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Abstract

There is a plethora of evidence that cell populations are heterogeneous systems in
the sense that properties such as size, shape, DNA and RNA content are unevenly
distributed amongst the cells of the population. The quantitative understanding of
heterogeneity is of great significance, since neglecting its effect can lead to false
predictions. Cell population balance models are used to address the implications of
heterogeneity and can accurately capture the dynamics of heterogeneous cell
population. In particular, cell population balance equations are first-order partial-
integro-differential equations and due to the complexity of formulation, analytical
solutions are hard to obtain in the majority of cases. Despite the recent progress, the
efficient solution of cell population balance models remains a challenging task
(Kavousanakis et al. 2009).

At first the modeling of cellular heterogeneity in Lac Operon, a model which is
solved using a free boundary algorithm (Kavousanakis et al. 2009) was analyzed
thoroughly. Furthermore the importance of studying the cells as individuals was
presented and the way of treating the cells as individuals and not as homogeneous
sets, neglecting their heterogeneity was developed.

Next to that, the cell population balance equations were analytically presented and
each term of the Lac Operon model was studied one by one. All the components of
the model such as birth rate, death rate, the partition probability density function, the
boundary conditions and formulas were presented. Numerical methods, including the
finite differences method, the finite elements method and spectral methods that are
usually employed for the solution of most population balance equations were referred,
but basically an alternative to these methods, the so called method of moments as a
tool for the solution of the cell population balance equations was described
(Randolph and Larson 1971).

In addition, the maximum entropy method as a tool for the solution of partial-
integro-differential systems of equations was studied carefully. The way maximum
entropy method works in order to reconstruct the density function given a known set
of moments was presented thoroughly. Furthermore, it was analyzed the way that one
given a number of known moments for a given observation, is able to find a unique
distribution responsible for generating those moments (Abboud et al. 2015).
Additionally, the fact that the maximum entropy method is based on the concept that
the distribution that maximizes the information entropy is the one that is statistically
most likely to occur was persistently analyzed (Mead and Papanicolaou 1984).

In the last part of this diploma thesis, a comparison between the maximum entropy
method of moments and the numerical solution of the CPB problem with the finite
elements method was presented. The convergence between the two solutions was
observed for different number of moments. Furthermore, suggestions for future work
like the solution of the CPB problem in two or higher dimensions and the possibility
of implementing steady-state algorithms (Newton-Raphson), parametric continuation
algorithms (pseudo arc-length continuation), and eigenvalue solvers wrapped around
the maximum entropy method of moments were given.
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MepiAnyin

Yrdpyet mAN00pa EPELVNTIKOV OMOTEAECUATOV OTL To 160L0YIL KLTTOPIKOV
TAnBucpdv gival avopoloyevi cuotiuata, LTd TV Evvola 6Tt To péyebog, To oynua
Kol To  evookvuTtopikd mepieyopevo o€ DNA wor RNA  egivan  avicopepmg
KOTOVEUMUEVO HETAED TV KLTTAP®V TOL KLTTaptkoy TAnBucpov. H &g Pabog
KOTOVON O™ TNG ETEPOYEVELNG EIVOL TTOAD GNUOVTIKY], O10TL 1] AyvONGY| VTG UTOPEL val
odnynoet oe eopaiuéveg mpoPréyelg. Ta 1c0oldyln kuttopikev TAnBvou®V
YPNOUOTOOVVTOL Y100 VO OlOTUIMOOVYV TIC EMMTMOELS TNG ETEPOYEVEWS TMV
KUTTOPIKOV TANBuoudV Kot vo fondnocovy otnv cOAANYN TG SVVOIKNG OTOKPIoNG
MG etepoyévelng avtav. ITo ocvykekpéva, ta 160{0Ye KVTTOPIK®OV TANBLGU®OV
AmOTEAOVV TPMTOPAOLIES LEPIKES SLOPOPIKES EEICADGELG Kot AGY® TNG TEPUTAOKOTNTOG
NG STVTMGY|G TOVG, TIC TEPICCOTEPES POPES Etvat SVGKOAO va eMAVOOHV ovOAVTIKA.
[Mapd 115 Terevtaieg eEeliéelc, n emilvotn Tovg TopapéveL Eva amontnTikd eyyeipnuo
(Kavousanakis et al. 2009).

Apywd, m povieAomoinom TG KLTTAPKNG erepoyévelag tov Lac Operon, evog
LOVTEAOL TO OTOI0 EMAVETAL YPNOYOTOIOVTOS Evay alyopOpo elebBepov cuvopov
(Kavousanakis et al. 2009), avoivdnke die&odkd. Emmnpochitmg, mapovsidotnke n
KPIGIHOTNTO TNG OVAAVOTG TOV KLTTAP®Y MG HOVAJEG Kot avaAvOnKe o TpOTOG va
Swyepiletan Kaveic Ta KOTTAPO ATOUIKE Kot Oyl G OROYEVT] GUVOAD, OyVODVTOS TNV
EMIOPAOT TNG ETEPOYEVELNG.

Ev ovvegelo, ot efomoelg tov  wolvyimv TtV KLTTOPIK®OV  TANOLGUOV
TOPOVGLICTNKAY OVOALTIKE Kot pedetnOnke kot emeénynonke kdbe 6pog tov Lac
Operon woAb mpooektikd. OOl Ol TOPAYOVIEG TOL HOVIEAOL, OTMOC O PLOUOC
vévwnong, o pvBuog Bavdtwong, mn  ovvapmnon moukvotntog mbovotntag, ot
OLVOPLOKEG GLVONKEG Kol OAEG Ol EEIGMOELS, TopovGldoTnKay dleEodikae. Emiong,
&ywe avagopd cg aplOunTikés neBodovg, ol omoieg aE0mOoVVTOL Yo TV EM{ALGN
ooluyimv kuttapk®v TANducudV, OT®G 1 HEBOOOC TV TEMEPAGUEVOV SLOPOPOV, M
puébodog TV mEmMEPAGUEVOV  oTolElmV, @acuatikés pEBodol, aAAd  Kupimg
TapovclioTNKe N LEB0dOG TG LEYIOTNG EvTpomiag, 1 onoia adlomomOnke g epyaleio
ywo. v enilvon tev eoluyiov kuttapikov tinbvopmv (Randolph and Larson
1971).

Emiong, pedetOnke n néBodog tng HEYIoTNG evIpomiog ¢ epyaieio ylo tnv emilvon
CLOTNUATOV HEPIKAV OaPopk®dV eElomaemv. [Tapovoidotnke o TpoOTOS e ToV omoio
YIVETOL 1 AVOKATOGKELT] TG GLVAPTNONG TLKVOTNTOG, 000EVTOC VO apBOD POTMOV.
Axoun, availvdnke o TPOTOC HE TOV OMOI0 KAMOOC MOV TOv £xel d0bel évag
CLYKEKPIUEVOS apBUOC POtV pUmopel vor kKaToANEEl 68 (o HOVOSIKY GuVEpTNoN
TUKVOTNTOG 1 omoio pokvmTel and Tig ev MOy pomég (Abboud et al. 2015) xon
napovctdotnke 1 UEBodog ¢ Héylotng evipomiog, n omoia Pacileror oto yeyovog,
TG 1N KOTOVOWUY 1 omoia HeYIoTomolel v evipomion €ivar avth 1 omoia givon mo
mBavo va cvpPei (Mead and Papanicolaou 1984).

