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ITepiAndn

O mnivoxag xuxhogopiog (Traffic Matrix) nepiéyet 1o mocd tne xuxhogoplag (o€ moxéa,
1 bytes) peta€l 6wV oV xOuPwyv evéc dixtiou. Auctuyde, 1 ancuieiuc Yétenon twy
UTEPBOAXE TOAGDY TAXETWY 1) BEdOPEVWY Tou Blacyilouv éva dixTuo elvar aclUopen),
AOY® TNG UEYAANG YWENTMOTNTAS X TWV TOAATAGOY ENEEERYACTIXWY LOVABKY TOU
YeetdleTon vor AEtToupyoLy adldxona. 261600, axdua xal UE TOAD LoYUEE UTOAOYLO TIXA
ovo TAUATA, Tor AdUm Bev efvon e@xto Vo eEahetpioly xa onuovTind Sedouéva uTopel va
yadolv. Mo Arydtepo xootoBdpa Tpoaéyyion elvon 1) yeriom dedopévwy and Tic (VEeLS,
Toc omola efva e@ixtd vor amoxtroly EUxoGTERN UE T1 YEOT TOL TewToxdAou SNMP.
Or mpoavagepieioeg UeTEROEIC TEPLEYOUY EUUEST) TANPOGYOELA YL TOV TiVOXa XUXAOPO-
plag, omote o tedeutaiog umopel va e€oydel and autéc. H napoloo Simhwpatind epyacia
eotdler oo mEOPANua e Extiunone Hivaxa xuxdogoplac (Traffic Matrix Estima-
tion), mou avixet otnv Topoypapio Awxtiou (Network Tomography). H npocéyyion
e OmALUaTXC auThg TepL oufdvel Ty adlomtoinon evég yevvnTixol yovtélou udidn-
ong, mov ovoudleton Mopahhorypévoc Autoxwdixoromthc (Variational Autoencoder),
Yo vor Mooer o Tpoavapepléy xaxde-dlotunwuévo (ill-posed) mpéBinuo. To mpdPin-
ot VEWPELTOL XoXOC-BLUTUTIWUEVD, BLOTL 0 Ttivaxag Spopoldynong (routing matrix) dev
elvon full-rank, pe amotéheoua o apriude twv YetaBAnTOY vor efvon TOAD YeYOAUTEROC
am6 Tov oprlud Ty e€lo®oewy. ITo avolutind, exnoudedouye Tov AutoxwdixomonTh
UE TeoNYOUUEVY BEQOUEVD X0 OEIOTOLOVUE TOV EXTULOEUPEVO XWOWXOTOLNTH Ylal VoL Ue-
Tatpéoude To TEOBANUG Wag ot éva TEOBANUN eEAdyloToToinoNg ot Evay AavidvovTa
y&eo (latent space), To onoio TAéov unopet va Avdel eqapuoloviag évay BehtioTonol-
Nt Baciopévo oty mopdywyo-xhion (gradient-based optimizer). Emnpdoideta, o ex-
TOUOEVUEVOC XwodtxoTolnTS a&tomotelton yio vor Topdryet Tivaxeg xuxhogopiag, ot omolot
€)(OUV TOPOUOLOL YUROXTNELG TXE UE TOUS UTOAoLToug Tou €yel e€etdoet. Téhog, epeu-
vétow 1 o tadloxt| Bedtio tonoinon (incremental optimization), n omola xdvel ypfion twy
XWOIXOTOINTOY OTWE TEOXUTTOLY XuTd TNV exTaideucT) Tou auTtoxwdxonomnt. Télog,
TEAYHATOTOLELTOL AELOAGYTON) TWV TEOTEWOUEVGY UEVOOWY, YENOULOTOLOVTOS SEd0UEVA
TWVEXWY xUXAoQoplac amd Evar TEoyUaTXG BixTuo.

AéZeic KAedud:

Topoypapla dutvou, TapaxorolinoT dixtvou, Tivaxag xuxhogoploug, extiunor mivoxa
xuxhogoplag, ohvieon mivaxo xuxhogopliog, unyovixy| udidnor, uddnon yvweloudtwy,
Bordid udinom, veupmvixd dixTud, YEVVNTIXG HOVTEAD, OUTOXWOLXOTONTAS, TUEUAAAY-
MEVOC QUTOXWOOTIOMNTAS



Abstract

Traffic Matrix (TM) captures the amount of traffic between all nodes in a network.
Since a variety of network operations, such as anomaly detection and network op-
timization, require accurate traffic matrices as inputs, it is becoming increasingly
important for operators of these systems to acquire them. Unfortunately, measuring
directly the vast number of packets that traverse a network is extremely expensive,
due to the enormous demanded capacity, as well as the numerous processing units
that have to function incessantly. Even with very powerful systems, errors cannot
be completely avoided and crucial data is likely to be missed. A less costly approach
is the usage of easily obtainable link counts through SNMP measurements, which
implicitly contain information about traffic matrix. If so, TM has to be inferred. In
this diploma thesis, the problem of Traffic Matrix Estimation (TME) is addressed,
which belongs in the class of Path-Level Network Tomography. Our approach is
to take advantage of deep generative models and more precisely, Variational Au-
toencoder (VAE) to deal with this highly under-constrained issue. In particular, we
train the VAE with historical data (previously observed TMs) and we leverage the
trained decoder to transform TME into a minimization problem in the latent space,
which can be in turn solved by employing a gradient-based optimizer. Furthermore,
the trained decoder can be used for synthesizing traffic matrices, i.e., for generating
synthetic TM examples that have “similar” properties to the samples of the training
set. Finally, we explore the incremental optimization of the sequence of objectives
constructed from the sequence of decoders that we obtain at different stages of the
VAE training. The performance of the proposed methods is evaluated using a pub-
licly available dataset of actual traffic matrices recorded in a real backbone network.

Keywords:

network tomography, network monitoring, traffic matrix, traffic matrix estimation,
traffic matrix synthesis, machine learning, representation learning, deep learning,
neural network, generative model, autoencoder, variational autoencoder



Euyaplotieg

H ouyypapn tne mapodoug Atmiwuatixric Epyacioc onuatodotel v ohoxhipwon tov
TEOTTUYLAXWY oL oToLdGY. Tlpw xheloel To peydho autd xepdhono tng Cwhg Lo, Va
fela vor euyoploTAoK T dToua Tou oTddnXay BlmAa pou xa GUVEBAAAY GTNV PEYEL
TWeo Topeia You.

Apynd, Yo fAdeha va euyapiothow tov Kadnyntd povu, x. MNuuewv Ianofaciieiov
yioe TV mohOTyn Pordeld tou otny exndvnorn tou napoviog Yéuatog. O x. Ianofoot-
Aelou UTAREE EVag XATATATNTINGS UEVTOPAS, O OTOIOC E TIC WBEEC TOU Xat TNV Tpodu-
HOTNTA TOU, UE EVETVEUGE ol UE xood1ynoe dAoug auTtolg Toug Uhives. Emmiéov Tou
elpon Bardid euyvouwy Yo TNV ToADTIUN 0TARIEY Tou oTo yeEAhoVTIXd wou oyédlo. "Hrav
Tin pou va epyas T Yall Tou oo epyactiplo Awryeioione xon Béitiotou Xyedioouo
Awtiwy Tniepatinic Tou Edvixod Metodfiou Tloduteyvelou.

Emniéov, Yo fleha va suyopiothow tov urtodrigo diodxtopa x. I'enyoden Kax-
®3Po xon Tov avamAnewty| xodnynth x. Booiieio Kopuwtn. H ocuyfolr| toug Htav
xodoploTixn xou dlapxric, Ywelc TNy omola dev Yo YiTay duVATY| 1] OAOXANPWOT| TNE To-
povoag epyaoiaug. Ac Va unopoloe vo gavtaoTel xavele xohbTtepoug avilpdroug va
ouufouheuTel.

Enlong, Yo fleha vo exppdow Ny Ly VoUocUVY Hou GTOUS QIAOUC UOU, UE TOUG
omoioug €y UolpaoTel TOMES and Tic To EeyweloTég oTiyuée tne Long pou. Hrav
autol Tou pou ydptoay xar Yo pou yapllouvy oTiypéc avepehlde, dpdovou YENOU xou
oy dmng.

Etvar odfdeta 611 8e Yo ancforvopouvy 1660 ohoxhnpwuévog dvipnmog xa o€ Yo ebya
HAVEL TEEOYUOTIXOTNTAL TOL OVELRY O Y wpelg TNV orydmn xa Th QeovTida Tng ouXoYEVELdg
uov. Me otnpilel oe xdlde pou Brua, ye cUPBOLAEVEL Xou POU TEOCQEREL aveXTiUNTAL
Quywd ayordd. Oo elpon mdvTtor xovtd Toug. Bo Aela Vo APEEMOL OE AUTONG TNV
TapoLoa epyaoia.

Mok Kahvtric
Adfva, Mdrog 2021
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Extetouevn Ilepiindmn

Eioaywy

Ao T TPOTEG PEPEC TOU WC TELRUUATIXG OixTUO oAAaYTC Tax€Twy, To AladixTtuo
EYEL TPOYWENOEL TOA) OE GUVTOUO YEoVIX0 OLdoTNUa. Xe avtiVeon UE TO TNAEPOVIXO
dixtuo mou eZehiydnxe ue mo apyd TeoTO, To AldixTUO XLELEYNOE TayEnS (2] Aoy
TNG XUUVOTOUOU TEAUXTIXOTNTAS TOU X0 TOU UTOXEVIPWUEVOU EAEYYOU TOU, XL, OTUEQQ,
elvon t0 Paowd péoo emxowvwviag. To 2021, mepiocdtepol and 4,7 dioexatoppipla
dvipwrot yenotponooly to Awdixtuo xdde uépo [3]. Me v éheuon VEwV eQopuoyoy
omwe 1) pot Bivteo xon T Toryeior abZnom TNe xivnong BEBOUEVKY amd HIVITEC GUOKEVE,
TORUTNEOVUE Lo Ty XOCHLAL EXENET TANEOPORLOY.

Aedopévng tne auavouevne onuactag tou Atadixtdou, 1 Yvoor g xivnohc Tou
€yet yivel 6ho xou o onuavtixr. 201600, AOyw TN EMRELPNS xevTEoD eEAEYYOU, 1)
TocoTxY| aClOAOYNOT) TNS AmOB00TS TOL dTUoU YiveTon TOAD 80oxohn. Oyt udvo etvor
BLONTIXG X0l UTOAOYLOTIXG AGUUPORO Yia xdde oTodud vor GUAAEYEL, va emelepydleTon
%o VoL LETAB{OEL AUTES TIC TANPOYORIES, UANS o OL YVWOELG AUTES UTopel var Yewpniolv
IOLWTIXES X0 U1 XOWOTOWOWES Omd TOUG Tapoyous. AuTd T 6edouéva etvon {oTinhg
onuactog ylor Toug YELRLoTES dTUoU, oL omolol Yéhouv va TpoypoupaTticouy xplotueg
epyaoieg, 6mwe va xadoplcouy Tic TOMTIXES BROUOAOYNONE 1) VoL BLOYELPLOTOUY XAl Vol
npoypopuatioouy o dixtuo [4]. To npoavagepdévta éyouv peydhn onuooia yior Ty
eniteun Tou otdyoL NG eCutnEéTnong TG (ATNONG UE IXOVOTIONTIXT| TOLOTNTO GOV
opopd. TNV xouUCTERPNOT, TO TOCOGTO UMWAELNS TOXETWY 1/Xou dAAeC TapOUETROUC
TOLOTNTOC UTNEEGiog/ToldTnTog EUneLplog.

H Topoypagia Awtiou (Network Tomography) [5]-[7] avamtdydnxe yio vo Eeme-
edoEL To TPOAUVUPERUEVTA EUTOBLAL. XXOTOC TNG €V VO CUVALY BYEL GUOVTLIXG O TUTLO Ti-
%4 oToryela evog duxtlou, ywplc vo yeetdleton TAREN CUVERYACI EVOIGUECWY XOUPBwY.
Toutdypova, o mpbogateg eleMel ot Pohd veupwmvixd dixtua 8], oe cuvduaous
UE TNV TPO0d0 GTIC 0ToYAoTXES ueVbdoug BedtioTomolinong, enétpedoy Ty eCoywyn
OTNUOVTIXGY XL TLO TEPITAOXMY YoQuXTNEIO TXWY antd Tor dtardéatua dedoueva. Me tny
o&loToNoT X TNV EVOWUATWOT| TS VONUOGUYNG QUTMY TV UOVTEAWY GE XATIAANAO
Tep3dANoY, efvar BUYVATOV VoL AVTHIETOTIG TOUY TOAAS uTompoBAfjuata tne Touoypapliog
Awtbou, cuurnepiopfovopévne e Extiunone Hivoxa Kuxiogoplag (Traffic Matrix
Estimation), n onola eivar o Baowd Vepa authc g epyaciog o cuuTEPaiveL Ta
YAEAUXTNEO TIXE EVHE BIXTOOL TOL BEV UTOPOLY Vo PETENUOUY duETAL.

14



EKTETAMENH IIEPIAHVH 15

Kivntpa

To Awdixtuo anoteleiton and eTEQOYEVEIC CUOKEVES, OTWS XVNTE TNAEPWVAL, BEOUO-
AOYNTES X0l UTONOYLOTEC, UE DLUPORETIXG TOWTOXOMAAL X0 AELTOURYIXE CUC TAUNTA. 2E
aUTO TO YaoTiX6 TEPBAANOY, Uio amd TiC To S0oXOAES epyacieg elvon 1) e€epedivon TNg
TEQUO TG YXAUOC TNAETILXOVWVIGY X0 UTOAOYLO TIXMY UTODOUMY XAl 1) XATAVONOT) TOV
YUEUXTNELO TIXWY TNG, OTWS 1) GUVOECIUOTNTA, TO VPO (OVNG Xl Ol XoUC TERHOELS.
Ou ydpTtec [9] eivou EMOMEVWC EVUC OO TOUC TLO YENOLIOUG TOPOUG YLoL TNV OTOXQU-
TTOYQRAPNON TNG HEYIANG ot TERITAOXNG UTOOOUY|C TWV TEYVOROYUDY TANROPORLOY Xl
ETUXOVWVIWY, OIVOVTAS UG T1 BuVATOTNTA Vo xotavoncoude Tol Beloxovial autég ot
TEYVOLNOYIEC, TS DLUCLVBEOVTAL, TOOEC TANPOPORIEC UETADIDOVTOL | YEVOVTOL XAT.

To ping [10] Htav pior amd Tic TpdTeC TPOOTAIELES Yo TNV XATAVONOT) TWY YUROXTY-
pto Ty Tou Atadxtiou. Acttoupyel otéhvovtag taxéta ICMP oe évay cuyxexpyévo
TEOOPIGUO XAl YENOWOTOLETOL XUELWE Y1o TOV EAEYYO TNG CUVOECWOTNTAS ULAC GUOXEL-
fc 070 dixTuo xa TN pétenor g xaductéenong uetall dvo utoloylotoy. To 1987
onuioupYinxe éval To AEMTOPERES Slay Vo Td epyaelo, Tou ovoudleton traceroute
[11]. To traceroute mpocdioptlel tn dradpour| Yetod evoe onueiov exxivnong xat evog
onueiou Tpooptopod xat T SLdpxeto Yol auTo To TaEidL (UET EMOTEOPNAC).

Qotéoo, Va Arav ageréc vo BuctlOuacTay amoXAEIcTXE ot auTd Ta Bondntixd
TEOYEUUAUTO AOYLOULXOU YL TNV TOROY Y| EVOG YORTOYEUPYIULUTOS TOU BLadixTO0U, ETEWDN
QUTEC OL TEYVIXEG ATAUTOOV T1) CLUVERY UGN EVOLIUECKY DLUXOULOTOVY XAl BEOUONOYNTGV.
o ouyxexpuéva, xotd T Bladpour| ueTal 6V Leuy Y XouBwy, eivor Tiovd oplouéva
ornuelor vor umhoxdeouy 1 vor avTETOTELouY e TOAD younir TpotepondTnTo TNV %ivnon
TOU YENOWOTOLELTAL YLt DLty VOO TIXOUS 6X0T00¢ (xupiwg Yoo AOYOUS OGPIAELNG Xl
anédoong), xahotdvtag Ty O Swadxacia avemtuy. Etot, ot ydetec [9] mou eivou
OlordEouloL OTUEPD TIEQLEYOLY UOVO IOl UERLIXY| ATELXOVIOT) TOL XUBEEVOYMEOL.

Emniéov, oxdun xou av Aoy epixtég TéToleg amexovioelg, xdde ndpoyog €yl to
oxabewpo vor amogacioel edv Vo XOWVOTOLACEL EMLYELENCLUXES TANPOPORIEC OYETXE, Yo
TOEABELY AL, UE XAJUOTERHOELS %ot BLAVOUT| XUXAOPORLag Tou BIXTOOU TOU, Xl TEETEL Vol
efetdoel miavd UEIOVEXTAUAT AUTAC TNG EVERYELAS. Apyixd, 1) HETABOCT QUTOY TOV
OTOTIOTIXWY TEOXOAel onuavTixy addnorn tng eofc Tne xuxiogopiac. Edv o dixtuo
OEV €yEl XATUOEVUOTEL YIol VO UTOGTNRIEL AUTOV TOV OYXO BEBOUEVWY, TO GUCTNUA
eVOEYETOL VoL amopplheL Yoo TAXETOL VLol TNV ATOQUYT) GUUPOENONE XAl 0XOUL XL VAL
xatappevoet. EmmAéov, elvon midovéd ol xoxdBoulol yeRoTtee Vo avaAUGoUY auTéS TIC
AETTOPERELES O VAL EXUETAAAEUTOUY TIC EUTAUELEC EVOC CUGTAUATOC.

Q¢ ex TolTOU, Ol emoTAUOVES Edaryvay yiol par GAAT TEOGEYYIoT), 1) omola Bev Vo
YeewllOTay T1) CUVERYACTA EVOLIUECWY XOUPWVY Xt eV Yo UTEPPORTWYE Toug xOUoug
Tou dixtou. To nedio mou mpoéxule ovoudo tnxe Network Tomography ané tov Vardi
5], Moyw TNC OpOLOTNTAS TOU PYE TNV LOTEIXY) TOUOYEAPI, XoL OVUPERETOL GTO OV TIoTPO-
@O [12] TEOBANUA TNE EXTIUNONEC TWV TGOV TOV THEOUETEY ToL YopoxTnet{ouy To utd
€peuva oUOTNUA, houBdvovTog LTOYN To ATOTEAECUUTA TWV TREOYUATIXWY TUQUTNETOE-
ov. Topduota tpoiruarto éyouv avtyetwmio el dielodixd otny enclepyaocia oruaTog
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[13], otnv dpaon unoroyiotev [14], oty wtexr anewdvion [15] xou dhhec eqapuo-
Yéc. Enopévwe, viodethitnxay oplouéva yerotda CUUTERAGUOTA YLo VoL oLy TEL 9we 6To
oyeTd véo xAddo tne Touoypapiac Awxtdou.

