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Abstract 
 

  There is a plethora of evidence that cell populations are heterogeneous systems in 

the sense that properties such as size, shape, DNA and RNA content are unevenly 

distributed amongst the cells of the population. The quantitative understanding of 

heterogeneity is of great significance, since neglecting its effect can lead to false 

predictions. Cell population balance models are used to address the implications of 

heterogeneity and can accurately capture the dynamics of heterogeneous cell 

population. In particular, cell population balance equations are first-order partial-

integro-differential equations and due to the complexity of formulation, analytical 

solutions are hard to obtain in the majority of cases. Despite the recent progress, the 

efficient solution of cell population balance models remains a challenging task 

(Kavousanakis et al. 2009). 

 

  At first the modeling of cellular heterogeneity in Lac Operon, a model which is 

solved using a free boundary algorithm (Kavousanakis et al. 2009) was analyzed 

thoroughly. Furthermore the importance of studying the cells as individuals was 

presented and the way of treating the cells as individuals and not as homogeneous 

sets, neglecting their heterogeneity was developed. 

 

  Next to that, the cell population balance equations were analytically presented and 

each term of the Lac Operon model was studied one by one. All the components of 

the model such as birth rate, death rate, the partition probability density function, the 

boundary conditions and formulas were presented. Numerical methods, including the 

finite differences method, the finite elements method and spectral methods that are 

usually employed for the solution of most population balance equations were referred, 

but basically an alternative to these methods, the so called method of moments as a 

tool for the solution of the cell population balance equations was described 

(Randolph and Larson 1971). 

 

  In addition, the maximum entropy method as a tool for the solution of partial-

integro-differential systems of equations was studied carefully. The way maximum 

entropy method works in order to reconstruct the density function given a known set 

of moments was presented thoroughly. Furthermore, it was analyzed the way that one 

given a number of known moments for a given observation, is able to find a unique 

distribution responsible for generating those moments (Abboud et al. 2015). 

Additionally, the fact that the maximum entropy method is based on the concept that 

the distribution that maximizes the information entropy is the one that is statistically 

most likely to occur was persistently analyzed (Mead and Papanicolaou 1984). 

 

  In the last part of this diploma thesis, a comparison between the maximum entropy 

method of moments and the numerical solution of the CPB problem with the finite 

elements method was presented. The convergence between the two solutions was 

observed for different number of moments. Furthermore, suggestions for future work 

like the solution of the CPB problem in two or higher dimensions and the possibility 

of implementing steady-state algorithms (Newton-Raphson), parametric continuation 

algorithms (pseudo arc-length continuation), and eigenvalue solvers wrapped around 

the maximum entropy method of moments were given. 
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Περίληψη 
 

  Υπάρχει πληθώρα ερευνητικών αποτελεσμάτων ότι τα ισοζύγια κυτταρικών 

πληθυσμών είναι ανομοιογενή συστήματα, υπό την έννοια ότι το μέγεθος, το σχήμα 

και το ενδοκυτταρικό περιεχόμενο σε DNA και RNA είναι ανισομερώς 

κατανεμημένο μεταξύ  των κυττάρων του κυτταρικού πληθυσμού. Η εις βάθος 

κατανόηση της ετερογένειας είναι πολύ σημαντική, διότι η αγνόηση αυτής μπορεί να 

οδηγήσει σε εσφαλμένες προβλέψεις. Τα ισοζύγια κυτταρικών πληθυσμών 

χρησιμοποιούνται για να διατυπώσουν τις επιπτώσεις της ετερογένειας των 

κυτταρικών πληθυσμών και να βοηθήσουν στην σύλληψη της δυναμικής απόκρισης 

της ετερογένειας αυτών. Πιο συγκεκριμένα, τα ισοζύγια κυτταρικών πληθυσμών 

αποτελούν πρωτοβάθμιες μερικές διαφορικές εξισώσεις και λόγω της περιπλοκότητας 

της διατύπωσής τους, τις περισσότερες φορές είναι δύσκολο να επιλυθούν αναλυτικά. 

Παρά τις τελευταίες εξελίξεις, η επίλυσή τους παραμένει ένα απαιτητικό εγχείρημα 

(Kavousanakis et al. 2009). 

 

  Αρχικά, η μοντελοποίηση της κυτταρικής ετερογένειας του Lac Operon, ενός 

μοντέλου το οποίο επιλύεται χρησιμοποιώντας έναν αλγόριθμο ελεύθερου συνόρου 

(Kavousanakis et al. 2009), αναλύθηκε διεξοδικά. Επιπροσθέτως, παρουσιάστηκε η 

κρισιμότητα της ανάλυσης των κυττάρων ως μονάδες και αναλύθηκε ο τρόπος να 

διαχειρίζεται κανείς τα κύτταρα ατομικά και όχι ως ομογενή σύνολα, αγνοώντας την 

επίδραση της ετερογένειας. 

 

  Εν συνεχεία, οι εξισώσεις των ισοζυγίων των κυτταρικών πληθυσμών 

παρουσιάστηκαν αναλυτικά και μελετήθηκε και επεξηγήθηκε κάθε όρος του Lac 

Operon πολύ προσεκτικά. Όλοι οι παράγοντες του μοντέλου, όπως ο ρυθμός 

γέννησης, ο ρυθμός θανάτωσης, η συνάρτηση πυκνότητας πιθανότητας, οι 

συνοριακές συνθήκες και όλες οι εξισώσεις, παρουσιάστηκαν διεξοδικώς. Επίσης, 

έγινε αναφορά σε αριθμητικές μεθόδους, οι οποίες αξιοποιούνται για την επίλυση 

ισοζυγίων κυτταρικών πληθυσμών, όπως η μέθοδος των πεπερασμένων διαφορών, η 

μέθοδος των πεπερασμένων στοιχείων, φασματικές μέθοδοι, αλλά κυρίως 

παρουσιάστηκε η μέθοδος της μέγιστης εντροπίας, η οποία αξιοποιήθηκε ως εργαλείο 

για την επίλυση των ισοζυγίων κυτταρικών πληθυσμών (Randolph and Larson 

1971). 

 

  Επίσης, μελετήθηκε η μέθοδος της μέγιστης εντροπίας ως εργαλείο για την επίλυση 

συστημάτων μερικών διαφορικών εξισώσεων. Παρουσιάστηκε ο τρόπος με τον οποίο 

γίνεται η ανακατασκευή της συνάρτησης πυκνότητας, δοθέντος ενός αριθμού ροπών. 

Ακόμη, αναλύθηκε ο τρόπος με τον οποίο κάποιος που του έχει δοθεί ένας 

συγκεκριμένος αριθμός ροπών μπορεί να καταλήξει σε μια μοναδική συνάρτηση 

πυκνότητας η οποία προκύπτει από τις εν λόγω ροπές (Abboud et al. 2015) και 

παρουσιάστηκε η μέθοδος της μέγιστης εντροπίας, η οποία βασίζεται στο γεγονός, 

πως η κατανομή η οποία μεγιστοποιεί την εντροπία είναι αυτή η οποία είναι πιο 

πιθανό να συμβεί (Mead and Papanicolaou 1984). 
 

  Στο τελευταίο μέρος αυτής της διπλωματικής εργασίας, παρουσιάστηκε η σύγκριση 

μεταξύ των αποτελεσμάτων τα οποία προέκυψαν από την επίλυση των ισοζυγίων 

κυτταρικών πληθυσμών με τη μέθοδο της μέγιστης εντροπίας των ροπών και με τη 

μέθοδο των πεπερασμένων στοιχείων. Η σύγκριση μεταξύ των αποτελεσμάτων των 

δύο μεθόδων παρατηρήθηκε για διάφορους αριθμούς ροπών. Επίσης, δόθηκαν και 
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προτάσεις για μελλοντική έρευνα, ως προς την επίλυση ισοζυγίων κυτταρικών 

πληθυσμών στις δύο ή στις τρεις διαστάσεις, καθώς και η πιθανότητα επίλυσής τους 

μέσω της εφαρμογής αλγορίθμων, όπως είναι η μέθοδος Newton-Raphson, η μέθοδος 

pseudo arc-length continuation, αλλά και με επιλύτες ιδιοτιμών, όλοι βασισμένοι στη 

μέθοδο της μέγιστης εντροπίας των ροπών. 
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1 Modeling of cellular heterogeneity in Lac Operon 
 

  Recent developments in molecular biology provide us with a lot of interesting and 

significant tools for the study of biochemical processes, not only at the single-cell 

level but also at the cell population level. There is a plethora of systemic biology 

techniques, which have been used, in order to understand complex cellular processes. 