210 TEAELTAO PEPOG OLTNG TNG OIMAMUATIKNG EPYOCIOG, TOPOVGLAGTNKE 1 GVYKPION
HETOED TMV OMOTEAECUATMV TO. OTOil0L TPOEKLYAY OO TNV eMiAvon TV 1oolvyiwv
KUTTOPIK®OV TANBvoU®V e T HEBOSO TG HEYIOTNG EVIPOTIOG TV POTMV KOL LE TN
nuébodo tmv memepacpévav ototyeiov. H odykpion petald tov omoteAecUITOV TOV
dvo peBddwv mapatnpnOnke yuo ddpopovg aplBuovs pondv. Emiong, d6Onkav kot
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TPOTACELS Yo UEANOVTIKY €pevva, MG TPOG TNV €miAvon 160luyimv KuTTOPIK®V
TANOBLGUOV GTIC 000 N OTIG TPELS JLOTAGELS, KOOMS Kot 1 TBavoTNTU EMIAVGTG TOVG
HEC® NG EQOPLOYNS aAyopibumy, ommg eivor 1 péBodog Newton-Raphson, n pébodog
pseudo arc-length continuation, aAAd ko pe emAvTEG 1G10TIUGV, OAOL PacIoUEVOL 6TN
LéEB0SO NG HEYIOTNG EVIPOTIOG TOV POTMV.
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1 Modeling of cellular heterogeneity in Lac Operon

Recent developments in molecular biology provide us with a lot of interesting and
significant tools for the study of biochemical processes, not only at the single-cell
level but also at the cell population level. There is a plethora of systemic biology
techniques, which have been used, in order to understand complex cellular processes.
However, the phenotypic behavior of a cellular population is not solely the result of
the interactions between the numerous ingredients in each of the individual cells, but
also arises as the result of the complexity, the direct and indirect interactions between
the cells of a cellular population and their microenvironment. The intercellular and
intracellular interactions lead to important phenotypic fluctuations from one cell to
another and this biological phenomenon is known as heterogeneity. These phenomena
have been observed in numerous biological systems, e.g. in systems which contain
merges of genes and lacZ (Aviziotis et al. 2015).

The main goal of most of the medical applications and approaches, which consider
pathological conditions, is the handling of the cell population as a whole and not the
handling of each cell individually. All of the experimental techniques, which are
available to engineers such as DNA sequences, liquid chromatography, mass
phasmatometry, use digital information and data, which correspond to a cell
population and not to cell individuals. The heterogeneity of cell population can lead to
inhibition of efficient production biotechnology products and their reduced ability to
adapt to abrupt environmental changes. Therefore, understanding the dynamic
relationship between the phenomena that take place at both the cell individual level
and the cell population level could provide with significant insight and information on
the detection, prognosis and treatment of various diseases, such as cancer (Mantzaris
2006). As a consequence, the dynamic evolution of all the phenomena which take
place should be studied in depth, because the right mathematical approach to solution
of the problem is a means to better understand the various sub-processes and the
effect of heterogeneity on the population phenotype.

A lot of researchers have made the assumption that cell individuals act in a
homogeneous manner, but in reality cell individuals act differently during a specific
time period. For example, if one examines resistance and death rates in a cellular
population, it is the older cells that are more resistant and their death rate is smaller.
On the other hand, young cells tend to protect older cells, as a result young cells die
trying to protect the older one. Consequently, the older cells present a small death rate
and remain untouchable, but this is actually something undesired (Mantzaris 2007).

The heterogeneity in isogenic cell populations where each cell carries the same
genetic network originates from two basic independent sources. The first source of
heterogeneity comes from the unequal distribution of the amounts of the majority of
intracellular components of mother cells (with the exception of DNA) between the
daughter cells and this phenomenon is known as extrinsic heterogeneity. When
mitosis occurs the content is unevenly distributed amongst the daughter cells. This
phenomenon is repeated after each cell cycle and further enhances heterogeneity. This
exact variation of the intracellular content of the daughter cells leads to different
phenotypes. (Elowitz et al. 2002) proved that this type of heterogeneity has been the
most significant one for a wide range of induction levels in various E. coli strains.
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The second source of heterogeneity is called intrinsic heterogeneity. Regulatory
molecules which control the cellular phenotype are found in very low concentrations.
Furthermore, regulatory molecules control the rate of intracellular reactions, and this
is the reason one can observe random fluctuations in their rates leading even to
different cellular phenotypic behavior. (Mantzaris 2007).

The basic target of the population balance modeling approach is to investigate how
the phenotypic variance at the single-cell level is inherited to the population. The
heterogeneity of the cell population, which affects the behavior of the entire cell
population, demands to study the whole phenomenon as a dynamic procedure. The
mathematical models developed can: (a) take into consideration the intrinsic
heterogeneity amongst the cells of the isogenic population and (b) include the
mathematical formulation of the intracellular processes characterizing the gene
regulatory network at each cell (Kavousanakis et al. 2009).

In CPB models the unknown variable is the number of cells, which at time t have
intracellular content between x and x+dx. CPBs are non linear partial-integro-
differential equations and in general can be solved using numerical and not analytical
methods. During the years population balance equations were solved by a number of
numerical methods, such as the method of weighted residuals using global shape
functions (Subramanian and Ramkrishna 1971), the method of finite elements
using orthogonal collocation (Zhu et al. 2000) and spectral methods (Mantzaris et
al. 2001).

For CPB problems with a priori unknown boundaries of the physiological state
space, free boundary algorithms have been developed (Kavousanakis et al. 2009). In
this work, they illustrated the efficiency of the algorithm for the isogenic populations
carrying plasmids of positive feedback architectures, and the genetic network of
interest was Lac Operon. This genetic network illustrates a non linear behavior,
resulting in bistable behavior over a significant region of extracellular inducer
concentrations. CPBs were utilized in order to answer the question whether the
bistable behavior observed at the single cell level is also present at the population
level.

However, numerical methods solving for the density function of cells can have
significant computational requirements. An alternative to these approaches is the
solution of the CPB problem utilizing the method of moments. The original CPB
problem is expressed in terms of the number density function’s statistical moments,
and we study the evolution of the moments (rather than the density function). In the
general case, formulating the equations as a function of moments requires a closure
for the density function. In this thesis we utilize the maximum entropy method; in
particular, at each time instance we reconstruct the density function given a small
number of moments (problem of moments) based on the maximum entropy
methodology. In particular, given a number of moments we construct a distribution
p(x) that maximizes Shanon’s entropy, S. The method of moments using the
maximum entropy is presented and compared against the finite elements method,
which solves for the density function.
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2 Mathematical modeling of cellular heterogeneity: cell population

balance models

2.1 Cell population balance models for isogenic cells

Figure 2.1. Solution of linear age structured cell population balance model.

CPBs for isogenic cells are developed in a way so that they can incorporate the
dynamics of intracellular reactions (i.e., incorporate the dynamics of the genetic
network) and simultaneously model the dynamics of a cell population taking into
account the growth, death and mitosis dynamics of each cell.

CPBs (Cell Population Balance Models) are partial-integro-differential equations,
with unknown variable the cells per volume unit F(x,t)dx that for a specific time t
has intracellular content between x and x+dx. The dynamics of the distribution
function F(x,t) is given by the following deterministic model (ignoring the
stochastic processes modeling intrinsic heterogeneity):

OF(X.1) O[R(X)F(x,1)]
ot OoX

2 j“ T(x')P(x, x')F (x',t) dx’

+IT(X)F(x,t) =...

2.1

oF (X, t . L s .
% : time derivative of distribution function,
O[R(X)F (x,1)] increase rate, which takes into account the cell loss
OX : due to the volume increase,
T(X)F (x,1): transfer term, due to cell loss during their transfer to

the next phase,

ZI:m”F(X')P(x,x')F(x',t)dx':

birth rate, which describes birth of cells of
intracellular content x from the division of all cells
with greater intracellular content. The integral is
multiplied by two, because during birth each cell
divides into 2 cells.