> UVELCPORES

O x0pieg ouvelsPopég TN TapoLoag BIThwpaTiXT epyaotag etvon ot e€Hg [16]):

e Emoxoénnon g Piphoypagplag oyetind e Tig ouvelspopeg oty Toupoypagpia
Awtiou xon v Extiunon Hivoxa Kuxhogoploc.

o YOvileom TVAXGY XUXAOPOEIIG TTOU GUUUOPPOVOVTAL UE TOUG TURATNPOUUEVOUS
TEQLOPLOMOUS EVOS CUYXEXEWIEVOL OixTOOoU, exmoudevovtac évay Ilapahhayuévo
Avtoxwdwononty.

o Ilpita, exmaldevorn evog Hopadhoyuévou Autoxmdxomomnts xa €ncita, eniAuon
T0U TREOBAYUTOS BEATIOTOTOINOTE GTOV AavUIEVOVTOL Y(OEO Yol VOL TNV UV TYIETMTL-
or tou mpofifuatoc Extiunone Iivoxa Kuxiogoplac.

o Metatpony| tng mpoavagepieioog uedodsou Extiunone Hivoxa Kuxhogopliog 500
otadiwv (tpdta extoideuon Hupadhoypévou Autoxmdixortont xat oTn GUVEYEL,
Behtiotonolnon otov Aavidvovta Xd)po) oc évay TUTO «ToTOYPOVNS» BEATIOTO-

Tolnong.

o AZlohbynomn TNg ambBo0oNC TWV TEOTEWVOUEVKDY UEVOBWY, YENOWOTOIWMVTIS EVa
OlrdEolo GUVOAO BEDOUEVLV TEOYUXTIXMY TVEXWY XUXAOPORLIG TTOU €YOUV X0~
Torypopel oo Sixtuo Abilene [17].

ITapaA Aoty LEVOS AUTOXWOLXOTOLNTNS

O Hoparhoryuévoe Autoxwdixonontic (IIA, Variational Autoencoder (VAE)) [18]
ebvan yror mapodhary ) evog Autoxwdixornomntd [19], [20]. Ebvar éva yevwnuxé povtého,
TOU OTUolveEL OTL eival XavVO VoL ONULOURYHOEL VEO DEDOUEVA, TOEOUOLOL UE TO OEDOUEVL
exnaidevong. H Boaowq mtuys tou ITA mou tov Suaxpivel arnd dAla yevvnTixd yoviéha
EYXELTOL OTNY LXAVOTNTS TOU VoL DLEPEUVE TURUAAXYES TWV DEDONEVWY exTaldeuoNg O
o emIUUNTY, oUYXEXEWEVN xatebBuvor (xon byt vor dnutoupyel Tuyala véo dedopévar).
Autod unopel va emtevydel xuplwg enetdr xdde eloodog avtiototyileton oe Wior xoTo-
Vo (tie TOPEUUETEOUS LIS OLVOUTG @ocomo'() xou Oyl og éval oTadEpd BLdvuoUa OTIKS
otov Autoxwdixomoint. Me autév Tov TEoéTO, 0 Aavidvey yheog eivon cuveyhc,
ETUTEETOVTOG OE OTOLOONTOTE Tuyaio onueio var €yel uio ‘oUCLUGTINY AVOTUEEC TAoT
HOALG amoxwotxoTomndel. O oxomdg AUTAC TNG AVTICTOYIONG EYXELTOL OTO YEYOVOS OTL
oxouT o ytar o (Btar Bedouéva mou divoviar ¢ elcodo, 1 xwdworolnon Yo Slupépet,
elepeuvovTog Tiavég TapahhayES TNS ELGOBOU.

H apyitextoviny| Tou etvor autr mou ameixoviCetor 6to Lyruo 1. And auth, unopo-
OUE Vo GUUTEPAVOLUE TOV TEOTO UE ToV oTolo Yivetar 1) extaddeust| Tou:
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Brpa 1: Mia eloodoc @ ‘mepvdel’ péow evog Irfavotinol Amoxwdcomomts xou
avtiototyileton oe plo xatavour g,(z|x) (Snhady, otn péon Ty xat otny
TuTXY) amoxAon o Kovovixrc Kocwvow']g) oTov havidvovto Yoeo z,
am6 TNy omoio 1o & Yo uropoloe vo dnuoveynuel.

Brjua 2: ‘Evo onpeio z devypotodnmreiton and v xatavour ¢s(z|x) otov Aavidvo-
VT Y WQO.

Brjua 3: To onueio autod z ‘nepvdel’ yéow evog Hrdoavotinod Kwdixomomts (dnhadh
po(x]2)), 0 omolog Topdryet YLor xoTovouy) OAWY TV TAVOY TGOV TOU .

Brpa 4: Troloy(leton t0 Addog Tng avaxataoxeunc UETaEY €l0660L ot €600V,
xou BLodidetan-tpoc-to-niow (back-propagation) oto dixtuo.

input output

spmpled latent vector

T > > = |’

a

- qol :|-l'} L

probabilistic encoder probabilistic decoder

Yy 1: Apyrrextovikn Ilapadaypévov Auvtokwoikonomtn

O Aoyog mou ypnowomnoteiton 1 TEoceYYIoTIX Xotovoly| ¢y (2|x) xar oyt 1 mpory-
porte) xatavouny pe(z|a) eivon 6Tt Yo Tov unohoyloud e pe(z|x), and to Yewpenua

(z|2)p(2)

Tou Bayes [21], éyouue 6t p(z|x) = pT, 6mou p(x) = [, p(x|z)p(z)dz. To
p

tehevtaio autd ohoxhipwua Bev umopel vor utohoytotel (ypetdleton exdetind ypdvo),
xardde ypeewdletan vo ebvar Yoo Tég OAEC oL THES Tou 2.

[Ma vae ehéy&oupe méoo duoteg etvan 500 xatavoués, yenotponotolue Ty Kullback-
Leibler Divergence [22], n onoio cuuBohiletoan Dy Yndpyer n evdeio KL amdxh-
on, Dicw(po(z|)llga(zl)) xon  aveioweorn Dics(golzl)Ipa(zle)). Mo xan 1
avtloTeopn cuvddel pe TN hoywr| Tou Iopudaypévou Autoxwdxomomnts, yenoylo-
TOLE(TOL QUTY| XL TEOXUTTEL OTL:

Dir(9s(2])po(2]2)) = log ps(®) + Di1(ge(2|2)||pe(2)) = Eq, (z)e) [log po(|2)]

Enedr] woy el mdvtote 6L Dir, > 0, mpoxdnTel 6Tu
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Dx1(gs(z|)||pe(2]x)) > 0 =
= logps(z) > —Dr1(qs(2|x)||pa(2)) + Eqg, (212 [log po(z|2)] = ELBO,

OTOL:

o —Dkr(gs(2]x)||pe(2)): bpoc xavovixomoinone, xodde eqapudlel évo eldog me-
ELOPLOHO GTNY TROCEY YO TIXY| xaTavoun. TIponctixd, ‘xavovixorolel’ tn popgr| Tou
AoV EVOVTOC Y WEOL.

o By, (2la) [log po(x|2)]: bpoc avoxataoxeunc, xadog puetpdet Tny miavoTnTa Twv
OVOXATACHEVACUEVRY DEBOUEVWY. TToaxTind, cuuBdhher oTnV EVEECT) TOU XOAUTE-
EOU OYHUATOS XOOLXOTONTH-ATOXWOXOTOMNTY).

To 8e&l uépog g mopamdve eiowong, mou ovopdleton ELBO, amotehel éva pody-
poe oty mavoTnTa Vo dnpovey nioly TearyHotixd dedouEva, BNANDY| TO APLOTERS UEPOG
¢ e€iowong, To omolo xon pog evolapépel vo YeyioTonotiooupe. Ondte ueyloTomoL-
ovtag 1o ELBO, peylotonowlye xan 1 {ntoduevn mdavotnto. H napandve tpdtoaon
elvon LloodUVaun e TNV elayloTonoinon tou apvntixol ELBO, 1o onolo amotehel xou
T CUVBQTNOT| ATWAELDY HOG:

L(0,¢) = —ELBO = Dir(4s(2|2)[[ps(2)) — Eq, (z1a) [log po(2|2)]

Ondte, o oxonde tou Iopariayuévou Auvtoxwdxononty| elvon 1 EVPECT TWV X0-
AOTEROV XWOLXOTOMNTWV Kol ATOXWOXOTONTAOY (ONAadH TV XUNITEPWY TUPOUETEWY
6%, ¢*), mou ehayroTonolUY TNV anmiewa L:

0%, ¢* = argmin L(0, ¢).
60,6

[Moe v xatavour| Tou [Idavotikold Anoxwodixonomntr, unovétouue 6T eivon Kovo-
vixh e qy(z|2D) = N (p, 021). T tnv ex TV Tpotépev TEToldNoN Uoc oyeTind ue
TNV XATAVOUY| TV AvIovovToy UETABANTOVY Z, Yewpolue oTL axoloudel tny TutoToL-
nuévn Kavovixd xatavoun pg(z) = N (0, ). Télog, unodétoupe 6Tt 1 xatavour| Tou
ITavotiol Kenduonownt etvon Koavovixr. ‘Etot, yetd and npdéewc, n npoavagpepieioa
CUVAETNOT) ATWAELWY YiveTow:

J L
1 1
L(0,9) = -5 Z [1 + log(a?) — ,u? — 0]2.] -7 Zlogpe(idz(l)),
=1 =1
onou J ot BlHOTICELS ToV 2, dpa 0, 1 To j—00Td oTolyela Twv o, p aviloToya.

Hponyoupévee, avagpépoue 6Tt yiveton detypotolndio otov Aavidvovta yweo. -
01600, 1] BIUBOCT-TEOC-TO-TOW TV CPUAUATWY GTO BIXTUO OEV Elval EQLXTY, OTAY
undpyet n tuyondtnto auth. ‘Etol, mpotddnxe to reparameterization trick [18], oly-
pova pe To omolo: avti vo tépoupe detypa oand Ty N (w, o21), dnhadi, z ~ qu(z|z) =
N(u,02I), n oerypatorndio Tpaypatonoeiton and 10 2 = i+ 0 © €, Ue © Vo amoTeEREL
Tov ToMamhactopd xotd otowyeio xou € ~ N (0, I).



EKTETAMENH IIEPIAHVH 19

Merproeig Zeliewv

Ov petprioeic otic Céulelg umopoly va Angioly puéow tou mpwtoxoihou Simple Netw-
ork Management Protocol (SNMP) [23]. To SNMP eivou évo ané to eupéne amodextd
TEWTOXOAO. ToL BLoryetplleton xou TopoxohoLVel cuoxeuéc dixtlou oc Internet Pro-
tocol (IP) 8ixtua, émwg OPOUOAOYNTES, HOVTEY, OlaxoploTéS xaL oTaduole epyastag.

Anproveyia Yuvietinodv Ivdxwy Kivnong

Ou nivoxeg xuxhogoplac (IIK) éyouv modléc ypnoelc, extéc and 10 amhd YEYOVOC
OTL TaPEYOLY XUAUTERT XATAVONOY) EVOC BixTUou. Mmopolv va yenoiwonomdolv yia
aviyveuoT) avoUahLo)Y, Slayelplon xon oyedlaopd SXTOoU, eEl0PEOTNOT POPTIOL Yot
OYEBLIOUO TTEWTOXOAOL BxTUoU. AucTuY®S, Oyl u6Vo Elval UTOAOYIGTIXE BUOXONO
vo ueTenUoly oL poéc xuxhogoplag dueoa, ahhd xou o apriude Twv dadéoluwy 6To
xowo dedouévey TIK elvon meptoplopévoc. Auty| 1 avemopxrc TocoTNTo GUVOAWY Ot-
OopEVWY amOTEAEL GOPBapd EUTOBLO YIoL TOUC YEIOIGTEC OLXTUOU 1 TOUC ETUGTAUOVES, Ol
omofot eVBLPEPOVTUL VoL BOXIUATOUY oL VoL AELOAOYHOOLY TNV ATOTEAECUATIXOTNTOL TGV
TEOTEWVOUEVDY dAYORIUUMY GE TEOYUUTIXES XAUTOO TAOELC.

[ vor avtipetomiovel autd To TEOBANU, 1) TEY VT XATUOXEUT] TUVAXOY XUXAOPO-
plog etvon prar e€onpetinr) Aoom. LnUeldveETL €80 OTL 1) TUEAY WY TIVAXOY XUXAOPORLg
TEETEL VoL E0TIALEL 0T SWITAENON TV YAUpUXTNEO T Toug. Extég and tnv mpoo-
vagepeioa yerion, n ovvieon mvdxwy xuxhogoplag eivon éva amopaitnTo evOdueco
oTddto oty extiunon Tou mivaxa xuxhogoploc.

Xty teéyovca gpyoaoia, aflotootue évay Taporioyuévo Autoxwdxonomts. O
otoyog eivon 1 mapoyr| IIK nou €youv moapatneniel mponyouuévng o autd o Badd
Hovtéro onuovpylag, Teoxeluévou va xataoxevactoiy véol 1K mou éyouv mapduota
YUEAUXTNELOTIXG PE TOUS TpoavapepdEvTouC.

‘Otav donuoveyole TIK, edv doxpdooupe eva didvuoua and Ty (dla TEomYoUuEYN
xartavoun pg(z) = N(0, I) v xwdixomotnuévey Slavuopdtmy, o anoxodixorontic Yo
onuioupyroet éva véo onuelo. Auto to onueio lvor eYYUNUEVO OTL EYEL YoROXTNELOTIXG
TOEOUOLOL UE TOL THROTNEOVHEVOL GTUEl, ETELDT XAUTA T DLdEXELN TNG EXTAU(OEUOTC, £YOUUE
otaPBefondoet 6Tt 0 Aavidvey yweog efval cUVEYTE, ETITEETOVTUC GE OTOLOOHTOTE TUY kO
onueio va el oLUCLIOTIXY AVUTUEAOTUCT) MOALC amoXwOXoToNEL.

Extiunon Ilivaxa Kuxiogopiag

H Extiunon Iivoxa Kuxiogoplac nepthaufdver To cuunepaoud tne xvnomne mou YeTo-
oideTon petall xde Ledyoug xOuPwv o éva BixTuo, amd UETEHOELS OE0OUEVWY O OAES
Tic Leleg. Mmopel va dratuneiel we e€ng:
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‘Eotw n ot xéuPor xaw m ot Lebielg evog dixtbou. H oyéon uetald tou mivaxa
xuxhogoplag, Tou Tivaxo BEOUOAOYNONE X0t TwV UETEoEWY oTIC (eliel umopel va
TepLypapel amd €va GUCTNUOL YRUUUXOY EELOWOENV:

y = Az,

OTou:

e y civor To m X 1 Sidvuopa TV peteriocwy otig (ebiec. Trodétouue 6Tl 7
otadpoun) 6ev aAAACEL 6 OAN TN BLdEXELXL TNG TEPLODOL UETENOTS.

e A civn 0 m x n? mivaxac dpouordynong, mou Tepypdpel v Tonoroyie. To
oToyElo Tou a; ; ebvan (oo ue 1, av 1o (ebyog mpoéheuorc-tpooptopol j duoy(let

™ Celin 4, 1) 0 SLopopeTixd.

e x cvar 0 n x n whvoxag xuxhogopliag, Tou onolou To oTolyelo TN YpouUY| T xou T1|
OTAAN J avTimpoowrelel TV xuxhogopio (xivnan) uetal tou x6ufou Tpoéleuong
i o Tou xOUPou Tpoopiool J. YuvAdee, arctxoviCetal wg v SLdvioul n?x 1.

Y10 mhadolo autd, To TEOBANUA elvor var exTtyunel o mivaxag xuxhogopliac &, Hed0-
HEVOLY TOV PETENOEWY oTIC (EVEELC Y %o Tou Tiivaxa dpouordynone A. Kéti tétolo dev
elvon TeTEWPEVO, xaddC 0 apriude Twv CEUY®Y TROEAEUCTC-TEO0PLOUOY LIGOUVTAL UE n?
(&yvewoteg mocdTnTES) Xou elvar GYESOV TEVTA TOAD UEYURITEROS oo ToV apLiud TV
LevZewv m (yvwotée tocdtntes). Emopévog, 1o mpoavagpepléy chotnuo Yeouuixdy
e€lowoewy elvan oe peydho Badud UTO-TEOCBLOPIOUEVD, 1 XoXOC-OlaTUTWUEVO (Bnho-
07}, o mivoxag A dev elvon TApoug TEENg (full rank) »ou utdpyouy TOAAEC ADOGELC TTOU
ToupLdlouy oTIC napatnpﬁoan). H @Uon auth tou mpofifuatog EIIK avtipetwnrileton
cLVNIWE PE TN YPY|OT) OTATIOTIXWY UOVTEAWY XA TNV EQUOUOYY) TROCUETWY UTOVECEWY.

‘Evo amAd mopdderyua evog 0ixtiou Ue TNV xuxhogoplo Tou gatvetal oTo Lyfuc 2.
Ebvar mpogavég 611 undpyouv moAleg meplocotepeg poeg 11II (OD), oe oyéon e g
uetproeic ouvdéouwy (1).

1o cUYHEXPIEVA, EXUETUANEVOUACTE TOV EXTIUOEUPEVO UTOXWOLXOTIOLTY] TTOU UTO-
eel va cuviéoeL TEYVNTE ToEadElypoTaL oo ToV AavidvovTa Yo 2 %ot LToUETOUUE
6T 1 Aon mou avalntotpe (rotog eivan o ITK @) unopel va dnuovpyndel and autdv
ToV amoxwdwonotnth. {1¢ ex ToUTou, UeTaTEEénoUUE To TEOPBANUa tne EIIK oe éva
TEOBANUA ehoyto ToToiNoNG 0TOV AavidvovTa Y WEO:

arg min [Hy - Ad(z)Hﬂ ,

omou d(.) etvon T0 eEXTOUBEUPEVO YEVWVNTIXG LOVTELD (BMhadY), 0 amoxwdXoToMNTAC).
'Etot, 0 otéyoc etvor va Beedel 1 xahOTepn TURAUETEOC 2, TPOXEWEVOL VoL EAXYLC TO-
motnVel 1 dtapopd YeTal) TV TUPUTNEOVUEVKDY UETENOEWY (E0EEWY Y Xal TWV EXTI-
Houevey uetpoewy (eblewv Ad(z), o omola oynuatilovtar ‘Tepvoviac’ to 2 and
ToV amoxwoxonotNT. Aol Beolue To xah)TEQA 2, €YOUNE ATOXTACEL TNV EXTUNON
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Yy 2: Eva andd dixtvo e tnr kukdogopia tou. To R avumpoowreler éva
dpoprodoyntn kar ta 1,2,3 evar o1 kéuPor. Xto kdtw uépos anexovivietar e€iowon
S EIIK nou éyer avtikataotalel.

TOU xoAUTEPOL Ttivaal xuxAooplag T ~ d(z). O ATOXWOXOTONTAG Efval BLopOPOTOL-
HOWOG, ETOUEVKS TO TEOBATUA ETAVETOL UE TNV oVATTUET EVOC BEATICTOTOMNTY XL THO
ouyxexpyéva tou Adam.

M 8edtepn pédodoc mou mpoteiveton yioo Ty EIIK mepilopfdver tny mpoovxn
€VOS 6poUL xavovixoTolnong otnv tpoavagepieioa cuvdptnom:

argzmin [Hy - Ad(z)H; + CHZHE} ’

6mou To ¢ elvan €val PETEO avTIOTAVUIONG UETAEY TOU GQIAIATOSC HETENONG XAl TNG
onuaciug TG amo-Tey TETOMINCY| Hog Yior TY xotavour Tou 2, wdovTag Ty egétouo
TWY TEPLOY OV ToU EMAEYOVTOL and Tov anoxwodixononth. O Beitiotonowtic Adam
yenowonoleiton eniong o authv T Pédodo.

