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IHEPIAHYH

O xvp1OTEPOG GTOYOC TNG €V AOY® gpyaciog eivon n Tapovsioon KavoToumy Hebddwv
ywo. TV aviyvevon enécewv tomov Distributed Denial of Service (DDoS) oe diktvo
tomov Internet of Things (10T) o¢ eninedo diktvov. XpnoipomoidvTog TV aAlnilovyio
TOV TOKETOV TOL OIKTVOVL 7OV OEYETOL O €KAOTOTE KOUPOG oG dedopéva,
EKUETAAAEVOUAOTE TIG TEPAGTIEC OLVOTOTNTEC LOVTEAOTOINGNC TOL TTapEYOLV Ta Pfadid
VELPOVIKA diKTLA.

[Ma v Tpaypatomoinon g epyaciog yPECTNKE 0 6YeOAGIOG Kot 1] VAOTOinon 600
Boaowov epyodeiov. Xe npdto otado viomombnke évag Traffic Generator ywo
TPOGOUOIWON KAAOBOVANG Kol KaKOBOVANG Kivnong Kot GUAAOYNG TOV ATopaiTNTOV
dedopévmy. e emOUeEVO Pripa, To 0ES0UEVE TOV GLAAEYTNKAY, XPNCILOTOONKAV Yo
™mv eknaidevon Pabiov vevpwvikdv apyitektovikov (LSTMs ko Random Neural
Networks) ot téhoc oa&oroynOnkav vy v amotelecpotikémtd tovg. Ta
amoteAéopoto £xovv dnpootevtel ko oto PETRA Conference thng ACM vrd tov titho:
«Neural network architectures for the detection of SYN flood attacks in 10T systems»


https://dl.acm.org/doi/pdf/10.1145/3389189.3398000?accessTab=true

Summary

The basic premise of this work is the presentation of novel ways to detect loT-related
attacks (Denial of Service attacks) on the network level from raw packet captures
employing the immense modelling capabilities of deep learning and deep neural
networks.

In that sense, the provenance part is mostly related to identifying the potentiality for
malicious purpose or intention of specific traffic flows, so we view the idea of
provenance not generically, but more in the context of investigating the intentions
behind particular flows.

Moreover, in the process of attack detection using deep learning, we identified a
particular issue which is very common for loT/cybersecurity research. The problem
was that, the datasets of raw traffic captures that encompass patterns of certain types of
attacks are not publicly available (most of the times they are strictly confidential), so it
is quite difficult to train the deep learning models for finding the abnormalities in data
captures. Therefore, we created a generator of both benign and malicious traffic to
gather raw packet captures and annotate them for training. In particular, the malicious
traffic constitutes SYN-TCP flood attack, which is a pretty common way of launching
distributed Denial of Service attacks on critical 10T infrastructure.



EYXAPIXTIEX

H mopodoo dumhopotikny epyacio eKmoviOnke 6To TAGIGIO TOL HETOMTUYLOKOD OLOTOVETIGTIHUIOKOD
npoypapupatog tv Teyvoowovopukdv Zvotudteov tov EBvikod Metcdfiov IToivteyveiov. Mécw
AVTNG ElY0 TN SLVATOTNTA VO SIEVPVVE® TIG YVADGELS LOV TAVD 6T0 AladiKTVO TOV TPAYLATOV KOO®DG Kot
TG anethéc oL To cLvodevoLvv. To yeyovog avtd amotélecse To Pacikd epéfioa Yo TOV ETayyEALOTIKO
OV TPOGUVATOAMGHO. Ba 10ela va evyaplotiom Beppd tov kabnynt pov Ilpwrtovotépio Eppavouna,
Yo TV SUVOTOTNTO OV OV TPOGEPEPE VO EPYOCTM TAVE® GTOV TOUEN TNG ACPAAELNG TOV SLUSIKTVOL
TOV TPAYRATOV, KAODS Kot Yo TIg ToAVTIES GLIPBOVAES ToL KaBOAN TN didpkeln TV padnudtoy Kot
™G €KmOVNONG NG OWMAMUATIKNG Hov gpyaciac. Oa Hfeha vo gvyaploTiom EexmpioTd Kol ToV K.
Nwodrao Mrakaro, E.ALIT EMUIL yio v moAvTiun Ponbeta Tov oty €KmOVNGCT TG GUYKEKPILEVNC
gpyaciog kabds Kot tov emPArémovta Kadnynt pov K. Nikdéroo AovAdun yuwo v kabodynon kot Tig
ToAOTILEG GVUPOVAEG TOV. O ¥POVOG TOV UPIEPMGCE, 1| EMCTNUOVIKT OGO KO 1] TVEVIOTIKT TOV oThpLén
Nrav Woitepo onuavticég katd T dtdpkela avtig g mopeiog. Télog, pe e&icov peydin 0pun 6E m va
EVYOPIOTHC® TNV OIKOYEVELD OV KOl TOVG PIAOVG Hov, oV NTay SimAo LoV o OAN T SIGPKE TNG
aKodNOikNG pov mopeiog, o kabévag e Tov Eexmplotd Tov TPOTo. [d101TEPMG EVYXOPIETHO TOV TUTEPO.
LoV, TTOL 1TaV 0 AOY0G OV EMEAEEN AVTY T1 OYOAN KL TNV LUNTEPO LLOV, TTOV NTOV 0 AGYOG TOV KOTAPEPO.
VO UTt® GE€ OVTH TN GYOA.

I'edpyrog K Bhayodnuntpdénovioc &
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Abnva, 41 Iovviov 2021
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1.Cybersecurity and 10T security

The research area of network security is, and has been for many years, focused on the
idea of preventing the interception of critical information and the case where some
entity acquires authority or credentials where they actually should not. These concepts
of particular attacks or malicious activity have been thoroughly researched, and
elaborate solutions for security have been proposed.

On the other hand, the emergence of the Internet of Things (1oT), where the traditional
networking part really enables many applications related to networks comprised from
actuators and sensors, has created a new landscape of possible malicious activities,
where the potential attacker does not, solely, intend to intercept information or gain
authority, but they can prevent the service of the network to be provided to their end
user. This is the concept of Denial-of-Service attacks, and this is the area of security
that we extensively focus on, in this deliverable and our work in the context of SerloT
project.

1.1 State of the Art

Network security, including loT is a constantly expanding field. More and more
attention is being paid in advancing the security systems and strategies as intruders
develop new ways of surpassing the existing security protocols.

Communication in the loT should be protected by providing security services. By using
standardized security mechanisms we can provide communication security at different
layers.

e Link Layer: IEEE 802.15.4 Security: link layer. 802.15.4 link-layer security is the
current state-of-the-art security solution for the 1oT. The link-layer security protects a
communication on a per-hop base where every node in the communication path has to
be trusted. A single pre-shared key is used to protect all communication. In normal case
if an attacker compromised one device and access to one key it means whole network
will be compromised, but in this link-layer as its per-hop security only one hop/device
will be compromised and it can be detected at initial state. Still, link-layer security is
limited, but it’s quite flexible which operate with multiple protocols on different layers.

o 6LOWPAN networks: IPv6 used on sensor node to simplify the connecting task, and
it’s quite successful, especially in all LOWPAN devices. IPv6 can be used in IoT as it
also supports development for commissioning, managing, configuring and debugging
networks. The IETF (Internet Engineering Task Force) created the 6LoWPAN working
group to define the support of IPv6 over IEEE 802.15.4 LoWPAN networks which is
defined by an additional adaptation layer introduced between data link and network
layers. There are three different kinds of LOWPAN architectures types were defined,
a) Ad-hoc LoWPAN, with no infrastructure b) LoOWPAN, with one edge router and c)
LoWPAN with multiple edge routers.

e Network Layer: IP Security: As 10T is basically implemented on the Internet, it uses
network IP Security (IPsec) provided by Network layer. IPsec provides end to end
security with authentication as well as confidentiality and integrity. By operating at the
network layer, IPsec can be used with any transport layer protocol, including TCP,
UDP, HTTP, and CoAP. IPsec ensures the confidentiality and integrity of the IP
payload using the Encapsulated Security Payload (ESP) protocol, and integrity of the



IP header plus payload using the Authentication Header (AH) protocol. Now in IPsec
is mandatory in all IPv6 protocol means all IPv6 ready devices by default have IPsec
support.

e 1905.1 Abstraction Layer: With the increase of home care solution, the fact that every
device is connected with the Internet, made wired and wireless home networking a hot
topic. To address a wide variety of application, regions, environments and topologies,
multiple connectivity technologies should be used. As with any network deployment,
many problems need to be addressed for the network.

Application Layer

Transport Layer
IETF
Network Layer (IPv6)
6LoWPAN
. 6LOoWPAN
Adaptation layer i
IEEE 82.154 (MAC)
IEEE 802.15.4

IEEE 82.15.4 (PHY)

Figure 1 6LowPAN adaptation layer

The design of IEEE 1905.1 is flexible and scalable to accommodate future home
networking technologies. The 1905.1 Abstraction Layer (AL) supports interface
selection for the transmission of packets arriving from any interface or application.
The 1905.1 layer does not require modification of the underlying home networking
technologies and hence does not change the behaviour or implementation of
existing home networking technologies. An abstraction layer is used to exchange
Control Message Data Unit (CMDU) among 1905.1 compliant devices
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Figure 2 Security framework for 6LowPAN

Data Security

Even though the work presented in the context of the present deliverable focuses mainly
on the aspect of cybersecurity related to denial of service, we consider important to
mention some state-of-the art developments in the area of secure information exchange
and interception of intelligence, which constitutes more conventional areas of the
cybersecurity field.

Securing communication is really important in 10T, but it is not uncommon for people
and organisations involved to forget about securing data which are generated from all
IoT devices. Most of the devices in IoT are small and don’t have enough capacity, due
to limited size, to secure themselves from threats related to hardware. There exist
several solutions, but due to different communication technology protocols, one
solution may not be enough to secure everything.

There are many companies, working towards security standards and providing better
interface where the user can get secure communication, secure access to devices and
secure data transfer and storage. In 10T, most of the hardware has limited capability,
and DTLS handshake is still an acceptable solution.

To handle security challenges in 10T, specific mechanisms need to be designed on the
device. With device security, the risk of data theft and unauthorized access can be
reduced. Especially for the medical devices if data are stolen, it can lead to some serious
consequences. Manufacturers should build inbuilt security features in device.
Moreover, the device security should be updated regularly. Building security in the
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device alone will not provide full security in 10T, but it will definitely reduce the risk.
In 10T, security needs to be addressed throughout its cycle. Secure booting, proper
access control, secure authentication and secure application interface need to develop
to make sure the whole process is secure. As we discussed in the previous section, the
Internet was only designed for communication and not for millions of devices to
connect together. In future, the number 10T device will be increased, and it all depends
on how to manage device security on every stage. Therefore, it is paramount to find
specific standards and mechanisms to provide 10T security.

1.2. Beyond State-of-the-Art loT Security

With the emerging of l0T technologies and environments in multiple vertical domains,
cybersecurity become of great importance. The sensor (proximity layer of the loT
network) consists of nodes-devices with extremely limited capabilities and recourses.
In the context of classic cybersecurity research, even though denial of service attacks
have been considered, they are not the main concern. This rightfully so happens because
in conventional computer networks the probable target of a DDoS attack is most likely
a powerful server or data center. In contrary, in 10T networks the victim might be a
powerless sensor or actuator which actually performs a very critical task. Along with
the emerging of 10T the high modeling capability of deep neural networks has
constituted them to be a really important scientific and engineering tool.

For sure deep learning has been used for cybersecurity applications in general and in
the context of Denial of service attack prevention in particular. To the best of our
knowledge, conventional deep neural network architectures have been employed as
classifiers for detecting DDoS attacks (distinguishing malicious and benign traffic).
The beyond the state of the art contribution of the work described in this deliverable is
twofold. Firstly the feed-forward version of the random neural network architecture has
been used (Random neural Networks are mostly defined in a recurrent fashion).
Secondarily, a regression model is being introduced as a tool for detecting DDoS
attacks rather than a cluster in a model or a classifier.

