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Abstract 
Flexoelectricity is the phenomenon that allows some materials to convert mechanical strain 
gradients to electrical polarizations and vice versa. As flexoelectricity is a ferroelectric 
phenomenon, its applications are of maximum importance and should be studied thoroughly. 
The polarization magnitude is connected to the strain gradients and so situations that produce 
large strain gradients are interesting. The cracking seems to be very promising. The mode III 
crack is an anti-plane problem that can be solved also considering the flexoelectric effect. As 
known from classic elasticity, the anti-plane problem is a sub-case of 3D-elasticity. The mode 
III crack, is also a dynamic problem.  

By considering the contribution of the flexoelectric phenomenon to the total energy density, a 
solution of the anti-plane flexoelectric problem can be formed. A direct analogue is presented 
between the anti-plane flexoelectric problem and the anti-plane couple stress elasticity 
problem, which allows the distinction of the flexoelectric problem into three regions: the elliptic, 
the hyperbolic and the intermediate.  

The hyperbolic region is studied further. The characteristic lines, a method of solving 
hyperbolic equations, allows some simplifications of the differential equation and thus a full 
field analytical solution is presented. Mach cones are visible as the displacement is concerned. 
For this displacement, the polarization can be calculated. The crack tip and the end of the 
cohesive zone are the positions of maximum polarization and thus positions of possible 
electrical yielding (abrupt change of the polarization vector). Also, the polarization of a screw-
like dislocation is calculated. In this case, the polarization is described with a “δ function” – like 
distribution.   

The anti-plane dynamic problem is responsible for the propagation of waves. Because of the 
microstructure (for the couple stress elasticity problem, or the flexoelectric properties on the 
normal anti-plane problem), those waves are dispersive, a fact that signifies the possibilities 
of a lot more applications. The dispersion is the next thing studied. The dispersion relations 
show great similarity with viscoelastic materials, as the flexoelectric metamaterials are 
concerned.  

Lastly, through another analogue between the anti-plane problems and the plate problems, 
numerical calculations are possible for a great number of cases. The analogue is modified in 
order to be able to solve also hyperbolic problems. This is the first time the Analogue Equation 
Method is used in a Finite Element Code. Through a standard Finite Element Method (FEM) 
code (ABAQUS), the Mach cone - like displacement is proved, in the hyperbolic problem. Also, 
the angle of the cones, is in agreement with the previous bibliographic suggestions and 
depends on the microstructure and the velocity of the problem.  

Keywords 
Flexoelectricity, direct flexoelectric effect, converse flexoelectric effect, anti-plane, anti-plane 
polarization, anti-plane flexoelectricity, anti-plane flexoelectric problem, dynamic anti-plane 
flexoelectric problem, couple stress elasticity, anti-plane couple stress elasticity dynamic 
problem, elliptic problem, hyperbolic problem, intermediate problem, microstructural length, 
micro-inertial length, crack mode III, dispersion, phase velocity, group velocity, polarization, 
anti-plane analogue, FEM – Analogue Equation Method. 
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1. Introduction 

A. Physical aspect of flexoelectricity - what is flexoelectricity? 

Flexoelectricity is a natural phenomenon that applies to a wide variety of materials. One 
complete definition of flexoelectricity has been suggested by Giannakopoulos and Zisis 
(2021).  

“Flexoelectricity is the ability of materials to convert mechanical strain gradients to electric 
polarization and vice versa” 

All dielectrics and ferroelectrics in paraelectric phase materials are defined as flexoelectric. 
Those when subjected to non-uniform mechanical strain, can produce electrical polarization. 

The direct flexoelectric effect, which converts mechanical strain gradients to electrical 
polarization, can be described by the following relation: 

 

 𝑃𝑃𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑖𝑖

  

 

A pretty similar phenomenon, called piezoelectricity, which has been studied extensively, can 
be added in the above relation, as suggested by Maranganti et al. (2006). 

 

 𝑃𝑃𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑖𝑖

  

 

In the above relation 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 is the piezoelectric term and should be equal to zero when a non-
piezoelectric material (a centrosymmetric material), is concerned. If this term is zero, the 
remaining equation describes the direct flexoelectric effect.  

This microscopical effect comes from the atomic crystallin structure. Because of a relative 
dense crystalline structure, when a strain gradient is applied, some positive cores come closer 
and thus, this side gets positively charged, while some others, from the opposite side, get 
further away and thus that side gets negatively charged. This difference in the charges creates 
a polarization and a respective electric field.  The phenomenon of flexoelectricity resembles 
the condition of a capacitor.  

The parameters that affect flexoelectricity, are the strain gradient, which is connected to 
mechanical characteristics like Lame’s constants, and a module that signifies how dense this 
crystallin structure is. This module, in the direct flexoelectric effect, is the 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 coefficient.  
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 Piezoelectricity. 
The microscopical explanation of 
the production of polarization in a 
non-centrosymmetric crystal 
through the effect of 
piezoelectricity, by uniform 
loading. Maranganti et al. (2006) 

 And by Knisovitis (2019) 

 

 

 The schematic explanation of 
flexoelectricity. 
The induced polarization is happening only for 
a non-uniform deformation that is flex-like. The 
cell of NaCl is centrosymmetric and thus no 
polarization can be induced from uniform 
loading. Maranganti et al. (2006).   

A simpler schematic description of the 
flexoelectric phenomenon is being represented 
in Seung-Bok Choi and Gi-Woo Kim (2017).  

 

Flexoelectricity is weak in comparison to the stronger piezoelectricity, but in small scales the 
flexoelectric effect can reach its competitor, as the strain gradients are great. These, also, 
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have to do with all the parameters that causes this effect. As it has been studied extensively 
experimentally (Knisovitis (2019) and Giannakopoulos et al. (2020)) near the crack tips the 
gradients are great and the flexoelectric effect can overtake major role.  

 

 

 A FEM 
representation of a Mode I 
crack and the induced 
strains. 
There is a big concentration 
of strain gradients near the 
crack tips. This figure 
represents the strains 𝜀𝜀11. 
Knisovitis (2019) 

 

 

  
 The experiments.  

Described in Knisovitis (2019) and Giannakopoulos et al. (2020). In one-dimensional element, a 
mode I crack has an effect of a rather large voltage.  The oscilloscopes frequency was 1 MHz. 

 

Similar to the direct effect is the converse flexoelectric effect, which uses electrical work and 
turns it into mechanical. In other words, a polarization applied in a flexoelectric material will 
result in a strain gradient and thus some deformation.  
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B. The materials 

Flexoelectric materials can be dielectric or ferroelectrics in a paraelectric phase. 
Giannakopoulos and Zisis (2021 a.) proposed, that a vast majority of materials are 
flexoelectric. Some materials that are anisotropic exhibit also piezoelectricity and 
flexoelectricity combined.  

Some rocks including the earth’s mantle, are both flexoelectric and piezoelectric. Materials 
that are characterized as flexoelectric could be ribbons of graphene, carbon or graphene 
nitride, biological membranes, a lot of polymers (PVDF, plexiglass, paraffin, polystyrene), 
ceramics (perovskites, magnesium oxide, alkali halides, colloidal crystals) and even crystalline 
materials like salt. Ice is also flexoelectric. Lastly, many semi-conductors have flexoelectric 
properties.  

The characteristic of a flexoelectric material is the flexoelectric constant 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. Despite the fact 
that this constant seems like a fourth order tensor, usually it has only three independent 
components, 𝜇𝜇11,𝜇𝜇12,𝜇𝜇44. 

As described in greek literature by Knisovitis (2019) its constant is used for a specific strain 
gradient. The constant 𝜇𝜇11 is used when the strain is normal to a surface e.g. 𝜀𝜀11 and the 
gradient is towards the corresponding direction, e.g. direction 1. The constant 𝜇𝜇12 refers to 
normal strains, but the direction of the gradient is one of the other two and lastly the component 
𝜇𝜇44 refers to shear strains.  

 

 
 The flexoelectric constants for various cubic semiconductors 

from Maraganti and Sharma (2009). 

 

 
 The piezoelectric constant for various cubic semiconductors 

from Maraganti and Sharma (2009). 
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 The flexoelectric constants for various cubic alkali halides 
from Maraganti and Sharma (2009). Index “a” is referring to “A. Askar, P. C. Y. Lee, and A. S. 
Cakmak, Phys. Rev. B 1, 3525 (1970)”. 

 

 
 The flexoelectric constants for various cubic perovskites 

from Maraganti and Sharma (2009). For STO the experimental data was obtained from “P. Zubko, 
G. Catalan, P. R. L. Welche, A. Buckley, and J. F.Scott, Phys. Rev. Lett. 99, 167601 (2007)”, while 
for the BTO from “W. Ma and L. E. Cross, Appl. Phys. Lett. 88, 232902 (2006)”. 

 

Similar to those, the reverse flexoelectric constants are symbolized as 𝑓𝑓11,𝑓𝑓12, 𝑓𝑓44. 

C. Applications  

Flexoelectricity can be used in a great number of applications for energy harvesting, into 
micro-electro-mechanical systems, for nanotechnology and even for biology, as it has been 
mentioned by Häusler et al. (1984) and Gi-woo Kim et al. (2014). In addition to those, which 
are relevant applications in any ferroelectric problem, flexoelectricity could have major role in 
situations with great strain gradients. Cracks are cases that exhibits large strain gradients, and 
thus the application in respect of flexoelectricity is more prominent (Knisovitis (2019), 
Giannakopoulos et al. (2020)). 

Ferroelectric phenomena have great applications in conditions of mechanical shock e.g. 
accidental drop or explosion. Also, flexoelectricity can be used in dynamic cracking while an 
earthquake is happening. In an earthquake the shear force is similar to cracking, and the 
earth’s mantle is not only piezoelectric but also flexoelectric. The strains and strain gradients 
can be significant and thus strong electromagnetic field may be created. It is very interesting, 
that for non-piezoelectric rocks like marble or limestone an electromagnetic emission occurs 
and this should be caused by the flexoelectric effect (Giannakopoulos (2019, 2021a, 2021b)).  

Last but not least, there is the combination of flexoelectricity with the propagation of waves. 
Moroni et al. (2014), stated that in an anti-plane couple stress elasticity dynamic problem, like 
the one that is studied in the current research, Rayleigh waves of high frequency may be 
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produced. Those waves ought to limit the velocity of the crack to a Rayleigh wave speed 𝑐𝑐𝑅𝑅. 
This velocity is relative to the parameter 𝛽𝛽 of the couple stress theory and for 𝛽𝛽 = 0, when the 
problem is hyperbolic, Rayleigh waves can appear. This comment has been mentioned in 
Giannakopoulos and Zisis (2019). 

In a later study, the same authors, Giannakopoulos and Zisis (2021 a), mentioned the 
existence of those waves in a flexoelectric anti-plane dynamic problem, that move through the 
surface. Flexoelectricity should also develop anti-plane surface waves, which would have 
great applications (e.g., shear-horizontal surface-acoustic-wave (SH-SAW) biosensors). This 
is something known in piezoelectricity, as it has been established from Bluestein and 
Gulyavev, but such waves are not supported in the content of classic elastodynamics. 
Experimental verification in flexoelectricity waves should be performed in the future (in 
piezoelectricity, experiments have confirmed the existence of such waves however) 

Rayleigh waves, lamb waves and love waves too. All those, could get combined with 
flexoelectricity.  

D. Previous Research 

In a previous research (Knisovitis (2019)) the flexoelectric effect in one-dimensional problems 
was studied in a great scale. That study was based on the direct effect and proposed a vast 
majority of applications, that are relevant to the phenomenon. For an initial study of the 
phenomenon that thesis is recommended.  

This study, is about the anti-plane flexoelectric problem, flexoelectricity in other words, when 
a mode III crack occurs, as this is the most common dynamic anti-plane problem. The 
formulation of the governing equations of the problem was made with the use of the total 
energy density and a method called Toupin’s Variational Principle. The connection with the 
couple stress elasticity anti-plane problem is later discussed. An analogue, proposed by 
Giannakopoulos and his co-workers (Gavardinas et al. (2018)), connects the anti-plane 
problem, whether it is flexoelectric, or defined through the use of the couple stress elasticity 
with prestressed plates.  

i. Bibliographic references on flexoelectricity. 

A great portion of research has been done by Maraganti and co-workers. In their research 
(Maranganti et al. (2006)), they studied flexoelectricity, both in its direct form and its converse. 
For their calculations, Maraganti et al. (2006) used the internal energy density in order to 
derive the governing equations. In this relation, both piezoelectric and flexoelectric effects 
were considered, as they were inserted through the converse effect. For flexoelectricity, the 
term for energy is 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑢𝑢𝑖𝑖,𝑖𝑖𝑖𝑖. The governing equations, which in that project are referred to as 
“the balance laws” are similar to the ones used later. However, they got extracted via a method 
proposed by those researchers themselves, in some previous studies.  

Maraganti and Sharma (2009) studied the properties of cubic semiconductors, alkali halides 
and perovskites, in respect of the flexoelectric phenomenon, via atomistic perspective. The 
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result of the studies was the estimation of the flexoelectric constant 𝜇𝜇11, 𝜇𝜇12, 𝜇𝜇44 by their theory 
and the comparison with other estimations that could be also experimental.  

Yang et al. (2018) published an interesting article about Lamb waves and when those exist in 
a flexoelectric medium.  

An interesting aspect of flexoelectricity has been discussed by Wang et al. (2019), as they 
suggested that this phenomenon is rather weak, unless it is produced from significant large 
strain gradients. By describing the phenomenon, the authors related it to piezoelectricity and 
also, they suggested that with flexoelectricity, piezoelectric applications like energy harvesting 
(at small scales (nano)), sensors, actuators, in ferroelectric mechanics, or even in biomedicine 
are easily accessible.  

The authors suggested that a way to achieve a great flexoelectric effect is by increasing the 
strain gradient. This, in other words, is equivalent to reducing the size of the dielectric in which 
the strain is applied (make the deviator smaller). 

One interesting application that the authors studied, which has both large strain gradients and 
small size  (thickness) is the crumpling of a sheet. This crumpling can be studied by using a 
thin plate with an out-of-plane point load in the center, until folding occurs. The experiment 
that describes this, is a circular piece of paper above a cup of water, being pressed by a pen.  

The picture and figure that are displayed beneath are from Wang et al. (2019) and depict the 
best way to study the crumpling of a sheet. This model is named d-cone and, from a 
mechanical perspective, has been solved. In case the sheet is not from paper (paper is still 
flexoelectric, but not a good one), but from PVDF, (which is one of the best flexoelectric 
materials) a great amount of polarization should be found.  

 

 
 The d-cone problem is the best way to model a crumpled sheet.   

The parameters of the problem are the large radius (of the plate), the small radius (of the restrains), 
the out-of-plane displacement, and the angle 𝜃𝜃, between the two radians in which the folding 
occurred. The picture and sketch were taken from Wang et al. (2019).  
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The authors used, for the solution of the flexoelectric d-cone problem, the total potential 
energy. In their research they found a great amount of polarization and found that the smaller 
the thickness of the sheet, the better the results.  

Giannakopoulos and Zisis (2019) suggested that the flexoelectric problem, which is a problem 
of coupling mechanical with electrical work, can be simplified in a solely mechanical dynamic 
problem.  

Using this suggestion, the authors solved the steady state problem of screw dislocation. A 
screw dislocation is a Mode III crack in which the cohesive zone has been extremely reduced, 
and thus there is a discontinuity of the displacement. A screw dislocation can be described by 
the figure below. 

 

  

(𝑎𝑎) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐 𝑃𝑃𝑐𝑐𝑀𝑀𝑓𝑓𝑃𝑃𝑃𝑃𝑀𝑀 
(𝑏𝑏) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐 𝑃𝑃𝑐𝑐𝑀𝑀𝑓𝑓𝑃𝑃𝑃𝑃𝑀𝑀 while 
𝑡𝑡ℎ𝑀𝑀 𝑐𝑐𝑀𝑀ℎ𝑀𝑀𝑒𝑒𝑃𝑃𝑀𝑀𝑒𝑒 𝑧𝑧𝑀𝑀𝑒𝑒𝑀𝑀 𝑔𝑔𝑀𝑀𝑡𝑡 𝑒𝑒𝑠𝑠𝑎𝑎𝑃𝑃𝑃𝑃𝑀𝑀𝑐𝑐 

 

 Screw dislocation.  
This mode III crack consists of a length, called 
cohesion zone, and refers to the length which is 
needed for the displacement to reach its 
maximum value. As this zone tends to zero, one 
discontinuity appears. This anomaly, which is 
mechanical, is called a dislocation. 

(𝑐𝑐) 𝑒𝑒𝑐𝑐𝑐𝑐𝑀𝑀𝑠𝑠 𝑀𝑀𝑃𝑃𝑒𝑒𝑃𝑃𝑀𝑀𝑐𝑐𝑎𝑎𝑡𝑡𝑃𝑃𝑀𝑀𝑒𝑒 𝑝𝑝𝑐𝑐𝑀𝑀𝑓𝑓𝑃𝑃𝑃𝑃𝑀𝑀  

  

The screw dislocation that was taken into consideration by the authors, gives a more accurate 
perspective of the displacement, as this displacement is known and the mode III crack problem 
of a screw dislocation is a known anti-plane couple stress elasticity problem. However, the 
same applies in other anti-plane crack problems. In addition, the authors mentioned the 
importance of a screw dislocation in subjects such as crystal growth, plasticity, development 
of thin epitaxial films, micro-component, opto-mechanical devices and the study of 
seismology.  

This study was done by taking into consideration the microstructure, the microstructural length 
and also the micro-inertia length, for the purely anti-plane problem. For the anti-plane 
flexoelectric problem however, the solution should be based on classic elasticity.  
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The dislocation spreads with a constant velocity, that can be subsonic or even supersonic. 
Also, the displacement in some cases could be like Mach cones and as suggested by the 
authors, those cones are dependent on the microstructure.  

Yang et al. (2020) studied the propagation of Rayleigh waves when flexoelectricity, strain 
gradient elasticity, surface effects and micro-inertial effects were considered. The authors 
mentioned that in present days, surface waves are of crucial importance, as they have multiple 
applications in seismology and geophysics, telecommunications, acoustics and electronics, 
nondestructive evaluation (monitoring) and microfluidics. In addition to the various applications 
flexoelectricity enables the propagation of surface waves in flexoelectric materials, which can 
have an enormous variety of applications with huge impact.  

Rayleigh waves are dispersive and have been studied in terms of piezoelectricity, through 
couple stress effect and through gradient elasticity theory. An acoustic wave (e.g. Rayleigh 
wave) produces, always, homogeneous strain and electric field in elastic dielectrics. The same 
applies in flexoelectricity, in which the strain gradients produce electric polarization. Yang et 
al. (2020) revealed, based on previous researches, that, when waves of small wavenumber 
are combined with flexoelectricity, the frequencies are enormous. This is something they 
proved, in their research, as they have shown that with the decrease of the wavelength, the 
influence of flexoelectricity and the other effects they studied (surface effects, micro-inertial 
effects, strain gradient elasticity) need to be considered, as their effect is great.  

In Giannakopoulos and Zisis (2021 a), the authors once again mentioned the similarity of the 
flexoelectric anti-plane problem and the couple stress elasticity anti-plane dynamic problem 
and suggested that the modeling of both can happen via anisotropic plates with biaxial 
prestressing, different in each direction. They also suggested that the microstructure, the 
microstructural and the micro-inertial lengths, is crucial for the displacement, which in a steady 
state anti-plane crack could be like “Mach cone”. Lastly, they mentioned the existence of 
waves, that move through the surface (Rayleigh wave that may spread in the anti-plane 
dynamic problem).  

Rosakis and co-workers (Xia et al. (2004)), suggested that cracks may also spread with 
supershear velocity. This also was proved experimentally. This suggestion is relevant for both 
supersonic and subsonic velocities. For high velocities to occur, high stresses should be 
produced, like the stresses produced in cracks.  

Those authors, also, mentioned “electrical yielding” like conditions.  

In contrast to their previous work, this time, the authors studied the motion of Mode III crack 
(instead of a screw dislocation). The material they used had to be flexoelectric. For the 
analysis, the analogue proposed from their previous studies was used (Giannakopoulos and 
Zisis (2019), Gavardinas et al. (2018)). This analogue reduces the anti-plane flexoelectric 
dynamic problem (moving crack) into a dynamic couple stress elasticity problem, and also to 
a prestressed orthotropic plate. For this problem, two length parameters need to be used.  

The microstructural length is connected to the displacement curvature and is used in the 
couple stress elasticity theory on many occasions.  

The micro-inertial length is used for the introduction of a non-classic kinetic energy associated 
with the micro-rotations. Moroni et al. (2013) suggested that the slope of Mach cones that can 
occur on the hyperbolic problem are related to this length. Giannakopoulos and Zisis (2021 a) 



Introduction   
 

 

21 

also suggested that because of this length (and this is obvious via the formula of the differential 
governing equations of the problem), Mach cones could appear also for subsonic problems, 
when hyperbolicity is present.   

The classic theory of elasticity, which is used in the flexoelectric problem, enables the option 
to consider the elastic energy only relevant to the strains and not the strain gradient, in contrast 
to the case of the anti-plane couple stress elasticity problem.  

Giannakopoulos and Zisis (2021 b.) studied once again the flexoelectric effect on a uniformly 
moving anti-plane crack with some additions.  

ii. Toupin’s Variational Principle and the total Energy Density.  

The most important parts of Toupin’s Variational Principle were described by Mindlin. The 
theory of gradient elasticity can be better understood from the work of Mindlin (1965), in which 
one addition to the potential energy density was done, as not only the strains took part, but 
also its gradients. The total potential energy for a homogeneous isotropic and centrosymmetric 
material can be written in its full form as follows (in that relation the part relative to the 
polarizations is missing. This addition however is done by the same author in a later research 
Mindlin (1968)):  

 

 𝑠𝑠 =
1
2
𝜆𝜆𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜇𝜇𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 + 𝑎𝑎1𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎2𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎3𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎4𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  

 +𝑎𝑎5𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏1𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏2𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏3𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

 +𝑏𝑏4𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏5𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏6𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏7𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

 +𝑐𝑐1𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐2𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐1𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏0𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

 

In the above relation the components 𝜀𝜀𝑖𝑖𝑖𝑖, 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are the components of 𝜀𝜀1 = (∇𝑢𝑢� + 𝑢𝑢�∇)/2, 
𝜀𝜀2 = ∇∇𝑢𝑢� , 𝜀𝜀3 = ∇∇∇𝑢𝑢�.  

The anti-plane problem leads to a reduction of the above relation as described in the 
researches from Prof. Giannakopoulos and his co-workers (Giannakopoulos and Zisis (2019), 
(2021a.), (2021b)). 

One of the most necessary parts, concerning the treatment of the problem, through the 
potential energy and Hamilton’s principle is done by using the research of Mindlin (1968). 
Mindlin uses Toupin’s Variation Principle, and by an energy method finds the governing 
equations of a problem. This principle has the following form. 

 

 −𝛿𝛿 �𝐻𝐻𝑀𝑀𝐻𝐻
𝑉𝑉∗

+ ��𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸𝑖𝑖0𝛿𝛿𝑃𝑃𝑖𝑖�𝛿𝛿𝐻𝐻
𝑉𝑉

+ �𝑡𝑡𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖𝛿𝛿𝛿𝛿
𝑠𝑠

= 0  
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The integrals refer to volume 𝐻𝐻 which is occupied by a body. 𝐻𝐻∗ is the total volume that is 
occupied or not by any body, while 𝛿𝛿 is the surface of the body. 𝐻𝐻 is the total enthalpy which 
is equal to 𝐻𝐻 = 𝑊𝑊 − 𝜀𝜀0𝜑𝜑,𝜄𝜄𝜑𝜑,𝜄𝜄/2 + 𝜑𝜑,𝜄𝜄𝑃𝑃𝑖𝑖, 𝑊𝑊 is the total potential energy density, 𝜀𝜀0 is the vacuum 
permittivity and 𝜑𝜑,𝑖𝑖 is the Maxwell self-field. The first point of interest is the total potential 
energy density and the parameters from which it depends, Firstly, by assuming that the total 
potential energy density depends on the strains �𝛿𝛿𝑖𝑖𝑖𝑖 = �𝑢𝑢𝑖𝑖,𝑖𝑖 + 𝑢𝑢𝑖𝑖,𝑖𝑖�/2� and  the polarizations 
(𝑃𝑃𝑖𝑖) (mechanical and electrical components), the variation of electric enthalpy density  is a 
relation of stresses �𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑊𝑊/𝜕𝜕𝛿𝛿𝑖𝑖𝑖𝑖�and effective local electric forces (𝐸𝐸�𝑖𝑖 = −𝜕𝜕𝑊𝑊/𝜕𝜕𝑃𝑃𝑖𝑖),  

 

 𝛿𝛿𝐻𝐻 = 𝛿𝛿 �𝑊𝑊 −
1
2
𝜀𝜀0𝜑𝜑,𝑖𝑖𝜑𝜑,𝑖𝑖 + 𝜑𝜑,𝑖𝑖𝑃𝑃𝑖𝑖�  

 𝛿𝛿𝐻𝐻 = 𝛿𝛿𝑊𝑊 − 𝜀𝜀0𝜑𝜑,𝑖𝑖𝛿𝛿𝜑𝜑,𝑖𝑖 + 𝛿𝛿𝜑𝜑,𝑖𝑖𝑃𝑃𝑖𝑖 + 𝜑𝜑,𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖   

 𝛿𝛿𝛿𝛿 = 𝑇𝑇𝑖𝑖𝑖𝑖𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖 − 𝐸𝐸�𝑖𝑖 𝛿𝛿𝑃𝑃𝑖𝑖 − 𝜀𝜀0𝜑𝜑,𝑖𝑖𝛿𝛿𝜑𝜑,𝑖𝑖 + 𝛿𝛿𝜑𝜑,𝑖𝑖𝑃𝑃𝑖𝑖 + 𝜑𝜑,𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖  

 

Note that in this relation, the total energy density includes terms of polarization but not 
polarization gradients. Also, by the rule of chain and some manipulations by adding and then 
removing the same terms, Mindlin (1968), stated that the variation of the enthalpy can be 
written by the beneath formula.  

 

 
𝛿𝛿𝐻𝐻 = −𝑇𝑇𝑖𝑖𝑖𝑖,𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 − �𝐸𝐸�𝑖𝑖 − 𝜑𝜑,𝑖𝑖�𝛿𝛿𝑃𝑃𝑖𝑖 − �−𝜀𝜀0𝜑𝜑,𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖,𝑖𝑖�𝛿𝛿𝜑𝜑 + �𝑇𝑇𝑖𝑖𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖�,𝑖𝑖

+ ��−𝜀𝜀0𝜑𝜑,𝑖𝑖 + 𝑃𝑃𝑖𝑖�𝛿𝛿𝜑𝜑�.𝑖𝑖 
 

 

The next step is to insert the above relation into Toupin’s variational principle. One point that 
needs special care in the different spaces the integrals refer to. 𝐻𝐻∗ is the total space, while 𝐻𝐻 
is the space occupied by the body.  

The divergence theorem, transforms the space integral of a body to an area integral of the 
boundary of the body. 

 

 �
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝑀𝑀𝐻𝐻 = � 𝑢𝑢𝑖𝑖𝑒𝑒𝑖𝑖𝑀𝑀𝑒𝑒
𝑠𝑠𝑉𝑉′

  

 

This way the variational principle it transformed to the following.  
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���𝑇𝑇𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝑓𝑓𝑖𝑖�𝛿𝛿𝑢𝑢𝑖𝑖 + �𝐸𝐸�𝑖𝑖 − 𝜑𝜑,𝑖𝑖 + +𝐸𝐸𝑖𝑖0�𝛿𝛿𝑃𝑃𝑖𝑖 + �−𝜀𝜀0𝜑𝜑,𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖,𝑖𝑖�𝛿𝛿𝜑𝜑�𝑀𝑀𝐻𝐻
𝑉𝑉∗

+ ���𝑡𝑡𝑖𝑖 − 𝑒𝑒𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖�𝛿𝛿𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑖𝑖��−𝜀𝜀0�𝜑𝜑,𝑖𝑖� + 𝑃𝑃𝑖𝑖�𝛿𝛿𝜑𝜑��𝛿𝛿𝛿𝛿
𝑠𝑠

= 0 
 

 

Where �𝜑𝜑,𝑖𝑖� is the jump in 𝜑𝜑,𝑖𝑖. 

As it is obvious, because of the variationals that are potentionals, the equality of the above 
relation should hold true for any variational. A number of equations is produced, for each 
variational. Equations that are generated from this kind of procedure are called Euler 
equations.   

 

 𝑃𝑃𝑀𝑀𝑡𝑡𝑀𝑀𝑒𝑒𝑡𝑡𝑃𝑃𝑀𝑀𝑒𝑒𝑎𝑎𝑃𝑃 𝐻𝐻𝑎𝑎𝑐𝑐𝑃𝑃𝑎𝑎𝑏𝑏𝑃𝑃𝑀𝑀 𝐺𝐺𝑀𝑀𝐺𝐺𝑀𝑀𝑐𝑐𝑒𝑒𝑃𝑃𝑒𝑒𝑔𝑔 𝑀𝑀𝑒𝑒𝑢𝑢𝑎𝑎𝑡𝑡𝑃𝑃𝑀𝑀𝑒𝑒𝑒𝑒 𝑊𝑊ℎ𝑀𝑀𝑐𝑐𝑀𝑀  

 𝛿𝛿𝑢𝑢𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝑓𝑓𝑖𝑖 = 0   

 𝛿𝛿𝑃𝑃𝑖𝑖  𝐸𝐸�𝑖𝑖 − 𝜑𝜑,𝑖𝑖 + 𝐸𝐸𝑖𝑖0 = 0   

 𝛿𝛿𝜑𝜑 −𝜀𝜀0𝜑𝜑,𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖,𝑖𝑖 = 0 𝑃𝑃𝑒𝑒 𝐻𝐻  

 𝛿𝛿𝜑𝜑.𝑖𝑖  𝜑𝜑,𝑖𝑖𝑖𝑖 = 0 𝑃𝑃𝑒𝑒 𝐻𝐻′  

 

Similarly, the boundary conditions can be obtained from this method, by the area integral. 

 

 𝑃𝑃𝑀𝑀𝑡𝑡𝑀𝑀𝑒𝑒𝑡𝑡𝑃𝑃𝑀𝑀𝑒𝑒𝑎𝑎𝑃𝑃 𝐻𝐻𝑎𝑎𝑐𝑐𝑃𝑃𝑎𝑎𝑏𝑏𝑃𝑃𝑀𝑀 𝐵𝐵𝑀𝑀𝑢𝑢𝑒𝑒𝑀𝑀𝑎𝑎𝑐𝑐𝐵𝐵 𝐶𝐶𝑀𝑀𝑒𝑒𝑀𝑀𝑃𝑃𝑡𝑡𝑃𝑃𝑀𝑀𝑒𝑒  

 𝛿𝛿𝑢𝑢𝑖𝑖 𝑡𝑡𝑖𝑖 − 𝑒𝑒𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖 = 0  

 𝛿𝛿𝜑𝜑 𝑒𝑒𝑖𝑖�−𝜀𝜀0�𝜑𝜑,𝑖𝑖� + 𝑃𝑃𝑖𝑖� = 0  

 

Through this procedure some manipulation can be done: 

• To import the dynamic problem, the kinetic energy can be added to the total enthalpy 
density.  

• If the total potential energy density depends on more variables, then the chain rule 
can be more detailed.  

Next, Mindlin (1968) studied the dynamic case, in which the polarization gradient was added 
(but some other terms were missing). The integral that Mindlin proposed, similar to Toupin’s 
variation principle is the following: 

 

 𝛿𝛿 � 𝑀𝑀𝑡𝑡 ��
1
2
𝜌𝜌�̇�𝑢𝑖𝑖�̇�𝑢𝑖𝑖 − 𝐻𝐻�𝑀𝑀𝐻𝐻

𝑉𝑉∗

𝑡𝑡1

𝑡𝑡0

+ � 𝑀𝑀𝑡𝑡 � ��𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸𝑖𝑖0𝛿𝛿𝑃𝑃𝑖𝑖�𝛿𝛿𝐻𝐻
𝑉𝑉∗

+ �𝑡𝑡𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖𝛿𝛿𝛿𝛿
𝑠𝑠

�

𝑡𝑡1

𝑡𝑡0

= 0  
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The governing equations, or the Euler conditions produced in this case are the following: 

 

 𝐺𝐺𝑀𝑀𝐺𝐺𝑀𝑀𝑐𝑐𝑒𝑒𝑃𝑃𝑒𝑒𝑔𝑔 𝑀𝑀𝑒𝑒𝑢𝑢𝑎𝑎𝑡𝑡𝑃𝑃𝑀𝑀𝑒𝑒𝑒𝑒 𝑊𝑊ℎ𝑀𝑀𝑐𝑐𝑀𝑀  

 −𝜌𝜌�̈�𝑢𝑖𝑖 + 𝑇𝑇𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝑓𝑓𝑖𝑖 = 0   

 𝐸𝐸�𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖,𝑖𝑖 − 𝜑𝜑,𝑖𝑖 + 𝐸𝐸𝑖𝑖0 = 0   

 −𝜀𝜀0𝜑𝜑,𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖,𝑖𝑖 = 0 𝑃𝑃𝑒𝑒 𝐻𝐻  

 𝜑𝜑,𝑖𝑖𝑖𝑖 = 0 𝑃𝑃𝑒𝑒 𝐻𝐻′  

 

And the boundary conditions: 

 

 𝐵𝐵𝑀𝑀𝑢𝑢𝑒𝑒𝑀𝑀𝑎𝑎𝑐𝑐𝐵𝐵 𝐶𝐶𝑀𝑀𝑒𝑒𝑀𝑀𝑃𝑃𝑡𝑡𝑃𝑃𝑀𝑀𝑒𝑒  

 𝑒𝑒𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖 = 0  

 𝑒𝑒𝑖𝑖�−𝜀𝜀0�𝜑𝜑,𝑖𝑖� + 𝑃𝑃𝑖𝑖� = 0  

 𝑒𝑒𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖 = 0  

 

In addition to those boundary conditions, some initial conditions are also needed, as the 
problem in this case is dynamic. This is something that wasn’t commented on Mindlin (1968), 
but later, Giannakopoulos took it into consideration (Giannakopoulos (2019, 2021a, 2021b)).  

In those relations, the added terms are the accelerations, �̈�𝑢𝑖𝑖 which were imported through the 
addition of the kinetic energy through Hamilton’s principle and the term 𝐸𝐸𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑊𝑊/𝜕𝜕𝑃𝑃𝑖𝑖,𝑖𝑖, a term 
imported through a polarization gradient. The procedure to derive the governing equations 
follows the above, with some modifications (Appendix A), as the total energy density was 
considered a bit different.  

iii. The Couple Elasticity Anti-plane problem 

A study of the cracks was made by Gourgiotis and Georgiadis (2007). In this research the 
authors used the couple stress elasticity theory to study the mode II and mode III cracks. The 
results of the couple stress elasticity seem to be different from the results of classical fracture 
mechanics.  

In their study, the researchers took into account the microstructure of the material. The aim of 
that project was to provide a full-field solution for mode II and mode III cracks of finite length, 
by using a method called distributed dislocations, but this is not something to delve into.  

Initially, the authors describe the basic concept of couple stress elasticity. They inserted in the 
potential energy density, in addition to the term referring to strains, also term referring to strain 
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gradient of the rotations, with some modifiers that are symbolized as 𝜂𝜂 and 𝜂𝜂′. Those modifiers 
are the couple-stress moduli and for them the following relation should hold.  

 

 −1 <
𝜂𝜂
𝜂𝜂′

< 1  

 

And also, in any case 𝜂𝜂 > 0. 

The terms of the strains are inserted in the potential energy density through the Lamé 
constants, for which, in any case the below relations should apply.  

 

 3𝜆𝜆 + 2𝜇𝜇 > 0  

 𝜇𝜇 > 0  

 

The potential energy density equation is proposed as the following 

 

 𝑊𝑊 ≡ 𝑊𝑊�𝜀𝜀𝑖𝑖𝑖𝑖, 𝜅𝜅𝑖𝑖𝑖𝑖� =
1
2
𝜆𝜆𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜇𝜇𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 + 2𝜂𝜂𝜅𝜅𝑖𝑖𝑖𝑖𝜅𝜅𝑖𝑖𝑖𝑖 + 2𝜂𝜂′𝜅𝜅𝑖𝑖𝑖𝑖𝜅𝜅𝑖𝑖𝑖𝑖  

 

Whereas the terms 𝜅𝜅𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝜕𝜕𝑖𝑖𝑢𝑢𝑖𝑖/2 = 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 are the strain gradient.  

The authors then discuss the cases of plane strain (relative to the mode II crack) and the anti-
plane strain which will be discussed further in the Appendix C. According to the theory of Anti-
plane strain, the deformation should be zero in the in-plane directions (𝑥𝑥,𝐵𝐵) while non-zero in 
the out-of-plane direction: 

 

 𝑢𝑢𝑥𝑥 ≡ 0  

 𝑢𝑢𝑦𝑦 ≡ 0  

 𝑢𝑢𝑧𝑧 ≡ 𝑠𝑠(𝑥𝑥, 𝐵𝐵) ≠ 0  

 

In the next figure a crack in the frame of anti-plane strain is being presented. This sketch was 
obtained from Gourgiotis and Georgiadis (2007). 
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 The Anti-plane strain crack problem.  

The loading is in the out-of-plane direction. The crack opens because of the shear contribution of the 
out-of-plane force (Giourgiotis and Georgiadis (2007)). 

 

The differential equation that describes the anti-plane strain problem is the following: 

 

 ∇2𝑠𝑠 − 𝑃𝑃2∇4𝑠𝑠 = 0  

 

This equation, which is hypersingular with a cubic singularity, describes the anti-plane 
problem, using the theories of the couple stress elasticity. In that equation the term 𝑃𝑃 describes 
the microstructural length. This length is related with the moduli 𝜂𝜂 and 𝜂𝜂′.  

The cracks are usually studied through distributed dislocations. A static mode II crack is 
usually studied as a glide dislocation distribution, while the static mode III crack as a screw 
dislocation distribution. Despite the fact that the crack that was used was a screw dislocation, 
the authors observed a cohesive-like zone near the crack tip in the shear stresses, that had 
increasing effects while the module 𝛽𝛽 = 𝜂𝜂/𝜂𝜂′ → 1. Ahead of that cohesive-like zone the stress 
gets maximized locally, but that maximum is bounded.  

At the work of Zisis (2018) the anti-plane response of half planes and layers of finite thickness 
bonded on rigid substrates under a point load, in the context of couple stress elasticity, was 
discussed. This problem, when plain strain theory is used, is also known as Burmister’s 
problem. Also in this paper, solutions near the point in which the load is applied were 
presented, that were used to be pathological via the classical solutions.  

The problem, the author was cast to solve, is not a crack problem but a problem with a shear 
concentrated force on the surface of the plane and can be represented by the beneath sketch, 
which is included on the published paper. This problem was solved both analytically and 
computationally.  
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 Schematic representation of the anti-plane problem solved by Prof. Zisis (Zisis (2018)). 

Note that the direction of the “z” axis was changed from the original, so the system would be 
orthonormal.  

 

iv. The plate problem 

The instability of plates was something studied in a sufficient way by Babouskos and 
Katsikadelis (2009). The authors studied on plates the combined flutter and divergence 
instability and solved examples through the method of boundary elements. They included both 
conservative and non-conservative loads (regarding whether the load follows the deformation 
or not). The conservative force is applied in the undeformed configuration in contrast to the 
nonconservative load which is applied in the deformed configuration. Both those instabilities 
refer to axial in-plane force on a plate. The flutter instability describes a vibrational motion, 
usually happens for smaller loads and by enlarging the load is transformed to a divergence 
instability, which has smaller frequencies and the amplitude is increased exponential.  

The significance of this research is the way the authors extracted the differential equations 
that describe the problem. They use Hamilton’s principle. According to that, the principle of 
virtual works, should hold true in any case.  

 

 � (𝛿𝛿𝛿𝛿 − 𝛿𝛿𝑈𝑈 + 𝛿𝛿𝐻𝐻 + 𝛿𝛿𝑊𝑊𝑛𝑛𝑛𝑛)𝑀𝑀𝑡𝑡

𝑡𝑡2

𝑡𝑡1

= 0  

 

In this relation the term 𝛿𝛿 refers to the total kinetic energy between time 𝑡𝑡1 and 𝑡𝑡2. 𝑈𝑈 is the 
elastic energy, or as it is mentioned in other points the total potential energy density. The other 
two terms refer to the conservative and non-conservative forces that may be applied to the 
configuration. 𝐻𝐻 is the potential of external forces while 𝑊𝑊 is the virtual work of the 
nonconservative or damping loads.  

The authors used the analogue equation method, a boundary element method to solve this 
kind of problems. 
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The flutter and divergence instability were also studied by Adali (1982). However, the basic 
theory concerning the plates is the same, as the out-of-plane displacement is concerned. The 
differential equation that defines the problem is non-other than the one proposed by 
Babouskos and Katsikadelis (2009). Actually, this research comes first, while the work of 
Babouskos and Katsikadelis (2009) supplements the theory, as the membrane displacements 
are studied in addition to the boundary element solution it provides.  

Both researches point also the importance of the boundary conditions, which has been further 
studied in the work of Shi and Bezine (1988). In this research, the anisotropic plate is being 
studied, as the authors presented an orthotropic plate in bending problems. The governing 
differential equation for an anisotropic plate is proposed as the following:  

 

 𝐷𝐷11
𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥4

+ 4𝐷𝐷16
𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥3𝜕𝜕𝐵𝐵

+ 2 ∗ (𝐷𝐷12 + 2𝐷𝐷66)
𝜕𝜕4𝑠𝑠

𝜕𝜕𝑥𝑥2𝜕𝜕𝐵𝐵2
+ 4𝐷𝐷26

𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥𝜕𝜕𝐵𝐵3

+ 𝐷𝐷22
𝜕𝜕4𝑠𝑠
𝜕𝜕𝐵𝐵4

= 𝑝𝑝(𝑥𝑥,𝐵𝐵)  

 

In this equation 𝐷𝐷11, 𝐷𝐷16, 𝐷𝐷12, 𝐷𝐷66, 𝐷𝐷26, 𝐷𝐷22 are the flexural rigidities of the anisotropic plate, 
and 𝑝𝑝(𝑥𝑥, 𝐵𝐵) is the bending action.   

The boundary conditions that are needed for the solution of this differential equation can be 
reduced to the following: 

 

  Location of the boundary 
condition 

Value of the bounded characteristic  

  𝐶𝐶𝑃𝑃𝑎𝑎𝑠𝑠𝑝𝑝𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑔𝑔𝑀𝑀 𝑠𝑠 = 0 𝜕𝜕𝑠𝑠
𝜕𝜕𝑒𝑒

= 0 
 

  𝛿𝛿𝑃𝑃𝑠𝑠𝑝𝑝𝑃𝑃𝐵𝐵 − 𝑒𝑒𝑢𝑢𝑝𝑝𝑝𝑝𝑀𝑀𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑔𝑔𝑀𝑀 𝑠𝑠 = 0 𝑀𝑀𝑛𝑛 = 0  

  𝐹𝐹𝑐𝑐𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑔𝑔𝑀𝑀 𝑀𝑀𝑛𝑛 = 0 𝐻𝐻𝑛𝑛 = 0  

 

The characteristic values can be defined from the operator (𝜕𝜕(… ))/𝜕𝜕𝑒𝑒, 𝑀𝑀𝑛𝑛(… ), 𝐻𝐻𝑛𝑛 (… ), which 
can be calculated with a superposition of the gradients. That operator can be defined via the 
method proposed from of Shi and Bezine (1988), in any boundary, even if the plate is not 
rectangular and the boundary is edgy.  

v. The analogue of the anti-plane problem and a prestressed plate 

Gavardinas et al. (2018) presented a direct analogue for solving anti-plane problems with 
theories such as the couple stress elasticity or the dipolar gradient elastic (which are 
analogue), by solving a plate, prestressed by a biaxial tension and vice versa. 
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Next, the authors applied this analogue to a problem of crack under anti-plane shear loading. 
By solving a prestressed plate, the result of the anti-plane crack problem can be obtained via 
a FEM method.  

vi. Flexoelectricity and magnetism 

For the first time in this research (Giannakopoulos and Zisis (2021 b.)), the authors 
commented on magnetic effects that may occur. As the polarization has dynamic properties, 
polarization acceleration that may occur make it unjustifiable to neglect magnetic effects.  

For the study of the electromagnetic field Giannakopoulos and Zisis (2021 b.) assumed a 
Maxwell electric field, which resides in the out-of-plane direction 𝐸𝐸3(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) and also a 
magnetic field in the direction perpendicular to that (the magnetic field is in the other two 
directions, the in-plane directions), 𝐵𝐵1(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) and 𝐵𝐵2(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡). The dimension of this 
magnetic field is [𝑊𝑊𝑏𝑏/𝑠𝑠2]. The authors proceeded by assuming a weak magnetic coupling 
and so the polarization that was calculated from the anti-plane flexoelectric problem holds. As 
a result of the polarization, an electric displacement can be induced 𝐷𝐷3 = 𝜀𝜀0𝐸𝐸3 + 𝑃𝑃3 and also 
a current density 𝐼𝐼3 = �̇�𝐷3[𝐴𝐴/𝑠𝑠2] (also out-of-plane). As a result, an in-plane flux (𝐻𝐻) and an 
in-plane magnetic field (𝐵𝐵) will be created.  

The electromagnetic effect also can be better described on the following table: 

 

𝐸𝐸𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑀𝑀𝑠𝑠𝑎𝑎𝑔𝑔𝑒𝑒𝑀𝑀𝑡𝑡𝑃𝑃𝑐𝑐 

 𝐶𝐶ℎ𝑎𝑎𝑐𝑐𝑎𝑎𝑐𝑐𝑡𝑡𝑀𝑀𝑐𝑐𝑃𝑃𝑒𝑒𝑡𝑡𝑃𝑃𝑐𝑐 

𝐼𝐼𝑒𝑒 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 𝐶𝐶𝑀𝑀𝑠𝑠𝑝𝑝𝑀𝑀𝑒𝑒𝑀𝑀𝑒𝑒𝑡𝑡𝑒𝑒 

 

𝑂𝑂𝑢𝑢𝑡𝑡 𝑀𝑀𝑓𝑓 𝑃𝑃𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 

𝐶𝐶𝑀𝑀𝑠𝑠𝑝𝑝𝑀𝑀𝑒𝑒𝑀𝑀𝑒𝑒𝑡𝑡𝑒𝑒 
 

𝑂𝑂𝑢𝑢𝑡𝑡 𝑀𝑀𝑓𝑓 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 𝐸𝐸𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐 𝐹𝐹𝑃𝑃𝑀𝑀𝑃𝑃𝑀𝑀   𝐸𝐸3(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡)  

𝐸𝐸𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑀𝑀𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐷𝐷𝑃𝑃𝑒𝑒𝑝𝑝𝑃𝑃𝑎𝑎𝑐𝑐𝑀𝑀𝑠𝑠𝑀𝑀𝑒𝑒𝑡𝑡   𝐷𝐷3 = 𝜀𝜀0𝐸𝐸3 + 𝑃𝑃3  

𝐶𝐶𝑢𝑢𝑐𝑐𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡 𝐷𝐷𝑀𝑀𝑒𝑒𝑒𝑒𝑃𝑃𝑡𝑡𝐵𝐵 [𝐴𝐴/𝑠𝑠2]   𝐼𝐼3 = �̇�𝐷3  

𝐼𝐼𝑒𝑒 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 𝑠𝑠𝑎𝑎𝑔𝑔𝑒𝑒𝑀𝑀𝑡𝑡𝑃𝑃𝑐𝑐 𝑓𝑓𝑃𝑃𝑢𝑢𝑥𝑥 [𝑊𝑊𝑏𝑏/𝑠𝑠2] 𝐵𝐵1(𝑥𝑥1,𝑥𝑥2 , 𝑡𝑡) 𝐵𝐵2(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡)   

𝐼𝐼𝑒𝑒 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 𝑠𝑠𝑎𝑎𝑔𝑔𝑒𝑒𝑀𝑀𝑡𝑡𝑃𝑃𝑐𝑐 𝑓𝑓𝑃𝑃𝑀𝑀𝑃𝑃𝑀𝑀 [𝐴𝐴/𝑠𝑠] 𝐻𝐻1(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) 𝐻𝐻2(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡)   

 

To calculate these magnetic properties, the authors used the research of Mindlin and Toupin 
(1971). The Maxwell equations that are necessary for this problem are displayed: 

 

 𝐸𝐸3,2 + �̇�𝐵1 = 0 a 

 −𝐸𝐸3,1 + �̇�𝐵2 = 0 b 

 𝐵𝐵2,1 − 𝐵𝐵1,2 − 𝜇𝜇0𝜀𝜀0�̇�𝐸3 − 𝜇𝜇0�̇�𝑃3 c 

 𝐵𝐵1,1 + 𝐵𝐵2,2 = 0 d 
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In the above relation 𝜇𝜇0 is the magnetic permeability of vacuum, when the magnetic 
susceptibility of dielectrics is being neglected. Its numerical value is 𝜇𝜇0 = 4𝜋𝜋 ∗ 10−7 𝑐𝑐𝑔𝑔𝑠𝑠/𝐶𝐶2. 
Also, the speed of light in the vacuum is equal to 𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑡𝑡 = (𝜇𝜇0𝜀𝜀0)−1/2 ≅ 3 ∗ 108 𝑠𝑠/𝑒𝑒. 

The authors combined a, b and c, to produce the governing differential equation of the 
electromagnetic problem. 

 

 ∇2𝐸𝐸3 = 𝜇𝜇0�̈�𝑃3 + 𝜇𝜇0𝜀𝜀0�̈�𝐸3  

 

Which can be solved in respect of the out-of-plane electric field 𝐸𝐸3 for a known out-of-plane 
polarization 𝑃𝑃3.  The magnetic flux 𝐵𝐵1, 𝐵𝐵2 is calculated then from a and b and then the magnetic 
field can be calculated from the bellow relations:  

 

 𝐻𝐻1 = 𝜇𝜇0−1𝐵𝐵1  

 𝐻𝐻2 = 𝜇𝜇0−1𝐵𝐵2  

 

E. Aim 

This study will try to analyze the anti-plane flexoelectric problem, while using an analogue with 
couple stress elasticity. As it will be displayed later, the ferro-electric parameter exposes 
similar contribution with the microstructural parameters on a normal anti-plane problem 
through the theory of couple stress elasticity. Those, the microstructural and the micro-inertial 
length characterize an anti-plane dynamic couple stress elasticity problem as hyperbolic or 
elliptic, supersonic or subsonic. The same applies to the ferroelectric parameters for the 
flexoelectric anti-plane problem. In chapter 2 the flexoelectric parameters will get substituted 
by some other parameters called 𝑃𝑃 and 𝐻𝐻, in order to show similarities with the couple stress 
problem.  

