EOvuco Metoofo IIoAvtexvelo

LxoA1) HAektooAdywv Mnxavikwv kat Mnxavikwv YmoAoylotwv
Topéag TexvoAoyiag YroAoyiotwv kot ITAngogooukng

Resource-aware container orchestration on Fog

Computing environments

ArmAwpatikn Egyaoia

BaoiAeiog K. MiyaAakdmovAog

EmupAénwv KaOnyntrg

Anuntolog Xovvtong
KaOnynug

AOMva, Matog 2021

SEANEIS
o‘:\ (:r’.‘ A
AT o)
A HTRH
L HTH
< "Wl
W SE
4. & EV_VE
119) 5
)y o 3 [

EOvuco Metoopio IToAvtexveio

LxoA1) HAektooAdywv Mnxavikwv kat Mnxavikwv YmoAoylotwyv
Topéag TexvoAoyiag YmoAoyiotwv kot ITAngogpooukrg

Resource-aware container orchestration on Fog
Computing environments

ArmAwpatikn Egyaoia

BaoiAeiog K. MiyaAakdmovAog

EmupAénwv KaOnyntrg

Anuntelog Lovvtong
Kabnyntmg

EyxoiOnie amo v efetaotikr) toeAn) emroont| otig 25 Magrtiov 2021

AnumToiog Yovvtong I'ecdgytog I'kovpag Aovioiog Ivevpartucdrog

Kabnyntrc EM.IL Av. KaOnyntc EIM.IL. Kabnyntc EM.IL

3

Copyright © BaoiAetog K. MixaAaxkomovAog,2021
Me emupUAaén mavtog dikawwpatog. All rights reserved.

Amtaryogevetat 1 avIyeagr], amodKevoT Kat dLavour] NG mapovoas egyaotag, e
OAOKAT|QOU 1] TUNUATOS AULTHG, YA €UTOQKO okomd. Emtoémetal 11 avatdmwon,
amoO1KeLOT) KAL DLAVOUT] YL OKOTIO UT KEQOOOKOTIKO, EKTIAOEVTIKI|G 1) EQEVVNTIKT|G
@VONG, LTTO TNV TMEOVTIOOEOTN VA ava@EQeTal 1] TNYN TIEOEAELONG KAL Vo dlTnEElTatl
T0 TaEoV pnvupa. Eowtiuata mov a@ogovv Tn XONon g eoyaoiac yu
KeQEOOOKOTIKO OKOTIO TIRETIEL VA aTteLOVVOVTAL TIROG TOV OLYYQAPEQ.

Ot andelc kAl Tt CUUTEQAOUATA TIOL TEQLEXOVTAL O€ AVTO TO £YYQAPO eKPEALOLV
TOV OLVYYQa@PEx KAl dev TEETEL VA eQUNVELDEL OTL AVTITIQOOWTEVOLY TIG ETTOTES
O¢éoeic Tov EOvucov Metooprov IoAvteyvelov.

BaoiAetog K. MixaAakomovAog

AlmAwpatovxog HAektooAdyogs Mnxavikog kat
Mnxavucog YroAoyiwotwv EEMLIL

IlepiAnn

Tn onueowvn emoxn, ta “containers” etvat moAV duxdedopéva kvElwg AdYw TNg
eveAléiag mov ta xapaxtnEiCet. EmmAéov, vmdoxel évag ovvexws avéavopevog
aQLOUOG LoXVOWV POOTIWV KAt dedopévwv mov wbovvtat oto vépog. ITagdAANAx
He avtdv TOovV aQlOpd, avfavovtal Kat Ol OLOKELEG TOL AlXdIKTUOU TwV
[Moaypdatwv (IoT), kabotwvrac tic kKAaooucés vmnEeoteg véPovg un PLwotued.
‘Etol, yevviétar g kovovgylax apxltektovikry ovopatt “Fog Computing”,
a&lOTIOVTAG TNV VTTOAOYLOTIKT] dUVAUN TWV OCLOKEVWY OTNV AKQT] TOL OKTVOU,
PonOwvtag kat emektelvovtag To VEQPOG.

IN'a va dovAéel amodoTiKA AVTO TO HOVTEAO, TIRETEL Var KAT)pOVOUT|O0VV
texviég duxelpiong amd 1o veépoc. Ta “containers”, Ovtag 7O aTOdDOTIKA KAL
eAa@old, XONOLHOTIOLOVVTAL YIX VA @EQOuV TNV AOYIKT) Twv “microservices” oe
avt Vv apxttektoviky. Opws, Tapd To yeyovog OTL 1) €MEEEQYATTIKTY) dVVAUN
KAL OL TTOQOL TWV OLVOKELWV 0TIV AKQT TOL dIKTLOV avEAvovTal, dev UTOQEL koA
va oLYKQLOEL HE aUTI) TWV OLVOKELWV TOL VEPOVS. LUVETWS, KX TTQOOEYYLOT) TTOV
eoTtlel TEQLOOOTEQO OTNV OwWOTH OlXXE(QON TOV TOQWV TQEEMEL VA
xonowonomBet, wote to “Fog Computing” va yivel o amodotiko.

Le aut] TV IMAWUATIKY] €0Yaoia, TAQOLTIALOVHE évav eVOQXNOTOWTN
TOKETWY, EWOKA OXEOAOUEVO YIX OULOKEVEG OTNV AKQN TOL dIKTLOUL.
Evowpatwvovue) Avon pag pe touvg KvPepvnteg, mov elval n kat koQov
XONOLUOTIOLOVHEVT] EPAQUOYT) EVOQXT|OTOWOTNG 0¢ TeQBaAAovTa vépoug. Emtiong,
e vepovyxeovn mAateoéopa ovopatt “KubeEdge”, edwd oxedixopévn yux
OULOKEVEG 0TV A&KQN TOL dktvov, Xonotwpomoteltat. TéAog, delxvovpe oOTL
UTTOQOVHE V& TETVXOVHE LPNAGTEON TAXVTNTA EELTNEETNONG TWV EPAQHUOYWV
ATIO TIG OVOKEVEG, XONOLUOTOLWVTAG AlyOTEQOVG TIOQOUS KAl KATA OUVETELX
Aryoteon evépyela Y pa mtANOwea epaguoywv Nevpwvikwv AKTOwv.

AéEerg KAedra: Awxxeipion mépwv, KuBeovrjtes , KubeEdge, Evopxnotowon
nakéTv, Adiktuo twv [oayudtwv, resource-aware, Fog Computing.

Abstract

These days, containers are extremely popular, mostly due to their isolated,
scalable and versatility nature. Furthermore, there is an ever-increasing number of
Machine Learning (ML) and Artificial Intelligence (AI) workloads driven to the
cloud, in the form of microservices/containers. This number has augmented critically,
in parallel with the number of Internet of Things (IOT) devices/sensors, slowly
making Cloud services untenable. Thus, emerges a new computing paradigm named
“Fog Computing”, which leverages computing at the Edge, assisting and extending
the Cloud.

In order for this model to work, techniques and experience must be inherited
from the Cloud. Containers, being the most efficient and light form of virtualization,
bring microservices logic to the Edge. Although, despite the fact that Edge devices
are getting more powerful by the day, their computing power and resources cannot
compare to the ones at the Cloud. Thus, a more resource-aware approach must come
and alter the existing techniques, for Fog Computing to be optimized.

In this Thesis, we present a resource aware container orchestrator, specifically
designed for Aarch64 devices located at the Edge. We integrate our solution with
Kubernetes, one of the most widely used cloud orchestration frameworks nowadays.
Also, a state-of-the-art Edge framework which is directly connected to the
Kubernetes is used, named KubeEdge. We show that our custom scheduler can
achieve better Quality of Service (QoS) whilst using fewer resources and thus less
power, for a variety of ML workloads.

Keywords: Fog Computing, Edge Computing, IoT, Multivariable Polynomial
Regression, Scheduling, Kubernetes, KubeEdge, resource-aware, Aarch64, resource
management, MLPerf

10

Evxapiorieg

Ddravovtag €dw Oa 10eAa va eLXAQLOTIOW TA ATOUA T OTIOX POV OTAONKAV KAl
pe Ponbnoav oAov avtd tov kawd. Apgxika, Oa NOeAa va evxaQuotow TOV
kaOnynt) Anunton Zovvten o omolog 1tav vevBLVOS YA T JIMAWUATIKY LoV
eoyaoia. Me tov T0OMO TOL pe WONOE OTO va YIVw TIO TAQAYWYIKOS KAL VA&
KataAdPw Tt onuatvel épevva otn mEAEN. Emiong, Oa beAa va evxaglotiow to
egyaotoLlo Microlab vy Toug mogovg mov dLéOeoe. ITio ovykekQIpéva, ELXAQLOTW
ToVg VIIOYT)PLOVG dAKTORES AnpooBévn Maoovpo kat MavwAn Katoaporydin
YW TOV XQO0VO TOoug kot PePaiwg ywx v moAvtiun PorOewx, vmopovn kot
k0001 ynon Touvg.

‘Eva tepaotio evxaplotw, otovg avbowmovg mov cuvvéBardav oto va
YIVOUV T @OLTNTIKA XQOVIX TO TO OHOQEPO Kol TOKIAOXQWHO Tta&idt tng Cwr)g
pov, péxor otypnc. TéAog, éva evxaQuoTw OTNV OWKOYEVELX HOL Yt TNV
AVOLOTEAN] EUTIOTOOVVI] KAl AYATI] TOUG. A@QLEQWHEVO OTIG YIAXYLADES OV
AyyeAwoVAa kot EAévn.

