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Extended Summary

Neuro-Symbolic Visual Question An-
swering for Physical Interaction Under-
standing and Dynamic Scene Interpre-
tation

Problem Description

Visual Question Answering is a field of Artificial Intelligence that involves numerous
of its sectors, like Natural Language Processing and Computer Vision. Teaching a machine
to understand a scene, either static (image) or dynamic (video) has improved vastly within
the last years. VQA problems are usually given as a set of images and questions, with the
algorithm aimed at providing the correct answer. In most cases, this is solved by encoding the
image and the question with a CNN, and a Sequential Encoder respectively and “choosing” an
answer in the form of a multiple-choice classification task through another neural network.
However, the state-space of the answers is strictly defined, and new answers cannot be
inferred with the models current knowledge. This can in some cases be replaced by a special
type of neural network, a Decoder, that will provide answers in an open-ended format, but
at the same time severely complicating the problem.

The images can also be generalized to videos and the questions can ask about events
that take place that are shown in these videos, as well as higher level information that can be
extracted through the interaction of the events themselves. These answers while not always
hard to answer by a human, cannot be answered by a machine that hasn’t been trained with
thousands upon thousands of samples.

The above models will usually rely on huge amounts of data, as the networks rely on
projecting the meanings of the images and the questions in a latent space and -in turn-
re-projecting them in an interpretable space in the form of an understandable answer. These
statistical models will rely on costly datasets and will require training on powerful machines
for extended periods of time.

Intrigued by the above difficulties, we propose a new dataset, accompanied by a new
model, that aims to simulate such events, as well as provide solutions to the above prob-
lems. The “Physics Answers with Questions” (PhAQ) dataset simulates pseudo-3D ball
interactions that follow Newtonian physics on a table, while interacting with elements such
as obstacles of various shapes, walls, and gravity distortions. At the same time, we devel-
oped “Newton with Neural Networks” (NewtoNN), a Neuro-Symbolic VQA answering



ensemble model, that aims to interpret and understand the interactions inside each simula-
tion and in turn answer the questions given to it with a hybrid approach, a Neuro-Symbolic
approach. This ensemble model utilizes both neural techniques that rely on neural networks
in order to extract characteristics and labels from the given videos, while simultaneously
utilizing symbolic or else rule-based techniques, in order to combine the various modules of
the network.

This approach apart from providing fully interpretable intermediate steps in the ensem-
ble model, has the added benefit of requiring far less data in order to train and infer upon
given samples. This is due to the fact that many rules, which would need to be statistically
approached in a purely neural model, are now given in the form of symbols and commands
imposed during the intermediate stages of the models development.

Related Work

Neuro-Symbolic approaches are a new hybrid architecture comprised of two old -and
at many times opposing- techniques: Neural Networks and Symbolic Reasoning. It aims to
combine the best parts of its components, the raw data management capabilities of Neural
Networks, and the compositional and causal structure understanding of Symbolic models.

They have been used in VQA tasks were there is limited data and complicated questions
to be answered, and especially where object characteristics are necessary. Neuro-Symbolic
VQA tasks will utilize aspects from neural networks, mainly their ability to encode images
(CNNs) and sequences (RNNs). One of the best known datasets created for Neuro-Symbolic
VQA is the CLEVR [25] dataset which contains pairs of images with items of various shapes
and sizes, and questions regarding attributional and spatial information. The questions are
translated to a series of programs, which are in turn applied on the interpreted video-frame
as extracted by MaskRCNN, in order to provide answers in Natural Language. Further
expanding this, the NeuroSymbolic Concept Learner [35] is able to learn visual concepts and
semantic parsing of a sentence without explicit supervision, simply by looking at the image
and create the programs itself. Introducing temporal information, CLEVRER [54] adds
simple moving items that collide together. Due to the simplicity of the simulations, it can
additionally train a predictor in order to reply to counterfactual and predictive questions.
Other attempts have been made to combine physical understanding with neural networks,
such as the case were physical concepts are attempted to be discovered with neural networks
[24] given their respective simulations.

This work aims to combine elements from all the above cases, as well as expand certain
notions that are introduced in each of the abovementioned works.

Dataset and Model Description

PhAQ consists of procedurally generated videos, that are accompanied with questions
from 10 categories with many questions per category and many rephrases per question.
Along with each question, a set of symbolic commands called “programs” is generated. The
simulations, while random (procedural) are broken into eight (8) different difficulties, with



each difficulty having a different combination of number of balls, walls, obstacles and gravity
fields. The dataset is aimed to be visually simple. Each sample consists of a maximum of
10 seconds of simulation, during which all events are recorded. These events are ball-to-ball,
ball-to-wall and ball-to-obstacle collisions, and ball exits. These events are written to a logfile,
which is part of the generated files of each simulations. Along the logfile, small data-tables
that include information regarding the balls, the walls, the obstacles and the gravity fields
are also generated.

The questions in the dataset are procedurally generated as well. They consists of tem-
plated expressions, in which attributes like color, size, shape and side are replaced based on
the current simulation. A similar technique is applied to the templates of their respective
programmes.

The dataset generation can be fully parallelized to an arbitrary number of threads and
is carefully RNG managed, in order to be fully reproducible.

NewtoNN is an ensemble model. That is a model comprised of independent sub-
models (modules), with each module tied to a specific task. There are different modules
for the Frame Interpretation, the Dynamics Predictor, the mass and friction estimators,
the Neuro-Symbolic Translator and the Symbolic Executor. The total architecture of the
ensemble model can be seen in Figure 0.1.

The Frame Interpreter consists of a paired MaskRCNN [21] for spatial and categorical
inference (mask and labels), while an SVM is used in order to predict the color of each
entity. Each video is broken into its respective frames, with each frame passing through the
MaskRCNN. The interpreted sequence of frames forms the input of the next stage of the
algorithm, the Dynamics Predictor, which is in practice a modified PropNet [32], that aims
to understand the events taking place in each simulation. The Neuro-Symbolic translator
is a sequence-to-sequence model, which uses a GRU unit in its encoder and decoder, with
the latter utilizing an attention mechanism. It aims to translate a sentence from Natural
Language, to a new Symbolic Language (a Domain Specific Language), an order of commands
that aims to extract the answer from the output of the Dynamics Predictor. Finally, the
Symbolic Executor receives as an input the data tables that are generated by the Dynamics
Predictor and in turn, by utilizing the sequence of commands -which are in fact various
operations in one or more data-tables- can extract and create an answer in Natural Language.

Each module is trained separately. Since the Symbolic Executor is purely symbolic, it
doesn’t require any training, as its inference is purely rule-based. The modular nature of
the model can help develop, optimize and evaluate every model separately, as well as give
us interpretable results in every intermediate steps.

Experimental Evaluation

The training of all the models takes place separately. The Frame Interpreter mostly
consists of a MaskRCNN. Since MaskRCNNs are hard and very data intensive to train, we
fine-tune a pre-trained MaskRCNN with a version of our dataset that contains the masks
and labels of randomly sampled frames from the simulations. A total of 900 frames are used
as training test, with a validation set that consists of another 180. In total, we achieve a
classification accuracy above 99%.



Figure 0.1: End-to-end process for answering questions. Each different element is shown with
a different color. Blue is the video-to-frame breaker, red is the frame interpreter (MaskR-
CNN, with color classifier, and all other related code), green is the Dynamics Predictor
(PropNet), purple is the sequence-to-sequence model (Attention-GRU), and orange is the
Symbolic Executor.

The next model to be trained is the Dynamics Predictor. For this purpose a dataset
that consists of 240 samples is generated, with 160:40:40 split for the train, validation and
test set respectively. The training takes approximately 2 days in a mid-range GPU (GTX
1650). We can evaluate on a per-event basis. An event is considered detected when it its
predicted timestep is the same (within a small margin of error, depending on the sampling
rate of PropNet) as the actual event, with the same participants. In the cases of ball-to-
wall collisions and ball exits, the event detection precision was above 90% in all three sets.
However, the other events such as ball-to-ball and ball-to-obstacle detection had a smaller
precision, with around 65% and 80% precision respectively, in both the validation and test
sets. In all cases, the recall was significantly higher. This reduced precision is more than
expected, since the participants are items with variable coordinates, while in the case of
ball-to-wall and ball exits the walls and the sides are stationary and invariant inbetween
simulations.

Two different networks have also been utilized in order to predict the masses of the balls
within the simulation, simply by looking at their behavior, as well as the type and level of
resistance that the balls are subject to. In both these cases, the datasets used were far larger,



and in the case of mass prediction the accuracy could surpass the baseline by about 15-20%,
while in the case of friction prediction the accuracy fared off better. However, generalization
in the latter cases where gravity fields were included, yielded lower accuracy (as expected)
since the resistance estimation relies heavily on the trajectory of the balls which is heavily
altered when interacting with a gravity field.

The Neuro-Symbolic Translator can be trained with the already existing datasets. Vari-
able train sets are used in order to test its accuracy. With train datasets bigger than 5k
samples, it can generalize extremely well, surpassing 98% accuracy in generating the correct
sequence of commands of a new, unseen natural language question.



Question Family Question ID
Levels

1 2 3 4 5 6 7 8

Compare Integer

1.0 95.83 98.33 100.00 97.50 100.00 97.50 100.00 100.00
1.1 100.00 98.75 100.00 100.00 100.00 100.00 100.00 100.00
1.2 97.50 97.50 100.00 98.75 100.00 98.75 100.00 100.00
1.3 - - - 100.00 100.00 97.32 100.00 100.00
1.4 - - - 100.00 100.00 97.47 100.00 100.00
1.5 - - - 100.00 100.00 97.50 100.00 100.00

Same Relate

2.0 96.59 98.65 100.00 97.71 100.00 96.33 100.00 100.00
2.1 95.94 98.50 100.00 99.25 100.00 99.29 100.00 100.00
2.2 - - - 100.00 100.00 100.00 100.00 100.00
2.3 99.46 98.80 100.00 98.44 100.00 98.80 100.00 100.00
2.4 95.60 97.93 100.00 98.05 100.00 97.04 100.00 100.00
2.5 - - - 100.00 100.00 100.00 100.00 100.00
2.6 92.86 98.08 100.00 95.70 100.00 96.70 100.00 100.00
2.7 87.50 98.25 100.00 97.14 100.00 97.06 100.00 100.00
2.8 - - - - 100.00 - 100.00 100.00
2.9 97.09 100.00 100.00 98.56 100.00 98.53 100.00 100.00
2.10 96.12 97.14 100.00 98.56 100.00 97.12 100.00 100.00
2.11 - - - 100.00 100.00 100.00 100.00 100.00

Comparison
3.0 96.67 95.24 100.00 99.50 100.00 96.50 100.00 97.89
3.1 96.15 90.62 100.00 98.61 100.00 97.22 100.00 100.00
3.2 - - - - 100.00 - 100.00 100.00

Single Or
4.0 95.00 96.25 100.00 98.12 100.00 98.12 100.00 99.39
4.1 94.97 96.25 100.00 98.75 100.00 99.38 100.00 99.39
4.2 96.25 96.88 100.00 98.12 100.00 99.38 100.00 99.39

Zero Hop

5.0 96.25 96.25 100.00 98.75 100.00 97.50 100.00 100.00
5.1 99.17 96.67 100.00 100.00 100.00 99.17 100.00 100.00
5.2 - - - 100.00 100.00 100.00 100.00 100.00
5.3 99.04 98.61 100.00 98.72 100.00 99.38 100.00 100.00
5.4 98.67 98.49 100.00 100.00 100.00 98.97 100.00 99.50

Domain Exits

6.0 61.88 65.19 57.50 70.25 68.99 67.50 75.32 73.46
6.1 65.19 67.50 85.62 75.80 82.91 73.08 94.94 92.55
6.2 70.44 72.33 78.75 68.55 83.54 74.05 89.24 88.89
6.3 63.75 71.25 60.00 61.25 71.25 62.50 81.25 74.39
6.4 - - - 66.67 - 100.00 60.00 50.00
6.5 - - - 50.00 52.94 54.55 59.38 64.66

Collision Order

8.0 95.00 85.00 51.90 83.75 49.37 76.25 39.24 32.93
8.1 - - - 66.67 71.01 83.33 81.94 51.22
8.2 92.50 72.50 70.00 80.00 55.00 75.00 53.75 46.34
8.3 90.00 76.25 86.25 80.00 82.50 83.33 80.00 86.59

Quantitative Answers

10.0 85.00 80.82 66.67 82.19 60.53 82.43 61.54 45.33
10.1 97.50 92.50 85.00 92.50 75.00 90.00 80.00 68.29
10.2 97.50 100.00 95.00 95.00 92.50 97.50 95.00 87.80
10.3 97.50 92.50 67.50 90.00 62.50 75.00 45.00 26.83
10.4 97.50 92.44 68.07 89.74 63.03 75.63 42.02 21.31
10.5 87.29 65.55 39.50 65.55 37.29 70.59 40.34 17.21
10.6 100.00 100.00 100.00 89.74 52.14 89.92 37.82 17.21

Binary Answers

11.0 97.50 98.75 95.00 96.23 92.41 95.51 93.38 93.20
11.1 100.00 100.00 96.00 100.00 100.00 100.00 93.75 97.30
11.2 97.50 95.00 100.00 97.50 100.00 95.00 97.50 95.12
11.3 92.50 100.00 100.00 95.00 95.00 92.50 95.00 90.00
11.4 100.00 80.00 66.67 60.00 57.89 62.50 61.54 58.82
11.5 - 80.00 42.86 60.00 63.16 62.50 69.23 64.71
11.6 - - - 100.00 38.46 50.00 61.11 65.62
11.7 - - - 100.00 38.46 50.00 55.56 67.74
11.8 - 100.00 50.00 - 57.14 33.33 72.73 55.00
11.9 - 100.00 50.00 - 57.14 33.33 72.73 70.00
11.10 - - - 100.00 93.94 94.74 93.94 97.44
11.11 - - - 100.00 97.30 100.00 89.19 92.31

Table 0.1: End-to-end accuracies per question for all levels. 40 test samples/simulations
are used per level for evaluation. The Dynamics Predictor has been trained only on level 8
samples. Physics Understanding questions are explained separately in their own section.



Finally, end-to-end VQA results were given. The training of PropNet was only per-
formed on simulations of level 8, as it had the best balance between events. The static image
reasoning tasks performed with accuracies around 99-100%, since they only rely on the input
of the MaskRCNN. The dynamic reasoning tasks had lower accuracies, but in general per-
formed well, with the accuracies varying between questions, question categories and levels.
A summary of each question of temporal interpretation can be seen in Table 0.1.

Conclusions

For this work, a completely new dataset (PhAQ) was created in order to address
VideoQA problems regarding simple static image understanding, as well as complicated
temporal event interpretation. This dataset in turn was used to train the various components
of the NewtoNN ensemble network, an architecture that uses various existing, as well as
new modules in order to reply to questions regarding physics simulations.

The development of NewtoNN, and its performance on PhAQ has proven that compli-
cated VideoQA tasks can be answered with ensemble Neuro-Symbolic architectures, even
with limited training samples. Neuro-Symbolic architectures utilize non-biased priors in-
serted by the symbolic language itself, allowing for complicated questions to be broken down
to their simplest of elements, and build an answer based on them, rather than relying on
complicated latent space representations. This opens a path in cases were data is limited or
expensive to produce, as is the case of many real-life scenarios.

Keywords

Visual Question Answering, VQA, VideoQA, Neuro-Symbolic, NS, Sequence-to-sequence,
Machine Learning, Deep Learning, Computer Vision, Ensemble Model, Event Interpretation,
Simulation, Interaction
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Abstract

Visual Question Answering (VQA) is a task of Machine Learning that combines aspects of
Natural Language Processing and Computer Vision. VQA tasks are usually given in the form of an
image or a video that is accompanied by a question, with the aim of producing Natural Language
answers. The answers can be chosen in the form of a classification problem, or generated by another
network in an open-ended form.

While the above conventional methods have been proven to work, they will at most times
require a lot of data, and their accuracies will surpass baselines only by a small percentage. The goal
of this Master Thesis is to follow a different approach that will utilize Neuro-Symbolic architectures,
which combine Neural Networks along with Symbolic reasoning in order to train and infer answers
with much less data, and far higher accuracy from even complicated, temporal questions.

This Master Thesis is concerned with the proposal of a novel dataset aimed to tackle issues like
the ones mentioned above, as well as the development of an ensemble model trained in that dataset,
aimed to evaluate the performance of Neuro-Symbolic approaches on VQA tasks. The dataset
consists of a procedurally generated pseudo-3D physics simulations of a variable number of balls,
that interact with walls, other balls, obstacles and gravity fields, as well as a number of questions
regarding said events. The aim of the ensemble model is to be able to understand the interactions
that take place within each simulation, and answer these questions. The ensemble model consists
of a frame interpreter in the form of a MaskRCNN, a Dynamics Predictor that utilizes a PropNet,
a sequence-to-sequence model aimed to translate the Natural Language questions into series of
symbolic commands and finally a Symbolic Executor, aimed to extract Natural language responses
from the output of the Dynamics Predictor by utilizing the symbolic commands. Additionally,
some extensions that further allow the understanding of scene dynamics, such as mass of objects
and friction estimation are developed and paired with the above modules.

The proposed model is trained and tested upon the new dataset. This approach eliminates

the existence of prior language biases, and provides beyond expected accuracies in the end-to-end

VQA tasks, especially when taking into account the limited dataset size used for training, as well

as the rather small computational resources used for training and inference. Apart from end-to-

end performance, each modules performance is evaluated separately, in order to further test the

strengths and weaknesses of each module.
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Σύνοψη

Η αυτόματη απάντηση οπτικών ερωτήσεων (VQA), είναι ένας τομέας της Μηχανικής Μάθησης που συν-
δυάζει οντότητες όπως η Επεξεργασία Φυσικής Γλώσσας και η ΄Οραση Υπολογιστών. Τα προβλήματα VQA
δίνονται συνήθως με τη μορφή μιας εικόνας ή ενός βίντεο, που συνοδεύεται από μια ερώτηση, με σκοπό την

αυτοματοποιημένη απάντηση σε μορφή Φυσικής Γλώσσας. Οι απαντήσεις μπορούν είτε να επιλεχθούν με τη

μορφή ταξινόμησης κάποιων προεπιλεγμένων απαντήσεων, είτε να δημιουργηθούν σε ανοιχτή μορφή από κάποια

αντίστοιχη αρχιτεκτονική.

Παρότι οι παραπάνω αναφερθείσες μέθοδοι έχουν αποδειχθεί λειτουργικές, τις περισσότερες φορές απαιτούν

μεγάλη ποσότητα δεδομένων, με τις τελικές ακρίβειές τους να περνάνε κατά λίγες ποσοστιαίες μονάδες την

ακρίβεια αναφοράς. Ο σκοπός αυτής της Μεταπτυχιακής Εργασίας είναι να ακολουθήσει μια διαφορετική σκοπιά,

που θα αξιοποιεί Νευρο-Συμβολικές αρχιτεκτονικές, οι οποίες συνδυάζουν νευρωνικά δίκτυα και συμβολική

συλλογιστική (βάσει κανόνων) με σκοπό να εκπαιδεύσουν, αλλά και να συμπεράνουν απαντήσεις με πολύ λιγότερα

δεδομένα και με σημαντικά αυξημένη ακρίβεια, ακόμα και απο περίπλοκες χρονικά εξαρτώμενες ερωτήσεις.

Η Μεταπτυχιακή αυτή Εργασία ασχολείται με την πρόταση ενός νέου σέτ δεδομένων, που στοχεύει στο να

αντιμετωπισθούν τα προαναφερθέντα προβλήματα, αλλά και την ανάπτυξη ενός συνολικού μοντέλου εκπαιδευ-

μένου στο σέτ αυτό, με σκοπό την αξιολόγηση Νευρο-Συμβολικών προσεγγίσεων σε προβλήματα VQA. Το σετ
δεδομένων αποτελείται από στοχαστικά γεννημένων ψευδο-τρισδιάστατων προσομοιώσεων φυσικής με μεταβλη-

τό αριθμό μπαλών, που αλληλεπιδρούν με τοίχους, άλλες μπάλες, εμπόδια και βαρυτικά πεδία, καθώς και έναν

αριθμό ερωτήσεων που σχετίζονται με τα γεγονότα αυτά. Ο σκοπός του συνολικού μοντέλου είναι να μπορεί

να αντιληφθεί τις αλληλεπιδράσεις που λαμβάνουν χώρα στην προσομοίωση, και να απαντήσει στις ερωτήσεις

αυτές. Το μοντέλο αποτελείται από έναν ερμηνευτή καρέ, ο οποίος υλοποιεί κατά κανόνα ένα MaskRCNN,
έναν δυναμικό αντιληπτή γεγονότων που αξιοποιεί ένα PropNet, ένα ακολουθιακό μοντέλο που μεταφράζει τις
ερωτήσεις σε φυσική γλώσσα σε μια ακολουθία συμβολικών εντολών και τέλος, έναν συμβολικό εκτελεστή, με

σκοπό να εξάγει απαντήσεις σε φυσική γλώσσα από την έξοδο του δυναμικού αντιληπτή αξιοποιώντας τις συμ-

βολικές αυτές εντολές. Επιπροσθέτως, αναπτύσσονται και ορισμένες επεκτάσεις που επιτρέπουν την κατανόηση

δυναμικής συμπεριφοράς όπως η πρόβλεψη μάζας και η εκτίμηση επιπέδου και είδους τριβής.

Το προτεινόμενο μοντέλο εκπαιδεύεται και ελέγχεται επάνω στο σετ δεδομένων. Αυτή η προσέγγιση

εξαλείφει την χρήση γλωσσικών πρότερων και προσφέρει ακρίβειες πέραν των προσδοκιών στα συνολικά τελικά

VQA αποτελέσματα, ειδικά όταν λαμβάνεται υπόψιν και το σχετικά περιορισμένο μέγεθος του σετ δεδομένων,

αλλά και οι λίγοι υπολογιστικοί πόροι που χρησιμοποιήθηκαν. Εκτός από την συνολική επίδοση, η επίδοση και

κάθε αυτοτελούς μέρους ελέγχεται ξεχωριστά με σκοπό τον περαιτέρω έλεγχο των πλεονεκτημάτων και των

αδυναμιών του καθενός.
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1 Introduction

During the last 10 years, Machine Learning and Artificial Intelligence, have advanced
with rapid paces. We are in what is know as the “Third wave of Artificial Intelligence”.
Machines have been able to perform many tasks significantly better than the average -or even
a specialized- human. Cancer detection [42] , Computer Vision [22], and language translation
[53] are tasks that are done in almost no time, with accuracies sometimes surpassing those
of their human counterparts.

These are the well known, and often advertised perks of modern Artificial Intelligence,
and most people that have not dwelt within the domains of this science, perceive Artificial
Intelligence as an all powerful tool. However that is not the case.

There are also many tasks where AI algorithms fail, or simply cannot be trained to
perform. Simple actions, like driving a car, are considered not yet perfected [56], however,
even the simplest of human beings can achieve it. Another one of those task -and not
uncorrelated to car driving- is the understanding of a moving surrounding. A toddler can
understand action and reaction within the first couple of years in its life. If a ball is thrown
towards it, it will lift its arms to either catch it or protect itself from the incoming impact.
When it plays football it learns to kick the ball in a specific way in order to shoot it towards
the nets. When it is running towards a table, it will duck or turn in order to avoid it. If it
leaves an item on the very edge of a table, or on top of the other, he has ways of making it
balance. All of the above are done without solving any equations, without running Finite
Element Method algorithms. A latent model has been created in the child’s brain that
can incredibly quickly understand what will happen in each case [34, 49]. While intuitive
physics are a yet-to-be-solved problem of AI, other correlated areas fare slightly better, with
temporal scene and event understanding and Visual Question Answering being some of them
[54].

1.1 Visual Question Answering

Visual Question Answering (VQA) is the task of automatically answering questions by
reasoning over a given image or a video (VideoQA). It has attracted considerable attention
in the research community during the past few years, as the success of image classification,
object detection, and Natural Language Processing (NLP) has shifted interest towards more
challenging and demanding tasks. These systems are usually ensemble networks, that pair
a visual component in order to understand the image and a Natural Language Processing
component, that parses the question, allowing the fusion of the two results to lead to an
answer. The general idea can be seen in Figure 1.1. Usual VQA systems rely heavily on
their visual component to extract information from the image in the form of a latent vector,
and by combining it with the context of the question, they produce an answer similarly to
a classification problem.
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Figure 1.1: Visual Question Answering pipeline.

Since the availability of large-scale datasets [18, 33, 28, 41], multiple approaches have
been proposed, with most of them relying heavily on the image encoder to extract information
from the image, and the question encoder to produce a good representation of the question in
a latent space. But addressing VQA as a classification task poses a limit to current systems,
as predicting answers on a phrase-level contradicts our intuition suggesting the meaning
of a phrase emerges from the syntax and its semantics, rather than its actual context. In
addition to that, it severely limits its generalization properties, since it needs to understand
the distribution of inputs behind each answer. Open-answer systems have been developed,
with their answers being more realistic, while at the same time requiring a lot more work in
evaluating the correctness of an answer [20].

