o P EOvixé Metodfio Iloruteyvelo

2xor) Hhextpohoywv Mrpyovindv
xa Mnyovixedv TrToNoylotodyv

OFV
Bl

Toygac Teyvoloylac ID\npopopixhc xau
TroloyloTtHv

3
(54
T
NPOMH 5.
XL
nVpPopos

')

WebAssembly Workshop

ALADIXTUAKY] RETAYADTTLON XA AVATTUEN
HWOLKA

AIITAQMATIKH EPTAYTA

FrEQPI'10x ZAPABINOX
YABBAXY AEOYXHX

Emprenoyv : Nwdhoog 3. Ianaocnipou

Koabnyntic E.M.IL

Abriva, Tavoudploc 2021

XN

m
(0)

Efvixé Metodfio Ilohuteyvelo
2xor) Hhextpohoywv Mrpyovindv
xa Mnyovixedv TrToNoylotodyv

Toygac Teyvoroylac IIAnpogopxhc xau
TroloyloTtHv

..{:;:D
‘§

(RS
TN
_I’ npPoMH .
\ jrlﬂl! ppopos

()
2h
OEV$
Bl

')

WebAssembly Workshop

ALABIUTUAKY] RETAYAWDTTLON KA AVATTUEN

ML OLIOL

AIITAQMATIKH EPTAYTA

IFrEQPI'IOY ZAPABINOX
ABBAY AEOYXYXHX

Emprenoyv : Nwdloog Y. IManaonipou

Kodnyntic E.ML.IL

EvxpiOnxe and v tewwely| e&etaotiny emtpony| tnv 15m Iavouapiouv 2021.

Nuworoog X. Ionaomdpou Kowvotavtivog Yorydvag Fedypyiog I'voldpag
Kafnyntic E.M.IL Av. Koafnyntic E.M.IL Av. Kafnyntic E.M.IL

Abriva, Tavoudploc 2021

FEQPI'IOY ZAPABINOX
Awmhopatolyoc Hhextpohdyoc Mryavixdg xow Mnyovixde YTroroyiotodv E.M.IL

ABBAY AEOYXHX
Awmhopoatolyoc Hhextpohdyoc Mryavixde xow Mnyovixde Yroroyiotodv E.M.IL

Copyright (©) Tedpyroc Zopafivoe, ZdBPoc Acolone, 2021.
Me empONaln mavtog dixoumuatog. All rights reserved.

Anoryopeetan 1 avtrypagy, anobrixeuon xou Siavour| tng mopoloos epyasiag, €€ oNoXNpou Y
TUARATOS AUTAS, Yia EUTopx6 oxond. Emitpéneton n avatdnwor, anodixeuorn xan Swovour| yia
OXOTO U1} XEEOOGKOTUXO, EXTUOEUTIXAS 1) EPELYNTIXYC PUOTE, UTO TNV TeolTdBeoT Vo avapépeTon
N Ty TEOENEUOTE Xa Vo Satneeitan To ooy urvuua. Epwthuata mou agopolv Tt xehon e
gpyaoiog Yo XEpdooXOMIXO GXOTO TEENEL Vo aneLBiVOVTOL TEOG TOUS GUYTYEUPELS.

Ou améelg xou T CUUTEQACUATO TOU TEPLEYOVTOL OE AUTO TO €YYpaPo EXPEALOLY TOUG CUY-
voapel xar Bev mpénel vo gpunveubel Tl avtinpocwnedouv g enionueg Béoeic Tou EOvixol
Metobfou ITohuteyveiou.

ITepixndm

Yxomég ng mopoloug epyaciog elvon 1) CUYHEVTEWOT] ERYANEIWY, TO CUYXEXEWEVIL UETAYAWTTL-
OTOV Ao YVWOTEC YAWOoES TpoYpouuatiopol énwg ol C, C++ xou n Go oe Web Assembly.
Auto yiveton pe oxond mEOYEIUUATA XU EPEOUOYES TTOU EVOL YRUUUEVO OF QUTES TIC YADOOEC,
VO UTOPOUY VoL TREYOLY X0l OE TEOYPAUUATO TERLAYNONS Lo TOV.

I ypdvia ny Javascript nrov 1 wovadixy| YAOooo Tou ETPEXE 0T TEOYEAUUATH TERLAYNONS
10700, Ilpbogata, por véa younhod emmEBOU YADCOA EXAVE TNV EUPAVIOT] TNG Kol UTOCYETAL
TOANG TAEOVEXTAUATA UE TO PooixdTEPo Vo elvar 1 SUVITOTNTA Yiot EXTENEST] EQUOUOYODV TILO
vPn\ic ambdoang oe ItooeNideg. Emitpénel atoug npoypoppatiotés front-end vo aflonoicouy
Qo umdpyouoa YAWooo mou etvon mbavotata mo ouxela oe autolg 6w N CH++ 1 amhd va
YENOWLOTOIOEL LTEEYXOVTA XOUUATIOL XWOIXA, OTwe oNyopbuoue avalhtnong, ta onola TAEoV
UTOPOUY VoL TEEYOLY OF ULdl LOTOGENDO OYEOOV TOGO YETYOpd GO WUlal EYYEVAS EQUPUOYT.

H apyrtextovins) mou xenouloTow|oaue yLot TNV UAOTONGoT Tou epyaneiou wog eivar auty Twyv
Microservices. Auth 1 apyrtextovixr udc Borndnoe va dlaymplooLUE TV GUVONXT EQUPUOYY| OE
UXEOTERA ETUEEOUE TUNUATO Tol OTIolol AELTOURYOUY aveEdpTnTal TO €val amd TO GANO GANS CUV-
owdovton yia v emiteuyBel 1 mAReng Aertovpyela tou epyoaeiou. Iho cuyxexpéva, To Docker
elvar aLTO TO epyareio TOU Uog EMETEEPE TOV BLOYWELOUO TWV EQUPUOYMY X XATESTNOE SUVATA
1) SUVATOTNTU CUUTUXVOOTS Xl EXTENECTC ONDY TOV ETUIEPOUS EPUPUOY WV UXES ATOUOVWUEVA
neptBAANOVTA TOU OVOUALOVTAL XOVTELVER OE EVOY XEVTELXO UTONOYICTH.

I tnv el uXomolnom Tou 6ToYoL pag, ol Paowés texvoroyieg mou yenouoTolBnxoy
elvan apxetéc. To epyodelor avdntuing pag eivar to Docker xou to Firebase. 1o backend tng
eapuoyhc pag éxel xenotwonoinbel to NGINX, o Flask tng Python ye to uWSGI, MongoDB,
o Kafka pali pe to Zookeeper xafmc xar ot 2 fooixol poc yetaylottiotéc, to Emscripten (yo C
xou C++) xon o petayhottio i yioe v Go. Téhog, oto frontend ypnowponoinoaue tnv Angular.
‘OXec autéc ol texvoroyieg ouvepydlovton uetal Toug e oxomd TNy ebpuburn Aettoupyio g
EQopUOYNC.

To tehx6 mpotdv tng epyaociog Yoc elval Uia LOTOGENDA — VoL EQYONEID VL0l TTROYPOYULOITL-
otéc. Ouolootixd, Sivouue TNV SUVATOTNTA GTOV OTOLOONTOTE Va YeddeL xou var anodnxeoel TNy
EQUPUOYT) TOU OTY YADOCOoW TNE apéoxelds tou. 'Emneita unopel vo tnv Bel va Tpéyel péoa 6To
TEOYPUUUO TERLAYNONG TOL Yenoldonolel xwplc xovévay xomo xou welc va amouteiton vo dlabétet
Wwitepec yvwoelg oyetixd pe v Web Assembly xau tic eqopupoyég Sabixtiou yevixdtepa.
[Tpdxeton Nowdv yia €va epyaelo Tou €xel aTOX0 TNV ECOXEIWOT TWY TEOYPOUUITIO TV UE TNV
HE TOV X(OPO TV DIXTUNXWY EQUQUOYWY UE TO EAAYICTO BUVATO XOGTOS XU TN UEYLO T EUXONIAL.

A€Eeic xAELOL&

[poypdupata teptiynone wotol, Metayottiotéc, Web Assembly, Iotooehidee, Aadixtuo.

Abstract

The purpose of this diploma dissertation is to integrate tools, more specifically compilers
from well-known programming languages such as C, C++ and Go to Web Assembly. The
reason we did this is for enabling programs and applications coded in these languages also
run in web browsers.

For many years, browsers used to run explicitly JavaScript. Recently, a new low-level
language has emerged and promises many benefits, most notably the ability to run higher-
performance web applications. It allows front-end developers to take advantage of an existing
language that is probably more familiar to them, such as C++, or simply use existing code
snippets, such as search algorithms, that can now run on a web page almost as fast as a
native application.

The architecture we used to implement our tool is that of Microservices. This architecture
helped us to split the entire application into smaller sub-sections that operate independently
of each other but are combined to achieve the full functionality of the tool. More specifically,
Docker is the tool that allowed us to separate applications and made it possible to compact
and run all individual applications in small isolated environments called containers on a single
server.

For the final realization of our goal, the basic technologies used are several. Our develop-
ment tools are Docker and Firebase. In the backend of our application we have used NGINX,
Python Flask with uWSGI, MongoDB, Kafka together with Zookeeper and of course our 2
main compilers, Emscripten (for C and C++) and the Golang compiler. Finally, at fron-
tend we used Angular. All these technologies work together for the smooth operation of the
application.

The final product of our work is a website — a tool for developers. Essentially, we enable
anyone to write and save their application in their favorite language. Then the developer
can see it running in the browser effortlessly and without being required to have special
knowledge about Web Assembly and web applications in general. It is therefore a tool that
aims to familiarize developers with web applications at the lowest possible cost and maximum
convenience.