11

12

[Meplexopeva

KEQPAAGLO T .. 16
Extetopévn EAANVIN TTEQIATIUM oo 16
1.1 H ZUVEITQOQQ UOIG .ttt ettt es 18

1.2 TTelpapaTieO TTEQUBAAAOV ... 18

1.3 H YAOTIOMMNOT) OIS wvvviiiicicteti et 20

1.4 ATOTEAETUATA KO AELOAGYNON e 22
CRAPLET 2. s 27
INErOdUCHON ... 27
2.1 Internet of THINGSc.coviiiieiiiiiccc e 27

2.2 Edge COMPUINGc.cceiviiiiiiiiiciiiiiciiiccc e 28

2.2 FOg COMPULING ...vvvviiiiieictctcicc s 30

2.3 Virtualization and Deploymentc.ccovviininiiiiiiiniiicccccce, 31

2.3.1 Virtual Machines...........cccoeiiiiiiiiiii e 31

232 CONLAINETS....coiiiiiiiiiiiieciiecice s 32

2.3 OVEIVIEW ..ottt 34
CRAPLET 3. 36
Related WOTK......c.oooiiiiii 36
3.1 Job Scheduling at the Edgecccooveviieieiiicicicc e 36
CRAPLET 4. 38
KubeEdge: A Kubernetes based Edge Computing platform..........ccccccccovvirrnnnnnnn. 38
4.1 Docker: A container runtime...........ccccceveieieiiininiiiiniccecces 38

4.2 Kubernetes: A container orchestratorccococoviiiiiniiccicccccce, 39

421 Kube Scheduler ... 41

4.3 KUDEEAGE. ... 42
CRAPLET B 45
Resource Aware Orchestration...........ccooceiviiiiiininiiiini e 45
5.1 Requirements and USageccoevrururiereieinieieicicicccccccee s 45

5.2 Polynomial REGIeSSION.........cceuiuiiriiiiiiiniiiciiiriciecirieeceeten e 45

5.3 Scheduling Cycle.........oiiiiiiiiee s 47
CRAPLET 6. s 50
Experimental INfrastructure..........ooevoviiiiniiiiiiiicccceeee 50

6.1 SyStem SetUP.....cucueuieciii s 50

6.2 EAZE DEVICES.....cuuieiiiiiiiiiiii e 51

6.2.1 Tegra Xl oo 51

6.2.2 175102 0 W ANF- o Vo J SO SRURURSRRPRR 52

6.3 MONitoring SYSteIMceviviiiiiiiiiiiicc e 53

6.4 BeNChmMarks..........cociiiiiiiiiiii s 54
CRAPLET 7. 58
Evaluation and EXperiments...........cccccoeeviiiiiiiciii 58

7.1 EXPETIMENES ...ovivieiiiiiiiictcctte s 58

7.2 Results & Scheduler COmMparisoncoevreievninieicieieiecceeees 59
CRAPLET 8. s 67
Conclusion and Future Work...........cccooviiiiiiiiiicccccce, 67
8.1 SUMMATY ...ttt e 67

8.2 Future WOrK........ociiiiiiiii s 67
BIBALOYQOPLO .ot 70

14

15

Kepaiaio 1

Extetapévn EAAnvikn IlegiAnyn

Ta teAevtala xoovia, N paydaia avamtuén g texvoAoyiag @éovel OA0 Kkat
TEQLOOOTEQEG TMAEKTQOVIKEG OLOKeVEG otV kaOnuegwomnma pac. Ot
TEQLOOOTEQEG EEAVTAV elval OLVEXWS OLVOEdEUEVEG OTO dladikTLO KAt
TIEOOPEQOLYV OTOV XONOTN Uit TANOwEa epaguoywv.)¢ ek TOUTOV, LTIAQXEL M
AVAYKT] Y €va véo mEOTLTo otV emkotvwviae Machine2Machine mov emitoémet
m ovvdeowodta twv Tloayudtwv' oto Ilaykoouio Awdiktvo. Avto To
TIAQADELY M lval YvwoTo pe Tov 0o oT.

To Internet of Things (IoT) eivar éva OIKTVLO PLOKWOV AVTIKEEVWY,
OLOKEVWYV, OXNUATWY, KTiwv aAAd kat dAAwv aviikelpévov ta omoix
TLEQLEXOVV EVOWHATWHEVA AEKTQOVIKA CLUOTNUATA, AOYIOUIKA, aloONTEes Kat
dradkTvakn dLVATOTNTA OCVVOEOTG — KATL IOV ETUTQETIEL O€ AVTA T AVTIKEIHEVA
va OVAAEYOLY Kat va avtaAAdooovy dedopéva. To IoT diver) duvatotnta ota
avtikeipeva avtd va eAéyxoviat €€ amootacews HEOW TG LTTAQXOLOAG
OIKTLAKNG LTTOOOUTG ONULIOVOYWVTAS EVKALQEG AUEONG EVOWUATWOTG TOU
(PLOKOV KOOUOL HE T VTOAOYIOTIKA CLUOTNUATA £XOVIAG WG ATIOTEAECUA TN
BeAtiwon g amoteAeouaTIKOTNTAS KAL TG aKQiPelac aAAa kat 1 peiwon tov
KOOTOUC. AmO TV oty paAwota mov 1o IoT efomAilletatr pe awoOnrtroeg
amotedel pHEQOC EEVTIVWV CLOTNUATWY NG KAONUEQWVOTNTAS OTwS elval ta
évmva omiltia, oxNpata kat oAels. KaOe avtucelpevo avayvwolletal Hovadikd
ATO TO EVOWHATWHEVO VTTOAOYLOTIKO OVOTNUA Kl UTtoQel va AettovQyel t000
AVTOVOUX OO0 KAL O€ CLVEQYATIA UE TNV LTTOAOLTIN DLAdIKTLAKN) LTTOdOUT).

Qg ovvémewr, dnuovyeital kKadnuegva évag TeQATTIOS GYKOG dEDOEVWV
TIOL TO TAQOV HOVTEAO TOL cloud computing de UTOQel V& dLXX ELQLOTEL ATTODOTIKA.
Axoupa, 11 ao@aAelor Kat 1 taXOTNTX ETUKOWVWVIAG pE TO VEQPOG, YiveTal 0Ao kat
70 OVOKOAT 600 ANOAivoLY oL XENOTES KAl N KAlLAKA TNG YEOKATAVOUTS TWV
ovokevwv avéavetat IlpooOétovtag oe avtd T MEOPANHATA, OL ATIALTIOELS ,
amd anoyn mMoOpwV kol KaBuoTéEnong, Twv eQagUoywyV éxovv av&ndel og TOAL
HEYAAO PBaOuod pe TG epagUoYéc TAEOV va XONOLUOTOOUV KATd KUQLO Adyw
oxvoa povtéAa Nevowvikwv Awtowv kat Texvntrg Nonupoovvng.

Tn Avon oe avta ta mMEOBANUATA, TOL HOVTEAOL VEPOUG, €QxeTal va AVoeL
i kawvoLgylr mAat@ooua ovopatt Fog Computing. Avtr) 11 aQXLlTeKTOVIKN
UTOAOYLOTIKNG OMiXANG , Omwe amokadeitar ot dedvr) PipAoyoapia,
ekpeTaAAeveTal TOVG MAEOV AQKETOVG LTIOAOYLOTIKOUG TOQOLS OTNV AKQT TOL
dkTLOL, He TV emeleQyaoia Twv dedOUEVWY va ovpPaivel akQBwe ekel mov
nagayovrat. Omnwe yivetar katavonto, ta meoPAnuata kabvotéonong xat

16

amodoons Adyw amOOTACNG KAL YEOKATAVOUNG TWV CLOKELWV HE TA KEVTOX
VEpovg, amaAeipeTal

[Tdoavta mEokvTTOLY MEOPANUATA, KAOWS Ol CLOKEVEC OTNV AKEN TOVL
dKTLOVL elvat MOAD TIO TEQLOQLOHEVES, ATtO AToPN TOPWV, ATIO AVTES TOL VEQPOUG.
Emiong, pac kat vmagyxet kdbe eldovg ovokevyy OtV AKEN TOL dIKTVOVL
(tnAeopdoels, xkivntd, Puyela, avtokivnTa KTA.) N AvAYKN Y £IKOVOTIONoN TwVv
EPAQUOYWV O avtd To TEeQBAAAOV etvar emitaxtikn. H magovoa texvikr) mov
xonowornotet etkovikeg unxavég (Virtual Machines) de Oa pmogovoe va dovAépet
oe éva Té€tolo MeQIPAANOV Adyw TwV VPNAWYV amatoewy TG 0& Uviun kabwg
Kat emefeQyaotiky) dUvapn. XLUVETWS, eTAEYeTAl Ul KAWOUQYL TEXVIKY,
ovopatt Containerization.

Onwg avagépape, ta Containers elvat éva TQOTIOC €KOVOTOINONG MG
epapuoyns. To kKVELO XAEAKTNELOTIKO TOVG, TTOL T KAVEL V& ETUAEYOVTAL ATIO TX
Virtual Machines, etvat kvolwg 1 eAagootnta kat 1 eveAiéia Tovg. ITidvouvv moAY
AydteQo XWo kat elvat MOAV To yenyooa kat amodotikd. ErumeocOetq,
AELTOVEYOVV TAVW OTOV TENVA TOU CLOTHUATOS TOL OKOOEOTIOTN Kol
xonowonowovy anevbeiag mogovg kat PBiBAONKeC TOL CLOTNHATOS, XWOEIS
Kkamowo emmAéov otowpa Aoywouwov. Etor éoxetar xat n Aoy twv
microservices oto Fog Computing, emexteivovtag 1o vépog. Omwg avagéoape Kot
VwLTEQX OPWG, TO TMANO0C TWV EPAQUOYWV elvatl eEXIQETIKA HEYAAO KAl OXedOV
advvato va 1o dwxxewlotel kamowog. Emopévwg, dnuovoynOnkav dopéc yx
container orchestration, pe koguaia eEavtwv Tovg Kupeovrjtec (Kubernetes).

O KuBepvnteg elvar évag evopxNoTOWTIG MAKETWY TTOL XQTOLUOTIoLE(ToL
KATA& KOOV o€ OAx Tt LTTOAOYLOTIKA cvotnuata. H avayvwelon and tov k0ouo
TOU TQOYQAMUMUATIONOU KOS KAl oL dLVATOTNTES TOV, MOLALOLV ATteQLOQLOTEG.
Etvat oxedixopévol yia va duxxepiCovrat tepdotio mA0og ovokevwv kabwg Kat
epaguoyv. Me dAAa Adyla, etval €K& OXEOXOUEVOL YA TEQBAAAOVTA
VEQPOUG. AUTO TO XAQAKTNOLOTIKO, dNHUIOVQYEL €éva HELOVEKTNUA O& TTEQURAAAOVTA
Fog Computing, 070U 0L 0VOKEVEG elval TO TEQLOQLOHEVES Ao dtoyr) Ttopwv. To
KubeEdge, clvar éva mio eAapoy eoyaAelio mov xonowomotel g Baotkég
AertovQyleg twv kvPeQvNTV, aAAa elval edwd oxedwopévo vy to Edge,
MEOOTIAOWVTAG Vat AVOEL KATIOL ATtO AVTA Tt TTEOPAT|ATA.

‘Eva peyado moopAnua Aowmov mov amaoxoAel e mAnBwoa egevvnty,
elval N owoTr €VOEXNOTOWOT) MAKETWY 0& OLOKEVEG TOL PBRIOKOVTAL OTNV AKEN
tov dktvov. Onwg avagéoape, 1o KubeEdge, av kat edwa oxediropévo yax to
Edge, xonowornotel) dxdwaoia evopoxnotowons twv KuvBeovntwv, 1 omnoia
elvar oxedxopévn yx mo duvatés ovokevéc. To kVEO avtkelpevo peAétng
Aowrtdy, etvat va Boedel 1 KATAAANAT TEXVIKT] WOTE 1 EVOQXT|OTOWON TAKETWY OE€
adVVAEG OVOKEVES ATIO ATOYN TTORWYV, V& YIVEL TILO ATTODOTIKY.

