EONIKO METTOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTTIOAOTIZTON
TOMEAY TEXNOAOTIAY [TAHPO®OPIKHE KAI YTIOAOTIETON
EPrastHPIO MIKPOYOAOIIESTON KAI WHIIAKON L YSTHMATON

DESIGN AND EVALUATION OF CNNs ON
FPGA BY EXPLORING AND COMBINING
APPROXIMATION TECHNIQUES

AIIAOMATIKH EPrAsIiA

TOoLV

XATZHTYXOMIIANH TI'EQPT'IOY

EnmArenwyv: Anuftpoc Xodvieng
Kodnyntic E.M.IL

EPrasTHPIO MIKPOYTIOAOTIETON KAI WHSIAKON L TSTHMATON
Adnva, Todhog 2020

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

DESIGN AND EVALUATION OF CNNs ON
FPGA BY EXPLORING AND COMBINING
APPROXIMATION TECHNIQUES

AIIAOMATIKH EPrAvIiA

TOL

XATZHTYXOMIIANH I'EQPTI'IOY

EnmBArenwyv: Anuftploc Xodvieng
Kodnyntic E.M.IL

Eyxpldnxe and v tpiweln e€etaoctixn emtpony| tnyv 17 Toukou 2020.

(Yroypagn) (Ymoypagrj) (Yroypagn)
Anurtelog olvteng [ovarydtne Toavéxog Awoviotog Ivevpatixdrtog
Kodnyntic E.M.IL Kodnyntic E.M.IL Kodnynic E.M.II

Adnva, Todhog 2020

(Troypaeri)

XATZHTEOMIIANHY 'EQPIrIOT
Amhopotovyog Hiextoohdyoc Mnyovinde xouw Mnyovixde Troroyotov E.M.IL
(©) 2020 — All rights reserved

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

Copyright (©)—All rights reserved Xot{ntooundvne Fedpyioc, 2020.

Me empOhaln novtdg SLXaOUATOS.

Anayopebeton 1 avTiypapr, amodixeuon xou Slovouy| Tng topoloos epyactiog, €€ oAoxApou
1) TWAUATOC QUTHC, Yia EUTopX6 oxomo. Emtpéneton 1 avatinwor, anodrixeuon xat dioavour
Yot OXOTO U] XEEOOOKOTINO, EXTUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolnddeoT va
AVOPERETOL 1) TNYT) TEOEAEUOTC o VoL BlaTneeitan To mopdy urvupa. EpwtAuata tou apopodv

N XeMon TNS EpYUCLAS VLol XEPOOOXOTIXO OXOTO TEETEL VoL aneudivVOVTaL TEOS TOV GUYYROPEX.

Euyapiotieg

Y10 onuelo autéd Yo Hleha va eLYoEIGTHOW GAOUC 0GOUC GUVTEAEGOUY GTNY EXTIOVNOT] TNG
ToEOVCAS OIMAWUATIXAG GAAS XU TNG TMEQUUTEPL TORElNG UoU Ot axadnudixd eminedo. Ilo
ouyxexpiéva Yo Hela va euyaplotiow Tov emBAEBovTa TS Bimhwpatixic x. Anurteto
Yolvten, o onolog pou petépepe TANGOEA YVOOEWY oTov Touéa NG mgloxrc oyedlaong
HECW TV DLAEEEWY TOU ol TWV EPYAOTNEIWY Tou Nty uTELUNVOC.

Yty ouvéyelor Yo Hleha vor ex@pdow TNV EVYVOUMGUVY 0L TREOS TOV UETOOLOAXTORLXO
epeuvnTy) Fewpylo Aevtdpn xou tov utodriglo Biddxtopa Baoikn Aéovta, ol onolol cuvéPoiay
o€ onuovTd Bodud T000 GTNV XAANERYELXL TOU TPOTIOU OXEYNE LOU WS TROS TNV TROTEYYLoN
OYETXWY {INTNUATOY, OGO XaL GTNY XAUAALERYELD X AVATTUET VEWVY WOEWDY xat XaTeVHivVeEWY
TIOU 0 pOEOVCAY TNV EXTIOVNOT AUTNG TNG EpYaciag. OEAW Vo TOUG ELYUPIOTACH WOIUTEPWS YidL
TOV YPOVO TIOL aPLEEWOAY WOTE VoL AVTUAAIEOUUE OXEYEIC xou 1BEeg OYETIXG Ue {NTAUOTO TOU
Tpoéxuday xotd TNV BLdEXEL TNG BITAWUATIXAS.

Téhog, Vo fdeha vor ELYAPLETHOW TNV OXOYEVELX UOU X0l OAOUS TOUS XOVTIVOUC UOU OlV-

YpdToug Yo TV oTARLEYN TOU LOU TAUREYOUV.
INedpyoc Xatlnrooundvng

ToVAoc 2020

ITepirandm

H noryxdopior amaltnomn yio YenyYopoTEpES EQUPUOYES UE YAUNAOTERT) XATAVIAKGT LoYVOS
EYEL PEPEL OTNY ETUPAVELX UPXETOUS ETLTOY YUVTES LUVEAXTIXGY Neupmvixdv Awxtiwy (CNNs)
oe eZeldEVPEVES LoVadeS emepyaoiag dmwe elvon dmwe elvor ot xdpteg ypapdv (GPUs), ta
FPGAs (Field Programmable Gate Arrays) xou oo TPUs (Tensor Processing Units). H
x0plar TedxAnom ebvan vor avamTOEOUUE YEVIXOUE XVNTHRES ENTITAYLVOTNC Ol oTtolol BEATILVOUY
TNV omOB00T, OTOLOUBHTOTE BWOUEVOU GUVENXTIXOU SXTUOU. TNV Topolco SITAWUNTIXT 1)
otadaota TNg cLVEMENS 1) omola eivon 1) O AMAUTNTLXY) O TOEOUE OE XAVE GUVENXTIXG BIXTUO
OYEBLACTNAE PE YAWOOU TEQLY QUPTHC VALXOU (VHDL) xdvovtoc pio og Bddoc avdhuom xou ee-
EELVNON TNG APYITEXTOVIXAC Yot Vo Bpolue Tic xohUTepeS duvatég Aboelg. o ouyxexpyéva,
OYEDLAooE EVOY XAACOUO XVNTARA CUVENENG TOU eXTEAEL TNV xAaGoXY| dordnuotixy| Stodl-
xaoio TNg oLVEMENG xan Evay xvnThea CLVENENC o omolog Paciletar oTny TEOCEY Yo TOu
alyopiduou Winograd xou cuyxelvaue Tic BeATIOOEC 0 TOPOUS XU AmdBOoY UETOEY TOUG.
Qdc embuevo Brua, avamtOEUE TEOCEYYIOTIXOUEC TOMATAACIACTES UE LUBEOXY xwOXoTOolN-
o1 OTA UEPWXE Yvoueva Yl OLdpopa UeyEdn dedopévwy, uia teyvixr) Block Floating Point
(BFP) xou Sudpopec teyvixée amhic amoxonic twy yaunhotepwy onuaciac bit evée apriuod.
YUVOLAOUOL AUTEOY TWV TEOCEYYIOTIXMY TEYVIXWY e€epeuviinxay xou 6Tic 800 Tpooeyyioeic
XVNTHEWY X0 EEETAC TNV T OLAPORI TAEOVEXNHUOTA TOUG GE OYECT) UE TOV pUUUO AstTtovpyiag,
TNV XATAVAAWOT), TNV oxp{Belor xatnyoplomoinone xon To PEYLOTo SUVITA TAEOVEXTAUATI TNG
xade opyrtextovixic. H emahiieuon npayuatonotflnxe ue Ty ¥enorn TeLOV SLUpOREXTIXMY
ouveAxTxwy dtiwy : CIFAR-10, MNIST xou éva 8ixtuo yior Tny avary voplon Tholwy omd
emoveg 6opupopwy Ship Detection. H enairdcuon tng oxpifBeiag éyve pe v Bordeia evig
novtéhou Aoylopxol oe C/C++ 1o onoio exteholoe Tic npdielc oe eninedo bit. To tehnd
amotehéopata pog delyvouv ot 1 axpiBeta xattyoplomoinong petwveton xotd uévo 0.1%-0.4%
ave€atp€Tou Tou PeYEdoug TNE EOVIC ELGOBOU Xot TOL 0EttUo0 TV XAJCEWY. XENoWOoTLOVTOC
Vv mpocéyylon BFP | xatagépaue vo teToanAactdcoupe Ty anddooT) TwY CUVENXTIXGY Ot-
xtOwv pe floating point 6edopéva xon vo v dimhactdoouye o autd e fixed-point dedopéva
oto Zyng-7020. H mpotewvdpevn uin xivnthpmy UEIOVEL TIC anauthoELS o€ Topous amd 7% emg
41% o Bektidver Ty anddoon xdile dwopévou dixtiou ywelc vo ypeetdleton enovextoideuon
1 aAAory) 0T Bour| Tou o oUYXeLon UE BAAeg uedodoug cuutieonc. Télog to anoteAéopata
and TS TEMXES OPYLTEXTOVIXES oUYXplINXay Ue TNy xdpTa Ypapixwy Jetson Nano (204 FPSE]
oe obyxpton e 720 FPS) xaw emtedydnxe déxo popéc xohbtepn anbddoor/Watt.

MThoiow ewdvac/deutepdbhento

4 Iepidngm

Agleic KAewdd

FPGA, E€owovounon Evépyelag, Lyediaouog oe VDHL, Emitoyuvtés cuvehxTinmy Oi-
xt0owyv, Egepebvnon apyitextovixwy, Ipoceyyiotxol vnoloyiopol, Hpooeyylotixol mohha-

TAOGLAUO TEC

Abstract

The worldwide demand for faster applications with less power consumption has brought
up to the table multiple Convolutional Neural Network (CNN) accelerators on specialized
processing units such as FPGAs, GPUs and TPUs. The main challenge is to develop
generic engines that improve the performance of any given CNN. In this thesis, the con-
volution engine, i.e., the most resource-hungry component of the entire CCN, is designed
in hardware description language (VHDL) by performing an in-depth design space explo-
ration to find optimal solutions. In particular, we designed a baseline convolution engine
that performs the typical convolution operation and a convolution engine based on the
Winograd algorithm, and compared the resource & performance gains among different
design configurations of them. As a next step, we developed hybrid high-radix encoding
multipliers for various bit-lengths, a block floating-point technique and various simple trun-
cation methods. Combinations of these approximation techniques were adopted in both
convolution engines, and trade-offs in terms of throughput-resources-accuracy as well as
the maximum possible gains were examined. The evaluation was performed with three
different CNNs : CIFAR-10, MNIST and a custom network for ship classification. The ac-
curacy evaluation tests were performed with the assistant of bit-accurate software models
in C/C++. The final results show that the classification accuracy degrades by only 0.1-
0.4% regardless of image size and the number of categories. Using the block floating-point
approach, we managed to quadruple the throughput of floating-point CNNs and double
the throughput of fixed-point CNNs on Xilinx Zynqg-7020. The proposed mixture of en-
gines decreases the logic resources by 7% to 41% and improves the throughput of any given
CNN, while maintaining its original training (the network does not require to be retrained
as it happens in other compression methods). Finally, the results of our implementation on
Xilinx Zyng-7020 were compared to Jetson Nano GPU (204 FPS via TensorFlow+CUDA
acceleration compared to 720 FPS) and achieved 10x better performance/Watt.

Keywords

Prototype Design, FPGA Design, Energy Efficiency, RTL Design, VHDL Design,
Approximations, CNN, Block Floating Point, Hybrid Approximate Multipliers, Data type

exploration, FPGA accelerator

Contents

[EuyopioTieg|

[Teptndn
[Absfract]

Contents|

|List of Figures|

[List of Tables|

(Extetapevn IlegiAndn

[1 Introductionl

T1

Machine Learning|. oo

[1.1.3 2D Convolution Operation|.
[1.1.4 Convolution Layer|
[1.1.5 Pooling Layer|.

[1.1.7 Fully Connected Layer in CNN|

T2

Field Programmable Gate Arrays|

[1.2.1 FPGA Programming|
[1.2.2 Advantages of FPGAs| 0.

3

Approximate Computing|.

7

8 Contents
2 VHDL Core Design| 73
2.1 Direct Design Approach| 73
2.2 Components Required| o o 74
221 DataFlowl. 74

222 Convolution Unitl. oo 77

2.3 Winograd Design Approach| 79
[2.3.1 Winograd Implementation for 3 x 3 Kernell 79

[2.3.2 Winograd Engine Utilization Techniques|. 82

2.4 Scheduling|. 88
2.4.1 Baseline Architecturel oo 0oL 88

[2.4.2 Winograd Architecturef. Lo o oo 89

[3 Approximations| 91
3.1 Approximate Hybrid High Radix Multiplier| 91
3.1.1 Hybrid High Radix Encoding| 91

3.1.2 Partial Product Generationl 94

3.2 Data Type Exploration] 0. 95
8.2.1 Fixed Point Architecturelo 95

13.2.2 Floating Point Architecturel 97

[3.3 Approximations in the Convolution Processing Unit| 98
3.4 Block Floating Point| 0 0. 101
[3.4.1 Block Floating Point Arithmetic| 101

13.4.2 Convolution Operation using BFP Notation per Layer| 103

3.43 BFP Convolution Per Window| 105
4__FEvaluationl 107
4.1 Test Setup|. 107
42 FPGA Results] 112
[4.2.1 Ship Detection CNN| 113

4.2.2 Winograd Implementation|. 121

4.3 Floating Point Architecture| L. 124
4.3.1 Vivado Floating Point Architecture with IPs| 124

4.3.2 Block Floating Point Architecture| 125

4.3.3 Place & Route of complete networks in XCZ7020 126

|4.3.4 Comparisons to other devices| 126

4.4 Accuracy Evaluation| oo oo 127
b__Conclusion| 129
b1 Future Workl 130

[Bibliography|

List of Figures

(L Yuoyetion tne Mnyovixne Mavnonc oe oyeon ue arlo emotrnuovixd meotyf . . 16
2 Iopaodetypo 60uNc GUVEAXTIXOD OXTOOU YId TNV OVOY VWPLOT) UECWY UETOpORAS| 17
[H mhaxeto evoc FPGA ue to Baoixd otoyetatne| o o o000 oL 17
4 lpoypouuatiouoc FPGA| o000 18
[p AloyETEuon 0E00UEVKY UETACD OLUPORETIXMY ETUTEOWY TOU OXTOOU. Egdcov |
[TOL OEOOUEVA EYOLY POPTWUEL X0 TOL TEWTA EYXUEO OEOOUEVO EYOLY TORAYVEL, |
| UTOEOLY VO TEOWUNUOUY OE EMOUEVOL ETUTEOO. | . « v v v v v v v v o o e e . 21
6 To toptoxoil oTolyeior TEETEL Vol POPTWYOLY GTH UVNUY] TEOXEWEVOU VL CEXL- |
| VNOOUVY OL UTOAOYLOUOL Yol 3X3 OIATEO.o ... 23
[7 T'evixoc petatponéac and celpland oe naparinho. To 6cooueva €.G600L Oivo- |
| vial w¢ €ococ ot mewtn FIFO tng aivotooc. To mopaiuoo xataywentov |
[exel yeyevoc N X M mou eCoptdton amd To YEYEVOS TOU QIATOOU ELCOOOL.| . . 23
(8 Topaoeryua Zero Padding yia tnv mpwtn ypouun tne emovoc| L. 24
9 Aoun Khaoowne Movaooc Eneceoyoaota) o000 24
(10 Koataoxeun evoc cuveAixtixol emineoou pe yonon tne Movaooc Eneepyaotoc,| 25
(11 Aoun Movaoac Enecepyaoctiac Winograd] 28
(12 Avdueco o€ 0LO EYXUEEC GTOBEC UTAOYEL ULOL U] EYXUQT TNV OTOLX OEV UTOQO- |
[OUE VO OCIOTIOMNGOUME| « « « v v v v oo e ot e i e e e e 29
(I3 Ymo-ypnowomnolnon Tne LoVAOoS Yo EVOL XoVaAL €.0000L. Tar xOxxivo TETEAY W- |
| V0L UTTOONAGVOULY OXUREC OTOLBEC EVW TAL UTAE TIC EYXUQES 29
(14 IIAnenc aciomoinon Tng LOVAOOS Lo TEGGEQD OLPOPETIXA XOVAALX ElGOOOL.| . . 29
(15 TAomoinom yio EVol XoVaAL ECO00U UE OY TG XAUVAALOL ELOOOOU| 30
[16 Ymohoylouoc yaotn e£ooou ue yenon tou aiyoptyuou Winograd, 31
17 Awyeloion yio M xavado elodoou| . .. oo oo oo 32
(18 Kixiot poroyiol yio M xavaia €.cooou xou 4 xovahior eCooou. Mo povaoo |
| Max-Pool amouteiton yioo 4 xavahor eCooou.| . ..o o oo 33
[19 7 — bit TopoywYh uepx®Y Yvopévwy Boaoctouévn ot @ (o) axplBec radiz — 4 xo- |
| ouornoinon xou T TpoceyYloTwéc (B) radix — 64, (¢)radiz — 256, (d)radixz — |
| 1024 xwowomownoel. a; 1@ — bit Tov A, o; = o;Bsign| oL L 34
kai : mapdyovteg mpoououdderyupe.comtiov.31
[21 Avoamapdctaon N-bit Fixed Point aowuodfo 000 36
[22 Floating Point Avamogdactoon.o 37

List of Figures

[23 Fixed Point lloAamiaciaouoc | o oo oo 38
[24 Floating Point [loAhomhaciaopoc| 000000000 38
[25 Block Floating Point Avanogdotoon o000 39
[26 Block Floating Point »uveaen.o o000 40
[27 Teomomolnoeic 0ToV UETATRPOTEN U0 GELRLOXO GE TUPAAANAO. XwWOLS VoL ETNEE- |
QO TEL 1) AELTOURYIXOTNTA TNC HOVAoaS, YeetCopacTe wor Atyoteen uvnun FIFO[44

[28 O tpomoc ue Tov 0molo AELTOUEYOUY Ol UOVAOEC GUVEAMENG OTO TEMTO GUVEAL- |
XTIXO ETUTEOO TOU OLXTUOL YLOL TOV EVIOTUOUO TAOLWY 46

[29 Awoxuudvoelc Tne axelBELOC XOTNYORLOTOLNGNC OE GUVIOTNGT UE TNV TOQUUETOO |
k TOU TEOCEYYLOTIXOU TOAATAAGLIGTI .« « v v v v v oo o e e e 48

1.1 Machine Learning relation to other fields|. 52
1.2 Single Neuron Model| oo oo 53
1.3 Architectural Graph of multilayer perceptron with two hidden layers|. . . . 54
1.4 Converge to Minimum Cost on Gradient Descent with different Learning |
[Rafed 55
[1.5 Example of a Convolutional Neural Network that categorizes means of |
transport from an input image |o 56

1.6 Convolution of an Input Image with classic Computer Vision Kernels.| . . . 57
[1.7 2D convolution using ”Same” Padding for 3x3 Kernel and 5x5 Image. Bor- |
ders of Image are extended by zeros and we have the same size 5x5 output |
Image.| 57

[1.8 2D convolution without Padding. The output Image has reduced size 2x2 |
compared to the 4x4 input Image.| o000 57

1.9 Comparing two ditterent types of stride. When stride=1, we have 9 3x3 tiles |
to be processed, though a 3x3 output. When stride=2, tiles are reduced to |

4 and so does the output.| L 58

[1.10 Example of an RGB Image. A 3D matrix of size Imw X Img x3.|. 59
|1.11 The two difterent common methods of pooling and their impact on the input |
feature map|o 61

[1.12 Most Popular Activation Functions in Neural Networks 62
|1.13 The Fully Connected Part of a CNN to classity Dog and Cat Images| 63
MIZTFPGABoardl - -« o v o o oo e e e e 64
[1.15 FPGA Programming-Mapping] 65
|1.16 General Purpose Processors compared to ASICs|. 67
[1.17 FPGA vs ASIC Cost Analysis|. 67
(118 Tradeoffs between different data accelerators| 68
[1.19 Summary of different processors and their tradeofts| 68
[2.1 Data Pipeline Between different Layers of a CNN. Once Data are loaded |
and the first valid outputs are generated, they can be directly feeded to |
another layer| 74

List of Figures 11

[2.2 Orange pixels should be loaded in memory in order to begin computations |
[with 3x3 Kernell. 75
[2.3 Generic Serial To Parallel Converter. Input Pixels are given as input to the |
| first FIFO queue. Register Window has size M x N depended on the input |

| kernell 75
|2.4 Zero Padding Example for the first row of an image] 76
|2.5 Baseline Processing Unit Component structure| 77
2.6 CNN Layer Construction Using Processing Units 78
2.7 Winograd Convolution Unit Structure| 81
[2.8 Between two valid Winograd tiles there exists an unnecessary one that we |

[cannotmakeuse offl 82
2.9 Winograd Component Under Utilization for 1 Input Channel. Red squares |

[indicate invalid tiles while the blue the valid tiles). 82
12.10 Winograd Component Full Utilization for 4 Input Channels| 83
[2.11 One Winograd Output Channel For eight Input Channels| 84
[2.12 Output Map Creation Using Winograd|. 85
[2.13 Winograd Management For M Input Channels| 86

[2.14 Clock Cycles for M input Maps and 4 Output Channels. One Max-Pooling |

| component is required to deal with four output channels. This convolution |

| and max-pooling procedure are pipelined.| 00 89

[3.1 7 —bit partial product generator based on the (a) accurate radix-4 encoding |
| and the approximate (b) radix-64, (c)radix-256, (d) radix-1024 encoding. |

| a; -1 — it of operand A, o; = a;Psign| Lo 94
and : sign factors94figure.caption.92
3.3 N-bit Fixed Point Representation| 95
[3.4 CNN Training with fixed point arithmetic] 97
[3.5 Floating Point Notation |. 98
[3.6 Fixed Point Multiplication| 99
[3.7 Floating Point Multiplication |. 0 L. 100
13.8 Block Floating Point Notation| 102
13.9 Block Floating Point Convolution|. 103

[3.10 M xN Input Kernel Transformed to BFP Notation. M xN Input Pixels share |

| the same exponent in each convolution operation. Exponents are added and |

[finalresultin FP16 format) o oL 105
4.1 CIFAR 10 CNN dataset presentation| 108
H27CIFAR-TOModell . . o o o oo o e e e e e e e 108
4.3 MNIST Dataset Presentation| 109
HA_MNISTModell . . . o o vt e e e e 109
4.5 Sample of Images that were classed as "ships”|. 110

|4.6 Sample of Images that were classed as "non-ships”| 110

12

List of Figures

4.7

ohip Detection CNN model|

[4.8

Adjustments in Serial To Parallel Converter. One less FIFO memory is

required in this design modification.|

4.9

First Layer of Ship Detection CNN. 32 Convolution Engines are set in par-

allel. Three 1terations are required to fully complete the first Layer. In

First Iteration Channels 1 to 10 are generated and stored in memory while

Channel 11 needs one more Input Channel to be processed in order to be

completed. In each of the following two iterations, 10 new output Channels

are generated in parallel and the other two are semi processed to totally

form 32 output channels. | o o

[4.10 Winograd Engine with 32 parallel units for each Layer. 3, 16, 32 and 64

iterations to finish each layer respectively. Filter Management for each

Layer is presented.|

|4.11 Classification Accuracy is affected by configuration parameter k|.

List of Tables

(I Y0yxpion Movdowy EneZepyoaoioc (w x w Image, 3x3 Kernel)[. 30
2 Khiaoown (Direct) xoo Winograd uhonoinon twv cuveAixtixoyy emnédwnv(W xW |
Image, M channels, 3x3 Kernel, N filters). 31

[B Mepuxa I'i'voueva avahoyo ye tnv xwowornotnon| L. 34
[4 1lopol TV YUVEAMXTIXMY UOVAOWY UETA TNV AAAYY) OTOV UETATROTEN ONO OEL- |
OLUXO OF TUQAUAANAO| . . v v o o o o o 43

[> Arnoutnoeic oe mopoug Yo To Ship Detectionyia Fixed Point 16 apyitextovier 43
|6 Sources of the Xilinx Zynqg Z-7020 SoC|. 44
[7 YXuvoAwxol mopol yio Tov Fixed Point oyeowouo oto 2C-702). 45
[Final CNN performance with proposed techniques (Zyng-7020)[. 47
(9 Aoxupec oxplBetac ylo olapopeg apyttextovixeg Fixed Pomnt| 48
(10 Aoxwec oxpifeiac yio owapopes apyttextovixeg Floating Point|. 48
11 Aoxwuec axpiBeiac yia owpopeg apyttextovixec Block Floating Point| 48
[2.1 Direct and Winograd Processing Units (w x w Image, 3x3 Kernel) 87
[2.2 Direct and Winograd Convolutional Layers (W xW Image, M channels, |
3x3 Kernel, N filters)| L 87

92

3.2 ACCURATE RADIX-4 ENCODING TABLE 93
[3.3 Partial Products per Radix Encoding|. 94
[4.1 Winograd Without Kernel Transform (We suppose the Kernel is trans- |
formed once offline) and without output transform (4x4 tiles output) 112

4.2 Resources of Convolution Components after the Serial to Parallel Adjustment|112
4.3 Resource Requirements of Ship Detection CNN for Fixed16 Baseline Approachl|113
4.4 Sources of the Xilinx Zynq Z-7020 SoC|. 115
|4.5 Resources of Extra Components in Convolution Layer| 118
4.6 Total Resources to design the Engine on ZC-702] 118
[4.7 Resources of Winograd Convolution Components with Output Transform |
[and Kernel Transforml oo oo 121
4.8 Total Resources to Design Winograd Engine on ZC-702[. 122
|4.9 Total Resources to Design Floating-Point Engine on ZC-702[. 124

13

List of Tables

4.10 Total Resources to Design BFP Engine on ZC-702 125
[4.11 Final CNN performance with proposed techniques (Zyng-7020)[. 126
[4.12 Accuracy Tests for Different Fixed Point (FP) Architecturef 127
4.13 Accuracy Tests for Different Floating Point Architectures] 127

4.14 Accuracy Tests for Block Floating Point Architectures| 128

Extetopevn Ilepiindmn

Ewcaywyn

To Bodid Yuvehixtind Aix-ruoﬂ €youv Ociel TOAEC oMUoVTIXEG BEATUOOELS OE TOAAEC
epappoyéc Teywntnic Nonpoo()vwfl , 6noc elvon 1 bpaon urohoytotwyv [12], n enelepyooio
puowic Yhdooog [29], n avayvapeion govic [1] xaw n unyovixd petdgppoon [2]. H anddoon
Toug BeATIOVETOL PE YR YOopouS puiuolg.

My avixy Mddnon

H Mnyavixy Mddnon cuvovtiéton 6e apreTég TTUYES TNS XAIMUERVOTNTOS TV avIpOTOV.
H xatnyopionoinon adinioypagiog, 10 cOOTNUN TEOTICENDY SLUPNUICEWY 1} TEOTAGEWY CYE-
TIXWVY UE TO EVOLAPEQOVTA TOU YPNOTY, CTNY UVAYVOPLOT, XEWEVOU Xl POVAG UXOUN XL OE
QAUTOVOUOL AUTOXIVITA 1} QUTOUATOTIOLAGELS DLAPOPWY EQYATLHY TOLU EXTEAOLVTUL a6 TOV dvipn-
no. H teyvnt vonuooivn 9€tel ta cpotnuato T etvon 1 euguior xon e ot dovAéuer:” xau
“Mnopolue va gudgoupe €Eunveg unyavéc™. ‘Omme uTodeVUEL xou TO GVOUA, UE TNV UMY oVIXT
udinon npoomadolue va EXTAOEOCOUVUE TOUG UTOAOYIOTEG WOTE VoL douv vor AOvouy Ttpo-
BAAuaTor Ywelg var elvol EXTEVHS TROYRUUUATIOHEVOL Yiot aUTOY Tov oxomd. 'Evag mo enlonuog

)

0pLOMOC Yo TNV udinon elvon o €7 :

‘Eva mpdypoupa utohoylots), Aéyeton ot pordalvel and tnv eumeipla E pe 8edouévn xdmota
epyootoa T xau xdmow pétpnon tng anédoong II, av n anddoon tou oty T dnwe yetptéton
amo v II BeAtidveton ye v eumeipla B Xtov mupriva tng undpyel 1 undleon ot) Yvaor
unopel vo avorydel and tor dedouéva. H Mnyaviny) Mdidnon npoywedet éva frua unpootd and
TIC EEUTVES UMY OVES Xo UTOCYETAL (Lol UEYAADTEPOL 0poug xau Bdoug autoyatomoincT oTig
ovlpwmiveg dpaoTnEloTNTeG. Ol UOVOTOVES X ETMAVOANTTIXEG €pyasieg oe €vay oUYYEOVO

%x66U0 Vol EXTEAODVTOL OO UMY OVES.

'Deep Neural Networks (DNNs)
2 Artificial Intelligence (AI)

15

Domain expertise

Decision
support Artificial
system intelligence
. Data
Analysis processing
Data
science
Machine
Statistics learning Computer
science
Big data

Yynpo 1: Xuoyétion tne Mnyovixhc Mdinone oe oyéon ye dAha emotnuovind medlo

Yuvehxtixd Nevpwvixd Alxtuo

To Xuvehixtind Nevpwvixd Aixtuo eivon pia diaitepn xotnyopla VEURGVIXGY SXTOWY Yia
ene€epyaoio dedouévwy To omola €youv pla YVeoTH Tonoloyla tAéyuatog. Eivar grioryuéva
amo VEUPWVES oL omofol €youv exmoudelowlo Bden xar morwoec. Kdde vevpwvog 6€yeton
xdmolo. €l0000, extehel €vol ECWTERIUO YIVOUEVO TO OTOI0 TPOEETXE axolovdeitar amd uia
un yeopuwotnto. Autd o Sixtua €youv eunvevoTel and to Yoviélo To omoio To UnhaoTixd
AoBdvouv TNy TANEopopio TOL XOGUOU YUEK TOUS YENOWOTOLOVTOS Ual XATIAANAT cucToLy (o
BLOAOYIXWY VEUPWYWY GTOV EYXEPIAO TOUC YLOL VO OVOLYVWEICOUY TO OVTIXEWEVO ouTo. ()¢
TEAOELY O UTOROVUE Vol VEWENGOUUE EVal auTOXEVNTO Xou VoL EEETACOUNE TOV TPOTO TIOU €Vag
avipwnog to ayayvwplel. O dvipwrog Pdyver yior yopaxtnelotind to onola Eeywpetlouy éva
autoxivnTo and dhha UEo UETAPORAC OTwS lvol oL TPoY oL, To UTEOGTIVEL (PWTA, Ol TOPTES, TO
VIETOLLTO, TO Xm0, oL xodpEpTeg xou To TopuTEll xou dhha. Tlapduolo dtav avayvewpeilel évay
TE0oY 6 Ydyvel yior avTixeipeva xuxAxo) oyfuaTog, oxolpou Yewuatog Ta onola Peloxovio
%dtw omd TNV xOplo dour) Tou awtoxvitou. ‘OAec auTég oL uxpéc TAnpogopieg cuvbudalovTtal
woll yior vor oynuatioouy €va GUYXEXPWIEVO YopuxXTNELOTIXG TO oTolo elvor Lovadixd ot éva
avTixelyevo 1o onolo avayvewpeilovue. Kdie eninedo evdg cuvehintinol veupmvixol dixthou
oyetiCetan pe TNV mapaywyY) TAneogoplac amd TEC oL omoleg €pyovion amd TEONYOUUEVA
enineda o por axoua mo oOvieTn TAnpogopla xaL TNV TEPUTEP® OLABOCT TNG OE ETOUEVA

emimedOL YLt VoL YIVEL TEPAUTEQL YEVLXOTOINOT).

16

— TRUCK
— VAN

d d — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATIEN D SOFTMAX
FEATURE LEARNING CLASSIFICATION

ExAua 2: Topdderyuo doprc CUVEAXTXO) BIXTUOU YioL TNV VoY VORLIOT HECKY UETAPORAS

Field Programmable Gate Arrays

To FPGA eivan évog mivoxog amd SlacuvOESEPEVOL (PmMpLoxd UTOXULXADUATO Tl OTIo{ol UAO-
TOLOUY XOWT AELTOUEY A EVE TOEIAANAA TTROGPECOUY TOAD LPNAS ETUTEDH TEOGUPUOC TIXOTNTAS.
To FPGA etvon evog mivaxog amd Aoyixéc TOAES, xou auTéC 0 TVOXAC UTOREL VO TROY QOUUATL-
otel (mparypotixd va Stapoppriel) oto eninedo tng cuoxeuhic and Tov yeRoT ywelc edpTtnon
amd TNV apyixh Tou xatooxeur. A&ilel va onueiwdel 6TL Bev elvon Wior amAr “"GLUAAOYY’ amd
aveldptnreg mOhec Boolean. Autd Yo ritay un anodotixnd xodog 8ev Yo exUeTOMELOTAY TO

TAEOVEXTNUA OTL Ol XOWVES AELTOVRYIEC UTopoY vaor UAoTodoly TOA) O amOOOTIXA.

