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Hepirngm

H omtin) avayvopiorn ocuvonodfuatog anotehel éva peilomv Yéua Tou BIETOTNUOVIXOU ToUEd
¢ ‘Opaone Troloylot®v 10 omolo cUoYETIETo PE TNV ATOXWOIXOTOLACT| XAl TEOGOLOPLOUO
WY ovlpOTIVRY cLYVLEUNUATWY TG00 oE XatnYyopixd (Blaxpttd) 660 xou o SlaoTotind (ouve-
¥éc) eninedo, 6nwe autd anexovilovton o€ exdveg 1 axohoudiec and Bivieo. M avaoxdnnon
e oyetic BBAoypaplag amodexviel Twe 1 TASOPNQla TwV €W THRPA TEOCTAVELDY €Y0UV
Teploplo Tel xLple TNV AVAAUCT) TWV EXPEACEMY TOU TEOCKTOU EVE OPLOPEVES UEAETES €Y OUV
elte eVowUaT®oeL TANPoYopieg oyYeTég Ue TNV avipndmivy oo elte €YouV EMLYEIRNOEL Vo TEAY-
UOTOTIOLACOLY OTTIXY avary VERLoT, cuvonoduatog €€’ ohoxAfipou Baciouéves oe yewpovoules xal
XWVACELS Tou oouatog. Eve uepirée and autég Tic yedodoug amodidouy oflompene o EAEY-
YOUEVA TEQIBAANOVTO, AMOTLUYYEVOUY VoL EPUNVEVGOUV TEAYUATIXG, XAONUEQIVA GEVARPLA OTIOU U1
TEOBAEPYIES xOWVWVIXES CUVINXES XAl XATACTAGELS UTOPOUV Vo XATACTACOLY [iol 1) xaL TOA-
AUMAEC OO TIC TTROUVAPEQOUEVES TNYES CLVALCUNUATIXNC TANPOogoplac, un TeooPdoes. Avt’
autoV, otoiyelo and ueréteg ouoyetlouevee ye TN uyoroyio unootneilouv MW To OMTXO-
OTUACIONOYIXO TEQIEYOUEVO TEQAV TV EXPEACEWY TOU TEOCGHTOU Xal TN TOLuC TOU GWUITOC,
TOEEYEL ONUOVTIXES TANEOYORIES Yot TNV avTiAngn TV avipdrivey cuvalcNudTwy.

Koatd ) mapoloa epyacia, otoyo pog anotelel 1 evioyuom TV WEMY TERl avaryvopiong
oLVAUGVAUATOS BACLOUEVT GTO OTTIXO-CNUACLONOY O Tepleydpevo. ['iot autd To ox0To, Mparyua-
TOTOLOUUE EXTEVY| TELRAUATA OE 000 TEOCHPUTA CYNUATIOUEVES X OUOXOAES BACELS BEDOUEVLV,
v EMOTions In Context (EMOTIC) xou tnv Body Language Dataset (BoLD), avtiuetw-
nilovtog xatd avtiototyio toc0 T otatiny (Bactopévn oe exdves) 6o xon Suvopxy| (Boactouévn
oe Bivteo) éxdoon tou ev Aoy mpofifuatoc. TTo ouyxexpuyéva:

o Emextelvouue 10N TETUYNUEVES X0t EVEEMS OLUDECOUEVES UPYLTEXTOVIXES VEURMVIXWY Ol-
ATOWV EVOOUATMVOVTAS TOAMIATAES POEC TANEOYOEIIC TOU OUGLAC TIXA XWOLXOTOLOUY GTOL-
YEla TOU avIPOTIVOU COUATOS X0 TEOCKMTOU, GTOLYEI ONUACIONOYIXOU) TEPLEYOUEVOU X0
Ve xou otoyeior CUTYETILOUEVO UE TO TEQLPERELIXO EOVILOUEVO TEQLBAAAOY, EVIGYLOVTOG
XATE QUTO TO TEOTO TOL LOVTEAN UOG X0 TNV LXAVOTNTO TOUG Vol avTAaUPBdvovTal €V YEVEL
TaL VUpOTIVAL GUYVALGUHUOTAL.

e Ewodyoupe tic mdavotnteg xatnYoplomoinone OXNVAC Xol CXNVIXGV WOTHTWY WC ETL-
TpeocUETo GTOLYElD XAUTA TN OLUBXUGTA AVOLYVIPELOTE CUVALCUARATOS Tal OTolal AELTOUREYOLY
CUUTANEWUATIXG ¢ TEOS TIC UTOAOITES TNYES cuvaoUNUaTXrc TAnpogoplas. An’ dco
yYvweilouye, (oo TE oL TEWTOL oL EQUEUOLOVUE TNV €V AOYL pédodo.

o Exuetahieudpoote Tic oUoYETIOES UETAED TV BLOXELTOY CUVALCUNUATIXGY XATNYOPLOV,
Omwe auTég euavilovtal EVIOC TwV exdoTOTE Bdoewy dedouévey, Uéow yerong eago-
SUVEAXTIXOY AXTOOV %ot TRocINUNG EVOC EVOWUATOUEVOU OPOU GHIMNIATOS, EUTVEU-
ouévo amd To Topéa NG METEXAC uddnong xou Baclouévo o eVoWUATOOES MEEWY UOo-
viéhou GloVe.

o IletOyoue ouyxplowa anoteAéopota avayvoplone otn Bdon EMOTIC xodog xow Eene-
pdoope Tor xahOTEP dNuocteupéva anoteAéopata otr Bdon BoLD.

‘Evo peydho tufjua Twv oUVEIsQop@y pac utoBhilnxe und popen dpdpou [36] tpog dnuoacieuon
oto 16" IEEE International Conference on Automatic Face and Gesture Recognition (FG),
ue ouyypageic Toug Iwdvvn Iixouin, Havaywotn Hopaoxeud Prhvtion xou ITétpo Mapayxo.

AgZeic KAedid - avayvmplon cuvaiodjuotog, Bodid veupmvixd dixtua, ooy, tpdcwto, tola,
ontxo-onuactohoyd mepleyouevo, CNN, GCN, TSN, ST-GCN, civoho dutiny
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Abstract

Visual emotion recognition constitutes a major subject in the interdisciplinary field of Com-
puter Vision which is associated with the process of identifying human emotion on categor-
ical (discrete) and/or dimensional (continuous) level, as it is being depicted in still images
or video sequences. A review of related literature reveals that the majority of past efforts
in visual emotion recognition have been mostly limited to the analysis of facial expressions,
while some studies have either incorporated information relative to body pose or have at-
tempted to perform emotion recognition solely on the basis of body movements and gestures.
While some of these approaches perform well in controlled environments, they fail to in-
terpret real-world scenarios where unpredictable social settings can render one or multiple
of the aforementioned sources of affective information inaccessible. However, evidence from
psychology related studies suggest that visual context, in addition to facial expression and
body pose, provides important information to the perception of people’s emotions.

In this work, we aim at reinforcing the concept of context-based visual emotion recogni-
tion. To this end, we conduct extensive experiments on two newly assembled and challenging
databases, i.e. the EMOTions In Context (EMOTIC) and Body Language Dataset (BoLD),

tackling both the image-based and video-based versions of the problem. More specifically we:

e Extend already successful baseline architectures by incorporating multiple input streams
that encode bodily, facial, contextual as well as scene related features, thus enhancing
our models’ understanding of visual context and emotion in general.

e Directly infuse scene classification scores and attributes as additional features in the
emotion recognition process that function in a complementary manner with respect to
all other sources of affective information. To the best of our knowledge, our approach
is the first to do so.

e Exploit categorical emotion label dependencies, that reside within the datasets, through
the usage of Graph Convolutional Networks (GCN) and the addition of metric-learning
inspired loss that is based on GloVe word embeddings.

e Achieve competitive results on EMOTIC and significant improvements over the state-
of-the-art techniques with relation to BoLD.

A big portion of our contributions [36] was submitted to the 16th IEEE International Con-
ference on Automatic Face and Gesture Recognition (FG), with the authors being Ioannis
Pikoulis, Panagiotis Paraskevas Filntisis and Petros Maragos.

Keywords - emotion recognition, deep neural networks, body, face, pose, visual-semantic
context, CNN, GCN, TSN, ST-GCN, network ensemble
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Euvyaptiotieg

Apyud Yo fideha var euyopiotriow tov xOpto IIEtpo Moapayxd, oyt uévo yio Ty euxatpla Tou
HOU EBWOE WOTE VO EXTIOVHCW TNV €V AOYW DITAOUXTIXY EQYAGTO AANS XA YLl TO YEYOVOS TG UE
TN Tapousior Tou wg xaINYNTAC XD XU TO €0Y0 TOU WG EPELYNTAS, UOL XIVNGE TO EVOLUPEPOY
XL UE EVEUTIVEUGE VoL Aoy ohnde ouclaoTixd pe toug Touelc tne ‘Opoaone TTOAOYIOTOV Xat TS
Mmnyovixic Mddnong.

Ev ouveyela, Yo Alela 10dia va evyaplotiow tov xOplo Havaywntn II. @uivtion o onolog
ouvenifBiede T Simhwpotinn pou epyacio. Alc¥dvoua euyvOueY oL elya TNV euxopla VoL GUVO-
VOG TEOAPE PE EVAL TOGO aELONOYO GTOUO, TOCO GE aXAONUOIXO 6CO %ot OE BAMPOCHTIXG ETUTEDO.
H xad0dv)ynon mou you mpocgpepe amd TN TEOTN XOAAG GTYUY ATOTEAEGE AOLUUPLERNTNTOL XAt
YOPLOTIXOTATO TAEAYOVTA YIoL TNV OHOAY) XAl ETULTUY T EXTOVNOT TNG EPYACLAC Uou.

Téhog Yo delo var eUYaELOTHOW TOUG YOVE(C Hov, xadde HTay auTol TOU TEWTOL oL EBEtEoy
T0O OPOUO TNG CUCTNUOTIXNAC UEAETNG %o UE BIBaCaV g «Tor aryordd XOTOIG XTOVTOLY.
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Extetopevn Ilepiindn ota
EAANvIxd

A  Bewpntxd TroBodpo

H epunveia, avtiindmn xou avoryvaeton tov avipodrivey cuvotcInudtony €xel aroteréoel Ve
EVOEAEY WV PEAETMOV X0 AVAAUCEWY OE BLAPOPOUE ETCTNHOVIXOVS XAddoUC OTwe 1 Plooyia, N
uyohoyla, 1 xowvwviohoyia, 1 veupoloyior xaddc xou 1 EMSTAUN TV UTOAOYIOTOYV. Evd ol
TEOAVAPEQVEICES YVWOTIXEC EMOTAUES EMXEVTPMVOVTOL GTNY ECUYWYT TV OLUECWOY CUVAL-
oUnuatixwy TAneogopiwy, To medio tng ‘Opaong TroloyioTtadv xon tne Mnyoavixrg Mddnong
GTOYEVOLY CTNV AUTOUATOTOINGCT TNG BLABXAGTAS VoY VWPLOTG HECW TNG AVATTUENS VEWY TEYVL-
%WV xo ohyopldumy Tou umopoly Vo TapdYOUY UTOTEAECUATIXES XAl LOYUPES XWOLXOTOLNCELS
T€T0Wwy TANpogoplwy.  H autduatn avoyvopeion cuvaoifuatog yenlel TepdoTIoC TEOXTIXAC
onuactac xoddg dlodéTel EXTETUUEVES EQUPUOYES OE TepLBdihovta Tou mepthaufdvouy cuvee-
yaotio ovipdTou-poundT, xoVwVixY poutoTixy, Wtexy tepldoldr, napaxololinon Puytateixy
acVEVOY, Tapaxohoinon xOTwaong odNyYwY xat TOAAS dAka cevdplo IAMNAETSpaoTE avdpdmou-
UTIOAOYLOTH.

A.1 Moviérha YuvoucInuatog

Q¢ mp®TO BN TEOC TNV XATAVONOT TV EVVOLOY TNG avTIANdNg, EQUNVELNS %ol ovary VORLOTG
TV CUVAUICUAUATOY, TEETEL Vo ToTto¥eTooVUE TI¢ VewpenTixée Bdoelg ot TAdiolo Twy omolnvy
HOVTEAOTIOLOUVTAL OL CLYVUCUNUATIXES xataoTdoelc. H ebpeorn evog BéNTioTou tpdmou cuvancin-
wotixig povtehonolnong €xet anoteréoel VEua exTEVMY culnTAoewy xa €xouv tpotadel TOAAEC
npoonuxég ent tou {ntipatog. To mo gupéwe Sladedouévo LOVTEA Yol TNV CUVOLCUNUATIXY
wovtehomnoinon unopolv va tadivoundoly oe Tpels xUpteg xatnyoples: xatnyopxd (categorical),
drootatind (dimensional) xou cuotatixd (componential). Ytic endpevec nopaypdpouc Va Tpo-
OO ACOUUE VoL TUPOVCLIGOUNE Tal XVPLOL Y AQOXTNELO TLXAL, TO TASOVEXTHAUOTO X0 TOL UELOVEXTAUATO
xade eldoug yovtélou.

Katnyopwxd Movtéha

Ta xatnyoploxd HOVIENA YENOWOTOLOUVTOL Yo TNV ToEVOUNOT TwV cLVALCONUATWY OE Bla-
XELTEC XUTNYOPIEC TOU UTORPOVY VoL oVOY VWELO TOUY X0l VoL TEQLYEAUPOUY EUXOAA GTNV XOUNUERLVA
yAdooa. H onuavt e€€MEn ota xatnyopixd cuvalcUnUoTixd povtéha anodldetal oTo €pyo
v Ekman xou Friesen [33], [34] xou tov unoxelyeveoy mopadoyhv toug oyetixd ue tny xadoht-
%OTNTAL EVOC GLUVOLOL €EL Baoixmy cuvanaUnudtwy, Ty eutuyia, VAP, @oBo, opy1, anéydeio xou
ExmAngn. Amewovicelc Tov Tpoavapepléviwy cuvatcUnudteny tapoucidlovial 6To oyfua A.l.
I voe amodet&ouv Ty unddeon nepl xadohxdtntag, oo Ekman xou Friesen opyxd mporyuatonol-
OOV TELOGUOTO XATE TO OTOLL TAPOLCIACAY PWTOYPUPIES TOU ATMEWOVILAY TEOCWTO OE ATOUA UE
OlopopeTind ToATIouxd uToBadoa ue oxomd va eEAEYEOUV GV oL CUUUETEYOVTES Yo TaEvoUolGaY
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A. OEQPHTIKO YIIOBAOGPO

TIC EoVLOUEVES YO APNYOUUEVES XATAC TACELS OTIC (Bleg ouVALaUMUTIXES XaTNYOoples, Topd TIG
TONTIOUXEG TOUg Blaopés. Ta dtoua mou CUUUETELYOY OTA TELRAUUTA AVAXAY OE TOAAES OLo-
(PORETIXEC XOWWVIXESG OUADES, cuunepthauBavouévwy gortntey and Tig Hvwuévee Ilohteleg, tny
Apyevtv), ™ Bealiha, tn Xuhr xan tnv Tamwvia, xodog xou xatoixoug and 600 avanTucoOUEVES
yweee (to Loavtdvyx tou Bopveo xau 10 Métwno tne Néac T'ouvéac) mou duwe elyoy extetapévn
ena@n} pe to dutixd moltioud. Ta apyixd anoteréopata €detlav 6Tl T cuvorcato YivovTot
QVTIANTTE OPOLOUopQa amtd Aol Ta dTopd AveEAPTATWS TOMTIOTIX0U UTOBodpou, evicybovTag TNV
unddeon nepl xadohxdTnTog otV avtikndn cuvoucOnudtoy.

Anger Surprise Disgust

IxAuna A.1l: Katnyopixdc tpbdmog neptypaphc twv avipdtivey cuvolodnudtwy Bactouévos ota €ZL xadohxd
ouvatoIiuato: xoped, Nomn, eéBo, opyHh, ExTAnin xou anéydewo. nyh: [77].

To yeyovog mwg Ohol oL cuueTéyovieg elyav €pUel e Emapn UE OLAPOPES EXPAVOELS TOU
BUTXXO) TOMTIOUOU XM XaL TOV TEOTO UE TOV OTolo oL BUTIXEC xowmVieg avTihopfBdvovTot
xou ameovilouv TIC oUVALCUNUOTIXES EXPEACELC TOU TEOCMTOL, O0NYNOE OVATOPEUXTI OTNY
oPLOPBNTNOT TNG EYXVEOTNTIC TWY aVTioTOLY WV cuunecudtwy. Koatd autd 1o Tpdmo, to tetpduata
emavaAAPUnxay yenowonownviag dtoua and Tn Fore yAwoouwo-mohtiotinr) ouddo tne Neéag
Foutvéag xau o omolo emA€yInxav und Tic npobmodécelg 6Tt dev elyav emoxeptel TOTE ooUO
TOU BUTIXOV XOGUOL xau BEV Elyav O, 00Te xan cuvactpapel ue Kauxdoto drouo. Ta netpouatind
amoTeAéopTa EBEEaY OTL Ol XATOWOL TNS EV AOYW OVOTTUGCOUEVNG YWOEAS, OAWY TWV NALIWY
%o TV 000 PUAKY, TETLYAY CUYXEICHIA ATOTEAEOUATO UE GTOUO TTIOU AVNXAY OF AVUTTUYHEVES
OUTIXEC xoWwViES, uTooTnelloviag TNV apyxr) LTOUEST TV CLYYREUPEWY TERL XodOMXOTNTAC
TV €€L TEOAVIPEQUEVTOV GUVALGUNUETWY.

Ta xotnyopxd povtéha, Aoyw TS amAOTNTOC TOUg, OE cLYOLAOUS Ue TNV unddeon mepl
OWXOUPEVIXOTNTOG TV cLVALoINUdT®Y LTHEEay avoupiBoia To TewTapyxd cpyalelo oe EpEUVES
OYETIXES UE TNV OVAY VPLOT] CUVOLCUTUATOS XAk T1) CUVALGUNUOTIXY TTANROQORLXT.

Avaoctotind Movitéla

MeTd o xotnyopixd HOVTEN, T SLCTATIXG HOVTEAA OmOTEAOUY T Be0TERPN O ONUOPIAT
xal EUPEWS OLadEdopEVN PEdodo mEptypapic cuVULCUNUATLY. YE €va BLIoTATIXO UOVTEND, UL
CLYAUGUNUATIXY XATAGTACT] AVTITPOCWTEVETOL (S VAL CNUEID OF €Vl GUVEYES TTIOU EXTEIVETAL Ao
éval oOvVolo ave€dpTNTWY BlHoTACEWY. ApEXETd BlUoTATXG UOVTERX €Youy avomTuyVel ue Ty
TdEodo TwV ETHOY Y€ow Epeuvag Tou dledhydn oTov Touéa Tne Yuyolroyioc. Qotdoo, To Hovtého
Pleasure/Valence-Arousal-Dominance (PAD/VAD) eivou 1o o ouyvé ypnothonoloVUevo xotd.
TNV CUVALCUNUATIXT TATNPOPORIXH.
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To npoavagepdéy clotnua avantdydnxe and touc Mehrabian xou Russell [70], [91]. E-
xTeToéveS HERETES Xou TEwpduata uTtoo Tneilouy éTL oL Teels dlaotdoelg tou Pleasure/Valence-
Arousal-Dominance eivon ave€dptnteg, xadde omoldATOTE T %ATd UAXOS WS OLdoTaong
uTopel var AauPdveTon TauTOY POV PE XAUE T OE OTOLONTOTE and TIC GAAES 0VO BLUCTATELL.
Emniéov, ol tpeic dlaotdoeic eivon Simohxéc. Mo cUANdn tou teiodidotatou yweou VAD
Tapouctdleton otV exovo A.2.

- Anger Joy

Di
p Disgust Sufprise

0.5

Dominance
0.0
Ay
Arousal

! I 05
0.0

-0.5

-1.0

Valence

IxAra A.2: O cuveyhc Tpémog TepLypaphc TwV cuvaoINUATY we onueia ot éva Telodidotato ypeo Valence-
Arousal-Dominance (VAD). IIny#: [5].

H ouveyhc @lon tov SloTatxdy cUVUCONUATIXGDY CUCTNUATWY GUUPBEAEL oTn ovadelln
TLO OMOXATPWUEVWY X0l TAOUGLWY OVITURACTACEMY Yot CUVIETES CUVALCUNUATIXES HATACTAOELL.
O mholTog Tou GuVEY0UE YWEOU Elval o BUGXOAO Vo yeNotuoToINUEl GE CUOTAUATH AUTOUATNG
avory veelong e€antlog Tou YeyovoTtog OTL unopel va tvor 5UoX0NO VoL GUGYETIGTEL Uia BlavyUoUATIXT
TEPLYPAPY) EVOC CUVALOUAUATOS UE [LOL CUVALCUNUOTIXY CUUTERLPORY TEoCcKHTOL 1) xivnon Tou
COUITOC.

Yvotatind Movtéla

Ta cuoTaTd povtéha BeloxovTtal EVOLGUESH GTO XATIYORIXE XAl TA OLUC TATIXY, OGOV aPopd
TN CUVALCUNUATIXT BLoXELTIXT] TOUG WovoTtnTa. To cusTATIXG HOVTEAA TERLYPAPOLY TA CUVAL-
oOuaToL UE LEROEY IO TEOTIO, GUUPKVA UE TOV OTO0, T CUVALCUAUNTA TTOU OVAXOUY GE AVOTERX
CTEPOUTA UTOPoUY Vo anocuLVTedoly Ge €val GUYOAO THO TEWTOYEVMY CLUVAULCUNUATWY TOU a-
Viixouy oto oxplBK¢ TponyoLueva otpwuata. To mo adloonueiwTto Topddelyua evoc cuaTaTXoD
ouvotcOnuatixol povtéhou eivon autéd mou eworiyaye o Plutchik [87] xou o onolog avtihiginxe o
TEWTOYEVY] CUVOLCUHAUATA UE TEOTO OVIAOYO UE EVOV TEOYO YPWUATOS, TOTOVETWVTAS TOPOUOL
CLVUCUAUOTA XOVTA YOl CUUTANEOUATIXG Yewuata ot andctaon 180 yoipdv petadd toug. Mia
EXOVOL TOL EXTETOUUEVOU XUXAXOU wovtéhou Tou Plutchik mapoucidleton oo oyfua A.3.

Avutol ol TOToL HOVTEAWY YENOWOTOLOUVTOL OTIEVLO GTO TAXIGLO TNG CLVALCYNUATIXNS TANEO-
popuhic xat TN BiBhoypaplac mou oYeTIleTon UE TNV AUTOUATY) AVAY VOPLCT| CUVOLCUNUATOY, OE
CUYXELOT UE TO TROAUVAPEQVEVTAL, XUTNYOPLXA Xl DLUC TUTLIXS LOVTENAL.

A.2 TInyéc XuvaucOnpatixng IIAnpogopiag

To Yéua tng Teéyoucag dateBnc oyeTileTon UE TNV AUTOUATY) OTTIXT OVOLY VOELOT) CUVOLGUT-
udtwy oe exoveg xou Bivieo. ‘Ocov agopd TNV OTTIXH VoY VmELoT) CUVALCUNUATWY, Ol XVPLES
TNYEC CUVACVNUATIXWDY TANEOPORLOY EVIOTULOVTAL GTO TPOOKMTO X TO COUN TOU EXACTOTE o-
topov. Ilo npdogpateg peréteg [¢], [106] Yewpolv to mepupepelaxd nepBdhhov xat v YEVEL TNV
exovllOpevn oxnv we odEle TNyEg cuvaicUnuotixic TAnpogopioc. To teleutala avapépovtal
oLVAYC WS NUAGIONOYIXSL YoEUXTNELO TIXE oYETILOUEVA PE To TEpYBdAAOY oy ametxoviléton oe
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A. OEQPHTIKO YIIOBAGPO

IxAuna A.3: H cvotatxn npocéyyion meplypaghc ouvaloOnudtmy Bactouévn oto YewUotixd teoyd Tou
Plutchik. IIny# [87].

wa exova A Bivteo. Qg mpdto Briua mpog TNV xatavdnoT Tou tpofiiuatog, Yo TEENEL Vo ouTIo-
AOYHCOULUE TN YENOT XU T1) ONUACio XUIEULAS EX TWV TEOAVAPELIEVTOY TNY WY CUYAGUNUXTIXHS
TAneogoplac.

Ytowyeia ITpoowmou

To npdowno VYewpeltoaw cuyvd we to mapdiupo tne avipwnivne Puynec. To yapoxtneioTi-
%3 TOL TEOCMTOL ATOTEAOLY TN XVpLa TNYY| CUVACUNUATIXWY TANEOPORLAY, EVEK ToL GUC THULATA
VALY VORLOTG GUVALGUNUETLY Tou BoacilovTon anoxAEloTiXd 6TO TPOCWTO, GTOYEVOUY GTOY EVIO-
TOUO TV XIVAOEWY TOU TEOCMTOU XK %ol TNV ATOXWOLXOTOMON TwY cLYACHNUATWY TOoU
uetadidovton and Tic wvioelg autéc. Ta mpooavagepdévia cuothuata avayvopeong Poacilovto
xuplwe oto Xovotnua Kwdwonoinone Kivioewv tou Ilpoodnou (Facial Action Coding System,
FACS). To FACS dnpootedtnxe and touc Ekman xou Friesen [32] xou amotedel évo xodohxd
UTOAOYLOTIXG Gl TN UE Bdon To onolo efvar Suvatd va Staxprdoly xon vor ueAetrdoly dAeg ol
UEULOVWUEVES 0pUTEC CUUTERLPORES Tou poa®tou. T cuyxexpiuéva, to FACS eiodyel éva me-
TEPAOUEVO GUVORO CUCTATIXOY TNG HUIXNC Xivnong Tou avip®Tivou TPoc®ToU, ToL oVoudlovTal
Movaduaiec Apdoeic (Action Units, AUs), xoddg xou évo ovoho amd Heprypapntée Apdone (A-
ction Descriptors, ADs). ITopadelypoto Stopdpwy aviyveuuévwy AUs anewxovilovto oto oyfua
A4, To xprthplor yloe TNy Tapathenon xat TNy xwdonoinor xdie Movadialog Apdong xou Ilept-
Yeapnth Apdong teptypdpoviar oo eyyepidio Kndixonoinone Kivioewv tou Ilpocdnou (FAC),
XPMOUWOTOW)VTAS TO OT0{0, Ol AVIPMTLVOL GYOMACTEC UTOROUY VAL XWOOXOTORGOUY GYEGGY Hdrie
AVOTOUIXE TV CUUTERLPORA TOU TEOGMTOU.

Y towyela Yopatog

Ou xvrioelg Tou owPATOC AmoTE A0V WliTEpa oNUAVTIXG PECO avTiAndNg xou ovary voRLomg
CLYAUGUNUATWY, EWOLXA OE XATACTACELS XATY TIC OToleC TEENEL var avTahAary Yoy cuvonoYnuaTL-
#E€C TANPOYOPIEC OE PEYIAES AMOCTAUCELS XAUTH TIC OTO(ES OL EXPEAGELS X0l TAL YUPAUXTNELO TLXE TOL
TEocWTOL Bev elvar TAéov opatd. Emmiéoy, ol ex@pdoeic ToU TEOCHTOL EAEYYOVTAL TLO EUXONA,
EVO 1) YAWOGO TOU GOUATOS OMOXOAITTEL GUY VA Tar oAndvd pog cuvonofuato. o mopdderyua,
OE oY (W01 XOWVWVIXY TERSAANOVTA, Ol dv¥pwToL TEVOUV Vo BLTnEoLY €va (010 TEOCKTO 1) axoun
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IxAuno A.4: Tlopodeiyuota Movadiadwy Apdoewy 6mne eppovilovTon HELOVWHEVA 1) 6 cUVILACUONS XAt T1)
Budpxelar xordnUepvdY xowevixdy alkniemdpdoewy. TInyn: [80].

XAl VO YALOYEAODY, (OOTE Vo xpUBoUV T VEURIXOTNTA Xl TO AY)Y0S TOUS, OTWE AMOXUAUTTETAL
oo TEEUOUAO Xal LOPMTO OTa YEPLaL, OUTYAVES YEWROVOULES Xt xoUVNUA TV Todlwy. Etouévac,
UTOPOUUE VoL TOVUE OTL 1) YAOOCOH TOU OOUATOS Xt Tot avipdmivar cuvorcUfuota eivon oAAnhe-
CapTiueva, eV To oyfua A5 anewovilel SLdpopeC TEQITTMOEL oL ETMBEGoUMVOUY TNV €V AOY W
dmodn.

Ta yépra etvor miovedg 1 Oe0TERT TAOUGLOTERY TNYT) CUVALCUNUATIXGDY TANROQPORLOY UETE TO
Tpbowno, 6nwe avapépetar oto [74], [83]. Xrouyeio dnwe n ethixpiveror xou 1) EVILOTNTA UTOPOVLY
EVOEYOUEVKC VO TPOGOLOPLE TOLY amd Tig VECELC TwV YEELOY eVOC atéuou. o cuyxexpyéva, edv
éva dtouo etvan ethixpivég, mdavotata Yo €xouy Ta YEpLol TOUS CTROUUEVO TPOS TOV GUVOULANTH,
eved av efvan avuréuova, miavotata Yo xpdhouy Ta yépla Toug Tow and TV TAdTN Toug. Emi-
TAEOV, T AOXNOT| YELLOVOULOY UE OVOLYTA YEQLOL XOTA T1) Bldipxelal Ylag cuvouthiog divel cuy v Tnv
EVIUTIWOT) EVOC TO 0ELOTIUGTOU ATOUOU.

H 9¢on tou xepoiol unopel vo Yetapépel TOADTIUES TANEOYORIES Yial TN CUVOLCUNUATIXY
xotdotaot evog atduou. Aéyeton [34] 6t or dvdpwrol telvouy va wholv teplocdtepo btav o
axpoatig Oety Vel xatavonon xou Toug eviappUveL UE VEDUATA, EV® 0 pLUUOS TOU VEDUATOS lval
eVOEWTINGS TNE LTopovrg 1 éMeudng authc. Emmiéov, n avidwon tou mnyouviol, eivar mdavo
oNUEdL avewtepotnTag 1 ahalovelog xou 1 éxdeon Tou Aol Vewpeiton g Evoeln utotayng.

O %opudg TOU GOUATOS, UEPOVWUEVY, BEV EVOL IXAVOS VO UETAPEREL TOOES TANPOYOpleg 660

IxAra A.5: H yAdooo Tou oOUotoc TepthotBAvel Sla@opeTinols Un AEXTIXOUS TEQLYPUPNTES OTWC TS EX-
(PPACELS TOU TPOGWTOV, TN GTACY CWUTOS, XEROVOWES Xt XIVACELS TwV poattody. Autol elvar onuavtixol delixteg
NG CUVACUNUOTIXAC X0 YVOOTIXAC ECWTEPLXAC XATACTAONG EVOC OTOMOU XOL ATOTEAOVUY ONUAVILXES TINYEQ
TANEOPOPLAOY OE GYEoT) UE TNV cuvatcOnuatixh TAnpogopew. IInyA: [78].
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o TEOAVAPERVEVTA UEAT TOU CWUATOS, ahAd uropel va yivel evdextind ototyelo Tng cuvanourn-
HOTIXAC XATACTACNC XATOOL OE OYECT UE TO umdAomo ooua. [ mopddetypa, 1 ywvia Tou
%OpUOL O GYEON UE TO OWUA UTOREl BUVNTIXG Vo amoxahOeL TANEOYORIEC TYETIX UE TN OTdO
EVOC ATOUOU OE Ulal GUVOMLALYL, Xard@¢ 1) eumpociia TotoYETnon Tou xopuol unopel vo Yewpniet
¢ EVOELEN eMUETIXOTNTAS, EVE Wiar EAAPEd YwVvio Tou xopUol delyvel autonenoldnon 1 EAkewdn
emetixdTnToG. EmnAéov, uo ehagpld xAlon Tou GOUATOS TPOS Tol EUTEOSC OE GUVOUNOUS UE €Vl
veiua 1} Yaudyeho amoteholy Tutxy] EVOEIET TEPLEQYELNS.

Ynupoaoctoloyixd Xtoiyeio

Ye xotaotdoelg Tne xonuepvic {mfg, OTay Topatneolue v dToUo, UTopoUUE TavVS Vo
EXTIUNOOVUE TOMAEC TTANPOPORIEC OYETIXA UE T CUVALCUTUATIXY TOUC XAUTACTACT) ToRd TNV EA-
hewpn TedoVETLV EWBXOY TANEOPORLOY Yo aUTA. AvahlovTag pla euplTERY dnodn TNS XATAo Ta-
ONG, AVTL VO ETMXEVIPOVOUACTE OTO EXACTOTE ATOUO, UTOPOUUE EVOEYOUEVKS VO GUAAEEOUUE
ouvaoYNUATIXES TANEOYORiEC TOU BeV UMoEOUY Vol Yivouy avTIknmtég Sedopévng tng EMhewdng
oNUactoloY ol Tepteyopévou. Autr 1 Woéa umopel var yiver avTAnTTH Yéow evoc napadelypatog
ot0 oyfua A.6, 6Tou ToEouCIAlEToL TOGO WL XOVTIVY) OGO Xou Lo eVpVTEET O pLog adArTeLoC.
H nopandve 10€a oy lel WOLlTepa 08 XATACTACELS XATA TIC OTO{EG TO TPOCWTO elvon €V UEPEL 1
TAYEWS 1N 0pATO AOY G XOXWY CUVINXWY QPWTIOUOD 1 EUTOBIY, EVE TO EXACTOTE dTOUO UTOpEL
vo hofBdver acuviihoteg moleg, eunodilovtog TNy e€ay YT TANEOYoELOY and Tic Tpoovapepde-
loec mnyéc. Buvormtind, o Dudzik xou dhhou [31] emonuaivouy d0o xOptec Tnyéc onuactohoyixol
TEPLEYOUEVOL TIOU YENOLLOTOLOUVTAL YO TNV EQUNVEIN CUVOLCUNUATIXGDY CUUTERLPORWY, TO avTi-
ANTTé mAaiono kwdikomoinong xS xou TN WOon Kal eumepia Tov doporTa.

IxAuna A.6: Ilopdderyuo mou avadetxvieL TN XENOMOTNTO TOU CNUACIONOYIXO TEPLEYOUEVOU Yiat TNV avTiAndm
ouvatoUnudtov. oty edva ota aptotepd, Yo unodétaue bt n exxovilopevrn yuvaixo Bploxetal o xatdotoon
névou. QoT600, UE TNY ELCAYWYT ONUACIONOYLXOU TEPLEYOUEVOL GTNY BeZLd exdva, YiveTan eppavéc 6TL 1 yuvaixa
elvon adAfTpLo, mavnyupiler xau Beloxeton o xatdotaon éxotaone. IInyA: [8].

To avuAnmé mAaioo kwoikomoinong nepLAaUPBvel ToEdYOVTESC TOL YiVOVToL avTIANTTOL GTa
Thadolal TV EXOVILOUEVKY GUVOLGUNUATIXGDY CUUTERLPORGY Xot oL oTtolol JewpolvTton 6Tt €Youy
EMNEEGCEL BLYNTXE TNV xWOLXOTOINCT Wag cuvatcUnuaTxAc xatdotaons. Ov Wieser xou Bro-
sch [106] BnAdvouv 6Tl YapoXTNELOTIXE TIOU OVTIOTOLOUY GE AUTAY TNV Xatnyopld opopoly
ONUOYEAUPIXA CTOLYElD OYETHG PE TO EIBOC TWV GUVULCUNUATIXWDY CUUTERLPORMY AW Xl TIC
AATACTAOELS 1) OXNVEC OTIC OTolEg AUTES EvowUaTOVovTal. Ebixdtepa, to etxovlduevo mept-
(pepelond TEPIBAANOY xou 1) oxnVvr o€ W exéva 1N Bivteo dUvaton va oyetileton GTEVA PE To
ouvatoUuaTa Twv otépey Tou eivor Topévte. Ot Barrett xou Kensinger [9] avogépouv 61t o
OOUIXGL YUPAXTNELOTIXG TOU TEOCKTOU, OTOY Ta BAETOUUE UEUOVWUEVD, CUYVE ATOBEXVIOVTAL
avenapx? Yoo Ty opdy) avtiindr cuvacdnudtwy. Emniéov, sunecipind cuphuota LTodnAGvVoUY
OTL 1) XUTNYOPLOTOINOT TWV EXPEICEWY TOU TEOCKOTOU ETUTUYVUVETUL 6T Y€ OXNVOY ToU Etval

xxiii



EKTETAMENH IIEPIAHVH Y¥TA EAAHNIKA

oLVOElC UE Tol exacToTe Etxovi{opeva cuvonciuata [88], eved 1 TeoBolf t6c0 Jetixdy doo xou
AEVNTIXWY TEPYBAAAOVTOY 0BNYEL OE ONUAVTIXES ATOXAIOEC ¢ TPog TNV avTiAndn exgppdocwy
TEOGWTOL, CUYXELTIXA UE TEPLTTOOEC OTOU aUTEG Tapouatdlovtal o oudEtepa TERIBdAhOVTA
73],

Kot enéxtoon, oo Weiser xar Brosch [106] avogépouv 611 o1 npolndpyouces yvaOOELS XaL
eunelpleg €VOC BEXTN €YOUV ONUAVTIXO AVTIXTUTIO GTOV TPOTIO ATOXWOIXOTOINCNG oL oVOLY VpL-
ONG CUVULCUNUATIXOV XUTACTACEWY. AUTY 1) YVOOT TERLAUPBAVEL XUplwe PUAETIXG O TEpEdTUTA,
CUVAUGUNUATIXEC OYECELS, HOWWVIXOUS XAVOVES, TOMTICTIXES a&ieg xardde xan TNV Puyir) Toug
XATACTUACT), TIC AVAYHES, TOUG GTOYOUS Xl TNV EUTELROYVOUOCUVT Touc. Me autédv tov TpoTo, 1)
EVOOUATWOT TNS YVWOTNE X0l TNE EUTELRLNG TOU BEXTY UTOREl VoL OONYHOEL OTNV OVIXATACKEVY| XAl
TO QPUATEUQLOUO TWV CUVOLGUNUATIXOY TANROPORLMY Xt T1) Sladixacio amoxwmdixonolnong evog
ouvatoOiuatoc. Iewpopotind Sedouéva [8] unodeixviouy 6t xadde oL cuvaoYNuoTés AeZele
X0l EVVOLES OOUOXEUVOVTAL oo TNV avTiAndn evog atdpou, nopovoidleton auiovouevn Suoxo-
Aot 6TNY AmOTEAEOUATINY OVOLY VPLOT] TOU EXACTOTE CUVALCUNAUATOS OXOUN XL OE EAEYYOUEVAL
nepdihovto. ‘Etot, 6tav avtilopBavopacte o cuvaicUnuo mou expedlet £vo TpdcW®NO, 1) UTo-
xeluevr diepyaoia mou exteheitar amd Tov BEXTN unopel Vo THPOUOWG TEL UE TNV oVEY VWO LOG
AEENC oE ol yporT oehida.

B Ewoaywy?n oto IlpoBAnua tnge Ontixnge Avayvoplong
Yuvauc9ruatog

H mopoloo evotnta anoteel pla ewoaywnyr oty Ontixy Avoyvopeion Xuvoothiuatog xou
amooxonel oTnV SlEupedVNON TWV PaCIXOY UTOXEUEVLY EVVOLOY TOL oYeTlovToL PE TO EV AOYW
TeoBANua. Apywd Yo Stoxprdoly Ta Bidpopa o Bdocwy BEBOUEVWY TOU CUVAVTMVTOL GUY VA
o€ TEWAUITIXO eNinedO, avdhoya Ue T Btadéotueg Tnyéc cuVACUNUATIXC TANEOPORIIC TOU TIC
yopoxtneilouv. Ev cuveyelo, Go yiver pia obvtoun avapopd oe delypota meowng oyetixng Bi-
Broypaploc, divovtag éugacn oe yedodohoyieg mou yenotwomooly «yewonointay, hand-crafted
YUEAXTNELO TIXE YOl T1 XWOLXOTOMACT] TNG OTTXAC cuvatcUnuaTixfc TAnpogopiag. Kat’ emnéxta-
o1, Yo yivel yetdfoct o o GUYYPOVES UPYITEXTOVIXES, €YOVTUS WS ETXEVTPO AoV Tn Ba-
tid Mddnon xon tar Te)VNTd vevpwvixd dixtuo. e autd 1o onuelo Yo SieuxpvioToly Véuata
oyetwxd pe tn mpoenegepyaocia dedouévmy xadie xar Yo avahvdoiy pédodot yio Ty e€aywy
deep-learned yopaxtnelo TIXOVY.

B.1 Bdoeig Acdopévwy

H ohoéva xou peyahbtepn emippor| Twv Texvixey Poadide udinone oto e@upuocuévo Tedio
¢ ‘Opaong Troloyio oy, xon Xt ENEXTACT, GTNY CUVAUCUNUATIX TANROQOELXY|, EYEL 00Ny NOEL
avomo@euxTo oE Wiar au&avopevn CHtnon Yo dedouéva exmaidevong. Ta ) mAren allomoinon
TWVY BUVATOTAHTWY TOV VELPWVIXOY OIXTOWY, OTo TAXCLA TNE OTTIXAS AVAY VORLONG GUYALGUY|Uo-
To¢, Baowxn tpobnddeon anotelel 1 mopoy | EVOC eaEX0UE apELlUuo) TUEADELYUATWY EXTUOEUCNC,
ue mAndwpo mopolhaydv ot exovillopevo tpdcwno xou tep3diiovta.  Katd autd to tpodmo,
xad{oTaTon avoryxodor 1) EMAEXTIXT AVAOXOTINOT OPIOPEVWY BACEMY TouU €YoLV YeroLoTolnUe-
{ eupéwg oe gpeuvnNTXd entinedo xar Vo Boninoer oty avadelln TwV *VEIWV BAXELTIXMY TOUC
YOEAXTNELO TIXV.

Bdoeig Acdoupévwv Exgpdoswy tou Ilpoconou

To peyaAbTERO XOUUATL TNG EPEUVOC OTO TOUEN TNG OTTIXAC OVOYVWELOTS CUVILCUNUATWY
ETMUXEVTPOVETAUL OTOXAEICTIXG OTNV OVIAUCT] TWV EXPRACEWY TOU TEOCHTOU, TEAYHUA TOU GU-
vemdyetar 6Tt To (810 Vo oyuel xan ot mheodngio Twv ddéowny Bdoswy.  A&wonuelwta

XXiv
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ropadeiypoata anoteholv ot Toronto Face Dataset (TFD) [97], FER2013 [13], Acted Facial
Expressions in the Wild (AFEW) [28] xou n AffectNet [75].

Awtpomuixég Bdoeig Acdopéveyv Baolouéveg oe Xelpovopieg

[Tpw v xuplopyio Twv clyyeovey TeaxTixwy Bathde Mdinong, ueydin aniynomn yvoplooy
ot hand-crafted teyvixéc yio Ty ot avory vl cuVLoUNUATWY, GUVOBELOUEVES Amd TNV
TauTdY POV avAnTUEN BACEWY GEGOUEVHV TIOU ETUXEVTPMOVOVTAY OE GUVOLCUNUITIXES EXPRACELS
uéoa amd YELPOVOUIES X XVACELS Tou cwuatos. O ev Adyw Bdoeic mpodyouv T Yenon Toi-
AUTAGY TNY OV CUVLCONUATIXNS TANEOYORLAS, UE TO aVIPMTIVO TROCWTO Xl EVPUTERO COUL VAL
amoteholV Ti¢ 600 xuptotepee. Topadelypata Tétowwy Bdocwy dedouévmny anoteroly ot Bi-modal
Face and Body Gesture Database for Automatic Analysis of Human Nonverbal Affective Be-
havior (FABO) [15], GEneva Multimodal Emotion Portrayal (GEMEP) [7] xou n HUMAINE
[17]. Kowd yopuxtnptotixd toug amotehel 10 eheyyduevo, epyootnplaxd tepiBdAlov mou €yel
yenowonomdel xotd tn Adn 1 xotaypapr) TV ev AOYw EOVeY xou Bivieo.

Bdoeig Acdopévey Enpacioroyixol Ilepieyopnévou

ITio mpdopata, EQELVNTIXES TPOOTIAVELEC €YOUY CTEAPEL GTNY AVOLYVWELOT) GUVILCUNUATWY
ue Bdon to eoV{OUEVO ONUACLONOYIXG TIEQIEYOUEVO. 2TOLYEl0l ONUACLOAOYIXO) TEQLEYOUEVOL
amoteholV 1o TEpLPERELaXd TERYBAANOY, 1 eoVilOPEV oxNVY, avTxelueva xaL BeUTEREVOVTES
avipdmvol yopaxthpes mou uropet vo ebvan tapdvtec. Ot EMOtions In Context (EMOTIC) [5¢],
Context-Aware Emotion Recognition (CAER) benchmark [62] xotw Body Language Dataset
(BoLD) [67] amoteholv tic mo ofloonueiwtes dnuooiwe dtoadéoiues Booele dedouévmy autol
Tou gldoug.  BTiyuotuma amd xdde Eva EX TWV TROAVAPELOUEVWY €WV BACEWY BEBOUEVKV,
amewxoviovtow oto oyfua B.1.

ExApo B.1l: Ytymétuna and tic Pdoeic dedopévwv AffectNet (apiotepd), FABO (uéon) xow EMOTIC
(8e&id).

B.2 TIIpwwrn Xyetxy] BiAwoypapio

[Mpoua detypota oyxetxrc PiBAoypapiag avadexviouy €va clvoro and hand-crafted teyvi-
%S Yl TNV Xwdixononon Tev dlodéotuwy cuvaoInuatixody tAneogoptoy. Ileouatind anote-
Aopata e&iyinoay Lo eheyydueveg cuVIxES oE epyao TNELXd TEpBdANOVTO UE, XorTd Xx0pLo
A6Y0, Yehom BITEOTIX®Y BACENY BEBOUEVWY TTOU ETUXEVTROVOVTAY GE CUVAULOUNUATIXES EXPRACELS
U€oa amd YELROVOULES, XIVACELS TOU OWUATOS XU UUIXEC BRACELS TOU TROCWMTOU, EVE 1) OLoOLXA-
ola avaryvapetong mpoypatoroolviay €€’ 0hoxhpou oTr BAon XATNYORIXOY CUVALGUNUUTIXWY
HOVTEA®Y %ot TV €L XoOAXOY cLYVACINUATWY.
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Hand-Crafted Teyvixég

Mo and g mpwteg mpoomdieieg oe auty| T xatebuvon anotedel To €pyo twv Gunes xou
Piccardi [17] ou onolot yenotponoinoay poppohoyixd ¢iktpa xou xatdtunon pe Bdon to yewuo
e emdepuidog, otov HSV ypowuatind ydeo yla Vo EVIOTIGoUY xou VoL dToUmVOCoLY TIC TEQLo-
YEC TOU TROCKOTOU, XEPAAOD, OUMY X0l YERLOY TWV EXOVILOUEVWY aToUnmY. Aol agaipecoy
T0 POVTO, UTOAOYIOOY OTITIXY| EOT| avdueca o oudEtepa frame xou frame cuvoucUnuoTixhc xo-
ELPKONG YA VO XWOXOTOCOLY TIC YUIXES BRACELS ToU Tpoo®Tou. OUoloTpdnws, EVIOTIoNY 1)
othoLETa xat opto¥ETnooy Tol EOVILOUEVO avIpOTIVOL COUATA ETOL (OOTE VO AMOXTACOLY CTUEela
avapopdg oYeTIXd Ye TN xivnor toug. H cuvaicUnuotiny mhnpogopia mou eunepiéyotay oe xde
Bivteo, xwdono|inxe oe Sovbopota 148 Blaotdoewy Yo To Tedowro xat 140 Slatdoenmy yia
70 avipOTIVO GWUAL.

O Castellano xow dhhou [18] mpdtewvoy Tnv yeon TEVIE UETRPIXMY YIo T1 XWOXOTOMOT TwY
XWACEWY ToL aduatoc. Ol ev Moyw petpixée meptehdufBavay tn toodtnta kivnons (Quantity of
Motion, QoM), to deixtn cuotohfc (Contraction Index, CI) xardcde xou T ToryOtnToer, emLtdyuvon
xou peuc TOTNTAL ToL Popixevtpou twv yeptwy. O deixtne cuostohic CI € [0, 1] unopel va umo-
royoTel we 0 ANoyog avdueso 6To euSadd TOL ULXEOTEPOL OPLOVETNUEVOU XOUTIOU TOU TEPLEYEL
ToL YEQLOL X0 TO XEPIAL TEOC TO EUPad6 TOU XUAUTTEL 1) GLAOUETA TOU oOUToS. AvtioTolya, To
QoM mocotixonotel Ty eviomlouevn xivnon ue BAoT TiC GLAOVETES TwV EOVILOUEVGY COUAT®Y,
xdvovtag yeron twy Silhouette Motion Images (SMIs).