2. The landscape of Denial-of-Service attacks

Denial of Service (DoS) attacks are undoubtedly a very serious problem in the Internet,
whose impact has been well demonstrated in the computer network literature. The main
aim of a DosS is the disruption of services by attempting to limit access to a machine or
service instead of subverting the service itself. This kind of attack aims at rendering a
network incapable of providing normal service by targeting either the networks
bandwidth or its connectivity. These attacks achieve their goal by sending at a victim a
stream of packets that swamps his network or processing capacity denying access to his
regular clients. In the not so distant past, there have been some large-scale attacks
targeting high profile Internet sites [24][25]. Distributed Denial of Service (DDoS), is
a relatively simple, yet very powerful technique to attack Internet resources. DDoS
attacks add the many-to-one dimension to the DoS problem making the prevention and
mitigation of such attacks more difficult and the impact proportionally severe. DDoS
exploits the inherent weakness of the Internet system architecture, its open resource
access model, which ironically, also happens to be its greatest advantage. DDoS attacks
are comprised of packet streams from disparate sources. These attacks engage the
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power of a vast number of coordinated Internet hosts to consume some critical resource
at the target and deny the service to legitimate clients. The traffic is usually so
aggregated that it is difficult to distinguish legitimate packets from attack packets. More
importantly, the attack volume can be larger than the system can handle. Unless special
care is taken, a DDoS victim can suffer from damages ranging from system shutdown
and file corruption, to total or partial loss of services. There are no apparent
characteristics of DDoS streams that could be directly used for their detection and
filtering. The attacks achieve their desired effect by the sheer volume of attack packets,
and can afford to vary all packet fields to avoid characterization and tracing. Extremely
sophisticated, ‘‘user-friendly’’ and powerful DDoS toolkits are available to potential
attackers increasing the danger of becoming a victim in a DoS or a DDoS attack. DDoS
attacking programs have very simple logic structures and small memory sizes, making
them relatively easy to implement and hide. Attackers constantly modify their tools to
bypass security systems developed by system managers and researchers, who are in a
constant alert to modify their approaches to handle new attacks. The DDoS field is
evolving quickly, thus becoming increasingly hard to grasp a global view of the
problem. Although there is no panacea for all flavours of DDoS, there are several
countermeasures that focus on either making the attack more difficult or on making the
attacker accountable. We will also try to introduce some structure to the DDoS field by
presenting the state-of-the-art in the field through a classification of DDoS attacks and
a classification of the defence mechanisms that can be used to combat these attacks.
The classification of attacks includes both known and potential attack mechanisms. In
each attack category, we define special and important features and characteristics. We
also classify published approaches of defence mechanisms, and even though we point
out vulnerabilities of certain defence systems, our purpose is not criticizing the defence
mechanisms but to describe the existing problems so that they might be solved.

2.1. Defining DoS attacks

According to the WWW Security FAQ [26], a DoS attack can be described as an attack
designed to render a computer or network incapable of providing normal services. A
DoS attack is considered to take place only when access to a computer or network
resource is intentionally blocked or degraded as a result of malicious action taken by
another user. These attacks don’t necessarily damage data directly or permanently, but
they intentionally compromise the availability of the resources. The most common DoS
attacks target the computer networks bandwidth or connectivity. Bandwidth attacks
flood the network with such a high volume of traffic that all available network resources
are consumed, and legitimate user requests cannot get through, resulting in degraded
productivity. Connectivity attacks flood a computer with such a high volume of
connection requests that all available operating system resources are consumed, and the
computer can no longer process legitimate user requests.

A denial-of-service attack (DoS attack) is typically accomplished by flooding the
targeted machine or resource [1] with superfluous requests in an attempt to overload
systems and prevent some or all legitimate requests from being fulfilled. In a distributed
denial-of-service attack (DDoS attack), the incoming traffic flooding the victim
originates from many different sources, making it impossible to stop the attack simply
by blocking a single source.

Some DoS attacks aim at remotely stopping a service on the victim host.
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The basic method for remotely stopping a service is to send a malformed packet.
Below, are two standard examples of this type of attacks:

- Ping-of-Death attack: The attacker tries to send an oversized ping packet to
the destination with the hope to bring down the destination system due to the
systems lack of ability to handle huge ping packets.

- Jolt2 attack: The attacker sends a stream of packet fragments, none of which
have a fragment offset of zero. The target host exhausts its processor capacity
in trying to rebuild these bogus fragments

Other well-known examples of this type of attacks include Land attacks,

- TCP SYN attacks: This type of attacks exploits a flaw in some
implementations of the TCP three-way handshake. When a host receives the
SYN request from another host, it must keep track of the partially opened
connections in a listening queue for a given number of seconds. The attacker
exploits the small size of the listen queue by sending multiple SYN requests to
the victim, never replying to the sent back SYN ACK. The victim’s listening
queue is quickly filled up, and it stops accepting new connections.

- UDRP flood attack: The attacker sends many UDP packets to random ports on
a remote host. The victim checks for the application listening on this port. After
seeing that no application listens on the port, it replies with an ICMP Destination
Unreachable packet. In this way, the victimized system is forced to send many
ICMP packets, eventually leading it to be unreachable by other clients, or even
to go down

Another category of typical 10T attacks that target to inhibit the networks ability to
perform the accustomed service to the end user is the Denial-of-sleep attacks [2]. In the
context of the Internet of Things, low-rate wireless personal area networks are a
prevalent solution for communication among devices. Tight limitations on hardware
cost, memory use and power consumption have given rise to several security
vulnerabilities, including traffic eavesdropping, packet replay, and collision attacks,
straightforward to conduct. A simple form of attack is to deplete the energy available
to operate the wireless sensor nodes [3,4,5]. For instance, vampire attacks are routing-
layer resource exhaustion attacks aiming at draining the whole life (energy) from
network nodes, hence their name [6]. In this section, we shall focus on another form of
energy attacks, which are MAC-layer attacks known as Denial-of-Sleep attacks. Below
are some examples of denial-of-sleep attacks:

- Sleep deprivation attack: The ability of a sensor node to enter a low power
sleep mode is very useful for extending network longevity. The attacker
launches a sleep deprivation attack by interacting with the victim in a manner
that appears to be legitimate; however, the purpose of the interactions is to keep
the victim node out of its power-conserving sleep mode, thereby dramatically
reducing its lifetime [7,8,9]

- Barrage attack: As in the sleep deprivation attack, the attacker seeks to keep
the victim out of its sleep mode by sending seemingly legitimate requests.
However, the requests are sent at a much higher rate and aim at making the
victim perform energy-intensive operations. Barrage attacks are more easily

13



detected than sleep deprivation attacks, which are carried out solely through the
use of seemingly innocent interactions.

Broadcast attack: Malicious nodes can broadcast unauthenticated traffic and long
messages which must be received by other nodes before being possibly discarded for
lack of authentication. These types of malicious activity are difficult to detect because
they do not necessarily affect the throughput of the system and they focus on
exhausting the energy of certain nodes

2.2. DoS attack classification

DosS attacks can be classified into five categories based on the attacked protocol level,
as illustrated in Fig. 3

Remote Denial of Service Attacks

Network OS level Application Data flood Protocol
Device level feature
level attack

Figure 3 Classification of Remote Denial of Service attacks.

DoS attacks in the Network Device Level include attacks that might be caused either
by taking advantage of bugs or weaknesses in software, or by trying to exhaust the
hardware resources of network devices. One example of a network device exploit is the
one that is caused by a buffer overrun error in the password checking routine. Using
these exploits, certain Cisco 7xx routers could be crashed by connecting to the routers
via telnet and entering extremely long passwords. In the OS level, DoS attacks take
advantage of the ways operating systems implement protocols. One example of this
category of DoS attacks is the Ping of Death attack [27]. In this attack, ICMP echo
requests having total data sizes greater than the maximum IP standard size are sent to
the targeted victim. This attack often has the effect of crashing the victims machine.
Application-based attacks try to settle a machine or a service out of order either by
taking advantage of specific bugs in network applications that are running on the target
host or by using such applications to drain the resources of their victim. It is also
possible that the attacker may have found points of high algorithmic complexity and
exploits them in order to consume all available resources on a remote host. One example
of an application based attack is the finger bomb [28]. A malicious user could cause the
finger routine to be recursively executed on the hostname, potentially exhausting the
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resources of the host. In data flooding attacks, an attacker attempts to use the bandwidth
available to a network, host or device at its greatest extent, by sending massive
quantities of data and so causing it to process extremely large amounts of data. An
attacker could attempt to use up the available bandwidth of a network by simply
bombarding the targeted victim with normal, but meaningless packets with spoofed
source addresses. An example is flood pinging. Simple flooding is commonly seen in
the form of DDoS attacks, which will be discussed later. DoS attacks based on protocol
features take advantage of certain standard protocol features. For example, several
attacks exploit the fact that IP source addresses can be spoofed. Several types of DoS
attacks have focused on DNS, and many of these involve attacking DNS cache on name
servers. An attacker who owns a name server may coerce a victim name server into
caching false records by querying the victim about the attacker’s own site. A vulnerable
victim name server would then refer to the rogue server and cache the answer [29].

Classification Classification
by degree of by exploited DDosS Atacks Classification by Classification

automation vulnerability attack rate dynamics by impact

— Flood attack

P Semi-Automatic

Continuous - -
Disruptive
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il
|
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Figure 4 Classification of DDoS attacks.

2.3 DDoS defence problems and classification

DDoS attacks are a hard problem to solve. First, there are no common characteristics
of DDoS streams that can be used for their detection. Furthermore, the distributed
nature of DDoS attacks makes them extremely difficult to combat or trace back.
Moreover, the automated tools that make the deployment of a DDoS attack possible
can be easily downloaded. Attackers may also use IP spoofing in order to hide their
identity, and this makes the traceback of DDoS attacks even more difficult. Finally,
there is no sufficient security level on all machines on the Internet, while there are
persistent security holes in Internet hosts. We may classify DDoS defence mechanisms
using two different criteria. The first classification categorizes the DDoS defence
mechanisms according to the activity deployed. Thus, we have the following four
categories:

15



* Intrusion Prevention,

* Intrusion Detection,

* Intrusion Tolerance and Mitigation, and
* Intrusion Response.

The second classification divides the DDoS defences according to the location
deployment resulting in the following three categories of defence mechanisms:

* Victim Network,
* Intermediate Network, and
» Source Network.

Our classification of DDoS mechanisms is illustrated in Fig. 4. In the following, we
discuss extensively the techniques used in each of the categories of the first
classification and just refer to the DDoS defences and the way they are categorized for
the last classification.

Our focus was the development of methodologies for detecting the most common type
of Denial of Service attack, which is the SYN TCP flood attack, which actually really
prevalent in 10T environments. Intuitively, when dealing with 10T the proximity
network side is really vulnerable since it is comprised by devices with very low
capabilities and resources which, though handle critical functionalities. In this specific
case, the attacker exploits the TCP 3-WAY handshake. According to the TCP
communication protocol, the client should send a SYN message to the server to initiate
the socket for message exchanging. The server answers with a SYN ACK message, and
finally the communication is complete and established when the client sends the final
ACK message, which solidifies the open connection between the two nodes.

In the case where a SYN TCP flood attack is being launched, the malicious client sends
too many SYN messages to the target (to all the available TCP ports), but when they
receive the SYN ACK messages, they never respond with the associated ACK
messages. So, the server is left waiting for some period of time. This results in inhibiting
the server’s ability to handle new requests and the service provided is being stalled.