%mm __ E3 B3

Yynpo 3: H mhoxéta evog FPGA pe ta aocwd otouyelo tng.

Ta CLBs mpénetl var ahANAETLOR0LY UeTAZ) TOUG XoU PE ETUTAEOY xUXAGUATA. Tt auTtdV TOV
oxond, 10 FPGA yenowonoiel évay mtivaxo omd npoyeauatilOUEVES CUVBEGELS Xl XOUUATLHL
€l060wv/eE6dwv. To mpdypoppa anodnxedeton oe xOttapo SRAM to omolo ehéyyouv Ty

AertouvpywotnTa Twv CLBs xou toug dlaxdnteg mou xadopilouy ta povondtio cuvdécewy. H

17

yevixr) wéa ebvan 6Tt T CLBs mepiéyouv mivoxeg avolAtnone (Look-up tables (LUTS)),
ototyela anodrixevone (xataywentéc ¥ flip-flops) xou tohumhéxtec oL onoiot Toug emttpénouvy
VoL Tparyotoololv Aoyixég medéelc Boolean, arodrixeuor dedouévmv xan oprduntixég npdeic.
Mo povéda elo6dou/e€680u anoteleltar and Sidpopa ototyeia o omofor amoteholv Tov dlawho
emxowveviog puetall twv CLBs xau dAAwv otoyelnv g mhoxétog. Tétoia otouyelo etvar ol

pull-up/pull-down avtiotdoeic, oL avTioTpogeic xou oL EVOLIUECES UVAPECS.

ITpoypaupationoc FPGA

[Tpoxewévou va mpoypaupaticovye éva FPGA yio pa ouyxexpwévn epyaota, mpénel vo
uetateédoupe évay mivaxo and CLBs oe éva gngloxd xdxhomya 1o onolo eivon oyediaouévo
o3OS yior TNV epyasia Tou VéEAoupe. AuTo QUIVETOL WE ULt TOAITAOXT X0 YPOoVoBopd Blo-
oucaota. TTopdha autd, 1 avdntuén egapuoydv o FPGA bev anawtel tnv mhrien yvoon tng
eontephc Aettovpyiog Twv CLBs 1) Tov oYEdlaoUd TwV ECWTERIXMY GUVBEGEWY ETUIXOVWVIAS,
OTWS aXEPOC O EVay XPOEAEYXTY| BEV YEEWLETAL 1) YVOOT TNS YAUNA0) ETUTEGOL YADCOUG
(Assembly) tou enelepyoo T | WV ECWTEQIXOV ONUETOY EAEYYOU. LTV TRoyUaTIXOTNT,
Yo Aoy TopomhovnTied To va tapouctdoouue o FPGA w¢ éva e€dptnua to onolo Asttoupyel
amoxAelo Txd Lévo tou. Idvta unoostnellovton and xHoxa 0 onolog avolopBavel TNy Tepinho-
x1 SLodixacion TN HETATEOTNAG EVOC XUXAWUATINOU OYEBIOU OE UAIXO OTo TpoYeauati{OUeva
bits mou xadopilouv TNV cuunEpLPopEd TV BlacuviEceny xat Twv CLBs. o autdv tov oxond
éyouv dnuiovpyniel Mhdooec Heprypaphc Thxol (Hardware Description Languages-HDL)

oL OTO{EC HaC ETUTEETOLY TNV “TERLYPAPY) TOU UALXOU.

- Design Verification
Design Entry
Simulation
Y ;

Synthesis

Y ¢ Functional
Simulation
Implementation
Device W

Programming

Yynuo 4: Ipoypaupatiopéc FPGA

Ipdrypott, umdpEyet UL opoLOTNTL HETAED TOU XWOIXA TEQLYRAPHC UAXOD XAl TOU XOOLXA
yio Aoylouixd og uPnA6 eninedo, ohhd etvar 800 Yepehiwdng dlaopeTixéc Evvolec. O xddixag
OE AOYLOULXO OVOTOELOTA ULal OELRS AO AELTOURYIES, EVE O XWOXOC TEPLYPUPHC UAIXOU UTOREL
Vo TERLYPaPel xahOTEPa ¢ €val oY NUaTIXG To omolo yenotonolel XelUeVo Yo Vo ooy dyEL

oTouyelor xaL Vo QTIEEL BCUVOETELS.

18

ITpooeyyiotixol Yroloyiopol

H qopnth xan evowuatouévn @UoT TwV UTOAOYLO TIXMOY CUCTNUATWY TNG ETOY NG Mg, EXEL
odnyNoeL ot Lo ENUEVT avaryxn Yiot UTERBOALXG YAUUNAY XATAVAAWGCT Loy VOGS, UXET| ETLPAVELY
xar VPNAY anddoon. O TEOCEYYIGTIXOS UTOAOYLOUOS €Vl €VOL OVOBUOPEVO UTOAOYLO TIXO
TEOTUTO TIOU HOG ETUTEETEL VO ETUTUYYAVOUNE owTd Tor VeTixd xdvovtag ouufiBaocuole otny
aprdunux| oxplBelo. IIoAAd cuc THUATH OE TOUElC OTWS TA TOAVPESH, TO VEUROWIXG BIXTUO X0
1 avdhuon big data napoucidlouy pla Euputn avoyn o Eva cUYXEXPYEVO eitedo avaxpifelog
OTOUC LUTOAOYLOUOUEC Xal Umopoly va w@eAntoly and Toug TEOCEYYICTIXOUS UTOAOYIGUOUC.
Ot uoAoYIo TINES XU ATOVINUEUTINES OMOUTACELS TWV LOVTEPVGY CUCTNUATWY EYOLY CEMERATEL
xatd TOALU Toug dldéooug opoug. IlpofAéneton OTL oTNV emMEPyOUEVN BEXAETIN, O OYXOC
e TAneogoplag TNV omolo Soryeiptlovton T mayxdouio xévtpa dedouévwy Yo audndel xatd
TEVAVTO PORES, xadwe 0 aptiudg Ty dladéouwy encéepyactoy Ya augniel povo xatd 6éxa
QOPEC. LTNV TEAYUATIXOTNTA, 1) XATAVIAWCT NAEXTEIXAC EVEQYELNS UOVO TWV XEVTPKY BEGO0-
uévewyv e Auepiic avopéveton vor augniel and 61 dioexatoppdeta xhofoatwees to 2006 xon
91 doexatoupdpla xuhoPatwees to 2013 oe 140 dwoexatopudpa xihoPutwpees to 2020. Efvon
TEOYAVES OTL 1) amalTnon Yo auEavouevr ambdoor civtopa Yo EETepdoel TNV avaTTLET GTOUC
otrd€aipoug mépoug. OToTE 1 ATOXAELG TIXY ooy Y| TOpwWY Bev Yo AOoeL Tov Yplpo tne Broun-
yaviog oto xovtvod péddov. H npoceyyiotint| Aettovpyla 6o UAXO, xupiwe aoyoleiton ye Tnv
OYEBLUOT) TPOCEY YIC TIXWY VELIUNTIXGY LOVADWY, OTWS Elvat oL PO TES X0t OL TOAATAACLAL-
0Tég, o dlapopeTnd eninedo apalpeons Omwe etvon To TeavlioTOR, TO XUXAWUITIXG, TO eNine-
00 TUAGVY xou NS eqappoync. Mepwol alloonueinTol mpoceyyloTixol alpoloTé TepIEyouv
unotetixole adpootécd2], xataxepuatiopévous adpototéc[43] xou mpooeyyioTivole TATPELS
awdpototéc. Enlong, otov Toua TV Tpocey Yo TGV TOAATAACIAC TGV, oL ontofol efval To To
anoutnTixd og Véua TépwvY oToLyElo Tou A0, Exel yiver onuavtixd épeuva [23 7, B3] 39 20].

O Ipooeyylotxol Troloyioyol xou 1 ano¥ixeEUCT) TAEOVEXTOUY GTNY TUPOUGLN AVEXTIXWV
OTOL CPANIATA TEQLOY WY XWDOLXA O EQPUPUOYES XL TEOPIAVELS TEQLOPIOHOUS TWV YENOTWY Vi
Olayetplotoly €€unvar TNV LhoToinoy, TNy anolxeuon xa Ty oxpelfBeio Tou anoteréouatog
Yot TAEOVEXTAUATA TNV AmdBOCT 1) TNV EVEQYELN. LNV TEAYUATIXOTNT O TEOCEYYLOTIXOC
UTONOYLOUOC EXPETAAAEVETOL TO XEVO PETAED Tou emNEdOL axpifelag mou amoutelton amd TNV
EQUPUOYT 1) TOV YPYOTN XU AUTOU TOU TOREYETUL UTO TO UTOAOYIGTIXO GUGTIUA YOl VO XAIVEL

TIC XATIAANAES BeATIoTOTOOELS.

ITpooeyyiotind Aptduntind Kuxiopata
ITpooceyyiotixol Adpolotég

Y& mpooeYYIoTES UAoToincels, ot adpolotéc moAAwY bit yweilovton o 500 BlopopeTind
péen : To oxpUBEC TAVK PEPOC TWV TO OMUAVTIXGY bit ot TO TEOCEYYIGTIXG XdTw YEPOC TwV
Ayotepo onuovTixwy bit. T xdde younhé bit |, €vag mpooeyyioTindg adpoloThg Tou evog
bit mpaypotonolel yio Tponomoinuévy), enouéveg avoxelBn dladacia e mpdoleonc. Auto

cLVHlwe emTUYYdVETL PE TNV amAoTolinon evog TApous adpoloTr o€ XUXAWUATIXG ETNEDO,

19

avtiotorya pe wa Sadixaoior 1 omolor ahhdlel xdmoleg elodboug otov Tivoxa akndeiog evog

TAYpous alpoloT G AELToLEYIXO ETUTESO.

ITpooeyyiotixol IToANanAaciacTég

Ye avtideon pe Tov oyedLoUd TEOCEYYIOTIXWY EOLGTOY, 1) CYEDINOT) TROCEY VIO TIXWY
TOMNATAAGLAG TWY OeV €xel epeuvniel oo €noaxpo. Ilpoceyyiotixol ToAaTAACLOGTES OL OTTO-
lot yenotpomololy Toug uTo¥eTinols adpOoloTES Yiol VoL UTOAOYIGOUY TO dYPOLoUA TWV HEPLXWY
ywvopévwv éyouv oyeduotel ota [36],[13]. ITlopdha autd, 1 dueon epapuoy TwY TPOCEYYIOTI-
%WV adpOolo TV OF EVay TOAMIATAACLIC T (0WS elvol Ur) amodoTix 0G0V AQopd TNV oVTUAAAY N
oxpifBetag yior eowovounon oe evépyela xou em@dveln. ‘Eva onuavtixd ototyelo otny oye-
dlaon evoe mpooeYYIoTIX00 TOAAATAACIAGTY, €lvon 1 pelwor Tou xploou povoratiod oTnv
dipolon Twv Yep@Y Yvouévny. O tohlamiaclacudg cuvidwe uhotolelton amd €vay GUVOESE-
wévo mivaxa adpolotedv. Xto [31] xou [16] pepind Avybdtepa onuovtixd bits ota uepxd yvéueva
TopaheimovTon (YENoWOTOLOVTIS UNYAVIoUOUS oVTIo TEHILONS TOU GQAAuaTog) otdTE XdmoLot
adpolotéc umopolv va agotpedoly and Tov Tivaxo odNYWVIAC OE YENYOoROTERT Aettoupyia.
Yo [18], évac peydhogc TOAATAAGLAG THS XUTOOXEVGLETOL amd 2 X 2 AmAOTONUEVOUS TOANO-
TAACLUG TEG YLOL VO HELWOEL TNV aeldUnTixy| ot UTOAOYLo TixY) ToAuThoxotnTa. ‘Evag arodoti-
%0¢ GLVBUUCUOE oL YenotuoTnolel Tpo-enelepyacio xou emnpodoleTn avTio THIULOT) GHIAUATOS
npoteivetar oto [27] yior vor petdoer TNy xaduo tépnomn Tou xploou povoratiol. LuvBuaopol
TN TOEAYWYHC UERIXWY YIVOUEVWY XAl TROCEYYICEWY EQUPUOlOVTOL CUVOVACTIX Yol TEQOUL-
Tépw pelwon e xatavdhwong woyvog [14], [41], [28]. O xbploc otdyoc otny onuepwv épeuva
OGOV APOEY TOUC TEOGEYYIC TXOUE TOAATAAGIAC TES efvan Vo petwlel 0 apriudg Twy uepdy
Youévewy yenootolnvtog UBpdée xmdixotooec [22] yio va egapudooupe npooeyyioels

OTNY TORAYWYT) UEPIXDY YIVOUEVWV.

20

Y xediacpmog o VHDL

Ye auté TO XEPAAAO TOEOUCIALETAL 1) OEYLTEXTOVIXY) 1) oTtola LAOTOLEL TO GUVENXTIXG
eninedo evog Boopévou Luvehxtixol Nevpwvixold Awtbou. Tao BrAuata xou ol SLopopeTinéS

TPOCEYYIOELC Ol OTIOlEC OBy NoAY GTO TEAXO GYEDLO avalbovTal ot Bdiog.

Yyxediaocwog Khaoowng JuvéhEng

Ta Luvehixtnd Nevpwvixd Alxtua eivon ex @hoews palxd naparAAnAonolioLuol alyoptd-
pot. I mapdidetypor oy eEETACOUVUE TO TEWTO GUVEAIXTIXO ETUTEGO £VOC BOCUEVOU BXTUOL,
umopoLuE v BoVUe OTL amotehelton amd Tplo xavdAla €loO00U, €va yia xdUe ypwuo xot 32
piktpa. Emouévwg mepiuévouue 32 xovdhio g €080 Tou mpdTou eminédou. O umoloyioude
Tou xde xavahiol e£66ou umopel vo Yewpnldel we eviehwe avedptntn dladxacta and To
umohoina. ‘Eva oyédlo to onolo vhomolel To0 cuvehxTxd eminedo ogelhel Vo eXUETAAAEUTEL
TNV BLYATOTNTA UTOAOYLOROL xdde xavahiol mopdAinia. Eminpdoieta, undpyet n dSuvatotnTa
dloyétevong uépwyv Tou ayediou, dnAadY| vor utohoyilovtar e Toug Blardéououg TOROUS T
eMOUEVA ETUTESA Ywpelc TNV TATIEN OAOXAAPWOT| TWV TEONYOUUEVWY. ATO TNV 60T YoUNAOU
eMTEBOLU AUTNG TNG OIMAWUATIXAC, TO OYEdlo unopel va Behtiotonomnldel €161 (HOTE VoL EMTEL-
YOl uéylotn moparAniia, Sloy€TeucT) UTOAOYIOUOY PETUE) BLOPORETIXWY ETITESWY TOU BIXTOOU
xat BEATIOTOTOACEG 0T AOYLXY) WOTE Vo pewwdoly ta xplowda povordtior xou vor emteuydel
HEYAAUTERT CUYVOTNTO POAOYLOU.

Waiting for enough

input Pixels
Image Width x Image Height Cycles

LOAD ; One Output / Clock Cycle Convolution Layer 1

Waiting for enough
input,Pixels

LOAD i one output / Clock Cycle convolution Layer 2

Waiting for Previous . Inage Width x Inage Height Cycles N
Layer Valid Output - -
= Waiting for enough L]

input Pixels

LOAD i one Output / Clock Cycle Convolution Layer N

Waiting fo; Previous ' Image Width x Image Height Cycles
Layer Valid Output ol ge Height Cy Time

ExAra 5: Awyéteuon dedouévwy PeTall BlapopETIXOY EMTEDKY Tou dixtlou. Egdcov
Ta Bedopéva €youv poptwiel xou Tor TEMTH €yxupa dedouéva Eyouv mopaydel, uropoly va

7 7 ’
Tpowdndoly oe endueva eninedo.

O xbprog oxonde ebvor 1 Thpne aZlonoinon woc ouoxeufic (FPGA), mpoxewévou vo npory-
patonotndolv ot unoloyiopol. To youniol emnédou oyédo otnv VHDL eivon mAripwe mpo-
CUpUOCLUO Xat UTopel Vo UTOCTNEIEEL OTOLOBNTOTE GUVEMXTIXG VEUROVIXG BIXTUO UE TIC Xo-

TdAANAeg Tpomontotoelc. O TEAXOC xVNTAROS TOU XATAGKEVAG TNXE UTopel Vo Yenouwsonowndel

21

(G ETUTUYLVTAS YL OTOLOVONTOTE TUTO OixTOOU PE GERAOUS GTOUS BLECUIOUS TOPOUS TNG

EXUOTOTE CUOXEVTC.

ArnapaitnTa Mtouyeia

O oyedloude TNg CUVENXTIXAC HOVADIS amatTel GTOLyYElN T OOl LAOTIOLOVY TIC TR AT

Aertoupyleg:

e Amolfxeuon twv eloepyduEVLY oTtotyelwy etloddou (Pixel) to onolo anoxtdvton oetplaxd
HE XUTIAANAO TPOTIO GE OLEES FIF(ﬂ (RAMED, TEOXEWEVOU VoL UNOTIOLEITOL YUETATEOT
and oelpLoxd oe mapdAinia (Metatponéag and oelploxd oe topdhhnho-Serial To Parallel

Converter).

e 'Eleyyoc g pofic BeBOUEVODY XL EVEQYOTOINCT, TWV XATIAANAWY CNUATLY EAEYYOU
(OOTE VAL EQUPUOOTEL paddind—ﬂ 6moL oUTO Evor amopaiTNTO (GTo HpLo TNG ELXGVOC) Xou

va oLVEYLOTOLY ot urohoytopol (Movéda Exéyyov).

e AmoGTOM TV TEIAANALY Bedouévev oTn Buveltiny) Movdda xar Sielaywyr| twv
XATIAANAWY TOMNAATAAGIAOUMY XAl TEOCVECEWY PETAEY TNG ELXOVAS ELOODOU KoL TOU

@plATEOUL.

e Evepyonoinomn xatdAiniwy onudtoy vyl to €yxupa dedopéva e€660U TEOXEWEVOU VoL

evnuepw oLy Ta endueva enineda Tou dixTHoU.

Pon Acdopévwyv

Ocwpolye ewbdva elcddou e peyedog Imagewigin X Image geight xou €var IATEO e péye-
Voc Kernelyign X Kernelpeigns. To 6edouéva péouv otn govdda otolyelo mpog otouyelo
yio xde ypouur. Xe xdie x0xho pohoylol malpvouue €va VEo GTolyelo we elcodo xal ano-
Unxevouue To meonyoluevo otn uvAun. Do va emtevydel n yéylotn anddoor, oyedidoTnxe
0 axéhouto clotnua. Xpewdletar va goptwdoly @ | Kernelgeignt/2] X (Imagewiamn) +

[Kernelwian/ 2”%] oTolyelol oTN UVAUTN TEOXEWEVOU Vo EEXLVACOLY Ol UTOAOYLOUOL.

'First In First Out

?Random-Access Memory

30 tpbmoc ue Tov onolo diayetpilovion Ta dxpa TS EXbVaC
41| : Floor,[] : Ceil

22

Kernel Width

Image Height
Image Height

Image Width Image Width

Yy 6: Ta noptoxaii ctoiyela meénel va gopTtew oy oTn UViAUN TEOXEWEVOL Vo EexXi-

VAcouv ot utohoyilouol yio 3x3 glAteo.

[oe Ty xatdAAnin anodrxeuct 1wy 6e00UEVLY ELGOB0U, TO axOAoLYo GUGTNUO UVAUNG
oyedidotnxe. Hapdlaue Kernelpeignt otov opudud ovpéc FIFO pe péyedoc Imagewiqmn X
Sizeof(Pixel) n xdde wa. Autéc or FIFO eivon cuvdedepévee uetall toug ot ahuoido 6mwe

(QOLVETOL OTO ENOUEVO GY UL

1 Image Width N 1 Kernel Width : M N

! 1T |
Input: . K
1 Pixel Sliding Window

L»U:Um FIFO (RAM) M—FA DFF —» DFF —> LR —>» DFF

DFF —» DFF —> mmn —> DFF

.
Kernel Height

L»U:Um FIFO (RAM) Uﬂm—. DFF —» DFF —> LR —> DFF

Output: ‘ I
MxN Pixels

Yo 7: Tevinde petatponéac and oelptand oe mopdiinho. Ta dedopéva elo6d0u divovTon
w¢ etdocog ot mewtn FIFO tng ahuoidac. To napddupo xataywentoy éxel péyedoc N x M

Tou e&opTdton amd To Yéyedog Tou PikTEou €lg6d0L.

Egboov ou pviueg €youv ouvbelel ye autév tov Tpomo, meénel va Adfouue unodi Ty
ECWTEQIXT| TOUG ETUXOWOVIN UEGK TWV ONUATLY EAEYYOL Toug. Kdlde uvhAun mpérel va elvon o
OLoEXY) EMXOVWVIOL UE TNV TEONYOVUEVT XOL TNV ETOUEVT] Yia VoL YIVEL CWOTH AmOUAXELOT) TWV
OEBOUEVWV.

Enione npéner va Angdel unddw 1o xotdhhnho padding avdroya e v eqopuoyn. To

HEEN TNG EXOVOS TIOL HAG ATUGYOAOUY Efval @ TO dve dxpo, TO xTw dxEOo ol Tar TAAVE UépT

23

e emdvag (aptotepd xou 8elid). Me yerion xatdhAnhov onudtony ehéyyou 6nwe avopépdnxe
TEONYOUUEVWS 1) LoVEdo AauBdver umddy auTd Tor Gplor Xou TAEAYEL ToL XATIAANA oToLyEla

7 7 Ié 4 Z 4 7 7 /
OOTE Vo EXTEAE (o 0pUd 1) Sladixacior TNS CUVEAMENS OTIWC QPAVETOL GTO EMOUEVO Ty UL

—EEET
R

EMPTY —

13

Kernel Height

Kernel Width : 3

Fifo Depth : 80

| B S

SR e

Kernel Width : 3

13

Kernel Height

Yo 8: IHopdderyua Zero Padding yio tnv medTn ypouuh g eixovag.

YuveAuxtixry Movdda

Y auth TV povdda Aapfdvouy ywea ol utohoylouol. To ¢lhtpo xou 1 ewdvo divovton
oav eicodol oe authiv. Opilouvue Kernelwiqn = M, Kernelgeight = N. Xe autiv v
wovddo M x N molloamhaoloopol exteholvton mopdAAnha yioo xdde otolyelo e€6dou. Xtn
GLVEYEL QUTE TaL Yivoueva BivovTan we elcodol oe évay M X N eio6dwv Aévtpo-Adpoloty| yia

VoL UTOAOYIGTEL TO TEAMXO GToLyEo.

Serial Input

l

ROM
e Kernel Stored

l l

MULTIPLIER

v

TREE ADD

v

FORMAT OQUTPUT
Conv_Unit
Processing Unit

Output Pixel

Syxnue 9: Aour Khaoowrc Movddag Enelepyaciog

24

H povddo Enelepyactag anotelelton amd pio uviun RAM xotaoxevaouévn 6mwg e&nyrin-
XE OTN TEONYOUVUEVT EVOTNTA, TO PiATEO TO omolo elvon amoYnNxeLPEVO GE UV ROMEI XL TNV
CUVEAXTIXY| LoVada oTny omola Yivovtal ol unoloyiopol. Me yprion tng povddag enelepyastag,
UTOPOUUE VO XATUACHEVACOUUE OAOXATIO0 TO GUVEMXTIXO ETUNEDO EVOC GUVEAXTIXOU VEQMVIXOU
OuxtOou. Apxel var ToparySryOuUE TNV CUYXEXPIIEVY LOVADN XATIAANAES POREC Ol VOL TNV GUV-
dudcoupe Ue ta emmAéov aTotyela Tou emnédou. Ia mopdderypo yioe M xovdha elod6dou xouw N
xavahior e£6600, ypetdleton auTh 1) povdda va tapoay Vel M X N qopéc. Ye xdie xavdl e£660u
TEENEL Vo UTtdpYEL €vag adpoloTrg-06vTpo Twv M elo60wy xou 0Ty cuVEyEla Vo Tpoo TiveTan
70 bias tou xavaiiol e£680ou. To tehnd amotéheoua umopet vo GLATEURLO TEL amd omoLUdHTOTE
ouvdptnon evepyornoinone (t.x. ReLu). Ta anotedéopata tou xdde xavahiol e£6dou eivor
OLUYYEOVIOUEVA Xl OE XdE xOXAO pOAOYIOU TadyETOL %ot €V ATOTEAEGUN €£O00U Yol xdUE

HOVIAL.

Kernel{1,1)

1 Layer i

Channel 1 —®Processing Unit

Kernel(1,2)
h 4

=
Channel 2 ————®Processing Unit4}€~» Relu —»

r
Ch.1 BIAS

Kernel(1,M)

Channel I ———®Processing Unit

#N Output
L] L]

: = ~ Channels

Parallely
Kernel(N,1)

Channel 1 ———®Processing Unit

Kernel(N,2)

Channel 2 —®Processing Unit »

+>=

a
\

r@ > Relu —
p—y

Ch.N BIAS

Kernel{N,M)

Channel M ———®Processing Unit

Yo 10: Kotaoxeur] evog cuvehxtixol emmédou pe yerion tne Movddoe Enelepyaciag.

'Read Only Memory

25

YIxedlaonog ue yerion Winograd

Egboov ol népol twv FPGA eivou meplopioyévol, mpoxOTTeL 1 avdyxn pe oautols Toug
TOPOUC VoL TETOYOLUE OGO TO duVaTOV xoAUTERN ambdoor. H ocuvéhin uye tnv yeron tou
Lefyopou Metaoynuatiopot ®ovpiép (FFT) elvon wor yeryopn npocéyyion ahhd ameudive-
Tan xwpleg oe peydha @ihteo. To tedeutoala UTEECUY POV GUVEAIXTIXG VELPWVIXY BixTUN
XeNowomoloLy wixpd, 3x3 1 5x5 @iltea yia TNV e€aywyr yopaxtneloTixady. O ehdyiotog
oalyoprdpoc giktpou tou Winograd [19] yi tov unohoyioud m eZ6dwv pe éva FIR giltpo

r—onuéuwy to onofo amoxaheiton F'(m, 1), amowtel
p(F(m,) =m+7—1

noMomhactacpole. Erlong, ou eNdyiotor wog Sidotaone F(m,r) xou F(n,s) ynopodv va
ELPWAELUTOLY Yo Vo oy Nuaticouy Blodidotatoug alyopiduoug tou utoloyilouv m xn e€ddoug

ue éva 1 X s @iATpo, To onolo amoxaieiton F(m x n,r X s).
W(Fm x n,1 5)) = p(Fm, 1)(F(n,5) = (m+ 7 — D)(n+s— 1)

Me dhha Moy, yia var utohoyiooupe to F(m,) meénel va TpooneAdoouue €vor SOt Ye
m—+r—1 tpéc dedouévmy, xaL yio vor UToAoYIoouUE To F'(mXn, X s) TEETEL Vo TpOOTEAICOUUE
wo otoifot pe (m+1r —1) X (n+ s — 1) tée dedouévwy. Etot, o ehdylotog olydpripog yia

o pikTea, yeewdleTton évay Tolamhactlaoud yio xdde elcodo.

YAonoinon Winograd yia @iltpo peyédoug 3 x 3

O »haooixde olyoprduyoc vy to F(2,3), yenowonotel 2x3 = 6 nolamlootoouols. O

Winograd égtiale Tov mopoxdte eAGYLOTO ahyOpriyo :

doy dy d2] 90 my + ma + ms

4 d ds| | T
g2

F(2,3) = [

ma —Mm3 — My

'‘Orou

(90 + 92) + 91
) 2
+ —
my = (d1 — d3)ga m3 = (d2 — dl)W

O alyopripog yenowonolel anid 4 TOMATAAGIACUOUE Xl ETOUEVKS Eival EAAYLOTOC GUUPLVAL

my = (do — d2)go mo = (di +da

ue tnv e&lowon

w(F(2,3)) =243 —1 = 4. Enionc ypnowonotel 4 npocdéoeic mov €youy oyéon Ue ta
dedopéva d, 3 mpooléoelc xar 2 molamiaclacpols ye otodepd eunhéxoviac to @iltpo (to
ddpolopa go + g2 otV mapévieon opxel vo unohoylotel plo @opd), xou 4 mpoodéoels yio va
UELOOEL ToL YIVOUEVO Tou Tehol amotedéopatog. Ou akydprduol yio Yeryopo (LATedploud

UTOPOUV VoL YROPOLY GE LORGT| TVAXWY OTWE QPUUVETOL TOUEUXATE

Y = AT[(Gg) © (B"d)]

26

‘Onou ® unodnhdver otolyelo mpog ototyelo mohhamhaoctoaoud mvdxwv. T'a to F(2,3), ol

mivaec etvou

1 0o -1 1 0 0

0 1 1 0 1 1 1 1 1 1 0
o - L O U |

0o -1 1 i -3 1 o 1 -1 -1

0 1 0o -1 0 0 1

9= [90 g1 92}T d= [do di do dgr

O eldyotoc povodidotatog ahydprduoc F(m, r) eppowhedetal e TOV EQUTO TOU YLOL VAL OO~

xTHooLPE evay Slodldotato eNdytoto akydprduo, F(m x m,r x r)
Y = AT [[GgGT] © [BTdB]] A

‘Onee anodewvieton oto [19]

‘Onou thpa 0 g elvon éva r X 7 @ihtpo xou to d elvon o (m + 1 — 1) X (m +r — 1) otolfa
EOVAC.

F(2 x 2,3 x 3) yenowornotel 4 x 4 = 16 nohhamhactoouolc yla vo utohoyioer 4 amote-
Aopata €600V, EVE 0 *ANAGOIXOC kY ORLILOC GUVENENC TTOU TUPOUGLAG TNXE TEOTYOUUEVHC
4 x 3 x 3 = 36. Ondte undpyet wia peiworn g aErunNTIXAC TOAUTAOXOTNTAS TNG TAENS TOu
: % = 2.25. Twpa Yo avahOGOULUE TO EMUTAEOV XOGTOG TOL amUTELTL GE GUYXQLOT UE TOV
xhaooixd ahyodprtuo tne ouvéhine. Ilpoxewévou va yetaoynuoticovue ta dedoyéva elo6o0L
otnv 6o th wopwh BT dB yeeidlovion 32 amhéc npdieic (rpociéoeic-ampaupéoeic). O uetaoyn-
HaTlopog Tou giATeou yeewdleton 28 mpdéel; floating point ol onoleg unopodv va avaydolv ce
amhég mpdEelg yenotponolwvtag fixed point dedopéva. O petaoynuoatiouds otny €€060 omontel
enione 24 anhéc mpdlelc.

[Tpoxewévou va oyedidooupe v viornoinon tou Winograd yio @iltpo Slouctdoewy 3 X 3

UEAVAUE TIC AXONOUVVEC TEOTOTIOLACELC GTOV AEYIXO OYEOLAOUO TNC XAAGOIXNC CUVENENC.
i P n PX X MO ™ " i

o Apywxd, avtl yia 3 x 3 oto{feg ye Briya 1 mou yenowonolninxay oto xhacoixd oyédlo,
Tweo TEENEL Vo doukédoupe pe 4 X 4 oToifec pe Priva 2. Nto xhacoxd oyEdo Elyoue
P = (Imagewian) x (Imagepeight) oToiBeg yia xdde xovdh eio6dou. Tdpa xdie
oToifa €yel 6V0 oTolyela Tor OTOlo EMNAAOTTOUY T YELTOVIX TOUG X0 XATUATYOUUE OE
: Pl = (Imagewian/2) % (Imagepeight/2) otolBec yio xdde xaviit elo6dou.

Avtl yio 3 ovpéc FIFO mou yenowonotidnxay oTo mponyoluevo oyEdlo Thpo TEENEL Vo
YENOWOTOLACOUUE 4 €TOL OOTE VoL YWEECOUV To AmapaiTnTo GEBOUEVAL Yol VoL dpyloouY
oL utohoylouol. Xto mapdiupo ohicUnong meénel va Teootedoly ETTAEOY XATAYWENTES

Yioe var €youde avd mdoo oTiypn Ty 4 X 4 otoifa duiéouun.

o H ohicnomn 6edopévewy %o 1 LETATEOTY amd GELRLIXO GE TURIAANAO XS XAl Ol TEQLOPL-
ouol uhomoloLVTAL Ue axEY3KE ToV (Blo TEOTO OTWS OTNY XAACGIXT| UAoTolnoT, ceBoueva

TIc WutepoTnTeES Tou Winograd .