O Chen xou dAAot, emiyelpnooy Vo TEAYUATOTO|COLY QUTOUATT TASVOUNOT| TWV YPOVIXMV
PAoEWY TwV cLUVULCONUATIXGY exppdoewy (neutral, onset, apex, offset), xdvovtac ypron dvo
HETEXOY TNE exxovilouevne xivnong, Tou eppadol kivnons (Motion Area, MA), tne ovdétepns
andéxhions (Neutral Divergence, ND) xou twv Motion History Images (MHI). Ouv MHIs etvou
OLABIXES EOVES oL haBdvouy Ty (on Ue wovada o€ pixel ot omola 1) Slapopd YWTEVOTNTAS
avdesa 0To TEEY OV xou Tponyoluevo frame, Eenepvdel xdmolo Teoxadoplopévn Tyn xaTtw@Aiou.
H MA anotehel To cuvohind aptiud pixel pe un undevixn Tiun gotewvotntog oto MHI evég frame.
Emniéov, oto [21] yerouonotolvion loToypduuata Tpocavatolopévey xhicewy (Histograms of
Oriented Gradients, HOGs), 1600 ot exdveg 600 xou oe MHIs, og cuvduaouéd pe Bag of Words
(BoW) povtéla yio vo meptypagel amoTteheopotind n xivnon xat 1 eppévion tov etxovlOUEVWY
CUYAUGUNUATIXWY EXPEACEWY.

Emnkéov, oto [93] npotddnxe pa pedodoroyia yio TOV aUTOUUTO EVIOTUOUS YWEOYEOVIXMV
onuelwy evdlapépovtog o Bivieo uéoa and eviellelc Tou TPOC®TOU ot Tou cwuatoc. Il
ouyxexpléva, Yo xdde frame evog Bivieo, ta yweo-ypovixd onueia evolapépovtog evionilovta
(¢ TOL TOTUXA PEYLOTOL Lol GUVEETNONG AmoXEIoNE oo povoddotata Gabor gikteo.

XapaxtneroTixd Y onc

Ye autd To onueio ogeilouue Vo avaBEEOUUE Lot GELRE OO TEYYNTY YUROXTNELO TIXG VPTG
(texture features) to onoio €youv a&tonoindel ota TAciola TNE OTTXAS Avory VORLONE cLUVILG VU=
toc. Kown Bdon yioo Ty avdmtudn autev TV YupaxTnelo XY VYRS AmoTEAECAY To Tomikd
duvadikd potiPa (Local Binary Patterns, LBP) [1]. Ou LBP etuétec xwdixonowotv potifo o€
eninedo pixel, eved 1 CLUYAEVTEWOT TOUG OE LG TOYEAUUATA 00NYEL 0TO OYNUATIONO XAJOAXWY TE-
PLYRAUPNTAY TOU TEOCKTOU YIo EXOVES, TOU Eivol avaAAolwToL 08 HETUBOAEC GTO QPWTIOUO. ‘Aueon
mpoéxtaon Twv LBP meprypagntv yio egapuoyéc oe axohoudicg Bivieo amoteholy T Tomikd
dvadikd potifa dykouv (Volume Local Binary Patterns, VLBP) xou to tomikd dvadixd potiBa oe
tpia opfoydivia ernineda (Local Binary Patterns on Three Orthogonal Planes, LBP-TOP) [1175].
ool kY€ TV TEOUVAPEROUEVKDY TEYVIXWY, TERLAUPBAVOUV TN TROTERY CUVEAEN TWV EXOVGY
ue Gabor giktpa mewv TNV oYY TWV YOEOXTNPIC TIXGY UPHC, anoteAnvtog to Local Gabor
Binary Patterns (LGBP) [114] xou LGBP-TOP [2], xat’ avtiotowyio. Xto [79] npotdinxe wio
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mpoéxtacn tou LGBP-TOP nreprypagntd o onolog ebvan avarrolwtog oe Yohwoelg tng eixdvag,
ue tnv ovopaoia Volume Phase Local Quantization (VLPQ).

Emnpéoieta, o&ilel vo eMoNUAVOUUE OPLOUEVA OXOUT YAUPUXTNROTIXE UPTE YEVIXOU GXOTOU
Ta omola oUwe €youy Peel egapuoyy| oTa TAalola Tou Tapovtog TeofBAfuatoc. To mpdTo amd
ouTd ebvon oL Typauides and wroypdupata mpooavatodiopévwy khicewy Pyramid HOGs [12].
Avtd amoteholy T cuvévwor todlarhwy HOG Swovuoudtwy, pe 1o xodéva va €yel e€aydel oe
OLUPOPETIXG ETTEDN UL Ywetx e Tupauidag. Ev cuveyelo, €youue to meprypapnty| kKAipakwtd
avaAdolwtov petaoynuatiopol xapaktnpiotikdy (Scale-Invariant Feature Transform, SIFT)
[65]. O SIFT mneprypagntic omotekel évar Bidvuopa 128 Blaotdoewy Tou TEOXVUNTEL ond TNV
CLYVEVWOTN 16 IGTOYPOUUATOY GYETIXA HE TO TEOGUVUTOMOUO XU To TAATY TwV XACEWY NG
EXAOTOTE EOVAC X0l EIVaL AVOANOIWTOC OE TEQLOTEOPES, HETATOTIOELS, XAYLOXDOELS XU UETUBOAES
OTO POTIOUO.

AZ{ler va emionudvoupe Tog METE TNV emtuyy) e€orywyr) Twy hand-crafted yopoxtneiotindy,
Yoo TV €TAUOT TV EXAOTOTE TEOBANUATLY (cuVADLS TAEVOUNOT)), YENOHOTLOUVTAY XAACIXES
uédodot unyavixhc pdinone 6mwe: Naive-Bayes, Random Forest, k-Nearest Neighbors (k-NN)
xou Support Vector Machines (SVM).

B.3 Ilpocéyyion tou IlpoBAjpatog pe Teyxyvixég Badidg Mdadnong

Y1 mapoloa evotnTa, avahbovton To Vo Bactxd 6Tddla Tou anaptiouv otoladTote Yeodo-
hoyio 1 omola Baotleton oe teyvinéc Badide Mddnong, xatd tn npocéyyior Tou TeoBAAuaTos Tng
OTTUXAC OVALY VOPLOTG GUVOLGUNUOTOY. 2E TRMOTH GAoT), UTdpYEL To eVpl aTddlo tpoetedepyaciog
dedopévwy (data pre-processing) xou ev ouveyela, T0 0TddL0 eEoywYNS Podiddy YoEaxXTNELE TGOV
(deep feature extraction).

ITpoeneiecpyacio Acdopevwy

H mohutpomixy| ontxs] avory vopelor) cuvalcUnUdtwy, PE TauTOYeovn o&loTolnan TOAATAWY
YOV cuvatcUnuaTixc TAnpogopiag, teolmo¥étel TNV eXTENEOT OpOUEVLY BNudtwy TpoeTe-
Cepyaoiog oYETHd UE TA EXACTOTE BEOOUEVA, OTIE TOV EVIOTUOHUO TOU avIp®OTIVOU GOUATOS, TNV
extiunon nolog, Tov eVIOTIOUS Xl EVIUYRIUULOT] TWY YORUXTNELO TIXGDY TOU TEOCMTOU.

H mhewovotnta tov ddéouwy Bdoewy dedouévemy mou mpoopilovTon yio To TEOBANua Tne
OTTIXNG AVAYVOPIONC CUVAOUNUATOY, TUREYOUV EX TWV TROTEPWY YWEIXES OploUETATEIL TwV
COUATWY TOU oVTLoTOL 00V oo exovi{odeva dToda. Xe TEpinTmon Tou 4Tt TéTolo dev Loy e,
xad{oTaTon amopaftnTog 0 EVIOTOUOS TV ETUEEOUS avIpOTIVGY CWUATKY Yia xdle dladéoiuo
oelypa Tng exdotote Bdone dedouévev. Autd To oTddlo Tpoemegepyaoiog avapépeTon e hu-
man detection xou meprAoBdver ev Yével TOV EVTOTIOUS EIXOVILOUEVKY TEQLOY WY EVOLUPELOVTOC
(regions of interest) xou ev cuveyeio ) TaEVOUNON WV EV AOY® TEPLOYMOY OVANOYA UE TIC €-
Eayouevee mpofAédelg mepl Umopdng 1 un avlpdmvey yopaxtThewy eviog autav. Ilakaodtepeg
npooeyyloeig ent Tou Véuatog mepteAduPBavay Tt yerion hand-crafted yopoxtnoioTindy, omwe
Lo ToYpPduUaTa TEOoAUVUTOMOUEVKDY xhioewy (HOGS) [25], eved o mpdogata €0uv xupLopyfioel
uedodoroyieg mou Pacilovton ot yerion Badiidy veupwvix®Y BixTimY, K¢ TAVOUNTES XUNLOUEVOL
napardpou el TwV EXACTOTE EXOVLY €lo6d0v. Tlapddetyyo plor TETOWG TEOCEYYIoNG anoTeERE
to Large-Field-Of-View (LFOV) &ixtuo [1].

Aqgot éyouv emtuywg oplodetniel ywpexd ol avipdmivol yopaxthees, cuyva amontelton 1 €a-
YOYT EMPEEOUC TANEOPORLOY CYETIXA UE TIC TOLES TV EXOVLOUEVLY COUATWY. AUTO TO GTABL0
npoenelepyaoiog avapépeton we ektiunon mélag (pose estimation) xou 6To omoOlo TEWTOYWVL-
oToLY oYEdOY €€” ohoxhnpou Texvixég Patide udinone. H teheutala onpovtixn tpdodog oyetixd
uE TO TPOPBANUY Tou pose estimation mpoéxue e v elcaywyr tou OpenPose [15] to onolo
amotelel éva UTOAOYIOTIXG GUoTNUA Yo exTiunone mOLog TOAUTADY ATOUWY O TEOYUTIXG

xxvii



EKTETAMENH IIEPIAHVH Y¥TA EAAHNIKA

(b) Part Confidence Maps

(c) Part Affinity Fields

(a) Input Image (d) Bipartite Matching

(e) Parsing Results

Ixhra B.2: Tleprypoapy| ubnhol emimédou tov entuépous oTtadmy enelepyasiog ToU UTOROYLOTIXO) GUCTAUATOS
OpenPose. ny#: [15].

XpOVo e yphon mediwr ovvdgeias pekdy (Part Affinity Fields, PAFs). To otddu enelepyoaoiog
Tou mepthaBdvel To utoloyloTtixd cbotnue OpenPose napousidlovian oto oyrua B.2.

To endyevo otddlo xatd TN npoeneepyacio BedOUEVKDY OYeTI(ETOL UE TOV EVTIOTUOUO XAl OTO-
UOVOOT TWV TERLOY DY TTOU AVTLOTOLY0VY OE EXOVILOUEVO TROCHTA XM Xl TNV eViuYEdUULoN
Y yapoxtnelo txmy toug (face detection & alignment), 6mwe tor pdtio, poTr, dxpes Tou GTOUO-
T0¢, xTh. Ol emixpaTESTERES UEYEL ONUERA TEYVIXES YPNOULOTOOLY Bardid GUVEMXTIXG VELEWVIXA
olxTua Ue 0TOYO TNV amd ool eTAUoT TV TEOPANudTeY Tou face detection xou alignment.
Hopdderyyo wac tétotag npoceyylone anoteiel to Multi-Task Convolutional Neural Network
(MTCNN) [112], n Sour| Tou onolou gaivetor oto oyfue B.3. Emmiéov, n teheutoio onpovtixy
Tp60doC OYETIXS UE TO €V AOYw TpdBANua tpoéxule pe v elooywyr Tou OpenFace 2.0 [0] to
omofo amotehel €va Onuociwg dladéoipo, TAReES GOOTNU AVAAUCTS 0PATWY CUUTERLPORKY GE
avlp®mve TEOCKTAL.

P-Net R-Net
_______________ A e e s e = = ——
r Conv:3x3  Conv:3x3  Conv: 3x3 @ face | Conv: 3x3  Conv: 3x3 Conyv:2x2  fully U fase classificat] |
| MP: 3x3 ( classification | | MP: 3x3 MP: 3x3 connect (|| face classification
1x1x2 ‘ [ 5 |
| - _ — m._ = boundl_"g box | _,H__. “._ M—@i , H boundlr_\g box |
regression ‘ g regression
[ S— Ix1x4 [ 4 |
| nputsize  sy5¢10 3x3x16 Ix1x32\ g [acial landmark | | mputsize y1yq1308  axaxd8 3x3x64 128 \[) Facial landmark
12x12x3 localization ‘ 24x24x3 localization |
l_ - __wwo_ '\
____________ OB o s e o o S i ) ot e’ i (i
| Conyv: 3x3 Conv: 3x3 Conv: 3x3 Conv: 2x2  fully

= ——— 2
= | ) . = Ji . ( bounding box regression
| | 4

1
MP: 3x3 MP: 3x3 MP: 2x2 connect [ L face classification |
23x23x32 10x10x64 4x4x64 3x3x128 256 L()Fa“i'ﬂ“ landmark localization |

|
| ‘
|
| input size
48x48x3

ExAue B.3: Tdmhot emnédou anewxdvion e ecwtepixic dopfic tou duetdov MTCNN. IInyA: [112].

EZaywyr Deep-Learned XopaxtneltoTtixwmy

Metd tnv ohoxhipwon Twy o Tadiny Tpoenegepyaciog, oL BldpopEs pOES ELGOBOL TROPOBOTOVY
o exdotote Pothd veupwmvixd dixtua ue oToY0 TNV e€aywyn uPnhol emnédou avamapdo TaoE-
OV TV 0EGOUEVLY TIOU TAEEYOVTOL. L TN TMERITTWON TOU TEOPAAUATOS TS OTTIXNG oVOLY VEEL-
one ouvaoINUATWY, Tar OEdoPEVA EL0O00U amoTeAoVVTAL ElTe amd exdVeS €lte amd axohoudieg
Bivteo. Kotd autd 10 1p6m0, 1ol SLOBLEC TOTAL 1) X0l TELOBIAC TATO GUVEMXTIXA VELPWVIXE. dixTuN
(2D /3D Convolutional Neural Networks, CNN) xod¢ xon tor emavolnmtind veupwvixd dixtua
(Recurrent Neural Networks, RNN) anoteholv tic appdlouvcec dopéc Badide uddnone yio to
ev AOY® TEOPBANUAL.

To CNN anoaptifovioar and tec0dpmv eldmV otp@pata, ta cuvehxtxd (convolutional),
ToL oTpOUATa Xovovixomoong (regularization), ta otpduata opadonoinone (pooling) xou o
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TAApwe Soouvdedeuéva otpwpoto (fully-connected). To mpdta, yenowonoolv cOvoha @il
TEWY TOLU GUVEAIGCOVTOL UE TNV EYIXT) EXOVAL ELGODOU UE GTOYO TNV EEAYWYT| YAUPTWY ATO Yo-
caxtneiotixd (feature maps) pe Siopopetind entneda agaipeons. To otpduata xavovixoroinong
XENOWEDOUY GTNY AVTLIETHOTLON Tou TpoBANuaTtos tne unepnpocopuoyfc (overfitting) ot otny
emTdyuvoT TN dladxactag exnaldevonc. Ev cuveyelo, ta otpduata ogadonoinong unoderyua-
TOANTTOUV TOUG EEXYOUEVOUS YAPTES YOQUXTNELO TIXWY UE GTOYO TN UElWOT TNS BLUC TUTIXOTNTAG
tou. Télog, 1o MAHpwS BLICUVOEDEUEVA CTROUATI UETATEETOUY TOUS TOALBIACTATOUS YOPTES
YUEOXTNPIO TIXWY OE HOVOOLAG TorTa Slovbouato Bdoel Twv onolwy mapdyovton TeofAédelc yia T
exdotote npoBhnuata tadvounone (classification) ¥ xou makivdpdunone (regression).

Ye mepintwon nou To dedouéva etc6d0ou anapTilovian and axoroudieg Bivieo, avadevieTon (K¢
TO OMOTENEGUATIXY 1) XPHON) TELOOIACTATWY GUVENXTIXWY TURTVKY, UE OTOY0 TNV eEaywY T Y weo-
YEOVIXGY YapaxTneloTixey. Mio amd T medteg epapuoyéc 3D cuvehxTixwmy Bixtimy apopoLoe
™V avaryvoplot avipwtivey Spdoewy oe Bivieo [55] evd alloonueinto tapdderypo anotehel xou
n C3D apyitextovixi| mou ewofydnxe oto [L01]. Extéc and tpiodidotata cuvehxtind dixtua, 1
ene€epyaoio axoloudiaxmy Se80UEVKY EVAL EPLXTH Xl UECW ETOUVIAATTIXGY VEUROVIXDY BIXTOGWY
RNN. Xuvrin xaw evpéng dladedopévn mpoxtixt anoteAel o axoloudonds cuvovaouog CNN-
RNN, 6nw¢ nopoucidletoan oto oyfuc B.4.

Visual Input  Visual Features Sequence Learning Predictions
-

ExAuo B.4: To yoaxponpddeouo enavelnmtixd cuvehxtixd vevpwvixd dixtuo (Long-term Recurrent Co-
nvolutional Networks, LRCN). To LRCN enefepydleton axoroudiec yetaBAntod pfixoug and frame (opiotepd)
uéow evoc CNN (ueoaio aplotepd), ol €£odol Tou omolou TPoYodoTolV o oTolPo Ano ENUVIANTTIXG AXONOU-
Yoed povtéla (pueoado de€id) ta omolo ev TéNeL Topdyouy petaBintod uixoue Staviopata e€68ou (8egid). IIny:

(29].

I'  Ontuxh-Enuacioloyixy Avayvoelor 2uvolcUnudtey ot
Ewcdvec

Mo cOvToun avaoxOTNoT TN OYETIXAC KE TNV OTTIXT| OVOLY VWELoT) uVILGUAUNT®Y BYBALo-
Yooplag ovadEVUEL TNV oVaYXT) Yo TEQUUTEQL UEAETY X0 TEWRUUITIONO OE U EASYYOUEVA TE-
ey3dhhovta, mou yapaxtneiCovton amd un meoPAédiucc xovwvixés cuvirixes Tng xadnueEViC
TeorypaTxhc Cwhg, xotd i onoleg umopel va lvan TapovTeES TOAATAOL avIpMTIVOL YAUpUXTHRECS,
ABavovToag OAWY TWV EWBOY OTACNC OWUATOS, XANOTWVTAS TOAES Popég adlvaTn TNV enedep-
Yoolo TV YoEOXTNEIC TIXDY TOU TEOCMTOU XAl TROAYWVTAS, avT’ oUToU, TN XENoT TOU OAX0U
Slordéotuou oo TEPLEYOUEVOL, UE 0TOYO TNV TROBAEYN TwV EXACTOTE CUVALGYNUATIXGY XOTO-
otdoewy. o autd 1o Adyo, anogaciloupe N TpdTN TERINTWOT UEAETNG YOS ETTL TOU TEOBAAULITOC
va oyetileton pe Ty EMOTions In Context (EMOTIC) Bdon Sedopévowv.
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Convl Conv2

Convis Convié
Fa Sy
Discrete
ure extraction categories
Conva
Convis Convig CO“tinUOUS
oy 'dimensions
ture extraction Fusion Network

SxAra I'.1: Aopr tou baseline povtéhou, yio avary voELoT cUVLCONUATWY CE XATNYO0EIXO XL CUVEYES ETnEDO,
ot Pdon dedopévwy EMOTIC. IInyR: [58].

'l Baowég ApyltexTtovixég

Mo and Tig mpdTeS 0loOTUEIWTES GUVELTPORES TEOC TN XATEVHUVOT) TNG OTTIXNG oVOLY VEpL-
o”Ng CLVALCUNUATWY UE YEHON ONUACLOAOYIXOU TEPLEYOUEVOL, TeoéxUE Ue TNV (Blar TN dnutovpyia
e Bdone dedouévwy EMOTIC [58]. Emniéov, npotddnxe éva npddto, Baotxd novtého yio
TeoBAedm cuvaoUnudTeny 1600 o€ XoTNYoEd (26 W auoBola ATOXAELGUEVO XATNYOPIXE UYL
odfpata) 600 xa oe cuveyés eninedo (VAD diactdoec) oty ev Adyw Bdon. To npotewdpevo
novtého anapTlotoy and 800 XAABOUS, 0 xoIEVIC EX TwVY OTOlWY AMOTEAOVTOY ond EVal GUVEAL-
x1x6 dixtuo (CNN). O évag xhddog Tpopodotolviay Ye ohdxAnen Ty exdotote exdva (context
stream), eved 0 A0S XAEBOC déyoTay KC El0OBO TN TEPLOY N TNE EV AGYW EXOVOC TTOU AVTLOTOLYO-
0OE QUG TNEE GTO TOUN TOU TREMTIRY X0V ETUCNUELWUEVOU EXOVILOUEVOU avIpMTIVOU Y oeouxX TP
(body stream). Ta eZaydpevo deep-learned yopoxtnplotixd twv 800 *AAOWY GUYVEVHVOVTOY
xou elodyovtay o€ éva diktuo ovrTnéng (fusion network), mpoidvta Tou onolou anoteholoay ot
ouvatcUNUaTiXEC TEoBAEdelC oe xatnyopnd xou cuveyég eninedo. H Sour) tou ev Adyw duxtbou
qatvetar oto oyfua I'.1

M onuavtixt| Bertioon otny anddoon cuvacInuatixic avayvoelong ent Tou Bactxig Tpo-
AVULPEROUEVNS opYLTEXTOVIXTS, TPoéxue oTar TAadoto avdmtuing tou povtéhou EmotiCon [71].
To ev Aoyw poviého, nepthopfdvel ToAATAES poéc Thnpogoplag, OTwe To TEdowno, TN T6la, TO
OTUACIOAOYIXO KOl XOWOVIXO-0UVOIXO Tepleyouevo. H eCaywyn onuacioloyinol nepleyouévou
YWOTaY 0T BAOT EMOVWY T OTIOIES TOL GOUAT TWV TEWTARYIXWY EXOVILOUEVWY YORUXTHRMWY
Aoy xohuppéve (masked-out), evddy o ocuyxexpuévoc xhddog meptehduPove xa évor TpbdoveTO
unodixtuo ontixic tpocoyfc (Attention Branch Network, ABN) [38]. T tnv eloywyn on-
HOGLOAOYIXOU Ol XOWVGMVIXOU-OUVOULXOU TEPLEYOUEVOU YENOWOTOLAUNXAY GUVENXTIXG BixTud.
Mo cuyxexpuuéva, 1 e€orywyn XOWVWYLXO-duVoUIXoL Tepleyopévou (socio-dynamic context) €yt
ve Je Bdon extumuevoug ydetee Bddoug, mou e&rydnoay ue yerion meo-exmoudeuUuévou dxTHou
MegaDepth [63]. Emnmiéov, ofiler va onueiwidel nwe yior ty e€aymyr yoeaxtneto tixdy tolog
éywve ypnon yeapo-ouvehtixodv dtiwy (GCN) [57]. Ta e&oybueva deep-learned yapoxtnot-
OTXE omd TOUG XAGBOUE OV AVTIGTOLYOVUY GTO TEOGHTO Xl TN Tolo cuvdudlovTal HECW EVOS
YOUUUXOU CYNUATIONOU X TNV ETBOAT €VOG TEOGUETOU 6POU TOAAATAAGIAC TLXOU GQPIAUATOS
(multiplicative loss), 6nwe apyxd npotddnxe oto [72]. Ta eZoydueva yapoxTnELoTIXE OAWY TWY
YXAAOWY GUYVEVLVTAL GE EVa Voo BLVUIGA YaEax TNEL TIXKY Bdoel Tou omolou yiveTtow cuvanoUTn-
worti TedPBAedn wévo oe xotnyopnd eninedo. H doun tou poviéhou EmotiCon napovoidleton
avoAuTIXd 6To oyfua I'.2.

Mo evahhoxtint| tpocéyylomn ent Tou mpoPhiuatog npotdinxe oto [L05], 6nou ta eloydueva
deep-learned omTixd YopoXTNEIC TIXE GUVOLAC TNXAY UE EVOWUATMOOELS MEEWY GUVALGUNUITIXNOD
nepieyouévou and Word2Vec govtélo, Ue GTOY0 TNV TOQUYWYT] XOWVOY GUVOLCUNUATIXGDY OVATO-
pactdoewy. 1o cuyxexpwéva, emPBAfinxe éva mpdoletog dpog oYIAUATOS, BACLOUEVOS OTNY
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EyxApa I'.2: Emoxdérnon tne apyitextovixfic Tou poviéhouv EmotiCon. ny#: [71].

AmOC TUOT) OUOLOTNTAUS CUVNULTOVOU UETAE) TOU SLaVOCHUATOS OTTIXWY YURUXTNRIC TIXWY, OTWS olU-
16 mopdyeTal HECW EVOC GUVEAXTIXOD OIXTUOU, X0 TWV EVOWHUATOOENY TOU AVTIOTOL00Y GTIC
CUVUCUNUATIXES ETLONUELDOELS TOU EXAOTOTE OElYUATOS ELGOOOU.

I'.2 TIlpotewobuevry Médodog

Anddtepo o%0Tmo TNC TEOTEWVOUEVNG UeVOBoL amotehel 1) evioyuoT TG CUVAGUNUATIXAC o-
VIIANING TV XAACUOY CUVEALXTIXWY UEYITEXTOVIXGY, OTwS Tpoopilovton yio e€aywyr onti-
AWV YOROXTNEIC TIXDV YEVIXOU 0XOTOU, HECA ATO T TUUTOYEOVY XU ATOTEAECUATIXY aflOTOoT
TOMNNATAGY oV ThAnpogoplag. €2¢ TN GUVENXTIXY BoULXY| HOVADA TOU EVEUTEPOU HOVTENOU WA,
ETUAEYOUUE VOL YPNOYLOTOCOUPE TNV 0EYITEXTOVIXY UToAeimdperwy Oiktiwy ResNet [18], xaddde
€youv avadetydel we state-of-the-art eCaywyelc ontindy yapaxtneic Tinwy oe TAnddea eopuo-
YOV, €V TORIAANAAL O ATOTEAEOUATINGS TOUS OYEDLAOUOS, CUUPBAAAEL GE YUUNAG UTOAOYIOTIXO
%(0GTOC ®Td TNV dlodxacia eEXTaUdEVoTC.

Bdion tou umohoyloTixol yog poviéhou amoTehel EVag CUVEMXTIXOC XAUDOE TOU TROOPOBO-
telton amoxheloTind pe To body crop Tou TEWTUEY KOV ETCNUEIWUEVOU aVUIPMTILVOU Y opax TR
Tou amexoviletan 0To exdoTote delypa cioédou. Iapdhhnha otov ev Adyw xAddo, TonodeTolue
aEYxd EVal OUOL0 GUVENXTIXG BiXTLO, TEOOEWOUEVO YL TNV ECAYWYT| YARUAXTNPLO TIXWY CNUACLO-
hoywol mepteyopévou (context). Yotepo and newpopotiopols ue Class Activation Mappings
(CAMs), xatahAyoupe 0To OTL Yior VoL Sy wEloTOUY AMOTENECHOTIXG Ol TIEPLOYES onTXC TEo-
COYME TWV BUO TEOAVAPEPOUEVLV XAGDWY AT TEITOL 1 XIALYY TLV TEWMTUEYIODY EXOVI(OPEVGDY
YUEAXTHPWY, OTIC ELXOVEC TOU TPOPodOoTOLY Tov context xAdoo.

Ev ouveyela, mtpociétouye €va GUVENXTIXG XAABO Yol TN XWOXOTOOT) TWV YORUXTNEIC TL-
%WV ToU TEoo®Tou. O EVIOTIOUOS XAl ATOUOVGCT| TWYV TERLOY WY XAE EXOVIC TOU AVTLOTOLY 00V
OTo TROOWTA TWV EMCTNUELWUEVWY YoUpaXTHpWY TeayUoToTolunxe e Ypron tou epyaieiou O-
penFace 2.0 [0]. Emnpéoleto, emyeipolue vo eZdyoude yapoxtnolotixd oyetixd ye ) néla
TV EXOVLOPEVWY aTOUWY Xt EETACOVUE TNV €QopUOYT BU0 EeYWEIoTOY UeI0B0AOYLOY, TOU
BooiCovtar oe povodidotata cuvehixtxd (1D CNN) xou ypapo-cuvehxtxd dixtuo (GCN), o-
viiotoa. Ko otic 600 nepintdoelg, ta 8ixtud Tpo@odotolvTo Ue TG OLoOLICTUTEC CUVTE-
Taypéveg TV aplphoeny Tou amaeTilouy To OXEAETO TOU EXACTOTE EXOVLOUEVOU YUpUXTTRO,
omwe autég evtonilovton e yenon tou OpenPose [15] povtéhou. To 1D CNN anodelytnxe we
TO ETUXPAUTECTERPO PETOEY TwV BUO UedodwY.

Kot’ enéxtaor, mopatneiooe mwe 1 oxnvi xol To Teplpepetoxd mepi3dihov oyetilovton
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Gueoo pe Tor cuvanoUiuato Tou UotpdlovTon To exdoTote elxovilopeva dtoua. Enopévee, ou-
unepthdPBaue ta oxop Tagvounone Ue PAor To €l00C xou To YOEAXTNEIC TXE TWV ELXOVLOUEVWY
OXNVOY KOG ETUTEOCVETA YULUXTNELO TIXG. GTY) OLAOXACIaL VY VWPELOTS CUVILGUNUATWY %o, o’
600 Yvwpllouye elpacte ol TpwToL Tou emtyelpolue XAt Tétolo. Tao eoyduevo meElpopoTiXd
anoteAéopota EMPBEBUWVOLY TNV EYXUEOTNTA TNS dEY XS Mag Stdoinone.

Téhog, embiOEAUE Vo EXUETUAAEUTOVUE TIG AAANAOEE0OTACELS UETAUE) TWY XATNYORIXWY CU-
VOULOUNUATIXOV ETCNUELOCEWY, OTWS EVTOTILOVTAL EVTOC TV EXACTOTE GUVOAWY OECOUEVWY, OE
wa tpooTdielar vor a€loTOOOVUE TEPUTER® TIS Slondéaiun omTiXo-oNuactoloyLxn TAneogopia. E-
papuoéoope dVo Eeywptotéc yedodohoyiee, ye ™ uio va Pacileton oto unyovioué ML-GCN [22]
xou 1 AN va Bacileton ot yetpnh) pdinon (metric learning) xow v emBol| onuactohoyixrc
oLVAPELIS PETAUED TV EEAYOUEVGDY OTTIXWDY YURUXTNELO TIXMY XAl TWV EVOWHUATOOEWY, LOVTEAOU
GloVe [85], TV cuvotcONUATIXOY ETONUEIDCEWY, Yéow evig emmpdoietov MSE dpou opdluo-
to¢ [37]. Kou ot 800 mpooeyyioeic 0dfynooay ot BEATIOOELS 0TNY avary VidploT) ouvotcInudtwy ot
xATNYOPXO €TENEDO.

'3 IIepapatind Anoteréopata xou 2D0yxpion ue SOTA

X1 Tpéyouca EVOTNTA, GUYXEIVOUNE TNV amodocT| TNG TEOTEWOUEVNS HEVOOOU UE GAAAL OT-
HOOLELUEVDL LOVTENA, OTILC aUTE Teptypdpovtar oty oyetxr Bishoypapia [59], [71], [L05], [L13].
O mivaxeg T'.1 xou I'.2 cuyxpivouy Tic amodooElC OAOY TWV TEOAVAPEROUEVLY UOVTEAWY, GTO
Thaiolo avary vapetone cuVAcUNUETWY TOCO GE XUTNYOELXO OGO XAl OE GUVEYES ETINEDO.

. Performance Comparison
Emotlor.l : . - Mittal et al. [71]
Categories Kosti et al. [59] | Zhang et al. [113] | Wei et al. [105] | Ours Without Depth | With Depth
1. Affection 27.85 46.89 - 34.02 41.83 45.23
2. Anger 09.49 10.87 - 22.22 11.41 15.46
3. Annoyance 14.06 11.27 - 22.91 17.37 21.92
4. Anticipation 58.64 62.64 - 57.94 67.59 72.12
5. Aversion 07.48 05.93 - 10.69 11.71 17.81
6. Confidence 78.35 72.49 - 76.31 65.27 68.85
7. Disapproval 14.97 11.28 - 20.35 17.35 19.82
8. Disconnection 21.32 26.91 - 31.61 41.46 43.12
9. Disquietment 16.89 16.94 - 22.08 12.69 18.73
10. Doubt/Confusion 29.63 18.68 - 23.95 31.28 35.12
11. Embarrassment 03.18 01.94 - 03.32 10.51 14.37
12. Engagement 87.53 88.56 - 85.85 84.62 91.12
13. Esteem 17.73 13.33 - 17.45 18.79 23.62
14. Excitement 77.16 71.89 - 71.70 80.54 83.26
15. Fatigue 09.70 13.26 - 15.98 11.95 16.23
16. Fear 14.14 04.21 - 10.41 21.36 23.65
17. Happiness 58.26 73.26 - 79.03 69.51 74.71
18. Pain 08.94 06.52 - 11.34 09.56 13.21
19. Peace 21.56 32.85 - 25.32 30.72 34.27
20. Pleasure 45.46 57.46 - 49.17 61.89 65.53
21. Sadness 19.66 25.42 - 33.66 19.74 23.41
22. Sensitivity 09.28 05.99 - 10.54 04.11 08.32
23. Suffering 18.84 23.39 - 38.78 20.92 26.39
24. Surprise 18.81 09.02 - 13.23 16.45 17.37
25. Sympathy 04.71 17.53 - 15.33 30.68 34.28
26. Yearning 08.34 10.55 - 10.41 10.53 14.29
[ Mean [ 27.38 [ 28.42 [ 30.96 [ 31.29 ] 31.53 [ 35.48 |

ITivaxag I'.1: Ziyxpion andédoone we npog 1o average precision (AP, %), yia x&de xatnyopixd cuvéicin-
pat, HeTol) NG TEOTEWVOUEVNG UeVOBOL Hac xot SAAWY BNUOCLEVUEVKDY HOVTENDY, XENOWLOTOLWVTIS TO 6UVOAO
Seryudtwy alohéynone e Bdone dedopéverv EMOTIC.

H mpotewopevn pédodoc uog metuyaivel cuyxplowo oxop avayvepelong o GYECT) UE TIC

tpéyouoec state-of-the-art ulomofoeic. o cuyxexpuéva, tetuyaivouue 31.29% AP, unoke-
{movtag Tou LYNAGTEEOL BNUOGIELUEVOL TOGOGTOY avary Vptong xotd wos 0.2%, Sedouévou 6t
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Continuous Performance Comparison
Dimensions | Kosti et al. [59] | Zhang et al. [113] | Wei et al. [105] | Ours | Mittal et al. [71]
Valence 0.0528 0.07 - 0.0788 -
Arousal 0.0611 0.1 - 0.0934 -
Dominance 0.0579 0.1 - 0.0898 -

[ Mean [ 0.0573 [ 0.09 [ - [ 0.0873 ] - |

ITivaxoag I'.2: Xdyxpon anddoone we mpog to average absolute error (AAE), vy xéde cuvoucnuotiny
dudotoot, peTald TG TEOTEWVOUEVNS UEDOBOU Uog ot JAAGDY SNUOCIEUUEVKY UOVTEAWY, YPNOLLOTOLOVTAS TO
olvolo derypdtwy agtohdynone tne Bdone dedopévwv EMOTIC.

dev €youpe AdfBel unddn N yeron dedouévwy Bddouc. Emmiéov, to nelpapotind anoteAéouaTo
AVOBELXVUOLY TNV oBUVOH{OL TOU HOVTEAOU G VO ATOOOGEL TO (Bl0 Xohd xou XoTd TNV TEOBAE-
N ouvaronudtwy otic VAD Siaoctdoele, onueidvovtog avénon oto AAE mepimou ion ue 0.03
oLYXpLITXd pe To avtioTolyo baseline [59].

A OntuxA-Enpaciohoyix Avayvoelorn YuvalcUnudtwy oe
Bivteo

1N Topoloa EVOTNTA, ETLYELROVUE VoL ENREXTEVOUUE TIC LOEEC TIERL OTTIXAC AVOLY VPLOTG CUVIL-
oUNUETWY, PaCIoPEVN OTO GNUACLOAOYLXO TEPLEYOUEVO, UTO TIC BUVOIXES CUVUAXES oXOAOUILDY
Bivteo. Tat tn UEAETN TN AUTAS TNG TTUYY|C TOU €V AOY W TEOBAAUATOS, TEXYUATOTOLOUUE EXTEV
Tepduata ot veoolotatn xou amoutnuxy| Bdon dedoyévwv Body Language Dataset (BoLD)

[67].

A.1 Baowég Ap)lTEXTOVIXES

Ye mpoyn @doT), xaholuacTe vo Yécoupe To amapaitnTo VewenTixd undPatpo oyeTxd UEe
Baowée apyltextovxée Potitdy VEUROWIXWY OIXTOWY, oL oTtoleg €youy yenotwormoinlel cLPEwe
o€ OLapdpny ewbwy epapuoyéc eneiepyasiag Bivieo xan mou apydtepa Yo anoTEAEGOUY SoUXES
HOVABES TOV BIXWY S UNOTOLACEMY.

YuveAxtixd Aixtuoa Avo Poowv

H apyttextovxs; ovvediktikdy diktiwy 6Uo podv (two-stream convolutional networks) [94]
elye apywd mpotadel yior avoryviplon avipwrivey dpdocwy ot axolovdieg Pivieo. H ev Aoyw
dopn| mepthopBdvel 500 GUVEAIXTIXOUS XAdBoLC, ol omtolol etvor LTELVYLUVOL YLol TNV TOUTOYEOVT
ene€epyaoion TOU Yweixol xou Ypovixol Teple)ouévou twy Bivieo. And xdie axohoudio ela6dou,
OELYHATOANTTE(TOL UE TUY O %o OPOLOUOP(O TEOTO, Eva UELOVLUEVO frame To omolo xat Tpogo-
dotel T0 ywewd xhddo. Etol, o ywewxds xhddog Bondd ot cOANdN TN oTaTKAC eupdviong
XL TWV Y WEXOY CUCYETICEWY PETOEY TWV EOVILOUEVGDY YopoXTHpWY Xl avTXeWévmy. Kot’
avTioTolyla, 0 Ypovixdg xAddog Tpopodoteital Ue 2L uovoxavahixéc elo600UE, Ol OTOlEC ATOTE-
hoUvTon oo TS OPLLOVTIEG XAl XUTAXOPUPES GUVICTOOES OTTIXAC POHC, OTWS TEOXVUTTOLY oo
otoifec L ouveyduevwy frames. Ev cuveyelo, ol emuépoug mpofrédeic nou e€dyovton and toug
600 xAddoug, cuvdlalovial €Tol HOTe Vo TEOXVPEL plar xown TedBAedn yia To exdotote Bivteo.

Aixtua Xpovixwy Tunuatwy

"Apeon mpoéxtoom TwV oWEAIKTIKOY O1kTUwy U0 POy GUVGTOUY Ta BIKTUa XPOVIKWOY THN-
pdtwr (Temporal Segment Networks) [104]. Boowd otoiyeio ty ev Aoyw doufc, amotekel 1
EQUPUOYT) EVOC GYNUUTOS 0paUAS YEoViX S BeLypatoAndlac xatd tn Aettoupyi, T6G0 TOL YWEIXOU
0G0 %ot TOL YEOVIX0U GUVENXTXOV xAddou. TTo cuyxexpéva, xde axoloudia Bivteo eloddou,
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ywelleton o€ ypovixd wwourxn tuuata (segments), and xdie éva ex Twv onoiwy derypotohnmeitos
opoLdpoppa xat Tuyoia éva pepoveuévo frame (snippet). Ta Sevypotodnminuéva frames tpogo-
00TOOV Vol YWEWO CUVEMXTIXG XAADO Xou Topdyouv éva avtioTolyo apriud meofBrédewy. T
vor e&arydel amo xowol npdfBiedn oe eninedo Bivieo, ol yepovwpéves mpofrédeic and to snippets
ouvdidlovtan p€ow pio cUVAPTNONG dlaTUNUATIKTS ouupwrias (segmental consensus function),
n onola ot Thelodnpla TV TEQITTOOEWY elvor €vag amhog uécog 6poc. To mpoavapepduevo
oo yeovixd apouhc delypatolndlac umopel va egapuoctel, ue Tov (Blo oxplBne TeoTo, xou e
XEOVIXO GUVENXTIXO Xhdd0 omolog Vo TpoodoTteital Ue 0To(BEC CUVIGTHOOWY OTTIXAC PONG TOU
Yo avTioTolyo0y ot xoéva amd Tar SELyUoTOANTTNUEVA snippets Tou ywexol xAddou. Kai oe
auTy TN TEpinTwoT), ol e€ayoueveg emuépoug TEoBAEPEC TwV 800 XxhdBwv cuvdldlovTal Yo TNy
amoXTNOT xoWAC TEOBAEdNC Yio xdie Bivteo.

Xwpo-Xpovixd I'cago-XuveAixtind Alxtua

To ywpo-xpovikd ypagpo-ouveiktikd dixtva (Spatial-Temporal Graph-Convolutional Ne-
tworks, ST-GCN) [108], anotehohv GUECT) TEOEXTACT) TWV ATAMY YPAPO-OUVEAIKTIKDY OIkTUWY
(GCN) [57] ot didotoom Tou Ypdvou, dTns elyay TpoTtadel apyixd yia avary viplon avipwrivey
OpdoenY PEow avihuong axorovhoy avipwrivey oxeietov. Ta ST-GCN Spouv méve oe oxo-
Noutiec and ypdypoue, audaipetne tonohoyiac, G = (V,E), 6mou V xar € anoteholv to. GUVOAX
OAWY TWV XOUPWY Kol XUV, XoTd UHxog TNg exdotote axohoudiag. To chvoro axudyv £ amop-
tileton and dYo unocUvola Eg xat EF, YE TO TEWTO Vol TEQLAUUPAVEL TIC EOWTEPIXES OXUES UETAZD
TV x0UPwv xdde ypdpou tng oaxohouvdog, xou Ue To BEVTEQO VoL AVTIOTOLYEL 0TI eEMTEPIXES
oaxu€c oL omoleg oUVBEOLY Toug (Bloug xoUPoug PeTald Bladoyxdy Yedpwy. H ywpeo-ypovixn
OLVEMET YRopNUATWY UAOTOLE(TOL GE BUO QACELS, OTOU XATH TN TEMOTY TEOYUXTOTOLELTOL YwEl-
x| oLUVENET Bdom Tou xavova eumpociiag Biddoong Twv anAdv GCN, to mpoiév tne onolaug v
ouveyeio cUVEMGOETOL XoTd WAX0g TOL Ypovixol d&ova. Aedouévng authc Tne udmiol emmédou
TEPLYPAPNG TN YWPEO-YPOVIXTC CUVENMENS YRAPNUATLY, oNuavTixd poho Tollel xou 1 dour) Tou
xenotpomnooluevou mivaxa yertviaone (adjacency matrix) o omolog e€optdton ev yével and T
oteatny)| Tou e@oapuoleTon Yo Tr Slauéplon TV xOUBwy xotd T dtadwocio g cUVENENG.
H Swpépron tov xépPov urnogel va yiver opoiduoppa (uniform), ye Bdon v andotoor petalld
v xouPwv (distance) xodog xou ye Bdon v andotaon twv xouPev and to Poputind xévipo
ToU Ypdyou (spatial).

A.2 TIpotewoépevn MéJodog

H npotewéyevn pédodoc pac Baotleton otov Uotepo cuvduaoud Teofiédewy (late score fu-
sion) avdueoo oe yio Tpomonotnuévn exdoyr twv TSN xar evde xatdhhnho tpo-exmoudeuuévou
ST-GCN. Q¢ 0 cuvehixTixr SouixT| HOVEBL TOU EVPUTEPOU LOVTEAOU UAC, ETLAEYOUUE VA YpNOL-
HOTOLACOLUE TNV opyttexTovixY) utodamduevwy diktiwr ResNet-18 [18]. H Sopr tou cuvohixol
TPOTELVOUEVOL HOVTENOL (alveton 6To oyruo A.1.

TSN-RGB

Apyxd e€etdlouue v eméxtao tng xhaoixhc douric Tou TSN mou dpa névew o RGB fra-
mes, PE TNV TEOc VXN TOAATAGY oY TANEopopiac Tou Yo eoTIAloLY GE BLPOPETIXS TUNITA
TWV EXYOTOTE BOOUEVHY EXOVMY XAl OUGLAC TIXY Yot XWOXOTIOLOLY YoQUXTNELC T GYETIXAL UE TO
TEOCWTO Xl TO CWUI TWV EXOVILOUEVLYV ATOUWY XD X TO CTUACLOANOYIXO TEEQLEYOUEVO TTOU
EYXELTOL OTO EOVILOUEVO TEQLPERELUXO TEQLBAAAOV, OVTIXELUEVO Xl DEUTEREVOVTES avlpOTIvVOUC
yapaxthpee. Kdlde por) mAnpopopioc eviog tou dixthou vAoToteltal (¢ €vog XUTIAANAL TEOEXTOL-
OELPEVOC CUVEAIXTIXOS XhdBoc. O Baocixdg cuveENX TGS *AdBOC TOU BXTLOU TEOPOBOTE(TOL UE
Ta body crops tou TEwTAEYIXOY EMONUELWUEVOL avilp®TVOU YapaxTriea Tou anexoviletal 6To
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IxAro A.1: ITifpec oynuatind Sidypoo TOU TEOTEWOUEVOU HOVTEAOU YLOL VoY VOPLOT) SUVALOONUETWY o1
Bdiom Bedopévwv BoLD. Ta cuvevepuéva SLovOGUATO YopaxX TNELGTLXWY OTEOVILOVTOL UE XUAVE YEMOUA, Tot TARPWS
ouvdedeuéva oTpduaTa AneElXoVI{ovTaL UE TopTOXAA Ypdua xou oL evowuothoelc GloVe anewxovilovta ye npdotvo
xeouo, wall ye ) didotacy| Toug 1 Tov apldud Twv xpueny povadwy. To ST-GCN uovtélo mopdyel eyyYeVHS
neoPAédec oe eninedo Blvteo, eved oy mepintwon twv TSN-RGB xow TSN-Flow, autd anoutel tponyouvuévwg,
TNV EQOPUOYT] ML CUVEETNONG OIATUNUATIKNS OUM@wrias oyeTixd pe Tic avtiotolyes npoflAédec oe eninedo
snippet (26 mdavotntee Tafvounone yia diaxpitd cuvanodfpata, 3 cuveyelc Tiwéc v Tic dotdoelc VAD). Ou
tehixég npoBAédelc hauBdvovton péow epapuoyhc otaduiopévou uésou.

exdotote delyua ewo6dou (body stream). Iopddinha oe autdy, Tomodetolue éva buolo xhddo
HE OXOTO TNV EZoY WYY YOPUXTNPIO TIXWY ONUACIONOYIX00 TEPLEYOUEVOL (context stream) xou o
omoloc tpogodoteitan e RGB ewdvec otic omoleg €youy ex v Tpotépwv xohuvgiel (masked-
out) ot Tpwtapyxol emonueiwuévol exovilopevol yapoxtipec. Kot’ enéxtaon evonyathvouue
€va xA&do mou ene€epydlETol AMOXAEIG TIXE TIC TTEPLOYES TWV EXOVWY EIGOBOL TOL OVTLGTOLY 0V
OTa TPOOWTA TWV TEWTARYIXOY ExoVi{opevmv yapoxtipwv (face stream). Télog, npoodétouue
€VoL CUVENXTIXG BIXTLO Yiar TNV eEoywYT| TwV oxop Tadvounone pe Bdomn to eldog xon To Yopo-
ATNELOTIXA TV exonlopevey oxnvov. Ta egoyoueva deep-learned yopoxtnelotind GAOY TwY
XAGBwY cuvevevTtal oe éva eviafo didvuouo Bdoel Tou omolou e€dyovTal apyixd TeofPAédec oe
eninedo snippet xou xat’ enéxtaon oc eninedo Bivteo.

TSN-Flow

Axohouwdmvtac Tic (Blec oyedlaoTinés apyée, entyelpolue va extoudevooupe évo TSN dixtuo
70 onolo Yo eneepydletan Tar TEdlar OTTIXNG POTE TOU AVTIOTOLYOLUY GToL BeLyUaToAnmTNUéVa fra-
mes tou mou Teogodotoly To TSN-RGB. O x0ploc cuvehixtindg ®Addog tou ev Aoyw dxtiou
Tpopodote(Ton pe TEdld onTIXAC PONC, EVIOTUOUEVA GTA COUTA TWV TEWTIPYIXWY EXOVILOUE-
vov yapoxtiewy (body stram), xwdixomotdvTag TiC avTioTOYES XIVACELS TOUS GTY) DIAPXEL TOU
Bivteo. KohOmtovtag tor TUAUAT OTTIXAC PONE TOU AVTIOTOLYOUV GTOUC TRMTARYIX0US Yopo-
ATAPEC X0 TPOPOBOTWVTAG TA OE EVOL EEYMWELOTO GUVEAXTIXG XAABO, ETUOLOXOUPE VO XWOLXOTOL-
AOOUUE TIC XWVHAOELS TWY EXGOTOTE BEUTEPELOVTWY EXOVILOPEVOY YopaxThowy (context stream).
Axohoing, TpoPodoToVUE EVol GUVENXTIXG BIXTUO OTOXAEIG TG UE TUAUOTA OTTIXNG OTE TTOL
OVTIGTOLYOVY AMOXAELTIXG OTO TPOOWTA TWY TEOTAPYIXWY Exovilopevey yopaxtheny (face
stream). "Etot, o ouyxexpipévoc xhddog ecTtdlel GTNV o AETTOUERT] XWOXOTOLAGT) TWY 0ROTHOY
HUIXOV Bpdoewy Tou Tpoommou. ‘Onwe cuvéln xou 6to TSN-RGB 6ixtuo, ta e€arydueva deep-
learned yopoxTNEIo TG OAWY TWY XAEBKY cuVEVGOVTUL OE €var eviafo Sidvuoua Bdoel Tou omolou
eZdryovtan apywd mpofBiéelc oe eninedo snippet xou xot’ enéxtaoy oe eninedo Bivieo. Ia tny
exnatdevor t6co Tou TSN-RGB 600 xou tou TSN-Flow dutbou, yenoiponoolue éva tpdcieto
6po o@dhpatoc Baotopévo oTic evowpathoee GloVe [85] tov cuvaloUnuatindy ETONUELOoERY,
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XA TUEOUOLO TEOTO, OTKG TUPOUGCLAG TNXE GTOL TEOTNYOUUEVA TELRAUATO HAS, OVUPORIXE UE TT)

Bdomn dedopévwy EMOTIC.

