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Abstract

One of the key problems of modern robotics research is Simultaneous Localization And
Mapping (SLAM). This challenging area has been of great interest for mobile robotics,
where agents rely on on-board sensors to accurately estimate their environments and ro-
bustly localize within them. From initial Visual Odometry (VO) solutions, which do not
produce environment maps and suffer from accumulated trajectory drift, the state-of-the-
art has advanced to SLAM theory, which executes mapping and loop-closing, enabling
robots to self-correct their estimations when revisiting known locations. Probabilistic
frameworks supported this progress, allowing for optimal responses to measurement noise.
Today, with access to ever more potent hardware, the community uses a variety of sensors
and sophisticated algorithms, including some from Machine Learning (ML), to extract a
rich variety of additional data, which can be used to support core SLAM functions. This
motivates us to create a mixed framework, efficiently combining two types of meta-data
that are particularly popular in contemporary indoor SLAM research: geometric struc-
tures and semantic information. We therefore derive such a methodology, based on an
RGB-D SLAM framework that internally uses matchables as its unified geometric struc-
tures. We enhance this system using our semantic framework, which in turn depends on a
Deep Neural Network performing semantic segmentation. We show that, when geometry
is combined with semantics, the system’s performance consistently improves in our test
datasets, namely the ICL-NUIM, InteriorNet and TUM RGB-D datasets, and compare
with other state-of-the-art methods available in literature for reference.

Keywords: Indoor SLAM, Unified Geometric Representations, Semantic Segmentation






[TeplAndn

‘Eva and o x0pla tpoAfuata tng olyyYpovng pOoUToTIXNG €peuvag elvar 1 TauTdypo-
v extiunon noloc xou yaptoyedgnon tou nepddihovtog (Simultaneous Localization And
Mapping - SLAM). Auth n amoutnux neptoyy| €xel OLodTen onuactor yior TNV XNt pouto-
TN, 6Tou pounotixol Tpdxtopes Pucilovtou oe on-board awcdnTrces Yoo Ty extiunon t1éco
NG YEWUETPlOG TOU TERYBAAAOVTOC OO0 XL TNG TEOYLAC TOUG PEC OE QUTO. ZEXVOVTAS UE
AOOEC OTTIXHC 0DOUETRLAG, OL OTOlES, U EYOVTUG UTOOOUY| YL YOETOYRAUPNOT), UTOPEQOUV
ATO CUCCLPEUTIXG GQIALITA, 1) CUYYEOVY €pEuva €yel TEMXE ouyxhivel otny Vewplo Tou
SLAM, mou ye tnVv yoeToypdynon xou 10 xAEloyo Bedymv TEOGEEREL TN BUVITOTNTA OTo
EOUTOT VoL AUTOBLOPVWVOUY TIC EXTIIACELS TOUC OTOY ETOXETTOVIAL YVWOTOUC Yweous. A-
6 PadNUATIXAC OXOTIAC, UTEEYoLY TavoTXd epyaAela TOU €youv LUTOCTNEIEEL AUTHY TNV
eZéMEn), Bivovtag BéATioTeg ADoelg utd Tov VopuPo Twv aocinTipwy. Xrucpa, ue Tpocloon
o€ 0AOEvaL Xt To oy ued hardware, 1 xowotnTa yenowonotel pla towahior and oacinThpeg
xou ahyoplduoug, cuumepioufoavouévmy xon olyopldunmy unyoavixic uddnong, yio vo amo-
OTd UEYHAO TAOUTO TEOGUETWY BEBOUEV(Y, TOU YENOULOTOLOUVTOL Yo VoL UTOC TNRilouy Tig
x0piec Aettovpylec SLAM. Auté pag xivntomolel vor 5ntovpyioOUUE €V UEXTO TAXLCLO, ToU
Yo ouVOLALEL amOTEAEOUATIXG BUO TUTOUG UETUOEDOUEVMY TOU EIVaL WBIUTERKS ONUOPLAELS
otn olyyeovn €eeuva Tou SLAM e00TERUMV YOPWY: YEWUETEIXES DOPES XAl OTUACIONOYL-
xf) TAneogopia. Enopévee, ue Bdorn plo utdpyouvca epeuvntiny Abon RGB-D SLAM, nou
ELodyeL TNV €Vvola TV YEWUETEIX®Y matchable w¢ Tic evomomnuéves YEwUETEXES TOL avama-
caocTtdoele, ytiCoupe TN wéVodd pac. EumhoutiCouue Yewpntnd to mhaiolo pe onuactoroyia,
mou Baolleton ot éva ot VEupwVIXG BIXTUO TOU EXTEAEL ONUACIONOYIXT) XUTATUNOT) TOV El-
%x6veV. Aelyvoude 6TL, 0 GLUVBLAOUOS e Bdom TN Aoyt Tou opiloupe, 00N YEl o€ Xah)TER
ATOTEAECUATY, OTWC AMOBELXVUETOL Xt amd T Bedopéva ehéyyou oo onola TetpopoTi{oua-
ote (ICL-NUIM, InteriorNet, TUM RGB-D), emituyydvovtoag e@duhhes emdooeLc Ue dhheg
state-of-the-art yed6douc mou yernoonotolue yia cUYxpELoT.

Aé&eig-xhedid: SLAM Eowtepuiv Xwpwv, Evoroinuévee IN'enpetpinéc Avanapaoctdoeis,
Ynuactohoyw; Kotdtunon
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Emextetopevn Ieplindn

1. Ewoaywyn

H pounotixr) dpoaom ebvar o Tou€ag TNG POUTOTIXAC TIOU Aoy OAE(TOL UE EQPUPUOYES cucUT-
THeWV Xt OAYORIUUMY TOU ETUTEETOLY GTA POUTOT VoL avTIAUUPBAvVOVTOL OTTiX TO TERLBAANOY
Touc. Emnopévwe, éva and to Baocnd mpoAruota oTov ToUgd Elvol aUTO TNG TOUTOYEOVNG
extiunong molog xou yapToypedgnong Tept3dhhovtog (Stmultaneous Localization And Map-
ping - SLAM). Hpbdxetton yior pior evepyy| meptoyr) epeLVNTIXOL EVBLOPEEOVTOC, UE IBIOLTEPT
oo yior TNV XWVNTY POUTOTIXY, OTOU TEAXTOPES EMAUPIEVTOL GE EVOWUATWUEVOUSC UGUNTHRES
1600 Yoo TNV axEiBr) YapToYEdpnoT Tou TERBIAAOVIOC Toug 600 xaL Yl TNV EVPWO T E-
xtlunon e molag toug. To cucthuato SLAM €youv e&elydel €yovtag xutd vou Bacixég
EVVOLEC OTIOC 1) avamTLET %o LovTEROTONGT SLopdemY Ao INTACWY Yot GUANOYT UETENOEWY,
0 0PLOUOC DOUMY DEDOUEVKY Yol TNV amo¥AXELsT) xou YENoT YUET™Y, xou 1 Yewpla yiow TNy
aviyveuon xo exPeTEAMELTT BebywY OTIC TROYIES TwVY TpaxTopwy [, 1]

To Sudpopa cuc THUATA oL Eyouv TpoTadel 0TV TohueTr| WoTopia Tou SLAM €youv ye-
YA Towahouoppio.  ZeXtvOVTAS and cUCTAUATH 0dopeTpiag, To OTolo TEOGEPEPUY UOVO
extiunon molag, N epeuvnTny xowvoTnTa e€epelvnoe Bldopes uedodoug BedtioTomolnong,
XATAAAYOVTOG TEMXE GE TO OROXANEWHUEVOUS HoTUUTIN00E POPUUALOUOUS TOU TROBAruo-
T0G, T.Y. 0¢ TEOBANUY BeATioToTOMONG UN-YEUUUXOY TETRaywVeY. H ouvévewon extiunong
TOL0C YO YUPTOYEAPTIONS 0BT YNOE OE O PLAGBOE0US GTOYOUS XOlL OE UXOUIL UEYUADTERES OU-
VOTOTNTEG EMEXTUAOTG TWV UTHEYOVTIOVY VEWENTIXGY TAUGIWY, UE TNV ELCAYWYT) OLUPOPETIXMY
TUTWV YOPTOYQRAPNONG XAl EXTEVECTERN YPN 0N ONUACLOAOY oG,

Y auté T0 Moo, oxoTEDOLUE Vo GUVELTPEROUPE Wiot péYodo pTioyUEVN Yo Asttovpyia
0€ E0WTEPOUS YOEOUS. Mot oo %o YEAOUNE VoL EXUETAMAEUTOVUE TOL ELOXE Y UQUXTNPLO TIXY
AUTOV TV TEPIPUANOVTWY. e aVTIOLIC TOAT PE TOUG EEMTEQIXOUS YWPEOUS, GTOUG ECWTERL-
%0UG UTOROUVUE VO TEQUIEVOUUE UE UEYUAUTERY OLYOUPLE XOVOVIXES YEWUETPXES BOUES, OTKS
enimedo xan evdelec. Ernlong, undpyer peydhn movahion aviixeiuévmy xar enimhwy, to omolo
€y0UV oNUACLOAOYIXT) TANEOYOEi oL uTopEl Vo aviy veudel xan va yenotonondel. Autd tou
YeetolopaoTe hotmoy elva:

o Vo EMAEEOUUE EVOL YEWUETEIXO UOVTERO Yol TOL VTIXELUEVOL TOL Ydpou [, [, 1],
o Vo eAEEOUUE €val TROTO GUALOY TS GNUOCLONOYIXTC TANeogopiog [, 1, 1] xau

® Vo YeEAMWOOUNE xaL VAOTOLACOUNE pio u€Dodo yia To GUVOLAOUS YeWPETEG XoL on-
uoctoloyiog.
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2. Yyetwxn ‘Epsuva

Trdpyet yeydhog mholTtog epeuvnTX®Y TeooTodelny otov Topéa Tou SLAM. ‘Ouwe, eivo
puoxd va avapwtniel xavels av pla Aoon autévoung xivnorng evog pounoTixol TEdxTopY
anoutel yaptoyedenon. Ta autd xou Yo exvicoupe pAGvToS yio Ti¢ uedodohoyieg tng
odopetpiag, mev mpoyweNcouue o€ Paoixéc pedodoug mavotxold SLAM xou Ootepa o
oUYyeoveES Uedddoug e yedpoug Toloc.

2.1 Baoikot opiojiof ka1 oupfoliouof

ITpwv mpoywerioouye 6T0 TEPEYOUEVD, Vo Cexadopicouue xdmoleg Baocinés EVVOLEG ol
oUuBola Tou Yo porvody TOAD yeYioo o OAN TNV EXTACT TNE €pYacioC.

Xapaxtnetotixo (feature) tou ydpou Vo ovoudletor 0moLOBATOTE BlaxpELTiXG Xou
VALY VORIoOo oTTd 1| YEWUETEIXG oTotyElo aviyvelel éva ol Trua. o omtind yapoxtnpt-
oTxd éyet avomtuydel mholoto BiBhoypapio [0, 21, U 0 .

Q¢ petacynuatiopde (transform) T ané to mhaioio ouvtetoypévey A oto Tha-
folo cuvtetaypévwy B optloude tov 4 X 4 mporydotind mivoxa Je TIC axdAouteg IOLOTNTEC:

Ry | dj

A _
TB N 01><3 1

T
, ptr=T4 -p" p= [px Py pz\l]

6mov R3,d4 o mivaxoc otpoghc xon To Bidvuoua PETATOTIONS ovdueca oTo dUo TAakotol
avTloTOLY O X0 P Ol ETEXTETUUEVES CUVTETUYUEVES EVOC ONUElD, EXTIEPEUCUEVES OTO EXYOTOTE
mhaioro. T moAhamAd mhaiotar Ue YVOOTONC PETAOYNUATIONOUE CNUELOVOUNE OTL Loy EL:
T4 =T4 - TE.

2.2 Obdopetpia

O 6poc odoyetpla [, 1] avagépeton o onotadnnote npoondleto yivetar and évoy po-
UTOTIXO TEEXTOPA Vo EXTAOEL TNV Tola Tou o Gyéon PE TNV amapyh Tne xivnorc tou.
Autd emtuyydveton ye Ty €€hg Sadixacio:  apytxomoolue Ty mélo Tou mpdxTopa (T.Y.
OTOV TAUTOTIXO PETACYNUATIONG), GUAREYOUPE SLadoyxd oTotyeio amd Toug aaUnTheES Tou
TEAXTOPO UL OTY) GUVEYELXL TOL YPTOUOTOLOUUE YLoL VO EXTUIACOUUE BLadoyx00¢ UETATY T
uotiopolg molac. Emopévee, 1 teéyovoa extiunon tne mélag tou mpdxtopa efval amhd o
YWOUEVO TWV ETUEEOUC UETACYNUATIOUMOY. LNUEOVOUPE OTL oL atoUnTpeS pag divouy de-
OOUEVA OE XATold CUYVOTNTA oL €€UpTATOL amd TOV TUTO TOUG Xl OTL UTEQEYOUV TOAAOL
oLapopeTixol TUTOL oUNTPWY.

Mo Baowr| wopgy| odouetpiog puropet va emiteuydel ye TNy ¥pror xmOXOToNTHOY 0Toug
TP0Y 00 EVOG POUTOTIXOU O AuaTog. MeTp®vTog dnAadY| TIC TEPLOTPOPES TWV TEOY WY, UTO-
POUUE VO EXTYWHCOUPE TNV UETATOTLON TOU POUTOT UE YpNoT eVOg HovTéAoU Yio TNV xivnot)
TOU. LUVICTOOES AUTOU TOU UOVTEAOU UTtopoly Vo elvar 1) axTivol Tooy MV Xl 0 TPOTOS GTEO-
@ric Tou. Trdpyouv BLdpopol TEOTOL GTEOPNC OTWS YaiveTon 6TO My. 1, xou oL avTloTolyeg
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eCIOWOELS Yo xodévay amd auTolg 6ivouv To TEAXO HOVTEAD XVNomg YLot TNV 000UETEIN TPO-
Y@v. Mlio mo yevix mpocéyyion otny odouctplo yenowonotel aountipeg oxtivofollag,
onwe LIDAR 1) xduepec. H dOvaun autic tng yevixeuong gatvetar 6to 6Tt eV untdpyel TAéov
TEPLOPLOUOC 0TO TL £ldoUg pouTdT umopel v yenotuomomndel, @Tdvel vor UTdEYOLY XxdTOoLaL Yo
COXTNELOTIXA O0TO TEPYBAANOY TTOL VoL avLy VEDOVTAL 0ELOTILG TOL OO TO POUTOT YioL VoL UTTOREL Vot
xdver extiunomn tng xlvnorg Tou ye xdmolov akyderiuo.

e
8, &
C X
. ~k &
(8] N o
& Oy I
i -
Ackermann stecring
&r T 5, & -
C C
I
aﬁlc*‘}a‘ 5 %
Spinning Crab steering

Yyfuo 1: Onuixonoinon Spbpwy Tpommy 6Tpoghc eVOE TETEATEOY 0V pouTdT. [!]

2TIC TORATAVE LOEES TaPATNEOVUE OTL Acimel uio xodplor ASTTOUEPEL: OEV UTHPYEL DUVO-
oI AWTodtopYwong Tuyaiwy Aaddv oty extiunon (m.y. Aoyw YoplBov). Auti n Boot-
XA WBLOTNTA TV CLCTNUATWY 0dopeTElag elvon Evar amd Tol UEYOAVTEQH UELOVEXTHUOTE TOUG.
LUYUEXPWEV, XIS TO UG TN EXTYIS OAOEVAL X0l UEYAUAVTERES ‘aAuGiDES’ amd peTaoy -
Hottlopolg, TOMATAACLACOVTAS TEC Yo Vo ThpEL TNV TeEyouca oL, Wxed GQINIUTO TOU
ouufatvouy ot xdie extiunon cuccweebovial, UE ATOTEAEOUA EV TEAEL VoL UTIHEY 0LV GOPBUEES
anoxhioelg oe peydieg Tpoylec. Puotnd, LTAEYOUY HETEA XATA TWV ATOXACENDY AUTWY, OTWS
ol oxdGhouV L

e npocopuoyY| cuotddwy (bundle adjustment - BA), ye tnv onolo To 00GTNUO EXTEAEL
ula Tomxt| Bedtiotomoinomn o éva xuMdUEVO Toedupo amd BEBOUEVA TLV AUCUNTARWY,
eCopahivovtog Tomxd we éva Bodud to VopuBo []

e olvieon awodnthipwy (sensor fusion), 6mov 1o cloTNua cuvdUdlel To dedouéva amd
TorhamhoUg oo UNTreES Yior va Sloplwaoel Addn mou yivovton and Tov xardévay EeywpeloTd

® OTNUCLONOYIXEC TPOEXTACELS, OOV UE YPNOT XATOOL UOVTEAOU OVEYVEUGTC GNHAGCLO-
AOYIX®Y OVTIOTHTWY 0T0 YWeo xepdllovue emimpdoietn TAnpogopla, Tou Bonddel oto
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va Stopdwdoly ot cuoyetioelc Twv ooty dedopévmy Tov acdnthowy [, 1]

To mopandve anoteAoly Tomkég BEATIOOELS, O Vo GUOTNULXO TEOBANUA TO OTolo BEV UTo-
coVue vo eaniCoupe 6TL Yo emAvdel TApwe €Tol. Xe MEpiTTWon Tou 1 TROYLd TOU TEEXTOoPX
0eV CavamepvdeL TOTE amd TEoNYoUUEVa onuela, uio Aor odopeTplag Tou yenowonotel o Ta-
candve epyaheta Bploxetar yedodoloyind oty xoAUTERT €XBOOT TOL Vol UTOEOLUGE Vo Elval.
Auto mou Béhoupe va methyouue eivon To oo TNUA VoL UTOREl var avory vpllel Totodeaiec mou
€yeL 101 emoxePUEl xon AUTOUATO VoL BLOPUMVEL TIC EXTWHOELS TOU EYEL XAVEL UEYEL EXEVO TO
onueto. Auth 1 avotnTo €tvar VEUEMWBOS BLOUPORETIXT OO TIC TPV, XS omotTel
o oglpd amd emuépoug Briuata, tar onola TpaxTixd Yog odnyoLy oto SLAM.

2.3 Baowkd ovotjuata SLAM

EEXWVAUE UE TOV POPUAALONO TV TEMTWY cucTNUdTeY SLAM tne Bi3hoypagiog, To onola
oy oty Bdon toug Bayes cuo truota extiunong miavothtewy. Tetowa cucthpata unédetoy
ATAOTIONUEVOUC XOOUOUG YIO TA QOUTIOTIXE TOUG HOVTEAY, UE YVOO T povtéra YopUfou Yo
TOUC oUNTARES %ot OLAPORES GAAEC UTOG TNEXTIXEC UTOVETELS, OTwe 1) Mopxofiavy) undieon
YLoL TIC DLABOYINES HATUC TUCELC TOU POUTIOT, UE OXOTO 1) HordNUoTixT| Bladxactar ToU TEOEXL-
nte vo unopovoe va uohoytotel [V]. H tehxr| diotinwon tou Bayesian gultpapioyatog
OLoryetptleTal oTNY TEAYHATIXOTNTA TNV CUYYEVIXY UE TI¢ TavOTNTES EVVola TNG KATavouns
TioTng.

bel(:ct) = P[wt|zlzt7u1:t]a m(331‘,) = P[wt’zlztfla ul:t] (1)

Me [3dom Toug mopandve optopoig TEOXUTTEL Xou 0 avTioTolyog alybpriuog:

Algorithm 1: Bayesian gu\tpdpiouo [ ]

Input: bel(x;_1, w14, 21:)
Output: bel(x;)

forall x; do
b€1($t> = f]P’[a:t|zl;tiul;t]bel(a:t_l)dxt_l
bel(x;) = n - Plz¢|a]bel(x;)

end

return bel(x;)

‘Onwg gabvetoaw otov Ahy. 1, 1 Slatinwot| Tou elvan apxeTd yevixr|, xadong dev yive-
Tou xolor UTOUVEST) YLl TIC XUTAVOUES TV EUTAEXOUEVWY UETABANTOY. Ol XUTAVOUES AUTEG
UTOPOUY VoL TPOCEYYLOTOUY UE BId(popous TEOTIOUS, OTKS Yo ToEddetya Ue Ty I'naoucoiovy
Teocéyyion. Auth n mpocéyyion, pall ue T LodnuaTIXEC TPOTOTOICELS TOU ETLPEQEL, OiVEL
ev téhet Ta @litoo Kalman. H Baowr Swadixactio yio ta amhd @iitoo Kalman meprypdpeton
otov Aly. 2:
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Algorithm 2: ®{htpo Kalman [ ]
IHPUt: Hi—1, Etfla U, 2¢
Output: p, 3

By = A;p, + Byuy,
Et = AtEt_lA;gr + Rt

K, =3,C(CE.CF+ Q)™
My = Py + Kt(zt: Ctﬁt)

Et — (I[ - KtCt)Et
return p;, 3,

Ou mivoxeg Ay, By, Cy meptypdpouy TiC Yeouixée HETUPOAEC XATAOTACTC TOU HOVTEAOL TOU
oLoTHATOC Xou oL Thvoxeg Qy, Ry etvan I'xaousaiavol tivaxeg dlaomopmy YoptBou. O mivaxoag
K, Myetou xou képdos Kalman. ¥to Xy. 2 qaiveton To g 1 Sadwacior emnpedlel Ty
extiunon xatdotoong yo plo peToBAnTY.

(o) Apywxey xatavour| miotne  (B) Néo pétpnon pe xawvolpta (Y) Katovour miotng yetd to
ofefoudtnTol PLATEdEIoUA

0z}

1 o}

(8") Iiotn petd v xivnom, ue (e') Néo pétpnon () Iliotn petd o xouvovplo
xawvoLpta o3eBatoTnTa PLATEAEIoHA

Yyuo 2: Evbidueca Bruata tou gihtpou Kalman yio extiunon plog petohntic. []

Hpoextdoeic TV mopandve Wewy €youv tpotalel, 6twe clvar o enextetauévo QilTeo
Kalman (Extended Kalman Filter - EKF) xo to un-xododnyovuevo gilteo Kalman (Un-
scented Kalman Filter - UKF'). H mpoomdielec auTéC €youy emixevTpwlel 6To Vo yivovTo
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HOUNES YRUUULXOTIOCELS TWV UOVTEAWY OE XUTdAANAA GNEio Xou GTNY HOVTENOTOINOT) UE DELY-
poatohndia avtiotorya. O oxomdg xon Twv 800 eivon To mavotixd woviého va mpooeyyilel
XONOTEQOL TNV TEAYHATIXOTNTA, YWEIC OUMS VO EYXATAAEITEL EVIEAMS TIC EUVOIXES OLOTNTES
TV I'©aoucoiavmy xotavouomy.

Trdpyet ouwe xan pio xatnyopla cuctnudtoy SLAM Eéguye evteldg and To I'naovoota-
VO LOVTENO, ELGEYOVTG TNV EVVOLX TV UN-TURUUETELXWY Lo TNUdTeY SLAM. Ta cuotAuata
QT AVTETOTLONY PE XoUVOVPLES LOEES TO TEOBANUN TWV TOMATANOY UEYIGTWY OTIC XATAVO-
uéc mlotne. To mpdfBinuo autd elvan LTUEXTO Ot XUTACTACEL OTOL LUTdEYEL ouptonula amd
TOUC oUNTHPES TOU POUTOT Yia To oL oxel3we Peloxetar o mpdxTopag, dMnAdY| dTav 5Uo
dlopopeTné Tomoveaiec divouy mpoxTixd (Bl exdva 6TV elcodo Tou cucTidatoc. Tétoleg
XATUO TAOELG apapolV TOMAES I'naouooLaveEg WLOTNTEG amtd TNV BLUTUTIOCT) TV XATAVOUMY
mou mpooTmadolue v tpoceyyicoupe. To un-rnapopetewd @iltea, Omwe @ikteo Lo TOYEUU-
uétov [1] xar to @ilteo cwpatdiony [0, 1, 1], SerypotoAnntody Ue Bdon Toug E0WTERXOU
TOUC aAYOELIUOUC UE TETOWO TEOTO MOTE VoL TROCEYYIooUV TI¢ (NTOVUUEVES XATAVOUES, Ywplc
va. yeetaoTel va Bektiotonoincouy ontd xdmotor LordnuaTiny €xpeoo yio auTéC.

