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Abstract

Flexoelectricity is the phenomenon that allows some materials to convert mechanical strain
gradients to electrical polarizations and vice versa. As flexoelectricity is a ferroelectric
phenomenon, its applications are of maximum importance and should be studied thoroughly.
The polarization magnitude is connected to the strain gradients and so situations that produce
large strain gradients are interesting. The cracking seems to be very promising. The mode |l
crack is an anti-plane problem that can be solved also considering the flexoelectric effect. As
known from classic elasticity, the anti-plane problem is a sub-case of 3D-elasticity. The mode
Il crack, is also a dynamic problem.

By considering the contribution of the flexoelectric phenomenon to the total energy density, a
solution of the anti-plane flexoelectric problem can be formed. A direct analogue is presented
between the anti-plane flexoelectric problem and the anti-plane couple stress elasticity
problem, which allows the distinction of the flexoelectric problem into three regions: the elliptic,
the hyperbolic and the intermediate.

The hyperbolic region is studied further. The characteristic lines, a method of solving
hyperbolic equations, allows some simplifications of the differential equation and thus a full
field analytical solution is presented. Mach cones are visible as the displacement is concerned.
For this displacement, the polarization can be calculated. The crack tip and the end of the
cohesive zone are the positions of maximum polarization and thus positions of possible
electrical yielding (abrupt change of the polarization vector). Also, the polarization of a screw-
like dislocation is calculated. In this case, the polarization is described with a “d function” — like
distribution.

The anti-plane dynamic problem is responsible for the propagation of waves. Because of the
microstructure (for the couple stress elasticity problem, or the flexoelectric properties on the
normal anti-plane problem), those waves are dispersive, a fact that signifies the possibilities
of a lot more applications. The dispersion is the next thing studied. The dispersion relations
show great similarity with viscoelastic materials, as the flexoelectric metamaterials are
concerned.

Lastly, through another analogue between the anti-plane problems and the plate problems,
numerical calculations are possible for a great number of cases. The analogue is modified in
order to be able to solve also hyperbolic problems. This is the first time the Analogue Equation
Method is used in a Finite Element Code. Through a standard Finite Element Method (FEM)
code (ABAQUS), the Mach cone - like displacement is proved, in the hyperbolic problem. Also,
the angle of the cones, is in agreement with the previous bibliographic suggestions and
depends on the microstructure and the velocity of the problem.
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1. Introduction

A. Physical aspect of flexoelectricity - what is flexoelectricity?

Flexoelectricity is a natural phenomenon that applies to a wide variety of materials. One
complete definition of flexoelectricity has been suggested by Giannakopoulos and Zisis
(2021).

“Flexoelectricity is the ability of materials to convert mechanical strain gradients to electric
polarization and vice versa”

All dielectrics and ferroelectrics in paraelectric phase materials are defined as flexoelectric.
Those when subjected to non-uniform mechanical strain, can produce electrical polarization.

The direct flexoelectric effect, which converts mechanical strain gradients to electrical
polarization, can be described by the following relation:

2.,
0°u;

P; = Wijr 9x,0%,

A pretty similar phenomenon, called piezoelectricity, which has been studied extensively, can
be added in the above relation, as suggested by Maranganti et al. (2006).

p azu]
s =P, & + .. —_—
i 1 ijk<jk .ul]kl axkaxl

In the above relation p; ;. <, is the piezoelectric term and should be equal to zero when a non-

piezoelectric material (a centrosymmetric material), is concerned. If this term is zero, the
remaining equation describes the direct flexoelectric effect.

This microscopical effect comes from the atomic crystallin structure. Because of a relative
dense crystalline structure, when a strain gradient is applied, some positive cores come closer
and thus, this side gets positively charged, while some others, from the opposite side, get
further away and thus that side gets negatively charged. This difference in the charges creates
a polarization and a respective electric field. The phenomenon of flexoelectricity resembles
the condition of a capacitor.

The parameters that affect flexoelectricity, are the strain gradient, which is connected to
mechanical characteristics like Lame’s constants, and a module that signifies how dense this
crystallin structure is. This module, in the direct flexoelectric effect, is the y;;;,; coefficient.
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Fig. 2. The schematic explanation of
flexoelectricity.

The induced polarization is happening only for
a non-uniform deformation that is flex-like. The
cell of NaCl is centrosymmetric and thus no
polarization can be induced from uniform
loading. Maranganti et al. (2006).

A simpler schematic description of the
flexoelectric phenomenon is being represented
in Seung-Bok Choi and Gi-Woo Kim (2017).
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Fig. 1. Piezoelectricity.
The microscopical explanation of
the production of polarization in a

non-centrosymmetric crystal
through the effect of
piezoelectricity, by  uniform

loading. Maranganti et al. (2006)
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Flexoelectricity is weak in comparison to the stronger piezoelectricity, but in small scales the
flexoelectric effect can reach its competitor, as the strain gradients are great. These, also,
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have to do with all the parameters that causes this effect. As it has been studied extensively
experimentally (Knisovitis (2019) and Giannakopoulos et al. (2020)) near the crack tips the
gradients are great and the flexoelectric effect can overtake major role.

Fig. 3. AFEM
representation of a Mode |
crack and the induced
strains.

There is a big concentration
of strain gradients near the
crack tips. This figure
represents the strains ¢,;.
Knisovitis (2019)
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Fig. 4. The experiments.
Described in Knisovitis (2019) and Giannakopoulos et al. (2020). In one-dimensional element, a
mode | crack has an effect of a rather large voltage. The oscilloscopes frequency was 1 MHz.

Similar to the direct effect is the converse flexoelectric effect, which uses electrical work and
turns it into mechanical. In other words, a polarization applied in a flexoelectric material will
result in a strain gradient and thus some deformation.



B. The materials

Flexoelectric materials can be dielectric or ferroelectrics in a paraelectric phase.
Giannakopoulos and Zisis (2021 a.) proposed, that a vast majority of materials are
flexoelectric. Some materials that are anisotropic exhibit also piezoelectricity and
flexoelectricity combined.

Some rocks including the earth’s mantle, are both flexoelectric and piezoelectric. Materials
that are characterized as flexoelectric could be ribbons of graphene, carbon or graphene
nitride, biological membranes, a lot of polymers (PVDF, plexiglass, paraffin, polystyrene),
ceramics (perovskites, magnesium oxide, alkali halides, colloidal crystals) and even crystalline
materials like salt. Ice is also flexoelectric. Lastly, many semi-conductors have flexoelectric
properties.

The characteristic of a flexoelectric material is the flexoelectric constant y; ;. Despite the fact
that this constant seems like a fourth order tensor, usually it has only three independent
components, piy1, U1z, Haa-

As described in greek literature by Knisovitis (2019) its constant is used for a specific strain
gradient. The constant u,; is used when the strain is normal to a surface e.g. €;; and the
gradient is towards the corresponding direction, e.g. direction 1. The constant u,, refers to
normal strains, but the direction of the gradient is one of the other two and lastly the component
U4 refers to shear strains.

i M2 Ha
(10713 C/em) (10713 C/em) (10713 C/em)
Ab initio Shell model Ab initio Shell model Ab initio Shell model
GaAs 0.5144 0.8512 —0.8376 0.5107 0.2645 0.1702
GaP 0.4653 0.3128 —0.3443
ZnS -0.311 —1.544 -0.611

Fig. 5. The flexoelectric constants for various cubic semiconductors
from Maraganti and Sharma (2009).

€14

(C/m?)
Ab initio Shell model Experiment
GaAs -0.1464 -0.066 -0.16
GaP -0.0744 -0.1
ZnS =0.111 -0.13

Fig. 6. The piezoelectric constant for various cubic semiconductors
from Maraganti and Sharma (2009).
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Il \ 12 Hag
(107" C/cm) (1073 C/cm) (107* C/em)

Shell model  Askar ef al.®  Shell model Askar ef al.® Shell model Askar et al.®

NaCl 0.412 0.423 -0.122 -0.119 —-0.212 -0.230
KCl 0.403 0.411 -0.122 -0.120 —-0.228 -0.231

Fig. 7. The flexoelectric constants for various cubic alkali halides
from Maraganti and Sharma (2009). Index “a” is referring to “A. Askar, P. C. Y. Lee, and A. S.
Cakmak, Phys. Rev. B 1, 3525 (1970)".

K11 12 a4
(10713 C/cm) (10" C/cm) (10713 C/cm)
Ab initio Experiment Ab initio Experiment Ab initio Experiment
STO -26.4 20 -374.7 700 -357.9 300
BTO 15.0 —546.3 10° -190.4

Fig. 8. The flexoelectric constants for various cubic perovskites

from Maraganti and Sharma (2009). For STO the experimental data was obtained from “P. Zubko,
G. Catalan, P. R. L. Welche, A. Buckley, and J. F.Scott, Phys. Rev. Lett. 99, 167601 (2007)”, while
for the BTO from “W. Ma and L. E. Cross, Appl. Phys. Lett. 88, 232902 (2006)”.

Similar to those, the reverse flexoelectric constants are symbolized as fi4, fi2, fa4-

C. Applications

Flexoelectricity can be used in a great number of applications for energy harvesting, into
micro-electro-mechanical systems, for nanotechnology and even for biology, as it has been
mentioned by Hausler et al. (1984) and Gi-woo Kim et al. (2014). In addition to those, which
are relevant applications in any ferroelectric problem, flexoelectricity could have major role in
situations with great strain gradients. Cracks are cases that exhibits large strain gradients, and
thus the application in respect of flexoelectricity is more prominent (Knisovitis (2019),
Giannakopoulos et al. (2020)).

Ferroelectric phenomena have great applications in conditions of mechanical shock e.g.
accidental drop or explosion. Also, flexoelectricity can be used in dynamic cracking while an
earthquake is happening. In an earthquake the shear force is similar to cracking, and the
earth’s mantle is not only piezoelectric but also flexoelectric. The strains and strain gradients
can be significant and thus strong electromagnetic field may be created. It is very interesting,
that for non-piezoelectric rocks like marble or limestone an electromagnetic emission occurs
and this should be caused by the flexoelectric effect (Giannakopoulos (2019, 2021a, 2021b)).

Last but not least, there is the combination of flexoelectricity with the propagation of waves.
Moroni et al. (2014), stated that in an anti-plane couple stress elasticity dynamic problem, like
the one that is studied in the current research, Rayleigh waves of high frequency may be



produced. Those waves ought to limit the velocity of the crack to a Rayleigh wave speed cj.
This velocity is relative to the parameter g of the couple stress theory and for 8 = 0, when the
problem is hyperbolic, Rayleigh waves can appear. This comment has been mentioned in
Giannakopoulos and Zisis (2019).

In a later study, the same authors, Giannakopoulos and Zisis (2021 a), mentioned the
existence of those waves in a flexoelectric anti-plane dynamic problem, that move through the
surface. Flexoelectricity should also develop anti-plane surface waves, which would have
great applications (e.g., shear-horizontal surface-acoustic-wave (SH-SAW) biosensors). This
is something known in piezoelectricity, as it has been established from Bluestein and
Gulyavev, but such waves are not supported in the content of classic elastodynamics.
Experimental verification in flexoelectricity waves should be performed in the future (in
piezoelectricity, experiments have confirmed the existence of such waves however)

Rayleigh waves, lamb waves and love waves too. All those, could get combined with
flexoelectricity.

D. Previous Research

In a previous research (Knisovitis (2019)) the flexoelectric effect in one-dimensional problems
was studied in a great scale. That study was based on the direct effect and proposed a vast
majority of applications, that are relevant to the phenomenon. For an initial study of the
phenomenon that thesis is recommended.

This study, is about the anti-plane flexoelectric problem, flexoelectricity in other words, when
a mode lll crack occurs, as this is the most common dynamic anti-plane problem. The
formulation of the governing equations of the problem was made with the use of the total
energy density and a method called Toupin’s Variational Principle. The connection with the
couple stress elasticity anti-plane problem is later discussed. An analogue, proposed by
Giannakopoulos and his co-workers (Gavardinas et al. (2018)), connects the anti-plane
problem, whether it is flexoelectric, or defined through the use of the couple stress elasticity
with prestressed plates.

i.  Bibliographic references on flexoelectricity.

A great portion of research has been done by Maraganti and co-workers. In their research
(Maranganti et al. (2006)), they studied flexoelectricity, both in its direct form and its converse.
For their calculations, Maraganti et al. (2006) used the internal energy density in order to
derive the governing equations. In this relation, both piezoelectric and flexoelectric effects
were considered, as they were inserted through the converse effect. For flexoelectricity, the
term for energy is f; i P;u;j k- The governing equations, which in that project are referred to as
“the balance laws” are similar to the ones used later. However, they got extracted via a method
proposed by those researchers themselves, in some previous studies.

Maraganti and Sharma (2009) studied the properties of cubic semiconductors, alkali halides
and perovskites, in respect of the flexoelectric phenomenon, via atomistic perspective. The
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result of the studies was the estimation of the flexoelectric constant 4, t12, tas by their theory
and the comparison with other estimations that could be also experimental.

Yang et al. (2018) published an interesting article about Lamb waves and when those exist in
a flexoelectric medium.

An interesting aspect of flexoelectricity has been discussed by Wang et al. (2019), as they
suggested that this phenomenon is rather weak, unless it is produced from significant large
strain gradients. By describing the phenomenon, the authors related it to piezoelectricity and
also, they suggested that with flexoelectricity, piezoelectric applications like energy harvesting
(at small scales (nano)), sensors, actuators, in ferroelectric mechanics, or even in biomedicine
are easily accessible.

The authors suggested that a way to achieve a great flexoelectric effect is by increasing the
strain gradient. This, in other words, is equivalent to reducing the size of the dielectric in which
the strain is applied (make the deviator smaller).

One interesting application that the authors studied, which has both large strain gradients and
small size (thickness) is the crumpling of a sheet. This crumpling can be studied by using a
thin plate with an out-of-plane point load in the center, until folding occurs. The experiment
that describes this, is a circular piece of paper above a cup of water, being pressed by a pen.

The picture and figure that are displayed beneath are from Wang et al. (2019) and depict the
best way to study the crumpling of a sheet. This model is named d-cone and, from a
mechanical perspective, has been solved. In case the sheet is not from paper (paper is still
flexoelectric, but not a good one), but from PVDF, (which is one of the best flexoelectric
materials) a great amount of polarization should be found.

Fig. 9. The d-cone problem is the best way to model a crumpled sheet.

The parameters of the problem are the large radius (of the plate), the small radius (of the restrains),
the out-of-plane displacement, and the angle 6, between the two radians in which the folding
occurred. The picture and sketch were taken from Wang et al. (2019).



The authors used, for the solution of the flexoelectric d-cone problem, the total potential
energy. In their research they found a great amount of polarization and found that the smaller
the thickness of the sheet, the better the results.

Giannakopoulos and Zisis (2019) suggested that the flexoelectric problem, which is a problem
of coupling mechanical with electrical work, can be simplified in a solely mechanical dynamic
problem.

Using this suggestion, the authors solved the steady state problem of screw dislocation. A
screw dislocation is a Mode Ill crack in which the cohesive zone has been extremely reduced,
and thus there is a discontinuity of the displacement. A screw dislocation can be described by
the figure below.

o
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\J
v

(b) Mode III crack Profile while

a) Mode Il crack Profile
(@ f the cohesion zone get smaller

Fig. 10. Screw dislocation.

This mode Il crack consists of a length, called
cohesion zone, and refers to the length which is
—=—3 needed for the displacement to reach its

n maximum value. As this zone tends to zero, one

v

U discontinuity appears. This anomaly, which is

mechanical, is called a dislocation.

(c) screw dislocation profile

The screw dislocation that was taken into consideration by the authors, gives a more accurate
perspective of the displacement, as this displacement is known and the mode Il crack problem
of a screw dislocation is a known anti-plane couple stress elasticity problem. However, the
same applies in other anti-plane crack problems. In addition, the authors mentioned the
importance of a screw dislocation in subjects such as crystal growth, plasticity, development
of thin epitaxial films, micro-component, opto-mechanical devices and the study of
seismology.

This study was done by taking into consideration the microstructure, the microstructural length
and also the micro-inertia length, for the purely anti-plane problem. For the anti-plane
flexoelectric problem however, the solution should be based on classic elasticity.



The dislocation spreads with a constant velocity, that can be subsonic or even supersonic.
Also, the displacement in some cases could be like Mach cones and as suggested by the
authors, those cones are dependent on the microstructure.

Yang et al. (2020) studied the propagation of Rayleigh waves when flexoelectricity, strain
gradient elasticity, surface effects and micro-inertial effects were considered. The authors
mentioned that in present days, surface waves are of crucial importance, as they have multiple
applications in seismology and geophysics, telecommunications, acoustics and electronics,
nondestructive evaluation (monitoring) and microfluidics. In addition to the various applications
flexoelectricity enables the propagation of surface waves in flexoelectric materials, which can
have an enormous variety of applications with huge impact.

Rayleigh waves are dispersive and have been studied in terms of piezoelectricity, through
couple stress effect and through gradient elasticity theory. An acoustic wave (e.g. Rayleigh
wave) produces, always, homogeneous strain and electric field in elastic dielectrics. The same
applies in flexoelectricity, in which the strain gradients produce electric polarization. Yang et
al. (2020) revealed, based on previous researches, that, when waves of small wavenumber
are combined with flexoelectricity, the frequencies are enormous. This is something they
proved, in their research, as they have shown that with the decrease of the wavelength, the
influence of flexoelectricity and the other effects they studied (surface effects, micro-inertial
effects, strain gradient elasticity) need to be considered, as their effect is great.

In Giannakopoulos and Zisis (2021 a), the authors once again mentioned the similarity of the
flexoelectric anti-plane problem and the couple stress elasticity anti-plane dynamic problem
and suggested that the modeling of both can happen via anisotropic plates with biaxial
prestressing, different in each direction. They also suggested that the microstructure, the
microstructural and the micro-inertial lengths, is crucial for the displacement, which in a steady
state anti-plane crack could be like “Mach cone”. Lastly, they mentioned the existence of
waves, that move through the surface (Rayleigh wave that may spread in the anti-plane
dynamic problem).

Rosakis and co-workers (Xia et al. (2004)), suggested that cracks may also spread with
supershear velocity. This also was proved experimentally. This suggestion is relevant for both
supersonic and subsonic velocities. For high velocities to occur, high stresses should be
produced, like the stresses produced in cracks.

Those authors, also, mentioned “electrical yielding” like conditions.

In contrast to their previous work, this time, the authors studied the motion of Mode Il crack
(instead of a screw dislocation). The material they used had to be flexoelectric. For the
analysis, the analogue proposed from their previous studies was used (Giannakopoulos and
Zisis (2019), Gavardinas et al. (2018)). This analogue reduces the anti-plane flexoelectric
dynamic problem (moving crack) into a dynamic couple stress elasticity problem, and also to
a prestressed orthotropic plate. For this problem, two length parameters need to be used.

The microstructural length is connected to the displacement curvature and is used in the
couple stress elasticity theory on many occasions.

The micro-inertial length is used for the introduction of a non-classic kinetic energy associated
with the micro-rotations. Moroni et al. (2013) suggested that the slope of Mach cones that can
occur on the hyperbolic problem are related to this length. Giannakopoulos and Zisis (2021 a)



also suggested that because of this length (and this is obvious via the formula of the differential
governing equations of the problem), Mach cones could appear also for subsonic problems,
when hyperbolicity is present.

The classic theory of elasticity, which is used in the flexoelectric problem, enables the option
to consider the elastic energy only relevant to the strains and not the strain gradient, in contrast
to the case of the anti-plane couple stress elasticity problem.

Giannakopoulos and Zisis (2021 b.) studied once again the flexoelectric effect on a uniformly
moving anti-plane crack with some additions.

ii. Toupin’s Variational Principle and the total Energy Density.

The most important parts of Toupin’s Variational Principle were described by Mindlin. The
theory of gradient elasticity can be better understood from the work of Mindlin (1965), in which
one addition to the potential energy density was done, as not only the strains took part, but
also its gradients. The total potential energy for a homogeneous isotropic and centrosymmetric
material can be written in its full form as follows (in that relation the part relative to the
polarizations is missing. This addition however is done by the same author in a later research
Mindlin (1968)):

w = Elfiifjj t+ UEijEi; T a18ijj€ikk t A2€iikExjj t A3EiikEjjk T AaijkEiji
+ase;jjerji + bigijj€rru + baijrr€iju + b3&iijrEiru
+bstiijreukj + bs€iijk€ujk + beijri€ijki + b7€ijriEjkii

+C1€ii€jjir + C2€ijEijkk T C1€ij€kkij + Do&iijfj

In the above relation the components ¢;;, &;jx, €. are the components of e* = (Vi + @V)/2,
g2 = VVil, €3 = VVVil.

The anti-plane problem leads to a reduction of the above relation as described in the
researches from Prof. Giannakopoulos and his co-workers (Giannakopoulos and Zisis (2019),
(2021a.), (2021b)).

One of the most necessary parts, concerning the treatment of the problem, through the
potential energy and Hamilton’s principle is done by using the research of Mindlin (1968).
Mindlin uses Toupin’s Variation Principle, and by an energy method finds the governing
equations of a problem. This principle has the following form.

) fHdV+ f(fl-(iui +E§’6Pi)6v+fti6ui55= 0
v* %4

N



The integrals refer to volume V which is occupied by a body. V* is the total volume that is
occupied or not by any body, while S is the surface of the body. H is the total enthalpy which
isequaltoH =W —gy9,9,/2 + ¢ P;, W is the total potential energy density, g, is the vacuum
permittivity and ¢ ; is the Maxwell self-field. The first point of interest is the total potential
energy density and the parameters from which it depends, Firstly, by assuming that the total
potential energy density depends on the strains (S;; = (u;; +u;;)/2) and the polarizations
(P;) (mechanical and electrical components), the variation of electric enthalpy density is a
relation of stresses (Tl-j = c’)W/aSij)and effective local electric forces (E; = —0W /0P,),

1
OH =6 (W - Egoq),ifp,i + §0,iPi>
SH = 6W — g0 ;8¢ + 8¢ P, + ¢ ;6P;

OH = TU(SSU - EL' 5PL - 50¢,i5<P,i + 5(p,iPL' + (p,idpi

Note that in this relation, the total energy density includes terms of polarization but not
polarization gradients. Also, by the rule of chain and some manipulations by adding and then
removing the same terms, Mindlin (1968), stated that the variation of the enthalpy can be
written by the beneath formula.

O0H = —Tij,i(?ul- - (El - (p'i)(SPL' - (—80(,0’” + Pi,i)d(p + (Tijduj),i
+[(~€0p,i + )80 ,

The next step is to insert the above relation into Toupin’s variational principle. One point that
needs special care in the different spaces the integrals refer to. V* is the total space, while V
is the space occupied by the body.

The divergence theorem, transforms the space integral of a body to an area integral of the
boundary of the body.

aui
6_xidV = f u;n;ds
V! s

This way the variational principle it transformed to the following.



j{(Tij,i + ﬁ)6ui + (E_'l - (P,i + +Elo)6PL + (_go(p,ii + Pl,l)(S(p}dV

v*

+ f{(ti - niTij)5ui + ni[(_EO[(p,i] + Pi)5§0]}55 -0

Where [¢,] is the jump in ¢ ;.

As it is obvious, because of the variationals that are potentionals, the equality of the above
relation should hold true for any variational. A number of equations is produced, for each
variational. Equations that are generated from this kind of procedure are called Euler
equations.

Potentional Variable = Governing equations Where
ou; Tiji+fi=0
6P; Ei—@;+E =0
Sp —&@i;+P;=0 inV
8¢, =0 inV’

Similarly, the boundary conditions can be obtained from this method, by the area integral.

Potentional Variable Boundary Condition
6ui ti - TliTij =0
op ni(—eo[(p,i] + Pl-) =0

Through this procedure some manipulation can be done:

¢ To import the dynamic problem, the kinetic energy can be added to the total enthalpy
density.

¢ If the total potential energy density depends on more variables, then the chain rule
can be more detailed.

Next, Mindlin (1968) studied the dynamic case, in which the polarization gradient was added
(but some other terms were missing). The integral that Mindlin proposed, similar to Toupin’s
variation principle is the following:

N

ty t1
1
5 f dt f(zpuiui—H) av + f dt“(mui+E{’5Pi)5v+fti5ui65] =0
o v* to V*



The governing equations, or the Euler conditions produced in this case are the following:

Governing equations Where
—pii; + T+ ;=0
Ei+Eji—@j+E =0
—& @i+ P =0 inVv

®ii =0 inVv’
And the boundary conditions:

Boundary Condition
niTl-j - tj =0

ni(—g @ +P) =0
TliEi]' =0

In addition to those boundary conditions, some initial conditions are also needed, as the
problem in this case is dynamic. This is something that wasn’t commented on Mindlin (1968),
but later, Giannakopoulos took it into consideration (Giannakopoulos (2019, 2021a, 2021b)).

In those relations, the added terms are the accelerations, ii; which were imported through the
addition of the kinetic energy through Hamilton’s principle and the term E;; = 0W /dP; ;, a term
imported through a polarization gradient. The procedure to derive the governing equations
follows the above, with some modifications (Appendix A), as the total energy density was

considered a bit different.

ili.  The Couple Elasticity Anti-plane problem

A study of the cracks was made by Gourgiotis and Georgiadis (2007). In this research the
authors used the couple stress elasticity theory to study the mode Il and mode Il cracks. The
results of the couple stress elasticity seem to be different from the results of classical fracture
mechanics.

In their study, the researchers took into account the microstructure of the material. The aim of
that project was to provide a full-field solution for mode Il and mode Il cracks of finite length,
by using a method called distributed dislocations, but this is not something to delve into.

Initially, the authors describe the basic concept of couple stress elasticity. They inserted in the
potential energy density, in addition to the term referring to strains, also term referring to strain



gradient of the rotations, with some modifiers that are symbolized as n and . Those modifiers
are the couple-stress moduli and for them the following relation should hold.

“1<1<t
n

And also, in any casen > 0.

The terms of the strains are inserted in the potential energy density through the Lamé
constants, for which, in any case the below relations should apply.

314+2u>0
u>0

The potential energy density equation is proposed as the following
1 !
W= W(Sij, Kfij) = Elgiigjj + UE;jE;j + ZnKinij + 27’] KijKji

Whereas the terms k;; = ej;,0;0;u;/2 = ejy; 9y €; are the strain gradient.

The authors then discuss the cases of plane strain (relative to the mode Il crack) and the anti-
plane strain which will be discussed further in the Appendix C. According to the theory of Anti-
plane strain, the deformation should be zero in the in-plane directions (x, y) while non-zero in
the out-of-plane direction:

u, =w(xy) =0

In the next figure a crack in the frame of anti-plane strain is being presented. This sketch was
obtained from Gourgiotis and Georgiadis (2007).
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Fig. 11. The Anti-plane strain crack problem.
The loading is in the out-of-plane direction. The crack opens because of the shear contribution of the
out-of-plane force (Giourgiotis and Georgiadis (2007)).

The differential equation that describes the anti-plane strain problem is the following:

VZw — I?Viw = 0

This equation, which is hypersingular with a cubic singularity, describes the anti-plane
problem, using the theories of the couple stress elasticity. In that equation the term [ describes
the microstructural length. This length is related with the moduli n and n'.

