
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ Μ/Υ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

ΣΧΟΛΗ ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΒΙΟΜΗΧΑΝΙΑΣ

ΤΜΗΜΑΤΟΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ

ΔΙΑΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩN

«ΤΕΧΝΟ-ΟΙΚΟΝΟΜΙΚΑ ΣΥΣΤΗΜΑΤΑ»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΤΙΤΛΟΣ:

ΚΑΙΝΟΤΟΜΑ ΜΟΝΤΕΛΑ ΤΕΧΝΗΤΗΣ ΝΟΗΜΟΣΥΝΗΣ ΓΙΑ ΤΗΝ

ΑΝΙΧΝΕΥΣΗ ΚΥΒΕΡΝΟΕΠΙΘΕΣΕΩΝ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΤΩΝ

ΠΡΑΓΜΑΤΩΝ

ΕΥΜΟΡΦΟΣ ΣΠΗΛΙΟΣ

ΒΛΑΧΟΔΗΜΗΤΡΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ

ΝΙΚΟΛΑΟΣ ΔΟΥΛΑΜΗΣ – ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ

ΗΜΕΡΟΜΗΝΙΑ

ΙΟΥΝΙΟΣ 2021

2

ΠΕΡΙΛΗΨΗ

Ο κυριότερος στόχος της εν λόγω εργασίας είναι η παρουσίαση καινοτόμων μεθόδων

για την ανίχνευση επιθέσεων τύπου Distributed Denial of Service (DDoS) σε δίκτυα

τύπου Internet of Things (IoT) σε επίπεδο δικτύου. Χρησιμοποιώντας την αλληλουχία

των πακέτων του δικτύου που δέχεται ο εκάστοτε κόμβος ως δεδομένα,

εκμεταλλευόμαστε τις τεράστιες δυνατότητες μοντελοποίησης που παρέχουν τα βαθιά

νευρωνικά δίκτυα.

Για την πραγματοποίηση της εργασίας χρειάστηκε ο σχεδιασμός και η υλοποίηση δύο

βασικών εργαλείων. Σε πρώτο στάδιο υλοποιήθηκε ένας Traffic Generator για τη

προσομοίωση καλόβουλης και κακόβουλης κίνησης και συλλογής των απαραίτητων

δεδομένων. Σε επόμενο βήμα, τα δεδομένα που συλλέχτηκαν, χρησιμοποιήθηκαν για

την εκπαίδευση βαθιών νευρωνικών αρχιτεκτονικών (LSTMs και Random Neural

Networks) και τέλος αξιολογήθηκαν για την αποτελεσματικότητά τους. Τα

αποτελέσματα έχουν δημοσιευτεί και στο PETRA Conference της ACM υπό τον τίτλο:

«Neural network architectures for the detection of SYN flood attacks in IoT systems»

https://dl.acm.org/doi/pdf/10.1145/3389189.3398000?accessTab=true

3

Summary

The basic premise of this work is the presentation of novel ways to detect IoT-related

attacks (Denial of Service attacks) on the network level from raw packet captures

employing the immense modelling capabilities of deep learning and deep neural

networks.

In that sense, the provenance part is mostly related to identifying the potentiality for

malicious purpose or intention of specific traffic flows, so we view the idea of

provenance not generically, but more in the context of investigating the intentions

behind particular flows.

Moreover, in the process of attack detection using deep learning, we identified a

particular issue which is very common for IoT/cybersecurity research. The problem

was that, the datasets of raw traffic captures that encompass patterns of certain types of

attacks are not publicly available (most of the times they are strictly confidential), so it

is quite difficult to train the deep learning models for finding the abnormalities in data

captures. Therefore, we created a generator of both benign and malicious traffic to

gather raw packet captures and annotate them for training. In particular, the malicious

traffic constitutes SYN-TCP flood attack, which is a pretty common way of launching

distributed Denial of Service attacks on critical IoT infrastructure.

4

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα διπλωματική εργασία εκπονήθηκε στο πλαίσιο του μεταπτυχιακού διαπανεπιστημιακού

προγράμματος των Τεχνοοικονομικών Συστημάτων του Εθνικού Μετσόβιου Πολυτεχνείου. Μέσω

αυτής είχα τη δυνατότητα να διευρύνω τις γνώσεις μου πάνω στο Διαδίκτυο των πραγμάτων καθώς και

τις απειλές που το συνοδεύουν. Το γεγονός αυτό αποτέλεσε το βασικό ερέθισμα για τον επαγγελματικό

μου προσανατολισμό. Θα ήθελα να ευχαριστήσω θερμά τον καθηγητή μου Πρωτονοτάριο Εμμανουήλ,

για την δυνατότητα που μου προσέφερε να εργαστώ πάνω στον τομέα της ασφάλειας του διαδικτύου

των πραγμάτων, καθώς και για τις πολύτιμες συμβουλές του καθόλη τη διάρκεια των μαθημάτων και

της εκπόνησης της διπλωματικής μου εργασίας. Θα ήθελα να ευχαριστήσω ξεχωριστά και τον κ.

Νικόλαο Μπάκαλο, Ε.ΔΙ.Π Ε.Μ.Π. για την πολύτιμη βοήθεια του στην εκπόνηση της συγκεκριμένης

εργασίας καθώς και τον επιβλέποντα καθηγητή μου κ. Νικόλαο Δουλάμη για την καθοδήγηση και τις

πολύτιμες συμβουλές του. Ο χρόνος που αφιέρωσε, η επιστημονική όσο και η πνευματική του στήριξη

ήταν ιδιαίτερα σημαντικές κατά τη διάρκεια αυτής της πορείας. Τέλος, με εξίσου μεγάλη θέρμη θέλω να

ευχαριστήσω την οικογένεια μου και τους φίλους μου, που ήταν δίπλα μου σε όλη τη διάρκεια της

ακαδημαϊκής μου πορείας, ο καθένας με τον ξεχωριστό του τρόπο. Ιδιαιτέρως ευχαριστώ τον πατέρα

μου, που ήταν ο λόγος που επέλεξα αυτή τη σχολή και την μητέρα μου, που ήταν ο λόγος που κατάφερα

να μπω σε αυτή τη σχολή.

Γεώργιος Κ Βλαχοδημητρόπουλος &

Σπήλιος Π Εύμορφος
Αθήνα, 4η Ιουνίου 2021

Table of Contents
ΠΕΡΙΛΗΨΗ ... 2

Summary .. 3

5

ΕΥΧΑΡΙΣΤΙΕΣ .. 4

List of figures ... 6

List of definitions & abbreviations .. 7

1.Cybersecurity and IoT security ... 8

1.1 State of the Art .. 8

1.2. Beyond State-of-the-Art IoT Security .. 11

2. The landscape of Denial-of-Service attacks .. 11

2.1. Defining DoS attacks .. 12

2.2. DoS attack classification ... 14

2.3 DDoS defence problems and classification ... 15

2.4 Classification by activity.. 16

2.4.1 Intrusion prevention .. 16

2.4.2 Intrusion detection .. 19

2.5 Syn-TCP Flood attacks .. 20

3.SerIoT Traffic Generation... 21

3.1 Tools used .. 21

3.2 Scapy Python Package ... 22

3.3 Creation of the Bot Network .. 22

3.4 Server Node set up ... 23

3.5 Non-Malicious Client set up .. 24

3.6 Malicious client set up ... 26

4. Using Generative Adversarial Networks for possibly produce network traffic 28

4.1 Troubleshooting ... 29

5. Dataset Annotation... 29

6.Traffic Capturing and Dataset Preparation ... 33

7.Deep learning for SYN TCP flood attack detection ... 35

8.Neural Network Structures ... 36

8.1 Random Neural Network ... 36

8.2 Long-Short Term Memory ... 37

8.3 Overall System Architecture .. 38

8.4 LSTM implementation Hyperparameters .. 38

8.5 Random Neural Network implementation Hyperparameters 39

8.6 Experimental validation ... 39

8.7 Conclusions extracted .. 39

9.Ideas for deployment... 40

10.Connection of the RNN-based attack detector with the SerIoT Routing Engine ... 40

11.Conclusions ... 49

6

References .. 49

Annex ... 52

List of figures

Figure 1 6LowPAN adaptation layer ... 9

Figure 2 Security framework for 6LowPAN ... 10

Figure 3 Classification of Remote Denial of Service attacks. 14

Figure 4 Classification of DDoS attacks. ... 15

Figure 5 Classification of DDoS defence mechanisms.. 18

Figure 6:example of SYN attack.. 21

Figure 7:crafting packets with scapy[10] ... 22

Figure 8:botnet ... 23

Figure 9:Generative adversarial networks[23] ... 28

Figure 10:Wireshark packet captures ... 33

Figure 11:Wireshark packet captures ... 34

Figure 12:Attack scenario depicted in Wireshark .. 34

Figure 13:graph of half-opened connections ... 35

Figure 14:random neuron model[15] ... 36

Figure 15:random neural network feedforward formulation[15] 36

Figure 16:LSTM cell[17] ... 37

Figure 17: model methodology .. 38

7

List of definitions & abbreviations

Abbreviation Definition

RNN Random Neural Networks

IoT Internet of Things

AL Abstraction layer

CMDU Control Message Data Unit

IoT Internet of Things

DDoS Distributed Denial of Service

PQC post-quantum cryptography

QKD Quantum Key Distribution

NIST National Institute of Standards and Technology

GAN Generative Adversarial Network

SerIoT Secure and Safe Internet of Things

SRE SerIoT Routing Engine

LSTM Long Short Term Memory

VLAN Virtual Local Area Network

8

1.Cybersecurity and IoT security

The research area of network security is, and has been for many years, focused on the

idea of preventing the interception of critical information and the case where some

entity acquires authority or credentials where they actually should not. These concepts

of particular attacks or malicious activity have been thoroughly researched, and

elaborate solutions for security have been proposed.

