTIES AT CP’, which will be used by the ’LINEAR SYSTEM FORMATION’ to calculate the
elements of the matrix for the no-entrance and pressure Kutta conditions.

Once we have done that for every C.P, we can solve the linear system either by the Gauss elimination
method or the Least square approximation method, which correspond to subroutines ’DGAUSS’
and ’GLSQ’. In case we use more C.P than boundary conditions (P0 > 0) we can’t use ’DGAUSS’.

Having solved for the coefficients A, we call ’PRESSURE DISTRIBUTION’ to calculate the modi-
fied pressure distribution on the wing as well as the 2D-leading edge suction force on every chordwise
section. These values are then used by ’LIFT THRUST’ to calculate the forces acting on the lifting
surface and the process repeats for the next instant.

SUBROUTINE WAKE POSITION

The wake is split into two parts. The free part of the wake and the Kutta strip that connects the
trailing edge and the free wake. The Kutta strip is assumed to be tangent to the reference surface
with chordwise position at u2 = 0.5 + 0.1 and therefore the length of the Kutta strip is 10% of
the chord length at u1. Normally this length should be a function of the time stem and number of
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C.P on the wing. Since the positions of the strip is constant relative to the trailing edge, the new
Kutta strip assumes the position of the old one :

WAKEP(M,Z,IN,J)=WAKEP(M,Z,IN-1,J)
WAKEP(M,Z,IN-1,J)=WAKEP(M,Z,IN-2,J)

SUBROUTINE WAKE INERTIAL

Assuming a frozen wake model the position of the free wake doesn’t change relative to the inertial
reference frame, meaning that the variable WAKEP I doesn’t change either. We first calculate the
position of the new Kutta strip in the inertial frame by projecting the xi coordinates of WAKEP
in the inertial system and adding the ORIGING vector. Then we calculate the new position of the
free wake relative to the xi system by reversing the process.

SUBROUTINE PROPERTIES AT CP

Given the surface coordinates of the C.P, we calculate the transformation by covariance
∼
γ
i

j
and the

xi coordinates by calling ’GEOM’. From there we calculate the transformation by contravariance
∼
c
i

j , the metric tensor
∼
g
ij

, the surface metric tensor αij and the respective determinants.

Using ’FILLIN’ we approximate the values of camber and thickness derivatives, as well as the
undisturbed fluid velocities VFACE, VBACK for the C.P. In the process we use some auxiliary
variables named AAJ and BBJ. We can then calculate the mean flow velocity relative to C.P, the
source intensity and the modified normal vector, NP, of the camber surface.

SUBROUTINE LINEAR SYSTEM FORMATION

For the inner points of the wing subroutine ’LINEAR SYSTEM FORMATION’ calls ’MODE VE-
LOCITIES’ which calculates the induction factors and mode velocities to implement on the no-
entrance boundary condition. For the right hand side of the system, it calls ’WAKE CONTRI-
BUTION’, which returns the wake induced velocity at C.P.

For the points on the trailing edge we use the pressure Kutta condition. The time derivative in the
Bernoulli equation is approximated by relations (4.3.19)-(4.3.21).
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SUBROUTINE MODE VELOCITIES

The induction factors are calculated in three steps. First we calculate the self induction factors
from relations (4.5.58), (4.5.60) and (4.5.61), then the inner integral from relations (4.5.15), (4.5.17)
and (4.5.18) for every spanwise or chordwise section and finally the outer integral from relations
(4.5.22), (4.5.24), (4.5.28) and (4.5.30). We split the outer integral into tree parts and we denote
those integration interval as 1, 0, 2. Inside of interval 0, is the C.P for which the induction factor
is calculated. In order to reduce the calculation time, the number of integration points IE1, IE0
and IE2 is varies according to the position of C.P on the blade. The number of integration points
of the inner integral, ND, depends on the position of C.P on the blase, the dimensions of the blade
and the distance of integration points from th C.P.

Specifically, subroutine ’MODE VELOCITIES’ initially calculates the self-induction factors and
then the number of integration points IE1, IE0 and IE2 of the outer integral. The induction factors
of the bound and free vorticity are calculated by subroutines ’BIND’ and ’CIND’ respectively.
Those induction factors are combined to get the mode velocity induced by the inner points of the
wing. The contribution of tip, hub and trailing edge is calculated in the form of mode velocities by
subroutine ’TIP HUB TE’.

SUBROUTINE BIND

The calculation of the induction factors due to the bound vorticity is split into tree parts. In
the first one we calculate the minimum number of integration points, ND, for the inner integral.
Assuming equally spaced integration points in the y1, y2 directions we approximate the geometric
properties at each integration point. Finally using ’FILLON METHOD’ we calculate first the inner
and then the outer integral.

The same process is followed in the subroutine ’CIND’.

SUBROUTINE TIP HUB TE

For the calculation of the mode velocities induced by the boundary of the wing and partially by the
Kutta strip, we first find the dipole intensity at the points of the boundary. Since the coefficients
A are unknown we calculate only the modes (trigonometric terms) of the dipole intensity. The
dipole intensity of the line segments at the tips is the mean value of the intensity at the ends of the
segment. Instead at the trailing edge the dipole intensity is half of the mean value. For every given
line segment on the boundary, we calculate the components of relation (4.8.5) using the following
subroutines :

’POINT TO LINE DISTANCE’ = Finds the distance between the C.P and the line segment
’CROSS’ = Performs the cross product of two vectors
’VECTOR ANGLE’ = Finds the angle between two vectors
’NORM’ = Finds the magnitude of a vector
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For the points on the trailing edge, we include the contribution of the Kutta strip as described in
section 4.8

Finally by combining the unit velocity of each line segment with the respective mode of the dipole
intensity, we get the mode velocity induced by the boundary and partially by the Kutta strip.

SUBROUTINE WAKE CONTRIBUTION

The calculation of the velocity at C.P, induced by the wake is similar to that of ’TIP HUB TE’.
In this case, however, the dipole intensity at every point on the wake is known and saved in the
variable M WAKE. The dipole intensity of every boundary element is the mean value of intensities
at its corner. In the case of Kutta strip the mean value is calculated by considering only the corners
of the B.E which don’t lie on the trailing edge (and thus the dipole intensities are known). The
intensity of each of the Kutta B.E is half of that mean value.

SUBROUTINE PRESSURE DISTRIBUTION

Having solved the linear system, the coefficients A for this instant are known. Multiplying relation
(5.1.7) by

√
α
`

= 1
4span sin(y1) sin(y2) we get the modified pressure difference on the lifting surface.

Note that the modified pressure difference is finite at the leading edge and zero at tips and trailing
edge.

In this subroutine we also calculate the leading edge suction force for every chordwise section of
the wing.

SUBROUTINE LIFT THRUST

Here we first calculate the lift of every chordwise section of the wing by integrating the modified
pressure, DPRE, by the modified normal vector of the camber surface. The result is corrected by
the leading edge suction force and integrated across the span of the wing. In case of multiple wings
or blades we add the lifting force of all the bodied to get the total force, THRUST. The components
of the resulting vector are on the xi system, so using the unit vectors UNITj we get the total force
expressed in the inertial system.

In this subroutine we write on the ’Output of Solver’. The output may change depending on the
users preferences. For example we could write the 2D-Lift of a section or the total force at every
instant.
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7.5 Solver - LS motion, output file example

The program creates a .txt file named ’LS motion’ which contains the position of the wing and it’s
wake relative to the inertial system. Specifically the first line has six integer number referring to
the maximum spanwise and chordwise harmonics, the number of blades, the number of spanwise
and chordwise positions where the geometric values are known and the number of instants.

Under that line there are three columns with real number, representing the coordinates of position
vector in the inertial system. The NCH*NR*NBL first rows refer to the points of the face and the
next NCH*NR*NBL rows to the points of the back. The next (10*(M0+2-1)+1)*NBL*IN rows
with IN=1,2,...MOMENTS, refer to the points of the wake. The data for the face, back and wake
repeat for all the instants.

M0 N0 NBL NR NCH MOMENTS
9 7 1 100 17 200

FACE - x
on

1 FACE - x
on

2 FACE - x
on

3

0.00000 0.00101 -0.18029
0.00004 0.00101 -0.17856
0.00007 0.00101 -0.17336
...............
0.00010 0.00101 -0.16477
0.00013 0.00101 -0.15284
0.00015 0.00101 -0.13772
BACK - x

on
1 BACK - x

on
2 BACK - x

on
3

0.00017 0.00101 -0.11952
0.00018 0.00101 -0.09844
0.00018 0.00101 -0.07468
...............
0.00018 0.00101 -0.04846
0.00017 0.00101 -0.02004
0.00015 0.00101 0.01031
WAKEP I - x

on
1 WAKEP I - x

on
2 WAKEP I - x

on
3

0.00013 0.00101 0.04230
0.00011 0.00101 0.07562
0.00008 0.00101 0.10995
...............
0.00004 0.00101 0.14495
0.00000 0.00101 0.18029
0.00000 0.00403 -0.18531

...............
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8 Results

8.1 Steady Case - High aspect ratio, results at midspan

We first examine the results of the program at midspan for the steady case of a high aspect ratio
wing. Specifically we compare those results with the 2D-equivalent experimental results of NACA
4412 airfoil for the highest Reynolds number. We compare the 2D-lift coefficient, which is defined
by the relation CL = Lift/(1

2ρU
2 chord), for set of angles of attack in the linear region.