Mdéidnon pe Bdon tov Avipdnivo Lxehetod

E&etdloupe 600 dapopetinég pedodoroyieg yio e€aywyr) cUVOLCUNUATIXGDY oVUTORIC THOE-
wv Ue Bdon tov avipwnivo oxeieto. H mpdtn Baciletoun otn yeron evog ST-GCN povtéhou
t0 omolo €yel mpo-exnoudeutel otn Bdon dedopévwv Kinetics [16] xou to omolo tpogodoteiton
ue axoloudieg amo TIC BLOBIAOTATEG CUVTETAYUEVES TV dpUPOOEMY TOU GUVGTOUY TOV GXEAE-
T6 TOU TEOWTAPY OV EMCTUELWUEVOL EXOVILOUEVOL YapaxThpd, ot xdle Bivico. Eninpdodeta,
TeLpauaTt{OUAG TE UE TN YPNON YULUXTNELO TGOV TNG Kwvnotakijs avdilvons Laban (Laban Move-
ment Analysis, LMA) [60] o€ cuvduaoué pe todivounts (classifier) xou todtvdpounts (regressor)
tumou Random Forest. Bdoel tov nelpapatinmy anoteAéopatony, n tenTn uédodog arnodely tnxe
EMUXPATEC TEQT).

A.3  Tlepapatind AnoteAéopata xaw L0Oyxeion pe SOTA

INo tov Yotepo cuvduaoud Twv emuépous TEoBAédewy and to TSN-RGB, TSN-Flow xa
ST-GCN povtéha, e€etdlouye pedodoug 6mwe ™ Mdn peyiotou, amhod uécou 6pou xodme xou
otodopévou péoou dpou. Koalltepn pédodog avadelytnxe autr Tou otaduouévou u€cou 6pou
ue avahoyta Bopmv 2:2:1, xat’ avtiotoyio ye o Tpio Tpoavapepdueva povtéda. Emiéyoupe to
XAAOTERO GUVOALXO UOVTENO Wag, OTwe avadelydnxe yéoa and nelpduata mou Sielhydnooay oto
olvolo detypdtnv emxdpwone (validation set) tne Bdone dedouévwy BoLD xot to ouyxpivouue
ue tn baseline vionotion tou [67] xadde xou to state-of-the-art povtého tou [37], yenowonol-
ovtac 1o avtiotoyyo enionuo obvolo aflohdynone (test set). 3to mivaxa A.1 napovotdlovton
avaALTIXG T amotéleopata. H a&lohdynon tng amddoone we mpog to medfBinua tne Tagvounong
yivetan pe Bdon tic petpiée e péong akpifeags (average precision, AP) xaw tou eufadol kdtw
and tn xapakTnEoTky KaumiAn Aqwovpylas 6éxtn (area under the receiver operating chara-
cteristic, RA). H a&iohdynon tne anddoone we npoc 1o npdfBAnue tne toAvdpdunone yiveto
ue PBdon ) petpueh| Tou owrtedeatis Tpoadiopiopol (coefficient of determination, R?). Yto
mivoxar A1 epgaviCovton oL PECES TWES TV TORATAVE UETEIXMY Yl TO GUVOAO Twv 26 miio-
VOV, U1 auotBaior AmOXAELOUEVWY XUTNYORIXMY CUVOLCUNUATWY XAl TV TELOY CUVOLCUNUXTIXWY
dlaotdoewy VAD, avtiototya.

Ta mopamdve TEWAUUATLIXG BEGOUEVOL AVABELXVIOLY TNV UTEROYT| TNE Tapoloag uhotoinong. O
oLVOLACUOC EVOC xatdAAN o TpoexToudeupévou ST-GCN o Tou tpomononuévou TSN cuvéBaie
070 Vo TETOYOUUE oNUavTXéS BedTiwoelg el Twv state-of-the-art ulomoioewy avagopxd ue
Bdon dedopévewv BoLD, metuyaivovtac 0.3051 emotion recognition score (ERS) oto enionuo
obvoho aglohoynone. Emmiéov, xadde yenoyomoobue pnyd cuvelxtind dixtua yior eCorywy

Regression Classification

Set Model MR mADT mRAT ERS
TSN-RGB+TSN-Flow 0.1444 0.1883 | 0.6661 | 0.2858
Valid. (ours)

TSN-RGB+TSN-Flow

LST-GON (ours) 0.1489 0.1929 | 0.6682 | 0.2897

Luo et al. [67] 0.1030 0.1714 0.6352 0.2530
Test Filntisis et al. [37] 0.1141 0.1796 0.6416 0.2624
Ours 0.1597 0.2185 | 0.6826 | 0.3051

ITivaxag A.1l: Iocouxd anoterécpata ota cUvola emxlpwone (validation) xou aflohéynone (test) tne
Béomne dedopévwyv BoLD avogopixd ye Ty mpoTEWVOUEVY VAOTIOMNOT UoG Xat ARG SNUOCLELUEVOL LOVTENA OTNG
oyxetuhc BPhoypapioc. O petpiée anddoone exgpdloviou oto didotnua [0,1].
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deep-learned yapaxtneloTx®y, 1 TapaTNEOLUEYY BEATiKON GTNY andd00T| OEV GUVOBEDETAL ATtd
avaroyT adENon TOL UTOAOYLOTIXO) XOCTOUG EXTALBEVOTG.

E 3Yvuveiwogopég xauw Merhoviixég llpoextdoeig

X1 mopoloa DIMAWUATIXY EQYAUCIN, AVTIETWTICHUE TO TEOBANUA TNG OTTIXAC AVAYVORLONG
oLVUCUNUATWY PE Ypnon onuacloloyixol mepleyouévou. Ilio ocuyxexpwéva, uekethooue oe
Bddog 1600 TN oTATXXH 600 xou TN SuvoT| €xBooT Tou eV AOYw TEOPBAAUNTOS Xou o&loho-
YHOOUE TIC TROTEWVOUEVES UEVOBOUC UOG, TROYUATOTOLWVTS TEWHUATH GE V0 VEOCUGTUTES XAl
anoutnuxéc Bdoeic dedopévmv, Ty EMOTions In Context (EMOTIC) xou tn Body Language
Dataset (BoLD).

Méoa and extevi| nelpdpata oty Bdon EMOTIC anodéiloye moe 1 amo xowvol yehor Tok-
AUTAGY POWY TANREOPORING, OTWS To avipOTIVO COUI, TEOCWTO, 1) TOla Xl TO CNUACIONOYIXO
TEpLEYOUEVO GUUPBAANOLY adpoloTd 0TN BeATiwon NG ambBOCNE XUTA TNV AVOYVWRLoT| GU-
VouoUNUATeOVY. AUt 1 TOAUTEOTIXY TROGEYYLON TOU €V AGYOU TROBAAUATOSC oVAOEXVIETOL WG
ovoryxolar OE TEPITTAOOELS XATd TS OToleg 1) Sladixacion TS avary vaptone cuvaloONUATwY TEoy-
wotontoleltar oe un eAeyyoueva TepBdAlovta, 6mou un TeolAédiucs xowwvixés cuVIES xou
XAUTOC TAGEL, UTOPOUV VOl XUTACTACOUV Wia 1) xol TOAMATAES amd TIC TPOUVAUPECOUEVES TNYES
cuvacUNUUTIXAC TANEoYopiag, TEoocwewd un mpooBdowes. Me tn mpotewouevn Yedodo pag
XOTUPEROPE VO TETOYOUPE EVa oVTAYWVLOTIXO oxop avaryvepeone 31.29% mAP, oto enionuo
obvoho dedopévey aklordynone tng Bdone EMOTIC, vnoleinovtag tou tp€yoviog udmhdtepou
dnuootevpévou oxop xatd pohe 0.2%, dedopévou 6Tl €youue amoxhicer ) yeRorn dedopévmv
Bdrdouc.

Axohodwe, EMYELHOUUE VO ETEXTEIVOUUE TNV LOEA TNG OMUACLOAOYIXAC-OTTIXAC oVOLY VEEL-
oNne oLVACINUATLY, UTO BuVaUIXES UVDTXES axoloudny Bivteo. XToyo Uog anoTéAECE O Oy E-
OLOUOC EVOC EVOTOLNUEVOU LOVTEAOU TtoL Vot YoLpaldTay TNV NOT| TETUYNUEVY JEYLTEXTOVIXT TOU
vAoToLooUE XATE TIC TElpoaTIXéC UeAéTeg Tou Sledhydnoav ot Poon dedouéveov EMOTIC,
eve TowTtoypova Va Aoy xavd vo enelepydleton Bivieo. Emiégaue toa Temporal Segment Ne-
tworks (TSN) wc ™ payoxoxahid tou dtdou pog, eV eniong ypnolonotiooue cTotyeio Tng
Laban Movement Analysis (LMA) xadoc xou Spatial-Temporal Graph Convolutional Netw-
orks (ST-GCN) ¢ péoa pdidnone Bdoet tou avipdnivou oxeletol.

Axohovdwvtag TiC (Bleg oyedLUo TIHES dpYEC OTWS GTIC TEONYOUUEVES UNOTIOLCELS OIS, ETE-
xtebvape v TSN apyitextoviny| evowuathvovtag ToAATAES po€g TANEOPORldS TOL OUGLAC TL-
%3 xwOWOTOLY GToLyEl TOU AVIPMTIVOU COUATOS XAl TEOCKTOV, GTOLYEld ONUAGIONOYIX00
TeplEYOUEVOL xadde xon oToyeln cuoyeTWlOUEVO PE TO TEPLPERELaXS EXOVILOUEVO TERUBEANOY,
EVIOYVOVTAS XAUTA AUTO TO TEOTO TNV Ao X0voU avTiANgn Tou HOVTEROUL Yo ToL avUp®TIVAL GUVOL-
oOuaTa xou To exovi{opevo ontxd mepleyOuevo. O cuVBUUCUOS EVOC XUTIAANAAL TEOEXTAULOEU-
uévou ST-GCN xou Tou Tpomononuévou TSN cuvEBae 010 Vo TETOYOLUE ONUAVTIXES BEATIOOELS
eni Twv state-of-the-art vAonowjoewy avagpopxd ye tn Bdon dedouévewy BoLD, netuyaivovtac
0.3051 emotion recognition score (ERS) oto enionuo alvoro a&iohdynong.

Télog, mpoxewévou va emexTelVOUUE Xt Vo BEATIOCOVUE TNV EPELVA TTOU EYIVE OE QUTH TNV
OLTAWUATIXY EQYOCIN TEOTEIVOUUE XATOLEG UEANOVTIXEC TROEXTACELS:

o Algpehivnom TV aTldY AOY® TV OTolwY 0eV TapatneUnxe 1 avauevouevn Behtiwon otny
amoB0ooN avory voRLoNe cuvoneUnudtwy ot cuveyég eninedo (VAD Blactdoelg), xat’ avoho-
yio pe Tic aUENOES TV TOCOGTOV EMTLYOVS AVAYVOPLONE GE XATNYOPIXO ETUNEDO, XoTd
TN Oldipxelo TV TEWpoUdTwy Log oTn Bdor dedouyévewy EMOTIC.

e Xprion Bdorng dedopévwy tonou RGB-D, tou xatd npotiunon Yo npooptleton yior avory vodpL-
o1 avipwTIVeY BpdcEWY, UE GTOYO T1| TEOEXTAUUOEUCT] CUVEAXTIXOU BLXTOOU OE OEGOUEVA

XxXxVii



EKTETAMENH IIEPIAHVH Y¥TA EAAHNIKA

Bddoug, mewv TNV eQopuoYY| Tou Yol oy WYY CUVULGUNUATIXAC TANeooplag, TGO Ot Ei-
%0OvVeC 600 xou oe axohoulieg Bivteo.

e Evowudtworn tou ML-GCN unyaviopot otn TSN apyitextovixr, pue otdyo tnv mepdl-
Tépw BeATiwon TNg anddoong OYETXE UE TNV AVALY VOELOY CUVOLOUNUATOY GE XATNYORXO
eninedo.
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Chapter 1

Introduction

The interpretation, perception and recognition of human affect has been a subject of
rigorous studies and analysis across several scientific disciplines such as biology, psychology,
sociology, neurology and last but not least, computer science. While the aforementioned
cognitive sciences focus on the extraction of the available affective information, the fields of
computer vision and machine learning aim at automating the recognition process through the
development of novel techniques and algorithms which are capable of producing effective and
robust encodings of such information. Automatic affect recognition bears an immense prac-
tical importance as it has extensive applications in environments that involve human-robot
cooperation, sociable robotics, medical treatment, psychiatric patient surveillance, driver fa-
tigue surveillance and many other human-computer interaction scenarios.

1.1 Models of Emotion

As a first step in understanding the concepts of emotion perception, interpretation and
recognition, we ought to establish the theoretical foundations based on which emotional
states are modeled. The best way of modelling affect has been a subject of debate for a long
time and many perspectives upon the topic have been proposed. The most relevant models
for affective computing can be classified in three main categories: categorical, dimensional
and componential. In the following paragraphs we will try to introduce the main features,
advantages and disadvantages of each model in relation to affective computing.

1.1.1 Categorical Models

Categorical models are used for classifying emotions in discrete categories that can be
recognized and described easily in daily language. The major development in categorical
emotion models is attributed to the work of Ekman and Friesen [33], [31] and their under-
lying assumptions about the universality of a set of six basic emotions, namely happiness,
sadness, fear, anger disgust and surprise. A depiction of the aforementioned emotions is illus-
trated in figure 1.1. To demonstrate the hypothesized universal element, Ekman and Friesen
initially conducted experiments in which they showed still photographs of faces to people of
different cultural backgrounds in order to test whether the participants would classify the de-
picted and narrated affective states as they same emotions, despite their cultural differences.
The participants of the experiments belonged into several different culture groups, including
college students from the United States, Argentina, Brazil, Chile and Japan, as well as two
pre-literate cultures (the Sadong of Borneo and the Fore of New Guinea) which had extensive
contact with Western cultures. The initial results suggested that emotions were perceived
uniformly across all cultures, re-enforcing the concept of universal emotion perception.
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Fear

. Anger Surprise Disgust

Figure 1.1: The categorical way of describing affect on the basis of the universal set of six emotions, i.e.
happiness, sadness, fear, anger, surprise and disgust. Source: [77].

However, their interpretations were open for argument as all of the participants were found
to have been exposed to the Western mass media portrayals of facial behavior. In that way,
in order to overcome the difficulties in interpretation of their previous results, they repeated
the experiments, using participants from the Fore linguistic-cultural group of New Guinea,
who were selected on the condition that they did not understand nor speak English or Pidgin
(grammatically simplified means of communication that develops between two or more groups
that do not have a language in common), had not come in contact with a Caucasian, had
not watched movies and had not visited any western settlement. A single test item during
the evaluation of the participants consisted of an emotional story, a picture depicting a facial
behavior that matched the one described in the story and two more irrelevant pictures. Every
participant was asked to make at least three emotion discriminations, as a particular story
was narrated more than once together with different combinations of matching and irrelevant
photographs. The experimental results showed that the pre-literate participants, of all ages
and both sexes, performed comparably with people of literate Western cultures in recognizing
the depicted and narrated emotional states, supporting the authors’ initial hypothesis for
universality associated with the perception of the six aforementioned emotions.

On account of the simplicity of the categorical models of emotion, combined with the
associated universality claim, the universal emotions hypothesis has been undoubtedly the
primary tool in research relative to affective computing, as stated by Noroozi et al. [78].
However, it is the simplicity of the categorical models that limits their ability to capture and
describe more complex emotional states.

1.1.2 Dimensional Models

Following the categorical models, dimensional models constitute the second most popular
and widely used method for describing emotions. In a dimensional model, an affective state is
represented as a point on a continuum spanned by a set of independent dimensions. Several
dimensional models have emerged over the years through research conducted in the field of
psychology. However, the Pleasure-Arousal-Dominance (PAD) model is the most commonly
used in affective computing.

The aforementioned system was originally developed by Mehrabian and Russell [70], [91].
Extensive studies and experiments supported that the three factors of Pleasure-Arousal-
Dominance are independent, as any value along one dimension can occur simultaneously with
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any value on either of the other two dimensions. In addition, the three dimensions are defined
as bipolar. Pleasure (or valence) describes how positive or negative a feeling is, ranging from
extreme pain or unhappiness at one end to extreme happiness or ecstasy at the other end.
Arousal corresponds to the level of activation, mental alertness and physical activity, ranging
from sleep, through intermediate states of drowsiness and then frenzied excitement on the
opposite extreme. Lastly, dominance represents the amount of control over others and the
surrounding environment, ranging from total lack of control and a sense of vulnerability on
one end to the opposite extreme of feeling influential and in control. An illustration of the
3D VAD space is shown in figure 1.2.

1.0

ATgeT Joy
p Dirgust Surprise

0.5

0.0
U
o

Dominance

Arousal

-0.5
o
o

-1.0

Valence

Figure 1.2: The continuous way of describing affect in the form of a point in 3D Valence-Arousal-Dominance
(VAD) space. Source: [5].

The continuous nature of the dimensional systems accounts for more complete and rich
representations of complex and sophisticated emotional states. The richness of the continuous
space is more difficult to use for automatic recognition systems due to the fact that it can be
challenging to associate a vectorized description of an emotion to a facial affective behavior
or body movement. In that way, several automatic emotion recognition systems that utilize
dimensional representations of emotions, simplify the problem by dividing the space to a
limited set of categories, such as positive versus negative quadrants of the 2D space [111].

1.1.3 Componential Models

Componential models lie in between categorical and dimensional models, as far as discrip-
tive capacity is concerned. Componential models arrange emotions in a hierarchical manner
according to which, emotions that belong to higher or superior layers can be decomposed into
a set of more primitive and basic emotions that belong to the exact precedent layers. The
most notable example of a componential emotion model is the one introduced by Plutchik
[47].

According to Plutchik, emotions constitute complex processes with functional value, both
in communication and in increasing an individual’s chances of survival, representing prox-
imate methods to achieve evolutionary fitness. He considered there to be eight primary
emotions, namely anger, fear, sadness, disgust, surprise, anticipation, trust, and joy, while
his argument about primacy was supported on the fact that all the above mentioned motions
triggered specific behaviors with a high value of survival, such as the way fear inspires the
fight-or-flight response. In addition. he conceptualized primary emotions in a fashion anal-
ogous to a color wheel, placing similar emotions close together and opposites at 180 degrees
apart, like complementary colors. More specifically, joy was placed against sadness; anger
versus fear; trust versus disgust; and surprise versus anticipation. Other emotions can be
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Figure 1.3: The componential way of describing affect on the basis Plutchik’s wheel of emotions. Source:
[87].

conceived as mixtures of the primary emotions, just as some colors are primary while others
are made by mixing the primary colors. Following this pattern of color theory, we can de-
scribe emotions which result from the combination of pairs of fundamental emotions, called
dyads, in the same way that red and blue make purple. For example, mixing the primary
emotions of joy and trust produces the mixed emotion of love, disgust plus anger results
in contempt, anticipation plus joy results in optimism. All the above mentioned examples
constitute primary dyads. Subsequently, more sophisticated combinations can be formed,
namely secondary dyads, e.g. guilt as a product of joy and fear, as well as tertiary dyads,
e.g. delight as a product of joy and surprise. Furthermore, Plutchik extended the initial cir-
cumplex model into a third dimension representing the intensity of emotions, resulting in a
structured model that was shaped like a cone. The vertical dimension of the cone represents
intensity while the horizontal plane represented degrees of similarity among the emotions.
An illustration of Plutchik’s expanded circumplex model is illustrated in figure 1.3.

These types of models are rarely utilized in the context of affective computing and au-
tomatic emotion recognition related literature, in comparison to the previously mentioned,
categorical and dimensional models. However, they should be taken into consideration as an
effective compromise between ease of interpretation and expressive capacity.

1.2 Sources of Visual Affective Information

The subject of the current thesis revolves around automatic visual affect recognition in
still images as well as videos. As far as visual emotion recognition is concerned, the primary
sources of affective information are located at the face and body of the person in question.
Most recent studies, e.g. [3], [L06] also consider the surrounding environment and depicted
scene to be a source of affective information of equal significance. The latter are commonly
referred to as the context related features portrayed by an image or video sequence. The
notion of context has also been addressed in the form of an implicit communication channel
that transmits valuable affective information during interpersonal interactions and can be
understood through face and speech signal analysis [23]. As a first step in understanding the
nature of the problem, we ought to justify the usage and importance of each of the above
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mentioned information cues.

1.2.1 Facial Features

The human face is commonly perceived as the window to the soul. In such way, the
facial features are often considered as the primary source of affective information. Affect
recognition systems that rely solely on the face aim at recognising the appearence of facial

actions or the emotions conveyed by those actions on the basis of the Facial Action Coding
System (FACS).

The Facial Action Coding System

The Facial Action Coding System (FACS) was based on a system originally developed by
the Swedish anatomist Hjortsjo [50]. It was later adopted by Ekman and Friesen [32] who
published it in 1978. Their work was focused around the creation of a universal measure-
ment scheme that could distinguish among all visible facial behavior, so in that way, facial
movement could be studied and analyzed both in research related and unrelated to emotion.

Since every facial movement is the result of muscular action, a system could be obtained on
the basis of how each muscle contributes to the resulting change in visible facial appearance.
In addition, FACS focuses on the movement and the muscular basis of appearance change
and in that way it is capable of overcoming problems due to physiognomic differences, such
as variations in size, shape, location of features and existence of wrinkles, bulges and other
facial characteristics that gradually appear due to aging. After extensive experimentation and
testing, the authors introduced a finite set of components of muscle movement, called Action
Units (AUs), as well as a set of Action Descriptors (ADs). ADs differ from the AUs as they
are unitary movements that may involve the actions of several muscle groups, the muscular
basis of which hasn’t been specified and specific behaviors haven’t been distinguished as
precisely as for the AUs. Examples of various detected AUs can be seen in figure 1.4. The
criteria for observing and coding each Action Unit and Action Descriptor is described in the
FAC manual, using which, human annotators can code almost every anatomically possible
facial behavior by decomposing it into specific AUs and temporal segments that produced
the expression.

Figure 1.4: Examples of detected Action Units (AUs) as they appear individually or in combinations during
everyday social interactions. Source: [30].

The development of the FAC tool allows the objective and anatomical study of facial
expressions in emotional contexts. Consequently, a collection of certain Action Units can be
combined so as to provide information about which emotion is being displayed. For example,
happiness is calculated from the combination of AU6 (cheek raiser) and AU12 (lip corner
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puller), while sadness can be described as the combination of AU1 (inner brow raiser), AU4
(brow lowerer) and AU15 (lip corner depressor).

Facial Expression Dynamics

Facial actions are not produced instantaneously but rather evolve over a temporal interval.
This very temporal evolution of the action units bears great importance in the interpretation
of affective states as stated in [3]. Moreover, Ekman, Friesen, and Hager published a signif-
icant update to FACS [35], in which the temporal evolution of an expression was modelled
with four temporal segments: neutral, onset, apex and offset. Neutral is the expressionless
phase with no signs of muscular activity. Onset corresponds to the time period during which
muscular contraction is present and the emotional state increases in intensity. Apex refers
to the steady state during which emotional intensity remains stable and at its peak. Subse-
quently, offset corresponds to the period of time during which gradual muscular relaxation
takes place and the emotional intensity degrades. The usual order of transitions among the
aforementioned temporal phases is neutral-onset-apex-offset-neutral. The combined recog-
nition of AUs and temporal segments accounts for the analysis of more complex emotional
states and contributes to the distinction between natural and acted emotional behavior [102].

1.2.2 Body Features

Considering body movements as a modality for emotion perception and recognition is
particularly relevant in situations during which affective information needs to be conveyed
over long distances at which facial expressions and characteristics are no longer visible. Fur-
thermore, a popular notion is that facial expressions are more easily controlled while body
language often reveals our true emotions. For example, in stressful social environments, peo-
ple tend to maintain a straight face or even smile so as to hide their nervousness and anxiety,
as evidenced by quivering and sweaty hands, hand wringing and foot jiggling.

Evidence from Biology and Neuroscience

Investigations of the neuro-functional basis of observing bodily expressions have begun to
show that they activate the same brain areas that were also associated with the perception of
faces. Gelder [10] compared neutral and fearful expressions and found an increased activity
for fearful bodily expressions in the amygdale (AMG) and in the form gyrus (FG). The area
that showed body responsiveness in the FG was the same as the one identified in a separate
study using a face localizer. In subsequent experiments, Gelder presented pictures of faces
and bodies with blurred faces that depicted neutral, fearful and happy expressions and asked
the participants to categorize the stimuli. The results state that the middle part of the
FG which is typically associated with the perception of facial identity is more activated for
bodies than for faces. Additionally, viewing whole body expressions evoked a larger set of
brain areas in comparison with faces, including areas that were previously solely associated
with the perception of faces such as the superior temporal sulcus (STS).

Movement Notation Systems

As a direct analogy to the aforementioned Facial Action Coding System (FACS), move-
ment notation systems aim at providing a tool for systematic representation of movements
which is capable of capturing both their structure as well as their expressiveness. Burgoon
et al. [13], suggest that movement notation systems should be divided into functional and
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structural approaches. Functional approaches describe the communicative function of a dis-
played movement using verbal labels. An example of such a system is the Ekman and Friesen
formulation of kinesic behaviours into five categories [30], i.e. emblems, illustrators, affective
displays, regulators and manipulators.

Structural approaches focus on the appearance of bodily movements and account for
detailed notations of posture and movement dynamics, thus providing notation systems which
are more suitable for computational movement analysis. An example of a structural notation
system is the Laban Movement Analysis (LMA) [60]. More specifically, LMA constitutes
a method and language for describing, visualizing, interpreting and documenting human
movement. The Laban notation system has four major components: Body, Effort, Shape
and Space. The first part of features in LMA, i.e. the Body component, captures the
pose configuration. Such features include distances between joints, namely feet-hip, hands-
shoulder, hands-head, centroid-pelvis, hands and feet. The second part of LMA features, i.e.
the Effort component, captures body motion characteristics. These features include the joint
velocity acceleration and jerk, as well as the angle, angular velocity and angular acceleration
of pairwise limbs. The third part of features, namely the Shape component, captures body
shape. These features correspond to the area that contains specific joints. Moreover, Shape
consists of Shape Flow, Directional and Carving, features which according to Bartenieff [10],
describe dynamic changes in movement form. Lastly, the fourth component of Space defines
where in space a movement is happening and the directions of the body and body parts.
Additionally, the space category notates choices which refer specifically to space, paying
attention to the area that the body is moving within, the directions or points in space that
the mover is identifying or using as well as geometrical observations of where the movement
is being done, in terms of emphasis of directions, places in space and planar movement.

Body Language and Emotions

According to [78], the inner state of a person is expressed through elements such as
gaze direction, position of hands, position of legs, style of sitting, walking, standing, body
posture and movement. Therefore, it can be said that body language and human emotions
are interdependent and the following examples aim to further establish this notion. Figure
1.5 illustrates various instances which verify the above concept.

Hands are probably the second richest source of affective information following the facial
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Figure 1.5: Body language includes different types of nonverbal indicators such as facial expressions, body
posture, gestures and eye movements. These are important markers of the emotional and cognitive inner state
of a person and constitute significant sources of information relative to the task of human affect computing.
Source: [78].
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cue, as stated in [74], [33]. For example, sincerity and dishonesty can be potentially deter-
mined by the positions of a person’s hands. More specifically, if a person is being honest,
they will most likely have their hands turned inside towards the interlocutor, while if they
are being insincere, they will most likely hide their hands behind their back. In addition,
practising open hand gestures during a conversation often gives the impression of a more
reliable person.

The position of the head can convey valuable information of a person’s affective state. It
is stated [31] that people tend to speak more when the listener shows approval and encour-
ages them by nodding, while the pace of nodding is indicative of patience and lack thereof.
Moreover, lifting of the chin, is a potential sign of superiority or arrogance and the exposure
of the neck is often perceived as a signal of submission.

The torso by itself is not capable of conveying as much information as the aforementioned
body parts but it can be indicative of one’s affective state in correlation with the rest of the
body. For example, the angle of the torso with respect to the body can potentially reveal
information about a person’s attitude in a conversation, as a frontal placement of the torso
can be considered as a display of aggression, while a slight angle of the torso indicates self-
confidence or lack of aggression. Furthermore, leaning forward combined with nodding or
smiling is a typical sign of curiosity.

1.2.3 Contextual Features

In real life scenarios, when we observe an individual, we can probably estimate a lot
of information about their emotional state despite the lack of additional specific knowledge
about them. By analyzing a wider view, instead of focusing on the person in question, we
can potentially collect affective information which can not be perceived provided the absence
of context. This point is exemplified in figure 1.6, where both a face close-up as well as a
wider view of a female athlete are shown. This concept holds true especially in situations
during which the face is partially or completely occluded due to poor illumination conditions
or obstacles, while the person may be found in unusual body configurations, hindering the
extraction of information from the aforementioned sources. In summary, Dudzik et al. [31]
highlight two primary sources of context which are used for interpreting emotional behavior,
namely perceivable Perceivable Encoding Context and Perceiver Knowledge and Experience.

Figure 1.6: Example that illustrates the significance of contextual information for affective computing. For
the image on the left, one would assume that the depicted woman is in a state of pain. However, with the
introduction of context in the image on the right, it becomes evident that the woman is an athlete, she is
celebrating and she is feeling ecstatic. Source: [3].
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Perceivable Encoding Context

Perceivable Encoding Context includes factors that are perceived along the depicted emo-
tional behavioral cues and that are experienced as having potentially influenced the encoding
of an affective state. Wieser and Brosch [100] state that features which correspond to this
context category revolve around demographic information related to the gender of the emo-
tional behaviors as well as the situations and scenes in which they are embedded. As far as
demographic features are concerned, some examples might include age, cultural background,
gender and occupation. Additionally, examples of situational features are the location, de-
picted scene and illumination. In a hypothetical scenario [19], sadness often results from an
irrevocable loss. However, for a toddler an ice cream that fell to the ground may be irrevoca-
bly lost, whereas an adult is aware of the fact that an ice cream is something that can easily
be replenished. Such an example illustrates the effect of age as a situational context feature
in emotion perception.

Additionally, the environment and scene depicted in an image or video can be closely
related with the emotions of the people that are present. Barrett and Kensinger [9] report
that the structural features of the face, when viewed in isolation, often prove to be insufficient
for perceiving emotion. Furthermore, empirical findings suggest that the categorization of
facial expressions is speeded up at the sight of congruent scenes [38], while both positive
and negative contexts result in significantly different ratings of faces compared with those
presented in neutral contexts [73]. For example, an image of a funeral that is located at a
cemetery, suggests a strong correlation between the above oppressive setting and the generally
negative and sad feelings shared among the depicted people.

Perceiver Knowledge and Experience

Weiser and Brosch [106] highlight empirical findings which suggest that the perceiver’s
pre-existing knowledge and experiences have a significant impact on the way they decode
and recognize affective states. This knowledge mainly includes racial stereotypes, affective
associations, social norms, cultural values as well as their mental state, needs, goals and
expertise. In that way, the incorporation of Perceiver Knowledge and Experience may lead
to the reconstruction and filtering of the affective information during the decoding process
of a behavioral signal. Masuda et al. [(68] describe an experiment based on a study about
the effect of cultural background in emotion perception involved Asian and US Americans to
whom cartoons and photos of a group of people were shown and they were asked to decode
the central’s person emotion. According to Barrett et al. [3], the study showed that the
Asian participants made more strategic use of the information from the faces surrounding
the target while Western participants seemed to rely mostly on the information deriving from
the actual target. This finding was based on the fact that participants from a Western culture
conceptualize emotions as located within the individual while participants of Asian culture
conceptualize emotions as a reflection of the interpersonal relationships between people.

Moreover, the detection of facial actions might carry affective information; however, the
discrete emotional concepts of affective states receive their meaning through context. In
order to illustrate that, Barrett et al. [3] mention the case of a semantic dementia (SD)
patient that participated in an emotion perception experiment. Semantic dementia can be
described as a progressive neuro-degenerative disorder that is characterized by loss of semantic
memory in both the verbal and non-verbal domains, causing patients to lose the ability to
match words or images to their meanings and hindering spontaneous speech creation. The
patient was asked to categorically sort 120 posed, stereotyped scowls "angry", pouting "sad",
smiling "happy", nose-wrinkled "disgusted", startled "fearful" looking faces and neutral faces
(20 each). The patient did not manage to distinguish the faces among the five emotional
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categories (plus neutral) but managed to sort them according to the depicted valence levels,
thus forming a positive (happy), neutral and negative stack (angry, sad, disgusted, fearful).
Results suggested that as emotion words become more remote from the perception task,
people face increasing difficulty in effectively recognizing emotion even in posed environments.
Thus, it can be said that when seeing emotion in a face, the task performed by the perceiver
can be compared with the reading of a word on a page.

1.3 Thesis Outline

In this final section of the introductory chapter, we briefly describe the structure as well
as the topics which will be discussed throughout the remaining chapters of the current thesis.

To begin with, Chapter 2 lays the theoretical foundations associated with subjects such
as Machine Learning, Representation Learning and Deep Learning. More specifically, we
present the structure and features of all major, practical and modern deep neural network
architectures. Furthermore, the necessary mathematical background is going to be established
with the aim of obtaining a clearer insight of the functionalities of all the aforementioned
modules.

Moreover, Chapter 3 will serve as an introduction to the task of Visual Emotion Recogni-
tion. Firstly, we present a summary of the most popular publicly available databases which
have been used in research relative to visual affective computing. In addition, we analyze the
most notable pieces of early related work, laying emphasis on techniques that utilize “hand-
crafted” features for the encoding of visual affective information. Subsequently, a transition
to more modern practices will be made with the emphasis being shifted towards Deep Learn-
ing where we will be analyzing topics associated with data pre-processing and deep feature
extraction.

Moving on, Chapter 4 constitutes our first case study where we explicitly tackle the
problem of image-based Visual Emotion Recognition in Context, using the EMOTIC dataset.
We begin by presenting the most notable applied methodologies from all publicly available
related work. Consequently, we propose possible extensions over the baseline models and
lastly, we present our experimental results.

Chapter 5 extends the concept of Visual Emotion Recognition in Context as we now
focus on video sequences instead of static image frames. To this end, we utilize the newly
assembled Body Language Dataset (BoLD) as a counterpart of the EMOTIC dataset in
dynamic temporal settings. For our network implementations we adopt the widely used
Temporal Segment Networks (TSN) framework, providing an adaptation of our previous
“static” model, capable of processing video sequences.

Finally, Chapter 6 completes our thesis with the inclusion of conclusive remarks and
potential directions for future work.

10



Chapter 2

Deep Learning

The primary tools which will be utilized towards tackling the automatic affect recognition
task belong in the fast-growing field of Deep Learning. In the current chapter, we will
try to establish the theoretical foundations regarding Deep Learning, as well as accurately
describe the basic architectures which will later constitute the building blocks of our own
computational models. Therefore, with this specific goal in mind, we will begin by presenting
the broader context of applied computer algorithms from which Deep Learning originated, and
subsequently, we will briefly describe the evolution of this particular field from a historical
perspective. Lastly, we will analyze the structure and features of all the major practical
and modern deep networks. For guidance throughout this process, we consult the works of
Goodfellow et al. [12] and Bishop [l 1], as our primary references.

2.1 Underlying Concepts

Deep Learning is closely related and shares several concepts with other fields such as
Artificial Intelligence (AI), Machine Learning and Representation Learning. In fact, Deep
Learning is considered to be a sub-field of Representation Learning, which in turn is a sub-field
of Machine Learning, with the latter lying within the broad spectrum of Artificial Intelligence.

2.1.1 Artificial Intelligence

Artificial intelligence is a thriving scientific field that predates that of Deep Learning and
revolves around techniques and algorithms which enable computers to mimic human behavior
and solve problems which can be described by a set of formal mathematical rules. In earlier
Al projects, programmers tried to tackle problems by hard-coding knowledge into machines
in the form of logical inference rules using formal languages. However, those attempts failed
due to the fact that it is extremely difficult to come up with a sufficiently complex and diverse
set of formal rules to describe the ever growing complexity of the real world. Consequently,
Al related techniques struggle to cope with problems for which no formal mathematical
description can be given. The difficulties faced by Al systems, gave rise to a set of algorithms
and methods which enabled computers to extract relative information directly from raw data
and based on them, make predictions and choices in real-life scenarios. The subset of Al
relative to this concept is called Machine Learning.

2.1.2 Machine Learning

Machine Learning (ML) algorithms are heavily dependent on the form or representation
of the data with which they are provided. While Al focuses on mimicking human behavior,
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ML focuses on mimicking how humans learn. In that way, depending on the nature of the
task at hand, ML algorithms require relevant and robust data representations in order to
function properly. In classic ML, those sought-after data representations come in the form
of hand-crafted features which have been specifically designed with human supervision so as
to contextually match the requirements of the problem. However, for many tasks, it is really
difficult to either manually design accurate descriptions of potentially important pieces of
data or even predict which pieces of the available information are worth encoding in the first
place. Issues like these lead to severe degradation in performance or inhibit the use of ML
algorithms in general.

2.1.3 Representation Learning

A potential solution to the aforementioned problem suggests extending the use of ML
algorithms in learning not only the mapping from given data representations to the desired
output but also the representations themselves. This technique is called Representation
Learning (RL) and constitutes a sub-field of ML. RL enables Al systems to rapidly adapt to
new tasks and provides them with effective data representations, that achieve performance
which is comparable or even superior to that of hand-crafted features, while minimizing
human intervention. The primary challenge involving RL in artificial intelligence applications
is the disentanglement of the factors of variation found within the available data, namely the
recognition and extraction of the factors that give meaning to the observed data.

Deep learning aims at solving the core problem of representation learning by not only mim-
icking the ways humans learn but also imitating the primary functionalities of the human
brain. Drawing inspiration from the processes relative to biological learning, deep learning
models share a property of self-organization analogous to the proposed learning dynamics of
the human brain. In summary, deep learning comprises a set of ML methodologies that rep-
resent the world in a hierarchical fashion, according to which higher-level and more abstract
representations of raw data are obtained on the basis of simpler and less abstract ones. Fur-
thermore, in the context of modern ML, deep learning transcends its original neuro-scientific
perspective and abides to a more general principal of learning multiple layers of composition.
The basic modules that comprise deep learning models are called Artificial Neural Networks
(ANNs). As a subsequent step in our introductory view in deep learning, we will briefly
describe some of the most notable predecessors of modern ANNSs.

2.2 Predecessors of Modern ANNs

In the current section we will dive into the primitive era (1943-1980) of neural networks
and highlight the modules which have constituted the cornerstones of modern ANN archi-
tectures. More specifically, our brief analysis includes the McCulloch-Pitts artificial neuron
(1943), Rosenblatt’s perceptron (1958) and Fukushima’s Neocognitron (1980), in that specific
order.

2.2.1 The Artificial Neuron

The earliest realization of an artificial neural was introduced by McCulloch and Pitts in
1943 [69]. Their neural model is also known as a linear threshold gate. It is a computational
model that involves a set of inputs {z;}, a set of corresponding weights {w;}¥ ;, normalized
in the range [0,1] or [-1,1] and an output y. The output of the linear threshold gate is binary,

12
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Figure 2.1: Illustration of a biological neuron and its myelinated axon are depicted, with signals flowing from
inputs at dendrites to outputs at axon terminals. Source: https://en.wikipedia.org/wiki/Artificial_
neural_network.

namely it can be described as follows:

N
z= szﬂ?z‘ (2.1)
i=1

y=f() = {1 ez (2.2)

0 ifz<rTt

where 7 is a threshold constant. In that way, the function f(-) operates as a thresholded step
function. An illustration of a biological neuron as well as its artificial counterpart can be
seen in figures 2.1 and 2.2 respectively. Although being extremely simplistic, the McCullogh-
Pitts artificial neuron model offers substantial computing potential. At this point, we ought
to mention that the weights and threshold values are fixed. So in order for the model to
respond to the input data in the desired way, the parameters of the model required manual
fine-tuning which was carried out by a human operator. Thus, emerged the need for a neural
model with more flexible computational features.

Weighted
Sum

= Weights
Constant Q>\
W,
QD\

inputs — w
Step Function

Figure 2.2: Illustration of the McCullogh-Pitts artificial neuron model where a weighted sum of the input
signals is passed through a unit step function, resulting in the corresponding output. Source: [95].

2.2.2 The Perceptron

The perceptron was originally introduced by Rosenblatt in 1953 [89], as the first neural
network model for binary classification which could learn the appropriate weights, given a
set of data samples that belonged to each of the two categories. Consequently, it constituted
the first algorithm of supervised learning for binary classifiers. The perceptron inherited its
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structure from the McCulloch-Pitts artificial neuron and incorporated a training algorithm
so as to achieve the weight adaptation.

Given m-dimensional input feature vectors x = [z, x2, ...,xm]T, corresponding weights
w = [wy,ws, ...,wm]T and a bias b, the perceptron defines the m-dimensional separating
hyperplane Y ;" w;xz; + b = 0, according to which it classifies all potential input samples.
In order to describe the perceptron training algorithm, we will expand the input and weight
vectors in (m + 1) dimensions, by incorporating the bias b into the weight vector w, namely
X = [1,21,29,..., 2] and W = [b,wy, w3, ...,wy,] . Therefore, the separating hyperplane
can be simply written as w ' X = 0 and the perceptron output will be equal to y = f(v~vT>~<),
where f(-) can be a Heavyside step function. As the separating surface is a hyperplane in
m-~dimensional space, the perceptron belongs to the broader family of linear models, and
is capable of solving classification problems that involve data samples which are linearly
separable in m dimensions.

At this point we are ready to present the perceptron training algorithm. We assume
D = {(xn,dn)}_; to be the set of data samples, belonging in either of two possible classes,
w1, w2, together with their corresponding desired outputs. The algorithm is ran in iterations
until convergence is achieved (if possible). During each iteration all data samples are exam-
ined. In order to highlight the time dependence of the parameters, we use the notation w(t)
denoting the weight vector at time step ¢. The main steps of the algorithm are the following:

1. Initialization (¢ = 0): Set w(0) = 0 and define the learning rate parameter n € (0, 1].
Proceed with the computation of the following steps.

2. For every example n = 1,2, ..., N in the dataset, do:

(a) Output Calculation: During time step ¢, compute the actual output y, = f(W(t)'X,,).

(b) Weight Adaptation: During time step ¢, update the weight vector according to the
rule:

w(t+1) =w(t) +nldn — yn)Xn

1 ifx, € w;
d, =
0 if x, € wo

(¢) Time Increment: ¢t =t + 1.

3. Check if convergence has been reached and all data samples are correctly classified, else
return at step (2).

Although the perceptron looked promising, it quickly became apparent that its potential
to classify patterns was very limited. The most famous example of a task not capable of
being solved by a perceptron is the XOR problem. That resulted in a significant drop in the
popularity of artificial neural networks.

2.2.3 The Neocognitron

The next big breakthrough in ANNs came along the development of the Neocognitron
by Fukushima in 1980 [39], which is a powerful hierarchical multilayered neural network
capable of image processing and visual pattern recognition. The Neocognitron, as a neural
network architecture, introduced two key features. Firstly, its structure and functionality
draws inspiration from the mammalian visual nervous system, and secondly, it supports
unsupervised learning, namely the process of its self-organization only requires the repeated
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Figure 2.3: Schematic diagram illustrating the interconnections between layers in the neocognitron. Source:

[39]-

presence of input stimulus patterns at the input layer of the network, without the need of
further human intervention.

The Neocognitron consists of a number of modular structures connected in a cascaded
architecture, while the input layer is located at the lowest stage and is comprised of photo-
receptive cells, forming a two-dimensional grid. Each modular structure consists of an S-layer,
made up of S-cells, followed by a C-layer, made up of C-cells. S-cells correspond to simple
cells of the primary visual cortex and they their main purpose is centered around feature
extraction. An illustration of the Neocognitron inter-layer connectivities is shown in figure
2.3. In addition, the weights of their input connections are variable and can be modified
during the self-organization process. Each S-cell responds to specific features of the input
stimulus patterns relative to its position in the S-layer and the size of its receptive field. C-
cells on the other hand, correspond to the more complex cells of the visual cortex. Moreover,
the input connections of C-cells which derive from a group of S-cells of the previous layer
are constant and unmodifiable. Each C-cell serves as a receptor for the feature responses
of a specific group of S-cells of the previous layer while achieving shift invariance. The
cells in each layer are divided into subgroups in the form of smaller two-dimensional grids,
called cell-planes according to their position in the cell-layer and the features to which they
respond, while cells within one cell-plane share the same input connections. An illustration
of cell interconnections within the same cell-plane can be seen in figure 2.4. Furthermore, a
C-cell activates, provided that at least one of the S-cells in the corresponding S-plane emits
a response. Even if a specific S-cell fails to respond due to a slight deformation or difference
in the position of the presented input stimulus pattern, a nearby S-cell is highly likely to
respond, thus resulting in the desired activation of the local C-cell. This functionality of the
C-cells is analogous to a blurring operation. In general, lower layers extract local, low-level
features such as edges, corners or contours while higher layers extract more abstract, global
features related to the recognition of input patterns.

The exploration of the numerical expressions regarding the computation of the outputs
of the two types of cells lies outside the scope of the current analysis. However, we ought to
dive deeper into the self-organizing properties of the Neocognitron and evaluate its potential
as a model for unsupervised learning. By considering the cells within all cell-planes of a cell-
layer, a structure called cell-column or hypercolumn emerges. Cells within a hypercolumn,
come from different planes of a single layer but their receptive fields are located at roughly
the same position, namely each one is stacked on top of the others in the column. From
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Figure 2.4: Illustration showing the input interconnections to the cells within a single cell-plane. Source:

[39]-

each S-column, a representative is selected as the cell with the largest response to the input
stimulus patterns, so it is possible for more than one representatives per cell-plane to appear.
If that is the case, only the one which yields the largest response among them is selected as
the representative of that specific S-plane. The input connections of the representative cells
as well the cells that belong in the same planes as the representatives are reinforced by an
amount proportional to the intensity of their initial response. The S-planes which contain
no representatives do not have their input connections modified.

The above self-organization process ensures that each S-plane becomes selectively sensi-
tive to a specific type of features while preventing the formation of redundant connections.
That is the case of two or more S-planes being used for the detection of the same feature.
We note that the Neocognitron later became the basis for the modern convolutional network.

2.3 Modern Deep Neural Network Practices

In the current section, we will introduce the primary ANN modules which will later
constitute the basis of our own models, towards the task of automatic visual affect recognition,
as these architectures provide a powerful framework for supervised learning. To begin with,
we will present the deep feed-forward networks known as Multilayer Perceptrons (MLPs) and
we will analyze the popular Backpropagation (BP) algorithm as the primary tool in training
such networks. Subsequently, we will focus on Convolutional Neural Networks (CNNs) for
image processing and visual pattern recognition. Lastly, Recurrent Neural Networks (RNNs)
and their variants will be introduced as being the main tool in temporal sequence processing.

2.3.1 The Multilayer Perceptron

A multilayer perceptron (MLP) is a type of feed-forward neural network as information
travels in a forward direction through the network, without the existence of feedback loops
that feed outputs back into itself. It consists mainly of three types of layers: the input layer,
the hidden layers and the output layer. The input layer simply operates as a receptor for
raw data and is size matches the dimensionality of the input features. In a similar fashion,
the output layer emits feature responses and its size depends on the nature of the task. In
a regression problem, the number of neurons in the output layer will equal the number of
different quantities that are to be regressed, while in a multiclass classification problem, the
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size of the output layer will be equal to the number of different possible classes in the given
dataset. The hidden layers extract increasingly abstract features from the input features
and are called “hidden” as their outputs are not available for observation. The only “visible”
layers of the MLP are its input and output layers. The MLP is characterized primarily by
the number of its hidden layers and the number of neurons or hidden units per layer, with
each layer potentially having a different number of hidden units. In our implementations we
only consider MLPs which are fully connected (FC), namely every neuron on a specific layer
is connected with the neurons of the preceding and following layers. Fully connected layers
appear in the vast majority of MLP applications.

Forward Pass

Let’s assume a fully connected MLP that takes an input vector x € RV, outputs a vector
y € RN2+1 and has L hidden layers where the [th hidden layer consists of N; hidden units.
By incorporating the biases in the corresponding weight vectors and expanding the feature

vectors appropriately, as described in section 2.2.2, the output hy) of the jth hidden unit of
the [th hidden layer can be computed as follows:

Ny
W) =3 wnl™Y) (2.3)
=0

where w(()lj) = bg-l), namely the bias of the jth unit of the Ith layer, wg) denotes the weight
that connects the ith neuron of the (I—1)th layer with the jth neuron of the lth layer,
(-1 = [1,hgl_l), ...,h%;ll)]T denotes the expanded hidden feature vector of the (I—1)th
layer and ¢(-) is a non-linear hidden unit activation function. In matrix form, the forward

pass can be described by the following equations:

h® =x
h® = (W hlD), if1 <1< L (2.4)
Yy = ¢(W—Lr+1h(L))

where W is the weight matrix of size (N;—1 + 1) x (NV; + 1), with elements:
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An illustration of a single hidden-layer MLP is provided in figure 2.5. We need to note
that in equation 2.4, the non-linear hidden unit activation function ¢ (-) and the output unit
activation function ¢(-) are applied element-wise on the corresponding vectors. The vectors
that are produced at each layer before the application of the aforementioned functions, are
referred to as activations.

