XEANEIG

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF MECHANICAL ENGINEERING

DEPARTMENT OF M.D. & C.S.

Control Systems Laboratory

©
X

5
EII@I

e
s

rahye{v)f%
nVPPopos

3

WETS08 >
KL f‘,f
W

<
2 r
q
H
[

|

Diploma Thesis

Design & implementation of a real-time distributed EtherCAT-based motion control
system for a multi-DoF quadruped robot

Aristotelis Papatheodorou

Supervisor: E.G. Papadopoulos

ﬂ/o
\/
%~
0/
o
—0n” c/ S~
/

L ge)

(=]

(o]

0-_-0-0-

ATHENS, 2021

MepiAnyn

H tmapouca epyacia TTpayuoTeUeTal TOV OXEQIAOUO AOYIOMIKOU TTpayuaTikou Xpoévou yia
evowpaTwuéva cuoTAuaTa diacuvdedepuéva o€ €1dIKG oxediaouévo BIkTUo EtherCAT yia Tov
£Aeyxo Kivnong Tou TeTpdtrodou poutrdT Laelaps Il Tou EpyaoTtnpiou AutopdTtou EAéyXou Tng
2X0ANG MnxavoAdywv Mnxavikwv. H ev Adyw uAoTToinon atToTeAEl ATTOTEAEO A EKTETAMEVNG
MEAETNG TTOU ouvdudadel TroikIAia TTediwv Kal €IdIKoTATwY. H epyacia Baocifstar o€
TTPONYOUUEVEG UAOTTOINCEIC TWV UTTOOUCTNUATWY TOU POPTTOT Kal €0TIdlel oTov BEATIOTO
ETTAVOOXEDIAOUO TOUG KAl OTNV TTPOCONKN VEWV OTOIXEIWY JE OTOXO TNV HEYIOTOTTOINON TNG
eueNICiag TOU POUTTOT e ETTIOOTEIC CUYKPIOIKES] AVWTEPESG TWV CNUAVTIKOTEPWY POUTTOTIKWV
OuUoTNUATWY O€ TTAYKOOUIO ETTITTEDO.

270 OeUTEPO KEPAAQIO TTAPOUCIACETAl N GPXITEKTOVIKI TOU KATAVEUNMUEVOU CUCTAMOTOG
emmegepyaaoiag Tou Laelaps I, pe éugaon oto TeAeuTaiag yevidg diktuo EtherCAT. H gueligia
Kl N VIETEPUIVIOTIKNA UON ToU TTPWTOKOAAOU, TO KABIGTOUV KATAAANAO YIa TETOIEG EQAPMOYEG.

2T0 TPITO KEPAAQIO, TTapouaidleTal évag vEoG aAyopiBuog oxedlaopou TPOXIAGS yia Thv
Kivnon Twv TTodIWV TTOU AvTIMETWTTI(EI OPICUEVES TTABOYEVEIEG TOU UTTAPXOVTOG, OGOV agopd
BnuaTiopoUg PIKPAG TaxUTNTAG OTTWG TO TTEPTTATNHA. Evw 0 uttdpXwv aAyopiBuog oToXEUE O€
OUVANIKEG CUPTTEPIPOPEG TTOU ATTAVTWVTAI OE KIVIOEIC UWNAWY TAXUTATWY, 0 VEOS aAyopIBog
XPNOIUOTTOIEI TPOXIEG OTABEPAG TTPOCOIOG TaXUTNTAG KAl OUAASTEPWYV PETARACEWY PETAEU TWV
QPAacewy dAPOUG Kal aépa, ETTITUYXAvovTag £T01 OJaASTEPN Kivnon o€ BnuUaTionoUs XapnAng
TaXUTNTOG. AKOMQ, MeEwwBnke o€ peydAo PaBud 1o UTTOAOYIOTIKO KOOTOG TOU GOUVOAIKOU
AOYIOHIKOU €EAEYXOU TOU POUTTOT, XPNOIMOTIOIWVTAG OPXITEKTOVIKEG TTAPAAANANG eTTeCEpyaTiag
TTOU A&loTTOI00V KAAUTEPQ TIG BUVATOTNTEG TWV EVOWNATWHEVWY UTTOAOYIOTIKWY CUCTNUATWV.
ISiaitepn €upaon d60nke otn dlac@AAion TNG opBnG AeIroupyiag Tou AOYIOMIKOU, PE TNV
uI0B£TNON AUOTNPEWY TTPOTUTTWY AVATITUENG KWdIKA, OTTwg To MISRA C.

2710 TETAPTO KEPAAQIO, TTAPOUCIAZETAI O OXEDIAOUOG KAl N UAoTToinon dUo cuoTNUATWY
adpaveEIaKWY aIoBNTAPWY TToU TTPOCTIBeVTal 0TOo dikTUO EtherCAT yia Tnv ekTipnon g 8éong
KAl TOU TTPOCAVATOAICHOU TOU POUTTOT. AUTO aTToTEAEI OUCIaaTIKO Briua yia TNV €TTITEUEN TWV
TEPIOTOTEPWY OXNUATWY EAEYXOU Kivnong TTou atravTwvTal oTh BIBAloypagia. H evowpdaTwon
TWV OCUYKEKPIYEVWY aioBnTApwy uttoBonBnénke atmd Tnv €UKOAia ETTEKTACINOTNTAG TTOU
TTapoucidlel o Baoiopévog oto EtherCAT oxedlaouOG TOU POUTTOT.

To méumTo KeQAAaio atroTeAei €vav odnyod yia Tnv Xprnion kai Tnv opBn Asitoupyia Tou
TeTpaTTOdoU. lMapéxel €va oUvoAo PnuUdTwy TTOU EYyyUWVTAl TNV ATTPOCKOTITN €KTEAEON
TTEIPAPATWY, VW Bonbd To XprioTn va Kavel pubuioeig avaAoya PE TIG aVAYKES TOU.

270 €KTO Ke@AAalo, TTapouaiadovTal HEBOSOoI yia TNV aAvayvwpion TwY ONUAVTIKOTEPWY
TTOPAMETPWY TOU POPTTOT, TT.X. TWV AdPAVEIOKWY TTAPAPETPWY TWV THNPATWY Tou. H avaykn
QUTA TTPOKUTITEI OTA TTAQICIA TNG EKTEAEONG ALIOTTIOTWY TTPOCONOIWCEWY KAl TOU OXEDIACOU
eAeyKTWV TTOU BaoifovTal OTIG TTOPAUETPOUG TOU CUCTAUATOG.

TéNog, o010 €BOONO KEQAAaIo, TTEPIYPAPETAI €vag aAyOPIBUOG TTPOCAPHOYAS TNG 1I0XU0G
TWV ETTEVEPYNTWYV O€ TTPAYUATIKO XPOVO, WOTE VA ETTITUYXAVETAI PEIWON TNG BEPUIKAG TOUG
Katatrévnong Kal cuvakoAouBn augnon tou Tpocdokiyou {wnig Toug. ‘ETol, 1O TETpdTTOd0
MTTOPEI va TTPOCAPUOZETAl OTIG EKAOTOTE ATTAITHOEIG I0XUOG KOl TAUTOXPOVO VO UAOTTOIE
BpaxutrpdBeoueg DUVANIKES CUUTTEPIPOPES UWPNARG I0XUOG.

1/217

Abstract

The present thesis focuses on the design and implementation of a distributed EtherCAT-based
motion control system for the quadruped robot Laelaps Il. The new design is based on prior
studies conducted by the Legged Robots Team of the Control Systems Lab in NTUA, and
adds new state of the art features to bring the resulting architecture among the most advanced
motion control systems worldwide. The final system combines several promising technologies
in a distributed EtherCAT-based architecture, aiming at providing the robot with maximum
agility. Specifically, the main focus lies on the firmware and electronics aspects of the motion
control system.

The second chapter includes a thorough study of the distributed control architecture of
Laelaps Il, focusing on the key properties of the underlying EtherCAT network. The modularity
of the protocol, along with its high-end features, makes it ideal for the desired deterministic,
high-frequency network used for the interconnection of all the robot’s subsystems.

In the third chapter, a new trajectory planning algorithm is developed to improve the
locomotion skills of the quadruped at low speed gaits such as walking. While the previous
planner promoted highly dynamic behaviors, such as running, the new planner stands out for
its robustness and stability in slow constant speed gaits. Besides, the computational cost of
the underlying firmware was significantly reduced by setting up a parallel processing scheme
exploiting the respective capabilities of the onboard embedded systems. The designed
software complies with MISRA C, one of the industry’s leading security and safety standards.

In the fourth chapter, inertial sensors are introduced to the robot’s network to assess the
location and orientation of the robot, making a key step towards autonomy. The integration of
the sensors was fascilitated significantly by the modularity and extendability of the adopted
EtherCAT-based architecture.

The fifth chapter includes a guide for the proper operation of the system. It provides a set
of steps that guarantee the flawless execution of experiments, while helping the user
understand how to modify important settings according to various needs.

The sixth chapter presents a framework designed for the parameter identification of the
robot’s legs. This step enables the execution of precise simulations and the design of model-
based control schemes.

Finally, in the seventh chapter, an online algorithm has been developed for adjusting the
power output of Laelaps Il actuators, to account for thermal fatigue and thus increase their life
expectancy. The final system is capable of adapting to any condition and allowing short-term
overloads safely whenever necessary.

2/217

Acknowledgements

First and foremost, | wish to thank my supervisor Professor E. Papadopoulos for
introducing me to the fascinating world of robotics and guiding me through my initial steps in
the field. | feel truly obliged to him, for allowing me to become a member of his laboratory from
the early stages of my academic life.

Furthermore, | would like to express my gratitude to the Ph.D. candidates of the CSL-EP
lab and good friends of mine Konstantinos Koutsoukis, Athanasios Mastrogeorgiou and
especially Konstantinos Machairas not only for their invaluable contribution in the elaboration
of this thesis but also for their encouragement, support and knowledge that offered me all
these years. Also, | would like to acknowledge the remarkable work of Stamatis Athiniotis, the
creator of the initial firmware architecture of Laelaps II, along with the work of John Valvis on
Laelaps’ hardware design. Moreover, | wish to thank Antonis Aggouridis for creating some
much-needed components with the lab’s CNC and George Bolanakis for his software support
in the initial stages of this thesis.

Since this dissertation is the last part of my undergraduate studies, | would like to express
my gratitude to associate Professor Vasilios Spitas for his advice, work ethic and guidance all
these years. Moreover, | would like to thank Alexandros Anastasiadis, Nikolaos Kallieros,
Konstantinos Athanasopoulos and Georgia Nikolaou for their profound support and help. Last
but not least, | owe much to my family for their incessant love and encouragement.

3/217

Dedicated to my Family

4/217

Table of Contents

FTEPIANWIN .. et e e e e e 1
ADSIIACT .. 2
ACKNOWIEAGEMENTS ... e e e eee 3
Table of CONTENTS ... 5
LISt Of FIQUIES .oueie e e 10
LISt Of TABIES..uuoee e 15
List of ADDreviations ... 17
iR [oY o Yo [0 Tox o o PP 19
0 1Y o 1 117 Ui (o] o [PP 19
1.2 LIterature REVIEW........ccoiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee ettt 19
1.2.1 LegQed RODOLS......uiiiiiiiiiiiiiiiiiiiiiiiiite bbb 19

1.2.2 State Estimation Hardware and SeNnSOrS............uueiiiieievieeiiiiiinneeeeeeeeeeiiinnnn. 21

1.2.3 Motion Planning and CoNntroluceeiiiiiiiiiiiiicce e 22

1.2.4 MOtOr OVErhEatiNgG........ccuuiiiiiii e e e e e e ar s 22

1.2.5 System Identificationccoooiieiiiiiiicce s 23

1.2.6 CUIMTENT SENSING ..tttttttitiiiiiiiiitteteeeeaaeteaeeseeeeeeeeeseeeeaseeee e eeesbebebessbssssebeeeesenennnes 23

2 Laelaps Il EtherCAT NetWorKcoovvviiiiiiiee e 24
122000 R 1 11 o o 3 Tox 1 o) o 1 24
2.2 EtherCAT ProtOCOlI OVEIVIEW..........uuuuuuiiiiriiiiiiiiiiiiiiiiiiiineseensnnnnennsnennnnnennneees 24
2.2.1 FUNctional PriNCIPIEvueii e e 24

2.2.2 EtherCAT Frame StrUCIUME.........uuuuuuueieiiiiiiiiiiiiiiiiiiiiiiinieineenannneennneennnnnssnnnnnes 25

2.2.3 EtNEIrCAT MaASIEI ...ceeeeiiiiee et e et a e s e e e e e e eaeatn e e aaes 27

2.2.4 EtherCAT SIave OVEIVIEW........cceiiiiiiieeeeeeeeeeiiies s e e e e e eeetaa s s e e e e e eeanaeaan e eaaees 27

2.2.5 PrOCESS DALA. ... ccceuuieiiiiie ettt eeaans 30

2.2.6 EtherCAT Network Operationccoooeeeiieeeiiiieae e 31

2.3 Laelaps Il EtherCAT Network DescCriptionccccoovviiiiiiiiiinieeceiin e, 32
2.3.1 LACIAPS 1 MASTEN ...ttt 32

2.3.2 Laelaps 11 SIAVE NOUESuuuuumuiiiiiiiiiiiiiiiiiii bbb 32

2.3.3 Network CharacCteriStiCSccoeeeuiiuiiie e 33

3 Laelaps Il Motion Controlccooovvviiiiiiiiic e 36
3.1 Laelaps I Control ArChiteCtUIecooeiiiiiiii e 36
3.1.1 Low-level Control OVEIVIEWuuuuiiiieeeeieeeiiice e s e e e et e e e e e e e e 36

3.1.2 LACIAPS 1] LBGS .. ittt 37

I N - 1= Tox (] AN o F= 1 11 o 38
3.2.1 Planner DESCIIPLIONcoeeeieeeeeeee oo 38

3.2.2 Leg’s Workspace and Safety Features...........ccccccoeiiiiiiiiiiieee 41

5/217

IS TRC I N o 70] [0 (= =t [0 [T N 44
3.3.1 Hardware INtegration.............oovuuiiiiiiii e e et e e e e e e 44
3.3.2 Firmware INtegrationcoooiiiiiieeeeeeee e 47

3.4 EtherCAT Motion Control Firmware SEtUPueuereimiemimmmiiiiiiiiiiniiiinnnens 49
3.4.1 ReqUIred HardWAarecooiiiiiiiiieie ettt e e e et e e 49
3.4.2 Hardware CONNECHIONSccoeeeeeiee e 49
3.4.3 REQUIred SOftWAIE.......cce e e 51
3.4.4 CCS Project Import and SEtUPcooeeeeeeeeeeeeeeeeeeeeeee e 51

3.5 FIrmMware DESCIIPIION.......uuuuuuuiiiiiiiiiiiitttieeeeiebibbbibbeee bbb eeeeeeneeneneees 52
3.5.1 Firmware INitialization..........coooeeeeei e 54
3.5.2 MOtionN CONIOL.....ccoe e 56
3.5.3 Trajectory Planningcooooeioiieeeeeeeeeeeee e 60
3.5.4 EtherCAT COMMUNICALION.......cuuuiiiis e eeei et e e e e et e e e e e eeeerane e e eaes 63
3.5.5 INtEITUPL PriOMES ..ceeiiiiee e e e e e 67
3.5.6 Firmware’s Performance ..o, 69
3.5.7 Managing the Project’s Configurations ... 72
3.5.8 Firmware’s Linker Command File.............oouviiiiiiiiiiici e, 74
3.5.9 Compiler INfOrmationoooeeeeeeee e 75

3.6 Firmware Check and VerifiCation.................uuuuuuiiiiiiiiiiiiiiiiiiiiiiiieenieeennenneen. 75

I A O o 11] o] o 77

Inertial Measurement UNitS.........coouuiiiiiiiiiiiiiiieeeceeee e 78

A1 GYFOSCOPES ...ieetiueeeeeti e e eeat e e ettt e e e eeaa e e e eeas e e e eesa e e eeeaa e e eeeenn e eeeennaaeaee 78

4.2 ACCEIEIOMEBTLEIS. ... it e e e e e e e e e e e e e e e e e eeeeeenes 79

4.3 Serial Peripheral INterfaceuuuuuiiiiiiiiiiiiiiiiiiiees 79

4.4 ADIS163xx Hardware DeSCIPLIONuuuuuuuiuuiiiiiiiiiiiiiiiiiiiiniiiiiiiinieieeaeeennes 80
4.4.1 ADIS16xx Connection with LaunchXL-F28379Dccoovevviiieiiiieeeeeeee, 80
4.4.2 IMU and LaunchXL-F28379D Interface Board..............ccoeeeeeeeeeiiiiieeeeeeeee, 81
4.4.3 IMU SIave HOUSING......ccoeeeieeeeeeee e 86

4.5 ADIS163xx Delfino FIrmware SEtUPuuuuueiimiimiiiiiiiiiiiiiiiiiiiiiiiiiiniiiienens 86
4.5.1 Required HardWareoooiiiiiiiiiiie e e e e e e 86
4.5.2 ReQUIred SOFIWAIE. e et e e e e et e e e 87
4.5.3 Building and DeploymMEeNt..........oouuuiiiiieeiee e 88

4.6 FIrmMWare DESCIIPLIONuuuuuuiiiiiiiiiiiiiiiiiiiiit bbb esanaaneaaeenee 88
T R L 11 T 17 (o] o 90
4.6.2 SPI Protocol SOftWare SEUDcuuueuiiiieeeei e 90
4.6.3 ADIS163XX GeNEeral SEIUP ...oieeeiiiiiii e 91
4.6.4 ADIS163xx Main Routines and Operationccoooevveeeiiiiiieeeeeeeeeeeeeeeeeen 91
4.6.5 ADIS163xx EtherCAT APPlICAtIONcooeeeeeeeeeeee e 93
4.6.6 EtherCAT PDO FOULINEScceeiieeiiiiies e e e et e e e e e e e et aeaae s 99
A4.6.7 INTEITUPL PriOMTIES ..oeeeeeeii e e e e e e e e 99
4.6.8 Managing the Project’s Configurationsccccoeiiiiiiiiiiiieeee 99
4.6.9 Compiler INfOrMatioNcooiiiiiice e e 100

4.7 Firmware’s Memory Managementccoooeiiieiiiiiiiiiii e 100

T AV 1Y 2= [To F= o o 100
4.8.1 Experimental SEtUPcoooeiiieeeee e 100

4.8.2 IMU SPECITICALIONS.coe e 102

4.8.3 Bandwidth Considerations............cooiveeeriieeiiiiiee e e e 103

4.8.4 Validation WOorkfloOW..........coooeeieeeeeie 106

4.8.5 ADIS16364 RESUILSccoeeeeeeeeeeeeeeeeeeeeeeeee e 107

4.8.6 ADIS16375 RESUIESeeiiieieiiciiiiiiiee ettt e e e a e 109

4.8.7 Validation Conclusions and DiSCUSSIONuuiiieeeiriieiiiiiiiaeeeeeeeeeeniiaae e e 111

5 Laelaps I EXPErIMENTS ...coovuniiiiii e 112
5.1 Typical Experiment’'s Procedure...............ciiiiiiieiiiiiiiicie e 112

6 Parameter Identification of Laelaps Leg.....ccccoovvviviiviiiiiiiininnnnns 119
6.1 Theory and EQUIPMENTooeiiiiiiee e 119
6.1 Actuator’'s Speed Constant Determination...............cccccceeeieieeeeeeiiiiiiee e, 121
6.2 Leg’s Friction Parameters Identification.............ccccciiiiiicie 121
6.2.1 Motor-Gearbox Friction Identification..............cccccouummiiiiiiiiiiiiiiiiiieenenn. 122

6.2.2 Joint’s Friction Identification ... 127

6.3 Leg’s Inertial Parameters Identification — Method 1.............cccoevvviiiiinnnnnnn. 128
6.3.1 Required EQUIPMENT.......uui et e e 128

6.3.2 Motor — Gearbox Inertial Identificationccccccciueiiiieiiiiiiiiiiees 130

6.3.3 Identification of the Leg’s Parts Inertial Parameters..........ccccoooovevvvvveivnnnnnnn. 130

6.4 Leg’s Inertial Parameters Identification — Method 2., 132
6.4.1 Simulation ENVIFONMENTuuuiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeneeeenenes 133

6.4.2 ldentification Problem FOrmulationcccccouuumiimiiiiiiiiiiiiiiiiiiiiiieennenns 136

6.4.3 Identification Framework OVEIVIEW..........cccovvvuviiiiii e e e 137

6.4.4 Trajectory OPtMIZALIONuuuuuumiiiiiiiiiiiiii e eeeeeeeeeee 137

6.4.5 StoCchastiC OPLIMIZATIONuuuiiiiiiiiiiiiiiii b 139

6.4.6 Deterministic Optimization...............vieiiiieiiiiieiee e 140

6.4.7 Optimal Trajectory RESUILSoovviiiiii e 140

6.4.8 Experimental Procedure for Whole Leg ldentificationcccccuvvvvennnnns 143

7 Laelaps Motor Overheating Protection Systemcccceees 144
7.1 Theoretical PreliminNari@sccoooovviiiiieiiie e e 144
7.1.1 Thermal Modeling and Problem Formulation...............ccccccuiiiiiiiiiiiiiniinnnn. 144

7.1.2 Cumulative RMS FOrmula ... 146

7.2 MOPS AlQOtNme e e e 146
7.3 MOPS Validation and RESUILSccoviiiiiiiiiiiii e 150
7.4 IMPlementation CONCEINS.........uuuuueeiiiiieiiiiiiiieeieeeabeee bbb 153

B T O 0] 13 1113 [0 o 1 154

8 Conclusions and Future Workccccooeeiiieiiiiniiiiin e 156
S TR R @0 o [od 1151 o 1P 156

8.2 FULUIE W OTK et 157

O REIIENCES ... e 159
Appendix A. TWIinCAT 3 Master Setup......cccceeveveiiiiiviiieeeeieeeeeennn, 165
Appendix B. Create an EtherCAT Application from Scratch........ 173
Appendix C. C2000 Delfino Microcontroller Unit.............ccc..ccc.. 176
C.1 LaunchXL-F28379D Development Board............cccevvviiiiiieeeeeeeeeiiiiee e 176
C.2 TMS320F28379D MICrOCONIIOIEruvveiiiiiiiiiiiiiiiiiiiiiiiiiiiviiiiiiiveiiiiienees 177
C.3 INterrupt ArChIitECIUIEuveiiiiiiiiiiieei e 177
C.3. 1 INtEITUPE PrIOMTHIES ...t 179

C.3. 2 INtEITUPE NESTINGttt ennne 180

C.4 CoNtrol Law ACCEIEIALONuvuiiiiiiiiiiiiiiiiiiiiitiiieiieebibaebebaeebbebeeeeeeennenaaneaee 180
C.4.1Task MECNANISIMuuiiiiiiiiiiiiiiiii e ennnnnnnaennnne 180

C.4.2 Memory and PeripheralS ACCESS..........uuuuuuuiuuiiiiiiiiiiiiiiiiiiiiiiieeeeneeees 181
C.A.3CLA INHANZALION ©..ceveceii e e e e 182

(O Y O NV = 11 g T I o] = 1 Y AP 184

C.5 Direct Memory Access CoNtrolleruuieiiieieiiiiecie e 184
(O3 T I @ =T T PP 184

C.5.2 DIMA SBEUP ettt ettt ettt e e ee 185

CLB. B EXAMPIE .. 185

C.6 Inter-Processor COMMUNICALIONuuruuuurueeiieiiiiiiiinieeieneeeeeeennnnnnnnennnenee 187
(O T I @ =T T P 187
C.6.2Basic IPC COMMUNICALION..........ceeeeiiiiie e eee et e et e e e e e 188

C.7 Delfin0 LINKING PrOCESSuvuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeebeeseeebeeeseeesesseneanes 189
C.8 Power Supply ConSiderations............coouuuuuiiiiiiieeeeeeeiee e 190
AppendiXx D. CLA MATH. ... e 191
Appendix E. Setup TI’s CCS Projects..............ccoovviiiiiiiiiiiiiinn, 193
E.1 Download TI's CCS and Import Project ..., 193
E.2 Create a Target Configurationccooeeiiiiiiiii i 194
E.3 Build and Deploy the Project ... 196
Appendix F. Integrate TI's DCL Library.............cccccoooiiiiiiiininninn, 198
Appendix G. Code Style Guideline..........coooiiiiiiiiiiii 199
Appendix H. MISRA C 2012 Standardcccooeeiiiiiiiiiiniin, 201
H.1 Laelaps Il Motion Control’'s MISRA C 2012 Compliancec..ccceveveeens 201
H.2 IMU Fimrware’s MISRA C 2012 Compliance..........cccoceevveveeiiiiiiiiieeeeeeeeenns 204
H.2.1 ADIS16364 Library’s COmMPlianCe............uuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiinenieiennnnnnnnnns 205

H.2.2 ADIS16375 Library’s COmMPlianCe............uuuuuuueuummmiiiininninnnnninennnnnnnnnnnnennnnnnes 206
Appendix . LDO Thermal DeSignccceveviiiiiiiiiiieieiieeeeiie e, 207

8/217

Appendix J. Dynamical Modeling of Pendula...........ccc..cooeeeii. 210

J.1 Simple Rigid-Body Pendulum DynamicCsccceeiiieeeieiiiiiiiiiiieeeeeeeeeennns 210
J.2 Bifilar Rigid Body Pendulum DyNamiCsccovvviiiiiiiiiiiieeeeeeeeiiiie e 211
Appendix K. Bill Of Materialsccooviviiiiiiiiiiieeeeee e, 213
K.1 ADbsolute ENCOUEr CIrCUIL........coiiiiiiiiiiiiiie et eeeeeeeees 213
K.2 IMU-Delfino INterface PCBcooooiiiiiiiiieieeeeeeeeee e 213
Appendix L. SchematiCsccooiiiiiiiiiii e 214

9/217

List of Figures

Figure 1-1.
Figure 1-2.

Figure 1-3.

Figure 1-4.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.

Figure 3-11.
Figure 3-12.
Figure 3-13.

Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.

The Laelaps quadruped robot. ... e 19

Legged animals in various mobility challenges: (a) a cheetah, (b) a
leafcutter ant, (C) @ QOAL.cvvviiiiiiiiiiiiiiiiiieee ettt 20

(a) Boston Dynamics Atlas. (b) Boston Dynamics Spot. (c) ANYbotics
ANYmal-C. (d) Agility Robotics DIGIT. (e) Boston Dynamics BigDog. (f) MIT

Cheetah 3. ... e 20
Quadrature optical eNCOEr OVEIVIEW.uuviiiiieeeeeieeiiiiiee e e et 21
(a) The logical ring of an EtherCAT network. (b) ESC frame processing. 25
Each slave processes only one prescribed datagram.cccccvveeennee. 25
Typical EtherCAT frame StrUCIUIe.uuuuuimiiiiiiiiiiiiiiiiiiiiiiiiieiennneiieeees 26
Basic EtherCAT master OPEration.oovuiiiiiiiiieeeeeeeieee e 27
ESC architeCture OVEIVIEW.uuuueiiii e e e e e e 28
DC SyNchronous MOE OVEIVIEW.ccceeeiiieiiiiiiieeeeeeeeettie e e eerre e 29
Modular Device Profile OVEIVIEW.covviviiiiiiiii e 30
PDO MAPPING OVEIVIEW. .cceeiiiiiiiiiiiiiieieeieeeeee ettt ettt ettt e e e e e e e e e eeeeeees 30
EtherCAT Slave's State Maching (ESM)........ccccoiiiieriiiiiiiiiin e 31
Laelaps Il architeCture OVEIVIEW.ccovvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 32
Theoretical determination of the minimum cycle time.cccccceeeeiieiiinn, 33
TWINCAT 3 frame proCesSiNg tIME.uuuuuuiiiiiiiiiiiiiiiiiiiiiiiieiibeeeeeeeeeee 34
Results of correct/ incorrect shift times. ... 35
Laelaps Il motion control architecture [15].ccoovvviiiiiiiiiiiiiiiiiiiiiiiieeeeee 36
Laelaps [l leg EOMEIIY.ccce it 37
Swing phase's angular velocity for @ SiNgle Tswing.««««««««eeevereemmmmmmmmmmimmniininnnnnns 39
The constant velocity trajectory with velocity gradient (colorbar). 40
Snapshots of a leg during motion along the planned trajectory..................... 40
Laelaps Il real-life 180, ..uuuii i 41
Laelaps 11 1eg's WOIrKSPACE..........ccovvviiiiiiiiiiiiiiiiiiiieieeeeeeee e 42
The geometric restircitons of the toe trajectory’s parameters....................... 43
Example of an absolute 12-bit encoder's disk...........coooiiiiiiiiiiiii 44
(a) The RMF44VE10BA10 magnetic absolute encoder. (b) Magnetic

absolute encoder's operational prinCiple.coooi i 44
RMF44VE10BA10 voltage output behavior.ccccccvvviiiiiiiiiiiiiiiiiiiiiiiie, 45
(a) JST XH 4-wire connectors. (b) RJ9 connector (male)............cccccceeeeeeen. 45
Absolute encoders' rewiring PCB: (a) schematic (b) board (c) assembled

010 T o 1S PSSR 45
e IR TV B = Yo 11 | 46
RMF44VE10BA10 housing assembly CAD.cccvvviiiiiiiiiiiiiiiiiiiiiiieieeee 46
The absolute encoder assembly installed.ccocooiiiii i, 47
Laelaps Il single joint’s drivetrain.ccccoovviiiii i, 48

10/217

Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.
Figure 3-23.
Figure 3-24.
Figure 3-25.
Figure 3-26.
Figure 3-27.
Figure 3-28.
Figure 3-29.
Figure 3-30.
Figure 3-31.
Figure 3-32.
Figure 3-33.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.
Figure 4-21.
Figure 4-22.
Figure 4-23.

Laelaps Il leg's end-StOp FrOULINE.oiieieiiieeecce e 48
Laelaps Il motion CONtrol'S tOWET.ccovvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 50
Leg slave hardware CONNECHIONS.coooeviiiiiiicci e 51
CCS project's path variables.uiiiiiiiiiiiiii e 52
Laelaps leg firmware OVEIVIEW.ccoiieeiiiieiiiicii e 53
End-stop routines initialization function call.cccoovvviiiiiiiiiii 56
Timer O interrupt Period SEIUP. ...coieeeeiieeeice e e e e e e eaaees 56
DCL's PIV controller oVerview [B7].ccovvveiiiiiiiii et 57
Laelaps Il motion control's state maching. ... 60
PDI external interrupt modification...............ccoiieiiii i, 69
Interrupt Profiling reSUlLS.coooiii 71
Different leg firmware configurations.cccccoeiiieiiiiiiiiin e, 73
Project’s configurations.coovviiiiiiiiiiiiiii 73
Predefined Symbols and Linker Symbols tabs overview..............cccccceeeeee. 74
Stack & Heap Size SEtUP PANE.uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiebeeeieeieeeeeeeeeeeeenenee 75
Possible defects, the Static Analysis may find.ccccooeeeeeiiiiee e, 76
GIMDAIEA GYTOSCOPE. ..veiiiiiiiiiiiiiittieteieebteeebeeeetee bbb bbbeeeebeennneees 78
Tuning-fork’s principle of operation............ccc.ooooiiiiiiiiiin e, 79
Serial Peripheral Interface (SPI) OVEIVIEW.uuuvuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinenns 80
(a) The ADIS16364 IMU. (b) The ADIS16375 IMU.cccvvvvveeeeeeiiiiieeeeennnn 80
The ADIS16IMUL breakout board.ccooiiiiiiiiiiiiiiiii e 80
(a) Samtec EHT-108-01-S-D-SM. (b) Samtec TCSD-08-D-02.00-01-N-R. ... 81
Intermediate custom PCB SChematiCS.coooveeeieiiiieiieeeeeeeeeeeeeeeeee, 82
Proposed decoupling capacitors for the chosen linear voltage regulators..... 83
(a) Upper PCB side. (b) Lower PCB Side.......cccoooeeiiiiiiiiiiiiic e, 85
(a) Custom PCB design overview. (b) Assembled boards.ccccceeeeee. 85
(a) Housing — inside view. (b) Housing — closed VIieW.ccccoovviiieeneen... 86
ADIS163xx IMU shield's power supply configurations.ccoeeeeeeeeennn. 87
IMU fIFMWAIE OVEIVIEW. ..t eee et e ettt ee e e e e e e e et e e e e e e e e eeneeennns 89
BurstRead’s SPI operation OVEIVIEW.ccccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee 92
ADIS16375 sensor's high-precision read operation.cccccevveeeeiiieiiinnnnnn. 92
XSENS MTi-200 IMUL......coiiiiiiiice e e e e et eeeeeeanees 100
ADIS16375 accelerometers’ validation setup. ..., 101
(a) ADIS16364 reference frame. (b) ADIS16375 reference frame. 102
(a) ADIS16364 sampling stages. (b) ADIS16375 sampling stages. 103
ADISL16364 filLEIS. ooeeeeieiiitiiiiiee et e e e e e e e e e a e e e e e e aan 104
ADIS16364 composite freqUeNCY rESPONSE.cceeeeeeeeeeeeeeeeeeeeeeee e 104
ADISLB375 filterS. oo 105
ADIS16375 composite freqUENCY rESPONSE.uueeiiieeeiieeiiiiiee e eee e 105

11/217

Figure 4-24.
Figure 4-25.
Figure 4-26.
Figure 4-27.
Figure 4-28.
Figure 4-29.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.

Figure 6-10.
Figure 6-11.
Figure 6-12.
Figure 6-13.
Figure 6-14.
Figure 6-15.
Figure 6-16.
Figure 6-17.
Figure 6-18.
Figure 6-19.
Figure 6-20.
Figure 6-21.

Figure 7-1.
Figure 7-2.
Figure 7-3.

ADIS16364 and Xsens MTi-200 gyroSCOpPeS' reSPONSE.vvueereeeereevrrennnnn 108
ADIS16364 gYrOSCOPES' EITON .. .cceiieeerriiaseeeeeeeeenriias e e e e e eeeerrna e e e e e eennnenans 108
ADIS16375 and Xsens MTi-200 accelerometers' reSponse.ccccvvvenn.. 109
ADIS16375 and Xsens MTi-200 gyroSCOpPES' r€SPONSE.cceveeeeeeeeeeeeeeennn 109
ADIS16375 and Xsens MTi-200 gyrOSCOPES' €ITOI.ccccvvvvvuieeeeeeeeeeenninnnnn 110
ADIS16375 and Xsens MTi-200 accelerometers' reSponse.cee..... 110
EEPROM update OPtioN.ccoiiiiiiiiiiis et 113
(a) Base cycle time setting. (b) PLC Task's cycle time setting. 114
TWINCAT main ribbon. ... e 114
Verify the slave's DC TWINCAT SettingsS........ccvvviiieiiiieeiieeiceee e, 115
Login and Start PLC Task's DUIONS.ccovvvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 115
Record and Stop Record bUuttonsS.ccoooeiiiviiiiiiiii e 115
ADSOlUtE ENCOAEIS' TESEL PINS....ccoieeeeeeeeee e 116
PLC Task's OUIPULS taD.........cooiiiiiiiiiiei et 117
TWINCAT EXPOrt to CSV OPLION.uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeneeeee 118
Generic DC brushed motor Model.uvuviiiiiiiiiiiiiiiiiiiii. 120
Different friction reQIMES.........covviiiiiiiiiiiiiiiieeeeeeeeeeee e 122
Sampled data.ooouiiii 122
Linear model graph.oooovviiiiiiiiiii 124
Nonlinear model 1 graph. ..o 125
Nonlinear model 2 graph. ... 126
Friction model comparison graph.cccccoviiiiiiiiii 127
INA253 EVM board OVEIVIEW.coooveeeieieeeeeeeeeeeeeeeeeeee e 129
TMCS1100 EVM OVEIVIEW. .evvuiiiiieeiiiiiiiiiees e e e e e e eeetieae s e e eeeeeeeaaian e s e e aeeeennnes 129
Conceptual design of a seesaw mechanism............cccccceeeeeieeeiiieiviciee e, 131
A rotational mechanism for CoM determination.cccooeeeeeeeeeeeeeeeeee, 131
(a) Bifilar pendulum overview. (b) Bifilar pendulum lateral view. 132
Laelaps 11 1eg MOdel.ooovviiiiiiiiiiiiiiie 133
Linearized leg’s model pole-zero Map.ccovvvvvieiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 136
Identification framework WOrkflow.ccccovviiiiii e, 137
GA OptimMIZAtioN PrOgIESS. ...cieeeeiiuia e e e eee et e e e e e e e et a e e e e e e e e eaneana e aeeeeas 139
Leg’s angle rESPONSES.couvviiiiiiiiiiiiiiiiieeeeeeeeee et 140
Leg’s angular veloCity reSPONSES...........ccuvviviiiiiiiiiiiiiiiiieiieeeeeeeeee e 141
Leg's angular acceleration reSPONSES.ccvvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 141
Leg'S CUMENT INPULS. ...ceeiiiiiiiiiiiiiieeee ettt 142
Performance evaluation of the ID framework.cccccciiiiiiieiiiiiin. 143
Maxon’s proposed motor thermal model.............cccccovvviiiiiiiiiiii 144
MOPS saturation limits as a function of CRMS.............cccccoiiiiiiiiiiii, 147
MOPS algorithm OVEIVIEW.couiiiiiii e 148

12/217

Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure 7-11.

Figure A-1.
Figure A-2.
Figure A-3.
Figure A-4.
Figure A-5.
Figure A-6.
Figure A-7.
Figure A-8.
Figure A-9.

Figure A-10.
Figure A-11.
Figure A-12.
Figure A-13.
Figure A-14.
Figure A-15.
Figure A-16.
Figure A-17.

Figure B-1.
Figure B-2.
Figure B-3.
Figure B-4.
Figure B-5.
Figure C-1.
Figure C-2.
Figure C-3.
Figure C-4.
Figure C-5.
Figure C-6.
Figure C-7.
Figure C-8.
Figure C-9.

Knee’s continuous Non-stop OPeration.............ccccceeeeeeeeiveeiiiiiis e eeee e 150
Hip’s continuous NON-StOP OPEratioN.ccevvvviiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 151
Knee's overloading Operation.ccoiiieeeiiiieiiiicis e 151
Hip's overloading OPeration.covvvviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 152
Knee’s mixed conditions operation.cccccceiiei i, 152
Hip's mixed conditions OPEration.coevvvviiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeee e 153
Hip motor’s Bode plot and bandwidth.cciii . 154
Knee motor’s Bode plot and bandwidth.ccccciii . 154
1= A Y [AN TR 165
Create NeW TWINCAT 3 PrOJECT.uuuuuuriiiiiiiiiiiiiiiiritiieeeeennbeeneeennnneeeeeeeenennnee 165
Show Realtime Ethernet Compatible Devices... menu entry....................... 166
Installation of RT-Ethernet adapter tab.cccce i, 166
Reload Device DeSCHPLioNS ENIY......cciiieieiiiiiiicee e 167
EtherCAT master configuration proCedure.cccvvvvvieiiiiiiiiiiiiiiiiiieeeeeee 167
Add slave configuration proCedure.ccoovviiiiiiiiieeeicecee e 168
TWINCAT 3 EtherCAT NEIWOIK........uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiinenennenneennnennennee 168
Measurement project configuration procedure............coevvvvveiiieeeeeeeevieinnnnnn. 169
Add PLC task proCeaUre.cooiiiiiiiiiii e 169
Add Global Variable List (GVL).......ccoooeeieiiie e, 169
Global Variable LiSt OVEIVIEW.uuuuuuuuerumrinriennnienennnnnennennnnnnnennnnnnnnnnnnes 170
Main variable [IST.ouuieiii e 170
Build SOIULtION OPLION.uuiiei e e 171
Link PLC variabIles.coiii i 171
PLC Login and Start BUtONS.ciiiiiiiiiice e 172
Create GVL iNPULS' GraphS.uueeeeiiiiiiiiiiiiiiiiiiiiiiiiieiiiieieieiaeeeiennneeeeeeeeeeeenes 172
SSC NEW PrOJECE PANE... ..o e e e e e 173
SSC slave information tab.cooiii i 173
SSC create new application OVEIVIEW.cciiieiiiiiiiiiiaae e 174
SSC synchronization tab.uuuiiiiiiiii 174
SSC create new slave filesS OPLioN.uuuuruiiiiiiiiiiiiiiiiiiiiee. 175
The LaunChXL-F28379D.uuuuuuuiiiiiiiiiiiiiniiiiiniienennnnnnnnnnnnnnennnneneenennnnnnnnnes 176
TMS320F28379D microcontroller core architecture............cccvceeeeiiieeneennns 177
Delfino's interrupt arChiteCture.oooi i 178
Interrupt propagation Path. ... 179
PIE channel Mapping. «..... oo 180
CLA UNIt @rChItECIUIE. e e e e e 181
DMA controller architeCture.uueoii i 185
IPC unit arChiteCture.ooooiiee e, 187
LaunchXL-F28379D PINOUL.ccvviiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 190

13/217

Figure D-1.
Figure D-2.
Figure D-3.
Figure D-4.
Figure E-1.
Figure E-2.
Figure E-3.
Figure E-4.
Figure E-5.
Figure E-6.
Figure E-7.
Figure E-8.
Figure E-9.
Figure E-10.
Figure F-1.
Figure H-1.
Figure H-2.
Figure H-3.

Figure I-1.
Figure I-2.
Figure J-1.
Figure J-2.
Figure J-3.

Project's Linked ReSOUICES OVEIVIEW.ccvvviiiiiiieeeeieeeiiee e 191
Project's Linked RESOUICES OVEIVIEW.ccovvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 191
Project’'s Processor Options.cuuuiiiiiiiiiiieeiiee e 192
Project's File Search Path tab. ... 192
C2000Ware installation proCedure.ceeeiiieeeriieiiiiieee e 193
CCS IMPOIt WOIKFIOW. ... e 193
IMport CCS Project OPLiONS.ccovveiiiiiii e e e 194
“View” drop-0OWN MENU.uuuuiiiiieeeieeeiiiiie s e e e e et e e e e e e e e e e e e e e eeeannes 194
New Target ConfigUration..............coevvvviiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 195
Name Target Configuration.cccceeiiieiiiiiiiiiiiee e 195
Select coNNECtioN aNd JEVICE.uuuuriiiiiiiiiiiiiiiiiieieieiieiiieeeeeeeeneeeeeeneeeeeeeees 195
Link the created Target Configuration to the project.ccccooeeeeiiiiiiiiinnnnnn. 196
TI'S CCS Main taskbar.........ouuueiiiii e e e eeaaees 196
Firmware's Debug Session configuration............ccccooeviiiiiiiiiiin e, 196
Project's Include OPtioNS PANE.coovvviiiiiiiiiiiiiiiiieeeeeeeeeeee e 198
MISRA C: 2012 motion control guideline violations' bar-plot....................... 203
MISRA C: 2012 ADIS16364 guideline violations' bar-plot............cccccceeeeeee. 205
MISRA C: 2012 ADIS16375 guideline violations' bar-plot..............ccccvvveee.. 206
LDO's maximum allowable thermal resistance.cccccccceeeeiieeeeveeeiiinnnnnn. 208
LDO thermal behavior with chosen heatsink............ccccccvvvviiiiiiiiiiiiiiiiiien, 209
Rigid-body pendulum OVEIVIEW..............covviiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e 210
Rigid-body bifilar pendulum OVErview.ccccvvviiiiiiiiiiiiiiiiiieeee 211
Bifilar pendulum’s geometry of motion. ... 211

14/217

List of Tables

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.

Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 4-14.
Table 4-15.

Table 5-1.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 7-1.
Table 7-2.

Table C-1.
Table C-2.
Table C-3.

Reversed RJ9 cable's pin Mapping.cooovvviiiiiiii e 46
DCL controller performance COMPAriSON.ceeieeeeiieeiiiiiiieeeeeeeeeeriiae e e 58
Master’s input process data ODJECtS.covvvviiiiiiiiiiiiiii 64
Master’s output process data objects.ccceeeiiiiiiiiiiiiii 64
Firmware ISRS’ execution time. ... 70
Firmware's performance OVEIVIEW.coovuuiiiiiiieeeeeeeee et 72
Firmware's Predefined Symbols LiSt............ccoovviiiiiiiiiiiiiiiiiee 72
Static analysis FESUILS.cooiiecce e 76
ADIS breakout board Circuit SCheme. ... 81
Intermediate-board’s signal layout...............cooiiiiiii e, 82
Different components' power CONSUMPLION.cvvvveviiiiiiiiiiiieiieiiiieeeeeeeeeeeeeee 83
IMU slaves' power supply channels Safety Factors (SFS). ...cccoovveeviiiiiiiinnnnn. 84
Custom PCB traces’ attribUtes.coovviiiiiiiiiii e 84
IMUs’ SPI supported settings.couviiiiiiiiiiiiecee e 90
ADIS16364 EtherCAT PDO-INPULS. ..cccoee e 93
ADIS16364 EtherCAT PDO-OULPULS.ccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 94
ADIS16375 EtherCAT PDO-INPULS. ..cccoee e 96
ADIS16375 EtherCAT PDO-OULPULS.ccoeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 97
Firmware's Predefined Symbols List..........ccccooooiiiiiiiiic e, 99
Required frame transformations. ... 102
GYroscope SPECIfICAIONS.uuuiiei i e 102
Accelerometer SpPeCIfiCatiONSoooeeeeeieeie e 103
Analog Devices ADIS163xx IMUs custom filtering options.ccc.uu.... 103
DC-Mode TWINCAT slave SettingsS.ccovvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 115
Maxon motor's datasheet Values.coevvvviiiiiiiiiiiiiiiiiieeeeeeeeeee 119
Sampling equipmMeNt's PAramMELErS.uuuuruuuuurreiiiiriiiieeeineeeinennen. 120
Speed constant experimental resSultS.ccoovviiiiiiiii 121
Linear model's COeffiCIENtS.cevviiiiiii i 123
Nonlinear model 1 COeffiCients.cceeviieiiiieiice e 124
Nonlinear model 2 CoeffiCientS.cooi i 126
INA253 EVM SPECIfICALIONS.ccooeeeieeeeeeeeeeeeeeeeeeee e 128
TMCS1100 EVM SPeCifiCatioNS.coeeiiiiiiiiii e 129
Motors’ thermal attributes.oovviiiii i 145
Useful motor characteristic Values.coooeeiiiiiiiieiiice e 146
INTEITUPL COIe PIIONTIES. .eeeeiii et e e e 179
CPU VS CLA 0ALA LYPES. ..uttttttiiiiiiiniiiiniiinnsresasennnsesssnsnssnsnsssnsesnnneneseeeneeneen 181
CPU-CLA Message RAMS OVEIVIEW.cuuuuiiieeeeaieeiiiiiiaaa e eeee et e e 182

15/217

Table C-4.
Table C-5.
Table C-6.
Table C-7.
Table H-1.
Table H-2.
Table H-3.

Table I-1.
Table I-2.

Table K-1.
Table K-2.

IPC message RAMS OVEIVIEW.cuuuuiiiiieeeiieeeiiiee e e e e e e e eevties e e e e e e e eennaaans 188

IPC GSX RAM OVEIVIEW. ...cceeeeeeeeeee et 188
IPC communication regiSters OVEIVIEW.cuuuieiieeeeeeeeiiiieee e e eeeeeeeeeianns 188
LaunchXL-F28379D power supply configurations.cccccvvevvveivieeennnnn. 190
MISRA C: 2012 motion control’s guideline violations.ccccevvvnnnnnn. 202
MISRA C: 2012 ADIS16364 guideline violations.ccccccvvvvviiiiiiiininnnnn. 205
MISRA C: 2012 ADIS16375 guideline violations.ccccceeevieeeiiiiiininnnnnn. 206
LM1085IT thermal lIMItS.ccoovviiiiiiiiiiiiiiiiiieeeeeeee e 207
Matlab study's used parameters.coovvvvviiiiiiiiiiiiiiiieeeeeeeeee e 208
Absolute encoder interface CirCUIt............oooeeeeeeeieeeeieeeeeeeeee, 213
IMU-Delfino PCB BOM.ccoiii i, 213

16/217

List of Abbreviations

Abbreviation

Definition

ADC
Al

AL
CCSs
CLA
CNC
CPU
CRMS
CSs
CSL
Csv
DAC
DC
DCL
DLL
DMA
DSP
ECAT
EEPROM
EM
ENI
EoMs
ESC
ESI
ESM
ETG
EtherCAT
FIR
FMMU
FPU
GA
GPIO
GVL
HAL
nT
IMU
IPC
ISR
JTAG
LDO
LVDS
MCU

Analog to Digital Converter
Artificial Intelligence
Application Layer

Code Composer Studio
Control Law Accelerator
Computer Numerical Control
Central Processing Unit
Cumulative Root Mean Square
Chip Select

Control Systems Lab
Comma Seperated Values
Digital to Analog Converter
Distributed Clocks

Digital Control Library

Data Link Layer

Direct Memory Access
Digital Signal Processor
EtherCAT

Electrically Erasable Programmable Read-Only Memory

EtherCAT Master

EtherCAT Network Information
Equations of Motion

EtherCAT Slave Controller
EtherCAT Slave Information
EtherCAT State Machine
EtherCAT Technology Group
Ethernet for Control and Automation Technology
Finite Impulse Response
Fieldbus Memory Management Unit
Floating Point Unit

Genetic Algorithm

General Purpose Input/Output
Global Variable List

Hardware Abstraction Layer
Istituto Italiano di Tecnologia
Inertial Measurement Unit
Inter-Processor Communications
Interrupt Service Routine

Joint Test Action Group

Low Drop-Out

Low Voltage Differential Signaling
Microcontroller Unit

17/217

MDP
MEMS
MII
MMU
MOPS
ODE
PDI
PDO
PHY
PIE
PLC
PWM
SF

SM
SNR
SOTA
SPI
SSC
TCL
TMU

Modular Device Profile
Micro-Electro-Mechanical Systems
Media-Independent Interface
Memory Management Unit

Motor Overheating Protection System
Ordinary Differential Equation
Physical Device Interface

Process Data Object

Physical Layer

Peripheral Interrupt Expansion
Programmable Logic Controller
Pulse Width Modulation

Safety Factor

State Machine

Signal to Noise Ratio

State Of The Art

Serial Peripheral Interface

Slave Stack Code

Time Control Loop

Trigonometric Math Unit

18/217

1 Introduction

1.1 Motivation

The objective of the present thesis is to enhance the Laelaps Il quadruped robot (Figure 1-1)
with new capabilities by exploiting optimally its hardware and lay the foundations for advanced
control schemes leading ultimately to advanced locomotion skills. Although the previous
Laelaps setup was functional, certain improvements were considered necessary to fully exploit
its capabilities. The EtherCAT network, currently operating on the robot, has made the
development modular, facilitating the fast integration of new features. In this way, any sensory
subsystem or other installed hardware is controlled by a microcontroller unit (MCU), which is
handled as a slave by the EtherCAT master. Certain aspects regarding locomotion and
dynamics are analyzed, along with their implementations, by installing sensors and designing
optimally the respective firmware. Towards that, the first step of a thorough literature review
is of utmost importance to outline current trends in the field, assess their performance and
incorporate them into the system.

“
a

Figure 1-1. The Laelaps quadruped robot.

1.2 Literature Review

1.2.1 Legged Robots

Legged robots constitute a whole new branch of mobile machines that are not bounded by
restrictions that the wheeled ones are. The mobility advantage and agility that a leg presents
cannot be replicated by a simple wheel layout. This is one of the reasons why legs are the
main locomotion mechanism in nature. From the speed of a cheetah and the climbing skills of
a goat to the strength that leafcutter ants demonstrate (relative to their size), legs are there to
tackle every mobility challenge that nature has to offer (Figure 1-2). For sure animals have
obvious differences in how they look and move, but they share the same fundamental
locomotion principles. That alone may be a convincing proof that with the right hardware and
software, along with the ongoing advancements in engineering and technology, legged
machines could soon have a leading role in robotic operations in unstructured environments.

19/217

Figure 1-2. Legged animals in various mobility challenges: (a) a cheetah, (b) a leafcutter ant,
(c) agoat.

Today, at the dawn of legged robots, many questions remain without a definitive answer.
An increasing number of academic institutions and tech companies are creating evolutionary
platforms trying to address the key problems. The designs are gradually improving aiming to
undertake a diversity of tasks, including every-day ones, space exploration and more. By
employing bleeding-edge technologies, the scientific field is rapidly expanding and ready to
change everyday life at its core. Boston Dynamics’ Atlas [1], Spot [2] and BigDog [3], along
with others such as Anybotics’ ANYmal and its recent successor ANYmal C [4], MIT Cheetah
[5] and Agility’s most recent biped DIGIT [6], are some state of the art attempts that
demonstrate the current research trends (Figure 1-3). Some of them, like Spot, are mature
enough for commercial distribution, with experimental integrations in big supply chains, like
the Ford Motor Company’s [7]. Finally, Laelaps Il (Figure 1-1) is a quadruped robot designed
and built by the CSL-EP Legged Robots Team at NTUA [8], which primarily serves as a
research platform for addressing the most significant open design and control problems in the
field.

() ®

Figure 1-3. (a) Boston Dynamics Atlas. (b) Boston Dynamics Spot. (c) ANYbotics ANYmal-C.
(d) Agility Robotics DIGIT. (e) Boston Dynamics BigDog. (f) MIT Cheetah 3.

20/217

1.2.2 State Estimation Hardware and Sensors

An important aspect of every robot is its state estimation scheme and the general
understanding of its surroundings (localization). Besides the obvious control use of state
estimation, recent endeavors focus on leveraging its task-driven counterpart by making robots
interact with their environment and execute a task. In most cases such interactions require
many states for their description and some of them may be hard to measure directly. This
subject has been extensively discussed in the scientific community [9] [10], in an attempt to
account for challenges such as the minimization of the processing power needed to
accomplish practical tasks. Research suggests that there are many milestones to reach in this
field and numerous different aspects to improve. Since localization is a complex and layered
engineering field, research focuses on perception, planning and control, but also on the key
technologies that can enable the application of the proposed concepts. Importantly, besides
the traditional approaches, learning-based approaches have demonstrated the ability to
efficiently execute such tasks by providing a fair amount of time for training beforehand.

In this thesis, an attempt is made to equip Laelaps Il with sensors commonly used in most
state estimation schemes [11], like joint encoders and inertial measurement units (IMUs). For
instance, the previous version of Laelaps did not use any IMUs to determine its pose and as
a result its body position and orientation was controlled indirectly, in an open-loop manner.
The wide applicability of these devices is justified by their simplicity, well-proven technology
and the vital information they provide. This work aims to integrate two IMU sensors into the
current layout. This effort will enable accurate body motion that was not possible in the past.
In general, IMUs come in two configurations, gimbaled and strap-on systems, both with
different perks [12]. At this point, the latter configuration was chosen as the simplest one, to
avoid complex housing structures with moving parts.

The most common sensors for rotational measurements are the rotary encoders [13].
They are electromechanical devices that translate their rotor's angular position to digital
readings. There are two major types with respect to the kind of output needed. The incremental
encoders are used when the relative position is sought out. On the other hand, absolute
encoders produce a unique reading assigned to every angular position of their rotor. Contrary
to the incrementals, they do not lose track of their rotor’s position when they are not powered
on. Currently, on Laelaps Il quadrature incremental encoders are installed. This choice is
justified by the low noise and finer resolution that these modules offer. A quadrature encoder
is an optical module that combines two sensing channels that present a phase shift [14]. This
results in the generation of two shifted square waves and another supplemental one that
provide information for position, direction and velocity (Figure 1-4). The downside of this
feedback architecture is that the aforementioned modules need manual initialization at the
desired zero-angle position.

Figure 1-4. Quadrature optical encoder overview.

21/217

The optical nature of the quadrature encoders implies certain limitations regarding their
nominal operational conditions. In dirty environments with dust and other non-magnetic
contaminants, magnetic encoders are more suitable. They are inherently rugged and shock
resistant. Generally, Laelaps Il is designed to operate in a variety of harsh outdoor conditions.
With that said, in the current thesis magnetic absolute encoders are placed on each leg’s
drivetrain to keep track its position even without power. This way, not only the robot’s startup
sequence becomes fully automated, but the power transmission’s health can be monitored as
well.

1.2.3 Motion Planning and Control

The basic Laelaps Il motion control architecture consists of a higher and a lower level
controller. In this thesis only the latter one is considered. The already implemented control
scheme consists of three major parts [15]: (a) a trajectory planning part, generating a task
space trajectory in real-time context, (b) an inverse kinematics routine that translates the
former task-space trajectory to joint-space angles and (c) a joint-level active compliance
controller driving each leg.

The trajectory planner that is currently used by Laelaps Il performs semi-elliptical
trajectories, designed for efficient trotting. The simplicity of the approach makes it ideal for
deployment in the embedded systems that currently operate on the robot. Compared to other
designs [16] [17], Laelaps Il executes highly dynamic motions with lower processing cost [18].
The main downside of the method is the periodic accelerations that comes with during stance
phase. To enable smoother motion regimes like walking, a constant stance velocity planner
[19] was implemented in firmware. The simulations and experiments have demonstrated the
expected smoother, car-like motion of the robot, without rapid accelerations that disrupt its
gait cycles.

The key part of the quadruped’s architecture is its active compliance joint controllers that
are coupled to its trajectory planning scheme. They are based on the principle of a spring-
damper system acting among the current joint-angles and the desired ones. This architecture
is materialized on the real robot by optimized PV controllers [20]. The rationale behind this
choice over the traditional PD ones is that the former ones do not add any zero terms in the
closed loop system, resulting in lower oscillations. In this thesis an effort was made to optimize
the whole firmware’s execution time and add safety features for flawless operation. These
matters are furtherly discussed in Chapter 3.

1.2.4 Motor Overheating

Legged machines are characterized by increased torque demands at their joints, since they
have to support their own weight even when they stand still. For electrically actuated robots,
increased torque means increased current and thus high motor temperature. To enable
dynamic behaviors and exploit the hardware at its limits, the motor heating problem should be
accounted for and treated accordingly. Maxon, the manufacturer of the installed motors,
proposes methods to predict their thermal behavior as a function of their operation [21].
Nevertheless, none of the methods demonstrates online prediction capabilities and as a result
the need to develop one arises. Due to the complexity of the temperature measurements, one
requirement would be that the proposed method must rely solely on current measurements to
regulate each motor’s input current. The complete study is presented in Chapter 7 of this
thesis.

22/217

1.2.5 System Ildentification

The distributed control scheme of Laelaps Il is currently a model-free and manually tuned
control system [15] [22]. However, to reach optimal performance, the application of model-
based controllers could be a good solution by taking into account the key nonlinearities that
the system presents. Towards this, the exact inertial and frictional parameters must be
accurately measured, to have a precise mathematical model for the actual physical system.
Besides control-related objectives, knowing the basic system parameters accurately enables
accurate simulations, which is a key step in the entire development process.