The maximum harmonic in the spanwise and chordwise direction is M0 = 9 and N0 = 7 respec-
tively. We use a rectangular wing with chord length c = 1m and span to chord ration 30. The lift
is calculated for a chordwise section in the midspan.

A typical evolution of the lifting coefficient with time can be seen in the figure below.

Figure 8.1.1

It can be seen that the first 3 instants there are spikes in the lift coefficient, due to the bursting
start of the wing. After those instants, the lift quickly stabilizes and tends to a value around 1.4
for great values of t.

In the following figure the experimental results correspond to the solid (continues). The results of
the program are five points for -9, -5, 0, 5, and 9 degrees. The slope of the dotted line connecting
the points is smaller than the theoritical slope, 2π, by approximately 8%.
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The difference in the results could by due to the following reasons :

- Linearization of the problem - 3D Effects that reduce the total pressure - In the program we don’t
calculate the effect of sources - The position of the wake.

Specifically for the last reason, the wake exits tangent to the reference surface and is frozen relative
to the inertial system. In other word the plane of the wake is parallel to the motion of the wing,
with the exception of the Kutta strip, which is tangent to the reference surface. This is obviously
wrong since according to the lifting line theory, the downwash created by the wake changes the
position of the wake.

Figure 8.1.2
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8.2 2D-Flat plate - Analytical solution for the unsteady case

Here examine the 2D unsteady case of a heaving and pitching flat plate. An extensive analysis on
these problems can be found in [9]. In particular examine the case of wing moving with a mean
(transitional) speed U, while performing one of two harmonic oscillations (in th x,y coordinate
system):

y = y0 b e
iωt (heaving motion - vertical oscillation)

y = −α0 x e
iωt (pitching motion - rotational oscillation)

where
b = semichord of the airfoil, taken as 1
ω = circular frequency
y0 = the ratio of the amplitude of the vertical motion to the semichord b
α0 = maximum angle of rotation

Instead of the circular frequency, the results are presented in the nondimesional reduced frequency
k, which is defined as :

k =
ω b

U
=

ω

U

For the sake of comparison with the results of section 8.3, the relation of Strouhal number and
reduced frequency for the heaving motion is (for y0 = 0.5 and b = 1m) Str = k

2π

It can be proven that the lift coefficient as defined in the previous section has the following form
for each one of the movements :

CL = π y0 k
2

[
1 − 2i

k
C(k)

]
eiUkt (heaving motion)

CL = π k a0

[
i + (i +

2

k
)C(k)

]
eiUkt (pitching motion)

The function C(k) is often referred to as Theodorsen’s function and is defined by the relation :

C(k) =
K1(ik)

k1(ik) +K0(ik)
= F (k) + iG(k)

where K0, K1 are the Bessel functions of second kind of order zero and one respectively. Values
for F and G can be found in page 214 of [9].

Using the above relation for the lift coefficient we can calculate the amplitude and phase of the lift.
The theoretical results can be seen in figures 8.2.2 - 8.2.5 in the continues lines with the reduced
frequency as a free variable.

In order to calculate the lift and its phase we use the same rectangular wing as in section with
chord 1 m, span 30 m and M0 = 9, N0 = 7. A typical output of the program for the case of the
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heaving motion ca be seen in figure 8.2.1.

Figure 8.2.1

In Figures 8.2.2, 8.2.3 we examine the amplitude and phase of the heaving motion and in figures
8.2.4, 8.2.5 the same results for the pitching motion. It’s interesting to notice that the amplitude
of the heave and the phase of the pitch approximate better the theoretical results.
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Figure 8.2.2

Figure 8.2.3
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Figure 8.2.4

Figure 8.2.5
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8.3 Comparisons with panel methods

In order to examine the 3D unsteady case we choose to model a flapping wing. Specifically we
compare the thrust parallel to the transitional motion of the wing with the results given in [10],
produced by UBEM. We examine 2 cases of wing geometry, 3 cases of oscillation amplitude and up
to 4 cases of motion (Strouhal number).

The flapping of the wing is a combination of three motions. The first is a parallel transition with
constant velocity U. To that we add a sinusoidal heaving and pitching motion separated by a phase
ψ = 90o. The frequency, n, is the same for both heave and pitch and the respective amplitudes are
h0 and θ0.

h(t) = h0 sin(2π n t) , (heaving motion)

θ(t) = θ0 sin(2π n t + ψ) , (pitching motion)

The rotation is performed around a point (PIVOT) at distance b from the leading edge of the
midspan chord. The angle of attack at that point is :

α(t) = θ(t) − tan−1(ḣ(t)/U) , (angle of attack at the pivot point)

The non dimensional parameter characterizing the motion is the Strouhal, defined by :

Str =
nh

U
, h = 2h0

The wing outline is characterized by zero skewback and twist. The chord changes from c/4 (at tip)
to c (at c/2 from the tip). The interpolation schema for the chord, for spanwise positions between
tip and and c/2, is a cubic spline with end conditions of d2c/ds2 = −5 at tip and dc/ds = 0 at c/2.
A NACA 0012 thickness form has been selected spanwisely. We choose a standard chord length
c = 1m.

The non-dimensional parameters have been chosen as follows:

- Wing with span to chord ratio : s/c = 4, 6

- Heaving amplitude : h0/c = 0.5, 1, 2

- Position of pitch axis (from leading edge) : b/c = 0.1

- Strouhal number : Str = 0.1, 0.2, 0.3 (and 0.15 for h0/c = 0.5)

The the thrust coefficient is defined as CT (t) = T (t)/(1
2 ρU

2 S), where T (t) denotes the time
dependent wing thrust, ρ denotes fluid density, U denotes the transitional velocity of the wing and
S denotes the wing swept surface (S = s ·h). In figures 8.3.2 - 8.3.7 we take the mean value of CT
after a few periods.
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A typical graph of the thrust coefficient, CT , as a function of time can be seen in Figure 8.3.1. In
the vertical axis we have the thrust and on the horizontal axis the time in secondes. From this
figure it can be concluded that, for our family of wings and motions, the transient phenomenon is
limited to the few initial time steps after the burst start. Thus it is safe to use the 2nd period of
simulation, to calculate the mean thrust.

Figure 8.3.1

The Lifting surface program doesn’t calculate added resistance due to friction, instead UBEM takes
friction into consideration using a constant speed U = 2.3m/s for all cases. The simplest way to
estimate it is by using the ITTC curve for the friction of a flat plate and non-dimesionalize it by
1
2 ρU

2 S, where S is the swept surface. A more systematic way to estimate the friction is discussed
in [13]. Here we use the first method to calculate the friction and the correction varies form 1% up
to 5%.

It can be seen in the figure that for small Strouhal number the results of the program come very
close to those of UBEM. For higher Strouhal number, especially for h0/c = 0.5 there is a great
deviation of the two methods. For a constant speed, the lower the amplitude ratio h0/c is, the
greater the frequency, n, should be to get the same Strouhal number. It is therefore possible that
for high frequency movements our method divert from the results of UBEM.

Its also worth noticing that for all the figure and Strouhal numbers the results of our method tends
to diverge from those of UBEM at small pitching angles θ. For those angles, the vertical forces on
the wing (lift), have a negligible contribution to the force in the direction of motion (thrust). The
primary force contributing to the thrust is the leading edge suction force, which in our program
is calculated simplistically using the 2D theory. In contrast, UBEM, calculates exactly the forces
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developed on the panels of upper lower surface near the leading edg, which might explain the
difference.

Apart from the reasons mentioned above we should also include the following ones :

- The non-linearity of the phenomenon

- The non-free wake

- Errors in the code
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Figure 8.3.2

Figure 8.3.3

Figure 8.3.4
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Figure 8.3.5

Figure 8.3.6

Figure 8.3.7
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9 Conclusion-Future work

According to the results of the previous section (Fig 8.3.2 - 8.3.7), it’s obvious that the program
in its current state produce acceptable results for the light loading and low frequency conditions,
while failing to make the correct predictions for the high loading, angles of attack and frequencies.
Although this is expected from a linear theory the results of sections 8.1 and 8.2 (steady case and
linear unsteady case) suggest that there is still room for improvement in our current version.

It should be noted that the current version of the program solves only a simplified version of the
problem using specific boundary conditions at the tips (γ1 = 0) and a frozen wake model. In other
word it should be seen as very basic solver to test capabilities of the mode analysis method. There
is certainly a lot of work that could be done expanding and refining the program, but a few basic
suggestions are shown below :

– Improve the processing time using a better numerical scheme for the integrals of induction
factors, or making a better distribution of the integration points. This is something that is
examined thoroughly in [2].

– Calculate the induced velocities on the wake for a free wake model.

– Make use of the proper Fourier series and implement the correct boundary conditions of
(either p+ = p− , or γ1 = 0) at the tips.

– Include the case of multiple surfaces for the case of the propeller.
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Appendix A

A.1 Transformation matrices

The following relations can also be found in either [2] or [4].