The hyperbolic case will be studied in detail for the anti-plane flexoelectric problem and the 
polarization will be calculated.  

The dispersive nature of this flexoelectric dynamic problem will later be discussed, while last 
but not least, by using an analogue, the flexoelectric problem will be solved via a FEM method, 
that will also allow a solution for the hyperbolic case.  
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2. The anti-plane flexoelectric problem 

A. The anti-plane displacement 

One special case of three-dimensional elasticity is the anti-plane problem (similar to the plane 
stress and plane strain problem). The theory of the anti-plane strain demands some limitations 
to the in-plane displacements:  

 

 𝑢𝑢𝑥𝑥 = 𝑢𝑢1 ≡ 0  

 𝑢𝑢𝑦𝑦 = 𝑢𝑢2 ≡ 0  

 𝑢𝑢𝑧𝑧 = 𝑢𝑢3 = 𝑠𝑠(𝑥𝑥,𝐵𝐵) = 𝑠𝑠(𝑥𝑥1,𝑥𝑥2) ≠ 0  

 

This restriction of displacements allows only the development of the in-plane shear strains, 
and the cross-section shear strains in the out-of-plane direction. Those are also independent 
from the out-of-plane direction.   

 

 𝜀𝜀13 = 𝜀𝜀31 =
1
2
�
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥3

+
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥1

� =
1
2
𝜕𝜕𝑠𝑠(𝑥𝑥1, 𝑥𝑥2)

𝜕𝜕𝑥𝑥1
  

 𝜀𝜀23 = 𝜀𝜀32 =
1
2
�
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥3

+
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥2

� =
1
2
𝜕𝜕𝑠𝑠(𝑥𝑥1,𝑥𝑥2)

𝜕𝜕𝑥𝑥2
  

 

 
 The strains in the anti-plane formulation. 

Only four out of the nine components of the strain tensor are non-zero.  
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 𝜀𝜀𝑖𝑖𝑖𝑖 = �
0 0 𝜀𝜀13
0 0 𝜀𝜀23
𝜀𝜀13 𝜀𝜀23 0

� =

⎣
⎢
⎢
⎢
⎢
⎡ 0 0

1
2
𝑢𝑢3,1

0 0
1
2
𝑢𝑢3,2

1
2
𝑢𝑢3,1

1
2
𝑢𝑢3,2 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

 

An example of an anti-plane problem is the pull-out of the reinforcing bar anchored in concrete 
e.g. columns and beams made by reinforcing concrete. A Mode III crack is also a case of an 
anti-plane problem. Except the purely anti-plane problems, there are those that have great 
similarities. The Twist of beams and the out-of-plane loading of a thin plate, are problems that 
are recognized as “anti-plane-like” problems.  

 

  

 The Twist of beams.  
By using cylindrical coordinates, only the radial 
displacement is active and thus this problem can 
bring similarities to an anti-plane problem. 
However, it is not a purely anti-plane problem. 

 A thin plate.  
By considering a very thin plate, the axial (in-
plane) displacements can be neglected (under 
conditions) and then the problem exhibits anti-
plane similarities. However, it is not an anti-plane 
problem. 

 

 
 The pull out of the reinforcement on one-dimensional concrete element like a beam or a 

column is a purely anti-plane problem.  
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The cracks that can happen are of three types. The mode I and II cracks are both in-plane 
problems as the mode I crack is opening in the in-plane direction perpendicular to the 
discontinuity and the mode II crack is opening along the discontinuity (shear mode). The mode 
III crack, which is of interest, is a scissor like crack and the displacement occurs perpendicular 
to the discontinuity and to the surface. The displacement is “out-of-plane displacement” and 
the problem is anti-plane.  

 

 
 Mode I crack.  

The crack is opening in the in-plane direction perpendicular to the discontinuity of the crack. The 
problem is an “in-plane” problem  

 

 

 Mode II crack. 
The crack is opening in the in-plane direction, parallel to the discontinuity of the crack. The problem 
is an “in-plane” problem 
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 The mode III crack.  
The crack is “scissor-like”. It is opening in the out-of-plane direction and can be considered an anti-
plane problem.  

 

All problems have been studied by various researchers such as Giourgiotis and Georgiadis 
(2007), Giannakopoulos and Zisis (2021 a, b), and others.  

A significant comment is being addressed by Giannakopoulos and Zisis (2021 b.), who 
suggested that in order for a problem to be a true anti-plane problem, either the Maxwell 
surface traction should be very small or the electric field.  

 

 𝐸𝐸3 ≪ �2𝜇𝜇𝑎𝑎  

 

Where 𝐸𝐸3 is the out-of-plane electric action, 𝜇𝜇 is the shear modulus and 𝑎𝑎 is the reciprocal 
dielectric constant. This, however, is usually not violated.  

B. The anti-plane polarization 

The flexoelectric anti-plane problem, includes also polarizations. The anti-plane formulation 
demands the in-plane components of the polarization to be zero and the out-of-plane 
component to be independent from the out-of-plane coordinate, similarly to displacement.  

 

 𝑃𝑃𝑥𝑥 = 𝑃𝑃1 ≡ 0  

 𝑃𝑃𝑦𝑦 = 𝑃𝑃2 ≡ 0  

 𝑃𝑃𝑧𝑧 = 𝑃𝑃𝑧𝑧(𝑥𝑥,𝐵𝐵) = 𝑃𝑃3(𝑥𝑥1,𝑥𝑥2) ≠ 0  
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C. The anti-plane flexoelectric problem 

The anti-plane flexoelectric problem is a combination of two problems. The first one is the well-
known anti-plane problem that is described in general as a displacement (not necessarily a 
displacement vector as this vector, in the anti-plane problem has only one component, the 
out-of-plane one), that is caused from an action (that usually is also out-of-plane, like the 
examples shown previously). The displacement produced however has an additional effect, 
the flexoelectric phenomenon, which refers to the second one.  

This indicates that in an anti-plane formulation, such as the propagation of a mode III crack, 
an electric field will be produced with an out-of-plane polarization, the 𝑃𝑃3. This polarization will 
be the effect of flexoelectricity. 

The general idea of the anti-plane flexoelectric problem is to solve the anti-plane problem 
considering the contribution of flexoelectricity by mechanical terms (converse flexoelectric 
effect). The methodology was described by Giannakopoulos and Zisis (2019). The difference 
with a normal anti-plane problem is that the converse flexoelectric phenomenon should be 
considered in the formula of potential energy density.  

To make things a bit simpler Giannakopoulos and Zisis (2019) neglect an “a priori” internal 
length scales as implied in non-local elastic theories and so it is feasible to neglect the elastic 
strain energy produced by strain gradient effects. By using the formula described by Mindlin 
(1968, 1969), the authors reduce the energy density to the beneath (they added also some 
terms): 

 

 

𝑈𝑈 =
1
2
�𝑎𝑎𝑃𝑃32 + (𝑏𝑏44 + 𝑏𝑏77)�𝑃𝑃3,1

2 + 𝑃𝑃3,2
2�

+ 2𝑀𝑀44 �(𝜀𝜀13 + 𝜀𝜀31)𝑃𝑃3,1 + (𝜀𝜀23 + 𝜀𝜀32)𝑃𝑃3,2�

+ 2𝑓𝑓12 ��𝜀𝜀13,1 + 𝜀𝜀31,1�𝑃𝑃3 + �𝜀𝜀23,2 + 𝜀𝜀32,2�𝑃𝑃3� + 2𝜇𝜇(𝜀𝜀132 + 𝜀𝜀232)� 

1 

 

The components 𝜀𝜀𝑖𝑖𝑖𝑖 are the anti-plane strains, 𝑃𝑃3 is the out-of-plane polarization, ( ),𝑖𝑖 
symbolizes the gradient. The other components which are constant are the shear modulus 
𝜇𝜇 [𝑁𝑁/𝑠𝑠2], the flexoelectric constant 𝑓𝑓12 [𝑁𝑁𝑠𝑠/𝐶𝐶] , the inverse flexoelectric constant 𝑀𝑀44 [𝑁𝑁𝑠𝑠/𝐶𝐶], 
the gradient polarization constant (𝑏𝑏44 + 𝑏𝑏77) [𝑁𝑁𝑠𝑠4/𝐶𝐶2] and lastly 𝑎𝑎 [𝑁𝑁𝑠𝑠2/𝐶𝐶2] is the reciprocal 
dielectric constant. 

The above parameters should be bounded: 

 

 𝜇𝜇 > 0  

 𝛼𝛼 > 0  

 𝑓𝑓12 > 0  

 𝑓𝑓44 > 0  

 𝑀𝑀44 > 0  
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 𝑏𝑏44 + 𝑏𝑏77 > 0  

 𝜇𝜇(𝑏𝑏44 + 𝑏𝑏77) − 𝑀𝑀442 > 0  

 

At the work of Maranganti et al. (2006), some characteristic values of the constants can be 
obtained. In the beneath table, that was also obtained from Giannakopoulos and Zisis (2019), 
those values are displayed: 

 

𝐶𝐶𝑀𝑀𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑎𝑒𝑒𝑡𝑡 𝛿𝛿𝐵𝐵𝑠𝑠𝑏𝑏𝑀𝑀𝑃𝑃 𝑁𝑁𝑢𝑢𝑠𝑠𝑀𝑀𝑐𝑐𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐻𝐻𝑎𝑎𝑃𝑃𝑢𝑢𝑀𝑀 𝐷𝐷𝑃𝑃𝑠𝑠𝑀𝑀𝑒𝑒𝑒𝑒𝑃𝑃𝑀𝑀𝑒𝑒 

𝑐𝑐44 = 𝜇𝜇 0.32500 ∗ 10−2 [𝑀𝑀𝐵𝐵𝑒𝑒/𝑒𝑒𝑠𝑠2] 

𝑓𝑓12 0.01125 ∗ 107 [𝑀𝑀𝐵𝐵𝑒𝑒 𝑒𝑒𝑠𝑠/𝐶𝐶] 

𝑏𝑏44 0.52550 ∗ 1032 [𝑀𝑀𝐵𝐵𝑒𝑒 𝑒𝑒𝑠𝑠4/𝐶𝐶2] 

𝑀𝑀44 0.35600 ∗ 1015 [𝑀𝑀𝐵𝐵𝑒𝑒 𝑒𝑒𝑠𝑠/𝐶𝐶] 

𝑏𝑏77 1.92100 ∗ 1032 [𝑀𝑀𝐵𝐵𝑒𝑒 𝑒𝑒𝑠𝑠4/𝐶𝐶2] 

𝑎𝑎 8.76700 ∗ 1033 [𝑀𝑀𝐵𝐵𝑒𝑒 𝑒𝑒𝑠𝑠2/𝐶𝐶2] 

𝜀𝜀0 8.85400 ∗ 10−35 [𝐶𝐶2/𝑀𝑀𝐵𝐵𝑒𝑒 𝑒𝑒𝑠𝑠2] 

𝜌𝜌 5.3176 [𝑔𝑔/𝑐𝑐𝑠𝑠3] 

 

Where 1 𝑀𝑀𝐵𝐵𝑒𝑒 = 10−5 𝑁𝑁 

 

 
 Typical material parameters 

obtained from Giannakopoulos and Zisis (2021 b). The number below the chemical formula of the 
material symbolizes the crystallographic direction.  

 

As it was discussed, the only non-zero polarization is the out-of-plane, similar to the 
displacement, 𝑃𝑃3(𝑥𝑥,𝐵𝐵). This means that also the polarization gradient 𝑃𝑃3,3 is zero and thus it 
was rightly neglected in the formula of total energy density (relation 1). 
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By considering some of the above constants equal to zero, relation 1, describes some known 
cases, as example, when 𝑓𝑓12 = 𝑀𝑀44 = 0 the classic dielectric formula is obtained. If also 𝑎𝑎 = 0, 
then the formula describes the classic elastic case.  

The procedure to conclude the governing equation of the problem, is via Toupin’s principle of 
variations, as described by Mindlin (1968).  

The full problem is, in every case, the dynamic anti-plane flexoelectric problem like a mode III 
crack. This can be described with the addition of kinetic energy, which can be written as 𝑇𝑇 =
𝜌𝜌�̇�𝑢3�̇�𝑢3/2, while the dielectric enthalpy, without considering the contribution of optical wave 
modes, is 𝐻𝐻� = 𝑈𝑈 − 𝜀𝜀0�𝛷𝛷,1

2 + 𝛷𝛷,2
2�/2. In the above relations 𝜌𝜌 is the material mass density and 

(…̇ ) is the time derivative, −𝛷𝛷 is the Maxwell self-field and the dielectric constant at vacuum 
is 𝜀𝜀0.  

The procedure to extract the governing equations of the anti-plane flexoelectric problem is 
described in detail in Appendix A. By using Toupin’s Variational Principle, 3 Euler conditions 
are extracted from the volume integral.  

The first equation is used to calculate the out-of-plane displacements (A.27): 

 

 𝜇𝜇∇2𝑢𝑢3 − 𝜇𝜇
𝑃𝑃2

2
∇4𝑢𝑢3 = 𝜌𝜌�̈�𝑢3 −

𝜌𝜌𝛿𝛿2

12
∇2�̈�𝑢3 2 

 

While the second one is used for the calculations of the out polarization (A.29):  

 

  𝑃𝑃3 −
𝑃𝑃2

2
∇2 𝑃𝑃3 =

𝜌𝜌(𝑀𝑀44 − 𝑓𝑓12)
𝑎𝑎𝜇𝜇

�̈�𝑢3 3 

 

The terms 𝑃𝑃 and 𝐻𝐻 represent the “microstructural” and the “micro-inertial length”: 

 

 
𝑃𝑃2

2
=
𝑏𝑏44 + 𝑏𝑏77

𝑎𝑎
−

(𝑀𝑀44 − 𝑓𝑓12)2

𝜇𝜇𝑎𝑎
≥ 0 4 

 𝐻𝐻2

12
=
𝑏𝑏44 + 𝑏𝑏77

𝑎𝑎
≥
𝑃𝑃2

2
 5 

 

This way the problem of the displacement decouples from the polarizations. Note that by using 
Toupin’s Variational Principle, one more Euler condition is being produced, the Maxwell 
equation, which decouples from the problem. Also, via Toupin’s Variational Principle, one 
second integral is produced, that refers not to the volume of the body, but to its boundary. This 
integral describes the boundary conditions that are needed for the solution of the problem. For 
more information the reader is suggested to visit Appendix A. Those could be initial conditions 
at 𝑡𝑡 = 0 for the out-of-plane displacement, the velocity and the polarization, some electric 
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boundary conditions referring to the polarization gradient or the polarization, jump conditions 
or even mechanical boundary conditions.  

The boundary conditions that are needed for the problem, are presented in a table in 
Giannakopoulos and Zisis 2019, that can be seen below.  

 

 

 The boundary conditions required in the anti-plane flexoelectric formulation, 
as presented by Giannakopoulos and Zisis 2019. 

 

Both the governing equations are dynamic equations as they contain terms of accelerations. 
This happened because of the consideration of a velocity. By replacing the global system 
(𝑥𝑥,𝐵𝐵) with a system of characteristic coordinates (𝜉𝜉, 𝜂𝜂), that moves along the crack and obeys 
the following transformation: 

 

 𝜉𝜉 = 𝑥𝑥 + 𝐻𝐻𝑡𝑡 
6 

 𝜂𝜂 = 𝐵𝐵 

 

the problem decouples from the accelerations and the two governing equations transform to 
the following. The first one, which describes the displacement, is derived from relation 2 by 
using the transformation 6 

 

�1−
𝐻𝐻2

𝑐𝑐𝑠𝑠2
�
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜉𝜉2

+
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜂𝜂2

−
𝑃𝑃2

2
�1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉4

−
𝑃𝑃2

2
�2−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�

𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2

−
𝑃𝑃2

2
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜂𝜂4

= 0 7 

 

and the second one, which describes the polarization, is derived from relation 3. 
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  𝑃𝑃3 −
𝑃𝑃2

2
�
𝜕𝜕2𝑃𝑃3
𝜕𝜕𝜉𝜉2

+
𝜕𝜕2𝑃𝑃3
𝜕𝜕𝜂𝜂2

� = 𝐻𝐻2
𝜌𝜌(𝑀𝑀44 − 𝑓𝑓12)

𝑎𝑎𝜇𝜇
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜉𝜉2

 8 

 

In those two relations the term 𝑐𝑐𝑠𝑠 = �𝜇𝜇/𝜌𝜌, represents the shear wave velocity. Those 
transformations are described in detail in Appendix B. 

The transformation of coordinates that relation 6 describes, assumes constant velocity, e.g. a 
steady state mode III crack (as the one studied in Giannakopoulos and Zisis 2019, 2021 a, b). 
The transformation that holds for any case has instead of the velocity, the integral of the 
velocity.  

 

 𝜉𝜉 = 𝑥𝑥 + � 𝐻𝐻(𝑥𝑥, 𝐵𝐵, 𝜏𝜏))
𝑡𝑡

𝑡𝑡0
𝑀𝑀𝜏𝜏  

 𝜂𝜂 = 𝐵𝐵  

 

However, a numerical assumption of the solution of the integral, e.g. using Simpson’s law, or 
Gauss’ integration of 1st order (rule of the middle value), suggest that the above transformation 
is equivalent to the transformation proposed by relation 6.   

Relation 7 gives a nice perspective of the problem. It can be supersonic, or subsonic, elliptic 
or hyperbolic. This, however, is something that will be discussed further.  
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3. The anti-plane couple elasticity dynamic 
problem 

One alternative theory to classic elasticity is a theory studied from various researchers such 
as Giourgiotis and Georgiadis (2007) and Zisis (2018), known as couple stress elasticity 
theory. This theory takes into consideration the second order gradient of strains and more 
precisely, the strains of the spins (the whole formulation of the theory of couple stress elasticity 
is being discussed in Appendix C, as proposed by Giourgiotis and Georgiadis (2007)). This 
way, terms of strain gradients are added to the energy density formulation and thus the 
governing equations that describe a problem based on the theory of couple stress elasticity, 
are in agreement with those gradients. Some could say that the theory of couple stress 
elasticity completes the classic elasticity theory (Zisis (2018) used this theory to find the 
displacements in a pathological area, in a problem he solved). 

As Zisis (2018) proposed, the theory of couple stress elasticity should be used to enrich the 
theory with microstructural characteristics. This way, the theory could also be used when 
studying size effects. He pointed out that classical continuum theories cannot explain size 
effects that occur in many different materials at micron or nanometer scales, because there is 
no length scale of the material (the microstructure) and this is the reason why higher order 
theories such as the couple stress theory are needed. Couple stress elasticity usually replaces 
classic elasticity in terms of problems relevant to dislocations, plasticity and so on, This theory 
can be used also in in small scales, or when there are size effects.  

In the theory of couple stress elasticity, or the Cosserat theory with constrained rotation as it 
is also known, some special parameters make an appearance. These parameters are the 
moduli 𝜂𝜂 and 𝜂𝜂′ and have to do with the importance of microstructure. As these parameters 
tend to zero, the classical theory replaces the couple stress elasticity. For better observation 
of the problem, two other parameters are usually used instead of those, the microstructural 
length 𝑃𝑃 = �2𝜂𝜂/𝜇𝜇  (where 𝜇𝜇 is the known Lame’s constant), (Zisis (2018) symbolizes the 
microstructural length 𝑃𝑃𝑏𝑏) and the parameter 𝛽𝛽 = 𝜂𝜂′/𝜂𝜂. 

One anti-plane problem is possible to be solved via the theory of couple stress elasticity, as 
any other problem. The restrictions of the displacement that are applied in the anti-plane 
formulation make feasible some simplifications. The anti-plane couple stress elasticity 
formulation is being discussed in detail in Appendix C.  

The total energy density, as described from Giourgiotis and Georgiadis (2007), can be given 
by the following formula:  

 

 𝑈𝑈 ≡ 𝑈𝑈�𝜀𝜀𝑖𝑖𝑖𝑖 ,𝜅𝜅𝑖𝑖𝑖𝑖� =
1
2
𝜆𝜆𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜇𝜇𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 + 2𝜂𝜂𝜅𝜅𝑖𝑖𝑖𝑖𝜅𝜅𝑖𝑖𝑖𝑖 + 2𝜂𝜂′𝜅𝜅𝑖𝑖𝑖𝑖𝜅𝜅𝑖𝑖𝑖𝑖 9 

 

Whereas the terms 𝜅𝜅𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝜕𝜕𝑖𝑖𝑢𝑢𝑖𝑖/2 = 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 is the strain gradient. 𝜆𝜆 is the other Lame’s 
constant.  
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The governing equation of a static anti-plane couple stress elasticity problem is the following 
(relation 10). By substituting to that equation 𝑃𝑃 = 0 the classic solution of anti-plane problem 
is produced in terms of classic elasticity.  

 

 𝜇𝜇∇2𝑠𝑠 − 𝜇𝜇
𝑃𝑃2

2
∇4𝑠𝑠 = 0 10 

 

The boundary conditions that are needed for this differential equation, are usually Saint Venant 
boundary conditions, according to Gourgiotis and Georgiadis (2007) 

Bibliography can give various values of the microstructural length and one other parameter as 
well, 𝑃𝑃𝑡𝑡 = 𝑃𝑃�2(1 + 𝛽𝛽) (The microstructural length is relevant to the bending and thus is 
symbolized in the research of Zisis (2018) as 𝑃𝑃𝑏𝑏, where 𝑏𝑏 symbolizes bending. The parameter 
𝑃𝑃𝑡𝑡 consistently is a length property connected with the torsion.)  

 

 The microstructural length and the parameter 𝑃𝑃𝑡𝑡 as referred by Radi (2008) (Zisis 
(2018))  

 
A syntactic foam that consists of hollow 
glass micro-bubbles embedded in an epoxy 
matrix 

𝑃𝑃 = 0.032 𝑠𝑠𝑠𝑠 𝑃𝑃𝑡𝑡 = 0.032 𝑠𝑠𝑠𝑠  

 A high-density rigid polyurethane closed cell 
foam 𝑃𝑃 = 0.0327 𝑠𝑠𝑠𝑠 𝑃𝑃𝑡𝑡 = 0.62 𝑠𝑠𝑠𝑠  

 

Some limitations to the parameters of the couple stress elasticity theory, were described in 
Giourgiotis and Georgiadis (2007) and are the following:  

 

 −1 <
𝜂𝜂
𝜂𝜂′

< 1  

 𝜂𝜂 > 0  

 

And of course, the Lame’s constants: 

 

 3𝜆𝜆 + 2𝜇𝜇 > 0  

 𝜇𝜇 > 0  

  

Relation 10, however refers to a static problem, while an anti-plane problem can be dynamic, 
e.g. the mode III crack propagation. It is not difficult to add the extra dynamic terms on relation 
10 with the use of Hamilton’s principle. 
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The kinetic energy in terms of couple stress elasticity has the following form: 

 

 𝑇𝑇 =
1
2
𝜌𝜌�̇�𝑢3�̇�𝑢3 +

𝜌𝜌𝐻𝐻2

6
(�̇�𝜔1�̇�𝜔1 + �̇�𝜔2�̇�𝜔2) 11 

 

In addition to the normal, out-of-plane velocity, �̇�𝑢3, the kinetic energy should also consist of 
rotational velocities, �̇�𝜔1 and �̇�𝜔2. The reason is that those were considered to play a prominent 
role, as the spins are present in the constitutive laws, and the energy density (because of the 
theory of couple stress elasticity). The term 𝜌𝜌 represents the mass density of the body, while 
the term 𝐻𝐻 symbolizes the micro-inertial length (it has length dimensions). 

Through Hamilton’s principle, the kinetic energy produces an extra term and the governing 
equation can take the following form: 

 

 𝜇𝜇 ∇2𝑢𝑢3 − 𝜇𝜇
𝑃𝑃2

2
 ∇4𝑢𝑢3 = 𝜌𝜌�̈�𝑢3 −

𝜌𝜌𝐻𝐻2

12
∇2�̈�𝑢3 12 

 

The procedure, in which this result is based on, is described also in detail in Appendix C. In 
addition, one more boundary condition appears. It refers to the acceleration gradient vertical 
to the surface and is described by the following formula: 

 

 �̈�𝑢3,2𝑒𝑒2 + �̈�𝑢3,1𝑒𝑒1 = 0 13 

 

 
 The boundary conditions needed for the anti-plane couple stress elasticity problem, 

as presented by Giannakopoulos and Zisis (2019). 

  

Relation 12 which refers to the anti-plane couple stress elasticity problem, seems to be the 
same with relation 2, which refers to the anti-plane flexoelectric problem 
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A. The analogue between the flexoelectric and the couple stress anti-plane 
problem.  

As it was mentioned already, relation 12 which refers to the anti-plane couple stress elasticity 
problem, seems to be the same with relation 2, which refers to the anti-plane flexoelectric 
problem.  

 

 𝜇𝜇 ∇2𝑢𝑢3 + 𝜇𝜇
𝑃𝑃2

2
 ∇4𝑢𝑢3 = 𝜌𝜌�̈�𝑢3 −

𝜌𝜌𝐻𝐻2

12
∇2�̈�𝑢3  

 

In relation 2, the displacement is the out-of-plane displacement, the microstructural length 
equal to  𝑃𝑃2/2 = (𝑏𝑏44 + 𝑏𝑏77)/𝑎𝑎 − (𝑀𝑀44 − 𝑓𝑓12)/𝜇𝜇𝑎𝑎 and the micro-inertial length 𝐻𝐻2/12 =
(𝑏𝑏44 + 𝑏𝑏77)/𝑎𝑎. Also, 𝜌𝜌 is the mass density, 𝜇𝜇 is one of the Lame’s constant, the shear modulus. 
The other parameters are relative to flexoelectricity and are specified in detail in previous 
chapters.  

The analogue between the case of the anti-plane flexoelectricity and the anti-plane couple 
stress elasticity can be better described in the beneath table:  

 

 Flexoelectric Anti-plane 
problem 

Anti-plane Couple stress 
elasticity problem 

 

 
𝑏𝑏44 + 𝑏𝑏77

𝑎𝑎
−

(𝑀𝑀44 − 𝑓𝑓12)2

𝜇𝜇𝑎𝑎
 𝑃𝑃2

2
 

 

 𝑏𝑏44 + 𝑏𝑏77
𝑎𝑎

 
𝐻𝐻2

12
 

 

 

Also, there should be an analogue in the boundary conditions.  

A conclusion that can easily be drown, because both problems are based on an anti-plane 
formulation, is that the anti-plane flexoelectricity problem is basically a couple stress elasticity 
problem, where the flexoelectric properties define the microstructure of the material.  

B. The three sub-cases of the problem 

The governing equation of the anti-plane couple stress elasticity problem, relation 12, which 
is the same with relation 2, the governing equation of the anti-plane flexoelectricity problem, 
are both dynamic equations. Considering that the problem is defined by a velocity, 𝐻𝐻 (e.g. the 
velocity which the mode III crack propagates) and then also considering a moving system of 
coordinates, that depends on this velocity and also on the time (e.g. a moving system in which 
the beginning of the axis is always the crack tip), the transformation of the axis obeys the 
following relation (transformation 6, this transformation of the system of coordinates is 
proposed by Giannakopoulos and Zisis (2019, 2020 a, b)). 
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 𝜉𝜉 = 𝑥𝑥 + 𝐻𝐻𝑡𝑡 
 

 𝜂𝜂 = 𝐵𝐵 

 

Because of this transformation, the governing equation (2, 12) can be written in the below form 
(equation 7):  

�1−
𝐻𝐻2

𝑐𝑐𝑠𝑠2
�
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜉𝜉2

+
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜂𝜂2

−
𝑃𝑃2

2
��1 −

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉4

+ �2−
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�

𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2

+
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜂𝜂4

� = 0  

 

In this equation the following terms are visible:  

• The velocity term: 

 

 1−
𝐻𝐻2

𝑐𝑐𝑠𝑠2
  

 

The shear wave velocity is equal to 𝑐𝑐𝑠𝑠 = �𝜇𝜇/𝜌𝜌, while 𝐻𝐻 is the velocity with which the 
crack propagates, or any other velocity that was chosen to describe the dynamic 
behavior of the problem.  

If this term is greater than zero, this means that the velocity of the crack is smaller than 
the shear wave velocity and the motion is subsonic. Otherwise, if the shear wave 
velocity is smaller than the crack velocity and this term is negative, the motion is called 
supersonic.  

• The term that retains ellipticity (the folding limit):  

 

 1 −
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
  

 

Obviously, if this term is positive, then also the term  2− (𝐻𝐻2𝛿𝛿2)/(6𝑃𝑃2𝑐𝑐𝑠𝑠2), is positive 
and then the factors that multiply the fourth order derivatives are negative. This 
condition turns the problem elliptic. So, if this term is negative the differential equation 
is hyperbolic. Elseways the differential equation is elliptic.  

Whether a problem is hyperbolic or elliptic, has to do with the greatest derivative in the 
differential equation. The usual procedure suggests the calculation of the eigenvalues of the 
problem and then checking their sign. One easier way to define the hyperbolicity or ellipticity 
of a differential equation is by a transformation of coordinates. If by suggesting a 
transformation (e.g., linear 𝜉𝜉 = 𝑎𝑎𝑥𝑥 + 𝐵𝐵) and demand the factor of the greater derivative to be 
zero, then that new variable (e.g. 𝜉𝜉) could be real or complex (it has also an imaginary part).  
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Ellipticity is equivalent to a complex solution. This means that the new coordinate that makes 
this greater order derivative zero, has also the same number of variables. 

Hyperbolicity means that this new variable is real. A new variable can be imported and then 
both the differential equation gets simplified and the number of unknown variables gets 
reduced. This means that the solution lies in a combination of the original coordinates. This 
kind of solution, is a solution based on the characteristics (Lax (1956), Courant and Lax 
(1955)). 

 
 The three regions that define the anti-plane dynamic problem to hyperbolic elliptic or 

intermediate.  
The same figure holds for both the anti-plane flexoelectric problem and the anti-plane couple stress 
elasticity problem. This sketch was obtained from Giannakopoulos and Zisis (2019, 2021 a, b). 

 

So, the problem can be hyperbolic or elliptic, subsonic or supersonic. If the problem is 
subsonic and elliptic, then it will be called elliptic. If the problem is elliptic but supersonic, then 
it will be called intermediate. Lastly, the problem will be called hyperbolic, whether is hyperbolic 
subsonic, or hyperbolic concerning only metamaterials.  

The elliptic case is free of any pathologies as no radiation stress is needed to maintain the 
steady state motion of the dislocation.  

Typically, however, the intermediate region is inaccessible, (also a great part of the elliptic 
region) as  𝛿𝛿2/6𝑃𝑃2 normally cannot be smaller than the unit, considering the flexoelectric 
problem at least, because according to relation 5 and 6:  
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𝑃𝑃2

2
=
𝑏𝑏44 + 𝑏𝑏77

𝑎𝑎
−

(𝑀𝑀44 − 𝑓𝑓12)2

𝜇𝜇𝑎𝑎
=
𝐻𝐻2

12
−

(𝑀𝑀44 − 𝑓𝑓12)2

𝜇𝜇𝑎𝑎
<
𝐻𝐻2

12
 14 

 

Both the shear modulus 𝜇𝜇 and the electric susceptibility of the material 𝑎𝑎 should be positive. 
This means that the “microstructural” terms are smaller than the “micro-inertial” term in normal 
materials. And because both those parameters are positive: 

 

 
𝑃𝑃2

2
<
𝐻𝐻2

12
→

6𝑃𝑃2

𝐻𝐻2 < 1 →
𝐻𝐻2

6𝑃𝑃2
> 1 →

𝐻𝐻
𝑃𝑃√6

> 1 15 

 

Normal materials cannot exhibit such properties. However, recent studies have shown that a 
new category of material called “meta-material” can enter this intermediate region (it will be 
discussed later). 

 

 
 The regions that appear on a dynamic anti-plane flexoelectric problem like the propagation 

of a mode III crack. 
Note that for a normal material, folding can occur for smaller subsonic velocities. Also, the 
intermediate region (purple region) is accessible only for meta-material. For meta-material both the 
elliptic subsonic and the hyperbolic supersonic region are accessible.  

 

So, in an anti-plane dynamic problem, such as the propagation of a mode III crack, in terms 
of couple-stress elasticity, three regions are visible:  
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• Elliptic subsonic regions 
• Intermediate region (elliptic supersonic) 
• Hyperbolic region 

These regions, that obviously exist on an anti-plane problem by using the theory of couple 
stress elasticity, also exist on an anti-plane flexoelectric classic elasticity problem.  

C. The Elliptic subsonic region 

The first region, the elliptic region has been studied a lot in the previous years. For this region 
there are various researches, both analytical and computational. As the analytical solution is 
concerned, researches exist not only in respect of classic electrodynamics, with no 
microstructure involved (Giannakopoulos and Zisis (2021 a) demonstrate solutions, pointing 
at McClintock and Sukhatme (1960)), but also by taking into consideration the microstructure. 
According to Giannakopoulos and Zisis (2019 a), in respect of classic electrodynamics, the 
displacement can be calculated from the stresses and the boundary conditions.  

 
 The elliptic subsonic region. 

The elliptic subsonic region is defined by the combination of the velocity of the propagation of the 
crack tip, the microstructural and the micro-inertial length that gives velocity less than the shear wave 
velocity and 1 − (𝐻𝐻2𝛿𝛿2)/(6𝑃𝑃2𝑐𝑐𝑠𝑠2) > 0. This region includes only elliptic and subsonic cases, but also 
refers to meta-material in addition to normal dielectrics. This region has no pathologies and can be 
solved directly, for the static case, while by using the proposed analogue by Giannakopoulos and 
Zisis (2021 a), for the dynamic case also.  
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Significant is the contribution of Gourgiotis and Georgiadis (2007) in this subject. Those 
researchers used a screw dislocation to study the mode III crack problem. They considered 
the microstructure (by adding the microstructural length), as they used the theory of the couple 
stress elasticity, but they did not consider the dynamic problem.  

The research of Gavardinas et. al. (2018) made a breakthrough in the field of anti-plane 
problems, by introducing an analogue with a prestress Kirchhoff plate.  This analogue enabled 
the computational methods of analyzing the anti-plane crack to rise. These authors also 
observed the crack profile, that initially had a “cusp-like” form, for neglectable microstructure 
(classic solution), but when the microstructure gets large, the profiles transform to a “blunt 
opening”). This “cusp-like” displacement profile could be connected with the cohesive zone. 
Giannakopoulos and Zisis (2021 a) suggest that the microstructural length is “essentially 
equivalent to a cohesive crack model”. The cohesive zone should have a constant length and 
should be moving along the crack tip. 

 
 The opening of a crack. 

For small microstructural lengths, the profile is “cusp-like”, but as the length gets larger, the profile 
gets sharper. This sketch was obtained from Gavardinas et. al. (2018) 

 

However, both Gourgiotis and Georgiadis (2007) and Gavardinas et. al. (2018) studied a static 
case. The dynamic elliptic subsonic case, was studied from Giannakopoulos and Zisis (2021 
a, b). Using a similar analogue to the one proposed by Gavardinas et. al. (2018), in which they 
added the dynamic part, they studied not only the influence of the microstructural length on 
the crack profile (for which their results are in agreement with previous researches, e.g. 
Gavardinas et. al. (2018)), but also the influence of the velocity and the influence of the micro-
inertial length.  

In this research the authors, Prof. Giannakopoulos and Prof. Zisis, used a steady state crack. 
This crack propagates with a constant velocity. As it has already been discussed, despite the 
fact that the velocity doesn’t need to be constant, the problem can in any case get simplified 
through a first order integration rule (Simpson’s on Gauss’ 1st order).  
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The authors used the below FEM model to represent the mode III crack. According to an 
analogue, that will also be discussed further. This plate, that they modeled, represents a mode 
III crack, that propagates, in an infinite domain.  

 

  
 The FEM model that was used 

to capture the respond of the 
propagation of the mode III crack 
in the research of Giannakopoulos and 
Zisis (2021 a) (The sketch obtained from 
this research). 

 The anti-plane problem of the propagation of a 
mode III crack, as solved by the use of the analogue 
 in the research of Giannakopoulos and Zisis (2021 a). 

 

 

 
 The influence of the velocity, in the 

elliptic subsonic case (displacements), 
Fig. a, b and c describe purely elliptic cases. 
Case d, is almost supersonic, and thus the 
displacement seems like forming Mach cones. 
In the profiles, this phenomenon is interpreted 
by the displacement near infinity, that tends not 
to zero, but in a maximum value (trapezoidal-
like displacement). The other cases form a 
cusp-like profile.  These results were obtained 
from Giannakopoulos and Zisis (2021 a). 
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With the summation of the above contributions, the subsonic elliptic region can be considered 
fully elaborated.  

Studying the elliptic case, Giannakopoulos and Zisis (2021 a, b) reached the hyperbolic case, 
by making the term: (𝐻𝐻2𝛿𝛿2)/(6𝑃𝑃2𝑐𝑐𝑠𝑠2) → 1. The produced deformation creates something 
similar to folding. The displacement is step like and the Mach cones that are visible are parallel 
to the tangent axis of the crack (𝜉𝜉/𝑃𝑃). The same authors, in a previous study (Giannakopoulos 
and Zisis (2019)), observed a similar result by using a screw dislocation.  

D. The Intermediate (supersonic elliptic) region 

This region, only briefly studied by Giannakopoulos and Zisis (2021 a), is practically 
inaccessible from normal materials, as the flexoelectric problem is concerned. 

In order for a problem to be in that region, not only it needs to be elliptic, but also supersonic. 
Because of relation 14 and 15: 

 

 
𝐻𝐻
𝑃𝑃√6

< 1  

 

However, this ratio between the microstructural and the micro-inertial length has a connection 
with the dielectric properties and more accurately, a positive dielectric susceptibility predicts 

 
 The influence of the 

microstructural length in the elliptic 
subsonic case (displacements). 
Cases b and c are reaching the folding 
limit, and Mach cone are visible. In the 
profiles also the same trapezoidal shape 
is revealed.  The cusp like formation is 
visible in case a, which is purely elliptic.  
These results were obtained from 
Giannakopoulos and Zisis (2021 a). 
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this ratio to be greater than one. Thus, the intermediate region is non-accessible for normal 
dielectric solids.  

The introduction of a new category of materials, that has already been studied (Koo (2015)) 
makes the accessibility to this region possible. These materials can have negative electrical 
susceptibility. In the literature the term that describes those material is “Dielectric meta-
materials” A general description of those meta-materials stated from the authors is: “materials 
consisted of metal particles in a matrix made of a dielectric”.  

 

 
 The Intermediate region.  

The intermediate region is defined by the combinations of supersonic velocities (greater than the 
shear wave velocity), and also combinations of microstructural and microinertia lengths that gets 1 −
(𝐻𝐻2𝛿𝛿2)/(6𝑃𝑃2𝑐𝑐𝑠𝑠2) > 0, so the problem would be elliptic. As fig. 24 suggests, this region refers only to 
metamaterials.  

 

Giannakopoulos and Zisis (2021 a.) stated that the study of the cracks in this kind of materials 
need excessive study in terms of dynamic and nonlinear response, and also a study of the 
plasticity theory surrounding those materials. Those studies don’t exist. However, by using as 
first approximation the research of Pham and Ravichandran (2014), they suggested that Mach 
cone would be visible in this region too, however with no connection to the microstructure, as 
their angle would be sin𝜃𝜃 = 𝑐𝑐𝑠𝑠/𝐻𝐻. 
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E. The hyperbolic region 

 

 
 The hyperbolic region.  

The hyperbolic region, cares not about the velocity itself but for the combination of all three 
parameters, so that the term 1 − 𝐻𝐻2𝛿𝛿2/6𝑃𝑃2𝑐𝑐𝑠𝑠2 < 0. This region contains both subsonic and 
supersonic problem and concerns both normal dielectric or meta-materials.  

 

As in any hyperbolic differential equation, a new variable can be introduced to define a solution 
depending on the characteristic lines. Giannakopoulos and Zisis (2019) studied the hyperbolic 
case. They propose a new coordinate, which can be described by the following formula:  

 

 �̅�𝜂 =
𝜉𝜉
𝑃𝑃

±
𝜂𝜂
𝑃𝑃
�
𝐻𝐻2𝐻𝐻2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1 16 

 

Also, they replace the displacement with a logarithmic term: 

 

 ℎ�(�̅�𝜂) = ln(𝑠𝑠)  
 

This way, the differential equation that describes the problem, e.g. the anti-plane couple stress 
elasticity problem (eq. 7) takes the following form. The procedure is described in the Appendix 
D. 
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𝜕𝜕2ℎ�(�̅�𝜂)
𝜕𝜕�̅�𝜂2

+ �
𝜕𝜕ℎ�(�̅�𝜂)
𝜕𝜕�̅�𝜂

�
2

� �
𝐻𝐻2𝐻𝐻2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
−
𝐻𝐻2

𝑐𝑐𝑠𝑠2
� = 0 17 

 

The general solution of the above differential equation, was also provided by Giannakopoulos 
and Zisis (2019), and is as follows, in which the constants 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 are calculated with the use of 
the boundary conditions: 

 

 ℎ�(�̅�𝜂) = 𝑎𝑎𝑖𝑖 + ln(�̅�𝜂 + 𝑏𝑏𝑖𝑖)  

 

A Cauchy-type solution can be the following as suggested by Giannakopoulos and Zisis 
(2019), which describes a trapezoidal profile of displacement (this type of solution will be 
used). 

 

 𝑠𝑠(𝑎𝑎�𝜂𝜂 + 𝜉𝜉) = −
𝜏𝜏0
𝑎𝑎�𝜇𝜇

(〈𝑎𝑎�𝜂𝜂 + 𝜉𝜉〉 − 〈𝑎𝑎�𝜂𝜂 + 𝜉𝜉 − 𝐿𝐿〉) 18 

 

The 〈   〉 symbolize the Macaulay brackets and 𝑎𝑎�2 = (𝐻𝐻2𝛿𝛿2)/(6𝑃𝑃2𝑐𝑐𝑠𝑠2) − 1 > 0 because the 
problem is considered hyperbolic.  

This Cauchy-type of solution, relation 18, was created so it could agree with the boundary 
conditions. At 𝜂𝜂 = 0, and for 𝜉𝜉 ∈ (0,𝐿𝐿] for the first two conditions for 𝜉𝜉 ∈ (−∞,∞) for the last 
one. Also, it is a solution of equation 17. 

 

 𝑐𝑐𝑀𝑀𝑒𝑒𝑀𝑀𝑃𝑃𝑡𝑡𝑃𝑃𝑀𝑀𝑒𝑒 
𝜂𝜂 

 𝑐𝑐𝑀𝑀𝑀𝑀𝑐𝑐𝑀𝑀𝑃𝑃𝑒𝑒𝑎𝑎𝑡𝑡𝑀𝑀 

𝜉𝜉 

 𝑐𝑐𝑀𝑀𝑀𝑀𝑐𝑐𝑀𝑀𝑃𝑃𝑒𝑒𝑎𝑎𝑡𝑡𝑀𝑀 
 

 𝑠𝑠′ −
𝑃𝑃2

2
𝑠𝑠′′′ �1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� = −

𝜏𝜏0
𝑎𝑎�𝜇𝜇

 𝜂𝜂 = 0 𝜉𝜉 ∈ (0,𝐿𝐿]  

 𝑠𝑠 = 0 𝜂𝜂 = 0 𝜉𝜉 ∈ (0,𝐿𝐿]  

 𝑠𝑠′′ = 0 𝜂𝜂 = 0 𝜉𝜉 ∈ (−∞,∞)  

     

 

That solution (relation 18) suggests that the displacement forms Mach cones at an angle from 
the direction of the crack equal to: 
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 sin𝜃𝜃 =
𝑃𝑃√6
𝐻𝐻

𝑐𝑐𝑠𝑠
𝐻𝐻

 19 

 

This displacement, that forms those Mach cones, holds not only in the supersonic hyperbolic 
region, but also in the subsonic.  

As the hyperbolic case is considered Giannakopoulos and Zisis (2021 b.) treated this problem 
the same way as in Giannakopoulos and Zisis (2021 a.), with the addition of shock wave 
analysis, by introducing a shock wave with intrinsic velocity 𝑈𝑈� . Their finding was again a slope 
equal to sin𝜃𝜃 =  𝑈𝑈�/𝐻𝐻, and 𝑈𝑈� = 𝑐𝑐𝑠𝑠𝑃𝑃√6/𝐻𝐻. Some crucial comments that Giannakopoulos and 
Zisis (2021 b.) mentioned about the microstructural length, is that in same material 
combination this length can be unreal (𝑃𝑃2/2 < 0). In this case pure strain gradient effect should 
be considered as Maraganti et al. (2006) proposed.  

The same substitution as the one described by relation 16 can be applied also for the 
polarization, as the polarization is connected with (controlled by) the displacement. According 
to Appendix D, the polarization can be described by the following equation:  

 

 𝑃𝑃3 − 𝐴𝐴 
𝜕𝜕2𝑃𝑃3
𝜕𝜕�̅�𝜂2

= 𝐵𝐵 
𝜕𝜕2𝑢𝑢3
𝜕𝜕�̅�𝜂2

 20 

 

Where: 

 

 𝐴𝐴 =
𝐻𝐻2𝛿𝛿2

12𝑃𝑃2𝑐𝑐𝑠𝑠2
 

21 
 𝐵𝐵 =

𝐻𝐻2

𝑃𝑃2
𝜌𝜌(𝑀𝑀44 − 𝑓𝑓12)

𝑎𝑎𝜇𝜇
 

 

The displacement 𝑢𝑢3, should be described like a function with the below form, as a trapezoidal 
distribution (note that for simplification reasons the variable "�̅�𝜂" was replaced with the symbol 
"𝑥𝑥"). 

 

 𝑢𝑢3(𝑥𝑥) =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ 〈𝑥𝑥 − 𝑎𝑎〉 ∗ 〈𝑏𝑏 − 𝑥𝑥〉0 + 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 〈𝑥𝑥 − 𝑏𝑏〉0 22 
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 The out of plane deformation in the hyperbolic case, as suggested by theory. 

Relation 22 suggests a trapezoidal displacement. This displacement should propagate in vertical 
direction to the profile of the crack, with a gradient as proposed by relation 19. This angle is smaller 
than the corresponding angle suggested by the classic theory (sin𝜃𝜃𝑛𝑛𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛 = 𝑐𝑐𝑠𝑠/𝐻𝐻), because of the 
ratio of lengths, and the assumption that only normal dielectrics are concerned (no meta-materials, 
(𝑃𝑃√6)/𝐻𝐻 < 1). 

  

sin𝜃𝜃 =
𝑃𝑃√6
𝐻𝐻

𝑐𝑐𝑠𝑠
𝐻𝐻

 

sin𝜃𝜃 =
𝑃𝑃√6
𝐻𝐻

𝑐𝑐𝑠𝑠
𝐻𝐻

 

sin𝜃𝜃 =
𝑃𝑃√6
𝐻𝐻

𝑐𝑐𝑠𝑠
𝐻𝐻
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4. The differential equation of the anti-plane 
hyperbolic flexoelectric problem. 

Chapter 3 ended while proposing a differential equation of the variable 𝑃𝑃3 (relation 20), with 
𝐴𝐴, 𝐵𝐵 (relation 21) constants (𝐴𝐴 > 0), while the function 𝑢𝑢3(�̅�𝜂) is considered known (e.g. relation 
22).  

Relation 20 is a second order ordinary differential equation of the following form (Boyce and 
Diprima, 1997): 

  

 𝐵𝐵′′ + 𝑓𝑓(𝜂𝜂) ∗ 𝐵𝐵′ + 𝑒𝑒(𝜂𝜂) ∗ 𝐵𝐵 = 𝑔𝑔(𝜂𝜂) i 

 

For the sake of simplicity, the variable �̅�𝜂, from now on, will be displayed as 𝜂𝜂. Note that the 
crack propagates along the coordinate �̅�𝜂 = 𝜉𝜉. 

Obviously, the quantity of 𝑓𝑓(𝜂𝜂) = 0, while the quantity of 𝑒𝑒(𝜂𝜂) = −1/𝐴𝐴 and 𝑔𝑔(𝜂𝜂) = −(𝐵𝐵/𝐴𝐴) ∗
𝑀𝑀2𝑢𝑢3/𝑀𝑀𝜂𝜂2. The method of the integrations by fractions can be used. As the homogeneous 
differential equation is concerned:  

 

 𝐵𝐵′′ −
1
𝐴𝐴
∗ 𝐵𝐵 = 0  

 

The characteristic equation is:  

 

 𝜆𝜆2 −
1
𝐴𝐴

= 0  

 

which gives two possible values of λ: 

 

 𝜆𝜆 = +
1
√𝛢𝛢

  𝜆𝜆 = −
1
√𝛢𝛢

  

 

As a result, the homogeneous differential equation has as a general solution the following 
relation: 

 𝐵𝐵 = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 ii 
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Note that 𝐵𝐵1(𝜂𝜂) = exp (+𝜂𝜂/√𝛢𝛢), 𝐵𝐵1(𝜂𝜂) = exp (+𝜂𝜂/√𝛢𝛢). By following the method of integrating 
by fractions (Boyce and Diprima, 1997) the solution of the non-homogeneous equation can be 
written as: 

 

 𝐵𝐵 = 𝑐𝑐1(𝜂𝜂) ∗ 𝐵𝐵1(𝜂𝜂) + 𝑐𝑐2(𝜂𝜂) ∗ 𝐵𝐵2(𝜂𝜂) = 𝑐𝑐1(𝜂𝜂) ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2(𝜂𝜂) ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 iii 

 

The first derivative of this is the following: 

 

 𝐵𝐵′ = 𝑐𝑐1′(𝜂𝜂) ∗ 𝐵𝐵1(𝜂𝜂) + 𝑐𝑐1(𝜂𝜂) ∗ 𝐵𝐵1′(𝜂𝜂) + 𝑐𝑐2′(𝜂𝜂) ∗ 𝐵𝐵2(𝜂𝜂) + 𝑐𝑐2(𝜂𝜂) ∗ 𝐵𝐵2′(𝜂𝜂)  

 

Then, the below can be demanded: 

 

 𝑐𝑐1′(𝜂𝜂) ∗ 𝐵𝐵1(𝜂𝜂) + 𝑐𝑐2′(𝜂𝜂) ∗ 𝐵𝐵2(𝜂𝜂) = 0 iv 

 

And the derivative becomes the following: 

 𝐵𝐵′ = 𝑐𝑐1(𝜂𝜂) ∗ 𝐵𝐵1′(𝜂𝜂) + 𝑐𝑐2(𝜂𝜂) ∗ 𝐵𝐵2′(𝜂𝜂)  

 

The second derivative of the non-homogeneous is the following: 

 𝐵𝐵′′ = 𝑐𝑐1′(𝜂𝜂) ∗ 𝐵𝐵1′(𝜂𝜂) + 𝑐𝑐1(𝜂𝜂) ∗ 𝐵𝐵1′′(𝜂𝜂) + 𝑐𝑐2′(𝜂𝜂) ∗ 𝐵𝐵2′(𝜂𝜂) + 𝑐𝑐2(𝜂𝜂) ∗ 𝐵𝐵2′′(𝜂𝜂) v 

 

By substituting the above expressions (iii, v) to the non-homogeneous differential equation 
(relation 20), the following is produced: 

 

 
𝑐𝑐1
′(𝜂𝜂) ∗ 𝐵𝐵1

′(𝜂𝜂) + 𝑐𝑐1(𝜂𝜂) ∗ 𝐵𝐵1
′′(𝜂𝜂) + 𝑐𝑐2

′(𝜂𝜂) ∗ 𝐵𝐵2
′(𝜂𝜂) + 𝑐𝑐2(𝜂𝜂) ∗ 𝐵𝐵2′′(𝜂𝜂) 

−
1
𝐴𝐴
∗ [𝑐𝑐1(𝜂𝜂) ∗ 𝐵𝐵1(𝜂𝜂) + 𝑐𝑐2(𝜂𝜂) ∗ 𝐵𝐵2(𝜂𝜂)] = −

𝐵𝐵
𝐴𝐴
∗
𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

 
 

 

Which is equivalent to the following: 

 

 
𝑐𝑐1(𝜂𝜂) ∗ �𝐵𝐵1

′′(𝜂𝜂) −
1
𝐴𝐴
∗ 𝐵𝐵1(𝜂𝜂)�+ 𝑐𝑐2(𝜂𝜂) ∗ �𝐵𝐵2

′′(𝜂𝜂) −
1
𝐴𝐴
∗ 𝐵𝐵2(𝜂𝜂)� 

+𝑐𝑐1′(𝜂𝜂) ∗ 𝐵𝐵1′(𝜂𝜂) + 𝑐𝑐2′(𝜂𝜂) ∗ 𝐵𝐵2′(𝜂𝜂)  = −
𝐵𝐵 ∗
𝐴𝐴
𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2
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Or, because 𝐵𝐵1, 𝐵𝐵2  are the solutions of the homogeneous (𝐵𝐵2′′(𝜂𝜂) − 𝐵𝐵2(𝜂𝜂)/𝐴𝐴 = 0), the above 
relation is limited to the below: 

 

 𝑐𝑐1′(𝜂𝜂) ∗ 𝐵𝐵1′(𝜂𝜂) + 𝑐𝑐2′(𝜂𝜂) ∗ 𝐵𝐵2′(𝜂𝜂)  = −
𝐵𝐵
𝐴𝐴
∗
𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

 vi 

 

This relation (vi) is one equation of a system of differentials equations of the variables 𝐵𝐵1′(𝜂𝜂), 
and 𝐵𝐵2′(𝜂𝜂). The first one was the equation iv. 