P(x,x":

Partition distribution function, which describes the
fraction of intracellular content which is transferred to
each of the daughter cells during division,
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An alternative formulation of the deterministic model above is given by the
following formula which takes into consideration the probability density function,
which describes the number of cells with intracellular content x during time t divided
by the total number of cells at the same time.

on(x, + O[ROIN(x,B)] +T(X)n(x,t) =
ot OX ' 2.2

2™ F()POx NG, D 8-t | TOOMG80

on(x,t) Accumulation of cells with intracellular content x in the
o control volume.
O[R(X)N(x,1)] Loss rate, by which cells with intracellular content x get
OX . lost from this content due to intracellular reactions.
Rate at which cells with intracellular content x are
r()N(x,t) “consumed” due to cellular mitosis, which leads to the
T creation of cells with intracellular content which is less
than x.

Birth rate, which describes birth of cells of intracellular
content x from the division of all cells with greater
intracellular content.

2[ T(X)P(x, X)N(x', 1) dX':

Dilution term, which is derived from (2.1) when

Xmax expressed in terms of n(x,t). This term makes sure that
n(x,t) I r(xn(x,t)dx: we end up in a steady state solution (because cells at a
0 space interval x, x+dx are divided by the total number

of cells).

In order to obtain a unique solution for the (2.2) we need to impose appropriate
boundary conditions. Here, we apply the following containment boundary conditions.

n(0,t) =n(X,.t) =0 2.3

The unknown function in (2.2) is the function n(x,t), which is the probability
density function (PDF). Probability density function has to satisfy condition (2.4),

J.OXW n(x,t)dx =1 2.4

According to Equation 2.2 the dynamic behavior of a cell population is defined
completely by 3 functions, which are widely known in the bibliography as Intrinsic
Physiological State Functions (IPSF) and they formulate processes that occur at the
single-cell level.



Computational Biomechanics 21

2.2 Intrinsic physiological state functions (IPSF)

Network of chemical reactions, which contains rates of

R(X): production of all intracellular species described in the
model.
Single-cell division rate, which describes the rate at
I'(x): which a cell with content x is divided into two daughter
cells.

Partition density function, which describes the
P(xX, X probability by which a mother cell with intracellular

’ content x’, gives birth to a daughter cell of content x
and a daughter cell of content x’-X.

2.3 Genetic network with positive feedback architecture

The genetic network which is being under investigation is called Lac Operon (Figure
2.2). It is comprised of the promoter lac P, from the operator lac O and three genes
that encode the proteins which are important for the metabolism of lactose. Lac Y
encodes lac permease, which contributes to the transportation of lactose or something
analogue to her, like IPTG (Isopropyl p-D-1-Thiogalactopyranoside) inside the cell.
Furthermore, lac Z encodes enzyme [-galactosidase and lac A (transacetylase)
(Kavousanakis et al. 2009).

The inhibitor lac | binds to the operator site (part of DNA prior of the three genes of
Lac Operon) and prevents binding of the RNA polymerase, thus inhibiting
transcription of the genes' DNA into the corresponding mRNA.

However, in the presence of lactose, TMG or IPTG, the inducer is transported into
the cell (via diffusion initially), where it binds to the lac I repressor in a bimolecular
reaction. Thus, some operator becomes free of lac | and the transcription is initiated.
Upon expression of lac Y, further transport of the inducer occurs at a higher rate and
as a result, further expression of the three Lac Operon genes is initiated. Thus, in this
network, the expression of lac Y gene enhances further expression of itself and in this
sense the network functions as an autocatalytic system or a positive feedback loop. It
is well known that such networks exhibit bistable behavior at the single-cell level
(Mantzaris 2007). The arising question is whether this property is inherited to the cell
population level. The answer to this question can be given initially by formulating a
simple mathematical model, which captures the basic features of the positive feedback
loop architecture (Mantzaris 2005).

extracellular inducer IPTG

otes rat . (isopropyHi-D-thiogalactopyranoside )
promoter  operator

l lacl | P .D | lacZ ‘ lacY |\

repressor | p lacY

E%+-Q>+<i::. /

I cell membrane
repressor-inducer &|
complex rs

Figure 2.2. Schematic of the positive feedback loop network, Lac Operon with IPTG induction.
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A simplified network of the intracellular reactions is provided by the following
reaction set (Kepler and Elston 2001).

0, —~-Y
0, —&-Y

Ny

0y, O1: Fraction of free and occupied operator sites,

Y: monomer produced by the gene expression in either the occupied or the
unoccupied state of the operator,
ko, ki: rate constant of gene expression in the unoccupied state and in the occupied
state respectively,
Z: dimer of the gene product, which binds to a free operator resulting an occupied
site,
A: degradation rate constant

Under the assumption that the production rates of monomer product are proportional
to the fractions of unoccupied and occupied sites and that the degradation of Y is a
first-order reaction, the single-cell monomer dynamics are described by,

d—\t( =k,0, + k0, — Y 2.4
0,+0, =1 25
0,Z =a0, 2.6
Y?=p2Z 2.7

The basic assumption of the whole procedure is that occupied and unoccupied states
are in equilibrium with each other and the same happens for the division mechanism.
With the substitution of Equations 2.7 - 2.9 into Equation 2.6 yields,

2
aY _kapriy” - AY 2.8
dr aff+Y?

By non dimensionalizating the intracellular content Y and time t, we can reduce the
number of the parameters in Equation 2.10 as,
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Y
X=— 2.9
Y
t= 1* 2.10
T
Setting:
klt* =1 2.11
Y
k
r=-"2 212
K,
(04
p= Y_zﬁ 2.13
1
5=t 214

and substituting into (2.11 - 2.16) yields the following dimensionless production rate
of the dimensionless lac Y amount (the intracellular content x) (Kavousanakis et al.
2009):

dx_
dt

zp+Xx°
R = -0 .
(x) DX X 2.15

In this model the rate of x change consists of a nonlinear production term and a
degradation term. The three dimensionless parameters that are observed are as
follows,

7 - relative rate of expression when the operator is free and occupied. The rate of gene
expression in the unoccupied state is significantly lower than that in the occupied
state, which suggests that 7= <<1 (Mantzaris 2007),

p : inversely proportional to the extracellular inducer concentration,
o : dimensionless degradation rate of gene lac Y.

For the scientific solidarity and consistency of the model, the division rate as a
function of the intracellular content (I"(x)) and the partition function (P(x,x"))
which describes the distribution of the intracellular content during the cellular
division to the two newborn daughter cells, are defined and analyzed as follows. The
division rate is given from:
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This way of expression of the division of the intracellular content has been applied in
a plethora of theoretical and computational approaches of the problem of CPBs
(Mantzaris 2007). The basic purpose for a choice like that is that this expression
describes experimental data of cell population yeast. A formula for the partition
distribution function is:

1

2(1- 1)

P(x,x')=%5(fx'—x)+ s((1-f)x'-x) 2.17

where ¢ is the Dirac function and f is the fraction of intracellular content which is
given by the mother cell to the smaller daughter cell. It is obvious from this definition
that f ranges from 0 to 0.5. In case that f =0.5, symmetric division events are

observed, on the other hand, low values of f correspond to more asymmetric division
events during the cellular division.