The cracks are usually studied through distributed dislocations. A static mode Il crack is
usually studied as a glide dislocation distribution, while the static mode Ill crack as a screw
dislocation distribution. Despite the fact that the crack that was used was a screw dislocation,
the authors observed a cohesive-like zone near the crack tip in the shear stresses, that had
increasing effects while the module g = /5’ — 1. Ahead of that cohesive-like zone the stress
gets maximized locally, but that maximum is bounded.

At the work of Zisis (2018) the anti-plane response of half planes and layers of finite thickness
bonded on rigid substrates under a point load, in the context of couple stress elasticity, was
discussed. This problem, when plain strain theory is used, is also known as Burmister’s
problem. Also in this paper, solutions near the point in which the load is applied were
presented, that were used to be pathological via the classical solutions.

The problem, the author was cast to solve, is not a crack problem but a problem with a shear
concentrated force on the surface of the plane and can be represented by the beneath sketch,
which is included on the published paper. This problem was solved both analytically and
computationally.



Fig. 12. Schematic representation of the anti-plane problem solved by Prof. Zisis (Zisis (2018)).
Note that the direction of the “z” axis was changed from the original, so the system would be
orthonormal.

iv.  The plate problem

The instability of plates was something studied in a sufficient way by Babouskos and
Katsikadelis (2009). The authors studied on plates the combined flutter and divergence
instability and solved examples through the method of boundary elements. They included both
conservative and non-conservative loads (regarding whether the load follows the deformation
or not). The conservative force is applied in the undeformed configuration in contrast to the
nonconservative load which is applied in the deformed configuration. Both those instabilities
refer to axial in-plane force on a plate. The flutter instability describes a vibrational motion,
usually happens for smaller loads and by enlarging the load is transformed to a divergence
instability, which has smaller frequencies and the amplitude is increased exponential.

The significance of this research is the way the authors extracted the differential equations
that describe the problem. They use Hamilton’s principle. According to that, the principle of
virtual works, should hold true in any case.

t2

J (6T — 8U + 8V + SW,,.)dt = 0

ty

In this relation the term T refers to the total kinetic energy between time t; and t,. U is the
elastic energy, or as it is mentioned in other points the total potential energy density. The other
two terms refer to the conservative and non-conservative forces that may be applied to the
configuration. V is the potential of external forces while W is the virtual work of the
nonconservative or damping loads.

The authors used the analogue equation method, a boundary element method to solve this
kind of problems.



The flutter and divergence instability were also studied by Adali (1982). However, the basic
theory concerning the plates is the same, as the out-of-plane displacement is concerned. The
differential equation that defines the problem is non-other than the one proposed by
Babouskos and Katsikadelis (2009). Actually, this research comes first, while the work of
Babouskos and Katsikadelis (2009) supplements the theory, as the membrane displacements
are studied in addition to the boundary element solution it provides.

Both researches point also the importance of the boundary conditions, which has been further
studied in the work of Shi and Bezine (1988). In this research, the anisotropic plate is being
studied, as the authors presented an orthotropic plate in bending problems. The governing
differential equation for an anisotropic plate is proposed as the following:

4 4 4 64 4

2w w
DHW + 4D16W + 2% (D + 2D66)W + 4D26W + Dzza—y4 =p(x,y)

In this equation D4, Di4, D12, Deg, D2g, D2, are the flexural rigidities of the anisotropic plate,
and p(x, y) is the bending action.

The boundary conditions that are needed for the solution of this differential equation can be
reduced to the following:

Location of the boundary Value of the bounded characteristic

condition
d
Clamped edge w=20 w_ 0
on
Simply — supported edge w=0 M, =
Free edge M,=0 ,=0

The characteristic values can be defined from the operator (3(...))/on, M,,(...), V;, (...), which
can be calculated with a superposition of the gradients. That operator can be defined via the
method proposed from of Shi and Bezine (1988), in any boundary, even if the plate is not
rectangular and the boundary is edgy.

v.  The analogue of the anti-plane problem and a prestressed plate

Gavardinas et al. (2018) presented a direct analogue for solving anti-plane problems with
theories such as the couple stress elasticity or the dipolar gradient elastic (which are
analogue), by solving a plate, prestressed by a biaxial tension and vice versa.



Next, the authors applied this analogue to a problem of crack under anti-plane shear loading.
By solving a prestressed plate, the result of the anti-plane crack problem can be obtained via
a FEM method.

vi.  Flexoelectricity and magnetism

For the first time in this research (Giannakopoulos and Zisis (2021 b.)), the authors
commented on magnetic effects that may occur. As the polarization has dynamic properties,
polarization acceleration that may occur make it unjustifiable to neglect magnetic effects.

For the study of the electromagnetic field Giannakopoulos and Zisis (2021 b.) assumed a
Maxwell electric field, which resides in the out-of-plane direction E;(x;,x,,t) and also a
magnetic field in the direction perpendicular to that (the magnetic field is in the other two
directions, the in-plane directions), B;(x1,x;,t) and B,(xy,x,,t). The dimension of this
magnetic field is [Wh/m?]. The authors proceeded by assuming a weak magnetic coupling
and so the polarization that was calculated from the anti-plane flexoelectric problem holds. As
a result of the polarization, an electric displacement can be induced D; = ¢yE; + P; and also
a current density I; = D3[A/m?] (also out-of-plane). As a result, an in-plane flux (H) and an
in-plane magnetic field (B) will be created.

The electromagnetic effect also can be better described on the following table:

Electromagnetic In plane Components Out of Plane
Characteristic Components
Out of plane Electric Field E3(xq1,x5,t)
Electreical Displacement D3 = ggE3 + P3
Current Density [A/m?] I3 = Dy

In plane magnetic flux [Wb/m?] B;(xy,%5,t) B, (xq,x5,t)

In plane magnetic field [A/m] Hi(xq,%5,t) H, (%1, %5, 1)

To calculate these magnetic properties, the authors used the research of Mindlin and Toupin
(1971). The Maxwell equations that are necessary for this problem are displayed:

E3'2 + Bl =0 a
_E3'1 + BZ = O b
By1 — Bia — to€oEs — p1oPs C

Bl,l + Bz}z = 0 d



In the above relation y, is the magnetic permeability of vacuum, when the magnetic
susceptibility of dielectrics is being neglected. Its numerical value is uy = 47 * 10~7 kgm/C?.
Also, the speed of light in the vacuum is equal to ¢;;gpe = (1ogo) "2 = 3 % 108 m/s.

The authors combined a, b and c, to produce the governing differential equation of the
electromagnetic problem.

V2E; = poPs + pogoks

Which can be solved in respect of the out-of-plane electric field E; for a known out-of-plane
polarization P;. The magnetic flux B,, B, is calculated then from a and b and then the magnetic
field can be calculated from the bellow relations:

Hy = py™'B,
Hy = py™'B,

E. Aim

This study will try to analyze the anti-plane flexoelectric problem, while using an analogue with
couple stress elasticity. As it will be displayed later, the ferro-electric parameter exposes
similar contribution with the microstructural parameters on a normal anti-plane problem
through the theory of couple stress elasticity. Those, the microstructural and the micro-inertial
length characterize an anti-plane dynamic couple stress elasticity problem as hyperbolic or
elliptic, supersonic or subsonic. The same applies to the ferroelectric parameters for the
flexoelectric anti-plane problem. In chapter 2 the flexoelectric parameters will get substituted
by some other parameters called [ and H, in order to show similarities with the couple stress
problem.

The hyperbolic case will be studied in detail for the anti-plane flexoelectric problem and the
polarization will be calculated.

The dispersive nature of this flexoelectric dynamic problem will later be discussed, while last
but not least, by using an analogue, the flexoelectric problem will be solved via a FEM method,
that will also allow a solution for the hyperbolic case.



2.The anti-plane flexoelectric problem

A. The anti-plane displacement

One special case of three-dimensional elasticity is the anti-plane problem (similar to the plane
stress and plane strain problem). The theory of the anti-plane strain demands some limitations
to the in-plane displacements:

u,=u =0
Uy, =u; =0

u, =uz =w(x,y) =w(xy,x;) #0

This restriction of displacements allows only the development of the in-plane shear strains,
and the cross-section shear strains in the out-of-plane direction. Those are also independent
from the out-of-plane direction.

i = ey = H (L 2) 10001
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Fig. 13. The strains in the anti-plane formulation.
Only four out of the nine components of the strain tensor are non-zero.
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An example of an anti-plane problem is the pull-out of the reinforcing bar anchored in concrete
e.g. columns and beams made by reinforcing concrete. A Mode lll crack is also a case of an
anti-plane problem. Except the purely anti-plane problems, there are those that have great
similarities. The Twist of beams and the out-of-plane loading of a thin plate, are problems that

are recognized as “anti-plane-like” problems.
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Fig. 14. The Twist of beams.

By using cylindrical coordinates, only the radial
displacement is active and thus this problem can
bring similarities to an anti-plane problem.
However, it is not a purely anti-plane problem.

Fig. 15. A thin plate.

By considering a very thin plate, the axial (in-
plane) displacements can be neglected (under
conditions) and then the problem exhibits anti-
plane similarities. However, it is not an anti-plane
problem.

Fig. 16. The pull out of the reinforcement on one-dimensional concrete element like a beam or a

column is a purely anti-plane problem.
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The cracks that can happen are of three types. The mode | and Il cracks are both in-plane
problems as the mode | crack is opening in the in-plane direction perpendicular to the
discontinuity and the mode Il crack is opening along the discontinuity (shear mode). The mode
Il crack, which is of interest, is a scissor like crack and the displacement occurs perpendicular
to the discontinuity and to the surface. The displacement is “out-of-plane displacement” and
the problem is anti-plane.

Mode | Crack

Fig. 17. Mode | crack.
The crack is opening in the in-plane direction perpendicular to the discontinuity of the crack. The
problem is an “in-plane” problem

! — I Mode Ii Crack

Fig. 18. Mode Il crack.
The crack is opening in the in-plane direction, parallel to the discontinuity of the crack. The problem
is an “in-plane” problem
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Fig. 19. The mode Il crack.
The crack is “scissor-like”. It is opening in the out-of-plane direction and can be considered an anti-
plane problem.

All problems have been studied by various researchers such as Giourgiotis and Georgiadis
(2007), Giannakopoulos and Zisis (2021 a, b), and others.

A significant comment is being addressed by Giannakopoulos and Zisis (2021 b.), who
suggested that in order for a problem to be a true anti-plane problem, either the Maxwell
surface traction should be very small or the electric field.

E; & /2ua

Where E; is the out-of-plane electric action, u is the shear modulus and a is the reciprocal
dielectric constant. This, however, is usually not violated.

B. The anti-plane polarization

The flexoelectric anti-plane problem, includes also polarizations. The anti-plane formulation
demands the in-plane components of the polarization to be zero and the out-of-plane
component to be independent from the out-of-plane coordinate, similarly to displacement.

PZ = Pz(x:}’) = P3(x1,x2) #0



C. The anti-plane flexoelectric problem

The anti-plane flexoelectric problem is a combination of two problems. The first one is the well-
known anti-plane problem that is described in general as a displacement (not necessarily a
displacement vector as this vector, in the anti-plane problem has only one component, the
out-of-plane one), that is caused from an action (that usually is also out-of-plane, like the
examples shown previously). The displacement produced however has an additional effect,
the flexoelectric phenomenon, which refers to the second one.

This indicates that in an anti-plane formulation, such as the propagation of a mode Ill crack,
an electric field will be produced with an out-of-plane polarization, the P;. This polarization will
be the effect of flexoelectricity.

The general idea of the anti-plane flexoelectric problem is to solve the anti-plane problem
considering the contribution of flexoelectricity by mechanical terms (converse flexoelectric
effect). The methodology was described by Giannakopoulos and Zisis (2019). The difference
with a normal anti-plane problem is that the converse flexoelectric phenomenon should be
considered in the formula of potential energy density.

To make things a bit simpler Giannakopoulos and Zisis (2019) neglect an “a priori” internal
length scales as implied in non-local elastic theories and so it is feasible to neglect the elastic
strain energy produced by strain gradient effects. By using the formula described by Mindlin
(1968, 1969), the authors reduce the energy density to the beneath (they added also some
terms):

1
U= EI:G,P32 + (b4,4 + b77)(P3'12 + P3’22)
+ 2eyy ((513 + e31)P31 + (&23 + 332)P3,2) 1

+ 2f12 ((513,1 + 531,1)P3 + (523,2 + 532,2)P3) + 2u(e3* + 5232)]

The components ¢;; are the anti-plane strains, P; is the out-of-plane polarization, ();
symbolizes the gradient. The other components which are constant are the shear modulus
u [N /m?], the flexoelectric constant f;, [Nm/C], the inverse flexoelectric constant e,, [Nm/(],
the gradient polarization constant (b,4 + b;;) [Nm*/C?] and lastly a [Nm?/C?] is the reciprocal
dielectric constant.

The above parameters should be bounded:

u>0
a>0
fi2>0

fas >0
€44 >0



t(bag + b77) — €44* >0

At the work of Maranganti et al. (2006), some characteristic values of the constants can be
obtained. In the beneath table, that was also obtained from Giannakopoulos and Zisis (2019),
those values are displayed:

Constant Symbol Numerical Value Dimension
Caq = 1 0.32500 = 1072 [dyn/nm?]
fiz 0.01125 = 107 [dynnm/C]
by 0.52550 = 1032 [dyn nm*/C?]
€4 0.35600 * 10° [dyn nm/C]
by, 1.92100 = 1032 [dyn nm*/C?]
a 8.76700 = 1033 [dyn nm?/C?]
N 8.85400 * 10735 [C?/dyn nm?]
p 5.3176 [g/cm?]

Where 1 dyn = 1075 N

Property Materials
5rTiOs KTaOs PbTiOs BaTiOs Ge GaAs InSh si NaCl Kcl
[100] [100] [100] [ [111] [ [11 [111] [100] [100]
9K 39K 783K 423 K
ap (nm) 0.391 0.399 0.415 0.396 0.566 0.565 0.648 0.543 0.281 0.314
plkg/m®) 5174 6970 7520 6020 5360 5340 5790 2330 2160 1980
¢4y = u(GPa) 122 107 110 543 67.1 59.4 30.2 79.1 12.8 6.8
a(10® Nm2/C%) 212 0.355 0.168 0.563 75.3 94.6 70.6 103 174 243
(bss + b )(107° Nm*/CY) 2.00 0.435 0.115 0.0700 L.16 2.20 1.65 1.43 0.633 .20
(€45 — fuz) (Nm/C=V) ~10.0 6.00 2.00 -2.70 8.80 sign? 11.0 sign? 6.90 sign? 11.0 sign? —2.42 —2.15
£2y (THz) 1.46 4.79 4.58 5.00 9.00 6.90 4.80 155 4.90 4.50
PLuG/ em®) 4.2 57 2%
¢; (m/s) 4856 3910 4583 4558 3538 3335 2276 5827 2469 1853
Hf +12(nm) 3.07 3.50 2.62 1.113 0.393 0.433 0.474 0.376 0.199 0.222
£ /+/2(nm) 2.36 1.66 217 0.00 0.00 0.00 0.00 0.00 0113 0.146

Fig. 20. Typical material parameters
obtained from Giannakopoulos and Zisis (2021 b). The number below the chemical formula of the
material symbolizes the crystallographic direction.

As it was discussed, the only non-zero polarization is the out-of-plane, similar to the
displacement, P;(x,y). This means that also the polarization gradient P; 3 is zero and thus it
was rightly neglected in the formula of total energy density (relation 1).



By considering some of the above constants equal to zero, relation 1, describes some known
cases, as example, when f;, = e,, = 0 the classic dielectric formula is obtained. If also a = 0,
then the formula describes the classic elastic case.

The procedure to conclude the governing equation of the problem, is via Toupin’s principle of
variations, as described by Mindlin (1968).

The full problem is, in every case, the dynamic anti-plane flexoelectric problem like a mode llI
crack. This can be described with the addition of kinetic energy, which can be written as T =
pusus/2, while the dielectric enthalpy, without considering the contribution of optical wave
modes, is H = U — g, (cl>,12 + ¢,22)/2. In the above relations p is the material mass density and
(...) is the time derivative, —® is the Maxwell self-field and the dielectric constant at vacuum
is &.

The procedure to extract the governing equations of the anti-plane flexoelectric problem is
described in detail in Appendix A. By using Toupin’s Variational Principle, 3 Euler conditions
are extracted from the volume integral.

The first equation is used to calculate the out-of-plane displacements (A.27):

1? . pH? .
uvPug — M?V4u3 = puz — ?Vzus 2

While the second one is used for the calculations of the out polarization (A.29):

5 p(ess — f12)
Py ——=V2 Py = ————"2j 3
375 Ve Py ap Us
The terms [ and H represent the “microstructural” and the “micro-inertial length”:
lZ b _ 2
(2 44+b77_(e44 f12) >0 4
2 a ua
2
12 a 2

This way the problem of the displacement decouples from the polarizations. Note that by using
Toupin’s Variational Principle, one more Euler condition is being produced, the Maxwell
equation, which decouples from the problem. Also, via Toupin’s Variational Principle, one
second integral is produced, that refers not to the volume of the body, but to its boundary. This
integral describes the boundary conditions that are needed for the solution of the problem. For
more information the reader is suggested to visit Appendix A. Those could be initial conditions
at t = 0 for the out-of-plane displacement, the velocity and the polarization, some electric



boundary conditions referring to the polarization gradient or the polarization, jump conditions
or even mechanical boundary conditions.

The boundary conditions that are needed for the problem, are presented in a table in
Giannakopoulos and Zisis 2019, that can be seen below.

Murtually exclusive boundary conditions for the anti-plane flexoelectric problem.

Mutually Exclusive Boundary Conditions

Essential Boundary Conditions Dynamic Boundary Conditions

P (baa + b77)Psp + €asusp =0

@ my (= 0@, ]) + na — go[@2]) =0

Usn rs = fi12Ps

* t3 = piusn +(eas — f12)Psn + ,uﬁ 2 ( Pus )
——t— 2 ds \ dxydxs

classic couple siress elasticity
Ugs 2 [ Pus
’LI_
2 aX| dx 2

Fig. 21. The boundary conditions required in the anti-plane flexoelectric formulation,
as presented by Giannakopoulos and Zisis 2019.

Both the governing equations are dynamic equations as they contain terms of accelerations.
This happened because of the consideration of a velocity. By replacing the global system
(x,y) with a system of characteristic coordinates (¢, 1), that moves along the crack and obeys
the following transformation:

E=x+Vt

n=y

the problem decouples from the accelerations and the two governing equations transform to
the following. The first one, which describes the displacement, is derived from relation 2 by
using the transformation 6

0o 7

982 Tz 2

V2\0%u; 9%uy [2 VZH?\ 0%uy  [2 VZH?\ 0%uy 12 0%u,
- 1 6l2¢c 2 -
S

c? 98+ 2\ 6l2c2)a&2omz 2 an*

and the second one, which describes the polarization, is derived from relation 3.
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In those two relations the term c¢; =./u/p, represents the shear wave velocity. Those
transformations are described in detail in Appendix B.

The transformation of coordinates that relation 6 describes, assumes constant velocity, e.g. a
steady state mode Ill crack (as the one studied in Giannakopoulos and Zisis 2019, 2021 a, b).
The transformation that holds for any case has instead of the velocity, the integral of the

velocity.

t
& =x+j V(x,y 1)) dt
t

0

n=y

However, a numerical assumption of the solution of the integral, e.g. using Simpson’s law, or
Gauss’ integration of 15t order (rule of the middle value), suggest that the above transformation
is equivalent to the transformation proposed by relation 6.

Relation 7 gives a nice perspective of the problem. It can be supersonic, or subsonic, elliptic
or hyperbolic. This, however, is something that will be discussed further.



3. The anti-plane couple elasticity dynamic
problem

One alternative theory to classic elasticity is a theory studied from various researchers such
as Giourgiotis and Georgiadis (2007) and Zisis (2018), known as couple stress elasticity
theory. This theory takes into consideration the second order gradient of strains and more
precisely, the strains of the spins (the whole formulation of the theory of couple stress elasticity
is being discussed in Appendix C, as proposed by Giourgiotis and Georgiadis (2007)). This
way, terms of strain gradients are added to the energy density formulation and thus the
governing equations that describe a problem based on the theory of couple stress elasticity,
are in agreement with those gradients. Some could say that the theory of couple stress
elasticity completes the classic elasticity theory (Zisis (2018) used this theory to find the
displacements in a pathological area, in a problem he solved).

As Zisis (2018) proposed, the theory of couple stress elasticity should be used to enrich the
theory with microstructural characteristics. This way, the theory could also be used when
studying size effects. He pointed out that classical continuum theories cannot explain size
effects that occur in many different materials at micron or nanometer scales, because there is
no length scale of the material (the microstructure) and this is the reason why higher order
theories such as the couple stress theory are needed. Couple stress elasticity usually replaces
classic elasticity in terms of problems relevant to dislocations, plasticity and so on, This theory
can be used also in in small scales, or when there are size effects.

In the theory of couple stress elasticity, or the Cosserat theory with constrained rotation as it
is also known, some special parameters make an appearance. These parameters are the
moduli n and " and have to do with the importance of microstructure. As these parameters
tend to zero, the classical theory replaces the couple stress elasticity. For better observation
of the problem, two other parameters are usually used instead of those, the microstructural
length | =,/2n/u (where u is the known Lame’s constant), (Zisis (2018) symbolizes the
microstructural length [,)) and the parameter g = n'/n.

One anti-plane problem is possible to be solved via the theory of couple stress elasticity, as
any other problem. The restrictions of the displacement that are applied in the anti-plane
formulation make feasible some simplifications. The anti-plane couple stress elasticity
formulation is being discussed in detail in Appendix C.

The total energy density, as described from Giourgiotis and Georgiadis (2007), can be given
by the following formula:

1
U= U(gij'Kij) = E/Lsiifjj + /'l-gijsij + ZnKinij + ZU’Kinji 9

Whereas the terms k;; = ej;;0;0;u;/2 = ej; dxe;; is the strain gradient. 1 is the other Lame’s
constant.



The governing equation of a static anti-plane couple stress elasticity problem is the following
(relation 10). By substituting to that equation [ = 0 the classic solution of anti-plane problem
is produced in terms of classic elasticity.

2
,uVZW—uEV‘*W:O 10

The boundary conditions that are needed for this differential equation, are usually Saint Venant
boundary conditions, according to Gourgiotis and Georgiadis (2007)

Bibliography can give various values of the microstructural length and one other parameter as
well, I, =1,/2(1+ B) (The microstructural length is relevant to the bending and thus is

symbolized in the research of Zisis (2018) as [,,, where b symbolizes bending. The parameter
l; consistently is a length property connected with the torsion.)

The microstructural length and the parameter [, as referred by Radi (2008) (Zisis
(2018))

A syntactic foam that consists of hollow
glass micro-bubbles embedded in an epoxy [ =0.032mm l; =0.032 mm
matrix

A high-density rigid polyurethane closed cell

1 =0.0327mm [, =0.62mm
foam

Some limitations to the parameters of the couple stress elasticity theory, were described in
Giourgiotis and Georgiadis (2007) and are the following:

“1<1<t
n

n>0

And of course, the Lame’s constants:

31+2u>0
u>0

Relation 10, however refers to a static problem, while an anti-plane problem can be dynamic,
e.g. the mode lll crack propagation. It is not difficult to add the extra dynamic terms on relation
10 with the use of Hamilton’s principle.



The kinetic energy in terms of couple stress elasticity has the following form:

1 . pH*
T = 5 PUsls + T(wlwl + w,w;) 11

In addition to the normal, out-of-plane velocity, 3, the kinetic energy should also consist of
rotational velocities, w; and w,. The reason is that those were considered to play a prominent
role, as the spins are present in the constitutive laws, and the energy density (because of the
theory of couple stress elasticity). The term p represents the mass density of the body, while
the term H symbolizes the micro-inertial length (it has length dimensions).

Through Hamilton’s principle, the kinetic energy produces an extra term and the governing
equation can take the following form:

12 L pH?
1 VPuz — H> Vtuy = piiz — 7V2u3 12

The procedure, in which this result is based on, is described also in detail in Appendix C. In
addition, one more boundary condition appears. It refers to the acceleration gradient vertical
to the surface and is described by the following formula:

il3’2n2 + ﬁ3’1n1 =0 13

Boundary conditions for the anti-plane dynamic couple-stress problem.

Mutually Exclusive Boundary Conditions

Essential Boundary Conditions Dynamic Boundary Conditions
Oug R™W _ o
_— n
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L3 ~Pus us
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Fig. 22. The boundary conditions needed for the anti-plane couple stress elasticity problem,
as presented by Giannakopoulos and Zisis (2019).

Relation 12 which refers to the anti-plane couple stress elasticity problem, seems to be the
same with relation 2, which refers to the anti-plane flexoelectric problem



A. The analogue between the flexoelectric and the couple stress anti-plane
problem.

As it was mentioned already, relation 12 which refers to the anti-plane couple stress elasticity
problem, seems to be the same with relation 2, which refers to the anti-plane flexoelectric
problem.

2 HZ

uViug + ) Vius = piig — p1—2V2ﬁ3

In relation 2, the displacement is the out-of-plane displacement, the microstructural length
equal to [2/2 = (byy + by7)/a — (eqs — f12)/ua and the micro-inertial length H?/12 =
(bys + by7)/a. Also, p is the mass density, u is one of the Lame’s constant, the shear modulus.
The other parameters are relative to flexoelectricity and are specified in detail in previous
chapters.

The analogue between the case of the anti-plane flexoelectricity and the anti-plane couple
stress elasticity can be better described in the beneath table:

Flexoelectric Anti-plane Anti-plane Couple stress
problem elasticity problem
bss +by7 (eas — f12)* E
a ua 2
bas + by H?
a 12

Also, there should be an analogue in the boundary conditions.

A conclusion that can easily be drown, because both problems are based on an anti-plane
formulation, is that the anti-plane flexoelectricity problem is basically a couple stress elasticity
problem, where the flexoelectric properties define the microstructure of the material.

B. The three sub-cases of the problem

The governing equation of the anti-plane couple stress elasticity problem, relation 12, which
is the same with relation 2, the governing equation of the anti-plane flexoelectricity problem,
are both dynamic equations. Considering that the problem is defined by a velocity, V (e.g. the
velocity which the mode Il crack propagates) and then also considering a moving system of
coordinates, that depends on this velocity and also on the time (e.g. a moving system in which
the beginning of the axis is always the crack tip), the transformation of the axis obeys the
following relation (transformation 6, this transformation of the system of coordinates is
proposed by Giannakopoulos and Zisis (2019, 2020 a, b)).



E=x+Tt

n=y

Because of this transformation, the governing equation (2, 12) can be written in the below form
(equation 7):

V2 62u3 62u3 lZ VZHZ 64U3 V2H2 64u3 64113
l-——|l——=4+———"=|1—"———|—=—+1|2— + =0
c?) 0¢%  on? 2 6l7c.?) &% 6l%c? J0E%0n?  on*

In this equation the following terms are visible:

e The velocity term:

The shear wave velocity is equal to ¢; = /u/p, while V is the velocity with which the
crack propagates, or any other velocity that was chosen to describe the dynamic
behavior of the problem.

If this term is greater than zero, this means that the velocity of the crack is smaller than
the shear wave velocity and the motion is subsonic. Otherwise, if the shear wave
velocity is smaller than the crack velocity and this term is negative, the motion is called
supersonic.

e The term that retains ellipticity (the folding limit):

V2H?