Activation Functions

In equations 2.3 and 2.4, we introduced the hidden unit non-linear activation function
() and the output unit activation function ¢(-) and we now ought to establish their pur-
pose. The non-linear activation function is used in order to introduce non-linearity in an
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Figure 2.5: Schematic diagram of a multi-layer perceptron (MLP) with one hidden layer layer, p input units,
L hidden units, ¢ output units, with 1 (-) as the hidden unit activation functions and ¢(-) as the output unit
activation functions.

otherwise linear model. In turn, this allows the network to model a response variable which
depends non-linearly on its input explanatory features, namely it can not be reproduced by
a simple linear combination of its inputs. In addition, if the activation function is non-linear,
bounded, continuous and monotonically increasing, it has been proven that a MLP with one
hidden layer constitutes a universal function approximator, namely it can approximate any
target function with arbitrary precision. This property is also known as the Universal Ap-
proximation Theorem which was first proven for the sigmoidal function by Cybenko [2] and
later generalized for other activation functions by Hornik [52]. In table 2.1 we present some
of the most common activation functions which we will regularly come across in deep learning
modules, along with their main features.

H Name ‘ Equation ‘ Derivative ‘ Range H
Identity flx)== f(x)=1 (—00,00)
Sigmoid f(@)=o0(z) = = (@) = f(2)(1 - f(z)) (0,1)
Hyperbolic _ et N 1 42 _
Tangent f(x) - ta‘nh('r) T eT4e T f (x) =1 f (x) ( ]'7 1)
Rectified . .

f 1 if
Linear Unit | f(z) = {x 1 >0 max{0, z} fl(z) = { l v>0 [0, 00)
(ReLU) 0 ifxz<0 0 ifz<0

T ifz>0 1 ifz>0
Leaky ReLLU = ") = —00,

ey e f(@) {0.019[; ifr<0 f'(@) {0.01 fr<o | (700
Softmax | fi(%) = s for j =120 | %GB = [(x)(0 — fi(x) | (0.1)
y

Table 2.1: Common activation functions

It is worth noting that without non-linear activation functions, no matter how many
layers an MLP had, it would be equivalent to a single-layer perceptron, as the aggregation
of all the layers would result in another linear function. Furthermore, another important
property of the above activation functions is that they are continuously differentiable, thus
enabling gradient-based learning methods. The most widely used gradient-based algorithm
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utilized in training ANNs for supervised learning, is called Backpropagation. However, in
order to use gradient-based supervised learning, we first need to choose an appropriate loss
function depending on the type of task that our model is designed to solve. Also the choice of
output activation function v(-) depends on the form of the desired output data which in turn
depends on the nature of the task that the network must perform. In that way, the output
unit activation function is not necessarily non-linear. In general, the purpose of the output
unit activation function is to provide an extra transformation to the hidden features so as to
bring them into some suitable output format. As we will later see, in regression problems,
the output unit activation function is simply the identity function.

2.3.2 Network Training and Loss Functions

In the current section, we will derive common loss functions used in supervised deep
network training from a general probabilistic point of a view. For convenience, we will
consider a feed-forward neural network model as a non-linear function that receives some
input vector x, outputs a vector y and is characterized by a set of weight parameters w,
namely y(x,w) = f(g(x,w)), where f(+) is the output activation function and g(x, w) is the
activation of the output layer. The main two types of tasks which neural network models are
designed to solve and which we will consider with regard to automatic affect recognition, are
Classification and Regression.

Regression

In this type of task, the computational model is asked to predict a numerical value,
given some input vector x € RM. In that way, the model effectively defines a mapping
fog:RM 4R,

We now consider a set of training examples D = {(x,,%,)})_;, together with their cor-
responding desired output values. We can assume that target variables ¢ follow a Gaus-
sian distribution such that their mean is dependent on the output of the network, namely
p(t|x, w) = N (t|y(x,w), 37 ), where 3 denotes the inverse variance of the Gaussian noise. If
X = {x1,X2,...,xn} and t = {t1,t9,...,tn}, under the assumption that the observations X
are independent and identically distributed, then the corresponding likelihood function is:

N
p(t1X,w, 8) = [T N (taly(en, w), 571 (2.5)

n=1

By taking the natural logarithm, we have:

N
Inp(t|X,w) = glnﬁ - ghﬂﬂ - gz y(Xp, W ))2 (2.6)

Maximizing the log-likelihood with respect to w is equivalent to minimizing the error term:

Z y(xn, w))° (2.7)
n=1
The minimization of the error term 2.7 constitutes a non-convex optimization problem due
to the introduction of non-linearity by the non-linear hidden layer activation functions. Thus
the optimal solution w* can be approximated using gradient based methods. Having found
w*, we can substitute it in 2.6 and by optimizing with respect to 5 we obtain:

R o
- N Z (tn — y(xn, w")) (2.8)
n=1
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In the case of regression, the output activation function f(-) is chosen to be the identity
function. The error term 2.7 is a quadratic cost function which is also known as the mean
squared error (MSE), if it is further divided by the number of samples N. If we expand
the problem of regression on K target variables which are independent conditional on x
and w, having a diagonal covariance matrix and a shared variance parameter 3, then the
corresponding conditional distribution of the target vectors would be:

p(tlx, w) = N(tly(x,w), 57 Ik) (2.9)

Following the same procedure, under the assumption of identically distributed observations
X € RY*M and a target matrix T € RVY*K containing the corresponding N target vectors
of size K, the log-likelihood function would then be:

NK NK ZHt

Inp(T|X,w) = Tlnﬂ - —1n27r - = ¥ (%n, W) I3 (2.10)

The corresponding error term deriving from the maximization of 2.10 with respect to w,
would then become:

N
= lltn = y(xn, W5 (2.11)
n=1

Maximizing 2.10 with respect to 3, after having found the optimal weights w*, yields:

5= Z e — y(xn, w3 (2.12)

MSE is the most commonly used loss function used in regression problems. A widely used
variant of the MSE loss is called Smooth-L! loss which was introduced by Girshick [11] and
is less sensitive to outliers compared to MSE. Outliers are considered to be data samples that
differ significantly from the rest of the observations, being a usual indication of measurement
errors or a heavy-tailed distribution. Smooth-L! loss is defined as:

N
1
SLI(X, Y) = N Z Z(:L'na yn)
n=1 (2.13)
0'5(1% - yn)2 if |xn - yn‘ <1
Z(xrnyn) = .
|Zp, — yn| — 0.5  otherwise

Classification

During this type of task, a computational model is asked to determine which of C' possible
categories some input vector x € RM belongs to. In that way, the model effectively defines a
mapping function fog:RM — {1,2,...,C}.

To begin with, we consider the case of binary classification, with two possible classes
C1,Cy, given a set of training examples D = {(x,,t,)}\_;, where ¢, = 0 if x, € C; and
t, = 1if x, € Cy. In this case, the model requires a single output that expresses the
corresponding conditional probability of the input vector x belonging to either of the two
classes, namely y(x,w) = P(Ci|x) = 1 — P(Cq|x). Therefore, a proper output activation
function would be the sigmoid (f(-) = o(+)):

(2.14)
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In that way, a target variable ¢ follows a Bernoulli distribution of the following form:

p(t‘X,W) = y(X7W)t(1 - y(X,W))

If X = {x1,x2,...,xn} and t = {t,t9,...,tx}, under the assumption that the observations
X are independent and identically distributed, then the corresponding likelihood function is:

1-t

(2.15)

p(t|X, w) Hy (1 —y,)t (2.16)

By taking the natural logarithm of 2.16, we have:

Inp(t|X, w) Z tnInyn + (1 —t) In (1 — yp)] (2.17)
n=1

Maximizing 2.17 is equivalent to minimizing the error term:

N
E(w) == [talnys + (1 —t,)In (1 - y,)] (2.18)

n=1

Similarly to the case of regression, the minimization of the error term 2.18 comprises a non-
convex optimization problem and the optimal solution w* can be approximated using gradient
based methods. The above error term is widely known as binary cross-entropy (BCE) loss.

Extending the problem to the classification of K binary variables, we can use a network
with K separate outputs, each of which will have a sigmoid (f(-) = o(+)) as the output unit
activation function, forming a probability vector y(x,w) € R with elements:

1

T oxp (g, (6 w) (2.19)

Y (Xv W) =

This task is known as single-class multi-label classification and in this case the target variables
t become target vectors t € RX where t; € {0,1}. Assuming that the class labels are
independent then the conditional distribution of a target vector will be:

p(t]x, w) Hyk (1 — gyp) L7t (2.20)

Again, we assume independent and identically distributed observations X € RV*M and a

target matrix T € RY*K containing the corresponding N target vectors of size K. The
likelihood function would then be:

p(TIX, w) H Hy — Yi) (2.21)

n=1k=1

by taking the natural logarithm 2.21, we obtain the following expression for the corresponding
cross entropy loss function:

N K
o Z Z [tnk In Ynk + (1 - tnk) In (1 - ynk)] (2.22)

n=1k=1

where t,,1, yni are the kth elements of the label and output vectors respectively, corresponding
to the nth training example. The error term 2.22 can be considered as the sum of BCE losses
regarding each one of the separate K binary variables, across all of the N training examples.
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Lastly we consider the case of multi-class classification, where each input vector x is
classified into one of K possible mutually exclusive classes. In this case, the target vectors
t € R¥ is one-hot encoded, namely t;, = {0,1} and S5, t = 1. The corresponding model
will have K separate outputs, where the kth output will be equal to the conditional probability
of x belonging to class k, namely yp = P(tx = 1|x). As each input vector is assigned into
only one category and the outputs correspond to probabilities, the conditions 0 < ¢, < 1 and
Zszl yr = 1 must also hold. Therefore, in this case, the softmax would be an appropriate
output activation function satisfying both of the aforementioned constraints:

exp(g;(x, w))

yj(x,w) = (2.23)
>kt exp (gr(x, w))
The conditional distribution of a target vector will be:
K
ptlx,w) =] v (2.24)
k=1
Again, we assume independent and identically distributed observations X € RV*M and a

target matrix T € RY*K containing the corresponding N one-hot encoded target vectors of
size K. The likelihood function would then be:

N K
p(TX, w) =[] [ v (2.25)

n=1k=1

By taking the natural logarithm of 2.25, we obtain the following expression for the multi-class
cross entropy loss function:

N K
E(w) == > tux Iy (2:26)
n=1k=1
where %1, yni are the kth elements of the label and output vectors respectively, corresponding
to the nth training example.

2.3.3 Gradient Descent Optimization

In the previous paragraph, we explored some of the loss functions which correspond in
regression and classification tasks. We came to the realization that the minimization of those
loss functions, with respect to the models parameters, constitute non-convex optimization
problems. The solutions to these optimization problems utilize gradient-based methods.

A small variation in the weight space from w to w 4+ dw will result in a small difference
in the loss function equal to § F(w) ~ dw ' VE(w). The vector VE(w) denotes the direction
at which the greatest rate of increase occurs for the loss function E(w). As the error term
E(w) is a sufficiently smooth and continuous function of the model parameters w, then we
know that its minimum value will occur at a point w* at which VE(w*) = 0. Therefore
a potential scheme for minimizing the aforementioned loss functions would be to alter the
weight parameters w by iteratively taking steps in the direction of —VE(w). A general form
of this process can be described in the following way:

w) = w( — U Ew™) (2.27)

where 7 is used for indexing the iterations, while € (0, 1], formally known as the learning
rate, controls the rate of change in the weight parameters w.
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Stochastic Gradient Descent

The optimization process is performed on the basis of a training set D = {(x,, t,)}Y_,
and the total loss function can be expressed as a sum of N separate loss functions FE,(w),

with each one corresponding to its respective data sample:

N
E(w) =Y En(w) (2.28)
n=1

Therefore, at each iteration of the aforementioned descent mechanism, the changes in the
weights w are performed with respect to the current training example:

w(m™t) = w( — pVE, (w™) (2.29)

This approach constitutes an online gradient descent method, better known as Stochastic
Gradient Descent (SGD), as introduced by Rumelhart et al. [90]. A variation of the simple
SGD method includes a momentum term v that effectively depends on the updates of all the
previous iterations:

v®) = av(™Y _ v E(w)

2.30

where « € [0, 1] is the momentum coefficient parameter that controls the accumulated contri-
bution of the gradients from the previous iterations. This modification aims at accelerating
the convergence process and avoid ending up at local minima.

A slightly different version of momentum known as Nesterov Accelerated Momentum
(NAG), was introduced by Nesterov [76]. Sutskever et al. [93] modified the original momen-
tum accelerated update of equation 2.30 in the following way:

v(®) = av(™D — VE(w™) + av(T)

w(TD — w( 4 () (2:31)
Instead of evaluating gradient at the current position w(), we know that the classical mo-
mentum update is going to move the weight vector to the position w(™ 4+ av("=1 . Nesterov
momentum evaluates the gradient at this "looked-ahead" position. Suppose that the addi-
71 results in an undesirable update in the loss fuction E(w(7)). The gradient
correction to the term v(™™Y is computed at position w(™ + av(™™D and if av(™ is a
poor update, then the correction term VE(W(T) + av(T_l)) will point back towards w(™)
more strongly than VE(w(7)). In that way , it will provide a larger and more appropriate
correction to v(7).

tion of awv!

Adaptive Gradients

Adaptive Gradients (AdaGrad) is a variant of the SGD method which was introduced
by Duchi et al. [30] and utilizes per-parameter learning rate that changes over time. This
is important for adapting to the differences in datasets such as size and sparsity. Generally,
Adagrad performs better compared to SGD when it is applied on sparse data where sparse
parameters are more informative.

We assume that w € R? namely that the model contains d separate trainable weight
parameters. Firstly, a diagonal matrix G(7 € R%*? ig introduced:

G = Z VEwW)(VEwD))' (2.32)
t=1
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The acquisition of G for every iteration is computationally impractical, so as an alternative,
only the diagonal elements of the aforementioned matrix were considered. The jth element
G\ in the diagonal, is the sum of squared partial derivatives over all previous iterations

7j
t=1,2,...,7, with respect to the jth element of the weight vector:

o _ zT: <8E(W(T)))2 (2.33)

37 — 8wj(’r)

The per parameter update rule takes the following form:

W) OEw()
’ o™ ow!”
et Gy J

. (2.34)

where 7 € (0, 1] is the initial learning rate and € ~ 1078 in order to avoid division by zero.
For convenience, we can rewrite 2.34 in vectorized form:

w(D = w(™) — (el + diag(G(T))_%VE(w(T)) (2.35)

The terms G;;) constitute scaling factors that differentiate the learning rates for each one of
the parameters. As 7 increases, gradients for parameters that initially received large updates
get more dampened compared to parameters that got few and small updates. Thus, one
main benefit of this algorithm is that it does not require manual tuning of the learning
rate. However, the increasing accumulation of squared gradients in the denominator causes
the learning rates to eventually become infinitesimally small, thus effectively stopping the
learning process.

Root Mean Square Propagation

An adaptation of the AdaGrad method that deals with the problem of diminishing gradi-
ents is the Root Mean Square Propagation (RMSprop) algorithm, as proposed by Tieleman
and Hinton [99]. Instead of dividing the learning rate with the sum of squared gradients,
it uses an exponentially decaying average of the squared gradients u(™) that is defined re-
cursively. The parameter update rule for the jth element of the weight vector w takes the
following form:

") _ (1) OE(w!T)\2
wy = yu; +(1—9)——
7 i ( aw](”r) )
2.
(r+1) _ (1) n  0Ew) (2:36)
Wy =w; - ™
€+ W\ Ow;
j J

A typical value for the decay parameter is ¥ = 0.9 and € ~ 10~%. In this case, RMSprop
still modulates the learning rate of each weight parameter based on the magnitudes of its
gradients, which has a beneficial equalizing effect. As in the case of SGD with momentum,
the exponential average helps us to weigh the more recent gradient updates more than the
less recent ones. Therefore, in this case, the updates do not get monotonically smaller. We
also need to note that RMSprop implicitly performs simulated annealing. Suppose if we are
heading towards the minima, and we want to slow down so as to not to overshoot the minima.
RMSprop automatically will decrease the size of the gradient steps towards minima when the
steps are too large.
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Adaptive Moment Optimization

During our previous analyses we have seen that momentum aims at accelerating the
search in the direction of minima, AdaGrad improves performance in problems with sparse
gradients while RMSprop impedes the search in the direction of oscillations. The Adaptive
Moment Optimization (Adam) algorithm, introduced by Kingma and Ba [56| combines the
heuristics of both momentum, AdaGrad and RMSPprop. In this optimization algorithm,
running averages m ™, u(7) of both the gradients and the second moments of the gradients
are used. The parameter update rule for the jth element of the weight vector w takes the
following form:

. — OE(w(™)
m§ ) — ﬂ1m§- V(- ﬂl)g(vz;) ) (2.37)
ij
(7) (r—1) OE(w(™)y2
'l = Bl (1 - o) (L (2.38)
J J ( 8’UJJ(T) )
(1)
() Yy
;" = - B{ (2.39)
(1) &
~ANT _ J
o’ =75 (2.40)
w7
wj(T-l-l) _ 'LUJ(T) — J (2.41)
€+ ﬁy)

Typical values for the parameters are n = 1073, 31 = 0.9, B2 = 0.999, € ~ 1078, In this
case, equation 2.37 updates the exponential average of gradients while equation 2.38 updates
the exponential average of squared gradients. In addition, equations 2.39 and 2.40 perform
bias correction on the first and second moment estimates respectively. Finally, equation
2.41 performs the per weight parameter update for the current iteration. Adam realizes the
benefits of all the aforementioned optimization algorithms, namely momentum AdaGrad and
RMSProp. In [56], Adam was compared with NAG, Adagrad and RMSprop, during the
training of a MLP on the MNIST dataset [01]. Results showed that Adam converged faster
than all of the other optimizers.

2.3.4 Backpropagation

The application of any of the aforementioned optimization algorithms requires the compu-
tation of the gradient vector VE(w) or equivalently the computation of the partial derivatives
of the loss function E(w) with respect to each one of the trainable weights of the model. This
is achieved through the Backpropagation (BP) algorithm which was originally introduced by
Rumelhart et al. [90]. The BP algorithm can be applied to any general network that has an
arbitrary feed-forward topology, arbitrary differentiable nonlinear activation functions and
a broad class of error functions. As we have seen, in a general feed-forward network, each
neuron computes an activation form:

Zj = Zwijhi (2.42)

supposing that the weights contain the bias terms and the input feature vectors are expanded
accordingly, as discussed in section 2.2.2. The output activations z; are weighted sums of the
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outputs from the hidden units of the previous layers. We have omitted the layer indexing in
order to simplify the numerical expressions for the upcoming analysis. The final output of
each unit is obtained after the application of an activation function f(-), namely h; = f(2;).
Assuming we have a training dataset D = {(xn,ts)})_;, we consider the case of online
training, expressing the total loss function E(w) as the sum of N separate loss functions
E,(w), each one corresponding to its respective data sample. Now we need to compute the
partial derivative of E,(w) with respect to some weight w;;. By using the chain rule of
differential calculus we obtain:

OB, (w) OB, (w) 0z;
871)2']' a 82’]' 8wij
_ OEu(w) 0 ‘
R o (; Winjhim) (2.43)

OE, (w)

="’
8zj

By setting §; = OE,(w)/0z;, we can rewrite 2.43 in the following compact form:

0E,(w)
——= =0jh; 2.44
G = O (2.49)

Now we need to consider two separate cases. In the first case, the unit j is considered to be
one of the output units of the network. Therefore w;; denotes the hidden to output weight
connection from hidden unit ¢ to output unit j. In this case, §; can be directly computed
and equation 2.44 becomes:

OE,(w) OB, (w) ahjh'

8wij 8hj TZJ ' (2 45)
_OER (W) '
= Thjf (2j)h

where the terms 0E, (w)/0h; and f’(z;) can be directly computed based on the form of the
loss function E,(w) and the chosen activation functions f(-). For example in the simple case
of regression, as mentioned in section(), the output unit activation functions would be the
identity functions (f’(-) = 1), while the loss function would be:

En(w) = Z(tnk — hni)?

k

where hy,; = hi(X,, w), namely the index n refers to the current training sample and index
k refers to the kth element of both the output and target vectors. By ignoring the subscripts
n and by substituting in equation 2.45 we obtain:

OEn(w) _ 2(t; — hi)h; 24
vy (tj — hj)h (2.46)

On the other hand, if the unit j is a hidden unit, then the computation of the ¢; term is

more complicated. We start by assuming that the unit in question belongs to the last hidden
layer of the network. In that way, provided the network is fully-connected, unit j influences
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all the separate outputs of the network. Terms d; can now be written in the following form:
w) 0z
5. =
) Z 8zk 8zj
8Zk
= )
Z k@zj
= Z 5k Z wmkh

= Z5kwjkf (Zj)
k
= 1'(2)) D Srwji
k

(2.47)

By substituting the above result in 2.44, assuming that w;; is the weight connecting the ith
unit of the (I — 1)th hidden layer with the jth unit of the /th hidden layer and with the
application of the proper layer indexing, the following expression for the partial derivative of
E,(w) with respect to wg-) can be obtained:

0L, (w) z (I+1) l+1) (-1
— = Z 5 )y (2.48)
ow,;

Equation 2.3.4 indicates that in order to compute the §; term for some hidden unit j, we need
to first compute and then backpropagate the ¢ terms that correspond to all the units of the
following layer. By recursively applying equation 2.3.4 it is possible to compute the required
0 terms of all the hidden units of the network and thus be able to compute the gradient of
the loss function that is required for the application gradient-based optimization.

2.3.5 Regularization

Given a training set, the training process involves the application of gradient-based min-
imization of one of the aforementioned loss functions with respect to the model’s trainable
parameters. The computed error between the predicted and ground-truth values is referred
to as training error. However, the ultimate goal of a deep network model is to be able to make
correct predictions about new samples that it has never encountered before. These samples
constitute another labeled set known as the test set. The test set is used to measure the
generalization capabilities of a particular model. Generally the test error is expected to be
greater or equal to the observed training error. Consequently, the goal of supervised learning
is to achieve a low training error, while maintaining a small gap between the training and
test errors.

Based on this criterion, we can distinguish two different challenges regarding the perfor-
mance of a neural network model: underfitting and overfitting. Underfitting refers to the
inability of the model to achieve a small training error and results from either poor archi-
tectural design or extreme learning rate values. In the latter case, small learning rates may
render the training process extremely slow, while big learning rates may result in oscillations
and therefore lack of convergence. While it is simpler to cope with underfitting as a prob-
lem, the occurrence of overfitting poses a far more complicated challenge. Overfitting refers
to the inability of the model to generalize well on test data, namely the difference between
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the training and test errors is large. The predisposition of a model toward underfitting or
overfitting is dependent on its capacity or equivalently its complexity, that is its ability to
fit a large variety of target output distributions. If a model has low capacity then it is likely
to underfit on the training data, while if it has high capacity, it is more likely to memorize
certain aspects of the training examples that are not representative of the test samples, thus
overfitting on the training data. As mentioned above, overfitting being a more prominent
challenge in deep learning, gave rise to several algorithms and methodologies which aim at
reducing the generalization error at a potential expense of increased training error. These
techniques are generally referred to as regularization. The most common and widely used
regularization strategies will be analyzed in the following paragraphs.

Parameter Regularization

The most common way of controlling the complexity of a model during the training
process is by adding a complexity-representing term R to the existing loss function F(w). In
the case of neural networks, the complexity representing term is simply either the absolute-
value norm or the squared Euclidean norm of the model’s weight parameters, that is L' and
L? regularization respectively. In this case, the regularized loss function E (w) becomes:

E(w) = E(w) + AR(w) (2.49)

The regularization coefficient A € [0, 00) controls the contribution of the regularization term
in relation to the original objective function. Obviously, if A = 0 then this results in the
unregularized case. The regularization term R(w) provides a measurement of the size of
the model parameters. Therefore during the training process, the optimization algorithm
will minimize both the original objective function E(w) as well as reduce the element values
of the weight vector w. The choice between L' and L? based regularization will result in
different update rules during each optimization step and will have different effects on the
eventual form of the model weight parameters.

L? Regularization In the case of L? weight regularization, the regularization term is
equal to the squared Euclidean norm of the weight vector w, that is R(w) = %||w||3. This

methodology is commonly known as weight decay. The regularized loss function E’(w) takes
the following form:

B(w) = B(w) + 5 w3 (250)

The above modification will result in the following changes in the update rule 2.27 of the
generic gradient-descent optimizer:

WD) = W) _ v B(w™)

T T A T
= w9 (Bw ) + 2w 3) (2.51)

=w™ —n(VE(wW™) + 2w)

=(1- mw? — pVE(w™)
Assuming that A < 1/7, the last equality of update rule 2.51 indicates that the weight vector
at each iteration is being multiplied by a shrinking factor (1 —nA), thus giving the weights the

tendency to decay towards zero. By making a quadratic approximation of the loss function
E(w), a clearer insight into the effect that weight decay has on the training process can
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be obtained. The approximation is calculated around a potential minimum point w* in the
weight space:

E(w) = E(w*) + VE(wW*) " (w — w*) + %(W —w*)TH(w — w*) (2.52)

The initial hypothesis states that w* constitutes a local minimum. Therefore, we can conclude
that VE(w*) = 0. Moreover, H denotes the Hessian matrix of E(w), calculated on the
point w = w* and is comprised of the second derivatives of E(w), namely H = V2E(w). By
substituting equation 2.52 in the regularized loss function 2.50, we get:

E(w)=EWw") + %(w —w)TH(w — w*) + %HWH% (2.53)

On the basis of the assumption that w* constitutes a minimum for the loss function E(w), it
can be concluded that H is semi-positive definite. Considering a small deviation around the
location of the minimum, w = w* 4 ev, where € is an arbitrarily small scaling factor and v
is a non-zero translation weight vector, the quadratic approximation of F(w) around these
positions yields: ,
E(w"+ev)=E(WwW") + ‘ vTHv

2 (2.54)
W = VTHV
The existence of a minimum enforces the curvature to be non-negative near the the location
w = w*, that is v Hv > 0, or equivalently that the Hessian matrix is semi-positive defi-
nite. The minimum of the regularized loss function E (w) will occur at a point w at which
VE (w) = 0. Calculating the gradient of equation 2.53 and setting it equal to zero, yields:

w+Hw-—w")=0
(M +H)w —Hw" =0 (2.55)
w=(\l+H) 'Hw*
Assuming that the second partial derivatives are continuous and with the use of Schwarz’s
theorem regarding the symmetry of second derivatives, we can conclude that the Hessian ma-

trix will be symmetric. Obviously, it is also real, therefore by using eigenvalue decomposition,
it can be written as:

H=QAQ" (2.56)
where Q is an orthogonal matrix (QQ—r =Q'Q= I) composed of the eigenvectors of H and
A is a diagonal matrix composed of the corresponding eigenvalues. Substituting equation
2.56 in equation 2.55, we get:

w=(I+QAQ")'QAQ"w"
= [QMI+4)Q"] 'QAQ W
=Q '(AI+A)7'QT'QAQTW
= QI+ A)'AQTw*

(2.57)

Equation 2.57 indicates that the application of weight decay results in the rescaling of the
weights along the directions defined by the eigenvectors of the Hessian matrix by a factor
equal to )\i\x“ Directions along which the corresponding eigenvalues A;; are large indicate
strong contribution in the reduction of the loss function. In these directions, where A < Ay;,

the regularization effect is negligable. However, components with A > A;; correspond to
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irrelevant directions along which the gradient will not significantly increase and which will
regularized to have nearly zero magnitude.

Additionally, in the scope of stochastic gradient descent (SGD), the gradient of the loss
function is evaluated over a single training example at a time. In that way, the regularization
term needs to be rescaled so as to make the loss function comparable to datasets of different
sizes. More specifically, given a training set D = {(xy,t,)}_;, the total loss function can be
expressed as a sum of N separate loss functions E,(w) and their corresponding regularized
versions would be:

Fulw) = Bu(w) + S [wl3 (2.59)

Adding weight decay usually results in much smaller weights across the entire model, without
zero value enforcement. In that way, L? regularization does not promote sparsity and its
application in high-dimensional data may result in uninterpretable models.

L' Regularization In the case of L' weight regularization, the regularization term is equal
to the absolute-value norm of the weight vector w, that is R(w) = |[w||;. The regularized
loss function E(w) takes the following form:

E(w) = E(w) + Allw]|:
= E(wW) + A |wi (2.59)

The above modification will result in the following changes in the update rule 2.27 of the
generic gradient-descent optimizer:

w(m) = w(™) — pVE(w()
= wl —pV(EwWD) + A|lwD|))
=wl — T](VE(W(T)) + )\sgn(wm))
=w —prsgn(w() — nVE(w()

(2.60)

Consequently, the contribution of the regularization term to the gradient does not scale
linearly with respect to each element w; of the weight vector, as it now is a constant term
with a sign equal to sgn(w;) and a magnitude that depends on both the learning rate and
the regularization coefficient. For convenience, it is also assumed that the Hessian matrix
H is diagonal with non-zero elements H;; > 0. Substituting the quadratic approximation
described by equation 2.52 in the L' regularized loss function 2.59, would yield:

B(w) = B(w") + YA + %Hﬁ(wi — w2 (2.61)

A graphical inspection of equation 2.61 with respect to some parameter w; reveals that if
w; > 0then w; € [0,w;*], else if w;* < 0 then w; € [—|w}|, 0], that is w; and w} must share the
same sign. Computing the partial derivatives of equation 2.61 with respect to each element
w; (assuming w; # 0) and setting them equal to zero, results in the following expression for
the regularized optimal weight vector w;:
/\Sgn(wi) + sz(@z — w*) =0

. Asgn(w;

W; = w;k o g ( Z)
Hi; (2.62)
o sgn(w;™) (Jw;*| — 1%) if Jw;*] > 1?

‘ 0 otherwise
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In that way two possibilities emerge. In the first case, if |w;*| > %, then the regularized

optimal solution is shifted closer to the origin by a distance equal to H%z On the other hand,

if |w;*| < H%-i’ then a large enough value of ) is capable of forcing w; to go to zero. The above
formulation constitutes the main advantage of L' regularization, which is the fact that its
application enforces model sparsity. That is, L' regularization results in sparser solutions,
where more parameters will end up with a value of zero while only the ones exhibiting higher
variance will survive. This is especially useful when the given data have many dimensions
that are not correlated. On the other hand, the L! regularizer comes at a disadvantage
when the number of training samples is lower than the number of dimensions or the data
dimensions are highly correlated.

Early Stopping

Another popular method for controlling the variable complexity of a model during the
training procedure is called Early Stopping. The application of this technique involves the
usage of an auxiliary set of independent data, aside from the aforementioned training and
test sets. This set of data is referred to as the validation set and constitutes a small subset of
the original training set which is distinguished from the rest of the data. As a model is being
trained on the remaining training data, it does not get exposed to any of the validation data
as the validation set is only utilized as a measure of evaluating the generalization capability
of the model during each epoch of training.

The iterative training process of a neural network regurarly results in a steady and gradual
reduction in the training error as being measured by some loss function with respect to the
training data. In that way, the training error is a decreasing function of the training iteration
index. On the other hand, the error corresponding to new, unseen data always exhibits a
different kind of progression. In general, during the first training iterations, the validation
error shows a steady but often slower decrease relative to the training error. Moreover,
as the training proceeds and the network begins to overfit, the validation error starts to
increase again, resulting in a characteristic U-shaped curve. This is because, after some point
during the training process, the network focuses on patterns of the training examples that
are irrelevant and lack discriminative power among other data of the same kind. Therefore,
solving this problem involves a reduction in the capacity/complexity of the network in order
to prevent it from memorizing training examples.

This can be achieved, if the training process is halted near the point in time at which the
increase in validation error starts to occur. The application of this technique requires keeping
a copy of the networks parameters as they were configured during the training iteration with
the lowest monitored validation error. Additionally, every time the validation error reaches
a new minimum, the parameter copies are overwritten. The process is terminated when
no improvement in the validation error is observed after a particular pre-specified number
of iterations, which also constitutes the only hyperparameter of the current method and is
commonly known as patience. After some potentially needed fine-tuning of this hyperparam-
eter, the training can effectively be stopped close to the point of the smallest observed error
with respect to the validation data set, thus obtaining a network with good generalization
performance.

The main costs of this method are related with the storage capacity needed for the required
maintainance of copies for the model’s best parameters as well as the training runs required
for fine-tuning the patience hyperparameter. However, the application of early stopping not
only provides a model together with a good estimate of its generalization performance, but
also decreases the overall number of training iterations and therefore, the computational cost
of the training procedure. Lastly, it is worth noting that the Early Stopping technique is
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closely related with the weight decay reguralizer. More specifically, the relationship between
early stopping and weight decay can be quantified, as the term 7n plays the role of the
reciprocal of the regularization coefficient A. In that way, the effective number of parameters
in the network grows during the course of training.

Dropout

Dropout as originally introduced in [96], constitutes another very popular method of reg-
ularization. The central concept behind Dropout, is that the combination of several neural
network models and the averaging of their separate predictions is likely to improve the perfor-
mance of machine learning tasks. This technique is commonly known as Bagging and involves
training multiple models and collectively evaluating them on each test example. However,
when it comes at training multiple large neural networks, the computational cost of this pro-
cedure becomes intractable. Dropout, offers a practical and inexpensive solution to bagging,
by combining an exponential number of learned models that share parameters.

The term “dropout” refers to the deactivation of hidden unit nodes of the network during
the training phase. During each iteration of the training process, each hidden unit has a
probability p of being retained and 1 — p of being deactivated. The dropping out of some
hidden unit includes the deactivation of all the incoming and outgoing connections of that
particular node. A neural network model composed of N total hidden units, can be perceived
as an ensemble of 2%V different possible sub-networks. Even though the number of the included
networks is exponentially large, the weight sharing hypothesis ensures that the total number
of trainable parameters remains quadratic with respect to the number of hidden units. More
formally, considering a fully connected feed-forward neural network consisting of L hidden
layers, with [ € {1,..,L} being the layer index, f(-) denoting the hidden layer activation
functions, z®, h) denoting the activations and outputs of the Ith hidden layer respectively
and h©® = x being some input vector, then, by modifying equations 2.4, the forward-pass
operations with the application of dropout can be described by the following set of equations:

rj ~ Bernoulli(p)
RUY _ p0-1) o R

1) (2.63)

20 — Wi
h®) = f(z")

where W; denotes the parameter weight matrix of the [th layer and r are vectors of indepen-
dent Bernoulli random variables that have a probability p of being equal to 1. Additionally,
during training, hidden units are forced to learn not to rely on other hidden units being
present, preventing complex co-adaptations relative to the training data and thus reducing
overfitting.

During inference, an average version of the network is used that includes all the hidden
units, after getting their weighted connections scaled appropriately to compensate for the
fact that none of the units is deactivated. This scaling is applied in order to ensure that the
output of any hidden unit at test time matches the expected value of the same output during
training. More specifically, during training, the expected output of some hidden unit j is:

Elz;] = Z riwijh; = ZE[Tz‘]wijhi = pz wijh; (2.64)

as the expected value of r; ~ Bernoulli(p) is equal to p. It is worth mentioning that for
the simple case of multi-class classification using a neural network with one hidden layer,
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N hidden units and a softmax output layer, the use of the aforementioned average model
is equivalent to using the geometric mean of the output probability distributions of the 2V
possible sub-networks for the actual final prediction of the target labels.

Batch Normalization

Batch normalization was introduced by loffe and Szegedy |5] and it constitutes another
notable regularization technique that reduces overfitting and accelerates the training proce-
dure. The batch normalization technique was introduced as a means of solving the internal
covariate shift problem. This term refers to the change in the distribution of the activations
of the network, caused either due to variations in the network parameters during training or
the distribution of the input data. In neural networks, the input layer feeds the first hidden
layer and the output of every other layer directly influences the distribution of the outputs
in all the subsequent layers. This avalanche effect becomes more prominent as the depth of
a neural network increases and the potential effect of even the slightest changes in model
parameters receives gradual amplification during its propagation towards the output layer.
Moreover, fluctuations in the output activations of each layer would result in oscillations in
the computed loss function, therefore requiring longer training and smaller learning rates
so as to achieve convergence. Batch normalization is a method intended to mitigate the
aforementioned issues.

The suggested algorithm considers mini-batch training of a neural network model, accord-
ing to which, the training dataset is split in small subgroups with no overlapping elements,
called batches. At each training iteration, one of them is used to calculate the error and
update the model parameters and after all batches have been used, the process repeats for a
predefined number of training epochs. Moreover, the computed errors are summed or aver-
aged over the mini-batches, resulting in a reduction in the variance of the back-propagated
gradients.

Batch normalization aims at standardizing the distribution of output activations at each
layer of the network before the application of the non-linear activation functions, resulting in
them having zero mean and unit variance. This procedure is applied on each individual mini-
batch. Considering a d-dimensional layer activation z = [2(1), e z(d)]T, the normalization is
applied to each dimension separately. Additionally, considering a mini-batch B = {z1, ...,z }
containing m such activations, the mean p and variance o2 of the latter are calculated us-
ing the corresponding mini-batch statistics. As the normalization of the layer activations
may constraint the outputs on the linear regime of the corresponding non-linearities, two
extra learnable parameters v and § are introduced so as to ensure that the overall batch
normalization transform, denoted as BN, g(-), is able to represent the indentity function, if
needed. The equations describing the batch normalization transform over a mini batch B,
with respect to the ¢th dimension of the layer activations, are the following:

7=1
7 1 @ ? 7
(05 = . 3 — )
j=1 (2.65)
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In fact, if 49 = 4/ (O'g))2, neglecting the infinitesimal constant ¢ and ) = #g), then
BN,y(i)76(i)(‘) matches the identity transform. Fixing the layer activation distributions also
has a beneficial effect on the gradient flow through the network, as it reduces the dependence
of gradients on the scale of the parameters or of their initial values.

During inference the network outputs are expected to depend deterministically on the
corresponding input. Therefore the parameters of the batch normalization layers are fixed.

More, specifically, the unbiased variance estimates Var[z()] = - F B[(ag))Q] and the mean

m—1
estimates E[z()] = Ep [,ug)] are used, along with the per dimension learnt parameters v, ().
The expected values are calculated over all training mini-batches B. As the means and
variances are fixed during inference, then the per dimension batch normalization transform

is replaced by the following simple linear transformation:

T L S e S o B (266
J V/Var[z0] + ¢ 7 / Var[z()] + €

Batch normalization, as a regularization technique, is very similar to dropout. It mul-
tiplies each hidden unit by a random value at each step of training. More specifically, the
random value is the standard deviation of all the hidden units present in the mini-batch and
as different samples are chosen, supposedly at random, for inclusion in the mini-batch at each
iteration, the statistical properties of the mini-batch randomly fluctuate. Batch normaliza-
tion also subtracts a random value, the mean activation of the mini-batch from each hidden
unit at each iteration. Both of these sources of noise force every layer to become more robust

to a lot of variation in its input, similarly to the effect of dropout.

Data Augmentation

Data augmentation is another more general but equally useful and efficient regularization
technique. It involves the synthesis of additional data samples through the transformation
of the existing training data. The core concept behind this method is the fact that the best
way to make a neural network model to generalize better is to expose it to a larger and
more diverse training dataset. Moreover, training models with a high number of parameters
requires a proportional amount of available examples that public datasets often lack. The
process of creating synthetic examples based on current available data reduces the effect of
overfitting while training.

More specifically, data augmentation techniques have been extensively applied on image-
based datasets. Data augmentation techniques of this kind can be separated into two types:
online (on-the-fly) and offline. On-the-fly methods often include the extraction of random
crops centered on the four corners and center of the input training images. The crops can
also be flipped horizontally, resulting in a synthetic dataset of even ten times the initial size.
In addition, offline methods have also been developed in order to infuse greater diversity and
variance in the training dataset. These utilize various affine transformation matrices such as
scaling, rotation, skewing and shifting, as well as appearance filters such as noise injection,
averaging, color and contrast jittering and motion blurring. In that way, the introduction
of additional variance in the training data, encourages the model to become more robust to
noise and variations in its input.

In general, the application of data augmentation is likely to have a more prominent effect
on the actual performance of a network than the usage of different network architectures or
machine learning algorithms. When comparing the performance of separate models which
utilize different algorithms and also do not share the same data augmentation schemes, then
any observed increase in performance of one of the models over the others is more likely to
be caused by a particular choice of data augmentation transformations.
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2.3.6 Convolutional Neural Networks

Convolutional Neural Networks, ConvNets or CNNs, comprise a class of neural network
models which find extensive applications in data that share some type of grid-shaped ar-
rangement. These compatible types of data can be found in multi-dimensional settings. For
example, CNNs can be applied on 1D time-series, such as audio input data, for the extraction
of useful patterns that can be found across the signals. The most common and popular ap-
plication of CNNs is related with processing and pattern recognition in images. In that case,
the performed operations are referred to as convolutions over volume as the multiple input
image channels are processed simultaneously. A high-level schematic diagram of a modern
CNN can be seen in figure 2.6. Lastly, 3D variants of CNNs can be applied in the analysis
of volumetric data such as videos, which can be perceived as a stack or 2D image frames. In
that case the 3D aspect is based on the presence of the additional time axis aside from the
two space dimensional axes.

Convolution Pooling Flattening
—_—

o|lo|o|o|o|o|o
o|o|=|O|O|=|O
o|l=|O|O|O|O|O
Oo|=|O|=|O|O|O
o|=|O|O|O|O|O
olo|»|O|O |+ |O
o|lo(o|o|o|o|e

Input Image
I /1 1

Convolutional Layer Pooling Layer

Figure 2.6: Illustration of a standard 2D Convolutional Neural Network (CNN), consisting of a series
of convolutional and pooling layers, responsible for feature extraction, followed by fully-connected (FC)
layers which perform either classification or regression, depending on the task. Adapted from https:
//www.andreaperlato.com/aipost/cnn-and-softmax/.

In the context of deep learning, the convolution operation refers to the multiplication of
a multidimensional input tensor I with a small multidimensional array of weights K, which
is called kernel. This operation is performed across the span of the entire input array, as
the multiplications with the weight kernel are performed in a sliding window fashion. As the
input data often have multiple channels of information, such as RGB images or stereo audio
signals, the convolution operation applies separate weight kernels for each one of the input
data channels. That is, in the multi-channel case, which is the most common in practice,
the convolution operations utilize filters which are collections of kernels, with there being
one kernel for every single input channel, and each kernel being unique. With that being
said, the main structural block of the CNN is the convolutional layer. It is comprised of a
predefined number of filters, containing sets of trainable weight parameters, each one intended
at extracting different kinds of features from the input data. As the convolution operation is
performed as a sliding window multiplication, the weights of a particular filter belonging to
some convolutional layer, are used across all positions of the layer input data. This weight
sharing feature of convolutional layers leads to sparse connectivities across the CNN model,
in contrast with the fully connected feed forward models, where each unit of one layer is
connected with all the units of both the preceding and subsequent layers.

Convolution Operation

For convenience, the following analysis considers specifically the case of 2D convolutions,
as it is the most common one and is highly relevant to the task of affect recognition in images.
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Given an input map I and a convolutional kernel K, the convolution operation is given by:

(I * K)i,j = Z Z Ii—m,i—nKm,n
m n
= Z Z Ii-l—m,i—i—nK—m,—n
m n

Another similar operation, is called cross-correlation and is described by the following ex-

(2.67)

pression:

(I ® K)i,j = Z Z Ii+m,i+nKm,n (268)

Indices m, n traverse the spatial dimensions of the kernel K, while indices i, j span across the
valid locations of the input image. Based on the aforementioned definitions, convolution is the
same as cross-correlation, except from the fact that the kernel K is flipped both horizontally
and vertically. Usually in the context of deep learning, convolution and cross-correlation are
identical operations and the flipping of the weight kernel is irrelevant and does not affect the
end result.

Convolutional Layers and Forward Propagation

As mentioned above, the structural block of a CNN is the convolutional layer analogously
to the fully connected layers of feed-forward networks. A convolutional layer is characterized
by an input map I, a set of filters K and biases b. Input images are characterized by their
height H;,, and width W;,, as well as their channels C' (for grayscale images C' = 1, for RGB
images C' = 3), such that I € RH=xWinxC The convolutional filters consist of an arbitrary
number of kernels. As kernels and feature maps are characterized by three or even more
dimensions, in all following equations, subscript indices are separated with commas in an
attempt of rendering mathematical expressions more legible. Considering a set of D filters,
then K € RF1xk2xCxD 4 biases b € RP, one for each filter. The output of a convolutional
layer is referred to as a feature map F € RfoutxWourxD “and its dth channel can be computed
as follows:

C
E,j,d = (I * K)i,j,d = Z Z Z Km,n,c,dli—m,j—n,c +bq (269)

m n c=1
As a CNN is composed of several such convolutional layers together with non-linear layer
activation functions, it is necessary to employ a notation suitable for describing the forward-
pass operations, similar to the ones described by equations 2.4 for the MLP. More specifically
for the Ith convolutional layer (1 <[ < L), the activation map resulting from the convolution
operation is denoted as X and the corresponding output feature map after the application
of the non-linear activation function as Z", with size HO x WO x ¢W. Additionally, the
set of filters is denoted as W) with size ky) X kél) x CU=1) % ¢ and the corresponding
biases as b®). With I denoting the input tensor of size H® x W x ¢ the forward

propagation operation can be described by the following set of equations:

0
2\ = I;
c-1)
l l -1 l
X0a=2230 D WoheaZi )y ne 00 (2.70)
m n c=1

z{} = f(x{))

(2]
The indices i, span across the input and output feature map spatial dimensions, ¢ is the
input channel index, d is the output channel index and m,n indices span across the spatial
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dimensions of the filters. In the above formulation, the channel index is omitted from the
first and third equations for simplicity as it is assumed that the corresponding operations are
performed for each channel independently. Moreover, f(-) is a non-linear activation function
which is applied element-wise on each activation map X,

Feature Map and Receptive Field Output Dimensions

Another important concept relative to the convolutional operation is the receptive field.
The receptive field is defined as the region in the input space that a particular feature of
a convolutional layer is looking at. The receptive field size is directly dependent on the
size of the convolutional kernels as well as another set of parameters that characterize the
convolutional operation, as well as define the size of the output feature map. These parameters
include the size of the convolutional kernel, the stride, padding and dilation of the convolution.
The stride refers to the number of locations skipped during the sliding window multiplication.
A stride of 1 means to pick slides a pixel apart, so basically every single slide, acting as a
standard convolution. A stride of 2 means picking slides 2 pixels apart, skipping every
other slide in the process, downsizing by roughly a factor of 2, and so on. Padding refers
to the addition of extra “fake” pixels around the edges of the input feature map. This
way, the kernel when sliding can allow the original edge pixels to be at its center, while
extending into the fake pixels beyond the edge, producing an output the same size as the
input. Lastly, dilation refers to the spaces inserted between kernel elements during the
convolution operation. This type of operation is called dilated convolution and are used
to cheaply increase the receptive field of output units without increasing the kernel size.
More specifically, with (s1, s2), (p1,p2), (d1, d2) denoting the stride, padding and dilation rates
respectively in the two separate spatial dimensions, and considering an input feature map
with of size H;, X Wi,, the output feature map dimensions after the convolution with kernel
of size k1 X ko will be:

Houp = {Hm-ﬁ-?pl —dl(kl — 1) — 1J 41
S1
(2.71)
W 2p9 —do(ko — 1) — 1
Wout:{ n T+ 2p2 82(2 ) J+1
2

A more simplified setting of the convolutional operation considers square kernels (k1 = ko =
k) as well as equal strides s, dilations d and paddings p across the two spatial dimensions.
Moreover, with k), s®) d®) denoting the kernel size, stride and dilation of the Ith convo-
lutional layer, then the corresponding receptive field size r®, can be computed using the
following formula:

ED = kO + (60 —1)@® —1)

-1
rO = (=D 4 (RO _ 1) H (k) (2.72)

k=1

where k) is the effective kernel size after the effect of a dilation rate d). The receptive
field at the [th layer covers (k) — 1)s(!~1) more pixels than the (I — 1)th receptive field.
However receptive field size is computed with respect to the input image. Therefore, the
product Hé;ll s is equal to the distance between two consecutive features, as observed on
the (I — 1)th output map, with respect to the original input feature map.
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Pooling Layers

In most modern CNN architectures, convolutional layers are often followed by a another
type of layer that performs a sample-based discretization process. These layers are referred to
as pooling layers and their purpose is to provide invariance to small translations of their input
as well as reduce the dimensionality of a given input representation. The aggregation strategy
used in the pooling operation defines the type of the layer. Pooling operations include max
pooling which is performed by applying a max-out filter over non-overlapping regions of the
input feature map, average pooling which is performed by computing the mean over elements
contained in the pooling blocks, or even L?-norm pooling, which involves the computation of
the L? norm of the elements inside a pooling block. The most common pooling operations
are max and average pooling. All of the aforementioned pooling operations may involve
zero-padding. Considering the case of a square pooling kernel of size k, with strides s and
dilations d along the two spatial dimensions, then the relationship between an input feature
map X and a corresponding output feature map Z, for the case of max and average pooling,
would be the following:

max
R = max X d i+d
I mne{0,1,. k—1} S TamsItdn
k—1 k—1 (2.73)
av
Zi,j = k‘2 § § st+dm sj+dn
m=0n=0

The channel indices are omitted as the pooling operations are performed for each on of the
channels independently. The size of the output feature maps is again given by equations 2.71.