Ko otic 600 mpoavagepieioeg ediomoelg, mpémel va xadoptotel éva onuelo exxivn-
onc yw 10 2. To apyxd didvuopa 2o Yo unopoloe va emAeyel Tuyado, ohhd auTd
umopel va xorduc teprioel T dtadxasta, xodog Yo yeeloToly TEPLooGTER BridaToL Yl
va TpooeY Yo Tel To eAdyioTo. Ol cuvolixéc emavareic Vo propovoay va peiwdoly,
oe meplnTwon mou emhé€ouue éva ‘xoAd’ apyd onuelo. ‘Etol, Siepeuvolue K tu-
yoibor AovidvovTar BtavOoHaTa XaL ETLAEYOUNE AUTO UE TNV EAAYLOTN OO TAOT) OO TIC
uetenoes Lebiewv:

zo=z: ||y— Ad(zk)H; < Hy - Ad(zi)‘ z, yi€el, .., K,
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Zo = 2k : Hy — Ad(zk)H; + csz”; < Hy — Ad(zi)H; + cHzi‘ ;, vioi €1,..., K.

> tadtaxy) BeAtiotonolinon

Ov mpoavagepieioec pédodol amoterolvTon amd dVo Bridata

Brua 1: Exnatdevon Hapahhaypévou Autoxmdixononts ye tponyoluevous Ilivo-
xec Kuxhogoplog.

Brua 2: Metatpon| tng Extiunong Hivoxa Kuxhogoplo oe éva mpdBAnua eroyt-
otomolong 6Tov Aavidvovia Y®eo xat enthuct) Tou pe Tov BeATio ToTonTy
Adam.

Q6T600, GLY VA oL TPoAVIPERUEiCEC CUVIPTHOELC VLo EAAYLOTOTOMGT) £YOLY TOAAS
Tomuxd ehdyota. ‘Etol, o akyopriuol Behtiotomoinong unopel va ‘eyxAnBlotolv’ oe
XATOLO TOTUXO EAGYLOTO X0k VoL UV CUYXAIVOUY 6TO OMxd Ay LoTO. AUTEC Ol U Xup-
TEC OUVOPTNOELG 0ONYNoUY OE ol evodhoxtixt| tpoceyylon oty EIK. H nopandve
otdwactor 600 PBrudtery evovetar o pla: BeATioTonoloUUe o Tadlaxd TNV axoloudia
TWV CLUVORTHOEWY EAAYLOTOTOMONE TOU €Y 0UV XATACXEVACTEL Ue TNV axoloudia Tev
OLXTUMY ATOXWOLXOTONTY| TTOL AopfdvovTar Xt T1) OLIEXEL DLUPORETIXGY OTUdLY
¢ exmatdevong tou Hapodhoyuévou Autoxwdixomown Ty, VIOVETOVIAS TIC avTioTOoL-
YES TWéC mopauéTeny. Auth 1 ‘tautdypovn’ PeitioTonolnon €yl yenowonowmdel o
BiBhoypapio [24] yiow mpoPAfata Ue TOARG TOTXd eNdytoTor Xou €yel omodety el oTt
OUYXAIVEL 0TO OAXO ENGYLOTO.

‘Eotw ¢, @1, ..., 1 Ol TOQIUETEOL TWV ATOXWOXOTOTOY dy, d1, ..., dp TOU Aoy-

BdvovTon avé xdmolo cuYXEXEHEVO apliud etoyy exmaldeuonc. o Tov amoxwdxo-
mounty d;, ot mpoavagepleioes edionoeic ehayioTonoinone yivovtow:

arg min [Hy - Adz(z)Hﬂ )
arg min [y — Adi(=)[; + =[] .

Ané autéc T e€lonoelg, Bploxoude o xahiTERo Aavidvwy Bidvucua 2 yenoluo-
mowvtag Tov Adam. Autéd 1o ‘tpéyov’ BédTioTo Ya yenotwonoimniel yio Ty apyxonoin-
orn tou Adam xatd N BeAtioTomolnon Tou enduevou ctoyou. ‘Etot, utodétovtag tov
ATOXOOXOTIONTAC di1 UETA oo €vay Teoxadoplouévo aptiud enoydv exnaldevong,
Yo ypnoylomotjcoupe To 2§ w¢ onuelo exxivnone vy tov Adam ot véo cuvdptnon
ehaytoTonolnong:

argzmin [Hy - Adi+1(Z)H;} ;

arg min [Hy — Adiﬂ(z)H; + cHsz] .
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And autd, Yo AdPBouye to véo PElTioTO Zi1q, XOX. Télog, av dr sivar 0 TEAXOC
AmOXOOOTONTAC, 1 exTiunoN Yo Tov Ttivaxa xuxhogoplac Va elvon: & = dr(z7).

Aedopeva: Aixtuo Abilene

[ty a&loAdynom Twv Tpoavapepéviny YeVddwy, yenoylomou|dnxay dedouéva xivn-
ong mou cLMEYINxay and to dixtuo Abilene [17]. To dedouéva xivnone npoximtouy
xuplwe amd yeydha mavemothua otic HITA xou €youv yenowonowmdel oe didpopeg
uehétec [1], [25]-27].

‘Onwe gatveton and 1o Lyrua 3, autod To dixtuo xopuol Beloxetou ot Bopeio Aye-
oucr) xou amotehelton omd 12 xOptoug x6uBouc (N Athdvta anotekeltar amd 2 x6uBouc),
ot omolol dlaveouy TNy xivnor Toug uEow 12-12 = 144 powv Ilpochevonc-Ilpoopiouou.
H torohoyla €yel eniong 15 - 2 = 30 xVpieg Ledielc mou oUVIEOUY AUTEC TIC TIEPLOYES
uetal toug. Kdde xouPog éyel emmhéov 2 e€wtepnoie ouvdéououg (1 yio tny elcodo
ond e€wtepixd xOuUBo xou 1 yior v €000 Tpog xdmolov eEnmTeptnd xOUPo), UE omo-
téheopa 30 + 12 - 2 = 54 cuvohiréc (ellec. H ywpnuxdtnto AV TV ECWTEQXOY
ouvoéoewy eivon 9920000 kbps, extéc and v (evén Athdvrta-Ivuiavdmoln xon tnv
Ivtiavdmoin-Athdvta mou €youv ywentwotnta 2480000 kbps. To dedouéva xivnong
TEPLEYOUV UECOUS OPOUS Yo DL TAHUATO 5 AeTT™Y, Yl 24 eBdouddeg, and tnv 1n Moap-
Tiou éwg Tic 10 MentepPpiou 2004 (undpyouy tept6douc Tou Aettouv). Etot, undpyouv
(60/5) - 24 = 288 detlyparta tnv nuépa xou 288 - 7 = 2016 delyuata v fdouddo. Eva
Topdderyuo evog Ilivona Kivnong gatvetan otov Tlivoag 1.

Seattle

Sun

Los Angeles

Houston

YxAua 3: Tormodoyia tou duktou Abilene [1].

YAoroinon

H apyitextovixr Tou Kwdwonowmt| anewovileton otov Ilivaxa 2, eves autr Tou Anoxw-
owomounty| otov Hivoxa 3. Etvor onuavtind vo avagépouue 6Tt ol tpwTeg 13 Boouddeg
(Onhadh, Touc mpdtoue 13 - 2016 = 26208 IIK) yenotponotodvton yior Ty exnaideuon
xou 1 14" efBoudda (dnhady, ot enduevor 2016 IIK) yio Ereyyo.
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ITivaxac 1: O S-Aenwdv mivakas kukdogopias (mpayuatikés Tués) ané to diktuo
Abilene, tnv 1" Maptiov 2014, peta&d 00:00 kar 00:05, o€ kbps.

Ilpoopiopbg

1 2 3 4 5 6 7 8 9 10 11 12

1 26.667 522.208 1641.339 335.728 413.032 489.875 365.077 817.869 452.061 747.405 388.317 3141.640

2 445.149 82660.749 | 16283.117 | 5169.035 | 3931.403 | 27351.896 | 4844.035 | 18231.909 | 12803.955 | 1421.888 | 8957.483 | 51748.245

3 | 3793.693 | 12735.325 | 28744.432 | 13738.253 | 9830.336 | 26359.776 | 6537.749 | 27775.901 | 14098.339 | 1816.941 | 4495.256 | 10647.053

4 230.805 2341.483 | 38518.189 | 3761.989 | 8408.763 | 7207.741 | 3948.899 | 21375.568 | 5723.408 | 14385.464 | 10609.464 | 12248.861

5 239.043 2956.779 | 16891.501 | 3693.019 | 5606.299 | 9143.904 | 7130.168 | 98457.928 | 7265.264 | 2947.376 | 2237.597 | 8506.651

6 | 4766.925 9254.733 | 122044.576 | 21378.197 | 33173.784 | 22849.056 | 9890.840 | 24405.043 | 40616.099 | 3466.387 | 13892.187 | 41138.093

7 420.960 4443.563 26972.272 | 5394.304 | 5476.104 | 8017.757 | 4022.899 | 8673.584 | 12842.411 | 1223.752 | 2444.272 | 12048.437

8 | 339.661 19394.589 | 89723.683 | 9039.381 | 9030.867 | 42720.251 | 13570.251 | 11369.131 | 61164.419 | 2311.541 | 25519.453 | 55726.387

Ilpoéieuon

9 | 3897.640 | 40887.840 | 53674.288 | 16345.053 | 23987.787 | 83325.448 | 24767.283 | 71022.560 | 136796.045 | 9591.352 | 21934.557 | 111860.741

10 | 26.667 1041.205 5046.067 | 10406.912 | 1436.683 | 3861.611 | 2097.072 | 2000.211 2211.461 | 14269.608 | 3297.648 1987.707

11| 111.019 15881.547 | 22512.587 | 4341.176 | 11302.768 | 7691.184 | 2260.848 | 17766.373 | 24845.373 | 4755.005 | 1038.357 | 10517.379

12 | 11219.101 | 125937.728 | 66541.197 | 36063.421 | 15439.312 | 62781.813 | 32642.733 | 91675.627 | 133661.405 | 1980.576 | 29760.203 | 187653.483

ITivaxag 2: Aour tov Kwoikorointn) otov Hapaddaypévo Avtokwoikomoimntn.

TOnog emnédou | ITuprvag | Brua | Lvpnijewor | 'EEodog
Input () - - - (12, 12, 1)
Dropout - - - (12,12, 1)
Conv2D 3,3 | (2.2 SAME (6, 6, 32)
Conv2D (3, 3) (2, 2) SAME (3, 3, 64)
Conv2D (3,3) | (1,1) SAME (3, 3, 128)
Flatten - - - (1152)

Dense - - - (64)
Dense (u) - - - (10)
Dense (o) - - - (10)

Sampling (z) - - - (10)




EKTETAMENH IIEPIAHVH

ITivaxoag 3: Aour tov Anokwoikonomntn) otov Hapaddaypévo AvtokwoikomoimnTn.

TOnog emnédou | ITupHvag | Brua | Tvpnifewor | 'EZodocg
Input (z) - - - (10)
Dense - - - (64)
Dense - - - (576)
Reshape - - - (3, 3, 64)
Conv2DTranspose (3, 3) (1, 1) SAME (3, 3, 128)
Conv2DTranspose (3, 3) (2, 2) SAME (6, 6, 64)
Conv2DTranspose (3, 3) (2, 2) SAME (12, 12, 32)
Conv2DTranspose (3, 3) (1, 1) SAME (12,12, 1)
AnoTteAECUATY

H a&iohdynon 1wy npotewvdpevey uedoswy yiveton ue tn Bordelor Tov mopoxdte YeTeL-
x&v: Root Mean Square Error (RMSE), Normalized Mean Absolute Error (NMAE),
Spatial Relative Error (SRE) mou exgpdlet 1o oyetxd o@dlua extipnong xdde ueyo-
vouévne potc IIII oe 6An ) dudpxeta {whc tne xou To Temporal Relative Error (TRE)
mou cuvoilel To oYETO GQdhua exTiUnong Ghwy Twv powy IIII oe éva 6edouévo ypo-
vix6 onueto. Ta o@dhpata autd utoroyilovton we e&hc:

RMSE(t) = j;tgﬁwt’b = \/ Tt @t(]i\)[ —@(i)”
B — 12 =@l Eled) - @)
[, S @
TRE(r) = 17~ wll, _ VL @) - @i(0)”
= SV @)
sy < 1870 = @l _ I @) e

|17 (9], ST (2(4))°

OTOUL:

o x civor o mporypotixode IIK.
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z cbvar o IIK mou extdpe .
o i =1,2,..., N avuimpoownevel tnv xdde pory III1.

o t=1,2,..,T dnhdvel to xdde ypovixd onueio (dnhady, IIK).

||H1 Lo’ HH2 elvon 1 TE@TN xou 1) DELTEEPN VopU avTioTOLY A

Emiéyovtac évar “xahd’ apyind hAavddvmy SLevuoua, UTOROUUE Vol UELWCOUUE TOV
oprdud TV amoUToUUEVKDY enavolbewmy BekTioTonomong. LnUEldVETOL 6Tl OAAL ToL O-
TOTEAEGUATO TTOU OVOPEQOVTOL GTT) GLUVEYELX haBdvovtan clu@wvo e BAoT auThY TNV
TOEUOOY ).

To Yyfua 4 anewxovilel T cuvolut| amwhieio Tou Exrtoudeugévou Autoxwdixomol-
Nt %xotd TN exmaldevo. Ao autd To oYU, clvor TEoGavE OTL N HEYIO T TYT TNG
oLVOAXNG amwAetag ebvar oTig TEOTEG emoyes. {doTéo0o, uetd amd meplnou 1 €wg 3
ETMOYES, 1) CUVONXT) UMMOAELN PELOVETOL CNUAVTIXS XL OTT) GUVEYELX, xo®S TEEVOLVY
oL ETOYES, UTARYEL Uit EAaped Uelwor TN cuvoluic amwhetag. Oplooue enfong éva
callback EarlyStopping, to omoio eivar unebuvo yio Tov TEpUATIONS TNE EXTALDEUONC
OTAY 1) ATOAELL PTUCEL GTO EALYLOTO, 1) LOODUVOHA, 1) UTOAELN O TOUUATHCEL VOL UELOVETOL.

a5

35

5

loss

20

15

o\

0 50 100 150 200
epoch

Yy 4: Andrea povtélov ota dedopéva eknaidevons.

To Yyfuo 5 ameixovilel ta ypovixd oyetxd opdiyoata. O ypdvog t Tou dlova x
avtiotoryel otoug 2016 1IK, ondte T' = 2016. To ypovixd c@dhuato yia Tnv ho-
yotonoinon (2) etvan pixpdtepa and v ehoytotonoinon (1) oyeddv yio xdde IIK.
Avuto 1o ouunépaopa emPBefoumdveton amd To Ly rua 6, 6Tou amewxovilel Ty adpoloTixn
CLVAPTNOT) XATAVOUNS TWV YPOVIXWY CYETIXWY CPUAUITLY.

To Yyfuo 7 amewoviler ta yweixd oyetxd o@dipata xdde (evyoug IIII, dpa
N = 144 (undpyouv cuvohixd 144 Leuydpto IIIT). Tevixd, o ywend opdhuoro hop-
Bdvouv uxeée Twég, extog amod W pot| uetoch 107 xan 109, 1 omola extoledetan oTa
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Temporal Relative Error

CDF
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YA 5: Xpovikd oyenxd opdduata (TRE).
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SxApna 6: Adpowtikni ovvdptnon katavouris (CDF) twy xpovikdy oxetikdy opal-

pdTwy.
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Odm.  Auth 1 ouunepipopd Yo umopoloe va ogeileTton, lte oE GQIAUA GE AUTO TO
ouyxexpyévo C(ebyog I, eite oe andtoun adinon tne porc xivnone auvtod Tou ou-
yxexpévou Lebyouc. Qotéoo, o SRE oty ehayiotonoinon (2) eivor mepinou to éva
TEUTTO Tou avtioTotyou c@dhatoc otny ehaylotonoinone (1). And to Myrua 8, etvou
TEOQAVES OTL 1 adpoLoTIXT] CUVEETNOT XATAVOURC TwV ehayloToroinoewy (1) xau (2)
elvon oD xovTd YeTal) Tou.

—— minimization (1)
minimization (2)
50 1
=
e
=
[TTR
]
2
T 30
[
o
i 204
=
©
o
W 10
04 "*\ Y W PR VAP U “-—‘\;‘\ Ao
6 2ID 4ID 6ID BID lCIiD 12‘ 0 l‘iD
oD Flow ID
SxApe 70 Xowpikd oyenxd opdAuata (SRE).
1.0 A r
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0.6 1
[’
[a]
o [
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0.2|
|
—— minimization (1)
0.04 minimization (2)

T T
0 5 10 15 20 25 30
Spatial Relative Error

YA 8: Alpowtikr) ovvdptnon katavouns (CDF) twv ywpikdy oxetikdy opal-

pdTawy.
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O Ilivaxag 4 ouvodilel ta amotehéopata yio TIC TEELC eEETALOUEVES TORAUARAYES YiaL
EIIK. 'Onwe goivetor, n ehoylotonoinon (2) pe ¢ = 0.1 Behtidver mpdypatt 6he Tig
petpwés (Waitepa to SRE).

ITivaxoag 4: Extiunon Arwiedy.

Exnaidcvorn xouw EAoytotonoinor (1)
YpdApa Meéor Twy | Adpeocog | Turmixyy Andxiiorn | Méyiwoto
RMSE (Mbps) 13.9045 12.6126 5.2089 59.6762
NMAE 0.3544 0.3415 0.0824 0.8176
TRE 0.3557 0.3320 0.1098 1.0387
SRE 1.1233 0.6323 4.6677 56.5583
Exnaidcuorn xouw EAayioctonoinor (2)
YpdApa Méon Twy | Awduecog | Tumxry Andéxior | MéyioTo
RMSE (Mbps) 13.6893 12.6701 5.0450 60.6747
NMAE 0.3466 0.3350 0.0748 0.9496
TRE 0.3488 0.3381 0.0989 1.0249
SRE 0.7330 0.5769 1.0698 12.6865
Touvtéyeovn Exnaidsvor xow Elayioctonoinon (2)
Ypdhpa Méon Ty | Awdueocog | Tumixry Andxior | MéyioTo
RMSE (Mbps) 13.3673 12.4220 5.5080 43.2572
NMAE 0.4262 0.3972 0.1473 1.3309
TRE 0.4033 0.3791 0.1505 1.3824
SRE 1.7464 0.8027 6.9723 81.7783
YuunepdouaTa

X1y mopodoo Simhwpatixny epyacio, ECETUCUUE dpyIxd TIC CNUAVTIXEC CUVEIGPORES T
BuBhoypapio oyetind pe tov Touéa tng Touoypagpiog Awctiou xa tng Extiunong Iliva-
xo. Kuxdhogoptag (EIIK). ‘Encita, avolbooue to npdfinua tne EIIK expyetodievdpevor
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o Bordid yevvnTind povtéla xou o cuyxexpeva, evay Tlapodiayuévo Autoxwdo-
oy, avtl vo oolbuacte oty apondtnta (sparsity) [7] onwe ocuvndiletou. A&io-
Totfjicoue €var dladéoo ohvoro Bedopévwy pe PETEHoES amd To dixtuo Abilene yia
VoL EXTIUOEVCOUNE TO YOVTERD. XENOWOTOLOVTAS TOV ATOXMOXOTOMNTY, UETOTREYouE
t0 EIIK oc éva mpdPAnua ehayiotomoinong otov Aavidvovta yweo. O amoxwdxo-
Tontic yenotpomoyinxe eniong yio T dnuovpyia véwy Hivdxwv Kivione (IIK), mou
€)OUV TOEOUOLOL YOPUXTNELOTIXG UE Tar Oelypota oTn dladwacio exnaidevone. 'Etot,
unopel e0xoha vor yivel avTIANTTO OTL 1) ETMAOYT| TOU XATIAANAOL CUVOROL EXTIALOEL-
one etvar LoTinrg onuociog, TEOXEWEVOL Vo TEPLEYEL OAOL TIC DUVATES THIEC TOU UTOPEL
va ipet e pory Ilpoérevone-Tlpoopiopot (IIII). Emniéov, Biepeuvioaue tny evola-
XTI TEOCEYYLoN TNg oTadloxnc PeitioTonolnong xar a&tohoyinxe 1 anddoon Tewv
TEOTEWVOUEVGLY HEVODWY.