2.4 Classification by activity
2.4.1 Intrusion prevention

The best mitigation strategy against any attack is to completely prevent the attack. In
this stage we try to stop DDoS attacks from being launched in the first place. There are
many DDoS defence mechanisms that try to prevent systems from attacks: Using
globally coordinated filters, attacking packets can be stopped, before they aggregate to
lethal proportions. Filtering mechanisms can be divided into the following categories:
Ingress filtering is an approach to set up a router such that to disallow incoming packets
with illegitimate source addresses into the network. Ingress filtering, proposed by
Ferguson and Senie [30], is a restrictive mechanism to drop traffic with IP address that
does not match a domain prefix connected to the ingress router. This mechanism can
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drastically reduce the DoS attack by IP spoofing if all domains use it. Sometimes
legitimate traffic can be discarded by an ingress filtering when Mobile IP [31] is used
to attach a mobile node to a foreign network. Egress filtering [32] is an outbound filter,
which ensures that only assigned or allocated IP address space leaves the network.
Egress filters do not help to save resource wastage of the domain where the packet
originated but it protects other domains from possible attacks. Besides the placement
issue, both ingress and egress filters have similar behaviour. Route-based distributed
packet filtering has been proposed by Park and Lee [33]. This approach is capable of
filtering out a large portion of spoofed IP packets and preventing attack packets from
reaching their targets as well as to help in IP traceback. Route-based filters use the route
information to filter out spoofed IP packets, making this their main difference from
ingress filtering. If route-based filters are partially deployed, a synergistic filtering
effect is possible, so that spoofed IP flows are prevented from reaching other
Autonomous Systems. Furthermore, since routes on the Internet change with time [34]
it is a great challenge for route-based filters to be updated in real time. The main
disadvantage of this approach is that it requires global knowledge of the network
topology leading to scalability issues. History-based IP filtering (HIP) is another
filtering mechanism that has been proposed by Peng et al. [35] in order to prevent DDoS
attacks. According to this approach the edge router admit the incoming packets
according to a pre-built IP address database. The IP address database is based on the
edge routers previous connection history. This scheme is robust, does not need the
cooperation of the whole Internet community, is applicable to a wide variety of traffic
types and requires little configuration. On the other hand, if the attackers know that the
IP packet filter is based on previous connections, they could mislead the server to be
included in the IP address database. This can be prevented by increasing the period over
which IP addresses must appear in order to be considered frequent. Secure Overlay
Services (SOS) [36] is an architecture in which only packets coming from a small
number of nodes, called servlets, are assumed to be legitimate client traffic that can
reach the servlets through hash-based routing inside an overlay network. All other
requests are filtered by the overlay. In order to gain access to the overlay network, a
client has to authenticate itself with one of the replicated access points (SOAPs). SOS
is a distributed system that offers excellent protection to the specified target at the cost
of modifying client systems, so it is not suitable for protection of public servers.
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Figure 5 Classification of DDoS defence mechanisms..

Disabling unused services [36] is another approach in order to prevent DDoS attacks.
If UDP echo or character generator services are not required, disabling them will help
to defend against these attacks. In general, if network services are not needed or unused,
the services should be disabled to prevent attacks. Applying security patches [36], can
armour the hosts against DDoS attacks. The host computers should update themselves
with the latest security patches for the bugs present and use the latest techniques
available to minimize the effect of DDoS attack. Changing IP address, is another simple
solution to a DDoS attack in order to invalidate the victim computers IP address by
changing it with a new one. This is called moving target defence. Once the IP address
change is completed all Internet routers will have been informed, and edge routers will
drop the attacking packets. Although this action leaves the computer vulnerable because
the attacker can launch the attack at the new IP address, this option is practical for local
DDoS attacks, which are based on IP addresses. On the other hand, attackers can render
this technique a futile process by adding a domain name service tracing function to the
DDosS attack tools. By disabling IP broadcasts [36], host computers can no longer be
used as amplifiers in ICMP Flood and Smurf attacks. However, a defence against this
attack will be successful only if all the neighbouring networks disable IP broadcasts.
Load balancing is a simple approach that enables network providers to increase the
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provided bandwidth on critical connections and prevent them from going down in the
event of an attack. Additional failsafe protection can be the use of replication of servers
in the case some go down during a DDoS attack. Furthermore, in a multiple-server
architecture the balance of the load is necessary so that both the improvement of normal
performance as well as the prevention or mitigation of the effect of a DDoS attack can
be achieved. Honeypots [37] can also be used in order to prevent DDoS attacks.
Honeypots are systems that are set up with limited security and can be used to trick the
attacker to attack the honeypot and not the actual system. Honeypots typically have
value not only in protecting systems, but they can also be used in order to gain
information about attackers by storing a record of their activity and learning what types
of attacks and software tools the attacker is using. Current research discusses the use of
honeypots that mimic all aspects of a legitimate network (such as web servers, mail
servers, clients, etc.) in order to attract potential DDoS attackers. The idea is to lure the
attacker into believing that he has compromised the system (e.g. honeypot) for attack
as its slave and attract him to install either a handler or agent code within the honeypot.
This prevents some legitimate systems from getting compromised, tracks the handler
or agent behaviour and allows the system to better understand how to defend against
future DDoS installation attacks. However, this scheme has several drawbacks. First,
the method assumes that the attack must be detectable using signature-based detection
tools. If not, the packet is forwarded to the destination in operational networks.
Furthermore, the attacker can easily thwart the static and passive nature of honeypots
approach since the approach is static and passive in the sense that it is not a dynamically
moving scheme with complete disguise. Prevention approaches offer increased security
but can never completely remove the threat of DDoS attacks because they are always
vulnerable to new attacks for which signatures and patches do not exist in the database.

2.4.2 Intrusion detection

Intrusion detection has been a very active research area. By performing intrusion
detection, a host computer and a network can guard themselves against being a source
of network attack as well as being a victim of a DDoS attack. Intrusion detection
systems detect DDoS attacks either by using the database of known signatures or by
recognizing anomalies in system behaviours. Anomaly detection relies on detecting
behaviours that are abnormal with respect to some normal standard. Many anomaly
detection systems and approaches have been developed to detect the faint signs of
DDoS attacks.

A scalable network monitoring system called NOMAD has been designed by Talpade
et al. [38]. This system is able to detect network anomalies by making statistical
analysis of IP packet header information. It can be used for detecting the anomalies of
the local network traffic and does not support a method for creating the classifier for
the high-bandwidth traffic aggregate from distributed sources. Another detection
method of DDoS attack uses the Management Information Base (MIB) data from
routers. The MIB data from a router includes parameters that indicate different packet
and routing statistics. Cabrera et al. [39] has focused on identifying statistical patterns
in different parameters, in order to achieve the early detection of DDoS attacks. It looks
promising for possibly mapping ICMP, UDP and TCP packet statistical abnormalities
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to specific DDoS attacks. Although this approach can be effective for controlled traffic
loads, it needs to be further evaluated in a real network environment. This research area
could provide important information and methods that can be used in the identification
and filtering of DDoS attacks. A mechanism called congestion triggered packet
sampling and filtering has been proposed by Huang and Pullen [40]. According to this
approach, a subset of dropped packets due to congestion is selected for statistical
analysis. If an anomaly is indicated by the statistical results, a signal is sent to the router
to filter the malicious packets. Lee and Stolfo [41] use data mining techniques to
discover patterns of system features that describe program and user behaviour and
compute a classifier that can recognize anomalies and intrusions. This approach focuses
on the host-based intrusion detection. An improvement of this approach is a meta-
detection model, which uses results from multiple models to provide more accurate
detection. Mirkovic et al. [42] proposed a system called DWARD that does DDoS
attack detection at the source based on the idea that DDoS attacks should be stopped as
close to the sources as possible. D-WARD is installed at the edge routers of a network
and monitors the traffic being sent to and from the hosts in its interior. If an asymmetry
in the packet rates generated by an internal host is noticed, D-WARD rate limits the
packet rate. The drawback of this approach is that there is a possibility of numerous
false positives while detecting DDoS conditions near the source, because of the
asymmetry that there might be in the packet rates for a short duration. Furthermore,
some legitimate flows like real time UDP flows do exhibit asymmetry. In [43] Gil and
Poletto proposed a heuristic data-structure (MULTOPS), which postulates if the
detection of IP addresses that participate in a DDoS attack is possible, then measures
are taken to block only these addresses. Each network device maintains a multi-level
tree that contains packet rate statistics for subnet prefixes at different aggregation levels.
MULTOPS uses disproportionate rates to or from hosts and subnets to detect attacks.
When it stores the statistics based on source addresses, it is said to operate in attack-
oriented mode, otherwise in the victim-oriented mode. A MULTOPS data structure can
thus be used for keeping track of attacking hosts or hosts under attack. When the packet
rate to or from a subnet reaches a certain threshold, a new sub-node is created to keep
track of finer—grained packet rates. This process can go till finally per IP address
packet rates are being maintained. Therefore, starting from a coarse granularity one can
detect with increasingly finer accuracy, the exact attack source or destination addresses.
The IP source addresses that are obtained are spoofed addresses but can still be valuable
in applying rate limits. Among the disadvantages of this approach, is that it requires
router reconfiguration and new memory management schemes. Furthermore, it cannot
prevent proportional attacks nor can it detect randomized forged IP addresses
originating from a single machine or DDoS attacks that use many zombies. Misuse
detection identifies well-defined patterns of known exploits and then looks out for the
occurrences of such patterns. Intrusion patterns can be any packet features, conditions,
arrangements and interrelationships among events that lead to a break-in or other
misuse. These patterns are defined as intrusion signatures.

2.5 Syn-TCP Flood attacks

20



Multiple half-opened
Client connections Server

Figure 6:example of SYN attack

The significance of finding the remedy to this specific 10T attack is prevalent if one
considers the fact that the TCP protocol is being used for facilitating the communication
in many parts of the network in loT setups and this attack is so easily launched. It can
affect all the critical parts of the network, from the controller to the fog, from the edge
to the actual sensor network. It can also be used to harm the actual infrastructure of the
network because a possible attack on the hub that controls the actuators can create
physical damage to the equipment. So, we focused on the very “meat and potatoes” of
a possible malicious activity related to stopping the delivery of service in loT

3.SerloT Traffic Generation

In the process of trying to collect datasets of traffic that contain the launching of SYN
TCP attacks we ran on a very spread and well-known issue of the field. These types of
attacks are usually launched, and therefore captured, on large scale commercial
networks and the associated companies are not particularly prone to provide access on
these datasets because of specific policies related to confidentiality.

We had to overcome this issue and to do so we emphasized on creating a software
component that produces both normal 10T network traffic and traffic that manifests
SYN flood attacks. We also created a bot network where this attack could be launched
so that the traffic could be captured, and we can collect indicative datasets for training.

3.1 Tools used

The Generator was implemented in a virtual 10T environment where every 10T node
had the credentials to establish connections with the rest of the existing nodes.

Tools that were needed for the Generator’s implementation:
e VirtualBox for the creation of 10T nodes.
e Python script for setting up:
1. aserver node
2. aclient node (Benign traffic generator)
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3. an ambiguous node that generates alternating traffic (both benign and
malicious generator)

e Scapy python module for the crafting of packets

3.2 Scapy Python Package

Scapy is a Python module full of packages that enable the user to send, sniff and dissect
and forge network packets. This capability allows construction of tools that can probe,
scan or attack networks[10].

The use of scapy was extensive for both the preparation of the botnet and the writing
of the scripts for traffic monitoring and packet creation.
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Figure 7:crafting packets with scapy[10]

3.3 Creation of the Bot Network

For the creation of a virtual network, we used VirtualBox. At first, we created a bunch
of VMs that run on Ubuntu 18.04 64b distribution. At first those VMs were unable to
communicate with the outside world (Internet) nor with each other so we created a NAT
network to address the issue of limited connectivity to the Internet. After that we created
a local network between the host machine and the 2 VMs. For simplicity and for the
rest of the description let us assume that VM1 (VM-1) and VM2 (VM-2) are both
clients and VMs (VM-s) is the virtual server. Next step was to give those machines a
static IP to accommodate the communication between them. In detail the clients’ IP
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address was decided to be “192.168.56.101” and “192.168.56.102” respectively, while
the server’s IP “192.168.56.100”.

general specifications:
e all scripts are developed in python 3

e generator was tested and can be successfully used in linux operating systems
(tested on 18.03 ubuntu distribution)

our scripts generate TCP communications (benign or malicious) so it is important to be
used on nodes that support TCP protocol

VM-1

Figure 8:botnet

3.4 Server Node set up

An 10T node of our network that plays the role of the server (in our case VMSs) will
have to be running in the background the python script: server.py

This script should be running on the target node in order to be able to communicate
with the client nodes. (It works as a socket server).

arguments:
<Server P> which is the target’s IP
<Server port> which is the Sserver’sport

server.py:

sys
socket
selectors

types

sel = selectors.DefaultSelector()
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accept_wrapper(sock):
conn, addr = sock.accept()
("accepted connection from™, addr)
conn.setblocking( )
data = types.SimpleNamespace( =addr =p™" =b™")
events = selectors.EVENT_READ | selectors. EVENT_WRITE
sel.register(conn, events =data)

service_connection(key, mask):
sock = key.fileobj
data = key.data
mask & selectors.EVENT _READ:
recv_data = sock.recv( )
recv_data:
data.outb +=recv_data

(“closing connection to", data.addr)
sel.unregister(sock)
sock.close()
mask & selectors. EVENT _WRITE:
data.outb:
("echoing", repr(data.outb), "to", data.addr)
sent = sock.send(data.outb)
data.outb = data.outb[sent:]

len(sys.argv) 1= 3:
("usage:", sys.argv[0], "<host> <port>")
sys.exit(1)

host, port = sys.argv[1], int(sys.argv[2])
Isock = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
Isock.bind((host, port))
Isock.listen()
("listening on", (host, port))
Isock.setblocking( )
sel.register(lsock, selectors. EVENT_READ

events = sel.select(
key, mask in events:
key.data
accept_wrapper(key.fileobj)

service_connection(key, mask)
KeyboardIinterrupt:
("caught keyboard interrupt, exiting")

sel.close()

3.5 Non-Malicious Client set up
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An 10T node of our network that plays the role of the benign client (in our case VM1)
will have to be running in the background the python script: Advanced _b9generator.py

This script is used in order to produce benign traffic from a client node to the target
node. It takes the following arguments:

<target IP> which is the IP of the target node

<target port> which corresponds to the specific port of the target node.