17

1.1 H Xvveiogopa pag

Apxucd, dnuovgynoape évav €voexNoTowT] O OTolog O€ TEAYMATIKO XQOVO
YVoICeL Yiax TIG oLVOTKEG KATIOWWY HETOKWY OTIG OVOKEVES Kol TOEOBAETEL TIC
HETOUKES KATA TN dldokelx eKTEAEOTG. L1 OUVEXELR, TTEOPAETIEL TNV eTUAEYUEVT
petowcr) amodoone (Queries per Second) xat emiAéyer T ovokevn OV
TEOPAETETAL V& €xel LPNAOTEQT ATOdOOT 0TI CLYKEKQLUEVN TteQimTwoT]. Avto
eTITVYXAVETAL PE €va OTAS otewpa Polynomial Regression. Aelyvovpe 0Tt avt) n
nEooéyylwon etvat mo anodotikn oe megBaArovia Fog, kabwg emitvyxdvetat
HEYAAVTEQN amOdO0T] KATA T OLAXQKELX €KTEAEONG HE ONUHAVTIKA ArydTeQoug
TtOEOVG O€ OX€0N Ue TNV TEOKAXO0QLoHEVN.

1.2 ITewgapatiko IegifarAov

To ovotnua mov dnuovEeynOnke yux Vv afloAdynon tov dopoAoynty Hag
amoteAelital and pa ekovikr) unxavr kat dvo Edge cvokevéc. Ot dvo avtég
OLOKEVEG XONOLUOTIOOUVTAL WS KOUPBOoL epydtes otov KuPegvntrn, eva 1) elkovikn
pnXavr), OvTag n o duvaTtr), XENolpomoLeltal we koppog duwxxewlotrc. Emiong,
elvat MOAV onuavtikd va ava@epOel OTL Ol TElG TLOKEVES dLAPEQOLV KAl O€
agxltektovikt] emeéegyaotr). Ou pev dvo Edge ovokevéc yonowuomowovv tnv
apxttextovikr) Aarch64 1) Arm64, eva 1) elKOVIKT) pnxavr) otnoiletol oe pnydvnua
TIOL TEEéXEL 0TO KAaoOWKO Xx86_64. H Paowr) toug duapooa etvar otL o Arm
enteEepyaotéc etvat TuTov RISC (Reduced Instruction Set Computer) kat emopévawg
TIOAD TUO TAQLACTOL Kol OLXOEDOHEVOL O€ EVOWUATWHEVA CLOTIUATA.

Yan ovvéxewx evowpatwoape otov KuBeovntn to teAevtalag texvoAoylag
Edge framework to KubeEdge. To ovykekoipévo egyadeio Omwe avapépOnke
TIOOTYOUHEVWG, €lval EOKA OXEDXOUEVO YIX OULOKEVEG UE TIEQLOQLOUEVOLG
TtOEOVC. XONOHOTIOLEL €vav TIOAKTOQA TOAD TO eAAPEV YIX VO €TUKOWVWVEL e
avtéc T ovokevés. Emiong, ovvdéetar apeoa pe tov KvBegvrn, pe tov
TIOAKTOQX VEPOUG Tov dxOéTel, kol mapexel oto xerotn to do API (Application
Programming Interface) kat tic (dlteg AeltovQykOTNTEG.

IN'a v e€aywyn HETOKWV ATO TG CLOKEVEG XONOLUOTOLE(TAL éva EVEEWS
dldedopévo mEdyoappa magakoAovOnong ovokevwv, o IlpounOéac
(Prometheus). Xtnv ovoiax o IlpounOéag elvar upwx Paon dedopévwv vy
X00VOOELQES, OL Omoleg AapBAvVOVTIaL amd TIC OVOKEVEG AV TAKTA XQOVIKK
drxotuata. Lan ovvéxewx péow g YAwooag PromQL, o xonotng umopet va
dlarxelouotel Tar dedopéva Kal va TAQEL TIS HETOKEG Tov ToV evdlagépovy. Ot
HETOWKEG AUTEG XONOLUOTIOLOVVTAL AQXIKA Yix TNV TEOPBAeY™ TV DUV HETOKWV

18

KATA TN OLdoKelx eKTEAEONG, AAAL KoL Yix TNV MEOPAEYPN TNG HETOKTIS ATtOOOO0TS
G kK&Oe epappoync.

To tedevtaio xalr avaykalo oLOTATIKO TWV MEWRAUATOV THTav oL
epappoyéc. IMAéov, 1 TANOWOA TWV EPAQUOYWV OL OTIOLEG XOTNOLHOTIOLOVVTAL O€
kaOe otadio Computing, etvar mAéov Texvnmc Nonuoovvng 1 katr Mnxavikng
Mabnone. I'a avtd tov Adyo, emAéEape T covita ovumeQaopdtwv(inference)
¢ MLPerf. Autd T0 VTTOOVVOAO TG COLITAC €XEL WG OTOXO VO LETQNOEL TO TTOOO
YON YOO KAl amOdOTIKA KATOWX OLOTHHATH emeEeQyAlovTal elo0dovg Kol
TIEAYOLV ATIOTEAEOUATA XONOLUOTIOLWVTAG €va ekmadevuévo povtéAdo. Ot
EQPAQUOYEC TOL XONOLHOoTOMoape agooovy ta medix image classification kat
object detection. KaOe workload amoteAeitar and diagopetikd Inference Engines
TIOL XQTOLHOTIOLOVV DIAPOQETIKA HOVTEAR, oUVOAa dedopévawyv, backend (ONNX
Runtime, Pytorch, Tensorflow 1.A.7) ko mEokaBoQLopéVO oevaQLo.

To meoparrov mov dnuiovoynOnke ev TéAel elval Omws @aivetar oto
Zxnua 1.2 xat ot epagpoyéc magovotklovtal o avaAvtikd otov Hivaka 1.2:

— & . ,

Kubeedge CloudCore - Cloud Agent
— —
IP:147.102.37 164
PROMETHEUS-
OPERATOR
h 4 h 4
()
I L o
[LT
<
N Nvidia Jetson Nano MNvidia Tegra
Kubeedge EdgeCore Kubeedge Edgecore
IP:-147.102.37 166 IP:147.102.37.73
Prometheus
: Prometheus
Node Exporter o) Node Exporter

Zxnua 1.2: To Zvotnud pac.

19

Area Task Model Dataset | Quality |Backend | Accuracy
Vision- Image Resnet50- ImageNet | fp32 Tensorflow | 76.456%
Heavy Classification v1.5 (224x224)
Vision- Image Mobilenet- | ImageNet | fp32 Tensorflow | 71.676%
Light Classification vl 224 (224x224)
Vision- Object Detection | Ssd- COCO(@30 | fp32 Tensorflow | mAP 0.23
Light Mobilenet- | 0x300)

vl

Hivaxac 1.2: MLPerf epappoyéc.

1.3 H YAomoinon pag

H duxducaoia mov xonoHOTIOLEITAL Y T OQOUOAOYNOT) TWV EQAQHUOYWV TNV
ovola, ppettat og dour) avtr) tov Kube-Scheduler. Apxucd, vrtaoyet évag
“Listener”, o omolog evtomilet eloegxopeva Pod (epappoyéc) oto default
namespace K&t OAOUG TOUG KOUPOUGS KAl TIG EVIUEQWOTELS TOVG. ATIO T1) OTLY N TTOV
evroriotel éva Pod étolpo va dpopoAoynOet eloépxetal oe pio ovod
npotepadTNTac. H mpotegaidtnta twv epaguoywv eEaptdtat amo Tig 1)dn
VTTAQXOVOESG EQPAQUOYEC TNV 0LEA. Me dAAa A0y, vAoTtomoape px ovpdk FIFO.
LT OUVEXELR, 1 EPAQUOYT) HE TN XauUNAdTeQN TEOTEQALOTNTA €EEQXETAL -ONAXDT)
N EQAQUOYN TOL €L0NADEe TTEWTI OTNV OLVEA- KAL ELTEQYETAL OTNV dladiKkaoix
dpopoAGYNnoNG.

O kVKAog avtde, Eektva pe TNV AELOAOGYNOT) TWV CLOKEVWYV, WOTE O
dQOHOAOYNTNG HAG V& KQOLVEL €&V OL CLOKEVEG elval KATAAANAES Vi va
OTNKWOOLV TO POQTIO 1) OXL. AQXIKA, EAEYXETAL A OL CLOKEVEG elvarl dixOéatueg
oo cluster pag péow kAnong oto APL Ztn ovvéxewx, péow touv IoounOéa kottdue
€dv oL 0VOKEVEG €xovv xonon CPU < a% , Memory < % kai Alokog =y Gb .
Yoteoa amo aQkeT& MERAUATA, KATAANEAME OTL Ol KATAAANAEG TIHES YIX AUTEG
TIC peTaPANTEC otV MeQimTwon pag, etvat: a = f = 80 kary = 2. Onolot kopBot
TIANEOVV ALTES TIC TEOVTI00£0ELS peTaaivouy OTO ETIOUEVO OTADLO TG
dpopoAGYNoNg, to Scoring. Exel BolokeTal kol 10 Pactko KOPUATL TOL aAyopiOpov
uag.

Toa o 0dgopoAoyntrc kaAéitar va amogaoioet
PU\TEAQONEVWY OLOKELWY, Oa amodwoel KAAVTEQX HE TN OUYKEKQLUEVN
e@agUOYN. AQXIKA, avaAoya TNV altnon HVhUng e EQAQUOYNG TNV KATATACOEL
oe pwx katnyoola. Ou katnyopiec MEOKVLTITOLY ATO TIG T)ON OOKIUAOTHEVESG
epaguoYés omws @aivovtar otov Ilivaxa 1.2. Xtnv ovola vmagyovv Telg
Katnyoples, pia yix kabe epaguoyn kat xapaktnolloviat ano évav agltoud, v

20

Towx €K TV

altnon pvhung e epagpoyns e katnyopias. To CevyaQL pe TNV pKEOTEQEN
evkAeldelx anootaon emAéyetat Xan ouvvéxewr, avaAoya pe TNV Katnyopia,
éxovtag wg eloodo toelg petokég, tnv xorjon CPU , tnv xerjon g Hvrung kot tnv
Oeopoxkpaoia e CPU, mEoPAEmel TIC TIHEC AUTWV TWV UETOKWV KATA TN
dudokelx ektéAeong g e@aguoync. Avtr) 1) mEdPAeYn otnv ovoia etvat éva
Single Variable Polynomial Regression mov k&Oe @opd éxel wg efaprwpevn
HETABANTY) TNV TIUY) TNG HETOLKNG KATA T DIAOKELX EKTEAEOTG KAL WG AveEXQTNTN
TNV TIUT) TG HETOKNG IOV TNV dQOHOAGYNOT). Twoa agov éxovpe mEoPAéPet Tig
TIHEG TV HETOKWV KATA TN OLAQKELX EKTEAEOTC, TTREMEL VA LTTOOETOVE TTOLX €K
TWV QUATOAQLOUEVWY OLOKELWV elval 1 TAEOV KATAAANAOGTEON YA TNV eKTéAEON
¢ epaopoync. H texvikn mov xonoponoteitat oe avtd 1o otddlo, ovoudletat
Multivariable Polynomial Regression kat pe Bdon T THES TWV TOWOV HETOIKWV
neoPAETeL TO TeAkd QPS g epapuoyng omnv kabe ocvokevn. H petowr) QPS,
oAoypagwc Queries per Second, elval otnv ovola pax HETOKN TIOL dely Vel TNV
kaOvoTtéonon yix TV eKTéAEDT) TNG EQPAQHOYTG KAL TIO YEVIKA TNV AartddOoN TG

EQPAQHOYTG.