However, the phenotypic behavior of a cellular population is not solely the result of 

the interactions between the numerous ingredients in each of the individual cells, but 

also arises as the result of the complexity, the direct and indirect interactions between 

the cells of a cellular population and their microenvironment. The intercellular and 

intracellular interactions lead to important phenotypic fluctuations from one cell to 

another and this biological phenomenon is known as heterogeneity. These phenomena 

have been observed in numerous biological systems, e.g. in systems which contain 

merges of genes and lacZ (Aviziotis et al. 2015). 

 

  The main goal of most of the medical applications and approaches, which consider 

pathological conditions, is the handling of the cell population as a whole and not the 

handling of each cell individually. All of the experimental techniques, which are 

available to engineers such as DNA sequences, liquid chromatography, mass 

phasmatometry, use digital information and data, which correspond to a cell 

population and not to cell individuals. The heterogeneity of cell population can lead to 

inhibition of efficient production biotechnology products and their reduced ability to 

adapt to abrupt environmental changes. Therefore, understanding the dynamic 

relationship between the phenomena that take place at both the cell individual level 

and the cell population level could provide with significant insight and information on 

the detection, prognosis and treatment of various diseases, such as cancer (Mantzaris 

2006). As a consequence, the dynamic evolution of all the phenomena which take 

place should be studied in depth, because the right mathematical approach to solution 

of the problem is a means to better understand the various sub-processes and the 

effect of heterogeneity on the population phenotype. 

 

  A lot of researchers have made the assumption that cell individuals act in a 

homogeneous manner, but in reality cell individuals act differently during a specific 

time period. For example, if one examines resistance and death rates in a cellular 

population, it is the older cells that are more resistant and their death rate is smaller. 

On the other hand, young cells tend to protect older cells, as a result young cells die 

trying to protect the older one. Consequently, the older cells present a small death rate 

and remain untouchable, but this is actually something undesired (Mantzaris 2007). 

 

  The heterogeneity in isogenic cell populations where each cell carries the same 

genetic network originates from two basic independent sources. The first source of 

heterogeneity comes from the unequal distribution of the amounts of the majority of 

intracellular components of mother cells (with the exception of DNA) between the 

daughter cells and this phenomenon is known as extrinsic heterogeneity. When 

mitosis occurs the content is unevenly distributed amongst the daughter cells. This 

phenomenon is repeated after each cell cycle and further enhances heterogeneity. This 

exact variation of the intracellular content of the daughter cells leads to different 

phenotypes. (Elowitz et al. 2002) proved that this type of heterogeneity has been the 

most significant one for a wide range of induction levels in various E. coli strains.  
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  The second source of heterogeneity is called intrinsic heterogeneity. Regulatory 

molecules which control the cellular phenotype are found in very low concentrations. 

Furthermore, regulatory molecules control the rate of intracellular reactions, and this 

is the reason one can observe random fluctuations in their rates leading even to 

different cellular phenotypic behavior. (Mantzaris 2007). 

 

  The basic target of the population balance modeling approach is to investigate how 

the phenotypic variance at the single-cell level is inherited to the population. The 

heterogeneity of the cell population, which affects the behavior of the entire cell 

population, demands to study the whole phenomenon as a dynamic procedure. The 

mathematical models developed can: (a) take into consideration the intrinsic 

heterogeneity amongst the cells of the isogenic population and (b) include the 

mathematical formulation of the intracellular processes characterizing the gene 

regulatory network at each cell (Kavousanakis et al. 2009). 

 

  In CPB models the unknown variable is the number of cells, which at time t have 

intracellular content between x and x+dx. CPBs are non linear partial-integro-

differential equations and in general can be solved using numerical and not analytical 

methods. During the years population balance equations were solved by a number of 

numerical methods, such as the method of weighted residuals using global shape 

functions (Subramanian and Ramkrishna 1971), the method of finite elements 

using orthogonal collocation (Zhu et al. 2000) and spectral methods (Mantzaris et 

al. 2001). 

 

  For CPB problems with a priori unknown boundaries of the physiological state 

space, free boundary algorithms have been developed (Kavousanakis et al. 2009). In 

this work, they illustrated the efficiency of the algorithm for the isogenic populations 

carrying plasmids of positive feedback architectures, and the genetic network of 

interest was Lac Operon. This genetic network illustrates a non linear behavior, 

resulting in bistable behavior over a significant region of extracellular inducer 

concentrations. CPBs were utilized in order to answer the question whether the 

bistable behavior observed at the single cell level is also present at the population 

level. 

 

  However, numerical methods solving for the density function of cells can have 

significant computational requirements. An alternative to these approaches is the 

solution of the CPB problem utilizing the method of moments. The original CPB 

problem is expressed in terms of the number density function’s statistical moments, 

and we study the evolution of the moments (rather than the density function). In the 

general case, formulating the equations as a function of moments requires a closure 

for the density function. In this thesis we utilize the maximum entropy method; in 

particular, at each time instance we reconstruct the density function given a small 

number of moments (problem of moments) based on the maximum entropy 

methodology. In particular, given a number of moments we construct a distribution 

p(x) that maximizes Shanon’s entropy, S. The method of moments using the 

maximum entropy is presented and compared against the finite elements method, 

which solves for the density function. 
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2 Mathematical modeling of cellular heterogeneity: cell population 

balance models 
 

2.1 Cell population balance models for isogenic cells 
 

 
 

Figure 2.1. Solution of linear age structured cell population balance model. 

 

  CPBs for isogenic cells are developed in a way so that they can incorporate the 

dynamics of intracellular reactions (i.e., incorporate the dynamics of the genetic 

network) and simultaneously model the dynamics of a cell population taking into 

account the growth, death and mitosis dynamics of each cell. 

 

  CPBs (Cell Population Balance Models) are partial-integro-differential equations, 

with unknown variable the cells per volume unit (x, t)dxF  that for a specific time t 

has intracellular content between x and x+dx. The dynamics of the distribution 

function (x, t)F  is given by the following deterministic model (ignoring the 

stochastic processes modeling intrinsic heterogeneity): 

 

 

max

( ) ( , )(x, t)
( ) ( , ) ...

2 ( ') ( , ') ( ', )dx'


  

 


x

x

R x F x tF
x F x t

t x

x P x x F x t

 2.1 

 

(x, t)



F

t
: time derivative of distribution function, 

 ( ) ( , )R x F x t

x




: 

increase rate, which takes into account the cell loss 

due to the volume increase, 

( ) ( , )x F x t : 
transfer term, due to cell loss during their transfer to 

the next phase, 

max

2 ( ') ( , ') ( ', )dx'
x

x
x P x x F x t : 

birth rate, which describes birth of cells of 

intracellular content x from the division of all cells 

with greater intracellular content. The integral is 

multiplied by two, because during birth each cell 
divides into 2 cells. 

( , ')P x x : 
Partition distribution function, which describes the 

fraction of intracellular content which is transferred to 

each of the daughter cells during division, 
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  An alternative formulation of the deterministic model above is given by the 

following formula which takes into consideration the probability density function, 

which describes the number of cells with intracellular content x during time t divided 

by the total number of cells at the same time. 

 

 

max
max

0

( ) ( , )(x, t)
( ) ( , ) ...