The above formulation corresponds to the case of discrete partitioning. However,
there is also an alternative formulation, which is called symmetric partitioning. In this
case the partition density function is a continuous function. More precisely, watching
the following equation one can observe that the given from the mother cells to the
daughter cells intracellular content is no longer a constant fraction of the content. The
reason is that the intracellular content is given by the mother cells to the daughter
cells with a specific probability.

q q _y
p(x, y)zl I'amma(2q+2) XV (X))
y Tamma(q+1)Tamma(q+1){ y

11 Tamma(2q+2) V(1 )
P(&y)= X V/Famma(q+l)ramma(q+1)(V/J (1 j

2.18

g: the continuous and symmetric partitioning,
ramma: is a function defined for real x>0 by the integral T'amma(x) = I: e 't*dt

The mathematical model which was described above is an approach of the problem
of CPBs, which though does not take into consideration the “randomness” that
characterizes small cell populations. Although there are a lot of methods, which are
appropriate to study the randomness of a problem like that (Monte Carlo, Karhunen
Loeve, etc), in the current Diploma Thesis we solve the model above using the
maximum entropy method of moments. Additionally it must be pointed the fact that
the computation of the solution of a CPB problem is difficult and time consuming.
CPB models are a system of partial-integro-differential equations, which needs
special treatment and increases the computational requirements. We present an
alternative approach based on the method of the maximum entropy method of
moments, which saves us time, reduces computational cost and helps us end up faster
to a solution.
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3 Numerical solution of cell population balance models with the
maximum entropy method of moments

3.1 From the method of moments to the maximum entropy method

Population balance equations (PBE) are widely used as modeling tool for particulate
systems that estimate the dynamic evolution of particle size distribution (PSD) as a
function of process operating conditions. They have been used in crystallization,
granulation and milling to support process design, optimization and control.
Analytical solutions of PBE are available for only special cases. Therefore, numerical
methods are usually employed for their solution. These numerical methods can be
broadly classified into two main categories: the class of the methods that solve
directly for the number density (e.g. least square method, Monte Carlo methods (Lin
et al. 2002), the discrete population balance methods (DPB) methods (Hounslow et
al. 1988) and the class of methods that solve for the moments of the number density
(Diemer and Olson 2002). The most applicable methods for the solution of the
population balance models are the DPB methods. The greatest advantage of DPB
methods is that they -calculate the distribution directly, whereas the main
disadvantages are the computational resources required (Ramkrishna 2008).

An alternative to the DPB is the method of moments (MEM). The method of
moments involve the conversion of the PBE to equations in terms of the moments of
the number density. MOMs therefore have better computational efficiency compared
to the DPB and other approaches, and are particularly used for process flowsheet
simulations and coupling with fluid flows. The MOM solve for the moments in place
of distribution and in some cases moments are all that are required for comparison
with experimental data. The standard method of moments is limited to specific growth
rate expression, breakage and aggregation kernels (Falola et al. 2013). The basic
reason is that for growth rate expression, breakage and aggregation kernels, the
moments equations are not closed. The basic question arisen is, how can someone
pick a closure for the moment equations. There are three ways of providing closures
for the moments equations: (1) Under the assumption that the functional form of the
size distribution is known a priori (Lee 1983). (2) Moments interpolation or
assumption of dependence of moments (Frenklach 2002). (3) Moments inversion
(Diemer and Olson 2002).

Among the three approaches the third one is the most popular; one particular method
is the Quadrature Method of Moments (QMOM). The basic disadvantage of QMOMS
is that one loses the density function, which is approximated as a collection of Dirac
pulses (a representation which is far from reality). However QMOM has been applied
in various fluid flow simulations of particulate processes, and it was first developed
by (McGraw 1997). In this thesis we apply an alternative technique for the
reconstruction of the density function, given a small set of low order moments, and
this technique is the maximum entropy method, which produces smoother density
functions, compared to the ones QMOM generates.
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3.2  Maximum entropy method

The maximum entropy method is based on the concept that the distribution that
maximizes the information entropy is the one that is statistically most likely to occur.
The average rate at which information is produced by a system is called information
entropy. Furthermore entropy can be defined as a measure for how much of a system
is unknown. Higher information entropy means one knows less about a process. The
system with maximum information entropy is the most probable to exist because it is
the system in which the least amount of information has been defined. The
mathematical formulation of the information entropy S, of a distribution 7(x), is

given by the integral, where Q is the support of the distribution (Mead and
Papanicolaou 1984),

S=— j 7(X) In7(x)dx, 31

Given a known number of moments for 7(x), one has to find the distribution 7(x)

which maximizes S subject to those known moments. Our basic purpose is to
calculate the distribution 7(x) which maximizes the information entropy S subject to

the following equation,

kan(x)dx = k=0,1,... 3.2
Q

A1 N +1 is the number of the unknown moments

4, . given finite number of moments for 0<k <N .

By introducing Lagrangian multipliers one can define the entropy functional as
follows,

N N
H :.[[—n(x)ln n(x)+22kxkn(x)}dx—22k,uk 33
Q k=0 k=0
This functional reaches a maximum when the functional derivatives of H with
respect to 7(x) and 4 are zero: OH _o and 25 __0. The first of these
A sn(x)

derivatives does not provide us with any additional information since it returns the
constraints defined in (3.2). However, the second of these derivatives, evaluates

N a(Inn(x)) *1+iﬂ«xk iﬂkxk
Inp()=-1+3 AX' —2—m()=e = =e 3.4
k=0




Computational Biomechanics 28

To calculate the solution of the maximum entropy method, one has to solve for the
Lagrange multipliers 4, . The only way to do so is to solve the following system of
non linear equations,

k
J‘ Xeﬂo+ﬂ,lx+...+lkx dx =1,
Q 35

K
J'Q Xkeﬂo+ﬂlx+...+ikx dx = m

In the current thesis we utilize MATLAB and Python built in solvers for nonlinear
systems, in order to solve the nonlinear system of equations. The Jacobian can also be
calculated; if one denotes the moments based on the maximum entropy solution as,

K
,[lk _ J'Q Xkeﬂo+ﬂix+...+ﬂkx dx 36

then the Jacobian matrix is calculated as follows,

04, O oA,
A O I A A
J= % % % =\ My o 3.7
04y OA oA,
: : ' _[lk JTPR :[lk+k_
ok o T o,

In the above equation £, is the k™ moment of the reconstructed distribution, thus

the Newton solver is going to find 4, when ||z, — | is below a specified tolerance.

In order to solve the prescribed problem initial values are mandatory. It has been
tested and proven that because of problem’s sensitivity the proper initial values for
Gaussian like distributions are the following,

) 3.8
0, otherwise

initia :{—anZﬂ, i=0

These guesses are all based in Gaussian distribution with (¢ =0,0=1). In this

diploma thesis Py Max Ent and Mat Max Ent codes have been used for the
reconstruction of the chosen initial function.
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Mat Max Ent — Py Max Ent

Reconstruction after
the function
calculation -
moments(...)

Input-Moments, Chosen function
bounds, scaling, calculation -

independent variables function of x(..)

Plot and comparisson
between the function and
the entropy function -
plot(..)

Entropy function Solution of the non
calculation - linear system of
enfropy(...) equations - fsolve(...)

Figure 3.1. Flowchart of Mat Max Ent code.

Mat Max Ent is a code written in MATLAB and it is the basic tool that has been
used in order to achieve the reconstruction of the density function given a small set of
low order moments, produce smoother density functions and make the comparison
with the solutions of the CPB problem with the finite elements method.

The only way to reach the final result is using the algorithm above. The results have
all been rechecked being compared to those of the Py Max Ent algorithm that follows.
Figure 3.1 illustrates the flowchart of the Mat Max Ent code written in MATLAB.

The inputs of this code are, the moments, the boundaries and the total points that the
researcher decides to discretize the domain over x axis (1D). Next, follows the choice
of a function, its boundaries, a resolution for the domain (discretization points) and its
moments.

Solution of the nonlinear system of equations is achieved using the fsolve function of
MATLAB or Python and having as input data the moments and the boundary
conditions of the problem. The final steps of the flowchart are the calculation of the
maximum entropy function and the comparison between the maximum entropy
function and the initial function of the problem.

During the calculation of the maximum entropy function one has already calculated
the Lagrangian multipliers after the solution of the nonlinear system of equations and
uses the Lagrangian multipliers and the values over the x domain as input for the
exact calculation of the maximum entropy function. As far as the comparison is
concerned, it is achieved doing both the plots of the maximum entropy function and
the (original) function of the problem.
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reconstruct_c
(Newton solver)

Input - Moments, bounds,
scaling, and independent
variables

residual_c(..)

Continuous

Output: Reconstructed
function, Lagrangian
multipliers

integrand(..)

reconstruct(..)

residual_d(..)

Discrete

reconstruct_d
(Newton solver)

Figure 3.2. Flowchart of Py Max Ent code.