Key words

Browsers, Compilers, Web Assembly, Web pages Web Developer.

Evyopioticg

IMpchtar amd OXa B OéNape var euyaplothcouue Tov emPrénovtd pog, x. Nixo Ianacmipou,
v TNV xododrynon Tou, Yol To OTL NTAV TAVTA GTO TAGL YOS OTIOTE TOV YPELUC THXOUE Xol oG
Bordnoe va ndpouue ano@doelc Yo Tor ETOUEVA PAUNTO TNG ETOYYENUXTIXAC oS XoplEpas. Oa
OéNape enlong, va evyaplothoouue toug x. Twpyo I'vodua xou x. Kwvotavtivo Xaydva, ot
oTololL GUUTATIPOVOLY TNV TEWENY EEETAC T ETLTEOTY, XaBS xou dXoug Toug Xl yNTéS oTo
e HxextpoNoyov Miyovixay xan Mnyovixav H/ T, xabde pe) forfeid toug gptdoaye oto
onueto mou PELoXOUUCTE GHUERE, VO AOYONOVUIGTE UE AUTO TIOU Oy OLTIAE.

TéNog, Bo BENoE QUOIXE Vo EUYAPLO THOOLPE TIC OLXOYEVELES YOG YId TNV UTOC TARIEN TOUG
xaf’ OAM TN BLdEXELL TOV OTOUBWY oG OANG XaL TOUG PINOUS - GUUPOLTNTES LIS VLol ONOL OO
nepdioope pall Toug GXa aUTd ToL ¥EoVLaL, Tou Bev Bo fray ToTE (Bl xwels auTole.

Ileddpyiog ZapaPivog, YapPac Acobone,
AbAva, 157 Tavouopiou 2021

H epyaoio autr eivan enlong dbéoun og Texvinr Avagopd CSD-SW-TR-6-20, EOvixé Metcéfio Ilo-
Auteyvelo, Xyorn HhextpoNdywv Minyavixddv xou Mryavixav YTrohoyiotov, Topéoac Teyvoroylag IThn-
pogopuic xan Troloywotwy, Egyacthpio Teyxvoroyloc Aoyiopxo, Tavoudpiog 2021.

URL: http://www.softlab.ntua.gr/techrep/
FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

ITepieyopeva

IMepixndm . . .

Abstract

Evyapiotieg .

ITepieybpeva .

KatdAoyog oxnUaATOV L L

. Ewocaywyq .

1.1 Web Assembly
1.1.1 Tielvoun Web Assembly o000
1.1.2 Tt ebvon onupoavtixy n Web Assemblyo 000000

1.1.3 Ilcdg Newtovpyel . . o oo oo

1.1.4 Emépeva BAyotoro

1.2 O oxombc TN BIMAOUATIXAC v v v v v v v e e e e e e

Epyoheia avdmtudne

2.1 MICToServiCes o e e e e

2.2 Docker .
2.3 Firebase

YroBopr spyoolog

Keipevo ota aryyAixd

1. Introduction

2.

1.1 Web Assembly
1.1.1 What is Web Assembly
1.1.2 Why is Web Assembly Important
1.1.3 Howit works
1.1.4 Nextsteps. o o o o o o i

1.2 The Goal of this Project

Deployment tools

2.1 MICTOSErvices v v v i e e e e e e e e

2.2 Dockero

2.3 Firebase

11

13

15
15
15
15
16
16
16

17
17
18
22

23

27

27
27
27
27
28
28
28

3. Project Infrastructure oo 35

3.1 Backend e 35
3.1.1 NGINX oo 35

3.1.2 Flask-uWSGIL 36

3.1.3 MongoDB 37

3.1.4 Kafka 37

3.1.5 Zookeeper 40

3.2 Compilers 40
3.2.1 Emscripten 40

322 Golang 41

3.3 Frontendo 42
3.3.1 Angular 42

4. Common Use Cases 45
4.1 Build and Run Project oo 45
4.1.1 User StOry . . . o o oo e 45

4.1.2 Step by Step Data Flow 45

4.2 Build and Download Project o o 46
4.2.1 User StOTY . .« o o v v 46

4.2.2 Step by Step Data Flow 46
Bibliography 47

12

Katdahoyog oxynudtoyv

2.1 Docker Compose YAML file used for our project. 22

3.1 Ymnodoun Twv micro-services tou WebAssembly Workshop. 23

SARATAL OTO Y YALXO xeElLEVO

2.1 Docker Compose YAML file used for our project. 34
3.1 WebAssembly Workshop’s micro-service infrastructure. 35
3.2 Communication between producers and consumers via the Kafka cluster. . . . 38
3.3 Brief design of a Kafka topic. o oo 38
3.4 Brief design of Kafka topics and consumers in our project. 39

13

Kegdlowo 1

Ewcayoyn

It ToOANG pOVIaL, To TEOY EAUUATO TIERLAYNOTE XPNOULOTIOLOUCAY ATOXAEWT TNXA TNy JavaScript
OOV YADOOW VIOl ONES TIC EVEPYELEC oL exteENoLoav. Kdbe mpoypouuatiothc €npene vo uddel va
TEOYEUUUATI(EL OE QUTAY TN LOVAOLXY YAMOC Yiol VO EYEL T1 BUVITOTNTO VAL TEEYEL EQUPUOYES
og onolodNmote TEdYeouUa teptfynone. Oung, to 2015, eppavicTnxe Yo eVIEANDS VEA YADOOA
ue tnv ovopacio Web Assembly. O x0plogc otdyoc authc e YAwooag ftay vo emitpédet tny
EXTENECT] EQOPUOY®Y TLO LPNAYC amddoong oe LloTooeNdeC. {26T600, TO TO CUVIPTIUC TIXO UE-
poc elvon OTL, TOEA, UTOPOVUUE Vo EYOUME ERYOUNE(D (METAYAOTTIOTES) TOU CUYXEVTPOVOUV TIC
TEPLOCOTERES Amod TG ayamnUéVES Yoc YAwooeg, otwg C, C ++, Python, Rust »\n. ot Web
Assembly. ‘Etat, éyouue tny duvatéTnTa Vo yedpouue xdoixa 6twe cuvndilaue xou Tov frénouue
VoL TREXEL UECO OTO TEOYEAUUUA TIERLAYNONG HAS OYEDOY X0pl Vo XAVOUUE TIMOTA ToEATAV®.

Kabog wdvope xdmola €peuva, xoatandfoue o6t Bor oy moXd xpriowo av unopolue va evow-
HATOOOLUE ONOL AUTA ToL EpYONElDl UETaY A TIOONS 0 Web Assembly oe éva. Me autév tov tpomo,
xdmolog mou Béel va e€oixelwbel ue tn Web Assembly xou tig egopuoyéc mou exteNoUVTUL GTA
TROYPAUUU TERLYNONG, UTopel var €xel TNy euxanpior v yedipet, vor amofdnxedoel o vor eExTENECEL
TNV EQPUPUOYT) TOU GTNV QYUTNUEVY] TOU YAWOOK OE €va UEpog, xwplc va ypeetdleton var XAvel
avalhtnomn v va Peel xdbe epyokeio mou amoutelton, aveldptnta and to nepiBdANOV GTo onolo
douielel. To Web Assembly Workshop eivou oxplBodg autéd xou elpocte ToAd Tepripavol tou
eMTOYOUE TOV GTOHYO YOG, PEQVOVTAC XYTL XPNOWO UE TOANES BUVITOTNTES avAnTUENG o TaL XEpLat
ONwV Joc!

1.1 Web Assembly

1.1.1 T =tvow Web Assembly

H Web Assembly (cuvtopoypapia Wasm) eivon pla yAdooa Tpo-
YEOUUAUTIONOU YAUUNNOU ETUTEOOL Yol ULl EOVIXT] Unyovy| mou Po-
olleton oe otoifa. Auth N yYAdooa €xel oxedocTel ue oxomd TNV
HETOYADTIOCT] EQURUOYOY ATO GANES YVWOTEC YADOGES UPNNOL ETL-
m€dou énwg C / C ++ / Rust. Me autd tov tpdéno emtpéneton n
AVETTUEN EPUEUOYOV LGTOV UE YENOM XA GANWY YAOCOOV TERA Amd
v Javascript. ITpdxeiton yio piar pilixd Slopopetint| Teocéyylomn Lo
™V avdntuén Noyiouxol 16T, o avtibeon pe v Tumxy xeron Pi-
Bhobnxdyv JavaScript mou moANéC @opég Bev Blvouv 1| Bivouv apxeTd apyYéc NOOEC OE aEXETA
undpyovta meoPNruata. Téooepa peydha mpoyeduuota mepiiynong éxouv 1Mo viobethoel tny
Web Assembly, yeyovog to onolo amotekel éva tepdotio Bripa tpog Ty entiteudn g avdmtuéng
£QaPUOYOV BladxTiou LYNATE anddoong.

1.1.2 Tati eivow onpavtixry 1 Web Assembly

H WebAssembly eivar pévo 1 Settepn yhadooa (uetd tn Javascript) mou pmopel va tpéet
oTo TROYEdUUaTa TEpLynong toTol. Mdkota, 1 mpwmtn €xel moydeutel o auétenta {InThdoTa

15

CUPUOPPOOTNS UE TEOTUTA, coBapd TEOoBAAUNTY AmddooNS XabOS xaL o€ €vTovn ducxvnolo oTa
TA{OLAL TOU TEOXANOUVTOL GUY VA TEPLGGOTERA TEOPAAUATA ATd UTE TOU ETAVOVTOL UOXEOTEO-
Oeopa. Ondte, yetd and pio mopelar 25 €TwV, elvon xoupdg TAEOV Vo PTICEL GTO TEOCKNVELD [LdL
VA YADOGGO Yol TNV OTolol WAL TOL, (aUVETOL VoL UTLAEY0UV TONNES TROGDOX(ES.