In all the above cases however, the data required to create a working model is at most
times huge. Since the ensemble model is facing the VQA task from a statistical perspective,
large amounts of data will be required to train it. This, paired with the uninterpretable
nature of the total end-to-end structure, leads to problems regarding both training and
understanding the internal processes of the ensemble architecture. For the above-mentioned
reasons, in recent years a different approach has been developed, pairing two seemingly
unrelated branches of computer science. The well known and developed neural networks,
and Symbolic Reasoning, the “old-school” rule-based approach to problem solving.

1.2 Neuro-Symbolic Reasoning

Neuro-Symbolic Reasoning, as its name suggests, is an amalgam of architectures utiliz-
ing both Neural Networks [15], as well as classic, rule-based Symbolic Reasoning. Despite
still being in their early stages of development, these hybrids utilize their parent technologies
to improve the total accuracy of algorithms, while simultaneously providing interpretability,
and reducing the amount of time and data required to train them. They can recognize prop-
erties of objects (color, texture, size) present in an image or video, and reason about them,
something which deep networks have had limited success in performing. Neuro-Symbolic
AI further demonstrates the ability to reply to questions, an important aspect of human
learning. These hybrids require far less data to be able to achieve a certain accuracy, rely
on rule based (as opposed to statistical based) logic, and possess interpretable (by a human)
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intermediate states, allowing further improvement and supervision during development and
failure investigation.

Figure 1.2: Neuro-Symbolic VQA, compared to its “parents”, symbolic reasoning, and neural
network reasoning [3].

Apart from being able to perform VQA tasks incredibly well, they can also be used
as physics engines, in tasks where Artificial Intelligence, and neural networks will at most
times fail. One domain, under research that addresses this problem, is Intuitive Physics
[36] and Dynamic Scene Reasoning, topics which are hard to model, and even harder to
train by conventional means. Neuro Symbolic VQA [55] has emerged as a potential solution.
Contrary to popular methods, where a neural network will create a latent representation in
the form of a non-interpretable vector and infer based upon its value, Neuro-Symbolic (NS)
approaches will instead produce understandable representations by breaking a complicated
problem into simpler, smaller and fully interpretable ones. This is -after all- what a human
does. He learns how to transfer knowledge from a specific domain to another.

Motivated by this emerging trend, we developed and experimented with the NewtoNN
(Newton with Neural Networks) Neuro-Symbolic VQA system build upon a custom made
dataset, called PhAQ (Physics Answers and Questions). Apart from answering static
image questions, one can query upon temporal events, order and numbering of events, entity
of events, as well as physical quantities that can be observed, such as the mass of the
participating objects through their interactions, and the type and level of friction that they
are facing. This multi-module model has separate models for the visual component, the
dynamic event locator, the neuro-symbolic parser, the mass and friction estimators, as well
as the Symbolic Executor.
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1.3 Goal and structure of this Thesis

This Master Thesis will focus on the aspect of understanding and locating physical
events, interactions between items, estimating physical quantities regarding said interac-
tions, and finally reply to questions regarding simple, or more complicated aspects involving
the above. As with many previous work, where datasets did not exist for the task that was
being researched into, similarly here, a fully customizable and reproducible dataset will be
developed and generated. This dataset is composed of small videos that depict the simulated
movements, collisions and other events of various balls on a surface that has walls, obsta-
cles, as well as gravity fields. Together with each simulation, a set of questions along with
their answers are generated. These questions cover a wide range of topics, from static image
understanding, to complicated temporal physical interactions between the various objects
participating in the simulation. The aim is to train an ensemble model that will be able to
answer those questions successfully, without resorting to language biases (as is the case with
pure neural approaches). For this purpose, a mix of conventional methods (neural networks)
and symbolic reasoning is developed and implemented. These methods cover a wide range of
AI fields, such as that of Computer Vision, Natural Language Processing, as well as symbolic
algorithmic techniques. The mix of all these methods that aims to answer questions is called
Visual Question Answering (VQA), and is still considered a rather complicated task, even
by today’s standards.

Within the context of this work, the following were developed:

• PhAQ: a new, custom, procedurally generated dataset, involving collisions between ob-
jects, event tracking, and question generation. This dataset also includes:

– Development of a sub-dataset aimed to train a MaskRCNN in order to track the
objects above.

– Development of a sequence-to-sequence dataset aimed to translate a question in Nat-
ural Language (English) to its Neuro-Symbolic counterpart.

• Development of NewtoNN, an ensemble Neuro-Symbolic VQA model, which includes
but is not limited to:

– The MaskRCNN training procedure, in order to extract the symbolic representations
of each scene.

– The sequence-to-sequence translator, which aims to translate a Natural Language
question into it’s Symbolic counterpart.

– The development of a significantly altered Propagation Network, aimed to predict
events, as well as dynamics involving the simulations.

– The development of a Symbolic Executor, aimed to produce Natural Language an-
swers from the outputs of the Propagation Network.

– The development and implementation of two networks that can understand physical
quantities from the simulation, such as the balls’ mass, and friction types.

The structure of this Master Thesis is as follows:
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• Chapter 2: Historic analysis and presentation of existing techniques that are being used
in Neural Networks, and AI in general, with focus given on Neuro-Symbolic approaches.

• Chapter 3: This chapter explains how the dataset is generated. The physics engine,
the question generation techniques, and the way that events are tracked and recorded are
analyzed.

• Chapter 4: The proposed model to solve the posed problem is analyzed in a macroscopic
view, with each model explained separately

• Chapter 5: The experimental setup is thoroughly analyzed. The data used, as well as
the models for each sub-module are explained, as well as the way that all those modules
interoperate and are evaluated.

• Chapter 6: The results of each module separately are shown. These include training
times, accuracies, and variations that were used during development.

• Chapter 7: The end-to-end VQA results are depicted in this chapter. These results are
shown in their full form for level 8, and in a more compact form for all the other levels.

• Chapter 8: Various issues faced are analyzed in combination with proposals for future
work (continuation), and finally a conclusion of all the work done is given.

• Appendices:

– A. The questions from all categories, their templates, as well as their respective
programmes are presented.

– B. The distribution of answers of the questions for various simulation levels are
presented.This shows that despite the imbalanced answers in many cases, biases are
non-existent.

– C. Mathematical background on the Dynamics Predictor used is given.
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1.4 Material

All the developed software used to simulate, produce the data, train the models, the
models themselves, the codes that process the data, as well as the generation of any figures,
and some saved models’ checkpoints, can be found on this projects GitHub page:

https://github.com/sbmyron/Master Thesis

All code is written in Python 3.8, with libraries being used -but not limited to- PyTorch,
torchvision, pandas, sklean. Some post-processing software, and the MaskRCNN training is
written in Python Notebooks, while many handy scripts are written either in bash, or in
Python using the os library.

Some samples of the videos that are generated and used to train the models, can be
found in the links shown by the QR codes below:

(a) Level 1 (link) (b) Level 2 (link) (c) Level 3 (link) (d) Level 4 (link)

(e) Level 5 (link) (f) Level 6 (link) (g) Level 7 (link) (h) Level 8 (link)

Figure 1.3: QR codes and links for video samples of each simulation difficulty.

6

https://github.com/sbmyron/Master_Thesis
https://drive.google.com/file/d/1Xfnek4jDbv_NioYmqh9sfFRR5X68QvTK/view?usp=sharing
https://drive.google.com/file/d/1OH2UXRL_ZRDbeqepf-pdYdKdIjz48jCx/view?usp=sharing
https://drive.google.com/file/d/1TXfO6Ckla1kDRiB1LKuB--eaqHBG0Uun/view?usp=sharing
https://drive.google.com/file/d/1UC4PQbAR286yzOVTjV3xL8r_xol2LNmJ/view?usp=sharing
https://drive.google.com/file/d/16AwPn4sODtXxqxhvYZ8-2z4WKG5WP6xg/view?usp=sharing
https://drive.google.com/file/d/1jgk-DsAlhDTgnDGrM9_sWX_1hnpP_yS-/view?usp=sharing
https://drive.google.com/file/d/1f7bI-OZrRoE2Em9pzq7gYBc4vOw_Safj/view?usp=sharing
https://drive.google.com/file/d/1qR4wRPDZjHjV-KyYqzxowPXmnUUFEuEa/view?usp=sharing


2 Related Work

Teaching a machine to understand, reason and act has always been one of the central
aims of science. Despite thousands of years of attempts which mostly resulted in myths
(such as the legendary robot Talos patrolling the Cretian coast during the Minoan period
[40]), most -if not all- progress has happened during the last 50 or so years. Initial aims
were focused on building machines that would simply follow rules, as understood by their
human designers [51]. These machines would usually perform well on simple tasks, however
further complicating things would lead to poor results. As computational power rose, older
-computationally expensive- ideas that were previously proposed could now be implemented
to surpass this issue. Neural Networks started appearing, and -especially within the last 10
years- they now form the backbone of Machine Learning and AI.

2.1 Symbolic AI

Symbols are things we use to represent and label other things. They can define items
and people, represent abstract concepts (bank, transaction) or things that don’t exist (web
page, blog post). They can describe actions (fishing) and states (active). They can also be
organized into hierarchies (a house is made of doors, bricks, plywood, cement, etc.). They
can also be used to describe other symbols (a house with a wooden door, a green carpet etc).

Human interpretable symbols were the obvious place to start research in teaching a
machine how to think and infer [51]. After all, it was believed by early AI pioneers that if
every aspect of learning can be precisely described, a machine can be made to simulate it.

Symbolic AI was the dominant paradigm of AI during the 1950s-1980s. The approach
is based on the assumption that many aspects of intelligence are based on the manipulation
of symbols, very much like a human does. Intuitively, it was the only way to go when tasked
with the development of a machine that can reason, and intended to produce a general,
human-like intelligence (unlike the task-oriented approach in today’s times).

Symbolic AI is very convenient for settings where rules are very clear cut and input
to symbol transformation is easily done. However, introducing the real world to symbolic
AI mostly breaks it. Computer vision, for example, could be rule-based in simple artificial
scenarios, however being faced with the detection of a cat for example, would need a pro-
hibitively large number of rules, and even then, its success would still be limited since its
generalization would most likely not work that well. Even then, computer vision remains
one of the “easy” tasks to use in symbolic AI. Tasks such as speech recognition and nat-
ural language processing simply cannot be translated to direct rules. Even though efforts
to create complicated symbolic AI systems that encompass the multitudes of rules of cer-
tain domains exist, these expert systems require massive amounts of human effort by very
experienced people and software engineers, and -even then- their limited set of rules poses
a serious issue when the problem needs to be generalized, as the number of required rules
can very easily explode in number. Even though the success of such ambitions were more
limited than initially expected, its echoes can still be heard in modern data structures, and
object-oriented languages [8].
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2.2 Neural Networks

Neural Networks excel in tasks that purely Symbolic AI fails. Computer vision [22],
facial recognition, cancer detection [42] and Natural Language Processing [53] are just some
of the tasks that neural networks prove themselves to be excellent in. They are almost as
old as Symbolic AI itself. However, due to their perceived inefficiency and huge -for that
time- resources needed to train them, they would remain hidden for many decades. With the
exponential increase of computing power and the wide availability of Graphics Processing
Units (GPUs), they have gained ground with unprecedented rate, pushing past Symbolic AI
in both efficiency and effectiveness. Their main advantage lies on their ability to deal with
messy and unstructured data. And there is no longer need for rules(!). The neural network
itself builds a statistical model tailored to its task [15].

To this day, many forms of neural networks have been developed, each initially built to
deal with a different task. However, in recent years the borders between what network is
used where are rather blurry. The first, and perhaps the most important network is the Multi
Layer Perceptron (MLP), or else known as Fully Connected Network (FCN) is usually used
to classify an input or predict a number (regression). Every neuron of a layer, is connected to
every neuron of the previous as well as the next layer. Initially aimed for image recognition,
the Convolutional Neural Network (CNN), “scans” through the input image with different
filters and extracts characteristics in the form of a latent vector, which in turn can classify.
Finally, for sequential data, a Recurrent Neural Network is used. These types of networks
are a repeating architecture of the same element, that receives each timestep of the sequence
separately, and outputs a latent vector which is used as input to the next element of the
chain. The final latent vector will ideally include a summary of the whole temporal series,
and will be classifiable by a FCN.

The three types of networks mentioned above are just the backbone of Machine Learn-
ing. Huge numbers of modifications exist for each, from simple meta-parameter tuning, to
fundamental changes in their internal structure (e.g. LSTM vs RNN). These networks are
also called encoders, since a representation understandable by a human, is encoded into a
smaller, more dense representation better understandable and more easily manageable by a
machine. The opposite of an encoder, is a decoder, that transforms a dense, latent represen-
tation, into something perceivable by a human. Decoders are used in language translation
[53], as well as image creation (De-Convolution Networks).

Neural Networks do not have to work independently. They can operate in ensemble
models, that can either be trained end-to-end, or independently. Perhaps the most well
known ensemble model is the Generative Adversarial Network (GAN) [16], that aims to
create new lifelike examples of its input data that can fool a human, such as new faces, or
transforming items from one domain to another (DiscoGAN [26]). Another well known en-
semble network that is end-to-end trainable, is the MaskRCNN [21], which is used in image
segmentation, in order to classify the observed items, as well as create “masks”, that can in
turn provide pixel-level segmentation and positional data. This Thesis’ model will also be an
ensemble model, with each component trained independently. One of its components used,
is the Propagation Network (Propnet [32]), which itself is an ensemble network. It receives
positional, attributional and mask information from a temporal scene, and understands the
underlying physics, elements and interactions, by locating temporal events and propagating
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the forces in order to predict future cases.

VQA tasks were first proposed for purely neural architectures, by using ensemble mod-
els [18]. The first widely used dataset, was VQA 1.0 [18]. It is a large dataset, with static
images from the COCO dataset [33] and questions from numerous categories. Both the vi-
sual encoding, as well as the question parser, outputted a latent vector with the extracted
meaning, and by passing their fused product through a classifier, an answer (out of all the
known answers) could be predicted through a softmax function. However, generating the
questions and answers proved to be extremely time consuming, requiring “countless hours
of effort provided by the workers on Amazon”. After the successful demonstration of such
systems, they rapidly expanded, as their weaknesses were discovered and ways to counter-
act them were developed. Pre-balancing imbalanced datasets by collecting complementary
images gave increased accuracy on end-to-end results [19]. Attention mechanisms have been
proposed in order to assist the visual component in where to look based on the questions’
contexts [45]. Further development on models that can “read” certain parts of the image by
focusing on them, is presented in [47]. Regions proposed by a Faster-RCNN [39] network
are used in order to eventually answer questions regarding written text on images, such
as “What brand are the crayons?” or “What is the time on the bottom middle phone?”.
However, just as before the accuracy is rather limited and the questions are simple; even by
human standards. Further expansion on dynamic scenes (videos) is presented in [29], where
clips from popular TV shows are used in order to train the algorithm and in turn be used
for inference. At the same time, attempts for general use VQA systems that can work on a
variety of datasets have been proposed and implemented [46].

Physical concepts and neural networks, are two fields that have had a difficult time
being combined. Recent attempts exist where neural networks attempt to understand the
underlying physics of given simulations [24]. Neural networks can also perform analytic
function extraction by looking at simulated samples [1] as well as detect interactions of
various objects by looking at data with noisy or missing samples [50].

None of the above work would take place if it weren’t for large, widely available datasets,
and many hours of manual labeling. After all, as can be seen from their respective publi-
cations, in most -if not all- cases the data required is rather large, and training remains
expensive.

Albeit having many benefits, neural networks are not without trade offs. Deep Learning
algorithms, for example, are opaque, and usually non-interpretable by a human, making
their troubleshooting incredibly difficult. Also, since neural networks rely on statistical
models, they are very data hungry, requiring tremendous amounts of (most times expensive
to produce) data in order to be trained [15].

2.3 Neuro-Symbolic Artificial Intelligence and Current Trends

One major downturn of classic VQA systems that fully utilize neural networks, is that
they require huge amounts of labeled data in order to correctly train the end-to-end archi-
tecture and provide answers, which in many cases just surpass the baseline by only a few
percentile points.

The combination of the two previous concepts of AI has risen significantly in the past few
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years, giving birth to Neuro-Symbolic Artificial Intelligence. It overcomes many difficulties
that were previously faced by its predecessors. Neuro-Symbolic AI systems utilize the perks
of both Symbolic Reasoning, and Neural Networks. Symbolic models are used in order to
capture structured knowledge, while neural networks can capture nonparametric statistical
relationships [10]. The causal and compositional process behind observations is something
that a symbolic model is well-suited to represent as well as provide explanations that are
similar to peoples’ theories.

A field where Neuro-Symbolic Artificial Intelligence (NS-AI) excels, is Visual Question
Answering (VQA) where an image or a video is given along with a question and an algorithm
has to predict the correct answer. The success of NS-AI has been demonstrated by many
publications within the last 5 years. As David Cox, IBM Director at MIT-IBM Watson AI
Lab said: “We can create hybrid AI systems that are much more powerful than the sum of
their parts” [7].

Neuro-Symbolic AI provides certain very powerful attributes, that are non-existent in
neural approaches. In many cases of VQA, rephrases of the same question, while having the
exact same meaning, will be answered differently [44], as they will be encoded to different
latent vectors, which will change the output of the network. This is due to language models
capturing superficial linguistic correlations. Attempts to counteract this have been made by
focusing mainly on producing counterfactual questions (based on the input images, as well as
the original question) [5]. Neuro-Symbolic applications can completely counter this, as their
symbolic aspect takes over the part of meaning extraction based on a rule-driven approach.

Neuro-Symbolic AI can be used in a variety of fields, from linguistic understanding [6],
Enterprise Risk Management [9] as well as Art Generation [2]. Neuro-Symbolic AI allows
interpretation and provides explanatory capabilities to algorithms, in cases where the steps
of the process that have produced the result can be more important than the result itself.

The Neuro-Symbolic Concept Learner [35], is a hybrid implementation, a concept learner
able to learn visual concepts, words and semantic parsing of a sentence, without explicit su-
pervision, meaning it can understand what a question asks, and by also seeing the image,
create a symbolic sequence of commands (a program) by itself. The Neural State Machine
[23] builds a probabilistic graph representing the underlying semantics of the scene, and per-
forms symbolic operations upon the graph to answer questions. These operations are called
programs, and can either be given along with the questions, in order to train a sequence-to-
sequence model to translate to them, or can be generated through Reinforcement Learning
means. Certain approaches exist in order to overcome the difficulty of those Reinforcement
Learning algorithms to be trained, as well as their hard to interpret and evaluate outputs
[38]. Even more abstract entities such as grammar and mathematics rules can be assisted
by Neuro Symbolic approaches, by encoding symbolic priors about composition rules [31].

CLEVR [25] is a dataset with various images and questions regarding their positions
within the image, as well as their attributes (color, texture, size) and their numbers. After
using a visual component to locate the objects and classify them based on their attributes,
a data structure is build, upon which a series of simple commands, called programs, is
executed. These programs are a language of their own, a Symbolic language, a Domain
Specific Language and they are a direct translation from their Natural Language counterparts
that are being initially asked. CLEVR relies strongly on its visual component, and can only
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provide answers to static images.
Improving upon the CLEVR dataset, CLEVRER [54] is a dataset of simulated and

rendered videos, involving simulations of simple objects that collide together. The ques-
tions being asked are dynamic in nature, -meaning they require information of the items’
interaction in order to be answered correctly- as well as counterfactual and predictive. Coun-
terfactual and predictive questions heavily rely on a good predictor (which in this case is
PropNet [32]), as well as data with simplified physics and fewer objects. HySTER [43] fur-
ther improves the accuracy upon the CLEVRER dataset, by providing background (prior)
knowledge at the Symbolic Executor module (See 4.6).

This work aims to prove that Neuro Symbolic VQA can work and operate at far smaller
datasets in many cases, since latent distributions are no longer required to be calculated.
This gives a massive advantage to real world problems, where data will most likely not be
labelled, and certainly not always available upon request.

This Thesis further expands the notion of understanding dynamic behavior from a video.
It adds more events, rather than just simple collisions between participants, and complicates
many questions, while at the same time simplifying the visual aspect by creating a custom
made dataset in order to focus more on dynamic behavioral understanding. Many problems
that are faced are analyzed, and proposals about future improvements on this specific task,
as well as related tasks in general are proposed.
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3 Dataset: Physics Engine, Simulations and Question

Generation

Datasets that are widely available will always have limitations. This is usually due to
the fact that the dataset is as-is, without the ability to generate more examples or expand
the existing ones. Moreover, many times a researcher might need to further add attributes
or try techniques in his algorithms that the dataset simply doesn’t support.

In the case of the experiments that we want to attempt, a new dataset had to be created.
Since primary focus is given in the event understanding under different circumstances as well
as the physical quantity predictions, aspects that might include prior bias or hinder accuracy
determination such as the visual part are simplified, with more focus given on the interactions
and events taking place.

So in this case, a square table with balls of variable sizes and various elements, like
obstacles, walls and gravity wells (positive or negative, called gravity fields), are simulated for
a maximum duration of 10 seconds. Two aspects of this physics engine are worth discussing.
The first is the actual physical interactions that take place, and the second is the way that
events are tracked.

As expected, simple numerical methods are used during the simulation. The positions
of the balls are calculated by the simple equation (Eq. 3.1):

xn+1 = xn + u∆t (3.1)

where ∆t is the time discretization that we use, u the velocity on the x axis and n
the timestep of our simulation. In the numerical calculation of the simulations, that is one
thousandth

(
1

1000

)
of a second.

Equation 3.1 describes a movement of a body, upon which no forces are acting. In the
case of any form of interaction between two objects, this equation cannot fully describe the
movement, and more phenomena will need to be taken into account:

3.1 Ball collisions

The simplest form of interaction is the collision between two balls. Fully elastic collision
will be assumed, therefore no energy is lost in the process. The equations that describe the
movement of the balls before and after the collision are: 1) the Conservation of Momentum,
and 2) the Conservation of Energy. These two equations in the 1-dimensional case are:

Conservation of momentum:

m1u1 +m2u2 = m1u
′
1 +m2u

′
2 (3.2)

Conservation of energy:

1

2
m1u

2
1 +

1

2
m2u

2
2 =

1

2
m1u

′2
1 +

1

2
m2u

′2
2 (3.3)

where the (′) annotation symbolizes the speed of the object after the collision. These
equations are valid for all dimensions (x, y), and therefore can formulate the collision in both
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these directions. By combining them, we can get explicit forms of the new velocities of both
bodies (body 1 and body 2) after the collision since the velocities before the collision are
known (Eq. 3.4, 3.5, 3.6, 3.7) :

u′1 =
m1 −m2

m1 +m2

u1 +
2m2

m1 +m2

u2 (3.4)

v′1 =
m1 −m2

m1 +m2

v1 +
2m2

m1 +m2

v2 (3.5)

u′2 =
2m1

m1 +m2

u1 +
m2 −m1

m1 +m2

u2 (3.6)

v′2 =
2m1

m1 +m2

v1 +
m2 −m1

m1 +m2

v2 (3.7)

These equations can be used for the simulation, however, the results will end up being
unrealistic, since the bodies will behave like singular masses. A vectorized approach has to
be followed in order to provide the correct equations. Two colliding balls with arbitrary
velocities, are shown in Figure 3.1:

Figure 3.1: Two dimensional collision of balls.

We can define two different vectors. The first is the vector that connects the centers of
each ball (stylized as n in Figure 3.1):

~n =
(x2 − x1, y2 − y1)√

(x2 − x1)2 + (y2 − y1)2
(3.8)
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as well as its perpendicular (stylized as n⊥ in the figure):

~n⊥ =
(y2 − y1, x1 − x2)√

(x2 − x1)2 + (y2 − y1)2
(3.9)

Upon projecting the velocities of each ball on those vectors, we can take the components
of the velocities that are parallel to vector n (Eq. 3.10). Since they are the ones that will
be affected by the collision (assuming no friction takes place), the new velocities can be
calculated by the 1D collision equation (Eq. 3.11).

u1~n = [(u1, v1)~n]

~u1~n = u1~n~n

u2~n = [(u2, v2)~n]

~u2~n = u2~n~n

(3.10)

u
′

1n =
m1 −m2

m1 +m2

u1~n +
2m2

m1 +m2

u2~n

u
′

2n =
2m1

m1 +m2

u1~n +
m2 −m1

m1 +m2

u2~n

(3.11)

Finally, we can determine the new velocities in the global frame of reference ((x, y)
instead of (~n, ~n⊥)) (Eq. 3.12):

u
′

1 = u
′

1n~n+ ~u1~n⊥

u
′

2 = u
′

2n~n+ ~u2~n⊥

(3.12)

In order to calculate when a collision takes place, a simple radius rule is imposed. If
the distance separating the centers of the two balls is smaller than the sum of their radii, a
collision takes place (Eq. 3.13):

Dcoll =
√

(x2 − x1)2 + (y2 − y1)2 ≤ R1 +R2 (3.13)

3.2 Wall collisions

Wall collisions are rather simpler to formulate, since one body (the wall) is stationary,
therefore only one velocity needs to be calculated. In other words, the perpendicular-to-the-
wall component of the velocity is mirrored. So, if a wall has a normal vector of ~n then the
velocity of the ball can be written in the new frame of reference as:

~u~n = (~u · ~n)~n

~u ~n⊥ = (~u · ~n⊥) ~n⊥
(3.14)

And, similarly to the case of the balls colliding, the new velocity in the (x, y) frame of
reference, will be (Eq. 3.15):

u
′
= −u~n~n+ ~u~n⊥ (3.15)

The condition of a wall collision is simply a check on weather a ball is closer to the
boundary than the wall width.
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3.3 Obstacle collisions

Three different types of obstacles have been added in the run cases. Since the simulation
is completely vector-based, and doesn’t implement numerical methods such as finite element
methods, each object type during a collision should be dealt with in a specific manner. The
obstacles used in these simulations are circular, triangular, and square obstacles.