The system of simple differential equations that needs to be solved is: 

 

 �
𝑐𝑐1′(𝜂𝜂) ∗ 𝐵𝐵1(𝜂𝜂) + 𝑐𝑐2′(𝜂𝜂) ∗ 𝐵𝐵2(𝜂𝜂) = 0          

      𝑐𝑐1′(𝜂𝜂) ∗ 𝐵𝐵1′(𝜂𝜂) + 𝑐𝑐2′(𝜂𝜂) ∗ 𝐵𝐵2′(𝜂𝜂) = −
𝐵𝐵
𝐴𝐴
∗
𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

  

 

By using the Wronski determinant, the solution can be given as: 

 

𝑐𝑐1′(𝜂𝜂) =
𝐵𝐵2(𝜂𝜂) ∗ 𝐵𝐵𝐴𝐴 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑊𝑊�𝐵𝐵1(𝜂𝜂),𝐵𝐵2(𝜂𝜂)�
   𝑐𝑐2′(𝜂𝜂) = −

𝐵𝐵1(𝜂𝜂) ∗ 𝐵𝐵𝐴𝐴 ∗
𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑊𝑊(𝐵𝐵1(𝜂𝜂),𝐵𝐵2(𝜂𝜂))
  

 

And by integrating: 

 

𝑐𝑐1(𝜂𝜂) = �
𝐵𝐵2(𝜂𝜂) ∗ 𝐵𝐵𝐴𝐴 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑊𝑊(𝐵𝐵1(𝜂𝜂),𝐵𝐵2(𝜂𝜂))
𝑀𝑀𝜂𝜂 + 𝐶𝐶3 

 𝑐𝑐2(𝜂𝜂) = −�
𝐵𝐵1(𝜂𝜂) ∗ 𝐵𝐵𝐴𝐴 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑊𝑊(𝐵𝐵1(𝜂𝜂),𝐵𝐵2(𝜂𝜂))
𝑀𝑀𝜂𝜂 + 𝐶𝐶4 

 

 

This way, the partial solution of the non-homogeneous differential equation is: 

 

 
𝑌𝑌 = 𝐵𝐵1(𝜂𝜂) ∗ �

𝐵𝐵2(𝜂𝜂) ∗ 𝐵𝐵𝐴𝐴 ∗
𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑊𝑊(𝐵𝐵1(𝜂𝜂),𝐵𝐵2(𝜂𝜂))
𝑀𝑀𝜂𝜂 +𝐵𝐵2(𝜂𝜂) ∗ �−

𝐵𝐵1(𝜂𝜂) ∗ 𝐵𝐵𝐴𝐴 ∗
𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑊𝑊(𝐵𝐵1(𝜂𝜂),𝐵𝐵2(𝜂𝜂))
𝑀𝑀𝜂𝜂 

vii 

 

And the general solution of the non-homogeneous is: 
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 𝐵𝐵 = 𝑐𝑐1 ∗ 𝐵𝐵1(𝜂𝜂) + 𝑐𝑐2 ∗ 𝐵𝐵2(𝜂𝜂) + 𝑌𝑌 viii 

 

The Wronski determinant is: 

 

 

  𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢   

      

  
1
√𝛢𝛢

∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 

−1
√𝛢𝛢

∗ 𝑀𝑀
− 𝜂𝜂
√𝛢𝛢   

 

And equal to: 

 

 𝑊𝑊 = 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 ∗

−1
√𝛢𝛢

𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 − 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 ∗

1
√𝛢𝛢

∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢  

   

 𝑊𝑊 =
−2
√𝛢𝛢

𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢

 − 𝜂𝜂
√𝛢𝛢 = −

2
√𝛢𝛢

  

 

Then follows the substitution to the partial solution. This way relation vii transforms to the 
following:  

 

 
𝑌𝑌 = 𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗ �

𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ 𝐵𝐵

√𝛢𝛢
∗ 𝑀𝑀

2𝑢𝑢3
𝑀𝑀𝜂𝜂2

−2
𝑀𝑀𝜂𝜂 − 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 ∗ �

𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 ∗ 𝐵𝐵

√𝛢𝛢
∗ 𝑀𝑀

2𝑢𝑢3
𝑀𝑀𝜂𝜂2

−2
𝑀𝑀𝜂𝜂 

ix 

 

Yet, the substitution of equation ix to equation viii, reveals the general solution, relation x: 

 

𝐵𝐵 = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 − 𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗ �

𝑀𝑀
− 𝜂𝜂
√𝛢𝛢

2
∗
𝐵𝐵
√𝛢𝛢

∗
𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑀𝑀𝜂𝜂 + 𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ �

𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢

2
∗
𝐵𝐵
√𝛢𝛢

∗
𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑀𝑀𝜂𝜂 

↔ 
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x 

𝐵𝐵 = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗ �−𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 ∗ �𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑀𝑀𝜂𝜂 + 𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ �𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑀𝑀𝜂𝜂� 

 

For a more accurate and specific calculation of the polarization, the out-of-plane displacement 
𝑢𝑢3(𝜂𝜂) is needed.  

A. The profile of the crack  

As it was mentioned previously, the profile of the crack seems to spread linearly, with an 
instantly trapezoidal effect. This trapezoidal shape is being made by two parallels, the 𝑢𝑢3 = 0 
and the 𝑢𝑢3 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 (the first up to the point 𝑎𝑎 and the second from point 𝑏𝑏 and so on). Between 
those two points, a specific joining function should be inserted, that according to the hyperbolic 
theory, is linear (the displacement this way will have a trapezoidal shape). 

 

 
 The trapezoidal function.  

Considering that the joining function occupies the distance between "𝑎𝑎" and "𝑏𝑏", this possible function 
is described by the above figure. In its general form, the start of the “𝑎𝑎𝑥𝑥𝑃𝑃𝑒𝑒 𝑥𝑥” is not the point “𝑎𝑎” (“𝑎𝑎” 
is different than zero). Also, there could be a continuity of the function to infinite.  

 

The linear function however, despite it agrees with the hyperbolic problem in the best way, is 
a function with discontinue gradient. A polynomial function could seem promising nonetheless. 
This joining function can be anything with two major criteria. At points 𝑎𝑎 and 𝑏𝑏, a continuity 
should be present and secondly, a continuity in its gradients should exist. The linear joining 
function that was used before, can be described by the following relation: 

 

 𝑓𝑓(𝑥𝑥) =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ (𝑥𝑥 − 𝑎𝑎) xi 
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In addition to the linear function, a polynomial function of 3rd order and one of 5th order have 
been defined in Appendix F with similar purpose. The modification with the parallels can be 
made for any joining function, via the Heaviside function. 

 

 𝑢𝑢(𝜂𝜂) = 𝑓𝑓(𝜂𝜂)〈𝜂𝜂 − 𝑎𝑎〉0 − 𝑓𝑓(𝜂𝜂)〈𝜂𝜂 − 𝑏𝑏〉0 + 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥〈𝜂𝜂 − 𝑏𝑏〉0 xii 

 

By replacing in the above form (relation xii), the function xi, relation 22 will be produced.  

 

 
 Assumption of the hyperbolic crack profile.  

A linear function suits the theory of the hyperbolic problem. However, polynomial function could also 
be used. For this purpose, a 3rd order and a 5th order function were defined (Appendix F). 

 

B. The integrals with the Heaviside terms 

As it was mentioned above, the relation that describes the displacement can be given by 
relation xii. In this, those Heaviside terms should also take part in the solution. The polarization 
is given in the general solution from relation x. That relation includes the second derivative of 
the displacement and thus the derivatives of the Heaviside term also. The second derivative 
of the relation that describes the displacement can be calculated as beneath: 
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 𝑢𝑢3 = 𝑓𝑓(𝜂𝜂)𝐻𝐻(𝜂𝜂 − 𝛼𝛼) − 𝑓𝑓(𝜂𝜂)𝐻𝐻(𝜂𝜂 − 𝑏𝑏) + 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥𝐻𝐻(𝜂𝜂 − 𝑏𝑏) 

xiii 

   

 
𝜕𝜕𝑢𝑢3(𝜂𝜂)
𝜕𝜕𝜂𝜂

= 
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ [𝐻𝐻(𝜂𝜂 − 𝛼𝛼) −𝐻𝐻(𝜂𝜂 − 𝑏𝑏)] +  𝑓𝑓(𝜂𝜂) [∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼) − 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)] 

  +𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

   

 
𝜕𝜕2𝑢𝑢3(𝜂𝜂)
𝜕𝜕𝜂𝜂2

= 
𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝛼𝛼) −𝐻𝐻(𝜂𝜂 − 𝑏𝑏)] 

  + 2 ∗
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

[∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼) − 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)] 

  +𝑓𝑓(𝜂𝜂) [∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼) − 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)] + 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏) 

 

The last expression in relation xiii, which should be added to the integrals described by relation 
x contains the Heaviside term, the Dirac’s delta function and its derivative. Before the 
integration proceeds, some rules about those terms should first be implied.  

The integral of a function multiplied with the delta function from minus infinite to infinite is equal 
to the value of the function to the point where the delta function gets the value of infinite. 

The same integral with the derivative of delta instead, is the negative integral of the same 
function, divided by the variable multiplied by the delta.  

However, those integrals are generalized. The integral used to calculate the differential 
equation has the meaning of the antiderivative, in this case the area in the integral should be 
reduced from infinite to the value of the variable of the function. In this case the Heaviside 
term should be inserted. 

The above suggestions can be seen beneath. The reader, at this point is suggested to visit 
Appendix E. 

 

 � 𝑓𝑓(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥
∞

−∞
= 𝑓𝑓(𝑐𝑐)  

 �𝑓𝑓(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥 = � 𝑓𝑓(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥
𝑥𝑥

−∞
= 𝑓𝑓(𝑐𝑐) ∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐) xiv 
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 � 𝑓𝑓(𝑥𝑥) ∗ 𝛿𝛿′(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥
∞

−∞
= 𝑓𝑓(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐) −�

𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥
∞

−∞
  

 �𝑓𝑓(𝑥𝑥) ∗ 𝛿𝛿′(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥 = 𝑓𝑓(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐) −
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑛𝑛

∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐) xv 

   

 

If 𝜕𝜕𝑙𝑙(𝑥𝑥)
𝜕𝜕𝑥𝑥

= 𝜃𝜃(𝑥𝑥) 

 

 �𝛩𝛩(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐) = �
𝜕𝜕𝑔𝑔(𝑥𝑥)
𝜕𝜕𝑥𝑥

∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)  

  = 𝑔𝑔(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐) −�𝑔𝑔(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)  

  = 𝑔𝑔(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐) − 𝑔𝑔(𝑐𝑐) ∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐) xvi 

    

 

In order to calculate the polarization, the two integrals that are in relation x must be calculated. 
Those integrals are the beneath: 

 

 �𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂  �𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂  
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i. The integral with the negative sign 

By substituting the second derivative of the displacement: 

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = �𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝛼𝛼) −𝐻𝐻(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂 

 

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

[∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂 

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) [∗ 𝛿𝛿 (′ 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂 

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)𝑀𝑀𝜂𝜂 

 

The first term takes the beneath form, by using relation 35: 

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝑎𝑎)] 𝑀𝑀𝜂𝜂 = 𝑔𝑔(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − 𝑔𝑔(𝑎𝑎) ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝑏𝑏)] 𝑀𝑀𝜂𝜂 = 𝑔𝑔(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) − 𝑔𝑔(𝑏𝑏) ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 

Where 𝑔𝑔(𝜂𝜂) in an antiderivative of the expression 𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝜕𝜕

2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

. 

Because of relation 33 the second term of the above integral is equal to: 

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ [(𝛿𝛿 𝜂𝜂 − 𝛼𝛼)]𝑀𝑀𝜂𝜂 = 2 ∗
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
−𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑚𝑚
∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ [(𝛿𝛿 𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂 = 2 ∗
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
−𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑏𝑏
∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 

The third term is as follows: 
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�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿 [(′ 𝜂𝜂 − 𝛼𝛼)]𝑀𝑀𝜂𝜂 = 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) +

𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂
√

)
𝐴𝐴

�

𝜂𝜂=𝑚𝑚

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) 

 −𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

�
𝜂𝜂=𝑚𝑚

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿 [(′ 𝜂𝜂 − 𝑏𝑏)] 𝑀𝑀𝜂𝜂 = 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) +

𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂
√

)
𝐴𝐴

�

𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏) 

 −𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

�
𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏) 

 

While the fourth term is the following: 

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)𝑀𝑀𝜂𝜂 = 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) +

𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢
√

𝑚𝑚𝑚𝑚𝑥𝑥

𝐴𝐴
�

𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 

 

ii. The integral with the positive sign 

Similar formulas can also be produced from the second integral by replacing just the 
exponential term: 

 

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = �𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝛼𝛼) −𝐻𝐻(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂 

 

 +�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

[∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂 

 +�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) [∗ 𝛿𝛿 (′ 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂 

 +�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)𝑀𝑀𝜂𝜂 
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The first term: 

 

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝑎𝑎)] 𝑀𝑀𝜂𝜂 = 𝜁𝜁(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − 𝜁𝜁(𝑎𝑎) ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝑏𝑏)] 𝑀𝑀𝜂𝜂 = 𝜁𝜁(𝑥𝑥) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) − 𝜁𝜁(𝑏𝑏) ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 

Where 𝜁𝜁(𝜂𝜂) in an antiderivative of the expression 𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝜕𝜕

2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

. 

The second term: 

 

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ [(𝛿𝛿 𝜂𝜂 − 𝛼𝛼)]𝑀𝑀𝜂𝜂 = 2 ∗
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑚𝑚
∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ [(𝛿𝛿 𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂 = 2 ∗
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑏𝑏
∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 

The third term: 

 

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿 [(′ 𝜂𝜂 − 𝛼𝛼)]𝑀𝑀𝜂𝜂 = 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) −

𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂
√

)
𝐴𝐴

�

𝜂𝜂=𝑚𝑚

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

 −𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

�
𝜂𝜂=𝑚𝑚

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿 [(′ 𝜂𝜂 − 𝑏𝑏)] 𝑀𝑀𝜂𝜂 = 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)−

𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂
√

)
𝐴𝐴

�

𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 −𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

�
𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 

And lastly, the fourth term: 
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�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)𝑀𝑀𝜂𝜂 = 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) +

𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢
√

𝑚𝑚𝑚𝑚𝑥𝑥

𝐴𝐴
�

𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 

By knowing the function which allows the connection between the minimum and the maximum 
displacement which are zero or 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥. By simple substitution, the terms, from the second one 
till the fourth of each integral, can be calculated. The first term however needs this 
antiderivative which is an extra integration.  

C. The polarization while the jointing function in linear 

A Polynomial function that can describe the displacement, is a linear function and as it was 
calculated above, the right formula is the following:  

 

 𝑓𝑓(𝜂𝜂) =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ (𝜂𝜂 − 𝑎𝑎)  

 
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

=
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

  

 
𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

= 0  

 

This function is none other than the function that describes the displacement between point 𝑎𝑎 
and 𝑏𝑏 in relation 22. 

 

 
(𝑎𝑎) 𝑡𝑡ℎ𝑀𝑀 𝑀𝑀𝑢𝑢𝑡𝑡 − 𝑀𝑀𝑓𝑓 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 𝑀𝑀𝑃𝑃𝑒𝑒𝑝𝑝𝑃𝑃𝑎𝑎𝑐𝑐𝑀𝑀𝑠𝑠𝑀𝑀𝑒𝑒𝑡𝑡 
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(𝑏𝑏) 𝑡𝑡ℎ𝑀𝑀 𝑓𝑓𝑃𝑃𝑐𝑐𝑒𝑒𝑡𝑡 𝑀𝑀𝑀𝑀𝑐𝑐𝑃𝑃𝐺𝐺𝑎𝑎𝑡𝑡𝑃𝑃𝐺𝐺𝑀𝑀 

 
(𝑐𝑐) 𝑡𝑡ℎ𝑀𝑀 𝑒𝑒𝑀𝑀𝑐𝑐𝑀𝑀𝑒𝑒𝑀𝑀 𝑀𝑀𝑀𝑀𝑐𝑐𝑃𝑃𝐺𝐺𝑎𝑎𝑡𝑡𝑃𝑃𝐺𝐺𝑀𝑀 

 The out-of-plane displacement and its derivatives.  
In figure (𝑎𝑎) there are two points, 𝑎𝑎 and 𝑏𝑏 in which the gradient of the displacement changes. The 
gradient in that point of the function cannot be normally calculated. However in figure (𝑏𝑏) the gradient 
was chosen to be infinite, as mathematics imply. This happens once more, as figure (𝑐𝑐) depicts a 
function which some discontineuities. 

 

Through a substitution of those to the general solution relation x and a lot of calculation, that 
are presented in detail in Appendix G, the below result can be extracted:  



The differential equation of the anti-plane hyperbolic flexoelectric problem. 
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𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢  

23 

 +
𝐵𝐵

2 ∗ √𝛢𝛢
∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ ��−𝑀𝑀
+𝜂𝜂−𝑚𝑚
√𝛢𝛢 + 𝑀𝑀

−𝜂𝜂−𝑚𝑚
√𝛢𝛢 � ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) + �𝑀𝑀

+𝜂𝜂−𝑏𝑏
√𝛢𝛢 − 𝑀𝑀

−𝜂𝜂−𝑏𝑏
√𝛢𝛢 � ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)� 

 

The boundary condition in the limit of the crack which is infinite and minus infinite can give the 
values of the constants 𝑐𝑐1 and 𝑐𝑐2. More specifically, if the polarization on those limits is equal 
to zero, the boundary condition at minus infinite, gives the values of 𝑐𝑐2 = 0, while the other 
boundary at infinite can give the value of the constant 𝑐𝑐1 equal to: 

 

 𝑐𝑐1 = −
𝐵𝐵

2 ∗ √𝛢𝛢
∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ ��−𝑀𝑀
− 𝑚𝑚
√𝛢𝛢� + �𝑀𝑀

− 𝑏𝑏
√𝛢𝛢�� 

24 

 𝑐𝑐2 = 0 

 

Lastly, by considering that the axis of the characteristic coordinate moves along the crack, so 
that 𝑎𝑎 ≡ 0 always, 

 

 𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢  

 +
𝐵𝐵 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
2 ∗ 𝑏𝑏 √∗ 𝛢𝛢

∗ ��−𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢� ∗ 𝐻𝐻(𝜂𝜂) + �𝑀𝑀

+𝜂𝜂−𝑏𝑏
√𝛢𝛢 − 𝑀𝑀

−𝜂𝜂−𝑏𝑏
√𝛢𝛢 � ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)�  

 

And also: 

 

 𝑐𝑐1 = −
𝐵𝐵 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
2 ∗ 𝑏𝑏 √∗ 𝛢𝛢

∗ �1 + �𝑀𝑀
− 𝑏𝑏
√𝛢𝛢�� 

 

 𝑐𝑐2 = 0 

 

By plotting the above relations for some specific values of 𝑎𝑎, 𝑏𝑏,𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥, the following diagram 
can be produced:  
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 The Polarization assuming a linear function to take part in the displacement relation. 

The value of the constant A, which should be positive, causes great exponential effects. As it gets 
larger, the exponent tends to zero and great linearities take place. As it gets smaller, the exponential 
behavior is significantly magnified to a point that the behavior of the function is treated like a Dirac’s 
delta function. This constant is something like an internal length square. Lastly the constant A must 
be subjected to some constrains. Those constrains are: √𝐴𝐴 ≪ 𝑏𝑏 − 𝑎𝑎 and √𝐴𝐴 ≪ 𝑏𝑏 in case 𝑎𝑎 = 0. 

The constant B, which can be positive or negative, seems to have a direct relation with the magnitude 
of the maximum displacement and seems to have a more mechanical meaning. More specifically, 
the constant B increases as the shear modulus of material gets smaller, the density of the material 
gets bigger and when the dielectric constant gets bigger too. This constant is greatly connected, 
monotonously with the flexoelectric constant and that’s why polymers and ceramics are good 
flexoelectric materials.  

The positions of the spikes are, nonetheless, possible location for electrical yielding. This means that 
in those locations, the polarization could change direction (this would turn the problem non-anti-
plane) or create an electrical bridge (in fig. 33 those positions are visible in a 3D sketch).  

 

D. The polarization while the jointing is a 3rd Degree function 

Another case of a function that can fit in the cohesive zone between the maximum and the 
minimum values is a polynomial function of third order. That function, that was determined 
above, has an analogue procedure with the linear function:  

 

 𝑓𝑓(𝜂𝜂) =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

𝑎𝑎3 − 3𝑎𝑎𝑏𝑏2 + 3𝑎𝑎𝑏𝑏2 − 𝑏𝑏3
{2𝜂𝜂3 − 3(𝑎𝑎 + 𝑏𝑏)𝜂𝜂2} + 6𝑎𝑎𝑏𝑏𝜂𝜂 + (𝑎𝑎 − 3𝑏𝑏)𝑎𝑎2  

 
𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

=
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

𝑎𝑎3 − 3𝑎𝑎𝑏𝑏2 + 3𝑎𝑎𝑏𝑏2 − 𝑏𝑏3
∗ {12𝜂𝜂 − 6(𝑎𝑎 + 𝑏𝑏)}  
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And the polarization formula, which results from the corresponding substitution, is the following 
(for information about the calculation the readier is suggested to visit once again Appendix G): 

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ ��+24𝜂𝜂√𝛢𝛢 − 12√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)� {𝛿𝛿(𝜂𝜂 − 𝑎𝑎) −𝛿𝛿(𝜂𝜂 − 𝑏𝑏)} 

+𝛿𝛿(𝜂𝜂 − 𝑎𝑎) �𝑀𝑀
𝜂𝜂−𝑚𝑚
√𝛢𝛢 �−12𝑎𝑎√𝛢𝛢 − 12𝛢𝛢 + 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)� − 𝑀𝑀

−𝜂𝜂−𝑚𝑚
√𝛢𝛢 �12𝑎𝑎√𝛢𝛢 − 12𝛢𝛢 − 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)�� 

−𝛿𝛿(𝜂𝜂 − 𝑏𝑏)� 𝑀𝑀
𝜂𝜂−𝑏𝑏
√𝛢𝛢 �−12𝑏𝑏√𝛢𝛢 − 12𝛢𝛢 + 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)� − 𝑀𝑀

𝜂𝜂−𝑏𝑏
√𝛢𝛢 �12𝑏𝑏√𝛢𝛢 − 12𝛢𝛢 − 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)��� 

  

 

At this point it is possible to calculate the constant 𝑐𝑐1 and 𝑐𝑐2, by solving the limit towards infinite 
to be equal to the wanted polarization e.g., zero. For this case, by considering that for very 
small numbers near minus infinite both 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) and 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) are equal to zero and also the 
exponential, which has an exponent that tends to minus infinite, tends to zero, the polarization 
is given by the formula: 

 

 
lim
𝜂𝜂→−∞

𝑃𝑃3(𝜂𝜂) = lim
𝜂𝜂→−∞

𝑐𝑐2𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 

 
 

 

which gives that 𝑐𝑐2 should be zero. 

From the opposite direction, as the coordinate tends to infinite, both Heaviside terms are equal 
to one, and also the exponential that has an exponent that tends to minus infinite is also zero. 
Those reduce the calculation to the following:  

 

lim
𝜂𝜂→∞

𝑃𝑃3(𝜂𝜂) = 

lim
𝜂𝜂→−∞

�𝑐𝑐1𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2√𝛢𝛢

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

�𝑀𝑀
𝜂𝜂−𝑚𝑚
√𝛢𝛢 �−12𝑎𝑎√𝛢𝛢 − 12𝛢𝛢 + 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)� − 𝑀𝑀

𝜂𝜂−𝑏𝑏
√𝛢𝛢 �−12𝑏𝑏√𝛢𝛢 − 12𝛢𝛢 + 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)��� 

 

Which gives the value of the constant 𝑐𝑐1 equal to the one presented beneath.  
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𝑐𝑐2 = −
𝐵𝐵

2√𝛢𝛢
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
�𝑀𝑀

𝑚𝑚
√𝛢𝛢�−12𝑎𝑎√𝛢𝛢 − 12𝛢𝛢 + 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)� − 𝑀𝑀

𝑏𝑏
√𝛢𝛢�−12𝑏𝑏√𝛢𝛢 − 12𝛢𝛢 + 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)�� 

𝑐𝑐2 = 0 

 

This equation can easily be plotted, for various values of the constant A.  

Also, by considering once again that 𝑎𝑎 ≡ 0, 

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 

−
𝐵𝐵 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

2 ∗ 𝑏𝑏3 ∗ √𝛢𝛢
∗ ��+24𝜂𝜂√𝛢𝛢 − 12𝑏𝑏√𝛢𝛢� {𝛿𝛿(𝜂𝜂) −𝛿𝛿(𝜂𝜂 − 𝑏𝑏)} 

+𝛿𝛿(𝜂𝜂) �𝑀𝑀
𝜂𝜂
√𝛢𝛢�−12𝛢𝛢 + 6𝑏𝑏√𝛢𝛢� − 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢�−12𝛢𝛢 − 6𝑏𝑏√𝛢𝛢�� 

−𝛿𝛿(𝜂𝜂 − 𝑏𝑏)� 𝑀𝑀
𝜂𝜂−𝑏𝑏
√𝛢𝛢 �−12𝑏𝑏√𝛢𝛢 − 12𝛢𝛢 + 6𝑏𝑏√𝛢𝛢� − 𝑀𝑀

𝜂𝜂−𝑏𝑏
√𝛢𝛢 �12𝑏𝑏√𝛢𝛢 − 12𝛢𝛢 − 6𝑏𝑏√𝛢𝛢��� 

25 

 

While the boundary conditions are turned to: 

 

 𝑐𝑐2 = −
𝐵𝐵

2√𝛢𝛢
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏3

��−12𝛢𝛢 + 6𝑏𝑏√𝛢𝛢� − 𝑀𝑀
𝑏𝑏
√𝛢𝛢�−12𝑏𝑏√𝛢𝛢 − 12𝛢𝛢 + 6𝑏𝑏√𝛢𝛢�� 

26 

 𝑐𝑐2 = 0 
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 The polarization for a displacement described by a 3rd order function.  

The polarization is relatively close to the previous case, however smaller. The spikes in this case 
don’t occur to the start and end of the cohesive zone (point a and b). Lastly, the effect of the constants 
A and B seems to be the same.  

 

Interesting is to compare the cases with a linear function and a polynomial of 3rd order. This 
comparison seems to be independent from the selection of the value of the constant A. 

  

  

  
 The comparison of the polarization between the linear case and the 3rd  order function case.  

Macroscopically the integral (area) of the polarization is always zero, as one spike cancels out the 
other. The observer must be close to the cohesive area to see the spike of the electromagnetic field.  
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E. The boundary conditions. 

The linear case as theory demands is more fitting and thus, will be the main solution. The 
relation of the polarization can be given by the beneath formula:  

 

 𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ �−𝑀𝑀
+𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

−𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

  +𝑀𝑀
+𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)−𝑀𝑀

−𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)�  

 

The boundary condition can be given via a formula as:  

 

 𝑃𝑃3(𝜂𝜂1) = 𝑃𝑃𝑀𝑀𝑃𝑃1  

 

That point, “𝜂𝜂1” can be anything. If this point tends to some infinite (e.g., ±∞), the boundary 
relations is by considering its limit to the respective infinite. However, because the function of 
the polarization is made by some parts, to make things simpler, when  

 

 𝜂𝜂 → −∞ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 → 0  

 𝜂𝜂 → +∞ 𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 → 0  

 

Also, as “𝜂𝜂 → −∞”, “𝐻𝐻(𝜂𝜂 − 𝑎𝑎) =  𝐻𝐻(𝜂𝜂 − 𝑏𝑏) = 0”, because “𝜂𝜂 < 𝑎𝑎 < 𝑏𝑏” and respectively, as “𝜂𝜂 →
+∞”, “𝐻𝐻(𝜂𝜂 − 𝑎𝑎) =  𝐻𝐻(𝜂𝜂 − 𝑏𝑏) = 1”, because “𝜂𝜂 > 𝑏𝑏 > 𝑎𝑎” 

Because of those: 

 

 lim
𝜂𝜂→−∞

𝑃𝑃3(𝜂𝜂) = lim
𝜂𝜂→−∞

�𝑐𝑐2 ∗ 𝑀𝑀
− 𝜂𝜂
√𝛢𝛢�  

 lim
𝜂𝜂→+∞

𝑃𝑃3(𝜂𝜂) = lim
𝜂𝜂→+∞

�𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

�∗ −𝑀𝑀
+𝜂𝜂−𝑚𝑚
√𝛢𝛢 +𝑀𝑀

+𝜂𝜂−𝑏𝑏
√𝛢𝛢 ��  

 

If the boundary condition to some infinites is zero, then the constants 𝑐𝑐1, 𝑐𝑐2 can be easily given 
by demanding the relation that multiplies the terms that tend to infinite to be zero. This way,  
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If: 

 lim
𝜂𝜂→−∞

𝑃𝑃3(𝜂𝜂) = 0  

 lim
𝜂𝜂→−∞

�𝑐𝑐2 ∗ 𝑀𝑀
− 𝜂𝜂
√𝛢𝛢� = 0  

 𝑐𝑐2 = 0  

   

 lim
𝜂𝜂→+∞

𝑃𝑃3(𝜂𝜂) = 0  

 lim
𝜂𝜂→+∞

�𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

�∗ −𝑀𝑀
+𝜂𝜂−𝑚𝑚
√𝛢𝛢 +𝑀𝑀

+𝜂𝜂−𝑏𝑏
√𝛢𝛢 �� = 0  

 lim
𝜂𝜂→+∞

�𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 ∗ �𝑐𝑐1 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

�∗ −𝑀𝑀
− 𝑚𝑚
√𝛢𝛢+𝑀𝑀

− 𝑏𝑏
√𝛢𝛢��� = 0  

 𝑐𝑐1 = −
𝐵𝐵

2 ∗ √𝛢𝛢
∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

�∗ −𝑀𝑀
− 𝑚𝑚
√𝛢𝛢+𝑀𝑀

− 𝑏𝑏
√𝛢𝛢�  

 

However, if:  

 lim
𝜂𝜂→−∞

𝑃𝑃3(𝜂𝜂) = 𝑃𝑃 ≠ 0  

 lim
𝜂𝜂→−∞

�𝑐𝑐2 ∗ 𝑀𝑀
− 𝜂𝜂
√𝛢𝛢� = 𝑃𝑃  

 

Which means that if 𝑃𝑃 is negative or positive, this is also the constant 𝑐𝑐2. Also, as these limits 
tends to some infinite, despite the value of 𝑐𝑐2, 𝑃𝑃 should be only some infinite.  

The same stands for the other limit to +∞ 

For any scenario considered, whether 

 

 lim
𝜂𝜂→±∞

𝑃𝑃3(𝜂𝜂) = 0  
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or 

 

 lim
𝜂𝜂→±∞

𝑃𝑃3(𝜂𝜂) = ±∞  

 

As there is no other legit option.  

In case the boundary condition is given at some point e.g., 𝜂𝜂1 ∈ (−∞, +∞), then the constant 
𝑐𝑐1 and 𝑐𝑐2 should be calculated from a two-by-two system of equations. However, each 
equation has a different form, whether the point 𝜂𝜂1 ∈ (−∞,𝑎𝑎], 𝜂𝜂1 ∈ [𝑏𝑏,𝑎𝑎] or  𝜂𝜂1 ∈ [𝑏𝑏,∞). The 
brackets are meant to be this way, as in case the point 𝜂𝜂1 = 𝑎𝑎 or 𝜂𝜂1 = 𝑏𝑏, the equation would 
be the same either way as the polarization is continued. Those spaces, are related to the value 
of the Heaviside term. In the first space, both Heaviside terms are zero, in the second, 
𝐻𝐻(𝜂𝜂 − 𝑎𝑎) = 1 but 𝐻𝐻(𝜂𝜂 − 𝑏𝑏) = 0 and in the third both are equal to one.  

Also, by manipulating the equation of the polarization, someone can rewrite it as follows: 

 

 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 = 𝑃𝑃3(𝜂𝜂) −

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ �−𝑀𝑀
+𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

−𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

  +𝑀𝑀
+𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)−𝑀𝑀

−𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)�  

 

And by this, someone can substitute the term: 𝑃𝑃3(𝜂𝜂)− 𝐵𝐵
2∗√𝛢𝛢

∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏−𝑚𝑚

�∗ −𝑀𝑀+
𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) +

𝑀𝑀−
𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)+𝑀𝑀+

𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)−𝑀𝑀−

𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)� with 𝐻𝐻. This way, for 𝜂𝜂1 this term is 𝐻𝐻1. 

Also this term is the one manipulated by the value of 𝜂𝜂1 by the Heaviside. Because continuity 
is in place it is possible to split the cases.  

 

𝜂𝜂1 ∈ (−∞, 𝑎𝑎]  𝐻𝐻1 = 𝑃𝑃3(𝜂𝜂1)  

𝜂𝜂1 ∈     [ 𝑏𝑏, 𝑎𝑎]  𝐻𝐻1 = 𝑃𝑃3(𝜂𝜂1) −
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

�∗ −𝑀𝑀
+𝜂𝜂1−𝑚𝑚

√𝛢𝛢 + 𝑀𝑀
−𝜂𝜂1−𝑚𝑚

√𝛢𝛢 �  

𝜂𝜂1 ∈ [𝑏𝑏, +∞)  𝐻𝐻1 = 𝑃𝑃3(𝜂𝜂1) −
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

�∗ −𝑀𝑀
+𝜂𝜂1−𝑚𝑚

√𝛢𝛢 + 𝑀𝑀
−𝜂𝜂1−𝑚𝑚

√𝛢𝛢 +𝑀𝑀
+𝜂𝜂1−𝑏𝑏

√𝛢𝛢 − 𝑀𝑀
−𝜂𝜂1−𝑏𝑏

√𝛢𝛢 �  

 

And so, the equation of the boundary condition can be written in matrix form as beneath: 

 



The differential equation of the anti-plane hyperbolic flexoelectric problem. 
  

 

 

77 

 �𝑀𝑀
+𝜂𝜂1
√𝛢𝛢 𝑀𝑀

−𝜂𝜂1
√𝛢𝛢� ∗ �

𝑐𝑐1

𝑐𝑐2
� = �𝐻𝐻1�  

 

In order to find both constants, two equations are needed, one second equation in a second 
point e.g., 𝜂𝜂2 for which the value of the polarization is 𝐻𝐻2. The system that is produced can by 
written in matrix form and easily be solved.  

 

 �
𝑀𝑀
+𝜂𝜂1
√𝛢𝛢 𝑀𝑀

−𝜂𝜂1
√𝛢𝛢

𝑀𝑀
+𝜂𝜂2
√𝛢𝛢 𝑀𝑀

−𝜂𝜂2
√𝛢𝛢

� ∗ �

𝑐𝑐1

𝑐𝑐2

� = �

𝐻𝐻1

𝐻𝐻2

�  

 

For some more tangible results, some cases where plot. The points 𝜂𝜂𝑖𝑖 could be smaller than 
𝑎𝑎, bigger than 𝑏𝑏, or something in between. Because the order of 𝜂𝜂1 and 𝜂𝜂2 doesn’t matter, 
there is a total of six combinations of the locations of the point included in the equation (instead 
of nine). The value of the boundary condition could be positive, negative, or zero. This gives 
a total of four (the boundary values can be negative (−0.1) or positive (0.1)) plus other four 
(where the boundary values can be positive or negative and zero) and plus one (The case 
where both boundary values are zero).  

The combinations of the location of the point can be plotted in the same diagram and the 
combination of the values of the boundary conditions can be plotted in separate diagrams.  

 

𝐶𝐶𝑀𝑀𝑒𝑒𝑒𝑒𝑃𝑃𝑀𝑀𝑀𝑀𝑐𝑐𝑃𝑃𝑒𝑒𝑔𝑔 𝑎𝑎 = 0  &  𝑏𝑏 = 5 

1. 𝜂𝜂1 = −5 𝜂𝜂 < 𝑎𝑎   𝑎𝑎 < 𝜂𝜂 < 𝑏𝑏   𝑏𝑏 < 𝜂𝜂 

 𝜂𝜂2 = −2 𝜂𝜂 < 𝑎𝑎   𝜂𝜂 < 𝑎𝑎   𝜂𝜂 < 𝑎𝑎 

2. 𝜂𝜂1 = −2 𝜂𝜂 < 𝑎𝑎 3. 𝜂𝜂1 = +1 𝑎𝑎 < 𝜂𝜂 < 𝑏𝑏   𝑏𝑏 < 𝜂𝜂 

 𝜂𝜂2 = +2 𝑎𝑎 < 𝜂𝜂 < 𝑏𝑏  𝜂𝜂2 = +4 𝑎𝑎 < 𝜂𝜂 < 𝑏𝑏   𝑎𝑎 < 𝜂𝜂 < 𝑏𝑏 

4. 𝜂𝜂1 = −2 𝜂𝜂 < 𝑎𝑎 5. 𝜂𝜂1 = +2 𝑎𝑎 < 𝜂𝜂 < 𝑏𝑏 6. 𝜂𝜂1 = +6 𝑏𝑏 < 𝜂𝜂 

 𝜂𝜂2 = +7 𝑏𝑏 < 𝜂𝜂  𝜂𝜂2 = +7 𝑏𝑏 < 𝜂𝜂  𝜂𝜂2 = +9 𝑏𝑏 < 𝜂𝜂 

 

For the first set of the boundary values, the polarizations diagrams are the beneath:  
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 The first set of the diagrams assuming some boundary conditions.  

In each diagram, there is a total of four lines. Those lines are referring to the value of the boundary 
condition. In this set of diagrams, the value of the boundary conditions can be either positive, negative 
or both.  

As it can be seen, neither case could exist as the polarization tends to infinite, exponentially, which 
obviously can’t happen. The polarization should vanish as the coordinate tends to the open edge, or 
the edge in which the crack hasn’t yet reached.  
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While for the second set are the following:  

 

  

  

  
 The second set of the diagrams assuming some boundary conditions.  

In each diagram, there is a total of five lines. Those lines are referring to the value of the boundary 
condition. In this set of diagrams, the value of the boundary conditions can be either positive or 
negative or zero, but at least one should be zero.  
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As it can be seen neither case could exist as the polarization tends also to infinite, exponentially, 
which obviously can’t happen. The polarization should vanish as the coordinate tends to the open 
edge, or the edge in which the crack hasn’t yet reached. 

 

Interesting is to see also the case when both the boundary values before the crack tip and 
after the end of the cohesion zone are zero (fig. 41, middle left diagram). This diagram is 
different than the one made with the boundary condition referring to the infinites, while also is 
unnatural. 

To conclude, concerning this boundary condition analysis, it is obvious, that the only 
reasonable boundary conditions that should be considered are the conditions that demand the 
polarization to be zero to each infinite.  

In this case, however, the plate that was considered was infinite. In a ribbon plate, with 𝜂𝜂𝑚𝑚𝑚𝑚𝑥𝑥 ≠
+∞, 𝜂𝜂𝑚𝑚𝑖𝑖𝑛𝑛 ≠ −∞, this analysis is helpful as a solution from the second set should be used (or 
even the first), as the polarization in the edges of the ribbon should be zero.  

 

 
 The boundary condition in a ribbon plate.  

The coordinate cannot reach to great values that can be considered infinite, this way a boundary 
condition in a point e.g., 𝜂𝜂1 should be considered.  

𝜂𝜂 →  +∞ 

𝜂𝜂 →  −∞ 

𝜂𝜂 →  𝜂𝜂𝑚𝑚𝑚𝑚𝑥𝑥 ≠  +∞ 

𝜂𝜂 →  𝜂𝜂𝑚𝑚𝑖𝑖𝑛𝑛 ≠  −∞ 
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F. The screw dislocation 

The term 𝑏𝑏 − 𝑎𝑎 which describes the cohesive zone, could get smaller and smaller. When this 
term reaches zero, the crack will become a screw dislocation.  

 

 (𝑏𝑏 − 𝑎𝑎) → 0  

 

 

 

 
 The screw Dislocation.  

As the cohesive zone tends to zero, a mechanical dislocation is created. This dislocation is also 
called screw dislocation.  
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The relation of the polarization for the linear case can be given by 23:  

 

 𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ �−𝑀𝑀
+𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

−𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) 

 

  +𝑀𝑀
+𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)−𝑀𝑀

−𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)� 

 

The term 𝑏𝑏 − 𝑎𝑎 is in the numerator of the relations, however when b is close to a, also the 
numerator gets equal to zero. There are two ways to calculate the polarization in a screw 
dislocation. The first one is by considering the new function that describes this displacement, 
while the second one is by calculating the limit of the polarization when 𝑏𝑏 → 𝑎𝑎. 

The new function that describes the displacements is the following: 

 

 𝑢𝑢3(𝜂𝜂) = 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

 

The value of the displacement for 𝑎𝑎 = 𝜂𝜂  is either zero or 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 or something in between, 
however in no case there is a continuity of the displacement. The derivatives of the 
displacements are the following:  

 

  
 The first derivative of the displacement.  

The gradient of the displacement can be given 
via the below formula that is described the 
sketch.  

𝜕𝜕𝑢𝑢3(𝜂𝜂)
𝜕𝜕𝜂𝜂 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

 The second derivative of the 
displacement.  
The second derivative is described by the 
following relation.  

𝜕𝜕2𝑢𝑢3(𝜂𝜂)
𝜕𝜕𝜂𝜂2 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑎𝑎) 
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This is also the relation that will be inserted to the 
solution of the differential equation.  

 

By substituting the second derivative of the displacement in relation 29 the polarization takes 
the following form:  

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗ �−𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 ∗ � 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑀𝑀𝜂𝜂  

 +𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ � 𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑀𝑀𝜂𝜂�  

   

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗ �−𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 ∗ � 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑎𝑎)𝑀𝑀𝜂𝜂  

 +𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ � 𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑎𝑎)𝑀𝑀𝜂𝜂�  

 

However: 

 

 �𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑎𝑎)𝑀𝑀𝜂𝜂 = 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) +

𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
√𝛢𝛢

�

𝜂𝜂=𝑚𝑚

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

 = 𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) +

𝑀𝑀
− 𝑚𝑚
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
√𝛢𝛢

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

   

  

And the other integral:  
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 �𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑎𝑎)𝑀𝑀𝜂𝜂 = 𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) −

𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
√𝛢𝛢

�

𝜂𝜂=𝑚𝑚

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

 = 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) −

𝑀𝑀
𝑚𝑚
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
√𝛢𝛢

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

   

 

By substituting those: 

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗ �−𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) −
𝑀𝑀
+𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
√𝛢𝛢

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

 +𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) −
𝑀𝑀
−𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
√𝛢𝛢

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)�  

   

 

 𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 −

𝐵𝐵 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
2 ∗ 𝐴𝐴

∗ �𝑀𝑀
+𝜂𝜂−𝑚𝑚
√𝛢𝛢 + 𝑀𝑀

−𝜂𝜂−𝑚𝑚
√𝛢𝛢 � ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) 27 

 

The second way to calculate the relation of the polarization for the screw dislocation is by 
calculating the limit: 

 

 lim
𝑏𝑏→𝑚𝑚

𝑃𝑃3(𝜂𝜂) = lim
𝑏𝑏→𝑚𝑚

𝑃𝑃3,ℎ𝑜𝑜𝑚𝑚𝑜𝑜𝑙𝑙𝑜𝑜𝑛𝑛𝑜𝑜𝑜𝑜𝑢𝑢𝑠𝑠 + lim
𝑏𝑏→𝑚𝑚

𝑃𝑃3𝑝𝑝𝑚𝑚𝑝𝑝𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖  

   

 lim
𝑏𝑏→𝑚𝑚

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
2 ∗ √𝛢𝛢

∗ lim
𝑏𝑏→𝑚𝑚

𝑅𝑅 xvii 

  



The differential equation of the anti-plane hyperbolic flexoelectric problem. 
  

 

 

85 

Where  𝑅𝑅 = � �−𝑀𝑀+
𝜂𝜂−𝑚𝑚
√𝛢𝛢 + 𝑀𝑀−

𝜂𝜂−𝑚𝑚
√𝛢𝛢 � ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) + �+𝑀𝑀+

𝜂𝜂−𝑏𝑏
√𝛢𝛢 − 𝑀𝑀−

𝜂𝜂−𝑏𝑏
√𝛢𝛢 � ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)� [𝑏𝑏 − 𝑎𝑎]� . This limit 

has the form 0/0 and thus, the theorem of D’ L’ Hospital can be applied.  

 

 lim
𝑏𝑏→𝑚𝑚

𝑅𝑅 = lim
𝑏𝑏→𝑚𝑚

𝜕𝜕 ��−𝑀𝑀
+𝜂𝜂−𝑚𝑚
√𝛢𝛢 + 𝑀𝑀

−𝜂𝜂−𝑚𝑚
√𝛢𝛢 � ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) + �+𝑀𝑀

+𝜂𝜂−𝑏𝑏
√𝛢𝛢 − 𝑀𝑀

−𝜂𝜂−𝑏𝑏
√𝛢𝛢 � ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)�

𝜕𝜕𝑏𝑏
  

 = lim
𝑏𝑏→𝑚𝑚

��
−𝑀𝑀

+𝜂𝜂−𝑏𝑏
√𝛢𝛢 − 𝑀𝑀

−𝜂𝜂−𝑏𝑏
√𝛢𝛢

√𝐴𝐴
� ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏) + �+𝑀𝑀

+𝜂𝜂−𝑏𝑏
√𝛢𝛢 − 𝑀𝑀

−𝜂𝜂−𝑏𝑏
√𝛢𝛢 � ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)�  

 

And by substituting into relation xvii: 

 

 lim
𝑏𝑏→𝑚𝑚

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 −

𝐵𝐵 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
2 ∗ 𝐴𝐴

∗ �𝑀𝑀
+𝜂𝜂−𝛼𝛼
√𝛢𝛢 + 𝑀𝑀

−𝜂𝜂−𝛼𝛼
√𝛢𝛢 � ∗ 𝐻𝐻(𝜂𝜂 − 𝛼𝛼) 

28 

 +
𝐵𝐵 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

2 ∗ √𝐴𝐴
∗ �𝑀𝑀

+𝜂𝜂−𝛼𝛼
√𝛢𝛢 − 𝑀𝑀

−𝜂𝜂−𝛼𝛼
√𝛢𝛢 � ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

 

The second term of this relation is a spike term and if for any reason (e.g. Appendix E), we 
can erase it, then the polarization can be expressed in both ways the same. However, by 
ignoring this spike, there is a step in the diagram of the polarization, as it was also in the 
displacement.  

As for the constants 𝑐𝑐1 and 𝑐𝑐2, the boundary condition that should be used are referring to the 
infinites, where the polarization should be zero.  

This way:  

 

 𝑐𝑐1 =
𝐵𝐵 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

2 ∗ 𝐴𝐴
∗ 𝑀𝑀

− 𝛼𝛼
√𝛢𝛢 

29 

 𝑐𝑐2 = 0 
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 The polarization for a screw dislocation.  

There is an obvious discontinuity of the polarization on the crack tip, which is also the end of the 
cohesion zone. Comparing this with the case when 𝑎𝑎 − 𝑏𝑏 ≠ 0, the diagram looks the same, with the 
difference that there is no curve fitting between maximum and minimum polarization. This procedure 
happens in contradiction with the step, instead of a continuous smooth way. As it seems a spike 
could also occur at this point.  

 

By considering that the point 𝑎𝑎 is the characteristic coordinate of the crack tip, while the 
characteristic axis is defined by the crack, we can substitute 𝑎𝑎 with zero, as the crack tip is the 
beginning of the characteristic axis. Then relation 28 transforms to the following: 

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 −

𝐵𝐵 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
2 ∗ 𝐴𝐴

∗ ��𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢� ∗ 𝐻𝐻(𝜂𝜂) − �𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 − 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢� ∗ √𝐴𝐴 ∗ 𝛿𝛿(𝜂𝜂)� 

 

Actually, this relation is the one plotted in the figure above, as it has been considered that the 
value of point a is zero.  
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5. Dispersion relation on produced waves 

A. The existence of waves 

The flexoelectric problem that is currently being studied is an anti-plane dynamic problem. The 
previous chapters reveal, that the anti-plane problem with flexoelectricity is the same with the 
anti-plane problem when the theory of couple stress elasticity is used. However, as the 
problem of the propagation of cracks is a dynamic problem, waves can be emitted from the 
crack toward the free surface.  

