
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Flow Predictions with Deep Neural Networks

Diploma Thesis

Ioannis Baklagis

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2021

ii

Acknowledgments

I would first like to thank my supervisor, professor Kyriakos C. Giannakoglou. I was
honored to be given the opportunity to be a member of the PCOpt/NTUA team, as
a research assistant, for almost 3 years. His figure as a scientist, but especially as a
teacher, inspired me all the way throughout my studies. I consider myself fortunate
to have been working under his supervision in the topics of Computational Fluid
Dynamics and Neural Networks. His problem solving experience and his scientific
approach in challenging topics altered my engineering insight.

Secondly, I am wholeheartedly thankful for the support that I received from the
members of PCOpt/NTUA team. Despite their busy schedule, they were always
available to share their knowledge and eager to assist me. I would like to express my
sincere gratitude to Dr. Dimitrios Kapsoulis, who introduced me and inspired me in
the topic of Neural Networks. I am thankful to Dr. Varvara Asouti for her support
and to Marina Kontou for the excellent cooperation during the joined publications.

Thirdly, I would like to thank my parents for always being there, believing in me
and supporting me with their love. I am thankful to my friends for accompanying
me along the journey creating glorious memories and unforgettable experiences. I
would also like to thank A. for her support.

In loving memory of my grandfather, Stavros, my inspiration for becoming a me-
chanical engineer.

iii

iv

National Technical University of Athens
School of Mechanical Engineering
Fluids Department
Parallel CFD & Optimization Unit

Flow Predictions with Deep Neural Networks

Diploma Thesis

Ioannis Baklagis

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2021

Abstract

Artificial Intelligence (AI) has developed rapidly in recent years. It has penetrated
deeply into the daily life of the average human, as well as the industry and academia.
Deep Neural Networks (DNNs), which are part of the field of AI, are interconnected
neural networks that have the ability to make predictions by presenting them with
the corresponding input. Inhere, two types of DNNs are utilized, the Long Short-
Termo Memory (LSTM) networks and the λ-DNN.

Firstly, a quasi-1D flow in a human artery is modelled and the 1DAS software is
created, which solves the blood flow numerically. The initial artery shape and the
wall thickness longitudinal distribution vary, while the blood inflow is time-varied
(pulsatile heart action). The software generates time-varying longitudinal distribu-
tions of velocity, cross-sectional area and, pressure, creating a training dataset for
the network. The LSTM network is, then, trained to predict the following velocity
distribution by presenting it with the preceding ones of the same quantity. Its archi-
tecture and input are, later, optimized through a population-based algorithm and
a statistical method, respectively. Two benchmark cases (simple periodic function
and heat conduction equation) demonstrate the capabilities of the LSTM network,
as well.

Later in this diploma thesis, the λ-DNN is utilized for predicting aero/hydrodynamic
flows and temperature distributions. It is a multi-branch architecture, with its input
consisting of nodal coordinates and case-related data. Firstly, the network is trained
to predict the pressure field around an isolated airfoil. Secondly, the same network is
trained to predict the pressure distribution on the surface of a Francis runner. Lastly,
the network is implemented in a multi-disciplinary problem, namely a Conjugate
Heat Transfer (CHT) one. The λ-DNN is trained to replicate the solver of the heat

v

conduction equation (one discipline) and predicts the temperature distribution on
the contour of an internally cooled blade. Its capabilities are evaluated by a short
presentation of an optimization that utilizes its predictions.

vi

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Πρόβλεψη Ροών με Βαθιά Νευρωνικά Δίκτυα

Διπλωματική εργασία

Ιωάννης Μπακλαγής

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2021

Η Τεχνητή Νοημοσύνη (ΤΝ) έχει αναπτυχθεί ραγδαία τα τελευταία χρόνια και έχει

εισχωρήσει βαθύτατα στην καθημερινή ζωή του μέσου ανθρώπου, καθώς και στη βιο-

μηχανία και τον ακαδημαϊκό χώρο. Τα Βαθιά Νευρωνικά Δίκτυα (ΒΝΔ), που ανήκουν

στο πεδίο της ΤΝ, είναι διασυνδεδεμένα δίκτυα νευρώνων που έχουν τη δυνατότητα να

κάνουν προβλέψεις τροφοδοτούμενα με την αντίστοιχη είσοδο. Στη διπλωματική αυτή

εργασία χρησιμοποιούνται δύο είδη δικτύων, το Long Short-Term Memory (LSTM)
δίκτυο και το λ-DNN.

Αρχικά, μοντελοποιείται η ψευδο-μονοδιάστατη ροή αίματος σε μοντέλο ανθρώπινης

αρτηρίας και δημιουργείται το λογισμικό 1DAS, το οποίο επιλύει αριθμητικά τη ροή.
Το αρχικό (απλοποιημένο) σχήμα της αρτηρίας και η διαμήκης κατανομή πάχους του

τοιχώματος μεταβάλλονται χωρικά, ενώ η εισροή αίματος μεταβάλλεται χρονικά (παλμι-

κή καρδιακή δράση). Το λογισμικό δημιουργεί χωρικές κατανομές ταχύτητας, διατομής

και πίεσης που μεταβάλλονται στο χρόνο, δημιουργώντας ένα σύνολο δεδομένων εκπα-

ίδευσης για το δίκτυο. Το LSTM δίκτυο εκπαιδεύεται για να προβλέψει την κατανομή
ταχύτητας σε κάθε επόμενη χρονική στιγμή τροφοδοτώντας το με τις προηγούμενες.

Η αρχιτεκτονική και οι είσοδοι του δικτύου βελτιστοποιούνται μέσω ενός αλγόριθμου

ελαχιστοποίησης που χειρίζεται πληθυσμούς υποψήφιων λύσεων και μιας στατιστικής

μεθόδου, αντίστοιχα. Δύο εφαρμογές (απλή περιοδική συνάρτηση και εξίσωση αγωγής

θερμότητας) καταδεικνύουν επίσης τις δυνατότητες του δικτύου LSTM.

Στην επόμενη φάση της εργασίας, το λ-DNN χρησιμοποιείται για την πρόβλεψη αερο-
/υδροδυναμικών ροών και κατανομών θερμοκρασίας. Η αρχιτεκτονική του δικτύου είναι

μία αρχιτεκτονική πολλαπλών κλάδων, με την είσοδό του να αποτελείται από κομβικές

συντεταγμένες και δεδομένα που εξαρτώνται από την εκάστοτε εφαρμογή. Αρχικά, το

δίκτυο εκπαιδεύεται να προβλέπει το πεδίο πίεσης γύρω από μία αεροτομή. ΄Επειτα,

το ίδιο δίκτυο εκπαιδεύεται να προβλέπει την κατανομή πίεσης στην επιφάνεια ενός

δρομέα ενός υδροστροβίλου τύπου Francis. Τέλος, το δίκτυο χρησιμοποιείται σε ένα

vii

πολυπεδιακό πρόβλημα, και, πιο συγκεκριμένα, το πρόβλημα Συζευγμένης Μεταφοράς

Θερμότητας (ΣΜΘ). Το λ-DNN εκπαιδεύεται να αντικαταστήσει τον επιλύτη της ε-
ξίσωσης αγωγιμότητας θερμότητας (ένα πεδίο του πολυπεδιακού προβλήματος) και να

προβλέπει την κατανομή της θερμοκρασίας στο περίγραμμα ενός εσωτερικά ψυχόμε-

νου πτερυγίου. Οι δυνατότητές του αξιολογούνται με μια σύντομη παρουσίαση μιας

βελτιστοποίησης που χρησιμοποιεί τις προβλέψεις του.

viii

Nomenclature

NTUA National Technical University of Athens

PCopt Parallel CFD & Optimization unit

AI Artificial Intelligence

ML Machine Learning

ANN Artificial Neural Network

DNN Deep Neural Network

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

GAN Generative Adversarial Network

LSTM Long Short-Term Memory

RBF Radial Basis Function

MAEA Metamodel Assisted Evolutionary Algorithm

MAE Mean Absolute Error

MAPE Mean Percentage Absolute Error

RNN Recurrent Neural Network

A Cross-Sectional Area

u Velocity

p Pressure

ix

A0 Initial Cross-Section Area of the Artery

Q̇inlet Blood Inflow of the Artery

WK Windkessel Model

CP Control Point

Rart Artery Radius

Th Time Period of Heart Rate

ρb Density of Blood

Pext External Pressure around the Artery Wall

E Young Modulus of Artery Wall

σ Poisson Ratio of Artery

h Thickness of Artery Wall

pc Initial pressure of Capacitor (WK)

Cs Capacitance (WK)

R1 Resistance R1 (WK)

R2 Resistance R2 (WK)

Lart Length of the Artery

1DAS 1-D Arterial Solver

T Temperature of Plate

Lp Width of Plate

Tin Internal Temperature

Tout External Temperature

x

hin Convective Heat Transfer Coefficient - Internal

hout Convective Heat Transfer Coefficient - External

k Coefficient of Thermal Conductivity of Plate

Cpl Thermal Capacity of Plate

ρ Density of plate

nsteps Number of Time Instants

xi

xii

Contents

Contents i

1 Artificial Intelligence 1

1.1 Artificial Intelligence and Machine Learning 1

1.2 Artificial Intelligence in CFD and Optimization 2

1.3 Thesis outline . 4

2 Deep Neural Networks 5

2.1 Artificial Neural Networks . 5

2.2 Neuron Model and Neural Networks 6

2.3 Training . 8

2.4 Architecture . 8

2.5 Hyperparameters . 9

2.6 Cost Function . 9

2.7 Back Propagation and Optimization Algorithm 10

2.8 Learning Rate . 10

2.9 Recurrent Neural Networks . 10

2.10 Long Short-Term Memory Networks 11

2.11 Implementation . 13

3 Quasi-1D Artery Blood Flow 15

3.1 System of Governing Equations . 15

3.2 Formulation as a 2-Equation System 17

3.3 Flux Vector Splitting Scheme . 17

i

3.4 Windkessel Model . 21

3.4.1 Two-Element Model . 21

3.4.2 Three-Element Model . 22

3.4.3 Numerical Solution . 23

3.5 Initial & Boundary Conditions . 24

3.6 The 1DAS Software . 25

3.6.1 Examples of 1DAS runs . 26

3.7 Artery with Rigid Walls . 27

4 LSTM Benchmark Cases 31

4.1 Periodic Function . 31

4.2 Heat Conduction . 33

5 Prediction of 1D Time-Varying Flows in Arteries with LSTM

Networks 39

5.1 Introduction . 39

5.2 Varying Initial Artery Shapes . 39

5.2.1 Initial Cross-Sectional Area 40

5.2.2 Blood Inflow and 1DAS Parameters 41

5.2.3 Training Dataset Creation . 41

5.2.4 LSTM Architecture and Training 44

5.2.5 Results . 47

5.2.6 Rigid Walls . 47

5.3 Realistic Blood Inflow . 49

5.3.1 Digitization and Parameterization 49

5.3.2 Network Training and Results 50

5.4 Varying Artery Wall Thickness . 52

5.4.1 Parameterization and Training Dataset Creation 52

5.4.2 Network Training and Results 54

5.4.3 Alternative Training and Results 55

ii

5.5 Optimization of LSTM Input and Architecture 57

6 Prediction of Scalar Fields with λ-DNNs 63

6.1 Network Architecture . 63

6.2 Applications . 64

6.2.1 Prediction of Flow Around an Isolated Airfoil 64

6.2.2 Prediction of Pressure Distribution in a Francis Turbine Runner 66

6.2.3 Prediction of the Temperature Field in a CHT Problem 69

7 Conclusion 75

7.1 Overview . 75

7.2 Conclusions . 76

7.3 Future Work Proposals . 77

Bibliography 79

iii

iv

Chapter 1

Artificial Intelligence

1.1 Artificial Intelligence and Machine Learning

In recent decades, there has been a rapid development in the field of computer
systems. Computers are able to perform many calculations very fast and on a
large scale. They have dominated human life and often tend to replace jobs/tasks
traditionally done by humans. Today’s youth can not imagine their lives without the
automatic translation (i.e. Google Translate), [1], or personalized recommendation
in video streaming applications. Smartphones are becoming smarter day by day.
Smart watches are capable of notifying their user for irregular cardiac rhythm, [2].
Text-to-speech and speech-to-text features are of the utmost importance to some
people. Cars are revolutionized by computer science with the incorporation of self-
driving, [3]. Each one of these examples highlights the domination of the intelligence
demonstrated by machines, also known as Artificial Intelligence (AI).

Machines are programmed to simulate human intelligence by acting like them and
mimicking their behaviour (cognitive activity). They can learn to recognize complex
patterns in big data, make decisions in challenging problems and, execute tasks.
A great benchmark for validating the current progress and state of AI are games
created for humans (i.e. Chess, Go). The DeepBlue computer, designed by IBM, was
able to beat chess grand master Garry Kasparov at the game in 1997. Alpha Star is
bot that plays the game StarCraft II, [4]. The game is a fast-paced multiplayer real-
time strategy game developed and published by Blizzard Entertainment and it is
consider as one of the hardest and most challenging strategy games. The Alpha Star
program was created by the British artificial intelligence subsidiary of Alphabet Inc.,
called DeepMind. In January 2019, the program managed to win two professional
players, [5], and in October, of the same year, reached the top league, becoming the
first AI to advance in this position, [6].

1

Thus, the applications of AI are endless and can be in many sectors. As industrial
and academic demands have increased, their problems have become more complex.
It is reasonable, for the industry and academia, to turn to AI to assist them in
problem-solving and decision-making, utilizing artificial learning, reasoning, and
perception. In terms of engineering, AI helped to improve tasks or even to overcome
previously unresolved problems. Consider how Computer Aided Engineering (CAE)
is a fundamental tool of mechanical engineering, and it was once just a supplemental
software. Correspondingly, AI penetrates the life of the engineer. Many papers are
published every day that showcase implementations of AI in various engineering
topics, such as CAD, [7], mechanical systems with gears, [8] and, thermal systems,
[9].

Machine Learning (ML), fig. 1.1, is an application of AI that has the ability to
acquire its own knowledge (learn) by presenting it with raw data, [10]. ML models
are capable of learning automatically by extracting patterns from sample data. As
a baby learns to distinguish a dog from a cat by presenting examples from each one,
so a sophisticated algorithm can recognize objects or faces by presenting it with
labelled or not labelled samples. ML can be categorised:

� Supervised Learning: The model is presented with labelled samples, with
input and the corresponding output, which it is trained to predict.

� Non-Supervised Learning: The model is called to map patterns in input
data without presenting it with the output (unlabeled data).

� Reinforcement Learning: The model is trained to make decisions that
either reward it or punish it. Its goal is to maximize the reward by completing
challenging tasks, such as navigating a robot in a room.

Deep Learning (DL) is a method of ML that is based on Artificial Neural Networks
(ANN), [11]. An ANN is a ML model consisting of units, called nodes or neurons,
that is presented with labeled data. It is trained to predict the desired output by
minimizing the error between it and its prediction. Deep Neural Networks (DNNs)
are ANN with many layers of neurons. ANNs and DNNs are further discussed in
Chapter 2.

1.2 Artificial Intelligence in CFD and Optimiza-

tion

DNNs have been widely exploited in the field of Computational Fluid Dynamics
(CFD), [12]. CFD codes are utilized today to solve more computationally expen-
sive problems. Despite the rapid development in GPUs and CPUs, the demand for
computational resources has rocketed. The ability of DNNs models to extract pat-

2

Figure 1.1: Machine Learning and Deep Learning as subfields of Artificial Intelli-
gence and Machine Learning, respectively.

terns in raw data and, map the correlation between their input and output, makes
them the perfect tool for replicating or assisting these expensive codes. In addition
to that, when industries are creating and testing new designs, they produce train-
ing data available for training the ML models. For instance, Convolutional Neural
Networks (CNNs) were utilized for approximating steady velocity fields, [13]. A
symmetrical DNN (normal and transposed convolutional layers, max-pooling layers
and, fully connected layers) was used for reconstructing the flow field structure by
presenting it with the discrete pressure coefficient distribution on the wall surface
of the cascade channel, [14]. In [15], CNNs were used to predict aerodynamics flow
fields. A Generative Adversarial Network (GAN) combined with CNNs, called ffs-
GAN, predicted transonic flow field profiles of parameterized supercritical airfoils,
[16].

Inhere, the DNNs are implemented in various cases for predicting flows. Two differ-
ent types of DNNs are utilized, the LSTM networks and the λ-DNN. The training
patters are generated by CFD software, created either by the author or by the mem-
bers of the PCOpt/NTUA team. The DNNs are used for reconstructing biological or
aero/hydrodynamic flows and, for replicating a discipline, in aero-thermal analysis.

In engineering optimization procedures, in order to reach the optimal design, it is
required to evaluate many designs. In computational mechanics, the evaluation of

3

shapes, to be optimized, claims the run of time-consuming and computationally
expensive simulation codes. Especially, when a stochastic optimization (i.e. Evolu-
tionary Algorithm) is in use, the number of shapes is highly increased. Thus, DNNs
are perfect candidates for replicating these expensive CFD codes and, they are ca-
pable of acting as surrogate models during shape optimization. These DNNs are
often referred as metamodels. In[17] and [18], Gaussian processes and radial basis
function networks (RBF) were used in Metamodel Assisted Evolutionary Algorithms
(MAEAs) as metamodels. [19] proposed a DNN that was utilized in MAEA opti-
mization of an isolated wing, maximizing its lift. Inhere, a MAEA optimization is
presented, shortly, by exploiting the λ-DNN.

1.3 Thesis outline

Following the introduction, the chapters composing this thesis are presented:

� Chapter 2: A gentle introduction is made to how Deep Neural Network work.
The model of the neuron, the building blocks of the neural networks and the
training elements are explained. Recurrent Neural Networks and Long Shot-
Term Memory networks are presented, as well.

� Chapter 3: The mathematical foundation of the quasi-1D arterial blood flows
is presented. The system of equations is numerically solved and the 1DAS
software is created and showcased.

� Chapter 4: Two benchmark cases are introduced for evaluating the LSTM
network capabilities. In the first case, the network predicts a periodic function.
In the second case, the network predicts temperature distributions of a plate.

� Chapter 5: Long Shot-Term Memory neural networks are exploited for pre-
dicting time-varying flows in quasi-1D arteries. In each case, the distributions
of cross-sectional area and wall thickness vary in order to evaluate the perfor-
mance and the capabilities of the network.

� Chapter 6: Another type of network, the λ-DNN, is used for predicting
scalar fields in three cases. In the first two cases, the network is trained to
predict the pressure distribution around an isolated airfoil and on the surface
of a Francis turbine runner. In the third case, network is trained to replicate
the heat conduction equation solver in a multi-disciplinary problem, known as
Conjugate Heat Transfer. The network is trained to predict the temperature
distribution along the contour of an internally cooled turbine blade.