TéAog, 11 ovokevn mov eTAéyetal elvat avTr) oL €v duvauel Ba €xel Tov
pHeyaAvtego aplOpo QPS xat doa v kaAvteEn amddoon. Metk n epaguoyn
dévetar pe v emdeypévn ovokevny oto cluster kat éva event (yeyovog)
EKTHEUTIETAL WOTE O XONOTNG V& UToQel va akoAovOnoet tnv mopeia g Cwr)g NG
epappoyns. Amapaltnto etvat va onuelwdel dtL o dpopoAoyntrg pag Cntdet and
tov xonotn v torobeoia tov cvotiuatog amobrjkevons tov Docker otic
OLOKEVEG KAL TNV Amaitnon pvnung g kabe epaguoync.

Ta apamdvw otddio OQOHOAGYNOTG HTTOQOVHE V& T dOVME Kot 0to Lxpe 1.3 :

ananp
Amond

DOE3 ITFIT?]
MLF:erf T
l7 SCORE
NO

" WULTIPLE

POLYNOMIAL

FIND BEST NODE

REGRESSION
Prometheus

BIND EVENT

e

1t dl

Zxnua 1.3: O duxoc pac kvxAoc dpopoAoynong.

21

1.4 Amotedéopata kat ASLoAoynon

I'a v aloAdynon tov dpopoAoyntr, dnuoveyroape pa covita oe Python kat
Bash kat exteAéoape dudgooa mepdpata. Ta meduata diépegav and anoym
évtaong kat mowAiag epagpoywv. Ye ka0e meipapa aAAdlape to workload mov
amoteAovtav kdOe Pod amd dAPORETIKO aQlOUO epaguoywv. Ot epaQuoyEg
npoékvmtav toxala. Emilong, omwg elmape, ta mepdpata dlEpepav Kat amd
amoym €vtaons. Avtd MEOKVUTITEL ATIO TOVUS dAPOQETIKOVS XQOVOUS AVAUETX OTIG
a@i&elg dVo epaguoywv. Me o anAd Aoy, k&Oe melpapa oav eloodo émalpve
ta TANOWEA €QPAQUOYWYV, DLAPOQETIKES ETAED TOUG, KAL VA XOOVIKO dlkoTtnua (
T.X. 2-5 Aemtd) T0 omoio cLUPOALILeL TOV EAKXIOTO KAl TOV HEYLOTO XQOVO TIOL
UTTOQOVLE VOt TTEQUUEVOULE WOTE VA OTELAOLE ULt EQAQIOYT] YLt OQOUOAOYT|OT).

Ot epappoyéc otnv ovola etvar éva amd ta inference engines tov ITivaka
1.2. Twx va dokipaotovv 0Tig cvokeLEg dnuoveyroape kamowx docker images ta
omola maketagape péoa ot kamowx Kubernetes Jobs, avtiotorya. Ta Jobs pe
oelpd TOvg, avtiotolyovvtat oe éva Pod, ta omoia etvatl o kateEoxv T00TOG
exTéAEoNC epaguoywv oe TegBdAAovta KuBegvntwv. Ot petoukés amoddoong mov
emtAéxOnkav elvat , and amoyn anodoong ta QPS (Queries per Second) k&Oe
EPAQUOYNG KAl aTtd ATOYPT KATAVAAWONG TOQWV 0 HECOG 0QOS XQONOLHOTIONoNG
CPU xat pvrung katd t didokelx ektéAeong, kabwg katn Oeppoxpaoia g CPU.

Ta megdpata mov Ba epLypdovpe amoteAovvTaL amnd déka, TOLAVTA KAt
eENVIA €QAQHOYES aVTIOTOLXR, EVW OA Elval Yix XQOVIKO dLACTNHA dVO e TTéVTE
Aemtov. Ta magakdtw oxiuata elval JXXWOLOHEVA avA EQAQUOYN Kol
TeQLyQd@ovy v katavoun twv QPS, o kdOe melpapa. Onwg @atvetar oto
Yxnua 1.4.1, yux o inference engine mov otnpiletat oto povtéAo Resnet, o dikdg
uag dgopoAoyNnTc kKata@éQvel, otNV TANOWEA TV TEQIMTWOEWYV, Va BeATIWOEL
™V kabvotégnon kdbe epapuoync. Avtiotoixa @atvetar oto Lxnua 1.4.2 ywux to
inference engine mov otneiletat oto povtéAo Mobilenet kat oto Zxnua 1.4.5 yix to
Ssd-Mobilenet. H BeAtiwon twv ovvoAwwv QPS tov k&dOe workload, etvat kdOe
oA NG TA&NG ToL 25%.

22

QPs

2.0 1
1.8 4
1.6
1.4 4
1.2 ~
SCHEDULER
1.0 I MY-SCHEDULER

I DEFAULT

10 30 60
OF APPS

Zxnua 1.4.1: Katavoun QPS yiwx o inference engine e to povtéAo Resnet.

9 -

.
w 74
o
o

6 -

5 |

SCHEDULER
BN MY-SCHEDULER

4 BN DEFAULT

10 30 60
OF APPS

Zxnua 1.4.2: Katavoun QPS yia to inference engine e to povtéAo Mobilenet

23

SCHEDULER
s MY-SCHEDULER

457 mmm DEFAULT

4.0 1

3.5 1

QPs

3.0 4

2.5

2.0 4

T T T
10 30 60
OF APPS

Zxnua 1.4.3: Katavoun QPS yiwa o inference engine e to povtéAo Ssd-Mobilenet.

Tooa v ta dx mepdpata Oa detEovpe) péon Tur) g xorjone CPU ,) péon
T Xonjong g uvnung kabwe kat v péon tun v Oeguoxpaociwv g CPU.
Onwg gatvetat oto Lxnua 1.4.4, éxovpe pa peiwon otn péon Tn, g tdEng tov
10% , ot xonon g CPU ota mepapata pag. Tnv dwx BeAtiowon), e taéng tov
10%, mapatnoovue kaL otn xerjon s pvnung oto Xxnua 1.4.5. TéAog, vrapxeo
px peiwon e taéng twv 2°C ot Héon Tiur) Twv 0eQUOKOAOTLWY, 0TS PalveTal
oto Zxynua 1.4.6. H td&n twv dvo Pabuwv KeAolov lowg de @atvetar 1000
onuavtiky, aAAd vrtevOvpiCovpe OTL oNUAlveL AQKETA ONUAVTIKY pelwon oty
LoXU TIOL KATAVAAWVOLV OL OVOKEVES KATA T1) OLAQKELX TWV TTELQAUATWY.

80
60

N MY-SCHEDULER
I DEFAULT
0

CPU

40
20
SCHEDULER

OF APF‘S

Zxnua 1.4.4: Méon tiun xpnons tne CPU.

24

SCHEDULER
mm MY-SCHEDULER
mmm DEFAULT

50 4

40 A

30 4

MEM

20 4

10 4

10 30 60
OF APPS

Zxnua 1.4.5: Méon tiun xpnone tne pvnunc.

TEMP

10 4

SCHEDULER
EEN MY-SCHEDULER
EEE DEFAULT
0 T
10 30 60

OF APPS

Zxnua 1.4.4: Méon tiun twv Oepuoxpaciwv otnv CPU.

25

26

Chapter 2

Introduction

2.1 Internet of Things

To begin with, Internet of Things (IoT) has become one of the most rapidly increasing
technologies of the 21 century. Now that we can connect everyday objects — kitchen
appliances, cars, thermostats, cameras, pills — to the internet via embedded devices,
seamless communication is possible between people, processes and things. Simply
put, IoT is a network interface of dedicated physical objects (things) that contain
embedded technology to communicate and sense or interact with their internal
stages or external environment in order to reach a common goal. So, it is quite a
simple concept, it means taking all the things in the world and connecting them to
the Internet.

100

Connected Devices in billion

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Fig 2.1: Evolution of IoT devices. [1]

Taking a look back, we can see the exponential growth of IoT devices, as
shown in Fig 2.1. As the years go by, more and more suchlike devices will become a
reality, producing enormous amounts of data in need to be processed. All these data

27

and the way that these can be managed, bring along questions and challenges to be
advised.

Challenges in IoT:

e DPrivacy & Security: Security is one the biggest issues within IoT. These
sensors are collecting in many cases extremely sensitive data — what you say
or do in your own home, for example. Keeping that secure is vital to
consumer trust, but so far the IoT's security track record has been extremely
poor.

e Latency & Bandwidth: Cloud infrastructures are physically located far away
from where the data is produced. So, large amounts of data cannot travel all
at once via the current ways.

e Quality of Service (QoS): Customers are expecting high latency and
throughput to their devices, an expectation hard to meet.

e Compatibility: New waves of technology often feature a large stable of
competitors jockeying for market share, and IoT is certainly no exception.

These problems cannot be addressed by the common cloud
computing techniques. For industrial and academic purposes, new
computing paradigms have emerged to deal with these challenges such as
Fog and Edge Computing.

2.2 Edge Computing

Edge computing is a networking philosophy focused on bringing computing as close
to the source of the data as possible in order to reduce latency and bandwidth
utilization. Simply put, Edge computing’s main objective is the decongestion of

Cloud infrastructures; by providing an intensive part of the computation locally.
Bringing computation to the network’s edge minimizes the amount of long-distance
communication that has to happen between a client and a server.

28

CLOUD

ity

EDGE Edge Node Edge Node
Service delivery | |
Computing offload
loT management ‘ ‘ —
Storage & caching
F

((

r

.- W

- >

Fig 2.2 Edge Computing architecture. [27]

As shown in Fig 2.2, Edge computing’s main goal is to relief the cloud servers by
taking a chunk of the computational load needed. As a technological and
computational paradigm, edge computing may be characterized as autonomous,
distributed computing.

Edge Computing comes with limitations on the technologies and platforms
used. So, everything used at the edge must be designed, developed and configured
specifically for edge computing purposes.

As mentioned the target of edge computing is to solve the problems that
comes with the increase of Internet of Things devices connected. So, the main
concept is that any application or functionality will be running closer to the place
where embedded technologies interact with the physical world. Edge Computing
uses no centralized Cloud, but it uses a similar architecture closer to the Edge.