Moroni et al. (2014) as revealed in Giannakopoulos and Zisis (2019) commented on those 
theories by revealing that Rayleigh waves of high frequency may be produced. Those waves 
ought to limit the velocity of the crack to a Rayleigh wave speed 𝑐𝑐𝑅𝑅. This velocity is relative to 
the parameter 𝛽𝛽 of the couple stress theory and for 𝛽𝛽 = 0, when the problem is hyperbolic, 
Rayleigh waves can appear. Similar to the couple stress elasticity, flexoelectricity can exist 
simultaneously with those waves.  

Any material with discrete atomic structure of crystals, as flexoelectric materials are, is not 
only a medium in which the waves can propagate, but also a medium in which they can 
disperse. The addition of the phenomenon of the dispersion, to a ferroelectric phenomenon 
like flexoelectric, seems to be extremely beneficial. Through the phenomenon of dispersion a 
lot of applications are accessible, the most common is the total recognition of the material 
through the use of various devices (spectometers).  

The dynamic nature of the problem is responsible for a vibration, which produces waves that 
move through the material. The frequency and the arc length (wavenumber) of the wave can 
be calculated by the differential equation that describes the problem.  

 

 
 The development of anti-plane surface waves.  

This figure was obtained from Giannakopoulos and Zisis (2021 a). 
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Giannakopoulos and Zisis (2019) proposed as a displacement for the differential equation 2 
(the governing equation in respect of displacement) a solution of the below form: 

 

 𝑢𝑢3 = 𝑢𝑢�3𝑀𝑀−𝑖𝑖𝜔𝜔𝑡𝑡𝑀𝑀𝑖𝑖𝑖𝑖(𝑛𝑛1𝑥𝑥1+𝑛𝑛2𝑥𝑥2)  

 

The quantities 𝑒𝑒1 and 𝑒𝑒2 are the coordinates of an in-plane unit vector with the direction of the 
travelling wave, that was assumed. 

By importing this into relation 2, the dispersion relation, which is displayed beneath, can be 
extracted. Relative to the wave’s dispersion, there are also the phase velocity and the group 
velocity, all of which are going to be studied later.  

 

 𝜔𝜔2 = 𝑐𝑐2𝑐𝑐𝑠𝑠2 �1 +
𝑃𝑃2

2
𝑐𝑐2� �1 +

𝐻𝐻2

12
𝑐𝑐2�

−1

 30 

 

In the above relation, 𝜔𝜔 [𝑒𝑒−1] is the frequency 𝑐𝑐 [𝑠𝑠𝑒𝑒−1] is the wavenumber 𝑐𝑐𝑠𝑠 is the shear 
wave velocity, 𝑃𝑃 the microstructural length and 𝐻𝐻 the micro-inertial.  

The microstructural and the micro-inertial terms concern the couple elasticity problem. 
However, some variables appear in the flexoelectric problem also and by reverting the 
substitution, proposed by relations 4 and 5, the dispersion relation for the anti-plane 
flexoelectric problem can have the following form: 

 

 𝜔𝜔2 =
𝑐𝑐2

𝜌𝜌
�
𝑎𝑎𝜇𝜇 + �(𝑏𝑏44 + 𝑏𝑏77)𝜇𝜇 − (𝑀𝑀44 − 𝑓𝑓12)2𝑐𝑐2�

𝑎𝑎 + (𝑏𝑏44 + 𝑏𝑏77)𝑐𝑐2
� 31 

 

The dispersion occurs because of the microstructure, the ratio between the microstructural 
and the microinertia length. For no dispersion, the ratio 𝑃𝑃/𝐻𝐻 should be equal to 1/√6. For 
greater flexoelectric effect, the ratio between the microstructural and the micro-inertial length 
should be less than 1/√6. Concerning flexoelectricity, this is the limit of the normal dielectrics 
while 𝑃𝑃/𝐻𝐻 > 1/√6 is equivalent to metamaterials. This case will be studied later too.   

For such a low ratio (< 1/√6) the phase velocity decreases with the wavenumber and a lattice 
type of dispersion is produced (Giannakopoulos and Zisis (2019)).  

Dispersion can also be considered through the equation of the polarization, (relation 3). That 
wave would not transfer mass but energy. For this type of dispersion, the optical dispersion, 
the polarization should be considered of the below form:  
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 𝑃𝑃3 = 𝛿𝛿𝑝𝑝𝑢𝑢�3𝑀𝑀−𝑖𝑖𝜔𝜔𝑡𝑡𝑀𝑀𝑖𝑖𝑖𝑖(𝑛𝑛1𝑥𝑥1+𝑛𝑛2𝑥𝑥2)  

 

The equation that relates the wavenumber and the frequency, produced from the above 
consideration, is the following: 

 

 𝜔𝜔2 = 𝑐𝑐𝑠𝑠2
−𝑎𝑎

𝑀𝑀44 − 𝑓𝑓12
𝛿𝛿𝑝𝑝 �1 +

𝑃𝑃2

2
𝑐𝑐2� 32 

 

Giannakopoulos and Zisis (2019) named this equation “dispersion-like” relation and consider 
it acceptable for a soft mode optical dispersion. In order for the frequencies to be real, the term 
−𝑎𝑎(𝑀𝑀44 − 𝑓𝑓12)𝛿𝛿𝑝𝑝 should be positive. This relation can also be written as follows, considering 
𝑐𝑐𝑠𝑠2𝛿𝛿𝑝𝑝(−𝑎𝑎/{𝑀𝑀44 − 𝑓𝑓12}) = 𝛺𝛺02 and 𝑐𝑐𝑠𝑠2(−𝑎𝑎/{𝑀𝑀44 − 𝑓𝑓12})𝛿𝛿𝑝𝑝(𝑃𝑃2/2) = 𝛬𝛬. 

 

 𝜔𝜔2 = 𝛺𝛺02 + 𝛬𝛬𝑐𝑐2  

 

The dispersion relation is not fully analogue as it makes a shifting because of the constant 
term 𝛺𝛺02, which in many cases can be enormous (terahertz). 

 

 
 The Dispersion relation for two different materials.  

The “current estimate” represents the estimate of Giannakopoulos and Zisis (2021 a). Note that for 
some materials like the silicone, the constant term 𝛺𝛺02 is extremely large. This figure was obtained 
from the research of Giannakopoulos and Zisis (2021 a). 
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This second dispersion, the optical dispersion, is connected with flexoelectricity in 
contradiction to the first one which is more acoustic like. Giannakopoulos and Zisis (2019) also 
suggested, that in the crack faces, Bluestein-Gulyaev waves may appear. Those waves have 
been found both experimentally and theoretically concerning the piezoelectric effect.  

In a later research, the same authors, Giannakopoulos and Zisis (2021 a.) showed that 
Rayleigh waves can appear in any hyperbolic case and they are dispersive. They assumed a 
Rayleigh type of surface wave with velocity equal to 𝑐𝑐𝑅𝑅 = 𝜔𝜔/ 𝑐𝑐, that spreads from the crack 
tip, with a possible displacement: 

 

 𝑢𝑢3(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) = �𝐴𝐴𝑀𝑀−𝑚𝑚𝑥𝑥2 𝑖𝑖⁄ + 𝐴𝐴𝑀𝑀−𝛽𝛽𝑥𝑥2 𝑖𝑖⁄ �𝑀𝑀𝑖𝑖(𝑖𝑖𝑥𝑥1−𝜔𝜔𝑡𝑡)  

 

The parameters 𝑎𝑎 and 𝛽𝛽 should be only positive (𝑎𝑎 > 0, 𝛽𝛽 > 0). 

By replacing this displacement to the equation 2, the governing equation for the out-of-plane 
displacement in the anti-plane flexoelectric problem is reduced to the following: 

 

 𝜇𝜇∇2𝑢𝑢3 − 𝜇𝜇
𝑃𝑃2

2
∇4𝑢𝑢3 = 𝜌𝜌�̈�𝑢 −

𝜌𝜌𝛿𝛿2

12
∇2�̈�𝑢3  

   

 𝑎𝑎4 + 𝐴𝐴1𝑎𝑎2 + 𝐴𝐴2 = 0 
 

 𝛽𝛽4 + 𝐴𝐴1𝛽𝛽2 + 𝐴𝐴2 = 0 

 

As it seems, the equations are similar for the parameter 𝑎𝑎 and 𝛽𝛽. The calculation of those, 
which are the same, depends on the parameters 𝐴𝐴1, 𝐴𝐴2, which are the following: 

 

 𝐴𝐴1 = −
2
𝑃𝑃2
�𝑎𝑎 + �

1
𝑠𝑠𝑅𝑅

2 −
𝐻𝐻2

12𝑃𝑃2
�
𝜔𝜔2𝑃𝑃2

𝑐𝑐𝑠𝑠2
� 

 

 𝐴𝐴2 =
2
𝑃𝑃4
��

1
𝑠𝑠𝑅𝑅

2 −
𝐻𝐻2

6𝑃𝑃2
�

𝜔𝜔4𝑃𝑃4

𝑠𝑠𝑅𝑅
2𝑐𝑐𝑠𝑠2

− 2 �1 −
1

𝑠𝑠𝑅𝑅
2�
𝜔𝜔2𝑃𝑃2

𝑐𝑐𝑠𝑠2
� 

 

while 𝑠𝑠𝑅𝑅 = 𝑐𝑐𝑅𝑅/𝑐𝑐𝑠𝑠. 

Moroni et al. (2014) suggested a region called “sub-Rayleigh zone” in which (𝐻𝐻2𝑠𝑠𝑅𝑅
2)/

(12𝑃𝑃2) < 1 and 𝑠𝑠𝑅𝑅 < 1. For those two conditions as it seems the parameters 𝑎𝑎 and 𝛽𝛽 are real. 
The same authors also named the region in which (𝐻𝐻2𝑠𝑠𝑅𝑅

2)/(12𝑃𝑃2) ≥ 1 and 𝑠𝑠𝑅𝑅 ≥ 1 “super-
Rayleigh zone”. 
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Giannakopoulos and Zisis (2021 a.) considered as boundary conditions the traction of the 
dipolar force condition at the surface of the crack.  

 

 
�  

𝑡𝑡3(𝑥𝑥1, 0) = 0  

 𝑢𝑢3,22(𝑥𝑥1, 0) = 0  

 

 
�  

𝑢𝑢3,2(𝑥𝑥1, 0) −
𝑃𝑃2

2
��2 −

𝐻𝐻2

6𝑃𝑃2
𝐻𝐻2

𝑐𝑐𝑠𝑠2
� 𝑢𝑢3,112 + 𝑢𝑢3,222� = 0  

 𝑢𝑢3,22(𝑥𝑥1, 0) = 0  

 

From these boundary conditions the authors extracted the dispersion relation for this case. By 
assuming a boundary condition in infinity, e.g. 𝜔𝜔 → ∞ (𝑐𝑐2𝑃𝑃2 → ∞) a solution of the 
displacement occurs.  

 

 𝑢𝑢3(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) = 𝐵𝐵 �𝑀𝑀−
��1−𝐻𝐻

2

6𝑖𝑖2𝑚𝑚𝑅𝑅2�𝑥𝑥2𝑖𝑖2𝑖𝑖 − �1−
𝐻𝐻2

6𝑃𝑃2
𝑠𝑠𝑅𝑅

2� 𝑀𝑀−𝑥𝑥2𝑖𝑖2𝑖𝑖� 𝑀𝑀𝑖𝑖(𝑖𝑖𝑥𝑥1−𝜔𝜔𝑡𝑡)  

 

In contrast, if the boundary condition near zero is assumed, 𝜔𝜔 → 0 (𝑐𝑐2𝑃𝑃2 → 0), the 
displacement is then described by the beneath expression: 

 

 𝑢𝑢3(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) = 𝐵𝐵 �
1
3
𝑀𝑀−

√2𝑥𝑥2
𝑖𝑖 + 1� 𝑀𝑀𝑖𝑖(𝑖𝑖𝑥𝑥1−𝜔𝜔𝑡𝑡)  

 

Further details can be found in Giannakopoulos and Zisis (2021 a.) 

In addition to Giannakopoulos and Zisis (2019, 2021 a, b), a lot of other researchers studied 
the dispersion of waves. Yang et al. (2018) studied the case of gradient elasticity, which has 
been shown multiple times that it is analogue to the flexoelectric anti-plane problem as the 
Lamb waves are concerned.  

They mention for both those cases, the case of the flexoelectric material and the case of the 
gradient elasticity, that a special study should be made, while for large wavenumbers, both 
the dispersion relations and the phase velocity are significantly depended. They concluded 
that both flexoelectricity and strain gradient elasticity depend on the wave number (they prove 
that both piezoelectricity and flexoelectricity are important in the propagations of Lamb waves 
when the wavenumber is large, in contradiction to a small wavenumber in which those effects 
are unimportant), the material properties and the thickness of the plate.  
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The authors suggested that it is only natural one wave that transfers mass (acoustic wave) to 
produce strains and strain gradients and thus polarization, in the direction of the propagation 
and in the out-of-plane direction. Between the polarization and the strain gradient there is a 
coupling: The converse flexoelectric effect transforms the polarization to strain gradient, while 
the direct transforms the strain gradient to polarization. As the strain gradients are increased 
with the increase of the wavenumber, phenomena related to those increase as well (the 
polarization through the effect of flexoelectricity). 

Studies have been made involving different types of waves. Most recently, Shengping Shen 
and his co-workers studied love waves, and the dispersion of Rayleigh waves, by also 
combining them with flexoelectricity (Qian Deng et al. (2020), Yang et al. (2020)) 

B. Dispersion Relations of frequency  

Starting from a waveform of various waves, while each wave has its own wavenumber, some 
waves will go faster and some slower. The dispersion in any case seems to be greatly 
influenced by the ratio of two lengths, the microstructural and the micro-inertial length as it can 
be seen from relation 30, 32. For various possibilities of this ratio from zero, which is a lower 
bound, to 1/√6, which is the upper bound (for normal dielectrics at least), some relations 
considering the wavenumber and the frequency or velocity were plotted. It is necessary to 
mention that there is a little difference in the mechanical wave relation and the optical, which 
is like the polarization. 

The mechanical frequency is described by relation 30. This relation can be simplified by 
considering the microstructural length 𝑃𝑃𝑏𝑏 = 𝑃𝑃/√2 (the same Zisis (2018) proposed) and the 
micro-inertial length ℎ = 𝐻𝐻/√12.  

Obviously as it was mentioned in the third chapter, a positive electrical susceptibility, (normal 
materials) suggest that 𝑃𝑃𝑏𝑏/ ℎ < 1. Also, this ratio should be positive, as both constants are 
positive. This way relation 30 transforms to the following:  

 

 𝜔𝜔2 = 𝑐𝑐2𝑐𝑐𝑠𝑠2�1 + 𝑃𝑃𝑏𝑏
2𝑐𝑐2�(1 + ℎ2𝑐𝑐2)−1  

 

From this point on and until the end of this chapter, the microstructural length 𝑃𝑃𝑏𝑏 will be 
symbolized for simplicity purposes as 𝑃𝑃. Considering 𝑐𝑐� =  𝑐𝑐 ∗ ℎ and 𝜔𝜔� = 𝜔𝜔�𝑚𝑚𝑜𝑜𝑛𝑛ℎ𝑚𝑚𝑛𝑛𝑖𝑖𝑛𝑛𝑚𝑚𝑖𝑖 = 𝜔𝜔 ∗ ℎ/𝑐𝑐𝑠𝑠 
the above relation transforms to the following: 

 

 𝜔𝜔�2𝑐𝑐𝑠𝑠2

ℎ2
=
𝑐𝑐�2

ℎ2
𝑐𝑐𝑠𝑠2 �1 +

𝑃𝑃2

ℎ2
𝑐𝑐�2��1 +

ℎ2

ℎ2
𝑐𝑐�2�

−1

  

 

And through simplifications the following dispersion relation is produced:  
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 𝜔𝜔� = 𝑐𝑐� �
1 + 𝑐𝑐�2(𝑃𝑃 ℎ� )2

1 + 𝑐𝑐�2
 33 

 

For various values of the ratio 𝑃𝑃/ℎ the above relation can be plotted. 

 

 
 The frequency as a function of the wavenumber (or the inverse of the arclength) in the 

mechanical waves.  
The dispersion occurs for wavenumbers greater than half. As the microstructure gets more intense, 
the ratio of the two lengths, the microstructural and the micro-inertial, tends to zero, the dispersion 
gets bigger. Note that the two axes represent 𝑐𝑐� =  𝑐𝑐 ∗ ℎ and 𝜔𝜔� = 𝜔𝜔 ∗ ℎ/𝑐𝑐𝑠𝑠. 

 

From this figure the below conclusions can be extracted: 

• For small wavenumbers there is no dispersion (lower than 0.5). 
• The dispersion increases as the wavenumber increases too.  
• The curve seems to tend asymptotically to the linear 𝐵𝐵 = ( 𝑃𝑃/ℎ) ∗ 𝑥𝑥. This conclusion 

can be seen efficiently in some of the next figures.  

In all these conclusions someone should keep in mind that the wavenumber is equal to the 
reverse of the arclength of a wave and the dispersion of those relations is nothing else than 
the difference of frequency for a specific wavenumber between the cases.  

Similar to the mechanical dispersion, the optical dispersion, which is described by relation 32, 
transforms to the following, when the microstructural and the micro-inertial terms are replaced 
as described above.  
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 𝜔𝜔2 = 𝑐𝑐𝑠𝑠2
−𝑎𝑎

𝑀𝑀44 − 𝑓𝑓12
𝛿𝛿𝑝𝑝(1 + 𝑃𝑃2𝑐𝑐2)  

 

Also, by considering 𝑐𝑐� =  𝑐𝑐 ∗ ℎ, and differently from the mechanical case, 𝜔𝜔� = 𝜔𝜔�𝑜𝑜𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛𝑚𝑚𝑖𝑖 =
(−𝜔𝜔 ∗ {𝑀𝑀44 − 𝑓𝑓12}0.5)/�𝑐𝑐𝑠𝑠 ∗ 𝑎𝑎0.5 ∗ 𝛿𝛿𝑝𝑝0.5�. 

 

 𝜔𝜔�2𝑐𝑐𝑠𝑠2
−𝑎𝑎

𝑀𝑀44 − 𝑓𝑓12
𝛿𝛿𝑝𝑝 = 𝑐𝑐𝑠𝑠2

−𝑎𝑎
𝑀𝑀44 − 𝑓𝑓12

𝛿𝛿𝑝𝑝�1 + 𝑐𝑐�2(𝑃𝑃 ℎ� )2�  

 

This way, the relation of the optical frequency can be described from the below relation, while 
the graphic representation is the following: 

 

 𝜔𝜔� = �1 + 𝑐𝑐�2(𝑃𝑃 ℎ� )2 34 

 

 
 The frequency as a function of the wavenumber in the optical waves.  

There is a cut-off, which means that frequencies lower than the unit cannot occur. The dispersion 
also in those waves occurs for wavenumber larger than half and gets bigger as the microstructure 
gets important. Note that the two axes represent 𝑐𝑐� =  𝑐𝑐 ∗ ℎ and 𝜔𝜔� = (−𝜔𝜔 ∗ {𝑀𝑀44 − 𝑓𝑓12}0.5)/�𝑐𝑐𝑠𝑠 ∗ 𝑎𝑎0.5 ∗
𝛿𝛿𝑝𝑝0.5�. 
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In the above figure the conclusions that can be extracted are similar to the ones from the 
mechanical waves. However, some questions that may occur are about the asymptomatic 
line, whether it is the same for mechanical and optical waves.  

To summarize, initially, it is very important to point out that the mechanical and the optical 
waves describe entirely different problems. The polarization is a problem that is described by 
the optical waves. In the anti-plane flexoelectric problem both waves exist, mechanical and 
optical. 

As the length of the wave decreases the frequency increases. When the wavenumber is small 
and so the length of the wave is large, there is a linearity in the curves. It seems that the 
microstructure is not very important to long waves, as the dispersion typically does not exist. 
When the wavenumber is big, which means the length of the wave is small, the microstructure 
plays a significant role because the ratio of the length 𝑃𝑃 ℎ⁄  becomes as a parameter more 
important. This ratio is equivalent to the electrical structure and those curves describe the 
material electrically.  

The questions that arise, considering both mechanical and optical waves, concerning the 
asymptotic lines, as mentioned, can be answered by isolating the curves for a specific ratio of 
length e.g. 0.5, 0.25 (fig. 51).  

 

  
 The frequency as a function of the wavenumber for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟓𝟓 and 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟐𝟐𝟓𝟓.  

For a specific ratio of lengths equal to half, the frequency of both optical and mechanical waves tends 
to the asymptotic line 𝐵𝐵 = 0.5 ∗ 𝑥𝑥 and 𝐵𝐵 = 0.25 ∗ 𝑥𝑥 respectively. The convergence is being achieved 
for bigger wavenumbers.  

Note that there is a difference in the vertical axis (the frequency in the mechanical dispersion is 
different than the frequency in the optical): 

𝜔𝜔�𝑚𝑚𝑜𝑜𝑛𝑛ℎ𝑚𝑚𝑛𝑛𝑖𝑖𝑛𝑛𝑚𝑚𝑖𝑖 = 𝜔𝜔 ∗
ℎ
𝑐𝑐𝑠𝑠

 𝜔𝜔�𝑜𝑜𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛𝑚𝑚𝑖𝑖 =
−𝜔𝜔 ∗ {𝑀𝑀44 − 𝑓𝑓12}0.5

𝑐𝑐𝑠𝑠 ∗ 𝑎𝑎0.5 ∗ 𝛿𝛿𝑝𝑝0.5  

 

In the above diagrams, it is visible that the convergence to the asymptotic actually happens. 
However, a comment that the mechanical frequency is always smaller than the optical is not 
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necessarily true, as the two frequencies, the mechanical and the optical are normalized 
differently.   

Interesting is also to see where the convergence happens. But what means “the convergence 
to happen” is something that in order to be answered, the magnitude of error must be 
introduced. Usually, the error is a magnitude that shows how much in a percentage the value 
that was calculated differs from the true value. In our case however, it is not simple to define 
the calculated and the true value.  

Three types of error can be defined: 

• The first one is being described by the difference of the two values in absolute, divided 
by the value of the analytical expression.  
 

 𝐸𝐸𝑐𝑐𝑐𝑐𝑀𝑀𝑐𝑐 =  
|𝑎𝑎𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐺𝐺𝑎𝑎𝑃𝑃𝑢𝑢𝑀𝑀 − 𝑎𝑎𝑒𝑒𝐵𝐵𝑠𝑠𝑝𝑝𝑡𝑡𝑀𝑀𝑡𝑡𝑃𝑃𝑐𝑐 𝐺𝐺𝑎𝑎𝑃𝑃𝑀𝑀𝑢𝑢|

|𝑎𝑎𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐺𝐺𝑎𝑎𝑃𝑃𝑢𝑢𝑀𝑀|  35 

 
• The second is by changing the deviator of the above relation. This time the difference 

will be divided by the asymptotic value. 
 

 𝐸𝐸𝑐𝑐𝑐𝑐𝑀𝑀𝑐𝑐 =  
|𝑎𝑎𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐺𝐺𝑎𝑎𝑃𝑃𝑢𝑢𝑀𝑀 − 𝑎𝑎𝑒𝑒𝐵𝐵𝑠𝑠𝑝𝑝𝑡𝑡𝑀𝑀𝑡𝑡𝑃𝑃𝑐𝑐 𝐺𝐺𝑎𝑎𝑃𝑃𝑀𝑀𝑢𝑢|

|𝑎𝑎𝑒𝑒𝐵𝐵𝑠𝑠𝑝𝑝𝑡𝑡𝑀𝑀𝑡𝑡𝑃𝑃𝑐𝑐 𝐺𝐺𝑎𝑎𝑃𝑃𝑢𝑢𝑀𝑀|   

 
Those two values of error are close, considering that the nominator is considerably 
small and the deviator is almost the same.  

• In some cases, where these values, which are more or less the same, tend to zero, 
there is a problem in the deviator, which is almost equal to the nominator. This problem 
can easily be bypassed by moving the axis to some other value, e.g. 1. This means 
that, from that point on the error will be calculated not from how close the difference is 
to zero, but how close to one is the difference from one. The expression of this kind of 
error can be written as beneath: 
 

 𝐸𝐸𝑐𝑐𝑐𝑐𝑀𝑀𝑐𝑐 =  
|(𝑎𝑎𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐺𝐺𝑎𝑎𝑃𝑃𝑢𝑢𝑀𝑀 + 1) − (𝑎𝑎𝑒𝑒𝐵𝐵𝑠𝑠𝑝𝑝𝑡𝑡𝑀𝑀𝑡𝑡𝑃𝑃𝑐𝑐 𝐺𝐺𝑎𝑎𝑃𝑃𝑀𝑀𝑢𝑢 + 1)|

|𝑎𝑎𝑒𝑒𝑒𝑒𝐵𝐵𝑠𝑠𝑝𝑝𝑡𝑡𝑀𝑀𝑡𝑡𝑃𝑃𝑐𝑐 𝐺𝐺𝑎𝑎𝑃𝑃𝑢𝑢𝑀𝑀 + 1|  36 

 
Here, again, there is a dilemma about the deviator. Should it be the the asymptotic 
value, or the numerical value. However, the result in any case should be almost the 
same.  

In the current project, the first definition of error was used. In cases that one of those numbers 
was very small, the third definition was used, with the asymptotic value as deviator. 

By using these definitions of error, the following diagrams are possible. 

Those diagrams show the speed of the convergence to the asymptotic line. As it seems, for 
smaller ratios of lengths, greater wavenumber are necessary for convergence to the 
asymptotic line. 

Interesting is the behavior near zero, which can be seen considering a value that tends to zero 
and the value of zero. In this case also, the first type of error was used. 
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 The percentage of divergence of the 
analytical from the asymptotic value, for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =
𝟎𝟎.𝟓𝟓. 
The asymptotic line is described by the relation 
𝐵𝐵 = 0.5 ∗ 𝑥𝑥. The convergence occurs for a 
wavenumber between 5 and 6, for an eligible 
error equal to 5%. Also, it seems that the 
mechanical wave converges “faster” (for lower 
wavenumber) than the optical. 

 The percentage of divergence of the 
analytical from the asymptotic value, for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =
𝟎𝟎.𝟐𝟐𝟓𝟓. 
The asymptotic line is described by the relation 
𝐵𝐵 = 0.25 ∗ 𝑥𝑥. The convergence occurs for a 
wavenumber between 11 and 12, for an eligible 
error equal to 5%. The ratio of the lengths is 
crucial for the convergence. The smaller the ratio, 
the larger the wavenumber in which the 
convergence occurs.  

 

  
 The frequency as a function of 

wavenumbers for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.  
The asymptotic line seems to be the line 𝐵𝐵 = 1 
and the convergence happens considerably 
“faster” than a case with a ratio that tends to zero 

However, the asymptotic line should be 𝐵𝐵 = 0. 
Those two lines theoretically intersect to infinity, 
where the actual convergence should occur.  

 The frequency as a function of 
wavenumbers for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 → 𝟎𝟎 (0.01) 
The asymptotic line seems to be the line 𝐵𝐵 =
0.01 ∗ 𝑥𝑥 and the convergence doesn’t seem to 
happen for usual wavenumbers. 

 



  Chris Knisovitis 
  Flexoelectric Materials in Micromechanics 
 

 

98 

The case, when the ratio tends to zero is a 
theoretical case and should be treated with 
special care. 

 

 
 

 The percentage of divergence of the 
analytical from the asymptotic value, for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =
𝟎𝟎.𝟎𝟎. 
The asymptotic line was considered 𝐵𝐵 = 1. The 
mechanical frequency convergences for a 
considerably small wavenumber, while the 
optical frequency converges immediately. 

 The percentage of divergence of the 
analytical from the asymptotic value, for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =
𝟎𝟎.𝟎𝟎𝟎𝟎. 
The asymptotic line was considered 𝐵𝐵 = 0.01 ∗ 𝑥𝑥. 
The convergence happens for a considerably big 
wavenumber, that could tend to infinity both for 
the mechanical and the optical frequency.  

 

The asymptotic line is normally the line 𝐵𝐵 = 0. However, the line 𝐵𝐵 = 1 is just a parallel of that. 
Typically, the interception of two parallels will happen to infinity, as the last figure (fig. 57) 
tends to reveal. However, by using a different definition of the asymptotic line (fig. 56), the 
convergence will happen for a very small wavenumber. The case when the ratio becomes 
zero is a limit case and should be treated with special care.  

In addition to those diagrams, a combination can be considered, of the ratio of lengths and the 
wavenumber, in which the asymptotic line and the analytic values have just converged. With 
an 𝜔𝜔� = 𝑓𝑓 ( 𝑐𝑐�, 𝑃𝑃 ⁄ ℎ), where 𝜔𝜔� is the frequency, a relation in which the error is equal to a specific 
value e.g. 5% can be calculated. This explicit function, that is shown beneath can be plotted.  

 

 𝑔𝑔�𝑐𝑐�, 𝑃𝑃 ℎ� � =
𝜔𝜔�𝑛𝑛𝑢𝑢𝑚𝑚𝑜𝑜𝑝𝑝𝑖𝑖𝑛𝑛𝑚𝑚𝑖𝑖 −  𝜔𝜔�𝑚𝑚𝑠𝑠𝑠𝑠𝑦𝑦𝑚𝑚𝑝𝑝𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖𝑛𝑛 

𝜔𝜔�𝑛𝑛𝑢𝑢𝑚𝑚𝑜𝑜𝑝𝑝𝑖𝑖𝑛𝑛𝑚𝑚𝑖𝑖 
− 𝐸𝐸𝑐𝑐𝑐𝑐𝑀𝑀𝑐𝑐 = 0 37 

 

and by assuming a legit area of error less than e.g. 5%, it is possible to choose whether the 
result can be obtained by the asymptotic line, instead of the analytical relation, for an error 
less or equal to 5%. That area can be seen in the beneath diagram: 
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 Dispersion convergence to 5% error. 
The curve that describes the combination of the 
wavenumber and the ratio of length, so the 
divergence from the asymptotic line gives an 
error equal to 5%, for the mechanical and the 
optical frequency.  

  

  
 Mechanical dispersion convergence. 

The curves that describe the combination of the 
wavenumber and the ratio of lengths, so the 
divergence could be legit, for the mechanical 
dispersion. 

 Optical dispersion convergence. 
The curves that describe the combination of the 
wavenumber and the ratio of lengths, so the 
divergence could be legit, for the optical 
dispersion. 

 

  
 Legit area for mechanical waves  Legit Area for optical waves. 
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The area in which the relation of dispersion and 
the relation of the asymptotic line are the same 
(error 5%) in the mechanical waves. 

Combination of wavenumber and microstructure 
that reside in this “legit area” will give almost the 
same frequency by using either the analytical 
expression or the asymptotic line.  

The area in which the relation of dispersion and 
the relation of the asymptotic line are the same 
(error 5%) in the optical waves. 

 

C. Phase Velocity 

By multiplying the frequency with the arc length, something that has the dimension of the 
velocity is produced. This way it is possible to extract from the above relations the velocity of 
the mechanical and optical waves in relation with the wavenumber for various microstructural 
cases.  

The relation that describes the mechanical phase velocity, symbolized by the term 𝜔𝜔� 𝑐𝑐�⁄ ,  is 
the below: 

 

 𝜔𝜔�
𝑐𝑐�� =  �

1 + 𝑐𝑐�2 ∗ �𝑃𝑃 ℎ� �
2

1 + 𝑐𝑐�2
 38 

 

 

 The phase 
velocity of the 
mechanical waves as a 
function of the 
wavenumber of each 
wave.  
The dispersion is being 
transferred in the phase 
velocity.  

As the microstructure gets 
more important the 
velocity of the wave itself 
decreases.  
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Keeping in mind that the velocity is the gradient of the displacement, someone can come to 
the conclusion, that for small wavenumbers, or long waves, the velocity keeps constant a 
value. As the arclength of the wave gets smaller, then the waves in which the microstructure 
is more significant, the velocity will get smaller and smaller, until the wave does not move.  

One thing that someone should notice in this figure, is that in this case the asymptotic line, in 
which the curve tends in non-other than the line with an equation of:  𝐵𝐵 = 𝑃𝑃/ℎ (the convergence 
points the same with the velocities and the frequencies, as it will be displayed later). Interesting 
is to observe the case, when this ratio becomes zero. 

The optical phase velocity is described by the following function:  

 

 𝜔𝜔�
𝑐𝑐�� =

1
𝑐𝑐�
∗  �1 + 𝑐𝑐�2 ∗ �𝑃𝑃 ℎ� �

2
 39 

 

 
 The phase velocity of the optical waves as a function of the wavenumber of each wave.  

The dispersion is being transferred to the phase velocity. As the microstructure gets more important, 
the velocity of the wave decreases. For minimum wavenumbers, the velocity tends to infinite 
independently from the microstructure. 

 

For a small wavenumber, this velocity tends to infinite, because the frequency is constant on 
those values. The phase velocity, which has a geometrical difference of 1/𝑐𝑐� should behave 
this way. 

For materials, that have the ratio of lengths near to zero and are called semiconductors, the 
velocity yet again tends to zero. The semiconductors are nonetheless flexoelectric. 
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Those conclusions can be better understood while isolating the diagrams for a specific ratio 
of lengths. Yet, it is also possible to create the previous diagrams of convergence, to study 
about how the curve converges to the asymptotic line.  

Fig. 65-70 show that the convergence to the asymptotic line happens simultaneously, both in 
the frequency and the velocity. However, in the phase velocity, in contrast to the frequency, 
the case when the ratio of the length is zero is smoother and follows the flow of the greater 
ratios (in this case the error was calculated with the third method).  

 

 

 
 

 The phase velocity as a function of the 
wavenumber for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟓𝟓. 
Both the mechanical and the optical velocity tend 
asymptotically to the line 𝐵𝐵 = 0.5.  

 The percentage of divergence of the 
analytical from the asymptotic value concerning 
the phase velocity, for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟓𝟓. 
This diagram is similar to the one of frequency. 

  
 

 
 

 The phase velocity as a function of the 
wavenumber for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟐𝟐𝟓𝟓. 
Both the mechanical and the optical velocity tend 
asymptotically to the line 𝐵𝐵 = 0.25.  

 The percentage of divergence of the 
analytical from the asymptotic value concerning 
the phase velocity, for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟐𝟐𝟓𝟓. 
This diagram is similar to the one of frequency. 
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 The phase velocity as a function of the 
wavenumber for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟎𝟎𝟎𝟎. 
Both the mechanical and the optical velocity tend 
asymptotically to the line 𝐵𝐵 = 0.00. However, the 
convergence seems to happen for large 
wavenumbers. 

 The percentage of divergence of the 
analytical from the asymptotic value concerning 
the phase velocity, for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟎𝟎𝟎𝟎. 
The convergence to the asymptotic line seems to 
happen for wavenumbers near 20. This diagram 
is different from the one produced from the 
frequency (fig. 57). However, in this situation the 
error was calculated using the third method. 

 

Considering the point when the convergence with an allowed error occurs, the beneath 
diagrams are presented: 

 

 

 Phase velocity convergence to 5% 
error. 
The curve that describes the combination of the 
wavenumber and the ratio of length, so the 
divergence from the asymptotic line gives an 
error equal to 5%, for the mechanical and the 
optical frequency. 
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 Mechanical phase velocity convergence 

The curves that describe the combination of the 
wavenumber and the ratio of lengths, so 
mechanical phase velocity could be legit, from 
the asymptotic, with the corresponding error.  

 Optical phase velocity convergence 
The curves that describe the combination of the 
wavenumber and the ratio of lengths, so the 
optical phase velocity can be legit, from the 
asymptotic, with the corresponding error. 

 

Those diagrams are actually the same with the ones produced by the frequency. This means 
that the convergence both in the frequency and in the phase velocity happens at the same 
time (for the same wavenumber for a give ratio of lengths) (fig. 74). As a result of this similarity, 
the legit area in this situation is the same (fig. 61,62).  

 

 
 Convergence Relation of frequency and phase velocity. 

The convergence both in the frequency and the phase velocity is the same. 
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D. Group Velocity 

One more important velocity that has not yet been discussed is the group velocity. Unlike the 
previous velocity, this one is not considered as something like an overall velocity, but like an 
instant velocity. In order to form this, a differentiation of the relation was made. The velocity 
then can be described by the term 𝜕𝜕𝜔𝜔� 𝜕𝜕𝑐𝑐�⁄ . The relation, which is calculated by differentiating, 
is the following: 

 

 𝜕𝜕𝜔𝜔�
𝜕𝜕𝑐𝑐�� = �1 + 𝑐𝑐�2 ∗ �𝑃𝑃 ℎ� �

2

1 + 𝑐𝑐�2
+

𝑐𝑐�2 ∗ ��𝑃𝑃 ℎ� �
2
− 1�

�1 + �𝑃𝑃 ℎ� �
2
∗ 𝑐𝑐�2�

1
2�
∗ �1 + 𝑐𝑐�2�

3
2�
 40 

 

 
 The group velocity of the mechanical waves as a function of the wavenumber of each 

wave.  
As the microstructure gets more important the velocity of the wave itself decreases. 

 

The velocity is the gradient of the frequency, as it was derived from it. Initially, for low 
wavenumbers the frequency is linear and so the gradient should be constant and equal to 
one. When the microstructure of the materials starts to take part in the motion of the waves, 
the frequency deviates and the materials with the smaller length ratio get a reduction in the 
increase of the frequency. That means that the curves gradient has decreased (the smaller 
the ratio, the more it has). When the frequency stabilizes in the asymptotic line, the gradient 
gets once again steady, equal to to asymptotic gradient.   
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One very interesting observation is that in the above diagram, the curves seem to intersect 
with the asymptotic line before the stabilization to them. This phenomenon is more visible in 
the case where the ratio of the length is equal to half (solid line). This will be described more 
in the following figures (fig. 77 - 81) 

The last quantity that should be studied is the group velocity in optical waves. The relation of 
the optical group velocity is the beneath and can be plotted as follows: 

 

 𝜕𝜕𝜔𝜔�
𝜕𝜕𝑐𝑐�� =

𝑐𝑐� ∗ �𝑃𝑃 ℎ� �
2

�1 + 𝑐𝑐�2 ∗ �𝑃𝑃 ℎ� �
2
 41 

 

 
 The group velocity of the optical waves as a function of the wavenumber of each wave.  

As the microstructure gets more important, the velocity of the wave itself decreases. 

 

The meaning of this diagram is equivalent to the energy an optical wave can transfer. As it 
can be seen, long waves cannot transfer much energy. There is also an optimization possibility 
by choosing a big enough wavenumber and choosing a material with smooth enough 
microstructure (3𝐺𝐺  4𝐺𝐺  5𝐺𝐺). 

In the anti-plane flexoelectric problem, someone must choose whether the need is to optimize 
the phase velocity or the group velocity. The first transfers the wave, while the second 
transfers the energy. It’s up to the application what should be optimized.  

A comparison of the convergence of the mechanical and the optical velocity for some specific 
ratios of lengths is possible.  



Dispersion relation on produced waves   
 

 

107 

In the mechanical group velocity, as it can be seen for a ratio of length equal to 𝑃𝑃 ⁄ ℎ = 0.5, 
initially the analytical relation converges to the asymptotic, but then diverges to converge once 
again.  

In the next diagrams, the right figures (fig. 78, 80, 82) depict the convergence for some 
different values of ratios of the lengths. The phenomenon mentioned above can be seen more 
visibly.  

 
 

  

 The group velocity as a function of the 
wavenumber for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟓𝟓. 
Both the mechanical and the optical velocity tend 
asymptotically to the line 𝐵𝐵 = 0.5. Also, the 
mechanical velocity intersects the asymptotic line 
and then tends to her from the other side. 

 The percentage of divergence of the 
analytical from the asymptotic value concerning 
the group velocity, for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟓𝟓. 
This diagram was made by using the absolutes. 
The convergence of the mechanical velocity 
forms and oscillation. As the wavenumber 
increases, the oscillation tends to find the 
stabilization point. 

 

  

 The group velocity as a function of the 
wavenumber for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟐𝟐𝟓𝟓. 
Both the mechanical and the optical velocity tend 
asymptotically to the line 𝐵𝐵 = 0.25. In this case 

 The percentage of divergence of the 
analytical from the asymptotic value concerning 
the group velocity, for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟐𝟐𝟓𝟓. 
The convergence, divergence and then again 
convergence phenomenon is one again visible. 
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also the mechanical group velocity intersects with 
the asymptotic line and then converges.  

Comparing these results with the previous case, 
the divergence magnitude increases, and the 
maximum divergence happens for smaller 
wavenumber. The convergence too.  

 

  
 The group velocity as a function of the 

wavenumber for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟎𝟎𝟎𝟎. 
The mechanical group velocity tends 
asymptotically to the line 𝐵𝐵 = 0.00, while the 
optical velocity is constant and always equal to 
zero. In this case there is no intersection prior to 
the convergence.   

 

 The percentage of divergence of the 
analytical from the asymptotic value concerning 
the group velocity, for 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟎𝟎.𝟎𝟎𝟎𝟎. 
In this diagram there is only a convergence, in 
contrast with the previous cases. the mechanical 
group velocity tends asymptotically to the right 
line, for a generally small wavenumber. However, 
in this case the third type of error was used. 

 

Next, it is possible to define the combinations of a wavenumber and a ratio of lengths that give 
an eligible amount of error between the analytical and the asymptotic relations.  

The mechanical group velocity has a peculiarity. For a specific ratio of lengths there are two 
wavenumbers that give a legit error, one before the divergence and one after. It can be 
imagined that the same happens for a specific wavenumber. This assumption can be proven 
by the beneath diagram (fig. 83). Also, it is interesting that this peculiarity can be best fitted by 
the same diagram of the frequency (and the phase velocity), as it can be seen beneath.  
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 Mechanical group velocity convergence. 

The curve that describes the combination of the wavenumber and the ratio of length, so the 
divergence from the asymptotic line gives an eligible error. This oscillation is being presented as a 
spike. In a specific curve e.g., the one that describes the convergence for an error equal to 5%, for 
big enough ratio of the lengths, (when the microstructure is irrelevant) there is no intersection (for 
𝑃𝑃 ℎ⁄ > 0.7). As the ratio decreases there is a spiking as the horizontal line intersects twice with the 
curve. The distance (difference of the wavenumber) of those to intersection decreases as the ratio of 
length decreases, as the microstructure gets more relevant. 

 
 Convergence relation of frequency and mechanical group velocity for error equal to 5%. 

Those two curves are not the same, the group velocity convergence is different from the convergence 
in the frequency or the phase velocity. The main difference is this oscillation. However, the frequency 
convergence curve and the mechanical group velocity curve are the same for larger wavenumbers.  
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The optical velocity should not have such a singularity.  

E. Dispersion in metamaterials 

The previous analysis, was considering a normal dielectric and thus the ratio of the lengths 
was bounded. This bound suggests that the materials have positive electrical susceptibility, 
as all normal dielectrics. However, the existence of materials with negative susceptibility has 
been proven. For more information about those metamaterials the reader is suggested to visit 
chapter 3 – Intermediate region.  

Accepting a negative electrical susceptibility, the upper bound of the ratio  𝑃𝑃/ℎ is canceled. 
Relations 33, 34, 38, 39, 40 ,41 however, can be used for these ratios, nonetheless.  

 

  
(𝑎𝑎)𝑀𝑀𝑀𝑀𝑐𝑐ℎ𝑎𝑎𝑒𝑒𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐷𝐷𝑃𝑃𝑒𝑒𝑝𝑝𝑀𝑀𝑐𝑐𝑒𝑒𝑃𝑃𝑀𝑀𝑒𝑒 𝑓𝑓𝑀𝑀𝑐𝑐  

𝑒𝑒𝑀𝑀𝑐𝑐𝑠𝑠𝑎𝑎𝑃𝑃 𝑀𝑀𝑃𝑃𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐𝑒𝑒 

(𝑏𝑏)𝑀𝑀𝑀𝑀𝑐𝑐ℎ𝑎𝑎𝑒𝑒𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐷𝐷𝑃𝑃𝑒𝑒𝑝𝑝𝑀𝑀𝑐𝑐𝑒𝑒𝑃𝑃𝑀𝑀𝑒𝑒 𝑓𝑓𝑀𝑀𝑐𝑐  

𝑠𝑠𝑀𝑀𝑡𝑡𝑎𝑎 − 𝑠𝑠𝑎𝑎𝑡𝑡𝑀𝑀𝑐𝑐𝑃𝑃𝑎𝑎𝑃𝑃𝑒𝑒 

  
(𝑐𝑐)𝑂𝑂𝑝𝑝𝑡𝑡𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐷𝐷𝑃𝑃𝑒𝑒𝑝𝑝𝑀𝑀𝑐𝑐𝑒𝑒𝑃𝑃𝑀𝑀𝑒𝑒 𝑓𝑓𝑀𝑀𝑐𝑐  

𝑒𝑒𝑀𝑀𝑐𝑐𝑠𝑠𝑎𝑎𝑃𝑃 𝑀𝑀𝑃𝑃𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐𝑒𝑒 

(𝑀𝑀)𝑂𝑂𝑝𝑝𝑡𝑡𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐷𝐷𝑃𝑃𝑒𝑒𝑝𝑝𝑀𝑀𝑐𝑐𝑒𝑒𝑃𝑃𝑀𝑀𝑒𝑒 𝑓𝑓𝑀𝑀𝑐𝑐  

𝑠𝑠𝑀𝑀𝑡𝑡𝑎𝑎 − 𝑠𝑠𝑎𝑎𝑡𝑡𝑀𝑀𝑐𝑐𝑃𝑃𝑎𝑎𝑃𝑃𝑒𝑒 

 The Dispersion relations for meta-material and normal dielectrics.  
The figures in the right side are the new figures. The dispersion curves, both on the mechanical and 
the optical waves, seem to disperse from the other side of the non-dispersive case.  
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(𝑎𝑎)𝑀𝑀𝑀𝑀𝑐𝑐ℎ𝑎𝑎𝑒𝑒𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝑃𝑃ℎ𝑎𝑎𝑒𝑒𝑀𝑀 𝐻𝐻𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵 𝑓𝑓𝑀𝑀𝑐𝑐  

𝑒𝑒𝑀𝑀𝑐𝑐𝑠𝑠𝑎𝑎𝑃𝑃 𝑀𝑀𝑃𝑃𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐𝑒𝑒 

(𝑏𝑏)𝑀𝑀𝑀𝑀𝑐𝑐ℎ𝑎𝑎𝑒𝑒𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝑃𝑃ℎ𝑎𝑎𝑒𝑒𝑀𝑀 𝐻𝐻𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵  𝑓𝑓𝑀𝑀𝑐𝑐  

𝑠𝑠𝑀𝑀𝑡𝑡𝑎𝑎 − 𝑠𝑠𝑎𝑎𝑡𝑡𝑀𝑀𝑐𝑐𝑃𝑃𝑎𝑎𝑃𝑃𝑒𝑒 

  
(𝑐𝑐)𝑂𝑂𝑝𝑝𝑡𝑡𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝑃𝑃ℎ𝑎𝑎𝑒𝑒𝑀𝑀 𝐻𝐻𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵  𝑓𝑓𝑀𝑀𝑐𝑐  

𝑒𝑒𝑀𝑀𝑐𝑐𝑠𝑠𝑎𝑎𝑃𝑃 𝑀𝑀𝑃𝑃𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐𝑒𝑒 

(𝑀𝑀)𝑂𝑂𝑝𝑝𝑡𝑡𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝑃𝑃ℎ𝑎𝑎𝑒𝑒𝑀𝑀 𝐻𝐻𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵  𝑓𝑓𝑀𝑀𝑐𝑐  

𝑠𝑠𝑀𝑀𝑡𝑡𝑎𝑎 − 𝑠𝑠𝑎𝑎𝑡𝑡𝑀𝑀𝑐𝑐𝑃𝑃𝑎𝑎𝑃𝑃𝑒𝑒 

 The phase velocity, for meta-materials and normal dielectrics.  
The figures in the right side are the new figures. The mechanical phase velocity makes a shifting, as 
the mechanical phase velocity for the metamaterials is reversed (mirror) from the other side of the 
line 𝐵𝐵 = 1. Those forms remind dispersions of viscoelastic materials.  
The optical velocity however for meta-materials is usual, as the form of the curves remains the same, 
but the asymptotic line rises (rises the value of the coordinate which characterizes it).  

 

There is an obvious shifting in the mechanical phase velocity, which is also visible in the group 
velocity. The curves in the meta-materials tends from the other direction of the critical non-
dispersive value. Similar dispersion has been observed also in viscoelastic materials.  
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(𝑎𝑎)𝑀𝑀𝑀𝑀𝑐𝑐ℎ𝑎𝑎𝑒𝑒𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐺𝐺𝑐𝑐𝑀𝑀𝑢𝑢𝑝𝑝 𝐻𝐻𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵 𝑓𝑓𝑀𝑀𝑐𝑐  

𝑒𝑒𝑀𝑀𝑐𝑐𝑠𝑠𝑎𝑎𝑃𝑃 𝑀𝑀𝑃𝑃𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐𝑒𝑒 

(𝑏𝑏)𝑀𝑀𝑀𝑀𝑐𝑐ℎ𝑎𝑎𝑒𝑒𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐺𝐺𝑐𝑐𝑀𝑀𝑢𝑢𝑝𝑝 𝐻𝐻𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵  𝑓𝑓𝑀𝑀𝑐𝑐  

𝑠𝑠𝑀𝑀𝑡𝑡𝑎𝑎 − 𝑠𝑠𝑎𝑎𝑡𝑡𝑀𝑀𝑐𝑐𝑃𝑃𝑎𝑎𝑃𝑃𝑒𝑒 

  
(𝑐𝑐)𝑂𝑂𝑝𝑝𝑡𝑡𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐺𝐺𝑐𝑐𝑀𝑀𝑢𝑢𝑝𝑝 𝐻𝐻𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵  𝑓𝑓𝑀𝑀𝑐𝑐  

𝑒𝑒𝑀𝑀𝑐𝑐𝑠𝑠𝑎𝑎𝑃𝑃 𝑀𝑀𝑃𝑃𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐𝑒𝑒 

(𝑀𝑀)𝑂𝑂𝑝𝑝𝑡𝑡𝑃𝑃𝑐𝑐𝑎𝑎𝑃𝑃 𝐺𝐺𝑐𝑐𝑀𝑀𝑢𝑢𝑝𝑝 𝐻𝐻𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵  𝑓𝑓𝑀𝑀𝑐𝑐  

𝑠𝑠𝑀𝑀𝑡𝑡𝑎𝑎 − 𝑠𝑠𝑎𝑎𝑡𝑡𝑀𝑀𝑐𝑐𝑃𝑃𝑎𝑎𝑃𝑃𝑒𝑒 

 The group velocity, for meta-materials and normal dielectrics. 
The figures in the right side are the new figures. The mechanical group velocity similarly to the 
mechanical phase velocity makes a shifting (mirror) from the other direction of the non-dispersive 
case. Also, the phenomenon of the oscillation-like (converges → diverges → converges) can be 
observed.   
The optical velocity however for meta-materials is usual, as the form of the curves remains the same, 
but the asymptotic line rises (rises the value of the coordinate which characterizes it). 
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6. Plates 

A. Introduction 

The last part of the study is based on an analogue suggested by Gavardinas et al. (2018) and 
Giannakopoulos and Zisis (2019) between the case of the anti-plane couple elasticity problem 
and a plate problem. As they have suggested, those two problems are analogues and the 
solution of the one is equivalent to the solution of the other. In chapter 3, it was mentioned, 
that Giannakopoulos and Zisis (2019) solved computationally a plate problem that was similar 
with a mode III crack problem with the theory of couple stress elasticity (fig. 27, 28).  