2 ( ') ( , ') ( ', ) dx' ( , ) ( ) ( , )dx


  

 

   
x

x

x

R x n x tn
x n x t

t x

x P x x n x t n x t x n x t

 2.2 

 

(x, t)n

t




: 

Accumulation of cells with intracellular content x in the 

control volume. 

 ( ) ( , )



R x n x t

x
: 

Loss rate, by which cells with intracellular content x get 

lost from this content due to intracellular reactions. 

( ) ( , )x n x t : 

Rate at which cells with intracellular content x are 

“consumed” due to cellular mitosis, which leads to the 

creation of cells with intracellular content which is less 
than x. 

max

2 ( ') ( , ') ( ', )dx'
x

x
x P x x n x t : 

Birth rate, which describes birth of cells of intracellular 

content x from the division of all cells with greater 
intracellular content. 

max

0

( , ) ( ) ( , )dx

x

n x t x n x t : 

Dilution term, which is derived from (2.1) when 

expressed in terms of n(x,t). This term makes sure that 

we end up in a steady state solution (because cells at a 

space interval x, x+dx are divided by the total number 

of cells). 

 

  In order to obtain a unique solution for the (2.2) we need to impose appropriate 

boundary conditions. Here, we apply the following containment boundary conditions. 

 

max(0, ) (x , ) 0 n t n t  2.3 

 

  The unknown function in (2.2) is the function (x, )n t , which is the probability 

density function (PDF). Probability density function has to satisfy condition (2.4),  

 

max

0
(x, ) 1

x

n t dx  2.4 

 

  According to Equation 2.2 the dynamic behavior of a cell population is defined 

completely by 3 functions, which are widely known in the bibliography as Intrinsic 

Physiological State Functions (IPSF) and they formulate processes that occur at the 

single-cell level.  



Computational Biomechanics   21 

 

2.2 Intrinsic physiological state functions (IPSF) 
 

(x)R : 
Network of chemical reactions, which contains rates of 

production of all intracellular species described in the 
model.  

( )x : 
Single-cell division rate, which describes the rate at 

which a cell with content x is divided into two daughter 

cells. 

( , ')P x x : 

Partition density function, which describes the 

probability by which a mother cell with intracellular 

content x’, gives birth to a daughter cell of content x 
and a daughter cell of content x’-x. 

 

2.3 Genetic network with positive feedback architecture 
 

  The genetic network which is being under investigation is called Lac Operon (Figure 

2.2). It is comprised of the promoter lac P, from the operator lac O and three genes 

that encode the proteins which are important for the metabolism of lactose. Lac Y 

encodes lac permease, which contributes to the transportation of lactose or something 

analogue to her, like IPTG (Isopropyl β-D-1-Thiogalactopyranoside) inside the cell. 

Furthermore, lac Z encodes enzyme β-galactosidase and lac A (transacetylase) 

(Kavousanakis et al. 2009).  
 

  The inhibitor lac I binds to the operator site (part of DNA prior of the three genes of 

Lac Operon) and prevents binding of the RNA polymerase, thus inhibiting 

transcription of the genes' DNA into the corresponding mRNA. 
 

  However, in the presence of lactose, TMG or IPTG, the inducer is transported into 

the cell (via diffusion initially), where it binds to the lac I repressor in a bimolecular 

reaction. Thus, some operator becomes free of lac I and the transcription is initiated. 

Upon expression of lac Y, further transport of the inducer occurs at a higher rate and 

as a result, further expression of the three Lac Operon genes is initiated. Thus, in this 

network, the expression of lac Y gene enhances further expression of itself and in this 

sense the network functions as an autocatalytic system or a positive feedback loop. It 

is well known that such networks exhibit bistable behavior at the single-cell level 

(Mantzaris 2007). The arising question is whether this property is inherited to the cell 

population level. The answer to this question can be given initially by formulating a 

simple mathematical model, which captures the basic features of the positive feedback 

loop architecture (Mantzaris 2005). 
 

 

Figure 2.2. Schematic of the positive feedback loop network, Lac Operon with IPTG induction.  
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 A simplified network of the intracellular reactions is provided by the following 

reaction set (Kepler and Elston 2001). 

 

0

0

k
O Y  

1

1

k
O Y  

Y   

0 1O Z O









 

x

x

Y Y Z






 

2.3 

 

Ο0, Ο1: Fraction of free and occupied operator sites, 

Y: monomer produced by the gene expression in either the occupied or the 

unoccupied state of the operator, 

k0, k1: rate constant of gene expression in the unoccupied state and in the occupied 

state respectively, 

Z: dimer of the gene product, which binds to a free operator resulting an occupied 

site, 

λ: degradation rate constant 

 

  Under the assumption that the production rates of monomer product are proportional 

to the fractions of unoccupied and occupied sites and that the degradation of Y is a 

first-order reaction, the single-cell monomer dynamics are described by, 
 

0 0 1 1

dY
k O k O Y

dt
    2.4 

0 1 1O O   2.5 

0 1O Z aO  2.6 

2Y Z  2.7 

  The basic assumption of the whole procedure is that occupied and unoccupied states 

are in equilibrium with each other and the same happens for the division mechanism. 

With the substitution of Equations 2.7 - 2.9 into Equation 2.6 yields, 

 

2

0 1

2


 



k k YdY
Y

d Y




 
 2.8 

 

  By non dimensionalizating the intracellular content Y  and time t, we can reduce the 

number of the parameters in Equation 2.10 as, 
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*


Y
x

Y
 2.9 

*
t



 2.10 

 

Setting: 

 

*

1

*
1

k t

Y
 2.11 

0

1


k

k
  2.12 

2

1

p
Y


 2.13 

* t   
2.14 

 

and substituting into (2.11 - 2.16) yields the following dimensionless production rate 

of the dimensionless lac Y amount (the intracellular content x) (Kavousanakis et al. 

2009): 

 

 
2

2


  



dx p x
R x x

dt p x


  2.15 

 

  In this model the rate of x change consists of a nonlinear production term and a 

degradation term. The three dimensionless parameters that are observed are as 

follows, 

 

 : relative rate of expression when the operator is free and occupied. The rate of gene 

expression in the unoccupied state is significantly lower than that in the occupied 

state, which suggests that 1  (Mantzaris 2007), 

p : inversely proportional to the extracellular inducer concentration, 

 : dimensionless degradation rate of gene lac Y. 

 

  For the scientific solidarity and consistency of the model, the division rate as a 

function of the intracellular content ( ( )x ) and the partition function ( ( , ')P x x ) 

which describes the distribution of the intracellular content during the cellular 

division to the two newborn daughter cells, are defined and analyzed as follows. The 

division rate is given from: 

 

( )
 

    
 

L

x
x

x
 2.16 
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  This way of expression of the division of the intracellular content has been applied in 

a plethora of theoretical and computational approaches of the problem of CPBs 

(Mantzaris 2007). The basic purpose for a choice like that is that this expression 

describes experimental data of cell population yeast. A formula for the partition 

distribution function is: 

 

 
 

  
1 1

( , ') ' 1 '
2 2 1

P x x fx x f x x
f f
     


 2.17 

 

where δ is the Dirac function and f is the fraction of intracellular content which is 

given by the mother cell to the smaller daughter cell. It is obvious from this definition 

that f ranges from 0 to 0.5. In case that 0.5f  , symmetric division events are 

observed, on the other hand, low values of f  correspond to more asymmetric division 

events during the cellular division. 

 

  The above formulation corresponds to the case of discrete partitioning. However, 

there is also an alternative formulation, which is called symmetric partitioning. In this 

case the partition density function is a continuous function. More precisely, watching 

the following equation one can observe that the given from the mother cells to the 

daughter cells intracellular content is no longer a constant fraction of the content. The 

reason is that the intracellular content is given by the mother cells to the daughter 

cells with a specific probability. 

 

 
 

   

 
 

   

max

max

2 21
, 1 ...