Backpropagation for Convolutional Layers

For the sake of simplifying numerical computations in the derivation of the backpropa-
gation algorithm form convolutional layers, the indices ¢, d of equations 2.70 are omitted, as
they only appear in the form of summations over all input or output channels. In that way,
the aforementioned equations describing the forward propagation operations in convolutional
layers are modified as follows:

X = (Wxz0=D) b0 = Z Z wib, zE b0
(2.74)
0 _ (l)
Zi; = I(Xi;)

The derivation of the backpropagation equations will be carried out under the assumption
of regular, non-dilated, non-strided convolutions, that is s = d = 1. In the setting of a CNN
containing L convolutional layers, the network outputs coincide with the outputs of the last
convolutional block, Z(X). Let £ be a loss function applied on each one of the elements of

ij
and layers [. The application of the chain rule for derivatives yields:

75, Backpropagation aims at computing the partial derivatives % for all indices m,n

m,n

8£ aX(l)
=22

= ox ) ,aw,&l?n
IR0

m’n’
m n'
/ /

ann
(2.75)
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where 5() w = 0L/ 8X - Application of the convolution operation 2.74 in the above
expressmn ylelds
ox) -1
m/n’ ) )
m// n// m! —m! ! —n! + b
oW, awéin @:; ! )
(1-1) 0
W(l <Z Z Wm// // X / // n/ n//) + b ) (2-76)
g D p(x =D 1)
N aW(l) (Wﬁn?nf(Xmlfm’n/*")) - f(Xm/*m,n/fn)

Substituting the result of equation 2.76 in equation 2.75, yields:

Zzém n’f )

= (2.77)
_ (6(1) o F(X z—l))) _ {5<l> s rotsos [£(X01)]}

where the operator rotgpe(-) denotes the horizontal and vertical flipping of a kernel. In
similar fashion, the chain rule can be applied for the computation of the § terms:

Yy el

L ox ) 8Xm)n

8X(l+1)
_ Z Z l+1)

aWn?n

—m,—n m,n

X(l+1)

aXJBn
(2.78)

By again using the convolution operation and taking the partial derivatives w.r.t all the

X(z+1

components, the term 9 / 8Xm)n can be written as follows:

axih o N
aXﬁrlL),n 8X7(7€ n <; ; Wm” nZ ’ m! ' —n'! +b )
X(l <Z; Z; WD, F(XO ) + b(z+1)) (2.79)
0
= (W F X)) = WD, (X

Again, by substituting the above result into equation 2.78, the following recursive formula
for the & terms is obtained:

oL (L1) l+1)
M= e = 1) S

= f(x{ )(5(Z+1> ® W(l+1)) (2.80)

—m,—n

= f (X(l ) [ 54D « oty g0e (W(Z‘H))}
m,n

Combining equations 2.80 and 2.77, a recursive formula can be obtained, according to which,

the partial derivatives of the loss function w.r.t the weights of some convolutional layer, are

dependent on the & terms of both the current layer and all following layers as well as the

activations of the preceding layer.
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In addition there is the possibility of pooling layers being placed in between the convo-
lutional layers. The most common instances of pooling layers are max and average-pooling
layers. The application of pooling layers with square kernels of size k, results in a block
of k x k values to be reduced to a single value that is either the maximum value located
inside the block or the average of those values. Backpropagation through the pooling layers
considers only the error w.r.t to that single maximum or average value of the surviving unit.
To keep track of the surviving unit, its index is saved during the forward pass and used for
gradient routing during backpropagation. Gradient routing differs relative to each type of
pooling layer used. For the case of max-pooling, the gradient is assigned to the surving unit
and the rest of the units in the layer’s pooling blocks are assigned with zero values as they do
not contribute in error propagation. On the other hand, in the case of average pooling, the
gradients are multiplied by a factor of 1/k? and assigned to all the values within the pooling
blocks.

It is assumed that the strides s and dilations d of the square pooling kernels are equal
along the two spatial dimensions. Morever, if index [ corresponds to a pooling layer with an
input feature map Z(¢~Y = X® and a corresponding output feature map Z®, then for the
case of max pooling, gradients are computed in the following way:

Zl(lj) = X where (i*,5%) = argmax x¥

- p,q€{0,1,....k—1} sit+dp,sj+dq
oL Sy i (mon) = (i, 5) (2.81)

iad 0

8X'('?’" 0 otherwise

while the case of average pooling is as follows:

or k%a‘;% if (m,n) = (si + dp, sj + dq) for any p,q € {0,1,....,k — 1} (2.8
iJ 2.82
0 T(rll)n 0 otherwise

Fully Connected Layers

Modern CNN architectures are comprised of two basic parts of feature extraction and
classification or regression. The feature extraction part is comprised of all the convolutional
and pooling layers, as well as regularization layers such as dropout and batch-normalization
layers. These types of regularization layers perform the same kind of operations as the
ones described in section 2.3.5, with the sole difference of considering each feature map
channel independently. For the first part, stacks of convolutional blocks constitute high-level
feature extractors. After the last convolutional block, it is common practice to flatten the
corresponding feature map into a single feature vector.

Subsequently, the classification and regression part of a CNN consists of fully connected
(FC) layers. The objective of a fully connected layer is to take the results of the convolu-
tion/pooling process and use them to perform regression or classification, depending on the
type of task. With the use of FC layers, the network aims at learning combinations of the
extracted features, as neurons in a FC layer have full connections to all activations in the
preceding and following layers. Additionally, the difference between FC and convolutional
layers is that the neurons in the latter are connected only to a local region of the input and
that many of the neurons in a convolutional layer share parameters. In addition, for any con-
volutional layer there is an FC layer that implements the same forward function. The weight
matrix would be a large matrix that is mostly zero except for at certain blocks, due to local
connectivity where the weights in many of the blocks are equal, due to parameter sharing.
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Furthermore, FC layers can be converted to convolutional layers. More specifically, a feature
volume of size k x k x F' where k corresponds to the spatial dimensions and F corresponds to
the channel depth, can be converted to a feature vector of size D by applying a convolutional
layer with kernel size equal to k, unitary stride s and dilation d and D filters, resulting in a
output feature volume of size 1 x 1 x D. It is worth noting that FC layers can only deal with
input of a fixed size, due to the fact that it requires a certain amount of parameters to fully
connect the input and output. On the other hand, convolutional layers just slide the same
filters across the input, so they can basically deal with input of an arbitrary spatial size.

Skip Connections and Residual Architectures

Several problems may arise during the training of deep neural networks, like the problem of
vanishing/exploding gradients as well as that of degradation. In the first case, gradient-related
problems are encountered when gradient-based optimization and backpropagation are used.
Backpropagation relies on the recursive application of the chain rule for the computation
of the partial derivatives of some loss function w.r.t all the hidden layer activations. If the
activation functions that are used have gradients in the range (0,1), then the application of
the backpropagation algorithm will result in the multiplication of several small values during
the computation of the error signals for the higher layers of the network. In that way, the
gradients decrease exponentially w.r.t the number of layers resulting in a very slow training
process or even inhibiting the training process completely, for the higher layers. On the other
hand, when the derivatives of the activation functions are allowed to take larger values, there
exists the risk of exploding gradients, respectively.

Even if deep neural networks start converging, there exists the problem of degradation.
Degradation refers to the fact that variants of networks which utilize deeper architectures,
namely a larger number of layers, exhibit higher error rates compared to their shallower
counterparts. A deeper model is always expected to produce error rates that are no higher
than that of their shallower counterparts as the former should be able to learn identity
mappings for all the added layers, while maintaining the weights of all the layers from the
learnt shallower model. The problem suggests that the solvers find difficulties in learning
those identity mappings through multiple non-linear layers.

A solution to the aforementioned issues was provided by He et al. [18] in the form
of residual blocks and skip connections. The output H(x) of a residual block effectively
aggregate the output F(x) of one layer with the input x of an earlier layer, that is H(x) =
F(x) + x. In that way, the stacked non-linear layers are expected to fit a different mapping
F(x) := H(x) — x which is referred to as the residual function. Moreover, it is easier to
optimize the residual function F(x) compared to the original mapping H(x), as in the case
of an identity mapping being optimal, it would be easier to push the residual to zero rather
than to learn an identity mapping with a stack of non-linear layers. An illustration of a
simple residual block can be seen in figure 2.7. In order for the skip connections to work,
the dimensions of F(x) and x must have equal dimensions. Dimension equality can be
enforced, if needed, through the multiplication of x with a projection matrix Wy, such that
H(x) = F(x) + Wex.

Additionally, residual blocks contribute in the preservation of gradients. Assuming L
in total, stacked residual blocks, with x() denoting the input of the Ith layer, F (x(l)) and
%(x(l)) denoting the common residual and output functions (all layer inputs must have equal
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identity

Figure 2.7: Illustration of a residual connection, the building block of residual learning. Source: [18].

dimensions), then the forward propagation is as follows:

ng) = ]:(x;L*l)) 4 2ED
— F") + Fa

<

and given a loss function F, the partial derivative of the loss function w.r.t to some element

xgl) can be computed using the following expression:

azvgl) a 83:(-L) 8:1:(-1)

J J
OE 9 ® - )
- mm(%‘ +>_ Fla;)) (2.83)
J J i=l
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P 0
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The last equation indicates that every 0F/ 8$§-L) comes in additive form rather than multi-
plicative, thus reducing the occurrence probability of the vanishing gradient problem. Fur-
thermore, skip connections allow information. Furthermore, skip connections allow lower
level semantic information, that is extracted in earlier layers to propagate intact through the
network without becoming too abstract.

This type of identity shortcut connection constitutes the main idea behind one of the most
popular modern CNN architectures, called Residual Neural Network (ResNet). The ResNet
includes variants with 18,34, 50,101 and 152 layers. For the following analysis, convolutional
layers are denoted as tuples of the form (k, k, f, s), while pooling layers are denoted as (k, k, s),
where k is the square kernel size, f is the number of filters used and s is the stride along the two
spatial dimensions. There are two types of residual blocks used, one that is two layers deep
and is used in ResNet-18 & 34 and one that is three layers deep and is used in all the deeper
variants. Stacks of these residual blocks constitute larger convolutional blocks. All variants
are comprised of four convolutional blocks containing a different number of stacked residual
blocks. In the first case, the residual block consists of two stacked (3,3, f,s) convolutional
layers. In the deeper variants the residual blocks include a series of (1,1, f, s), (3,3, f, s) and
(1,1,4f, s) stacked convolutional layers. Whenever the output feature map size is halved, the
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number of filters f of the convolutional layers doubles, ranging from 64 up to 512. Feature
map downsampling is performed with strided convolutions. With the exception of the first
convolutional block, the first layer of the first residual block of every other convolutional
block, applies a stride s = 2. All other convolutional layers apply a stride s = 1. In all
the variants, the first residual block is preceded by a (7,7,64,2) convolutional layer and a
(3,3,2) max pooling layer. Moreover, the networks utilize batch normalization layers right
after every convolutional layer and before ReLU non-linearities. Lastly, the last convolutional
block in all variants is followed by an average pooling layer, outputting a flattened feature
vector that is to be fed to any potential subsequent FC layer.

The Dense Convolutional Network (DenseNet) constitutes another notable residual ar-
chitecture, introduced by Huang et al. [53]. Without going into the same level of detail,
instead of additive residual blocks, the DenseNet utilizes skip connections via concatenation
so as to ensure maximum information flow between layers in the network. This is achieved
by concatenating feature maps of all preceding layers directly with each other. More specif-
ically, supposing that x(®) is the output of the Ith layer of the DenseNet and ’H(l)(-) is the
corresponding non-linear mapping implemented at that layer, then the [th layer receives the
feature maps of all preceding layers x(©, x(1) .. x(=1.

x = 7O (x© x®  x(=1)) (2.84)

where [x(o),x(l),...,x(lfl)] is the channel-wise concatenation of the corresponding feature
maps. In that way, utilizing feature map concatenation, instead of addition, exploits the
networks full potential through feature reusability and leads to more compact models that
are easier to train.

t
Y

Figure 2.8: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps
as input. Source: [53].

Similarly to the case of additive feature map aggregation, skip connections via concatena-
tion require equal feature map sizes. As ResNets are comprised of residual blocks, DenseNets
are divided into dense blocks, where the dimensions of the feature maps remain constant
within a block, but the number of filters change between them. An illustration of a 5-layer
dense block is provided in figure 2.8. Dense blocks are also divided into dense layers, with
each dense layer producing a constant amount of output feature maps. The layers between
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consecutive dense blocks are referred to as transition layers and perform downsampling by
applying a batch normalization layer, a ReLLU activation, a 1 x 1 convolutional layer with
stride s = 1 and a 2 x 2 average pooling layer with stride s = 2, in that order. Lastly, it
is worth noting that as feature maps are concatenated, the channel dimension increases at
every layer. Assuming a dense block containing L dense layers and given that each dense
layer function H(l)(-) produces k feature maps, then the output feature map corresponding
to the Ith dense layer will have k) = k(©) 4+ k(I — 1) channels. The parameter k is called
growth rate and regulates the amount of information that is added to the network at each
layer.

2.3.7 Graph Convolutional Networks

In the current section, we consider the problem of classifying nodes in a graph, including
the case where labels are only available for a small subset of nodes. This problem can
be formatted as graph-based learning, where label information is smoothed over the graph
via some form of explicit graph-based regularization. Kipf et al. [57] proposed a scalable
approach for supervised /semi-supervised learning on graph-structured data that is based on
an efficient variant of convolutional neural networks which operate directly on graphs. In
their work, they encoded the graph structure directly using a neural network model f(X, A),
called Graph Convolutional Network (GCN), with X denoting the input node feature vectors
and A denoting the graph adjacency matrix. A high-level representation of a GCN can be
seen in figure 2.9. The GCN is trained on a supervised target Lg for all nodes with labels,
avoiding explicit graph-based regularization in the loss function. Conditioning f(-) on the
adjacency matrix of the graph allows the model to distribute gradient information from the
supervised loss Ly and enables it to learn representations of nodes both with and without
labels.

Forward Rule

The current section presents the forward propagation rule that is employed in GCNs.
Considering a multi-layer GCN, the following layer-wise propagation rule is applied:

H) = (D ZAD THOWD) (2.85)

where A = A+I is the adjacency matrix of the undirected graph with added self-connections
and HUHD ¢ RV*F denotes the output of the /th hidden layer. Moreover, D is a diagonal
matrix with elements D;; = Z Aw WO ¢ RDXF g the weight matrix of the [th layer, h(-)

denotes a non-linear activation function, H® e RNXD i5 the matrix of activations in the
Ith layer, HO = X. Without going into further details, the authors have proved that the
aforementioned propagation rule is derived as a first-order approximation of spectral filters
on graphs.

Node Classification

We consider a GCN with L hidden layers for node classification on a graph with symmetric
adjacency matrix A that can be elther binary or weighted. After calculating the normalized

adjacency matrix A=D 2 AD 2 , the forward propagation rule is applied in order to obtain
the hidden layer activation of the last GCN layer, namely HEAD = f(X,A). Given that the
classification task features K mutually exclusive classes, the softmax activation function is
applied on each row of the hidden layer activations HAD ¢ RVNXK producing a probability
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Figure 2.9: Illustration of a graph convolutional network (GCN) with two hidden layers and ReLU activation
functions. Source: https://github.com/tkipf/pygcn.

matrix Z containing the probability scores for all N graph nodes. For semi-supervised multi-
class classification, a cross-entropy loss function is evaluated over all labeled instances:

K
Lep=— Y > YiylnZy (2.86)

leyr k=1

where )Yy, is the set of node indices that have labels and Y, denotes the kth groundtruth
label of the lth graph node. Classification can also be performed on a graph-level. However
that would require some kind of attention mechanism that would be able to extract a single
feature vector from all N node feature vectors of H(X D,

2.3.8 Recurrent Neural Networks

Recurrent neural networks or RNNs, as introduced by Rumelhart et al. [90], consti-
tute a class of artificial neural networks related with sequential data modelling. Some of
the most common applications involving sequential data include natural language process-
ing, speech recognition and text classification. An RNN receives input vectors x(*) where
t denotes the time step index, ranging from 1 up to the sequence length. More specifi-
cally, given a sequence of observations X = {x(l), x@ . X(T)} and a corresponding label set
Y = {y®,y®, ..., y(} of length 7, then a recurrent neural network aims at learning a map-
ping f: X — Y. An important feature of most RNNs, is that they are capable of processing
sequences of arbitrary length. Additionally, in practice RNNs operate on mini-batches of
sequences but in order to simplify the expressions the batch indices are omitted.

Recurrent neural networks are used to model dynamical systems. An example of a classical
dynamical system would have the following form:

st = r(st=D x® g) (2.87)

where 0 is a set of parameters, s denotes the state of the model and x(® is an external
input signal at time step . The above equation is recurrent as the state of the model at
some time step ¢ is defined w.r.t to the exact previous state at time step ¢ — 1. Given a finite
number of time steps 7, then the recurrent model can be unfolded by applying the above
equation 7 — 1 times, meaning that state s(™ can be expressed w.r.t the parameters 0, the
input vector sequence x(7, x("=1 . x(1) and potentially the initial model state s(*). This
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procedure removes any kind of recurrence leading to an expression that can be described by
a directed, acyclic and unfolded computational graph across time.

zZ Zy_1 Zy Ziy1
th th th th
h ht— 1 ht ht+1
Whn, Wi Whh Whhn
Wmh W:rh Wan Wan
X Xt—1 Xt Xt+1

Figure 2.10: It is a RNN example: the left recursive description for RNNs, and the right is the corresponding
extended RNN model in a time sequential manner. Source: [19].

Unidirectional Recurrent Neural Networks

The most widely used design pattern for RNNs, considers a dynamical system where
the state at each time step is dependent on the previous state and the current observation
x®) e R?  Moreover, the states of the network are characterized as “hidden” and as a
convention, they are denoted as h®) € R™. This type of RNN features recurrent connections
between hidden states and also produces an output y® € R? at each time step. Therefore,
the model maps an input sequence to an output sequence of the same length. The equations
describing the operations of this type of RNN, are the following;:

al) = Whhh(t_l) + thx(t) + by,
h® = tanh(a®)
z) = W),.h") + b,
§U = g(z")

(2.88)

where Wy, € R™X4 Wy, € R™™ W, € R?*™ denote the input to hidden, hidden to
hidden and hidden to output weights respectively, b, € R™, b, € RY denote the hidden
and input layer biases, while g(-) denotes the output unit activation function. Both the
recursive as well as the unfolded representations of an RNN are illustrated in figure 2.10.
Typical options for the final non-linearity are the softmax function for multi-class categorical
prediction tasks, the sigmoid function for the prediction of independent Bernoulli variables
and the identity function in the case of regression. The input size is kept constant, while the
same parameters and non-linear functions are used at each time step, resulting in a model
that can operate on sequences of variable length.

Backpropagation Through Time

Given an input sequence xV, x@ .. x® and a corresponding sequence of target labels
yD. y@_  y® then the total loss can be computed as the sum of losses over all time steps.
Considering the task of multi-class classification, the loss £®) at each time step will be the
negative log-likelihood of y®) given all input vectors up to time step ¢. In that way the total
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loss will be equal to:
L= Z £ = — Zy(t) Iyt = — Z Z[[yl(t) =1]In QZ@ (2.89)
t L ti

where ¢ corresponds to each element of the output and one-hot encoded target vectors. Based
on the task, it follows that ¢(-) would be the softmax function.

Training RNNs involves the application of a variant of the classic backpropagation al-
gorithm which was analyzed in sections 2.3.4 and 2.3.6 and is referred to as backpropaga-
tion through time (BPTT). Conceptually, BPTT works by unrolling all timesteps with each
timestep having one input, one copy of the network, and one output. Errors are then calcu-
lated and accumulated for each timestep. The network is rolled back up and the weights are
updated. The trainable parameters are comprised of the weight matrices W, Wrn, Wh,
and the biases by, b,. Therefore, the end goal is to compute the gradients of the loss func-
tion £ w.r.t to each one of the elements of the aforementioned trainable parameters. The
aforementioned partial derivatives will be expressed relative to the sequence of nodes of the
unfolded computational graph indexed by ¢, including x(®, h(t), z® as well as the gradients
of the loss function £ w.r.t them.

Assuming the same loss formulation as described in the previous section, the gradient of
L relative to each element of the output vectors z(*), is as follows:

<a,c> oL oL oLW

oz ) . 8,2]@ T oL® az](.t)
(%)
() _ NONE ® _ 4. 1 9y
: - 1]] lnyi ) - _Z[[yl - 1]] (1) 8 (t)
j ) yi Zj
_ & _ g 1 0 (®) 2.90
== Z[[y@ = 1]]@82@ (softmax(z;")) (2.90)
i y; 0z

¢ I @ L(t (t
— —Z[[yg ) = 1]]wa (85— ) Z[[yz =)
¢ .
= —Z[[yg) = 1]][[@=J]]+Z[[y,~ =1]5\" =9\ — [\ = 1]
Assuming input and output sequences of length 7, then at the last time step, h(™ influences

only z(7), therefore its gradient is as follows:

oL oL 92D 9L 9(Wiph™ +b.) oL
oh™ — 9z gh™ ~ 9z oh(™ " 9z

Wi, (2.91)

For all other time steps ¢t < 7, the hidden node h") affects the current output node z® as
well as the following hidden node h(¢+1) in the computational graph, therefore its gradient is
as follows:

oc oL 9z on®
on® 2 9z oh® on®

t<i<r

(2.92)

As mentioned above, the weight parameters and biases are shared among all time steps. In
that way, in order to accumulate the gradients over all time steps, a copy of each one of the

parameters Witfz, ngt,z, Wgtz), bg), bgt) can be considered for each time step ¢. For the biases,
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the corresponding gradients are as follows:

oL s oL 9z s oL a(Wh® 1 b)) ¥ oL
Ob, - 0z®) @bgt) - 0z®) 8bg) - 0z®)

or _Z or on® gal® 5 oL 9(tanh(a®)) a(WHRED L Wlx® 4 1)
oby, 6h(t) 9al®) 8b§lt) - oh® Hal®) 8b§f)

= Z dlag (h(t))z]

(2.93)
Subsequently, the gradients of the loss function with respect to the weight matrices are more
complicated to compute. Firstly, the derivative of the scalar loss function w.r.t to a weight
matrix needs to be decomposed into simpler derivatives with respect to vectors or scalars.
The case of Wy, is as follows:

oL [( oL \' oc \'1" (2.94)
awhz B 8Vth,l Y aVvhz,m .
where Wy, = [WLJ, e ?WZz,m}T and wZzﬂ. is the ith row of the weight matrix Wy,,. Each

row of the gradient can be computed as follows:
-
oc 8£ 02 oc o[(wi);) bW +b. ] ac
20 e~ 2 =2
t

aTm : Zj 6thj 7 8ZJ('t) awgg,j

Substituting the above expression in every row of the weight matrix Wy, in equation 2.94,
yields the following result:

(S0 ) (S 2]

(2.96)

Following the exact same procedure, the gradient of the loss function w.r.t the weight matrix
W} can be computed as follows:

or 9n'Y aaY

_ j j
8Whhj Z h(t aat OWhh,;j
o[(why ;) h 4 (wh) ) %O 4 by, ]

oL
=Z 1= ()] A

§' ) OWhhs (2.97)
= 3 ol G
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J

oL oL \ ' T
_ : o2 95 (t—1)
o= 3 diag 1 — (h©) ]<6h(t)) (nD)

t

In similar fashion, the gradient of the loss function w.r.t the weight matrix W, can be
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computed as follows:
t) 8a§-t)

8L‘ Oh;
8th] Z t awth

8£ ¢
- Z hg )? ] OW o i
J e (2.98)
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Bidirectional Recurrent Neural Networks

A unidirectional RNN whose forward operations are described by equations 2.88, pre-
serves information of the past because the only inputs it has seen are from the past. The
hidden state h® at time step t directly depends on the state h=1 of the previous times
step and the current observation x(*). By unfolding the computational graph and removing
the recurrence, it becomes evident that the hidden state at time step ¢ depends indirectly
on the entire sequence of past observations up to that point. The hidden to hidden con-
nections traverse the computational graph forwards in time, namely from past to present.
Subsequently, unidirectional RNNs are limited in the sense that at any particular node, can
only have access to the past information and hence the output can only be generated based
on what the network has seen.

Bidirectional RNNs (BRNNs) [92], constitute a direct extension of their unidirectional
counterparts. They introduce a second hidden layer in which the hidden to hidden connections
flow in reverse temporal order, that is from future to present. In that way, a BRNN includes
two sub-networks, one that accesses information in forward direction and another which
accesses it in the reverse direction. These networks have access to the past as well as the future
information and hence the output is generated from both the past and future context. This
type of networks has been successfully applied on tasks such as image captioning, language
translation, part-of-speech tagging and protein structure prediction.

Considering a BRNN;, the forward and backward hidden states are assumed to be h(t) h(t) € R™

fo
respectively, where m indicates the number of hidden units. Given observations x® e ]Rd

and predicted outputs Sf(t) € R? at each time step t and assuming corresponding input to
hidden, W' W ¢ Rmxd_ hidden to hidden W) W) ¢ Rmxm and hidden to output

W), € R7%2™ weight matrices as well as biases b;b ), b(b) € R™ and b, € RY?, where the su-
perscripts f and b denote the forward and backward operations respectively, then the model’s
dynamics can be described by the following operations:

hY) = o(Wn{™ + wix® 4 pih)

) = oW WO 1) .
The non-linear activation ¢(-) can be chosen to be the hyperbolic tangent similarly to the
unidirectional case. The forward and backward hidden states are concatenated into a single
hidden state vector h() € R2™. The final predicted output at y@ at time step t, is computed
as follows:

9 = g(W,.h® 1 b,) (2.100)
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where ¢(-) is the standard output activation function. The corresponding gradient derivation
with through the application of the BPTT algorithm will be omitted. However, it is worth
noting that for example, the backward pass procedure is slightly more complicated because
the update of state and output neurons can no longer be done one at a time. In this case,
supposing input and output sequences of length 7', the BPTT algorithm will first perform
the backward pass for the forward states (from ¢ = T to ¢t = 1) and then for the backward
states (fromt=1tot=T).

Deep Recurrent Neural Networks

Up to this point, the recurrent neural network architectures which have been discussed
include unidirectional and bidirectional RNNs with one hidden layer (forward or backward).
As MLPs utilize multiple stacked fully connected layers and CNNs employ blocks of consec-
utive convolutional layers, RNNs can have multiple hidden layer as well where each hidden
state is continuously passed to both the next timestep of the current layer and the current
timestep of the next layer. This family of recurrent models is referred to as Deep RNNs.
Assuming input vectors x* € R% and hidden states of the Ith hidden layer hl(t) € R™, where
m is the number of hidden units as well as output prediciton vector y@) € RY at time step
t, with fi(-) being the hidden unit activation function for the Ith layer, then the forward
propagation equations for the first and all subsequent layers are as follows:

fl( (t 1))

h?” — fi <h§”1, h“ Dy

(2.101)

For all layers 1 < [ < L, the hidden state of the previous layer is used in its place. The
output layer depends only on the hidden states of the last hidden layer. If g(-) is the output
function, then the output vector y“) at time step t is as follows:

§0 = g(m) (2.102)

In deep RNNs, the number of hidden layers L as well as the number of hidden units m
constitute hyperparameters for the model. Additionally, bidirectional RNN hidden layers
can also be utilized, in which each hidden layer will be comprised of a forward and backward
hidden states, that will be concatenated and fed as input into the subsequent hidden layers.

Long Term Dependencies

The long-term dependency problem refers to the fact that the computation of the gradients
of some loss function relative to the network’s parameters depends on the computation of
gradients w.r.t to hidden state vectors over all past time steps within a given sequence. As

indicated by equation 2.92, given an input sequence of length 7, the computation of ahﬁ) for

time steps t < 7, is expressed in terms of Jacobian matrices 8(;1}(1(k) . Further expansion of the
above partial derivative yields the following:
oht+1) ohl+D oht+D) §gli+1)
Tonk) Ton 9al+D)  an @)
oh®) Kist oh® hist dalit1)  gp®)
_ H 0(tanh(<j(1i)+l))) a(Whhh(Z) + “%hx(”l) + by) (2.103)
k<i<t Oa oh
H dlag h(z+1))2] Whh
k<i<t
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Therefore, the Jacobian matrix 8h(t(:)1 ! indicates matrix multiplication over part of the

entire sequence. During BPTT, the network backpropagates gradients over a long sequence
and if the aforementioned matrix multiplication involves small values, then the gradient values
will shrink layer by layer and will eventually vanish after a few time steps. On the other hand,
there is the possibility of exploding gradients, which is respectively attributed to large values
in the matrix multiplication.

More specifically, if eigendecomposition is applied on the Jacobian matrix ag}i%}l), then
eigenvalues A1, A, ..., Ay with |A1] > |[A2| > ... > |\y| and corresponding eigenvectors
V1i,Va,...,Vy will be obtained where m is the dimensionality of the hidden states. Any
change on the hidden state in the direction of a vector v; has the effect of multiplying the
change with the eigenvalue associated with this eigenvector. The product of these Jacobians
implies that subsequent time steps, will result in scaling the change with a factor equivalent
to )\3, where )\E» represents the ith eigenvalue raised to the power of the current time step
t. The terms )\2 will grow or decay exponentially fast as ¢ — oo and A} will dominate the
final result. According to [31], if the Ay < 1 then the gradients will exponentially shrink
and eventually vanish, while if Ay > 1, the gradients will exponentialy grow and eventually

explode.

Long Short-Term Memory

As described in the previous sections, all RNNs have feedback loops in the recurrent layer.
This allows them to maintain information in memory over time. However, it can be difficult to
train vanilla RNNs to solve problems that require learning long-term temporal dependencies.
This is because the gradient of the loss function may decay or grow exponentially over time,
resulting in the vanishing and exploding gradient problems, respectively.

Ty

Figure 2.11: Structure example of a Long Short-Term Memory (LSTM) block. Adapted from [14].

Long Short-Term Memory networks (LSTM) [51] constitute a type of RNN that utilize
special units in addition to standard hidden state and output units, resulting in better han-
dling of long sequential dependencies. LSTM units include a memory cell that can maintain
information in memory for long periods of time. A set of gates is used to control when in-
formation enters the memory, when it’s output, and when it’s forgotten. This architecture
lets them learn longer-term dependencies. LSTMs belong in a family of models which are
referred to as gated RNNs. There exist many gated RNN variants, with the most prominent
being the Gated Recurrent Unit (GRU) along side the LSTM. GRUs are similar to LSTMs,
but use a simplified structure. They also use a set of gates to control the flow of information,
while they don’t use separate memory cells, and they use fewer gates. The structure of a typ-
ical LSTM block can be seen in figure 2.11. There is no conclusive evidence suggesting that
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one consistently performs better than the other. By a rule of thumb, LSTMs constitute the
primary choice when it comes to learning long dependencies, with GRUs being a secondary
but less computationally expensive choice. The current analysis will focus only on LSTMs.

Given an LSTM, at every time step ¢, the input is x(!) € R% and the hidden state is
h®) € R™. The memory control gates include the forget gate £ ¢ R™, the input gate
i € R™ and the output gate oY) € R™. The gates are calculated as follows:

i) = o(Wyh™) + W +b;)
£ = o(W, b 4 W, x® 4 by) (2.104)
o) = U(W;wh(t_l) + Woox®) 4 bo)

where Wy, Wy s, Wy, € R™*™ and Wy, Wy, Wy, € R™*4 are the weight matrices and
b;,bs, b, € R™ are the corresponding biases, while o(-) denotes the sigmoid function, thus
the output values of each gate is in the range [0,1]. The next part of the LSTM is related
with the memory cell. The candidate memory cell €¥) € R™ is calculated similarly to the
control gates but with a hyperbolic tangent as the non-linear activation function so as to
obtain a value in the range [—1,1]. Its computation is as follows:

é(t) = tanh (thh(tfl) + chx(t) + bc) (2105)

where W, € R™™ W, € R™*4 are the weight matrices and b, € R™ is the corresponding
bias. The parameter i governs how much of new data is taken into account via ¢; and the
forget gate f () addresses how much of the old memory cell content ¢(*=1) is retained. Using
pointwise multiplication the corresponding update equation is as follows:

¢ — £0) & =1 |30 o &) (2.106)

If the forget gate is always approximately 1 and the input gate is always approximately 0,
the past memory cells ¢~ will be saved over time and passed to the current timestep.
This design was introduced to alleviate the vanishing gradient problem and to better capture
dependencies for time series with long range dependencies. The hidden states h®) of the
LSTM unit and are derived as gated versions of the hyberbolic tangent of the memory cell,

namely:
h® = 0® © tanh (c) (2.107)

Whenever the output gate is 1 we effectively pass all memory information through to the
predictor, whereas for output 0 all the information are retained within the memory cell and
receive no further processing. Lastly, a prediction layer can be added, which will first apply
a linear model on the hidden states h® and then a non-linear output activation function g(*)
so as to produce predictions S/(t) relative to the task for which the LSTM is employed. The
above operations are described by the following expressions:

z® = W,.h®) + b,

§1 = g(z1")
LSTMs can also utilize bidirectional configurations just like vanilla RNNs, having forward
and backward hidden states which are eventually concatenated to form a single hidden state
vector. Additionally LSTMs can be untilized in deep architectures in which the output of one
hidden layer will constitute the input vector for the following hidden layer, while the actual
output of the network will only depend on the hidden states of the final hidden layer.
The corresponding equations relative to the application of the BPPT algorithm in the
case of LSTM units, will not be derived within the scope of the current analysis, as they are

similar to the ones described in section 2.3.8, during gradient propagation through regular
RNNs.

(2.108)
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Chapter 3

Introduction to Visual Emotion
Recognition

The current chapter serves as an introduction to Visual Emotion Recognition and aims
at exploring the basic concepts underlying the aforementioned task. The first section of the
current chapter is dedicated to presenting selected databases that have been widely used
during research in the field of visual emotion recognition. In the second section, a brief
review of earlier published work will be made, laying emphasis on techniques which have
utilized “hand-crafted” features for the encoding of visual affective information. Subsequently,
a transition to more modern practices will be made, with the emphasis now being shifted
towards Deep Learning and ANN architectures. Furthermore, the section dedicated to deep
learning methodologies will be divided into two subsections, with the first one focusing on
certain common data preprocessing steps relative to deep visual emotion recognition, while
the second one will be centered around the most common feature extraction methodologies,
considering both cases of static images as well as dynamic video sequences.

3.1 Databases

The ever so growing influence of deep learning in the applied field of computer vision,
and subsequently in affective computing, has inadvertently led into an increasing demand
for training data. As far as visual emotion recognition is concerned, ANNs can reach their
full potential only when they are provided with a sufficient amount of data examples that
feature an abundance of variations in depicted populations and environments. Therefore, the
current section serves as a review of selected publicly available databases which have found
extensive application during research in the field of visual affective computing. For each of
the following databases, emphasis will be laid on some key features, such as the type of data
used, the total number of instances, the available modalities of information provided by the
database, the models of emotion used for annotation, as well as the setting/source of the
recorded instances.

3.1.1 Facial Expression Databases

The following databases focus primarily on the face as a source of affective information.
More specifically, this collection of databases includes:
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TFD

The Toronto Face Dataset (TFD), as introduced by Susskind et al. [97] contains 112,234
images, 4,178 of which are annotated with one of seven expression labels: anger, disgust,
fear, happiness, sadness, surprise and neutral. In addition, five data folds are provided in the
TFD, with each fold allocating 70%, 10% and 20% of the total images for training, validation
and testing, respectively.

FER2013
The FER2013 database was introduced by Goodfellow et al. [13] during the ICML 2013

Challenges in Representation Learning. The images feature unconstrained settings and the
database is assembled on the basis if the Google search API. The database contains 28,709
training images, 3,589 validation images and 3,589 test images with seven expression labels
of anger, disgust, fear, happiness, sadness, surprise and neutral.

AFEW

The Acted Facial Expressions in the Wild (AFEW) database was introduced by Dhall et
al. [28] and has served as an evaluation platform for the annual Emotion Recognition in the
Wild (EmotiW) challenge since 2013. AFEW is an audiovisual dynamic database contain-
ing movie clips, featuring significant variations in illumination, head poses and background
settings. Data instances are labeled with one of seven possible expressions: anger, disgust,
fear, happiness, sadness, surprise and neutral. Different versions of the database have been
published through the years, with a variable number of instances. The latest version, AFEW
7.0 in the EmotiW 2017 challenge, featured a data fold of 773 training, 383 validation and
653 test samples, with the three sets belonging to mutually exclusive movies and actors.

SFEW

The Static Facial Expressions in the Wild (SFEW) database [27] was created by select-
ing frames of the AFEW database after having computed key frames based on facial point
clustering. The most widely used version, SFEW 2.0 contains a fold of 958 training, 436
validation and 372 test samples, while using the same categorical emotion annotation model

as AFEW.

AffectNet

AffectNet, as introduced by Mollahosseini et al. [75], constitutes the largest and most
diverse facial expression database, containing more than one million images gathered from
the web using emotional related tags. The annotations provided utilize both a categorical
model of 8 basic expressions, namely happy, sad, surprise, fear, disgust, anger, contempt,
uncertainty, plus neutral, as well as a continuous model of the valence-arousal dimensions.
Out of the total amount of images in the database, 450,000 of them have been manually
annotated.

3.1.2 Gesture-Based Bimodal Databases

The current section is dedicated in presenting selected publicly available databases for
recognizing gesture based expression of affect. These databases make use of multiple data
streams, with the main two focusing on the face and body of the depicted people. These
databases include:
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FABO

The Bi-modal Face and Body Gesture Database for Automatic Analysis of Human Non-
verbal Affective Behavior (FABO), was created by H. Gunes and M. Piccardi [15]. The
database features 23 subjects, 12 male and 11 female, with various racial characteristics,
ranging from the age of 18 to 50. Each subject was asked to enact 10 emotional states to-
gether with a particular gesture associated with each one of them. During the recordings,
two digital cameras were used, one focused on the subjects’ heads and one on their whole
body.

GEMEP

The GEneva Multimodal Emotion Portrayal (GEMEP) corpus was introduced by Béanziger
et al. [7] and it consists of over 7,000 audiovisual emotion portrayals, representing 18 emo-
tions portrayed by 10 actors who were trained by a professional director. As the basis of their
expressions, the actors were instructed to utter 2 pseudo-linguistic phoneme sequences or a
sustained vowel ’aaa’. Of the total number of recordings, 1,260 portrayal were selected and
included in a rating study to evaluate inter-judge reliability and recognition accuracy.

HUMAINE

The HUMAINE corpus was collected by Castellano et al. [17] during the Third Summer
School of the HUMAINE EU-IST project, held in Genova in September 2006. The overall
recording procedure was based on the GEMEP corpus. Ten participants of the summer school,
distributed as evenly as possible concerning their gender, participated to the recordings.
Subjects represented five different nationalities: French, German, Greek, Hebrew, Italian.
Two DV cameras recorded the actors in frontal view, with one camera recording the actor’s
body and the other one focused on the actor’s face. The subjects enacted 8 emotions together
with 8 emotion specific gestures, resulting in 240 samples for each modality.

3.1.3 Context-Oriented Databases

More recently, research has been shifted towards emotion recognition in context, with
the aim of integrating contextual information such as the scene, objects and surrounding
environment in the affective computing process. Notable databases of this kind are the
following:

EMOTIC
The EMOTIC dataset was introduced by Kosti et al. [58] and is comprised of images
from MSCOCO [64], ADE20K [1158] and images that were manually downloaded using the

Google search engine. Instances within the dataset may depict multiple people, resulting in
a total number of 18,316 images and 23,788 annotated instances. The images were manually
annotated using the Amazon Mechanical Turk (AMT). For annotations, the dataset combines
a categorical model of 26 non-mutually exclusive emotions as well as the continuous model
of VAD dimensions (in the range [1-10]).

BoLD

The Body Language Dataset (BoLD), as it was assembled by Luo et al. [67], constitutes
a dataset that focuses on bodily expressions of emotion. BoLD is comprised of 9,876 movie
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video clips of body movements, depicting a total of 13,239 human characters. The anno-
tation of the dataset was performed using a crowdsourcing pipeline based on the Amazon
Mechanical Turk (AMT). Instances are annotated in both categorical and dimensional level.
For categorical emotions, the 26 categories of the EMOTIC dataset were utilized, allowing
multi-label classification, while for the continuous annotations, the VAD dimensional model
was used.

CAER

The Context-Aware Emotion Recognition (CAER) benchmark was introduced by Lee et
al. [62] and is comprised of 13,201 TV video clips, resulting in about 1.1M frames. The videos
range from short (~30 frames) to longer clips (~120 frames), while the average sequence
length is 90 frames. Each video clip was independently annotated with one of the six basic
emotions, plus “neutral”, by three different annotators and if at least two annotators assigned
the same emotion categories to a particular clip, then that instance remained in the dataset.
If instances had low confidence scores (annotation reliability), below 0.5, then those clips
were removed. Additionally, the CAER-S benchmark was formed as a static variant of the
original dataset, as it contains 70K static frames from the initial dataset.

3.2 Hand-Crafted Features

The earlier published works in the field of multi-modal visual emotion recognition utilized
“hand-crafted” features for the encoding of visual affective information. The majority of the
experiments were conducted on datasets that included images and videos from constrained lab
environments and the emotion recognition task was performed relative to a variable number of
basic discrete emotions, with the most common case being that of the six universal emotions,
plus the neutral emotion category. Additionally, for the actual classification task, common
machine learning classifiers had been employed, such as Random Forest, k-Nearest Neighbors
(k-NN), Naive-Bayes classifiers, as well as Support Vector Machines (SVM). Lastly, a series
of engineered texture features will be presented that have been primarily used as a means
of describing shape and appearance but have also found extensively application in affective
analysis. In the following paragraphs we will briefly analyze the most significant earlier
contributions that initialized the field of multi-modal visual emotion recognition and paved
the way for further research.

3.2.1 Bimodal Visual Emotion Recognition using Body/Face

The earlier steps in bi-modal visual affective analysis, utilizing both facial and body cues,
involved the use of hand-crafted features for the classification of discrete emotions. One
of the most notable approaches of this kind is the work of Gunes and Piccardi [17]. They
initially created the FABO database which included video sequences of the body and face of
several subjects, enacting 6 emotional states, namely anxiety, anger, disgust, fear, happiness
and uncertainty. The sequences were captured using two cameras, one focused on the face
and one on the whole body. Instances of the FABO database can be seen in figure 3.1.
The extracted feature vectors consist of displacement measures between a neutral and apex
frames.

By using morphological filters and skin color segmentation on HSV color space they
obtained the face region. Next, they used grayscale information and edge maps (extracted
with the Canny edge detector [11]) in order to define bounding boxes centered on key facial
features, such as eyes, eyebrows, mouth, nostrils and chin. After key facial features have
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been located, they calculated optical flow using the Lukas-Kanade algorithm [(6] between
the neutral and apex frames, resulting in a 148-dim total feature vector.

Figure 3.1: Sample images from the FABO database separately recorded by the (left) face and (right) body
cameras. Source: [40].

The corresponding body model involved the detection and tracking of the head and hands.
A similar approach, including background subtraction, silhouette extraction color segmen-
tation and morphological filtering was used for the detection process. For each foreground
object, they calculated a set of features including its centroid, area, bounding box and con-
traction index, resulting in a 140-dim feature vector.

Due to lack of enough sequence examples they applied a dimensionality reduction pro-
cess, namely best-first-search, keeping only 29 facial features, 11 body features and 14 fused
features in the bi-modal method. In all cases, a standard Naive Bayes classifier was used
for the classification of the input feature vectors into the six discrete emotion states. They
examined both mono-modal and multi-modal approaches, considering either feature level or
decision level fusion (sum/product/weighted-sum score aggregation). They concluded that
the multi-modal approach with feature level fusion provides superior performance.

Castellano et al. [18] proposed another multi-modal approach for the recognition of eight
emotional states (anger, despair, interest, pleasure, sadness, irritation, joy and pride) based
on the ten-subject multi-modal corpus of the HUMAINE EU-IST project. This dataset
included video footage of the body and face, recorded from two separate cameras, with the
subjects enacting specific emotions while pronouncing a pseudo-linguistic sentence.

Face feature extraction, included face detection and segmentation in areas, namely eyes,
eyebrows, nose and mouth. Each area contains feature specific boundaries, masks that are
separately extracted and subsequently fused. The fused masks are used to extract 19 feature
points (FPs) in the neutral and apex frames of each sequence. FPs between the neutral and
apex frames were compared to produce facial animation parameters (FAPs) which represent
66 displacements and rotations of the feature points.

Body feature extraction involved the computation of five expressive motion cues, namely
quantity of motion (QoM), contraction index (CI), velocity, acceleration and fluidity of the
hands’ barycenter. To begin with, QoM measures detected motion and is based on the
extraction of body silhouette in each frame of a sequence. Silhouette motion images (SMI)
are calculated as follows:

SMI[t] = Z Silhouette[t — i| — Silhouette]t] (3.1)

QoM is computed as area and is normalized to receive a value in the interval [0,1]:

area(SMI[t])
area(Silhouettelt])

QoM[t] =
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The contraction index CI € [0, 1] can be calculated as the ratio between the area of the
minimum rectangle bounding the hands and head and the area covered by the silhouette. An
example of QoM measurement using SMIs is illustrated in figure 3.2. Velocity and acceleration
are related by the trajectory of the tracked hands, while fluidity (measure of uniformity of
motion) is inversely proportional to the acceleration.

Figure 3.2: A measure of QoM using SMIs (the shadow along the arms and the body) and the tracking of
the hand. Source: [18].

For a given sequence the above features can either be described as a time series and use
them to perform temporal classification using Dynamic Time Warping (DTW) or convert
them to a fixed set of meta features, such as maximum value, mean value, number of peaks,
initial and final slopes, and symmetry index. That would result in a 80-dim motion feature
vector for every video sequence that would be fed in a 1-NN or Bayesian Classifier. In the
first approach, all possible warping paths W would be computed between sequence pairs

qa=I[q, ---,q]" and ¢ = [c1,...,cn] ", resulting in a minimum warping cost:
K
DTW(q,c) = min d(q;, c; 3.3
@e=,, o ) (53)

where d(-) is a selected distance metric. In that way, time series classification can be per-
formed using 1-NN approach, namely a test series is classified at the same class as its nearest
time series in the training dataset according to the DTW distance. After examining both
approaches in mono-modal settings, the authors concluded that the use of meta features
provides superior performance over 1-NN DTW.

Neutral Y Apex Y
Onset Offset

Figure 3.3: The temporal evolution of an expression of “Happiness”. Source: [21].

The above methods perform feature extraction on the basis of neutral and apex frames of
body and face channels, therefore an automatic temporal segmentation method of the video
sequences is required. To this end, an honorable contribution was made by Chen et al. [20].
They proposed the use of a gesture channel only for the extraction of two kinds of features,
namely motion area (MA) and neutral divergence (ND). Motion area is based on motion
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history images (MHIs) which can be calculated for each pixel (x,y) of a given frame t:

MHI, (z,y,t) = D(z,y,t) x 7+ [1 + D(x,y,t)] x UMHL, (z,y,t — 1)]

3.4
x MHIL, (z,y,t — 1) (3.4)

where U[-] is the unit step function, ¢ represents the current frame index, 7 is the duration
of motion and D is a binary image with a value 1 at pixel locations were the difference
in intensity between the current frame and the previous one, is higher than a predefined
threshold. The MHI is scaled to an 8-bit image. An example of MHI extraction around the
hand and head regions is shown in figure 3.4. The motion area of a frame is the total number
of pixels with non-zero intensity in the MHI:

H W
MAT(t) = Z Z U[MHIT(.%, Y, t) - 6] (35)
z=1y=1

where 0 < € < 1 is a threshold parameter. Neutral divergence measures the degree of
difference between a current frame ¢ and the neutral frame ¢y, by summing absolute intensity
differences over three color channels:

3 H W
ND,(t) =Y > ) abs[I(z,y,t) — I(z,y,t0)] (3.6)

c=1z=1y=1

Both MA and ND are normalized in the interval [0,1]. In order to acquire correspond-
ing feature vector forms, temporal windows of specified length are centered on each frame.
Therefore, motion area and neutral divergence features have a dimensionality equal to the
size of the used temporal windows. The key idea is to use these features both separately as
well as in a fused manner, as inputs to a classifier so as to automatically perform temporal
segmentation. The expressive phases (neutral/onset/offset/apex) detected during temporal
segmentation for the emotion of “Happiness” are illustrated in figure 3.3.

Figure 3.4: Hand tracking by skin color-based tracker (left); position of hands using skin color tracking and
position of head using an Active Shape Model (ASM) (middle); extraction of motion areas of hand and head
regions (right). Source: [21].

In later work, Chen et al. [21] used image HOGs and MHI-HOGs to describe the appear-
ance and motion information of expressions respectively. In order to represent the dynamics
over a complete motion cycle (onset-apex-offset), he introduced two methods, namely Bag of
Words (BoW) model and Temporal Normalization (TN), as opposed to previous approaches
that utilized max-voting schemes over apex frames only.

During the feature extraction process, both facial and body gesture features were used.
After locating the face along with 53 key facial landmarks at each frame of an emotion
cycle, n X n patches were centered on each interest point. Each patch was further divided
into a m x m grid. For every patch, a HOG and MHI-HOG descriptor was formed as the
concatenation of m? histograms with b; and b, bins, resulting in feature vectors of size m?-b;
and m? - by,, respectively, for each interest point in a frame of the expression cycle.
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In the BoW approach, visual words for image HOGs and MHI-HOGs are found by ap-
plying k-means clustering separately for the facial and body gesture features and then using
minimum Euclidean distance. Features are quantized to visual words to form HOG/MHI-
HOG histograms that are concatenated so as to represent a complete expression cycle as a
probability distribution. The codebooks of HOGs and MHI-HOGs for facial expressions had
a size of 200 words each while their body counterparts had a size of 80 words each (less
variations compared to the face). The alternative approach of expressing temporal dynamics
involves temporal normalization (TN). TN essentially uses linear interpolation for each indi-
vidual feature dimension along the temporal dimension in order to normalize each expression
cycle to a fixed number of frames Ny,. By applying TN, the above features are extracted for
every frame of a fixed, Ny, frame long expression cycle.