4

Chapter 2

Deep Neural Networks

2.1 Artificial Neural Networks

Artificial Neural Networks are computing systems that mimic the biological neural
networks and how they function. They fall into the field of Artificial Intelligence
and in particular that of Machine Learning. ANNs have been widely used in a
variety of applications, such as speech recognition, [21], computer vision, [20], med-
ical diagnostics, [22], automatic translation, [1], and even in activities traditionally
considered to be exclusively human, such as painting, [23].

Modern computers attempt to mimic the brain in its complexity and non-linearity.
The human brain has the ability to organize its components (neurons), fig. 2.1, so
that it can perform calculations fast, make decisions, and develop its own behaviour
(experience), [24]. This experience allows the human to adapt to its environment,
keeping him alive. So, ANNs, made up of artificial neurons, attempt to mimic the
way the brain performs a specific task.

An ANN is a network of interconnected neurons, whose goal is to solve a computa-
tional problem. ANNs use an interface of simple computational nodes, referred to
as neurons. The network has a tendency to store experience/knowledge and use it
later for decision-making and information-processing. This experience is acquired
through a learning process, called training, by presenting it with the input values
(or signal) and the corresponding output ones (desired target of the ANN). The
connection weights between neurons, namely the synaptic weights, are used to store
this information. Each neuron is capable of receiving an input, processing it, and
producing an output that transmits to other neurons connected to it. Note that
the synaptic weights adjust as training progresses, while the weight increases or
decreases the output strength in a synaptic connection.

5

Figure 2.1: Neuron and myelinated axon. The signal flows from dendrites to
axon terminals. From: Egm4313.s12 at English Wikipedia, CC BY-SA 3.0 https:

// creativecommons. org/ licenses/ by-sa/ 3. 0 , via Wikimedia Commons

2.2 Neuron Model and Neural Networks

The building blocks of the ANNs are the neurons. A neuron is an information
processing unit. It is modelled, fig. 2.2, by a set of 4 elements, [24],

Figure 2.2: Model of neuron k. From [24]

� A set of synaptic weights (w). The input xj that is being fed to neuron k is
multiplied by the synaptic weight wkj.

� A summing junction (uk) that sums the weighted inputs.

� An activation function (φ(·)) that limits the output, increasing or decreasing
the neural connection strength.

6

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

� A bias (bk) of the neuron k.

or in terms of mathematical relations

uk =
m∑
j=1

wkjxj (2.1)

and
yk = φ(uk + bk) (2.2)

A neural network, fig. 2.3, is a directed graph of interconnected neurons/nodes
with synaptic weights and activation functions, [24]. Neurons are organized into
layers, where neurons of each layer connect only (except in special cases) to all
neurons of the immediately preceding and immediately following layers. The layer
that receives input data is the input layer, while the one that produces the network
output/prediction is the output layer. Between them, there can be other layers,
namely the hidden layers. Their name comes from the fact that they do not come
in direct contact with either the input or the output. By adding one or more hidden
layers, the network can extract higher order information from its input, due to the
increase of the synaptic connections. When the network consists of more than 2
hidden layers, then it is called Deep Neural Network (DNN). Finally, a feedforward
neural network is a ANN whose connections between nodes do not form a circle
(unlike Recurrent Neural Networks) and, the information is directed from the input
layer, flowing successively from all hidden layers, to the output one.

Figure 2.3: A feedforward neural network. It consists of one hidden layer. It has n
inputs (x) and m outputs (y).

7

2.3 Training

The training is carried out by presenting the network with input values and the cor-
responding output ones, which it tries to predict. The learning algorithm performs
an optimization by adjusting smoothly the synaptic weights of the network. This
is done by minimizing the calculated error between the network prediction and the
desired output, with respect to the synaptic weights. Thus, it is required to create
a database (data set) with a correspondence of input and output values, which are
called patterns/samples. It is divided into two sets, one for training (training data
set) and one for network evaluation (validation data set). Usually, the ratio is 8 to
2, i.e. in 10 samples, 2 are used for evaluation and the remaining 8 for training, [10].
In addition, the set used for training is divided into smaller sets of the same number
of samples, which are called batches. The number of samples per batch is called
batch size and affects the speed as well as the accuracy of the training. Batch size
is the number of samples presented to the network before correcting the synaptic
weights. Finally, the number of epochs determines how many times the entire data
set will be presented to the network (ie only the training data set).

2.4 Architecture

The two main design variables of the architecture are the width and the depth of
the network. Width refers to the number of neurons per layer, while depth refers
to the number of layers. As the parameter space of the learning algorithm increases
(the number of weights), the algorithm can learn more complex patterns and extract
more features. At the same time, however, the algorithm is more prone to overfitting
and its generalization capability is likely to decrease. Overfitting is when a neural
network has learned the training dataset too well. The network is capable of making
accurate predictions only in the training dataset and performs poorly on any other
set of patterns.

Networks with few layers and many neurons (very wide and shallow networks) are
prone to overfitting. Networks with multiple hidden layers (deep networks) are much
better at generalizing, since they may extract high-order features in between layers.
For instance, if a CNN is called to classify images of human faces, its first layer
will be trained to recognize shape edges. The second layer will recognize shapes
and the third will recognize a set of shapes composing the nose, etc. In each layer,
an extraction of higher-order features/information takes place and the network can
easily map the correlation between the input and the output. Thus, the selection
process of the network architecture involves several stages, utilizing the trial and
error method. Initially, a network with very few layers is created. Then, more
layers are added, with a small number of neurons. At the same time, the number
of neurons increases at each layer, until a network with acceptable error is reached

8

without overfitting.

2.5 Hyperparameters

Hyperparameters are fixed network parameters whose values are set in advance of
the learning process and are usually determined empirically. Examples of hyperpa-
rameters comprise the learning rate, the number of hidden levels, epochs and the
batch size. The values of some hyperparameters are dependent on the values of
other hyperparameters. For instance, the value of the learning rate may depend on
the total number of layers. The hyperparameters determine the network architec-
ture and how it is trained. Their values are selected by the user, while the network
parameters (e.g. synaptic weights) are adjusted, automatically, during training.

2.6 Cost Function

The goal of the network training is to minimize the Cost Function. It is related
to the Loss Function that accounts for the error between the DNN output and the
target for the corresponding input values, for a single training pattern. On the other
hand, a Cost Function can contain many Loss Functions (or their average) and it
describes all the training data. An example of a Cost Function is Mean Absolute
Error

MAE =

∑n
i=1(| y − ytar |)

n
(2.3)

where y is the output of the DNN, ytar is the ideal output of the DNN for the
corresponding input and n is the number of predictions. The Loss Function of the
MAE is the Absolute Error (AE)

AE =| y − ytar | (2.4)

Thus, the MAE Cost Function is the average of the AE Loss Function. Note that
Mean Absolute Percentage Error (MAPE) may also be used as Cost Function,

MAPE =
100

n

n∑
i=1

(| y − ytar
ytar

|) (2.5)

In the literature, the terms Loss Function and Cost Function are usually synony-
mous, if not identical.

9

2.7 Back Propagation and Optimization Algorithm

Back Propagation, [25], is an algorithm used during the training of NN. It calculates
the gradient of the cost function with respect to the synaptic weights. The amount of
error is distributed (back propagated) between the neural connections, in proportion
to how much they contribute to the computed error. It is called back propagation
because it is applied repeatedly in reverse order with the flow of information, starting
from the output layer and continuing to the input layer.

The optimization algorithm uses the computed gradient (from the back propagation
algorithm) to perform the gradient descent. Note that the derivative is a vector
in the opposite direction from the desired minimum. The goal of the algorithm
is to minimize the cost function by adjusting the synaptic weights. The Adam
optimization algorithm, [26], is a specialized stochastic gradient descent algorithm
and is one of the most common optimization algorithms in DNN training. Since it
is an efficient algorithm, it is well suited for large problems (in terms of parameters
or/and data). It uses the calculated gradient, as well as its statistics and previous
values (during training) in order to optimize the weights. The Adam algorithm
combines the advantages of the Adaptive Gradient Algorithm (AdaGrad), [27], and
Root Mean Square Propagation (RMSProp), [28].

2.8 Learning Rate

The learning rate is a hyperparameter that determines the size (the order) of the
corrective update to the network weights, at each iteration during its training, to
minimize the error between its output and the desired values. It is a weight (in form
of a factor) applied to the correction of the synaptic weights during the network
training. A higher learning rate decreases the training time, but with decreased
final accuracy. In contrast, a lower rate increases the training duration, although
with the possibility of a greater accuracy.

2.9 Recurrent Neural Networks

A Long Short-Term Memory (LSTM) neural network, [29], which is later exploited
for blood flow predictions, is a type of Recurrent Neural Network (RNN) architec-
ture, [25]. RNNs are a type of neural network that process sequential data and can
scale to much longer sequences. RNNs connect the outputs of all neurons to the
input of all neurons, fig. 2.4. The current input and output is influenced by the
previous input and output (previous elements in the sequence). This directional
information forms a type of ”memory” in weights of the RNN, which are adjusted

10

during the training.

Figure 2.4: The comparison between the classic Feedforward Neural Network (left)
and Recurrent Neural Network (right).

If the RNN is unfolded, fig. 2.5, it is easier to understand the significance of directing
the output to itself. In order to perform a prediction at a time step t in sequen-
tial data, the network utilizes the previous outputs. Highlight that the output of
previous time steps is dependent on the previous inputs and carries out informa-
tion through the time. The network creates a form of ”memory”, which is critical
for temporal or ordinal problems, such as speech recognition, [30] and handwriting
recognition, [31].

RNNs share the same weights within each layer compared to a typical feedforward
network, in which the weight varies in each node. Thus, the Back Propagation is
altered to Back Propagation Through Time (BPTT), which is a generalized form of
the algorithm, used during the network training. The most common drawback of
RNNs are the vanishing or exploding gradient problems. The error, which is back
propagated, tends to vanish or explode, preventing the training. When the gradient
is decreased, it continues to shrink, and, thus, the network is unable to train. This
is known as the vanishing gradient problem. On the other hand, the exploding
gradient problem is when the gradient becomes too large and, the model becomes
unstable, resulting in weights with infinite values.

2.10 Long Short-Term Memory Networks

LSTM networks were introduced as a solution for the vanishing gradient problem.
The presence of long-term dependencies in the input sequence leads to inaccurate
predictions from the RNN. Practically, if the prediction of the current state is de-

11

Figure 2.5: An unfolded RNN. The state at time t influences the future states. The
layers are different steps in time of the same RNN.

pendent on a previous one and this previous state was not in the recent past, the
RNN is unable to predict the current state.

The aforementioned problems were addressed and solved, [29], by introducing the
LSTM unit. This unit, fig. 2.6, is capable of learning long-term dependencies and
comprises a memory cell and three gates, an input gate, an output gate and a forget
gate. The cell stores the acquired information through time and the three gates
control the flow of information.

Figure 2.6: An unfolded LSTM unit. It comprises the cell (red line) and three gates.
The basic vectors are the input (xt), the output (yt) and the cell state (ct).

In fig. 2.6, the top line that runs through the unit is the cell, which carries out

12

the information along the LSTM unit. The LSTM unit is capable of regulating
the information in the cell by adding or removing information, using the gates with
pointwise operations. The inputs of the cell consist of its previous cell state (ct−1),
its previous prediction (yt−1) and the current input (xt).

Firstly, the unit decides what information will forget. On the bottom left, the two
inputs (xt and yt−1) are concatenated into a vector that is copied in every branch
that is passed to. In the first branch, the resulted vector passes through a sigmoid
layer, the forget gate layer. Secondly, the unit decides what information will be
”memorized” by the cell. The second branch of the concatenated vector passes
through a sigmoid layer, called the input gate layer. This branch, actually, decides
what values of the current state cell will be updated. The third branch passes
through a tanh layer, which proposes values for the cell state. The second and the
third branches are multiplied pointwise, resulting into a proposed vector for updating
the cell state. The new, updated, cell state (ct) results from the multiplication of
the old cell state with the first branch and the addition to it of the proposed vector.

The output of the unit (yt) is influenced by the current state. The concatenated
vector of the two inputs (xt and yt−1) is passed through a sigmoid layer that decides
what values of the current state will be utilized for the output. The current cell
state passes through a tanh layer and is multiplied by the output of the sigmoid
layer. This resulted vector, the output of the LSTM unit, is the combination of the
current cell state, the current input and the previous prediction. Note that in every
sigmoid and tanh layer a bias is added.

2.11 Implementation

Data pre- and post-processing as well as the DNN implementations are carried out
in Python 3.6 utilizing an open source machine learning library, called Tensorflow,
[32], all running on CPUs or GPUs, such as K20, V100 and 1050, manufactured by
NVIDIA.

13

14

Chapter 3

Quasi-1D Artery Blood Flow

A quasi-1D flow problem in an artery with elastic walls is modelled. The artery
has varied wall thickness along its length. Its longitudinal initial cross-sectional
area distribution is varied, as well. The time-varying blood inflow represents the
pulsatile action of the human heart. The generated biological flows are later used
as patterns for training the LSTM network.

3.1 System of Governing Equations

As presented in [33], continuity of mass and momentum leads to the following equa-
tions in terms of the cross-sectional area (A), the mean velocity (u) over a cross-
section and the internal pressure (p) of the artery,

∂A

∂t
+
∂(Au)

∂x
= 0 (3.1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
− 1

ρ

∂τ

∂x
= 0 (3.2)

where ρ is the constant blood density and τ is the shear stress.

For the shear stress gradient, the expression for a Poiseuille flow,

dτ

dx
= −8µQ̇

πR4
= −8πµu

A

µ∗= 8πµ
ρ

= −µ
∗ρu

A
(3.3)

is used where Q̇ = Au is the volume flowrate, R is the inner artery radius and µ the

15

blood viscosity. Note that the expression of eq. (3.3) is not valid for non-Newtonian
or turbulent flows.

By incorporating eq. (3.3) into eq. (3.2), the system of two (rather than three)
equations (in conservation/vector form), governing the blood flow in an artery with
elastic walls, is derived,

∂U

∂t
+
∂F

∂x
= S (3.4)

where

U =

[
A
u

]
, F =

[
uA

u2

2
+ p

ρ

]
and S =

[
0

−8πµu
ρA

]

Since there are 2 equations and 3 variables (A, u, p), a third equation is necessary
to close the system. This third equation describes the vessel wall behaviour due
to pressure changes and its difference between the inside of the artery and the
surrounding tissue. It introduces the adaptation of the cross-sectional area to the
changing internal pressure and deals with the fluid-structure interaction.

Many different models that simulate the relation between the pressure and the cross-
sectional area are in use. These are classified as:

� Linear elastic: The area is linearly related to pressure, [34].

� Non-linear elastic: The area is non-linearly related to pressure, [35].

� Collapsible tube: The area is related to pressure with a ”tube law” in which
the tube can collapse and distend, [36].

� Visco-elastic: Viscoelastic behaviour of the elastic walls is being considered,
[37].

In this study, the equation of the non-linear elastic model, presented in [35], is used
to provide a relation between the pressure and the wall deformation by also involving
the cross-sectional area (A). This is written as

p = pext + β(
√
A−

√
A0) (3.5)

where pext is the external pressure from the surrounding tissue, A0 is the area when
there is zero transmural pressure (i.e. p = pext) and β accounts for the material
properties of the elastic vessel (A0 also appears) and is independent of the transmural
pressure,

β =

√
πhE

A0(1− σ2)
(3.6)

16

where h is the wall thickness, E is Young’s modulus and σ is the Poisson ratio.
Note that only A0 and h vary along the artery. A0 is also considered as the starting
artery shape in all computations. Since the system is highly coupled and non-linear,
a numerical solution is required.

3.2 Formulation as a 2-Equation System

In order to reduce the number of variables in the system to be solved, one may replace
the pressure in the system of governing equations with its derivative computed from
eq. (3.5),

∂p

∂x
=
∂pext
∂x

+
β

2
√
A

∂A

∂x
− β

2
√
A0

∂A0

∂x
+ (
√
A−

√
A0)

∂β

∂x
(3.7)

By doing so, the 3-equation system, eqs. (3.7) and (3.4), takes the form of a quasi-
linear system of 2 equations, written in non-conservative form, as follows,

∂U

∂t
+ H

∂U

∂x
= C (3.8)

where

U =

[
A
u

]
, H =

[
u A
β

2ρ
√
A

u

]

C = −1

ρ

[
0

µ∗ρu
A

+ ∂pext
∂x
− β

2
√
A0

∂A0

∂x
+ (
√
A−
√
A0)∂β

∂x

]

eq. (3.8) must be solved to compute the 2 unknowns (A and u) at each node.