In those two last chapters this analogue will be studied. Initially the basic concepts of plates 
will be mentioned, then the analogues will be displayed and finally on chapter 7, with the use 
of these analogue a FEM application will be suggested.  

B. The isotropic plate 

The plate problem has been studied in a great scale, as it is common, not only for micro-
mechanical purposes but also for structural. The plate is something found in almost every 
structure. Plates exist in every house. A plate is where someone stands now and the weight 
of this person, is a load that the plate has to cope with. 

The plates are shell elements, that react in the out-of-plane load with bend, in difference to 
membranes, which are stressed only axially. This, the out-of-plane load, is the most common 
load that can be applied in a plate. However, in civil engineering structures, large plates made 
of concrete could be profitable when prestressed.  

The plates are characterized with a fourth order differential equation and they were studied at 
a large scale by Timoshenko and Woinowsky-Krieger (1964). 

However, the prestressed plate, which is of interest, has not been studied that much. An axial 
stressing on the plate can cause instabilities (flutter and divergence instability). Babouskos 
and Katsikadelis (2009) studied those instabilities on plates, one each time and also by 
combining them.  

In their study, they included both conservative and non-conservative loads, which have to do 
with whether the load follows the deformation or not. The conservative force is applied in the 
undeformed configuration in contrast to the non-conservative load which is applied in the 
deformed configuration. The flutter instability describes a vibrational motion and usually 
happens for smaller loads. By enlarging the load, the instability becomes divergence 
instability, which has smaller frequencies and the amplitude increases exponential.  

The instability of plates, in addition to the axial prestress, could also be a dynamic problem. 
Babouskos and Katsikadelis (2009) used Hamilton’s principle to calculate the governing 
equation of motion. According to that, the following equation should hold true in any case.  
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 � (𝛿𝛿𝛿𝛿 − 𝛿𝛿𝑈𝑈 + 𝛿𝛿𝐻𝐻 + 𝛿𝛿𝑊𝑊𝑛𝑛𝑛𝑛)𝑀𝑀𝑡𝑡

𝑡𝑡2

𝑡𝑡1

= 0  

 

In this relation the term 𝛿𝛿𝛿𝛿 refers to the total kinetic energy between time 𝑡𝑡1 and 𝑡𝑡2. 𝑈𝑈 is the 
elastic energy, or the total potential energy density. The other two terms refer to the 
conservative and non-conservative forces that may be applied to the configuration. 𝐻𝐻 is the 
potential of external actions while 𝑊𝑊 is the virtual work of the non-conservative or damping 
loads. 

By substituting the kinetic energy (produced from an out-of-plane velocity), the elastic energy 
(with calculation of the rigidities of the plate) and the other mechanical actions, the authors 
extracted two differential equations, one referring to the in-plane deformation and one referring 
to the out-of-plane.   

The one referring to the out-of-plane deformation, which is also the one of interest for this 
study, includes the biharmonic term, harmonic terms because of the axial, in-plane stress, 
terms of first order because of surface traction (in-plane), or tangent tension to the plane (out-
of-plane) and also terms of inertia (dynamic terms).  

 

 𝐷𝐷∇4𝑠𝑠 − (𝑁𝑁𝑥𝑥 + 𝑃𝑃𝑥𝑥)𝑠𝑠,𝑥𝑥𝑥𝑥 − 2�𝑁𝑁𝑥𝑥𝑦𝑦 + 𝑃𝑃𝑥𝑥𝑦𝑦�𝑠𝑠,𝑥𝑥𝑦𝑦 − �𝑁𝑁𝑦𝑦 + 𝑃𝑃𝑦𝑦�𝑠𝑠,𝑦𝑦𝑦𝑦 
42 

 +(𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑥𝑥)𝑠𝑠,𝑥𝑥 + �𝑒𝑒𝑦𝑦 + 𝑒𝑒𝑦𝑦�𝑠𝑠,𝑦𝑦 + 𝜌𝜌ℎ�̈�𝑠 + 𝑐𝑐�̇�𝑠 = 0 

 

D is the plate’s bending rigidity 𝐷𝐷 = (𝐸𝐸ℎ3)/(12(1 − 𝐺𝐺2)): 𝐸𝐸 is the modulus of elasticity, 𝐺𝐺 is the 
Poisson’s ratio, ℎ is the height of the plate’s section. 𝜌𝜌ℎ is the mass per area and lastly 𝑐𝑐 is 
the dumping constant of possible dumpers. The actions that are present in the above equation 
can be seen in a sketch from that study (fig. 88).  

From that equation it is possible to eliminate: 

• the boundary shear action, both conservative and non, �𝑁𝑁𝑥𝑥𝑦𝑦 ,𝑃𝑃𝑥𝑥𝑦𝑦�,  
• the in-plane surface action �𝑒𝑒𝑥𝑥,𝑒𝑒𝑦𝑦�,  
• the out-of-plane aerodynamic pressure, �𝑒𝑒𝑥𝑥,𝑒𝑒𝑦𝑦� 
• the dumping force (𝑐𝑐).  

Also, the differentiation between the conservative and non-conservative action can be 
considered the same (𝑁𝑁𝑥𝑥 + 𝑃𝑃𝑥𝑥) = (𝑁𝑁𝑥𝑥).  

 

 𝐷𝐷∇4𝑠𝑠 − 𝑁𝑁𝑥𝑥𝑠𝑠,𝑥𝑥𝑥𝑥 − 𝑁𝑁𝑦𝑦𝑠𝑠,𝑦𝑦𝑦𝑦 + 𝜌𝜌ℎ�̈�𝑠 = 0 i 

 

And then if the problem is static:  
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 𝐷𝐷∇4𝑠𝑠 − 𝑁𝑁𝑥𝑥𝑠𝑠,𝑥𝑥𝑥𝑥 − 𝑁𝑁𝑦𝑦𝑠𝑠,𝑦𝑦𝑦𝑦 = 0 ii 

 

 

 
 The total actions applied to a plate.  

Except from the boundary conditions, there could be in-plane actions, axial or shear. Out-of-plane 
actions tangent to the surface of the plane and singular geometry of the surface. This figure was 
obtained from Babouskos and Katsikadelis (2009). 

 

For equal biaxial tension, 𝑁𝑁𝑥𝑥 = 𝑁𝑁𝑦𝑦 = 𝑁𝑁,  relation i becomes relation iii. 

 

 𝐷𝐷∇4𝑠𝑠 − 𝑁𝑁∇2𝑠𝑠 + 𝜌𝜌ℎ�̈�𝑠 = 0 iii 

 

For the static case of the problem, the differential equation that governs the problem of the 
equally biaxial prestress plate is described by the following relation: 

 

 𝐷𝐷∇4𝑠𝑠 − 𝑁𝑁∇2𝑠𝑠 = 0 iv 

 

Relations i, ii, iii, iv are referring to a configuration in which there are no external out-of-plane 
loads, in the direction of displacement, e.g. the load of a human above the plate. To add this 
kind of load, the work produced from it should be added in the principle. This work can be 
written as follows: 
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 𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 = 𝑃𝑃(𝑥𝑥,𝐵𝐵) ∗ 𝑠𝑠(𝑥𝑥,𝐵𝐵) → 𝛿𝛿𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 = 𝑃𝑃(𝑥𝑥, 𝐵𝐵)𝛿𝛿𝑠𝑠 v 

 

The governing equation 42, was produced by the demand that the factor that multiplies the 
potential out-of-plane displacement is zero. The term described by relation v takes also part 
in this factor and so the external load 𝑃𝑃(𝑥𝑥, 𝐵𝐵) should be added in the left hand-side of the 
equation i, ii, iii, iv.  

  

 𝐷𝐷∇4𝑠𝑠 − 𝑁𝑁𝑥𝑥𝑠𝑠,𝑥𝑥𝑥𝑥 − 𝑁𝑁𝑦𝑦𝑠𝑠,𝑦𝑦𝑦𝑦 + 𝜌𝜌ℎ�̈�𝑠 = 𝑃𝑃(𝑥𝑥, 𝐵𝐵) 43 

 𝐷𝐷∇4𝑠𝑠 − 𝑁𝑁𝑥𝑥𝑠𝑠,𝑥𝑥𝑥𝑥 − 𝑁𝑁𝑦𝑦𝑠𝑠,𝑦𝑦𝑦𝑦 = 𝑃𝑃(𝑥𝑥, 𝐵𝐵) 44 

 𝐷𝐷∇4𝑠𝑠 − 𝑁𝑁∇2𝑠𝑠 + 𝜌𝜌ℎ�̈�𝑠 = 𝑃𝑃(𝑥𝑥,𝐵𝐵) 45 

 𝐷𝐷∇4𝑠𝑠 − 𝑁𝑁∇2𝑠𝑠 = 𝑃𝑃(𝑥𝑥, 𝐵𝐵) 46 

 

The boundary conditions of the problem are extremely necessary for those differential 
equations.  Some possible boundary conditions could be the following: 

• the displacements or the forces on the boundary 
• the rotations of the displacement or the moments on the boundary 
• The initial conditions (this condition is necessary, if the problem is dynamic) 

 

Gavardinas et al. (2018) observed that relation iv looked a lot similar with relation 10 the one 
from couple stress elasticity.  

C. The static analogue 

The comparison of those cases, the prestressed plate and the anti-plane couple stress 
elasticity resides in the differential equations of each case. Relation 10, when also considering 
an external out-of-plane load (𝐵𝐵𝑧𝑧) has the below form:   

 ∇2𝑠𝑠 −
𝑃𝑃2

2
∇4𝑠𝑠 =

𝐵𝐵𝑧𝑧
𝜇𝜇

  

 

While relation 46 can be written also as follows: 

 

 ∇2𝑠𝑠 −
𝐷𝐷
𝑁𝑁
∇4𝑠𝑠 = −

𝑃𝑃
𝑁𝑁

 46 

 

The analogue is obvious. 
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𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

𝐴𝐴𝑒𝑒𝑡𝑡𝑃𝑃 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 𝑐𝑐𝑀𝑀𝑢𝑢𝑝𝑝𝑃𝑃𝑀𝑀 

𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒 𝑀𝑀𝑃𝑃𝑎𝑎𝑒𝑒𝑡𝑡𝑃𝑃𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

 

 
𝐷𝐷
𝑁𝑁

 
𝑃𝑃2

2
  

 −
𝑃𝑃
𝑁𝑁

 
𝐵𝐵𝑧𝑧
𝜇𝜇

  

 

In the above relation 𝑃𝑃 is the microstructural length, 𝐵𝐵𝑧𝑧 is the vertical load and 𝜇𝜇 is the shear 
modulus. Fig. 89 displays this analogue with great efficiency.  

The governing equations are analogue and by modifying the parameters (𝜇𝜇, 𝜂𝜂, 𝑃𝑃 for the anti-
plane problem and 𝐷𝐷,ℎ, 𝐺𝐺,𝑁𝑁 for the plate problem), the solution of the one suggests the 
solution of the other. 

Some notes that need to be written down:  

• The static analogue demands equally biaxial prestress 
• The material in both cases should be isotropic 
• The Poisson’s ratio, as it exists in the relation of the plate, is bounded from −1 to 0.5. 

However, as the analogue, could be used only theoretically for computational reasons, 
this bound could be ignored.  

All the above were concluded by the research of Gavardinas et al. (2018). 

The main purpose of this analogue, is an easy way to solve the anti-plane couple elasticity 
problem. The analogue demands the problem to be static. This limits many anti-plane 
problems that could be solved. However, there are ways to bypass this. For example, one 
easy way to study the mode III crack is by using a screw dislocation distribution.   

The differential equations are the same and thus an analytical solution has exactly the same 
difficulty to be calculated. This analogue brights up numerically, where the plate problem can 
very easily be solved numerically with FEM. The same solution however, would apply to the 
analogue anti-plane problem (the displacements and rotations would be exactly the same). 

The boundary conditions also need to be characterized as analogues. The plate problem 
demands the displacement in the boundary and the rotations. The same also could apply in 
the anti-plane problem. The boundary condition could also be Saint Venant boundary 
conditions.  

In the next table, that was created based on the theory of Gavardinas et al. (2018) the 
analogies that are created are displaced.  

The actions, and how they are symbolized, are displayed in the next figure.  
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𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

𝐴𝐴𝑒𝑒𝑡𝑡𝑃𝑃 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 𝑐𝑐𝑀𝑀𝑢𝑢𝑝𝑝𝑃𝑃𝑀𝑀 

𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒 𝑀𝑀𝑃𝑃𝑎𝑎𝑒𝑒𝑡𝑡𝑃𝑃𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

 

Analogies between 
the mechanical 
characteristics 

−𝜈𝜈 𝜂𝜂  

𝐷𝐷
ℎ

 𝜇𝜇𝑃𝑃2

2
  

𝑁𝑁
ℎ

 𝜇𝜇  

Analogies between 
the boundary 
conditions. 

−2
𝑀𝑀𝑥𝑥𝑦𝑦

ℎ
 𝑀𝑀𝑥𝑥𝑥𝑥 = −𝑀𝑀𝑦𝑦𝑦𝑦  

2
𝑀𝑀𝑥𝑥

ℎ
 𝑀𝑀𝑥𝑥𝑦𝑦  

−2
𝑀𝑀𝑦𝑦

ℎ
 𝑀𝑀𝑦𝑦𝑥𝑥  

𝑄𝑄𝑥𝑥
ℎ

 𝑃𝑃𝑧𝑧(1,0)  

𝑄𝑄𝑦𝑦
ℎ

 𝑃𝑃𝑧𝑧(0,1)  

 

  

(𝑎𝑎) 𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 
(𝑏𝑏)𝐴𝐴𝑒𝑒𝑡𝑡𝑃𝑃 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 𝑐𝑐𝑀𝑀𝑢𝑢𝑝𝑝𝑃𝑃𝑀𝑀 𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒 𝑀𝑀𝑃𝑃𝑎𝑎𝑒𝑒𝑡𝑡𝑃𝑃𝑐𝑐𝑃𝑃𝑡𝑡𝐵𝐵  

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

 The analogue.  
Schematic comparison between the anti-plane couple stress elasticity problem and the prestress 
plate, By Gavardinas et al. (2018).  

 

The analogies between the boundary conditions include also the rotations and the 
displacements. When the displacement in the direction e.g. 𝑥𝑥 is zero in the plate problem, the 
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shear action  𝑄𝑄𝑥𝑥 ≠ 0 and according to the above analogies, 𝑃𝑃𝑧𝑧(1,0) ≠ 0, which is equivalent 
with zero out-of-plane displacement for the anti-plane problem.  

The anti-plane flexoelectric problem as it is also an anti-plane problem, solved via the method 
of couple stress elasticity theory, has the same analogies with the anti-plane couple elasticity 
problem. For the static anti-plane flexoelectric problem, for which the governing equation is 
the following (relation 2 by considering no acceleration in the out-of-plane direction, with an 
external action). 

 

∇2𝑢𝑢3 − �
𝑏𝑏44 + 𝑏𝑏77

𝑎𝑎
−

(𝑀𝑀44 − 𝑓𝑓12)2

𝜇𝜇𝑎𝑎
�∇4𝑢𝑢3 =

𝐵𝐵𝑧𝑧
𝜇𝜇

  

 

This problem obeys the following analogies: 

 

 
𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

𝐴𝐴𝑒𝑒𝑡𝑡𝑃𝑃 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 

𝑓𝑓𝑃𝑃𝑀𝑀𝑥𝑥𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

 

 
𝐷𝐷
𝑁𝑁

 �
𝑏𝑏44 + 𝑏𝑏77

𝑎𝑎
−

(𝑀𝑀44 − 𝑓𝑓12)2

𝜇𝜇𝑎𝑎
�  

 −
𝑃𝑃
𝑁𝑁

 
𝐵𝐵𝑧𝑧
𝜇𝜇

  

 

And more detailed: 

 

 
𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

𝐴𝐴𝑒𝑒𝑡𝑡𝑃𝑃 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 

𝑓𝑓𝑃𝑃𝑀𝑀𝑥𝑥𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

 

Analogies between 
the mechanical 
characteristics 

−𝜈𝜈 = 0 0  

𝐷𝐷
ℎ

 𝜇𝜇 �
𝑏𝑏44 + 𝑏𝑏77

𝑎𝑎
−

(𝑀𝑀44 − 𝑓𝑓12)2

𝜇𝜇𝑎𝑎
�  

𝑁𝑁
ℎ

 𝜇𝜇  
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Analogies between 
the boundary 
conditions. 

−2
𝑀𝑀𝑥𝑥𝑦𝑦

ℎ
 𝑀𝑀𝑥𝑥𝑥𝑥 = −𝑀𝑀𝑦𝑦𝑦𝑦  

2
𝑀𝑀𝑥𝑥

ℎ
 𝑀𝑀𝑥𝑥𝑦𝑦  

−2
𝑀𝑀𝑦𝑦

ℎ
 𝑀𝑀𝑦𝑦𝑥𝑥  

𝑄𝑄𝑥𝑥
ℎ

 𝑃𝑃𝑧𝑧(1,0)  

𝑄𝑄𝑦𝑦
ℎ

 𝑃𝑃𝑧𝑧(0,1)  

D. The prestressed orthotropic Plate 

The anisotropic plate, is something not well studied, as the structural engineering bypasses 
this by considering that the plate is supported in only one direction (e.g. mixed plates of 
concrete and steel). However, plates can be made by materials which are not isotropic, e.g. 
wood, and thus some studies exist.  

In one project, by Shi and Bezine (1988), the anisotropic plate was studied (in bending). They 
proposed as the governing equation of the problem the following relation:  

 

 𝐷𝐷11
𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥4

+ 4𝐷𝐷16
𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥3𝜕𝜕𝐵𝐵

+ 2 ∗ (𝐷𝐷12 + 2𝐷𝐷66)
𝜕𝜕4𝑠𝑠

𝜕𝜕𝑥𝑥2𝜕𝜕𝐵𝐵2
+ 4𝐷𝐷26

𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥𝜕𝜕𝐵𝐵3

+ 𝐷𝐷22
𝜕𝜕4𝑠𝑠
𝜕𝜕𝐵𝐵4

= 𝑝𝑝(𝑥𝑥,𝐵𝐵) vi 

 

In this equation 𝐷𝐷11, 𝐷𝐷16, 𝐷𝐷12, 𝐷𝐷66, 𝐷𝐷26, 𝐷𝐷22 are the flexural rigidities of the anisotropic plate, 
and 𝑝𝑝(𝑥𝑥, 𝐵𝐵) is the out of plane action that causes the bending. 

In an orthotropic plate those bending rigidities can be defined as follows.  

 

 𝐷𝐷11 =
𝐸𝐸𝑥𝑥ℎ3

12�1− 𝐺𝐺𝑥𝑥𝐺𝐺𝑦𝑦�
  

 𝐷𝐷22 =
𝐸𝐸𝑦𝑦ℎ3

12�1 − 𝐺𝐺𝑥𝑥𝐺𝐺𝑦𝑦�
  

 𝐷𝐷12 = 𝐷𝐷11𝐺𝐺𝑦𝑦 = 𝐷𝐷22𝐺𝐺𝑥𝑥  

 𝐷𝐷66 =
𝐺𝐺𝑥𝑥𝑦𝑦ℎ3

12
  

 𝐷𝐷16 = 𝐷𝐷26 = 0  
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Also, the Poisson’s ratios in each direction depends on the one of the other directions. 

 

 𝐺𝐺𝑦𝑦 =
𝐺𝐺𝑥𝑥𝐸𝐸𝑦𝑦
𝐸𝐸𝑥𝑥

  

 

The governing equation is reduced to the following:  

 

𝐸𝐸𝑥𝑥ℎ3

12�1− 𝐺𝐺𝑥𝑥𝐺𝐺𝑦𝑦�
𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥4

+ �
𝐺𝐺𝑦𝑦𝐸𝐸𝑥𝑥ℎ3

12�1 − 𝐺𝐺𝑥𝑥𝐺𝐺𝑦𝑦�
+

𝐺𝐺𝑥𝑥𝐸𝐸𝑦𝑦ℎ3

12�1− 𝐺𝐺𝑥𝑥𝐺𝐺𝑦𝑦�
+

4𝐺𝐺𝑥𝑥𝑦𝑦ℎ3

12
�

𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥2𝜕𝜕𝐵𝐵2

+
𝐸𝐸𝑦𝑦ℎ3

12�1− 𝐺𝐺𝑥𝑥𝐺𝐺𝑦𝑦�
𝜕𝜕4𝑠𝑠
𝜕𝜕𝐵𝐵4

= 𝑝𝑝(𝑥𝑥,𝐵𝐵) 

46 

 

 

This relation represents the modified fourth order derivative in relation 42. By substituting 46 
in that fourth order term, the full solution of the orthotropic plate shall be extracted. The 
orthotropy influences only the material characteristics. In relation 42 the only material 
characteristic are the bending rigidities of the plate and concerns only the fourth order 
derivative. Thus, the below can be considered.  

When in relation 43 the left hand-side of relation 46 substitutes the fourth order term, the 
following relation is produced:  

 

𝐸𝐸𝑥𝑥ℎ3

12�1− 𝐺𝐺𝑥𝑥𝐺𝐺𝑦𝑦�
𝑠𝑠,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + �

𝐺𝐺𝑦𝑦𝐸𝐸𝑥𝑥ℎ3

12�1− 𝐺𝐺𝑥𝑥𝐺𝐺𝑦𝑦�
+

𝐺𝐺𝑥𝑥𝐸𝐸𝑦𝑦ℎ3

12�1− 𝐺𝐺𝑥𝑥𝐺𝐺𝑦𝑦�
+

4𝐺𝐺𝑥𝑥𝑦𝑦ℎ3

12
�𝑠𝑠,𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 

47 

 +
𝐸𝐸𝑦𝑦ℎ3

12�1 − 𝐺𝐺𝑥𝑥𝐺𝐺𝑦𝑦�
𝑠𝑠,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑁𝑁𝑥𝑥𝑠𝑠,𝑥𝑥𝑥𝑥 − 𝑁𝑁𝑦𝑦𝑠𝑠,𝑦𝑦𝑦𝑦 + 𝜌𝜌ℎ�̈�𝑠 = 𝑝𝑝(𝑥𝑥,𝐵𝐵) 

 

Relation 47 is the governing equation of a prestressed orthotropic plate. Considering 𝐺𝐺𝑥𝑥 =
𝐺𝐺𝑦𝑦 = 0, a theoretical plate is being described, that allows the analogue. This assumption is 
necessary as it not only simplifies the relations but also settles some boundary conditions.  
This way, an anti-plane problem either it is considered couple stress or flexoelectric can be 
solved through a plate solution. Relation 47, transforms to the following expression (also for 
non-zero out-of-plane external load, but zero acceleration �̈�𝑠): 

 

 𝐸𝐸𝑥𝑥ℎ3

12
𝑠𝑠,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 +

𝐺𝐺𝑥𝑥𝑦𝑦ℎ3

3
𝑠𝑠,𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 +

𝐸𝐸𝑦𝑦ℎ3

12
𝑠𝑠,𝑦𝑦𝑦𝑦𝐵𝐵𝐵𝐵 − 𝑁𝑁𝑥𝑥𝑠𝑠,𝑥𝑥𝑥𝑥 − 𝑁𝑁𝑦𝑦𝑠𝑠,𝑦𝑦𝑦𝑦 = 𝑝𝑝(𝑥𝑥,𝐵𝐵) 48 
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E. The dynamic analogue 

Giannakopoulos and Zisis (2019), noticed a similarity between the relation 48 and relation 2, 
12. and by changing the order of the derivatives, this equation (vii) can also be written as 
beneath, to follow the formula of relation 7: 

 

 
𝑁𝑁𝑥𝑥
𝑁𝑁𝑦𝑦

𝜕𝜕2𝑠𝑠
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑠𝑠
𝜕𝜕𝐵𝐵2

−
𝐸𝐸𝑥𝑥ℎ3

12𝑁𝑁𝑦𝑦
𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥4

−
𝐺𝐺𝑥𝑥𝑦𝑦ℎ3

3𝑁𝑁𝑦𝑦
𝜕𝜕4𝑠𝑠

𝜕𝜕𝑥𝑥2𝜕𝜕𝐵𝐵2
−
𝐸𝐸𝑦𝑦ℎ3

12𝑁𝑁𝑦𝑦
𝜕𝜕4𝑠𝑠
𝜕𝜕𝐵𝐵4

= −
𝑝𝑝(𝑥𝑥, 𝐵𝐵)
𝑁𝑁𝑦𝑦

 vii 

 

For convenient reasons here, once again relation 7 is displayed (also with an external load).  

 

�1−
𝐻𝐻2

𝑐𝑐𝑠𝑠2
�
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜉𝜉2

+
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜂𝜂2

−
𝑃𝑃2

2
�1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉4

−
𝑃𝑃2

2
�2 −

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�

𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2

−
𝑃𝑃2

2
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜂𝜂4

=
𝐵𝐵𝑧𝑧
𝜇𝜇

 

 

A direct analogue is visible. The main analogies which also define the problem as 
intermediate, elliptic or hyperbolic are the following: 

 

 

 
𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

𝐴𝐴𝑒𝑒𝑡𝑡𝑃𝑃 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 

𝑓𝑓𝑃𝑃𝑀𝑀𝑥𝑥𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

 

 
𝑁𝑁𝑥𝑥
𝑁𝑁𝑦𝑦

 = 1 −
𝐻𝐻2

𝑐𝑐𝑠𝑠2
 viii 

 
𝐸𝐸𝑥𝑥ℎ3

12𝑁𝑁𝑦𝑦
 = 

𝑃𝑃2

2
�1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� ix 

 
𝐺𝐺𝑥𝑥𝑦𝑦ℎ3

3𝑁𝑁𝑦𝑦
 = 

𝑃𝑃2

2
�2−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� x 

 
𝐸𝐸𝑦𝑦ℎ3

12𝑁𝑁𝑦𝑦
 = 𝑃𝑃2

2
 xi 

 −
𝑝𝑝(𝑥𝑥,𝐵𝐵)
𝑁𝑁𝑦𝑦

 = 
𝐵𝐵𝑧𝑧
𝜇𝜇

  

 

Relation xi suggests an equivalence concerning the microstructural length. Substituting the 
equivalent in relations ix, x, the above table gets as follows:  
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𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

𝐴𝐴𝑒𝑒𝑡𝑡𝑃𝑃 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 

𝑓𝑓𝑃𝑃𝑀𝑀𝑥𝑥𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

 

 
𝑁𝑁𝑥𝑥
𝑁𝑁𝑦𝑦

 = 1 −
𝐻𝐻2

𝑐𝑐𝑠𝑠2
 

49 

 
𝐸𝐸𝑥𝑥
𝐸𝐸𝑦𝑦

 = �1−
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� 

 4
𝐺𝐺𝑥𝑥𝑦𝑦
𝐸𝐸𝑦𝑦

 = �2−
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� 

 
𝐸𝐸𝑦𝑦ℎ3

12𝑁𝑁𝑦𝑦
 = 𝑃𝑃2

2
 

 −
𝑝𝑝(𝑥𝑥,𝐵𝐵)
𝑁𝑁𝑦𝑦

 = 
𝐵𝐵𝑧𝑧
𝜇𝜇

 

 

The analogue continues to the boundary conditions. Those are similar to the ones proposed 
in the static case, with the addition of some dynamic boundary condition (including initial 
conditions). 

Giannakopoulos and Zisis (2019) studied this analogue. In this research the authors present 
the full analogy in a sketch in the following page.:  

Obviously from the last relation 49, if 𝑁𝑁𝜉𝜉 > 𝑁𝑁𝜂𝜂 then the problem is subsonic, while if 𝑁𝑁𝜉𝜉 < 𝑁𝑁𝜂𝜂 
the problem is supersonic.  

One note that should be mentioned is that this manipulation of the plate equation from relation 
47 to relation vii, helped the solution of the anti-plane problem. The opposite, solving an anti-
plane couple stress elasticity problem, or a flexoelectric anti-plane problem and then obtain 
the solution for the analogue plate problem is possible, but unnecessary as the plate problem 
is usually the easy one to solve. There are a lot of tables in bibliography and also the plates 
are common to FEM codes. 

Next in the last chapter, this theory will be used to solve the anti-plane flexoelectric dynamic 
problem of mode III crack, with the use of FEM.  
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The prestressed plate. The Axial 
pre – tension depends on the 
velocity of the crack for 𝐺𝐺 = 0. 

The Complete Analogue between the orthotropic prestressed 
plate and the anti – plane couple stress elasticity problem of a 
mode III crack.  

 The complete analogue of the anti-plane problem and the plate problem.  
This scetch was obtained from Giannakopoulos and Zisis (2019). 

 

  



FEM applications   
 

 

125 

7. FEM applications 
As the previous chapter suggested, analogue 49 allows the solution of the couple elasticity 
problem, or the anti-plane flexoelectric problem, via a solution of plates. This analogue, for the 
elliptic problems is viable and computational solutions have already been made. The elliptic 
problem suggests that all the quantities of analogue 49 are positive, in respect of the anti-
plane problem and thus the plate problem can be defined properly.  

The three regions however, suggest the possibility, some of those constants to be negative. 
The intermediate problem suggests 1 − 𝐻𝐻2/𝑐𝑐𝑠𝑠2 < 0, while the hyperbolic problem also 
suggests 1 − (𝐻𝐻2𝛿𝛿2)/(6𝑃𝑃2𝑐𝑐𝑠𝑠2) < 0. The second one is equivalent to 𝐸𝐸𝑥𝑥/𝐸𝐸𝑦𝑦  < 0 in the plate 
problem. According to classic elasticity, however, the moduli of elasticity in an orthotropic 
material should be positive and thus the analogue seems like it cannot be used.  

From the mathematical point of view, the problem is described by a linear partial differential 
equation, that should be solved with respect of 𝑠𝑠(𝜉𝜉, 𝜂𝜂): 

 

 𝐴𝐴1
𝜕𝜕4𝑠𝑠
𝜕𝜕𝜉𝜉4

+ 2𝐴𝐴2
𝜕𝜕4𝑠𝑠

𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2
+ 𝐴𝐴3

𝜕𝜕4𝑠𝑠
𝜕𝜕𝜂𝜂4

− �𝛣𝛣1
𝜕𝜕2𝑠𝑠
𝜕𝜕𝜉𝜉2

+ 𝛣𝛣2
𝜕𝜕2𝑠𝑠
𝜕𝜕𝜂𝜂2

� = 𝑃𝑃(𝜉𝜉, 𝜂𝜂)  

 

Where 𝐴𝐴3 > 0, 𝐵𝐵2 > 0, 𝐵𝐵2 ≥ 𝐵𝐵1 and 𝐴𝐴2 > 𝐴𝐴1. If 𝐴𝐴1 > 0 the problem is elliptic. If 𝐴𝐴1 = 0 the 
problem is parabolic. Both those cases have already been addresses by Giannakopoulos and 
Zisis (2019).  

However, if 𝐴𝐴1 < 0 the problem is hyperbolic. To overcome this difficulty, a method inspired 
by the so called “Analogue Equation Method” that was originated in the context of Boundary 
Elements by Katsikadelis (1994) is suggested. The idea is to obtain some appropriate “body 
force” 𝑒𝑒(𝜉𝜉, 𝜂𝜂) that will be common between the actual and the analogue equations (the 
analogue equation could be also parabolic). Two cases are distinguished.  

a.  𝐴𝐴1 < 0 and 𝐴𝐴2 > 0. 
Then the original equation splits into two analogue equations according to: 

 

 (0) ∗
𝜕𝜕4𝑠𝑠
𝜕𝜕𝜉𝜉4

+ 2𝐴𝐴2
𝜕𝜕4𝑠𝑠

𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2
+ 𝐴𝐴3

𝜕𝜕4𝑠𝑠
𝜕𝜕𝜂𝜂4

− �(0) ∗
𝜕𝜕2𝑠𝑠
𝜕𝜕𝜉𝜉2

+ 𝛣𝛣2
𝜕𝜕2𝑠𝑠
𝜕𝜕𝜂𝜂2

� − 𝑃𝑃(𝜉𝜉, 𝜂𝜂) = 𝑒𝑒(𝜉𝜉, 𝜂𝜂)  

 and  

 
𝑒𝑒(𝜉𝜉, 𝜂𝜂) = −𝐴𝐴1

𝜕𝜕4𝑠𝑠
𝜕𝜕𝜉𝜉4

− 2 ∗ (0) ∗
𝜕𝜕4𝑠𝑠

𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2
− (0) ∗

𝜕𝜕4𝑠𝑠
𝜕𝜕𝜂𝜂4

+ �𝛣𝛣1
𝜕𝜕2𝑠𝑠
𝜕𝜕𝜉𝜉2

+ (0) ∗
𝜕𝜕2𝑠𝑠
𝜕𝜕𝜂𝜂2

� 
 

 

b. 𝐴𝐴1 < 0 and 𝐴𝐴2 < 0.  
Then the original equation splits into two analogue equations according to: 
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 (0) ∗
𝜕𝜕4𝑠𝑠
𝜕𝜕𝜉𝜉4

+ 2 ∗ (0) ∗
𝜕𝜕4𝑠𝑠

𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2
+ 𝐴𝐴3

𝜕𝜕4𝑠𝑠
𝜕𝜕𝜂𝜂4

− �(0) ∗
𝜕𝜕2𝑠𝑠
𝜕𝜕𝜉𝜉2

+ 𝛣𝛣2
𝜕𝜕2𝑠𝑠
𝜕𝜕𝜂𝜂2

� − 𝑃𝑃(𝜉𝜉, 𝜂𝜂) = 𝑒𝑒(𝜉𝜉, 𝜂𝜂)  

 and  

 
𝑒𝑒(𝜉𝜉, 𝜂𝜂) = −𝐴𝐴1

𝜕𝜕4𝑠𝑠
𝜕𝜕𝜉𝜉4

− 2𝐴𝐴2
𝜕𝜕4𝑠𝑠

𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2
− (0) ∗

𝜕𝜕4𝑠𝑠
𝜕𝜕𝜂𝜂4

+ �𝛣𝛣1
𝜕𝜕2𝑠𝑠
𝜕𝜕𝜉𝜉2

+ (0) ∗
𝜕𝜕2𝑠𝑠
𝜕𝜕𝜂𝜂2

� 
 

 

Next, the materialization of the above analogue equations to prestressed Kirchhoff plate 
problem, takes place. This is the first applications of the “Analogue Equation Method” in the 
context of Finite Element.  

A. The two-plate method 

The main idea is to use the equation 48 and in the term of the external loading, in addition to 
the analogue load produced from the anti-plane problem, an extra term should be added, the 
area load 𝑒𝑒(𝑥𝑥,𝐵𝐵), from another plate that reinforces this original one. The governing equation 
of this original plate will be relation i. 

 

𝐸𝐸𝑥𝑥
𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙.ℎ𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙.

3

12
𝑠𝑠,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙. +

𝐺𝐺𝑥𝑥𝑦𝑦
𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙.ℎ𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙.

3

3
𝑠𝑠,𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦
𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙. +

𝐸𝐸𝑦𝑦
𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙.ℎ𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙.

3

12
𝑠𝑠,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙.  

i −𝑁𝑁𝑥𝑥
𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙.𝑠𝑠,𝑥𝑥𝑥𝑥

𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙. − 𝑁𝑁𝑦𝑦
𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙.𝑠𝑠,𝑦𝑦𝑦𝑦

𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙. 

= 𝑝𝑝(𝑥𝑥,𝐵𝐵) + 𝑒𝑒(𝑥𝑥, 𝐵𝐵) 

 

 

 
 The analogue plate to the anti-plane problem. 
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The plate should in any case be prestressed, biaxially and the prestress should be different between 
the directions. The plate should be constrained with the analogue’s boundary conditions, that could 
be something else than hinges. The load 𝑝𝑝(𝑥𝑥,𝐵𝐵) should be also the analogue load of the anti-plane 
problem. The load should be applied in the necessary surface (e.g., for a mode III crack, it will be a 
line load) 

 

The second plate, has also a governing equation that defines it.  

 

𝐸𝐸𝑥𝑥𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛.ℎ𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛.
3

12
𝑠𝑠,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛. +

𝐺𝐺𝑥𝑥𝑦𝑦𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛.ℎ𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛.
3

3
𝑠𝑠,𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦
𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛. +

𝐸𝐸𝑦𝑦𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛.ℎ𝑜𝑜𝑝𝑝𝑖𝑖𝑙𝑙.
3

12
𝑠𝑠,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛.  

ii  −𝑁𝑁𝑥𝑥𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛.𝑠𝑠,𝑥𝑥𝑥𝑥
𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛. −𝑁𝑁𝑦𝑦𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛.𝑠𝑠,𝑦𝑦𝑦𝑦

𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛. 

 = 𝑒𝑒(𝑥𝑥, 𝐵𝐵) 

 

The actions between them are action-reaction forces and thus the left hand-side of relation ii 
can be inserted into relation i, substituting the term of the action 𝑒𝑒(𝑥𝑥, 𝐵𝐵). Also, by considering 
the same plate thickness and the same out-of-plane displacement, the below relation is 
produced: 

 

 
𝑂𝑂𝑐𝑐𝑃𝑃𝑔𝑔𝑃𝑃𝑒𝑒𝑎𝑎𝑃𝑃 

𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 
 

𝑅𝑅𝑀𝑀𝑃𝑃𝑒𝑒𝑓𝑓𝑀𝑀𝑐𝑐𝑐𝑐𝑃𝑃𝑒𝑒𝑔𝑔 

𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 

 𝑁𝑁𝑀𝑀𝑠𝑠 

𝑃𝑃𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 
 

 ℎ𝑜𝑜𝑙𝑙 = ℎ𝑝𝑝𝑓𝑓. = ℎ  

 𝑠𝑠𝑜𝑜𝑙𝑙 = 𝑠𝑠𝑝𝑝𝑓𝑓 = 𝑠𝑠  

 

 

𝐸𝐸𝑥𝑥
𝑜𝑜𝑙𝑙ℎ3

12
𝑠𝑠,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 +

𝐺𝐺𝑥𝑥𝑦𝑦
𝑜𝑜𝑙𝑙ℎ3

3
𝑠𝑠,𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 +

𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙ℎ3

12
𝑠𝑠,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑁𝑁𝑥𝑥

𝑜𝑜𝑙𝑙𝑠𝑠,𝑥𝑥𝑥𝑥 − 𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙𝑠𝑠,𝑦𝑦𝑦𝑦 

iii −
𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓ℎ3

12
𝑠𝑠,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 −

𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓ℎ3

3
𝑠𝑠,𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 −

𝐸𝐸𝑦𝑦
𝑝𝑝𝑓𝑓ℎ3

12
𝑠𝑠,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑁𝑁𝑥𝑥

𝑝𝑝𝑓𝑓𝑠𝑠,𝑥𝑥𝑥𝑥 + 𝑁𝑁𝑦𝑦
𝑝𝑝𝑓𝑓𝑠𝑠,𝑦𝑦𝑦𝑦 

 = 𝑝𝑝(𝑥𝑥, 𝐵𝐵) 
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The index 𝑐𝑐𝑔𝑔 represents the original plate, while the index 𝑐𝑐𝑓𝑓 represents the reinforcing plate.  

The suggestion that the out-of-plane displacement is common for the two plates, demands the 
connection between them to be rigid enough.  

 

 
 The plate-like structure that can be inserted to the analogue.  

The above plate, that is called original plate is the plate in which the analogue load is being applied. 
That can be seen in relation i. One second plate, similar to the first, but without the analogue load, is 
connected with a rigid manor, to the original plate.  
The reinforcing (below plate) could be prestressed or not, orthotropic or isotropic (the calculations 
will provide these information). 
The limitation: “rigid” should demand the out-of-plane displacement in both plates to be zero. As only 
the out-of-plane displacement is demanded to be constrained, those connectors can be short truss 
elements with great modulus of elasticity and cross-section area. Those connectors should be placed 
close enough, so their reaction can be considered the common surface load 𝑒𝑒(𝑥𝑥, 𝐵𝐵). 

 

 

By applying some calculation in relation iii, the following relation is produced:  

 

�𝐸𝐸𝑥𝑥
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑥𝑥

𝑝𝑝𝑓𝑓�ℎ3

12
𝑠𝑠,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 +

�𝐺𝐺𝑥𝑥𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐺𝐺𝑥𝑥𝑦𝑦

𝑝𝑝𝑓𝑓�ℎ3

3
𝑠𝑠,𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 +

�𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�ℎ3

12
𝑠𝑠,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

iv −�𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑥𝑥

𝑝𝑝𝑓𝑓�𝑠𝑠,𝑥𝑥𝑥𝑥 − �𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�𝑠𝑠,𝑦𝑦𝑦𝑦 

 = 𝑝𝑝(𝑥𝑥, 𝐵𝐵) 
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And by reordering, with the purpose that relation iv will look like relation vii (chapter 6), the 
following is produced: 

 

�𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑥𝑥

𝑝𝑝𝑓𝑓�

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�
𝜕𝜕2𝑠𝑠
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑠𝑠
𝜕𝜕𝐵𝐵2

 

v −
�𝐸𝐸𝑥𝑥

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓�ℎ3

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�12
𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥4

−
�𝐺𝐺𝑥𝑥𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓�ℎ3

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�3
𝜕𝜕4𝑠𝑠
𝜕𝜕𝑥𝑥4

−
�𝐸𝐸𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦
𝑝𝑝𝑓𝑓�ℎ3

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�12
𝜕𝜕4𝑠𝑠

𝜕𝜕𝑥𝑥2𝜕𝜕𝐵𝐵2
 

 = −
𝑝𝑝(𝑥𝑥,𝐵𝐵)

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�
 

 

The analogue, according to relation v can be modified as follows: 

 

 
𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

𝐴𝐴𝑒𝑒𝑡𝑡𝑃𝑃 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 

𝑓𝑓𝑃𝑃𝑀𝑀𝑥𝑥𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

 

 
�𝑁𝑁𝑥𝑥

𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑥𝑥
𝑝𝑝𝑓𝑓�

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�
 = 1 −

𝐻𝐻2

𝑐𝑐𝑠𝑠2
 vi 

 
�𝐸𝐸𝑥𝑥

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓�ℎ3

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�12
 = 

𝑃𝑃2

2
�1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� vii 

 
�𝐺𝐺𝑥𝑥𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓�ℎ3

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�3
 = 

𝑃𝑃2

2
�2−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� viii 

 
�𝐸𝐸𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦
𝑝𝑝𝑓𝑓�ℎ3

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�12
 = 𝑃𝑃2

2
 ix 

 = −
𝑝𝑝(𝑥𝑥,𝐵𝐵)

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�
 = 

𝐵𝐵𝑧𝑧
𝜇𝜇

  

 

And with the use of relation ix, relation vii and viii can be simplified a bit. The following analogue 
can replace analogue 49. The advantage of this new analogue is that it is not bounded by 
signs as the modified moduli that are analogue with the anti-plane flexoelectric parameters 
can be also negative and so the intermediate and the hyperbolic region are accessible. The 
new, modified analogues can be described by the following relations: 
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𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

𝐴𝐴𝑒𝑒𝑡𝑡𝑃𝑃 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 

𝑓𝑓𝑃𝑃𝑀𝑀𝑥𝑥𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

 

 
�𝑁𝑁𝑥𝑥

𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑥𝑥
𝑝𝑝𝑓𝑓�

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�
 = 1 −

𝐻𝐻2

𝑐𝑐𝑠𝑠2
 

50 

 
�𝐸𝐸𝑥𝑥

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓��𝑁𝑁𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦
𝑝𝑝𝑓𝑓�

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓��𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�
 = �1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� 

 4
�𝐺𝐺𝑥𝑥𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓��𝑁𝑁𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦
𝑝𝑝𝑓𝑓�

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓��𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�
 = �2−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� 

 
�𝐸𝐸𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦
𝑝𝑝𝑓𝑓�ℎ3

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�12
 = 𝑃𝑃2

2
 

 −
𝑝𝑝(𝑥𝑥, 𝐵𝐵)

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�
 = 

𝐵𝐵𝑧𝑧
𝜇𝜇

 

 

By considering that the reinforcing plate, is not prestressed, analogue 50 is modified as follows 
(analogue 51):  

 

 
𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

𝐴𝐴𝑒𝑒𝑡𝑡𝑃𝑃 − 𝑝𝑝𝑃𝑃𝑎𝑎𝑒𝑒𝑀𝑀 

𝑓𝑓𝑃𝑃𝑀𝑀𝑥𝑥𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐 

𝑝𝑝𝑐𝑐𝑀𝑀𝑏𝑏𝑃𝑃𝑀𝑀𝑠𝑠 

 

 
𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙

𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 = 1 −

𝐻𝐻2

𝑐𝑐𝑠𝑠2
 

51 

 
�𝐸𝐸𝑥𝑥

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓�

�𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�
 = �1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� 

 4
�𝐺𝐺𝑥𝑥𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓�

�𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�
 = �2−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� 

 
�𝐸𝐸𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦
𝑝𝑝𝑓𝑓�ℎ3

�𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝑁𝑁𝑦𝑦

𝑝𝑝𝑓𝑓�12
 = 𝑃𝑃2

2
 

 −
𝑝𝑝(𝑥𝑥, 𝐵𝐵)
𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙  = 

𝐵𝐵𝑧𝑧
𝜇𝜇

 

 

These simplifications, allows for a better finding of the right parameters but may limit the cases 
as well. From analogue 51 it seems that the problem resided with the following methodology: 
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• Find the prestress of the plate that calibrates the velocity of the anti-plane dynamic 
problem.  

• Find the combination of the Elasticity moduli that calibrate the hyperbolicity. 
• Modify the shear moduli to conclude the analogue. 

B. The FEM model 

Using the FEM program ABAQUS, some numerical calculations were possible. In this program 
the plate structures were made, both, from orthotropic materials and connected with truss 
elements of great stiffness (short and with an enormous modulus of elasticity). The plate 
thickness and the cross-section of the truss elements were considered small enough. The 
connection of the two plates, with the truss elements, was done in every finite element (on the 
nodes of it).  

More specifically, about the FEM model:  

• The original and the reinforcing plate was made from a 3D (deformable) homogeneous 
shell (planar) element of thickness ℎ = 0.001. The other dimensions were set to 
0.2 × 0.1. 

• The materials of both plates, were defined as orthotropic, with each constant defined 
according to the analogue. 

• The element type for the two plates, was a shell element, cubic, with four nodes. 
• The integration points were defined to be five, using the Simpson’s method.  
• The connectors were defined as truss elements, with a cross-section of 𝐴𝐴 = 10−6 . 
• The material of the connectors was set as isotropic, with a modulus of elasticity orders 

greater than the material of the plate (the biggest) and zero Poisson’s ratio. In the next 
analysis the material constant was set by “try an error”. For bigger moduli than the 
desired, mathematical instabilities messed with the results and for smaller, the 
connectors were deformed greatly. 

• The FEM model was using square elements with side equal to 0.001. 
• The joining of the elements should be done only as geometrical. 
• The boundary conditions and the applied load to the plate were left to be chosen via 

the analogue.  

Sketches about the FEM model can be seen in fig. 93. 

The analysis would be set as non-linear, with one step. The load would be applied in two 
phases. Firstly, the pre-stress would be applied first and would affect the element (this is not 
demanded by the theory, however, if not, the program would not understand the prestress) 
and then the out-of-plane loading would be applied, for the out-of-plane deformation to be 
produced.  
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 Sketches from the FEM model. 

 

C. The cases 

As it was mentioned already before, the elliptic region (the region for which analogue 49 
applies) is a region well studied (chapter 3). The purpose of this chapter is to study cases 
where the anti-plane problem is hyperbolic, or even intermediate.  

The main study of this chapter will focus on the hyperbolic problem, analyzing some cases. 
The hyperbolic problem, is defined for combinations of velocity and microstructure, that has a 
result 1− (𝐻𝐻2𝛿𝛿2)/(6𝑃𝑃2𝑐𝑐𝑠𝑠2) < 0. Three cases will be studied:  

Case 1: A purely hyperbolic case, for which 𝐻𝐻2/𝑐𝑐𝑠𝑠2 = 1, 𝐻𝐻/�𝑃𝑃√6� = 2 
Case 2: An elliptic – hyperbolic case, for which 𝐻𝐻2/𝑐𝑐𝑠𝑠2 = 0.25, 𝐻𝐻/�𝑃𝑃√6� = 2 
Case 3: An Intermediate – hyperbolic case, for which 𝐻𝐻2/𝑐𝑐𝑠𝑠2 = 1, 𝐻𝐻/�𝑃𝑃√6� = 2 

These scenarios of combinations, all exist in the hyperbolic region, as it can be seen in figure 
94 and thus the FEM model that was proposed on chapter 7.A, that uses the analogue 51 will 
be used.  
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 Cases 1, 2 and 3 and their position in the hyperbolic region.  

Case 1 is a purely hyperbolic case, while case 2 and 3 shows some ellipticity. Case 2 is in the 
boundary of the hyperbolic and the elliptic region and should prohibit behavior elliptic like (figure 27 
and figure 28), while case 3 is in the boundary of all three regions, as its velocity is also sonic. 

 

For those problems, one thing is left to be decided, the boundary conditions. A mode III crack, 
which is an anti-plane 3D problem, is defined by some boundary conditions. Those conditions 
should be moved to the analogue plate problem, so some restrains can be inserted in the FEM 
applications. (Those restrains are better to be imported for both plates, however, the rigid 
connector will correct it). In the following figures (figure 95, 96, 97) those restrains are being 
discussed.  

 

 
 The anti-plane problem and its boundary conditions.  
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The edges in a mode III problem, could be free to move, or rotate. The anti-plane load is applied in 
the crack, for a specific length.  

 
 The plate restrains. 

Because of the analogue suggested, no boundary conditions are needed. This, however suggests a 
stability issues and must be treated.  

 
 The boundary condition of the final model. 

Using the obvious anti-symmetry, some boundary conditions that make the plate stable, can be 
extruded. Also, the prestress from the one direction can be replaced with analogue restrains. This 
way the plate is stable and can be solved.  

 

 

i. The purely hyperbolic case.  

Using the analogue 51, a system of some unknown variables is produced:   
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𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙

𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 = 1 −

𝐻𝐻2

𝑐𝑐𝑠𝑠2
= 0 x 

 
�𝐸𝐸𝑥𝑥

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓�

�𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�
= �1 −

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� = −3 xi 

 4
�𝐺𝐺𝑥𝑥𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓�

�𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�
= �2−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� = −2 xii 

 

An obvious solution of relation x suggests that 𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙 = 0,  

As for relation xi, choosing 𝐸𝐸𝑥𝑥
𝑜𝑜𝑙𝑙 = 𝐸𝐸𝑦𝑦

𝑜𝑜𝑙𝑙 = 10000 and 𝐸𝐸𝑦𝑦
𝑝𝑝𝑓𝑓 = 0 demands  𝐸𝐸𝑥𝑥

𝑝𝑝𝑓𝑓 = 40000.  