<number of connections> which corresponds to the number of new connections that the
client will try to open with the target. (Suggested number 100-200)

Advanced b9generator.py:

Sys
socket
selectors
types
logging
signal
sys

time

sel = selectors.DefaultSelector()
messages = [b"Message 1 from client.", b"Message 2 from client."]

start_connections(host, port, num_conns):
server_addr = (host, port)
i in range(0, num_conns):
connid =i +
("starting connection", connid, "to", server_addr)
sock = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
sock.setblocking( )
sock.connect_ex(server_addr)
events = selectors.EVENT_READ | selectors.EVENT_WRITE
data = types.SimpleNamespace(
=connid
=sum(len(m) for m in messages)
=list(messages)
b
)

sel.register(sock, events =data)

service_connection(key, mask):
sock = key.fileobj
data = key.data
mask & selectors.EVENT_READ:
recv_data = sock.recv( )
recv_data:
("received", repr(recv_data), "from connection", data.connid)
data.recv_total += len(recv_data)
recv_data or data.recv_total == data.msg_total:
"closing connection”, data.connid
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sel.unregister(sock)
sock.close()
mask & selectors.EVENT_WRITE:
data.outb data.messages:
data.outb = data.messages.pop(0)
data.outb:
("sending™, repr(data.outb), "to connection™, data.connid)
sent = sock.send(data.outb)
data.outb = data.outb[sent:]

len(sys.argv) != 4.
("usage:", sys.argv[0], "<host> <port> <num_connections>")
sys.exit(1)

host, port, num_conns = sys.argv[1:4]

num_conns = int(num_conns)

start_connections(host, int(port)
num_conns -=

events = sel.select(
events:
key, mask in events:
service_connection(key, mask)

sel.get_map():

KeyboardInterrupt:
("caught keyboard interrupt, exiting")
time.sleep

3.6 Malicious client set up

An loT node of our network that plays the role of the malicious client (in our case VM1)
will have to be running in the background the python script: syntcp_attack.py

This script is used in order to launch a SYN TCP attack from a client node to the target
node.

arguments:
<dst_ip> which is the target’s IP
<dst_port> which is the target’s port

optional arguments:

[--sleep=<sec>] It defines the speed (severity of the attack)
[--verbose] Prints more comments during the attack
[--very-verbose] Prints even more comments during the attack

syntcp attack.py:
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docopt docopt
logging
signal
Sys
logging.getLogger("scapy.runtime").setLevel(logging. ERROR)
scapy.all *

main(arguments):
src_net = "192.168.56."
dst_ip = arguments["<dst_ip>"]
dst_port = int(arguments[“<dst_port>"])
sleep = int(arguments["--sleep™])
verbose = arguments[*--verbose"]

very_verbose = arguments["--very-verbose"]

signal.signal(signal.SIGINT n, f: sys.exit(0))

src_host in range( ):
verbose or very_verbose:
"[*] Sending spoofed SYN packets from %s%d " % (src_net, src_host)

src_port in range(
very_verbose:
"[+] Sending a spoofed SYN packet from %s%d:%d" % (src_net, src_host, src_port)

src_ip = src_net + str(src_host)
network_layer = IP(src=src_ip, dst=dst_ip)
transport_layer = TCP( =src_port =dst_port ="S")

send(network_layer/transport_layer

sleep !=
time.sleep(sleep)

“[+] Denial of Service attack finished.”




__hame__ ==' main__ "

arguments = docopt(__doc__ ="SYN Flooder 1.5")
main(arguments

4. Using Generative Adversarial Networks for possibly produce
network traffic

Generative adversarial networks (GANS) is a recent addition to the arsenal of Deep
Generative modeling. The use of GANs has been extensive in image processing with
pure generation tasks and denoising, but also in Natural Language Processing and
Recommendation systems. The basic idea is to adapt the model so that it can be used to
produce more complex patterns of network traffic and generalize and scale the solution
in finding datasets of elaborate network attacks and malicious activities, without ever
again needing to explicitly model the distribution of sequence in network packets being
exchanged (use of Markov Processes and Variational inference)

The basic intuition behind Generative Adversarial Networks is that there are two neural
networks (The model is much more generic in conception so the regression models are
not explicitly defined as neural networks but rather that two differentiable functions
with enough modeling capacity specific to the problem) that work in opposition. The
first neural network is supposed to be the Discriminator network and the second one is
the Generator. A vector is sampled from a latent space and is fed to the Generator. The
Generator produces an output in the same space as the data samples collected. Then
real data samples are fed into the discriminator along with the outputs of the Generator.
The two neural networks play a minimax game (minimax optimization) where the
Generator is attempting to fool the Discriminator by producing samples that are
progressively better (they are more likely to be drawn from the distribution of the
dataset).

ESSSSS)  Discriminator Network ‘ Predicted Labels

|

I ‘ Generator Network —

D-dimensional
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Figure 9:Generative adversarial networks[23]

The basic premise of the idea is to get packet captures that constitute a complex act of
malicious network activity (where the distribution of the sequence of packets can not
be analytically tractable). Then the packets are annotated according to the content of
the various packet headers (IP address of the destination, IP address of the source,
PORT of the source, PORT of the destination, number of Bytes type of flag) and then
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create a type of visual data from the vectors derived from the annotation (stack vectors
on top of each other) and feed the model of the Discriminator (and the process of the
Generator would be the classical one).

A possible tweak would be to use the conditional GAN, where every sample of the
dataset is fed in the model along with a concatenated label (1 of the specific piece of
input constitutes an attack and O if the specific piece is derived from benign
communications.

4.1 Troubleshooting

It has been proven that the converged model of Generative Adversarial Networks
(Generator) has explicitly described the information of the possibly intractable
distribution of the samples in the dataset. So, once the model has been trained properly
the sophisticated sequence of an elaborate attack could be mimicked and reproduced in
detail. The problem stems from the fact that the training process of Generative
Adversarial Networks is intrinsically predicated upon the idea of finding the saddle
point of a loss function (solving a minimax game), so classic first order methods of
optimization (such as gradient descent) and even methods of quadratic optimization
such as quasi-Newton methods do not provide sufficient conditions for convergence.
Therefore, the training processes of GANSs can be time consuming and the convergence
is difficult to be achieved (involves a lot of random search in the hyperparameter space).

Another emerging issue is that the product of annotating raw packet captures results in
very sparse vectors, so the choice of specific neural network architecture is really
important. The most common use of convolutional neural networks is not sufficient for
dealing with the sparsity. Probably the employment of Recurrent neural network
architectural schemes would be more sufficient and more able to deal with the nature
of the particular dataset.

5. Dataset Annotation

The main reason for producing the generator, other than feeding the networks created
by the project’s consortium for demonstration purposes, was the need for properly
annotated datasets that would facilitate the training of deep learning models, used for
tracing the launching of attacks.

Our intuition was to treat network traffic as time series, so we proceeded to create time
series of time windows (intervals), where the number of current half-opened
connections at a particular server are active.

A bot network was created in lab environment. Every Virtual Machine (VM) simulated
anode in the 10T network. Scapy was used to create a script that runs on every VM and
creates TCP connections with the targeted node (simulates a possible server under
attack). Scapy was also used to create a script that manifests a SYN TCP attack towards
the server. The script initiates multiple TCP connections from multiple ports of the
attacker with a particular port of the destination. The connections are never fully
established. The whole communication is captured in pcap files using Wireshark which
is a tool for network traffic monitoring. Even though, the communication in the context
of the network, is non-malicious, for the most part, the attack is being launched at
specific instances of the duration of the experiment. The pcap files are annotated with
the methodology described in the previous section.
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The final goal is transforming the key metrics that are hidden in the information
contained in pcap files into useful datasets. The key metric that we are going to use is
the amount of half opened connections during every time window with fixed time in all
scenarios. Every traffic scenario is then translated to a specific dataset.

Pcap files were transformed into datasets after being processed by two sequential
operation that are being described below.

By implementing the script list_of annotation_creation.py we dissected each pcap file
into smaller fixed traffic windows. Now smaller pcaps are easily handled by our next
script half_opened_cons.py which is responsible for the finalization of the datasets by
applying the appropriate filters in every dissected pcap and extracting only the packets
that correspond to half-opened connections. Then we measure the amount of half
opened connections of every traffic window and appending this amount to a list which
is finally representing a dataset.

list of annotation creation.py:

argparse
0s
sys

matplotlib

matplotlib.pyplot as plt
scapy.all *
scapy.layers.I2 Ether
scapy.layers.inet IP, TCP
scapy.all rdpcap
tkinter Tcl

process_pcap(file_name):

count =
( ) in RawPcapReader(file_name):
count +=

HoConnections.append(int(count))
ho_connections.append({ Time_window": k, ‘HalfOpen_Connections': count})

mid_char(x):
<[16:
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filename = "realtimesenario.pcap"
cmd = 'editcap -i 5 "{}" "{}" .format(filename,filename)
0s.system(cmd)

| =
file_list =]
startdir="."
root, dirs,files in os.walk(startdir):
file in files:
file.endswith('.pcap"):
i=i+

file_list.append(file)

file_list = file_list[0:-1]

file_list=sorted(file_list = mid_char)

p:
item in file_list:
p=p+
(9]

(file_list)
k =
windows = []
final_list =[]
ho_connections = []
HoConnections = []
Windows = []

file_name in file_list:
(file_name + " :")
process_pcap(file_name)
(HoConnections[k])
k=k+

(HoConnections)

half_opened cons.py:

argparse
0s
sys

matplotlib




matplotlib.pyplot as plt
scapy.all *
scapy.layers.12 Ether
scapy.layers.inet IP, TCP

process_pcap(file_name):
(‘Opening {}...".format(file_name))

count =
( ) in RawPcapReader(file_name):
count +=

HoConnections.append(int(count/2))
ho_connections.append({'Time_window": k, 'HalfOpen_Connections': count})

(‘{} contains {} packets, so there were {} attempts to attack'.format(file_name, count
int(count/2)))

parser = argparse.ArgumentParser(description="PCAP reader")

parser.add_argument('--pcap’', metavar='<pcap file name>',
help="pcap file to parse', required=True)

args = parser.parse_args()

file_name = args.pcap

if not os.path.isfile(file_name):
print("'{}" does not exist'.format(file_name), file=sys.stderr)
sys.exit(-1)

ho_connections = []
HoConnections = []
Windows = []
i in range(25):
files.append("anot” + str(i) + ".pcapng")
Windows.append(i)

file_name in files:
process_pcap(file_name)
K+=

plt.plot(Windows,HoConnections = "attack’)
plt.xlabel('Time window enum’)

plt.ylabel('Half opened connections'’)

plt.legend()

plt.show()




6.Traffic Capturing and Dataset Preparation

Once we have set all the configurations described above, we began generating a bunch
of different traffic scenarios. The diversity of every scenario is defined by the duration
of the benign traffic window, the duration of the malicious traffic window, as well as
the number of benign and malicious traffic windows in a single scenario.

By using Wireshark, which is a tool that we used to capture real time traffic, we saved
every scenario’s traffic into pcap files. Pcap files contain all the information that we
need in order to analyze the kind of communications that have been established in every
single scenario.