3.3 Flux Vector Splitting Scheme

The eigenvalue vector Λ of the coefficient matrix H results by solving the equation
| Λ I - H |= 0, [38] which gives:

Λ =

[
λ1

λ2

]
=

[
u+ c
u− c

]
(3.9)

17

where c is the speed at which a small pulse propagates through the artery (wave
speed),

c =

√
β
√
A

2ρ
(3.10)

Since the flow is physiological, the velocity is less than the wave speed (u < c) and,
thus, the eigenvalues are real and the system is hyperbolic. The physical meaning
of the eigenvalues is that cross-sectional area and velocity wave fronts propagate
through the artery forward with velocity λ1 = u + c and backward with velocity
λ2 = u− c. The set of left eigenvectors is computed by solving the equation IiH =
λiIi, where Ii is the right eigenvector of H corresponding to λi,

L−1 =

[
IT1
IT2

]
=

[
c/A 1
−c/A 1

]
(3.11)

and, therefore, matrix L is computed as

L =
A

2c

[
1 −1
c/A c/A

]
(3.12)

Note that H=LΛL−1. The coefficient matrix H is then decomposed into a positive
H+ and a negative H−, such that: H++H−=H. Each component is defined by
using the properly signed eigenvalues as follows,

H+ = LΛ+L−1 =
1

2

[
λ1

A
c
λ1

c
A
λ1 λ1

]
(3.13)

H− = LΛ−L−1 =
1

2

[
λ2 −A

c
λ2

− c
A
λ2 λ2

]
(3.14)

where

Λ+ =

[
λ1 0
0 0

]
and Λ− =

[
0 0
0 λ2

]
The artery length is discretized with K equidistant nodes and the total simulation
time is discretized with T time instants, as well. Applying 2nd order Flux Vector
Splitting to the system of equations, eq. (3.8), leads to the discretized form at time
instant n+ 1

2
and in L-th node,

∂

∂t
U
n+ 1

2
K + H+U

n+ 1
2

plus

1

∆x
+ H−U

n+ 1
2

minus

1

∆x
= C

n+ 1
2

k (3.15)

18

where the plus and minus indices represent the U one-sided difference stencils for
H+ and H−, respectively,

U
n+ 1

2
plus =

3

2
U
n+ 1

2
k − 2U

n+ 1
2

k−1 +
1

2
U
n+ 1

2
k−2

U
n+ 1

2
minus = −3

2
U
n+ 1

2
k + 2U

n+ 1
2

k+1 −
1

2
U
n+ 1

2
k+2

Exponent (n) and index (k) represent time instant and node, respectively. By

replacing U
n+ 1

2
k = Un

k + 1
2
∆Un

k and C
n+ 1

2
k = Cn

k + 1
2
∆Cn

k in eq. (3.15), the following
system emerges. Vector ∆Un makes up the matrix of independent variables,

1

∆t
∆Un

k + H+∆Un
plus

1

2∆x
+ H−∆Un

minus

1

2∆x
− 1

2
∆Cn

k =

Cn
k −H+Un

plus

1

2∆x
−H−Un

minus

1

2∆x
(3.16)

where

∆Un
plus =

3

2
∆Un

k − 2∆Un
k−1 +

1

2
∆Un

k−2

∆Un
minus = −3

2
∆Un

k + 2∆Un
k+1 −

1

2
∆Un

k+2

and, Cn
k and ∆Cn

k are given from

Cn
k = −1

ρ

[
0

µ∗ρu
A

+ ∂pext
∂x
− β

2
√
A0

∂A0

∂x
+ (
√
A−
√
A0)∂β

∂x

]n
k

∆Cn
k = −1

ρ

[
0

µ∗ρ∆u
2A
− µ∗ρu∆A

2A2 + ∆A
4
√
A

∂β
∂x

]n
k

= Kn
k∆Un

k

with Kn
k = −1

ρ

[
0 0

−µ∗ρu
2A2 + 1

4
√
A

∂β
∂x

µ∗ρ
2A

]

The governing equations are written as a 5-diagonal block system by introducing
five 2× 2 coefficient matrices,

Vn
k∆Un

k−2 + Xn
k∆Un

k−1 + Yn
k∆Un

k + Zn
k∆Un

k+1 + Wn
k∆Un

k+1 = RHSnk (3.17)

19

where the coefficient matrices are

Vn
k =

1

2
H+ 1

2∆x
=

1

2

[
λ1

4∆x
Aλ1
4c∆x

cλ1
4A∆x

λ1
4∆x

]n
k

Xn
k = −2H+ 1

2∆x
= −1

2

[
λ1
∆x

Aλ1
c∆x

cλ1
A∆x

λ1
∆x

]n
k

Yn
k =

3

2
(H+ −H−)

1

2∆x
+

1

∆t
I− 1

2
K =

[
3c

4∆x
+ 1

∆t
3Au
4c∆x

3cu
4A∆x

− µ∗u
2A2 + 1

4ρ
√
A

∂β
∂x

3c
4A∆x

+ 1
∆t

+ µ∗

2A

]n
k

Zn
k = 2H− 1

2∆x
=

1

2

[
λ2
∆x

−Aλ2
c∆x

− cλ2
A∆x

λ2
∆x

]n
k

Wn
k = −1

2
H+ 1

2∆x
=

1

2

[
− λ2

4∆x
Aλ2
4c∆x

cλ2
4A∆x

− λ2
4∆x

]n
k

and the RHS is

RHSnk =

[
− 1

2∆x
(A+λ1 + Aλ1u+

c
+ A−λ2 − Aλ2u−

c
)

− 1
2∆x

(u+λ1 + cλ1A+

A
+ u−λ2 − cλ2A−

A
) + C2

]n
k

where

An,+k =
3

2
Ank − 2Ank−1 +

1

2
Ank−2

un,+k =
3

2
unk − 2unk−1 +

1

2
unk−2

An,−k = −3

2
Ank + 2Ank+1 −

1

2
Ank+2

un,−k = −3

2
unk + 2unk+1 −

1

2
unk+2

Cn
2,k = −1

ρ
(
µ∗ρu

A
+
∂pext
∂x
− β

2
√
A0

∂A0

∂x
+ (
√
A−

√
A0)

∂β

∂x
) |nk

At the second and the before-last nodes of the 1-D spatial domain, due to the absence
of enough adjacent nodes on the one side (without interrupting the diagonal form
of the system), the system becomes 1-st order,

Xn
k∆Un

k−1 + Yn
k∆Un

k + Zn
k∆Un

k+1 = RHSnk (3.18)

20

and, there, the coefficient matrices are

Xn
k = −H+ 1

2∆x
= −1

2

[
λ1

2∆x
Aλ1
2c∆x

cλ1
2A∆x

λ1
2∆x

]n
k

Yn
k = (H+ −H−)

1

2∆x
+

1

∆t
I− 1

2
K =

[
c

2∆x
+ 1

∆t
Au

2c∆x
cu

2A∆x
− µ∗u

2A2 + 1
4ρ
√
A

∂β
∂x

c
2A∆x

+ 1
∆t

+ µ∗

2A

]n
k

Zn
k = H− 1

2∆x
=

1

2

[
λ2

2∆x
− Aλ2

2c∆x

− cλ2
2A∆x

λ2
2∆x

]n
k

3.4 Windkessel Model

The segment of the simulated artery is part of a complex network of arteries con-
sisting the human cardiovascular system. In order to take the effect of arteries lo-
cated beyond this segment into account, it is necessary to include a lumped-element
model, which simplifies this effect. The outlet lumped parameter model, known as
the Windkessel Model, [39], is used.

Large arteries are quite elastic due to their structure, which comprises elastic fibers.
Thus, they are able to either distend or recoil, depending on the part of the cardiac
cycle (systole/diastole). This behaviour leads to a flowrate difference between the
inlet and outlet of the artery, creating a biological capacitor that temporarily stores
the excess blood. This capacitor charges during the systole and discharges the
blood to the peripheral arteries, during the diastole of the heart. It plays the role
of a damper, resulting to a relatively smooth blood flow in the peripheral arteries,
despite the pressure fluctuations presented over the cardiac cycle. This interaction
is similar to a fire hose in which an air chamber (Windkessel in German) damps the
pulsatile action of the pump, fig. 3.1. Note that in order for the blood to flow, it is
required for this to overcome the vascular resistance of the peripheral arterioles and
capillaries.

3.4.1 Two-Element Model

The mathematical model that simulates this phenomenon consists of two elements:
the total arterial compliance (Cs) which accounts for the elasticity of the larger
arteries and the peripheral resistance (R2) which accounts for the resistance of the
peripheral arteries.

The two-element Windkessel model, fig. 3.2, also referred as the CR2 model, is

21

Figure 3.1: Illustration of the Windkessel analogy. By Kurzon - Own work, CC
BY-SA 3.0, https: // commons. wikimedia. org/ w/ index. php? curid= 31288770

governed by a first-order differential equation,

Q̇(t) =
p(t)

R2

+ Cs
dp(t)

dt
(3.19)

Figure 3.2: The two-element Windkessel model. The model consists of two elements:
the total arterial compliance (Cs) and the peripheral resistance (R2).

3.4.2 Three-Element Model

The three-element Windkessel model (R1CR2), fig. 3.3, is based on the two-element
Windkessel model with an additional characteristic resistance (R1) in order to elim-
inate abnormal reflected pulse wave oscillations. R1 takes into account the effects
(compliance and resistance) of the very proximal aorta to the simulated segment.
Let pc denote the pressure across the compliance Cs; the pressure at the end of the
artery (p) is given by:

p(t) = pc(t) +R1Q(t) (3.20)

22

https://commons.wikimedia.org/w/index.php?curid=31288770

where pc is given by eq. (3.19) if the pressure p is substituted with the pressure
across Cs (pc). Thus, the final system of the Windkessel model equations is derived

Figure 3.3: The three-element Windkessel model. The model is based on the two-
element model with an additional characteristic resistance (R1).

providing the pressure value at the last node (pK),

p(t) = pc(t) +R1Q̇(t) (3.21)

Q̇(t) =
pc(t)

R2

+ Cs
dpc(t)

dt
(3.22)

In this study, the three-element Windkessel model is used to update the pressure at
the last node of the artery (K) using the Q̇inlet as Q̇.

3.4.3 Numerical Solution

The system of eqs. (3.21) and (3.22) is numerically solved. If Q̇n− 1
2 is given by

Q̇n− 1
2 = 1

2
(Q̇n−1 + Q̇n), eq. (3.22) can be discretized as,

Q̇n− 1
2 = Cs

pnc − pn−1
c

∆t
+
pnc + pn−1

c

2R2

=⇒

pnc =
(Q̇n− 1

2 − (1
2R2
− Cs

∆t
))

Cs
∆t

+ 1
2R2

(3.23)

Therefore, the pressure at the last node of the artery, at the n-th time instant, is
given by

pnK = pnc +R1Q̇
n (3.24)

23

3.5 Initial & Boundary Conditions

The cross-sectional area distribution is initialized by setting it to the A0 distribution.
The initial velocity distribution is constant and computed from the equation Q̇ =
Au, where A and Q̇ take on the corresponding initial values. The initial pressure
distribution is equal to pext.

For the inlet boundary condition (k=1):
Cross-sectional Area: Since the instantaneous flowrate (Q̇n) is known, the velocity at
the (n+1)-th time instant may be computed from the continuity equation Q̇ = Au,

un+1 = un + ∆un =
Q̇n+1

1

An+1
1

if 1
An+1

1

is linearized as 1
An1
− ∆An1

(An1)2
, then

Q̇n+1
1

(An1)2
∆An1 + ∆un1 =

Q̇n+1
1

An1
− un1 (3.25)

Velocity: A first-order Neumann boundary condition is imposed, where ∂u
∂x

n

1
= 0.

Thus, un1 = un2 and,

∆un1 = ∆un2 (3.26)

For the outlet boundary condition (k=K):
Cross-sectional Area: Since the pressure at the last node (pK) is computed by the
Windkessel model, eq. (3.24), the area can be computed as

An+1
K = (

pn+1
K − pext
βK

+
√
A0,K)2 An+1

K =AnK+∆AnK=⇒

∆AnK = (
pn+1
K − pext
βK

+
√
A0,K)2 − AnK (3.27)

Velocity: A Neumann condition is imposed, where ∂u
∂x

n

K
= 0, as well. Therefore,

unK = unK−1 and,

∆uK = ∆uK−1 (3.28)

or in matrix form:

24

Inlet:

Yn
1 ∆Un

1 + Zn
1 ∆Un

2 = RHSn1 (3.29)

Yn
1 =

[
1 0

Q̇n+1
1

A2
1
n 1

]

Zn
1 =

[
−1 0
0 0

]
RHSn1 =

[
0

Q̇n+1
1

An1
− un1

]

Outlet:

Xn
K∆Un

K−1 + Yn
K∆Un

K = RHSnK (3.30)

Xn
K =

[
0 0
0 −1

]
Yn
K =

[
1 0
0 1

]
RHSnK =

[
0

(
pn+1
K −pext
βK

+
√
A0,K)2 − AnK

]

3.6 The 1DAS Software

The above flow model is programmed as a quasi-1D flow solver software (to be
referred as 1DAS). Code programming was carried out in FORTRAN while data
pre- and post-processing in Python 3.6.
The 1DAS software inputs comprise the parameters of the previously presented
equations and consist of:

� The number of equidistant spatial nodes (K).

� The number of time instants per period (kdit).

� The total simulation time (Ttot).

25

� The length of the artery (Lart).

� The starting shape of the artery (A0(x)).

� The time dependent blood inflow (Q̇inlet(t)).

� Blood Properties:

– Density (ρb)

– Kinematic Viscosity (νb)

– Pressure in the surrounding tissue (pext)

� Artery Properties:

– Young Modulus (E)

– Poisson Ratio (σ)

– Spatial distribution of thickness (h(x))

� Windkessel model parameters:

– Initial Pressure of Capacitor (pc)

– Capacitance (Cs)

– Resistance R1 (R1)

– Resistance R2 (R2)

The software solves the 5-diagonal block linear system with the block elimination
method. This method effectively computes the LU factorization of the coefficient
matrices, then, performs the forward block substitution and, at the end, the so-
lution emerges through the backward substitution. It is a modified version (two
additional coefficient matrices) of the 3-diagonal block linear system solver, called
LU Factorization, which is presented in [40]. This method was already programmed
as a FORTRAN subroutine and is utilized by the 1DAS as its system solver. It is
worth noting the creation of a PYTHON code, which is capable of plotting 1DAS
software results while running. This code assisted the 1DAS software development
and live results evaluation.

3.6.1 Examples of 1DAS runs

In order to showcase the running of the 1DAS software, a run of a dummy case was
performed. The distributions of the initial cross-sectional area and thickness are
shown in fig. 3.4. A physiological blood flow is used by the software, fig. 3.4. How
these curves were generated and their physical meaning are discussed in Chapter 5.

The fig. 3.5 shows the 3-D plots of the cross-sectional area and velocity distributions
for one period (after the solution is converged). The results showcase the capabilities

26

Figure 3.4: The cross-sectional area and thickness distributions (left) used by the
1DAS software for the dummy case. The physiological time-varying bloodflow (right).

of the software. The elastic walls of the artery adapt to the evolving flowrate and
pressure. The inlet velocity profile follows the bloodflow form.

Figure 3.5: The cross-sectional area and velocity distributions generated by the 1DAS
software for the dummy case.

3.7 Artery with Rigid Walls

For performing the first tests, a version of 1DAS to be referred as 1DASR, was
created, but with an artery with rigid walls. The flow is governed by a system of
equations,

d(Au)

dx
= 0 (3.31)

27

du

dt
+ u

du

dx
+
dp

dx
= −µ

∗u

A
(3.32)

The velocity is given from the continuity equation, where cross-sectional area (A) is
varied along the artery and the bloodflow (Q̇) is time-dependent,

u(x, t) =
Q̇(t)

A(x)
(3.33)

and, thus, by taking the derivatives of it,

du

dx
= − Q̇

A2

dA

dx
(3.34)

du

dt
= − 1

A

dQ̇

dt
(3.35)

The artery length is discretized with K equidistant nodes and the total simulation
time is discretized with T time instants, as well. By replacing the velocity derivatives
in eq. (3.32), and discretizing the equation, the following formula is derived for time-
step n and in node k,

dp

dx

n

k
= −µ

∗Q̇n

A2
k

+
(Q̇n)2

A3
k

dA

dx k
− 1

Ak

dQ̇

dt

n

(3.36)

The pressure derivative can be written as

pnk+1 − pnk
∆x

=
1

2
(
dp

dx

n

k
+
dp

dx

n

k+1
) (3.37)

The pressure is given by

pnk = pnk+1 −
∆x

2
(
dp

dx

n

k
+
dp

dx

n

k+1
) (3.38)

The velocity can be computed from the discretized form of eq. (3.33),

unk =
Q̇n

Ak
(3.39)

Note that the pressure in the last node (K) is given from the Windkessel model, as

28

described in Subsection 3.4.3. The numerical solution of the discretized eqs. (3.36),
(3.38) and (3.39) was programmed in FORTRAN code and its results were used for
training the LSTM network.

29

30

Chapter 4

LSTM Benchmark Cases

Before moving into the main implementation of the LSTM network in biological
flows, two benchmark cases were performed. Since the generation of dataset (i.e.
biological flows) is time-consuming, the benchmark cases act as introduction on how
the LSTM are implemented (computationally), and further exploited in predicting
sequential data.

4.1 Periodic Function

Firstly, a benchmark case is introduced for exploring the capabilities of LSTM net-
works in prediction of periodic functions. LSTM networks are known for their
performance in reconstructing time-series and memorizing patterns through time-
dependent data.

A periodic function was used for generating training patterns,

y = a1sin(a2x) + a3cos(a4x) + sin(a5x) + a6 (4.1)

where x ∈ [0, 160] represents the pseudo-time and a1, ..., a6 ∈ [0, 1] are parameters.
By varying the parameters, different time-series were generated. The period and
amplitude are influenced by this variation. The x-axis was discretized using 401
equidistant nodes.

The goal of the LSTM network was to predict the following value of this function,
each time, by presenting it with nsteps preceding instantaneous values of it. These
preceding values can either be computed from eq. (4.1) or be network predictions.
The training dataset comprised 28 time-series, fig. 4.1, generated by varying ran-

31

domly the parameters in the aforementioned space. The total computational cost
for the generation of the training patterns was ∼ 5mins.

Figure 4.1: The 28 times-series constituting the training dataset.

The network architecture consists of 5 layers, of which the 2 first layers are the
LSTM units, the following layer is the flatten layer and the last layers are the dense
ones, fig. 4.2. The 2 LSTM units have 64 neurons each, and the dense have 64
neurons each, as well. The tanh activation function was used for all layers, except
the last one, in which the linear activation function was utilized.

Figure 4.2: The LSTM network architecture. The network consists of the LSTM
part, a flatten layer and the dense part.

The network was, then, trained for predicting the following value by presenting it
with the 20 preceding values (nsteps) and the 6 values of the parameters. At first,

32

the network was trained for 150 epochs. It was called, then, to make predictions
by feeding back its predictions to itself and utilizing them as input for the subse-
quent time steps. The input dataset was updated with these predictions and the
network was retrained for 150 epochs. The goal of the network was to reconstruct
the entire time-series, which consisted of 381 values. This number was derived by
subtracting the nsteps from the number of equidistant nodes (401), that the x-space
was discretized with. The training cost was ∼ 5mins, on a NVIDIA 1050 GPU.

Two, not seen by the network, time-series were used for assessing its performance,
fig. 4.3. The average MAE of the LSTM predictions is 3 × 10−2. Firstly, the
network was presented with 20 instantaneous values, computed from the eq. (4.1).
The network predicted the following value and fed it back to itself and, used it as
input for the next one. The procedure of feeding back the prediction continued until
the network had reconstructed the entire time-series. The prediction for the entire
time-series (381 values) is based on the 20 starting values (nsteps) and the 6 values
of the parameters. A further explanation of both training and prediction techniques
is given in Section 5.2.4. The results are more than satisfactory and indicate that
LSTM networks can be utilized to predict periodic functions.

Figure 4.3: Two, not seen by the network, time-series, reconstructed by the LSTM
network.