2.4 SLAM e ypdgpous nélag

To cuotuatoa SLAM ta omolo €youue Bel €wg Twpa €youv xdmoleg eEMAElpeC oTny o-
VATEAO TOOT) TWV YUETMY TOUg, Xome 0ev dlvouy €va evomonuévo mAaiolo yio m6leg Tou
TedxTopa oL opdoNua Tou TEpBdihovToc. H BeAtiotomoinon Aowmbv elvon déoptar TG L-
Aomoinong xat ot uédodol Bev yevixebovtal, eve To loop closures Bev €youv xdmota yevixr,
SranoUn x| meptypopr. Autd to xevoé €pyovton va xahlouy ot pédodol yedpny nélag [, ]
O ypdpog m6lag dev elvar TmoTE GAAO TORE Uiot APUEETIXT AVATURAC TACT] TOU XOGHUOU TOU
TEAXTOPA, TOU TPOCPEREL OPXETH| EVEMEIN X0 YEVIXOTNTA OOTE To TEoBAnua tou SLAM va
avoryOel Tehnd oe €va TEOBANUL BEATIOTOTOINONG UN-YRUUUIX®Y EAXY(CTWY TETEAYOVLY.

Y10 Xy. 3 Brénmoupe pla Yoopix avamapdoTaoT Ylol To T¢ doueltan évag ypdpog télac.
Me [3dom auty| T SlTiNWoT), 1) TOCHTNTA TOU XUACUUAOCTE VoL ENXLYIGTOTOLACOUUE UTOREL Vot
TEQLYPAPEL W TO CUVOMXO TETPAYWVIXO GPIAUN TEVK OE OAOXANEO TO BLdvuoua tolwy X,
omou e bpog TpoxLTTEL W 1) vopuo Mahalanobis tou o@dhuatog e;; tng xdie cuvioTHoug
oxphc (4, 7) € C, otoduiopévo pe tov mivoxo TAnpogopiac tne uétenong €2;;. Luyxexpuyéva:

X™* = arg min Z fi; = argmin Z ez;ﬂijeij (2)
X e X (ijec

OTOU ToL GPAAUATO. TTOU EAAYICTOTOLOVUE TEOXUTITOLY OTwe oTo Xy. 4. MTnv ouvcio, 1 a-
TOXAGT| AVIUECO GTIC TUPATNEHOELC XU TO TL MEQLUEVAUE Vo BoUUE Ue Bdorn xdmola opyxt)
extiunon 1) poviéro xivnong TOCOTIXOTOLETOL X0t EAXYIC TOTOLE(TOL Ad XOWVOU YloL TNV TE-

pimtwon ogahudtwy otny extipnon toloug xou Yoplfou mapathenong.
H 80Ovaun tne avanapdotaong e yYpdgoug molag BIvel Eva OYEBIOTING TROTERTUM, TNV
aroclunAedr front-end xou back-end, mou ye tn oelpd TG EMTEENEL TNV EUXOAN Xou Olot-
oONTINH TEPLYPUPT| TWV XAEICATOV Bedywy. Xuyxexpyéva, and to 600 auTd UTOGUVOA
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Yyfuo 3: Omtixonoinon Sopfic evée yedpou mélag: €leyyor u; odnyolv oe petodoels avdueoo
oTic TOLEC T4, oMb TIC OTOLEC O YEPTNG M TUPATNPEE(TOL UE UETPNOELS Z;.

ToU cuUCTAPATOC, To front-end etvar uedYuvo Yoo TV BNUoLEYla, aVaVEMGT Xou GUVTAENOT
TOoU Y8ETN ¥t Tou Yedpou téluc, eve To back-end etvar utedYuvo yio Ty BertioTonolnon
Tou Ypdpou autoL. H aviyveuon xheodrtwy Bpoywy eurintel ot dadaoieg tou front-
end, 6mou av aviyveulel T€Tolo cuuPBdy TpooTilevToL Ol AmAPAITNTES UXMES TIEQPLOPLOUWY GTOV
Yedpo, ol onoleg Yo emnpedoouy Euueca TNy BeAtiototoinon mou Va yivel oto back-end.

H Behtiotonoinon auth) xadouty| yivetaw ye Bdorn to o@pdAua, To onolo yeuuuxonoleito
ue yeron loxwBlavev avdusoa otoug exdotote xépfoug Tou yedpou:

eij(ﬁﬁ + ACU) i + JUA.’B (3)

omou Jj; ebvan 1 ToxwPlavy) tng ouvdptnong ogpdiuatog e;; yiew amd plo apyxr extiunon
XATYOTOOTG &, TNV onola €youpe ahhdEel xotd plo Tomxr yetaBorr) Az. Enouévee, ue yeron
TNC TUEATAVE BATUTWONS UTOPOUUE Vo Yedhoupe Toug empépouc dpoug Tne Beltiotomolnong
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Yo 4: Miow of3éBoun uétpnon. [ ]

and v oyéon (2):

fij(@ + Am) = (ey; + J;Az) Qs (e + J;Aw)
= eiTjQijeij +2 eg;-ﬂijJij Ax + AQ?T JZY;QZ]JZ] Az
Cij ij ©j

= Cjj + QbZ]AJ? + AiETHijAZB (4)
AdpoiCovtag Toug mapamdve bpoug TalpVoUUE:

f(z+ Azx) = Z fij(® + Azx) = Z cij + 2bjjAx + Az HijAx

(3,9)€C (3,9)€C
=c+2bAzx + Az" HAz (5)
amo 6mou 1 BEATIOTN Ao umopel vo extiundel emibovtog to clotnuo: HAz* = —b.

To mapamdve Yewentind BAato ayvoolv €va TOA) ONUAVTIXG YUPUXTNELOTIXG TOU |Ud-
Inuotixold avtixeévou umd PehTioTonolnon: aviXEL OE EVOV EYYEVOC UN-EUXAEDIO Y Mo
xataotdoewy. H alla authic tne mopatrienong elvon mou odnyel otor TohdTTUY O (manifolds),
podnuoTixolg yweoug Tou ebvar ToTuxd Ypouuxol ahhd oAwxd un-yeouuxol. H dewpla mou
Yenowomole{ton oe auTES TIC BOoUES elvar oL opddeg Lie xan ou dhyeflpeg Lie. Ou oudodeg Lie
AVTIOTOLY 0LV GE Topary WY Iloyo TOAUTTUY A, VG oL dhyeBpeg Lie avtiotolyolv oTiC YpouuLxo-
TOWGELC TIOL YIVOVTOL Y10l VoL B)OCOUY TOUS EQUTTOUEVOUS Ywpouc (tangent spaces) YOpw omd
éva onuelo Tou ToAUTTUYoL. Ot extetixol xou hoyoapriuxol ydpteg emiTeéNOLY TNV PeTdPooT
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’AeSop.évoc \ TOrocg IMopdw. II6Ca Kivnon Snu. 'nyoq‘

ICL-NUIM [ ] ouvieTind vou voil emopxg oy TEPLOP.
InteriorNet [ ] ouvieTind vou vou XOAT) YOK  tepdotioc
TUM RGB-D [ ] | npaypatixd Vol volL XOAT) oy ETOEXNC
CoRBS [ /] TEOYALTIXO vou vou TEQLOP. oy TEPLOP.
AVD [ 1] TEOYALTIXO oy meptop.  avemopxc  UPK  peydhog
MS 7-scenes [+, ] ouvieTind oy vou peINy oy TEPLOP.
NYU v2 [ 1] TEALYATIXO vou oyt peINy XV UEYShO
RGB-D Scenes v2 [ ] | mporypatixd oL Vol EMapxC  TEPLOP.  TEPLOP.
Coll. SLAM DS ['/] | mparypoatixé  meplop. volL XONT oL TEPLOP.

[Mivoxag 1@ Audpopa oOvora dedouévmv xar ot WBotntéc toug.  Axohoudieg and ta olvoha pe
€VTOVT YPUPT| YPNOWOTOINXAY GTO TELRAUOTH UOG.

oo TO €va 0T0 GAAo, xou 0 Teheo g B avtixatio téd Ty oAy Slavuouotix tpdoveoT) Yo
VoL OWOEL TOUC XotvolRYIoug TOTOUC.

2.5 Aedopéva eléyyou kar vndpyovta ovotriuata SLAM

Ané v mohuoyor| BBhoypagia otnv epoyr Tou SLAM, nopoucidlouye v cuvtopla
%AmolEG GUALOYEC DEBOUEVLY, Xad(G XL BLdPOEU CUCTHUNTA TOU CUVAVTHOUUE 1| YPNOUO-
Totfjoope oTny mopela Tng gpyactag. Ou mpodlaypapes uag yiar o Odopéva oy Vo efvan
oe poppl) RGB — D, ye ddéoipeg Tic napopétpous tne xduepas (calibration parameters)
xou ground-truth (GT) oedopéva moCoc. Enione Arav emduuntd vo undpyel mowaiio otic xi-
VOIS TOU eXTEAEL 1) XAUEPX OTIC EXAOTOTE axoloLdies, v agriouue evelEla 6TO XxuTd T6C0
ToL OEBOUEVYL HTAY POTOREANOTIXI-CUVIETIXG 1) AMOTEAECUOTA AT TRUYUOTIXOUS oUoUNTYPES.
To anoteréopatd pag otov Iliv. 1 detyvouv to T oyeTind Peddnxe otny Biloypapia.

ITépa amd tor dedopéva eAéyyou a&ilel mpopavas va avapepdolue xar o dhheg uedddoug
SLAM mou urdpyouv otn Bihoypagpio. Tétoeg pédodol umdpyouv mdpo TOAES %o, GE
avtideon ue To Bedopéva eAéyyou, emdeviouy plixéc uedodoloyixée anoxhioelc, 1660
OTOV OYEDWOUO TOUG OGO XAl OTOUG UOUNTARES XL TIC ECWTEPIXES OVATUPUCTIOELS TOU
yenowonowlyv. Emouévwe Yo to xotatdfouue avtioTolya ue BAon auTd To Y opoxX THELoTIXG
toug: Ilopandve Brénoupe hotmdy Ty peydhn mothouoppion Twv AIGEWMY TOU UTHEYOUV
otn Bihoypagla, and Aoeic yioo LIDAR péyper muxvég omtinée AIGES UE ONUACLONOYLXT
utooThEE, éva gofepd cupl @doua and TEooEYYioE Tou €youv TeoToel xoTd xaEoUg
otvel xatevdivoELS Yo €pEuVa. MTOUG ECWTERPXOUS Y WPEOUS, DOUAEIES UE ONUACLOAOY X €Y 0UV
eCelydel ev mohholc aveldptnta amd TEONYUEVES YEWUETEIXES TpooeYYioelc. Auto elvor To
%EVO ToL VENOUPE VoL EEEPELVACOUNE PE TNV Bixn pog TeoTacT. Me tov Iliv. 2 ohoxhneddveton
1 emoxonnom tne PiBAtoypaplog xow UTtopolue Vo TEPAGOUUE OF TLO GUYXEXQWIEVA VEUATO TOU
APOEOVLY TNV CUVELGPORS. UAC.
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’ Yootnpa AwcOntrpeg Aloo=. ITepf. Xéetne ‘
Hector SLAM [ ] LiDAR 2D o\ TAEYUOL XOLT.
Cartographer [ ] LiDAR 2D & 3D cowtepixd  mAEYUA XOT.
LOAM [ '] LiDAR 3D EOWTEQIXO  TAEYUOL XAT.
OpenVSLAM [ ] mono/stereo/RGB-D 3D OhoL Siekitel
ProSLAM [ 1] stereo 3D e€WTEPIXO opandg
LSD-SLAM [+, ] mono/stereo 3D oho nuimuxvog
ElasticFusion [ /] RGB-D 3D EOWTEPIXO TUXVOC
Bowman et al.* /] stereo & IMU 3D EOWTEPXO opande
Doherty et al.* [ ] stereo & IMU 3D eEWTEPIXO Siekilel
VSO* [ ] stereo 3D eEWTEPIXO oy
SemVO* [] RGB-D 3D EOWTEPXO oy
SemanticFusion* || ] RGB-D 3D ECOTEPIXO TUXVOC
Li et al* [1V] stereo 3D e€wTEPIXO opande
ORB-SLAM2 [/ '] | mono/stereo/RGB-D 3D oA Sleleitel
MaskFusion* [ ] RGB-D 3D EOWTEPIXO TUXVOC
SASHAGO [ /] RGB-D 3D EOWTEPIXO apande

[Mivoxag 2: Audgopa ouothuat SLAM xou ot 86tntéc touc. LuoThuata Ue EVTOVT Ypopn Yenot-

pomotinxay otny mopoloa epyacio. O acteploxog cupfolilel onuaciohoyixéc uedddoug.
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3. Evonowmpéveg I'ewpetpinés Avanapactdoelg

‘Eva Bacind yopoxTneioTind TV ECWTERIXMY YWEMY ENVOL 1) YEWHUETEIXT XAVOVIXOTNTS
TOUC.  LUYXEXPWEVL €YOUNE YWEOUS Tou TEpEyouy eulelec ypauués, enineda xou onueio
TUTOUC YEWUETELOV Tou Yo Véhaue vor eprypdoupe pe €va xowd poinuotixd mhaloo. H
VALY %1 UTY| TEOXOTTEL UE TO EENC OXETMTIXG: TA TEPLOGOTERA 0poid L THUNTA OTTixo SLAM
AVATOELOTOOY OTNY TEAYUATIXOTNTO UEUOVOUEVYL OTUEl TOU TEPUBEANOVTOS TOUG UEGU GTOUG
Y3pTES ToU SruLovpyoly. Autd To onueia elvar Tou 6ivouv Toug TEPLOPLOPOUE TTOU EBAUE OTNY
TEONYOUUEVT EVOTNTA Xat Tévew e auTd Y TileTon oAdxAnen 1 avtikndn Tou TedxTopd Yior TOV
YOpw x60ouo. Av unopolcoue OUmS Vo exPEToAAEUTOOUE udeleg xon emineda, optlovTag
XATIAANAAL TG CUVOPTACELS OPIAUNTOS YioL UTE ToL VEO YEWUETEXE avTixelueva, tote Vol
*EEOILOPE ONUAVTIXG TOGE EXPRACTIXOTNTIS OF Y(EOUS OTIOL TETOLES YEWUETPIES eupavilovTon
oLY VY, OTWS axEYBHOS Efval oL EcwTEPXOL YHOEOL.

3.1 MaOnpatikég évvoies kai opiopol

ZEEXIWVEUE QUTAY TNV TEPLYROPY| UE TOV OPLOUO TWV TETEUYWVIXWY UTERETLPAVELWY (quadric
hypersurfaces). Tpdxerton yio ohvoha onueiov & € RP tou mhnpolv v axdhoudn e&icwon;:

2'Qxr+px+r=0 (6)

omou Q ebvon évag D x D wivoxag, p éva D-0186Tato SIEVUOHO-YROUUT XoL 7 EVOG TEAYUATL-
%0¢ apriuoe. Tétola oyruata €youv yenowonotniel oe epapuoyéc SLAM 1660 6Ny yevxr)
HOE®Y| TOU OPLOUOU TOUG [/, 1] boo xou o€ ulol O TEEQLOPLOUEVT] EXDOOT), TIG ASYOUEVES EX-
puliouéveg TeTparywVEC emupdvetes (degenerate quadrics) [1]. Tétoleg empdvele TAnpolv
v e&iowon:

(z—p) Az —p)=0 (7)

6oL P elvar TO XEVTPOEWES xat A elvon vag cUUUETEIXOC Tiivoxag, o omtolog TeEAxd xadopile
xou TN YewpeTpla péow TN mopoyoviomoinorc Tou: A = RAR", 6tov o R TEPLEYEL TA
Btodtaviopoto (Toug Tomxole dEovee YUpe omd TOUS 0ToloUG EXTEIVETAL 1 Unspsmcpo'(vsm) O
o dorywviog mivaxog A TEQLEYEL TIC WOLOTWES, ToU ETBUAAOUY TO OYAUO TNG. LUYXEXPUIEVA,
Ol TEPLTTWOELS OYNUATWY TOU oG eVOLapépouy elvon oL axdroudeg:

(1, 1, 1) vy onueio
App =diag(A), A=4(0, 1, 1) -~y cudeleg (8)
(1, 0, 0) -~y enineda

H outiohdynon yio authv 11 yewUeTeiny| spunveio tpoxUtel xodopd amd T pordnuotixy| Act-
Toupyla Toug. Av éva otolyelo Tic Slorywviou etvan 0, mpaxTnd agrver Evay Bodud ereuieplog,
apol adEUvVOTOLEL TOV aVTOTOLYO TEPLOPIOUO ATO TOV OPIGHUO TGV TETPUY VLXMDY ETLPUVELDY.
Av etvar 1, T6T€ TOV evepyomolel, pe amotéheoua eV TEAEL Vo aponpel Evay Podud eleuieplac.

33



Enextelvovtac Tic mopandve evvoleg, Ya opicouue éva matchable we plo tpimAéta ye ta
e&ic Oedopéva
M = (pMa RM7 A]\/[) (9)

avtioTorya ONAAd Eva XEVTROEWES Pay, Evay Tivaxa otpopnc Ry v To Tomxd mAaicto
CLUVTETAYUEVWY xou Evay Tiivaxa oyfuatog Ay Tétolo avtixeipeva aviyvebouue xon ma-
paxolovlolue Telxd, omwe yivetow oto olotnue SASHAGO, émwe gaivetan oto Ly. 5.
Modnuamtixd, yeetdletan xatapyds va opicouue To opdhuata Letokh 0o matchables M, xou
M, ¢ ehc:

ep Rg(pa - pb)
e(Ma, Mb> = |(eq| = da — db (10)
€o dz;db

) C, 03:3 034
Q=C-Q-CT, C= 105,35 C; 054 (11)
O0ix3 Oi1x3 G,

omou d eivan To Bidvucuo Tou Tomxol dfova & Tou matchable, ol mivaxec Q, Q eivon mivoneg
YopiPou twv uetprioewy xou C' elvor o ivaxag evepyomolnong, mou EMAEYEL TOLEG BLUOTACELG
WV 0QAAIGTERY Yo evepyoTotovTal avdloya Ue TN YewueTplo Tou matchable, 6w gatvetan
otov Ilivaxa 3.

Zij \ Zij ‘ Ynuelo Lo Erninedo

Ynueio | (1,0,0) (A:,;,0,0) (A;,,0,0)
Euvdela - (Az,;.L0) (A;;,0,1)
Eninedo - - (Az,;.1,0)

[Tivoxag 3: Tonol mvdxwy evepyonoinone (Cp, Cy, C,)

OplCovtag xatdAinio Tov teheot| B unopolue va anoxticouue pio €xgoacn yio To Tt
ouuPadver 6tav i uer| datapoy ) emneedlel évo matchable xou ev téhet e Bdon authy
™ oyéon Yo oplotel avtioTorya 1 ToxwPlavy| Tou opdipatog xou Yo TEoYWENOEL XUVOVLXd. 1|
olodxactio Tne PehtioTonolnong. Zexivaue Ue TNV TEPLYPUpT| TN dlotapay g Evog matchable:

T
Am = [ApT Aoy AozZT] (12)

omou Ap eivon 1) Brartapory 1 0T0 XEVTROEWES xat Aay, Aar, oL TEPLOTEOPIXES BLoTapayés. LTa
TOPAUTEVE CNUEWDVOUUE OTL 1) TERLOTEOYT YIVETOL U6VO YUpw omd Toug Un-x0ploug GEOVES ToU
matchable, xodog undpyer ouppetpla YOpw and Tov xlplo dfova x. Enlone n oepd twv
oteopdkY axohoulel tnv obufacn: AR = R,(a,) - R.(a,).
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(y) TUM RGBD frl (3") TUM RGBD fr3

Yyfuo 5: Hopadelypota YEWUETEXOY aviyveloewy ot dlapopetixd dataset. Iopatnpolue 6Tl o€
Tparypotixd dedopéva, o YopuBog duoxolelel Ty aviyveuon emnédwy (TUM dataset).

3.2 To ovotnua SASHAGO

‘Onwe gaivetar oto Xy. 6, T0 cbotnuo anaptiletor amd aviyVEUTEC TV X0PIWY YEK-
HETEIXWY YOQUXTNEIO TIXWY TOU YENOWOTOOUVTAL, ATd VLY VEUTES Xol eVDUYPUUUIO TES YiaL
TOL YORUXTNEIO TIXG. oUTA X OO DL ELRLO TEC XAEIOATOY Bedywy. H apyitextoviny auth)
umopel vor avaluiel Tepantépn w¢ e€ng:

e aviyveuThc onueiwy (point detector): ypnowonotel onueia ORB [ ] tng OpenCV yu
TNV oVl VEUGT) X0l TIEQLYQUPT| CTUELIXDY YUQUXTNELOTIXMDY TOU Y MEOU

o aviyveuthc yeauuwy (line detector): Paciopévoc otov Line Segment Detector tng
OpenCV [ ], oviyvevet evdiypoppor TURUATO OE ELXGVES

o aviyveuthc emtnédwv (plane detector): ewdxd clotnue mouv cuvevdVeL onueia and To
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Lyuo 6: Xovodm g ecwtepixc apyttextovixiic Tou cuothuatoc SASHAGO.

Tptodidotato pointcloud tne xduepog (point clustering) pe oxond va aviyvevon enineda
xou Tor x&UeTor o€ oUTd drovoportor [ ]

e cupethc avtiototytdv (correspondence finder): Peloxer, pe ypron dopodv KD-tree,
avtloTtorya onueio and €va frame oe mponyolueva ornueia Tou YT

o cuduypopptothc (aligner): vnohoyilet Tov BEATIOTO UETAOYNUATIONS OVAUESH GTNV XAl
volpla GXNVT| XL ToV YdeTn Yo To Teéyov frame

o Xhewiporto Bedywv (relocalizer & loop closer): xouudtio ToU GUOTHUATOS TOL €YOLY Vo
xdvouv Ue TN dlayelplon xheiotuatog Bedywy, To TEMTO Yo TNV TEOCUHXN TOV oXUMY
oTov Ypdpo tolag, To 6elTEPO Yo TNV TpocUeT BeATioToTolno

To napoandve cuvodilouv Tic xOpieg hettoupyiec Tou front-end tou custhpaToc. Xe yevixég
Yoouuéc, To back-end dev €yel xdmowa meplmAoxn ecmTepr) dour|, xaddS 1 YOV TOU AEl-
Toupyia elvan vor Bedtiotonotel Tov ypdpo nolug pe Ty BiBhodhxn g2o [ 1] cav Bdon (poll
ME TIC amopaftnTeG TPOEXTACELS YL T Olayelpton matchables), tou etvon OYEBLIOUEVT] YiaL
vo emitelel auTd axpBee To €pyo xou €yl yenowponotniel eVPENS amd dNUOPIAY GUC TH T
SLAM pe ypdpoug nélac.
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4. Ynuactoroyxn Katdtunon Ewxoveyv

4.1 Froaywyn

To Baocxd mpéAnua mou xoAoVUACTE Vo AOGOUUE GTOV TOUEN TNG CNUUCLONOYIXHAC Xa-
TdTunoNng etvar 1 avary voplor Tou Tt ameovi{eton xon Tol otny edva Peloxetar. Edo umde-
YEL UEYAAO TEprimplo Yo punvela Tou Tt axptBng amonteiton va Bpevdel. Kdmoteg epeuvntinég
OOUAEIEC ETUIXEVTPWOVOVTOL GTO VoL OWOOLY 0pUOYMVLN 6Pl OE GUVTETAYUEVES pixel mou Te-
prypdpouy Mol oty exdva Beloxeton pla ovtotnta. H oploymvia teptypagy) cuvodeetan
xou a6 plar onuactoloyxn xAdoT), Tou TEuXTIXd elvon €vag axéponog apliude Tou TELYEApEL
Tov TUTO TOo avtyveLlévTog avTxewévou, Ue Bdon wla avdaipetn aviiotolynon aviyeco ce
xhdoelg xou Toug apriuole Touc. Alec mpooeyyioel YivovTon o GUYXEXPUIEVEC OTA ATO-
TeEAEopaTd Toug, divovtag uio muxvi| xatdtunor. Mio tétola xaTdTunon emOTEEPEL TOOEG
e€6doug 6o o Tor pixel Tng exdvag, pe Evay apriud xhdong yio xdde pixel. Télog, €youv
UTdEEEL EW0IXE GUC THUATA TTOU GTOYEDOLY GTNV XUTATUNGCT| G TLYUOTUTWY, OTOU 1) AVAY VOPEL-
on Oev mepthaBdvel pévo TNV xhdorn mou oviyvelOnxe, oAAd xon Evoy EWBO XwOIXO Tou
TEQPLYPAPEL TTOLO CTLYULOTUTIO AUTAS TNE XAdoNg (Zocvu)napozmpsi‘cou.