MeAhovTtixég Ilpoextdoelg

Ye avtieon pe o xhaoixd Veupixd dixTua Tou amoTEAOUVTOL amtd PEYEAO apriud Too-
HETEOVY Yo amaToVY PEYSAN GOVORA DEBOPEVLV Yol VO EXTIALOEUTOVY, TROCHUTA, TEO-
TAONHE ULol XUUVOTOUOC TIPOGEYYLOT) TTOU TEQLOPLOE TIC TROUVUPEROUEVES TEOUTOVETELS.
Autd to yovtéra ovoudlovton Untrained Generative Models xan Bactlovton o Bordid
VEURWVIXG OXTUA, UE TOAD AYEC TORUUETROUCKOL OTTAT) ORYLTEXTOVIXT) TTOL OEV YpEELdlo-
vTow exmafdeuot. To povtéda €youv amodery el 6Tt emtuyydvouy Yetind anoteAEopoTa
(28], [29].

M dhhn xotebduvorn mou aliler va e&epeuviel etvan 1 yprion Conditional Gene-
rative Models [30], [31]. Autd ta yevvnuixd poviého yenotpomolodvton yior T Oety-
potohndla and xdmota dyvwo T UPNAMY BLoC TUCEWY XATAUVOUT, 1) OTolol ETLTEETEL TN
onutovpyia ToAATAGY ADoEWY amtd Tig (Bleg PETPHOELS.

H perlovtir €peuva oe autédv tov Touéa Yo umopoloe va mepthouBdver tn yerion
Deep Reinforcement Learning [32]. I v extyundel pe axpiBeto o IIK, évoc npdxtopog
TEETEL VoL EXTOUOEVUTEL Yiar var cuumeptpépeTon BéATIoTol o€ Eva Tept3dAioy, Aaudvovtog
ATOPACELC XoU AVTIoTOLYES OVTOUOL3EC.



Chapter 1

Introduction

From its early days as an experimental small packet-switching network, Internet has
come a long way in a short period of time. In contrast to the telephone network
which evolved in a slower manner, Internet dominated rapidly [2] due to its inno-
vative practicality and decentralized control, and, nowadays, it is the key means
of communication. In 2021, more than 4.7 billions of humans utilize the Internet
every day [3]. With the advent of new applications such as video streaming, and
the rapid growth of data traffic from mobile devices, we are witnessing a worldwide
information blast.

Given the Internet’s expanding significance, knowledge of its traffic has become
increasingly important. However, because of the lack of centralized control, quanti-
tative assessment of network performance becomes very difficult. Not only is it ad-
ministratively and computationally cumbersome for each station to collect, process
and transmit this information, but also such knowledge might be considered private
and non-shareable by the providers. This data is pivotal for network operators,
who want to schedule vital tasks, such as routing policies and network management
and planning [4]. The latter are all of high significance towards meeting the goal
of serving the demand with satisfactory quality in terms of delay, packet loss rate
and/or other Quality of Service (QoS) / Quality of Experience (QoE) parameters.

Network Tomography [5]-[7] was developed to overcome the aforementioned ob-
stacles. Its purpose is to infer important statistics of a network, without needing
full cooperation of intermediate nodes. At the same time, recent advances in deep
neural networks [8], combined with progress in stochastic optimization methods,
have enabled the extraction of meaningful and more intricate features from the data
studied. By exploiting and integrating the intelligence of these models in a suitable
environment, it is possible to confront many sub-problems of Network Tomography,
including Traffic Matrix Estimation, which is the core subject of this thesis, and
infer not directly observed characteristics of a network.

31
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1.1 Motivation

The Internet is comprised of heterogeneous devices, such as mobile phones, routers
and computers, with different protocols and operating systems. In this chaotic
environment, one of the most challenging tasks is to delineate the vast array of
telecommunication and computing infrastructures and delve into their meaningful
attributes, such as connectivity, bandwidth and delays. Maps [9] are therefore one
of the most useful resources for deciphering the large and complicated infrastructure
of information and communication technologies, enabling us to fathom where such
technologies are located, how they interconnect, how much information is transmit-
ted or lost, etc.

Ping [10] was one of the first attempts towards the understanding of Internet’s
characteristics. It operates by sending ICMP packets to a specific destination and
is basically utilized for checking the connectivity of a device to the network and
measuring the delay between two computers. In 1987, a more detailed diagnostic
tool was generated, called traceroute [11]. Traceroute is meant to identify the path
between a source and a destination point and the time for this round-trip.

Nevertheless, it would be naive to rely solely on these software utilities to provide
a purposeful cartogram of the web, because these techniques require the cooperation
of intermediate servers and routers. More specifically, in the path between two
pair of nodes, it is possible that some points block or treat with very low priority
the traffic used for diagnostic purposes (due to security and performance reasons
mainly), rendering the whole procedure unsuccessful. Subsequently, the maps [9]
that are currently available contain only a partial illustration of the cyberspace.

Moreover, even if such depictions were obtainable, each provider has the right
to decide whether to share operational information concerning, for example, delays
and traffic distribution of their network, and has to contemplate possible drawbacks
of this action. First and foremost, transmitting these statistics causes a significant
increase in the traffic flow. If the network is not constructed to support this amount
of data, the system might discard useful packets to avoid congestion and even crash.
In addition, it is probable that malicious users analyze these details and exploit
vulnerabilities of a system.

Hence, scientists [33] were in the quest for another approach, which would not
need the collaboration of intermediate nodes and would not overload the network’s
links. The field that emerged was named Network Tomography by Vardi [5], due
to the similarity between network inference and medical tomography, and refers to
the inverse [12] problem of estimating the values of the parameters characterizing
the system under investigation, given the results of actual observations. Similar
problems have been addressed thoroughly in signal processing [13], computer vision
[14], medical imaging [15] and other applications, and some useful insights were
adopted to shed light on the relatively newborn subject of Network Tomography.



1.2. OBJECTIVES 33

1.2 Objectives

The target of this diploma thesis is the Traffic Matrix Estimation (TME) problem,
which is a form of Network Tomography. The Traffic Matrix (TM) quantifies the
demand between all possible pairs of origin and destination entities (usually nodes
or set of nodes) in a network. It is of paramount importance for network operators,
who want to know how traffic, described by TM, flows between all possible pairs of
Origin and Destination (OD) nodes of the network, as it is important for a number
of tasks [4], such as anomaly detection, network management and planning, future
prediction of traffic trends, load balancing and design of routing policy. This issue
falls in the realm of statistical inverse problems, which, as mentioned above, has a
very extensive literature.

There is a plethora of approaches for constructing a TM, ranging from direct
measurements, to hypothesizing special correlations and more recently to incorpo-
rating learning techniques. This diploma thesis aims to analyze previous methods
and propose a novel one, together with some variations, which are based on Varia-
tional Autoencoders (VAEs) [18]; a prominent Generative Model [34]. The suggested
models, apart from estimating traffic matrices, can be utilized to generate new data,
that resemble the observed one in terms of statistical properties. The effectiveness
of our contributions are evaluated in a real context, with data from an accessible
backbone network.

1.3 Contributions

The foremost contributions of this diploma thesis are the following [16]:

e Literature overview, concerning the latest contributions in TMs and TME.

e Synthesize traffic matrices that conform to the observed constraints of a par-
ticular network, by training a Variational Autoencoder.

e First, train a VAE and, then, solve an optimization problem in the latent space
to address the Traffic Matrix Estimation problem.

e Transform the two-stage TME method (first VAE training and, then, opti-
mization in the latent space) into a type of “concurrent” optimization.

e Evaluate the performance of the proposed methods, using a publicly available
dataset of real traffic matrices recorded in the Abilene [17] backbone network.

1.4 Thesis Outline

The current diploma thesis is organized as follows. In Chapter §1, a brief introduc-
tion to the problem is provided, together with the mainsprings of the field, some fun-
damental definitions and the goals & contributions of this thesis. In Chapter §2, the
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field of Network Tomography is addressed and the basic notions and sub-problems
are discussed. Chapter §3 summarizes concepts of Representation Learning and fo-
cuses on Variational Autoencoders. Chapter §4 is the main part. It starts with the
prior work and describes the key contributions of this thesis on the subject of Traffic
Matrix Estimation & Synthesis. The proposed methods are also evaluated on a real
dataset and results are presented. This diploma thesis is concluded in Chapter §5,
where suggestions for future work are also made. A List of Figures and a List of
Tables are also included, just before the References.



Chapter 2

Network Tomography

2.1 Basics

Network tomography (NT) [5]-[7] is a network-monitoring technique that refers to
the inference of network performance parameters based on traffic measurements at
a limited subset of the network’s nodes. To introduce smoothly the topic, some
crucial notions are mentioned below.

2.1.1 Structure

Definition 2.1.1 (Graph). A directed/undirected graph [35] is an ordered pair
G(V, E), composed of:

e V. a set of nodes (or points);

o EC{{x,y}|z,y € Vandx # y}, aset of links (or edges), which are ordered
/unordered pairs of nodes.

Definition 2.1.2 (Path). A path [35] in a graph is a finite or infinite sequence of
distinct links which joins a sequence of distinct nodes.

Generally, the following are assumed to be satisfied in network tomography:

Assumption 1 (Topology). The topology of a network can be perceived as a di-
rected or undirected graph.

Assumption 2 (Node). Each node may represent an end-system, a router, or a
subnetwork.

Assumption 3 (Link). Each link can constitute a chain of physical links connected
by intermediate routers.

35
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Assumption 4 (Traffic). Traffic [36], which illustrates the data moving across a
network, encapsulated mostly in network packets, originates from a source node
and is delivered to a destination node (or multiple destinations). It traverses a set
of links between some set of nodes and may be split across several paths by load
balancing [37], or may keep to a single path.

Assumption 5 (Spatial Independence). All additive metrics (i.e., metrics whose
value over a path is the sum of the values at each node), such as delay and loss rate
experienced by packets are independent along different links.

Assumption 6 (Stationarity). Topology and paths are fixed during the observation
period.

Figure 2.1 depicts an example of a topology of a network (undirected graph),
which is made up of 7 nodes, that are connected with 8 bidirectional links. A path
from node D to node C is also visible with the red color.

Figure 2.1: Example of a network topology, with 7 nodes and 8 bidirectional links.
Red dashed arrow shows the path from node D (origin) to node C (destination),
following links DA and AC.

2.1.2 Identifiability

Theorem 1 (Identifiability). Let P = {Py : 0 € O} be a statistical model where the
parameter space © s either finite or infinite dimensional. P is identifiable [38] if
the mapping 0 — Py is one-to-one:

P91:P92 = 01:02 V01,92€®.

Corollary 1.1. Let P = {P, : 0 € ©} be an identifiable statistical model. Then, if
91 7& 92, then P91 7& P92.
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2.1.3 Model

The aim of NT is to use aggregate values that can be easily obtained through mea-
surements at accessible nodes/links, in order to infer characteristics that are difficult
to quantify directly, due to extreme communication overhead [39]. In contrast to the
aforementioned tools (see section 1.1), the role of intermediate routers and servers
that required complete orchestration is now reduced and simultaneously, the net-
work’s measurement traffic is diminished significantly.

Many network tomography problems can be approximated by the linear model:
Y = Awt + €, (1)

where t denotes time so as to reflect more accurately the dynamical nature of the
true networks; y; is a vector of measurements (i.e., packet counts or delays) taken
at time t at various nodes; A is the routing matrix, which is mainly represented as
a binary matrix (could be also a probability matrix in case of multiple paths) that
captures the topology of the network; x, is a vector of network parameters (i.e.,
mean delays, logarithms of loss probabilities or traffic flow counts) at time t; and €
is a noise term.

Network Tomography refers to the inverse problem of estimating the unobserved
network parameters x; given y, and either a set of assumptions regarding the sta-
tistical distribution of the noise € or the introduction of some form of regularization
to induce identifiability.

In order for accurate inference of a model’s parameters to be feasible, the Identi-
fiability property must hold. Mathematically, as can be deduced from corollary 1.1,
this is equivalent to saying that different values of the parameters must generate
different probability distributions of the observable variables. If this is the case,
from the true probability distribution P, (which is found from an infinite number of
observations), true values of the parameters that generated the aforementioned dis-
tribution can be inferred by inverting the map 6 — Fy. In this way, it is guaranteed
that with an infinite number of observations, the model’s underlying parameters can
be detected.

The core pitfall lies in the potentially very large dimension of A. From the
perspective of linear algebra, the components of x; are uniquely identifiable if and
only if the number of linear independent measurement paths equals the number
of x;-components. The challenging task concerning A is that usually, it is an ill-
posed matrix (i.e., not full-rank) and, hence, non-invertible. Thus, the number of
variables to be estimated is much larger than the number of equations, resulting in
the non-uniqueness of solutions.

2.2 Swubclasses

Network Tomography can be categorized Based on Measurements-Parameters, Based
on Measurement Methodology or Based on Delivery Schemes.
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2.2.1 Based on Measurements-Parameters

Network Tomography is divided into three subclasses, depending on the type of
measurements and the parameters of interest [6]:

Link-Level Network Tomography

Link-Level Tomography [40]-[50] is the inference of link-level network parameters
(i.e., ;) from path-level measurements (i.e., y;). On the one hand, link-level pa-
rameters include chiefly link loss rates, link delay distributions and link bandwidths,
which are addressed in loss tomography [40], [45], [46], delay tomography [41], [47]
and bandwidth tomography [49] respectively. On the other hand, path-level mea-
surements consist principally of accounts of delivered/lost packets and time delays.
Link-level statistics are important not only to characterize the performance of a
network, but also to identify and avoid congestions, or other deviant behaviors in a
network.

Generally, if all nodes in a network cooperate and exchange freely information,
the aforementioned link-level parameters could be estimated from direct measure-
ments. Ping and traceroute introduced in section 1.1 are designed for this purpose.
However, it is a frequent phenomenon that many intermediate nodes do not respond
to the packets sent by these diagnostic tools in order not to spend time processing
requests that are subordinate to the process of communication and with the fear of
malicious attacks, rendering the whole procedure unsuccessful.

As far as path-level measurements (i.e., y;) are concerned, they can be calculated
through a coordinated measurement scheme between the sender and the receiver.
The sender records whether a packet reached its destination or was dropped/lost
and determines the transmission delay by some form of acknowledgment from the
receiver to the sender upon successful packet reception. Definitely, it is not possible
for the sender to determine where the packet was lost or measure delays/bandwidths
on any link in the path.

As far as link-level metrics (i.e., @) are concerned, they are typically additive.
This means that the path metric obtained by combining multiple serial links is the
sum of the individual link metrics. Delays are a good example of an additive metric,
while loss rates, which are a multiplicative metric, can be expressed in an additive
form by using the logarithmic function.

The end-to-end path measurements are carried out between pairs of nodes with
monitoring capabilities. That is why link-level inference was mainly addressed in
tree-structured networks. A simple example can be viewed in Figure 2.2. Undoubt-
edly, the decision of which nodes will be chosen as monitors becomes a key problem.

As aforementioned, most of the existing solutions assume that routes from a
single source form a tree. However, with the rapid deployment of Software Defined
Networking (SDN) [51] and Network Function Virtualization (NFV) [52], the routing
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paths in modern networks are becoming more complex. To address this problem,
scientists proposed lately some novel approaches for general routing paths in general

topologies [42], [48].
@\@\@\

Figure 2.2: Simple tree-structured network, consisting of a single sender (S), two
internal nodes (I, Iy) and three receivers (Ry, Ra, Rs).

Path-Level Network Tomography

Path-Level Network Tomography [5], [6] (or Origin-Destination Network Tomogra-
phy) is the antithesis of Link-Level Network Tomography: the goal is to estimate
path-level network parameters (i.e., ;) from measurements made on individual links

(i.e., yy).

In this category, one of the most known problems is Traffic Matrixz Estimation.
Its goal is to estimate how much traffic originated from a specified node (origin)
and was destined for a specified receiver (destination). The combination of the
traffic intensities of all these origin-destination pairs forms the origin-destination
(OD) traffic matriz, or simply, traffic matriz (TM). This is the original Network
Tomography problem studied in [5]. The OD traffic matrix is useful for a number
of tasks, such as anomaly detection, prediction of traffic trends, load balancing and
design of routing policy.

For this problem, the linear Equation 1 is used without the error term €, because
the stochasticity that is induced by noise is already captured in a;:

Yy = Aalt. (2)

The problem of Traffic Matrix Estimation is analyzed extensively in chapter 4.

Topology Inference

In Topology Inference [42], [50], [53]-[57], the network topology expressed by the
routing matrix A is not known. The goal is the inference of the topology A based on
end-to-end measurements obtained without the cooperation of the internal nodes.

Most diagnostic tools designed for discovering the map of a network, such as
traceroute, require complete cooperation of all intermediate routers and servers in a
path. Due to the decentralized nature of Internet and the conflicting interests of its
providers, the aforementioned requirements are rarely met. Because only end-to-end
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measurements are used, it is possible to identify the logical topology of the network.
In other words, internal nodes where no branching of traffic occurs do not appear
in the logical topology. In case internal nodes cooperated and provided additional
information, the real, or physical topology, could have been estimated. A simple
example between physical and logical topology can be viewed in Figure 2.3.

Most of the existing topology inference methods require tree structure for the
network. The central idea is to observe metrics at pairs of receivers that behave as a
monotonically increasing function of the number of shared links or common queues
between the two receiving nodes, such as covariance. The more common links in
the paths towards two receivers, the greater this metric will be. Knowledge of a
pairwise similarity metric values under an additive metric, such as counts of losses
and delay differences, is sufficient to completely identify the logical topology by em-
ploying various statistical techniques such as hierarchical clustering [53], maximum
likelihood [54], and Bayesian inference [55].

Recently, scientists work with topology inference, where routing paths do not
strictly form a tree [42].

Joy

@\@ /@

(a) Physical topology (b) Logical topology

Figure 2.3: Physical (a) and logical (b) topology of the simple-structured network of
Figure 2.2. There is no branching in node Iy, so it is not visible in logical topology.

2.2.2 Based on Measurement Methodology

Network Tomography is classified in two subclasses, depending on the way measure-
ments are acquired [5]-[7]:

Active Tomography

In Active Tomography, probe packets are sent from nodes located on the periphery
to the network, in order to recover concealed information about the internal links.
Ping and traceroute (see section 1.1) are two classic examples of this method.

Since test traffic mimics the service traffic, active testing is ideal for providing
a real-time view of the performance with regard to link-level parameters such as
delay, or packet loss. It also provides a punctual response in case of an abnormal
behavior in the network and identifies quickly its root cause. Despite their utility in
the field, injecting traffic solely for diagnostic purpose is not treated benevolently by
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many service providers. More and more firewalls are designed to ignore these type
of packages and protect the leakage of their operational information (topology, loss
or delay in each link, etc), creating an uncooperative and suspicious environment,
where trust is difficult to be established. This has prompted investigations into more
passive monitoring techniques.

Passive Tomography

In Passive Tomography, packets already existing in the network traffic are observed,
so as to extract useful hidden characteristics of internal links.