4.2 Heat Conduction

In the second benchmark case, the LSTM was trained to predict time-varying tem-
perature distributions on a 1D plate, with length Lp = 0.3m, fig. 4.4. On the left
end of the plate, there was air with time-varying temperature and, on the right
end, the temperature of air was constant. This was a simulation of a metallic wall,
which was adjacent to the air both inside and outside of it. The right end of the
plate represented the inside (Tin), with the constant temperature, while the outside
varied along the day (Tout). This phenomenon is governed by a partial differential

33

equation, the heat conduction equation,

∂

∂x
(k
∂T

∂x
) = ρCpl

∂T

∂t
(4.2)

Figure 4.4: The plate, in 2-D perspective, with constant internal and time-varying
external temperatures.

where T is the temperature, k = 2 W/m◦C is the coefficient of thermal conductivity,
ρ = 2000 kg/m3 is density, and Cpl = 1000 J/kg◦C is the thermal capacity. All
quantities refer to the simulated plate. At the right end, the plate was adjacent to
air with temperature Tin = 27◦C. At the left end, the air temperature (Tout) was
parameterized with the following periodic function,

Tout = 35 + b1cos(
2π(t− 3600b2)

3600b3

) (4.3)

where b1, b2 ∈ [0, 24] and b3 ∈ [−5, 5] are the parameters. The convective heat
transfer coefficient of the left end was hout = 28 W/m2K and on the right end
hin = 8 W/m2K. Eq. (4.2) was solved numerically in PYTHON. The plate width
(Lpl) was discretized using 60 equidistant nodes (59 cells). The total simulation
time was 3 days or ∼ 259K seconds and was discretized with 301 time steps, at
constant time intervals. The equation was solved with the finite volumes method
(cell-centered), which resulted in a tri-diagonal system of equations. The Neumann
boundary conditions, at both ends, were set through the heat convection, between
the solid plate and the air. The temperature of 20◦C was used as the initialization
for the temperature distribution.

By varying the parameters of the outside temperature, different temperature time-
series were generated and were, later, used from the solver for determining the
boundary conditions, fig. 4.5. 28 time-series were generated and, thus, 28 × 301

34

time-varying temperature distributions resulted. The solver took ∼ 1.5mins for
generating the distributions. As shown in fig. 4.6, the solution had a transient
phase that converges to a periodic solution.

Figure 4.5: The Tout time-series used for determining the boundary conditions.

20 distributions were presented to the network in order to predict the following one
and, thus, nsteps was equal to 20. The network architecture of fig. 4.2 was adjusted
to this benchmark case. The number of hidden layers, as well as the number of
their neurons, remained unchanged. The input size was (20,59) while the output
size was a distribution of 59 temperatures. Note that 59 was the number of cells and
therefore the number of temperature values along the plate. The training procedure
was identical to the previous case. The training cost was ∼ 5mins on a NVIDIA
1050 GPU. Note that, the network was not presented with any information about
the Tout (its time-series or the values of the parameters).

The network, during the prediction of the temperature distributions, was feeding
back its prediction to itself, as mentioned in the previous case. The predictions of
two, not seen by the network, patterns are shown in figs. 4.7 and 4.8. The average
MAE of the LSTM predictions is 15 × 10−2 oC. They indicate that the LSTM
network is capable of reconstructing the temperature time-series of the entire plate
with the information of the transient phase, since the first 20 distributions, used
by the network, are of this phase. The network used only these 20 distributions to
predict the entire time-varying temperature field.

35

Figure 4.6: The temperature time-series (training patterns) of the probe (30th) cell.

Figure 4.7: The prediction of two, not seen by the network, temperature time-series
of the probe (30th) cell.

36

Figure 4.8: The prediction of two, not seen by the network, temperature spatial
distributions of the probe (250th or ∼ 58 hr) time-instant.

37

38

Chapter 5

Prediction of 1D Time-Varying

Flows in Arteries with LSTM

Networks

5.1 Introduction

Inhere, a code for simulating arterial flows was developed and used to generate
quasi-1D flows in axisymmetric arteries. A Long Short-Term Memory (LSTM) net-
work was trained to predict velocity distributions. It constitutes an initial study on
how LSTM networks can further be used in biological flows studies, utilizing data
generated from CFD software solving 3D flows. Note that the problem of realistic
arterial flows is an unsteady multi-discipline problem, since the elastic walls interact
with the blood, which follows the pulsatile cardiac action. Thus, the generation of
3D data for training the LSTM network would be computationally expensive.

5.2 Varying Initial Artery Shapes

The LSTM neural network was trained to reconstruct the time-series of blood flow
quantities of a quasi-1D flow problem in an artery with elastic walls of a simplified
axisymmetric geometry though. The network was able to predict the time-evolution
of velocity and area distributions along the artery, using the corresponding distri-
butions at previous time instants. These previous spatial distributions were either

39

generated by a CFD solver or, after the first time instants, they were flow predictions
by the network itself.

The quasi-1D flow solver (1DAS) in arteries with flexible walls was the analysis
tool providing the training and validation patterns for the network. The artery was
modelled as a tube with a non-constant cross-sectional area along its length. The
solver data comprise the starting cross-sectional area distribution (A0), the wall
thickness distribution, the physiological data of the artery (blood properties, artery
mechanical properties and Windkessel model parameters), and the time-dependent
blood inflow as boundary condition (Q̇inlet). In order to represent the pulsatile
cardiac output (heart rate and stroke volume), a periodic functional form for the
inflow was used. The physiological data remained constant in all runs, whereas
the starting cross-sectional area distribution, the wall thickness distribution and the
time-series of the blood inflow varied. In this first case, only the starting cross-
sectional area distribution varied. The velocity, pressure and area distributions
along the length of the blood vessel at each time instant are the output of the 1DAS
software and these were used for training and, then, assessing the LSTM network.

5.2.1 Initial Cross-Sectional Area

The initial cross-sectional area distribution of the artery was arbitrarily selected
and parameterized using a Bezier curve with 7 control points (CPs), fig. 5.1. Then,
by varying their coordinates (with fixed abscissas), various shapes of arteries were
generated and later used by the 1DAS software as the initial shape.

A constant cross-sectional area curve, computed for an artery with radius equal to
Rart = 0.010 m, was utilized as a starting artery for the parameterization procedure.
The first and last CPs were fixed at 15% and 85% of the artery length. The abscissas
of the other control points remained constant and distributed evenly. Note that the
second and the before last ones had the same ordinate as the first and last CPs
respectively, for derivative continuity purposes. By varying Rart by ±50% at each
end of the artery, new first and last control CPs emerged while the ordinates of
the 3 intermediate points were distributed evenly between them. The ordinates of
the 3 intermediate CPs were multiplied by the factors 1.1, 1.35 & 1.4 respectively.
These factors varied from −10% to +50%. In an effort to evaluate the solutions
generated by the 1DAS software, an artery with inlet and outlet radii both equal to
Rart = 0.010m and factors 1.1, 1.35 & 1.4 was selected as the reference artery, fig.
5.1.

By varying the aforementioned parameters (inlet and outlet radii & factors), a
dataset of 30 arteries was generated, and these were used in the unsteady runs
of the 1DAS software as initial cross-sectional area distributions, fig. 5.2.

40

Figure 5.1: Reference Artery. It is parameterized using a Bezier curve (blue) with
7 CPs (orange/dotted). The inlet and outlet radii are both equal to Rart = 0.010m,

corresponding to area equal to 3.1413 · 10−4m2, and the intermediate CPs factors are
1.1, 1.35 & 1.4.

5.2.2 Blood Inflow and 1DAS Parameters

The Q̇inlet that was used for the first case study was a very simple periodic (sinu-
soidal) function, fig. 5.3, with period Th = 0.75s, representing a pseudo-pulsatile
cardiac output, namely:

Qinlet = 7 · 10−5 + 5 · 10−5 sinωt (5.1)

where ω = π/0.75 and t ∈ [0, 0.75]. Every quantity was written in SI base units.

The rest of the 1DAS software parameters are presented in table 5.1.

5.2.3 Training Dataset Creation

The total simulation time was 8s (corresponding to 10.6 periods of 0.75s each), with
7500 time instants in each period, resulting in 80000 time instants in total. The
artery length (Lart) was 0.1m and was discretized using 101 equidistant nodes.

41

Figure 5.2: Cross-sectional area distributions, created by varying the CPs of the
Bezier curve used by the 1DAS software as initial distributions (A0) for the 30 training
patterns.

Quantity Symbol Value
Blood Properties

Density [kg/m3] [41] ρb 1060

Kimematic Viscosity [m3/s] [42] νb 3.5 · 10−6

External pressure [Pa] Pext 104

Artery Mechanical Properties
Young Modulus [Pa] E 91 · 104

Poisson Ratio σ 0.5
Thickness [m] h 10−3

Windkessel Parameters
Initial Pressure of Capacitor [Pa] pc 0.1 · 104

Capacitance [m4s2kg−1] Cs 4.5 · 10−9

Resistance R1 [kgm−4s−1] R1 0.5 · 107

Resistance R2 [kgm−4s−1] R2 1.8 · 108

Table 5.1: Physiological data of the arteries used by the 1DAS software for all runs.

For the time slot that corresponds to the first 6 periods (4.5s), Q̇inlet was constant
(Q̇inlet= 0.7 · 10−4m3/s) resulting in an initial transient phase during which the
flexible walls adapted themselves to the evolving pressure within the artery and, at

42

Figure 5.3: The periodic blood inflow (Q̇inlet) of eq. (5.1) (blue) with period Th =
0.75s (the black vertical line delineates to the end of the first period) plotted for several
periods. At both ends of each period the inflow derivative is discontinuous.

the end, a steady flow solution was computed. The second phase started upon the
end of the first one and, in this phase, the unsteady inlet flowrate profile Q̇inlet, eq.
(5.1), was imposed. Splitting into two phases was decided as it was quite helpful to
have the flow quantities with the steady inlet condition converged at first and, then,
continue the problem solution with the time-varying flowrate. The Q̇inlet time-series
and the corresponding velocity time-series of the reference initial cross-sectional area
distribution, at the 50th node (almost mid of the artery), are shown in figs.5.4 and
5.5 respectively.

The computed distributions at the selected probe node (the 50th node) of the cor-
responding cross-sectional area distributions, fig. 5.2 solved by the 1DAS software
are shown in figs. 5.6, 5.7 and 5.8. In fig. 5.9, the converged area distribution at
the end of the first phase is shown in comparison to the reference A0, pointing out
that the artery, at the end of the first phase, is outward bulged.

In order to reduce the memory requirements and the training cost, the distributions
were sampled every 20 time instants. Practically, the training dataset was formed
by distributions in every 20 time instants, skipping the intermediate ones. One
distribution used by the network carries out the information of 20 distributions.
Thus, each period corresponded to 375 distributions.

43

Figure 5.4: The blood inflow (Q̇inlet) remains constant during the first 6 periods and
then starts varying according to the periodic formula of eq. (5.1) (blue).

5.2.4 LSTM Architecture and Training

The input of the LSTM network was a number (nsteps) of preceding instantaneous
flow solutions. In this study, velocity longitudinal distributions were selected as the
network’s output using nsteps= 150. So, the network was presented with the 150
previous velocity distributions along the length of the artery and its role was to pre-
dict the next longitudinal distribution of the same quantity. The 150 previous time
instant distributions can either be computed by the 1DAS software or be predictions
of the LSTM itself. The second feature provided the network the ability to predict
a whole time-series of the velocity longitudinal distributions given only an initial set
of 150 distributions, by feeding back its predictions to itself.

The procedure during which the network predicts a flow quantity time-series, over
the artery, was called Prediction Procedure. This procedure was initialized by setting
150 distributions of a selected quantity, generated by the 1DAS software, as network
input. The network, then, predicted the next distribution and used it as input
for the next time instant prediction, fig. 5.10. It continued to feed back its own
predictions as input and after 149 time instants the network became independent of
the initial 150 distributions computed by the 1DAS software , fig. 5.11. Practically,
the network required only 150 distributions, as initialization, to predict a whole
time-series.

44

Figure 5.5: Velocity time-series of the reference A0 at the 50th node. The solution
is divided into 3 parts (black vertical lines correspond to the end of each part) and two
phases determined by the Q̇inlet. Severe fluctuations are presented in the beginning of
the first phase.

For the network training only 18 arteries were used plus 2 for the test set, making
up 20 arteries in total. Note that not all arteries of the original dataset of 30 arteries
were used due to the high resources demands of the network. More training patterns
resulted in more memory demands and exceeding of the RAM limitations. The 1DAS
software took ∼ 2.5 mins to solve the flow, and, thus, the total computational
cost was ∼ 50 mins, for the 20 flows. This cost remained constant for all cases.
During its training, the network was presented with distributions starting from
4.125s (half period before the end of the first phase) in order to filter out the
fluctuations presented in the beginning of the first phase of the solution, as shown
in fig. 5.5. The goal of the case study was to provide the network with a set of 150
distributions of the steady part of the first phase and call it to predict the unsteady
one by continuing on its own and utilizing its own predictions.

The network architecture consists of 2 parts combined in the integrated LSTM
network, fig. 5.12. The first part consists of LSTM cells with 2 layers of 101
neurons each while the second one consists of 2 dense layers of 101 neurons. The
first LSTM cell and the last dense layer stand for the input and the output layers
respectively. The 2 parts are interconnected with a flatten layer and the activation
function for all layers, except the output, is the LeakyReLU, [43]. This activation
function is preferably used due to its efficiency during the training procedure. In the
output dense layer, the linear activation function is used. In addition, the selection
of the number of layers and neurons was done by the trial and error method. Further

45

Figure 5.6: Velocity time-series at the probe (50th) node. For the first 4.5s (black
vertical line corresponds to the beginning of the second phase) Q̇inletis constant but the
walls are considered to be flexible.

discussion of network architecture optimization can be found in Section 5.5.

The training procedure was divided in 3 stages with 150 epochs each. In the first
stage, the network was trained by presenting it with the previous time instants gen-
erated by the 1DAS software. At the beginning of the second stage, the semi-trained
network was called to carry out the Prediction Procedure. Each input distribution,
which previously was generated by the 1DAS software, was replaced by a network
prediction. Ergo, the network was enforced to learn to predict a following distri-
bution by using its own predictions (slightly inaccurate distributions) and not the
accurate distributions, generated by the 1DAS software. Then, the network con-
tinued its training with the updated dataset. At the beginning of the third stage,
Prediction Procedure and dataset update were repeated, as mentioned earlier, but
with a more trained network this time. The 3 distinct training stages altered the
typical training process due to the adoption of the Prediction Procedure during the
training phase. Note that the network lacked raw information about the varying
A0 in each artery (i.e. coordinates of A0 or the values of inlet and outlet radii
could have been used as input) and was called to map the correlation only between
the previous time instant distributions and the following one. Each of the training
stages took 22.5 minutes, on a single NVIDIA 1050 GPU, resulting in 67.5 minutes.
Combined with the cost of the predictions during the training the total cost summed

46

Figure 5.7: Pressure time-series at the probe (50th) node. For the first 4.5s (black
vertical line corresponds to the beginning of the second phase) Q̇inletis constant.

to 1.6 hours.

5.2.5 Results

In figs. 5.13 and 5.14, results of 2 not seen by the network arteries, at the same 50th
probe node, are shown. The average MAE of the prediction is 6 × 10−3m/s. The
results are more than satisfactory considering that the LSTM was presented with
150 instantaneous distributions from the first phase (375 instantaneous distributions
in each period) and it was able to reconstruct the requested time-series consisting
of 1875 distributions. Since the 150 initial distributions were part of the first phase
(converged solution/exactly the same distributions), the variation of their number
has no impact on the cost of the Prediction Procedure (regarding the use of the
1DAS software). This means that the value of nsteps influences only the training
cost.

5.2.6 Rigid Walls

The capabilities of the LSTM network were evaluated on the 1DASR software, that
models the quasi-1D artery with rigid walls. The cross-sectional area (A) was pa-

47

Figure 5.8: Area time-series at the probe (50th) node. For the first 4.5s (black
vertical line corresponds to the beginning of the second phase) Q̇inletis constant. The
converged area at the end of the first phase is slightly increased from the initial one
at the beginning of same phase. The flexible walls adapt themselves to the evolving
pressure within the artery.

rameterized and was used as the initial cross-sectional area, in the previous case,
and the blood inflow was computed form eq. (5.1) for the whole simulation time.
The total simulation time was 8s and 800 time-steps were used. The artery length
was discretized with 101 equidistant nodes. The physiological artery data of Table
5.1 were used by the 1DASR.

28 arteries were generated by varying the CPs of the Bezier curve that parameterized
the area, as shown in fig. 5.2. 1DASR solved the equations and computed the
28×800 time-varying pressure distributions, fig. 5.15. There was an initial transient
phase and, then, the pressure became periodic, following the blood inflow. The goal
of the LSTM was to predict the following pressure distribution by presenting it
with 40 (nsteps) preceding instantaneous distributions of the same quantity. The
architecture and the training remained unchanged. Apparently, the input of the
network was adjusted to the new nsteps. The training took 35mins on the NVIDIA
1050 GPU.

Results, fig. 5.16, on a, not seen by the network, artery showcase that the same
LSTM can be trained to predict the pressure distribution of an artery with rigid
walls. The MAE of the predicted time-series is 1.6× 10−3m/s.

48

Figure 5.9: The converged (end of first phase) area distribution of A0 (orange)
parameterized with the reference Bezier curve (blue), as shown in fig. 5.1. The artery
is outward bulged.

5.3 Realistic Blood Inflow

5.3.1 Digitization and Parameterization

In this case, a physiological Qinlet was used as input for the 1DAS software. The
Qinlet, that was previously computed from eq. (5.1), was replaced by a waveform
presented in [44]. The period of the waveform was equal to Th = 0.75s, as well.

In order to obtain this waveform, it was necessary to use a digitization software. The
data points were digitized and the curve emerged. Since the time intervals between
the values of the curve were not equal, it was required to interpolate the curve.
Thus, the curve was parameterized using a Bezier curve with 10 CPs and the Qinlet

values in each time instant were obtained. The Bezier curve was fitted manually,
via the trial and error method, by moving the CPs, until the curve matched the
digitized one. The curve, fig. 5.17, was later used as input for the 1DAS software
run.

49

Figure 5.10: Initialization of the Prediction Procedure. The network used as input
distributions generated by the 1DAS software (blue) and then used its prediction (red)
as input.

5.3.2 Network Training and Results

The training and test datasets were generated, fig. 5.18, as mentioned above. The
generated waveform of Qinlet was utilized in the second phase, as the unsteady inlet
flowrate profile.

In order to utilize the NVIDIA CUDA Deep Neural Network library (cuDNN),
[45], it was required to use the default LSTM layers configuration with the tanh
activation function, [10]. The network training was split into 3 stages of 150 epochs,
as mentioned before. The network architecture remained identical to the network
shown in fig. 5.12 and 150 distributions of previous time instants were used by
the network. The utilization of the GPU-accelerated library, cuDNN, resulted in
the decrease of the total training cost to 1 hour (compared to 1.6 hours without
cuDNN).