3.3.1 Circular obstacles

Circular obstacles are the simplest of all to formulate in a collision. The equations are
very similar to a ball-to-ball collision, but the mass of the obstacle tends to infinity. With
De L’Hospitals rule, the new velocity (as in Eq. 3.11), is (Eq. 3.16):

u
′

1n = −u1~n (3.16)

Which is of course nothing more than a simple reflection on the vector formed by the
balls and the obstacles centers.

3.3.2 Square obstacles

Obstacles with corners can be a bit more tricky to formulate, since the have two different
types of collisions. The first type of collision is a simple, side collision that takes place between
a ball and a side of a square obstacle. This collision is very similar in nature with the wall
collision, where the balls velocity is simply reflected. The condition for a ball-to-square
obstacle collision to be a side collision, is for the perpendicular projection of the center of
the ball to be within the sides of the obstacle, as shown in Figure 3.2.

Figure 3.2: Corner and side collision with a square obstacle.

Similarly to the wall collision, the new velocity of a ball colliding with a side of a square
obstacle can be computed through Equation 3.17:

u
′
= −u~n~n+ ~u~n⊥ (3.17)
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Treating a collision with a corner however, is a bit different. The inelastic corner can
be assumed to be equal to a point, or in other words, a collision with a circular obstacle of
infinitesimally small radius. Therefore, if the coordinates of that corner are (xc, yc), then we
can create a vector that connects the center of the ball to the corner (stylized as ~n, and,
very similarly to a collision with a circular obstacle, the new component of the velocity can
be calculated as shown in Equation 3.18:

u
′

1n = −u1~n (3.18)

3.3.3 Triangular obstacles

Very much similar to square obstacles, triangular obstacles have the same two types of
collisions. A corner collision, and a side collision. The only difference lies on the number of
points and sides with which a ball can collide with a triangle, since they are 3 instead of 4.
However, the equations remain completely invariant. So, for a side collision with a triangle,
Equation 3.17 can be used to calculate the new velocities, whereas in the case of a corner
collision, we use Equation 3.18.

3.4 Gravity fields

In order to further complicate the physics of the simulation, an additional phenomenon,
the use of localized gravity fields, is added. These are areas where the ball is either going
“up a hill” or “down a slope”, in a pseudo-3D manner. Their aim is to test the capabilities
of the models in dealing with non-linear trajectories, since their interactions with the balls
are non-linear (albeit not chaotic like the collisions). Gravity fields do not participate in any
kind of events, and are not part of any questions. For simplicity purposes, each area with
a non-zero gradient will be rectangular, and either a protuberance or a dent. The different
gradient is implemented as a sinusoidal curve of one period, so as to be continuous and
derivable at all positions.

3.5 Special treatment during numerical simulations

A few special ways to treat irregularities are proposed, in order to be able to reproduce
the abovementioned results in a custom simulation.

• In the case of ball-to-obstacle collisions, sometimes, and heavily dependent on the
angle and velocity of the collision, after the new velocity is calculated and propagated
through the next time step, the two objects might be slightly inside each other, leading
to them merging, and producing completely wrong results. As a solution, a time sub-
step is proposed, that propagates the object towards the new direction for 1/10 of its
initial computational timestep (1/10000-th of a second) until the actual propagation
does not lead them to merging.

• Each simulation is fully parametric, and the number and type of objects is completely
custom. This leads to many different “families” of simulations, each having their
own “difficulty”. The scaling of the difficulty is mostly arbitrary, with level 1 being
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the easiest to understand as a human, while level 8 being the most complex. These
“families” will be called levels, and they are as follows (Table 3.1):

Level No. of balls No. of walls No. of obstacles No. of gravity fields
1 2 1 - -
2 3 2 - -
3 4 3 - -
4 3 2 1 -
5 4 3 2 -
6 3 2 1 1
7 4 3 2 2
8 5 3 3 2

Table 3.1: Levels of simulation, and the items contained in each. The levels are roughly
scaled to a human-level perception. Level 1 is easier to understand and answer questions (as
a human) than level 8 is.

• In order to make the whole dataset fully reproducible, careful RNG seed management
has been implemented, in order to be able to re-generate exactly the same dataset,
without the need of downloading it. The generation is done in parallel (multiple Python
3.8 instances), and is fully scalable to an arbitrarily large number of threads.

3.6 Event Tracking

During the simulation, all types of interesting events are recorded, in order to be used
in the question generation and answering, as well as to train the event tracker network
(PropNet [32]). Most events are rather easy to track. Ball-to-ball collisions, ball-to-wall and
ball-to-obstacle are simple to record, since they happen for a single instant, and at a very
specific timestep. As these events affect the simulation, it means that the physics engine is
capable of tracking them through numerical means (see Chapters 3.1, 3.2, 3.3), therefore the
exact timestep of their happening can be located.

Domain exits are a bit more tricky to formulate. Since a ball will gradually cross over
the border of the domain, it is debated which time is the one that characterizes its exit.
The time it first crosses over, or when it has fully crossed over? In this scenario, we assume
the timestep that the ball exits the domain is the timestep that the ball stops appearing in
our simulation video; that is when the ball has fully exited the domain. This assumption
might be considered correct at first glance, it might however pose a problem in later steps, as
explained in Chapter 8. Other types of data that require tracking, are the objects positions
and velocities, which will be used for the Mass Estimator (Chapter 4.4).

Events regarding ball collisions and domain exits, are recorded in a standardized way, as
shown in Table 3.2. The first column denotes the time that the event takes place. Note that
the time accuracy is that of the numerical simulation, which gives us a time discretization
of 1/1000-th of a second. The second and third columns are the two items that participate
in the event, with a numbering that corresponds to their data-table, as generated by the
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solver. In the event of a collision, it is obvious which items participate. However, in the
event of a domain exit, the second item is a “phantom” item, the side. This side, as will be
seen later, does not have the usual attributes of an item, however, for tracking purposes, it
is considered one.

In order to understand the event tracking concept, a few frames of a simple simulation
(with 3 walls and 4 balls) can be seen in Figure 3.3.

Figure 3.3: Level 3 simulation at a random point, every 5 frames (∆t = 0.1 sec)

In the same animation, a few other files are generated (apart from the video). The first,
is the logfile that contains all the types of interesting events that take place. Its layout is
similar to what is shown in Table 3.2.
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Event
ID

Time Item 1 Item 2 Event
Type

Order
12

Order
1

Order
2

Order
Type

1 0.104 3 1 ball2ball 1 1 1 1
2 0.453 3 0 ball2wall 1 1 1 1
3 0.707 2 0 ball2ball 1 1 1 2
4 1.15 3 0 ball2ball 1 2 2 3
5 1.441 1 0 ball2wall 1 1 2 2
6 1.893 3 0 ball2wall 2 2 3 3
7 1.895 0 3 ball2wall 1 1 1 4
8 2.219 2 3 ball2wall 1 1 2 5
9 2.386 3 3 ball2wall 1 3 3 6

10 3.476 2 2 ball exits 1 1
11 4.697 0 2 ball exits 2 2
12 6.67 3 2 ball exits 3 3

Table 3.2: Events recorded during the simulation

Notice that every item is given a different ID, depending on its characteristics. The
same ID however can belong to many items in different categories, but since the category
of each event is known, the items’ are as well. Additionally, four extra columns of various
types of “orders” are added. These basically order the events based on their participants.
Order 12 denotes the order that Item 1 and Item 2 have participated in the event. In Table
3.2 event 2 and event 6 have the same participants, and have Order 12 attributes 1 and 2
respectively. Order 1 denotes the ascending order in which Item 1 has participated in an
event, while the same applies for Order 2 and Item 2. Order Type denotes the order of the
specific type of interaction, based upon the Event Type column.

As can be seen in the above frames, the blue ball exits the domain some time between
3.38 and 3.58 seconds. Indeed, the 10th event in Table 3.2 is ball 2 that exits from side
2 at 3.476 seconds (reminder that this is the time that the numerical simulation runs, and
not the video frame time; the former has a time discretization of 0.001 sec, while the latter
0.02). That means that a ball with ID 2 will exit from the side with ID 2. While there
are many different combinations of colors and sizes, the ID of each ball is given dynamically
in each video. However, since there will always be 4 sides, their ID remains constant, and
it is as follows: 0: left, 1: lower, 2: right, 3: upper side. The ID of the ball through its
characteristics and vice versa, can be found through the corresponding data table that is
produced during the simulation. In the example above, the data table looks like the one
shown in Table 3.3.

Ball ID Size Color
0 small red
1 big purple
2 medium green
3 big red

Table 3.3: The balls, their IDs and their characteristics
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In addition to a data table for the balls, other data tables, for walls, obstacles, gravity
fields, as well as position and velocities, are generated.

3.7 Mask Dataset

Apart from the standard dataset, a second dataset -which is based on the first- can also
be generated. This is the “Mask Dataset”, which contains the images along with each objects
mask and category, compatible with the PASCAL Annotation Version 1.00 standard.

The “Mask Dataset” is used in order to train the visual component that extract the
elements’ attributes. This -as will be seen in Chapter 4.1- is a MaskRCNN [21]. As the
geometry of all the elements is fully known, the masks (shaded areas that an item covers)
are known as well, and can therefore be produced. Along with the masks, a label specific for
that object is generated. These labels are limited to include the physical quantities of the
object (18+1 labels, 18 categories (Table 3.4) + background), therefore the color is omitted,
as it can be inferred through simpler means, as will be seen later in Chapter 5.1. Would the
color be included, there would be a total of 12n+ 7 labels, where n is the number of colors
used (there are 12 categories of objects that can contain color), implicating classification.
The “mask” will be 0 at a coordinate, if no item is located, 1 for the first item, 2 for the
second item and so on.

Category ID Description Category ID Description
1 left wall 10 big circular obstacle
2 lower wall 11 small triangular obstacle
3 right wall 12 medium triangular obstacle
4 upper wall 13 big triangular obstacle
5 small square obstacle 14 small ball
6 medium square obstacle 15 medium ball
7 big square obstacle 16 big ball
8 small circular obstacle 17 positive gravity field
9 medium circular obstacle 18 negative gravity field

Table 3.4: The 18 categories/labels of items used to train the MaskRCNN. Category 0 is
the background image.

For every image, a series of masks will be produced, as shown in Figure 3.4. These masks
in turn, will be encoded in RLE (Run Length Encoding) format, since their visual entropy is
low and can therefore be successfully compressed without degrading. Notice how each color
corresponds to a different object. This is due to the fact that the mask is represented by an
integer array, where each different object is represented by a different integer (and therefore
different color), except for the background, which is labeled with 0 (and purple color).

In the situation shown in Figure 3.4, we can see multiple circular static objects. After
all, image segmentation takes place in a static frame. For simplicity purposes, circular
obstacles and balls do not have overlapping dimensions, so that a single image of one can
lead to successful classification. However, by adding mass, or another temporal attribute to
each item, it would be possible to simply classify it as a circular object, instead of a circular
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Figure 3.4: Frames (on the left), and their corresponding masks (on the right) as they are
generated from the dataset generator.
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obstacle, or a big ball and let the actual dynamics of the scene decide upon its identity.
However, such implementation is left for future work (See more at 4.4).

3.8 Question Generation

In order to be able to teach a network to reply to human-language questions, these have
to be generated along with the dataset. So, for every simulation (each video), a number of
questions are generated along with their answers (QnA). This leads to a set of video-QA
pairs, that can be used to train the whole network in the subsequent steps.

The question generation is performed with hand-crafted, templated questions. The
questions are broken into several different categories, depending on the nature of what is
being asked, as well as the complexity of the question or the physics behind it. A number
of templated questions that involved strictly static information are taken from the CLEVR
dataset [25]. The rest -that is questions involving temporal reasoning and event tracking-
were novel, custom, hand-crafted questions created for this dataset.

3.8.1 Question Categories

Questions can be broken up into ten (10) different categories:

1. Integer Comparison: These types of questions track the quantities of different groups
of objects and compare them. These questions, as well as their rephrases were taken
almost completely unchanged from the CLEVR dataset. (e.g. “Are there more green
balls than yellow small balls?”)

2. Same Relation: These types of questions track the number of objects of similar
nature that exist. These questions were also taken from the CLEVR dataset. (e.g.
“Are there any other things that have the same size as the green ball?”)

3. Comparison: These questions take two different items within the domain (either balls
or obstacles), and ask whether they have a similar characteristic in common (e.g. color,
size, shape). These questions were taken from the CLEVR dataset. (e.g. “Do the blue
obstacle and the green ball have the same size?”)

4. Single-or: These questions take two different elements of the domain (balls or ob-
stacles), and ask how many of one or the other exist, while also conditioning them to
a specific characteristic. These questions were taken from the CLEVR dataset. (e.g.
“How many things are either blue balls or green obstacles?”)

5. Zero hop: These questions take a single element from the domain, and ask a simple
question regarding it, such as its color, shape or size. It should be noted, that the
chosen element must be unique in order for the algorithm to give a definitive answer.
These questions were taken from the CLEVR dataset. (e.g. “What color is the small
triangular obstacle?”)

22



6. Domain Exits: These questions are the first to take dynamic reasoning into account.
They ask questions regarding the absolute order of exit from the domain (e.g. “Which
ball will exit the domain third?”, “Will the big green ball still be in the domain at
the end?”, “Which ball will exit from the upper wall second?”), as well as relative
information regarding domain exits (e.g. “A ball will exit after colliding with the big
triangular obstacle; which ball will it be?”, “A ball will collide with the small square
obstacle second; from which side will it exit?”).

7. Ball Collisions: These type of questions track the collisions of the balls (e.g. “Which
two balls will collide together third?”, “Which ball will hit a wall or an obstacle for
the second time?”, “With which ball will the blue square obstacle collide for the third
time?”).

8. Physics understanding: These questions are asking for information on a higher level
that the ones before. The relative weight of the balls (which cannot be inferred in all
cases), the resistance the balls face, or the balls’ velocity at some point during the
simulation are attributes which are hard to encode, let alone infer through a Symbolic
Executor alone. For this purpose, different neural networks are used for this stage in
order to infer the required quantities (e.g. “Which ball is the heaviest?”, “What is the
type of the resistance?”).

9. Quantitative answers: These questions ask information about the number of times
that events will take place (e.g. “How many collisions will happen with the upper
wall?”, “How many times will the small blue ball and the big yellow ball collide?”,
“How many ball to obstacle collisions will take place in total?”).

10. Binary Answers: These are YES/NO questions, that ask about various temporal
events (e.g. “Will the big green ball hit the red small ball more that three times?”,
“Will the medium red ball hit the upper wall more that two times?”, “Will the small
green ball hit the big yellow ball before the medium red ball hits the upper wall?”,
“Will the small ball collide with an obstacle of the same color?”).

Some sample questions per category can be seen in Table 3.5. For all the questions,
their templates and their programs used, see Appendix A.1.

In all the above-mentioned categories, the answers are generated along with each ques-
tion. Since (as explained in Chapter 3.6) for every video/simulation, a number of data tables
are generated and all the available and required info is saved into those data tables. These,
in turn, are used to generate the answers of the questions in a purely algorithmic way. As
will be seen in a Chapter 4.6, this is not the only way to generate answers through the data
tables, but it is a good way to validate the correctness of later methods.

Along with each question in natural language, a similar question written as a series of
“programs” is also given. These questions will be used to train the sequence-to-sequence
model used at a later stage (see Chapter 4.2).
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Category Questions

Integer
Comparison

• Are there more green balls than yellow small balls?/Is the number of green balls
greater than the number of yellow small balls?

• Is the number of obstacles the same as the number of balls?/Are there the same
number of obstacles and balls?

Same Relation • Are there any other things that have the same size as the green ball?/Is there
anything else that is the same size as the green ball?

• How many other objects are the same size as the blue square obstacle?/ What
number of other objects are there of the same size as the blue square obstacle?

Comparison • Do the blue obstacle and the green ball have the same size?/“Is the blue obstacle
the same size as the green ball?”

• Is the shape of the green obstacle the same as the blue obstacle?/ “Does the green
obstacle have the same shape as the blue obstacle?

Single-Or • How many things are either blue balls or green obstacles?/What number of objects
are blue balls or green obstacles?

• How many red objects are square obstacles or small balls?/What number of red
things are either square obstacles or small balls?

Zero-Hop • How many small balls are there?/What number of small balls are there?
• What color is the small triangular obstacle?/ The small triangular obstacle is

what color?

Domain Exits • Which ball will exit the domain second? Which ball will stop being within the
area second?

• Which ball will exit from the left wall first?” A ball will exit from the left wall
first; which ball will it be?

Ball Collisions • Which two balls will collide together third?/ Between which two balls will the
third collision occur?

• With which ball will the small blue obstacle collide for the fifth time?/ The small
blue obstacle will collide with a ball for the fifth time; which ball will that be?

Physics
Understanding

• Which ball is the heaviest?/Which ball has the largest mass?”
• Which ball will be the second fastest?/One ball will achieve the second highest

velocity at some point. Which one will it be?

Quantitative
Answers

• How many collisions will happen with the upper wall?/How many times will a
ball collide with the upper wall?

• How many ball to obstacle collisions will take place in total?/How many times
will a ball and an obstacle collide?

Binary Answers • Will the small blue ball hit the green big ball before the medium red ball hits the
upper wall?

• Will the big green ball collide with an obstacle of the same color?

Table 3.5: Sample questions from each category. Two are shown for each category. Rephrases
are shown in red
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3.8.2 Question Templates

All questions are generated through templates, meaning that entities such as color, size,
shape, item type, side etc., can be changed depending on the simulation, in order to generate
multiple questions of the same type; albeit different. In addition to generating numerous
different questions, some entities can be omitted if they over-describe the item that needs to
be described. For example, if there are 3 balls in the scene, and they are all different colors,
their sizes will not matter when you will need to describe them. Therefore, “the big blue
ball”, and “the blue ball” will describe the same item. This gives us the benefit of testing the
Symbolic Executor (Ch. 4.6) with less commands, that better, and more directly describe
our scene. All the templated questions, their rephrasals, as well as their programmes that
will be used in Chapter 4.2, can be found in Appendix A.1. The answer distributions for
specific levels of simulation can be found in Appendix A.12.

As mentioned, all questions are templated, in order to be procedurally generated from
every possible simulation, regardless of the difficulty of the simulation. These templates,
have “variables” that can change depending on the attributes of the participants of the
simulation. Attributes such as color, size, object type, side, wall, and order can be replaced
in order to describe all possible objects in the simulation, leading to a myriad of different
questions. For each simulation, a number of questions will be generated, randomly sampled
from all existing questions (the relative frequency of the sampling can be chosen before-
hand for testing purposes, but in their default form, they are equiprobable). Duplicates are
discarded. In addition to the questions themselves, the “programs” are templated as well
with a very similar logic. A more in depth approach will be given in Chapter 4.2, but in
a similar manner, for each question a program is generated. Unlike the questions where
multiple rephrases can have the exact same meaning, the programs are unique for each
set of questions of the same meaning, leading to the translator performing a many-to-one
translation for certain rephrased questions. The answers of the questions will be given in
natural language, just as they have been computed in the code that generated the questions
as well as the answers. In certain cases, the information given will not suffice to provide
with an answer, or the answer will be a singularity (e.g. Q: “Between the green ball, and the
small blue ball, which one is the heaviest?” A: “I cannot tell (Due to disconnected adjacency
matrix (5.4))”) In these cases, the answer will be preceded by the word “error”, in order to
be able to validate them with the Symbolic Executor (Ch. 4.6).

3.9 Generated Datasets and Variations used

In total, a maximum of 100 samples are generated for each level, with the exception of
level 8, which 240 samples were generates in order to test scaling capabilities of the Dynamics
Predictor [4.3]. In all cases, a maximum of 1000 questions are generated along each simulation
with duplicates being discarded. In the final VQA results, 40 test samples per level are used.
In order to train the Mass Estimator and the Friction Estimator, different size datasets were
used (these networks did not utilize symbolic reasoning, therefore needed larger amounts of
data), however videos were not rendered in those cases (Further explanations can be found
in Chapters 5.4, 5.5 and 8).

A Neuro Symbolic approach has the added benefit of allowing monitoring in interme-
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diate steps of the ensemble architecture, such as before and after the Translator, before and
after the Frame Interpreter, before and after the Dynamics Predictor etc. Since -as will be
explained in Chapter 4-, each module is trained separately, different datasets -all variations
of the same- are used in each different step. Four main editions of the dataset exist:

1. The Original Dataset that contains the videos and the questions along with all the
respective data tables.

2. The Frames Dataset, which contains the videos in the form of frames (separate images).
This dataset is used as input to the Frame Interpreter (4.1) as well as for training the
Dynamics Predictor.

3. The Mask Dataset, which is used to fine-tune the MaskRCNN used in the Frame
Interpreter.

4. The Interpreted Frames Dataset. This is used in order to train the Dynamics Predictor,
as it contains the interpretations of the video, in symbolic form.
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4 Proposed Model

Upon taking into account the already existing technologies, we wanted to add more
physics concepts and higher level understanding in the VideoQA tasks of NS-AI. For this
purpose, the PhAQ dataset, along with the NewtoNN architecture were developed.

The architecture combines known elements of already existing VQA methods, as well
as adding new aspects, in order to be able to answer questions posed in the new dataset. A
simplified macroscopic image of the model can be seen in Figure 4.1.

Figure 4.1: Macroscopic view of Neuro-Symbolic NewtoNN model.

As can be seen from the figure above, the model is comprised of the following modules:

• Dataset Generator: This module generates the dataset. It simulates the trajectories
and events of the balls and renders them into small (10 sec. maximum duration) videos.
Additionally, it generates questions regarding each simulation, as well as the answers
and programs of each question.

• Frame Interpreter: This module interprets the video in a frame-by-frame manner,
turning it into a symbolic representation, with each object’s attributes, and positional
information.

• Dynamics Predictor: This module locates the events that take place given the
sequence of frames. Additionally, when paired with other sub-modules, it can infer the
mass of the balls and the friction that they are subject to.

• Neuro-Symbolic Translator: This module transforms the natural language question
into a series of commands called programs.

• Symbolic Executor: This module pairs the series of programs with the output of
the Dynamics Predictor and provides answers in Natural Language.

These modules, are all trained separately, with the exception of the Symbolic Executor,
that doesn’t require any training as it relies on symbolic (rule-based) logic. In the following
sections, each module will be analyzed.
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4.1 Frame Interpreter

In order to be able to interpret the video frames into something a neural network can
understand, they will have to be transformed into another format, one interpretable by
the next component. Recurrent-CNNs [37] (where each frame is passed through a CNN,
and then the temporal information is used for inference through a RNN) have two very
limiting factors. Firstly, they require a lot of training data in order to capture the latent
distributions successfully, and secondly their encodings (that take place inside the CNN) are
not interpretable to humans, and therefore it is impossible to tell if the network overfits, uses
previous bias for inference, or learns characteristics that it shouldn’t without large amounts
of training data to test it.

For the reasons above, a different approach will be followed. Neuro-Symbolic AI, uses
symbolic representations for both commands/operations, as well as items. Therefore, a latent
representation of the positions and attributes of all the objects, would be useless. The first
part of the total architecture consists of being able to locate and classify the objects (mobile,
or immobile) within the video. This is achieved through a Mask Region-based Convolutional
Neural Network (MaskRCNN) [21], that takes as input each separate frame of the video, and
outputs information such as its position (in the form of a “mask”, as a highlight upon the
original image), bounding box and attributes in the form of classification (e.g. type, shape
and size). The MaskRCNN is considered an extension of Faster RCNN [39], which in turn
is considered an extension of Fast RCNN [13], which itself is an extension of the initial
proposition, the RCNN [14].

Unlike its predecessors, a MarkRCNN does not rely on a moving window, nor on simple
bounding box segmentation. Instead, it produces pixel-level segmentation masks that accu-
rately highlight the location of each object in the frame, as well as providing a label for each
mask so as to classify any object it detects.

Figure 4.2: Mask R-CNN architecture.

MaskRCNN achieves this by adding a branch for predicting segmentation masks for
each Region of Interest (RoI), in parallel with the existing branch. This mask branch, is a
small FCN that predicts a segmentation mask in a pixel-to-pixel manner. A FCN is added
on top of the features, in order to generate the masks in parallel to the classification and
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bounding box regressor.
As previously proposed in the FastRCNN, a RoI-pooling operation takes place. However,

when MaskRCNN is run without any modifications, the regions are misaligned due to the
Max Pooling taking place inside the convolutions. Therefore, a slightly altered version of
RoI-Pooling is implemented. RoIAllign aims to project the regions to a map of fixed-size.
However instead of using the max function, it uses a linear interpolation method in order to
retain positional data. A demonstration of how RoIAllign works, can be seen in Figure 4.3.