On the other hand, the emergence of the Internet of Things (IoT), where the traditional

networking part really enables many applications related to networks comprised from

actuators and sensors, has created a new landscape of possible malicious activities,

where the potential attacker does not, solely, intend to intercept information or gain

authority, but they can prevent the service of the network to be provided to their end

user. This is the concept of Denial-of-Service attacks, and this is the area of security

that we extensively focus on, in this deliverable and our work in the context of SerIoT

project.

1.1 State of the Art

Network security, including IoT is a constantly expanding field. More and more

attention is being paid in advancing the security systems and strategies as intruders

develop new ways of surpassing the existing security protocols.

Communication in the IoT should be protected by providing security services. By using

standardized security mechanisms we can provide communication security at different

layers.

• Link Layer: IEEE 802.15.4 Security: link layer. 802.15.4 link-layer security is the

current state-of-the-art security solution for the IoT. The link-layer security protects a

communication on a per-hop base where every node in the communication path has to

be trusted. A single pre-shared key is used to protect all communication. In normal case

if an attacker compromised one device and access to one key it means whole network

will be compromised, but in this link-layer as its per-hop security only one hop/device

will be compromised and it can be detected at initial state. Still, link-layer security is

limited, but it’s quite flexible which operate with multiple protocols on different layers.

• 6LoWPAN networks: IPv6 used on sensor node to simplify the connecting task, and

it’s quite successful, especially in all LoWPAN devices. IPv6 can be used in IoT as it

also supports development for commissioning, managing, configuring and debugging

networks. The IETF (Internet Engineering Task Force) created the 6LoWPAN working

group to define the support of IPv6 over IEEE 802.15.4 LoWPAN networks which is

defined by an additional adaptation layer introduced between data link and network

layers. There are three different kinds of LoWPAN architectures types were defined,

a) Ad-hoc LoWPAN, with no infrastructure b) LoWPAN, with one edge router and c)

LoWPAN with multiple edge routers.

• Network Layer: IP Security: As IoT is basically implemented on the Internet, it uses

network IP Security (IPsec) provided by Network layer. IPsec provides end to end

security with authentication as well as confidentiality and integrity. By operating at the

network layer, IPsec can be used with any transport layer protocol, including TCP,

UDP, HTTP, and CoAP. IPsec ensures the confidentiality and integrity of the IP

payload using the Encapsulated Security Payload (ESP) protocol, and integrity of the

9

IP header plus payload using the Authentication Header (AH) protocol. Now in IPsec

is mandatory in all IPv6 protocol means all IPv6 ready devices by default have IPsec

support.

• 1905.1 Abstraction Layer: With the increase of home care solution, the fact that every

device is connected with the Internet, made wired and wireless home networking a hot

topic. To address a wide variety of application, regions, environments and topologies,

multiple connectivity technologies should be used. As with any network deployment,

many problems need to be addressed for the network.

Figure 1 6LowPAN adaptation layer

The design of IEEE 1905.1 is flexible and scalable to accommodate future home

networking technologies. The 1905.1 Abstraction Layer (AL) supports interface

selection for the transmission of packets arriving from any interface or application.

The 1905.1 layer does not require modification of the underlying home networking

technologies and hence does not change the behaviour or implementation of

existing home networking technologies. An abstraction layer is used to exchange

Control Message Data Unit (CMDU) among 1905.1 compliant devices

10

Figure 2 Security framework for 6LowPAN

Data Security

Even though the work presented in the context of the present deliverable focuses mainly

on the aspect of cybersecurity related to denial of service, we consider important to

mention some state-of-the art developments in the area of secure information exchange

and interception of intelligence, which constitutes more conventional areas of the

cybersecurity field.

Securing communication is really important in IoT, but it is not uncommon for people

and organisations involved to forget about securing data which are generated from all

IoT devices. Most of the devices in IoT are small and don’t have enough capacity, due

to limited size, to secure themselves from threats related to hardware. There exist

several solutions, but due to different communication technology protocols, one

solution may not be enough to secure everything.

There are many companies, working towards security standards and providing better

interface where the user can get secure communication, secure access to devices and

secure data transfer and storage. In IoT, most of the hardware has limited capability,

and DTLS handshake is still an acceptable solution.

To handle security challenges in IoT, specific mechanisms need to be designed on the

device. With device security, the risk of data theft and unauthorized access can be

reduced. Especially for the medical devices if data are stolen, it can lead to some serious

consequences. Manufacturers should build inbuilt security features in device.

Moreover, the device security should be updated regularly. Building security in the

11

device alone will not provide full security in IoT, but it will definitely reduce the risk.

In IoT, security needs to be addressed throughout its cycle. Secure booting, proper

access control, secure authentication and secure application interface need to develop

to make sure the whole process is secure. As we discussed in the previous section, the

Internet was only designed for communication and not for millions of devices to

connect together. In future, the number IoT device will be increased, and it all depends

on how to manage device security on every stage. Therefore, it is paramount to find

specific standards and mechanisms to provide IoT security.

1.2. Beyond State-of-the-Art IoT Security

With the emerging of IoT technologies and environments in multiple vertical domains,

cybersecurity become of great importance. The sensor (proximity layer of the IoT

network) consists of nodes-devices with extremely limited capabilities and recourses.

In the context of classic cybersecurity research, even though denial of service attacks

have been considered, they are not the main concern. This rightfully so happens because

in conventional computer networks the probable target of a DDoS attack is most likely

a powerful server or data center. In contrary, in IoT networks the victim might be a

powerless sensor or actuator which actually performs a very critical task. Along with

the emerging of IoT the high modeling capability of deep neural networks has

constituted them to be a really important scientific and engineering tool.

For sure deep learning has been used for cybersecurity applications in general and in

the context of Denial of service attack prevention in particular. To the best of our

knowledge, conventional deep neural network architectures have been employed as

classifiers for detecting DDoS attacks (distinguishing malicious and benign traffic).

The beyond the state of the art contribution of the work described in this deliverable is

twofold. Firstly the feed-forward version of the random neural network architecture has

been used (Random neural Networks are mostly defined in a recurrent fashion).

Secondarily, a regression model is being introduced as a tool for detecting DDoS

attacks rather than a cluster in a model or a classifier.

2. The landscape of Denial-of-Service attacks

Denial of Service (DoS) attacks are undoubtedly a very serious problem in the Internet,

whose impact has been well demonstrated in the computer network literature. The main

aim of a DoS is the disruption of services by attempting to limit access to a machine or

service instead of subverting the service itself. This kind of attack aims at rendering a

network incapable of providing normal service by targeting either the networks

bandwidth or its connectivity. These attacks achieve their goal by sending at a victim a

stream of packets that swamps his network or processing capacity denying access to his

regular clients. In the not so distant past, there have been some large-scale attacks

targeting high profile Internet sites [24][25]. Distributed Denial of Service (DDoS), is

a relatively simple, yet very powerful technique to attack Internet resources. DDoS

attacks add the many-to-one dimension to the DoS problem making the prevention and

mitigation of such attacks more difficult and the impact proportionally severe. DDoS

exploits the inherent weakness of the Internet system architecture, its open resource

access model, which ironically, also happens to be its greatest advantage. DDoS attacks

are comprised of packet streams from disparate sources. These attacks engage the

12

power of a vast number of coordinated Internet hosts to consume some critical resource

at the target and deny the service to legitimate clients. The traffic is usually so

aggregated that it is difficult to distinguish legitimate packets from attack packets. More

importantly, the attack volume can be larger than the system can handle. Unless special

care is taken, a DDoS victim can suffer from damages ranging from system shutdown

and file corruption, to total or partial loss of services. There are no apparent

characteristics of DDoS streams that could be directly used for their detection and

filtering. The attacks achieve their desired effect by the sheer volume of attack packets,

and can afford to vary all packet fields to avoid characterization and tracing. Extremely

sophisticated, ‘‘user-friendly’’ and powerful DDoS toolkits are available to potential

attackers increasing the danger of becoming a victim in a DoS or a DDoS attack. DDoS

attacking programs have very simple logic structures and small memory sizes, making

them relatively easy to implement and hide. Attackers constantly modify their tools to

bypass security systems developed by system managers and researchers, who are in a

constant alert to modify their approaches to handle new attacks. The DDoS field is

evolving quickly, thus becoming increasingly hard to grasp a global view of the

problem. Although there is no panacea for all flavours of DDoS, there are several

countermeasures that focus on either making the attack more difficult or on making the

attacker accountable. We will also try to introduce some structure to the DDoS field by

presenting the state-of-the-art in the field through a classification of DDoS attacks and

a classification of the defence mechanisms that can be used to combat these attacks.

The classification of attacks includes both known and potential attack mechanisms. In

each attack category, we define special and important features and characteristics. We

also classify published approaches of defence mechanisms, and even though we point

out vulnerabilities of certain defence systems, our purpose is not criticizing the defence

mechanisms but to describe the existing problems so that they might be solved.

 2.1. Defining DoS attacks

According to the WWW Security FAQ [26], a DoS attack can be described as an attack

designed to render a computer or network incapable of providing normal services. A

DoS attack is considered to take place only when access to a computer or network

resource is intentionally blocked or degraded as a result of malicious action taken by

another user. These attacks don’t necessarily damage data directly or permanently, but

they intentionally compromise the availability of the resources. The most common DoS

attacks target the computer networks bandwidth or connectivity. Bandwidth attacks

flood the network with such a high volume of traffic that all available network resources

are consumed, and legitimate user requests cannot get through, resulting in degraded

productivity. Connectivity attacks flood a computer with such a high volume of

connection requests that all available operating system resources are consumed, and the

computer can no longer process legitimate user requests.

A denial-of-service attack (DoS attack) is typically accomplished by flooding the

targeted machine or resource [1] with superfluous requests in an attempt to overload

systems and prevent some or all legitimate requests from being fulfilled. In a distributed

denial-of-service attack (DDoS attack), the incoming traffic flooding the victim

originates from many different sources, making it impossible to stop the attack simply

by blocking a single source.

Some DoS attacks aim at remotely stopping a service on the victim host.