1 —
6l%c,?

Obviously, if this term is positive, then also the term 2 — (V2H?)/(61%c,?), is positive
and then the factors that multiply the fourth order derivatives are negative. This
condition turns the problem elliptic. So, if this term is negative the differential equation
is hyperbolic. Elseways the differential equation is elliptic.

Whether a problem is hyperbolic or elliptic, has to do with the greatest derivative in the
differential equation. The usual procedure suggests the calculation of the eigenvalues of the
problem and then checking their sign. One easier way to define the hyperbolicity or ellipticity
of a differential equation is by a transformation of coordinates. If by suggesting a
transformation (e.g., linear { = ax + y) and demand the factor of the greater derivative to be
zero, then that new variable (e.g. &) could be real or complex (it has also an imaginary part).



Ellipticity is equivalent to a complex solution. This means that the new coordinate that makes
this greater order derivative zero, has also the same number of variables.

Hyperbolicity means that this new variable is real. A new variable can be imported and then
both the differential equation gets simplified and the number of unknown variables gets
reduced. This means that the solution lies in a combination of the original coordinates. This
kind of solution, is a solution based on the characteristics (Lax (1956), Courant and Lax
(1955)).
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Fig. 23. The three regions that define the anti-plane dynamic problem to hyperbolic elliptic or
intermediate.

The same figure holds for both the anti-plane flexoelectric problem and the anti-plane couple stress
elasticity problem. This sketch was obtained from Giannakopoulos and Zisis (2019, 2021 a, b).

So, the problem can be hyperbolic or elliptic, subsonic or supersonic. If the problem is
subsonic and elliptic, then it will be called elliptic. If the problem is elliptic but supersonic, then
it will be called intermediate. Lastly, the problem will be called hyperbolic, whether is hyperbolic
subsonic, or hyperbolic concerning only metamaterials.

The elliptic case is free of any pathologies as no radiation stress is needed to maintain the
steady state motion of the dislocation.

Typically, however, the intermediate region is inaccessible, (also a great part of the elliptic
region) as H?/6l?> normally cannot be smaller than the unit, considering the flexoelectric
problem at least, because according to relation 5 and 6:
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E _ bas + b77 _ (e4s — f12)? _ H_z _ (e44 — f12)? < H_Z
2 a ua 12 ua 12

14

Both the shear modulus u and the electric susceptibility of the material a should be positive.
This means that the “microstructural” terms are smaller than the “micro-inertial” term in normal
materials. And because both those parameters are positive:

l2<H2 6l2<1 H2>1
—_— - — - — -
2 12 H? 612

>1 15

e

Normal materials cannot exhibit such properties. However, recent studies have shown that a
new category of material called “meta-material” can enter this intermediate region (it will be
discussed later).
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Fig. 24. The regions that appear on a dynamic anti-plane flexoelectric problem like the propagation
of a mode Il crack.

Note that for a normal material, folding can occur for smaller subsonic velocities. Also, the
intermediate region (purple region) is accessible only for meta-material. For meta-material both the
elliptic subsonic and the hyperbolic supersonic region are accessible.

So, in an anti-plane dynamic problem, such as the propagation of a mode Il crack, in terms
of couple-stress elasticity, three regions are visible:



o Elliptic subsonic regions
¢ Intermediate region (elliptic supersonic)
e Hyperbolic region

These regions, that obviously exist on an anti-plane problem by using the theory of couple
stress elasticity, also exist on an anti-plane flexoelectric classic elasticity problem.

C. The Elliptic subsonic region

The first region, the elliptic region has been studied a lot in the previous years. For this region
there are various researches, both analytical and computational. As the analytical solution is
concerned, researches exist not only in respect of classic electrodynamics, with no
microstructure involved (Giannakopoulos and Zisis (2021 a) demonstrate solutions, pointing
at McClintock and Sukhatme (1960)), but also by taking into consideration the microstructure.
According to Giannakopoulos and Zisis (2019 a), in respect of classic electrodynamics, the
displacement can be calculated from the stresses and the boundary conditions.
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Fig. 25. The elliptic subsonic region.

The elliptic subsonic region is defined by the combination of the velocity of the propagation of the
crack tip, the microstructural and the micro-inertial length that gives velocity less than the shear wave
velocity and 1 — (V2H?2)/(61%c,?) > 0. This region includes only elliptic and subsonic cases, but also
refers to meta-material in addition to normal dielectrics. This region has no pathologies and can be
solved directly, for the static case, while by using the proposed analogue by Giannakopoulos and

Zisis (2021 a), for the dynamic case also.
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Significant is the contribution of Gourgiotis and Georgiadis (2007) in this subject. Those
researchers used a screw dislocation to study the mode Ill crack problem. They considered
the microstructure (by adding the microstructural length), as they used the theory of the couple
stress elasticity, but they did not consider the dynamic problem.

The research of Gavardinas et. al. (2018) made a breakthrough in the field of anti-plane
problems, by introducing an analogue with a prestress Kirchhoff plate. This analogue enabled
the computational methods of analyzing the anti-plane crack to rise. These authors also
observed the crack profile, that initially had a “cusp-like” form, for neglectable microstructure
(classic solution), but when the microstructure gets large, the profiles transform to a “blunt
opening”). This “cusp-like” displacement profile could be connected with the cohesive zone.
Giannakopoulos and Zisis (2021 a) suggest that the microstructural length is “essentially
equivalent to a cohesive crack model”’. The cohesive zone should have a constant length and
should be moving along the crack tip.

l/a=0.36 ¢1a=0.014

Fig. 26. The opening of a crack.
For small microstructural lengths, the profile is “cusp-like”, but as the length gets larger, the profile
gets sharper. This sketch was obtained from Gavardinas et. al. (2018)

However, both Gourgiotis and Georgiadis (2007) and Gavardinas et. al. (2018) studied a static
case. The dynamic elliptic subsonic case, was studied from Giannakopoulos and Zisis (2021
a, b). Using a similar analogue to the one proposed by Gavardinas et. al. (2018), in which they
added the dynamic part, they studied not only the influence of the microstructural length on
the crack profile (for which their results are in agreement with previous researches, e.g.
Gavardinas et. al. (2018)), but also the influence of the velocity and the influence of the micro-
inertial length.

In this research the authors, Prof. Giannakopoulos and Prof. Zisis, used a steady state crack.
This crack propagates with a constant velocity. As it has already been discussed, despite the
fact that the velocity doesn’t need to be constant, the problem can in any case get simplified
through a first order integration rule (Simpson’s on Gauss’ 1% order).
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The anti-plane couple elasticity dynamic problem

The authors used the below FEM model to represent the mode Il crack. According to an
analogue, that will also be discussed further. This plate, that they modeled, represents a mode

Il crack, that propagates, in an infinite domain.

Fig. 28. The anti-plane problem of the propagation of a
mode Il crack, as solved by the use of the analogue
in the research of Giannakopoulos and Zisis (2021 a).

Fig. 27. The FEM model that was used
to capture the respond of the
propagation of the mode Il crack

in the research of Giannakopoulos and
Zisis (2021 a) (The sketch obtained from
this research).
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(a)
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Fig. 29. The influence of the velocity, in the
elliptic subsonic case (displacements),

Fig. a, b and c describe purely elliptic cases.
Case d, is almost supersonic, and thus the
displacement seems like forming Mach cones.
In the profiles, this phenomenon is interpreted
by the displacement near infinity, that tends not
to zero, but in a maximum value (trapezoidal-
like displacement). The other cases form a
cusp-like profile. These results were obtained
from Giannakopoulos and Zisis (2021 a).
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With the summation of the above contributions, the subsonic elliptic region can be considered
fully elaborated.

Studying the elliptic case, Giannakopoulos and Zisis (2021 a, b) reached the hyperbolic case,
by making the term: (V2H?)/(61%cs?) —» 1. The produced deformation creates something
similar to folding. The displacement is step like and the Mach cones that are visible are parallel
to the tangent axis of the crack (¢/1). The same authors, in a previous study (Giannakopoulos
and Zisis (2019)), observed a similar result by using a screw dislocation.

D. The Intermediate (supersonic elliptic) region

This region, only briefly studied by Giannakopoulos and Zisis (2021 a), is practically
inaccessible from normal materials, as the flexoelectric problem is concerned.

In order for a problem to be in that region, not only it needs to be elliptic, but also supersonic.
Because of relation 14 and 15:

H
—<1

W6

However, this ratio between the microstructural and the micro-inertial length has a connection
with the dielectric properties and more accurately, a positive dielectric susceptibility predicts



this ratio to be greater than one. Thus, the intermediate region is non-accessible for normal
dielectric solids.

The introduction of a new category of materials, that has already been studied (Koo (2015))
makes the accessibility to this region possible. These materials can have negative electrical
susceptibility. In the literature the term that describes those material is “Dielectric meta-
materials” A general description of those meta-materials stated from the authors is: “materials
consisted of metal particles in a matrix made of a dielectric”.

T T

= [olding

m— ub/supersonic limit
Intermidiate region

05

_H

1v/(6)
Fig. 31. The Intermediate region.
The intermediate region is defined by the combinations of supersonic velocities (greater than the
shear wave velocity), and also combinations of microstructural and microinertia lengths that gets 1 —
(V2H?%)/(6l%cs?) > 0, so the problem would be elliptic. As fig. 24 suggests, this region refers only to
metamaterials.

Giannakopoulos and Zisis (2021 a.) stated that the study of the cracks in this kind of materials
need excessive study in terms of dynamic and nonlinear response, and also a study of the
plasticity theory surrounding those materials. Those studies don’t exist. However, by using as
first approximation the research of Pham and Ravichandran (2014), they suggested that Mach
cone would be visible in this region too, however with no connection to the microstructure, as
their angle would be sin6 = ¢, /V.
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E. The hyperbolic region
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Fig. 32. The hyperbolic region.

The hyperbolic region, cares not about the velocity itself but for the combination of all three
parameters, so that the term 1—V2H?/6l%c;2 < 0. This region contains both subsonic and
supersonic problem and concerns both normal dielectric or meta-materials.

As in any hyperbolic differential equation, a new variable can be introduced to define a solution
depending on the characteristic lines. Giannakopoulos and Zisis (2019) studied the hyperbolic
case. They propose a new coordinate, which can be described by the following formula:

-1 16

~ |

Also, they replace the displacement with a logarithmic term:

h(7) = In(w)

This way, the differential equation that describes the problem, e.g. the anti-plane couple stress
elasticity problem (eq. 7) takes the following form. The procedure is described in the Appendix
D.
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The general solution of the above differential equation, was also provided by Giannakopoulos
and Zisis (2019), and is as follows, in which the constants a;, b; are calculated with the use of
the boundary conditions:

h(7) = a; + In(77 + b;)

A Cauchy-type solution can be the following as suggested by Giannakopoulos and Zisis
(2019), which describes a trapezoidal profile of displacement (this type of solution will be
used).

W(c‘ln+s‘)=—;—Z((dn+f)—(&n+E—L)) 18

The ( ) symbolize the Macaulay brackets and a? = (V2H?)/(6l%c,?) — 1 > 0 because the
problem is considered hyperbolic.

This Cauchy-type of solution, relation 18, was created so it could agree with the boundary
conditions. At n = 0, and for ¢ € (0, L] for the first two conditions for ¢ € (—o0, ) for the last
one. Also, it is a solution of equation 17.

» n ¢
condition
coordinate coordinate
! e "1 VEH? =_2 =0 &€ (0,L]
W 6l2¢;2)  au = ’
w=0 n=20 &€ (0,L]
w'=0 n=20 § € (—o0,00)

That solution (relation 18) suggests that the displacement forms Mach cones at an angle from
the direction of the crack equal to:
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This displacement, that forms those Mach cones, holds not only in the supersonic hyperbolic
region, but also in the subsonic.

As the hyperbolic case is considered Giannakopoulos and Zisis (2021 b.) treated this problem
the same way as in Giannakopoulos and Zisis (2021 a.), with the addition of shock wave
analysis, by introducing a shock wave with intrinsic velocity U . Their finding was again a slope
equal to sinf = U/V, and U = c,lv/6/H. Some crucial comments that Giannakopoulos and
Zisis (2021 b.) mentioned about the microstructural length, is that in same material
combination this length can be unreal (12/2 < 0). In this case pure strain gradient effect should
be considered as Maraganti et al. (2006) proposed.

The same substitution as the one described by relation 16 can be applied also for the
polarization, as the polarization is connected with (controlled by) the displacement. According
to Appendix D, the polarization can be described by the following equation:

0%P, 0%uy
_ - 20
P3 67’72 aﬁZ
Where:
V2H?
A=12e2
21
B = V_Zp(e44 - f12)
[? au

The displacement u3, should be described like a function with the below form, as a trapezoidal
distribution (note that for simplification reasons the variable "77" was replaced with the symbol
"x").

umax

u3(x)=b_a*(x—a)*(b—x)°+umax*(x—b)o 22
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Fig. 33. The out of plane deformation in the hyperbolic case, as suggested by theory.

Relation 22 suggests a trapezoidal displacement. This displacement should propagate in vertical
direction to the profile of the crack, with a gradient as proposed by relation 19. This angle is smaller
than the corresponding angle suggested by the classic theory (sin 6,,4.5ic = ¢;/V), because of the
ratio of lengths, and the assumption that only normal dielectrics are concerned (no meta-materials,

(IW6)/H < 1).
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4. The differential equation of the anti-plane
hyperbolic flexoelectric problem.

Chapter 3 ended while proposing a differential equation of the variable P; (relation 20), with
A, B (relation 21) constants (4 > 0), while the function u3(77) is considered known (e.g. relation
22).

Relation 20 is a second order ordinary differential equation of the following form (Boyce and
Diprima, 1997):

y'+fm=*y' +qm+y=gm

For the sake of simplicity, the variable 77, from now on, will be displayed as 7n. Note that the
crack propagates along the coordinate 7 = ¢.

Obviously, the quantity of f(n) = 0, while the quantity of q(n) = —1/4 and g(n) = —(B/A) *
d?us/dn?. The method of the integrations by fractions can be used. As the homogeneous
differential equation is concerned:

The characteristic equation is:
A2—-==0

which gives two possible values of A:

As a result, the homogeneous differential equation has as a general solution the following
relation:

n n

y:cl*e+ﬁ+cz*e_ﬂ i



Note that y; () = exp (+1/VA), y1(n) = exp (+1/VA). By following the method of integrating
by fractions (Boyce and Diprima, 1997) the solution of the non-homogeneous equation can be
written as:

+L _n
y=c )= yi(n) + () * y, () = cx(m) xe VA + () v e VA .
The first derivative of this is the following:

v =c' My +ci(m) xy1'(M) + 2’ () * y2(n) + c2(m) *y2.' ()

Then, the below can be demanded:

ci'm *y1(m) + ¢’ () xy,(n) =0 iv

And the derivative becomes the following:

y' = *y/' )+ c2(m) *y2,'(M)

The second derivative of the non-homogeneous is the following:

y'=ci'M =y M) + i) *y1" () + c2' () *y2." () + c2(m) * y2"' () v

By substituting the above expressions (iii, v) to the non-homogeneous differential equation
(relation 20), the following is produced:

le(n) « ylf(n) + ¢ (n) * y{'(n) + C;(n) * yzf(n) + e, () * vy ()

1 B d%u;
— * e =y () + c2 () * y2 (] = =7+ an?
Which is equivalent to the following:
1n(m) 1 11(n) 1
et * [y = ey [+ e =y, = 22 (1)
B xd%uy

+o' M xy ' M)+’ M) *y,' () = ~a



Or, because y;, y, are the solutions of the homogeneous (v () — v, (1) /A = 0), the above
relation is limited to the below:

d?us
dn?

B
a'M*y' M+’ M *y,' ) = o Vi

This relation (vi) is one equation of a system of differentials equations of the variables y;'(n),
and y,'(n). The first one was the equation iv.

The system of simple differential equations that needs to be solved is:

ci'm *y1(m) + ¢’ () xy,(m) = 0
2

’ ’ I ’ B d us
o' M*yi'M+c’ M) *y'(m) = —* an?

By using the Wronski determinant, the solution can be given as:

B dzu B d2
YD * 7 * g7 AOR S
(= c;(m) = —
' W (y1 (), y2 () 2 W (y1(m), y2(n)
And by integrating:
B d*u B d*u
yZ(”)*Z*W; }’1(77)*Z*W23
a(m) = dn +Cs c2(n) = — dn + Cy

Wy (), y.(1)) W), y.(m))

This way, the partial solution of the non-homogeneous differential equation is:

B d?us
yi1(m) *Z*d_nz vii

W (m),y.(m)) an

B d*u
y2(1) * a* d_3

n? d
W (y1(m),y2(m)) n+yz(n)*f—

Y=y1(n)*f

And the general solution of the non-homogeneous is:



y=c1xyi(M)+cyxy,(m)+Y viii

The Wronski determinant is:

+ _n
e VA e VA
1 n -1 -
e VA e VA
VA VA
And equal to:
no_1 _n ] L

Then follows the substitution to the partial solution. This way relation vii transforms to the
following:

n 2 n 2
- B dcu + B d“u
VA % — % 3 VA x — % 3 .
n e / d 2 _n e / d 2 iX
Y:e+vA*f _‘; d dn—e VA*f _‘;1 d dn

n
+_ —_
y=c*e \/Z+c2*e VA — g VA x

R/ N fe_ﬁ B d?us - fe+ﬁ B d?us



o1 g2y _n 1 g2y
*[—e+\/z*je VA 7 dn+e \/Z*fe+\/z*dn23dn]

w1 _n
y:cl*e\/Z+c2*e\/Z+ * nz

2 x\VA

For a more accurate and specific calculation of the polarization, the out-of-plane displacement
us(n) is needed.

A. The profile of the crack

As it was mentioned previously, the profile of the crack seems to spread linearly, with an
instantly trapezoidal effect. This trapezoidal shape is being made by two parallels, the u; = 0
and the u; = u,,4, (the first up to the point a and the second from point b and so on). Between
those two points, a specific joining function should be inserted, that according to the hyperbolic
theory, is linear (the displacement this way will have a trapezoidal shape).

Us
A

» X

Fig. 34. The trapezoidal function.

Considering that the joining function occupies the distance between "a" and "b", this possible function
is described by the above figure. In its general form, the start of the “axis x” is not the point “a” (“a”
is different than zero). Also, there could be a continuity of the function to infinite.

The linear function however, despite it agrees with the hyperbolic problem in the best way, is
a function with discontinue gradient. A polynomial function could seem promising nonetheless.
This joining function can be anything with two major criteria. At points a and b, a continuity
should be present and secondly, a continuity in its gradients should exist. The linear joining
function that was used before, can be described by the following relation:

fG) =75 (x — ) x




In addition to the linear function, a polynomial function of 3™ order and one of 5" order have
been defined in Appendix F with similar purpose. The modification with the parallels can be
made for any joining function, via the Heaviside function.

u@m = fmn —a)® = fF){n = b)° + umax(n — b)° xii
By replacing in the above form (relation xii), the function xi, relation 22 will be produced.
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Fig. 35. Assumption of the hyperbolic crack profile.
A linear function suits the theory of the hyperbolic problem. However, polynomial function could also
be used. For this purpose, a 3™ order and a 5" order function were defined (Appendix F).

B. The integrals with the Heaviside terms

As it was mentioned above, the relation that describes the displacement can be given by
relation xii. In this, those Heaviside terms should also take part in the solution. The polarization
is given in the general solution from relation x. That relation includes the second derivative of
the displacement and thus the derivatives of the Heaviside term also. The second derivative
of the relation that describes the displacement can be calculated as beneath:



us = fMHmM—a)— fMH®M — b) + UmaxH(M — b)

dus(m)  df(n)
on  0n

*[Hm—a)—Hm—-Db)]+ f(m) *[6(n —a) —6(n — b)]

tUmax * 6(7] - b)

Xiii

otus(m) ()
7= gz tHO—@—HO D)
0
+ 22 L8 1500~ @)~ 51 - )]

+f () * [6(n —a) =8 = b)] + Umax * 6'(N = b)

The last expression in relation xiii, which should be added to the integrals described by relation
x contains the Heaviside term, the Dirac’s delta function and its derivative. Before the
integration proceeds, some rules about those terms should first be implied.

The integral of a function multiplied with the delta function from minus infinite to infinite is equal
to the value of the function to the point where the delta function gets the value of infinite.

The same integral with the derivative of delta instead, is the negative integral of the same
function, divided by the variable multiplied by the delta.

However, those integrals are generalized. The integral used to calculate the differential
equation has the meaning of the antiderivative, in this case the area in the integral should be
reduced from infinite to the value of the variable of the function. In this case the Heaviside
term should be inserted.

The above suggestions can be seen beneath. The reader, at this point is suggested to visit
Appendix E.

[ reo6-od=r@

ff(x)*6(x—c)dx= fx fx)*6(x—c)dx = f(c)*H(x —c) Xiv



af (x)

f_oof(x)*6'(x—c)dx=f(x)*6(x—c)—f_oo Fpe * §(x — c)dx
ff(x)*S’(x—c)dx=f(x)*8(x—c)—a];§cx) * H(x — ¢) XV

9g(x) _
If e 6(x)

f@(x)*H(x—c) =f
=g(x)*H(x—c)—fg(x)*a(x—@

=g(x)*H(x—c)—g(c)*H(x —c) XVi

In order to calculate the polarization, the two integrals that are in relation x must be calculated.
Those integrals are the beneath:

~1 9%u(n) L 9%u(n)
fe\/z* 6172 dn f — 7



AN

i.  The integral with the negative sign

By substituting the second

1 9%u(n)
fe\/Z* o2 dn

derivative of the displacement:

:fewﬁ 2];(’7) « [HG — @) = H(n — b)] dn
e%*Z*a};;n)*[5(71—0()—5(71—17)]‘177

-n
+ f eV« f(n) + [6'(n — @) — 8'(y — b)] dn

-n
+fe\/z*umax *6'(n—b)dn

The first term takes the beneath form, by using relation 35:

«|Hm—a)ldn= gm)*Hn—a)—gla) xHmn —a)

«|[Hm—b)ldn= gm=Hm—>b)—g(b)*H(n —b)

= azf(n)

Where g(n) in an antiderivative of the expression eva x ———

Because of relation 33 the second term of the above integral is equal to:

2., af(n)

af (n)

0 -n
*6[(n —e)]dn = 2* ];E:) xeVal  «H(n—a)
n=a
d -n
*6[(n—Db)]dn = * ];E;]) x eVA «*H(n — b)
n=b

The third term is as follows:



-n
f eV« £() + 8'[(7 — a)] dn =

-n
f eVa x f(n) * 8'[(n — b)] dn =

While the fourth term is the following:

-n -n
je@*umax*S'(n—b)dnz eVA * Upqy * 8(n — b) +

-n
eva x f(n)

N
el s fn) » 80— @) +—

i)

-n
evVa x f(n)

-n
VA fD) + 00— b) + —=

L ofm

ii.  The integral with the positive sign

Similar formulas can also be produced from the second integral by replacing just the

exponential term:

fe% azu(n) f
+fe

n

7.

n

77

2f(77)

*[Hn —a) —H(m — b)]dn

f(n)

*[6(m—a)—8(m —b)ldn

n
+ j eVA 5 f(n) * [8'(1 — @) — 8'(p — b)] d

n
+f eva * Umqx * 0'(n — b) dn
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AN

The first term:

92
[t ST = wlan = )« Hr = o) = ¢a) + Hon = a)
92
[t 2L =1 = 2@+ H=6) =<+ =)
: o S I 1¢)
Where {(n) in an antiderivative of the expression eva oz
The second term:
n | .
[efre2a LD 51— aag = 2+ eels| -0
n n=a
Uk af(m) P AU) | I
fe\/Z*Z* o x*8[(n—b)]dn = 2 an eAn:b H(n—b)
The third term:
: &
n /. A %
[t pan sl -wlan = %« f) =80 -a) - rf(”) “H(n—a)
A
n=a
IS £U)) PR
n=a
: &
n /. A x
[l 16—ty = VA= f 0ty =y =S =)
A
n=b
L of(n)
—eﬁ*wn=b*H(7I—b)

And lastly, the fourth term:



n
- I evVA xu
feﬂ*umax*(sl(rl—b)dn: eﬂ*umax*s(n_b)+TW *H(n — b)

By knowing the function which allows the connection between the minimum and the maximum
displacement which are zero or u,,,,. By simple substitution, the terms, from the second one
till the fourth of each integral, can be calculated. The first term however needs this
antiderivative which is an extra integration.

C. The polarization while the jointing function in linear

A Polynomial function that can describe the displacement, is a linear function and as it was
calculated above, the right formula is the following:

umax
f=,—_*0-a
af(n) _ Umax
o  b-—a
o’ f(m) _
on? =0

This function is none other than the function that describes the displacement between point a
and b in relation 22.

Ll

\\ Limax

(a) the out — of — plane displacement
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Fig. 36. The out-of-plane displacement and its derivatives.
In figure (a) there are two points, a and b in which the gradient of the displacement changes. The

gradient in that point of the function cannot be normally calculated. However in figure (b) the gradient
was chosen to be infinite, as mathematics imply. This happens once more, as figure (c¢) depicts a
function which some discontineuities.

Through a substitution of those to the general solution relation x and a lot of calculation, that
are presented in detail in Appendix G, the below result can be extracted:



n

"/ _
P3(n)=cl*e+\/5+cz*e VA

23

B umax
*

+
2*\/2 b—a

J-a  _n-a Ja=b _n-b
*[(—e VA +e ﬂ)*H(n—a}+<e VA —e ﬂ)*H(n—b)]

The boundary condition in the limit of the crack which is infinite and minus infinite can give the
values of the constants c¢; and c¢,. More specifically, if the polarization on those limits is equal
to zero, the boundary condition at minus infinite, gives the values of ¢, = 0, while the other
boundary at infinite can give the value of the constant ¢; equal to:

24

Lastly, by considering that the axis of the characteristic coordinate moves along the crack, so
that a = 0 always,

a _n
Ps(n)=c,*xe VA+c,xe VA

B % Upmay

+% —% +% —%
+————x||—-e VA+e VA |xH(n)+|e VA —e VA |xH(n—>b
e () (T R o)

And also:

By plotting the above relations for some specific values of a, b, u,,,, the following diagram
can be produced:
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05 The Polarization for a linear displacement
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Fig. 37. The Polarization assuming a linear function to take part in the displacement relation.

The value of the constant A, which should be positive, causes great exponential effects. As it gets
larger, the exponent tends to zero and great linearities take place. As it gets smaller, the exponential
behavior is significantly magnified to a point that the behavior of the function is treated like a Dirac’s
delta function. This constant is something like an internal length square. Lastly the constant A must

be subjected to some constrains. Those constrains are: VA <« b —a and VA < bin case a = 0.

The constant B, which can be positive or negative, seems to have a direct relation with the magnitude
of the maximum displacement and seems to have a more mechanical meaning. More specifically,
the constant B increases as the shear modulus of material gets smaller, the density of the material
gets bigger and when the dielectric constant gets bigger too. This constant is greatly connected,
monotonously with the flexoelectric constant and that’s why polymers and ceramics are good
flexoelectric materials.

The positions of the spikes are, nonetheless, possible location for electrical yielding. This means that
in those locations, the polarization could change direction (this would turn the problem non-anti-
plane) or create an electrical bridge (in fig. 33 those positions are visible in a 3D sketch).