4.2 Nevpwvikd Oiktua

Xty obyypeovn BBhoyeapio tng ‘Opaorng TTohoYIGTOV €YOUV ETUXPATACEL ToL TEYYNTY
VEUPOWIXE BixTua. O Topéag TNG ONUACIONOYIXAC XAUTATUNOTS amoTeAEL Wlaltepa €0QOEO €0
(POG YO QUTEG TG TEYVOAOYiES [0, 0], xadde o AVTIXEUEVOL TOU TIEOYUATIXOU XOGUOU EYOLY
HEYSAT Towalopoppia, ETOUEVWS 1) unyavixy Uudinor umopel vo dwoet xahltepeg AIoElS o
QUTEG TIC CUVDTXES, UE TIC YVWO TEG TEOUTOVESEIS: UEYAAD amdUeua BEBOUEVLY EXTIUBEVOTS,
ulot iy ITEXTOVIXY YId TO VEURWVIXO BIXTUO Xall ETAEXY| UTOAOYLO TIXN Loy L Yo TNV eXTaldeucT)
g, ouvAtwe e yeron abyyeovoy GPU [11]. H Boaow yovéda evdc veupmvixol dixtiou
etvar 0 veupovoe (Bh. Xy. 7), o onolog avacuvdudler Tic e10680UC TOU Yior Vo TopdEet o
€£000, TEWTA YEOUUIXG Xou METE UE [iot Un-yeouuixY| cuVAETNOT).

T Wy
1'2%
) —Y
: y
Ln
Yyfuo 7 H Soun evoe veupdva. Ta Bden w; otaduilouv tic eloddoug ;. XN ouvéyewa tpooTiveta
70 bias b, xou T0 anoTéAeoua TEPVAEL AmO TNV UN-YRUUUIXT CUVEETNOY evepyornolnong f mewv tny

¢¢000.

H Boaowr| 0éa niow and tnv exnoldeuon TOMAGY 0QYLTEXTOVIXOY CNUACGIONOYIXHAC Xa-
TdTunone undyeton oty eMPBAETOUEVY HdINCT.  DUYXEXPUEVY, To DEBONEVH EXTIUBEUOTG
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€youv emonuelwlel and avipnnoug xat Yo TNV dadixacio TG ExXTaldEUoN TO CUCTNUA OE
TEOTN QACT| ATADG AKAVEL UTOAOYIGUOUE VLo €V 1) TEQLOCOTERA ATd T BEBOUEVA EXTAU(OEUOTC.
H ondxplor| Tou yetd ouyxplvetar ue v avauevouevn, ue Bdon to 1 €yel doldel otig emt-
ONUEWOOELS TV OEdOPEVWY exmaldeuonc. H uetalld toug dlagopd Tocotixomoleiton ye yeron
ULOC CUVHETNONG ATWOAELG (loss function), xou oTN cUVEYELL EVag ohyberduog omoYodLaBnm-
one (back-propagation) ennpedler drodoyixd o Bdpn TwWV VEUPOVLY PE OXOTO VoL PEPEL TO
oo TN ot plo xoTdoTaoT 6Tou 1 AmdXELOT) TOU Vo elvar XovTvoTepa oTny emuunth. Me
XATIAANAT ETLAOYT| UMY QOUUIXGY EVEQYOTIOLACEMY TOV VEVRWVOY, CUVIOTNONG UTOAELIS XAl
TV OLUPORKY UTEQTURUUETEWY TNS Aoy g TS omoPodlddwong To cuo TN Yo GUYXAivEL
PETd amd ToAAEG emavakelc o xatdAAnia Bdpn, (oTe oL amoxploel Tou Wavixd vor ebvor
OWOTEG AXOUA XOL YL OEDOUEVY TTIOL BEV EYEL OEL TOTE OTY) Bladasio TNG ExTaUdELOT.

Mot onuovTiny| apyttexTovinn WE Yo VELpWVIXA dixTua Tou £youy egupuoYég otny ‘Opa-
on etvar 1) ouvENEN. H Baowr| auth Siepyaocia yia v xhacowr| ‘Opaor Beloxel To avdroyo
TNG GTOV XOOUO TV VEUPWVIXADY BIXTUMY 0Ta GUVEALXTIXE VEUpwVIXd dixtua ( Convolutional
Neural Networks - CNNs). Mia ETMUOXOTNOT| TNG YEVIXNC UQYLTEXTOVIXHC TOUG QUiVETOL OTO
Yy. 8. H d€a ebvar vo 0ploTo0v GTPWOELS VEUPOVWY TOU VoL BOUAELOUV UE TOTUXTY] TTANEO-
popio, ETAVOLYENCLOTOWVTAS Bden Xt TEOCOUOILOVTOS TEAXSE TNV AOYIXY| TWY XAACCIXGOY
CLUVENXTIXOV QiATewY. Auth 1 oyedioon Bondd oTic emBO0EC AOYW TWV AMYOTEPWY GUV-
0EoemY, dpo xou Bapdy TEog avelpesT), dAAd emlong mepvdEL TNV StanodnTer avtiAndm yia
TNV TOTUXOTNTA TNE TANEOYORIAS OTIC ELXOVES EUUECA, UECU OTNYV (BLoL TNV CEYLTEXTOVLXY| TOU
O TVOU.

conv layer conv layer
with non-linearities with non-linearities
layer [ =1 layer [ =4

FC layer
layer [ =7

- ’
input image

layer [ =0 subsamp. layer subsamp. layer FC layer
layer [ = 3 layer [ = 6 output layer [ = 8

Yyfua 8: Emoxonnon oo opyttextoviniic evog GUVEMXTIXOU VEURWVIXOU BixTOou. And oploTe-
P4 meog Ta 8e€Ld, N apy x| ExOVa TEEVE oo Wiot AANAOLY (ol GUVERLXTIXEY X0l UTOOELY UOTOANTTIXY
CTPOOEWY, TPV QTACEL TEAXE OTIC TARPWS CUVOEDEUEVES 0TRMOELS EEGBOU.

"Eva ouyxexpudévo dixtuo Ue wialtepn onuacto yia Ty tapoloo epyacta eivon to Faster
R-CNN [ ]. Hpdxerton yio éva olotnua mou axohoulel pla oyediaon mou eivar apxetd Srode-
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dopevn oty BdAoypapio Tng onuactoroyxic xatdtunong. Ipwta, oL GUVEMXTIXEG OTPWOELG
evOg apyol BixTOou TEPVAVE TANPogopia ot éva dixTuo TpdTAoTC TEploy WY, Region Pro-
posal Network (RPN), mou pe tn oepd tou Sivel TPoTdoelc Yo To ToU UTopel Vo UTdpyEt
xdmoto avtixetuevo. Metd yiveton xan 1 Sadixaoior aviyveuone xat Ta&vounone yio Vo Teo-
x0del To TEMnd amotéheopa. TTdpyouv TEOPAVAS %o TOAES GANES APYITEXTOVIXES, TOOO
v EPK-xoroturoeic [, 0], ahhd xon yior uxvég xototpoes [0].

4.3 Egapuoyés oe SLAM

ITohhéc Bragopetinég mpooeyyioels €youv mpotadel yia TNy cUUTAELN onuacloloyiog xou
SLAM. ¥e éva eninedo mo dueco andé to SLAM, hoeic ontixrc odouctplac €youy yen-
OLUOTOLACEL ONACIoAOY{o YLl Vol BEATIOCOUY TIC EXTWNACES TNG XIVNOTG TOU TROGHPEQOLV.
Tétoleg Moeig unopel v TeocETouY 6poug BEATIOTOTOINGNC UE ONUAUCLOAOYIXO TEQLEYOUEVO
and TV andxhoT e onuactoloyiog oe dodoyxd frame [ -], # unopel va adpoilouv ove-
EdpTrTor GANIATA POTOUETRING, YEWUETPOG Xat optyols anuactohoyiog [ /1], T to SLAM,
ulor € yior dpand oL TAUAT TOU YenooTotoly aviyveutés e UPK elvon va emitpanel ot
onuaoctohoyio va emnpedoel xdnws tov yedgo moloug. Mia mtpocéyyion Yo Htav 1 ecoywyn
VEWY ONUOCLONOYIXWY axUY, pe yerion akyoplduwy peyiotonoinong avopevouévoy (Erpec-
tation Mazimization - EM), tou 6uwc épyetat e oNUavTixo0g UTOAOYLo TIXOUS TEPLOPLOHOUC
oe xdmoteg tepintoelc [, . Euele, 6nwe Yo 8odpe otn cuvéyea, odhdloupe Tov Ypdpo Ue
TNV EloaywYY BaptdV G UTEQYOUCES UXUES, UELWVOVTOC ETOL TO UTOAOYLOTIXG @opTio. And
NV AN, o€ Tuxvd cuc Thuata SLAM, Sudpopec 16éeg €youv mpotadel Yo TV EVUépmaon TG
Tlotng Tou cucTAuaTog avd pixel, ye Bdon .. Bayesian xavoveg evnugpwong miavottwy

[0
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5. H Yuvewocgopd Moag

Eiuoote oe Véon vo avahboouye ty oY) pac enéufaocn oto cbotnue SASHAGO [/]
yioo var eumioutiotel Ye onuactoroyio. H mpooéyyior| pag yweiletan o tpla otddiar mpdTa,
€youpe xdmoloug Bactxolc oplopolc yia emexteTopéva matchable, éneito Tov unyovioud dia-
Yelplong tng onuactohoyixiic TANeo@oplag xo TEAOG XAMOLEC TEOTOTO|OELS Yol TO OULY (S
YEWUETELXO XOUUATL TOU GUCTHUNTOS TTou Borinoay Todd otny axpifeia TN Tehixr vAoToin-
ong.

5.1 Baoixot opiojiof

Zexwvdpe opllovTag TL oNUalVEL ONUACIOAOYIXY| UETENOT OTO TAXICLO TOU TROTEWVOUEVOU

ocvothpatoc. H i-otn onuactohoyix| pétenon tou frame t opiletan we:
s = (517, oL, si) (14

OToU To TEWTO oTolyElo TG TELMAETAC elvar 0 axEpatog TNG xAdoTG, TO BEUTERO Elvol VoG
mparypotxde aprdude oto Sdotnue [0.0,1.0] mou avtiotolyel oty autonenolinon tou on-
HOCLOAOYIXOU avLy VeuTr| xat To Teheutado ebvon plo ehdylotn mapouetpomoinom tou UPK tng
uétenone. Auth 1 mapoueTeomoinon anoteAeiton amd BV onueia, Eva ylor THY GV dPIoTERS
xou €val yior TV x4t dedld ywvia Tou opoywviou oe cuvtetayuéveg pixel, mou emopxolv
Yioo Vo Tpocdloploouvy mhrpws 1o LOK.

Me don To napamdve, optloupe TV £vvola Tou GNPACLOA0YWE enexTeTauévou matchable
¢ e€hc:

M? = (py, Ry, Ay, Sur) (15)

6mou To TEWTo Telo oTolyelo elvon Tar YveoTd and Ty EE. 9 xan o teheutado elvon 1) BEATIOT
OTNUACLOAOYIXT UETENON oL avTioTolyUnxe ue autd To matchable.

5.2 MeOodoroyia

Medodohoyxd, n avtiotolynon auth| yivetar 50oX0AN oe TEPITTOOELS 6Tou €va matchable
TEPLEYETAL OE BUO 1| TEQIGOOTEPES ONUACLOAOYIXES vty VEVOELS ToawTdypova. Autd umopel va
ouuPet 6tav éva NPK mepihopfdveton €€ ohoxhipou ot éva dhho, OTKE yio TopddeLy o Eva
aCo mou AoYw TNG OTTIXNAC YOVING TOU TREEXTOPN TAUCUWVETAL EVIEAWS a6 TO TEATELL TAvE
oto omofo etvar tomo¥etnuévo. Ta matchables howmév avtiotoyyilovton mévta oe exeivn
TNV TUEUTAENON TOU TEPLEYEL TO GNUCLONOYIXS AVTITPOOWTEUTIXG Toug onueio (m.y. To
XEVTROEWEC) xou €yeL To eEAdytoTo pixel-eufoudov. Luyxexpiuéva:

407 = argmin Area(s;) (16)
Sbesz’j

‘Eyovtac Bpet mpotevéueveg avtiotolylec matchable ye onuoacioloyixéc petprioelg, 1o
emouevo Priua eivon var avaryvewplcouue 6tL ol avtiotolyioelc mou yivoviar elvon and Tt @lon
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Toug YopuPndeic. O YopuBog mpoxinTel and TOAATAES TNYES: amd Tr) dtadwacior aviyveu-
ong xou mepypopric Twv matchable, and T Swadixacio topaxorodinchic Toug oTo YEdVO,
amd TN dladacion TG ONUACIOAOYIXNC XATATUNOTS X TENOG amd TNV OLadixacior SlacUVOE-
o onpactohoylag xat yewpetelag mou eldaue Topandve. ‘Olo Tor Topamdve 0dnyolv oe pio
XATAOTOOY) OTIOL AVATOPEUXTA TRETEL VoL Yivel xdmotor o TdIUoT TwV OEBOUEVWY TOU €Y OUNE
OLMAEEEL, WoTE va unv yivovtaw tepdotior Addn otny avtiindn tou pounotixol mpdxtoga.
‘Alhec Bovketée metuyaivouy pla armotopufonoinon péow olyopiduwy EM [, "], ot orno-
for 6Twe oyoldoaue xaL GE TEONYOUUEVY TUEEYEAPO EYOLY UTOAOYLO TIXOUE TEQLOPLOUOUC.
Euelc, ¥éhovtac vo xdvoupe mhololo oNuaclohoyxr] aviyveuoTr xol HE GXOTO Vo DLOYETE-
UoOLUE QUTHY TNV TANEoYopla 0To Baocd YEWUETES eninedo, Véloupe plo o duson Ao,
EMOUEVWC OTREPOUAOTE TNV oxdhoudn hoyixn Tng onuaclohoyixic Pnpogopiag:

T
79 = arg maxz 1[st7 = 0] - s (17)
veCy t—0

4Tou éyoupe Y To j-6T0 opbonuo 117 ula Phgo yio xdde onpactoroyd tapathenon ou
Berixe autd to opbonuo otov deixtn j° = idx(j,t) tou t-otou frame. H 1déo eivon vor evi-
oy VOUPE UE Wiot UTOROYIOTIXG amAY| TEdEn TNV unddeor uiog onuactoloyixrc dlacLVOESNS
AVIAOY QL PE TO OXOP EUTLGTOCUYNG TOU OVLYVEUTH YL T1) CUYXEXPUIEVT] DLUGUVOEST) OE e
Bruo Tne Topaxoholinang tou opdonuou. Enopévne, av yivouv xdmota (oyetind hiyo) A,
O€ OTOLOONTOTE GTAOLO TG dLadixaciog cuoyétiong, Yo yadoly péoa oo TARdog and cwoTég

higpoug.

H avavéwon tou ypdgou molog YIvEToL Ye TOV UTOAOYLONOG £VOC xaTtdAniou Bdpoug:

o ) ) 1
ti'i t,j" Jt, ~
ws] T=f <DC<Sc] 710])) “\w 7 gtd’ £ [t
p ) “c c

tg' — Jtd
Sc - lc

(18)

To Bdpoc autd dpa TOMATAACLAGTIXG GTOV 6p0 GHIAUATOS X0t TEOXVTTEL W €EAC: OV 1|
TEEYOUCU GNUUCLOAOYWXT| UETENOT CUUPWVEL Ye TNV Thetodnpio yia To avtioTolyo opdonuo,
T61€ T0 [Bdpog clvon puovdda, eToUEVLE Bev Exel xapio ETINTOON 010 Yedpo. Av Bev GUUPW-
vel, tote madpver pla T avdAoyn e TO TOco BlaopeTixy ebvar 1) xhdon mou aviyvelinxe
amd v avapevouevn. To onuelo autd elvar xdmwe Aemtd, xodng wovind Vo neptehduBove
XATOLOV Thvorar DLXELOTG (confusion matriz) mou vo divel Tig mdavotnTee v yiver Addog
avdueco oe onotodnnote (elyog xhdocwy. TEtolol mivaxeg 6ume ev yével Bev etvor dlordéat-
HoL yiar aUolPETEG XUTAVOUES DEBOUEVMY ELGODOL Xal ETOL XL AAALOG OEV OVUPEQOVTOL YLdL
APYITEXTOVIXES ONUACIONOYWAC xaTdTunone (cuvitwe mopatidevton otatioTind mAP xTh).
Yuvenwe, TpocupuoloVUE TNY CTEATNYLXY UAS, ONUIOUQYMVTAS UTEPXAUCELS TOU EUTEQLEYOUV
oOVOhA XAJGEWY TOU umeEdeLOVTOL eUxoha Yetald touc. H opadomoinor yiveton euncipwd
xou e€ohelpel xotd TEPITTWON Tol TEOBAAUATA TOU TEOXUTTOUY GE €VOL GUYXEXQLIEVO GUVOLO
OEDOUEVLV.

5.3 TAomoinon
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Detector Tracker

Yo 9: Xovodm g apyrtextovinic Tou TEMx0) GUOTAUTOS.

[Tépa amd autéc Tic Yewpnuinéc mEoexTdoelS, TwV omolwy 1 ulonolnon axololinoce a-
XEBOS TN AOYIXH| TOU TUROUGCIACOUE TOROTAV®, EYIVE o uiot Tpoondideio va Tpomonoinet
N ahyopuiuixh vAoroinom tou yewpetexol pipeline tng Abong. Extég and tnv Pruatix
TEOCAPUOYT| TNG TapaUeTeonoinong e Adong yia xdde mep3dilov, Souédaue Tdve oTic
CUVAPTACELS EVTUYRAUULONG TWV BLUBOYIXMY OXNVMY.  LUYXEXPWEVD, TEOTOTONCOUE TNV
eVHUYPAUULOT UE TEELS TPOTIOUC:

o o\ aryr) TOU %x@OLxa avalATNONG TANCLEGTEPWY YELTOVWY OTNY 0w Tepxt| dour) KD-tree

o olhory?) TNG AoYLXNG UTOAOYLOUOU TNg amdoPBeong Tou Briuatog tng aptduntixhc pedodou
TEOTNG exTiunong suduypduuiong

o melpduota PE piot UBELOIXY cUVEETNOT UTOAOYIoHOD TNG EYYUTNTUS YELTOVIXGY match-
able

O ouvduaoude onuactohoyiog Pe TIC Topandve BEATIOCES eivon Tou Bivel TNV TEAXT] Lop@n
OTNV TEOTEWOUEVY AUoT auTAG TNE Epyaciag. Avagpopd pe Tnv ulomoinon Tng onuactoroyiog
auTAS xRS, TUEOUGCLECOUUE GUVOTITIXG TNV TEAXY| 0EYITEXTOVIXT 6TO XY. 9.

5.4 llepauatikd aroteAéouata

[ty o&lohdynon tpoyldy 6to SLAM untdoyouy Bld@opes TEYVIXES Kot TOANES UETEIXES
mou Ti¢ utootneilouv. Euelc, epbdoov £youue éva apoud ohotnua SLAM, da axohovdricoupe
NV AOYIXH) TOAAGDY oVTIGTOY WY CUOTNUATWY, EAEYYOVTUS TOCOTIXG TNV axplBeta TG extiun-
one nélog pe yeron tou andhutou o@diuatoc tpoyids (Absolute Trajectory Error - ATE).
LNUELOYOUPE OTL 0 UTOAOYIOUOS AUTO) TOU GPIAUNTOS EYEL 0G amapaltnTy Tpolnoieon va
€yel yivel mpwta BEATIOTN eVIUYPHUULOT) TV CUYXEIVOUEVGY aXOAOUTLMY, XYTL TOU ETULTUY-
ydveton uéow Sradastog Bactouévne otny anoctvieon SVD [0, | 1], Eniong, etodyoupe uio
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[Mivaxag 4: Anoteréoparta ICL-NUIM (RMS ATE [m))

Axohoudia Ours SASHAGO ORB-SLAM?2
(w/o sem.)

tr0 0.0131 0.0156 0.0212

10 0.0238 0.0519 0.0036

Irkt1 0.0046 0.0091 0.0392

Irkt2 0.0067 0.0148 0.0281

VEOL UETEXY Y10l VO TOCOTIXOTIOLACOUNE TNV UECT, ONUACIOAOY XY TANeoopla avd frame, wg
1) OWYUECO XU UECT] TWT| TV CUVOMXOY CTUACIOAOYIXMY OVLY VEDCEWY oVl EXOVA ELGOB0U
(SemlInfo). Me autdv tov tpémo éxouue pla Sronodnuxh tpocéyyion tou téoo Thovota oe
onuactoroyio etvar xde oaxoroudia.

EmBeBomvoupe Ty AcltovpyixdTnta Tou UG TAUATOC Uag o€ Tela BLopope TG GUVORX
OEDOUEVY. ZEXWVAUE UE VA GUVORO ATOXAECTIXG Yot EMBELUlwoT TWV YEWUETPIXWY UG
npoextdoewy, to ICL-NUIM [ ']. Auté 1o odvolo dedouévov eiye yenotponomdel xou yio
™V a&lohdynorn tou apyol cucthuatog SASHAGO. O axohoudiec mepiéyouv GuTOpENAL-
OTIXEC OXNVEC a6 GLVIETNOUC ECMHTEPIXOUS YWEOUS, TOL TUEOUGCLALOUY EVIOVY] YEWUETEIXT
XovoVIXOTNTO.  AUTO TO OTo{0 XAVEL TIC OXNVEC BUGKOAES YIo OTUACLONOYIXES TROEXTAGELS
elvon OTL BEV LTdEYEL ETOWO onpactohoyixd ground truth xou ducTuy®g avyveuteg 6K O
Faster R-CNN anotuyydvouv, Aoym Twv XATWS AmAOXMY UOVTEADY OVTIXEWEVWY TOU U-
T&EYOLY GTO YOEO, ToU EEPEDYOUY XUTA TOAD UMb TIC XUTAVOUES EXTALBEVCY|C TOUC, XoL TOU
OTL Bploxovton oyeTnd paxpLd amd TNV ELXovixr) xduUepa, 1) omolo UdAloTa LOBEVEL OTUAVTIXG
XOUMATL TNG TEOYLIC TNG TUEAUTNEWVTAS T OPLX TOU BWUTIOU, TOU BEV BIVOLY ETOL XL AAANDS
OTUOCLOAOY XN TANPOGOElaL.

Me Bdon o mapamdve, EAEYYOUUE HOVO TO YEWHUETEIXO XOUUATL TNG ADONG OIS oL TOEA-
Yé€toupe v ouvtoia Ta anoteréopata otov [livaxa 4. H Beitiwon and o SASHAGO etvou
uoUNTA xou €XTOC UTOU TOEVOUUE %o ETUOOCELS €V YEVEL XUAUTERES Xou oo TNV uéVodo
oY XpLoNG.