1.1.3 IIwg Aewtovpyel

H WebAssembly amotekel évo OET apylTEXTOVIXNC ELXOVIXDV EVTON®Y, 1) OTolol ETUTEETEL
oc évay eCEWBIXEVUEVO TTROYRAUUUATIOTY Vol ONULOUEYHOEL AELTOVEYIXES LOVADES IOV (PORTVOLY
Yeriyopa xou eXTENOUVTAL GYEDOV TOCO Yeryopa 600 To YeTayAwtTiopéva C f C ++, cav va
ouVTAy BNy auTég oL eqapuoyéc ancubelag oTo (Blo To TEdYEAUUA TERLYNONS Lo TOU.

1.1.4 Enépeva Brpota

H Web Assembly 0elyvel moXAég duvatotnteg yior 1 Ye@lpmon TOU YAoUATOG UETOED TV
XOUHUATLOV XxMOXA oL aopoly Tov client xou Tov server Twv eqopuoy®y 1otol, To onolo elvor
1BLUTEPA OMUAVTIXNG XD UTOUVOUUE GE UL ETOYT XATAVEUNUEVWY UTONOYICTEV X0 OVOLYTWV
meotinwyY 1010, Kalde dwtifevion nepiocdtepeg Tomnés mnyég OeBOUEVOV Xou EVEQYELIC, 1)
a&lomoinoy e anioTeuTNg SUVUUNG TOV CUYYPOVOY TEOCWTLXWY UTONOYLO TIXWOY GUGXEUGY Ba
elvan éva onuavTind PrAua meog TN owo T xateluVoT TEOg €Vl O TEOGLTO, TUPAYWYLXO Xl
OlaoxedaoTixd YéNNov. Ilopdho mou auty| 1 TeEXVONOYIa UTOREL Vo UNV TEOCPEREL GUECH XEPOT
Y ONOUC 6COUGC UTOPOUY VoL TN XENOUOTONGOUY, Ylo. OGOUS €X0LUY AOYO Vo TNV LlobeTAcOLY
voplc, UTdEYOLY TEPdo TIA TAEOVEXTHUATA Tou Ba apyiocouv va galvovtal auécng. Autéd oy el
Wiodtepa oTtny mepinTwon tou AssemblyScript, xofde enitpénel oToug mpoypauuatiotés front-
end vo a€lomotioouy wila UTdpyouoa YAOooo tou elvor mbavotata mo owxela ot autols dnwe
n C++ 1 n Rust v mopdderypa. Me to AssemblyScript, évac npoypauuatiotdc front-end Oa
UTOEOVCE, VLol TUPADELY U, VO UETAPEREL EUXONA TOANES ONUAVTIXES UTEEYOVOES GUVORTNOELS,
OTWE o TNEOLS Bedyoug yia oy optduous avalftnong N mouy Vil ue TeEXYNTY| VONUocivT), GE Ui
eEQUPETIXGL Y1 YORY] HETAYAWTTIOUEVY] BUABIXY) Lop®T Tou Aettoupyel oyeddY T6G0 Yeryopa 650
wa eyyevic eqapuoyn (xou mBaveds yeryopdTepo avaNOYd UE TIE YVIOOELS TOU TROY POUUATIO TH).

1.2 O oxondg TNG OITAOUATIXNAG

O oxondg g Simhwpatixrc wog eivar va dnuiovpyfoouue éva epyareio mou umopel vo mpo-
CPEQPEL OE EVOLY TROYPOUUOTIO TH ULl OELRA ATO HETAYAWTTIOTEG TOANGDY SLACTIHOY YAWOOWY OTWS
C, C++, Go, Rust x.A\n. oc Web Assembly. Koatagépaue va emitdyouvue autév tov o1dy0 On-
ULOVEYWVTOG EVOY SEIVer TOU EVOWUATMVEL ONXL LTS Tat epyolela o€ €va. Me autédv tov TpoTo,
€VOIg TEOYPAUUUATIO THC UTOREL Vou YRAPEL XOBLXA TTNY Ay ATNUEVT TOU YADCCU X0 G T GUVEXELOL
Vo Topdigel Tov avtiotolyo xodxo Web Assembly xon vo tov tpé€el oe €va TpoYpaUUo TEQUY T
ong ywelc npoomdbela. Aev yperdletar vo yehetroel xou va e€aoxndel yior var udbetl va xwdixonotel
ot Web Assembly xou autd elvan xou 10 peyariTeRo TAEOVEXTNUA TOU BENOUE VO TPOCPEROLUE
uéoa and v gpyoeio pog. Topo o xabévac unopel va ypdhet xddixa xaL vor Tov EXTENEGEL GTO
TEOYeouUa TepLynong Tou. Ou alydplbuol xon To Yeopixd Umopoly TAEOV Vo EXTENOUVTOL GE
TEOYEAUMOTA TEQLAYNONS TOAD TLO YEyopa and 6,TL Tetv pe TNy “xabupn” Javascript xou oauth n
BUVUTOTNTA BlveTon TAEOV ATAOYEQN OE ONOUS TOUS TROYQRUUUITIO TEG HECW TNG LOTOCENIDIG oG,

16

Kegpdhawo 2

Epyoleia avdntuing

2.1 Microservices

T efvor €va microservice?

To Microservices etvon éva opyttextovixd oTul mou fonddel oty avdntudn wag epapuoyic
0O WOl CUANOYT] UTNEECLOY TTou elval:

o Idwitepa Slotnenolues xou ENEYYOUEVES

o Xoopd cuvdedepéveg

o AveZdptnTa aVamTUGGOUEVES

o Opyoavwuéves yOpw amd EMLYEENUATIXES BUVATOTNTES

H opyitextoviny) Twv microservices emitpénel v taelor xon aflOTIO TN TURADOCT] UEYANDY XOU
TONUTNOXWV eQappoY Y. Emtpénet enlong oe évav opyavioud va e€eNiooel Ty teyvoroyieg mou
XEYOWWOTOLEL.

? 2
ITowx elvort Tat TAEOVEXTAUATA;

Avuth 1 Noon €xel TONNG OQENT:

o Emtpénel tn cuveyy mopddoon xan avamTuET UEYEINWY, TONOTAOXWY EQPOOUOY V.

Behtiouévn cuvthpnon - xdbe umnpeoio elvon oyetnd uixpr| xou €Tol elvon euXoNOTERO
vo xortavonBel xou vor aANGEEL

MeyoahUtepn euxoXio 0TI BOXLIES - OL UTNEECIES Elvol UIXPOTEPES XAl YRTYOROTERES
MeyoXOtepn euxohia avdntung - ol unneeaieg umopolv va avamtuyboly aveldptnTa
Emtpénel tny opydvwon otny ntpoondbeia avdntuEng and TOANES, AUTOVOUES OUAOES.
Kdibe opddo xatéyet xou etvon umebBuvn yio pio § teprocdtepeg unneesteg. Kdbe oudda
unopel va ovamtOEEL, VoL BOXUEOEL, Vor AVITTOZEL X0 VO XALUAXWOEL TIC UTNPEECIES TNG
aveldptnTa and ONEC TIC IANEC OUBDES.

o Kdle microservice elvon oyetixd puxpo:

EuxoXétepo vl €vay TpoypaUaTo T VoL XAUTAYONGEL TNV AELTOLEY{o TOU

To IDE eivar ypryopo xou xdveL TOUC TEOYQROUUATIO TES TO TOEOY WY IX0VE

— H egopupoyy| teéxel mo ypryopa, yeYovog mou xabioTd TOUG TEOYEUUUATIOTES TLO

TPy WYIXOUE X0 ETUTOYUVEL TNV ovamTUEN

o Behtwuévn anoudvwor cporudtwyv. I'a nopdderyua, edv undpyel diapeor| uvhung oe wlo
urneeoia, téte Ba emnpeactel wovo autr N unneesia. Ol d\keg urnpeaieg Ba cuveyloouy va
yellovtan anthuoTa. Muyxeltixd, éva avtiotourxo TeofAnue ot plo eopuoyr Lovoabuxnig
OPYLTEXTOVIXNC UTOPEL VO XATAC TEEPEL ONOXATIPO TO GUG TN,

17

o Elahelpel omoladrmote paxpompdeoun déoucuon oe wa otolfa teyvoroyiog. Katd vy
avantugn pog véog unneectoc umopel vo emnéybel uia véa otolfa teyvoloyiog. Ouolwg,
oTay YIVOVTOL ONUOVTIXES UANAYEC OE WLl UTHEYOVON UTNEEGTA, UTEEYEL 1) OUVATOTNTO VoL
Eovory papel YENOLOTOLOVTAS Uit VEo oTolPa TevoNOYloC.