Lastly by considering 𝐺𝐺𝑥𝑥𝑦𝑦
𝑜𝑜𝑙𝑙 = 0, in order relation xii to hold true 𝐺𝐺𝑥𝑥𝑦𝑦

𝑝𝑝𝑓𝑓 = 5000. 

According to the above, the purely hyperbolic problem can be described from the beneath 
moduli. 

  

𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒 𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙 = 0 𝑁𝑁𝑦𝑦

𝑜𝑜𝑙𝑙 ≠ 0   

52 𝑂𝑂𝑐𝑐𝑃𝑃𝑔𝑔𝑃𝑃𝑒𝑒𝑎𝑎𝑃𝑃 𝑀𝑀𝑎𝑎𝑡𝑡. 𝐸𝐸𝑥𝑥
𝑜𝑜𝑙𝑙 = 10000 𝐸𝐸𝑦𝑦

𝑜𝑜𝑙𝑙 = 10010 𝐺𝐺𝑥𝑥𝑦𝑦
𝑜𝑜𝑙𝑙 = 10  

𝑅𝑅𝑀𝑀𝑃𝑃𝑒𝑒𝑓𝑓𝑀𝑀𝑐𝑐𝑐𝑐.𝑀𝑀𝑎𝑎𝑡𝑡. 𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓 = 40000 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓 = 10 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓 = 5010  

 

The same system however, can be solved for a different combination of moduli.  

 

𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒 𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙 = 0 𝑁𝑁𝑦𝑦

𝑜𝑜𝑙𝑙 ≠ 0   

53 𝑂𝑂𝑐𝑐𝑃𝑃𝑔𝑔𝑃𝑃𝑒𝑒𝑎𝑎𝑃𝑃 𝑀𝑀𝑎𝑎𝑡𝑡. 𝐸𝐸𝑥𝑥
𝑜𝑜𝑙𝑙 = 10000 𝐸𝐸𝑦𝑦

𝑜𝑜𝑙𝑙 = 1010 𝐺𝐺𝑥𝑥𝑦𝑦
𝑜𝑜𝑙𝑙 = 10  

𝑅𝑅𝑀𝑀𝑃𝑃𝑒𝑒𝑓𝑓𝑀𝑀𝑐𝑐𝑐𝑐.𝑀𝑀𝑎𝑎𝑡𝑡. 𝐸𝐸𝑥𝑥
𝑜𝑜𝑙𝑙 = 13000 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓 = 10 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓 = 510  

 

By applying those moduli, to the model created for this scope, the beneath results are 
visible: 
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  The out-of-plane displacement for the 1st case, the first alternative. 
For the combination of moduli 52 the out-of-plane displacement form Mach cones. The angle of those 
cones can be measured as 30 degrees, the same that can be calculated from relation 19. The 
modulus of elasticity of the connectors for this scenario was set to 8 ∗ 109. For greater moduli, 
mathematical instabilities occurred, while for smaller, the connectors were not as effective as desired.  
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 The out-of-plane displacement for the 1st case, the second alternative. 
For the combination of moduli 53, the displacement formed similar Mach cones (the angle is briefly 
bigger), while the moduli were greatly different. The modulus of elasticity of the connectors was set 
to 2 ∗ 109. Further studies about the angle of the Mach cones are suggested. Some difference 
between the theoretical angle and the calculated angle could be due to the finite plate, and 
connections. Were the model infinite, then the angles should be more accurate. 
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 The profile of the crack in the purely hyperbolic case.  

Under no circumstances the displacement is going to fade for greater lengths (as the hyperbolicity 
suggests).  

 

 

ii. The elliptic – hyperbolic case 

For this case, the system that needs to be solved is the following:  

  

 
𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙

𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 = 1 −

𝐻𝐻2

𝑐𝑐𝑠𝑠2
= 0.75  

 
�𝐸𝐸𝑥𝑥

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓�

�𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�
= �1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� = 0  

 4
�𝐺𝐺𝑥𝑥𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓�

�𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�
= �2−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� = 1  

 

One of the combinations for which the above system holds true, is the following: 

 

𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒 𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙 = 7.5 ∗ 10−8 𝑁𝑁𝑦𝑦

𝑜𝑜𝑙𝑙 = 10−7   

54 𝑂𝑂𝑐𝑐𝑃𝑃𝑔𝑔𝑃𝑃𝑒𝑒𝑎𝑎𝑃𝑃 𝑀𝑀𝑎𝑎𝑡𝑡. 𝐸𝐸𝑥𝑥
𝑜𝑜𝑙𝑙 = 10000 𝐸𝐸𝑦𝑦

𝑜𝑜𝑙𝑙 = 10010 𝐺𝐺𝑥𝑥𝑦𝑦
𝑜𝑜𝑙𝑙 = 2510  

𝑅𝑅𝑀𝑀𝑃𝑃𝑒𝑒𝑓𝑓𝑀𝑀𝑐𝑐𝑐𝑐.𝑀𝑀𝑎𝑎𝑡𝑡. 𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓 = 10000 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓 = 10 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓 = 10  



FEM applications   
 

 

139 

 

The results are the following: 

 
 

 
 

 The out-of-plane displacement for 2nd case. 
For the combination of moduli (54), the modulus of elasticity of the connectors was set to 0.5 ∗ 109. 
Mach cones seems to be created. Relation 19 suggested that the slope should be 90 degrees.  
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iii. The intermediate - hyperbolic case 

Lastly, for this case the below system should hold true:  

 

 
𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙

𝑁𝑁𝑦𝑦
𝑜𝑜𝑙𝑙 = 1 −

𝐻𝐻2

𝑐𝑐𝑠𝑠2
= 0  

 
�𝐸𝐸𝑥𝑥

𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓�

�𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�
= �1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� = 0  

 4
�𝐺𝐺𝑥𝑥𝑦𝑦

𝑜𝑜𝑙𝑙 − 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓�

�𝐸𝐸𝑦𝑦
𝑜𝑜𝑙𝑙 − 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓�
= �2−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
� = 1  

 

This system has a a solution the following combination:  

 

𝑃𝑃𝑐𝑐𝑀𝑀𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒 𝑁𝑁𝑥𝑥
𝑜𝑜𝑙𝑙 = 0 𝑁𝑁𝑦𝑦

𝑜𝑜𝑙𝑙 ≠ 0   

55 𝑂𝑂𝑐𝑐𝑃𝑃𝑔𝑔𝑃𝑃𝑒𝑒𝑎𝑎𝑃𝑃 𝑀𝑀𝑎𝑎𝑡𝑡. 𝐸𝐸𝑥𝑥
𝑜𝑜𝑙𝑙 = 10000 𝐸𝐸𝑦𝑦

𝑜𝑜𝑙𝑙 = 10010 𝐺𝐺𝑥𝑥𝑦𝑦
𝑜𝑜𝑙𝑙 = 2510  

𝑅𝑅𝑀𝑀𝑃𝑃𝑒𝑒𝑓𝑓𝑀𝑀𝑐𝑐𝑐𝑐.𝑀𝑀𝑎𝑎𝑡𝑡. 𝐸𝐸𝑥𝑥
𝑝𝑝𝑓𝑓 = 10000 𝐸𝐸𝑦𝑦

𝑝𝑝𝑓𝑓 = 10 𝐺𝐺𝑥𝑥𝑦𝑦
𝑝𝑝𝑓𝑓 = 10  

 

The results are the following:  
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 The out-of-plane displacement for 3rd case. 

For the combination of moduli (55), the modulus of elasticity of the connectors was set to 0.5 ∗ 109. 
Mach cones seems to be created. Relation 19 suggested the slope should be 90 degrees. 
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8. Epilogue 
Flexoelectricity, an extremely promising physical aspect that applies to any dielectric is 
responsible for the generation of electrical polarization in a material while mechanically 
stressed and proposes a wide variety of applications. These could be energy harvesting, 
active vibration control, health structure monitoring, and others, all of them applications to be 
seen a lot in the future. Flexoelectricity allows the construction of smart devices in buildings 
such as sensors and actuators. Earthquake isolation could also be benefited. There are the 
so-called FPS (Friction Pendulum System) isolators and even in some large structures like 
bridges the isolation enables some connections to break during an earthquake, so, when the 
lateral load is small the structure can stay still, but for higher loads, the connections allow the 
displacements to increase and so the actions are reduced (something like active vibration 
control). Flexoelectricity could improve those systems.  

The reverse flexoelectric effect, producing strain gradient from electric polarization implies 
that, flexoelectricity should be taken into consideration in the formulation of the total energy 
density, and contribute to the constitutive laws. With this is mind, it is feasible to derive the 
governing equation of many problems such as the anti-plane flexoelectric problem. Anti-plane 
problems are extremely frequent in structural analysis, concerning reinforced concrete or 
metal structures, earthquake engineering and composite materials. In this simplified 
formulation, the polarization can be calculated. 

A. The research 

In this research the flexoelectric effect in the anti-plane dynamic problem of the mode III crack 
was studied. The static problem however is included in the more general dynamic problem. 
For the formulation of the governing equation the total energy density was used. This way two 
equations (3 including the Maxwell’s equation) were derived. One concerning the out-of-plane 
displacement of the anti-plane problem, and one which allows the calculation of the out-of-
plane polarization.  

The formulation of the equation referring to the displacement (which is similar to the governing 
equation of a normal anti-plane couple stress elasticity problem), allows the distinction of the 
problem in three regions, the elliptic, the intermediate and the hyperbolic. For the hyperbolic 
region the displacement can be calculated using a method of the characteristics and a Mach 
cone – like displacement can be suggested. The known displacement allows the calculation 
of the polarization. As it was proven the maximum polarization is visible on the crack tip, and 
at the end of the cohesion zone. Those two points are possible locations of electrical yielding 
(abrupt change of the polarization vector).   

Flexoelectricity in a dynamic problem like the mode III crack can be combined with the 
propagation of waves, both mechanical because of the displacement and optical because of 
the polarization. The flexoelectric material is dispersive and thus the dispersion of the 
produced waves was also studied. It is known that electromagnetic waves are emitted in an 
earthquake. Earthquakes are due to the cracks at the flexoelectric earth’s mantle. Therefore, 
a seismic action produces waves.  
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Lastly, as a similarity of the anti-plane flexoelectric problem and the prestressed Kirchhoff 
plate was observed, an analogue was used for numerical solution (FEM) of an anti-plane 
flexoelectric problem of a mode III crack. More specifically, inspired by the Analogue Equation 
Method, originally referred to the Boundary Elements, a methodology using two analog plates, 
instead an original one, enables the numerical calculation of the hyperbolic problem.  

For the hyperbolic anti-plane problem, the displacement was proved numerically to form Mach 
cones. Those cones were created with respect of a pre-defined angle, for which the moduli of 
elasticity and the prestress action contributed.  

Conclusively, solving an anti-plane problem, whether it is defined for flexoelectric or for the 
theory of couple stress elasticity, is analogue to solving a prestressed Kirchhoff plate. This 
analogue that was suggested in the bibliography, also seems to apply in the hyperbolic anti-
plane problem, that reduces to a couple of parabolic plates. 

B. Vision 

The flexoelectric anti-plane problem was shown to be extremely prominent. Experimental 
studies have yet to come. The connection of flexoelectricity with the propagation of waves is 
also promising. Rayleigh or Stoneley waves could be investigated with flexoelectricity. Yet, 
except for the mode III crack, there are other anti-plane problems that can be investigated with 
flexoelectricity like the bar pull-out which is an anti-plane problem and could be studied further. 

Regarding the phenomenon of flexoelectricity my vision includes smart buildings, using this 
effect for various applications. Smart isolations (active vibration control) could be used to cope 
with seismic loading, or accidental loads. The reverse flexoelectric effect could be used to 
improve the mechanical capabilities of the materials during those loading conditions. From an 
energy concerning perspective, a building could harvest some electrical work produced due 
to oscillatory loading like the wind.  

One noticeable application of flexoelectricity, and more specifically the anti-plane problem of 
a mode III crack, is to act as a sensor that signals when a crack appears and so a repair is 
needed. Cracks are usual in civil engineering structures, like in a concrete section, near a hole 
in a concrete or a steel element and near the arc welding of a steel section. Flexoelectricity 
could provide a signal to notify the incident of failure. 

The above, however, need a further study of the phenomenon and optimization. This is my 
aspiration for the future, as this phenomenon has proved worthy of studying. Experimental 
research should be used to calibrate the theories. The study of problems similar to the anti-
plane problem is desired, and can have important applications in the fields of structural, 
micromechanical, mechanical, or electromechanical engineering. 
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9. Appendices 

A. The governing equations of the anti-plane flexoelectric problem 

For a centrosymmetric cubic crystal structure, the energy density containing terms of strains 
energy and polarizations can be written as follows: 

 

𝑈𝑈 =
1
2
�𝑎𝑎𝑃𝑃32 + (𝑏𝑏44 + 𝑏𝑏77)�𝑃𝑃3,1

2 + 𝑃𝑃3,2
2� + 2𝑀𝑀44 �(𝜀𝜀13 + 𝜀𝜀31)𝑃𝑃3,1 + (𝜀𝜀23 + 𝜀𝜀32)𝑃𝑃3,2� 

A.1 
+2𝑓𝑓12 ��𝜀𝜀13,1 + 𝜀𝜀31,1�𝑃𝑃3 + �𝜀𝜀23,2 + 𝜀𝜀32,2�𝑃𝑃3� + 2𝜇𝜇(𝜀𝜀13𝜀𝜀31 + 𝜀𝜀23𝜀𝜀32)� 

 

This formula was proposed by Giannakopoulos and Zisis (2019) and modified a bit and was 
also used in their later studies (Giannakopoulos and Zisis (2020 a, b)). This formula is a little 
peculiar. It contains terms of polarizations and polarization gradient, strain and strain gradient. 
Some of them, however, are missing and this is because of the anti-plane problem theory, 
which demands some displacements to be zero (and also some polarizations can be 
considered equal to zero because of the electric anti-plane problem). 

 

 𝑢𝑢𝑥𝑥 = 𝑢𝑢1 ≡ 0  

 𝑢𝑢𝑦𝑦 = 𝑢𝑢2 ≡ 0  

 𝑢𝑢𝑧𝑧 ≡ 𝑠𝑠(𝑥𝑥, 𝐵𝐵) = 𝑢𝑢3 ≡ 𝑠𝑠(𝑥𝑥1,𝑥𝑥2) ≠ 0  

 

And because only one displacement exists and this is independent from its corresponding 
direction, the strains are all zero except some shear strains. 

 

 𝜀𝜀11 =
1
2
�
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥1

+
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥1

� = 0  

 𝜀𝜀22 =
1
2
�
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥2

+
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥2

� = 0  

 𝜀𝜀33 =
1
2
�
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥3

+
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥3

� =
𝜕𝜕𝑠𝑠(𝑥𝑥1,𝑥𝑥2)

𝜕𝜕𝑥𝑥3
= 0  

 𝜀𝜀12 = 𝜀𝜀21 =
1
2
�
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥2

+
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥1

� = 0  

 𝜀𝜀13 = 𝜀𝜀31 =
1
2
�
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥3

+
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥1

� =
1
2
𝜕𝜕𝑠𝑠(𝑥𝑥1, 𝑥𝑥2)

𝜕𝜕𝑥𝑥1
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 𝜀𝜀23 = 𝜀𝜀32 =
1
2
�
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥3

+
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥2

� =
1
2
𝜕𝜕𝑠𝑠(𝑥𝑥1,𝑥𝑥2)

𝜕𝜕𝑥𝑥2
  

 

Those are the strains that exist in the above relations. Also, their gradients are non-zero (with 
the exception of the strain gradient 𝜀𝜀13,2 = 𝜀𝜀31,2 = 𝜀𝜀32,3 = 𝜀𝜀32,3 = 0) because as the strain is a 
function of the two in-plane coordinates, so are their gradients.  

From now on, those strains will be referred as shown below:  

 

 𝜀𝜀13 = 𝜀𝜀31 =
1
2
𝑢𝑢3,1  

 𝜀𝜀23 = 𝜀𝜀32 =
1
2
𝑢𝑢3,2  

   

 𝜀𝜀13,1 = 𝜀𝜀31,1 =
1
2
𝑢𝑢3,11  

 𝜀𝜀23,2 = 𝜀𝜀32,2 =
1
2
𝑢𝑢3,22  

 
The cross-section shear strain gradient 𝜀𝜀13,2 = 𝜀𝜀31,2 = 1

2
𝑢𝑢3,12 and 𝜀𝜀23,1 = 𝜀𝜀32,1 = 1

2
𝑢𝑢3,21, were 

not neglected because of the anti-plane problem theory, as they are not zero. However, in the 
formula of the energy density they are coupled with polarizations that do not exist because of 
the anti-plane formulation. 

Similar to the anti-plane displacement the polarization can be also considered:  

 

 𝑃𝑃1 = 𝑃𝑃2 = 0  

 𝑃𝑃3 = 𝑃𝑃(𝑥𝑥,𝐵𝐵)  

 

This means that also the only non-zero polarization gradients are the 𝑃𝑃3,1 and 𝑃𝑃3,2. 

From this point, the use of Toupin’s Variational Principle, described in Mindlin (1968) will be 
the tool to extract the governing equations that describes the problem. Toupin’s Variational 
Principle is similar to the principle of virtual work, with the exception of the electricity. With the 
addition of electricity, the integrals should be specified carefully. As electricity is concerned, 
the boundary of the body is not the end of the space, (as it can be considered, when only 
mechanical works are in place) but just a surface that separates the space into parts.  

The total space, can be symbolized as 𝐻𝐻∗ and is consisted of the space 𝐻𝐻 that contains the 
body and 𝐻𝐻′ that does not. The surface that separates 𝐻𝐻 from 𝐻𝐻∗ is the surface 𝛿𝛿. 
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 𝛿𝛿 � −𝛿𝛿 
𝑉𝑉∗

𝑀𝑀𝐻𝐻 + �(𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸0𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖) 
𝑉𝑉

𝑀𝑀𝐻𝐻 + �𝑡𝑡𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖  
𝑠𝑠

𝑀𝑀𝑡𝑡 = 0 A.2 

 

• 𝐻𝐻: is the total electric enthalpy density, which can contain terms of total energy density 
of deformations or polarization. 𝐻𝐻 = 𝑈𝑈 − 1

2
𝜀𝜀0�𝛷𝛷,𝑖𝑖

2� + 𝛷𝛷,𝑖𝑖𝑃𝑃𝑖𝑖.  

In the above relation 𝜀𝜀0 is the dielectric constant at vacuum and −𝛷𝛷,𝑖𝑖 is the Maxwell 
self-field.  Because of the anti-plane problem 𝑃𝑃1 = 𝑃𝑃2 = 0, 𝛷𝛷,3 = 0, the total electric 
enthalpy density is reduced to the following: 𝑈𝑈 − 1

2
𝜀𝜀0(𝛷𝛷2

,1 + 𝛷𝛷2
,2)  

This integral is applied to the total space, as it refers to the enthalpy.  

• 𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖: is the potential work density caused by body forces 
• 𝐸𝐸0𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖: is the potential electric density caused by an initial in body electric field.  
• 𝑡𝑡𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖: is the mechanical surface action.  

The general idea using Toupin’s Variational Principle is to reduce the above relation to one 
integral referring to the space and one referring to the boundary. The variations of the 
principal’s variables lead to Euler conditions and the boundary conditions.  

Mindlin (1968) expanded this theorem to include the kinetic energy, by adding the term of the 
kinetic energy to the above principle: 

 

 𝛿𝛿 � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� 𝑇𝑇 − 𝛿𝛿 
𝑉𝑉∗

𝑀𝑀𝐻𝐻 + � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
��(𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸0𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖) 

𝑉𝑉
𝑀𝑀𝐻𝐻 + �𝑡𝑡𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 

𝑠𝑠
𝑀𝑀𝑡𝑡� = 0 A.3 

 

𝑇𝑇: is the kinetic energy, 𝑇𝑇 = 1
2
𝜌𝜌�̇�𝑢3�̇�𝑢3   

 

 𝛿𝛿 � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� 𝑇𝑇 − 𝛿𝛿 
𝑉𝑉∗

𝑀𝑀𝐻𝐻 + � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
�� (𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸0𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖) 

𝑉𝑉
𝑀𝑀𝐻𝐻 + �𝑡𝑡𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 

𝑠𝑠
𝑀𝑀𝑡𝑡� = 0  

 𝛿𝛿 � � 𝑇𝑇 
𝑉𝑉∗

𝑀𝑀𝐻𝐻
𝑡𝑡1

𝑡𝑡0
𝑀𝑀𝑡𝑡 − 𝛿𝛿 � � 𝛿𝛿 

𝑉𝑉∗
𝑀𝑀𝐻𝐻

𝑡𝑡1

𝑡𝑡0
𝑀𝑀𝑡𝑡 + � 𝑀𝑀𝑡𝑡

𝑡𝑡1

𝑡𝑡0
��(𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸0𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖) 

𝑉𝑉
𝑀𝑀𝐻𝐻 + �𝑡𝑡𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖  

𝑠𝑠
𝑀𝑀𝑡𝑡� = 0  

 

The first integral, that contains the kinetic energy, can easily be calculated through the 
Hamilton’s principle, because ∫ 𝛿𝛿 �1

2
𝜌𝜌�̇�𝑢𝑖𝑖𝑢𝑢𝑖𝑖��

𝑉𝑉∗
𝑀𝑀𝑡𝑡𝑡𝑡2

𝑡𝑡1
 can be considered equal to zero: 
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 𝛿𝛿 � 𝑀𝑀𝑡𝑡 ��
1
2
𝜌𝜌�̇�𝑢𝑖𝑖�̇�𝑢𝑖𝑖� 𝑀𝑀𝐻𝐻 =

𝑉𝑉∗

𝑡𝑡2

𝑡𝑡1

 𝛿𝛿 � 𝑀𝑀𝑡𝑡 ��
1
2
𝜌𝜌�̇�𝑢𝑖𝑖𝑢𝑢𝑖𝑖��

𝑉𝑉∗
− ��

1
2
𝜌𝜌�̈�𝑢𝑖𝑖𝑢𝑢𝑖𝑖� 𝑀𝑀𝐻𝐻

𝑉𝑉∗
�

𝑡𝑡2

𝑡𝑡1

=  

 = 𝛿𝛿 � �
1
2
𝜌𝜌�̇�𝑢𝑖𝑖𝑢𝑢𝑖𝑖��

𝑉𝑉∗
𝑀𝑀𝑡𝑡 − 𝛿𝛿 � 𝑀𝑀𝑡𝑡 ��

1
2
𝜌𝜌�̈�𝑢𝑖𝑖𝑢𝑢𝑖𝑖� 𝑀𝑀𝐻𝐻

𝑉𝑉∗

𝑡𝑡2

𝑡𝑡1

𝑡𝑡2

𝑡𝑡1

  

 = � 𝛿𝛿 �
1
2
𝜌𝜌�̇�𝑢𝑖𝑖𝑢𝑢𝑖𝑖��

𝑉𝑉∗
𝑀𝑀𝑡𝑡 − � 𝑀𝑀𝑡𝑡 �(𝜌𝜌�̈�𝑢𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖)𝑀𝑀𝐻𝐻

𝑉𝑉∗

𝑡𝑡2

𝑡𝑡1

𝑡𝑡2

𝑡𝑡1

  

 = − � 𝑀𝑀𝑡𝑡 �(𝜌𝜌�̈�𝑢𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖)𝑀𝑀𝐻𝐻
𝑉𝑉∗

𝑡𝑡2

𝑡𝑡1

  

 

And for the anti-plane flexoelectric problem �̈�𝑢1 = �̈�𝑢2 = 0 

 

 𝛿𝛿 � 𝑀𝑀𝑡𝑡 ��
1
2
𝜌𝜌�̇�𝑢𝑖𝑖�̇�𝑢𝑖𝑖� 𝑀𝑀𝐻𝐻 = − � 𝑀𝑀𝑡𝑡 �(𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3)𝑀𝑀𝐻𝐻

𝑉𝑉∗

𝑡𝑡2

𝑡𝑡1𝑉𝑉∗

𝑡𝑡2

𝑡𝑡1

 A.4 

 

The second integral is a little more complex. For the anti-plane problem 𝑈𝑈 − 1
2
𝜀𝜀0(𝛷𝛷2

,1 + 𝛷𝛷2
,2), 

and as the variation is concerned:  

 

 𝛿𝛿𝐻𝐻 = 𝛿𝛿𝑈𝑈 − 𝛿𝛿 �
1
2
𝜀𝜀0(𝛷𝛷2

,1 + 𝛷𝛷2
,2)� A.5 

 

Starting with the variational of the total energy density, by using the rule of chain, 

 

 𝛿𝛿𝑈𝑈 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀13

𝛿𝛿𝜀𝜀13 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀13

𝛿𝛿𝜀𝜀13 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀23

𝛿𝛿𝜀𝜀23 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀23

𝛿𝛿𝜀𝜀23  

 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀13,1

𝛿𝛿𝜀𝜀13,1 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀23,2

𝛿𝛿𝜀𝜀23,2 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀31,1

𝛿𝛿𝜀𝜀31,1 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀32,2

𝛿𝛿𝜀𝜀32,2  

 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃3

𝛿𝛿𝑃𝑃3 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃3,1

𝛿𝛿𝑃𝑃3,1 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃3,2

𝛿𝛿𝑃𝑃3,2  
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 𝛿𝛿𝑈𝑈 = 𝜎𝜎13𝛿𝛿𝜀𝜀13 + 𝜎𝜎31𝛿𝛿𝜀𝜀13 + 𝜎𝜎23𝛿𝛿𝜀𝜀23 + 𝜎𝜎32𝛿𝛿𝜀𝜀23  

 + 𝜏𝜏113𝛿𝛿𝜀𝜀13,1 + 𝜏𝜏223𝛿𝛿𝜀𝜀23,2 + 𝜏𝜏131𝛿𝛿𝜀𝜀31,1 + 𝜏𝜏232𝛿𝛿𝜀𝜀32,2  

 − 𝛦𝛦�3𝛿𝛿𝑃𝑃3 + 𝛦𝛦13𝛿𝛿𝑃𝑃3,1 + 𝛦𝛦23𝛿𝛿𝑃𝑃3,2  

   

 𝛿𝛿𝑈𝑈 = 𝛿𝛿𝑈𝑈𝑠𝑠𝑦𝑦𝑚𝑚.  𝑠𝑠𝑡𝑡𝑝𝑝. + 𝛿𝛿𝑈𝑈𝑑𝑑𝑖𝑖𝑝𝑝.  𝑠𝑠𝑡𝑡𝑝𝑝. + 𝛿𝛿𝑈𝑈𝑝𝑝𝑜𝑜𝑖𝑖. + 𝛿𝛿𝑈𝑈𝑝𝑝𝑜𝑜𝑖𝑖.  𝑙𝑙𝑝𝑝𝑚𝑚𝑑𝑑. A.6 

 

The above rule of chain demanded that the total energy density is a function of strains, strain 
gradients, polarizations and polarization gradients. The energy density that was initially 
proposed by Mindlin (1968) and later got modified by Giannakopoulos and Zisis (2019, 2020 
a, b) obeys this condition.  

The stresses and the electrical load can be calculated as follows: 

 

𝛿𝛿𝐵𝐵𝑠𝑠𝑠𝑠𝑀𝑀𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐 𝛿𝛿𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑒𝑒  

 𝜎𝜎13 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀13

= 2𝜇𝜇𝜀𝜀13 + 𝑀𝑀44𝑃𝑃3,1  

 𝜎𝜎31 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀13

= 2𝜇𝜇𝜀𝜀13 + 𝑀𝑀44𝑃𝑃3,1  

 𝜎𝜎23 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀23

= 2𝜇𝜇𝜀𝜀23 + 𝑀𝑀44𝑃𝑃3,2  

 𝜎𝜎32 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀23

= 2𝜇𝜇𝜀𝜀23 + 𝑀𝑀44𝑃𝑃3,2  

𝐷𝐷𝑃𝑃𝑝𝑝𝑀𝑀𝑃𝑃𝑎𝑎𝑐𝑐 𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑒𝑒  

 𝜏𝜏113 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀13,1

= 𝑓𝑓12𝑃𝑃3  

 𝜏𝜏223 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀23,2

=  𝑓𝑓12𝑃𝑃3  

 𝜏𝜏131 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀31,1

=  𝑓𝑓12𝑃𝑃3  

 𝜏𝜏232 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀32,2

=  𝑓𝑓12𝑃𝑃3  
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𝐸𝐸𝑓𝑓𝑓𝑓𝑀𝑀𝑐𝑐𝑡𝑡𝑃𝑃𝐺𝐺𝑀𝑀 𝑃𝑃𝑀𝑀𝑐𝑐𝑎𝑎𝑃𝑃 𝑀𝑀𝑃𝑃𝑀𝑀𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑐𝑐 𝑓𝑓𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀  

 𝛦𝛦�3 = −
𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃3

= −𝛼𝛼𝑃𝑃3 − 𝑓𝑓12 ��𝜀𝜀13,1 + 𝜀𝜀31,1� + �𝜀𝜀23,2 + 𝜀𝜀32,2��  

𝑃𝑃𝑀𝑀𝑃𝑃𝑎𝑎𝑐𝑐𝑃𝑃𝑧𝑧𝑎𝑎𝑡𝑡𝑃𝑃𝑀𝑀𝑒𝑒 𝑔𝑔𝑐𝑐𝑎𝑎𝑀𝑀𝑃𝑃𝑀𝑀𝑒𝑒𝑡𝑡  

 𝛦𝛦13 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃3,1

= (𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,1 + 𝑀𝑀44(𝜀𝜀13 + 𝜀𝜀31)  

 𝛦𝛦23 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃3,2

= (𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,2 + 𝑀𝑀44(𝜀𝜀23 + 𝜀𝜀32)  

 

Note that because some strains are equal (the strain matrix is symmetrical), the differentiation 
in terms of the one strain, is non-zero for both strains. For example, because 𝜀𝜀13 = 𝜀𝜀31:  

 

 
𝜕𝜕(𝜀𝜀13 + 𝜀𝜀31)

𝜕𝜕𝜀𝜀13
=
𝜕𝜕(𝜀𝜀13)
𝜕𝜕𝜀𝜀13

+
𝜕𝜕(𝜀𝜀31)
𝜕𝜕𝜀𝜀13

=
𝜕𝜕(𝜀𝜀13)
𝜕𝜕𝜀𝜀13

+
𝜕𝜕(𝜀𝜀13)
𝜕𝜕𝜀𝜀13

= 1 + 1 = 2  

 

And also: 

 

 
𝜕𝜕(𝜀𝜀13𝜀𝜀31 + 𝜀𝜀23𝜀𝜀32)

𝜕𝜕𝜀𝜀13
=
𝜕𝜕(𝜀𝜀13𝜀𝜀31)
𝜕𝜕𝜀𝜀13

+
𝜕𝜕(𝜀𝜀23𝜀𝜀32)
𝜕𝜕𝜀𝜀13

=
𝜕𝜕(𝜀𝜀132)
𝜕𝜕𝜀𝜀13

+ 0 = 2𝜀𝜀13 = 2𝜀𝜀31  

 

The same applies also in the strain gradients. Each one of the above is contributing to the 
potential energy density which is used in the Variational Principle.  

Energy from symmetric stresses 

 

 𝛿𝛿𝑈𝑈𝑠𝑠𝑦𝑦𝑚𝑚.  𝑠𝑠𝑡𝑡𝑝𝑝. = 𝜎𝜎13𝛿𝛿𝜀𝜀13 + 𝜎𝜎31𝛿𝛿𝜀𝜀31 + 𝜎𝜎23𝛿𝛿𝜀𝜀23 + 𝜎𝜎32𝛿𝛿𝜀𝜀32  

 𝛿𝛿𝑈𝑈𝑠𝑠𝑦𝑦𝑚𝑚.  𝑠𝑠𝑡𝑡𝑝𝑝. = 2𝜎𝜎13𝛿𝛿𝜀𝜀13 + 2𝜎𝜎23𝛿𝛿𝜀𝜀23  

 𝛿𝛿𝑈𝑈𝑠𝑠𝑦𝑦𝑚𝑚.  𝑠𝑠𝑡𝑡𝑝𝑝. = 𝜎𝜎13𝛿𝛿𝑢𝑢3,1 + 𝜎𝜎23𝛿𝛿𝑢𝑢3,2  

 𝛿𝛿𝑈𝑈𝑠𝑠𝑦𝑦𝑚𝑚.  𝑠𝑠𝑡𝑡𝑝𝑝. = (𝜎𝜎13𝛿𝛿𝑢𝑢3),1 − 𝜎𝜎13,1𝛿𝛿𝑢𝑢3 + (𝜎𝜎23𝛿𝛿𝑢𝑢3),2 − 𝜎𝜎23,2𝛿𝛿𝑢𝑢3  

 𝛿𝛿𝑈𝑈𝑠𝑠𝑦𝑦𝑚𝑚.  𝑠𝑠𝑡𝑡𝑝𝑝. = ��𝜇𝜇𝑢𝑢3,1 + 𝑀𝑀44𝑃𝑃3,1�𝛿𝛿𝑢𝑢3�,1 − �𝜇𝜇𝑢𝑢3,11 + 𝑀𝑀44𝑃𝑃3,11�𝛿𝛿𝑢𝑢3  

 + ��𝜇𝜇𝑢𝑢3,2 + 𝑀𝑀44𝑃𝑃3,2�𝛿𝛿𝑢𝑢3�
,2
− �𝜇𝜇𝑢𝑢3,22 + 𝑀𝑀44𝑃𝑃3,22�𝛿𝛿𝑢𝑢3  

 𝛿𝛿𝑈𝑈𝑠𝑠𝑦𝑦𝑚𝑚.  𝑠𝑠𝑡𝑡𝑝𝑝. = ��𝜇𝜇𝑢𝑢3,1 + 𝑀𝑀44𝑃𝑃3,1�𝛿𝛿𝑢𝑢3�,1 + ��𝜇𝜇𝑢𝑢3,2 + 𝑀𝑀44𝑃𝑃3,2�𝛿𝛿𝑢𝑢3�,2  

 −��𝜇𝜇𝑢𝑢3,11 + 𝑀𝑀44𝑃𝑃3,11� + �𝜇𝜇𝑢𝑢3,22 + 𝑀𝑀44𝑃𝑃3,22��𝛿𝛿𝑢𝑢3  
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The term of the gradient will consist a boundary condition while the term with 𝛿𝛿𝑢𝑢3 will directly 
modify the equation. 

And by simplifying more: 

 

 𝛿𝛿𝑈𝑈𝑠𝑠𝑦𝑦𝑚𝑚.  𝑠𝑠𝑡𝑡𝑝𝑝. = ��𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝛿𝛿𝑢𝑢3�,𝑖𝑖 − {(𝜇𝜇∇2𝑢𝑢3 + 𝑀𝑀44∇2𝑃𝑃3)}𝛿𝛿𝑢𝑢3 A.7 

 

Energy from dipolar stresses 

 

 𝛿𝛿𝑈𝑈𝑑𝑑𝑖𝑖𝑝𝑝.  𝑠𝑠𝑡𝑡𝑝𝑝. = 𝜏𝜏113𝛿𝛿𝜀𝜀13,1 + 𝜏𝜏131𝛿𝛿𝜀𝜀31,1 + 𝜏𝜏223𝛿𝛿𝜀𝜀23,2 + 𝜏𝜏232𝛿𝛿𝜀𝜀32,2  

 𝛿𝛿𝑈𝑈𝑑𝑑𝑖𝑖𝑝𝑝.  𝑠𝑠𝑡𝑡𝑝𝑝. = 2𝜏𝜏113𝛿𝛿𝜀𝜀13,1 + 2𝜏𝜏223𝛿𝛿𝜀𝜀23,2  

 𝛿𝛿𝑈𝑈𝑑𝑑𝑖𝑖𝑝𝑝.  𝑠𝑠𝑡𝑡𝑝𝑝. = 𝜏𝜏113𝛿𝛿𝑢𝑢3,11 + 𝜏𝜏223𝛿𝛿𝑢𝑢3,22  

 𝛿𝛿𝑈𝑈𝑑𝑑𝑖𝑖𝑝𝑝.  𝑠𝑠𝑡𝑡𝑝𝑝. = 𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3,11 + 𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3,22  

 𝛿𝛿𝑈𝑈𝑑𝑑𝑖𝑖𝑝𝑝.  𝑠𝑠𝑡𝑡𝑝𝑝. = �𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3,1�,1 − 𝑓𝑓12𝑃𝑃3,1𝛿𝛿𝑢𝑢3,1 + �𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3,2�,2 − 𝑓𝑓12𝑃𝑃3,2𝛿𝛿𝑢𝑢3,2  

 𝛿𝛿𝑈𝑈𝑑𝑑𝑖𝑖𝑝𝑝.  𝑠𝑠𝑡𝑡𝑝𝑝. = (𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3),11 − 2�𝑓𝑓12𝑃𝑃3,1𝛿𝛿𝑢𝑢3,1�,1 + 𝑓𝑓12𝑃𝑃3,11𝛿𝛿𝑢𝑢3  

 +(𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3),22 − 2�𝑓𝑓12𝑃𝑃3,2𝛿𝛿𝑢𝑢3,2�,2 + 𝑓𝑓12𝑃𝑃3,22𝛿𝛿𝑢𝑢3  

   

 𝛿𝛿𝑈𝑈𝑑𝑑𝑖𝑖𝑝𝑝.  𝑠𝑠𝑡𝑡𝑝𝑝. = ∇2(𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3) − 2�𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖�,𝑖𝑖 + 𝑓𝑓12∇2𝑃𝑃3𝛿𝛿𝑢𝑢3 A.8 

 

The first two terms will take part in a surface integral that will describe the boundary conditions, 
and the last term will be considered in the equations.  

Energy from the Polarization 

 

 𝛿𝛿𝑈𝑈𝑝𝑝𝑜𝑜𝑖𝑖 = −𝛦𝛦�3𝛿𝛿𝑃𝑃3  

 𝛿𝛿𝑈𝑈𝑝𝑝𝑜𝑜𝑖𝑖. = 𝛼𝛼𝑃𝑃3𝛿𝛿𝑃𝑃3 + 𝑓𝑓12 ���𝜀𝜀13,1 + 𝜀𝜀31,1� + �𝜀𝜀23,2 + 𝜀𝜀32,2��� 𝛿𝛿𝑃𝑃3  

 𝛿𝛿𝑈𝑈𝑝𝑝𝑜𝑜𝑖𝑖 = 𝛼𝛼𝑃𝑃3𝛿𝛿𝑃𝑃3 + 𝑓𝑓12�𝑢𝑢3,11 + 𝑢𝑢3,22�𝛿𝛿𝑃𝑃3  

   

 𝛿𝛿𝑈𝑈𝑝𝑝𝑜𝑜𝑖𝑖 = {𝛼𝛼𝑃𝑃3 + 𝑓𝑓12∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3 A.9 
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And lastly, Energy from the polarization gradient  

 

 𝛿𝛿𝑈𝑈𝑝𝑝𝑜𝑜𝑖𝑖.  𝑙𝑙𝑝𝑝𝑚𝑚𝑑𝑑 = 𝛦𝛦13𝛿𝛿𝑃𝑃3,1 + 𝛦𝛦23𝛿𝛿𝑃𝑃3,2  

 𝛿𝛿𝑈𝑈𝑝𝑝𝑜𝑜𝑖𝑖.𝑙𝑙 = �(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,1 + 𝑀𝑀44 �
1
2
𝑢𝑢3,1 +

1
2
𝑢𝑢3,1�� 𝛿𝛿𝑃𝑃3,1  

 + �(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,2 + 𝑀𝑀44 �
1
2
𝑢𝑢3,2 +

1
2
𝑢𝑢3,2�� 𝛿𝛿𝑃𝑃3,2  

 𝛿𝛿𝑈𝑈𝑝𝑝𝑜𝑜𝑖𝑖.𝑙𝑙 = ��(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,1 + 𝑀𝑀44𝑢𝑢3,1�𝛿𝛿𝑃𝑃3�,1 − �(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,11 + 𝑀𝑀44𝑢𝑢3,11�𝛿𝛿𝑃𝑃3  

 +��(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,2 + 𝑀𝑀44𝑢𝑢3,2�𝛿𝛿𝑃𝑃3�,2 − �(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,22 + 𝑀𝑀44𝑢𝑢3,22�𝛿𝛿𝑃𝑃3  

   

 𝛿𝛿𝑈𝑈𝑝𝑝𝑜𝑜𝑖𝑖.𝑙𝑙 = ��(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3�,𝑖𝑖 − {(𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + 𝑀𝑀44∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3 A.10 

 

Also, the variation: 𝜹𝜹 �𝜺𝜺𝟎𝟎
𝟎𝟎
𝟐𝟐
𝜺𝜺𝟎𝟎(𝜱𝜱𝟐𝟐

,𝟎𝟎 + 𝜱𝜱𝟐𝟐
,𝟐𝟐)�  

 

 𝛿𝛿 �𝜀𝜀0
1
2

(𝛷𝛷2
,1 + 𝛷𝛷2

,2)� = 𝜀𝜀0𝛷𝛷,1𝛿𝛿𝛷𝛷,1 + 𝜀𝜀0𝛷𝛷,2𝛿𝛿𝛷𝛷,2  

 𝛿𝛿 �𝜀𝜀0
1
2

(𝛷𝛷2
,1 + 𝛷𝛷2

,2)� = �𝜀𝜀0𝛷𝛷,1𝛿𝛿𝛷𝛷�,1 − 𝜀𝜀0𝛷𝛷,11𝛿𝛿𝛷𝛷 + �𝜀𝜀0𝛷𝛷,2𝛿𝛿𝛷𝛷�,2 − 𝜀𝜀0𝛷𝛷,22𝛿𝛿𝛷𝛷  

   

 𝛿𝛿 �𝜀𝜀0
1
2

(𝛷𝛷2
,1 + 𝛷𝛷2

,2)� = �𝜀𝜀0𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖 − 𝜀𝜀0∇2𝛷𝛷𝛿𝛿𝛷𝛷 A.11 

 

In those relations, of course, ∇2= 𝜕𝜕2

𝜕𝜕𝑥𝑥1
2 + 𝜕𝜕2

𝜕𝜕𝑥𝑥2
2 and when the index 𝑃𝑃 exists twice in the same 

expression, it symbolizes the Einstein summation for two values, e.g. �𝜀𝜀0𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖 =

�𝜀𝜀0𝛷𝛷,1𝛿𝛿𝛷𝛷�,1 + �𝜀𝜀0𝛷𝛷,2𝛿𝛿𝛷𝛷�,2 

By importing those relations (A.6, A.7, A.8, A.9, A.10, A.11) into relation A.5: 
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 𝛿𝛿𝐻𝐻 = 𝛿𝛿𝑈𝑈 − 𝛿𝛿 �
1
2
𝜀𝜀0(𝛷𝛷2

,1 + 𝛷𝛷2
,2)�  

   

 𝛿𝛿𝐻𝐻 = ��𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝛿𝛿𝑢𝑢3�,𝑖𝑖 − {(𝜇𝜇∇2𝑢𝑢3 + 𝑀𝑀44∇2𝑃𝑃3)}𝛿𝛿𝑢𝑢3 + ∇2(𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3)  

 −2�𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖�,𝑖𝑖 + 𝑓𝑓12∇2𝑃𝑃3𝛿𝛿𝑢𝑢3 + {𝛼𝛼𝑃𝑃3 + 𝑓𝑓12∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3  

 +��(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3�,𝑖𝑖  

 −{(𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + 𝑀𝑀44∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3 + �𝜀𝜀0𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖 − 𝜀𝜀0∇2𝛷𝛷𝛿𝛿𝛷𝛷  

   

 𝛿𝛿𝐻𝐻 = ∇2(𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3) + ��𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝛿𝛿𝑢𝑢3�,𝑖𝑖 − 2�𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖�,𝑖𝑖  A.12 

 +��(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3�,𝑖𝑖 + �𝜀𝜀0𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖  

 −(𝜇𝜇∇2𝑢𝑢3 + 𝑀𝑀44∇2𝑃𝑃3)𝛿𝛿𝑢𝑢3 + 2𝑓𝑓12∇2𝑃𝑃3𝛿𝛿𝑢𝑢3 + (𝛼𝛼𝑃𝑃3 + 𝑓𝑓12∇2𝑢𝑢3)𝛿𝛿𝑃𝑃3  

 −{(𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + 𝑀𝑀44∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3 − 𝜀𝜀0∇2𝛷𝛷𝛿𝛿𝛷𝛷  

 

And the integral:  

 

 

𝛿𝛿 � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� 𝑇𝑇 − 𝛿𝛿 
𝑉𝑉∗

𝑀𝑀𝐻𝐻

= − � 𝑀𝑀𝑡𝑡 �(𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3)𝑀𝑀𝐻𝐻
𝑉𝑉∗

𝑡𝑡2

𝑡𝑡1

− � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� �∇2(𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3) + ��𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝛿𝛿𝑢𝑢3�,𝑖𝑖𝑉𝑉∗

− 2�𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖�,𝑖𝑖 + ��(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3�,𝑖𝑖 + �𝜀𝜀0𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖

− (𝜇𝜇∇2𝑢𝑢3 + 𝑀𝑀44∇2𝑃𝑃3)𝛿𝛿𝑢𝑢3 + 𝑓𝑓12∇2𝑃𝑃3𝛿𝛿𝑢𝑢3 + (𝛼𝛼𝑃𝑃3 + 𝑓𝑓12∇2𝑢𝑢3)𝛿𝛿𝑃𝑃3
− {(𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + 𝑀𝑀44∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3 − 𝜀𝜀0∇2𝛷𝛷𝛿𝛿𝛷𝛷 � 𝑀𝑀𝐻𝐻 
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𝛿𝛿 � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� 𝑇𝑇 − 𝛿𝛿 
𝑉𝑉∗

𝑀𝑀𝐻𝐻

= � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� {∇2(𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3)}
𝑉𝑉∗

𝑀𝑀𝐻𝐻

+ � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� �−��𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝛿𝛿𝑢𝑢3�,𝑖𝑖 + �𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖�,𝑖𝑖𝑉𝑉∗

− ��(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3�,𝑖𝑖 − �𝜀𝜀0𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖  � 𝑀𝑀𝐻𝐻

+ � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� {−𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3 + (𝜇𝜇∇2𝑢𝑢3 + 𝑀𝑀44∇2𝑃𝑃3)𝛿𝛿𝑢𝑢3 − 𝑓𝑓12∇2𝑃𝑃3𝛿𝛿𝑢𝑢3
𝑉𝑉∗

− {𝛼𝛼𝑃𝑃3 + 𝑓𝑓12∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3 + {(𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + 𝑀𝑀44∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3 + 𝜀𝜀0∇2𝛷𝛷𝛿𝛿𝛷𝛷  

A.13 

 

Now, the divergence theorem can be used and the first part of the integrals, which contains 
terms of the derivative of the variational, can be converted to a surface integral and be used 
for the boundary conditions:  

 

 � {∇2(𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3)}
𝑉𝑉∗

𝑀𝑀𝐻𝐻 = �(𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3),𝑖𝑖𝑒𝑒𝑖𝑖
𝑠𝑠

𝑀𝑀𝑒𝑒 A.14 

 

And also: 

 

� �−��𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝛿𝛿𝑢𝑢3�,𝑖𝑖 + �𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖�,𝑖𝑖 − ��(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3�,𝑖𝑖 − �𝜀𝜀0𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖  �𝑉𝑉∗
𝑀𝑀𝐻𝐻 

= A.15 

��−�𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝑒𝑒𝑖𝑖𝛿𝛿𝑢𝑢3 + 𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖𝑒𝑒𝑖𝑖 − �(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3𝑒𝑒𝑖𝑖 − 𝜀𝜀0�𝛷𝛷,𝑖𝑖�𝛿𝛿𝛷𝛷𝑒𝑒𝑖𝑖 �
𝑆𝑆

𝑀𝑀𝛿𝛿 

 

 

At this point, it should be noted that because this integral is referring to space 𝐻𝐻∗ which is the 
total space, a distinction should be made. According to Gauss theorem of divergence, the 
volume integral of a space surrounded by a specific boundary can be turned into a surface 
integral referring to that boundary. This means that the integral should have been in space 𝐻𝐻( 
𝐻𝐻∗ = 𝐻𝐻 + 𝐻𝐻′). The integral in the space 𝐻𝐻 can easily be processed via the Divergence 
Theorem. Also, regarding the Integral referring to space V’, the divergence theorem can also 
be applied as the boundary surface remains the same, but with opposite sign, as the direction 
of the unit vector becomes opposite:   
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� (… ),𝑖𝑖  𝑀𝑀𝐻𝐻
𝑉𝑉∗

 = � (… ),𝑖𝑖  𝑀𝑀𝐻𝐻
𝑉𝑉

+ � (… ),𝑖𝑖  𝑀𝑀𝐻𝐻
𝑉𝑉′

  

 
= �(… )𝑓𝑓𝑝𝑝𝑜𝑜𝑚𝑚 𝑠𝑠𝑖𝑖𝑑𝑑𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑝𝑝𝑑𝑑𝑠𝑠 𝑉𝑉𝑒𝑒𝑖𝑖 𝑀𝑀𝛿𝛿

𝑆𝑆
− �(… )𝑓𝑓𝑝𝑝𝑜𝑜𝑚𝑚 𝑠𝑠𝑖𝑖𝑑𝑑𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑝𝑝𝑑𝑑𝑠𝑠 𝑉𝑉′𝑒𝑒𝑖𝑖  𝑀𝑀𝛿𝛿

𝑆𝑆
 

 
 

 

The body, in which the strains and the polarization is being applied, belongs to space 𝐻𝐻 and 
thus the integral ∫ (… ),𝑖𝑖  𝑀𝑀𝐻𝐻𝑉𝑉′ , which refers to space 𝐻𝐻′ should be zero. This is something that 
cannot hold true for Maxwell’s self-field, and thus the second (negative) integral exists. Its 
difference should be zero by considering a continuity, but if no continuity is in place, then the 
result of this difference should be a jump condition:  

 

� �−��𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝛿𝛿𝑢𝑢3�,𝑖𝑖 + �𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖�,𝑖𝑖 − ��(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3�,𝑖𝑖 �𝑉𝑉∗
𝑀𝑀𝐻𝐻 

= 

� �−��𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝛿𝛿𝑢𝑢3�,𝑖𝑖 + �𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖�,𝑖𝑖 − ��(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3�,𝑖𝑖  �𝑉𝑉
+ 0 

 

While: 

 

 

� �−�𝜀𝜀0𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖  �𝑉𝑉∗
𝑀𝑀𝐻𝐻 = −𝜀𝜀0 � ��𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖  �𝑉𝑉∗

𝑀𝑀𝐻𝐻 
 

 = −𝜀𝜀0 �� ��𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖  �𝑉𝑉
𝑀𝑀𝐻𝐻 + � ��𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�,𝑖𝑖 �𝑉𝑉′