To endpevo oUvoho dedopévmv tou pog evitagépet eivar o InteriorNet [ 1], to onoio eivou
OLUVUETIXG, POTOPEAMCTIXG XAl PE UPXETA To TAOUGCIEG OXNVES amd To Tponyoluevo. Mia
xploymn wLoTNTd Tou Elvan 6TL TEPLEYEL OMUacloloY o ground truth, to onolo yernowonotolue
6ivovTag 010 GUGTAUN TN BUVATOTNTA Vo To BLaBAlel cay Vo EpYOTAY ATO XATOLOV EEWTEPLXO
to&vountr. Enlong ot tpoytéc elvor o amantnTxég, xodide oL XWVACELS TOU EXTEAOUVTOL £YOUY
TeoxUEL UE AUTOUATOTONUEVES, TUY e Bladixacies. AxpBdc Aoyw auThc Tng TuYUOTNTOC,
TOMG xOUPATLO TOUC Elvar BUGYENOTAL, xaddE TopoxohoLolY ETHOVO XETOLL AV TIXEIUEVY GTA
omolo ETUYE 1) XAUEEA VO TANOLAOEL, EVG) OE UEQIXE OTNUELN 1) EXOVIXT XAUEQU TIEQPVIEL UECH
and wxpd ovtixeipeva (Adumreg, @utd xth). o autd éyve mpooextixy| emhoyr xodapdy’
UTXOROLDLOY, UE OXOTO Vo £YOUUE PEoTIXG OEdopEVA EAEYyov. To TeoT pog @aitvovTtan
otov Ilivaxa 5, 6mou 1 Aoor pag TETUYAUVEL XUhEC ETBOCELC GTOV TOUEN TNG ONpactohoyiag,
HEVOVTAC TAUTOYEOVA TOAD XOVTE 1) X0 EEMEPVOVTOS OHLY DS YEWUETPIXES TROCEYYIoELS.

43



[Mivaxag b: Anoteréopata InteriorNet (RMSE ATE [m])

Axohouvdia (ﬁzgl/lif\?g) Ours (w /?)usiesm.) SASHAGO MaskFusion | ORB-SLAM?2
133_open 8/8.2 0.0075 0.0091 0.0203 0.0190 0.0057
2r11_250-600 17/15.8 0.0161 0.0267 0.0772 0.0205 0.0147
3011_open 9/8.9 0.0065 0.0060 0.0179 0.0179 0.0189
4011-200-600 6/5.1 0.0343 0.0319 0.0565 0.4595 0.0447
5011 _full 12/12.7 0.0099 0.0111 0.0409 0.0110 [track lost]
5033_200-675 16/15.7 0.0292 0.0539 0.0502 0.0575 0.0268
6011_800-1000 12/11.4 0.0128 0.0135 0.0195 0.0164 0.0045

Y€ autd 10 GUVOAO BEBOPEVKY UToEOUPE Vo doUue Eexdiopa xou Ty Beltinon mou mpo-
o@épetal amd TNy onuactoloyio. Me e€alpeor Tic axohoudiec 3011 _open xon 4011_200-600,
TOL AMOTEAOUVTAL ATt OYEBOV AOELL OXNVIXYL, ETOUEVKC 1) OTUAcLoAoY{o dev umopel vor Bor-
Ufoel 00Twe 1 dAAwe, o OAeC TIC dhAec umdpyel Bedtiwon. Ernlong, otic mapamdvey oxo-
houdieg qatveton 1 adior Twv UGR, %ol 1 aviyveuorn yeoauu®y xou emTEdmy GvTme Olvel
AAAVTEQO ATOTEAECUATOL.

Téhog, anogacioaue Vo TEWAUATIOTOVUE Kol UE TEUYUATIXG DEdOUEVA OTO TEITO o Te-
Aeutado oOvolo dedopévmv pac, to TUM RGB-D dataset [ 1] Ye auté to obvolo undpyouv
OLdpopec axoloutdies, 6T onoleg Bev €youue ornuactohoyxd ground truth, oAAd urtoroyilou-
ue onuactoloyixéc xatatunoelc Ye yenon tou Faster R-CNN. To peyohitepo mpdfinua oe
ouTd Tor Bedouéva ebvon o YopuBoc. Ot eixdveg Bdiouc Bev €youv uovo avoxp(Belec, aAAd xau
xdmota pixel ye Ty 0, Tou avtioTotyoly oe éAieupn tAnpogoplog. o vo xotamoleurcou-
ue tov Vopufo ot aUTEC TIC EXOVES XUTOANEopE TEAXE GTO (kTedpioua Slopécou (median
filtering). Eniong, xdmowo frame optopgévwy oaxohouthov tapouctdlouy Vohwon Aoyw xivr-
ong (motion blur), mou eniong duoxolelel o SLAM. Ytov nivoxo 6 @oaivovton to TocoTind
ATOTEAECUOLTAL.

ITivaxoc 6: Anoteréopata TUM RGB-D results (RMSE ATE [m])

Axohoudia (1\842151/12{;) Ours (w /(zusr:m.) SASHAGO MaskFusion | ORB-SLAM?2
fr1_desk 4/4.0 0.0406  0.0825 0.1188 0.9116 0.0203
fr2_desk 500 6/5.9 0.0183  0.0178 0.1350 0.0581 0.0053
fr2_desk_1000 6/5.9 0.0193  0.0181 0.1634 0.0581 0.0067
fr2_desk_full 4/4.6 0.0714  0.0653 0.2065 0.4559 0.0085
fr3_1oh_200 11/10.2 || 0.0161  0.0267 0.0772 0.0337 0.0178
fr3_1oh_1000 6/5.9 0.0521  0.0508 0.0867 0.0272 0.0087
fr3_loh_full 7/6.6 0.1527  0.1576 0.4145 0.2092 0.0097
fr3_sitting_static  10/10.4 | 0.0087  0.0081 0.0092 0.0117 0.0086
fr3_sitting xyz 9/8.5 0.0441  0.0436 0.0506 0.0530 0.0092
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BAénoupe cugt| emdelvworn tng enidoong 1660 Tou 000 PAg CUCTAUATOS, OCO XAl TOU
MaskFusion [/ ]. To ORB-SLAM2 [ '] an6 v dhhn @aiveton vor TETUYAVEL XOAUTERXL
amoteréopata, THaVDS AOYR ECHTERXMY UNYaviou®y arodopuBonolnong. XNnuewdvouue ot
ol TeAeuTaieg oelpég Tou Tivaxa avTIoTOL 00V GE EWBWES 0xohoLDHEC TOU GUVOAOU BEBOUEVLY
TOL TEPLEYOLY XL BUVOUIXEC OVTOTNTES, CUYXEXQUEVO XIVOUUEVOL AvUIpWTOL.  MNUELDOVOUUE
OTL auTEC bvan oL cuVITXES YL Ti¢ oTtoleg ebye oyedlaoTel ewxd To MaskFusion xou cuveng
OEly VoLV axEIBME TOUC TEPLOPLOUOUS TNG Bixg Yo ued6d0u, Tou Bev Eyel edwéc TpoBiélelc
YLOL QUTEL TOL (POUVOUEVAL.

—— ground truth -2.44 —— ground truth
—— estimated | — estimated

0.24

0.01

y [m]

—0.6

—0.8

-0.2 -0.1 0.0 0.1 0.2 0.3 -2.0 -1.5 -1.0 —6.5 OTO OTS 1.0 1.5
x [m] x [m]

(o) Mia tpoyid oméd to ICL-NUIM. (B") Mia tpoyid and to InteriorNet.

—— ground truth
| —— estimated

y [m]

0.0+

—0.2

—0.4

—(I).S OjO 0;5 1;0 1;5
x [m]

(v") Mio tpoytd ané o TUM RGB-D.

Lyfuo 10: Extpioeic tpoyicdv xan ground truth yio Sidgpopoa oGvola dedouévwy. Yto (') onuet-
ovoupe Ty enidpact tou YoplBou, xadoe To Sedouéva elvol and ToV TEUYUATIXG XOCUO.
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6. Yupnepdopata xa MeAhoviixy ‘Epsuva

Yuurnepdopata:

Yty napovoa gpyacia €youue mpotelvel plo uétdodo yio T0 TEOBANUL TOU GNUACLONOY!L-
xoU SLAM oce cowtepinole ywpoug. Xta mhalol Tne mpocéyylong authc eldoue didpopa
ovoThuata odouetplag xou SLAM, 1 Yewpntind Yepehinon twv Baowwy pedodny SLAM
xou TN pordnuartix| Sadixasto petateonrc Tou teoPAfuatoc SLAM ot mpdfBinua Behtic tomo-
nong Un-yeauuxmy e Xy (o TWY TETEAYOVWY GE YEdPo. JTr cUVEYEL avapéodn oy To xUpLa
Yewpentind onuelor tou oTNECOUV TIC EVOTIOUNUEVES YEWHUETEIXES OVUTOQUOC TUOELS XAl TO TG
autéc Bondolv oto SLAM eowtepinmy yodpwy. "Totepa €yve uia EMOAOTNOT TN ONUACLO-
AOYIXAC XATATUNONG EWOVWY Xl TV PeVOdnY Bodide pdinong mou Bordolv otny eniiuon
auTtoV Tou TEoPAuaTog. Tehog, avaklinxe 1 mpotevduevr uedodoroyio, amd TG OXOTLEG
¢ Vewplag, TG LAOTOINGNE Yo TOU TELRUPATIXOU EAEYYOU G BLdpopa TERBAANOVTAL.

And dha o TopOTEVE UTOPOUUE Vo BOVUUE ToL EYHA TROTEQHOTA TNG UBELOIXYC TROGEY Y-
one YewpeTplag xon onuactoroyiog oto SLAM ecwtepidy ywewy. BéBaia, 1 onuactoroyio
€YEL TOMEG EQUPUOYES XU OE EEMTEPOUE YWEOUS, ahhd To olyoupo elvan OTL 0 GUVBUL-
OUOC UE TIG EVOTIONUEVES YEWNETPIEG Ponid xuplwg yia ecwTepixolg ywpeous. Emtpenet o
QUTOVOUO POUTIOTIXG CUCTAUATA Vo TEOCUPUOLOVTOL oUTOUATA OE TEPB3dAoVT UE Eviova
HETOPBUANOUEVT] TOLUALL AVTIXEWEVLY, oTtd GOEL DWUATIO UEYEL YWEOUS YEUdTOUS EmmAa. E-
mlong, dtvel éva Véo eninedo avtilndng Tou mpdxtopa yior Tov TERIBAAROVTA YOEO, xadMS oL
Y3ETEC TOL BNUIOLEYOUVTAL €YOLY TEOGVETEC OTUACLOAOYIXEC TANPOPORIES Yla AUTOV.

Melovtikny épevva:

OAbxhnen 1 gpeuvnTt| TEPLOY T YEVIXA, AhAG Xon EWOXE 1) AVOT) UG, EYEL OXOUA TTOAAY
avoly T epw Aot Tou yerilouy diepebvnong. Kat” apydc, o 96pufoc, dtwe eldaue xon oto
TELGUOTA, UEWWVEL CNUOVTIXG TNV ATOTEAECUATIXOTNTA TV PEVOdwWY aut®y. Enouévee etvan
xplowo va Beedoly oto YEAOY AIOELS VLol TNV AVTYETOTIOT Tou, €W0Xd yiot motion blur ot
xavdhior RGB xon 96pufo oucinthpa ota xavdha Bddouc. Enlong, duvouixeg oviotnteg oto
medlo avtidndmng Tou TpdxTopa Umopoly elXoAA VoL BNoURYicouY Addog EXTIUNACELS XIvnoTC.
Exel n onuociohoyio unopel vo Bondfoet (6nwe yivetaw oto MaskFusion), ¥ odAide unopet
va Yiver xdmoto otatiotixd| avdhuon tomou RANSAC [0 1, (7] yua va agoupedolv outlier tne
xivnong. TeElog, avolytd TUPUUEVEL TO EPMTNUA YL TO TOLX EVOL 1) XUADTEQT) UOYLITEXTOVIXT)
yioo voo emteuy el 1) ONUACLOAOYIXA XATATUNOT X0t TO XAt OGO auTd unopel Vo yivel oe
TEUYUOTIXO Yedvo. Edixdtepa, yio T0 TpoTo cp@Truo Utopel xavels va avapwtniel yia to
¢ Yo cuuneptpepdTay To oot av elye Tpdofacr o Tuxvi| xatdtunon. I'a to dedtepo
e TN, To av Vo ypetaotel xdmoto hoyixy| Slohoyric Twy frame yio va emthey o0y keyframe
oto omofor Yo ylvetan mepautépw encéepyacta eivar xplowo, aAAd yeeldleton avdAuon yia T1
OTEATI YT TNG DLAOYHC XL TNV TopoETEOTONOT TNG TEAXNAS Abomg.
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Chapter 1

Introduction
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1.1 Basic Definitions

Robotics is the branch of technology dealing with the design, construction and oper-
ation of robots, also referred to as robotic agents. Of the many research areas that exist
in this broad and ever-expanding field, perception is one of the most important. It en-
compasses all the different ways in which robots perceive their environments. Perception
also exists in a multitude of different varieties in biological systems, including humans.
However, unlike biological perception, robotic perception requires much stricter quantifi-
cation of distances and shapes in the environment. Only then does it become possible
to use the information gathered effectively, allowing the robot to interact safely and ro-
bustly with its surroundings, thus becoming truly useful. In visual perception systems,
which are extremely popular in today’s world, methods from Computer Vision (CV) are
of paramount importance and are commonly employed to act as fundamental building
blocks of complete systems. This highlights the interplay between robotics and CV, that
has greatly helped in shaping the area of robotic perception.

Of course, the problem of automated spatial awareness is an extremely challenging
one, with research spanning several disciplines over many decades. Not only is it the-
oretically difficult to account for the tremendous variability of possible environments a
robotic agent can encounter, but other factors such as the design of sensors and noise
modeling can seriously impact performance. For these reasons, initial approaches were
confined to simplified abstract worlds and focused on probabilistic calculations. Later, as
real-time (and increasingly often on-board) processing technologies became more preva-
lent in mobile robotics, the first implementations of trajectory estimators were designed,
based on the concept of odometry, with an emphasis on multiple sensor fusion. These
initial approaches mostly ignored the concept of maintaining an explicit mapping of the
traversed environment, and instead focused on localization in a known map. Mapping
solutions existed largely in separation, e.g. using occupancy grid representations for Li-
DAR sensors, assuming known localization. Naturally, the search for a framework that
could execute both localization and mapping at the same time soon started; Simultane-
ous Localization And Mapping (SLAM), as it came to be known, became an important
problem in the community, with decades of research going into developing various solu-
tions [/, [0]. With SLAM, we seek to enable robots to extract information about the
topology of the surrounding space and their own trajectories, using on-board sensor data
(e.g. LiDAR, cameras). SLAM was brought localization and mapping together, allowing
robots to effectively and meaningfully negotiate unknown environments. Modern compu-
tational capabilities enabled real-time SLAM solutions to be deployed that were designed
to use data streams from a large selection of possible sensor architectures, to both estimate
robotic trajectories and generate a map representation of the traversed environment. The
mathematical formulation also changed, as we will see later, with SLAM frequently be-
ing cast into a non-linear least squares optimization problem, and a variety of techniques
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being developed both for its construction and its computational solution [ ].
From the impressive variety of SLAM solutions available in the literature, one may
discern some common structures and functions existing among them.

e Sensor measurement collection: sensor data can differ vastly depending on the
specifics of the implementation, but the ultimate requirement is that the system be
capable of calculating 3D coordinate estimates (initially with respect to the moving
sensor’s frame of reference) for a set of points. This set may be dense or sparse,
reflecting the underlying logic of the algorithms involved.

e Map structure: different SLAM systems have different notions as to what exactly
an environment map is; from lightweight structures, storing only sparse, salient
features, to more descriptive ones, capturing a fully detailed 3D reconstruction of
their surroundings. They typically account for the bulk of implementations’ run-
time memory consumption and are very frequently expanded, updated and queried,
leading to strict performance requirements to maintain efficiency as they grow in
size.

e Loop closure detection: routines in place to recognize when the agent revisits a
known location. The optimization process takes this into account, thus alleviating
accumulated pose estimation drift (seen in VO solutions - we discuss this further in
Chap. 2) and improving accuracy.

1.2 Owur Contribution

SLAM systems exist in many different varieties, each being tailored to function op-
timally under certain operating assumptions. For this work, we consider the scenario of
indoor usage, inspired by assistive robotics applications for hospital patients. Let us first
explain a key difference between indoor and outdoor spaces: geometric regularity. Indoor
spaces typically contain clear lines and planes (floors, walls, ceilings etc.), which are not
always so strikingly present in outdoor spaces. Accordingly, in this work we seek to utilize
new technologies and theories for formulating and solving the SLAM problem, aiming to
obtain improved results in challenging indoor spaces, by first exploring novel theories on
Unified Geometric Representations (UGRs). Over the past five years at least, research
efforts have indeed been made in similar directions [/, '], in an attempt to enrich the
basic geometric units that an agent can detect utilize in describing the world around it.

Another promising research direction for SLAM systems is Semantic SLAM. This type
of architecture incorporates some type of module that attempts to provide the robot with
an understanding of what is in its vicinity. For instance, a semantic segmentation module
can recognize that a cluster of pixels in the agent’s camera feed in fact corresponds to a
chair, a piece of information that could be used by the agent in various ways. Such powerful
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semantic detectors are nowadays commonly implemented using Machine Learning (ML)
approaches, specifically Artificial Neural Networks (ANNs). In fact, there is quite a variety
of them, with different accuracy and performance characteristics, and the literature is
constantly evolving, as this is an independent problem from Computer Vision. Their
success in advancing the state-of-the-art can be transferred to SLAM, provided that a
system is capable of utilizing the detections made in a meaningful way.

Our approach is an attempt at combining the above ideas. We propose a system
that can take advantage of both semantic richness and geometric regularities. Of the
many imaginable ways such a novelty can be achieved, ours is primarily geared towards a
fundamental coupling of the semantic and geometric information. In other words, we wish
to imbue UGRs with a semantic component, and thus use the semantic information as
directly as possible. We will describe the process we developed to achieve this, and then
proceed to showcase an implementation of these ideas in an actual system. Finally, we
shall verify our ideas in various indoor datasets. There, we show that our intuitions hold
true: in excessively plain environments with little semantics, the geometric component
of our solution proves robust. In busier scenes, where semantics are more abundant,
measurable improvements are reported with our semantic integration.

1.3 Organization

The present document is structured as follows:

e In Chapter 2, we present some of the most relevant research to our work, along with
a mathematical overview of SLAM optimization algorithms.

e In Chapter 3, we delve into the details of UGRs and how they tie into spatial
perception for SLAM.

e In Chapter 4, we explore the key components of semantic segmentation, how the
ongoing deep learning revolution has drastically altered this field, and what the
SLAM community has used these technologies for.

e In Chapter 5, our solution is described in-depth, including the guiding design prin-
ciples, mathematical foundations, implementation details and the results of our ex-
perimental evaluation.

e Finally, in Chapter 6 we conclude with a discussion on the above and proposals for
future extensions of this work.
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Chapter 2

Background and Related Work
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This chapter is dedicated to presenting an overview of existing works in related areas
of robotic perception. The systems that concern us cover a wide range of theory, starting
with various ideas from odometry and extending to modern SLAM concepts. The central
mathematical concepts that underpin our discussions mostly fall within the realms of sta-
tistical noise modeling, 3D spatial transforms and, finally, non-linear optimization. We
will also attempt to give an overview of relevant datasets and their properties, explain-
ing how to arrive at pertinent selection criteria for determining where a SLAM system’s
performance could be tested.

2.1 Key Terminology

Before we start with the main content of this chapter, let us first introduce some of
the basic terminology that will be used henceforth. These terms are either assigned their
standard meaning or defined slightly differently, in order to reflect the particular use cases
of this work.

A sensor frame is a complete measurement coming from a sensor device for one spe-
cific moment in time, meaning that the data comes as one unit, with a unique timestamp
associated with it.

A feature is a catch-all term used throughout this work, referring to an entity that can be
detected in a frame, described using some kind of descriptor, and rediscoverable in sub-
sequent frames observing the same physical region, albeit from a different vantage point.
There is a wealth of computer vision literature concerning optical feature processes, both
for detection and description ([0, *1, *7, 7] 7] to name but a few), but here we will
extend the term to include all kinds of features that can serve in the SLAM pipeline,
including optical, structured geometric and semantic.

A LiDAR sensor commonly uses a mechanically rotating laser beam to sweep a pla-
nar sector of the environment, measuring time-of-flight of the reflected beams to compute
range estimates from the sensor to obstacles.

An RGB-D camera is a sensor that offers both RGB optical images and depth images. The
depth image is encoded as a grayscale intensity image, with each pixel corresponding to
a depth value. Depth is commonly captured using infrared rays, measuring time-of-flight.
Note that RGB and depth data do not come perfectly synchronized from real-world sen-
sors, which is why an association step to find the best matches between the two streams is
always necessary to actually create the final frames to be passed on to a visual processing
system.

52



A spatial transform describes how two coordinate frames are positioned relative to one
another. It is comprised of two components: a translation vector € R? and a rotation
€ SO(3) (special orthogonal group of order 3, also known as the 3D rotation group).
There are many ways to parameterize a transform’s rotation, using mathematical tools
such as the angle-axis representation, rotation matrices or quaternions. In the case of a
3D transform, as is typical in robotics, we will consider a transform 7" from a coordinate
frame A to a coordinate frame B as a 4 x 4 matrix, defined as follows:

T4 _ [Rg i

T
5 PA:Tg‘PBa p= [pm Py D: ‘ 1]
01><3 1

where R4 and d4 are the rotation and translation from frame A to B respectively. So
the transform matrix, when left multiplying the homogeneous coordinates of point p in
frame B, will yield the homogeneous coordinates of that point in reference frame A. Note
that in the multiplication, rotation is applied first to the point’s coordinates, and then its
coordinates are added to the result. In Fig. 2.1 we see a 2D transform, which is in the
same as the 3D version in structure, but is one dimension smaller. The displacement is
[3.5,2] and rotation is 45° counter-clockwise. So the transform in this case would be:

cos) —sinf | d, 0.707 —0.707 | 3.5
T=| sing cos® |d, | ~ | 0707 0.707 | 2 (2.1)
0 0 |1 0 0 |1

Transforms can also be chained together, simply by multiplying them in order: TZ =
ThH - TE.

2.2 Odometry

When considering the SLAM problem, it is natural to ask whether a system executing
only localization is possible. After all, mapping adds considerable overhead to the imple-
mentation, and heavily constrained on-board CPUs do not have to be burdened with it if
it is not essential to the application. Odometry solutions were developed to achieve just
that.

Definition 2.2.1 (Odometry). A framework that can estimate the motion of a robot
relative to its starting pose, using data from its sensors.

In essence, it computes the transform between two consecutive frames along a sensor’s
trajectory. This way, the total transform between the origin of the motion and the current
pose of the sensor can be estimated as the product of all the intermediate transforms
that the system computed, using the chaining mechanism we saw in Sect. 2.1. This
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Figure 2.1: The 2D coordinate frame transform from the example in Eq. (2.1).

straightforward approach can function with a variety of sensors. For instance, in wheeled
robots it is possible to use encoder hardware in the wheels of the robots to estimate the
rotation of the wheels, thus getting an estimate for the total length of the trajectory.
Additionally, the rotation of the robot can be computed by the difference in rotations
between different wheels. This of course assumes that accurate measurements of wheel
radii are available, and that these will not change over time. In addition, the steering
mode of the robot needs to be known for estimating its rotations. Some examples of
steering modes for four-wheel robots follow (with their visualizations in Fig. 2.2):

e Ackermann steering: this is the steering mode used almost universally by au-
tomobiles, where only the front wheels turn. Tires in this mode do not need to
explicitly slip on the traversed surface when steering, because the inner wheel of the
forward axle steers at a different angle than the outer one, so that the line perpen-
dicular to the plane of the wheel, emanating from its central point toward the inside
of the turn passes through the center of the turn circle.

e Active Front and Rear Steering (AFRS): the front and rear wheels work in
tandem, turning in such a way as to achieve independent Ackermann geometries for
the forward and rear axles, with the turn center located at the extension of their
midline.

e Spinning or Point Turn: the front and rear wheels coordinate so that the center
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Figure 2.2: Visualizations of steering modes for a four-wheeled robot. [ ']

of rotation coincides with the center of the robot’s body, so that the final motion is
an in-place rotation around the z-axis.

e Crab steering: in this mode, all wheels participate in steering, aligning themselves
to be parallel to one another.

One thing that wheel odometry fails to account for is wheel slippage. If the terrain is
uneven and/or exceptionally slippery, a wheel’s rotation could easily stop corresponding
to the actual motion of the robot. Another issue is that wheels can have inflatable tires
around them, and the effective radius of a wheel with such a flexible padding is not
necessarily constant; for instance, a higher platform weight could compress the tires, thus
reducing the wheel radius. Wheel odometry also fails to generalize to robots with different
locomotion methods, such as legged, aerial or underwater robots. This motivates one to
consider using different sensors for odometry purposes, such as cameras, which led to the
development of Visual Odometry (VO) [, *]. With VO, camera data is directly used
to estimate frame-to-frame transformations, thus decoupling the estimation process from
the locomotion mode of the agent.