ITola lvor T LELOVEXTAUAT;

Avuth n Moo éyel enlong oplouéva YetovexTHoTa:

o OL TpoYPoUTIO TEG TRETEL VO AVTLHETWTGOLY TNV TEGGHETN TOAUTNOXOTNTA TNS ONULOUE-
viog evOC XUTAVEUNUEVOL GUC THUATOC:

— OL TpoYPaUUATIO TEG TRETEL VAL UNOTIOLAGOUY TOV UNYOVIOUO ETUXOVOVING HETAED TV
UTNEECLOY XOL VO OVTILETOTIOOUY TO QULVOUEVO TNG UERXNC AmOTLY oG

— H eqapupoyr| awtnudtwv mou xa\intouv ToNNES uTneesieg elval o BUGKONT)

O éxeyyog Twv aAANAeTdpdoEwY PeTAE) UTNEECLOY elvar o BUGXONOC

— H egopupoyr awtnudtov mou xa\UmTtouy ToANEG unneecieg amautel TpooEXTIXG GUVTO-
VIoUO HETAEY TV OUddmV

— To epyadela tpoypoppatiot) / IDE Sieuxolbvouy nepiocdtepo) Snuioupyia Lovo-
AV EPOPUOYOV %ot BEV TUREYOUV XONT| UTOC TARLET Yol TNV AVATTUEY], XUTUVEUT
HEVWY EQUOUOY V.

o ITohumhoxoTnTa avdmTUENG. L TNV ToEoy Wy Y|, UTEEKEL ETIONE 1) NELTOUEYIXH TONUTTAOXOTN T
e avdntuéng xan Blayelplong EVOS CUC THUATOS TTOU OMOTENELTAL ATt TONNES DLOPORETINEG
unrnpeeotieg.

o Auvinuévn xataviroon uviune. H apyitextoviny) Tov microservices avtixabiotd N povo-
AOwég epapuoyéc ye maRdog umnpeoidy NxM. Edv xdbe unneeoia extedelton ye to dixd
e JVM (1 10080vapo), téte undpyel 1 emBdpuvon M ypdvev avaloyixd pe toug xpod-
voug extéheonc JVM. Emnléov, edv xdfe unnpeoia extedeitoan ye to 8 e VM (m.y.
napoucio EC2), 6nog yia tapdderyuo oupPaiver oto Netflix, to yevind xb6otog elvon oxdun
vnioTeRO.

2.2 Docker

T eivaw To Docker;

To Docker etvon pior ovouy T TAAT@OpUaL Lot avaTTUET, OTOGTONY
xon extéleon egapuoy@yv. To Docker emitpénel tov dlaywplond Ty
EQAPUOYV OO TNV LTOBOUT|, (G TE VoL UTOREL var TopadideTon To NoyL-
ouxo o yeryopa. Me to Docker, eivan duvatod va yiver 1 Suorgeipnon
TNC LTOBOUTNE UE TOV (Blo TEOTO Tou yiveTow 1) Slayelpnom TwV EQUpUO-
vov. AZomowwvtag T yebodoloyiec tou Docker yio anoctory, do-

XUT %o ovdmTLEN *OOLXa, UTopel var uetwbel onuovtind n xabuc tépnon dOCker

HETOEY TN oOVTAENG XWBXOL XOU TNG EXTENECTC TOU G TNV TORAY Y.

I'ioti eivor To Docker yerjoipno?

To Docker mogéyel T BuvaTtdTNTAL GUUTIAVWONS XU EXTENECTC ULAS EPUPUOYTS OF €Val Amo-
povouévo meptfdilov mou ovoudleton xovtévep. H amoudvoon xou 1 ac@drelo ETTEETOLY TNV
EXTENECT] TONNODY XOVTEWVER TOUTOYPOVA GE EVay XEVTEIXO UTONOYLOTH. Ta xovtéivep elvon ela-
peLd, emeldn Oev ypetdlovton To emmAéov goptio evog hypervisor, oAk Tpéyouv aneubelac otov

18

20

21

22

23

24

TUEAVAL TOU XEVTELXOU UTONOYLOTH. AUTO onualvel OTL UTEEYEL 1) DUVITOTNTA Yiot EXTENEDT) IEQLO-
COTEPWY XOVTEWVER OF €vay Bedopévo hardware amd 6,TL €QV YIVOTAV XENON ELXOVIXOV UNYAVOV.
To xovtéivep Docker unopolv vo tpé€ouv axodua xol O XEVIEIXOUC UTONOYIOTEC TOU elvol
TEOY HATIXG ELXOVIXES UMy avES!

To Docker nopéyet epyonelor xou yiar T atgdppa yia Tt dayelpion Tou xUxhou Lwnfg Tov
XOVTEWVER 00!

o Avanti&te v e@apuoy cag xon ONo ToL GTOLKELL TNG YENOULOTIOLOVTOS XOVTELVER
e To xovtéwvep yiveton 1 povddo Slaevounc xon SOXLUNC TNG EPUPUOYHS O

e Orav clote €towot, avantdlte Ty eQopuoyr oag GTo TERLBIANOV TapaywYHS COC, WS
xovtévep. Autd hettoupyel to (Blo €dv to mepIBENNOV Topaywyhc cog elvon €vo Tomixd
x€vTpo dedouévy, évag ndpoxog cloud 1 évag cuvdlaoude Tev do.

IIwg xenownonoieitow To Docker otnv gpyacio pog

To microservices mou yenoigonolobvToL 6To €pyorelo Yog eival xOVTEWVER ot UTOEOUY Vo
yenowonoindoiv yenowonownviag to gpyarelo Docker Compose, to onolo yog emtpénel va
EVOPXNO TPWCOVUE X0 VO AVATTUEOUUE TAUTOYXEOVA ONEG TIC AMOPOUTNTES UTNEEsieg yiar var xd-
VOUUE TNV €QUEUOYY| LOTOO HAC VO AELTOURYEL OUONS.

To Compose eivon éva gpyarelo yior tov xabopiopd xon v extéleor epopuoywy Docker
TOANATA®Y xovtévep. Me to Compose, yenoiponoieite éva apyxeio YAML pe to onolo extelelton
1 OLUOPPOOT TWV UTNRECLOY TN EQUPUOYNG. LT CUVEYEL, UE Wia ubVo EVTONY, ONuLoupyolvToL
xan Eextvoly ONe¢ oL umnpeaieg ue Pdon tn dlaudppo.

To docker-compose.yml Tou ypnowonote(ton yior Ty avdntuérn tou backend Pploxetan mopo-
xatw:

version: ’2’
services:
flask:
image: ’tiangolo/uwsgi-nginx-flask:python3.8-2020-08-16’
environment:
- USER
- LISTEN_PORT=80
restart: always
volumes:
- 7. /nginx_flask_uwsgi:/app’
- ’./requirements.txt:/requirements.txt’
- 7 /tmp:/tmp’
- 7 Jetc/ssl:/etc/ssl’
ports:
- ’443:443°
command: bash -c ”pip install -r /requirements.txt && ../start.sh”
tty: true
stdin_open: true
mongo:
image: ’mongo:4.4.2°
environment:
- MONGO_INITDB_DATABASE=wasm
restart: always
volumes:
- 7. /dump:/dump’

19

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

57

58

59

60

61

62

63

64

66

67

68

69

70

71

72

73

74

75

76

ports:
- ’27017:27017°
command: bash -c “docker-entrypoint.sh mongod”
mongo-seed:
image: ’stefanwalther/mongo-seed:master’
environment:
- MONGODB_HOST=mongo
- MONGODB_PORT=27017
volumes:
- ’./dump:/data’
depends_on:
- mongo
command: mongorestore --host mongo --port 27017 /data --drop
mongo-express:
image: ’mongo-express:0.54’
environment:
- ME_CONFIG_SITE_GRIDFS_ENABLED=true
restart: always
ports:
- ’8081:8081°
depends_on:
- mongo
zookeeper:
image: ’wurstmeister/zookeeper:latest’
ports:
- ’2181:2181°
restart: always
tty: true
stdin_open: true
kafka:
image: ’wurstmeister/kafka:2.13-2.6.0°
ports:
- 79092:9092°
environment:
KAFKA_ADVERTISED_LISTENERS: ’INSIDE://:9092,0UTSIDE://:9094°
KAFKA_LISTENERS: ’INSIDE://:9092,0UTSIDE://:9094°
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: ’INSIDE:PLAINTEXT,OUTSIDE:PLAINTEXT’
KAFKA_INTER_BROKER_LISTENER_NAME: INSIDE
KAFKA_ZOOKEEPER_CONNECT: ’zookeeper:2181°
KAFKA_BROKER_ID: ’1’
KAFKA_CREATE_TOPICS: °*C_TOPIC:1:1,GO_TOPIC:1:1’
KAFKA_MAX_REQUEST_SIZE: 104857600
KAFKA_MESSAGE_MAX_BYTES: 104857600
restart: always
volumes:
- ’/var/run/docker.sock: /var/run/docker.sock’
depends_on:
- zookeeper
tty: true
stdin_open: true

emscripten_compiler:

20

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

image: ’robertaboukhalil/emsdk:1.39.1°
volumes:
- 7 /tmp:/tmp’
restart: always
command: bash
stdin_open: true
tty: true
emscripten_consumer:
image: ’python:3.8’
environment:
- USER
volumes:
- 7 /tmp:/tmp’
- ./:/app’
- ?/var/run/docker.sock:/var/run/docker.sock’
command: >-
bash -c ”pip install -r /app/requirements.txt && python
/app/consumer /consumer.py -1 C -t 5”
depends_on:
- kafka
- emscripten_compiler
tty: true
stdin_open: true
restart: always
emscriptenpp_compiler:
image: ’robertaboukhalil/emsdk:1.39.1°
volumes:
- 2 /tmp:/tmp’
command: bash
stdin_open: true
tty: true
restart: always
emscriptenpp_consumer:
image: ’python:3.8’
environment:
- USER
volumes:
- 7 /tmp:/tmp’
- 7./:/app’
- ’/var/run/docker.sock:/var/run/docker.sock’
command: >-
bash -c ”pip install -r /app/requirements.txt && python
/app/consumer/consumer.py -1 C++ -t 5”
depends_on:
- kafka
- emscripten_compiler
tty: true
stdin_open: true
restart: always
golang_compiler:
image: ’golang:1.15.5’

21

128

129

130

131

132

133

134

136

137

138

139

140

141

142

143

144

146

147

148

149

150

volumes:
- 7 /tmp:/tmp’
- ’./consumer/assets:/assets’
command: bash
stdin_open: true
tty: true
restart: always
golang_consumer:
image: ’python:3.8’
environment:
- USER
volumes:
- 7 /tmp:/tmp’
- 7./:/app’
- ?/var/run/docker.sock: /var/run/docker.sock’
command: >-
bash -c ”pip install -r /app/requirements.txt && python
/app/consumer /consumer.py -1 Go -t 5”
depends_on:
- kafka
- golang_compiler
tty: true
stdin_open: true
restart: always

YxAuo 2.1: Docker Compose YAML file used for our project.
Extehodvtag tnv evTolY| docker compose up, ONEC Ol UTNEeaie wag ot xovTévep Eexvoly uia

mpog i, xabepio we Eexweioth dodixacia xou oynuatileto €tol éva dixtuo Docker mou umopet
va xenotdononbel yio ecwtepxr] emxovwvia HETHED TWY UTNEECLYV.