The matrix of transformation by contravariance cir
∧

between the cylindrical x
∧
i and the curvilinear

xi coordinate system is given by the relation :

cir
∧

=
1

2!
δijkrst γ

s
j
∧
γtk
∧
/ Γ
∧

(A1)

where :

Γ
∧

=
1

3!
δijkrst γ

r
i
∧
γsj
∧
γtk
∧

(A2)

and γij
∧

are the matrices of transformation by covariance which can be calculated directly from

relations (2.2.4),(2.2.5) and (2.2.6) :

γij
∧

=
∂x
∧
i

∂xj
(A3)

Applying this procedure we get :

γ1
1
∧

=
dX

du1
+

dc

du1

(
u2 sinφ− x3 cosφ

)
+ c

(
u2 cosφ+ x3 sinφ

) dφ
du1

(A4)

γ1
2
∧

= c sinφ (A5)

γ1
3
∧

= −c cosφ (A6)

γ2
1
∧

= 1 , γ2
2
∧

= 0 , γ2
3
∧

= 0 (A7)

γ3
1
∧

=
dΘ

du1
+

dc

du1

(
u2 cosφ+ x3 sinφ

u1

)
+

c

(
−u2 sinφ+ x3 cosφ

u1

)
dφ

du1
− c

u1

(
u2 cosφ+ x3 sinφ

u1

)
(A8)

γ3
2
∧

=
c

u1
cosφ , γ3

3
∧

=
c

u1
sinφ (A9)

The determinant of the covariant transformation matrix is
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Γ
∧

= − c
2

u1
(A10) 12

so using relation (A1) we calculate the components of the contravariant transformation matrix.

c1
1
∧

= 0 , c1
2
∧

= 1 , c1
3
∧

= 0 (A11)

c2
1
∧

= sinφ/c (A12)

c2
2
∧

= −sinφ

c

[
dX

du1
+

dc

du1

(
u2 sinφ− x3 cosφ

)
+ c

(
u2 cosφ+ x3 sinφ

) dφ
du1

]

−cosφ

c

[
u1 dΘ

du1
+

dc

du1

(
u2 cosφ+ x3sinφ

)
+ c

(
−u2 sinφ+ x3 cosφ

) dφ
du1

− c

u1

(
u2 cosφ+ x3 sinφ

)]
(A13)

c2
3
∧

=
u1

c
cosφ (A14)

c3
1
∧

= − cosφ/c (A15)

c3
2
∧

=
cosφ

c

[
dX

du1
+

dc

du1

(
u2 sinφ− x3cosφ

)
+ c

(
u2 cosφ+ x3 sinφ

) dφ
du1

]

−sinφ

c

[
u1 dΘ

du1
+

dc

du1

(
u2 cosφ+ x3 sinφ

)
+ c

(
−u2 sinφ+ x3 cosφ

) dφ
du1

− c

u1

(
u2 cosφ+ x3 sinφ

)]
(A16)

c3
3
∧

= u1sinφ/c (A17)

At points on the blade reference surface, x3 = 0, formulas (A4) to (A17) degenerate to :

∼
γ

1

1
∧

=
dX

du1
+

dc

du1
u2 sinφ+ c u2 cosφ

dφ

du1
(A18)

∼
γ

1

2
∧

= c sinφ (A19)

∼
γ

1

3
∧

= −c cosφ (A20)

12in c2, 2 is not a tensor index but a power
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∼
γ

2

1
∧

= 1 ,
∼
γ

2

2
∧

= 0 ,
∼
γ

2

3
∧

= 0 (A21)

∼
γ

3

1
∧

=
dΘ

du1
+

dc

du1

u2

u1
cosφ − c

u1
u2 sinφ

dφ

du1
− c u2

u1u1
cosφ (A22)

∼
γ

3

2
∧

=
c

u1
cosφ (A23)

∼
γ

3

3
∧

=
c

u1
sinφ (A24)

———————

∼
c

1

1
∧

= 0 ,
∼
c

1

2
∧

= 1 ,
∼
c

1

3
∧

= 0 (A25)

∼
c

2

1
∧

= sinφ/c (A26)

∼
c

2

2
∧

= −sinφ

c

dX

du1
− dΘ

du1

cosφ

c
u1 − u2

c

dc

du1
+
u2

u1
cos2 φ (A27)

∼
c

2

3
∧

=
u1

c
cosφ (A28)

∼
c

3

1
∧

= − cosφ/c (A29)

∼
c

3

2
∧

= +
cosφ

c

dX

du1
− sinφ

c
u1 dΘ

du1
+ u2 dφ

du1
+
u2

u1
sinφ cosφ (A30)

∼
c

3

3
∧

= u1sinφ/c (A31)

Similarly using relations (2.2.1),(2.2.2) and (2.2.3) the matrices of transformation cij
∧

and γij
∧

between

the cartesian xi and the cylindrical x
∧
i coordinate systems are given by the relations :

γ1
1
∧

= 1 γ1
2
∧

= 0 γ1
3
∧

= 0 (A32)

γ2
1
∧

= 0 γ2
2
∧

= cosx
∧

3 γ2
3
∧

= −x
∧

2 sinx
∧

3 (A33)

γ3
1
∧

= 0 γ3
2
∧

= sinx
∧

3 γ3
3
∧

= x
∧

2 cosx
∧

3 (A34)

———————

c1
1
∧

= 1 c1
2
∧

= 0 c1
3
∧

= 0 (A35)
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c2
1
∧

= 0 c2
2
∧

= cosx
∧

3 c2
3
∧

= sinx
∧

3 (A36)

c3
1
∧

= 0 c3
2
∧

= −
sinx
∧

3

x
∧

2
c3

3
∧

=
cosx
∧

3

x
∧

2
(A37)

The transformation matrices for the reference surface are produced by setting
∼
x
∧

3
= x
∧

3(x3 = 0).

The transformation matrices γi
j
, cij between the orthonormal, xi, and the general curvilinear system,

xi, are given by the relations :

cij = cik
∧
ckj
∧

(A38)

γi
j

= γik
∧
γkj
∧

(A39)

Specifically for the reference surface we have the reletions :

∼
c
i

j =
∼i
ck
∧

∼
c
k

j (A40)

∼
γ
i

j
=

∼
γ
i

k
∧

∼
γ
k

j
∧

(A41)

Using relation (A49) we calculate the values of
∼i
γ
j

since they will be used later on :

∼
γ

1

1
=
dX

du1
+

dc

du1
u2 sinφ+ c u2 cosφ

dφ

du1
(A42)

∼
γ

2

1
= cos

∼
x
∧

3
− u1 ∼

γ
3

1
∧

sin
∼
x
∧

3
(A43)

∼
γ

3

1
= sin

∼
x
∧

3
+ u1 ∼

γ
3

1
∧

cos
∼
x
∧

3
(A44)

∼
γ

1

2
= c sinφ ,

∼
γ

1

3
= −c · cosφ (A45)

∼
γ

2

2
= −c cosφ sin

∼
x
∧

3
,

∼
γ

2

3
= −c · sinφ sin

∼
x
∧

3
(A46)

∼
γ

3

2
= c cosφ cos

∼
x
∧

3
,

∼
γ

3

3
= c · sinφ cos

∼
x
∧

3
(A47)

Below we calculate the matrices of transformation γij
`

, cij
`

between the curvilinear systems, xi , x
`

i

of the reference surface :
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γ1
1
`

=
1

2
(Ro −RH) sin y1 γ1

2
`

= 0 γ1
3
`

= 0 (A48)

γ2
1
`

= 0 γ2
2
`

=
1

2
sin y2 γ2

3
`

= 0 (A49)

γ3
1
`

= 0 γ3
2
`

= 0 γ3
3
`

= 1 (A50)

The determinant of the covariant transformation is : Γ
`

=
1

4
(Ro −RH) sin y1 sin y2 (A51)

c1
1
`

=
2

(Ro −RH) sin y1
c1

2
`

= 0 c1
3
`

= 0 (A52)

c2
1
`

= 0 c2
2
`

=
2

sin y2
c2

3
`

= 0 (A53)

c3
1
`

= 0 c3
2
`

= 0 c3
3
`

= 1 (A54)

Finally the matrices of transformation γij
`

, cij
`

, between the orthornormal, xi, and the curvilinear,

x
`

i system are :

γij
`

= γi
k
γkj
`

, cij
`

= cik
`

ckj (A55),(A56)

Specifically for the reference surface we get :

∼
γ
i

j
`

=
∼
γ
i

k
γkj
`

,
∼
c
i

j
`

= cik
`

∼
c
k

j (A58),(A57)

since
∼
γ
k

j

`

= γkj
`

,
∼
c
i

k
`

= cik
`

Note that : xrα
`
≡ γrα
`

=
∂xr

∂y
`

α
(A59)

Using the last relation we get :

∼
γ
r

1
`

=
∼
γ
r

1

1

2
(Ro −RH) sin y1 (A60)

∼
γ
r

2
`

=
∼
γ
r

2

1

2
sin y2 (A61)
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A.2 Metric Tensors

Having calculate the transformation matrices by covariant and contravariant between the various
coordinate systems we can easily calculate the corresponding metric tensors g

∧
ij , gij , from the

existing metric tensor of the orthonormal system gij = δij , g
ij = δij .