13

The basic method for remotely stopping a service is to send a malformed packet.

Below, are two standard examples of this type of attacks:

- Ping-of-Death attack: The attacker tries to send an oversized ping packet to

the destination with the hope to bring down the destination system due to the

systems lack of ability to handle huge ping packets.

- Jolt2 attack: The attacker sends a stream of packet fragments, none of which

have a fragment offset of zero. The target host exhausts its processor capacity

in trying to rebuild these bogus fragments

Other well-known examples of this type of attacks include Land attacks,

- TCP SYN attacks: This type of attacks exploits a flaw in some

implementations of the TCP three-way handshake. When a host receives the

SYN request from another host, it must keep track of the partially opened

connections in a listening queue for a given number of seconds. The attacker

exploits the small size of the listen queue by sending multiple SYN requests to

the victim, never replying to the sent back SYN_ACK. The victim’s listening

queue is quickly filled up, and it stops accepting new connections.

- UDP flood attack: The attacker sends many UDP packets to random ports on

a remote host. The victim checks for the application listening on this port. After

seeing that no application listens on the port, it replies with an ICMP Destination

Unreachable packet. In this way, the victimized system is forced to send many

ICMP packets, eventually leading it to be unreachable by other clients, or even

to go down

Another category of typical IoT attacks that target to inhibit the networks ability to

perform the accustomed service to the end user is the Denial-of-sleep attacks [2]. In the

context of the Internet of Things, low-rate wireless personal area networks are a

prevalent solution for communication among devices. Tight limitations on hardware

cost, memory use and power consumption have given rise to several security

vulnerabilities, including traffic eavesdropping, packet replay, and collision attacks,

straightforward to conduct. A simple form of attack is to deplete the energy available

to operate the wireless sensor nodes [3,4,5]. For instance, vampire attacks are routing-

layer resource exhaustion attacks aiming at draining the whole life (energy) from

network nodes, hence their name [6]. In this section, we shall focus on another form of

energy attacks, which are MAC-layer attacks known as Denial-of-Sleep attacks. Below

are some examples of denial-of-sleep attacks:

- Sleep deprivation attack: The ability of a sensor node to enter a low power

sleep mode is very useful for extending network longevity. The attacker

launches a sleep deprivation attack by interacting with the victim in a manner

that appears to be legitimate; however, the purpose of the interactions is to keep

the victim node out of its power-conserving sleep mode, thereby dramatically

reducing its lifetime [7,8,9]

- Barrage attack: As in the sleep deprivation attack, the attacker seeks to keep

the victim out of its sleep mode by sending seemingly legitimate requests.

However, the requests are sent at a much higher rate and aim at making the

victim perform energy-intensive operations. Barrage attacks are more easily

14

detected than sleep deprivation attacks, which are carried out solely through the

use of seemingly innocent interactions.

Broadcast attack: Malicious nodes can broadcast unauthenticated traffic and long

messages which must be received by other nodes before being possibly discarded for

lack of authentication. These types of malicious activity are difficult to detect because

they do not necessarily affect the throughput of the system and they focus on

exhausting the energy of certain nodes

2.2. DoS attack classification

DoS attacks can be classified into five categories based on the attacked protocol level,

as illustrated in Fig. 3

Figure 3 Classification of Remote Denial of Service attacks.

DoS attacks in the Network Device Level include attacks that might be caused either

by taking advantage of bugs or weaknesses in software, or by trying to exhaust the

hardware resources of network devices. One example of a network device exploit is the

one that is caused by a buffer overrun error in the password checking routine. Using

these exploits, certain Cisco 7xx routers could be crashed by connecting to the routers

via telnet and entering extremely long passwords. In the OS level, DoS attacks take

advantage of the ways operating systems implement protocols. One example of this

category of DoS attacks is the Ping of Death attack [27]. In this attack, ICMP echo

requests having total data sizes greater than the maximum IP standard size are sent to

the targeted victim. This attack often has the effect of crashing the victims machine.

Application-based attacks try to settle a machine or a service out of order either by

taking advantage of specific bugs in network applications that are running on the target

host or by using such applications to drain the resources of their victim. It is also

possible that the attacker may have found points of high algorithmic complexity and

exploits them in order to consume all available resources on a remote host. One example

of an application based attack is the finger bomb [28]. A malicious user could cause the

finger routine to be recursively executed on the hostname, potentially exhausting the

15

resources of the host. In data flooding attacks, an attacker attempts to use the bandwidth

available to a network, host or device at its greatest extent, by sending massive

quantities of data and so causing it to process extremely large amounts of data. An

attacker could attempt to use up the available bandwidth of a network by simply

bombarding the targeted victim with normal, but meaningless packets with spoofed

source addresses. An example is flood pinging. Simple flooding is commonly seen in

the form of DDoS attacks, which will be discussed later. DoS attacks based on protocol

features take advantage of certain standard protocol features. For example, several

attacks exploit the fact that IP source addresses can be spoofed. Several types of DoS

attacks have focused on DNS, and many of these involve attacking DNS cache on name

servers. An attacker who owns a name server may coerce a victim name server into

caching false records by querying the victim about the attacker’s own site. A vulnerable

victim name server would then refer to the rogue server and cache the answer [29].

Figure 4 Classification of DDoS attacks.

2.3 DDoS defence problems and classification

DDoS attacks are a hard problem to solve. First, there are no common characteristics

of DDoS streams that can be used for their detection. Furthermore, the distributed

nature of DDoS attacks makes them extremely difficult to combat or trace back.

Moreover, the automated tools that make the deployment of a DDoS attack possible

can be easily downloaded. Attackers may also use IP spoofing in order to hide their

identity, and this makes the traceback of DDoS attacks even more difficult. Finally,

there is no sufficient security level on all machines on the Internet, while there are

persistent security holes in Internet hosts. We may classify DDoS defence mechanisms

using two different criteria. The first classification categorizes the DDoS defence

mechanisms according to the activity deployed. Thus, we have the following four

categories:

16

• Intrusion Prevention,

• Intrusion Detection,

• Intrusion Tolerance and Mitigation, and

• Intrusion Response.

The second classification divides the DDoS defences according to the location

deployment resulting in the following three categories of defence mechanisms:

• Victim Network,

• Intermediate Network, and

• Source Network.

Our classification of DDoS mechanisms is illustrated in Fig. 4. In the following, we

discuss extensively the techniques used in each of the categories of the first

classification and just refer to the DDoS defences and the way they are categorized for

the last classification.

Our focus was the development of methodologies for detecting the most common type

of Denial of Service attack, which is the SYN TCP flood attack, which actually really

prevalent in IoT environments. Intuitively, when dealing with IoT the proximity

network side is really vulnerable since it is comprised by devices with very low

capabilities and resources which, though handle critical functionalities. In this specific

case, the attacker exploits the TCP 3-WAY handshake. According to the TCP

communication protocol, the client should send a SYN message to the server to initiate

the socket for message exchanging. The server answers with a SYN ACK message, and

finally the communication is complete and established when the client sends the final

ACK message, which solidifies the open connection between the two nodes.

In the case where a SYN TCP flood attack is being launched, the malicious client sends

too many SYN messages to the target (to all the available TCP ports), but when they

receive the SYN ACK messages, they never respond with the associated ACK

messages. So, the server is left waiting for some period of time. This results in inhibiting

the server’s ability to handle new requests and the service provided is being stalled.

2.4 Classification by activity

2.4.1 Intrusion prevention

The best mitigation strategy against any attack is to completely prevent the attack. In

this stage we try to stop DDoS attacks from being launched in the first place. There are

many DDoS defence mechanisms that try to prevent systems from attacks: Using

globally coordinated filters, attacking packets can be stopped, before they aggregate to

lethal proportions. Filtering mechanisms can be divided into the following categories:

Ingress filtering is an approach to set up a router such that to disallow incoming packets

with illegitimate source addresses into the network. Ingress filtering, proposed by

Ferguson and Senie [30], is a restrictive mechanism to drop traffic with IP address that

does not match a domain prefix connected to the ingress router. This mechanism can

17

drastically reduce the DoS attack by IP spoofing if all domains use it. Sometimes

legitimate traffic can be discarded by an ingress filtering when Mobile IP [31] is used

to attach a mobile node to a foreign network. Egress filtering [32] is an outbound filter,

which ensures that only assigned or allocated IP address space leaves the network.

Egress filters do not help to save resource wastage of the domain where the packet

originated but it protects other domains from possible attacks. Besides the placement

issue, both ingress and egress filters have similar behaviour. Route-based distributed

packet filtering has been proposed by Park and Lee [33]. This approach is capable of

filtering out a large portion of spoofed IP packets and preventing attack packets from

reaching their targets as well as to help in IP traceback. Route-based filters use the route

information to filter out spoofed IP packets, making this their main difference from

ingress filtering. If route-based filters are partially deployed, a synergistic filtering

effect is possible, so that spoofed IP flows are prevented from reaching other

Autonomous Systems. Furthermore, since routes on the Internet change with time [34]

it is a great challenge for route-based filters to be updated in real time. The main

disadvantage of this approach is that it requires global knowledge of the network

topology leading to scalability issues. History-based IP filtering (HIP) is another

filtering mechanism that has been proposed by Peng et al. [35] in order to prevent DDoS

attacks. According to this approach the edge router admit the incoming packets

according to a pre-built IP address database. The IP address database is based on the

edge routers previous connection history. This scheme is robust, does not need the

cooperation of the whole Internet community, is applicable to a wide variety of traffic

types and requires little configuration. On the other hand, if the attackers know that the

IP packet filter is based on previous connections, they could mislead the server to be

included in the IP address database. This can be prevented by increasing the period over

which IP addresses must appear in order to be considered frequent. Secure Overlay

Services (SOS) [36] is an architecture in which only packets coming from a small

number of nodes, called servlets, are assumed to be legitimate client traffic that can

reach the servlets through hash-based routing inside an overlay network. All other

requests are filtered by the overlay. In order to gain access to the overlay network, a

client has to authenticate itself with one of the replicated access points (SOAPs). SOS

is a distributed system that offers excellent protection to the specified target at the cost

of modifying client systems, so it is not suitable for protection of public servers.