A picture of a traffic window containing only benign traffic is presented on figure 10:

realtimesenario.pcap
eeil - xe Q¢ 74 BB ool EEE X O

Filter: v | Expression... e3 A

No Time Source Destination Protocol Length Stream index Info

685 0.031506 192.168.56.101 192.168.56.100 TCP 66 91 1028 ~ 52348 [ACK] Seqwl Ack=45 Winw29056 Lenw® TSvalw2323999666
686 0.031583 192.168.56.100 192.168.56.101 TCP 66 152168 -~ 1028 [ACK] Seqe=45 Ack=45 Wine29312 Len=0 TSval-587396293
687 0.031587 192.168.56.100 192.168.56.101 TCP 88 92 52350 - 1028 [PSH, ACK] Seq=23 Ack«l Win=29312 Len=22 TSval-58739
688 0.831590 192.168.56.161 192.168.56.100 TCP 66 92 1028 ~ 52358 [ACK] Seqel Acked45 Win=29056 Lens8 TSvale2323999667
689 0.831603 192.168.56.100 192.168.56.101 TCP 88 93 52352 - 1028 [PSH, ACK] Seq=23 Ack=1 Wine29312 Lens22 TSvale58739
690 0.031607 192.168.56.101 192.168.56.1680 TCP 66 93 1028 - 52352 [ACK] Seq=1l Ack=45 Win=29056 Len=8 TSval=2323999667
691 6.031622 192.168.56.100 192.168.56.101 TCP 88 94 52354 - 1028 [PSH, ACK] Seq=23 Ack=1 Win=29312 Len=22 TSval=58739
692 0.031626 192.168.56.101 192.168.56.109 TCP 66 94 1028 - 52354 [ACK] Seqel Acke=4S Win=29056 Len=0 TSvalw2323999667
693 0.031639 192.168.56.100 192.168.56.101 TCP 88 95 52356 - 1028 [PSH, ACK] Seqe23 Ack=l Win=29312 Len=22 TSval=58739
694 0.0631643 192.168.56.101 192.168.56.100 TCP 66 95 1028 - 52356 [ACK] Seqel Ack=45 Win=29056 Len=8 TSvalw2323999667
695 0.031658 192.168.56.160 192.168.56.101 TCcP 88 96 52358 - 1028 [PSH, ACK] Seqe23 Ack«l Wine29312 Len=22 TSval-58739
696 0.031660 192.168.56.101 192.168.56.100 TCcP 66 96 1028 - 52358 [ACK] Seqel Acked45 Wine29056 Len=8 TSval=2323999667
697 0.031668 192.168.56.160 192.168.56.101 TCP 88 97 52360 - 1028 [PSH, ACK] Seq=23 Ack=l Win=29312 Len=22 TSval«58739
698 6.631671 192.168.56.101 192.168.56.160 TCP 66 97 1028 - 52360 [ACK] Sege=1l Ack=45 Win=29056 Len=0 TSval=2323999667
699 0.031681 192.168.56.100 192.168.56.101 TCcP 88 98 52362 - 1028 [PSH, ACK] Seq=23 Ack=l Win=29312 Len=22 TSval=58739

766 6.031684 192.168.56.161 192.168.56.100 TCP 66 98 1028 - 52362 [ACK] Seqel Acke45 Winw29056 Len=0 TSvalw2323999667
701 6.031846 192.168.56.101 192.168.56.100 TCP 110 2 1028 - 52176 [PSH, ACK] Seq=l Acke=45 Win=29056 Len=44 TSval-23239
2 0.031896 192.168.56.100 192.168.56.161 TcP 88 99 52364 - 1028 [PSH, ACK] Seq=l Ackel Win=29312 Len=22 TSval-587396
763 6.831901 192.168.56.101 192.168.56.100 99 1028 - 52364 [ACK] Seqel Acke23 Wine29056 Lens8 TSvale2323999667
1 168 1

707 6.032166  192.168.56.101 192.168.56.100 TP 31628 - 52172 [PSH, ACK] Seqel Ack=45 Win=29056 Len=d4 TSval=23239
768 ©.032271 192.168.56.100 192.168.56.101 TCP 8? 99 52364 - 1028 [PSH en=22 YSvfl-587§
T o228, POrT:I 52166, Beq: ¥, ACK: 1, Len: b e i o

68 60 27 4c a0 6d 68 60 27 cb d8 9c 08 00 45 60
00 3c 00 00 40 00 40 06 48 a2 cO a8 38 65 cO as
38 64 04 04 cb c6 69 fO0 74 6d f4 d4 a3 3d a6 12
71 20 f2 48 00 00 02 €4 05 b4 04 02 08 02 Ba B85
6b 93 23 02 f4 a5 01 03 @3 07

File: "/home/georgeviaho/De.. Packets: 11141 . Displayed: 11141 (100,0%) - Load time: 0:00.066 Profile: Default

Fig'ure 10:Wireshark packet captures

This is a glimpse of healthy communication captured by Wireshark. VM-1 opens full
TCP connections with VM-s (server), it sends a message and the connection is being
closed (benign traffic script running on the VM-1).

On the contrary, a picture of a traffic window containing only malicious (SYN TCP
Flood) traffic looks like this:
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realtimesenario.pcap = B m @) 1
® ® 4 T T & EHE
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5¥N] Seqm@ Win=£192 Len=@
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r
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[
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1052 - 1628 [5YN] Seqed Win=8192 Len=8

1028 - 1852 [SYN, ACK] Seq-8 Ack-]l Win-29208 Len-8 MSS-1468

168
9 9 1
3662 58.526224  192.168.56.180 . 168.56.

3063 58.526280  192.168.56.101 -168.56.
* ITaNSMLSS10N LONTIOL Frotocol, Src FOrt: 168, UST FOFTD 32166, Seq: o, ACK:D
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@B 00 27 4c ab Bd @8 @0 27 cb d8 9c 08 00 45 08 L - B
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NAAWUE 1 PeDme

O# File: “fhomefgeorgeviaho/De... Packets: 11141 - Displayed: 11141 (100,0%) - Load time: 0:00.066 Profile: Default

Figure 11:Wireshark packet captures

The attack is being launched by the previously normal client. VM-2 is opening multiple
connections that it leaves half opened (not responding with ACK) to port 1028 of VM-s

SYN TCP Flood attack actually floods all the potential channels that the server could
use to establish connections with other client-nodes. During the launch of the attack in
the described scenario the number of half opened connections was so high that the
server node couldn’t establish new connections. This fact has been also captured by
Wireshark while benign nodes tried to connect with the server but their syn messages

were retransmitted due to the lack of available resources from the side of the server.
= B m @) 1256Mm

Q « T 42 EBE gzl $MBX @

v | Expression..

realtimesenario.pcap

» 1ransm1ss10n LONTrotL Frotocol, Src MOrt: 1U28, UST MOTrT: DZ16b, SEq: ¢, ACK: 1, Len: ©

0000 08 00 27 4c a® 0d 08 00 27 cb d8 9c 08 00 45 00 Losas e -
0010 00 3c 00 60 40 00 40 06 48 a2 cO a8 38 65 co a8 <..@.@. H...8e..
0020 38 64 04 04 cb c6 69 fo 74 6d f4 d4 a3 2d a® 12 8d....1. te...=,
0030 71 20 f2 48 00 00 02 B4 05 b4 04 02 08 02 8a 85 Q Sz e
0846 6b 93 23 62 f4 a5 01 63 63 07 [ SHRRR

O ® File: "/home/georgeviaho/De... Packets: 11141 - Displayed: 11141 (100,0%) - Load time: 0:00.066 Profile: Default

Figure 12:Attack scenario depicted in Wireshark
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The graph below represents the amount of half opened connections during the period
when the attack was launched
Sﬂ T T T

— attack

70 +

60 |

50

hald opened TCP connections

10+

D - 1 I i
0 3 10 15 20 25

minutes of communication
Figure 13:graph of half-opened connections

7.Deep learning for SYN TCP flood attack detection

The immense capabilities of neural networks to extract complex patterns from given
data intuitively seems a great tool to use for detecting malicious activities in the context
of an 10T network. LSTMs are renowned for applications of handling multivariate time
series and in general cases where the data intrinsically show some temporal
dependencies. On the other hand, Random Neural Networks seem to have a broader
spectrum of possible applications.

Deep learning has been used before for detection of SYN flood attacks in where a
Random Neural Network was implemented as a classifier to distinguish between non-
malicious network packet captures and captures constituting SYN attacks.

The LSTM neural network architectural scheme has been previously implemented
for detecting DoS attacks in infrastructure in [11]. The previous implementation was
with the assistance of Bayes and not the LSTM formulation on its own detecting that
the port is being under attack.

The intersection between deep learning and detection of Distributed Denial of
Service (DDoS) attacks was investigated in [12] and showcased the efficiency of deep
neural networks in modelling the patterns of attackers attempting to perform DoS
attacks.

Deep learning has been employed in many cases as an underlying level of IoT
security and performing adequately in terms of the models’ ability to extract the patterns
of attack sequences. In particular, such an overview has been provided by [13].
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Deep learning and deep neural networks have been implemented not only for attack
detection, but in the whole spectrum of assisting the task of securing 10T systems. [8]
presents an implementation for secure routing using Random Neural Network
architectures for decision making on the SDN Controller.

8.Neural Network Structures

8.1 Random Neural Network

The Random Neuron is a unit that receives two types of input signals, the excitatory
and the inhibitory and is also characterized by its rate that is always positive. If we
denote as x the excitatory input, as y the inhibitory input and as r the rate, the output of

the Random Neuron is z = min {% |1}r

T
r+y

.r

D ==
Y

Figure 14:random neuron model[15]

In the feedforward formulation of the Random Neural Network there are no circuits
in the connection graph. There are three distinct categories of layers, the input layer,
the hidden layers and the output layer. Every unit is connected to other units that belong
to the hierarchically consecutive layer (from the input layer to the output layer passing
through the hidden layers). This formulation results to a non-linear system of equations
that can be formally solved [14].

Output units

Hidden units

Input units

Figure 15:random neural network feedforward formulation[15]

Let | be the number of neurons in the input layer, H is the number of neurons in the
hidden layer (assuming there is only one hidden layer in the topology) and O is the
number of neurons in the output layer. We provide index for every neuron in the
feedforward formulation with the following methodology. We index the neurons of the
input layer from 1 to I, the hidden neurons from 1+1 to 1+H and the output neurons from
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[+H+1 to 1+H+O = N. Assuming that the input neurons are the only ones receiving
signals from the outside we can compute the rates of activity for all the neurons:

At
° =— <k<1
pk e+ A O - -

1 +
o = M [+1<h<H+I
Th+2k=1 PxWin

I+H +
= Who
o po= P L <osN
Tot Zh=1+1 phWho_

As it has been shown in [15], the original gradient descent iterative optimization scheme
can be tweaked and implemented for training feed forward neural network architectures
both as regressor and as classifiers.

8.2 Long-Short Term Memory

Long Short-Term Memory (LSTM) networks, as a special structure of Recurrent
Neural Networks, have proven to be stable and powerful for modeling long-range
dependencies in general-purpose sequence modeling. In LSTMs, each node in the
hidden layer is replaced by a memory cell, instead of a single neuron . The structure of
a single memory cell is depicted in the figure below.

— @
Ctanh>
<
O |tai’1h| O

Figure 16:LSTM cell[17]

\

The memory cell contains the following components: the forget gate, the input node,
the input gate, and the output gate. Each component applies a non-linear relation on the
inner product between the input vectors and respective weights (altered iteratively
through a training process). Some of the components have the sigmoid function, o(-)
and others the tanh(-)

As discussed in [16] Recurrent neural networks and LSTMs in particular, have
shown great success in predicting time series online. Especially in [17] LSTMs have
been used to tested, particularly on predicting traffic flows.

The goal of the forget gate is to decide what information should be discarded out of
the memory cell [18]. The output, denoted as f(n) ranges between 0 and 1, according to
the sigmoid activation function. The forget gate learns whether a previous or future
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vector state is necessary for the estimation of the current value state. The input node
performs the same operation with that of a hidden neuron of a typical recurrent
regression model. The goal of this node is to estimate the way in which each latent state
variable contributes to the final model.

As far as the input gate is concerned, its role is to regulate whether the respective
hidden state is sufficiently important. It has the sigmoid function, therefore its response
ranges between 0 and 1. This gate addresses problems related to the vanishing of the
gradient slope of a tanh(-) operator. Finally, the output gate regulates whether the
response of the current memory cell is sufficiently significant to contribute to the next
cell. Therefore, this gate actually models the long-range dependency together with the
forget gate.