The benefits of Edge Computing to industry are quite big as QoS (Quality of Service)
has been increased and Cost has been decreased as well. The main pros are
mentioned below:

29

e Heterogeneity

e Support to mobiles

e Low Energy Consumption
e Reduces Latency

e Saves bandwidth

¢ Real time interaction

e Security and Privacy

e Increased QoS

e Decreased Cost

These benefits still remain a challenge and their composition creates space for a huge
amount of research. Edge Computing is still trying to improve and new paradigms
are emerging to create a whole new aspect of distributed systems.

2.2 Fog Computing

Fog computing may be seen as an architecture that uses edge devices to carry out a
bit amount of storage, computation and communication locally. It is an in-between
layer to the Cloud and the Edge. Similar to Edge Computing, Fog brings
computational power and data mining capabilities closer to the location of the end-
user.

Fog-based MONET Cloud Terminal Sensor Network

Fig 2.3 Three layer Fog Computing Architecture [28]

The three layers are as shown in Fig 2.3:

30

2.3

Cloud Layer: The cloud computing layer consists of multiple and different
high-performance devices with great storage capabilities. It is the strongest of
the three layers when it comes to computing power and storage.

Fog Layer: It consists of fog nodes which include routers, gateways, switchers
and specific embedded devices. Fog nodes provide end-users with storage
and computational power. It is closer to a group of Edge devices, so every fog
node will attend to the geographically closer devices. Then, all the fog nodes
will communicate in a non-centralized way and ask—if necessary, the Cloud
servers for computing resources.

Edge layer: This is the layer closest to the edge and it consists of all different
kinds of IoT devices. They are geographically distributed and the ones that
are close will communicate with one of the Fog nodes. Even though this layer
has almost no computing and storage power, Fog nodes will come to assist
these devices, taking the computing workload to the layer above.

Virtualization and Deployment

In the previous sections, Fog and Edge computing paradigms have been introduced.

In this kind of architectures, someone might wonder how these applications will be
packaged and deployed in such a heterogeneous environment. The answer is
through Virtualization.

Virtualization relies on software to simulate hardware functionality, such as
computing and storage resources, and create a virtual computing system in top of an
already existing one. Therefore, it provides the opportunity to run more than one
virtual systems, with even different operating systems in the same physical device.

There are two ways for someone to perform virtualization and will be described

below.

2.3.1

Virtual Machines

Virtual Machines is the most widely used way of deploying an application to a
device that you know nothing about. The architecture behind every VM is as shown

below.

31

-

|

[

App"prﬂ

z|

:
N AT

\ @ e
) 0 r ‘t ity
. AN EALSS AR

P

App App App

s —
I

Traditional Deployment Virtualized Deployment

Fig 2.4.1 Traditional Deployment Vs Virtual Machines [29]

Applications require their Libraries and executables in order to run as designed in a
completely different system than host machine they were initially developed and
tested. This is achieved through containers as seen above. They have a completely
different OS (Operating System), and in that OS you can package your application
and be sure that it will run as promised everywhere.

Each VM has a hypervisor, or a virtual machine monitor, that is the only
thing that sits between the hardware and the VM and its necessary to virtualize the
server.

Furthermore, each VM has its own libraries, binaries and applications and the VM
may be many GB’s in size. This may raise significant problems in a constrained
resource environment.

2.3.2 Containers

In recent years, using containers as a virtualization method has become quite
popular to all kinds of users. Containers —named after the well-known containers
from the shipping industry- are a solution to the problem of how to get software-
apps to run reliable and as designed, when moved from one computing environment
to another.

32

Container Deployment

Fig 2.4.2 Containers [29]

To avoid all the drawbacks of the VMs, containers leverage one OS, increasing
deployment speed and portability with lower costs and memory footprint.
Containers sit on top of a physical server and its host machine’s OS. Each container
shares the hosts OS kernel, and can also share its binaries and libraries.

Those aspects make containers extremely lighter than VMs. So, this is the
main reason that they are the virtualization method chosen for environments and
architectures such as Fog and Edge Computing.

Furthermore, containers bring micro-services logic to the Edge due to their
modularity. Rather than run an entire complex application inside a single container,
the application can be split in to modules (such as the database, the application front
end, and so on).

Container Runtimes and ways to orchestrate these microservices will be
explained in chapter 3.

33

2.3 Overview

In this thesis, we present a resource aware container orchestrator based on real-time
metrics monitoring. Using a unique two layer Polynomial Regression model we
achieve an augmentation in application throughput, whilst using less resources.
Furthermore, in order to evaluate our scheduler, we used Aarch64 Edge devices,
revealing the default Kubernetes scheduler’s weaknesses in resource constrained
environments. Finally, using state-of-the-art frameworks such as KubeEdge,
Kubernetes and Prometheus shows that our work is quite promising and to be
continued.

The rest of this thesis is organized as follows. In Chapter 3, we present related
work regarding resource management on Edge computing and container
orchestration, while on the same time we highlight the scientific gaps throughout the
literature. In Chapter 4, we present Docker as a container runtime, Kubernetes as a
container orchestrator and KubeEdge as an Edge framework. In Chapter 5, we
present our two layer regression approach to the stated problem. In Chapter 6, we
present our experimental infrastructure, in order to evaluate our proposal. Also,
Prometheus as a metrics exporter is introduced as well as MLPerf Benchmark
Inference Suite. In chapter 7, the experimental evaluation of our approach is
presented. Finally, in chapter 8 we conclude and propose future work in order to
improve our work.

34

35

Chapter 3

Related Work

3.1 Job Scheduling at the Edge

In the past years, several studies have been conducted on job and task scheduling in
Fog and Edge Computing environments. As it has already been stated, resource
management is critical in deploying applications at the Edge. Kuljeet Kaur et al [2]
address the problem of carbon emission footprints, interference and energy
consumption in this kind of environments. They propose a solution through Integer
Linear Programming, based on a multi objective optimization problem. They are
using Kubernetes, but in a different way, adding an extra layer between the cluster
and the Edge.

Authors of [3], aim to tackle the problem of limited bandwidth resources in Edge
computing environments. Also in [4], authors target the network latency
optimization as an optimization objective. They succeeded to reduce network latency
up to 80% compared to the Default Kubernetes Scheduler, showing that awareness of
the environment makes a big difference.

Showing respect to energy constraints in IoT environments, in [5] authors
propose an algorithm for energy consumption and precision optimization. In the
same approach, based on the algorithm, in [6] we can see that data placing
algorithms can be used, always respecting the constraints in Edge computing
devices. Furthermore, a different approach to resource allocation through economic
model analysis is proposed in [7]. Although this work is about resource allocation, it
cannot be integrated into a Kubernetes environment and plenty of limitations are
occurred. Finally, in [8] they propose a Deep Reinforcement Learning (DLR), as a
solution to dynamic user requests on top of resource constrained devices. Their DRL
model learns to select the optimal allocation policy, saving energy whilst reducing
response time and therefore upgrading user experience.

In overview of the literature, resource allocation is a quite popular problem
and lots of researchers are trying to bring solutions to the table. However, predicting
the throughput of an application before it is offloaded, through a two-layer
Polynomial Regression classification, whilst paying respect to energy and resource
constraints have never been proposed. Adding to this, we are using KubeEdge, a
very promising Edge Framework based on Kubernetes, which can be used in lots of
IIoT and IoT scenarios.

36

37

Chapter 4

KubeEdge: A Kubernetes based Edge Computing
platform

In this chapter we will explain everything that is needed, in order to understand how
KubeEdge works.

4.1 Docker: A container runtime

Docker is the industry’s De Facto container runtime in most operating
systems. In simple terms, Docker is a software platform that simplifies the process of
building, running and managing distributing applications. From another
perspective, Docker is a set of platform as a service (Paas) products that use OS-level
virtualization in containers [9].

Now we are going to break Docker down in its major components as shown
in Fig 4.1:

e Docker client: It is the primary way that Docker users interact with
the whole platform. The Docker client communicates with docker
daemon with API calls, through the docker command. This client can
communicate with more than one daemon.

DOCKER_HOST}

docker build -- /’)-I Docker daemon I
docker pull —| I >, g

docker run —

ey
¢

Fig 4.1 Docker architecture [8]

38

e Docker Daemon (dockerd) : The docker daemon listens for Docker
API requests and manages Docker objects such as images , containers,
networks and volumes. A daemon can also communicate with other
daemons to manage Services [10].

e Docker Registry: Docker registry is a stateless, high scalable server
side application that stores Docker images. All users can store their
images in order to manage them from multiple hosts. Docker Hub is
the most common interface for users, due to its privacy and support
from the Docker community.

e Images: Containers are the running instance of an image. So, images
are a read-only template with instructions to create a Docker
container. A unique docker image can be created either based on an
existing one, or enriching it with everything deemed necessary.

e Dockerfiles: Dockerfiles are simple text documents that contain all the
commands a user could call on the command line to assemble an
image [11]. They give birth to a docker image. So, through Dockerfiles,
any environment can be created or reproduced.

4.2 Kubernetes: A container orchestrator

Kubernetes is a portable, extensible, open-source platform for managing
containerized workloads and services, which facilitates both declarative
configuration and automation. It has a large, rapidly growing ecosystem. Kubernetes
services support and tools are widely available [12]. So, in simpler terms, Kubernetes
can be used in order to manage huge workloads in enormous clusters with ease.

Let’s make it a little bit more comprehensible with an example. Consider
there are 1000 nodes-devices located in a server and your task is to place a very
intense workload in order for an application to be deployed. Where every
microservice should be executed? How will the app’s network be configured? How
microservices are going to communicate with each other and share data? Kubernetes
answers all of these questions and a user can notice through a very well built APL

Now, we are going to break down Kubernetes on its main components. As
shown in Fig 4.2, Kubernetes is divided in Control Plane Components and Node
Components. Only Control Plane Components which are the main parts of the
Kubernetes orchestrator will be described.

39

e Kube Api Server: Kubernetes API is actually the front end of the control
plane and, by extension, of the whole environment. It is designed to scale
horizontally and be friendly to the user.

e ETCD: It is the main storage and key-value store of the whole cluster. Most
notably, it manages the configuration data, state data, and metadata for
Kubernetes.

& \

API zerver
“ Cloud controller
. manager
el {optional)
|
i Controller
'
' manager

‘—ﬂ N

Node Node Node (persistence store)

Feubeler @

-0 o @
- 00 '@

. Control plang —————-

(@)

©
o o)
)

Scheduler

ofclcfojo) ofo,

Node

Fig 4.2: Kubernetes Components [13]

e Kube Controller-Manager: This is a single binary that runs multiple
controller processes. You can break it down into Node Controller, Job
Controller, Endpoint Controller and Service Controller. Each one is
responsible for Nodes, Pods-Jobs, Services-Pod’s Network and API access to
different namespaces in that order.