Figure 3.2 shows the flowchart of the Py Max Ent code written in Python. The whole
procedure is quite similar to that of Mat Max Ent, as the basic steps of calculation are
similar. The Py Max Ent code goes from the reconstruction to the Newton solver.
Next follows the calculation of the residual ¢ or the residual d, where the residual ¢
function calculates the integrated right hand side of the moment approximation
function, in case that one studies a continuous (original) function and the residual d
function calculates the integrated right hand side of the moment approximation
function, in case that one studies a discrete (original) function, followed by the
integration of the inner product of domain x and reconstructed moments. The final
step is the comparison between entropy and the chosen (original) function.

The software is written in Python due to its popularity and ease of use in addition to
the availability of a robust multidimensional nonlinear solver through SciPy. The Py
Max Ent code offers a single interface to both the continuous and discrete maximum
entropy reconstructions along with a few useful functions described below.

The implementation of Py Max Ent is very simple and takes form in a single Python
file called pymaxent.py. For proper operation, three separate helper routines are
implemented for the continuous and for the discrete case. These are a numerical
integrator, a residual error calculator, and a Newton solver as shown in Figure 3.2.
The Newton solver is based on SciPy’s multidimensional root finding routine, fsolve.
From the user’s perspective, a single function call is made to the main routine,
reconstruct (discussed below).

To use Py Max Ent, a single call to the function reconstruct is needed. Here,
moments is a required list or array of known moments, rndvar is an optional argument
containing discrete values of the random variable, and bnds is a tuple [a,b] containing
the expected bounds of the resulting distribution. When rndvar is provided, the
reconstruction assumes a discrete distribution. The code returns two quantities: (1) the
functional form of the solution, which can be plotted and, (2) a numpy array
containing the Lagrangian multipliers. In the discrete case, the functional solution is
simply a numpy array of values containing the function values. Finally, Py Max Ent
provides a helper routine named moments that calculates the first k moments of a
function and is useful for verification purposes (Saad and Ruai 2019).
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3.3  Maximum entropy method results and comparison

The comparison between the Mat Max Ent code and the Py Max Ent code is
presented below. More analytically, two benchmark cases are presented. In the first
case a unimodal initial function has been chosen, whereas in the second case a
bimodal initial function has been studied. The basic purpose is to reconstruct the
maximum entropy function and make the comparison with the exact solution.

3.3.1 Unimodal Case

The chosen for reconstruction initial unimodal function is calculated from the
following formula and it is the same for all the following unimodal examples.

e—(X—/J)Z

f(x)=——
200@ 207

3.9

The reconstructed maximum entropy function compared to the initial unimodal
function and the comparison between the Py Max Ent code and the Mat Max Ent code
are shown below. Both solutions converge to the exact one, but one can observe that
when the user increases the number of moments the error between the exact and the
reconstructed solution becomes even smaller. Theoretically, the user can use an
infinite number of moments, but in practice the algorithm requires only a small
number of low order moments in order to reconstruct the original function as it
appears in the figure below.

Domain [-2,2]

251

exact
~——+——1 moments
2 moments
2 [ |—=— 3 moments
#—— 4 moments 2001 — Exart
5 moments 175 4 ™ 5 moments
—*— 6 moments —— B moments
1.5 F|—*— 7 moments 150
—+— 8 moments

0.75
051 0.50

025

J | \_ 0.00
2 5 -1 -0.5 0 05 1 15 2 -20 -15 -10 -05 00 05 10 15 20
X X

(@ (b)

Figure 3.3. Reconstructed entropy function, domain [-2,2], using
(a) Mat Max Ent for different number of moments,
(b) Py Max Ent for eight and five moments.

Figure 3.3 presents the maximum entropy function using (a) the Mat Max Ent code
and (b) the Py Max Ent code. The figure presents the maximum entropy function and
shows the comparison between the two codes, in case that one uses from one to eight
finite moments.
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Domain [0,2]
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175 —— 5 moments
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150

125
w100
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000 025 050 075 100 125 150 175 200
X

(b)

Figure 3.4. Reconstructed maximum entropy function, domain [0,2], using
(a) Mat Max Ent for different number of moments,
(b) Py Max Ent for eight and five moments.

Figure 3.4 presents the reconstructed unimodal chosen function and shows (a) the
Mat Max Ent code using one to eight moments compared to the exact solution and (b)
the Py Max Ent code for five and eight moments in comparison with the exact
solution.

25

error
15

0.5

0

0 0.2 04 06 08 1 12 14 1.6 1.8 2
X

Figure 3.5. Reconstructed maximum entropy function error, domain [0,2], for eight moments using Mat Max Ent.

Figure 3.5 presents the error over the x axis between the exact solution and the
reconstructed maximum entropy function with eight moments using the Mat Max Ent
code.
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Domain [0,4]
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Figure 3.6. Reconstructed entropy function, domain [0,4], using
(a) Mat Max Ent for different number of moments,
(b) Py Max Ent for eight and five moments.

Figure 3.6 shows the reconstructed unimodal function (Eg. 3-9) and shows (a) the
Mat Max Ent code results using one to eight moments, and the comparison with the
exact solution and (b) the Py Max Ent code for five and eight moments, and its
comparison with the exact solution.

. x10*

Figure 3.7. Reconstructed maximum entropy function error, domain [0,4], for eight moments using Mat Max Ent.

Figure 3.7 presents the error over the x axis between the exact solution and the
reconstructed entropy function with eight moments using the Mat Max Ent code.
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3.3.2 Bimodal case

In statistics a multimodal distribution is a probability distribution with more than one
peaks or “modes” which may also be referred to as a bimodal distribution, when we
talk about a distribution with two peaks. These appear as distinct peaks (local
maxima) in the probability density function. Mathematically a bimodal distribution

most commonly arises as a mixture of two different unimodal distributions.

The chosen function for reconstruction initial bimodal f is calculated from the

following formula and it is the same for all the following bimodal examples.

(x—#0 )2 (X—ﬂl)z

2 1 - 2

1 —

f(X)=—"—e *@ e %% 3.10
20, 2x 20\ 21
Domain [-1,1]
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1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1
X
(@
4 1
— Exact
—+— 5 moments
31 —— 8 moments
w 24
1 -
0 <
-1.0 -0.5 0.0 0.5 1.0
X
(b)

Figure 3.8. Reconstructed maximum entropy function, domain [-1,1], using
(a) Mat Max Ent for different number of moments,
(b) Py Max Ent for eight and five moments.

Figure 3.8 illustrates the reconstructed bimodal function (Eq. 3-10) and shows (a)
the Mat Max Ent code results using one to eight moments compared to the exact
solution and (b) the Py Max Ent code for five and eight moments in comparison with

the exact solution.



https://en.wikipedia.org/wiki/Probability_density_function
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Domain [0,1]
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Figure 3.9. Reconstructed maximum entropy function, domain [0,1], using
(a) Mat Max Ent for different number of moments,
(b) Py Max Ent for eight and five moments.

Figure 3.9 shows the reconstructed bimodal function (Eq. 3-10) and depicts (a) the
Mat Max Ent code results using one to eight moments, its comparison against the
exact solution and (b) the Py Max Ent code results for five and eight moments, and its
comparison with the exact solution.
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Figure 3.10. Reconstructed maximum entropy function error, domain [0,1], for eight moments using Mat Max
Ent.

Figure 3.10 presents the error over the x axis between the exact solution and the
reconstructed entropy function with eight moments using the Mat Max Ent code.
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Domain [0,2]
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Figure 3.11. Reconstructed maximum entropy function, domain [0,2], using
(a) Mat Max Ent for different number of moments,
(b) Py Max Ent for eight and five moments.