18

Figure 5 Classification of DDoS defence mechanisms..

Disabling unused services [36] is another approach in order to prevent DDoS attacks.

If UDP echo or character generator services are not required, disabling them will help

to defend against these attacks. In general, if network services are not needed or unused,

the services should be disabled to prevent attacks. Applying security patches [36], can

armour the hosts against DDoS attacks. The host computers should update themselves

with the latest security patches for the bugs present and use the latest techniques

available to minimize the effect of DDoS attack. Changing IP address, is another simple

solution to a DDoS attack in order to invalidate the victim computers IP address by

changing it with a new one. This is called moving target defence. Once the IP address

change is completed all Internet routers will have been informed, and edge routers will

drop the attacking packets. Although this action leaves the computer vulnerable because

the attacker can launch the attack at the new IP address, this option is practical for local

DDoS attacks, which are based on IP addresses. On the other hand, attackers can render

this technique a futile process by adding a domain name service tracing function to the

DDoS attack tools. By disabling IP broadcasts [36], host computers can no longer be

used as amplifiers in ICMP Flood and Smurf attacks. However, a defence against this

attack will be successful only if all the neighbouring networks disable IP broadcasts.

Load balancing is a simple approach that enables network providers to increase the

19

provided bandwidth on critical connections and prevent them from going down in the

event of an attack. Additional failsafe protection can be the use of replication of servers

in the case some go down during a DDoS attack. Furthermore, in a multiple-server

architecture the balance of the load is necessary so that both the improvement of normal

performance as well as the prevention or mitigation of the effect of a DDoS attack can

be achieved. Honeypots [37] can also be used in order to prevent DDoS attacks.

Honeypots are systems that are set up with limited security and can be used to trick the

attacker to attack the honeypot and not the actual system. Honeypots typically have

value not only in protecting systems, but they can also be used in order to gain

information about attackers by storing a record of their activity and learning what types

of attacks and software tools the attacker is using. Current research discusses the use of

honeypots that mimic all aspects of a legitimate network (such as web servers, mail

servers, clients, etc.) in order to attract potential DDoS attackers. The idea is to lure the

attacker into believing that he has compromised the system (e.g. honeypot) for attack

as its slave and attract him to install either a handler or agent code within the honeypot.

This prevents some legitimate systems from getting compromised, tracks the handler

or agent behaviour and allows the system to better understand how to defend against

future DDoS installation attacks. However, this scheme has several drawbacks. First,

the method assumes that the attack must be detectable using signature-based detection

tools. If not, the packet is forwarded to the destination in operational networks.

Furthermore, the attacker can easily thwart the static and passive nature of honeypots

approach since the approach is static and passive in the sense that it is not a dynamically

moving scheme with complete disguise. Prevention approaches offer increased security

but can never completely remove the threat of DDoS attacks because they are always

vulnerable to new attacks for which signatures and patches do not exist in the database.

2.4.2 Intrusion detection

Intrusion detection has been a very active research area. By performing intrusion

detection, a host computer and a network can guard themselves against being a source

of network attack as well as being a victim of a DDoS attack. Intrusion detection

systems detect DDoS attacks either by using the database of known signatures or by

recognizing anomalies in system behaviours. Anomaly detection relies on detecting

behaviours that are abnormal with respect to some normal standard. Many anomaly

detection systems and approaches have been developed to detect the faint signs of

DDoS attacks.

A scalable network monitoring system called NOMAD has been designed by Talpade

et al. [38]. This system is able to detect network anomalies by making statistical

analysis of IP packet header information. It can be used for detecting the anomalies of

the local network traffic and does not support a method for creating the classifier for

the high-bandwidth traffic aggregate from distributed sources. Another detection

method of DDoS attack uses the Management Information Base (MIB) data from

routers. The MIB data from a router includes parameters that indicate different packet

and routing statistics. Cabrera et al. [39] has focused on identifying statistical patterns

in different parameters, in order to achieve the early detection of DDoS attacks. It looks

promising for possibly mapping ICMP, UDP and TCP packet statistical abnormalities

20

to specific DDoS attacks. Although this approach can be effective for controlled traffic

loads, it needs to be further evaluated in a real network environment. This research area

could provide important information and methods that can be used in the identification

and filtering of DDoS attacks. A mechanism called congestion triggered packet

sampling and filtering has been proposed by Huang and Pullen [40]. According to this

approach, a subset of dropped packets due to congestion is selected for statistical

analysis. If an anomaly is indicated by the statistical results, a signal is sent to the router

to filter the malicious packets. Lee and Stolfo [41] use data mining techniques to

discover patterns of system features that describe program and user behaviour and

compute a classifier that can recognize anomalies and intrusions. This approach focuses

on the host-based intrusion detection. An improvement of this approach is a meta-

detection model, which uses results from multiple models to provide more accurate

detection. Mirkovic et al. [42] proposed a system called DWARD that does DDoS

attack detection at the source based on the idea that DDoS attacks should be stopped as

close to the sources as possible. D-WARD is installed at the edge routers of a network

and monitors the traffic being sent to and from the hosts in its interior. If an asymmetry

in the packet rates generated by an internal host is noticed, D-WARD rate limits the

packet rate. The drawback of this approach is that there is a possibility of numerous

false positives while detecting DDoS conditions near the source, because of the

asymmetry that there might be in the packet rates for a short duration. Furthermore,

some legitimate flows like real time UDP flows do exhibit asymmetry. In [43] Gil and

Poletto proposed a heuristic data-structure (MULTOPS), which postulates if the

detection of IP addresses that participate in a DDoS attack is possible, then measures

are taken to block only these addresses. Each network device maintains a multi-level

tree that contains packet rate statistics for subnet prefixes at different aggregation levels.

MULTOPS uses disproportionate rates to or from hosts and subnets to detect attacks.

When it stores the statistics based on source addresses, it is said to operate in attack-

oriented mode, otherwise in the victim-oriented mode. A MULTOPS data structure can

thus be used for keeping track of attacking hosts or hosts under attack. When the packet

rate to or from a subnet reaches a certain threshold, a new sub-node is created to keep

track of finer––grained packet rates. This process can go till finally per IP address

packet rates are being maintained. Therefore, starting from a coarse granularity one can

detect with increasingly finer accuracy, the exact attack source or destination addresses.

The IP source addresses that are obtained are spoofed addresses but can still be valuable

in applying rate limits. Among the disadvantages of this approach, is that it requires

router reconfiguration and new memory management schemes. Furthermore, it cannot

prevent proportional attacks nor can it detect randomized forged IP addresses

originating from a single machine or DDoS attacks that use many zombies. Misuse

detection identifies well-defined patterns of known exploits and then looks out for the

occurrences of such patterns. Intrusion patterns can be any packet features, conditions,

arrangements and interrelationships among events that lead to a break-in or other

misuse. These patterns are defined as intrusion signatures.

2.5 Syn-TCP Flood attacks

21

Figure 6:example of SYN attack

The significance of finding the remedy to this specific IoT attack is prevalent if one

considers the fact that the TCP protocol is being used for facilitating the communication

in many parts of the network in IoT setups and this attack is so easily launched. It can

affect all the critical parts of the network, from the controller to the fog, from the edge

to the actual sensor network. It can also be used to harm the actual infrastructure of the

network because a possible attack on the hub that controls the actuators can create

physical damage to the equipment. So, we focused on the very “meat and potatoes” of

a possible malicious activity related to stopping the delivery of service in IoT

3.SerIoT Traffic Generation

In the process of trying to collect datasets of traffic that contain the launching of SYN

TCP attacks we ran on a very spread and well-known issue of the field. These types of

attacks are usually launched, and therefore captured, on large scale commercial

networks and the associated companies are not particularly prone to provide access on

these datasets because of specific policies related to confidentiality.

We had to overcome this issue and to do so we emphasized on creating a software

component that produces both normal IoT network traffic and traffic that manifests

SYN flood attacks. We also created a bot network where this attack could be launched

so that the traffic could be captured, and we can collect indicative datasets for training.

3.1 Tools used

The Generator was implemented in a virtual IoT environment where every IoT node

had the credentials to establish connections with the rest of the existing nodes.

Tools that were needed for the Generator’s implementation:

• VirtualBox for the creation of IoT nodes.

• Python script for setting up:

1. a server node

2. a client node (Benign traffic generator)

22

3. an ambiguous node that generates alternating traffic (both benign and

malicious generator)

• Scapy python module for the crafting of packets

3.2 Scapy Python Package

Scapy is a Python module full of packages that enable the user to send, sniff and dissect

and forge network packets. This capability allows construction of tools that can probe,

scan or attack networks[10].

The use of scapy was extensive for both the preparation of the botnet and the writing

of the scripts for traffic monitoring and packet creation.