Lastly, Shan et al. [93] experimented on the FABO database and proposed a way of
directly extracting spatio-temporal features from both facial and body cues. For every frame
of a video, spatio-temporal interest points are detected by calculating the response function,
after the application of separable linear filters:

R=(I%g%he)*+ (I%g%hyg)? (3.7)

I(x,y,t) denotes a single video frame, g(z, y; o) denotes a 2D Gaussian smoothing kernel and
hev, hoq are a pair of 1D Gabor filters applied temporarily, defined as he, = —cos(27rtw)e‘t2/ 2
and hoq = —sin(27rtw)e_t2/2. In all cases w = 4/7, while o, 7 correspond to the spatial and
temporal scale of the detector. Interest points can be located as local maxima of the above
response function. Around each interest point, a cuboid neighborhood can be extracted.
These local regions represent the spatio-temporal information of each single frame, as the
initial video can be discarded. Each cuboid can be described in various ways such as brightness
gradients, windowed optical flow combined with global or local histogramming. By assembling
a Bag of Features (BoF) model, every cuboid can be assigned to a closest prototype vector
and a video can be described with the use of a histogram of cuboids.

3.2.2 Texture Features

At this point we would like to summarize a series of engineered features that have been
used in affective computing as a means of describing shape and appearance.

Local Binary Patterns

To begin with, Ahonen et al. [!] introduced Local Binary Patterns (LPB) which later
constituted the basis for several other subsequent texture feature variants. The operator
assigns a binary label to every pixel of an image by thresholding a 3 x 3 neighborhood of
the pixel. The intensity of the center pixel is compared to the intensities of the surrounding
neighbor pixels. If the intensity value of a neighbor pixel is equal or higher than that of the
center pixel, then a 1 is assigned to that pixel, else a 0 is assigned to the pixel. The 0s/1s that
formed around the given pixel are read counterclockwise, forming an 8-bit binary number,
with the most significant bit being the one that is left of the center pixel. The 8-bit number
is then converted to a decimal number in the range 0-255. Neighborhoods can be generalized
in the form (P, R), where P is the number of sampling points in a circle of radius R. The
functionality of the basic LBP operator is shown in figure 3.5.

This basic operator can be used in the extraction of texture descriptors. An image is
divided in M rectangular regions. In each region a histogram of LBP codes is calculated
independently. The resulting M histograms are combined resulting in a spatially enhanced
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Figure 3.5: Illustration of the basic Local Binary Pattern (LBP) operator. Source: [1].
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histogram of size M x N, where N is the length of one histogram and depends on the neigh-
borhood size (usually N=256). The LBP labels for the histogram contain information about
patterns on a pixel level. The summation of labels on small regions produces information in
a regional level. Lastly the local histograms are concatenated into a global descriptor of the
face, preserving information in all 3 levels of locality. The LBP descriptor is robust against
illumination variations.

Volume LBP and LBP on Three Orthogonal Planes

Two extensions of LBP for dynamic texture analysis, called VLBP (volume) and LBP-
TOP (three orthogonal planes) were proposed by Zhao and Pietikainen [115]. Starting with
VLBPs, we assume a dynamic texture of size X xY xT', where X, Y are the spatial dimensions
and T are the number of frames. The extraction of VLBPs considers three frames, equally
spaced in the temporal direction with an interval of L frames in between. LBP codes are
calculated for every pixel of the texture in the same manner as described above but for cuboid
neighborhoods that span three frames and therefore contain 3P + 2 neighbor pixels. In that
way the size of the resulting feature descriptors will be equal to 23°%2, prohibiting the use of
large neighborhoods due to increased computational cost.

-
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Figure 3.6: Illustration of the facial expression representation procedure using LBP-TOP descriptors. Lo-
calization of facial features in each block volume, extraction of LBP features in three orthogonal planes.
Features are concatenated for each block volume in order to represent shape and appearance. Source: [115].

As an alternative the authors proposed the LBP-TOP variation which involves the ex-
traction of LBP codes from three orthogonal planes, XY, YT, XT. LBP operators can have
different number of sample pixels and different radii in each plane, extending the traditional
circular sampling to elliptical sampling. The individual histograms from every plane are
concatenated into a global histogram integrating temporal and spatial features. LBP-TOP
can be used in facial expression recognition. In that case image frames can be divided in
blocks (overlapping or not), where inside each block, LPB-TOP histograms will be calculated
and then concatenated into a single histogram, effectively describing facial expressions at a
pixel level, local, as well as global level. The process of encoding facial expressions using the
LBP-TOP operators is illustrated in figure 3.6. Compared to VLBP, LBP-TOP descriptors
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have a size of order 32F for P neighbor samples, thus being computationally more efficient
while not sacrificing performance. A slight variation of the LPB-TOP operator involved the
convolution of the image frames with banks of Gabor filters before the extraction of the actual
texture features, resulting in the formulation of Local Gabor Binary Patterns (LGBP) and
their LGBP-TOP extension. LGBP-TOP features have shown increased accuracy compared
to LBP-TOP and have proven to be moderately robust to face-alignment errors.

Volume Local Phase Quantization

Subsequently, Paivarinta et al. [79] introduced Volume Local Phase Quantization (VLPQ)
as an extension of the original LBP-TOP texture descriptor that is invariant to image blurring.
A blurred version g(x) of an image s(x) can be modeled as the convolution of the image with
a point spread function (PSF) h(x) of the blur, namely g(x) = (s % h)(x). In the Fourier
domain, considering the phase of the spectrum, /G (u) = £S(u) + £ZH (u) and for a centrally
symmetric PSF, its fourier transform is real valued and resembles a low pass filter, therefore
ZG(u) = £S(u) and ZH (u) = 0. For every pixel x in a sequence of frames f(x), we consider
a neighborhood N, of size M x M x N pixels, where M is the spatial size and N the temporal
length. The fourier transform can be approximated locally in N, using STFT:

Flux)= Y flx—y)e 2y (3.8)

YEN

where u is the 3D frequency. STFT can be rewritten as F(u,x) = w fx, where fyx contains
all neighbor pixels and w, contains the basis vector of the 3D DFT at frequency u. In
order for the blur invariant property to hold, DFT is only calculated at 13 lowest non-zero
frequencies. Moreover, the real and imaginary parts are separated, namely:

Fy = [Re{F(u1,x)},Im{F(u1,x)},...,Re{F(ws,x)}, Im{F(u3,%)}]
W = [Re{wzl }, Im{w—lu—1 b ,Re{wl—lg}, Im{wI13 ] (3.9)
Fx = fo

where Re{-} and Im{-} denote the real and imaginary parts respectively, while W is a
26 x M? x N matrix. Due to excessive number of variables, dimensionality reduction must
be applied. Assuming a simple covariance model based on the distance of adjacent pixels
in the N, neighborhood, PCA can be applied, resulting in a reduced DFT vector G, with
L < 26 components. After calculating G, for every volume position, a simple quantization

method can be used:
L)1 ifgx(s) =0
(i) { ) (3.10)

0 otherwise

where gx(j) is the jth component of G,. In that way, binary codes can be formed and
then transformed into decimal to form histograms of 2% bins. The derivation of VLPQ-TOP
follows the same process but is calculated in three orthogonal planes. VLPQ has shown
superior classification performance compared to LPQ-TOP and both methods score higher
than LBP-TOP. In addition their method tolerates more centrally symmetric spatial blurring.

Pyramid HOGs and SIFT descriptors

Lastly, two more types of texture features need to be mentioned, namely Pyramid HOGs
(PHOG), which were introduced by Bosch et al. [12] as well as the Scale Invariant Feature
Transform (SIFT) descriptor, which was introduced by Lowe [(5]. Both of the aforementioned
descriptors have found extensive applications in facial expression recognition (FER).
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In the first case, a HOG vector is computed for each grid cell at each spatial pyramid
level. The PHOG descriptor for an image is a concatenation of all the HOG vectors. At level
[ of the pyramid, the image is divided into 2 cells along each dimension, resulting in 4° cells
in total. Assuming each HOG vector that is extracted from every cell has K bins, then a
pyramid of levels [ € {0,1,... L} results in a HOG descriptor of size K ;4! The similarity
K(S;, Sj) between two PHOG descriptors S;, S; is measured in terms of their chi-squared
distance (x?) d(S;, S;):

K(S;,8;) =Y ad(S;,S)) (3.11)
l

where a; = 1/2!=1. In general, PHOGs have exhibited higher performance compared to their
single-level counterparts.

Last but not least, SIFT descriptors have been used in encoding shape and appearance
information during FER. The SIFT descriptor is 128-dim vector that results from the con-
catenation of all 16 histograms and is invariant to image rotations, shifts, scalings and changes
in illumination. Additionally, the large number of features in a typical image allow for robust
recognition under partial occlusion in cluttered images.

3.3 Deep Learning Approach to Visual Emotion Recognition

Deep learning has recently become a hot research topic and has achieved state-of-the-art
performance for a variety of applications. Deep learning attempts to extract high-level data
representations through the use of hierarchical architectures of multiple non-linear transfor-
mations. Therefore, the current section will briefly present the two main steps related with
deep visual emotion recognition, namely data preprocessing and feature extraction.

3.3.1 Data Preprocessing

Visual emotion recognition on the basis of both facial and body features, requires several
data preprocessing steps, such as human body detection, pose estimation, as well as face
detection and alignment. The basic concepts behind each preprocessing step as well as
popular methodologies for each individual step are discussed in the following paragraphs.

Human Detection

Most of the existing bimodal databases used for emotion recognition provide body crops
in the case of images or feature recordings focused solely on the bodies of the depicted people.
In case this type of information is not directly supplied, human detection techniques need to
be applied. The human detection task is based on determining rectangular bounding boxes
that enclose a human body. This problem is basically decomposed as an object detection
task, involving the extraction of potential regions of interest, representation and classification
of those regions as human or not human and merging of the positively classified ones as final
decisions.

Earlier methodologies for human detection utilized “hand-crafted” features. A notable
example of such an approach is the use of gradient based methods an the so called histogram of
oriented gradients (HOG), as proposed by Dallal and Triggs [25]. More recent methodologies
rely on deep neural networks and especially CNNs, for the extraction of bounding boxes for
the human bodies. One of the first steps in that direction was the Large Field of View (LFOV)
network. It was introduced by Angelova et al. [!| and featured a cascaded architecture with
three ConvNets. In general, DNN models, are known to be very slow when used as sliding-
window classifiers which makes it challenging to use for human body detection. In order to
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alleviate this problem cascaded networks are utilized. For example, a shallow network can
be trained to greatly reduce the initially large number of candidate regions produced by the
sliding window detector. Then in a second step, only high confidence regions are passed
through a deep network obtaining in this way a trade-off between speed and accuracy.

Pose Estimation

After bounding boxes have been determined and the background has been subtracted,
the second stage involves human pose estimation. In recent years, the pose estimation task
has been dominated by deep network architectures.

(c) Part Affinity Fields

(e) Parsing Results

(a) Input Image (d) Bipartite Matching

Figure 3.7: OpenPose processing pipeline. The entire image constitutes the input for a two-branch CNN
to jointly predict confidence maps for body part detection, shown in (b), and part affinity fields for parts
association, shown in (c). The parsing step performs a set of bipartite matchings to associate body parts
candidates (d). Finally full body poses are assembled for all people in the image (e). Source: [15].

One honorable mention is the DeepPose network, introduced by A. Toshev and C. Szegedy
[100], which formulates the pose estimation task as a joint regression problem. After an
initial joint regression result has been obtained, a cascade of identical CNNs is employed to
refine upon the latter, with each stage receiving as input, image crops around the predicted
joints produced by the previous stage. Furthermore, the latest significant advancement in
pose estimation came along the form of OpenPose, as it was introduced by Cao et al. [17].
OpenPose constitutes a realtime multi-person 2D pose estimation system which utilizes Part
Affinity Fields (PAFs). The basis of this method relies on a two-branch multistage CNN,
with the first stage extracting part confidence scores, while the second branch extracts vector
fields, namely PAFs that encode the degree of association between candidate body parts.
The maps are refined over successive stages and at each stage the predictions from the two
branches as well as the original image features are concatenated and fed to the next stage.
A high-level description of the OpenPose pipeline can be seen in figure 3.7.

Face Detection & Alignment

The next step in the preprocessing pipeline is related with the task of face detection and
alignment. Face detection involves the extraction of bounding boxes around a human face
while face-alignment considers the localization of facial landmarks (eyes, nose, mouth corners,
etc.).

As of more recently, joint face detection and alignment has been achieved through the
use of cascaded CNNs. An example of such an architecture is the Multi-Task Cascaded
Convolutional Network (MTCNN), introduced by Zhang et al. [112], where a shallow fully
convolutional network (with no fully connected layers) called proposal network (P-Net) pro-
duced candidate facial windows with their bounding box regression vectors as well as a coarse
estimate of the facial landmark locations, while the second and third net, called R-Net and O-
Net respectively, utilizing a more complex architecture, each refined the estimates produced
by the previous stage. An overview of the MTCNN architecture is illustrated in figure 3.8.
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Figure 3.8: Illustration of the MTCNN inner structure. Architectures of P-Net, R-Net, and O-Net, where
“MP” means max pooling and “Conv” means convolution. The step size in convolution and pooling is 1 and
2, respectively. Source: [112].

Moreover, the latest breakthrough in face detection and alignment came along the develop-
ment of the OpenFace 2.0 toolkit, by Baltrusaitis et al. [6]. OpenFace features a complete
facial behavior analysis pipeline capable of accurate facial landmark detection, head pose
estimation, facial action unit recognition and eye-gaze estimation.

3.3.2 Feature Extraction

After all available data have been preprocessed, the input modalities are fed into deep
neural networks which operate as feature extractors, with the aim of acquiring high-level deep
feature representations. The feature extraction methodology usually depends on the nature
of the available data, namely if they are static (images) or sequential (video clips). In both
cases however, the CNN constitutes the common deep learning module for feature extraction.

In general, a CNN used for feature extraction, is comprised of four types of layers, namely
convolutional layers, normalization layers, pooling layers and fully-connected (FC) layers. To
begin with, the convolutional layer uses a set of learnable filters to convolve through the entire
input image and produce multiple feature maps over different levels of abstraction, moving
from low to high level representations as the layers are positioned deeper within the network.
Moreover, the convolution operation attains three main benefits, namely local connectivity,
weight sharing and shift-invariance. Local connectivity is associated with learning correla-
tions among neighboring pixels. Subsequently, weight sharing refers to the common usage of
weight parameters in the same feature maps, resulting in a considerable decrease in the total
number of trainable parameters, while shift-invariance is related with the network’s ability in
effectively addressing problems of translation, rotation and scale variations of the detected
entities. While pooling layers regularly succeed convolutional layers and are used in reduc-
ing the spatial size of the produced feature maps, normalization layers, such as dropout as
well as batch-normalization (BN) layers aid the network by reducing the effect of overfitting
and accelerating the training process, respectively. Lastly, fully-connected layers convert the
multi-dimensional feature maps produced by the previous layers into 1D feature vectors for
further feature representation and classification.

The usage of CNNs for feature extraction can be extended in the domain of dynamic,
sequential data such as video clips. This type of network is referred to as a 3D CNN and it
was initially proposed for human action recognition, by Ji et al. [55]. Videos can be considered
as stacks of consecutive frames, resulting in a data format that extends in two spatial and
one temporal dimension. The 3D variants of CNNs utilize 3D convolutional kernels that
have the ability to move in three directions during the convolution operation resulting in
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Figure 3.9: 2D and 3D convolution operations. a) Applying 2D convolution on a video volume (multiple
frames as multiple channels) also results in an image. b) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal. Adapted from [101].

voluminous output shapes such as cuboids. Figure 3.9 illustrates the core differences between
2D and 3D convolutions when applied on multiple frames. Another notable example of such
an architecture is the C3D, which was proposed by Tran et al. [101] for spatio-temporal
feature extraction in large-scale training datasets.

Except for 3D CNNs, RNNs can also be effectively utilized for emotion recognition in
dynamic image sequences, as they can robustly derive information from sequences by exploit-
ing the interdependent relation between successive frames. LSTMs, as an improved variant
of the RNN, are capable of handling sequential data of variable length, while reducing the
effect of the vanishing gradient problem. Compared with RNN, CNN and its variants are
more suitable for computer vision applications and thus for visual emotion recognition. How-
ever, the perceptual vision of CNNs and the strength of LSTMs for sequential data, can be
effectively combined in cascaded architectures. More specifically, CNNs are firstly used to
extract discriminative representations for each one of the frames contained within a video
sequence and then these features are fed to sequential networks in order to reinforce the
temporal information encoding. An example of a CNN-LSTM cascade that is both spatially
and temporally deep is depicted in figure 3.10.

Visual Input Visual Features
-

Figure 3.10: The Long-term Recurrent Convolutional Networks (LRCN). The LRCN processes the (possibly)
variable-length visual input (left) with a CNN (middle-left), whose outputs are fed into a stack of recurrent
sequence models (LSTMs, middle-right), which finally produce a variable-length prediction (right). Both the
CNN and LSTM weights are shared across time, resulting in a representation that scales to arbitrarily long
sequences. Source: [29)].
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Chapter 4

Image-Based Visual Emotion
Recognition in Context

The majority of past efforts in visual emotion recognition have been mostly limited to the
analysis of facial expressions, while some studies have either incorporated information relative
to body pose or have attempted to perform emotion recognition, solely on the basis of body
movements and gestures. While some of these approaches perform well in certain specified
settings, in most cases they fail to interpret real-world scenarios. An example to illustrate this
point is the fact that emotion recognition systems often deal with instances of people whose
facial features are fully visible and their body joints are unoccluded, something which does
not generally conform to reality. However, evidence from psychology related studies suggest
that the scene context, in addition to facial expression and body pose, provides important
information to the perception of people’s emotions.

To this end, we choose our first case study to be associated with context-based visual
emotion recognition in static images. In that way we are presented with the opportunity to
explore and potentially extend a relatively new domain of automated emotion recognition
which promotes the use of all possible sources of visual affective information. Moreover, the
newly assembled EMOTions In Context (EMOTIC) dataset is going to be used as a frame
of reference for both of our theoretical analysis and experimental results. In the first section
of the current chapter we will present the applied methodologies from all publicly available
related work as well as propose possible extensions over the current models. Subsequently, a
second section will be dedicated to our experimental results on the EMOTIC dataset.

4.1 Related Work

4.1.1 Baseline Model

Kosti et al. [58] made one of the first notable contributions towards context-based emotion
recognition by introducing the EMOTIC dataset as well as providing a baseline model that
was trained and evaluated on it. Their baseline model consisted of three modules: two feature
extraction modules and one fusion network. The first feature extraction module received the
whole image as input with the aim of extracting context-related features, while the second
feature extraction module received the body image crops as input, generating body-related
features.

Both branches used CNNs for feature extraction, but with each CNN having been pre-
trained on different datasets. The context branch CNN was pre-trained on the Places365
[117] dataset, while the body branch CNN was pre-trained on the ImageNet [20] dataset.
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The Places365 dataset is a scene-centric repository of 10M scene photographs, labeled with
one of 365 different possible scene semantic categories, comprising a quasi-exhaustive list of
the types of environments encountered in the world. Moreover, ImageNet is a large visual
database designed for use in visual object recognition software research, containing a total
of more than 14M images and over 20,000 annotated object categories. The data used for
network pre-training are part of the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), containing only a subset of 1,000 categories.

Convi Conv2
Convi5s Convié

Discrete
Body feature extraction categories
Conv1 Convz
Convi5 Convié Continuous
'dimensions
Image feature extraction Fusion Network

Figure 4.1: Baseline end-to-end model for emotion recognition in context. The model consists of two feature
extraction modules and a fusion network for jointly estimating the discrete categories and the continuous
dimensions. Source: [59].

The images contained in the EMOTIC dataset depict a variable number of annotated peo-
ple for whom, body bounding boxes are provided. In that way, instances of the dataset come
in the form of context-body pairs, with multiple instances sharing the same context image in
case the latter depicts multiple annotated people. Furthermore, the features extracted from
the two feature extraction modules are concatenated and fed to the fusion network. The
fusion network consists of a fully-connected (FC) layer, followed by a batch-normalization
layer, ReLU activation and a dropout layer. The output of the fusion network are fed to the
classification and regression layers, performing emotion recognition in both categorical and
continuous level. An overview of the aforementioned baseline model is depicted in figure 4.1.

As discussed in section 3.1, the EMOTIC dataset annotation system provides 26 discrete
emotion categories for multi-label classification as well as VAD scores in the [1-10] range.
The network is trained by backpropagating the gradients a weighted sum of the two separate
losses produced while multitasking, namely £ = AgiseLdisc + Acont Lcont, Where Lgise represents
the loss corresponding to the discrete categories and Lqont represents the loss corresponding

to the continuous dimensions. Given a ground truth target vector y = (y4is¢, yeont) and
the corresponding predicted scores y = (ydlsc, y°°"), where ydise — (gise, ... gdise), yeont =

(ggont, gsont oty gdise ¢ £0 1} and g5 € [1,10], then the discrete loss Lgis is given by:

»Cdlsc — Z wz dlSC dlSC) (4.1)

where w; is a weighting factor that is inversely proportional to the number of occurrences of
the ith category within each training batch. It is worth noting that the authors decided to use
an L? loss function for a classification task instead of using the standard binary cross entropy,
as discussed in section 2.3.2. Subsequently, two different loss functions for the regression task
are examined, with the first one being a marginal Euclidean loss Lacont of the following form:

cont — ka ~cont cont)Q (42)
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where vj, € {0,1} represents the error margin. If |§5o™ — y°| < @ then v, = 0, otherwise
vy = 1 where 6 is a threshold parameter. Secondly, the smooth-L! loss function [11] is

proposed as it is found to be less sensitive to outliers:

1 23: 0‘5(gzont _ y’(éont)Q if |onnt _ yl(;ont| <1

cont —

c (4.3)

cont

h—1 |Q/§0nt -y — 0.5 otherwise

The models were trained for 21 epochs, using the SGD optimizer. The baseline model is
evaluated on the EMOTIC test set. The performance on each one of the discrete categories
in terms of average precision (AP, %), is presented in table 4.1, while the average absolute
errors (AAE) on each one of the continuous VAD dimensions are presented in table 4.2.
Current and all subsequent results for the continuous task, correspond to the ground truth
values after having been rescaled in the range [0,1]. Letters “B” and “C” denote the body and
context input streams respectively.

Emotion CNN inputs and Leont type
Categories B (L%) | B(SL") [ BC (L?) | BC (SLY)
1. Affection 21.80 16.55 21.16 27.85
2. Anger 06.45 04.67 06.45 09.49
3. Annoyance 07.82 05.54 11.18 14.06
4. Anticipation 58.61 56.61 58.61 58.64
5. Aversion 05.08 03.64 06.45 07.48
6. Confidence 73.79 72.57 7,97 78.35
7. Disapproval 07.63 05.50 11.00 14.97
8. Disconnection 20.78 16.12 20.37 21.32
9. Disquietment 14.32 13.99 15.54 16.89
10. Doubt/Confusion | 29.19 28.35 28.15 29.63
11. Embarrassment 02.38 02.15 02.44 03.18
12. Engagement 84.00 84.59 86.24 87.53
13. Esteem 18.36 19.48 17.35 17.73
14. Excitement 73.73 71.80 76.96 77.16
15. Fatigue 07.85 06.55 08.87 09.70
16. Fear 12.85 12.94 12.34 14.14
17. Happiness 58.71 51.56 60.69 58.26
18. Pain 03.65 02.71 04.42 08.94
19. Peace 17.85 17.09 19.43 21.56
20. Pleasure 42.58 40.98 42.12 45.46
21. Sadness 08.13 06.19 10.36 19.66
22. Sensitivity 04.23 03.60 04.82 09.28
23. Suffering 04.90 04.38 07.65 18.84
24. Surprise 17.20 17.03 16.42 18.81
25. Sympathy 10.66 09.35 11.44 471
26. Yearning 07.82 07.40 08.34 08.34
[ Mean [ 2386 | 2236 | 2488 | 2738 |

Table 4.1: Average precision (AP, %), per emotional category, of the baseline model [59], as obtained on
the EMOTIC test set.

Continuous CNN inputs and Leont type
Dimensions | B (L%) | B (SL") | BC (L) | BC (SL")
Valence 0.0537 0.0545 0.0546 0.0528
Arousal 0.0600 0.0630 0.0648 0.0611
Dominance | 0.0570 0.0567 0.0573 0.0579

‘ Mean ‘ 0.0569 ‘ 0.0581 ‘ 0.0589 ‘ 0.0573 ‘

Table 4.2: Average absolute error (AAE), per emotional dimension, of the baseline model [59], as obtained
on the EMOTIC test set.

4.1.2 EmotiCon

A notable increase in performance over the baseline model in the EMOTIC dataset, came
along the EmotiCon model, introduced by Mittal et al. [71]. The main contributions of
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the current model are related with the incorporation of multiple modalities in the task of
context-based emotion recognition, including the face, pose as well as inter-agent interactions
and socio-dynamic context. Additionally the information from the various modalities were
combined in a score-fusion manner by employing a modified cross-entropy-based loss function
on each one of the separate modalities that underwent early fusion.

Semantic Context and the Attention Branch Network

Visual semantic context includes information about the scene the surrounding objects
and the performed activities, excluding the primary agent depicted in an image. In order
to capture this type of information, authors propose the use of the following schemes: the
masking of the primary agent and the incorporation of an Attention Branch Network (ABN).

Firstly, masked versions I,k of each original image I within the dataset are formed by
either utilizing the already provided body bounding boxes or calculating them using a human
pedestrian tracking method as discussed in 3.3.1. The masked image I .5 for a given input
image [ is calculated in the following way:

(4.4)

I(’i,j) if (’L,j) ¢ bboxagent
Imask = .
0 otherwise
where the tuple (7, j) corresponds to the pixel locations and bbox,gent denotes the bounding
box of a particular agent in a scene.
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Figure 4.2: Overview of the Attention Branch Network (ABN). Source: [38].

Subsequently, the masked images I a5k are fed to the Attention Branch Network (ABN),
as proposed by Fukui et al. [38]. ABN consists of three modules: the feature extractor, the
attention branch, and the perception branch, while its functionality is associated with Class
Activation Mappings (CAMs), as introduced by B. Zhou et al. [116]. The overall schematic
of the ABN mechanism is illustrated in figure 4.2. The feature extractor contains multiple
convolutional layers and extracts feature maps from an input image. The attention branch
outputs the attention locations based on CAMs in the form of a weight map by using an
attention mechanism. The perception branch outputs the probability of each class by receiv-
ing the feature map from the feature extractor and a corresponding attention map. Given
an input image sample X € RP*H>XW (D. 4 of channels, H: height, W: width), the ABN
mechanism produces CAMs during the training phase and applies them on the intermediate
convolutional features g(X) € RE*"*® of the feature extractor in order to highlight discrim-
inative parts of the image. The FC layer used in the original CAM mechanism is replaced
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with K x 1 x 1 convolutions, where K is the number of discrete emotion categories. The at-
tention mechanism independently outputs both the attention maps M (X) € R X% as well
as independent category probability scores pair € REX1 and calculates an attention loss in
order to guide the attention maps to encode contextual information. The produced attention
maps are multiplied bit-wise with each one of the channels of the intermediate convolutional
feature maps:
9:(X) = M(X) - go(X)

g/(X) = (14 M(X)) - g.(X)
where ¢ € {1,..., K} is the class index. The second formulation, ¢”(X), can highlight the
feature map at the peak of the attention map while preventing the lower value region of
the attention map from degrading to zero. The output of the attention mechanism is fed
to the remaining part of the network, namely the Perception Branch that is responsible for
producing the final predictions.

(4.5)

Face and Gait Modalities

For every annotated agent within a particular image, additional features are extracted
relative to the face and gait modalities. With the term gait, the authors refer to the body
pose of a depicted agent.

As far as the face modality is concerned, the 2D locations of 67 facial landmarks are ex-
tracted, using the OpenFace [0] facial behavior toolkit, resulting in a input vector m; € R4,
These vectors are used as input to a network consisting of three consecutive 1D convolu-
tional layers, followed by three consecutive FC layers. Both convolutional and FC layers were
followed by a batch-normalization layer and a ReLLU non-linearity.

Subsequently, for the gait modality, the OpenPose [15] body pose estimation toolkit was
used to extract the 2D locations of 25 body joints, resulting in a gait vector my € R2%2, The
gait vectors were used as input to a Graph Convolutional Network (GCN) [57]. The output
of the GCN was then fed to a CNN feature extractor, through which the final predictions
based on the gait modality were produced.

Inter-Agent Interactions & Socio-Dynamic Context

The authors suggest that when an agent is located in an environment, surrounded by other
agents, then their perceived emotional states are likely to change. If the agents share strong
social relationships or are in close proximity, then they often coordinate their behaviors, while
this effect degrades with interrelational and social distancing. Therefore, social interactions
and proximity features can potentially aid the emotion recognition process.

The first proposed method for the encoding of socio-dynamic information is associated
with the use of depth maps. More specifically, for each input image I, an estimated depth
map Igepth is produced with the use of the MegaDepth [03] pre-trained model. Subsequently,
the estimated depth maps Igeptn are used as input to a CNN feature extractor, through which
the final predictions for the depth modality are produced.

In addition to depth map-based representation, Graph Convolutional Networks (GCNs)
were also used to model the proximity-based socio-dynamic interactions between agents.
Given an input image containing n agents, the 2D coordinates of the body centroids of these
depicted agents are calculated and used as input to a GCN which is comprised of 2 GCN
layers, followed by two FC layers. The unweighted adjacency matrix A € R™*™ used in the
GCN model is calculated as follows:

4 = {ed(viﬂ)j) if d(vi,v;) < p (46)

0 otherwise
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where v; denotes the centroid of the ith agent and d(v;, vj) denotes the pixel distance between
the two agents.

Multiplicative Fusion

In real-life scenarios, people simultaneously process information from various modalities
such as speech, text, face and body in order to infer the emotional state of a particular
person. Taking that into consideration, the authors propose a way to combine the available
input modalities in a complimentary manner to each other. More specifically, the predicted
scores from each on of the available modalities are combined using a Multiplicative Fusion
scheme [72].
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Figure 4.3: Overview of the EmotiCon model architecture. Source: [71].

Given n different input modalities with their corresponding inputs my, mo, ..., m,, then
the applied multiplicative loss function is calculated as follows:

n

B
Emultiplicative = - Z(ple) n=1In pf (47)
=1

where p¢ denotes the predicted probability score of the emotion label e and ¢ is the modality
index. This scheme directly boosts the stronger and more relative modalities during the
score fusion. In addition, the multiplicative loss function ignores the wrong predictions by
simply not addressing them and rather focuses on modalities giving the right prediction.
For well classified instances, p; — 1 and the predictions of the current modalities are left
relatively intact, while if an example is miss-classified, then pf — 0 and the corresponding
modality is suppressed. The score fusion of the multiple modalities with the application of
the multiplicative loss function, constitutes the Multiplicative Fusion scheme.

Firstly, the individual prediction scores of the face and gait modalities are multiplicatively
fused, producing the combined prediction probabilities h;. Moreover, h; together with the
predicted probabilities hs, hg, from the context and socio-dynamic modalities respectively
are concatenated, resulting in a score vector h = [hy, ha, hs]. The score concatenation layer
is followed by an FC layer of 52 hidden units and a classification layer of 26 hidden units.
The network is trained using a combined loss function of the form:

L= Al'cmultiplicative + )\Z»Cclassiﬁcation (48)
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where Lelassification 18 the standard binary cross-entropy loss computed based on the final
prediction scores.

An overview of the EmotiCon model architecture is shown in figure 4.3. The model was
trained and evaluated on the EMOTIC dataset. The training configuration included the
Adam optimizer with a learning rate of 107%, a batch size of 32 and a total of 75 epochs. The
performance of the EmotiCon on each one of the discrete categories, with each one of the two
suggested approaches for the socio-dynamic modality, namely GCN-based and Depth-based,
is presented in table 4.3. The current model is also compared with the performance of the
baseline model, presented in [79]. EmotiCon does not perform emotion regression on the
continuous VAD dimensions.

Emotion Kosti et al. [70] EmotiCon
Categories GCN-Based | Depth-Based
1. Affection 27.85 36.78 45.23
2. Anger 09.49 14.92 15.46
3. Annoyance 14.06 18.45 21.92
4. Anticipation 58.64 68.12 72.12
5. Aversion 07.48 16.48 17.81
6. Confidence 78.35 59.23 68.65
7. Disapproval 14.97 21.21 19.82
8. Disconnection 21.32 25.17 43.12
9. Disquietment 16.89 16.41 18.73
10. Doubt/Confusion 29.63 33.15 35.12
11. Embarrassment 03.18 11.25 14.37
12. Engagement 87.53 90.45 91.12
13. Esteem 17.73 22.23 23.62
14. Excitement 77.16 82.21 83.26
15. Fatigue 09.70 19.15 16.23
16. Fear 14.14 11.32 23.65
17. Happiness 58.26 68.21 74.71
18. Pain 08.94 12.54 13.21
19. Peace 21.56 35.14 34.27
20. Pleasure 45.46 61.34 65.53
21. Sadness 19.66 26.15 23.41
22. Sensitivity 09.28 9.21 8.32
23. Suffering 18.84 22.81 26.39
24. Surprise 18.81 14.21 17.37
25. Sympath 4.71 24.63 34.28
26. Yearning 08.34 12.23 14.29
[ Mean \ 27.38 [ 3203 [ 3548 |

Table 4.3: Average precision (AP, %), per emotional category, of EmotiCon [71], as obtained on the EMOTIC
test set and performance comparison with baseline model [59].

4.1.3 Leveraging Categorical Label Dependencies

The classification challenge presented by the EMOTIC dataset is two-fold as it includes
regression on the continuous VAD dimensions and prediction of 26 discrete emotion categories.
The discrete classification task is also a multi-label problem, where one instance can have
more than one categorical emotion labels. However, unlike single-label emotion classification,
in the multi-label setting the labels that appear simultaneously in an annotated instance of
the dataset are always correlated and usually appear in groups. Thus, we focus on different
ways of incorporating our prior knowledge of the publicly available EMOTIC dataset and its
labels distribution in the learning process with the aim of boosting the overall recognition
performance.

ML-GCN

To this end, one notable methodology was introduced by Chen et al. [22]. The proposed
approach is based on a dual branch network which utilizes a feature extractor as a means of
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image representation learning as well as a GCN that leverages label dependencies and learns
inter-dependent classifiers. The overall design of the ML-GCN mechanism can be seen in
figure 4.4.

The features of a given input image are learned through a CNN feature extractor with a set
of trainable parameters Ocnyn. The last convolutional block of the CNN outputs feature maps
X € R¥™>*hxw (d: 4 of output channels, h: height, w: width) and through the application of
global average or max-pooling, a feature vector x € R? is produced.

The second branch learns inter-dependent classifiers W = {w;}<_;, W € R¥*Y  where d
is the dimensionality of the extracted feature vector and C' is the number of different classes
present in the dataset. The branch is modeled by stacked GCN layers. The lth layer uses
as input the hidden representations H; produced by the previous layer and outputs hidden
representations using the following forward rule:

H,., = h(AH;W)) (4.9)

where h(-) is a non-linear activation function, A is a normalized version of the original
adjacency matrix and W, are the weights of the Ith layer. As initial input for the GCN,
the authors used the word embeddings of the C different labels in the form of a matrix
Z € RE*M wwhere M is the dimensionality of the label-level word embedding. For the
acquisition of the word embeddings the authors suggested the use of a publicly available
GloVe model, pre-trained on Wikipedia and Gigaword 5 data.

Representation learning
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Figure 4.4: Overview of the ML-GCN model architecture. Source: [22].

The construction of the adjacency matrix is based on the prior knowledge available about
label correlations within the given dataset. A co-occurrence matrix M € R€*C is formed by
counting the occurrence of label pairs in the training set. Then the conditional probability
matrix P € RE*C is calculated, with elements P;; = P(L;|L;) = MT’ZJ, where M;; is equal to
the number of times the labels L;, L; appear together, N; denotes the occurrence times of
label L; and P(L;|L;) denotes the conditional occurrence probability of label L; given the
occurrence of label L;. The conditional probability matrix P is binarized using a threshold

T s0 as to filter out noisy edges:

.
Ay =0 thsT (4.10)
1 ifP;>r

By using this binarized adjacency matrix, after the application of the GCN layers, the nodes’
features will be a weighted sum of their own features and the adjacent nodes’ features and
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that can lead to potential over-smoothing. To alleviate this problem the authors propose the
following re-weighting scheme:

(p/zz—é; Aij) XAy ifiFjg

1—p ifi=j

(4.11)

In that way, the weights assigned to the nodes themselves and their neighbors depend on
the parameter p. When updating the nodes’ features after each GCN layer, the nodes’
themselves will have fixed weights and the weights of the correlated nodes will be determined
by the neighborhood distribution. More specifically, the weight A/ = assigned to the edge that
connects nodes n and m, of the label correlation graph, is proportional to p, as it is divided by
the total number of nodes that are connected to node m, in an attempt to equally distribute
the information transferred to node m from all neighboring nodes. In addition, when p — 1,
the weight of the node itself will not be considered while when p — 0, neighboring information
tends to be ignored. The output of the last GCN layer is the weight matrix W € R%C | with
d denoting the dimensionality of the image deep feature representation, as extracted by the
CNN. By applying the learned classifiers, the class confidence scores are obtained:

y=W'x (4.12)
Given the corresponding ground-truth target vectors y € RC with y* = {0,1} and i =
1,2,...,C, the network can be trained in an end to end fashion using a binary cross-entropy
loss.

Categorical Label Embedding Loss

A different kind of methodology for leveraging categorical label dependencies during multi-
label classification, is based on the application of metric learning on semantic embeddings
built from words. One notable example of such an approach was introduced by Wei et al.
[105]. In their work, they extracted both visual and text embeddings and used them in order
to form joint emotion representations.

Given a standard CNN model for image feature extraction, visual embeddings f,(X) € R?
can be obtained after the application of average or max-pooling on the CNN output feature
maps, with X denoting the corresponding input map and d being the dimensionality of
the extracted feature vector. In that way, text-based embeddings can be used so as to aid
the training of the aforementioned visual embeddings. The main idea is to ensure that the
visual emotion features are compatible with the text-based features. For a given input image
instance and the corresponding ground truth multi-hot target vector y, a standard GloVe
(Global Vectors) [85] pre-trained model can be employed so as to extract text-based label
embeddings for each one of the different categorical labels, as in [37]. In the case of the
EMOTIC dataset, the latter are comprised of discrete emotional states, namely f;(y?) € R,
i=1,2,...,C with k denoting the dimensionality of the GloVe model, i being a categorical
label index and C' denoting the total number of categories. Using an FC layer with weights
Wemb € R¥¥4 the visual embedding vector f,(X) can be mapped in the same space as the
text embeddings. Subsequently, an additional loss term can be produced in the form of mean-
squared error between the transformed visual embeddings and the average text embeddings
for only the positive labels of the corresponding ground truth target vector:

Loty = [Wen £,) = 75 3 S0P (4.13)
yieP
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where P denotes the set of positive labels for a given target vector y and |P| denotes the cardi-
nality of that set. The whole network can be trained in an end-to-end manner by minimizing
the combined loss between the embedding regularization term Len;, and a standard binary
cross-entropy based classification loss Ls, namely £ = Lcs + ALemb, Where \ is weighting
parameter.

4.2 Experimental Results

In the current section, we present our experimental results on the EMOTIC dataset.
Across all of our experiments, we use the standard train, validation and test splits provided
by the official distributors of the dataset. The first part of the presentation constitutes
an ablation study relative to the effect of incorporating multiple modalities in the emotion
recognition process.

4.2.1 Ablation Studies

The following experiments are dedicated in acquiring a deeper insight into the effect that
each additional modality of affective information has on the emotion recognition process. The
first step in this direction, is to verify that the addition of contextual information acts in a
complementary way towards emotion recognition that is solely based on the body modality.

Context

For this type of experiment we adopt the configuration presented in [55], namely in the first
case, we will train one network with body crops of the depicted people from each image, while
in the second case we will train a network that consists of a body as well as a context branch,
with the latter being fed the whole images as inputs. We choose to utilize 18-layer ResNet
[18] feature extractors for both branches of our network. ResNets constitute state-of-the-art
ConvNet backbones, offering a valuable trade-off between performance and computational
complexity. In addition, the context feature encoding branch is pre-trained on the Places365-
Standard [117] dataset while the body feature extractor is pre-trained on ImageNet [20].
We train both networks for 20 epochs, using the SGD optimizer, a constant learning rate
of 1072, momentum equal to 0.9, weight decay equal to 107° and a batch size of 32. The
modality aggregation method used is direct feature fusion. As far as discrete categories are
concerned, the concatenated features are directly fed to the categorical prediction layer, where
a binary cross-entropy loss is applied. In order to acquire continuous emotion predictions,
the concatenated features are passed through a series of two FC layers, with 512 and 256
hidden units and a ReLLU non-linearity, with the corresponding loss function being a smooth-
L' loss as it has been found to perform better than the standard mean squared error (MSE).
Additionally, the fusion network presented in [5%]| was neglected as it produced inferior results
compared to the aforementioned one. A performance comparison between the two networks
is presented in table 4.4, namely the average precision (AP, %) per category as well as the
mean average precision (mAP, %). A performance comparison relative to the continuous
dimension, measured in terms of absolute average error (AAE) is presented in table 4.5. In
every case, the best performing epoch is selected based on the performance of the models on
the validation set, namely the ratio between mAP and AAE. Letters “B” and “C” denote the
body and contexrt input streams, respectively.

It is obvious that the inclusion of contextual features boosts the model’s performance in
categorical emotion recognition. For the majority of the emotion categories, the second model
surpasses the AP score of the single branch counterpart with the exception of “Anticipation”,
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Emotion CNN inputs

Categories B BC

1. Affection 28.72 | 32.67
2. Anger 11.04 | 11.21
3. Annoyance 15.73 | 16.39
4. Anticipation 56.38 | 56.30
5. Aversion 07.29 | 07.10
6. Confidence 75.33 | 73.59
7. Disapproval 13.21 | 14.93
8. Disconnection 25.12 | 28.55
9. Disquietment 17.72 | 18.80
10. Doubt/Confusion | 19.59 | 21.44
11. Embarrassment 02.43 | 02.34
12. Engagement 84.69 | 85.37
13. Esteem 16.59 | 16.78
14. Excitement 68.76 | 68.40
15. Fatigue 11.52 | 12.66
16. Fear 06.03 | 06.40
17. Happiness 70.77 | 71.82
18. Pain 05.75 | 08.40
19. Peace 23.55 | 24.96
20. Pleasure 42.32 | 44.23
21. Sadness 18.42 | 25.41
22. Sensitivity 07.92 | 07.73
23. Suffering 18.68 | 24.81
24. Surprise 08.35 | 09.71
25. Sympath 12.82 | 13.40
26. Yearning 08.60 | 08.70

[ Mean [ 26.05 [ 27.39 |

Table 4.4: Effect of including the context modality on average precision (AP, %), per emotional category,
as obtained on the EMOTIC test set.

Continuous CNN inputs
Dimensions B BC
Valence 0.0904 | 0.0863
Arousal 0.0995 | 0.0982
Dominance | 0.0929 | 0.0924
[ Mean [ 0.0943 | 0.0923 |

Table 4.5: Effect of including the context modality on average absolute error (AAE), per continuous emo-
tional dimension, as obtained on the EMOTIC test set.

“Aversion”, “Embarrassment”, “Excitement” and “Sensitivity” which can be considered to con-
stitute body-dominant emotions. The inclusion of the context modality also results in a
reduction in absolute error in all three continuous VAD dimensions, confirming the assistive
role of visual context in emotion perception.

Context Masking

Based on |71], the given input images should undergo a masking operation, during which
the primary agents of each instance receive a mask based on the provided body bounding
boxes. In order to evaluate the significance of this scheme, we use Class Activation Maps
(CAMs), as proposed by Zhou et al. [110] so as to evaluate the ability of the context network
to focus on context-related features. To this end, after having trained a network using
the context-body modalities, without the application of any kind of masking operation, we
perform inference and plot CAMs for multiple test images. Each displayed CAM comes
with its corresponding categorical emotion label. Each row of figure 4.5 displays the whole
unmasked image, the CAM from the context branch and the body branch overlayed on the
original image and the corresponding body crop respectively. The CAMs of the first row
correspond to the “Esteem” emotion category, the second row corresponds to the emotion of
“Yearning” while the last row corresponds to the emotion of “Confidence”.
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Figure 4.5: CNN localization using CAMs. The first column depicts the input images without the application
of context masking, the second and third column depict the CAMs from the context and body branches,
overlayed on the original input image and the corresponding agent body crop.

Although the context branch focuses on relevant features, we notice that it focuses mostly
on bodies and faces, rather than scenes and objects. For example, in the first row it is obvious
that both the context and body branches focus on the same parts of the image, something
which is clearly not desirable. In order to push the context branch to focus elsewhere we
use the aforementioned masking scheme, that is for every tuple of context and body images,
we apply a mask over the corresponding primary body of the context image. In that way
the context branch is obliged to focus on objects and scenes rather than bodies and faces
which are more likely to be detected by the body accordingly. Again, after having trained
a network using the context-body modalities, this time with the application of masking, we
perform inference and plot CAMs for the same test images. The results of CAM visualization
after the application of context masking are depicted in figure 4.6.

In all three of the above cases, context masking has effectively distinguished the attention
regions of the two CNN branches. Additionally, evaluating the effect of masking on the
recognition, we noticed a slight increase in mAP equal to 0.2% over the baseline model, while
no change in AAE was detected. Agent masking is adopted for all subsequent experiments.

Facial Features

The face is considered to be the window to the soul, meaning that the face constitutes
the most significant source of affective information along with the human body. Therefore,
the inclusion of the face modality is expected to effectively assist the overall recognition
process. For the detection, alignment and extraction of face crops, we use the publicly
available OpenFace 2.0 toolkit, as introduced by Baltrugaitis et al. [6]. Moreover, we extend
our current model by introducing an additional feature extraction branch, whose inputs are
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Figure 4.6: Application of context masking. The first column depicts the input images after having masked
the primary agents, the second and third column depicts the CAMs from the context and body branches,
overlayed on the masked input image and the corresponding agent body crop.

comprised of the facial crops of the corresponding agents. However, in the EMOTIC dataset,
more than 25% of all the depicted people have their faces partially occluded or with very low
resolution, resulting in the model’s failure in detecting any face for these particular instances.
In this case, we feed the face feature extractor with a black proxy image, namely a 3-channel
tensor filled with zeros. As a backbone for the feature extractor we employ a ResNet-18, pre-
trained on the AffectNet [75] database. More specifically, we utilized 8 emotion categories,
including “Neutral”, “Happy”, “Sad”, “Surprise”, “Fear”, “Disgust”, “Anger” and “Contempt”
as well as the continuous annotations of valence and arousal, after rescaling them from the
[—1, 1] range to [0, 1]. We trained the network for 20 epochs using the Adam optimizer, with a
learning rate of 1075, weight decay equal to 107° and a batch size of 64, reaching a maximum
accuracy of 58.16% and minimum AAE of 0.164 on the 9th training epoch.

The modality aggregation method used is direct feature fusion and the training configura-
tion is the same as the one employed in our previous experiments. The continuous prediction
branch is now comprised of three FC layers, with 1,024-512-256 hidden units and ReLLU non-
linearities. A performance comparison between the current model and our previous baseline
model is presented in tables 4.6 and 4.7. Letter “F” denotes the face input stream.

According to table 4.6, the inclusion of the face modality results in an increase in AP for
all discrete categories, with the exception of “Engagement” and “Peace” where a slight dicrease
of less than 1% is noticed and that could be considered by all means as transcendental. For all
other emotions, there is an increase of up to 10% in AP, with “Anger”, “Happiness”, “Sadness”,
“Annoyance” and “Fear” showcasing the largest boosts in performance. We speculate that
this is related with the fact that the aforementioned emotions belong or are closely related
to the basic eight emotional categories included in the AffectNet database, used in the pre-
training phase. Subsequently, a discrease in AAE is also evident for the continuous emotion
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Emotion CNN inputs

Categories BC BCF
1. Affection 32.67 | 34.34
2. Anger 11.21 | 21.27
3. Annoyance 16.39 | 20.03
4. Anticipation 56.30 | 56.98
5. Aversion 07.10 | 09.38
6. Confidence 73.59 | 74.20
7. Disapproval 14.93 | 18.26
8. Disconnection 28.55 | 29.49
9. Disquietment 18.80 | 20.22
10. Doubt/Confusion | 21.44 | 23.03
11. Embarrassment 02.34 | 03.05
12. Engagement 85.37 | 84.77
13. Esteem 16.78 | 17.21
14. Excitement 68.40 | 69.14
15. Fatigue 11.52 | 13.53
16. Fear 06.40 | 09.26
17. Happiness 71.82 | 78.04
18. Pain 08.40 | 09.79
19. Peace 24.96 | 24.85
20. Pleasure 44.23 | 47.59
21. Sadness 25.41 | 29.35
22. Sensitivity 07.73 | 09.66
23. Suffering 24.81 | 26.64
24. Surprise 09.71 | 11.63
25. Sympath 13.40 | 13.56
26. Yearning 08.70 | 08.94

[ Mean [ 27.39 [ 29.39 |

Table 4.6: Effect of including the face modality on average precision (AP, %), per emotional category, as
obtained on the EMOTIC test set.