27

e Movdda Metaoynuatiopod Ewcddou @ Aéyetan wg eicodo uo 4 X 4 otoiffa, extehel
TIC XUTAAANAES apoUEETElS XL Tpoo¥EaelC xou Bivel w¢ €€080 TNV XUTIAANANG Lop®TNC

HETOY NUATIOPEVT ElCODO.

e Movdda Metaoynuatiopot ®ikteou 1 Aéyetan wg €lcodo to 3 X 3 ¢lhteo xau Oivel w¢
€€000 10 4 X 4 yeTaoynUATIoNEVO GIATEO.

o Movdda Metaoynuotiopot EE660u : Metaoynuatilet tny €€060 amd 4 X 4 otny Tehixn
2 x 2 é€odo0.

Serial Input

|

ROM
i Kernel 5tored
¥ ¥
Transform Input Transform Kernel
MULTIPLIER
TREE ADD

v

FORMAT OUTPUT
Conv_Unit
Winograd Processing Unit
Transform Output

h 4

Line i

Line i+1

Eynue 11: Aoury Movddoc Enelepyactiac Winograd

Mo va ouyxptvoupe tor mAcovextiuota tou Winograd pe tnv xAacouxy| vhonoinorn Yo
TEETEL VoL AdBouue LTOPY Tig EMITAEOY TEAEELC TOU ATALTOVVTOL ETOL WG TE VOL UETACY NUATIGOUUE
Ta 0edopéva. ‘Onwe avagépdnxe tponyoupéveg otny nepintworn tou Winograd ol otoifeg
€10000U TEETEL Vo £youv Priua 2 1600 6To TAdTOC 660 xou 6To Voc. Egdcov to dedouéva
hofBdvovton Gelploxd, TEOXEWEVOL Vo LAoToNUel 0 UETATEOTENS and GELLIXO O TUPdAANAO
UE Briuo 2, TEETEL Vo TEQLUEVOUUE YLl EVOY XOXAO POROYLOU €TCL (WGTE VAL THQOUUE TNV ETOUEVT|
€yxupn otolfa. Eivar mpogavég oti oe autols Toug xUxhoug pohoylol, exTéc and To va yiveTon
1 emuuNTH OAMoUNoT BEBOUEVLVY OTT UVAUT, OEV UTOREL Vo YIVEL BLOYETEUGT, XAmolaS GAANG
xerowung Aertovpyiog mou va topdel €£060 xadog dev uTdpyouv Eyxupa dedouéva Blordéatua

oI VAR

28

Y

13 14 15 16 17 18 14 15 16 17

19 20 ral 22 23 24 20 il 22 23

Input Image

2 22 23 24

Tile 2

Yynpo 12: Avdueoa oe 500 €yxupeg oTolBeg UTdpyEL Wia U1 €YXLET TNV OTtolol BEV UTOPOUKE

Vol 0&LOTIOLNCOVYE

‘Onwg gaiveton oto Xyfua 13, 660V apopd 10 TAdTOS aviueo o€ xdUe £YXUPO ATOTEAEGUA
UTAPYEL €Vl AXLEO XL OGOV aPopd To Uhog TEENEL var Teptuévoupe Yoo Imagew iqen, xOXAOUC
poloytol yia var goptwiel 1 enduevn €yxupn oToifa.

Image Width CC Image Width CC Image Width CC

LOAD DATA

valid Output

': :3 Dead Clock Cycles

YyxNue 13: Tro-yenowonolnon Tne Lovadag Yo éva xavdht eio6dou. Ta xdxxava TeTpdymva

UTOONAGOVOUY dXUPES GTOIBES EVE Tar UTAE TIG EYXUPES.

‘Onwg gaivetar n povédo uto-yenoylorotetton xotd mopdyovta 1/4. T va xdvouue TAren
oZlomolnomn aUTAC TNS HOVABUC Xl Vo TETUYOUUE TNV UEYIOTN anddoor, 4 xovila e.c6o0u
npénel va eneéepydlovion Sladoytxd. 1touc xOUxAouc pohoytoU oL onolol Bev Tapdyouy EYxupo
AMOTENEGUA, UE TO XUTIAANAO xOXAOUA EAEYYOL UTOROUUE VoL TTOREEOUUE EYXUPO ATOTEAEGHO-
ToL Yo GAAGL)Vt xadde YivovTon ol amapadTnTEC OMCUNOES VLol TO TEONYOUUEVO XAUVAAL

clo6d0ou.

LoAD TIME A B A L]

§ 8 ¢ ¢ . ¢ o . ¢ . o A ¢ # o ¢ 4 ¢ g . < o

Image Width CC Image Width CC Image Width CC Image Width €C

(Image Height + 1) x (Image Width) CC

Yynuo 14: ITiienc adlonolnon tng Hovadas Yo TECCERA SLUPORETIXG XAVIALYL ELGOBOU.

Me v (Bt hoyun, mpocapudcaue tny vhomoinon Winograd yia va Aettoupyel yio onoto-

0NoTE oELdUd XUVIALDY ELGOBOL X0l VoL TAUPAYEL GWO T TO avTioTolyo xavdhl €€600u. ‘Omnwg

29

Table 1: Y0yxpion Movédwy Enelepyooioc (w x w Image, 3x3 Kernel)

Direct Winograd Full Winograd
Input Channels 1 1 4
RAM FIFOs (S2P) 3 4 16
DFFs (S2P) 9 16 64
ROMs 1 1 4
Multipliers 9 16 16
Adders 8 56 56
Latency w42 CCs 2w+3 CCs 2w+3 CCs
Throughput 1pixel/CC 1pixel/CC 4pixels/CC

patvetar 0to Lyfua 15, yeelaleton va yivel tpdodeor towv xavaioy e€6dou yia xdde xUxho

poloyto) xaL oTNy cLVEYEL anoUfxeuor avtoy ot wa oupd FIFO ®ote va ntpoctedolv xou

ToL UTOAOLTIOL XOVEALOL ToL OTtolar ToEdyovTal UETE and Imagewgin XOxAOUS pOAOYLOU.

15t output Tile W/2 Output Tile
of Input Channel M1 OFf Input Channel M1

15t gutput Tile of M4

LOAD M1 M2

LB
W cC W cc
LOAD M5 M6 EEE | M5 Mé M7 ME ®EEHN M7 ME

15t Qutput Tile W/2 Output Tile
of Input Channel M6 OFf Input Channel M6

Store W/2 Tiles Sum of 4 Channels M1,M2,M5,M6

ADD REMAINING
CHANNELS
M3, M7
IN THE SAME WAY

15t 2x2(20d 22
TILE | TILE

" rne

<=

W/2 2x2

<7

Wait W CC FIFO QUEUE

-
Add With \
FIFO data — '~

Vv

ADD REMAINING
CHANNELS
M4, M8
WITH M3,M7 Transform

Sum of Remaining
4 Channels

Store

BE

srelmm w e s

M6 EEE | M5 Mé M7 M&

L] M7 ME

NEXT CC
DELAY 1 CC
T
Sum of Channels l
M1,M5,M2,M6
Transform

Valid 2x2 Pixels

>

of Final Output Map

EyApe 15: Thomnolnon yio Evar xavahl €680V UE OYTE XAVAALL ELGOOOU

30

Table 2: Kiaoown (Direct) xar Winograd vionoinon twv ouvehxtixdv emtnédwv(W x W
Image, M channels, 3x3 Kernel, N filters)

Direct Full Winograd
Units N-M N-MJ/4
- RAM FIFOs (S2P) N -3M N -4M
- DFFs (S2P) N -9M N -4M
- ROMs N-M N-M
- Multipliers N -9M N -4M
- Adders N -8M N.-8M — N -15M*
RAMs 0 N FIFO RAM
Adders N-(M-1) N - (4M + 32)
ReLu N 4N
Latency w+2 CCs 2w+3 CCs
Throughput Npixels/CC Npixels/CC
LN - 15M Adpolotéc omoutolhvion ylo VoL JETAOY NUATIOTEL TO
pthTpo.
Image Width :w
Image Height :H
FILL FIFO EMPTY FIFO (H+1)x(W+1) cC FILL FIFO EMPTY FIFO
LOAD DATA | grone"ri WEMORY | 2X2 TILES |STORE IN WEWoR| """ |svoRe Iu MeMomy| 20 Trles ‘
e we Non-Valid Output e u | ¢
\ 2
Valid 2x2 Tile \) / % 4 :/
K V4
< | /] //:/
Row 1 ///. . //j,
Row 2 % /;’/:/
%
] % |] //
I I -
Row H-1 — I
Row H e
Column 1 Output Channel Column W

ExAra 16: Troloyopog ydetn e€66ou ue yenon tou ahyoplduouv Winograd

Y10 Yyfuo 17, napovoidleton 1 vhonoinon Winograd yioa M xavdhia eio680ou.

31

—;, WINOGRAD A
— UNIT u .
n Sum of M/4 Register
e E= - Channels pelay for 1 cC
g5 N
. - (M/4-1)*16
SE ADDERS * N
- > TO ADD - 5
s ! L
2.5 —2 WINOGRAD OUTPUT —
5= P UNIT > EACH CC
=3
= Next M/4 Sum o~
s
—_3 o |‘v/</ Previous M/4 Sum
3 WINOGRAD 2| & <
—> UNIT |
= g, 16 ADDERS
|‘Bms‘ | : —
| 2x2 | 4x4 Output Tiles sum of M2
I — L, Channels
4 ADDERS |] |4 ADDERS [—) :
N . CONTROL|

UNIT | |TRANSFORM| [24 Operations]

Total Additions = 4*M+32
N Channels in Parallel
Total Additions = N*[4*M+32]

~ FIFO Queue | /
L <

Final Output
Channel Tile

Store Sum of M/2 first
processed channels

Ao 17: Awoyelpion yio M xovdha e.o660u

Xeovodpouohdynon

Yy xhaooixh vhomoino, 6meg avopépdnxe tponyouuévane yeedlovton | Kernel geight /2] X
(Imagewian) + [Kernelwiagn/2] x0xhot pohoylol yia vor YIVEL POpTWON TWY AmapodTnTmY
oedopévey mpwy Topay Yol €yxupeg é€odot. NNy ouvéyelar M x N mollomhaciacyol exte-
hoOvtan mapdhhnha o évay xOxAo pohoytol. Agol mpaypatotomn oy oL TOANATAAGIAGHOL
ta M x N dedopéva mpénel va adpolo oy Yo vou UtoloyioTel To Tehixd oTolyelo e€6d0ou.
Avuty) 1 mpdodeon yiveton e évay adpoloTy| 6EVTPo TG EMAOYNE TOU YPNOTH. LUVETMS Yo

vo MBoude Ty TenTn €yxupen €€obo ypeetdlovTo
Cycles-First-Output = | Kernelgeight/2| x (Imagewiamn) + [Kernelwiamn /2] + 3

Agobtou mapaydel 1 mpdTn €€0doc N mapamdvey Bladacio dloyeteleton TAHEwS. Xe xdie
%x0xho pohoylol mapdyetar éva atotyelo e€68ou. o var yiver mhripng enelepyacio plog exdvag

€10600U ypedlovTa
Cycles-Full-Image = Cycles-First-Output + (Imagewian) % (Imagepeight)

‘Ocov agopd to Max-Pooling umopel vo yivel mopdAhnha ye tnv dtadxacta Tng GUVENENC.
Xpewdletar Imagewidn + 2 xOxhOUG POAOYLOU YLOL VO (POPTWOEL ToL ATAUEOUTATA GTOLYElL Xa
dhhoug 2 x0xhoug pohoylol yia var yivouv ol cuyxploeic. Metd and auvtolc toug xUxhoug

poloytol mopdyeTar Wia €yxupn €€0d0¢ ot xdde enOUEVO xUXAO.

Cycles-Max-Pool = Imagew;qn + 3 + (Imagewiamn) X (Imagemeight)

32

Yuvolixd yio vo tparyportononiel 1 ouvéhEn xou 1 dadiasio Max-Pool ypeeidlovtou :

Cycles-Total = Imagewian + 2 + Imagewian + 2 + (Imagewian) x (Imagepeight)

Perform
Convolution

Add M Outputs
RelLu

Yo 18: Kixdol pohoyol yia M xavdhior eio650u

Inage Width x Image Height Clock Cycles

Channel 1 —> LOAD TIME

Channel 2 —> LOAD TIME

Channel 3 — LOAD TIME

Channel M-2 —> LOAD TIME |

Channel M-1 —> LOAD TIME

Channel ¥ —> LOAD TIME

[Kernel Height/2]*Image Width CC

Channel 1 — LOAD TIME

Channel 2 ——> LOAD TIME

Channel 3 —> LOAD TIME

Channel M-2 —» LOAD TIME

Channel M-1 — LOAD TIME

Channel ¥ ——>» LOAD TIME

[Kernel Height/2]*Image Width CC

=
[LL]
[l [l
amm =
= =
[LL]
amm
nmm
J
[]
[]
[]
=
(L]
= =
amu =
= =
(L]
(L]
J

Max-Pool anouteiton yio 4 xavdiia e£600u.

33

xan 4 xavéio €€66ou. Mia yovdda

+Output Channel 1

+Output Channel 4

l

= 2 x Imagewian + (Imagewiamn) X (Imagepeignt) +4 CCs

Channel 1
Channel 2
() channel 3

Channel 4

(Image Height + 1)*(Image Width) cc

LOAD TIME L

Image Width +2 CC

TInage Width CC

Image Width CC
Max Pool

-

Ilcooeyyloeig

ITpooeyyioTixog YPRedwxoc IToAaniaciactrc Ydnirc Axtivag

O xwdwornotfoeic vPniic axtivae 1] mpoopépouy UelmoT UERIXDOY YIVOUEVWY X0t »C
dueco anotéhecpa N TedGUEST) Toug amouTel UixpoTepa OEVTRA adpOoloTMY 00NYWVTAS OE SOl
XOVOUNGY EVERYELNS, YOPOL Xou Pelwon TN xaduotépnong. Xe avtiieon ol uPniéc xwdixo-
TOWAOELC amonTOOY TOAITAOXA XUXADUATA XWOXOTOIMONG Kol XUXAWOUTA TORXYWY NG UEQIXWY
Ywouévey oo tadpllovtag ta TAsovexTuaTa TG MElwong Tou aprluod TV UEPIXDY YLvo-
wévov. Xto [20] yivetar mopovoiaon evde TéTol0U TOMNNATAACLIOTH XL Ol TROCEYYIOES TToU
001NYo0V GTNV PEIWST TNG TOAUTAOXOTNTOG TOU XUXAGUATOS avaAbovTon o Bddog. e auth
TNV TEYVIXT| O TOAATAACLIGTEOS B xwoixomoleiton Ue ¥pnoT TNG TEOCEYYLO TIXHSC XWOLXOTO-
inone ueydhne anctivac Tapdyovtac tov B o mporypatonoeiton o tolhamhaowaopuée A - B avd
Tou A- B.

Avdhoyo pe TNV TOCEYYIOTIXY TORAUETEO k Yivetal 1) xwdonolinomn Tou B xol eTOUEVKS
xadoplleton 1 mapay YN TV PepoY Yvouévwy. To k umopel vo ndpet Twwée 4, 6, 8 xou 10.
‘Oco yeyohltepn elvor 1 T TOU, TOCO UEWOVETOL O ELIUOC TWV UEQIXMOV YIVOUEVKDY XoL 1)

TEOGEYYLON TOU TOMAATAAGIACUOY YivVETOL UEYORDTERT).

=2,
i

sign ,:) =1
a; a;

PP

(a)

SxAua 19: @ — bit nopoywyn pepxdyv yvopévev Poaotopévn ot 1 (o) axpBéc radiz —
4 xwdixornoinon xou Tic npoceyyotnxés (B) radix — 64, (c)radiz — 256, (d)radiz — 1024

XWOXOTOWCELS. @; @ © — bit Tou A, a; = o;Bsign

Radix Encoding Partial Produxts
Radix-4 0,+A,+2A

Radix-64 0,+4A,+8A,+16A, +£32A
Radix-256 0,+16A,+32A, +64A, +128A
Radix-1024 0,+64A,+128A, +256A,+512A

Table 3: Mepud I'voueva avdhoya e tnv xwodixomoinon

H emloyy Tou cUCOWEELTH TWV UEPUOY YIVOUEVWY UTopel va yivel eheblepa and Tov

xehom™.

34

1 1 1

| SEEEEEEEEEEEEEEEEEEER Il EEEEEEEEEEEEEEEEEEEEER Il NSNS EEEEEEEEEEEEENENEN
lssssases LA 2 R 1R} a
lesssssnsns sese O

lesesssnssseseenee O IsseseReRRRRRERRRS O lsssessssssssnnnes O
lssscsssstssasttese (O lesessssssssssenes O
IlssseeseeesRRRRRRES O Q

o
(a) (b) (c)

ExApna 20: To 6évtpo pepddv ywouévey Boaciopévo otnv uPpeidiny xwdxonoinor tou
axp\Béc radiz — 4 xou tou npooeyylotol (a) radiz — 64, (b)radiz — 256 xou (¢)radiz —1024
xwdwonomon. M : Mepwd yivoueva and tny npoceyyloTixt| xwdixonoinon uhning axtivas, @:
Mepuxd ywvoueva and tnyv axel3r| radiz — 4 xwdxonoinor), M xou @ : avieotpoupéva MSBs

TV HEPXADY YWVoREVLY, [xou O : mapdyovTes Tpocruou

Eepedvnon TOnwyv Acdopévwy

Y10 dnpraxd vhixo, ou oprduol amodnxebovton oe Suadixéc Aé€eic. Miar Suadixy) AEn
elvon o xardoplopévou urxoug axohouldior amd bits. O tpdmog ye tov omolo To Yépn TOL
LVAXOU 1) oL cUVOPTACELC Tou Aoyiopol avTthaufdvovtoar autée Tig axohovldieg amd 0 xau
1 xodopiletan amd Tov TONO Bedopévwy. Ou duadixol apriuol, avanaplotavtar eite wg fixed
point eite w¢ floating point tOnol Sedopévwv. Tao dnuo@ly epyoleion VELPWVIXWDY BIXTLGY,
onwe etvar to Tensorflow, Keras xau Caffe Aeitovpyolv pe 32-bit Floating Point dedoyéva.
Egdboov 10 €lpog Uviung, N ETQAVELL XAl 1) XATAVIAWGY EVERYELAS €lvan o x0plol otdyoL
¢ Beltiotomoinong tou oyedlou yog, epeuvioaue o Bddog Bidpopoug TUTOUS BEBOUEVELV
X0l TOL TAEOVEXTAUATO- UELOVEXTAUATO TOUC OF OLAPORES MTUYES OTwe elvon 1 oxplBelar xou 1)
am6doom. O yevinic yerong enelepyactég dev ebvar BeATioTomoinuévol Yo Uicol 1 UixpoTEROL
urxoug floating point npdeic. Eg@bdoov mohhéc epopuoyéc oe LAXO ypenoitonolody TOToug
OEBOUEVLV UE UHXOS UiXEOTERO TwV 16-bit xadde oL XdpTES YRaUPXDY UToEOLY VoL EXTEAEGOLY
TETOIEC TEAEEC TOAD amOdOTIXd, TOAAG €pYOAElol Yot TNV EXTOUOELCT] VEUROVIX®Y OIXTOWY
urooTNEIlouy TALoV TETOLOUE TUTOUC BEBOUEVKY. L TNV VAOTOINGT Uog, BEV UTERYEL vy Xn Vo
yiver emavexmaldeucT) Tou HixTOOL YL BlaPOEETIX0VE TUTOUG BEBOUEVKV, XOME OL UETATEOTES

yivovTal 0To TP®TO OTABLO TOU BIXTLOL.

Avanoapdoctacy Fixed Point

Ytov fixed point tOno dedopévwv, xdde N-bit Floating Point urxouc oxohoudia and
bits yapoxtneiletan and to urxog AéEng, tnv Yéon tou duadixol onueiou xar To av ctvan
TEOCTUACUEVOS 1| un Tpoonuacuévos. H Véon tou duadixod onueiou elvon o mapdyovtag mou

x000pIlEL TNV XAUEXWON %ol TNV EQUAVEUCT) TWV THIWOV.

35

by-1 [by-z |by.3 | mmm | bij,y | bi |bj.y | mmm | by | by | bp

MSB LSB

Binary Point

ExAua 21: Avomopdotoon N-bit Fixed Point aprduod

Yo oyfipa 21 uo Suadin avanapdotaon evéc yevixol Fixed Point oprduod (npoorua-

ouévou 1| un) Topouctdletal. e qUTAY TNV aVomopdo TaoT :
e N eivou to urxog hé€ne o bits.
e b; ivon 0 1% Buadid Pmplo.

® by_1 xou by elvan oL Véoeic Tou O oNuAVTIXOD X AYOTEPOL onuavTxol (nplou o-

vtioTotyo.

To Suadind onuelo gaiveton 7 4 1 Yéoeic aplotepd and t0 Aydtepo onuavtid Ynelo ondte
0 apriuog Aéyeton 6T €yel @ + 1 xhaopatxd bits X xhdopa pe urxog i + 1. O apriuol Fixed

Point umopotv va xwdwonomdoldyv clupwve ue to axdhouvdo oyfud :

X = 9~ FractionalLength (Stored Integer)

1 N-2
X = (5) x [— Ny g+ Y 2%4

n=0

‘Onou X elvan 1 mporypotixt| amoUnxeLuévn Tiun Tou oxépatou xot b To xAaouatind urxoq.

H avarapdotaon Fixed Point eivar moAd xovtd otnv avanapdotacy oxépotwy apldumy.
YNV mparyaTixoTnTa oL oxépatol Umopoly va Yewmenioly we uia e xotnyopio’ Fixed
Point ye to xhaopatixd yépog otny Yéon 0. Olec oL apriuntinéc npdlelc 0Tov UTOAOYLIOTY
ToL eQapEUOloVTAL Yia oXEEALOUS 0EIIUOUC UTOPOLY VoL EQPUPUOCTOUY Xal Yo aptiuols mou

avomaplotavton w¢ Fixed Point.

Avanopdotacy Floating Point

O olyypovee egapuoyéc omwe etvan xan T Luvehixtnd Nevpwvind Alxtuo arutody o-
xp(Beta. Kaddde n é€odog tou xde emmédou npowieiton we elcodog oe enduevo eninedo, dtov
TEOXVUTTEL €V GQdAU oty axpifela o xdmolo onueto tTng dwdixactog, elvon mdavéd ot autd
T0 oA Yo YivEL avTIANTTO xou EVOEYOPEVLE VoL YIVEL PEYAAUTERO GE EMOUEVA GTABLL TOU
owtOou. H Floating Point avanopdotacn eivar auty) mou oL TepiccdTEROL GUYYPOVOL UTONO-
YIOTEC yenowonooly 6tay anodnxedouy dexadixole aprduols otn uviun. Mropel vo detel

T600 TOA) PeYdhoug 600 o TOAD pxeolc apriuolc ue alloonueintn axpiBea. Adyw tng

36

eupelag yprong Tou Y Ty anovxeuon aptduny, €xel turtotomnlel and to voTtitovto Hhe-
%xTPONGY WV Mryavixdv (institute of Electrical and Electronic Engineers) oto npétuno IEEE

754. Auté 1o mpoTuTo opilel Toug €1C TUTOUC BedoUEVKY OTay anoUnxebouue Floating Point

aprdpolg ot Ui :

Half Precision : 16-bits of storage

Single Precision : 32-bits of storage

Double Precision : 64-bits of storage

Quadruple Precision : 128-bits of storage

‘Otav mpdxelton Yoo Ty amodrxeuon ot uviun, arodnxebovton Tela xOpla pépn Tou aprduol

: T0 TEOONHO, 0 eXOETNG Xou 1 pavTiooa.

5 EXPONENT MANTISSA

ExAwa 22: Floating Point Avanopdotaon

Y10 npotuno IEEE 754 ou aniic axp(Betag aprduol €xyouv : 1 dmglio yio to npdonuo, 8
dnepla yioe tov exdétn xou 23 dnpla yior Ty poavticoa. Ou apriuol uropoly va xwdixorotniody

olupeva pe TV axdroudrn elowon :
X = (—1)% x 1.M x 2(F=127)

‘Onou X elvon o mporypotinds apriuodc o omolog YEAOLUE VoL AVOTUPACTHCOUUE.

ITpooeyyioelg otoug didpopoug TUroug Acdopévwy

Yty vhonolnon pog, ECTIUOUUE O0TOV TOAATAAGIACUS Tou Yiveton oTny Slodixacion Tng
OUVEMENG PETAE) NG EXOVOC ELGOGOOL xat Tou @ihteou. Avdloyo Pe Tov TUTO GEBOPEVWLY,
0 TmohhamAactaouog Slapépel. LNy mepintwon twv fixed point cpriucdv o ToAamAacLacUOS
elvol TOAMATAACIAGUOS AXEQUUWY oPLIUMY UE TIC XATIAANAES TPOTOTOLACELS OTIKE PAVETOL GTO

Yyfuo 23.

37

N-bits N-bits

MULTIPLY INTEGER FRACTION * INTEGER FRACTION
K -bits T K-bits < (N-M) -bits > ubits
i 2*N-bits
RESULT INTEGE:I FRACTION
< 29N~ (Ke) -bits > (kM) -bits >
. N-bits -
TRUNCATE INTEGER FRACTION
ROUNDING FINAL RESULT

YyAue 23: Fixed Point ITolhamioociaouoc

S 1 EXPONENT 1 MANTISSA 1 * S 2 EXPONENT 2 MANTISSA 2
s
1-bit = 5-bit 10-bit

L]
S_RES gmm S_1 @ 52 BIAS o 2%-1 = 15

L]

MANTISSA RES - MANTISSA 1 * MANTISSA 2
N 20-bit - N 10-bit - - 10-bit
EXPONENT_RES _-{ EXPONENT 1 e BIAS }+{ EXPONENT 2 e BIAS }+ BIAS
NORMALISE INCREASE/DECREASE TRUNCATE MANTISSA ROUND CONSTRUCT
MANTISSA EXPONENT REMAINING BITS MANTISSA RESULT

5_RES FINAL EXP FINAL MANTISSA

«———r———»
1-bit 5-bit 10-bit

Yynuo 24: Floating Point ITohhamioctaouoc

Mrnopolue va epapuécoupe aneuieiog TOV TPOCEYYIOTIXG TOAATAACIAC T TOU TOEOUGL-
dotnxe mponyoupévws. ‘Ocov agopd tov tolhamiactacud Floating Point 6mwe gotvetan oto
Yo 24, etvon por o epimhoxr dSadiacio xadde TEETEL Vo YIVEL aVaVEMGT) XL TWV TELWOY
otolyelwy Tou arodnxeuvuevou aptiuol. I'a auTdY ToV AdY0 UTEEYOUY EWLXESC HOVABES YLl TV
TOAMATAACLACUO AUTOV TOV ApLUUOY 0TOUS YEVIXHC YeNoews enciepyaotéc. Enlong o mohha-
TAACLAG TG OV TAUPOUCLACTNXE elvon ey xd QTiayHEVOS Yia aprduols Ue Pfixog UEYOAUTEQO

Tou 16. ‘Otav avagepdpacte o wonc axpifelog apriuoic n yavticoa €yet uéyedog 10 ¢meplo.

38

Data Set X of N-Floating Point Numbers Data Set X, of N-FP Numbers With Common Exp

X1 51 el my 51 Mp1

X2 52 ez mz 52 Mp2

Bleck Exponent
X3 53 e3 m3 53 Mp3

XN SN eN my SN MpN

YyAuwe 25: Block Floating Point Avonopdotaon

Block Floating Point Aptduntixn

Yy npoomdielor var EEMERACOVUE TNV ALENUEVT TOAUTAOXOTNTOL TTOU TEOXUTTEL AN TOV
rnohaniactacud Floating Point apuducyv, mpotetvetan 1 apriuntiry Block Floating Point
(BFP) n onola eivon pror tpooeyytotxy| uédodoc yia va avorydel o tolaniaotaopdc Floating

Point apuiucyv oe Fixed Point.

‘Eva cbvoro N apriuwy mou avamapiotatar ue v BFP apyttextoviny| anotehelton amd
oUo uépn : N pavtiooa xou évav exdétn tov omolo podlovtan o N oprduol ce autd TO
obvoro. Av uno¥écoupe 6Tl To olvoro X mepiéyel N Floating Point apuduoie, téte unopel
VO EXPEACTEL 0G

€ € €
X = ([131, vy Ly ...,.%'N) = (m1 X 2 1, cey Mg X 2 2, omy X 2 N)
OpiCoupe tov peyohitepo extétn oto X ¢ Tov eXVETH TOU GUVOAOU apLIUODY €.
€, = maxe; € {1,2,...,N}
7

Agot Beedel o péylotog exdétng Tou cuvdrou apriuny, dlol ot apLiuol TEENEL Vol EXPEICTOUV
olupova pe autov. o va to tethyouue autd, N pavtioco Tou aptipol 7, m; TEENEL VoL UTOOTEL
0e€1d ahioOnomn xatd d; dnelo, omou d; = €, — ;.

Emopévwe, n BFP popgr tou cuvérou X exgpdleton we e€ng :

Xy = (xbl, cees This ...,ﬂij) = Mpx X 2% = (mbh ceey Mgy ...,mbN) x 2

‘Onov,
my; = m; >>d;

Etvor 1 tporomonuévn xatd BEP pavtiooo.

39

Pixels 32-bit

l

FP32 to FP1l6

Pixels
16-bit

Pixels
16-bit

Weights 32-bit

l

FP32 to FPl6

Weights
16-bit

Biases 32-bit

l

FP32 to FPl6

Biases
16-bit

EXTERNAL MEMORY DDR3

Weights
16-bit

Biases
16-bit

32-bitl

FP16 to BFP FPl6 to BFP SHIFTER —
Weight Weight
Pixel Pixel Hantissa Exponent T
Mantissa| Exponent 8-bit 5-hit L————————————h
— > ADD
8-bit gk =
=
=
3
Y L
g
MULTIPLY LN] MULTIPLY =
- =]
z = g
3 16-bit l 16-bit l 5 g
Acc "en Acc g
3
20-bit 20-bit e
v
ACCUMULATOR

5-bit l

Convert Back to FP16 and store in memory

16-bit |

YyNue 26: Block Floating Point Yuvéhin

Egoppoy? tng BFP avanapdotacng otnyv ouvéEn

Y10 Xy fua 25 mapouctdletan 1 pot| dedouévev tne BFP cuvéling yia éva xavdh e€660u.
Trodétoupe 6t tor Sedopéva eloddou eivan oe Single Precision Floating Point (32-bit) avo-
TUPAOCTACT), OTWS EXTAUBEVTNXE TO BIXTUO O XATOL TAATPOPUN VEUPWWIXGY. Apyixd yive-
TOL UETATPOTH UtV Twv dedouévwy ot Half Precision Floating Point (16-bit). Apywd,
Beloxoupe tov Yé€yioTo ex¥éTn amd OAa To BEGOUEVA EIGOBOV. XTO TUPAOELYUa Uag Eyoupe 16
EXOVES WG XVl ELGOB0L xou Bploxouue Evay xowod exlétn amd OAeg auTES. MTNV CUVEYELL
v x&e otolyelo yiveton xotdhAnAn ohlodnon Tne Yovtiooo yia Vo avamopio Té TOV owo o
aptdpd. BTNy wovada Tne cLVEMENS Tou AauBavouy Yoeo oL TOAATAACLACHOL, dEXEL VO TOA-
NATAAGIACOVUE TIC HOVTIOOO TV QIATRWY %o TNS EXOVOC Y welc Vo ABouue dueco utdgy Tov

ex¥étn. To ddpooua Twv ex¥eTdy TV xoVOAGY €L0600U XaL TwV GIATEWY Yenouloroteiton

40

Properly Shifted Bias To the common exponent

yLor vor mpocappootel xatdhhnho) téhwon (Bias) xou yio va tpocopuootel o tehind oTddilo
o apriuog Eavd oto npdtuno IEEE 754-Half Precision..