1 1

2 21 1
, 1

1 1

q q y

x

q q

amma q x x
P x y

y amma q amma q y y

amma q
P

x amma q amma q



 
 

  

     
     

       

     
    

       
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q: the continuous and symmetric partitioning, 

Γamma: is a function defined for real x>0 by the integral   1

0

t xamma x e t dt


     

 

  The mathematical model which was described above is an approach of the problem 

of CPBs, which though does not take into consideration the “randomness” that 

characterizes small cell populations. Although there are a lot of methods, which are 

appropriate to study the randomness of a problem like that (Monte Carlo, Karhunen 

Loeve, etc), in the current Diploma Thesis we solve the model above using the 

maximum entropy method of moments. Additionally it must be pointed the fact that 

the computation of the solution of a CPB problem is difficult and time consuming. 

CPB models are a system of partial-integro-differential equations, which needs 

special treatment and increases the computational requirements. We present an 

alternative approach based on the method of the maximum entropy method of 

moments, which saves us time, reduces computational cost and helps us end up faster 

to a solution.  
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3 Numerical solution of cell population balance models with the 

maximum entropy method of moments 

 

3.1 From the method of moments to the maximum entropy method 

 

  Population balance equations (PBE) are widely used as modeling tool for particulate 

systems that estimate the dynamic evolution of particle size distribution (PSD) as a 

function of process operating conditions. They have been used in crystallization, 

granulation and milling to support process design, optimization and control. 

Analytical solutions of PBE are available for only special cases. Therefore, numerical 

methods are usually employed for their solution. These numerical methods can be 

broadly classified into two main categories: the class of the methods that solve 

directly for the number density (e.g. least square method, Monte Carlo methods (Lin 

et al. 2002), the discrete population balance methods (DPB) methods (Hounslow et 

al. 1988) and the class of methods that solve for the moments of the number density 

(Diemer and Olson 2002). The most applicable methods for the solution of the 

population balance models are the DPB methods. The greatest advantage of DPB 

methods is that they calculate the distribution directly, whereas the main 

disadvantages are the computational resources required (Ramkrishna 2008). 

 

  An alternative to the DPB is the method of moments (MEM). The method of  

moments involve the conversion of the PBE to equations in terms of the moments of 

the number density. MΟMs therefore have better computational efficiency compared 

to the DPB and other approaches, and are particularly used for process flowsheet 

simulations and coupling with fluid flows. The MOM solve for the moments in place 

of distribution and in some cases moments are all that are required for comparison 

with experimental data. The standard method of moments is limited to specific growth 

rate expression, breakage and aggregation kernels (Falola et al. 2013). The basic 

reason is that for growth rate expression, breakage and aggregation kernels, the 

moments equations are not closed. The basic question arisen is, how can someone 

pick a closure for the moment equations. There are three ways of providing closures 

for the moments equations: (1) Under the assumption that the functional form of the 

size distribution is known a priori (Lee 1983). (2) Moments interpolation or 

assumption of dependence of moments (Frenklach 2002). (3) Moments inversion 

(Diemer and Olson 2002). 

 

  Among the three approaches the third one is the most popular; one particular method 

is the Quadrature Method of Moments (QMOM). The basic disadvantage of QMOMS 

is that one loses the density function, which is approximated as a collection of Dirac 

pulses (a representation which is far from reality). However QMOM has been applied 

in various fluid flow simulations of particulate processes, and it was first developed 

by (McGraw 1997). In this thesis we apply an alternative technique for the 

reconstruction of the density function, given a small set of low order moments, and 

this technique is the maximum entropy method, which produces smoother density 

functions, compared to the ones QMOM generates. 

  



Computational Biomechanics   27 

 

3.2 Maximum entropy method 

 

  The maximum entropy method is based on the concept that the distribution that 

maximizes the information entropy is the one that is statistically most likely to occur. 

The average rate at which information is produced by a system is called information 

entropy. Furthermore entropy can be defined as a measure for how much of a system 

is unknown. Higher information entropy means one knows less about a process. The 

system with maximum information entropy is the most probable to exist because it is 

the system in which the least amount of information has been defined. The 

mathematical formulation of the information entropy S , of a distribution ( )x , is 

given by the integral, where   is the support of the distribution (Mead and 

Papanicolaou 1984), 

 

( ) ln ( ) ,S x x dx 


   3.1 

 

  Given a known number of moments for ( )x , one has to find the distribution ( )x  

which maximizes S  subject to those known moments. Our basic purpose is to 

calculate the distribution ( )x  which maximizes the information entropy S  subject to 

the following equation, 

 

( ) ;  0,1,...k

kx x dx k 


   3.2 

 

k : 1N   is the number of the unknown moments 

k : given finite number of moments for 0 k N  . 

 

  By introducing Lagrangian multipliers one can define the entropy functional as 

follows, 

 

0 0

( ) ln ( ) ( )
N N

k

k k k

k k

H x x x x dx     
 

 
    

 
   3.3 

 

  This functional reaches a maximum when the functional derivatives of H with 

respect to  x  and k  are zero: 0
k

H


  and 

 
0

H

n x




 . The first of these 

derivatives does not provide us with any additional information since it returns the 

constraints defined in (3.2). However, the second of these derivatives, evaluates  

 

 
1 0

ln ( ) 1

0

ln ( ) 1 ( )

N N
k k

k k

k k

xN x x
k x

k

k

x x x e e

  

    

  





 
       3.4 
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  To calculate the solution of the maximum entropy method, one has to solve for the 

Lagrange multipliers k . The only way to do so is to solve the following system of 

non linear equations, 
 

0 1

0 1

0 1

...

0

...

1

...

,

,

...

k
k

k
k

k
k

x x

x x

x xk

k

e dx

xe dx

x e dx

  

  

  







  



  



  















 3.5 

 

  In the current thesis we utilize MATLAB and Python built in solvers for nonlinear 

systems, in order to solve the nonlinear system of equations. The Jacobian can also be 

calculated; if one denotes the moments based on the maximum entropy solution as, 
 

0 1 ... k
kx xk

k x e dx
     


   3.6 

 

then the Jacobian matrix is calculated as follows, 
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  In the above equation k  is the 
thk  moment of the reconstructed distribution, thus 

the Newton solver is going to find k  when k k   is below a specified tolerance. 

 

  In order to solve the prescribed problem initial values are mandatory. It has been 

tested and proven that because of problem’s sensitivity the proper initial values for 

Gaussian like distributions are the following, 
 

ln 2 ,  0

0,  otherwise 

initial

i

i


 
 


 3.8 

 

  These guesses are all based in Gaussian distribution with ( 0, 1   ). In this 

diploma thesis Py Max Ent and Mat Max Ent codes have been used for the 

reconstruction of the chosen initial function.  
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Mat Max Ent – Py Max Ent 

 

 

 
 

Figure 3.1. Flowchart of Mat Max Ent code. 

 

 

  Mat Max Ent is a code written in MATLAB and it is the basic tool that has been 

used in order to achieve the reconstruction of the density function given a small set of 

low order moments, produce smoother density functions and make the comparison 

with the solutions of the CPB problem with the finite elements method.  

 

  The only way to reach the final result is using the algorithm above. The results have 

all been rechecked being compared to those of the Py Max Ent algorithm that follows. 

Figure 3.1 illustrates the flowchart of the Mat Max Ent code written in MATLAB. 

 

  The inputs of this code are, the moments, the boundaries and the total points that the 

researcher decides to discretize the domain over x axis (1D). Next, follows the choice 

of a function, its boundaries, a resolution for the domain (discretization points) and its 

moments. 

 

Solution of the nonlinear system of equations is achieved using the fsolve function of 

MATLAB or Python and having as input data the moments and the boundary 

conditions of the problem. The final steps of the flowchart are the calculation of the 

maximum entropy function and the comparison between the maximum entropy 

function and the initial function of the problem.  