At its simplest, passive monitoring may be nothing more than the periodic col-
lecting of port statistics, like bytes and packets transmitted. More typically, it
involves capturing some, or all, of the traffic flowing through a port for detailed,
non-real-time, analysis of things like bandwidth usage and detection of anomalous
traffic. Since only regular data flow is analyzed, no extra network resources are con-
sumed. However, because of exclusively observing existing communications, there
is a negative impact in terms of flexibility.

The main problem of interest in Passive Tomography is Traffic Matrix Estima-
tion, which is also the core subject of this diploma thesis.

2.2.3 Based on Delivery Schemes

Network Tomography, based on delivery schemes, can be split in two common modes
of communication in networks (see also Figure 2.4 for a graphical representation):

(a) Multicast communication (b) Unicast communication

Figure 2.4: In multicast communication (a), a sender (S) is addressed to a group of
recewvers (Ry, Ry, Ry), while in unicast communication (b), a sender (S) is addressed
to a single receiver (Ry).
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Multicast

In multicast communication [40]-[44], [50], each packet is sent to a group of receivers
simultaneously. It can be one-to-many or many-to-many transmission.

Network Tomography that relies on multicast communication to infer missing
link-level characteristics was one of the first attempts in this field. With this tech-
nique, packets are sent repeatedly from a sender to a group of destinations. From
the receivers’ responses, it is possible to know whether a packet was delivered suc-
cessfully (acknowledgment is sent back to the sender in case of correct transmission)
and infer the rate of loss on the existing link, or measure the delay for the trip.
Nonetheless, these methods require simple tree topologies.

In larger and more general trees, the task is more sophisticated. That is why
advanced algorithms have been developed for multicast-based tomography on arbi-
trary tree-structured networks [43]. Recently, scientists experiment with link-level
tomography, where routing paths may not follow tree structure [42].

It is true however, that many networks do not support multicast transmission,
due to the significant increase in traffic which might lead to congestion and even
network failure. That is why unicast-based tomography is of considerable practical
interest.

Unicast

In unicast communication [45]-[48], each packet is sent to one and only one receiver.
It is an one-to-one transmission.

Unicast measurements are more difficult to work with than multicast, but since
many networks do not support multicast transmission, unicast-based tomography
needs to be analyzed. The core difficulty is that although single unicast packet
measurements allow the estimation of path loss rates and delay distributions, there is
not a unique mapping of these path-level parameters to the corresponding individual
link-by-link parameters (routing matrix A is not full-rank). If a packet was lost or
delayed, it is not profound in which link exactly that loss or delay occurred.

There is an extensive literature [45]-[47] that strives for tackling these issues and
the main focus is on the use of back-to-back packet pairs or sequences of packets (to
“Imitate” multicast probing). Recently, there is an effort to infer internal network
performances using unicast probes in general topologies [48]. Unicast measurement
can be conducted either actively or passively (see subsection 2.2.2).



Chapter 3

Representation Learning

3.1 Introduction

Representation (or feature) learning [58] is the process of automatically learning
representations of input data (by transforming or extracting features from it) in
order to make tasks, such as classification, easier to perform. Interest in this field
stems from the fact that problems in machine learning [59] depend on the data
representation on which they are applied. In a plethora of problems, like speech
recognition [60] or natural language processing [61], it is necessary to analyze the
complex input and extract meaningful information about it, which will encourage
effective processing. The difficulty of representation learning lies in the absence of a
particular objective. What are the ways to determine a “good” representation and
distinguish it from another “worse” representation” And moreover, how can this be
modeled into specific training criteria?

Supervised-Unsupervised Learning

Representation learning can be either supervised, or unsupervised [62)].

In supervised feature learning, the training data are labeled; meaning that learn-
ing is based on already known input-output pairs, that are used in training. After
that, the algorithm measures its accuracy through a loss function and adjusts its
parameters until the error has been sufficiently minimized.

In unsupervised feature learning, learning is accomplished with no hint at all
(i.e., unlabeled data) about the correct outputs. Often in representation learning,
features extracted from an unlabeled dataset are leveraged in supervised tasks to
ameliorate their performance (semi-supervised learning).

Back-propagation & Gradient Descent

In most of these techniques, it is crucial to monitor the error between input and
output every time a prediction is made. More specifically, in neural networks [63],
the central mechanism by which these models learn is called back-propagation. In

43
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general, neural networks consist of nodes interconnected to each other with links,
that have some weight. These weights capture the knowledge of the system for a
problem, but frequently, they are poorly calibrated.

Back-propagation is used to fine-tune the weights of a neural net based on the
error obtained in the previous epoch (i.e., iteration). Proper tuning of the weights
leads to reduced errors, making the model reliable by increasing its generalization.
Basically, this method calculates efficiently the gradient of a loss function with
respects to all the weights in the network. These gradients can be utilized by an
optimization algorithm, such as gradient descent, or stochastic gradient descent [64],
to minimize the loss of the model with regard to a training dataset.

Deep Architectures

Deep learning [8] is one of the many ways to learn features; though, its contribution is
of paramount importance. Deep architectures, as depicted in Figure 3.1, in contrast
to “swallow” ones, refer to multiple levels of representation or learning a hierarchy
of features.

According to [58], the dominant idea is “to learn a hierarchy of features one level
at a time, using unsupervised feature learning to learn a new transformation at each
level to be composed with the previously learned transformations; essentially, each
iteration of unsupervised feature learning adds one layer of weights to a deep neural
network. Finally, the set of layers could be combined to initialize a deep supervised
predictor, such as a neural network classifier, or a deep generative model”.

The biggest advantage of multiple intermediate layers is the ability to process
vast number of features and extract useful information from compound and large
datasets. Deep architectures can lead to more abstract representations, which are
invariant to small, local changes of the input. This abstraction can be, either con-
structed such as in the convolutional neural network [65], or inferred from the in-
termediate layers.

Neural Network Deep Learning

olerex]
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Figure 3.1: Swallow or traditional architecture (left) vs. deep architecture (right).
Image source [66]
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Generative Models

In machine learning, generative modeling [67] is an unsupervised task that involves
automatically discovering and learning regularities or patterns in input data so that
the model can be used to produce new examples that could derive from the original
dataset. Practically, they try to model how the input data is placed in the space,
rather than just drawing boundaries (discriminative models). Most known examples
include Generative Adversarial Network (GAN) [68] and Variational Autoencoder
(VAE) [18].

3.2 Dimensionality Reduction - Latent Space

Dimensionality reduction [69] is the transformation of data from a high-dimensional
space into a meaningful representation of low-dimensional space. This low-dimensional
space is called latent space.

In order to deal with real-world, high dimensional, raw, sparse data, it is crucial
to reduce their dimensions into more dense representations. This low-dimensional
representation should, ideally, match the data’s intrinsic dimensionality. Data’s in-
trinsic dimensionality refers to the smallest number of parameters needed to account
for the data’s observed properties.

Dimensionality Reduction can be performed, using either linear, or non-linear
techniques:

e Linear techniques, such as Principal Components Analysis (PCA) [70] allow
to handle simple, linear data.

e Non-linear techniques, like Autoencoders [19], [20], are capable of learning a
non-linear mapping between the high-dimensional and low-dimensional data
representation and thus managing more intricate data.

In addition, Dimensionality Reduction is accomplished, with feature selection or
feature extraction:

o [eature selection provides opportunity for discarding some useless features, so
as to reduce the dimensionality of the data. In this way, only useful features,
which form a lower-dimensional space, are preserved, where analysis will be
performed more precisely.

e Feature extraction enables the creation of a reduced number of features in
a lower-dimensional space, based on the features of high-dimensional space.
This transformation might be linear, or non-linear, taking into consideration
the complexity of the data.
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3.3 Autoencoder

3.3.1 Description & Properties

An autoencoder [19], [20] is a feedforward (i.e., information always moves one direc-
tion; it never goes backwards forming loops), non-recurrent neural network designed
to copy its input to its output. Internally, it has a hidden layer (bottleneck layer)
that describes a code used to represent the input. It is an unsupervised learning
model (no labeled inputs required) and consists of two networks (see Figure 3.2):

e An encoder, which takes in an input (in high-dimensional space), and converts
it into a denser, compressed, latent representation (in low-dimensional /latent
space), called code, latent variables, or latent representation. It basically per-
forms dimensionality reduction.

e A decoder, which is used for the exact reverse process: it takes the low-
dimensional code of bottleneck layer and converts (or decompresses) it back
to the original input (in high-dimensional space).

The aforementioned reverse procedure cannot always be without loss. Over-
reducing the dimensions of latent space during the encoding might cause information
loss, which will never be recovered in the decoding process.

Mathematically, an autoencoder can be defined as:

g X — Z,
fgiZ—>X, (3)

O, 0" = ar%r;lin L(zx, folgs(x))).

The encoder g, (encoder function ¢(.), parameterized by ¢) takes an input & €
RP = X and maps it to z € R? = Z, with p > ¢. In this way, z = gs(x).
The decoder fy (decoder function d(.), parameterized by ) takes z and maps it to
' € RP. In this way, ' = fp(2) = fo(gs()).

The goal is to find the best encoding-decoding scheme (¢*, 0*), such that output
x’ is as close as possible to &, using an iterative optimisation process. This scheme
keeps the maximum of information when encoding and, so, has the minimum of
reconstruction error when decoding. So, at each iteration, the autoencoder is fed
with data (i.e., «), the output (i.e., ') is compared with the initial data and the
error/loss is backpropagated through the architecture to update the weights of the
networks. There are various metrics to quantify the reconstruction error/loss (i.e.,
L(.)) and penalize the network for creating output different from the input. Mean
Squared Error (MSE) or Cross-Entropy between the output and the input are most
commonly used.
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Figure 3.2: Architecture of Autoencoder. Image source: Wikipedia

3.3.2 Limitations

In general, autoencoders have been used in literature to confront mainly dimension-
ality reduction and information retrieval tasks. The characteristics of these models
are convenient, for instance, for image denoising [71] or anomaly detection [72].

Apart from that, their usage is limited. The core drawback of autoencoders is
that the encoder learns to map each input into a fixed-vector, leading to a latent
space with discontinuities. If a point is selected randomly from that latent space
and passed through the decoder, the result will probably be an arbitrary, noisy
representation (unless, of course, the random point accidentally coincides with an
already known transformation).

An example of a latent space can be viewed in Figure 3.3, where four animals
are distinguished. It is obvious that if a random point (red point in the figure) is
opted from this low-dimensional space and fed to the decoder, the result cannot be
defined, simply because the model does not contain any knowledge for this partic-
ular point. The red point will probably contain some characteristics of blue and
yellow representations (it lies between these two clusters), yet the output will be
meaningless and neither close to yellow or blue animal.

Unquestionably, due to the small, undefined region of latent space explored dur-
ing training with the aforementioned architecture, it is not reasonable to expect this
space to be well-organized. In case of a regularized space, it would be possible to
explore variations of existing inputs and thus, create novel data. A model designed
for this purpose is called Variational Autoencoder (VAE) and is described in the
following section.

3.4 Variational Autoencoder

Variational Autoencoder (VAE) [18] is a variation of an Autoencoder (see §3.3). It
is a generative model, which means that it is capable of generating a new output,
similar to the training data. The key aspect of VAE that distinguishes it from other
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Figure 3.3: Ezemplary latent space of an autoencoder, which discriminates between
four different clusters. Red dot is a random point.

generative models lies in its ability to explore variations on training data in a desired,
specific direction; not randomly creating new data. This can be achieved primarily
because each input is mapped into a distribution (the parameters of a distribution
basically), and not into a fixed vector as in Autoencoder. In this way, the latent
space is continuous, allowing any random point to have a meaningful representation
once decoded.

3.4.1 Notation

Table 3.1: Notation used in Variational Autoencoder.

H Symbol H Explanation H

Number of samples

N

0 Generative model parameters

o) Recognition (variational) model parameters
x

z

Observed variable (data, or evidence)
Latent (i.e., unobserved) variable or code

x® i-th sample (data point) of x

2™ i-th sample (data point) of z

X Dataset X = {®} 1 <i< N
po(x) Data distribution, parametrized by 6
po(2) Prior distribution, parametrized by 6

Likelihood distribution, parametrized by 6 /
( Probabilistic decoder
po(z|x) True Posterior distribution, parametrized by 6
(2]2) Approximate Posterior distribution, parametrized by ¢ /
Probabilistic encoder
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3.4.2 Bayesian Statistics

In Bayesian statistics [21], probability expresses a degree of belief in an occurrence.
The core of this statistical field is Bayes’ theorem, which is utilized for computing and
updating one’s belief about a hypothesis (e.g., parameter), after observing new data
(i.e., evidence). The aforementioned theorem is used in a Bayesian statistical model
called Bayesian Inference. There, it can be leveraged to estimate the parameters
of a probability distribution or statistical model by assigning probabilities to model
parameters and updating them after evidence is obtained:

Theorem 2 (Bayes’ theorem). Given a hypothesis (or parameter) z and a new data
x, the conditional probability of z given x, called posterior probability, is expressed
as follows:

p(z|z)p(z)

p(z|z) = (@)

)
where:

e p(a) is the probability of the new data @, which, for continuous z, is calculated
using the law of total probability [73] as:

plz) = / p(@]2)p(=)dz. (4)

z

e p(z) is the probability of the hypothesis (or parameter) z, called prior prob-
ability, because it expresses one’s belief or knowledge about z prior to seeing
any data.

e p(x|z) is the likelihood, which expresses the probability of the data @, given
hypothesis (or parameter) z.

3.4.3 Problem Outline

As mentioned above, VAE was proposed to tackle the problem of irregularity of
latent space (see §3.3.2). This issue is responsible for the inability of simple Autoen-
coder to explore this space and generate new data. To establish this “arrangement”,
VAE encodes inputs as distributions instead of fixed points, but the procedure en-
tails deliberate work. In general, the purpose of this mapping is that even for the
same observed data, the code will differ, exploring possible variations of the input.

First and foremost, it is essential to introduce some assumptions, that will hold
for the rest of the book. It is presumed that distribution is defined as py, where
0 describes its parameters and that py(z), pg(x|z) and pe(z|x) characterize the
prior, likelihood and posterior distribution respectively. Moreover, @ is the observed
variable and z is the latent one.

Supposing the true parameter 6* of the distribution and the values z® of the
latent variable z are known, generation of new data @ is conducted as follows:
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Step 1: Take a sample 2z from prior distribution pg-(2).

Step 2: Generate ) from the likelihood pg- (z|z = 2®).

Ideally, taking into consideration the aforementioned process, encoder and de-
coder can be redefined. The novel probabilistic encoder is determined by py(z|x),
which describes the distribution of the observed variable given the latent one, while
the probabilistic decoder, ps(x|z), represents the distribution of the latent variable
given the observed one. In this way, the problem of discontinuous latent space of
Autoencoders starts to vanish, due to the generation procedure: encoded represen-
tations z in the latent space are indeed assumed to follow the prior distribution
pe(2), leading to a more structured space.

Nevertheless, the form of the probabilistic encoder ps(z|x) evokes an impediment
in this approach. From Bayes’ theorem, in order to calculate posterior probability
po(z|x), it is necessary to compute py(x) from (4). Besides, the objective of VAE
is to find the optimal parameter #* that maximizes the probability of the data (i.e.,
probability of generating real data):

N N
0" = argmax | [ po(z'?) = argmax >  log py(z?). 5
g1 11 (@) = arg1 ; g po(x™) (5)

Unfortunately, this computation is intractable (i.e. requires exponential time
to compute), because it is very expensive to check all the possible values of z and
sum them up. For that reason, it is required to use an approximation function for
po(z|x): gs(z|x), parametrized by ¢. The considered model is graphically delineated
in Figure 3.4.

Figure 3.4: Graphical representation of VAE’s model. Solid lines denote the gener-
ative procedure and dashed lines denote the approximation qs(z|x) of the intractable
posterior py(x|z).

The objective of the considered approximation g,(z|x) is to be as close as pos-
sible to the intractable posterior pp(x|z). To determine the degree to which one
probability distribution varies from another, Kullback-Leibler Divergence will be in-
troduced in §3.4.4.
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3.4.4 Kullback-Leibler Divergence

Definition 3.4.1 (Kullback-Leibler Divergence). Kullback-Leibler (KL) Divergence
(also called relative entropy) Dxr(pllq) [22] measures how much probability distri-
bution p differs from another distribution ¢ with the same support Z:

Dis(plla) = /Z p(2) 1og§§j§dz. (6)

The definition of KL divergence of ¢ with respect to p can be formulated using
entropy H(p) and cross-entropy H(p, q) [74]:

Drr(pllg) = H(p,q) — H(p). (7)

Properties

e KL-divergence is always non-negative, i.e., D (p||¢) > 0. This observation
is known as Gibbs’ inequality [75], with Dk (p||¢) = 0 if and only if p = ¢
almost everywhere.

e Drr(pllg) # Dkr(q|lp) (derives from definition).

3.4.5 Loss Function - ELBO

In VAE’s case, the goal is to quantify how much “information” is lost, if (intractable)
posterior py(z|x) is approximated by another (approximate) posterior g, (z|x). This
estimation could be expressed, either by minimizing Dx,(pe(z|x)||¢s(z|x)), known
as Forward KL, or Dk (qs(z|x)||pe(z|x)), known as Reverse KL. The difference
between these two approaches, specified in [76], can be seen below:

Case 1: In Forward KL, the log term of KL divergence is weighted by py(z|x):

a) If pp(z]x) = 0, then the log term of KL divergence does not have
any impact in the value of KL. Actually, KL divergence equals 0
and g4(z|x) is ignored.

b) If pp(z|x) > 0, then the log term plays a role in the value of KL
divergence. If g4(z|x) = 0, then the log term and of course, KL
divergence, are infinite. Therefore, minimization process of KL di-
vergence happens for g4(z|x) > 0. The avoidance of g,(z|x) = 0,
whenever py(z|x) > 0 (zero-avoiding), leads to an “outspread”
¢s(z|z), covering the entire py(z|x). Typically, g4(z|x) over-estimates
the support of py(z|x).

Case 2: In Reverse KL, the log term of KL divergence is weighted by ¢,(z|x):

a’) If gy(z|z) = 0, then the log term of KL divergence does not affect
KL, which is 0.
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b’) If g4(z|x) > 0, then the log term does contribute in KL divergence.
If pg(z|x) = 0, then the log term becomes extreme large, together
with KL divergence (infinity). So, the minimization procedure in
this case takes place when pp(z|x) > 0 and “oblige” g,(z|z) to
exclude all the areas of space for which py(z|x) = 0. This target is
accomplished by fitting well some portion of py(z|x) with ¢,(z|x)
and ignoring, by setting g4(z|x) = 0, other parts of the area, even
if po(z|x) > 0 (zero-forcing). Typically, ¢,(z|x) under-estimates
the support of pg(z|x).

The objective of VAE is consistent with the Reverse KL, which will be expanded
from (6) below:

Dicr(as(21) [pa(2])) =
4o(2])
ke
w(ze)p(e) |
po(x|2)po(z)
_ (zr)
%(=|) Pogzm<aw e
w(2/)
Q¢>(z‘w> lOg pg(m|z)p9(z)d

+ [ asela) log ()i

4o (2|2) log

; from Bayes’ theorem

— T T

¢s(2|x) log

+ log py(x) | dz

45 () - from zlx)dz =
= logmy(@ *L%'mmmumm>” tom [ as(ele)a
= log py(z +/Z {IOg ((|)> Inge(wIZ)} z
—togpl@) + [ as(zlo)log 271
—/Zq¢(z|:1:) log pe(x|z)dz : from E[pg] :/Zp9q¢dz
= log po(x) + Drr(qs(2|2)||pe(2)) — Eqg, (21) [log po(x[2)] - (8)

From the Properties of KL divergence, (8) becomes:

Dir(qs(2|2)||pe(2]2)) > 0 =
= logpe(x) + Drr(qs(2[2)l|pa(2)) — Ey, (21 [log pe(x|2)] > 0
= logps(x) > —Dr1(qs(2|x)||pe(2)) + Eqy(212) [log pe(z|2)] - (9)

The LHS of the equation (9) reflects the (log)-probability of the data (i.e., the
probability of generating real data), which we strove for maximization from the
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beginning. As mentioned in Problem Outline, it is computationally intractable to
compute data probability directly. The RHS of (9) is called Evidence Lower BOund
(ELBO), or Variational Lower BOund, since it bounds the probability of the data.
Therefore, mazimization of the ELBO results in maximization of the data probability.