XeNOWOTOLOVTIC AUTAY TNV AEYLTEXTOVIXT), OAEC OL TRAEELS GTNY LOVADA TOU GYEBIAOTNXE
(roMamhaotoouoi-tpocéatic) Unopotv va LhoTotnloly omOXAELT TIXE UE TIG YaVTIOOO AVOIvE-
WYOVTOG ToV EXVETN WovVo ety To TeAd amotéhecua. H Block Floating Point uétodog umopet
vo. yenowonomdel we wa aprduntiny npocéyyion floating point yenowonowwvtac fixed point

eneepyaoTH).

41

IMapouoioorn xow AELoAdynon AnoTteAsoUdTwY

Ye autd To xePAhouo ToEOUCIALOVTOL T TEMXA ATOTEAEGUUTA OANG TNG EpYAClOC XalL OL
oLYOLACUOL ToL ETAEYUNxay. XpnoWoTouwvTag TIC LOVADES TOU TEQLYPAPNHOLY TEOTYOUMEVKS
XATACKEVAC TNXE TO TANPEG CUVEAXTIXG ETUNEDO TELWY OLAPORETIXDY DUVEMXTIXWY Nevpwvi-
%1V Aixtiwy xa ueterdnxay ol Sldgopeg Sloxuudvoelg otny axplBela xal 0Ty yenoiponoinon

TOPWY YLoL SLAPOPOUS GUVBLICUOUE TEYVIXWY Xal TOTWY BEBOUEVWY.

42

Arnoteléopata cto FPGA

[Mo g petproeic yenowonowdnxe to Zyng-7020 Evaluation Board tn¢ Xilinx.

Table 4: IIopol Twv BUVEMXTIXGDY LOVAOWY UETA TNV AAAXYY| GTOV UETATEOTEN AT GELRLAXO

o€ TUPAAANAO

MAX
Baseli POWER
a;e ;ne LUTs | FFs | BRAM | LUTRAM | DSP | BUFG | FREQ |~ .
X
(MHz)
Fixed 16
327 539 1 3 12 1 151.05 0.187
Hard Multiplier with DSP
Fixed 16
1659 892 1 11 0 1 125.78 0.267
Hard Multiplier w/o DSP
Fixed 16 Radix-4 1941 | 3132 1 147 0 1 139.86 0.267
Fixed 16 Radix-64 (k=6) 1464 | 2222 1 127 0 1 148.58 0.248
Fixed 16 Radix-256 (k=8) 1198 1861 1 101 0 1 149.4 0.211
Fixed 16 Radix-1024 (k=10) 982 1482 1 98 0 1 133.34 0.196
Float 16 Vivado IP 1926 | 4402 1 47 25 1 140.84 0.24
BFP per Layer 699 1177 1 15 9 1 149.5 0.179
BFP per 3x3 Window 1895 | 2017 1 197 9 1 130.63 0.216
BFP per Layer no DSP 1688 | 1678 1 15 1 147.05 0.222

Yrov Hivoxa 4, Brénouye 6TL YLl TOUC TEOGEY YO TXOUE TOAMIATAACIUC TEG UE TNV TORUUE-

Tp0 k=6 €youpe peinon 12% oe oyéon pe tov axpr Toloamhactaoud, eved Yo k = 8 xou

k =10 éyouyue pelwon 30% xou 42% avticTolya.

Y1y cuvéyelo TapoUGIALETOL 1) GOUT] X0 Ol ATMAUTHOELS OE UOVADES TOU GUVEAIXTIXOU VEU-

EWVIXOU BIXTUOU Yo TOV EVIOTIOUO TAOIWY amd ewoves dopupoewy ”Ship Detection”.

Table 5: Anatioec oe ntdpoug yio to Ship Detectionyio Fixed Point 16 apyitextovixy

Layer 1 Layer 2 Layer 3 Layer 4
Input Channels 3 32 16 64
Channel Size 128 x 128 64 x64 32x32 16x16
Filters 32 16 64 32
Conv. Units (Table 4.1) 96 512 1024 2048
Kernel RAMB36s 0.5 2.5 4.5 8.5
Adder Trees 11 3-In 1 32-in 2 16-in 1 32-in
ReLu Units 11 1 2 1
MaxPool. Units 3 1 1 1
Output RAMB36s 59 8 8 4

43

Koo 1 yenoyonoinon tng uvAung tng mAaxétog froy Eva ey xotd Ty oyedloor Tou
TEAXOU BIXTUOU, TPOYWENOOUE GE (L0l UETATEOTY| OTOV UETATEOTEN OO GELPLAXO GE TORIAANAO.
AN\EEape Ty oepd TN aductdag Twv oupyv FIFO ye to nopdiupo tomv xatoywentoy »oTe
v Yhtwooupe wa uviun FIFO. H Aettoupyio tng povddag etvar oxpBae 1 Bl ywelc va

ToEOUGIALETAL XATOL OANXYY) OTOV TEOTIO TOU TEOYUOTOTOLELTOL 1) pOY) DEBOUEVELV.

Initial Design

Sliding Window

Image Width 1
Input -
Pixels FIFO(RAM) DFF —>» DFF —» DFF
m
1
"
=
=
Ly FIFO(RAM) » DFF —» DFF —» DFF 2
-
o
£
@
=
L s FIFO(RAM) > DFF —> DFF —> DFF
"

Kernel Width = 3

Design Adjustment

Sliding Window
Image Width

Input
| — > DFF —> DFF —» DFF — 3| FIFO(RAM -
Pixels 3 (]

L—» DFF —> DFF —> DFF ———» FIFO(RAM) T

L_» DFF — > DFF —> DFF Not Used

ExAue 27: Teomonowoelc otov Yetatpoméa ond oelplaxd oe TopdAAnio. Xwplg vo ennee-

oo Tel 1 AElToLEYIXOTNTA TNG HoVAdaCg, yeellouacTe uo Ayoteer uvhun FIFO

Table 6: Sources of the Xilinx Zynq Z-7020 SoC

FPGA chip on
Xilinx Zynq Z-7020 SoC

Logic Cells 85k
Look-Up-Tables
53200
(LUTSs)
Flip-Flops 106400
DSP 220
36Kbit BRAM 140

44

Ytov nivaxa 6 mapovcidlovta ol Slardéauuol TOEoL ToU XAAOVUICTE Vo A€LOTOLACOUYE.

Y1V cLVEYELY, EYOVTAC Ta ATOTEAECUATA TNS EXTEAEOTC Tou Vivado, oyedidoaue Yewpn-

e 4 4 7 . 4 4
TIXd Tov Tuprval Tou cuveEAxTXo Bxtbou. T Ty fixed point opyitextoviny, xotahiEaue

GTOV TOPAXATE TVOXAL.

Table 7: Yuvokxol népol yia tov Fixed Point oyediaoud oto ZC-702

LUTs | FFs | DSP | BRAMs
32x Convolution Units | 24400 | 38400 | 192 32
31 Adders of Two 496 496
3xMax-Pool 720 1029
11xReLu 110 176
TOTAL 25726 | 40101 | 192 38
TOTAL(%) 48.35 | 37.68 | 87.27 27.14

TonodetRdnray mopdAAnha 32 povddeg cuvéling. Me authv v Te)vr, avd mdoo
oTiyU unopel var exteleltan 1) Sadiasio TN cUVENENS ot 32 BLopORETIXEC EXOVES ELGODOU.
Enlong mpocopudo tnxay xotdhknia ot povddeg Max-Pooling xoaw ReLu Aopfdvovtoc unddv
TIC HEYLOTEC AMAUTHOELS OE QUTEC. 2TNV CLVEYELX Yio Vo UToAoYiooupe Yewpntixd Tov yedvo
EXTEAEONC XU TIC ELXOVEC oVl BEUTEPOAETTO TOU UTOEElL Vo EMEEEPYACTEL 1) CUYXEXQIUEVT|
povada, epyacTixoue wg €€ : Apyixd umoloyioaue TOCEC YOpEC TMEEMEL VoL EXTEAECTEL 1|
OLadixacion Tng GUVERENS YLl TO EXAG TOTE GUVENXTIXG VEURPWVIXG BixTuo. T'io Topdderyuor, Yo
to Ship Detection,€youpe cuvolxd 32 x 3 + 32 x 16 4+ 64 x 16 4 64 x 32 = 3680 cuvehielc
exovewy. O ypodvog extéheone xde cuvéhing eCoptdtar and To péyedog Tng ExoVaS EL0OO0U
X0l CUVETWS OO TO GUVEAXTIXO ETHTESO TOL OXTOOL GTo oTolo PEloXOUUCTE XAVOS OTOTE
yivetow Max-Pooling to péyedog tng eixdvog unodimiacidleton. Enopévee €youue yio tnv
ONOXAIPWOT) TOU TEWTOU EMTESOU TOU OLXTVOL 3 ETAVOAAELS, Yot TNV OAOXATPWOT| TOL Oe-
Utepou 16 emavaieie, yio To Teito 32 xou yia to tétopTo 64. Telwnd, dua Yewpricouue Tov
XPOVO Tou omonTelTan yior vor ohoxAnewiel wiar TAYeng cLVEAET exdvog dlaoTdoswy 128 x 128

(apy ey exdva) pall pe to axdhouto Max-Pooling T2, tdte €youye:

Timerotal = TimeLayerl + TimeLayerg + TimeLayerg + TimeLayem

Timerorar = 3 X Tiog + 16 X Ty + 32 X T30 4+ 64 X Tig

T T T
TimeTotal:3><T128—|—16><%+32x%+64x%

Tz'meToml =27 X T128 = 171312CC's

IMa va Bpolue tov pudud enelepyaoiog exdvov avd deutepdrento (FPS-Frame Per Second)
tonoYethooue oto Vivado tnv ouyxexpulévr tonohoylo povddwy xat Berixoue OTL T0 POAOL

Aertovpylog oy = 8ns. Emouévee Timerorq = 171312 x 8ns = 1.370496ns.

1s
FPS = —— =
5 1.370496ms 730

45

Kernel Input

Filter #1
3 Input .
Channels (°8:‘;t”;i"" —
RGB
Convolution ¥ adder | ety | Channel #1
Unit #2 »| Tree |
Bias
Convolution
Unit #3
Filter #2|
Convolution
Unit #4
Convolution ¥ Adder | pery [Channel #2
Unit #5 »| Tree | | ana«:;ng
T @.2)
Bias
Convolution
Unit #6
] Channel #3
n e Relu
1 R Store Output
LI Relu | Channel #4 Channels of
Filter #10) Each Iteration
in RAM
Convolution *’r -
Unit #28 —
Channel #9
D oo Relu
Max
N Pooling
Convolution Adder | Rety |Channel #10 @,2)
Unit #29 »| Tree |
Bias
Convolution
Unit #30
4 \
Filter #11 Filter #11
Convolution Convolution Adder oLy |nannel #11
Unit #31 Unit #31 Tree Ly
Adder .
Tree
Filter #22 o
Convolution Convolution ~
Unit #32 Unit #32

Iteration 1
Store Channels 1,..,10 Filter #22|
and 2/3 of Channel 11

Convolution

Unit #31
Iteration 2 Adder [)

Adder

Channel #22
Store Channels 12,...,21 Tree Tree Eeiy

Complete Channel 11
and store 1/3 of Channel 22

Convolution
Unit #32

Iteration 3

Store Channles 23,...,32
and complete Channel 22

Eyxnpo 28: O t1pémoc Ue ToV 0Tolo AELTOUEYOVY Ol HOVABES GUVENENS OTO TEWTO GUVEAIXTIXO

eninedo Tou BIXTUOL YIoL TOV EVTIOTIOUO TAOIWY

46

Me tov (810 TpoT0 vNIXaUE Yiol VO XOTUGHEVACOLUE TIG TEMXES Uovadeg eneepyaolag
He TNV Tpooéyylon Ttou akyopiduov Winograd xodde xou yio dhhoug tonoug dedopévev (
Floating Point, Block Floating Point). Xtov enduevo mivaxa gaivovtor oi TpoTevdpeves

QEYLTEXTOVIXEG UETE TNV TEAXT) EXTEAEST] TOUG GTNY TAAXETAL.

Table 8: Final CNN performance with proposed techniques (Zyng-7020)

configuration | paral. | LUT DSP RAMB MHz | FPS
Typical Float.Point 8 3% 91% 78% 125 182
Prop. Block.F1.Pt. 32 | 65% 100% 95% 125 | 730

Prop. B.FL.P.WGD. 8x4 68% 59% 95% 124 724
Typical Fixed.Point 32 69% 58% 95% 118 689
Prop. Fixed.Point 32 60% 54% 95% 124 724
Prop. Fix. P.WGD. 8x4 41% 58% 95% 112 654

(loss is ~0.2% between configurations)

AZilel va onueiwdel 611 oe oyéon ye v xhaoowxr) vhoroinon Fixed Point ywpic npocey-
Y1000 TOAATAACLUOUOUE ElYOUE LEIWON TV anatToVUEVKY Thpwv xatd 13% ue avtiotoynm
uelwon oe DSP 7% ywelc pelwon oty axpiBeto xatnyoptonoinone. ‘Ocov agopd v ulo-
noinon Winograd napotnerioaue peionon twv oanoutobuevwy topny xatd 41% ye oxpiBde tny
(B yprion DSP.

‘Ocov agopd tnv Floating Point avarapdotaon, yenowwonowdvtog tig ewdxés Floating
Point IP tou Vivado xatagépaue va €youue 8 mapdhhnieg povddeg oto uéyioto. Me tnv
xenon tou BFP auZridnxay ot yovddeg and 8 oe 32 omAadY| TETRATAACIAOTIXE 1 AmOdoo
e opyttextovixic. Me tnv ulomoinon Winograd xotagépape va petwoovpe xotd 41% ta

amoutodueva DSP.

20Y%plom e AANEG CUOKEVEG

LUYAEWOUEVT UE JAAEC AVTUYWVIOTIXEC CUCKEVES, 1) TEOTEWOUEVT UAoToinon tétuye 10
popéc xolUTepn amddoon/Watt omd v Jetson Nano Mobile GPU (204 FPS via tensor-
flow/cuda acceleration) xou 2.5 @opéc xahltepn anédoon/Watt anéd v Myriad2 DSP
(105 FPS via C/C++ coding). Ta mAfpwe cuvdedeuéva eninedo Tou Bixthou eEXTENETTNXAY
am6 tov enelepyacthh ARM Cortex-a9 of Zynq xou ypewdotnxay 1.2ms yio vo eXTEAEGTOUV

ToEEAANA AL e T oLVERIEELS TOL BixThou.

Aoxipég yia Tov €AY Y0 Tng axpifelag

[o var yiver emadfilevon TV SLEPORY TEOTEWVOUEVWY JPYITEXTOVIXWY WS TEOG TNV Old-
Tenon oxpifelac, éyvay ot xatdAiniec tpononoioec o xmdixa C/C++ avtictoryne ot
mhwpatxic Tou Eudyyelou Iletpdyyova. Kataoxeudotnxay ot xatdhAniec cuVApTAOELS OL
omoieg xdvave mpdelc Pnelo meog Pnelo oe hoylouixd €Tol HoTe va yiveTon TPOCOUOIWST| TOU

AOOWOL YOUUNAOD ETUTEBOU GTO UAIXO.

47

Table 9: Aoxuwéc axpiBelog yio Sidpopeg apyitextovixéc Fixed Point

TensorFlow | FP 16 | FP 16 k=6 | FP 16 k=8 | FP 16 k=10
Ship Detection 96.8% 96.8% 96.75% 96.65% 93.6%
MNIST 98.45% 98.45% 98.45% 98.45% 98.1%
CIFAR-10 75.5% 75.5% 75.35% 75.1% 1%
1 L H___________HH
% 4
97 1
'13\
¢ %]
o
=
% -
g4 | == Ship Detection
== MMNIST
0 6 B 10

Configuration Parameter k

EyxRpo 29: Aloaxuudvoelg Tne axpifelag XaTnyoplonolnong 6 GUVEETNON UE TNV TOEAUETEO
k Tou mpooeYYIoTIX0) TOAATAAGLUGTY

Table 10: Aoxwéc axp{Belag yia Sdpopeg apyitextovixéc Floating Point

Float 16 | Float 14 | Float 12 | Float 16 Appr. | Float 14 Appr. | Float 12 Appr.
Ship Detection 96.8% 96.3% 95.4% 96.8% 96.5% 96.7%
MNIST 98.45% 97.5% 97.15% 98.45% 98.1% 97.2%
CIFAR-10 75.5% 75.45% 70.3% 75.5% 75.4% 70%

Table 11: Aoxwéc axp{Beloc yio Sdpopec apyitextovixés Block Floating Point

10-bit Mantissa | 8-bit Mantissa | BFP 10-bit with Approx
Ship Detection 96.8% 96.7% 96.7%
MNIST 98.45% 98.45% 98.3%
CIFAR-10 75.5% 75.3 % 75.25%

H péyotn ntedon axplBeloc mou mopatnerinxe Aoy yia o CIFAR-10 étav 1 mapduetpog

k mhee tnv tuR 10 (4.5%). ‘Olec ot dhhec mpotewvdueves apyltextovixéc datipnoay udmin
oxpifela. A6 TIC TPOTEWVOUEVES dpYLTEXTOVIXES 1) PEYOAUTERN Tttwon fitav 0.2% 6cov agopd
tic Fixed Point npooeyyioeic xou 1% yio 14-bit urixouc Floating Point (5-bit exponent, 6-bit

48

mantissa).

49

Chapter 1

Introduction

Deep neural networks (DNNs) have shown significant improvements in many Artificial
Intelligence (AI) applications, including computer vision [12], natural language processing
[29], speech recognition [I] and machine translation [2]. The performance of DNNs is
improving rapidly.

However, this accuracy improvement comes at the cost of high computational com-
plexity. For example AlexNet [I7] that is one of the most influential networks published in
computer vision takes 1.4GOPS to process a single 224 x224 image. Res-Net-152 has man-
aged to increase the accuracy from 84.7%(2012) to 96.5% in 2015 in a cost of 22.6GOPS,
more than an order of magnitude more computation. Running Res-Net-152 in a self-
driving car with 8 cameras at 1080p 30 FPS (frames per second) requires the hardware to
deliver (30FPSx8x1920x1280/(224x224) = 265 Teraop/sec computational throughput.
Usign more than one neural networks in each camera will make the computation even

larger.

1.1 Machine Learning

Before the functionality of Convolutional Neural Networks (CNNs) is further analyzed,
we have to put them in context: CNNs belong to a wide range of algorithms in the field of
Machine Learning (ML). ML is already integrated in several aspects of everyday life. E-
mail spam filters, voice, text and speech recognition, web search engines, recommendation
in lists of music, movies and user preferences to autonomous driving.

Machine Learning is a computational sub-field of Artificial Intelligence. Artificial In-
telligence itself poses two main questions: ”What is intelligence and how does it work?”
and ”Can we build intelligent machines?”. Correlated with the latter one and as its name
suggests, in Machine Learning we try to train computers, in a way that they can learn
to solve problems without being explicitly programmed. Using a more formal definition
for ”learning” in this context : 7 A computer program is said to learn from experience E,
with respect to some task T and some performance measure P, if it’s performance on T

as measured by P is improved with experience E”. At the core of Machine Learning lies

o1

the assumption that knowledge can be derived from data. Based on this assumption, the
majority of ML algorithms so far are data-driven in contrast to other Al approaches which
may be symbolic,.knowledge-based etc. Machine Learning takes steps towards ”intelligent”
machines, promising a wider range and greater depth of automation in human activities.
Both the theoretical work and its technological applications contribute to the material
preconditions for a world where monotonous and repetitive tasks will be carried out by

machines.

Domain expertise

Decision b
support) trTll.lua
system intelligence
; Data
Analysis processing
Data
science
Machine
Statistics learning Computer
science
Big data

Figure 1.1: Machine Learning relation to other fields

At a high-level, machine learning is simply the study of teaching a computer pro-
gram or algorithm how to progressively improve upon a set task that it is given. On the
research-side of things, machine learning can be viewed through the lens of theoretical
and mathematical modeling of how this process works. However, more practically it is
the study of how to build applications that exhibit this iterative improvement. There are
many ways to frame this idea, but largely there are three major recognized categories:

supervised learning, unsupervised learning, and reinforcement learning.

Types of Machine Learning

e Supervised Learning describes a class of problem that involves using a model to
learn a mapping between input examples and the target variable. Models are fit on
training data comprised of inputs and outputs and used to make predictions on test
sets where only the inputs are provided and the outputs from the model are compared
to the withheld target variables and used to estimate the skill of the model. There
are two main types of supervised learning problems: they are classification that
involves predicting a class label and regression that involves predicting a numerical
value. Both classification and regression problems may have one or more input

variables and input variables may be any data type, such as numerical or categorical.

52

Some machine learning algorithms are described as “supervised” machine learning
algorithms as they are designed for supervised machine learning problems. Popular

examples include: decision trees, support vector machines, and many more.

Unsupervised Learning describes a class of problems that involves using a model
to describe or extract relationships in data. Compared to supervised learning, un-
supervised learning operates upon only the input data without outputs or target
variables. As such, unsupervised learning does not have a teacher correcting the
model, as in the case of supervised learning. There are many types of unsupervised
learning, although there are two main problems that are often encountered by a
practitioner: they are clustering that involves finding groups in the data and density
estimation that involves summarizing the distribution of data. An example of a
clustering algorithm is k-Means where k refers to the number of clusters to discover
in the data. An example of a density estimation algorithm is Kernel Density Esti-
mation that involves using small groups of closely related data samples to estimate

the distribution for new points in the problem space.

The problems we dealt with in this thesis are classification problems, so supervised learning

will be further discussed.

1.1.1 Introduction to Artificial Neural Networks

A single neuron also called a perceptron is the basic building block in Artificial Neural

Networks. Neurons are the basic computational units and are consisted by three main

parts. The input data expressed in numerical form, the activation function and the output

data. A neuron receives a number of input signals x; multiplied by weights w;. These

weighted input data are summed biased with a fixed value b; and are fed into the activation

function ® that produce the final output.

X— W
o \- : :
wr \—‘_ﬂ Z \ Activation
\ / Function
" A net Output
- _
]
L}
XN—® WN Bias b

Figure 1.2: Single Neuron Model

93

N
Net:Za:i*wi—i-b
i=1

N
Output = ®(net) = @(Z x; * w; +b)
i=1
A single neuron is the basic building block in Artificial Neural Networks. In order

to construct a complex Neural Network for a specific task we have to combine multiple

neurons with proper weights and activation functions.

. Chilpul

signal

Inpul First Second Outpw
layer hidden hidden layer
layer layer

Figure 1.3: Architectural Graph of multilayer perceptron with two hidden layers.

The first step in order to construct a neural network is to train the model using the
training data. In order to do so, weights are initialized randomly. Considering training,
we should take care of the loss function. Loss function shows how good a neural network
is on a specific task. The intuitive way to implement it is to take each training example,
pass it though the network, get the output value and subtract it from the actual value
that was expected in the output.

Lo
Jy.9) = > (yi — i)
i=1
Where ¢ is the index of training example, y stands for the output number we expect from
the network and ¢ for the number we actually got by passing our example through the
network. We want as small number as possible regarding Loss Function. If the Loss
Function has a big value, that means our network does not perform very well.

Since initial weights are randomly initialized, we expect a bad performance of the
network. In the process of training, we want to start with a bad performing neural network
and wind up with a network with high accuracy. In terms of loss function, we should get
the minimum value in the end of training. In each iteration, weights are adjusted in

order to achieve higher accuracy. The problem of training is equivalent to the problem

o4

of minimizing the loss function. There are a lot of algorithms that optimize functions.
These algorithms can be gradient-based or not, in a sense that they are not only using
information provided by the function, but they are also use its gradient. One of the most
common training algorithms is Stochastic Gradient Descent. Learning rate is an important
parameter when training Neural Networks. If learning rate is too small gradient descent
method may be really slow. In the other way if learning rate is too large, gradient descent
may overshoot the minimum Loss Function value which means it may fail to converge or

it could even diverge.

Too low

1(8) !

\

/

1(6)

\

Just right

1(0)

Too high

f‘l‘ \ /
\ /

\ /
\ /
\ X '
_ _7_,_/

\ /
\\ /
\
AN
_/

The optimal learning
rate swiftly reaches the
minimum point

A small learning rate
requires many updates
before reaching the
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

Figure 1.4: Converge to Minimum Cost on Gradient Descent with different Learning
Rates

1.1.2 Introduction to Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special kind of neural networks for pro-
cessing data that has a known grid-like topology. Data can be thought as 1D time-series
data and image data that can be thought as a 2D grid of pixels. As the name indicates
these networks employ the mathematical operation called convolution. CNNs are very
similar to ordinary Neural Networks. They are made up of neurons that have learnable
weights and biases. Each neuron receives some inputs, performs a dot product and op-
tionally follows it with a non-linearity. CNNs are biologically inspired models by research
of D.H. Hubel and T.N. Wiesel. They proposed and explanation for the way in which
mammals visually perceive the world around then using a layered architecture of neurons
in the brain and this in turn inspired engineers to attempt to develop similar pattern
recognition mechanisms in computer vision. As an example, let’s consider a car. How
does a human recognize that is a car? Humans search for the characteristics that are
unique to a car like wheels, head-lights, doors, rear trunk, glass windows, hood and other
features that differ it from other models of transport. Similarly when recognizing a wheel,
we look for circular-shaped objects, comparatively dark colored with a rough texture po-

sitioned below the main structure of the car. All these little details are taken into account

95

to form some basic information. These little information together bunch up to form a
particular characteristic that is unique to an object that we are recognizing. “A simple
CNN is a sequence of layers, and every layer of a CNN transforms one volume of activation
to another through a differentiable function.” What it actually means is that, each layer
is associated with converting the information from the values, available in the previous
layers, into some more complex information and pass on to the next layers for further
generalization.

The CNN is a combination of two basic building blocks

e The Convolution Block. This block consists of the Convolution Layer and the

Pooling Layer. This layer forms the essential component of feature extraction.

e The Fully Connected Block . Consists of a fully connected neural network
architecture. This layer performs the task of classification based on the input from

the convolutional block.

— AR

— TRUCK

— VAN
[O

— BICYCLE

~
5

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN K e SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 1.5: Example of a Convolutional Neural Network that categorizes means of trans-

port from an input image

Filters or Kernels are also an image that depict a particular feature for example a curve
or a dot. Convolution is a special operation applied on a particular matrix (usually the
Image matrix), using another matrix (usually the Filter matrix). Kernel is simply a small
matrix of weights. This kernel slides over the 2D input data, performing an elementwise
multiplication with the part of the input it is currently on and then summing up the

results into a single output pixel.

56

Original Gaussian Blur Sharpen Edge Detection

000 1 1 21 0o -1 0 -1 -1 -1
010 16 2 4 2 -1 5 -1 -1 8 -1
0 0 0 1 2 1 0 -1 0 -1 -1 -1

Figure 1.6: Convolution of an Input Image with classic Computer Vision Kernels.

1.1.3 2D Convolution Operation

When we apply 2D convolution, one tricky issue is that we tend to lose pixels on the
perimeter of our image. Since we typically use small kernels compared to image size, we
might only lose a few pixels but this may sum up when we apply many convolutional layers
connected in a row. One straightforward solution to this problem is to add extra pixels
of filler around the boundary of our input image, thus increasing the effective size of the

image. Typically we set the extra pixels to 0 called Zero-Padding.

Figure 1.7: 2D convolution using ”Same” Padding for 3x3 Kernel and 5x5 Image. Borders

of Image are extended by zeros and we have the same size 5x5 output Image.

e

Figure 1.8: 2D convolution without Padding. The output Image has reduced size 2x2

compared to the 4x4 input Image.

As mentioned before when running a convolution layer, we want an output with a

lower size than the input. One way to accomplish this is by using a pooling layer. Yet

o7

another way to do it is to use a stride. The idea of stride is to skip some of the slide
locations of the kernel. A stride of 1 means to pick slides a pixel apart, so basically every
single slide, acting as a standard convolution. A strife of 2 means picking slides 2 pixels
apart, skipping every other stride in the process, downsizing by roughly a factor of 2. A

stride of 3 means skipping every 2 slides, downsizing by roughly a factor 3 and so on.

Stride =1

Stride = 2

Figure 1.9: Comparing two different types of stride. When stride=1, we have 9 3x3 tiles
to be processed, though a 3x3 output. When stride=2, tiles are reduced to 4 and so does

the output.

When a 2D input Image x is convolved with a kernel h of size NxM and the output

image is y, then to calculate output pixel (7, j) we use the following formula.

M—-1N-1
y(i,j) = Z Z z[i+m,j+n|*h[n,m|, i€ ImageWidth, j &€ ImageHeight

m=0 n=0

1.1.4 Convolution Layer

When a convolution layer is constructed, each layer takes as input a stack M of 2D
Images. The size of this stack is called ”"Input Feature Maps”. Each one of the input
feature maps has size of Imagew i X Imagepeight = Iy, x Imy,. If the number of input
feature maps is M, then the input of the layer is a 3D matrix with size M x Im., X Imy,.
Since the input of each layer is essentially a 3D matrix, we tend to think the neurons of a
CNN as being arranged in 3D (width, height, depth).

o8

L] mEmm = ImH

A
Y

Iy
Figure 1.10: Example of an RGB Image. A 3D matrix of size Imy x Imp x 3.

A convolution layer extracts N output feature maps from M input feature maps by
convolving each one of the M input maps with N filters. Each one of these N filters
has size M x Kernelyiqn X Kernelpeighe.- In the majority of applications Kernely g, =
Kernelpeight. So we suppose that the Kernel has dimensions K x K. For each convolution
layer with N channels, we have N x M x K x K kernel values (Weights) . The forward

pass of each one of the convolutional layers is computed as:

V. n=A{1,..,N} Number of Output Feature Maps
Vv i={1,...,Imy} Feature Map Rows

vV j=A{1,...,Imy} Feature Map Columns
M K=1K-1

Fln,jl=bn]+ > > Y ®m,i+wz,j+y] wh,m,z,y

m=1 =0 y=0
Where

e F is a tensor of output feature maps
e b[n] is the bias term applied to each pixel of the output feature map n
e ® is a tensor of input feature maps

e w is a tensor of filters

The 3D operation can be performed by adding the results of multiple 2D operations. In
the equation above, the inner two sums perform the 2D cross-correlation over an input
feature map, while the outer-sum realized the 3D operation by adding the results of all
the M input feature maps at each kernel location. The size of the output feature maps is
dependent to Padding and Stride as it was mentioned before. Thus the size of the output
map can be calculated with the following equation:

Imy — K 4 2 - Padding

1
Stride +

Output Map Size = H =

99

The size of the output feature map. if we suggest that the input image has size
Im, x Im,, is H x H. This is also the number of times that the 2D kernel fits inside the 2D
input feature map. The 2D convolution operation, if we suggest that we have every pixel
of the Image available in memory, can be computed in parallel. The computation of each
output pixel is independent from any other. All the M Input Maps and all the N output
maps can be calculated simultaneously. Although the number of multiplication that need
to be performed in a convolutional layer is significant big. For example for 3 input feature
maps and 16 output channels (16 filters) and a kernel of size 3 x 3, H x H x 9 x 3 x 16 =
432 x H? multiplications need to be calculated. For an input image of size 128 x 128, that
leads to 7077888 multiplications for only 3 Input Feature Maps. These multiplications can
be calculated in parallel but the hardware resources we need in order to calculate them in

parallel do not allow it.

1.1.5 Pooling Layer

Convolutional layers in a convolutional network systematically apply learned filters
to input images in order to create feature maps that summarize the presence of those
features in the input. Stacking convolutional layers in deep models allows layers close to
the input to learn low-level features (e.g. lines) and layers deeper in the model to learn
high-order or more abstract features, like shapes or specific objects. A limitation of the
feature map output is that they record the precise position of features in the input. This
means that small movements in the position of the feature in the input image will result
in a different feature map. This can happen with re-cropping, rotation, shifting and other

minor changes to the input image.

A common approach to addressing this problem from signal processing is called down
sampling. This is where a lower resolution version of an input signal is created that still
contains the large or important structural elements, without the fine detail that may not
be as useful to the task. Down sampling can be achieved with convolutional layers by
changing the stride of the convolution across the image. A more robust and common
approach is to use a pooling layer. A pooling layer is added after the convolutional layer.
The addition of a pooling layer after the convolutional layer is a common pattern used for
ordering layers within a convolutional neural network that may be repeated one or more
times in a given model. Pooling involves selecting a pooling operation, much like a filter
to be applied to feature maps. The size of the pooling operation or filter is smaller than
the size of the feature map; specifically, it is almost always 2 x 2 pixels applied with a
stride of two pixels. This means that the pooling layer will always reduce the size of each
feature map by a factor of 2, e.g. each dimension is halved, reducing the number of pixels
or values in each feature map to one quarter of the size. For example, a pooling layer
applied to a feature map of 6 x 6 (36 pixels) will result in an output pooled feature map

of 3 x 3 (9 pixels). Two common functions used in the pooling operation are :

60

o Average Pooling Calculate the average value of each patch on the feature map

e Maximum Pooling Calculate the maximum value of each patch of the feature map

255

0 |2s5 >
255
255| 0 After Max Pooling
255 (255 | 0 (255
128

255 (255 (255) 0 i

I

After Average Pooling

Pooling Process Input Feature Map

0 |255

After Max Pooling
0 0 |255(0
0 0 0 [255

After Average Pooling

Figure 1.11: The two different common methods of pooling and their impact on the

input feature map

The result of using a pooling layer and creating down sampled or pooled feature maps
is a summarized version of the features detected in the input. They are useful as small
changes in the location of the feature in the input detected by the convolutional layer
will result in a pooled feature map with the feature in the same location. This capability

added by pooling is called the model’s invariance to local translation.