Continuous CNN inputs
Dimensions BC BCF
Valence 0.0863 | 0.0826
Arousal 0.0982 | 0.0991
Dominance 0.0924 0.0914
[ Mean [ 0.0923 | 0.0910 |

Table 4.7: Effect of including the face modality on average absolute error (AAE), per emotional dimension,
as obtained on the EMOTIC test set.

prediction branch, confirming our assumptions relative to the face modality being a rich
source of affective information.

Pose

Bodily expressions have been recognized as important for non-verbal communication, as
changes in a person’s affective state are also reflected by changes in body posture, while some
affective expressions may indeed be better conveyed by the body than the face. For example,
for the emotion of fear, by focusing on the body posture, one can perceive the cause of the
threat as well as any action tendency relative to the human subject. Therefore, we ought to
study the role of the body in communicating emotions when affective displays containing a
combination of facial expressions, posture or movement are presented, like in the case of the
EMOTIC dataset.

To this end, we include pose information in the emotion recognition process in the form
of 2D body joint coordinates, as extracted with the OpenPose [15] publicly available toolkit.
More specifically, for each body crop instance provided by the EMOTIC dataset, we extract
2D coordinates for 25 body joints, as well as 21 joints for each one of the two hands. The
coordinates that have been extracted undergo filtering based on the localization confidence
score provided by the pose estimation model. All joints coordinates with a confidence score
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Emotion CNN inputs
Categories BCF BCFP
GCN | ConvlD
1. Affection 34.34 | 34.85 34.51
2. Anger 21.27 | 23.11 22.99
3. Annoyance 20.03 | 21.12 20.45
4. Anticipation 56.98 | 57.63 56.70
5. Aversion 09.38 09.74 10.22
6. Confidence 74.20 | 72.07 73.46
7. Disapproval 18.26 | 18.75 17.24
8. Disconnection 29.49 29.39 30.01
9. Disquietment 20.22 20.49 21.34
10. Doubt/Confusion | 23.03 | 22.87 23.05
11. Embarrassment 03.05 | 03.01 02.66
12. Engagement 84.77 | 85.03 84.30
13. Esteem 17.21 | 17.32 17.31
14. Excitement 69.14 | 70.24 69.64
15. Fatigue 13.53 13.26 13.96
16. Fear 09.26 | 09.55 10.32
17. Happiness 78.04 | 77.96 77.12
18. Pain 09.79 | 08.98 10.37
19. Peace 24.85 | 25.09 25.05
20. Pleasure 47.59 | 47.34 46.40
21. Sadness 29.35 | 28.86 30.89
22. Sensitivity 09.66 | 08.79 09.97
23. Suffering 26.64 | 26.92 30.96
24. Surprise 11.63 10.87 13.46
25. Sympath 13.56 | 13.18 13.83
26. Yearning 08.94 | 09.47 08.95
[ Mean [ 2039 [ 29.45 | 29.81 |

Table 4.8: Effect of including the pose modality on average precision (AP, %), per emotional category, as
obtained on the EMOTIC test set. “GCN” and “Conv1D” denote the pose feature extraction method that
has been used.

Continuous CNN inputs
Dimensions BCF BCFP

GCN ConvlD
Valence 0.0826 | 0.0819 0.0787
Arousal 0.0991 | 0.0946 0.0969
Dominance | 0.0914 | 0.0917 0.0900
[ Mean [ 0.0910 | 0.0894 | 0.0885 |

Table 4.9: Effect of including the pose modality on average absolute arror (AAE), per emotional dimension,
as obtained on the EMOTIC test set. “GCN” and “Conv1D” denote the pose feature extraction method that
has been used.

of less than 10% are discarded and replaced with zeros. Moreover, the joint coordinates are
normalized in the range [0,1], with (0,0) denoting the top left corner and (1,1) denoting
the bottom right corner of an image. For the body joints, we use the nose as a point of
reference as it constitutes the least occluded body joint, while for the hand joints, we use
the wrists as points of reference. In addition we extract 7 LMA [60] features, namely the
feet-hip, hands-shoulder, hands-head, centroid-pelvis, foot, hand distances and torso height.
The aforementioned features constitute the body components and according to Luo et al. [67],
they exhibit a strong correlation with the arousal emotion dimension. After concatenating
all the above features, we obtain a 141-dim pose feature vector.

As far as feature extraction is concerned, we evaluate two different methods. The first
one is based on 1D convolutions, while the second one utilizes a GCN for feature extraction.
For the first method, we use three consecutive 1D convolutional layers, with 3 x 3 kernels,
unitary padding and 256-512-1,024 filters. The last convolutional layer is followed by 3 FC
layers, with 1,024-512-256 hidden units. Both convolutional layers and FC layers are followed
by a batch-normalization layer and ReLU non-linearities. According to the second approach,
each one of the 1D convolutional layers is replaced with a GCN layer, with 32-64-64 hidden
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units. The output of the last GCN layer is flattened to form a feature vector that is fed
into a series of 3 FC layers similarly to the first approach. All hidden layers are succeeded
by batch-normalization and ReLLU non-linearities. Both approaches are evaluated after being
incorporated in the previous fusion network, introducing the pose modality in the recognition
process, along with the existing context, body and face modalities. A performance comparison
between the current two proposed models and our previously best model is presented in tables
4.8 and 4.9. Letter “P” now denotes the pose input stream.

With the introduction of pose information, the performance of the network increases in
both the discrete categories as well as the continuous dimensions, with the latter showcasing
a more significant boost over our previously best model. The pose branch based on 1D
convolutions shows a 0.4% increase in mAP over its GCN-based counterpart and 0.5% increase
over the previous model. As far continuous emotion recognition is concerned,again the pose
branch based on 1D convolutions exhibits the best performance, with an AAE reduction of
2.5-1073 compared to the previously best model.

Scene Classification Scores and Attributes

As we have seen through our experiments, the context branch often fails to focus on actual
scene features of the depicted image, despite the application of explicit agent masking. This is
especially evident in image instances in which multiple people are depicted and consequently
a large part of the image is covered by human bodies. In order to counter this problem, we
try to directly incorporate scene-related scores and attributes, obtained with the usage of

an 18-layer Wide-ResNet |1 10] that has been pre-trained on the Places365 |117] and Scene-
UNderstanding (SUN) [32] databases.
The Places [117] database is a quasi-exhaustive repository of 10M scene photographs,

labeled with 476 scene semantic categories. We use only a subset of the latter, namely the
Places365-Standard which features 1.8M images and 365 scene categories. Moreover, the SUN
attribute database [32]| constitutes a subset of the SUN categorical database [107], comprised
of 14,000 images that are annotated using a taxonomy of 102 scene attributes. Some of
the categories that are included in the Places365 dataset are: amusement park, basketball
court, cemetery, jail, cell, lecture room, museum, office, sauna, soccer field, etc. Some of the
scene attributes included in the SUN dataset are: competing, socializing, working, exercise,
praying, open-area, enclosed-area, stressful, etc. It is quite evident that the environment and
scene depicted in an image can be closely related with the emotions of the people that are
present. For example, an image of a funeral that is located at a cemetery, suggests a strong
correlation between the above oppressive setting and the generally negative and sad feelings
shared among the depicted people. Provided that our model is capable of leveraging the
hinted correlations, incorporating scene specific information can potentially boost its overall
emotion recognition performance.

Given an input image, the feature extractor, through each last convolutional block pro-
duces feature maps Z € R512x14x14  After the application of an average pooling layer, a
deep feature vector representation z € R12 is formed and fed to the FC layer with weights
Wocenes € R12%365  producing class confidence scores ¥oopnes € R3%. The corresponding
class probabilities Pyenes € [0, 1]3%° are calculated after the application of the softmax func-
tion. The provided model also includes a set of pre-trained weights relative to the SUN
dataset, namely W, € R512X192 that can be used for the prediction of the confidence
scores Yy € RI92 for 102 scene attributes that are included in the SUN dataset. The
corresponding attribute classification probabilities p,, € [0, 1]'9? are again calculated after
the application of the softmax function. Subsequently, the produced scene and attribute
probability scores are concatenated with the extracted deep features from all the aforemen-
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tioned input streams. After the initialization of the feature extractor with the aforementioned
pre-trained models, weight parameters are kept frozen during the training phase.

Emotion CNN inputs
Categories BCFP | +Scenes | +Attributes
1. Affection 34.51 35.46 34.34
2. Anger 22.99 22.81 23.51
3. Annoyance 20.45 20.08 21.94
4. Anticipation 56.70 56.42 56.45
5. Aversion 10.22 10.44 09.80
6. Confidence 73.46 75.22 73.33
7. Disapproval 17.24 20.03 20.42
8. Disconnection 30.01 28.99 30.12
9. Disquietment 21.34 20.83 20.24
10. Doubt/Confusion | 23.05 22.84 22.91
11. Embarrassment 02.66 02.58 02.61
12. Engagement 84.30 84.77 85.69
13. Esteem 17.31 16.81 17.06
14. Excitement 69.64 69.96 69.97
15. Fatigue 13.96 14.05 14.66
16. Fear 10.32 08.93 10.47
17. Happiness 77.12 78.65 78.42
18. Pain 10.37 11.61 11.18
19. Peace 25.05 25.25 25.94
20. Pleasure 46.40 49.08 47.67
21. Sadness 30.89 29.96 31.23
22. Sensitivity 09.97 09.15 09.83
23. Suffering 30.96 28.19 31.59
24. Surprise 13.46 11.16 11.97
25. Sympath 13.83 13.33 14.01
26. Yearning 08.95 09.80 09.73
[ Mean [ 20.81 | 20.86 | 30.19 |

Table 4.10: Effect of including scene scores and attributes on average precision (AP, %), per emotional
category, as obtained on the EMOTIC test set. “4-Scenes” column corresponds to the model after incorporating
only the scene scores, “+Attributes” column corresponds to the model after incorporating both scene scores
and attributes.

The difference in performance given by the inclusion of the scene probabilities and scene
attributes is going to be examined upon our current best performing network. The extracted
body, context, face, pose features are going to be concatenated, firstly with the predicted scene
classification probabilities and later on with both scene scores and attributes. The model
structure remains the same, as well as the applied training configuration. A performance
comparison of the current configurations with our previously best model is presented in
tables 4.10 and 4.11.

Continuous CNN inputs
Dimensions | BCFP | +Scenes | +Attributes
Valence 0.0787 | 0.0758 0.0777
Arousal 0.0969 0.0980 0.0951
Dominance | 0.0900 | 0.0889 0.0896
[ Mean [ 0.0885 | 0.0876 | 0.0874 |

Table 4.11: Effect of including the the scene scores and attributes on average absolute error (AAE), per
emotional dimension, as obtained on the EMOTIC test set. “4Scenes” column corresponds to the model after
incorporating only the scene scores, “+ Attributes” column corresponds to the model after incorporating both
scene scores and attributes.

The introduction of scene classification scores and attributes boosts the performance of
the model in both classification and regression tasks. The inclusion of scene scores results in
a trivial increase in mAP and a 1072 dicrease in AAE. Furthermore, incorporating the scene
attributes along with the scene scores results in a 0.4% increase in mAP over our previously
best model and no further dicrease in AAE.

83



CHAPTER 4. IMAGE-BASED VISUAL EMOTION RECOGNITION IN CONTEXT

Socio-Dynamic Context

Mittal et al. [71] proposed the incorporation of inter-agent interactions and socio-dynamic
context as an additional modality for categorical emotion recognition in the EMOTIC dataset.
As it was described in section 4.1.2 of the theoretical analysis, they examined a GCN-based
as well as a depth-based approach, with the latter exhibiting superior performance and an
additional boost 3% boost in mAP over the GCN-based method. Due to the increased
complexity of the GCN-based method as well as the lack of sufficient implementation details,
we focus solely on the depth-based approach for socio-dynamic contextual feature extraction.

For each image of the EMOTIC dataset, we use the publicly available MegaDepth pre-
trained model [63] with the aim of acquiring the corresponding depth estimation maps. As
seen in figure 4.7, the given depth estimation model produces grayscale depth maps, where
the same set of intensity values is repeated over three channels so as to match the input size
requirements of subsequent CNN feature extractors.

Figure 4.7: Examples of estimated depth maps for 3 random images of the EMOTIC train set. The top
row illustrates the original RGB images while the bottom row illustrates the corresponding grayscale depth
maps as produced by the MegaDepth [(63] pre-trained model.

After manually calculating the mean and standard deviation of intensity values of the
single repeated channel, we performed intensity normalization. For the extraction of socio-
dynamic contextual features from the produced depth maps, we choose between two different
CNN backbones, namely the custom 5-layer CNN as proposed in [71], as well as a standard
ResNet-18 pre-trained on ImageNet. The provided description does not mention the kernel
sizes and paddings for the convolutional layers of the first CNN backbone, but only the
feature map output sizes after each convolutional block. We therefore improvise and use 5 x 5
kernels for the first convolutional layer, and 3 x 3 kernels for the remaining four layers with
no zero padding. For the max-pooling layers, we use 2 x 2 kernels with unitary zero padding.
All convolutional layers and the FC hidden layer are succeeded by a batch normalization
layer and ReLLU non-linearity. The features extracted from the estimated depth images are
concatenated with the existing context, body, face, pose features, scene scores and attributes.
We compare the AP and AAE performance of the current model, including socio-dynamic
contextual features extracted from the two different CNN backbones, with our previously best
model. The training configuration is identical to the one used in our previous experiments.
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The results are presented in tables 4.12 and 4.13. Letters “S” and “A” denote the Places365
scene scores and SUN attributes respectively.

Emotion CNN inputs
Categories Previous Best +Depth
Baseline [71] | ResNet-18
1. Affection 34.34 33.89 35.50
2. Anger 23.51 22.07 22.68
3. Annoyance 21.94 21.46 21.39
4. Anticipation 56.45 56.96 56.39
5. Aversion 09.80 10.03 09.89
6. Confidence 73.33 72.64 74.06
7. Disapproval 20.42 18.81 18.61
8. Disconnection 30.12 29.76 31.26
9. Disquietment 20.24 21.30 20.03
10. Doubt/Confusion 22.91 23.90 23.28
11. Embarrassment 02.61 02.81 02.98
12. Engagement 85.69 84.11 84.60
13. Esteem 17.06 17.41 16.77
14. Excitement 69.97 69.68 70.21
15. Fatigue 14.66 13.76 13.72
16. Fear 10.47 08.69 08.53
17. Happiness 78.42 78.63 77.75
18. Pain 11.18 09.00 09.56
19. Peace 25.94 25.18 25.34
20. Pleasure 47.67 48.59 48.32
21. Sadness 31.23 27.57 32.43
22. Sensitivity 09.83 08.56 08.97
23. Suffering 31.59 27.94 28.08
24. Surprise 11.97 11.79 12.21
25. Sympath 14.01 12.65 13.12
26. Yearning 09.73 09.65 09.39
[ Mean \ 30.19 \ 29.49 [ 2981 ]

Table 4.12: Effect of including socio-dynamic contextual features on average precision (AP, %), per emo-
tional category, as obtained on the EMOTIC test set. Two CNN backbones are evaluated for depth feature

extraction, namely the baseline model [71] as well as a ResNet-18 pre-trained on ImageNet.

Continuous CNN inputs

Dimension; Previ Best +Depth

nstons vious Bes Baseline [71] | ResNet-18

Valence 0.0777 0.0803 0.0786

Arousal 0.0951 0.0947 0.0948

Dominance 0.0896 0.0901 0.0891

[ Mean [ 0.0874 | 0.0884 | 0.0876 |

Table 4.13: Effect of including the socio-dynamic contextual features on average absolute error (AAE), per
emotional dimension, as obtained on the EMOTIC test set. Two CNN backbones are evaluated for depth
feature extraction, namely the baseline model as well as a ResNet-18 pre-trained on ImageNet.

Although socio-dynamic context in the form of estimated depth maps is supposed to
complement the other affective modalities, through our experiments, we came to the con-
clusion that this is not the case. Firstly, the model which utilizes a ResNet-18 backbone
pre-trained on ImageNet, for the extraction of socio-dynamic contextual features from the
estimated depth maps, performs better than its baseline counterpart in both categorical and
continuous tasks. However, the introduction of the depth modality actually results in a re-
duction in the overall performance compared to our previously best model. Even though the
current model performs slightly better in AP remotely for specific emotions like “Affection”,
“Confidence”, “Disconnection”, “Embarrassment”, “Excitement”, “Sadness” and “Surprise”, all
other emotion categories feature lower recognition rate and the overall mAP score drops by
0.4%. Additionally, the AAE performance of the current model along the continuous emotion
dimensions does not improve.

The above results mark the end of our input modality-related experiments. For all of our
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subsequent experiments we make explicit use of the body, context, face, pose input streams
as well as the Places365 scene scores and SUN attributes. The use of socio-dynamic context
is excluded, as it results in a decrease in network performance.

Attention Branch Network Extension

Mittal et al. [71] suggested the extension of the context feature encoding branch with the
use of the Attention Branch Network (ABN), as it was originally proposed by Fukui et al. [35].
However, they did not provide any comparative study relative to the performance of their
network, with and without the inclusion of the aforementioned module. We therefore conduct
ablation experiments in order to examine whether the inclusion of the ABN mechanism
will result in an improvement over our current best model. Furthermore, we consider the
incorporation of the ABN mechanism not only in the context branch but in the body branch
as well.

The following experiments are performed on the basis of our current best performing
model, utilizing the same training configuration as before. Network training is driven by a
combined loss of the form £ = Leont + Leat + AattLatt, where Lyt denotes the binary cross-
entropy loss produced from the attention branch, while Leont and Lea; denote the continuous
and categorical losses produced at the final prediction layers after feature fusion is applied.
The graphs of figure 4.8 depict the mAP and AAE scores obtained on the EMOTIC test set
for various values of the weight parameter Ay, after incorporating the ABN mechanism on
the context feature encoding branch.
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Figure 4.8: Mean average precision (mAP, %) and average absolute error (AAE) scores for various values
of Aatt, as obtained on the EMOTIC test set after incorporating the ABN mechanism in the context feature
encoding branch.

The maximum gain in mAP performance is achieved for Ayt = 0.5, at the cost of an
increase in AAE equal to 0.005 over our previous best result. For that value of the afore-
mentioned weight parameter, tables 4.14 and 4.15 present the experimental results associated
with the extended networks in comparison with our current best model. For the “BC-ABN”
configuration, weight parameter A,y is divided in half for both branches so as to keep the
total attention loss at the same level of magnitude as in the “C-ABN” configuration, for a
more fair comparison.

The introduction of the attention loss Lt results in the network diverging away from
the continuous emotion prediction task due to an overwhelming increase of categorical losses
during the training procedure. Additionally, the maximum performance increase in mAP is
limited to 0.2% over our previous best model. As the performance boost associated with the
categorical task is relatively small and the AAE scores tend to increase, we decide to exclude
the ABN mechanism from all of our following experiments. The failure of the aforementioned
module in providing a considerable difference in the overall performance of the network may
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Emotion Network Configuration
Categories Without ABN | + C-ABN | + BC-ABN
1. Affection 34.34 36.08 35.90
2. Anger 23.51 23.15 24.51
3. Annoyance 21.94 21.75 22.47
4. Anticipation 56.45 57.14 57.30
5. Aversion 09.80 10.17 10.22
6. Confidence 73.33 73.28 72.88
7. Disapproval 20.42 18.29 19.22
8. Disconnection 30.12 30.39 30.08
9. Disquietment 20.24 20.95 21.26
10. Doubt/Confusion 22.91 23.39 23.01
11. Embarrassment 02.61 02.86 02.54
12. Engagement 85.69 85.03 84.75
13. Esteem 17.06 17.35 16.86
14. Excitement 69.97 70.79 70.59
15. Fatigue 14.66 13.84 14.26
16. Fear 10.47 09.93 09.32
17. Happiness 78.42 78.87 79.24
18. Pain 11.18 11.31 09.69
19. Peace 25.94 25.78 25.74
20. Pleasure 47.67 48.71 49.59
21. Sadness 31.23 31.95 31.26
22. Sensitivity 09.83 09.98 09.40
23. Suffering 31.59 31.93 29.10
24. Surprise 11.97 12.26 11.73
25. Sympathy 14.01 14.17 14.67
26. Yearning 09.73 09.79 09.68
[ Mean \ 30.19 [ 3035 [ 3020 ]

Table 4.14: Performance comparison in terms of average precision (AP, %), per emotional category, of
different network configurations after the incorporation of the Attention Branch Network (ABN) in the context
feature encoding branch (“C-ABN”) and body branch (“BC-ABN”). Results are obtained on the EMOTIC test
set, using Aate = 0.5.

Continuous Network Configuration
Dimensions | Without ABN | + C-ABN | + BC-ABN
Valence 0.0777 0.0852 0.0819
Arousal 0.0951 0.0943 0.0947
Dominance 0.0896 0.0907 0.0899

[ Mean \ 0.0874 [ 0.0901 | 0.0888 |

Table 4.15: Performance comparison in terms of average absolute error (AAE), per emotional dimension,
of different network configurations after the incorporation of the Attention Branch Network (ABN) in the
context feature encoding branch (“C-ABN”) as well as in the body branch (“BC-ABN”). Results are obtained
on the EMOTIC test set, using Aatt = 0.5.

be associated with the fact that the original ABN mechanism was implemented for multi-class
single-label rather than multi-label prediction tasks.

Deeper Convolutional Backbones

At this section we investigate whether the utilization of deeper CNN backbones for feature
extraction will result in an increase in the performance of the network in both categorical
and continuous tasks. More specifically, for the context feature encoding branch we utilize
a ResNet-50 pre-trained on the Places365 dataset, for the body branch we adopt a standard
ResNet-50 pre-trained on ImageNet, while for the facial feature encoding branch we use a
ResNet-50 which we have manually pre-trained on the AffectNet database. The latter was
trained for 20 epochs with the Adam optimizer, learning rate equal to 5- 1075 and weight
decay equal to 10~°, reaching a maximum accuracy of 60.16% and a minimum AAE of 0.140
on the validation set.

The network configuration includes the context, body, face, pose input streams as well
as the Places365 scenes classification scores and SUN attributes. All extracted features are
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combined using the standard early fusion scheme. An additional change in the network
architecture is made relative to the FC layers in the continuous emotion prediction branch,
where two more layers are added on top of the existing ones with 4,096 and 2,048 hidden
units, followed by ReLU activations. The corresponding model is trained with the SGD
optimizer for 20 epochs with weight decay equal to 107° and an initial learning rate of
1072 which is reduced by a factor of 0.2 after 5 epochs. In table 4.16 we present only the
average performance statistics of mAP and AAE of the current model in comparison with its
previously best and shallower counterpart.

Evaluation CNN Backbones
Metrics ResNet-18 | ResNet-50
mAP?T 30.19 30.74
mAAE] 0.0874 0.0873

Table 4.16: Effect of utilizing deeper CNN backbones for feature extraction in performance, measured in
terms of mean average precision (mAP, %) and mean average absolute error (mAAE), as obtained on the
EMOTIC test set.

Both categorical and continuous prediction branches benefit from the deeper architectures
as expected, with the latter indicating a more significant improvement. Limitations in avail-
able GPU memory inhibit the usage of even deeper CNN backbones such as the ResNet-101
and ResNet-152, which would probably provide additional boosts in performance.

ML-GCN Network Extension

As a subsequent step in the process of improving the performance of the current model,
we try to infuse additional prior knowledge into our model and leverage the categorical label
dependencies existent within the EMOTIC dataset. To this end, we conduct a series of
experiments which aim at adapting the widely used and promising ML-GCN module, as
introduced it by Chen et al. [22], to our current best model.

In order to find optimal parameters for the adjacency matrix binarization threshold 7
and probability p, we conducted experiments with a ResNet-50, feeding it body crops while
having the ML-GCN attached to the categorical classification layer. The categorical label
embeddings were acquired through a 300-dim GloVe model pre-trained on Wikipedia and
Gigaword 5 data. Furthermore, two GCN layers are used, with 1,024 and 2,048 hidden units,
and a Leaky ReLU non-linear activation function. Figure 4.9 provides graphs that depict
the performance of the aforementioned network, in terms of mAP, for various values of the
parameters 7 and p. Firstly, we fixed the probability parameter p = 0.25 as it was the default
suggested value and varied the threshold parameter 7. After finding the optimal threshold,
we fixed 7 to its optimal value and varied p instead.

The best parameter combination proved to be 7 = 0.4 and p = 0.25, reaching a maximum
mAP of 28.3% in the EMOTIC test set and providing nearly 1% boost in mAP performance
over the barebones body ResNet-50. With this hyperparameter configuration, we incorporate
the ML-GCN mechanism on our previous best model. The number of GCN layers remains
the same but the number of hidden units is increased to 2,048 and 6,867, with the latter
being the dimensionality of the concatenated feature vector, resulting from the early fusion
of the extracted feature vectors corresponding to all of the input modalities. The training
configuration featured 20 epochs using the SGD optimizer, with momentum equal to 0.9,
weight decay equal to 107> and with an initial learning rate of 5- 1073 that was reduced by
a factor of 0.2 after 5 epochs. Tables 4.17 and 4.18 present a performance comparison of our
current model, before and after the addition of the ML-GCN module.

The incorporation of the ML-GCN module with the aim of leveraging categorical label
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Figure 4.9: Mean average precision (mAP, %) scores for various combinations of the parameters 7 and p as
obtained on the EMOTIC test set after incorporating the ML-GCN module in the the body feature encoding

network.

Emotion Network Configuration
Categories Previous Best | ML-GCN
1. Affection 34.79 33.60
2. Anger 22.05 22.24
3. Annoyance 21.70 23.02
4. Anticipation 57.64 57.76
5. Aversion 09.90 10.81
6. Confidence 74.87 76.19
7. Disapproval 19.94 20.32
8. Disconnection 31.04 31.36
9. Disquietment 22.11 21.78
10. Doubt/Confusion 22.97 23.58
11. Embarrassment 02.70 03.08
12. Engagement 84.96 85.77
13. Esteem 16.99 17.07
14. Excitement 71.03 71.83
15. Fatigue 14.54 15.54
16. Fear 09.39 10.06
17. Happiness 78.92 79.22
18. Pain 11.12 12.03
19. Peace 25.16 25.24
20. Pleasure 48.79 49.53
21. Sadness 35.54 33.82
22. Sensitivity 09.70 09.30
23. Suffering 36.83 38.36
24. Surprise 13.13 12.72
25. Sympathy 13.46 13.99
26. Yearning 10.03 10.02
[ Mean \ 30.74 [ 3109 |

Table 4.17: Performance comparison in terms of average precision (AP, %), per emotional category, of
different network configurations after the incorporation of the ML-GCN module in our previously best model,
as obtained on the EMOTIC test set. The selected parameter settings are 7 = 0.4 and p = 0.25.

Continuous Network Configuration
Dimensions | Previous Best | ML-GCN
Valence 0.0788 0.0812
Arousal 0.0934 0.0947
Dominance 0.0898 0.0902

[ Mean [ 00873 | 0.085 |

Table 4.18: Performance comparison in terms of average absolute error (AAE), per emotional dimension, of
different network configurations after the incorporation of the ML-GCN module in our previously best model,
as obtained on the EMOTIC test set. The selected parameter settings are 7 = 0.4 and p = 0.25.

dependencies resulted in an increase in AP performance for almost all emotion categories
except of “Affection”, “Disquietment”, “Sadness”, “Sensitivity” and “Surprise”, where small
decreases in score are noticed. The mean performance of the network after the aforementioned
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modification is increased by 0.3% over our previous best model. However an increase in the
continuous emotion prediction metrics for all dimensions is evident. After closer inspection
of the network’s behavior, we notice that this drop in AAE performance is most likely caused
by the fact that the categorical prediction branch seems to learn a lot faster compared to the
continuous branch, causing the two sub-networks to reach their peak performance at different
epochs.

Categorical Label Embedding Loss

On top of our previous model, we investigate whether the addition of a categorical la-
bel embedding loss [37], [105], will result in an increase in recognition performance. The
categorical label embeddings are still provided by a 300-dim GloVe model, pre-trained on
Wikipedia and Gigaword 5 data. After experimenting with various configurations we came
down to the conclusion that the direct application of an embedding loss on the final fused
feature vector does not constitute the best practice as it may contain irrelevant elements
due to the inability of the OpenFace and OpenPose toolkits to successfully detect face re-
gions and body joints in every input instance respectively. In that way, the categorical label
embedding loss is applied solely with respect to the concatenated visual embeddings that
originate from the context and body feature encoding branches. Therefore, an additional FC
layer is incorporated with the purpose of linearly transforming the visual embeddings to the
same dimensionality as the word embeddings. Network training is driven by a combined loss
L = Leont + Lecat + AembLemb, Where Loy, is the categorical label embedding loss and ey, i
the corresponding weight parameter.

Emotion Network Configuration
Categories ML-GCN | + Embedding Loss
1. Affection 33.60 34.02
2. Anger 22.24 22.22
3. Annoyance 23.02 22.91
4. Anticipation 57.76 57.94
5. Aversion 10.81 10.69
6. Confidence 76.19 76.31
7. Disapproval 20.32 20.35
8. Disconnection 31.36 31.61
9. Disquietment 21.78 22.08
10. Doubt/Confusion 23.58 23.95
11. Embarrassment 03.08 03.32
12. Engagement 85.77 85.85
13. Esteem 17.07 17.45
14. Excitement 71.83 71.70
15. Fatigue 15.54 15.98
16. Fear 10.06 10.41
17. Happiness 79.22 79.03
18. Pain 12.03 11.34
19. Peace 25.24 25.32
20. Pleasure 49.53 49.17
21. Sadness 33.82 33.66
22. Sensitivity 09.30 10.54
23. Suffering 38.36 38.78
24. Surprise 12.72 13.23
25. Sympathy 13.99 15.33
26. Yearning 10.02 10.41
[ Mean [ 3109 | 31.29 |

Table 4.19: Performance comparison in terms of average precision (AP, %), per emotional category, of
different network configurations after the addition of the embedding loss Lemb on top of our ML-GCN model,
as obtained on the EMOTIC test set. Results correspond to Aemp = 0.4.

The graphs of figure 4.10 depict the mAP and AAE scores obtained on the EMOTIC
test set for various values of the weight parameter Aenp, after adding the categorical label
embedding loss Lemp. The best performance is achieved for Aemp = 0.4. For this parameter
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Continuous Network Configuration
Dimensions | ML-GCN | + Embedding Loss
Valence 0.0812 0.0816
Arousal 0.0934 0.0949
Dominance 0.0898 0.0901

[ Mean | 0.0885 |

0.0889 ‘

Table 4.20: Performance comparison in terms of average absolute error (AAE), per emotional dimension, of

as obtained on the EMOTIC test set. Results correspond to Aemp = 0.4.

different network configurations after the addition of the embedding loss Lemb on top of our ML-GCN model,

GCN model and the current one.

setting, tables 4.19 and 4.20 present performance comparisons between our standard ML-

The addition of the categorical label embedding loss led to a maximum increase in mAP
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Figure 4.10: Mean average precision (mAP, %) and average absolute error (AAE) scores for various values
of Aemb, as obtained on the EMOTIC test set after adding the categorical label embedding loss Lemb to the
standard ML-GCN model.

equal to 0.2% over our previous best model. Moreover, the current model exhibits a rather
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negligible increase in AAE which is probably caused by the increased loss, namely categorical
and embedding, that is used during the training phase of the categorical emotion prediction
branch.
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4.2.2 Cross-Study Performance Comparison

In the current section, we compare our best performing models on the categorical and
continuous emotion prediction tasks with respect to the corresponding results, as presented
by other published works of relative literature, namely Kosti et al. [59], Zhang et al. [113],
Wei et al. [105] and Mittal et al. [71]. As some models focus solely on categorical emotion
prediction, in order to provide more fair comparisons, we present our best results on the
two tasks independently. Table 4.21 compares our model with the aforementioned pieces of
relative literature on the basis of the categorical emotion prediction task, while table 4.22
makes the same comparisons relative to continuous emotion prediction.

. Performance Comparison
Emotion ) ) Mittal ot al. [71]
Categories Kosti et al. [59] | Zhang et al. [113] | Wei et al. [105] | Ours Without Depth | With Depth
1. Affection 27.85 46.89 - 34.02 41.83 45.23
2. Anger 09.49 10.87 - 22.22 11.41 15.46
3. Annoyance 14.06 11.27 - 22.91 17.37 21.92
4. Anticipation 58.64 62.64 - 57.94 67.59 72.12
5. Aversion 07.48 05.93 - 10.69 11.71 17.81
6. Confidence 78.35 72.49 - 76.31 65.27 68.85
7. Disapproval 14.97 11.28 - 20.35 17.35 19.82
8. Disconnection 21.32 26.91 - 31.61 41.46 43.12
9. Disquietment 16.89 16.94 - 22.08 12.69 18.73
10. Doubt/Confusion 29.63 18.68 - 23.95 31.28 35.12
11. Embarrassment 03.18 01.94 - 03.32 10.51 14.37
12. Engagement 87.53 88.56 - 85.85 84.62 91.12
13. Esteem 17.73 13.33 - 17.45 18.79 23.62
14. Excitement 77.16 71.89 - 71.70 80.54 83.26
15. Fatigue 09.70 13.26 - 15.98 11.95 16.23
16. Fear 14.14 04.21 - 10.41 21.36 23.65
17. Happiness 58.26 73.26 - 79.03 69.51 74.71
18. Pain 08.94 06.52 - 11.34 09.56 13.21
19. Peace 21.56 32.85 - 25.32 30.72 34.27
20. Pleasure 45.46 57.46 - 49.17 61.89 65.53
21. Sadness 19.66 25.42 - 33.66 19.74 23.41
22. Sensitivity 09.28 05.99 - 10.54 04.11 08.32
23. Suffering 18.84 23.39 - 38.78 20.92 26.39
24. Surprise 18.81 09.02 - 13.23 16.45 17.37
25. Sympathy 04.71 17.53 - 15.33 30.68 34.28
26. Yearning 08.34 10.55 - 10.41 10.53 14.29
[ Mean \ 27.38 \ 28.42 \ 30.96 [ 31.29 ] 31.53 [ 35.48 |

Table 4.21: Performance comparison in terms of average precision (AP, %), per emotional category, of
our best model with other publicized works relative to categorical emotion recognition, on the basis of the
EMOTIC test set.

The work of Mittal et al. |71] constitutes the current SOTA in the categorical emotion
recognition task, utilizing the context, body, face, pose and depth modalities. Considering that
our model does not utilize depth information, it is more appropriate to compare the latter
with the second-to-last column which describes the SOTA performance excluding the use of
estimated depth maps. We notice that our model achieves comparable results, falling shy of
the current best of 31.53% mAP by a mere 0.2%. Additionally, it is worth noting that our
model achieves SOTA recognition performance in the “Anger”, “Annoyance”, “Disapproval”,
“Disquietment”, “Happiness”, “Sadness”, “Sensitivity” and “Suffering”, despite the lack of the
depth modality.
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Continuous

Performance Comparison

Dimensions | Kosti et al. [59] | Zhang et al. [113] | Wei et al. [105] | Ours | Mittal et al. [71]
Valence 0.0528 0.07 - 0.0788 -
Arousal 0.0611 0.1 - 0.0934 -
Dominance 0.0579 0.1 - 0.0898 -

[ Mean [ 0.0573 [ 0.09 [ - [ 0.0873 ] - |

Table 4.22: Performance comparison in terms of average absolute error (AAE), per emotional dimension,
of our best model with other publicized works relative to continuous emotion recognition, on the basis of the
EMOTIC test set.

Subsequently, we also manage to achieve comparable results in the continuous emotion

prediction task even though the gap to the best publicized result of Kosti et al. |

| is quite

large. We presume that this large difference is caused by the increased complexity of our
model as well as the accumulated categorical losses which we utilize and are necessary for

the proper functionality of the categorical emotion prediction branch.
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Chapter 5

Video-Based Visual Emotion
Recognition in Context

In the last chapter, we tackled the problem of image-based visual emotion recognition
in context. Through our experiments, we showed that the utilization of an early fusion
scheme among various input modalities such as the body, context, face as well as the pose,
cumulatively boost the recognition performance. Additionally, we exploited the statistical
label dependencies within the EMOTIC dataset in two separate ways, namely by adapting
the ML-GCN mechanism in the categorical emotion prediction branch, and by enforcing
semantic congruity between the extracted deep feature representations and the categorical
label word embeddings from a pre-trained GloVe model. The latter was achieved by imposing
a metric learning-inspired mean-squared error loss between the extracted feature vectors and
the aforementioned word embeddings. The combination of the above proposed methodologies
produced satisfactory results that are comparable with the current state-of-the-art on the
EMOTIC dataset.

The current chapter aims at extending the concept of context-based visual emotion recog-
nition in the dynamic setting of video sequences. To this end, we choose to use the newly
assembled Body Language Dataset (BoLD) as a frame of reference for both the required
theoretical analysis as well as our experimental results. Our model implementation will be
based on the widely used Temporal Segment Network (T'SN) architecture as it constitutes a
flexible framework capable of enriching our previous, already successful multi-modal feature
fusion design with the ability of processing video sequences.

The structure of this chapter is as follows: in the first section we establish the necessary
theoretical background associated with the deep learning practices and network architectures
which will be later used in our own implementation while the second section will be dedicated
solely to presenting our experimental results and comparing them with other published works
of relative literature.
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5.1 Related Work

5.1.1 Two-Stream Convolutional Networks

The two-stream convolutional network architecture, as introduced by Simonyan and Zis-
sermann |91], constitutes a powerful and versatile learning framework which was originally
proposed for video-based action recognition but can also be adapted for the task of dynamic
affective computing. The core functionality of the two-stream architecture is based on the
decomposition of video-sequences into their spatial and temporal components, namely the
shape and appearance depicted within static frames as well as the motion across consecu-
tive frames. Each video component is encoded separately by a deep ConvNet, while the
final video-level predictions are formed after the application of a late fusion scheme upon
the separate scores that are produced through each information stream. An overview of the
two-stream architecture for video processing is depicted in figure 5.1.

' Spatial stream ConvNet

conv1 conv2 conv3 conv4 convs fullé full7 |[softmax
Tx7x96 |[5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 stride 1 stride 1 || dropout || dropout
norm. norm pool 2x2
pool 2x2 || pool 2x2

Temporal stream ConvNet

‘ convi conv2 || conv3 || conv4 convs fullé full7 |[softmax|
TXTx96 [|5x5x256 || 3x3x512 | [ 3x3x512 || 3x3x512 || 4096 2048

stride 2 || stride 2 || stride 1 stride 1 stride 1 || dropout || dropout
- norm. pool 2x2 pool 2x2
multi-frame pool 2x2

optical flow

Figure 5.1: Overview of the two-stream convolutional architecture for action recognition in videos. Source:

[94].

The spatial stream ConvNet operates on still image frames, effectively capturing infor-
mation associated with the shape and appearance of people, objects as well as the scene and
surrounding depicted environment. In that way, the spatial ConvNet constitutes a standard
image classification architecture and therefore can be pre-trained on large-scale image recog-
nition databases, depending on the type of features that need to be encoded relative to the
task at hand.

On the other hand, the temporal stream ConvNet operates on stacks of optical flow
displacement fields, or dense optical flow, as extracted from several consecutive video frames.
Such type of input aims at explicitly capturing the motion between frames, thus making the
overall recognition process easier as the network does not have to estimate motion implicitly.
Dense optical flow can be formulated as a set, of displacement vectors d; = [d¥,dY] ", between
pairs of consecutive frames ¢t and ¢ + 1, with df and d} denoting the horizontal and vertical
optical flow components, respectively. Additionally, d;(u,v) denotes the displacement vector
at point (u,v) and at frame ¢, which moves from the current location to the corresponding
point at the following frame ¢t + 1. Moreover, each optical flow component can be seen as
two separate image channels, with their values discretized in the range [0,255]. To represent
the motion across a sequence of frames, the flow channels d;"¥ of L consecutive frames are
stacked, forming a total of 2L input channels. More specifically, for an arbitrary frame 7 of
width w and height A, the temporal ConvNet input volume I, € R¥*"*2L is constructed in
the following way:
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Ir(u,v,2k — 1) = d7 1 (u,0)
I-(u,v,2k) = d’ (u,v), u=[l;w], v=[1;h], k = [1; L]

T+k—1

The formulation of equations 5.1 deals explicitly with forward optical flow, namely the
displacement vector d; at frame t defines the location of its pixels in the following frame ¢+ 1.
Bidirectional optical flow constitutes a natural extension of forward optical flow and allows
the computation of displacement fields in the opposite temporal direction. In this case, the
input volume I is formed by stacking L/2 forward displacement fields between frames 7 and
T+ L/2 as well as L/2 backward fields between frames 7 and 7 — L/2, resulting in the same
number of 2L input channels.

(5.1)

5.1.2 Temporal Segment Networks

Temporal Segment Networks (TSN), as proposed by Wang et al. [104], constitute an
effective and efficient video-level framework for learning video representation, capable of
capturing long-range temporal structures. Mainstream ConvNet frameworks usually focus
on appearances and short-term motions, thus lacking the capacity to incorporate long-range
temporal structure. This problem is often tackled through dense temporal sampling with
a predefined sampling interval, which however leads to highly similar, unnecessary sampled
frames and excessive computational cost. The TSN framework solves these issues by applying
sparse temporal sampling on top of the already successful two-stream ConvNet architecture.
An overview of the TSN framework is illustrated in figure 5.2.

Video Snippets Temporal Segment Networks

Spatial ConvNet E
Temporal ConvNet Segmental H]gh jump
= \ Pl  Consensus
/(
Spatial ConvNet Class Score
I( Fusion
Temporal ConvNet E\‘ \ del L L_._ d

Segmental

C
Spatial ConvNet E] ONsensus
Temporal ConvNet E

Figure 5.2: Overview of the TSN architecture. One input video is divided into K segments and a short
snippet is randomly selected from each segment. The class scores of different snippets are fused by an the
segmental consensus function to yield segmental consensus, which is a video-level prediction. Predictions from
all modalities are then fused to produce the final predictions. Source: [104].

Sallilull

Framework Overview

Any given input video sequence is firstly divided into K segments {Si,Sa,..., Sk} of
equal durations. The TSN operates on a set of K snippets, with each snippet constituting an
instance which has been randomly sampled from a corresponding segment. More formally,
the output of a TSN network is modeled as follows:

TSN(Th, T, ..., Tt ) = H(Q(]—"(Tl;W),]-"(TQ;W), . ,f(TK;W))) (5.2)

where {T4,Ts, ..., T} denote the snippets, W denotes the network trainable parameters, F
denotes the snippet-level network predictions, G denotes a segmental consensus function and
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last but not least, H denotes a prediction function, such as the softmax or the sigmoid function
for the multi-class and multi-label classification tasks, respectively. For example, in the case
of multi-label classification, given groundtruth target vectors y € {0,1}¢, where C is the
number of classes and a segmental consensus G = g(]:(Tl; W), F(To; W), ..., F(Tk; W)),
the binary cross-entropy loss function takes the following form:

C
Ly, G) =) [(1-y)Gc+In(l+e %) (5.3)

c=1

where G. denotes the class-specific score inferred from the scores of the same class on all the
snippets, using the aggregation function G.

Additionally, the segmental consensus function G aims at aggregating the produced snip-
pet level predictions through the application of one of several possible operators, such as
simple average, weighted average, maximum, etc. This temporal segment network is differen-
tiable or at least has subgradients, depending on the choice of G. This allows the utilization
of multiple snippets for the joint optimization of the model parameters W with standard gra-
dient descent algorithms. In the backpropagation process, the gradients of model parameters
W with respect to a loss function £ can be derived as follows:

0Ly, G) _ 9L~ G OF(TuW)
OW  0G = 0F(Ti; W) OW

(5.4)

where K is the number of segments that the TSN is configured to use. The above equation
guarantees that the parameter updates during backpropagation utilize the segmental consen-
sus G derived from the snippet-level predictions, thus the TSN learns from the entire video
sequence and not just a few short snippets. Additionally, fixing the number of segments K
enforces a sparse temporal sampling strategy that leads to a drastic reduction in the overall
computational cost.

Aggregation Functions

Aggregation or consensus functions constitute a primary component of the TSN frame-
work. In the current section we provide a brief analysis of the aggregation functions that will
later be utilized in our model implementations. Amongst the aggregation functions which will
be considered are: averaging pooling, linear weighting and attention weighting, as initially
proposed by Wang et al. [103].

To begin with, given the segmental class scores F¥ = F (Ty; W) and a segmental consensus
G, with fz-k being the ith class score corresponding to the kth segment and g; being the ith
dimension of G, then for the case of average pooling, g; = % >k fl-k. The gradient of the
average pooling aggregation function g;, with respect to fik, is computed as follows:

8g,~ . 1

off K (5:5)

Averaging pooling computes the mean activations from all snippets in order to provide video-
level predictions. However, no distinction among the segments is made based on the quality
of their content and as a result they all contribute equally for the generation of the final
predictions.

Another approach is to form a weighted sum of the class scores from each segment, and let
the network define the weights during backpropagation. In this case, the aggregation function
is defined as ¢g; = > ;. wkfik, where wy, is the weight corresponding to the kth snippet. In this
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case, the set of learnable parameters w are introduced while the gradients of g;, with respect
to fi]€ and wy, are computed as follows:

((Tff = Wk, Bon i

Compared to averaging pooling, in the current implementation, each snippet-level predic-
tion is assigned with a different importance weight and therefore plays a unique role in the
formulation of the video-level predictions.

Attention weighting constitutes an extension of linear weighting according to which the
segment specific weights depend on the content of the corresponding snippets. In this case,
the aggregation function is defined as g; = ), A(T}) f¥, where A(T}) is the attention weight
of snippet T},. The gradients of g; with respect to f¥ and A(T}) are computed as follows:

Jg;
8wk

Jg;

oF = = fF (5.7)

By denoting as R = R(Tk), the visual embeddings which have been extracted from snippet
Ty, then the attention weights are computed as follows:

er = waR(TL), AT = Pler) 5.8
' B A= TF entey) o

where wyit is a set of new trainable parameters that are jointly learned with the rest of the
network parameters. The gradient of A(T}) with respect to way is calculated as follows:

DAT) _ i AT oy AT _ {A(Tk>(1 —ATy) itk = (5.9)
=1 9%

Owatt 0 de; —A(Ty)A(T5) otherwise

The attention model enhances the modeling capacity of the TSN framework by automatically
estimating the importance weight of each snippet based on the video content. Moreover, as the
attention mechanism is based on the visual embeddings R, it leverages extra backpropagation
information that guide the learning process and may accelerate the convergence of training.

5.1.3 Spatial-Temporal Graph Convolutional Networks

As mentioned in section 2.3.7, Graph Convolutional Networks (GCN) [57]| generalize the
convolutional operation on graphs of arbitrary structures, providing a flexible learning frame-
work that can be applied on various image classification tasks. However, GCN operate on
fixed rather than dynamic graph inputs, such as human skeleton sequences. Yan et al. [108]
proposed an extension of graph neural networks to a spatial-temporal graph model, called
Spatial-Temporal Graph Convolutional Network (ST-GCN), with the initial purpose of rep-
resenting human skeleton sequences for action recognition.

A skeleton sequence is usually represented by 2D or 3D coordinates of each human joint in
each frame. A hierarchical representation of skeleton sequences can be constructed in the form
of an undirected spatial-temporal graph G = (V,€), with N joints and T frames, featuring

both intra-body and inter-frame connections. The graph nodeset V = {vy|t =1,....T, i =1, ...

includes all the joints within a skeleton sequence. In addition, every node or joint in the graph
comes with a set of features F'(vy;) that usually consist of the current joints coordinates, plus
the corresponding detection confidence. The joints within one frame are connected with
edges according to the connectivity of the human body structure which in turn depends on
the dataset as well as the joint detection and tracking methodology that has been employed.
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Figure 5.3: The spatial temporal graph of a skeleton sequence. Blue dots denote the body joints. The
intra-body edges between body joints are defined based on the natural connections in human bodies. The
inter-frame edges connect the same joints between consecutive frames. Joint coordinates are used as inputs
to the ST-GCN. Source: [108].

For example, the OpenPose [15] toolkit offers multiple output formats, namely “BODY 25",
“COCQO”, “MPTI” that differ both in the number of output joints as well as the modeled inter-
joint connections. Furthermore, each joint will be connected to the same joint in the consec-
utive frame. More specifically, the graph edge set £ is comprised of two subsets. The first
subset features the intra-skeleton connections at each frame Eg = {vyv4|(4, j) € H} where H
is the set of naturally connected human joints. The second subset contains the inter-frame
edges that connect the same joints in consecutive frames, Er = {vivq1)li = 1,...,N}.
A spatial-temporal representation of a skeleton sequence is illustrated in figure 5.3.
Assuming that the output feature map of a spatial convolution operation has the same
size as an input feature map and given a convolution operator with a kernel size of K, x K,
then the output value of a single channel at a given spatial location x can be written as:

K, Ky

fout =D > finlp(x,w, h)) - w(h, w) (5.10)

w=1 h=1

where the sampling function p enumerates the neighbor joints at location x and the weight
function w : Z? — R¢ provides a weight vector in c-dimensional real space for computing
the inner product with the sampled input vector of dimension ¢. On graphs, the sampling
function can be defined on the neighbor set B(vy;) = {vij|d(vis, vej) < D} of node vy, where
d(vg, vi5) denotes the minimum length of any path from vy to vyj. Therefore, the sampling
function p : B(vy;) — V can be written simply as p(vg, vj) = vy

As far the weight function is concerned, it can not be simply implemented by indexing a
tensor of shape (¢, Ky, K,) due to the fact that graphs do not have a fixed spatial configura-
tion. This problem is solved by using a graph labeling process. Instead of assigning a unique
weight to each neighbor node, the neighborhood B(vy;) of node vy; is partitioned into a fixed
number of K, subsets, thus resulting in a mapping ly; : B(vy) — {0,..., K, — 1}. In that
way the weight function w : B(vy;) — R can be implemented by indexing a tensor of shape
(¢, Ky), with w(vg, vej) = W' (l4i(v5)).