The resulted network predictions, fig. 5.19, at the probe (50th) node, improved,
compared to the previous case. The average MAE of the predicted time-series is
1.4× 10−3m/s. The predictions of the LSTM network are accurate and the network
was able to reconstruct the velocity time-series. As long as the blood inflow is
computed from a periodic function, the network performance is independent of the
equation from which it is computed. Besides that, the network architecture and

50

Figure 5.11: Prediction Procedure presented at time step tstep = j. The network
used its own prediction at tstep = j as input for prediction at tstep = j + 1.

Figure 5.12: The LSTM network architecture. The network consists of the LSTM
part, a flatten layer and the dense part. The number of artery nodes is called features
of the network. The network was presented with the 150 preceding instantaneous flow
solutions.

51

Figure 5.13: The 150 steady state distributions as initial input to the LSTM network
(orange), the prediction of the network (blue), and the time-series generated by the
1DAS software (green/thin). All curves are plotted at the probe (50th) node.

the training procedure remained unchanged in this case. Consequently, the increase
in the prediction accuracy is related to the implementation of the tanh activation
function.

5.4 Varying Artery Wall Thickness

In this case, a weakening spot on the artery wall was introduced by varying the
thickness of the wall along the length of the artery. Hence, besides the changes
made in the previous case, the wall thickness distribution was parameterized and
varied.

5.4.1 Parameterization and Training Dataset Creation

The wall thickness distribution curve was arbitrary selected and was parameterized
using a Bezier curve with 7 CPs, as well. The parameterization procedure of the
distribution was similar to the parameterization of the starting artery shape. A
constant curve of thickness equal to hs = 1mm was utilized as an initialization for

52

Figure 5.14: The results for a different starting artery shape (A0). All curves are
plotted at the probe (50th) node.

the procedure. The first and last CPs were fixed at 15% and 85% of the artery
length, while the rest of them were evenly distributed between them. The thickness
of the wall at the inlet was equal to the one at the outlet and, thus, the first and
the last CPs had the same ordinate. The rest of the nodes had the same ordinate
as the first and last CPs. By varying hs by ±20%, new CPs emerged. In order to
simulate a bulge, the ordinate of the intermediate CP was multiplied by the factor
0.5, which varied up to −20%.

By varying the CPs of the Bezier curves that parameterized the thickness distri-
bution and the starting shape of the artery, a dataset was generated, fig. 5.20.
It consisted of 18 arteries for the training and 2 arteries for the evaluation of the
network.

The set of the velocity profiles made up the dataset used by the network during the
training procedure, 5.21.

A run with the CPs of initial cross-sectional area and thickness distributions in
their reference position was performed, as shown in fig. 3.4. In order to showcase
the results of the 1DAS software, 3D plots were created, fig. 5.22. The initial
cross-sectional area can be seen. The elastic walls of the vessel adapted themselves
to the evolving pressure and the constant bloodflow, in the first phase. The artery
inflated and deflated, in the second phase, following the pulsatile action of the heart,

53

Figure 5.15: The pressure time-series in the probe (50th) node.

which was provided by the blood flow time-varying form. The velocity distributions
followed the aforementioned pattern. In the first phase, the transition area and the
steady state area can be highlighted. In the second phase, velocity monitored the
pulsatile action, as well. The waves propagated through the artery.

5.4.2 Network Training and Results

In order to provide the network with more information, the thickness distributions
and the starting artery shapes were utilized as network inputs. The network was
presented with the 150 velocity distributions of previous time instants in conjunction
with the starting shape and the wall thickness distribution of each artery. In total,
152 distributions were fed as input. The input layer of the network was modified
to adapt to the new input dimension of 152 distributions. The training procedure,
as well as the training cost, were identical to the previous case. Results, fig. 5.23,
confirm that the network is capable of reconstructing, accurately, the velocity time-
series. The average MAE of the predicted time-series is 1.8× 10−3m/s.

54

Figure 5.16: The predicted pressure time-series of a, not seen by the network, artery
in the probe (50th) node.

Figure 5.17: The digitized waveform of Qinlet (blue) and the Bezier Curve (orange).

5.4.3 Alternative Training and Results

In order to test the capabilities of the network, it was trained, with the same dataset,
to predict the velocity distributions without being presented with either the starting55

Figure 5.18: Velocity time-series at the probe (50th) node. The physiological Qinlet
was used as the unsteady inlet flowrate profile after the first 4.5s (black vertical line
corresponds to the beginning of the second phase).

Figure 5.19: The predictions, of two not seen by the network, artery shapes. All
curves are plotted at the probe (50th) node.

shape of the artery or the thickness distribution. The results were very accurate,
fig. 5.24, since it was able to reconstruct the velocity time-series only by presenting

56

Figure 5.20: The 20 starting shapes of the arteries and the corresponding thickness
distributions.

it with the 150 initial distributions. The average MAE of the LSTM predictions is
1.2 × 10−3m/s. These 150 distributions contained the necessary information, and
the network was able to map the correlation between them and the 2, not presented
to it, distributions. Note that, the initial cross-sectional area of the artery and the
thickness distribution along it, in terms of A0 and h, appeared in eqs. (3.5) and
(3.6).

5.5 Optimization of LSTM Input and Architec-

ture

In order to decrease the network training cost, it was required to reduce the size
of the matrices, used during the training. One dimension of the training matrix
is the number of distributions that the network was presented with, nsteps. This
number encodes the information of the number of preceding distributions needed
for the prediction of the following distribution, by the LSTM. In an effort to reduce
this number, it was necessary to search the dependency of the current prediction to
the number of preceding ones. Thus, a statistical method, called Auto-Correlation
(AC), was utilized to find the optimal nsteps.

57

Figure 5.21: Velocity time-series at the probe (50th) node. The thickness of the wall
varied along the artery.

Figure 5.22: The cross-sectional area and velocity distributions generated by the
1DAS software.

AS correlates a time-series to a delayed copy of itself, in different time intervals (time-
lags), by computing the Pearson correlation coefficient, [46]. As the AS coefficient of
a specific time-lag is increased, the more the current value is influenced by the values
in these preceding time intervals. For instance, if the temperature is high today, it
is more likely to be high tomorrow than to be high in one month. The AS coefficient

58

Figure 5.23: The predictions of two, not seen by the network, artery shapes and wall
thickness distributions. The network is presented with the starting artery shape and
the wall thickness distribution. All curves are plotted at the probe (50th) node.

Figure 5.24: The predictions of two, not seen by the network, artery shapes and wall
thickness distributions. The network was presented with only 150 initial distributions.
All curves are plotted at the probe (50th) node.

in 1 time-lag (1 day) is higher than that in 30 time-lags (1 month). Account, also,
for the fact that the temperature of today is influenced by the temperature of the
same day one year ago (365 day - 365 time-lags). The AS computes the correlation
between not only adjacent and near-adjacent values but all delayed values.

Following the example, the temperature of today is mostly affected by the temper-
atures of yesterday and the day before yesterday. Nevertheless, the temperature

59

of yesterday is also influenced by the temperature on the day before yesterday. AS
takes account the influence coming from the day before yesterday directly or through
yesterday. The removal of this indirect impact is performed with another statisti-
cal method, the Partial Auto-Correlation (PAC). PAC correlates a time-series to a
delayed copy of itself but the values of the time series are regressed in all shorter
time-intervals.

Both AC and PAC methods were programmed in a PYTHON code. The velocity
time-series in the (50th) probe node was used for presenting the results, fig. 5.25.
The peaks of AC factor in multiples of period time steps (375) indicate the periodic
form of the time-series. The PAC plot shows statistical significance for ∼ 60 lags
and, thus, nsteps set equal to 60.

Figure 5.25: AC (middle) and PAC (bottom) in the velocity time-series (top). Ver-
tical black line correspond to periods.

Subsequently, SHERPA, [47], was used for optimizing the LSTM architecture. It is
a PYTHON library for optimizing hyperparameters of ML models. The Population
Based Training, as introduced in [48], was utilized for optimizing the number of
neurons in each layer. The population size and the maximum number of generations
were set to 5 and 30, respectively. The perturbation factors were 0.8 and 1.2, as
well. The range of the design variables of the optimization algorithm, number of
neurons, was between 50 and 250. The optimization objective was to minimize the
MAE between the predicted distributions and the distributions generated by the
1DAS. During the optimization, the network was trained for, only, 100 epochs. The
nstepswas equal to 60 and 18 arteries were used. The optimization took ∼ 13.5 hours

60

on the NVIDIA 1050 GPU. The optimal numbers of neurons for the first and the
second LSTM layers were 108 and 128, respectively. 196 neurons for the dense layer
were the optimal number, according to SHERPA.

The network, with the optimal number of neurons and the nsteps, determined by the
PAC, was retrained with the dataset of the previous case study. The training of
the network became less time-consuming and memory-demanding, since the input
matrix size decreased. The MAE of the optimized LSTM prediction is 1×10−3m/s,
fig. 5.26. The training cost decreased to 36 mins and the results were very satisfying,
as well.

Figure 5.26: The prediction of two, not seen by the optimized network, velocity
time-series at the probe (50th) node. The network input of 60 distributions.

61

62

Chapter 6

Prediction of Scalar Fields with

λ-DNNs

Following the previous applications, another type of DNN, the λ-DNN was utilized
for predicting flows. Its name comes from the Greek letter λ. The λ-DNN was
used for predicting aerodynamic flows in two cases, by presenting it with the nodal
coordinates and the case related data. The goal of the network was to reconstruct
entire flow fields by making predictions node by node. In the last case, the network
was used in a multi-disciplinary analysis, by replicating one of the disciplines. The
network was called to predict entire temperature distributions along the contour of
an internally cooled blade.

6.1 Network Architecture

The λ-DNN was proposed and presented in [49] and [50], by the PCOpt/NTUA
group (including the author). It utilized the architecture of multi-branch DNNs, [51]
and [52]. This architecture, fig. 6.1, was based exclusively on fully-connected layers
and comprises branches for each type of input. The number of layers per branch
usually varied in each case, depending on the type of input, and it was selected
after some trial and error and literature review. The output of the branches was
fed (concatenation) to another network, the core network, whose output was also
considered to be the output of the total DNN. The number of layers and neurons of
the core network was selected as in the branches. Two types of input were usually
presented to the network, the nodal coordinates of the body shape to be designed
and the case related data.

63

Figure 6.1: The λ-DNN architecture. The name comes from the Greek letter λ, due
to its multi-branch shape. From [50]

The advantages of the multi-branch network structure were that, due to the smaller
number of synaptic weights (compared to a fully connected network), it was less
prone to over-fitting, while at the same time achieving more accurate results. In
addition, it had the ability to predict either nodal quantities or whole fields. Its
structure was superior to a corresponding convolutional network, [53] and [54], in the
prediction of unstructured grid fields. Unlike the implementations of the CNNs, the
λ-DNN inputs were independent to the connectivity between the nodes. The multi-
branch architectures allowed convergence to global solutions, during the network
training, due to the fact that they are less non-convex (less local minima), [55].

6.2 Applications

6.2.1 Prediction of Flow Around an Isolated Airfoil

The goal of the λ-DNN was to reconstruct the 2-D pressure distribution around an
isolated airfoil. The network was called to predict the nodal pressure by presenting
it with the coordinates of the corresponding node and the coordinates of the airfoil
contour.

64

Network Architecture

The network of this case consisted of two branches for the two different inputs, 6.2.
The branch of the nodal coordinates consisted of 4 layers with 128, 256, 256 and 128
neurons respectively. The branch with the case related data as input had 3 layers
with 128, 256 and 128 neurons. The core network had 3 layers with 128, 256 and
128 neurons, as well. The ReLU activation function was used in all but the last
layer which used the sigmoid function.

Figure 6.2: The λ-DNN architecture. It consists of two branches, for each type of
input. The number below each layer indicates the number of neurons. The number of
nodal coordinates and the parameterization control points vary between the cases.

In order to evaluate the λ-DNN architecture capabilities, it was compared with a
Fully-Connected Network (FCNN). For a fair comparison, the architecture of FCNN
was selected with the trial and error method, as well. The networks compared with
their best possible results and not in the manner of the architecture similarity (same
number of trainable parameters). The architecture comprised 4 fully-connected
layers with 512, 312, 256 and 56 neurons. Input to the FCNN were both the airfoil
nodes and the coordinates. Its activation function was the same as the λ-DNN.

Training Dataset Creation and Network Training

In order to create the training dataset, the airfoil shape was parameterized using
two Bezier curves, with 6 CPs each, for the pressure and the suction side. The first
and the last CPs were constant (leading and trailing edges). Their ordinates varied
by ±20% and 280 airfoil shapes were generated. Only 180 shapes were utilized for
the network training while the rest were used as an evaluation dataset, fig. 6.3. For
each airfoil shape, different unstructured grids with ∼ 10K nodes were generated.

65

The software PUMA, [56], was used for solving the Reynolds-Averages Navier-Stokes
equations. The flow was inviscid with free-stream Mach number M∞ = 0.62 and
flow angle a∞ = 2.7◦. It took ∼ 10sec on a K20 GPU to solve the flow around the
airfoil.

Figure 6.3: The airfoils used for the training (blue) and the validation of the network
(red). The boundaries denote the outer airfoils of each dataset.

Since the λ-DNN predicted the pressure at each node, the dataset consisted of the
nodal pressure values of each airfoil shape. The number of training patterns was the
product of the nodes (∼ 10K) and the number of the airfoil shapes or flow fields
generated by PUMA software (180). The network training for each network (λ-DNN
and FCNN) took 2.5hours on a single K20 GPU.

Results

The network was evaluated using the 100 flow fields not seen by the network during
its training. It was called out to predict the pressure value at each node given the
corresponding coordinates and the contour coordinates. The results, fig. 6.4, were
compared to the PUMA software results and the FCNN predictions. The λ-DNN
was able to reconstruct accurately the pressure field around the arfoil. The MAPE
of the λ-DNN results was 0.36% compared to the FCNN’s that was equal to 0.50%.
The multi-branch architecture of the proposed network outperformed the classic
fully-connected one.

6.2.2 Prediction of Pressure Distribution in a Francis Tur-

bine Runner

Inhere, the λ-DNN with the aforementioned architecture adjusted to this case, was
trained to predict the pressure distribution on the surface of an inlet guide vane of a

66

Figure 6.4: Pressure fields constructed by the λ-DNN (middle) and FCNN (bottom)
are compared to those generated by the PUMA software (top). Two airfoils were not
seen by the network during its training.

Francis runner, fig. 6.5. The network input consisted of the nodal coordinates and
the design variables that parameterize the runner.

Figure 6.5: The runner of the Francis water turbine.

Training Dataset Creation and Network Training

The flow was turbulent with inlet total pressure Pt,inlet=261Pa, inlet angles a=20.2o

and b= 90o, outlet static pressure Poutlet=92Pa and rotation speed 1652RPM . The

67

runner geometry was parameterized using the GMTurbo software, [57]. In order to
create the training patterns, 16 design variables varied by ±10%. These variables
correspond to the span-wise distributions of quantities parameterizing the camber
surface. For every runner an unstructured grid was generated with ∼ 1.2M nodes,
while the number of the surface nodes was ∼ 10K. The solution of each field took
∼ 40min on a K40 GPU. In total, 31 flow fields were generated by the PUMA
software; 30 out of them were used by the network during its training. Since the
runner was 3-D, the input consists of the 3 nodal coordinates and the 16 design
variables. The input layer was adjusted to be presented with the input matrices,
fig. 6.2. The network training took ∼40min on a single K20 GPU.

Results

The network predictions were compared to the surface pressure distributions gener-
ated by the PUMA software. One new, not seen by the network, runner constituted
the evaluation dataset in order to test the network performance, fig. 6.6.

Figure 6.6: Surface pressure distribution on a, not seen by the network, runner
generated by CFD (left) and predicted by λ-DNN (right).

The results, with MAPE equal to 3%, are more than satisfying, considering the
number of runners used for the training. Note that the network architecture was
the same, aforementioned, architecture and it was able to reconstruct the surface

68

pressure distribution accurately. The proposed network architecture was capable of
outperforming a typical fully-connected network and,in fact, it can be utilized in
other applications with an almost identical architecture.

6.2.3 Prediction of the Temperature Field in a CHT Prob-

lem

CHT analysis

Since gas turbine engines are designed to operate in high inlet temperatures, it is
required to cool the parts, that are in contact with the hot gas, flowing through it. By
incorporating cooling techniques, such as air passage or film cooling, in the blades,
the thermal load is decreased, and their lifetime is expanded. In order to study and
optimize the thermal behaviour of the structural elements, simulations are necessary,
utilizing modern CFD software capabilities. For instance, in the thermal design of a
2-D turbine blade, a CFD solver, that computed the flow around the blade, coupled
with a heat conduction solver, that solved the heat conduction equations over the
solid blade, can be utilized. If these solvers/computations are decoupled, many
iterations are required for an accurate solution. In the case that the codes are
coupled, they solved the equations simultaneously, exchanging information over the
adjacent boundary. The communication/interaction (Fluid-Structure Interaction -
FSI) between the two solvers of the equations, during the iterative solving, increases
the demand of resources (time and computational power). Inhere, a coupled multi-
disciplinary simulation, known as Conjugate Heat Transfer(CHT), was performed.

The internally cooled C3X cascade was used for the CHT analysis, [58]. The turbine
blade was cooled by 10 radial channels. The location of these channels with circular
cross-sections was fixed, as well as their diameters. The solid domain of the blade
was in contact with a flow domain around it, fig. 6.7. The blade is made out from
stainless steal and its density was equal to ρ=7900kg/m3 and the heat capacity was
equal to C = 586.15J/kgK. The thermal conductivity was a linear function of the
blade temperature and it was defined as k=6.811 + 0.020716T , [58].

In order to analyse a design in a CHT problem, it was necessary to solve the flow
equations over the flow domain and the heat conduction equation, over the adjacent
solid one. The fluid solver provided the computed heatflux distribution, over the
interface of the domains (i.e. the blade contour), to the heat conduction solver. The
heat conduction solver exchanged back the temperature distribution of the solid
domain. The goal of the λ-DNN was to replicate the numerical solver of the heat
conduction equation by predicting the temperature distribution by presenting it
with the heatflux one and the coordinates of the blade contour.

69

Figure 6.7: The turbine blade with 10 cooling channels in 3D (left) and in plot
(right). Note that the run was 2-D. From [50].