The results of max pooling are down sampled or pooled feature maps that highlight
the most present feature in the patch, not the average presence of the feature in the case
of average pooling. This has been found to work better in practice than average pooling

for computer vision tasks like image classification.

1.1.6 Activation Function

The activation function is a node that is put at the end of or in between Neural
Networks. They help to decide if the neuron would fire or not. If the input value of
a neuron exceeds a threshold then the activation function fires this neuron otherwise it
disables it.

10

Sigmoid] Leaky ReLU
o(z) = i max(0.1z, x)
tanh Maxout
tanh(z) w max(wl @ + by, wlz + by)
ReLU / ELU
0 x x>0
max(’:C) = ; {a(e”‘ -1) z<0 - - i

Figure 1.12: Most Popular Activation Functions in Neural Networks

ReLu function is the most widely used activation function in neural networks today.
One of the greatest advantage ReLu has over other activation functions is that it does not
activate all neurons at the same time. From the image for ReLu function above, we will
notice that it converts all negative inputs to zero and the neuron does not get activated.
This makes it very computational efficient as few neurons are activated per time. It does
not saturate at the positive region. In practice, ReLu converges six times faster than tanh
and sigmoid activation functions. Some disadvantage ReLu presents is that it is saturated
at the negative region, meaning that the gradient at that region is zero. With the gradient
equal to zero, during backpropagation all the weights will not be updated, to fix this, we
use Leaky ReLu. Also, ReLu functions are not zero-centered. This means that for it to

get to its optimal point, it will have to use a zig-zag path which may be longer.

1.1.7 Fully Connected Layer in CNN

The objective of a fully connected layer is to take the results of the convolution/pooling
process and use them to classify the image into a label (in a simple classification example).
The output of convolution/pooling is flattened into a single vector of values, each repre-
senting a probability that a certain feature belongs to a label. For example if the image is
of a cat, features representing things like whiskers or fur should have high probabilities of
the label ”cat”. The figure below illustrates how the input values flow into the first layer
of neurons. They are multiplied by weights and pass through an activation function just
like in a classic artificial neural network. Then they pass forward to the output layer, in

which every neuron represent a classification label.

The fully connected part of the CNN network goes through its own backpropagation
process to determine the most accurate weights. Each neuron receives weights that prior-
itize the most appropriate label. Finally, the neurons ”vote” on each of the labels and the

winner of that vote is the classification decision.

62

02 Dog

Figure 1.13: The Fully Connected Part of a CNN to classify Dog and Cat Images

1.2 Field Programmable Gate Arrays

FPGA stands for field-programmable gate array. At its core, an FPGA is an array
of inerconnected digital subcircuits that implement common function while also offering
very high levels of flexibility. An FPGA is an array of logic gates, and this array can be
programmed (actually configured) in the field, i.e., by the user of the device as opposed
to the people who designed it. However, an FPGA is not a vast collection of individual
Boolean gates. This would be a very suboptimal way to provide configurable-logic func-
tionality because it would not take advantage of the fact that common operations can be
implemented much more efficiently as fixed modules. The same principle is evident in the
world of discrete digital ICs (Integrated Circuits). We can buy ICs that consist of AND,
OR gates and so forth- but we would not want to build a shift register out of individual
gates. Instead, we would buy a shift register IC. An FPGA, then, is much more than an
array of gates. It is an array of carefully designed and interconnected digital subcircuits
that efficiently implement common function while also offering very high levels of flexibil-
ity. The digital subcircuits are called Configurable Logic Blocks (CLBs), and they form
the core of the FPGA’s programmable-logic capabilities.

63

| 3 o6 Jf 108 |

e
K

Figure 1.14: FPGA Board

The CLBs need to interact with one another and with external circuitry. For those
purposes, the FPGA uses a matrix of programmable interconnects and input/output (I/0)
blocks. The FPGA’s ”program” is stored in SRAM cells that influence the functionality
of the CLBs and control the switches that establish the connection pathways. CLB’s
internal structure and operation is complicated. The general idea is that CLBs include
look-up tables (LUTSs), storage elements (flip-flops or registers) and multiplexers that
allow the CLB to perform Boolean, data-storage and arithmetic operations. An I/O block
consists of various components that facilitate communication between the CLBs and other

components on the board. These include pull-up/pull-down resistors, buffers and inverters.

1.2.1 FPGA Programming

In order to program an FPGA for a specific task, we have to turn an array of CLBs into
a digital circuit that does precisely what we want. It seems like a rather complicated task.
However, FPGA development does not require thorough knowledge of CLB functionality
or painstaking arrangement of internal interconnects, just as microcontroller development
does not require thorough knowledge of a processor’s assembly-language instructions or
internal control signals. Actually, it is somewhat misleading to present an FPGA as a
standalone component. FPGAs are always supported by development software that car-
ries out the complicated process of converting a hardware design into the programming
bits that determine the behavior of interconnects and CLBs. The question now, is how
do we ”explain” to the software what the FPGA hardware needs to do. For this purpose
Hardware Description Languages (HDL) are created, that allow us to ”describe” hardware.

The most common are VHDL and Verilog. Despite the apparent similarity between HDL

64

code and code written in a high-level software programming language, the two are funda-
mentally different. Software code specifies a sequence of operations, whereas HDL code is
more like a schematic that uses text to introduce components and create interconnections.
In earlier FPGAs, there was no processor to run any software; hence implementing an
application implied designing the circuit from scratch. So, we could have configured and
FPGA to be as simple as an OR gate or as complex as a multi-core processor. We can have
a long way since and the basic FPGA architecture has developed through the addition
of more specialized programmable function blocks like ALUs, block RAM, multiplexers,

DSP-48 and microprocessors.

Design Verification

Design Entl

’ -
Simulation

Y ;

Synthesis

Y ¢

Functional
Simulation
Implementation
Device W

Programming

A

Figure 1.15: FPGA Programming-Mapping

FPGA architectural design flow comprises design entry, logic synthesis, design imple-
mentation, device programming and design verification. However, the exact steps vary
with manufactures.

Design Entry

The description of the logic can be made using either a schematic editor, a finite state
machine (FSM) editor, or a hardware descriptio language (HDL). This is done by selecting
components from a given library and providing a direct mapping of the design functions
to selected computing blocks. When designs with a very large amount of function become
difficult to manage graphically, HDL may be used to capture the design either in a struc-
tural or in a behavioral way. Besides VHDL and Verilog, which are the most established
HDLs, several C-like languages are also available such as Handel-C, Impulse C, and Sys-
temC.

Logic Synthesis

This process translates the above VHDL code into a device netlist format for depicting a
complete circuit with logical elements. Synthesis involves checking the code syntax and
analyzing the hierarchy of the design architecture. Next, the code is compiled along with

optimization and the generated netlist is saved as a .ngc file.

65

Design Implementation

The design implementation consists of the following steps:

e Translate : This process combines all the input netlists into the logic design file
which is saves as a .ngd file. Here user constraint file assigns the ports to the physical

elements.

e Map : This involves mapping the logic defined by the .ngd file into the components
of FPGA and then generating a .ncd file.

e Place and Route : Here routing places the sub-blocks from the above process into

the logic blocks according to the constraints and then connect these blocks.

The above mentioned routed design must be loaded and converted into a format supported
by the FPGA. Hence, the routed .ncd file is given to the BitGen program, which generates

a bitstream file that contains all the programming information for an FPGA.

Design Verification
This is done all along with the design flow for ensuring that the logic behaves as intended.

The following simulations are involved in this process:
e Behavioral Simulation (RTL Simulation)
e Functional Simulation
e Static Time Simulation

These simulations are done in order to emulate the behavior of the components by provid-
ing test patterns to the inputs of the design and observing the outputs. In our specific case
of 2D convolution, the outputs of Behavioral Simulation, where directly compared to the

outputs of MATLAB or Python codes performing the exact same operations in software.

1.2.2 Advantages of FPGAs

FPGA enables us to program product features, adapt to new standards and recon-
figure hardware for specific applications even after the product has been installed in the
field-hence the term ”field-programmable”. All modern personal computers including
desktops, notebooks, smartphones and tablets, are examples of general-purpose comput-
ers. General-Purpose computing incorporates ”Von Neumann” approach, which states
that an incstrution fetch and a data operation cannot occur simultaneously. Therefore,
being sequential machines, their performance is also limited.

On the other hand, we have the Application Specific Integrated Circuits (ASICs) which
are customized for a particural task like a digital voice recorded or a high-efficiency Bitcoin
miner. An ASIC uses a spatial approach to implement only one application and provides
maximum performance. However, it can not be used for tasks other than those for which

it has been originally designed.

66

&PP

FLEXIBILITY

AsiC

PERFOEMAMNCE

Figure 1.16: General Purpose Processors compared to ASICs

FPGAs are less energy efficient when compared to ASICs and also not suitable for large

volume predictions. However they are reprogrammable and have low NRE(Non-Recurring

Engineering) costs when compared to an ASIC.

TOTAL COST

ASIC COSTS START HIGHER
EVEN FOR LOW VOLUME DUE
TO VERY HIGH NRE COSTS,
BUT SLOPE IS FLATTER

CROSSOVER VOLUME WHERE ASICs
START BECOMING CHEAPER THAN
FPGAs FOR VOLUME PRODUCTION

ALMOST ZERO NRE COST FOR VOLUME K UNITS
FPGA. COST IS FOR ACTUAL IC

Figure 1.17: FPGA vs ASIC Cost Analysis

FPGASs used to be chosen for lower speed and complex designs in the past, but nowa-

days FPGAs can easily surpass the 500 MHz performance benchmark.

67

CPU, GPU, FPGA, and ASICs

Tradeoffs

Figure 1.18: Tradeoffs between different data accelerators

FPGA vs GPU

It is clear that the application and also the project goal are very important to chose

the right Hardware platform. FPGAs have shown stronger potential over GPUs for the

new generation of machine learning algorithms where DNN comes to play massively. The
main winning points of FPGAs over GPUs would be the flexibility by FPGAs to play with

different data types - such as binary, ternary and even custom ones - as well as the power

efficiency and adaptability to irregural parallelism of sparse DNN algorithms. However,

the challenge for FPGA vendors is to provide ans easy-to-use platform. Building any type

of advanced FPGA designs such as for machine learning require advanced FPGA design

and verification tools. Simulation is the de-facto verification methodology for verifying
FPGA designs using mixed-language HDL with SystemC/C/C+ testbenches.

CPU GPU FPGA ASIC
Compute Adaptability High Medium Low None
(to a variety of situations)
Compute power Medium High High Medium
Latency Medium High Low Ultra low
Throughput Low High High High
Parallelism Low High High High
Power efficiency Medium Low Medium High

Figure 1.19: Summary of different processors and their tradeoffs

68

1.3 Approximate Computing

1.3.1 Introduction

The pervasive, portable, embedded and mobile nature of present age computing sys-
tems has led to an increasing demand for ultra low power consumption, small footprint and
high performance. Approximate computing is nascent computing paradigm that allow us
to achieve these objectives by compromising the arithmetic accuracy. Many systems used
in domains, like multimedia, neural networks and big data analysis, exhibit an inherent
tolerance to a certain level of inaccuracies in computation and thus can benefit from ap-
proximate computing. The computational and storage demands of modern systems have
far exceeded the available resources. It is expected that, in the coming decade, the amount
of information managed by worldwide data centers will grow 50-fold, while the number
of processors will increase only tenfold. In fact,the electricity consumption of just the US
data centers is expected to increase from 61 billion kWh (kilowatt hour) in 2006 [Mittal
2014a] and 91 billion kWh in 2013 to 140 billion kWh in 2020 [NRDC 2013]. It is clear that
rising performance demands will soon outpace the growth in resource budgets; hence, over
provisioning of resources alone will not solve the conundrum that awaits the computing
industry in the near future. Functional approximation, in hardware, mostly deals with
the design of approximate arithmetic units, such as adders and multipliers, at different
abstraction levels, i.e. transistor, gate, RTL and application. Some notable approximate
adders include speculative adders [42], segmented adders[43] and approximate full adders.
Also, in the field of approximate multipliers, i.e., the most power-hungry component of
hardware, accelerators, significant research has been conducted [23], [7, 33], 39, 20].

A promising solution for this dilemma is approximate computing (AC), which is based
on the intuitive observation that, while performing exact computation or maintaining
peak-level service demand require a high amount of resources, allowing selective approx-
imation or occasional violation of the specification can provide disproportionate gains in
efficiency. For example, for a k-means clustering algorithm, up to 50xenergy saving can
be achieved by allowing a classification accuracy loss of 5 percent [5]. Similarly, a neu-
ral approximation approach can accelerate an inverse kinematics application by up to
26 xcompared to the GPU execution, while incurring an error of less than 5 percent [§].

Approximate computing and storage approach leverages the presence of error-tolerant
code regions in applications and perceptual limitations of users to intelligently trade off
implementation, storage, and/or result accuracy for performance or energy gains. In brief,
AC exploits the gap between the level of accuracy required by the applications/users and
that provided by the computing system, for achieving di-verse optimizations. Thus, AC
has the potential to benefit a wide range of applications/frameworks, for example, data
analytics, scientific computing, multimedia and signal processing, machine learning and
MapReduce, and so forth. The term AC spans a wide set of research activities ranging

from programming languages [11] to transistor level [10].

69

1.3.2 Approximate Arithmetic Circuits
Approximate Adders

In approximate implementations, multiple-bit adders are divided into two modules:
the (accurate) upper part of more significant bits and the (approximate) lower part of less
significant bits. For each lower bit, a single-bit approximate adder implements a modified,
thus inexact function of the addition. This is often accomplished by simplifying a full
adder design at the circuit level, equivalent to a process that alters some entries in the
truth table of a full adder at the functional level.

Approximate Multipliers

While the design of approximate adders has received a lot of attention, the design
of approximate multipliers has not. Approximate multipliers that use the speculative
adders to compute sum of partial products have been designed in [36],[13]. However, the
straightforward application of approximate adders in a multiplier may be inefficient in
terms of of trading off accuracy for savings in energy and area. A key design aspect in
an approximate multiplier, is to reduce the critical path of adding the partial products.
Multiplication is usually implemented by a cascaded array of adders. In [31] and [16] some
less significant bits in the partial products are omitted (using some error compensation
mechanisms) and thus some adders can be removed from the cascaded array for a faster
operation. In [I8], a large multiplier is constructed by 2 x 2 simplified multipliers to
reduce arithmetic and computation complexity. An efficient design that uses input pre-
processing and additional error compensation is proposed in [27] to reduce the critical path
delay. Combinations of both partial product generation and approximations are applied
in collaboration to further reduce power consumption [14], [41], [28]. The main goal in
nowadays research considering approximate multipliers is to reduce the number of partial
products using hybrid radix encoding [22] to apply approximations on the partial product

generation.

1.4 Related Work

In this section we will briefly review previous research on CNNs and FPGA based

accelerators.

1.4.1 CNN on FPGA

A proposed engine that accelerated CNNs with a combination of Winograd and GEMM
(general element-wise matrix multiplication) has been proposed in [I5]. A software high-
level programming model, that overcomes the difficulties of low level hardware program-
ming and accelerate a CNN from TensorFlow has been proposed in [32] and [40]. Moreover,

library-based frameworks based on TensorFlow have been proposed, which automatically

70

generate high-throughput CNN inference engines for FPGAs [34] and ASICs [21]. There
have also been proposals to reduce the precision and bit width. Angel-Eye [9], a pro-
grammable and flexible CNN accelerator architecture reduce the bit-width down to 8-bit
with negligible accuracy loss. Modifications on the algorithm that the convolution is com-
puted (Depthwise Separable Convolution) achieved significant speedup in [3]. A tool for
performance modeling for CNN Inference Accelerators on FPGA [30] was designed in order
to determine the designs’ bounds in the early design phase, before the FPGA implementa-
tion. In [38] fast convolution units (FCUs) are designed using fast finite impulse response

algorithm (FFA) increasing both resources efficiency and throughput.

1.4.2 Approximations on CNNs on FPGAs

In [24] a Block Floating Point accelerator that significantly reduced memory band-
width was proposed. A compression technique for YOLO CNN [35] that retrains and
quantizes the network using binary weight and flexible low-bit activation achieved 2.63%
lower mAP (mean average precision) that the same network with full precision. Architec-
tural innovations to reduce the number of neural network parameters, such as replacing
fully-connected layers with convolutional layers or global average pooling, have been used
in network in Network [26] and GoogleNet [37] and achieved remarkable results. Hashed-
Nets [4] used a hash function to randomly group connection weights into has tables to
reduce bit width.

71

Chapter 2

VHDL Core Design

This chapter presents the architecture of the Engine we designed, that implements the
convolution unit of a given CNN. The steps and different approaches that led to the final

design are further analyzed.

2.1 Direct Design Approach

Convolutional Neural Networks are inherently massively parallel algorithms. For ex-
ample, if we examine the first convolutional layer of a given network, we can see that it
consists of 3 input channels one for each color (RGB) and 32 Filters. So we expect 32
output channels as an output of our first layer. The computation of each channel can
be considered as a completely independent procedure from the others. A design that
implements a convolution layer should utilize the potential of computing each channel in
parallel. In addition there is a potential to pipeline parts of the design. From our low-level
design perspective our design can be optimized in order to achieve the maximum parallel
channels computation, maximum pipeline between different layers and optimizations in

logic in order to decrease critical paths and enable a higher clock frequency.

The main purpose is to fully utilize a given device (FPGA or ASIC), in order to perform
computations. The low-level design in VHDL is fully generic and can be reconfigured
according to the network requirements. The final engine constructed, can be used as an
accelerator for every type and structure of CNNs, respecting the target device’s resources

available.

73

Waiting for enough
input Pixels
Image Width x Image Height Cycles

LOAD : One Output / Clock Cycle Convolution Layer 1

Waiting for emough
input Pixels

LOAD | One Output / Clock Cycle Convolution Layer 2

Waiting for Previous G Image Width x Image Height Cycles :

Layer Valid Output

.
= Waiting for enough
input Pixels

LOAD i One Output / Clock Cycle Convolution Layer N

Waiting foi Previous | Inage Width x Image Height Cycles
Layer Valid Output '|':I.III:
>

Figure 2.1: Data Pipeline Between different Layers of a CNN. Once Data are loaded and
the first valid outputs are generated, they can be directly feeded to another layer

2.2 Components Required

Our Convolution Engine Design requires components that implement the following

operations:

e Store the incoming input pixels that are obtained serially in a proper way in FIFO

queues (RAM), in order to perform a serial to parallel conversion (S2P).

e Keep track of the data flow and raise the appropriate signals, in order to apply

padding when necessary (in image’s bounds) and continue operations (Control Unit).

e Pass the data in parallel to the Convolution Unit and perform the appropriate mul-

tiplications and accumulations between the input image and the kernel.

e Raise valid_out signals in order to inform any next Layers or other components that

the output pixel is ready.

2.2.1 Data Flow

We consider an image with size Image-WidthxImage-Height and a Kernel with size
Kernel-Width x Kernel-Height. The Data flows into the component pixel by pixel on each
line. So, in one clock cycle we get a new pixel as input and we store the previous one in the
memory. To achieve maximum throughput, the following system was implemented in order
to perform the first computation between the image and the kernel : | Kernelpgeignt/2] x
(Imagewian) + [Kernelywiamn/ QWEI pixels should be loaded in the memory.

Y] : Floor,[] : Ceil

74

Kernel Width

Image Height
Image Height

Image Width Image Width

Figure 2.2: Orange pixels should be loaded in memory in order to begin computations
with 3x3 Kernel

For the input data to be properly stored, the following memory system was designed.
We generated Kernel-Height in number FIFO queues of Image-Widthx Sizeof(Pixel) size
each one. These FIFO queues are connected with each other in a chain as shown in the

next figure.

N Image Width L Kernel Width : M N
|l 1 |l 1

Input: . -
1 Pixel Sliding Window _

I—}M FIFO (RAM) M—r» DFF —» DFF —> mmm —> DFF

L[DID FFo (RaN) [m]_‘—. O e O > wmn e

Kernel Height : N

L[DID FFo (RaN) [ﬂm_. e

Output: ‘ I
MxN Pixels

Figure 2.3: Generic Serial To Parallel Converter. Input Pixels are given as input to the

first FIFO queue. Register Window has size M x N depended on the input kernel
Once the memories are set in the above way, we should take care of their inner com-

munication using their control signals. Each memory in the chain must communicate with

the next and the previous one to store the data.

75

Write Enable signal of the first FIFO is high when the first input valid data appears.
When FIFO#1 stores all the first row of the input image, it enables Read Enable and Write
Enable for the next FIFO in chain. Same happens for FIFO(~1 when communicating
with FIFO?. In order to correctly design our RTL we took care of the bounds of the image.

In a two-dimension convolution we should consider the following restrictions:

e Zero-Pad First Lines of the Image
Assuming that we have stored enough pixels in the memory, we can start compu-
tations and give valid outputs. The first limitation we should take care of is Zero-
Padding on the first lines of the Image. If Linesroqdeq are less than Kernelgeignt
then the remaining Kernelgeight — Linesroqdea lines must be filled with Zeros. (or
any other type of Padding e.g. Mirror-Padding) . These zeros are produced in the
Registers with appropriate control signals generated by the Control Unit in order to
reduce Data Transfer from Memory. When Linesioqdeq = Kernelpeign: there are
enough input pixels to perform convolution and we don’t need to Zero-Pad the first

lines any longer.

e Zero-Pad Last Lines of the Image
In the same way we Zero-Pad the first lines, we should handle the last lines of the
Image. If Linesroqded are more than I'magepeight — [K ernelmeignt /2], in exactly the
same way, control signals are generated to Zero-Pad the next

Imageqeight — Linesroaded lines.

e Zero-Pad Right and Left Limits of the Image
While computing an output pixel that is placed either on the left or on the right
bound of the image a sequence of Zeros should be produced starting from one Zero
to final | Kernely;an/2| Zeros. These signals are produced by the Control Unit and

Zeros are generated into the Registers.

L EMPTY

§

Kernel Height : 3

T

Kernel width : 3

Fifo Depth : 80

e B S

SR S

Kernel Width : 3

13

Kernel Height

Figure 2.4: Zero Padding Example for the first row of an image

76

The above Memory System implements a Serial to Parallel Converter. In each Clock
Cycle there are (Kernelgeight) x (Kernelyiaqn) pixels ready for processing. As mentioned
above in order to compute the first correct output we should wait for | Kernelgeignt/2] x
(Imagew;an) + [Kernelyiqmn /2] Clock Cycles. Each Clock Cycle after this one, data are

well-formatted and ready to be processed in the convolution unit.

2.2.2 Convolution Unit

This is the unit in which computations take place. Kernel in appropriate size is given
as input to the component. We set Kernely;qn = M, Kernelgeignt = N. In this
component MxN multiplications are performed for each output element. Then these

products are given as input to a MxN input Tree-Adder to accumulate the final sum.

Serial Input

l ROM

RAN Kernel Stored

l l

MULTIPLIER
TREE ADD
FORMAT OUTPUT
Conv_Unit
Processing Unit

Output Pixel

Figure 2.5: Baseline Processing Unit Component structure

The Processing Unit contains a RAM memory (S2P) constructed as mentioned before,
the Kernel stored in ROM and the Convolution Unit that performs the computations. The
previous components can be combined in order to construct a layer of the CNN on the
FPGA. Every channel can be fully parallelized, since there are no dependencies between
the layers. In order to achieve this, we must combine the Processing Units constructed in
such a way so as to get the maximum utilization from each layer.

We consider M Input Channels and N Filters and we expect N different Output Feature
Maps. In order to construct this we have to generate our Processing Unit MxN times.
Every channel and filter component is fully synchronized with each other. In each output
channel pixels from each input feature map can be directly added by using a M input
Tree-Adder. After the computation of this sum, Bias of the current channel is added and
the final result is filtered by ReLu or any other activation function. The same happens in
each of the N output channels. In this way the outputs is synchronous generated pixel by

pixel and is forwarded to the next Layer of the network.

7

Figure 2.6: CNN Layer Construction Using Processing Units

78

2.3 Winograd Design Approach

Since FPGA resources are limited there is a need to maximize utilization and maximum
Throughput. Conventional FFT based convolution is fast for large filters, but state of
the art convolutional neural networks use small, 3x3 or 5x5 filters to extract features.
Winograd’s [I9] minimal filtering algorithms for computing m outputs with an r—tap FIR

filter, which we call F(m,r), requires
p(F(m,r)) =m 47— 1

multiplications. Also minimal 1D algorithms F(m,r) and F(n,s) can be nested to form
minimal 2D algorithms for computing m X n outputs with an r x s filter, which is called

F(m x n,r X s).
p(E(m xn,rxs)) = p(F(m,r)u(F(n,s)) = (m+r—1)(n+s—1)

In other words, to compute F'(m,r) we must access an interval of m + r — 1 data values,
and to compute F(m X n,r X s) we must access a tile of (m+r —1) x (n+ s — 1) data

values. Therefore the minimal filtering algorithm requires one multiplication per input.

2.3.1 Winograd Implementation for 3 x 3 Kernel

The standard algorithm for F(2,3), uses 2x3 = 6 multiplications. Winograd docu-

mented the following minimal algorithm:

mi + mg + mg3

d dy ds| |7 T
g2

do dy dy] |7
mo — 13 — My

F(2,3) = [

where

(90 + g2) + 91
) 2

(90 +92) — g1
2

my1 = (do —d2)go ma2 = (di + da
ma = (di —dz)ga mg = (d2 —d1)

The algorithm just uses 4 multiplication and is therefore minimal by the formula

w(F(2,3)) =243 —1=4. It also uses 4 additions involving the data d, 3 additions and
2 multiplications by a constant involving the filter (the sum go + g2 in parenthesis can be
computed once), and 4 additions to reduce the products to the final result. Fast filtering

algorithms can be written in matrix form as :
Y = A"[(Gg) © (BT d)]

Where © indicates element-wise multiplication. For F'(2,3), the matrices are:

79

O NI N= O
— N N= O
0
~
I

o O O =
|
—_

O Nl N—= =
|

9= [90 g1 QQ}T d= [do di da d3]T

A minimal 1D algorithm F'(m,r) is nested with itself to obtain a minimal 2D algorithm,

F(m xm,r xr)
Yy = A7 [[GgGT] © [BTdB]} A

As proven in Lavin-Gray Fast Convolution [19]

Where now g is an r x r filter and d is an (m +r — 1) x (m +r — 1) image tile.

F(2 x 2,3 x3) uses 4 x 4 = 16 multiplications to calculate 4 output products, whereas
the standard algorithm we presented before uses 4 x 3 x 3 = 36. So there is an arithmetic
complexity reduction of % = 2.25. Now we will analyze the extra cost required in com-
parison with the standard convolution algorithm. In order to transform the input data in
the correct Winograd form BTdB 32 simple operations are needed. (additions - subtrac-
tions). The Kernel Transform needs 28 floating point instructions that can be adjusted to
a fixed point notation in our FPGA implementation and the inverse transformation uses

24 simple operations.

In order to design the Winograd Algorithm in FPGA for 3 x 3 Kernel we made the

following changes in our initial standard convolution design.

e First of all, instead of 3 x 3 tiles with stride 1 that are used in the standard design
now we have to work with 4 x 4 tiles with stride 2. In the standard design there were
P = (Imagewiatn) x (Imagepeight) tiles per channel. Now every tile has 2 elements
that overlap their neighboring ones resulting in :

P' = (Imagewiqn/2) % (Imageneight/2) tiles per channel.

Instead of 3 FIFO queues that were used in the previous design now we have to use
4 in order to fit the data required to initiate computations. Another, register in the
sliding Register Window that follows the FIFO chain, must be added in order to
have the 4 x 4 tile available.

e Data sliding from serial to parallel including all the appropriate limitations are im-
plemented in exact the same way as the standard design taking care of the Winograd

peculiarities.

e Input Transform Component : Gets as input a 4 X 4 stride, performs appropri-
ate additions-subtractions and gives an output of the proper form to continue the

computations.

80

e Filter Transform Component : Gets as input the 3 x 3 Kernel and gives as output

the 4 x 4 transformed Kernel.

e Output Transform Component : Transforms the output from 4 x 4 to 2 x 2 with the

appropriate additions.

In order to compare the tradeoff between standard and Winograd Design we should
take into consideration extra operations needed to properly transform data. As mentioned
above in this case the input tiles must have a stride of two both in width and in height.
Since data are obtained serially, in order to design a serial to parallel converter with stride
two in width, we have to wait for one clock cycle to obtain the next valid tile. It is obvious
that in these clock cycles, except from sliding data in the memory, another operation
that gives an output can not be pipelined since there are not valid data available. In
the following section the problem of Winograd component under utilization is further

discussed and a solution is proposed.

serial Input

|

ROM
e Kernel Stored
A v

Transform Input

l

MULTI

Transform Kernel

l

PLIER

v

TREE

ADD

v

FORMAT

l

OUTPUT

Conv_Unit
Winograd Processing Unit

Transform Output

A

¥

Line i

Line i+1

Figure 2.7: Winograd Convolution Unit Structure

81

2.3.2 Winograd Engine Utilization Techniques

Our dominant concern regarding the optimal design of the Winograd component was
to tackle the under-utilization of the Design. Since Stride = 2, while converting the input
data from serial to parallel, there exists dead time between two different strides as shown

in the next figure.

7 8 9 10

13 14 15 16

19 20 2 22 23 24 20 Fal 22 3

Input Image

21 2 23 24

Figure 2.8: Between two valid Winograd tiles there exists an unnecessary one that we

can not make use of

As for the horizontal tile striding, there exists one clock cycle dead time between two
useful 4 x 4 tiles due to the serially obtained data. The same phenomenon is apparent in

the vertical dimension, since we must skip a whole Image Line (Imagew;a pixels).

Image Width CC Image Width CC Image Width CC
() Valid Output

LOAD DATA

()Dead Clock Cycles

Figure 2.9: Winograd Component Under Utilization for 1 Input Channel. Red squares

indicate invalid tiles while the blue the valid tiles.

It is obvious that the component is underutilized, by a factor of 1/4. In order to fully
utilize the RTL design and get the maximum throughput, 4 different input channels should
be processed simultaneously. For this purpose four different RAMs with the same design
logic as before must be used. If we consider four different input channels A, B, C and D,
then all channels must be loaded at the beginning of the loading time period. As it has
been analyzed before, 3 x (Imagew;an) + 3 Clock Cycles are needed to properly start the

convolution operation. After the loading operation, the first two channels A and B are

82

processed consecutively for each Clock Cycle.

To achieve this operation, once enough data is stored in the memory (data are parallely
given to memory for each input channel), by using control signals we feed one tile from
channel A at the first clock cycle and one tile from channel B at the exact following clock
cycle, while the data in the memory of both channels keeps loading. The generation of
Imagew;qin, sums from each channel shows that the first row of both channels is correctly
processed. As it is depicted in Figure 2.9, Image Width dead clock cycles are required in
order to load the next line of both channels A and B. In order to utilize this period of
time, we repeat the exact same operation as before for channels C and D. Channels C and
D are properly loaded during the loading time, so as to be readily provided as input to
the convolution unit. While channels C and D are processed, input data keep flowing in
for each of them, as well as for channels A and B. Once Image Width clock cycles have
passed while operating with channels C and D, I'mageyw ;q:n, outputs for both of them are
generated and the necessary input pixels for each of channels A and B are loaded and
we can perform the next two lines computations with them. We keep repeating the same
component management until all four input channels are processed. Working in this way,
there are no dead clock cycles during the whole Winograd convolution procedure.

e e ! ¢ i - ¢ : ¢ ¢ . - " ¢ " - ¢ ! ¢ < . < -

Image Width CC Image Width CC Image Width CC Image Width CC

(Image Height + 1) x (Image Width) CC

Figure 2.10: Winograd Component Full Utilization for 4 Input Channels

In order to fully describe a convolutional layer using the Winograd architecture, the
following system must be designed. As described above, to fully utilize a Winograd Com-
ponent we have to feed it with 4 different input channels, otherwise it will be underutilized.
As it is seen in Figure 2.6, in the baseline architecture output pixels of each input channel
are popping out synchronized in each Clock Cycle. Output Pixels O(i,j) of each input
channel have to be all added to the bias to form the right output pixel Out(i, j). Consid-
ering the Winograd design, the main problem that occurs is that 4 x 4 output tiles A,B,C
and D of each Input Channel do not pop out of the component in the same clock cycle.