After having formulated the spatial graph convolutions, the concept of neighborhood
needs to be extended so as to include temporally connected joints as well, namely B(vy) =
{vgjld(vei,ve) < D, q—t < |T'/2]}, where I is a hyperparameter that controls the temporal
range of the neighborhood. In addition, the labeling map needs to be modified so as to
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Figure 5.4: Partitioning strategies for constructing convolution operations. From left to right: (a) An
example frame of input skeleton. Body joints are drawn with blue dots. The receptive fields of a filter with
D =1 are drawn with red dashed circles. (b) Uniform labeling partitioning strategy, where all nodes in a
neighborhood has the same label (green). (c) Distance partitioning. The two subsets are the root node itself
with distance 0 (green) and other neighboring points with distance 1 (blue). (d) Spatial partitioning. The
nodes are labeled according to their distances to the skeleton gravity center (black cross) compared with that
of the root node (green). Centripetal nodes have shorter distances (blue), while centrifugal nodes have longer
distances (yellow) than the root node. Source: [108].

incorporate a temporal ordering on top of the existing spatial graph labeling process. The
spatio-temporal labeling map is defined as lgr(vs) = lii(ve;) + (¢ — t + [T'/2]) x K,, where
lti(vtj) is the label map for the single frame case at for node wvy;.

In discussion of possible spatial partitioning strategies, three cases need to be highlighted,
namely uniform, distance and spatial labeling. With wuniform being the simplest labeling
strategy, all joints that are connected through a limb belong in the same subset, resulting in
K, =1 total subsets. Formally, K, = 1 and l;;(v;) = 0, V i,5 € V. The distance labeling
strategy extends the concept of neighboring joints, as pairs of joints that are connected
through a sequence of limbs are also taken into consideration. Formally, l¢;(vi;) = d(vis, vij),
where D is the maximum allowed distance between two neighboring joints (we choose D =1
for simplicity), resulting in a total of K, = D + 1 subsets. Last but not least, the spatial
configuration partitioning strategy divides the neighbor joint set in into three subsets, namely
the root joint itself, the centripetal group which consists of the neighboring joints that are
closer to the gravitational center of the skeleton than the root nodes and the opposite of the
latter, called the centrifugal group. The skeleton center of gravity is calculated as the average
coordinate of all joints locations at a single frame. All node distances from the gravity centers
are averaged over all frames in the sequence. Formally:

0 if ri =T
lti(vtj) =<1 if T < T (511)
2 ifr;>nr

In practice, the gravitational center is replaced by a fixed root (the neck in our case). Given
that the maximum allowed distance between two neighboring joints D = 1, then this results
in K,, = 3 subsets. The aforementioned partitioning strategies are visualized in figure 5.4.
Lastly, according to the spatial labeling strategy, neighboring joints are distinguished
based on their individual distances from a fixed root (the neck), resulting in K, = 3 subsets.
In the spatial-temporal case, the input feature map Hj, of a ST-GCN unit is represented
as a tensor of shape (Cin, Tin, V'), where Cj, denotes the number of input channels, T;, denotes
the number of frames in the skeleton sequence and V' denotes the number of nodes. Firstly,
the input tensor undergoes a (K, - Coyt) X 1 X 1 spatial graph convolution operation, with
Cout being the desired number of output channels and K, being the number of joint subsets
that are formed based on the chosen labeling strategy. The resulting tensor is reshaped into
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(Kv, Cout, Tin, V) and multiplied with the normalized adjacency matrix D™ sAD™ 2, where
A =1+ A and D is a diagonal matrix with elements D% = > A Tn case of the distance
and spatial partitioning strategies (K, > 1), the adjacency matrix A is formed by stacking
K, matrices Ag, with each one corresponding to one of the K, joint subsets. If we ignore
interlayer nonlinearities, then the aforementioned spatial convolution operation is equivalent
to the original GCN [57] formula:

AyD,

l\’)\»—‘
N|=

out Z WkHlnD (512)
k

where Wy, are Coyy X Ci X 1 x 1 weight matrices (the multiplication is replicated T, times
in the temporal dimension and V times in the spatial dimension). D} = > AZJ + o is
the normalized diagonal matrix and « is set to 0.001 to avoid empty rows. Additionally,
learnable edge importance weighting can be implemented simply by multiplying element-
wise the adjacency matrices Ay of Eq. 5.12 with a weight mask M, namely A, ©M. The
output feature map resulting from the spatial graph convolution undergoes a Coyt X I' X 1
temporal convolution, with I' denoting the temporal kernel size, completing the processing
pipeline of a single ST-GCN unit.

5.1.4 Laban Movement Analysis

Laban Movement Analysis (LMA), sometimes called Laban/Bartenieff Movement Analy-
sis, constitutes a framework for describing, visualizing, interpreting and documenting human
movement, as it is based on the initial work of Laban and Ullman [60].

Laban movement analysis divides body movements into four separate components, namely
“Body”, “Effort”, “Shape” and “Space”. More specifically, the “Body” category describes struc-
tural and physical characteristics of the human body while moving. This category is respon-
sible for describing which body parts are moving, which parts are connected, which parts are
influenced by others, and general statements about body organization. “Effort” comprises a
system for understanding the more subtle characteristics about movement with respect to
inner intention. For example, the difference between punching someone in anger and reach-
ing for a glass is slight in terms of body organization — both rely on extension of the arm,
whereas the attention to the strength of the movement, the control of the movement and the
timing of the movement are very different. Furthermore, the way the body changes shape
during movement is further experienced and analyzed through the “Shape” category. Lastly,
the “Space” category features a greater theoretical depth in comparison with the rest of the
LMA system, as it combines body movement analysis with ideas from the realm of Space
Harmony. The latter constitutes a separate movement theory and practice which was created
by Laban himself and was based on universal patterns of nature and of man as part of a
universal design.

Luo et al. |67] utilized the LMA framework with the aim of analyzing human skeleton
sequences for the task of visual emotion recognition in videos. Firstly, they extracted the
2D coordinates for 18 body joints, with p! € R? denoting the coordinate vector of joint i at
frame ¢ of a video sequence. As far as scaling is concerned, they normalized each pose by the
average length of all visible limbs in each sequence. Let V be the set of all limbs with visible
joints and |V| its cardinality. For each sequence, of T' frames, the scaling factor s and the
normalized coordinate vectors are calculated in the following way:

¢
. p;
5= Z Z”pz pill, Bi= SZ (5.13)

( J)EV t
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Subsequently, they extracted 54 LMA features for each frame of every sequence. An ana-
lytical listing of the extracted LMA features is presented in table 5.1. Features f1, fo, f3, f4, fs, fo
correspond to the body component and capture the pose configuration. For symmetric joints,
the mean distances were used. The mean values were also used for the calculation of all other
features that involved symmetric joints. For fy the centroid was calculated as the average of
all visible joints while the pelvis is located in the middle of the two hips.

| fi [ Description [ fi [ Description ‘
fi Feet-hip dist. fo Hands-shoulder dist.
f3 Hands dist. fa Hands—head dist
fs Centroid-pelvis dist. fo Gait size (foot dist.)
fio Angles
foo Shoulders velocity f32 Elbow velocity
fi3 Hands velocity f12 Hip velocity
f35 Knee velocity f1a Feet velocity
f3s Angular velocities
f30 Shoulder accel. f33 Elbow accel.
fie Hands accel. fis Hip accel.
f36 Knee accel. fi7 Feet accel.
f39 Angular accel.
fa1 Shoulders jerk f3a Elbow jerk
fa0 Hands jerk fis Hip jerk
f37 Knee jerk fa1 Feet jerk
fio Volume f20 | Volume (upper body)
f21 | Volume (lower body) | fa2 Volume (left side)
fa3 Volume (right side) foa Torso height

Table 5.1: Laban Movement Analysis (LMA) features (f;: categories; dist.: distance; accel.: acceleration).

The second part of LMA features, corresponds to the effort component which captures

body motion dynamics. Based on the normalized joint coordinates, normalized joint velocities
t

0!, accelerations a} and jerks jf were calculated:
Vo PR Vi A A
! T o T o T (5.14)
o = vl ai = llall,  5f =5

Additionally, angles 6, angular velocities w and accelerations oy were calculated for specific
pairs of limbs, namely feet-knee and knee-hip, hip-neck and neck-shoulder, shoulder-elbow
and elbow-wrist, shoulder-neck and neck-nose, neck-nose and nose-ear, nose-ear and ear-eye,
hip-neck and neck-nose, knee-hip and hip-neck. Calculations were carried out as follows:

(Bi — bj) - (B — f)%))
185 — Bjll11Br, — BLl
07 (i, j,m, n) — 0'(i, j,m, n) (5.15)

-
W (i, 5,m,n) — wt(i, j,m, n)

6'(i,§,m,n) = arccos (

w'(i, j,m,n) =

toe
O‘H(Zajaman) - T
The third part of LMA features, the shape component, captures the body shape. More
specifically, fig — fo3 comprise a series of volume features and are approximated with the
area of the bounding boxes that contain the corresponding set of joints.
Subsequently, descriptive statistics, namely the maximum, minimum, mean and stan-
dard deviation of each feature value were extracted resulting in 216-dim feature vectors that
effectively describe an entire video sequence.
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5.1.5 Baseline Model

After successfully assembling the BoLD dataset, Luo et al. [67] furthered their contri-
butions by comparing various network configurations and finally providing a baseline model
for the task of categorical and continuous emotion prediction. Among the examined method-
ologies are: usage of motion-based descriptors such as histograms of optical flow (HOF) and
motion boundary histograms (MBH), skeleton-based learning through LMA features and the
ST-GCN model and last but not least, two-stream convolutional architectures and the TSN
extension.

As far evaluation metrics are concerned, for the task of categorical emotion prediction
they used average precision (AP), namely the area under the precision-recall curve as well
as the area under the receiver operating characteristic (ROC-AUC). For continuous emotion
regression along the VAD dimensions, the coefficient of determination (R?) is used. Per-
formance comparison among different models is carried out on the basis of an aggregatory
emotion recognition score (ERS) which is calculated as follows:

1 1
ERS = 5(mR2 + 5 (mAP + mRA)) (5.16)
where mR? denotes the mean coefficient of determination along the VAD dimensions while

mAP and mRA denote the mean average precision and mean ROC-AUC over the 26 emotion
categories respectively.

Regression Classification
Model MRt mAPT | mRAT ERS
TSN-Body 0.095 0.1702 | 0.6270 | 0.247
TSN-Body + LMA 0.101 0.1670 | 0.6275 | 0.249

TSN-Body+TSN-Face 0.101 0.1731 | 0.6346 | 0.252

TSN-Body+TSN-Face
LLMA 0.103 0.1714 | 0.6352 | 0.253

Table 5.2: Baseline performance comparison among various network ensemble configurations, on the BoLD
test set, as achieved by Luo et al. [67]. Performance metrics are presented in the range [0,1].

The proposed baseline model and the corresponding performance results in the BoLD test
set are presented in table 5.2. The proposed emotion recognition system, named ARBEE
which is short for Automated Recognition of Bodily Expression of Emotion, constitutes an
ensemble of multiple sub-modules that operate on different input modalities. More specifi-
cally, they averaged the predictions from a TSN trained on RGB body crops, a TSN trained
on RGB face crops as well as a Random Forest classifier operating on the 216-dim LMA
feature vectors. According to table 5.2, the combination of all modalities, i.e., body, face and
skeleton, achieves the best performance.

5.2 Experimental Results

In the current section, we present our experimental results on BoLD. Across all of our
experiments, we use the standard train and validation splits provided by the official distrib-
utors of the dataset. The first part of the presentation constitutes an ablation study relative
to the effect of incorporating multiple input modalities on the emotion recognition process.

5.2.1 Ablation Studies

The backbone of our network implementations resides in a combination of the two-stream
convolutional and TSN architectures. As a first step, we experiment with separately training
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TSN using the RGB, Optical Flow and RGB Difference modalities. Subsequently, we shift
out attention to skeleton-based learning through the usage of LMA features and the ST-GCN
mechanism. Both the TSN and ST-GCN constitute flexible and lightweight frameworks that
have been extensively utilized in action recognition related literature.

TSN-RGB

A single RGB image usually encodes static appearance at a specific point in time but
lacks the contextual information about previous and next frames. During our experiments on
the EMOTIC dataset, we have showed that the emotion recognition process benefits greatly
from the feature level combination of multiple feature extractors that focus on different parts
of the human instance. In our previous implementations, we made extensive use of the human
body, face as well as the surrounding depicted environment in the form of visual context. In
order to replicate our previous methodology and adapt it in the dynamic setting of video
sequences, we modify the standard TSN framework by including multiple input streams,
which later undergo feature level fusion, before the application of segmental consensus for
the prediction of both categorical and continuous targets.

We begin by training a standard TSN using the RGB modality and the body crops of
each frame instance. For the calculation of the necessary body bounding boxes, we make use
of the coordinates of 18 body joints that have been successfully tracked along the entirety of
each video sequence and are being provided by the distributors of the dataset. As a feature
extractor backbone, we use a standard 18-layer ResNet [18] pre-trained on ImageNet [20].
Unless specified otherwise, all of the other CNN backbones that will later be used for other
input streams, utilize the same architecture and only differ in the pre-training aspect.

Subsequently, we incorporate a context stream in the form of RGB frames whose primary
depicted agents have been masked out. For the acquisition of the masks we use the body
bounding boxes that we have previously calculated and multiply them element-wise with a
constant value of zero. The context branch feature extractor is trained on the Places365-
Standard [117] dataset, following the exact same approach as in our first case study.

Furthermore, we introduce an input stream which explicitly operates on extracted face
crops. For the localization and extraction of faces we use the first and last four body joints
that correspond to the eyes, ears and nose of each depicted instance. We use these joints
to calculate the largest bounding box that contains the head of the agent. However, as the
pose of an agent might result in partial or complete occlusion of their facial features, the
successful extraction of the face region is not guaranteed. The CNN backbone for the face
branch receives manual pre-training on the AffectNet [75] database.

Last but not least, we enrich the model’s perception of context by directly extracting the
Places365 |117] scene-specific scores and the corresponding SUN [82] attributes through a pre-
trained 18-layer Wide-ResNet [110]. The inclusion of all the aforementioned input streams
results in a 2003-dim concatenated feature vector.

The training of the continuous emotion prediction branch, we use a standard MSE loss
Leont along the three emotional dimensions of valence, arousal and dominance. As far as
categorical emotion prediction is concerned, the groundtruth targets are provided in the form
of confidence scores. Therefore, we first apply a sigmoid function to the barebones extracted
class scores and then impose an MSE loss between the predicted and groundtruth confidence
scores. We denote this loss term as Lcat,. Secondly, after binarizing the groundtruth confi-
dence scores with a stardard threshold of 0.5, we apply a binary cross-entropy loss between the
predicted confidence scores and the given target labels. We denote this term as L¢at,. Lastly,
we enforce semantic congruity between the extracted deep feature representations and the
categorical label word embeddings from a 300-dim GloVe model, pre-trained on Wikipedia
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and Gigaword 5 data. More specifically, we first transform the concatenated visual embed-
dings into the same dimensionality as the word embeddings through a linear transformation
and we later apply a MSE loss between the transformed visual embeddings and the average of
word embeddings that correspond only to the positive labels of the given groundtruth target
vector. Following the same notation as in section 4.1.3, we denote this term Lenp. Network
training is driven by a combined loss function of the form:

L= Ecatl + ﬁcatg + £Cont + Eemb (517)

The TSN-RGB is trained for 25 epochs with a batch size of 16, using the SGD optimizer
with a learning rate equal to 1072, momentum equal to 0.9 and weight decay equal to 107°.
The learning rate is reduced by a factor of 0.1 whenever the monitored loss on the validation
set plateaus. For the current experiments, we use Kipain = 3 segments during training and
Kya = 25 segments during validation, while the segmental consensus function has been
chosen to be average pooling. For the choices regarding the number of segments, we consult
the proposed methodologies of [104]. Apart from the previously described methodologies, we
experiment with the partial batch-normalization scheme, or Partial BN for short, as proposed
by Wang et al. [101]. More specifically, after the initialization with pre-trained models, we
freeze the mean and variance of parameters of all batch normalization layers, except for the
first one. Table 5.3 shows a performance comparison of all TSN-RGB configurations which
we have considered, relative to the BoLD validation set. For each configuration, we report
performance metrics that correspond to the epoch during which the highest ERS score was
obtained. The second column describes the various input streams that are being included,
with “B” denoting the body, “C” denoting the context, “F” denoting the face, “S” denoting
the Places365 scene-specific classification scores and “A” denoting the corresponding SUN
attribute scores.

Regression Classification

Model Features | Lemp | Partial BN MRt mAPT mRAT ERS
B 0.0300 0.1419 0.5910 0.1983
BC 0.0362 0.1468 0.6021 0.2053
BCF No No 0.0531 0.1615 0.6213 0.2222
TSN-RGB BCFS 0.0597 0.1736 0.6428 0.2347
BCFA 0.0685 0.1763 0.6417 0.2388
No No 0.0710 0.1762 0.6435 0.2404
BCFSA Yes No 0.0713 0.1779 0.6457 0.2416
Yes Yes 0.0969 0.1839 | 0.6537 | 0.2579

Table 5.3: Performance comparison of various TSN-RGB model configurations on the BoLD validation set.
The second column describes the various RGB input streams that have been included, namely the body,
context, face, the Places365 scene-specific classification scores and SUN attribute scores. The third column
specifies whether the categorical label embedding loss Lemb has been incorporated in the training phase,
while the fourth column specifies whether the Partial BN scheme has been utilized. Performance metrics are
presented in the range [0,1].

Both the inclusion of the context and face streams are conducive to an increase in ERS
score, with the latter showcasing a more considerable boost in performance over the bare-
bones body stream. These findings together with the corresponding results in EMOTIC,
confirm that the face modality constitutes a rich source of affective information and its in-
clusion in the emotion recognition process, accompanied by a properly pre-trained feature
extractor, almost definitely lead to better results. Moreover, even though the sole inclusion
of the Places365 scene-specific classification scores seemingly does not improve performance,
the combined usage of the latter along with the corresponding SUN attribute scores im-
proves performance in both the categorical and continuous tasks, as expected. Lastly we
experiment with the addition of the categorical embedding loss Lemp and the application of
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Scenes Attributes | Ground Truth Scenes Attributes Ground Truth

Temple/Asia Man made Peace Anticipation No horizon Anticipation Anticipation a
Pagoda Natural light | Annoyance Affection Clean room Man-made Confidence Confidence
Chalet No horizon Happiness Lockerroom | Enclosed area Engagement
Palace Open area Atists loft Cloth

Hunting Lodge Touring Elevator lobby | Indoor lighting
Vert. components V:0.5589 V:06527 Work V05714 V:0.6097
Shingles V:0.5875 A0.6504 A0.5948 Vert. components | V:05153 A:05759 A:0.6397
Semi-enclosed | A:0.5772 D: 0.6285 D: 0.6459 Natural light A:0.7399 D:0.6353 D:0.6682
Aged D: 08088 JC=0.0 JC=025 Competing D:06193 JC=0.50 JC=0.667
Stage/Indoor | Enclosed area gag gag Oast house Natural light Affection Peace Esteem
Discotheque No horizon Confidence Pleasure Cottage Foliage Esteem Happiness Peace
Ballroom | Indoor lighting Pleasure Excitement Tree farm Open area Sympathy Engagement
Orchestra pit Cloth Sensitivity Anticipation Kasbah Vegetation Happiness
Movie theater | Congregating Village Leaves Pleasure
Socialising V:0.5003 V:0.5601 Trees V:0.5658 V:0.6856
Man-made V08234 A:0.6079 A:05537 No horizon V:0.5764 A:0.4353 A:0.4592
Spectating A05572 D: 0.5651 D: 0.5086 Man-made A:04758 D: 05420 D: 05874
Stressful D: 0.8015 JC=025 JC=033 Shrubbery D: 0.7499 JC=00 JC=0.143
Beer hall No horizon Peace Peace Catacomb No horizon Anticipation Suffering
Pubfindoor | Enclosed area | Anticipation Arch. Excavation|  Man-made Sympathy Fear
Banquet hall Man-made Happiness Grotto Dirt Sensitivity
Dining hall Indoor lighting Pleasure Trench Natural light Sadness
Bar Socialising Basement | Enclosed area Suffering
Cloth V:05699 V:0.6095 Dry V:0.4828 V:05499
Congregating V:0.8083 A:0.5485 A:0.4758 Dirty V:03343 A:05799 A:05384
Eating A 03500 D: 0.6299 D: 06141 Rugged scene A:04304 D:0.6331 D:0.6444
Stressful D: 0.6623 JC=025 JC=0.50 Aged D: 04720 JC=0.167 JC=057

Figure 5.5: Top-5 predicted scene categories, top-9 predicted attibutes, ground truth and predicted (re-
gressed) emotion categories (VAD values) as well as Jaccard similarity coefficient (JC) on samples that have
been randomly selected from the BoLLD validation set. All predictions are made at video level.

Partial BN. While the addition of Lenyp leads to a trivial performance boost, the application
of the Partial BN regularization scheme tops off our previously best performing network,
reaching a maximum of 0.2579 ERS on the BoLD validation set. It seems as if the contin-
uous re-estimation of mean and variance parameters of batch-normalization layers that are
located deeper within the network, becomes absolete and may in fact have a negative impact
on generalization performance, provided that the model’s parameters have been previously
initialized through a proper pre-training procedure.

The beneficial influence of scene and attribute related features in human emotion un-
derstanding becomes more evident in cases where the facial characteristics and poses of the
depicted agents are occluded. This is further highlighted in Fig. 5.5 which includes in-
stances that were randomly selected from the validation set. Each instance is accompanied
by its top-5 predicted scene categories, top-9 predicted attributes, ground truth and predicted
(regressed) emotion categories (VAD values) as well as the corresponding Jaccard similar-
ity coefficient (JC), for each model configuration. Correct category recognition is indicated
in green. In all cases, the incorporation of scene and attribute characteristics, on top of
the existing bodily, contextual and facial features, results in more emotions being correctly
recognised. In addition, emotions that are semantically related, i.e. peace-happiness-pleasure
(e) and sadness-suffering-pain (f), are jointly predicted, even though some of them have not
been included by the annotators.

Subsequently, we pick our best model configuration and further evaluate it on the vali-
dation set while varying the number of segments K from 1 to 11. In this case, we have also

Regression Classification
Model K MRt mAPT | mRAT ERS
1 0.0387 0.1634 0.6229 0.2159
3 0.0808 0.1811 0.6498 0.2481
TSN-RGB | 5 0.0834 0.1834 0.6533 0.2509
7 0.0878 0.1836 0.6527 0.2530
9 0.0892 0.1851 | 0.6569 | 0.2551
11 0.0877 0.1834 | 0.6571 | 0.2539

Table 5.4: Performance comparison of different TSN-RGB configurations on the BoLD validation set, relative
to the number of segments K. All configurations utilize average pooling as the segmental consensus function.
Performance metrics are presented in the range [0,1].
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used equal number of segments in both training and validation phases. Table 5.4 summarizes
the results. In the special case of K = 1, the TSN framework degenerates into a simple con-
volutional network and the model exhibits poor performance as it cannot effectively capture
the long-range temporal structure of video sequences. As K increases, we notice a gradual
performance improvement up to K = 9. This constitutes a confirmation of the fact that a
higher number of segments helps in obtaining a more descriptive encoding of the temporal
structure of video sequences. For K = 11 we notice that the monitored performance im-
provement slightly saturates, indicating that a further increase in the number of segments
will likely not have any additional positive effect. We do not explore configurations with a
greater number of segments due to GPU memory limitations. We also ought to mention that
the utilization of a high number of segments proves to be more crucial during inference than
during training. A higher number of training iterations can potentially counter a lack of seg-
ments during the training phase. However, during inference each video instance is examined
only once and therefore a higher number of segments is required with the aim of obtaining
more representative prediction scores.

Lastly, we experiment with different aggregation functions. Apart from average pooling
which has already been examined, we investigate whether a linear weighting or attention
weighting consensus function would lead to a performance improvement. For the following
experiments we use K = 7 segments for both the training and validation phases. Table 5.5
summarizes the results. Average pooling clearly outperforms all other methodologies. The
application of linear and attention weighting leads to a deterioration in performance, despite
the theoretical advantages that they provide in comparison with the seemingly basic average
pooling function. Presumably, a dataset which featured a more complex temporal structure
would make better use of the latter advanced techniques.

Regression Classification

Model Consensus Function BT mADT mRAT ERS
Average Pooling 0.0878 0.1836 | 0.6527 | 0.2530
TSN-RGB Linear Weighting 0.0809 0.1723 | 0.6341 0.2418
Attention Weighting 0.0604 0.1849 | 0.6529 | 0.2396

Table 5.5: Performance comparison of different TSN-RGB configurations on the BoLD validation set, relative
to the type of segmental consensus function that has been utilized, with K = 7 segments for both the training
and validation phases. Performance metrics are presented in the range [0,1].

TSN-Flow

Similarly to the case of temporal stream ConvNets in the original two-stream convolu-
tional architecture, we experiment with training a TSN on stacked optical flow fields. Optical
flow extraction is carried out via the TVL1 algorithm [109]. This form of dense optical flow
is known to effectively encode motion between consecutive frames. We denote this model as
TSN-Flow. Subsequently, we attempt to expand the single-stream temporal ConvNet archi-
tecture by incorporating multiple input streams in parallel which are later combined through
an early fusion scheme, following our previous implementation regarding the TSN-RGB.

In all our subsequent experiments, we stack bidirectional optical flow fields from L = 5
consecutive frames for each snippet. After decomposing each displacement vector into its
horizontal and vertical components, we end up with a 10-channel input volume per segment,
per input stream. To begin with, we train a standard TSN using the Optical Flow modality
and the body crops of each frame instance. The usage of body joint coordinates for the
localization and extraction of the necessary bounding boxes remains the same as in the case
of the RGB modality. Body-oriented dense optical flow encodes the movement of the primary
agent depicted in each instance. Subsequently, we incorporate a context stream, in the form
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of stacked optical flow fields whose primary depicted agents have been masked out. The
optical flow input stream effectively encodes the motion of any occasional secondary agent,
object and the surrounding environment in general. Lastly, we introduce an input stream
that focuses solely on the head and face movements of the primary agent. This is achieved by
training an additional temporal ConvNet on small fragments of dense flow that correspond to
the head region of each agent. The inclusion of all the aforementioned input streams results
in a 1536-dim concatenated feature vector.

The features extracted using optical flow streams have distributions that greatly differ
from their RGB counterparts. As optical flow values are discretized in the interval [0,255],
therefore sharing the same range with RGB images, we use RGB models to initialize the
parameters of the temporal ConvNets. Consequently, the weights of the first convolutional
layer are modified so as to handle the input of optical flow fields. More specifically, the
weights are averaged across the RGB channels and replicated by the number of channels of
the temporal stream inputs, hence the activation values of the first convolutional layer will
also have different distributions. This is where the Partial BN scheme comes in, taking care
of the re-estimation of the first batch-normalization layer mean and variance parameters. As
noted by Wang et al. [104], the aforementioned method works well with temporal networks,
reducing the effect of over-fitting.

For all of our following experiments, we use the average pooling aggregation function
due to its proven superiority over other methods that have been discussed in the previous
section. Additionally, in order to cut down on training times for the TSN-Flow configuration,
we chose to use Ky = 3 during training and K, = 25 segments during validation. The
reduction in segments for the training phase has been found to have a negligible effect in
actual performance of TSN-Flow, while the choice in number of segments for the validation
phase is inspired by the original testing scheme used with two-stream convolutional networks,
as proposed in [94]. As far parameter initialization is concerned, we pre-train the TSN-Flow
body stream on ImageNet. Furthermore, we consider the Places365 and AffectNet datasets
as alternatives to ImageNet for the pre-training of the context and face streams respectively.
Tables 5.6 and 5.7 provide a performance comparison for the two TSN-Flow configurations
based on the pre-training method that is being used. All other training settings have been
kept the same as the ones used for the TSN-RGB.

Body Stream | Context Stream | Regression Classification
Model Pre-training Pre-training mR*t mAP1T | mRA?T ERS
ImageNet 0.0661 0.1415 | 0.5882 | 0.2155
TSN-Flow-BC | ImageNet Places365 0.0657 | 0.1472 | 0.5857 | 0.2161

Table 5.6: Performance comparison of various TSN-Flow-BC model configurations, on the BoLLD validation
set, relative to the datasets used for pre-training each one of the input streams. Performance metrics are
presented in the range [0,1].

Body Stream | Face Stream | Regression Classification
Model Pre-training | Pre-training mR*t mAPT | mRA?T ERS
ImageNet 0.0650 0.1491 | 0.5971 | 0.2190
TSN-Flow-BIF | - ImageNet g ‘Net | 0.0661 | 0.1449 | 0.5933 | 0.2176

Table 5.7: Performance comparison of various TSN-Flow-BF model configurations, on the BoLLD validation
set, relative to the datasets used for pre-training each one of the input streams. Performance metrics are
presented in the range [0,1].

In the first case we notice that pre-training of the context stream temporal ConvNet in the

scene-centric Places365 dataset offers a rather trivial boost in performance compared to an
object-centric pre-training on ImageNet. In addition, pre-training the face stream temporal
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Model Features | Lemp | Partial BN Rer%lrgsstlon m(Ajl;erlﬁcaI:ﬁZ T ERS
B 0.0560 0.1431 | 0.5778 | 0.2082
BC No No 0.0661 0.1415 | 0.5882 | 0.2155
BF 0.0649 0.1497 | 0.5971 | 0.2190
TSN-Flow No No 0.0795 0.1524 | 0.6054 | 0.2292
BCF Yes No 0.0888 | 0.1563 | 0.6135 | 0.2369
Yes Yes 0.0947 | 0.1554 | 0.6149 | 0.2398

Table 5.8: Performance comparison of various TSN-Flow model configurations, on the BoLD validation set.
The second column describes the various Optical Flow input streams that have been included, namely the
body, context and face. The third column specifies whether the categorical label embedding loss Lemb has
been incorporated in the training phase, while the fourth column specifies whether the Partial BN scheme is
being utilized. Performance metrics are presented in the range [0,1].

ConvNet on AffectNet actually leads to a deterioration in performance. Therefore, in all of
our subsequent experiments we initialize all temporal ConvNets using the ImageNet dataset.

Table 5.8 provides a complete performance analysis among all TSN-Flow configurations
which we have considered. For each configuration, we report performance metrics that cor-
respond to the epoch during which the highest ERS score was obtained. We notice that
the introduction of either the context or face streams leads to a marginal improvement over
the barebones temporal body stream. A more considerable boost in performance is achieved
through the inclusion of all three input streams. As mentioned in the case of TSN-RGB, the
addition of the categorical label embedding loss Lenp, improves the network’s performance in
both categorical and continuous tasks, while with the application of the Partial BN scheme,
the resulting model tops off all previous configurations reaching a maximum of 0.2398 ERS.

TSN-RGBDiff

The difference between two consecutive RGB frames essentially describes changes in ap-
pearance which correspond to the motion of salient regions. Following the example of Wang
et al. [104], we experiment with training a TSN on stacked RGB difference as an alternative
to optical flow for describing motion. Figure 5.6 illustrates examples for the body, context
and face streams for RGB Difference as well as the other two aforementioned modalities.

Similarly to the case of optical flow, the distribution of RGB difference values differs from
that of typical RGB images. We again choose to initialize the ConvNets of all input streams
of the TSN, using RGB pre-trained models. Based on our experiments with the Optical
Flow input modality, datasets such as Places365 and AffectNet have no considerable effect
on performance when used for pre-training in place of ImageNet. Therefore, all ConvNets in
RGB difference input streams are pre-trained on ImageNet. Moreover, the weights of the first
convolutional layer of each ConvINet are averaged across the RGB channels and replicated by
the number of channels of the RGB difference input streams. All training settings have been
kept the same as in the case of TSN-Flow.

. Regression Classification
Model Features | Lemp | Partial BN MR mADT mRAT ERS
B 0.0347 0.1274 0.5682 0.1912
. BC 0.0401 0.1357 0.5823 0.1995
TSN-RGBDIff —p No No 0.0450 | 0.1358 | 0.5799 | 0.2014
BCF 0.0249 0.1398 | 0.5874 0.1943

Table 5.9: Performance comparison of various TSN-RGBDiff model configurations, on the BoLLD validation
set. The second column describes the various RGB Difference input streams that have been included, namely
the body, context and face. Neither categorical label embedding loss Lemb nor Partial BN has been utilized.
Performance metrics are presented in the range [0,1].
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Figure 5.6: Input examples for the body (first column), context (second column) and face (third column)
streams, as obtained from the same single snippet of a video sequence. The first row corresponds to RGB,
the second row corresponds to the vertical component of Optical Flow and the third row corresponds to the
RGB Difference modality.

We immediately notice that the descriptive capacity of the TSN-RGBDiff model is inferior
to its Optical Flow counterpart. Fven though the addition of the either the context or
face stream provide a slight improvement in performance over the barebones body stream,
reaching a maximum of 0.2014 ERS, the inclusion of all three streams actually leads to a
deterioration in ERS. More specifically, classification scores do increase but the dimensional
emotion regression branch fails to converge. We presume that this issue is associated with the
fact that the RGB Difference modality appears to be significantly more noisy compared to
the other two, especially in low resolution videos. We also considered adding the categorical
label embedding loss Lemp and applying Partial BN, but all our attempts resulted in lower
ERS.

Skeleton-Based Learning

The current section is dedicated to the exploration of skeleton-based learning methodolo-
gies for the task of emotion recognition in context. To this end, we shift our attention to the
rather promising LMA features and the widely used ST-GCN mechanism.

Firstly, we experiment with training an ST-GCN on BoLLD. We deploy the vanilla ST-
GCN consisting of 9 layers of spatial-temporal graph convolution operators (ST-GCN units).
The first three layers have 64 output channels, followed by three layers with 128 channels

110



5.2. EXPERIMENTAL RESULTS

while the last three layers have 256 channels. The temporal kernel size is fixed to 9 for all
layers. All ST-GCN units utilize residual connections and are followed by dropout layers with
dropout probabilities equal to 0.5. The stride of the 4th and 7th ST-GCN units is set to 2.
The features extracted from the last ST-GCN unit undergo average pooling and after a pair
of 1 x 1 convolutions, the final categorical and continuous predictions are produced.

Joint coordinates are normalized in the range [0, 1] using the largest joint bounding box
within each sequence. As far as data augmentation is concerned, we follow the proposed
methodologies of Yan et al. [108]. Firstly, we find the maximum sequence length 7" within
our dataset and pad every clip with zeros until it reaches that specified length. During
the training phase, padding is applied randomly within the sequence while during inference
the paddings are placed always at the end for consistency. Additionally, during training we
perform random affine transformations on the skeleton sequences of all frames. The affine
transformation is produced by first selecting a few fixed angle, translation and scaling factors
for the first and last frame of the sequence as candidates and then by randomly sampling two
combinations of three factors that are going to be applied and interpolated for all intermediate
frames. This transformation scheme is meant to simulate camera movement and is denoted
as random moving.

After augmentation, input data is represented by tensors of size (C, T, V') where C' denotes
the number of input channels, V' denotes the number of nodes in each graph sequence and
T is the maximum sequence length. For each frame of a sequence, BoLD provides 18 tuples
that contain 2D joint coordinates plus a detection confidence score associated with each joint,
therefore in our case C = 3 and V = 18. Moreover, in order to reduce the effect of over-
fitting, we experiment with pre-training the ST-GCN model on the Kinetics dataset which
was introduced by Kay et al. [16] and has been extensively used for skeleton based action
recognition.

The ST-GCN is trained for 25 epochs with a batch size of 16, using the SGD optimizer
with a learning rate of 5-1073, momentum equal to 0.9 and weight decay equal to 107°. The
learning rate is reduced by a factor of 0.1 whenever the monitored loss on the validation set
plateaus. Training is driven by the same combined loss that was used during TSN training,
excluding the categorical label embedding loss component. The main variable setting of the
ST-GCN configurations is the joint labeling strategy that is being used during the construc-
tion of the graph adjacency matrix, namely uniform, distance or spatial. Table 5.10 provides
a performance comparison among all ST-GCN configurations which we have considered.

We notice that the spatial labeling strategy leads to better results compared to the others,
confirming the findings of Yan et al. [108]. More importantly, pre-training the ST-GCN on
Kinetics provides a significant performance boost in both categorical and continuous tasks
over all of its counterparts that have been trained on BoLD from scratch, reaching a maximum
ERS of 0.2237 on the validation set. As confirmed through our experiments, pre-training
plays a crucial role in the performance of the network and presumably constitutes the main

Labeling | Regression Classification

Strategy mR*t mAPT | mRAT
Uniform 0.0245 0.1295 | 0.5701 | 0.1871
None Distance 0.0323 0.1383 | 0.5841 | 0.1967
0.0383 0.1387 | 0.5838 | 0.1998

Set Model Pre-training ERS

Valid. | ST-GCN (ours)

Kinetios 10] | P22l 50652 1 0.1542 | 0.6103 | 0.2237
Lot |_Luo et al. [07] N/A N/A 0.0440 | 0.1263 | 0.5596 | 0.1940
ST-GCN (ours) | Kinetics [10] | Spatial | 0.0908 | 0.1694 | 0.6268 | 0.2444

Table 5.10: Performance comparison of various ST-GCN model configurations, on the BoLD validation and
test sets. The third column specifies the joint labeling strategy that has been utilized during the construction
of the graph adjacency matrix. Performance metrics are presented in the range [0,1].
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LMA Representation Method Reir}e;?on milgismcigﬁr; 7 ERS
Raw Sequence ConvlD 0.0183 0.1263 | 0.5467 | 0.1774
LSTM 0.0192 0.1187 0.5428 0.1749

Descriptive Statistics ConvlD 0.0098 0.1204 | 0.5517 | 0.1729
Random Forest 0.0285 0.1043 0.5009 0.1655

Table 5.11: Performance comparison of various LMA-based methods on the BoLD validation set. The first
column specifies the LMA feature representation, i.e., raw sequences or descriptive statistics. Performance
metrics are presented in the range [0,1].

differentiating factor between the reported results of Yuo et al. [67] and ours.

Furthermore, we experiment with the 54 LMA features, as described in section 5.1.4, in the
form of both raw sequences as well as their 216-dim descriptive statistics. Feature extraction,
in the case of raw sequences is carried out through a two-layer bidirectional LSTM with
1024 hidden units. The output of the last time step is passed through a FC layer so as to
obtain the categorical and continuous emotion predictions. Another methodology involves
the application of 1D convolutions with the aim of extracting features in both cases of raw
sequences and LMA descriptive statistics. The corresponding network is comprised of three
consecutive 1D convolutional layers, with kernels of size 5 and 3, necessary padding so as to
retain input tensor lengths and 256-512-1,024 filters. The last convolutional layer is followed
by an average pooling layer and 3 consecutive FC layers with 1,024-512-256 hidden units.
Both convolutional layers and FC layers are followed by batch-normalization and ReLLU non-
linearities. We denote this method as “Conv1D”. Last but not least, we try to replicate the
initial approach of Luo et al. [67] who applied a Random Forest Classifier and Regressor
on the 216-dim descriptive statistics. Table 5.11 summarizes the results obtained on BoLD
validation set with each one of the aforementioned methodologies.

We immediatelly notice that the LMA approach to skeleton-based emotion recognition
performs significantly worse than the more refined and complex ST-GCN mechanism. The
best result was obtained using the raw sequences of the 54 LMA features combined with
our proposed 1D convolutional network, reaching a maximum 0.1774 ERS. The LMA feature
representation of raw sequences seems to perform marginally better than that of descriptive
statistics. The worst ERS was obtained using the Random Forest Classifier and Regressor,
even though the latter provides the highest mean coefficient of determination mR?, equal
to 0.0285. More specifically, the Random Forest Regressor, when operated on the 216-dim
descriptive statistics, produced a high coefficient of determination R?, equal to 0.0794 for the
arousal emotion dimension, confirming the findings of Luo et al. [07] regarding the strong
correlation between arousal and the LMA features.

5.2.2 Proposed Method

The proposed methodology constitutes a late fusion scheme among the best performing
models from all modalities, namely RGB, Optical Flow, RGB Difference and Human Skeleton.
A complete schematic diagram of our proposed network ensemble is shown in figure 5.7.
The score fusion methods which will be considered include: maximum, simple average and
weighted average. Table 5.12 summarizes the results.

We notice that score fusion among TSN-RGB, TSN-Flow and TSN-RGBDIff actually
produces worse results compared to when we just exclude the RGB Difference modality.
The maximum operator consistently performs the worst among the three fusion schemes.
Eventually, a weighted average of the RGB, Optical Flow modalities as well as the ST-GCN
mechanism, with a weight ratio of 2:2:1 respectively, leads to the best result of 0.2897 ERS on
the validation set. More importantly, our implementation surpasses the current state-of-the-
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GloVe

Figure 5.7: Complete schematic diagram of the proposed network ensemble, featuring an ST-GCN module
and three TSN input streams (body, contezt, face) for both the RGB and Optical Flow modalities, plus a scene
& attribute related stream, especially for the RGB modality. Concatenated feature vectors are depicted in
cyan, fully-connected layers are depicted in orange and GloVe word embeddings are depicted in green, along
with their dimensionality or number of hidden units. The ST-GCN inherently produces video-level predictions,
while in the case of the TSN-RGB and TSN-Flow, this requires the prior application of segmental consensus
upon the corresponding snippet-level predictions (26 confidence scores for discrete emotions, 3 regressed values
for VAD dimensions). Final predictions are obtained through late score fusion.

. Regression Classification

Network Ensembles Score Fusion mRZT mAPT | mRAT ERS
. Maximum 0.0632 0.1804 0.6483 0.2388

AILTSN Modalities Average 0.1283 0.1852 | 0.6624 | 0.2761
Maximum 0.0939 0.1840 0.6543 0.2566
TSN-RGB+TSN-Flow Average 0.1444 0.1883 | 0.6661 | 0.2858
Maximum 0.0652 0.1809 0.6493 0.2402
TSN_}?L(;E‘+§CS§_FlOW Average 0.1438 0.1933 | 0.6658 0.2867
) Weighted Average 0.1489 0.1929 | 0.6682 | 0.2897
Filntisis et al. [37] Average 0.0917 0.1656 0.6266 0.2439

Table 5.12: Performance comparison of various network ensembles on the BoLD validation set, utilizing a
late fusion scheme. The second column specifies the score fusion method, i.e., maximum, simple or weighted
averaging. Performance metrics are presented in the range [0,1].

art of 0.2439 ERS on the BoLLD validation set by a large margin, as it was recently achieved
by Filntisis et al. [37].

Figs. 5.8 and 5.9 summarize the results for the 26 discrete emotion categories and the
continuous VAD dimensions relative to the AP and R? performance metrics, respectively.
In addition, Fig. 5.10 shows the Jaccard similarity coeffiecient (JC) for all samples in the
validation set. As a detection threshold for each emotion category, we pick the equal error rate
(EER) point, i.e. the value at which precision equals recall. Notice that even our best model is
incapable of predicting a single correct emotion for almost half of the samples in the validation
set. Fig 5.11 shows the absolute error (AE) across the VAD dimensions, for all samples in the
validation set. In the case of continuous emotion regression, the achieved performance boost
is far less noticeable, indicating the increased difficulty of the task compared to multi-label
discrete emotion classification.

Subsequently, we use our best performing network ensemble so as to tackle the task of
emotion recognition on the official BoLD test set. The predictions for our final submission
are produced using K = 25 segments for both TSN-RGB and TSN-Flow. A comparative
study regarding the performance and complexity of our proposed model and earlier published
works is presented in Table 5.13. The proposed network ensemble manages to surpass the
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emotion category, as obtained on the BoLD valida- emotional dimension, as obtained on the BoLD val-
tion set, using our proposed network ensemble. idation set, using our proposed network ensemble.
1.0 4 Model ~ Mean JC Model ~ Mean AE
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Figure 5.10: Jaccard similarity coefficient (JC) Figure 5.11: Absolute error (AE) across the VAD
per sample in the BoLD validation set, sorted in dimensions, per sample in the BoLLD validation set,
descending order. sorted in ascending order.
# Parameters | Regression Classification
Model (x10°) mRZT mAPT | mRAT | RS
Luo et al. [67] N/A 0.1030 0.1714 0.6352 0.2530
Filntisis et al. [37] 111.5 0.1141 0.1796 0.6416 0.2624
Ours 71.4 0.1597 0.2185 | 0.6826 | 0.3051

Table 5.13: Quantitative results on the BoLD test set regarding our proposed network ensembles and other
published works. Performance metrics are presented in the range [0,1].

current state-of-the-art of 0.2624 ERS, as achieved in [37], by a considerable margin on all
metrics, thus verifying the superiority of our technique. As far as complexity is concerned,
our model does a good job at maintaining a lower number of trainable parameters through
the efficient utilization of multiple input streams and shallow feature extractors (ResNet-18,
Wide-ResNet-18), in comparison with previous implementations that made use of deeper
ConvNet backbones [37] (ResNet-50 & 101) and disentangled the various input streams all
together [67].
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we addressed the problem of visual emotion recognition in context, on the
basis of images as well as video sequences. More importantly, we pushed the boundaries of
the automated emotion recognition process to fully uncontrolled, “in-the-wild” settings with
the conduction of extensive experiments on two newly assembled and challenging databases,
namely the EMOTions In Context (EMOTIC) and Body Language Dataset (BoLD).

Our ablation studies on EMOTIC revealed that the joint utilization of multiple input
streams such as the body, context, face and pose results in an cumulative boost in emotion
recognition performance. This multimodal approach to the problem proves to be essential
when emotion recognition is performed in “in-the-wild” environments and the unpredictabil-
ity of real-world scenarios can render one or more of the aforementioned sources of affective
information temporarily inaccessible. As the various input streams function in a complemen-
tary manner to each other, the model gains the option of relying on the occasionally most
reliable modalities while neglecting others, depending on the availability of each source of
affective information.

Furthermore, we noticed that the scene and surrounding environment as depicted in
an image can be closely related with the emotions shared by the people who are present.
Therefore, we directly infused scene classification scores and attributes as additional features
in the emotion recognition process and to our knowledge we are the first to do so. Our
experiments confirm the validity of our initial intuition.

In addition, we aspired to exploit the categorical emotion label dependencies that reside
within the datasets in an attempt to leverage visual-semantic information. We examined two
separate methodologies, one based on Graph Convolutional Networks (GCN) and the other
based on metric-learning, with the utilization of GloVe word embeddings constituting the
common denominator between the two. Both approaches led to improvements in categorical
emotion prediction. By combining all of the aforementioned proposed methodologies, we
managed to achieve a competitive score of 31.29% mAP in the EMOTIC test set, falling
behind of the current state-of-the-art by a mere 0.2%, provided the exclusion of depth data.

Subsequently, we aimed at extending the concept of context-based visual emotion recog-
nition in the dynamic setting of video sequences. Our goal was to create a unified model that
shared a similar architecture with our previous implementations for the EMOTIC dataset
while being able to process videos. We straightforwardly chose Temporal Segment Networks
(TSN) as the backbone of our network while we also considered using Laban Movement
Analysis (LMA) features and Spatial-Temporal Graph Convolutional Networks (ST-GCN)
as means of skeleton-based learning.
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Following the same architectural principles as in our previous implementations, we ex-
tended the original TSN framework with the inclusion of multiple input streams that effec-
tively encode bodily, contextual, facial as well as generic scene-related features that enhance
the model’s perception of visual context and emotion in general. The combination of a prop-
erly pre-trained ST-GCN and our modified TSN results in significant improvements over the
state-of-the-art techniques with relation to the Body Language Dataset (BoLD), reaching
a maximum of 0.3051 Emotion Recognition Score on the official test set. Additionally, as
we utilized shallow CNN feature extractors, the achieved performance boost comes with no
additional increase in computational cost relative to all previous published implementations.

6.2 Future Work

Many different adaptations, tests, and experiments have been left for the future due to lack
of time (i.e. the experiments with real data are usually very time consuming, requiring even
days to finish a single run). Future work concerns deeper analysis of particular mechanisms,
new proposals to try different methods, or simply curiosity.

Firstly, during our experiments in EMOTIC, we failed to match the performance of the
baseline model [59] on the continuous emotion regression task, even though our implemen-
tation utilized more input streams and deeper CNN backbones compared to the latter. The
actual reasons behind this unordinary behavior still remain unclear and require further re-
search.

Additionally, we faced difficulties in replicating the results of related literature regarding
the inclusion of depth data in the emotion recognition process. Even though we followed every
detail in the description of the provided implementations, we did not receive any additional
improvement and actually noticed a degradation in performance in contrast to the significant
gains reported by Mittal et al. [71]. We presume that the successful incorporation of the depth
modality would require manually pre-training of the CNN feature extractor on additional
RGB-D data.

Lastly, a possible future research direction might be proposals for further exploitation of
the categorical label dependencies and visual-semantic relationships that reside within video
frames and may lead to an additional improvement in categorical emotion prediction. Despite
the fact that the ML-GCN mechanism had been successfully adapted for the static version of
the problem during our experiments on EMOTIC, we did not manage to properly configure
it so as to function as a supplementary component to the TSN framework.
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