Figure 4.3: RoIAllign in MaskRCNN

In all cases, the MaskRCNN architecture is paired with a standard Image Recognition
network, such as ResNet [22], in order to extract the characteristics of each image. Since a
MaskRCNN is a rather large model (∼ 44M parameters), a large dataset has to be used to
train it from scratch. However, in most cases, fine-tuning an already trained model is fast
and incredibly efficient.

4.2 Question Parsing and Translation

In order to be able to answer a question, an algorithm first has to understand that
question. This takes place with a question parser, which extracts the meaning of that
question in some form. A large number of studies in the realm of VQA have revolved around
parsing questions in Natural Language with most attempts aiming to transform each question
into a latent vector that represents its meaning.

As mentioned in Chapter 2, by using latent encodings to describe the contents of an
image and the context of a question, good results can be achieved, however we still rely on
huge statistical models to capture the real distributions and answer rare questions. More-
over, we have no supervision on what the visual component and the question parser have
understood, and can only evaluate the model end-to-end, without possible supervision in the
intermediate uninterpretable steps.

Dissimilarly from a standard semantic parser, a Neuro-Symbolic approach follows a
different path. The semantics of a sentence/question are not directly extracted, but rather
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translated into a new language, that comprises of simple, human-interpretable commands.
These commands, are called “programs”, and are simple operations that are performed on
one or more data tables, which includes all the data requires to answer the question. In
practice, they are a Domain Specific Language. These programms have two main benefits.
Their number is rather small, since a plethora of commands can be created by joining
the programs in different order. Additionally, each program represents a very simple, yet
known operation, which allows the addition of prior knowledge in the Symbolic Executor
4.6, without however introducing bias.

Generated from the dataset generator (for training purposes), or produced by the
MaskRCNN ([21], Ch. 4.1) and the Propagation Network ([32], Ch. 4.3) (during infer-
ence), are a set of data tables containing all the information about the participating objects,
as well as the events that take place during the simulation. These are the inputs of the Sym-
bolic Executor. A data table has the added benefit of being easy to manipulate with simple
commands, like filtering. For this exact reason, a Natural Language question is translated
into a series of these commands that will -in turn- be run on the data tables, by the Symbolic
executor and provide the answer. Rather than going into depth, three direct examples will
be provided. In this case, a Natural Language question will be translated into a series of
commands:

1. Do the big circular obstacle and the big ball have the same color?
This question asks whether two entities in a scene (the blue circular obstacle and the
big ball) have the same color. As shown in Chapter 3, each simulation (either generated
or inferred) provides us with a data table containing the attributes of the participating
objects, in this case the balls. Therefore a series of “commands” can be performed on
that data table in order to give us the answer. The above question can be translated
into the Symbolic order of commands:

objects, big, filter size, circle, filter shape, obstacle, filter type, unique,
query color, objects, big, filter size, ball, filter type, unique, query color,
are equal

From an initial point of view, it is just an unintelligible series of random words. How-
ever, taking a look at Figure 4.4 might give some extra insight.
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Figure 4.4: Logic diagram as interpreted from the programme series.

In the above diagram, we can see that the purple “objects” tab generates a list of all the
objects that exist in the scene, while each filter (depicted in red), filters the objects by
its relevant attributes (shown in yellow). The “unique” boxes (shown in green), return
a single item from the list of filtered objects, and the blue “query” boxes, cross reference
the ID of each proposed object with its attributes, and returns the attributes. Finally,
the orange “are equal” box, compares the attributes, and provides an answer (shown in
gray). The series of those commands is simply a linearized form of the above flowchart.

2. Which ball will exit from the left wall second?

Has the equivalent symbolic sequence of:

events, ball exits, filter event type, sides, left, filter side, filter events, sec-
ond, filter order, ball, query object, unique, describe ball

Which in turn can be better understood with the diagram depicted in Figure 4.5.
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Figure 4.5: Logic diagram as interpreted from the programme series.

Similar to the previous example, the events and the sides are generated by the purple
tabs. Then, only the events that are “ball exits” are passed through, and from those,
only those that exit from the left side are passed to the next stage. Since the events all
have a timestamp and are ordered by the timestep they have happened, we can filter
them based on this order. In this case, we choose the second event, and from that, we
query its participating ball object (the other participating object is the side, which we
have already filtered by, and is the left side). Then, the natural language answer is
provided by simply describing the ball.

3. How many times will a red big ball and a medium purple ball collide?

Can be translated in the following symbolic sequence:

events, ball2ball, filter event type, objects, red, filter color, big, filter size,
filter events, events, ball2ball, filter event type, objects, purple, filter color,
medium, filter size, filter events, intersection, count

Which in turn forms the flow chart shown in Figure 4.6.

32



Figure 4.6: Logic diagram as interpreted from the programme series.

In this example, we filter both balls based on their attributes from the list of available
objects. Then we separately filter all events of type ball-to-ball based on each balls attributes.
The intersection operation finds the common events between the two filtered lists. These
events are the ones that both balls participate in, and by counting them, we get final answer.

All questions are translated into their respective Symbolic sequences. The Symbolic
sequences are generated in templated format along with each question during the generation
of the dataset and are in turn used to train the Neuro-Symbolic translator.

4.3 Event Interpretation

The main part of this work, is to create an algorithm that will be able to identify the
events that take place by receiving the interpreted frames from the Frame Interpreter module
(Ch. 4.1) as input, by understanding the trajectories and attributes of the objects in relation
to their surroundings.
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This might -at first glance- be seen as something simple. However, one must realize that
rigid-body collisions are a chaotic phenomenon. A slight change in the initial conditions can
change whether a collision will take place or not, thus changing the whole outcome of the
simulation. Perhaps a solution would be a sequence-to-sequence network that would receive
the temporal interpreted frames, and output a sequence of events. However, this would be
overly complicated since the relations in a physical simulation only have dependencies in the
past (and strictly speaking only to their direct past), and sequence to sequence networks are
build in order to retain information from arbitrarily long time steps. In addition to this,
force propagation poses an extra problem since it cannot happen in a single timestep between
multiple objects (as proposed in Interaction Network [4]). For all the above mentioned
challenges (event identification and prediction) as well as to mitigate potential misses and
wrong interpretation of phenomena, a Propagation Network (PropNet [32]) is used in order
to successfully surpass them. A Propagation Network is a differentiable, learnable, dynamics
model, that aims to handle physical simulations, as well as partially observable scenarios,
by representing them as a graph. All of this action takes place in a symbolic manner,
where its inputs are fully interpretable, while the network itself transforms them into latent
representations, in order to inherit the numerous perks of neural networks. PropNet’s perks
mainly include instantaneous propagation of signals, which, in the case of colliding balls is
incredibly important, since rigid body collision systems can be highly nonlinear (chaotic),
therefore force propagation should be given more attention than in other cases.

4.4 Mass Estimation

An interesting aspect of the physics simulations, is to be able to extract physical quan-
tities from the video of the simulation. Apart from obvious, easy to extract attributes, like
position and velocity (position is given by the MaskRCNN, and velocity can be calculated
by the difference of two consecutive positions), other, far more difficult attributes are mass
and resistance. The focus of this section will be on an object’s mass. As can be inferred from
Equations 3.2 and 3.3 in Chapter 3, mass and velocity are correlated through the two equa-
tions that describe a collision, therefore, since velocity is known, we could train a network
to be able to classify objects based on their mass.

The way this can be performed is through a branched LSTM [12]. That is a network
that is trained upon the positions of the balls as a sequence, then the hidden state is passed
through a branched classifier that classifies each ball (we train the network for 5 balls, since
that is the max number used in the simulations) in a category. There are a total of 5
categories:

1. “None”
2. Small mass
3. Medium mass
4. Big mass
5. Infinite mass

The 1st category exists, so that cases with less than 5 balls are manageable (0 inputs
everywhere is “None” mass). The 5th category, intends to be able to manage cases where
obstacles are not separate entities from balls, but dynamic objects as well, albeit with infinite
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mass. This -as has been mentioned before in Chapter 3- gives the added ability to have balls
and obstacles of the same sizes by being able to discern between them strictly based on their
dynamic behavior 1.

The aim of such a network is to be able to classify all the balls in a simulation to
their correct masses, and in turn complete VideoQA tasks successfully. Such an attempt
is not only important in order to understand the limits of Machine Learning, but to also
further develop dynamic understanding of perceived objects in real life scenarios, such as
autonomous car driving.

4.5 Friction Estimation

Apart from tasks like estimating the mass of the participants in a simulation, we add
a sub-network that aims to understand the underlying physics regarding the type and level
of air resistance within the simulation. In the simulations 2, there can be three (3) separate
types of resistance: 1) No resistance 2) Dry Friction 3) Aerodynamic Drag, with the latter two
having three (3) separate levels each. Their underlying physics are fundamentally different.
When an object is facing dry friction, the opposing force is directly proportional to its
weight, while an object facing aerodynamic force has force that is proportional to a power
of its velocity as well as its radius. In our case, we use Stoke’s Law, where the friction is
proportional to the 1st power of the velocity, while the intensity of the drag can change with
the viscosity parameter of the fluid that the balls move in. Since all balls face the same
resistance 3, the resistance is global for each simulation, therefore the questions that can be
asked are limited to asking the type and level of resistance, since no comparisons can be
made inbetween balls.

4.6 Symbolic Executor

The symbolic executor is the final module in the end-to-end architecture, and works in a
purely symbolic manner (no prior learning required). What is interesting about this module,
is that the language itself provides a “prior” knowledge regarding the operations that need
to take place, without however resorting to biases, since it remains fully rule-based.

At this point, there is a set of data-tables, containing the events and the object attributes
that have been extracted by the Frame Interpreter and the Dynamics Predictor, and a set of
commands that have to be applied to these data-tables in order to extract an answer. These
commands have been tailored to be specifically applied to a data table, therefore this step
is rather straightforward.

This takes place as a sequential, stack-based approach. Each program receives a variable
number of inputs, and creates a specific output. The active inputs (that is the ones that
will be used by later programms) are placed in a stack. The final program should reduce the
number of items in the stack to one; the answer to the question.

1This is left as potential future work.
2In practice a different dataset is used to train and test the friction estimator so that it doesn’t interfere

with the already developed components.
3An interesting future development would be for each ball to have completely separate dynamic behavior
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5 Experimental Setup

This chapter will be dedicated to thoroughly explaining the network’s ensemble setup,
as well as the types of training data that were used and the different setups used in each
sub-module of the network. Analysis will take place for the image segmentation component,
the dynamics predictor along with the mass and friction estimators, the neuro-symbolic
translator, as well as the symbolic executor. Results for each module separately, as well as
end-to-end VQA results, will be presented in Chapters 6 and 7.

5.1 Frame Interpreter

In order to transform our simulations from video format into a symbolic representation,
each simulation needs to be converted into a series of symbolic attributes, that can in turn
be used and processed in order to extract answers. This is done through a MaskRCNN [21],
since, apart from bounding boxes and classification labels, it generates masks which can be
used to extract precise positional data for each object.

Training a MaskRCNN is expensive. In order to bypass this, we used a pre-trained
MaskRCNN on the Penn-Fudan Database for Pedestrian Detection and Segmentation dataset
[52], and by fine-tuning it we tailored it to our task. As mentioned in Chapter 4.1, a
MarkRCNN requires for training a set of still images, along with each objects mask and
label. Due to the nature of this custom made dataset, these can be produced with slight
modifications to the already existing code used for the generation. Thus, a number of training
samples are generated, as described in Chapter 3. This is a number of images, as well as
their masks in binary format, and the labels accompanying each mask. The masks are, in
simple terms, a 2D array with the same resolution as the image, but in the position of each
object, instead of zeros, there are ones for the first item, twos for the second, and so on.
This gives the positional data of every item, while also providing information regarding its
shape and size. Apart from the mask, a series of annotations are given. These include the
type of the items that exist in the image (the labels that the masks point to), as well as
the bounding boxes of each item, in the form of coordinates of the bottom left, and upper
right corners of their respective rectangles. All annotations are compatible with PASCAL
Annotation Version 1.00.

A total of 18+1 classification categories are used. The 18 classification categories each
correspond to a class of items (e.g. left wall, small ball, medium triangular obstacle), as
depicted in Table 3.4. The zero-th class is the Null class, which is the background.

As can be seen from the number of categories, the colors were not included in the classes
used by the MaskRCNN. As mentioned in Chapter 4.1, this would only complicate things
and for this purpose, the colors of each object were calculated by averaging the RGB value
of the pixels of an image, after being masked with each items corresponding mask, and
classifying the result with a Support Vector Machine (SVM). As the visual component of
the dataset is simple, color classification accuracy was 100%.

Since a pre-trained model is used, it is expected that a rather small number of epochs
will be required. For this training, we used a total of 1080 frames on an 80-20 split, with each
frame being randomly sampled from a simulation, with 10 frames taken per simulation. All
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frames are taken from simulations of difficulty level 8 4, in order to include the most objects
per frame possible. Since balls might exit between frames, the number of items depicted in
each frame varies. 900 frames were used for training, while another 180 for validation.

5.1.1 Contents of predicted outputs, and file layout

An interesting aspect that will provide insight into the networks operation, is the output
of the Image Segmentation component. The MaskRCNN is simply a tool used, and not the
whole component itself.

Each video is broken into its respective frames (50 fps * 10 sec = 500 frames, with
videos ending sooner having less frames). Each frame is independently passed through the
MaskRCNN. After the output of the model, an SVM is used to determine the color of the
objects that have colors. The output of each frame consists of:

• Frame filename
• Frame index
• Objects. This is a list of all the objects detected by the MaskRCNN. Each object has

the following attributes:

– Score. This is a number between 0 and 1. It determines the certainty of the
correctness of the proposed object. We set a threshold, so that proposed objects
with low score are discarded. This threshold is set at 0.8, meaning that an object
with a score of e.g. 0.7 would be discarded and would never appear in the final
proposals. In most cases, the scores were above 0.95.

– Mask. This is the item’s mask, in RLE (Run Length Encoding) format. The
dimension of the initial frame is given, in order to be able to decode it.

– Video Index
– Frame Index
– Frame filename
– Type of object
– Rest of the attributes. Balls have size and color, obstacles have shape, size and

color, walls have side etc.

All the above information is stored in a single *.json file, that in practice contains all
the interpreted information of the whole video; in practice an un-rendered video.

5.2 Neuro-Symbolic Translator

A Neuro-Symbolic translator aims to transform questions from Natural Language to
their counterparts in a new Symbolic program format. As can be seen in Appendix A.1,
while there are a plethora of questions, the number of tokens (different words) in both
Natural Language questions as well as their programms, is limited. For this reason, the
model used in this case is an Encoder-Decoder GRU-RNN, with the decoder containing an
attention mechanism. As with most sequence-to-sequence models, the embedding layer is
included in the encoder (instead of “feeding” it with pre-calculated embeddings). Then, the

4In the training set, three gravity fields instead of the standard two were used.
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resulting context embedding is passed through a GRU unit, outputting the encoded temporal
representation of the natural language sentence.

The attention layer is applied directly to the outputs of the encoder, and concatenated
with the non-weighted encoders embeddings. The resulting vector, is passed through a
linear layer, and the new embedding, that better describes the sequence, is passed through
a non-linear unit (ReLU), and finally through a GRU unit, in order to generate the output
Symbolic sequence. The network can be seen in Figure 5.1.

Figure 5.1: Sequence-to-sequence GRU network, with attention mechanism

As the vocabulary is limited, it is expected of the network to be able to reach high
accuracies with limited data. Since the output of a Symbolic Executor can change dramat-
ically if a single program is different, it is imperative that the sequence is exactly the same
as the one intended. This is the reason for a strict definition of accuracy (instead of e.g. the
Levenshtein distance [30]). For this purpose, the accuracy is defined as 5.1:

accuracy =
correct predictions of sequence

total number of predictions
· 100% (5.1)

5.3 Propagation Network

A Propagation Network (PropNet) is a differentiable, learnable, dynamics model, that
aims to handle physical simulations, as well as partially observable scenarios, by representing
them as a graph. Its perks mainly include instantaneous propagation of signals, which in
the case of colliding balls is incredibly important, since rigid body collision systems can be
highly nonlinear (chaotic), therefore force propagation should be given more attention than
in other cases.

Similarly to most graph networks, there are a number of objects (O), and relations (R)
that “connect” those objects together. The aim is to train the network in order to understand
these relations correctly given an input. More can be found in Appendix A.13.
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Figure 5.2: Architecture of PropNet. Encoders and decoders are annotated with grey color,
propagators with purple and red, and states/data with rounded-edge rectangles.

5.3.1 Training, Inputs, Outputs

A Propagation Network aims to produce a sequence of events, as well as predict the
positions of items, when given a sequence of inputs. In more detail, it requires two dif-
ferent versions of the same dataset in order to operate. The first dataset, is the sequence
of interpreted frames, as given by the Image Processing component (MaskRCNN + color
classifier (Ch. 4.1)). Unlike most networks where pre-processed data is given in a latent
vector, these inputs are fully interpretable by a human, allowing monitoring of the input and
output processes of the PropNet more closely than if a Neuro-Symbolic approach was not
followed. The second dataset used, is the extracted frames from the videos. These are used
to cross-reference the outputs, and increase the output accuracy by some degree.

Each frame is given in a very precise manner. First, the frame is down-scaled to a
specified dimension, and in every x, y position, attributes are allocated. The symbolic char-
acteristics are encoded into a 22-dimensional vector, as shown in Table 5.1.
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Position Attribute Position Attribute
1 ball 12 medium
2 obstacle 13 big
3 wall 14 circle
4 gravity field 15 square
5 side 16 triangle
6 red 17 left
7 blue 18 lower
8 yellow 19 right
9 purple 20 upper
10 green 21 positive
11 small 22 negative

Table 5.1: Attribute encodings used in PropNet

The mask of each object allows the extraction of the coordinates in (x, y) format. The
image is down-scaled into a predetermined dimension based on the size of the networks
encoders. Then, the information is added into a 4D tensor, where the first dimension is
in practice the ID of each item, the 2nd is the encoding of the 22-dimensional vector, and
dimensions 3 and 4 are the x and y coordinates. This way, the network has the ability
to retain pixel level attributional information during the input. Additionally, positional
information in the form of (x, y) is given per object, per timestep. All the information
above is concatenated, so that all three previous time steps (-2, -1, and 0) are given as as
single tensor. As will be mentioned, elements that fail to be detected inbetween frames or
elements that no longer exist in the frames (balls that have exited) are replaced by dummy
tensors in their respective positions in order to not discard those cases. Finally, the relations
between the objects are given into a 1-hot encoding N-by-M matrix, where each (i, j) and
(j, i) position has a positive value if an event takes place, or a negative value if nothing
happens. Dimension N is the number of potential relations (number of objects2), and M is
defined as:

M = relation dim ∗ (n his+ 2) (5.2)

where relation dim is the number of types of potential relations that can take place. In
our case, that is 6 (4+2): 1) ball-to-ball collision, 2) ball-to-wall collision, 3) ball-to-obstacle
collision and 4) ball exits the domain. The other 2, are the ∆x and ∆y between the center
masses of the two objects. The n hist is the number of previous timesteps given to the
network, in order to get a temporal image of the situation. In our case, this is set to 2. This
matrix gives us information regarding the events that took place in the past 3 frames, as
well as the information that needs to be predicted for the next frame. The purpose of this
whole process is to be able to predict the information contained in frame ts+ 1.

For this purpose, certain losses have to be defined. The first, is the mask loss, which
compares the predicted mask (position) of the object, and the actual mask. The second
is the positional loss, which compares the predicted position of the object, and the ground
truth. The third is the image loss, which correlates the predicted sub-sampled image, to the
predicted images. The last error, is the event loss, which compares the actual events that
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take place, to the predicted events.
All losses are defined as Mean Square Error Loss. The network is trained by weight-

adding the four losses. Even though the first three losses help during the training and provide
extra feedback loops to the network, their results will not be used within the framework of
this Thesis (see Chapter 8).

5.3.2 Additional work and differences from existing implementations

PropNet [32] is a very versatile network, meaning it can locate temporal events and
predict future states by minimizing the RMS error. However, the number of objects that
are used in the simulation has to be invariable. In its implementation in CLEVRER, even
though two types of events were recorded by the dataset generator (collisions and exits),
only one of those was eventually used for the temporal understanding and prediction aspects
of the dataset.

In our case, this cannot be overlooked, since collisions (between different types of ob-
jects) and domain exits are incredibly important. For this purpose, the final network is
substantially different than the original PropNet, mainly regarding its data preprocessing
and event management. The main characteristics that have changed are:

1. Different (physical) object management
In the case of CLEVRER, a total of 4 frames are used as each training example. 3
frames are the input, while the fourth is the one that has to be predicted, along with
any types of events that will lead to it. These frames are usually not continuous,
but are instead sampled from the video every 5 frames, in order to capture temporal
information. However, since the contents of each frame heavily depend on whether the
visual aspect of the architecture (MaskRCNN) will successfully locate all the objects
or if an object will exit the domain at some point between the frames, the number of
objects inbetween frames might vary. This issue is not addressed in the variation of
PropNet in CLEVRER, and these cases are simply discarded. In our case, we carefully
manage the objects in all the frames, in order to retain frames with variable object
count. This is done by creating a super-set of the objects detected in each frame, and
simply filling any non-existing cases of objects with dummy arrays. This allows the
network to handle cases with variable objects per group of frames, and in turn allows
the detection of events with variable objects (ball exits), as well as handle failures of
the visual component (See Table 5.2).
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Objects Frame -2 Frame -1 Frame 0 Frame 1 Global Objects
Ball 1 3 7 7 7 3

Ball 2 7 3 3 3 3

Ball 3 3 3 3 3 3

Ball 4 3 3 7 3 3

Wall 1 3 3 3 3 3

Wall 2 3 7 3 3 3

Wall 3 3 3 3 3 3

Gravity Field 1 3 3 3 7 3

Gravity Field 2 3 3 3 3 3

Obstacle 1 3 3 7 3 3

Obstacle 2 3 3 3 3 3

Obstacle 3 7 3 3 3 3

Table 5.2: Objects located in sequential frames, and objects in all the frames. 3 denotes
successful detection of an object, while 7 denotes failure by the visual component.

2. Expanded event encoded representation
The way events are encoded in CLEVRER is rather simple. A standardized one-hot
encoding is used (instead of 0,1 it is scaled to -0.5,0.5). When an event takes place,
that number is positive, and a few more characteristics regarding said event are given.
When an event is not taking place in these frames, that number is -0.5. This is rather
simplified, since only a single type of event is tracked in CLEVRER (object-to-object
collision). In our case, we have to expand this in order to include all types of events,
therefore that vector has to be further expanded.

3. Event tracking evaluation
In the original paper, whether an event was tracked successfully or not, could only be
evaluated with the MSE Loss that was used for training. In this case we can also track
the events’ Precision, Recall, False Discovery Rate and Miss Rate as can be seen in
Chapter 5.3.3.

The output of the evaluation step of the network, generates a *.csv file as the log of
the events. This file is similar to the one being produced during the initial simulation, and
can be compared to it through various ways. There are two different methods to evaluate
PropNet’s performance: as a separate entity, or as a part of the total VQA architecture
(end2end approach).

The first way is the preferred, since PropNet is used for event tracking, and the accuracy
of event detection needs to be evaluated. As mentioned in Chapter 4.3, we can compare the
ground truth events with the predicted ones, and consider an event as found, if it is found
successfully within a certain timeframe of the original (see Chapter 5.3.3). The end-to-end
evaluation could be used as well, however it would not give insight to PropNet’s performance,
therefore negating the perks of the Neuro-Symbolic approach.
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5.3.3 Event detection evaluation

In order to validate the event detection accuracy of the Propagation Network, the pre-
dicted events are compared to the ground truth events in order to extract certain metrics.

There can be a total of four (4) cases of events:

• True Positive (TP): An event that is correctly identified
• False Positive (FP): An event that is identified, but doesn’t really exist. This can

happen if a non-existent event is detected, or if a correct event is detected twice.
• False Negative (FN): An event that does happen, but isn’t detected.
• True Negative (TN): Cannot be defined in our case, since events are sparse events.

But strictly speaking, it would mean that an event that doesn’t happen, indeed doesn’t
get detected (which, due to being in most timesteps, is pointless to define). This also
prohibits the use of “accuracy”, since it requires TNs to be correctly defined.

With the above three (3) metrics (since TN is rejected in our case), we can define the
following metrics to give us some insight:

• Precision(PR) = TP
TP+FP

• Recall = TP
TP+FN

• FalseDiscoveryRate(FDR) = FP
FP+TP

• MissRate(MR) = FN
FN+TP

Lastly, an event is considered successfully detected, if its type, item 1 and item 2 are
identical, while the timestamp satisfies the following condition:

|tpred − tgt| ≤ pt
frame offset

fps
(5.3)

Where tpred is the predicted time that the event will take place, tgt is the ground truth
time that the event will take place, frame offset is PropNets sampling rate (5 is used in
this case), fps are the frames-per-second used in the videos simulation (which is 50), and
finally pt is a window parameter. If pt = 1, it means that only the events inside a window
of ±frame offset

fps
= 0.1sec will be considered valid. Since this restriction is rather strict and

will lead to incorrect metrics, for evaluation purposes pt = 2 will be used.

5.3.4 Parameterization

As with any Neural Network, Prop-Net can be tuned with various meta-parameters,
that will change its output.