Although the masses and lengths of each link can be measured with simple methods, the
friction coefficients of the joints and gearboxes, along with the inertias and center of mass
positions need complex mathematical algorithms involving modeling and dynamics. The two
most widely used methods to estimate those parameters are:

o Extended Kalman Filter. The inertial and frictional parameters are treated like system
states that stay constant throughout time. This fact establishes an online method that
linearizes the dynamics at a point and fuses the measurements to get the known and
unknown states [23].

o Least Squares Identification. The linearity of the mathematical model with respect to
the unknown parameters is exploited. By executing least squares regression, the
parameters are estimated from torque and kinematic measurements. It is an offline
algorithm that requires separate experiments to determine the nonlinear parts (e.g.
Stribeck frictional term) of the friction model and the remaining linear ones, like inertias.
The method’s main disadvantage is that it requires position, velocity, acceleration and
torque inputs. Hence, in unknown quantities that cannot be measured and thus are
approximated with computational methods, noise becomes a very important factor that
downgrades the algorithm’s performance significantly [24] [25] [26] [27].

After reviewing both methods’ pros and cons, the Least Squares Identification was chosen

for the task.

1.2.6 Current Sensing

Accurate measurement of the current consumption of a robot’s actuators is important in legged
robotics. There are several design options to solve the challenges associated with accurate
current-measurement; approaches range from using general-purpose operational amplifiers
(op-amps) to analog-to-digital converters (ADCs), either standalone or embedded in an MCU.

In Laelaps’ case, current sensing indicates the torque demands of the system. Also, it is
a measure of the thermal fatigue of the motors. Most importantly, combined with voltage
sensing, it is a direct measure of the power consumption, the minimization of which, is crucial
for any mobile machine. In the context of this thesis, an effort has been made to find suitable
sensors and integrate them into the existing hardware setup. Related application guides
simplify the task and provide powerful insights [28].

23/217

2 Laelaps Il EtherCAT Network

2.1 Introduction

The Laelaps Il quadruped is a 40kg robotic platform designed for highly-dynamic behaviors
[29]. Itis the result of multidisciplinary studies performed by the CSL-EP Legged Robots Team.
Every hardware component is designed and calculated with a variety of methods, both
analytical and optimization-based. The majority of the system’s components have been
manufactured in house, with state of the art equipment and processes. The present thesis
aims to improve some of the most critical subsystems of the robot and also add several new
features. Specifically, this work includes significant improvements in the sensory system and
the control firmware of the robot.

The EtherCAT (Ethernet for Control and Automation Technology) network of the robot
plays a vital role, since it enables synchronization and ultra-high bandwidth communications
among its various distributed processing units. Designed by Beckhoff, EtherCAT has become
the leading trend in the industry’s hard real-time data transfers [30]. Its integration in
guadruped robots constantly increases; for instance it is used in the well-known IIT’s HyQReal
[31]. However, along with the great advantages of this technology comes a significant amount
of low-level programming effort to make a system like the Laelaps Il operational.

In this section, some EtherCAT theoretical preliminaries are presented. Moreover, an
overview of the Laelaps Il EtherCAT network is presented, both from hardware as well as from
software aspects.

2.2 EtherCAT Protocol Overview

EtherCAT constitutes an Ethernet-based Fieldbus communication system. It is suitable for soft
and also for hard real-time applications. The combination of short update periods, reduced
jitter and low cost, has made EtherCAT the leading protocol in both academia and industry.
From the control of a simple servo motor to the demanding application of controlling the mirrors
of the Giant Magellan Telescope [32], the extent of use of the protocol becomes apparent.

2.2.1 Functional Principle

EtherCAT uses a master-slave architecture. The slave nodes are considered as black boxes
and specifications about their internal architecture and operation are irrelevant as far as the
master is concerned. The standard Ethernet frame is not processed at every node
sequentially, rather only a specific address of the telegram is read and written by the
corresponding slave. This “on the fly” processing approach prioritizes the critical data
transfers, while at the same time eliminates redundant delays in the data circulation.

The master node is in complete control of the traffic exchanged in an EtherCAT network.
It initializes every communication sequence by sending frames via its Ethernet interface.
Subsequently, they are processed “on the fly” by every EtherCAT Slave Controller (ESC) in
the logical ring. It should be noted that the term “logical ring” does not refer to the daisy-chain
topology of the slaves, rather than to the internal architecture of the network. The slaves are
connected in series, but the Ethernet cable along with each slave's internal architecture
enables the full-duplex communication scheme, illustrated in Figure 2-1(a).

24/217

The frame processing at each of the ESCs is executed by logical units, called ports. Every
port executes a part of the total frame processing and forwards the frame to the next one, in
a roundabout fashion, like the one presented in Figure 2-1(b).

JL:

EPU PORT 3 \m
A = _JT 2 ESC 18;, 1L>
—— w s -lf

(:J
() (b)

Figure 2-1. (a) The logical ring of an EtherCAT network. (b) ESC frame processing.

2.2.2 EtherCAT Frame Structure

The EtherCAT frame comes as a component of the standard Ethernet frame. Every frame
contains a significant amount of fields, each one performing a different functionality or carrying
a fraction of the total payload. The EtherCAT frames contain multiple datagrams that adress
different slaves in the network. Each datagram contains headers that specify commands and
specific addresses, for read/write operations, to particular ESC’s memory sections. The
feature that enables the high-bandwidth data circulation is that each slave processes only the
datagram that the master dictates, designated by the prescribed values in the datagram’s
header. This mechanism becomes apparent in Figure 2-2. The frame’s structure is shown in
Figure 2-3, while detailed information can be found in the literature [33].

Slave 1 Slave N

—_— | @ |==

A 4
y
v

Master I [

| ;

i
theret HDR [HDR 1] Dai Hor 2] Baaa] e o o o] Datan “|cnrls_" } 11 == e,
. . X : X <<¥cc<cc<cc <<&<Z~.

H ' i ; : LN L X J

LN L X J

L X J L X J

L X J [X J

i Datagram 1 | Datagram 2 i i Datagramn |

Figure 2-2. Each slave processes only one prescribed datagram.

25/217

Ethernet frame (IEEE802.3): 64-1518 Bytes (up to 1522 Bytes if VLAN is used)

8bit

H
i
I}
4
{ .
/
/ i
-
\.
\
"\
"
5

8 Datagramex.1: Read/write access to registers

Datagram ex. 2: Mailbox communication,

CoE SDO Service (via SMO, SM1)

Datagramex.3: Process data exchange
(via SM2, SM3)

Figure 2-3. Typical EtherCAT frame structure.

26/217

2.2.3 EtherCAT Master

EtherCAT Masters (EMs) manage the total amount of communications in an EtherCAT
network. In a nutshell, EMs may be materialized by software in Linux-like operating systems,
without any special demands as far as the hardware is concerned. This is their main difference
with the slaves’ architectures that demand tailored made electronics, often FPGA solutions,
to fulfill their tasks. In their simplest form, EMs implement a real-time control loop that handles
the communications and the intermediate processing required among the cycles. An intuitive
overview is given in Figure 2-4. For an in-depth understanding of EM concepts, the reader is

referred to [34].

| ¢——————No
\

Time
Increment

Y LOOP

Receive
Frame & Store
its Data

ermination Yes

\

Process Data l
& Execute A

Supplementary
L Tasks

\4
Send New
Frame with

Updated Data

& Commands

Figure 2-4. Basic EtherCAT master operation.

2.2.4 EtherCAT Slave Overview

EtherCAT slaves present a number of hardware and firmware design challenges that require
specialized solutions. As mentioned before, ESCs process each frame “on the fly”, while the
requirements of such processes demand the employment of hardware solutions to fulfill the
low run-time demands. This constitutes the so-called Data Link Layer (DLL) [33], which in turn
comprises several modules such as SyncManagers (SMs), Fieldbus Memory Management
Units (FMMUSs) and Distributed Clocks (DCs).

The second layer of a generic slave is the Application Layer (AL) [33], usually realized by
a microcontroller. This layer includes the implementation of the user application. The interface
between the two aforementioned layers is possible due to the Physical Device Interface (PDI),
which constitutes a communication protocol such as the Serial Peripheral Interface (SPI).
These concepts will be clarified in the next sections of this chapter, while an overview may be
observed in Figure 2-5.

27/217

AcE EoE FoE SoE CoE Process
0x01 0x02 0x08 0x10 0x03 data

e ¢ ! { ¢ } I AL

ESM

Mailbox service (read, write)

PDI (Physical Device Interface) I SYNCx LATCHx l

Slave Information Interface ESC memory

(SI1; EEPROM) Dual-ported RAM

Registers
ESC Configuration - 8

b 0X0000 - OXOFFF ;
Configured Station Alias Mailbox Process data
CRC

Identity
Vendor ID s0x0800 ff.
Product Code
Revision Number
- - ou

Info (128 Bytes)

Serial Number ESC 150X0600 ff.
Hardware Delays
Bootstrap MBX SM Configuration 0x0900 fF.
Standard MBX SM Configuration

EtherCAT Processing Unit (EPU)
Strings
General
FMMU
SM
RXPDO
TXPDO
DC

Categories

PhL
Figure 2-5. ESC architecture overview.

SyncManager

The ESC memory is used for exchanging data between the EM and the application running
on the slave. The master can access the memory through the network by using the data link
layer services, whereas the local application makes use of the process data interface (PDI)
provided by the ESC. As a consequence, problems may arise if concurrent accesses are
carried out without any restriction. In particular, the consistency of data is not guaranteed by
the basic data link communication services, unless a mechanism, like semaphores, is
implemented in software for dealing with data exchanges in a coordinated way. Moreover,
both the EM and the application running in the slave have to poll the memory explicitly, in
order to determine when it is no longer used by the competing entity.

SyncManagers support two communication modes:

1. Buffered mode. In this case, the interaction between the producer and the consumer
of data is uncorrelated and each entity can access the buffer at any time. The
consumer is always provided with the newest data. In the case data are written into
the buffer faster than they are read out, old data are simply discarded. The buffered
mode is typically used for cyclic process data. This mechanism is also known as 3-
buffer mode, because the SyncManager manages three buffers of identical size
(denoted as 0, 1, and 2). One buffer is allocated to the producer (for writing), another
buffer to the consumer (for reading), and a third buffer helps as intermediate storage.
Reading or writing the last byte of the buffer results in an automatic buffer exchange.
It is worth noting that both the EM and the local application must always refer to buffer
0 when accessing memory. It is up to the SyncManager redirecting accesses to the
right buffer.

2. Mailbox mode. In this case, a handshake mechanism is implemented for data
exchanges, which prevents buffer overwriting and ensures that no data will be lost.
Just one buffer is allocated for each mailbox; moreover, reading and writing are
enabled alternatively. The mechanism implemented by mailboxes is straightforward.
At first the producer writes to the mailbox buffer. When done, the SyncManager locks
it for writing and enables read access to the consumer. Only when the consumer has

28/217

finished reading data out of the buffer, the producer is granted write access again. At
the same time, the mailbox turns to the locked state for the consumer. The mailbox
mode is typically used for application layer (AL) protocols, where the time taken to
exchange information is not very relevant.

According to the literature [35], the buffered mode is used for cyclic data exchanges, while
mailbox is usually used for application layer’s protocols, such as CAN over EtherCAT (CoE).
Therefore, the user-defined process data (Section 2.2.5), which are considered as cyclic data,
are exchanged in buffered mode.

Fieldbus Memory Management Unit

The Fieldbus Memory Management Unit (FMMU) is a common concept in the field of
embedded systems and computer science. These modules are responsible for the mapping
between the ESC'’s logical address space to its physical counterpart.

Distributed Clock Unit and Synchronization

EtherCAT is designed to serve hard real-time applications with large data transfers. To
achieve that, a synchronization mechanism with ns time resolution is used. The operation of
this mechanism requires the calculation of the various time-drifts and delays that are present
in the network. These are summarized in three categories:

1. Propagation Delay. The master calculates the time that the frame needs to arrive at
each slave in the network, by employing a timestamp mechanism. The receive times
and delays acquired by that process are stored in registers 0x0900 and 0x0928 of the
ESC, respectively.

2. Offset. Each network has a reference clock, most frequently the free-running counter
of the first slave. Each node has its own clock and subsequent offsets among them
are present. The master, by reading the clocks of every slave in the bus, calculates
the required offsets and stores them both in its memory and at each slave controller,
more specifically in the 0x0920 ESC register.

3. Dirift. The reference clocks have a drift in their operation as time passes. To account
for such a phenomenon, a time control loop (TCL) is implemented by the master and
the drifts are compensated.

The DC Synchronous mode is used in this work, since it is the most hard real-time
configuration that EtherCAT supports. This is achieved by activating the major processes of a
slave, by a hardware interrupt. The implemented mechanism can be better understood by
consulting Figure 2-6. A major ESI element that enables this configuration is called
Dc:AssignActivate and is configured during the design phase of the slave’s EtherCAT stack.
It is also, highly dependent on the ESC’s hardware architecture.

DC-Synchronous

Function File

(Hardware
interrupt) -’ e PDI_lsr() / SyncO_lsr() / Sync1_lsr() ecatappl.c
PDO_OutputMapping() ECAT_Application() PDO_InputMapping() ecatappl.c

l |

HW_EscReadlsr() “TROY APPL_InputMapping() _ hwe/
APPL_OutputMapping() AFPL Spplication() HW_EscWritelsr() ___applc
...... If AL_EVENT_ENABLED =1 ssmsnnemnns |f SYNC1 is active

Figure 2-6. DC Synchronous mode overview.

29/217

2.2.5 Process Data

EtherCAT networks have a very flexible process data scheme that enables large data
transfers without violating other ESC’s mechanisms. Each slave’s internal organization can
be perceived as multiple Process Data Object (PDO) instances, called object dictionaries.
These modules have a strict addressing organization based on the CANopen standard [36].
The object dictionary structure and corresponding behavior of the entries is defined by the
Modular Device Profile (MDP) [37]. Figure 2-7 provides a better insight into the MDP concept.
It defines a modeling of structures within a device. The intention is to provide an easy way for
the master to handle the network’s devices.

MDP Device
Object Dictionary Module 0 Module 1 Module n
Communication area (0x1000 — Ox1FFF)
e.g. object 0x1000, 0x1018, 0x10F3
RxPDOs (0x1600 — Ox17FF) 0x1600 0x1601 0x16nn
TxPDOs (0x1A00 — OX1BFF) 0x1A00 0x1A01 Ox1Ann
Manufacturer specific area (0x2000 — OX5FFF)
Input area (0x6000 — OX6FFF) 0x6000 — 0x600F 0x6010 — 0x601F ... 0x6nn0—0x6nnF
Tx-mappable, read-only
Output area (0x7000 — Ox7FFF) 0x7000 — Ox700F 0x7010 — Ox701F .. 0x7nn0—0x7nnF
Rx-mappable, read-writeable
Configuration area (0x8000 — Ox8FFF) 0x8000 — 0x800F 0x8010 —0x801F .. 0x8nn0—0x8nnF
read-writeable, usually not mappable
Information area (0x9000 — Ox9FFF) 0x9000 — 0x900F 0x9010 -0x901F ... 0x9nn0—0x9nnF

read-only, usually not mappable
Diagnosis area (0OXAO0O — OXAFFF) 0xA000 — OxAOOF 0xAO010 — OxAO1F ... OxAnnO —OxAnnF
Device area (0xFOOO — OxFFFF)

e.g. object 0xFO00, 0xFO10, 0xFO30, 0xFO50

Figure 2-7. Modular Device Profile overview.

Most of the procedure of creating such modules is automated, due to the user-friendly
Slave Stack Code Tool (SSC) [38], provided by the EtherCAT Technology Group (ETG) [39].
The reader is advised to understand those concepts by referring to the available
documentation [37]. More specifically, the memory sections 0x6000-0x6FFF and 0x7000-
0x7FFF are defined manually because they contain the application’s process data definitions.
The mapping of the described modules to the ESC’s hardware, along with the suitable
SyncManagers that are responsible for all the data transactions, is described in the slave’s
ESI file and may be viewed in Figure 2-8.

Outputs (SM2) Inputs (SM3)
0X1C12:1 %0X1C13:1
ot0x1600: S11to 5 oi0X1A00: SI1to 4 oi0X1A01: SI 1t0 2

OD Area OD Index Range Fixed mapping Mapping A Mapping B
Communication index area 0x1000 — OXIFFF

RxPDO Mapping 0x1600 — OX17FF

P — e ——.— a40x7000:1 Cycle count 0X6000:1 Status Ch.1 0X6000:1 ~ Status Ch.1

40x7000:2 Control Ch.1 #0x6000:2 Sample Ch.1 %0x6000:2 Sample Ch.1

RxPDO Assignment 0x1C12 0x7000:3 Sample Ch.1 40x6000:3 Time stamp Ch.1

TxPDO Assignment 0x1C13 0x7000:4 Control Ch.2
Modules index area 0x6000 — OXAFFF 40x7000:5 Sample Ch.2

Input area 0x6000 — Ox6FFF

Output area 0x7000 — Ox7FFF
Device index area 0xFO00 — OxFFFF

Figure 2-8. PDO mapping overview.

30/217

2.2.6 EtherCAT Network Operation

The present section gives a description of the operation of an EtherCAT network and
discusses the details of several basic notions.

When the power switch is flipped on, both the master and the slaves in the bus initialize
their intrinsic hardware and firmware. The master scans the bus and identifies every node in
it. Before the network becomes operational, several diagnostics and synchronizations are
performed. Delays and time offsets are calculated as well.

Each slave implements the so-called EtherCAT State Machine (ESM) [33], which has four
possible states and one supplementary.

e INIT: Only access to ESC registers.

o PRE-OPERATIONAL: Mailbox communication available.

e SAFE-OPERATIONAL: Process Data available, outputs still in safe-state.

o OPERATIONAL: Input and Output Process Data available.

e BOOTSTRAP: Supplementary state for writing the ESC’'s EEPROM memory.

The master requests state transitions from every slave on the bus. The latter ones may
verify and execute that transition on a prescribed timeout period, or else an error is thrown in
the corresponding AL Status register. By viewing that register, every slave’s status can be
monitored and determine if the whole bus is operational. The ESM is presented in Figure 2-9,
graphically.

INIT (,0x0120/,;0x0130 = 0x1): Only access to ESC registers

Master b 4 Master 4
Clear: Configuration registers, e.g.: Clear: SMO for Mallbox Out (20x0800 — 0x0807) I
FMMUs {1:g0X0600 — OX06FF) SM1 for Mallbox In (g0x0808 — 0x080F) 1
SyncManagers (SM) (1rg0X0800 — 0x087F) 1
Set: Fixed Physical Address (:0%0010) :
SMO for Mallbox Out (g0x0800 — 0x0807))
SM1for Mallbox In (:g0x0808 — 0x080F)
IfDC: DC System Time setup: 1
Delay compensation (i¢0X0900, :0x0928) 1
Offset compensation (g0X0918, ;5:0x0920) |
Static drift compensation (~15.000 times) (0x0910) I
1
Slave Slave 1
Verlfy: Mallbox SyndMianager settings Stop: Mallbox communication (STOP_MBX_HANDLER) 1
Start: Mallbox communication (START_MBX_HANDLER)
Confirm: State request to PRE-OPERATIONAL I
1
PRE-OPERATIONAL (;0x0120/,,0x0130 = 0x2): Mailbox communication available BOOT 0x3): optional
Master b Master
Set: Configuration objects via SDO, e.g.: Clear: SM2 for outputs (ez0X0810 — 0x0817)
RxPDO / TxPDO Assignment (f0X1C12 / 0x1C13) SM3 for Inputs (r0x0818 — 0X081F)
RxPDO / TxPDO Mapping {zz0X1A00 — OX1BFF / -;0x1600 — OXT7FF) FMMUO (maps outputs) (rg0X0600 — 0x060F)
SM2 for outputs (0X0810 - 0x0817) FMMU1 (maps Inputs) (:<0X0610 — 0x061F)
SM3 for Inputs (:0x0818 — 0x081F) Disable: Distributed Clocks (g0x0980)
FMMUO (maps outputs) (:g0x0600 — 0x060F)
FMMU! (maps inputs) (z0X0610 — 0x061F)
IfDC: Configure SYNC/LATCH unit:
Set SYNC cycle time (10X09A0 — 0x09AT7)
Set DC start time (g0Xx0990 —0x0997)
Set DC SYNC OUT unit (:g0x0980 —0x0981)
Set DC LATCH IN unit {0X09A8 — 0x09A9)
Start continuous drift compensation (:eg0X0910 — 0x0917)
Start: Cyclic process data
Slave Slave
Verlfy: Process data SyncManager settings, PDO Mappling/Assignment Stop: Cyclic process data
Start: Input update (START_INPUT_HANDLER)
Provide: Valid Inputs
Confirm: State request to SAFE-OPERATIONAL
SAFE-OPERATIONAL (..,0x0120/,.,0x0130 = Ox4): Process data available, outputs still in safe state
Master
Provide: Valid outputs
Slave Slave
Verlfy: Synchronizatlon with DC, If required Stop: Output update (STOP_OUTPUT_HANDLER)
Start: Output update (START_OUTPUT_HANDLER)
Confirm: State request to OPERATIONAL
‘OPERATIONAL (,10x0120/,50x0130 = 0xg): Input and output process data available
State transition/default timeout PreopTimeout (3000ms) SafeopOPTimeout (10000ms) BackToSafeopTimeout (200ms) BackTolnitTimeout (5000ms)

Figure 2-9. EtherCAT Slave's State Machine (ESM).

31/217

2.3 Laelaps Il EtherCAT Network Description

The above-described concepts are materialized on Laelaps Il quadruped. The robot’s network
inherits the protocol’s modularity and flexibility, along with its hard real-time capabilities.
Control applications in such complex machines need highly deterministic implementations that
only state of the art technologies can provide. In this section, all of the different components
of the network are analyzed. In later chapters, the actual hardware and firmware
implementations of those concepts will be discussed to develop a complete picture.

The Laelaps Il EtherCAT network consists of one master PC, namely an Intel NUC8i7HVK
(Hades Canyon Edition) and several LaunchXLF28379D - Beckhoff FB1111-0141 ESC combo
slaves. The described network, along with its components, is presented in Figure 2-10.

msmmm High Voltage Power mmmmm Low Voltage Power — Signals EtherCAT Cable

ttesies/ Power Supply
oltage

EtherCAT
adapter

; Servo ervo v ervo vo ervo
MCU/SBC i fve Mcu e ive MCUSBC —— Drive _ Drive

™MU

ADIS16364 / ADIS16375
IMU Slave HR Leg HL Leg FR Leg FL Leg

Figure 2-10. Laelaps Il architecture overview.

2.3.1 Laelaps Il Master

The network’s master is implemented with two software packages; one closed industrial-grade
solution called TwinCAT 3 [40], provided by Beckhoff, and an open-source solution called
EtherLAB [41]. For the latter, the reader is encouraged to refer to the ether_ros package [34].
This middle-ware is actively maintained by the CSL-EP Legged Robots Team, on its way to
become a complete ROS(2) package with a generic and modular design. On the other hand,
TwinCAT 3 constitutes a closed, proven solution with a user-friendly interface and is used
extensively in this thesis.

2.3.2 Laelaps Il Slave Nodes

Currently, two types of slaves operate on Laelaps II, which both consist of a LaunchXL-
F28379D [42] implementing the slave’s Application Layer, while the Data Link Layer is realized
by a Beckhoff's FB1111-0141 piggyback controller [43]. The slave’s intrinsic communications
are executed via SPI, which materializes the Physical Device Interface.

The first slave type is responsible for the leg motion control algorithm and the circulation
of the related parameters. The control application and the EtherCAT functionalities are running

32/217

on the same core, at present. However, the particular microcontroller has a dual-core
architecture that could be exploited in the future.

The other EtherCAT slave type handles the communications with an IMU. The work
described herein incorporates two IMUs and thus two EtherCAT nodes into the system. The
application is not identical for the two sensors, but their core operation remains the same.

2.3.3 Network Characteristics

The bus currently operates at a 2.5 kHz loop frequency, a rather high-bandwidth for motion
control applications. The network is robust and highly deterministic, since no frame drop
occurs in a variety of operational conditions. The default cycle time, in theory, can be
calculated by taking the sum of the different processes that occur in each cycle, presented in
Figure 2-11.

Minimum Cycle Time
<¢

SM access Process Activate = Mailbox Latch Process SM access
read outputs ~ outputs outputs service inputs inputs write inputs

Figure 2-11. Theoretical determination of the minimum cycle time.

In practice, there is no definitive answer regarding the minimum cycle time of an arbitrary
EtherCAT network, since its speed is heavily dependent on the attributes of its components.
The main contributions in the end-result are the time needed for sending the frame, the
propagation delay for its circulation in the network and finally the time necessary for receiving
it. In turn these procedures depend on the below parameters.

Bandwidth

Until recently, the protocol’s bandwidth was 100 Mbit/s, but with the introduction of EtherCAT
G and G10 flavors, this parameter became 1 Gbhit/s and 10 Gbit/s, respectively. In a 100 Mbit/s
network, like the one currently operating on Laelaps I, the frame processing will take 80
nanoseconds per byte, whereas in a 1 Gbit/s network, it will only take 8 ns per byte and in 10
Ghit/s networks just 800 ps per byte. However, by simply transitioning from EtherCAT to
EtherCAT G or G10 will not automatically translate to 10x or 100x performance gain, since as
can be realized, the end result depends on many different parameters.

Master Software Processing Time

The processing time needed by the master to perform the required tasks depends on its
processing power, hardware architecture, memory performance, etc. In Linux-like EMs certain
tuning can be made to optimize their performance. Also, with routines like ftrace [44] this
amount of time can be estimated accurately. TwWinCAT 3 provides an estimation of the required
processing time (11.92 ups) illustrated in Figure 2-12. To clarify, this number corresponds to a
single leg motion control slave (Chapter 3) connected on the bus, as suggested in [20].

33/217

LaelapsMotionControl + X |REGICTIES v &

General Adapter EtherCAT Online CoE - Online

Netld: 192.168.2.11.2.1 | Advanced Settings...
Datarate: 1100 MBit/s| Export Configuration File...

Sync Unit Assignment...

I Topology... I

Frame Cmd Addr Len wC Sync Unit Cycle (ms) Utilization (%) Size / Duration (uis) Map Id
.D NOP (x00000x0900 4 0.400
Wo ARMW 2000000910 4 0.400
WMo R0 0:03000000 1 0400
WMo w0000 38 3 <default> 0400
Mo BRD 0000000130 2 1 0400 298 125/11.92 0!

298

Figure 2-12. TwinCAT 3 frame processing time.

EtherCAT Slaves

The number of EtherCAT slave devices in the network, along with their Ethernet interface
contributes to the total cycle time. The typical delay for an EtherCAT slave that uses standard
Ethernet MII/PHY is about 1 us, whereas for another one that uses Low Voltage Differential
Signaling (LVDS), like E-bus, the delay is only about 0.3 us. In the Laelaps |l case, the ESCs
have Ethernet MII/PHY ports, resulting in 1 pys delay for each slave on the bus.

Another thing to consider is that in DC mode, all of the functions of the Application Layer
are synchronized with hardware interrupts. To maintain such tight synchronization each slave
should be able to execute all of the required routines within a specific timeframe, dictated by
the cycle-time. In the case of Laelaps Il motion control firmware, this time is about 169.63 ps.
This value comes as the sum of the execution time of the three major slave stack functions,
namely SyncO_Isr(), Syncl_lIsr() and PDI_Isr() (see Section 3.5). More information about
these routines can be found in the literature [45].

Process Data Size

The amount of process data handled by the network has a significant impact on its
performance. Note that their size is not limited to that of a maximum Ethernet packet (~1500
bytes). However, above this limit, multiple cyclic frames will be sent to handle the additional
bytes. This results in additional overhead and delays. Currently, there are four leg motion
control slaves with 60 bytes (22 inputs and 38 outputs) each, one ADIS16364 IMU slave with
40 bytes (36 inputs and 4 outputs) and an ADIS16375 slave with 58 bytes (52 inputs and 6
outputs). Hence the total user-defined process data size is 338 bytes. Apparently, in the
current configuration no additional Ethernet packets are necessary even after the addition of
the default bytes that come with each frame. Thus, no additional overhead is added. Lastly,
the number of fixed bytes in the frame depends on the synchronization mode and EtherCAT’s
addressing.

Laelaps Il Network Cycle Time

From the above analysis, it becomes apparent that the main factor to be considered in defining
the minimum cycle time in Laelaps 1l case is the slave processing time. TWinCAT 3, the EM
used in this thesis, prevents the slaves from going to operational mode if the chosen cycle
time does not suffice and multiple frame-drops occur. To determine a safe value for the
network’s cycle, a trial and error methodology was adopted. Initially, a single slave was
connected to the EM and by progressively increasing the cycle time, the minimum one was
determined at 200 ps. In the same manner, with all of the slaves connected, the default

34/217

operational frequency for the network was chosen at 2.5 kHz (400 ps). Admittedly, the
proposed method does not give the fastest possible EtherCAT cycle that the Laelaps I
network can achieve, but it is safe to say that the system is robust and deterministic, since no
frame drops are observed during its operation.

All of the real-world applications come with hard to model behaviors and noise. To account
for such phenomena, like jitter, the master calculates the required “shift times” for each of the
slaves. These values, if chosen correctly, can lead the slaves to maximum intrinsic
synchronization without frame drops and other corruptions. Admittedly there is an entire
interval of values that those shift times may take, while the optimal ones are hard to calculate
and depend heavily on the network’s hardware. The results of setting them incorrectly are
illustrated in Figure 2-13.

@ o)‘
E ..
1

1 B |,

Figure 2-13. Results of correct/ incorrect shift times.

However, there is a rule of thumb for a bulk approximation of the outputs’ shift time as the
algebraic sum of the following contributions.

¢ Hardware Delay introduced internally, by slaves.

o 1 s for every slave of the network with MII Ports (Current Configuration).
o 0.3 ps for every slave of the network with only EBUS Ports.

e Hardware Delay introduced by the cables, which is approximately 5.3 ns for every

meter of CAT Il Ethernet copper cables.

As previously mentioned those shifts are calculated by the master and in the case of
TwinCAT 3, a brilliant job has been made, ensuring automated synchronization for relatively
low cycle times. In case of Laelaps Il, by adopting a trial and error methodology the initial
guess given by the above rule of thumb was corrected and determined to be 30 ys. Admittedly,
this is not an optimal value, but it gave very promising results during the test runs since no
frame drops and other desynchronizations were observed. Last but not least, there are
extensive guides in the corresponding appendices (Appendix A and Appendix B) that illustrate
the process of creating a slave’s application and setting up TwinCAT 3 to host those
implementations. Significant, but on-going work, is done in the direction of ether_ros master,
but requires extensive reference that is out of the scope of this thesis.

35/217

3 Laelaps Il Motion Control

This chapter is dedicated to the Laelaps Il motion control scheme, analyzing both its hardware
and firmware aspects. The already operational decentralized architecture [20] resulted in a
working prototype with robust gait cycles and great stability. Despite the remarkable behavior
of the planner used, the intermittent accelerations that it comes with, downgrade its
performance. In the present thesis, an improved constant stance velocity planner, which was
introduced by the Team in [19], is implemented and incorporated in the Laelaps Il control
architecture. Special attention has been given to improve further the performance of the
application by taking advantage of the hardware’s various capabilities.

At first, the theoretical background concerning kinematics and planning is briefly given.
Then, the implementation of the developed planner is described, focusing on the modifications
that the setup requires. Details on how to assemble the used hardware components and setup
the CCS project are given in Section 3.4. Certain adjustments in the existing EtherCAT stack
are made, followed by others in the EtherCAT slave’s ENI file, to make TwinCAT’s master
compatible with the new application. Last, the validation process is described and conclusions
are derived.

3.1 Laelaps Il Control Architecture

3.1.1 Low-level Control Overview

Laelaps Il is a quadruped robot with a distributed, EtherCAT-based control architecture. This
means that for each leg, a single microcontroller is in charge for the total control payload.
Figure 3-1 gives an overview of the control architecture of Laelaps Il, according to the available
literature [15] [20]. This thesis analyzes only the low-level controller of the aforementioned
architecture (highlighted in the blue box).

High-Level Controller Low-Level Controller
- Select gait type by selecting 9, @, a,b Trajectory Planning)
phase ¢ for each leg’s motion. ’ Generate a sequence of toe posi-

= T
- Select stride frequency by P1xe vl tions along an elliptical trajectory
i i EEEEE—
selecting angular velocity ,, in the workspace of each leg.
- Select ellipse dimensions and

ellipse center position. Desired toe gosltion

Py =% Vi
Inverse Kinematics

= Select. how close the actual _ kp, k; Generate a sequence of joint

foot trajectory Wil! be to the vir- angles corresponding to the

tual one by selecting PD gains. sequence of desired toe positions.
Desired joint angles
P des’ P2,des

Robot

Active Compliance Control
6,, d6,/dt Compute torques that compliantly

Inertial Measurement Unit — | drive the joints along the desired
9?1595 sequence of angles via PD joint

Incremental Encoders controllers. The elliptical path is

Actuators <L not followed in a strict manner.

Figure 3-1. Laelaps Il motion control architecture [15].

36/217

The LaunchXL-F28379D evaluation board (Appendix C) materializes the Data Link Layer
(DLL) of the EtherCAT slave model, introduced in Section 2.2.4. It is a high-end, bare-metal
system built for deterministic, hard real-time control applications. The underlying firmware
architecture consists of purely control-related implementations, along with others that
materialize the EtherCAT slave functionalities. The latter ones are necessary since each of
the control modules operates in a distributed network that controls the whole robot’s operation.

The low-level control design of each leg can be divided in three separate parts: (a) the
trajectory planning module that in the current implementation generates two joint-space angle
sequences (one for each joint) corresponding to a task-space, semi-elliptical motion of the
leg’s toe, (b) the low-level active compliance controllers that drive the two actuators of the leg,
and (c) the feedback loop that is materialized by high-resolution quadrature encoders with
velocity estimation capabilities. All of the discussed concepts are analyzed in this chapter
thoroughly, with a special focus on their implementations.

3.1.2 Laelaps |l Legs

The Laelaps Il legs use the parallel mechanism shown in Figure 3-2. The hip and knee joints,
are actuated by two Maxon motors along with gearboxes and timing belts (both with 26/48
reduction ratio). For the hip, a powerful Maxon EC45 250W (Part No. 136209) brushless motor
[46] is installed, along with its GP52C planetary gearhead (Part No. 223089, with reduction
ratio 8/343) [47]. The knees share the same family of gearboxes (Part No. 223090, with
reduction ratio 12/637) with the hips, but they are actuated by Maxon RE50 200W (Part No.
370356) brushed motors [48]. Figure 3-2 illustrates the leg’s design.

O

Stiff Spring

Figure 3-2. Laelaps Il leg geometry.

Forward Kinematics

The forward kinematics for a leg are given in (3-1) and (3-2), according to Figure 3-2; (XE, yE)
denote the toe’s coordinates, while the spring GH is stiff enough to approximate the leg with
two virtual segments of constant length, namely |, I,. Therefore, the spring is neglected in
this study. Moreover, the virtual segment angles are denoted by & and 6, .

37/217

Xe =1,8in(8)) +1,sin(6,) (3-1)
ye =1,cos(6,) +1, cos(6,) (3-2)

Inverse Kinematics
In the same manner, the inverse kinematics (3-3)-(3-7) are derived below. Let:

p=06,-6, (3-3)
According to the generalized Pythagorean Theorem:

X2+ Y2 =17 +12 =211, cos(z —p) = XZ +yE —(Il2 + I22) = 2L1, cos(p) =

2 |2

XE+yE_(I1 + 2)’ sin(¢)=—m

211,
Note that the negative sine solution corresponds to the leg’s forward knee configuration.
Using the results of (3-4), the ¢ angle is calculated in (3-5).

(3-4)

cos(p) =

@ = arctan 2(sin(g), cos()) (3-5)

Finally,
0, = %— arctan 2(y., xz) +arctan 2(l, sin(e), 1, +1, cos(p)) (3-6)
6,=0,-¢ (3-7)

3.2 Trajectory Planning

3.2.1 Planner Description

A planner recently introduced in [19] is implemented here to allow the real robot to move with
constant stance velocity, resulting in smoother gaits. This is a vital step towards the integration
and testing of various motion modes, like trotting that was originally investigated in [49]. Each
leg follows a trajectory which includes separate formulations for swing and stance phases.
The planner dictates the appropriate formula, by measuring the time progression of each
step in comparison with the step’s total period. By using the modulo operation, the whole
process becomes independent of the step number. Moreover, a time phase shift is introduced,
to enable different modes of motion (e.g. trotting, walking, etc.). Let Tstep be the total duration
of a step, At its phase shift, while T ;. and T, the periods of the different trajectory
phases. To make the trajectory invariant to the step’s number, t,; is introduced (3-8). Finally,
the variable dir,_, is used to change the leg’s motion direction and can be 0 or 1, for forward

leg
or backward motion, respectively.

t,o = Mod(t + At +T,

Tstep)f Wlth Ts stance (3'8)

phase ! tep = Tswing

Swing Phase

To avoid impacts with the ground, the trajectory’s angle ﬁtraj, given in (3-9), is introduced.
More specifically, its derivative 6,,; in (3-10), which is the swing phase’s angular velocity,
becomes zero at the beginning and at the end of the swing phase (Figure 3-3 for

38/217

Taving =0.5[s]). So, the leg takes-off and touches-down smoothly, avoiding unecessary
impacts that could stress its drivetrain.

t
Oraj = %[cos(:ﬂ) +1j (3-9)
swing

. 7’ | 7t
0, =— -sin| —2 3-10
™27 (T (3-10)

swing swing

Swing Phase's Angular Velocity
| I I

(}m,j [rad/s]

0 0.05 01 0.15 02 0.25 03 0.35 04 0.45 05
t[s]

Figure 3-3. Swing phase's angular velocity for a single Tswing.

The horizontal and vertical axes of the ellipse are represented by a and b symbols,
respectively, while (XC, yc) is the ellipse’s center in equations (3-11)-(3-12). The swing phase
occurs when t,.. <T_.. . The toe’s coordinates are given by:

Xe dos (L) = X, +@-C0S (6, + it - 7)

traj

) (3-11)
yE,des (ttraj) = yc + b -Sin (gtraj)
Stance Phase
The stance phase occurs when t; > T, . The toe’s coordinates are given by:
, . 2a
XE des (ttraj) =X+ (l_ 2di rIeg)) (a o (ttraj _Tswing) 'Vstance)’ with Vstance = E (3-12)

yE,des (ttraj) = yc

The above formulations are plotted in Figure 3-4. The trajectory is colored according to
the linear velocity of each point. This speed along the trajectory is given in (3-13).

V= Xé,des + yé,des (3’13)

39/217

Y m]

-0.03

-0.01 0

Laelaps Il Toe's Trajectory
xg [m]
0.01

0.02

0.03

T T .

N

0.56 -

-

/

— High Velocity

Medium Velocity

Low Velocity

Figure 3-4. The constant velocity trajectory with velocity gradient (colorbar).

Note that the velocity is almost zero at the toe’s take-off and touch-down (highlighted with
black), contrary to the rest of the swing phase. Throughout the stance phase, the uniform dark
red color indicates constant velocity motion. Moreover, various snapshots of a leg during

motion along the planned trajectory are shown in Figure 3-5.

The implementation of the planner has provisions for smooth braking and standing still
modes, if necessary (see Section 3.5.3). The smooth braking scheme is also used when the
planner is commanded to change direction, to avoid unnecessary accelerations that would
threaten stability. In a few words, the smooth-braking is achieved by gradually decreasing the
trajectory’s parameters (a and b in (3-11)-(3-12)). When these parameters reach zero, the

robot stands still and waits for further commands.

Figure 3-5.

Laelaps Il Leg's Trajectory Snapshots

o
=

0

0.1

0.3

-0.2

-0.1

x [m]

0.1

0.2

02 -01 0
x [m]

-0.3

Snapshots of a leg during motion along the planned trajectory.

b

0.1 0.2 0.3 -0.3

40/217

-0.2

-0.1

-

0
x[m]

0.1

0.2

0.3

3.2.2 Leg’s Workspace and Safety Features

The leg’s workspace is dictated by its geometry, the position of the actuators and the knee’s
actuation mechanism, illustrated in Figure 3-6. The rod that actuates the knee creates a closed
kinematic chain. Moreover, the knee is confined to move from 0° to 90° relative to the upper
leg segment, with the highlighted mechanical stops.

ig;c,/ 2 Waje
P ///

? P Knee s Actuation Rod

Knee’s Mechanical Stops

Figure 3-6. Laelaps Il real-life leg.

The hips are also confined by the position of the actuators of the opposite side. The
actuators of the right legs confine the left legs’ hips in their front side by 40°, while the motors
of the left legs limit the right legs’ hips in their hind side by 63°. For safety reasons, two torsion
end-stop springs are materialized in firmware, one for the fore and one for the hind side of the
leg, by using the measurements from the installed absolute encoders (see Section 3.3). These
virtual springs have, in their default configuration, 7° workspace and ensure that the leg’s
upper limb is not going to collide with the robot’s body. More details about them will be
discussed in Section 3.3.2. Subsequently, the angular limits for each hip are 47° for the fore
and 70° for the hind side. The resulting area that the leg’s toe can move freely is highlighted
with green color in Figure 3-7. The leg’s geometry dictates the area’s radial limits, given in
(3-14).

L i = 12 +12 =+/0.25% +0.35? = 0.4301 [m]
ly o =l +1,=0.25+0.35=0.6 [m]

(3-14)

eff ,max

41/217

Knee’s Workspace

Figure 3-7. Laelaps Il leg's workspace.

Apparently, the planner must generate trajectories inside the aforementioned area in
order for them to be feasible. These semi-elliptical trajectories are described by certain
parameters. These parameters should result in trajectories that comply with the leg’s
workspace. To ensure this, the parameter saturation feature is introduced and discussed next.

Parameter Saturation Feature

The planner generates trajectories that are bound by the geometric and angular restrictions
of the leg. So, the trajectory’s geometric parameters, namely X_, Y., a and b, have to be
constrained accordingly. Figure 3-8 illustrates the underlying geometric problem intuitively.
The leg’s workspace is confined by two radial limits, namely (3-14) and two angular ones for
the hip. The fore angular limit, namely ¢, , restricts the trajectory’s vertical dimensions, namely
y. and b . Their values should comply with the equations in (3-15) that ensure that each point
of the trajectory is under the y_;, line.

Yo =, sin ((pf)+ I, cos(0°) =0.25sin(47°)+0.35=0.5328 [m]

ymin < yc < Ieff,max (3'15)
bmax =Ye = Ymin OSbSbmax

On the other hand, the hind angular limit ¢, along with the outer ring of the workspace,
restrict the trajectory’s horizontal dimensions, namely namely X, and a, as the detail-views
of Figure 3-8 reveal. Their sum must be lower than the horizontal lengths introduced by the
aforementioned boundaries. More specifically, the hind angular limit results in a maximum
length (1,4), while the outer radial boundary (l .,) results in another linear limit (1;,.). So,
the ellipse’s horizontal dimensions are given in (3-16). These equations result in excluding the
triangular-like shapes at the workspace’s horizontal edges (highlighted in Figure 3-8).

421217

ling = letr max €OS (2,) = 0.6c0s(70°) = 0.2052 [m]

= Ly = Ml L)
Iring = \/ Iesz max y02 " e (3'16)

x|

—| <% <, and0<ac<l

min = min min

N
| {)
. Apnax \' ‘//)
> I/
7 =7 P~ =
hind ring l l
hind ~ *ring

Figure 3-8. The geometric restircitons of the toe trajectory’s parameters.

So, the trajectory’s parameters that the EtherCAT master changes are bounded by the
above discussed limits to have a valid end-result. So, if the EtherCAT master commands the
leg to move in a bigger, “illegal” trajectory, the leg slave will perform a valid trajectory inside
the leg’s workspace, as close to the requested as possible.

From all of the above, it is realized that the planner’s active workspace (dark area in Figure
3-8) is significantly smaller than the one that is dictated by the leg’s geometry alone (light-
green area in Figure 3-8). The radial angular limits for the hip that are introduced due to the
topology of the Laelaps’ drivetrain, restrict the toe’s workspace to a very small area, compared
to what could have been achieved with a different mechanical design. This insight should be
taken into account in future designs.

Admittedly, by following the proposed methodology, the actual active workspace of the
planner is restricted heavily in the vertical direction. There is, however, an analytical approach
that can increase the workspace to cover the entire green area, shown in Figure 3-8. If the
intersections of an arbitrary semi-ellipse with the four circular boundaries of the workspace
are found analytically, certain restrictions can be drawn. This analysis is out of the scope of
this thesis and is left for future work. In this investigation, the gain in the workspace’s area
should be evaluated taking into account a possible increase in the computational needs of the
respective calculations. In the end, the choice may come as a trade-off between computational
power needs and the workspace’s area.

43/217

3.3 Absolute Encoders

The robot’s main electrical subsystem was not modified during this work; it is described in
detail in [50], while the EtherCAT-related hardware is covered in [20]. However, in this work,
a useful addition was made by installing absolute encoder modules at all joints. This
modification was made mainly to automate the Laelaps Il initialization procedure, in which the
legs were positioned at their zero-angle positions to set the zero reference for the
measurements of the incremental encoders, attached at the back of the motors. This tedious
job was automated by installing absolute encoders that keep track of the legs’ motions.

3.3.1 Hardware Integration

A rotary absolute encoder is a proprioceptive sensor that measures an object’'s angular
position. Examples of such sensors consist of a glass disk with opposite opacities that
correspond to 0 or 1 and a light emitter coupled with a photodetector (e.g. transistor). The
number of rows or different bits that the disk is divided into corresponds to the resolution that
the sensor achieves. In Figure 3-9, an example of such a disk is shown.

Q)
- /

095
%%
b2

PAY 4
—

Figure 3-9. Example of an absolute 12-bit encoder's disk.

However, the absolute encoders that were installed on Laelaps Il are of a different kind;
they are magnetic 10-bit encoders, which means that the whole mechanism consists of a
magnet and an IC-sensitive circuit that translates the motion of this magnet to a voltage
gradient. More specifically, the RLS RMF44VE10BA10 [51] magnetic linear encoder was
selected. This module, along with its principle of operation, is visualized in Figure 3-10.

(@) (b)

Figure 3-10. (a) The RMF44VE10BA10 magnetic absolute encoder. (b) Magnetic absolute
encoder's operational principle.

Its operation involves a DAC converting the magnet’s rotation to a scaled 0 - 5 V linear
voltage signal and eventually, overflowing after the prescribed angular range. The described
behavior is presented in Figure 3-11.

44217

-~ ~
// X
___________________________ /
Vdd / \\
/
A g | \‘
/ | |
\\ vicss /I \ _ivstep |
\ /
N
N /
O | N . //
(Pperiod P S

Figure 3-11. RMF44VE10BA10 voltage output behavior.

By consulting the accompanying datasheet [51], information about the module’s power
consumption and resolution can be extracted to embed it in a system. Provisions on the
Delfino’s shields had already been made [50] to accommodate these absolute encoders. The
first step towards integrating the aforementioned modules is to design an appropriate wiring
scheme and choose suitable connectors. After an extensive search, JST XH 4-wire
connectors (Figure 3-12a) were chosen to interconnect the encoder PCBs with an
intermediate small PCB (Figure 3-13) [52] that rewires the signals to be compatible with an
RJ9 type connection (Figure 3-12b). The construction of a custom wire, with JST XH and RJ9
connectors at its edges, was not possible with the lab’s equipment due to the tiny diameter of
the specified wires.

(a) (b)
Figure 3-12. (a) JST XH 4-wire connectors. (b) RJ9 connector (male).

VDD1(5V)
RJ9(1)

(@) (b) ()

Figure 3-13. Absolute encoders' rewiring PCB: (a) schematic (b) board (c) assembled board.

45/217

Note that there are two RJ9 cable configurations on the market, since such cables are
usually used in telephony, in which their polarity does not matter. In this thesis, the reversed
RJ9 wiring layout has been adopted (Figure 3-14). Note that the wire colors in Figure 3-14 do
not correspond to the JST-XH connector’s cable-colors.

Side A Side B

Figure 3-14. RJ9 wiring layout.

This layout results in reversing the pinout of the PCBs that the cable connects. Hence,
the Delfino shield’s pinout [50] is not the same with the one of the intermediate PCB. Table
3-1 illustrates the resulting pin mapping for the two PCBs.

Table 3-1. Reversed RJ9 cable's pin mapping.

Delfino Shield PCB #Pin RJ9 to JST-XH PCB #Pin Pin Description
1 4 GND
2 3 ZERO (Reset)
3 2 Voo (5V)
4 1 Vour

To make the mounting flawless, a housing was designed to ensure the whole structure’s
integrity. It was manufactured using the lab’s 3D printer and the ABS material was selected.
In Figure 3-15, the housing’s design is illustrated, with the characteristic geometric strain relief
elements, added to protect the cable from fatigue. The accompanying CAD files may be found
in [52], and the corresponding schematics in Appendix L. To assemble the housing with the
encoders, standard M4 bolts and nuts were used. The bolts stabilize the nuts in the grooves,
without the need of an adhesive glue. Nevertheless, to facilitate the assembly process,
standard multipurpose glue can be used to lock the nuts in place.

/7 a
\.u.’,

|

Figure 3-15. RMF44VE10BA10 housing assembly CAD.

46/217

The assembly, along with the magnet that accompanies each encoder, is designed to be
placed on Laelaps Il with ease. At first, the magnets are positioned at the center of the
gearbox’s shaft, using multipurpose glue. The encoder assembly is hooked onto the metal
grooves of the Laelaps Il body with M5 bolts. To stabilize it in place, Misumi’s M5 slot-nuts
[53] were used. Special attention was given to align each sensor with its magnet, in
compliance with the manufacturer’s tolerances [51]. The result of this procedure is shown in
Figure 3-16.

Figure 3-16. The absolute encoder assembly installed.

The sensors connect through the JST-XH cables to the JST-RJ9 interfacing boards, which
in turn connect to the prescribed terminals of the Delfino’s shield. This wiring scheme is
presented in Section 3.4.2.

3.3.2 Firmware Integration

The main task of the firmware drivers created to handle the absolute encoders is to retrieve
their readings, translate them to be comparable with the readings from the incremental
encoders and feed these to the Delfino eQEP initialization registers. The incremental encoders
(HEDL-5640 [54]) are mounted directly to the motors, contrary to the absolute ones that are
mounted at the high-torque side of the gearboxes (Figure 3-17); this means that a certain
reduction ratio has to be taken into account.

The 10-bit resolution of the RLS encoders corresponds to a total count of 1024 increments
or a step-size of 0.35° for the 360° range of the module. As mentioned previously, in this thesis,
the C2000 LaunchPads come with 12-bit and 16-bit ADC resolutions, with a 3.3V level of
operation. To read the encoders, a voltage divider had been created on the Delfino’s shields
and the 12-bit ADC variant had been assigned to them. This means that the total measurement
counts become 4095 due to the finer resolution that the ADCs provide. This does not mean
that the measurements are more accurate. On the contrary, if the resolution increases
furtherly, the measurements become noise sensitive (sensitivity errors) [55]. Concisely, the
main firmware driver realizes the following mathematical formula, presented in (3-17). The
idea here is to convert the absolute encoder’s readings (n,,) to the corresponding incremental
encoder’s counts (N,). Note that both modules are configured to report the angular position

Inc

of their rotor with respect to the zero-angle position of the leg.

471217

_ rang€i,c counts * MNans ¥ (3-17)

inc 9

rangeabs,counts

° ig : Gearbox reduction ratio (637/12 for the knee and 341/8 for the hip).
e range =2000: Total incremental encoder’s counts.
=4095: Total absolute encoder’s counts.

inc,counts

e range

abs,counts

Quadrature Encoder
(at the back-side of the motor)

Gearbox

Pulley
Absolute Encoder

Figure 3-17. Laelaps Il single joint’s drivetrain.

Moreover, the introduction of absolute encoders in the Laelaps Il setup allows the
integration of a safety feature ensuring that the legs operate always inside the predefined
angular limits, to avoid collisions with other parts of the robot. In Figure 3-18, the principle of
operation becomes apparent. Note that the figure is exaggerated to give a better view of the
discussed concepts.

)
=y

Virtual Spring

V\
Virtual Spring

@n

Figure 3-18. Laelaps Il leg's end-stop routine.

48/217

The main task is to check the hip’s encoder readings and to calculate the corresponding
virtual spring’s control effort, if the leg is moving in the light-blue region of Figure 3-18. More
specifically, a linear interpolation scheme is used to emulate a linear torsion spring. Let ¢,
and ¢, be the angles of the relaxed fore and hind springs, respectively and K be the user-
defined spring’s constant. By taking the absolute encoder's measurement &, the virtual
spring’s control contribution (z,,) is given by (3-18).

K'((”f_@)’ 02 ¢
Ty = 0, 06((0h,(pf) (3-18)
K'(6_¢h)’ <o,

Note that the discussed end-stop springs are introduced to ensure that the upper limb of
the leg does not crash with the robot’s body due to an external load or other disruptions. The
desired trajectory is configured not to violate the hip joint’s free workspace (dark area in Figure
3-18). So, if the leg ends up inside the virtual spring’s workspace (light-blue area), it will be
the result of an externally applied load.

3.4 EtherCAT Motion Control Firmware Setup

Previous studies describe the EtherCAT technology and the former implementation of the
Laelaps Il firmware solution in detail [56]. This section initially lays a guide on how to import
the created TI CCS project and run it on the C2000 LaunchXL-F28379D platform.
Furthermore, the various aspects of the firmware are discussed in a structured way, to make
the learning curve less steep and the overall process more efficient. As far as the EtherCAT
slave software modules are concerned, the aim here is not to replicate the extensive available
literature, but to highlight the significant routines and operations related to the user-application.

3.4.1 Required Hardware

Here, the required components for a slave node are given.

e 1x EtherCAT Slave piggyback Controller (ESC) with ET1100 chipset. All the required
frame processing and EtherCAT functionality are implemented with this board. It is the
hardware in which the Physical and Data Link Layers are realized.

e 1x TI's LaunchXL-F28379D (MCU). The application layer of the app is realized here,
along with the generic EtherCAT stack and the IMU SPI communications.

e 1x Delfino shield designed in [50].

e 1x Custom EtherCAT shield designed in [20] that connects the MCU with the ESC.

e 1x DC-DC Step-Down Regulator 5V, 2A with USB [57].

o 2X RLS RMF44VE10BA10 absolute encoder assemblies for the initialization of the leg
(see Section 3.3).

3.4.2 Hardware Connections

The control tower is shown in Figure 3-19. To assemble the boards, the components of the
previous section are required.

49/217

TMS320F28379D Extension Board

o AT AN
s .

% {V‘:! Voltage Regulator

Plexiglass Supporting Base

Figure 3-19. Laelaps Il motion control's tower.

The whole EtherCAT slave (see Section 2.3.2) is supplied by the low-power supply
channel of Laelaps Il. This channel is fixed at 9 V as a future provision, since this voltage is
commonly met in most mobile battery systems and it is supported by all low-power electronics
currently operating on Laelaps Il. Nevertheless the control tower’s regulators [57] (highlighted
in Figure 3-19) can receive 6.5 V to 40 V as input and output a 5 V, up to 2 A DC supply. Note
that as the input voltage increases, the thermal power dissipated in the LDOs increases, too.
So, in order not to stress their electronics, the input voltage should remain low. Moreover,
since Delfino requires both 5V and 3.3 V supply channels, an additional LM1117 Low-Drop
Out (LDO) voltage regulator [58] is integrated on to the Delfino’s shield. According to its
manufacturer the aforementioned LDO outputs a 3.3 V power supply, with currents up to 800
maA.

The Delfino should be configured to operate with external supplies only. Specifically, the
jumpers JP1, JP2 and JP3 must be removed (see Section C.8). Furthermore, the slave should
be connected to the various subsystems that realize the forward and feedback control
branches of the underlying control architecture. An overview of the required connections is
illustrated in Figure 3-20. More specifically, the motors’ drives are connected to the RJ11
female terminals of the Delfino’s shield. The incremental encoders are connected to the
analog temrinals of the board, while the absolute encoders are connected to its female RJ9
connectors. The highlighted ZERO pins (see Figure 3-20) reset the absolute encoders at the
desired zero-angle position. To do this, a voltage pulse (3.3 V to 5 V) must be applied to the
respective pins (JZ1 for the knee’s encoder and JZ2 for the hip’s). The board has provisions
for this operation to be controlled by the Delfino, if necessary; hence the dual-pin headers
highlighted in Figure 3-20. However, this capability remains disabled in the current setup.

50/217

Knee’s Quadrature
Toe’s Quadrature encoder
encoder (for future use) Hip’s Quadrature
encoder

Knee Motor ~ remfpemmmmmmmmd oo

Drive | Hip Absolute KneedAb'squte

: ; 2] Encoder’s ZERO Encoder S ZEROC
Lk e ol . (Reset) Pin

I gis s : 478 2 31 (Reset) Pin
I
=
1
1
| =

g”.o Motor Hip’s Absolute Knee’s Absolute | B

rive S

Encoder Terminal Encoder Terminal ez

Figure 3-20. Leg slave hardware connections.

3.4.3 Required Software

Next, all the software components need to be installed. By navigating in the TI’s site [59], the
latest version of Code Composer Studio (CCS) should be installed with C2000 software
components checked in the corresponding installation pane. One should also download the
latest C2000Ware from the CCS Resource Explorer. Currently, the project supports version
3.03.00.00, but with few adjustments in the properties menu, the update process to any future
version should be easy.

Also, a master has to be installed, not necessarily on the same PC. There are plenty of
choices for Windows and Linux masters. The Legged Robots Team currently maintains two
master setups. The first uses Twincat 3, a robust and well-proven suite running on Windows
with Visual Studio core. The second is a Linux hard real-time EtherLab Master with ROS
enhancements. Due to the complexity of the high-end, but still in development Linux master,
the use of Beckhoff’'s Twincat 3 is suggested. The interested reader may find and install
Twincat 3 in the following link [40]. The CSL-EP’s EtherLab master may be found, along with
build and deployment information, in the corresponding Bitbucket repository [60]. Note that
the slave-specific ENI files, required by the TwinCAT 3 master, can be found in [52], inside
TwinCAT Configuration Files folder. There are two flavors, one for the newly introduced
planner (designated by the suffix CONSTVEL) and one for the former planner (designated by
the suffix ELLIPTICAL). So, depending on the desired planner, the appropriate ENI should be
imported to TwWinCAT 3 (refer to Appendix A).

3.4.4 CCS Project Import and Setup

To import and setup the CCS project, follow the next steps.

51/217

1. Download all the required project files by navigating to the CSL-EP Legged Robots
Team BitBucket repository [52]. Open TI's CCS. Ifitis not already installed, see details
on how to do it as well as import the downloaded project in Appendix E (Section E.1).

2. Next, a required Target Configuration for the debugger should be set. If such
configuration is not available from prior use, details on how to create one from scratch
may be found in Appendix E (Section E.2).

3. Modify the custom path variables to appropriate ones for the PC used at the time.
Those variables make the C2000Ware libraries visible to the project’'s scope. To do
this:

¢ Right-Click on the project’s entry in the solution explorer's tab and select
Properties (Figure 3-21).
e Optfor Linked Resources tab and modify the below variables.
i. C2000Ware_LOC to match the local installation folder of C2000Ware.
i. CLAMATH_ROOT to match the CLA Math library’s installation folder,
commonly in C2000Ware main folder in ./libraries/math/CLAmath/c28.