2.3 Firebase

To Firebase eivou 1 mhatgopua avdntuéng egapuoyey tne Google
mou Bondd otn Snuovpyio, T Peltioon xar TNy avdmtuln wac epop-

HoYhc 10T00. XpNoWOoNOWUUE auTHY TNV TNXTPOPUO VLot Vo PINOZE- Firebase
viooupe Vv egopuoyh web Angular frontend uéow tou Firebase
Hosting.

Me pla pévo evtor, umopeite vor avantuEeTe Ypryopd EQapUoYES LloToD XL Vo TROBAANETE
TO00 GTATIXO OGO XAl BUVOULXO TEPLEYOUEVO GE £V Ty XOOWLO BIXTUO TURABOCTG TEQLEYOUEVOL.

To Firebase Hosting éxet dnuovpynbel yia tov olyypovo mpoypouuatioto wotol. Ol loto-
TOTOL X0l Ol €QopUoYES elvan To toueég and moté pe v e&éNEn tov JavaScript front-end
frameworks 6nw¢ n Angular xou xdmolo ototixd epyokeia dnutovpylag 6mwg to Jekyll. Eite avo-
(PEQOUACTE OE AVATTUEY Uiag AmAg Lo TooeN(BoC egapuoyic, elte uiag odvletne egapuoyrc web,
1o Firebase Hosting mapéyel tnv urtodour, Ti¢ duvatdtnTeg xan o epyoeia mou efvan amopodtnTa
oV avATTLEY XaL BlaXElPLoT LOTOTOTMVY XAl EQUOUOY V.

22

Kegpdlowo 3

Y odoun epyaciog

Ye autod To xepdrano Ba amapburicouue xou Ba e€oixeiwbolue e Ol Tor oTouKEld oL TIC
TEYVONOY(EC IOV YeNodonowlVTUL TNV epyacia pac and to backend éng to frontend. H doun
Tou epyaociac Exel o eBLOTTEL EXOVTAC XATE VOU TOANUTAG CUVDEDEUEVA Mmicroservices, TEOXEL-
uévou vo eEUTNEETAOEL TOV 0TOYO Wac. Mo yeryoen mopousiooT Tmv NELTOURYLLY QUTOY TOV
GUVOEBEUEVOV UTNRESLAOY YIVETAUL ToRaXdTW:

Emscripten C consumer Emscripten C compiler

1 2 = N

- uWSsGI F

Emscripten C++consumer Emscripten C++ compiler

Golang consumer Golang com piler

ZxAue 3.1: Trodour, twv micro-services tou WebAssembly Workshop.

23

Kelpevo ota oyyAuxd

Chapter 1

Introduction

For many years, browsers used to run explicitly JavaScript. Every developer had to learn to
code in this one and only language in order to have an application running on a browser. But,
in 2015, a completely new language appeared named Web Assembly. The main goal of this
language was to enable high-performance applications on web pages. Nevertheless, the most
exciting part is that, now, we can have tools (compilers) that compile most of our favorite
languages like C, C++, Python, Rust, etc. to Web Assembly. Thus, we have the opportunity
to code as we used to code and see our code running right inside our browser almost without
doing anything.

As we did some research, we figured out that it would be very useful if we could integrate
all these compiling tools into one. In this way, someone who wants to get familiar with
Web Assembly and browser-running applications, can have the opportunity to code, save and
run his application in his favorite language in one place, without having to search to find
every tool and dependency needed, regardless of the working environment. Web Assembly
Workshop is exactly that and we are very proud we reached our goal, bring something useful
with many possibilities for development in your hands!

1.1 Web Assembly

1.1.1 What is Web Assembly

WebAssembly (abbreviated Wasm) is a binary instruction format
for a stack-based virtual machine. Wasm is designed as a portable
target for compilation of high-level languages like C/C++/Rust,
enabling deployment on the web for client and server applications.
This is a radically different approach to front-end software develop-
ment on the web, in contrast to the typical use of heavy JavaScript
libraries with layers of compatibility workarounds for issues which
may not even exist in five or ten years. Four major browsers plus
node have adopted it, which is a huge step towards finally achieving cross-browser compati-
bility, with high performance web applications being the default rather than the exception.

1.1.2 Why is Web Assembly Important

WebAssembly is only the second language (after Javascript) to be natively understood by
web browsers, with the first having been caught up in endless waves of standards compliance
issues, serious performance problems, conflicting notions of how to go about implementing
solutions, and giant cumbersome frameworks that often cause more problems than they solve
in the long run. So, after a good 25 year run, it’s about time that at least one other language
gets a shot at it.

27

1.1.3 How it works

WebAssembly is a virtual instruction set architecture (virtual ISA), which effectively allows
a skilled developer to build modules that load quickly and run nearly as fast as compiled C
or C++, as if these functions were compiled directly into the web browser itself.

1.1.4 Next steps

WebAssembly shows a lot of potential for bridging the gap between client and server com-
ponents of web applications, which is especially important as we enter an age of distributed
computing and open web standards. As more local sources of data and energy become
available, leveraging the incredible power of modern personal computing devices will be an
important step in the right direction towards a more accessible, productive, and entertaining
future. While this technology may not provide immediate returns for everyone who might
consider using it, for those with a reason to adopt early there are huge advantages which
will start to pay off right away. This is especially in the case of AssemblyScript, as it allows
front-end developers to leverage an existing language that is likely more familiar to them like
C++ or Rust for example. With AssemblyScript, a front-end developer could, for example,
migrate all performance-critical functions, such as tight loops for search algorithms or game
Al into an ultra-fast compiled binary format that runs almost as fast as a native application
(and potentially faster depending on the programmer).

1.2 The Goal of this Project

The purpose of our thesis is to create a tool (integrator) that can offer a programmer a bunch
of compilers of many famous languages such as C, C++, Go, Rust etc. to WebAssembly. We
managed to achieve this goal by creating a server that integrates all these tools in one. By
that way, a programmer can write code to his preferred language and then he can generate
the corresponding WebAssembly script and run it on a browser without effort. He does not
have to study and practice to learn to code in WebAssembly and that is the most important
thing. Now everyone can code and run this code in his browser. Algorithms and graphics can
now run in browsers a lot faster than before with Javascript and anybody can do it easily
with our tool.

28

Chapter 2

Deployment tools

2.1 Microservices

What is a microservice?

Microservices, also known as the microservice architecture, is an architectural style that
structures an application as a collection of services that are:

e Highly maintainable and testable

Loosely coupled

Independently deployable
e Organized around business capabilities

The microservice architecture enables the rapid, frequent and reliable delivery of large, com-
plex applications. It also enables an organization to evolve its technology stack.

What are the benefits?
This solution has a number of benefits:
e Enables the continuous delivery and deployment of large, complex applications.

— Improved maintainability - each service is relatively small and so is easier to un-
derstand and change

Better testability - services are smaller and faster to test

Better deployability - services can be deployed independently

It enables you to organize the development effort around multiple, autonomous
teams. Each (so called two pizza) team owns and is responsible for one or more
services. Each team can develop, test, deploy and scale their services independently
of all of the other teams.

e Each microservice is relatively small:

— Easier for a developer to understand
— The IDE is faster making developers more productive
— The application starts faster, which makes developers more productive, and speeds

up deployments

e Improved fault isolation. For example, if there is a memory leak in one service then only
that service will be affected. The other services will continue to handle requests. In
comparison, one misbehaving component of a monolithic architecture can bring down
the entire system.

29

e Eliminates any long-term commitment to a technology stack. When developing a new
service you can pick a new technology stack. Similarly, when making major changes to
an existing service you can rewrite it using a new technology stack.

What are the drawbacks?

This solution has a number of drawbacks:

e Developers must deal with the additional complexity of creating a distributed system:

— Developers must implement the inter-service communication mechanism and deal
with partial failure

— Implementing requests that span multiple services is more difficult
— Testing the interactions between services is more difficult

— Implementing requests that span multiple services requires careful coordination
between the teams

— Developer tools/IDEs are oriented on building monolithic applications and don’t
provide explicit support for developing distributed applications.

e Deployment complexity. In production, there is also the operational complexity of
deploying and managing a system comprised of many different services.

e Increased memory consumption. The microservice architecture replaces N monolithic
application instances with NxM services instances. If each service runs in its own JVM
(or equivalent), which is usually necessary to isolate the instances, then there is the
overhead of M times as many JVM runtimes. Moreover, if each service runs on its own
VM (e.g. EC2 instance), as is the case at Netflix, the overhead is even higher.

2.2 Docker

What is Docker?

Docker is an open platform for developing, shipping, and run-
ning applications. Docker enables you to separate your applica-
tions from your infrastructure so you can deliver software quickly.
With Docker, you can manage your infrastructure in the same ways
you manage your applications. By taking advantage of Docker’s
methodologies for shipping, testing, and deploying code quickly, you

can significantly reduce the delay between writing code and running d OCker

it in production.

Why is Docker useful?