Last, but not least, component of the Control Plane will be discussed in
Paragraph 4.2.1, analyzing its whole process.

40

4.2.1 Kube Scheduler

Kube Scheduler is the control plane component-process which assigns Pods to
Nodes. In order to explain the scheduler framework, we first have to define Pods.
Pods are the smallest and most common deployable units that anyone can create in a
Kubernetes Cluster. In a Pod there can be one or multiple containers with shared
storage and network resources. Pods also have a unique IP address so the cluster can
identify them as different objects in the cluster. As an analogy, Pods in a Docker
environment would be the containers.

As we mentioned above, the main reason of the scheduler’s existence is to
assign Pods to Nodes. The scheduler achieves that through a scheduling cycle, in
which Pods are exposed to. It is designed to handle lots and lots of nodes as well as
Pods. So as we can see in Figure 4.2.1, Scheduler Framework has 2 stages: Scheduling
Cycle and Binding Cycle.

D Extensible AP|

Pod Scheduling Context

Y4 N

Bind Pod to
Node

Pick a Pod from
scheduling
queue

Reserve a
Node for the
Pod in Cache

J8yidisod

= e 8 i :?_; E =
= 3 E =[5 i
5 3 @ | 5| |ES El |2 3
1 o 1
o [a @ 23 & " _'3__; P
\ Scheduling Cycle / \ Binding Cycle /

Fig 4.2.1: Scheduling Framework Extension Points [14]

Scheduling Cycle will be broken down to its main components, further discussing
the plugins that matter the most:

¢ QueueSort: The scheduler implements a queue in order to sort Pods that are
going to be inserted in the Scheduling Cycle.

41

e Prefilter — Filter - Postfilter: In this stage of the scheduling cycle, pre-process
information about the Pod and its conditions are gathered. Next, the
scheduler filters out all nodes in the cluster and according to the Pods
conditions, deeming a node as infeasible or not. If any error occurs, the
scheduling cycle is aborted.

e DPreScore — Score — NormalizeScore: The most important part of the
scheduling cycle. The scheduler, according to its own algorithm gives scores
to Nodes. In reality, it ranks nodes according to their affinity, labels and
resources. As resources, the Kubernetes cluster use miliCpus, for CPU cores
on each node, and bytes of requested memory or memory available. After the
NormalizeScore plugin, the scheduler knows to which Node the API server is
going to bind the Pod.

As we mentioned above, Kubernetes is designed for clusters located on
servers, and in servers, there are almost unlimited resources. As a result, Kube
Scheduler is also manufactured to rank and assign Pods to this kind of nodes.
Furthermore, Kube Node Components are quite resource intensive and are also
meant to exist in servers. Our case, though, includes resource constrained devices
that exist only at the Edge. So, KubeEdge will be presented as a lightweight
version of Kubernetes.

4.3 KubeEdge

KubeEdge [15] is an open source system, extending native containerized application
orchestration and device management to hosts at the Edge. It is deployed upon an
already existing Kubernetes cluster and provides support for application,
networking and metadata synchronization between cloud and edge [16]. Another
important feature is MQTT communication between Edge devices, enabling the
developer to import custom logic in any app.

Extending Kubernetes power at the Edge, KubeEdge takes care of node
components resource demands. In simpler terms, KubeEdge is constructed out of
two basic components, EdgeCore and CloudCore. These are two binaries, one
running at the Edge Nodes and the other constantly running on the Kubernetes
Master Node.

42

[CloudCore

{ Controllers i

K8s : [EdgeController] i

& API| Server _y i
: I DeviceController] H

| Cloud Hub l
[Cloud
(EdgeCore ! Edge
I EdgeHub
t A
Nodelevel |¢1—» I MetaManager I l DeviceTwin I - .
DataStore : hetp:/f
[4 : APP
v
Volume I Configmap | Pod [Proberl Evem[s v
Edged ’ EventBus]
L. i f <
........................ b4 .
[Docker] [containerd] [CRI-O] : «‘t’)»
. } MQTT Broker]
[Pod] [Pod] ’ Pod l [Mapper (Protoco\—'\)] [Mapper(ProtocoI-Z)]
Device

Fig 4.3: KubeEdge Architecture [7]

As depicted in Figure 4.3, Cloud Hub and Edge Hub are the main
components of CloudCore and EdgeCore respectively, which are responsible for
communication between cloud and edge hosts. CloudCore also contains some
controllers in order to talk to Kubernetes API. That aspect gives the user the
possibility of taking action on KubeEdge related tasks through K8s (Kubernetes) APL
Therefore, the interface of KubeEdge is very similar to Kubernetes therefore it
making it easier to utilized by users that are already familiar with the latter.

Now, at the EdgeCore part, lots of components are replacing the Kubelet.
Moreover, Edged is for managing containerized applications. Event Bus handles
MQTT client and server interaction. The rest are for storage, message processing and
http requests. The main differences from Kubelet are the small binary size of
EdgeCore, its low demands on resources and MQTT protocol communication
between the nodes.

To conclude, KubeEdge is quite new to the world and it can provide what
K8S provide to the cloud, to the Edge. It is easy to get and deploy existing
complicated machine learning algorithms, exactly where the data is produced. Also,
the heterogeneity, the scalability and the cross platform design will help
considerably in the future. Though KubeEdge is way lighter than Kubernetes, it still
uses Kube Scheduler and all of Kubernetes core components.

43

44

Chapter 5

Resource Aware Orchestration

In this chapter, we present the proposed algorithm and the mechanisms used in our
scheduler for Pod orchestration.

5.1 Requirements and Usage

The scheduler is already built in a docker image, compiled for x86_64 architecture.
The user must label all of the Edge nodes with its Docker mount point. That is why,
in Edge devices the storage is almost every time constrained and Docker’s overlay
storage might be mounted in an SD card and not be at “/”. Furthermore, the user
must label each pod-job-deployment with a “MEM_REQ” label in GBs, so that the
scheduler may know the app’s requirements. The scheduler will decide, according to
the absolute distance of the memory required, to which of the three apps, the current
app looks more alike. IP addresses and rest information about the nodes are
configured through API calls.

5.2 Polynomial Regression

Polynomial Regressionis a form of regression analysis in which the relationship
between the independent and dependent variables are modeled in the nth degree
polynomial. Polynomial Regression models usually fit with the method of least
squares. The least square method minimizes the variance of the coefficients, under
the Gauss Markov Theorem. Polynomial Regression is a special case of Linear
Regression where we fit the polynomial equation on the data with a curvilinear
relationship between the dependent and independent variables [17].

45

https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem#:~:text=In%20statistics%2C%20the%20Gauss%E2%80%93Markov,and%20expectation%20value%20of%20zero.

Simple linear model Polynomial model
A YA

y=botbix y=Dbo+bix1+b2x?

: X

Fig 5.2: Linear vs. Polynomial Regression [27]

In our case, we used two layers of Regression. At first, Single variable Polynomial
Regression is utilized to predict the values of the metrics during runtime. The
independent variable, in each regression, is each of the metrics (CPU, mem,
temperature) 30 seconds before scheduling, the dependent variable being the metric
during runtime. There are eighteen regressions in total (# of Apps* # of Metrics* # of
Devices) for the first layer. Now for the second layer, Multi variable Polynomial
Regression is used to predict the Queries per Second of the app during runtime. The
dependent variable this time is QPS and the independent variables are the already
predicted values of the metrics during runtime.

In order that the statistical analysis (model) works properly, we operate a
device profiling and the results are fed as input data to our model. Thus, we ran
dockerized workloads on each device and created the dataset that the model was
going to train on. The workloads were different in terms of intensity and the final
datasets contain almost two hundred rows. Furthermore, data analysis and
normalization were required in order for the data to be suitable for our case. At first,
data came with a second decimal point precision. This aspect was not suitable for our
situation, as we mean to predict metrics, with the highest accuracy possible,
increasing throughput in the highest precision. Therefore, we normalized all of our
data, targeting at no decimal point precision for better accuracy and more
generalized results. Finally, in order to execute this kind of profiling we created a
testing environment written in Python and Bash communicating straight with
Docker’s APL

46

5.3 Scheduling Cycle

When a pod requires to be scheduled, our scheduler gets notified through a
Kubernetes Informer [18]. After the pod’s detection, it is inserted into a reverse
priority Queue, with priority being a semaphore protected variable. The protected
variable represents the number of pods that are in the Queue at the current time. This
way we implement a FIFO queue for our scheduler. We ought to protect this variable
because the Kubernetes Informer is actually in a goroutine and at some point our
main program and the goroutine might try to write on the same variable, which will
lead to a logical error.

Next, the pod with the highest priority enters the scheduling cycle. First,
candidate node’s health in the cluster, in terms of availability, is checked through
Kubernetes API. Then, each healthy node resources must be eligible for some certain
boundaries (CPU <= a%, MEM <= b% and DISK_AVAILABLE >= ¢ GB). These
boundaries can rotate depending on the devices resources. In our case, after
extensive experimentation, we decided that those thresholds should be: a =b =
80 & c =2 .If at least one node meets the requirements mentioned above we move
one to the next extension point, else the pod goes back to the priority queue. If
another pod is in the queue, it will have higher priority than the examined pod. That
is because, besides the fact that the examined pod exists further in the cluster, it
exited the queue and thus in a FIFO queue, such as ours, when it re-enters it will
have a lower priority than the already existing ones.

The main part of the algorithm takes place at the Scoring extension of the
scheduler. Knowing the pods memory usage, the scheduler, according to the current
state of the metrics at the devices, through Polynomial Regression predicts the state
of the metrics, in each node, during runtime. Another Multivariable Polynomial
Regression model takes place and predicts the QPS in each node. Max QPS predicted
indicates the best node and thus, the scheduler decides that this is the node the pod
is going to be sent off to. In short, this two layer Regression model, takes as input the
current state of the metrics in all of the filtered devices, and predicts the chosen
throughput metric (QPS) during runtime.

Finally, the pod gets bound to the node chosen and an event is emitted, so
that the user can trace the pod’s lifecycle. Our scheduling cycle is as shown in Figure
5.3:

47

7’
MLPerf

anano
Anoud

DOE3 IT FIT?

PROFILING

SCORE

NO

s

O

Prometleus

FIND BEST NODE

MULTIPLE
POLYNOMIAL
REGRZSSION

EIND

vt

R

Fig 5.3: My Scheduling Cycle

48

EVENT

49

Chapter 6

Experimental Infrastructure

In this chapter, we are going to describe the Kubernetes cluster created using
KubeEdge for our experiments. Also, we present the monitoring system and the
benchmarks we used during this whole process.

6.1 System Setup

Our cluster consists of three nodes, two Edge nodes and one Cloud node as shown in
Fig 6.1.