ELBO = —Dg(qs(z|)|[po(2)) + Eg, (1) [log po(|2)], (10)

where:

o —Dkr(qs(2]x)||pe(2)): regularization term, as it applies a constraint on the
approximate posterior. Practically, it regularises the organisation of the latent
space.

o Ey, (zlx) [log po(x|2)]: reconstruction term, since it measures the likelihood of
the reconstructed data. Practically, it contributes to the form of the best
possible encoding-decoding scheme.

Instead of maximizing the ELBO, it is equivalent to minimize the negative FLBO,
which denotes the loss function:

L(0,¢) = =ELBO = Dg(qs(2|2)||ps(2)) — Eq,(z1a) log ps(|2)]. (1)

Therefore, the goal in VAE is to find the best encoding-decoding scheme (i.e.,
the best parameters 6%, ¢*) that minimize L:

0%, ¢* = argmin L(0, ¢). (12)
0,6

3.4.6 Reparameterization Trick

In order to optimize loss function (11), it is necessary to differentiate it with respect
to the parameters # and ¢. However, the gradient with respect to ¢ is troublesome,
due to the fact that reconstruction term requires sampling from g4(z|x). More
analytically, the gradient of loss with respect to ¢ is:

VoL(0,9) = Vo Drcr(ge(2])|[ps(2)) = Vo, (2l2) [log po(e|2)] . (13)

The authors of [77] approximated the term V4Eq, (2 1z) [log ps(x|2)] using Monte-
Carlo integration [78] and proved that with this stochastic approximation, the vari-
ance of the gradient approximation was significantly high.

To overcome this obstacle, the reparameterization trick was proposed [18]:

Let z be a continuous random variable. The goal is to generate samples from
qs(z|x), where q4(z|x) is a conditional distribution. It is possible to express the
random variable z as a deterministic variable z = g4(€, ), where € is an auziliary
independent random variable and g,(.) is a transformation function parametrized by
¢, which converts € to z.
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A graphical representation of this logic is viewed in Figure 3.5. Sampling is
stochastic process and thus, it is not possible for the error to be backpropagated
through the network (left figure). With reparameterization trick (right figure), not
only the error can be backpropagated through the deterministic nodes that express
the distribution’s parameters, but also stochasticity is maintained through node €.

¢ ? B““""’]‘

z ~ Py (zlx) z=g(¢.x€)

Deterministic node

Stochastic node
~N(0,1)

Original form Reparametrized form

Figure 3.5: [llustration of reparameterization trick. Image source: Towards Data
Science

3.4.7 Problem Insight

Let the prior pg(z) be the standard multivariate Gaussian distribution pg(z) =
N(0,1). Also, likelihood (i.e., probabilistic decoder) pp(x|z) is assumed to be,
either a multivariate Gaussian py(x|z) = N (p,0?I) or a multivariate Bernoulli
po(x|z) = Bernoulli(p), depending on the type of data. As mentioned in the
previous sections, true posterior py(z|x) is intractable. Hence, it will be approached
by ¢s(z|x). Let approximate posterior (i.e., probabilistic encoder) be a multivariate
Gaussian with a diagonal covariance structure gy (z|z") = N'(u, 02I), where p and
o are the mean and standard deviation of the sample ® respectively. With j being
an index to the latent vector z (of dimensionality J), p;, o, are the j-th elements
of u, o respectively.

If the data takes real values, the probabilistic decoder is modeled as a neural
network with Gaussian output, while for binary data, it is modeled as a neural
network with Bernoulli output. For the encoder, a neural network with Gaussian
output is used. More precisely, the encoder outputs two vectors: a vector of means,
1, and another vector of standard deviations, o. Intuitively, the mean determines
where the latent representation of an input should be located in the low-dimensional
space, while the standard deviation controls the distance from the aforementioned
point the encoding could have. This permits the decoder to not just decode fixed
vectors in the latent space, but ones that marginally differ. This happens because
the decoder is exposed to a variations of the encoding of the same input during
training.
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The purpose of Variational Autoencoder is to sample from q4(z|x) and generate
almost similar output.

Training
The training of this model (depicted in Figure 3.6) is conducted as follows:

Step 1: Input @ is passed through probabilistic encoder and mapped into a
distribution g4(z|x) (i.e., the mean and the standard deviation of a
Gaussian distribution) over the latent space z, from which & could have
been generated.

Step 2: A point z is sampled from that distribution g,(z|x) in the latent space.

Step 3: The sampled point z is passed through the probabilistic decoder (i.e.,
po(x|z)), which produces a distribution over the possible values of .

Step 4: The reconstruction error between input and output is evaluated and
backpropagated through the network.

input output

M

spmpled latent vector

ol > [P »|.

a

p‘_(.r| )
[ qo(z|x) ||
probabilistic encoder probabilistic decoder

Figure 3.6: Architecture of Variational Autoencoder

Reparameterization trick

Due to the choice of a multivariate Gaussian with a diagonal covariance structure
as the probabilistic encoder, reparameterization trick [18] is modified as follows:

Instead of sampling from N(u,0?I), i.e., z ~ qs(z|x) = N(u,02I), sampling
15 conducted from z = u+ o © €, where ® refers to the element-wise product and

e~ N(0,I).
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Regularization term

The regularization term of loss function, for the j-th element of z, is:
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1 ( ZJQ)
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1 )2 \/
:/ exp(—<zj g]) ) log 27 2 5 dz;
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from 0% = By, (zje) [(25 — 115)?], (14) becomes:
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—DKL(Q¢>(ZJ|$ Nips(z)) =

1
- IE%(Z]I%) [ } +log(o;) + 5

2
I , 1
= — 5Bzl [(z5 — pj + 115)?] +log(o;) + 3
1 1
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=3 [1+log(0?) — pi — o7]. (15)

From the above equation, reqularization term for all the elements of z becomes:

1
— [1+1log(o?) — 5 — o2]. (16)

Eﬂg

—Dicr(gs(2]2™)|[po (2
7j=1
Reconstruction term

To determine the reconstruction term, the reparameterization trick will be used. As-
suming L samples (i.e., stochastic draws) from the posterior g,4(z|x®) and according
to Monte-Carlo estimate of expectation:

Eq, (21z) [l0g po(x|2)] Zlogpg x|z") (17)
where 2 = ;1 4+ 0€® and € ~ N(0,1) from reparameterization trick.

Loss function
Combining (16) and (17), the total loss from (11) is
L

J
1
- 2 _52] _ = @
—3 ngl 1+ log(o 1 crj] 7 12_1 log po(x|2'"). (18)

—_



Chapter 4

Traffic Matrix Estimation

4.1 Problem Statement

Traffic Matrix Estimation involves the inference of traffic transmitted between every
pair of nodes in a network from link-level measurements. It can be stated as follows.

Let n denote the nodes and m the links of a network. The relationship between
the traffic matrix, the routing matrix and the link counts can be described by a
system of linear equations:

y = Az, (19)

where:

e y is the m x 1 vector of link counts. It is assumed that routing is fixed during
the measurement period.

e A is the m X n? routing matrix, describing the topology. An element a;; is
equal to 1, if OD flow j traverses link 7, or 0 otherwise.

e x is the n x n traffic matrix, whose element at row ¢ and column j represents
the traffic between origin node ¢ and destination node j. It is usually organized
as a n? x 1 vector.

In this context, the problem is to estimate x, given y and A. This is not straight-
forward, as the number of OD flows n? (unknown quantities) is almost always much
larger than the number of link measurements m (known quantities). Therefore, the
aforementioned system of linear equations is heavily under-determined, or ill-posed
(i.e., matrix A is not full rank and there are many solutions that fit the observa-
tions). This ill-posed nature of the TME NT problem is usually addressed by using
statistical models and regularization to impose additional structural assumptions.

A simple example of a network with its traffic can be seen in Figure 4.1. It is
obvious that there are many more OD flows than link measurements.

o8
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Figure 4.1: Simple network and traffic. R is a router and 1,2,3 are nodes. (19)
15 replaced for this example.

4.2 Link-Level Measurements

Link-level measurements are obtainable via the Simple Network Management Pro-
tocol (SNMP) [23]. SNMP is one of the widely accepted protocols that manages and
monitors network devices in Internet Protocol (IP) networks; from routers, modems
and switches, to servers and workstations.

The SNMP data that is available on a device is defined in a abstract data struc-
ture known as a Management Information Base (MIB). An SNMP poller periodically
requests the appropriate SNMP MIB data from a device through an interface, typi-
cally UDP port 161 [4]. The polling period varies from 1 minute to several minutes,
but the default is 5 minutes. That is why the traffic data that we acquire contain
averages over 5 minutes intervals. Since every router maintains a cyclic counter of
the number of bytes transmitted and received on each of its interfaces, we can ob-
tain basic traffic statistics for the entire network with little additional infrastructure
support — all we need is an SNMP poller that periodically records these counters.

Nonetheless, SNMP data have a few drawbacks. First and foremost, it is suscep-
tible to error, due to their transmission via unreliable UDP protocol [79]. Moreover,
link measurements might be inaccurate, due to poor vendor implementations. An-
other disadvantage of SNMP data is that it only provides aggregate link statistics,
omitting details such as types of traffic on the link and the traffic source and desti-
nation.

Despite all these, SNMP data is, at present, the easiest way to obtain large-scale
traffic data.
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4.3 Prior Work

The problem of Traffic Matrix Estimation has been studied thoroughly in the past
decades. The main focus of the majority of the proposed methods was on con-
fronting the ill-posed nature of TME, by leveraging a variety of techniques. In [5],
Vardi assumed that OD pairs are generated from a collection of independent Pois-
son distribution, while in [80], Cao et al. conjectured that each OD pair follows
a Gaussian distribution. However, studies [81] showed that the aforementioned as-
sumptions were particularly hinged on the characteristics of data and were not true
in any general case.

To tackle the under-constrained system, the authors in [82], [83] used informa-
tion from additional sources. More precisely, Zhang et al. [82] exploited a spatial
model (i.e., OD flows are dependent of one another) called gravity model and used
additional SNMP data to calibrate their model. In [83], authors’ goal was to increase
the rank of routing matrix A, by altering the weights of each link (and therefore
the paths that each OD pair follows). For that reason, they introduced a temporal
model (i.e., each OD flow is dependent on its past) called route change.

Due to the fact that most known models using purely spatial, or purely tempo-
ral information do not have a good performance in estimating TMs, authors in [39],
[84], [85] leveraged both spatial and temporal information for better results. In [39],
fanout method was presented, which utilized solely measurements every few days
to obtain traffic matrix (we have no information about routing matrix). Besides, in
[84], Soule et al. introduced two novel methods: PCA method and Kalman method.
In the former, rather than estimating all OD flows (ill-posed problem), only the
most important eigenflows are determined, while in the latter, state space models
from dynamic linear systems theory were exploited to capture the evolution of a
system. All these methods made use of spatial flow measurements. The authors of
[85] came up with a different technique, called Sparsity Regularized Matrix Factor-
ization (SRMF), which finds sparse, low-rank approximations of TMs that account
for spatial and temporal properties of real TMs.

The authors of [86] realized that two-dimensional matrices are not sufficient to
capture all spatial and temporal information, such as traffic periodicity, which can
be employed in TME. For that reason, they proposed higher-order tensors, and more
precisely 3D tensors to model traffic data.

Nowadays, the network traffic flows have become much more compound as a
result of the advancement of modern network applications. The traffic lows expe-
rience a much wider range of statistical characteristics [87], [88]. With the progress
of neural networks [63], many scientists focused on leveraging them to solve the
problem of TME.

One of the first who implemented neural networks for traffic matrix estimation
was Jiang et al. [89]. More specifically, their method relied on a back-propagation
neural network (BPNN), combined with the iterative proportional fitting procedure
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(IPFP). After time-frequency analysis on end-to-end traffic, authors in [90] proposed
the decomposition into low-frequency and high-frequent component. The former
reflected the change trend of traffic and was defined by an auto-regressive (AR)
model, whilst the latter expressed the fluctuations and mutations of traffic and was
formulated by an artificial neural network (namely a BPNN). BPNN is also used
in [91], where input is formed as the product of the Moore-Penrose inverse of the
network’s routing matrix and the link load vector. The expectation maximization
(EM) algorithm is applied to the output of the BPNN in order to improve the
estimation accuracy. A feedforward back-propagation neural network trained with
the Levernberg-Marquardt algorithm (LMA) is employed in [92].

Nie et al. [93] were at the forefront of incorporating Deep Learning [8], [34]
methods, and more precisely Deep Belief Networks (DBN), to estimate large-scale
traffic matrices. Based on historical data (i.e., previously obtained TMs), the ob-
jective lies in learning the characteristics of these priors and predicting future TMs,
that have similar properties with the observed traffic matrices. Zhao et al. [94] de-
compose the original TM series into multilevel subseries using the discrete wavelet
decomposition. A CNN extracts the spatial dependencies among flows, whilst a
Long Short-Term Memory neural network (LSTM) with a self-attention mechanism
captures the temporal evolution features. In [95], authors made use of a Generative
Adversarial Network (GAN) to address traffic matrix estimation problem.
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4.4 Optimization of Objective Functions

Gradient descent is a first-order iterative optimization algorithm for minimizing a
differentiable objective function which, in our case, is the loss function of the neural
network. This is achieved by computing the gradient, or slope, (i.e., the first-order
derivative) of the loss function with respect to its parameters and updating them in
the opposite direction of the slope increase.

The amount that the weights are updated during training is referred to as the
step size or the learning rate. It is challenging to determine the value of learning
rate (i.e., n), because small values might result in a long or endless training process,
while big values may lead to sub-optimal solutions.

Depending on the amount of data used for the computation of the gradient of
the objective function, the following variants of gradient descent are defined [64]:

e Batch gradient descent. In batch gradient descent, the entire dataset is taken
into consideration to take a single step. In other words, the gradients for
the whole dataset have to be calculated so as to perform just one update.
This method is guaranteed to converge to the global minimum for convex
error surfaces and to a local minimum for non-convex surfaces. Despite that,
batch gradient descent can be very slow and is intractable for datasets that
don’t fit in memory. It is also unsuitable for online (i.e., on-the-fly) learning.
Given a function £(6), the updated parameters 6, taking into consideration
the learning rate 7, are calculated as follows:

0=0—1n-VeLl(D). (20)

e Stochastic gradient descent (SGD). In stochastic gradient descent, one example
(i.e., training data point) is considered to take a single step. On the one hand,
it converges faster when the dataset is large, (e.g., in online learning), as
it causes updates to the parameters more frequently. On the other hand,
frequent updates of high variance make the objective function to fluctuate a
lot, which might hinder convergence to the exact minimum. Given a function
L(0; z;;y;), the updated parameters 6 for a datapoint x; and its label y;, taking
into consideration the learning rate 7, are calculated as follows:

0=0—n-VoLl(0;x:;y:) (21)

e Mini-batch gradient descent. Mini-batch gradient descent takes the best of
both worlds and performs an update for every mini-batch of n training exam-
ples:

0 =0—n-VoL(0; Tiivn; Yisitn)- (22)

In our proposed methods, we exploit the Adam (adaptive moment estimation)
optimizer [96] instead of the classical stochastic gradient descent procedure to up-
date network parameters based on training data. This method computes individual
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adaptive learning rates for different parameters from estimates of first and second
moments of the gradients. It is achieved by maintaining an exponentially decaying
average of past gradients and past squared gradients, using bias-corrected estimates
of their first and second moments. It has been demonstrated to be fast in terms of
convergence and highly robust for modeling complex structures.

4.5 Proposed Methods

4.5.1 Traffic Matrix Synthesis

Traffic matrices have many uses, apart from the simple fact that they provide a
better understanding of a network. They can be utilized for anomaly detection,
network management and planning, load balancing and designing network proto-
col. Unfortunately, not only is it computationally difficult to measure traffic flows
directly, but also, the number of publicly available TM datasets is limited. This
inadequate quantity of datasets constitutes a severe impediment to network opera-
tors or scientists, who are interested in testing and evaluating the efficiency of their
proposed algorithms in real situations.

To get around this problem, constructing plausible traffic matrices artificially is
an excellent solution. The key note here lies in the production of traffic matrices,
that do not deviate substantially from the observed ones; namely, retaining their
spatio-temporal attributes. Aside from the aforementioned usage, traffic matrix
synthesis is an indispensable intermediate stage in traffic matrix estimation, that
will be discussed in the following subsection.

In the current thesis, we leverage a Variational Autoencoder for Traffic Matrix
Synthesis. The goal is to provide previously observed TMs (or, explicitly constructed
TMs for this specific objective) in this deep generative model, in order to generate
new TMs that have similar characteristics to the employed examples.

VAE is responsible for identifying the underlying distribution of training data
(i.e., how they are made). From the loss function (11) that has to be minimized
during training, the regularization term Dy (qs(z|x)||pe(z)) -which also has to be
minimized- measures how much approximate probability distribution g,(z|x) differs
from prior py(z) that is assumed to be a standard Gaussian (see subsection 3.4.7).
This means that, when randomly generating, if we sample a vector from the same
prior distribution py(2) = N(0,I) of the encoded vectors, the decoder will generate
a new synthetic data point. This data point is guaranteed to have characteristics
similar to the observed points, because during training, we have assured that latent
space is continuous, allowing any random point to have a meaningful representation
once decoded.
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4.5.2 Traffic Matrix Estimation

From the training procedure described in §3.4.7, we discovered the best encoding-
decoding scheme of VAE (i.e., the best parameters 6 and ¢ of encoder and decoder)
by minimizing loss function (11). As a result, the trained decoder learns the under-
lying distribution of training data and is able to generate new synthetic data points,
respecting the characteristics of the flows already grasped.

Based on (19), TME involves the estimation of traffic matrix @, given link-level
measurements y and routing matrix A. More precisely, we take advantage of the
trained decoder that can synthesize artificial examples from the latent space z and
we assume that the solution we are looking for (what is the TM @) can be generated
by this decoder. Hence, we transform TME into a minimization problem in the
latent space:

argmln[Hy Ad(z H} (23)

where d(.) is the trained generative model (i.e., decoder). So, the goal is to
find the best parameter z, in order to minimize the difference between observed
link counts y and estimated link counts Ad(z), which are formed by passing z
through the decoder. After obtaining the best z, we acquire the estimation of best
traffic matrix & ~ d(z). The decoder is differentiable, thus the problem is solved by
deploying a gradient based optimizer and more specifically, Adam optimizer.

A second method proposed for TME involves the addition of a regularization
term to the aforementioned objective function:

argmln [Hy Ad(z H2—|—c||zHﬂ, (24)

where c is a measure of trade-off between measurement error and the importance
of prior, prompting the examination of regions that are selected by the decoder. The
Adam optimizer is also utilized in this method.