The most important parameter that can be “tuned” in PropNet, is the frame offset.
That is the rate at which time-steps/frames will be sampled from the video/frames in order
to be trained/inferred. A larger frame offset, means a lower sampling rate (less frames
sampled per second). A bigger frame offset has the added benefit that training as well
as inference take less time to perform, since the dataset ends up being smaller. Also, the

43



timestep at which events are located is less strict, since each time window in which an event
needs to be located is larger (see 5.3.3). Additionally, slower events that the solver attributes
to a single frame (like ball exits) are now easier to locate, since the visual component’s ability
to detect them is more guaranteed, as the ball will likely be fully within one frame, and fully
outside in the next. After all, in a gradual exit a ball drastically changes shape (a ball
gradually turns into a part of a ball, which the MaskRCNN might not be able to correctly
classify). On the other hand though, a smaller frame offset, allows more accurate event
location (time-wise), and also allows ball trajectory prediction to be more accurate, since
practically the timestep of the simulation of PropNet (this time as a physics engine) is smaller
and therefore more accurate, however temporal information is gradually lost as consecutive
frames are very similar to each other, and the prediction accuracy is low. Through trial and
error, a good value of frame-offset was deemed to be 5, with a video fps of 50.

Other meta-parameters that can be tuned, are the number of propagation steps taking
place (Interaction Network: 1 propagation step, Propagation Network: 2 steps), as well as
the hidden dimensions of the inputs and outputs of the networks encoders and decoders.

5.4 Mass Estimation

The purpose of the Mass Estimator, is to classify each of the participating balls in one
of the 5 categories (“none”, “low mass”, “medium mass”, “big mass”, and “infinite mass”).
In order for such a network to be trained, incredible attention should be given to the training
data. If all simulations are used in order to classify their balls’ masses, the result on the
validation set will barely be above the baseline of 33% (3 equiprobable mass categories are
used). For this purpose, it should be thoroughly explained under which conditions the mass
can be inferred through the interactions alone.

The adjacency matrix of the ball-to-ball collisions is a square matrix where each (i,j) and
(j,i) position contains the amount of times that ball i has collided with ball j. This matrix
is symmetrical. One can look at this matrix as an undirected graph, where each collision
produces a vertice between node i and node j. If all nodes are interconnected, directly or
indirectly, one can infer the relations between their masses, since a collision between node i
and node j means that their mass ratio is now known. The logic behind is is rather simple.
If ball 1 is heavier than ball 2, and ball 2 is heavier than ball 3, then ball 1 is heavier than
ball 3. Since the ratios of the masses are logarithmic5, as each category is double the mass
of the previous, the two extremes of all the categories have to be included in a training
sample, in order to correctly classify them. If this is not the case, two identical simulations
with balls belonging to categories small, medium, and medium, big will have the exact same
dynamic behavior (same image on the simulation) hindering the classification capabilities,
and therefore corrupting the training data. For this purpose, we demand that each training
sample has data from at least the lightest and heaviest category.

One simple way to find if a simulation is adequate for inferring the masses, is to find
the sign of the Fiedler value [11] of its Laplacian. A graph’s Laplacian is defined as:

L = D − A (5.4)

5The masses used in this scenario are 0.5, 1 and 2 kg
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where D is the graph’s degree matrix, and A the adjacency matrix. The degree matrix
contains the number of other nodes that node i is connected to, while the adjacency matrix
contains the number of times that node i is connected to node j. In our case, if a position
is non-zero, it can simply be replaced with one (1).

After the Laplacian matrix has been calculated, we calculate its eigenvalues in ascending
order. The second eigenvalue will be the Fiedler value. If its sign is positive, it means the
graph is connected. This is the condition under which the selection of the data will take
place. Two examples, one valid and one invalid, will follow:

• Valid example
Consider the graph:

Figure 5.3: A connected graph.

Which has the following adjacency matrix (assuming multiple ball collisions between
some pairs of balls):

A =


1 1 2 1 3
1 0 0 0 1
2 0 0 0 0
1 0 0 0 0
3 1 0 0 0


And the following degree matrix:

D =


4 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2
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The Laplacian, is:

L =


4 −1 −2 −1 −3
−1 2 0 0 −1
−2 0 1 0 0
−1 0 0 1 0
−3 −1 0 0 2


Which has the following eigenvalues (in ascending order):

λi = (−1.546), (1), (1), (2.767), (6.779)

The second eigenvalue (λ2) is 1, which is positive, therefore the graph is connected,
which is indeed true, so the simulation is considered a valid training sample.

• Invalid example
Consider the graph:

Figure 5.4: A disconnected graph.

Which has the following adjacency matrix (as calculated by the collision of the simu-
lation):

A =


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 1
0 0 0 1 0


As well as the following degree matrix:

D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1
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The Laplacian matrix, as defined by L = D − A is:

L =


1 0 0 −1 0
0 1 −1 0 0
0 −1 1 0 0
−1 0 0 2 −1
0 0 0 −1 1


Whose eigenvalues in ascending order are:

λi = (0), (0), (1), (2), (3)

The second eigenvalue (λ2) is the Fiedler value. In this case, it’s zero, therefore the
graph is not connected, which is true, thus the interaction producing the graph is an
invalid interaction.

5.4.1 Training Data

Initial attempts to train the Mass Estimator with the same number of samples as the
Dynamics Predictor failed, with a marginal pass of the baseline accuracy. Since this is not
a Neuro-Symbolic Model, standard Machine Learning techniques had to be used in order to
achieve good accuracy, and this involved using many samples. With the rules posed above,
not all samples are considered valid and/or interpretable. For this purpose, 500k samples of
each of levels 1,3,4 and 8 were generated (total of 2M samples). However, after the filtering
strategy used above, only about 90k samples were considered valid and therefore used for
training. The training data consisted of the coordinates generated by the physics engine, and
not by the MaskRCNN output. The reason for this was mainly the fact that the latter case
would require rendering of the videos, and interpretation of each frame, which would add a
huge time delay (a few weeks for around 90k samples). However, by following this tactic it
took around 1-2 days to generate 2M samples on 3 separate multi-processor machines.

5.4.2 Model used

The model used to predict the masses of the participating balls, is an LSTM that
branches into 5 classifiers, one for each different ball, with each classifier having 5 different
categories. The coordinates are given as a time series, meaning that each timestep comprises
of 25 values, x, y, u, v and |u| of the 5 balls. Since the predictor operates with timesteps of 0.1
seconds, the model was trained on the same timesteps. In all cases the final 1000 elements of
the dataset were used for validation, while a varying number of samples was used for training
in order to test the model’s scaling abilities. All the data used was separately generated from
the initial dataset, so as to not interfere with overfitting on data used to test it 6.

5.5 Friction Estimation

The previous chapter analyzed the way that a neural network can learn dynamic be-
havior based on the movement of the balls. Dynamic behavior can be expanded into many
areas. Another interesting area is that of movement type, when it is affected by a drag.

6More info on how the separate generation takes place can be found in the code’s documentation
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In order to set up this experiment 7, three different types of opposing forces were used:

• None: Vaccum like simulation (like the initial dataset)
• Dry friction
• Aerodynamic friction

Each simulation only faced a single type of friction, meaning that all balls face the same
type of friction. The types are equiprobable, with a probability of 33.3%.

Dry friction is defined as an opposing to the movement force, that is proportional to
the weight of the object (ball). In this case, the balls are assumed to be non-rotating, since
a rotating ball has different dynamics. The force of dry friction is defined as:

Fd = µN (5.5)

where µ is the friction coefficient, and N is the weight of the object, defined as gm,
where m is the mass of the ball. This force is always the same, and depends on the mass,
and not the object’s speed (apart from when the object is stationary, where the force is
zero).

Aerodynamic friction on the other hand can be defined in many ways. In this case, we
opted to use Stoke’s Law [48] which is perfectly tailored to our needs. It simulates the force
acted upon a moving ball within a viscous fluid. The force acted upon the object is:

Fdrag = 6πν|u|R (5.6)

where ν is the viscosity of the fluid, R the radius of the ball, and |u| the magnitude of
its velocity.

During the setup of the problem, we additionally added the degree of each resistance as
a parameter to be inferred. This means that the coefficients (µ and ν) are not constant, but
sampled from three different values with equal probabilities:

• µ ∈ [0.002, 0.004, 0.008]
• ν ∈ [0.6, 1.0, 1.4]

In this scenario, two different approaches can be followed. The first comprises of two
different classifiers, with each tailored to classifying each simulation into a class based on
the type of resistance, while the second one determined the level of resistance (when there
is no resistance, the level is considered as zero (0)), giving a total of 3 and 4 classes for
classification respectively. However, this approach, does not provide easy understanding of
the difficulties that the classifier faces, so we opted for a meta-class approach. This approach
uses a single classifier with a total of 7 classes:

• Class 1: No resistance
• Class 2: Dry friction with µ = 0.002

7Since this experiment requires changing the dynamics of the solver, any tests and results will be per-
formed on a different dataset in order to not interfere with the existing datasets (that don’t use drag or
friction)
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• Class 3: Dry friction with µ = 0.004
• Class 4: Dry friction with µ = 0.008
• Class 5: Drag (Stokes Law) with ν = 0.6
• Class 6: Drag (Stokes Law) with ν = 1.0
• Class 7: Drag (Stokes Law) with ν = 1.4

The network used in both cases, was a bidirectional LSTM 8. The results of the network,
were used to answer questions of the type: “What type of resistance do the balls face in the
simulation?” or “How much resistance do the balls face in the simulation?”. The results of
the trained networks, their accuracies, their generalizations, as well as their VQA answering
successes can be found in Chapter 6.5.

5.6 Symbolic Executor

The Symbolic Executor is a pure rule-based operator that extracts information from
the generated (or ground truth) data-tables, by applying commands on them, which are
encoded in a series of symbolic sequences, called programs. The whole process takes place
as a pipeline with a stack, that contains all the important information from any previous
command applications. A stack can include multiple entities. And these entities are “con-
sumed” each time a program is called (each program requires a varying number of entities to
function). These entities can either be parts of the data table (a few objects), a characteristic
or even an argument for another program. After a command is performed, its result goes
on top of the stack, replacing any kind of required entities. An example of the stack can be
seen in Figure 5.5

8The original source code of the network used can be found at: https://github.com/georgepar/slp
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Figure 5.5: Stack during and after commands. In the initial state (1), the stack contains two
entities, all the objects, and the attribute blue. After the operator filter color, the new stack
(2) has a single element, just the blue objects. After that (3), another attribute is added to
the stack: big. After the operator filter size is implemented, then the stack again is reduced
to a single entity, that of the big blue objects.

A total of 39 commands exist, and each of them is applied to a corresponding data
table, similarly to how it is shown in Figure 5.5. The commands used, are the following:

1. objects: Lists all the objects that participate in the simulation as a list of indices.
Doesn’t require any input.

2. events: Lists all the events that that participate in the simulation as a list of indices.
Doesn’t require any input.

3. xy vel: Returns a data table with all the positions and velocities of all the balls in the
simulation. Doesn’t require any input.

4. sides: Lists all the sides that are not blocked by walls. Doesn’t require any input.
5. resistances: Returns the data table with the resistance of the simulation. Doesn’t

require any input.
6. filter size: It filters the objects based on the size attribute given. Requires 2 inputs

(objects and size attribute).
7. filter color: It filters the objects based on the color attribute given. Requires 2 inputs

(objects and color attribute).
8. filter shape: It filters the objects based on the shape attribute given. Requires 2

inputs (objects and shape attribute).
9. filter type: It filters the objects based on the type attribute given. Requires 2 inputs

(objects and type attribute).
10. filter side: It filters the objects based on the side attribute given. Requires 2 inputs

(objects and side attribute).
11. count: Counts the number of existing entities in its given list. Requires 1 input (the

list).
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12. is less: Returns Yes if number 1 is less than number 2. Else, it returns No. Requires
2 inputs (number 1 and number 2).

13. is more: Returns Yes if number 1 is more than number 2. Else, it returns No. Re-
quires 2 inputs (number 1 and number 2).

14. is equal: Returns Yes if number 1 is equal to number 2. Else, it returns No. Requires
2 inputs (number 1 and number 2).

15. reduce by one: Reduces the number given by one. Requires 1 input (the number
given).

16. more than one: Checks if the list has more than one items inside it. Requires 1
input (the list).

17. exists: Checks if the list has any items inside it. Requires 1 input (the list).
18. find min: Finds the index that minimizes a quantity. Receives 2 inputs (the data

table, and the quantity).
19. find max: Finds the index that maximizes a quantity. Receives 2 inputs (the data

table, and the quantity).
20. unique: Returns the single element of the list that is given. Requires 1 input (the

list).
21. inv boolean: Returns No if the input is Yes, and vice versa. Requires 1 input (Yes

or No).
22. sort xyv: Orders a column of a data table of positions and velocities in ascending or

descending order per timestep. Receives 3 inputs (the data table, the column variable,
and the type of ordering; ascending or descending).

23. filter ts: Returns a specific subsection of the position and velocities data table, with a
specific timestep. Receives 2 inputs (the data table, and the timestep to be returned).

24. query color: Returns the color of the given item. Requires 1 input (the item).
25. query shape: Returns the shape of the given item. Requires 1 input (the item).
26. query size: Returns the size of the given item. Requires 1 input (the item).
27. query mass: Returns the mass of the given item. Requires 1 input (the item).
28. query type: Returns the type of the resistance. Requires 1 input (the resistance data

table).
29. query level: Returns the level of the resistance. Requires 1 input (the resistance data

table).
30. union: Returns the union of the two input sets (lists) of indices. Requires 2 inputs

(the two lists/sets of indices).
31. intersection: Returns the intersection of the two input sets (lists) of indices. Requires

2 inputs (the two lists/sets of indices).
32. filter event type: Returns the events from the list of given events, that are of type

type. Requires 2 inputs (a list of events, and an event type).
33. filter order: Extracts the i-th element of a series of events, based on the order at-

tribute. e.g. [events, fifth] will return the fifth event in the list of events (since events
are naturally sorted). Requires 2 arguments (the list of events, and the order in text).

34. df order: Returns the i-th item in a data table. Requires 2 inputs (the data table,
and the order in text (e.g. “second”)).

35. filter particip: Returns the participating items in an event. Requires 1 argument
(the event).
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36. describe ball: Returns a description of the ball participating in the event. Requires
1 argument (the event).

37. describe side: Returns a description of the side participating in the event. Requires
1 argument (the event).

38. describe particip: Returns a description of the balls participating in the event. Re-
quires 1 argument (the event).

39. query object: Returns the items of type item that participate in the events events.
Requires 2 arguments (the events, and the item type).

The above commands (programs) are the operators that will be used. The software
responsible for receiving the series of commands and data tables, and outputting an answer
in natural language, is the Symbolic Executor.

In Appendix A.1, one can see that most programs are templated, and can use arguments
such as color, shape and size, to be tailored to each question, much like the questions
themselves.

In total, in the programs vocabulary there are around 80 different words (including
programs, and attributes, such as “first”, “red”, “left”, “big”, “square”), while the Natural
Language questions contain approximately 129 words.

After taking a look at Section 3.8 and Appendix A.1, one will see that perhaps there are
multiple ways to formulate a question in the form of programs. This is true. However, for
simplicity purposes we will use a single sequence of programs per question (and its rephrasals)
even though in cases there might be more optimal sequences of commands.

In our case, an attention encoder-decoder GRU-RNN was used in order to achieve the
translation from the Natural Language questions to their Symbolic sequences of commands
(Ch. 6.2).

5.7 Macroscopic view of model

A more detailed macroscopic view of the full ensemble model can be seen in Figure 5.6:
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Figure 5.6: End-to-end process for answering questions. Each different element is shown with
a different color. Blue is the video-to-frame breaker, red is the frame interpreter (MaskR-
CNN, color classifier and all other related code), green is the Dynamics Predictor (PropNet),
purple is the sequence-to-sequence model (Attention-GRU), and orange is the Symbolic ex-
ecutor.
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6 Results for each module

In the previous chapters, a macroscopic view of the model was given, along with an
analysis of the theory behind each module as well as the setup that was used in these
experiments. In this chapter the results of each module will be presented separately from
the end-to-end approach (which will in turn be shown in Chapter 7). These sub-modules are
the Frame Interpreter (MaskRCNN), the Neuro-Symbolic translator, the Dynamics Predictor
(PropNet), the Mass Estimator, the Friction Estimator and finally the Symbolic Executor.

As mentioned in previous chapters, the ensemble network cannot be trained end-to-end.
However being able to train and monitor each module independently provides us with the
large advantage of monitoring and calibrating its ability independently from all the other
modules.

6.1 Frame Interpreter

As previously mentioned, MaskRCNN [21] aims to provide pixel level segmentation on
each given image, along with classification for given objects. The dataset consisted of 1080
items, with a 9:2 train-validation split (900 train samples, 180 validation samples), which
were generated from the original dataset generator. Training was done using Colabs [17]
GPUs, and training time was approximately 30-35 mins. Convergence was achieved after
about 4-5 epochs (Figure 6.1).

Figure 6.1: Losses on training set during MaskRCNN training.

We evaluated the results of the MaskRCNN by accuracy of the classifier. Since the
order with which the different items per training sample are given during training differs
from the order during inference, matching between the items was performed with an IOU
(Intersection Over Union) metric on the initial and predicted binary masks. The pair with

54



the highest IOU score was evaluated, as it was considered to be the same item in the ground
truth and in the predicted labels. A sample of the predicted masks from the output of the
MaskRCNN can be seen in Figure 6.2.

Figure 6.2: Frame from simulation, and generated masks from Mask R-CNN. Notice how
one of the two gravity fields contains “gaps” where some of the objects are located.

The classification accuracy was above 99% and the classifier’s confusion matrix can be
see in Figure 6.3.
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Figure 6.3: Confusion Matrix of MaskRCNN classification. The 18 categories can be seen in
Table 3.4

A sample image and an inferred masked image can be seen in Figures 6.4 and 6.5
respectively.

Figure 6.4: Frame from simulation Figure 6.5: Frame from MaskRCNN

6.2 Neuro-Symbolic Translator

Along with the dataset, a huge set of questions has been generated (Chapter 3.8).
However, in order to follow a symbolic approach, these questions need to be converted from
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Natural Language (English), to a series of Symbolic “programs”, that can be used to extract
information from the output of the Propagation Network. In practice, we translate English
into a new, Symbolic language (a Domain Specific Language). Along with the templated
questions generated with the dataset, a templated series of programs has also been generated
(for more information, see Appendix A.1). This will be used to train and evaluate a network
that will perform the translation.

A Neuro-Symbolic parser is used in order to translate the questions from Natural Lan-
guage (English) to their symbolic counterparts (programms). This is done using a sequence-
to-sequence model, as explained in Chapter. 4.2. That is a GRU model, with an attention
mechanism on its decoder’s input. For this to happen, a dataset with pairs of Natural Lan-
guage questions and their respective Symbolic programms needs to be created. This dataset,
as mentioned in Chapter. 3 is generated alongside the simulations 9.

The number of questions is large, since they are procedurally generated. Duplicates are
guaranteed to exist, therefore are discarded in order to correctly evaluate training and avoid
overfitting. In the end, a total of 30k+ different question-program pairs were left. A variable
number of question pairs is used in order to test the parsers ability to generate correct NS
sequences from limited training data. In all cases, an 80-20 split is used for training and
validation set.

A maximum number of 100000 epochs were used, however the model will almost always
converge much earlier. The data is split with a 80:20 ratio, therefore for the 2000 samples
case, 1600 were used for training, while 400 for validation. The model is evaluated every 50
epochs 10, and the accuracies of the train and validation set are shown in Figure 6.1. Early
stopping is implemented with the accuracies that are calculated every 50 epochs. If more than
20 evaluations pass (20∗50 = 1000 epochs) without improvement of the validation accuracy,
the model is considered trained and the best validation epoch is saved for inference (a.k.a.
early stopping with a patience of 20 evaluations). In Table 6.1 the best accuracies of the
train/validation set are displayed, along with the number of epochs required to achieve them,
as well as the training time required (time was calculated when computing on a GTX-1650).

9It is not actually a different dataset, as each generated question comes paired with its respective program,
which can be directly used to train a translation model.

10Training would be faster if the evaluation was sparser, but for development purposes, a more dense
evaluation is used.
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Training Samples Train Acc. Validation Acc. Epochs Time (mins)*
100 100.00 % 5.00 % 3150 3
200 79.375 % 15.0 % 3600 6
500 89.25 % 60.0 % 7500 23
1000 96.5 % 77.0 % 11950 61
2000 86.62% 83.75 % 13900 129
5000 99.75 % 97.39 % 83000 138
7500 99.26 % 98.40 % 77000 166
10000 99.08 % 98.10 % 92000 248
20000 98.72 % 997.94 % 100000 500

Table 6.1: Training samples, train and validation accuracy, epochs and time required (on a
GTX-1650) for training the sequence-to-sequence English to Symbolic translator. *Training
with 5000, 7500, 10000 and 20000 samples was evaluated every 1000 epochs in order to save
training time.

The convergence graphs (with regards to sentence accuracy, as defined in Eq. 5.1) of
all the training examples, are displayed in Figure 6.6.

What is evident from Figure 6.6 is that the accuracy on the validation set increases with
the number of training samples, therefore the network is able to generalize better (as was
expected). Any experiment with a set size of 5k+, can be considered adequate to perform
inference with.

Even through no duplicate questions exist in our dataset (as they have been filtered),
in certain questions that do not receive arguments (such as color or size) and do not have
rephrases, the network might fail to generate their programs successfully. This is due to
the fact that after seeing many samples, the encoder understands that “red” and “blue”
belong to the same group (color) that goes into specific positions, while “small” and “big”
belong to another group (size) that goes into different positions. This way, it understands
language rules and can generalize well on similar things that it has seen. In the case of a
question such as “What is the level of the friction?”, since there are no similar questions
with similar programs, it might fail to answer it. Such cases could be solved by introducing
numerous rephrasals, or using pre-trained embeddings, but in order to generalize better the
total accuracy would most likely be reduced.

In our experiments, the translator worked incredibly well, and the end-to-end accura-
cies are incredibly close to the ones calculated by using the ground truth sequences of the
programs. However, in more expanded cases, the abovementioned potential issue should be
taken into account when generating the questions and training the network.
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Figure 6.6: Accuracies of training and validation set for the sequence-to-sequence translator.
Results are displayed for total size (train+validation) of 100, 200, 500, 1000, 2000, 5000,
7500, 10000, 20000.
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6.3 Dynamics Predictor

The Dynamics Predictor aims to understand the dynamic events that take place in a
scene by receiving a sequence of interpreted frames as input. These frame interpretations
are generated by the frame interpreter (see Ch. 4.1). The output of the evaluation step of
the Dynamics Predictor generates a *.csv file as the logfile of the events. This file is similar
to the one being produced during the initial simulation and can be compared to it through
various ways. There are two different methods to evaluate PropNet’s performance: as a
separate entity, or as a part of the total VQA architecture (end-to-end approach).

The first way is the preferred, since PropNet is used for event tracking and the precision
(accuracy cannot strictly be defined) of event detection needs to be evaluated. As mentioned
in Chapter 4.3, we can compare the ground truth events with the predicted ones and consider
an event as found if it is found successfully within a certain time-window of the original (Ch.
5.3.3). The end-to-end evaluation could be used to evaluate PropNet’s performance as well,
however it would not give insight to PropNet’s performance as s single module, therefore
negating the perks of the Neuro-Symbolic approach. It will be used in order to evaluate the
total end-to-end architecture.

By training PropNet for 100 epochs, with 120 samples (80 training, 20 validation, 20
test) of difficulty of level 8, we received the following per-event precisions and recalls:

Figure 6.7: Per-event accuracies with PropNet trained on 120 samples (80 of which are the
training set). Execution time was 30.5 hours on a GTX 1650 with batch size 1.
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We can easily see that while ball-to-wall collisions, and ball exits generalize well and
with relatively few epochs -even with the limited 80 training samples-, cases such as ball-to-
ball and ball-to-obstacle do not. This is probably due to the fact that the latter cases involve
different, non-static items, and the network requires more samples in order to be able to
generalize from that behavior. A ball that exits, simply stops being inside the frame. A
ball that collides with a wall rapidly changes velocity at some side (each side has a specific
location within the domain). However, balls are not static objects, and they move at every
timestep. Obstacles, even though static in all the frames of a single simulation, are vastly
different between different simulations, thus the necessity for larger datasets to train arises.
However, the precision -considering the limited number of 80 training samples- supports the
concept of the Neuro Symbolic approach; less training data is required in order to achieve
better results.

This training took place with 80 training samples, 20 for validation, and 20 for test.
The next step is to train the Network with a larger dataset, to check if the lack of precision
is data-driven. By further training the network (keeping as a checkpoint the 70-th epoch,
as it gives the highest precision (Figure 6.7)) with double the number of training samples
(160:40:40 split) for 50 extra epochs, we receive the following precisions and recalls (Fig.
6.8):
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Figure 6.8: Per-event precisions with PropNet trained on 240 samples (160 of which are
training set). Execution time was 30 hours on a GTX 1650 with batch size 1. The network
was initialized based on the weights calculated from the previous run, with 100 epochs (See
Fig. 6.7)

Note that since the dataset is now larger, the starting precision -even on the train set-
will be lower, since half the new training set is now new, and never before trained-upon data
(it is seen as test data).