Figure 7:crafting packets with scapy[10]

3.3 Creation of the Bot Network

For the creation of a virtual network, we used VirtualBox. At first, we created a bunch

of VMs that run on Ubuntu 18.04 64b distribution. At first those VMs were unable to

communicate with the outside world (Internet) nor with each other so we created a NAT

network to address the issue of limited connectivity to the Internet. After that we created

a local network between the host machine and the 2 VMs. For simplicity and for the

rest of the description let us assume that VM1 (VM-1) and VM2 (VM-2) are both

clients and VMs (VM-s) is the virtual server. Next step was to give those machines a

static IP to accommodate the communication between them. In detail the clients’ IP

23

address was decided to be “192.168.56.101” and “192.168.56.102” respectively, while

the server’s IP “192.168.56.100”.

general specifications:

● all scripts are developed in python 3

● generator was tested and can be successfully used in linux operating systems

(tested on 18.03 ubuntu distribution)

our scripts generate TCP communications (benign or malicious) so it is important to be

used on nodes that support TCP protocol

Figure 8:botnet

3.4 Server Node set up

An IoT node of our network that plays the role of the server (in our case VMs) will

have to be running in the background the python script: server.py

This script should be running on the target node in order to be able to communicate

with the client nodes. (It works as a socket server).

arguments:

<Server IP> which is the target’s IP

<Server port> which is the Sserver’sport

server.py:

#!/usr/bin/env python3

import sys

import socket

import selectors

import types

sel = selectors.DefaultSelector()

24

def accept_wrapper(sock):

 conn, addr = sock.accept() # Should be ready to read

 print("accepted connection from", addr)

 conn.setblocking(False)

 data = types.SimpleNamespace(addr=addr, inb=b"", outb=b"")

 events = selectors.EVENT_READ | selectors.EVENT_WRITE

 sel.register(conn, events, data=data)

def service_connection(key, mask):

 sock = key.fileobj

 data = key.data

 if mask & selectors.EVENT_READ:

 recv_data = sock.recv(1024) # Should be ready to read

 if recv_data:

 data.outb += recv_data

 else:

 print("closing connection to", data.addr)

 sel.unregister(sock)

 sock.close()

 if mask & selectors.EVENT_WRITE:

 if data.outb:

 print("echoing", repr(data.outb), "to", data.addr)

 sent = sock.send(data.outb) # Should be ready to write

 data.outb = data.outb[sent:]

if len(sys.argv) != 3:

 print("usage:", sys.argv[0], "<host> <port>")

 sys.exit(1)

host, port = sys.argv[1], int(sys.argv[2])

lsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

lsock.bind((host, port))

lsock.listen()

print("listening on", (host, port))

lsock.setblocking(False)

sel.register(lsock, selectors.EVENT_READ, data=None)

try:

 while True:

 events = sel.select(timeout=None)

 for key, mask in events:

 if key.data is None:

 accept_wrapper(key.fileobj)

 else:

 service_connection(key, mask)

except KeyboardInterrupt:

 print("caught keyboard interrupt, exiting")

finally:

 sel.close()

3.5 Non-Malicious Client set up

25

An IoT node of our network that plays the role of the benign client (in our case VM1)

will have to be running in the background the python script: Advanced_b9generator.py

This script is used in order to produce benign traffic from a client node to the target

node. It takes the following arguments:

<target IP> which is the IP of the target node

<target port> which corresponds to the specific port of the target node.

<number of connections> which corresponds to the number of new connections that the

client will try to open with the target. (Suggested number 100-200)

Advanced_b9generator.py:

#!/usr/bin/env python3

import sys

import socket

import selectors

import types

import logging

import signal

import sys

import time

sel = selectors.DefaultSelector()

messages = [b"Message 1 from client.", b"Message 2 from client."]

def start_connections(host, port, num_conns):

 server_addr = (host, port)

 for i in range(0, num_conns):

 connid = i + 1

 print("starting connection", connid, "to", server_addr)

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 sock.setblocking(False)

 sock.connect_ex(server_addr)

 events = selectors.EVENT_READ | selectors.EVENT_WRITE

 data = types.SimpleNamespace(

 connid=connid,

 msg_total=sum(len(m) for m in messages),

 recv_total=0,

 messages=list(messages),

 outb=b"",

)

 sel.register(sock, events, data=data)

def service_connection(key, mask):

 sock = key.fileobj

 data = key.data

 if mask & selectors.EVENT_READ:

 recv_data = sock.recv(1024) # Should be ready to read

 if recv_data:

 print("received", repr(recv_data), "from connection", data.connid)

 data.recv_total += len(recv_data)

 if not recv_data or data.recv_total == data.msg_total:

 print("closing connection", data.connid)

26

 sel.unregister(sock)

 sock.close()

 if mask & selectors.EVENT_WRITE:

 if not data.outb and data.messages:

 data.outb = data.messages.pop(0)

 if data.outb:

 print("sending", repr(data.outb), "to connection", data.connid)

 sent = sock.send(data.outb) # Should be ready to write

 data.outb = data.outb[sent:]

if len(sys.argv) != 4:

 print("usage:", sys.argv[0], "<host> <port> <num_connections>")

 sys.exit(1)

host, port, num_conns = sys.argv[1:4]

num_conns = int(num_conns)

while True:

 start_connections(host, int(port), 150)

 num_conns -= 150

 try:

 while True:

 events = sel.select(timeout=1)

 if events:

 for key, mask in events:

 service_connection(key, mask)

 # Check for a socket being monitored to continue.

 if not sel.get_map():

 break

 except KeyboardInterrupt:

 print("caught keyboard interrupt, exiting")

 time.sleep(10)

3.6 Malicious client set up

An IoT node of our network that plays the role of the malicious client (in our case VM1)

will have to be running in the background the python script: syntcp_attack.py

This script is used in order to launch a SYN TCP attack from a client node to the target

node.

arguments:

<dst_ip> which is the target’s IP

<dst_port> which is the target’s port

optional arguments:

[--sleep=<sec>] It defines the speed (severity of the attack)

[--verbose] Prints more comments during the attack

[--very-verbose] Prints even more comments during the attack

syntcp_attack.py:

27

#!/usr/bin/env python3

"""

Usage:

 syn_flooder.py <dst_ip> <dst_port> [--sleep=<sec>] [--verbose] [--very-verbose]

Options:

 -h, --help Show this screen.

 --version Show version.

 --sleep=<seconds> How many seconds to sleep betseen scans [default: 0].

 --verbose Show addresses being spoofed. [default: False]

 --very-verbose Display everything. [default: False]

"""

from docopt import docopt

import logging

import signal

import sys

logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

from scapy.all import *

def main(arguments):

 src_net = "192.168.56."

 dst_ip = arguments["<dst_ip>"]

 dst_port = int(arguments["<dst_port>"])

 sleep = int(arguments["--sleep"])

 verbose = arguments["--verbose"]

 very_verbose = arguments["--very-verbose"]

 signal.signal(signal.SIGINT, lambda n, f: sys.exit(0))

 print "\n###"

 print “# Starting Denial of Service attack...”

 print "# Target:%s" % (dst_ip)

 print "###\n"

 for src_host in range(3,254):

 if verbose or very_verbose:

 print "[*] Sending spoofed SYN packets from %s%d " % (src_net, src_host)

 print “--”

 for src_port in range(1024, 65535):

 if very_verbose:

 print"[+] Sending a spoofed SYN packet from %s%d:%d" % (src_net, src_host, src_port)

 # Build the packet

 src_ip = src_net + str(src_host)

 network_layer = IP(src=src_ip, dst=dst_ip)

 transport_layer = TCP(sport=src_port, dport=dst_port, flags="S")

 # Send the packet

 send(network_layer/transport_layer, verbose=False)

 if sleep != 0:

 time.sleep(sleep)

 print “[+] Denial of Service attack finished.”

28

if __name__ == '__main__':

 arguments = docopt(__doc__, version="SYN Flooder 1.5")

 main(arguments)

4. Using Generative Adversarial Networks for possibly produce

network traffic

Generative adversarial networks (GANs) is a recent addition to the arsenal of Deep

Generative modeling. The use of GANs has been extensive in image processing with

pure generation tasks and denoising, but also in Natural Language Processing and

Recommendation systems. The basic idea is to adapt the model so that it can be used to

produce more complex patterns of network traffic and generalize and scale the solution

in finding datasets of elaborate network attacks and malicious activities, without ever

again needing to explicitly model the distribution of sequence in network packets being

exchanged (use of Markov Processes and Variational inference)

The basic intuition behind Generative Adversarial Networks is that there are two neural

networks (The model is much more generic in conception so the regression models are

not explicitly defined as neural networks but rather that two differentiable functions

with enough modeling capacity specific to the problem) that work in opposition. The

first neural network is supposed to be the Discriminator network and the second one is

the Generator. A vector is sampled from a latent space and is fed to the Generator. The

Generator produces an output in the same space as the data samples collected. Then

real data samples are fed into the discriminator along with the outputs of the Generator.

The two neural networks play a minimax game (minimax optimization) where the

Generator is attempting to fool the Discriminator by producing samples that are

progressively better (they are more likely to be drawn from the distribution of the

dataset).

Figure 9:Generative adversarial networks[23]

The basic premise of the idea is to get packet captures that constitute a complex act of

malicious network activity (where the distribution of the sequence of packets can not

be analytically tractable). Then the packets are annotated according to the content of

the various packet headers (IP address of the destination, IP address of the source,

PORT of the source, PORT of the destination, number of Bytes type of flag) and then

29

create a type of visual data from the vectors derived from the annotation (stack vectors

on top of each other) and feed the model of the Discriminator (and the process of the

Generator would be the classical one).

A possible tweak would be to use the conditional GAN, where every sample of the

dataset is fed in the model along with a concatenated label (1 of the specific piece of

input constitutes an attack and 0 if the specific piece is derived from benign

communications.

4.1 Troubleshooting

It has been proven that the converged model of Generative Adversarial Networks

(Generator) has explicitly described the information of the possibly intractable

distribution of the samples in the dataset. So, once the model has been trained properly

the sophisticated sequence of an elaborate attack could be mimicked and reproduced in

detail. The problem stems from the fact that the training process of Generative

Adversarial Networks is intrinsically predicated upon the idea of finding the saddle

point of a loss function (solving a minimax game), so classic first order methods of

optimization (such as gradient descent) and even methods of quadratic optimization

such as quasi-Newton methods do not provide sufficient conditions for convergence.

Therefore, the training processes of GANs can be time consuming and the convergence

is difficult to be achieved (involves a lot of random search in the hyperparameter space).

Another emerging issue is that the product of annotating raw packet captures results in

very sparse vectors, so the choice of specific neural network architecture is really

important. The most common use of convolutional neural networks is not sufficient for

dealing with the sparsity. Probably the employment of Recurrent neural network

architectural schemes would be more sufficient and more able to deal with the nature

of the particular dataset.