£ > EtherCAT Laelaps_ Mot Show in Local Terminal | >

1 external_interrupt_cpud1 Add Files...
1= External_Interrupt_TEST

45 F28379D_CLAHandsOn_$ Copy e
& IMU_APP Past tels
5 IMU_APP_test R Delete Delete
i Lab11_cpudl Refactor >
15 Lab11_cpu02
5 Lab8
S Laelaps FID s 2
o mcbrpJoophack dmacd Impott 2 & Properties for EtherCAT Laelaps_Motion_Control o X
Export...
Show Build Settings... R o
Build Project Path Variables Linked Resources
Clean Progect Resource F Path variables specify locations in the file system, including other path variables with the syntax “S{VAR}'",
Rebuild Project General The locations of linked resources may be specified relative to these path variables.
Refresh s v Build Defined path variables for resource ‘EtherCAT_Laelaps_Motion_Control'
Close Project E;gz E::::"“ Name Value New..
Bk gt % 2000 Hex Wity [Disabled] 2 C2000Ware_LOC CA\t\C2000Ware_3.03.00_00 Software
Coisiia 5 CCS_BASE_ROOT Catices101N\ces\ces_base
Index > PPSty - 4
Debug &> CCS_INSTALL_ROOT Ci\ti\ces1011\ces Remove
Build Configurations > Git (CG_TOOL_ROOT Citilces101\ces\tools\compilerti-cgt-c2000_20.2.2....
> RunPolyspace Bug Finder Project Natures 5 CLAMATH_ROOT C:\t\C2000Ware 3_03.00_00_ Software\libraries\math... |
& COMMON_ETHERCAT F... ${ORIGINAL_PROJECT_ROOT)\..
Reload Potyspace Bug Hindec Reits (= ECLIPSE_HOME C\tices101\ces\eclipse\
15 DebugAs 5 E>INSTALLROOT F2837XD C:\ti\controlSUITE\device_support\F2837xD\v200
Restore from Local History.. £ ORIGINAL_PROJECT.RO... C:\ti\controlSUITE\development kit\ TMDSECATCND.
Team > 5 PARENT_LOC DACCS_Workspace
Compare With > £ PROJECT LOC Di\Git\laelaps-leg-firmware\EtherCAT Laelaps Motion..
. W : & T1_PRODUCTS DIR c
5 T_PRODUCTS DIR_TIREX CAti
B [«her(AT_Laelaps_Monon_q Properties Alt=Enter 5 WORKSPACE_LOC DACCS_Workspace

Apply and Close Cancel

Figure 3-21. CCS project's path variables.

Note that the project has multiple configurations. Details on how to enable and adjust
these configurations are given in Section 3.5.7. In the firmware description that follows,
whenever a feature is described, the corresponding predefined symbol will be referenced to
have a clear view of the underlying dependencies.

Finally, details on how to deploy the firmware to a LaunchXL-F28379D can be found in
Appendix E (Section E.3). At this point, the firmware can be deployed in its default
configuration. If the defaults do not suffice, the next sections describe thoroughly all the
available options.

3.5 Firmware Description

The firmware’s main operation can be adumbrated in four ISRs, as Figure 3-22 illustrates.
Three of them are triggered by the ESC’s DC unit, as external hardware interrupts (see Section
2.2.4) and the fourth one (highlighted with gray) is triggered by Delfino’s hardware timer 0.

52/217

Note that in the default TI's configurations, this hardware timer is used as a free-counter for
EtherCAT-related operations. For interrupt priority reasons that will be discussed in Section
3.5.5, the TI's default EtherCAT Hardware Abstraction Layer (HAL) (ControlSuite’s
TMDSECATCND379D_V1.0 development kit [61]) was modified.

Laelaps Il Motion Control
Firmware (Power-Up)

McuU
Initialization
InitDelfino()

GPIO Setup
GpioSetup()

y

ESC & PDI
Intialization &
Setup
PdiSetup()

:

Control Loop
Setup
SetupControl()

H

Interrupts'
Activation

HW Interrupts (DC MODE)

.(C_ontrol Loop (E;\erCAT Cycle EtherCAT Cycle EtherCAT Cycle
(10 kHz) (2.5 kHz) (2.5 kHz) (2.5 kHz)
Control ISR PDI ISR
(Timer 0) (XINT3)
CONTROL ISR Transfer Master Output Transfer Master Input
Data to MCU Memory Mese Applicat{on Data from MCU Memory

APPL_Application()

APPL_OutputMapping() APPL_InputMapping()

Read & Calculate
Joints' Positions

P —
Update Calculate MAIN APPLICATION l
Controllers' EtherCAT Cycle
Parameters Time Update Master l
Run Knee's Inputs Calculate
Controller & Cartesian Planner
B B B Update PWM Coordinates
al ontro Duty Cycle Update Control
Task ty Cy zarameters Call CLA Planner
| Task
. Run Hip's A Run Inverse
Update Joints controllgr 2 ([calculate | (" Motion Mode Kinematics to
B Update PWM End-Stop »| Control Check & calculate Joints'
& Velocity Duty Cycle Routines' Torque *| Master Outputs' Angles
Variables Contribution Updates
J L

Figure 3-22. Laelaps leg firmware overview.

To facilitate the future development and understanding of the firmware, the MISRA
C:2012 coding standard has been adopted [62] (refer to Section 3.6). Moreover, the code
complies with the coding style discussed in Appendix G. Note that to this end, the created
Doxygen documentation [52] could help in getting an overall grasp of the firmware faster.

53/217

The program may be considered in three distinct sections. The EtherCAT stack, the
planner and the controllers, with interconnections and dependencies among them to achieve
the desired functionality. The CCS project is organized in the following folders:

e hal: This folder materializes the EtherCAT HAL. Specifically, it contains all the
peripheral drivers and routines for handling the PDI’'s communications along with other
application-related functionalities.

o SPI_EtherCAT_slave_stack: In here, the generic EtherCAT stack’s files can be found.
They materialize the procedures discussed in Chapter 2. From now on, this folder will
be referenced as stack, for short.

¢ Planners: This folder contains all the planning-related files. They realize the discussed
planners and other supplemental procedures (Section 3.2).

e cmd: This folder contains the created linker command files that dictate the project’s
memory allocation.

Those said, the firmware’s execution flow is analyzed next. Firstly, the required
initializations of the most significant peripherals and modules are discussed (highlighted with
yellow in Figure 3-22). Moreover, the control-related routines (highlighted in gray) are
described. Finally, the main application and its dependencies are analyzed (highlighted in
light-blue), along with other EtherCAT related implementations.

3.5.1 Firmware Initialization

The firmware’s execution begins at the main() function Ilocated in the
EtherCAT_Laelaps_Motion_Control.c file (inside the project's stack folder). The main()
function calls the HW_Init() (located inside the c28xxhw.c, under stack) that in turn initializes
the Delfino MCU and the ESC. Eventually, the Delfino MCU is initialized by calling the
ESC_initHW(), located inside the etherCAT_slave _c¢28x_hal.c (under the hal folder). Then,
the low-level modules of the system are initialized by calling InitDelfino() routine. In this
function, depending on the run-time mode (debug or release), the required memory sections
are copied from FLASH to RAM. Next, the GpioSetup() routine is called and configures the
GPIO muxing options for every peripheral of the MCU. Then, the PdiSetup() handles the PDI
layer’s initialization, by configuring the EtherCAT-related external interrupt XINT3 for the
PDI_Isr() and the used SPI module. Currently, Delfino’s SPIA is assigned to perform the PDI-
related communications (USE_SPIA symbol, see Section 3.5.7). Moreover, the PDI-related
ISR is configured here, as XINT3 interrupt, having the highest priority among the three
EtherCAT ISRs (Figure 3-22). The purpose of the aforementioned interrupt will become
apparent in the following sections. These routines are components of the HAL and can be
found in etherCAT_slave_c28x_hal.c (under the hal folder).

After the generic low-level configurations, the SetupControl() routine is called. This
function initializes the control peripherals used in the application. First, the CLA unit (see
Section C.3) of the microcontroller is initialized by calling the InitCla() routine, located inside
the clasetup.c (under hal). This happens only if the application is preconfigured to use the CLA
capabilities, as it will be discussed thoroughly in Section 3.5.7. At this point, the control ISR,
triggered by the timer O, is mapped to the appropriate interrupt handler. If the CLA control
execution is enabled (CLA_CTRL symbol, see Section 3.5.7), the ClaControl_Isr() serves
the control loop. In any other case, the CpuTimerOQ_Isr() is used. Both of them are located in
etherCAT_slave_c28x_hal.c, under the hal folder. More on this matter will be discussed in
Section 3.5.2.

54/217

Next, SetupControl() runs the quadrature encoder startup sequence. In the previous
version of the firmware, the encoders had to be initialized manually. With the introduction of
the absolute encoders, the whole process has been automated (AUTO_STARTUP symbol,
see Section 3.5.7). The described functionality is materialized by two functions located in
posspeed.c (inside hal folder), ReadAnalog() and POSSPEED _InitJoints(). These functions
are described next.

The function ReadAnalog() controls the ADC operation. To reduce the noise in the
measured gquantities, the oversampling technique [63] is used. In brief, the routine takes four
readings from each ADC and averages them. Next, it calculates the relative angle w.r.t. the
zero-angle position of the leg and stores the results to memory. Besides its usage in the
initialization process, the function may be used also during normal run-time, cyclically, to
output information about the shafts’ position and diagnose possible slippage or other failures
in the drivetrain. Note that the ADCs are used in blocking mode. This means that they produce
interrupts that do not propagate to the CPU, since the control flags, like the PIERX, are
disabled (see Section C.3). This way, each time the CPU requests an ADC reading, it has to
wait until the operation is finished; hence, while loops are used in the code.

The function POSSPEED _InitJoints() is responsible for the conversion of absolute
encoders’ measurements to the corresponding incrementals’ readings. In brief, the routine
performs a sampling procedure that takes the absolute encoders’ readings, provided by calling
the ReadAnalog() function, averages them and converts the results to two 32-bit unsigned
integers that correspond to the sought incremental encoders’ counts. The described
procedure is actually the realization of (3-17), for both joints of the leg. The user may change
the averaging filter’s duration by modifying the ABS_ENC_SAMPLING_TIME (in [s]) definition
in posspeed.h file (under hal). Lastly, the whole process can be monitored, since Delfino’s
blue and red LEDs are blinking throughout the routine’s run-time.

Next, the end-stop routine functionalities discussed in Section 3.3 are configured. To
activate this functionality, the END_STOP Predefined Symbol (Section 3.5.7) should be
defined. The routines involved in the process are listed below. They are located inside the
posspeed.c, under the hal folder.

e ENDSTOP_Init(). Initializes the end-stop routine’s instance. By default, it is called

inside SetupControl() routine, during startup.

e ENDSTOP_FvsCalc(). Calculates the virtual spring’s torque in the configured

EtherCAT loop cycle.
e ReadHipPos(). Reads the hip’s absolute encoder and feeds the measurements to
ENDSTOP_FvsCalc() function.

To modify the behavior of the end-stop routine, there is a variety of different options to
consider in order to achieve the desired result. Nevertheless, by default, the firmware
emulates a linear torsion spring (3-18), with the parameters shown in Figure 3-23. The
aforementioned options are adumbrated below:

e Change CalcFvs() to realize the desired spring type. By default, a linear one is used.

o Modify ENDSTOP_DEFAULTS (located in posspeed.h, under hal) to change the
range of the restricted angles of Figure 3-18. By default, these angles are set to 63°
and 40° for the hind and fore boundaries, respectively with a 7° workspace for each
virtual spring. Note that the measurements of the absolute encoders have significant
inherent noise, and thus very small springs’ workspaces are not recommended.
Generally, the virtual springs’ workspace should lie in the interval [50,10°].

55/217

o Finally, the initialization function’s call at startup should be changed to match the
requirements at the time, as shown in Figure 3-23.

Spring-Endstop Spring Contant (K) Global Saturation Fore & Hind Spring’s
Object Limit Workspace

2 S:"l_lct_rr&j\nstancel \

épring_endstop.Init(&spring_endstop, g_UmaxHip / 7.ef, g UmaxHip, 7.0f, 7.ef);

Figure 3-23. End-stop routines initialization function call.

After the end-stop routines, SetupControl() calculates the planner’'s boundary values,
namely y_. in (3-15) and | .. in (3-16), by calling TrajectoryBoundaries(). Then it sets up
the control loop’s timer period. To do this C2000Ware’s ConfigCpuTimer() is called, as Figure
3-24 illustrates.

Timer’s Clock Frequency [MHz]

Timer Instance \ Timer’s Interrupt Period [us]

Con<F1nguT1mey (&CpuTimerd, 200.0f, 100. Bf),

rl U

Figure 3-24. Timer O interrupt period setup.

Moreover, the SetupControl() configures the PWM channels that control the leg’'s
actuators, by calling the InitEpwm() routine. The ePWM1 module is assigned to the knee’s
drive, while the ePWM2 module is assigned to hip’s one. Their clocks are running at a 100
MHz rate (f ., q)- IN the current application, the ePWMs are configured to operate in a 20
kHz rate (fpwm), as the equation (3-19) suggests, in up and down count mode, with TBPRD
being the time-based period register that contains the total period’s counts, according to [64].
This frequency is dictated by the capabilities of the motors’ drives [65] and must be greater
than the respective control loop’s frequency (see next section). According to Nyquist theorem
[66], the control loop’s frequency cannot be higher than the half of the ePWM operational
frequency, since duty-cycle updates are configured to occur at the ePWM counter’s zero-count
event (refer to [64]). This prevents PWM signal disruptions by “illegal” duty-cycle updates.

_ fpwm,clock _100 [MHZ]
M 2.TBRD 2-2500

Moreover, the control-related interrupts are enabled in the corresponding PIE groups (see
Section C.3 for further information about Delfino’s interrupt architecture). Next, the EtherCAT
Sync interrupts are configured. SyncO_lIsr() is configured by ESC_configureSyncOGPIO() as
XINTS5 interrupt. Likewise, ESC_configureSync1GPIO() configures the Syncl_Isr() to be
triggered by the XINT4 external hardware interrupt. These interrupts will be furtherly discussed
in Section 3.5.5. At last, the MCU’s interrupts are activated and after some preconfigured
EtherCAT checks the firmware advances to the main-loop.

=20 kHz (3-19)

3.5.2 Motion Control

An important function of the main-loop is the timer O interrupt that materializes the joints’
controllers. This ISR requests and reads the position indicated by the quadrature encoders,

56/217

updates the controllers’ parameters to have up-to-date gains and eventually calls them. To
this end, two PIV (Proportional-Integral-Velocity) controllers, previously introduced in [20],
were used. The firmware has provisions for CPU or CLA controller run-time. The C2000 Digital
Control Library (DCL) comes with a variety of optimized choices to cover a wide range of
possible applications. The reason PIV control is selected over the traditional PID, is that it
does not add any zero in the closed-loop transfer function of the system, and as a result, it
presents low oscillations during the transient state. The controller is displayed in Figure 3-25.
For a deeper understanding of its architecture, refer to [67].

‘@ + Vs

Proportional Gain

Integral Gain

(¢

Input Set-Point Set-Point Weight

() ——0———

Control Effort

ncg i :

Vi Saturation Enable Switch

@

Proportional Gain

Integral Gain @ 3

Measured Feedback
V] :
§ - ;

g Lowpass Filter’s
Coefficients

Figure 3-25. DCL's PIV controller overview [67].

To give a more intuitive understanding of the used PIV controller, its continuous time
equivalent, without the implemented filter and saturation, is given in equation (3-20); with Kp
being the proportional gain, K, the velocity gain, K; the integral gain and K, the input set-
point’s weight parameter that is left to 1. The EtherCAT master sets these gains to each slave,
along with the saturation limits and the filter's bandwidth. Note that the proportional gain takes
part in all of the PIV’s terms.

ut) =K, (K,r(t)-y(t)) - K,K,y(t)+ KpKij(r(t)— y(t))dt (3-20)

The DCL’s PIV implementations come with tunable low-pass filters to cutoff noise from
the velocity approximation in the derivative path. Concisely, the controller's most significant
configuration parameters are the control gains, a parameter related to its low-pass filter and
the control effort’s saturation limits (variables g_UmaxHip / g_UmaxKnee in firmware, inside
etherCAT_slave_c28x_hal.c). The saturation limits are currently kept under the actuators’
continuous operation current limits, namely 41.17% and 38.25% for the hip’s and knee’s
motors, respectively. In Figure 3-25, the controller’'s low-pass filter is materialized by the ¢,
and ¢, coefficients that in turn are calculated in (3-21), with T, being the digital controller’s

sampling period and 7, a time constant related to the filter's bandwidth (f_,) (3-22).
T, —27y, . .
C = dc, == with T, =0.1[ms] (10 kHz) (3-21)
T, +27,, T, +27,,

57/217

oo 1 (3-22)

chw
27

Special attention should be given to the saturation limit of the hip, if the end-stop routine
is activated. Then, the end-stop routine’s contribution () is added to the saturated output of
the controller (7, ,,,) and their sum is saturated again, according to the global saturation limit
defined in Figure 3-23. This does not apply to the knees’ control output, since the end-stops
are located only at the hips.

The DCL_runPID_L1() function of the PIV controller is coded in assembly, like the one
used in the previous implementation, namely DCL_runPID_C1(), but presents better CLA
execution time than the corresponding FPU32 run-time. Definitive proof of that claim is
provided by the results of some benchmarks executed by Tl and may be found in DCL User’s
Guide [67]. A comparison table is extracted and presented as Table 3-2 below.

Table 3-2. DCL controller performance comparison.

Function Controller Type CPU Compatibility Cycles Size [Words]
DCL_runPID_C1 PIV FPU32 83 99
DCL_runPID_C4 PID FPU32 86 92
DCL_runPID_L1 PIV CLA 53 70
DCL_runPID_L2 PID CLA 45 58

To make DCL operational there are a couple of steps, which should be taken care of. The
reader is encouraged to look up the information on DCL in its accompanying manual [67].
Nevertheless, a brief workflow is laid out in Appendix F.

Control ISR

The default control ISR, namely ClaControl_lIsr(), is located in etherCAT_slave c¢28x_hal.c,
under hal folder. It materializes the digital control loop and is called by timer O at a 10 kHz
rate. In the following code snippet, the routine’s operation becomes apparent. Briefly, the
handler retrieves the angle feedback of the quadrature encoders, updates the controller
instances by calling UpdatePidParameters() and triggers the CLA control task 1. The
alternative ISR, instead of triggering the CLA task, runs the CPU flavor of the same controller
type, namely DCL_runPID_C1().

__interrupt void ClaControl_Isr(void)

{
//
// Acquire Leg's Joints Position Readings -- Reviewed SA Warning
//
gep_posspeed.Calc(&gep_posspeed);

//
// Translate Raw Positions to Normalized Angles with Gear Ratio
//
g _NormAngleKnee = (float)g RawPosKnee * BELT_REDUCTION_RATIO
* KNEE_REDUCTION_RATIO / 2000.0f;

g_NormAngleHip = (float)g_RawPosHip * BELT_REDUCTION_RATIO
* HIP_REDUCTION_RATIO / 2000.0f;

//

// Update Leg Controllers' Parameters
//

UpdatePidParameters();

58/217

//
// Enable EALLOW Register Access

//
EALLOW;

//
// Software Trigger CLA's Control Task (Task 1

//
ClalForceTaskl();

//

// Disable EALLOW Register Access
//

EDIS;

//

// Update Angle Application's Variables in [100*Deg]

//

g_KneeAnglel00 = (float)g_NormAngleknee * 360.0f * 100.0f;
g_HipAnglel00 = (float)g NormAngleHip * 360.0f * 100.0f;

//
// Update Speed Application's Variables in [1000*rad/s]

//
g VelocityKneel000 = (int32_t)((float)(gep_posspeed.SpeedPrl * 1000.0f));
_VelocityHip1000 = (int32_t)((float)(gep_posspeed.SpeedPr2 * 1000.0f));

//

// Increment Timer © Interrupt Counter
//

CpuTimer@.InterruptCount++;

//
// Acknowledge the PIE Group Interrupt
//
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

} // ClaControl_Isr

CLA Setup
Following the steps, referenced in Section C.3, the Laelaps Il motion control firmware
comprises functions that set up the CLA module along with task-specific code. The code is
modular and may be easily generalized to support any common application. This framework
consists of the following files:
e clasetup.c, which includes InitCla() function that is responsible for the module’s
initialization and setup.
e clashared.h, a header that contains all the declarations of the routines, variables, and
definitions that CLA uses.
o clatasks_C.cla, a .cla source file that contains task-specific routines that realize user-
code functionalities.
e cla_utilities.cla, a .cla source file that accommodates supplementary CLA routines.
The initialization of the CLA is a generic procedure and as such, it is presented in
Appendix C (Section C.3). With a few modifications concerning the used tasks, it can be
adjusted to serve different applications. More on this can be found in the literature [64].

CLA Controller Task

Two of the total eight CLA tasks are used. The first one, with the highest priority, runs the
controllers and sets their PWM outputs. It is called inside the ClaControl_Isr() (located in
etherCAT_slave_c28x_hal.c, under hal folder) by a software trigger at 10 kHz. The second
materializes the planner and will be furtherly discussed in Section 3.5.3.

59/217

__interrupt void ClalTask1(void)

{

//

// CLA Control Task is used

//

#if defined(CLA_CTRL)
/]
// Call Knee's & Hip's Control Routines
//
RunKneeController();
RunHipController();
//
// Increment CLA Task 1 Debug Counter
//

g_ClaCounter++;
#endif // CLA_CTRL

} // End Of ClalTaskl()

3.5.3 Trajectory Planning

The ConstVelApp() routine (located in constvel.c, under Planners) realizes the main user-
application that calls the newly-introduced planner’s routine and processes the used variables,
interfacing every application’s aspect with the EtherCAT protocol. The CPU planner is
materialized in ConstVelPlanner2() routine. The alternative CLA planner is called with a
software trigger, namely ClalForceTask2().

Note that the ConstVelApp() is called inside the APPL_Application() (discussed in the
next section) at the EtherCAT's loop rate (2.5 kHz). Also, by replacing the
CONSTVEL_PLANNER symbol with the ELLIPTICAL_PLANNER one, the previous
implementation’s planner can be used (see Section 3.5.7).

After the necessary EtherCAT cycle -calculation, the routine calls the
UpdateControlParameters() to refresh the control-related parameters of the application by
processing the latest EtherCAT slave PDO objects received by the ESC. Next, the end-stop
routine’s control effort is acquired, if used (END_STOP symbol, see Section 3.5.7). Moreover,
the time variable of the trajectory (3-8) is calculated. Next, the routine implements a state
machine, illustrated in Figure 3-26. Entering suitable parameters to all EtherCAT output
variables and switching into Operational State (1) will force Laelaps to execute the desired
movement (see Section 3.5.4).

State Machine = 1

Configurational State

Operational State

» Time variable of the trajectory

Time variable of the trajectory

planning resets.

* Output PWM signals of knee and

planning increments.

* Output PWM signals of knee and

hip motors are enabled, depending hip motors are disabled, depending

on the control commands

on the control commands

State Machine = 0

Figure 3-26. Laelaps Il motion control's state machine.

60/217

Special attention should be given in the MotionModeControl() routine that controls the
planner’s operational state according to the master's commands. There are specific variables
that dictate the robot’s motion state, like moving forward, backward or standing still (see
Section 3.5.4). Specifically, the LaelapsHalt() (located in constvel.c, under Planners)
immobilizes the quadruped smoothly, whenever the master requests it. To define how smooth
this transition should be, modify the HALT_TRANSITION symbol (in [s]), located at the same
source file. Also in here, by calling the UpdateTrajectoryParameters() the trajectory-related
parameters of the application are refreshed and the parameter saturation feature (Section
3.2.2) is materialized. Finally, the CLA or CPU planner is called, if the CLA_PLAN symbol is
defined or not, respectively (see Section 3.5.7). The ConstVelApp() routine that materializes
the described procedures is illustrated in the following code snippet.

void ConstVelApp(void)
{
//
// Update State Machine Variable
//
g_StateMachine = (Buttons@x7000.State_Machine > 0);

//

// Calculate EtherCAT Cyclic Loop's Period in [s]

//

const uint32_t CycleTime = sSyncManOutPar.u32Sync@CycleTime;
const float dt = (float)CycleTime / 1000000000.0f;

//

// Update Control Related Parameters
//

UpdateControlParameters(dt);

//

// Update Debug LEDs States

// -- MISRA Rule 10.8 Violation (Reviewed): Type castings of composite
// expressions of different or wider type category are allowed in this
// project, since the compiler is fixed and implementation specific.
//

GPIO_WritePin(31U, (uintlé6_t)!(Buttons@x7000.Blue_LED > 0U));

GPIO _WritePin(34U, (uintl6_t)!(Buttons@x7000.Red_LED > @U));

//

// End-Stop Routines are enabled
//

#if defined(END_STOP)

//
// Calculate Virtual Spring's Control Effort Contribution
// -- Static Analysis Warning Reviewed
//
spring_endstop.FvsCalc(&spring_endstop);
#endif // END_STOP

//
// State Machine is Enabled (Operational State)
//
if (g_StateMachine == true)
{
//
// Increment Time
//
g t += dt;
//
// Calculate Step-Invariant Time Variable in [s]
//

if ((g_TrajTf + g_TrajTs) > 0.0f)
{

g_tMod = fmodf(g_t + g TimePhase, g_TrajTf + g TrajTs);

61/217

The same principles apply in the case of the former planner implementation [20]. Its
firmware structure is modified to comply with the one above for consistency.

62/217

CLA Planner Task

If the CLA planner is used, the CPU activates a software trigger to the CLA. The planner’'s
code is executed inside CLA’s task 2. This task, with lower priority compared to the control’s
one (task 1), is responsible for the planning and inverse kinematics procedures. It is triggered
at the rate of the EtherCAT cycle (default 2.5 kHz) by a software trigger (IACK command). It
may be viewed in the following code snippet.

__interrupt void ClalTask2(void)
{

//
// CLA Planner Task is used

//
#if defined(CLA PLAN)

//

// Constant Velocity Planner is used

//
#if defined(CONSTVEL_PLANNER)

//
// Call CLA's Constant Velocity Planner Routine with Ground Collision
// Avoidance Feature.

//
ConstVelPlanner2();

//
// Elliptical Planner is used

//
#elif defined(ELLIPTICAL_PLANNER)

//
// Call CLA's Elliptical Planner Routine with Ground Collision
// Avoidance Feature.
//
EllipticalPlanner();
#endif // CONSTVEL_PLANNER

g ClaCounter2++;
#endif // CLA_PLAN

} // End Of ClalTask2()

3.5.4 EtherCAT Communication

The EtherCAT stack is responsible for the whole slave setup, which involves all the data
structures and communications between the TMS320F28379D microcontroller and ET1100
EtherCAT controller. Its main part is generated automatically using ETG’s Slave Stack Code
tool (SSC) [38].

The user or the supervisory logic that controls the robot’s operation must be able to modify
the step’s parameters of each leg and adjust the low-level controllers based on the intended
whole-body motion. As in every control architecture, feedback is necessary to assess the
current state of the robot and make decisions for the next ones. To this end, the EtherCAT
network has to circulate these parameters and update the PDO objects of all nodes in the
network.

The input and output variables of the project can be monitored via EtherCAT
communication. Each variable has a specific type (e.g. BOOL, INT), belongs to a Record
(general address) containing more variables of identical or different type and has a unique
name within the Record. Output variables are those which are controlled and determined by

63/217

the master node during the execution of the stack and their index always begins with 0x70,
while input variables are designated by each slave and their index always begins with 0x60.
They are configured in EtherCAT_Laelaps_Motion_ControlObjects_ CONSTVEL.h (under the
stack folder) and may be reviewed in Table 3-3 and

Table 3-4.

Table 3-3. Master’s input process data objects.

Index Sub-Index Data Type Name Comments
0x6010 Record hip angle
0x01 INT16 hip_angle Rotational angle of hip [deq]
*100
. . Desired rotation angle of hip
2 INT1 D h I
0x0 6 esired_hip_angle [deg] * 100
0x6012 Record Feedback Time
Time variable from slave
1 INT1 Ti . .
0x0 UINT16 me device (t in (3-8)) [s]
0x6014 Record knee_angle
Rotational angle of knee
0x01 INT16 knee_angle [deg] * 100
. Desired rotation angle of
0x02 INT16 Desired_knee_angle knee [deg] * 100
0x6020 Record Commands
Output of PIV control for
0x01 INT16 PWM10000 knee knee [%] * 100
: Output of PIV control for hip
0x02 INT16 PWM10000_hip (%] * 100
0x6030 Record Velocity
. Rotational speed of knee
0x01 INT32 velocity _kneel000 [rad/s] * 1000
0x02 INT32 velocity_hip1000 Rotational speed of hip

[rad/s] * 1000

Table 3-4. Master’s output process data objects.

Sub- Data
Index u Name Comments
Index Type

0x7000 Record Buttons

0x01 BOOL State_Machine State machine variable (Figure 3-26)

0x02 BOOL Initialize_clock Not used

64/217

0x7010

0x7012

0x7014

0x7020

0x7030

0x03 BOOL
0x04 BOOL
0x05 BOOL
0x06 BOOL
0x07 BOOL
0x08 BOOL
0x09 BOOL
Record
0x01 INT32
Record
0x01 UINT16
Record
0x01 INT32
Record
0x01 INT16
0x02 INT16
0x03 INT16
0x04 INT16
0x05 INT16
0x06 INT16
Record
0x01 INT16
0x02 INT16

Initialize_angles

Inverse_Kinematics

Blue LED

Red_LED

LAELAPS_HALT

Reverse_Dir

Transition_time
Desired _x_value
Desired_x_value
TargetMode
FilterBandwidth
Desired_y_ value
Desired_y value
ControlGains

Kp100_knee

Kd1000_ knee

Kil00 knee

Kp100_hip

Kd1000_ hip

Ki100_ hip

TrajectoryParameters

x_cntr_traj1000

y_cntr_traj1000

65/217

Not used
Not used
On-board blue LED switch
On-board red LED switch
Stand-still mode switch

Reverse robot’s direction

Time for smooth transition functions

[s]

Variable for future use

1% order filter's f,, in (3-22) [HZ]

Variable for future use

Proportional gain of the knee’s
controller (K -100 in (3-20))
Velocity gain of the knee’s controller
(K, -1000in (3-20))

Integral gain of the knee’s controller

(K, -100 in (3-20))
Proportional gain of the hip’s
controller (K -100 in (3-20))

Velocity gain of the hip’s controller
(K, -1000in (3-20))

Integral gain of the hip’s controller
(K,;-100 in (3-20))

x center of the semi-ellipse (X in
(3-11)-(3-12)) [mm]

y center of the semi-ellipse (Y, in
(3-11)-(3-12)) [mm]

Amplitude of ellipse’s x-axis (a in

0x03 INT16 a_ellipsel00 (3-11)-(3-12)) [cm]
: Amplitude of ellipse’s y-axis (b in
0x04 INT16 b_ellipsel00 (3-11)) [cm]
0x05 INT16 traj TF100 Swing-phase period (TSwing in (3-8))
[s/100]
0x06 INT16 phase_T100 Phase shift (At .., [%T,] in (3-8))
0x07 INT16 traj Ts100 Stance-phase period (T, in (3-8))

[s / 100]

The PDO variables are handled by several functions of the project; the most significant of
these functions are triggered by the DC Unit of the ESC (see Section 2.2.4). Any user-code
related to the application should be called by the following routines. The code is extensive and
may be reviewed in EtherCAT_Laelaps_Motion_Control.c source file, under the project’s
SPI_EtherCAT _slave_stack folder.

APPL_GenerateMapping() declares the PDO data sizes and is configured by measuring
how many bytes each PDO tethers.

UINT16 APPL_GenerateMapping(UINT16 *pInputSize, UINT16 *pOutputSize)

{
//
// Master Input PDOs # bytes

//
*pInputSize = 22U;

//

// Master Output PDOs # bytes
//

*pOutputSize = 38U;

return ALSTATUSCODE_NOERROR;

} // End Of APPL_GenerateMapping()

APPL_InputMapping() performs the transfer of the master’s input variables from
Delfino’s local memory to the ESC’s.

APPL_OutputMapping() performs the transfer of the master’s output variables from the
ESC’s memory to Delfino’s.

APPL_Application() is the main function which is used for user-specific code and
materializes the main application. It is called in a cyclic manner by the SyncO_Isr() (DC Mode)
or in the stack’s Mainloop() routine, if no real-time execution is configured (Free Run). Its
code implementation is presented in the following code snippet.

void APPL_Application(void)

{
//
// Elliptical Planner is used
//
#if defined(ELLIPTICAL_PLANNER)
//
// Call Elliptical Planner's Application
//
EllipticalApp();

66/217

//
// Constant Velocity Planner is used

//
#elif defined(CONSTVEL PLANNER)

/]

// Call Constant Velocity Planner's Application
/]

ConstVelApp();

#endif // ELLIPTICAL_PLANNER

} // End Of APPL_Application()

3.5.5 Interrupt Priorities

In an EtherCAT slave, the ESC triggers the interrupts with external signals (XINT interrupts)
when the former is configured to operate in DC synchronization. Section 2.2.4 pointed out that
there are three ISRs that handle the major operations of EtherCAT, namely SyncO_lsr(),
Syncl_lIsr() and PDI_lIsr(). These interrupts have the following mapping to the routines
mentioned in the previous section, when the slave operates in DC Synchronization mode:

e SyncO_Isr() > APPL_Application()

e Syncl Isr() 2 APPL_InputMapping()

e PDI_Isr() > APPL_OutputMapping()

In this section, their functionality is not discussed, but they are investigated regarding their
interrupt priorities. According to the HAL configuration provided by TI (ControlSuite’s
TMDSECATCND379D_V1.0 development kit [61]), the aforementioned ISRs are mapped to
XINT5 (INT12.3), XINT4 (INT12.2) and XINT1 (INT1.4), respectively. Table C-1 (Appendix C)
states that their core priorities are 16, 16 and 5, respectively. This would create a problem in
the current application. The XINT1 interrupt, as can be seen in Figure C-5 (Appendix C), has
very high priority (5.4), higher than that of the control loop’s timer 0 (5.7). However, a major
requirement of the current firmware is to execute the control loop with the highest determinism
possible. To account for this matter, the PDI_Isr() trigger has been modified to XINT3
(INT12.1). This implicates that the control loop has now higher interrupt priority compared to
the EtherCAT ISRs. This means that the motion control loop is promoted and runs in a hard
real-time context. To verify this, the procedure of Section 3.5.6 was executed. To conclude,
all of the ISR priorities are set as follows.

e SyncO_lIsr() has 16.3 priority.

e Syncl_Isr() has 16.2 priority.

e PDI_Isr() has 16.1 priority.

e Control ISR has 5.7 priority.

In the previous configuration of the firmware, the two controllers had been triggered by
separate ePWM ISRs, namely EPWM1 (INT3.1) and EPMW2 (INT3.2) (Figure C-5, in
Appendix C). These ISRs have 7.1 and 7.2 priorities, respectively. In other words, the previous
knee’s controller (7.1) had a higher priority than the one of the hip (7.2), while both of them
had lower priorities compared to the previous PDI_Isr() (5.4), but higher than those of the
other EtherCAT-related ISRs (16.2 and 16.3). So, in the current configuration there is an
explicit dependency regarding the priority of the control and EtherCAT-related routines. This
was not the case in the previous implementation.

The modification of the timer in HAL was made, since few peripherals can compete the
TI's default interrupt priority assigned to the PDI_lIsr(); in Figure C-5 (Appendix C), only some
ADCs have higher priority than XINT1 interrupt. Also, the timers 1 and 2 have very low core

67/217

priorities, since they belong to the last two PIE groups. To understand the logic of the C2000
interrupt architecture refer to Section C.3. Note that the priorities apply only in the case that
more than one interrupts are being triggered in the same CPU cycle. Interrupt nesting is not
allowed by default. The ISRs that were not serviced and possible others that are triggered
during the servicing of the interrupt are stacked. After completion, the highest pending ISR will
eventually be serviced.

The described behavior implicates that each ISR is serviced to completion and as a
consequence servicing the time-critical control ISR may be delayed if it is triggered during the
execution of the EtherCAT-related ISRs. According to Section C.3.2, nesting can be enabled
in software with specific commands inside the ISR in which, servicing other interrupts is
intended. This way, specific ISRs may be enabled, utilizing the activated software interrupt
nesting. However, in the current case results have indicated that there are data access
conflicts when the EtherCAT ISRs are interrupted. In the future, the tasks that cause such
problems should be located in the code. This way, the interrupt nesting may be activated after
their execution. This analysis is extensive and is left for future work.

Another way to approach this matter is to decouple the control loop from the CPU. By
consulting Section C.4, it could be argued that the CLA can handle every peripheral on the
device. Currently, it handles only the PWM. If the eQEP modules were added, the control ISR
would have been redundant, since the CLA could have been triggered in hardware by any
peripheral. This way, the interrupt priorities are bypassed, since timer 0 hardware signal to the
CLA does not interfere with the CPU at all. Since task 1 (CLA control task) has the highest
possible task priority, the control loop becomes fully deterministic. This could have been
implemented in the current version, but there is a conflict regarding how CPU and CLA
represents pointers in memory.

Pointers are interpreted differently on the C28x CPU and the CLA. The CPU treats them
as 32-bit data types (address bus size being 22-bits wide can only fit into a 32-bit data type),
while the CLA only has an address bus size of 16 bits. The eQEPs are currently handled by
the POSSPEED structure, located in posspeed.h, under hal folder. This structure was
introduced in all of the previous firmware versions, and it is the TI's proposed way in the
available examples of the C2000Ware library. It is a compact way to manage and store the
guantities that are calculated from the eQEP readings, like the angular velocity approximation,
but contains pointers. However, if in a future version the previously described pointer conflict
is solved, the control loop could run in a definitive fully-deterministic manner. One solution is
discussed in [68]. Note that this architecture may result in data access conflicts that are used
simultaneously by the CLA and CPU. This must be taken into account when designing the
proposed setup.

To conclude, in the current implementation, the control loop is promoted, having higher
interrupt priority. However, since the interrupt nesting is not supported, the problem only
applies if an EtherCAT-related ISR is being serviced at the time that timer O triggers the control
ISR. Nevertheless, in the current configuration, it is ensured that the control interrupt will be
serviced first, after the completion of the running ISR. Furthermore, the controllers have the
same priority in contradiction with the previous versions that were inconsistent in this regard.
Lastly, they run in a very high frequency, significantly higher than the one of EtherCAT’s ISRs
and no disruptions in the system’s response were observed due to possible latencies, at the
test phase of the firmware.

68/217

HAL Modifications

In the previous sections the whole firmware has been described. As may be understood, the
firmware consists of the EtherCAT stack, generated by the SSC tool and the TI's default HAL
implementation (ControlSuite’s TMDSECATCND379D_V1.0 development kit [61]). To
account for the problems that this implementation came with (see previous section), the HAL
was modified.

The first modification concerns the use of timer 0 triggering the control ISR. EtherCAT
stack uses by default this timer as a free counter and thus, no modifications are necessary.
Nevertheless, to decouple the two processes, the timer 0 has been replaced with the timer 1
in the following HAL routines:

o ESC getTimer()
e ESC_clearTimer()

The second madification concerns the PDI_Isr() external interrupt. The XINT1 interrupt of
the TI's implementation was changed to XINT3 for the reasons that were analyzed in the
previous section. This implicates certain changes in the Delfino’s XBar module [64]. The
described adjustment is illustrated in Figure 3-27.

i TI’s default

// Enable EALLOW Register Access
’7
I’

EALLOW;
/7
// Remap. XINT1 ISR to ESC_applicationLayerISR Modified
/7
PieVectTable.XINT1_INT = &ESC_applicationLayerISR; //
// Enable EALLOW Register Access
// 7/
// Setup SPI XBar Options EALLOW;
//
InputXbarRegs. INPUTASELECT = ESC_SPI_INT_GPIO; //
GPIO_SetupPinOptions(ESC_SPI_INT_GPIO, GPIO_INPUT, // Remap XINTB'ISR to ESC_applicationLayerISR -- MISRA VIOLATION
GPIO_PULLUP | GPIO_ASYNC); //
PieVectTable.XINT3_INT = &ESC_applicationLayerISR;
//
// Falling Edge Interrupt //
/7 // Setup SPI XBar Options -- MISRA VIOLATION (Reviewed)
XintRegs.XINT1CR.bit.POLARITY = 0x0; /7
InputXbarRegs.INPUT6SELECT = ESC_SPI_INT_GPIO;
7/ GPIO_SetupPinOptions(ESC_SPI_INT_GPIO, GPIO_INPUT,
// Setup XINT1 Configuration Register GPIO_PULLUP | GPIO_ASYNC);
//
XintRegs.XINT1CR.bit.ENABLE = 1; /7
// Falling Edge Interrupt
// 7/
// Disable EALLOW Register Access XintRegs.XINT3CR.bit.POLARITY = 0x0;
//
EDIS; /7
// Setup XINT1 Configuration Register
1/

XintRegs.XINT3CR.bit.ENABLE = 1;
/, /

// Disable EALLOW Register Access
‘7

I

EDIS;

Figure 3-27. PDI external interrupt modification.

3.5.6 Firmware’s Performance

Timing Considerations

In this section, the execution time of each ISR is measured. To this end, the HAL's timer
function ESC_getTimer() was used at the starting point and at the end of each ISR. Then,
their execution time At.,, was calculated with (3-23), with ng,, being the timer reading at the
beginning of the ISR and n_ , the one at the end. The results are listed in Table 3-5.

end

69/217

Ny — N

Aty =— S with f,, =200 [MHz] (3-23)
clock
Table 3-5. Firmware ISRs’ execution time.
Routine Execution Time [Js]
ClaControl_lsr() 2.040
SyncO_lIsr 17.085
Syncl lIsr 18.805
PDI_lsr 131.700

From the results of Table 3-5, it becomes clear that the control ISR is significantly faster
compared to the others. This is partially due to the use of the CLA. The ISR in the current
configuration stores data and triggers the CLA, with both being tasks that the CPU can execute
fast. Another interesting thing is that the PDI_Isr() takes significantly more time compared to
the others and surpasses the control loop’s period (100 us). This means that the control ISR
is likely to be triggered during the execution of PDI_Isr() and consequently become a pending
interrupt. To verify that this does not cause significant problems, the firmware has been tested
extensively. Also, the procedure of the next sub-section comes as a profiling to determine the
interrupt triggering period of each ISR.

Interrupt Profiling

To measure the triggering period of the firmware interrupts, a vector was placed at the
beginning of each ISR. In this vector, a number of consecutive timer counts was stored, using
the ESC_getTimer() routine. This procedure can be understood intuitively in the following
code snippet. Note that the vectors and variables used for this procedure are removed from
the mainline version of the firmware.

interrupt void ESC_applicationLayerISR()

if(g_SwitchProf == 1U)

{
g_SwitchProf = 2U;
g_InterISR = true;
CpuTimer2Regs.TIM.all = 0;
3
if(bDcSyncActive == 1U &% g_InterISR == true)
{
g _CounterPDI++;
if(g_CounterPDI <=2)
g_PDIStart[g_CounterPDI-1] = ~((uint32_t)(CpuTimer2Regs.TIM.all));
}
X
#ifdef ETHERCAT_STACK
PDI_Isr();
#endif

PieCtrlRegs.PIEACK.all = PIEACK_GROUP12;
if(bDcSyncActive == 1U && g _InterISR == true)

if(g_CounterPDI <=2)
{

}

g _PDIEnd[g_CounterPDI-1] = ~((uint32_t)(CpuTimer2Regs.TIM.all));

70/217

The results can be reviewed in Figure 3-28. Each ISR returns to the Main-Loop after
completion. This adds return and call latency, for example at each control ISR right after the
completion of PDI_lIsr(). The EtherCAT-related ISRs have insignificant delay that can be
justified, if the increased overhead that the external interrupts present (refer to [64]), compared
to other interrupt sources, is taken into account.

«—— Forward Path

Laelaps Il Motion Control's Profiling w3 Return Path

o

g

=

£

[+]

=3 I

100

14

7]

o

[
0 100

o S L

7]

3

g

@ I | | L | I
0 100 200 300 400 500 600

t[us]

9

]

b7

=3

17 1 1 ! L ! |
0 100 200 300 400 500 600

t[us]

14 . .

a ISR Service Delay ISR Service Delay

s 95.03 us i 95.03 us

3 | | | I L | I
0 100 200 300 400 500 600

Figure 3-28. Interrupt profiling results.

On the other hand, the control ISR has insignificant run-time (2.04 us), but its execution
is not strictly deterministic. In Figure 3-28 a pattern is observed; every four ISRs, one is
delayed for 95.03 ps. This delay is significant compared to the desired cycle of the control
loop (100 ps). This implies certain flunctuations in the motion control’'s bandwidth, since in a
digital control system, the sampling frequency is associated with the system’s bandwidth
(Nyquist-Shannon theorem [66]). Currenlty the robot does not operate at such high
frequencies and its motions are not disrupted by the aforementioned control frequency’s
drops. Nevertheless, this fact should be considered in future designs.

Lastly, the EtherCAT PDOs are updated by the PDI_Isr(), but the application variables,
like the control parameters are refreshed during the SyncO_lIsr(). This means that the delayed
control ISR, being serviced right after the PDI_Isr(), runs with the control parameters that were
updated in the the previous EtherCAT cycle.

CLA Performance Gain

This section is dedicated to the achieved performance. The benchmark consisted of a CPU
timer measuring the elapsed time of each CLA task’s beginning to completion. The results are
compared with the corresponding timings achieved by the older setup. The acquired data are
presented in Table 3-6. Also, the main function run-times are measured for future reference
and completion.

71/217

Table 3-6. Firmware's performance overview.

Processor Routine Execution Time [ps] Call Overhead [ps]
Planner 3.02 -
cPU Controllers 3.29 -
Planner 2.76 0.14
CLA Controllers 1.39 0.135

From Table 3-6, one may deduce that the actual CPU gain from CLA usage is at minimum
6.31 ys. That is not a significant reduction, but through integrating this module into Laelaps
firmware, experience and documentation have been acquired. The robot’s current firmware is
still under development and its present processing power requirements are relatively low. With
time, the software will eventually evolve along with its needs, while CLA, IPC for dual-core
functionalities and DMA may make the actual difference. At last, it should also be noted that
both of the routines are running faster on CLA than on CPU.

3.5.7 Managing the Project’s Configurations

From the previous sections, it should be obvious that there are multiple configurations of the
project that are managed with the Predefined symbols in the Project Properties pane. In the
above sections, each time that a configuration was referenced, the corresponding symbols
were referenced too. These symbols can be managed in project’s properties (Right Click on
Project’s Name -> C2000 Compiler -> Predefined Symbols), while a list is given in Table 3-7.

Table 3-7. Firmware's Predefined Symbols List.
Predefined Symbol Name Serves Comments
CPU1 System Choose run-time CPU
Send absolute encoders readings via
ABS DEBUG User Code EtherCAT for debug purposes instead
of velocities
CLA CTRL User Code Execute controllers with CLA instead of
FPU
END_STOP User Code Enable end-stop routines
CLA PLAN User Code Execute planner with CLA instead of
- CPU
CONSTVEL_CONTROLLER User Code Use the constant velocity planner
ELLIPTICAL_CONTROLLER User Code Use the elliptical planner (previous)
LEFT_LEG User Code Left-leg slave configuration
RIGHT _LEG User Code Right-leg slave configuration
AUTO STARTUP User Code Use automatic initialization for the
- encoders
INTERFACE_SPI EtherCAT Choose SPI as slave’s PDI
- Stack
_LAUNCHXL_F28379D System LaunchPad firmware configuration
EtherCAT
USE_SPIA erc Choose SPI channel for PDI use
- Stack
FLASH System Initialization from FLASH

72/217

RAM System One time initialization from RAM

EtherCAT Enable the prescribed EtherCAT Stack
Stack code files

CLA_C/CLA_P Linker Create CLA-specific linker sections

ETHERCAT_STACK

As for the CLA_C / CLA_P symbols, they should be specified in the Project’s properties
pane (Right Click on Project’s Name -> Advanced Options -> Command File Preprocessing).
They manage the memory allocation in the linker file if CLA tasks are used. More about the
command file will be discussed in the next section.

Major Project Configurations

To define the most significant options and configure the major aspects of the project, the

following steps must be followed.

1. There are four different project configurations. Two for the left leg, and two more for

the right. Each leg has a debug configuration, in which the firmware is stored in RAM.
The other one is a Flash configuration that constitutes the release version of the
application. Generally, during experiments, the Flash configuration should be used.
These options are demonstrated in Figure 3-29.

Build Targets
Index >
Build Configurations > Manage. |

1 Debughs Set Active > [9] 1 Left Leg FLASH LAUNCHXL F283790_SPIA (C2000 EtherCAT i AUNCHXL %5
Restore from Local History... Build Al 2 Left_Leg RAM_LAUNCHXL_F283750_SPIA (C2000 EtherCAT slave AM on Delf INCHXL. 19 SPIA with FB1111-0141 for Left Legs of Laelaps)
Team > Clean All 3 Right_Leg_FLASH LAUNCHXL_F283790_SPIA (C2000 EtherCAT slave software running from FLASH on Delfino LAUNCHXL-F283750 using SPIA with F81111-0141 for Right Legs of Laelaps)
Compare With £ Build Selected... 4Right_Leg_RAM_LAUNCHXL_F28379D_SPIA (C2000 EtherCAT RAM on Delfino LAUNCHXL SPIA with FBT111.0141 for Right Legs of Laetaps)

Figure 3-29. Different leg firmware configurations.

2. To further exploit and manage the different functionalities that the project comes with,
certain Preprocessor and Linker symbols have to be defined (Section 3.5.7). Figure
3-30 gives an overview of each symbol’s use. The symbols may be left to default if no
special configuration is desired. If the readings of absolute encoders during tests need
to be displayed, the ABS_DEBUG symbol has to be defined.

Laelaps Il Motion Control
Predefined Symbols . DEEAULTSERINGS

Planner s
Planner Type Control Runtime
with CLA P & | without CLA P & with with CLA_C & | without CLA C &

wil
CLA_PLAN CLA_PLAN CONSTVEL_PLANNER | ELLIPTICAL_PLANNER CLA_CTRL CLA_CTRL

Absolute Encoder
Debugging

with without with END_STOP

ABS_DEBUG ABS_DEBUG
Enabled

Constant
Stance Velocity

End-Stop
Routines

without without
END_STOP AUTO_STARTUP | AUTO_STARTUP

Disabled Automated

Laelaps Startup

Version Type

with FLASH | without FLASH

Abs. Encoders'
Readings are fed to
Velocity ECAT
Variables

Joints' Velocities are
fed to Velocity ECAT
Variables

Figure 3-30. Project’s configurations.

The above configurations can be defined from the tabs displayed in Figure 3-31.

73/217

EtherCAT Laelaps_Mot Show in Local Terminal 2 &) Properties for EtherCAT Laelaps_Motion_Control
temal_interrupt_cpud1 Add Files.
teml otemopt TEST | e e Predefined Symbols
) N
8379D_CLAHandsOn_¢ <L > Resource
S Paste CtrlsV General
1U_APP [imu_adis1636 =
& . “ i : |Right_Leg_FLASH_LAUNCHXL_F26379D_SPIA [Act
1U_APP_test 3 Delete Delete Build Configuration: |Right_Leg. [Active]
s + €200 Compiler
-cpul Refactor > Processor Options
b11_cpu02 Move.. Optimization - -
b8 R = o Options Pre-define NAME (--define, -D)
elaps_FID amesy Performance Advisor CPUI
: END_STOP
cbsp_loopback_dma_c Import 5 Predefined Symbols i
> Advanced Options CLATCTRL
e Export.. > €2000 Linker END_STOP
= €200 Hex Utilty [Disabled] ABS_DEBUG
Show Build Settings... G CONSTVEL_PLANNER
PpStyle =
g RIGHT_LEG
Build Project Debug sl
o Git
Cleen roicst ANCHOLF
i Open Properties Dizlog Project Natures _LAUNCHXL_F28379D
Rebuild Project USE_SPIA
FLASH
%] Refresh F5 ETHERCAT_STACK
Close Project
Build Targets % &5 Properties for EtherCAT_Leeleps_Motion_Control
Index >
type filter text il il
Build Configurations > Jeciae Command File Preprocessing
> Resource
[> RunPolyspace Bug Finder General
i et « Build Configuration: | Right_Leg_FLASH_LAUNCHXL_F28379D_SPIA [Active]
eload Polyspace Bug Finder Resul R
45 DebugAs > Processor Options
i Optimization — — —
pestors trom Localistor/s e Soiors Pre-define preprocessor macro_name_ to_value_ (define)
Team 2 Performance Advisor -
Compare With > Predefined Symbols s
Replace With 3 > Advanced Options
v C2000 Linker
:AT_Laelaps_Motion_C | Properties Alt+Enter Basic Options
File Search Path
+ Advanced Options
Command File Preprocessin
Diagnostics
Linker Output
Symbol Management
Runtime

Figure 3-31. Predefined Symbols and Linker Symbols tabs overview.

3. This configuration step involves the settings of the absolute encoders’ sampling time
to reduce ADC sampling’s inherent noise. To modify this parameter, navigate to
posspeed.h (under hal folder) and change ABS_ENC_SAMPLING_TIME to the
desired sampling time in [s] (Section 3.5.1).

4. Another setting that requires attention is each controller's saturation limit. To modify
them, change the corresponding global variables (g_UmaxHip / g_UmaxKnee). Refer
to Section 3.5 for further information on configurations. The valid range is 0.0 to 1.

5. Next, configure the end-stop routines, by changing the settings displayed in Figure
3-23 if the defaults do not suffice.

6. Finally, the source files of the controllers are located inside the hal folder. Depending
on the desired configuration and the previously set Predefined Symbols (CLA_CTRL
and CLA_C), only the corresponding planner should be included in the building
process. To exclude the others, Right-Click on their source files and opt for Exclude
from Build option.

After the above configurations, the firmware along with the applied modifications can be

deployed. For further details refer to Appendix E (Section E.3).

3.5.8 Firmware’s Linker Command File

For the linking process, partially described in Section C.7, a custom command file was created
to optimize the resources and integrate CLA and DCL capabilities. The command file comes
in two flavors. One in RAM run-time configuration and another in FLASH configuration. These
fles may be found under the cmd folder, inside the project tree, namely
2837x_RAM_Ink_cpul_CLA.cmd and 2837x_FLASH_Ink_cpul CLA.cmd. To view the
memory allocation designated by those files, navigate to View->Memory Allocation at TI's CCS
menu ribbon. It should be noted that in order to change the available stack and heap sizes,
one should navigate to Project Properties (Right Click on Project’s Name) -> Basic Options as
in Figure 3-32. In the current firmware version, the assigned heap and stack sizes were chosen

741217

to be close to the highest possible dictated by the command file’s memory allocation. Currently
there are no specific requirements regarding these parameters. They should be tuned to
achieve an optimal result in a potential future version that will have more specific requirements.

Basic Options
File Search Path Heap size for C/C++ dynamic memory allocation {--heap_size, -heap) | 01000

v C2000 Linker Specify output file name {--output_file, -0) | ${ProjNamel.out |

5 Advanced Options
C2000 Hex Utility [Disabled]
Debug

Set C system stack size (--stack_size, -stack) | 0800 |

Warn if an unspecified output section is created (--warn_sections, -w)

Figure 3-32. Stack & Heap size setup pane.

Note that the CLA scratchpad section configured in the custom command file, along with
its size, is similar to the CPU’s stack. The CLA C compiler stores all the local, auto variables,
and function arguments to this logical memory section. Again, there were no specific
requirements for its size and thus a relatively high value (0x800) compared to the TI's default
(0x100, in the original C2000Ware’s 2837xD_FLASH_CLA Ink_cpul.cmd) was chosen.

Last but not least, specific #pragma instructions have been used throughout the code, to
dictate to the compiler, which time-critical functions should be loaded to RAM during the
firmware’s startup. This is a good practice, due to the proven faster execution capabilities of
RAM'’s routines. Generally, it is a trade-off between additional data space and code execution
time, which should be considered during the design stage of the application. In the current
firmware, the control ISR is executed on RAM, since it is called in high frequencies and its
execution should be as fast as possible. Moreover, Tl has configured in its original HAL
implementation (ControlSuite’s TMDSECATCND379D_V1.0 development kit [61]) specific,
time-critical functions to be executed on RAM.

3.5.9 Compiler Information

The firmware uses the TI's default C28x compiler v20.2.4LTS. It is the standard compiler for
the C2000 Delfino microcontrollers. The compiler optimization level is currently left to O (none).
In a future version, a higher level could be applied, but with due care, since it can lead to
heavily erroneous firmware run-time. These options are located inside the Project Properties
pane (Right Click on Project’s Name->Properties).

The C28x compiler is used to build CPU source files (.c) along with their headers. For the
CLA, a different compiler is used that builds all the .cla files of the project along with their
headers. These headers may be included in both .c and .cla files. If there are variables that
either compiler should not “see”, the developer could create an #ifdef structure with the
symbol __ TMS320C28XX_CLA_.

3.6 Firmware Check and Verification

A significant part of any software development process should be dedicated to ensuring that
the code is free from glitches. Bugs impose a major threat for the system and its users.
Specifically, the Laelaps Il is a high-power machine with a primary target to operate in a wide
range of environments, while interacting with people during tests. Hence, the need for
assurances of a clean and bug-free code is imperative.

Another aspect of such processes is to create an application that would be easily
understood and maintained by a third person. For this reason, certain standards and rules
must be followed. The introduction of such protocols is a vital part of modern workflow
approaches in software development, along with the preservation of a strict version control

75/217

system. Also, to assist further the maintenance and scalability of the code, documentation
should be created. In the current case, the firmware’s description has been generated with
Doxygen. The resulting HTML may be inspected in the project’s Bitbucket repository [52].

The CSL-EP’s Legged Robots Team has adopted such procedures to ensure that every
application is safe and ready to play. Likewise, in the present thesis, the developed firmware
is written in compliance with the industry’s leading safety-critical and security standard, MISRA
C: 2012 [69]. Of course, there are certain deviations to adjust the standard to the current
project’'s needs. More on the MISRA compliance are discussed in Appendix H (Section H.1).
Note that only the herein developed code complies with the formerly mentioned coding style
(Appendix G) and MISRA standard. TI's HAL and ETG’s EtherCAT stack source files have
their own coding style and were not revised.

The code is analyzed with industry’s leading code analysis tools that guarantee zero False
Negative warnings. This means that the code becomes immune to any run-time errors due to
overflows, illegal function calls, and divisions by zero, etc. The application has been reviewed
and relieved from the reported bugs. In Table 3-8, the results of the executed analysis are
presented, taking into consideration the defects illustrated in Figure 3-33. Only the custom
files have been revised, because the additional TI's libraries and EtherCAT stack had already
been tested by their respective distributors. The listed defects of the custom source files are
mostly False Positives of the static analysis tool and data type conversion warnings.
Nevertheless, they are not considered as defects in the current firmware and were left on
purpose. In the source files, every violation that was identified by the Static Analysis but was
not modified has been documented in comments. For many more details, refer to the auto-
generated reports which accompany the software, located in the respective Bitbucket
repository [52].

=)--[~] Defects
- [/] Numerical
+ Static memory
& Dynamic memory
[Data flow
+ Resource management
+ Programming
[[] Concurrency
[[] Security
+-[] Cryptography
+-[_] Tainted data
- [V] Good practice
[[] Performance

Figure 3-33. Possible defects, the Static Analysis may find.

Table 3-8. Static analysis results.