We can see that the precisions further improve upon doubling the data, and not by an
insignificant amount. The recall remains high, meaning events can be detected, however, the
lower precision means that some events are detected multiple times, which hinders certain
VQA tasks which heavily rely on the correct number of event detections. The per-event
Precision, Recall, False Discovery Rate and Miss Rate of epoch 150 can be seen in Table 6.2.
This checkpoint will be used for the end-to-end inference in Chapter 7.

Further training with even more data would most likely further increase the precisions
and recall of the located events, however, taking into account the training time required,
something such as that will be left for future work.
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Set Event Type Precision Recall FDR MR TP FP FN

Train

Ball-to-ball 93.00% 95.56% 7.00% 4.44% 904 68 42
Ball-to-wall 97.08% 96.44% 2.92% 3.56% 2195 66 81
Ball Exits 91.77% 96.50% 8.23% 3.50% 524 47 19

Ball-to-obstacle 96.91% 93.22% 3.09% 6.78% 1444 46 105
All Events 95.71% 95.35% 4.29% 4.65% 5067 227 247

Validation

Ball-to-ball 66.32% 74.81% 33.68% 25.19% 193 98 65
Ball-to-wall 94.13% 89.91% 5.87% 10.09% 481 30 54
Ball Exits 80.42% 86.47% 19.58% 13.53% 115 28 18

Ball-to-obstacle 79.49% 71.38% 20.51% 28.62% 217 56 87
All Events 82.59% 81.79% 17.41% 18.21% 1006 212 224

Test

Ball-to-ball 63.16% 64.67% 36.84% 35.33% 108 63 59
Ball-to-wall 95.21% 90.55% 4.79% 9.45% 556 28 58
Ball Exits 81.25% 91.41% 18.75% 8.59% 117 27 11

Ball-to-obstacle 78.64% 75.50% 21.36% 24.50% 265 72 86
All Events 84.63% 83.02% 15.37% 16.98% 1046 190 214

Table 6.2: Precision, Recall, False Discovery Rate, and Miss Rate of PropNet’s training, at
epoch 150, on all three sets (train, validation and test). True Positives, False Positives, and
False Negatives are also displayed.

6.4 Mass Estimation

This, and the following sub-chapters will focus mainly on the training and performance
of the models that are aimed at understanding physical quantities that are present in the
simulations. Unlike all other questions, these will not be included in any end-to-end ap-
proach, since they will be more thoroughly explored here. These types of questions involve
three different aspects. The first is the mass estimation of the balls, based on their perceived
interactions (Ch. 4.4), the second one is the friction type and magnitude estimation (Ch.
4.5) and the third is the velocity order estimation (due to its simplicity, it has not been
explored in theory, and will briefly be explained here, along with its results).

In order to train a mass estimator (which in practice is an LSTM paired with a fully
connected network that simultaneously classifies the 5 balls), a rather large dataset will need
to be generated. Even though the previous Neuro-Symbolic approaches (event detection
through Prop-Net) requires a rather small number of training samples to achieve acceptable
results, this is not the case here. Initial attempts with 20-100k initial samples (reduced to
about 10% of that after their filtering as described in 5.4) barely passed the baseline 11. Since
the composition of the problem was sound, more data was needed. For this purpose, 500k
samples from each of the categories of levels 1, 3, 4, and 8 were generated 12, leading to a
total of 2M samples, of which around 90k were valid. In order to test the scaling capabilities
(and in practice validate that this indeed is a data-driven issue), different runs were made,

11The baseline with three mass categories is 33.3%
12The generation was computationally intensive, and required around 2 days to perform on three different

multi core processor machines
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with different amounts of data. Since these samples were generated from different difficulties
(therefore different distributions) their classes were not balanced. In total, there were:

• Class 0 (“none”): 58606 samples

• Class 1 (“low mass”): 132661

• Class 2 (“medium mass”): 132031

• Class 3 (“big mass”): 132777

• Class 4 (“infinite mass”13): 0 samples

Assuming that Class 0 can always be classified correctly (since it is made up of zeros),
this leaves a baseline accuracy of:

accBL =
58606 + 132777

58606 + 132661 + 132031 + 132777
= 0.4196 = 41.96%

In all cases, a validation set of the same 1000 samples was used, and the training set
consisted of an increasing set of samples, namely at 1k, 5k, 10k, 20k, 30k, 60k and 90k
samples. The accuracy of the classifier as a function of the number of training samples can
be seen in Figure 6.9.

Figure 6.9: Accuracy of train and validation set for the mass estimator. The runs comprised
of 1k, 5k, 10k, 20k, 30k, 60k and 90k training samples, and the same validation set, that
consists of 1000 samples.

From Figure 6.9 we can see that for small datasets, the model overfits to the training
data and the accuracy is barely above the baseline (∼ 46%). As the dataset increases in
size, the model learns better and better, finally reaching an accuracy of 60 + %.

13This is not used in these runs, but rather left as a placeholder for future development
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6.4.1 Mass Estimation Generalization

As mentioned, the classifier was trained on a joined dataset, comprised of samples from
levels 1, 3, 4 and 8. In order to test its classification capabilities, we will create 2000 samples
from each difficulty (different than the trained ones), and attempt to find the classification
accuracy. This will both work as a test set for simulations of levels 1,3,4 and 8 (rather than
a validation), as well as a way to test the model’s generalization capabilities on unseen data.
The test data, similarly to the training data, has been filtered as mentioned in Chapter
5.4. Based on the distributions of the test sets, a baseline can also be calculated, which is
displayed as well.

Level Accuracy Baseline Valid Samples Cat. 0 Cat. 1 Cat. 2 Cat. 3
1 84.44 % 77.04 % 27 81 23 15 16
2 75.29 % 65.88 % 17 34 17 22 12
3 70.72 % 47.21 % 97 97 132 130 126
4 68.89 % 64.44 % 18 36 16 22 16
5 71.13 % 48.04 % 97 97 130 136 122
6 68.70 % 63.47 % 23 46 26 27 16
7 51.98 % 47.44 % 172 172 220 232 236
8 51.07 % 34.02 % 224 0 362 381 377

Table 6.3: Accuracies on test samples. All test sample levels have been generated from an
initial 2000 samples per level, but through the filtering explained in Chapter 5.4 only the
number of samples displayed on the column “Valid Samples” end up being used. Category 0
is “None”, category 1 is “low” mass, category 2 is “medium” mass, and category 3 is “big”
mass. While category 4 exists (“infinite mass”, since it is never used as training, it is never
predicted in the classifier, therefore omitted.

As seen from Table 6.3, while all accuracies are higher than the baselines, the high
fluctuation of the differences is due to the limited number of samples being used for testing.
However, it is evident that the network does indeed manage to learn to infer the masses of
the participating objects.

6.4.2 Mass Estimation VQA Results

A similar testing approach will take place now, but instead of evaluating the accuracy
of the masses, we will evaluate the accuracy of the VQA questions regarding the mass.
However, in this case since the results are end-to-end, and the video generation is costly,
no filtering will take place14. The trained model will be the same as used before, and
evaluations will take place for all levels (1-8), for all questions regarding mass. Note that
these results are completely end-to-end results, meaning that the initial videos, go through
the whole structure shown in Figure 5.6. This means that the inputs that are given to the
mass predictor are no longer the ground truths as directly provided by the simulator, but
as exports from the MaskRCNN and PropNet. During the dataset generation, no samples

14In future work, complete comparison with larger VQA tests sets can take place.
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were filtered, meaning that many (or most to be precise) examples might contain balls whose
masses were impossible to predict. The results of the above end-to-end runs can be seen in
Tables 6.10 and 6.11.

Level 1 Level 2 Level 3 Level 4
Question ID Accuracy Total Accuracy Total Accuracy Total Accuracy Total

9.0 34.00 100 20.00 100 20.00 100 28.00 100
9.1 34.00 100 22.00 100 31.31 99 30.30 99
9.2 54.00 100 46.39 97 58.00 100 47.47 99
9.3 32.00 100 25.00 100 38.00 100 29.00 100
9.4 32.00 100 28.00 100 37.00 100 28.00 100

Table 6.4: VQA accuracy results on mass estimation questions for levels 1 to 4

Level 5 Level 6 Level 7 Level 8
Question ID Accuracy Total Accuracy Total Accuracy Total Accuracy Total

9.0 14.00 100 30.00 100 22.00 100 48.00 100
9.1 49.49 99 30.30 99 46.00 100 62.00 100
9.2 54.00 100 43.88 98 58.00 100 64.29 98
9.3 36.00 100 26.00 100 32.00 100 37.00 100
9.4 46.00 100 22.00 100 30.00 100 36.36 99

Table 6.5: VQA accuracy results on mass estimation questions for levels 5 to 8

From the above results, the first thing that comes to mind is the incredible low accuracy
of the end-to-end VQA for the questions on the lower levels 15. As mentioned, the test set is
unfiltered, meaning that most samples that will be given will be incomplete, and not actually
inferrable. The mass estimator has been trained in ball interactions that create connected
graphs, and since these samples do not satisfy these conditions, they are seen as completely
unknown out-of-distribution data, and are incorrectly classified 16. However, the results as
the levels increase are substantially better than the baselines, as was expected, since more
interactions take place, and the mass can be inferred. Additionally, even though we trained
the network on simulations with fully connected graphs, it fares significantly better than
expected, which means perhaps that even though the full classification of all the balls might
not be able to take place, partial correct classification does occur for the balls that do actually
interact. Additionally, the coordinates given to the mass estimator, are the ones that come
from from the MaskRCNN masks, and are therefore subject to pixel quantification noise 17

hindering the learned behavior from the initial predictor.
In any case, since more in-depth analysis and experimenting would require tremendous

amounts of data and computational time, the progress of such a feat is left for future work.
However, what can be proposed is the use of larger datasets in the end-to-end manner, in

15The actual questions can be found in Appendix A.1
16The (not-so-simple) rules of determining the accuracy of each question can be seen in the source code.
17Noise that comes from the quantization of the image to the mask grid.
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order to correctly filter and validate the answers in the test set as well, and attempt to
infer whether the neural network can indeed learn partial interactions, when the graph is
incomplete. Additionally, more in depth specialized training can take place where there is
an extra category of an “uninferrable” mass. This would however, require careful handling
of data balancing, as well as specialized pre-processing in order to correctly label each ball’s
mass.

6.5 Friction Estimation

After seeing the (costly) success of being able to estimate the mass of the participating
objects simply by looking at the video and their interactions, a set of experiments regarding
friction estimation will take place, as mentioned in Chapter 4.5. All training data consists
of samples taken from difficulty of level 3, where the ball trajectories are straight lines, as
gravity fields don’t exist. A total of 20k samples were generated, with 1k being used for
validation, while the other 19k for training The bidirectional LSTM used, has an input size
of 25, where the coordinates of each ball (x,y), the velocities (u,v) and the magnitude of the
velocity (vel =

√
u2 + v2) are given for each ball. There can exist a maximum of 5 balls,

and when some are missing, their values are replaced by zeros. The LSTM has a hidden size
of 16, while the classifier is a simple FC network, with an input size of 32 (2 ∗ 16 since the
network is bidrectional), and an output size of 7, one for every possible class. The optimizer
used is the ADAM [27] optimizer with its default parameters. Early stopping was used with
a patience of 30 epochs, and a maximum number of 1000 epochs, although most experiments
had converged in far less than 200 epochs. The number of samples - accuracy graph, can be
seen in Figure 6.10, while the confusion matrix is displayed in Figure 6.11.

Figure 6.10: Accuracy of resistance estimator on the training and validation set for a varying
number of samples. 1k, 2k, 4k, 8k, 16k and 19k samples were used for training, while the
same 1k samples were used for validating.
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Figure 6.11: Confusion matrix of the best classifier (19k training samples), validated on
the validation set. Category 0 is without any type of friction, while (1,2,3) and (4,5,6) are
various degrees of dry friction and viscous drag respectively.

The per-type and per-level accuracies can be seen in Tables 6.6 and 6.7 respectively:

Type Accuracy (%)
none 87.98

dry friction 70.00
drag 66.15

Table 6.6: Accuracy of per type classification

Level Accuracy (%)
0 87.98
1 63.44
2 63.79
3 67.11

Table 6.7: Accuracy of per level classification

While for all other question types the results will be presented in Chapter 7, in this case
(similarly with the mass above), the end-to-end results will be shown into more detail here,
since many comments can be made upon observing them.
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Namely, for different levels of simulation, the accuracies of the multi-class classification
abilities of the classifier will be shown. Additionally, we will investigate how well it can
generalize on different levels on the VQA task as well.

6.5.1 Friction Estimation Generalization

The point of this simulation, is to check if the classifier can correctly generalize on all
the other levels. As has been mentioned, it has been trained in samples from only level 3 (4
balls, 3 walls). Even though a big decrease is accuracy is expected (since the number of balls
differs), it would be interesting to check upon the actual accuracies on all the other levels. For
this purpose, 2000 test samples from each level were generated (without the video renders,
just the coordinates of the balls), in order to determine their accuracy. This generalization
test takes place with data generated from the physics simulator, and not the results that
have been generated by the MaskRCNN + PropNet architecture, as those whould be too
costly to produce. The results for 200 samples from each level, can be seen in Table 6.8.

Level Accuracy (%) Level Accuracy (%)
1 56.00 5 72.00
2 61.00 6 45.50
3 64.50 7 45.50
4 64.50 8 34.50

Table 6.8: Generalization of friction estimator on test data on levels 1-8, with 200 samples
per level.

From the results displayed on Table 6.8 it’s evident that the model can generalize quite
well on unseen data. What is interesting, is the direct decline in accuracy displayed on levels
6,7 and 8. This is largely due to the fact that in these levels the gravity fields are introduced,
which significantly modifies the trajectories of the balls, and since friction estimation relies
on the trajectories, this hinders the generalization capabilities since the network has not
been trained on cases with gravity fields.

6.5.2 Friction Estimation VQA Results

In this subchapter, we will evaluate the end-to-end results of the friction estimator. The
purpose of this experiment is to see how much the noise that is inserted by the MaskRCNN
can hinder the prediction, as it slightly changes the coordinates, upon which the predictor
aims to classify the friction type and level. For this experiment a total of 100 samples with
friction were generated from level 3, and evaluated upon.

Question ID Accuracy Total
9.9 83.24 % 164
9.10 60.38 % 143

Table 6.9: VQA accuracy results on friction estimation questions for level 3 (100 samples
used)
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We can see that friction estimation is inhibited by the quantification noise inserted
during the MaskRCNN phase, as well as the lower sampling rate used by the Dynamics
Predictor. This is evident especially during the inference of the level of the friction and
reduces the accuracy of the end-to-end results of the VQA problem.

6.6 Velocity Order Estimation

This task mainly involves answering questions in regards to the ordering of the balls’
velocities, such as “Which ball will be the third fastest in the beginning?” 18.

This task is significantly easier than the two previous tasks, since no specific neural
network needs to be trained in order to be able to answer it. The interpreted frames include
positional information about each ball and the velocities are nothing more than the numerical
derivative of the positions, similar to how they have been used as data in the previous two
cases. In all intermediate timesteps, a 2nd-order scheme is used to calculate the x and y
components of the velocity:

u =
xi+1 − xi−1

2dt

v =
yi+1 − yi−1

2dt

(6.1)

While at the first timestep, and the last timestep, we use 1st-order forward (Eq. 6.2)
and backward (Eq. 6.3) schemes respectively:

u =
xi+1 − xi

dt

v =
yi+1 − yi

dt

(6.2)

u =
xi − xi−1

dt

v =
yi − yi−1

dt

(6.3)

In all cases, the value of the velocity itself is defined as:

vel =
√
u2 + v2 (6.4)

Since no network is involved in this case and a purely symbolic approach is followed,
the results are going to be directly evaluated on the VQA task, as evaluating them on the
outputs of the dataset generator (physics engine) would result in a 100% accuracy.

18All the questions and their rephrasals can be found in Appendix A.1
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6.6.1 Velocity order estimation VQA Results

In this test case, the exact same dataset -as the one used to evaluate the mass prediction-
was used. In total, there are 4 different questions that query upon the velocities of the objects.

Level 1 Level 2 Level 3 Level 4
Question ID Accuracy Total Accuracy Total Accuracy Total Accuracy Total

9.5 87.40 127 85.86 99 92.13 89 87.25 102
9.6 74.44 133 66.33 98 67.42 89 66.67 99
9.7 87.37 95 75.28 89 83.56 73 77.27 88
9.8 88.66 97 87.36 87 85.94 64 92.13 89

Table 6.10: VQA accuracy results on velocity estimation questions for levels 1 to 4

Level 5 Level 6 Level 7 Level 8
Question ID Accuracy Total Accuracy Total Accuracy Total Accuracy Total

9.5 90.22 92 88.66 97 82.61 92 81.69 71
9.6 39.77 88 75.76 99 51.22 82 55.88 68
9.7 86.49 74 62.50 88 36.00 75 25.00 68
9.8 86.36 66 73.26 86 61.64 73 50.85 59

Table 6.11: VQA accuracy results on velocity estimation questions for levels 5 to 8

Even through this would be considered a relatively easy task, in some cases, we see that
the accuracies are not as good as expected. Lets start off from the lower levels. The velocities
in many cases are stable, since far less collisions occur. This however, also means that balls
exit the domain quicker, and might not be detected in time, since the inputs of PropNet
(from which the velocity tables are build) are 1) sampled every 5 frames (frame offset = 5)
and 2) discard the first three frames in order to successfully operate, as explained in Chapter
5.3. At higher levels, even though the initial velocities remain the same, they have far more
chances to interact, and therefore change. PropNet’s sampling rate does not allow many
of those events to be captured, leading to a reduced accuracy. In the intermediate levels,
the accuracies are in fact rather high. Finally, at the higher levels where gravity fields are
introduced, the trajectories become increasingly erratic, and the reduced sampling rate, as
well as the noise inserted from the estimated position from the MaskRCNN, reduce the
accuracy furthermore.
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7 VQA results

In this chapter, the end-to-end results in all the categories (except the ones that were
analyzed in Chapter 6) will be shown. Initial results will be shown for the level that they
were trained upon (level 8), while generalization on other levels will be displayed as well.
This chapter will mostly consist of tables with accuracies per category per question, as well
as various comments regarding the results.

7.1 End-to-end results for level 8

The end results will be displayed as the percentage of the questions that have been
answered correctly. In this section, results from the trained upon level 8 will be displayed
(excluding questions regarding Physics Understanding that have been showed in their own
sections). No comments will be made in this chapter, but will be cumulatively presented in
Chapter 7.2 in order to compare accuracies across various levels.

Compare Integer
Question ID Correct Incorrect Total Accuracy

0 122 0 122 100.00 %
1 82 0 82 100.00 %
2 82 0 82 100.00 %
3 118 0 118 100.00 %
4 82 0 82 100.00 %
5 82 0 82 100.00 %

Table 7.1: Compare Integer accuracy results.

Same Relate
Question ID Correct Incorrect Total Accuracy

0 214 0 214 100.00 %
1 238 0 238 100.00 %
2 141 0 141 100.00 %
3 239 0 239 100.00 %
4 244 0 244 100.00 %
5 161 0 161 100.00 %
6 134 0 134 100.00 %
7 116 0 116 100.00 %
8 27 0 27 100.00 %
9 149 0 149 100.00 %
10 136 0 136 100.00 %
11 110 0 110 100.00 %

Table 7.2: Same Relate accuracy results.

72



Comparison
Question ID Correct Incorrect Total Accuracy

0 186 4 190 97.89 %
1 124 0 124 100.00 %
2 4 0 4 100.00 %

Table 7.3: Comparison accuracy results.

Single Or
Question ID Correct Incorrect Total Accuracy

0 163 1 164 99.39 %
1 163 1 164 99.39 %
2 162 1 163 99.39 %

Table 7.4: Single Or accuracy results.

Zero Hop
Question ID Correct Incorrect Total Accuracy

0 82 0 82 100.00 %
1 123 0 123 100.00 %
2 243 0 243 100.00 %
3 163 0 163 100.00 %
4 201 1 202 99.50 %

Table 7.5: Zero Hop accuracy results.

Domain Exits
Question ID Correct Incorrect Total Accuracy

0 119 43 162 73.46 %
1 149 12 161 92.55 %
2 144 18 162 88.89 %
3 59 23 82 71.95 %
4 4 4 8 50.00 %
5 75 41 116 64.66 %

Table 7.6: Domain Exits accuracy results.
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Collision Order
Question ID Correct Incorrect Total Accuracy

0 20 62 82 24.39 %
1 46 36 82 56.10 %
2 33 49 82 40.24 %
3 35 47 82 42.68 %

Table 7.7: Collision Order accuracy results.

Quantitative Answers
Question ID Correct Incorrect Total Accuracy

0 34 41 75 45.33 %
1 28 13 41 68.29 %
2 36 5 41 87.80 %
3 11 30 41 26.83 %
4 3 119 122 2.46 %
5 21 101 122 17.21 %
6 21 101 122 17.21 %

Table 7.8: Quantitative Answers accuracy results.

Binary Answers
Question ID Correct Incorrect Total Accuracy

0 137 10 147 93.20 %
1 36 1 37 97.30 %
2 39 2 41 95.12 %
3 36 5 41 87.80 %
4 20 14 34 58.82 %
5 22 12 34 64.71 %
6 21 11 32 65.62 %
7 21 10 31 67.74 %
8 11 9 20 55.00 %
9 14 6 20 70.00 %
10 38 1 39 97.44 %
11 36 3 39 92.31 %

Table 7.9: Binary Answers accuracy results.

7.2 End-to-end results for levels 1 to 8

As mentioned, all training has been performed on training samples from level 8 simu-
lations, and generalized on all the other levels. It is evident that many times (especially in
lower levels) certain questions do not exist, since the conditions to generate them -due to
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Question Family Question ID
Levels

1 2 3 4 5 6 7 8

Compare Integer

1.0 95.83 98.33 100.00 97.50 100.00 97.50 100.00 100.00
1.1 100.00 98.75 100.00 100.00 100.00 100.00 100.00 100.00
1.2 97.50 97.50 100.00 98.75 100.00 98.75 100.00 100.00
1.3 - - - 100.00 100.00 97.32 100.00 100.00
1.4 - - - 100.00 100.00 97.47 100.00 100.00
1.5 - - - 100.00 100.00 97.50 100.00 100.00

Same Relate

2.0 96.59 98.65 100.00 97.71 100.00 96.33 100.00 100.00
2.1 95.94 98.50 100.00 99.25 100.00 99.29 100.00 100.00
2.2 - - - 100.00 100.00 100.00 100.00 100.00
2.3 99.46 98.80 100.00 98.44 100.00 98.80 100.00 100.00
2.4 95.60 97.93 100.00 98.05 100.00 97.04 100.00 100.00
2.5 - - - 100.00 100.00 100.00 100.00 100.00
2.6 92.86 98.08 100.00 95.70 100.00 96.70 100.00 100.00
2.7 87.50 98.25 100.00 97.14 100.00 97.06 100.00 100.00
2.8 - - - - 100.00 - 100.00 100.00
2.9 97.09 100.00 100.00 98.56 100.00 98.53 100.00 100.00
2.10 96.12 97.14 100.00 98.56 100.00 97.12 100.00 100.00
2.11 - - - 100.00 100.00 100.00 100.00 100.00

Comparison
3.0 96.67 95.24 100.00 99.50 100.00 96.50 100.00 97.89
3.1 96.15 90.62 100.00 98.61 100.00 97.22 100.00 100.00
3.2 - - - - 100.00 - 100.00 100.00

Single Or
4.0 95.00 96.25 100.00 98.12 100.00 98.12 100.00 99.39
4.1 94.97 96.25 100.00 98.75 100.00 99.38 100.00 99.39
4.2 96.25 96.88 100.00 98.12 100.00 99.38 100.00 99.39

Zero Hop

5.0 96.25 96.25 100.00 98.75 100.00 97.50 100.00 100.00
5.1 99.17 96.67 100.00 100.00 100.00 99.17 100.00 100.00
5.2 - - - 100.00 100.00 100.00 100.00 100.00
5.3 99.04 98.61 100.00 98.72 100.00 99.38 100.00 100.00
5.4 98.67 98.49 100.00 100.00 100.00 98.97 100.00 99.50

Domain Exits

6.0 61.88 65.19 57.50 70.25 68.99 67.50 75.32 73.46
6.1 65.19 67.50 85.62 75.80 82.91 73.08 94.94 92.55
6.2 70.44 72.33 78.75 68.55 83.54 74.05 89.24 88.89
6.3 57.50 65.00 58.75 57.50 67.50 56.25 78.75 71.95
6.4 - - - 66.67 0.00 100.00 60.00 50.00
6.5 - - - 50.00 52.94 54.55 59.38 64.66

Collision Order

8.0 95.00 85.00 49.37 83.75 48.10 76.25 30.38 24.39
8.1 - - - 66.67 69.57 83.33 81.94 56.10
8.2 76.25 51.25 56.25 55.00 56.25 58.75 51.25 40.24
8.3 76.25 35.00 40.00 41.25 33.75 47.44 45.00 42.68

Quantitative Answers

10.0 85.00 80.82 66.67 82.19 60.53 82.43 61.54 45.33
10.1 97.50 92.50 85.00 92.50 75.00 90.00 80.00 68.29
10.2 97.50 100.00 95.00 95.00 92.50 97.50 95.00 87.80
10.3 97.50 92.50 67.50 90.00 62.50 75.00 45.00 26.83
10.4 65.00 20.17 0.00 19.66 2.52 20.17 2.52 2.46
10.5 87.29 65.55 39.50 65.55 37.29 70.59 40.34 17.21
10.6 100.00 100.00 100.00 89.74 52.14 89.92 37.82 17.21

Binary Answers

11.0 97.50 98.75 95.00 96.23 92.41 95.51 93.38 93.20
11.1 100.00 100.00 96.00 100.00 100.00 100.00 93.75 97.30
11.2 97.50 95.00 100.00 97.50 100.00 95.00 97.50 95.12
11.3 92.50 100.00 100.00 95.00 95.00 92.50 95.00 87.80
11.4 100.00 80.00 66.67 60.00 57.89 62.50 61.54 58.82
11.5 0.00 80.00 42.86 60.00 63.16 62.50 69.23 64.71
11.6 - - - 100.00 38.46 50.00 61.11 65.62
11.7 - - - 100.00 38.46 50.00 55.56 67.74
11.8 - 100.00 50.00 - 57.14 33.33 72.73 55.00
11.9 - 100.00 50.00 - 57.14 33.33 72.73 70.00
11.10 - - - 100.00 93.94 94.74 93.94 97.44
11.11 - - - 100.00 97.30 100.00 89.19 92.31

Table 7.10: End-to-end accuracies per question for all levels. 40 test samples/simulations
are used per level for evaluation. The Dynamics Predictor has been trained only on level 8
samples. 75



Question Family
Levels

1 2 3 4 5 6 7 8
Compare Integer 97.78 98.19 100.00 99.38 100.00 98.09 100.00 100.00

Same Relate 95.14 98.42 100.00 98.49 100.00 98.26 100.00 100.00
Comparison 96.41 92.93 100.00 99.06 100.00 96.86 100.00 99.30

Single-Or 95.41 96.46 100.00 98.33 100.00 98.96 100.00 99.39
Zero Hop 98.28 97.51 100.00 99.49 100.00 99.00 100.00 99.90

Domain Exits 63.75 67.50 70.16 64.79 71.18 70.90 76.27 73.58
Collision Order 82.50 57.08 48.54 61.67 51.92 66.44 52.14 40.85

Quantitative Answers 89.97 78.79 75.61 76.38 54.64 75.09 51.74 37.88
Binary Answers 97.50 94.22 75.07 90.87 74.24 72.45 79.64 78.76

Table 7.11: End-to-end accuracies per category per level. 40 test samples/simulations are
used per level fo evaluation. This is a compacted form of Table 7.10 with averaged results
per category.

the simplicity of the simulation- are not met. Questions of static categories (1,2,3,4,5) have
incredibly high accuracies, since they only rely on the item identification properties of the
MaskRCNN, as they query about static image relations (“Are there more blue balls than
green obstacles?”). However, in these (rare) cases where the MaskRCNN fails to correctly
recognize an object, these questions will be answered incorrectly.