5. Dataset Annotation

The main reason for producing the generator, other than feeding the networks created

by the project’s consortium for demonstration purposes, was the need for properly

annotated datasets that would facilitate the training of deep learning models, used for

tracing the launching of attacks.

Our intuition was to treat network traffic as time series, so we proceeded to create time

series of time windows (intervals), where the number of current half-opened

connections at a particular server are active.

A bot network was created in lab environment. Every Virtual Machine (VM) simulated

a node in the IoT network. Scapy was used to create a script that runs on every VM and

creates TCP connections with the targeted node (simulates a possible server under

attack). Scapy was also used to create a script that manifests a SYN TCP attack towards

the server. The script initiates multiple TCP connections from multiple ports of the

attacker with a particular port of the destination. The connections are never fully

established. The whole communication is captured in pcap files using Wireshark which

is a tool for network traffic monitoring. Even though, the communication in the context

of the network, is non-malicious, for the most part, the attack is being launched at

specific instances of the duration of the experiment. The pcap files are annotated with

the methodology described in the previous section.

30

The final goal is transforming the key metrics that are hidden in the information

contained in pcap files into useful datasets. The key metric that we are going to use is

the amount of half opened connections during every time window with fixed time in all

scenarios. Every traffic scenario is then translated to a specific dataset.

Pcap files were transformed into datasets after being processed by two sequential

operation that are being described below.

By implementing the script list_of_annotation_creation.py we dissected each pcap file

into smaller fixed traffic windows. Now smaller pcaps are easily handled by our next

script half_opened_cons.py which is responsible for the finalization of the datasets by

applying the appropriate filters in every dissected pcap and extracting only the packets

that correspond to half-opened connections. Then we measure the amount of half

opened connections of every traffic window and appending this amount to a list which

is finally representing a dataset.

list_of_annotation_creation.py:

This script gets a pcap file from the said folder and dissects it into multiple smaller pcaps. The

dissection is implemented

based on predefined time intervals

necessary imports of modules, packages

import argparse

import os

import sys

#import pandas as pd

import matplotlib

import matplotlib.pyplot as plt

from scapy.all import *

from scapy.layers.l2 import Ether

from scapy.layers.inet import IP, TCP

from scapy.all import rdpcap

from tkinter import Tcl

process_pcap function gets a pcap and returns the number of packets contained

def process_pcap(file_name):

 #print('Opening {}...'.format(file_name))

 count = 0

 for (pkt_data, pkt_metadata,) in RawPcapReader(file_name):

 count += 1

 #print("File with filename: "+ file_name + "has " + str(count) + " packets")

 HoConnections.append(int(count))

 ho_connections.append({'Time_window': k, 'HalfOpen_Connections': count})

 #print('{} contains {} packets, so there were {} attempts to attack'.format(file_name, count,

int(count/2)))

mid_char returns the selected items in a list

def mid_char(x):

 return (x[16:21])

31

#creation of multiple pcap files(per time window) in the same folder as the “realtimesenario.pcap”

filename = "realtimesenario.pcap"

cmd = 'editcap -i 5 "{}" "{}"'.format(filename,filename)

os.system(cmd)

#parse the pcap files created and append in a list (file_list)

i = 0

file_list = []

startdir='.'

for root, dirs,files in os.walk(startdir):

 for file in files:

 if file.endswith('.pcap'):

 i = i+1

 #os.rename(file, "annot" + str(i) + ".pcap")

 file_list.append(file)

#discard the last item of the list (realtimesenario.pcap) the original pcap file

file_list = file_list[0:-1]

#sort the list of pcaps by order of time window manifested

file_list=sorted(file_list , key= mid_char)

#number of items per list for debugging purposes

p=0

for item in file_list:

 p = p + 1

print(p)

#printing the list of pcaps for validation

print(file_list)

k = 0

windows = []

final_list = []

ho_connections = []

HoConnections = []

Windows = []

#creating the final list of annotation HoConnections

for file_name in file_list:

 print(file_name + " :")

 process_pcap(file_name)

 print(HoConnections[k])

 k = k + 1

print(HoConnections)

#plt.plot(Windows,HoConnections, label = 'attack')

#plt.xlabel('Time window enum')

#plt.ylabel('Half opened connections')

#plt.legend()

#plt.show()

half_opened_cons.py:

 import argparse

import os

import sys

#import pandas as pd

import matplotlib

32

import matplotlib.pyplot as plt

from scapy.all import *

from scapy.layers.l2 import Ether

from scapy.layers.inet import IP, TCP

def process_pcap(file_name):

 print('Opening {}...'.format(file_name))

 count = 0

 for (pkt_data, pkt_metadata,) in RawPcapReader(file_name):

 count += 1

 HoConnections.append(int(count/2))

 ho_connections.append({'Time_window': k, 'HalfOpen_Connections': count})

 print('{} contains {} packets, so there were {} attempts to attack'.format(file_name, count,

int(count/2)))

if __name__ == '__main__':

 """

 parser = argparse.ArgumentParser(description='PCAP reader')

 parser.add_argument('--pcap', metavar='<pcap file name>',

 help='pcap file to parse', required=True)

 args = parser.parse_args()

 file_name = args.pcap

 if not os.path.isfile(file_name):

 print('"{}" does not exist'.format(file_name), file=sys.stderr)

 sys.exit(-1)

 """

 k = 0

 files = []

 ho_connections = []

 HoConnections = []

 Windows = []

 for i in range(25):

 files.append("anot" + str(i) + ".pcapng")

 Windows.append(i)

 for file_name in files:

 process_pcap(file_name)

 k+=1

 plt.plot(Windows,HoConnections, label = 'attack')

 plt.xlabel('Time window enum')

 plt.ylabel('Half opened connections')

 plt.legend()

 plt.show()

 #df = pd.DataFrame(data=ho_connections)

 #df.plot(x='Time window enum', y='Half opened connections', color='r')

 #plt.show()

 #plt.close()

 sys.exit(0)

33

6.Traffic Capturing and Dataset Preparation

Once we have set all the configurations described above, we began generating a bunch

of different traffic scenarios. The diversity of every scenario is defined by the duration

of the benign traffic window, the duration of the malicious traffic window, as well as

the number of benign and malicious traffic windows in a single scenario.

By using Wireshark, which is a tool that we used to capture real time traffic, we saved

every scenario’s traffic into pcap files. Pcap files contain all the information that we

need in order to analyze the kind of communications that have been established in every

single scenario.

A picture of a traffic window containing only benign traffic is presented on figure 10:

Figure 10:Wireshark packet captures

This is a glimpse of healthy communication captured by Wireshark. VM-1 opens full

TCP connections with VM-s (server), it sends a message and the connection is being

closed (benign traffic script running on the VM-1).

On the contrary, a picture of a traffic window containing only malicious (SYN TCP

Flood) traffic looks like this:

34

Figure 11:Wireshark packet captures

The attack is being launched by the previously normal client. VM-2 is opening multiple

connections that it leaves half opened (not responding with ACK) to port 1028 of VM-s

SYN TCP Flood attack actually floods all the potential channels that the server could

use to establish connections with other client-nodes. During the launch of the attack in

the described scenario the number of half opened connections was so high that the

server node couldn’t establish new connections. This fact has been also captured by

Wireshark while benign nodes tried to connect with the server but their syn messages

were retransmitted due to the lack of available resources from the side of the server.

Figure 12:Attack scenario depicted in Wireshark

35

The graph below represents the amount of half opened connections during the period

when the attack was launched

Figure 13:graph of half-opened connections

7.Deep learning for SYN TCP flood attack detection

The immense capabilities of neural networks to extract complex patterns from given

data intuitively seems a great tool to use for detecting malicious activities in the context

of an IoT network. LSTMs are renowned for applications of handling multivariate time

series and in general cases where the data intrinsically show some temporal

dependencies. On the other hand, Random Neural Networks seem to have a broader

spectrum of possible applications.

Deep learning has been used before for detection of SYN flood attacks in where a

Random Neural Network was implemented as a classifier to distinguish between non-

malicious network packet captures and captures constituting SYN attacks.

The LSTM neural network architectural scheme has been previously implemented

for detecting DoS attacks in infrastructure in [11]. The previous implementation was

with the assistance of Bayes and not the LSTM formulation on its own detecting that

the port is being under attack.

The intersection between deep learning and detection of Distributed Denial of

Service (DDoS) attacks was investigated in [12] and showcased the efficiency of deep

neural networks in modelling the patterns of attackers attempting to perform DoS

attacks.

Deep learning has been employed in many cases as an underlying level of IoT

security and performing adequately in terms of the models’ ability to extract the patterns

of attack sequences. In particular, such an overview has been provided by [13].

36

Deep learning and deep neural networks have been implemented not only for attack

detection, but in the whole spectrum of assisting the task of securing IoT systems. [8]

presents an implementation for secure routing using Random Neural Network

architectures for decision making on the SDN Controller.

8.Neural Network Structures

8.1 Random Neural Network

The Random Neuron is a unit that receives two types of input signals, the excitatory

and the inhibitory and is also characterized by its rate that is always positive. If we

denote as x the excitatory input, as y the inhibitory input and as r the rate, the output of

the Random Neuron is 𝑧 = min {
𝑥

𝑟+𝑦
|1} 𝑟 .

Figure 14:random neuron model[15]

In the feedforward formulation of the Random Neural Network there are no circuits

in the connection graph. There are three distinct categories of layers, the input layer,

the hidden layers and the output layer. Every unit is connected to other units that belong

to the hierarchically consecutive layer (from the input layer to the output layer passing

through the hidden layers). This formulation results to a non-linear system of equations

that can be formally solved [14].