 

  During the calculation of the maximum entropy function one has already calculated 

the Lagrangian multipliers after the solution of the nonlinear system of equations and 

uses the Lagrangian multipliers and the values over the x domain as input for the 

exact calculation of the maximum entropy function. As far as the comparison is 

concerned, it is achieved doing both the plots of the maximum entropy function and 

the (original) function of the problem. 
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Figure 3.2. Flowchart of Py Max Ent code. 

 

  Figure 3.2 shows the flowchart of the Py Max Ent code written in Python. The whole 

procedure is quite similar to that of Mat Max Ent, as the basic steps of calculation are 

similar. The Py Max Ent code goes from the reconstruction to the Newton solver. 

Next follows the calculation of the residual c or the residual d, where the residual c 

function calculates the integrated right hand side of the moment approximation 

function, in case that one studies a continuous (original) function and the residual d 

function calculates the integrated right hand side of the moment approximation 

function, in case that one studies a discrete (original) function, followed by the 

integration of the inner product of domain x and reconstructed moments. The final 

step is the comparison between entropy and the chosen (original) function. 

 

  The software is written in Python due to its popularity and ease of use in addition to 

the availability of a robust multidimensional nonlinear solver through SciPy. The Py 

Max Ent code offers a single interface to both the continuous and discrete maximum 

entropy reconstructions along with a few useful functions described below.  

 

  The implementation of Py Max Ent is very simple and takes form in a single Python 

file called pymaxent.py. For proper operation, three separate helper routines are 

implemented for the continuous and for the discrete case. These are a numerical 

integrator, a residual error calculator, and a Newton solver as shown in Figure 3.2. 

The Newton solver is based on SciPy’s multidimensional root finding routine, fsolve. 

From the user’s perspective, a single function call is made to the main routine, 

reconstruct (discussed below).  

 

  To use Py Max Ent, a single call to the function reconstruct is needed. Here, 

moments is a required list or array of known moments, rndvar is an optional argument 

containing discrete values of the random variable, and bnds is a tuple [a,b] containing 

the expected bounds of the resulting distribution. When rndvar is provided, the 

reconstruction assumes a discrete distribution. The code returns two quantities: (1) the 

functional form of the solution, which can be plotted and, (2) a numpy array 

containing the Lagrangian multipliers. In the discrete case, the functional solution is 

simply a numpy array of values containing the function values. Finally, Py Max Ent 

provides a helper routine named moments that calculates the first k moments of a 

function and is useful for verification purposes (Saad and Ruai 2019).  
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3.3 Maximum entropy method results and comparison 

 

  The comparison between the Mat Max Ent code and the Py Max Ent code is 

presented below. More analytically, two benchmark cases are presented. In the first 

case a unimodal initial function has been chosen, whereas in the second case a 

bimodal initial function has been studied. The basic purpose is to reconstruct the 

maximum entropy function and make the comparison with the exact solution.  

 

3.3.1  Unimodal Case 

 

  The chosen for reconstruction initial unimodal function is calculated from the 

following formula and it is the same for all the following unimodal examples. 
 

 
 
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x
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0
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22 2

e
f x



 

 

  3.9 

 

  The reconstructed maximum entropy function compared to the initial unimodal 

function and the comparison between the Py Max Ent code and the Mat Max Ent code 

are shown below. Both solutions converge to the exact one, but one can observe that 

when the user increases the number of moments the error between the exact and the 

reconstructed solution becomes even smaller. Theoretically, the user can use an 

infinite number of moments, but in practice the algorithm requires only a small 

number of low order moments in order to reconstruct the original function as it 

appears in the figure below. 

 

Domain [-2,2] 
 

 
    (a)                                                                                    (b) 

 

Figure 3.3. Reconstructed entropy function, domain [-2,2], using 

(a) Mat Max Ent for different number of moments, 

(b) Py Max Ent for eight and five moments. 

 

  Figure 3.3 presents the maximum entropy function using (a) the Mat Max Ent code 

and (b) the Py Max Ent code. The figure presents the maximum entropy function and 

shows the comparison between the two codes, in case that one uses from one to eight 

finite moments.  
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Domain [0,2] 

 
(a) 

 
(b) 

 

Figure 3.4. Reconstructed maximum entropy function, domain [0,2], using 

(a) Mat Max Ent for different number of moments, 

(b) Py Max Ent for eight and five moments. 

 

  Figure 3.4 presents the reconstructed unimodal chosen function and shows (a) the 

Mat Max Ent code using one to eight moments compared to the exact solution and (b) 

the Py Max Ent code for five and eight moments in comparison with the exact 

solution. 

 

 
 

Figure 3.5. Reconstructed maximum entropy function error, domain [0,2], for eight moments using Mat Max Ent. 

 

  Figure 3.5 presents the error over the x axis between the exact solution and the 

reconstructed maximum entropy function with eight moments using the Mat Max Ent 

code.  



Computational Biomechanics   33 

 

Domain [0,4] 

 
(a) 

 

 
(b) 

 

Figure 3.6. Reconstructed entropy function, domain [0,4], using 

(a) Mat Max Ent for different number of moments, 

(b) Py Max Ent for eight and five moments. 

 

  Figure 3.6 shows the reconstructed unimodal function (Eq. 3-9) and shows (a) the 

Mat Max Ent code results using one to eight moments, and the comparison with the 

exact solution and (b) the Py Max Ent code for five and eight moments, and its 

comparison with the exact solution. 

 

 
 

Figure 3.7. Reconstructed maximum entropy function error, domain [0,4], for eight moments using Mat Max Ent. 

 

  Figure 3.7 presents the error over the x axis between the exact solution and the 

reconstructed entropy function with eight moments using the Mat Max Ent code.  
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3.3.2 Bimodal case 

 

  In statistics a multimodal distribution is a probability distribution with more than one 

peaks or “modes” which may also be referred to as a bimodal distribution, when we 

talk about a distribution with two peaks. These appear as distinct peaks (local 

maxima) in the probability density function. Mathematically a bimodal distribution 

most commonly arises as a mixture of two different unimodal distributions. 

 

  The chosen function for reconstruction initial bimodal f is calculated from the 

following formula and it is the same for all the following bimodal examples. 

 

 
   
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Domain [-1,1] 

 

 
(a) 

 

 
(b) 

 

Figure 3.8. Reconstructed maximum entropy function, domain [-1,1], using 

(a) Mat Max Ent for different number of moments, 

(b) Py Max Ent for eight and five moments. 

 

  Figure 3.8 illustrates the reconstructed bimodal function (Eq. 3-10) and shows (a) 

the Mat Max Ent code results using one to eight moments compared to the exact 

solution and (b) the Py Max Ent code for five and eight moments in comparison with 

the exact solution.  

https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Unimodal
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Domain [0,1] 
 

 
(a) 

 

 
(b) 

 

Figure 3.9. Reconstructed maximum entropy function, domain [0,1], using 

(a) Mat Max Ent for different number of moments, 

(b) Py Max Ent for eight and five moments. 

 

  Figure 3.9 shows the reconstructed bimodal function (Eq. 3-10) and depicts (a) the 

Mat Max Ent code results using one to eight moments, its comparison against the 

exact solution and (b) the Py Max Ent code results for five and eight moments, and its 

comparison with the exact solution. 
 

 
 

Figure 3.10. Reconstructed maximum entropy function error, domain [0,1], for eight moments using Mat Max 

Ent. 

 

  Figure 3.10 presents the error over the x axis between the exact solution and the 

reconstructed entropy function with eight moments using the Mat Max Ent code.  
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Domain [0,2] 
 

 
(a) 

 

 
(b) 

 

Figure 3.11. Reconstructed maximum entropy function, domain [0,2], using 

(a) Mat Max Ent for different number of moments, 

(b) Py Max Ent for eight and five moments. 

 

  Figure 3.11 illustrates the reconstructed bimodal function and depicts (a) the Mat 

Max Ent code using one to eight moments, original function given from (Eq.3-10) and 

(b) the Py Max Ent code for five and eight moments, and its comparison with the 

original function. 
 