Figure 3.11 illustrates the reconstructed bimodal function and depicts (a) the Mat
Max Ent code using one to eight moments, original function given from (Eq.3-10) and
(b) the Py Max Ent code for five and eight moments, and its comparison with the
original function.
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X

Figure 3.12. Reconstructed maximum entropy function error, domain [0,1], for eight moments using Mat Max
Ent.

Figure 3.10 shows the error over the x axis between the exact solution and the
reconstructed maximum entropy function with eight moments using the Mat Max Ent
code.
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4 Results

4.1 Introduction

In this chapter we present the results of the solution of the population balance
equations using the maximum entropy method of moments. The maximum entropy
method of moments is compared against the finite elements method. The basic goal is
to solve the non linear system of partial-integro-differential equations reducing the
computational cost. This is achieved by using the maximum entropy method of
moments, because one goes from a system with a few thousands of equations
(resulting in from the discretization of the partial-integro-differential equations), to a
system much simpler to solve, with a number of equations equal to the number of the
chosen moments. The basic question was, is it even possible to capture accurately the
density function by evolving only a few equations for the moments evolution? All the
codes are written in and the research was made making use of the commercial
software MATLAB R2020b and Spyder 5.0.0. The simulations were performed in
Windows environment.

4.2 CPB problem expressed with moments

CPB expressed in the physical domain - discrete partitioning

Given the expressions (2.17), (2.18), and (2.19), the CPB model for isogenic
populations which carry the Lac Operon gene regulatory network reads:

%$+§E§%§Q£24{ésymﬂxj):%{fz@Jmnf?ij+m

= ((1— fx ><x>]m o5 't]‘”(x’t”:w[&jm“(X'”"X

4.1

Multiplying both terms of the equations with the term x* and integrating the
expression (4.1) from zero to x__, the desirable expression of the method of moments

is received, as follows:

max !

]

[

0

dx+ [ ===

0
T%[fxx J xdx+
0
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Il f( } 1_Xf,tjxkdx—...
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(R(X)n %) kg s I(LJ n(xt)x“dx=..
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© k
anx —%, it follows that the expression (4.2) receives the following

0
form,

ﬂk +‘R(x)n X,t) X ‘ —jR(x)n (%, t)kx" 1dx+'[[iJ n(xt)x“dx=...
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CPB expressed in the normalized domain - discrete partitioning

Equation 4.3 is used when one works in the physical domain, while for the
normalized domain the researcher can follow the same steps, but Equation 4.1 is
changed and the particular CPB problem is formulated as follows. In order to confront
with the problem of the unknown boundary for the intracellular content, we first
normalize the physiological state space with respect to the average intracellular

content (x),

0500 T

First the transformed density function g(&,t) is defined as,

n(x,t)dx=g(&,t)d& 45

and differentiating (4.5) with respect to time and combining with (3.1) we derive the
following relation for the time derivative of n(x,t),

4.6

dt  z.|dt (x) dt o

ﬁzi[dg 1 d@@}

From (4.1), (4.4), (4.5) and (4.6) the transformed density functions is calculated as,
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Taking the first-order moment of (4.1) and applying conservation of mass for the
intracellular component at cell division, leads to the equation,

4z -(x) () (&.0)ds

- fron

4.8

Now that the first order moment is transformed, one needs to multiply both parts of
the equation with the term &* , then integrate from zero to one and consequently (4.7)

receives its final form.
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4.9

After both parts of the equation are multiplied by &*, follows the observation that

1 k
J._agé: dX:d_
I "t dt

A and consequently expression (4.9) receives its final form,
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CPB expressed using symmetric partitioning
The number density function dynamics are expressed as follows,
O(R(X)N(x,t
an AREINCSD | kyn(x,t) =
ot OX 4.11

ijxm“l“(y) P(x,y)n(y,t)dy—n(x,t)foxmaxl“(x)n(x,t)dx

Equation (4.11) is formulated for the fixed normalized domain

é‘Z:x

max

¢ €[0,1], where

n(xt)dx=n(&t)dé =n(xt)x, =n(&7)=

4.12
N(X,t) Xy =N(&,7)
and differentiating with respect to r,
o(n(x,t)x n
(0 te) _20015)
or
[an OX anj ax on
max _:>
ox ot Ot 62’ or
{a max max) 1a(fxmax)+a_n}+(xmax)‘lﬁaxmax :a_n
ot ot or Or
413
OX o _1 on ., on 1 Oy _ on
{67 f } () 1 or 8T:>
on ~ on on
— &N (A Xy — =— =
Xmax or 8§ or Ot
on_ 1 o 1 Oy a(én)
or X o0t X 6T o0&
The formulation of the reaction rate R(x) in terms of the new variable &, e.g. if
zp+ X
R -0
(=" - ox=
2
ﬁ(g =ﬂp+[§xma)(] - [5Xma\x:|:>
P +[E X e | 4.14
3| ()L n o
o) _1™%, ") 1 _a(R(9)N) 1
OX o0& X I
The division rate is given by,
N |
F(0) =X = 1(£) = (&) = T (=T ()0




Computational Biomechanics

41

if the partition probability density function is given by,

q a .y
P(x, y)zi I'amma(2q+2) XV X))
y Tamma(q+1)Tamma(q+1){ y y
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4.16

Following,

20" D(y)P (x y)n(y)dy =2] T(w )P (£.0)n(v)dy
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and the dilution term,

nf,” T(y)n(y)dy =
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The derivation of the dynamics of n is given by,
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Multiplying both terms of the equations with the term x* and integrating the
expression (4.7) from zero to x__ , the desirable expression of the method of moments

is received, as follows.

jom” aart]x +‘R(x)n X,t)X“

e J' ROON (X, t)kx“dx + I (x,t)xdx =..

J~0Xmax 2Xk J‘Xxmax F(y) P(X, y)n(y,t)dydx—

Xmax ~

x
3
S
%

—dx—%& j R(X)n(x,t)kx"Ldx=0

Xmax Xmax J. ot
k 0 0 N
IO n(x,t)x jo F(x)n(x,t)dxdx >...

Xmax X,

%: J REON(x,t)kx dx — 1 L (x)n(x,t)x“dx+...
1)

o

Xmax

n(x,t)xkj'oxmaxl“(x)n(x,t)dxdx

4.20




Computational Biomechanics 42

4.3 Numerical solution of the CPB problem

4.3.1 Discrete partitioning

As far as the results of this diploma thesis is concerned, simulations with the
maximum entropy method of moments are performed for various parameter values of
f and p and compare the results against a finite element code which was implemented
in (Kavousanakis et al. 2009) using COMSOL Multiphysics software. The results of
a transient simulation of the system of equations subject to the boundary conditions:

(@) n(0,t)=n(X,t)=0 for the case that one solves the CPB problem in the

physical domain and (b) g(0,t)=g(1t)=0 for the case that one solves the CPB
problem in the normalized domain are thoroughly presented and explained.

The results of a transient simulation of the system of equations of isogenic cell
population with Lac Operon genetic network are depicted in Figure 4.1. for the
following parameter values: f =0.40,m=3, p=0.05, 7=0.03, §=0.05, z,_ =4.
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Figure 4.1. Simulation of a cell population using the maximum entropy method of moments in the physical
domain. Parameter values:
f=0.40, p=0.05, m=3.
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Parameter values:

Figure 4.2. Simulation of a cell population using the maximum entropy method in the physical domain.
f=0.25, p

In Figure 4.2. the evolution of the number density function of cells is depicted again,
but it can be seen that it takes longer time for the system to reach a steady state

solution.
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Figure 4.3. illustrates the time evolution of the average intracellular content (x)

with respect to time t for the case that one uses four, five and six moments in order to
reconstruct the density function. It is observed that for five and six moments the
evolution of the average intracellular content using the maximum entropy method is
almost identical to the one using the finite elements method.