In order to format the correct output map, if we suggest that we are working with
4 input channels A,B,C and D, these 4 channels should be added together and then
transformed to form the correct 2 x 2 output tile. After the Load Time, the first 4 x
4 output tile of channel A is given as an output. In the exact following Clock Cycle
the first output tile of channel B is given as an output. In the following Clock Cycles,
the 274,374 .. (Width/2) output tile of each of channels A and B are given as outputs
consecutively. To properly form the output map we have to add the i" tile of each channel
together. We store the i** tile of channel A in a register and in the next clock cycle we
add the i'" tile of channel B to it. Then we transform this 4 x 4 sum, we store it in a
FIFO memory and we repeat the same procedure for the same row between A and B.
After Image Width CC have passed we have formed W /2 4 x 4 tiles and transformed them

83

to their 2 x 2 equivalent. These 2 x 2 tiles are sequentially stored in the FIFO memory
until we have stored W/2 tiles that correspond to the first row of the Output Map. To
fully form the output channel, channels C and D must be added to the previous sum. So
once channels C and D give valid outputs, we repeat the same additions between them,
we transform them from 4 x 4 to 2 x 2 and then we start getting outputs from the FIFO
queue and add them together. Once they are all added, we receive a valid 2 x 2 tile which
we can pass to the main memory. The same pattern is repeated for the following CCs,
until the FIFO queue its empty. Then we repeat the FIFO load with the next row of
channels A and B for Image Width CC before we give valid outputs again.

To process M input channels with the Winograd component, (m) mod (4) should
equal to 0. M/4 Winograd engines should be generated in parallel. To format correct
output map as described above, M channels must be added together. We generalize the
above pattern with M channels. In each clock cycle, for the first W Image Width CC the
output tiles of M /4 Engines should be added together, transformed and stored in memory.
Once (Image Width/2) tiles are stored in memory, then we add in the exact same way
the (Image Width/2) tiles remaining from the M/2 remaining channels. In Figure 2.5 an

example of 8 input channels is shown.

15t output Tile W/2 Output Tile
of Input Channel M1 OFf Input Channel M1

15t gutput Tile of M4

...Em usé... ..;3 Em

EEE | M5 Mé M7 ME ®EEHN M7 ME LI M5

LOAD M1 M2

LOAD M5

srelmm w e s

EEE | N5 Mé M7 ME ®EEHN M7 ME

NEXT CC

15t Qutput Tile W/2 Output Tile
of Input Channel M6 OFf Input Channel M6

DELAY 1 CC

Sum of Channels l
Store W/2 Tiles Sum of 4 Channels M1,M2,M5,M6 M1,M5,M2,M6
ADD REMAINING
CHANNELS L5t 2x2prd 2x2l L, W2 22
M3, M7 TILE | TILE TILE
IN THE SAME WAY
Wait W CC FIFO QUEUE Store Transform
Add with |
FIFO data — '—
b L L valid 2x2 Pixels
CHANNELS of Final Output Map
M4, M8
WITH M3,M7

Transform

Sum of Remaining
4 Channels

Figure 2.11: One Winograd Output Channel For eight Input Channels

84

FIFO Queue should have capacity of (W/2) x (2 x 2) x (SizeO fData). Consider-
ing one output channel, in order to properly have the correct output, we must wait for
2 x ImageWidth + 3 CC to load data. After these CCs we should wait for Image Width
CCs to store all the added tiles from M/2 channels in FIFO memory. During this period
we don’t have a valid output since data from remaining channels aren’t yet produced.
After Image Width CCs have passed since the generation of the first tile of Channel M1
or M5, the first tiles of M3 and M8 will be produced. So the first valid output will be gen-
erated after Load Time+ImageWidth+[AdditionsCycles] CCs. For the next ImageWidth
CCs ImageWidth/2 in number 2 x 2 tiles will be generated. These #ImageWidth/2 tiles
will consist the first two rows of the output map Image of the output channel. After
ImageWidth CC the first two rows will be completed and then we have to wait again for
ImageWidth CC to perform the same operations between the new tiles of the M input
channels. Concluding, in order to correctly design Winograd for the CNN, we have Im-
age Width CC that we generate 4 pixels/2CC = 2 pixels/CC and Image Width CC that
FIFO loading is happening and we don’t generate valid outputs. We have a total average
throughput of 1 pixel/CC if we consider the intermediate loading Clock Cycles, as in the

Baseline architecture.

Image Width :W
Image Height :H

FILL FIFO EMPTY FIFO (H+1)x(W+1l) CC FILL FIFO EMPTY FIFO N
LOAD DATA ADDITIONS OUTPUT ADDITIONS iale ADDITIONS OUTPUT
STORE IN MEMORY 2X2 TILES STORE IN MEMORY STORE IN MEMORY 2X2 TILES
< >t > < >t | -
W CC W EKC . W cC WKC
Non-Valid Output
k4 A
HENR HENR
- ~
¢ \ I"-. RN / ye.
\ WA Py

% /o
%

Valid 2x2 Tile

\\WIZ’.’.IZT.

= f g s
— ~/ & -JI v ://
r
Row 1 / Y4
L e
| v
Py r
Row 2 A
) & ////
/7 74
/ ////
[/ u [yod
] /: EEn n ol
[] = = s
% ////
I'\ [v v
| S
Row H-1
EEE
Row H
Column 1 Output Channel Column W

Figure 2.12: Output Map Creation Using Winograd

85

In order to properly design a convolutional Layer, components that perform the acti-
vation function operation and max-pooling were created. ReLu is one of the most common
activation functions used in state of the art neural networks. Considering max pooling
(2,2), since we have stride 2 both in horizontal and vertical dimension, we had to imple-
ment exact the same method as we did with Winograd fully utilization. So, in order the
max pooling component to be fully utilized it has to work with 4 input maps at once to
fully utilize the component. We noticed, that in the standard convolution design imple-
mentation in order to perform max-pool since data are obtained one by one in the output
channel, a memory structure to store enough pixels to perform the operation had to be

implemented.

On the other side, in the Winograd design since for each channel we get 2 x 2 output
tiles, these tiles can be directly max pooled and give the maximum pixel out of 4 as output
without using a memory structure. This can be really important when we have to max
pool multiple channels, since for each channel in the standard design to perform a max
pool(2,2) operation, we need a RAM memory consisted of 2 FIFO queues, as implemented
before. For N output channels 2 x N memory units must be generated. Since we try
to use the least possible memory resources out of the device the Winograd approach can
noticeably reduce memory units that are used for max pooling. ReLu activation function
is just checking the sign bit of each pixel and if the pixel is negative, it’s output is set
to zero, otherwise the output is the exact same as the input. In the following figures one

output Layer computation is described.

3 WINOGRAD |
—3 UNIT u .

n Sum of M/4 Register
E= - Channels Delay for 1 cC
g5 N
o = (M/4-1)*16
S ADDERS * N
- > TO ADD - 5
= b ¥
a5 —™ WINOGRAD _| OuTPUT —
5= 3 UNIT > EACH CC
=T A

= Next M/4 Sum Y.

s
_i b [v/c/ Previous M/4 Sum
3 WINOGRAD 2| . L <
— UNIT =]
- 16 ADDERS
|'Bms‘] : —
| 2x2 4x4 Output Tiles sum of M2
I — . Channels
4 ADDERS |<) |4 ADDERS |< —)
A . CONTROL|

UNIT | |TRANSFORM| [24 Operations]

A% FIF0 Queue [/i;;;>
)

Total Additions = 4*M+32
N Channels in Parallel
Total Additions = N*[4*M+32]

Final Output =
Channel Tile

Store Sum of M/2 first
processed channels

Figure 2.13: Winograd Management For M Input Channels

86

Table 2.1: Direct and Winograd Processing Units (w x w Image, 3x3 Kernel)

Direct Winograd Full Winograd
Input Channels 1 1 4
RAM FIFOs (S2P) 3 4 16
DFFs (S2P) 9 16 64
ROMs 1 1 4
Multipliers 9 16 16
Adders 8 56 56
Latency w+2 CCs 2w+3 CCs 2w+3 CCs
Throughput 1pixel/CC 1pixel/CC 4pixels/CC

Table 2.2: Direct and Winograd Convolutional Layers (W xW Image, M channels, 3x3
Kernel, N filters)

Direct Full Winograd
Units N-M N -M/4
- RAM FIFOs (S2P) N -3M N -4M
- DFFs (S2P) N -9M N -4M
- ROMs N-M N-M
- Multipliers N -9M N -4M
- Adders N-8M N-8M - N -15M!
RAMs 0 N FIFO RAM
Adders N-(M-1) N - (4M + 32)
ReLu N 4N
Latency w+2 CCs 2w+3 CCs
Throughput Npixels/CC Npixels/CC

L' N .15M Adders are required in order to online transform
the kernel.

In Table 2.1 and in Table 2.2 an analysis of the exact resources of the Baseline and
Winograd implementations is presentated. Winograd need another 32 additions in order
to transform the input kernel. We suppose that the kernel is given as input 4 x 4 already
transformed offline. Since the kernel is transformed once for the whole procedure on each
engine, it does not need to be transformed online. In case we need the kernel transfor-
mation, we totally have N - (32 4 28) - M/4 = additions in the Winograd component.

87

2.4 Scheduling

The main purpose of this section is to fully analyze scheduling of both main components

we designed and further explore parallelization and pipelining between different layers.

2.4.1 Baseline Architecture

Considering our baseline architecture, for one input channel we will further analyze
the amount of time needed for the system to process a single Image Input. As mentioned
before, in order our serial to parallel converter to store enough pixels to perform convo-
lution and give valid output, | Kernelgeignt/2] X (Imagewiawmn) + [Kernelyiqn/2] clock
cycles are needed. After valid M x N pixels are streamed into the convolution unit, M x N
multiplications are perfmormed parallely in one clock cycle. After each multiplication is
completed M x N outputs have to be added together to calculate the final output pixel.
In order to do so we use a M x N Tree Adder that performs the whole adding operation in
one clock cycle. Any kind of Tree Adder can be freely chosen for better results. After the
sum is ready, final output of the component is formatted checking overflow or underflow
and normalizing the result to fit in the same bandwidth as the input. Format operation
needs another clock cycle to be correctly performed. In order to generate the first valid

output we need :
Cycles-First-Output = | Kernelgeignt/2] x (Imagewian) + [Kernelwiqn/2] + 3

After the first output is generated the above process is fully pipelined. In each clock

cycle another output pixel is generated. To fully process an Input Image we need :
Cycles-Full-Image = Cycles-First-Output + (Imagewian) % (Imagepeight)

We expect that the FPGA will have a continuous stream of images at its input to
classify and we want to perform this classification as fast as possible, as it’s happening in
real time Image classification applications. In software CNN applications, the next layer (7)
waits for the fully output of the previous layer (i — 1), to start processing. In our design,
since resources are available, once layer (i — 1) starts to generate valid outputs, these
outputs can be directly loaded to the next layer and the next layer can start performing
operations since enough input pixels are stored in it. All the operations in one Layer can
be fully parallelized by generating our Processing Unit (InputMaps) x (OutputMaps)
times.

As for the Max-Pooling operation, it can be pipelined with the whole convolution
operation. As stated before, in Baseline convolution design, Max-Pool uses two FIFO
queues. These FIFO queues need Imagew;qaun + 2 CCs to properly load the image and
two clock cycles to compare. After these CCs a valid output is generated per CC. In total

we need :

Cycles-Max-Pool = Imagew;qn + 3 + (Imagewiamn) X (Imagemeight)

88

Totally in order to perform a convolution and a max-pool operation we need:

Cycles-Total = I'magewiamn + 2 + Imagewiawmn + 2 + (Imagewian) X (Imagepeight)

= 2 x Imagewiqn + (Imagewiamn) X (Imagegeignt) +4 CCs

Inage Width x Image Height Clock Cycles

Channel 1 —> LOAD TIME

Channel 2 —> LOAD TIME

Channel 3 — LOAD TIME

Perform
Convolution

Channel M-2 —> LOAD TIME |

Channel M-1 —> LOAD TIME

Channel ¥ —> LOAD TIME

Add M Outputs
RelLu

[Kernel Height/2]*Image

Width cc

Channel 1 — LOAD TIME

Channel 2 ——> LOAD TIME

Channel 3 —> LOAD TIME

Channel M-2 —» LOAD TIME

Channel M-1 — LOAD TIME

Channel ¥ ——>» LOAD TIME

[Kernel Height/2]*Image Width CC

+Output Channel 1

+Output Channel 4

l

[Channel 1
Channel 2
() channel 3

Channel 4

(Image Height + 1)*(Image Width) cc

LOAD TIME L

| Image Width +2 CC
J

TInage Width CC Inage Width CC

Max Pool

Figure 2.14: Clock Cycles for M input Maps and 4 Output Channels. One Max-Pooling

component is required to deal with four output channels.

pooling procedure are pipelined.

2.4.2

Winograd Architecture

This convolution and max-

To start giving valid output tiles on 3 x 3 Winograd, 2xImagey;qn + 3 CCs are

necessary to load enough pixels. As it was explained in previous section, one Winograd

component requires (Image Height + 1) xImagepan, CCs to produce all the correct output

tiles for 4 input channels. These tiles must be all added together to generate the correct

tiles of the Output Channel.

Cycles-First-Output = 2 X I'magewiqn + 4

In order to fully complete the convolution operation in four different input images,

Winograd component need:

Cycles-Four-Images = Cycles-First-Output + (Imagepeight + 1) X Imagewiarn

89

-

As for Max-Pooling operation, as the tiles are of size 2 x 2, we can just use a comparator
without serial to parallel conversion that includes memories and loading time. Max-
Pooling in Winograd can be done in one CC exactly the next CC the 2 x 2 tile is generated.

Comparing time required to fully complete baseline and Winograd design, Baseline needs
Imagey ;qn less clock cycles.

90

Chapter 3

Approximations

3.1 Approximate Hybrid High Radix Multiplier

High radix encodings [41] offer partial products reduction, and as a result, their accu-
mulation requires smallerr trees, leading to energy, area, and/or delay savings. However,
high radix encodings require complex encoding and partial product generation circuits,
negating thus the benefits of the partial products reduction. [20] introduces a hybrid high
radix encoding and its performed approximations for simplifying its circuit complexity are
presented. In this technique the multiplicand B is encoded using the approximate high
radix encoding, generating B, and the approximate multiplication A-B is performed. This
multiplier, can be easily adjusted in different size of multipliers, if we appropriate adjust

the encoding table to generate the encoded part of the multiplicand.

3.1.1 Hybrid High Radix Encoding

Configuration parameter k, is indicating the number of bits to be encoded with the
high radix-2* encoding. We consider that B has length of n bits. B has to be divided in
two groups : the MSB part of n — k£ bits and the LSB part of £ bits. The configuration
parameter, k > 4, is an even number, k = 2m,m € Z, with m > 2. The MSB part is
encoded using the radix-4 (modified Booth) encoding, while the LSB part is encoded with
the high radix-2* encoding.

n—2 n/271

- k

B=—bp 12") 02 = >yl 4yl
i=0 j=k/2

where
Yt = —2by541 + byj + baj 1
and

yémk = —2k71bk_1 + 2k72bk_2 4+ ...+ by

91

The radix-4 encoding included (n—k)/2 digits y; € [0, £1, +2], while yém € [£1,42,43,.
1), +2%=1] correspond to the radix-2* encoding.
Overall, B is encoded with (n — k)/2 + 1 digits. The above hybrid high radix encoding
is characterized by increased logic complexity, due to the high radix values of yé%?k that
are not powers of two, and thus, and approximate version is designed. In order to retain
high accuracy, the radix-4 encoding of the MSB is performed accurately. In particular, in
the approximate encoding, all the values that are not power of two and the k 4 smallest
powers of two as well ,are rounded to the nearest of the 4 largest powers of two or 0, so
that the sum of all the values of the approximate digit g)émk is 0. Only the four largest
powers of two are chosen, so that the radix-2* circuit requires only about double the area

in comparison with the radix-4 encoder.Therefore, B is encoded as follows:

n/2—1

B i
j=k/2

where
y; € {0,+1,+2}
and

g2t € {0, 22k £ok—8 k-2 pok-1)

Table 3.1: APPROXIMATE RADIX-2¥ ENCODING TABLE

R2* Digit Output

yézzk ybmk sign k=1 ok=2 yok-=3 | ok—4
[0, 2F=5) 0 0 0 0 0 0
[2k=5 k=4 4 2k=5) 2k=4 1 0 0 0 0 1
[Qk 4+2k 5 2k 3+2k 4) 2k73 0 0 0 1 0
[2k=3 4 k=4 9k=2 4 ok=3) 1 ok=2 1 0 1 0 0
[2k=2 4 ok=3 ok-1) 2k=1 1 0 1 0 0 0
[-2k—1 2k : —2k=3) —2k=1} 1 1 0 0 0
[~2k— 2 —oh=3 _gk=3_gk—4) | _ogk—2 1 0 1 0 0
[2k 3 2k 4 2k: 4 2k 5) _2k—3 1 0 0 1 0
[-2k—4_gk— 3 —2k=5 2k=1 | 1 0 0 0 1
[-2F=5,0) 0 1 0 0 0 0

Nel
[\

(2k 1_

Table 3.2: ACCURATE RADIX-4 ENCODING TABLE

Input R4 Digit Output
bojt1 b boj—1 yJR4 signj x2; X1
0 0 0 0 0 0 0
0 0 1 1 0 0 1
0 1 0 1 0 0 1
0 1 1 2 0 1 0
1 0 0 -2 1 1 0
1 0 1 -1 1 0 1
1 1 0 -1 1 0 1
1 1 1 0 1 0 0

Using Table 3.1, the output signals sign, x2F~1, x2F=2 x2k=3 +2k=4 define the radix
- 2F digit g)émk. It’s logic equations are the following:

sign = b_1
x 2" = (bp—o - br—z - bp—a + be—2 - bz - b—s) - (bp—s B by—3)
x 273 = by bp—g - (br—s - bp—a - bp—s + bp—g - b—a) + b1 - b - (bp—g - bp—a - bp—s + b—3 - bp—s)
x 2" = b9 - b—g - (bp—1 + bp—a) + bz - bz - (bp—1 + b—a)

x 25 h =Dy g b_g - bp_g + by_1 - by—2 - by—3
In the same way logic equations that define the digit ij‘l, are generated from Table 3.2.

signj = bojq1
x1; = b2j71 @ b2j
x2; = (bajt1 ® b23) - (baj_1 B baj)

This approximate hybrid radix encoding technique is explored with its application to 16-
bit signed numbers, for k = 6, 8, 10, namely, the LSBs are encoded using the radix-64,
radix-256, radix-1024 encoding respectively. As for radix-64 encoding, the bits of B are

grouped as:

R4 R4 R4
Yz Ys Y3

— .~
b15b14b13012011b10b9bgbrbsbsb4b3b2b1bg
—_—— N —

R4 R4 R64
Ys Ya Yo

93

3.1.2 Partial Product Generation

In this hybrid multiplier, these is a reduction of k/2 — 1 partial products generated in
the multiplication A - B. In Figure 3.1 four partial products generators are presented. The

partial products created from each encoding are shown in Table 3.3.

PP

¥ f'gn,:) *1;
a i

(a)

Figure 3.1: i — bit partial product generator based on the (a) accurate radix-4 encoding
and the approximate (b) radix-64, (c)radix-256, (d) radix-1024 encoding. a; : i — bit of

operand A, o; = a;Bsign

Radix Encoding Partial Produxts
Radix-4 0,+A, +2A

Radix-64 0,+4A, +8A,+16A, £324
Radix-256 0,+16A,+32A, £64A,+128A
Radix-1024 0,1+64A, +128A, £256 A, £512A

Table 3.3: Partial Products per Radix Encoding

In addition, the three hybrid high radix encodings create the partial product trees
shown in Figure 3.2. These trees also include the encoding’s correction terms (constant
terms and sign factors). The implementation of the partial product accumulation can be

chosen by the designer.

1 1 1
I I EEEEEEEEEEEEEEEEEEEN | EEEEEEEEEEEEEEEEEEEEN I EEEEEEEEEEESEEEEENEEEEEN

188000000000 RRRRES u} 1988 es SRR RRRIRRS O IeeeseeOeRRIRIRRRERS
lssssssssssssssses O lesssssssssnsssnss O lesssssssssnssssss O
I YT YT RY 1sssssssssessssenss O issssssssssssssses O
lessssssssssssssss O Ilssssssssssssssses O
lsssssssssssssssss O o}

o

(a) (b) (c)

Figure 3.2: Partial product tree based on the hybrid encoding of accurate radix-4 and
approximate (a) radix-64, (b) radix-256 and (c) radix-1024 encoding.M : partial product
bits from the approximate high radix encoding, @: partial product bits from the accurate
radix-4 encoding, M and @ : inverted MSBs of the partial products, [] and O : sign

factors

94

3.2 Data Type Exploration

In a digital hardware, numbers are stored in binary words. A binary word is a fixed-
length sequence of bits. How hardware components or software functions interpret this
sequence of 1’s and 0’s is defined by the data type. Binary numbers, are represented
as either fixed point or floating point data types. Popular Neural Network tools, such
as TensorFlow, Keras or Caffe work by default with 32 - bit Floating point data. Since
memory bandwidth, area on chip and power consumption are our main goals in order to
optimize our design, we further explored data types and the tradeoff between main design
metrics, like accuracy and throughput. General purpose CPUs are not optimized for half
or smaller floating point operations. Neural Network tools, since new applications are
mainly using data types smaller than 16-bit and GPU implementations are performing
them fast enough, are offering user the choice to train the model with half float data. In
our approach, there is no need for the network to be retrained with different data types

since every conversion is taking place in the first stage of the network.

3.2.1 Fixed Point Architecture

In Fixed Point data type architecture, each N-bit length sequence of bits is character-
ized by the word length in bits, the position of the binary point, and whether it is signed
or unsigned. The position of the binary point is the factor by which fixed point values are

scaled and interpreted.

by-1 [by-z |by-3 | mmm [bij;; | bi |bii | mmm | bz | by | bg

MSB LSB

Binary Point

Figure 3.3: N-bit Fixed Point Representation

In Figure 3.1 a binary representation of a generalized fixed point number (signed or

unsigned) is shown. In this format :
e N is the word length in bits
e b; is the ¥ binary digit
e by_1 and by are the locations of the most and least significant bits respectively.

The binary point is shown ¢+ 1 places to the left of the LSB, therefore, the number is said
to have i + 1 fractional bits, or a fraction with the length of ¢ + 1. Fixed point numbers

can be encoded according to the following scheme:

95

X — 27F7“actionalLength > (Stored Integer)

N-2

1
X = (?) X [— 2N*1xN_1 + Z ann:|
n=0

Where, X is the Real Value and b is the fractional length.

Where Stored Integer is the raw binary number, without taking care of the binary
point. Fixed point numbers are indeed a close relative to integer representation. These
two only differ in the position of the binary point. In fact, we can even consider integer
representation as a ”special case” of fixed point numbers, where the binary point is at
position 0. All the arithmetic operations on a computer that can operate on integers, can

therefore be applied to fixed point numbers as well.

Therefore, the benefit of fixed point arithmetic is that they are straight-forward and
efficient as integer arithmetic in computers. We can reuse all the hardware that is built for
integer arithmetic to perform real numbers arithmetic, using fixed point representation.
This is really significant when we approach prototype boards like ASIC or FPGA imple-
mentations, since these boards don’t have built-in processing units for floating point data
types. In other words, fixed point arithmetic comes for free on computers. One of the main
issues we have to take care of when we use fixed point arithmetic, is to properly balance
integer and fractional part of any given number. When binary point position is moved
to the left, the precision of the fractional part of the number is increased, since smaller
values can be represented. Given a constant word length, this has a direct effect in the
integer part of the number. Integer part range is decreased, since less bits are dedicated to
represent it. In exactly the same way, we can increase the precision (range) of the integer
part of the number, having as a consequence to decrease the precision of the fractional
part. In order to apply fixed point arithmetic to Convolutional Neural Networks, the
following steps have to be followed. First of all, the network have to be trained in order
to achieve our desired accuracy. Since the final network weights are obtained, a statistic
analysis of data in a layer should take place. Each layer of the network should be treated
separately. Once the statistical analysis is done, minimum and maximum values of each
layer’s weights and input values are known. Binary point position, should be placed in the
optimal position in order to lose less precision as possible and achieve highest accuracy in

the evaluation test.

96

Training

v

Statistic of Data
in a Layer

v

Search for Binary
Point Position

v

Test Accuracy

-

Convolution

>

Next Layer

Change Binary Point

Figure 3.4: CNN Training with fixed point arithmetic

Fixed point operations in FPGA are way faster than floating point and require less
energy and area to perform. Although fixed point representations have a relatively limited
range of values that they can represent. During our statistical analysis maximum and

minimum possible value that can be stored must be taken into account.

Minimum = —2V -1 /2

Maximum = (2=t —1)/2°

If the numbers we want to represent fit into this range, then we can use fixed point

representation, otherwise floating point notation or word length extension is required.

3.2.2 Floating Point Architecture

Modern applications, especially CNN require precision. A CNN is combined by mul-
tiple convolutional layers. Since the output of each layer is propagated as input to the
next layer, if a precision error occurs at a specific stage of the procedure, it’s most likely
that this error will be propagated and become noticeable in the following layers. Floating
Point Notation is an alternative to the fixed point notation and is the representation that
most modern computers use when storing fractional numbers in memory. Floating Point
is a way to represent very large or very small numbers precisely using scientific notation
in binary. Because of its wide use, the format used to store Floating Point numbers in
memory has been standardized by the institute of Electrical and Electronic Engineers in
IEEE 754. This standard defines a number of different representations that can be used

when storing Floating Point Numbers in memory. This standard defines the following

types:

97

Half Precision : 16-bits of storage

Single Precision : 32-bits of storage

Double Precision : 64-bits of storage

Quadruple Precision : 128-bits of storage

When it comes to storing Floating Point numbers in memory, only three critical parts of

that basic structure are stored: Sign, Exponent and Mantissa.

5 EXPONENT MANTISSA

Figure 3.5: Floating Point Notation

In the IEEE 754 standard single precision float numbers, are divided in three sections.
1 bit S for the sign, 8 bits E for the exponent and 23 bits M for the mantissa. Floating

point numbers can be encoded with the formula:
X = (=1)% x 1.M x 2(F=127)

Where X is the real value number we want to interpret.

In our applications, we try to achieve the smallest memory bandwidth as possible. To
achieve this half float representation or even custom float representations with even smaller
word length in bits are introduced. General purpose CPUs have Floating Point Units
(FPUs) and ALUs in order to perform floating point operations. Considering FPGA, by
adopting a lower bit length data format, the performance of CNN accelerator in terms
of chip area, power efficiency and memory requirement can be improved significantly.
Furthermore, as FPGA lacks FP arithmetic units, low-bit integer (Fixed Point) formats

have been used to reduce memory bandwidth and computational resource requirements.

3.3 Approximations in the Convolution Processing Unit

Considering the Fixed Point model, since FPGA platforms offer multiplication units
that use DSP slices in order to perform multiplication, we can straight forward design the
architecture that was presented in Chapter 2. As described before, in order to perform the
convolution operation, M x N filter has to be multiplied element by element with a M x N
tile of the input Image. In order the multiplies to be performed, in certain platforms that
contain multiply units we can use hard multiplier (*). In prototype boards, we don’t
have this advantage and multipliers have to be designed. The Approximate Multiplier
described in section 3.1, can perform multiply between two N-bit numbers, adjusting the

configuration parameter k depending on the aggressiveness of the approximation.

98

Our first design approach was with hard multiplier, taking advantage of the multipli-
cation unit. Considering that this design can be adjusted in prototype boards, multiplica-
tion operation inside the convolution unit was replaced with the approximate multiplier.
Approx multiplier was compared with modified Booth multiplier in terms of resource uti-

lization and speed.

B N-bits . B N-bits .
MULTIPLY INTEGER FRACTION * INTEGER FRACTION
T nK)-bits o K-bits < (N-M)-bits ¥ wbits
B : 2*N-bits -
RESULT INTEGEEI FRACTION
< -) bits e (K#M)-bits >
< N-bits .
TRUNCATE INTEGER FRACTION
ROUNDING FINAL RESULT

Figure 3.6: Fixed Point Multiplication

Considering Fixed Point Notation, when we multiply 2 N-bit integer numbers with
fraction K and M-bits, result with double the word length 2*N-bits occurs. New fraction
will consist of (K+M)-bits and new integer part of [2*N-(K+M)]-bits. Since a common
binary point is selected for all input data and another one for all weight data, the same
procedure will be repeated for all multiply operations in a single layer. After the numbers
are multiplied, the result has double the length in bits, significantly increasing the memory
bandwidth of our design. In order to keep memory requirements low, we adjust the result
to the same bit-length as the initial numbers pre-multiplication (N-bits). In order to decide
which bits are going to be truncated the statistical analysis done before is investigated.
We find the maximum Integer value and we keep those integer part bits that can represent
it to prevent overflow. Then with the remaining bits to reach N-bits, we keep the most
significant fractional bits in order to maintain as much precision as possible. Before finally
truncate the remaining fractional bits, a rounding method takes place to maximize the

precision of the truncated result.

99

5 1 EXPONENT_1 MANTISSA_1 * 5 2 EXPONENT_2 MANTISSA 2

-
1-bit 5-bit 10-bit
L1
S_RES gmm S_1 @ 52 BIAS o 2%-1 =15
L1
MANTISSA_RES e MANTISSA 1 * MANTISSA 2
N 20-bit - N 10-bit - - 10-bit g
EXPONENT RES _-{ EXPONENT 1 wmms BIAS }+{ EXPONENT 2 e BIAS }+ BIAS
NORMALISE INCREASE/DECREASE TRUNCATE MANTISSA ROUND CONSTRUCT
MANTISSA EXPONENT REMAINING BITS MANTISSA RESULT
S RES FINAL EXP FINAL MANTISSA
1-bit 5-bit 10-bit

Figure 3.7: Floating Point Multiplication

For Fixed Point Notation, multiplication is way more complicated. The three different
parts of the number, have to be treated separately at first in order to compute Man-
tissa_Res ,Exponent_Res and Sign_Res. Final result sign can be decided instantly since
the MSB of each number dedicates it’s sign. Bias should be subtracted from both expo-
nents in order to get the true exponent from each one and then they should be added
together plus the bias to get Exponent_Res. Mantissas should be multiplied to construct
the 20-bit Mantissa of the multiplication result. Since the result of the multiplication of
two 10-bit mantissas has the length of 20-bit and we want a standard length of 16-bits
Floating Point format, the Mantissa_Res should be adjusted in a way that it fits to 10-bit
and lose minimum precision. When mantissas are multiplied, hidden bit should be used.
In this way we have to multiply HiddenBit. MANTISSA_1 and HiddenBit. MANTISSA 2.
Result consists of 22-bits. In order to normalise this result, we start from the MSB and
we find the first ’1’. If the first 1’ is left from the binary point, in order to normalise we
have to shift the mantissa left and the exponent is increased by one each time we shift
left. If the first '1’ is right from the binary point, then the mantissa have to be shifted
right and the exponent is decreased by one each time the mantissa is shifted right. When
mantissa is properly normalised, the exponent has it’s proper value and mantissa has to be
truncated in order to fit in 10-bits. So we count 10 bits from the first ’1’ and we truncate
the remaining bits leading to the LSB. Mantissa now has to be rounded using a rounding
technique in order to avoid as less precision loss as possible while we truncate. Finally if all
the above steps are followed, final result of the multiplication is stored in 16-bits without
losing precision. Same technique is used for single and double precision float formats with

the proper adjustments considering lengths.

100

On the Fixed Point notation hard multiplier is straight forward replaced by the ap-
proximate hybrid multiplier described in 3.1. Considering the Floating Point notation, in
order to apply the approximate multiplier we had to build our own component according
to IEEE 754 standard floating point operations and replace the mantissa hard multiplica-
tion with the approximate one. Since our target was small Floating Point formats (smaller
than the half one) and the approximate hybrid multiplier was designed for bigger word
length, the resources and energy benefits for mantissas with length less than 10-bit was
not significant, although it offers gains compared to the modified booth algorithm.