In both (23) and (24), a starting point for z has to be determined. This initial
vector zg could be chosen at random, but this might hamper the procedure, as more
steps will be necessary to reach the minimum of the respective objective function.
The total iterations could be diminished, in case we opt for a “good” initial point.
For that reason, we explore K random latent vectors and select the one with the
minimum distance to the measured link counts:

zo = 2k S.t. Hy — Ad(zk)Hz < ||y - Ad(zi)‘ ;7

foriel, .. K, (25)

or:

Zo = 2k S.t. ||y Ad(zg) H2+0szH§ < Hy—Ad(zi)H;qLcHziH;, forie1,..., K. (26)
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4.5.3 Incremental Optimization

The aforementioned TME methods consist of two steps:
Step 1: Train VAE with previously obtained TMs;

Step 2: Transform TME problem into a minimization problem in the low-dimensional
space and solve it using Adam optimizer.

Nevertheless, it is often that objective functions (23) and (24) have plenty of
local minima; thus, optimization algorithms can get stuck in a local minimum and
not converge to the global minimum. These non-convex functions gave rise to an
alternative approach in TME. In this case, the above-noted two-step procedure is
combined in one: we incrementally optimize the sequence of objective functions con-
structed with the sequence of decoder networks that are obtained during different
stages of the VAE training by adopting the respective parameter values. This “con-
current” optimization has been used in literature [24] for problems with many local
minima and has been proven to converge to the global minimum.

Let ¢g, ¢1, ..., o7 be the parameters of decoders dy, dy, ..., dr obtained every some
number of training epochs. For decoder d;, equations (23) and (24) are transformed
into:

argzmin [Hy — Adz(z)Hg] : (27)
argzmin [Hy—Adi(z)Hz—kcHzHﬂ : (28)

From these equations, the best latent vector z; can be found using Adam op-
timizer. This “current” optimum will be used for the initialization of Adam when
optimizing the next objective. So, assuming the decoder d;; after a predetermined
number of training epochs, we will utilize 2z as the starting point for the Adam
optimizer on the new objective:

arg min ||y — Adiz (2)]]5] (29)
arg min [”y—AdiH(z)H;—i—cHzH;} : (30)

From this, we will get the optimum 27, ;, and so on. Finally, if dr is the final
decoder, the TM estimate will be & = dr(2z%).
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4.6 Dataset: Abilene Network

4.6.1 Overview

To evaluate the aforementioned methods, traffic data collected from the Abilene
network [17] was used. Its traffic data arises mainly from major universities in the
US and was utilized in several studies [1], [25]-[27].

As can be seen from Figure 4.2, this backbone network is located in North
America and comprises of 12 principal nodes (Atlanta is composed of 2 nodes),
which distribute information through 12 - 12 = 144 Origin-Destination (OD) pairs.
The topology has also 15 -2 = 30 principal-internal links that connect these regions
one another. Each node has additionally 2 external links (1 for ingress, 1 for egress
traffic) that bridges it with the “outer” world, resulting in 30 + 12 - 2 = 54 links in
total. The capacity of all internal links is 9920000kbps, except Atlanta-Indianapolis
and Indianapolis-Atlanta that have capacity 2480000kbps. The traffic data contains
averages over 5 minute intervals, for 24 weeks, from March 1st to September 10th,
2004 (there are some missing periods). So, there are (60/5) - 24 = 288 samples per
day and 288 - 7 = 2016 samples per week.

Seattle

Sun

Los Angeles

Houston

Figure 4.2: Topology of the Abilene network. Image source: [1]

In Table 4.1, an example of a TM can be viewed. It is obvious that the matrix
is not symmetric and the values of each OD pair ranges from a few (or zero, if no
packets traverse this link) kbps, to the link capacity. Moreover, the diagonals of the
TM are not zero, due to the external links, i.e., there is traffic that enters in the
network, and then exits at the same node.

4.6.2 Preprocessing

The provided dataset [17] requires modifications in order to be processed:
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Table 4.1: The 5-minute traffic matriz (real values) in Abilene network from March
1st, 2004 between 00:00 and 00:05, in kbps.

Destination

1 2 3 4 5 6 7 8 9 10 11 12

1 26.667 522.208 1641.339 335.728 413.032 489.875 365.077 817.869 452.061 747.405 388.317 3141.640

2 445.149 | 82660.749 | 16283.117 | 5169.035 | 3931.403 | 27351.896 | 4844.035 | 18231.909 | 12803.955 | 1421.888 | 8957.483 | 51748.245

3 | 3793.693 | 12735.325 | 28744.432 | 13738.253 | 9830.336 | 26359.776 | 6537.749 | 27775.901 | 14098.339 | 1816.941 | 4495.256 | 10647.053

4 | 230.805 2341.483 | 38518.189 | 3761.989 | 8408.763 | 7207.741 | 3948.899 | 21375.568 | 5723.408 | 14385.464 | 10609.464 | 12248.861

5 239.043 2956.779 16891.501 | 3693.019 | 5606.299 | 9143.904 | 7130.168 | 98457.928 | 7265264 | 2947.376 | 2237.597 | 8506.651

6 | 4766.925 9254.733 | 122044.576 | 21378.197 | 33173.784 | 22849.056 | 9890.840 | 24405.043 | 40616.099 | 3466.387 | 13892.187 | 41138.093

7 420.960 4443.563 26972.272 | 5394.304 | 5476.104 | 8017.757 | 4022.899 | 8673.584 | 12842.411 | 1223.752 | 2444.272 | 12048.437

Origin

8 339.661 19394.589 | 89723.683 | 9039.381 | 9030.867 | 42720.251 | 13570.251 | 11369.131 | 61164.419 | 2311.541 | 25519.453 | 55726.387

9 | 3897.640 | 40887.840 | 53674.288 | 16345.053 | 23987.787 | 83325.448 | 24767.283 | 71022.560 | 136796.045 | 9591.352 | 21934.557 | 111860.741

10 | 26.667 1041.205 5046.067 | 10406.912 | 1436.683 | 3861.611 | 2097.072 | 2000.211 2211.461 | 14269.608 | 3297.648 1987.707

11| 111.019 15881.547 | 22512.587 | 4341.176 | 11302.768 | 7691.184 | 2260.848 | 17766.373 | 24845.373 | 4755.005 | 1038.357 | 10517.379

12 | 11219.101 | 125937.728 | 66541.197 | 36063.421 | 15439.312 | 62781.813 | 32642.733 | 91675.627 | 133661.405 | 1980.576 | 29760.203 | 187653.483

Traffic matrix x

In the experiments, each traffic matrix is organized as a vector (i.e., 144 rows, due
to 144 OD pairs and 1 column).

As mentioned above, traffic data is measured for 24 weeks, so there are 24 dif-
ferent files, one for each week. Each file consists of (60/5)-24 -7 = 2016 5-min
traffic matrices and each line belongs to one TM. Each line (traffic matrix) contains
144 - 5 = 720 values, because OD pairs are estimated with 5 different approaches:
the real method (i.e., their real values), using SimpleGravity method, SimpleTomo-
gravity method, generalGravity method and generalTomogravity method. In our
models, we use the real values of the OD pairs.

The units of each real OD pair is expressed in (100 bytes / 5 minutes). In order
to convert them in kbps, each value has to be multiplied by 8/(3 - 10?).

During preprocessing, we have to ensure that there are neither faults, nor miss-
ing values in the measurements. For the former, if an OD pair surpasses the cor-
responding link’s capacity, the value is considered as mistaken and is replaced with
the capacity of the link. For the latter, each traffic matrix is checked to contain 720
values in total and 144 after keeping solely the real values.

Routing matrix A

In the experiments, A is 0 — 1 matrix with dimensions 30 x 144; we are interested
in the 30 internal links and the 144 OD pairs.

The dataset contains a separate file that corresponds to routing matrix A. It is
made of five columns, though the 5" is ignored; its value is constant for every line.
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The 1% and the 3' column represent the link’s name and the link’s index respec-
tively, while 2°¢ and the 4" describe the OD’s name and OD’s index respectively.
The index of 3' column indicates the row and the 4" the column that will become
1 in the routing matrix A; all other cells are 0.

Link counts y

In the experiments, link counts are organized as a vector (i.e., 30 rows, due to 30
internal links and 1 column).

The provided dataset includes the routing matrix and the traffic matrix of the
network. However, it does not contain the link counts, which are essential for solving
the minimization problem (see (23), (24)). Finding the link counts, given the routing
and traffic matrix is straightforward: from (19), it is just a matrix multiplication.

4.7 Implementation

Encoder

The architecture of VAE Encoder is depicted in Table 4.2. The encoder takes a TM
x of shape 12 x 12 x 1 as input and after a series of Dropout and Convolutions, ends
up with a Dense layer of output shape 64. The output of the latter layer is fed into
two separate Dense layers of output 10 (10 is the dimensionality of the latent space).
These Dense layers represent the mean and the standard deviation of the Gaussian
approximate posterior g4(z|x). Finally, the mean and the standard deviation Dense
layers are combined in a Sampling Layer, which performs the reparameterization
trick and returns z. ReL.U [97] is chosen as the activation function.

Decoder

Decoder is responsible for the exact opposite procedure; it takes as input the latent
representation z and by using Dense and Transposed Convolution layers, it produces
its estimation for . ReLU [97] is chosen as the activation function. The architecture
of VAE decoder is visible in Table 4.3.

General

e We used the first 13 weeks (i.e., the first 13-2016 = 26208 TMs) as the training
set and the 14" week (i.e., the next 2016 TMs) as the testing set.

e The implementation was done using the Keras [98] deep learning API, run-
ning on top of the TensorFlow [99] machine learning platform. The code is
implemented and run as a Notebook document, through Jupyter Notebook

[100].
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Table 4.2: Structure of VAE Encoder.

Layer type | Kernel | Stride | Padding | Output Shape
Input () - - - (12, 12, 1)
Dropout - - - (12, 12, 1)
Conv2D (3,3) | (2.2) | SAME (6, 6, 32)
Conv2D 3,3 (2, 2) SAME (3, 3, 64)
Conv2D (3,3) | (1,1) | SAME (3, 3, 128)
Flatten - - - (1152)

Dense - - - (64)
Dense () - - - (10)
Dense (o) - - - (10)

Sampling (z) - - - (10)

Table 4.3: Structure of VAE Decoder.

Layer type Kernel | Stride | Padding | Output Shape
Input (2) - - - (10)
Dense - - - (64)
Dense - - - (576)
Reshape - - - (3, 3, 64)
Conv2DTranspose | (3, 3) (1, 1) SAME (3, 3, 128)
Conv2DTranspose | (3, 3) (2, 2) SAME (6, 6, 64)
Conv2DTranspose | (3, 3) (2, 2) SAME (12, 12, 32)
Conv2DTranspose | (3, 3) (1, 1) SAME (12, 12, 1)

69



70

CHAPTER 4. TRAFFIC MATRIX ESTIMATION

For the training and testing procedures, the units of traffic matrices & and
link counts y are Mbps/100. Nonetheless, the errors are computed in Mbps.

Adam [96] optimizer was used, with learning rate of 0.001.
The number of dimensions of the latent space was set to 10.

Training was executed with batch size 128 and 1000 epochs, though EarlyStop-
ping was implemented to stop training before overfitting occurs. With this
method, training runs for approximately 200 epochs (see Figure 4.3).
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Figure 4.3: Model loss on training dataset.
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4.8 Results

The performance of the proposed TME methods is evaluated using the following
metrics: the Root Mean Square Error (RMSE), the Normalized Mean Absolute Error
(NMAE), the Spatial Relative Error (SRE) that expresses the relative estimation
error of each individual OD flow over its entire lifetime, and the Temporal Relative
Error (TRE) that summarizes the relative estimation error of all OD flows (i.e., the
entire TM) at a given time point.

The aforementioned errors are calculated as follows:

RMSE(?) — H@;;% _ \/ Tk, (@) — ) (31)

H-’it—“’tHl Z]L‘j’t(z) _wt(i”
NMAE(t) = = L , 39
O= ", S o) (52)

b, I @) - @)
=, > ()

TRE(t) =

, (33)

B1r() — ()]}, /T @) —2:()’
e (i), >y (@ (0))?

SRE(i) = , (34)

where:

e x specifies the true traffic matrix.

a stipulates the estimated traffic matrix.
e ;=1,2,..., N indicates each individual OD flow.

e t =1,2,...,T denotes each measurement time point (i.e., TM).

HH1 and H”2 are the absolute and euclidean norm respectively.

Below, minimization(1) refers to the minimization of the objective function (23)
and minimization(2) to (24).

As mentioned in Problem Statement and validated during our experiments, by
choosing a “good” initial latent vector we can reduce the number of the required
optimization iterations. In particular, after selecting the “best” initial latent vector
in terms of distance to the measured link counts among 3000 random candidates for
minimization(1) and 500 for minimization(2), we managed to reduce the optimiza-
tion iterations from 10000 to 5000 for both cases. We note that all the subsequently
reported results are obtained following this approach.
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Figure 4.3 illustrates the the VAE’s total loss (i.e., reconstruction error and KL
divergence) over the training epochs. From this figure, it is obvious that the max-
imum value of total loss is in the first epochs. Nevertheless, after approximately 1
to 3 epochs, total loss is decreased significantly and then, as the epochs pass, there
is a slight reduction in the total loss. We also defined an EarlyStopping callback,
called FarlyStoppingAtMinLoss, which is responsible for terminating training when
the loss reaches its min, or equivalently, the loss stops decreasing. It takes as argu-
ment the patience, i.e., the number of epochs to wait after min has been hit and no
improvement is observed. Every time loss is minimized, the weights of the model are
stored. If training is terminated because of this callback, the model weights from
the end of the best epoch are restored.

Definition 4.8.1 (Cumulative Distribution Function (CDF) [95]). Given a set of
data points y; < yo < ... < ¥, the cumulative distribution function (cdf) of these
points is a step function that jumps up by % at each of the n data points. Its value
at any specified value z, is the fraction of observations of the measured variable that
are less than or equal to z.

Figure 4.4 depicts the temporal relative errors. The time ¢ of the x-axis corre-
sponds to the 2016 TMs of the testing set for minimization(1) and minimization(2).
In this way, 7" = 2016. It can be deduced that temporal errors for minimization(2)
are less than minimization(2) almost for every TM. This induction is confirmed from
Figure 4.5, where cdf of temporal relative errors is plotted. For instance, there are
more points less than 0.5 TRE in minimization(2), comparing to minimization(1).
Be that as it may, in both minimization(1) and minimization(2), TRE in almost all
TMs is less than 0.6-0.7.

Figure 4.6 illustrates the spatial relative errors of every OD pair. In this way,
N = 144, because there are 144 OD pairs in total. In general, spatial errors take
small values, except one OD flow between 107 and 109, which seems to skyrocket.
This behavior could be, either due to an error in this specific OD pair, or due to a
steep increase in the traffic flow of this particular OD pair. However, the SRE in
minimization(2) is approximately one fifth of the respective error in minimization(1).
From Figure 4.7, it is evident that the CDF's of minimization(1) and minimization(2)
are very close to each other.

Table 4.4 summarizes the results for the three examined variations of the pro-
posed TME method. As can be seen, minimization(2) with ¢ = 0.1 does indeed
improve all the employed metrics (particularly SRE) by incorporating the regular-
ization term. Regarding the concurrent incremental optimization, we have used the
objective (24). The number of running loops concerning the training of each model
was 6 and the number of training epochs after which we obtain each decoder was
set to 20. Lastly, the number of optimization iterations for every objective of the
sequence was set to 3000. For this case only, the results reported regard the first
500 TMs of the testing set.
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Figure 4.5: Cumulative distribution function (CDF) of TREs.
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Table 4.4: Estimation Errors

VAE Training and Minimization (1)

Error Mean | Median | Std Max
RMSE (Mbps) | 13.9045 | 12.6126 | 5.2089 | 59.6762
NMAE 0.3544 | 0.3415 | 0.0824 | 0.8176
TRE 0.3557 | 0.3320 | 0.1098 | 1.0387
SRE 1.1233 | 0.6323 | 4.6677 | 56.5583
VAE Training and Minimization (2)
Error Mean | Median | Std Max
RMSE (Mbps) | 13.6893 | 12.6701 | 5.0450 | 60.6747
NMAE 0.3466 | 0.3350 | 0.0748 | 0.9496
TRE 0.3488 | 0.3381 | 0.0989 | 1.0249
SRE 0.7330 | 0.5769 | 1.0698 | 12.6865
Concurrent Training and Minimization (2)

Error Mean | Median | Std Max
RMSE (Mbps) | 13.3673 | 12.4220 | 5.5080 | 43.2572
NMAE 0.4262 | 0.3972 | 0.1473 | 1.3309
TRE 0.4033 | 0.3791 | 0.1505 | 1.3824
SRE 1.7464 | 0.8027 | 6.9723 | 81.7783
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

In this diploma thesis, after reviewing the major contributions in literature con-
cerning the field of Network Tomography and Traffic Matrix Estimation (TME),
the latter is addressed. To deal with the ill-posed inverse problem of TME from
link-level measurements, we exploited deep generative models and more precisely,
Variational Autoencoder (VAE), instead of relying on sparsity [7] as usual. We
leveraged a publicly available dataset with measurements from Abilene network to
train the model. By employing the decoder, we transformed TME into a minimiza-
tion problem in the latent space. The decoder was also utilized for generating new
TMs, that are akin to the samples already explored in the training process. Thus,
it can be easily perceived that choosing the proper training set is a crucial task; it is
important to contain all possible variations of the values of Origin-Destination pairs.
Furthermore, we explored the alternative approach of incrementally optimizing the
sequence of objective functions corresponding to the sequence of the decoder’s pa-
rameters, as the latter are produced at different stages of the VAE’s training process.
Finally, the performance of the proposed methods was assessed and valuable results
were deduced.

5.2 Future Work

The current diploma thesis could give rise to future work. Some of the most promis-
ing prospects are the following:

Untrained Generative Models

In contrast to classical deep neural networks that consist of a large number of pa-
rameters and require big datasets in order to be trained, recently, an innovative
approach was proposed that confined the aforementioned prerequisites. These mod-
els are called Untrained Generative Models and are based on deep neural networks,
with very few parameters, simple architecture and do not need training. Somewhat

76



5.2. FUTURE WORK 7

counter-intuitively, the models have been shown to achieve propitious results [28],
[29].

Conditional Generative Models

Another direction worth exploring is the use of conditional generative models [30],
[31]. These generative models are used to sample from a high-dimensional unknown
posterior distribution, which allows the generation of multiple solutions from the
same measurements.

Deep Reinforcement Learning

To contribute to future research in that domain, a further approach might include the
usage of Deep Reinforcement Learning [32]. To grasp the ill-posed inverse inference
system and estimate the Traffic Matrix accurately, an agent has to be trained to
behave optimally in an environment -by taking actions and receiving rewards-.