— L& Il 1

Kubeedge CloudCore - Cloud Agent

S —
IP:147.102.37.164
PROMETHEUS-
OPERATOR
4 v

Nvidia Jetson Nano

A

Nvidia Tegra
Kubeedge EdgeCore Kubeedge Edggecore
IP:147.102.37.166 IP:147.102.37.73
Prometheus Prometheus

Node Exporter Node Exporter

Fig 6.1: System Setup

For the Cloud-Master node in our cluster, we used a virtual machine sitting on top
of a machine with 4 Intel Cpu cores and 8 GBs of RAM. The virtual machines OS is
Ubuntu 20.04.2 and the architecture is x86_64. Now, for our Edge-Worker nodes we
used an NVIDIA Jetson Nano and an NVIDIA Tegra X1 and they are both Aarch64.

50

Arm architecture is one of the most widely used architectures in Edge computing
systems.

As shown in Fig 6.1, we created a single node Kubernetes cluster and then
deployed KubeEdge on top of it. Calico was chosen as the Kubernetes clusters CNI
(Container Network Interface). Also, Prometheus is used to scrape metrics from the
devices and inform about the metrics whereabouts in the cluster. For node to node
communication, we used Mosquitto as it is advised by KubeEdge. Most of the
components, as well as the devices, will be described below.

So, we created a heterogeneous, secure and scalable cluster which can be
found in real life situations. The main idea is that sensors and cameras will be
connected at the devices and, ML and Al algorithms can be deployed in order to
process data right where they are produced. This could be a solid scenario in an
Industry related situation.

6.2 Edge Devices

ARM is an acronym of Advanced RISC Machines and it came to dominate the
market. Its reduced instruction set makes it more powerful and efficient for mobile
and Edge devices. Furthermore, it offers extremely low power consumption which is
the main reason it is so popular in Internet of Things devices.

6.2.1 Tegra X1

Tegra is a SoC developed by NVIDIA and integrates ARM architecture (Aarch64), a
graphics processing unit and a common DRAM between the two. It is extremely low
power and designed specifically to reduce, as much as possible, the energy and
power consumption of the board. NVIDIA talked up the Jetson TX1 a lot for deep
learning purposes and being able to fit the JTX1 module on drones and other
portable, low-power devices [15]. So, it's composed of:

51

NANRPY

GPU 1 TFLOP/s 256-core Maxwell

CPU 64-bit ARM A57 CPUs

Memory 4GB LPDDR4 | 25.6 GB/s
Storage 16 GB eMMC

Wifi/BT 802.11 2x2 ac/BT Ready
Networking 1 Gigabit Ethernet

Size 50mm x 87mm

Interface 400 pin board-to-board connector

Fig 6.2.1: TEGRA X1 [19]

6.2.2 Jetson Nano

At the heart of the Nano module we find Nvidia’s “Erista” chip which also powered
the Tegra X1. It is a full blown single-board-computer in the form of a module [20].
Also, it is specifically designed for developers to use at home and for every kind of
usage in general. The goal of the form-factor is to have the most compact form-factor
possible, as it is envisioned to be used in a wide variety of applications where a
possible customer will design their own connector boards best fit for their design
needs. The specifics are as shown in Fig 6.2.2:

52

JETSON NANO SPECIFICATIONS

GPU
CPU

Memory

Storage

Video Encode

Video Decode

128 Core Maxwell
472 GFLOPs (FP16)

4 core ARMA57 @ 1.43 GHz
4 GB 64 bit LPDDR4 25.6 GB/s
16 GB eMMC

4K @ 30 | 4x 1080p @ 30 | 8x 720p @ 30
(H.264/H.265)

4K @60 | 2x 4K @ 30 | 8x 1080p @ 30 | 16x 720p @

30 | (H.264/H.265)

12 (3x4 or 4x2) MIPI CSI-2 DPHY 1.1 lanes
(1.5 Gbps)

HDMI 2.0 or DP1.2 | eDP 1.4 | DSI (1 x2)
2 simultaneous

1x1/2/4 PCIE
1 USB 3.0

Camera
Display

UPHY

SDIO/SP1/SyslOs/GPI
0s/12C

1x SDIO / 2x SPI / 5x SyslO / 13x GPIOs / 6x 12C

AnviDiA

Fig 6.2.2: [JETSON NANO [16]

6.3 Monitoring System

As mentioned above, we used Prometheus [21] as the monitoring system to our
cluster. Prometheus is an open-source monitoring and alerting toolkits originally
built at Soundcloud. Since its inception in 2012, many companies and organizations
have adopted Prometheus, and the project has a very active developer and
user community. It is now a standalone open source project and maintained
independently of any company. To emphasize this, and to clarify the project's
governance the Cloud Native Computing
Foundation in 2016 as the second hosted project, after Kubernetes [22].

structure, Prometheus joined

Prometheus is based on a multi-dimensional data model with time series data
identified by metric name and key/value pairs. It provides PromQL, a flexible query
language to leverage the dimensionality. Prometheus does not rely on distributed
storage hence each single server node is autonomous. The time series collection
happens via a pull model over HTTP while the time series pushing is supported via
an intermediate gateway. The Prometheus targets are discovered via service
discovery or static configuration. Finally, it provides multiple modes of graphing and
dashboarding.

53

https://prometheus.io/community
https://cncf.io/
https://cncf.io/
https://kubernetes.io/

Service discovery Prometheus

Short-lived alerting .« pagerduty
jobs R T
) kubernetes file_sd -
push metrics _ Alertmanager |-~ Email
atexit I
| discover
¥ targets ¥ notify
: ™~ etc
Pushgateway { Prometheus server i
. ; push
alerts
I pull 1] Retrieval |-» TspB |« HITP
metrics server
PromQL

P
g ‘ Prometheus

| | web Ul

M H

Node HDD/SSD Grafana Data
Jobs/ | . . .
jrrm ey I visualization

exporters
and export

Prometheus
targets ' API clients

Fig 6.3: Prometheus Architecture [17]

The Prometheus ecosystem consists of multiple components, many of which
are optional, as shown in Figure 6.3. The main Prometheus component is the
Prometheus server which scrapes and stores time series data. There is a push
gateway for supporting short-lived jobs and special-purpose exporters for services
like HAProxy, StatsD, Graphite, e.t.c. For the alerts handling an alertmanager
component is provided. In addition, Prometheus has client libraries for
instrumenting application code while various tools are supported.

In our case, we are using the Prometheus operator, talking straight to the
Prometheus server, located on the master node of our cluster. Node exporters are
used as Prometheus agents in the Edge nodes. PromQL is used taking advantage of
all its aspects (functions and literals) [23]. The scraping period chosen is 5 sec which
is the default value, after testing other scraping periods.

6.4 Benchmarks

In order to test the scheduler and the environment we needed workloads that
consist of latency-critical applications. So we wanted a benchmark suite for
measuring how fast systems can process inputs and produce results, using a trained
model. That is because in the majority of such systems, Edge users want their data to
be produced, processed and analyzed as fast as possible, thus leading to real-time
requirements in terms of execution. Moreover ML domain is one of the most widely
increasing application domains in Edge computing systems.

54

MLPerf Inference [24]benchmark suite is the perfect one for the job described above.
We used three of the vision-classification and detection benchmarks as described in

Table 6.4:
Area Task Model Dataset | Quality |Backend | Accuracy
Vision- Image Resnet50- ImageNet | fp32 Tensorflow | 76.456%
Heavy Classification v1.5 (224x224)
Vision- Image Mobilenet- | ImageNet | fp32 Tensorflow | 71.676%
Light Classification v1 224 (224x224)
Vision- Object Detection | Ssd- COCO(30 | fp32 Tensorflow | mAP 0.23
Light Mobilenet- | 0x300)

vl

Table 6.4: MLPerf Inference Benchmarks used

The key component of the MLPerf Inference Benchmark is the Load Generator [25].
The Load Generator is a reusable module that efficiently and fairly measures the
performance of inference systems. It generates traffic for scenarios as formulated by a
diverse set of experts in the MLPerf working group. The scenarios emulate the
workloads seen in mobile devices, autonomous vehicles, robotics, and cloud-based

setups. Although the Load Generator is not model or dataset aware, its strength is in
its reusability. Fig 6.4 shows is a diagram of how the Load Generator can be
integrated into an inference system, resembling how the used MLPerf reference
models are implemented.

Model = Dataset

L T B O N N

Pre Processor

4

Benchmark

> Backend

2 5
2 3 3

6

. Benchmark knows the model, dataset, and preprocessing.

. Benchmark creates requests to backend.

. LoadGen outputs logs for analysis.

. Benchmark hands dataset sample IDs to LoadGen.

. LoadGen starts generating queries of sample IDs.

. Result is post processed and forwarded to LoadGen.

Fig 6.4: Integration Example & Flow [20]

55

LoadGen Logs

Finally, the scenario we used was SingleStream and it is all meant to run only on
CPUs. Also, for the apps to require less space at the SDs, we used only 1000 images-
queries from the datasets during the experiments. The LoadGen output logs inform
the user about the time took to load the dataset, as well as the total QPS (Queries per
Second) of the model, the total time, and the mean value.

56

57

Chapter 7

Evaluation and Experiments

In this chapter, we use our experimental infrastructure to evaluate our custom
scheduler. We used different kind of experiments, based on intensity and diversity.
Each of them gives us insight about different metrics concerning the app’s
throughput and the board’s utilization.

7.1 Experiments

In order to evaluate our custom scheduler we execute numerous different
experiments. Each of them gives us insights about the advantages and disadvantages
compared to the default Kubernetes scheduler.

An experiment is actually a module written in Python programming
language, running on the master node of our cluster. The communication with the
Kubernetes cluster is through the python Kubernetes client. Our experiment tracks
each application from the beginning to the end and keeps logs, for every action
occurred. The experiment takes two inputs. The user must specify the range that
defines the arrival between two consecutive apps and the folder that contain the
yaml files representing our workload.

The workload is thrown at the cluster as Jobs. We decide to use Jobs as they
are easier to manage, compared to Deployments and stand alone Pods. Then a Pod is
created and each Pod creates a different inference engine by using the MLPerf
Inference container. A container has already the backend, the scenario, the dataset
and the container’s memory usage label defined.

As we mentioned, lots of experiments were executed, changing the workload,
as well as the intensity (time range).First, we created a random workload sixty apps
strong. This way, we could each time change the size of the workload to ten, thirty
and sixty apps. These are the first three different experiments, executed with the
same time range, varying in terms of diversity and size. We decided to use a time
range between two and five minutes, as the apps range in completion time from
three to twelve minutes in our devices, if they stand alone. Furthermore, we reduced
the time range in a fourth experiment from five minutes max to three, keeping the
lower limit the same at two minutes.

The whole workload consists of nineteen apps using the Mobilenet model,
twenty bases on Resnet and twenty one based on SSD-Mobilenet model. For more

58

information about MLPerf inference apps you can retrace back at Table 6.4. The
metrics chosen to evaluate and compare the two schedulers are shown below:

e QoS metrics

1. QPS of the whole workload.
2. QPS of each app.
3. # of lost apps, due to node availability.

e Board Resource Utilization Metrics

1. System Average CPU utilization during runtime.
2. System Average CPU Temperature.
3. System Average Memory utilization during runtime.