 
 

Figure 3.12. Reconstructed maximum entropy function error, domain [0,1], for eight moments using Mat Max 

Ent. 

 

  Figure 3.10 shows the error over the x axis between the exact solution and the 

reconstructed maximum entropy function with eight moments using the Mat Max Ent 

code.  



Computational Biomechanics   37 

 

4 Results  

 

4.1 Introduction 
 

  In this chapter we present the results of the solution of the population balance 

equations using the maximum entropy method of moments. The maximum entropy 

method of moments is compared against the finite elements method. The basic goal is 

to solve the non linear system of partial-integro-differential equations reducing the 

computational cost. This is achieved by using the maximum entropy method of 

moments, because one goes from a system with a few thousands of equations 

(resulting in from the discretization of the partial-integro-differential equations), to a 

system much simpler to solve, with a number of equations equal to the number of the 

chosen moments. The basic question was, is it even possible to capture accurately the 

density function by evolving only a few equations for the moments evolution? All the 

codes are written in and the research was made making use of the commercial 

software MATLAB R2020b and Spyder 5.0.0. The simulations were performed in 

Windows environment. 
 

4.2 CPB problem expressed with moments 
 

CPB expressed in the physical domain - discrete partitioning 
 

  Given the expressions (2.17), (2.18), and (2.19), the CPB model for isogenic 

populations which carry the Lac Operon gene regulatory network reads: 
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  Multiplying both terms of the equations with the term kx  and integrating the 

expression (4.1) from zero to 
maxx , the desirable expression of the method of moments 

is received, as follows: 
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  Since 
0

k

kdnx
dx

t dt








, it follows that the expression (4.2) receives the following 

form, 
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CPB expressed in the normalized domain - discrete partitioning 

 

  Equation 4.3 is used when one works in the physical domain, while for the 

normalized domain the researcher can follow the same steps, but Equation 4.1 is 

changed and the particular CPB problem is formulated as follows. In order to confront 

with the problem of the unknown boundary for the intracellular content, we first 

normalize the physiological state space with respect to the average intracellular 

content x , 
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First the transformed density function  ,g t  is defined as, 
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and differentiating (4.5) with respect to time and combining with (3.1) we derive the 

following relation for the time derivative of ( , )n x t , 
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From (4.1), (4.4), (4.5) and (4.6) the transformed density functions is calculated as, 
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  Taking the first-order moment of (4.1) and applying conservation of mass for the 

intracellular component at cell division, leads to the equation, 
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  Now that the first order moment is transformed, one needs to multiply both parts of 

the equation with the term k  , then integrate from zero to one and consequently (4.7) 

receives its final form. 
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After both parts of the equation are multiplied by k , follows the observation that 
1

0

k

kdg
dx

t dt




  and consequently expression (4.9) receives its final form, 
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CPB expressed using symmetric partitioning 
 

  The number density function dynamics are expressed as follows, 
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Equation (4.11) is formulated for the fixed normalized domain  0,1  , where 
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and differentiating with respect to τ, 
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The formulation of the reaction rate R(x) in terms of the new variable ξ, e.g. if. 
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The division rate is given by, 
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if the partition probability density function is given by, 
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Following, 
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and the dilution term, 
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The derivation of the dynamics of n  is given by, 
 

    
 

         

    
 

         

max max

max

2 2

max max

1 1

0
max

max

max max

1 1

max
0

1 1 1 1
...

1
2 , ...

1 1
...

2 ,

x x

R nnxn
n

x x x x

P n d n n d
x

R nnxn
n

x x

x P n d n n d








   

       




   

       


   

   

   


   

   

  

 

 

 4.19 

 

  Multiplying both terms of the equations with the term kx  and integrating the 

expression (4.7) from zero to 
maxx , the desirable expression of the method of moments 

is received, as follows. 
 

       

     

     
 

max max
max max

max max

max max
1

0 0

1

00
0 0

0

 & (x) , 0
max max

0 0

(x) , (x) , , ...

2 , y y, ...

x, , ...

x xk
kk

x x
x x

k k k k

x x
k

x

nx
dx R n x t kx dx

x x t tk

k

n
x R n x t x R n x t kx dx x n x t x dx

t

x y P x n t dydx

n t x x n x t dxdx

t










 

 


    



 

 
 






  

 

 

     

           

max max

max max

1

0 0

max max

0 0 0

(x) , , ...

2 , y y, x, ,

x x

k k

x x x x
k k

x

R n x t kx dx x n x t x dx

x y P x n t dydx n t x x n x t dxdx

   

  

 

   

 4.20 



Computational Biomechanics   42 

 

4.3 Numerical solution of the CPB problem 

 

4.3.1 Discrete partitioning 

 

  As far as the results of this diploma thesis is concerned, simulations with the 

maximum entropy method of moments are performed for various parameter values of 

f and p and compare the results against a finite element code which was implemented 

in (Kavousanakis et al. 2009) using COMSOL Multiphysics software. The results of 

a transient simulation of the system of equations subject to the boundary conditions: 

(a)    max0, x , 0n t n t   for the case that one solves the CPB problem in the 

physical domain and (b)    0, 1, 0g t g t   for the case that one solves the CPB 

problem in the normalized domain are thoroughly presented and explained.  

 

  The results of a transient simulation of the system of equations of isogenic cell 

population with Lac Operon genetic network are depicted in Figure 4.1. for the 

following parameter values: 0.40f  , 3m  , 0.05p  , 0.03  , 0.05  , 
max 4z  . 

 

 

 
 

 
 

 
 

Figure 4.1. Simulation of a cell population using the maximum entropy method of moments in the physical 

domain. Parameter values:  

f=0.40, p=0.05, m=3.  
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Figure 4.2. Simulation of a cell population using the maximum entropy method in the physical domain.  

Parameter values: 

f=0.25, p=0.1, m=2. 

 

  In Figure 4.2. the evolution of the number density function of cells is depicted again, 

but it can be seen that it takes longer time for the system to reach a steady state 

solution.  
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  Figure 4.3. illustrates the time evolution of the average intracellular content x  

with respect to time t  for the case that one uses four, five and six moments in order to 

reconstruct the density function. It is observed that for five and six moments the 

evolution of the average intracellular content using the maximum entropy method is 

almost identical to the one using the finite elements method. 

 

  In Figure 4.4. the reconstructed distribution using the maximum entropy method of 

moments with four, five and six moments is presented and the maximum entropy 

method is compared with the one computed with the finite elements method. 

Although the maximum entropy method solves a system of maximum six ordinary 

differential equations – compared to the one thousand equations that the finite 

elements method needs to solve - it is shown again that the maximum entropy method 

presents almost identical results with those of the finite elements method for moments 

bigger than four as shown below. 

 

 
 

Figure 4.3. Time evolution of average intracellular content 

with four, five and six moments 

 for f=0.40, p=0.05, m=3,  

 

 
 

Figure 4.4. Reconstructed distribution for time t=10, 

with four, five and six moments, 

for f=0.40, p=0.05, m=3.  
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  In Figures 4.5. and 4.6., the solution of the CPB problem is depicted for the 

parameter values: 0.4f  , 1m  , 0.05p  , 0.03  , 0.05  , 
max 4z  . The results 

are presented for time 10t   which is the final time of our time integration. Based on 

the results from the previous example, a number of six moments has been chosen in 

order to calculate the evolution of the intracellular content with respect to time and the 

reconstructed density function. In Figure 4.4 the maximum entropy method of 

moments when applied in the physical domain 0, 4 x    is compared to the 

normalized domain  0,1 . As it is observed, system reaches steady state both in the 

physical domain and the normalized domain. 

 

  Figure 4.6. shows the comparison of the reconstruction of the density function 

between the maximum entropy method of moments in the physical x and the 

normalized domain ξ and the finite elements method. It is observed that the results of 

both the physical and the normalized domain converge to those of the finite elements 

method again. 

 

 
 

Figure 4.5. Time evolution of average intracellular content  

with six moments, for f=0.40, p=0.05, m=1. 