D. The polarization while the jointing is a 3" Degree function

Another case of a function that can fit in the cohesive zone between the maximum and the
minimum values is a polynomial function of third order. That function, that was determined
above, has an analogue procedure with the linear function:

_ Umax 3 _ 2 _ 2
fm) = B —3ab? 1 3ab7 —b° {2n° —3(a + b)n=} + 6abn + (a — 3b)a

azf(r’) — umax

on? a® — 3ab? + 3ab? — b3 2y —6a+b)}



And the polarization formula, which results from the corresponding substitution, is the following
(for information about the calculation the readier is suggested to visit once again Appendix G):

P;(n) = cle+% + cze_\/n_Z + . B\/Z o Lmax [{+24nVA — 12VA(a + b)} {H(n — @) — H(n — b)}

+H(n — a) {e%{—lza\/z — 124+ 6vVA(a + b)} — e_%{lza\/z — 124 — 6vA(a + b)}

-b -b
—H(n —b) enﬁ{—ubﬂ — 124+ 6VA(a+ b)} — enﬁ{ubﬂ — 124 — 6VA(a + b)}

At this pointitis possible to calculate the constant c; and c;, by solving the limit towards infinite
to be equal to the wanted polarization e.g., zero. For this case, by considering that for very
small numbers near minus infinite both H(n — a) and H(n — b) are equal to zero and also the
exponential, which has an exponent that tends to minus infinite, tends to zero, the polarization
is given by the formula:

_n
lim P;(n) = lim cye VA
n--o n—-—oo

which gives that ¢, should be zero.

From the opposite direction, as the coordinate tends to infinite, both Heaviside terms are equal
to one, and also the exponential that has an exponent that tends to minus infinite is also zero.
Those reduce the calculation to the following:

lim P;(n) =
n—o0

n B u n-a n-b
lim {cleWZ + mﬂ e VA{—12aVA— 124+ 6VA(a + b)} — e VA {—-12bVA — 124 + 6VA(a + b)}]}
nN—-—0o

Which gives the value of the constant ¢; equal to the one presented beneath.



a b
€ =—— eVA{—12aVA — 12A + 6VA(a + b)} — eVA{—12bVA — 124 + 6VA(a + b)}

C2:0

This equation can easily be plotted, for various values of the constant A.

Also, by considering once again that a = 0,

s _n
P;(n) =cie VA + cye VA

B * Upgy

e pEa g H24nVA — 12bVAH{H() ~ Hn — D)}

s =L
+H (1) {eVA{—124 + 6bVA} — e VA{—124 — 6bVA}
n—b

n-b n-b
—H(n—b){ e VA {-12bVA — 124 + 6bVA} — e VA {12bVA — 124 — 6bVA}
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While the boundary conditions are turned to:

c, = — B umax
27 2ya b3

b
{—124 + 6bVA} — eVA{—12bVA — 124 + 6bVA}

C2=O

26
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The Polarization for a displacement of 3rd grade
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The polarization for a displacement described by a 3™ order function.

The polarization is relatively close to the previous case, however smaller. The spikes in this case
don’t occur to the start and end of the cohesive zone (point a and b). Lastly, the effect of the constants
A and B seems to be the same.

Interesting is to compare the cases with a linear function and a polynomial of 3™ order. This
comparison seems to be independent from the selection of the value of the constant A.
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Fig. 39.The comparison of the polarization between the linear case and the 3™ order function case.
Macroscopically the integral (area) of the polarization is always zero, as one spike cancels out the
other. The observer must be close to the cohesive area to see the spike of the electromagnetic field.
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E. The boundary conditions.

The linear case as theory demands is more fitting and thus, will be the main solution. The
relation of the polarization can be given by the beneath formula:

B umax
*

Ln-a _n-a
— VA xHm—a)+e VA xH(n—a
2ivi b-a’ (n—a) (n—a)

o o
Ps(n) =ci*xe YA+ cyxe VA +

b b
+e VA xH(Mm—b)—e VA xH(np—b)

The boundary condition can be given via a formula as:

P;(n,) = Poly

That point, “n,” can be anything. If this point tends to some infinite (e.g., +), the boundary
relations is by considering its limit to the respective infinite. However, because the function of
the polarization is made by some parts, to make things simpler, when

n— —oo e VA = 0
-
n — 4o e VA 5 ()

Also, as ‘n » —”, “H(n —a) = H(n — b) = 0”7, because “n < a < b” and respectively, as “n -
+00”, “H(n —a) = H(n—b) = 1", because “n > b > a”

Because of those:

_n
lim P;(n) = lim [CZ xe VA
n—>—00 n—>—00

n By n-a ,n-b
lim P;(n) = lim [c¢; * e VA + 0 BN RPN/
n-+oo n-+oo 2 * \/Z b —Qa

If the boundary condition to some infinites is zero, then the constants c,, ¢, can be easily given
by demanding the relation that multiplies the terms that tend to infinite to be zero. This way,



lim P;(n) =0
n—-—o

n—-—oo

_n
lim [cz*e ﬂ] =0

C2:0

lim P3(n) =0
n—-+oo

n-+o0 2xVJA b—a
B _a _b
1=— *umax* —e \/Z-{—ex/z
2xVA b—a

However, if:

lim P;(n) =P +#0
n——oo

_n
lim [cz*e VA =P

n——oo

Which means that if P is negative or positive, this is also the constant c,. Also, as these limits
tends to some infinite, despite the value of c,, P should be only some infinite.

The same stands for the other limit to +o

For any scenario considered, whether

lim P;(n) =0
n—)ioo



or

lim P;(n) = too
n—-too

As there is no other legit option.

In case the boundary condition is given at some point e.g., n; € (—o, +0), then the constant
c; and c, should be calculated from a two-by-two system of equations. However, each
equation has a different form, whether the point n, € (=, a],n; € [b,a] or n, € [b,). The
brackets are meant to be this way, as in case the point n; = a or n; = b, the equation would
be the same either way as the polarization is continued. Those spaces, are related to the value
of the Heaviside term. In the first space, both Heaviside terms are zero, in the second,
H(m —a) = 1but H(n — b) = 0 and in the third both are equal to one.

Also, by manipulating the equation of the polarization, someone can rewrite it as follows:

+L - B
coxe YA+, xe VA=P3(n) —

tmax | Gy - a) + eV % H( - )
* * |—e * —a)+te * —a
2*\/Z b—a 1 1

n-b

+1=b -
+e VA xH(n—b)—e VA xH(n—b)

u
And by this, someone can substitute the term: P;(n) —% *% x|—e VA « H(n—a)+

_n-a n-b _n=b
e VA «xH(n—a)+e va « H(n—b)—e va = H(n — b)| with V. This way, for n, this term is V;.

Also this term is the one manipulated by the value of n; by the Heaviside. Because continuity
is in place it is possible to split the cases.

M € (—OO, a] Vl = P3(n1)
Umax +1124 --a
m € [ba] V1=P3(771)_b_a* —e VA 4+e VA
Umax [11-a m-a  m-b m-b
71 € [b, +0) V1=P3(n1)—b_a*[—e VA +e VA 4e VA —ep VA

And so, the equation of the boundary condition can be written in matrix form as beneath:



In order to find both constants, two equations are needed, one second equation in a second
point e.g., n, for which the value of the polarization is V,. The system that is produced can by

written in matrix form and easily be solved.
€1 Vi
C2 V2

For some more tangible results, some cases where plot. The points n; could be smaller than
a, bigger than b, or something in between. Because the order of n, and n, doesn’t matter,
there is a total of six combinations of the locations of the point included in the equation (instead
of nine). The value of the boundary condition could be positive, negative, or zero. This gives
a total of four (the boundary values can be negative (—0.1) or positive (0.1)) plus other four
(where the boundary values can be positive or negative and zero) and plus one (The case
where both boundary values are zero).
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The combinations of the location of the point can be plotted in the same diagram and the
combination of the values of the boundary conditions can be plotted in separate diagrams.

Consideringa =0 & b =5

1. m=-5 n<a a<n<b b<n
Ny =—2 n<a n<a n<a

2. m=-2 n<a 3. nu=+1 a<n<b b<n
N, = +2 a<n<b N, = +4 a<n<b a<n<b

4. n=-2 n<a 5 n=+2 a<n<b 6. mn=+6 b<n
Ny = +7 b<n Ny, = +7 b<n N, = +9 b<n

For the first set of the boundary values, the polarizations diagrams are the beneath:
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Fig. 40. The first set of the diagrams assuming some boundary conditions.

In each diagram, there is a total of four lines. Those lines are referring to the value of the boundary
condition. In this set of diagrams, the value of the boundary conditions can be either positive, negative
or both.

As it can be seen, neither case could exist as the polarization tends to infinite, exponentially, which
obviously can’t happen. The polarization should vanish as the coordinate tends to the open edge, or
the edge in which the crack hasn’t yet reached.
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Fig. 41. The second set of the diagrams assuming some boundary conditions.
In each diagram, there is a total of five lines. Those lines are referring to the value of the boundary
condition. In this set of diagrams, the value of the boundary conditions can be either positive or

negative or zero, but at least one should be zero.
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As it can be seen neither case could exist as the polarization tends also to infinite, exponentially,
which obviously can’t happen. The polarization should vanish as the coordinate tends to the open
edge, or the edge in which the crack hasn’t yet reached.

Interesting is to see also the case when both the boundary values before the crack tip and
after the end of the cohesion zone are zero (fig. 41, middle left diagram). This diagram is
different than the one made with the boundary condition referring to the infinites, while also is
unnatural.

To conclude, concerning this boundary condition analysis, it is obvious, that the only
reasonable boundary conditions that should be considered are the conditions that demand the
polarization to be zero to each infinite.

In this case, however, the plate that was considered was infinite. In a ribbon plate, with n,,,4, #
+00, Nmin = —, this analysis is helpful as a solution from the second set should be used (or
even the first), as the polarization in the edges of the ribbon should be zero.

n— oo
, b /
‘7
/v n
n— —oo
A
g
Brmax N = Nmax ¥ 10
b > /
firection of the Qrack

/ n

N = Nmin  —

Fig. 42. The boundary condition in a ribbon plate.
The coordinate cannot reach to great values that can be considered infinite, this way a boundary
condition in a point e.g., n, should be considered.
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F. The screw dislocation

The term b — a which describes the cohesive zone, could get smaller and smaller. When this
term reaches zero, the crack will become a screw dislocation.

(b—a)—-0

v

b
- a @
T -
III r]
E"a'_ " Umax
A
u
b
——=a — §
>
n
b-a Umax
—-

Fig. 43. The screw Dislocation.

As the cohesive zone tends to zero, a mechanical dislocation is created. This dislocation is also
called screw dislocation.
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The relation of the polarization for the linear case can be given by 23:

n-a _n-a
*x |—e YA xH(n—a)+e YA xH(n—a)

B umax
*

+ 1 _n
P. =ci*xe VAt cyxe VA +
3(”) 1 2 2*\/z b—a

n-b n

n-b _n-b
te' VA * Hm—b)—e VA xH(n —b)

The term b — a is in the numerator of the relations, however when b is close to a, also the
numerator gets equal to zero. There are two ways to calculate the polarization in a screw
dislocation. The first one is by considering the new function that describes this displacement,
while the second one is by calculating the limit of the polarization when b — a.

The new function that describes the displacements is the following:

u3(77) = Upax *H( — @)

The value of the displacement for a =n is either zero or u,,,, or something in between,
however in no case there is a continuity of the displacement. The derivatives of the
displacements are the following:

A du A
dan d?u
B
gmflmte
b
—=— % Ib;
> >
n r
Umax/(b-a) tends to infinite
li“ﬂ"i‘e infinite

Fig. 44. The first derivative of the displacement.  Fig. 45. The second derivative of the

The gradient of the displacement can be given displacement.

via the below formula that is described the The second derivative is described by the
sketch. following relation.

dus(n) s 0%u3(n)
T = Umax * (77 - (1) 6772

= Upax *0'(N — @)
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This is also the relation that will be inserted to the
solution of the differential equation.

By substituting the second derivative of the displacement in relation 29 the polarization takes
the following form:

+l - 'l'l - dZU3
Ps(n) = cixe VA+cyxe \/Z-I_Z*\/Z*[_e \/Z*fe VA « i dn

n

B + 1L -
*—e \m*.fe \/Z*umax*é"(n_a)dn

2 %A

o o
Ps(N)= ci*xe YA+ cyxe YA+

_n o
+e \/Z*fe VA % Uy ¥ 6'(n — a) dn

However:

_n
_n - e VAxqy
je VA S U = 8/ — @)dn =€ VA% Upge x5 — a) + \/Zmax +*H(n — a)
n=a
_a
- e * U
=e ‘/Z*umax*5(n—a)+ \/Zmax*H(n_a)

And the other integral:



Ul

/B i evVA x 1
fe+@*umax*5'(77—a)d77 :e+ﬂ*umax *5(77_a)_TW *Ho =)
n=a
a
~/ evA xu
:e+ﬁ*umax*5(n_a)_Tm*H(n_a)
By substituting those:
+%
+L L B e VA *Upgy
P. = ¢ *xe VAt xe YA+ w|l—u, x6(n—a)———TX s Hn—a
3(1) 1 2 2+vA max (m ) JA (m )
_n-a
e * U
FUmax * 6(n —a) — JA max*H(n_a)
L -1 Bxu n-a  _n-a
Ps(ﬂ):C1*9+‘/Z+Cz*e‘/Z—TT*{6+\/Z +e \/Z}*H(U—a) 27

The second way to calculate the relation of the polarization for the screw dislocation is by
calculating the limit:

1191—>H¢11 Ps(n) = 11;1331 P3 homegeneous t 11213(11 P3partial

lljimP3(n)=c1*e VAt c,xe VA + 2%« lim R XVii
-a

* \/Z b—-a



—-a n—b

n-a _n-a n-b _
Where Rz[{—eJWZ +e \/ﬁ}*H(n—a)+{+e+~/Z—e ﬂ}*H(n—b)]/[b—a]. This limit
has the form 0/0 and thus, the theorem of D’ L’ Hospital can be applied.

e _n-a )
0[{—9 VA te ﬂ}*H(n—a}+{+e VA — e @}*H(n—b)]

db
b-a
Jn=b _n-b
—e VA —e VA +% —%
= Li — A — A —
l])l_l)rcll 7 * H(n b)+{+e e }*6(17 b)

And by substituting into relation xvii:

o SN By, (4152 1@
limPs(n) =cyxe YA+ cyxe VA————x3e VA +e VA xH( —a)
b—a 2+A
28
B * Uy {4_@ _u}
+————x*4je VA —e VA x5(n—a
2VA (-

The second term of this relation is a spike term and if for any reason (e.g. Appendix E), we
can erase it, then the polarization can be expressed in both ways the same. However, by
ignoring this spike, there is a step in the diagram of the polarization, as it was also in the
displacement.

As for the constants c¢; and c,, the boundary condition that should be used are referring to the
infinites, where the polarization should be zero.

This way:

29
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Fig. 46. The polarization for a screw dislocation.
There is an obvious discontinuity of the polarization on the crack tip, which is also the end of the
cohesion zone. Comparing this with the case when a — b # 0, the diagram looks the same, with the
difference that there is no curve fitting between maximum and minimum polarization. This procedure
happens in contradiction with the step, instead of a continuous smooth way. As it seems a spike
could also occur at this point.

By considering that the point a is the characteristic coordinate of the crack tip, while the
characteristic axis is defined by the crack, we can substitute a with zero, as the crack tip is the
beginning of the characteristic axis. Then relation 28 transforms to the following:

B * Upgx

L =
P. = A A —

+ _n + -
*[{e VA + e \/Z}*H(n)—{e VA — ¢ \/Z}* A*6(17)

Actually, this relation is the one plotted in the figure above, as it has been considered that the
value of point a is zero.



5. Dispersion relation on produced waves

A. The existence of waves

The flexoelectric problem that is currently being studied is an anti-plane dynamic problem. The
previous chapters reveal, that the anti-plane problem with flexoelectricity is the same with the
anti-plane problem when the theory of couple stress elasticity is used. However, as the
problem of the propagation of cracks is a dynamic problem, waves can be emitted from the
crack toward the free surface.

Moroni et al. (2014) as revealed in Giannakopoulos and Zisis (2019) commented on those
theories by revealing that Rayleigh waves of high frequency may be produced. Those waves
ought to limit the velocity of the crack to a Rayleigh wave speed cy. This velocity is relative to
the parameter g of the couple stress theory and for § = 0, when the problem is hyperbolic,
Rayleigh waves can appear. Similar to the couple stress elasticity, flexoelectricity can exist
simultaneously with those waves.

Any material with discrete atomic structure of crystals, as flexoelectric materials are, is not
only a medium in which the waves can propagate, but also a medium in which they can
disperse. The addition of the phenomenon of the dispersion, to a ferroelectric phenomenon
like flexoelectric, seems to be extremely beneficial. Through the phenomenon of dispersion a
lot of applications are accessible, the most common is the total recognition of the material
through the use of various devices (spectometers).

The dynamic nature of the problem is responsible for a vibration, which produces waves that
move through the material. The frequency and the arc length (wavenumber) of the wave can
be calculated by the differential equation that describes the problem.

»
>
L
=
[

Fig. 47. The development of anti-plane surface waves.
This figure was obtained from Giannakopoulos and Zisis (2021 a).



Giannakopoulos and Zisis (2019) proposed as a displacement for the differential equation 2
(the governing equation in respect of displacement) a solution of the below form:

Uz = ﬁ3e—iwteik(n1x1+n2x2)

The quantities n; and n, are the coordinates of an in-plane unit vector with the direction of the
travelling wave, that was assumed.

By importing this into relation 2, the dispersion relation, which is displayed beneath, can be
extracted. Relative to the wave’s dispersion, there are also the phase velocity and the group
velocity, all of which are going to be studied later.

12 2 -1
2 _ 12,2 h ) ~ 52 30
o= (10200) (14000

In the above relation, w [s™1] is the frequency k [ms~1] is the wavenumber c, is the shear
wave velocity, | the microstructural length and H the micro-inertial.

The microstructural and the micro-inertial terms concern the couple elasticity problem.
However, some variables appear in the flexoelectric problem also and by reverting the
substitution, proposed by relations 4 and 5, the dispersion relation for the anti-plane
flexoelectric problem can have the following form:

31

2 k? <a# + ((b44 + b)) — (esq — f12)2k2)>
p

3 a + (byg + by7)k?

The dispersion occurs because of the microstructure, the ratio between the microstructural

and the microinertia length. For no dispersion, the ratio [/H should be equal to 1/+/6. For
greater flexoelectric effect, the ratio between the microstructural and the micro-inertial length

should be less than 1/4/6. Concerning flexoelectricity, this is the limit of the normal dielectrics
while [/H > 1/4/6 is equivalent to metamaterials. This case will be studied later too.

For such a low ratio (< 1/+/6) the phase velocity decreases with the wavenumber and a lattice
type of dispersion is produced (Giannakopoulos and Zisis (2019)).

Dispersion can also be considered through the equation of the polarization, (relation 3). That
wave would not transfer mass but energy. For this type of dispersion, the optical dispersion,
the polarization should be considered of the below form:



P3 — Spa3e—iwteik(n1x1+n2x2)

The equation that relates the wavenumber and the frequency, produced from the above
consideration, is the following:

—a

y ess — f12

w? = ¢ ?

lZ
Sp (1 + ?k2>

Giannakopoulos and Zisis (2019) named this equation “dispersion-like” relation and consider
it acceptable for a soft mode optical dispersion. In order for the frequencies to be real, the term
—a(ess — f12)S, should be positive. This relation can also be written as follows, considering

CSZSp(—a/{e44 —fi2}) = -Qo2 and c,*(—a/{ess — f12})5p(12/2) = A.

w? = 0% + Ak?

32

The dispersion relation is not fully analogue as it makes a shifting because of the constant
term 2,2, which in many cases can be enormous (terahertz).
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Fig. 48. The Dispersion relation for two different materials.
The “current estimate” represents the estimate of Giannakopoulos and Zisis (2021 a). Note that for
some materials like the silicone, the constant term 02, is extremely large. This figure was obtained

from the research of Giannakopoulos and Zisis (2021 a).
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This second dispersion, the optical dispersion, is connected with flexoelectricity in
contradiction to the first one which is more acoustic like. Giannakopoulos and Zisis (2019) also
suggested, that in the crack faces, Bluestein-Gulyaev waves may appear. Those waves have
been found both experimentally and theoretically concerning the piezoelectric effect.

In a later research, the same authors, Giannakopoulos and Zisis (2021 a.) showed that
Rayleigh waves can appear in any hyperbolic case and they are dispersive. They assumed a
Rayleigh type of surface wave with velocity equal to c; = w/ k, that spreads from the crack
tip, with a possible displacement:

Uz (x1, %, t) = (Ae~®¥2/t 4 Ae=Fx2/l)gllkxi—wt)

The parameters a and S should be only positive (a > 0, 8 > 0).

By replacing this displacement to the equation 2, the governing equation for the out-of-plane
displacement in the anti-plane flexoelectric problem is reduced to the following:

2 2
uviug — u?V“'ug) = pii — ?Vzig

a4+A1a2+A2 =0

,84+A1ﬁ2+A2 :O

As it seems, the equations are similar for the parameter a and £. The calculation of those,
which are the same, depends on the parameters 4,, 4,, which are the following:

while mgp = cg/c;.

Moroni et al. (2014) suggested a region called “sub-Rayleigh zone” in which (H?mg?)/
(121%) < 1 and my < 1. For those two conditions as it seems the parameters a and g are real.
The same authors also named the region in which (H?mg?)/(121?) = 1 and my > 1 “super-
Rayleigh zone”.



Giannakopoulos and Zisis (2021 a.) considered as boundary conditions the traction of the
dipolar force condition at the surface of the crack.

t3 (xll 0) = 0

u3,22(x1; 0)=0

12 H? V?
Uz 5 (x1,0) — = (2———>u +u ]=O
{ 32X ) 612 ¢c,2 3,112 3,222

U322 (x,0) =0

From these boundary conditions the authors extracted the dispersion relation for this case. By
assuming a boundary condition in infinity, e.g. w — o (k%> - ) a solution of the
displacement occurs.

- (1—H—2mR2>x k21 H? 2 i
uz(xy,x,,t) = Be 612 21— =—=mp? | e X2kl gilkxi—wl)

612

In contrast, if the boundary condition near zero is assumed, w — 0 (k%12 - 0), the
displacement is then described by the beneath expression:

1 _Vox ]
u3(x1, X3, t) =8B [ge_Tz + 1] ellkx,—wt)

Further details can be found in Giannakopoulos and Zisis (2021 a.)

In addition to Giannakopoulos and Zisis (2019, 2021 a, b), a lot of other researchers studied
the dispersion of waves. Yang et al. (2018) studied the case of gradient elasticity, which has
been shown multiple times that it is analogue to the flexoelectric anti-plane problem as the
Lamb waves are concerned.

They mention for both those cases, the case of the flexoelectric material and the case of the
gradient elasticity, that a special study should be made, while for large wavenumbers, both
the dispersion relations and the phase velocity are significantly depended. They concluded
that both flexoelectricity and strain gradient elasticity depend on the wave number (they prove
that both piezoelectricity and flexoelectricity are important in the propagations of Lamb waves
when the wavenumber is large, in contradiction to a small wavenumber in which those effects
are unimportant), the material properties and the thickness of the plate.



The authors suggested that it is only natural one wave that transfers mass (acoustic wave) to
produce strains and strain gradients and thus polarization, in the direction of the propagation
and in the out-of-plane direction. Between the polarization and the strain gradient there is a
coupling: The converse flexoelectric effect transforms the polarization to strain gradient, while
the direct transforms the strain gradient to polarization. As the strain gradients are increased
with the increase of the wavenumber, phenomena related to those increase as well (the
polarization through the effect of flexoelectricity).

Studies have been made involving different types of waves. Most recently, Shengping Shen
and his co-workers studied love waves, and the dispersion of Rayleigh waves, by also
combining them with flexoelectricity (Qian Deng et al. (2020), Yang et al. (2020))

B. Dispersion Relations of frequency

Starting from a waveform of various waves, while each wave has its own wavenumber, some
waves will go faster and some slower. The dispersion in any case seems to be greatly
influenced by the ratio of two lengths, the microstructural and the micro-inertial length as it can
be seen from relation 30, 32. For various possibilities of this ratio from zero, which is a lower
bound, to 1/v/6, which is the upper bound (for normal dielectrics at least), some relations
considering the wavenumber and the frequency or velocity were plotted. It is necessary to
mention that there is a little difference in the mechanical wave relation and the optical, which
is like the polarization.

The mechanical frequency is described by relation 30. This relation can be simplified by
considering the microstructural length I, = 1/v/2 (the same Zisis (2018) proposed) and the
micro-inertial length h = H/V12.

Obviously as it was mentioned in the third chapter, a positive electrical susceptibility, (normal
materials) suggest that [,/ h < 1. Also, this ratio should be positive, as both constants are
positive. This way relation 30 transforms to the following:

w? = k?cs?(1 + 1,°k?)(1 + h2k?) 1

From this point on and until the end of this chapter, the microstructural length [, will be
symbolized for simplicity purposes as [. Considering k = k * h and @ = @mechanicar = @ * h/Cs
the above relation transforms to the following:

02c.2 k2 12 _ h2 _ -1
w~Cg :—C52<1+ﬁk2><1+_k2>

And through simplifications the following dispersion relation is produced:
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For various values of the ratio [/h the above relation can be plotted.
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Fig. 49. The frequency as a function of the wavenumber (or the inverse of the arclength) in the
mechanical waves.

The dispersion occurs for wavenumbers greater than half. As the microstructure gets more intense,
the ratio of the two lengths, the microstructural and the micro-inertial, tends to zero, the dispersion
gets bigger. Note that the two axes representk = k+*hand @ = w * h/c;.

From this figure the below conclusions can be extracted:

e For small wavenumbers there is no dispersion (lower than 0.5).

o The dispersion increases as the wavenumber increases too.

e The curve seems to tend asymptotically to the linear y = (1/h) * x. This conclusion
can be seen efficiently in some of the next figures.

In all these conclusions someone should keep in mind that the wavenumber is equal to the
reverse of the arclength of a wave and the dispersion of those relations is nothing else than
the difference of frequency for a specific wavenumber between the cases.

Similar to the mechanical dispersion, the optical dispersion, which is described by relation 32,
transforms to the following, when the microstructural and the micro-inertial terms are replaced
as described above.
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Also, by considering k = k * h, and differently from the mechanical case, @ = Ooptical =
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This way, the relation of the optical frequency can be described from the below relation, while
the graphic representation is the following:

@ = /1 +k2(/))? 34

Optical Dispersion Relation
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Fig. 50. The frequency as a function of the wavenumber in the optical waves.

There is a cut-off, which means that frequencies lower than the unit cannot occur. The dispersion
also in those waves occurs for wavenumber larger than half and gets bigger as the microstructure
gets important. Note that the two axes represent k = k* h and @ = (—w * {eqs — f123°%)/(cs * a®® *

5,%%).



In the above figure the conclusions that can be extracted are similar to the ones from the
mechanical waves. However, some questions that may occur are about the asymptomatic
line, whether it is the same for mechanical and optical waves.

To summarize, initially, it is very important to point out that the mechanical and the optical
waves describe entirely different problems. The polarization is a problem that is described by
the optical waves. In the anti-plane flexoelectric problem both waves exist, mechanical and
optical.