Figure 15:random neural network feedforward formulation[15]

Let I be the number of neurons in the input layer, H is the number of neurons in the

hidden layer (assuming there is only one hidden layer in the topology) and O is the

number of neurons in the output layer. We provide index for every neuron in the

feedforward formulation with the following methodology. We index the neurons of the

input layer from 1 to I, the hidden neurons from I+1 to I+H and the output neurons from

37

I+H+1 to I+H+O = N. Assuming that the input neurons are the only ones receiving

signals from the outside we can compute the rates of activity for all the neurons:

• ρₖ =
𝜆ₖ⁺

𝑟ₖ+𝜆ₖ⁻
 0 ≤ κ ≤ I

• ρₕ =
∑ 𝜌ₖ𝑤ₖₕ⁺𝐼

𝑘=1

𝑟ₕ+∑ 𝜌ₖ𝑤ₖₕ⁻𝐼
𝑘=1

 I+1≤h≤H+I

• ρₒ =
∑ ρₕwₕₒ⁺𝐼+𝐻

ℎ=𝐼+1

𝑟ₒ+ ∑ 𝜌ₕ𝑤ₕₒ⁻𝐼+𝐻
ℎ=𝐼+1

 I+H+1≤o≤N

As it has been shown in [15], the original gradient descent iterative optimization scheme

can be tweaked and implemented for training feed forward neural network architectures

both as regressor and as classifiers.

8.2 Long-Short Term Memory

Long Short-Term Memory (LSTM) networks, as a special structure of Recurrent

Neural Networks, have proven to be stable and powerful for modeling long-range

dependencies in general-purpose sequence modeling. In LSTMs, each node in the

hidden layer is replaced by a memory cell, instead of a single neuron . The structure of

a single memory cell is depicted in the figure below.

Figure 16:LSTM cell[17]

The memory cell contains the following components: the forget gate, the input node,

the input gate, and the output gate. Each component applies a non-linear relation on the

inner product between the input vectors and respective weights (altered iteratively

through a training process). Some of the components have the sigmoid function, σ(∙)

and others the tanh(∙)

As discussed in [16] Recurrent neural networks and LSTMs in particular, have

shown great success in predicting time series online. Especially in [17] LSTMs have

been used to tested, particularly on predicting traffic flows.

The goal of the forget gate is to decide what information should be discarded out of

the memory cell [18]. The output, denoted as f(n) ranges between 0 and 1, according to

the sigmoid activation function. The forget gate learns whether a previous or future

38

vector state is necessary for the estimation of the current value state. The input node

performs the same operation with that of a hidden neuron of a typical recurrent

regression model. The goal of this node is to estimate the way in which each latent state

variable contributes to the final model.

 As far as the input gate is concerned, its role is to regulate whether the respective

hidden state is sufficiently important. It has the sigmoid function, therefore its response

ranges between 0 and 1. This gate addresses problems related to the vanishing of the

gradient slope of a tanh(∙) operator. Finally, the output gate regulates whether the

response of the current memory cell is sufficiently significant to contribute to the next

cell. Therefore, this gate actually models the long-range dependency together with the

forget gate.

The recurrent nature of the LSTM presents many intricacies in terms of the iterative

training process for adjusting the weights of the multiple gates. The adaptation of the

backpropagation algorithm for accommodating the LSTM training is called

Backpropagation Through Time [19]. The backpropagation variation for training

recurrent neural network architectures presents the problem of vanishing or exploding

gradients. So the number of time steps that the gradient is propagated is another

hyperparameter of training that needs to be monitored. This adaptation is called

truncated backpropagation through time and is thoroughly explained in [20].

8.3 Overall System Architecture

The basic premise of the methodology for detection is described below.

The communication in the context of a network is captured in a pcap file using

Wireshark [21]. The communication contains both non malicious traffic and SYN flood

attacks targeted towards the port of a specific node.

The pcap file is used for creating an annotated dataset and being made into a

univariate time series. Specifically, the pcap is being dissected into time windows of 5

seconds. During the period of 5 seconds, special Wireshark filters were used to count

the number of half opened TCP connections established with a specific port of a

particular IP during the time frame. In that way the final dataset is a univariate list of

the number of unestablished TCP connections.

The basic idea is to use a deep neural network as a regressor and train it with a part

of the time series that corresponds to normal non malicious communication.

Then the a priori trained neural network regressor attempts to predict the number of

half-open TCP connections for the consecutive time window. If this number deviates

from the actual value of the metric by a predefined threshold then the inspected node is

considered to be under attack.

Figure 17: model methodology

8.4 LSTM implementation Hyperparameters

39

The LSTM neural network architecture is comprised by one input layer, one output

layer and two hidden layers with 50 neurons each (dense formulation). The Loss

function used for adapting the weights is the Mean Square Error (MSE) which is the

most typical loss function used for training in regression problems and the optimization

scheme is the ADAM optimizer. The Backpropagation Through Time (BPTT) was

stopped at three consecutive steps going back so the truncated version of the

Backpropagation scheme was implemented for avoiding vanishing gradients.

8.5 Random Neural Network implementation Hyperparameters

The Random Neural Network was in feedforward formulation so no recursive

element. Other than the input and output layers, there was one hidden layer with 50

neurons. The nature of the Gelenbe Networks entails no choice for the activation

function. The loss function was again the Mean Square Error function and for the

iterative optimization scheme, the adaptation of the backpropagation scheme as

described in [15] was implemented from scratch (without using any high-level API

implementation)

8.6 Experimental validation

We have conducted experiments to: 1) validate the efficacy of the deep learning

predictive model idea for SYN TCP attack detection and 2) compare the two

architectures of deep neural networks in terms of accuracy.

We train each of the formulations of deep neural networks (always as a regressor)

with the same dataset that has been derived from the annotation process of a pcap file

that contains only non-malicious communication.

Then we test the accuracy of the models by using the previously described

methodology on a dataset that combines non malicious and malicious communication.

We present the results

Neural Network

architecture
Accuracy False Positives

Gelenbe-Network

80.7%

19.3%

LSTM 62.7% 37.3%

Here we should note that the formulation of the model architecture intuitively excludes

the presence of False negatives and that is also prevalent in the results presented.

8.7 Conclusions extracted

The basic conclusion that can be formulated from the experimentation is the fact that

the Random Neural Network architecture seems more adamant in terms of capturing

the patterns of the malicious traffic and therefore is more efficient to detect

abnormalities modelled as outliers. The distribution of what constitutes normal traffic

and especially the boundaries between the various modes of the distribution are better

described by the Random Neural Network formulation in comparison to the LSTM. In

addition the Random Neural Network architecture is in feedforward formulation, so our

intuition entails that a possible implementation using a recurrent version of the Random

40

Neural Network architecture would perform even better because it would be more

suitable in terms of capturing the temporal dependencies of the given time series, which

gives even more room and possibilities for improving the efficacy of detecting the

attacks of the specific category.

9.Ideas for deployment

The implementation of the detecting algorithms was not an attempt to only find out the

accuracy of certain concepts but to, additionally, create ready-to-use software

components for deployment in actual real-life IoT networks. So we proceeded in

creating two scripts that can be used as black boxes and be integrated as such. Every

script has two specific requirements for integration:

- Running on a Debian-based machine

- TCP protocol being used for communication

Each script uses the respective apriori trained model and every predefined time interval

captures the current number of half opened TCP connections and feeds the metric to

the model. The regressor outputs the prediction and it is compared to the predefined

threshold and the final decision-making is being made.

The possible deployments in the context of an IoT network, according to the reference

architecture are plenty.

The deep learning SYN TCP flood attack detector could be installed in the controller

of the network or any type of forwarder in the Domain of the controller as well as

anywhere in the Fog or Edge of the network.

Additionally, since it is a lightweight implementation that can run on an IoT hub that

controls devices in the lower layer of the Architecture (the network of sensors and

actuators.

With minor adjustments and using possible packages included in the TensorFlow Lite

version of TensorFlow the detector could even be installed on an IoT device and secure

the said equipment from possible malevolent activity.

10.Connection of the RNN-based attack detector with the SerIoT

Routing Engine

The basic premise of the idea of attack (DDoS in our case) detection on the level of the

sensor (proximity) network of the IoT (Lightweight attack detection) relies on the

assumption that the component that investigates a possible attack scenario can report

the security status to the Management Domain of the Network, where more complex

and profound intelligence can take action.

In that case, the Random Neural Network-Based detector has to be able to connect with

SerIoT Routing Engine and report the emergence of a DDoS attack, if and when that

takes place.

The SerIoT Routing Engine operates using a REST API for communication with the

end devices.

41

Therefore, the python script of the detector needs to be able to access the REST API of

the SerIoT Routing Engine and request the block of the particular TCP connection with

the node under attack. This is enabled by the Python Requests Module.

In detail, we need to import the Requests module on the script after we pip install it on

the Python environment.

We use the mitigation request (post block request) of the non-standalone (ONOS)

implementation and documentation of the SerIoT Routing Engine.

The credentials given to the request object are read from a separate file for security

purposes.

We should note, at that point, that the script should be made possible to be run only

with sudo privileges and, therefore, accessing the separate file is going to be made

possible only with the appropriate sudo privileges.

What follows is a paradigm of the implementation of the reporting of the detector to

the SerIoT Routing Engine.

We assume that the credentials file is named ‘cred’.

 This is a simplistic example of the interconnection. We should note two things. The

first one is that the 234.18.100.25 is a generic IP and this should be replaced by the IP

of the node on which the script is running and there should be some consideration about

a possible exemption.

42

43

44

45

46

47

48

49

11.Conclusions

Network security has always been in the forefront of networking-related research. The

focus has previously been on the security aspects of traditional TCP/IP networks, but

the rise of IoT (Internet of Things) networks results in the emerging of a new landscape

in terms of security. The category of attacks, most typical in traditional TCP/IP

networks, is the one related to the interception of valuable information. On the other

hand, in IoT networks, the attacks that are most common and least explored, are those

labelled as Denial of Service (DoS) attacks. In that particular type of attacks, the

attacker attempts to inhibit the target’s ability to function seamlessly. In this paper, we

exploit the immense modelling capabilities of two different types of deep neural

networks: The Long-Short-Term-Memory (LSTM) and the Random Neural Network,

for detecting a common type of DoS attack, the SYN flood attack. The two neural

network architectures represent two different formulations. The LSTM is a recurrent

formulation, and the Random Neural Network is implemented as feed-forward (even

though the Random Neural Network architectures can also be recurrent). By comparing

those two heuristic methods in their ability to detect malicious traffic flows in a large

scale IoT network, we can say that both methods had significant level of accuracy. So

both models could be used for that purpose. However the Random Neural Network

model has shown even better results compared to the LSTM. In SerIoT we will make

use of the Random Neural Network model which is a component that has been

implemented for the scope of this project. Our contribution to the field of attack

detection in IoT networks could be used as a helpful tool on the hands of other research

and Innovation projects or other researchers working on the IoT security field to expand

our initial proposition and introduce new and more complex detecting models.