In the dynamic categories (categories of Domain Exits, Collision Order, Quantitative
Answers and Binary Answers), we can see that questions in Domain Exits are somewhat
consistent in their accuracy throughout the different levels. As mentioned during training
PropNet, detection of ball exits is high. In the case of Collision Order, lower levels have
higher accuracies, since fewer collisions take place and in total are easier to distinguish,
since the number of “orders” (first, second, third) is limited. In higher levels the results are
generally lower since ball-to-ball collisions are harder to detect, and also, if a single ball-to-ball
collision goes undetected, or an additional ball-to-ball collision is falsely detected, then the
order with which these events will take place is compromised, therefore the question will be
answered incorrectly. In Quantitative Answers the results are good in lower levels, however
in higher levels certain questions fail, due to the failures of the algorithm to correctly detect
all events once, as many of them require precise counting of events of a specific nature. In the
category of Binary Answers, the results are mixed per question. Certain questions require
answering if an event will take place more than one time, in which case false positives do not
corrupt the answer, while other questions require precise temporal understanding of a scene
in order to correctly answer (e.g. “Will the green big ball hit the purple medium ball after
the yellow big ball hits the green triangle small obstacle?”), in which case, a single event
detected incorrectly will result in a wrong answer. Finally, the (rare) failure of the visual
component does in some cases attribute to a lower accuracy. The questions, their rephrases
and their symbolic programmes can be found in Appendix A.1.
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8 Issued Faced, Future Work and Conclusions

This chapter will be dedicated into analyzing various issues that were faced during the
development of this work, as well as VideoQA in general. Additionally, proposals regarding
future work will be provided and conclusions that stem from this work will be presented.

8.1 Issues Faced and Future Work

Numerous issues were faced during the initial analysis, development, training and infer-
ence.

1. Dataset generation was at times slow. Even though it can be parallelized to an ar-
bitrarily large number of cores, each numerical calculation/video rendering/question
generation takes about 25-35 seconds/core (at 50 fps, with each video lasting a max-
imum of 10 seconds). Additional time is added to generate the questions and their
answers. In the cases of mass and friction estimation, the dataset was generated with-
out rendering the videos (keeping only the positional information that was generated
by the simulator) in order to save time. Training in this case did not use the positional
data generated by the MaskRCNN, leading to potential lower accuracy on the VQA
evaluations that did. However, using the MaskRCNN on each frame for 100k videos
would take multiple weeks on a single GPU, therefore potential lower accuracy was
preferred over exorbitant amounts of execution time). Even though dataset generation
on the long run shouldn’t be an issue -since the dataset is generated once- if someone
wants to generate huge numbers of data for statistical purposes or during development,
this can be a limiting factor.

2. In certain questions, especially the ones on static image reasoning, the results were
not always 100%, despite their dependence in practice on the MaskRCNN. This is due
to failures of the MaskRCNN to classify objects that are not fully within the frame.
If a ball exits within 1-2 timesteps since t=0, the MaskRCNN might not be able to
correctly detect it during its exit (since part of it would be outside the domain). A
potential solution to this issue is to generate an extra number of mask-label pairs to
fine-tune the MaskRCNN, where objects are purposefully partially outside the domain.
However, since the potential increase in accuracy will be less that 1%, in our case it
was mostly arduous to attempt.

3. One of the initial aims of this thesis was to also be able to predict future behaviors of the
balls and their interactions, even after the video has ended. However, there were certain
factors that prohibited such work. In order to “feed” an image to PropNet, as explained
in Chapter 5.3, it needs to be downscaled, in order to not make the network (or the
training data) prohibitively large. This downscaling reduces the spacial information
contained in each sample. Even though one might assume that this would just lead to
a smaller accuracy in the end result, this is not the case. Since the future positional
information is predicted through a latent dynamic model based on the previous three
(3) frames, a slight change in the positional information will cause the trajectory to turn
chaotic incredibly fast, as information is propagated through all timesteps. Therefore,
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higher accuracy, as well as potentially a different mechanic might be required in order
to successfully predict trajectories (and the events related to them) to some extent.
This would require a far larger model, and an incredibly large amount of training data
(in the order of tens of thousands). Access to such resources didn’t exist, therefore this
part is left for future development.

4. As a continuation to the above issue, another type of interesting questions that could
be asked, are counterfactual questions. These are questions that ask “what if ”. A
theoretical scenario related to the scene is presented, and the dynamic behavior of
the scene, based on that theoretical scenario, is queried upon. An example would
be: “If the left wall didn’t exist, from which side would the small blue ball exit?”,
or “If the small red ball was big, how many times would the blue ball collide with a
wall?”. In simple cases, such as the ones presented in CLEVRER [54], by removing
dependencies of the built interaction graph, would provide an answer, bypassing the
baseline prediction of the model. However, in our cases the scenes are not that simple,
and such questions rely heavily on a strong predictor, which would sequentially parse
the question, rebuild the initial conditions of the scene, and create a new set of outputs,
upon which the translated (to a Symbolic language) question would be executed with
the Symbolic Executor. However, apart from requiring tremendous amounts of data
to train the predictor, such a model goes beyond the framework of this Thesis.

5. A problem posed with the Neuro Symbolic translation, is that every question-program
pair has to be handcrafted, leading to the known issue faced with neural networks;
that of the cost of creating the training data. It would be interesting if algorithms
(Reinforcement Learning) could be implemented to generate the sequences themselves.
Apart from allowing the dataset to be far larger in size (since getting simple video-
question pairs is rather easy), it would very likely lead to more optimal programms
that can filter out the correct answer in less, more optimally chosen commands. An
initial attempt was made in the NeuroSymbolic VQA paper [55], however in order to
generalize such an attempt, it would be better for the tokens in the Neuro Symbolic
language (the programms) to be more arbitrary, and less tied to each task. In an
optimal scenario, the tokens would essentially be the least possible, most fundamental
functions that can be performed on data tables.

6. All shown accuracies are without a real-world counterpart. Human and machine accu-
racy comparison is difficult to perform without crowdsourcing the data. It would be
interesting to set a timer (e.g. 20 seconds) per question per video, and see at which
questions a human fails whereas the algorithm succeeds. It would provide incredible
value to compare the accuracy of the model, and that of a human. In our case such
tests were not possible to perform, but are proposed for future work.

7. Another problem faced was that, during training PropNet on simpler simulations like
those of levels 1-7, more “rare” events, like ball-to-obstacle collisions, would not be
learned, since they were rather imbalanced within the datasets of those difficulties, and
PropNet perceived them as noise. Our results are trained on level 8 difficulty where
the events are far more balanced, and the evaluation on levels of different difficulties
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works rather fine, concluding that much care should be taken on the balance of events
in the training set. In a future scenario, one could balance the created dataset of all
levels, by discarding samples in a controlled manner. However, this can also lead to
the training samples be tied to a specific nature of interactions, therefore completely
failing to generalize on an unfiltered dataset.

8. Finally, a proposal for future work would be the inference of the object type from the
scene dynamics. This means that obstacles and balls may have exactly the same visual
attributes, however due to their distinct dynamic behaviors, they will be perceived
differently. The main way to do this is through the mass classifier that is proposed in
this work (Ch. 4.4). An obstacle, if it is seen to be immovable, should be classified with
infinite mass, whereas a similar ball with a finite mass. This relies heavily on an almost
perfectly working mass classifier, which in turn requires careful data manipulation
during training. This will be able to further generalize dynamic scene understanding
from a given simulation.

8.2 Conclusions

Without a doubt, it is evident that end-to-end results of Neuro-Symbolic Dynamic VQA
(or VideoQA) are impressive. Otherwise difficult tasks can be formulated in forms that both
humans and machines can understand, be trained upon and reply. While the proposed
dataset and the provided results are of a very specific domain, as recent research shows, the
path is already paved towards a new approach for AI. Far, far less data is required to train
such systems, and training was relatively fast (∼ 1−2 days on a laptop’s GPU (GTX-1650) to
achieve the results shown in Fig. 6.7 and 6.8) 19. This can only be a very positive step towards
implementing Neuro-Symbolic approaches in other areas of AI, where machines struggle to
understand or where data is rather limited. But with Neuro-Symbolic AI, one can train
more complicated systems, with less expensive data. At the same time, less computational
resources are required -against the expanding trend of ever-increasing training cost-, since
a large part of the training takes place in the formulation of the problem, in the form of
defining the outputs of intermediate steps, and the programs on the Symbolic Executor.

In many VQA tasks, such as those of questions of type “Quantitative Answers” and
“Binary Answers”, it can be seen (more so from the sample videos provided in Chapter 1
(Fig. 1.3)), that questions of these types are not the easiest to be answered by humans,
yet the ensemble system presented can, while at the same time providing the logic behind
its decisions and answers, as well as perfect error checking conditions. Therefore, in com-
plicated scenarios where distributions are highly conditional and “messy”, Neuro-Symbolic
approaches can provide a solution to otherwise very complicated problems.

Neuro-Symbolic AI paves the way to build machines that operate far more similarly to
how humans think. Apart from being simpler and easier to analyze and optimize upon, cen-
turies of research in psychology and psychiatry can only further improve the understanding
and the efficiency of such systems.

19The full neural approach was not even attempted, due to the simply massive amounts of data that
would be required to train it, as well as the computational resources needed to achieve such training.
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This Thesis has shown that end-to-end approaches are possible to be trained and inferred
upon with existing, low-mid range hardware, while at the same time providing PhAQ, a
highly customizable, novel dataset, that can be used for future projects and benchmarking,
while at the same time developing NewtoNN, a successful end-to-end architecture that can
demonstrate the capabilities of Neuro-Symbolic VQA.



A Appendices

A.1 Appendix 1: Questions, Templates and their Programms

During the dataset generation, each video is accompanied by a large number of ques-
tions. These questions belong in 10 categories, namely:

1. Compare Integer
2. Same Relation
3. Comparison
4. Single-Or
5. Zero Hop
6. Domain Exits
7. Collision Order
8. Physics Understanding
9. Quantitative Answers

10. Binary Answers

In each ID, different rephrasals of the same question are posed. The programs are the
same for all rephrasals, and are at the right column. Within the brackets “<” and “>”
are the “variables” of the questions, that is their entities that change depending on each
simulation. “<C>” is replaced by a color, “<S>” by a shape, “<Z>” by size, “<E>” by
object type (obstacle or ball), “<position of wall>” by the position of the wall (left, lower,
right, upper), “<order>” by an order attribute (first, second, third etc.). Many times,
some of these entities can be completely removed (if the remaining can still fully describe
the object in question). Entities with inside brackets ([...]) are words that can be omitted
without changing the meaning, but creating a rephrasal. These are removed in 50% of the
cases (RNG based, during question generation).

A.2 Compare Integer

ID Questions Program
0 • Are there an equal number of <Z> <C> <S>

<E> s and <Z2> <C2> <S2> <E2> s?
• Are there the same number of <Z> <C> <S>
<E> s and <Z2> <C2> <S2> <E2> s?

• Is the number of <Z> <C> <S> <E> s the
same as the number of <Z2> <C2> <S2>
<E2> s?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
count, objects, <Z2>, fil-
ter size, <C2>, filter color,
<S2>, filter shape, <E2>,
filter type, count, is equal
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1 • Are there fewer <Z> <C> <S> <E> s than
<Z2> <C2> <S2> <E2> s?

• Is the number of <Z> <C> <S> <E> s less
than the number of <Z2> <C2> <S2> <E2>
s?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
count, objects, <Z2>, fil-
ter size, <C2>, filter color,
<S2>, filter shape, <E2>,
filter type, count, is less

2 • Are there more <Z> <C> <S> <E> s than
<Z2> <C2> <S2> <E2> s?

• Is the number of <Z> <C> <S> <E> s greater
than the number of <Z2> <C2> <S2> <E2>
s?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
count, objects, <Z2>, fil-
ter size, <C2>, filter color,
<S2>, filter shape, <E2>,
filter type, count, is more

3 • Are there an equal number of <E> s and <E2>
s?

• Are there the same number of <E> s and <E2>
s?

• Is the number of <E> s the same as the number
of <E2> s?

objects, <E>, filter type,
count, objects, <E2>, fil-
ter type, count, is equal

4 • Are there fewer <E> s than <E2> s?
• Is the number of <E> s less than the number of
<E2> s?

objects, <E>, filter type,
count, objects, <E2>, fil-
ter type, count, is less

5 • Are there more <E> s than <E2> s?
• Is the number of <E> s greater than the number

of <E2> s?

objects, <E>, filter type,
count, objects, <E2>, fil-
ter type, count, is more

Table A.1: Questions from the Compare Integer category.

A.3 Same Relate

ID Questions Program
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0 • Are there any other things that have the same
size as the <Z> <C> <S> <E> ?

• Is there anything else that has the same size as
the <Z> <C> <S> <E> ?

• Is there any other thing that has the same size
as the <Z> <C> <S> <E> ?

• Are there any other things that are the same size
as the <Z> <C> <S> <E> ?

• Is there anything else that is the same size as
the <Z> <C> <S> <E> ?

• Is there any other thing that is the same size as
the <Z> <C> <S> <E> ?

objects, objects, <Z>,
filter size, <C>, fil-
ter color, <S>, filter shape,
<E>, filter type, unique,
query size, filter size, count,
more than one

1 • Are there any other things that have the same
color as the <Z> <C> <S> <E> ?

• Is there anything else that has the same color as
the <Z> <C> <S> <E> ?

• Is there any other thing that has the same color
as the <Z> <C> <S> <E> ?

• Are there any other things that are the same
color as the <Z> <C> <S> <E> ?

• Is there anything else that is the same color as
the <Z> <C> <S> <E> ?

• Is there any other thing that is the same color
as the <Z> <C> <S> <E> ?

• Are there any other things of the same color as
the <Z> <C> <S> <E> ?

• Is there anything else of the same color as the
<Z> <C> <S> <E> ?

• Is there any other thing of the same color as the
<Z> <C> <S> <E> ?

objects, objects, <Z>,
filter size, <C>, fil-
ter color, <S>, filter shape,
<E>, filter type, unique,
query color, filter color,
count, more than one

2 • Are there any other things that have the same
shape as the <Z> <C> <S> <E> ?

• Is there anything else that has the same shape
as the <Z> <C> <S> <E> ?

• Is there any other thing that has the same shape
as the <Z> <C> <S> <E> ?

• Are there any other things that are the same
shape as the <Z> <C> <S> <E> ?

• Is there anything else that is the same shape as
the <Z> <C> <S> <E> ?

• Is there any other thing that is the same shape
as the <Z> <C> <S> <E> ?

objects, objects, <Z>,
filter size, <C>, fil-
ter color, <S>, filter shape,
<E>, filter type, unique,
query shape, filter shape,
count, more than one
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3 • How many other things are the same size as the
<Z> <C> <S> <E> ?

• What number of other things are the same size
as the <Z> <C> <S> <E> ?

• How many other things are there of the same
size as the <Z> <C> <S> <E> ?

• What number of other things are there of the
same size as the <Z> <C> <S> <E> ?

• How many other objects are the same size as the
<Z> <C> <S> <E> ?

• What number of other objects are the same size
as the <Z> <C> <S> <E> ?

• How many other objects are there of the same
size as the <Z> <C> <S> <E> ?

• What number of other objects are there of the
same size as the <Z> <C> <S> <E> ?

objects, objects, <Z>,
filter size, <C>, fil-
ter color, <S>, filter shape,
<E>, filter type, unique,
query size, filter size, count,
reduce by one

4 • How many other things are the same color as
the <Z> <C> <S> <E> ?

• What number of other things are the same color
as the <Z> <C> <S> <E> ?

• How many other things are there of the same
color as the <Z> <C> <S> <E> ?

• What number of other things are there of the
same color as the <Z> <C> <S> <E> ?

• How many other objects are the same color as
the <Z> <C> <S> <E> ?

• What number of other objects are the same color
as the <Z> <C> <S> <E> ?

• How many other objects are there of the same
color as the <Z> <C> <S> <E> ?

• What number of other objects are there of the
same color as the <Z> <C> <S> <E> ?

objects, objects, <Z>,
filter size, <C>, fil-
ter color, <S>, filter shape,
<E>, filter type, unique,
query color, filter color,
count, reduce by one
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5 • How many other things are the same shape as
the <Z> <C> <S> <E> ?

• What number of other things are the same shape
as the <Z> <C> <S> <E> ?

• How many other things are there of the same
shape as the <Z> <C> <S> <E> ?

• What number of other things are there of the
same shape as the <Z> <C> <S> <E> ?

• How many other objects are the same shape as
the <Z> <C> <S> <E> ?

• What number of other objects are the same
shape as the <Z> <C> <S> <E> ?

• How many other objects are there of the same
shape as the <Z> <C> <S> <E> ?

• What number of other objects are there of the
same shape as the <Z> <C> <S> <E> ?

objects, objects, <Z>,
filter size, <C>, fil-
ter color, <S>, filter shape,
<E>, filter type, unique,
query shape, filter shape,
count, reduce by one

6 • Are there any <C2> <S2> <E2> s that have
the same size as the <Z> <C> <S> <E> ?

• Is there a <C2> <S2> <E2> that has the same
size as the <Z> <C> <S> <E> ?

• Are there any <C2> <S2> <E2> s of the same
size as the <Z> <C> <S> <E> ?

• Is there a <C2> <S2> <E2> of the same size
as the <Z> <C> <S> <E> ?

objects, <C2>, filter color,
<S2>, filter shape, <E2>,
filter type, objects, <C>,
filter color, <Z>, filter size,
<S>, filter shape, <E>, fil-
ter type, unique, query size,
filter size, count, exist

7 • Are there any <Z2> <S2> <E2> s that have
the same color as the <Z> <C> <S> <E> ?

• Is there a <Z2> <S2> <E2> that has the same
color as the <Z> <C> <S> <E> ?

• Are there any <Z2> <S2> <E2> s of the same
color as the <Z> <C> <S> <E> ?

• Is there a <Z2> <S2> <E2> of the same color
as the <Z> <C> <S> <E> ?

objects, <Z2>, filter size,
<C2>, filter color, <S2>,
filter shape, <E2>, fil-
ter type, objects, <Z>,
filter size, <C>, fil-
ter color, <S>, filter shape,
<E>, filter type, unique,
query color, filter color,
count, exist

8 • Are there any <Z2> <C2> <E2> s that have
the same shape as the <Z> <C> <S> <E> ?

• Is there a <Z2> <C2> <E2> that has the same
shape as the <Z> <C> <S> <E> ?

• Are there any <Z2> <C2> <E2> s of the same
shape as the <Z> <C> <S> <E> ?

• Is there a <Z2> <C2> <E2> of the same shape
as the <Z> <C> <S> <E> ?

objects, <Z2>, filter size,
<C2>, filter color, <E2>,
filter type, objects, <Z>,
filter size, <C>, fil-
ter color, <S>, filter shape,
<E>, filter type, unique,
query shape, filter shape,
count, exist
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9 • How many <C2> <S2> <E2> s have the same
size as the <Z> <C> <S> <E> ?

• How many <C2> <S2> <E2> s are the same
size as the <Z> <C> <S> <E> ?

• What number of <C2> <S2> <E2> s have the
same size as the <Z> <C> <S> <E> ?

• What number of <C2> <S2> <E2> s are the
same size as the <Z> <C> <S> <E> ?

objects, <C2>, filter color,
<E2>, filter type, <S2>,
filter shape, objects, <Z>,
filter size, <C>, filter color,
<S>, filter shape, <E>, fil-
ter type, unique, query size,
filter size, count

10 • How many <Z2> <S2> <E2> s have the same
color as the <Z> <C> <S> <E> ?

• How many <Z2> <S2> <E2> s are the same
color as the <Z> <C> <S> <E> ?

• What number of <Z2> <S2> <E2> s have the
same color as the <Z> <C> <S> <E> ?

• What number of <Z2> <S2> <E2> s are the
same color as the <Z> <C> <S> <E> ?

objects, <Z2>, filter size,
<S2>, filter shape, <E2>,
filter type, objects, <Z>,
filter size, <C>, fil-
ter color, <S>, filter shape,
<E>, filter type, unique,
query color, filter color,
count

11 • How many <Z2> <C2> <E2> s have the same
shape as the <Z> <C> <S> <E> ?

• What number of <Z2> <C2> <E2> s have the
same shape as the <Z> <C> <S> <E> ?

• What number of <Z2> <C2> <E2> s are the
same shape as the <Z> <C> <S> <E> ?

• How many <Z2> <C2> <S2> <E2> s are the
same shape as the <Z> <C> <S> <E> ?

objects, <Z2>, filter size,
<C2>, filter color, <E2>,
filter type, objects, <Z>,
filter size, <C>, fil-
ter color, <S>, filter shape,
<E>, filter type, unique,
query shape, filter shape,
count

Table A.2: Questions from the Same Relate category.

A.4 Comparison

ID Questions Program
0 • Do the <Z> <C> <S> <E> and the <Z2>

<C2> <S2> <E2> have the same size?
• Is the size of the <Z> <C> <S> <E> the same

as the <Z2> <C2> <S2> <E2> ?
• Do the <Z> <C> <S> <E> and the <Z2>
<C2> <S2> <E2> have the same size?

• Is the <Z> <C> <S> <E> the same size as
the <Z2> <C2> <S2> <E2> ?

• Does the <Z> <C> <S> <E> have the same
size as the <Z2> <C2> <S2> <E2> ?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
unique, query size, ob-
jects, <Z2>, filter size,
<C2>, filter color, <S2>,
filter shape, <E2>, fil-
ter type, unique, query size,
are equal
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1 • Do the <Z> <C> <S> <E> and the <Z2>
<C2> <S2> <E2> have the same color?

• Is the color of the <Z> <C> <S> <E> the
same as the <Z2> <C2> <S2> <E2> ?

• Does the <Z> <C> <S> <E> have the same
color as the <Z2> <C2> <S2> <E2> ?

• Is the <Z> <C> <S> <E> the same color as
the <Z2> <C2> <S2> <E2> ?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
unique, query color, ob-
jects, <Z2>, filter size,
<C2>, filter color,
<S2>, filter shape,
<E2>, filter type, unique,
query color, are equal

2 • Do the <Z> <C> <S> <E> and the <Z2>
<C2> <S2> <E2> have the same shape?