For the cylindrical system the covariant components of the metric tensor are :

gij
∧

= grs γ
r
i
∧
γsj
∧

(A62)

or

g11
∧

= 1 g12
∧

= 0 g13
∧

= 0 (A63)

g21
∧

= 0 g22
∧

= 1 g23
∧

= 0 (A64)

g31
∧

= 0 g32
∧

= 0 g33
∧

= x
∧

2x
∧

2 (A65)

For the contravariant components we have :

gij
∧

= grs cir
∧
cjs
∧

(A66)

or

g11

∧
= 1 g12

∧
= 0 g13

∧
= 0 (A67)

g21

∧
= 0 g22

∧
= 1 g23

∧
= 0 (A68)

g31

∧
= 0 g32

∧
= 0 g33

∧
=

1

x
∧

2x
∧

2
(A69)

Using relations similar to (A62) and (A66) we can calculate g
ij

, gij . Since we are interested in the

metric tensor of the reference surface (system uα) :

ααβ =
(
g
ij

)
i=α,j=β

= δij
∼
γ
i

α

∼
γ
j

β
(A70)

Expanding the above relation we have :

α11 =
∼
γ

1

1

∼
γ

1

1
+

∼
γ

2

1

∼
γ

2

1
+

∼
γ

3

1

∼
γ

3

1
(A71)

α22 =
∼
γ

1

2

∼
γ

1

2
+

∼
γ

2

2

∼
γ

2

2
+

∼
γ

3

2

∼
γ

3

2
(A72)

α12 = α21 =
∼
γ

1

1

∼
γ

1

2
+

∼
γ

2

1

∼
γ

2

2
+

∼
γ

3

1

∼
γ

3

2
(A73)
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where the
∼
γ
r

α
are given by the relation (A42) to (A47).

Finally the metric tensor gij
`

for the x
`

i coordinate system is :

gij
`

= g
rs
γri
`

γsj
`

g11
`

= g
11

1

4
(Ro −RH)2 sin2 y1 (A74)

g12
`

= g21
`

= g
12

1

4
(Ro −RH) sin y1 sin y2 (A75)

g13
`

= g31
`

= g
13

1

2
(Ro −RH) sin y1 (A76)

g22
`

= g
22

1

4
sin2 y2 (A77)

g23
`

= g32
`

= 0 (since g
23

= 0) (A78)

g33
`

= g
33

(A79)

A.3 Metric Determinants

We can derive the space metric tensor determinant using relation (1.16) and as for the surface
determinants we use the following relations :

α = α11 α22 − α12 α21 (A80)

α
`

= α11
`

α22
`
− α12
`

α21
`

(A81)

Because of the simple relation connecting the systems xi , x
`

i we can easily calculate the determinants

g
`

, α
`

given the g , α. We shall try to derive the space and surface metric determinants for the xi

and uα coordinate systems, not by calculating their components but instead by using their property
to be relative tensors of weight two. In particular, by choosing a coordinate system in which the
calculation of the metric tensor is simple, the previous determinant is calculated from relation
(1.12) of the definition of relative tensors.

For the x
∧
i system from relations (A63) to (A65) we get :

g
∧

= x
∧

2x
∧

2 (A82)
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and from relation (A10) of the determinant of the covariant transformation, Γ
∧

, between the, x
∧
i

and xi we get :

g = g
∧

(Γ
∧

)2 = (u1)2

[
−
(
c2

u1

)]2

= c4 (A83) 13

Note that since the chord length, c, depends on our position on the reference line, g will also be a
function of u1. Now in order to calculate the surface determinant α we choose a new coordinate
system according to the relations :

η1 = x
∧

2 η2 = x
∧

3

so the parametric equations of the reference surface become :

x
∧

1 = Xo(η
1) + η1 η2 tanφ(η1) (A84)

x
∧

2 = η1 (A85)

x
∧

3 = η2 (A86)

Note that, X(u1) = Xo(η
1) + Θ(η1)u1 tanφ , where Xo is the rake of the reference line and θ the

skew-angle.

FigureA.1

13in c4, 4 is not a tensor index but a power
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We can calculate the reference surface metric tensor to be :

ααβ
�

= gij
∧

∂x
∧
i

∂ηα

∂x
∧
j

∂ηβ
(A87)

where gij
∧

is given by the relations (A63),(A64) and (A65).

α11
�

= tan2 δ + 1 (A88)

α12
�

= P tan δ (A89)

α22
�

= P 2 + x
∧

2 x
∧

2 (A90)

where

P = η1 tanφ(u1) (A91)

tan δ =
∂x
∧

1

∂η1
=
dXo

dη1
+ η2 ∂P

∂η1
(A92)

Also

α
�

= α11
�
α22
�
− α12

�
α21
�

= tan2 δ (x
∧

2x
∧

2) + P 2 + x
∧

2x
∧

2 (A93)

Surface coordinates η1, η2 and u1, u2 are related by :

η1 = u1

η2 = u2 c cosφ(u1)/u1 + Θ(u1)

The determinant of the transformation by covariance between ηα and uα is given by :

γ =
∂η1

∂u1

∂η2

∂u2
−
�
�
�∂η1

∂u2

∂η2

∂u1
=
c cosφ(u1)

u1
(A94)

Since the surface metric tensor is a relative tensor of weight two we have :

α = a
�
γ2

= (tan2 δ (x2x2) + P 2 + x2x2) (c cosφ/η1)2

= c2 (tan2 δ cos2 φ+
P 2 cos2 φ

η1η1
+ cos2 φ)

= c2 (tan2 δ cos2 φ+ 1) (A95)
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The determinant g
`

, is given by the relation g
`

= eijk gi1
`
gj2
`
gk3
`

or using relations (A74) to (A79)

g
`

=

[
1

16
(Ro −RH)2 sin2 y1 sin2 y2

]
g (A96)

Similarly

α
`

=

[
1

16
(Ro −RH)2 sin2 y1 sin2 y2

]
α (A97)

A.4 Wing Transformation matrices

The matrix transformation γi
j

between the orthonormal and the curvilinear system in the case of

the wing can be calculated directly from relations (2.2.9), (2.2.10) and (2.2.11).

γ1
1

=
dX

du1
+

dc

du1

[
u2 sinφ− x3 cosφ

]
+ c

[
u2 cosφ+ x3 sinφ

] dφ
du1

(A98)

γ1
2

= c sinφ (A99)

γ1
3

= −c cosφ (A100)

γ2
1

= 1 , γ2
2

= 0 , γ2
3

= 0 (A101)

γ3
1

= tan Θ +
u1

cos2 Θ

dΘ

du1
+

dc

du1

[
u2 cosφ+ x3 sinφ

]
+ c

[
−u2 sinφ+ x3 cosφ

] dφ
du1

(A102)

γ3
2

= c cosφ , γ3
3

= c sinφ (A103)

For the points on the reference surface we set x3 = 0 :

∼1
γ

1
=
dX

du1
+

dc

du1
u2 sinφ+ c u2 cosφ

dφ

du1
(A104)

∼1
γ

2
= c sinφ (A105)

∼1
γ

3
= −c cosφ (A106)

∼2
γ

1
= 1 ,

∼2
γ

2
= 0 ,

∼2
γ

3
= 0 (A107)

∼3
γ

1
= tan Θ +

u1

cos2 Θ

dΘ

du1
+

dc

du1
u2 cosφ − c u2 sinφ

dφ

du1
(A108)

∼3
γ

2
= c cosφ ,

∼3
γ

3
= c sinφ (A109)
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Notice the similarities between relations (A104) to (A109) with the corresponding relations (A42)
to (A47). In fact setting x

∧
3 = 0 while u1 →∞, they coincide.

The determinant of the transformation is : Γ = −c2 (A110)

Thus the metric of the system is : g
ij

= δkl γ
k
i
γl
j
⇒ g = Γ2 = c4 (A111)
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Appendix B: Normal and Tangential projection of a vector on a
given surface

The following relations can also be found in [4] - Part I.

Let ua an intrinsic to a given surface coordinate system and xi(u1, u2) the parametric equations
of the surface.

The projection of a vector qi normal to the xi(u1, u2) surface, with Ni the normal unit vector is:

Ni
q = N i

(
qj Nj

)
(B1)

while the projection of qi tangential to the given surface is :

T i
q = εijk (εjmnN

m qn) Nk (B2)

Another useful form of relation (B2) can be obtained as follows : Raise the indices j,m,n in εjmn
and lower the indices of Nm and qn in relation (B2) to obtain:

T i
q = εijk

(
εtmnNm qn gjt

)
Nk (B3)

Using relation (McConnell, page 197):

εαβ xrα x
s
β = εmrsNm (B4)

relation (B3) becomes:

T i
q =

(
εαβ xiα x

j
β

) (
εγδ xnγ x

t
δ

)
gjt qn = (εαβ xiα) (εγδ xnγ )αβδ qn (B5)

and since (McConnel, page 166):

1

α
eαβ eγδ αβδ = ααγ (B6)

relation (B5) becomes :

Ti
q = xiα

(
xnγ α

αγ qn
)

(B7)

Form (B7) has the advantage of providing the tangential projection using only the surface metric
tensor and the partial derivatives:

xiα =
∂xi

∂uα
(B8)

of the parametric equations of the surface. Using (B7) the tensor as a function of his projection is
given by the equation :
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qi =
T i
q +

Ni
q = xiα

(
xnγ α

αγ qn
)

+ N i
(
qj Nj

)
(B9)

In another representation, the vector qi can be characterized by the auxiliary parameters σ and γj
defined by the relations :

σ
def
= qj Nj (B10)

γj
def
= εjmnN

m qn (B11)

Using these parameters relations (B1) and (B2) become :

Ni
q = N i σ (B12)

T i
q = εijk γj Nk (B13)

Thus qi as a function of σ and γj becomes

qi = εijk γj Nk + N i σ (B14)

In relation (B11) γj is by definition tangent to the given surface, therefore exists a surface vector
γα, corresponding to the space vector γj there given by (McConnell, page 196):

γα = xjα γj (B15)

We shall now try to express γα as a function of qn, xjα and the surface metric tensor ααβ. Substi-
tuting relation (B11) to relation (B15) we get :

γα = xjα (εjmnN
m qn) = xjα

(
εtmnNm qn

)
gtj (B16)

Raising the index α in relation (B16) and using relation (B4) we get:

γδ = xjα α
αδ
[(
εβγ xnβ x

t
γ

)
qn

]
gtj =

(
ααδ ααγ

)
εβγ xnβ qn = εβδ xnβ qn (B17)

which is the required relation.
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Appendix C: Equation of continuity for the surface distribution of
vorticity

The following relations can also be found in [4] - Part I.