𝑀𝑀𝐻𝐻�  

= −𝜀𝜀0 �� ��𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�
𝑓𝑓𝑝𝑝𝑜𝑜𝑚𝑚 𝑠𝑠𝑖𝑖𝑑𝑑𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑝𝑝𝑑𝑑𝑠𝑠 𝑉𝑉

𝑒𝑒𝑖𝑖 �
𝑆𝑆

𝑀𝑀𝐻𝐻 −� ���𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�
𝑓𝑓𝑝𝑝𝑜𝑜𝑚𝑚 𝑠𝑠𝑖𝑖𝑑𝑑𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑝𝑝𝑑𝑑𝑠𝑠 𝑉𝑉′

𝑒𝑒𝑖𝑖 � �
𝑆𝑆

𝑀𝑀𝐻𝐻� 

= −𝜀𝜀0 �� ���𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�
𝑓𝑓𝑝𝑝𝑜𝑜𝑚𝑚 𝑠𝑠𝑖𝑖𝑑𝑑𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑝𝑝𝑑𝑑𝑠𝑠 𝑉𝑉

− �𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷�
𝑓𝑓𝑝𝑝𝑜𝑜𝑚𝑚 𝑠𝑠𝑖𝑖𝑑𝑑𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑝𝑝𝑑𝑑𝑠𝑠 𝑉𝑉′

�  𝑒𝑒𝑖𝑖�
𝑆𝑆

𝑀𝑀𝐻𝐻� 

 = −𝜀𝜀0 ����𝛷𝛷,𝑖𝑖𝛿𝛿𝛷𝛷� 𝑒𝑒𝑖𝑖�
𝑆𝑆

𝑀𝑀𝐻𝐻�  

 = ��−𝜀𝜀0�𝛷𝛷,𝑖𝑖� 𝑒𝑒𝑖𝑖𝛿𝛿𝛷𝛷�
𝑆𝑆

𝑀𝑀𝐻𝐻  

 

By importing relation A.14 and relations A.15 into relation A.13: 
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𝛿𝛿 � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� 𝑇𝑇 − 𝛿𝛿 
𝑉𝑉∗

𝑀𝑀𝐻𝐻

= � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
�(𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3),𝑖𝑖𝑒𝑒𝑖𝑖
𝑠𝑠

𝑀𝑀𝑒𝑒

+ � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
��−�𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝑒𝑒𝑖𝑖𝛿𝛿𝑢𝑢3 + 𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖𝑒𝑒𝑖𝑖
𝑆𝑆

− �(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3𝑒𝑒𝑖𝑖 − 𝜀𝜀0�𝛷𝛷,𝑖𝑖�𝛿𝛿𝛷𝛷𝑒𝑒𝑖𝑖 � 𝑀𝑀𝛿𝛿

+ � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� {−𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3 + (𝜇𝜇∇2𝑢𝑢3 + 𝑀𝑀44∇2𝑃𝑃3)𝛿𝛿𝑢𝑢3 − 𝑓𝑓12∇2𝑃𝑃3𝛿𝛿𝑢𝑢3
𝑉𝑉∗

− {𝛼𝛼𝑃𝑃3 + 𝑓𝑓12∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3 + {(𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + 𝑀𝑀44∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3
+ 𝜀𝜀0∇2𝛷𝛷𝛿𝛿𝛷𝛷 }𝑀𝑀𝐻𝐻 

A.16 

 

With those calculations the first integral of Toupin’s Variational Principle is complete. For the 
second integral, ∫ (𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸0𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖) 𝑉𝑉 𝑀𝑀𝐻𝐻, since both mechanical and electrical action are applied 
to the body and not to the outside, easily this integral can be manipulated to the following:  

 

 � (𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸0𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖) 
𝑉𝑉

𝑀𝑀𝐻𝐻 = � (𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸0𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖) 
𝑉𝑉∗

𝑀𝑀𝐻𝐻  

 

And for the anti-plane flexoelectric problem the above relation can be written as follows 
because the in-plane potential displacement and polarization can be ignored (𝑢𝑢1 = 𝑢𝑢2 = 0 →
𝛿𝛿𝑢𝑢1 = 𝛿𝛿𝑢𝑢2 = 0,  (𝑃𝑃1 = 𝑃𝑃2 = 0 → 𝛿𝛿𝑃𝑃1 = 𝛿𝛿𝑃𝑃2 = 0)   

 

 �(𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸0𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖) 
𝑉𝑉

𝑀𝑀𝐻𝐻 = � (𝑓𝑓3𝛿𝛿𝑢𝑢3 + 𝐸𝐸03𝛿𝛿𝑃𝑃3) 
𝑉𝑉∗

𝑀𝑀𝐻𝐻 A.17 

 

And finally, by importing both A.16 and A.17, into Toupin’s Variational Principle as proposed 
by Mindlin (1968), A.3: 

 

 𝛿𝛿 � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
� 𝑇𝑇 − 𝛿𝛿 
𝑉𝑉∗

𝑀𝑀𝐻𝐻 + � 𝑀𝑀𝑡𝑡
𝑡𝑡1

𝑡𝑡0
��(𝑓𝑓𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 + 𝐸𝐸0𝑖𝑖𝛿𝛿𝑃𝑃𝑖𝑖) 

𝑉𝑉
𝑀𝑀𝐻𝐻 + �𝑡𝑡𝑖𝑖𝛿𝛿𝑢𝑢𝑖𝑖 

𝑠𝑠
𝑀𝑀𝑡𝑡� = 0  

 ↔  
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�(𝑓𝑓12𝑃𝑃3𝛿𝛿𝑢𝑢3),𝑖𝑖𝑒𝑒𝑖𝑖
𝑠𝑠

𝑀𝑀𝑒𝑒

+ ��−�𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝑒𝑒𝑖𝑖𝛿𝛿𝑢𝑢3 + 𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖𝑒𝑒𝑖𝑖
𝑆𝑆

− �(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3𝑒𝑒𝑖𝑖 − 𝜀𝜀0�𝛷𝛷,𝑖𝑖�𝛿𝛿𝛷𝛷𝑒𝑒𝑖𝑖 � 𝑀𝑀𝛿𝛿

+ � {−𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3 + (𝜇𝜇∇2𝑢𝑢3 + 𝑀𝑀44∇2𝑃𝑃3)𝛿𝛿𝑢𝑢3 − 𝑓𝑓12∇2𝑃𝑃3𝛿𝛿𝑢𝑢3
𝑉𝑉∗

− {𝛼𝛼𝑃𝑃3 + 𝑓𝑓12∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3 + {(𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + 𝑀𝑀44∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3

+ 𝜀𝜀0∇2𝛷𝛷𝛿𝛿𝛷𝛷 } 𝑀𝑀𝐻𝐻 + � (𝑓𝑓3𝛿𝛿𝑢𝑢3 + 𝐸𝐸03𝛿𝛿𝑃𝑃3) 
𝑉𝑉∗

𝑀𝑀𝐻𝐻 + �𝑡𝑡3𝛿𝛿𝑢𝑢3 
𝑠𝑠

𝑀𝑀𝑡𝑡 = 0 

 

 ↔  

 

� �−𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3 + (𝜇𝜇∇2𝑢𝑢3 + 𝑀𝑀44∇2𝑃𝑃3)𝛿𝛿𝑢𝑢3 − 𝑓𝑓12∇2𝑃𝑃3𝛿𝛿𝑢𝑢3 − {𝛼𝛼𝑃𝑃3 + 𝑓𝑓12∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3
𝑉𝑉∗

+ {(𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + 𝑀𝑀44∇2𝑢𝑢3}𝛿𝛿𝑃𝑃3 + 𝜀𝜀0∇2𝛷𝛷𝛿𝛿𝛷𝛷

+ � (𝑓𝑓3𝛿𝛿𝑢𝑢3 + 𝐸𝐸03𝛿𝛿𝑃𝑃3) 
𝑉𝑉∗

 � 𝑀𝑀𝐻𝐻 

A.18 
 ↔ 

 
+��−�𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝑒𝑒𝑖𝑖𝛿𝛿𝑢𝑢3 + 𝑓𝑓12𝑃𝑃3,𝑖𝑖𝛿𝛿𝑢𝑢3,𝑖𝑖𝑒𝑒𝑖𝑖 − �(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝛿𝛿𝑃𝑃3𝑒𝑒𝑖𝑖

𝑆𝑆

− 𝜀𝜀0�𝛷𝛷,𝑖𝑖�𝛿𝛿𝛷𝛷𝑒𝑒𝑖𝑖 + 𝑡𝑡3𝛿𝛿𝑢𝑢3 � 𝑀𝑀𝛿𝛿 = 0 

 

The first integral refers to the in-body condition, while the second describes the boundary 
condition.  

The in-body condition, that consists of three variationals, provides three equations because 
the variationals can take any value possible independently, as described by Giannakopoulos 
and Zisis (2019, 2021 a, b). The first equation can be obtained through the factor of 𝛿𝛿𝑢𝑢3 and 
describes the Conservation of linear momentum, the second one that is produced by the factor 
of the potential polarization 𝛿𝛿𝑃𝑃3, describes the conservation of the electric field and the last 
one, that is produced from the potential of Maxwell’s self-field 𝛿𝛿𝛷𝛷 describes the Maxwell 
equation. Those equations are also called Euler conditions.  

The conservation of linear momentum (𝜹𝜹𝜹𝜹𝟑𝟑) 

 

 −𝜌𝜌�̈�𝑢3 + 𝜇𝜇∇2𝑢𝑢3 + 𝑀𝑀44∇2𝑃𝑃3 − 𝑓𝑓12∇2𝑃𝑃3 + 𝑓𝑓3 = 0  

 𝜇𝜇∇2𝑢𝑢3 + (𝑀𝑀44 − 𝑓𝑓12)∇2𝑃𝑃3 + 𝑓𝑓3 = 𝜌𝜌�̈�𝑢3 A.19 

 

The conservation of electric field (𝜹𝜹𝑷𝑷𝟑𝟑) 
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 −𝛼𝛼𝑃𝑃3 − 𝑓𝑓12∇2𝑢𝑢3 + (𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + 𝑀𝑀44∇2𝑢𝑢3 + 𝐸𝐸03 = 0  

 −𝛼𝛼𝑃𝑃3 +
(𝑀𝑀44 − 𝑓𝑓12)

2
∇2𝑢𝑢3 + (𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + 𝐸𝐸03 = 0 A.20 

 

Maxwell equations (𝜹𝜹𝜱𝜱) 

 

 ∇2𝛷𝛷 = 0 A.21 

 

Note that the term ∇2= 𝜕𝜕2

𝜕𝜕𝑥𝑥1
2 + 𝜕𝜕2

𝜕𝜕𝑥𝑥2
2. 

 

Also, with a similar way the boundary conditions can be extruded, from the second integral: 

 

 −�𝜇𝜇𝑢𝑢3,𝑖𝑖 + 𝑀𝑀44𝑃𝑃3,𝑖𝑖�𝑒𝑒𝑖𝑖 + 𝑡𝑡3 = 0 

i 
 �(𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑖𝑖 + 𝑀𝑀44𝑢𝑢3,𝑖𝑖�𝑒𝑒𝑖𝑖 = 0 

 −𝜀𝜀0�𝛷𝛷,𝑖𝑖�𝑒𝑒𝑖𝑖 = 0 

 𝑓𝑓12𝑃𝑃3,𝑖𝑖𝑒𝑒𝑖𝑖 = 0 

 

By considering the gradient to the direction perpendicular the the surface, the derivative in 
respect of the unit vector can be written as beneath. 

 

 
𝜕𝜕
𝜕𝜕𝑒𝑒𝑖𝑖

=
𝜕𝜕
𝜕𝜕𝑒𝑒

= 𝑒𝑒𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝑒𝑒1
𝜕𝜕
𝜕𝜕𝑥𝑥1

+ 𝑒𝑒2
𝜕𝜕
𝜕𝜕𝑥𝑥2

 

ii  ↔ 

 (… ),𝑛𝑛 = 𝑒𝑒𝑖𝑖,(… ),𝑖𝑖 

 

This way, the boundary conditions I can be rewritten with the use of ii as follows: 

 

 −�𝜇𝜇𝑢𝑢3,𝑛𝑛 + 𝑀𝑀44𝑃𝑃3,𝑛𝑛� + 𝑡𝑡3 = 0 A.22 
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 (𝑏𝑏44 + 𝑏𝑏77)𝑃𝑃3,𝑛𝑛 + 𝑀𝑀44𝑢𝑢3,𝑛𝑛 = 0 

 −𝜀𝜀0�𝛷𝛷,𝑛𝑛� = 0 

 𝑓𝑓12𝑃𝑃3,𝑛𝑛 = 0 

 

And of course, because the problem is dynamic, there should also be some initial conditions.  

The construction of the governing equation can happen by solving the system of the 
conservation equations. First by considering the initial body force 𝑓𝑓3 equal to zero and then by 
solving equation A.19 in terms of polarization’s second gradient ∇2𝑃𝑃3 

 

 𝜇𝜇∇2𝑢𝑢3 + (𝑀𝑀44 − 𝑓𝑓12)∇2𝑃𝑃3 = 𝜌𝜌�̈�𝑢3  

 ∇2𝑃𝑃3 =
𝜌𝜌�̈�𝑢3 − 𝜇𝜇∇2𝑢𝑢3
(𝑀𝑀44 − 𝑓𝑓12)  A.23 

 

Importing A.23 into equation A.20, while also considering the initial out-of-plane electrical field 
equal to zero: 

 

 −𝛼𝛼𝑃𝑃3 + (𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 + (𝑀𝑀44 − 𝑓𝑓12)∇2𝑢𝑢3 = 0  

 −𝛼𝛼𝑃𝑃3 + (𝑏𝑏44 + 𝑏𝑏77)
𝜌𝜌�̈�𝑢3 − 𝜇𝜇∇2𝑢𝑢3
(𝑀𝑀44 − 𝑓𝑓12) + (𝑀𝑀44 − 𝑓𝑓12)∇2𝑢𝑢3 = 0  

 

And then differentiating twice each variable (multiplying all terms with ∇2= 𝜕𝜕2

𝜕𝜕𝑥𝑥1
2 + 𝜕𝜕2

𝜕𝜕𝑥𝑥2
2), and 

then substituting into relation A.23 once again:  

 

 −𝛼𝛼
𝜌𝜌�̈�𝑢3 − 𝜇𝜇∇2𝑢𝑢3
(𝑀𝑀44 − 𝑓𝑓12) + (𝑏𝑏44 + 𝑏𝑏77)

𝜌𝜌∇2�̈�𝑢3 − 𝜇𝜇∇4𝑢𝑢3
(𝑀𝑀44 − 𝑓𝑓12) + (𝑀𝑀44 − 𝑓𝑓12)∇4𝑢𝑢3 = 0  

 

This relation is similar to the one proposed by Giannakopoulos and Zisis (2019, 2021 a, b) 
and can by written simpler as follows: 

 

 



Appendices   
 

 

159 

 −𝛼𝛼
𝜌𝜌�̈�𝑢3

𝑀𝑀44 − 𝑓𝑓12
+ 𝛼𝛼

𝜇𝜇∇2𝑢𝑢3
𝑀𝑀44 − 𝑓𝑓12

+
𝑏𝑏44 + 𝑏𝑏77
𝑀𝑀44 − 𝑓𝑓12

𝜌𝜌∇2�̈�𝑢3 −
𝑏𝑏44 + 𝑏𝑏77
𝑀𝑀44 − 𝑓𝑓12

𝜇𝜇∇4𝑢𝑢3 + 𝑀𝑀44 − 𝑓𝑓12∇4𝑢𝑢3 = 0  

 𝛼𝛼𝜇𝜇∇2𝑢𝑢3 − (𝑏𝑏44 + 𝑏𝑏77)𝜇𝜇∇4𝑢𝑢3 + (𝑀𝑀44 − 𝑓𝑓12)2∇4𝑢𝑢3 = 𝛼𝛼𝜌𝜌�̈�𝑢3 − (𝑏𝑏44 + 𝑏𝑏77)𝜌𝜌∇2�̈�𝑢3  

 𝜇𝜇∇2𝑢𝑢3 − �
(𝑏𝑏44 + 𝑏𝑏77)𝜇𝜇

𝛼𝛼
−

(𝑀𝑀44 − 𝑓𝑓12)2

𝛼𝛼
� ∇4𝑢𝑢3 = 𝜌𝜌�̈�𝑢3 −

(𝑏𝑏44 + 𝑏𝑏77)
𝛼𝛼

𝜌𝜌∇2�̈�𝑢3 A.24 

 

The term 𝑏𝑏44+𝑏𝑏77
𝛼𝛼

− (𝑜𝑜44−𝑓𝑓12)2

𝛼𝛼𝛼𝛼
 represents the microstructural length 𝑃𝑃 from which the below 

relation holds:  

 

 
𝑃𝑃2

2
=
𝑏𝑏44 + 𝑏𝑏77

𝛼𝛼
−

(𝑀𝑀44 − 𝑓𝑓12)2

𝛼𝛼𝜇𝜇
 A.25 

 

Also, the term (𝑏𝑏44+𝑏𝑏77)
𝛼𝛼

 represents the micro-inertial length 𝐻𝐻, in respect to the following 
equation: 

 

 𝐻𝐻2

12
=

(𝑏𝑏44 + 𝑏𝑏77)
𝛼𝛼

 A.26 

 

Those two lengths should always be greater than zero, (in addition to the other parameters 
from which they consist of). In particular, the below limits to the parameters should hold: 

 

 𝜇𝜇 > 0  

 𝛢𝛢 > 0  

 𝑓𝑓12 >  

 𝑀𝑀44 >  

 𝑏𝑏44 + 𝑏𝑏77 > 0  

 𝜇𝜇(𝑏𝑏44 + 𝑏𝑏77) − 𝑀𝑀442 > 0  

 𝑓𝑓44 > 0  

 

Note that the parameter 𝑓𝑓44, is not contained in any relation. 

Finally, importing the two length parameters A.25, A.26 into relation A.24 results to the 
governing equation that refers solely to the displacement, by having taken in consideration 
also the reverse flexoelectric effect.: 
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 𝜇𝜇∇2𝑢𝑢3 − 𝜇𝜇
𝑃𝑃2

2
∇4𝑢𝑢3 = 𝜌𝜌�̈�𝑢3 −

𝐻𝐻2

12
𝜌𝜌∇2�̈�𝑢3 A.27 

 

The second equation, that describes the produced polarization in terms of displacement in the 
anti-plane flexoelectric problem, comes from the conservation of the linear momentum A.19, 
this time, being solved in respect to the displacement, 

 

 ∇2𝑢𝑢3 =
𝜌𝜌�̈�𝑢3
𝜇𝜇

−
(𝑀𝑀44 − 𝑓𝑓12)

𝜇𝜇
∇2𝑃𝑃3 A.28 

 

and then importing into the conservation of the electric field A.20:  

 

 −𝛼𝛼𝑃𝑃3 +
(𝑀𝑀44 − 𝑓𝑓12)

2
�
𝜌𝜌�̈�𝑢3
𝜇𝜇

−
(𝑀𝑀44 − 𝑓𝑓12)

𝜇𝜇
∇2𝑃𝑃3� + (𝑏𝑏44 + 𝑏𝑏77)∇2𝑃𝑃3 = 0  

 𝑃𝑃3 − �
(𝑏𝑏44 + 𝑏𝑏77)

𝛼𝛼
−

(𝑀𝑀44 − 𝑓𝑓12)2

𝜇𝜇𝛼𝛼
�∇2𝑃𝑃3 =

(𝑀𝑀44 − 𝑓𝑓12)
𝜇𝜇𝛼𝛼

𝜌𝜌�̈�𝑢3  

 

And then by the two length parameters:  

 

 𝑃𝑃3 −
𝑃𝑃2

2
∇2𝑃𝑃3 =

(𝑀𝑀44 − 𝑓𝑓12)
𝜇𝜇𝛼𝛼

𝜌𝜌�̈�𝑢3 A.29 

 

The anti-plane flexoelectric problem is described by A.27, A.29, A.21, subjected to the 
boundary conditions A.22. 
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B. The transformation of the anti-plane flexoelectric equation (remove the time) 

Both equations A.27, A.29 are dynamic equations, as they contain terms of acceleration. This 
is something that easily can be dealt with, by considering a second system of coordinates 
(𝜉𝜉, 𝜂𝜂). This system should be independent from the velocity and thus it should be moving with 
the same velocity that defines the problem dynamic. 

The easiest example, is the propagation of a mode III crack, that moves with a constant 
velocity 𝐻𝐻. This is also, one of the most common dynamic anti-plane problems.  

This transformation, that was proposed by Giannakopoulos and Zisis (2019, 2020 a, b), 
suggests the new system of coordinates to be consisted of the (𝜉𝜉, 𝜂𝜂) coordinates, which 
connect to the global coordinates (𝑥𝑥,𝐵𝐵), through the below formula:  

 

 𝜉𝜉 = 𝑥𝑥 + 𝐻𝐻𝑡𝑡 
B.1 

 𝜂𝜂 = 𝐵𝐵 

 

The differentiations are also modified: 

 

 ∇2=
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+

𝜕𝜕2

𝜕𝜕𝐵𝐵2
=

𝜕𝜕2

𝜕𝜕𝜉𝜉2
+
𝜕𝜕2

𝜕𝜕𝜂𝜂2
 

B.2  ∇4= ∇2∇2=
𝜕𝜕4

𝜕𝜕𝑥𝑥4
+ 2

𝜕𝜕4

𝜕𝜕𝑥𝑥2𝜕𝜕𝐵𝐵2
+

𝜕𝜕4

𝜕𝜕𝐵𝐵4
=

𝜕𝜕4

𝜕𝜕𝜉𝜉4
+ 2

𝜕𝜕4

𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2
+
𝜕𝜕4

𝜕𝜕𝜂𝜂4
 

 
𝜕𝜕2

𝜕𝜕𝑡𝑡2
= 𝐻𝐻2

𝜕𝜕2

𝜕𝜕𝜉𝜉2
 

 

and because of the chain rule, after importing those (B.2) to A.27: 

 

𝜇𝜇
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜉𝜉2

+ 𝜇𝜇
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜂𝜂2

− 𝜇𝜇
𝑃𝑃2

2
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉4

− 2𝜇𝜇
𝑃𝑃2

2
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2

− 𝜇𝜇
𝑃𝑃2

2
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜂𝜂4

= 𝜌𝜌𝐻𝐻2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜉𝜉2

− 𝐻𝐻2
𝜌𝜌𝛿𝛿2

12
𝜕𝜕4𝑢𝑢
𝜕𝜕𝜉𝜉4

− 𝐻𝐻2
𝜌𝜌𝛿𝛿2

12
𝜕𝜕4𝑢𝑢

𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2
 

↔ 

(𝜇𝜇 − 𝜌𝜌𝐻𝐻2)
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜉𝜉2

+ 𝜇𝜇
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜂𝜂2

+ �𝐻𝐻2
𝜌𝜌𝛿𝛿2

12
− 𝜇𝜇

𝑃𝑃2

2
�
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉4

+ �𝐻𝐻2
𝜌𝜌𝛿𝛿2

12
− 2𝜇𝜇

𝑃𝑃2

2
�
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2

− 𝜇𝜇
𝑃𝑃2

2
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜂𝜂4

= 0 

↔ 

�1−
𝜌𝜌𝐻𝐻2

𝜇𝜇
�
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜉𝜉2

+
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜂𝜂2

+ �
𝜌𝜌𝐻𝐻2

𝜇𝜇
𝛿𝛿2

12
−
𝑃𝑃2

2
�
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉4

+ �
𝜌𝜌𝐻𝐻2

𝜇𝜇
𝛿𝛿2

12
− 2

𝑃𝑃2

2
�
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2

− 𝜇𝜇
𝑃𝑃2

2
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜂𝜂4

= 0 

 

Also, by substituting 𝑐𝑐𝑠𝑠 = �𝜇𝜇/𝜌𝜌, the wave shear velocity, 
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�1−
𝐻𝐻2

𝑐𝑐𝑠𝑠2
�
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜉𝜉2

+
𝜕𝜕2𝑢𝑢3
𝜕𝜕𝜂𝜂2

−
𝑃𝑃2

2
�1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉4

−
𝑃𝑃2

2
�2−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�

𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜉𝜉2𝜕𝜕𝜂𝜂2

−
𝑃𝑃2

2
𝜕𝜕4𝑢𝑢3
𝜕𝜕𝜂𝜂4

= 0 B.3 

 

While the second equation A.29 transforms as follows:  

 

  𝑃𝑃3 −
𝑃𝑃2

2
�
𝜕𝜕2𝑃𝑃3
𝜕𝜕𝜉𝜉2

+
𝜕𝜕2𝑃𝑃3
𝜕𝜕𝜂𝜂2

� = 𝐻𝐻2
𝜌𝜌(𝑀𝑀44 − 𝑓𝑓12)

𝑎𝑎𝜇𝜇
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜉𝜉2

 B.4 

 

Note that, this transformation demanded the velocity to be constant (steady state case). The 
general case however, demands a transformation like the following instead of B.1: 

 

 𝜉𝜉 = 𝑥𝑥 + � 𝐻𝐻(𝑥𝑥, 𝐵𝐵, 𝜏𝜏))
𝑡𝑡

𝑡𝑡0
𝑀𝑀𝜏𝜏  

 𝜂𝜂 = 𝐵𝐵  

 

but by the use of numerical integration (Simpson’s rule, Gauss’ 1st order (rule of the middle 
value)), any velocity can by modified with this way. 
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C. The couple stress elasticity theory 

The theory of Couple stress elasticity, described by Gourgiotis and Georgiadis (2007) follows 
an alternative perspective, through the balance laws of continuum mechanics and specifically, 
the conservation of momentum. The conservation of momentum can be written in the below 
form as two integrals, one defined in the volume of the body of interest and one in the boundary 
of the body. This time, all things are mechanical with no electricity involved and so a more 
detailed perspective of space is not needed (as in the flexoelectric problem with volume 𝐻𝐻∗).  

The equation of the linear momentum is: 

 

 �𝑇𝑇𝑖𝑖
(𝑛𝑛)

𝑠𝑠

𝑀𝑀𝑒𝑒 + �𝐹𝐹𝑖𝑖
𝑉𝑉

𝑀𝑀𝐻𝐻 = 0 C.1 

 

And the equation of rotational momentum is: 

 

 �𝑥𝑥𝑖𝑖𝑇𝑇𝑖𝑖
(𝑛𝑛)𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑖𝑖

(𝑛𝑛)

𝑠𝑠

𝑀𝑀𝑒𝑒 + �𝑥𝑥𝑖𝑖𝐹𝐹𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖
𝑉𝑉

𝑀𝑀𝐻𝐻 = 0 C.2 

 

In the above relations 𝑇𝑇𝑖𝑖 is the surface force-traction, 𝑀𝑀𝑖𝑖 is the moment per unit area (moment 
traction), 𝐹𝐹𝑖𝑖 is the body force and lastly 𝐶𝐶𝑖𝑖 is the body moment.  

The specific characteristic of the couple stress elasticity, is that both the stress tensor and the 
couple stress tensor (made from the moment traction), are not necessarily symmetrical. Those 
tensors are relevant to the traction, when the surface is defined.  

 

 𝑇𝑇𝑖𝑖
(𝑛𝑛) = 𝜎𝜎𝑖𝑖𝑖𝑖𝜏𝜏𝑒𝑒𝑖𝑖 C.3 

 𝑀𝑀𝑖𝑖
(𝑛𝑛) = 𝜇𝜇𝑖𝑖𝑖𝑖𝜏𝜏𝑒𝑒𝑖𝑖 C.4 

 

By importing C.3, C.4 into relations C.1 and C.2, the divergence theorem can be used, to 
transform the surface integrals to volume integrals.  

 

�𝑇𝑇𝑖𝑖
(𝑛𝑛)

𝑠𝑠

𝑀𝑀𝑒𝑒 = �𝜎𝜎𝑖𝑖𝑖𝑖𝜏𝜏𝑒𝑒𝑖𝑖
𝑠𝑠

𝑀𝑀𝑒𝑒  

 = �𝜎𝜎𝑖𝑖𝑖𝑖,𝑖𝑖
𝑉𝑉

𝑀𝑀𝐻𝐻  
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�𝑥𝑥𝑖𝑖𝑇𝑇𝑖𝑖
(𝑛𝑛)𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑖𝑖

(𝑛𝑛)

𝑠𝑠

𝑀𝑀𝑒𝑒 = �𝑥𝑥𝑖𝑖𝜎𝜎𝑖𝑖𝑚𝑚𝜏𝜏𝑒𝑒𝑚𝑚𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖𝜏𝜏𝑒𝑒𝑖𝑖
𝑠𝑠

𝑀𝑀𝑒𝑒  

 = �𝜎𝜎𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑖𝑖𝜎𝜎𝑚𝑚𝑖𝑖 ,𝑚𝑚𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖
𝑉𝑉

𝑀𝑀𝐻𝐻  

 

Equation C.1 transforms to: 

 

 �𝜎𝜎𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝐹𝐹𝑖𝑖
𝑉𝑉

𝑀𝑀𝐻𝐻 = 0  

 𝜎𝜎𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝐹𝐹𝑖𝑖 = 0 C.5 

 

While equation C.2 is transformed to the following: 

 

 �𝜎𝜎𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑖𝑖𝜎𝜎𝑚𝑚𝑖𝑖,𝑚𝑚𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝑥𝑥𝑖𝑖𝐹𝐹𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖
𝑉𝑉

𝑀𝑀𝐻𝐻 = 0  

 

And by importing relation C.5 into the above: 

 

 �𝜎𝜎𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐹𝐹𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝑥𝑥𝑖𝑖𝐹𝐹𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖
𝑉𝑉

𝑀𝑀𝐻𝐻 = 0  

 𝜎𝜎𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝐶𝐶𝑖𝑖 = 0 C.6 

 

Note that both 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜇𝜇𝑖𝑖𝑖𝑖 are asymmetric tensors, in contrast to the classic elasticity. However, 
it is possible for a decomposition of stresses to occur. The stresses could be decomposed into 
a symmetric and an anti-symmetric part, and the couple stresses into a spherical and a 
deviatoric part.  
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 𝜎𝜎𝑖𝑖𝑖𝑖 =
𝜎𝜎𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑖𝑖

2
+
𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜎𝜎𝑖𝑖𝑖𝑖

2
= 𝜏𝜏𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖 C.7 

 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 +
1
3
𝛿𝛿𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖 C.8 

 

This way C.6 can be written as follows: 

 

 𝜎𝜎𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝐶𝐶𝑖𝑖 = 0  

 𝜏𝜏𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝐶𝐶𝑖𝑖 = 0  

 𝜏𝜏𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = 0  

 𝜏𝜏𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑚𝑚𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑚𝑚𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = 0  

 𝜏𝜏𝑖𝑖𝑖𝑖�𝛿𝛿𝑖𝑖𝑚𝑚𝛿𝛿𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑚𝑚�  + 𝛼𝛼𝑖𝑖𝑖𝑖�𝛿𝛿𝑖𝑖𝑚𝑚𝛿𝛿𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑚𝑚� + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = 0  

 (𝜏𝜏𝑚𝑚𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑚𝑚)  + (𝛼𝛼𝑚𝑚𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑚𝑚) + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = 0  

 (𝜏𝜏𝑚𝑚𝑖𝑖 − 𝜏𝜏𝑚𝑚𝑖𝑖)  + (𝛼𝛼𝑚𝑚𝑖𝑖 + 𝑎𝑎𝑚𝑚𝑖𝑖) + 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = 0  

 𝛼𝛼𝑚𝑚𝑖𝑖 +
1
2
𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 +

1
2
𝐶𝐶𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = 0 C.9 

 

With the same procedure C.5 transforms to the following: 

 

 𝜎𝜎𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝐹𝐹𝑖𝑖 = 0  

 𝜏𝜏𝑖𝑖𝑖𝑖,𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝐹𝐹𝑖𝑖 = 0 C.10 

 

Lastly, the substitution of C.9 into C.10 leads to the single equation that describes the 
equilibrium in the couple stress elasticity problem:  

 

 𝜏𝜏𝑖𝑖𝑖𝑖,𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖,𝑖𝑖 + 𝐹𝐹𝑖𝑖 = 0  

 𝜏𝜏𝑚𝑚𝑖𝑖,𝑖𝑖 − 𝛼𝛼𝑚𝑚𝑖𝑖,𝑖𝑖 + 𝐹𝐹𝑚𝑚 = 0  

 𝜏𝜏𝑚𝑚𝑖𝑖,𝑖𝑖 + �
1
2
𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 +

1
2
𝐶𝐶𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖�

,𝑖𝑖
+ 𝐹𝐹𝑚𝑚 = 0  

 𝜏𝜏𝑚𝑚𝑖𝑖 ,𝑖𝑖 +
1
2
𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 +

1
2
𝐶𝐶𝑖𝑖,𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑚𝑚 = 0 C.11 

 

And because: 
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 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 −
1
3
𝛿𝛿𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖
𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖

𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖  C.12 

 

The balance law, equation C.13, gets the following form:  

 

 𝜏𝜏𝑚𝑚𝑖𝑖,𝑖𝑖 +
1
2
𝑠𝑠𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 +

1
2
𝐶𝐶𝑖𝑖,𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑚𝑚 = 0 C.13 

  

The free index is the index 𝑠𝑠 and C.13 is equivalent to three equations. By ignoring the body 
actions: 

 

𝜏𝜏11,1 + 𝜏𝜏12,2 + 𝜏𝜏13,3 +
1
2
𝑠𝑠13,12 −

1
2
𝑠𝑠12,13 +

1
2
𝑠𝑠23,22 −

1
2
𝑠𝑠22,23 +

1
2
𝑠𝑠33,32 −

1
2
𝑠𝑠32,33 = 0  

𝜏𝜏21,1 + 𝜏𝜏22,2 + 𝜏𝜏23,3 +
1
2
𝑠𝑠11,13 −

1
2
𝑠𝑠13,11 +

1
2
𝑠𝑠21,23 −

1
2
𝑠𝑠23,21 +

1
2
𝑠𝑠31,33 −

1
2
𝑠𝑠33,31 = 0  

𝜏𝜏31,1 + 𝜏𝜏32,2 + 𝜏𝜏33,3 +
1
2
𝑠𝑠12,11 −

1
2
𝑠𝑠11,12 +

1
2
𝑠𝑠22,21 −

1
2
𝑠𝑠21,22 +

1
2
𝑠𝑠32,31 −

1
2
𝑠𝑠31,32 = 0  

 

Note, that relation C.12 is a result of the following calculations, considering that 𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖  is not 
zero for the following combinations and also considering that 𝜇𝜇𝑖𝑖𝑖𝑖 is smooth enough: 

 

  𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖    

 𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = 1  𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = −1  

 {1,2,3}  {1,3,2}  

 {2,3,1}  {2,1,3}  

 {3,1,2}  {3,2,1}  

 

 

 
𝛿𝛿𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖
𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖

𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 =
𝜇𝜇𝑖𝑖𝑖𝑖
𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖

𝛿𝛿𝑖𝑖𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑀𝑀𝑚𝑚𝑖𝑖𝑖𝑖 = �
𝜇𝜇𝑖𝑖𝑖𝑖,32 − 𝜇𝜇𝑖𝑖𝑖𝑖,23
𝜇𝜇𝑖𝑖𝑖𝑖,13 − 𝜇𝜇𝑖𝑖𝑖𝑖,31
𝜇𝜇𝑖𝑖𝑖𝑖,21 − 𝜇𝜇𝑖𝑖𝑖𝑖,12

�  

 

The strains can be defined geometrically, as the theory can be considered linear (couple stress 
elasticity does not consider the contribution of second order derivatives in the strain 
formulation, but the contribution of strain gradient). 
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 𝑇𝑇ℎ𝑀𝑀 𝑒𝑒𝑡𝑡𝑐𝑐𝑎𝑎𝑃𝑃𝑒𝑒𝑒𝑒  

 𝜀𝜀𝑖𝑖𝑖𝑖 =
1
2
�𝑢𝑢𝑖𝑖,𝑖𝑖 + 𝑢𝑢𝑖𝑖,𝑖𝑖� C.14 

 𝑇𝑇ℎ𝑀𝑀 𝛿𝛿𝑝𝑝𝑃𝑃𝑒𝑒𝑒𝑒  

 𝜔𝜔𝑖𝑖𝑖𝑖 =
1
2
�𝑢𝑢𝑖𝑖,𝑖𝑖 − 𝑢𝑢𝑖𝑖,𝑖𝑖� C.15 

 𝑇𝑇ℎ𝑀𝑀 𝑐𝑐𝑀𝑀𝑡𝑡𝑎𝑎𝑡𝑡𝑃𝑃𝑀𝑀𝑒𝑒𝑎𝑎𝑃𝑃 𝐺𝐺𝑀𝑀𝑐𝑐𝑡𝑡𝑀𝑀𝑐𝑐  

 𝜔𝜔𝑖𝑖 =
1
2
𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖,𝑖𝑖  C.16 

 𝑇𝑇ℎ𝑀𝑀 𝑒𝑒𝑡𝑡𝑐𝑐𝑎𝑎𝑃𝑃𝑒𝑒 𝐺𝐺𝑐𝑐𝑎𝑎𝑀𝑀𝑃𝑃𝑀𝑀𝑒𝑒𝑡𝑡𝑒𝑒  

 𝜅𝜅𝑖𝑖𝑖𝑖 = 𝜔𝜔𝑖𝑖,𝑖𝑖 =
1
2
𝑀𝑀𝑖𝑖𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚,𝑖𝑖𝑖𝑖  C.17 

 

The strain gradient matrix seems to be asymmetrical and also, its trace seems to be zero. The 
compatibility equations can be the Saint Venant’s compatibility equations.  

By assuming a linear isotropic material, the potential-energy density can take the following 
form: 

 

 𝑈𝑈 ≡ 𝑈𝑈�𝜀𝜀𝑖𝑖𝑖𝑖 ,𝜅𝜅𝑖𝑖𝑖𝑖� =
1
2
𝜆𝜆𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜇𝜇𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 + 2𝜂𝜂𝜅𝜅𝑖𝑖𝑖𝑖𝜅𝜅𝑖𝑖𝑖𝑖 + 2𝜂𝜂′𝜅𝜅𝑖𝑖𝑖𝑖𝜅𝜅𝑖𝑖𝑖𝑖 C.18 

 

The constitutive laws are produced via differentiations: 

 

 𝛿𝛿𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑒𝑒 (𝑡𝑡𝑀𝑀𝑡𝑡𝑎𝑎𝑃𝑃 𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑒𝑒)  

 𝜏𝜏𝑖𝑖𝑖𝑖 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜀𝜀𝑖𝑖𝑖𝑖

=
1
2
𝜆𝜆𝜀𝜀𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖 +

1
2
𝜆𝜆𝜀𝜀𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜇𝜇𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜆𝜆𝜀𝜀𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜇𝜇𝜀𝜀𝑖𝑖𝑖𝑖 C.19 

 𝐶𝐶𝑀𝑀𝑢𝑢𝑝𝑝𝑃𝑃𝑀𝑀 𝑒𝑒𝑡𝑡𝑐𝑐𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀𝑒𝑒 (𝑀𝑀𝑀𝑀𝐺𝐺𝑃𝑃𝑎𝑎𝑡𝑡𝑀𝑀𝑐𝑐𝑃𝑃𝑐𝑐 𝑝𝑝𝑎𝑎𝑐𝑐𝑡𝑡)  

 𝑠𝑠𝑖𝑖𝑖𝑖 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜅𝜅𝑖𝑖𝑖𝑖

= 4𝜂𝜂𝜅𝜅𝑖𝑖𝑖𝑖 + 2𝜂𝜂′𝜅𝜅𝑖𝑖𝑖𝑖 + 2𝜂𝜂′�𝜅𝜅𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖�𝛿𝛿𝑖𝑖𝑖𝑖 = 4𝜂𝜂𝜅𝜅𝑖𝑖𝑖𝑖 + 4𝜂𝜂′𝜅𝜅𝑖𝑖𝑖𝑖  C.20 
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Note that through this method only the symmetrical stresses can be calculated, as the 
differentiation was done in terms of the strains and the spins were neglected in those 
formulations. The strains are symmetrical and thus this constitutive law refers only to 
symmetrical stresses. The strain gradients are produced from the spins, which are deviatoric, 
and through differentiations, the strain gradients 𝜅𝜅𝑖𝑖𝑖𝑖 deviatoric should remain. Thus, the couple 
stresses that are found from the total energy density are the deviatoric part. The spherical 
part, however, is not needed, since it is not present in relation C.13 (the balance law).  

By importing C.19 and C.20 into relation C.13, the equation that is produced describes the 
couple stress elasticity problem.  

iv. The anti-plane formulation in terms of couple stress elasticity 

Considering an anti-plane formulation, the above relations are simplified greatly. Since: 

 

 𝑢𝑢𝑥𝑥 = 𝑢𝑢1 ≡ 0  

 𝑢𝑢𝑦𝑦 = 𝑢𝑢2 ≡ 0  

 𝑢𝑢𝑧𝑧 = 𝑢𝑢3 = 𝑠𝑠(𝑥𝑥,𝐵𝐵) = 𝑠𝑠(𝑥𝑥1,𝑥𝑥2) ≠ 0  

 

From C.14, the below results can be extracted: 

 

 𝜀𝜀𝑖𝑖𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡ 0 0

1
2
𝑢𝑢3,1

0 0
1
2
𝑢𝑢3,2

1
2
𝑢𝑢3,1

1
2
𝑢𝑢3,2 0 ⎦

⎥
⎥
⎥
⎥
⎤

  

 

From C.15, the spin matrix gets the following form: 

 

 𝜔𝜔𝑖𝑖𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡ 0 0

1
2
𝑢𝑢3,1

0 0
1
2
𝑢𝑢3,2

−
1
2
𝑢𝑢3,1 −

1
2
𝑢𝑢3,2 0 ⎦

⎥
⎥
⎥
⎥
⎤

  

 

The spin matrix has three independent components that can be written in a vector form. 
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 𝜔𝜔𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧    

1
2
𝑢𝑢3,2

−
1
2
𝑢𝑢3,1

0 ⎭
⎪
⎬

⎪
⎫

  

 

By applying in C.17 the corresponding rotational vector: 

 

 𝜅𝜅𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

1
2
𝑢𝑢3,21 −

1
2
𝑢𝑢3,11 0

1
2
𝑢𝑢3,22 −

1
2
𝑢𝑢3,12 0

0 0 0⎭
⎪
⎬

⎪
⎫

  

 

This way the constitutive laws C.19 and C.20 are described by the following matrix relations: 

 

 𝜏𝜏𝑖𝑖𝑖𝑖 = �
0 0 𝜇𝜇 𝑢𝑢3,1
0 0 𝜇𝜇 𝑢𝑢3,1

𝜇𝜇 𝑢𝑢3,1 𝜇𝜇 𝑢𝑢3,1 0
� C.21 

 

 𝑠𝑠𝑖𝑖𝑖𝑖 = �
2(𝜂𝜂 + 𝜂𝜂′) 𝑢𝑢3,21 −2 𝜂𝜂 𝑢𝑢3,11 + 2 𝜂𝜂′ 𝑢𝑢3,22 0

2 𝜂𝜂 𝑢𝑢3,22 − 2 𝜂𝜂′ 𝑢𝑢3,11 −2(𝜂𝜂 + 𝜂𝜂′) 𝑢𝑢3,12 0
0 0 0

� C.22 

 

At this point, the balance law should be used (C.13). By deleting the component that is equal 
to zero and neglecting the body actions, the below relations are produced: 

 

𝑓𝑓𝑀𝑀𝑐𝑐 𝑠𝑠 = 1  

C.23 

𝜏𝜏11,1 + 𝜏𝜏12,2 + 𝜏𝜏13,3 +
1
2
𝑠𝑠13,12 −

1
2
𝑠𝑠12,13 +

1
2
𝑠𝑠23,22 −

1
2
𝑠𝑠22,23 +

1
2
𝑠𝑠33,32 −

1
2
𝑠𝑠32,33 = 0 

𝜏𝜏13,3 −
1
2
𝑠𝑠12,13 −

1
2
𝑠𝑠22,23 = 0 
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𝑓𝑓𝑀𝑀𝑐𝑐 𝑠𝑠 = 2  

C.24 

𝜏𝜏21,1 + 𝜏𝜏22,2 + 𝜏𝜏23,3 +
1
2
𝑠𝑠11,13 −

1
2
𝑠𝑠13,11 +

1
2
𝑠𝑠21,23 −

1
2
𝑠𝑠23,21 +

1
2
𝑠𝑠31,33 −

1
2
𝑠𝑠33,31 = 0 

𝜏𝜏23,3 +
1
2
𝑠𝑠11,13 +

1
2
𝑠𝑠21,23 = 0 

 

𝑓𝑓𝑀𝑀𝑐𝑐 𝑠𝑠 = 3  

C.25 

𝜏𝜏31,1 + 𝜏𝜏32,2 + 𝜏𝜏33,3 +
1
2
𝑠𝑠12,11 −

1
2
𝑠𝑠11,12 +

1
2
𝑠𝑠22,21 −

1
2
𝑠𝑠21,22 +

1
2
𝑠𝑠32,31 −

1
2
𝑠𝑠31,32 = 0 

𝜏𝜏31,1 + 𝜏𝜏32,2 +
1
2
𝑠𝑠12,11 −

1
2
𝑠𝑠11,12 +

1
2
𝑠𝑠22,21 −

1
2
𝑠𝑠21,22 = 0 

 

Obviously, the first two equations C.23 and C.24 are self-satisfied, as the derivatives in the 
anti-plane problem in respect of the out-of-plane direction are zero.   

Importing C.21 and C.22 into relation C.25: 

 

𝜏𝜏31,1 + 𝜏𝜏32,2 +
1
2
𝑠𝑠12,11 −

1
2
𝑠𝑠11,12 +

1
2
𝑠𝑠22,21 −

1
2
𝑠𝑠21,22 = 0 

↔ 

�𝜇𝜇 𝑢𝑢3,1�,1 + �𝜇𝜇 𝑢𝑢3,2�,2 +
1
2
�−2 𝜂𝜂 𝑢𝑢3,11 + 2 𝜂𝜂′ 𝑢𝑢3,22�,11 −

1
2
�2(𝜂𝜂 + 𝜂𝜂′) 𝑢𝑢3,21�,12 

+
1
2
�−2(𝜂𝜂 + 𝜂𝜂′) 𝑢𝑢3,12�,21 −

1
2
�2 𝜂𝜂 𝑢𝑢3,22 − 2 𝜂𝜂′ 𝑢𝑢3,11�,22 = 0 

↔ 

𝜇𝜇 𝑢𝑢3,11 + 𝜇𝜇 𝑢𝑢3,22 − 𝜂𝜂 𝑢𝑢3,1111 + 𝜂𝜂′ 𝑢𝑢3,1122 − 2(𝜂𝜂 + 𝜂𝜂′) 𝑢𝑢3,1122 − 𝜂𝜂 𝑢𝑢3,2222 + 𝜂𝜂′ 𝑢𝑢3,1122 = 0 

↔ 

𝜇𝜇 ∇2𝑢𝑢3 − 𝜂𝜂 𝑢𝑢3,1111 + 𝜂𝜂′ 𝑢𝑢3,1122 − 2 𝜂𝜂 𝑢𝑢3,1122 − 2 𝜂𝜂′𝑢𝑢3,1122 − 𝜂𝜂 𝑢𝑢3,2222 + 𝜂𝜂′ 𝑢𝑢3,1122 = 0 

↔ 
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↔ 

𝜇𝜇 ∇2𝑢𝑢3 − 𝜂𝜂� 𝑢𝑢3,1111 +  2 𝑢𝑢3,1122 +  𝑢𝑢3,2222� = 0 

↔ 

𝜇𝜇 ∇2𝑢𝑢3 −  𝜂𝜂∇2( ∇2𝑢𝑢3) = 0 

 

 

And by considering the microstructural length: 

 

 𝑃𝑃 = �2
𝜂𝜂
𝜇𝜇

 C.26 

 

(This means that 𝜂𝜂 = 𝜇𝜇 𝑖𝑖2

2
). 

the governing equation of the anti-plane static problem according to the theory of couple stress 
elasticity is best defined by relation C.27: 

 

  𝜇𝜇∇2𝑢𝑢3 − 𝜇𝜇
𝑃𝑃2

2
 ∇4𝑢𝑢3 = 0 C.27 

 

In the above equation there are obviously body actions, which may be forces per unit area, or 
moment gradient per unit area. In any case, however, they can be added in the same way. By 
considering the body action 𝑋𝑋3 equal to: 

 

 𝑋𝑋3 = −
1
2
𝐶𝐶𝑖𝑖,𝑖𝑖𝑀𝑀3𝑖𝑖𝑖𝑖 − 𝐹𝐹3 C.28 

 

And by adding C.28 into C.27 (in left hand-side): 

 

  𝜇𝜇∇2𝑢𝑢3 − 𝜇𝜇
𝑃𝑃2

2
 ∇4𝑢𝑢3 = 𝑋𝑋3 C.29 
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v. The anti-plane dynamic couple stress elasticity problem. 

The dynamic problem can be added in the above formulation, through the addition of kinetic 
energy, and the use of Hamilton’s principle. The principle of virtual work can have the following 
form (note that, the full part of the principle needs the space integral):  

 

 � �𝛿𝛿𝑇𝑇 + 𝛿𝛿𝑈𝑈 + 𝛿𝛿𝐴𝐴
𝑉𝑉

𝑡𝑡2

𝑡𝑡1

 𝑀𝑀𝐻𝐻 𝑀𝑀𝑡𝑡 = � �𝛿𝛿𝑊𝑊𝑛𝑛𝑛𝑛
𝑉𝑉

𝑡𝑡2

𝑡𝑡1

 𝑀𝑀𝐻𝐻 𝑀𝑀𝑡𝑡 C.30 

 

• 𝑇𝑇 is the kinetic energy. In this problem, because of couple stress elasticity the kinetic 
energy can be written as follows: 
 

 𝑇𝑇 =
1
2
𝜌𝜌�̇�𝑢3�̇�𝑢3 +

𝜌𝜌𝐻𝐻2

6
(�̇�𝜔1�̇�𝜔1 + �̇�𝜔2�̇�𝜔2) C.31 

  

Because of the theory of couple stress elasticity, which contains components of strain gradient 
made from the spin tensor, the spins should be included in the expression of the kinetic energy.  