As the length of the wave decreases the frequency increases. When the wavenumber is small
and so the length of the wave is large, there is a linearity in the curves. It seems that the
microstructure is not very important to long waves, as the dispersion typically does not exist.
When the wavenumber is big, which means the length of the wave is small, the microstructure
plays a significant role because the ratio of the length [/h becomes as a parameter more
important. This ratio is equivalent to the electrical structure and those curves describe the
material electrically.

The questions that arise, considering both mechanical and optical waves, concerning the
asymptotic lines, as mentioned, can be answered by isolating the curves for a specific ratio of
length e.g. 0.5, 0.25 (fig. 51).
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Fig. 51. The frequency as a function of the wavenumber for ratio = 0.5 and ratio = 0.25.

For a specific ratio of lengths equal to half, the frequency of both optical and mechanical waves tends
to the asymptotic line y = 0.5 * x and y = 0.25 * x respectively. The convergence is being achieved
for bigger wavenumbers.

Note that there is a difference in the vertical axis (the frequency in the mechanical dispersion is
different than the frequency in the optical):
h —w * {egq — f12}*°

Wmechanical = W * Woptical =
0.5
Cs ! cs % als xS,

In the above diagrams, it is visible that the convergence to the asymptotic actually happens.
However, a comment that the mechanical frequency is always smaller than the optical is not



necessarily true, as the two frequencies, the mechanical and the optical are normalized
differently.

Interesting is also to see where the convergence happens. But what means “the convergence
to happen” is something that in order to be answered, the magnitude of error must be
introduced. Usually, the error is a magnitude that shows how much in a percentage the value
that was calculated differs from the true value. In our case however, it is not simple to define
the calculated and the true value.

Three types of error can be defined:

e The first one is being described by the difference of the two values in absolute, divided
by the value of the analytical expression.

|analitical value — asymptotic valeu]|
E YT 35
rror =
|analitical value|

e The second is by changing the deviator of the above relation. This time the difference
will be divided by the asymptotic value.

|analitical value — asymptotic valeu|

Error = -
lasymptotic value|

Those two values of error are close, considering that the nominator is considerably
small and the deviator is almost the same.

e |n some cases, where these values, which are more or less the same, tend to zero,
there is a problem in the deviator, which is almost equal to the nominator. This problem
can easily be bypassed by moving the axis to some other value, e.g. 1. This means
that, from that point on the error will be calculated not from how close the difference is
to zero, but how close to one is the difference from one. The expression of this kind of
error can be written as beneath:

|(analitical value + 1) — (asymptotic valeu + 1)| 36

Error = -
|assymptotic value + 1|

Here, again, there is a dilemma about the deviator. Should it be the the asymptotic
value, or the numerical value. However, the result in any case should be almost the
same.

In the current project, the first definition of error was used. In cases that one of those numbers
was very small, the third definition was used, with the asymptotic value as deviator.

By using these definitions of error, the following diagrams are possible.

Those diagrams show the speed of the convergence to the asymptotic line. As it seems, for
smaller ratios of lengths, greater wavenumber are necessary for convergence to the
asymptotic line.

Interesting is the behavior near zero, which can be seen considering a value that tends to zero
and the value of zero. In this case also, the first type of error was used.
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Fig. 52. The percentage of divergence of the
analytical from the asymptotic value, for ratio =
0.5.

The asymptotic line is described by the relation
y=05=*x. The convergence occurs for a
wavenumber between 5 and 6, for an eligible
error equal to 5%. Also, it seems that the
mechanical wave converges “faster” (for lower
wavenumber) than the optical.
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Fig. 54. The frequency as a function of
wavenumbers for ratio = 0.

The asymptotic line seems to be the line y =1
and the convergence happens considerably
“faster” than a case with a ratio that tends to zero

However, the asymptotic line should be y = 0.
Those two lines theoretically intersect to infinity,
where the actual convergence should occur.
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Fig. 53. The percentage of divergence of the
analytical from the asymptotic value, for ratio =
0.25.

The asymptotic line is described by the relation
y =0.25*x. The convergence occurs for a
wavenumber between 11 and 12, for an eligible
error equal to 5%. The ratio of the lengths is
crucial for the convergence. The smaller the ratio,
the larger the wavenumber in which the
convergence OCCurs.
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Fig. 55. The frequency as a function of
wavenumbers for ratio - 0 (0.01)

The asymptotic line seems to be the line y =
0.01 *x and the convergence doesn’t seem to
happen for usual wavenumbers.
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The case, when the ratio tends to zero is a

theoretical case and should be treated with
special care.
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Fig. 56. The percentage of divergence of the
analytical from the asymptotic value, for ratio =
0.0.

The asymptotic line was considered y = 1. The
mechanical frequency convergences for a
considerably small wavenumber, while the
optical frequency converges immediately.

Fig. 57. The percentage of divergence of the

analytical from the asymptotic value, for ratio =
0.01.

The asymptotic line was considered y = 0.01 * x.
The convergence happens for a considerably big
wavenumber, that could tend to infinity both for
the mechanical and the optical frequency.

The asymptotic line is normally the line y = 0. However, the line y = 1 is just a parallel of that.
Typically, the interception of two parallels will happen to infinity, as the last figure (fig. 57)
tends to reveal. However, by using a different definition of the asymptotic line (fig. 56), the

convergence will happen for a very small wavenumber. The case when the ratio becomes
zero is a limit case and should be treated with special care.

In addition to those diagrams, a combination can be considered, of the ratio of lengths and the
wavenumber, in which the asymptotic line and the analytic values have just converged. With
an@ = f (k,1/ h), where @ is the frequency, a relation in which the error is equal to a specific
value e.g. 5% can be calculated. This explicit function, that is shown beneath can be plotted.

71 anumerical - aassymptotic
alk '/ h) =

Wnumerical

— Error =0 37

and by assuming a legit area of error less than e.g. 5%, it is possible to choose whether the

result can be obtained by the asymptotic line, instead of the analytical relation, for an error
less or equal to 5%. That area can be seen in the beneath diagram:
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Convergance Curve in Dispersion Relation
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Fig. 59. Mechanical dispersion convergence.
The curves that describe the combination of the

Fig. 58. Dispersion convergence to 5% error.
The curve that describes the combination of the
wavenumber and the ratio of length, so the
divergence from the asymptotic line gives an
error equal to 5%, for the mechanical and the
optical frequency.
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Fig. 60. Optical dispersion convergence.

wavenumber and the ratio of lengths, so the
divergence could be legit, for the mechanical

dispersion.

dispersion.

Lt

08
0.7
08

0

=

0.

w

02

01

Mechanical Dispersion

Legit Area
T T T
i Error = 0.025
o Error = 0,050
- Error = 0.075 i
Error = 0.100
[ Error = 0.200 Il
Legit Area for Error = 0.050
I
5 _ 10 15
k

Fig. 61. Legit area for mechanical waves
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Fig. 62. Legit Area for optical waves.

The curves that describe the combination of the
wavenumber and the ratio of lengths, so the
divergence could be legit, for the optical
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The area in which the relation of dispersion and The area in which the relation of dispersion and
the relation of the asymptotic line are the same the relation of the asymptotic line are the same
(error 5%) in the mechanical waves. (error 5%) in the optical waves.

Combination of wavenumber and microstructure
that reside in this “legit area” will give almost the
same frequency by using either the analytical
expression or the asymptotic line.

C. Phase Velocity

By multiplying the frequency with the arc length, something that has the dimension of the
velocity is produced. This way it is possible to extract from the above relations the velocity of
the mechanical and optical waves in relation with the wavenumber for various microstructural
cases.

The relation that describes the mechanical phase velocity, symbolized by the term @/k, is

the below:
r2 . (1)
L ( /h) 38
k 1+ k2
Mechanical Phase Velocity Fig. 63. The phase
3r velocity of the
—=== {/4=0.00 mechanical waves as a
§ o £/4=0.25 function of the
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£/4=0.75 wave.
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(4 velocity.
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13 As the microstructure gets
more important the
1 posaagsess velocity of the wave itself
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Keeping in mind that the velocity is the gradient of the displacement, someone can come to
the conclusion, that for small wavenumbers, or long waves, the velocity keeps constant a
value. As the arclength of the wave gets smaller, then the waves in which the microstructure
is more significant, the velocity will get smaller and smaller, until the wave does not move.

One thing that someone should notice in this figure, is that in this case the asymptotic line, in
which the curve tends in non-other than the line with an equation of: y = [/h (the convergence

points the same with the velocities and the frequencies, as it will be displayed later). Interesting
is to observe the case, when this ratio becomes zero.

The optical phase velocity is described by the following function:
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Fig. 64. The phase velocity of the optical waves as a function of the wavenumber of each wave.
The dispersion is being transferred to the phase velocity. As the microstructure gets more important,

the velocity of the wave decreases. For minimum wavenumbers, the velocity tends to infinite
independently from the microstructure.

For a small wavenumber, this velocity tends to infinite, because the frequency is constant on

those values. The phase velocity, which has a geometrical difference of 1/k should behave
this way.

For materials, that have the ratio of lengths near to zero and are called semiconductors, the
velocity yet again tends to zero. The semiconductors are nonetheless flexoelectric.
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Those conclusions can be better understood while isolating the diagrams for a specific ratio
of lengths. Yet, it is also possible to create the previous diagrams of convergence, to study
about how the curve converges to the asymptotic line.

Fig. 65-70 show that the convergence to the asymptotic line happens simultaneously, both in
the frequency and the velocity. However, in the phase velocity, in contrast to the frequency,
the case when the ratio of the length is zero is smoother and follows the flow of the greater
ratios (in this case the error was calculated with the third method).
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Fig. 65. The phase velocity as a function of the Fig. 66. The percentage of divergence of the
wavenumber for ratio = 0.5. analytical from the asymptotic value concerning
Both the mechanical and the optical velocity tend  the phase velocity, for ratio = 0.5.
asymptotically to the line y = 0.5. This diagram is similar to the one of frequency.
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Fig. 67. The phase velocity as a function of the Fig. 68. The percentage of divergence of the
wavenumber for ratio = 0.25. analytical from the asymptotic value concerning
Both the mechanical and the optical velocity tend  the phase velocity, for ratio = 0. 25.
asymptotically to the line y = 0.25. This diagram is similar to the one of frequency.
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Fig. 69. The phase velocity as a function of the
wavenumber for ratio = 0.00.

Both the mechanical and the optical velocity tend
asymptotically to the line y = 0.00. However, the

convergence seems to happen for

large
wavenumbers.

Considering the point when the convergence with an allowed error occurs, the beneath

diagrams are presented:
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Fig. 70. The percentage of divergence of the
analytical from the asymptotic value concerning
the phase velocity, for ratio = 0.00.

The convergence to the asymptotic line seems to
happen for wavenumbers near 20. This diagram
is different from the one produced from the
frequency (fig. 57). However, in this situation the
error was calculated using the third method.

Fig. 71. Phase velocity convergence to 5%
error.

The curve that describes the combination of the
wavenumber and the ratio of length, so the
divergence from the asymptotic line gives an

error equal to 5%, for the mechanical and the
optical frequency.
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Fig. 72. Mechanical phase velocity convergence
The curves that describe the combination of the
wavenumber and the ratio of lengths, so
mechanical phase velocity could be legit, from
the asymptotic, with the corresponding error.

Fig. 73. Optical phase velocity convergence

The curves that describe the combination of the
wavenumber and the ratio of lengths, so the
optical phase velocity can be legit, from the
asymptotic, with the corresponding error.

Those diagrams are actually the same with the ones produced by the frequency. This means
that the convergence both in the frequency and in the phase velocity happens at the same
time (for the same wavenumber for a give ratio of lengths) (fig. 74). As a result of this similarity,
the legit area in this situation is the same (fig. 61,62).
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Fig. 74. Convergence Relation of frequency and phase velocity.
The convergence both in the frequency and the phase velocity is the same.



D. Group Velocity

One more important velocity that has not yet been discussed is the group velocity. Unlike the
previous velocity, this one is not considered as something like an overall velocity, but like an
instant velocity. In order to form this, a differentiation of the relation was made. The velocity
then can be described by the term dw/dk. The relation, which is calculated by differentiating,
is the following:
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Fig. 75. The group velocity of the mechanical waves as a function of the wavenumber of each
wave.

As the microstructure gets more important the velocity of the wave itself decreases.

The velocity is the gradient of the frequency, as it was derived from it. Initially, for low
wavenumbers the frequency is linear and so the gradient should be constant and equal to
one. When the microstructure of the materials starts to take part in the motion of the waves,
the frequency deviates and the materials with the smaller length ratio get a reduction in the
increase of the frequency. That means that the curves gradient has decreased (the smaller
the ratio, the more it has). When the frequency stabilizes in the asymptotic line, the gradient
gets once again steady, equal to to asymptotic gradient.



One very interesting observation is that in the above diagram, the curves seem to intersect
with the asymptotic line before the stabilization to them. This phenomenon is more visible in
the case where the ratio of the length is equal to half (solid line). This will be described more
in the following figures (fig. 77 - 81)

The last quantity that should be studied is the group velocity in optical waves. The relation of
the optical group velocity is the beneath and can be plotted as follows:
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Fig. 76. The group velocity of the optical waves as a function of the wavenumber of each wave.
As the microstructure gets more important, the velocity of the wave itself decreases.

The meaning of this diagram is equivalent to the energy an optical wave can transfer. As it
can be seen, long waves cannot transfer much energy. There is also an optimization possibility
by choosing a big enough wavenumber and choosing a material with smooth enough
microstructure (3G 2 4G 2 5G).

In the anti-plane flexoelectric problem, someone must choose whether the need is to optimize
the phase velocity or the group velocity. The first transfers the wave, while the second
transfers the energy. It's up to the application what should be optimized.

A comparison of the convergence of the mechanical and the optical velocity for some specific
ratios of lengths is possible.



In the mechanical group velocity, as it can be seen for a ratio of length equalto [ / h = 0.5,
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initially the analytical relation converges to the asymptotic, but then diverges to converge once

again.

In the next diagrams, the right figures (fig. 78, 80, 82) depict the convergence for some
different values of ratios of the lengths. The phenomenon mentioned above can be seen more

visibly.
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Fig. 77. The group velocity as a function of the
wavenumber for ratio = 0.5.

Both the mechanical and the optical velocity tend
asymptotically to the line y =0.5. Also, the
mechanical velocity intersects the asymptotic line

and then tends to her from the other side.
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Fig. 79. The group velocity as a function of the
wavenumber for ratio = 0.25.

Both the mechanical and the optical velocity tend
asymptotically to the line y = 0.25. In this case

Fig. 78. The percentage of divergence of the
analytical from the asymptotic value concerning
the group velocity, for ratio = 0.5.

This diagram was made by using the absolutes.
The convergence of the mechanical velocity
forms and oscillation. As the wavenumber

increases, the oscillation tends to find the
stabilization point.
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Fig. 80. The percentage of divergence of the
analytical from the asymptotic value concerning
the group velocity, for ratio = 0. 25.

The convergence, divergence and then again
convergence phenomenon is one again visible.
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also the mechanical group velocity intersects with

Comparing these results with the previous case,
the asymptotic line and then converges.

the divergence magnitude increases, and the
maximum divergence happens for

smaller
wavenumber. The convergence too.
. Group Velocity Asyptotic Error for
. Group Velocity for ¢/ =0.00 /0 =0.00
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Fig. 81. The group velocity as a function of the
wavenumber for ratio = 0.00.

The mechanical group velocity tends
asymptotically to the line y = 0.00, while the In this diagram there is only a convergence, in
optical velocity is constant and always equal to contrast with the previous cases. the mechanical
zero. In this case there is no intersection prior to group velocity tends asymptotically to the right
the convergence. line, for a generally small wavenumber. However,

in this case the third type of error was used.

Fig. 82. The percentage of divergence of the
analytical from the asymptotic value concerning
the group velocity, for ratio = 0.00.

Next, itis possible to define the combinations of a wavenumber and a ratio of lengths that give
an eligible amount of error between the analytical and the asymptotic relations.

The mechanical group velocity has a peculiarity. For a specific ratio of lengths there are two
wavenumbers that give a legit error, one before the divergence and one after. It can be
imagined that the same happens for a specific wavenumber. This assumption can be proven
by the beneath diagram (fig. 83). Also, it is interesting that this peculiarity can be best fitted by
the same diagram of the frequency (and the phase velocity), as it can be seen beneath.
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Fig. 83. Mechanical group velocity convergence.

The curve that describes the combination of the wavenumber and the ratio of length, so the
divergence from the asymptotic line gives an eligible error. This oscillation is being presented as a
spike. In a specific curve e.g., the one that describes the convergence for an error equal to 5%, for
big enough ratio of the lengths, (when the microstructure is irrelevant) there is no intersection (for
I/h > 0.7). As the ratio decreases there is a spiking as the horizontal line intersects twice with the

curve. The distance (difference of the wavenumber) of those to intersection decreases as the ratio of
length decreases, as the microstructure gets more relevant.

Convergance Relation
Error equal to 0.05

——— Mechanical Group VelocityVelocity | |
Mechanical Dispersion

———

5 10 15

k

Fig. 84. Convergence relation of frequency and mechanical group velocity for error equal to 5%.
Those two curves are not the same, the group velocity convergence is different from the convergence
in the frequency or the phase velocity. The main difference is this oscillation. However, the frequency
convergence curve and the mechanical group velocity curve are the same for larger wavenumbers.
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The optical velocity should not have such a singularity.

E. Dispersion in metamaterials

The previous analysis, was considering a normal dielectric and thus the ratio of the lengths
was bounded. This bound suggests that the materials have positive electrical susceptibility,
as all normal dielectrics. However, the existence of materials with negative susceptibility has
been proven. For more information about those metamaterials the reader is suggested to visit
chapter 3 — Intermediate region.

Accepting a negative electrical susceptibility, the upper bound of the ratio [/h is canceled.
Relations 33, 34, 38, 39, 40 ,41 however, can be used for these ratios, nonetheless.
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Fig. 85. The Dispersion relations for meta-material and normal dielectrics.
The figures in the right side are the new figures. The dispersion curves, both on the mechanical and
the optical waves, seem to disperse from the other side of the non-dispersive case.



111

Dispersion relation on produced waves

Mechanical Phase Velocity Mechanical Phase Velocity
3 3
— — — (/h =0.00 — — — (k=100
_____ /4 =0.25 e =125
25 [ 25 [
£/ =0.50 (/e =150
14 =075 U =T
10 =100 2Ll . w200
‘i L5
3
1
S,
N
S
05 L Q‘Q»Q_\_\ 05
N N R R I A AR Atk 0
0 1 2 3 4 6 7 0 1 2 3 4 5 6 7
k k
(a)Mechanical Phase Velocity for (b)Mechanical Phase Velocity for
normal dielectrics meta — materials
Optical Phase Velocity Optical Phase Velocity
3 3
1 ¥
t — — — /=000 [ i =100
S 10 =025 L Y e A 10 125
25 Lt 25 Ll
3 /h =050 W 4 /h =150
b . l/h =075 [\ ‘x&x i A =15
2 \‘% 1 /0 =1.00 2l ‘;-\. e 1/ =2.00
W\
\N
s SEE N
3 3 NS
1 e T T ——
05 [ 0.5
0 L 0 L
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
k k
(c)Optical Phase Velocity for (d)Optical Phase Velocity for
normal dielectrics meta — materials

Fig. 86. The phase velocity, for meta-materials and normal dielectrics.

The figures in the right side are the new figures. The mechanical phase velocity makes a shifting, as
the mechanical phase velocity for the metamaterials is reversed (mirror) from the other side of the
line y = 1. Those forms remind dispersions of viscoelastic materials.

The optical velocity however for meta-materials is usual, as the form of the curves remains the same,
but the asymptotic line rises (rises the value of the coordinate which characterizes it).

There is an obvious shifting in the mechanical phase velocity, which is also visible in the group
velocity. The curves in the meta-materials tends from the other direction of the critical non-
dispersive value. Similar dispersion has been observed also in viscoelastic materials.
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Fig. 87. The group velocity, for meta-materials and normal dielectrics.

The figures in the right side are the new figures. The mechanical group velocity similarly to the
mechanical phase velocity makes a shifting (mirror) from the other direction of the non-dispersive
case. Also, the phenomenon of the oscillation-like (converges — diverges — converges) can be

observed.

The optical velocity however for meta-materials is usual, as the form of the curves remains the same,
but the asymptotic line rises (rises the value of the coordinate which characterizes it).



6. Plates

A. Introduction

The last part of the study is based on an analogue suggested by Gavardinas et al. (2018) and
Giannakopoulos and Zisis (2019) between the case of the anti-plane couple elasticity problem
and a plate problem. As they have suggested, those two problems are analogues and the
solution of the one is equivalent to the solution of the other. In chapter 3, it was mentioned,
that Giannakopoulos and Zisis (2019) solved computationally a plate problem that was similar
with a mode Il crack problem with the theory of couple stress elasticity (fig. 27, 28).

In those two last chapters this analogue will be studied. Initially the basic concepts of plates
will be mentioned, then the analogues will be displayed and finally on chapter 7, with the use
of these analogue a FEM application will be suggested.

B. The isotropic plate

The plate problem has been studied in a great scale, as it is common, not only for micro-
mechanical purposes but also for structural. The plate is something found in almost every
structure. Plates exist in every house. A plate is where someone stands now and the weight
of this person, is a load that the plate has to cope with.

The plates are shell elements, that react in the out-of-plane load with bend, in difference to
membranes, which are stressed only axially. This, the out-of-plane load, is the most common
load that can be applied in a plate. However, in civil engineering structures, large plates made
of concrete could be profitable when prestressed.

The plates are characterized with a fourth order differential equation and they were studied at
a large scale by Timoshenko and Woinowsky-Krieger (1964).

However, the prestressed plate, which is of interest, has not been studied that much. An axial
stressing on the plate can cause instabilities (flutter and divergence instability). Babouskos
and Katsikadelis (2009) studied those instabilities on plates, one each time and also by
combining them.

In their study, they included both conservative and non-conservative loads, which have to do
with whether the load follows the deformation or not. The conservative force is applied in the
undeformed configuration in contrast to the non-conservative load which is applied in the
deformed configuration. The flutter instability describes a vibrational motion and usually
happens for smaller loads. By enlarging the load, the instability becomes divergence
instability, which has smaller frequencies and the amplitude increases exponential.

The instability of plates, in addition to the axial prestress, could also be a dynamic problem.
Babouskos and Katsikadelis (2009) used Hamilton’s principle to calculate the governing
equation of motion. According to that, the following equation should hold true in any case.



t2

j (8T — 8U + 8V + sW,,.)dt = 0

ty

In this relation the term ST refers to the total kinetic energy between time t, and t,. U is the
elastic energy, or the total potential energy density. The other two terms refer to the
conservative and non-conservative forces that may be applied to the configuration. V is the
potential of external actions while W is the virtual work of the non-conservative or damping
loads.

By substituting the kinetic energy (produced from an out-of-plane velocity), the elastic energy
(with calculation of the rigidities of the plate) and the other mechanical actions, the authors
extracted two differential equations, one referring to the in-plane deformation and one referring
to the out-of-plane.

The one referring to the out-of-plane deformation, which is also the one of interest for this
study, includes the biharmonic term, harmonic terms because of the axial, in-plane stress,
terms of first order because of surface traction (in-plane), or tangent tension to the plane (out-
of-plane) and also terms of inertia (dynamic terms).

DV*w — (Ny + POWyy — 2(Nyy + Py )Wy — (N, + B )W, "
+(ny + Qx)W,x + (le + qy)W,y +phw+cw=0

D is the plate’s bending rigidity D = (Eh3)/(12(1 — v?)): E is the modulus of elasticity, v is the
Poisson’s ratio, h is the height of the plate’s section. ph is the mass per area and lastly c is
the dumping constant of possible dumpers. The actions that are present in the above equation
can be seen in a sketch from that study (fig. 88).

From that equation it is possible to eliminate:

e the boundary shear action, both conservative and non, (ny, ny),
e the in-plane surface action (n,,n,),

e the out-of-plane aerodynamic pressure, (qy, qy)

¢ the dumping force (c).

Also, the differentiation between the conservative and non-conservative action can be
considered the same (N, + P,) = (N,).

DV*w — Nyw .y — Nyw,,, + phwv = 0 i

And then if the problem is static:



DV*W — NyW sy — Nyw,, = 0 i

clamped

simply supported

nx,y)

Fig. 88. The total actions applied to a plate.

Except from the boundary conditions, there could be in-plane actions, axial or shear. Out-of-plane
actions tangent to the surface of the plane and singular geometry of the surface. This figure was
obtained from Babouskos and Katsikadelis (2009).

For equal biaxial tension, N, = N,, = N, relation i becomes relation iii.

DV*w — NV2w + phw = 0 i

For the static case of the problem, the differential equation that governs the problem of the
equally biaxial prestress plate is described by the following relation:

DV*w — NV2w =0 iv

Relations i, ii, iii, iv are referring to a configuration in which there are no external out-of-plane
loads, in the direction of displacement, e.g. the load of a human above the plate. To add this
kind of load, the work produced from it should be added in the principle. This work can be
written as follows:
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Wext = P(x,y) * w(x,y) = Weyr = P(x,y)0wW \

The governing equation 42, was produced by the demand that the factor that multiplies the
potential out-of-plane displacement is zero. The term described by relation v takes also part
in this factor and so the external load P(x,y) should be added in the left hand-side of the
equation i, ii, iii, iv.

DV*w — NyW yy — Nyw,,, + phw = P(x,y) 43
DV*w — NyW . — Nyw,,,, = P(x,y) 44
DV*w — NV2w + phw = P(x,y) 45
DV*w — NV2w = P(x,y) 46

The boundary conditions of the problem are extremely necessary for those differential
equations. Some possible boundary conditions could be the following:

¢ the displacements or the forces on the boundary
o the rotations of the displacement or the moments on the boundary
o The initial conditions (this condition is necessary, if the problem is dynamic)

Gavardinas et al. (2018) observed that relation iv looked a lot similar with relation 10 the one
from couple stress elasticity.

C. The static analogue

The comparison of those cases, the prestressed plate and the anti-plane couple stress
elasticity resides in the differential equations of each case. Relation 10, when also considering
an external out-of-plane load (B,) has the below form:

2 2 4 z
Viw — =Viw = —
2 U

While relation 46 can be written also as follows:
V2w — —Viw = —— 46

The analogue is obvious.
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In the above relation [ is the microstructural length, B, is the vertical load and u is the shear
modulus. Fig. 89 displays this analogue with great efficiency.

The governing equations are analogue and by modifying the parameters (u,n, ! for the anti-
plane problem and D,h,v,N for the plate problem), the solution of the one suggests the
solution of the other.

Some notes that need to be written down:

e The static analogue demands equally biaxial prestress

e The material in both cases should be isotropic

e The Poisson’s ratio, as it exists in the relation of the plate, is bounded from —1 to 0.5.
However, as the analogue, could be used only theoretically for computational reasons,
this bound could be ignored.

All the above were concluded by the research of Gavardinas et al. (2018).

The main purpose of this analogue, is an easy way to solve the anti-plane couple elasticity
problem. The analogue demands the problem to be static. This limits many anti-plane
problems that could be solved. However, there are ways to bypass this. For example, one
easy way to study the mode Il crack is by using a screw dislocation distribution.