File Status Defects
constvel.c Rev. 2
elliptical.c Rev. 1
planners.h Rev. 2

76/217

EtherCAT_Laelaps_Motion_Control.c Rev. (Only custom entries) 9

etherCAT_slave_c28x_hal.c Rev. (Only custom entries) 11
posspeed.c Rev. 15
posspeed.h Rev. 3

Total 43

3.7 Conclusion

In this chapter, the Laelaps Il motion control firmware is described and analyzed thoroughly.
The newly introduced implementation improves many aspects of the former ones by adding
several features and exploiting Delfino’s architecture. The introduction of MISRA C:2012
coding standard facilitates the overall development process and in combination with the
adopted static analysis tools, many bugs have been eliminated (see Section 3.6). Also, the
automation of the startup sequence and the introduced firmware safety features can
accelerate the experiments with the robot and prevent possible failures. Overall, the firmware
fulfills the real-time requirements that were set throughout the development process with many
test results indicating it (see 3.5.6). Note that the delay of the control ISR should be accounted
and solved in a future version. Nevertheless, no problems were observed during the system’s
operation.

77/217

4 |nertial Measurement Units

An Inertial Measurement Unit (IMU) is an electronic device that measures and reports a body's
acceleration, angular rate and sometimes the surrounding magnetic field, using a combination
of accelerometers, gyroscopes and sometimes magnetometers. This technology is mature
enough to be broadly applicable in many technological fields; from applications in everyday
life (e.g. smartphones) to aerospace, high-accuracy systems. In robotics, IMUs are essential
in state estimation and without them, autonomy would not be feasible.

The CSL-EP Legged Robots Team has at its disposal two Analog Devices IMUs, namely
ADIS16364 and ADIS16375. They are two high-precision 6-DOF inertial units, combining data
from 3 embedded angular accelerometers and gyroscopes. Each sensor incorporates
industry-leading iIMEMS technology with signal conditioning that optimizes its dynamic
performance. The communication between ADIS163xx and Delfino is established through the
standard SPI protocol. According to their datasheets [70] [71], they present an exceptional
dynamic response in acceleration and angular velocity changes and can withstand and
measure severe impacts. Therefore, the integration of these systems into the Laelaps Il robot
is a big step towards autonomy and awareness of its environment.

This chapter investigates the development and incorporation of two IMU slaves to the
current Laelaps’ EtherCAT network. Initially, some theoretical preliminaries are laid.
Furthermore, the used hardware components and electronics are presented. Most of the parts
are designed and manufactured in-house with SOTA methods. Moreover, a major section in
this chapter is the firmware of each IMU EtherCAT slave and its capabilities. Lastly, the
verification of the aforementioned systems is considered.

4.1 Gyroscopes

The goal of a gyroscopic system is to track changes in a body’s orientation by taking into
account predictable phenomena produced by physical laws [12]. The first mechanical system
which materialized this idea was invented by Bohnenberger [72]. Initially, such systems relied
on the conservation of the angular momentum of a nearly frictionless rotating wheel like the
one illustrated in Figure 4-1.

Gyroscope
frame

Spin axis

Gimbal

Figure 4-1. Gimbaled gyroscope.

Nowadays, technology has made leaps in the field of Micro Electro-Mechanical Systems
(MEMS), introducing small devices with incredible accuracy and almost no moving parts.
Commonly, such sensors rely on the transfer of energy among vibratory modes, based on the
Coriolis effect [73]. There are plenty of configurations available with the most common being
the one of the tuning-fork (Figure 4-2). A crystal vibrates the tines of the fork linearly (driven
vibration) and as the whole structure rotates, the Coriolis causes the forks to oscillate out of

78/217

the plane. This displacement from the plane of oscillation is measured to produce a signal
related to the system's rate of rotation.

Input

Rotation Driven Tine
Rate q} Vibration

o<

“Coriolis
Acceleration
Response
Coriolis
Response

4

Figure 4-2. Tuning-fork’s principle of operation.

4.2 Accelerometers

Accelerometers are simple structures with the most widely known being the one of the mass-
spring-damper (m-c-k) with the well-known dynamic behavior. By tuning the m-c-k parameters,
the system should reach a stable fixed point whenever a static force is present. A more
accurate, small and generally modern setup uses piezoelectric phenomena [74] to measure a
small mass’ applied forces by translating its displacement into voltage differential.

An IMU package houses all of the above components, along with others that support
measurement conditioning and interfacing. It may be visualized as a microcontroller that takes
each sensor's measurements, processes them and makes them available to another
computing system.

4.3 Serial Peripheral Interface

The Serial Peripheral Interface (SPI) is a synchronous communication protocol used in
embedded systems for short-distance communications. SPI devices communicate in full-
duplex mode using a master-slave architecture with a single master on the bus. The master
device creates a frame for reading and writing. Multiple slave devices are supported through
selection with individual Chip Select (CS) lines. To begin communication, the bus master
configures the clock, using a frequency supported by the slave device, typically up to a few
MHz. During each SPI clock cycle, full-duplex data transmission occurs. The master sends a
bit on the MOSI line and the slave reads it, while the slave sends a bit on the MISO line and
the master reads it (Figure 4-3). This sequence is maintained even when only one-directional
data transfer is intended. The use and the realization of this protocol is clarified in Section
4.4.3.

79/217

SPI cs > CS SPI
Master Slave
SCLK »{ SCLK
MOSI » SDI
MISO |-= SDO

Figure 4-3. Serial Peripheral Interface (SPI) overview.

4.4 ADIS163xx Hardware Description

The ADIS163xx IMUs have specific requirements for mounting and connectivity. To this end,
Analog Devices provides tailor-made mounting boards, namely the ADIS16IMU1, with robust
mounting and easy, plug and play connectivity. The inertial units, along with the mounting
breakout board may be reviewed in Figure 4-4 and Figure 4-5.

ANALOG
DEVICES
ADIS16364BMLZ

0045
AD061109-1

34031 A

() (b)
Figure 4-4. (a) The ADIS16364 IMU. (b) The ADIS16375 IMU.

Figure 4-5. The ADIS16IMU1 breakout board.

4.4.1 ADIS16xx Connection with LaunchXL-F28379D

On the discussed breakout board, the connection with Delfino is materialized with an IDC
cable, specifically the Samtec TCSD-08-D-02.00-01-N-R. This interface requires an
intermediate custom board to handle the IMU signals and power supplies. This board is
developed and analyzed in Section 4.4.2. The IDC cable and the connector (Samtec EHT-
108-01-S-D-SM) mounted on the previously mentioned custom PCB, are illustrated in Figure
4-6.

80/217

Bone

() (b)
Figure 4-6. (a) Samtec EHT-108-01-S-D-SM. (b) Samtec TCSD-08-D-02.00-01-N-R.

The Analog Devices breakout board rewires the IMU signals to the IDC connector.
Apparently, any design should take into account Table 4-1 to avoid mistakes and possible
damage to the equipment.

Table 4-1. ADIS breakout board circuit scheme.

CIRCUIT LAYOUT ADIS163xx ADIS163xx BREAKOUT BOARD
PIN NAME PIN # PIN #
POWER SUPPLY 101112 101112

GND 13|14 15 71819
DOUT (MISO) 4 4
DIN (MOSI) 5 6
SCLK 3 2
CS 6 3
DIO1 7 13
DIO2 9 14
DIO3 1 15
DIO4 2 16

4.4.2 IMU and LaunchXL-F28379D Interface Board

As previously stated, ADIS16364 and ADIS16375 are two high-end IMUs that will be exploited
in the pose estimation of the Laelaps Il quadruped. To integrate them into the robot’s
architecture, the creation of an interface board along with the required firmware is of utmost
importance. This design should follow certain guidelines and rules to create a high-
performance sensory system.

Circuit Schematics

The aforementioned intermediate PCB was designed using Autodesk’s Eagle software [75].
The created schematics are shown in Figure 4-7. To incorporate only the required
components, Delfino’s library was dissected to use only the lower half of the board. Also, the
chosen step-down regulators were imported from Mouser online electrical symbol repository.
The wiring of the created board is illustrated in Table 4-2.

81/217

U1 3

LM1085IT-12/NOPB N
1 a

- cuo N

ouT 2
.
i
Iy

10 uF

Q[2.3v]

LaunchPac*m[Ew TMS320F28379D
EEEYN
w2 3 \ '}
DJ— NEY A + K JE - =
100 nF — 4 Bl o — a0 60 =]
L a2 62 g —~ s w V0[5,\z'l\ =T
— 4 83 — s
GND 5 ol 15 & E Lok 1S mNﬁT
— 45 65 — s
w e B pATA READY 3 o 585
a6 — 7 54 H
1B 6B GND - 73 53 MOSI g 3%
— 4 60— RESET { 42 v |- 3%
— 50 FU — 71 51—
53
gu
J16 nn %
el not 3 DATA_READY S
- 162 J1e2) |
) J16_3 2103 CLK A .
q ~es 3l 14, RESET PIN
4 GND GND miso sl 6, Doz
| Mosl 7 —9, DIO4
<
=
a
SPI

oy
3]
IMU_CONNECTOR
EHT-108-01-5-D-SM % +/CI5Y]
RESET PINT R 2 2 CIK
= C 2], . [2 MISO 0[3.3V]
o 1. &
= v
% - 7 8 - 1MU_SUIPPLY_SELECTOR
8 pli}
] INU_SUPPI FA T T 1 IMU_SUPPLY 2
il DIOL_18 | 3 1; [14 DIO
umJ vl kiks) 15 16 16
i _IL
BGNDDIO3_JUMPER :EE
e e
== pio4_bUmPER
DfTA_READY_SELECTOR D0 Bl ZND

Figure 4-7. Intermediate custom PCB schematics.

Table 4-2. Intermediate-board’s signal layout.

CIRCUIT LAYOUT LAUNCHXL-F28379D ADIS163xx BREAKOUT BOARD
PIN NAME PIN # (HEADER J#) NAME (PIN #)
POWER SUPPLY 41 (J5) [3.3V] | 61 (I7) [5V] Vee (10|11 12)
GND 1|2 (310-16) | 60 (J6) | 62 (37) GND (7181 9)
MOSI 55 (J6) DIN (6)
MISO 54 (J6) DOUT (4)
CLK 47 (J5) SCLK (2)
cs 59 (J6) CS (3)
DATA READY 74 (38) DIO1 (13) or DIO2 (14)
RESET 73 (J8) RST (1)
AUX SIGNAL 1 48 (J5) DIO3 (15)
AUX SIGNAL 2 42 (J5) DIO4 (16)

Power Sub-Circuit

The board consists of two low-power supply channels, one for 5V and another for 3.3V. Both
of these channels are imperative for the function of the LaunchPad. On the other hand, only
one is rooted in the corresponding IMU. To achieve this, since ADIS16364 demands a 5V
power supply [70] in contradiction with ADIS16375 that requires 3.3V [71], a selector jumper

82/217

was placed on the board. To choose appropriate supply regulators, the power consumptions
for each electronic component included in the design are presented in Table 4-3.

Table 4-3. Different components' power consumption.

PROPERTIES Delfino ESC ADIS16364 ADIS16375
Input Voltage [V] 3.3|5 5 5 3.3
SS Current [mA] 325 (440 max) 350 (700 max) 49 173

Transient Current [mA] N/A N/A N/A 1500 [400us]

In the case of the Delfino microcontroller, the listed current values are representative of
the test conditions given in [76]. The actual device’s current consumption in an application will
vary with the application’s code and pin configurations. In the manufacturer’s test conditions
there are significantly higher power demands compared to the current application’s, since both
CPUs are enabled and many peripherals, like ePWMs that are not used in the current
application. The regulators were chosen to fulfill even these high current consumptions in
order to be on the safe side under any operational condition, with provisions for further
expansion in the future. Note that the 5 V power supply channel is not used by the
microcontroller, but it supplies external components (e.g. ESC) connected to the LaunchPad.

Since the cost remains at the same levels, an “on the safe side” design was adopted. For
the 3.3 V channel, the TI's LM1085IT fixed, Low Dropout Regulator (LDO) was selected. As
may be seen in the corresponding datasheet [77], it outputs up to 3 A. As for the 5 V supply
branch, the ST’s L7805CV LDO [78] was chosen, which can output up to 1.5 A. Generally,
LDOs entail decoupling capacitors to cutoff transients and high-frequency noise phenomena
(Figure 4-8). By referring to their datasheets, a list of peripherals and rooting tips are proposed
for each LDO. To furtherly enhance the proposed filters, additional 100 nF capacitors were
positioned near the coupling point of each load.

Vin ——{IN out *— Vour' ,
GND |
Vi o— { L78Xx | ——e—oVo
Ll I 2 _10uF ¢, =0.33uF — T Co=0.14F
“T 10 uF “T> Tantalum T T
i €S25220

Figure 4-8. Proposed decoupling capacitors for the chosen linear voltage regulators.

To prove that the proposed design is on the safe side, specific Safety Factors (SFs) have
been calculated. From the datasheets’ worst-case conditions (Table 4-3) and for the steady-
state operation, the SFs of each power supply channel for the two IMU slaves are listed in
Table 4-4. Note that the SFs are calculated with the equation (4-1), with |, being the
maximum current consumption of each channel and | the maximum current that each
LDO can output.

supply,max

SF Ina (4-1)

supply — |

supply,max

83/217

Table 4-4. IMU slaves' power supply channels Safety Factors (SFs).

Power Supply ADIS16364 SLAVE SF [%] ADIS16375 SLAVE SF [%]
5V (1.5 A max.) 200.3 214.3
3.3V (3 Amax.) 681.8 489.4

The slaves are going to be supplied by the low-power supply channel of Laelaps Il (9 V
by default). According to [79], the output current of the LDOs depends on the drop-out voltage,
which is the difference between the input with the output voltage. The minimum drop-out
voltage required to maintain regulation is rated at 1.5 V for the LM1085IT and 2 V for the
L7805CV. So, the input voltage for each slave should be higher than 7 V. Since Laelaps Il
operates at 9 V, the requirement is fulfilled. Note that as the input voltage rises significantly
higher than the minimum required, the power dissipated in each LDO rises too. So certain
thermal limits should be taken into account in the design. A thermal analysis is performed in
Appendix |, using the thermal specifications that the datasheets provide. Besides this analysis,
an experiment was executed to verify the results. In the same Appendix, its description can
be found. The results indicate that for input voltages above 12.7 V, the LM1085IT LDO
overheats and its thermal protection disables it. So, the whole EtherCAT slave must always
be supplied with lower than 12.7 V input voltages.

SPI Bus Sub-Circuits

As formerly mentioned, the two Analog IMUs are communicating, transferring readings and
commands via SPI. In this section, the hardware realization of this protocol is considered,
along with techniques to ensure minimum noise and seamless operation in high frequencies.

General bus design guidelines propose minimum trace impedance and the same low
trace length for each of the four SPI signals [80]. The PCB software suite used here comes
with an arsenal of great tools for a diversity of needs. By running the ULP script “length-freq-
ri.ulp”, one may review each trace’s attributes and act accordingly. In the current scheme, the
SPI’s traces were kept in almost the same length and impedance. In Table 4-5, all of the
traces’ characteristics are summarized. The maximum SPI functional frequency is dictated by
the IMU datasheets [70] [71] and Delfino’s capabilities. That said, a 12 MHz SPI clock is used
with ADIS16375 and a 600 kHz one with ADIS16364. In the case of ADIS16364, if burst read
(refer to Section 4.6.3) is not intended to be used, this value can be increased.

Table 4-5. Custom PCB traces’ attributes.

Fmax L A R Whin Winax Imax

SIGNAL [MHZz] [mm] [mMm?] [MOhm] [mm] [mm] [A]
DIO3 3245.13 92.385 0.014 113.01 0.406 0.406 1.25
DIO4 3269.15 91.706 0.014 112.18 0.406 0.406 1.25
RESET_PIN 5361.33 55.919 0.014 68.4 0.406 0.61 1.25
CLK 5625.08 53.297 0.028 32.6 0.813 0.813 2.45
VOI[3.3V] 5886.04 50.934 0.044 19.94 1.27 1.27 3.75
DIO4_PIN 6217.4 48.219 0.021 39.32 0.61 0.813 1.85
MISO 6253.86 47.938 0.021 39.09 0.61 0.61 1.85
DATA_READY 6564.9 45.667 0.021 37.24 0.61 0.61 1.85
SUPPLY_10V 6653.77 45.057 0.044 17.64 1.27 1.27 3.75

84/217

MOSI
cS
IMU_SUPPLY
DIO3_PIN
VOI[5V]
DIO1
DIO2
RESET

7058.21
7642.41
7985.16
8639.69
9374.19
9935.61
10003.2
38487.7

42.475
39.228
37.545
34.7
31.981
30.174
29.97
7.79

0.028
0.014
0.044
0.028
0.044
0.014
0.014
0.028

25.98
47.99
14.7
21.22
12.52
36.91
36.66
4.76

0.813
0.406
1.27
0.813
1.27
0.406
0.406
0.813

0.813
0.813
1.27
0.813
1.27
0.406
0.406
0.813

2.45
1.25
3.75
2.45
3.75
1.25
1.25
2.45

Board Overview

The designed PCB is using a limited space at the lower half of the LaunchPad, to reduce cost
along with its volume demands. The traces are optimized having adequate clearance among
them, to eliminate signal interferences. The reader may refer to the extended work in [81] and
the guide in [82], to get a deep insight into the field of high-end PCB design. During the design
process, Eagle provides tools, like ERC and DRC checks to optimize the design and ensure
its manufacturability. The rules that these checks follow can be imported if the default ones do
not suffice. Many PCB manufacturers, like Eurocircuits, provide their own .dru configuration
files, compatible with all major PCB design software packages. Since the boards were
purchased from Eurocircuits, the PCBs were designed in compliance with these .dru files. In
Figure 4-9 and Figure 4-10, the final PCB design may be examined.

Figure 4-9. (a) Upper PCB side. (b) Lower PCB side.

85/217

(b)

(b)
Figure 4-10. (a) Custom PCB design overview. (b) Assembled boards.

As may be realized by the board in Figure 4-10, the bottom and top copper layers are
short-circuited as ground (GND) to reduce the total number of traces and, along with some
vias, the total impedance of the circuit. The exported from Eagle .brd file was uploaded to be
analyzed with the more advanced Eurocircuits tools. The verdict of those manufacturability
tests was exceptional, with copper plating fault indexes nearly 100% pass. All of the design
files may be found in the respective Bitbucket repositories [83] [84].

4.4.3 IMU Slave Housing

To enclose the aforesaid board assembly, a 3D printed housing was created. An effort was
made to be as compact as possible, ensuring the integrity of the hosted components and their
cooling needs. The housing is illustrated in Figure 4-11. For the drawings and the basic
dimensions refer to Appendix L.

EtherCAT Input Port
er Supply EtherCAT Output Port

Delfino Debugger

€Y (b)

Figure 4-11. (a) Housing —inside view. (b) Housing — closed view.

4.5 ADIS163xx Delfino Firmware Setup

To use the sensors with LaunchXL-F28379D, the appropriate firmware was developed. The
main tasks of the firmware are to communicate via SPI with the connected IMU, set the
necessary parameters, get the sensor readings and establish the EtherCAT communication.
Figure 4-13 outlines the general functionality of the designed firmware. To furtherly understand
the structure, refer to the created Doxygen documentation [83] [84].

The various aspects of the firmware are discussed in an organized way, to make the
learning curve less steep and the overall process more efficient. As far as the EtherCAT slave
software modules are concerned, the aim here is not to replicate the extensive available
literature, but to highlight the significant routines and operations that interfere most with the
user-application.

4.5.1 Required Hardware

Firstly, a sum-up of all the necessary components is illustrated in the list below.
e 1x EtherCAT slave piggyback controller (ESC) with ET1100 chipset. All the required
frame processing and EtherCAT functionalities are implemented with this board. It is
the hardware in which the physical and data link layers are realized.

86/217

e 1x TI's LaunchXL-F28379D (MCU). The application layer of the app is realized here,
along with the generic EtherCAT stack and the IMU SPI communications.

e 1x ADIS163xx IMU, along with its breakout board for proper connectivity.

e 1x Custom EtherCAT shield PCB. The interface board that connects properly the MCU
with the ESC, designed in [20].

e 1x Custom IMU Shield PCB. The intermediate board operating as a rewiring scheme
between the MCU and the IMU. Also, it provides the required power supply for the
whole board assembly.

e 1xIMU Housing (Figure 4-11). It is used to host the assembled boards and electronics
and can be placed anywhere on the robot.

The reader should consult the Appendix K for a detailed description of the required

components.

Note that depending on the IMU (ADIS16364 or ADIS16375), the custom IMU shield’s
power supply selector should be configured accordingly, by placing a female jumper to the
appropriate pins (see Figure 4-12). Note that ADIS16364 operates with a 5 V supply (green
box), while ADIS16375 operates with a 3.3 V supply (blue box).

ADIS16364

ADIS16375

Figure 4-12. ADIS163xx IMU shield's power supply configurations.

4.5.2 Required Software

After all the physical components are gathered, the software components must be installed.
By navigating in the TI's site [59], the latest version of Code Composer Studio (CCS) could be
installed with C2000 software components checked in the corresponding installation pane.
One should also download the latest C2000WARE from the Resource Explorer. Currently, the
project supports version 3.03.00.00, but with few adjustments in the properties menu, the
update process to any future version should be easy.

Secondly, a master has to be installed, not necessarily on the same PC. There are plenty
of choices for Windows and Linux masters. The Legged Robots Team currently maintains two
master setups; one using Twincat 3, a robust and well-proven suite running on Windows with
Visual Studio Core, and another, Linux hard real-time EtherLab Master with ROS
enhancements. Due to the complexity of the high-end, but still in development Linux master,
the use of Beckhoff’'s Twincat 3 is suggested. The interested one may install Twincat 3 in [40].
The EtherLab master may be found, along with build and deployment information, in the
corresponding Bitbucket repository [60].

87/217

4.5.3 Building and Deployment

After completing the initial steps, one can import, build and deploy the IMU application. To
complete the task, several steps must be followed:
1. Navigate to the link in [83] and download imu_adis16364-ecat-slave for ADIS16364

or in [84] to download adis16375_imu_ecat_slave for ADIS16375. In here, the
master's ENI .xml file (under TwinCAT Configuration Files folder), the corresponding
Excel files, and the SSC’s projects (to modify or rebuild the EtherCAT stack) are
included, too.
Open TI's CCS. If it is not already installed, see details on how to do it and how to
import the downloaded project in Appendix E (Section E.1).
Next, a required Target Configuration for the debugger should be set. If such
configuration is not available from prior use, details on how to create one from scratch
may be found in Appendix E (Section E.2).
Modify the custom path variable to the one of the PC used at the time. This variable
makes the C2000Ware libraries visible to the project’s scope. To do this:
a. Right-Click on the project’s entry in the solution explorer's tab and select
Properties like in Figure 3-21.
b. Opt for the Linked Resources tab and modify the variable C2000Ware_LOC to
match the local installation folder of C2000Ware.

Finally, details on how to deploy the firmware to a LaunchXL-F28379D can be found in
Appendix E (Section E.3). At this point, the firmware will be deployed in its default
configuration. If the defaults do not suffice, consult the next sections to understand it
thoroughly and make the required adjustments.

4.6 Firmware Description

The firmware’s main operation can be adumbrated in three ISRs. They are triggered by the
ESC’s DC unit as external hardware interrupts. Inside these ISRs, the user-application is
implemented. The application’s main tasks involve setting up and handling the IMU
communications, requesting sensory readings and pass them to the respective EtherCAT
PDOs to be sent to the master. These matters will be discussed in detail in the sections that

follow.

The CCS project is organized in the following folders:

hal: This folder materializes the EtherCAT hardware abstraction layer (hal).
Specifically, it contains all peripheral drivers and routines for handling the PDI's
communications.

SPI_EtherCAT Slave Stack: In here, the generic EtherCAT stack’s files can be found.
They materialize the procedures discussed in Chapter 2.

ADIS163xx Library: This folder contains all the IMU related routines. Some of them
handle the SPI communications with the sensory module and others materialize the
user-functionalities discussed in the current section.

cmd: This folder contains the created linker command files that dictate the project’s
memory allocation.

Those said, the firmware’s execution flow is analyzed next. Firstly, the required
initializations of the most significant peripherals and modules will be discussed (highlighted in
yellow, in Figure 4-13). Moreover, the main application and its dependencies will be analyzed

88/217

(highlighted in light-blue), along with other EtherCAT related implementations. Note that both
IMUs operate in a similar manner and their applications have basically the same architecture.
Thus, the discussion that follows applies to both of them. Note that the parts that differ will be
pointed out.

To facilitate the future development and understanding of the firmware, the MISRA
C:2012 coding standard has been adopted [62] (refer to Appendix H, Section H.2). Moreover,
the code complies with the coding style discussed in Appendix G. Note that to this end, the
created Doxygen documentation [83] [84] could help in getting an overall grasp of the firmware
faster.

Laelaps Il ADIS163xx IMU

Firmware (Power-Up)

N\
MCU Initialization

GPIO Setup

Initialize MCU-IMU
SPI Module
InitSpiB()

v

ESC & PDI
Intialization &
Setup

i ___ [FE

Interrupts’
Activation

v

MU
Communciation
Check
IMUCommsCheck()

R T

Activate IMU's
Default
Configuration
ADISConfig()
—

| HW Interrupts (DC MODE)

7

SYNCO ISR

Transfer Master Output
Data to MCU Memory

User Application
APPL_OutputMapping() APPL_Application()

Check & Change MAIN APPLICATION
the IMU's Filtering
Settings

Store the
Readings to the

Calculate Cycle respective
Bypass EtherCAT PDOs
Compensation —‘—‘

s ~ - N
Bypass Redudant ;
IMU Read/Write > g;?:e;hg::s%fs
Cycles

L \)

Figure 4-13. IMU firmware overview.

89/217

4.6.1 Initialization

The firmware’s execution begins at the main() function located in the
ADIS163xx_IMU_ECAT_SLAVE.c file (inside the project’s stack folder). The main() calls the
HW _Init() function (located inside the c28xxhw.c, under stack) that in turn initializes the
Delfino MCU and the ESC. Eventually, the Delfino MCU is initialized by calling the
ESC_initHW(), located inside the etherCAT_slave c¢28x_hal.c (under the hal folder). In this
function, depending on the run-time mode (debug or release), the required memory sections
are copied from FLASH to RAM. Next, the low-level modules of the system are initialized.
Furthermore, the InitGpio() routine is called and configures the TI’s default GPIO muxing
options for every peripheral of the MCU. Next, the PDI layer’s initialization occurs, by
configuring the SPIA module (USE_SPIA symbol, see Section 4.6.8). Moreover, the SPIB
channel is configured to serve the MCU-IMU communications. In the next section, the
configured SPI settings are examined. Finally, the EtherCAT-related external interrupts that
trigger the firmware’s main ISRs are configured.

After the generic, low-level configurations, the interrupts are activated. Next, the
IMUCommsCheck() routine is called. This function performs a communication test with the
connected IMU to ensure its proper operation. The initialization concludes by calling the
ADISConfig() routine that configures the IMU module to a desired setup. These two functions
are located in ADIS163xx_utilities.c, under ADIS163xx Library folder. For further information
refer to Sections 4.6.4.

4.6.2 SPI Protocol Software Setup

The primary task of the firmware is to establish the SPI communication with the corresponding
IMU. From the devices’ datasheets [70] [71], the required SPI setup parameters are exported
in Table 4-6. At this point, the developer should be careful on how each manufacturer defines
the different SPI modes. In the specified table, SPI mode settings are written according to
each distributor’s preference. For the rest of this thesis, the convention of [85] is adopted.

Table 4-6. IMUs’ SPI supported settings.

SPI SETUP LAUNCHXL-F28379D ADIS16364 ADIS16375
ROLE Master Slave Slave
CLOCK [MHz] < 12.5 (Normal Mode) 2 (1 for Burst Read) 15
MODE 2 [POL 1| PHADQ] 3 [POL1 | PHA1l] 3[POL1|PHA1]
MSB MODE N/A First First
TRANSFER MODE 16-bit 16-bit 16-bit

Delfino comes with three built-in SPI channels. Since channel A is preoccupied with the
ESC communications, the SPIB is configured to service the IMUs. For an in-depth analysis of
the SPI and GPIO muxing refer to [76]. Note that the SPI is used in a blocking manner. This
means that the CPU waits for the results of a requested transcation, before advancing to the
next task.

All of the above settings are materialized in the SpiConfig.c file (under ADIS163xx Library
folder), by the InitSpiB() routine. To shorten the development time, C2000 driverlib’s
enhancements are enabled. This library is used as a learning shortcut, but the caveat is in
lower register parametrization capabilities, compared to bitfield coding. In the current project,
driverlib’s capabilities are more than adequate.

90/217

4.6.3 ADIS163xx General Setup

After initializing the SPI communications, both devices (Delfino and IMU) are ready to
communicate and transfer data. To get well-conditioned measurements, ADIS163xx modules
have filtering and dynamic range options to reject noise and get clean readings. The developer
has to decide the range of the IMU readings as well as the averaging preprocessing. Increased
averaging filtering comes at the expense of a lower sampling rate and bandwidth. The above-
described functionality is exploited by setting appropriate values at the prescribed registers,
designated in ADIS163xx datasheets [70] [71]. These filtering options are materialized in the
corresponding routines, stated in the below lists. Also, in the Bitbucket repositories [83] [84],
Matlab files exist that model the frequency response of the aforementioned filters.

ADIS16364 LIBRARY

e TapFIRCtrl(). Sets the averaging filter options. Specifically, if mis the user-input, 2™
samples will be averaged, eventually. It manipulates the 2 lower bits of SENS_AVG
register (refer to [70]).

e DRngFIRCtrl(). Sets the gyroscope’s dynamic range. Lower range translates to
increased sensitivity. It manipulates the appropriate bits of SENS_AVG register (refer
to [70]).

ADIS16375 LIBRARY

e GyroFIRCtrl() / AcclFIRCtrl(). Activates one of the manufacturer’s FIR filters. Special
filtering options are supported, but not implemented in the current routine. It
manipulates the appropriate bits of FILTER_SEL1 and FILTER_SEL2 registers (refer
to [71]).

e ChangeDECRate(). Sets the averaging low-pass filter options. Here, if mis the user
input, m samples will be averaged. It manipulates the appropriate bits of DEC_RATE
register (refer to [71]).

Many other settings can be tuned to activate a variety of supported features; however the
above ones are more than sufficient for Laelaps’ current needs. Note that both IMUs support
detailed frame alignment, at a datasheet specified point of precursion. Last but not least, to
account for the unpleasant MEMs gyroscope bias artifact caused by perpetual linear
accelerations, ADIS163xx modules have an optional compensation feature that may be
enabled. These configurations are activated with the ADISConfig() routine.

4.6.4 ADIS163xx Main Routines and Operation

ADIS16364

After the initial settings, ADIS16364 is ready to transmit the required sensor measurements
as long as it receives the prescribed commands. The general communication scheme is
simple and is completed in two consecutive SPI transfers. The first one transmits the
requested register address, and in the second one, the IMU sends a 16-bit unsigned integer
that corresponds to the contents of the aforementioned address. The second transfer is
optionally triggered by a prescribed data-ready pulse. To get the final signed floating-point
value of the reading, some software processing is required since the raw readings are
configured in two’s complements format. Furthermore, the 16-bit word is scaled by a factor.
The location of each register's MSB differs; commonly, it is either the 14" bit or the 12™" bit
depending on the register. The functions along with their description may be reviewed below.

91/217

o SensorRead(). Implements single register reads (2 SPI transfer cycles). It is the main
function for reading the sensors’ registers.

e BurstRead(). With this function, ADIS16364 outputs multiple readings in consecutive
cycles, with a single command as a trigger (Figure 4-14).

ﬁ-l 1 2 3 4 5 12 [
b))

DIN x 0x3E00 H DON'T CARE)—

DOUT x PREVIOUS H SUPPLY_OUT H XGYRO_OUT H YGYRO_OUT H ZGYRO_OUT }1’(\-(AUX_ADC)—

Figure 4-14. BurstRead’s SPI operation overview.

e RawToReal(). Raw to float conversion of the register readings.

e SensorWrite(). Single register-write routine, mainly used for writing values to
command-registers that change the IMU’s general setup. It is also an auxiliary function,
which is used by others.

o ResetIMU(). Sensor software-reset function.

e TwosComp(). Two’s complements, signed to unsigned conversion of a value.

e [IMUCommsCheck(). Requests the fixed ADIS16364-ID number and checks if the
received value is correct as a simple and indirect SPI communication check.

All of the above routines come as a module and may be used with an #include of the
corresponding header file (ADIS16364.h). There are two versions of ADIS16364 firmware
available, with and without EtherCAT capabilities. By adding EtherCAT capabilities to the
designed drivers, the IMU device may be used as a slave and be integrated directly into the
Laelaps’ network.

ADIS16375

A slightly modified firmware adapted to the requirements of ADIS16375 IMU is developed.
Some routines utilize the two SPI cycles to read the contents of a register, while others serve
general purposes. The difference of the ADIS16375 IMU is that it produces measurements
with greater precision than the former one. So, to read a measurement register in high
precision mode, four SPI cycles are required. Two of them are for transmitting high and low
registers’ addresses and the remaining ones are for receiving the contents of each register.
Admittedly, this procedure may be executed with three SPI cycles by modifying the firmware’s
routines, but the gain of this would be insignificant, and the firmware would become more
complex. Figure 4-15 illustrates the described procedure.

DIN --< 0x1A00 >—< 0x1800 >-< AD%Eﬁgss >--.
DOUT mmmmcm e — e -<z GYRO 0U'I>-é GYRO LOV>---

Figure 4-15. ADIS16375 sensor's high-precision read operation.

An important remark to avoid confusion is that due to the large number of registers that
ADIS16375 disposes of, they are organized into separate register pages. So to modify a

92/217

specific register, its actual page needs to be activated beforehand. Refer to the accompanying
datasheet [71] for further information. The remaining procedures to get the actual floating-
point value of the register are the same with the described in ADIS16364 case (Section 4.6.4).
The developed routines alongside their descriptions may be found in the list below.

e SensorRead(). Implements single sensor reads (4 or 2 SPI transfer cycles-depending
on the precision mode).

o RegRead(). Reads a single 16-bit register.

¢ RawToReal(). Performs raw to float conversion of the register readings.

e RegWrite(). Single register-write routine, mainly used in setting-registers, to change
the IMU’s general setup. It is also an auxiliary function, which is used by other
functions.

o ResetIMU(). Sensor software-reset function.

e TwosComp(). Implements a two’s complements, signed to unsigned conversion of a
value.

o PageCheck(). Executes the register-page check and change functionalities.

e X/YIZ_VelocityReading(). Cumulative linear velocity approximation routine.

o X/YIZ_AngleReading(). Cumulative angle approximation routine.

¢ IMUCommsCheck(). Requests the fixed ADIS16375-ID number and checks if the
received value is correct, as a simple and indirect SPI communication check.

4.6.5 ADIS163xx EtherCAT Application

The main target of the firmware is to integrate the IMUs into the robot’'s EtherCAT network.
With this in mind, two slave stack applications were developed, each tailored to get the most
of the corresponding IMU. The EtherCAT master must be able to request the readings of
specific sensors of the IMUs and receive them. Also, the filtering options must be handled by
the master, too. With this in mind, in the following sections the created EtherCAT applications
are discussed.

ADIS16364 EtherCAT Application

The main aspect of an EtherCAT application is the process data that it handles (see Section
2.2.5). They are distinguished in output and input objects. The former ones are all of the
variables that can be modified by the master and are interpreted as commands or virtual
switches by the slave. The latter represent the data that is provided to the master by the slave.
There is extensive documentation on how to design and build an EtherCAT application’s stack
[35] [86] [87] [88]. The reproduction of such manuals in this thesis would be redundant.
Nevertheless, a short guide could be found in Appendix B for completeness purposes. The
ADIS16364 process data are presented in Table 4-7 and Table 4-8.

Table 4-7. ADIS16364 EtherCAT PDO-Inputs.

Index Sub-Index Data Type Name Comments
0x6000 RECORD READINGS
0x01 REAL XGyro_out X-Axis gyroscope reading
0x02 REAL YGyro_out Y-AXxis gyroscope reading
0x03 REAL ZGyro_out Z-Axis gyroscope reading
0x04 REAL XAccl_out X-AXxis accelerometer reading

93/217

0x05 REAL YAccl_out Y-Axis accelerometer reading

0x06 REAL ZAccl_out Z-Axis accelerometer reading

0x07 REAL XTemp_out X-Axis temperature reading

0x08 REAL YTemp_out Y-Axis temperature reading

0x09 REAL ZTemp_out Z-Axis temperature reading

Table 4-8. ADIS16364 EtherCAT PDO-Outputs.
Index Sub-Index Data Type Name Comments
0x7000 RECORD IMU_CONTROLS
0x01 BOOL XGyro_sw X-Axis gyroscope switch
0x02 BOOL YGyro_sw Y-AXxis gyroscope switch
0x03 BOOL ZGyro_sw Z-Axis gyroscope switch
0x04 BOOL XAccl_sw X-AXxis accelerometer switch
0x05 BOOL YAccl _sw Y-Axis accelerometer switch
0x06 BOOL ZAccl_sw Z-Axis accelerometer switch
0x07 BOOL BurstRead_sw Burst-read switch
0x08 BOOL XTemp_sw X-Axis temperature switch
0x09 BOOL YTemp_sw Y-Axis temperature switch
0x10 BOOL ZTemp_sw Z-Axis temperature switch
Ox11 BOOL Reset_sw Software reset switch
0x12 Pad_5 Alignment padding
0x13 USINT Tap_Citrl Averaging filter tap number
0x14 USINT DRng_Citrl Dynamic range selection
The main application, namely the APPL_Application() routine (in

ADIS16364_IMU_ECAT_SLAVE.c, under stack) is triggered by an external hardware interrupt
by the ESC (DC mode) at the rate of the defined EtherCAT cycle (2.5kHz in Laelaps’ case).
ADIS16364 has 819.2 default sampling rate. So, the aforementioned EtherCAT frequency
results in redundant IMU transactions. To avoid this behavior there are two solutions. In the
first one, the master sets the external interrupts to be triggered at a lower frequency compared
to the default one of the Laelaps’ network. An alternative way that is implemented in the current
application is to calculate the redundant cycles and with the use of a software counter bypass
IMU reads in the redundant triggers.

Briefly, the application sets the filtering and measurement conditioning settings that the
master requests, calculates the cycle bypass count and calls the IMUOpStateMachine() that
implements the bypass mechanism and reads the requested by the master IMU registers. The
described routine follows in the below code snippet.

94/217

95/217

uint32_t CycleTime = sSyncManOutPar.u32Sync@CycleTime;

//

// EtherCAT Loop Frequency in [Hz]

//

float CycleFrequency = 1000000000.0f / (float)CycleTime;

//
// Calculate Frequency Bypass Total Count
//
SamplingCount = (uint16_t)(CycleFrequency
/ (ADIS_SMPL / exp2f(g_ActiveTaps)));

}
//

// EtherCAT non-DC Mode Operation

//
else

{
//

// Reset Frequency Bypass Count

//
SamplingCount = @U;
b

//

// Run IMU Operation State Machine

//

IMUOpStateMachine(SamplingCount);

} // End Of APPL_Application()

ADIS16375 EtherCAT Application

Likewise, the process data, presented in Table 4-9 and Table 4-10, are adapted to ADIS16375

needs.
Table 4-9. ADIS16375 EtherCAT PDO-Inputs.
Index Sub-Index Data Type Name Comments
0x6000 RECORD READINGS

0x01 REAL XGyro_out X-AXxis gyroscope reading
0x02 REAL YGyro_out Y-Axis gyroscope reading
0x03 REAL ZGyro_out Z-Axis gyroscope reading
0x04 REAL XAccl_out X-AXxis accelerometer reading
0x05 REAL YAccl_out Y-Axis accelerometer reading
0x06 REAL ZAccl_out Z-Axis accelerometer reading
0x07 REAL XAngle_out X-Axis delta-angle reading
0x08 REAL YAngle_out Y-Axis delta-angle reading
0x09 REAL ZAngle_out Z-Axis delta-angle reading
0x10 REAL XLinVel_out X-Axis delta-linear velocity reading
Ox11 REAL YLinVel_out Y-Axis delta-linear velocity reading
0x12 REAL ZLinVel_out Z-Axis delta-linear velocity reading
0x13 REAL Temp_out Temperature reading

96/217

Table 4-10. ADIS16375 EtherCAT PDO-Outputs.

Index Sub-Index Data Type Name Comments
0x7000 RECORD IMU_CONTROLS
0x01 BOOL XGyro_sw X-Axis gyroscope switch
0x02 BOOL YGyro_sw Y-AXxis gyroscope switch
0x03 BOOL ZGyro_sw Z-Axis gyroscope switch
0x04 BOOL XAccl_sw X-Axis accelerometer switch
0x05 BOOL YAccl_sw Y-AXxis accelerometer switch
0x06 BOOL ZAccl _sw Z-Axis accelerometer switch
0x07 BOOL XAngle_sw X-Axis delta-angle switch
0x08 BOOL YAngle sw Y-Axis delta-angle switch
0x09 BOOL ZAngle_sw Z-Axis delta-angle switch
0x10 BOOL XLinVel_sw X-Axis delta-linear velocity switch
0x11 BOOL YLinVel_sw Y-Axis delta-linear velocity switch
0x12 BOOL ZLinVel_sw Z-Axis delta-linear velocity switch
0x13 BOOL Temp_sw Temperature switch
0x14 BOOL High_Precision High preCiSi?:OZinsor reading
0x15 BOOL DEBUG_LED Debug LED switch
0x16 BOOL RESET_IMU Software reset switch
0x17 UINT Dec_Rate Set decimation filter rate
0x18 USINT Gyro_FIR_Cirl Gyroscopes lowpass filter control
0x19 USINT Accl_FIR_Ctrl Accelerometers low-pass filter
control

The above-presented process data modules are easily expandable and adaptable to any
application. There are certain rules to follow that are partially described in the Excel file, in
which the app is constructed. The reader should certainly refer to these documents [45] [89]
for an in-depth understanding.

Likewise in the previous case, the same bypass mechanism is implemented and by calling
the IMUOpStateMachine() routine, the firmware reads the sensor registers that the master
has requested.

void APPL_Application(void)
{
//
// Bypass Frequency Count Variable Initialization

//
uintl6_t SamplingCount = @U;

//
// DC Mode Operation Variable

//
const uintl6_t DC_MODE = bDcSyncActive;

97/217

98/217

46.6 EtherCAT PDO routines

Besides the main APPL_Application() routine described above, there are other two that
handle the data transaction between the MCU and the ESC. The routines are listed below:
e APPL_InputMapping(). Performs the transfer of the master’s input variables from the
Delfino’s local memory to the ESC'’s.
e APPL_OutputMapping(). Performs the transfer of the master’s output variables from
the ESC’s memory to Delfino’s.
Lastly, the APPL_GenerateMapping() declares the PDO data sizes and is configured by
measuring how many bytes each PDO tethers.

4.6.7 Interrupt Priorities

In an EtherCAT slave, the ESC triggers the interrupts with external singals (XINT interrupts)
when the former is configured to operate in DC synchronization. Section 2.2.4 points out that
there are three ISRs that handle the major routines of EtherCAT, namely SyncO_lsr(),
Syncl_lIsr() and PDI_lIsr(). These interrupts have the following mapping to the routines
mentioned in the previous section, when the slave operates in DC Synchronization mode:

e SyncO_Isr() > APPL_Application()

e Syncl Isr() 2 APPL_InputMapping()

e PDI_Isr() > APPL_OutputMapping()

In the current section, their functionality is not discussed. They are investigated regarding
their interrupt priorities. According to the configuration provided by the Tl, the aforementioned
ISRs are mapped to XINT5 (INT12.3), XINT4 (INT12.2) and XINT1 (INT1.4), respectively.
According to Table C-1 (Appendix C), their core priorities are 16, 16 and 5, respectively. Since
they are organized in PIE groups, each one has an internal group priority. So the eventual
priorities are listed below:

e SyncO_lIsr() has 16.3 priority
e Syncl_lIsr() has 16.2 priority
e PDI_lIsr() has 5.4 priority

In the current firmware setup, there are no other interrupts running. So, the TI's default

configuration has been adopted.

4.6.8 Managing the Project’s Configurations

There are multiple configurations of the project that are managed with the Predefined symbols
in the Project Properties pane. In the above sections, each time that a configuration was
referenced the corresponding symbols were referenced, too. These symbols can be managed
in project’s properties (Right Click on Project’s Name -> C2000 Compiler -> Predefined
Symbols), while a brief list is given in Table 4-11.

Table 4-11. Firmware's Predefined Symbols List.

Predefined Symbol Name Serves Comments
CPU1 System Choose run-time CPU
DEBUG System Choose debug style of compilation
INTERFACE_SPI EtherCAT Stack Choose SPI as slave’s PDI
_LAUNCHXL_F28379D System LaunchPad firmware configuration
USE_SPIA EtherCAT Stack Choose SPI channel for PDI use

99/217

FLASH System Initialization from FLASH

RAM System One time initialization from RAM
ETHERCAT STACK EtherCAT Stack Enable the prescrlbegl EtherCAT Stack
- code files
CLA_ C/CLA P Linker Create CLA-specific linker sections

4.6.9 Compiler Information

The firmware uses the TI’s default C28x compiler v20.2.4LTS. It is the standard compiler for
the C2000 Delfino microcontrollers. The compiler optimization level is currently left to O (none).
In a future version, a higher level could be applied, but with due care, since it can lead to
heavily erroneous firmware run-time. These options are located inside the Project Properties
pane (Right Click on Project’s Name->Properties).

4.7 Firmware’s Memory Management

To optimize and enlarge the portion of memory that the current application has at its disposal,
TI’'s default linker file was modified. In the current firmware, the same custom linker file is used
as in the leg slaves’ case (Section 3.5.8). Here, the CLA capabilities are not required and
therefore, disabled with a simple definition change in the in the Project’s properties pane (Right
Click on Project’s Name -> Advanced Options -> Command File Preprocessing and define
CLA_P =0 and CLA_C = 0). As for the stack and heap memory sizes (0x800 stack and
0x1000 heap), there are no specific requirements. So, the same sizes with the motion control’s
firmware are used. For more details, refer to Section 3.5.8.

4.8 IMU Validation

The designed IMU EtherCAT slaves should be verified before their final integration on the
robot. This thesis investigates all of the components of the aforementioned slaves. The main
goals of the validation process are:

1. To verify the correct operation of the designed firmware.

2. To test the integration of the IMU slaves in the robot’s EtherCAT network.

3. To make an initial assessment of ADIS163xx general performance.

4.8.1 Experimental Setup

Benchmark tests were designed and executed for both IMUs. Each one was compared to a
ground truth IMU with superior performance, namely the Xsens MTi-200 [90] (Figure 4-16). It
comes as a complete IMU solution that incorporates industry’s leading IMEMs to generate
high quality inertial readings.

Figure 4-16. Xsens MTi-200 IMU.

100/217

For the experiments, the Xsens IMU was mounted below the ADIS163xx, at the position
illustrated in Figure 4-17. To avoid complex frame transformations and other possible error
sources, the experimental setup was kept to the simplest possible. Note that the designed
test-rig’s aim is to validate the correct operation of the whole slave, not just the IMU as a
sensory package. If the primary target was the latter, a more sophisticated structure should
had been designed.

Figure 4-17. ADIS16375 accelerometers’ validation setup.

To validate the gyroscopes, random rotational movements were executed. As it will
become clear in the experiments’ results, the test-rig was rotated by hand in every axis. Near
the end of each experiment, a complex movement was executed to excite the gyroscopes of
every axis simultaneously.

On the other hand, to validate the accelerometers, the created test-rig was mounted on a
linear rail-guide, as Figure 4-17 illustrates. In the accelerometer experiments, the whole
structure was being moved, linearly, back and forth w.r.t. the rail. The particular orientation
(Figure 4-17) allowed the excitation of all accelerometers simultaneously. Note that in
ADIS16364 case, there was no inclination at the Xsens’ z-axis. In other words, the whole test-
rig was placed directly on the rail-guide, without the inclination structure of Figure 4-17. There
were some technical difficulties with TwWinCAT 3 at the time that the inclination structure was
added and the experiments with ADIS16364 were not completed. So, for this IMU, the results
of older experiments are presented. Note that the only difference regarding the experimental
setups of the two ADIS163xx IMUs was the test-rig’s orientation (no inclination).

To synchronize the Xsens’ measurements with the ones of the ADIS163xx, artificial
impacts were created at every experiment. Also, each experiment took few seconds, since the
IMUs have drift during their operation. So, as the time passes their measurements deviate
significantly.

101/217

According to ADIS163xx datasheets [70] [71], the reference frame of each module is
illustrated in Figure 4-18. By consulting the experimental setup (Figure 4-17) and Xsens’
reference frame (Figure 4-16), the required transformations of Table 4-12 become obvious.

Z-AXIS

&) . Z-AXIS

az

X-AXIS
v

9y

PIN 23/

PIN 1/ ORIGIN ALIGNMENT REFERENCE POINT
SEE MSC_CTRLIS].

PIN 23
PIN 1 P

(a) (b)
Figure 4-18. (a) ADIS16364 reference frame. (b) ADIS16375 reference frame.

Table 4-12. Required frame transformations.

Xsens MTi-200 (Ref.) ADIS16364 ADIS16375
X-Axis gyro (+) X-Axis (+) X-Axis (+)
Y-AXis gyro (+) Y-AXxis (-) Y-Axis (-)
Z-Axis gyro (+) Z-Axis (-) Z-Axis (-)

X-Axis accelerometer (+) X-Axis (-) [ax] X-Axis (+) [ax]
Y-Axis accelerometer (+) Y-Axis (+) [ay] Y-Axis (-) [av]
Z-Axis accelerometer (+) Z-Axis (+) [aZ] Z-Axis (-) [aZ]

4.8.2 IMU Specifications

According to the Xsens MTi-200 datasheet [91], the module’s high resolution sampling
frequency is 1 kHz. On the other hand, the sampling rate of ADIS16364 is 819.2 Hz, while the
one of ADIS16375 is 2.46 kHz. Furthermore, several parameters are gathered in Table 4-13
and Table 4-14.

Table 4-13. Gyroscope specifications.

Parameter Unit ADIS16364 ADIS16375 MTi-200
Standard full range [deg/s] 350 350 450
Initial bias error [deg/s] 3 1 0.2
In-run bias stability [deg/h] 0.42 12 10
Bandwidth [-3 dB] [Hz] 330 330 415
Noise density [deg/(s*HzY?)] 0.044 0.02 0.01
g-Sensitivity [deg/(s*q)] 0.05 0.013 0.003
Nonlinearity [%0] 0.1 0.025 0.01

102/217

Table 4-14. Accelerometer specifications

Parameter Unit ADIS16364 ADIS16375 MTi-200
Standard full range [m/s?] 51.485 176.520 (min) 200
Initial bias error [m/s?] 0.078 0.156 0.05
In-run bias stability [¥e] 100 130 15
Bandwidth [-3dB] [Hz] 330 330 375
Noise density [ug/HZY2] 270 60 60
Nonlinearity [%0] 0.1 0.1 0.1

In the experiments, the Xsens’ default filtering configuration is used (vru general), which
is optimized for general purpose applications. The ADIS163xx have both preconfigured by the
manufacturer, fixed filtering stages and filters to be adjusted by the user. In the current case,
the custom filtering options are listed in Table 4-15. This way, the noise of all IMUs remains
at the same levels. Furthermore, by enabling the filters, the firmware commands are tested in
practice.

Table 4-15. Analog Devices ADIS163xx IMUs custom filtering options.

Parameter ADIS16364 ADIS16375
Gyro. dynamic range [deg/s] +300 +300
Decimation rate 2 2
Custom FIR filter bank N/A None

4.8.3 Bandwidth Considerations

The Xsens MTi-200 gyroscopes’ bandwidth is 415 Hz, while the one of its accelerometers’ is
375 Hz. The ADIS163xx modules provide several different options for filtering and
measurement preconditioning. Specifically, in the case of ADIS16364, the user can customize
the last averaging filter stage. On the other hand, in addition to the aforementioned filter,
ADIS16375 offers a customizable stage of discrete FIR filter banks to accomplish the desired
response. Figure 4-19 illustrates the filtering stages of each module.

e |
GYROSCOPE —# >
SENSOR LPF LPF

204Hz 767Hz
o =
ACCELERATION ———»|
SENSOR LPF
330Hz —_—
N=2m
(a) m = SENS_AVG[2:0]
2.46kHz
EWe i & 1 FIR 1 & D
MEMS ||\ —— —>"x(n) Loy ote| FiTER ——>"x(n) | oo
330Hz 4 5 4 BANK D~
GYROSCOPE INTERNAL [} f)
2-POLE: 404Hz, 757Hz | CLOCK 4x SELECTABLE AVERAGE/DECIMATION FILTER
ACCELEROMETER 9.84kHz AVERAGE FIRFILTER BANK D = DEC_RATE[10:0] + 1
1-POLE: 330Hz DECIMATION FILTER_BNK1

FILTER FILTER_BNK2

(b)

Figure 4-19. (a) ADIS16364 sampling stages. (b) ADIS16375 sampling stages.

By modeling the illustrated in Figure 4-19 filters in Matlab with the options provided in
Table 4-15, certain conclusions can be drawn regarding the bandwidth and the phase delay

103/217

of each module. Note that the decimation filter was modeled according to the transfer function
(4-2), with n being the number of the averaged samples at each time instance.

1 z"-1

o= Ty

,withn=2 (4-2)
ADIS16364 IMU

For this module, a soft filtering option was chosen to reduce the noise at the respective Xsens’
levels. The Bode plots of each filtering stage for this custom configuration are illustrated in
Figure 4-20, while the composite response is displayed in Figure 4-21.

Gyroscope's 404Hz FIR Filter's Mag. Gyroscope's 404Hz FIR Filter's Phase

Magnitude [dB]
N4 o
Phase [deg]

o

-20
A0 L L
-3
102 107! 10° 102 107! 10°
Frequency [Hz] Frequency [Hz]
Gyroscope's 757Hz FIR Filter's Mag. Gyroscope's 757Hz FIR Filter's Phase

Magnitude [dB]
=]
o o
Phase [deg]
o

-20 [
-0
1 . I .
102 107! 10° 102 107! 10°
Frequency [Hz] Frequency [Hz]
Accelerometer’s 330Hz FIR Filter's Mag. Accelerometer's 330Hz FIR Filter's Phase

o 0
., -
= @
0 b=
3 & 20
E£-2 &
3 40}
=2
4 .
10 107 10° 102 107 10°
Frequency [Hz] Frequency [Hz]
2 Taps Decimation Filter's Mag. 2 Taps Decimation Filter's Phase
— 0 1 0
g T2
o 0T Response i’ Response
2 0 — — —Nyquist Frequency P -40 — — —Nyquist Frequency
= g g0
2-60 T
= -80
80 & I . .
i 1 10° 102 107! 10°
Frequency [Hz] Frequency [Hz]
Figure 4-20. ADIS16364 filters.
ADIS16364 Gy * C ite Fr R (! =172.36Hz) ADIS16364 A s'C F R (= 169.56Hz)
0 0
20 20
@ @
= =
§ 40 § 40
(= (3
&)
® 8
= -60 = -60
-80 80
102 10" 10° 102 107 10°
Frequency [Hz] Frequency [Hz]
094
0 0
20
50 40
] v B =
E F £ B
@ E 0]
£ 100 8 £ % -
13 -100
150 <120
. ” 140 o i1
102 107! 102 10"
Frequency [Hz] Frequency [Hz]

Figure 4-21. ADIS16364 composite frequency response.

104/217

The results indicate that ADIS16364 gyroscopes’ bandwidth is 172.36 Hz, while the one
of its accelerometers is 169.56 Hz. The total phase delay for the gyroscopes is 1.398 ms and
for the accelerometers 1.093 ms.

ADIS16375 IMU

ADIS16375 module presents better attributes in terms of sampling rate and precision and thus
the impact of the filters in terms of bandwidth is expected to be lower than in ADIS16364 case.
The Bode plots of each filtering stage for the chosen configuration are illustrated in Figure
4-22, while the composite response is displayed in Figure 4-23.

Gyroscope's 404Hz FIR Filter's Mag. Gyroscope's 404Hz FIR Filter's Phase
& 0 _ 0
= =]
© S-20r
A =
2 -5 @
£ §aor
g =
= [
-10
102 107" 100 1072 107 100
Frequency [Hz] Frequency [Hz]
Gyroscope's 757Hz FIR Filter's Mag. Gyroscope's 757Hz FIR Filter's Phase
0
o . 0
el o
o2 8
2- = -20
= o
£ Z
> -4 i -40
= L L L L L L
102 107! 10° 102 107 10°
Frequency [Hz] Frequency [Hz]
Accelerometer's 330Hz FIR Filter's Mag. Accelerometer's 330Hz FIR Filter's Phase
— 0 0
a =
= 5—20
o
2 2 -40
c
5] =
S0t B 260 |
102 107! 10° 1072 107! 10°
Frequency [Hz] Frequency [Hz]
Decimation Filters' Mag. Decimation Filter's Phase
= 0 i 0 i
) = I
=3 2Taps] B 2 Taps |
B 4 Taps Ak 4 Taps |
220 — — —Nyquist Frequency Q 80 — ——Nyquist Frequency |
5 £ i
& o
= |
-40 = - L -100 :
1072 107! 100 102 107 100
Frequency [Hz] Frequency [Hz]
Figure 4-22. ADIS16375 filters.
ADIS16375 Gyr pes’' Composite Freq y Resp (Bandwidth = 279.88Hz) ADIS16375 Accelerometers' Composite Fr Resp (B vidth = 274.7Hz)
0 0
20
-20
2 40]
= 2
E € -60
S o
«© 1)
= -60 =
80
80 -100

| | L
102 10" 10° 102 10" 10°

Frequency [Hz] Frequency [Hz]
0 0
-50 |
-50 |-
=-100 = s
g g z
= 24100 E
>
E -150 g s
a a 160 [s]
-150 |
-200
250 -200
10?2 107! 102 107
Frequency [Hz] Frequency [Hz]

Figure 4-23. ADIS16375 composite frequency response.

105/217

The results indicate that ADIS16375 gyroscopes’ bandwidth is 279.88 Hz, while the one
of its accelerometers is 274.70 Hz. The total phase delay for the gyroscopes is 0.96 ms and
for the accelerometers is 0.838 ms.

Generally, the filtering should be altered and adjusted to any application’s specifications.
In the current case, the goal of the applied filters was to reduce the ADIS163xx noise to the
Xsens MTi-200 levels. Towards this, static experiments were executed to determine each
sensor’s noise levels and biases. The results proved that the applied filters were effective,
since the gyroscope’s standard deviations were close to those of the Xsens'.

On the other hand, in motion control, any phase delays should be avoided and thus no
fiter should be used. The noise reduction and generally the convergence of the
measurements is dealt with state estimation algorithms, like Kalman filters.

4.8.4 Validation Workflow

The target of the designed experiments was to validate two types of sensors, the gyroscopes
and the accelerometers. The former are invariant of the reference frame’s location and require
only the orientation transformation (“***R ;) designated in Table 4-12. On the other hand, to
compare the accelerometers’ measurements, a fairly complex vector transformation should
be executed since linear acceleration during rotation depends on the reference frame’s
position. The main idea here is that the accelerations must be transformed w.r.t. the same
reference frame, since each IMU produces measurements w.r.t. its local frame. Towards this,
the ADIS163xx accelerations w.r.t. its local frame (**a_) are transformed to the
corresponding acceleration values w.rt. to the Xsens' frame (*™a,).Thus, the
aforementioned transformation depends on the fixed distance vector of the two IMUs (***d).