For the development of this appendix, ni is a unit vector normal to the blade reference surface.
Therefore by definition :

γi = εilm nl µ,m (C1)

where µ,m is the covariant derivative of the scalar potential difference on blade reference surface :
µ = Φ+ − Φ−

Since γi is a vector tangent to the blade reference surface (γi ni = 0), we transform it to its surface
coordinates, using relation (1.32) :

γα = γj x
j
α = γi gij x

j
α (C2)

where xiα = ∂xj

∂uα and xj = f j(u1, u2) are the parametric equations of the blade reference surface in
the xj coordinate system. Substituting (C1) to (C2) we get :

γα =
(
εilm nl µ,m

)
gij x

j
α (C3)

Expressing the normal nl to the blade reference surface as a function of the parametric equations
of the surface :

nl =
1

2
εβγ εlst x

s
β x

t
γ (C4)

and substituting to relation (C3) we get :

γα =
(
εilm nl µ,m

)
gij x

j
α =

=

[
εilm

(
1

2
εβγ εlst x

s
β x

t
γ

)
µ,m

]
gij x

j
α =

=
(
−εlim εlst

) 1

2
εβγ xsβ x

t
γ µ,m gij x

j
α =

=
(
δit δ

m
s − δis δ

m
t

) 1

2
εβγ xsβ x

t
γ µ,m gij x

j
α

(∗)
= εβγ xsβ µ,s αγα (C5)

The transition of the last relation (*) should be obvious, though we give it below for the sake of
completeness.
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(∗)
=
(
δit δ

m
s − δis δ

m
t

) 1

2
εβγ xsβ x

t
γ µ,m gij x

j
α =

=
1

2
εβγ xtγ

(
xsβ µ,s

)
gtj x

j
α −

1

2
εβγ xsβ

(
xtγ µ,t

)
gsj x

j
α =

=
1

2
εβγ

(
xsβ µ,s

)
αγα −

1

2
εβγ

(
xtγ µ,t

)
αβα =

= εβγ
(
xsβ µ,s

)
αγα

Raising the index α in relation (C5) by multiplying by ααδ in both sides, we get :

γδ = εβδ µ,s x
s
β (C6)

Take now the covariant derivative of relation (C6) and contract the contravariant with the covariant
indicies of the surface vorticity to get :

γδ,δ = εβδ µ,s δ x
s
β + εβ δ µ,s x

s
β ,δ + εβ δ,δ µ,s x

s
β (C7)

But

εβ δ,δ = 0 (C8)

xsδ ,β = xsβ ,δ (C9)

µ,sδ x
s
β = µ,s β x

s
δ (C10)

where (C8) is a well known property of the altenating tensor (McConnel page 200) and the symmetry
properties (C9) and (C10) can be prooved by direct calculations. Using furthermore the property
of the alternating tensor εαβ Aαβ = 0 when Aαβ is symmetric with respect to its indices, relation
(C7) becomes :

γδ,δ = 0 (C11)

which is the required surface continuity equation. For flat surfaces coordinatized by rectilinear
coordinates the determinant of the surface metric tensor becomes α = constant and relation (C11)
degenerates to the known form :

∂γ1

∂u1
+
∂γ2

∂u2
= 0 (C12)
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Appendix D: Supplement to paragraph 3.6

The following relations can also be found in [4] - Part I.
Using relation (3.6.7) we get for the surface metric tensor of the real blade surface Su (or Sl)

α′αβ = g
ij
xiα x

j
β = g

ij

∼
x
i

α
∼
x
j

β + g
ij

∼
x
i

αδ
∼
x
j

β + g
ij
δ
∼
x
i

α
∼
x
j

β + g
ij
δ
∼
x
i

αδ
∼
x
j

β (D1)

where α′αβ refers to the real blade surface and ααβ to the reference surface and g
ij

=
∼
g
ij

+O(ε).

α′ = eαβα′α1α
′
β2

(D1)
= eαβαα1αβ2 + O(ε) = α + O(ε) (D2)

Using relation (D2) we get :

dSuZ =
√
α′ du1 du2 =

√
α+O(ε) du1 du2 =

√
αdu1 du2 + O(ε) = dSRZ + O(ε) (D3)

Thus relation (3.6.9) has been proved.

To prove relation (3.6.10) expand vk in a Taylor series around
∼
v
k

to get:

vk =
∼
v
k

+
∂
∼
v
k

∂xj
δxj + O(ε2) =

∼
v
k

+ O(ε2) (D4)

since both
∂
∼
v
k

∂xj
and δxj are of first order.

To prove relation (3.6.11) we use a coordinate system originating from point P. For this system :

r =
(
xi(Q)xi(Q)

)1/2
(D5)

Using relation (3.6.7) we get : r2 =
∼
r

2
+ 2

∼
x
i
δxi =

∼
r

2
+ O(ε) (D6)

where
∼
r is defined by relation (3.6.12). Then

1

r3
=

1[∼
r

2
+ O(ε)

]3/2
=

1
∼
r

3

[
1 +

O(ε)
∼
r

2

]3/2

=
1
∼
r

3

[
1 − 3

2

O(ε)
∼
r

2

]
+ O(ε2) =

1
∼
r

3 + O(ε) (D7)

Thus relation (3.6.11) has been proved.

We shall now proceed to prove relation (3.6.14). Relation (3.6.5) for P ∈ SuZ remains unchanged
apart from a change of factor multiplying its left hand side from 4π to 2π. The same holds for
the case of P ∈ SlZ . Repeating afterwards the linearization procedure we shall arrive at a relation

similar to (3.6.14) but with his left hand side changed from 4π
∼
v
j

to 2π
[∼
v
j+

+
∼
v
j−]

. Substituting

4π 〉∼v
j
〈 instead of

[∼
v
j+

+
∼
v
j−]

from relation (3.2.25) we get the required relation (3.6.14).
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Appendix E: Supplement to paragraph 4.2

The following trigonometric identities are true :

sin y2 cos(ny2) =
1

2

[
sin((n+ 1)y2)− sin((n− 1)y2)

]
(E1)

sin y2 sin(ny2) =
1

2

[
cos((n− 1)y2)− cos((n+ 1)y2)

]
(E2)

We expand the term y2 sin y2 in [0, π] in a Fourier Series. Assuming that the desired function is
odd and periodical with period 2π we have :

f(y2) =

{
y2 sin y2 , y2 ∈ [0, π]

−(y2 − 2π) sin(y2 − 2π) , y2 ∈ [π, 2π]

For n 6= 1 :

2π∫
0

f(y2) sin(ny2)dy2 =

=

π∫
0

y2 sin y2 sin(ny2)dy2 −
2π∫
π

(y2 − 2π) sin(y2 − 2π) sin(ny2)dy2 =

=

π∫
0

y2 sin y2 sin(ny2)dy2 −
2π∫
π

y2 sin y2 sin(ny2)dy2 +
���

���
���

���:
0

2π

2π∫
π

sin y2 sin(ny2)dy2 (E2)
=

=
1

2(n− 1)

���������
�:0[

y2 sin((n− 1)y2)
]π
0
−

π∫
0

sin((n− 1)y2) dy2

 −

− 1

2(n+ 1)

���������
�:0[

y2 sin((n+ 1)y2)
]π
0
−

π∫
0

sin((n+ 1)y2) dy2

 −

− 1

2(n− 1)

���������
��:0[

y2 sin((n− 1)y2)
]2π
π
−

2π∫
π

sin((n− 1)y2) dy2

 +

+
1

2(n+ 1)

���������
��:0[

y2 sin((n+ 1)y2)
]2π
π
−

2π∫
π

sin((n+ 1)y2) dy2

 =
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=
1

2(n− 1)2

[
cos((n− 1)y2)

]π
0
− 1

2(n+ 1)2

[
cos((n+ 1)y2)

]π
0
−

− 1

2(n− 1)2

[
cos((n− 1)y2)

]2π
π

+
1

2(n+ 1)2

[
cos((n+ 1)y2)

]2π
π

=

=
(−1)n−1 − 1

(n− 1)2
− (−1)n+1 − 1

(n+ 1)2
= − ((−1)n + 1)

4n

(n2 − 1)2
(E3)