When dealing with Floating Point values, the main issues appeared were that due
to the different exponent values of each real number, all decimal points must be aligned
to the same exponent before we add their mantissas (including hidden bit). After the
addition the final result must be again normalised in exact the same way as we did in
multiplication. All this procedure increases the logic complexity of the hardware. In order
to decrease this complexity and gain advantage of approximations in the floating point

notation, Block Floating Point notation was designed.

3.4 Block Floating Point

In order to overcome the main disadvantages that occur from the increased complexity
of the Floating Point operations, a Block Floating Point [6] engine was constructed. The

design can reduce memory and off-chip memory requirements with small accuracy loss.

3.4.1 Block Floating Point Arithmetic

A N-data block represented with the BFP format consists of two parts: N mantissas
and one exponent shared by the N numbers in a block. The process of the BFP conversion
is defined as follows. Assuming that X is a data set containing N FP numbers, we can

express the set as
X = (Z1, ey Tiy ooy o) = (Mg X 20 L mig X 292 ompy X 2°V)
We define the largest exponent in X as the block exponent ¢,.
€z = Maxe; €{1,2,..,N}

Where m; is the mantissa and e; the exponent of number X; in data set X. After we
derive the common block exponent €., all the numbers in the data set have to be expressed
with the same exponent. In order to do so the mantissa number m; is right shifted by d;

bits, where d; = €, — ¢;. Thus, the BFP format of X, is expressed as follows.

101

Data Set X of N-Floating Point Numbers Data Set X, of N-FP Numbers With Common Exp

X1 51 el my 51 My
Xz 57 ez mz 52 Mp2
Bleck Exponent
A3 53 e3 m3 53 Mp3
u u u
]]]
u u u
xN SN en iy SN MpN

Figure 3.8: Block Floating Point Notation

€ €
Xb = ((L‘bl, voey Thiy ...,be) = MbX X 2% = (mbl, ooy Mgy ...,mbN) X 2°®

Where,
my; = m; >> d;

is the BFP formatted mantissa.

Using this format, all the operations inside the CNN engine (multiplications, additions)
can be done exclusively with the mantissas by updating the exponent before the final result.
Block Floating Point is a method used to provide an arithmetic approaching floating point
while using a fixed-point processor. Emulating floating-point behavior on a fixed-point
processor tends to be very cycle intensive, since the emulation routine must manipulate all

arithmetic computations to artificially mimic floating-point math on a fixed-point device.

102

3.4.2

In Figure 3.7 the data flow of the BFP convolution in one output channel is shown
[25]. We suggest that input pixels are in a Floating Point 32-bit format as the network
The input Pixels, Weights and
Biases are first converted to their 16-bit floating point equivalent and stored in the DDR3

is trained in such formats in popular CNN platforms.

memory. We consider one common exponent (maximum) per output channel. In Figure
3.7 we have 16 Input Maps and one common exponent is found for these input maps. If
we have W x L Input Map size and 16 Input Maps then we have a block of 16 x W x L
numbers as input. From these numbers, we find the maximum exponent and we properly

right shift the Mantissas according to d; in order to properly represent the stored value.

Convolution Operation using BFP Notation per Layer

Pixels 32-bit

l

FP32 to FPl6

Pixels
16-bit

Weights 32-bit

l

FP32 to FPlE

Weights
16-bit

Biases 32-bit

l

FP32 to FPl6

Biases
16-bit

32-bit l

16-bit |

— EXTERNAL MEMORY DDR3
Pixels Weights Biases
16-bit 16-bit 16-bit
FP16 to BFP FP1le to BFP SHIFTER —
. Weight Weight T
Pixel Pixel Mantissa Exponent
Mantissa| Exponent 8-bit 5-bit > ADD

8-bit 5-bit > -
e
=
3
¥ =
g
MULTIPLY mam MULTIPLY b

o =
3 5 £
3 16-bit l 16-bit l 5 g
ACC =aa ACC £
3
20-bit i 20-bit l =

Y
ACCUMULATOR

5-bit i

Convert Back to FP16 and store in memory

Figure 3.9: Block Floating Point Convolution

103

Properly Shifted Bias To the common exponent

The shift operation to convert to BFP format is taking place in the FP16 to BFP
component. In order to perform the BFP multiplication operation between one input

pixel a and one weight b, the following calculation takes place.

a=mi x 2% (InputPizel)
b=m! x 2% (Weight)

a-b=(mi x 2%) x (mf x 2%) = 2¢ates (mg - mf)

If a and b have N elements then,
N

a-b=">> (mfx2%) x (mf x 2%) = 2T x (mf - mf) = 2%F% x (m® - m")

i=1

b is computed entirely in fixed point arithmetic. Every element of

The product m® - m
the input Data Set has the common exponent ¢, and every element of the Weight Data
Set has the common exponent €,. As it was explained in Figure 3.5 the exponents are
added and the mantissas are multiplied. So in each Conv_Unit for each 3 x 3 tile of the
input image 9 fixed point 8-bit multiplications are performed between the Input mantissa
and Weight mantissa. To prevent overflow, the accumulated result is extended in 20-bit
format. The exact same operation takes place in every of the sixteen Conv_Units. This
operation is performed parallely for each input map. Once the 9 products are added
together, then we have to add all the 16 channels and the bias to produce the output map
of the channel. In order to properly adjust the bias to the exponent, we use a shifter that
gets as input €, + €, and shifts the bias left or right to have the same exponent. The
final sum of every channel and the bias adopt a 32-bit format. The 32-bit mantissa is
normalised and truncated in order to fit in 8-bit format and the exponent is increased
or decreased. The output value is converted back to Floating Point 16-bit format and
stored in memory. Same operation is taking place for every output channel of the layer.
Once every output channel of the layer is completed, the maximum exponent of these is
registered as the Block Exponent of the next layer.

The accuracy loss in this architecture mainly derives from the BFP2FP and FP2BFP
conversions. Truncation and rounding are two common methods to handle shifted bits.
Truncation mode introduces a biased error. This error will accumulate between layers
and eventually produce an obvious deviation. Because the bit length is limited, the value
that FP number can accurately represent is finite. Between the two adjacent FP numbers,
there must be an infinite number of real numbers that cannot be accurately represented
by FP numbers. In the IEEE 754 standard, these numbers are approximated by nearest

FP numbers. We used the round-to-nearest (RN) mode to minimize the error.

104

Pixels 32-bit Weights 32-bit

i l

FP32 to FPi6 FP32 to FPi6
Pixels Weights
16-bit 16-bit

SERIAL TO PARALLEL FP1le to BFP

MxN |I lI MxN
Pixels FP16 | \ Ih'eights Hba:_LI]Etissas
11 -
| I'.-; ~ 7

:-’\rf i \v{

FP16 to BFP

Weights
Exponent

h 4
S
(=)
m
=
4

Window

H¥N bt Exponent
Mantissas

Y

MxN MULTIPLIERS |
MxN Productsi 16-bit

(MxN-1) ADDERS

l 20-bit

Convert Back to FP16 £ S

Output pixel

Result Common Exponent

Figure 3.10: MxN Input Kernel Transformed to BFP Notation. MxN Input Pixels
share the same exponent in each convolution operation. Exponents are added and final
result in FP16 format.

3.4.3 BFP Convolution Per Window

In the first approach, a common exponent from all the input maps was obtained. Since
different input maps in most cases describe different features extracted, there might be
diversities between the values that each map contain. If these values diverge by a significant
margin, a common exponent to describe all of them could lead to precision loss since a big
exponent might be inappropriate to preserve accuracy in really small values. To face this
problem, a common exponent per convolution window was introduced. A block exponent
is chosen from the input M x N Kernel. Each Clock Cycle, after the Loading Time of
the Serial To Parallel Converter, M x N Input Pixels window is generated to perform
convolution operation. From this window, we find the maximum exponent, we set it as
the M x N Data Set Block Exponent, mantissas are properly right shifted and 8-bit Input
Pixels Mantissas are Multiplied with the 8-bit Weight Mantissas. The products generated

by the input pixels with weights multiplication, share the same exponent as described in

105

previous section and can be directly added together to calculate the final sum. Then the
20-bit final sum with the exponent obtained by the addition of the two exponents, format
the FP16 result.

Comparing this method to the method described in previous section, we lose minimal
accuracy and we do not have to implement a DDR3 memory to store data between layers.
In this method output data can be directly pipelined to next layer without using memory,
since maximum exponent is found online. In the first method if we had M input channels
and Image Size W x L, we obtained a block exponent from M x W x L values compared
to M x N. Since these M x N windows are neighboring, these values will not decline and

a common exponent will properly describe all of them in most cases.

106

Chapter 4

Evaluation

In this chapter, the results of our work will be presented. These results were obtained
from the multiple different architectures we proposed. Using the components described
in the previous chapters. we created the convolution core of three Convolutional Neural
Networks and we measured how the classification accuracy was affected while multiple

approximation techniques were combined together.

4.1 Test Setup

The convolution units described in previous Chapters, were generic considering data
size, data type and kernel size. Hence, these units can be properly combined according
to the target device restriction, in order to construct a Convolutional Neural Network of
our choice. In order to test resources utilization, throughput and accuracy deviations, we
examined three different CNNs.

e CIFAR 10

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000
images per class. There are 50000 training images and 10000 test images. The dataset
is divided into five training batches and one test batch, each with 10000 images. The
test batch contains exactly 1000 randomly-selected images from each class. The training
batches contain the remaining images in random order, but some training batches may
contain more images from one class than another. Between them, the training batches
contain exactly 5000 images from each class. In the following figure classes in the dataset,

as well as 10 random images from each class are presented.

107

airplane % %
automobile E o H R
o il WE
o EEuEE
deer E m - R .
w EE
frog 9

horse !..EH’.E.“
ship auﬂﬁgmlﬂ
ok T e I 8 A S

Figure 4.1: CIFAR 10 CNN dataset presentation

We used the following CNN model for the CIFAR-10 dataset classification.

Max-Pool
(2,2)

64 Filters

_ -> g

32 Filters 64 Filters

L : _>.” _>

32 Filters|

Max-Pool
(2,2)

(3,3) (3,3) (3,3) (3,3)
(3,32,32) (32,32,32) (32,32,32) (32,186, :16) (64 16, :16) (64,16,16)
Output Fully |
Lahels [‘ Connected < = g
(2,4096) (64,8,8)

Figure 4.2: CIFAR-10 Model
e MINIST

The MNIST database (Modified National Institute of Standards and Technology database)

is a large database of handwritten digits that is commonly used for training various im-
age processing systems. The database is also widely used for training and testing in the
field of machine learning. It was created by “re-mixing” the samples from NIST’s original
datasets. The creators felt that since NIST’s training dataset was taken from American
Census Bureau employees, while the testing dataset was taken from American high school
students, it was not well-suited for machine learning experiments. Furthermore, the black
and white images from NIST were normalized to fit into a 28x28 pixel bounding box
and anti-aliased, which introduced grayscale levels. The MNIST database contains 60,000
training images and 10,000 testing images. Half of the training set and half of the test set
were taken from NIST’s training dataset, while the other half of the training set and the
other half of the test set were taken from NIST’s testing dataset.

108

L
LS
L=
L=
o
(e

-—
—

-
—-—

S N 7P Y
= e M e N X W N

V\

L w3 - o

~3
o =— & Y L e e

e o N O oty
N % ~) & A R W N~ O
<
R N
R o 7. Y CU N I N |
o0 s N oy R W NN~ ©
= og ~ & On R W N~ O
~ mg N e Gy e W
e e S N
—© G T & 31 £ W N - O
I e A T T N CR \
2 @ N o1 X W &= -~ O
~8 %% N s G o= W N

-
- g) & "
- g S Oy o K N B e O

N S N3 Sy M LW e N O
~N o — o~
N S Ny S

Figure 4.3: MNIST Dataset Presentation

The follwoing CNN model was used for the MNIST dataset classification.

. |12 Filters | ™ |24 Filters | /™ ‘ Max-Pool ‘

(3.3) — (3.3) (2,2) Flatten (,;’|

Connected

(28,28) (12,26,26) (24,24,24) (24,12,12) (7,3456)

Figure 4.4: MNIST Model

e Ships in Satellite Imagery

Satellite imagery provides unique insights into various markets, including agriculture,
defense and intelligence, energy, and finance. New commercial imagery providers, such as
Planet, are using constellations of small satellites to capture images of the entire Earth
every day. This flood of new imagery is outgrowing the ability for organizations to man-
ually look at each image that gets captured, and there is a need for machine learning and
computer vision algorithms to help automate the analysis process. The aim of this dataset
is to help address the difficult task of detecting the location of large ships in satellite im-
ages. Automating this process can be applied to many issues including monitoring port
activity levels and supply chain analysis.

The dataset consists of image chips extracted from Planet satellite imagery collected
over the San Francisco Bay and San Pedro Bay areas of California. It includes 4000 80x80
RGB images labeled with either a ”ship” or "no-ship” classification. Image chips were

derived from PlanetScope full-frame visual scene products, which are orthorectified to a

109

Fully —
: 1~ Labels

Qutput

3 meter pixel size. The ”ship” class includes 1000 images. Images in this class are near-
centered on the body of a single ship. Ships of different sizes, orientations, and atmospheric

collection conditions are included. Example images from this class are shown below.

Figure 4.5: Sample of Images that were classed as ”ships”

The "no-ship” class includes 3000 images. A third of these are a random sampling
of different landcover features - water, vegetion, bare earth, buildings, etc. - that do not
include any portion of an ship. The next third are ”partial ships” that contain only a
portion of an ship, but not enough to meet the full definition of the ”ship” class. The
last third are images that have previously been mislabeled by machine learning models,
typically caused by bright pixels or strong linear features. Example images from this class

are shown below.

Figure 4.6: Sample of Images that were classed as ”non-ships”

The following network model was designed to classify the Ships in Satellite Imagery
dataset. Since another project in Myriad 2 required images to have dimension that is
power of two, the Ships in Satellite Imagery dataset images dimensions were changed from
80 x 80 to 128 x 128 without affecting the classification accuracy.

110

RGB input
(3x128x128)

15t Layer 20 Layer 3rd Layer
(32x64x64) (16x32x32)
™ |32 Filters| —/ | (2x2) I~ |16 Filters /> | (2x2) —™, |64 Filters
1 (5x5) 1~ | Max Pool| .7 (3x3) 17 | Max Pool| (3x3)
4th Layer
Classification ‘ Fully pd Flatten . |32 Filters| (2x2)
Ship or Not ship .~ | Connected | ™ J (3x3) 7 | Max Pool
(8192,7) (32x16x16) (64x16x16)

Figure 4.7: Ship Detection CNN model

The board used to setup the Engines wass Zyng-7020. The Zyng-7000 family offers the
flexibility and scalability of an FPGA, while providing performance, power, and ease of use
typically associated with ASIC and ASSPs. The range of devices in the Zyng-7000 family
allows designers to target cost-sensitive as well as high-performance applications from a
single platform using industry-standard tools. While each device in the Zyng-7000 family
contains the same PS, the PL and I/O resources vary between the devices. The Zyng-
7000 architecture enables implementation of custom logic in the PL and custom software
in the PS. It allows for the realization of unique and differentiated system functions. The
integration of the PS with the PL allows levels of performance that two-chip solutions (e.g.,
an ASSP with an FPGA) cannot match due to their limited I/O bandwidth, latency, and
power budgets.

Xilinx offers a large number of soft IP for the Zyng-7000 family. Stand-alone and Linux
device drivers are available for the peripherals in the PS and the PL. The Vivado®) Design
Suite development environment enables a rapid product development for software, hard-
ware, and systems engineers. Adoption of the ARM-based PS also brings a broad range
of third-party tools and IP providers in combination with Xilinx’s existing PL ecosystem.
The inclusion of an application processor enables high-level operating system support,
e.g., Linux. Other standard operating systems used with the Cortex-A9 processor are also

available for the Zyng-7000 family.

111

4.2 FPGA Results

LUTs | FFs | BRAM | LUTRAM | DSP | BUFG | Max Freq | Power
Baseline 327 | 539 1 3 12 1 151.05MHz | 0.18TW
Architecture
Winograd 1506 | 1087 | 1.5 4 16 1| 147.058MHz | 0.264W
Architecture
Table 4.1: Winograd Without Kernel Transform (We suppose the Kernel is transformed
once offline) and without output transform (4x4 tiles output)
From Table 4.2, we can extract that the k = 6 approximate multipliers result in 12%
logic resource gain over the exact multiplier without DSP, the & = 8 in 30% and the
k=10in 42%.
Table 4.2: Resources of Convolution Components after the Serial to Parallel Adjustment
Baseline MAX POWER
LUTs | FFs | BRAM | LUTRAM | DSP | BUFG | FREQ
3x3 (MHz) (W)
Fixed 16
327 539 1 3 12 1 151.05 0.187
Hard Multiplier with DSP
Fixed 16
Hard Multiplier w/o DSP 1659 892 1 11 0 1 125.78 0.267
Fixed 16 Radix-4 1941 | 3132 1 147 0 1 139.86 0.267
Fixed 16 Radix-64 (k=6) 1464 | 2222 1 127 0 1 148.58 0.248
Fixed 16 Radix-256 (k=8) 1198 | 1861 1 101 0 1 149.4 0.211
Fixed 16 Radix-1024 (k=10) 982 1482 1 98 0 1 133.34 0.196
Float 16 Vivado IP 1926 | 4402 1 47 25 1 140.84 0.24
BFP per Layer 699 1177 1 15 9 1 149.5 0.179
BFP per 3x3 Window 1895 | 2017 1 197 9 1 130.63 0.216
BFP per Layer no DSP 1688 | 1678 1 15 1 147.05 0.222

112

Table 4.3: Resource Requirements of Ship Detection CNN for Fixed16 Baseline Approach

Layer 1 Layer 2 Layer 3 Layer 4
Input Channels 3 32 16 64
Channel Size 128 x 128 64 x64 32x32 16x 16
Filters 32 16 64 32
Conv. Units (Table 4.1) 96 512 1024 2048
Kernel RAMB36s 0.5 2.5 4.5 8.5
Adder Trees 11 3-In 1 32-in 2 16-in 1 32-in
ReLu Units 11 1 2 1
MaxPool. Units 3 1 1 1
Output RAMB36s 59 8 8 4

4.2.1 Ship Detection CNN

If we consider Ship Detection CNN (tha to perigrapsw sto prohgoumeno section) that
is comnsisted of 4 Convolution Layers of 32, 16, 64 and 32 filters. Target device is ZC702
Evaluation Board. According to Table 4.2 we set up our device in a way to get maximum
utilization out of it. Since we have 220 DSP slices available, we calculate our convolution
components to get the maximum utilization out of them. Each convolution component
use 12 DSP slices. So 220/12 = 18 components with DSP. Considering LUTs and FFs
utilization we have : 327 x 18 = 5886 LUTs and 539 x 18 = 9702 FFs. There are
53200 — 5886 = 47314 remaining LUTs and 106400 — 9702 = 96698 FFs. Since DSP
slices are no more available, we use the non-DSP approximate k = 6 components in order
to build our engine. From Table 4.2 each convolution component use 1198 LUTs and
1861 FFs. There are 47314 remaining LUTSs, 47314/1198 = 39.49 = 39 components. In
order to fully utilize the board, we generate 16 components with DSP and 16 components
without DSP. Considering resources utilization, when these units are generated they use :
16 x 327+ 16 x 1198 = 24400 LUTs and 16 x 539+ 16 x 1861 = 38400 FFs. As for memory
requirements, in order to decrease the memory bandwidth of this design, we make the
following adjustment in the convolution units designed. Initially, each convolution unit
used 3 18Kbit Block RAMs = 1.5 36Kbit BRAMs.

Adjustments in Serial to Parallel Converter

In the initial design, Kernelgeigh FIFO queues where chained connected as it was
described in Chapter 2. The outputs of these FIFOs were fed into the Kernelyeignt X
Kernelyiqan register window. We swapped the row of the Register Window and the FIFOs
Queues. By making this swap, Input Data first pass from the Register Window and then
they are stored in memory, instead of sliding from the memory to the register window as

it happened in the initial design.

113

Initial Design

Sliding Window

Image Width 1
Input
Pixels FIFO(RAM) » DFF —>» DFF — DFF
~”
1
-
=
=
Ly FIFO(RAM) » DFF —» DFF —> DFF 2
-
@
£
L
=
Ly FIFO(RAM) » DFF —> DFF —» DFF
L

Kernel Width = 3

Design Adjustment

Sliding Window
Image Width

Input
p e — 1
pixels > DFF —> DFF ——> DFF FIFO(RAM)

—» DFF —> DFF —> DFF —— > FIFO(RAM) —

L—» DFF ——> DFF —> DFF Not Used

Figure 4.8: Adjustments in Serial To Parallel Converter. One less FIFO memory is

required in this design modification.

With this Serial to Parallel adjustment the number we have to generate one less FIFO
queue in each unit while we do not have any drawback in performance or resources uti-
lization. Data in the third raw of the sliding window are not going to be reused so they do
not need to be stored. With this design, two 18KBit Block RAMs have to be generated in
each convolution unit leading to one 36KBit BRAM for each one. The same swap in serial
to parallel converted is implemented in the Max-Pool component, reducing the required
memory for each channel from one 36Kbit BRAM to one 18KBit BRAM (0.5 36K). In
order to generate 32 parallel convolution units, we need 32 x 1 = 32 36KBit BRAMs.

114

Table 4.4: Sources of the Xilinx Zynq Z-7020 SoC

FPGA chip on
Xilinx Zynq Z-7020 SoC

Logic Cells 85k
Look-Up-Tables
53200
(LUTs)
Flip-Flops 106400
DSP 220
36Kbit BRAM 140

Now we have to take care of extra components that we need in order to properly set
up the CNN on the board. We need ReLLu and Max-Pooling components on each output
channel and adders to properly add input channels. In order to properly calculate needed
resources we implement 32 Convolution Components. First Layer of the network has 3
input channels and 32 Filters. Each 3 of the input channels have to be convolved with the
proper Kernel and then be summed together to properly form an output channel.

First Layer
To finish with the first layer, 3 x 32 = 96 Input Maps must be processed in total. In the

way the 32 Engines are set, as its shown in Figure 4.1 10 output channels are generated
in parallel. In order to finish with the first layer 32 Output Channels must be generated.
Following the above scheme, in the first iteration we finish with the first 10 channels. To
deal with 10 output channels, we need 30 convolution units. With the two remaining
convolution units on the Engine, we process two input channels of the 11*" filter and we
produce their partial sum. We store these outputs in the memory, and we repeat the
exact same operation with the following 10 filters, so we have 21 fully completed output
channels and one of the three channels processed for another filter ready in total. In the
third iteration, 10 more output channels are produced in the first 30 convolution units and

274 convolution units. In total, in

two more input channels are processed in the 31%¢ and 3
three iterations 32 output maps are generated. As described in Chapter 2 Max-Pooling
component can operate with 4 Channels to be fully utilized. So to produce 11 output
channels at maximum (2" and 3" iteration), we need 11 ReLus and 3 Max-Pooling Com-
ponents. The 3" Max-Pooling component will deal with 3 channels instead of 4. In order
the channels to be added together by 3 we need 10 Adder-Trees of 3 and one adder of two.
That results to 10 x 2 4+ 1 = 21 Adders of 2 inputs. Max-Pool and ReLu are pipelined to
the convolution operation. Once data are Max-Pooled, they can be stored in Memory. To
store the first layer in memory, we need : 32 x 64 x 64 x 16 — bit = 2097152 bit. ZC702
has 36Kbit BRAMs. We need 2097152/36000 = 59 BRAMs to store the whole output
of the first layer in memory. Totally after the first channel we have 32 BRAMs from the
convolution units and 59 BRAMs to properly store the output data. That concludes to

totally 91/140 BRAMs that the device offers.

115

3 Input
Channels
RGB

{

Kernel Input

Channel #11
Relu

Filter #1
Convolution
Unit #1
Convolution > pdder | Relu | Channel #1
Unit #2 »| Tree | |
Bias
Convolution
Unit #3
Filter #2|
Convolution
Unit #4
Convolution > pdder | e | Channel #2
Unit #5 3| Tree | [Max
Pooling
T 2,2)
Bias
Convolution \
Unit #6
BRAM
[aet Channel #3 Vel ~
L elu -
™} R Store Output -
e Relu | Channel #4 Channels of
e i | Each Iteration
I in RAM
Convolution i -
Unit #28 — |
Channel #9
.« — ReLu
Max
- Pooling
Convolution > adder | ot |Channel #10 (2,2)
Unit #29 »| Tree | |
Bias
Convolution
Unit #30
- -
Filter #11 Filter #11 J 7
Convolution Convolution Adder
Unit #31 Unit #31 Tree
Adder | :
Tree |
Filter #22 .
Convolution Convolution ‘ - .
Unit #32 Unit #32 ‘
Iteration 1
Store Channels 1,..,10 Filter #22|
and 2/3 of Channel 11
Convolution
Unit #31
Tteration 2 Adder Adder
Store Channels 12,...,21 Tree Tree

Complete Channel 11
and store 1/3 of Channel 22

Convolution
Unit #32

[Channel #22
Relu

1,
[

Store Channles 23,.

and

Iteration 3

0232
complete Channel 22

Figure 4.9: First Layer of Ship Detection CNN. 32 Convolution Engines are set in

parallel. Three iterations are required to fully complete the first Layer. In First Iteration

Channels 1 to 10 are generated and stored in memory while Channel 11 needs one more

Input Channel to be processed in order to be completed. In each of the following two

iterations, 10 new output Channels are genqated in parallel and the other two are semi

processed to totally form 32 output channels.

Second Layer

In the second Layer, 32 Input Maps of size 64 x 64 are fed to its input. Second Layer
has 16 Filters, so 32 x 16 = 512 convolution operations have to be calculated. In this
layer, in contrast to the first layer instead of adding outputs by 3, now we have to add
them by 32. In each pass for the second layer, we suppose that 32/33 convolutions units
are used. In each pass of the second layer one output channel is generated. In order to
add the results of each one of the 32 Input Maps, we need one Adder-Tree of 32 numbers.
This adder tree is consisted of 31 adders of two. Since one channel is produced in each
pass, we use one uder-utilized by a factor of 1/4 max-pooling component for this layer. In
order to complete second layer we need to pass the Engine 16 times. To store the output
data of the second layer in memory we need 16 x 32 x 32 x 16 — bit = 262144bit. In terms
of BRAMs we need 262144/36000 = 8 BRAMs.

Third Layer

In the third layer, 16 Input Maps of size 32 x 32 are given as input. Third layer has
64 filters, so 64 x 16 = 1024 convolution operations have to be calculated. In order to
properly add the 16 Input channels, using 32 convolution units in parallel we need two
Adder-Trees of 16 inputs each one, leading to 2 x 15 = 30 adders of two. Since two channels
are generated in each pass of the engine, we use one Max-Pool component under-utilized
by a factor of 1/2. In order to fully complete the third layer that has 64 output channels
we should use the Engine 64/2 = 32 times. Considering memory requirements, to fully
store the output of the third channel, we need 64 x 16 x 16 x 16 — bit = 262144 bit, leading
to eight 36kBit Block RAMs.

Fourth Layer

Fourth Layer, has 32 Filters and 64 Input Map channels fed to its input. 32x64 = 2048
convolution operations have to take place in this layer. Since 64 Input channels have to
be summed together and we use 32 convolution components, we have to partially compute
the sum of the 32 first input channels, store it in the memory and then add it to the sum of
the following 32 channels that are generated in the following pass in order to properly form
an output channel. One output channel is generated every two passes of the engine, so in
order to generate 32 output channels, we need 2 x 32 = 64 passes. One Adder-Tree for 32
Numbers is used in each pass (31 Adders of two). Starting from the first pass, we store
16 x 16 x 16 — it = 4096bits output in memory. This output has to be summed with the
output of the exact following pass to form a valid output channel. During the procedure
of calculations that take place in the second pass, the serial outputs produced using an
adder of two inputs, are added together and stored in memory. For example, the first pixel
from the sum of the first 16 channels that is stored in memory, is directly added to the
first output generated in the second pass and replace in position in memory. To properly
store the output of the fourth layer, we need 32 x 16 x 16 x 16 — bit = 131072/36000 = 4
BRAMs.

117

Engine Requirements

In order to implement the design described in the previous paragraphs, we have to sum
up the required resources. We need to generate 32 Convolution Units, 31 Adders of two, 3
Max-Pooling components and 11 ReLus. In terms of Memory, each Max-Pool component
need 2 BRAMs to deal with 4 channels in parallel. As it’s shown in Table 4.5 Max-Pool
component has 240 LUTs and 343 FFs. So 3 x 240 =720 LUTs and 3 x 343 =1029 FFs.

Table 4.5: Resources of Extra Components in Convolution Layer

LUTs | FFs | BRAM
Max-Pool | 240 343 | 0.5/Channel
ReLu 10 16 0
Adder-Tree | 496 496 0

Table 4.6: Total Resources to design the Engine on ZC-702

LUTs | FFs | DSP | BRAMs
32x Convolution Units | 24400 | 38400 | 192 32
31 Adders of Two 496 496 0
3xMax-Pool 720 1029
11 xReLu 110 176 0
TOTAL 25726 | 40101 | 192 38
TOTAL(%) 48.35 | 37.68 | 87.27 27.14

Another issue we have to take care of is managing the input weights. In this particular
CNN there are 32 x 3+ 16 x 32 + 16 x 64 + 64 x 32 = 3680 different 3 x 3 Kernels. Each
Kernel is consisted of 9 pixels with 16-bit length each of them. So in memory requirements
we totally need 3680 x 9 x 16 — bit = 529920/36000 = 15 BRAMSs to store every Kernel
in ROM. ROM in an FPGA can be implemented either as Block RAM or LUTRAM. In
order the Engine to properly operate, the following memory system was designed. There
is a need to store the input RGB 3 x 128 x 128 Image to broadcast it to the 32 parallel
engines. That leads to 3 x 128 x 128 x 8 — bit = 393216bits/36000Bit = 11 RAM Blocks.
To reduce latency, we use 32 18Kbit RAM Blocks in order to store the Input Image. Con-
sidering the big memory, we use 128 RAM Blocks of 16Kbit. After the data of each layer
are produced, are stored in the big memory and after their usage of the next layer free
the space they retained in memory. Considering the input weights, instead of using 15
Block Rams we can reduce the number of BRAMs and use LUTRAM instead to a pro-
portion of 5 BRAMs and the equivalent amount of LUTRAM to save these data. Accord-
ing to this analysis we totally need 16(Input Data)+64(Layer Output)+32(Convolution
Units)+6(Max-Pool)+15(Kernel Storage)=133 36Kbit RAM blocks. We use 133/140 =
0.95% of the device memory blocks.

118

Time Required to Properly Operate

As it was analyzed in Chapter 2, each convolution unit needs (W + 2) CCs to start
giving valid outputs. After this loading time, each clock cycle we have a valid output. Our
Input Image has size 128 x 128. In order to fully process a single input image, we need :
Trmagerageios = 2% 128434128128 = 16643 CCs. In order to properly add these outputs
by 3 we need 2 extra CCs and 1 extra CC for the ReLu activation. Once these values have
passed from the ReLu activation, they have to be Max-Pooled. As was described before,
Max-Pool component can deal with four different input channels at once. After the first
[W+2+1(Multiplies)+4(Tree— Add) +2(Add—3— Channels)+1(ReLu)] = W+10 CCs
we have valid outputs. These valid outputs are stored in Max-Pool FIFO memory. In order
to operate, Max-Pool need to Load W 44 pixels. Once these pixels are stored, in each CC
one valid-output from one of the 4 channels is generated. In order to properly Max-Pool 4
channels, W x (W +1) CCs need to pass. This procedure can be pipelined after the ReLu
activation. After W + 10+ W 4 4 Pixels we have the first Max-Pool operation. Max-Pool
need 2 CCs to operate. Totally after 2W 4 14 4 2 we have the first valid Max-Pool output
that is stored in memory. The first valid output for the 128 x 128 Image is generated at
128 + 10 = 138 CCs. The first valid output for the max-pool component is generated at
138 +128 +4+2 = 272 CCs. After this point 128 x (128 +1) = 16512 CCs need to pass in
order to perform convolution operation on the whole image. As a result, to finish with one
iteration of the first layer, 16512 CCs have to pass. As it was described before, we need 3
iterations to finish with the first layer. In total, we need Timerqyer, = 3 X 16512 = 49536

CCs to complete the operations on the first layer and store it in memory.