Dataset Creation, Network Training and Architecture

Each discipline was resolved and the solvers provided boundary conditions, over
their interface, to each other. For the fluid domain, the PUMA software solved the
Reynolds-Averaged Navier-Stokes equations with the k−ω SST turbulence model,
[59]. The hot gas flow had inlet total pressure pIt = 243700Pa, inlet total tempera-
ture T It = 800K, and outlet static pressure pO = 142530Pa. For the solid domain,
PUMA software was utilized as the solver of the heat conduction equation, as well.
The Neumann boundary conditions along the contour of each cooling channel were
computed by the defined corresponding coolant temperatures and flowrates.

In order to generate training and validation patterns, the airfoil contour was pa-
rameterized with volumetric NURBS, fig. 6.9. A 7×3 control grid was created with
21 CPs. The CPs at the leading and trailing edges remained fixed while the rest
19 CPs varied, in both directions, ±5% of their reference position. Both domains
were discretized using a grid of ∼312K nodes. ∼183K nodes were used for the flow
domain while ∼129K were used for the solid domain, fig. 6.8. The solution of this
problem took ∼ 15min on a V100 GPU. 162 geometries were created and used by
the CHT solver.

Two types of inputs were presented to the network, the coordinates of the blade
contour and the distribution of heatflux along the interacting boundary, between
the fluid and the solid domain. The λ-DNN of fig. 6.2 and a modified version of it
were used in this case. The modified version of λ-DNN was presented in [50] and its
both branches consisted of 1 layer of 64 neurons while the core network had 1 layer
of 128 neurons. Note that, in this case, the networks predicted the entire field, in
comparison to the previous cases. For comparison, a FCNN network with 2 layers
with 128 neurons was trained, as well. The input presented to the FCNN was a
concatenated form of the one presented to the λ-DNN.

70

Figure 6.8: The flow domain of the blade. From [60]. Note that the run inhere was
2-D.

Figure 6.9: The CPs of the volumetric NURBS parameterizing the blade. CPs at
the leading and trailing edges were fixed (black). From [50].

The network was trained to predict the temperature distribution along the contour
of the blade by presenting it with the contour coordinates (x, y) and the distribution
of heatflux. Since the number of FSI nodes was equal to 446, the input comprised
3× 446 = 1338 values. The training cost was ∼ 30min on the V100 GPU, as well.

Results and K-Fold Cross-Validation

The λ-DNN was trained in the manner of replicating the heat conduction solver
in every CHT cycle. Two geometries, not seen by both networks, were used for
validating their prediction capabilities. One of them is shown in fig. 6.10. The
average MAPE was 0.18% for the modified λ-DNN 0.30% for the λ-DNN presented
in the previous cases, and 1.52% for the FCNN proving the superiority of the λ-DNN.

71

Figure 6.10: The temperature distribution (prediction) of one, not seen by the net-
works, blade. The results from the λ-DNN (previous cases) (left), the modified λ-DNN
from [50] (middle) and from the FCNN (right).

In order to validate that the network performance was not influenced by the selection
of the training and validation dataset, a 16-fold cross-validation, [61], was performed.
The dataset of 160 geometries was split into 16 folds with 10 patterns each. For
each unique group of patterns (fold), a fold was taken as a validation dataset. The
remaining folds were utilized during the network training as training patterns. Its
performance was evaluated on the validation dataset each time by computing the
MAPE and, then, the model was discarded. The total MAPE of the cross-validation
procedure was computed by averaging the MAPE computed for each fold. The
mean value of the computed MAPEs was 0.19% with standard deviation 0.024%.
Considering that only 150 geometries were used for the training, the results showcase
the capabilities of the network and the randomness in the selection of the training
patterns.

Optimization

In order to validate the prediction capabilities of the modified λ-DNN and its ability
to replicate the heat solver of the CHT analysis, an optimization procedure was
conducted by another author of [50]. The modified λ-DNN is referred as λ-DNN for
the optimization section. It is presented shortly, only for demonstrating the current
work (DNN training). Further description of this optimization procedure can be
found in [50]. The in-house stochastic evolutionary algorithm software, EASY, [62],
was utilized for the optimization.

Two optimization objectives were selected. The goals of the optimization were to
minimize the mass-averaged total pressure losses between the inlet and outlet of the
fluid domain (F1) and, to minimize the maximum temperature on the solid blade
(F2). Two runs were performed. In the first run (Run1), λ-DNN acted as a surrogate
model for the heat conduction equation solver, providing the fluid solver with the
temperature distributions along the blade contour. In the second run (Run2), the
CHT analysis was conducted exclusively on the PUMA software. The total compu-
tational cost for both optimization runs was the same. The design variables were

72

the 19 varying CPs, parameterizing the blade contour. The optimization results, fig.
6.11, showcase that the λ-DNN was capable of replicating the heat equation solver
and cooperating with the PUMA RANS solver for optimizing the blade design. The
Run1 front is dominant to the Run2 one.

Figure 6.11: The front of non-dominated solutions of the two runs. From [50].

73

74

Chapter 7

Conclusion

7.1 Overview

In this diploma thesis, two types of DNNs, the LSTM network and the λ-DNN were
utilized for predicting flows.

A CFD software, referred as 1DAS, was created, for computing quasi-1D time-
varying blood flows. A 1D human artery was modelled with varied initial artery
shapes and wall thickness distributions along it. The software, by taking these
distributions into account and other artery and blood parameters, numerically solved
a system of equations and generated velocity, cross-sectional area and pressure time-
varying longitudinal distributions.

Before utilizing the LSTM networks for predicting biological flows, two benchmark
cases were perfomed for validating their capabilities in predicting periodic and time-
varying distributions. The concept was that the network could predict the following
value of a function by presenting it with preceding ones. The networks, accurately,
reconstructed the desired distribution with presenting it with the previous values.
In fact, in the first case, the network was presented, in addition to the preceding
values, with the values of parameters that varied between each training pattern (i.e.
parameterization of distribution to be predicted).

Then, the network was called to reconstruct the velocity time-varying distributions
in the quasi-1D arterial flow problem. A simplified blood inflow time-series was
utilized, in the first case, and later was replaced by a realistic one. In each case,
the initial cross-sectional area and the wall thickness distributions varied along the
artery, and the training patterns were generated. Note that the network fed back its
predictions to itself and utilized them as input for future predictions. The results
showcased that the LSTM network is capable of reconstructing velocity distributions

75

along the artery by presenting it with preceding distributions of the same quantity.
An optimization of the LSTM network input and architecture was performed and,
thus, the training cost was decreased, without affecting the accurate predictions.

Lastly, another type of DNN, the λ-DNN was used for predicting flows. In the
first case, the network reconstructed the pressure field around an isolated airfoil by
predicting the pressure value at each node. The network was presented with the
nodal coordinates and the coordinates of the airfoil contour. In the second case, the
network reconstructed the pressure distribution on the surface of a France runner.
The input of the network consisted of the nodal coordinates and the parameters that
define the geometry. In the third and last case, the network was utilized in a multi-
disciplinary problem, the CHT problem, based on an internally cooled blade. The
goal of the λ-DNN was to replicate the heat equation solver in the CHT analysis. In
each cycle, the network was presented with the blade contour coordinates and the
heatflux distribution along its contour and, predicted the temperature distribution
along the same contour. An optimization, that utilized the λ-DNN predictions, was
presented, as well.

7.2 Conclusions

By completing the studies conducted in this diploma thesis, the following conclusions
are drawn:

1. Both types of DNNs, used to predict flow field (by replacing CFD runs), are
capable of making accurate predictions.

2. The LSTM networks are capable of predicting sequential data, demonstrated
in the case of biological time-varying flows. They can extract information con-
tained in the preceding values or distributions of a quantity and make accurate
predictions of the following ones. Since they may feed back their prediction to
themselves, they utilize very limited pieces of information. In the biological
flows, the initial distributions provided to the LSTM network include the in-
formation of the varying initial arterial shape and the wall thickness. Since the
blood inflow is constant in each training pattern, there is no need to present
the network with more information about the parameterization. Their main
advantage is that their prediction depends exclusively on the previous states of
the predicting quantity. Statistical methods can be used to optimize the net-
work input consisting of sequential data and, with the addition of architecture
optimization, the training cost can be further decreased.

3. The λ-DNN is capable of predicting aero/hydrodynamic flows. The network
reconstructs, accurately, the entire fields, by making predictions node by node,
and by presenting it with the coordinates and case related data. The low
number of flows used as training patterns showcase the accurate performance

76

of this architecture.

4. The λ-DNN architecture is capable of replicating a disciplines into a multi-
disciplinary analysis, CHT, as well. The network predicts the entire tem-
perature field by providing with the corresponding input. In addition to the
accurate predictions, the network is exploited in an optimization procedure,
with a stochastic evolutionary algorithm. The front of the optimization us-
ing the λ-DNN dominates the one which used the CHT software. Thus, the
λ-DNN architecture can be exploited in CHT optimization by replicating one
discipline and, thus, decreasing the total cost of the procedure.

7.3 Future Work Proposals

Based on the implementation of the DNNs in CFD, the following future works are
proposed:

1. The LSTM can further be incorporated in predicting biological flows. A more
expensive dataset can be generated (i.e. time- and resources-consuming data
generation), containing data from 3D flows. Since the network yields high
prediction of sequential data with little information about the case related
data, it can be further exploited in micro-scale study of human deceases.

2. The LSTM can further be incorporated in other CFD problems, as well. In
unsteady runs of CFD software, the demand of computational resources is very
high. Thus, the LSTM network can be utilized in predicting unsteady flows,
by presenting it with the preceding ones.

3. More types of DNNs can be exploited in predicting CFD flows. For instance, by
incorporating the λ-DNN into a GAN network, the predictions could be further
improved in accuracy. In fact, λ-DNN could replace the typical generator of a
GAN network.

4. The λ-DNN can replicate other, or more, disciplines, in a multi-disciplinary
problem.

77

78

Bibliography

[1] Wu, Y., , and et al.: Google’s neural machine translation system: Bridging the
gap between human and machine translation. CoRR, abs/1609.08144, 2016.
http://arxiv.org/abs/1609.08144.

[2] Apple Inc.: Using apple watch for arrhythmia detection, 2020. https:

//www.apple.com/healthcare/docs/site/Apple_Watch_Arrhythmia_

Detection.pdf.

[3] Bhalla, A., Nikhila, M. S., and Singh, P.: Simulation of self-driving car using
deep learning. In 2020 3rd International Conference on Intelligent Sustainable
Systems (ICISS), pages 519–525, 2020.

[4] Daley, J.: A.I. Mastered Backgammon, Chess and Go. Now It Takes On Star-
Craft II, October 2019. https://bit.ly/2SglD4d, [Online; accessed 01-June-
2021].

[5] Whitwam, R.: DeepMind AI Challenges Pro StarCraft II Players, Wins Almost
Every Match, January 2019. https://bit.ly/3w01DBM, [Online; accessed 01-
June-2021].

[6] Vinyals, O. and et al.: Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, October 2019. https://

doi.org/10.1038/s41586-019-1724-z, 10.1038/s41586-019-1724-z.

[7] Ben Khalifa, R., Yahia, N., and Zghal, A.: Integrated neural networks approach
in cad/cam environment for automated machine tools selection. Journal of
Mechanical Engineering Research, 2:25–38, April 2010.

[8] Samanta, B.: Gear fault detection using artificial neural networks and
support vector machines with genetic algorithms. Mechanical Systems
and Signal Processing, 18(3):625–644, 2004, ISSN 0888-3270. https:

//www.sciencedirect.com/science/article/pii/S0888327003000207,
https://doi.org/10.1016/S0888-3270(03)00020-7.

[9] Hosoz, M., Ertunc, H.M., and Bulgurcu, H.: Performance prediction
of a cooling tower using artificial neural network. Energy Conver-
sion and Management, 48(4):1349–1359, 2007, ISSN 0196-8904. https:

79

http://arxiv.org/abs/1609.08144
https://www.apple.com/healthcare/docs/site/Apple_Watch_Arrhythmia_Detection.pdf
https://www.apple.com/healthcare/docs/site/Apple_Watch_Arrhythmia_Detection.pdf
https://www.apple.com/healthcare/docs/site/Apple_Watch_Arrhythmia_Detection.pdf
https://bit.ly/2SglD4d
https://bit.ly/3w01DBM
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://www.sciencedirect.com/science/article/pii/S0888327003000207
https://www.sciencedirect.com/science/article/pii/S0888327003000207
https://www.sciencedirect.com/science/article/pii/S0196890406003165
https://www.sciencedirect.com/science/article/pii/S0196890406003165

//www.sciencedirect.com/science/article/pii/S0196890406003165,
https://doi.org/10.1016/j.enconman.2006.06.024.

[10] Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[11] Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Net-
works, 61:85–117, January 2015. https://doi.org/10.1016/j.neunet.2014.
09.003, 10.1016/j.neunet.2014.09.003.

[12] Wang, B and Wang, J.: Application of artificial intelligence in compu-
tational fluid dynamics. Industrial & Engineering Chemistry Research,
60(7):2772–2790, 2021. https://doi.org/10.1021/acs.iecr.0c05045,
10.1021/acs.iecr.0c05045.

[13] Guo, X., Li, W., and Iorio, F.: Convolutional neural networks for steady flow
approximation. In 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 481–490, New York, USA, 2016.

[14] Li, Y., Chang, J., Kong, C., and Wang, Z.: Flow field reconstruction and pre-
diction of the supersonic cascade channel based on a symmetry neural network
under complex and variable conditions. AIP Adv., 10(6):065116, 2020.

[15] Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., and Kaushik, S.: Prediction
of aerodynamic flow fields using convolutioanl neural networks. 64:525–545,
2019.

[16] Wu, H., Liu, X., An, W., Chen, S., and Lyu, H.: A deep learning
approach for efficiently and accurately evaluating the flow field of super-
critical airfoils. Computers & Fluids, 198:104393, 2020, ISSN 0045-7930.
https://doi.org/10.1016/j.compfluid.2019.104393.

[17] Giannakoglou, K.: Design of optimal aerodynamic shapes using stochastic opti-
mization methods and computational intelligence. Prog. Aerosp. Sci., 38(1):43–
76, 2002.

[18] Karakasis, M. and Giannakoglou, K.: On the use of metamodel-assisted, multi-
objective evolutionary algorithms. Eng. Optim., 38(8):941–957, 2006.

[19] Kapsoulis, D.: Low-Cost Metamodel-Assisted Evolutionary Algorithms with Ap-
plication in Shape Optimization in Fluid Dynamics. PhD thesis, National Tech-
nical University of Athens, Athens, 2020.

[20] Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90,
May 2017. https://doi.org/10.1145/3065386, 10.1145/3065386.

[21] Passricha, V. and Aggarwal, R. K.: Convolutional neural networks for raw
speech recognition. In From Natural to Artificial Intelligence - Algorithms

80

https://www.sciencedirect.com/science/article/pii/S0196890406003165
https://www.sciencedirect.com/science/article/pii/S0196890406003165
http://www.deeplearningbook.org
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1021/acs.iecr.0c05045
https://doi.org/10.1145/3065386

and Applications. IntechOpen, December 2018. https://doi.org/10.5772/

intechopen.80026.

[22] Amato, F. and et al.: Artificial neural networks in medical diagnosis. J Appl
Biomed, 11:47–58, December 2013. 10.2478/v10136-012-0031-x.

[23] Gatys, L. A., Ecker, A. S., and Bethge, M.: A neural algorithm of artistic style,
2015.

[24] Haykin, S.: Neural networks and learning machines. Prentice Hall/Pearson,
New York, 2009, ISBN 978-0131471399.

[25] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations
by back-propagating errors. Nature, 323(6088):533–536, October 1986. https:

//doi.org/10.1038/323533a0, 10.1038/323533a0.

[26] Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization. In
Bengio, Yoshua and LeCun, Yann (editors): 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. http://arxiv.org/abs/1412.6980.

[27] Duchi, J., Hazan, E., and Singer, Y.: Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12:2121–2159, July 2011.

[28] Tieleman, T. and Hinton, G.: Lecture 6.5—RmsProp: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 2012.

[29] Hochreiter, S. and Schmidhuber, J.: Long short-term memory. Neural Com-
putation, 9(8):1735–1780, November 1997. https://doi.org/10.1162/neco.

1997.9.8.1735, 10.1162/neco.1997.9.8.1735.

[30] Sak, H., Senior, A., and Beaufays, F.: Long short-term memory recurrent neu-
ral network architectures for large scale acoustic modeling. Proceedings of the
Annual Conference of the International Speech Communication Association,
INTERSPEECH, pages 338–342, January 2014.

[31] Graves, A. and et al.: A novel connectionist system for unconstrained handwrit-
ing recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 31(5):855–868, 2009. 10.1109/TPAMI.2008.137.

[32] Abadi, M. and et al.: TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. http://tensorflow.org/, Software available from ten-
sorflow.org.

[33] Sherwin, S.J., Franke, V., Peiró, J., and Parker, K.: One-dimensional
modelling of a vascular network in space-time variables. Journal
of Engineering Mathematics, 47(3/4):217–250, 2003, ISSN 0022-0833.
10.1023/b:engi.0000007979.32871.e2.

81

https://doi.org/10.5772/intechopen.80026
https://doi.org/10.5772/intechopen.80026
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
http://arxiv.org/abs/1412.6980
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://tensorflow.org/

[34] Raines, J. K., Jaffrin, M. Y., and Shapiro, A. H.: A computer simu-
lation of arterial dynamics in the human leg. Journal of Biomechan-
ics, 7(1):77–91, January 1974. https://doi.org/10.1016/0021-9290(74)

90072-4, 10.1016/0021-9290(74)90072-4.

[35] Quarteroni, A. and Formaggia, L.: Mathematical modelling and numerical
simulation of the cardiovascular system. In Computational Models for the
Human Body, volume 12 of Handbook of Numerical Analysis, pages 3–127.
Elsevier, 2004. https://www.sciencedirect.com/science/article/pii/

S1570865903120017.

[36] Shapiro, A. H.: Steady flow in collapsible tubes. Journal of Biomechanical Engi-
neering, 99(3):126–147, August 1977. https://doi.org/10.1115/1.3426281,
10.1115/1.3426281.

[37] Reuderink, P.J., Hoogstraten, H.W., Sipkema, P., Hillen, B., and Wester-
hof, N.: Linear and nonlinear one-dimensional models of pulse wave trans-
mission at high womersley numbers. Journal of Biomechanics, 22(8-9):819–
827, January 1989. https://doi.org/10.1016/0021-9290(89)90065-1,
10.1016/0021-9290(89)90065-1.

[38] Hirsch, Ch: Numerical computation of internal and external flows. Wiley, Chich-
ester England New York, 1988, ISBN 978-0-471-92452-4.