The recurrent nature of the LSTM presents many intricacies in terms of the iterative
training process for adjusting the weights of the multiple gates. The adaptation of the
backpropagation algorithm for accommodating the LSTM training is called
Backpropagation Through Time [19]. The backpropagation variation for training
recurrent neural network architectures presents the problem of vanishing or exploding
gradients. So the number of time steps that the gradient is propagated is another
hyperparameter of training that needs to be monitored. This adaptation is called
truncated backpropagation through time and is thoroughly explained in [20].

8.3 Overall System Architecture

The basic premise of the methodology for detection is described below.

The communication in the context of a network is captured in a pcap file using
Wireshark [21]. The communication contains both non malicious traffic and SYN flood
attacks targeted towards the port of a specific node.

The pcap file is used for creating an annotated dataset and being made into a
univariate time series. Specifically, the pcap is being dissected into time windows of 5
seconds. During the period of 5 seconds, special Wireshark filters were used to count
the number of half opened TCP connections established with a specific port of a
particular IP during the time frame. In that way the final dataset is a univariate list of
the number of unestablished TCP connections.

The basic idea is to use a deep neural network as a regressor and train it with a part
of the time series that corresponds to normal non malicious communication.

Then the a priori trained neural network regressor attempts to predict the number of
half-open TCP connections for the consecutive time window. If this number deviates
from the actual value of the metric by a predefined threshold then the inspected node is
considered to be under attack.

Previous

no of Real value
connectio _ Predicted
ns Predictive model - value
trained on normal > Decision on attack

Case

Figure 17: model methodology

8.4 LSTM implementation Hyperparameters
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The LSTM neural network architecture is comprised by one input layer, one output
layer and two hidden layers with 50 neurons each (dense formulation). The Loss
function used for adapting the weights is the Mean Square Error (MSE) which is the
most typical loss function used for training in regression problems and the optimization
scheme is the ADAM optimizer. The Backpropagation Through Time (BPTT) was
stopped at three consecutive steps going back so the truncated version of the
Backpropagation scheme was implemented for avoiding vanishing gradients.

8.5 Random Neural Network implementation Hyperparameters

The Random Neural Network was in feedforward formulation so no recursive
element. Other than the input and output layers, there was one hidden layer with 50
neurons. The nature of the Gelenbe Networks entails no choice for the activation
function. The loss function was again the Mean Square Error function and for the
iterative optimization scheme, the adaptation of the backpropagation scheme as
described in [15] was implemented from scratch (without using any high-level API
implementation)

8.6 Experimental validation

We have conducted experiments to: 1) validate the efficacy of the deep learning
predictive model idea for SYN TCP attack detection and 2) compare the two
architectures of deep neural networks in terms of accuracy.

We train each of the formulations of deep neural networks (always as a regressor)
with the same dataset that has been derived from the annotation process of a pcap file
that contains only non-malicious communication.

Then we test the accuracy of the models by using the previously described
methodology on a dataset that combines non malicious and malicious communication.
We present the results

N_eural Network Accuracy False Positives
architecture
Gelenbe-Network
80.7% 19.3%
LSTM 62.7% 37.3%

Here we should note that the formulation of the model architecture intuitively excludes
the presence of False negatives and that is also prevalent in the results presented.

8.7 Conclusions extracted

The basic conclusion that can be formulated from the experimentation is the fact that
the Random Neural Network architecture seems more adamant in terms of capturing
the patterns of the malicious traffic and therefore is more efficient to detect
abnormalities modelled as outliers. The distribution of what constitutes normal traffic
and especially the boundaries between the various modes of the distribution are better
described by the Random Neural Network formulation in comparison to the LSTM. In
addition the Random Neural Network architecture is in feedforward formulation, so our
intuition entails that a possible implementation using a recurrent version of the Random
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Neural Network architecture would perform even better because it would be more
suitable in terms of capturing the temporal dependencies of the given time series, which
gives even more room and possibilities for improving the efficacy of detecting the
attacks of the specific category.

9.ldeas for deployment

The implementation of the detecting algorithms was not an attempt to only find out the
accuracy of certain concepts but to, additionally, create ready-to-use software
components for deployment in actual real-life 10T networks. So we proceeded in
creating two scripts that can be used as black boxes and be integrated as such. Every
script has two specific requirements for integration:

- Running on a Debian-based machine
- TCP protocol being used for communication

Each script uses the respective apriori trained model and every predefined time interval
captures the current number of half opened TCP connections and feeds the metric to
the model. The regressor outputs the prediction and it is compared to the predefined
threshold and the final decision-making is being made.

The possible deployments in the context of an 0T network, according to the reference
architecture are plenty.

The deep learning SYN TCP flood attack detector could be installed in the controller
of the network or any type of forwarder in the Domain of the controller as well as
anywhere in the Fog or Edge of the network.

Additionally, since it is a lightweight implementation that can run on an loT hub that
controls devices in the lower layer of the Architecture (the network of sensors and
actuators.

With minor adjustments and using possible packages included in the TensorFlow Lite
version of TensorFlow the detector could even be installed on an 10T device and secure
the said equipment from possible malevolent activity.

10.Connection of the RNN-based attack detector with the SerloT
Routing Engine

The basic premise of the idea of attack (DDoS in our case) detection on the level of the
sensor (proximity) network of the 10T (Lightweight attack detection) relies on the
assumption that the component that investigates a possible attack scenario can report
the security status to the Management Domain of the Network, where more complex
and profound intelligence can take action.

In that case, the Random Neural Network-Based detector has to be able to connect with
SerloT Routing Engine and report the emergence of a DDoS attack, if and when that
takes place.

The SerloT Routing Engine operates using a REST API for communication with the
end devices.
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Therefore, the python script of the detector needs to be able to access the REST API of
the SerloT Routing Engine and request the block of the particular TCP connection with
the node under attack. This is enabled by the Python Requests Module.

In detail, we need to import the Requests module on the script after we pip install it on
the Python environment.

We use the mitigation request (post block request) of the non-standalone (ONOS)
implementation and documentation of the SerloT Routing Engine.

The credentials given to the request object are read from a separate file for security
purposes.

We should note, at that point, that the script should be made possible to be run only
with sudo privileges and, therefore, accessing the separate file is going to be made
possible only with the appropriate sudo privileges.

What follows is a paradigm of the implementation of the reporting of the detector to
the SerloT Routing Engine.

We assume that the credentials file is named ‘cred’.

import requests

DETECTION SCRIPT

" ASSUME THAT ATTACK HAS BEEN DETECTED"™"

url = "http://192.168.108.36:8181/onos,/ran/SRE/mitigation’

head = {'Content-Type': 'application/json’,
"Accept’: 'application/json'}
myobj = {"flow_src” : "TCP 234.18.196.2ﬂ3

"action":"block"}

open(“cred.txt", "r")
8

for x in +:

user[i]= x

i+t

i
[

#use the ‘headers’ parameter to set the HTTP headers:
X = requests.post(url, data = myobj, headers = head, auth = (user[8], user[1]})

This is a simplistic example of the interconnection. We should note two things. The
first one is that the 234.18.100.25 is a generic IP and this should be replaced by the IP
of the node on which the script is running and there should be some consideration about
a possible exemption.
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from numpy import array

from keras.models import Sequential
from keras.layers import LSTM

from keras.layers import Dense

from matplotlib import pyplot as plt
import numpy as np

# split a univariate sequence into samples
def split sequence(sequence, n_steps):
X, y = list(), list()
for 1 in range(len(sequence)):
# find the end of this pattern
end_ix = i + n_steps
# check if we are beyond the sequence
if end ix » len(sequence)-1:
break
# gather input and output parts of the pattern
seq_x, seqy = sequence[i:end ix], sequence[end ix]
X.append(seq_x)
y.append(seq_y)
return array(X), array(y)

#raw data
raw seq = [4, 8, 7, 7, 10, 8, 9, 12, 9, 9, 12, 9, 9, 12, 9, 9, 12, 9, 9, 12, 9, 9, 12, 9, 9, 12, 8, 1@, 10, 18, 18, 10, 10, 10,

#isolate the set used for training

train_set = []

i=0

while(i<500):
train_set.append(raw_seq[i])
i=i+a

#modify the dataset to feed the network
n_steps = 4

X, y = split_sequence(train_set, n_steps)

X
y

X.tolist()
y.tolist()

training_set = []
testing set = [] #testing set is actually the Labels

for i in range(len(X)):
training_set.append([X[i][1]/(100*X[i][@])
X[1][2]/(10e*X[1][1])
X[1][3]/(10e*X[1][2])
testing set.append(y[i]/100*X[1i][3])

1

# 3 neurons for the input layer, 50 for the hidden, 1 for the output
I=3

H = 50

0=1

N=I+H+0

#initialize the positive weights
Wp = [[@ for i in range(N)] for j in range(N)]
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#initialize the positive weights
Wp = [[® for i in range(N)] for j in range(N)]

for i in range(N):
for j in range(N):

if i<=I-1 and j>I-1 and j<=N-1-0:
wp[i][j] = @.6

elif i>I-1 and i<=N-1-0 and j>N-1-0:
wp[i][j] = @.6

else:
wp[i][j] = @

#initialize the negative weights
Wn = [[® for i in range(N)] for j in range(N)]

for i in range(N):
for j in range(N):
if i<=I-1 and j>I-1 and j<=N-1-0:
wn[i][j] = .4
elif i»>I-1 and i<=N-1-0 and j>N-1-0:
wn[i][j] = .4
else:

wn[i][j] = @

#training process
for q in range(len(training_set)):

y_previous = 9

#get the sample
1p=training_set[q]

#calculate all the service rates and the utilization rates
sum_of_denom_of_input_layer=[]

for i in range(I):
s=0
for j in range(N):
s = s + Wp[1][J]+wn[1][]]
sum_of_denom_of_input_layer.append(s)

urates of I =[]
for i in range(I):

k = 1p[i]/sum_of_denom_of_input_layer[i]
urates_of_TI.append(k)

sum_of_nom_of_hidden_layer=[]

j=1
while j<=N-1-0:
s =0

for i in range(I):

s = s + urates_of _I[i]*Wp[i][]]
sum_of_nom_of_hidden_layer.append(s)
j=3=+1

rates_of_hidden = []
i=T
while i <=N - 1 -0:
s =0
j=nN-o0
while j<=N-1:
s = s+ Wp[i][3] + Wn[1][}]

j=j+1
rates_of_hidden.append(s)
i=1i+1

sum_of_denom_hidden = []

j=1
while j<=N-1-0:
s =0

for i in range(I):

s = s + urates_of _I[i]*Wn[i][]]
sum_of_denom_hidden.append(s)
j=3=+1
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rates_of_hidden = []

i=1

while i <=N - 1 -0:
s =0
j=N-0

while j<=N-1:
s = s + Wp[i][j] + wn[i][]]

j=j+1
rates_of_hidden.append(s)
i=1i+1

sum_of_denom_hidden = []

j=1
while j<=N-1-0:
s =0

for i in range(I):

s = s + urates_of_I[i]*wn[i][]]
sum_of_denom_hidden.append(s)
j=3+1

urates_of_hidden=[]
for i in range(H):

s = sum_of_nom_of_hidden_layer[i] / (rates_of_hidden[i] + sum_of_denom_hidden[i])
urates_of hidden.append(s)

sum_of_nom_output = []

j = N-O
while j<N:
i=I
s=0

while i<=N-1-0:
s = s +(urates_of_hidden[i- I]* wWp[i][]j])
i=1i+1

sum_of nom output.append(s)
j=j+1

sum_of denom output = []

j = N-O
while j<M:
i=1
s=0

while i<=N-1-0:
s = s + urates of hidden[i-I]*Wn[i][]]
i=1i+1

sum_oft_denom_output.append(s)
j=j+1

#initialize service rate of the output neuron (gives actually a bias)
r_output = 1

urates of output = []

s = sum_of_nom_output[e]/(r_output + sum_of_denom_output[e])
urates_of_output.append(s)
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# calculation of the identity matrix T
Id = [[@ for i1 in range(N)] for j in range(N)]

for i in range(N):
for j in range(N):
if i == j:
d[i][3] = 1

Id[i][j] = @
# calculation of Omega matrix
omega = [[@ for i in range(N)] for j in range(N)]

for i in range(N):
for j in range(N):
if j<I:
omega[i][j] = (Wp[i][j] - wWn[i][j]*urates_of I[j])/(sum_of_denom of_input_layer[j])

elif j»=I and j<=N-1-0:
omega[i][j] = (Wp[i][j] - wWn[i][j]*urates_of_hidden[j-I])/(rates_of_hidden[j-I]+sum_of_denom_hidden[j-I])

elif j>N-1-0 and j<=N-1:
omegal[i][]j] = (Wp[i][j] - Wn[i][j]*urates_of_output[j-I-H])/(r_output + sum_of_denom_ ocutput[j-I-H])