For n = 1 we get

2π∫
0

f(y2) sin y2dy2 =

=

π∫
0

y2 sin y2 sin y2dy2 −
2π∫
π

(y2 − 2π) sin(y2 − 2π) sin y2dy2 =

=

π∫
0

y2 sin y2 sin y2dy2 −
2π∫
π

y2 sin y2 sin y2dy2 + 2π

2π∫
π

sin y2 sin y2dy2 (E2)
=

=
1

2

[
(y2)2

2

]π
0

− 1

4

��������:0[
y2 sin(2y2)

]π
0
−

π∫
0

sin(2y2) dy2

 −

− 1

2

[
(y2)2

2

]2π

π

+
1

4

��������:0[
y2 sin(2y2)

]2π
π
−

2π∫
π

sin(2y2) dy2

 + π2 =

=
π2

4
− 1

8�
��

���:
0[

cos(2y2)
]π
0
− 3π2

4
− 1

8�
��

���
�:0[

cos(2y2)
]2π
π

+ π2 =
π2

2
(E4)

Since f(y2) is odd :

2π∫
0

f(y2) cos(ny2) dy2 = 0 (E5)

Given that

2π∫
0

sin2(ny2)dy2 = π, (n=1,2..) :

y2 sin y2 =
π

2
sin y2 +

∞∑
n=2

− ((−1)n + 1)
4n

(n2 − 1)2 π
sin(ny2) (E6)
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Setting

β1 = π/2 , βn = − ((−1)n + 1) 4n
(n2−1)2 π

(E7)

we get :

y2 sin y2 =
∞∑
n=1

βn sin(ny2) (E8)

Therefore the following are true :

sin y2 + y2

2
sin y2 =

1

4
(1− cos(2y2)) +

1

2

∞∑
n=1

βn sin(ny2) (E9)

(1 − cos(ny2)) sin y2 = sin y2 − 1

2

[
sin((n+ 1)y2)) − sin((n− 1)y2)

]
(E10)

sin(ny2) sin y2 =
1

2

[
cos((n− 1)y2) − cos((n+ 1)y2)

]
(E11)

After multiplying the Bernoulli’s (at y1 = 0, π) equation with sin y2 each term is analyzed as :

y2∫
0

dΓ
`

1

dt
dy2 sin y2 =

=
∞∑
m=0

dAcm0Z

dt
cos(my1)

sin y2 + y2

2
sin y2 +

+
∞∑
m=0

∞∑
n=1

(
1

n

dAcsmnZ
dt

cos(my1) (1− cos(ny2)) +
1

n

dAccmnZ
dt

cos(my1) sin(ny2)

)
sin y2

=

∞∑
m=0

(
dAcm0Z

dt
cos(my1)

)
1

2

(
1− cos(2y2)

2
+

∞∑
n=1

βn sin(ny2)

)
+

+

∞∑
n=1

[ ∞∑
m=0

(
1

n

dAcsmnZ
dt

cos(my1)

)]
1

2

(
2 sin y2 − (sin((n+ 1)y2) − sin((n− 1)y2))

)
+

+

[ ∞∑
m=0

(
1

n

dAccmnZ
dt

cos(my1)

)]
1

2

(
cos((n− 1)y2) − cos((n+ 1)y2))

)
=
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=

∞∑
m=0

(
dAcm0Z

dt

1

2
+
dAccm1Z

dt

)
(±1)m

2
+

+

∞∑
n=1

[ ∞∑
m=0

(
dAcm0Z

dt

(−δ2
n)

2
+

1

n+ 1

dAccm,n+1,Z

dt
− 1− δ1

n

n− 1

dAccm,n−1,Z

dt

)
(±1)m

2

]
cos(ny2) +

+

[ ∞∑
m=0

(
dAcm0Z

dt
βn + 2

δ1
n

n

dAcsmnZ
dt

− 1− δ1
n

n− 1

dAcsm,n−1,Z

dt
+

1

n+ 1

dAcsm,n+1,Z

dt

)
(±1)m

2

]
sin(ny2) (E12)

Since we are applying the dynamic boundary condition at the tip (or the hub) the relation (4.2.13)
should hold. Therefore using relations (4.2.14), (4.2.15) and (4.2.16) we get :

Γ2(y1 = 0, π, y2, z, t) sin y2 =

∞∑
m=1

(
mAcm0Z

sin(my1)

sin y1

)
y2 + sin y2

Ro −RH
sin y2 +

+
2

Ro −RH

∞∑
m=1

∞∑
n=1

(
m

n
AcsmnZ(1− cos(ny2))

sin(my1)

sin y1
+
m

n
AccmnZ sin(ny2)

sin(my1)

sin y1

)
sin y2

=
∞∑
m=1

(
mAcm0Z

sin(my1)

sin y1

)
1

Ro−RH

(
1− cos(2y2)

2
+
∞∑
n=0

βn sin(ny2)

)
+

+
∞∑
n=1

[ ∞∑
m=1

(
m

n
AcsmnZ

sin(my1)

sin y1

)]
1

Ro −RH
(
2 sin y2 − (sin((n+ 1)y2) − sin((n− 1)y2))

)
+

[ ∞∑
m=1

(
m

n
AccmnZ

sin(my1)

sin y1

)]
1

Ro −RH
(
cos((n− 1)y2) − cos((n+ 1)y2)

)
=

=

∞∑
m=1

(
Acm0Z

1

2
+ Accm1Z

)
m (±1)m+1

Ro −RH
+

+

∞∑
n=1

[ ∞∑
m=1

(
Acm0Z

(−δ2
n)

2
+

1

n+ 1
Accm,n+1,Z −

1− δ1
n

n− 1
Accm,n−1,Z

)
m (±1)m+1

Ro −RH

]
cos(ny2) +

+

[ ∞∑
m=1

(
Acm0Z βn + 2

δ1
n

n
AcsmnZ −

1− δ1
n

n− 1
Acsm,n−1,Z +

1

n+ 1
Acsm,n+1,Z

)
m (±1)m+1

Ro −RH

]
sin(ny2) (E13)
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Notice that Acm0Z
1
2 + Accm1Z = A

′cc
m1Z by relation (4.1.16)

Γ1(y1 = 0, π, y2, Z, t) sin y2 =

=
∞∑
m=0

Acm0Z cos(my1)
(
cos y2 + 1

)
+

2
∞∑
m=0

∞∑
n=1

(
AcsmnZ cos(my1) sin(ny2) + AccmnZ cos(my1) cos(ny2)

)

=
∞∑
m=0

Acm0Z(±1)m +
∞∑
n=1

[ ∞∑
m=0

(
2AccmnZ +Acm0Zδ

1
n

)
(±1)m

]
cos(ny2) +

+

[ ∞∑
m=0

2AcsmnZ(±1)m

]
sin(ny2) (E14)
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The following trigonometric identities are true :

sin y1 cos(my1) =
1

2

[
sin((m+ 1)y1)− sin((m− 1)y1)

]
(E15)

sin y1 sin(my1) =
1

2

[
cos((m− 1)y1)− cos((m+ 1)y1)

]
(E16)

Therefore:

Γ1(y1, y2, Z, t) sin y1 =

=
∞∑
m=0

[
Asm0Z

1

tan(y2/2)
+ 2

∞∑
n=1

(
AssmnZ

sin(ny2)

sin y2
+ AscmnZ

cos(ny2)

sin y2

)]
sin(my1) sin y1

+

[
Acm0Z

1

tan(y2/2)
+ 2

∞∑
n=1

(
AcsmnZ

sin(ny2)

sin y2
+ AccmnZ

cos(ny2)

sin y2

)]
cos(my1) sin y1

For t > 0 the boundary condition (4.2.10) should be valid, so using relations (4.2.11),(4.2.12) we
get:

Γ1(y1, y2 = π, Z, t) sin y1 =

=

∞∑
m=0

∞∑
n=1

(
2AssmnZ(±1)n+1

) (
cos((m− 1)y1)− cos((m+ 1)y1)

)
+

+
∞∑
n=1

(
2AcsmnZ(±1)n+1

) (
sin((m+ 1)y1)− sin((m− 1)y1)

)
=

= 2
∞∑
n=1

(
Ass0nZ cos((0− 1)y1) − Acs0nZ sin((0− 1)y1)

)
(±1)n+1 +

+2
∞∑
m=0

[ ∞∑
n=1

(
Assm+1,n,Z − Assm−1,n,Z(1− δ0

m)
)

(±1)n+1

]
cos(my1) +

+

[ ∞∑
n=1

(
Acsm−1,n,Z(1− δ0

m) − Acsm+1,n,Z

)
(±1)n+1

]
sin(my1) =

= 2

∞∑
m=0

[ ∞∑
n=1

(
Assm+1,n,Z − Assm−1,n,Z(1− δ0

m) + Ass0nZ δ
1
m

)
(±1)n+1

]
cos(my1) +

+

[ ∞∑
n=1

(
Acsm−1,n,Z(1− δ0

m) − Acsm+1,n,Z + Acs0nZδ
1
m

)
(±1)n+1

]
sin(my1) (E17)
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y2∫
0

dΓ
`

dt
dy2 sin y1 =

=
∞∑
m=0

[
dAsm0Z

dt

sin y2 + y2

2
+
∞∑
n=1

(
dAssmnZ
dt

1− cos(ny2)

n
+
dAscmnZ
dt

sin(ny2)

n

)]
sin(my1) sin y1

+

[
dAcm0Z

dt

sin y2 + y2

2
+
∞∑
n=1

(
dAcsmnZ
dt

1− cos(ny2)

n
+
dAccmnZ
dt

sin(ny2)

n

)]
cos(my1) sin y1

For y2 = π and using relations (E15) and (E16) :