[39] Westerhof, N., Lankhaar, J., and Westerhof, B. E.: The arterial windkessel.
Medical & Biological Engineering & Computing, 47(2):131–141, June 2008.
https://doi.org/10.1007/s11517-008-0359-2, 10.1007/s11517-008-0359-2.

[40] Heller, D.: Direct and iterative methods for block tridiagonal linear systems.
1977.

[41] Anliker, M., Rockwell, R. L., and Ogden, E.: Nonlinear analysis of flow pulses
and shock waves in arteries. Zeitschrift für angewandte Mathematik und Physik
ZAMP, 22(2):217–246, March 1971. https://doi.org/10.1007/bf01591407,
10.1007/bf01591407.

[42] Engineering ToolBox: Dynamic viscosity of some common liquids., 2008.
https://www.engineeringtoolbox.com/absolute-viscosity-liquids-d_

1259.html, [Online; accessed 01-March-2021].

[43] Maas, A. L., Hannun, A. Y., and Ng, A. Y.: Rectifier nonlinearities improve
neural network acoustic models. In in ICML Workshop on Deep Learning for
Audio, Speech and Language Processing, 2013.

[44] Nowak, M. and et al.: The protocol for using elastic wall model in modeling blood
flow within human artery. European Journal of Mechanics - B/Fluids, 77:273–
280, September 2019. https://doi.org/10.1016/j.euromechflu.2019.03.

009, 10.1016/j.euromechflu.2019.03.009.

82

https://doi.org/10.1016/0021-9290(74)90072-4
https://doi.org/10.1016/0021-9290(74)90072-4
https://www.sciencedirect.com/science/article/pii/S1570865903120017
https://www.sciencedirect.com/science/article/pii/S1570865903120017
https://doi.org/10.1115/1.3426281
https://doi.org/10.1016/0021-9290(89)90065-1
https://doi.org/10.1007/s11517-008-0359-2
https://doi.org/10.1007/bf01591407
https://www.engineeringtoolbox.com/absolute-viscosity-liquids-d_1259.html
https://www.engineeringtoolbox.com/absolute-viscosity-liquids-d_1259.html
https://doi.org/10.1016/j.euromechflu.2019.03.009
https://doi.org/10.1016/j.euromechflu.2019.03.009

[45] Chetlur, S. and et al.: cudnn: Efficient primitives for deep learning. CoRR,
abs/1410.0759, 2014. http://arxiv.org/abs/1410.0759.

[46] Guthrie, W. F.: NIST/SEMATECH e-Handbook of Statistical Methods (NIST
Handbook 151). National Institute of Standards and Technology, 2020. https:
//www.itl.nist.gov/div898/handbook/.

[47] Hertel, L. and et al.: Sherpa: Robust hyperparameter optimization for machine
learning. SoftwareX, 2020. In press.

[48] Jaderberg, M. and et al.: Population based training of neural networks, 2017.

[49] Kontou, M., Kapsoulis, D., Baklagis, I., and Giannakoglou, K.: λ-DNNs and
Their Implementation in Aerodynamic and Conjugate Heat Transfer Optimiza-
tion. In Proceedings of the 21st EANN (Engineering Applications of Neural
Networks) 2020 Conference, pages 202–214. Springer International Publishing,
May 2020, ISBN 978-3-030-48790-4.

[50] Kontou, M., Kapsoulis, D., Baklagis, I., Trompoukis, X., and Giannakoglou,
K.: λ-DNNs and their implementation in conjugate heat transfer shape opti-
mization. Neural Computing and Applications, March 2021. https://doi.

org/10.1007/s00521-021-05858-2, 10.1007/s00521-021-05858-2.

[51] Aslani, S. and et al.: Multi-branch convolutional neural network for
multiple sclerosis lesion segmentation. NeuroImage, 196:1–15, 2019,
ISSN 1053-8119. https://www.sciencedirect.com/science/article/pii/

S105381191930268X, https://doi.org/10.1016/j.neuroimage.2019.03.068.

[52] Huu, T., Nguyen, D., Tsiligianni, E., Cornelis, B., and Deligiannis, N.: Multi-
view deep learning for predicting twitter users’ location. December 2017.

[53] Hennigh, O.: Automated design using neural networks and gradient descent.
October 2017.

[54] Guo, X., Li, W., and Iorio, F.: Convolutional neural networks for steady
flow approximation. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, August 2016.
https://doi.org/10.1145/2939672.2939738.

[55] Zhang, H., Shao, J., and Salakhutdinov, R.: Deep neural networks with multi-
branch architectures are intrinsically less non-convex. In AISTATS, 2019.

[56] Kampolis, I., Trompoukis, X., Asouti, V., and Giannakoglou, K.: CFD–based
analysis and two–level aerodynamic optimization on Graphics Processing Units.
Computer Methods in Applied Mechanics and Engineering, 199(9–12):712–722,
2010.

[57] Tsiakas, K.T., Gagliardi, F., Trompoukis, X.S., and Giannakoglou, K.C.: Shape
optimization of turbomachinery rows using a parametric blade modeller and the
continuous adjoint method running on GPUS. In ECCOMAS Congress 2016,

83

http://arxiv.org/abs/1410.0759
https://www.itl.nist.gov/div898/handbook/
https://www.itl.nist.gov/div898/handbook/
https://doi.org/10.1007/s00521-021-05858-2
https://doi.org/10.1007/s00521-021-05858-2
https://www.sciencedirect.com/science/article/pii/S105381191930268X
https://www.sciencedirect.com/science/article/pii/S105381191930268X
https://doi.org/10.1145/2939672.2939738

VII European Congress on Computational Methods in Applied Sciences and
Engineering, Crete, Greece, June 5-10 2016.

[58] Hylton, L. D. and et al.: Analytical and experimental evaluation of the heat
transfer distribution over the surfaces of turbine vanes. Technical report
19830020105, National Aeronautics and Space Administration (NASA), 1983.

[59] Menter, F.R., Kuntz, M., and Langtry, R.: Ten years of industrial experience
with SST turbulence model. Heat Mass Transf., 4:625–632, 2003.

[60] Karimi, M. S. and et al.: Robust optimization of the nasa c3x gas tur-
bine vane under uncertain operational conditions. International Jour-
nal of Heat and Mass Transfer, 164:120537, 2021, ISSN 0017-9310.
10.1016/j.ijheatmasstransfer.2020.120537.

[61] Hastie, T., Tibshirani, R., and Friedman, J.: The elements of statistical learn-
ing, second edition: data mining, inference, and prediction. Springer, 2016.

[62] The EASY (Evolutionary Algorithms SYstem) software,
http://velos0.ltt.mech.ntua.gr/EASY., 2008.

84

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Πρόβλεψη Ροών με Βαθιά Νευρωνικά Δίκτυα

Εκτενής Περίληψη Διπλωματικής Εργασίας

Ιωάννης Μπακλαγής

Επιβλέπων

Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2021

1

Τεχνητή Νοημοσύνη και Βαθιά Νευρωνικά Δίκτυα

Τις τελευταίες δεκαετίες ο τομέας της Τεχνητής Νοημοσύνης (ΤΝ) έχει γνωρίσει

μία ραγδαία ανάπτυξη εισχωρώντας βαθιά τόσο στην καθημερινή ζωή του ανθρώπου

όσο και στους βιομηχανικούς και ακαδημαϊκούς τομείς. Η ΤΝ έχει τη δυνατότητα να

ανιχνεύει μοτίβα μέσα σε πληθώρα δεδομένων, να λαμβάνει αποφάσεις και να επιλύει

δύσκολα προβλήματα εκτελώντας διάφορες διαδικασίες.

Η Μηχανική Μάθηση (ΜΜ) ανήκει στο πεδίο της ΤΝ. Τα μοντέλα ΜΜ έχουν τη

δυνατότητα να ΄μαθαίνουν΄ αυτόματα όταν τροφοδοτούνται με δεδομένα. Τα Νευρω-

νικά Δίκτυα (ΝΔ), είναι μοντέλα ΜΜ, τα οποία αποτελούνται από διασυνδεδεμένα

δίκτυα τεχνητών νευρώνων. Αυτά μπορούν να εκπαιδευτούν να κάνουν προβλέψεις

σε δεδομένα τροφοδοτώντας τα με την αντίστοιχη είσοδο και ελαχιστοποιώντας το

σφάλμα μεταξύ της εξόδου τους και της πραγματικής/ιδανικής εξόδου. Τα ΝΔ έχουν

χρησιμοποιηθεί ευρέως και στον τομέα της Υπολογιστικής Ρευστοδυναμικής (ΥΡΔ),

αξιοποιώντας τα, ώστε να κάνουν προβλέψεις σε δεδομένα προερχόμενα από λογισμι-

κά ΥΡΔ. Εξαιτίας του μικρού υπολογιστικού κόστος των προβλέψεων τους, τα ΝΔ

χρησιμοποιούνται επίσης και ως υποκατάστατα των λογισμικών ΥΡΔ σε διαδικασίες

βελτιστοποίησης.

Η βασική μονάδα ενός ΝΔ είναι ο νευρώνας, ο οποίος είναι μία μαθηματική σχέση,

δέχεται σήμα από άλλους νευρώνες, το επεξεργάζεται και σηματοδοτεί τους επόμε-

νους. Τα σήματα πολλαπλασιάζονται με ένα συναπτικό βάρος. Οι νευρώνες ενός ΝΔ

οργανώνονται σε επίπεδα. ΄Οταν τα ΝΔ έχουν παραπάνω από 2 κρυφά επίπεδα, αυτά

ονομάζονται Βαθιά Νευρωνικά Δίκτυα (ΒΝΔ). Οι δύο βασικοί παράγοντες της αρχι-

τεκτονικής του ΝΔ είναι το πλήθος των επιπέδων και των νευρώνων ανά επίπεδο. Τα

δίκτυα εκπαιδεύονται μέσω ενός αλγορίθμου μάθησης, ο οποίος μεταβάλλει τα συνα-

πτικά βάρη. Υπάρχουν 2 είδη δικτύων, τα πρόσθιας τροφοδότησης (feedforward), στα
οποία η πληροφορία έχει κατεύθυνση από την είσοδο προς την έξοδο και τα ανατρο-

φοδοτούμενα (recurrent), τα οποία ανατροφοδοτούν την έξοδο τους στην είσοδο. Τα
δίκτυα που χρησιμοποιήθηκαν στην διπλωματική εργασία είναι το λ-DNN, το οποίο
εμπίπτει στην πρώτη κατηγορία και το LSTM, το οποίο εμπίπτει στη δεύτερη.

Ψευδο-Μονοδιάστατη Ροή Αίματος σε Αρτηρία

Στο κεφάλαιο αυτό, μοντελοποιείται μια ψευδο-μονοδιάστατη ανθρώπινη αρτηρία με

ελαστικά τοιχώματα. Το λογισμικό που προγραμματίζεται χρησιμοποιείται ώστε να

συλλεγθούν δείγματα τα οποία θα εκπαιδεύσουν τα ΝΔ. Οι εξισώσεις ορμής και συ-

νέχειας και κλίσης πίεσης δίνουν ένα σύστημα τριών αγνώστων, της ταχύτητας (u),
του εμβαδού της διατομής (A) και της πίεσης (p),

∂U

∂t
+
∂F

∂x
= S (1)

2

όπου

U =

[
A
u

]
, F =

[
uA

u2

2
+ p

ρ

]
and S =

[
0

−8πµu
ρA

]
όπου ρ και µ είναι η σταθερή πυκνότητα και η συνεκτικότητα του αίματος, αντίστοιχα.

Επειδή υπάρχουν 2 εξισώσεις και 3 άγνωστοι (ταχύτητα, πίεση και εμβαδόν διατομής)

απαιτείται και μία ακόμη εξίσωση. Αυτή η εξίσωση δείχνει τη σχέση μεταξύ της πίεσης

στην αρτηρία με το εμβαδό της διατομής, την πίεση γύρω από την αρτηρία (pext) και
το εμβαδό στο οποίο εσωτερικά και εξωτερικά υπάρχει ισορροπία της πίεσης (A0).

p = pext + β(
√
A−

√
A0) (2)

Το β χαρακτηρίζεται από τις μηχανικές ιδιότητες του ελαστικού τοιχώματος,

β =

√
πhE

A0(1− σ2)
(3)

όπου h είναι το πάχος του αρτηριακού τοιχώματος, E το μέτρο ελαστικότητας και σ
ο λόγος Poisson. Η πίεση στο σύστημα, εξ.(1), αντικαθίσταται από την εξ.(2) και
προκύπτει το σύστημα,

∂U

∂t
+ H

∂U

∂x
= C (4)

όπου

U =

[
A
u

]
, H =

[
u A
β

2ρ
√
A

u

]

C = −1

ρ

[
0

µ∗ρu
A

+ ∂pext
∂x
− β

2
√
A0

∂A0

∂x
+ (
√
A−
√
A0)∂β

∂x

]
Εφαρμόζεται η τεχνική του Flux Vector Splitting, έπειτα το σύστημα διακριτοποιείται
και προκύπτει ένα πενταδιαγώνιο σύστημα εξισώσεων (για ακρίβεια δεύτερης τάξης) το

οποίο επιλύεται αριθμητικά.

Η πίεση στην έξοδο της αρτηρίας ορίζεται από το μοντέλο Windkessel το οποίο λαμ-
βάνει υπόψη την επίδραση των υπόλοιπων αρτηριών, πέρα αυτής που αναλύεται. Στα

άκρα της αρτηρίας υπάρχουν οριακές συνθήκες και το πεδίο αρχικοποιείται κατάλλη-

λα. ΄Ετσι, δημιουργείται το λογισμικό 1DAS, το οποίο υπολογίζει τη ροή και παράγει
χρονομεταβλητές χωρικές κατανομές ταχύτητας, πίεσης και εμβαδού. Επίσης δημιουρ-

γήθηκε και μία εκδοχή του λογισμικού, το οποίο μοντελοποιεί αρτηρίες με άκαμπτα

τοιχώματα.

3

Εφαρμογές με LTSM

Πριν την κύρια εφαρμογή των LSTM στην πρόβλεψη βιολογικών ροών, παρουσιάζονται
2 απλές εφαρμογές, οι οποίες καταδεικνύουν τις δυνατότητές τους.

Απλή Περιοδική Συνάρτηση

Για τη δημιουργία δειγμάτων εκπαίδευσης χρησιμοποιείται μία απλή περιοδική συνάρ-

τηση,

y = a1sin(a2x) + a3cos(a4x) + sin(a5x) + a6 (5)

όπου x ∈ [0, 160] αναπαριστά τον ψευδό-χρόνο και a1, ..., a6 ∈ [0, 1] είναι παράμετροι.
Μεταβάλλοντας τις παραμέτρους δημιουργούνται δεδομένα εκπαίδευσης. Ο x άξονας
διακριτοποιείται με 401 κόμβους, σε σταθερά διαστήματα. ΄Εχουν παραχθεί 28 χρο-

νοσειρές και το υπολογιστικό κόστος ήταν ∼ 5mins. Σκοπός του δικτύου είναι να
προβλέψει την επόμενη τιμή της συνάρτησης, τροφοδοτώντας το με προηγούμενες. Η

αρχιτεκτονική του δικτύου παρουσιάζεται στο Σχ. 1 και έχει ως είσοδο τις προηγούμε-

νες 20 τιμές της συνάρτησης καθώς και τις τιμές των 6 παραμέτρων. Τα αποτελέσματα

είναι πολύ ικανοποιητικά και αξιολογούνται σε 2 συναρτήσεις τις οποίες δεν είχε δει το

δίκτυο κατά τη διάρκεια της εκπαίδευσης, Σχ. 2, με μέσο MAE σφάλμα 3× 10−2
.

Σχήμα 1: Η αρχιτεκτονική του LSTM δικτύου.

Εξίσωση Αγωγής Θερμότητας

Σε αυτήν την εφαρμογή το δίκτυο καλείται να προβλέψει την κατανομή θερμοκρασίας

μίας πλάκας, τροφοδοτώντας το με κατανομές σε προηγούμενες χρονικές στιγμές. Η

εξίσωση που διέπει την αγωγή θερμότητας είναι

∂

∂x
(k
∂T

∂x
) = ρCpl

∂T

∂t
(6)

όπου T η θερμοκρασία της πλάκας, k = 2W/m◦C ο συντελεστής θερμικής αγωγι-
μότητας, ρ = 2000kg/m3

η πυκνότητα και, Cpl = 1000J/kg◦C ο συντελεστής θερ-

4

Σχήμα 2: Οι προβλέψεις του δικτύου σε 2 συναρτήσεις τις οποίες δεν είδε το δίκτυο

κατά την εκπαίδευσή του.

μοχωρητικότητας. Στο δεξί άκρο υπάρχει αέρας θερμοκρασίας Tin = 27◦C ενώ στο
αριστερό η θερμοκρασία του αέρα είναι περιοδική (Tout),

Tout = 35 + b1cos(
2π(t− 3600b2)

3600b3

) (7)

όπου b1, b2 ∈ [0, 24] και b3 ∈ [−5, 5] είναι παράμετροι. Η εξίσωση επιλύεται με τη
μέθοδο των πεπερασμένων όγκων και προκύπτουν χρονομεταβαλλόμενες χωρικές κα-

τανομές θερμοκρασίας της πλάκας. Μεταβάλλοντας τις παραμέτρους, δημιουργούνται

διάφορες κατανομές και προέκυψε μία βάση δεδομένων για την εκπαίδευση του LSTM
δικτύου. Το δίκτυο, με την αρχιτεκτονική της προηγούμενης εφαρμογής τροποποιη-

μένη, εκπαιδεύεται με 20 διαφορετικές κατανομές Tout και καλείται να προβλέψει την
επόμενη κατανομή (59 κελιά άρα και 59 θερμοκρασίες) τροφοδοτώντας το με 20 κατα-

νομές. Το υπολογιστικό κόστος της εκπαίδευσης είναι ∼ 5mins. Τα αποτελέσματα
του δικτύου αξιολογούνται από 2 κατανομές τις οποίες δεν έχει δει και κρίνονται πο-

λύ ικανοποιητικά, Σχ. 3, αφού τροφοδοτείται μόνο με τις 20 κατανομές, χωρίς καμία

πληροφορία για τις μεταβλητές b. Το μέσο MAE σφάλμα είναι 15× 10−2 oC.