# calculate the inverse of I-Omega

dif = [[@ for i in range(N)] for j in range(N)]

for i in range(N):
for j in range(N):
dif[i][j] = Td[i][]] - omega[i][j]

#calculating the inverse of I - Omega
dif = np.array(dif) # typecast the dif inte numpy array for computation
Inv = np.linalg.inv(dif) # calculate the inverse of the matrix (np.array datatype)

Inv = Inv.tolist() # retypecast the inverse to have it in list-of-lists datatype

# Inv is [I - Omega]~(-1)
n = 0.5 #definition of learning rate

#update the positive weights
for u in range(N):
for v in range(N):

if u<I:

utilization_rate = urates_of_I[u]
elif u>=I and u<I+H:

utilization_rate = urates_of_hidden[u - I]
elif u>=I+H:

utilization_rate = urates_of_output[u - H - I]
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# calculate the gamma
gamma = []
for i in range(N):
gamma . append(@)
if u<I and ul=v:
gamma[u] = -{1/(2*sum of denom of input layer[ul))
elif u>=I and u<I+H and ul!=v:
gamma[u] = -{1/(rates of hidden[u - I]+ sum of denom hidden[u - I]}))
elif u>=I+H and ul=v:
gamma[u] = -{1/(r output + sum of denom output[e]))
if v<I and ul=v and ul=v:
gamma[v] = (urates of I[w]/(2*sum of denom of input layer[v]))
elif v>=I and v<I+H and ul=v:
gamma[v] = (1/(rates of hidden[v - I ]+ sum of denom hidden[v - I]}))
elif v>=I+H and ul=v:
gamma[v] = (1/(r_output + sum_of denom_output[6]))
else:
gamma[v] = @
# we have prepared gamma as a list’
# we have the Inv also as a Llist of lists
Inv = np.array(Inv) #typecast Inv into numpy array
gamma = np.array(gamma) #typecast gamma inte numpy array
mull = np.matmul{gamma, Inv ) #matrix multiplication
mull = mull.tolist() #typecast the product into list
b = testing set[q] #known output
selecting_vector = []
for i in range(N):
selecting_vector.append(@)
selecting vector[u] = 1
mull = np.array(mull)
selecting vector = np.array(selecting vector)
product = np.matmul(mull, selecting_vector)
product = product.tolist()
wWplu][v] = Wp[u][v] - n*utilization rate*product*(urates_of output[e] - b)

for u in range(M):
for v in range(N):

if u<I:

utilization_rate = urates_of_I[u]
elif u>=I and u<I+H:

utilization rate = urates of hidden[u - I]
elif u»=I+H:

utilization_rate = urates_of_output[u - H - I]

# calculate the gamma
gamma = []
for i in range(N):
gamma .append (@)
if u<I and vl=u:
gammalu] = -(1/(2*sum_of denom of input layer[u]))
elif u>=I and u<I+H and ul=v:
gamma[u] = -(1/(rates_of_hidden[u - I]+ sum_of_denom_hidden[u - I]))
elif u>=I+H and ul=v:
gammalu] = -(1/(r_output + sum_of denom output[e]))
if v<I and ul=v:
gamma[v] = -(urates_of_I[v]/(2*sum_of_denom_of_input_layer[v]))
elif v>=I and v<I+H and ul=v:
gamma[v] = -(urates_of_hidden[v-I]/(rates_of_hidden[v - I ]+ sum_of_denom_hidden[v - I]))
elif v>=I+H and ul=v:
gamma[v] = -(urates_of_output[v-H-I]/(r_output + sum_of_denom_output[8]))

elif v == u and u<I:

gamma[v] = -(urates_of_ I[v]+1/(2*sum_of_denom_of_input_layer[v]))
elif v == u and u>=TI and u<I+H:

gamma[v] = -(urates_of_hidden[v-I]/(rates_of_hidden[v - I ]+ sum_of_denom_hidden[v - I]))
elif v == u and v>=I+H:

gamma[v] = -(urates_of_output[v-H-I]/(r_output + sum_of_denom_output[e]))
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# we have prepared gamma as a List’
# we have the Inv also as a list of lists
Inv = np.array(Inv) #typecast Inv into numpy array
gamma = np.array(gamma) #typecast gamma into numpy array
mull = np.matmul(gamma, Inv ) #matrix multiplication
mull = mull.tolist() #typecast the product into List
b = testing_set[q] #known output
selecting_vector = []
for i in range(N):
selecting vector.append(©)
selecting_vector[u] = 1
mull = np.array(mull)
selecting_vector = np.array(selecting_vector)
product = np.matmul(mull, selecting_vector)
product = product.tolist()
wWn[u][v] = Wn[u][v] - n*utilization_rate*product*(urates_of_output [@]- b)

# update r_output
z = - (sum_of _nom output[e]/ ((r_output + sum _of denom output[@]) * (r_output + sum of denom output[e]) ))
r_output = r_output - n * (urates_of output[e] - testing set[q]) * z

output = urates_of_output[e]*1ee*y_previous
y_previous = output

print(“"predict:", output)

print("real:", y[ql)

#get the metrics we want
val_set = raw_seq[5@0: ]

results_set = []

X, y = split_sequence(val_set, n_steps)
x_set = []
y_set = [] #testing set is actually the labels
for i in range(len(X)):
x_set.append([X[1][1]/(1ee*x[1i][e]),
x[i][2]/(1e0*x[1][1]
X[1][3]/(1e0*x[1][2]
y_set.append(y[i]/106*X[1][3])

[

N

for q in range(len(x_set)):
lp=x_set[q]
#calculate all the service rates and the utilization rates
sum_of_denom_of_input_layer=[]
y_previous = 9

for i in range(I):
s =0
for j in range(N):
s = s+ Wp[1][j]+un[i][3]
sum_of denom of input layer.append(s)

urates_of I = []
for i in range(I):

k = 1p[i]/sum_of_denom_of_input_layer[i]
urates_of_I.append(k)

sum_of_nom_of hidden_ layer=[]

j=1
while j<=N-1-0:
s =9

for i in range(I):

s = 5 + urates_of _I[i]*Wp[i][]]
sum_of_nom_of_hidden_layer.append(s)
j=Jj+1

rates_of_hidden = []

i=T

while i <=N - 1 -0:
s =9
j=N-0

while j<=N-1:
s = s + Wp[i][j] + wn[i][J]

j=j+1
rates_of_hidden.append(s)
i=1i+1
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sum_of _denom_hidden = []

J=1
while j<=N-1-0:
5 =0

for i1 in range(I):

s = s + urates_of _I[i]*wn[i][]]
sum_of_denom_hidden.append(s)
j=j+1

urates_of_hidden=[]

for i in range(H):

s = sum_of_nom_of_hidden_layer[i] / (rates_of_hidden[i] + sum_of_denom_hidden[i])

urates_of_hidden.append(s)

sum_of _nom_output = []

j = N-0
while j<N:
i=I

5=0

while i<=N-1-0:
s = 5 +(urates_of_hidden[i- I1* wp[i][ji])
i=1+1

sum_of nom_output.append(s)
j=i=+1

sum_of_denom_output = []

j = N-O
while j<N:
i=1
5=0

while i<=N-1-0:
s = s + urates_of_hidden[i-I]*Wn[i][]]
i=1i+1

sum_of_denom_output.append(s)
j=3=+1

urates_of output = []

s = sum_of_nom_output[@]/(r_output + sum_of_denom_output[e])
urates of output.append(s)

predicted value = urates_of output[e]*1@e*y previous
real value = y[q]
y_previous = predicted value
print("i predict:", predicted_value)
print("real _value:",real value)
print("real - predicted:", real_value - predicted_value)
if y[q] - predicted _value > 0.22:
results_set.append(1)
else:
results_set.append(@)
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ground_truth = []
raw_seq = raw_seq[5@4:]
for i in range(len(raw_seq)):
if raw_seqg[i]> 6@:
ground_truth.append(1)
else:
ground_truth.append (@)

accurates = @
false_positives = @
false _negatives = @

for i in range(len(ground_truth)):
if ground truth[i] == @ and results_set[i] == @:
accurates = accurates + 1

elif ground truth[i] == 1 and results_set[i] == 1:
accurates = accurates + 1

elif ground_truth[i] == @ and results_set[i] == 1:
false _positives = false positives + 1

elif ground_truth[i] == 1 and results_set[i] == @:

false_negatives = false_negatives + 1

print("accuracy:", accurates/len(results_set))
print(“false positive rate:", false_positives/len(results_set))
print(“false negative rate:", false negatives/len(results_set))
x_axis = []
j=e
while j<len(results_set):

x_axis.append(5*j)

j=j+1

11.Conclusions

Network security has always been in the forefront of networking-related research. The
focus has previously been on the security aspects of traditional TCP/IP networks, but
the rise of 10T (Internet of Things) networks results in the emerging of a new landscape
in terms of security. The category of attacks, most typical in traditional TCP/IP
networks, is the one related to the interception of valuable information. On the other
hand, in loT networks, the attacks that are most common and least explored, are those
labelled as Denial of Service (DoS) attacks. In that particular type of attacks, the
attacker attempts to inhibit the target’s ability to function seamlessly. In this paper, we
exploit the immense modelling capabilities of two different types of deep neural
networks: The Long-Short-Term-Memory (LSTM) and the Random Neural Network,
for detecting a common type of DoS attack, the SYN flood attack. The two neural
network architectures represent two different formulations. The LSTM is a recurrent
formulation, and the Random Neural Network is implemented as feed-forward (even
though the Random Neural Network architectures can also be recurrent). By comparing
those two heuristic methods in their ability to detect malicious traffic flows in a large
scale 1oT network, we can say that both methods had significant level of accuracy. So
both models could be used for that purpose. However the Random Neural Network
model has shown even better results compared to the LSTM. In SerloT we will make
use of the Random Neural Network model which is a component that has been
implemented for the scope of this project. Our contribution to the field of attack
detection in 10T networks could be used as a helpful tool on the hands of other research
and Innovation projects or other researchers working on the 10T security field to expand
our initial proposition and introduce new and more complex detecting models.
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from numpy import array

from keras.models import Sequential
from keras.layers import LSTM

from keras.layers import Dense

from matplotlib import pyplot as plt
import numpy as np

# split a univariate sequence into samples
def split sequence(sequence, n_steps):
X, y = list(), list()
for 1 in range(len(sequence)):
# find the end of this pattern
end_ix = i + n_steps
# check if we are beyond the sequence
if end ix » len(sequence)-1:
break
# gather input and output parts of the pattern
seq_x, seqy = sequence[i:end ix], sequence[end ix]
X.append(seq_x)
y.append(seq_y)
return array(X), array(y)

#raw data
raw seq = [4, 8, 7, 7, 10, 8, 9, 12, 9, 9, 12, 9, 9, 12, 9, 9, 12, 9, 9, 12, 9, 9, 12, 9, 9, 12, 8, 1@, 10, 18, 18, 10, 10, 10,

#isolate the set used for training

train_set = []

i=0

while(i<500):
train_set.append(raw_seq[i])
i=i+a

#modify the dataset to feed the network
n_steps = 4

X, y = split_sequence(train_set, n_steps)

X
y

X.tolist()
y.tolist()

training_set = []
testing set = [] #testing set is actually the Labels

for i in range(len(X)):
training_set.append([X[i][1]/(100*X[i][@])
X[1][2]/(100*x[1][1])
X[1][3]/(10e*X[1][2])
testing set.append(y[i]/100*X[1i][3])

1

# 3 neurons for the input layer, 50 for the hidden, 1 for the output
I=3

H = 50

0=1

N=I+H+0

#initialize the positive weights
Wp = [[@ for i in range(N)] for j in range(N)]
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#initialize the positive weights
Wp = [[® for i in range(N)] for j in range(N)]

for i in range(N):
for j in range(N):

if i<=I-1 and j>I-1 and j<=N-1-0:
wp[i][j] = @.6

elif i>I-1 and i<=N-1-0 and j>N-1-0:
wp[i][j] = @.6

else:
wp[i][j] = @

#initialize the negative weights
Wn = [[® for i in range(N)] for j in range(N)]

for i in range(N):
for j in range(N):
if i<=I-1 and j>I-1 and j<=N-1-0:
wn[i][j] = .4
elif i»>I-1 and i<=N-1-0 and j>N-1-0:
wn[i][j] = .4
else:

wn[i][j] = @

#training process
for q in range(len(training_set)):

y_previous = 9

#get the sample
1p=training_set[q]