Docker provides the ability to package and run an application in a loosely isolated envi-
ronment called a container. The isolation and security allow you to run many containers
simultaneously on a given host. Containers are lightweight because they don’t need the extra
load of a hypervisor, but run directly within the host machine’s kernel. This means you can
run more containers on a given hardware combination than if you were using virtual ma-
chines. You can even run Docker containers within host machines that are actually virtual
machines!

Docker provides tooling and a platform to manage the lifecycle of your containers:

30

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

e Develop your application and its supporting components using containers
e The container becomes the unit for distributing and testing your application

e When you're ready, deploy your application into your production environment, as a
container or an orchestrated service. This works the same whether your production
environment is a local data center, a cloud provider, or a hybrid of the two

How Docker is used in our Project

The microservices used in the project are containerized and deployable using the Docker Com-
pose tool, which enables us to orchestrate and deploy at once all the necessary microservices
in order to make our web app running smoothly.

Compose is a tool for defining and running multi-container Docker applications. With
Compose, you use a YAML file to configure your application’s services. Then, with a single
command, you create and start all the services from your configuration.

The docker-compose.yml used for the deployment of our backend infrastructure is found
below:

version: ’2’
services:
flask:
image: ’tiangolo/uwsgi-nginx-flask:python3.8-2020-08-16"
environment:
- USER
- LISTEN_PORT=80
restart: always
volumes:
- 7. /nginx_flask_uwsgi:/app’
- ’./requirements.txt:/requirements.txt’
- 7 /tmp:/tmp’
- ’Jetc/ssl:/etc/ssl’
ports:
- ’443:443°
command: bash -c ”pip install -r /requirements.txt && ../start.sh”
tty: true
stdin_open: true
mongo:
image: ’mongo:4.4.2°
environment:
- MONGO_INITDB_DATABASE=wasm
restart: always
volumes:
- 7. /dump:/dump’
ports:
- ’27017:27017°
command: bash -c “docker-entrypoint.sh mongod”
mongo-seed:
image: ’stefanwalther/mongo-seed:master’
environment:
- MONGODB_HOST=mongo
- MONGODB_PORT=27017
volumes:

31

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

T

78

9

80

81

82

83

84

- ’./dump:/data’
depends_on:
- mongo
command: mongorestore --host mongo --port 27017 /data --drop
Mmongo-express:
image: ’mongo-express:0.54’
environment:
- ME_CONFIG_SITE_GRIDFS_ENABLED=true
restart: always
ports:
- ’8081:8081°
depends_on:
- mongo
zookeeper:
image: ’wurstmeister/zookeeper:latest’
ports:
- ’2181:2181°
restart: always
tty: true
stdin_open: true
kafka:
image: ’wurstmeister/kafka:2.13-2.6.0°
ports:
- 79092:9092°
environment:
KAFKA_ADVERTISED_LISTENERS: ’INSIDE://:9092,0UTSIDE://:9094°
KAFKA_LISTENERS: ’INSIDE://:9092,0UTSIDE://:9094°
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: ’INSIDE:PLAINTEXT,OUTSIDE:PLAINTEXT’
KAFKA_INTER_BROKER_LISTENER_NAME: INSIDE
KAFKA_ZOOKEEPER_CONNECT: ’zookeeper:2181°
KAFKA_BROKER_ID: ’1’
KAFKA_CREATE_TOPICS: ’C_TOPIC:1:1,GO_TOPIC:1:1’
KAFKA_MAX_REQUEST_SIZE: 104857600
KAFKA_MESSAGE_MAX_BYTES: 104857600
restart: always
volumes:
- ?/var/run/docker.sock: /var/run/docker.sock’
depends_on:
- zookeeper
tty: true
stdin_open: true
emscripten_compiler:
image: ’robertaboukhalil/emsdk:1.39.1°
volumes:
- 7 /tmp:/tmp’
restart: always
command: bash
stdin_open: true
tty: true
emscripten_consumer:
image: ’python:3.8’

32

86

87

88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

116

117

118

119

120

121

122

123

124

126

127

128

129

130

131

132

133

134

136

environment:
- USER
volumes:
- 2 /tmp:/tmp’
- ./:/app’
- ?/var/run/docker.sock: /var/run/docker.sock’
command: >-
bash -c ”pip install -r /app/requirements.txt && python
/app/consumer /consumer.py -1 C -t 5”
depends_on:
- kafka
- emscripten_compiler
tty: true
stdin_open: true
restart: always
emscriptenpp_compiler:
image: ’robertaboukhalil/emsdk:1.39.1°
volumes:
- 7 /tmp:/tmp’
command: bash
stdin_open: true
tty: true
restart: always
emscriptenpp_consumer:
image: ’python:3.8’
environment:
- USER
volumes:
- 7 /tmp:/tmp’
- ’./:/app’
- ’/var/run/docker.sock:/var/run/docker.sock’
command: >-
bash -c ”pip install -r /app/requirements.txt && python
/app/consumer/consumer.py -1 C++ -t 5”
depends_on:
- kafka
- emscripten_compiler
tty: true
stdin_open: true
restart: always
golang_compiler:
image: ’golang:1.15.5’
volumes:
- 7 /tmp:/tmp’
- ’./consumer/assets:/assets’
command: bash
stdin_open: true
tty: true
restart: always
golang_consumer:

image: ’python:3.8’

33

137

138

139

140

141

142

143

144

145

environment:
- USER
volumes:
- 7 /tmp:/tmp’
- 7./:/app’
- ?/var/run/docker.sock: /var/run/docker.sock’
command: >-
bash -c ”pip install -r /app/requirements.txt && python
/app/consumer/consumer.py -1 Go -t 5”
depends_on:
- kafka
- golang_compiler
tty: true
stdin_open: true
restart: always

Figure 2.1: Docker Compose YAML file used for our project.

By running the docker compose up command, all our containerized services are getting
started and deployed one by one, each one as a separate process, and form a Docker net-
work that we can use for internal communication between our services.

2.3 Firebase

Firebase is Google’s application development platform that helps

building, improving, and growing a web app. We utilize this plat-

form in order to host our Angular frontend web app via Firebase ”' Firebase
Hosting.

Firebase Hosting is production-grade web content hosting for
developers. With a single command, you can quickly deploy web apps and serve both static
and dynamic content to a global CDN (content delivery network).

Firebase Hosting is built for the modern web developer. Websites and apps are more
powerful than ever with the rise of front-end JavaScript frameworks like Angular and static
generator tools like Jekyll. Whether you are deploying a simple app landing page or a
complex Progressive Web App (PWA), Hosting gives you the infrastructure, features, and
tooling tailored to deploying and managing websites and apps.

34

Chapter 3

Project Infrastructure

In this chapter we are going to list and get familiar with all the components and technologies
used in our project from backend to frontend. The project structure is designed having
multiple connected micro-services in mind, in order to serve its goal. A rough design of those
connected micro-services can be shown below:

MongoDB - GridF§
Database - Filesystem

Emscripten C consumer Emscripten C compiler

NGINX -
Rever:

AP

Emscripten C++ compiler

ar
Web Server
Firebase Hosted

Golang com piler

Figure 3.1: WebAssembly Workshop’s micro-service infrastructure.

3.1 Backend

3.1.1 NGINX
What is NGINX?

NGINX is open source software for web serving, reverse proxying,

caching, load balancing, media streaming, and more. It started out 2

as a web server designed for maximum performance and stability. In NG I M x
addition to its HT'TP server capabilities, NGINX can also function

as a proxy server for email (IMAP, POP3, and SMTP) and a reverse

proxy and load balancer for HTTP, TCP, and UDP servers.

What is a Reverse Proxy Server?

A proxy server is a go-between or intermediary server that forwards requests for content from
multiple clients to different servers across the Internet. A reverse proxy server is a type of
proxy server that typically sits behind the firewall in a private network and directs client
requests to the appropriate backend server. A reverse proxy provides an additional level

35

of abstraction and control to ensure the smooth flow of network traffic between clients and

servers.

Common uses for a reverse proxy server include:

e Load balancing — A reverse proxy server can act as a “traffic cop,” sitting in front of

your backend servers and distributing client requests across a group of servers in a
manner that maximizes speed and capacity utilization while ensuring no one server is
overloaded, which can degrade performance. If a server goes down, the load balancer
redirects traffic to the remaining online servers.

Web acceleration — Reverse proxies can compress inbound and outbound data, as well
as cache commonly requested content, both of which speed up the flow of traffic between
clients and servers. They can also perform additional tasks such as SSL encryption to
take load off of your web servers, thereby boosting their performance.

Security and anonymity — By intercepting requests headed for your backend servers, a
reverse proxy server protects their identities and acts as an additional defense against
security attacks. It also ensures that multiple servers can be accessed from a single
record locator or URL regardless of the structure of your local area network.

How NGINX is used in our Project

NGINX provides us a great solution as a reverse proxy server, redirecting all incoming client
requests to our uWSGI-Flask app, our API server. Also, it applies any header information
required in all requests, either incoming or outgoing, resolving CORS issues and resolving the
requests’ origin.

NGINX and our uWSGI-Flask app share the same container, as they are built in a common

Docker image. Therefore, this container is obliged for both running our NGINX web server,
and our Flask application alongside it.

3.1.2 Flask - uWSGI
What is Flask?

Flask is a web framework, it’s a Python module that lets you develop

web applications easily. It does have many features like url routing,
template engine. It is a WSGI web app framework. The Web Server
Gateway Interface (Web Server Gateway Interface, WSGI) has been
used as a standard for Python web application development. WSGI
is the specification of a common interface between web servers and

web applications.

Flask is often referred to as a microframework. It is designed to keep the core of the applica-
tion simple and scalable. Instead of an abstraction layer for database support, Flask supports
extensions to add such capabilities to the application.

What is uWSGI?