The differential equations are the same and thus an analytical solution has exactly the same
difficulty to be calculated. This analogue brights up numerically, where the plate problem can
very easily be solved numerically with FEM. The same solution however, would apply to the
analogue anti-plane problem (the displacements and rotations would be exactly the same).

The boundary conditions also need to be characterized as analogues. The plate problem
demands the displacement in the boundary and the rotations. The same also could apply in
the anti-plane problem. The boundary condition could also be Saint Venant boundary
conditions.

In the next table, that was created based on the theory of Gavardinas et al. (2018) the
analogies that are created are displaced.

The actions, and how they are symbolized, are displayed in the next figure.
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Fig. 89. The analogue.

Schematic comparison between the anti-plane couple stress elasticity problem and the prestress
plate, By Gavardinas et al. (2018).

The analogies between the boundary conditions include also the rotations and the
displacements. When the displacement in the direction e.g. x is zero in the plate problem, the



shear action @, # 0 and according to the above analogies, B9 % 0, which is equivalent
with zero out-of-plane displacement for the anti-plane problem.

The anti-plane flexoelectric problem as it is also an anti-plane problem, solved via the method
of couple stress elasticity theory, has the same analogies with the anti-plane couple elasticity
problem. For the static anti-plane flexoelectric problem, for which the governing equation is
the following (relation 2 by considering no acceleration in the out-of-plane direction, with an
external action).

by + b €44 — 2 B
Vzug—{M 77 (€ss — fi2) }V4u3= 2

a ua 7

This problem obeys the following analogies:

Anti — plane
Prestressed Plate
flexoelectric
problem
problem
D bas + b77 (€44 — f12)?
N a ua
P B
N U
And more detailed:
Anti — plane
Prestressed Plate
flexoelectric
problem
problem
-v=0 0

Analogies between
the mechanical
characteristics

u {b44 + by _ (€44 — f12)2}

a ua
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D. The prestressed orthotropic Plate

The anisotropic plate, is something not well studied, as the structural engineering bypasses
this by considering that the plate is supported in only one direction (e.g. mixed plates of
concrete and steel). However, plates can be made by materials which are not isotropic, e.g.
wood, and thus some studies exist.

In one project, by Shi and Bezine (1988), the anisotropic plate was studied (in bending). They
proposed as the governing equation of the problem the following relation:

o*w 0*w fw 4 4

w .
D11W + 4D16M+ 2% (Dyp + ZDss)W + 4D;¢ ax0y? + Dy, " =plxy) VI

In this equation D4, Di4, D12, Deg, D26, D2, are the flexural rigidities of the anisotropic plate,
and p(x, y) is the out of plane action that causes the bending.

In an orthotropic plate those bending rigidities can be defined as follows.

D = E.h3
121 - vyw,)
E,h?
Dyy = —
27 12(1 - vewy)

Dy = D11vy = Dpavy




Also, the Poisson’s ratios in each direction depends on the one of the other directions.

The governing equation is reduced to the following:

Exh®  d*w N vyExh3 N v Eyh3 N 4Gyyh®\ 0*w N E,h3  0*w
12(1—vewy) 0x*  \12(1 —vvy) 12(1—wyvy) 12 ) 0x%0y%  12(1 — vevy,) OY*
46

This relation represents the modified fourth order derivative in relation 42. By substituting 46
in that fourth order term, the full solution of the orthotropic plate shall be extracted. The
orthotropy influences only the material characteristics. In relation 42 the only material
characteristic are the bending rigidities of the plate and concerns only the fourth order
derivative. Thus, the below can be considered.

When in relation 43 the left hand-side of relation 46 substitutes the fourth order term, the
following relation is produced:

E.h®
12(1 = vyvy)

. N vyExh3 N v Eyh3 N 4Gyyh® .
AET\12(1 - very)  12(1-vyw,) 12 Y
, 47
Eyh

FTR(T ) o T e T Mty P 2 000)

Relation 47 is the governing equation of a prestressed orthotropic plate. Considering v, =
v, = 0, a theoretical plate is being described, that allows the analogue. This assumption is
necessary as it not only simplifies the relations but also settles some boundary conditions.
This way, an anti-plane problem either it is considered couple stress or flexoelectric can be
solved through a plate solution. Relation 47, transforms to the following expression (also for
non-zero out-of-plane external load, but zero acceleration w):

E.h3 Gyyh Eyh?

Tw,xxxx + TW,xxyy + Tw,yyyy - NxW,xx - NyW,yy = p(x, y) 48

=p(x,y)



E. The dynamic analogue

Giannakopoulos and Zisis (2019), noticed a similarity between the relation 48 and relation 2,
12. and by changing the order of the derivatives, this equation (vii) can also be written as
beneath, to follow the formula of relation 7:

N, 0*w 0*w  Ehd*w Gk d*w  EyRCotw  p(x,y)

— + — — - = vii
N, 0x* = dy? 12N, dx* 3N, 0x?dy? 12N, dy* N,,

For convenient reasons here, once again relation 7 is displayed (also with an external load).

o?)oez Tz 2 0t 2\" 6l%cr)ogzan? 2 an* T u

( v2>azu3 9%u, 12< V2H2>64u3 12< VZHZ) d*u;  [20%u; B,

A direct analogue is visible. The main analogies which also define the problem as
intermediate, elliptic or hyperbolic are the following:

Anti — plane
Prestressed Plate
flexoelectric
problem
problem
N, v?
v = 1-— viii
N, o2
E.h3 12 V2H? ,
= —\|1-—— iX
12N, 2 6l%cg?
Gyyh® 12 V2H?
= = —(2-—— X
3N, 2 61%cg?
E,h? 3 12 y
12N, 2
NACHD _ B,
N, u

Relation xi suggests an equivalence concerning the microstructural length. Substituting the
equivalent in relations ix, x, the above table gets as follows:
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The analogue continues to the boundary conditions. Those are similar to the ones proposed
in the static case, with the addition of some dynamic boundary condition (including initial
conditions).

Giannakopoulos and Zisis (2019) studied this analogue. In this research the authors present
the full analogy in a sketch in the following page.:

Obviously from the last relation 49, if Nz > N, then the problem is subsonic, while if Ny < N,
the problem is supersonic.

One note that should be mentioned is that this manipulation of the plate equation from relation
47 to relation vii, helped the solution of the anti-plane problem. The opposite, solving an anti-
plane couple stress elasticity problem, or a flexoelectric anti-plane problem and then obtain
the solution for the analogue plate problem is possible, but unnecessary as the plate problem
is usually the easy one to solve. There are a lot of tables in bibliography and also the plates
are common to FEM codes.

Next in the last chapter, this theory will be used to solve the anti-plane flexoelectric dynamic
problem of mode Il crack, with the use of FEM.
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Fig. 90. The complete analogue of the anti-plane problem and the plate problem.
This scetch was obtained from Giannakopoulos and Zisis (2019).



7. FEM applications

As the previous chapter suggested, analogue 49 allows the solution of the couple elasticity
problem, or the anti-plane flexoelectric problem, via a solution of plates. This analogue, for the
elliptic problems is viable and computational solutions have already been made. The elliptic
problem suggests that all the quantities of analogue 49 are positive, in respect of the anti-
plane problem and thus the plate problem can be defined properly.

The three regions however, suggest the possibility, some of those constants to be negative.
The intermediate problem suggests 1—V?/c.?2 <0, while the hyperbolic problem also
suggests 1 — (V2H?)/(61%cs*) < 0. The second one is equivalent to E,/E, <0 in the plate
problem. According to classic elasticity, however, the moduli of elasticity in an orthotropic
material should be positive and thus the analogue seems like it cannot be used.

From the mathematical point of view, the problem is described by a linear partial differential
equation, that should be solved with respect of w(¢,n):

A 64W+2A 0'w + A 0w B 62W+B 0w =P(,n)
1 664 Zafzanz 3 an4 1 652 2 6772 - E’r}

Where A; >0, B, >0, B, = B; and 4, > A,. If A; > 0 the problem is elliptic. If A; = 0 the
problem is parabolic. Both those cases have already been addresses by Giannakopoulos and
Zisis (2019).

However, if A; < 0 the problem is hyperbolic. To overcome this difficulty, a method inspired
by the so called “Analogue Equation Method” that was originated in the context of Boundary
Elements by Katsikadelis (1994) is suggested. The idea is to obtain some appropriate “body
force” q(¢,n) that will be common between the actual and the analogue equations (the
analogue equation could be also parabolic). Two cases are distinguished.

a. A;<0andA, > 0.
Then the original equation splits into two analogue equations according to:

2ay g T 25, 2Y) pen) = aem)
2 afzanz 3 an4 2 anz f'n =q 5177
and
d*w %w
Q(f,ﬂ)=—A1a—f4— - + B16_52+

b. 4, <0and 4, <0.
Then the original equation splits into two analogue equations according to:
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+ ra, 2V 8,2\ _peen) = aem)
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Em = -, p, T (8,224
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Next, the materialization of the above analogue equations to prestressed Kirchhoff plate
problem, takes place. This is the first applications of the “Analogue Equation Method” in the
context of Finite Element.

A. The two-plate method

The main idea is to use the equation 48 and in the term of the external loading, in addition to
the analogue load produced from the anti-plane problem, an extra term should be added, the
area load q(x, y), from another plate that reinforces this original one. The governing equation
of this original plate will be relation i.

orig.; 3 orig.; 3 orig.; 3
Ex horig. orig. ny horig. orig. Ey horig. orig.

12 XXXX 3 XXYyy 12 YYyy

orig. orig. orig. orig.
=Ny TWoy —Ny Wy

=pxy) +qxy)

Fig. 91. The analogue plate to the anti-plane problem.
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The plate should in any case be prestressed, biaxially and the prestress should be different between
the directions. The plate should be constrained with the analogue’s boundary conditions, that could
be something else than hinges. The load p(x,y) should be also the analogue load of the anti-plane

problem. The load should be applied in the necessary surface (e.g., for a mode lll crack, it will be a
line load)

The second plate, has also a governing equation that defines it.

rein.p3 rein.p 3 rein.p3
Ex hrein. rein. ny hrein. wrein. 4 Ey horlg. rein.
12 LXXXX 3 XXYY 12 YYYY

__pnjrein.g,,rein. _ pjrein.,,,rein. i
Ny wis Ny w oy ii

=q(x,y)

The actions between them are action-reaction forces and thus the left hand-side of relation ii
can be inserted into relation i, substituting the term of the action q(x, y). Also, by considering

the same plate thickness and the same out-of-plane displacement, the below relation is
produced:

Original Reinforcing New
Plate Plate Problem
hog = hys. = h
E7h3 Gy h? E)9h3 0g og
12 W oxx T 3 Wxxyy + —12 Wyyyy — Ny"Wox — Ny Wyy
E/ h? Ga 3 E)J 3
- x12 W oxxxx — 3 W,xxyy - 12 W,yyyy + N;fW,xx + N;fW,yy i

=p(x,y)
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N

The index rg represents the original plate, while the index rf represents the reinforcing plate.

The suggestion that the out-of-plane displacement is common for the two plates, demands the
connection between them to be rigid enough.

p(x.y)

N original
e

original
N)’

‘ '
FA
A
Nyoriginal

EA/L —inf

Fig. 92. The plate-like structure that can be inserted to the analogue.

The above plate, that is called original plate is the plate in which the analogue load is being applied.
That can be seen in relation i. One second plate, similar to the first, but without the analogue load, is
connected with a rigid manor, to the original plate.

The reinforcing (below plate) could be prestressed or not, orthotropic or isotropic (the calculations
will provide these information).

The limitation: “rigid” should demand the out-of-plane displacement in both plates to be zero. As only
the out-of-plane displacement is demanded to be constrained, those connectors can be short truss
elements with great modulus of elasticity and cross-section area. Those connectors should be placed
close enough, so their reaction can be considered the common surface load q(x, y).

By applying some calculation in relation iii, the following relation is produced:

T L s L 0
12 XXXX 3 W xxyy 12 Wyyyy
~(N? = Ny YW — Ny - N;f)w.yy iv

=px,y)



And by reordering, with the purpose that relation iv will look like relation vii (chapter 6), the

following is produced:

(N7 =N )o2w 92w
)

(B9 -3 a*w (G2 —c )P atw  (E) —E) )R atw

(N - Ny Y120t (N7 - )3 xt (N — Ny )120x%0y?

The analogue, according to relation v can be modified as follows:

Anti — plane

Prestressed Plate

flexoelectric
problem
problem
(v - N7 2
O - e
(E9 — E} )h3 ~ 2 (1 V2H?
(Ny? —N)T)12 - 2 612c,?
(629 - G ~ 2 < V2H?
(Ny? —NyT)3 - 2 612¢,?
(57 = B/ )h° 2
i - >
(N9 =Ny )12 2
p(x,y) B,
S -N) ) "

And with the use of relation ix, relation vii and viii can be simplified a bit. The following analogue
can replace analogue 49. The advantage of this new analogue is that it is not bounded by
signs as the modified moduli that are analogue with the anti-plane flexoelectric parameters
can be also negative and so the intermediate and the hyperbolic region are accessible. The

new, modified analogues can be described by the following relations:

rf)

Vi

Vii

viii
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Anti — plane

Prestressed Plate
flexoelectric

problem
problem
(R0 v
NOQ Tf = 1- C_Z
( y y ) S
(B - BN -N) (1 _ v2H2>
(N2 =N ) (EyY — ) ol%cs*
L6 — Gyt - ) ,_ Vi "
(Vg7 — ) (B —E)) 61%c?
(Ep? — 5V )3 _ 2
(N9 — )12 - 2
p(x,y) B,
G - 0

By considering that the reinforcing plate, is not prestressed, analogue 50 is modified as follows
(analogue 51):

Anti — plane
Prestressed Plate

flexoelectric
problem
problem
N9 V2
= 1——
N,? cs2
(EOQ Tf) <1 VZHZ >
(509 _ oTf\ = T G120 2
(E;g E ) 6l%c
(GOQ rf B VZHZ
(Eog rf) - 2_612C2 51
(Eg — E}) )h? 2
y y —
og rf - )
(N9 =Ny )12 2
_rxy) N B,
og = -
Ny u

These simplifications, allows for a better finding of the right parameters but may limit the cases
as well. From analogue 51 it seems that the problem resided with the following methodology:



o Find the prestress of the plate that calibrates the velocity of the anti-plane dynamic
problem.

¢ Find the combination of the Elasticity moduli that calibrate the hyperbolicity.

¢ Modify the shear moduli to conclude the analogue.

B. The FEM model

Using the FEM program ABAQUS, some numerical calculations were possible. In this program
the plate structures were made, both, from orthotropic materials and connected with truss
elements of great stiffness (short and with an enormous modulus of elasticity). The plate
thickness and the cross-section of the truss elements were considered small enough. The
connection of the two plates, with the truss elements, was done in every finite element (on the
nodes of it).

More specifically, about the FEM model:

e The original and the reinforcing plate was made from a 3D (deformable) homogeneous
shell (planar) element of thickness h = 0.001. The other dimensions were set to
0.2 x 0.1.

e The materials of both plates, were defined as orthotropic, with each constant defined
according to the analogue.

o The element type for the two plates, was a shell element, cubic, with four nodes.

e The integration points were defined to be five, using the Simpson’s method.

e The connectors were defined as truss elements, with a cross-section of 4 = 107° .

o The material of the connectors was set as isotropic, with a modulus of elasticity orders
greater than the material of the plate (the biggest) and zero Poisson’s ratio. In the next
analysis the material constant was set by “try an error”. For bigger moduli than the
desired, mathematical instabilites messed with the results and for smaller, the
connectors were deformed greatly.

e The FEM model was using square elements with side equal to 0.001.

e The joining of the elements should be done only as geometrical.

e The boundary conditions and the applied load to the plate were left to be chosen via
the analogue.

Sketches about the FEM model can be seen in fig. 93.

The analysis would be set as non-linear, with one step. The load would be applied in two
phases. Firstly, the pre-stress would be applied first and would affect the element (this is not
demanded by the theory, however, if not, the program would not understand the prestress)
and then the out-of-plane loading would be applied, for the out-of-plane deformation to be
produced.
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Fig. 93. Sketches from the FEM model.

C. The cases

As it was mentioned already before, the elliptic region (the region for which analogue 49
applies) is a region well studied (chapter 3). The purpose of this chapter is to study cases
where the anti-plane problem is hyperbolic, or even intermediate.

The main study of this chapter will focus on the hyperbolic problem, analyzing some cases.
The hyperbolic problem, is defined for combinations of velocity and microstructure, that has a
result 1 — (V2H?)/(6l%c,?) < 0. Three cases will be studied:

Case 1: A purely hyperbolic case, for which V2/c,2 = 1, H/(IV6) = 2
Case 2:  An elliptic — hyperbolic case, for which V2/c,? = 0.25, H/(IV6) = 2
Case 3:  An Intermediate — hyperbolic case, for which V2/c;? = 1, H/(IV6) = 2
These scenarios of combinations, all exist in the hyperbolic region, as it can be seen in figure

94 and thus the FEM model that was proposed on chapter 7.A, that uses the analogue 51 will
be used.
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Fig. 94. Cases 1, 2 and 3 and their position in the hyperbolic region.

Case 1 is a purely hyperbolic case, while case 2 and 3 shows some ellipticity. Case 2 is in the
boundary of the hyperbolic and the elliptic region and should prohibit behavior elliptic like (figure 27
and figure 28), while case 3 is in the boundary of all three regions, as its velocity is also sonic.

For those problems, one thing is left to be decided, the boundary conditions. A mode Il crack,
which is an anti-plane 3D problem, is defined by some boundary conditions. Those conditions
should be moved to the analogue plate problem, so some restrains can be inserted in the FEM
applications. (Those restrains are better to be imported for both plates, however, the rigid
connector will correct it). In the following figures (figure 95, 96, 97) those restrains are being
discussed.

The problem is free

to move or rotate in y
the boundary.

In all boundaries of

this rectangular

section

My=M,, =M, =0 @) X

p,(10=p (0.1=q

Fig. 95. The anti-plane problem and its boundary conditions.
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The edges in a mode Il problem, could be free to move, or rotate. The anti-plane load is applied in
the crack, for a specific length.
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Fig. 96. The plate restrains.

Because of the analogue suggested, no boundary conditions are needed. This, however suggests a
stability issues and must be treated.

For equilibrium reasons this
side needs o be pinned in
the x direction. This way the
prestressing load that was
vanished can be produced.

U:=B

A
y I
= N
—
PR -
The problem is anti-symmetric For this side however the X

and can be cut in half. The
displacements in the section
would be:

Lz=0
urzﬂ

Fig. 97. The boundary condition of the final model.
Using the obvious anti-symmetry, some boundary conditions that make the plate stable, can be
extruded. Also, the prestress from the one direction can be replaced with analogue restrains. This
way the plate is stable and can be solved.

i.  The purely hyperbolic case.

out-of-plane displacement
cannot be considered
zero:

u‘,:CI

Using the analogue 51, a system of some unknown variables is produced:



= =0 X
N’ cs?
(E;g —E;f) < V2H2> ; .
- - 7 = — = — Xl
(E)? —E)) 6l%c ?

629 -Gt VZH?
4—( = D= (2 >= - xii

(B9 —g) 7 6l%c?

An obvious solution of relation x suggests that N;¢ = 0,
As for relation xi, choosing Eg? = E;? = 10000 and E}’ = 0 demands E,’ = 40000.

Lastly by considering G,y = 0, in order relation xii to hold true G;;: = 5000.

According to the above, the purely hyperbolic problem can be described from the beneath
moduli.

Prestress N9 =0 N;g #0
Original Mat. | E,9 = 10000 Ey? = 10010 Gy, =10 52
Reinforc.Mat. | EI' = 40000 E)J =10 Gy} = 5010

The same system however, can be solved for a different combination of moduli.

Prestress N =0 N;,)g #0
Original Mat. | E;? =10000 Ey? = 1010 Gyy =10 53
Reinforc.Mat. | E29 = 13000 EJ =10 Gy} =510

By applying those moduli, to the model created for this scope, the beneath results are
visible:



I, Magnitude
16.7712-05
W . 57005
+4.063=-05
+2.7008-05
+1.3548-05
B .5 000e+00

Fig. 98. The out-of-plane displacement for the 15! case, the first alternative.

For the combination of moduli 52 the out-of-plane displacement form Mach cones. The angle of those
cones can be measured as 30 degrees, the same that can be calculated from relation 19. The
modulus of elasticity of the connectors for this scenario was set to 8 = 10°. For greater moduli,
mathematical instabilities occurred, while for smaller, the connectors were not as effective as desired.



L, Magnitude
+2.777e-03
+2.221e-03
+1 . 666e-03
+1.111e-03
+5, 554e-04
+8,85%9e-17

Fig. 99. The out-of-plane displacement for the 15t case, the second alternative.
For the combination of moduli 53, the displacement formed similar Mach cones (the angle is briefly
bigger), while the moduli were greatly different. The modulus of elasticity of the connectors was set
to 2 *10°. Further studies about the angle of the Mach cones are suggested. Some difference
between the theoretical angle and the calculated angle could be due to the finite plate, and
connections. Were the model infinite, then the angles should be more accurate.
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The profile of the crack in the purely hyperbolic case.

Under no circumstances the displacement is going to fade for greater lengths (as the hyperbolicity

suggests).

ii.

The elliptic — hyperbolic case

For this case, the system that needs to be solved is the following:

N;g =1- V—Z = 0.75
~0g
% cs2
(EOg rf) VZHZ
(ES9 - rf) <1 B 6lzcsz> -
(G VZHZ
(Eog rf> (2 - a—> -

One of the combinations for which the above system holds true, is the following:

Prestress N9 =75%1078 Ny? =1077

Original Mat. | E¢? = 10000 E;? = 10010 Gy = 2510 54
. rf _ rf _ rf _

Reinforc.Mat. |  EI/ = 10000 E; =10 Gyy = 10
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The results are the following:

U, Magnitude
+1.422e-04
+1.137=-04
+5,530e-05
+5.687e-05
+2,843e-05
+2,220=-11

Fig. 101. The out-of-plane displacement for 2™ case.
For the combination of moduli (54), the modulus of elasticity of the connectors was set to 0.5 = 10°.
Mach cones seems to be created. Relation 19 suggested that the slope should be 90 degrees.



ili.  The intermediate - hyperbolic case

Lastly, for this case the below system should hold true:

NOQ VZ
x
— 1 _ =0
N;g cs?

(Eog E) <1_ V2H2> _

(557 - ”‘)

(G . VZH?
(Eog rf) - 612C52

This system has a a solution the following combination:

Prestress N9 =0 Ny? #0
Original Mat. E;? = 10000 Ey? = 10010 Gy = 2510
Reinforc.Mat.  EI = 10000 EY =10 Gl =10
) ' x y xy

The results are the following:

I, Magnitude
+1.572e-04
+1.257e-04
+9,430e-05
+6.2862-05
+3.143e-05
+0,000e+400

55
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Fig. 102. The out-of-plane displacement for 3™ case.
For the combination of moduli (55), the modulus of elasticity of the connectors was set to 0.5 * 10°.
Mach cones seems to be created. Relation 19 suggested the slope should be 90 degrees.



8. Epilogue

Flexoelectricity, an extremely promising physical aspect that applies to any dielectric is
responsible for the generation of electrical polarization in a material while mechanically
stressed and proposes a wide variety of applications. These could be energy harvesting,
active vibration control, health structure monitoring, and others, all of them applications to be
seen a lot in the future. Flexoelectricity allows the construction of smart devices in buildings
such as sensors and actuators. Earthquake isolation could also be benefited. There are the
so-called FPS (Friction Pendulum System) isolators and even in some large structures like
bridges the isolation enables some connections to break during an earthquake, so, when the
lateral load is small the structure can stay still, but for higher loads, the connections allow the
displacements to increase and so the actions are reduced (something like active vibration
control). Flexoelectricity could improve those systems.

The reverse flexoelectric effect, producing strain gradient from electric polarization implies
that, flexoelectricity should be taken into consideration in the formulation of the total energy
density, and contribute to the constitutive laws. With this is mind, it is feasible to derive the
governing equation of many problems such as the anti-plane flexoelectric problem. Anti-plane
problems are extremely frequent in structural analysis, concerning reinforced concrete or
metal structures, earthquake engineering and composite materials. In this simplified
formulation, the polarization can be calculated.

A. The research

In this research the flexoelectric effect in the anti-plane dynamic problem of the mode Il crack
was studied. The static problem however is included in the more general dynamic problem.
For the formulation of the governing equation the total energy density was used. This way two
equations (3 including the Maxwell’s equation) were derived. One concerning the out-of-plane
displacement of the anti-plane problem, and one which allows the calculation of the out-of-
plane polarization.

The formulation of the equation referring to the displacement (which is similar to the governing
equation of a normal anti-plane couple stress elasticity problem), allows the distinction of the
problem in three regions, the elliptic, the intermediate and the hyperbolic. For the hyperbolic
region the displacement can be calculated using a method of the characteristics and a Mach
cone — like displacement can be suggested. The known displacement allows the calculation
of the polarization. As it was proven the maximum polarization is visible on the crack tip, and
at the end of the cohesion zone. Those two points are possible locations of electrical yielding
(abrupt change of the polarization vector).

Flexoelectricity in a dynamic problem like the mode Il crack can be combined with the
propagation of waves, both mechanical because of the displacement and optical because of
the polarization. The flexoelectric material is dispersive and thus the dispersion of the
produced waves was also studied. It is known that electromagnetic waves are emitted in an
earthquake. Earthquakes are due to the cracks at the flexoelectric earth’s mantle. Therefore,
a seismic action produces waves.



Lastly, as a similarity of the anti-plane flexoelectric problem and the prestressed Kirchhoff
plate was observed, an analogue was used for numerical solution (FEM) of an anti-plane
flexoelectric problem of a mode Il crack. More specifically, inspired by the Analogue Equation
Method, originally referred to the Boundary Elements, a methodology using two analog plates,
instead an original one, enables the numerical calculation of the hyperbolic problem.

For the hyperbolic anti-plane problem, the displacement was proved numerically to form Mach
cones. Those cones were created with respect of a pre-defined angle, for which the moduli of
elasticity and the prestress action contributed.

Conclusively, solving an anti-plane problem, whether it is defined for flexoelectric or for the
theory of couple stress elasticity, is analogue to solving a prestressed Kirchhoff plate. This
analogue that was suggested in the bibliography, also seems to apply in the hyperbolic anti-
plane problem, that reduces to a couple of parabolic plates.

B. Vision

The flexoelectric anti-plane problem was shown to be extremely prominent. Experimental
studies have yet to come. The connection of flexoelectricity with the propagation of waves is
also promising. Rayleigh or Stoneley waves could be investigated with flexoelectricity. Yet,
except for the mode lll crack, there are other anti-plane problems that can be investigated with
flexoelectricity like the bar pull-out which is an anti-plane problem and could be studied further.

Regarding the phenomenon of flexoelectricity my vision includes smart buildings, using this
effect for various applications. Smart isolations (active vibration control) could be used to cope
with seismic loading, or accidental loads. The reverse flexoelectric effect could be used to
improve the mechanical capabilities of the materials during those loading conditions. From an
energy concerning perspective, a building could harvest some electrical work produced due
to oscillatory loading like the wind.

One noticeable application of flexoelectricity, and more specifically the anti-plane problem of
a mode lll crack, is to act as a sensor that signals when a crack appears and so a repair is
needed. Cracks are usual in civil engineering structures, like in a concrete section, near a hole
in a concrete or a steel element and near the arc welding of a steel section. Flexoelectricity
could provide a signal to notify the incident of failure.