Appendix A

Source code

import numpy as np

import matplotlib.pyplot as plt
import tensorflow as tf

from collections import defaultdict
import operator

import os

import gzip

from pathlib import Path

# calculate A (Routing Matriz)
A = np.zeros((30, 12%12))

cur_dir = Path(os.getcwd())
for entry in os.listdir(cur_dir.parent):
if os.path.isfile(os.path.join(cur_dir.parent, entry)) and entry == 'A':
with open(os.path.join(cur_dir.parent, entry), 'r') as fp:
line = fp.readline()
while line:
if not line.startswith('#'):
token = line.split()
# keep only internal links
if int(token[2]) < 31:
link_id = int(token[2]) - 1
0D_id = int(token[3]) - 1
A[link_id] [0D_id] = 1
line = fp.readline()
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# calculate X (Traffic Matriz)
X=10
files = []

cur_dir = Path(os.getcwd())
for entry in os.listdir(cur_dir.parent):
if os.path.isfile(os.path.join(cur_dir.parent, entry)) and
entry.startswith('X'):
files.append(entry)

files = sorted(files)

for file in files:
with gzip.open(os.path.join(cur_dir.parent, file), 'r') as fp:
line = fp.readline()
while line:
token = line.split()
for i in range(0O, len(token), 5):
# an kbps, discard outliers
if float(token[i])*8 / (3*10%**3) > 9920000:
X.append (9920000)
eiiSek:
X.append(float (token[i])*8 / (3*10%*3))
line = fp.readline()

X = np.array(X) .reshape((-1,12,12))

# training is executed for 13 weeks
train_size = 13*%24*7*12

# testing is executed for 1 week
test_size = 1%24x7x*12

# in Mbps/100
X = X[:(train_size+test_size)] / 100000

# expand dimensions of each TM from (12,12) to (12,12,1)
X_train = np.expand_dims(X[:train_size], -1)

X_test = np.expand_dims(X[train_size: (train_size+test_size)], -1)

latent_dim = 10
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class Sampling(tf.keras.layers.Layer):
(1) Sampling Layer s a subclass of tf.keras.layers.Layer
(2) Reparametertization trick: use z_mean and z_log_var to sample z
def call(self, inputs):
zZ_mean, z_log_var = inputs
epsilon = tf.random.normal (shape=tf.shape(z_mean))

return z_mean + tf.math.exp(0.5%z_log_var) * epsilon

# Encoder
encoder_inputs = tf.keras.Input(shape=(12, 12, 1))
x = tf .keras.layers.Dropout(0.25) (encoder_inputs)
x = tf .keras.layers.Conv2D(
32, 3, activation="relu", strides=2, padding="same"
) (x)
x = tf.keras.layers.Conv2D(
64, 3, activation="relu", strides=2, padding="same"
) (x)
x = tf.keras.layers.Conv2D(
128, 3, activation="relu", strides=1, padding="same"
) (x)
= tf.keras.layers.Flatten() (x)

= tf.keras.layers.Dense (64, activation="relu") (x)

N M X

_mean = tf.keras.layers.Dense(latent_dim, name="z_mean") (x)
z_log_var = tf.keras.layers.Dense(latent_dim, name="z_log_var") (x)
z = Sampling() ([z_mean, z_log_var])

encoder = tf.keras.Model(

encoder_inputs, [z_mean, z_log_var, z], name="encoder"

# Decoder

latent_inputs = tf.keras.Input(shape=(latent_dim,))

x = tf.keras.layers.Dense(64, activation="relu") (latent_inputs)
x = tf.keras.layers.Dense(3 * 3 * 64, activation="relu") (x)

x = tf .keras.layers.Reshape((3, 3, 64))(x)

x = tf.keras.layers.Conv2DTranspose (

128, 3, activation="relu", strides=1, padding="same"
) (x)
x = tf .keras.layers.Conv2DTranspose (

64, 3, activation="relu", strides=2, padding='"same"



X =

) (x)
tf.keras.layers.Conv2DTranspose (
32, 3, activation="relu", strides=2, padding="same"

) (x)

decoder_outputs = tf.keras.layers.Conv2DTranspose (

decoder = tf.keras.Model(latent_inputs, decoder_outputs, name="decoder")

1, 3, activation="relu", padding="same"

) (x)
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class VAE(tf.keras.Model):

1

Our VAE <s a subclass of tf.keras.Model

1

def

__init__(self, encoder, decoder, **kwargs):
super (VAE, self).__init__ (x*kwargs)
self.encoder = encoder

self .decoder = decoder

self.total_loss_tracker = tf.keras.metrics.Mean(name="total_loss")

O@property

def

def

metrics(self):

Model calls automatically reset_states() on any object listed here,
at the beginning of each fit() epoch or at the beginning of a call
to evaluate().

In this way, calling result() would return per-epoch average and
not an average since the start of training.

i

return [self.total_loss_tracker]

train_step(self, x_true):
Vi
(1) Override train_step(self, m_true) to customize what fit() does.
(2) We use GradientTape() in order to record operations for
automatic differentiation.
Vi
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(x_true)
x_pred = self.decoder(z)
# reconstruction loss: mean squared error

reconstruction_loss = tf.reduce_sum(

tf .keras.losses.mean_squared_error(x_true, x_pred), axis=(1, 2)



82

APPENDIX A. SOURCE CODE

)
# regularization term: KL divergence
kl_loss = tf.reduce_sum(
-0.5 * (1 + z_log_var - tf.math.square(z_mean) -
tf .math.exp(z_log_var)), axis=1
)
total_loss = tf.reduce_mean(reconstruction_loss + kl_loss)
# Get gradients of total loss with respect to the weights.
grads = tape.gradient(total_loss, self.trainable_weights)
# Update the weights of the model.
self .optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.total_loss_tracker.update_state(total_loss)
return {

"loss": self.total_loss_tracker.result()

# Customize Early Stopping

class EarlyStoppingAtMinLoss(tf.keras.callbacks.Callback):

rr

Stop training when the loss is at its min, %i.e. the loss stops decreasing.

Arguments:
patience: Number of epochs to wait after min has been hit.

After this number of no improvement, training stops.

def __init__(self, patience=30):
super (EarlyStoppingAtMinLoss, self).__init__()
self .patience = patience
# best_weights to store the wetights at which the minimum loss occurs.

self .best_weights = None

def on_train_begin(self, logs=None):
# The number of epoch it has waited when loss is mo longer minimum.
self.wait = 0O
# The epoch the training stops at.
self.stopped_epoch = 0
# Initialize the best as infinity.

self.best = np.Inf

def on_epoch_end(self, epoch, logs=None):

current = logs.get("loss")



def

if np.less(current, self.best):
self .best = current
self.wait = 0
# Record the best wetghts <f current results is better (less).
self .best_weights = self.model.get_weights()
else:
self .wait += 1
if self.wait >= self.patience:
self.stopped_epoch = epoch
self .model.stop_training = True
self .model.set_weights(self.best_weights)

on_train_end(self, logs=None) :
if self.stopped_epoch > O:
print ("Epoch 7,05d: early stopping" 7% (self.stopped_epoch + 1))

33

# Useful functions

def

def

TRE(truth_seq, est_seq):
# truth_seq and est_seq are test_sizexl2xl2 arrays
res = [0] * truth_seq.shapel[0]
for i in range(truth_seq.shape[0]):
res[i] = np.linalg.norm(est_seq[i]-truth_seq[i]l) /
np.linalg.norm(truth_seq[i])

return res

SRE(truth_seq, est_seq):
# truth_seq and est_seq are test_sizexl2xrl2 arrays
w, k, 1 = truth_seq.shape
true_flows = defaultdict(list)
est_flows = defaultdict(list)
res = [0] * (k*1)
for i in range(w):
t

truth_seq[i] .reshape(-1)

e = est_seq[i] .reshape(-1)
for j in range(kx1):
true_flows[j].append(t[j])
est_flows[j].append(e[j])
for i in range(k*1):
if np.linalg.norm(true_flows[i]) == 0.0:
if np.linalg.norm(est_flows[i]) == 0.0:

res[i] = 0.0
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eliSeE
new_true_flows = [xtle-7 for x in true_flows]
res[i] = np.linalg.norm(
list(
map (operator.sub, new_true_flows[i], est_flows[i])
)
) / np.linalg.norm(new_true_flows[i])
else:
res[i] = np.linalg.norm(
list(
map (operator.sub, true_flows[i], est_flows[i])
)
) / np.linalg.norm(true_flows[i])

return res

def RMSE(truth_seq, est_seq):
res = [0] * truth_seq.shape[0]
for i in range(truth_seq.shape[0]):
res[i] = np.sqrt(
np.mean(

tf.keras.losses.mean_squared_error (truth_seq[il, est_seq[il)

)

return (np.mean(res), np.median(res), np.std(res), np.amax(res))

def NMAE(truth_seq, est_seq):
# truth_seq and est_seq are test_sizexl2xl2 arrays
res = [0] * truth_seq.shapel[0]
for i in range(truth_seq.shape[0]):
res[i] = np.sum(np.abs(est_seq[i]-truth_seq[il)) /
np.sum(np.abs (truth_seql[il))

return (np.mean(res), np.median(res), np.std(res), np.amax(res))

# Plotting — Results
def results(X_test, X_pred):
rmse = RMSE(X_test, X_pred)
print ('mean, median, std and maximum of RMSE are: {}, {}, {} and {3}’

.format (rmse[0], rmse[1], rmse[2], rmse[3]))

nmae = NMAE(X_test, X_pred)
print('mean, median, std and maximum of NMAE are: {}, {}, {} and {3}'
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.format (nmae[0], nmae[1], nmae[2], nmae[3]))

tres = TRE(X_test, X_pred)

SRE(X_test, X_pred)

sres

print('mean, median, std and maximum of TRE are: {}, {}, {} and {}'
.format (np.mean(tres), np.median(tres), np.std(tres), np.amax(tres)))
print ('mean, median, std and maximum of SRE are: {}, {}, {} and {}'

.format (np.mean(sres), np.median(sres), np.std(sres), np.amax(sres)))

plt.plot(tres)

plt.xlabel('Time', fontsize=14, fontweight='bold')
plt.ylabel("Temporal Relative Error", fontsize=14, fontweight='bold')
plt.show()

plt.plot(sres)

plt.xlabel('OD Flow ID', fontsize=14, fontweight='bold')
plt.ylabel("Spatial Relative Error", fontsize=14, fontweight='bold')
plt.show()

x, £ = sorted(tres), np.arange(len(tres)) / len(tres)

plt.plot(x, f)

plt.xlabel('Temporal Relative Error', fontsize=14, fontweight='bold')
plt.ylabel ("CDF", fontsize=14, fontweight='bold')

plt.show()

x, f = sorted(sres), np.arange(len(sres)) / len(sres)

plt.plot(x, f)

plt.xlabel('Spatial Relative Error', fontsize=14, fontweight='bold')
plt.ylabel("CDF", fontsize=14, fontweight='bold')

plt.show()

# Training

model = VAE(encoder, decoder)
model.compile(optimizer=tf.keras.optimizers.Adam())
history = model.fit(
X_train, epochs=1000, batch_size=128, callbacks=[EarlyStoppingAtMinLoss()],
)
plt.plot(history.history['loss'])
plt.ylabel('loss', fontsize=14, fontweight='bold')
plt.xlabel('epoch', fontsize=14, fontweight='bold')
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plt.show()

# Testing

A_var = tf.Variable(A, dtype=tf.float32)
optimizer = tf.keras.optimizers.Adam()
y_test = np.array(
[
np.dot(A, X_test[i,:,:,0] .reshape(144,1)) for i in
range (X_test.shape[0])

# Iterative optimization, starting from a "good" z

max_optimization_iterations = 5000
max_initial_point_iterations = 3000

X_pred = np.empty(shape=(test_size,12,12))

for i, y in enumerate(y_test):

z = tf.Variable(tf.random.normal (shape=(1,latent_dim), dtype=tf.float32))
model .decoder(z) [0, :,:,0]
tf.tensordot (A_var, tf.reshape(x_pred_start, (144,1)), 1)

loss = tf.reduce_mean(

x_pred_start

y_pred_start

tf.keras.losses.mean_squared_error(y, y_pred_start)
)
for iteration in range(max_initial_point_iterations):
z_new = tf.Variable(
tf .random.normal (
shape=(1,latent_dim), dtype=tf.float32

)
x_pred_new = model.decoder(z_new) [0,:,:,0]
y_pred_new = tf.tensordot(A_var, tf.reshape(x_pred_new, (144,1)), 1)
loss_new = tf.reduce_mean(
tf .keras.losses.mean_squared_error(y, y_pred_new)
)

if loss_new < loss:

Z = z_new

loss = loss_new
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# wnttialize values
minimum_rmse = np.Inf

x_pred_best = None

for iteration in range(max_optimization_iterations):
with tf.GradientTape() as tape:
x_pred = model.decoder(z) [0,:,:,0]
y_pred = tf.tensordot(A_var, tf.reshape(x_pred, (144,1)), 1)
loss = tf.reduce_mean(
tf .keras.losses.mean_squared_error(y, y_pred)
)
rmse = tf.math.sqrt(
tf.reduce_mean(
tf .keras.losses.mean_squared_error(
100*X_test[i,:,:,0], 100*x_pred)
)
)
if tf.math.less(rmse, minimum_rmse) :
x_pred_best = x_pred
minimum_rmse = rmse
# get gradient of loss with respect to 2z
grads = tape.gradient(loss, z)
# update the value of 2z
optimizer.apply_gradients(zip([grads], [z]))

print ()
print ('minimum RMSE between X_test[{}] and x_pred_best: {} Mbps'.
format (i, minimum_rmse))

X_pred[i] = np.array(100*x_pred_best)

# get results
results(100*X_test[:,:,:,0], X_pred)

# Iterative optimization, starting from a "good" 2z, with regularization term

max_optimization_iterations = 5000
max_initial_point_iterations = 500
X_pred = np.empty(shape=(test_size,12,12))

for i, y in enumerate(y_test):
z = tf.Variable(tf.random.normal (shape=(1,latent_dim), dtype=tf.float32))
x_pred_start = model.decoder(z) [0,:,:,0]
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y_pred_start = tf.tensordot(A_var, tf.reshape(x_pred_start, (144,1)), 1)
loss = tf.reduce_mean(
tf.keras.losses.mean_squared_error(y, y_pred_start)
) + 0.1xtf.norm(z)**2
for iteration in range(max_initial_point_iterations):
z_new = tf.Variable(
tf .random.normal (
shape=(1,latent_dim), dtype=tf.float32

)

x_pred_new = model.decoder(z_new) [0,:,:,0]

y_pred_new = tf.tensordot(A_var, tf.reshape(x_pred_new, (144,1)), 1)
loss_new = tf.reduce_mean(
tf .keras.losses.mean_squared_error(y, y_pred_new)
) + 0.1*%tf.norm(z)**2
if loss_new < loss:
zZ = z_new

loss = loss_new

# tnitialize values
minimum_rmse = np.Inf

x_pred_best = None

for iteration in range(max_optimization_iterations):
with tf.GradientTape() as tape:
x_pred = model.decoder(z) [0, :,:,0]
y_pred = tf.tensordot(A_var, tf.reshape(x_pred, (144,1)), 1)
loss = tf.reduce_mean(
tf .keras.losses.mean_squared_error(y, y_pred)
) + 0.1xtf.norm(z)**2
rmse = tf.math.sqrt(
tf.reduce_mean(
tf .keras.losses.mean_squared_error (
100*X_test[i,:,:,0], 100*x_pred
)
)
)
if tf.math.less(rmse, minimum_rmse):
x_pred_best = x_pred
minimum_rmse = rmse
# get gradient of loss with respect to 2z
grads = tape.gradient(loss, z)
# update the value of 2z
optimizer.apply_gradients(zip([grads], [z]))



89

print ()
print ('minimum RMSE between X_test[{}] and x_pred_best: {} Mbps'
.format (i, minimum_rmse))

X_pred[i] = np.array(100*x_pred_best)

# get results
results(100*X_test[:,:,:,0], X_pred)

# Concurrent optimization, starting from a "good" z, with regularization term

round_optimization_iterations = 3000
round_training_epochs = 20
X_pred = np.empty(shape=(test_size,12,12))

max_initial_point_iterations = 500

for i, y in enumerate(y_test):

# new model for each test

optimizer = tf.keras.optimizers.Adam()

# encoder
encoder_inputs = tf.keras.Input(shape=(12, 12, 1))
x = tf.keras.layers.Dropout (0.25) (encoder_inputs)
x = tf.keras.layers.Conv2D(
32, 3, activation="relu", strides=2, padding="same"
) (x)
x = tf.keras.layers.Conv2D(
64, 3, activation="relu", strides=2, padding="same"
) (x)
x = tf.keras.layers.Conv2D(
128, 3, activation="relu", strides=1, padding="same"
) (x)
= tf.keras.layers.Flatten() (x)
= tf.keras.layers.Dense (64, activation="relu") (x)

N M ™

_mean = tf.keras.layers.Dense(latent_dim, name="z_mean") (x)
z_log_var = tf.keras.layers.Dense(latent_dim, name="z_log_var") (x)
z = Sampling() ([z_mean, z_log_var])

encoder = tf.keras.Model(

encoder_inputs, [z_mean, z_log_var, z], name="encoder"
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#decoder
latent_inputs = tf.keras.Input(shape=(latent_dim,))

x = tf.keras.layers.Dense(64, activation="relu") (latent_inputs)

x = tf .keras.layers.Dense(3 * 3 * 64, activation="relu") (x)
x = tf .keras.layers.Reshape((3, 3, 64))(x)
x = tf.keras.layers.Conv2DTranspose (

128, 3, activation="relu", strides=1, padding="same"
) (x)
x = tf.keras.layers.Conv2DTranspose(
64, 3, activation="relu", strides=2, padding="same"
) (x)
x = tf.keras.layers.Conv2DTranspose (
32, 3, activation="relu", strides=2, padding="same"
) (x)
decoder_outputs = tf.keras.layers.Conv2DTranspose (
1, 3, activation="relu", padding="same"
) (x)

decoder = tf.keras.Model(latent_inputs, decoder_outputs, name="decoder")

model = VAE(encoder, decoder)
model . compile (optimizer=tf.keras.optimizers.Adam())

earlystoppingmonitor = EarlyStoppingAtMinLoss()

# find good starting point
z = tf.Variable(tf.random.normal (shape=(1,latent_dim), dtype=tf.float32))
x_pred_start = model.decoder(z)[0,:,:,0]
y_pred_start = tf.tensordot(A_var, tf.reshape(x_pred_start, (144,1)), 1)
loss = tf.reduce_mean(
tf.keras.losses.mean_squared_error(y, y_pred_start)
) + 0.1%tf.norm(z)**2
for iteration in range(max_initial_point_iterations):
z_new = tf.Variable(
tf.random.normal (shape=(1,latent_dim), dtype=tf.float32)
)
x_pred_new = model.decoder(z_new) [0,:,:,0]
y_pred_new = tf.tensordot(A_var, tf.reshape(x_pred_new, (144,1)), 1)
loss_new = tf.reduce_mean(
tf.keras.losses.mean_squared_error(y, y_pred_new)
) + 0.1%tf.norm(z)**2
if loss_new < loss:
Z = z_new

loss = loss_new
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# wnttialize values
minimum_rmse = np.Inf

x_pred_best = None

loops_run = 0
while loops_run < 7:
# continue training from last loop iteration
model.fit(
X_train, epochs=round_training_epochs, batch_size=128,
callbacks=[earlystoppingmonitor],
)
for iteration in range(round_optimization_iterations):
with tf.GradientTape() as tape:
# use optimal z previous optimization
x_pred = model.decoder(z) [0,:,:,0]
y_pred = tf.tensordot(A_var, tf.reshape(x_pred, (144,1)), 1)
loss = tf.reduce_mean(
tf .keras.losses.mean_squared_error(y, y_pred)
) + 0.1%tf.norm(z)**2
rmse = tf.math.sqrt(
tf.reduce_mean(
tf .keras.losses.mean_squared_error (
100*X_test[i,:,:,0], 100*x_pred
)
)
)
if tf.math.less(rmse, minimum_rmse) :
x_pred_best = x_pred
minimum_rmse = rmse
# get gradient of loss with respect to 2z
grads = tape.gradient(loss, z)
# update the value of 2z
optimizer.apply_gradients(zip([grads], [z]))
loops_run += 1

print ()
print ('minimum RMSE between X_test[{}] and x_pred_best: {} Mbps'
.format (i, minimum_rmse))

X_pred[i] = np.array(100*x_pred_best)

# get results
results(100*X_test[:,:,:,0], X_pred)
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