 

  
 

Figure 4.6. Reconstructed distribution for time t=10, 

with six moments, for f=0.40, p=0.05, m=1.  
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  In Figures 4.7. and 4.8., the solution of the CPB problem is depicted for the 

following set of parameter values: 0.25f  , 2m  , 0.1p  , 0.03  , 0.05  , 

max 4z  . The results are presented for time 10t  . 

 

  More precisely, Figure 4.7., presents the evolution of the average intracellular 

content for the physical domain 0, 4 x    and makes the comparison with the one of 

the normalized domain  0,1 . As it is seen, both solutions are quite similar.  

 

Figure 4.8., illustrates the reconstructed distribution as it is calculated using not only 

the maximum entropy method of moments applied both on the physical and the 

normalized domain but also the finite elements method using COMSOL multiphysics. 

It is observed that all the three solutions converge to similar results. 

 

 
 

Figure 4.7. Time evolution of average intracellular content  

with six moments, for f=0.25, p=0.1, m=2. 

 

 
 

Figure 4.8. Reconstructed distribution for time t=10, 

with six moments, for f=0.25, p=0.1, m=2.  
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  Figures 4.9. and 4.10. depict the solution of the CPB problem for the following set of 

parameter values: 0.25f  , 2m  , 0.05p  , 0.03  , 0.05  , 
max 4z  . The results 

of the maximum entropy method of moments both in the physical domain and the 

normalized domain are compared with those of the finite elements method using 

COMSOL Multiphysics. 
 

  More precisely, Figure 4.9., presents the evolution of the average intracellular 

content for the physical domain 0, 4 x    and makes the comparison with the one of 

the normalized domain  0,1 . As it is seen both solutions are identical.  

 

  In Figure 4.10., the reconstructed distribution of the density function is presented. 

The results of the maximum entropy method of moments are compared with those of 

the finite elements method and as it can be seen they are almost identical. A small 

error between the solution of the maximum entropy method and the finite elements is 

presented, but it is quite small if one thinks that maximum entropy method of 

moments solves 6 ODEs while finite elements solve one thousand of them. 
 

 
 

Figure 4.9. Time evolution of average intracellular content  

with seven moments, for f=0.25, p=0.05, m=2. 
 

 
 

Figure 4.10. Reconstructed distribution for time t=10,  

with seven moments, for f=0.25, p=0.05, m=2.  
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  In Figures 4.11. and 4.12., the solution of the CPB problem is depicted for the 

following set of parameter values: 0.25f  , 2m  , 0.15p  , 0.03  , 0.05  , 

max 4z  . The results are presented for time 10t   at which the system has reached a 

steady state solution.  

 

  Figure 4.11. illustrates the evolution of the average intracellular content for the 

chosen time interval [0,10]. As it is easily observed system reaches steady state in 

physical domain and the comparison is made between physical domain and COMSOL 

Multiphysics. Figure 4.12., shows the reconstructed distribution of the density 

function for the physical domain 0, 4 x    and it is shown that the solution of 

maximum entropy method of moments is quite similar with the one of the finite 

elements method. 

 

 
 

Figure 4.11. Time evolution of average intracellular content 

with seven moments, for f=0.25, p=0.15, m=2. 

 

 
 

Figure 4.12. Reconstructed distribution for time t=10, 

with seven moments, for f=0.25, p=0.15, m=2.  
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Figures 4.13. and 4.14. depict the solution of the CPB problem for the following set of 

parameter values: 0.40f  , 2m  , 0.15p  , 0.03  , 0.05  , 
max 4z  . The results 

are presented for time 10t  , however it seems that this time the system has not 

reached a steady state solution yet.  

 

  More precisely, Figure 4.13., presents the evolution of the average intracellular 

content for the physical domain 0, 4 x    and makes the comparison with the one of 

the normalized domain  0,1 . As it is seen both solutions are totally identical. 

 

  In Figure 4.14., the reconstructed distribution of the density function is presented. 

The results of the maximum entropy method of moments are compared with those of 

the finite elements method and as it can be seen they are quite similar. It seems that in 

this case the maximum entropy method of moments in the normalized domain works 

better than this in the physical domain. However, all the three solutions are close 

enough. 

 

 
 

Figure 4.13. Time evolution of average intracellular content  

with seven moments for f=0.40, p=0.15, m=2. 

 

 
 

Figure 4.14. Reconstructed distribution for time t=10, 

with seven moments for f=0.40, p=0.15, m=2.  



Computational Biomechanics   50 

 

4.3.2 Symmetric partitioning 

 

  Symmetric partitioning is another way to express the CPB problem of the isogenic 

cell population with Lac Operon genetic network and rewrite the formulas in order to 

use maximum entropy method moments and conclude to a solution. As it was seen in 

(4.16) the partition probability density function changes and the mother cells stop 

giving their intracellular content under discrete values to the daughter cells and start 

sharing their intracellular content under a specific probability. As a consequence, the 

results that have to do with the alteration of the allocation of the cells, the average 

intracellular content evolution and the reconstruction of the density function change 

dramatically. Next, we present simulations performed with maximum entropy method 

of moments for various parameter values of L and p and compare the results against a 

finite element code which was implemented in (Kavousanakis et al. 2009) using 

COMSOL Multiphysics. 

 

  The results of a transient simulation of the system of equations of isogenic cell 

population with Lac Operon genetic network is depicted in Figure 4.15. for the 

following parameter values: 5,L   2,q   0.15,p   0.03   and 0.5  . 

 

 

 

 
 

Figure 4.15. Simulation of a cell population using the maximum entropy method for the symmetric partitioning 

case. Parameter values: 

L=5, q=2, p=0.15, π=0.03, δ=0.5 and six moments. 
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Figure 4.16. Simulation of a cell population using the maximum entropy method for the symmetric partitioning 

case. Parameter values: 

L=2, q=2, p=0.4, π=0.03, δ=0.05 and seven moments. 

 

  Figure 4.16. illustrates the evolution of the number density function of cells. It is 

observed that cell density function fluctuates from t=1.5 to t=3 and after that time our 

system converges to a steady state solution.  
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  Figures 4.17. and 4.18. depict the solution of the CPB problem for parameter values: 

5L  , 2q  , 0.15p  , 0.03  , 0.5  . The results are presented for time 1t   and 

the moments on the specific time are chosen for the reconstruction, in order to check 

that the whole system has converged and has reached the desirable steady state 

situation.  

 

  More precisely, Figure 4.17., illustrates the evolution of the average intracellular 

content for the chosen time domain [0,10]. As it is easily observed system reaches 

steady state and there is almost total concurrence between Maximum Entropy and 

Comsol Multiphysics results. Figure 4.18. shows the reconstructed distribution 

evolution from 0 to 4 x . 

 

 

 
 

Figure 4.17. Time evolution of average intracellular content 

with five, six and seven moments, for L=5, q=2, p=0.15, π=0.03, δ=0.5. 

 

 
 

Figure 4.18. Reconstructed distribution 

with five, six and seven moments for L=5, q=2, p=0.15, π=0.03, δ=0.5   
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Figures 4.19., 4.20. and 4.21. depict the reconstructed density function of the CPB 

problem for the parameter values: 5L  , 2q  , 0.15p  , 0.03  , 0.5  . The 

results are presented for times 2t  , 2.5t   and 10t  . For all time instances, the 

maximum entropy method of moments with the seven moments appears increasing 

accuracy in comparison with the five moments and the four moments, because its 

results are almost identical with those of the finite elements method. 

 

 
 

Figure 4.19. Reconstructed distribution  

with five, six and seven moments, for L=5, q=2, p=0.15. 
 

 
 

Figure 4.20. Reconstructed distribution  

with five, six and seven moments, for L=5, q=2, p=0.15. 
 