The described procedure is materialized in the equation (4-3). The angular velocity terms
o included in the formula add unwanted variance to the calculation. Also, the requirement of
angular acceleration @ and its subsequent numerical approximation based on noisy
measurements amplifies the noise dramatically. So, this procedure results in very noisy
acceleration measurements that cannot be compared.

Xsens Xsens adis . Xsens adis Xsens adis
Qs = Ragis ™ Qg +o)><(R - d)+0)><(0)><(R - d)) (4-3)

The described procedure should have been unnecessary by the current experimental
setup (Figure 4-17), but the latter turned out to be insufficient in eliminating any rotation during
the accelerometer validation experiments. Thus, their strict validation is left for future work
with better equipment.

On the other hand, the validation of the gyroscopes turned out to be simpler since they
are independent of their reference frame’s position. Random spatial movements were
executed and recorded by the IMUs. After the necessary orientation transformations, the
signals were synchronized manually and compared in a common Matlab plot. To determine if
the results are within the datasheets’ prescribed tolerances, an error analysis was of utmost
importance.

Error Analysis

The idea here is that measurements acquired from each IMU during the experiments are
stochastic quantities given in (4-4). Specifically, they consist of the ideal noise-free part @, a
bias that may be interpreted as Brownian process noise (4-5), and a Gaussian white-noise
part (4-6).

106/217

@ =w+b,; +W,

w,i?

with i = {adis,xsens} (4-4)
ba),i =W,,; ~ (0,53,,) (4-5)
w,; ~ (0, O-(i,i (4-6)

To simplify the analysis, the biases are considered to be constant since their dynamics
relative to each experiment’s duration are slow according to the datasheets. To have a metric
for the validity of the acquired results, the measurements recorded by the Xsens were
subtracted from the ones that were recorded by each ADIS163xx IMU. The resultant error
points (4-7) should have a mean value close to the difference of the IMU biases and standard
deviations according to (4-8). The notations V() and COV (:) represent the variance and
covariance of a stochastic variable, respectively.

Ao = (bw,adis - ba),xsens) + (W W,) = bcos T Wos

o,adis ~ 'Vo,xsens

w, ~(0,0%) 0

62 =V (W W) =V (Ww,adis) +V (Wa),xsens) —2C0OV (Wa),adis W,) St >

@S w,adis ~ VVw,xsens @,Xsens
(4-8)
2

. 2
O-ws - Ja),adis + Ja),xsens

According to the literature [92], the noise of the IMU sensors is a complex matter with
multiple causes and sources. Thankfully, some of them dominate and in the current case, only
two are considered, namely the inherent sensor noise and the g-sensitivity.

The inherent sensor noise represents the random variation in each gyroscope’s output
when the latter is operating in static inertial and environmental conditions. IMU datasheets
typically offer the Rate Noise Density (RND) parameter to describe their gyroscope’s inherent
noise (o,4;) with respect to frequency.

Since gyroscopes measure the angular rate of rotation, their response to linear motion
introduces errors to their measurements. The corresponding datasheets typically describe this
response to linear motion through parameters such as linear acceleration effect on bias or
linear-g. According to the manufacturers, the resultant noise’s standard deviation is given in
(4-9).

c,; = \/(Und,i [f i)2 +o.. ., with i = {adis, xsens} (4-9)

That said, the error points (4-7), namely A@, should lie in the vicinity of b 30,
tolerance, calculated with the above-described method. Outliers are expected since there are
multiple error sources. These deviations are present in every stochastic dataset. They may
represent sampling errors, change of the system’s behavior due to an unspecified cause, or
equipment failure. The interpretation of such phenomena in the current dataset will be
discussed in the concluding part of this section.

4.8.5 ADIS16364 Results

Gyroscopes

The IMU responses are compared in Figure 4-24, while the error plots in Figure 4-25 suggest
that ADIS16364 EtherCAT slave operates according to its design specifications. As expected,

107/217

there are outliers in the dataset, the interpretation of which follows in the concluding remarks.
The motions recorded by the IMUs were executed by hand.

X Gyroscopes' Comparison

200 T T
Xsens MTi-200
. 100 ——ADIS16364
@
>
S o
<
3
-100
-200
Time [s]
Y Gyroscopes' Comparison
200 y\ b * T T
w
>
()
o,
>
3
200 | | | | | | | |
0 2 4 6 8 10 12 14 16 18
Time [s]
Z Gyroscopes' Comparison
100 T T
50
o)
g o0
=
N
3 % Xsens MTi-200
——ADIS16364
-100 —
|

[2 4 6 8 10 12 14 16 18
Time [s]

Figure 4-24. ADIS16364 and Xsens MTi-200 gyroscopes' response.

56 ADIS16364 X-Gyroscope Error

5= ; .
7 ol oo SR AN
2 v
g ! ’ ¥ !
e B G + Outlier Error Paints
10k g - True Error Points
° v 130
15 | | | | | 1 | | |
0 2 4 6 8 10 12 14 16 18
Time [s]
ADIS16364 Y-Gyroscope Error
0 + Qutlier Error Points
- True Eror Paints
5 +30
- I
k=
g o
= 5
@
5=
10 | | | | | | | | J
0 2 4 6 8 10 12 14 16 18
Time [s]
- ADIS16364 Z-Gyroscope Error
+ Outlier Error Points
s = True Error Paints
51 . 30
w H .
g [=y L j T
o H - 1 !
5 5
H
10 | | | 1 | | | | |

0 2 4 6 8 10 12 14 16 18
Time [s]

Figure 4-25. ADIS16364 gyroscopes' error.

Accelerometers

The ADIS16364 tracks the Xsens MTi-200 curves (Figure 4-26), but errors occur. Xsens’
superior performance is obvious, especially on rapid accelerations and impulses, cross-
verifying the specifications of Table 4-14. Note that with different filtering settings and
subsequently different bandwidth, ADIS16364 would be able to capture impulses with higher
accuracy, but the overall noise in its measurements would increase significantly. As expected

108/217

the linear movements that were executed with the rail-guide, resulted in recording the same
patterns by the x-axis and y-axis accelerometers, but each one was subjected to accelerations
of different magnitudes. The z-axis accelerometer was subjected to gravity and three vertical
impulses. The little spikes near the end of the experiment are caused by minor vibrations due
to the linear motion.

X Accelerometers' Comparison

I WO — ; W\MJ\ —

0 2 4 6 8 10 12
Time [s]
Y Accelerometers’ Comparison

E ety m/\/\f | /\

0 2 4 6 8 10 12
Time [s]
Z Accelerometers' Comparison

Xsens MTi-200
——ADIS16364

Es
]
!
x
4

i i

T v " Ll
- [il

6 8 10 12
Time [s]

Figure 4-26. ADIS16375 and Xsens MTi-200 accelerometers' response.

4.8.6 ADIS16375 Results

Gyroscopes

Likewise, the gyroscope responses are compared in Figure 4-27, while the error plot of Figure
4-28 suggests that ADIS16375 has superior performance in comparison with ADIS16364.
Note that in the case of ADIS16375 almost none of the error points violate the 3-sigma rule
and at the same time these limits are significantly lower than the ones of ADIS16364.

X Gyroscopes' Cam parison

200 :

AWW\’M'/J\\% M/L \/\ /M\M f‘“\wMMW

-200 ‘ ‘
0 2 4 B 10 12 14
Time [s]

100

[deg’s]
o

-100

Y Gyroscopes' Comparison

[——Xsens MTH200]|
——ADIS 18375
50—
n W \‘W‘WMW/\/\W
-50 -

Time [s]
Z Gyroscopes' Camparlson

my [degfs]

100

Xsens MTH-200|
——ADIS16375

 — Tt /\W Jb WS e

0 5 15
Time [s]

mz [deg/s]

-100

Figure 4-27. ADIS16375 and Xsens MTi-200 gyroscopes' response.

109/217

ADIS16375 X-Gyroscope Error

= True Error Points
e * Qutlier Error Points
30

A

e, [deg/s]

Time [s]
ADIS16375 Y-Gyroscope Error

* True Error Points
* OQutlier Error Points
+30

e [degfs]

y

0 5 10 15
Time [s]
3 ADIS16375 Z-Gyroscope Error
= True Error Points
* Qutlier Error Points
— 2 30
) . v
(=2
[}
=
N
o
2=
4 | 1 |
0 5 10 15

Time [s]
Figure 4-28. ADIS16375 and Xsens MTi-200 gyroscopes' error.

Accelerometers

The ADIS16375 accelerometers present good performance since the curves in Figure 4-29
track the Xsens’ readings with fair accuracy. Nevertheless, due to the ignored contributions of
the minor angular motions, the error analysis could not be applied. As expected the linear
movements that were executed with the rail-guide, resulted in recording the same patterns by
all of the accelerometers, but each axis was subjected to accelerations of different
magnitudes.

X Accelerometers' Comparison

2, T | T
Xsens MTi-200
——ADIS16375
& 10 -
»
E
x
© o -
10 | | | | | |
5 10 15 20 25 30 35
Time [s]
15 Y Accelerometers’ Comparison
T T I T
Xsens MTi-200
10— pr= ——ADIS16375
&
)
E
> 0 ~ o
® S T,
5
10 | L | | | |
0 5 10 15 20 25 30 35
Time [s]
S Z Accelerometers' Comparison
T I I
Xsens MTi-200
——ADIS16375
<
»
E
N
L

Time [s]

Figure 4-29. ADIS16375 and Xsens MTi-200 accelerometers' response.

110/217

4.8.7 Validation Conclusions and Discussion

The designed experiments indicate that both ADIS163xx IMU slaves operate as expected.
The acquired measurements are valid since their error is within the prescribed tolerances. The
integration of the IMU slaves in the Laelaps Il network has been proven to be flawless since it
did not require any adjustments in the existing network. In all experiments, outliers are present.
These behaviors are expected since:

e There is a bandwidth difference between each ADIS163xx IMU and the Xsens.
Therefore, high-frequency harmonics and other impulses are captured with larger
magnitudes by the Xsens (Sensitivity Errors).

e The applied filters, establish some time-lags in the IMUs’ response since certain phase
delays are introduced.

e The IMUs taking part in the experiment are not aligned accurately, thus certain
misalignment errors downgrade the experiments’ quality.

Apparently, ADIS16375 presents a superior performance in terms of accuracy and

bandwidth. Nevertheless, both IMUs are considered ready to be integrated into the Laelaps Il
EtherCAT network.

111/217

5 Laelaps Il Experiments

This chapter describes a typical experiment’s procedure and guarantees the proper setup of
the robot. It comes as a step-by-step guide that incorporates all of the required actions that
ensure the safety not only for the system itself, but most importantly, for its users. An effort
was made to account for most, if not all, of the possible situations that a user may confront
during an experiment. However, this does not imply that all of the required knowledge
regarding the proper operation of the robot is encapsulated solely into this chapter. The reader
is advised to read the previous chapters, thoroughly, before advancing to the current one.

5.1 Typical Experiment’s Procedure

Laelaps Il is a complex machine and its operation is not straight forward. Thus, the typical
experiment’s proposed workflow for Laelaps Il is presented below. The user is encouraged to
deviate from the suggested steps if circumstances dictate it.

Hardware Checks

1. Check the integrity of the main power supply channels and set the voltages to
appropriate values. For the low power line, a typical value is 9 V, while for the high
power the default is 48 V (which is the motors’ nominal voltage [46] [93]).

2. Ensure that the absolute encoder assemblies, along with their electrical wirings are
properly mounted and connected. Details may be found in the corresponding section
of this thesis (Section 3.3). Special attention should be given to the JST-XH cables not
to incur any loads, otherwise, the danger to be cut off is lurking.

EtherCAT Network Checks

3. Verify that the EtherCAT nodes are connected via their respective Ethernet cables,
according to the prescribed topology that is set in TwinCAT’s project. The default
configuration is the following:

a. Hind Right Leg’s EtherCAT Slave (HR_LEG).

Hind Left Leg’s EtherCAT Slave (HL LEG).

Fore Left Leg’s EtherCAT Slave (FL_LEG).

Fore Right Leg’s EtherCAT Slave (FR_LEG).

Analog Devices ADIS16364 IMU’s EtherCAT Slave (ADIS16364 [IMU).

f. Analog Devices ADIS16375 IMU’s EtherCAT Slave (ADIS16375_IMU).

The slaves listed in the TwinCAT’s solution explorer must have the same order in the
physical network. So, the master PC is connected to HR_LEG’s input port (Figure 3-19), while
its output port is connected to the HL_LEG's input port and so on. In other words the list in
TwinCAT’s solution explorer represents the actual EtherCAT network. So, any changes in the
slave order of the physical network must be made to its virtual counterpart, in TwinCAT’s
solution explorer, too.

4. Verify that Delfino’s power supply configuration is set to external for both of its
channels. To do this, consult Section C.8. Furthermore, turn on the low power supply
of the robot and activate each slave’s regulator by pressing the onboard buttons. To
cross-reference that all of the slaves are properly powered, the Delfinos’ and motor
drives’ LEDs should start flashing as soon as the nodes are turned on.

®oo o

112/217

5. Download the correct firmware for each slave. Open TI's Code Composer Studio and
locate the corresponding firmware in the Project Explorer’s pane. If from a past setup,
the firmware has already been downloaded to the respective nodes, this step may be
skipped. In any other case, itis required for the desired projects to be properly imported
and configured inside the IDE. Towards this, it is of utmost importance to refer and
execute the steps described in Sections 3.4 and 4.5 for the legs and IMUs,
respectively. If the absolute encoder checks are necessary before the experiment,
enable ABS_DEBUG Predefined Symbol. If the absolute encoders are not going to be
used, both END_STOP and AUTO_STARTUP Predefined symbols must be disabled.

TwinCAT Project Setup

6. This step setups the TwinCAT 3 project. To do this, an extensive guide has been
created in Appendix A. If the TwWinCAT 3 project has already been created, feel free to
skip this step. Also, if not all the slaves are used, remove the redundant PLC variables
to reduce the size of the experiment’s log file. Note that if an experiment does not
require all of the slaves, the latter ones should be disabled in TwinCAT 3 (Right-Click
on the slave at the solution explorer’s pane and opt for Disable) and subsequently be
removed from the physical bus. This only applies to the last slaves on the bus. No
intermediate slaves in the chain can be removed with this procedure.

7. Next, write the ESC’'s EEPROM memory. Again, if from a prior use the slaves’
EEPROMSs are properly configured, this step may be ignored. Also, this procedure
makes sense if the application’s PDOs have been modified. In other words, the
execution of step 5, does not necessarily require the current step’s actions.
Nevertheless, to write the EEPROM of a single slave using TwinCAT 3:

a. Left-Click on the master entry, inside the solution explorer's menu.
b. Navigate to its Online tab.
c. Right-Click on the desired slave and choose the EEPROM Update... option.
d. Lastly, opt for the corresponding slave’s ENI file, located inside the drop-down
list.
The described procedure is displayed in Figure 5-1. As for a more informative guide,
please refer to the respective VPRS TwinCAT Tutorial video [94].

General Adapter EtherCAT Online ' CoE - Online

No Addr Name State CRC
it 1001 Box 1 (EtherCAT Laelaps Motion Request INIT state

Request ‘PREOP" state

Request 'SAFEOP state ’ H I
o IMUs’ ENI Files
Request 'BOOTSTRAP' state
o Wite EEPROM X
EEPROM Update... Avsiable EEPROM Descriptions: [Show HiddgDevices :
Firmware Update... ¥ §5 Beckhoff Automation GmbH & Co. KG
£ t ® CSLEPNTUA Eorcdl
A Advanded Settings... t mn
Actual State: [INT___ | | Counter = TI- ADIS16364_IMU_ECAT_SLAVE(SPI) (268439810 1)
| [Peon] [5ae send R Export List.. TI ADIS16375_IMU_ECAT_SLAVE(SPI) (268439810 /1)
= S By 3 5 TI EtheiCAT Laelaps Motion Contol vé (SP1) (111101417 4)
Clear CRC Clear Frames redond i TH EtheiCAT Laelaps Motion Coniol CONSTVEL v4 (SP1) (11110141 /4) o
Lost Frames 0 10 TI Laelaps FID (268433810/1) R
Tw/Rx Erors 0 /0 T1 Laclaps_ID_Slave_SPI (268439810 /1) =
- @ Infineon Slaves Segg

Default Legs’ EN

Figure 5-1. EEPROM update option.

113/217

Note that after the necessary slaves’ EEPROM updates, the TwinCAT node should be
refreshed as suggested in the previously mentioned video. If this procedure is performed
inside the main Laelaps Il motion control TwinCAT project, all PLC variables are going to lose
their connections and a tedious process like the one illustrated in Appendix A (step 17) ought
to be repeated. Another remark is whether the desired ENI is located in the aforesaid drop-
down list. If not, follow steps 6 and 7 of the Appendix A.

8. Next, the EtherCAT cycle should be checked. The cycle time comes as an integer
multiple of the TwinCAT’s base cycle-time. In the current case, this cycle must be
configured to the minimum possible value (50 ps). This setting may be configured at
the Real-Time tab as Figure 5-2a suggests. The default cycle’s period is 400us (2.5
kHz), while the corresponding TwinCAT setting is located at the solution explorer’s tab,
under SYSTEM -> Real-Time -> PLC Task (Figure 5-2b). At last, hit the Reload
Devices button located in the main ribbon, illustrated in Figure 5-3.

Settings Online Priodies C++ Debugger Task Online Parameter (Online) Add Symbols
Router Memory Giobal Task Corfig SO :
Corfigured Size [MB] 2 % Maximal Stack Sze [KB] | 64KB v Name, PeT=< N Port 350
Mlocated / Avaiable 273 Auto start Object Id: | x02010030
[J Auto Priority Management Options -
Avaiable cores (Shared/soltedy. [1121[0 2 Readfom Tamet | Setontarget Priorty 20 < [Disable
Core RT-Core BaseTime | CoreLimit ICyde icks: |8 |0400 msl [Creste symbols
0 |V Defautt 50 ps v|%0% R —
o Start tick (modulo) 0
;,;g’us [J Separate input update
3 0
250
f?ﬂ :: [[] Waming by exceeding
100 s Messnos b
§Zg :z . - Floating point exceptions
;; 4 b Waichidog Cycles L& [[] Watchdog stack
Object | RT-Core [62.5 us | Base Time (ms)
1/0 Idle Task | Defautt (=lsous Comment
PicTask | Defautt (0) =ls0us
PlcAuxTask | Defautt © =ls0us
@) (b)

Figure 5-2. (a) Base cycle time setting. (b) PLC Task's cycle time setting.

Activate Configuration Reload Devices

Do File Edit View Project Build Debug Test alyze Tools Extensions Window Help Search (Ctrl+
E B-a-a [t <@+ | Release ~ TwinCAT RT (x64) - b Attach... ~
% Build 4024.10 (Loaded) ~ ;/ﬂ !1‘., @.(‘{% XMC_Project + <Local> =
Restart TwinCAT system Toggle Free-Run State

(Run Mode) g start TwincaT system
(Config Mode)

Figure 5-3. TwinCAT main ribbon.

9. A good practice is to verify the configured cycle-times after the refresh. To do this,
navigate to each slave’s object in the solution explorer’s pane and choose the DC tab.
Moreover, opt for DC-Synchron mode as the Operation Mode and left-click on
Advanced Settings. The default settings for every slave on Laelaps’ bus are presented
in Table 5-1, while the whole step’s procedure is illustrated in Figure 5-4.

114/217

Table 5-1. DC-Mode TwinCAT slave settings.

DC Parameter Default Value [us]
Sync 0 cycle 400
Sync 0 shift time 0 (Auto)
Sync 1 cycle 400 (x1 SyncO cycle time)
Sync 1 shift time 30
oc Process Data Plc Statup CoE -Online Online
B 5 Advance: d Setting: X
e e M i Distributed Clock
Cyclic Mode
Operation Mode DC-Synchron <
PAnable Sync Unt Cycle (o) [400
SYNCO
Cycle Time () Shit Time (us)
@SmncUntCyde [x1 v User Defined 0
O User Defined + SYNCO Cycle
[Based on Input Reference
SYNC1
O Sync Unit Cycle Cycle Time (1) 400
:",m ‘T;:e ?;e ;::d" ::L @ SYNCOCyce x1 | |snét Tme o) 30
[0 INT 20 820 Inj Enable SYNC 1
4 WK 2 0 [7] Use as potential Reference Clock
0 INT 20 880 Inp
0 INT 20 90.0 Iny
0 :NT 20 920 In: o] [o

Figure 5-4. Verify the slave's DC TwinCAT settings.

10. Activate TwinCAT’s Run Mode. To do this, left-click on Activate Configuration Button
(Figure 5-3). This builds the solution and restarts TwinCAT in Run Mode configuration.
If a warning about run-time licenses appears, just copy the displayed code to the
designated text-box. By the time the procedure finishes, all the slaves in the Online
Tab of the Master should be in OP mode. If any errors arise in any of the slaves, press
the Delfino's reset button and repeat this step.

11. Login and Start the PLC Task, by clicking on the buttons highlighted in Figure 5-5.

Login Start
TWINSAFE PLC TOOLS scop&\ wwoo(HELP

= | Untitled1 v

Figure 5-5. Login and Start PLC Task's buttons.

Leg Encoder Checks

12. Check the encoders. Start a draft SCOPE recording, by clicking on Record illustrated
in Figure 5-6.

Lp Record gtop Record

Scope YT Project & X

Figure 5-6. Record and Stop Record buttons.

13. Move the legs manually and verify that the corresponding graphs display the expected
feedback. With this in mind, the incremental encoders’ positive directions are clockwise

115/217

14.

with respect to the lateral view that points to Laelaps body, for both leg configurations.
This corresponds to the right legs executing a backward swing and the left ones
performing a forward one.

Check and reset the absolute encoders, if necessary. This step may be skipped if a
reset has already been performed in a prior setup. Nevertheless, resetting the
encoders requires the manual positioning of each leg to the intended zero-angle
configuration. Then, a voltage pulse (3.3 V to 5 V) should be momentarily applied to
the corresponding reset pins (JZ1 for the knee’s encoder and JZ2 for the hip’s) of the
Delfino's shield (Figure 5-7).

Hip Absolute

Encoder’s ZERO
(Reset) Pin

Knee Absolute
“~ Encoder’s ZERO
(Reset) Pin

Hip’s Absolute Knee’s Absolute
Encoder Terminal Encoder Terminal

Figure 5-7. Absolute encoders' reset pins.

15.

16.

17.

18.

A very important test, especially during the first-run after a modification, is to observe
the absolute encoders’ SCOPE charts and ensure that they are correctly configured.
To display them, an indirect way is used. By enabling the ABS_DEBUG symbol during
the firmware download step, the EtherCAT velocity variables (Table 3-3) are in fact the
absolute encoder readings. Knees’ velocity graphs correspond to their absolute
encoders and the same goes for hips. The absolute encoders are configured in
software to have the same positive direction (clockwise) as the incremental ones. Also,
by resetting each slave and compare the aforementioned plots, it should be clear if the
initialization has been successful.

After the encoders’ hardware reset, press all of the Delfinos’ reset buttons to refresh
each slave. Now, all of the incremental encoders’ charts should display the correct
angle.

If end-stop routines are enabled, by swinging the leg back and forth, their impact in the
PWM charts may be observed. To display the control efforts, enable State Machine.
After the checks are completed, disable it again.

Now that all of the checks are completed, it is time to get on the main experiment. At
this point, if the ABS_DEBUG symbol was activated for the checks, the respective
Delfinos need firmware refresh with this symbol removed from the CCS’ Project
Properties -> Predefined Symbols tab.

116/217

19.

A good practice is to run the experiment without high power before the actual one. This
way, by viewing the TwinCAT charts the planner and the control efforts can be verified.
To do this, execute steps 20 to 35 without activating the high power supply. Remember
to disable State Machine and reset all the output PDOs before progressing to the
actual experiment.

Main Experiment

Given that the slaves are all in OP Mode and PLC Task’s Login and Start buttons have
been pressed, it is time to stop the remaining data recordings and start new ones, by
clicking on the buttons highlighted in Figure 5-6. This step along with the next ones are
more intuitively demonstrated by the corresponding TwinCAT 3 tutorial video [94].
Open the outputs of the PLC task, shown in Figure 5-8. From here, the entire system
can be controlled.

20.

21.

Solution Explorer Laelaps_EtherCAT Network + X _
& -5 | - Name [X] Online Type Size >Addr...
Search Solution Explorer (Ctrl+:) P~ - MAIN.Control_State_Machine BOOL 1.0 385000.0
[3] Solution 'Laelaps_EtherCAT_Network' (2 of 2 projects) & MAIN.Control_Blue_LEDs BOOL 10 385001.0
4 [l Laclaps_EtherCAT. Network - MAIN.Control_Red_LEDs BOOL 1.0 385002.0
b @l SYSTEM - MAIN,Transition_Time SINT 10 3850030
& MoTION & MAIN.a_ellipse100 INT 20 385004.0
4 PLC - MAIN.b_ellipse100 INT 20 385006.0
4 Laelaps_PLC_Task B MAIN.x_traj_Fore1000 INT 20 385008.0
b ;,—g Laelaps_PLC_Task Project [~ MAIN.y_traj_Fore1000 INT 20 385010.0
4 Of} Laelaps_PLC_Task Instance B MAIN.x_traj_Hind1000 INT 20 385012.0
b PlcTask Inputs - MAIN.y_traj_Hind1000 INT 20 385014.0
4 [PicTask Outputs BE» MAIN. Traj_TF100 INT 20 385016.0
&+ MAIN.Control_State_Machine B MAIN. Traj_Ts100 INT 20 385018.0
& MAIN.Control_Blue LEDs I MAIN.FilterBandwidth UINT 20 385020.0
B~ MAIN.Control_Red_LEDs - MAIN.Kp100 INT 20 385022.0
IEMAIN Tonstion: lime - MAIN.Kd 1000 INT 20 3850240
e AIn. 3 lhp=e 00 B~ MAIN Reset_IMUs BOOL 10 385026.0
BE» MAIN.b_ellipse100
- MAIN.x_traj_Fore1000
B MAIN.y_traj_Fore1000
B MAINx_traj_Hind1000
B MAIN.y_traj_Hind1000
E- MAIN.Traj_TF100
- MAIN.Traj_Ts100
- MAIN.FilterBandwidth
- MAIN.Kp100
E- MAIN.Kd1000
K- MAIN.Reset_IMUs

Figure 5-8. PLC Task's Outputs tab.

22.
23.

24,

25.

26.

27.

28.
29.

First, define the Transition Time smoothing factor, the default value of which is 2 [s].
Next, define the center coordinates of the ellipse (fore and hind x-y coordinates). The
tested range for x values is 0 to 15 [mm], while for the y values is 585 to 598 [mm].
Moreover, the phase for each leg should be set accordingly. This cannot be executed
inside the PLC Outputs tab, but rather under each slave’s object at the TwinCAT 3
solution explorer’s pane. According to what gait mode is intended, the phases should
be set accordingly. The time phase comes as a percentage of the total step’s period.
For trotting set it to 50 [%] at either set of diagonal legs.

If the IMUs are used, activate the desired readings and set filtering options to the
corresponding IMU node object, inside the solution explorer’s pane.

Set Stance and Flight phase periods [100*s]. For example, to execute a step every
second, set both values to 50.

Set the Filter Bandwidth at the default value of 20 [Hz], but only if the velocity gain is
necessary.

Next, turn on the high-power supply. No motion is expected yet.

Switch the State Machine to HIGH state. No motion is expected yet.

117/217

30. Now with extra care, start increasing the Proportional Gain slowly. The legs should
be observed to move to their designated zero-angle positions. The tested gain-values
are up to 9000.

31. To damp any oscillations and impulses that the proportional gain results in, add
Velocity Gain. However, it is highly sensitive to noise and should be set no higher
than 50.

32. Laelaps Il is ready to walk. Increase the vertical axis (b) of the ellipse to start a static
gait. Common values are up to 5 [cm] for a stance height of 595 [mm].

33. To move Laelaps, increase the ellipse’s horizontal axis (a). A common range is O to
7 [cm] for a stance height of 595 [mm].

In an emergency, shut down the power supply and/or the State Machine. There is also
the LAELAPS_ HALT EtherCAT switch that makes the quadruped standstill.

34. To end the experiment:

a. Gradually decrease and make the a of the ellipse zero.

b. Gradually decrease and make the b of the ellipse zero.

c. Now that the quadruped is standing still, secure its body and make the State
Machine zero.

d. Turn-off the readings of the IMUs, if used.

e. Shut down the power supplies.

35. Stop the recordings and save the results by exporting them to the desired format. To
do this, navigate to the Export to CSV option under the SCOPE menu (Figure 5-9).

ARCHITECTURE | SCOPE | ANALYZE WINDOW HELP
lease «| |Twi| & Target Browser

-‘ H= Cursor Window

_ FL Trigger Window

Apply Defaults

)00 I Pos: 00:00:00 — Send Project By E-Mail...

T‘ <2 Clear Error List

— Change Ads Symbol...
Change Index Group...

L] New Empty Channel

[l Copy Ctrl+C
X Delete Del

Figure 5-9. TwinCAT Export to CSV option.

118/217

6 Parameter Identification of Laelaps Leg

In the coming years, quadrupeds may be called to perform in a variety of different unstructured
environments. The mobility advantage that they present makes them ideal for a wide range of
applications in the oil industry [95], agriculture, etc. To address these issues, engineers seek
to design efficient systems capable of adapting to different conditions. A major prerequisite in
tuning their performance is to have an accurate model representation. In most cases, the
CAD-based approximations are insufficient, since they provide rough estimations about the
inertial parameters and none about the friction characteristics of the real system. Therefore,
parameter identification has been a major subject of research throughout the years.

The objective of this chapter is to design methods for estimation of the parameter of
Laelaps’ legs. By knowing Laelaps’ actual model, its governing dynamics could be studied
and exploited. Also, the simulations would give more realistic results and help improve its
performance. The proposed framework creates an appropriate trajectory that excites the leg’s
dynamics, and subsequently estimates its parameters after executing the trajectory.

This chapter consists of three major sections; friction identification, experimental inertial
parameter identification, and the whole-leg identification framework. At the beginning of each
section, a certain amount of theory is presented for the reader to gain a better insight into the
discussed concepts. Moreover, the main part of each idea is discussed along with some
concerns to become fully functional in the current robot’s setup. Furthermore, the results of a
simulation in Matlab are presented, thoroughly. In the end, concluding remarks and verification
are considered.

6.1 Theory and Equipment

Towards the leg model identification, the first part of the study is focused on the estimation of
the joint’s internal friction characteristics. To verify the methods and equipment that are used
in this study, several benchmark tests were designed.

Initially, only the motors are considered and specifically the knees’ DC motors. According
to Maxon’s standard specification sheets [96], winding resistance cannot be measured
accurately, due to its dependence on the rotor’s position. On the other hand, the motor’s speed
constant may be verified with a simple sampling scheme. According to the datasheet [93],
Maxon’s RE50 200 Watt motor (Part num. 578298) has the following specifications (Table
6-1).

Table 6-1. Maxon motor's datasheet values.

R, [€] 0.608
K, [rad/(s-V)] 10.6814
K; [N-m/A] 0.0934

Note that Maxon is using the reciprocal of the commonly used voltage constant K\’; , as
equation (6-1) suggests. Beware that Maxon’s convention is adopted throughout this thesis.

(6-1)

119/217

Brushed DC Motors come with a simple model that may be viewed in Figure 6-1. The
parameters discussed above are given by the equations (6-2) and (6-3) below, as far as the
steady-state operation is considered.

- L.]
Rﬂ}—a.mm,.
1 V Ra V =
V

v

(T 55
Figure 6-1. Generic DC brushed motor model.
T 1
K, =-m=— (6-2)
Ia KV
o,
K, =—2— (6-3)
Vin - IaRa

The used sampling equipment is chosen based on low-noise and accuracy criteria. For
voltage measurements, Agilent’'s MSOX3074A oscilloscope was connected at the motor’s
terminals. To determine the current consumption FLUKE’s 289 True RMS multimeter was
used, with bias compensation. The equipment’s attributes are listed in Table 6-2.

Table 6-2. Sampling equipment's parameters.

Range Resolution Accuracy
FLUKE 289 400 mA 0.01 mA 0.15%
Agilent MSOX3014A 135V (RMS) Adjustable N/A

The sampling was executed at a constant velocity, to eliminate the various inertial effects
and transients that accelerations come with. For the speed estimation, a HEDL incremental
guadrature encoder [97] was employed, connected to a Delfino LaunchPad (LaunchXL-
F28379D). The major nonlinearities in the friction model are expected in the vicinity of
kinematic friction, especially right after the break-away torque of the static friction. Hence, a
low-speed calculation (6-4) was implemented in firmware, with X being the angle-step, while
t, and t, the timestamps.

X
=
tz _ti
This means that the drift between the actual and approximated speed is expected to
increase at higher velocities. Therefore, a deviation in K,, motor’s constant is expected at the
aforementioned speeds. Nevertheless, the speed estimation is sufficient for cross-verifying

the motor’s datasheet. The goal here is to test the performance and validity of the experimental
equipment with a simple benchmark procedure.

(6-4)

120/217

6.1 Actuator’s Speed Constant Determination

Towards the experimental validation of the motor’s speed constant and subsequently its
torque constant, multiple measurements were taken and averaged. This way, a valid
conclusion about the performance of the proposed sampling method could be drawn.

Generally, the speed constant is calculated at the motor's rated voltage and the
corresponding no-load speed, provided by the accompanying datasheet. The equations (6-2)
and (6-3) are applicable for any voltage that the ideal DC motor operates (Figure 6-1).
However, the real motor’s operation implies certain electromechanical and magnetic losses.
According to Maxon [98], the motor’s speed constant is not affected significantly by these
losses, so the equation (6-5) is in effect.

WOy KV (Vln _iaRa) (6-5)

To verify that claim, as previously mentioned, a sampling was conducted for several
voltage levels. The results of the discussed method are presented in Table 6-3. Note that the
calculated relative error is w.r.t. the Maxon’s speed constant, listed in Table 6-1. The
approximated K, constant is calculated with equation (6-3), using the manufacturer’s
resistance R, of Table 6-1.

Table 6-3. Speed constant experimental results.

o, [rad/s] V, [V] I [A] Approx. K, [rad/(s-V)] Relative Error [%]
110.945404 10.533 0.0781 10.6221246 0.555
211.772919 19.911 0.1080 10.70156891 0.189
270.919373 25.429 0.1146 10.7084864 0.253
344.794922 31.922 0.1256 10.84940657 1.573

Kv [rad/(s-V)] 10.72039662 0.365

The main cause of the deviations presented in Table 6-3 are the various magnetic and
frictional losses that the motor’s operation comes with. Moreover, as the speed increases the
velocity measurement quality degrades, partially due to the low-speed calculation that is
implemented. This is depicted in the increased error that the approximated motor's speed
constant comes with, at high velocities. Moreover, the increased error of the first result may
be caused, partially, by the noise of the current measurements, since the Noise-to-Signal
(SNR) ratio becomes significant in low magnitudes as well as by the contribution of the
gearbox’s friction. Still, the deviation is fairly low and as such, the experiments indeed
approach the values of the datasheet [93].

6.2 Leg’s Friction Parameters Identification

Initially, only the motor with its gearbox are considered, since details about the friction of each
component in the drivetrain are sought out. To have the whole joint’s friction model, the belt
drive should be included in a future experiment.

121/217

6.2.1 Motor-Gearbox Friction Identification

To measure the response and come with a valid model, a vast amount of constant velocity
experiments were executed (Figure 6-3). The sampling points were carefully chosen to be in
the vicinities that the most “exotic” behaviors are expected. Such phenomena arise at the

boundary of the breakaway torque. In Figure 6-2, several different friction models are
presented.

F F4

&
-

<)

] A

Figure 6-2. Different friction regimes.

Moreover, the sampling accounts only for the positive direction of the motor, neglecting
any deviations in the reverse direction. This choice was made to simplify the overall process,
since tests indicated that the difference was insignificant. However, if a more accurate model
is necessary, the procedure described in this section should be performed separately for each
direction of the motor, since friction in general is not symmetric w.r.t. the zero angular velocity.

i Torque vs. Angular Velocity Graph

12 i -

—
o
T
I

(0]
T
I

Torque [mMNm]
:

O | | | |
0 2 4 6 8 10

Angular Velocity [rad/s]

Figure 6-3. Sampled data.

122/217

For a wide rangle of voltages, the motor's current consumption and encoder’s speed
approximation were being recorded. Then by solving the equation (6-2) for T , the motor’s
torque has been obtained. Finally, the sampled angular velocities were translated at the high-
torque side of the gearbox, using the gearbox’s reduction ratio [47] (Part No. 223090).

From a simple observation of the dataset shown in Figure 6-3, certain assumptions can
be drawn.

e A static friction component may be observed in the zero-speed vicinity.

¢ At medium to high speeds, the friction is nonlinear with respect to the angular velocity.

e There is no clear evidence of nonlinear Stribeck behavior directly after the breakaway

torque barrier.

From the above-discussed observations, three models were promoted to be tested on
how accurate representations of the above dataset might be. The first is linear and accounts
only for the static and linear viscous friction components. A simple linear least-squares
scheme was employed to determine its coefficients. The other two are nonlinear models that
include terms to account for the aforementioned nonlinear behaviors. To solve these
problems, an iterative solver was used. Note that the source files of the friction identification
procedure are located in [99].

CASE I: Linear Friction Model

In this case, a simple friction model is created with a linear least-squares regression scheme.
It is ideal for a model-based control design in terms of execution time, while at the same time
it presents a good Razdj index that will be discussed in Models Comparison section. The
formula is given below (6-6), along with the graph of Figure 6-4 for a visual interpretation of
the result. In the mentioned equation g, represents the angle, i.; the input current, and f,

the unknown regression coefficients of an arbitrary sample (i).

r = fq + fZSign(qi)

f
Y. =T, .th Y =|q i) , = !
m=1,with Y, =[q sign(d)] .= L

2

}, with f, >0, k={1,2} & (6-6)

7; =K, -i,; with i e N the sample number

The velocity term is scaled with respect to the high-torque side of the gearbox. The results
are presented in Table 6-4.

Table 6-4. Linear model's coefficients.

Term Value
f, [Nm-(rad/s) "] 8.9131e-04
f, [Nm] 0.0047

123/217

Torque vs. Angular Velocity Graph

14 T T

12

-
(==

=}

Torque [mNm]

* Sampled Data
Linear Model with R} ,,=0.92724

0 1 2 3 4 5 6 7
Angular Velocity [rad/s]

Figure 6-4. Linear model graph.

CASE Il: Nonlinear Model 1

8 9 10

In this case, a nonlinear friction model is designed to account for the Stribeck term [25]. To
solve the problem, an iterative method was used, with the Matlab function Isgnonlin(). The
function (6-7) was supplied along with its analytical jacobian (6-8) to increase the method’s
performance. In these equations ¢, represents the angle, ia,i the input current, and f, the

regression coefficients of an arbitrary sample (i).

_lail

7, = £,, + f,sign(q,) - f,sign (g,)e . with f, >0and k = [1,4] (6-7)

7, =K, -i,; with i e N the sample number

The Jacobian is calculated as below:

el

or. Or, Otr. Ot . . . N
 JR it Rt Hcid Ml N P _ 2
' [af1 of, o, afJ [q sign(a) ~sion(a)e

The results may be viewed in Table 6-5 and Figure 6-5.

Table 6-5. Nonlinear model 1 coefficients.

: el
—@sign(q)e | (6-8)

4

Term Value
f, [Nm-(rad/s) '] 4.7574e-05
f, [Nm] 0.0120
f, [Nm] 0.0080
f, [rad/s] 3.9575

124/217

Torque vs. Angular Velocity Graph

14 T T T
12 =
o e --:"'_‘;--_—-’f .
10 F S -__/:./"‘/. = -
3 sl
8 b -
E, 7
m -
o |
g -
o
|_
2t |
* Sampled Data
Non-Linear Model 1 with R ,=0.98494
0 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Angular Velocity [rad/s]

Figure 6-5. Nonlinear model 1 graph.

CASE llI: Nonlinear Model 2
Like in the previous model, here a nonlinear friction model is employed to account not only for
the Stribeck term alone, but also for the exponential decay in the transition from kinetic to low-
speed viscous friction [25]. To solve the problem of nonlinear regression, an iterative method
was used, with the function Isgnonlin(). Like in the previous case, both the function (6-9) and
the analytical jacobian (6-10) were supplied to the algorithm. In these equations, g,
represents the angle, i,; the input current, and f, the regression coefficients of an arbitrary
sample (i).
_la L
7, = f,g,+ f,sign (g,) - fisign (g)e " — fysign(q;)e “*, with f, >0andk =[L6] (6.g)
7, =K, -i,; with i e N the sample number

_ldl
f4

g |08 0z 0T o O Or)__ q sign(q) -sign(q)e
i afl afz 6f3 af4 af5 afe

(6-10)

_@ 1 1

—Zsign(g)e " —sign(q)e “* _f:—T(ﬂSign(Q)efﬁq
6 .

The results may be viewed in Table 6-6 and Figure 6-6.

125/217

Table 6-6. Nonlinear model 2 coefficients.

Term Value
f, [Nm-(rad/s)"] 4.7573e-05
f, [Nm] 0.0120
f, [Nm] 0.0080
f, [rad/s] 3.9575
f, [Nm] 0.0040
f, [(rad/s) "] 1.4406

Torque vs. Angular Velocity Graph

14 T T T
121 = T
10 S - 1
:—"-s o
81 4
E
® -
8’ L)
g O a |
o o/
. _"'
f -
'
27 i
*+ Sampled Data
Non-Linear Model 2 with Rgdj=0.98452
0 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Angular Velocity [rad/s]

Figure 6-6. Nonlinear model 2 graph.

Models Comparison

The three models are compared concerning their quality and accuracy with the Rfdj
regression index. Here, the adjusted version is used to account for the different number of
terms of each model. That index is given by the formula (6-11), with n representing the

number of sampling points and p the degrees of freedom (terms) of the model.

n—1 Z(yi_yi)z

R%; =1-(1- Rz)n——p—l’ with R? :1—in—2 (6-11)
Z(yi _7)

For an intuitive comparison of the different models, their regression curves are presented
together in Figure 6-7.

126/217

Torque vs. Angular Velocity Graph
14 T T T T T T T

12

wh
(o) o

Torque [mNm)]
(o)}

{ * Sampled Data
Linear Mode! with Rﬁ o=0:92724

2r Non-Linear Model 1 with R% =0.98494
Non-Linear Model 2 with Rg 4=0:98452
0 1 1 L
0 1 2 3 4 5 6 7 8 9 10

Angular Velocity [rad/s]

Figure 6-7. Friction model comparison graph.

Conclusion

All of the models come with a trade-off regarding their computational complexity and accuracy.
From the above analysis and the Razdj index, the first nonlinear model is the best approximation
of the joint’s friction model among the three. But it is up to the developer to decide which is
more suitable for a specific application. In many time-critical applications (e.g model-based
control), the low processing requirements of the linear model may compensate for its accuracy
loss. However, the additional computational cost may be insignificant for a simulation that in
general accuracy is promoted, since there are no real-time processing requirements.
Whatever the case may be, the developer should consider multiple parameters before

choosing, to end up with an optimal design.

6.2.2 Joint’s Friction Identification

The Laelaps Il leg joints, as previously stated, consist of a geared motor that gives motion to
a belt drive to furtherly increase the output torque. That belt system consists of two pulleys
with rolling bearings. Such mechanical components have an impact on the joint’s total frictional
behavior. It is widely accepted that in bearings’ friction characteristics, the viscous type
dominates. So, the expected response in the measurements is an increase of the torque levels
in curves of Figure 6-7 and a decrease of their nonlinear behavior.

On the other hand, the belt’'s mechanics may increase nonlinearities, due to the elasticity
that this study neglects. However, this elasticity is expected to be insignificant when the belts

127/217

have sufficient pretension and operate under the proposed by their manufacturer, nominal
conditions.

To come with the whole joint’s friction model, future experiments, similar to the above
ones, may be executed. It would be interesting to compare the results and observe the belt’s
contribution to the system’s dynamics.

6.3 Legd’s Inertial Parameters Identification — Method 1

To cross-check the results of the main identification framework, the inertial parameters of the
robot should be estimated with simple, yet insightful experiments. The key idea here is to
isolate each unknown parameter. By exploiting the underlying physics, each unknown quantity
can be approximated easily. As for the accuracy of the resultant estimation, it strongly depends
on the used experimental equipment and the human factor. To reduce the error impact, by
executing the procedure multiple times and averaging the results, better accuracy could be
achieved.

At first the required equipment will be discussed. Next, the motor and the gearbox inertial
identification experiment is concerned. Note that the actual experiments are left for future
work. In the current section they are described and the identification problem is presented,
along with some implementation concerns.

6.3.1 Required Equipment

The experiments dictate the necessity of current and kinematic measurements. To accomplish
these tasks an extensive market search was made to find the appropriate equipment. For the
kinematic measurements, a HEDL encoder was used. The speed and acceleration data were
derived by differentiating the encoder’s position readings. As for the current measurements,
after a review of the available hardware, two sensor evaluation modules were purchased. The
specifications of each current sensor are presented below.

In general, current sensing is a very delicate procedure. The measurements are prone to
noise and they are heavily dependent to the implementation. So, a careful design is of utmost
importance, taking into account the application’s specific needs and the hardware’s limitations.
The reader is strongly encouraged to refer to [28] that investigates every aspect of current
sensing. To get current measurements that they could be eventually translated to the motor’s
torque, a different approach should be adopted in case of the knees’ DC motors and the hips’
brushless, since the latter ones are three-phased motors.

INA253 EVM

The INA253 EVM evaluation module consists of shunt-resistors. It produces high-precision
current readings and integrates three different gains to account for any level of sensitivity an
application would require. A list of the module’s key features is presented in Table 6-7, but the
reader is encouraged to consult the manufacturer’'s datasheets [100] [101], to gain a better
understanding of the platform. The board is shown in Figure 6-8.

Table 6-7. INA253 EVM specifications.

Parameter Value
Measured current range (max) [A] +15
Shunt inductance [nH] 3

128/217

Shunt resistor tolerance [%)] 0.1

Shunt resistor [mQ] 2
Bandwidth [kHz] 350
Offset current [mA] 15
Offset drift [uA/°C] 125
Common voltage range [V] -4 to 80

Figure 6-8. INA253 EVM board overview.

TMCS1100 EVM

The TMCS1100 constitutes a galvanically isolated Hall-effect current sensor [102] capable of
accurate DC and AC measurements. The most important characteristics extracted from the
manufacturer’'s datasheets [103] [104] are presented in Table 6-8. Among them, the one that
stands out is the wide voltage range that this sensor operates, which offers flexibility to its
integration into any design.

Table 6-8. TMCS1100 EVM specifications.

Parameter Value
Measured current range (max) [A] 146
Total error (typical) [%] 0.4

Low power voltage [V] 3to5.5

Isolation rating [KVgrwms] 3

Bandwidth [kHz] 80
Offset current [mA] 15
Offset drift [uA/°C] 40

High power voltage range [V] +600

Figure 6-9. TMCS1100 EVM overview.

129/217

6.3.2 Motor — Gearbox Inertial Identification

In the current section, the identification problem of the motor — gearbox system’s inertias is
presented. The formulation can be easily expanded to involve the inertias of the belt’s gears.
But as previously mentioned, the idea here is to isolate each parameter. So firstly, the motor
— gearbox system’s inertias should be estimated and then in a similar manner the belt-gears
could be added, given that the belt’s elasticity is neglected by the current formulation. This
way, the inertias provided by the motor’s datasheet [46] [93] could be cross-checked and the
whole method’s performance can be evaluated.

In the future implementation, it is recommended to connect the sensor to the high-voltage
side of the motor, to avoid ground-side distortions and noise. It is widely known that the motion
equations of multi-body systems can be written in linear form with respect to the model's
parameters. With the nonlinear friction entering the equation, that claim becomes invalid.
However, by knowing the friction’s regression model (discussed in Section 6.2), with a single
subtraction on the right-hand side of the equation (6-12), the linear model of the equation
(6-13) is acquired. The problem is summarized in (6-13).

(Im + Ig)é—i_z—friction = KT ' ia (6'12)

(6-13)

a,i _Tfriction,i

Y=t withY, =6, n=(1,+1,) & 7, =K, i

Since the model is simple and linear, no special trajectory is necessary for sampling. This
fact simplifies significantly the experiment’s workflow. For example, the motor could be
subjected to a ramp input voltage [105] that could be controlled manually or even to white
noise. The only hardware requirements is an encoder for the required kinematic
measurements and a current sensor.

6.3.3 Identification of the Leg’s Parts Inertial Parameters

To estimate the inertial parameters of the leg, namely the mass, the inertia and the position of
the Centers of Mass (CoM) of its parts, simple experiments that isolate each parameter were
designed. The literature provides several different approaches with different prerequisites.
Their performance relies heavily on the used equipment.

Mass Estimation

The mass estimation should be very simple, by using a weight gauge. Note that CSL-EP’s
laboratory owns very accurate gauges that should be up for the task.

Center of Mass (CoM) Position Estimation
There are multiple ways to estimate the CoM position of an arbitrary object. The precision of
each method is bound to the quality of the experimental setup that is used.

e Seesaw mechanism. This method relies on the creation of a seesaw-like mechanism
that supports the measured part. By moving the part in the axial direction the goal is
to find the position, which makes the seesaw horizontal. This method requires the
creation of such a mechanism, with low friction. A conceptual design is illustrated in
Figure 6-10.

130/217

Figure 6-10. Conceptual design of a seesaw mechanism.

Rotational mechanism. This technique uses a rotational joint that supports the leg’s
segment. In its two edges, weights are mounted to make the part horizontal. By taking
the static equilibrium and deriving the free-body’s equations of the aforesaid part, its
center of mass position can be determined. This method is illustrated in Figure 6-11.

Figure 6-11. A rotational mechanism for CoM determination.

Two-point hanging method. This setup relies on the hanging of the object in question
from two arbitrary points, one at a time. The CoM is determined as the intersection of
the two resultant vertical lines that start from each hanging point.

Weight-gauges method. This method is similar to the rotational mechanism. It is
simpler and more straightforward. Both ends of the part are positioned on weight-
gauges, which measure the subsequent reaction forces. By taking the free-body
diagram of the leg-segment, its CoM can be determined. This method’s simplicity and
accuracy make it ideal for a future experiment with the lab’s equipment.

Inertia Estimation

The inertia estimation of the leg segments requires attention because it involves
measurements of a nonlinear dynamical system that in most cases is linearized around a
stable point. So slight deviations in measurements and conditions may give heavily erroneous
results. There are a couple of approaches available, while the most suitable ones follow. The
below methods consider a part of mass m, inertia w.r.t. its CoM |, and CoM-distance from
the rotation point C, .

Simple Pendulum: The simple pendulum is one of the simplest nonlinear dynamical
systems. If the original nonlinear ODE that describes the system is linearized to the
lower stable equilibrium point, certain dependencies arise among its parameters. So,
a justified choice is to measure the period of a free oscillation and derive the inertia
with (6-14). For the derivation of this formula, one may consult Appendix J. The main
drawback of this setup is that the object should not be permitted to rotate on any other

131/217

axis because this would change the underlying dynamics. In the current case, this is
easily achievable, but if the measured part has an irregular shape, things are much
more complicated.

mgC,T?
leom = A

o Bifilar Pendulum: This method eliminates the main drawback of the simple pendulum
since the object is not permitted to rotate on any other axis, by design. The dynamics
are more complicated, but the resulting linearized system is simple. The inertial
formula is given in (6-13) and as for its derivation, refer to Appendix J.

-mC? (6-14)

legy = ————mMC? (6-15)

The performance of the bifilar pendulum can be verified if the latter is conceived as a
simple pendulum from its lateral view. From this perspective, the system constitutes a
rotating mass pendulum without rigid-body inertia. With a method similar to the one of
(6-14), the gravity constant g is estimated as a function of its free oscillation period T
using (6-16). If the result is reasonable, the experimental setup is valid and can be
used to approximate the inertia. The proposed system is illustrated in Figure 6-12.

47

(6-16)

(a) (b)
Figure 6-12. (a) Bifilar pendulum overview. (b) Bifilar pendulum lateral view.

Beware that the inertias calculated by the equations (6-14) and (6-15) are functions of the
measured period squared (T?). So, a small error in the measured period, results in a large
errorin .y, -

6.4 Leg’s Inertial Parameters ldentification — Method 2

In this section a simulated whole-leg identification is considered, exploiting the linearity of the
Equations of Motion (EoMs) of multibody systems, like Laelaps’ legs w.r.t their parameters.
The realization of the method in the actual robot is left for future work, since at present Laelaps
Il'is not able to fulfill the experiment’s hardware prerequisites.

The algorithm consists of an optimization step, in which a suitable joint-space trajectory
is created. Then, the leg is commanded to follow this trajectory by a controller. During this

132/217

procedure kinematic and current measurements are sampled. At last, the identification
problem is solved.

In this section, initially, the simulation environment is explained, along with its major
components. Next, the identification problem is formulated, specifically for the leg’s multibody
system. Moreover, the trajectory optimization problem is described and solved. At last, the
identification results are evaluated and the whole framework’s future implementation is
concerned.

6.4.1 Simulation Environment

The whole framework consists of several .m Matlab files. The main file, namely LaelapsiD.m
materializes the formerly described steps of the algorithm. In the simulation, the system’s
parameters are imported from the leg’s CAD files and the whole idea of the simulated
identification process is to approximate them. In the next section, the derivation of the leg’s
model is considered. To control this model and track the previously mentioned optimal
trajectory, a controller is created.

Dynamical Model

The Laelaps leg, as in the majority of quadruped robots, constitutes a two-segment pendulum.
The model is very similar to a double pendulum, with small differences concerning the layout
of the joints and the motors. A schematic of the system is presented in Figure 6-13.

Stiff Spring

Figure 6-13. Laelaps Il leg model.

Kinematics

The forward kinematics of the leg, based on the configuration of Figure 6-13, are given by the
equations (6-17). Here, the difference with the model of Figure 3-2 is the reference frame’s
orientation.

X =1,sin(6,)+1,sin(6,)

ye =—l cos(6,)—1,cos(6,) (&-17)

133/217

The respective Jacobian (J,) for this configuration is presented in equation (6-18).

] :(Il C?S(@l) IZC?S(OZ)J (6.18)
Y Lsin(g,) 1,sin(6,)

Dynamics

The equations of motion are presented below (6-19)-(6-23), for the derivation of which
Mathematica was used [52]. Let &, designate the angle of each joint, m, the mass of each
link, I. its length, I, its inertia, and C_. its CoM distance w.r.t. the corresponding joint. Also,

i m,i
|

v i IS each motor’s rotor inertia, and n, each drivetrain’s reduction ratio.

N . . o
M (q)q + C(q’ q) + G (q) + Tfriction (q) = Tin’ q =[01) (6'19)
2
M(q) = l,+mC,, +ml2+1, n7 mC_,l c;)s(é?1 - 922) (6.20)
m,C,.l, cos(6,-6,) I, +m,C2, +1,,,N;
m,C, ,l,sin(6,-6,)6;
caa Tt o2
27m,2°1 1 2 1
gsin(&)(mC,, +m,l,
G(a)= (6.)(N) (6-22)
m,C,,,gsin(6,)
K. ni
Tin :(T,lnll-s,l J (6_23)
KT,ZnZIS,Z

For the friction model, the previously derived nonlinear model would be normally used
(Section 6.2). But the actual friction model of the whole joint remains unknown, since the
solutions in Section 6.2 concern only the motor — gearbox system and not the belts. So, to
simplify things in the current simulation, the common viscous friction model of the equation
(6-24) is used, to avoid unnecessary complexity. Note that in the aforementioned equation,
each joint’s friction coefficient is denoted with b, .

o,
Tfriction (q) = (:3101 j (6'24)
272

These EoMs are materialized in Leg_Dynamic.m and Mass_Dynamic.m source files.
Using this files, the Matlab ODE solvers are able to solve the EoMs and obtain the system’s
response to any input. In the current configuration, the system’s input is the control effort,
generated by the controller that is considered next. To integrate (6-19) with Matlab, the
equations must be transformed in the form of (6-25). Note that q,,, is the augmented state
vector that contains both the leg’s angles and their first derivatives.

134/217

Maug (qaug)'qaug = F(qaug)' qaug :(01 02 91 92)T

10 0 0
M (0u)=| o L X (6-25)
0 0 L+mC,,+ml +I,.n’ mC,,l cos(6 —6,)
0 0 mC,lcos(6-6,) I, +m,C2, + 1, ,N;
6,
F(dag) = 0,

Tin _C(qaug) -G (qaug)_ Triction (qaug)

Control

The equations (6-25) have been coded and tested with Matlab. In order for the identification
algorithm to work, the simulated leg must follow a trajectory (see Section 6.4.4), specifically
designed for giving a well-conditioned solution to the subsequent identification problem (see
Section 6.4.2). To do this, a controller has to be designed and implemented. In general,
trajectory tracking controllers require knowledge of the plant, especially in the model-based
case that the system’s parameters are involved directly in the control process. However, here,
the actual plant’s parameters remain unknown. The only knowledge comes from the CAD files
of the leg. Given that the actual parameters deviate from the CAD ones, a robust design should
be adopted. Also, the controller should be easily implemented in the current distributed control
architecture of the robot.

To this end, the system was linearized at the lower stable fixed-point (refer to [99]).
Arguably, due to the large region of attraction of this fixed point, the linearization is valid for a
wide range of angles around it. So, any stable controller designed for the linearized plant,
should perform well in controlling the actual nonlinear one near the fixed point’s vicinity. The
controller was created with the pole placement technique, using Matlab’s place() function
(refer to LaelapsiD.m). Since the leg’s model is a fourth-order system, to come with a
manageable second-order one, the dynamics of which are well known, two of the total four
closed loop poles must dominate the whole system’s response. This is achieved by placing
the remaining two far to the left of the pole-zero map. This way, the fast poles’ contributions
can be ignored and the whole system can be approximated by a second-order one with the
two dominant poles. Moreover, the design should result in a closed-loop system that has
adequate bandwidth to track the identification’s trajectory (see Section 6.4.4) and at the same
time minimal oscillations during the transient phase. So, the dominant poles are placed on the
real axis, adequately far from zero. Since the critically damped systems have the fastest
response possible without overshooting, the two poles are placed at the same position. The
designed controller is expected to present increased stability and track the identification’s
trajectory for a wide range of angles. The resultant gains are presented in (6-26), with K
being the gain matrix, i, a vector containing the current inputs and q,,, the desired trajectory
that will be discussed in Section 6.4.4.

_ Iy i K, 21.3569 1.6667 4.5734 0.3571
ii=." |= K(qdes —qaug), with K = = (6-26)
I K, 19331 12.2753 0.4108 2.6365

135/217

The designed controller results in the pole-zero map of Figure 6-14 for the closed-loop
system.

Pole-Zero Map
1 T T

o
™
T

|

o
o
I

|

o
IS
T

|

o©

[N
T

|

8& 7Q, 60 50 40 30 20 10

o

W

Imaginary Axis (seconds’1)

=
>

5 Double Pole

o
o
T

|

o
o
|

|

i 1 i | i 1 : 0999 i 0.998 ; 099
- -
-80 -70 -60 -50 -40 -30 -20 -10 0

Real Axis (seconds'1)

Figure 6-14. Linearized leg’s model pole-zero map.