In Figure 4.4. the reconstructed distribution using the maximum entropy method of
moments with four, five and six moments is presented and the maximum entropy
method is compared with the one computed with the finite elements method.
Although the maximum entropy method solves a system of maximum six ordinary
differential equations — compared to the one thousand equations that the finite
elements method needs to solve - it is shown again that the maximum entropy method
presents almost identical results with those of the finite elements method for moments
bigger than four as shown below.
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Figure 4.3. Time evolution of average intracellular content
with four, five and six moments
for =0.40, p=0.05, m=3,
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Figure 4.4. Reconstructed distribution for time t=10,
with four, five and six moments,
for f=0.40, p=0.05, m=3.
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In Figures 4.5. and 4.6., the solution of the CPB problem is depicted for the
parameter values: f =0.4,m=1, p=0.05, #=0.03, §=0.05, z_ =4. The results

are presented for time t =10 which is the final time of our time integration. Based on
the results from the previous example, a number of six moments has been chosen in
order to calculate the evolution of the intracellular content with respect to time and the
reconstructed density function. In Figure 4.4 the maximum entropy method of

moments when applied in the physical domain [0,4<x>] is compared to the

normalized domain [0,1]. As it is observed, system reaches steady state both in the
physical domain and the normalized domain.

Figure 4.6. shows the comparison of the reconstruction of the density function
between the maximum entropy method of moments in the physical x and the
normalized domain & and the finite elements method. It is observed that the results of
both the physical and the normalized domain converge to those of the finite elements
method again.
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Figure 4.5. Time evolution of average intracellular content
with six moments, for f=0.40, p=0.05, m=1.
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Figure 4.6. Reconstructed distribution for time t=10,
with six moments, for f=0.40, p=0.05, m=1.
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In Figures 4.7. and 4.8., the solution of the CPB problem is depicted for the
following set of parameter values: f =0.25,m=2, p=0.1, #=0.03, §=0.05,

z,... = 4. The results are presented for time t =10.

More precisely, Figure 4.7., presents the evolution of the average intracellular
content for the physical domain [0,4<x>] and makes the comparison with the one of

the normalized domain [0,1]. As it is seen, both solutions are quite similar.

Figure 4.8., illustrates the reconstructed distribution as it is calculated using not only
the maximum entropy method of moments applied both on the physical and the
normalized domain but also the finite elements method using COMSOL multiphysics.
It is observed that all the three solutions converge to similar results.
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Figure 4.7. Time evolution of average intracellular content
with six moments, for f=0.25, p=0.1, m=2.
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Figure 4.8. Reconstructed distribution for time t=10,
with six moments, for f=0.25, p=0.1, m=2.
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Figures 4.9. and 4.10. depict the solution of the CPB problem for the following set of
parameter values: f =0.25,m=2, p=0.05, #=0.03, §=0.05, z, =4. Theresults

of the maximum entropy method of moments both in the physical domain and the

normalized domain are compared with those of the finite elements method using
COMSOL Multiphysics.

More precisely, Figure 4.9., presents the evolution of the average intracellular
content for the physical domain [0,4<x>] and makes the comparison with the one of

the normalized domain [0,1]. As it is seen both solutions are identical.

In Figure 4.10., the reconstructed distribution of the density function is presented.
The results of the maximum entropy method of moments are compared with those of
the finite elements method and as it can be seen they are almost identical. A small
error between the solution of the maximum entropy method and the finite elements is
presented, but it is quite small if one thinks that maximum entropy method of
moments solves 6 ODEs while finite elements solve one thousand of them.
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Figure 4.9. Time evolution of average intracellular content
with seven moments, for f=0.25, p=0.05, m=2.
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Figure 4.10. Reconstructed distribution for time t=10,
with seven moments, for f=0.25, p=0.05, m=2.
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In Figures 4.11. and 4.12., the solution of the CPB problem is depicted for the
following set of parameter values: f =0.25,m=2, p=0.15, #=0.03, §=0.05,

z,... =4. The results are presented for time t =10 at which the system has reached a
steady state solution.

Figure 4.11. illustrates the evolution of the average intracellular content for the
chosen time interval [0,10]. As it is easily observed system reaches steady state in
physical domain and the comparison is made between physical domain and COMSOL
Multiphysics. Figure 4.12., shows the reconstructed distribution of the density

function for the physical domain [0,4<x>] and it is shown that the solution of

maximum entropy method of moments is quite similar with the one of the finite
elements method.
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Figure 4.11. Time evolution of average intracellular content
with seven moments, for f=0.25, p=0.15, m=2.
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Figure 4.12. Reconstructed distribution for time t=10,
with seven moments, for f=0.25, p=0.15, m=2.
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Figures 4.13. and 4.14. depict the solution of the CPB problem for the following set of
parameter values: f =0.40,m=2, p=0.15, #=0.03, § =0.05, z,, =4. The results

are presented for time t=10, however it seems that this time the system has not
reached a steady state solution yet.

More precisely, Figure 4.13., presents the evolution of the average intracellular
content for the physical domain [0,4<x>] and makes the comparison with the one of

the normalized domain [0,1]. As it is seen both solutions are totally identical.

In Figure 4.14., the reconstructed distribution of the density function is presented.
The results of the maximum entropy method of moments are compared with those of
the finite elements method and as it can be seen they are quite similar. It seems that in
this case the maximum entropy method of moments in the normalized domain works
better than this in the physical domain. However, all the three solutions are close
enough.
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Figure 4.13. Time evolution of average intracellular content
with seven moments for f=0.40, p=0.15, m=2.
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Figure 4.14. Reconstructed distribution for time t=10,
with seven moments for f=0.40, p=0.15, m=2.
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4.3.2 Symmetric partitioning

Symmetric partitioning is another way to express the CPB problem of the isogenic
cell population with Lac Operon genetic network and rewrite the formulas in order to
use maximum entropy method moments and conclude to a solution. As it was seen in
(4.16) the partition probability density function changes and the mother cells stop
giving their intracellular content under discrete values to the daughter cells and start
sharing their intracellular content under a specific probability. As a consequence, the
results that have to do with the alteration of the allocation of the cells, the average
intracellular content evolution and the reconstruction of the density function change
dramatically. Next, we present simulations performed with maximum entropy method
of moments for various parameter values of L and p and compare the results against a
finite element code which was implemented in (Kavousanakis et al. 2009) using
COMSOL Multiphysics.

The results of a transient simulation of the system of equations of isogenic cell
population with Lac Operon genetic network is depicted in Figure 4.15. for the
following parameter values: L=5, q=2, p=0.15, #=0.03 and 6 =0.5.
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Figure 4.15. Simulation of a cell population using the maximum entropy method for the symmetric partitioning
case. Parameter values:
L=5, g=2, p=0.15, n=0.03, 6=0.5 and six moments.
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Figure 4.16. Simulation of a cell population using the maximum entropy method for the symmetric partitioning
case. Parameter values:
L=2, g=2, p=0.4, n=0.03, 6=0.05 and seven moments.

Figure 4.16. illustrates the evolution of the number density function of cells. It is
observed that cell density function fluctuates from t=1.5 to t=3 and after that time our
system converges to a steady state solution.
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Figures 4.17. and 4.18. depict the solution of the CPB problem for parameter values:
L=5,q=2, p=0.15, #=0.03, & =0.5. The results are presented for time t=1 and
the moments on the specific time are chosen for the reconstruction, in order to check
that the whole system has converged and has reached the desirable steady state
situation.