In order to deploy a web application written in Python, you would
typically need two supporting components. The first is a traditional
web server such as NGINX to perform basic web server tasks such WSGI
as caching, serving static content, and handling inbound connec-
tions. The second is an application server such as uWSGI. In this

context, an application server is a service that acts as a middleware between the application
and the traditional web server. The role of an application server typically includes starting

36

the application, managing the application, as well as handling incoming connections to the
application itself. With a web-based application, this means accepting HTTP requests from
the web server and routing those requests to the underlying application.

uWSGI is an application server commonly used for Python applications. However,
uWSGI supports more than just Python; it supports many other types of applications, such
as ones written in Ruby, Perl, PHP, or even Go. Even with all of these other options, uWSGI
is mostly known for its use with Python applications, partly because Python was the first
supported language for uWSGI. Another thing uWSGI is known for is being performant.

How Flask is used in our Project

Flask is the web framework our backend API server is actually implemented with. In our
Python Flask codebase resides the core logic and functionality of our backend infrastructure.
Flask can process our requests and do all the CRUD operations needed in order to manipulate
our MongoDB database, use Kafka producers to send projects to the corresponding
Kafka topic, for compilation by our compiler containers, and also return the compiled
wasm and 3s files back to the clients, in order to be executed in their browsers.

3.1.3 MongoDB
What is MongoDB?

MongoDB is a document-oriented NoSQL database used for high

volume data storage. Instead of using tables and rows as in the tra-

ditional relational databases, MongoDB makes use of collections ‘ mongo DB
and documents. Documents consist of key-value pairs which are

the basic unit of data in MongoDB. Collections contain sets of

documents and function which is the equivalent of relational database tables.

How MongoDB is used in our Project?

MongoDB plays a key role in our project as it stores all user accounts and their projects for
future editing and compilation.

All files are stored with a unique id. Each project is a nested structure containing all file ids
for each level. When we need to get a file, Flask runs some recursive functions in order to
resolve the contents of all the files needed. GridFS is responsible for resolving each unique
id. This way, we get back the initial project for editing or sent it to the user.

3.1.4 Kafka

What is Kafka?

Kafka is a distributed streaming platform that is used publish and

subscribe to streams of records. It is used for fault tolerant storage

and replicates topic log partitions to multiple servers. It is designed APACHE

to allow your apps to process records as they occur. Kafka is fast q a
and uses IO efficiently by batching and compressing records. Its

purpose is to decouple data streams and stream data into data lakes,

applications, and real-time stream analytics systems.

How does Kafka work?

Applications (producers) send messages (records) to a Kafka node (broker) and said messages
are processed by other applications called consumers. Said messages get stored in a topic and

37

consumers subscribe to the topic to receive new messages.

producer producer producer
kafka
cluster
consumer consumer consumer

Figure 3.2: Communication between producers and consumers via the Kafka cluster.

As topics can get quite big, they get split into partitions of a smaller size for better
performance and scalability. (ex: say you were storing user login requests, you could split
them by the first character of the user’s username) Kafka guarantees that all messages inside
a partition are ordered in the sequence they came in. The way you distinct a specific message
is through its offset, which you could look at as a normal array index, a sequence number
which is incremented for each new message in a partition.

Anatomy of a Topic

Fartition 111 1_1:
0 ol1|2|3l4a|s|6|7[8|9(g]; 15!
__|
. i
Fa”1'“”“ ol1lz|zlals|6|7|8la! - Writes
1
Partition 11101
e L R AR A A A AN Y R
__|
Old > New

Figure 3.3: Brief design of a Kafka topic.

Kafka follows the principle of a dumb broker and smart consumer. This means that Kafka
does not keep track of what records are read by the consumer and delete them but rather
stores them a set amount of time (e.g one day) or until some size threshold is met. Consumers
themselves poll Kafka for new messages and say what records they want to read. This allows
them to increment/decrement the offset they’re at as they wish, thus being able to replay
and reprocess events.

It is worth noting that consumers are actually consumer groups which have one or more
consumer processes inside. In order to avoid two processes reading the same message twice,
each partition is tied to only one consumer process per group.

38

How Kafka is used in our Project?

Kafka is used in our project as intermediate between Flask and the compilers. In our
project Kafka consists of three topics, one for each language:

e C topic
e C++ topic
e Go topic

When a valid compilation request is sent, Flask collects the project (with all its files) from
our database and send them to suitable topic. More specifically, a new producer is created
that sends a message containing the project that is ready for compilation. On the other side,
when the responsible consumer of this topic is freed and identifies that Kafka contains new
information, it consumes the message and triggers the appropriate compiler. Each consumer
has five threads, so that five projects maximum can be compiled at the same time for better
performance. The importance of Kafka is observed when there is a situation of heavy load.

Emscripten C consumer

C++ Topic Emscripten C++ consumer

Golang consumer

Figure 3.4: Brief design of Kafka topics and consumers in our project.

Flask APl Server KafkaCluster

C Topic
Kafka Producer

Golang Topic

Kafka is responsible for balancing the load and maintain a more stable user experience.

39

3.1.5 Zookeeper
What is Zookeeper?

Zookeeper is a top-level software developed by Apache that acts as
a centralized service and is used to maintain naming and configura-
tion data and to provide flexible and robust synchronization within
distributed systems. Zookeeper keeps track of status of the Kafka
cluster nodes and it also keeps track of Kafka topics, partitions etc.

Zookeeper itself is allowing multiple clients to perform simul-
taneous reads and writes and acts as a shared configuration service
within the system. The Zookeeper atomic broadcast (ZAB) protocol is the brains of the
whole system, making it possible for Zookeeper to act as an atomic broadcast system and
issue orderly updates.

5 APACHE

ZooKeeper"

How does Zookeeper work?

The data within Zookeeper is divided across multiple collection of nodes and this is how it
achieves its high availability and consistency. In case a node fails, Zookeeper can perform
instant failover migration; e.g. if a leader node fails, a new one is selected in real-time by
polling within an ensemble. A client connecting to the server can query a different node if
the first one fails to respond.

Why is Zookeeper necessary for Apache Kafka?

e Controller election

The controller is one of the most important broking entity in a Kafka ecosystem, and it
also has the responsibility to maintain the leader-follower relationship across all the partitions.
If a node by some reason is shutting down, it’s the controller’s responsibility to tell all the
replicas to act as partition leaders in order to fulfill the duties of the partition leaders on the
node that is about to fail. So, whenever a node shuts down, a new controller can be elected
and it can also be made sure that at any given time, there is only one controller and all the
follower nodes have agreed on that.

e Configuration Of Topics

The configuration regarding all the topics including the list of existing topics, the number
of partitions for each topic, the location of all the replicas, list of configuration overrides for
all topics and which node is the preferred leader, etc.

e Access control lists

Access control lists or ACLs for all the topics are also maintained within Zookeeper.

e Membership of the cluster

Zookeeper also maintains a list of all the brokers that are functioning at any given
moment and are a part of the cluster.
3.2 Compilers

3.2.1 Emscripten
What is Emscripten?

40

Emscripten is a complete open source compiler toolchain to We-

bAssembly. Using Emscripten you can: . emscr ipten

e Compile C and C++ code, or any other language that uses
LLVM, into WebAssembly, and run it on the Web, Node.js, or
other wasm runtimes.

e Compile the C/C++ runtimes of other languages into We-
bAssembly, and then run code in those other languages in an
indirect way (for example, this has been done for Python and
Lua).

Practically any portable C or C++ codebase can be compiled into WebAssembly us-
ing Emscripten, ranging from high-performance games that need to render graphics, play
sounds, and load and process files, through to application frameworks like Qt. Emscripten
generates small and fast code! Its default output format is WebAssembly , a highly op-
timizable executable format, that runs almost as fast as native code, while being portable
and safe. Emscripten does a lot of optimization work by careful integration with LLVM,
Binaryen, Closure Compiler, and other tools.

How Emscripten is used in our Project?

Emscripten is our compiler for C and C++ written projects. Our goal was to have a great
compiler in our backend so that the user doesn’t need to study a bunch of information in
order to use our online tool. Emscripten was an excellent solution as it has everything a
user needs to create big things as simple as it can be with the power of C and C+-+.
Emscripten is running in both C and C++ compiler containers. When the appropriate
consumer triggers the compiler into the container, Emscripten compiles the project based
on instructions given into a Makefile or a compile.sh file the user can write. If none of them
exists, standard single-file compilation is executed.

3.2.2 Golang
What is Golang?

Go is a compiled language. This means we must run our source code
files through a compiler, which reads source code and generates a
binary, or executable, file that is used to run the program. Examples
of other popular compiled languages include C, C++, and Swift.
Programs written in these languages are transformed into machine
code and can perform extremely fast.

Now, speaking about the WASM Golang compiler, all we have to say
is that we use exactly the same compiler passing some extra commands that are responsible
for the wasmM output.

How Golang compiler is used in our Project?

Golang compiler is our compiler for Go written projects. No further knowledge is required
about WebAssembly. The user can code in Go as he codes locally in his computer and run
all of his projects just inside his browser!

For Golang ther is only one container using the compiler and same as Emscripten, when the
appropriate consumer triggers the compiler into the container, Golang compiler compiles the
project based on instructions given into a Makefile. If id does not exist, standard single-file
compilation is executed again.

41

3.3 Frontend

3.3.1 Angular
What is Angular?

Angular is a web development platform built in TypeScript that

provides developers with robust tools for creating the client side of

web applications. Released in 2010 and formerly known as Angu-

larJS, Angular is a JavaScript framework that was initially geared g NGU I—AR

toward building single-page applications. At the time, the popular-

ity of SPAs was growing rapidly, and so did the popularity of the

AngularJS framework. In 2016, Google presented a new, fully rewritten version of this tool,
with new features that included semantic versioning based on the MAJOR.MINOR.PATCH
scheme, a command-line interface (CLI), and an entirely component-based architecture.