6.4.2 Identification Problem Formulation

The derived model (6-19) can be expressed with linear relationships w.r.t. its parameters. In
this configuration, by doing a regression with least-square algorithms, these parameters can
be found with great accuracy. As shown in the literature [24] [106], the equations of motion of
each link of an arbitrarily n-DoF manipulator can be expressed as a function of its inertial
parameters and friction coefficients (6-27).

;= (mi ITliC: miC ITliC: I><x,i Ixy,i Iyy,i Iyz,i Izz,i IM,i bi)T (6_27)

After eliminating the zero elements in @ and linear dependencies in regressors matrix Y
to prevent ill-conditioning and rank deficiencies, the former is given by,

_ (”1] 6
T= eR’ =
m, (6-28)

.
_ 2 2 2 2 2
n= (mlCm,l +moly L +mCoy+ 1y n+ml” b mCp, 1L +mCry+1y .0 bz)

mx,i my,i mz,i

The mathematical formulation of the regression problem is illustrated in (6-29), with j
being the sample number.

Y -m=1,, with
v - gsin(6,) & 6, l,sin (6, - 6,)0; +1,cos(6,—6,) 6, 0 0 (6-29)
O) 0 0 gsin(6,)-Isin(6,-6,)6 +lcos(6,-6,)6, 6, 6,)

By using Least-Squares, the solution of (6-29) is optimal if and only if (6-30) is minimized.

136/217

I(m) =2 ()= (5, - Y, 1) (6-30)

A detailed derivation, along with more advanced algorithms can be found in [26]. The
result is given in (6-31), below.

m =argmin_ [J(@)]=(Y" -)" Y -1, (6-31)

The regression matrix Y is formed in Obs_DIM.m, while the least-squares problem is
solved using the standard Matlab solver Isglin().

6.4.3 Identification Framework Overview

To find a well-defined and reliable least-squares solution, all of the leg-dynamics have to be
excited and the regression matrix Y has to be robust and insensitive to small changes of the
inputs. So, the proposed algorithm starts by finding a good trajectory that meets these
requirements. Then, the identification problem is solved using a linear least-squares solver,
with samples acquired from the aforementioned trajectory. An overview of this procedure is
presented intuitively in Figure 6-15.

Optimize the | Set Appropriate Run GA to find
Trajectory | Constraints & |—»| the O|:_mn?al
| Settings Solutl'on s
| Region
|
|
L A4
Find with detail the
Run & g Optimal Trajectory,
Sample the Ve;:nfya:he using a Deterministic
Optimal Trajectory | method, with the GA's
Trajectory solution as initial
Guess.

Compute &
Form Matrix Y
& Vector t

Verify & Test
the Solve the LS
Identified Problem
Parameters

Figure 6-15. Identification framework workflow.

6.4.4 Trajectory Optimization

From the literature [107], trajectories for identification experiments are formed as truncated
Fourier series. In the current case, a 3-term Fourier series is chosen. In (6-32), @, is the
angular velocity of the trajectory, a; and b“. are each harmonic’s amplitudes, and Hj’oﬁ
represents the amplitude of the zero-harmonic.

137/217

0,(t)=0, o +Zsl a—ij_sin(a)fi-t)—b—ij_cos(a)fi-t) ,with j = {1,2} (6-32)

i=1 a)fl a)fl

The optimization’s design variables are the coefficients 0, , a; and b, , while
o, =0.57 . This choice is justified, since the higher the frequency, the more dynamical the
resulting trajectory is going to be. This means that the trajectory’s accelerations will increase,
without the need of additional terms that would increase the planner’'s computational cost. This
way, a balance is kept among the terms of the regression problem (6-29), necessary to come
with an accurate estimation of all parameters in (6-28) and especially the inertias. Since the
inertias depend on the sampled accelerations, if the Signal to Noise Ratio (SNR) of the
accelerations is low, the dependent parameters (inertias) will not be estimated accurately.

Furthermore, the constraints (6-33)-(6-42) should be considered for the resulting
trajectory to be feasible in the real system. The constraint of (6-33) limit’s the trajectory’s angle
range to prevent collisions with the robot’'s body. The problem has already been described in
Chapter 3.

1Oy x| < 27° & |6, o, | <80° (6-33)

In (6-34) the angular velocities of the trajectory are limited below the gearboxes’ maximum
velocity limits [47].

6, .1<450°/s & |6, . |<360°/s (6-34)
- -

The constraint of (6-35) is created to ensure that both joints will be moved for an
adequately wide range of angles.

6, —0,.. >15 & 6,

1,min —

max max ~ @i = 20° (6-35)

The trajectory should not have very high demands in terms of power. With the constraint
of (6-36), the input currents are kept below the drives’ continuous operation limit [65].

<6A& i ,|<6A (6-36)

Is,l IS,2

The (6-37)-(6-38), along with the (6-33) constraint are limiting the resultant end-effector’s
position inside the leg’s valid workspace (Figure 3-7).

\/ X2 in Vo min 2 \/If +1; (Workspace Upper Bound) (6-37)

E ,min

\/XE,W + Y2 nax <k +1, (Workspace Lower Bound) (6-38)

The constraint (6-39) ensures that the knee’s relative angle restriction with the leg’s upper
limb is not violated.

min (6, —6,)>0° (Knee Relative Angle Restriction) (6-39)

Lastly, the constraints (6-40)-(6-42) dictate the initial and final angle positions.
0,(t)=6,(t)=0" & 6,(t,)=6,(t;)=0° (6-40)
6,(t)=6,(t)=0"/s & 6,(t,)=06,(t;)=0"/s (6-41)

138/217

6,(t,)=6,(t)=0"/s* &6,(t,)=6,(t;)=0°/s’ (6-42)

Most of the aforementioned constraints are nonlinear w.r.t. the optimization’s design
variables and they are materialized in nonlcon.m. The(6-40)-(6-42) are linear and as such,
they are realized in matrix form, inside the LaelapsID.m.

6.4.5 Stochastic Optimization

The Genetic Algorithm (GA) optimization is a metaheuristic procedure that belongs to a larger
group, the so-called Evolutionary Algorithms (EA). This method was employed to solve the
current problem, since it does not require an initial guess by the user. Given in enough run-
time, it is ensured that a close to the optimal result will be found. So, the objective function
(6-43) is chosen to minimize the sensitivity of the regressor matrix. This cost function is located
in Obj_Func.m file.

minF=Cond (YY) (6-43)

The rationale behind that choice is the following. Consider the matrix Y and its condition
number Cond (YY), which is defined as the ratio between its largest and smallest singular
values. When solving a linear system Y -w =7, the larger the condition number, the more
sensitive is the solution 7 =Y't to small perturbations (e.g. noise) of the vector t. Hence, if
Cond(Y) is large, tiny distortions in T can be hugely amplified when solving for & . Also, the
quantity log, (Cond(Y)) is an estimate of how many bits are lost in solving the linear system
Y .m=1.Forexample, if Cond(Y)=2" and 7 is encoded in 64 bits, solving for 7, will result
in losing 10 bits of precision out of the total 64 [108].

The progress of the GA algorithm is shown in Figure 6-16. For the procedure, the standard
ga() Matlab function was used. The solution’s condition number is very low and thus a robust
Least Squares solution is expected. Note that since it is a stochastic optimization method,
executing the process again may produce different results. Moreover, the function is called
inside the LaelapsID.m source file.

Best: 8.3103 Mean: 8.32057
I

X Best fitness
¥ Mean fitness

92 =

8.8 -

Fitness value

x % % % | | | | |
o] 5 10 15 20 25 30
Generation

Figure 6-16. GA optimization progress.

139/217

6.4.6 Deterministic Optimization

For better accuracy, a nonlinear solver for deterministic optimization was fed with the optimal
guess of GA. After a few iterations, a more detailed solution was achieved. The process is
executed by Matlab’s fmincon() function using the SQP (Sequent Quadratic Programming)
solver. That optimization algorithm tries to minimize a quadratic approximation of the cost
function. Thus at each step, the solution is projected back to the original cost function value,
until its value change exceeds a given numerical tolerance. For a better insight into the subject
check [109]. Moreover, the function is called inside the LaelapsID.m source file.

6.4.7 Optimal Trajectory Results
The optimal coefficients produced with the above-described process are given by (6-44).
_ (—0.1865 0.5676 —0.3811j [r d]
—0.1600 0.5286 —0.3686

(01281 0.4609 -0.2646
1 -0.0373 0.5107 -0.3280

0.0090
= rad
o [0.0GQZJ [rac]
And the optimal condition number of Y is given by (6-45).
Cond (Y)=4.7742 (6-45)

J [rad] (6-44)

In the following figures, the leg’s angles (Figure 6-17), angular velocities (Figure 6-18)
and angular accelerations (Figure 6-19) can be viewed. Finally, the motors’ current efforts are
plotted in Figure 6-20. The resulting trajectory is generated by a planner in Traj_Gen.m. The
total time of the simulation was chosen to be 20 [s], to gather enough samples.

5 Hip's Angle Response

D, [deg]

10
tis]

Knee's Angle Response

0, [deg]
(=]

t [s]

Figure 6-17. Leg’s angle responses.

140/217

Hip's Angular Velocity Response

w, [deg’s]
g

_am 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
ts]
400 Knee's Angular Velocity Response
2001 -

w, [deg/s]
é

2001 §
.m 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
ts]
Figure 6-18. Leg’s angular velocity responses.
Hip's Angular Acceleration
T T T

Response

0 2 K 6 8 10 12 14 16 18 20
tis]

Knee's Angular Acceleration Response

8

.m 1 1 1 1 i 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

t[s]

Figure 6-19. Leg's angular acceleration responses.

141/217

Hip's Current Effort
T T

T T T T

- [Al
©

0 2 4 6 8 10 12 14 16 18 20
t[s]

Knee's Current Effort

T T T T T T T T T

]
>
:
;
3
>

(o]
L]
§ N
(=1]
[¢-]

10 12 14 16 18 20
tls]

Figure 6-20. Leg's current inputs.

In the ideal case of full state feedback and absence of noise, parameter identification
produces exceptional results. The noise and various perturbations in the real experiments
downgrade the algorithm’s performance significantly. To evaluate the algorithm’s performance
white-noise was added to current inputs and kinematic measurements. The idea here is that
the input trajectory excites certain harmonics. Since the trajectory is a Fourier series, the
excited harmonics are known. This way, low-pass filters can be designed to have bandwidth
that matches the trajectory’s highest harmonic. Subsequently, these filters can be applied to
the noisy kinematic measurements and decrease the algorithm’s overall error.

To have decisive proof of the effectiveness of the cost function used in the optimization
(6-43), the resultant trajectory of the GA is compared with the final one after the deterministic
optimization’s step. Figure 6-21 indicates that the condition number has a significant impact
on the method’s accuracy. Note that the indexes of the parameter vector in each bar refer to
(6-28) (e.g. m[3]=Dh,). For sure, further modifications should be made to capture the real
experiment’s conditions and equipment characteristics. This way a more realistic performance
evaluation would be possible.

142/217

Parameters Errors
30 T T

Il Cond(Y) = 4.7742
I Cond(Y) = 8.3103

Relative Error [%]

1] 2] 3] 4] (5] (6]

Figure 6-21. Performance evaluation of the ID framework.

6.4.8 Experimental Procedure for Whole Leg Identification

Laelaps Il cannot yet accommodate the aforesaid experiments due to the lack of hardware
provisions and necessary electronics. So, the experimental validation of the above method is
left for future work. Nevertheless, for completeness, the necessary tasks and procedures are
described in this section.

For the experiments, a current sensor is necessary, integrated on the high side of each
motor. Preferably the TMCS1100, which according to Table 6-8 presents better specifications,
compared to INA253 (Table 6-7). A problem arises, due to the hip’s brushless motor and the
complexity of how exactly the applied current is translated to torque. Also, the above system
model accounts for brushed DC motors in both joints. To overcome the problem, the hip’s
motor could be replaced with another knee’s brushed DC motor. This way, the proposed model
becomes effective and the results would be valid. Any deviations will be eliminated by suitable
tuning of the controllers’ gains.

Another aspect of the experiments is the firmware that could be used. The current Laelaps
Il motion control firmware supports the easy integration of arbitrary planners and EtherCAT
stacks. After reading this thesis and other works like [20] [34], one should be able to design a
new EtherCAT application and integrate it into the original leg firmware. The planner should
execute the optimal trajectory that was derived in Section 6.4.7. The method is robust, as
Figure 6-21 suggests, so good results might be achieved even if the system differs a little from
the modeled one. The results of the proposed experiments (Section 6.3.3) should be close to
the ones acquired by the whole leg identification.

143/217

7 Laelaps Motor Overheating Protection System

Every physical system has limitations regarding its operation. Given all the necessary power,
an arbitrary controller can achieve any desired response. However, even by ignoring the
limited availability of energy, stressing any system beyond its capabilities will result in failure
and damage. The Laelaps Il motors have such boundaries that must be accounted for any
design that they are included in. Some of these are the current limits of their drives and the
thermal strength of their windings. To overcome these obstacles, an insightful hardware
design should be made in advance, along with a firmware that does not stress the system
beyond its maximum potential.

The objective of this chapter is to address the limits of Laelaps Il motors and find simple
software solutions to account for them. This way, optimal performance may be achieved and
at the same time, their life is prolonged. The manufacturer does not provide solutions for online
adaptive current regulation, hence developing a custom one deemed necessary. Due to the
complexity and additional cost of direct temperature measurements, a solution without
temperature sensors is developed. The only hardware requirement here is knowing the current
applied to the motors by using current sensors.

Initially, some theoretical concepts are explained along with the development of a typical
thermal model of a DC Brushless Maxon motor. Furthermore, the Motor Overheating
Protection System (MOPS) is presented, along with its requirements. Last but not least,
simulation results are discussed along with an evaluation of whether the algorithm’s final goal
is met.

7.1 Theoretical Preliminaries

7.1.1 Thermal Modeling and Problem Formulation

Maxon, the manufacturer of Laelaps Il motors, has specific guidelines and standards for their
efficient operation and health. There are extensive guidelines available [21] that could facilitate
any design. The proposed motor’s thermal model is displayed in Figure 7-1.

Power loss P, ‘ Thermal

Cow <= Twe
A

R b
P -
th,s T Y
: AT,

Figure 7-1. Maxon’s proposed motor thermal model.

AT

W,

The equations that capture the behavior of the above-described system are presented in
(7-1). The parameters with index 1 refer to the motor’s winding, while the parameters with
index 2 refer to the housing. The relative to ambient temperature of each of the

144/217

aforementioned modules is denoted with T;, the absolute temperature with T, ;, the thermal
resistance with R,, the thermal capacitance with C, and lastly the power loss of the motor
with g,, (thermal input).

1 1
= — 1
T C C T -
i - R1 ! Rl ' ' + Cl “Gin» with Ti :Tabsi _Tambient &i= {1’ 2} (7-1)
at(, 1 _R+R ()] ,
RC, RRGC,

At first glance, the above ODEs are linear, but this is not entirely accurate since the
winding’s electrical resistance depends on its temperature. Consequently, the thermal input is
increased in a nonlinear, temperature-dependent fashion (7-2). Let R, be the winding’s
electrical resistance, the a;, be the thermal coefficient of copper and T, , the winding’s
absolute temperature.

= 25°C (7-2)

ambient

R= I:Qmot |:1+ aCu (Tabs,l _Tambient):|1 with qin =1 2R(Tl) and T,

In the motors’ datasheets [46] [93], the thermal and electrical resistances are given
alongside the system’s thermal time constants. To proceed with this analysis and determine
the thermal capacitances, the minor nonlinearity of the resistance (7-2) is neglected. This
results in an insignificant error in capturing the transient system’s response. As it will be
proven, the steady-state response is not a function of capacitance and thus this simplification
does not interfere with MOPS performance. The thermal time constants z; can be converted
to the system’s poles p, using the equation (7-3).

T, :—i, with i ={1,2} (7-3)
P

By performing the required calculations, the following system of nonlinear algebraic

equations (7-4) is formed.

C,R +(C,+C,)R, —\/(czR2 +C, (R + Rz))2 —4CCRR, _

2 a
(7-4)
2
C1R1+(C1+C2)R2+\/(CZR2+C1(R1+R2)) ~4C,C,RR, _.
2 -2

Using a mathematical software package, like Mathematica, the system is easily solved.
The obtained values of thermal capacitances (C, and C,) follow in Table 7-1. Note that the
thermal resistances (R, and R,) and the thermal time constants (z, and 7,), listed in the
aforementioned table, are provided by the manufacturer’s datasheets [46] [48].

Table 7-1. Motors’ thermal attributes.

Motor Knee Hip
C, [J/K] (Winding) 77.7359 29.1191
C, [3/K] (Housing) 277.1107 893.8039
R, [K/W] 1.2 11
R, [K/W] 3.8 1.7

145/217

7, [s] 71.7 31
7, [s] 1370 1570

The values of the steady-state system’s temperatures are given with the equations (7-5)
for intermittent operation. Hence, the use of | .

(R1+R2)R|r2ms

T,= , with a,, =0.0039] K
' 1_aCu (R1+ RZ)RIers [] (7_5)
T,= ic T
R+R,

Now that the thermal model is defined, the algorithm may be designed. From [46] [93],
the following useful features are extracted in Table 7-2.

Table 7-2. Useful motor characteristic values.

Parameter Knee Hip
Root [€2] Electrical resistance 0.608 0.617

I e [A] Motors’ max. continuous current 458 6.21

I [Al Drives’ max. current 12 12

T .. [°Cl(Winding) Windings’ max. temperature 125 125

7.1.2 Cumulative RMS Formula

The necessary online updates of the Root-Mean-Square (RMS) value are calculated (7-6) in
a periodic cumulative manner. This formula serves a crucial purpose in the MOPS algorithm
since the resultant saturation limits depend solely on it.

n—1)12 . +12
sty = \/ (n-1) n[“‘” [withne N (7-6)

7.2 MOPS Algorithm

Any thermal protection algorithm must take into account every possible operating condition to
ensure the nominal operation and safety of the system. The basic form of MOPS is
summarized in calculating the Cumulative RMS (CRMS) current value and depending on it,
choosing a current saturation limit. Intuitively, the dependence among saturation limits and
CRMS current values is illustrated in Figure 7-2.

Due to the diversity of the conditions that Laelaps Il operates in, the basic architecture of
the aforementioned algorithm is enriched with features that guarantee its robustness. For
example, the algorithm was failing to regulate the current after extensive non-periodic
coolings. The cumulative nature of the CRMS formula resulted in reducing its sensitivity with
time. Subsequently, the winding’s temperature rised faster than the CRMS value, if large
currents were applied to the motor immediately after the cooling period. As one can imagine,
in the real system the windings would overheat and eventually melt. To address this issue a
CRMS reset mechanism was implemented to avoid fatal temperature overshooting. If the
motor has been cooled down for over a winding’s thermal time constant, the CRMS counter
n of (7-6) is resetted.

146/217

As shown in Figure 7-2, three different levels of saturation are distinguished for each
motor type. The first level accounts for low CRMS current values, below the motor’s
continuous operation limit. In such a case, the control effort is saturated at the drive’s
maximum potential of 12 A. For medium CRMS values, the saturation limit is chosen to be the
one that gives the prescribed relaxed temperature limit in steady-state. To calculate its value,
the formulas are solved for the steady-state current. If the CRMS value exceeds a certain limit,
Laelaps Il has to do the absolute minimum, which is standing still and wait for the actuators to
cool-down. This is why, above 9 A of CRMS current the saturation limit becomes 2 A, which
is more than enough for Laelaps Il to stay static in some body postures close to the legs’
singular configurations. The governing logic is better interpreted by observing Figure 7-3. Note
that the displayed flow chart ignores some steps of the algorithm in order not to overwhelm
the reader, since it is a qualitative representation.

5 MOPS Saturation vs. CRMS Current
1 :

[C—JHip Motor

Knes Motor

10

sat (A

Figure 7-2. MOPS saturation limits as a function of CRMS.

147/217

~—No

LOOP

Terminate

—_—

Reset the CRMS
Counter to
prevent
overshooting

:

Disable the CRMS
Reset Switch

Y

Read Current
Value

:

Increment
Counter

:

Calculate
CRMS Value

Is CRMS
Decreasing
unexpectedly
2

Cooling Time
Exceeded Winding
Time Constant

[J

Save Time
Instance

Y

Activate the
CRMS Reset
Switch

\

Choose Saturation
Limit, based on the
CRMS Value

v

Saturate
Control
Effort

J

Figure 7-3. MOPS algorithm overview.

148/217

The full algorithm is presented in [52] and more specifically in the Input_Current.m, as
well as in the following code snippet. Note that the CRMS values are buffered for debug
purposes. In the actual implementation only the previous value is necessary (7-6). Moreover,
the variable offset with which the CRMS counter is resetted, must be tuned according to the
loop frequency of the algorithm to prevent overshooting. It must be ensured that the winding’s
temperature is not going to overshoot its limit under any circumstances. This should be
considered in the actual implementation of the algorithm. Note that the whole Matlab
simulation is controlled by MOPS_Framework.m source file. The notations used in the code
are documented in the aforementioned source file.

% MOPS ALGORITHM %

3R

% Calculate & Buffer Current's RMS Value
n = n+l;
u_rms = [u_rms ;CRMS(Current_Log(end),n)];

% Unexpected Cooling-Down identified
if(u_rms(end)- u_rms(end-1) <=0 && reset_switch == 0)

% Turn on Reset Switch & Save the time & current RMS values
reset_switch = 1;
to t;
ue = u_rms(end);
end

% Unexpected Cooling-Down stopped
if(reset_switch == 1 & u_rms(end) - u_rms(end-1) > 0)

% Reset CRMS Counter (Anti-Windup Feature) and turn-off the Reset
% Switch
if(t-t0 >=tcl)
n = offset;
end
reset_switch =0;

end

% Determine Current Saturation Level
if(u_rms(end) > 9 & sat_override == 0)

% Low Power Mode

u_sat = I_still;

sat_override = 1;
t_over = t;

elseif(u_rms(end) > In_bound)

% Continuous Power Mode
u_sat = In;

else

% Maximum Power Mode
u_sat = Imax;
end

% Cooling Down Period Override for Low Power Mode
if(sat_override == 1)
% In here the LaelapsHalt() routine should be called
% in the actual firmware

u_sat = I_still;

sat_override = ~((t-t_over)>=2.*tcl);

if(sat_override == 0)
n = offset;
end
end

149/217

% Saturate the Input Current
u = sat(u,u_sat);

7.3 MOPS Validation and Results

Towards validating the proposed design, a simulation was created in Matlab [52]. The dynamic
equations (7-1) represent the motor-plant. The user defines a current input as a function of
time, as well as the desired time horizon of the simulation. MOPS is running in the background
and the results may be reviewed in graphs that pop-up in the post-processing step of the
framework. Note that there are provisions for both types of Laelaps Il motors.

The accuracy of the results is bulk, as expected from an indirect thermal protection
software solution like this, without real-time temperature measurements. However, this does
not imply that the motors are in danger of failure. By tuning the thresholds (Figure 7-2), it is
ensured that the design is on the “safe-side”. The results indicate that the algorithm was
stretched in very demanding, rather unlikely operating conditions and nevertheless delivers
what is promised.

Figure 7-4 and Figure 7-5 show a non-stop current, below the corresponding continuous
operation limit, supplied to the knee’s and hip’s motor, respectively. Furthermore, the inputs
in Figure 7-6 and Figure 7-7 exceed the drive’s maximum current potential and as such have
to be saturated. Also, there are some added disturbances like operation halt for a significant
amount of time that simulates an unexpected cooling-down period. The previously presented
modifications of the algorithm’s basic idea were created to prevent a failure in such
unpredictable circumstances. Lastly, Figure 7-8 and Figure 7-9 illustrate a mixture of the
above situations for both motors, again.

Knee Motor Winding's Temperature
] I I

N
o
[

1

——Max Thermal Strength —
= = =Relaxed Thermal Limit
Thermal Response |
Estimated RMS - SS Temperature

=3
=3
[

@
o

T1 [Deg. Celcius]
g
[

N
o

| - |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
t[hr]

Knee Motor Housing's Temperature
I | | I I

o
o

&)
S
I

Thermal Response
Estimated RMS - SS Temperature | —|

IS
&
I

T2 [Deg. Celcius]
B
o
[

w
&
1

30 \ \ | \ | | \ |
0

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t[hr]
Knee Motor's Current
T T
10— Motor's Cumrent Input| —|
— — —Saturation Limit

< | Il
= om i
A0 _

I B I Y Y [e A [
0 0.5 1 1.5 2 25 3 35 4 45 5

t[hr

Figure 7-4. Knee’s continuous non-stop operation.

150/217

Hip Motor Winding's Temperature
Il Il Il

- 1 e e e e e e e e e e e
g 100 - =—Max Thermal Strength |
© = = =Relaxed Thermal Limit
U_ 80 - Thermal Response a
2 RMS-SST e
2 e
— B
[
40 | | | | | | | | | -
0 0.5 1 1.5 2 25 3 35 4 45 5
t[hr]
50 Hip Motor Housing's Temperature
I I I I
@
= _
© 45 ——Thermal Response
8 Esti RMS - SS Temperature
. 40 — l
=}
8
:‘ 35 —
30 | | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t[hr]
Hip Motor's Current
——— N E U S I Motor's Current Input
101 — — -Saturation Limit___|]
Z ol A
o O . | | il
10 _
Y B Y S [e [
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t [Hr]

Figure 7-5. Hip’s continuous non-stop operation.

Knee Motor Winding's Temperature
& I T 2 I I

N}
S
I

o
=]

———Max Thermal Strength il
= = =Relaxed Thermal Limit| _|
——Thermal Response

T1 [Deg. Celcius]
5

60
40 | 1 | | L | | | 1 —
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
t[hr
100 Knee Motor Housing's Temperature
I I I I
@
3 80|
5
2 60— -
=)
~
= 40 -
| L 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

t[hr

Knee Motor's Current

Figure 7-6. Knee's overloading operation.

151/217

Hip Motor Winding's Temperature
Il 1 I

I T I I
TR e e e o e s e S g g g el S e Sl e S P =
(2]
=2
% 100 - ‘ Max Thermal Strength | —
O = = =Relaxed Thermal Limit
E”,‘ 80 Thermal Response l
9 60 -
.
40 L L L | 1 1 1 L L
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
t[hr]
B0 Hip Motor Housing's Temperature
T T I
5
S 70+ —
&
[} | =
& 60
g 50 - _
a
LN 40 e
30 | | | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

t[hr]

Hip Motor's Current

T —Motor's Current Inpul
B Sttt s 7 g i : b o [l — — —Saturation Limit
< o
R
-10 RSO,
| | | | | L | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t[Hr]

Figure 7-7. Hip's overloading operation.

Knee Motor Winding's Temperature
T T T

T T T
— 120 —
R et e i e e e P e e R P
S 100 — v ——Max Thermal Strength | —
8 = = =Relaxed Thermal Limit
o 80 — Thermal Response -
@
S -
-
40 1 1 1 | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t[hr]
66 Knee Motor Housing's Temperature
I I I I
w0
2
o Hor [——"Thermal Response| |
o
2 60— —
a
o~
= 40 —
| | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t[hr]

Knee Motor's Current
[

Motor's Current Input
Li

ot Saturat
< 9
»
S0
1 1 1
o] 0.5 1 1.5 2 25 3 35 4 45 5
t[hr]

Figure 7-8. Knee’s mixed conditions operation.

152/217

Hip Motor Winding's Temperature
Il Il Il

120 =

=—Max Thermal Strength
- = =Relaxed Thermal Limit
Thermal Response

T1 [Deg. Celcius]

0 0.5 1 15 2 25 3 3.5 4 4.5 5
t[hr

Hip Motor Housing's Temperature

[Deg. Celcius]

T

0.5 1 1.5 2 25 3 3.5 4 4.5 5
t[hr]

Hip Motor's Current

|w] Motor's Current Input
- - - saturation Limit

Figure 7-9. Hip's mixed conditions operation.

7.4 Implementation Concerns

The algorithm is designed to operate on a digital-processing unit, like an MCU. In digital control
systems, to ensure that the captured response is accurate, the sampling frequency is a major
parameter that needs to be tuned. Maxon provides the temperature limit for each motor’'s
winding. To ensure that this limit is not violated, MOPS must be tuned according to the
winding’s response. Thus, each motor’s winding bandwidth should be determined. To this end,
the Bode plots of the system (7-1) are illustrated in Figure 7-10 and Figure 7-11 for the hips’
and the knees’ motors, respectively. By consulting these plots, the aforementioned bandwidth
frequencies (f,,,) are determined and presented in equation (7-7) for each motor type.

{ 0.0362, for the Hip 0.0115, for the Hip
Doy =

[rad /s]= F., ;.. >2f,, = [Hz] (7-7)
0.0129, for the Knee ping 0.0041, for the Knee

The Nyquist theorem [66] states that any sampling frequency (Fsampling) above the second
harmonic of the system’s bandwidth is free of aliasing distortions and can capture the actual
system’s behavior. Hence, the loop frequency of the algorithm should be kept above that
frequency, given by equation (7-7). Apparently, the dynamics of the thermal system are
significantly slower than the control system’s bandwidth (Chapter 3). So, executing MOPs in
the same frequency with the control loop would be an exaggeration. Generally, a rule of thumb
would be to run MOPs in ten times the frequency of (7-7) to be on the safe side. However,
since the algorithm’s computational needs remains low, a rationale choise would be to run
MOPs inside the EtherCAT loop in order to use the firmware’s current configuration and
peripherals.

153/217

T T T T T

Hip's Frequency Response

T T
Winding
Housing

System: Housing T System: Winding
Frequency (rad/s): 0.00139 \‘\ Freguency (rad/s): 0.0362

20— Magnitude (dB): -3 Magnitude (dB): -3 m
——— —

-40 —

Magnitude (dB)

-60 [~

-80 —

-45 —

Phase (deg)
w
o
T

-135 —

-180 =
10° 10 10° 102 107! 10°
Frequency (rad/s)

Figure 7-10. Hip motor’s Bode plot and bandwidth.

Knee's Frequency Response
T T T

= e —r T LS T L
Winding
o = Housing
— .
System: Housing \\\7 System: Winding
Frequency (rad/s): 0.00372 T Frequency (rad/s): 0.0129
= 20~ Magnitude (dB): -3 | Magnitude (dB): -3 7
o T
) L) ~
E -40 \\\
= e
j=]
T ™~
= 60 \\\ ol
\\
80| \\ n
\\
=)
@
=
@
[}
©
=
o
180 = I . . L I e
10°® 10 1072 1072 107 100

Frequency (radfs)

Figure 7-11. Knee motor’s Bode plot and bandwidth.

7.5 Conclusion

The above analysis suggests that MOPS operates within the desired operational limits and
has proven robustness. The design goals are met in a variety of different conditions with non-
periodic phenomena and extensive periods of operation. The results indicate that the hip’s
brushless motor demonstrates superior thermal performance and is capable of operating in
extended overloading conditions. A remark is that the motors should be at approximately room
temperature at the firmware’s startup for the correct initialization of the algorithm, since the
temperature is controlled indirectly. Admittedly, the algorithm neglects the thermal behavior of

154/217

the installed drives [65]. This should be taken into account in a potential future implementation
of MOPs. Note that since the algorithm is supplied with current measurements after each
motor’s drive, its operation could not lead to damaging the actuators. The drives have internal
safety controls that regulate their output current depending on their status and temperature.
At the same time, the current sensors that will be installed to the motors will supply MOPs with
the actual current that is applied to each actuator. So, the system is expected to operate
flawlessly.

155/217

8 Conclusions and Future Work

8.1 Conclusions

The already implemented architecture of Laelaps Il has been proven to be most insightful, by
exploiting several state-of-the-art technologies and design trends to facilitate new feature
integration and development. The combination of a highly demanding control application, such
as the motion control of a quadruped, with the most deterministic communication protocol
available on the market, was a remarkably wise choice. The significant amount of time,
necessary to get an overall grasp of EtherCAT protocol is compensated by its modularity,
scalability and performance.

In this thesis, an effort was made to improve certain aspects of the already implemented
firmware. Towards this, a smoother planner was introduced that resulted in a more stable, car-
like motion of the robot. Simulations, along with videos [94], indicate that the robot’s motion
presents increased stability since for the first time it can move without lateral body support.
Furthermore, special attention was given to improve the execution time of the firmware in order
to exploit the increased bandwidth that Laelaps’ distributed architecture offers and make
provisions for future advancements. For the first time, the actual execution flow of the firmware
was investigated (see Section 3.5.6), proving that the control loop has not been running as
expected, even after this thesis’ improvements. The achieved performance is illustrated in
Table 3-6. Note that even with this latency in the control loop’s execution, its frequency is
adequate and no disruptions were observed during the robot’s operation. Additionally, this
work adopted the latest standards in code proofing, since the developed firmware complies
with the industry’s MISRA C: 2012 standard. The code is designed to facilitate future
maintenance tasks by other team members. As it was realized many run-time bugs were found
using static analysis tools, while the adopted coding style resulted in having a clean and
straight-forward code structure. This has significantly improved the efficiency of the code
reviews.

This work introduced IMU sensors for the first time in Laelaps’ ecosystem. Their
integration proved to be seamless, while results (Section 4.8) indicate that the created
firmware operates within design specifications. From its hardware aspect, the created slave
can operate in any mobile system, since it has separate power supply channels that support
a wide range of the common voltages met in batteries. Its portable design is both easy to
assemble and mount, while the firmware structure is easy to comprehend and modify to cater
to any needs that emerge.

Laelaps 1l was designed to execute highly dynamic behaviors and to this end, it is
equipped with powerful actuators and a relatively light body frame. A major drawback in
exploring such regimes had been the motor overheating problem in high currents. To account
for this, a simple algorithm was designed to ensure the motors’ nominal operation. Even
though that it is based solely on current measurements to regulate the output power, the
simulations indicate that it is a robust, on the “safe-side” design (Section 7.3).

To optimize the development of future quadrupeds and Laelaps Il itself, its internal
parameters should be estimated accurately. The interdependent nature of its hardware
components and its overall dynamic performance cannot be ignored by the design process.
So a framework was developed for the design of parameter estimation experiments.
Moreover, certain techniques were employed to overcome the pathogenies of the proposed

156/217

methods. Admittedly, the optimized trajectory minimizes the noise’s impact and other
distortions that downgrade the end-result of the identification process (Section 6.4.7). Of
course, it constitutes an initial effort and to become functional on the real robot, certain
hardware and firmware modifications are required.

To summarize, this thesis demonstrates how certain improvements on Laelaps Il can lead
to many interesting results. From the firmware aspect, the overall execution time is reduced
and several features were added to ensure the integrity of the equipment and the safety of its
users. Moreover, MOPs will eventually unlock the otherwise locked PWM saturation limits and
the investigation of high-power dynamic regimes will become possible. Last but not least, by
the introduction of the absolute encoder modules the experiment workflow has been
significantly shortened, through automating the formerly tedious startup sequence of the
guadruped.

8.2 Future Work

Nevertheless, the various improvements that Laelaps Il was subjected to, there is always room
for even more. This study has involved many aspects of its firmware and hardware. For
starters, it became obvious that the Delfino dual-core capabilities and various peripherals, like
DMA, could increase the firmware’s performance and service more demanding applications
in the future. One idea is the implementation of state estimation algorithms in the second core
of Delfino to design even better control schemes. Moreover, the control loop’s latency should
be accounted and solved, since the motion control is a very time critical task. To this end,
certain proposals were made in this thesis (see Sections 3.5.5 and 3.5.6) that should be
considered in the next version of the firmware.

Another step could be the execution of the necessary hardware modifications to
accommodate current sensors. This will eventually enable the execution of the designed
identification experiments and estimate each leg’s parameters. Also, it will become possible
to implement in firmware, the described MOPS algorithm and unlock the PWM saturation
limits.

As for the IMUs, they could be used in an actual whole-body state-estimation algorithm
and have an insight into the body’s actual motion during gait-cycles. Moreover, another idea
could be the design of an algorithm to calculate the free acceleration, which is the gravity-free
reading of the accelerometers that currently is not calculated. Apparently, there are multiple
options and it is up to the CSL-EP Legged Robots Team how exactly these modules are going
to be exploited in the future.

The installation of absolute encoders has simplified significantly the experiments’
workflow, by automating the startup sequence of Laelaps Il. The next step in this direction is
to enable the Linux-ROS EtherCAT master that is still in development by members of the CSL-
EP Legged Robots Team. This way, Laelaps Il is going to exploit the ROS capabilities that
this EM offers, which translate to better interconnection with more tools available for further
development. The potential of such a modification would be remarkable since ROS is
gradually becoming the leading standard in robotics research. Last but not least, power
consumption should be studied and optimized along with the introduction of batteries to
achieve true mobility. In this work, certain provisions were made to facilitate this transition,
since all of the low-power electronics can operate with standard battery voltages.

157/217

Generally, there are many things to consider and | cannot possibly know what the future
holds, but I am sure of one thing; great things are coming and | am glad that | have been
involved in the overall process.

158/217

9 References

[1]
[2]
[3]

[4]
[5]
[6]
[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

“Boston Dynamics Atlas,” Boston Dynamics. https://www.bostondynamics.com/atlas.
“Boston Dynamics Spot,” Boston Dynamics. https://www.bostondynamics.com/spot.
“Boston Dynamics Legacy Robots,” Boston Dynamics.
https://www.bostondynamics.com/legacy.

“ANYbotics ANYmal C,” ANYbotics. https://www.anybotics.com/anymal-legged-robot/.
“Biomimetic Robotics Lab,” MIT MECHE. https://biomimetics.mit.edu.

“Agility Robotics DIGIT,” Agility Robotics. https://www.agilityrobotics.com/digit.

Mich. Dearborn, “NO BONES ABOUT IT: FORD EXPERIMENTS WITH FOUR-
LEGGED ROBOTS, TO SCOUT FACTORIES, SAVING TIME, MONEY,” Jul. 27,
2020. https://media.ford.com/content/fordmedia/fna/us/en/news/2020/07/27/no-
bones-about-it-ford-experiments-with-four-legged-robots.html.

“CSL-EP Legged Robots Team Research,” CSL-EP Legged Robots Team Website,
2020. http://nereus.mech.ntua.gr/legged/.

R. Buchanan, L. Wellhausen, M. Bjelonic, T. Bandyopadhyay, N. Kottege, and M.
Hutter, “Perceptive whole-body planning for multilegged robots inconfined spaces,” J
Field Robotics, vol. 38, no. 1, pp. 68-84, Jan. 2021, doi: 10.1002/rob.21974.

M. Camurri, M. Ramezani, S. Nobili, and M. Fallon, “Pronto: A Multi-Sensor State
Estimator for Legged Robots in Real-World Scenarios,” Frontiers in Robotics and Al,
p. 18.

M. Bloesch et al., “State Estimation for Legged Robots - Consistent Fusion of Leg
Kinematics and IMU,” presented at the Robotics: Science and Systems 2012, doi:
10.15607/RSS.2012.VI111.003.

“Inertial Sensors, GPS and Odometry,” in Handbook of Robotics, 2nd ed., Springer.
“Basics of Rotary Encoders: Overview and New Technologies,” Machine Design.
https://www.machinedesign.com/automation-iiot/sensors/article/21831757/basics-of-
rotary-encoders-overview-and-new-technologies.

“Sensing and Estimation,” in Handbook of Robotics, Springer, pp. 88-106.

K. Machairas and E. Papadopoulos, “An Active Compliance Controller for Quadruped
Trotting,” in 2016 24th Mediterranean Conference on Control and Automation (MED),
Athens, Greece, Jun. 2016, pp. 743-748, doi: 10.1109/MED.2016.7536064.

D. J. Hyun, S. Seok, J. Lee, and S. Kim, “High speed trot-running: Implementation of
a hierarchical controller using proprioceptive impedance control on the MIT Cheetah,”
The International Journal of Robotics Research, vol. 33, no. 11, pp. 1417-1445, Sep.
2014, doi: 10.1177/0278364914532150.

V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. De Pieri, and D. G. Caldwell, “A
reactive controller framework for quadrupedal locomotion on challenging terrain,” in
2013 IEEE International Conference on Robotics and Automation, Karlsruhe,
Germany, May 2013, pp. 2554-2561, doi: 10.1109/ICRA.2013.6630926.

K. Machairas and E. Papadopoulos, “On Dynamic Quadrupedal Gaits Using Active
Compliance Control,” Camp Ohiyesa, MI, USA, Jun. 2016, [Online]. Available:
http://nereus.mech.ntua.gr/Documents/pdf_ps/dwl6a.pdf.

A. S. Mastrogeorgiou, Y. S. Elbahrawy, K. Machairas, A. Kecskemethy, and E.
Papadopoulos, “Evaluating deep reinforcement learning algorithms for quadrupedal
slope handling,” presented at the 23rd International Conference Series on Climbing
and Walking Robots and the Support Technologies for Mobile Machines, Moscow,
Russia, Aug. 2020, doi: 10.13180/clawar.2020.24-26.08.58.

Stamatis Athiniotis, “Firmware design for microcontrollers on EtherCAT network for
quadruped robot motion control,” Diploma Thesis, National Technical University of
Athens, Athens, 2018.

J. Braun, Formulae Handbook, 4th ed. Sachseln: Maxon Group, 2018.

159/217

[22]

[23]

[24]

[25]

[26]
[27]

(28]
[29]
[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

S. Dallas, K. Machairas, K. Koutsoukis, and E. Papadopoulos, “A Leg Design Method
for High Speed Quadrupedal Locomotion,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, Sep. 2017, pp.
4877-4882, doi: 10.1109/IROS.2017.8206365.

‘Extended Kalman Filter and System Identification,” in Kalman Filtering, Berlin,
Heidelberg: Springer, 2009, pp. 108-130.

M. P. Wensing, K. Sangbae, and E. J.-J. Slotine, “Linear Matrix Inequalities for
Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the
Mass Distribution,” IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 60-67,
Jan. 2018, doi: 10.1109/LRA.2017.2729659.

A. N. Bompos, K. P. Artemiadis, S. A. Oikonomopoulos, and J. K. Kyriakopoulos,
“Modeling, full identification and control of the mitsubishi PA-10 robot arm,” in 2007
IEEE/ASME international conference on advanced intelligent mechatronics, Zurich,
Switzerland, Sep. 2007, pp. 1-6, doi: 10.1109/AIM.2007.4412421.

J. K. Keesman, System ldentification: An Introduction, 1st ed. Springer.

L. Ljung, System Identification: Theory for the User, 2nd ed. Upper Saddle River, NJ
07458: Prentice Hall PTR.

“Simplifying Current Sensing.” Texas Instruments Incorporated, [Online]. Available:
https://www.ti.com/lit/eb/slyy154a/slyy154a.pdf.

“Laelaps Il Quadruped Overview,” CSL-EP Legged Robots Team Website, 2020.
http://nereus.mech.ntua.gr/legged/?page_id=161.

“Beckhoff’s EtherCAT Technology,” ETG Main Website, 2020.
https://www.ethercat.org/default.htm.

“IIT’s HyQReal Quadruped,” IIT Dynamic Legged Systems, 2020. https://dls.iit.it.
“Giant Magellan Telescope with site-wide real-time connectivity and 3,000 precisely
controlled servo axes,” Sep. 14, 2020.
https://www.beckhoff.com/english.asp?press/news3320.htm?pk_campaign=News&p
k_kwd=GMTO&pk_source=LinkedIn&pk_medium=socialmedia_post.

“EtherCAT Specification.” EtherCAT Technology Group, Sep. 15, 2017, [Online].
Available: https://www.ethercat.org/memberarea/download/ETG1000-x-R-V1i0i4.zip.
M. Karamousadakis, “Real-time programming of EtherCAT master in ROS for a
quadruped robot,” Diploma Thesis, National Technical University of Athens, Athens,
2019.

“‘Hardware Data Sheet Section |.” Beckhoff, Feb. 21, 2017, [Online]. Available:
https://download.beckhoff.com/download/Document/io/ethercat-development-
products/ethercat_esc_datasheet_secl technology 2i3.pdf.

“CANopen — The standardized embedded network,” CiA Knowledge Base.
https://www.can-cia.org/canopen/.

“EtherCAT Modular Device Profile ETG.5001.” EtherCAT Technology Group, Feb. 17,
2016, [Online]. Available:
https://www.ethercat.org/memberarea/download/ETG5001_1 V0i9i0_S D _MDP_Ge
neralSpec.pdf.

‘EtherCAT Slave Stack Code (SSC) ET9300,” ETG Main Website.
https://www.ethercat.org/en/products/54FA3235E29643BC805BDD807DF199DE .ht
m.

“EtherCAT Technology Group.” https://www.ethercat.org/default.htm.

“TwinCAT 3 Automation Software,” Beckhoff Website. https://www.beckhoff.com/en-
us/products/automation/twincat/.

“EtherLAB EtherCAT Master,” IgH Website. https://www.etherlab.org/en/index.php.
“C2000 Delfino MCU F28379D LaunchPad™ development kit,” Texas Instruments
Website. https://www.ti.com/tool/LAUNCHXL-F28379D.

160/217

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]

[65]

‘FB1111 | EtherCAT piggyback controller board.” Beckhoff, [Online]. Available:
https://download.beckhoff.com/download/Document/io/ethercat-development-
products/beckhoff_fb1111-014x_v22.pdf.

“ftrace - Function Tracer,” ftrace Documentation.
https://www.kernel.org/doc/Documentation/trace/ftrace.txt.

“Application Note ET9300 (EtherCAT Slave Stack Code).” Beckhoff, Nov. 14, 2017,
[Online]. Available: https://download.beckhoff.com/download/document/io/ethercat-
development-products/an_et9300_v1i8.pdf.

“‘EC45 Brushless 250 Watt Motor Catalogue.” Maxon Group, [Online]. Available:
https://www.maxongroup.com/medias/sys_master/root/8841182445598/EN-231.pdf.
“‘Planetary Gearhead GP 52 C Catalogue.” Maxon Group, [Online]. Available:
https://www.maxongroup.com/medias/sys_master/root/8841219145758/EN-401-
402.pdf.

‘RE50 Graphite Brushes 200 Watt Motor.” Maxon Group, [Online]. Available:
https://www.maxongroup.com/medias/sys_master/root/8841119367198/EN-142.pdf.
K. Machairas and E. Papadopoulos, “An Analytical Study on Trotting at Constant
Velocity and Height,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, Oct. 2018, pp. 3279-3284, doi:
10.1109/IR0OS.2018.8593686.

George Bolanakis, “Zxediaouég & YAomoinon HAekTpovikoU ZuoTruaTtog TeTpdmmodou
Poutrot,” Diploma Thesis, National Technical University of Athens, Athens, 2018.
“‘RMB28 / RMF44 angular magnetic encoder modules.” RLS, May 13, 2020, [Online].
Available:
https://www.rls.si/eng/fileuploader/download/download/?d=1&file=custom%2Fupload
%2FRMB28D01_16 EN data sheet.pdf.

CSL-EP’'s Legged Robots Team, “EtherCAT Laelaps Motion Control.”
https://bitbucket.org/csl_legged/laelaps-leg-firmware/src/master/.

“‘Misumi 5 Series/Post-Assembly Insertion Stopper Nuts,” Misumi Website.
https://uk.misumi-ec.com/vona2/detail/110302608320/.

“HEDL-5640 Datasheet.” Broadcom, [Online]. Available:
https://docs.broadcom.com/doc/AV02-0993EN.

R. Reeder, “An Inside Look at High Speed Analog-to-Digital Converter Accuracy,”
Analog Devices. https://www.analog.com/en/technical-articles/an-inside-look-at-high-
speed-analog-to-digital-converter-accuracy.html.

Richard Zurawski, Industrial Communication Technology Handbook, 2nd ed. CRC
Press, 2017.

“Grobotronics DC-DC Step-Down Regulator,” Grobotronics.
https://grobotronics.com/dc-dc-step-down-5v-2a.html.

“‘LM1117 800-mA, Low-Dropout Linear Regulator.” Texas Instruments Incorporated,
[Online]. Available: https://www.ti.com/lit/ds/symlink/Im1117.pdf.

“TI's Code Composer Studio.” https://www.ti.com/tool/download/CCSTUDIO.
ether_ros CSL-EP Legged EtherCAT Master Package. 2020.

“TI's ControlSuite,” Texas Instruments Website.
https://www.ti.com/tool/CONTROLSUITE.
‘MISRA,” MISRA Coding Standard.

https://www.misra.org.uk/MISRAHome/tabid/55/Default.aspx.

“Oversampling,” Wikipedia. https://en.wikipedia.org/wiki/Oversampling.
“TMS320F287xD Dual-Core Delfino Microcontrollers Technical Reference Manual.”
Texas Instruments Incorporated, [Online]. Available:
https://www.ti.com/lit/ug/sprunm8h/sprunm8h.pdf.

“Analog Servo Drive AZBDC12A8.” Advanced Motion Controls, [Online]. Available:
https://dpk3n3gg92jwt.cloudfront.net/domains/amc/pdf/AMC_Datasheet AZBDC12A
8.pdf.

161/217

[66]

“‘Nyquist-Shannon sampling theorem,” Wikipedia. @ [Online]. Available:

https://en.wikipedia.org/wiki/Nyquist—Shannon_sampling_theorem.

[67]

[68]
[69]
[70]
[71]

[72]

[73]
[74]
[75]
[76]
[77]
[78]
[79]

[80]

[81]

[82]
[83]
[84]

[85]

[86]

“C2000 Digital Control Library Users Guide.” Texas Instruments Incorporated,
[Online]. Available:
https://dev.ti.com/tirex/explore/node?node=AKZRbh4oxv98HaO0YKjygQ__gYkahfz_
_LATEST.

“C2000™ CLA Software Development Guide,” Texas Instruments Website.
https://software-dl.ti.com/C2000/docs/cla_software_dev_guide/fag.html.

M. Barr, Embedded C Coding Standard, BARR-C: 2018. Barr Group.

“‘ADIS16364 IMU Datasheet.” Analog Devices, 2019 2009, [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-
sheets/ADIS16364.pdf.

“‘ADIS16375 IMU Datasheet.” Analog Devices, 2019 2010, [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-
sheets/ADIS16375.pdf.

J. Bohnenberger, Beschreibung einer Maschine zur Erlduterung der Geseze der
Umdrehung der Erde um ihre Axe, und der Verdnderung der Lage der letzteren. Nebst
einer Abbildung. Tubingen, 1817.

“Coriolis force,” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Coriolis_force.

“Piezoelectricity,” Wikipedia. https://en.wikipedia.org/wiki/Piezoelectricity.

Autodesk Eagle. Autodesk.

“TMS320F2837xD Dual-Core Delfino™ Microcontrollers Datasheet.” Texas
Instruments Incorporated, Dec. 2013, [Online]. Avalilable:
https://www.ti.com/lit/ds/sprs880m/sprs880m.pdf.

‘LM1085 3-A Low Dropout Positive Regulators Datasheet.” Texas Instruments
Incorporated, [Online]. Available: https://www.ti.com/lit/ds/symlink/Im1085.pdf.

“L78 Positive Low Dropout Regulators Datasheet.” STMicroelectronics, Sep. 2018,
[Online]. Available: https://www.st.com/resource/en/datasheet/I78.pdf.

‘LDO Basics.” Texas Instruments Incorporated, [Online]. Available:
https://www.ti.com/lit/eb/slyy151a/slyy1l51a.pdf.

CADENCE PCB SOLUTIONS, “Tips for Optimal High Speed SPI Layout Routing,” Tips
for Optimal High Speed SPI Layout Routing.
https://resources.pch.cadence.com/blog/2019-tips-for-optimal-high-speed-spi-layout-
routing.

K. Machairas, “Design and Implementation of the Electrical/ Electronic Subsystem, and
Real-time Programming for a Space Emulator Robot,” Diploma Thesis, National
Technical University of Athens, Athens, 2013.

“Printed Circuit Board (PCB) Design Issues,” in Linear Circuit Design Handbook,
Newnes/Elsevier, 2008.

A. Papatheodorou, ADIS16364 IMU EtherCAT Slave CSL-EP Legged BitBucket
Repository. Athens: CSL-EP Legged - NTUA, 2020.

A. Papatheodorou, ADIS16375 IMU EtherCAT Slave CSL-EP Legged BitBucket
Repository. Athens: CSL-EP Legged - NTUA, 2020.

P. Dhaker, “Introduction to SPI Interface.” Analog Devices, Sep. 2018, [Online].
Available: https://www.analog.com/media/en/analog-dialogue/volume-52/number-
3/introduction-to-spi-interface.pdf.

“EtherCAT Slave Implementation Guide ETG2200.” EtherCAT Technology Group,
Nov. 23, 2018, [Online]. Available:
https://www.ethercat.org/download/documents/ETG2200_V3ili0_G_R_Slavelmplem
entationGuide.pdf.

162/217

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]
[95]
[96]

[97]
[98]

[99]

[100]

[101]

[102]
[103]
[104]

[105]
[106]

[107]

“‘Hardware Data Sheet Section Il.” Beckhoff, Oct. 09, 2020, [Online]. Available:
https://download.beckhoff.com/download/Document/io/ethercat-development-
products/ethercat_esc_datasheet_sec2_registers_3i0.pdf.

“‘Hardware Data Sheet Section IIl.” Beckhoff, Feb. 21, 2017, [Online]. Available:
https://download.beckhoff.com/download/Document/io/ethercat-development-
products/ethercat_et1100_ datasheet v2i0.pdf.

“ETG.2100 EtherCAT Network Information (ENI) Specification.” EtherCAT Technology
Group, Sep. 30, 2015, [Online]. Available:
https://www.ethercat.org/memberarea/download/ETG2100_V1i0il_S_R_ENISpec.pd
f.

“Xsens MTi-200 IMU,” Xsens Web Page. https://www.xsens.com/products/mti-100-
series.

“Xsens MTi 100 Series IMU Manual.” Xsens, [Online]. Available:
https://content.xsens.com/mti-100-manual?hsCtaTracking=46bfb65b-9f43-4de6-
92ef-8alca7cffa71%7C030313c6-79ce-4ee2-b90a-dedd4347178a.

M. Looney, “Anticipating and Managing Critical Noise Sources In MEMS Gyroscopes,”
Analog Devices. .

“‘RE 50 50 mm, Graphite Brushes, 200 Watt Datasheet.” Maxon Group, Apr. 2020,

[Online]. Available:
https://www.maxongroup.com/medias/sys_master/root/8841119367198/EN-142.pdf.
“Control Systems Lab - EP Team - NTUA,” Youtube.
https://www.youtube.com/user/CSLabEP/featured.

“Spot BP application,” Boston Dynamics Spot Applications.
https://www.bostondynamics.com/spot/applications/bp.

‘Maxon Standard Specification.” = Maxon Group, [Online]. Available:

https://www.maxongroup.com/medias/sys_master/root/8828714647582/Standardspe
z-100-103-2018-EN.pdf.

“Encoder HEDL 5540.” Maxon Group.

“Maxon DC motor and maxon EC motor Key information.” Maxon Group, Nov. 2014,
[Online]. Available:
https://www.maxongroup.com/medias/sys_master/root/8815460712478/DC-EC-Key-
Information-14-EN-42-50.pdf?attachment=true.

A. Papatheodorou, “Leg Identification Bitbucket Repository,” Bitbucket.
https://bitbucket.org/csl_legged/leg_identification/src/master/.

“INA253 Datasheet.” Texas Instruments Incorporated, Jul. 2018, [Online]. Available:
https://www.ti.com/lit/ds/symlink/ina253.pdf?ts=1606079283435&ref _url=https%253A
%252F%252Fwww.google.com%252F.

“INA253 EVM User’'s Guide.” Texas Instruments Incorporated, May 2018, [Online].
Available:
https://www.ti.com/lit/ug/sboul94/sboul94.pdf?ts=1606128363377&ref _url=https%?2
53A%252F%252Fwww.ti.com%252Ftool%252FINA253EVM.

“Hall-effect sensor,” Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Hall-
effect_sensor.

“TMCS1100 Datasheet.” Texas Instruments Incorporated, Jun. 2020, [Online].
Available: https:/fwww.ti.com/lit/ds/symlink/tmcs1100.pdf.

“TMCS1100 EVM User’s Guide.” Texas Instruments Incorporated, Mar. 2020, [Online].
Available: https://www.ti.com/lit'ug/sbou209a/sbou209a.pdf.

“‘Ramp Function,” Wikipedia. https://en.wikipedia.org/wiki/Ramp_function.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, “Dynamic Parameter Identification,”
in Robotics: Modelling, Planning & Control, Springer.

O. Christidi-Loumpasefski, K. Nanos, and E. Papadopoulos, “On Parameter Estimation
of Space Manipulator Systems Using the Angular Momentum Conservation,” in 2017

163/217

[108]
[109]
[110]
[111]

[112]

[113]
[114]

[115]

[116]

[117]

[118]
[119]

[120]

IEEE International Conference on Robotics and Automation (ICRA), Singapore, May
2017, pp. 5453-5458, doi: 10.1109/ICRA.2017.7989641.

“Condition number,” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Condition_number.

“Sequential Quadratic Programming,” Wikipedia.
https://en.wikipedia.org/wiki/Sequential_quadratic_programming.

“Installing TwinCAT 3 Engineering,” Beckhoff Website.

https://infosys.beckhoff.com/content/1033/tc3_installation/6162705803.html.

“C2000 Real-Time MCUs.” https://www.ti.com/microcontrollers/c2000-real-time-
control-mcus/overview.html.

Kenneth W. Schachter, “TMS320F2837xD Microcontroller Workshop Guide & Lab
Manual.” Texas Instruments Incorporated, [Online]. Available: https://software-
dl.ti.com/trainingTTO/trainingTTO_public_sw/c28x28379/F2837xD_Microcontroller_
MDW_2-0.pdf.

“C28x Interrupt Nesting,” Texas Instruments Website. https://software-
dl.ti.com/C2000/docs/c28x_interrupt_nesting/html/index.htm.

Changyi Gu, “Power On & Bootloader,” in Building Embedded Systems, Apress Media,
pp. 5-25.

“CLA Math Library User’s Guide.” Texas Instruments Incorporated, [Online]. Available:
https://dev.ti.com/tirex/explore/node?node=AlYKj-
[IPrDpivub6jyGWg__gYkahfz__ LATEST.

Changyi Gu, “RAM, DMA & Interrupt,” in Building Embedded Systems, Apress Media,

pp. 47-68.
“F2837xD IPC (Inter-Processor Communication) Device Driver User's Guide.” Texas
Instruments Incorporated, [Online]. Available:

https://dev.ti.com/tirex/explore/node?node=ANC.9pKXDeHulipF9J-
0.g__coGQ502__ LATEST&search=IPC.

‘Tl Linker Command File Primer,” Tl Linker Primer. https://software-
dl.ti.com/ccs/esd/documents/sdto_cgt_Linker-Command-File-Primer.html.
“LaunchXL-F28379D User’'s Guide.” Texas Instruments Incorporated, [Online].
Available: https://www.ti.com/lit/pdf/sprui77.

“LM1085 Product Overview,” Texas Instruments Website.
https://www.ti.com/product/LM1085.

164/217

Appendix A. TwinCAT 3 Master Setup

In this section the steps for setting up the Laelaps Il TwinCAT 3 project are laid. Note that the
project is already configured in the CSL-EP’s Control Center PC. Nevertheless, to set it up
from scratch follow the steps below.