 
 

Figure 4.21. Reconstructed distribution  

with five, six and seven moments, for L=5, q=2, p=0.15.  
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  Figure 4.22. depicts the evolution of the average intracellular content for the chosen 

time domain [0,10]. After a specific period, the system reaches steady state and there 

is almost total concurrence between the maximum entropy method of moments and 

the COMSOL Multiphysics results.  

 

  In Figure 4.23., the reconstructed density function is presented and it can be seen 

that the calculated with maximum entropy method of moments density function 

coincides totally with the one calculated with the finite elements method. The results 

are presented for time 0.5t   and the chosen parameters for our model are 2L  ,

2q  , 0.4p  , 0.03  , 0.05  . 

 

 

 
 

Figure 4.22. Time evolution of average intracellular content 

with seven moments, for L=2, q=2, p=0.4, π=0.03, δ=0.05. 

 

 
 

Figure 4.23. Reconstructed distribution 

with seven moments, for L=2, q=2, p=0.4, π=0.03, δ=0.05.  
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  Figures 4.24., 4.25. and 4.26. depict the solution of the CPB problem for parameter 

values: 2L  , 2q  , 0.4p  , 0.03  , 0.05  . The results are presented for times 

1t  , 2t   and 10t  . For all three cases, the power that the maximum entropy 

method of moments has is demonstrated. Even for t=2 the maximum entropy method 

of moments reaches a very satisfying approximation of the real solution, proving once 

again its power compared to the finite elements method. 
 

 
 

Figure 4.24. Reconstructed distribution 

with seven moments, for L=2, q=2, p=0.4, π=0.03, δ=0.05. 
 

 
 

Figure 4.25. Reconstructed distribution 

with seven moments, for L=2, q=2, p=0.4, π=0.03, δ=0.05. 
 

 
 

Figure 4.26. Reconstructed distribution 

with seven moments, for L=2, q=2, p=0.4, π=0.03, δ=0.05.  
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  Figure 4.27., illustrates the evolution of the average intracellular content for the 

chosen time domain [0,20]. It is observed that there is total convergence between the 

maximum entropy method of moments and the finite elements method results. It must 

be pointed that even though the maximum entropy method of moments solved a 

system of only seven integral differential equations, it appeared total concurrence with 

the finite elements method that solved a system of one thousand equations.  

 

  In Figure 4.28., it can be seen that the reconstructed density function using the 

maximum entropy method of moments has converged totally with the one calculated 

with the finite elements method. The results are presented for time 0.5t   and the 

chosen parameters of our model are 2L  , 2q  , 0.4p  , 0.03  , 0.05  . 

 

 

 
 

Figure 4.27. Time evolution of average intracellular content  

with seven moments, for L=2, q=2, p=4, π=0.03, δ=0.05. 

 

 
 

Figure 4.28. Reconstructed distribution 

with seven moments, for L=2, q=2, p=4, π=0.03, δ=0.05.  
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  Figures 4.29., 4.30. and 4.31. depict the solution of the CPB problem for parameter 

values: 2L  , 2q  , 0.4p  , 0.03  , 0.05  . The results are presented for times 

1t  , 5t   and 10t  . 

 

 
 

Figure 4.29. Reconstructed distribution 

with seven moments, for L=2, q=2, p=4, π=0.03, δ=0.05. 
 

 
 

Figure 4.30. Reconstructed distribution 

with seven moments, for L=2, q=2, p=4, π=0.03, δ=0.05. 
 

 
 

Figure 4.31. Reconstructed distribution 

with seven moments, for L=2, q=2, p=4, π=0.03, δ=0.05.  
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  Figure 4.32. illustrates the evolution of the average intracellular content for the 

chosen time domain [0,20]. As it is observed system reaches the steady state situation 

and there is almost total concurrence between maximum entropy method of moments 

and the COMSOL Multiphysics results.  

 

  Figure 4.33. presents the reconstructed distribution of the density function for the 

domain 0, 4 x   . The results are presented for time 0.5t   and the chosen 

parameters of the CPB model are 5L  , 2q  , 4p  , 0.03  , 0.5  . 

 

 

 
 

Figure 4.32. Time evolution of average intracellular content 

with seven moments for L=5, q=2, p=4, π=0.03, δ=0.05. 

 

 
 

Figure 4.33. Reconstructed distribution 

with seven moments, for L=5, q=2, p=4, π=0.03, δ=0.05.  
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Figures 4.34., 4.35. and 4.36. depict the solution of the CPB problem for parameter 

values: 5L  , 2q  , 4p  , 0.03  , 0.5  . The results are presented for times 

5t  , 10t   and 20t  . 
 

 
 

Figure 4.34. Reconstructed distribution 

with seven moments, for L=5, q=2, p=4, π=0.03, δ=0.05. 
 

 
 

Figure 4.35. Reconstructed distribution 

with seven moments, for L=5, q=2, p=4, π=0.03, δ=0.05. 
 

 
 

Figure 4.36. Reconstructed distribution 

with seven moments, for L=5, q=2, p=4, π=0.03, δ=0.05.  
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5 Conclusion and future work 
 

  The basic goal of this diploma thesis is the development of a computational 

framework, which transforms partial-integro-differential equations –which are used 

for the E Coli isogenic populations with the Lac Operon genetic network- into a set of 

ordinary differential equations modeling the evolution of moments of the distribution 

of cells with respect to their intracellular content. 

 

  Under the greater spectrum of those assumptions the dynamic behavior of this kind 

of populations has been studied and the results of the maximum entropy method of 

moments algorithm are compared against a finite elements code which was 

implemented by (Kavousanakis et al. 2009) with the COMSOL Multiphysics. 

 

  First, we presented the application of the maximum entropy algorithm in order to 

reconstruct known distribution functions given a small number of low order moments. 

Based on the algorithm, we calculated the Lagrangian multipliers and then 

reconstructed the distribution. In particular, we demonstrated its very good 

performance by reconstructing unimodal and bimodal distributions. 

 

  Then, we derived from the CPB model the moment evolution equations. A closure 

expression for the number density function is derived using the maximum entropy 

method of moments. Then, we performed simulations of the maximum entropy 

method of moments algorithm for different parameter values. In all cases, the 

proposed method was able to capture the abrupt dynamics of the distribution function 

which were observed at the initial stages of the simulation, and it still captured the 

long time dynamics which converged to steady state solutions. The comparison 

against a finite elements code shows that the maximum entropy method of moments 

can compute successfully the moments for the distribution, as well as can capture 

adequately well the shape of the density function. Regarding the convenience of 

capturing the shape of the density function, a big enough number of moments has to 

be used. A number of six or seven moments can be used and have satisfactory 

accuracy even capturing the shape of number density functions as computed from the 

finite elements method. This approximation reduces significantly the computational 

cost, since we only have to solve a system of six or seven ordinary differential 

equations instead of dealing with systems of approximately one thousand degrees of 

freedom (resulting in from the finite elements discretization of the partial-integro-

differential equations). The cases which have been solved in this diploma thesis deal 

with symmetric and asymmetric partitioning of a cell population; in both cases, we 

demonstrated the ability of maximum entropy method of moments to reach 

adequately well the solution even when solving a small system of ordinary differential 

equations. 

 

  An extension of this work could be for CPBs in two or higher dimensions. The 

computational requirements of the finite elements solution of such systems are largely 

enhanced, thus the maximum entropy method of moments (with significantly lower 

requirements) can be a promising alternative for capturing the evolution of the density 

statistics, as well as capturing adequately well the shape of distribution functions of 
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cell populations. It would also be interesting to explore the possibility of performing 

parametric continuation and stability analysis using. In particular for the lac operon 

genetic network that features bistability, it would be interesting to study the 

possibility of implementing steady-state algorithms (Newton-Raphson), parametric 

continuation algorithms (pseudo arc-length continuation), and eigenvalue solvers 

wrapped around the maximum entropy method of moments. Such an analysis can 

bypass the need to perform dynamic evolution simulations for an extensively large set 

of parameter values and enable to compute the total solution space using only a few 

equations for the moments of cell distribution functions. 
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