References

50

1. Brun, O. & Yin, Yonghua & Kadioglu, Yasin & Gelenbe, Erol. (2018). Deep

Learning with Dense Random Neural Networks for Detecting Attacks against IoT-

connected Home Environments. 10.13140/RG.2.2.35349.01768.

2. S. D. Dalrymple. Comparison of zigbee replay attacks using a universal software

radio peripheral and usb radio. Master’s thesis, AFIT, USAF, 2014.

3. A. Dubey, V. Jain, and A. Kumar. A survey in energy drain attacks and their

countermeasures in wireless sensor networks. Int. J. Eng. Res. Technol., 3(2), 2014

4. F. Francois, O. H. Abdelrahman, and E. Gelenbe. Impact of signaling storms on

energy consumption and latency of lte user equipment. In 2015 IEEE 7th Int. Symp.

on Cyberspace Safety and Security, pp 1248–1255, Aug 2015.

5. E. Gelenbe and Y. Murat Kadioglu. Energy lifetime of wireless nodes with and

without energy harvesting under network attacks. In IEEE Int. Conf. on

Communications (ICC), Kansas City, MO, USA, 20-24 May 2018

6. E. Y. Vasserman and N. Hopper. Vampire attacks: Draining life from wireless ad

hoc sensor networks. IEEE Trans. Mobile Computing, 12(2):318–332, Feb 2013.

7. M. Pirretti, S. Zhu, N. Vijaykrishnan, P. McDaniel, M. Kandemir, and R. Brooks.

The sleep deprivation attack in sensor networks: Analysis and methods of defense.

Int. Journal of Distributed Sensor Networks, 2(3):267–287, 2006

8. F. Stajano and R. Anderson. The resurrecting duckling: Security issues for ad-hoc

wireless networks. 7th Int. Workshop Security Protocols, Springer-Verlag, 1999

9. R. Falk and H-J. Hof. Fighting insomnia: A secure wake-up scheme for wireless

sensor networks. In 3rd International Conference on Emerging Security

Information, Systems and Technologies, 2009. IEEE SECURWARE’09., pages

191–196, 2009.

10. https://scapy.net/

11. Y. Li and Y. Lu, “LSTM-BA: DDoS Detection Approach Combining LSTM

and Bayes,” 2019 Seventh International Conference on Advanced Cloud

and Big Data (CBD), Suzhou, China, 2019, pp. 180-185.

doi: 10.1109/CBD.2019.00041

12. X. Yuan, C. Li and X. Li, “DeepDefense: Identifying DDoS Attack via Deep

Learning,” 2017 IEEE International Conference on Smart Computing

(SMARTCOMP), Hong Kong, 2017, pp. 1-8.

doi: 10.1109/SMARTCOMP.2017.7946998

13. T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer and K. Funaya, “Robust Online

Time Series Prediction with Recurrent Neural Networks,” 2016 IEEE

International Conference on Data Science and Advanced Analytics

(DSAA), Montreal, QC, 2016, pp. 816-825.

14. Basterrech, Sebastián, and Gerardo Rubino. “RANDOM NEURAL

NETWORK MODEL FOR SUPERVISED LEARNING PROBLEMS :

TUTORIAL.” Neural Network World 25.5 (2015): 457–499. Crossref.

Web.

15. E. Gelenbe. Learning in the recurrent random neural network. Neural

Computation, 5(1), 154–164, 1993

16. T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer and K. Funaya, “Robust Online

Time Series Prediction with Recurrent Neural Networks,” 2016 IEEE

International Conference on Data Science and Advanced Analytics (DSAA),

Montreal, QC, 2016, pp. 816-825

17. Y. Tian and L. Pan, “Predicting Short-Term Traffic Flow by Long Short-Term

Memory Recurrent Neural Network,” 2015 IEEE International Conference on

Smart City/SocialCom/SustainCom (SmartCity), Chengdu, 2015, pp. 153-158.

18. K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink and J.

Schmidhuber, “LSTM: A Search Space Odyssey,” in IEEE Transactions on

https://scapy.net/

51

Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2222-2232, Oct.

2017.

doi: 10.1109/TNNLS.2016.2582924.

19. P. J. Werbos, “Backpropagation through time: what it does and how to do

it,” in Proceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.

doi: 10.1109/5.

20. H. Tang and J. Glass, “On Training Recurrent Networks with Truncated

Backpropagation Through time in Speech Recognition,” 2018 IEEE Spoken

Language Technology Workshop (SLT), Athens, Greece, 2018, pp. 48-55.

doi: 10.1109/SLT.2018.8639517

21. S. Kakuru, “Behavior based network traffic analysis tool,” 2011 IEEE 3rd

International Conference on Communication Software and Networks,

Xi’an, 2011, pp. 649-652

22. Z. Zhang, “Improved Adam Optimizer for Deep Neural Networks,” 2018

IEEE/ACM 26th International Symposium on Quality of Service (IWQoS),

Banff, AB, Canada, 2018, pp. 1-2.

doi: 10.1109/IWQoS.2018.8624183

23. https://pathmind.com/wiki/generative-adversarial-network-gan

24. CERT Coordination Center, Denial of Service attacks, Available from

<http://www.cert.org/tech_tips/denial_of_service.html>.

25. Computer Security Institute and Federal Bureau of Investigation, CSI/FBI

Computer crime and security survey 2001, CSI, March 2001, Available from

<http://www.gocsi.com>

26. LD. Stein, J.N. Stewart, The World Wide WebSecurity FAQ, version 3.1.2,

February 4, 2002, Available from <http://www.w3.org/Security/Faq>

27. Kenney, Malachi, Ping of Death, January 1997, Available from

<http://www.insecure.org/sploits/ping-o-death.html>.

28. Finger bomb recursive request, Available from <http://

xforce.iss.net/static/47.php>.

29. D. Davidowicz, Domain Name System (DNS) Security, 1999, Available from

<http://compsec101.antibozo.net/ papers/dnssec/dnssec.html>.

30. P. Ferguson, D. Senie, Network ingress filtering: defeating Denial of Service

attacks which employ IP source address spoofing, in: RFC 2827, 2001

31. C. Perkins, IP mobility support for IPv4, IETF RFC 3344, 2002.

32. Global Incident analysis Center––Special Notice––Egress filtering, Available from

<http://www.sans.org/y2k/egress. htm>.

33. K. Park, H. Lee, On the effectiveness of route-based packet filtering for

Distributed DoS attack prevention in powerlaw Internets, in: Proceedings of the

ACM SIGCOMM01 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, ACM Press, New York, 2001, pp.

15–26.

34. . Paxson, End-to-end Internet packet dynamics, IEEE/ ACM Transactions on

Networking 7 (3) (1999) 277–292.

35. T. Peng, C. Leckie, K. Ramamohanarao, Protection from Distributed Denial of

Service attack using history-based IP filtering, in: Proceedings of IEEE

International Conference on Communications (ICC 2003), Anchorage, AL, USA,

2003.

36. A. Keromytis, V. Misra, D. Rubenstein, SoS: secure overlay services, in:

Proceedings of the ACM SIGCOMM02 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, ACM

Press, New York, 2002, pp. 61–72

https://pathmind.com/wiki/generative-adversarial-network-gan
http://www.cert.org/tech_tips/denial_of_service.html
http://www.gocsi.com/
http://www.w3.org/Security/Faq
http://www.insecure.org/sploits/ping-o-death.html
http://compsec101.antibozo.net/
http://www.sans.org/y2k/egress

52

37. X. Geng, A.B. Whinston, Defeating Distributed Denial of Service attacks, IEEE IT

Professional 2 (4) (2000) 36–42.

38. N. Weiler, Honeypots for Distributed Denial of Service, in: Proceedings of the

Eleventh IEEE International Workshops Enabling Technologies: Infrastructure

for Collaborative Enterprises 2002, Pitsburgh, PA, USA, June 2002, pp. 109–114.

39. RR Talpade, G. Kim, S. Khurana, NOMAD: Trafficbased network monitoring

framework for anomaly detection, in: Proceedings of the Fourth IEEE

Symposium on Computers and Communications, 1998.

40. JBD. Cabrera, L. Lewis, X. Qin, W. Lee, R. K. Prasanth, B. Ravichandran, R.K.

Mehra, Proactive detection of Distributed Denial of Service Attacks using MIB

traffic variables––a feasibility study, in: Proceedings of the 7th IFIP/IEEE

International Symposium on Integrated Network Management, Seattle, WA, May

14–18, 2001.

41. Y. Huang, J.M. Pullen, Countering Denial of Service attacks using congestion

triggered packet sampling and filtering, in: Proceedings of the 10th International

Conference on Computer Communiations and Networks, 2001.

42. W. Lee, S.J. Stolfo, Data mining approaches for intrusion detection, in:

Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, January

1998, pp. 79–93.

43. J. Mirkovic, G. Prier, P. Reiher, Attacking DDoS at the source, in: Proceedings of

ICNP 2002, Paris, France, 2002, pp. 312–321.

44. T.M. Gil, M. Poleto, MULTOPS: a data-structure for bandwidth attack detection,

in: Proceedings of 10th Usenix Security Symposium, Washington, DC, August

13–17, 2001, pp. 23–38.

Annex

Random Neural Network implementation script:

53

54

55

56

57

58

59

60