TwinCAT 3 Installation

Navigate to Beckhoff's website [40] and download TwinCAT 3.1 — eXtended Automation
Engineering (XAE). Follow the instructions in [110] to install the downloaded software
package. In the current tutorial Visual Studio Community 2019 (VS) was preinstalled. This
however is not mandatory, but nevertheless recommended. Some menus and options are
displayed differently in other versions of VS.

TwinCAT 3 Configuration
Before setting up the project, the TWinCAT 3 has to be configured. At first the necessary real-
time capable Ethernet drivers should be installed. To do this:
1. Start TwinCAT 3 (Right-Click on the TwinCAT icon inside the hidden programs’ menu
as Figure A-1 suggests). Note that if a different version of Visual Studio is installed the
highlighted menu entry is not going to have the (VS2019) at the end.

@ About TwinCAT...

TwinCAT XAE(VS2019) |

Figure A-1. Start TwinCAT 3.

2. From the TwinCAT 3 start-page, click on Create a new project entry and follow the
procedure highlighted in Figure A-2. Name the project LaelapsNetworkProject.

Get started
(3 Connect to a codespace Conflgure your new pI'OJeCt
Creste and manage cloud- povered development

TwinCAT XAE Project (XML format)

z R .
9 Open a project or solution
Open sloca Visual S projct o an e

\\\\\\\\\\\\\\\\\\\\\\\\\

&5 Opena local folder
Novigaeand e codewithinny [

Create a new project

Figure A-2. Create new TwinCAT 3 project.

3. Click on the TwinCAT’s entry, at the Extensions menu and select Show Realtime
Ethernet Compatible Devices... (Figure A-3).

165/217

" Extensions | Window Help Search (Ctrl+Q) el LaelapsNetworkl

Sels > JIE - | s xiNT
TwinCAT 4 Windows »
EREE ' . Activate Configuration
A z £ Restart TwinCAT System
'1 -
B Ma"age_E"te"s'”‘ I Restart TwinCAT (Config Mode)
Customize Menu... e Relisad Devices
Scan
Toggle Free Run State

Show Online Data
Show Sub ltems
Hide Disabled ltems

Software Protection...

W @ BT €® @,

Access Bus Coupler/IP Link Register...
Update Firmware/EEPROM 4

Show Realtime Ethernet Compatible Devices...
File Handling »

Figure A-3. Show Realtime Ethernet Compatible Devices... menu entry.

4. Select and Install your Ethernet network adapter, as shown in Figure A-4. Note that for
hard real-time operation, only the real-time capable drivers must be used (Compatible
devices). If the PC does not have such network adapter, TwWinCAT 3 is not going to run
at high EtherCAT speeds.

Installation of TwinCAT RT-Ethernet Adapters X

Eenepdipers |

[0 Installed and ready to use devices(reallime capable)
=) ? Installed and ready to use devices(for demo use only)
: I? Ethemet - Realtek PCle GBE Family Cunlrollerl
-[5F Compatible devices
B P Incompatible devices
: ? Wi-Fi - Realtek RTLB723AE Wireless LAN 802.11n PCI-E NIC
(57 Disabled devices

[~ Show Bindings

Figure A-4. Installation of RT-Ethernet adapter tab.

5. If this is the first time running TWinCAT 3 in the used PC, before proceeding with the
setup, a .bat file must be executed to setup specific settings in BIOS. Close TwWinCAT

166/217

3 instance and navigate to {Hard Drive Label}:\TwinCAT\3.1\System. Then run as
administrator the win8settick.bat; note that it runs instantly. Then reboot and open
again the recently created TwinCAT 3 project.

Next, the required slave ENI files must be imported to TwinCAT 3. With these files
TwinCAT recognizes the different slave kinds in the network and understands their
Input/Output PDOs. To do this copy and paste the required .xml files (found in [52] [83]
[84], under the respective TwinCAT Configuration Files folder) to the folder with path:
{Hard Drive Label}\TwinCAT\3.1\Config\lo\EtherCAT.

Last, opt for the Reload Device Descriptions, as Figure A-5 illustrates. Now TwinCAT
should be capable of understanding each slave’s identity, PDOs and settings.

| Extensions | Window Help | Search (Ctrl+Q) el LaelapsNetworkProject
e > E Sa XINT msREREEa-
TwinCAT ¥ Windows i | & e < i Align by
WS Rl A ore Confgiration
pLC » | .

B4 Restart TwinCAT System

- :

E MangeEd i B3 Restart TWinCAT (Config Mode)
Eustooze Meny 2 Reload Devices

Scan

Toggle Free Run State
Show Online Data
Show Sub Items
Hide Disabled ftems

BT @

Software Protection...

Access Bus Coupler/IP Link Register...

Update Firmware/EEPROM »
Show Realtime Ethernet Compatible Devices...

File Handling »
Selected ltem »
EtherCAT Devices »

Update Device Descriptions (via ETG Website)...

Reload Device Descriptions
Manage User Defined Whitelist...

TeProjectCompare

Target Browser »

Rade Plat

Figure A-5. Reload Device Descriptions entry.

Creating the EtherCAT network
In TwinCAT’s solution explorer (under 1/0) a virtual representation of the physical network
should be created. This guide follows the slave order proposed in Chapter 5. To create the

virtual network:

Manage User Defined Blacklist...

8. Configure the EtherCAT master. Right-Click on the Devices entry in the Project
Explorer’'s window to insert EtherCAT master device, as shown in Figure A-6. Next,
choose a suitable name. If a window with the available network adapters pops up,
choose the previously installed real-time adapter to be used by the master.

4 @vo
. Devices

&% Mappings Add New Item...

Add Existing Item...

Add New Folder...

Export EAP Con

Scan

fig File

Ins
Shift+Alt+A

Type:

Name:

Insert Device

=58 EtherCAT
=% EtheCAT Master
5% EtheCAT Slave
5% EtheCAT Automation Protocol (Network Variables)
"l EtheiCAT Automation Protocol via ELBB01, EtherCAT
52 EtherCAT Simulation

#% EtherCAT Open Mode Adapter

-8 Ethemet

- &% Profibus DP

+- 8% Profinet
#-€if CANopen
4] =3 DeviceNet

#-~g= EtheiNet/IP
+1-4/1 SERCOS interface
510 Beckholf Lightbus

- USB
#-5% BACnet

Target Type
@ PConly
O X only
QO BX only
Oa

[Laelaps_Masted

Figure A-6. EtherCAT master configuration procedure.

9. Right-Click on the Project Explorer's master entry and select Add New ltem...

167/217

10. On the pop-up window, one may choose the ENI file of the slave that intends to add in
the network. This procedure is illustrated in Figure A-7. Repeat this step for every slave
on the physical bus. Rename them (two left-clicks on the slave instance) to match the
proposed slave order in the network (see Chapter 5, e.g HR_LEG).

s e |
4 =% Laelops Master (EtherCAT
*8 image ‘a Add New ltem... Ins
*® Image-Info ‘a0 Add Existing Item. Shift+Alt+ A
2 SyncUnits X Remove Del
b Inputs
» i Outputs Change Netid..
13 InfoData v Mas! As..
. 0 infaD SR syt Mt EhwCAD Insert EtherCAT Device
% Mappings
Append EtherCAT Cmd
Append Dynamic Container Search :} Narme: Tem 1 Multiple: ~ [1 -
Online Reset Type: w4l EJ Coupler(Edwexx) ,,
Online Reload &8 TwinSAFE Coupler
B Safety Teminals Pod
Online Delete .. TWnSAFE Fieldbus Boves
% Scan + W EtheiCAT Fieldous Bowes (EPso)
+) EtheiCAT P Fieldbus Boxes [EPPxoo)
Change Id. - il EtherCAT CX Device
+ M EtheCAT PC card .
Suk 2] Divs IMU slaves’ ENIs |~ ©*
P Copy Ctrl-C 5 % EvaBoad (Intedaces)
3 % EvaBoad (Sample Source Demos)
& fcu X o B Miscelaneous

3 B EtheCAT Piggyback controller boards (FB1:Y
@ CSLEPNTUA
TI I C28kx Slave Devices
il Independent Project File TI ADIS16364_IMU_ECAT_SLAVE(SPI) »
TI ADIS16375_IMU_ECAT_SLAVE(SPI)
o Dissble TI EtherCAT Laelaps Motion Control vé (SP1)
TI EthesCAT Laelaps Motion Control CONSTVEL vé (SF1)
TI Laelaps_FID ha
T Laelaps_ID_Slave_SPI

5-@ Ininoon Seves Leg slaves ENIs

< >

I Extended Information [Show Hidden Devices E4) Show Sub Groups
4 Check Connector (] Show preconligured Devices (SCI)

Figure A-7. Add slave configuration procedure.

At this point, the virtual network in the Solution Explorer should be like the one illustrated
in Figure A-8.

4 == Laelaps_Master (EtherCAT)

*8 |mage

*8 Image-Info

2 SyncUnits
Inputs

I Outputs

& InfoData

TI HR_LEG

Tl HL_LEG

Tl FL_LEG

Tl FR_LEG

TI ADIS16364_IMU

TI ADIS16375_IMU

v vVvVvvVvVvvVvvVvVvwvVvwvVvwvyvw

Figure A-8. TwinCAT 3 EtherCAT network.

Create TwinCAT 3 Scope Project and PLC Task
11. Add a TwinCAT Scope View to be able to save all EtherCAT variables during the
experiments. Right-click on Solution’s Name -> Add -> New Project and select Scope
YT Project from the TwinCAT Measurement tab as shown in Figure A-9. Name it
Laelaps_Measurements.

168/217

£ Solution "Lar* —* - .
4 i Laclaps,| 21 Build Solution Ctrl+Shift+8

b @ svsTl Rebuild Solution

mor| Analyze and Code Cleanup. »
g e Batch Build...
i’f Configuration Manager...
ANAl 8 Manage NuGet Packages for Solution...
4 /0 Restore NuGet Packages.

< jEZ B New Solution Explorer View

bad e Configure your new project
» % Create Git Repository... Existing Project...
b | @l Save Laclops_EtherCAT. Network as Archive... Existing Web Site.. YT Scope Project
b | 3 Send Laelaps. EtherCAT Network by E-Meail.. 47 Newhem.. o
Project name
: Paste Ctrlev 1 Existing ltem... ShifteAlteA g
20 Rename R ¥4 New Solution Folder [aclap
&%
[P CopyFull Path Installation Configuration File Location
© Open Folder in File Explorer @ New EditorConfig lcz\lkﬂs\inn\wuv(e\lepvr

E1 Openin Terminal
Save As Solution Fiter
Hide Unloaded Projects
£ Denman. N

Figure A-9. Measurement project configuration procedure.

12. Add a PLC task to be able to use the Scope View. Right-Click on PLC -> Add New
Iltem -> Standard PLC Project as indicated in Figure A-10. If no PLC task is created,
TwinCAT 3 will not be able to plot and save the values of the desired EtherCAT
variables. Name it Laelaps_PLC_Task.

& ric Z [P i
3 SAFETY 0 Add New ltem... Ins il Sortby: [Defwuk »
: +
Cos ‘3 Add Existing ltem... Shifts AltsA ' e il sseincrom
il anavymes Add Project from Source Control... - 1 e
Evo
4 %% Devices P
4 5 Laelaps_Master (Et| nks
2® image
*B soeinfo | Bl Hide PLC Configuration
e

Figure A-10. Add PLC task procedure.

13. Create a Global Variable list of all input variables that are intended to be saved during
the experiment. Right-Click on the PLC Task GVL Folder -> Add -> Global Variable
List and name it Inputs. This procedure is presented in Figure A-11.

4 FE Laelaps_PLC_Task Project

b [:3] References
[DUTs

1 GVLs

b [POUs il *| & rou..
[VISUs Export to ZIP &) POU for implicit checks...
DQ].I..% 'P|CTa;téP!:TBkS:<)st Import from ZIP o': DUT...
aelaps. ask Instance . 5
e [Import PLCopenXML... @ Global Variable List...
s ¥ cut CtrleX [&1 Referenced Task...
ANALYTICS 3 Copy cutic &) Visualization...
110 TR
5 X Delete Del Visualization Manager...
i Deaces O R : @ GlobalTetlist..
4 = Laelaps_Master (EtherCAT) ename 2 i
m = M Recipe Manager...
e Mage H Properties Alt+Enter
¥ Image-Info] ImagePool...
b 2 SyncUnits =0 |nterface...
b ‘Inputs P$ Parameter List...
13 Outputs 5
b @ InfoDats 2] Totit
b TI Box 1 (EtherCAT Laelaps Mo [8 Class Diagram...

Figure A-11. Add Global Variable List (GVL).

14. Make sure to add all the necessary variables by following the format shown in Figure
A-12, where all the required inputs to the master are being scoped and saved, making
sure that they have the right variable type. Note that the aforementioned figure’s
variables refer only to the EtherCAT leg slaves. If the IMUs are going to be used, their
variables should be added, too. For the user’s convenience the variables for each kind

169/217

of the created slaves can be found in [52] [83] [84] (under TwinCAT Configuration Files
folder).

VAR GLOBAL
HR Hip Angle AT$I*: INT;
HR Knee_Angle AT$I': INT;
HR Desired Hip_ Angle ATSI*: INT;
HR Desired_Knee_Angle ATS$I*: INT;
HR_PWM_Hip AT:I*: INT;
HR_PWM_Knee AT$I*: INT;
HR Velocity Knee AT$I*: DINT;
HR Velocity Hip AT$I*: DINT;
HR_Time AT$I': UINT;

HL_Hip Angle AT$I*: INT;
HL_Knee_Angle AT$I': INT;

HL Desired Hip_ Angle AT$I*: INT;
HL Desired Knee_Angle AT$I*: INT;
HL_PWM_Hip ATSI*: INT;
HL_PWM_Knee AT$I*: INT;

HL Velocity Knee AT$I*: DINT;

HL Velocity Hip AT$I*: DINT;
HL_Time AT$I*: UINT;

FR_Hip Angle AT$I*: INT;
FR_Knee_Angle ATSI*: INT;

FR Desired Hip Angle AT$I*: INT;
FR Desired_Knee_Angle AT$I': INT;
FR_PWM_Hip AT$I*: INT;
FR_PWM_Knee AT:I*: INT;
FR_Velocity Knee AT$I*: DINT;

FR _Velocity Hip AT$I*: DINT;
FR_Time AT$I*: UINT;

FL_Hip_Angle AT$I': INT;
FL_Knee_Angle AT$I': INT;
FL_Desired Hip_ Angle AT$I*: INT;
FL_Desired Knee_Angle ATSI*: INT;
FL_PWM_Hip AT$I*: INT:
FL_PWM_Knee AT:I*: INT;

FL Velocity Knee AT$I*: DINT;

FL Velocity Hip AT$I': DINT;

FL Time AT$I*: UINT;

END_VAR
Figure A-12. Global Variable List Overview.

15. In the POUS -> MAIN (PRG), create a list of all variables that are necessary to be
handled simultaneously in all slaves. This process MUST be done at least for the
State_Machine variables so that the clocks in all four slaves are initiated at the exact
same time. An example list for the legs’ slaves is shown in Figure A-13.

Solution Explorer - & x van - < [

m.‘q '(9"'-')@"@‘}'—- . PROGRAM MAIN
= Z VAR
Search Solution Explorer (Ctrl+;) P~ 3 Control_State Machine AT$Q*: BOOL:
[3] Solution 'Laelaps_EtherCAT_Network' (2 of 2 4 Control_Blue LEDs AT$Q*: BOOL;
4 “i Laelaps_EtherCAT_Network S Control Red LEDs AT$Q*: BOOL;
[‘,ﬂ SYSTEM € a_ellipsel00 AT$Q*: INT;
MOTION 7 b_ellipsel00 AT$Q*: INT;

8 x_traj_Forel000 AT:Q*: INT;
9 y_traj_Forel000 AT:Q*: INT;
10 X _traj_Hindl000 AT$Q*: INT;
11 y_traj_Hindl000 AT:Q*: INT:
12 Traj_T£100 AT$Q*: INT;
13 Traj_Tsl00 AT:Q': INT;

Laelaps_PLC_Task

4 ;,:_" Laelaps_PLC_Task Project
[External Types

P [:5) References

& DUTs 14 FilterBandwidth AT$Q* : UINT;
4 [GVLs 15 Kpl00 AT$Q* : INT;
&P Inputs 16 Kd1000 AT:Q* : INT;
4 |7 POUs 17 Transition_Time AT$Q* : SINT;
1] MAIN (PRG) 18 Reset_IMUs AT$Q*: BOOL;
(3 VISUs 15| END VAR

b u% PlcTask (PlcTask) 20
O} Laelaps_PLC_Task Instance

Figure A-13. Main variable list.

170/217

16. Build the solution (Figure A-14) and expand the PLC Task’s Instance to inspect the

created variables.

” File Edit View Project = Build = Debug Test Analyze Tools Extensions Wil
3 | @ : : .
o - 5 - I o =] Build Solution Ctrl+Shift+B
PR Rebuild Solution
% Build 4024.10 (Loaded) ~ - g2
Clean Solution

Solution Explorer Run Code Analysis on Solution Alt+F11

e ®- & @ | % Build Laelaps_PLC_Task Ctrl+B

Search Solution Explorer (Ctrl+;)

fa] Solution 'Laelaps_EtherCAT_Netw|
4 h] Laelaps_EtherCAT_Network
b @l SYSTEM

Rebuild Laelaps_PLC_Task
Clean Laelaps_PLC_Task

Batch Build...

Configuration Manager...

k=] MOTION

4 &C Check all objects [Laelaps_PLC_Task]

Figure A-14. Build Solution option.

17. Link all Input and Output variables of the list to the respective EtherCAT variables by
clicking twice on each PLC variable, selecting Linked to... and choosing the desired
from the list of all compatible variables (as far as the type is concerned), as shown in
Figure A-15. Note that in order to link one PLC output variable to multiple EtherCAT
output variables, select all desired EtherCAT variables from the pop-up window holding
the Ctrl button. Now, all linked output variables of the project are handled by the
PlcTask Outputs and Online Writes can only be executed through this list. Do not forget
to link the State Machine PLC output variable with ALL State_Machine EtherCAT
variables of all slaves to accomplish synchronous initiation of the trajectories’ time
variables.

¥ Attach Variable Inputs.HR_Hip_Angle (input X

Show Vanables

4 Ondy Uruised

[Exchude dsabled

[Exchude other Devices

Search

[-
Devices
@ Laslsps_Master [EtherCAT)
SyncUnts
delo
urveterenced)
* Ste
SlaveCount
FmOStste > 18 15200, UINT [20)
FmOwcState > 18 15220, UINT [20)

() Show Variable Groups
(8] Collapse last Level

18 15620, UINT [20]

1B 1564.0, UINT [20)
Show Vasiable Types
[IMatchng Type

-
% FmQirouTogge > 1815240, UINT [20] =
SlaveCount > 1815300, UINT [20) £ Maiching Sze
* DevStste 18 1534.0, UINT [20) L] Al Types
% ChangeCount > 1B 1536.0, UINT [20]
% Dedd > IB15380, UINT [20) ke
» i!Lrve(ml 18 1546.0, LINT [20] [Continucns
v
[Show Dislog

1B 430, UINT [20)
1B 450.INT [20)
18 47.0,INT [20]
18 430, INT [20]
18'51.0INT [20)

¥ Tme
knee_angle

% Desved_knee_snge
PWM10000_knee
* PWM10000_hp

Variable Name / Comment
(37 [JHend over

Figure A-15. Link PLC variables.

18. Activate Configuration (Figure 5-3) to Restart TWinCAT System and update the project
with the linked variables. If a warning about run-time licenses appears, just copy the
displayed code to the designated text-box

19. Login and Start the PLC task as indicated in Figure A-16.

171/217

Login Start
TWINSAFE PLC TOOLS scope\ wmoo(HELP

- | Untitled1 -

20. Navigate to the Measurement Project inside the Solution Explorer and right-click on
Axis -> Target Browser and select all the desired variables from the Global Variable
List (Inputs) that have to be monitored and saved during the experiment (Figure A-17).

Figure A-16. PLC Login and Start buttons.

D Laelaps Control - Micresaht Visusl Studio
BLE EDT VIEW PROJECT BUILD DEBUG TWINCAT TWINSAFE PLC TOOLS SCOPE WINDOW HELP
AR 8 @ [wan | - | LadapsControl
o e - =
Ll sclution Bxplorer
@ o-g &=

¥ Desired_hip_angle

¥ Time

#1 knes_angle

#1 Desired knes_angie
ds

Target Browser B
ADS
Ports T ® Name Type Size Category Comment Subitems Urit Contert-Mask Index-Group Indec-Offset Atinbutes (~
"W oskor e | st 9 °) 0 none
[350 PlcTask Stru & [} 0 0
7 Al Desived_hip_angle INT 2 Prmitiv 0 0 o2t D344
@ FLDesved knesangle INT 2 o 0 o D3IAE e
£ FLhip_angle N 2 0 ° FO2 70380
@ FlL_knee angle N1 2 o F020 D38z
8 FLPVIM_bip NT 2 0 FO20 DIA8
Properties @ FLPWM knee INT 2 ° FO20 DIAA 0
@ FLtime U 2 0 F20 70384 0ne
@ Flvelocity_hip om & [} FO20 D380 one
@ Flvel oI ° Fo20 7D2AC none
@ PR Desited hipangle INT 2 0 Fo20 7D38A one
i FR Desired knee angle IN] 2 ° FOX 7D38C none
@ FR_hip_angle Nt 2 [FO20 70385 none
INT © FO20 7D388 none
INT 0 Fo20 7D38E one
NT 0 F020 7030 noe
uih 0 Foz0 iz
ok i 0 Fo20 e
DIk i 0 OO TDIC4 0
0 HLDesired_hip_angle INT 2 Premutiv o o2 TD38E
.

Figure A-17. Create GVL inputs' graphs.

If these steps have been followed together with the steps of the typical experiment’s guide
of Chapter 5, press the TwWinCAT Config button, located in the menu taskbar (Figure 5-3). This
is necessary in order to execute the upcoming steps of the aforementioned guide.

172/217

Appendix B.Create an EtherCAT Application from
Scratch

In this section, the steps of creating from scratch an arbitrary EtherCAT application are
presented. This guide is dedicated to the ADIS16364 EtherCAT app, to illustrate the process
of developing it, but with a few changes, it can become generic. The software required to
generate all the necessary files include the ETG’s Slave Stack Code Tool (SSC) [38] and
Microsoft’s Excel.

1. Openthe SSC Tool and create a new project by selecting the appropriate ESI file from
the drop-down list, like the one presented in Figure B-1.

| Slave Stack Code Tool | New Project n

(O Default
@® Custom | T1C28xx Sample with ET1100 ESC(SPI PDI) on TMDSECATCNCD379D kit <

Vendor: Texas Instruments Incorporated (0xEQ00053D).

Version: 0.0.0.1

NOTE: This configuration is not provided by Beckhoff Automation and files or file fragments may
be added which are NOT covered by the license from Beckhoff Automation GmbH.

Create a SSC Tool Configuration for the TI C28xx MCU. The slave stack code and application
running on a C28x MCU and the ESC is ET1100 and the PDl is SPI

Import 0K

Figure B-1. SSC new project pane.

2. Navigate to the EtherCAT Slave -> Slavelnformation tab and change the device name

to a desired one. In this case, as Figure B-2 suggests, ADIS16364_IMU_SLAVE is
used.

EtherCAT Slave* - Slave Stack Code Tool - = X

File Project Tool Help

Slave Project Navigation Slave Settings
= EtherCAT Slave Name Value Description
Slavelnformation VENDOR_ID xA12 Define: DEVICE_NAME
Seneric VENDOR_NAME CSL-EP NTUA
Hardware Name of the slave device (Object (x1008)
EtherCAT State Machine ~ PRODUCT_CODE 0x10001102
Synchronisation REVISION_NUMBER 0x00000001
= Application -
B eaiDa SERIAL_NUMBER 0x00003017
Mailbox DEVICE_PROFILE_TYPE 0<00001389
Compler DEVICE_NAME ADIS16364_IMU_SLAVE|
DEVICE_NAME_LEN 025
DEVICE_HW_VERSION CC_1_3_ DC_REVB
DEVICE_HW_VERSION_LEN E
DEVICE_SW_VERSION SSC_5_11.C28 2. 0.09
DEVICE_SW_VERSION_LEN 013
Conflicts
€ Info 4 Waming & Error
Edit "String"-value

Figure B-2. SSC slave information tab.

173/217

3. Create the new EtherCAT application by setting the desired Process Data in the
appropriate fields, like Figure B-3 shows. Details on how to define the PDOs may be
found in the literature [33] [37].

[foxrmnx

Figure B-3. SSC create new application overview.

- JORERIEN - WA - O - IO - S - e

4. Change the minimum PD cycle. This is the minimum allowable EtherCAT loop period
and is dependent on the application and its execution time. If that information is
unknown at this stage of development, leave it to the default (Figure B-4) and change
it afterward, by modifying the EtherCAT stack’s ecat_def.h header file.

EtherCAT Slave* - Slave Stack Code Tool

File Project Tool Help

Sive Setings

[=)- EtherCAT Slave Name Value
-~ Slavelnformation AL_EVENT_ENABLED 1
|- Gencne DC_SUPPORTED 1
i Hardware
- EtherCAT State Machine ECAT_TIMER_INT 0
~ Synchronisation INTERRUPTS_SUPPORTED 1
=)~ Application
T ProcessDét MIN_PD_CYCLE_TIME Ox3E8|
- Mailbox MAX_PD_CYCLE_TIME xC3500000
+~ Compler PD_OUTPUT_DELAY_TIME &0

PD_OUTPUT_CALC_AND_COPY_TI... x0
PD_INPUT_CALC_AND_COPY_TIME (x0
PD_INPUT_DELAY_TIME x0

Conflicts
€9 Info ¥ Warning QError

Edit "Hex"-value

Figure B-4. SSC synchronization tab.

= O

Description

X

Define: MIN_PD_CYCLE_TIME

Minimum cycle time in ns the slave is
supporting
(entry 0x1C32:05 or entry 0x1C33:05)

5. At last, navigate to Project -> Create New Slave Files to create the main EtherCAT
stack and the corresponding ENI file, as Figure B-5 suggests.

174/217

B8 EtherCAT Slave* - Slave Stack Code Tool - m} X
File | Project | Tool Help

(® Project Update js
=) z X Val A e
Bhe Find Setting Ctrl+F b Desciption
q ACCESS 1 Define: ESC_CONFIG_DATA
f ! Create new Slave Files F5 I ACCESS 0
5 Specifies the ESC configuruation data ffirst
EtherCAT State Machine MBX_16BIT_ACCESS 1 16Bytes of the EEPROM).
. Synchronisati In case that a Beckhoff ASIC
o BIG_ENDIAN_16BIT 0 (ET1100/ET1200)is used the data is
I caluclated by the document "ETxox
- ProcessData BIG_ENDIAN_FORMAT 0 Configuration and Pinot
Mailbox EXT_DEBUGER_INTERFACE 0 www beckhoff com/english.asp?
... Compil [download/ethercat development products
e UC_SET_ECAT_LED 0 htm71d=71003127100387). i the IPCore is
ESC_SUPPORT ECAT LED 1 used the data is generated during the
= = = IPCore configuration.
ESC_EEPROM_EMULATION 0
NOTE: Validate the configured data
CREATE_EEPROM_CONTENT 0 according the ESC datahseet.
ESC_EEPROM_SIZE 0x800
EEPROM_READ_SIZE 8
EEPROM_WRITE_SIZE =2
ESC_CONFIG_DATA 050E03EEQAD000000000
MAKE_PTR_TO_ESC G

Conflicts
€ Info 4 Warning oError

Figure B-5. SSC create new slave files option.

6. Copy and Paste the generated files in an appropriate location, inside the project files.
Also, the ENI file should be imported to the master, to configure the network.

175/217

Appendix C.C2000 Delfino Microcontroller Unit

The LaunchXL-F28379D evaluation board (Figure C-1) materializes the Data Link Layer (DLL)
of the EtherCAT slave model, introduced in Section 2.2.4. It is the hardware in which, the user-
application is implemented. In the initial stages of any bare-metal design, the hardware
requirements of the application should be considered. In the current case, the DLL’s hardware
has to serve highly deterministic, real-time control applications. The complexity of the
underlying procedures, along with the increased number of sensors that are involved in the
designs, creates the need of a powerful microcontroller, with provisions for possible future
demands.

This Appendix investigates the various resources that the LaunchXL-F28379D offers. It
provides a generic view of the major peripherals used in the developed firmware, described in
Chapters 3 and 4. It is highly recommended to comprehend the discussed concepts, to be
able to get a thorough understanding of the developed applications. The aim here is not to
replicate the extensive documentation that this board comes with [64], but to focus on the key
aspects that make it ideal for Laelaps Il. To sum up, the major aspects of the aforementioned
board are analyzed briefly, in a practical way with examples that facilitate the learning process.

C.1 LaunchXL-F28379D Development Board

The LaunchXL-F28379D (Figure C-1) is an evaluation package of the TMS320F28379D
microcontroller, which belongs to the family of TI’s Delfino C2000 MCUs [111]. It is exceptional
when hard real-time processing is required and offers a variety of different peripherals that
make designing sophisticated applications both low-cost and fast. The package comes with
the following modules:

o 16 HRPWM outputs with 150 ps edge control

e 6 capture inputs

o 3 eQEP inputs

e 8 SDFM input channels

e 4 ADCs with selectable resolution

e 8 windowed comparators with 12-bit DAC references

e On-board isolated XDS100v2 debug probe

e Support for the most common communication protocols, like SPI, 12C, CAN, etc.

The LaunchPad does not expose all of the microcontroller's GPIOs, but for the Laelaps Il
applications’ needs, they suffice.

Figure C-1. The LaunchXL-F28379D.

176/217

C.2 TMS320F28379D Microcontroller

The 32-bit TMS320F28379D dual-core microcontroller supports parallel processing schemes,
with increased RAM and FLASH storages. Each 32-bit core is enhanced with a Control Law
Accelerator Unit (CLA), a separate processor with independent buses. Among other features,
the Direct Memory Allocation (DMA) controller stands out, taking over data transfers among
memory places and among peripherals, without withholding CPU bandwidth. Moreover, the
existence of the Floating Point Unit (FPU), the Trigonometric (TMU) and the Viterbi (VCU)
accelerators enable precision mathematical operations, which even include complex math,
without disrupting high frequency, real-time tasks. There is extensive documentation one may
address to get a deeper insight into Delfino’s architecture [64] [112]. This work focuses on the
features used in the implemented applications. Special focus is given in the programming of
the CLA for concurrent task execution aiming at freeing the main CPU from several motion
control and planning tasks. An overview of each core’s architecture is illustrated in Figure C-2.

Program Bus

l | l S ePwWm |
+DMA Bus 1= ADC
. CLA Bus DAC
@ EMIF|_ r
« $ 1 <_.{ CMPSS |‘~
} PIE “1- McBSP
32x32 bit| |[R-M-W Interrupt >
T™U
Multiplier| |Atomic cLa| |Manager
FPU ALU ||VCU scl
i] 1 -
--------- < SPI
WD 'bi
Register Bus D 32b't TR
CPU Timers -
T Data Bus GPIO -

Figure C-2. TMS320F28379D microcontroller core architecture.

C.3 Interrupt Architecture

An interrupt is a signal that causes the CPU to pause its current execution and branch to a
different piece of code known as an interrupt service routine (ISR). This is a useful mechanism
for handling peripheral events, and involves less CPU overhead or program complexity than
register polling. However, because interrupts are asynchronous to the program flow, care must
be taken to avoid conflicts over resources that are accessed both in interrupts and in the main
program code.

Interrupts propagate to the CPU through a series of flag and enable registers. The flag
registers store the interrupt until it is processed. The enable registers block the propagation of
the interrupt. When an interrupt signal reaches the CPU, the CPU fetches the appropriate ISR
address from a list called the vector table.

The C28x CPU has fourteen peripheral interrupt lines. Two of them (INT13 and INT14)
are connected directly to CPU timers 1 and 2, respectively. The remaining twelve are

177/217

connected to peripheral interrupt signals through the enhanced Peripheral Interrupt Expansion
module (PIE). The PIE multiplexes up to sixteen peripheral interrupts into each CPU interrupt
line. It also expands the vector table to allow each interrupt to have its own ISR. This allows
the CPU to support a large number of peripherals. The described architecture is illustrated in
Figure C-3.

CPUTTIMERD | CPULTINTO
- PU1.LPMINT
LPM Logc - CPU1LPM . CPU1WAKEINT
» CPU1.NMIWD NMI
CRULWD CPU1WDINT
CPU1
INPUTXBAR4 1 XINT1]
i —{ CPU1.XINT 1 Contro| : CPUA. INT1
GPIOT H' Input INPUTXBARS CPU1XINT2 Control > CPIE to
X-BAR INPUTXBAR6 CPU1XINT3 Control g | /|INT12
. INPUTXBAR13 P CPU1 XINT4 Control >
> INPUTXBAR 14 CPU1.XINT5 Control » CPU1TINT1
CPU1.TIMER1 - INT13
_—Zb_CPULTIMERZ CPULTINTZ | i\ 14
IPC
4 Interrupts
Peripherals
CPU1.NMIWD |———{ NMI
CPU2
»{CPU2.XINT1 Control |——|
»{ CPU2.XINT2 Control »> L N|wm
»{ CPU2.XINT3 Control » CPU2 iy
| CPU2.XINT4 Control ePIE eris
»| CPU2.XINT5 Control >
_ PG LPMRNT CPU2TIMERT 1SR Y2 TINT 13
LPM Logic CPU2WAKEINT CPU2TINT
CPU2.TIMER2 s INT14
CPUZWD_ I CouzwDINT
CPU2.TIMERQ |—CPU2TINTO

Figure C-3. Delfino's interrupt architecture.

An interrupt path is divided into three stages, namely the peripheral, the PIE, and the
CPU. Each stage has its own enable and flag registers. This system allows the CPU to handle
one interrupt while others are pending, implement and prioritize nested interrupts in software,
and disable interrupts during certain critical tasks.

Each peripheral has its own unique interrupt configuration, which is described in that
peripheral's chapter. Some peripherals allow multiple events to trigger the same interrupt
signal. For example, a communications peripheral might use the same interrupt to indicate
that data has been received or that there has been a transmission error. The cause of the
interrupt can be determined by reading the peripheral's status register. Often, the bits in the
status register must be cleared manually before another interrupt will be generated.

The PIE provides individual flag and enable register bits for each of the peripheral interrupt
signals, which are sometimes called PIE channels. These channels are grouped according to
their associated CPU interrupt. Each PIE group has one 16-bit enable register (PIEIERX), one
16-bit flag register (PIEIFRXx), and one bit in the PIE acknowledge register (PIEACK). The
PIEACK register bit acts as a common interrupt mask for the entire PIE group. When the CPU
receives an interrupt, it fetches the address of the ISR from the PIE. The PIE returns the vector
for the lowest-numbered channel in the group that is both flagged and enabled. This gives
lower-numbered interrupts a higher priority when multiple interrupts are pending. If no interrupt
is both flagged and enabled, the PIE returns the vector for channel 1. This condition will not
happen unless software changes the state of the PIE while an interrupt is propagating.

Like the PIE, the CPU provides flag and enable register bits for each of its interrupts.
There is one enable-register (IER) and one flag-register (IFR), both of which are internal CPU

178/217

registers. There is also a global interrupt mask, which is controlled by the INTM bit in the ST1
register. This mask can be set and cleared using the CPU's SETC instruction. Writes to IER
and INTM are atomic operations. In particular, if INTM is cleared, the next instruction in the
pipeline will run with interrupts disabled. No software delays are needed.

Each CPU has its own PIE. Both PIEs must be configured independently. Some interrupts
come from shared peripherals that can be owned by either CPU, such as the ADCs and SPls.
These interrupts are sent to both PIEs regardless of the peripheral's ownership. Thus, a
peripheral owned by one CPU can cause an interrupt on the other CPU if that interrupt is
enabled in the other CPU's PIE. Writes to IER and INTM are atomic operations. In particular,
if INTM is cleared, the next instruction in the pipeline will run with interrupts disabled. No
software delays are needed. The described path is illustrated in Figure C-4.

PIEIERx.1
: 0
Peripheral PIEIFRX 1 J .
Interrupt —
Latch
A
PIEIERX.2
: 0 Set
Peripheral pr— M . PIEACK x (1ErRx) (STLINTM)
Interrupt —
- Latch 2 2 5

CcPU
o2 IERx %)/el—o/oo—t Interrupt

Latch e

Peripheral

Interrupt —H RIEIFR:Z6 —o/

p Latch

Figure C-4. Interrupt propagation path.

C.3.1 Interrupt Priorities

Interrupts are automatically prioritized by the C28x hardware. Group 1, which corresponds to
CPU INT1, has the highest priority. Within each group there are up to 16 interrupts with INTx.1
being the highest priority and INTx.8 having the lowest. The core priorities of the total 14
interrupt lines are listed in Table C-1. A list of all interrupts organized in the PIE is illustrated
in Figure C-5.

Table C-1. Interrupt core priorities.

Name Description Priority
Reset Resets the Device 1 (Highest)
INT1 PIE Group 1 5
INT2 PIE Group 2 6
INT3 PIE Group 3 7
INT10 PIE Group 10 14
INT11 PIE Group 11 15
INT12 PIE Group 12 16
INT13 Timer 1 17
INT14 Timer 2 18
DATALOG CPU data logging interrupt 19 (lowest)

179/217

INTx.1 INTx.2 INTx.3 INTx4 INTx.5 INTx.6 INTX.7 INTx8 INTx.9 INTx.10 INTx.11 INTx.12 INTX.13 INTx.14 INTx.15 INTx.16
INT1y ADCA1 ADCB1 ADCC1 XINT1 XINT2 ADCD1 TIMERO WAKE

INT2y EPWM1_ EPWM2_ EPWM3_ EPWM4_ EPWMS_ EPWM6_ EPWM7_ EPWMS_ EPWM3_ | EPWM10_ | EPWM11_ | EPWMI12_
Tz TZ Tz Tz hr4 Tz TZ TZ Tz Tz 1z Tz

INT3y EPWM1 EPWM2 EPWM3 EPWM4 EPWMS EPWM6 EPWM7 EPWMS EPWM3 EPWM10 EPWM11 EPWM12
INT4y ECAP1 ECAP2 ECAP3 ECAP4 ECAPS ECAPS

IPCO IPCt IPC2 IPC3

INTS.y EQEP1 EQEP2 EQEP3 SD1 SD2

INT6y SPIA_RX SPIA_TX SPIB_RX SPIB_TX | MCBSPA_ | MCBSPA_ | MCBSPB_ | MCBSPB_ | SPIC_RX SPIC_TX
RX X RX ™

INT7.y DMA_CH1 | DMA_CH2 | DMA_CH3 | DMA_CH4 | DMA_CHS | DMA_CH6

INT8y 12CA 12CA_ 12CB 12CB_ SCIC_RX SCIC_TX SCID_RX SCID_TX - - - - - - UPPA
FIFO FIFO (CPU1 only)

INT9.y SCIA_RX SCIA_TX SCIB_RX SCIB_TX CANA_D CANA_1 CANB_O CANB_1 - - - - - - USBA
(CPU1 only)

INT10y ADCA_ ADCA2 ADCA3 ADCA4 ADCB_EVT ADCB2 ADCB3 ADCB4 ADCC_EVT ADCC2 ADCC3 ADCC4 ADCD_EVT ADCD2 ADCD3 ADCD4
EVT

INT11y CLA1_1 CLA1_2 CLA1_3 CLA1_4 CLA1_S CLA1_6 CLA1_7 CLA1_8

INT12y XINT3 XINT4 XINTS . . veu FPU_OVER | FPU_ EMIF_ | RAM_COR | FLASH_CO | RAM_ACCE | SYS_PLL_ | AUX_PLL_ | CLA OVER CLA
FLOW UNDER ERROR RECTABLE | RRECTABL | SS_VIOLAT SLP SLP FLOW UNDER
FLOW _ERROR E_ERROR ION FLOW

Note: Cells marked *-" are Reserved

Figure C-5. PIE channel mapping.

C.3.2 Interrupt Nesting

Generally, the C2000 does not support interrupt nesting. This means that whenever an ISR is
triggered, it runs through completion, even if another one with higher priority is triggered during
its servicing. Nevertheless, there is a software way to bypass this [113]. There are limitations,
but the technique is generic and can be implemented in different applications. The firmware
developed in the current thesis does not have such capabilities. However, it would be
interesting to explore the capabilties that nesting has to offer and is left for future work.
Concisely, by default interrupt nesting is not permitted in C2000 architecture and
subsequently, the previously-discussed priorities apply only if two arbitrary interrupts are
triggered at the same CPU cycle, a relatively rare event. Nevertheless, great attention should
be given at the design stage of an application since data access conflicts could lead to heavily
erroneous software.

C.4 Control Law Accelerator

The CLA unit is a Task Driven Machine (TDM), in contrast with the main CPU that is an
Interrupt Driven Machine (IDM). To clarify, tasks constitute the main routines, which the CLA
may be called to service, one at a time, similar to the Interrupt Service Routines. This attribute
transfuses a fully deterministic operation to the CLA, in the sense that every task that is being
executed at a time, finishes, before executing another one. Task requests are serviced in a
priority manner dictated by their number in ascending order. The high-performance arithmetic
capabilities and the direct access to most of the peripherals make this accelerator a powerful
addition to the Laelaps Il motion control arsenal.

C.4.1 Task Mechanism

There are eight tasks and each one’s start address is stored in a special register, called
MVECT, while its number states its priority. There are various, not only software but also
hardware, triggers that initialize a task’s execution and will be analyzed later on. Upon
completion, an optional task-specific interrupt is flagged within the Peripheral Interrupt
Expansion (PIE) module [64] to inform the main CPU of the event. The tasks may be written
in modified C or Assembly for best performance. The CLA is specifically designed for 32-bit
data handling, with the support of 16-bit computations and peripheral register accesses. There
is no software or hardware support for 64-bit data types. In Table C-2 the different data type
sizes are illustrated, in comparison with the respective CPU ones.

180/217

Table C-2. CPU vs CLA data types.

Type CPU & FPU (COFF) CLA
char 16 bit 16 bit
short 16 bit 16 bit

int 16 bit 32 bit

long 32 bit 32 bit
long long 64 bit 32 hit
float 32 bit 32 bit
double 32 bit 32 bit
Long double 64 bit 32 bit
pointers 32 hit 16 bit

C.4.2 Memory and Peripherals Access

There are independent LSx RAM blocks that may be mapped to the accelerator and be used
as Data or Program Memory. Also, the CPU-CLA communication is accomplished through two
dedicated message RAMs. Moreover, by specifying the appropriate CPU registers, direct
peripheral access may be granted for CLA or DMA, as a secondary master, but not for both
simultaneously. An overview of the described architecture is illustrated in Figure C-6.

There are two standard memory spaces a CPU may have at its disposal to execute code,
store data and handle peripherals [114]. The Program memory contains program code for
execution, while its Data counterpart contains all vital variables and coefficients that are used
during program run-time. As previously mentioned, two configurable RAM sections are
dedicated to the bidirectional communications of CPU and CLA. It is very important to
understand that all available memory is mapped to the C28x CPU at reset and subsequently
to the CLA, by CPU commands and suitable register parametrizations.

CLA Control

Register Set
E—— CLA_INT1
From MPERINT1 M“?ngé:,Gg to
S'hared to MICLR(16 CLA_INT8
Peripherals | MPERINT8 MICLROVF(16) pie [INT11—p C28x
MIFRC(16 ——INT12—>»{ CPU
MIER(16)
MIRUN(16) SE)
LUF—>|
MVEC
MVEC
MVEC E
SYSCLK ——»| MVEC
— CLA Clock Enable —| MVEC A : A
SYSRSn MVEC CPU Read/Write Data Bus
MVEC]
MVEC

16) |
8(16 A \| CLA Program
CLAProgram Bus Memory (LSX) K:>
MCTL(16) || S

LSXMSEL[MSEL_LSx
LSxCLAPGM[CLAPGM_LSx]

o
3
]
o]
CLA Data g
CLA Execution o Memory (LSx) 5
Register Set o S
MPC(16) g
MSTF(32) = <E> CLA Rh:e;::age C:>
MRO(32) 1 5
MR1(32) o
mgg gg; Shared /-—>
MARO(16) — MEALLOW Peripherals [\
MART(16)
A\
CPU Read Data Bus
-

Figure C-6. CLA unit architecture.

181/217

CLA Program Memory

The C28x Master CPU may grant CLA specific RAM blocks by appropriately setting 1 to
MemCfgRegs.LSXMSEL [MSEL_LSx] bits and subsequently specifying the type of the
aforementioned memory blocks as Program by setting MemCfgRegs.LSxCLAPGM
[CLAPGM_LSx] bits to High state.

CLA Data Memaory

As in Program Memory’s case, the CLA’s Data Memory may be specified accordingly. The
difference lies in MemCfgRegs.LSXCLAPGM [CLAPGM_LSx] bits that in this case should
be set to zero. To assigh memory blocks, it is vital to configure the respective linker command
file (.cmd), which is responsible to make an efficient allocation of the various resources
available on the device. This matter is discussed in Section C.7, because it concerns system-
wide functionalities, not only the CLA’s.

CLA Message RAMs

The CLA communicates with the main CPU through Message RAMs. There are different types
of access that those modules offer for a variable stored in them. In Table C-3, an overview of
the aforementioned data sections is presented. To store a variable to one of these sections,
specific #pragma commands can be used just before the variable’s declaration. An example
of such process follows.

//
// CPU & CLA R/W Access

//
#tpragma DATA_SECTION(common_var, "ClaDataRam");
uint32_t common_var = 0;

//
// CLA R/W & CPU R Access

//
#tpragma DATA_SECTION(cla_var, "ClalToCpuMsgRAM");
intle_t cla_var = 0;

//

// CPU R/W & CLA R Access

//

#tpragma DATA_SECTION(cpu_var, "CpuToClalMsgRAM");
float cpu_var = 0.0f;

Table C-3. CPU-CLA Message RAMs overview.

Data Section CPU Access CLA Access

ClaDataRam R/W R/W
CpuToClalMsgRAM R/W R
ClalToCpuMsgRAM R R/W

C.4.3 CLA Initialization

The CLA initiliazation process assigns the allocated memory sections defined in the linker
.cmd file (Section C.7) as program or data memory. It is of outmost importance to allocate
efficiently the available memory to avoid segmentation faults and other erroneous behaviors,
such as stack overflow. Next, the task triggers are configured. Each task can be triggered by
another peripheral or by software. For example, in case of Laelaps Il motion control, a software
trigger is used for the two tasks that are used by the firmware. Finally, the CLA post-processing

182/217

interrupts are configured and activated, if necessary. These interrupts are triggered after the
completion of each task to inform the CPU for the event.

void InitCla(void)

{

//

// Enable EALLOW Register Access

//
EALLOW;

//

// Initialize and Wait for CLA1ToCPUMsgRAM

//

MemCfgRegs .MSGXINIT.bit.INIT_CLA1TOCPU = 1;

while (MemCfgRegs.MSGXINITDONE.bit.INITDONE_CLA1TOCPU !

{

¥
//

// Initialize and wait for CPUToCLA1MsgRAM

//

MemCfgRegs .MSGXINIT.bit.INIT_CPUTOCLAl =
while (MemCfgRegs.MSGXINITDONE.bit.INITDONE_CPUTOCLA1 !

{
¥

//

// Set CLA
//

MemCfgRegs.
MemCfgRegs.
MemCfgRegs.
MemCfgRegs.
MemCfgRegs.
MemCfgRegs.

//

// Configure CLA RAM

//

MemCfgRegs.
MemCfgRegs.
MemCfgRegs.
MemCfgRegs.
MemCfgRegs.
MemCfgRegs.

//

LSXMSEL.
LSXMSEL.
LSXMSEL .
LSXMSEL .
LSXMSEL
LSXMSEL .

LSXCLAPGM.
LSXCLAPGM.
LSxCLAPGM.
LSXCLAPGM.
LSXCLAPGM.
LSXCLAPGM.

bit.MSEL_LS@
bit.MSEL_LS1
bit.MSEL_LS2
bit.MSEL_LS3
.bit.MSEL_LS4

bit.
bit.
bit.
bit.
bit.
bit.

PR RRPRR
by

bit.MSEL_LSS =

e e G

e

CLAPGM_LS@ =
CLAPGM_LS1 =
CLAPGM_LS2 =
CLAPGM_LS3 =
CLAPGM_LS4
CLAPGM_LS5 =

1;

LSO to LS5 RAM Access Privileges

Blocks (©: Data Memory, 1: Program Memory)

e Lo e e

(SR SD S ®

.

// Initialize CLA Task Interrupt Vectors
// -- TI's Default way SA (Reviewed)

//

ClalRegs.MVECT1 =

ClalRegs.MVECT2
ClalRegs.MVECT3
ClalRegs.MVECT4
ClalRegs.MVECTS
ClalRegs.MVECT6
ClalRegs.MVECT7

ClalRegs.MVECT8 =

//

(uintl6_t)(&ClalTaskl);
(uintl6_t)(&ClalTask2);
(uintl6_t)(&ClalTask3);
(uintl6_t)(&ClalTask4);
(uintl6_t)(&ClalTask5);
(uintl6_t)(&ClalTask6);
(uintl6_t)(&ClalTask?7);
(uintl6_t)(&ClalTask8);

// Set Software Trigger for Task

//

DmaClaSrcSelRegs.
DmaClaSrcSelRegs.
DmaClaSrcSelRegs.
DmaClaSrcSelRegs.
DmaClaSrcSelRegs.
DmaClaSrcSelRegs.
DmaClaSrcSelRegs.
DmaClaSrcSelRegs.

CLA1TASKSRCSEL1.
CLA1TASKSRCSEL1.
CLA1TASKSRCSEL1.
CLA1TASKSRCSEL1.

CLA1TASKSRCSEL2

CLA1TASKSRCSEL2.
CLA1TASKSRCSEL2.
CLA1TASKSRCSEL2.

Interrupts

bit.
bit.
bit.
bit.
.bit.
bit.
bit.
bit.

TASK1 =
TASK2 =
TASK3 =
TASK4 =
TASK5 =
TASK6 =
TASK7 =
TASK8 =

e e

e we We .

(OGO SD (ORI

-

183/217

//

// Do not Lock Task Control Registers

//
DmaClaSrcSelRegs.CLAITASKSRCSELLOCK.bit.CLAITASKSRCSEL1
DmaClaSrcSelRegs.CLAITASKSRCSELLOCK.bit.CLAITASKSRCSEL2

//
// Enable use software to start a task (IACK)

//
ClalRegs.MCTL.bit.IACKE = 1;

//
// Enable CLA's Task 1 & 2
//
ClalRegs.MIER.all = 0x0003;

//
// Disable EALLOW Register Access

//
EDIS;

} // End Of InitCla()

C.4.4 CLA Math Library

The basic aim of the Control Law Accelerator is to take over and speed up complex
mathematical procedures to relieve the CPU. Towards this, Tl introduces CLA Math Library,
which consists of a collection of highly optimized mathematical functions, with low CLA cycle
run-times and easy code integration. Their contextual logic is founded upon look-up tables for
trigonometric, logarithmic and exponential operations. These tables are already built-in but
require an effort to use. The library’s manual is very informative and the reader is strongly
encouraged to consult it [115]. The basic workflow of adding the CLA Math library’s capabilities
to an application is laid in Appendix D.

C.5 Direct Memory Access Controller

C.5.1 Overview

Typically, memory is accessed in a Programmed Input/Output (PIO) manner, which simply
means that memory reads and writes are managed by the CPU executing a piece of code.
This is a straight-forward approach with the use of virtual addresses and no concerns of low-
level processes by the user. However, the flip side is the increased CPU overhead that this
logic results in. Also, the main performance penalty is that if one wants to write X times in
memory, the write commands would be also X, since burst operations are not applicable [116].

Direct Memory Access Controller (DMA) comes to facilitate high throughput data
transfers, replacing CPU with an efficient hardware solution. The Delfino’s DMA supports data
transfers and handling of peripherals. It should be perceived as a controller placed on the
memory’s bus that handles tedious transfers and offloads the CPU bandwidth. Its basic
functionality consists of a software or hardware trigger that initiates the transfers and an
interrupt triggered after each task’s completion to inform the CPU of the event. The whole
system’s structure is presented in Figure C-7.

184/217

ADC L_P_'[“_T?_"!I:@_J —p McBSP |[«——
| Result 0-15 :
D SPl |—
— 4_I"’
DMA
GS0 RAM A_> 6-channels | SDFM |e——
: Triggers —
GS15 RAM) .’ mm;
e I
IPC MSG RAM 'I‘\\AI)D(%C/PA/CB/DN(IEQV%XB :
il XINT1-5 TINTO-2 —» PWM11 ——
g o —
R USBA Bbr RXTR1-3
X -
“software
CMPSS
—»| DAC |

Figure C-7. DMA controller architecture.

C.5.2 DMA Setup

In the case of Delfino, each CPU is provided with a six-channel DMA controller. The necessary
steps for its operation are:

1.

C.53

Reset the entire DMA module and set an intended emulation halt response, by setting
DmaRegs.DMACTRL.bit. HARDRESET to 1 and DmaRegs.DEBUGCTRL.bit.FREE
to the desired value (0 =Unaffected/1=Affected by emulation halt).

Set channel 1 priority option if necessary, by modifying the
DmaRegs.PRIORITYCTRL1.bit. CH1PRIORITY register bit.

Change mode of the channels that are planned to be used, by editing the
DmaRegs.CH1.MODE.all register, accordingly [64].

Determine the triggers for each channel, by adjusting
DmacClaSrcSelRegs.DMACHSRCSELX.hit.CHy to the appropriate trigger number.
Lock trigger source registers, before running DMA (optional).

Define the transfer parameters and addresses for each channel.

Change interrupt triggering behavior and enable the DMA controller, by editing the
DmaRegs.CH1.CONTROL .all register.

Set PIE vector table with the desired DMA interrupt triggers and enable those, by
setting the MIER register bits accordingly.

Example

An example function materializing the described actions is presented below. Although DMA is
not used in the current Laelaps motion control application, this chapter refers to this useful
hardware solution to outline its possible uses for future applications. For example, a possible
usage could be the various periodic data transfers among the EtherCAT Data Objects and the
application variables. Note that the DMA has multiple channels that can perform data transfers
simultaneously.

185/217

void InitDma(void)

{
//
// Enable EALLOW Register Access
//
EALLOW;
//
// Reset DMA Module
//
DmaRegs .DMACTRL .bit .HARDRESET = 1;
//
// Make DMA Unaffected to Emulation HALT
//
DmaRegs .DEBUGCTRL.bit.FREE = 1;
//
// Disable Channel 1 Priority Mode
//
DmaRegs .PRIORITYCTRL1.bit.CH1PRIORITY = O;
//
// Configure DMA Operation
//
DmaRegs.CH1.MODE.all = @xCBO1;
//
// Select Trigger Source for each Channel
//
DmaClaSrcSelRegs.DMACHSRCSEL1.bit.CH1 = 3@
DmaClaSrcSelRegs.DMACHSRCSEL1.bit.CH2 = 0;
DmaClaSrcSelRegs.DMACHSRCSEL1.bit.CH3 = 0;
DmaClaSrcSelRegs.DMACHSRCSEL1.bit.CH4 = 0;
DmaClaSrcSelRegs.DMACHSRCSEL2.bit.CH5 = 0;
DmaClaSrcSelRegs.DMACHSRCSEL2.bit.CH6 = ©
//
// Disable Register Lock
//

DmaClaSrcSelRegs.DMACHSRCSELLOCK.bit.DMACHSRCSEL1
DmaClaSrcSelRegs.DMACHSRCSELLOCK.bit.DMACHSRCSEL2 = O;

]
()
-

//

// Configure 1 word Transfer per Burst & each Transfer’s Size

//
DmaRegs.CH1.BURST_SIZE.bit.BURSTSIZE = O;
DmaRegs.CH1.TRANSFER_SIZE = Size;

//

// Step of Source Pointer increment in each Burst
//
DmaRegs.CH1.SRC_TRANSFER_STEP = Step;

//
// Select Source Address

//
DmaRegs.CH1.SRC_ADDR_SHADOW = (uint32_t)&(Desired Address);

//

// Step of Destination Pointer increment in each Burst
//

DmaRegs.CH1.DST_TRANSFER_STEP = 0;

//

// Select Destination Address

//

DmaRegs.CH1.DST_ADDR_SHADOW = (uint32_t)&(Desired Address);

//

// Configure Channel 1 Control Register
//

DmaRegs.CH1.CONTROL.all = ©x0091;

186/217

//

// Enable DMA's CPU Interrupts

//

PieCtrlRegs.PIEIER7.bit.INTx1 = 1;
IER |= M_INT7;

} // End Of

C.6

C.6.1 Overview

The Inter-Processor Communication module’s main task is to establish communication

InitDma()

Inter-Processor Communication

between the TMS320F28379D cores [64]. Some of its features involve:
e Message RAMs

C-6, respectively.

IPC flags, interrupts and command registers
Clock Configuration and Flash pump semaphores
GS0-15 RAM blocks that may be assigned to either CPU by modifying the
MemCfgRegs.GSXMSEL register appropriately.

The IPC’s extensive features make communications easy to utilize. The interested reader may
refer to the related documentation for further reading [64] [117]. Figure C-8 demonstrates
graphically the module’s architecture. For simple communication schemes, the IPC provides
the developer with RAM space and registers presented in Table C-4, Table C-5 and Table

~BET31 C
-~ CLR31 AGK31
FLGZ]
R=0/W=1") IPCSET([31:0] < »EET0
R=0/W=1" IPCCLR([31:0] < »CLRO ACK :I IPCACKI[31:0] | R=0/W=1
v 4 FLGO
Gen Int Pulse A CPU2.
(on FLG 0->1) C1TOC2IPCINT1/2/3/4 /A ePIE
<1 R IPCFLG[31:0] < > IPCSTS[31:0] R :
7/ RIW)\ IPCSENDCOM[31:0] | o C1TOC2IPCCOM[31:0] < $»{ IPCRECVCOM[31:0] R)
¢ RIW)] IPCSENDADDR[31:0] | > C1TOC2IPCADDR[31:0] e »{ IPCRECVADDRI[31:0] R
RIW IPCSENDDATA[31:0] |« > C1TOC2IPCDATAW[31:0] < $] IPCRECVDATA[31:0] R y
A \
: R IPCREMOTEREPLY([31:0] |« > C1TOC2IPCDATAR[31:0] % | IPCLOCALREPLY[31:0] | RW 7
RIW IPCBOOTMODE[31:0] R [
; R IPCBOOTSTS[31:0] RIW :
CPU1.EmulationHalt 64-bit Free Run Counte! J¢——— CPU2.EmulationHalt
cPU1 |, ? el el l«—— PLLSYSCLK N
: R IPCCOUNTERH/L[31:0] R 5
SET3™,
ACK31 CLR31
FLG31
'3 N
SETOl€ > IPCSET[31:0] R=0W=1
‘WWT= = 1 IPCACK[31:0] }: CKO CLRO€ > IPCCLR[31:0] o=
FLGO v v
CPU1. [# Gen Int Pulse
ePIE C2TOC1IPCINT1/2/3/4 (on FLG 0->1)
—CI IPCSTS[31:0] I: ;i IPCFLG[31:0] II
: R IPCRECVCOM[31:0] | C2TOC1IPCCOM[31:0] <«—>»| PCSENDCOM[31:0] (L—var—f
‘L“¢T“" IPCRECVADDR[31:0] |j¢—> C2TOC1IPCADDR[31:0] «—>] IPCSENDADDR[31:0] | RAW |
\ R IPCRECVDATA[31:0] |« > C2TOC1IPCDATAW[31:0] < | IPCSENDDATA[31:0] (;/éé]
—N .01 le—a . — : \
RIW IPCLOCALREPLY[31:0] |« > C2TOC1IPCDATAR[31:0] < | IPCREMOTEREPLY[31:0] R 0
e N—
Figure C-8. IPC unit architecture.