The above, however, need a further study of the phenomenon and optimization. This is my
aspiration for the future, as this phenomenon has proved worthy of studying. Experimental
research should be used to calibrate the theories. The study of problems similar to the anti-
plane problem is desired, and can have important applications in the fields of structural,
micromechanical, mechanical, or electromechanical engineering.



9. Appendices

A. The governing equations of the anti-plane flexoelectric problem

For a centrosymmetric cubic crystal structure, the energy density containing terms of strains
energy and polarizations can be written as follows:

N 2 2
U= > aP;” + (byy + b77)(P3,1 +P;, ) + 2e44 ( (813 + €31)P31 + (£23 + £32)P3
A.1

+2f12 ((513,1 + 531,1)P3 + (523,2 + 532,2)P3) + 2u(e13e31 + 323332)]

This formula was proposed by Giannakopoulos and Zisis (2019) and modified a bit and was
also used in their later studies (Giannakopoulos and Zisis (2020 a, b)). This formula is a little
peculiar. It contains terms of polarizations and polarization gradient, strain and strain gradient.
Some of them, however, are missing and this is because of the anti-plane problem theory,
which demands some displacements to be zero (and also some polarizations can be
considered equal to zero because of the electric anti-plane problem).

u, =w(x,y) =uz = w(x,x) #0

And because only one displacement exists and this is independent from its corresponding
direction, the strains are all zero except some shear strains.

1 (6u1 4 c’)u1> _
f11 = 2\0x, 0x,/
1/0u, OJdu,
2 =7 (5 + 5e) =0

1 (a‘l,lg au3> _ aW(xl,xZ) —0

33 =2\6x; " oy 93

_ _1(6u1+0u2)_0
f12 = &1 = 2\ox, 0x,)

_ 1 <6u1 6u3> _ Tow(xy,x2)
#13 = &1 7 2 6x3 6x1 B 2 6x1



_ 1 <6u2 N 6u3> _ Tow(xy,x2)
23 = &2 = 2 aX3 axZ B 2 axZ

Those are the strains that exist in the above relations. Also, their gradients are non-zero (with
the exception of the strain gradient €13, = €31, = €33 = €33 = 0) because as the strain is a
function of the two in-plane coordinates, so are their gradients.

From now on, those strains will be referred as shown below:

1
€13 = €31 = §u3,1

1

€23 = €32 = > Uz

1
€131 = €311 = §u3,11

1

€232 = &322 = 2u3,22

. . . 1 1
The cross-section shear strain gradient 13, = €31, = S U312 and gy31 = €31 = Uz 21, Were

not neglected because of the anti-plane problem theory, as they are not zero. However, in the
formula of the energy density they are coupled with polarizations that do not exist because of
the anti-plane formulation.

Similar to the anti-plane displacement the polarization can be also considered:

P1:P2=0
Py = P(x,y)

This means that also the only non-zero polarization gradients are the P;; and P ;.

From this point, the use of Toupin’s Variational Principle, described in Mindlin (1968) will be
the tool to extract the governing equations that describes the problem. Toupin’s Variational
Principle is similar to the principle of virtual work, with the exception of the electricity. With the
addition of electricity, the integrals should be specified carefully. As electricity is concerned,
the boundary of the body is not the end of the space, (as it can be considered, when only
mechanical works are in place) but just a surface that separates the space into parts.

The total space, can be symbolized as V" and is consisted of the space V that contains the
body and V' that does not. The surface that separates V from V* is the surface S.



0 —H dV + f (fl-6ul- + EOiSPi) av + ftidui dt=0 A2
v* 14 s

e H:is the total electric enthalpy density, which can contain terms of total energy density
of deformations or polarization. H = U — %so(qb_iz) + &P,

In the above relation ¢, is the dielectric constant at vacuum and —@; is the Maxwell
self-field. Because of the anti-plane problem P, = P, = 0, @3 = 0, the total electric

enthalpy density is reduced to the following: U — %60 (P21 + @2 )
This integral is applied to the total space, as it refers to the enthalpy.

e f;6u;: is the potential work density caused by body forces
e [E°,6P;: is the potential electric density caused by an initial in body electric field.
e t;0u;: is the mechanical surface action.

The general idea using Toupin’s Variational Principle is to reduce the above relation to one
integral referring to the space and one referring to the boundary. The variations of the
principal’s variables lead to Euler conditions and the boundary conditions.

Mindlin (1968) expanded this theorem to include the kinetic energy, by adding the term of the
kinetic energy to the above principle:

31 t
(SJ dtj T—HdV +.[ dt {f (ﬁ5ui + EOL'(SPL') av + ftiSui dt} =0 A.3
t * to |74 N

0

T: is the kinetic energy, T = %pu3u3

i ty
1) dtf T—H dV+f dt{f (ﬁ5u1+Eol6Pl) dV+ftL5ul dt}=0
to * to |4 N

ty ty ty
6] j T dvdt—é6 j H dv dt + j dt {f (ﬁ5ui + Eoi(SPL') av + fti5ui dt} =0
t * to * to |4 S

0

The first integral, that contains the kinetic energy, can easily be calculated through the
Hamilton’s principle, because fttlz 1) (%puiui)| dt can be considered equal to zero:
V*



s [[ac [ (o) = [ acl(bota)| - [ (Gona)ar]-

tl V* tl V*

t t2

1 1
=5 f (—puiui>| dt — & f dt f (—piliui) v

2 V* 2

t1 t1 v*

tz tZ

1
- f S(Epuiui) dt — f dt f (pii;ou,)dV
tl v tl v*

t2

= - f dt f(pul(Sul)dV
tl V*
And for the anti-plane flexoelectric problem ii; = ii, =0
ity

t2
1
5 f dt f (Epuiui) dv = — f dt f (piisSus)dV A4
£ v* v*

ty

The second integral is a little more complex. For the anti-plane problem U — %so (P21 + @2 )),
and as the variation is concerned:

1
61‘1 = 5U - 6{5 80(4)2'1 + 4)2’2)} A5

Starting with the variational of the total energy density, by using the rule of chain,

ou 6U6 +6U6 +6U6
£1a €13 FP €23 FP €23



8U = 0'138813 + 0'315813 + 0'235823 + 0'328823
+ 71130131 + 722306232 + T1310€31,1 + 72320322

— E38P; + E136P3 1 + E536P;

6U = 6Usym. str. + 6Udip. str. + SUpol. + SUpol. grad.

A6

The above rule of chain demanded that the total energy density is a function of strains, strain
gradients, polarizations and polarization gradients. The energy density that was initially
proposed by Mindlin (1968) and later got modified by Giannakopoulos and Zisis (2019, 2020

a, b) obeys this condition.

The stresses and the electrical load can be calculated as follows:

Symmetric Stresses

Dipolar stresses

031 =

023 =

013 = % = 2p€13 + eqqP3y
% = 2U&y3 + e4qP34
% = 2Ug3 + eqqP3;
032 = 658_12]3 = 2Uerz + e4q4P3

ou
T113 = @ = f12P3

ou

To23 = = P.

223 6223_2 fi12P3
ou

T = = P

131 6831‘1 f12P3
ou

T232 = = f12P3

08322



Effective local electric force

_ au
Es = ~ 3, = —aP; — fi, ((513,1 +e311) + (232 + 832'2))

Polarization gradient

Ei3 = 25— = (bgs + by7) P31 + e44(e13 + €31)
6P3,1

aUu
E33 = —— = (bgsa + b77) P33 + e44(€23 + £33)
0P3'2

Note that because some strains are equal (the strain matrix is symmetrical), the differentiation
in terms of the one strain, is non-zero for both strains. For example, because &;3 = &31:

0(e31) _ 0(€13) n d(#13) =14+1=2

d(e13 + €31)  0(e13)
B Oegs

deqs deq3 deqs deqs

And also:

0(e13831 + £23832)  0(e13831)  0(e23€32) a(5132)
== == + O == 2813 == 2831
0é€g3 0é€3 0é3 0€13

The same applies also in the strain gradients. Each one of the above is contributing to the
potential energy density which is used in the Variational Principle.

Energy from symmetric stresses

8Usym. ser. = 013013 + 0310631 + 0238653 + 03,0¢€3;

OUsym. str. = 20130¢&13 + 20336¢&53

8Usym. str. = 0130U31 + 0230U3,

5Usym. str. = (0135u3)_1 — 013,10uU3 + (0235113),2 — 023,0U3

5Usym. str. = {(ﬂu3,1 + 344P3,1)5u3},1 - (#u3,11 + 944P3,11)5u3

+ ((Hu3,2 + 944P3,2)5u3) )7 (.Uu3,22 + 6’44P3,22)5u3

SUsym. str. = {(Hu3,1 + 944133,1)5113}‘1 + {(Hu3,2 + e44P3_2)6u3}‘2

_{(Mu3,11 + 944P3,11) + (.Uu3,22 + 944P3,22)}5u3



The term of the gradient will consist a boundary condition while the term with §u; will directly
modify the equation.

And by simplifying more:

0Usym. str. = {(HU&L’ + e44P3_i)6u3}’i — {(uV?u3 + €44V?P3)}5u; A7

Energy from dipolar stresses

O0Uqip. str. = T1130€131 + T1310€31,1 + T2230€23 2 + 123206322

6Udip. str. = 2T1130€131 + 2722308237

SUgip. str. = T1130U311 + T2230U3 2

6Udip. str. = f12P36U3 11 + f12P36Us 5,

SUaip. str. = (f12P36u3,1)‘1 — f12P3,10u3, + (f12P35u3,2)’2 = f12P320u3
8Uaip. str. = (f12P36u3) 11 — 2(f12P3,15u3,1)’1 + f12P3,116U3

+(f12P36u3),22 - 2(f12P3_2(5u3_2)’2 + f12P3,225u3

Ugip. str. = V2(f12P30us3) — 2(f12P3,i5u3,i)_i + f12V2P36u; A.8

The first two terms will take part in a surface integral that will describe the boundary conditions,
and the last term will be considered in the equations.

Energy from the Polarization

8Up0l = —E36P3

8Upo1. = aP36P; + fip (((513,1 +e311) + (€232 + 532,2))) 6P;

6Upor = aP36P; + f12(u3,11 + u3,22)5p3

8Upor = {aP3 + f1,V*u3}6Ps A9



And lastly, Energy from the polarization gradient

8Upot. graa = E136P31 + E336P5,

1 1
O0Uporg = {(b44 + b77)Ps31 + esy (§u3,1 + §u3,1>}5p3,1

1 1
+ {(b44 + b77)P3 ;5 + €4y (E Uzo + §u3,2>} 6P;,

0Uporg = [{(b44 + b;7)P3 1 + ‘5'441‘3,1}5})3],1 - {(b44 + b;7)P3 11 + 944u3,11}5P3

+[{(b44 + b;7)P3; + e44u3,2}5p3]‘2 - {(b44 + b;7)P;3 5, + 944u3,22}5p3

0Uporg = [{(b44 + b;7)P;; + e44u3,i}6P3]’i — {(bas + b77)V?P3 + €4, V*u3}6P; A.10
- - u 1 2 2
Also, the variation: 8{80 580(‘1’ 1t® ,z)}

1
6 {SO E ((I)Z'l + ¢2,2)} - 80(1),16(1),1 + €0¢'26(p’2

1
1) {30 E((pz'l + @2’2)} = {So(p‘lg(p}'l - SO¢,116¢ + {So(p‘ZS(p},Z - SO(I),ZZS(D

1
5 {so S(@%,+ q>2,2)} = {c0®,00) , — £ V205 A1

aZ
axlz

expression, it symbolizes the Einstein summation for two values, e.g. {eoqﬁ,i&lb}i:

{e0®160} | +{e0®,50},

2
+ aa_ and when the index i exists twice in the same

In those relations, of course, V2= 2
2

By importing those relations (A.6, A.7, A.8, A.9, A.10, A.11) into relation A.5:



1
SH = 8U — 8 {Ego(czﬂ_l + ¢>2_2)}

SH = {(pus; + 944P3,i)5u3},i — {(uV?usz + €44 V?P3)}6uz + V2(f12PsSus)

_2(f12P3,i6u3,i)’i + f12V?P38us + {aPs + fi,V?us}6 P
+[{(b44 + b;7)P;; + e44u3-"}6P3],i

—{(bgg + b77)V?P; + €4, V?u3}6P; + {socb_ié‘qf)}’i — g V2DSD

SH = V?(fi,P36u3) + {(#u3,i + 944P3,i)5u3},i - 2(f12P3,i5u3,i)li
+[{(bas + b77)Ps; + esatiz }6Ps]  + {e0®,: 60},
—(UV?ugz + e44V?P3)6us + 2f1,V?P38us + (aP; + f1,V2u3)8P;s

And the integral:

t1
5[ dth—HdV
t *

0
ity
ty

v*

tq
- f dtf {Vz(f12P36u3) + {(.Uu3,i + 944P3,i)5u3}i
to . '

- 2(f12P3,i6u3,i)’i + [{(bas + b77)Ps; + 944113,1‘}5133]11- + {50‘1’,1‘5‘15}’[-
— (uV?u3 + 44 V?P3)8us + f12V2P36uz + (aPs + f1,V?u3)5Ps

— {(bas + b77)V?Ps + €43 V23 }6P; — £yV2060 | dV



ty
5] dth—HdV
t *

0 5
:f dt | {V*(fi2Ps6u3)}av
¢

0 v
ty
+f dtf {—{(Mu3,i + 944P3,i)5u3}i + (f12P3,i6u3,i)i A.13
to v* ’ ’
= [{(bas + by7)Ps; + eaqus JOPs] , — {e0®,60} fav
t
+-f ldt-f {—pu35U3 + (‘uvzu.g + 944VZP3)6u3 - f12v2P351L3
to v*

- {aP3 + flszU3}5P3 + {(b/l'/l- + b77)V2P3 + 64,4,VZU3}5P3 + SOVZCD(S(Z

Now, the divergence theorem can be used and the first part of the integrals, which contains
terms of the derivative of the variational, can be converted to a surface integral and be used
for the boundary conditions:

J. {V2(f12P36u3)}adv = f(f12P35u3),ini ds A.14
v* S
And also:

f {—{(ﬂu3,i + 344P3,i)5u3}i + (f12P3,i6u3,i)i - [{(b44 + b;7)P;; + 344u3,i}5p3] ;T {So‘p,i5¢}i }dV
v ' ’ ' ’
= A.15

f{—(ﬂu&i + €44 P3 )i 6U3 + f12P3 16Uz 1y — {(Daa + b77)P3; + €aauiz;J6Psn; — €0 @ |6, }dS
s

At this point, it should be noted that because this integral is referring to space V* which is the
total space, a distinction should be made. According to Gauss theorem of divergence, the
volume integral of a space surrounded by a specific boundary can be turned into a surface
integral referring to that boundary. This means that the integral should have been in space V(
V*=V+V’'). The integral in the space V can easily be processed via the Divergence
Theorem. Also, regarding the Integral referring to space V', the divergence theorem can also
be applied as the boundary surface remains the same, but with opposite sign, as the direction
of the unit vector becomes opposite:



V*("')’i v = fv(...)_i dv+fw(...)_i dv

. . !
— f(___)fromstde towards Vni das — f(___)fromstde towardsV n; das
S S

The body, in which the strains and the polarization is being applied, belongs to space V and
thus the integral fV,(...),i dV, which refers to space V' should be zero. This is something that

cannot hold true for Maxwell’s self-field, and thus the second (negative) integral exists. Its
difference should be zero by considering a continuity, but if no continuity is in place, then the
result of this difference should be a jump condition:

f {—{(Hu3,i + €44P3,i)5u3}i + (f12P3,i5u3,i) 0T [{(b44 + b;7)P3; + 944u3,i}5p3] ; }dV
V* ’ B )

f {_{(#u3,i + 344P3,i)5u3}i + (f12P3,i6u3,i)i - [{(b44 + b;7)P3; + 944u3,i}5p3] ; } +0
v . , .

While:

fv {Heovi80) Jav = —& fv o590}, Jav
= —& { fv {060}, }av + fv , {{cpli&p}’i}dv}
. {L {((p’iad))from side towardsV,_ }dV B L{{(‘l’,im’)ﬁom side towards V’ni }}dv}
N
= —¢ { fs {|o;60] ni}dV}

- f (—eo[@,] 60} av

By importing relation A.14 and relations A.15 into relation A.13:



t1
5f dth—HdV
t *

0
ty
=f dtf(f12P35u3),ini ds
to N

t1
+ f dtj{—(,uu&i + e44P3'i)ni5u3 + fi12P5,6u3,;n;

- {(b44 + b77)P3,i + e44u3,i}6P3ni — & [d{i]é‘(l)ni }dS

A.16

iy
+f dt.[ {—pu38u3 + (‘MVZU3 ‘I’ 644VZP3)5u3 - f12V2P35u3
to v*

—{aPs; + f1,V?u3}6P3 + {(bys + b77)V?P3 + €4, V*u3}5P;
+ £, V208D }dV

With those calculations the first integral of Toupin’s Variational Principle is complete. For the
second integral, fV(fl-cSul- + E%;6P;) dV, since both mechanical and electrical action are applied
to the body and not to the outside, easily this integral can be manipulated to the following:

f (fi5ul- + E0i6pi) av = (fl-8ui + Eoidpi) av
%4 v*

And for the anti-plane flexoelectric problem the above relation can be written as follows
because the in-plane potential displacement and polarization can be ignored (u; = u, =0 -
5u1=5u2=0, (P1:P2:O_)6P1:6P2:0)

f(fl-(Sui +E°8P) dV = | (fy0us + E%36P;) dV A7
\%4 v*

And finally, by importing both A.16 and A.17, into Toupin’s Variational Principle as proposed
by Mindlin (1968), A.3:

t1 t1
5 dtf T—H dv+f dt{f (fidu; + E°;6P) dV+fti6ul- dt} =0
to ¥ to vV s

U d



f(f12p35u3),ini ds
S

+ L{—(ﬂu&i + e44P3);8U3 + f12P36uz i,

—{(bag + by7)Ps; + €44usz,;}0P3n; — & [d{i]&bni }ds

+ f {=piizbus + (uUV?us + €44 V?P3)Suz — f1,V*P36us
- {‘C/ZP3 + f12V?u3}6P; + {(bas + b77)V? P + €44 V*Uu3}6P;

+ EOVZQ)CSQD }dV + (f38u3 + E036P3) av + ft36u3 dt=0
v* s

f {—pﬁ36u3 + (uV?u3z + €44 V?P3)Sus — f1,V2P36us — {aPs + f1,VZuz}6Ps
+ (f36U3+E036P3) }dV

V*
A.18

+ j{—(#us,i + 944P3,i)ni5u3 + fi12P5i6us;n; — {(b44 + b;7)P;; + 944u3,i}5P3ni
s

— &o[®@;]6Pn; + tz6us }dS =0

The first integral refers to the in-body condition, while the second describes the boundary
condition.

The in-body condition, that consists of three variationals, provides three equations because
the variationals can take any value possible independently, as described by Giannakopoulos
and Zisis (2019, 2021 a, b). The first equation can be obtained through the factor of u; and
describes the Conservation of linear momentum, the second one that is produced by the factor
of the potential polarization §P;, describes the conservation of the electric field and the last
one, that is produced from the potential of Maxwell’'s self-field §& describes the Maxwell
equation. Those equations are also called Euler conditions.

The conservation of linear momentum (du3)

—piiz + uV?us + €44 V2P — f1,V2P3 + f3=0
1V2uz + (eaq — f12)V2Ps + f3 = pilz A.19

The conservation of electric field (6P5)



(€44 — f12) V2

—aP; + > Uz + (bag + b77)V?P; + E%5 =0 A.20
Maxwell equations (6P)
Vip =0 A.21
92 | a2
Note that the term V2= 32 T o

Also, with a similar way the boundary conditions can be extruded, from the second integral:

—(pus; + esaPsi)n; +t3 =0
{(b44 + b77)P3; + 344u3,i}ni =0
—80[‘1)‘1']711' =0

fiz2P3in; =0

By considering the gradient to the direction perpendicular the the surface, the derivative in
respect of the unit vector can be written as beneath.

0 0 0 0 0

ni=—=n;=— +ny,—
an;  on dx; toxg  Zoxy,

(...)'n = ni,("'),i
This way, the boundary conditions | can be rewritten with the use of ii as follows:

—(,Llu3'n + 344P3'n) + t3 =0 A.22



(bgs + by7)P3p + €443y =0
—&o [‘Dn] =0

f12P3,n =0

And of course, because the problem is dynamic, there should also be some initial conditions.

The construction of the governing equation can happen by solving the system of the
conservation equations. First by considering the initial body force f; equal to zero and then by
solving equation A.19 in terms of polarization’s second gradient V2P

1V%us + (e4sq — f12)V?P3 = pils

pils — uVZus
VZP — - - A23
’ (ess — f12)

Importing A.23 into equation A.20, while also considering the initial out-of-plane electrical field
equal to zero:

—aP; + (byy + b77)V?P3 + (€44 — f12)V?U3 = 0

piis — uV2u
—aPs + (byy + b77); + (esa — f12)VPu3 = 0
(ess — f12)
And then differentiating twice each variable (multiplying all terms with V2= aizz + %22), and
1 2

then substituting into relation A.23 once again:

2

pilz — puV-usg p
—a————————+ (bys + by7)
(ess — f12) “ 77

V2ii, — uViu

(esa — f12)

3
+ (eas — f12)V*us =0

This relation is similar to the one proposed by Giannakopoulos and Zisis (2019, 2021 a, b)
and can by written simpler as follows:



pii3 UV?uz by + by

5.  bagt+ by
u —

—ta : - 53— ————uV*uz +eu — f1,V*u3 =0
€4s — f12 €ss — f12 €ss — f12 €44 — f12

—a

apuV?uz — (bag + by7)uV*uz + (ess — f12)°Viuz = apiiy — (bas + by7)pV?ils

bay +b
_ bt brr) - 77) pVZil A.24

UV {(bzm + by )p (ess — fi2)?
5 — _

V4 — .o
p o } Uz = pus

baatby; (€44 ~f12)*
ap

The term represents the microstructural length [ from which the below

relation holds:

E _ bss + b7 _ (e44 — f12)?
2 a au

A.25

(bagatbyy

Also, the term ) represents the micro-inertial length H, in respect to the following

equation:

H?  (byy + by7)

i A.26
12 a

Those two lengths should always be greater than zero, (in addition to the other parameters
from which they consist of). In particular, the below limits to the parameters should hold:

u>0
A>0
fi2 >
S
by +b77 >0
1t(bag + by7) — €44 > 0

fasa >0

Note that the parameter f,,, is not contained in any relation.

Finally, importing the two length parameters A.25, A.26 into relation A.24 results to the
governing equation that refers solely to the displacement, by having taken in consideration
also the reverse flexoelectric effect.:



2 HZ

uViug; — u— 5 Viug = piiz — EpV2u3 A.27

The second equation, that describes the produced polarization in terms of displacement in the
anti-plane flexoelectric problem, comes from the conservation of the linear momentum A.19,
this time, being solved in respect to the displacement,

u e
V2u, = pﬂ—f“ GT . — S12) 4t T2 y2p, A.28

and then importing into the conservation of the electric field A.20:

€44 — i e
—aP, +( a4 — f12) {P s (€44 — f12) V2P3} + (bys + byy)V2Ps = 0
2 U U
by + b €44 — e
P3 _ {( 44 77) _ ( 44 f12) }V2P3 ( 44 flz)pu3
a ua ua
And then by the two length parameters:
12 (€44 — f12)
—_y2p, = 2% Ji27 . A.29
Py 3 VeP; = i il

The anti-plane flexoelectric problem is described by A.27, A.29, A.21, subjected to the
boundary conditions A.22.



B. The transformation of the anti-plane flexoelectric equation (remove the time)

Both equations A.27, A.29 are dynamic equations, as they contain terms of acceleration. This
is something that easily can be dealt with, by considering a second system of coordinates
(¢,7m). This system should be independent from the velocity and thus it should be moving with
the same velocity that defines the problem dynamic.

The easiest example, is the propagation of a mode Ill crack, that moves with a constant
velocity V. This is also, one of the most common dynamic anti-plane problems.

This transformation, that was proposed by Giannakopoulos and Zisis (2019, 2020 a, b),
suggests the new system of coordinates to be consisted of the (¢,n) coordinates, which
connect to the global coordinates (x, y), through the below formula:

E=x+Vt
B.1
n=y
The differentiations are also modified:
0?2  09° 02 92
V2= S I
ax2 oy~ 9e2 T o2
0* 0% o* 0* 0* 0%
Vi= V2Vl — 4+ 20—+ —=—+2——+— B.2
ot T oxzay? T oyt T aet T “aitan | ane
02 02
—_— =% —
ot? 0&2
and because of the chain rule, after importing those (B.2) to A.27:
0%uy 0%uy 1?2 9%uy 12 9%uy 12 9%us 0%u pH? 0*u pH? 0*u
U +u — U= - 2u—= —u—= = pV? -V? -V?
0&2 on? 2 0&4 2 0&20n? 2 on* 0&2 12 9¢&4 12 0&20n?

U d

12 2

12 2

= oV) 0%us 0%u; N <V2 pH? l2> 0*us N <V2 pH? l2> 0*us 12 9%us

9ez T HF gz FI aczonz M2 ot T

U d

p 12 2

" pV2\0%u; 0%u; [(pVZH? [1?\0*us; [pV?H? 212 0*us 20%u;
© ) agz T o2 w12 2 ) 9 aczon? M2 ot T

Also, by substituting ¢ = /u/p, the wave shear velocity,



1 VZ 62u3 n aZU3 lZ V2H2 64u3 lZ VZHZ 64U3 lZ 64u3 —0 B3
c2) 082 onz 2 612c2) 9&% 2 612c2 ) 9&20n2 2 on* '
While the second equation A.29 transforms as follows:
12 (0%P; 02P - 02
P, —— 5 3) _ 2 p(ess — f12) 0°u B4
2\ 0é2  on? ap 0¢&?

Note that, this transformation demanded the velocity to be constant (steady state case). The
general case however, demands a transformation like the following instead of B.1:

t
E=x+j V(x,y,t))dt
t

0

n=y

but by the use of numerical integration (Simpson’s rule, Gauss’ 1%t order (rule of the middle
value)), any velocity can by modified with this way.



C. The couple stress elasticity theory

The theory of Couple stress elasticity, described by Gourgiotis and Georgiadis (2007) follows
an alternative perspective, through the balance laws of continuum mechanics and specifically,
the conservation of momentum. The conservation of momentum can be written in the below
form as two integrals, one defined in the volume of the body of interest and one in the boundary
of the body. This time, all things are mechanical with no electricity involved and so a more
detailed perspective of space is not needed (as in the flexoelectric problem with volume V*).

The equation of the linear momentum is:

jTi(">ds+fFi dv =0 C.1

N 14

And the equation of rotational momentum is:

ijTk(n)eijk + Mi(n) ds + ijerijk + Ci dV =0 C2
%4

N

In the above relations T; is the surface force-traction, M; is the moment per unit area (moment
traction), F; is the body force and lastly C; is the body moment.

The specific characteristic of the couple stress elasticity, is that both the stress tensor and the
couple stress tensor (made from the moment traction), are not necessarily symmetrical. Those
tensors are relevant to the traction, when the surface is defined.