7.2 Results & Scheduler Comparison

In this section, we present the scheduler comparison between our custom scheduler
and the Kube-Scheduler (Default). In the figures below, the distribution of the QPS
made by each application is shown respectively. We observe that our custom
scheduler offers better throughput for the applications than the default scheduler.
Queries per Second are a metric that shows the total duration of the application as
well as its latency and efficiency. Fig 7.2.1 shows the QPS distribution made for each
Resnet model based application, in each of the three experiments made. In Fig 7.2.2
and Fig 7.2.3 the rest of the inference engines, based on Mobilenet and SSD-
Mobilenet, are shown respectively. It is necessary to mention that on average, our
scheduler achieves an approximately 25% increase in total QPS throughput.

59

QPS

2.0 A
1.8 4
1.6 1
1.4 4
1.2 4
SCHEDULER
10 I MY-SCHEDULER
’ HEE DEFAULT
T

10 30 60
OF APPS

Fig 7.2.1: Resnet QPS distribution

9 -
B -
7] 7 1
o
o
6 -
5 -
SCHEDULER
H MY-SCHEDULER
41 BN DEFAULT

10 30 60
OF APPS

Fig 7.2.2: Mobilenet QPS distribution

60

SCHEDULER
mm MY-SCHEDULER

457 mmm DEFAULT

4.0 4

3.5 1

oPs

3.0 4

2.5

2.0 1

T
10 30 60
OF APPS

Fig 7.2.3: SSD-Mobilenet QPS distribution

As shown in the next figures, resource utilization is also significantly lower, despite
the fact of the workload being quite intense. Therefore, our scheduler can achieve
better efficiency, always bearing in mind to the restricted resources of the devices.
Furthermore, the default scheduler in all of the experiments made at least once, one
of the devices crash, meaning it bound an application to a device that wasn’t able to
handle the work. So, in Fig 7.2.4 average CPU utilization for each application is
shown, and as we can see we decreased utilization for up to 10%. In Fig 7.2.5 the
average Memory utilization is shown, achieving the same amount of decrease in
average utilization, approximately 10%. Finally, in Fig 7.2.6 the average Temperature
of the boards CPUs is shown, achieving a decrease of 1-2 < in total. In total, the
power consumption of the boards decreased.

80 1

60

CPU

40 -

204

SCHEDULER
N MY-SCHEDULER
I DEFAULT

10 30 60
OF APPS

Fig 7.2.4: System average CPU utilization

61

SCHEDULER
mm MY-SCHEDULER
s DEFAULT

50 4

40 A

20

10 4

10 30 60
OF APPS

Fig 7.2.5: System average Memory utilization

50 A

40

TEMP

20 A

10 1 SCHEDULER

EE MY-SCHEDULER

EEE DEFAULT

0 y

10 30 60
OF APPS

Fig 7.2.6: System average CPU Temperature

In order to examine the behavior of our proposed scheduler in more intensive
workloads, we provide as input a more time restricted scenario, by limiting the time
range to three minutes. As expected, the default scheduler not knowing about the
device’s resource restriction is making the devices unavailable to the cluster. While in
many cases the devices crash. Our scheduler, on the other hand, handles all of the
workload efficiently, not losing a single app. In total the default scheduler loses

62

16.6% of the workload, except in case of ten apps. In Fig 7.2.7, we can see the QPS
throughput for each of the ten apps. We observe that in every scenario our scheduler
succeeds a better throughput. The overall improvement is around 26%. In Fig 7.2.8,
we can see a little less than 10% reduction in CPU utilization. In Fig 7.2.9, the
reduction in memory utilization is again around 10%. Moreover, in Fig 7.2.10 we can
see a difference around 1 < in temperature.

SCHEDULER
mm MY-SCHEDULER
mmm DEFAULT

APPS

Fig 7.2.7: QPS of each of the ten application in the experiment.

63

Fig

80
60
=]
o
(W)
40 4
20
SCHEDULER
BN MY-SCHEDULER
BN DEFAULT
0
10
OF APPS

Fig 7.2.8 System average CPU utilization

60 A

SCHEDULER
mm MY-SCHEDULER
| mmm DEFAULT

10
OF APPS

Fig 7.2.9: System average Memory utilization

64

TEMPERATURE

50 A

40

30 A

20 A

10 4

SCHEDULER
HE MY-SCHEDULER
EEE DEFAULT
0

10
OF APPS

Fig 7.2.10: System average CPU Temperature

65

66

Chapter 8

Conclusion and Future Work

8.1 Summary

In this thesis, we design a resource aware container orchestrator that runs on every
Kubernetes environment. We used state of the art tools such as KubeEdge and
Prometheus. It is very important to mention that our orchestrator is scalable and
optimized for fog computing environments. Furthermore, we evaluated the
scheduler with MLPerf inference engines, against the Kubernetes default scheduler.
As shown, in every scenario our custom scheduler improves the quality of service
and achieves this with significantly less resources. Also, our approach is scalable,
heterogeneous and able to achieve this result in most resource constrained
environments.

8.2 Future Work

This particular subject is very promising due to its versatility and its necessity. The
fact that, with an optimal orchestration in this kind of environments, industry and
end-users needs and quality of service can be improved dramatically makes it very
interesting and exciting.

First of all, for this research, our proposed framework can be evaluated in
more heterogeneous devices and applications, so that we can explore the scalability
of our approach. Another improvement might be letting the scheduler know about
the app’s requirements, before the second and most important polynomial
regression. Furthermore, Kubernetes Scheduler plugins can be created using our
method, integrating with the Kube Scheduler. That way, the advantages of the
default scheduler can be combined with the advantages of our scheduler.

In a similar perspective to our approach, we could investigate several ML
models as alternative scheduling algorithms, such as deep learning models training
during runtime. This way, the model should be more effective and train specifically
for each different case. Another idea is to integrate into the scoring algorithm,
connection related aspects. Thus, making the scheduler more appropriate for
clusters consisted of devices in different locations. Last but not least, in modular

67

scenarios on Edge computing systems, the behavior of our approach should be
evaluated, under geolocated, networking and QPS variations.

68

69

BipAoyoapia

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

(9]

T. Alam, «A Reliable Communication Framework and Its Use in Internet of
Things (IoT),» JOUR, 30 May 2018.

S.G.G. K. S. H. A. M. A. Kuljeet Kaur, «<KEIDS: Kubernetes-Based Energy and
Interference Driven Scheduler for Industrial IoT in Edge-Cloud Ecosystem,»
IEEE Internet of Things Journal, pp. 4228-4237, May 2020.

V.T.L.B.S. X. D. S. J. H. F. Samie, «Computation offloading and resource
allocation for low-power IoT edge devices,» 2016 IEEE 3rd World Forum on
Internet of Things (WF-IoT), pp. 7-12, 14 December 2016.

T.W.B. V.F.D. T.]. Santos, «Towards Network-Aware Resource Provisioning
in Kubernetes for Fog Computing Applications,» 2019 IEEE Conference on
Network Softwarization (NetSoft), pp. 351-359, 24 June 2019.

J. W. X. Ding, «Study on Energy Consumption Optimization Scheduling for
Internet of Things,» IEEE Access, pp. 70574-70583, 29 May 2019.

Z.L.H.W.Z.L.E.].d. C. L. Z. Sun, «Sensing Cloud Computing in Internet of
Things: A Novel Data Scheduling Optimization Algorithm,» IEEE Access, pp.
42141-42153, 20 March 2020.

M. Katsaragakis, <kDMRM: Distributed Market-Based Resource Management of
Edge Computing Systems,» 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1391-1396, 16 May 2019.

H. S. AbishiChowdhury. Shital A.Raut, «<DA-DRLS: Drift adaptive deep
reinforcement learning based scheduling for IoT resource management,» Journal
of Network and Computer Applications, pp. 51-65, 15 July 2019.

«Docker Docs,» [HAektooviko]. Available: https://docs.docker.com/get-
started/overview/.

[10] «Wikipedia,» [HAektooViko]. Available:

https://en.wikipedia.org/wiki/Docker_(software).

[11] «Docker Docs,» [HAexktooviko]. Available:

https://docs.docker.com/engine/reference/builder/.

[12] «Kubernetes,» [HAextooviko]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

70

[13] «Kubernetes,» [HAektooviKd]. Available:
https://kubernetes.io/docs/concepts/overview/components/ .

[14] «Kubernetes,» [HAektoovikd]. Available:
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/.

[15] «KubeEdge,» [HAextoovucd]. Available: https://kubeedge.io/en/.
[16] «KubeEdge,» [HAextoovuco]. Available: https://kubeedge.io/en/docs/kubeedge/ .

[17] [HAextooVviko]. Available: https://medium.com/analytics-
vidhya/understanding-polynomial-regression-5ac25b970e18.

[18] [HAextoovikd]. Available: https://pkg.go.dev/k8s.io/client-go/informers.

[19] [HAekTtoOoVIKd]. Available:
https://www.phoronix.com/scan.php?page=article&item=nvidia-jtx1-
perf&num=1.

[20] [HAekTtooVKd]. Available: https://www.anandtech.com/show/14101/nvidia-
announces-jetson-nano.

[21] «Prometheus,» [HAextooviko]. Available: https://prometheus.io/.

[22] «PROMETHEUS,» [HAektooviko]. Available:
https://prometheus.io/docs/introduction/overview/.

[23] [HAekToOVIKO]. Available:
https://prometheus.io/docs/prometheus/latest/querying/basics/.

[24] «MLPerf Inference,» [HAektQoVviKd]. Available:
https://github.com/mlcommons/inference.

[25] «LoadGen,» [HAekto0oVIKO]. Available:
https://github.com/mlcommons/inference/tree/master/loadgen.

[26] «Appypie,» [HAektoovKd]. Available: https://www.appypie.com/everything-
you-should-know-about-internet-of-things.

[27] «Cloudflare,» [HAekTtQOVIKO]. Available:
https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-
computing/.

[28] «Wikipedia,» [HAektooviko]. Available:
https://en.wikipedia.org/wiki/Edge_computing.

[29] «Researchgate,» [HAexTtoovKo]. Available:
https://www.researchgate.net/figure/Three-layer-fog-computing-architecture-

71

5_figl_325144725.

[30] «VirtualMachines,» [HAektooviko]. Available:
https://marionoioso.com/2019/07/16/virtual-machines-vs-containers-vs-
serverless-computing/[.

[31] S. A. H. S. Abishi Chowdhury.

[32] «IoT Growth,» [HAektoovikd]. Available:
https://i.pinimg.com/originals/8e/19/ca/8e19ca2dd683a50cf4d75c23caa5946a.jpg.

72