187/217

CPU2

Table C-4. IPC message RAMs overview.

Message RAM CPU1 Subsystem CPU2 Subsystem
CPU1 CPU1.DMA CPU2 CPU2.DMA

CPU1 TO CPU2 R/W R/W R R

CPU2 TO CPU1 R R E—— S

Table C-5. IPC GSx RAM overview.

Ownership of GSx CPU1 Subsystem CPU2 Subsystem
RAM CPU1 CPU1.DMA CPU2 CPU2.DMA
CPU1 R/W/Exe R/W R R
CPU2 R R R/W/Exe R/W

Table C-6. IPC communication registers overview.

Local Register Name Local CPU Remote CPU Remote Register Name
IPCSENDCOM R/W R IPCRECVCOM
IPCSENDADDR R/W R IPCRECVADDR
IPCSENDDATA R/W R IPCRECVDATA

IPCSENDREMOTEREPLY R R/W IPCLOCALREPLY

C.6.2 Basic IPC communication
According to TI's manual [64], a basic IPC data transfer may be realized with a simple
mechanism, avoiding the use of complex software solutions. Here, a simple example is given:
1. CPUx writes a command to IPCSENDCOM to edit a bunch of data from the remote
CPU’s (CPUy) local RAM in a specified address that IPCSENDADDR dictates.
Moreover, IPCSENDDATA is loaded with any required data for transfer.

2. CPUx writes the predefined flags that the developer decided to use by setting the
corresponding bits of IPCSET register.

3. After CPUy receives CPUx’s triggered interrupt, it proceeds with actions that the
corresponding ISR is designed to execute.

4. Then, CPUy acknowledges the interrupt and writes IPCLOCALREPLY register if
necessary.

5. CPUXx sees the acknowledgment and receives CPUy’s reply from IPREMOTEREPLY
register.

Last but not least, there are software packages like IPC Drivers that extend the module’s
functionality, introducing more advanced features by supporting multiple message exchanges
and ISRs. The downside is the increased development time that includes link-script
modifications. To avoid such disadvantages, the IPC Drivers Lite support fewer options,
resulting in less steep learning curves and wide coverage for most applications’ needs. The
reader should consult the extensive documentation provided by TI to get a better insight into
these useful capabilities [117].

In the code snippet below, a simple dual-core communication scheme is illustrated. This
implementation is IPC-Drivers free.

// //
// CPU1 // CPU2
// //

188/217

_interrupt void IPC1_isr(void) _interrupt void IPCO_isr(void)

{ {

/] //

// Acknowledge PIE Group // Acknowledge PIE Group

/] //

PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

/] //

// Receive Data // Clear Interrupt Flag

// //

datal_cpul = IpcRegs.IPCRECVADDR; IpcRegs.IPCACK.bit.IPCO = 1;

data2_cpul = IpcRegs.IPCRECVDATA;

// //

// Clear Interrupt Flag // Receive Data, Process & Send Data

// //

IpcRegs.IPCACK.bit.IPC1 = 1; GpioDataRegs.GPBTOGGLE.bit.GPI034=1;
datal_cpu2 = IpcRegs.IPCRECVADDR;

} data2_cpul = IpcRegs.IPCRECVDATA;
IpcRegs.IPCSENDADDR = data_out_cpu2;
IpcRegs.IPCSENDDATA = data_out_cpu2;
//
// Set Interrupt Flag
//
IpcRegs.IPCSET.bit.IPC1 = 1;
}

C.7 Delfino Linking Process

Like in every embedded system, whenever the C2000 microcontroller powers on, the first
piece of firmware to run as initialization is the so-called bootloader that is responsible, among
others, for the below tasks [114].

1. Initialize the system’s memory, by consulting the memory mapping created by the

linker.

2. |Initialize the Debug Console.

Initialize the Peripherals.

4. Configure the cache and the MMU (the module responsible for translating virtual to

physical memory addresses).

5. Load the code and data image from the memory.

This is an automated procedure and no further attention should be given if the reader is
not interested in such low-level processes that take place. The significant point that will be
analyzed below is the way that the linker produces the memory mapping file by concatenating
memory blocks provided by the corresponding command file.

Currently, the object image used by Texas Instruments DSP processors is called
Common Object File Format (COFF). A newer type is the so-called Embedded Application
Binary Interface (EABI), a variant of the ELF Object File Format. In the Laelaps firmware,
COFF is used due to the various compatibility issues that the migration may cause. Certainly,
in the future, migration is suggested. It should be noted that it is generally up to the user to
create the link script, while Tl provides some common examples that cover most applications’
needs.

The main task of the link script is to inform the linker about the number of different physical
memory segments that exist in the hardware, their size and starting addresses [114]. The most
common sections that an object file maps to memory are:

e .text: It contains all the executable code of the loaded application.

o _stack: All the global variables/static arrays that have non-zero initial values are stored

in this section.

w

189/217

e .ebss: All uninitialized global/static variables are stored here.

e .esymem: This section reserves space for dynamic memory allocation.

e .econst: This section contains all of the firmware’s constant coefficients.

The above sections are generic, while others are entailed for a very specialized cause
like CLA memory space. To use the CLA unit, the following sections should be defined.

e ClalProg: It holds the CLA’s executable routines and information for loading them to

specific RAM blocks during runtime.

e CLAscratch: The scratchpad section is used as the memory space for all data

structures that are handled by the CLA.

To clarify the above-described notions, the Laelaps Motion Control command file [52]
should be consulted. In this thesis, the implemented memory allocation provides sufficient
space for each firmware’s data and code. This was cross-verified with the Memory Allocation
tool provided by TI's CCS (located under View menu of the main task-bar). Admittedly, the
allocation is not optimal and in the future by consulting the literature [114] [118], several
improvements could be made.

C.8 Power Supply Considerations

The Delfino LaunchXL-F28379D evaluation package, supports three different power supply
configurations [119]. By placing jumpers JP1, JP2, JP3 and JP6, these configurations may be
exploited, with different levels of JTAG isolation. The available settings are listed in Table C-7,
while Figure C-9 designates the aforementioned pins. It should be noted that all of the firmware
solutions developed in this thesis are designed to be used in full ITAG isolation (Configuration
3). The power supplies are provided externally, by connecting the corresponding power pins
of the Boosterpack headers.

Table C-7. LaunchXL-F28379D power supply configurations.

Configuration JP1 JP2 JP3 JP6 External 5V External 3.3V
1 Yes Yes Yes No No No
2 No No No Yes No Yes
3 No No No No Yes Yes
fiom USB fross USH gl laieg N & eacene

disables (disables

isolation) isolation) D1: Power (green) 2194+ / $3: Reset J6/J8 *

.....

XDS100v2

JP6: Step-Up
Regulator

CON1:USB JP1:33V J1J3* J21 J20/J19 JP4/JPS J57* J13/J11
emulation/ from USB (ADC-D (Optional SMA (connects 12C
UART (disables differential connector point) 3.3V/5V

isolation) pair inputs) to J5/J7)
* = BoosterPack plug-in module connector Note: F28379D - 337 pin package

Figure C-9. LaunchXL-F28379D Pinout.

190/217

Appendix D. CLA MATH

The basic aim of the CLA is to accelerate complex mathematical procedures, relieving the
CPU’s bandwidth. Towards this, Tl introduces CLA Math Library, which constitutes a collection
of highly optimized mathematical oriented functions with low CPU run-times and easy code
integration. Their contextual logic is founded in lookup tables for trigonometric, logarithmic and
exponential operations. These tables are already built-in but require an effort to use. The
Library’s manual is very informative and the reader is strongly recommended to consult it
[115]. The basic workflow to add the CLA Math library routines to any firmware that is required
lies below.
1. From the Project Properties (Right Click on Project’s Name) -> Linked Resources, add
a new variable with the name MATH_ROOT and specify the path of the source files in
C2000WARE'’s folder structure (e.g. c28 folder in Figure D-1).

Linked Resources o

Path Variables Linked Reso

the file system, including other path variables with the syntax “S{VAR}
may be specified relative to these path veriables.
ce EtherCAT Laelaps_Motion_Control

Name

& C2000Ware 3 02

£ CCS_BASE_ROOT c

€CCS INSTALL_ROOT c
>CG_TOOL_ROOT

(> CLAMATH_ROOT

£ COMMON_ETHERCAT FILES S(ORIGINAL |

Z5ECLIPSE_HOME At O\ccs
= INSTALLROOT_F2837XD

= ORIGINAL_PROJECT_ROOT

€5 PARENT_LOC

25PROJECT.LOC

£ TIPRODUCTS DIR

£ T1_PRODUCTS_DIR_TIREX

25 WORKSPACE_LOC

piler\ti-cgt-c2000_2022LTS
Softwarelibraries\math\CLAmath\c28

kspace
Jo-projects-ethercat\EtherCAT Laelaps Motion Control\EtherCAT Laela

 Workspace

@ Showasbanced seives Conce
Figure D-1. Project's Linked Resources overview.

2. Add in the Include Options Pane, under C2000 Compiler, at the include search path
window (Figure D-2) CLAMATH_ROOT/include. Also, create a folder in the project,
name it CLA_MATH and add its path in the aforementioned pane, too

& Properties for EtherCAT.Laelaps_Motion_Control o x
type filter text Include Options Sy §
v Resource

Linked Resources
Resource Filters Configuration: |Left Leg FLASH LAUNCHXL F28379D_SPIA [Active] | | Manage Configurations...
General
~ Build
v 2000 Compiler —
Processor Options Add dir to #include search path (--include_path, -I) ¢ ®)
Optimization ${CG_TOOL_ROOT}/include [~

S{CLAMATH_ROOTY/include &1

IEED B S{PROJECT_LOC} Control_Schemes (=

Redomance'ddvisor
Predefined Symbols §{C2000Ware_3_02}\libraries\control\DCL\c28\include (=]
Advanced Options §{C2000Ware_3_02]\device_support\f2837xd\headers\include [
2000 Linker S{C2000Ware 3 02]\device support\f2837d\commoninclude (=]
2000 Hex Uity [Disablec] 2;ég{j{é\c’\?rfb;egazlllb.jnes\math\\Qmath\cZB\mclude = 5
Debug =
Git Specify a preinclude file (--preinclude) & %

Project Natures

Apply and Close Cancel

Figure D-2. Project's Linked Resources overview.

191/217

3. Select the CLA type support. The default option for TMS320F28379D is clal. That
selection is located inside the Processor Options window, like the one in Figure D-3.
At this point, fpu32 should also be enabled, if needed. The configuration of CLA Math
is directly dependent on the fpu32 option.

& Properties for EtherCAT Laelaps_Motion_Control o X

Processor Options =

type filter text

v Resource

Linked Resources
Resource Filters Configuration: | Left Leg FLASH_ LAUNCHXL_F28379D_SPIA [Active] | | Manage Configurations...
General
v Build
v C2000 Compiler
Processor Options

Optimization

Processor version (--silicon_version, -v) 28 v

Option deprecated, set by default (--large_memory_model, -ml)

Include Options

Performance Advisor

Unified memory (--unified_memory, -mt)

Predefined Symbols Specify CLA support (--cla_support) I clal v
Advanced Options Specify floating point support (--float_support) fpu32 v
v 2000 Linker A 3 e s
Basic Options Specify support for enhanced integer divison (--idiv_support) ~
File Search Path Specify VCU register save/restore for interrupts (--isr_save_vcu_regs) v
Advanced Options i
€2000 Hex Utility [Disabled] Specify TMU support (--tmu_support) tmu0 v
Debug Specify VCU support (--vcu_support) veu2 v
Git
Project Natures
(@) show advanced settings ‘Apply and Close Cancel

Figure D-3. Project’s Processor Options.

4. Lastly, the lookup tables should be integrated into the program along with the required
math routines and their header file. The two options here are:

5.

Insert the created tables from the c28x CLA Math source folder to the
respective project, manually copy them to FLASH and eventually load them to
RAM, during runtime.

Add the symbols and the required Boot ROM paths to the project’s properties.
Those ROM tables do not require any further actions to become operational
and do not reserve user memory.

In this workflow, the fpu32’s capabilities along with the CLA’s ROM tables are used.

Navigate to File Search Path, under C2000 Linker structure, as shown in Figure D-4.

Figure D-4.

& Properties for EtherCAT_Laelaps_Motion_Control [m] X
File Search Path Gy
Resource
General
« Build Configuration: | Left_Leg_FLASH_LAUNCHXL_F28379D_SPIA [Active] +| | Manage Configurations...

v C2000 Compiler
Processor Options
Optimization
Include Options
Performance Advisor
Predefined Symbols
Advanced Options

~ (2000 Linker
Basic Options
File Search Path

Include library file or command file as input (--library, -1) a9 8 &
F2837«D_Headers_nonBIOS_cpul.cmd

2837«_FLASH_Ink_cpu1_CLA.cmd

${C2000Ware_3_02}\libraries\math\IQmath\c28\lib\IQmath_fpu32.lib [

1152800 fpu32.lib

libca

Advanced Options
€2000 Hex Utility [Disabled]

Debug

Git

Project Natures

Add <dir> to library search path (--search_path, -i)

${CG_TOOL_ROOTy/lib [
${C2000Ware_3 02)\libraries\boot_rom\f2837xd\revB\rom_symbol_libs\c1 CLA Data ROM &8

S{CLAMATH_ROOT}/lib (=1

${CG_TOOL_ROOTY/include =]
${C2000Ware_3_02)\device_support\f2837xd\headers\cmd [
${C2000Ware_3_02)\device_support\f2837xd\common\cmd [
S{PROJECT_LOC}/cmd (2]

[JEnd reread library group (--end-group)

[Search libraries in priority order (--priority, -priority)

Reread libraries; resolve backward references (~-reread_libs, -x)
[JBegin reread library group; resolve backward references (--start-group)
[Disable automatic RTS selection (--disable_auto_rts)

Apply and Close

Cancel

Project's File Search Path tab.

192/217

Appendix E. Setup TI's CCS Projects

E.1 Download TI'’s CCS and Import Project

The instructions on how to import a CCS project are laid below.

1. Download the latest version of TI's CCS from the official site [59] and follow the
installation’s steps.

2. Download the required C2000Ware libraries. To do that, navigate to View->Resource
Explorer Menu and choose the desired version, under Software Folder. The default
version for the projects of this thesis is v3.03.00.00. The procedure is illustrated in
Figure E-1. If the installation succeeds, the green check next to the downloaded
version appears.

5] CCS_Workspace - Code Composer Studio

File Edit View Navigate Project Run Scripts Polyspace @ Resource Explorer 52

i @ Resource Explorer |
e @ Resource Explorer Offline < - Resource Explorer
i Getting Started

S ADC
<5 ADIC & CCSApp Center I «
(e ADI GUI Composer™ > » @ Development Tools

8 anic

» I Device Documentation

~ [Software

25 C2000Ware - 3.03.00.00 &

28 C2000Ware_DigitalPower_SDK - 3.01.00.00

2= C2000Ware_MotorControl_SDK - 3.00.01.00

Figure E-1. C2000Ware installation procedure.
3. Click on File -> Import... and opt for CCS Projects, as shown in Figure E-2.

Y] CCS_Workspace - Code Composer Studio
File Edit View Navigate Project Run Scripts Wind

New Alt+Shift+N >
Open File...
(", Open Projects from File System... & Import o X
Recent Files > Select \,
|
= = . Imports existing CCS Eclipse projects into workspace.
Close Ctrl+W EI
Close All Ctrl+Shift+W Select an import wizard:
C u = type filter text ‘
Save Ctrl+S
v (& General
Save As... B Archive File
. N " R R 122 Existing Projects into Workspace
Save All Ctrl+Shift+S () File System
Rewve [T} Preferences
SEVENE (23 Projects from Folder or Archive
& C/Ces
Move... v (5 Code Composer Studio
3, Build Variables
P me 2 o,
Rename... F2 51 CCS Projects
Refresh 3] Legacy CCSv3.3 Projects
(> Energia
Convert Line Delimiters To > v & Git
%, Projects from Git
Print... Ctrl+P 243 Projects from Git (with smart import)
 Install
(& Remote Systems
g Import.. : > Run/Debug
S, Te
/5 Export... e
Properties Alt+Enter
Switch Workspace >
Restart
Exit
@ Back inish Cancel

Figure E-2. CCS Import workflow.

4. Browse to the directory of the desired project’s source files and hit ok, when prompted.
The view should be like the one in Figure E-3. To perform a recursive import of the

193/217

referenced projects located in the same search directory, check the first checkbox,
displayed in the aforementioned picture. If the project is being imported from a Git-
repository do not opt for the “Copy projects into workspace” checkbox.

Import CCS Projects.

=
Import existing CCS Projects or example CCS Projects. i
4

@ Select search-directory: | D:\Git\laelaps-leg-firmware\EtherCAT Laelaps Motion Cont [Browse.. |

O Select archive file:

Discovered projects:

107 EtherCAT_Laelaps_Motion_Control Select All

Deselect All

Refresh

[Automatically import referenced projects found in same search-directory

[Copy projects into workspace

Open Resource Explorer to browse a wide selection of example projects...

Figure E-3. Import CCS project options.

E.2 Create a Target Configuration

After the project is imported successfully, the target configuration may be corrupted. It should
be noted that the target configuration is not linked externally to the current thesis’ projects, but
rather included in each project's source files. Hence, no further action is required.
Nevertheless, to create it from scratch, the following guide should be consulted.

1. Select View -> Target Configuration as depicted in Figure E-4.

Ble [t | Yeew | Navgate Project Bun Scripts Jiindow Help
@ Rezource Explorer

W Resource Explover Classic

=13 Grace Sreppets
ek PIA_RAM)
s

Y Gerting Started

¥ o 1
§ a i ude
Alte Shift=Q X
AR S
Alr«Shit-Q Vv
e Shifte QL §
% Twge Configueations
S Outiine Alt-Shét-Q 0 |
- v O« -
=) Stack Usage ot =
COT Buikd
Memery Allocatios
© Optimizer Assistant
Other Al-Shit-Q Q

Figure E-4. “View” drop-down menu.

2. Select New Target Configuration from the Target Configurations window (Figure E-5).

194/217

% Target Configuesbons
==

52 Projects
4 User Defined

Figure E-5. New Target Configuration.

3. Name the Target Configuration after the MCU being used and click on Finish (Figure
E-6).

% New Target Configuration

Target Configuration

Create a new Target Configuration file.

File name: I LAUNCHXL_F28379D

[W] Use shared location

Location: l C:/Users/stam/ti/CCSTargetConfigurations File System

Finish \ | Cancel

Figure E-6. Name Target Configuration.

4. Select the Texas Instruments XDS100v2 USB Debug Probe at the Connection tab,
select TMS320F28379D at the Board or Device tab and click Save as shown in Figure
E-7.

File Edit View Navigate Project Run Scripts Window Help

B HRIDIR iR iAo

[25 Project Explorer 52 5% Y= O | R “LAUNCHXLF28379D.coml 52 =00
v £ EtherCAT Application s
> P Basic -

% Binaries

v @l Includes General Setup

Advanced Setup

(8 CiftifeesvT/tools/compiler/ti-cgt-c2000_16.12.051 | This section describes the general configuration about the target.

(2 Citi/controlSUE/device_support/F2835D/A200/ "

[C:/ti/controlSUTE/device_support/F2837D/200/ Connection Texas Instruments XDS100v2 USB Debug Probe v Target Configuration: lists thi
(X 5 ™D/

& EtherCAT_Application/hal Board or Device | TMS320F28379D
{5 EtherCAT_Application/SPI_EtherCAT slave_stack -

Save Configuration
= _1_LAUNCHXL_F2837xD_SPIA_RAM ;
@ _2_LAUNCHXL_F28379D_SPIA_FLASH =
& hal
(&> SPI_EtherCAT slave_stack Test Connec tion
@4 cmd To test a connection, all chan{
configuration file contains ne
Test Connection
Alternate Communication
Uart Communication v
- To enable host side (i.e. PC) ¢
communication over UART, t
, implementation Pleass checl
< L > ~ target application leverages T
sa = enable Uart Moritor module.
@ Console 23 =] PO L TN T3 R RO T R
2 o [o X < n >
> & 2 R RRd= R Basic | Advanced| Source
CDT Build Console [EtherCAT Application]

Figure E-7. Select connection and device.

5. Close the LAUNCXL_F28379D.ccxml window after the saving is completed.

6. To link the newly created configuration, navigate at the Target Configurations window
(right-hand side) expand the User Defined directory, right-click on
LAUNCHXL_F28379D.ccxml and select Link File To Project -> [Project Name] (e.g.
EtherCAT_Application) as shown in Figure E-8.

195/217

&) Target Configurations 3 % R = =2 B8
type filter text
== Projects
v 7= User Defined
i, LAUNCHXL _F28373D.ccxmi |
% New Target Configuration
Import Target Configuration
Delete Delet=
Rename F2
4 | Refresh 5
v+ Launch Selected Configuration
Set as Default 1 8 1
Link File To Project > \] EtherCAT _Application I
Properties Alt<Enter ‘ RemoteSystemsTempFiles

Figure E-8. Link the created Target Configuration to the project.

7. Close the Targer Configuration tab.

E.3 Build and Deploy the Project

1. Now the project is ready for deployment. Build the project to verify the setup, by clicking
on the hammer icon, located at CCS’ main taskbar (Figure E-9).

Debug Button Build Button

ﬁ’ﬂ CCS_Workspace -\Code Composer Studio
File Edit View Nayigate Project Run _Scripts Window Help

v ;@f:ﬁ;v‘&v;{g,;,@j_g,j SN e e =

Figure E-9. TI's CCS main taskbar.

9

2. Debug the project, by clicking on the Debug button, located in the main taskbar. If the
Debug session configuration pops-up, choose the CPU1 option, as shown in Figure
E-10. Leave “Create a debug group for selected cores” unchecked.

Please select the CPUs to load the program on. This selection will be associated with the active target configuration.

Texas Instruments XDS100v2 USB Debug Probe_0/C28xx_CPU1
[] Texas Instruments XDS100v2 USB Debug Probe_0/C28xx_CPU2

Select All Deselect All

[[] Create a debug group for selected cores

Make the group synchronous
7\

Figure E-10. Firmware's Debug Session configuration.

196/217

3. After the download process is finished, run the project by clicking the Run button at the
Debug Perspective’s ribbon menu.
The project should be up and running. The Delfino’s onboard LEDs should be flashing for the
predefined sampling period.
Now that the software has been deployed, it is time to set up the master and perform the
necessary wire connections. A more detailed guide can be found here [20]. For completion, a
brief one may be found in Appendix A.

197/217

Appendix F. Integrate TI’s DCL Library

The steps required to integrate the TI’'s DCL libray into a CCS project are adumbrated below:
1. Add the appropriate include path of DCL’s source folder (e.g. ¢28 in C2000WARE), in
the Project Properties Pane (Project Properties -> Include Options) as in Figure F-1.

&8 Properties for EtherCAT_Laelaps_Motion_Control [m] X

[type fiter text

Resource
General
v Build
v C2000 Compiler
Processor Options
Optimization
Include Options
Performance Advisor
Predefined Symbols
Advanced Options
€2000 Linker
€2000 Hex Utility [Disabled]
Debug
Git
Project Natures

Include Options =k v 8

Configuration: | Left Leg FLASH LAUNCHXL_F28379D_SPIA [Active] ~ | | Manage Configurations...

Add dir to #include search path (--include_path, -1)
§{CG_TOOL_ROOTYinclude (]
S{CLAMATH_ROOT}/include =]
S{PROJECT_LOC}/Control_Schemes (]
S{PROJECT_LOCY/CLA MATH [
§{C2000Ware_3_02}\device_support\f2837xd\headers\include [

${C2000Ware_3_02}\device_support\f2837xd\commoninclude]

${C2000Ware_3_02}\libraries\math\|Qmath\c28\include =]

S{PROJECT_LOC}/hal (=]

8 84l

S{PROJECT_LOC}/SPI_EtherCAT_slave_stack [

Specify a preinclude file (--preinclude) &

Apply and Close Cancel

Figure F-1. Project's Include Options pane.

2. Some additions should be made in the linker command file (Section 3.5.8) regarding
the assignment of memory space to DCL functions. That is crucial in case that DCL
routines run on CPU rather than on CLA (DCL_runPID_Cx family). An example of
such modifications is considered in the snippet below.

dclfuncs
.binit :

: {} LOAD=FLASHD | FLASHE, RUN=RAMD@, TABLE(BINIT)
{} > FLASHD | FLASHE | FLASHF

3. Add the desired controllers’ source files to the respective project’s tree and include the
accompanying headers in the project’s source files.

198/217

Appendix G.Code Style Guideline

Modern software development requires the cooperation of multiple developers, with different
knowledge backgrounds. For this procedure to be effective and efficient, the created code
should be consistent, well-written, and documented. These features are of utmost importance,
for the developed software to be maintained and furtherly expanded in the future. To this end,
the adoption of coding style rules is imperative.

In the current thesis, the created firmware packages comply with a coding style tailored-
made for embedded systems (Barr C [69]). Since every application has certain requirements
and special needs, the adopted coding style deviates slightly from the aforementioned
standard Barr C. The key differences are laid below.

The names of all data types, including structures, unions and enumerations, shall
consist of condensed words with each one’s first letter being a capital (e.g.
AdcaResult0).

Specifically, for the global data types, in addition to the aformenetioned naming
convention, their names should have a “g_" prefix (e.g. g_StateMachine).

The names of functions also consist of condensed words, with their first letter being a
capital (e.g. InverseKinematics()).

All definitions names shall consist of capital letters, with words separated by
underscore “ " (e.g. ZERO_ANGLE_POS).

Each routine should have a preamble that describes its functionalities, return types,
input parameters and shall have Doxygen support. For example:

//***
//

//! \brief CLA-Runtime Constant Velocity Planner Routine with Ground Collision
//! Avoidance Feature.

//!

//! It materializes the End-Effector Planner, Producing each Step's (x,y)

//! Coordinates. The ground collisions are prevented due to the zero angular
//! velocity that elliptical trajectory presents at toe's touch-down.

//!

//"' \return None.

//

[[REFFEK A KA A KA KK KKK KK KA KA KK KA KKK A KK KA KKK KKK KK KKK KKK KKK KK KKK KKK K KK

All functions should be commented inline after their closing bracket. For example:

void RunHipController(void)

{
//

// Function’s Code

//

} // End Of RunHipController()

Inline code comments for documenting code are not permitted. Comments inside a
routine should be placed above the line of code or the block of lines that are intended
to be discussed and always in the following form.

//

// Initialize Joints' ePWM Modules
//

InitEpwml();

InitEpwm2();

199/217

o All if()...else if() structures shall end with an else, even if the latter remains empty.
Also, each condition shall be explained above its conditional statement. The brackets
should always be in a separate line. For example:

//
// Explanation of Condition 1
//
if (Conditionl)
{
//
// Code Block 1
//
b

//

// Explanation of Condition 2
//

else if (Condition 2)

{
//
// Code Block 2

//
}

//

// Else Condition
//

else

{
//
// Code Block 3 (May be left empty)
//

e All source and header files shall have a file preamble at their beginning. This preamble
is located after the Doxygen’s \addgroup command, if present. For example:

//

//! \addtogroup {Group Name}

/7" @{

//
//***
//

//! \file cla_utilities.cla

//!

//! \brief Give a brie description about the file’s contents
//!

//! Give more details, if necessary.

//!

// Author: {Authors’ Names}

// Maintainer: {Maintainers’ Names}

//

// Revision History

// Version {Ver. Number} | {Date} | {Developer’s Name}
//

// (C) Copyright 2020, NTUA CSL-EP Legged Robots Team
//

//***

¢ Comments located outside of functions shall have the below form:

//***
//

// Controllers' Filter Bandwidth Variable

//

//***
volatile uintle_t g _FilterBandwidth = 1U;

200/217

Appendix H. MISRA C 2012 Standard

The current thesis CCS projects comply with MISRA C:2012 standard [62]. The MISRA C
guidelines define a subset of the C language in which the risk of making mistakes is either
removed or reduced. Many standards for the development of safety-related software require,
or recommend, the use of a language subset and this can also be used to develop any
application with high integrity or high reliability requirements.

To use MISRA C, it is necessary to develop and document:

e A compliance matrix, showing how compliance with each MISRA C guideline is

checked.

e A deviation process by which justifiable non-compliances can be authorized and

recorded.

Every MISRA C guideline is classified as either being a “directive” or a “rule”. A directive
is a guideline for which it is not possible to provide the full description necessary to perform a
check for compliance. Static analysis tools may be able to assist in checking compliance with
directives but different tools may place widely different interpretations on what constitutes a
non-compliance. A rule is a guideline for which a complete description of the requirement has
been provided. It should be possible to check that source code complies with a rule without
needing any other information. Moreover, every MISRA C guideline is given a single category
of “mandatory”, “required” or “advisory”. Mandatory rule violations are not permitted under any
circumstances.

Except of protecting from run-time errors by writing clean, documented code, MISRA C
tries to make the code implementation-free. This means that compiler-specific macros, etc.
are treated as violations. On the other hand, in this thesis the developed firmware packages
do not have such requirements. The compiler is provided by TI for the particular C2000 Delfino
architecture (C28x Compiler). Also, it is common for embedded systems to have non-standard
macros and other commands that utilize a functionality that only the architecture in question
supports. This should be taken into consideration whenever MISRA C:2012 is adopted for an
embedded application.

H.1 Laelaps Il Motion Control’s MISRA C 2012 Compliance

To prove that the developed firmware complies with MISRA C: 2012 standard, a compliance
matrix is created. Since this matrix includes every MISRA rule, its reproduction would be
extensive and overwhelming for the reader. There are available reports in the project’s
Bitbucket repository [52]. This matrix is exported by the used Static Analysis tool and states
which directives and rules are being possibly violated. Then, the developer has to decide if
these violations may be permitted or take the required steps to eliminate them. Table H-1 lists
all the violations of MISRA C: 2012 rules and directives for the developed firmware, while each
violation’s classification is also stated. For a more comprehensive representation, the bar-plot
of Figure H-1 is created with the aforementioned table’s data. The orange bars indicate the
number violations of a required rule, while the gray ones the violation of an advisory rule. No
mandatory rules are violated. MISRA states that each required rule violation needs a formal
deviation description (refer to MISRA C:2012, Section 6.2.2). On the other hand, advisory
rules do not necessarily need formal deviation description (refer to MISRA C:2012, Section
6.2.3). Mandatory rules shall not be violated under no circumstances (refer to MISRA C:2012,
Section 6.2.1).

201/217

Table H-1. MISRA C: 2012 motion control’s guideline violations.

Guideline Classification #Violations
D1.1 Required 8
D4.1 Required 4
D4.4 Advisory 2
D4.6 Advisory 174
D4.8 Advisory 1

2.1 Required 2
8.2 Required 11
8.3 Required 2
8.4 Required 0
8.5 Required 1
8.7 Advisory 36
8.9 Advisory 5
8.13 Advisory 1
10.3 Required 19
10.5 Advisory 5
10.8 Required 17
11.1 Required 10
12.1 Advisory 39
12.4 Advisory 3
14.3 Required 2
20.5 Advisory 1
Total 343

From the Table H-1, it becomes apparent that most violations concern the “advisory”
guidelines. Below, each violation of the required rules and directives is accounted and
analyzed. As for the “advisory” guidelines, they are not furtherly analyzed, but they were
investigated. Most of them are not considered as problems in the current implementation.
Lastly, Figure H-1 presents the results in a more intuitive way.

202/217

MISRA C: 2012 Violations
180

160

140

120

#Violations
=
(=)

]
1=

60

40

. H
N

DI1.1 D41 D44 D46 D48 21 82 83 84 85 87 89 813 103 105 108 111 121 124 143 205

Violated Guideline

mRequired ®Advisory ®Mandatory
Figure H-1. MISRA C: 2012 motion control guideline violations' bar-plot.

DIR1.1

Any implementation-defined behaviour on which the output of the program depends
shall be documented and understood. This directive states that implementation-specific
code, like pragmas, or integer to float cast should be avoided. In the current project, the
compiler is fixed and pragma instructions are used to assign a variable to a specific memory
section; thus cannot be avoided. Lastly, the integer to float cast should be avoided, because
the result depends on the compiler (rounding behavior). Since the compiler is fixed, this is not
required.

DIR 4.1

Run-time failures shall be minimized. This directive considers the overflow/underflow errors
that may occur from casting a variable of a wider type to a narrower (e.g. uint32_t to int32_t)
during run-time. In the current project casting types could not be avoided. To ensure that no
overflow occurs, careful testing has been made, both in the real hardware and using Static
Analysis.

Rule 2.1

A project shall not contain unreachable code. This is a False-Positive of the Static Analysis
software. The if-conditions that are indicated by the software depend on an arbitrary register’s
value. The software cannot make this distinction and the if-conditions evaluate only to false,
since the registers take values during run-time.

203/217

Rule 8.2

Function types shall be in prototype form with named parameters. This violation is
understandable and refers to the POSSPEED structure. This structure violates this rule, since
it contains unnamed parameters in its members (e.g. *Init()). Nevertheless, this is the TI's
proposed way to handle modules, such as eQEPs. The original code can be found in
C2000Ware’s eqep_pos_speed_cpu0l1 example project.

Rule 8.3

All declarations of an object or function shall use the same names and type qualifiers.
This is a False-Positive of the Static Analysis tool. The g_AnalogKnee and g_AnalogHip
variables are checked and have the same type qualifiers in all of their declarations.

Rule 8.5

An external object or function shall be declared once in one and only one file. This rule
is violated in one specific case that GPIO_WritePin() cannot be declared in a header file due
to TI's type conflict with the types of the EtherCAT stack (uint16_t vs. UINT16). The types are
basically the same but come with different names in the aforementioned implementations.
Thus, this violation could not be avoided.

Rule 10.3

The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category. This rule as mentioned before cannot be
followed, since casting types to narrower ones serves a crucial functionality in the firmware.
All occurences of this violation have been reviewed.

Rule 10.8

The value of a composite expression shall not be cast to a different essential type
category or a wider essential type. This MISRA rule states that casting a composite
expression to a wider/different essential type, may have different results with different
compilers. In the current case, this type of casting is permitted since the implementation here
is specific and the compiler is fixed. The occurencies have been reviewed and tested and their
results are the expected.

Rule 11.1

Conversions shall not be performed between a pointer to a function and any other type.
This rule is violated by specific castings in function-pointers (e.g. (uintl6_t)(&ClalTask1)) that
do not comply with MISRA standards. Nevertheless, this is TI's default way to handle certain
assignments and thus is permitted.

Rule 14.3
Controlling expressions shall not be invariant. This is similar to the violations of Rule 2.1.
The if-conditions are considered invariant by the Static Analysis tool, but actually they are not.

H.2 IMU Fimrware’s MISRA C 2012 Compliance

Both IMU libraries were designed to comply with MISRA C: 2012 standard. Below, each CCS
project violations are analyzed. Note that only the custom files were checked for MISRA
compliance (the contents of each ADIS163xx_LIBRARY folder).

204/217

H.2.1 ADIS16364 Library’s Compliance

By reviewing Table H-2, it is deduced that the project violates few advisory guidelines and
only one required one. Figure H-2 gives a more clear view of the results.

Table H-2. MISRA C: 2012 ADIS16364 guideline violations.

Guideline Classification #Violations
D4.4 Advisory 2
D4.6 Advisory 28
1.1 Required 2
12.4 Advisory 1
Total 33

MISRA C: 2012 Violations

]

D44 D4.6 Violated Guideline L 124

wRequired ® Advisery WMandatery

Figure H-2. MISRA C: 2012 ADIS16364 guideline violations' bar-plot.

The violated “advisory” guidelines have been reviewed and they are not considered as
problems in the current implementation. The “required” guideline that is violated is analyzed
below. For an in-depth analysis, refer to the Static Analysis auto-generated report that includes
the detailed MISRA compliance matrix [83].

Rule 1.1

The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits. This violation is triggered due to
the large ADIS16364.h header file, in combination with the relatively large ADIS16364.c
source file. In the current case the compiler supports their lengths and thus no actions are
necessary. The used compiler is the default TI's C28x for the C2000 Delfino architecture.

205/217

H.2.2 ADIS16375 Library’s Compliance

Likein the previous case, only the files of ADIS16375_ LIBRARY folder were analyzed. The
results were very similar. As can be seen in Table H-3 the library violates a single required
guideline and few advisory ones. In Figure H-3, a more intuitive illustration of the results is
given. The detailed reports are given in [84]. The justification of the required Rule 1.1 violation
remains the same with the one given in the previous section. Generally, the library’s
implementations is generic and can be used by other devices with a similar architecture.

Table H-3. MISRA C: 2012 ADIS16375 guideline violations.

Guideline Classification #Violations
D4.4 Advisory 2
D4.6 Advisory 65
D4.9 Advisory 1
1.1 Required 2
12.4 Advisory 1
Total 71

MISRA C: 2012 Violations

10

#Violations

10

D4.4 D4.6 D4.9 1.1 12.4
Violated Guideline

Required ® Advisory ®Mandatory

Figure H-3. MISRA C: 2012 ADIS16375 guideline violations' bar-plot.

The violated “advisory” guidelines have been reviewed and they are not considered as
problems in the current implementation. For an in-depth analysis, refer to the Static Analysis
auto-generated report that includes the detailed MISRA compliance matrix [84].

206/217

Appendix |. LDO Thermal Design

In the design of PCBs, using LDOs for power supply, a major challenge is to minimize thermal
fatigue and overheating. Such components require extra care and special design to optimize
their performance. According to the literature [79], the LDO's thermal behavior is heavily
dependent to the drop-out voltage. In the current IMU-Interface PCB, the 5V and 3.3 V LDOs
are connected in parallel. Hence, the most stressed one is that of the lower voltage between
the two.

The aforementioned logic supply’s LDO is TI's LM1085IT [120]. The corresponding
datasheet [77] presents a bulk method to estimate an arbitrary application’s thermal stresses
and is implemented in this section. According to the accompanying documentation, the IC is
modeled in two different parts, namely Control and Output. Furthermore, their maximum
junction temperatures are listed in Table I-1, below.

Table I-1. LM1085IT thermal limits.

IC Section Ty maxCl
Control 125
Output 150

To be on the safe side, the thermal design takes into consideration only the control’s lower
temperature as maximum for both parts and 25 °C as the ambient one. The maximum
allowable thermal resistance (&,,,,,) may be obtained by the formulas in (I-1), with 1 and
|, being the load’s and ground currents, respectively. Note that the ground current is the
quiescent current, needed to maintain regulation. The input voltage is represented by V, ,
while the output one by V., .

0 _ (125_Tambient)

JA,max

yWith By = (Vi =Vou) - 1 +Vin - s (I-1)
D
The maximum allowed heatsink’s thermal resistance (6,) iS given by the equation
(I-2), with 6,,, being the heatsink’s resistance, 8,. the package’s top resistance and 6,
thermal compound’s resistance (if used).

0HA,max = eJA,max - (eac + ‘9CH) (1-2)

A simple program has been developed in Matlab to do a parametric study of the required
heatsink with respect to the input voltage. The used parameters are illustrated in Table I-2.
The ADIS16375 IMU slave’s current consumption was measured using a voltometer and
determined to be 680 mA, approximately. This slave has significantly higher power
consumption, supplied by the LM1085IT regulator, since its IMU operates at 3.3 VV, compared
to the ADIS16364 that operates at 5 V. The aforementioned current value refers to both of the
slave’s supply channels. Since only the ESC is supplied by the 5 V channel, its current
consumption (350 mA [43]) was substracted from the specified total one, to come with the 3.3
V channel’s current consumption (330 mA). All the other parameters in the aforementioned
table are specified by the respective manufacturer's datasheet. Note that the chosen heatsink
was not soldered at the LDO, but rather mounted on it along with thermal paste to ease off the
heat dissipation.

207/217

Table I-2. Matlab study's used parameters.

Parameter Value
Tambient [°C] 25
T max [°Cl 125
Vinrange [V] 7-15.85
V., [V] 3.3
I [A] 0.005
I, [A] 0.330
0,.[°CIW] 15.6
0., [°C/W] 0.2
O scwar [°C /' W] (Chosen Heatsink) 16

In Figure I-1, the formula in (I-2) is materialized. Heatsinks with thermal resistances inside
the green area are valid for the corresponding input voltage ranges.

0 Heatsink's Maximum Thermal Resistance vs. Input Voltage

Vin M

Figure I-1. LDO's maximum allowable thermal resistance.

So, for the chosen heatsink (16 °C/W) the temperature characteristic w.r.t. the input
voltage is illustrated in Figure I-2. This characteristic curve’s intersection with the 125 °C
temperature limit, specifies the maximum allowable input voltage to be approximately 12.64
V. The aforementioned curve is given in (I-3) ,specified in [77].

T,=T,+P, (6’JC +6,, +¢9HA) (1-3)

208/217

160 Junction Temperature vs. Input Voltage
I T

160 — —
140 |- —|

130 X12.6378]

120 |- —

< 110~ -

X9

90 Y 86.2468 7

80— —

70 —

60 | | | 1 | | | |
7

VINM
Figure I-2. LDO thermal behavior with chosen heatsink.

Note that the described approach is based on a bulk thermal model. To verify that claim,
an experiment was conducted. The LM1085IT output voltage was monitored using Agilent’s
MSOX3014A oscilloscope for a variety of different input voltages. The results indicated that
the LDO’s thermal protection is activated for input voltages higher than 12.7 V.

To conclude with, the described analysis has been verified experimentally and its results
proved to be valid. The input voltage of the IMU EtherCAT slaves must not pass the limit of
12.7 V. So, by taking into account the fact that Laelaps’ low-power supply channel operates
at 9 V, the overall design is on the safe side. Generally, the LDO thermal stresses rise as the
input voltage rises.

209/217

Appendix J. Dynamical Modeling of Pendula

This Appendix is focused on the derivation of the mathematical formulas that describe the
simple and bifilar pendulum's behavior. An effort has been made to avoid the exhausting
reproduction of every calculation that is necessary, especially in the bifilar's case, in which a
significant amount of computations arise.

J.1 Simple Rigid-Body Pendulum Dynamics

The pendulum constitutes one of the simplest, yet utterly insightful nonlinear system (Figure
J-1). In this study, only 2D motion is considered. There are multiple ways to derive the
equations of motion of such a system, but in this letter, Lagrange formulation has been chosen,
due to its elegance and universal applications.

,,\
ig C\ I, m

m

b

Figure J-1. Rigid-body pendulum overview.

To apply the Lagrange theory, first, the energy equations (J-1) of the system should be
formed. The equations’ notations are given in Figure J-1.

T =1|w2+%mv2 :%(I +mC2)6°

(J-1)
U =-mgC,, cos(0)
The Lagrangian is given as L =T —U , while the EoMs are presented in (J-2).
d % —%+ai_C :a—F?, with g = @ as the generalized coordinate (J-2)
dtjog| oq o9 oq

In the current case, no Rayleigh friction terms and external excitations are considered.
From the equations (J-1)-(J-2) the resulting equation of motion is given in the equation (J-3).

(1+mC2)é+mgC,sin(6)=0 (3-3)
To come with a unified formula that presents the direct dependency among the inertial
parameters and the period of oscillation, the equation needs to be linearized around a stable

point. Such procedure outputs the following ODE, which constitutes a simple initial value
problem (J-4).

210/217

(1+mC2)d+mgC, -6=0, with 6(0) =6, & 6(0)=0=>

~ mgC, . (J-4)
o(t) =6, cos(/—I +mC? t}

From the above equations (J-4), the inertia (|) may be retrieved by measuring the period
of oscillation and applying the equation (J-5).
_mgC,T?

2

| -mC? (J-5)

A7

J.2 Bifilar Rigid Body Pendulum Dynamics

The bifilar pendulum (Figure J-2) is a different flavor of the systems belonging to the pendula
family. Its linearization is as simple and straight-forward as the simple pendulum’s, but the
derivation is trickier. In this section, the general methodology is illustrated, but the reader is
encouraged to consult this Mathematica notebook [52] for a detailed derivation.

r r

Figure J-2. Rigid-body bifilar pendulum overview.

Like in the previous case, equations (J-6) give the energy of the system. In this case, the
additional notation z represents the vertical elevation of the rod.

T-tmvilie :E(I +mC§)92+1m22
2 2 2 2 (J-6)

U =mgz
In the above formulas (J-6), the only independent coordinate is € and is chosen as the

generalized coordinate of the Lagrangian. To express z as a function of the angle & certain
geometrical handling is necessary. Figure J-3 illustrates the process (J-7) graphically.

Figure J-3. Bifilar pendulum’s geometry of motion.

211/217

From the graphs in Figure J-3, the equation (J-7) may be expressed as in (J-9).

(AB)=2l sin(%) & (Ar)=2r sin(%) 3-7)

(AT) = (AB)cos(k), with k :%_”_;‘p:%:

0

2rsin (gj =Isin(p)=sin(¢) = %sin (Ej

(J-8)

z=(BI)=(AB)sin(k) = (AB)sin(%j(z)ZI sin? (gj .

z :|[1—cos(¢)](f)|{1_\/1_";_22“”2(%}} (3-9)

The linearized equation of motion is given in (J-10).

2\ 5 mgr2) .
(1+mC2)-6+ 6 =0, with 9(0)=6, & 6(0)=0 =
— (J-10)
o(t) = 6, cos| |[——=———t
=6 ((1+mC2)-I J

From the above equations (J-10), the inertia (1) may be retrieved by measuring the
period of oscillation and applying the equation (J-11).

|- mgr?T?

—mC?2 J-11
47° " ()

212/217

Appendix K. Bill Of Materials

K.1 Absolute Encoder Circuit

To interface a single absolute encoder with the Delfino shield PCB, the required components
are listed in Table K-1.

Table K-1. Absolute encoder interface circuit.
Part Quantity Description

JST-XH 4-pin (Male) x1 JST-XH Male Connector

JST-XH 4-pin (Female) x1 JST-XH Female Cable
RJ9 (Female) x1 RJ9 Female Connector
RJ9 Cable x1 RJ9 Cable with Male Connectors

Abs. Enc. Housing x1 Custom 3D-Printed Housing

RLS RMB28Vx Encoder x1 RLS RMB28Vx Absolute Encoder Module
Prototyping PCB x1 Prototyping PCB for rewiring signals

K.2 IMU-Delfino Interface PCB

The IMU-Delfino Interface PCB is a custom solution, developed in-house. The parts for
building it, are listed in Table K-2.

Table K-2. IMU-Delfino PCB BOM.
Part Quantity Value Description
C1, C2,C3,C4 x4 100 nF Pol.Tantalum Capacitor
C5 x1 0.33 uF Pol. Tantalum Capacitor
Ce6, C7 x2 10 uF Pol. Tantalum Capacitor
DATA READY_SELECTOR,
IMU_SUPPLY_SELECTOR X2 3-Pin Jumper
(JP2E)
DIO3/DIO4/RESET _JUMPER .
(JP1E) - x3 2-Pin Jumper
5V 1.5A Voltage
IC1 x1 L7805CV Regulator
STMicroelectronics
IMU_CONNECTOR x1 EH;_ 'S_Ogﬂm' Samtec IDC Conn.
IMU IDC Cable x1 JZCOS ODO(iBNDR Samtec IDC Cable
J1 x1 DCJ0202 DC Power Jack
J3 x1 CONN_04x02 Male Pin Header
UL 1 LM1085IT- 3.3V 3A Voltage
12/NOPB Regulator Tl

213/217

Appendix L. Schematics

214/217

3.75

23.50

0.50

28.50
34.30

<1 |

N/

3.50
6.20
8.19

19.10

12.00
5.40

30.25

SECTION A-A
SCALE T :1

47.00

UNLESS OTHERWISE SPECIFIED:

FINISH:

DIMENSIONS ARE IN MILLIMETERS

SURFACE FINISH:

TOLERANCES:
LINEAR:
ANGULAR:

NAME
DRAWN
CHK'D
APPV'D
MFG
QA

SIGNATURE

DATE

MATERIAL:

WEIGHT:

3

= ol 3
A\ R S b
T T
N, ‘ ool |
H H —]
|A
o
<
~O
S,EEBXE’;:ES, DO NOT SCALE DRAWING REVISION
EDGES

ABS

TITLE:
Absolute Encoder's Housing
DWG NO.
A4
SCALE:1:1 SHEET 1 OF 1

2 |

4 € 14 S %

1 40 | 133HS (A= 0N IHOEM

SdVv

‘'ON OMad AVIdALYW

dAddY
aseq SUIsnoy NINI a5
° NMYJa
=RIIg alvd JANLYNODIS JWVN

{YINONY

0 F VAN
‘SIONVHII0L
$3903 ‘HSINIH 3DVv4aNS

dAVHS Av3dd SHFLIWIMIW NI FJV SNOISNIWIa
NOISIAZY \4 v
ONIMYEAFIVOS ION 0a ANV d3ng3a *HSINI4 :d3HID3dS ISIMATFHLO SSTINN

00041

008l1
ﬁ 0078

1 00°¢ _100°¢S

S |8 3
e 3
0G9°q
o » 0059] ||| 94
© S 0082 _ Jf
H T LI e Iﬂ_.CuW.E
N w F.«E.__m"_m. "_" _m _/_ O
—_ \ U ._._ ! . .
» : 3: i) mW
o ' o i i
N I 41 I _"ms I i
g 0g€'€9 14 WA4 =

| 4 € 14 S

1 40 | 133HS (A= 0N IHOEM

< ._u< ‘ON Omd m m< VI¥ALYW VO

S4W

o

dAddY O. m.

I9A0)) SuIsnoy NINI a5

NMYJa

00°6¢

b

0L dlva FANLVYNDIS IWVN

AVINONY

T0F "JdVINN
‘S3ONVYII0L
$3903 ‘HSINIH 3DVv4aNS
dAVHS Av3dd SHFLIWIMIW NI FJV SNOISNIWIa
ANV d3ng3a *HSINI4 :d3HID3dS ISIMATFHLO SSTINN

00°0¢

NOISIAZY ONIMYYIA 3TvOS ION Od

00051

02201

0C 16
0078 T

00ve| | S

00°6C

o= T] [
) on 1S B¢) M
o w o e 1 o
O lon
mm o o~ (oo 16 |© [——————————— —~ ©
: * NI LS C >,
(0] — o~ 1S3 I
N N o=
N

00

	Περίληψη
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Literature Review
	1.2.1 Legged Robots
	1.2.2 State Estimation Hardware and Sensors
	1.2.3 Motion Planning and Control
	1.2.4 Motor Overheating
	1.2.5 System Identification
	1.2.6 Current Sensing

	2 Laelaps II EtherCAT Network
	2.1 Introduction
	2.2 EtherCAT Protocol Overview
	2.2.1 Functional Principle
	2.2.2 EtherCAT Frame Structure
	2.2.3 EtherCAT Master
	2.2.4 EtherCAT Slave Overview
	SyncManager
	Fieldbus Memory Management Unit
	Distributed Clock Unit and Synchronization

	2.2.5 Process Data
	2.2.6 EtherCAT Network Operation

	2.3 Laelaps II EtherCAT Network Description
	2.3.1 Laelaps II Master
	2.3.2 Laelaps II Slave Nodes
	2.3.3 Network Characteristics
	Bandwidth
	Master Software Processing Time
	EtherCAT Slaves
	Process Data Size
	Laelaps II Network Cycle Time

	3 Laelaps II Motion Control
	3.1 Laelaps II Control Architecture
	3.1.1 Low-level Control Overview
	3.1.2 Laelaps II Legs
	Forward Kinematics
	Inverse Kinematics

	3.2 Trajectory Planning
	3.2.1 Planner Description
	Swing Phase
	Stance Phase

	3.2.2 Leg’s Workspace and Safety Features
	Parameter Saturation Feature

	3.3 Absolute Encoders
	3.3.1 Hardware Integration
	3.3.2 Firmware Integration

	3.4 EtherCAT Motion Control Firmware Setup
	3.4.1 Required Hardware
	3.4.2 Hardware Connections
	3.4.3 Required Software
	3.4.4 CCS Project Import and Setup

	3.5 Firmware Description
	3.5.1 Firmware Initialization
	3.5.2 Motion Control
	Control ISR
	CLA Setup
	CLA Controller Task

	3.5.3 Trajectory Planning
	CLA Planner Task

	3.5.4 EtherCAT Communication
	3.5.5 Interrupt Priorities
	HAL Modifications

	3.5.6 Firmware’s Performance
	Timing Considerations
	Interrupt Profiling
	CLA Performance Gain

	3.5.7 Managing the Project’s Configurations
	Major Project Configurations

	3.5.8 Firmware’s Linker Command File
	3.5.9 Compiler Information

	3.6 Firmware Check and Verification
	3.7 Conclusion

	4 Inertial Measurement Units
	4.1 Gyroscopes
	4.2 Accelerometers
	4.3 Serial Peripheral Interface
	4.4 ADIS163xx Hardware Description
	4.4.1 ADIS16xx Connection with LaunchXL-F28379D
	4.4.2 IMU and LaunchXL-F28379D Interface Board
	Circuit Schematics
	Power Sub-Circuit
	SPI Bus Sub-Circuits
	Board Overview

	4.4.3 IMU Slave Housing

	4.5 ADIS163xx Delfino Firmware Setup
	4.5.1 Required Hardware
	4.5.2 Required Software
	4.5.3 Building and Deployment

	4.6 Firmware Description
	4.6.1 Initialization
	4.6.2 SPI Protocol Software Setup
	4.6.3 ADIS163xx General Setup
	ADIS16364 LIBRARY
	ADIS16375 LIBRARY

	4.6.4 ADIS163xx Main Routines and Operation
	ADIS16364
	ADIS16375

	4.6.5 ADIS163xx EtherCAT Application
	ADIS16364 EtherCAT Application
	ADIS16375 EtherCAT Application

	4.6.6 EtherCAT PDO routines
	4.6.7 Interrupt Priorities
	4.6.8 Managing the Project’s Configurations
	4.6.9 Compiler Information

	4.7 Firmware’s Memory Management
	4.8 IMU Validation
	4.8.1 Experimental Setup
	4.8.2 IMU Specifications
	4.8.3 Bandwidth Considerations
	ADIS16364 IMU
	ADIS16375 IMU

	4.8.4 Validation Workflow
	Error Analysis

	4.8.5 ADIS16364 Results
	Gyroscopes
	Accelerometers

	4.8.6 ADIS16375 Results
	Gyroscopes
	Accelerometers

	4.8.7 Validation Conclusions and Discussion

	5 Laelaps II Experiments
	5.1 Typical Experiment’s Procedure
	Hardware Checks
	EtherCAT Network Checks
	TwinCAT Project Setup
	Leg Encoder Checks
	Main Experiment

	6 Parameter Identification of Laelaps Leg
	6.1 Theory and Equipment
	6.1 Actuator’s Speed Constant Determination
	6.2 Leg’s Friction Parameters Identification
	6.2.1 Motor-Gearbox Friction Identification
	CASE I: Linear Friction Model
	CASE II: Nonlinear Model 1
	CASE III: Nonlinear Model 2
	Models Comparison
	Conclusion

	6.2.2 Joint’s Friction Identification

	6.3 Leg’s Inertial Parameters Identification – Method 1
	6.3.1 Required Equipment
	INA253 EVM
	TMCS1100 EVM

	6.3.2 Motor – Gearbox Inertial Identification
	6.3.3 Identification of the Leg’s Parts Inertial Parameters
	Mass Estimation
	Center of Mass (CoM) Position Estimation
	Inertia Estimation

	6.4 Leg’s Inertial Parameters Identification – Method 2
	6.4.1 Simulation Environment
	Dynamical Model
	Kinematics
	Dynamics
	Control

	6.4.2 Identification Problem Formulation
	6.4.3 Identification Framework Overview
	6.4.4 Trajectory Optimization
	6.4.5 Stochastic Optimization
	6.4.6 Deterministic Optimization
	6.4.7 Optimal Trajectory Results
	6.4.8 Experimental Procedure for Whole Leg Identification

	7 Laelaps Motor Overheating Protection System
	7.1 Theoretical Preliminaries
	7.1.1 Thermal Modeling and Problem Formulation
	7.1.2 Cumulative RMS Formula

	7.2 MOPS Algorithm
	7.3 MOPS Validation and Results
	7.4 Implementation Concerns
	7.5 Conclusion

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	9 References
	Appendix A. TwinCAT 3 Master Setup
	TwinCAT 3 Installation
	TwinCAT 3 Configuration
	Creating the EtherCAT network
	Create TwinCAT 3 Scope Project and PLC Task

	Appendix B. Create an EtherCAT Application from Scratch
	Appendix C. C2000 Delfino Microcontroller Unit
	C.1 LaunchXL-F28379D Development Board
	C.2 TMS320F28379D Microcontroller
	C.3 Interrupt Architecture
	C.3.1 Interrupt Priorities
	C.3.2 Interrupt Nesting

	C.4 Control Law Accelerator
	C.4.1 Task Mechanism
	C.4.2 Memory and Peripherals Access
	CLA Program Memory
	CLA Data Memory
	CLA Message RAMs

	C.4.3 CLA Initialization
	C.4.4 CLA Math Library

	C.5 Direct Memory Access Controller
	C.5.1 Overview
	C.5.2 DMA Setup
	C.5.3 Example

	C.6 Inter-Processor Communication
	C.6.1 Overview
	C.6.2 Basic IPC communication

	C.7 Delfino Linking Process
	C.8 Power Supply Considerations

	Appendix D. CLA MATH
	Appendix E. Setup TI’s CCS Projects
	E.1 Download TI’s CCS and Import Project
	E.2 Create a Target Configuration
	E.3 Build and Deploy the Project

	Appendix F. Integrate TI’s DCL Library
	Appendix G. Code Style Guideline
	Appendix H. MISRA C 2012 Standard
	H.1 Laelaps II Motion Control’s MISRA C 2012 Compliance
	DIR 1.1
	DIR 4.1
	Rule 2.1
	Rule 8.2
	Rule 8.3
	Rule 8.5
	Rule 10.3
	Rule 10.8
	Rule 11.1
	Rule 14.3

	H.2 IMU Fimrware’s MISRA C 2012 Compliance
	H.2.1 ADIS16364 Library’s Compliance
	Rule 1.1

	H.2.2 ADIS16375 Library’s Compliance

	Appendix I. LDO Thermal Design
	Appendix J. Dynamical Modeling of Pendula
	J.1 Simple Rigid-Body Pendulum Dynamics
	J.2 Bifilar Rigid Body Pendulum Dynamics

	Appendix K. Bill Of Materials
	K.1 Absolute Encoder Circuit
	K.2 IMU-Delfino Interface PCB

	Appendix L. Schematics
	Absolute_Encoder_Housing.pdf
	Sheet1
	Drawing View1
	Section View A-A
	Drawing View5
	Drawing View6

	Lower_Housing.pdf
	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3
	Drawing View4
	Drawing View5

	Upper_Housing_v2.pdf
	Sheet1
	Drawing View1
	Drawing View2
	Drawing View5
	Drawing View6