Ti(n) = O'ijTle C.3

By importing C.3, C.4 into relations C.1 and C.2, the divergence theorem can be used, to
transform the surface integrals to volume integrals.

fTi(n) ds :fO'ijT')’lj ds

N S

= f 9ji,j AV

14



ijTk(n)eijk + Ml'(n) ds = fXijanmeijk + [lijTle ds

N N

= fajkeijk + XjOmk,meijk + Mjij AV
74

Equation C.1 transforms to:
f”ji,j +FidV =0
4

While equation C.2 is transformed to the following:

fo-jkeijk + XjOmi,m€ijk + Hji j + Xijeijk + C; av =0
|4

And by importing relation C.5 into the above:
f Ojk€ijk — x]-Fl-el-]-k +.uji,j + x]-erijk + Ci av =20
14

O-jkeijk + .uji,j + Ci =0 C.6

Note that both o;; and y;; are asymmetric tensors, in contrast to the classic elasticity. However,

it is possible for a decomposition of stresses to occur. The stresses could be decomposed into
a symmetric and an anti-symmetric part, and the couple stresses into a spherical and a
deviatoric part.



5. = Ju g 9y~ 0
g 2 2

=Tij+aij C.7

1
Hij = Myj + 7 0ijbick C.8

This way can be written as follows:

Ojkeijk t Kji,j + C; =0
Tjkeijk + ajkel-jk + M]l,] + Ci =0
Tik€ijkemii T AjkCijkemii + Ujijemu + Ciemyy = 0
TjkCijkCiml + AiCijiCim + Ujijemi + Cimy = 0
Tjk(6j7n5kl - 6}'161(771) + ajk(6j7n5kl - 51'151071) + .uji,jemli + Ciemli =0
(Tt — Tim) + (@ — Q) + Wi jemui + Ciemy = 0
Tt = To) + (@ + apy) + Ujijemii T Ciemui =0

1 1
Tt + 5 Hjij€mii + 5 Cienui = 0 C.9

With the same procedure C.5 transforms to the following:

O-ji,j+Fi =0

Tij’j—aij’j+Fi:0 C.10

Lastly, the substitution of C.9 into C.10 leads to the single equation that describes the
equilibrium in the couple stress elasticity problem:

Tijj — @ijj T Fi =0

Tl — Uiy + B =0

1 1
Tl + (E.uji,jemli + ECiemli>l +F,=0
1 1
Tty + 5 Wi ji€mu + ECi,lemli +E,=0 C.11

And because:



l6ij#kk
ijl

Hjijtemii = My ji€mi = 5 emii = My, j1€mii CA12

The balance law, equation C.13, gets the following form:

1 1
T + > My, jtemii + ECi,lemli +F,=0 C.13

The free index is the index m and C.13 is equivalent to three equations. By ignoring the body
actions:

1 1 1 1 1
T11,1 T T122 T T133 + §m13,12 - §m12,13 + §m23,22 - Emzz,zs + §m33,32 - Em32,33 =0
1 1 1 1 1 1

Ta1,1 T Toz2 T T233 + 5 Mi113 5 Mz + 5 Ma2123 — 5 Ma2321 + 5M3133 ~ 5 M3331 = 0

1 1 1 1 1 1
T31,1 T T32,2 + 7333 + Em12,11 - Em11,12 + §m22,21 - §m21,22 + Em32,31 - §m31,32 =0

Note, that relation C.12 is a result of the following calculations, considering that e,,;; is not
zero for the following combinations and also considering that u;, is smooth enough:

€mii
emi = 1 emi = —1
{1,2,3} {1,3,2}
{2,3,1} {2,1,3}
{3,2,1}
85— =)
XXy xj Xy jEmli kk,jlEémlj , ,

The strains can be defined geometrically, as the theory can be considered linear (couple stress
elasticity does not consider the contribution of second order derivatives in the strain
formulation, but the contribution of strain gradient).



The strains

&ij = %(ui,,- +u;,) C.14
The Spins
wij = %(ui,j - ;) C.15
The rotational vector
Ay =%eijkuk,j C.16
The strain Gradients
Kij = Wj; = %ejkmum,ki C.17

The strain gradient matrix seems to be asymmetrical and also, its trace seems to be zero. The
compatibility equations can be the Saint Venant's compatibility equations.

By assuming a linear isotropic material, the potential-energy density can take the following
form:

1
U= U(Eiijij) = EAS”EU' + /'l-gijgij + ZT]Kinij + ZU’Kinji C.18
The constitutive laws are produced via differentiations:

Stresses (total stresses)

ou 1 1
= E){Sii(sij + EASJJSU + ZMEij = Askk&j + Zﬂgij C.19

Ti: =
H c')sij

Couple stresses (deviatoric part)

au , ,
mij = W = 477Kij + 27] Kji + 27] (Kij6ij)6ji = 477Kij + 477’Kji C.20
U



Note that through this method only the symmetrical stresses can be calculated, as the
differentiation was done in terms of the strains and the spins were neglected in those
formulations. The strains are symmetrical and thus this constitutive law refers only to
symmetrical stresses. The strain gradients are produced from the spins, which are deviatoric,
and through differentiations, the strain gradients k;; deviatoric should remain. Thus, the couple

stresses that are found from the total energy density are the deviatoric part. The spherical
part, however, is not needed, since it is not present in relation C.13 (the balance law).

By importing C.19 and C.20 into relation C.13, the equation that is produced describes the
couple stress elasticity problem.

iv.  The anti-plane formulation in terms of couple stress elasticity

Considering an anti-plane formulation, the above relations are simplified greatly. Since:

u, =uz =wx,y) =w(xy,x;) #0

From C.14, the below results can be extracted:

1
0 0 Eu:g’l
1
gij = 0 0 E u,3’2

1 1
lium Eus,z 0 J

From C.15, the spin matrix gets the following form:

1
0 0 Eu3,1
1
Wij = 0 0 7432

1 1
l—§u3,1 —§u3,2 0 J

The spin matrix has three independent components that can be written in a vector form.



1
) U3

w; = 1

> Uzq
0

By applying in C.17 the corresponding rotational vector:

(% U321 — 1u3,11 O]

2

Kij = 1 1
§u3,22 —§u3,12 0
0 0 0

This way the constitutive laws C.19 and C.20 are described by the following matrix relations:

0 0 HUzq
Tij = 0 0 u U,3'1 021
Huzy HU3q 0
2 +n") uzy —2N Uz +2n Uz 0
Mij =120 U3z, — 21 Uzqq =2 +n)uz 12 0 C.22
0 0 0

At this point, the balance law should be used (C.13). By deleting the component that is equal
to zero and neglecting the body actions, the below relations are produced:

form=1
C.23

1 1 1 1 1
T11,1 +T122 T T133 + 5Miz12 =5 Mi213 + 5 M2322 = 5M22,23 + 5Ma332 =5 M3233 = 0

1 1
T13,3 — Em12,13 - Emzz,za =0



form =2
C.24

1 1 1 1 1 1
Ty11 + Topo +To33 +sm —=m +-m —=m +-m —=-m =0
211 T T222 T 1233 T5M1113 = 51311 T 5Ma1,23 = 5 Ma321 T 5 M3133 — 5 M3331

Ty33 + Em11,13 + Em21,23 =0

form =73
C.25

1 1 1 1 1 1
T31,1 T T32,2 T 7333 + 5 Mi211 =~ 5 M2 + 5 M2221 = 5M21,22 + 5 Ma231 = 5M31,32 = 0

1 1 1
T31,1 T T3z2 + Em12,11 - Em11,12 + §m22,21 - §m21,22 =0

Obviously, the first two equations C.23 and C.24 are self-satisfied, as the derivatives in the
anti-plane problem in respect of the out-of-plane direction are zero.

Importing C.21 and C.22 into relation C.25:

1 1 1 1
T31,1 T T32,2 T §m12,11 - Emll,lz + §m22,21 - §m21,22 =0

1 1
(u u3,1),1 + (u 7«‘3,2)12 t3 (=2nugq +27 713,22),11 —3 (2t +n" u3,21)’12

1 ! 1 !
+§ (—2(77 +7n") 113,12)’21 3 (2 Nuggy —21 u3,11)'22 =0
Huzq1 + UUszp —NUz1111 T Us122 — 2(0 + 1) Uz 1122 — MUz 2222 + 1 U3 1122 =0

2 1 I 1 _
UViU3 =N Uz 1111 T Uzq122 = 2N U3 q122 — 27 Uz 122 — N U3 o202 + 1) Uz 1122 =0



uVius — 77(”3,1111 + 2u3q122 + u3,2222) =0

1 V?uz — nV?(Viuz) = 0

And by considering the microstructural length:

= [2— C.26

(This means thatn = yg).

the governing equation of the anti-plane static problem according to the theory of couple stress
elasticity is best defined by relation C.27:

‘uVZu3 —Uu—= V4u3 = Cc.27

In the above equation there are obviously body actions, which may be forces per unit area, or
moment gradient per unit area. In any case, however, they can be added in the same way. By
considering the body action X5 equal to:

1
X3 = —ECi,lew — F3 C.28

And by adding C.28 into C.27 (in left hand-side):

2

IJVZU,3 - ﬂ? V4u3 = X3 C29



v.  The anti-plane dynamic couple stress elasticity problem.

The dynamic problem can be added in the above formulation, through the addition of kinetic
energy, and the use of Hamilton’s principle. The principle of virtual work can have the following
form (note that, the full part of the principle needs the space integral):

tz tZ
ff6T+6U+6Adth=ff(SWnchdt C.30
tp V t, V

e T is the kinetic energy. In this problem, because of couple stress elasticity the kinetic
energy can be written as follows:

1 H?
T = 3 pitsity + 2 (6161 + G67) C.31

Because of the theory of couple stress elasticity, which contains components of strain gradient
made from the spin tensor, the spins should be included in the expression of the kinetic energy.

In the above relation H is the micro-inertial length and (...) symbolizes the time derivative.
Obviously, the potential kinetic energy is the following:

e JPHE
oT = pu35u3 + T(w16w1 + (1)26(1)2)

And through the use of Hamilton’s principle:

t t
2 o pHY
f(S‘Tdt: fpu36u3+T(w16w1+a)25w2) dt
t1 t1
R NN I pH? )
u36u3 + T(w16w1 + (1)26(1)2) - f pU36u3 + T((L)l(s(l)l + (1)26(1)2) dt
tq t1

tz
i} pH? .
=0- f piizouz + T(w16w1 + w26(‘)2) dt
t1
t2
i} pH? N
=— f piizdus + 7(113,25113,2 + u3,15u3,1) dt

t1



As the space integral is concerned, this formulation can be splitted in a space integral and a
boundary integral, following the divergence theorem:

t
2 i} pH? i}
f f 6T dt dV = f - f pu35u3 +F(U326U3’2 + u3'16u3'1) dt dV =
%4 t1 4 ty

t2

i} pH? )
= —f f plizduz — E(u3,225u3 + ii3116u3)
Vot

pH? [ .
+ 12 [(u3,25u3)'2 + (u3’16u3)‘1] dt dV

t
2 i} pH? ) pH? )
= f - f pu35U3 - ? (u3’2267.l,3 + u3,115U3) av — EI(U3’2n26U3 + u,3’1n16u:’))d5 dt C32
t1 |4 S

By neglecting the kinetic energy, the governing equation is C.29. While taking it into account,
it produces one additional term, which is described by the volume integral and one additional
boundary condition, which is described by the surface integral.

The term that should be added, in relation C.29 because of the dynamics of the problem, is
contained in the volume integral in relation C.32, and specifically is the factor of the potential
displacement.

. . pH? .
Ad.Kinet.Term = —piiz + F(V2u3) C.33

Adding relation C.33 in the governing equation C.29 produces the governing equation of the
anti-plane dynamic couple stress elasticity problem.

2 2
. pH "
Hvuz — ) Viug = X5 + piiz — 7(V2u3)

And by neglecting the body actions,

2 2

. PHT .
uv?uz — sy Viuz = piiz — 12 (V2ii3) C.34

Note that relations C.34 is the same as relation A.27 and thus the transformation that is
described in Appendix B holds.



The same equation would have been produced also by using the principle of virtual works all
along. For this scenario:

e U is the total energy density, that can be described by relations C.18. This energy
contains displacement first and second gradients and thus needs once more the
divergence theorem to expose the potential displacement du;. Also, some boundary
condition would have been produced from this procedure.

e A s any other work that may occur because of conservative forces. In this, dumpers
can be included. In the previous procedure this energy is produced from the external
body actions.

e W, The work of non-conservative action can be included in this energy. In the
previous procedure, the work of the body actions is the summation of the energy of the
conservative and non-conservative actions.

The last two parts can be neglected, in order for the calculations to get simpler.



D. The transformation on the hyperbolic problem based on the characteristics

Giannakopoulos and Zisis (2021 a, b) propose for the hyperbolic region, a transformation, that
helps the calculation of the displacement and also the polarization, on the hyperbolic case,
based on characteristic.

This transformation, that follows a spiral group theory, uses a new system of coordinates, of
one variable and this one should be wave-like.

The transformation consists of two parts. The first is applied on the coordinates. One new
coordinate 77 is used instead of (¢,n). This transformation can be described by the following
relation.

-1 D1

Also, the derivatives are formulated as follows:

0(..) _ ()97 _10(..)

& o 98 1 o7

02(..) 0(8(..)/08) _ 19(0(-)/0§) _ 19((.-)/aT) _ 162(...)
&2 0¢ Tl on e on INERLE

() _ 10*C.)
98+ 14 ant

a(.) a(.)oq 1 |vzH? a(...)
o " om an - T1 -1 D.2
on o 0n L\ .[6l%cs? on -

0°(.) _1(V2H? _ \0’(.)
_< - ) o’

94(..) 1 [V2H? 1204(...)
)5

0*(..) 1 [V2H? 9*(...)
on20&2 14\ 612¢c 2 an*

Importing the derivatives D.2 to equation B.3



L( V2 \Pus 1 (VPH?  \Pus 1 VPH?)0'u
2 ci2) on? | 12\ 6l2c? oz 21* 612¢,2 ) ot

P1(VHE \(,_VPH\o'uy 1’1 (VPH? 1204(...)_0
2 14\ 612¢,? 612c,2) ant 2 14\ 6l2cg2 ot

1 v2\ 1 [V2H? 0%u,
—1-=)+=(=—=-1])t=
12 c;2)  12\6l%cs? on?

1 VZH?  V2H?  (V2H2\° vZE2\*  p2p? 94(..)
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The second part of the transformation requires the substitution of the out-of-plane
displacement with its logarithm. This transformation is described by the following relation:

h(7) = Inug D4

This way:
0%u; 0%" 9 (de™\ 9 ( -0h\ 0de"oh . @ (oh
- =S =zl =2le s ) =5 te = 5
on?  an* oq\om) om\ a7q) 007 0 \on
2 7\ 2 27
07us =eh % + eEﬂ D.5
772 a7 772

Importing the second transformation D.5 into relation D.3, the governing equation of the out-
of-plane displacement, in the hyperbolic problem becomes the following (D.6):

VZHZ VZ
(612c52 - c_Z)

Also, the polarization equation, B.4, transforms as well:

aEz+azﬁ—0 D.6
o) 02| '




. L2107Ps 21 (V2H? 0°P3 . 1 p(ess — f1z) 9%u
3212002 212\6l2c,? a2~ 12 au 072
190%2P; 1[V2H? 0%P;

6l2%c,?

—p2 lp(€44 — fi2) 0%u
on? 12 au on?

VZH? 0%Py _ V_ZP(644 — fi2) 0%u

Py — TR~ TR D.7
Relation D.7 has the below form:
P;—A %2—;23 =B Z%l D.8
Where:
B V_zp(e44,—f12) D.10

2 au



E. The Integration with the discontinuities

Chapter 4, uses some advanced mathematical results, which should be proved. Those
concern the integrals in which the Dirac’s delta function is included, its gradient and also the
Heaviside function. Some necessary points of theory, that justify those calculations exist on
Ronald N. Bracewell (1999).

i.  The integral [ g(x) * H(x — ¢) dx

This integral can be easily calculated by using integration by parts. By considering the anti-
derivative of the function “g(x)”:

O(x) = fg(x) dx

can be written as beneath:

fg(x)*H(x—c)dx =f@’(x)*H(x—c)dx
=@(x)*H(x—c)—J0(x)*5(x—c)dx
E.1
=0(x)*H(x—c)—0(c)*H(x—c)

=fg(x)dx*H(x—C)—fg(x)dx

* H(x —c)

X=C

The integral [ @(x) * 6(x — ¢) dx is equal to @(c) * H(x — c). However, this is something to be
proved later.

ii.  Theintegral [ g(x) x 8§(x — ¢) dx

From bibliography, Ronald N. Bracewell (1999) the below formula relative with the integrals of
relations that include the Dirac’s delta function, can be considered true:

[ 9@ +5Gax = g £.2

Also, it is known that the antiderivative, which can be depicted as an integral (indefinite
integral), can be written as a defined integral, in the right space.



X

[r@ar= [ reoax

—00

Using the Macaulay brackets of zero order or the Heaviside function, it is possible to rewrite
the above integral as it goes to infinite. As the integral of a constant function equals to zero, is
also zero, then by defining the function that resides inside the integral to be zero for “x,”
greater than the “x”, the above integral can be written until infinite. In this case the function
“f(x0)” should be replaced with the function “f (x,) * H(x — x,)”. This way the following can be

considered:

H(xpx)

>

X Xo

Fig. 103. The Heaviside function.

It is very important to notice that in the current situation the variable x, represented the coordinate
and the variable x represents a value in that axis. The space, in which that function f should be zero,
is the same with the space, where the Heaviside function is equal to 1 and the space where the
function f should be non-zero is where the above Heaviside is zero. Thus, it is noticeable that f (x,) *

{1- H(xo — x)} = f(xo) * H(x—x)

[reax= | faods = [ fo)« He = x0) dx,

As the purpose is to calculate the integral “[ g(x)§(x — ¢) dx” a substitution is required. More
specifically, a substitution of “f(x) = g(x)8(x — ¢)”:

X

[ 9 o-0ax = f 9(xo) * 8(x0 — ©) dxg

—00
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f 9(x0) * (o — €) * H(x — x0) dxq

f (9(xo) * H(x — x)} * 8(xo — ¢) dxo

Now, by changing the variable “xo =n +c™:

jg(x)*d(x—a)dx - j{g(n+c)*H(x—n—c)}*6(n+c—c)dn
- f{g(n+c>*H(x—n—c)}*a(n)dn
=gm+c)*Hx—n—c)ly=o

=g(c)*H(x—c)

iii. The integral [ g(x) * 6'(x — ¢) dx

This integral has a form suitable for integration by parts:

jg(x)*d’(x—c)dx =g(x)*6(x—c)—fa%ix)*5(x—c)dx
0
=g(x)*6(x—c)—% * H(x — ¢)

Where obviously 6'(x — ¢) = d6(x — ¢)/0x.

This means when g(n) = e /YA « f(n), the following can be considered:

E.3



f e VA F(n) * 8'(x —a)dx = e N/VA 4 f@) x6(m—a)

AL

7 *H(n — a) E.4

n=a

—e VA m)|  +H@ - a)
n=a
In the case of the linear profile, the gradient of the function:

d
fﬁﬂ=%§2

_ Umax

b—a

E.5

n=a

For this linear case, the last term of the integral is also calculated. The second however is
neglected as it was asked, the vertical displacement in the crack tip to be zero. The same

happens also for the other integral with “b” instead of “a” and also the integral with the plus in
the exponent.

The spike term, which is the term that includes the delta function can be given two
interpretations. The first one, which can be done in both linear and 3™ order displacement, is
to leave it there and in some point the one spike from the integral with the minus in the
exponent will cancel out the spike of integral with a plus in the exponent.

However, in some cases (e.g. the “screw dislocation”) this will not be enough as the spikes
doesn’t cancel out. This is why a second interpretation is needed.

iv.  The spike

M
In some point the term “@(n) * §(n — a)” appears while “O(a) = 0" (e.g., “@(n) =eva —
_n-a
e va”). This expression is pretty awkward because there is a pathological situation of

multiplying zero with infinite. Is this infinite, zero, or something in between? To answer this,
the continuity of the polarization should be demanded.

If the function “©(x)” is continuous near “x = a” then:

chi_l’)I;ll O(x)=0(0)=0

This requirement can be easily satisfied as the function “@(x)” is the function that joins the
maximum and the minimum displacement. (e.g., Linear or 3™ order polynomial).



Also, as the Dirac’s delta function is concerned, which is discontinuous, the limit can also be

estimated. When “x — a™" the “x” is different than “a” and thus the limit is equal to zero. The

same happens from the other side.

lim 6(x—a) =0

x—-a~

lim 6(x —a) =0
x—at

limé(x—a) =0

x—-a

Obviously, the Dirac’s delta function is discontinuous as:

0=Ilim&§(x—a)#6(0) =o0
x—=a

The limit of the function “@(n) * §(n — a)” is however in any case equal to zero.
im{@(m) *6(m—a)} =0
x—a

If, for any reason, the result needs to be continuous, then the following suggestion is true in

an area near a .
n-a _n-a
<e\m—e \E)*(S(n—a): E.6

And then this suggestion is expanded everywhere, because far from “a” the Dirac’s delta

function is zero.



F. The joining functions

i.  The polynomial function of 3" order

One easy way to find a polynomial function is to insert the value of the gradient of the function
on points a and b, in which the function should have a minimum and a maximum and thus
those gradients should be zero.

f@=0
f(b) = umax
o]
a;;gcx) 0

Those boundary conditions allow a consideration of a function with four unknows variables.

fX)=t*xx3+m=*x>+cxx+d

This function has the following gradient:

of (x)
0x

=3xtxx?+2xmxx+c

By importing the above function and its gradient to the boundary conditions, proposed in the
beginning, the following system is produced:

txal+mxa’?+cxa+d=0

txb3+m=*b?+cxb+d=Upngy
3xt*xa’+2+sm*a+c=0
3xt*b?>+2+xm*xb+c=0

Or in matrix form:



3

a® a* a 1 t 0
b3 bz b 1 $dM\ _ Umax
3¢ 2a 1 0 c 0
3¢ 2a 1 0 d 0

This system can easily be solved via a symbolic language.

t 2

mi _ Umax . —3+(a+Db)
¢ a*-3%a?xb+3*xaxb?—b3 6xaxb
d a? « (a — 3b)

Obviously, the dimension of a and b, is the same as the dimension of the coordinate x.

As a result, a third order function that obeys the demanded boundary conditions is the
following:

2xx3—3x(a+b)*x®?+6*axb*x+a’+*(a—3b)

F.1
a3 —3*a?+xb+3*axb?— b3

f(x) = Umax *

ii.  The polynomial function of 5™ order

The 3™ degree function, gives from one hand good results. From the other hand the form of
the displacement has some errors. One easy way to fix this error, to make the displacement
more trapezoid, (to make the function looks more like the linear case), is to increase the order
of the function.

By importing two more “boundary conditions” which look more alike the condition of symmetry
or anti-symmetry, it is possible to create a function of 5" degree, with 6 unknown values.

The conditions that should be imported are the conditions in the middle of the length between
points a and b. In this point, ((a + b)/2) the value of the displacement should be u,,,, /2 while
the gradient of the function should be as the linear gradient equal to u,,4 /(b — ).

The 5" degree polynomial function has the below form:

fO)=g*x®+hxx*+t*x34+msx2+c*xx+d F.2



Which has two additional unknow variables. The boundary conditions are the following:

f(a) =0
a+b _ Umax

f ( 2 ) 2
f(b) = Umax
s,

0x lyx=q
af (x) _ UYmax

ox xzaTer "~ b-a
of  _

ox x=b

And the system that needs to be solved is the following

a® a* a3 a? a 17 0
b5 b* b3 b2 b 1 g u )
5 4 3 2 max

a+b a+b a+b a+b a+b (h] 2

=) =) &) &) &)

2 2 2 2 2 t Umax
= 3

5% q* 4 % g3 3 % a? 2%a 1 o] m 1 0
5 * b* 4 % b3 3 b? 2xa 1 0 2 Umax
4 3 2 a+b b—a
5*(61-;1)) 4*<a;—b) 3*(a-;b) 2*< > ) 0 0 /

( 8
20 * (a + b)

22
18*(a2+?*a*b+b2)
_ _Ymax 26 F.3
(a—b)S 7*(a+b)*(a2+7*a*b+b2) '

Qo 3+ >Q

6
14*a*b*(a2+7*a*b+b2)

\14 xa? * (a®—5*a?*b+3*xax*b?—7=xb3))

Importing F.3 to F.2, the polynomial function of 5" order that obeys the criteria for the joining
function is produced.



G. The calculations that describe the induced polarization

i. Linear Function

A Polynomial function that can describe the displacement, could be a linear function and as it
was calculated above, the right formula of the joining function is the following:

umax
£ ="« (- )

Of (1) _ Umax .
an b—a |

*f(m) _
oz

0

This function is none other than the function that describes the displacement between point a
and b in relation 22, as this function creates a trapezoidal distribution of displacements.

For this function the first integral that resides in relation x of chapter 4 can be simplified to the
following relation:
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The first term vanishes as the second derivative is always zero. By applying the calculation,
as described before in Appendix E and chapter 4, the following calculations take place:
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Because f(n) = 0and (1) = u,,,,, Some simplifications can occur. By substitution of these,
the following relations are created:
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Similarly, the second integral takes the beneath form:



n 62 n 0
n
+ f eVA x f(n) * [6'( — @) — 8'(n — b)] dny

n
+J.e\/z * Umax * 6,(7] _b) dn

By using the boundary values of the joining function:
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By substituting those two integrals, relations G.2 and G.3 to the relation x (chapter 4) the
polarization can be given by the beneath relation:
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As it was also mentioned in Appendix F, those two spike terms (red) cancel out themselves.

ii. 3" degree function

Another case of a function that can fit, in the cohesive zone, between the maximum and the
minimum value is a polynomial function of third order. That function that was determined in
Appendix F has an analogue procedure with the linear function.

_ Umax 3 _ 2 _ 2
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G.5
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on? T 4% —3ab? + 3abZ — b3 2n = 6(a+b)}

In this case however, the first term of each integral that needs to be calculated, is non zero as
the second derivative is also non zero. However, by definition, the gradient of this function at
point a and b is zero, so the second term in each integral vanishes instead.
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The calculation of the first term needs the calculation of the respectively antiderivative
beforehand.



The first antiderivative, that refers to the integral in which the exponential contains the minus
sign can be calculated as beneath.
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And thus, the first integral is the following:
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Lastly, by multiplying the above integral with the term —eva some simplifications can occur
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Similarly, the second antiderivative (in the exponential the sign is the plus) can be calculated
as follows:

() =fe~/12*azf(n)d77

on?

bl
= f evA x Umax | {12n — 6(a + b)}dn

umax i umax i
=j *12U*€‘/Zd77—j x 6(a+ b) xeVA x dn

u = = 7
_ max*{lz*n*\/z*e\/z_12*A*e\/Z—6*\/Z*(a+b)*e\/Z}

u n
=% s eVAx{12xnxVA—12xA—6xVA* (a+b)}



And by substituting the second integral the second antiderivative can be calculated as

beneath:
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Lastly by applying the multiplication with the term —ev4, the below simplification can occur:
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By importing equations G.6 and G.7, onto equation x of chapter 4, the polarization, assuming
a vertical displacement of a polynomial function of 3™ grade, can be given by the below
formula:
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