#calculate all the service rates and the utilization rates
sum_of_denom_of_input_layer=[]

for i in range(I):
s=0
for j in range(N):
s = s + Wp[1][J]+wn[1][]]
sum_of_denom_of_input_layer.append(s)

urates of I =[]
for i in range(I):

k = 1p[i]/sum_of_denom_of_input_layer[i]
urates_of_TI.append(k)

sum_of_nom_of_hidden_layer=[]

j=1
while j<=N-1-0:
s =0

for i in range(I):

s = s + urates_of _I[i]*Wp[i][]]
sum_of_nom_of_hidden_layer.append(s)
j=3=+1

rates_of_hidden = []
i=T
while i <=N - 1 -0:
s =0
j=nN-o0
while j<=N-1:
s = s+ Wp[i][3] + Wn[1][}]

j=j+1
rates_of_hidden.append(s)
i=1i+1

sum_of_denom_hidden = []

j=1
while j<=N-1-0:
s =0

for i in range(I):

s = s + urates_of _I[i]*Wn[i][]]
sum_of_denom_hidden.append(s)
j=3=+1
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rates_of_hidden = []

i=1

while i <=N - 1 -0:
s =0
j=N-0

while j<=N-1:
s = s + Wp[i][j] + wn[i][]]

j=j+1
rates_of_hidden.append(s)
i=1i+1

sum_of_denom_hidden = []

j=1
while j<=N-1-0:
s =0

for i in range(I):

s = s + urates_of_I[i]*wn[i][]]
sum_of_denom_hidden.append(s)
j=3+1

urates_of_hidden=[]
for i in range(H):

s = sum_of_nom_of_hidden_layer[i] / (rates_of_hidden[i] + sum_of_denom_hidden[i])
urates_of hidden.append(s)

sum_of_nom_output = []

j = N-O
while j<N:
i=I
s=0

while i<=N-1-0:
s = s +(urates_of_hidden[i- I]* wWp[i][]j])
i=1i+1

sum_of nom output.append(s)
j=j+1

sum_of denom output = []

j = N-O
while j<M:
i=1
s=0

while i<=N-1-0:
s = s + urates of hidden[i-I]*Wn[i][]]
i=1i+1

sum_oft_denom_output.append(s)
j=j+1

#initialize service rate of the output neuron (gives actually a bias)
r_output = 1

urates of output = []

s = sum_of_nom_output[e]/(r_output + sum_of_denom_output[e])
urates_of_output.append(s)
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# calculation of the identity matrix T
Id = [[@ for i1 in range(N)] for j in range(N)]

for i in range(N):
for j in range(N):
if i == j:
d[i][3] = 1

Id[i][j] = @
# calculation of Omega matrix
omega = [[@ for i in range(N)] for j in range(N)]

for i in range(N):
for j in range(N):
if j<I:
omega[i][j] = (Wp[i][j] - wWn[i][j]*urates_of I[j])/(sum_of_denom of_input_layer[j])

elif j»=I and j<=N-1-0:
omega[i][j] = (Wp[i][j] - wWn[i][j]*urates_of_hidden[j-I])/(rates_of_hidden[j-I]+sum_of_denom_hidden[j-I])

elif j>N-1-0 and j<=N-1:
omegal[i][]j] = (Wp[i][j] - Wn[i][j]*urates_of_output[j-I-H])/(r_output + sum_of_denom_ ocutput[j-I-H])

# calculate the inverse of I-Omega

dif = [[@ for i in range(N)] for j in range(N)]

for i in range(N):
for j in range(N):
dif[i][j] = Td[i][]] - omega[i][j]

#calculating the inverse of I - Omega
dif = np.array(dif) # typecast the dif inte numpy array for computation
Inv = np.linalg.inv(dif) # calculate the inverse of the matrix (np.array datatype)

Inv = Inv.tolist() # retypecast the inverse to have it in list-of-lists datatype

# Inv is [I - Omega]~(-1)
n = 0.5 #definition of learning rate

#update the positive weights
for u in range(N):
for v in range(N):

if u<I:

utilization_rate = urates_of_I[u]
elif u>=I and u<I+H:

utilization_rate = urates_of_hidden[u - I]
elif u>=I+H:

utilization_rate = urates_of_output[u - H - I]
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# calculate the gamma
gamma = []
for i in range(N):
gamma . append(@)
if u<I and ul=v:
gamma[u] = -{1/(2*sum of denom of input layer[ul))
elif u>=I and u<I+H and ul!=v:
gamma[u] = -{1/(rates of hidden[u - I]+ sum of denom hidden[u - I]}))
elif u>=I+H and ul=v:
gamma[u] = -{1/(r output + sum of denom output[e]))
if v<I and ul=v and ul=v:
gamma[v] = (urates of I[w]/(2*sum of denom of input layer[v]))
elif v>=I and v<I+H and ul=v:
gamma[v] = (1/(rates of hidden[v - I ]+ sum of denom hidden[v - I]}))
elif v>=I+H and ul=v:
gamma[v] = (1/(r_output + sum_of denom_output[6]))
else:
gamma[v] = @
# we have prepared gamma as a list’
# we have the Inv also as a Llist of lists
Inv = np.array(Inv) #typecast Inv into numpy array
gamma = np.array(gamma) #typecast gamma inte numpy array
mull = np.matmul{gamma, Inv ) #matrix multiplication
mull = mull.tolist() #typecast the product into list
b = testing set[q] #known output
selecting_vector = []
for i in range(N):
selecting_vector.append(@)
selecting vector[u] = 1
mull = np.array(mull)
selecting vector = np.array(selecting vector)
product = np.matmul(mull, selecting_vector)
product = product.tolist()
wWplu][v] = Wp[u][v] - n*utilization rate*product*(urates_of output[e] - b)

for u in range(M):
for v in range(N):

if u<I:

utilization_rate = urates_of_I[u]
elif u>=I and u<I+H:

utilization rate = urates of hidden[u - I]
elif u»=I+H:

utilization_rate = urates_of_output[u - H - I]

# calculate the gamma
gamma = []
for i in range(N):
gamma .append (@)
if u<I and vl=u:
gammalu] = -(1/(2*sum_of denom of input layer[u]))
elif u>=I and u<I+H and ul=v:
gamma[u] = -(1/(rates_of_hidden[u - I]+ sum_of_denom_hidden[u - I]))
elif u>=I+H and ul=v:
gammalu] = -(1/(r_output + sum_of denom output[e]))
if v<I and ul=v:
gamma[v] = -(urates_of_I[v]/(2*sum_of_denom_of_input_layer[v]))
elif v>=I and v<I+H and ul=v:
gamma[v] = -(urates_of_hidden[v-I]/(rates_of_hidden[v - I ]+ sum_of_denom_hidden[v - I]))
elif v>=I+H and ul=v:
gamma[v] = -(urates_of_output[v-H-I]/(r_output + sum_of_denom_output[8]))

elif v == u and u<I:

gamma[v] = -(urates_of_ I[v]+1/(2*sum_of_denom_of_input_layer[v]))
elif v == u and u>=TI and u<I+H:

gamma[v] = -(urates_of_hidden[v-I]/(rates_of_hidden[v - I ]+ sum_of_denom_hidden[v - I]))
elif v == u and v>=I+H:

gamma[v] = -(urates_of_output[v-H-I]/(r_output + sum_of_denom_output[e]))
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# we have prepared gamma as a List’
# we have the Inv also as a list of lists
Inv = np.array(Inv) #typecast Inv into numpy array
gamma = np.array(gamma) #typecast gamma into numpy array
mull = np.matmul(gamma, Inv ) #matrix multiplication
mull = mull.tolist() #typecast the product into List
b = testing_set[q] #known output
selecting_vector = []
for i in range(N):
selecting vector.append(©)
selecting_vector[u] = 1
mull = np.array(mull)
selecting_vector = np.array(selecting_vector)
product = np.matmul(mull, selecting_vector)
product = product.tolist()
wWn[u][v] = Wn[u][v] - n*utilization_rate*product*(urates_of_output [@]- b)

# update r_output
z = - (sum_of _nom output[e]/ ((r_output + sum _of denom output[@]) * (r_output + sum of denom output[e]) ))
r_output = r_output - n * (urates_of output[e] - testing set[q]) * z

output = urates_of_output[e]*1ee*y_previous
y_previous = output

print(“"predict:", output)

print("real:", y[ql)

#get the metrics we want
val_set = raw_seq[5@0: ]

results_set = []

X, y = split_sequence(val_set, n_steps)
x_set = []
y_set = [] #testing set is actually the labels
for i in range(len(X)):
x_set.append([X[1][1]/(1ee*x[1i][e]),
x[i][2]/(1e0*x[1][1]
X[1][3]/(1e0*x[1][2]
y_set.append(y[i]/106*X[1][3])

[

N

for q in range(len(x_set)):
lp=x_set[q]
#calculate all the service rates and the utilization rates
sum_of_denom_of_input_layer=[]
y_previous = 9

for i in range(I):
s =0
for j in range(N):
s = s+ Wp[1][j]+un[i][3]
sum_of denom of input layer.append(s)

urates_of I = []
for i in range(I):

k = 1p[i]/sum_of_denom_of_input_layer[i]
urates_of_I.append(k)

sum_of_nom_of hidden_ layer=[]

j=1
while j<=N-1-0:
s =9

for i in range(I):

s = 5 + urates_of _I[i]*Wp[i][]]
sum_of_nom_of_hidden_layer.append(s)
j=Jj+1

rates_of_hidden = []

i=T

while i <=N - 1 -0:
s =9
j=N-0

while j<=N-1:
s = s + Wp[i][j] + wn[i][J]

j=j+1
rates_of_hidden.append(s)
i=1i+1
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sum_of _denom_hidden = []

J=1
while j<=N-1-0:
5 =0

for i1 in range(I):

s = s + urates_of _I[i]*wn[i][]]
sum_of_denom_hidden.append(s)
j=j+1

urates_of_hidden=[]

for i in range(H):

s = sum_of_nom_of_hidden_layer[i] / (rates_of_hidden[i] + sum_of_denom_hidden[i])

urates_of_hidden.append(s)

sum_of _nom_output = []

j = N-0
while j<N:
i=I

5=0

while i<=N-1-0:
s = 5 +(urates_of_hidden[i- I1* wp[i][ji])
i=1+1

sum_of nom_output.append(s)
j=i=+1

sum_of_denom_output = []

j = N-O
while j<N:
i=1
5=0

while i<=N-1-0:
s = s + urates_of_hidden[i-I]*Wn[i][]]
i=1i+1

sum_of_denom_output.append(s)
j=3=+1

urates_of output = []

s = sum_of_nom_output[@]/(r_output + sum_of_denom_output[e])
urates of output.append(s)

predicted value = urates_of output[e]*1@e*y previous
real value = y[q]
y_previous = predicted value
print("i predict:", predicted_value)
print("real _value:",real value)
print("real - predicted:", real_value - predicted_value)
if y[q] - predicted _value > 0.22:
results_set.append(1)
else:
results_set.append(@)
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ground_truth = []
raw_seq = raw_seq[5@4:]
for i in range(len(raw_seq)):
if raw_seqg[i]> 6@:
ground_truth.append(1)
else:
ground_truth.append (@)

accurates = @
false_positives
false_negatives

e
(5]

for i in range(len(ground_truth)):
if ground truth[i] == @ and results_set[i] == @:
accurates = accurates + 1
elif ground truth[i] == 1 and results_set[i] == 1:
accurates = accurates + 1
elif ground_truth[i] == @ and results_set[i] == 1:
false _positives = false positives + 1
elif ground_truth[i] == 1 and results_set[i] == @:
false_negatives = false_negatives + 1
print(“accuracy:", accurates/len(results_set))
print(“false positive rate:", false_positives/len(results_set))
print("false negative rate:", false_negatives/len(results_set))
x_axis = []
j=e

while j<len(results_set):
x_axis.append(5*j)
j=j+1
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