=

∞∑
m=0

[
dAsm0Z

dt

π

2
+

∞∑
n=1

(
dAssmnZ
dt

1− (−1)n

n

)]
1

2

(
cos((m− 1)y1)− cos((m+ 1)y1)

)

+

[
dAcm0Z

dt

π

2
+

∞∑
n=1

(
dAcsmnZ
dt

1− (−1)n

n

)]
1

2

(
sin((m+ 1)y1)− sin((m− 1)y1)

)

=

[
dAs00Z

dt

π

4
+
∞∑
n=1

(
dAss0,n,Z
dt

1− (−1)n

2n

)]
cos y1 +

[
dAc00Z

dt

π

4
+
∞∑
n=1

(
dAcs0,n,Z
dt

1− (−1)n

2n

)]
sin y1

+
∞∑
m=0

{[
dAsm+1,0,Z

dt

π

4
+
∞∑
n=1

(
dAssm+1,n,Z

dt

1− (−1)n

2n

)]
−

−

[
dAsm−1,n,Z

dt

π

4
+
∞∑
n=1

(
dAssm−1,n,Z

dt

1− (−1)n

2n

)]
(1− δ0

m)

}
cos(my1) +

+

{[
dAcm−1,0,Z

dt

π

4
+

∞∑
n=1

(
dAcsm−1,n,Z

dt

1− (−1)n

2n

)]
(1− δ0

m)−

−

[
dAcm+1,n,Z

dt

π

4
+

∞∑
n=1

(
dAcsm+1,n,Z

dt

1− (−1)n

2n

)]}
sin(my1) (E18)
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Finally :

Γ2(y1, y2 = π, Z) sin y1 =

=
∞∑
m=1

[
−mAsm0Z

y2 + sin y2

Ro −RH
+
∞∑
n=1

(
−m
n
AssmnZ(1− cos(ny2)) − m

n
AscmnZ sin(ny2)

)]
cos(my1)

[
mAcm0Z

y2 + sin y2

Ro −RH
+

∞∑
n=1

(m
n
AcsmnZ(1− cos(ny2)) +

m

n
AccmnZ sin(ny2)

)]
sin(my1) (E19)
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Appendix F: Second order Time derivative

Suppose the set of three points (t1, A(t1)) = (0, A1), (t2, A(t2)) = (∆t, A2) and (t3, A(t3)) =
(2 ∆t, A3). Then the Lagrange polynomial through those points is :

A(t) = A1
(t−∆t)(t− 2 ∆t)

2 ∆t2
+ A2

t (t− 2 ∆t)

−∆t2
+ A3

t(t−∆t)

2 ∆t2
(F1)

Taking the derivative :

dA(t)

dt
= A1

2 t− 3 ∆t

2 ∆t2
+ A2

2 t− 2 ∆t

−∆t2
+ A3

2 t−∆t

2 ∆t2
(F2)

Setting t = t3 = 2 ∆t, we get :

dA(t)

dt

∣∣∣∣
t=t3

=
A1 − 4A2 + 3A3

2 ∆t
(F3)
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Appendix G: Calculation of self-induction factors

Here we will prove the analytic expressions (4.5.58)-(4.5.62) and (4.5.99)-(4.5.103) of the self in-
duction factors. Similar calculations can be found in [2].

A. Bsj
mself

(m = 1, 2, ...)

According to the definition (4.5.15),(4.5.20) we get :

Bsj
mself

= lim
y2→y2P

(cos y2 − cos y2
P )

π∫
0

sin(my1) sin y1 ejil
∼
γ
i

1

xl(Q)− xl(P )

r3
dy1 =

= lim
y2→y2P

(cos y2 − cos y2
P )

 y1−ε∫
0

+

y1+ε∫
y1−ε

+

π∫
y1+ε

 (G1)

where ε is a very small positive number.

It is obvious that the first and the third integrals don’t exhibit any irregularity, so after being
multiplied with limy2→y2P

(cos y2 − cos y2
P ) = 0, have zero contribution to the self induction factor.

Therefore the only thing left to calculate is the second integral :

Bsj
mself

= lim
y2→y2P
ε→ 0

(cos y2 − cos y2
P )

y1+ε∫
y1−ε

sin(my1) sin y1 ejil
∼
γ
i

1

xl(Q)− xl(P )

r3
dy1 (G2)

In the neighborhood of (y1
P , y

2
P ) the expression inside the integral has tensorial character for the

generalized coordinate transformation. Moreover using the Taylor expansion for cos y2 around y2
P

(cos y2 − cos y2
P = −(y2 − y2

P ) sin y2
P +O(ε2)) :

Bsj
mself

= −(y2 − y2
P ) sin y2

P

∫
sin(my1) sin y1 ejil

∼
γ
i

1

∼ l
γα
`

(yα − yαP ){
(yβ − yβP )(yβ − yP β)

}3/2
dy1 =

= −(y2 − y2
P ) sin y2

P

∫
sin(my1) sin y1 ejil

∼
γ
i

1

∼
γ
l

1

Ro −RH
2

sin y1 (y1 − y1
P ){

(yβ − yβP )(yβ − yP β)
}3/2

dy1

−(y2 − y2
P ) sin y2

P

∫
sin(my1) sin y1 ejil

∼
γ
i

1

∼
γ
l

2

1

2
sin y2 (y2 − y2

P ){
(yβ − yβP )(yβ − yP β)

}3/2
dy1 =

Due to symmetry ejil
∼
γ
i

1

∼
γ
l

1
= 0, we are left only with the second integral :
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= −1

2
sin y2

P sin y2
P sin(my1

P ) sin y1
P e

jil ∼γ
i

1

∼
γ
l

2

(
y2 − y2

P

)2 ∫ dy1{
(yβ − yβP )(yβ − yP β)

}3/2
=

= −1

2
(sin y2

P )2 sin(my1
P ) sin y1

P ejil
∼
γ
i

1

∼
γ
l

2

2
√

∼
g11
`

α
`

=

(A74)
= −(sin y2

P )2 sin(my1
P ) sin y1

P ejil
∼
γ
i

1

∼
γ
l

2

1
2 (Ro −RH) sin y1

P
1
16 (Ro −RH)2 sin2 y1

P sin2 y2
P

√
∼
g11

α
⇒

Therefore

⇒ Bsj
mself

= − 8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2
sin(my1

P )

√
∼
g

11

α
, m = 1, 2, ... (G3)

In the above relations we omitted the limit for simplicity. Furthermore we assumed that the sin y1,

sin y2,
∼
γ
i

1
,
∼
γ
i

2
are approximately constant in the neighborhood of (y1

P , y
2
P ) and equal to their value

at (y1
P , y

2
P ).

B. Bcj
mself

(m = 0, 1, 2, ...)

According to the definitions (4.5.16), (4.5.20) we get :

Bcj
mself

def
= lim

y2→y2P

(
cosy2 − cosy2

P

) π∫
0

cos(my1) sin y1 ejil
∼
γ
i

1

δxl

r3
dy1 ⇒ (G4)

The relation for Bcj
mself is similar to (G3) but instead of sin(my1

P ) we have cos(my1
P ) :

⇒ Bcj
mself

= − 8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2
cos(my1

P )

√
∼
g

11

α
, m = 0, 1, 2, ... (G5)

C. Csjnself (n = 1, 2, ...)

According to the definitions (4.5.18), (4.5.21) we get :

Csjnself = lim
y1→y1P

(cos y1 − cos y1
P )

π∫
0

(1− cos(ny2)) sin y2 ejil
∼
γ
i

2

xl(Q)− xl(P )

r3
dy2
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= lim
y1→y1P

(cos y1 − cos y1
P )

 y2P−ε∫
0

+

y2P+ε∫
y2P−ε

+

π∫
y2P−ε

 =

Following the same process we calculate only the second integral :

= −(y1 − y1
P ) sin y1

P

∫
(1− cos(ny2)) sin y2 ejil

∼
γ
i

2

∼ l
γα
`

(yα − yαP ){
(yβ − yβP )(yβ − yP β)

}3/2
dy2 =

= − sin y1
P (1− cos(ny2

P )) sin y2
P e

jil∼γ
i

2

∼
γ
l

1

Ro −RH
2

sin y1
P (y1 − y1

P )

∫
y1 − y1

P{
(yβ − yβP )(yβ − yβP )

}3/2
dy2

= − sin y1
P (1− cos(ny2

P )) sin y2
P e

jil∼γ
i

2

∼
γ
l

1

Ro −RH
2

sin y1
P

1
2 sin y2

P
1
16 (Ro −RH)2 sin2 y1

P sin2 y2
P

2
√

∼
g

22

α
⇒

⇒ Csjnself =
8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2
(1− cos(ny2

P ))

√
∼
g

22

α
n = 1, 2, ... (G6)

D. Ccjnself (n = 1, 2, ...)

The relation for Ccjnself is similar to (G6) but instead of (1− cos(ny2
P )) we have sin(ny2