In the above relation 𝐻𝐻 is the micro-inertial length and (… )̇  symbolizes the time derivative. 
Obviously, the potential kinetic energy is the following: 

 

 𝛿𝛿𝑇𝑇 = 𝜌𝜌�̇�𝑢3𝛿𝛿�̇�𝑢3 +
𝜌𝜌𝐻𝐻2

3
(�̇�𝜔1𝛿𝛿�̇�𝜔1 + �̇�𝜔2𝛿𝛿�̇�𝜔2)  

 

And through the use of Hamilton’s principle: 

 

 � 𝛿𝛿𝑇𝑇

𝑡𝑡2

𝑡𝑡1

𝑀𝑀𝑡𝑡 = � 𝜌𝜌�̇�𝑢3𝛿𝛿�̇�𝑢3 +
𝜌𝜌𝐻𝐻2

3
(�̇�𝜔1𝛿𝛿�̇�𝜔1 + �̇�𝜔2𝛿𝛿�̇�𝜔2)

𝑡𝑡2

𝑡𝑡1

 𝑀𝑀𝑡𝑡  

 =  ��̇�𝑢3𝛿𝛿�̇�𝑢3 +
𝜌𝜌𝐻𝐻2

3
(�̇�𝜔1𝛿𝛿�̇�𝜔1 + �̇�𝜔2𝛿𝛿�̇�𝜔2)�

𝑡𝑡1

𝑡𝑡2

− � 𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3 +
𝜌𝜌𝐻𝐻2

3
(�̈�𝜔1𝛿𝛿𝜔𝜔1 + �̈�𝜔2𝛿𝛿𝜔𝜔2)

𝑡𝑡2

𝑡𝑡1

 𝑀𝑀𝑡𝑡  

 = 0 − � 𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3 +
𝜌𝜌𝐻𝐻2

3
(�̈�𝜔1𝛿𝛿𝜔𝜔1 + �̈�𝜔2𝛿𝛿𝜔𝜔2)

𝑡𝑡2

𝑡𝑡1

 𝑀𝑀𝑡𝑡  

 = − � 𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3 +
𝜌𝜌𝐻𝐻2

12
��̈�𝑢3,2𝛿𝛿𝑢𝑢3,2 + �̈�𝑢3,1𝛿𝛿𝑢𝑢3,1�

𝑡𝑡2

𝑡𝑡1

 𝑀𝑀𝑡𝑡  
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As the space integral is concerned, this formulation can be splitted in a space integral and a 
boundary integral, following the divergence theorem: 

 

 � � 𝛿𝛿𝑇𝑇

𝑡𝑡2

𝑡𝑡1

𝑀𝑀𝑡𝑡
𝑉𝑉

 𝑀𝑀𝐻𝐻 = �− � 𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3 +
𝜌𝜌𝐻𝐻2

12
��̈�𝑢3,2𝛿𝛿𝑢𝑢3,2 + �̈�𝑢3,1𝛿𝛿𝑢𝑢3,1�

𝑡𝑡2

𝑡𝑡1

 𝑀𝑀𝑡𝑡
𝑉𝑉

 𝑀𝑀𝐻𝐻 =  

 = −� � 𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3 −
𝜌𝜌𝐻𝐻2

12
��̈�𝑢3,22𝛿𝛿𝑢𝑢3 + �̈�𝑢3,11𝛿𝛿𝑢𝑢3�

𝑡𝑡2

𝑡𝑡1𝑉𝑉

   

 +
𝜌𝜌𝐻𝐻2

12
���̈�𝑢3,2𝛿𝛿𝑢𝑢3�,2 + ��̈�𝑢3,1𝛿𝛿𝑢𝑢3�,1� 𝑀𝑀𝑡𝑡 𝑀𝑀𝐻𝐻  

= � �−��𝜌𝜌�̈�𝑢3𝛿𝛿𝑢𝑢3 −
𝜌𝜌𝐻𝐻2

12
��̈�𝑢3,22𝛿𝛿𝑢𝑢3 + �̈�𝑢3,11𝛿𝛿𝑢𝑢3��𝑀𝑀𝐻𝐻

𝑉𝑉

−
𝜌𝜌𝐻𝐻2

12
���̈�𝑢3,2𝑒𝑒2𝛿𝛿𝑢𝑢3 + �̈�𝑢3,1𝑒𝑒1𝛿𝛿𝑢𝑢3�𝑀𝑀𝛿𝛿
𝑠𝑠

� 𝑀𝑀𝑡𝑡

𝑡𝑡2

𝑡𝑡1

   C.32 

 

By neglecting the kinetic energy, the governing equation is C.29. While taking it into account, 
it produces one additional term, which is described by the volume integral and one additional 
boundary condition, which is described by the surface integral.  

The term that should be added, in relation C.29 because of the dynamics of the problem, is 
contained in the volume integral in relation C.32, and specifically is the factor of the potential 
displacement.  

 

 𝐴𝐴𝑀𝑀.𝐾𝐾𝑃𝑃𝑒𝑒𝑀𝑀𝑡𝑡.𝑇𝑇𝑀𝑀𝑐𝑐𝑠𝑠 = −𝜌𝜌�̈�𝑢3 +
𝜌𝜌𝐻𝐻2

12
(∇2�̈�𝑢3) C.33 

 

Adding relation C.33 in the governing equation C.29 produces the governing equation of the 
anti-plane dynamic couple stress elasticity problem.  

 

  𝜇𝜇∇2𝑢𝑢3 − 𝜇𝜇
𝑃𝑃2

2
 ∇4𝑢𝑢3 = 𝑋𝑋3 + 𝜌𝜌�̈�𝑢3 −

𝜌𝜌𝐻𝐻2

12
(∇2�̈�𝑢3)  

 

And by neglecting the body actions,  

 

  𝜇𝜇∇2𝑢𝑢3 − 𝜇𝜇
𝑃𝑃2

2
 ∇4𝑢𝑢3 = 𝜌𝜌�̈�𝑢3 −

𝜌𝜌𝐻𝐻2

12
(∇2�̈�𝑢3) C.34 

 

Note that relations C.34 is the same as relation A.27 and thus the transformation that is 
described in Appendix B holds.  
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The same equation would have been produced also by using the principle of virtual works all 
along. For this scenario: 

• 𝑈𝑈 is the total energy density, that can be described by relations C.18. This energy 
contains displacement first and second gradients and thus needs once more the 
divergence theorem to expose the potential displacement 𝛿𝛿𝑢𝑢3. Also, some boundary 
condition would have been produced from this procedure. 

• 𝐴𝐴 is any other work that may occur because of conservative forces. In this, dumpers 
can be included. In the previous procedure this energy is produced from the external 
body actions.  

• 𝑊𝑊𝑛𝑛𝑛𝑛: The work of non-conservative action can be included in this energy. In the 
previous procedure, the work of the body actions is the summation of the energy of the 
conservative and non-conservative actions.  

The last two parts can be neglected, in order for the calculations to get simpler.  
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D. The transformation on the hyperbolic problem based on the characteristics 

Giannakopoulos and Zisis (2021 a, b) propose for the hyperbolic region, a transformation, that 
helps the calculation of the displacement and also the polarization, on the hyperbolic case, 
based on characteristic. 

This transformation, that follows a spiral group theory, uses a new system of coordinates, of 
one variable and this one should be wave-like.  

The transformation consists of two parts. The first is applied on the coordinates. One new 
coordinate �̅�𝜂 is used instead of (𝜉𝜉, 𝜂𝜂). This transformation can be described by the following 
relation.  

 

 �̅�𝜂 =
𝜉𝜉
𝑃𝑃

±
𝜂𝜂
𝑃𝑃
�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1 D.1 

 

Also, the derivatives are formulated as follows: 

 

 
𝜕𝜕(… )
𝜕𝜕𝜉𝜉

=
𝜕𝜕(… )
𝜕𝜕�̅�𝜂

𝜕𝜕�̅�𝜂
𝜕𝜕𝜉𝜉

=
1
𝑃𝑃
𝜕𝜕(… )
𝜕𝜕�̅�𝜂

 

D.2 

 
𝜕𝜕2(… )
𝜕𝜕𝜉𝜉2

=
𝜕𝜕(𝜕𝜕(… )/𝜕𝜕𝜉𝜉)

𝜕𝜕𝜉𝜉
=

1
𝑃𝑃
𝜕𝜕(𝜕𝜕(… )/𝜕𝜕𝜉𝜉)

𝜕𝜕�̅�𝜂
=

1
𝑃𝑃2
𝜕𝜕(𝜕𝜕(… )/𝜕𝜕�̅�𝜂)

𝜕𝜕�̅�𝜂
=

1
𝑃𝑃2
𝜕𝜕2(… )
𝜕𝜕�̅�𝜂2

 

 
𝜕𝜕4(… )
𝜕𝜕𝜉𝜉4

=
1
𝑃𝑃4
𝜕𝜕4(… )
𝜕𝜕�̅�𝜂4

 

  

 
𝜕𝜕(… )
𝜕𝜕𝜂𝜂

=
𝜕𝜕(… )
𝜕𝜕�̅�𝜂

𝜕𝜕�̅�𝜂
𝜕𝜕𝜂𝜂

= ±
1
𝑃𝑃
��

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1�

𝜕𝜕(… )
𝜕𝜕�̅�𝜂

 

 
𝜕𝜕2(… )
𝜕𝜕𝜂𝜂2

=
1
𝑃𝑃2
�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1�

𝜕𝜕2(… )
𝜕𝜕�̅�𝜂2

 

 𝜕𝜕4(… )
𝜕𝜕𝜂𝜂4

=
1
𝑃𝑃4
�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1�

2 𝜕𝜕4(… )
𝜕𝜕�̅�𝜂4

 

  

 
𝜕𝜕4(… )
𝜕𝜕𝜂𝜂2𝜕𝜕𝜉𝜉2

=
1
𝑃𝑃4
�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1�

𝜕𝜕4(… )
𝜕𝜕�̅�𝜂4

 

 

Importing the derivatives D.2 to equation B.3  
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1
𝑃𝑃2
�1−

𝐻𝐻2

𝑐𝑐𝑠𝑠2
�
𝜕𝜕2𝑢𝑢3
𝜕𝜕�̅�𝜂2

+
1
𝑃𝑃2
�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1�

𝜕𝜕2𝑢𝑢3
𝜕𝜕�̅�𝜂2

−
𝑃𝑃2

2
1
𝑃𝑃4
�1−

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�
𝜕𝜕4𝑢𝑢3
𝜕𝜕�̅�𝜂4

−
𝑃𝑃2

2
1
𝑃𝑃4
�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1��2 −

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�
𝜕𝜕4𝑢𝑢3
𝜕𝜕�̅�𝜂4

−
𝑃𝑃2

2
1
𝑃𝑃4
�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1�

2 𝜕𝜕4(… )
𝜕𝜕�̅�𝜂4

= 0 

↔ 

�
1
𝑃𝑃2
�1−

𝐻𝐻2

𝑐𝑐𝑠𝑠2
�+

1
𝑃𝑃2
�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1��

𝜕𝜕2𝑢𝑢3
𝜕𝜕�̅�𝜂2

 

+
1

2𝑃𝑃2
 �−1 +

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 3

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
+ �

𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�
2

+ 2− �
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
�
2

+ 2
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1�

𝜕𝜕4(… )
𝜕𝜕�̅�𝜂4

= 0 

 

 

�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
−
𝐻𝐻2

𝑐𝑐𝑠𝑠2
�
𝜕𝜕2𝑢𝑢3
𝜕𝜕�̅�𝜂2

= 0 D.3 

 

The second part of the transformation requires the substitution of the out-of-plane 
displacement with its logarithm. This transformation is described by the following relation: 

 

 ℎ�(�̅�𝜂) = ln𝑢𝑢3 D.4 

 

This way:  

 
𝜕𝜕2𝑢𝑢3
𝜕𝜕�̅�𝜂2

=
𝜕𝜕2𝑀𝑀ℎ�

𝜕𝜕�̅�𝜂2
=

𝜕𝜕
𝜕𝜕�̅�𝜂

�
𝜕𝜕𝑀𝑀ℎ�

𝜕𝜕�̅�𝜂
� =

𝜕𝜕
𝜕𝜕�̅�𝜂

�𝑀𝑀ℎ�
𝜕𝜕ℎ�
𝜕𝜕�̅�𝜂
� =

𝜕𝜕𝑀𝑀ℎ�

𝜕𝜕�̅�𝜂
𝜕𝜕ℎ�
𝜕𝜕�̅�𝜂

+ 𝑀𝑀ℎ�
𝜕𝜕
𝜕𝜕�̅�𝜂

�
𝜕𝜕ℎ�
𝜕𝜕�̅�𝜂
�  

 𝜕𝜕2𝑢𝑢3
𝜕𝜕�̅�𝜂2

= 𝑀𝑀ℎ� �
𝜕𝜕ℎ�
𝜕𝜕�̅�𝜂
�
2

+ 𝑀𝑀ℎ�
𝜕𝜕2ℎ�
𝜕𝜕�̅�𝜂2

 D.5 

 

Importing the second transformation D.5 into relation D.3, the governing equation of the out-
of-plane displacement, in the hyperbolic problem becomes the following (D.6): 

 

 �
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
−
𝐻𝐻2

𝑐𝑐𝑠𝑠2
� ��

𝜕𝜕ℎ�
𝜕𝜕�̅�𝜂
�
2

+
𝜕𝜕2ℎ�
𝜕𝜕�̅�𝜂2

� = 0 D.6 

 

Also, the polarization equation, B.4, transforms as well: 
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  𝑃𝑃3 −
𝑃𝑃2

2
1
𝑃𝑃2
𝜕𝜕2𝑃𝑃3
𝜕𝜕�̅�𝜂2

−
𝑃𝑃2

2
1
𝑃𝑃2
�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1�

𝜕𝜕2𝑃𝑃3
𝜕𝜕�̅�𝜂2

= 𝐻𝐻2
1
𝑃𝑃2
𝜌𝜌(𝑀𝑀44 − 𝑓𝑓12)

𝑎𝑎𝜇𝜇
𝜕𝜕2𝑢𝑢
𝜕𝜕�̅�𝜂2

  

 𝑃𝑃3 −
1
2
𝜕𝜕2𝑃𝑃3
𝜕𝜕�̅�𝜂2

−
1
2
�
𝐻𝐻2𝛿𝛿2

6𝑃𝑃2𝑐𝑐𝑠𝑠2
− 1�

𝜕𝜕2𝑃𝑃3
𝜕𝜕�̅�𝜂2

= 𝐻𝐻2
1
𝑃𝑃2
𝜌𝜌(𝑀𝑀44 − 𝑓𝑓12)

𝑎𝑎𝜇𝜇
𝜕𝜕2𝑢𝑢
𝜕𝜕�̅�𝜂2

  

 𝑃𝑃3 −
𝐻𝐻2𝛿𝛿2

12𝑃𝑃2𝑐𝑐𝑠𝑠2
𝜕𝜕2𝑃𝑃3
𝜕𝜕�̅�𝜂2

=
𝐻𝐻2

𝑃𝑃2
𝜌𝜌(𝑀𝑀44 − 𝑓𝑓12)

𝑎𝑎𝜇𝜇
𝜕𝜕2𝑢𝑢
𝜕𝜕�̅�𝜂2

 D.7 

 

Relation D.7 has the below form:  

 𝑃𝑃3 − 𝐴𝐴 
𝜕𝜕2𝑃𝑃3
𝜕𝜕�̅�𝜂2

= 𝐵𝐵 
𝜕𝜕2𝑢𝑢
𝜕𝜕�̅�𝜂2

 D.8 

 

Where: 

 𝐴𝐴 =
𝐻𝐻2𝛿𝛿2

12𝑃𝑃2𝑐𝑐𝑠𝑠2
 D.9 

 𝐵𝐵 =
𝐻𝐻2

𝑃𝑃2
𝜌𝜌(𝑀𝑀44 − 𝑓𝑓12)

𝑎𝑎𝜇𝜇
 D.10 
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E. The Integration with the discontinuities  

Chapter 4, uses some advanced mathematical results, which should be proved. Those 
concern the integrals in which the Dirac’s delta function is included, its gradient and also the 
Heaviside function. Some necessary points of theory, that justify those calculations exist on 
Ronald N. Bracewell (1999). 

 

i. The integral ∫𝒈𝒈(𝒈𝒈) ∗ 𝑯𝑯(𝒈𝒈 − 𝒄𝒄)𝒄𝒄𝒈𝒈 

This integral can be easily calculated by using integration by parts. By considering the anti-
derivative of the function “𝑔𝑔(𝑥𝑥)”: 

 

 𝛩𝛩(𝑥𝑥) = �𝑔𝑔(𝑥𝑥)𝑀𝑀𝑥𝑥  

 

can be written as beneath: 

 �𝑔𝑔(𝑥𝑥) ∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥 = �𝛩𝛩′(𝑥𝑥) ∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥 

E.1 
  = 𝛩𝛩(𝑥𝑥) ∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐) −�𝛩𝛩(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥 

  = 𝛩𝛩(𝑥𝑥) ∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐) − 𝛩𝛩(𝑐𝑐) ∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐) 

  = �𝑔𝑔(𝑥𝑥)𝑀𝑀𝑥𝑥 ∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐) −�𝑔𝑔(𝑥𝑥)𝑀𝑀𝑥𝑥�
𝑥𝑥=𝑛𝑛

∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐) 

 

The integral ∫𝛩𝛩(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥 is equal to 𝛩𝛩(𝑐𝑐) ∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐). However, this is something to be 
proved later.  

ii. The integral ∫𝒈𝒈(𝒈𝒈) ∗ 𝜹𝜹(𝒈𝒈 − 𝒄𝒄)𝒄𝒄𝒈𝒈 

From bibliography, Ronald N. Bracewell (1999) the below formula relative with the integrals of 
relations that include the Dirac’s delta function, can be considered true:  

 

 � 𝑔𝑔(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥)
∞

−∞

𝑀𝑀𝑥𝑥 = 𝑔𝑔(0) E.2 

 

Also, it is known that the antiderivative, which can be depicted as an integral (indefinite 
integral), can be written as a defined integral, in the right space.  
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 �𝑓𝑓(𝑥𝑥)𝑀𝑀𝑥𝑥 = �𝑓𝑓(𝑥𝑥0)
𝑥𝑥

−∞

𝑀𝑀𝑥𝑥0  

 

Using the Macaulay brackets of zero order or the Heaviside function, it is possible to rewrite 
the above integral as it goes to infinite. As the integral of a constant function equals to zero, is 
also zero, then by defining the function that resides inside the integral to be zero for “𝑥𝑥0” 
greater than the “𝑥𝑥”, the above integral can be written until infinite. In this case the function 
“𝑓𝑓(𝑥𝑥0)” should be replaced with the function “𝑓𝑓(𝑥𝑥0) ∗ 𝐻𝐻(𝑥𝑥 − 𝑥𝑥0)”. This way the following can be 
considered: 

 

 
 The Heaviside function.  

It is very important to notice that in the current situation the variable  𝑥𝑥0 represented the coordinate 
and the variable 𝑥𝑥 represents a value in that axis. The space, in which that function 𝑓𝑓 should be zero, 
is the same with the space, where the Heaviside function is equal to 1 and the space where the 
function 𝑓𝑓 should be non-zero is where the above Heaviside is zero. Thus, it is noticeable that 𝑓𝑓(𝑥𝑥0) ∗
{1 − 𝐻𝐻(𝑥𝑥0 − 𝑥𝑥)} = 𝑓𝑓(𝑥𝑥0) ∗ 𝐻𝐻(𝑥𝑥−𝑥𝑥0) 

 

 

 �𝑓𝑓(𝑥𝑥)𝑀𝑀𝑥𝑥 = �𝑓𝑓(𝑥𝑥0)
𝑥𝑥

−∞

𝑀𝑀𝑥𝑥0 = � 𝑓𝑓(𝑥𝑥0) ∗ 𝐻𝐻(𝑥𝑥 − 𝑥𝑥0)
∞

−∞

𝑀𝑀𝑥𝑥0  

 

As the purpose is to calculate the integral “∫𝑔𝑔(𝑥𝑥)𝛿𝛿(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥” a substitution is required. More 
specifically, a substitution of “𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)𝛿𝛿(𝑥𝑥 − 𝑐𝑐)”: 

 

 �𝑔𝑔(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥 = �𝑔𝑔(𝑥𝑥0) ∗ 𝛿𝛿(𝑥𝑥0 − 𝑐𝑐)
𝑥𝑥

−∞

𝑀𝑀𝑥𝑥0  
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  = � 𝑔𝑔(𝑥𝑥0) ∗ 𝛿𝛿(𝑥𝑥0 − 𝑐𝑐) ∗ 𝐻𝐻(𝑥𝑥 − 𝑥𝑥0)
∞

−∞

𝑀𝑀𝑥𝑥0  

  = � {𝑔𝑔(𝑥𝑥0) ∗ 𝐻𝐻(𝑥𝑥 − 𝑥𝑥0)} ∗ 𝛿𝛿(𝑥𝑥0 − 𝑐𝑐)
∞

−∞

𝑀𝑀𝑥𝑥0  

 

Now, by changing the variable “𝑥𝑥0 = 𝜂𝜂 + 𝑐𝑐 ”: 

 

 �𝑔𝑔(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥 = � {𝑔𝑔(𝜂𝜂 + 𝑐𝑐 ) ∗ 𝐻𝐻(𝑥𝑥 − 𝜂𝜂 − 𝑐𝑐 )} ∗ 𝛿𝛿(𝜂𝜂 + 𝑐𝑐 − 𝑐𝑐)
∞

−∞

𝑀𝑀𝜂𝜂 

E.3 

  = � {𝑔𝑔(𝜂𝜂 + 𝑐𝑐 ) ∗ 𝐻𝐻(𝑥𝑥 − 𝜂𝜂 − 𝑐𝑐 )} ∗ 𝛿𝛿(𝜂𝜂)
∞

−∞

𝑀𝑀𝜂𝜂 

  = 𝑔𝑔(𝜂𝜂 + 𝑐𝑐 ) ∗ 𝐻𝐻(𝑥𝑥 − 𝜂𝜂 − 𝑐𝑐 )|𝜂𝜂=0 

  = 𝑔𝑔(𝑐𝑐 ) ∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐 ) 

 

iii. The integral ∫𝒈𝒈(𝒈𝒈) ∗ 𝜹𝜹′(𝒈𝒈 − 𝒄𝒄)𝒄𝒄𝒈𝒈 

This integral has a form suitable for integration by parts:  

 

 �𝑔𝑔(𝑥𝑥) ∗ 𝛿𝛿′(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥 = 𝑔𝑔(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐) −�
𝜕𝜕𝑔𝑔(𝑥𝑥)
𝜕𝜕𝑥𝑥

∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐)𝑀𝑀𝑥𝑥  

  = 𝑔𝑔(𝑥𝑥) ∗ 𝛿𝛿(𝑥𝑥 − 𝑐𝑐) −
𝜕𝜕𝑔𝑔(𝑥𝑥)
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑛𝑛

∗ 𝐻𝐻(𝑥𝑥 − 𝑐𝑐)  

 

Where obviously 𝛿𝛿′(𝑥𝑥 − 𝑐𝑐) = 𝜕𝜕𝛿𝛿(𝑥𝑥 − 𝑐𝑐)/𝜕𝜕𝑥𝑥. 

This means when 𝑔𝑔(𝜂𝜂) = 𝑀𝑀−𝜂𝜂 √𝐴𝐴⁄ ∗ 𝑓𝑓(𝜂𝜂), the following can be considered: 

 

 

 



Appendices   
 

 

181 

 �𝑀𝑀−𝜂𝜂 √𝐴𝐴⁄ ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿′(𝑥𝑥 − 𝑎𝑎)𝑀𝑀𝑥𝑥 = 𝑀𝑀−𝜂𝜂 √𝐴𝐴⁄ ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

E.4   +
𝑀𝑀−𝜂𝜂 √𝐴𝐴⁄ ∗ 𝑓𝑓(𝜂𝜂)

√𝐴𝐴
�
𝜂𝜂=𝑚𝑚

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) 

  −𝑀𝑀−𝜂𝜂 √𝐴𝐴⁄ ∗ 𝑓𝑓′(𝜂𝜂)�
𝜂𝜂=𝑚𝑚

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) 

 

In the case of the linear profile, the gradient of the function:  

 

 𝑓𝑓′(𝜂𝜂) =
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

�
𝜂𝜂=𝑚𝑚

=
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

 E.5 

 

For this linear case, the last term of the integral is also calculated. The second however is 
neglected as it was asked, the vertical displacement in the crack tip to be zero. The same 
happens also for the other integral with “𝑏𝑏” instead of “𝑎𝑎” and also the integral with the plus in 
the exponent. 

The spike term, which is the term that includes the delta function can be given two 
interpretations. The first one, which can be done in both linear and 3rd order displacement, is 
to leave it there and in some point the one spike from the integral with the minus in the 
exponent will cancel out the spike of integral with a plus in the exponent. 

However, in some cases (e.g. the “screw dislocation”) this will not be enough as the spikes 
doesn’t cancel out. This is why a second interpretation is needed.  

 

iv. The spike  

In some point the term “𝛩𝛩(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎)” appears while “𝛩𝛩(𝛼𝛼) = 0” (e.g., “𝛩𝛩(𝜂𝜂) = 𝑀𝑀
𝜂𝜂−𝛼𝛼
√𝛢𝛢 −

𝑀𝑀−
𝜂𝜂−𝛼𝛼
√𝛢𝛢 ”). This expression is pretty awkward because there is a pathological situation of 

multiplying zero with infinite. Is this infinite, zero, or something in between? To answer this, 
the continuity of the polarization should be demanded. 

If the function “𝛩𝛩(𝑥𝑥)” is continuous near “𝑥𝑥 = 𝑎𝑎” then:  

 

 lim
𝑥𝑥→𝑚𝑚

𝛩𝛩(𝑥𝑥) = 𝛩𝛩(0) = 0  

 

This requirement can be easily satisfied as the function “𝛩𝛩(𝑥𝑥)” is the function that joins the 
maximum and the minimum displacement. (e.g., Linear or 3rd order polynomial).  
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Also, as the Dirac’s delta function is concerned, which is discontinuous, the limit can also be 
estimated. When “𝑥𝑥 → 𝑎𝑎−“ the “𝑥𝑥” is different than “𝛼𝛼” and thus the limit is equal to zero. The 
same happens from the other side.  

 

 lim
𝑥𝑥→𝑚𝑚−

𝛿𝛿(𝑥𝑥 − 𝑎𝑎) = 0  

 lim
𝑥𝑥→𝑚𝑚+

𝛿𝛿(𝑥𝑥 − 𝑎𝑎) = 0  

 lim
𝑥𝑥→𝑚𝑚

𝛿𝛿(𝑥𝑥 − 𝑎𝑎) = 0  

 

Obviously, the Dirac’s delta function is discontinuous as: 

 

 0 = lim
𝑥𝑥→𝑚𝑚

𝛿𝛿(𝑥𝑥 − 𝑎𝑎) ≠ 𝛿𝛿(0) = ∞  

 

The limit of the function “𝛩𝛩(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎)” is however in any case equal to zero.  

 

 lim
𝑥𝑥→𝑚𝑚

{𝛩𝛩(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎)} = 0  

 

If, for any reason, the result needs to be continuous, then the following suggestion is true in 
an area near “𝑎𝑎”: 

 

 �𝑀𝑀
𝜂𝜂−𝛼𝛼
√𝛢𝛢 − 𝑀𝑀

−𝜂𝜂−𝛼𝛼
√𝛢𝛢 � ∗  𝛿𝛿(𝜂𝜂 − 𝑎𝑎) = 0 E.6 

 

And then this suggestion is expanded everywhere, because far from “𝑎𝑎” the Dirac’s delta 
function is zero. 
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F. The joining functions 

i. The polynomial function of 3rd order 

One easy way to find a polynomial function is to insert the value of the gradient of the function 
on points a and b, in which the function should have a minimum and a maximum and thus 
those gradients should be zero.  

 

 𝑓𝑓(𝑎𝑎) = 0  

 𝑓𝑓(𝑏𝑏) = 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥  

 
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑚𝑚

= 0  

 
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑏𝑏

= 0  

 

Those boundary conditions allow a consideration of a function with four unknows variables.  

 

 𝑓𝑓(𝑥𝑥) = 𝑡𝑡 ∗ 𝑥𝑥3 + 𝑠𝑠 ∗ 𝑥𝑥2 + 𝑐𝑐 ∗ 𝑥𝑥 + 𝑀𝑀  

 

This function has the following gradient: 

 

 𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

= 3 ∗ 𝑡𝑡 ∗ 𝑥𝑥2 + 2 ∗ 𝑠𝑠 ∗ 𝑥𝑥 + 𝑐𝑐  

 

By importing the above function and its gradient to the boundary conditions, proposed in the 
beginning, the following system is produced:  

 

 �

𝑡𝑡 ∗ 𝑎𝑎3 + 𝑠𝑠 ∗ 𝑎𝑎2 + 𝑐𝑐 ∗ 𝑎𝑎 + 𝑀𝑀 = 0
       𝑡𝑡 ∗ 𝑏𝑏3 + 𝑠𝑠 ∗ 𝑏𝑏2 + 𝑐𝑐 ∗ 𝑏𝑏 + 𝑀𝑀 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

   3 ∗ 𝑡𝑡 ∗ 𝑎𝑎2 + 2 ∗ 𝑠𝑠 ∗ 𝑎𝑎 + 𝑐𝑐 = 0
   3 ∗ 𝑡𝑡 ∗ 𝑏𝑏2 + 2 ∗ 𝑠𝑠 ∗ 𝑏𝑏 + 𝑐𝑐 = 0

  

 

Or in matrix form: 
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 �
𝑎𝑎3 𝑎𝑎2 𝑎𝑎 1
𝑏𝑏3 𝑏𝑏2 𝑏𝑏 1

3𝑎𝑎2 2𝑎𝑎 1 0
3𝑎𝑎2 2𝑎𝑎 1 0

� ∗ �
𝑡𝑡
𝑠𝑠
𝑐𝑐
𝑀𝑀
� = �

0
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

0
0

�  

 

This system can easily be solved via a symbolic language. 

 

 �
𝑡𝑡
𝑠𝑠
𝑐𝑐
𝑀𝑀
� =

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑎𝑎3 − 3 ∗ 𝑎𝑎2 ∗ 𝑏𝑏 + 3 ∗ 𝑎𝑎 ∗ 𝑏𝑏2 − 𝑏𝑏3

∗ �

2
−3 ∗ (𝑎𝑎 + 𝑏𝑏)

6 ∗ 𝑎𝑎 ∗ 𝑏𝑏
𝑎𝑎2 ∗ (𝑎𝑎 − 3𝑏𝑏)

�  

 

Obviously, the dimension of a and b, is the same as the dimension of the coordinate x.  

As a result, a third order function that obeys the demanded boundary conditions is the 
following: 

 

 𝑓𝑓(𝑥𝑥) = 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗
2 ∗ 𝑥𝑥3 − 3 ∗ (𝑎𝑎 + 𝑏𝑏) ∗ 𝑥𝑥2 + 6 ∗ 𝑎𝑎 ∗ 𝑏𝑏 ∗ 𝑥𝑥 + 𝑎𝑎2 ∗ (𝑎𝑎 − 3𝑏𝑏)

𝑎𝑎3 − 3 ∗ 𝑎𝑎2 ∗ 𝑏𝑏 + 3 ∗ 𝑎𝑎 ∗ 𝑏𝑏2 − 𝑏𝑏3
 F.1 

ii. The polynomial function of 5th order 

The 3rd degree function, gives from one hand good results. From the other hand the form of 
the displacement has some errors. One easy way to fix this error, to make the displacement 
more trapezoid, (to make the function looks more like the linear case), is to increase the order 
of the function.  

By importing two more “boundary conditions” which look more alike the condition of symmetry 
or anti-symmetry, it is possible to create a function of 5th degree, with 6 unknown values.  

The conditions that should be imported are the conditions in the middle of the length between 
points 𝑎𝑎 and 𝑏𝑏. In this point, ((𝑎𝑎 + 𝑏𝑏) 2⁄ ) the value of the displacement should be 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥/2 while 
the gradient of the function should be as the linear gradient equal to 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥/(𝑏𝑏 − 𝑎𝑎).  

The 5th degree polynomial function has the below form:  

 

 𝑓𝑓(𝑥𝑥) = 𝑔𝑔 ∗ 𝑥𝑥5 + ℎ ∗ 𝑥𝑥4 + 𝑡𝑡 ∗ 𝑥𝑥3 + 𝑠𝑠 ∗ 𝑥𝑥2 + 𝑐𝑐 ∗ 𝑥𝑥 + 𝑀𝑀 F.2 
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Which has two additional unknow variables. The boundary conditions are the following:  

 

 𝑓𝑓(𝑎𝑎) = 0  

 𝑓𝑓 �
𝑎𝑎 + 𝑏𝑏

2
� = 

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
2

  

 𝑓𝑓(𝑏𝑏) = 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥  

 
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑚𝑚

 = 0  

 
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑚𝑚+𝑏𝑏2

 = 
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

  

 
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑏𝑏

 = 0  

 

And the system that needs to be solved is the following 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑎𝑎5 𝑎𝑎4 𝑎𝑎3

𝑏𝑏5 𝑏𝑏4 𝑏𝑏3

       �
𝑎𝑎 + 𝑏𝑏

2
�
5

        �
𝑎𝑎 + 𝑏𝑏

2
�
4

     �
𝑎𝑎 + 𝑏𝑏

2
�
3

𝑎𝑎2 𝑎𝑎 1
𝑏𝑏2 𝑏𝑏 1

      �
𝑎𝑎 + 𝑏𝑏

2
�
2

�
𝑎𝑎 + 𝑏𝑏

2
� 1

5 ∗ 𝑎𝑎4 4 ∗ 𝑎𝑎3 3 ∗ 𝑎𝑎2
5 ∗ 𝑏𝑏4 4 ∗ 𝑏𝑏3 3 ∗ 𝑏𝑏2

5 ∗ �
𝑎𝑎 + 𝑏𝑏

2
�
4

4 ∗ �
𝑎𝑎 + 𝑏𝑏

2
�
3

3 ∗ �
𝑎𝑎 + 𝑏𝑏

2
�
2

2 ∗ 𝑎𝑎          1    0
2 ∗ 𝑎𝑎           1    0

2 ∗ �
𝑎𝑎 + 𝑏𝑏

2
�           1    0

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∗

⎩
⎪
⎨

⎪
⎧
𝑔𝑔
ℎ
𝑡𝑡
𝑠𝑠
𝑐𝑐
𝑀𝑀⎭
⎪
⎬

⎪
⎫

=

⎩
⎪⎪
⎨

⎪⎪
⎧

0
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

2
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

0
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

0 ⎭
⎪⎪
⎬

⎪⎪
⎫

  

 

 

⎩
⎪
⎨

⎪
⎧
𝑔𝑔
ℎ
𝑡𝑡
𝑠𝑠
𝑐𝑐
𝑀𝑀⎭
⎪
⎬

⎪
⎫

=
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

(𝑎𝑎 − 𝑏𝑏)5 ∗

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

8
20 ∗ (𝑎𝑎 + 𝑏𝑏)

18 ∗ (𝑎𝑎2 +
22
9
∗ 𝑎𝑎 ∗ 𝑏𝑏 + 𝑏𝑏2)

7 ∗ (𝑎𝑎 + 𝑏𝑏) ∗ (𝑎𝑎2 +
26
7
∗ 𝑎𝑎 ∗ 𝑏𝑏 + 𝑏𝑏2)

14 ∗ 𝑎𝑎 ∗ 𝑏𝑏 ∗ (𝑎𝑎2 +
6
7
∗ 𝑎𝑎 ∗ 𝑏𝑏 + 𝑏𝑏2)

14 ∗ 𝑎𝑎2 ∗ (𝑎𝑎3 − 5 ∗ 𝑎𝑎2 ∗ 𝑏𝑏 + 3 ∗ 𝑎𝑎 ∗ 𝑏𝑏2 − 7 ∗ 𝑏𝑏3)⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 F.3 

 

Importing F.3 to F.2, the polynomial function of 5th order that obeys the criteria for the joining 
function is produced.  
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G. The calculations that describe the induced polarization 

i. Linear Function 

A Polynomial function that can describe the displacement, could be a linear function and as it 
was calculated above, the right formula of the joining function is the following:  

 

 𝑓𝑓(𝜂𝜂) =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ (𝜂𝜂 − 𝑎𝑎) 

G.1  
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

=
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

 

 
𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

= 0 

 

This function is none other than the function that describes the displacement between point 𝑎𝑎 
and 𝑏𝑏 in relation 22, as this function creates a trapezoidal distribution of displacements.  

For this function the first integral that resides in relation x of chapter 4 can be simplified to the 
following relation:  

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = �𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝛼𝛼) −𝐻𝐻(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

[∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) [∗ 𝛿𝛿 (′ 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)𝑀𝑀𝜂𝜂  

 

The first term vanishes as the second derivative is always zero. By applying the calculation, 
as described before in Appendix E and chapter 4, the following calculations take place:  

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = �𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

[∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  
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 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) [∗ 𝛿𝛿 (′ 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)𝑀𝑀𝜂𝜂  

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = 2 ∗
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
−𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑚𝑚
∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
−𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑏𝑏
∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + �

𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂
√

)
𝐴𝐴

− 𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

��

𝜂𝜂=𝑚𝑚

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

 −𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) − �

𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂
√

)
𝐴𝐴

− 𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

��

𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) +

𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢
√

𝑚𝑚𝑚𝑚𝑥𝑥

𝐴𝐴
�

𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 

Because 𝑓𝑓(𝜂𝜂) = 0 and 𝑓𝑓(𝜂𝜂) = 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥, some simplifications can occur. By substitution of these, 
the following relations are created:  

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ 𝑀𝑀
−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) −

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ 𝑀𝑀
−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ �𝑀𝑀
−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 𝑀𝑀

−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)� 

G.2 

 +𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

 

Similarly, the second integral takes the beneath form:  
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�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = �𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

[∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) [∗ 𝛿𝛿 (′ 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)𝑀𝑀𝜂𝜂  

 

By using the boundary values of the joining function: 

 

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = 2 ∗
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑚𝑚
∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑏𝑏
∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − �

𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂
√

)
𝐴𝐴

+𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

�
𝜂𝜂=𝑚𝑚

� ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) 

 −𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) + �

𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂
√

)
𝐴𝐴

+𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

�
𝜂𝜂=𝑏𝑏

�

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏) 

 

 +𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) −

𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢
√

𝑚𝑚𝑚𝑚𝑥𝑥

𝐴𝐴
�

𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 

And by substituting: 

 

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ 𝑀𝑀
𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) −

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ 𝑀𝑀
𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  

 

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ �𝑀𝑀
𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 𝑀𝑀

𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)� 

G.3 

 +𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 
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By substituting those two integrals, relations G.2 and G.3 to the relation x (chapter 4) the 
polarization can be given by the beneath relation: 

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢  

 +
𝐵𝐵

2 ∗ √𝛢𝛢
∗ �−𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗ �𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑀𝑀𝜂𝜂 + 𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ � 𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑀𝑀𝜂𝜂�  

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ �−𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 ∗ �𝑀𝑀

−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 𝑀𝑀

−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)� 

 +𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ �𝑀𝑀

𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 𝑀𝑀

𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)�� 

 +
𝐵𝐵

2 ∗ √𝛢𝛢
�−𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗ �𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)��  

 +
𝐵𝐵

2 ∗ √𝛢𝛢
�+𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 ∗ �𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)��  

 

 

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ �−𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 ∗ �𝑀𝑀

−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 𝑀𝑀

−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)� 

 +𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ �𝑀𝑀

𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 𝑀𝑀

𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)�� 

 +
𝐵𝐵

2 ∗ √𝛢𝛢
[−𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)]  

 +
𝐵𝐵

2 ∗ √𝛢𝛢
[𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) ∗]  
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𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
𝑏𝑏 − 𝑎𝑎

∗ �−𝑀𝑀
+𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

+𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏) 

G.4 

 +𝑀𝑀
−𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 𝑀𝑀

−𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)� 

 

As it was also mentioned in Appendix F, those two spike terms (red) cancel out themselves.  

 

ii. 3rd degree function 

Another case of a function that can fit, in the cohesive zone, between the maximum and the 
minimum value is a polynomial function of third order. That function that was determined in 
Appendix F has an analogue procedure with the linear function.  

 

 𝑓𝑓(𝜂𝜂) =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

𝑎𝑎3 − 3𝑎𝑎𝑏𝑏2 + 3𝑎𝑎𝑏𝑏2 − 𝑏𝑏3
{2𝜂𝜂3 − 3(𝑎𝑎 + 𝑏𝑏)𝜂𝜂2} + 6𝑎𝑎𝑏𝑏𝜂𝜂 + (𝑎𝑎 − 3𝑏𝑏)𝑎𝑎2 

G.5 

 
𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

=
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

𝑎𝑎3 − 3𝑎𝑎𝑏𝑏2 + 3𝑎𝑎𝑏𝑏2 − 𝑏𝑏3
∗ {12𝜂𝜂 − 6(𝑎𝑎 + 𝑏𝑏)} 

 

In this case however, the first term of each integral that needs to be calculated, is non zero as 
the second derivative is also non zero. However, by definition, the gradient of this function at 
point 𝑎𝑎 and 𝑏𝑏 is zero, so the second term in each integral vanishes instead.  

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = �𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝛼𝛼) −𝐻𝐻(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

[∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) [∗ 𝛿𝛿 (′ 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)𝑀𝑀𝜂𝜂  

 

The calculation of the first term needs the calculation of the respectively antiderivative 
beforehand. 
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The first antiderivative, that refers to the integral in which the exponential contains the minus 
sign can be calculated as beneath.  

 

𝑔𝑔(𝜂𝜂) = �𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂  

 = �𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ {12𝜂𝜂 − 6(𝑎𝑎 + 𝑏𝑏)}𝑀𝑀𝜂𝜂  

 = �
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ 12𝜂𝜂 ∗ 𝑀𝑀

−𝜂𝜂
√𝛢𝛢𝑀𝑀𝜂𝜂 − �

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ 6(𝑎𝑎 + 𝑏𝑏) ∗ 𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑀𝑀𝜂𝜂  

 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ �−12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 ∗ 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 − 12 ∗ 𝛢𝛢 ∗ 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏) ∗ 𝑀𝑀

−𝜂𝜂
√𝛢𝛢�  

 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ �−12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)�  

   

 

And thus, the first integral is the following:  

 

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = �𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝛼𝛼) −𝐻𝐻(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

[∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) [∗ 𝛿𝛿 (′ 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)𝑀𝑀𝜂𝜂  
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�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = 𝑔𝑔(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − 𝑔𝑔(𝑎𝑎) ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 𝑔𝑔(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) + 𝑔𝑔(𝑏𝑏) ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏) 

 +2 ∗
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
−𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑚𝑚
∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
−𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑏𝑏
∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + �

𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂
√

)
𝐴𝐴

− 𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

��

𝜂𝜂=𝑚𝑚

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

 −𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) − �

𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂
√

)
𝐴𝐴

− 𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

��

𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) +

𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢
√

𝑚𝑚𝑚𝑚𝑥𝑥

𝐴𝐴
�

𝜂𝜂=𝑏𝑏

∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

   

 

However, because 𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

�
𝜂𝜂=𝑏𝑏

= 𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

�
𝜂𝜂=𝑚𝑚

= 0, 𝑓𝑓(𝜂𝜂) = 0 and 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂) = 0 

 

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = 𝑔𝑔(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − 𝑔𝑔(𝑎𝑎) ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) − 𝑔𝑔(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) + 𝑔𝑔(𝑏𝑏) ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏) 

 +
𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
−𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑚𝑚
∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎) −

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

∗ 𝑀𝑀
−𝜂𝜂
√𝛢𝛢�

𝜂𝜂=𝑏𝑏
∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +�
𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂)
√𝐴𝐴

��

𝜂𝜂=𝛼𝛼

∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

 +
𝑀𝑀
−𝜂𝜂
√𝛢𝛢

√𝐴𝐴
{𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)}|𝜂𝜂=𝑏𝑏 ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  
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�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = 𝑔𝑔(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − 𝑔𝑔(𝑎𝑎) ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

 −𝑔𝑔(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) + 𝑔𝑔(𝑏𝑏) ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  

 

And by substituting the antiderivative: 

 

�𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = 𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �−12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎)  

 −𝑀𝑀
−𝑚𝑚
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �−12 ∗ 𝑎𝑎 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎)  

 −𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �−12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
−𝑏𝑏
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �−12 ∗ 𝑏𝑏 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  

 

Lastly, by multiplying the above integral with the term −𝑀𝑀
𝜂𝜂
√𝛢𝛢 some simplifications can occur 

 

−𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ � 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 =         −
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ �−12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

 +𝑀𝑀
𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �−12 ∗ 𝑎𝑎 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

 +
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ �−12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

 −𝑀𝑀
𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �−12 ∗ 𝑏𝑏 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 
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 −𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

 

−𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ � 𝑀𝑀

−𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ 

 �−�−12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� {𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)} 

 +𝑀𝑀
𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ �−12 ∗ 𝑎𝑎 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

 −𝑀𝑀
𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ �−12 ∗ 𝑏𝑏 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)� 

 −𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

 G.6 

 

Similarly, the second antiderivative (in the exponential the sign is the plus) can be calculated 
as follows:  

 

𝜁𝜁(𝜂𝜂) = �𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂  

 = �𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ {12𝜂𝜂 − 6(𝑎𝑎 + 𝑏𝑏)}𝑀𝑀𝜂𝜂  

 = �
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ 12𝜂𝜂 ∗ 𝑀𝑀

𝜂𝜂
√𝛢𝛢𝑀𝑀𝜂𝜂 − �

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ 6(𝑎𝑎 + 𝑏𝑏) ∗ 𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑀𝑀𝜂𝜂  

 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ �12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 ∗ 𝑀𝑀

𝜂𝜂
√𝛢𝛢 − 12 ∗ 𝛢𝛢 ∗ 𝑀𝑀

𝜂𝜂
√𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏) ∗ 𝑀𝑀

−𝜂𝜂
√𝛢𝛢�  

 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗ �12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)�  
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And by substituting the second integral the second antiderivative can be calculated as 
beneath:  

 

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = �𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂2

∗ [𝐻𝐻(𝜂𝜂 − 𝛼𝛼) −𝐻𝐻(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 2 ∗

𝜕𝜕𝑓𝑓(𝜂𝜂)
𝜕𝜕𝜂𝜂

[∗ (𝛿𝛿 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) [∗ 𝛿𝛿 (′ 𝜂𝜂 − 𝛼𝛼)− 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)]𝑀𝑀𝜂𝜂  

 +�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 ∗ 𝛿𝛿′(𝜂𝜂 − 𝑏𝑏)𝑀𝑀𝜂𝜂  

 

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = 𝜁𝜁(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − 𝜁𝜁(𝑎𝑎) ∗ 𝐻𝐻(𝜂𝜂 − 𝑎𝑎)  

 −𝜁𝜁(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) + 𝜁𝜁(𝑏𝑏) ∗ 𝐻𝐻(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  

 

�𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 = 𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎)  

 −𝑀𝑀
𝑚𝑚
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �12 ∗ 𝑎𝑎 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎)  

 −𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
𝑏𝑏
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �12 ∗ 𝑏𝑏 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  

 +𝑀𝑀
𝜂𝜂
√𝛢𝛢 ∗ 𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗ {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)  
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Lastly by applying the multiplication with the term −𝑀𝑀
−𝜂𝜂
√𝛢𝛢, the below simplification can occur:  

 

𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ � 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ �12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

 −𝑀𝑀
−𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �12 ∗ 𝑎𝑎 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

 −
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ �12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

 +𝑀𝑀
−𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗

𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥
…

∗ �12 ∗ 𝑏𝑏 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

 +𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

  

 

+𝑀𝑀
−𝜂𝜂
√𝛢𝛢 ∗ � 𝑀𝑀

𝜂𝜂
√𝛢𝛢 ∗

𝜕𝜕2𝑢𝑢(𝜂𝜂)
𝜕𝜕𝜂𝜂2

𝑀𝑀𝜂𝜂 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ 

 �+�12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� {𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)} 

 −𝑀𝑀
−𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ �12 ∗ 𝑎𝑎 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

 +𝑀𝑀
𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ �12 ∗ 𝑏𝑏 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)� 

 +𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

 G.7 
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By importing equations G.6 and G.7, onto equation x of chapter 4, the polarization, assuming 
a vertical displacement of a polynomial function of 3rd grade, can be given by the below 
formula: 

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 

 +
𝐵𝐵

2 ∗ √𝛢𝛢
∗ �−𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗ �𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑀𝑀𝜂𝜂 + 𝑀𝑀
− 𝜂𝜂
√𝛢𝛢 ∗ � 𝑀𝑀

+ 𝜂𝜂
√𝛢𝛢 ∗

𝑀𝑀2𝑢𝑢3
𝑀𝑀𝜂𝜂2

𝑀𝑀𝜂𝜂� 

  

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1 ∗ 𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2 ∗ 𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ 

 ��+12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 + 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� {𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)} 

 +𝑀𝑀
𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ �−12 ∗ 𝑎𝑎 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

 −𝑀𝑀
𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ �−12 ∗ 𝑏𝑏 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 + 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)+ 

 �12 ∗ 𝜂𝜂 ∗ √𝛢𝛢 ∗ −12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� {𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)} 

 −𝑀𝑀
−𝜂𝜂−𝑚𝑚
√𝛢𝛢 ∗ �12 ∗ 𝑎𝑎 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) 

 +𝑀𝑀
𝜂𝜂−𝑏𝑏
√𝛢𝛢 ∗ �12 ∗ 𝑏𝑏 ∗ √𝛢𝛢 − 12 ∗ 𝛢𝛢 − 6 ∗ √𝛢𝛢 ∗ (𝑎𝑎 + 𝑏𝑏)� 𝛿𝛿(𝜂𝜂 − 𝑏𝑏)� 

 −𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) − {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

 +𝑓𝑓(𝜂𝜂) ∗ 𝛿𝛿(𝜂𝜂 − 𝑎𝑎) + {𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑓𝑓(𝜂𝜂)} ∗ 𝛿𝛿(𝜂𝜂 − 𝑏𝑏) 

 



  Chris Knisovitis 
  Flexoelectric Materials in Micromechanics 
 

 

198 

 

𝑃𝑃3(𝜂𝜂) = 𝑐𝑐1𝑀𝑀
+ 𝜂𝜂
√𝛢𝛢 + 𝑐𝑐2𝑀𝑀

− 𝜂𝜂
√𝛢𝛢 +

𝐵𝐵
2 ∗ √𝛢𝛢

∗
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

…
∗ ��+24𝜂𝜂√𝛢𝛢 − 12√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)� {𝛿𝛿(𝜂𝜂 − 𝑎𝑎) −𝛿𝛿(𝜂𝜂 − 𝑏𝑏)} 

+𝛿𝛿(𝜂𝜂 − 𝑎𝑎) �𝑀𝑀
𝜂𝜂−𝑚𝑚
√𝛢𝛢 �−12𝑎𝑎√𝛢𝛢 − 12𝛢𝛢 + 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)� − 𝑀𝑀

−𝜂𝜂−𝑚𝑚
√𝛢𝛢 �12𝑎𝑎√𝛢𝛢 − 12𝛢𝛢 − 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)�� 

−𝛿𝛿(𝜂𝜂 − 𝑏𝑏)� 𝑀𝑀
𝜂𝜂−𝑏𝑏
√𝛢𝛢 �−12𝑏𝑏√𝛢𝛢 − 12𝛢𝛢 + 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)� − 𝑀𝑀

𝜂𝜂−𝑏𝑏
√𝛢𝛢 �12𝑏𝑏√𝛢𝛢 − 12𝛢𝛢 − 6√𝛢𝛢(𝑎𝑎 + 𝑏𝑏)��� 

G.8  
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