We repeat the same calculations for the other layers. The second layer gets as input
an Image with size (W/2) x (WW/2) = 64 x 64. The difference from first layer, is that now
we have to add 32 values in a 32-input Adder-tree. This operation needs 5 CCs. First
valid-output of ReLu in :(W/2) +2+1+4+ 54+ 1= (W/2) + 13 CCs. Max-Pooling for
one channel, need (W/2) x (W/2) CCs to be fully completed after the loading time. So
we have Timermagessnss = (W/2) +13 + (W/2) +4 + 24 (W/2) x (W/2) = 4243 CCs for
one iteration of layer 2 to be completed. In order to complete layer 2 we need to repeat
the same procedure 16 times, so we totally have: Timerqyer, = 16 X Timermagesanes =
16 x 4243 = 67408 CCs. As for third layer, we we have an input image with size :
(W/4) x (W/4) = 32 x 32. Considering data adding, we have to add data by 16. We need
4 CCs and 2 16 input Adder-Trees. Fiirst —Output pmagessyse = (W/4)+2+1+4+4+1 =
(W/4) + 12 CCs. ReLu is operating with 2 channles at once now. Timermagesoyso =
(W/4) +12+ (W/4)+4+2+ (W/4) x (W/4+4 1) = 1106 CCs. We need 32 iterations to
complete third layer. Timerayer; = 32 X TiMermagessyzs = 32 X 1106 = 35392 CCs. Now
on fourth layer, we add 32 data at once, but we can’t perform Max-Pool before the next
iteration’s data are generated. In this case, 32 iterations that only perform Convolution
and ReLu and other 32 that perform Convolution, ReL.u and Max-Pool will take place. If
we suppose the first iteration, we need (W/8)+2+14+4+5+1 = (W/8)+13 CCs to have

119

valid outputs from ReLu. These outputs are stored in RAM. To finish the first iteration,
we totally need Time pyi— Nomaz = (W/8)+ 13+ (W/8) x (W/8) = 285 CCs. Once the first
iteration is completed, we start generating valid ReLu output after (WW/8) + 13 CCs again.
These data generated from the second iteration, are directly added to the data stored in
memory from the first iteration. So we need 1 extra CC to add 2 Values together and pass
them to the Max-Pool component. Now in exaclty the same way as the previous layers,
we need Timepyji—paz = (W/8)+ 13+ (W/8)+4+2+ 1+ (W/8) x (W/8) = 308 CCs. As
a result we have the time to fully complete the final convolutional layer : Timerqyer, =
32 X Timepy—NoMazr + 32X Full—Maz = 32 X 285 + 32 x 308 = 18976 CCs. Finally from
the previous analysis, we can extract the final time our Engine needs to perform all the

computations of the convolutional layers of this specific CNN.

TimeTotal = TimeLayerl + TimeLayerg + T'imeLayerg + TimeLayem

Timerota = 49536 + 67408 + 35392 + 18976 = 171312CC's

If we want to find FPS, we suppose that clock frequency ~ 125MHz, so clock period
=~ 8ns. So Timeryq = 171312 x 8ns = 1.370496ms.

1s

FPS= ——— =
5 1.370496ms 730

120

4.2.2 Winograd Implementation

In this section, the equivalent implementation of fixed point 16 with Winograd convo-

lution units will be further analyzed. Each Winograd component can deal with 4 input

channels.

Table 4.7: Resources of Winograd Convolution Components with Output Transform and

Kernel Transform

MAX
Wi d POWER
lgoira LUTs | FFs | BRAM | LUTRAM | DSP | BUFG | FREQ W
* iz | W
Fixed 16
1096 | 1027 2 4 16 1 147.06 0.264
Hard Multiplier+DSP
Fixed 16
L 1985 | 1488 2 4 0 1 123.45 0.302
Hard Multiplier no DSP
Fixed 16 Radix-64 (k=6) 2090 | 4168 91 1 131.57 0.277
Fixed 16 Radix-256 (k=8) 1791 | 3616 132 1 129.8 0.266
Fixed 16 Radix-1024(k=10) 1460 | 2817 132 1 128.2 0.256
BFP per Layer 699 1177 1.5 15 16 1 149.5 0.280
BFP per Layer no DSP 1688 | 1717 6 15 0 1 91.32 0.310

Following the same extrapolation technique as we did with Baseline (Normal) convolu-
tion, we calculate the total resources to set up the CNN on our target board. Considering
DSP resources, each Winograd convolution unit requires 16 DSPs and we have 220 DSP
slices available. We can generate 220/16 = 13 Winograd components with DSP at max-
imum. As it was described in chapter two, each Winograd component can compute four
different input channels. By that means, if 13 components are generated, 52 channels can
be computed in parallel. In order to compute 32 Input Channels at each time using Wino-
grad, we must generate M /4 = 32/4 = 8 components. Considering resources utilization,
8 x 1096 = 8766 LUTs, 8 x 1027 = 8216 FFs and 128 DSPs are used. As it was analyzed
in Chapter 2, in order to produce valid outputs for the first layer, considering we have 3
input channels and 32 filters, we have to properly manage the channels and the filters to
fully utilize the engine. In order to properly deal with one channel output, we need 16
adders of two inputs to add two consecutive 4 x 4 tiles, 24 to transform from 4 x 4 to
2 x 2, 4 adders of two in order to add two 2 x 2 tiles and other 4 to add the bias to the 4
elements produced to the output. Summed up, we need 48 adders of two in total for each
output channel. In Layer 1 that 10 output channels will be produced in parallel, there
is a need of 10 x 48 = 480 adders. In order to store the first sums of tiles a buffer with
size (W/2) x 2 x 2 x 16 — bit = 64 X 2 x 2 x 16 — bit = 4096bits needs to be implemented
for each of the 10 output channels. Considering Channel 11 as it happened with baseline
architecture, the 11" channel will be 2/3 generated so it needs 16 adders of two and 24

121

to transform. That leads to 40 adders of two. Channel 11 does not need to be stored in
buffer but in main memory. As for Max-Pooling, since output tiles are 2 x 2, they can be
straight up compared without serial to parallel converter and find the maximum of each 4
elements. 4 ReLus have to be generated for each output channel since outputs are 2 x 2,
leading to 44 ReLus for Layer 1. Totally we need 480 adders of two, 11 Max-Pooling com-
parators of 4 elements and 44 ReLus. In Layer 2, we need N x [4 x M + 32] = 160 adders

of two, 4 ReLus for each output tile and one Max-Pooling component. Following the same

Table 4.8: Total Resources to Design Winograd Engine on ZC-702

LUTs | FFs | DSP | BRAMs

8xWinograd Units | 8766 8216 128 48
8x Control Units ~2000 | ~2000

480 Adders of Two | 7680 7680

11 xMax-Pool 620 620
11xReLu 440 440
TOTAL 19506 | 18956 | 128 48
TOTAL(%) 36.67 | 17.815 | 58.18 34.28

technique, we analyzed Layers 3 and 4 and we found that the maximum components we
need in order the Engine to operate properly are at maximum: 480 adders of two, 11
Max-Pooling components and 11 ReLus. In addition, for each Winograd Component to
deal with 4 input channels simultaneously there is a need of a control unit for each com-
ponent that consumes about 300 LUTs and FFs. Finally as it was firstly mentioned in
our theoretical analysis, LUTs utilization is reduced by W% = 23.97%. DSP uti-
lization is significantly reduced, since instead of 36 multiplications, only 16 multiplications

are performed for each 2 x 2 output.

122

Layer 1 Layer 2 Layer 3 Layer 4
- - -
Filter i Filter i Filter i Filter i
Filter i = Ch i Filter i Filter i Filter i
Filter i Filter i Filter i Filter i
-
Filter i+l Filter i Filter i Filter i
= Ch i
FCh i+l
Filter i+l Filter i Filter i Filter i
Filter i+l Filter i Filter i Filter i
-
Filter i+2 Filter i . Filter i Filter i
HCh i+2 " :
Filter i+2 Filter i * Filter i Filter i o
- .
.
| . n n . n
. 1/2
™ [] - ch 4 u u M of h
| |] 5 |
.
- .
Filter i+ Filter i . Filter i+l Filter i
Filter i+8 =Ch i+8 Filter i . Filter i+l Filter i
Filter i+8 Filter i Filter i+l Filter i
-
Filter i+9 Filter i Filter i+l Filter i
FCh i+l
rCh i+3
Filter i+9 Filter i Filter i+l Filter i
Filter i+9 Filter i Filter i+l Filter i
-
Filter 11 or 22 2/3 Filter i Filter i+l Filter i
ch 11
Filter 11 or 22 J’" 22 Filter i Filter i+1 Filter i
J -
1sis<23 1lsisl6 1sis63 1sis32
With Step 11 With Step 1 With Step 2 With Step 1
1=j=32

Figure 4.10: Winograd Engine with 32 parallel units for each Layer. 3, 16, 32 and 64

iterations to finish each layer respectively. Filter Management for each Layer is presented.

Since Winograd convolution components deal with 4 x 4 input tiles, 3 FIFOs are
required (after the serial to parallel adjustment) in order to feed input data to the com-
putation component. For 32 Input Channels, we need 32 x 1.5 = 48 36Kbit RAM Blocks
instead of 32 that were used in Baseline Architecture. We implement the same memory
system, as we did in Baseline. In total we need 48 + 16 + 64 + 15 = 143 RAM blocks.
Since RAM blocks are over-utilized, as it was mentioned before, since Kernels are stored

in ROM memory, we can use available LUTRAM in order to store 1/3 of the input Kernel

With Step 0.5

there. After this modification, 138/140 RAM Blocks (98.57%) are used.

123

(2 i iterations for each j)

4.3 Floating Point Architecture

As it was analyzed in Chapter 3, floating point architecture offers higher precision that
is really significant in multi layer Convolutional Neural Networks. This higher accuracy

comes at the cost of higher computational and logical cost.

4.3.1 Vivado Floating Point Architecture with IPs

The first approach, was to implement a convolution unit with Vivado Floating Point
operations IPs. In order to do so, for each unit, 9 floating point multipliers and 9 floating
point adders are necessary. In order to add M Input Channels to produce an output
channel M —1 floating point adders need to be generated. Considering resources utilization,
for Baseline architecture, as it is presented in Table 4.2, each convolution unit for one Input
Channel consumes 1926 LUTs, 4402 FFs and 25 DSPs. With the same extrapolation
technique we followed in previous Engines, we generate 220/25 = 8 convolution units in
parallel. In the worst case that all of the eight input channels are added together, we need
an Adder-Tree of 8 inputs. That leads to 7 Adders of two. Each Floating Point adder
consumes 131 LUTs, 304 FFs and 2 DSPs.

Table 4.9: Total Resources to Design Floating-Point Engine on ZC-702

LUTs | FFs | DSP | BRAMs
8xFloating-Point Units | 15408 | 35216 | 200 32
8xFP Adders of two 917 7680 16 0
1 xMax-Pool 240 343 0
3xReLu 30 30 0 0
TOTAL 16595 | 40569 | 216 33
TOTAL(%) 36.67 | 38.13 91 23.57

Following the same technique with Fixed Point architectures, we calculate iterations
required for each layer to be fully completed. Memory requirements are exactly the same
with fixed point 16-bit architecture. We use exactly the same memory system. Totally,
164+-64+33+15 = 128/140 (91.42%) 36Kbit RAM blocks are used. As for time analysis,
if Tyog is the time needed to operate 128 x 128 convolution and max-pooling of the first

layer, then we can extract the total time :

1 128 1 64 1 128 1 32 1 64 1 128
Tos = —— Thog — —2= — 222 292 _
64 2 ; 32 9 4 16 5 1 = 3

Trorar, = 12 X Thog + 64 x Tgs + 128 x T39 + 256 x T
TTOTAL = (12 +32+ 32+ 32) X T128 ~ 108 x T128

According to the time analysis done in the previous chapter for Fixed Point architecture,
it is obvious that since we reduced the parallel convolution units from 32 to 8 (/8), that

frames per second (FPS) are decreased by a factor of four.

124

4.3.2 Block Floating Point Architecture

Since the architecture that used Floating Point Xilinx IPs had the restriction of high
resource utilization, we use Block Floating Point architecture as described in Chapter 3 in
order to increase maximum throughput for the target device. Each BFP convolution unit
consumes 699 LUTs, 1177 FFs and 9 DSPs. We follow a similar architecture as the Fixed
Point Architecture. If we generate 32 convolution units in parallel, 16 with DSP and 16
without DSP then 16 x 699+ 16 x 1688 = 38192 LUTSs, 16 x 1177416 x 1678 = 45680 FF's
and 16 x 9 = 144 DSPs are used. Since each output channel share a common exponent,
floating point addition can be thought as an integer addition of 8-bit mantissas for each
input channel. Thus, according to the analysis for Fixed-Point we need 31 Adders of two

8-bit integers.

Table 4.10: Total Resources to Design BFP Engine on ZC-702

LUTs | FFs | DSP | BRAMs
32xBFP Units 38192 | 45680 | 144 32
31x8-bit Adders of two 248 248
3xMax-Pool 720 1029
11xReLu 110 176
TOTAL 39720 | 47133 | 144 38
TOTAL(%) 74.66 | 44.29 | 65.45 27.14

Iterations needed to fully complete all the layers of the network, are exactly the same

as the fixed point architecture. In this way, we can extract:

Trorar =3 X Tiag + 16 X Tga + 32 x Ty + 64 x Tig

TrorarL
Trorar = (34 8+ 8 +8) x Tiog = 27 X T1o8Tr0T AL rp = fpp

The main advantage of the Block Floating Point Architecture is that with small sacri-
fice in precision we can maintain high Frames Per Second (FPS) as we were working with

fixed point arithmetics.

125

4.3.3 Place & Route of complete networks in XCZ7020

The results in previous section were extracted via extrapolation of the resources we
obtained from the implemented results of each component. Vivado was used to properly
set up the whole convolution engine and validate if the specific designs can be routed and
placed in Zyng-7020 Evaluation Board. The proposed techniques were successfully routed
and placed.

Table 4.11 shows the results of 4 ‘Proposed’ implementations with either floating or
fixed point arithmetic. They are compared to ‘Typical’ implementations using only de-
fault multipliers. The typical FP16 CNN achieves maximum parallelization only 8x due
to increased cost and constraints of the Xilinx IP FPU (it relies on DSPs). The typical
FP16 implementation achieves similar throughput as our mobile GPU test Jetson Nano.
However, with the proposed BFP architecture we achieve 4x higher throughput with neg-
ligible accuracy loss. For fixed point techniques the proposed Winograd implementation

led to a 40% reduction in terms of LUTSs retaining the same percentage in DSP usage.

Table 4.11: Final CNN performance with proposed techniques (Zyng-7020)

configuration | paral. | LUT DSP RAMB MHz | FPS
Typical Float.Point 8 3% 91% 78% 125 182
Prop. Block.F1.Pt. 32 | 65% 100% 95% 125 | 730

Prop. B.F1.P.WGD. 8x4 68% 59% 95% 124 724
Typical Fixed.Point 32 69% 58% 95% 118 689
Prop. Fixed.Point 32 60% 54% 95% 124 724
Prop. Fix.P.WGD. 8x4 41% 58% 95% 112 654

(loss is ~0.2% between configurations)

4.3.4 Comparisons to other devices

Compared to other competitive embedded devices, the proposed implementation achieves
10x better performance/Watt than Jetson Nano GPU (204 FPS via tensorflow/cuda ac-
celeration) and 2.5x better performance/Watt than Myriad2 DSP (105 FPS via C/C++
coding). Zynq’s power consumption is 2.5W for f clk =125MHz (plus 1W for the board).
We also note that the Fully Connected layers of our CNN are executed by the processor
ARM Cortex-a9 of Zynq (1.2 ms to fully execute all the FC layer operations), in parallel
to the CNN’s convolutions, via AXI stream PS-PL communication, in only lmsec (such
time is masked during batch processing). The acceleration achieved is 438x vs Zynq’s
ARM and 6.5x vs a single-threaded desktop Intel core i7-8700.

126

4.4 Accuracy Evaluation

In order to test all the architectures we described in the previous section, we made

modifications in Evangelos Petrogonas CNN Engine in C. This Engine was initially de-

signed to perform the convolution operation in C for Float data and weights. We made the

appropriate modifications to this engine in order to operate with different types of data

(Fixed Point, Custom Floating Point Notations) and to operate approximate multiplica-

tions instead the ”classic” multiplication operator (). The main purpose is to calculate

the classification accuracy of each CNN and how the different approaches made to the

Engine affected it. The following models that are going to be presented were initially

trained with TensorFlow Keras with single precision float typical notations.

Table 4.12: Accuracy Tests for Different Fixed Point (FP) Architecture

TensorFlow | FP 16 | FP 16 k=6 | FP 16 k=8 | FP 16 k=10
Ship Detection 96.8% 96.8% 96.75% 96.65% 93.6%
MNIST 98.45% 98.45% 98.45% 98.45% 98.1%
CIFAR-10 75.5% 75.5% 75.35% 75.1% 1%
% - B —
97 1
?‘%
E %
g
% 4
g4 41— Ship Detection
—w= MMNIST
0 6 8 10

Configuration Parameter k

Figure 4.11: Classification Accuracy is affected by configuration parameter k

Table 4.13: Accuracy Tests for Different Floating Point Architectures

Float 16 | Float 14 | Float 12 | Float 16 Appr. | Float 14 Appr. | Float 12 Appr.
Ship Detection 96.8% 96.3% 95.4% 96.8% 96.5% 96.7%
MNIST 98.45% 97.5% 97.15% 98.45% 98.1% 97.2%
CIFAR-10 75.5% 75.45% 70.3% 75.5% 75.4% 70%

127

As mentioned in Chapter 3, multiplication in floating point notations, is a multipli-
cation between Mantissas with the appropriate adjustments to the exponent. The Ap-
proximate Multiplier was initially designed for 16-bit length numbers. This multiplier
was adjusted to 10-bit and 8-bit multiplication architectures with configuration parameter
k=4. This modification does not offer a significant reduction in hardware utilization, since
only one Radix-4 (Modified Booth) multiplier is replaced. Accuracy using k=4 in 8-bit
and 10-bit formats was not significantly reduced. Another type of approximate multiplier
that is especially designed for smaller length numbers could be used in order to further

reduce resources utilization in small floating point format multiplications.

Table 4.14: Accuracy Tests for Block Floating Point Architectures

10-bit Mantissa

8-bit Mantissa

BFP 10-bit with Approx

Ship Detection 96.8% 96.7% 96.7%
MNIST 98.45% 98.45% 98.3%
CIFAR-10 75.5% 75.3 % 75.25%

The k = 10 approximate was not appropriate for our range of numbers. As it is
analyzed in [4I] when the number B encoded is in [-1500, 1500] RAD1024 exhibits RED
(Relative Error Distance) more than 10%. Given that the majority of the input/output
values between different layers of the specific CNNs were in the range [—2, 2] their integer
value was in the intervals that RAD1024 exhibits a significant error. To properly integrate
the £ = 10 multiplier in a CNN design, we should carefully place it in parts of the network
that the integer representations of the fixed point values are out of this interval. This can
be done at the first layers of a given network and it could offer high logic resources gains
compared to the accurate multiplier. Weights can not be encoded by this multiplier, since
the majority of their values are close to zero.

The maximum accuracy loss is observed for the CIFAR-10 fixed point with configura-
tion parameter k=10 (4.5%). All the other proposed architectures maintain high accuracy.
In any other proposed architecture the highest accuracy loss is 0.2% considering fixed point
(with maximum k=8) and 1% for custom floating point architectures (5-bit exponent, 6-bit

mantissa).

128

Chapter 5

Conclusion

This thesis main goal was to design generic components that can fully construct a
desired CNN in a FPGA board. The usual approach in CNN inference today, is to compress
the model using pruning or quantization techniques. These techniques can significantly
reduce the model’s size and address the over-fitting problem, but it is necessary to re train
the network after the compression modifications. The main advantage of our design is for a
given network with standard 8/16/32-bit formats, to reduce resources utilization without
modifying the original model and hence further accelerate the network’s performance and
reduce consumption.

The engine in its current form, to efficiency use approximation multiplier without seri-
ous drawbacks in accuracy supports data with length greater than 16-bit. Given that the
engine is fully generic considering data length and type, the constructed engine without
multiply approximations can properly operate for any given data type and length but with-
out using approximations. The combination of the Winograd convolution algorithm with
the approximate multipliers further reduced the resources utilization making the engine
even more efficient, offering a margin to parallelize even more convolution components to
increase throughput or save resources to use them in other operations. As for floating point
notations, the block floating point arithmetic is already considered as an approximation
but we can use multiplication approximation too to reduce resources utilization. More
specifically with the proposed Winograd fixed point engine, we achieved a logic resources
reduction of 40% with a slight DSP increase of 7% compared to the baseline approach.
As for Block Floating Point, the baseline approach could only be implemented on ZC702
with 100% DSP utilization to parallely operate 32 engines. With the proposed Winograd
BFP approach, we managed to reduce DSP utilization by 42% and only increase the logic
resources by 4%. The Winograd BFP can offer quadruple throughput compared to the
Typical Floating Point engine that is constructed by Xilinx floating point IPs. These

proposed solutions degraded classification accuracy by 0.2% at maximum.

The engine constructed achieved 10x greater performance/Watt compared to Jetson
Nano GPU and 2.5x better performance than Myriad 2 DSP. Compared to a high end
desktop CPU (Intel i7 8700) it achieved 6.5x better performance and 438x compared to

129

Zyng’s ARM.

5.1 Future Work

e Extend the approximations in more operations inside the CNN
As it was mentioned in introduction, there is a huge amount of research in the field of
approximate adders. In the baseline convolution component a significant percentage
of LUTs utilization is used for add/sub operations. The basic Vivado adder operation
can be replaced with an appropriate approximate adder that fulfils the design’s goals.
The main goal is to maintain a high classification accuracy but depending on different
engines, adders that satisfy even more criteria must be examined. For example in a
certain problem we may need to target low power consumption and in another project
we may target low LUT utilization. The selection of the appropriate approximate
adder is up to the user and the optimization problem and every adder can be used
since it does not highly downgrade the classification accuracy. The main purpose of
approximate computing, is to insert approximate operations in almost every aspect
of the design. In this direction, approximate components that perform the ReLu
and Max-Pooling operations can be designed. Since memory was a main obstacle in
our approach to further increase component parallelizations, modifications leading

to a more efficient memory system can be implemented.

e Evaluate Approximations on Different Type of Networks
The approximate multiplier used in CNNs, can be tested in different types of state
of the art neural networks, such as Recurrent Neural Networks (RNN), Long-Short
Term Memory Networks (LSTM) in order to evaluate how their behavior is affected

when one or multiple types of approximations are inserted in their structure.

e Explore more approximations algorithm to also exploit small numbers
Since network compression and quantization is a common technique to reduce a
model’s size, the engine designed should support any CNN model that is given as
input. In order to support small data sizes and offer significant advantages, an
approximate multiplier that is proper for small bit length numbers must be designed
or inserted in the current design. For example, with the selection of an appropriate
multiplier, the user of the engine can get advantages for every type of model even
with 7-bits or less in weights representation. This multiplier can be used in floating
point notation when the mantissas of two numbers are multiplied. Considering
single precision float (23-bit mantissa), the current multiplier used in this thesis
(High Radix Hybrid Multiplier) is adequate. Although, for half precision floating
point format (10-bit mantissa) or for custom representations (e.g. 14-bit with 8-bit
mantissa) another multiplier or a combination of approximate adders multiplication
should be implemented. Once the proposed approximate engine design fulfils all

these requirements, the user can implement any type of compressed network with

130

custom data lengths and types, taking advantage of the throughput increase and

resources reduction.

131

Bibliography

1]

D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, Q. Cheng, G. Chen, J. Chen, J. Chen, Z. Chen,
M. Chrzanowski, A. Coates, G. Diamos, K. Ding, N. Du, E. Elsen, and Z. Zhu.
Deep speech 2: End-to-end speech recognition in english and mandarin. 12 2015.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. ArXiv, 1409, 09 2014.

L. Bai, Y. Zhao, and X. Huang. A cnn accelerator on fpga using depthwise sepa-
rable convolution. IEFE Transactions on Circuits and Systems II: Ezpress Briefs,
65(10):1415-1419, 2018.

W. Chen, J. Wilson, S. Tyree, and K. Weinberger. Compressing neural networks with
the hashing trick. Compressing Neural Networks with the Hashing Trick, 04 2015.

P. Diiben, J. Schlachter, Parishkrati, S. Yenugula, J. Augustine, C. Enz, K. Palem,
and T. Palmer. Opportunities for energy efficient computing: a study of inexact

general purpose processors for high-performance and big-data applications. 03 2015.

D. Elam and C. Iovescu. A block floating point implementation for an n-point fft on
the tms 320 ¢ 55 x dsp. 2003.

D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra. Approximate
multipliers based on new approximate compressors. IEEE Transactions on Circuits
and Systems I: Regular Papers, 65(12):4169-4182, 2018.

B. Grigorian, N. Farahpour, and G. Reinman. Brainiac: Bringing reliable accuracy
into neurally-implemented approximate computing. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), pages 615626,
2015.

K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and H. Yang. Angel-
eye: A complete design flow for mapping cnn onto embedded fpga. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 37(1):35-47, 2018.

133

[10]

[11]

[12]

[13]

[14]

[17]

18]

[19]

[20]

V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-power digital signal
processing using approximate adders. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 32:124-137, 01 2013.

L. C. D. Hadi Esmaeilzadeh, Adrian Sampson. Architecture support for disciplined
approximate programming. In ASPLOS X VII: Proceedings of the seventeenth interna-
tional conference on Architectural Support for Programming Languages and Operating
Systems, page 301-312, March 2012.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770-778, 2016.

J. Huang, J. Lach, and G. Robins. A methodology for energy-quality tradeoff using
imprecise hardware. In DAC Design Automation Conference 2012, pages 504-509,
2012.

H. Jiang, J. Han, F. Qiao, and F. Lombardi. Approximate radix-8 booth multipliers
for low-power and high-performance operation. IEEFE Transactions on Computers,
65(8):2638-2644, 2016.

S. Kala, B. R. Jose, J. Mathew, and S. Nalesh. High-performance cnn accelerator on
fpga using unified winograd-gemm architecture. IEEFE Transactions on Very Large
Scale Integration (VLSI) Systems, 27(12):2816-2828, 2019.

Khaing Yin Kyaw, Wang Ling Goh, and Kiat Seng Yeo. Low-power high-speed
multiplier for error-tolerant application. In 2010 IEEFE International Conference of
Electron Devices and Solid-State Circuits (EDSSC), pages 1-4, 2010.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-

lutional neural networks. Neural Information Processing Systems, 25, 01 2012.

P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for power with an un-
derdesigned multiplier architecture. In 2011 24th Internatioal Conference on VLSI
Design, pages 346-351, 2011.

A. Lavin and S. Gray. Fast algorithms for convolutional neural networks. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4013—
4021, 2016.

V. Leon, K. Asimakopoulos, S. Xydis, D. Soudris, and K. Pekmestzi. Cooperative
arithmetic-aware approximation techniques for energy-efficient multipliers. In Pro-
ceedings of the 56th Annual Design Automation Conference 2019, DAC 19, New
York, NY, USA, 2019. Association for Computing Machinery.

134

[21]

[22]

[24]

[28]

[31]

V. Leon, S. Mouselinos, K. Koliogeorgi, S. Xydis, D. Soudris, and K. Pekmestzi. A
tensorflow extension framework for optimized generation of hardware cnn inference

engines. In MDPI Technologies, volume 8, pages 1-15, 2020.

V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi. Approximate hybrid high radix
encoding for energy-efficient inexact multipliers. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 26(3):421-430, 2018.

V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi. Walking through the
energy-error pareto frontier of approximate multipliers. IEEE Micro, 38(4):40-49,
2018.

X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji. High-performance fpga-based
cnn accelerator with block-floating-point arithmetic. IEEFE Transactions on Very
Large Scale Integration (VLSI) Systems, 27(8):1874-1885, 2019.

X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji. High-performance fpga-based
cnn accelerator with block-floating-point arithmetic. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 27(8):1874-1885, 2019.

M. Lin, Q. Chen, and S. Yan. Network in network. 12 2013.

C. Liu, J. Han, and F. Lombardi. A low-power, high-performance approximate mul-
tiplier with configurable partial error recovery. In 2014 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1-4, 2014.

W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi. Design of approxi-
mate radix-4 booth multipliers for error-tolerant computing. IEEE Transactions on

Computers, 66(8):1435-1441, 2017.

M.-T. Luong, H. Pham, and C. Manning. Effective approaches to attention-based

neural machine translation. 08 2015.

Y. Ma, Y. Cao, S. Vrudhula, and J. Seo. Performance modeling for c¢nn inference
accelerators on fpga. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(4):843-856, 2020.

H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas. Bio-inspired imprecise
computational blocks for efficient vlsi implementation of soft-computing applications.
IEEE Transactions on Circuits and Systems I: Regular Papers, 57(4):850-862, 2010.

K. Majumder and U. Bondhugula. A flexible fpga accelerator for convolutional neural
networks, 12 2019.

M. Masadeh, O. Hasan, and S. Tahar. Comparative study of approximate multipliers,
2018.

135

[34]

[35]

[39]

[41]

[42]

[43]

S. Mouselinos, V. Leon, S. Xydis, D. Soudris, and K. Pekmestzi. Tf2fpga: A frame-
work for projecting and accelerating tensorflow cnns on fpga platforms. In 2019 8th
International Conference on Modern Circuits and Systems Technologies (MOCAST),
pages 1-4, 2019.

D. T. Nguyen, T. N. Nguyen, H. Kim, and H. Lee. A high-throughput and power-
efficient fpga implementation of yolo cnn for object detection. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 27(8):1861-1873, 2019.

Shih-Lien Lu. Speeding up processing with approximation circuits. Computer,
37(3):67-73, 2004.

C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1-9, 2015.

J. Wang, J. Lin, and Z. Wang. Efficient hardware architectures for deep convolu-
tional neural network. IEEE Transactions on Circuits and Systems I: Reqular Papers,
65(6):1941-1953, 2018.

T. Yang, T. Ukezono, and T. Sato. Design of a low-power and small-area approximate
multiplier using first the approximate and then the accurate compression method. In
Proceedings of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI '19, page
39-44, New York, NY, USA, 2019. Association for Computing Machinery.

Y. Yu, C. Wu, T. Zhao, K. Wang, and L. He. Opu: An fpga-based overlay processor
for convolutional neural networks. IEEFE Transactions on Very Large Scale Integration

(VLSI) Systems, 28(1):35-47, 2020.

G. Zervakis, S. Xydis, K. Tsoumanis, D. Soudris, and K. Pekmestzi. Hybrid
approximate multiplier architectures for improved power-accuracy trade-offs. In
2015 IEEE/ACM International Symposium on Low Power FElectronics and Design
(ISLPED), pages 79-84, 2015.

Z. Zhang, Y. He, J. He, X. Yi, Q. Li, and B. Zhang. Optimal slope ranking: An
approximate computing approach for circuit pruning. In 2018 IEEFE International
Symposium on Clircuits and Systems (ISCAS), pages 1-4, May 2018.

N. Zhu, W. Goh, and K. S. Yeo. An enhanced low-power high-speed adder for error-
tolerant application. pages 69 — 72, 01 2010.

136

	
	
	Abstract
	englishenglishContents
	englishenglishList of Figures
	englishenglishList of Tables
	µ
	Introduction
	Machine Learning
	Introduction to Artificial Neural Networks
	Introduction to Convolutional Neural Networks
	2D Convolution Operation
	Convolution Layer
	Pooling Layer
	Activation Function
	Fully Connected Layer in CNN

	Field Programmable Gate Arrays
	FPGA Programming
	Advantages of FPGAs

	Approximate Computing
	Introduction
	Approximate Arithmetic Circuits

	Related Work
	CNN on FPGA
	Approximations on CNNs on FPGAs

	VHDL Core Design
	Direct Design Approach
	Components Required
	Data Flow
	Convolution Unit

	Winograd Design Approach
	Winograd Implementation for 33 Kernel
	Winograd Engine Utilization Techniques

	Scheduling
	Baseline Architecture
	Winograd Architecture

	Approximations
	Approximate Hybrid High Radix Multiplier
	Hybrid High Radix Encoding
	Partial Product Generation

	Data Type Exploration
	Fixed Point Architecture
	Floating Point Architecture

	Approximations in the Convolution Processing Unit
	Block Floating Point
	Block Floating Point Arithmetic
	Convolution Operation using BFP Notation per Layer
	BFP Convolution Per Window

	Evaluation
	Test Setup
	FPGA Results
	Ship Detection CNN
	Winograd Implementation

	Floating Point Architecture
	Vivado Floating Point Architecture with IPs
	Block Floating Point Architecture
	Place & Route of complete networks in XCZ7020
	Comparisons to other devices

	Accuracy Evaluation

	Conclusion
	Future Work

	Bibliography