P ) :

Ccjnself =
8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2
sin(ny2

P )

√
∼
g

22

α
(G7)

E. Cj0self

The relation for Cj0self is similar to (G6) but instead of (1− cos(ny2
P )) we have (y2

P + sin y2
P )/2 :

Cj0self =
4

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2
(y2
P + sin y2

P )

√
∼
g

22

α
(G8)
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We now prove the relations (4.5.99) - (4.5.103) of the alternative self-induction factors :

F. Bj
0self

Bj
0self

= −(y1 − y1
P ) sin y1

P

∫
1 + cos y2

2
ejil

∼
γ
i

1

∼ l
γα
`

(yα − yαP ){
(yβ − yβP )(yβ − yP β)

}3/2
dy2 =

= − sin y1
P

1 + cos y2
P

2
ejil

∼
γ
i

1

∼
γ
l

2

1

2
sin y2

P (y1 − y1
P )

∫
(y2 − y2

P ){
(yβ − yβP )(yβ − yP β)

}3/2
dy2

= −1

2
ejil

∼
γ
i

1

∼
γ
l

2

1 + cos y2
P

2
sin y1

P sin y2
P

−2
∼
g
`12√

∼
g
`22

α
=

= ejil
∼
γ
i

1

∼
γ
l

2

1 + cos y2
P

4
sin y1

P sin y2
P

1
4(Ro −RH) sin y1

P sin y2
P

1
2 sin y2

P
1
16(Ro −RH)2 sin2 y1

P sin2 y2
P

2
∼
g

12√
∼
g

22
α
⇒

⇒ Bj
0self

=
4

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2

1 + cos y2
P

sin y2
P

∼
g

12√
∼
g

22
α

(G9)

G. Bsj
nself

(n = 1, 2, ...)

Setting sin(ny2
P ) to (G9) instead of (1 + cos y2

P )/2 we get :

Bsj
nself

=
8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2

sin(ny2
P )

sin y2
P

∼
g

12√
∼
g

22
α

(G10)

H. Bcj
nself

(n = 0, 1, ...)

Setting cos(ny2
P ) to (G9) instead of (1 + cos y2

P )/2 we get :

Bcj
nself

=
8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2

cos(ny2
P )

sin y2
P

∼
g

12√
∼
g

22
α

(G11)
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I. Csjmself (m = 1, 2, ...)

Setting cos(my1
P ) to (G9) instead of (1 + cos y2

P )/2 and swapping the indices the of the transfor-

mation matrices
∼
γ (changing the sing of the relation), we get :

Csjmself = − 8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2

cos(my1
P )

sin y1
P

∼
g

12√
∼
g

11
α

(G12)

J. Ccjmself (m = 0, 1, ...)

Setting sin(my1
P ) to (G9) instead of (1+cos y2

P )/2 and swapping the indices the of the transformation

matrices
∼
γ (changing the sing of the relation), we get :

Ccjmself = − 8

Ro −RH
ejil

∼
γ
i

1

∼
γ
l

2

sin(my1
P )

sin y1
P

∼
g

12√
∼
g

11
α

(G13)

K. Dj
self

Finally we calculate the self induction of the source-sink term. Specifically, according to definitions
(4.6.5), (4.6.6) :

Dj
Zself

= −(y2 − y2
P ) sin y2

P

∫
fS(Q) sin y1 sin y2

∼ j
γα
`

(yα − yαP ){
(yβ − yβP )(yβ − yβ P )

}3/2
dy1 =

= −(y2 − y2
P ) sin y2

P

∫
fS(Q) sin y1 sin y2

∼ j
γ1
`

(y1 − y1
P ){

(yβ − yβP )(yβ − yβ P )
}3/2

dy1

−(y2 − y2
P ) sin y2

P

∫
fS(Q) sin y1 sin y2

∼ j
γ2
`

(y2 − y2
P ){

(yβ − yβP )(yβ − yβ P )
}3/2

dy1
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= − sin y1
P (sin y2

P )2 fS(P )

(
1

2
(Ro −RH) sin y1

P
∼
γ
j

1

)
(y2 − y2

P )

∫
y1 − y1

P{
(yβ − yβP )(yβ − yβ P )

}3/2
dy1

− sin y1
P (sin y2

P )2 fS(P )

(
1

2
sin y2

P
∼
γ
j

2

)
(y2 − y2

P )

∫
y2 − y2

P{
(yβ − yβP )(yβ − yβ P )

}3/2
dy1

= −1

2
(Ro −RH) (sin y1

P )2 (sin y2
P )2 fS(P )

∼
γ
j

1

−2
∼
g12
`√

∼
g11
`
α
`

− 1

2
(sin y2

P )3 sin y1
P fS(P )

∼
γ
j

2

2
√

∼
g11
`

α
`

= (Ro −RH)(sin y1
P )2(sin y2

P )2fS(P )
∼
γ
j

1

1
4(Ro −RH) sin y1

P sin y2
P

1
2(Ro −RH) sin y1

P
1
16(Ro −RH)2(sin y1

P )2(sin y2
P )2

∼
g

12√
∼
g

11
α

− sin y1
P (sin y2

P )3 fS(P )
∼
γ
j

2

1
2(Ro −RH) sin y1

P
1
16(Ro −RH)2 (sin y1

P )2 (sin y2
P )2

√
∼
g

11

α
⇒

⇒ Dj
Zself

=
8

Ro −RH
sin y2

P fS(P )
(∼
γ
j

1

∼
g

12
− ∼
γ
j

2

∼
g

11

) 1√
∼
g

11
α

(G14)

In the proof of the above relations we used the following integral:

Dαβ γ ≡ yα
εγ∫
−εγ

√
α
`

yβ

(yβ yβ)3/2
dyγ (G15)

with (α, β, γ) ∈ {(2, 1, 1), (1, 1, 2), (2, 2, 1), (1, 2, 2)} and

Dαβ γ
self ≡ lim

yα→0
Dαβ γ (G16)

which is proven to be :

D211
self = −

2
∼
g12
`√

∼
g11
`

√
α
`

D112
self =

2
√

∼
g22
`√
α
`

(G17)

165



D221
self =

2
√

∼
g11
`√
α
`

D122
self = −

2
∼
g12
`√

∼
g22
`

√
α
`

(G18)

Since relations (G17) and (G18) are symmetrical, we only need to prove the first relation of each.

proof :

In the following realtions we omit the underscores for simplicity :

yδ yδ = α11 y
1 y1 + 2α12 y

1 y2 + α22 y
2 y2 =

= (
√
α11 y

1)2 + 2
α12√

α11
√
α22

(
√
α11 y

1) (
√
α22 y

2) + (
√
α22 y

2)2 =

=

[
(
√
α11 y

1) +
α12√

α11
√
α22

(
√
α22 y

2)

]2

+

[ √
α

√
α11
√
α22

(
√
α22 y

2)

]2

=

= (s1 + cosφ s2)2 + (sinφ s2)2 =

= x2 + y2 = r2 (G19)

where

s1 =
√
α11 y

1, s2 =
√
α22 y

2 (G20)

cosφ =
α12√

α11
√
α22

, sinφ =

√
α

√
α11
√
α22

, (G21)

x = s1 + cosφ s2 y = sinφ s2 (G22)

lim
y2→0

y2

∫ √
α y2

(yδ yδ)3/2
dy1 =

= lim
y2→0

y2

∫ √
α√

α11
√
α22

(
√
α22 y

2)

(yδ yδ)3/2
d

(
√
α11 y

1 +
α12√

α11
√
α22

(
√
α22 y

2)

)
=

= lim
y→0

(√
α11√
α

y

)∫
y

(x2 + y2)3/2
dx =

= lim
y→0

(√
α11√
α

y

)[
x

y
√
x2 + y2

]x
−x

= 2

√
α11√
α

(G23)

For orthogonal coordinate systems
√
α11/
√
α = 1/

√
α22. If the system is also Cartesian then
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√
α11/
√
α = 1. The factor 2, in relation (G23) is due to the symmetry around zero. If the

boundary was a circle the corresponding factor for the Cauchy integral would be 2π.

lim
y2→0

y2

∫ √
α y1

(yδ yδ)3/2
dy1 =

= lim
y2→0

y2

√
α

α11

x∫
−x

[
(
√
α11y

1) + α12√
α11α22

(
√
α22y2)

]
− α12√

α11 α22
(
√
α22y

2)

(yδyδ)3/2

d

(
√
α11y

1 +
α12√

α11
√
α22

(
√
α22y

2)

)

= lim
y→0

(√
α11√
α

y

)(√
α

α11

) x∫
−x

x− y/ tanφ(√
x2 + y2

)3 dx =

= lim
y→0

(√
α11√
α

y

)(√
α

α11

)[
−
��

�
��
�1√

x2 + y2
− 1

tanφ

x

y
√
x2 + y2

]x
−x

=

= lim
y→0

(√
α11√
α

y

)(√
α

α11

)(
− 1

tanφ

2x

y
√
x2 + y2

)
=

=

(√
α11√
α

y

)(√
α

α11

)(
−2

α12√
α

)
= − 2α12√

α11 α
(G24)

According to relation (A70) α11 = g11, α22 = g22 and α12 = g12, so substituting to (G23), (G24)
we get (G17) and (G18)

Figure G.1
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