Why use Angular?

So, what are the top benefits developers can get from using Angular in their projects? The
strong sides of Angular include:

42

Detailed documentation

Angular boasts detailed documentation where developers can find all necessary infor-
mation without asking their colleagues. As a result, developers can quickly come up
with technical solutions and resolve emerging issues.

Support by Google

A lot of developers consider Google support another benefit of Angular, making the
platform trustworthy. At ng-conf 2017, the developers of Angular confirmed that Google
will support Angular on a long-term basis.

Great ecosystem of third-party components

The popularity of Angular has resulted in the appearance of thousands of additional
tools and components that can be used in Angular apps. As a result, you can get
additional functionality and productivity improvements.

Component-based architecture

Angular implements a component-based architecture. According to this architecture, an
app is divided into independent logical and functional components. These components
can easily be replaced and decoupled as well as reused in other parts of an app. In
addition, component independence makes it easy to test a web app and ensure that
every component works seamlessly.

Ahead-of-time compiler

Angular’s AOT compiler converts TypeScript and HTML into JavaScript during the
build process. This means that code is compiled before the browser loads your web app
so that it’s rendered much faster. An AOT compiler is also much more secure than a
just-in-time (JIT) compiler.

CLI

It is probably the most beloved feature for the majority of Angular developers. It au-
tomates the whole development process making app initialization, configuration, and

development as easy as possible. The Angular CLI allows you to create a new An-
gular project, add features to it, and run unit and end-to-end tests with a few simple
commands. It not only increases code quality but also greatly facilitates development.

Ivy Renderer

Ivy Renderer translates an app’s components and templates into JavaScript code that
can be displayed by a browser. The main characteristic of this tool is its tree shaking
technique. During rendering, Ivy removes unused code to make it clearer and smaller.
As a result, web apps load faster.

Angular Material

This collection of Material Design elements optimized for Angular lets developers
easily integrate Ul components.

Dependency injection

Dependency injection is quite an arguable advantage of Angular. In plain English,
dependency injection refers to one object supplying the dependencies of another ob-
ject. These dependencies define how various components are connected and show how
changes in one part of the code affects other parts. On the one hand, using dependency
injection makes code more readable and maintainable. It can greatly reduce the time
spent testing and hence cut the costs of web development. Starting from version 2,
Angular provides developers with a separate tree of dependency injectors that can be
changed or replaced without reconfiguring all components. But on the other hand, de-
pendency injection may be time-consuming and it may be hard to create dependencies
for components.

43

Chapter 4

Common Use Cases

4.1 Build and Run Project

4.1.1 User Story

e For simple C, C++ and Go programs, the user needs to do nothing special than just
write the initial program and just press Build & Run.

e For bigger projects or SDL projects for C and C++-, the user must write a Makefile and
(not necessary in all occasions) a compile.sh file for telling the compiler the instructions
for compiling the project. The full procedure on how to create these files are described
in our info file that is auto-generated on project creation.

After the compilation is complete, the user can see the project running below the editor,
in the output console. If the project includes graphics, a canvas is used to draw the expected
output. For the project input, we use classic Javascript prompts for C and C++ and the
browser console for Go projects respectively.

4.1.2 Step by Step Data Flow

When the user hits the Build & Run button, a request is sent from his machine to our
server that is handled by Nginx and satisfied write after by Flask. Flask is responsible
for collecting all files of project from MongoDB in a nested format and send them to the
appropriate compiler through Kafka. For each compiler there are 5 Kafka consumers (5
threads) that are responsible for getting all files from Flask and copy them in a specific
directory into the appropriate compiler container. Finally, the consumer orders the compiler
to proceed with the compilation process. At the end of compilation, the compiler crates
a logs.txt file including all the compiler output on both cases (successful or unsuccessful
compilation).

Alongside, Flask is waiting for logs.tzt to be created into the corresponding directory of the
compiler container. When this happens, Flask sends a response to the initial compile request
that includes the compilation status (success or not). When Angular on user machine gets
the response, another request is triggered that is satisfied again by Flask. Now, Flask has
to modify the output.js produced by the compiler accordingly so that it can be executed by
Angular without errors. After that, Flask serves the output.js file so that Angular can
execute it.

e For C and C—+-+ projects, at the execution of output.js, output.wasm is requested
alongside with maybe some other files (eg .data). In this case Angular sends the
suitable request and these files are also served from Flask.

e For Go projects, we need both output.js and output.wasm in order to instantiate wasm
and run the project. If more files are requested from output.js are again served from
Flask.

45

After the compilation is complete, the user can get all files of his project (both source
code and files produced after compilation).

4.2 Build and Download Project

4.2.1 User Story

e For simple C, C++ and Go programs, the user needs again to simply write the initial
program and just press Build & Download.

e For bigger projects or SDL projects for C and C+ -+, the user must write a Makefile and
(not necessary in all occasions) a compile.sh file for telling the compiler the instructions
for compiling the project as described in the previous use case.

4.2.2 Step by Step Data Flow

When the user hits the Build & Run button, a request is sent from his machine to our
server that is handled by Nginx and satisfied write after by Flask. Flask is responsible
for collecting all files of project from MongoDB in a nested format and send them to the
appropriate compiler through Kafka. For each compiler there are 5 Kafka consumers (5
threads) that are responsible for getting all files from Flask and copy them in a specific
directory into the appropriate compiler container. Finally, the consumer orders the compiler
to proceed with the compilation process. At the end of compilation, the compiler crates
a logs.tat file including all the compiler output on both cases (successful or unsuccessful
compilation).

Alongside, Flask is waiting for logs.tzt to be created into the corresponding directory of the
compiler container. When this happens, Flask checks for the compilation status (success or
not). If compilation is successful, Flask creates a zip including all files (source and produced
files) and serves it so that Angular on user machine can receive them. Finally, Angular
downloads the compressed zip file into user machine. The user can now have all files created
and edited on our site locally and in addition, he can use the output files (output.wasm,
output.js etc.) however he wants without dependency on our online tool.

46

Bibliography

[Abou20|

[Berg20|

[Canel6]

[Hark18§]

[Hyke20]

[Kozl17]

[Rama20]

[Rich20]

[Rona20)|

[Rung?21]

[Sys020a]

[Syso20b]

[Zakal5|

Robert Aboukhalil, Level up with WebAssembly, Electronic book, May 2020.
Available from https://www.levelupwasm.com/.

Tim Berglund, “Kafka Introduction”, https://kafka.apache.org/intro, 2011-2020.

Benjamin Cane, “Getting Every Microsecond Out of uWSGI”, https://rollout.io/
blog/getting-every-microsecond-out-of-uwsgi/, 2016.

Liliia Harkushko, “Angular: Best Use Cases and Reasons To Opt For This Tool”,
https://yalantis.com/blog/when-to-use-angular/, 2018.

Solomon Hykes, “Docker overview”, https://docs.docker.com/get-started/overview/,
2013-2020.

Stanislav Kozlovski, “Thorough Introduction to Apache Kafka”, https://hackernoon.
com/thorough-introduction-to-apache-kafka-6fbf2989bbc1, 2017.

Naveen Ramanathan, “WebAssembly: Introduction to WebAssembly using Go”,
https://golangbot.com/webassembly-using-go/, 2020.

Chris Richardson, “What are microservices?”, https://microservices.io/, 2020.

Armin Ronacher, “Flask (web framework)”, https://en.wikipedia.org/wiki/Flask_
(web_framework), 2010-2020.

Krishna Rungta, “What is MongoDB? Introduction, Architecture, Features &
Example”, https://www.guru99.com/what-is-mongodb.html, 2021.

Igor Sysoev, “What Is a Reverse Proxy Server?”, https://www.nginx.com/resources/
glossary/reverse-proxy-server/, 2013-2020.

Igor Sysoev, “What is NGINX?”, https://www.nginx.com/resources/glossary/nginx/,
2013-2020.

Alon Zakai, “Emscripten Documentation”, https://emscripten.org/, 2015.

47

https://www.levelupwasm.com/
https://kafka.apache.org/intro
https://rollout.io/blog/getting-every-microsecond-out-of-uwsgi/
https://rollout.io/blog/getting-every-microsecond-out-of-uwsgi/
https://yalantis.com/blog/when-to-use-angular/
https://docs.docker.com/get-started/overview/
https://hackernoon.com/thorough-introduction-to-apache-kafka-6fbf2989bbc1
https://hackernoon.com/thorough-introduction-to-apache-kafka-6fbf2989bbc1
https://golangbot.com/webassembly-using-go/
https://microservices.io/
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://www.guru99.com/what-is-mongodb.html
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://www.nginx.com/resources/glossary/nginx/
https://emscripten.org/

	Περίληψη
	Abstract
	Ευχαριστίες
	Περιεχόμενα
	Κατάλογος σχημάτων
	Εισαγωγή
	Web Assembly
	Τι είναι η Web Assembly
	Γιατί είναι σημαντική η Web Assembly
	Πώς λειτουργεί
	Επόμενα Βήματα

	Ο σκοπός της διπλωματικής

	Εργαλεία ανάπτυξης
	Microservices
	Docker
	Firebase

	Υποδομή εργασίας
	Κείμενο στα αγγλικά
	Introduction
	Web Assembly
	What is Web Assembly
	Why is Web Assembly Important
	How it works
	Next steps

	The Goal of this Project

	Deployment tools
	Microservices
	Docker
	Firebase

	Project Infrastructure
	Backend
	NGINX
	Flask - uWSGI
	MongoDB
	Kafka
	Zookeeper

	Compilers
	Emscripten
	Golang

	Frontend
	Angular

	Common Use Cases
	Build and Run Project
	User Story
	Step by Step Data Flow

	Build and Download Project
	User Story
	Step by Step Data Flow

	Bibliography