2.2.1 Bundle Adjustment

The theoretical issue with VO, and indeed all forms of odometry, is that it is funda-
mentally unable to self-correct. Even when fusing with other sensors, such as an Inertial
Measurement Unit (IMU), small estimation errors will occur, and due to the nature of
the process of transform chaining, these errors will inevitably cause the estimate to drift
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more and more. In a trajectory that never revisits previously seen locations, this drift
is unavoidable, and has been statistically analyzed in [!]. Odometry solutions do in fact
offer one possible local remedy for the problem, which derived from Structure from Motion
(SfM) theory. The intuition behind it is that, instead of treating all frames independently,
one can gain considerable accuracy simply by performing a joint optimization of multiple
frames consecutive. This essentially defines a temporal window, that allows the system
to adjust its estimates over a bundle of data:

Definition 2.2.2 (Bundle Adjustment (BA)). Given a window of images capturing a part
of a 3D scene, BA is the process of simultaneously optimizing the geometry of the observed
features, the motion of the camera and, optionally, the parameters of the camera’s optics.

The success of BA demonstrates that using more data can help derive better estimates for
movement; that is, by jointly optimizing over a time window, it is expected that, at least
locally, the impact of noisy estimates can be reduced. This is presented in [''], where
windowed BA achieves great results in long and challenging real-world traversals. The
entire concept of BA highlights how temporally correlated data batches aid the estimation
process. Spatial correlations, such as loop-closures, is what SLAM ultimately exploits, to
give even better results.

2.2.2 Semantic extensions

Interestingly, works have tried to include semantics (more on this concept in Chap.
1) in VO. Roughly speaking, semantics here indicates that the system understands what
type of objects exist in the environment (as opposed to just their shape), and then uses
that information to improve its motion estimates. In ['"], the authors generate medium-
term semantic constraints, by getting a pixel-level segmentation of camera frames, which
are then used to create additional semantic constraints for the estimation process. They
penalize semantic mismatches by using a Gaussian distance transform of variance o for
the semantic label image around each detected region and comparing the estimated re-
projection against what they receive in following measurements:

]P)[Sk"T’ﬁ Xi; Zz - C] X e_ﬁDTISC)(W(Tkin))2 (22)
esem(k’ Z) = Z w’L(C) logGP)[Slek’v Xia Zz = C])
ceC
C 1 C
= =Y w55 DT (x (T, X)) (2.3)
ceC

These equations describe how the expected semantic measurement Sy from the k-th pose
Ty, associated with point X; and actual semantic measurement Z; that returned clas-
sification ¢, and projected onto the image through the projection function 7, impacts
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Figure 2.3: An example of VO drift as a function of distance traveled. [ ]
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neighboring areas through the distance transform DT, k(c). The pixels further away from
the detection boundary of semantic measurement Sj belong to class ¢ with a Gaussian
distribution, and summing the logarithms of these yields the error term. The weight wgc)
is simply the probability that X; belongs to class ¢, in other words the confidence of the
classification.

In contrast to the above, the authors of [''] take a different approach, in which they
track motion using a purely semantic error component, in conjunction to both photomet-
ric and geometric components. They accomplish this by fine-tuning a deep neural network
to perform dense segmentation of the image, and then optimize based on semantic con-
straints, which make use of purely semantic Jacobians for the optimization process (more
on Jacobians later), that deviate from photometric standards, using the class prediction
vector to guide the optimizer along the semantic error dimensions. The optimization
tri-objective is:

argmin Ay les|” + A7 [ler]” + [lecl’ (2.4)

where the A terms are used to scale the error contributions and eg, ey and eg correspond
to the semantic, photometric and geometric error terms respectively.

2.3 Initial SLAM Approaches

The SLAM problem was initially approached by means of probabilistic filtering, which
we will discuss next. The overarching theme in the various mathematical formulations that
have been proposed is the following: the agent is in a state that can be described using
a state-vector @, its sensors report measurements z and the actuators are fed control
signals u. All the above quantities are sampled at discrete time instances, and all are
affected by some type of noise, which has commonly been assumed Gaussian. Finally,
Markov assumptions are frequently made in these settings, as they massively ease both
the theoretical derivation of the processes, as well as their practical implementations,
without compromising their validity or accuracy.

2.3.1 Belief distributions and Bayesian filtering

The initial approaches explored by SLAM researchers attempted to address the follow-
ing general problem: given a sequence of sensor measurement data z;.; and control signals
uy; of a robot, determine the probability distribution of its current pose x;. Following
the convention of ['], let bel(x;) be the belief of the agent that it is in state x;. We then
have:

bel(:ct) = P[wt|zlzt7u1:t]a m(331‘,) = P[wt’zlztfla ul:t] (2-5)
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with the second definition being a shorthand for the posterior probability excluding the
current measurement. Based on these definitions, the Bayesian filter for state estimation
is defined as follows:

Algorithm 3: Bayesian Filtering Algorithm [ ]

Input: bel(wtfly Ui, Zl:t)
Output: bel(x;)

forall x; do
b€1($t> = f]P)[th|Zl;ti’u,l;t]bel(l‘t_l)dﬂft_l
bel(x;) = 1 - Plz;|x:|bel(x;)

end

return bel(x;)

We see that Alg. 3 computes belief recursively. Internally, the algorithm first computes
a distribution without using z; and then weighs and normalizes this distribution against
the probability of measurement z; being received given the target state.

2.3.2 Kalman filters

Basic Kalman Filter (KF)

Concrete implementations of Bayesian filtering make various assumptions in order to
be efficient, without sacrificing accuracy or completeness. The KF family is a common
class of recursive state estimators that have found many applications in SLAM. The basic
KF is derived under the assumption that the posterior probability distributions involved
in Bayesian filtering are linear with respect to their arguments and have only Gaussian
additive noise applied to them. Although the derivation is somewhat involved, the final
algorithm still follows a state update logic echoing the structure of Bayesian filtering.

Algorithm 4: KF Algorithm [ ]
Input: po; 1,35 1, uy, 2
Output: w3,

2y = A + Bruy
¥ =A% A + R,

K, = EtCzt(CtEtCtT + Q)

pe = 1y + Ki(z — Coy)
Et == (I[ — KtCt)Zt
return g, 3,
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Matrices Ay, By, C; describe the system’s linear state transition characteristics, while
Q:, R; are Gaussian noise covariance matrices. K; is usually known as the Kalman gain
(see ['] for the full mathematical derivation). The effect of a KF in state estimation can
be seen for a simple case in Fig. 2.4, where a single state variable is updated.

(a) Initial belief state (b) New measurement, with (c) Belief after measurement
its uncertainty (bold) has been integrated

(d) Belief after a motion, (e) A new measurement with  (f) Belief after the new
which re-introduces its own uncertainty measurement is integrated
uncertainty

Figure 2.4: Intermediate steps of a KF, visualized for a single state variable. Darker curves
indicate new belief distributions, whereas fainter curves indicate older ones. At each step, a
combination is performed, and the estimate is updated according the KF equations. []

KF variants

Unsurprisingly, the Gaussian assumptions on which KF development was founded do
not always hold in practice. In an attempt to better adapt KFs to a non-Gaussian reality,
the Extended Kalman Filter (EKF) was devised. The primary difference between a KF
and an EKF is that the state transition equations are replaced by a more accurate, non-
linear model. The EKF takes this model into consideration by linearizing around the state
average, using a Taylor expansion. This means that, instead of transferring a Gaussian
state through a fixed linear model, the EKF in fact calculates a new locally linearized
model on-the-fly, for each point in the iteration process. Given that the model will be
processing Gaussian state estimates, the above linearization has a drawback. Computing
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Figure 2.5: Particle filter iterations. Initially, the robot is highly uncertain of its whereabouts.
Then, two highly likely locations are determined based on observations. Moving to collect more
data, the robot finally localizes itself. [ ]

the Jacobian at one point of the model function means that we ignore information of the
area around the point of linearization. Since it is an entire Gaussian distribution that
is in fact processed by our model, this deviation can actually reduce our accuracy. The
Unscented Kalman Filter (UKF') stochastically selects a number of points to move through
the model function, and from the outputs it reconstructs a more accurate estimation of
the model’s local behavior, taking a broader range of the model function into account.

2.3.3 Non-parametric filtering and the Particle Filter (PF)

The filters that we have seen so far are all based on some form of Gaussian assumption.
A different approach to filtering in general is non-parametric filtering. For Bayesian filters
of this type, the posterior probability space is split, and then the probability mass is
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approximated by the local cumulative distribution. See the Histogram Filter [ ] for a
concrete implementation of these ideas. PF's instead generate samples for the posterior
probability space and extract a discrete approximation by selecting particles to advance
to the next iteration by a Monte Carlo process [/, ]. FastSLAM 2.0 was a concrete
implementation of this idea [ ].

0.3 0.3

0.1 0.1

2 B € 8 10 12

(c) Samples are given weight f(x)/g(x) and
are selected accordingly (represented with
blue dashes below the density graphs).

Figure 2.6: Importance factor sampling in PFs. In implementations, f(x) := bel(x;), g(x) :=
bel(z). [ ]

While it is obvious that such a data-driven approach lends flexibility, it is instructive
to consider why abandoning Gaussian models is desirable in the first place. One aspect
of SLAM that KFs do not have any general way of dealing with is multimodality. Mul-
timodality arises when a distribution has more than one salient local maxima, e.g. in
localization distributions, when a robot visits an area that appears indistinguishable from
another (at least within its sensors’ error margins). This is a strongly non-Gaussian prop-
erty, which cannot be addressed purely by mathematical modifications on the Kalman
paradigm, which is part of the reason why PFs are viewed as an effective alternative.
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Internally, PF's require the specification of a sampling function. This function is used
to obtain samples from the general population of particles in the PF, so as to ultimately
get a discrete approximation of the posterior bel(x;). Note that, since we are directly
sampling from the posterior, we do not constrain it to be a Gaussian distribution. This
process in known as importance sampling, illustrated in Fig. 2.0.

2.4 Graph-based SLAM

All the filtering approaches that we have seen have an inherent limitation, in that
they approach SLAM in isolated increments, under the Markov assumption. This fails
to address the complete SLAM problem, as the probabilistic approximations made are
only dependent on current measurements and controls. In fact, the full SLAM problem
is a maximization over the entire sequence of poses, all considered at once. Graph-based
SLAM offers a way to convert SLAM into a non-linear least squares optimization problem
over a sparse graph, which contains the complete history of the robot’s trajectory.

2.4.1 The pose graph

The central entity of any graph-based SLAM method is the pose graph [/]. This is
the structure used to encode all the information necessary for an optimization framework
to work with all the observations and pose estimates at once, aiming to converge to a
globally optimal solution to the SLAM problem.

Definition 2.4.1 (Pose Graph). A pose graph is a sparse representation of a robot’s
trajectory using nodes and edges. The nodes of a pose graph are split into two types:
pose nodes and observation nodes, while edges represent transforms between two nodes
they connect. An edge connecting two pose nodes corresponds to a step in the robot’s
trajectory, whereas an edge between a pose node and an observation node encodes the
transform of the observed feature in the pose’s reference frame.

In 2.7 we see a sample pose graph, with poses x subject to controls u, registering obser-
vations z of an unknown map m. A generalization of the above schema, which has been
successfully used in [/, © |] among others, is the factor graph. A factor graph replaces edges
with factors, which connect multiple nodes at once, changing the mathematical details of
the optimization (see the GTSAM library [ ] for a sample implementation).

The constraints imposed by the edges attempt to represent the geometry of the space
around the robot, but noise will inevitably render the motion estimations inconsistent.
To provide a simple example, one feature may indicate that the sensor’s frame has been
translated along the z-axis by bcm, but another may instead suggest 6cm. To make
matters worse, tracking features across consecutive frames is not trivial; false matches
come up frequently, subject to descriptor efficacy, and can corrupt the process.
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Figure 2.7: A visualization of how a pose graph is structured. The robot is controlled via signals
u;, and transitions between poses x;. From each pose, it collects noisy measurements z; of the
unknown environment map m. The goal is to simultaneously approximate x; and m.

General methods for optimizing graphs of this type have already been developed, such
as [7], but our work is based on [ '], which is also used by the standard ORB-SLAM2
[ ]. The optimization process is generally compartmentalized in the back-end of the
system. By contrast, the front-end is responsible for constructing a meaningful graph
for the back-end to optimize. Typical operations therefore include:

e Feature correspondence: a feature detected across multiple frames should be identi-
fied as being the same physical structure. This is a crucial step, because without it
all features would be considered new, making it impossible for the agent to localize,
as every scene would appear disconnected from the rest.

e Qutlier removal: this is essentially a way to counter the inevitable errors committed
by the previous step. Each feature correspondence proposal implicitly suggests a
transform that would justify it. The effects of noise of course eliminate any possi-
bility for complete congruence among these suggestions, but correspondence errors
typically fall way out of the noise’s standard deviation. Therefore, using an outlier
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detection method such as RANSAC [/, (] can help cull such errors before they
impact our motion estimations.

e Pose-graph maintenance: adding new nodes and edges (or factors), while also merg-
ing those that have correspondences. It is also possible to use some method to
perform explicit loop-closure detection, although the choice of the similarity metric
is a major design concern.

e Initial motion estimate: the result of the first two steps, it is just an initial guess of
what motion was executed (akin to odometry).

2.4.2 Optimization

Setup

The graph optimization problem, as outlined, for example, in [/, /, ], is solved
iteratively, using algorithms that aim to converge to a solution minimizing an error metric.
As seen in Fig. 2.8, the robotic agent collects constraints z;; by observing the world,
namely from state x; a feature is observed, and subsequently re-observed from state x;.
This generates a constraint between the two, corresponding to the motion, and is then
compared to the ezpected measurement 2;; to define the error term. The measurement
is of course impacted by noise, modeled here with a Gaussian distribution. Instead of
parameterizing the Gaussian using the mean p;; and covariance 3J;;, we use the canonical
representation, which is based on the information matrix €2;; := Ei_jl and the information
vector &;; = E;jlll'ij (zi; would then be the mean of this random variable). Thus, the
error is defined to be: e;;(x;, x;) := 2z;; — 2;;, and we have the following expression for
the optimization objective:

X" = arg;nin Z fij = arg;nin Z egﬂijeij (26)
(i,5)€eC (i,5)eC

where C is the set of indices for which there exists a constraint, f;; is a shorthand for the
corresponding quadratic summand and X is the vector of all states under optimization.

Approach in Euclidean spaces

Having defined the graph and the optimization objective, we now need a process for
actually performing the optimization. This is where non-linear least-squares optimization
routines become important. The key idea is to solve numerically, repeating certain steps
iteratively until convergence. To do so, we first need to find a derivative (Jacobian) of the
current solution estimate’s error function. Then, we need to move our estimation in the
direction that the Jacobian tells us will decrease the error. Through iterating, we should
arrive closer to an optimum point, where the error is minimized.
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Figure 2.8: A noisy measurement, modeled with Gaussian uncertainty. | ]

Firstly, let us consider what happens to the error function e;; of a single graph edge,
when a small perturbation is applied to its arguments, initially at a starting guess of &:

where J;; is the error Jacobian of the error function computed at €. This linearization
allows us to rewrite (2.6)’s terms as follows:

fij (i + A$) >~ (61']‘ + JZ‘jAm)TQ”’ (eij + Jl]Am)
= e;fFjQijeij +2 BZ;QZ']‘JZ‘]‘ Ax + AmT JZ;QUJU Ax
—— —— ——
We can see that (2.8) is inherently an approximation, based on (2.7). Now we can rewrite

2.0)’s objective function f(x) := y ;i to reflect this approximation by direct sub-
J (i,j)ec Ju
stitution:

f(x+ Ax) = Z fij(® + Ax) = Z cij + 2b;;Ax + Az" H;jAx
(i,5)€C (i.5)eC
=c+ 2bAx + Ax" HAx (2.9)

where in the last step we define the new variables as the sum of the indexed terms in the
summation. This approximation can indeed be directly minimized; the value of Ax* that
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achieves the minimum is the solution to the following linear system:
HAxz" = —b (2.10)

After solving (2.10), one just needs to add the result to the existing solution approxima-
tion to complete a single iteration of the process. To solve this linear system efficiently,
it is imperative to take the sparse nature of matrix H into consideration. Sparsity is
guaranteed by the construction of H, because it is a matrix built from Jacobians of edges
in the pose graph. This means that the entries will be all zero, except for those entries
corresponding to nodes 7 and 7, since all other dimensions of the state do not directly af-
fect the term in question. Therefore, using methods such as sparse Cholesky factorization
can efficiently solve the system.

Approach in manifolds

In all the above, we have been using vector addition for state perturbations, without
taking the unique, non-euclidean structure of their SO(3) components into account. This
means that we are fundamentally ignoring the underlying mathematical structure. To
address this, let us consider a space that is only locally euclidean, but not necessarily
globally euclidean. The mathematically curious reader is encouraged to read [ (] for
further details on definitions. However, before we proceed, let us first review some basic
facts and definitions about the related topic of Lie groups and Lie algebras.

Definition 2.4.2 (Lie group). A Lie group is a group that is also a differentiable manifold.

Every Lie group has an associated Lie algebra linked to it. A Lie algebra must always
have the following properties:

Definition 2.4.3 (Lie algebra). A Lie algebra is a vector space g over a field F', equipped
with a binary operator: [-,:] : g X g — @, known as the Lie bracket. The algebra must
satisfy the following:

e bilinearity, which stipulates that, Vmy, ms € F, x,y,2 € g:

[mlx + moy, Z] = ml[x, Z] + m2[y7 2]7

[z, mix + may] = ma [z, x| + malz, Y]

e alternativity, meaning that Vx € g:
[z,2] =0
e Jacobi identity, that is, Vz,y, 2z € g:
[z, [y, 2] + [2, [z, 9] + [y, [2,2]) = 0
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A few very important examples of the above definitions involve groups we have already
encountered. For instance, the 3D rotations group, SO(3), is in fact a Lie group, with
the associated Lie algebra so0(3). Transforms also form a Lie group, known as SE(3), with
the Lie algebra denoted by se(3). In essence, the Lie algebra corresponds to the tangent
space of the Lie group, that is, the vector space obtained by differentiating the group at
the specified element, along predefined dimensions which form the basis of the algebra.
For instance, in the case of s0(3), the basis is formed by the following three generators:
0 0
0

0 0
Gi=10 0 —1], Gy = (2.11)
01

o O O

0
0
Comparing to what we see in Sect. 3.2.2, these generators are essentially the building
blocks to skew-symmetric matrix logic, as applied for the x operator. The Lie algebra
built on the skew-symmetric matrices is what corresponds to the Lie group SO(3) pre-
cisely because skew-symmetric matrices are the derivatives of rotation matrices along the
primary axes of rotation.

Now, let us define an operator B to abstract away from the actual mathematical
operations and treat local and global operations in a uniform manner. What the operator
does is first to convert the operand to an intermediate euclidean representation, perform
an elementary addition in this euclidean space, and finally convert the result back to the
manifold. In other words, it hides the transitions into and out of the local Lie algebra.
In particular, assuming a local homeomorphic chart ¢, exists around a point z in our
manifold, the H operator will combine x with a local perturbation element § as follows:

v B = ¢, (¢u() + ) (2.12)

As a special example, let us revisit SO(3), and explicitly formulate the maps that translate
into and out of the manifold (commonly referred to as ezponential and logarithmic maps),
for the normalized quaternion representation of 3D rotations, that is: ¢ := (w, u), where:
weR, ue R and w? + |jul® = 1. We define the mappings as follows:

¢(q) == log(q), log : SO(3) — R?

u
——arccosw, w # 0

g 4 Tl 7 (213)
0, w =10

¢ (8) = exp(d), exp : R* — SO(3)

d +— (cos ||d]| ,0 - sinc ||d]|) (2.14)

Therefore, the tools for converting from manifold to local tangent spaces are analytically
known. In the more general case of interest for SLAM, which is SE(3), ; B oy will first
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apply @,’s rotation to @, and then shift by the translation, and it will do so using similar
logarithmic and exponential maps, to move from and back into the manifold respectively
(see Sect. 1.5.2 in [ ]).

The mathematical consequences for our optimization problem will now be studied. For
starters, we rewrite the error term:

where e;; is the error term to be computed, Z is the initial data estimate, and Az is
the perturbation. The above formula implicitly delegates the manifold operations to the
computation of a new Jacobian J;;. What we need to do is look at the the process of
taking the derivative and, crucially, notice that the chain rule of calculus needs to be
applied to manifold addition:

VT T AR )
Ax=0
o S V- —oAm, | o (216)
Az=0 Az=0

Now the sparsity of the Jacobian construct, which we mentioned earlier, becomes clear,
and we see that the non-zero terms are just the differentiations with respect to the directly
involved 7 and j components. The chain rule is applied as follows:

B N o
AZ=0 N—— Az=0
Aij M;
Dey(@BAZ)|  Dey(®) Ox; B AZ, 2.18)
AT o Ow 0AZ; |, ¢
AZ=0 e Az=0
A M,

In the above notice how A;; is in fact completely disentangled from anything manifold-
related. This means that we have successfully contained the manifold operator to only
one direct application, before differentiating the result. This differentiation can be done
analytically given the operator’s formula (the logarithmic/exponential maps would provide
that), so the problem is solved.

2.5 SLAM Resources

In this section, we wish to present various available datasets that exist in the bib-
liography, as well as several VO and SLAM solutions. We will restrict our datasets to
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’Dataset \ Type Calib. Pose Motion Sem. Size ‘

ICL-NUIM | | synthetic yes yes adequate none limited
InteriorNet [ ] synthetic yes yes good SBB  massive
TUM RGB-D [ '] | real-world  yes yes good none  sufficient
CoRBS [ /] real-world  yes yes limited none  limited
AVD [ 1] real-world 1no limited insufficient SBB large

MS 7-scenes [, ] synthetic no yes good none limited
NYU v2 [ 1] real-world yes no good dense large

RGB-D Scenes v2 [ ] | real-world ~ no yes adequate  limited limited
Coll. SLAM DS ['] | real-world limited  yes good none limited

Table 2.1: Various datasets and their properties. Sequences from the datasets in bold were
used in our experiments, see Chap. 5 for full details.

indoor spaces, and using RGB-D sensors, since these are the only ones that were relevant
in our search. However, for the systems we allow arbitrary sensor specifications, in order
to illustrate the available wealth of solutions in the bibliography.

2.5.1 RGB-D datasets

When examining an RGB-D dataset, several concerns become extremely important
in assessing its usability. Technical concerns include availability of information such as
calibration parameters, pose ground-truth etc. In addition to those, we need the actual
trajectory executed by the sensor to be reasonably varied, including translations and
rotations, and without irrationally sudden changes in direction. Especially for the case
of real-world datasets, we need to be prepared for performance drops due to the presence
of noise and motion blur. Finally, for our specific system idea, we explored datasets that
additionally offered semantic ground-truth annotations, which can be pixel-level (dense)
or in the format of Semantic Bounding Bozes (SBBs). We discuss semantics in more
detail in Chap. 4.

Tab. 2.1 is by no means an exhaustive enumeration of all datasets available in the
SLAM literature, but it already highlights some interesting obstacles in the way of finding
good datasets in this area, such as missing calibration parameters. Another complication
is the cost of integrating the sequences in the datasets with the processing pipeline of the
target SLAM system. This is not a trivial task, so much so that other strong candidate
datasets (specifically, ScanNet [ /] and Robot at Home [ ]) were disregarded for such
purely technical considerations and time constraints of the project.

The above table was put together to report on all the aspects of a dataset that would
affect our tests. The “Type” column describes how the datasets were captured; synthetic
datasets that we considered were all photorealistically rendered indoor spaces, whereas
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the real-world datasets were captured by cameras inside various rooms/buildings. Next,
the “Calibration” column indicates whether or not calibration parameters for the camera
apparatus are available. We need them to be available, since otherwise most VO/vSLAM
systems cannot interpret the visual data they receive properly. Note that there are works
that perform SLAM along with automatic camera calibration (e.g. [/"]), however we do
not concern ourselves with such approaches here. The “Pose” column indicates whether
pose GT was available, which we require for evaluation, since without it we cannot measure
the accuracy of any localization system (see Sect. 5.5.1). In “Motion”, we evaluate the
extent to which the camera movements in the dataset are enough to thoroughly test
a SLAM system. In ['/] for instance, we found that the executed motions were only
point-rotations, which does not capture the full range of transforms a system should be
tested on. Next, the “Semantics” column indicates whether the dataset offers semantic
annotations. Finally, the “Size” column gives a rough estimation as to the number of
sequences available for use in each dataset.