• Does the <Z> <C> <S> <E> have the same
shape as the <Z2> <C2> <S2> <E2> ?

• Is the shape of the <Z> <C> <S> <E> the
same as the <Z2> <C2> <S2> <E2> ?

• Is the <Z> <C> <S> <E> the same shape as
the <Z2> <C2> <S2> <E2> ?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
unique, query shape, ob-
jects, <Z2>, filter size,
<C2>, filter color,
<S2>, filter shape,
<E2>, filter type, unique,
query shape, are equal

Table A.3: Questions from the Comparison category.

A.5 Single-Or

ID Questions Program
0 • How many things are [either] <Z> <C> <S>

<E> s or <Z2> <C2> <S2> <E2> s?
• How many objects are [either] <Z> <C> <S>
<E> s or <Z2> <C2> <S2> <E2> s?

• What number of things are [either] <Z> <C>
<S> <E> s or <Z2> <C2> <S2> <E2> s?

• What number of objects are [either] <Z> <C>
<S> <E> s or <Z2> <C2> <S2> <E2> s?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
objects, <Z2>, filter size,
<C2>, filter color, <S2>,
filter shape, <E2>, fil-
ter type, union, count

1 • How many <Z3> things are [either] <Z> <C>
<S> <E> s or <Z2> <C2> <S2> <E2> s?

• How many <Z3> objects are [either] <Z> <C>
<S> <E> s or <Z2> <C2> <S2> <E2> s?

• What number of <Z3> things are [either] <Z>
<C> <S> <E> s or <Z2> <C2> <S2> <E2>
s?

• What number of <Z3> objects are [either] <Z>
<C> <S> <E> s or <Z2> <C2> <S2> <E2>
s?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
objects, <Z2>, filter size,
<C2>, filter color, <S2>,
filter shape, <E2>, fil-
ter type, union, <Z3>,
filter size, count
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2 • How many <C3> things are [either] <Z> <C>
<S> <E> s or <Z2> <C2> <S2> <E2> s?

• How many <C3> objects are [either] <Z> <C>
<S> <E> s or <Z2> <C2> <S2> <E2> s?

• What number of <C3> things are [either] <Z>
<C> <S> <E> s or <Z2> <C2> <S2> <E2>
s?

• What number of <C3> objects are [either] <Z>
<C> <S> <E> s or <Z2> <C2> <S2> <E2>
s?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
objects, <Z2>, filter size,
<C2>, filter color, <S2>,
filter shape, <E2>, fil-
ter type, union, <C3>,
filter color, count

3 • How many <S3> s are [either] <Z> <C> <S>
<E> or <Z2> <C2> <S2> <E2> ?

• What number of <S3> s are [either] <Z> <C>
<S> <E> or <Z2> <C2> <S2> <E2> ?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
objects, <Z2>, filter size,
<C2>, filter color, <S2>,
filter shape, <E2>, fil-
ter type, union, <S3>,
filter shape, count

Table A.4: Questions from the Single-Or category.

A.6 Zero Hop

ID Questions Program
0 • How many <Z> <C> <S> <E> s are there?

• What number of <Z> <C> <S> <E> s are
there?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
count

1 • Are there any <Z> <C> <S> <E> s?
• Are any <Z> <C> <S> <E> s visible?
• Is there a <Z> <C> <S> <E> ?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
exist

2 • What shape is the <Z> <C> <S> <E> ?
• What is the shape of the <Z> <C> <S> <E>

?
• The <Z> <C> <S> <E> has what shape?
• What is the shape of the <Z> <C> <S> <E>

?
• There is a <Z> <C> <S> <E> ; what shape

is it?
• The <Z> <C> <S> <E> is what shape?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
unique, query shape
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3 • What color is the <Z> <C> <S> <E> ?
• What is the color of the <Z> <C> <S> <E>

?
• The <Z> <C> <S> <E> has what color?
• The <Z> <C> <S> <E> is what color?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
unique, query color

4 • What size is the <Z> <C> <S> <E> ?
• What is the size of the <Z> <C> <S> <E> ?
• The <Z> <C> <S> <E> has what size?
• The <Z> <C> <S> <E> is what size?
• How big is the <Z> <C> <S> <E> ?

objects, <Z>, filter size,
<C>, filter color, <S>, fil-
ter shape, <E>, filter type,
unique, query size

Table A.5: Questions from the Zero Hop category.

A.7 Domain Exits

ID Questions Program
0 • Which ball will exit the domain <order> ?

• Which ball will stop being in the domain
<order> ?

• Which ball will exit the area <order> ?
• Which ball will stop being within the area
<order> ?

events, ball exits, fil-
ter event type, <order>,
filter order, ball,
query object, unique,
describe ball

1 • Will the <C> <Z> ball remain within the do-
main at the end?

• Will the <C> <Z> ball still be in the domain
at the end?

• Will the <Z> <C> ball remain in the area at
the end?

• Will the <Z> <C> ball still be in the area at
the end?

events, ball exits, fil-
ter event type, objects,
<Z>, filter size, <C>,
filter color, ball, fil-
ter type, filter events,
exists, inv boolean

2 • From which side will the <C> <Z> ball exit the
domain?

• From which side will the <Z> <C> ball exit the
area?

• The <Z> <C> ball will exit the domain; from
which side?

• The <Z> <C> ball will exit the area; from
which side?

events, ball exits, fil-
ter event type, objects,
<Z>, filter size, <C>,
filter color, ball, fil-
ter type, filter events,
side, query object, unique,
describe side
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3 • Which ball will exit from the <position of wall>
side <order> ?

• A ball will exit from the <position of wall> side
<order> ; which ball will it be?

events, ball exits, fil-
ter event type, sides,
<position of wall>, fil-
ter side, filter events,
<order>, filter order,
ball, query object, unique,
describe ball

4 • A ball will exit after colliding with the <Z>
<C> <S> obstacle; which ball will it be?

• Which ball will exit after colliding with the <Z>
<C> <S> obstacle?

events, ball exits, fil-
ter event type, events,
objects, <Z>, filter size,
<C>, filter color, <S>,
filter shape, obstacle, fil-
ter type, filter collisions,
ball, query object, fil-
ter events, first, filter order,
ball, query object, unique,
describe ball

5 • From which side will the ball that will collide
with the <Z> <C> <S> obstacle <order>
exit?

• A ball will collide with the <Z> <C> <S> ob-
stacle <order> ; from which side will it exit?

• A ball will collide with the <Z> <C> <S> ob-
stacle <order> ; from which side will it exit the
area?

• A ball will collide with the <Z> <C> <S> ob-
stacle <order> ; from which side will it exit the
domain?

events, ball exits, fil-
ter event type, events,
objects, filter collisions,
objects, <Z>, filter size,
<C>, filter color, <S>,
filter shape, filter events,
<order>, filter order, ball,
query object, filter events,
side, query object, unique,
describe side

6 • Do any balls exit the domain? events, ball exits, count,
is zero

Table A.6: Questions from the Domain Exits category.

A.8 Collision Order

ID Questions Program
0 • Which two balls will collide together <order> ?

• Between which two balls will the <order> colli-
sion occur?

events, ball2ball, fil-
ter event type, <order>,
filter order, de-
scribe particip
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1 • Which ball will hit an obstacle <order> ?
• A ball will hit an obstacle <order> ; which ball

will it be?

events, ball2obstacle, fil-
ter event type, <order>,
filter order, ball,
query object, unique,
describe ball

2 • Which ball will hit a wall or an obstacle for the
<order> time?

• A ball will hit a wall or an obstacle for the
<order> time; which ball will it be?

events, ball2wall, fil-
ter event type, events,
ball2obstacle, fil-
ter event type, union,
<order>, filter order,
ball, query object, unique,
describe ball

3 • With which ball will the <position of wall> wall
collide <order> ?

• The upper wall will collide <order> with a ball;
which ball is that?

events, ball2wall,
filter event type,
<position of wall>,
filter wall, <order>,
filter order, ball,
query object, unique,
describe ball

4 • With which ball will the <C> <S> <Z> obsta-
cle collide for the <order> time?

• The <C> <S> <Z> obstacle will collide with
a ball for a <order> time; which ball will that
be?

events, objects, <C>,
filter color, <S>, fil-
ter shape, <Z>, fil-
ter size, filter obstacle,
order, filter order, ball,
query object, unique,
describe ball

Table A.7: Questions from the Collision Order category.

A.9 Physics Understanding

ID Questions Program
0 • Which ball is the heaviest?

• Which ball has the largest mass?
objects, ball, filter type,
mass, find max, de-
scribe ball

1 • Which ball is the lightest?
• Which ball has the lowest mass?

objects, ball, filter type,
mass, find min, de-
scribe ball
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2 • Is the <C> <Z> ball heavier than the <C2>
<Z2> ball?

• Is the <C2> <Z2> ball lighter than the <C>
<Z> ball?

objects, ball, filter type,
<C>, filter color, <Z>,
filter size, query mass,
objects, ball, filter type,
<C2>, filter color, <Z2>,
filter size, query mass,
is more

3 • Between the <C> <Z> ball and the <C2>
<Z2> ball, which one is the heaviest?

• Between the <C2> <Z2> ball and the <C>
<Z> ball, which one is the heaviest?

objects, ball, filter type,
<C>, filter color, <Z>, fil-
ter size, unique, objects,
ball, filter type, <C2>, fil-
ter color, <Z2>, filter size,
unique, filter bigger mass,
describe ball

4 • Between the <C> <Z> ball and the <C2>
<Z2> ball, which one is the lightest?

• Between the <C2> <Z2> ball and the <C>
<Z> ball, which one is the lightest?

objects, ball, filter type,
<C>, filter color, <Z>, fil-
ter size, unique, objects,
ball, filter type, <C2>, fil-
ter color, <Z2>, filter size,
unique, filter smaller mass,
describe ball

5 • Which ball will be the <order> fastest at some
point?

• Which ball will be the <order> fastest?
• One ball will achieve the <order> highest veloc-

ity at some point. Which one will it be?

xy vel, vel, asc, sort xyv,
<order>, df order, de-
scribe ball

6 • Which ball will be the <order> slowest at some
point?

• Which ball will be the <order> slowest?
• One ball will achieve the <order> lowest veloc-

ity at some point. Which one will it be?

xy vel, vel, des, sort xyv,
<order>, df order, de-
scribe ball

7 • Which ball will start of with the <order> high-
est velocity?

• Which ball will have the <order> highest veloc-
ity at the beginning?

xy vel, start, filter ts, vel,
asc, sort xyv, <order>,
df order, describe ball

8 • Which ball will start of with the <order> lowest
velocity?

• Which ball will have the<order> lowest velocity
at the beginning?

xy vel, start, filter ts, vel,
des, sort xyv, <order>,
df order, describe ball

9 • What type of resistance do the balls face in the
simulation?

• What is the type of the resistance?

resistances, query type
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10 • What is the level of resistance do the balls face
in the simulation?

• What is the level of the resistance?
• What is the intensity of the resistance in the

simulation?
• What is the intensity of the resistance?

resistances, query level

Table A.8: Questions from the Physics Understanding category.

A.10 Quantitative Answers

ID Questions Program
0 • How many collisions will happen with the

<position of wall> wall?
• How many times will a ball collide with the
<position of wall> wall?

events, ball2wall,
filter event type,
<position of wall>, fil-
ter wall, count

1 • How many different balls will hit the <C> <Z>
ball?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
filter particip, count, re-
duce by one

2 • How many times will the <C> <Z> ball and
<C2> <Z2> ball collide?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
objects, <C2>, filter color,
<Z2>, filter size, fil-
ter events, count

3 • How many times will a <C> <Z> ball and a
<C2> <Z2> ball collide?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
events, ball2ball, fil-
ter event type, objects,
<C2>, filter color, <Z2>,
filter size, filter events,
intersection, count

4 • How many ball to ball collisions will take place
in total?

• How many ball to ball collisions will happen in
total?

• How many ball to ball collisions will take place?

events, ball2ball, fil-
ter event type, count
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5 • How many wall to ball collisions will take place
in total?

• How many wall to ball collisions will happen in
total?

• How many wall to ball collisions will take place?

events, ball2wall, fil-
ter event type, count

6 • How many ball to obstacle collisions will take
place in total?

• How many ball to obstacle collisions will happen
in total?

• How many ball to obstacle collisions will take
place?

events, ball2obstacle, fil-
ter event type, count

Table A.9: Questions from the Quantitative Answers category.

A.11 Binary Answers

ID Questions Program
0 • Will the <C> <Z> ball hit the <C2> <Z2> at

some point?
• Will the <C> <Z> ball hit the <C2> <Z2> at

any time?
• Will the <C> <Z> and the <C2> <Z2> ball

ever collide together?
• Will the <C> <Z> and the <C2> <Z2> ball

ever collide?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
objects, <C2>, filter color,
<Z2>, filter size, fil-
ter events, exists

1 • Will the <C> <Z> ball hit the <C2> <Z2>
ball more than <time> time(s)?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
objects, <C2>, filter color,
<Z2>, filter size, fil-
ter events, count, <time>,
is more

2 • Will the <C> <Z> ball hit the
<position of wall> wall?

events, ball2wall, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events, ob-
jects, <position of wall>,
filter side, filter events,
exists
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3 • Will the <C> <Z> ball hit the
<position of wall> wall more than <time>
time(s)?

events, ball2wall, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events, ob-
jects, <position of wall>,
filter side, filter events,
count, <time>, is more

4 • Will the <C> <Z> ball hit the <C2> <Z2>
ball before the <C3> <Z3> ball hits the
<position of wall> wall?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
objects, <C2>, fil-
ter color, <Z2>, fil-
ter size, filter events,
unique, events, ball2wall,
filter event type, objects,
<C3>, filter color, <Z3>,
filter size, filter events, ob-
jects, <position of wall>,
filter side, filter events,
unique, is less

5 • Will the <C> <Z> ball hit the <C2> <Z2>
ball after the <C3> <Z3> ball hits the
<position of wall> wall?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
objects, <C2>, fil-
ter color, <Z2>, fil-
ter size, filter events,
unique, events, ball2wall,
filter event type, objects,
<C3>, filter color, <Z3>,
filter size, filter events, ob-
jects, <position of wall>,
filter side, filter events,
unique, is more
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6 • Will the <C> <Z> ball hit the <C2> <Z2>
ball before the <C3> <Z3> ball hits the <C4>
<S4> <Z4> obstacle?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
objects, <C2>, fil-
ter color, <Z2>, filter size,
filter events, unique,
events, ball2obstacle,
filter event type, ob-
jects, <C3>, filter color,
<Z3>, filter size, ball,
filter type, filter events,
objects, <C4>, filter color,
<Z4>, filter size, <S4>,
filter shape, filter events,
unique, is less

7 • Will the <C> <Z> ball hit the <C2> <Z2>
ball after the <C3> <Z3> ball hits the <C4>
<S4> <Z4> obstacle?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
objects, <C2>, fil-
ter color, <Z2>, filter size,
filter events, unique,
events, ball2obstacle, fil-
ter event type, objects,
<C3>, filter color, <Z3>,
filter size, filter events,
objects, <C4>, filter color,
<Z4>, filter size, <S4>,
filter shape, filter events,
unique, is more
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8 • Will the <C> <Z> ball hit the <C2> <Z2>
ball before the <C3> <Z3> ball collides with
the <C4> <Z4> ball?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
objects, <C2>, filter color,
<Z2>, filter size, fil-
ter events, unique, events,
ball2ball, filter event type,
objects, <C3>, filter color,
<Z3>, filter size, fil-
ter events, objects, <C4>,
filter color, <Z4>, fil-
ter size, filter events,
unique, is less

9 • Will the <C> <Z> ball hit the <C2> <Z2>
ball after the <C3> <Z3> ball collides with the
<C4> <Z4> ball?

events, ball2ball, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, filter events,
objects, <C2>, filter color,
<Z2>, filter size, fil-
ter events, unique, events,
ball2ball, filter event type,
objects, <C3>, filter color,
<Z3>, filter size, fil-
ter events, objects, <C4>,
filter color, <Z4>, fil-
ter size, filter events,
unique, is more

10 • Will the <C> <Z> ball collide with an obstacle
of the same color?

events, ball2obstacle, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, ball, filter type,
filter events, objects, ob-
stacle, filter type, <C>,
filter color, filter events,
exists

96



11 • Will the <C> <Z> ball collide with an obstacle
of the same size?

events, ball2obstacle, fil-
ter event type, objects,
<C>, filter color, <Z>,
filter size, ball, filter type,
filter events, objects, ob-
stacle, filter type, <Z>,
filter size, filter events,
exists

Table A.10: Questions from the Binary Answers category.
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A.12 Appendix 2: Distribution of Answers

For each question category, each question can have a varying number of answers. These
answers can be “Yes/No” answers, numbers, attributes, or object descriptions. In the follow-
ing tables, answer distributions for the the categories of Integer Comparison (Figures A.1,
A.11, A.21, A.31), Same Relate (Figures A.2, A.12, A.22, A.32), Comparison (Figures A.3,
A.13, A.23, A.33), Single Or (Figures A.4, A.14, A.24, A.34), Zero Hop (Figures A.5, A.15,
A.25, A.35), Domain Exits (Figures A.6, A.16, A.26, A.36), Collision Order (Figures A.7,
A.17, A.27, A.37), Physical Understanding (Figures A.8, A.18, A.28, A.38), Quantitative
Answers (Figures A.9, A.19, A.29, A.39) and Binary Answers (Figures A.10, A.20, A.30,
A.40).

A.12.1 Answer distributions of simulation of level 1

Figure A.1: Answer distribution of questions in the category of Compare Integer (level 1)
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Figure A.2: Answer distribution of questions in the category of Same Relate (level 1)

Figure A.3: Answer distribution of questions in the category of Comparison (level 1)
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Figure A.4: Answer distribution of questions in the category of Single-Or (level 1)

Figure A.5: Answer distribution of questions in the category of Zero Hop (level 1)
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Figure A.6: Answer distribution of questions in the category of Domain Exits (level 1)

Figure A.7: Answer distribution of questions in the category of Collision Order (level 1)
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Figure A.8: Answer distribution of questions in the category of Physics Understanding (level
1). Questions 9.9 has equiprobable distribution of the answers, while 9.10 has a 1/3 chance
for category 0, and 2/9 for all the others.
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Figure A.9: Answer distribution of questions in the category of Quantitative Answers (level
1)
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Figure A.10: Answer distribution of questions in the category of Binary Answers (level 1)

A.12.2 Answer distributions of simulation of level 3

Figure A.11: Answer distribution of questions in the category of Compare Integer (level 3)
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Figure A.12: Answer distribution of questions in the category of Same Relate (level 3)

Figure A.13: Answer distribution of questions in the category of Comparison (level 3)
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Figure A.14: Answer distribution of questions in the category of Single-Or (level 3)

Figure A.15: Answer distribution of questions in the category of Zero Hop (level 3)
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Figure A.16: Answer distribution of questions in the category of Domain Exits (level 3)

Figure A.17: Answer distribution of questions in the category of Collision Order (level 3)
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Figure A.18: Answer distribution of questions in the category of Physics Understanding
(level 3). Questions 9.9 has equiprobable distribution of the answers, while 9.10 has a 1/3
chance for category 0, and 2/9 for all the others.
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Figure A.19: Answer distribution of questions in the category of Quantitative Answers (level
3)
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Figure A.20: Answer distribution of questions in the category of Binary Answers (level 3)
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A.12.3 Answer distributions of simulation of level 6

Figure A.21: Answer distribution of questions in the category of Compare Integer (level 6)
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Figure A.22: Answer distribution of questions in the category of Same Relate (level 6)

112



Figure A.23: Answer distribution of questions in the category of Comparison (level 6)

Figure A.24: Answer distribution of questions in the category of Single-Or (level 6)
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Figure A.25: Answer distribution of questions in the category of Zero Hop (level 6)

Figure A.26: Answer distribution of questions in the category of Domain Exits (level 6)
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Figure A.27: Answer distribution of questions in the category of Collision Order (level 6)

Figure A.28: Answer distribution of questions in the category of Physics Understanding
(level 6). Questions 9.9 has equiprobable distribution of the answers, while 9.10 has a 1/3
chance for category 0, and 2/9 for all the others.
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Figure A.29: Answer distribution of questions in the category of Quantitative Answers (level
6)
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Figure A.30: Answer distribution of questions in the category of Binary Answers (level 6)
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A.12.4 Answer distributions of simulation of level 8

Figure A.31: Answer distribution of questions in the category of Compare Integer (level 8)
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Figure A.32: Answer distribution of questions in the category of Same Relate (level 8)
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Figure A.33: Answer distribution of questions in the category of Comparison (level 8)

Figure A.34: Answer distribution of questions in the category of Single-Or (level 8)
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Figure A.35: Answer distribution of questions in the category of Zero Hop (level 8)

Figure A.36: Answer distribution of questions in the category of Domain Exits (level 8)
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Figure A.37: Answer distribution of questions in the category of Collision Order (level 8)

Figure A.38: Answer distribution of questions in the category of Physics Understanding
(level 8). Questions 9.9 has equiprobable distribution of the answers, while 9.10 has a 1/3
chance for category 0, and 2/9 for all the others.
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Figure A.39: Answer distribution of questions in the category of Quantitative Answers (level
8)
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Figure A.40: Answer distribution of questions in the category of Binary Answers (level 8)
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A.13 Appendix 3: Propagation Network Fundamentals

Similarly to most graph networks, there are a number of objects (O), and relations (R)
that “connect” those objects together:

O = oi=1,...|O|, R = rk=1,...|R| (A.1)

In most cases, the number of Relations is the square of the number of objects (|R| =
|O|2). Each object item, has several attributes:

oi = 〈xi, aoi , pi〉, where xi = 〈qi, q̇i〉 (A.2)

where qi and q̇i denote the position and its derivative (velocity), aoi denotes the attributes
of the relation like mass/radius etc., and pi any number of external forces on the object.

Each relation rk is compromised of:

rk = 〈uk, vk, ark〉 (A.3)

where uk is a receiver, vk a sender and ark the type of that relation.
The macroscopic aim of PropNet, is to learn the function φ that will take as input the

current interaction graph Gt, and output the graph at the next timestep Gt+1:

Gt+1 = φ (Gt) (A.4)

In the case of an Interaction Network, the characteristics of the objects are propagated
towards the next timestep in the following form:

ek,t = fR (ouk,tovk,t, a
r
k) , k = 1...|R| (A.5)

ôi,t+1 = fO

(
oi,t,

∑
k=Ni

ek,t

)
, i = 1...|O| (A.6)

Despite its flexibilty and efficiency in modeling complex systems, it lacks accuracy in
non-local information interpretation, such as the one that takes place in multibody collisions.
To address the above issues, the Propagation Network adds an extra propagation step in
its architecture, where the effects of a single relation are passed to all other relations. The
number of these extra propagations L can be tuned, but a good balance between performance
and accuracy has been found with around L = 2−4. These extra propagation steps, as used
in PropNet, can be described by the algorithm below:

Step 0 : h0i,t = 0, i = 1, ...|O|
Step l= 1,...,L : elk,t = f l

R

(
ouk,t, ovk,t, a

r
k, h

l−1
uk,t, h

l−1
vk,t

)
, k = 1...|R|

hli,t = f l
O

(
oi,t,

∑
k∈Ni

elk,t

)
Output : ôi,t+1 = hLi,t, i = 1...|O| (A.7)
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Due to the variable number of items and attributes, as well as cases where items are not
observable, a latent space is used for the object and relationship representations. Therefore,
two encoders A.8, A.9 and two decoders A.10, A.11 are used:

coi,t = f enc
O (oi, t) (A.8)

crk,t = f enc
R (ouk,t, ovk,ta

r
k) (A.9)

elk,t = f l
R(crk,t, h

l−1
uk,t, h

l−1
vk,t) (A.10)

hli,t = f l
O

(
coi,t,

∑
k∈Ni

elk,t, h
l−1
i,t

)
(A.11)

A Propagation Network receives as input a set of attributes and relations regarding some
items, and by training a Graph Network Interpreter, it outputs the predicted attributes and
relations, for the next timestep. This, compared to a sequential network (like an LSTM) has
the added benefit of being able to instantly propagate forces and effects between objects.
Such properties, are useful when simulating collisions between many objects e.g. Newton’s
Cradle.

A Propagation Network receives a number of previous frames (as well as the current),
and aims to learn to predict the attributes (positions) of the new objects, as well as the
potential events that will take place.

In the pre-formatted form, as presented in CLEVRER [54], it takes 3 subsequent frames,
and aims to produce the next one. Instead of using just 2 frames, this gives us two extra
properties:

• The simulated first derivative (velocity) is more accurately predicted, since it is now
computed based on 2nd degree accuracy, as the first derivative, in first order of accuracy
is:

u = ẋ =
1

∆t
(xi − xi−1) (A.12)

While in second order of accuracy, it is:

u = ẋ =
1

∆t

(
3

2
xi − 2xi−1 +

1

2
xi−2

)
(A.13)

• Apart from the first derivative of the position (velocity) we can also determine the
second derivative of the position (acceleration), since:

a = ẍ =
1

∆t2
(2xi − xi−1 + 2xi−2) (A.14)

Ideally, by knowing the acceleration of each object, as well as its velocity, one could
estimate its future position with higher accuracy, as well as quantify the forces acted upon
the object (as F = ma).
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