Πρόβλεψη 1Δ Χρονομεταβλητών Ροών σε Αρτηρίες με

LTSM Δίκτυα

Στη διπλωματική εργασία, πραγματοποιείται μία αρχική απλοποιημένη μελέτη στο πώς

τα LSTM μπορούν να εφαρμοστούν στην έρευνα βιολογικών ροών. Το LSTM δίκτυο
εκπαιδεύεται να προβλέπει τις επόμενες κατανομές ταχύτητας κατά μήκος της αρτη-

ρίας, τροφοδοτούμενο προηγούμενες κατανομές του ίδιου μεγέθους, ως είσοδο. Το

λογισμικό 1DAS παρέχει τα δείγματα εκπαίδευσης στο δίκτυο.

5

Σχήμα 3: Οι προβλέψεις του LSTM δικτύου σε δύο κατανομές τις οποίες δεν έχει δει
το δίκτυο. ΄Ολες οι χρονοσειρές αναφέρονται στο 30ο κελί.

Μεταβαλλόμενα Αρχικά Σχήματα Αρτηρίας

Στην πρώτη εφαρμογή, η κατανομή του αρχικού εμβαδού διατομής της αρτηρίας παρα-

μετροποιείται με μία καμπύλη Bezier με 7 σημεία ελέχγου (ΣΕ). Τα ΣΕ μεταβάλλονται
κατά τον y-άξονα και, παράγονται διαφορετικές κατανομές εμβαδών. Η παροχή αίματος
είναι χρονομεταβλητή και δίνεται από μία απλή ημιτονοειδή συνάρτηση. Για τα πρώτα

6s η παροχή διατηρείται σταθερή, και έπειτα, αυτή μεταβάλλεται περιοδικά. Προέκυψε
έτσι μια αρχικά μεταβατική φάση και έπειτα η περιοδική. Ο συνολικός χρόνος προσο-

μοίωσης ήταν 8s, ο οποίος διακριτοποιήθηκε με 8000 χρονικά βήματα, ενώ το μήκος
της αρτηρίας με 101 κόμβους.

Το λογισμικό 1DAS, παίρνοντας ως εισόδους το αρχικό σχήμα της αρτηρίας, τη χρο-
νοσειρά της παροχής αίματος και τα μηχανικά στοιχεία της αρτηρίας, παράγει κατα-

νομές πίεσης, ταχύτητας και εμβαδού. Οι κατανομές που χρησιμοποιούνται ως βάση

δεδομένων προήλθαν έπειτα απο δειγματοληψία ανά 20 χρονικά βήματα (375 χρονικά

βήματα ανά περίοδο), μετά το τέλος της αρχικής μεταβατικής φάσης. Το δίκτυο για την

πρόβλεψη της επόμενης κατανομής της ταχύτητας τροφοδοτείται με είσοδο 150 κατανο-

μές, οι οποίες προέρχονται είτε απο το λογισμικό 1DAS είτε είναι προβλέψεις του ίδιου
του δικτύου. Κατά την πρόβλεψη, λοιπόν, των απαιτούμενων κατανομών ταχύτητας

τροφοδοτείται αρχικά με 150 κατανομές από το λογισμικό 1DAS. Το δίκτυο προβλέπει
την επόμενη κατανομή και έπειτα ανατροφοδοτεί αυτήν ως είσοδο, συνεχίζοντας, έτσι,

τις προβλέψεις. Η αρχιτεκτονική παρουσιάζεται στο Σχ. 4. Η εκπαίδευση διήρκησε

∼ 1.6hours, σε μία NVIDIA 1050 GPU. Η εκπαίδευση χωρίστηκε σε 3 τμήματα, όπου
ανανεωνόταν η βάση δεδομένων με προβλέψεις από το δίκτυο.

Τα αποτελέσματα του δικτύου είναι πολύ ικανοποιητικά αφού επιτυγχάνει να προβλέψει

τις κατανομές με μόνο 150 κατανομές ως αρχική είσοδο, Σχ. 4. Το μέσοMAE σφάλμα
των προβλέψεων είναι 6× 10−3m/s.

Αρτηρία με άκαμπτα τοιχώματα

6

Σχήμα 4: Η αρχιτεκτονική του δικτύου (αριστερά) και η χρονοσειρά της ταχύτητας

στον 50ο κόμβο, ενός δείγματος το οποίο δεν έχει δει το δίκτυο (δεξιά).

Στην επόμενη φάση, το δίκτυο επίσης εκπαιδεύεται να προβλέπει τις κατανομές ταχύτη-

τες σε αρτηρία με άκαμπτα τοιχώματα. ΄Ολες οι παράμετροι καθώς και οι κατανομές

του λογισμικού παρέμειναν ίδιες. Το δίκτυο εκπαιδεύεται και με επιτυχία προβλέπει τις

κατανομές ταχύτητας, Σχ. 5, έχοντας μέσο MAE σφάλμα 1.6× 10−3m/s.

Σχήμα 5: Η χρονοσειρά της ταχύτητας-πρόβλεψη του δικτύου στο 50ο κόμβο, την

οποία το δίκτυο δεν είχε δει κατά τη διάρκεια της εκπαίδευσης

Πραγματική Παροχή Αίματος

Σε αυτήν την εφαρμογή χρησιμοποιείται μία χρονοσειρά παροχής του αίματος από τη

βιβλιογραφία, η οποία αναπαριστά μία πραγματική ροή αίματος, Σχ. 6. Αυτή ψηφιο-

ποιείται και γίνεται παρεμβολή με σκοπό να αξιοποιηθεί από το λογισμικό 1DAS. Χρη-
σιμοποιήθηκε η βιβλιοθήκη της NVIDIA, cuDNN, για την εκπαίδευση του ΒΝΔ και
έτσι μεταβάλλεται ελάχιστα η αρχιτεκτονική του δικτύου, μειώνοντας το κόστος εκπα-

ίδευσης σε ∼ 1hour. Παρόμοια με την προηγούμενη εφαρμογή, δημιουργείται η βάση
δεδομένων και πραγματοποιείται η εκπαίδευση.

7

Εξαιτίας της αλλαγής στην αρχιτεκτονική του δικτύου, παρατηρείται βελτίωση στα

αποτελέσματα/προβλέψεις του, Σχ. 6, συγκριτικά με την προηγούμενη εφαρμογή, μει-

ώνοντας το μέσο σφάλμα MAE σφάλμα σε 1.4× 10−3m/s.

Σχήμα 6: Η πραγματική παροχή αίματος (πάνω) και οι χρονοσειρές/προβλέψεις της

ταχύτητας στον 50ο κόμβο, δείγματα τα οποία δεν έχει δει το δίκτυο (κάτω).

Μεταβαλλόμενο Πάχος Τοιχώματος Αρτηρίας

Η κατανομή του πάχους των τοιχωμάτων είναι μεταβαλλόμενη κατά μήκος της αρτηρίας.

Αυτό παραμετροποιείται με μία καμπύλη Bezier με 7 ΣΕ, όπως και το αρχικό σχήμα της
αρτηρίας. Μεταβάλλοντας τα ΣΕ των καμπυλών οι οποίες παραμετροποιούν το αρχικό

σχήμα και το πάχος, το 1DAS παράγει κατανομές ταχύτητας. Εκπαιδεύονται δύο
δίκτυα, με τον ίδιο τρόπο. Το πρώτο έχει ως είσοδο τις 150 προηγούμενες κατανομές

και τις 2 παραμετροποιημένες κατανομές. Το άλλο έχει μόνο τις 150 κατανομές. Τα

αποτελέσματα και των δύο είναι πολύ ικανοποιητικά, με το δεύτερο να παρουσιάζει λίγο

καλύτερα αποτελέσματα, Σχ. 7, με μέσο σφάλμα MAE 1.2× 10−3m/s.

Βελτιστοποίηση Εισόδου και Αρχιτεκτονικής του Δικτύου

Χρησιμοποιείται η στατιστική μέθοδος Μερικής Αυτόματης Συσχέτισης, με την οποία

υπολογίζεται από πόσες προηγούμενες κατανομές εξαρτάται η παρούσα και κατά συ-

νέπεια πόσες κατανομές πρέπει να είναι είσοδος στο δίκτυο. Το αποτέλεσμα είναι 60

κατανομές ταχύτητας.

8

Σχήμα 7: Προβλέψεις από το δίκτυο το οποίο τροφοδοτείται και με τις κατανομές εμβα-

δού και πάχους (πάνω) και προβλέψεις από το δίκτυο το οποίο δεν τροφοδοτείται από αυτές

(κάτω). ΄Ολα τα διαγράμματα παρουσιάζονται στο 50ο κόμβο.

Επίσης με τη χρήση ενός αλγόριθμου ελαχιστοποίησης που χειρίζεται πληθυσμούς

υποψήφιων λύσεων, γίνεται βελτιστοποίηση του αριθμού νευρώνων του δικτύου σε κάθε

επίπεδο. Η αρχιτεκτονική που προκύπτει σε συνδυασμό με τον αριθμό των κατανομών

μειώνουν το κόστος εκπαίδευσης σε ∼ 36mins με τα ίδια αποτελέσματα (μέσο σφάλμα
MAE 1× 10−3m/s) με το προηγούμενο δίκτυο.

Πρόβλεψη Ροών με λ-DNN

Σε αυτό το κεφάλαιο, ένα άλλο είδος ΒΝΔ χρησιμοποιείται για την πρόβλεψη αεροδυ-

ναμικών ροών και κατανομών θερμοκρασίας. Αυτό το δίκτυο ανήκει στην κατηγορία

των πολυκλαδικών δικτύων, με δύο κλάδους, όσα και τα είδη εισόδων σε αυτό. Η

αρχιτεκτονική του παρουσιάζεται στο Σχ. 8.

Πρόβλεψη Πεδίου Πίεσης γύρω από Αεροτομή

Το δίκτυο καλείται να προβλέψει 2Δ κατανομές πίεσης γύρω από μία αεροτομή. Η

αεροτομή παραμετροποιείται με 2 καμπύλες Bezier, με 6 ΣΕ η καθεμία. Μεταβάλλοντας
κάποια από αυτά προκύπτουν 180 αεροτομές και, κατά συνέπεια, 180 πεδία πίεσης. Το

δίκτυο εκπαιδεύεται να προβλέπει την τιμή της πίεσης σε κάθε κόμβο τροφοδοτώντας

το με τις συντεταγμένες του κόμβου και τις συντεταγμένες του περιγράμματος της

αεροτομής.

9

Σχήμα 8: Η αρχιτεκτονική του λ-DNN δικτύου.

Τα αποτελέσματα του δικτύου συγκρίνονται με αυτά ενός κλασικού πλήρως διασυνδε-

δεμένου δικτύου (FCNN) με το λ-DNN να έχει σφάλμα MAPE 0.36% σε σχέση με
το άλλο το οποίο έχει 0.50%, Σχ. 9.

Σχήμα 9: Προβλέψεις από το λ-DNN (μέση) και από το FCNN (κάτω) συγκρίνονται
με τις προβλέψεις του λογισμικού ΥΡΔ (πάνω).

Πρόβλεψη Πεδίου Πίεσης στην Επιφάνεια Δρομέα Francis

Στη δεύτερη εφαρμογή, το δίκτυο εκπαιδεύεται να προβλέπει κατανομές επιφανειακής

πίεσης ενός δρομέα υδροστροβίλου Francis. Η γεωμετρία του δρομέα παραμετροποιείται
με τη βοήθεια του λογισμικούGMTurbo και προκύπτουν 16 μεταβλητές σχεδιασμού. Οι
είσοδοι του δικτύου είναι οι 3 συντεταγμένες το κόμβου για τον οποίο πραγματοποιείται

η πρόβλεψη καθώς και οι 16 μεταβλητές σχεδιασμού. Η αρχιτεκτονική του δικτύου

διαμορφώνεται ώστε να τροφοδοτηθεί με τις νέες εισόδους.

Το δίκτυο εκπαιδεύεται και επιτυχώς μπορεί να προβλέψει κατανομές επιφανειακής

πίεσης στην επιφάνεια ενός δρομέα τον οποίο δεν έχει δει κατά την εκπαίδευση, Σχ.

10

10, με σφάλμα MAPE 3%.

Σχήμα 10: Επιφανειακές κατανομές πίεσης σε έναν δρομέα τον οποίο δεν έχει δει το

δίκτυο από το λογισμικό ΥΡΔ (αριστερά) και από το λ-DNN (δεξιά).

Πρόβλεψη Κατανομής Θερμοκρασίας σε Προσομοίωση Συζευγμένης

Μεταφοράς Θερμότητας

Στην τελευταία εφαρμογή το δίκτυο χρησιμοποιείται σε ένα πολυπεδιακό πρόβλημα,

στη Συζευγμένη Μεταφορά Θερμότητας (ΣΜΘ). Σε αυτή την ανάλυση ο επιλύτης του

ρευστού επικοινωνεί ανταλλάσσοντας πληροφορία με τον επιλύτη της εξίσωσης αγωγής

θερμότητας. Χρησιμοποιείται ένα εσωτερικά ψυχόμενο πτερύγιο θερμικής στροβιλο-

μηχανής, με 10 κανάλια με σταθερές κυκλικές διατομές και σε σταθερές θέσεις, Σχ.

11 . Ο επιλύτης του ρευστού επιλύει τη ροή γύρω από το πτερύγιο και υπολογίζει τη

θερμοροή στην περιφέρεια του πτερυγίου. Ο επιλύτης της εξίσωσης θερμικής αγωγής

υπολογίζει την κατανομή της θερμοκρασίας λαμβάνοντας υπόψη την κατανομή της θερ-

μοροής. Αυτή η επικοινωνία των δύο επιλυτών καθιστά την αριθμητική επίλυση του

προβλήματος πολύ ακριβή.

Σχήμα 11: Το πτερύγιο σε 3Δ προοπτική (αριστερά) και σε διάγραμμα (δεξιά).

Το λ-DNN δίκτυο εκπαιδεύεται ώστε να υποκαθιστά τον επιλύτη της εξίσωσης αγωγής
της θερμότητας και έτσι έχει ως εισόδους την κατανομή της θερμοροής στο περίγραμμα

11

του πτερυγίου και τις συντεταγμένες της περιφέρειας. Η έξοδος αυτού ήταν οι θερμο-

κρασίες στην περιφέρεια (σε αντίθεση με τις προηγούμενες εφαρμογές το δίκτυο εδώ

προβλέπει απευθείας την κατανομή και όχι από κόμβο σε κόμβο).

Η αρχιτεκτονική του δικτύου αλλάζει σε σχέση με τις προηγούμενες εφαρμογές. Τα

αποτελέσματα του δικτύου είναι πολύ ικανοποιητικά, Σχ. 12, με σφάλμαMAPE 0.18%.
Αυτά συγκρίνονται με ένα FCNN δίκτυο, με σφάλμα MAPE 1.52%, καθώς και με την
αρχιτεκτονική του λ-DNN των προηγούμενων εφαρμογών, με MAPE 0.30%. 2 βελτι-
στοποιήσεις βασιζόμενες σε εξελικτικό αλγόριθμο επιβεβαιώνουν τις δυνατότητες του

νέου δικτύου, και έχουν ως στόχο την ελαχιστοποίηση των απωλειών ολικής πίεσης

μεταξύ εισόδου και εξόδου του ρευστού και της θερμοκρασίας στο πτερύγιο. Στην

πρώτη βελτιστοποίηση, το χρησιμοποιείται λ-DNN, ενώ η δεύτερη βασίζεται αποκλει-
στικά στο λογισμικό της προσομοίωσης ΣΜΘ. Τα μέτωπο μη κυριαρχούμενων λύσεων

της πρώτης βελτιστοποίησης κυριαρχεί έναντι του άλλου.

Σχήμα 12: Η κατανομή θερμοκρασίας (πρόβλεψη) ενός πτερυγίου, το οποίο δεν έχουν

δει τα δίκτυα. Τα αποτελέσματα από το λ-DNN (προηγούμενες εφαρμογές) (αριστερά),
από το τροποποιημένο λ-DNN (μέση) και το FCNN (δεξιά).

Συμπεράσματα

Και τα δύο είδη δικτύων είναι ικανά να προβλέψουν πεδία ροών. Το δίκτυο LSTM
μπορεί να προβλέψει χρονικά μεταβαλλόμενα μεγέθη. Μπορεί να ανατροφοδοτεί τις

προβλέψεις στον εαυτό και να τις χρησιμοποιεί για μελλοντικές και έτσι απαιτεί πο-

λύ λίγη πληροφορία για την πρόβλεψη χρονοσειρών. Επίσης είναι ικανό να προβλέπει

χρονοσειρές τροφοδοτώντας το μόνο με προηγούμενες κατανομές, χωρίς να έχει πλη-

ροφορία για την παραμετροποίηση. Το λ-DNN μπορεί να προβλέψει αεροδυναμικές
ροές με μεγάλη ακρίβεια καθώς και να χρησιμοποιηθεί σε πολυπεδιακά προβλήματα,

αντικαθιστώντας τον επιλύτη του ενός πεδίου. Μάλιστα, οι προβλέψεις του μπορούν

να αξιοποιηθούν στο τομέα της βελτιστοποίησης.

12

	Contents
	Artificial Intelligence
	Artificial Intelligence and Machine Learning
	Artificial Intelligence in CFD and Optimization
	Thesis outline

	Deep Neural Networks
	Artificial Neural Networks
	Neuron Model and Neural Networks
	Training
	Architecture
	Hyperparameters
	Cost Function
	Back Propagation and Optimization Algorithm
	Learning Rate
	Recurrent Neural Networks
	Long Short-Term Memory Networks
	Implementation

	Quasi-1D Artery Blood Flow
	System of Governing Equations
	Formulation as a 2-Equation System
	Flux Vector Splitting Scheme
	Windkessel Model
	Two-Element Model
	Three-Element Model
	Numerical Solution

	Initial & Boundary Conditions
	The 1DAS Software
	Examples of 1DAS runs

	Artery with Rigid Walls

	LSTM Benchmark Cases
	Periodic Function
	Heat Conduction

	Prediction of 1D Time-Varying Flows in Arteries with LSTM Networks
	Introduction
	Varying Initial Artery Shapes
	Initial Cross-Sectional Area
	Blood Inflow and 1DAS Parameters
	Training Dataset Creation
	LSTM Architecture and Training
	Results
	Rigid Walls

	Realistic Blood Inflow
	Digitization and Parameterization
	Network Training and Results

	Varying Artery Wall Thickness
	Parameterization and Training Dataset Creation
	Network Training and Results
	Alternative Training and Results

	Optimization of LSTM Input and Architecture

	Prediction of Scalar Fields with -DNNs
	Network Architecture
	Applications
	Prediction of Flow Around an Isolated Airfoil
	Prediction of Pressure Distribution in a Francis Turbine Runner
	Prediction of the Temperature Field in a CHT Problem

	Conclusion
	Overview
	Conclusions
	Future Work Proposals

	Bibliography