2.5.2 Systems overview

Various SLAM solutions have been published over the years. In this section we will
present some popular approaches, not only for visual SLAM, but also for LIDAR SLAM.
There are several overviews of works in SLAM, for instance [0/, [, "1, "’]. Here we
present some interesting methods from the many that are available, in a brief summary
format.

Tab. 2.2 shows only the highlights of the features of each method. There are many
modern approaches in SLAM, both for LiDAR sensors and for various camera architec-
tures. Given that we are interested in SLAM for indoor spaces, and wish to include
semantics in our approach, we also note the variability in those respects for the presented
solutions. For the purposes of semantic SLAM, VO solutions were disregarded since they
do not do mapping. LiDAR solutions also do not use semantics, so they were also aban-
doned. Dense solutions were not used, due to computational constraints. Finally, sparse
solutions using EM were not applicable for the logic we wished to implement, because
our detected entities were too numerous to be compatible with the exponential runtime
of EM, and our semantics more diverse than previously explored (e.g. in [/, ~!]). This
is why SASHAGO, with its advanced geometric infrastructure (see Chap. 3 for more)
was found to be ideal for our implementation, whereas ORB-SLAM2 and MaskFusion
were two different, competitive alternatives, that we saw as truly meaningful comparison
benchmarks for our system.
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System \ Sensor Dimensions Envir. Map type‘

Hector SLAM [ ] LiDAR 2D any occ. grid
Cartographer [ ] LiDAR 2D & 3D indoor  occ. grid
LOAM [ ] LiDAR 3D indoor  occ. grid
OpenVSLAM [ ] mono/stereo/RGB-D 3D any sparse
ProSLAM [ /] stereo 3D outdoor sparse
LSD-SLAM [+, ] mono/stereo 3D any semi-dense
ElasticFusion [ ] RGB-D 3D indoor dense
Bowman et al.* /] stereo & IMU 3D indoor sparse
Doherty et al.* [] stereo & IMU 3D outdoor sparse
VSO* [ ] stereo 3D outdoor none
SemVO* [ ] RGB-D 3D indoor none
SemanticFusion* [/ ] RGB-D 3D indoor dense
Li et al* [1V] stereo 3D outdoor sparse
ORB-SLAM2 [ '] | mono/stereo/RGB-D 3D any sparse
MaskFusion* [ ] RGB-D 3D indoor dense
SASHAGO [ /] RGB-D 3D indoor sparse

Table 2.2: Various SLAM solutions and their properties. Solutions in bold were used in our
work, see Chap. 5 for full details. An * is used to denote methods that use semantics.
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Chapter 3

Unified Geometric Representations
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3.1 Introduction and Motivation

Unified Geometric Representations (UGRs) are mathematical tools that give us a
common way of describing heterogeneous geometric primitives. UGRs are described in
detail in [/] and are subsequently used in [ ], which is a big part of the basis for our
work. The geometric primitives that we are interested in are points, lines and planes, all
of which are ultimately expressed using the concept of degenerate quadrics. The indoor
SLAM community has indeed been moving towards more descriptive geometric structures
for perceiving indoor spaces for a while, including full quadrics, as seen in [/, ].

Indoor spaces provide robots with multiple instances of UGRs to detect and track,
which is especially important when considering navigation in mostly empty indoor spaces.
An empty room can easily be almost completely devoid of reliable optical features, but if
we are able to track lines and planes, then high-accuracy localization can still be achieved.
In addition, since points are also being detected and tracked, a scene containing multiple
objects and an abundance of optical features will still give good results. This intrinsic
robustness against scene variability is very important for indoor SLAM, since indoor spaces
can vary drastically even when just moving from one room to the next.

3.2 Mathematical Foundations

In this section we will present the background necessary for understanding UGRs and
their purpose in SLAM. Before we begin, let us first review some basic 3D geometry:

Definition 3.2.1 (Quadric). A quadric or quadric hypersurface is a generalization of
conic sections in D dimensions, whose points & € R” satisfy an equation of the following
form:

2'Qxr+pr+r=0

where Q) is a D x D matrix, p is a D-dimensional row vector and r is a scalar.

Such mathematical objects have been used in works like [/, (] in the context of SLAM.
In [I7], the authors used the mathematical properties of quadrics to efficiently project
them to conics on the image plane, later using their shape as additional constraints in
their back-end factor graph. In the case of [ ], the authors used dual quadric parameteri-
zations to change the way that the constrained objects were represented. A dual quadric
representation in their context is simply a regular quadric, expressed not via Def. 3.2.1,
but instead via a set of tangential planes that constrain its geometry (see Fig. 3.2 for a
visualization).
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(a) A saddle quadric. (b) One sheet of an elliptical hyperboloid.

Figure 3.1: Visualizations of general quadrics.

3.2.1 Basic definitions

The following is an overview of the key theoretical points of [, ']. We are interested
in deriving a mathematical model that can uniformly describe 3D geometric structures of
three different varieties: points, lines and planes. This can be achieved by claiming that all
points belonging to a UGR must satisfy an equation of the same form, the difference then
being only a different parametrization for each type of structure. The following equation,
corresponding to degenerate quadrics, serves this purpose:

(x—p) Az —p) =0 (3.1)

where p is the origin point of the quadric and A is a symmetric matrix. The matrix A
is what will ultimately define the geometry of the quadric, and to see how that works we
need to factorize it as: A = RAR”. R contains the eigenvectors, that can be thought of
as the primary axes along which the quadric extends. A is a diagonal matrix containing
the eigenvalues dictating the shape of the degenerate quadric. In our case, we only need
to use the following:

(1, 1, 1) for points
A =diag(A), A=1<(0, 1, 1) for lines (3.2)
(1, 0, 0) for planes

Essentially, setting an eigenvalue to 1 activates a constraint in (3.1) along the correspond-
ing eigenvector. If it is 0, the corresponding eigenvector will of course yield 0 on the LHS
of (3.1) immediately, so any coordinate for & will satisfy it; in other words, it corresponds
to setting that axis free. This is why (3.2) uses the values it does for the different cases
of A. All 1s leaves no degrees of freedom, therefore describing a point. All 1s except the
first entry gives a line along the local x-axis. One 1 and Os after it means that the local
y and z axes are free, but = is constrained, so we get a plane whose normal is parallel to
the x-axis.
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Figure 3.2: A visualization of dual quadrics detected and overlaid on an image from the TUM
RGB-D dataset. []

To capture this information in a more structured way, the concept of a matchable is
introduced.

Definition 3.2.2 (Matchable). A matchable is defined as a triplet:
M = (pm, Ru, Anr) (3.3)

where py; € R3 is the centroid with respect to the world origin frame, Ry, € SO(3) is the
orientation matrix, again with respect to the world origin frame, and A, is the diagonal
shape matrix.

Matchables play a key role in the implementation seen in Sect. 3.3, which was used to
give the detections in Fig. 3.3.

3.2.2 Optimization

Strategy and formalisms

Based on the above, we will now go through the mathematical steps necessary for
pose-graph optimization when matchables are involved. As we have seen in Sect. 2.4, the
graph-based SLAM optimization framework is quite generic and disconnected from the
actual geometric entities to which its nodes correspond. Therefore, it stands to reason
that one could extend nodes to represent different geometric entities, provided that error
metrics are adjusted to account for the new information. Here, matchables are used as
the basis, and the mathematics for the optimization process can be derived by considering
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Figure 3.3: A demonstration of matchable detections. Point detections are displayed as red
dots, lines are in green and planar regions in blue. Note the estimated camera trajectory in the
center of the room. [/]

the error between a matchable m; and a measurement z;; from pose x; as follows:

€p R]T(pz - pj)
eM(a:i, m;, Zij) = |€yq| = dl - dj (34)
€0 dZTdJ

- C, 03.3 034
Q;=C-Q;-C", C= |035 Cy 03 (3.5)
01><3 01><3 Co

In the above, we see the necessary extensions to the error function in (3.4) and the infor-
mation matrix modifications in (3.5). Specifically, the error function has new dimensions
added, with the following meaning: e, for centroid position error, e, for direction mis-
alignment' and e, for orthogonality. Furthermore, the information matrix needs to be
extended to accommodate comparisons between different types of matchables. For this
reason, in (3.5) it is edited by an activation matriz C, which selectively activates er-
ror function components depending on matchable geometry, based on the logic of Tab.
3.1. Note that matchables of different geometries can still be compared, subject to some
restrictions, because of the unitary eigenvalues of matrix A (see also [], Sect. III. A).

'For simplicity, d here corresponds to the z-direction in the matchable’s local frame (the z-eigenvector
from matrix R).
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Zij \ Zij ‘ Point Line Plane

Point | (1,0,0) (A,,0,0) (As,,0,0)
Line - (Az;,1,0) (A;;,0,1)
Plane - - (A2, 1,0)

Table 3.1: Activation matrix types, given as (Cp, Cq, Cy)

Finally, the manifold perturbation outlined in Sect. 2.4.2 requires the definition of the
perturbations induced by the H operator. Firstly, the perturbation must be defined:

T
Am = [Ap" Aa] AaZT] (3.6)

Note that rotations along the primary axis of the matchable can not affect a matchable.
Indeed, points have complete rotational invariance anyway, so rotations are ignored, lines
rotated around their own axis are not changed, and planes rotated around their normal
are also not changed. Therefore, (3.0) only contains rotations around the local y and z
axes, not the primary x axis. Now, we can define the perturbation of a matchable M as
follows:

M HBAmMm = (pM + Ap, Ry - AR, AM) (37)

where AR = R,(ay) - R.(a,), meaning the total rotation around the non-primary axes
of the matchable. Now, the problem can be cast directly into the form of (2.6), and
the estimate can therefore be optimized, provided that we have a way of computing the
necessary Jacobians.

Jacobians

We begin by defining what we seek to differentiate, namely the error terms of the
pose graph edges. These terms will be differentiated using perturbations, such as those
defined in (3.7). An error term e;; is created by an edge linking pose x; to a matchable
m;, and has 7 dimensions, as defined in (3.4). The pose and matchable data vectors
are concatenated, with the 6 first dimensions allocated to the pose and the 5 last to the
matchable, so when trying to differentiate with respect to all variables involved in the
error term, the result is:

de;j(x B Ax)  dey(x; B Ax;, M; B Ax;)
0Ax - OAx
— [ O7s6 ... O7xg J; O7y6 ... O ‘ O7«5 ... O7ys Jj O7x5 ... O7ys ]
(3.8)
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where the separate Jacobians are defined as:

. 86@'(331' Eﬂ AIEi, M])

Ji e (3.9)
o aeij(mi, Mj H Am])
J; = T (3.10)

Note the dimensions of the output matrix in (3.8). There are 7 rows, corresponding to
the 7 dimensions of the error function that is being differentiated. There are also many
columns, separated into blocks. Each column block corresponds to one specific pose from
those registered in the pose graph or to one specific matchable from the ones that have
been registered. This implies that, for a specific measurement, all poses but one are
irrelevant, and their Jacobians are set to 074¢ accordingly, meaning there is no impact
in any of the 7 error dimensions by any of the 6 pose dimensions. The same applies to
the second part of the matrix, where observed matchables play no part in the Jacobian in
question, except for the one that has actually been registered in the measurement.

The computation of the above Jacobians will require some mathematical context. The
reason for this is that now we have reached the point where the error function will need to
be analyzed in each dimension, replaced by the analytical formulation of its components
from (3.4), and with the perturbations added in (which are not linear due to the existence
of the B operator).

Definition 3.2.3 (Skew Symmetric Matrix). An n X n matrix S is said to be skew-
symmetric if:

S=-8"os;=0As;=—5;4,Vi,5,€ {1,2,...,n},i #j
where s;; is an individual element of matrix S at row ¢ and column j.

Based on the above, one can see that from the entries of a 3D vector, a total of
23 . 31 = 48 different 3 x 3 skew symmetric matrices can be generated, depending on how
the signs are arranged and in what way the elements are placed in the matrix’s off-diagonal
elements. One special case is the following:

0 —7Vs3 Vo
v=[vy v 03] = 8Sw):=|vs 0 —u (3.11)
—V2 (%1 0

The above matrix has a very important property related to vector cross-products, namely:

S(w)-u=wvxu, Vvo,u € R? (3.12)
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Now, let a rotation matrix R(€) be given, and a derivative with respect to one angle of
rotation for that matrix be required. The following holds:

d vl do
= [RORO)] = S Ts = 050 &
d d
—RO)RT(0)+ R(O)—R(0) =035 <
dt N dt | S+8T=0=
~~ ~~ —ST:S
S ST
%R(G)RT(G) =S
%R(G) = SR(0) (3.13)

where Il3,3 and 033 are the identity and zero matrices of size 3 respectively. The above
relation shows that indeed, the derivative of a rotation matrix is given by left multiplying
the rotation matrix with a skew-symmetric matrix. Assign a vector w to be generating
S, according to (3.11). This vector is in fact the definition of angular velocity for a time-
varying rotation matrix. So ultimately, the time derivative with respect to a static frame
A of the coordinates of a point p, which is fixed with respect to a rotating frame B, can

be computed as follows:
d 4 d g B
P () = S R(t)p

= [Sw) R3] p?

= w(t) x | RA(p"|
= w(t) x p(t) (3.14)
Now we can tackle the task of computing the Jacobians of (3.8). We begin with the

pose Jacobian:
T

Oe, Oey Oe,

(3.15)

%

The components of e are those of (3.4) after the perturbation is applied to the arguments,
specifically here the robot pose perturbation Ax;. The results after the differentiations
are:

Je, R .
6A—£Ci = [Rg; —Rz;S(R,pU -+ tl)}
8ed
Aw [O3><3 _S(RiRijux)}
Oe, .
G = |Ova wlRIRLS(Ru,)|
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Loop Closer

Figure 3.4: Overview of SASHAGO'’s internal architecture.

where wu, is the unit vector along the z-axis. In the above note the appearance of the S(-)
operator, for generating skew-symmetric matrices. Now, applying the perturbation of the
matchable and differentiating yields the results for J;:

Oe, B - .
OAx; - [_Rij _S(Rij (Ripij + 1)) - [uy qu
8ed ~
aij o [03X3 R’JS(’U’I) [uy ’U,Z}]
oe, .
OAT; = |:01><3 _'ufR;‘gRZTRUS(’u,x) . [uy uz]:|

The reader may observe that the above are in fact quite simple expressions in comparison
to what might be expected for the derivatives of such highly complex, non-linear forms.
This simplification is due mostly to the definition of the chordal manifold distance as an
approximation to full manifold large scale distance metrics. It serves, for instance, to
simplify vector flattening operations. More details on the particulars of the derivations
can be found in [/ ].

3.3 Implementation Details

This section will describe the system” on which we base our work in Chap. 5. The
system can be described as performing Systematic Handling of Heterogeneous Geometric
Primitives in Graph-SLAM Optimization (SASHAGO), and belongs to the Sapienza Ro-
bust Robotics Group (SRRG) ecosystem. Let us first discuss the architecture and how
it fits the graph-based SLAM model. To see how, we will draw on Sect. 2.4.1’s outline,
where a graph-based SLAM system is required to have a front-end and a back-end.

2The code for this project can be found here: https://gitlab.com/srrg-software/srrg_sashago
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(b) InteriorNet
[ ]

(¢) TUM RGBD frl (d) TUM RGBD fr3

Figure 3.5: Snapshots of geometric primitives detection (points, lines and planes) in different
datasets. Notice how in TUM’s real-world instances, plane segmentation is much harder due to
corruption by noise.

In SASHAGO, the front-end is comprised of several modules, seen in Fig. 3.4. The
detector modules are responsible for finding matchables in a frame. The tracker modules
then attempt to link these matchables to others observed earlier, computing initial motion
estimates and also updating the pose graph and map entities. Finally, the relocalizer and
loop-closer modules handle loop-closure detection, and handle the logic for applying these
constraints in the final optimization. Note that matchable detection is handled using
different detectors for different types of matchables:

e OpenCV’s ORB [ ] detector for points
e OpenCV’s line segment detector for lines (see [ ] for algorithm details)

e clustering method for detecting planes, registered as in [ ]
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The back-end is implemented in g2o0 [ '], a generic, non-linear least-squares graph
optimization framework. Extended to incorporate matchables, it is installed along side
the primary components of the frontend, that ultimately link against it to gain access to
the available graph construction and optimization routines. The overall coordination of
the setup is accomplished through the Robot Operating System (ROS) [ '], which is an
open-source framework allowing the structured development, testing and deployment of
various robotic components in the form of packages.
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Chapter 4

Semantic Segmentation
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4.1 Introduction

Semantic segmentation is a field of Computer Vision. Given an image, the aim is to
identify what is displayed and where in the image it is. This deliberately broad description
tries to capture the incredible variety of approaches that exist in the area, both in terms
of the methods and technologies developed to solve the problem, and in the parameters of
the problem definition. Given the huge variability of entities in the real world, it becomes
clear that the general problem is very difficult to solve, therefore all approaches to it
require that some kind of prior knowledge be ingrained into the solution. This could be,
for example, a geometric model of a typical instance for a class of objects.

Initial attempts at segmenting an image used flexible, probabilistic models, hand-
crafted to capture the geometry of the entities they were trying to segment. Deformable
Part Models (DPMs) [ ] are a prime example. In DPMs, curves for a specific model
expose parameters in the Fourier transform space. Matching the boundaries of the ob-
ject in an image is done using a Bayesian inference rule, with deformations along the
object model boundary being applied to fit the image boundaries. The image boundaries
are computed by standard computer vision edge metrics, typically a Gaussian-smoothed
gray-scale gradient, which adds yet another hand-crafted layer to the system. Later, ap-
proaches such as Markov Random Fields (MRFs), Conditional Random Fields (CRFs)
and tree-based approaches were tried, using super-pixelization to get the outlines of sepa-
rate objects. However, such approaches may still fail to capture the unique appearance of
an object that, although still belonging to some class, is visually quite different from the
norm of that class. This, among many other reasons, has motivated the Computer Vision
community to move away from hand-crafted modeling. It has been developing automatic
ways of ingesting large amounts of example data and having models implicitly generated,
primarily using deep neural networks (DNNs) [, 7).

4.2 Deep Neural Networks

4.2.1 Key concepts

DNNs are a popular machine learning architecture, in which an artificial neural network
is extended to include multiple hidden layers (therefore adding to its depth). Although
this straightforward extension seems natural, it had been computationally impossible to
manage such complex models with conventional hardware. However, modern GPUs have
increasingly supported neural network computations, thus enabling deep architectures to
be brought in the limelight []. The basic building block of a DNN is the neuron, a
simple mathematical entity that accepts an input vector, computes its dot product with
an internal weight vector and adds a bias (the linear part of the neuron), then finally
propagates the result through a non-linear function, known as the activation function
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Figure 4.1: The structure of a neuron. The weights w; scale the inputs x;, after which the bias
term b is added. Finally, the result is passed through the non-linear activation function f, thus
yielding the neuron’s output.

(see Fig. 4.1). There are many activation functions in the literature, e.g. sigmoid, tanh,
Rectified Linear Unit (ReLU), leaky ReLU and more:

1
fsigmoid(x) = 1+e7 (41)
et —e "
Jrann(2) = prp— (4.2)
z, x>0
retw(T) ;= maxx,0 =<’ - 4.3
e {O, " (43)
z, x>0
fleaky relu<a7$) = {CLCL’ <0 , 4= 0.01 (44>

Neurons’ inputs can either be raw data or, crucially, other neurons’ outputs, meaning
that they can be stacked one after the other, thus giving rise to layers in the architecture.
A hidden layer is simply a layer whose inputs are outputs of previous neurons and whose
outputs are inputs of following neurons.

4.2.2 Supervised training

Training a simple neural network usually falls within the realm of supervised learning.
Firstly, a labeled dataset is gathered, containing a large number of examples and the so-
lutions that a perfect system would give, typically put together by humans. For instance,
this could involve a large number of hand-written digits stored as grayscale images, la-
beled with the integer digit that the images represent’. Then, the network’s weights are
initialized (see [ (] for details on this crucial operation), so it can output something when
an input example is given. However, its output is virtually random at this stage, so it

IThere is a classic dataset in Optical Character Recognition (OCR), known as MNIST (http://yann.
lecun.com/exdb/mnist/), which offers exactly this.
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gives mostly wrong responses. It undergoes a training phase, where it computes answers
for the examples, compares them to the expected answers provided by the dataset, using a
loss function, and uses the result of that function to apply a back-propagation algorithm,
slightly altering its weights in the process. The hope is that, if the back-propagation
algorithm and loss function are parameterized appropriately, the architecture sufficiently
complex to capture the difficulty of the problem and the data of quality good enough to
allow the model to accurately generalize “, the resulting network, after training, will give
consistently good results when queried on data it has never seen before. Parameterizing
a network can involve a wide variety of parameters that need to be set and tested for
fitness, a process that is sometimes referred to as hyperparameter tuning.

Loss functions come in several different varieties. Three core categories exist, each
being best suited for a specific type of task. Note that these categories have several
members, each with a slightly different aim and mathematical formulation:

e Probabilistic: notably includes various cross-entropy and Kullback-Leibler diver-
gence functions. This category is best suited for classification tasks, as the functions
generally compare an output confidence distribution to an expected ideal classifica-
tion output, scaling with how confident the model was in its error.

e Regression: notably includes MSE, Huber and cosine similarity functions. This
is the category of choice for regression problems, as they are perfect for penalizing
wrong predictions against expected outcomes, scaling with how wrong the prediction
was.

e Hinge: contains various highly non-linear functions. The aim here is to help models
determine similarity and dissimilarity between data. Useful for learning embeddings
and in semi-supervised learning settings.

The training algorithm itself consists of iterations of two phases. In the forward pass,
the training module selects an instance (or a batch of instances, for exploiting paralleliza-
tion capabilities, common in modern GPUs) from the training data, and computes an
output using its current weight configuration. Then, the output is compared with the
perfect response (available in the dataset for supervised learning), using the selected loss
function. The result of that comparison is then fed into the backward pass, using a tuned
back-propagation routine to update the weights accordingly. The update first requires a
method for interpreting the loss, which is done via the differentiation of the loss func-
tion at the error point. Many strategies exist to translate the derivative computed at the
model’s output into actionable feedback to be backpropagated through the model. A class

2Another widely used solution is data augmentation, a process in which copies of training data
samples are artificially distorted and added back to the training dataset, to add robustness to the system,

eg. []
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of learning approaches that are frequently used are the Gradient Descent (GD) methods.
The basic GD operation works as follows:

w:=w—nVL(w) =w — % : Z VL;(w) (4.5)

where 7 is the learning rate, a very important hyper-parameter, which does not need
to stay constant throughout the training session, and may in fact gradually be reduced
automatically in order to help the system smoothly converge to the optimum. Note that
in (4.5) the loss is averaged through the entire training set, before a single step can be
taken by the optimizer. Stochastic Gradient Descent (SGD) performs one step for each
individual training sample. Minibatch Gradient Descent strikes a tunable balance between
the two, feeding a fixed-size batch of data per loss iteration, averaging their losses and
taking an optimization step:

w:=w—nVL(w) =w —

>3

~ Z VLi(w) (4.6)

where b is the batch size. If b is equal to the training dataset size, we get regular GD, and
if b =1 we get SGD.