More precisely, Figure 4.17., illustrates the evolution of the average intracellular
content for the chosen time domain [0,10]. As it is easily observed system reaches
steady state and there is almost total concurrence between Maximum Entropy and
Comsol Multiphysics results. Figure 4.18. shows the reconstructed distribution

evolution from 0 to 4(x).
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Figure 4.17. Time evolution of average intracellular content
with five, six and seven moments, for L=5, q=2, p=0.15, n=0.03, 6=0.5.
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Figure 4.18. Reconstructed distribution
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Figures 4.19., 4.20. and 4.21. depict the reconstructed density function of the CPB
problem for the parameter values: L=5,q=2, p=0.15, #=0.03, §=0.5. The

results are presented for times t=2, t=2.5 and t=10. For all time instances, the
maximum entropy method of moments with the seven moments appears increasing
accuracy in comparison with the five moments and the four moments, because its
results are almost identical with those of the finite elements method.
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Figure 4.19. Reconstructed distribution
with five, six and seven moments, for L=5, q=2, p=0.15.
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Figure 4.21. Reconstructed distribution
with five, six and seven moments, for L=5, q=2, p=0.15.
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Figure 4.22. depicts the evolution of the average intracellular content for the chosen
time domain [0,10]. After a specific period, the system reaches steady state and there
is almost total concurrence between the maximum entropy method of moments and
the COMSOL Multiphysics results.

In Figure 4.23., the reconstructed density function is presented and it can be seen
that the calculated with maximum entropy method of moments density function
coincides totally with the one calculated with the finite elements method. The results
are presented for time t=0.5 and the chosen parameters for our model are L =2,
q=2, p=04, 7=0.03, 5§ =0.05.
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Figure 4.22. Time evolution of average intracellular content
with seven moments, for L=2, q=2, p=0.4, n=0.03, 6=0.05.
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Figure 4.23. Reconstructed distribution
with seven moments, for L=2, q=2, p=0.4, n=0.03, 5=0.05.
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Figures 4.24., 4.25. and 4.26. depict the solution of the CPB problem for parameter
values: L=2,q=2, p=0.4, 7=0.03, § =0.05. The results are presented for times

t=1, t=2 and t=10. For all three cases, the power that the maximum entropy
method of moments has is demonstrated. Even for t=2 the maximum entropy method
of moments reaches a very satisfying approximation of the real solution, proving once
again its power compared to the finite elements method.
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Figure 4.24. Reconstructed distribution
with seven moments, for L=2, q=2, p=0.4, n=0.03, 6=0.05.
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Figure 4.25. Reconstructed distribution
with seven moments, for L=2, q=2, p=0.4, n=0.03, 5=0.05.
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Figure 4.26. Reconstructed distribution
with seven moments, for L=2, q=2, p=0.4, n=0.03, 6=0.05.
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Figure 4.27., illustrates the evolution of the average intracellular content for the
chosen time domain [0,20]. It is observed that there is total convergence between the
maximum entropy method of moments and the finite elements method results. It must
be pointed that even though the maximum entropy method of moments solved a
system of only seven integral differential equations, it appeared total concurrence with
the finite elements method that solved a system of one thousand equations.

In Figure 4.28., it can be seen that the reconstructed density function using the
maximum entropy method of moments has converged totally with the one calculated
with the finite elements method. The results are presented for time t=0.5 and the
chosen parameters of our model are L=2,9=2, p=0.4, #=0.03, 6 =0.05.
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Figure 4.27. Time evolution of average intracellular content
with seven moments, for L=2, q=2, p=4, ©=0.03, 5=0.05.
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Figure 4.28. Reconstructed distribution
with seven moments, for L=2, q=2, p=4, n=0.03, §=0.05.
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Figures 4.29., 4.30. and 4.31. depict the solution of the CPB problem for parameter
values: L=2,q=2, p=0.4, 7=0.03, § =0.05. The results are presented for times

t=1,t=5 and t=10.
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Figure 4.29. Reconstructed distribution
with seven moments, for L=2, q=2, p=4, n=0.03, 5=0.05.
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Figure 4.30. Reconstructed distribution
with seven moments, for L=2, q=2, p=4, n=0.03, 5=0.05.
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Figure 4.31. Reconstructed distribution
with seven moments, for L=2, q=2, p=4, n=0.03, 6=0.05.
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Figure 4.32. illustrates the evolution of the average intracellular content for the
chosen time domain [0,20]. As it is observed system reaches the steady state situation
and there is almost total concurrence between maximum entropy method of moments
and the COMSOL Multiphysics results.

Figure 4.33. presents the reconstructed distribution of the density function for the
domain [O,4(x)]. The results are presented for time t=0.5 and the chosen

parameters of the CPB model are L=5,9=2, p=4, »=0.03, § =0.5.
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Figure 4.32. Time evolution of average intracellular content
with seven moments for L=5, q=2, p=4, 1=0.03, 5=0.05.
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Figure 4.33. Reconstructed distribution
with seven moments, for L=5, q=2, p=4, n=0.03, §=0.05.
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Figures 4.34., 4.35. and 4.36. depict the solution of the CPB problem for parameter
values: L=5,q=2, p=4, 7=0.03, §=0.5. The results are presented for times

t=5, t=10 and t =20.

t=
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Figure 4.34. Reconstructed distribution
with seven moments, for L=5, q=2, p=4, ©=0.03, 5=0.05.
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Figure 4.35. Reconstructed distribution
with seven moments, for L=5, q=2, p=4, n=0.03, 5=0.05.
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Figure 4.36. Reconstructed distribution
with seven moments, for L=5, q=2, p=4, n=0.03, §=0.05.
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5 Conclusion and future work

The basic goal of this diploma thesis is the development of a computational
framework, which transforms partial-integro-differential equations —which are used
for the E Coli isogenic populations with the Lac Operon genetic network- into a set of
ordinary differential equations modeling the evolution of moments of the distribution
of cells with respect to their intracellular content.

Under the greater spectrum of those assumptions the dynamic behavior of this kind
of populations has been studied and the results of the maximum entropy method of
moments algorithm are compared against a finite elements code which was
implemented by (Kavousanakis et al. 2009) with the COMSOL Multiphysics.

First, we presented the application of the maximum entropy algorithm in order to
reconstruct known distribution functions given a small number of low order moments.
Based on the algorithm, we calculated the Lagrangian multipliers and then
reconstructed the distribution. In particular, we demonstrated its very good
performance by reconstructing unimodal and bimodal distributions.

Then, we derived from the CPB model the moment evolution equations. A closure
expression for the number density function is derived using the maximum entropy
method of moments. Then, we performed simulations of the maximum entropy
method of moments algorithm for different parameter values. In all cases, the
proposed method was able to capture the abrupt dynamics of the distribution function
which were observed at the initial stages of the simulation, and it still captured the
long time dynamics which converged to steady state solutions. The comparison
against a finite elements code shows that the maximum entropy method of moments
can compute successfully the moments for the distribution, as well as can capture
adequately well the shape of the density function. Regarding the convenience of
capturing the shape of the density function, a big enough number of moments has to
be used. A number of six or seven moments can be used and have satisfactory
accuracy even capturing the shape of number density functions as computed from the
finite elements method. This approximation reduces significantly the computational
cost, since we only have to solve a system of six or seven ordinary differential
equations instead of dealing with systems of approximately one thousand degrees of
freedom (resulting in from the finite elements discretization of the partial-integro-
differential equations). The cases which have been solved in this diploma thesis deal
with symmetric and asymmetric partitioning of a cell population; in both cases, we
demonstrated the ability of maximum entropy method of moments to reach
adequately well the solution even when solving a small system of ordinary differential
equations.

An extension of this work could be for CPBs in two or higher dimensions. The
computational requirements of the finite elements solution of such systems are largely
enhanced, thus the maximum entropy method of moments (with significantly lower
requirements) can be a promising alternative for capturing the evolution of the density
statistics, as well as capturing adequately well the shape of distribution functions of
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cell populations. It would also be interesting to explore the possibility of performing
parametric continuation and stability analysis using. In particular for the lac operon
genetic network that features bistability, it would be interesting to study the
possibility of implementing steady-state algorithms (Newton-Raphson), parametric
continuation algorithms (pseudo arc-length continuation), and eigenvalue solvers
wrapped around the maximum entropy method of moments. Such an analysis can
bypass the need to perform dynamic evolution simulations for an extensively large set
of parameter values and enable to compute the total solution space using only a few
equations for the moments of cell distribution functions.
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