Other approaches also try to add sophistication to this schema, such as Root Mean
Square Propagation (RMSProp), which smooths the gradient over a time window of its
iterations:

v(w,t) == yv(w,t — 1)+ (1 —7) (VLi('w))Q, wi=w— . VL(w) (4.7)
v(w,t)
where 7 is the newly introduced forgetting factor. Finally, Adaptive Momentum Estima-
tion (Adam) applies a similar smoothing concept, but approaches the problem differently,
with an intermediate step to avoid bias errors:

m(t+1):= pim(t)+ (1 — f1)VL(w,t) (4.8)
vt + 1) := Boo(t) + (1 = Ba) (VL(w, 1)) (4.9)
m(t+1)
S (4.10)
L v(t+1)
0= 5 (4.11)

w(t+1)=w(t)—n (4.12)

Vi + e
where m, v are the first and second moment, [3;, B3 are the corresponding forgetting factors
and e is a small scalar to avoid dividing by zero.
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4.2.3 Semantic segmentation and evaluation metrics

One of the most important works in semantic segmentation was [ ], which introduced
Fully Convolutional Networks (FCNs) to the community. Convolutional neural networks
are a way of structuring a network’s architecture so that pixels that are spatially close to
one another are processed locally. The key idea is that each layer handles data volumes of
dimensions h X w X d, where h and w are the dimensions and d is the number of channels.
For an H x W RGB image in the input layer, the volume would be H x W x 3. The
neurons deployed are batched together in small filters that are convolved with the images
of each channel (see Fig. 1.2). As more layers are stacked, the final result is a non-linear
filter applied to the initial image, working at multiple resolutions, and with weights shared
locally at each step. Therefore, the architecture is lighter, as less weights are needed (since
weights that would correspond to distant pixel connections are implicitly dropped) and
easier to train for various visual tasks, because the local processing is better suited for
semantic entities that are spatially confined to one small area of the image.

conv layer conv layer
with non-linearities with non-linearities
layer [ =1 layer [ =4

FC layer
layer [ =7

input image

layer [ =0 subsamp. layer subsamp. layer FC layer
layer [ = 3 layer [ =6 output layer [ = 8

Figure 4.2: An overview of a basic convolutional neural network. The input image is fed
into layer 0, after which a series of convolutional layers and subsampling layers are interwoven.
Finally, Fully Connected (FC) layers are added before the output.

In defining semantic segmentation, we first need to consider what we are seeking to
accomplish. For starters, there are several types of segmentation:

e pixel-level: the system attempts to label each pixel of an image with a class number?’

e semantic bounding bores (SBBs): the system attempts to find a rectangular outline
of semantic entities in the image

3Semantic classes (e.g. chair, dog etc.) are often represented as a simple integer, based on the
convention used in the training dataset of the segmentation system.
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e instance segmentation: this is a more complex task, where a system not only seg-
ments instances of classes, but additionally tracks the instances individually [ ]

We also require a standardized method of measuring the efficacy of such solutions. There
are several metrics to consider, such as pixel accuracy (mean pixel accuracy given in
(4.13)), intersection over union (frequency-weighed intersection over union given in (4.14))
and precision-recall curves (precision, recall and F-score defined in (4.15), (4.16) and (4.17)
respectively) [ ]. Specifically, let us use n(c;, ¢;) to denote the pixels that are labeled with
class ¢; by the model and actually belong to class ¢;. Also, let t(c;) be the total number
of pixels labeled as class ¢; in the image. Now, metrics for accuracy can be quantified as
follows:

Z

cl
Z C” Cl (4.13)
=1

Ic|
1 15 L1
Fwlol i= ——— Y t(c) n(ci, ) (4.14)
Yol tle) (Z#in(q, ¢j) + n(cy, cz)> + n(ci, ¢;)
Prec = n(ci,¢i) (4.15)
( i (s € ) + n(c;, ¢;)
Rec = n(ci¢i) (4.16)
( i m(cis ¢ ) + n(ci, ¢;)
Prec - Rec
F =2 4.17
seore Prec+ Rec (4.17)

4.2.4 Faster R-CNN

After considering many alternatives, we decided to proceed with Facebook Artificial In-
telligence Research’s (FAIR') implementation of Faster R-CNN []. Here, R-CNN stands
for Region-based Convolutional Neural Network, which simply indicates that the system
first proposes regions of interest and then attempts to detect entities within them using
a CNN architecture. This classifier, along with many others, such as Mask R-CNN [ 1],
is implemented and packaged in an ecosystem provided by FAIR, which includes docu-
mentation and a model zoo. This last property enabled us to test various different imple-
mentations of Faster R-CNN, and would have even made it relatively straight-forward to
test completely different architectures from the model zoo, which is why it was selected
for the purposes of this thesis. Another strong contender was YOLO [ ], but seeing as
it is a standalone solution it was disregarded for utility reasons.

4Code available here: https://github.com/facebookresearch
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classifier

Rol pooling

proposals

Region Proposal Networ

feature maps

conv layers /

Figure 4.3: A basic overview of the Faster R-CNN architecture. [ ]

Faster R-CNN is the successor of Fast R-CNN [ ], and shares many similarities with
it. The key idea that differentiates Faster R-CNN from Fast R-CNN is the use of a Region
Proposal Network (RPN), which is integrated in the system’s architecture, directing the
network to analyze specific regions of the image first (known as an attention mechanism),
and only then attempt to classify them. In Fast R-CNN, proposals are computed by a
separate module and are then taken as input by the main network. The architecture for
Faster R-CNN is presented in Fig. 4.3, where we see that the system offers a truly end-to-
end approach to object detection, since the RPN is an integrated path of neurons within
the network. In addition, we see the structure of the convolutional layers, intertwined
with Region of Interest (Rol) max-pooling, specifically designed for extracting reduced
dimensionality feature maps. In our trials, we used it with RGB frames from the TUM
dataset, and the results were found to be accurate (see Fig. 4.4 for a sample visualization
and Sect. 5.5.2 for more details).
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Figure 4.4: Example application of Faster R-CNN on a frame from TUM RGB-D’s Freiburg 3
sequences.

4.3 Applications in SLAM

Semantic segmentation has found several applications in SLAM. One of the most
inspiring for us was []. A lot of useful ideas can be found in this work. Firstly, note
the process with which the SLAM pipeline is adapted. It begins by using the detector
in the frontend, collecting data that will then be used to impact the pose graph in some
way, prior to the back-end optimization step. It uses SBBs to identify objects in the
environment, eventually adding semantic edges directly to the graph (see Fig. 4.5 for
an illustration). We based initial attempts on this exact schema, but failed to create
something meaningful. However, the general outline of having semantics in the frontend,
used to directly affect the pose graph was very reasonable and was applied in the end,
albeit with big differences in the underlying concepts. The formulation used in [] is
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therefore important. The semantic SLAM problem is described as follows:

D' = argmax P[D|X", L, Z] =
D

XL LM = argmax ) P[D|AY, L', 2] log P[Z|X, £, D)
XL

DeD
K M
= arg maxz Z wj; log Plzi|2a, , 1] (4.18)
XL ko=

where the symbols mean the following: D, X', L, Z stand for the sets of associations, poses,
landmarks and measurements respectively, with ID being the set of all possible associations,
1 denotes the frame number, k denotes the measurement number, a; is the index of the
associated pose and j the landmark index. The weight w,ij is computed by a probabilistic
model and acts as an importance factor for the optimization, assigning different priorities
to different terms according to the formulas that define it. The key observation in this
schema, which we adapt to our own approach, is the encoding of priority and significance
in a weight factor. This is an important theme that we will revisit in Chap. 5, when we
define our own approach for the semantic SLAM problem.

One important detail of the framework in [ ] for computing dedicated semantic graph
edges, is that it is based on Expectation Maximization (EM). While EM approaches are
a great way to ensure theoretical optimality in the usage of semantic information, we see
their computational limitations in Chap. 5. In a nutshell, these limitations stem from
the system’s intrinsic need to evaluate a very large number of potential associations of
semantic labels to landmarks in the environment, which is only tractable if the number
of landmarks and the number of possible classes are both very small. That is not the
situation with our solution, so EM was not directly applicable. The approach was also
extended in [ ] to account for multimodality, where the authors generalized on the types
of probability distributions the system considers, to give a more robust solution.

Other solutions have also been proposed. In SemanticFusion and MaskFusion [/, '],
we see two radically different approaches for semantic SLAM. Both are based on the
ElasticFusion [ /] dense SLAM framework, which uses small 3D patches called surfels to
build a geometric reconstruction of its environment. ElasticFusion also does not use a pose
graph, which makes it even more different from our approach; instead, a deformation graph
is used to update the probability distributions of tracked surfels. This means that the
generated map will be richer, but the computational requirements are much higher, which
we explore in the case of MaskFusion in Chap. 5. On the semantic front, SemanticFusion
uses [ ] for segmentation, which ultimately yields a class probability distribution for each
surfel, and then uses independence assumptions, along with a Bayesian rule, to update the
distributions as more data comes in. This is done recursively according to the following
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update rule:
1
Pl 11, x] = 5P[li|I1,...,k—1]P[Ou(s,k) = ;| 1] (4.19)

where [; is the label to be updated, I are the various image detections, k is the current
frame index, n is a normalization constant, u(s, k) is a pixel reprojection of a surfel s
and O,, is the random variable corresponding to the label of pixel w. We see here the
logic of propagating semantic information based on some local history criterion, with
probabilities encoding the model of observations backwards through the surfel’s previous
label estimations. This is another useful idea, which of course needs adapting for the
sparse scenarios we explore in this work. The model here is pixel-based, and so adheres to
an internal structure for initializing and propagating probabilities according to that basic
constraint. We deviate from this formulation, instead basing our label estimations on the
association history of each individual landmark using a weighted voting scheme.

On the other hand, MaskFusion uses Mask R-CNN [ /] to extract semantics (see
Fig. 4.6), and performs multiple object-level tracking, which are additionally classified
as moving or stationary. This distinction is crucial, since it means that the system will
be able to disregard moving entities, removing them from the generated map and not
allowing them to influence motion estimations. This property lends robustness against
dynamic noise, and in our experiments we found that trivial implementations that try to
imitate such behaviors often deteriorate performance, so care must be taken to prevent
the system from disregarding important information during data processing.

Another approach is [! ], which was developed with autonomous driving applications

Figure 4.5: Bowman et al.’s trajectory estimates with semantics overlaid. Note the semantic
classes used are only door and chair. [/]
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Figure 4.6: MaskFusion semantics for a sample image from the InteriorNet dataset.

in mind. The idea was to train a neural network so as to extract not just semantics, but
also to classify the angle of the viewpoint. So in the end a 3D bounding volume of the
object and an approximation of the viewpoint’s angle toward the object are the output.
As in ['], the observations are added to a pose graph and optimized along with geometric
constraints. However, instead of EM, the constraints are computed using maximum-
likelihood. SegMap [ ] is yet another solution, which focuses on hybrid semantic-optical
descriptors. Finally, MIT’s Kimera library [ !] offers a comprehensive framework for
SLAM, with a complete stack of modules for visual-inertial odometry, mapping and 3D
mesh reconstruction. Semantics are also present, and are propagated throughout the
mapping pipeline.
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Chapter 5
Our Indoor SLAM Approach
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5.1 Introduction

In this section we will present our solution to the indoor SLAM problem. Our key
objective is to merge matchables with semantics in a direct, computationally efficient
way. The basic intuition is that this approach will try to improve system performance by
guiding the optimization process to prioritize constraints that are semantically consistent,
at the expense of constraints that break semantic continuity. The major difference is
that we intend to do this at the feature level, rather than at the object level, as seen in
other works [/, ']. This immediately brings up a serious complexity issue of the EM
algorithm employed by the aforementioned works, for two reasons: firstly, the possible
detection classes are typically in the dozens for modern semantic classifiers, whereas the
EM implementations we found were only detecting two, and secondly, the detected features
for each frame can be in the hundreds, meaning it is possible to have up to two orders
of magnitude of semantically labeled entities per frame than what EM has been designed
to support. For these reasons, EM approaches are disregarded, due to the exponential
number of possible semantic assignments they must explore to yield their final output.

5.2 Definitions

Let us begin by defining the basic concept of a semantic measurement in our context.
The i-th semantic measurement of frame ¢, denoted s, is defined as:
st = (st st sl (5.1)
where s, € C is an integer representing the semantic class of the observation, Si’ €
[0.0,1.0] is the confidence score of the detection', computed by the detector, and sZ’Z =
[(zu, yu), (@or, ysr)] € ([0,W = 1] x [0, H — 1])2 is the top-left-bottom-right-corner expres-
sion of the pixel region of an SBB in a W x H-sized image. For instance, a simple example
of a semantic measurement could be: (4,0.85,[(100,200), (150, 330)]), indicating that an
entity of class 4 was detected with confidence 0.85 in the pixel rectangle from (100, 200)

to (150, 330). With the above in mind, we can now proceed to define what a semantically
augmented matchable My is:

M? = (p]\/[7 RM, AM, SM) (52)

where p,, is the matchable’s centroid, R, is its orientation, A, is its shape matrix and
sy is the semantic measurement selected to describe it (if such a measurement has been
found).

In practice, not all scores are accepted. A cutoff value is determined depending on the classifier, and
any semantic measurements with confidence score less than the cutoff are ignored.
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One note on the above: the values of ¢ in our formulation and implementation are taken
as consecutive integers, corresponding to all parsed frames. In many SLAM systems, a
keyframe mechanism is employed, whereby only a few frames are heavily processed by
additional SLAM components (including semantics), while all others are used mainly for
basic odometry. This means the system only calls computationally expensive methods
a fraction of the time, and if the keyframes are selected reasonably, it should incur a
negligible accuracy penalty. For instance, [ '] select keyframes generously at first, but
then culls most of them, since keyframes whose fields of view overlap greatly give little
extra information. This means that eventually, operations such as bundle adjustment
occur only on very few keyframes, boosting performance. Another example is [/], where
the authors preferred to select keyframes at a static rate, meaning that every 15-th frame
was considered a keyframe in their system, without checking their content. In our base
system, SASHAGO, keyframes are not implemented, so we follow their architecture and
build on the implicit assumption that all frames are keyframes.

5.3 Methodology

5.3.1 Determining semantics

We begin by addressing a gap from the previous section, namely how a matchable
receives its semantic label; this is where we will begin the analysis of our methodology.
For starters, let us imagine the simple case of one point-matchable, whose reprojection
on the image plane is contained within a single SBB. The answer is trivial - assign the
SBBs label to the point. Now, if a line segment is detected within the SBB, we simply
require the centroid of its reprojection to fall within the SBB. The same requirement
holds for the planar patches that yield plane matchables. The above does not handle one
important case: overlapping SBBs. This is quite common in practice, and is particularly
pronounced when a large object is partially occluded by a significantly smaller one. Their
SBBs not only intersect, but in fact the smaller is completely contained in the larger. To
resolve this, we need an automated way to pick the SBB that will most likely link the
matchable with the semantic measurement most closely So, from all the SBBs that contain
the representative point of a matchable, we heuristically select the one of smallest pixel
area, since it will almost always give the matchable the correct semantic label. Formally,
we begin by defining the set Sz’] , containing all bounding boxes at frame ¢ which contain
the (reprojected) representative point of the j-th matchable, namely (7, y*7):

2V - Ly
Sy = {sb

" € [xif,wi’f} Ny € [yfi’}yif” (5.3)
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With the above definition in mind, we can directly define the labeling problem as follows:

407 = argmin Area(sy) (5.4)
SbES;’j

where the Area(-) function is simply the pixel area of the semantic detection.

5.3.2 Semantic persistence

Assuming we have successfully associated semantics with geometric structures detected
in the environment, we are now tasked with propagating these associations through time.
This is trivial only if features are flawlessly tracked and semantics are perfectly detected,
both spatially and in terms of the assigned classes; these conditions do not hold in practice.
This is exactly what the EM approaches we saw in [/, ] were attempting to address.
Their idea was that optimizing semantic associations would help the system indirectly,
through the added semantic constraints in the factor graph. Our aim is to use semantics to
adapt existing geometric constraints, which employ landmarks stored in a map structure.
Since landmarks are just features that have been reobserved multiple times, it makes sense
to assign a class to them based on the semantics of those features. Again, due to noise
or semantic detector failures, we cannot be sure that all registered features will perfectly
align geometrically or semantically. At best we can hope that they will align most of
the time. So we take the direct approach and implement semantic voting, as a way to
approximate a Maximum Likelihood strategy for semantic associations.

Let l?;ﬂ be the estimated class of the jth landmark at time 7.

T
-/

119 = argmax DAl = ot 55)

veCy t=0

where j' = idx(j,t) is the semantic measurement index corresponding to landmark j for
each frame ¢, s%" is the confidence score for each measurement and C,. is the set of semantic
classes, along with a special no-detection class, for frames where the landmark was not
observed, which has a default confidence score of 1.0. Essentially, (5.5) uses a weighted
voting scheme to determine which is the most probable class of each landmark, called
the dominant class of the landmark, based on previous semantic detector output. This
approach has negligible computational overhead, even when dozens of semantic classes are
used, and hundreds of landmarks present in each frame.

5.3.3 Pose graph updating

The last problem we need to solve is determining a mechanism for propagating seman-
tics to the pose graph, so that they can have some impact on the optimization process.
As we have seen, computing pure semantic constraints would be problematic, since EM
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ideas would have to be involved, resulting in computational overload. Instead, we edit the
existing edges of the pose graph, updating them based on semantics. An edge, as we saw
in Sect. 2.4.1, contains, among others, an information matrix, that is used to scale the
error term. Our key idea is to edit this information matrix, according to the semantics
of the observations that create it. We compute a multiplicative semantic weight wﬁ:jl’j for
semantic detection j' of frame ¢, linked to landmark j, according to the following logic:

N
1 , sl =1

Wp ) Si’j/ 7é l?j (56)

Wi = f (Delst? 1)) ~ {

What (5.6) captures is that if the detected semantic class for a feature is the same as the
dominant class for the landmark the feature is matched with, then there is no penalty.
Otherwise, the penalty is set to some other value W),.

The exact mechanism for computing W), is dependent on the combination of detector
and environment. Ideally, if an approximate confusion matrix was available, the value of
W, would adapt, so as to be strict in the cases where the class mismatch was unlikely to
occur, but more lenient where the classes are easily confused. However, systems such as
[] do not report such metrics at all, let alone for specific datasets. So instead, we fixed
W, to have a constant value, and performed manual semantic class clustering to help with
some aberrant behavior in [ ] (see Sect. 5.5 for more details).

5.4 Implementation

In this section we will go over some of the technical details of our implementation”.
Our core system is based on SASHAGO (see Sect. 3.3), which has been changed in two
major directions:

e cdits to the base code, mostly to address issues with the alignment procedure

e cxtensions to the base code, to read semantic data, propagate it through the pipeline
and eventually use it to effect the pose graph

The code itself is written in C++, with various supporting libraries being prevalent through-
out, including generic libraries such as OpenCV and Eigen, as well as ROS packages, pri-
marily from the SRRG ecosystem. In addition to these areas, supporting code was also
developed in Python and bash, aiming to manage the various datasets we tested with
(more on this in Sect. 5.5).

2Code available at: https://gitlab.com/_JackFrost_/sem-sashago
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5.4.1 Geometry

We edited the base code’s alignment procedures firstly by updating a background
method for detecting the nearest neighbor of a point inside a pointcloud. The data
structure used is a modified KD-Tree. KD-Trees are used as an efficient way to query
pointclouds, since they store them internally in such a way as to facilitate, for example,
nearest-neighbor queries. This is done by selecting a point and splitting the rest in left and
right relative to that point, along one dimension, then cycling dimensions and recursively
splitting the left and right subclouds. This essentially defines hyperplanes that fragment
the space further and further. In SRRG, KD-Trees are built slightly differently, with
hyperplanes being chosen using Principal Component Analysis (PCA), instead. What we
did was rewrite a part of the recursion for nearest neighbors, so as to make the search
complete rather than approximate (which was the default). In addition, we updated the
logic of the module responsible for the pointcloud alignment itself to use a dynamically
computed number of damped iterations instead of just one.

10

0 1 2 3 4 ) 6 7 3 9 10

Figure 5.1: Visualization of a two-dimensional KD-Tree, where hyperplanes are reduced to lines.
The splitting logic here is basic dimension cycling and pivots are selected as the median for each
subtree.
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Intuitively, geometric nearest-neighbor search is not always the soundest way of search-
ing for good matches. Each detected feature is considered for association with a previously
discovered landmark, by running a nearest-neighbor search over the internal KD-Tree
structure. We implemented a tunable hybrid metric for matching detected features to
mapped landmarks, which trades off between the geometric distance and the Hamming
descriptor distance of the proposed associations. Specifically, we first detect all neighbors
within a small geometric search radius, using a KD-Tree search operation, and then select
the neighbor minimizing the hybrid metric:

f(my,my) = dy (D(my), D(my)) + A |lp1 — po (5.7)

where ) is a tunable weight parameter, p;, ps are the 3D centroids of the matchables,
D(+) is the descriptor function for the matchables (e.g. ORB or BRIEF binary descriptors)
and dy(-) represents the Hamming distance between the two resultant bitstrings, defined
as the sum of logical XOR values between their elements:

dy (v, v9) = Zvl [i] ® vyi] (5.8)

In this way, the system can give priority either to geometric proximity or descriptor
similarity. The association problem for finding the best correspondence m, for each
individual detected feature my from the set of mapped features M can be expressed in
the form:

myg= argmin f(mg,m) (5.9)
meMNN;(my)

where N,.(my) is the neighborhood of radius r around my.

5.4.2 Semantics

A semantic SLAM system requires some way of externally receiving semantic labelings.
In a keyframe setting (see Sect. 5.2), this could be a service existing in the ROS network,
whereby a server-client architecture would enable the system to dispatch keyframes for
semantic analysis and utilize the results in the pose graph later, thus computing semantics
in real time. We deviate from this design, since keyframes are not implemented in our
framework. We compute semantics during dataset preprocessing, for the entire sequence,
and then export them to a standardized output file. This is an ordinary text file with a
specific format for each line, containing a timestamp, the top-left bottom-right parameter-
ization for the SBB, the semantic class ID (as an integer) and the confidence score for the
measurement. Note that for the InteriorNet dataset [ '] the computation is actually not
necessary, since that dataset has groundtruth semantics in the COCO [ '] JSON format,
so they just need to be converted to our text format before being read by the system.
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Figure 5.2: An overview of the final system architecture.

With the above functionalities in mind, we implement a C++ class specifically for han-
dling semantic detection. We concretely implement the I/O method for reading semantics
from a file; the way in which the class is set up will allow for any future extensions to
develop the logic necessary for real-time semantic computations. We then enrich several
other areas of the code to account for semantics, specifically for computing, storing and
propagating the values from Eqns. (5.4), (5.5) and (5.6). A brief overview of the final
system is shown in Fig. 5.2, where the orange components are original additions.

5.5 Experimental Evaluation

Verifying a SLAM system’s efficacy is not a straightforward task, as multiple compo-
nents coexist in a pipeline that can be difficult to introspect. Outlining an evaluation
framework requires first and foremost a robust, scalar metric for system performance. In
other words, we need a method that quantifies how well a system is performing, that will
not be implementation-specific, and will provide a fair and intuitive mechanism for evalu-
ating and, crucially, comparing the accuracy of various different SLAM systems. Secondly,
we need to collect varied datasets, with highly accurate trajectory ground truth available.
It is important to differentiate between synthetic and real-world datasets, since the former
tend to be perfectly accurate in their data stream synchronization and groundtruth, while
also commonly displaying much less noise, than the latter. Finally, an optional require-
ment for our specific design is semantic groundtruth availability, which is decidedly rarer
in datasets available in the literature. Finally, we require other SLAM systems to com-
pare our performance against, so as to demonstrate not only the improvements achieved
in comparison to the original base code of our project, but also to outline the relative
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standing of the end result compared to other methods.

5.5.1 Evaluating SLAM performance

To systematically quantify SLAM precision, we focus on localization accuracy, since
the system does not perform 3D reconstruction. The goal here is to derive a scalar metric
computing the “distance” between the estimated trajectory (the SLAM system’s output)
and the ground truth trajectory (GT). Our evaluation process comes from [ ]’s toolkit,
which provides numerous error metrics; we use the Absolute Trajectory Error (ATE) metric
in our evaluation. For ATE, the GT and estimated pose sequences are, first, optimally
aligned to eliminate reference frame ambiguity and subsequently the error metrics are
uniquely determined [ (]. Then the Root Mean Square Error (RMSE) is computed, to
convert the error to a scalar.

Estimate Aligned

—>
Trajectory
Alignment

Groundtruth

Error Metrics

error

>

Figure 5.3: Outline of the process for trajectory error estimation. [ ']

To be more specific, let us review the process of calculating the optimal parameters
that align the estimated and groundtruth trajectories. The idea is to define a quadratic
error term, then proceed to compute the statistical properties of the two sequences of
data (averages, covariances etc.). Finally, these properties are used to give the optimal
solution. The process is outlined in Alg. 5 and the reader is referred to [ '] for the full
mathematical derivation.
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Algorithm 5: Sequence alignment algorithm, computing optimal scale, rotation
and translation for two input sequences. [10, 14]

Input: estimated sequence (P}, GT sequence: {p;} Yt

Output: arg min Zi:() |p; — sRp; — t|”

s, Rt
# compute statistical properties
P - N Zz 0 bi
l"l’ﬁ = N Zz 0 pz 9
oy = H — b
123 N Z ”PH
= N Zi:O ( Pi— pp) - (Pi — Hﬁ)T

# perform singular value decomposition: X =UDVT
U,D,V = svd_decomp(X)
if det(U) - det(V') < 0 then

| W =diag(1,1,-1)
else

‘ W = I[3><3
end

# compute the values to return
s = —trace(DW)
p

t= Hp — SR[J,ﬁ
return s, R, t

What the above algorithm shows is the process for computing the optimal transform in
the general case, where even scale is unknown. If it is known, then s = 1 is set at the
beginning as a constant.

5.5.2 Datasets

There are many SLAM datasets available in the literature, as well as many semantic
segmentation datasets. Selecting among them requires checking that at least a minimum
set or requirements is met:

e RGB-D datasets only
e indoor environments
e consecutive frames of coherent, non-trivial motions

e complete calibration matrices for the cameras used
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e full pose GT over the entire trajectory
e (optional) semantic segmentation GT for each frame

After examining a multitude of different datasets and listing their advantages and disad-
vantages, we selected three of them for use with testing, two synthetic and one real-world.
See Tab. 2.1 for a more complete overview.

ICL-NUIM [/ ]

The ICL-NUIM dataset is a synthetic RGB-D dataset, featuring trajectories of indoor
spaces. It was one of the very first datasets that we considered, since [ '] actually evaluated
their solution on it, showing promising results. After inspecting the dataset closely we
observed that the environments within are relatively simple in structure, without much
clutter, and, crucially, with many, clearly defined lines and planes for our pipeline to
detect and track. Unfortunately, no semantic groundtruth is available, and the artificial
environments contain few items, which are well outside the distributions learned by Faster
R-CNN. So, instead of testing our full solution, we restricted the experiments to our
pipeline without using semantics, so purely based on our geometric improvements, as a
check that they were indeed improving system performance.

InteriorNet [ ]

Another synthetic dataset, InteriorNet boasts an exceptionally large number of indoor
sequences. For each scene, a trajectory is automatically generated, with the random
movements being confined by different standard deviations for different sequences. Lower
values for these deviations give slower, more gradual movements, whereas higher values
result in more abrupt motions. There are also alternative versions of each scene, with
random lighting instead of the default light sources. We found that lighting changes did
not effect the system too much, provided that enough light was present to capture all the
details of the environment.

Some technical elements that required our attention early on were the following:

e depth scaling: depth data for all datasets we have seen is stored in grayscale PNG
images, usually with 16 or 32 bits per pixel. The values of these images are typically
interpreted as integers by the input system, expressing the depth value scaled by
some factor. For ICL-NUIM and TUM RGB-D, that value is 5000 (e.g. a depth of
Im would be represented by a pixel value of 5000). For InteriorNet, it is actually
equal to 1000, which was not mentioned in the documentation.

e depth convention: in Fig. 5.4, we see the standard model for an RGB-D camera’s
measurement, convention. For all datasets except this one, the PNG depth images
report the z value for each pixel. InteriorNet does not follow that convention, instead
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Figure 5.4: The camera depth registration model. [/ ]

reporting d. Consequently, we had to use the following method to preprocess the
depth images:

£ d?
o \/@: ) B PR (5.10)

where x.,y., f are all constants known from the calibration data of the dataset (see
Fig. 5.5 for a visualized example).

trajectory failures: generating random trajectories helps with bulk data gener-
ation, but unfortunately it sometimes leads to unrealistic or physically impossible
simulations. For instance, the virtual camera would sometimes cross through minor
objects, e.g. a lamp, a glass, a plant etc., which confused our systems tracker signif-
icantly. In addition, trajectories where frequently interspersed with long segments
where the virtual camera would stare at a blank wall or door from a very close dis-
tance. Unable to detect anything other than a single plane, our system was prone
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to losing its bearings, particularly with regards to orientation, in those cases; we
found that the loop closer could not adequately recover from this. To avoid these
complications, subsequences where manually selected that corresponded much closer
to the quality of the trajectories in more realistic datasets.

e semantic conversion: semantics are captured in the COCO format, which is based
on JSON. We convert to our text format from Sect. 5.4.2 beforehand, noting that
class IDs are different from Faster R-CNN’s, although that does not alter perfor-
mance.

(a) Example MeshLab reconstruction of an (b) Same area after correction; note that
InteriorNet scene without correction. lines are straight as opposed to curved.

Figure 5.5: InteriorNet depth correction example.

TUM RGB-D [ 7]

This is a real-world dataset, almost universally used as part of the test suites for both
outdoor and indoor SLAM systems. The dataset comes with a set of tools written in
Python, which are very useful both for data preprocessing and the evaluation of results.
There are multiple sequences to try, all of them of indoor spaces, using cameras with a
depth channel, such as the Kinect or the Xtion. We focus on sequences without dynamic
elements, but try our solution for some which include moving humans as an additional
performance test, even though it was not within the system’s primary specifications.

Two aspects of the data are worth pointing out. Firstly, since the sensors involved
are real, the RGB and depth streams are not perfectly synchronized to start. We use the
provided association script to achieve this, and then modify our preprocessing pipeline to
work with such an association file. Secondly, the data itself is plagued by noise. From our
preliminary overview of the data, the noise appears to fall into two primary categories:
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motion blur for the RGB channels and depth noise. Motion blur only exists in sequences
where movement of the camera was too rapid for the shutter speed. Depth noise, however,
is present everywhere, which has to do with the time-of-flight infrared sensors used for
such measurements. For some pixels, measurements are not registered at all (e.g. screens,
or some types of floor), which leads to the depth value being set to 0 by default. So, in
order to denoise the images, we preprocess them with a median filter of kernel size k = 5.
Other kernel sizes were also tried, and we even attempted bilateral filtering of various
parameterizations, following [~ '], but the performance was found to be poorer.

Finally, it is important to revisit (5.6), since now there a real detector is part of the
system. The key problems with the detector are the following:

o flickering: this is the name we give to the case of a bounding box switching labels
due to a missclassification. The object is framed properly by an SBB, but the
classifier frequently alternates the labels it assigns to it. In indoor settings, this
can occur for instance when a TV monitor is mistaken for a laptop, or a remote is
mistaken for a cell phone. Since no confusion matrix is available, we instead resort
to a hand-crafted hierarchical solution. Classes that are commonly confused are
merged into one superclass, so that the flickering effect is completely nullified. So
a laptop and a TV monitor are merged together in a “screen-like” class, and the
remote and cell phones are now labeled as “hand-held electronics”. This method
requires no change in the architecture of the neural network or its data, merely a
change in the output’s interpretation.

e false positives: this is a rare phenomenon that we observed in some TUM RGB-
D’s Freiburg 3 subsequences. The detector would at times mistake background walls
or panels that happened to align in a specific way as an instance of a class, e.g. a
refrigerator. This was probably a minor problem, however we extended our detection
filtering to remove instances of such problematic classes, lest they caused unexpected
problems later on.

5.5.3 Testing other methods

In addition to testing our own method and its ancestor, we tested two different SLAM
systems to get some comparative results on the same data. The first system is ORB-
SLAM2 [ ], a standard, highly accurate SLAM solution, that tracks ORB features to
estimate movement, building a sparse map as it goes. The second system is MaskFusion,
and is in many ways the polar opposite of ORB-SLAM2. It is a dense, surfel-based SLAM
system, operating with a deformation graph rather than a pose graph, and uses semantics
as well as geometry to optimize its estimations, as well as to detect and filter out dynamic
entities (ORB-SLAM2 only achieves this passively via RANSAC).

In terms of computational requirements, ORB-SLAM?2 is by far the lightest, since its
sparse methodology intrinsically reduces the CPU load, and in the absence of a semantic
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component no classifier needs to run. SASHAGO follows; still a sparse methodology, but
burdened with additional UGR detections and tracking. Our solution has no noticeable
performance drop compared to SASHAGO, assuming that classification is offloaded to
the preprocessing step. If it is done in real-time, then the classifier’s performance will
be the bottleneck, and for true real-time operation either keyframes would have to be
implemented, or an extremely efficient detector would need to be deployed on very potent

hardware. Finally, MaskFusion is the most resource intensive of all, requiring two high-end
GPUs to run in full.

ORB-SLAM2

This SLAM system is based on the pipeline of Fig. 5.6a. The system can support
a variety of sensor formats (monocular, stereo etc.), from which we use the RGB-D in-
frastructure, since this is the type of data we test on. Processing in ORB-SLAM2 is
split into three main treads, with a fourth one being spawned to handle BA for loop
closures. Features in ORB-SLAM2 are points detected using the FAST ['] detector, on
a scale pyramid of the input images. The images are split into a grid, and each cell has
a minimum number of required features that need to be detected, which in turn informs
threshold adjustment for FAST. The results are then assigned an ORB descriptor and are
used for matching.

The internal structure of the pose graph is hierarchical. A covisibility graph is used
to store information for all frames, however this can grow quite large and complex (see
Fig, 5.6b), so optimizing it fully can be computationally demanding. To avoid this, a
more abstract essential graph is introduced, which includes only keyframes and some of
the edges between them, including strong loop-closure edges; it is a connected subgraph
of the covisibility graph (see Fig. 5.6c¢). Loop detection is done using a visual bag of
words implementation, based on DBoW2 [ ]. For efficiency, images are stored in a search
tree and frames that are temporally adjacent are split up into islands, so that during a
loop closure query only one representative is actually compared. Comparison is based on
similarities of features extracted from the images and codified using an ORB descriptor.
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(a) The ORB-SLAM2 pipeline. Note how the processing is split into four
distinct threads, for tracking, local mapping, loop closing and Bundle Ad-
justment (BA).

(b) Covisibility graph. (c) Essential graph.

Figure 5.6: System architecture for ORB-SLAM2, along with visualizations of the internal
graphs it constructs. For the graphs, green edges correspond to the various pose constraints,
red edges are the results of loop closure. The red and black points are parts of the environment

map. [ ]
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MaskFusion

In contrast to ORB-SLAM2, MaskFusion is a dense SLAM framework, based on Elas-
ticFusion and Mask R-CNN. The basic idea is to store a 3D model of each separate object
tracked by the system. A model consists of all the surfels that are grouped into its point-
cloud. The minimized metric is a weighted combination of geometric and photometric
losses:

E,, = ngin(E'fpr + AE"?)

= min > ((vi — exp(€n)0}) - nf‘)2 + A (T(w) = I (n(exp(Sn)n (u, Dr))))
% ueN

(5.11)

The Iterative Closest Point (ICP) term is the result of the error of aligning the surfel
clouds of different frames, subject to &,, as the optimization parameter. To do so, the
summation is carried over all surfel indices, with position vector errors projected along
the normal of the surfel. This eliminates false errors that would arise in the case of a
surface being split in different, but correct, surfels. The photometric term sums along all
pixels u of the image, reprojecting the previous image, via the 7 function, to the current
one, subject to the &, optimization variable. The image Z is in fact cast to grayscale for
this term, and D corresponds to the depth channel of the image. Finally, the weight A

L New frame }

Q; “ Pulléframe

—

\!_/
Tracking Masking network
: | :
Segmentation
. J
Fusion
) SLAM-Thread ’ Network Thread

Figure 5.7: Overview of the multithreaded architecture of MaskFusion. [ ]
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determines the ratio of mixing between the two terms, acting as one of the many system
parameters available to the user.

For semantic segmentation, the MaskFusion uses Mask R-CNN, but it goes a step
further by integrating geometric criteria in its segmentation logic. It is mostly refined using
an “edginess” metric, which attempts to use the 3D point coordinates of a neighborhood
of each point to quantify if it belongs to an object’s edge. An interesting detail is that, due
to the computational complexity of running Mask R-CNN;, it is in fact impossible to run
the full segmentation pipeline at the full framerate. What happens instead, is that Mask
R-CNN is ran as frequently as possible (using a multithreaded implementation), and in
the intermediate frames, the models of the last available semantic labeling are used, along
with geometric segmentation, to provide tentative labels to the new surfels, as illustrated
in Fig. 5.7.

5.5.4 Results

We shall now present our results in the three test datasets we ran on. For each dataset,
we report the outcomes as evaluated by the evaluation scripts, ultimately resulting in an
ATE RMSE value expressed in meters. In addition, we only report the best error values
we could obtain, from the multiple trials executed with different values of the system
parameters. Converging to a good parameterization is not trivial and required a fair
amount of trial-and-error, with optimal parameters varying quite widely depending on
the dataset in question. Finally, to aid in our analysis, we include a direct metric of
semantic richness, SemlInfo, expressed as the median and mean of semantic detections per
frame (where applicable).

ICL-NUIM results

In Tab. 5.1 we see the results obtained on ICL-NUIM. Our system performs very
well in these settings, since the environments are noise free (synthetic) and geometrically
simple, so UGRs are already giving good results in SASHAGO. Our version has noticeable
and consistent improvements, due to the tweaking we saw in Sect. 5.4.1. The trajectories
in these sequences are involve both translations and rotations along all axes, meaning that
the system also detects planes on the ceilings of the rooms in question, which allows for
even better localization.

InteriorNet results

Tab. 5.2 is where we introduce semantics for the first time. We see that in all sequences
where semantics are rich, improvements are observed between our solution with semantics
disabled versus with semantics enabled. Here, semantic GT is used directly from the
dataset, after being converted to our text format from the original COCO-JSON format.
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Figure 5.8: Estimated trajectories and GT for different datasets. In (c), note the effect of noise

on the system’s performance in a real-world dataset, as opposed to the synthetic photorealistic
datasets (a) and (b).

ORB-SLAM?2 is outperformed in sequences 3011_open and 4011 _200-600, which are very
simple geometrically; in fact, the latter is simply an empty room. This indicates that
point tracking does not perform quite as well in such environments, so UGRs are shown
again to be better suited here. Note also that semantics are not much help either, as
there is almost nothing to detect, so our solution without the semantics is marginally
better. We also run MaskFusion on these sequences, although the semantics are not fed
from the GT, but rather computed by Mask R-CNN, as per the operations pipeline of the
system. Running MaskFusion here revealed that, under noise-free conditions, the dense
maps generated are impressively detailed.
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Table 5.1: ICL-NUIM results (RMS ATE [m])

Sequence Ours SASHAGO ORB-SLAM?2
(w/o sem.)

tr0 0.0131 0.0156 0.0212

10 0.0238 0.0519 0.0036

Irkt1 0.0046 0.0001 0.0392

Irkt2 0.0067 0.0148 0.0281

Table 5.2: InteriorNet results (RMS ATE [m])

Sequence (ﬁggl/lif\?g) Ours (w /C())f:m.) SASHAGO MaskFusion | ORB-SLAM?2
133_open 8/8.2 0.0075 0.0091 0.0203 0.0190 0.0057
2r11_250-600 17/15.8 0.0161 0.0267 0.0772 0.0205 0.0147
3011 _open 9/8.9 0.0065 0.0060 0.0179 0.0179 0.0189
4011_200-600 6/5.1 0.0343 0.0319 0.0565 0.4595 0.0447
5011 _full 12/12.7 0.0099 0.0111 0.0409 0.0110 [track lost]
5033_200-675 16/15.7 0.0292 0.0539 0.0502 0.0575 0.0268
6011_800-1000 12/11.4 0.0128 0.0135 0.0195 0.0164 0.0045

Table 5.3: TUM RGB-D results (RMS ATE [m])

SemInfo Ours

Sequence (Med/Ave) Ours (/o sem.) SASHAGO MaskFusion | ORB-SLAM2
fr1_desk 4/4.0 0.0406 0.0825 0.1188 0.9116 0.0203
fr2_desk_500 6/5.9 0.0183 0.0178 0.1350 0.0581 0.0053
fr2_desk_1000 6/5.9 0.0193 0.0181 0.1634 0.0581 0.0067
fr2_desk_full 4/4.6 0.0714 0.0653 0.2065 0.4559 0.0085
fr3_1oh_200 11/10.2 0.0161 0.0267 0.0772 0.0337 0.0178
fr3_loh_1000 6/5.9 0.0521 0.0508 0.0867 0.0272 0.0087
fr3_loh_full 7/6.6 0.1527 0.1576 0.4145 0.2092 0.0097
fr3_sitting_static 10/10.4 0.0087 0.0081 0.0092 0.0117 0.0086
fr3_sitting_xyz 9/8.5 0.0441 0.0436 0.0506 0.0530 0.0092

TUM RGB-D results

In Tab. 5.3 we present the real-world data portion of our experiments. The TUM
dataset is by far the most demanding, exactly because it is a real-world dataset, with
serious noise impacting the measurements, particularly in the depth channel. Working
with this data, even after preprocessing it to denoise it, proves quite challenging in se-
quences where the camera is moved quickly (fri desk), and the same is true for slower
motions such as those of fr2_desk and fr3_loh. We segmented the latter sequences at
intermediate frame counts, to compare the total amount of error present as more frames
are accumulated. It becomes obvious that, although our method does improve over the
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Figure 5.9: RGB-D point-cloud segmentation, showing different semantic classes in different
colors, along with a sample frame from the InteriorNet sequence the detections were made in.

base method, the errors have a tendency to accumulate over time at such a rate that
loop closure constraints eventually fail to provide the trajectory corrections necessary to
correct the estimation substantially. One interesting feature of this experiment is that it
uses Faster R-CNN (with class output clustering as discussed in Sect. 5.5.2), and there are
measurable improvements observed between our solution with versus without semantics
when plenty of detections are present. This also explains why fr1_desk’s detections are so
low; there are actually more entities to detect in that sequence, but motion blur makes it
extremely difficult for our classifier to do so. Finally, the last rows of the results table show
the behavior of our system with regards to dynamic entities in the environment (seated,
moving humans). Albeit tolerant to small movements and a static viewpoint, the system’s
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performance is drastically diminished when dynamics are combined with major camera
movements, which is to be expected, since there is no provision in the base architecture
to detect or filter out such artifacts.
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Chapter 6

Conclusions
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6.1 Brief Summary of Thesis Contributions

In this thesis we have proposed an approach for semantic indoor SLAM. We began
by listing the main ideas we would explore and defined the context of our work. We
then outlined the structure of the work in this document and our contribution. Then,
we presented a brief overview of the history of localization and mapping research, both
for pure odometry and for SLAM. From wheel and LiDAR odometry, onward to VO,
and from Bayesian filtering to Kalman filters and beyond, we reviewed all major direc-
tions in the literature, before showing our exploration of concrete datasets and system
implementations for reference.

Next, we gave the mathematical extensions to the fundamental work in graph-based
SLAM, in the form of UGRs. From the basic definitions of Lie groups and algebras
and the methods they facilitate in non-linear least squares optimization, we extended the
theory to encompass more complex geometries. After seeing how degenerate quadrics can
be expressed in a form amenable to consistent error terms, we discussed the advantages
that these geometric structures offer to indoor SLAM applications, and presented our
implementation base architecture.

We continued with semantics and a brief overview of one of the most active research
areas in the world of technology: machine learning and neural networks. After outlining
the definition of the problem, we showed some basic methodologies for tackling it. We also
introduced the concept of a neural network, its mathematical principles and many archi-
tecture variants. Specifically, convolutional neural networks were analyzed, and the Faster
R-CNN model was presented in more detail. We also delved into some example implemen-
tations of semantic SLAM, with their various different formulations and architectures, as
well as their distinct pros and cons.

Finally, we presented our approach to semantic SLAM. After introducing the conven-
tions and elementary definitions we would use, we showed how the use of semantics can
be integrated with UGR-based pose-graphs. Then we highlighted the basic improvements
in the fundamental workings of the base system, especially on the geometric front, before
showcasing the final architecture of our system. We continued by presenting the common
framework for SLAM systems evaluation, and discussing the various datasets that we used
in our tests, along with the specifics for adapting the datasets for use with our pipeline.
Next, we presented in detail the two other methods we tested with, to provide a broader
picture of SLAM performance in these datasets. To conclude, we reported the results of
the methodologies on the datasets, commenting on the performance profiles we observed
and how they could be interpreted.

The contribution of this thesis can therefore be summarized as follows: to begin with,
an overview of the fundamentals of odometry and SLAM, and more specifically, graph-
based SLAM. To continue, a presentation of UGRs and their applications in SLAM. Then,
an overview of machine learning for semantic segmentation and its adaptation in semantic
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SLAM. Finally, the theoretical formulation and concrete implementation of a combined
UGR and semantic SLAM pipeline, which is efficient enough to allow for integration of
semantics at negligible computational cost and additionally yields competitive results in
modern indoor datasets.

6.2 Future Research Directions

Semantic indoor SLAM is far from being a solved problem, and through our work
we have highlighted some of the challenges that lay ahead in this field. The theoretical
obstacles and practical limitations that we encountered, as well as those we found in
the literature, have brought to light numerous directions of research that could prove
to be instrumental for the advancement of both our understanding of this topic and
the sophistication, robustness and safety of real-world implementations based on these
foundations. Below we list a few crucial ones:

e resilience to noise: while it is true that sensors are becoming ever more accurate,
solutions exposed to real-world data do not behave in the same way that they do
with simulated datasets. This is especially true for the current UGR implementation
we worked with, since registering large geometric structures from noisy pointclouds
is a whole separate problem in and of itself.

e keyframe selection: systems that understand when a frame is important based
on some criterion other than just counting frames could help drastically ease the
computational load of running any SLAM pipeline. Work in this direction could
lead to the development of more perceptive and responsive systems.

e segmentation architectures: with the overwhelming wealth of semantic segmen-
tation choices available in the literature, choosing a framework for the future can
be a challenging endeavor. Bleeding-edge technical solutions are becoming stan-
dardized that package Al solutions in efficient formats for deployment (e.g. Intel’s
OpenVINO toolkit'), using may different types of hardware, such as CPUs, GPUs
and even FPGAs. It is therefore crucial to investigate how these architectures can
tie into SLAM solutions in a modular way, and to make good trade-offs between
accuracy and performance.

e dynamics and variability: humans are particularly adept at managing to localize
and map complex environments, both indoors and outdoors, transitioning between
the two quite seamlessly, even without digital aids such as GPS. In addition, we can
plan our actions in these environments despite the existence of dynamic elements,
within them, as well as other factors such as varying weather or lighting conditions.

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
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This flexibility is supported in great part by the semantic understanding of our
surroundings, and advances towards the interplay between SLAM, semantics and
automated planning is what will lead to more complete solutions for mobile robotics
in the future.
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Appendix A

Algorithm for Manifold Optimization

Algorithm 6: Manifold Graph Optimization [ ]
Input: .7y, C = (e;;,82;;) — Vi, j s.t. 3 constraint z;;
Output: =*, H*

while = converged do
# compute Jacobian projectors

for i =[1..T] do

ox; B Az;
P =
3Awl _
Az=0
end
b« 0, H <+ 0

forall (e;;,2;;) in C do

# compute Jacobians and project on manifold

A~<—8€ij(w> A, — Ay - M,
ij awz _ua ij ij i
B, « 2¢i®) Bi, « Bi, - M,
) 8$] 7u7 () () J

icompute Hessians and coefficient vectors
H“—f— A Q A'U’ H + A Qz]Bij

Hj; += BTQ Ay, Hjj += BTQ”Ej

b, += Az;Qne”, b += BTQmeZ]

end

# system setup and solution - first node is fixed
H,, +=1, Ax = Az < cholesky_ solve(I—IAa: = —b)

# update estimates
forall &; in & do
end

end




Algorithm 6: (contd.)

# calculate final results outside manifold and return
'« x, H* < 0
forall (e;;, 2;;) in C do
H;; < AgQZ]AU, H:; < Ang]Bw
return x*, H*

Due to the importance of the manifold formulation, we have presented the full algorithm
here, which takes an initial guess for the full state trajectory and a set of constraints as
inputs and returns the optimized solution and information matrix as outputs.
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