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Abstract

The aim of this present thesis was the exploitation of Artificial Intelligence (AI) algorithms
for the discrimination of various gaseous species based on their type and concentration.  For the
detection of the volatile organic compounds we used metal oxide semiconductor (MOX) gas sensors.
A key feature of these sensors is the alteration of one or more of  their physical properties upon
exposure to a gas stimuli in a way that is possible to measure and quantify.

In our experiments during the exposure of an array of sensors to a deoxidizing gas, changes
in the resistance of each sensor  were measured. The acquired data were multivariate time series
since we measured the response of an array of three sensors. The gas sensor array (GSA) delivers a
unique fingerprint upon exposure to a gas stimuli.  The next stage consists of pre-processing the
acquired  time  series  in  order  to  use  a  pattern  recognition  algorithm for  the  recognition  of  the
acquired fingerprint. In this context we used machine learning (ML) and deep learning (DL) models
which after sufficient training, they are capable of predicting the class of a future recording of the
GSA.

The experimental process includes an odour delivery system, consisting of a sealed chamber
where the GSA was placed, a gas injection phase, and the measure of the responses of the GSA by
the Keithley 2400 instrument. We constructed the GSA’s electrical circuit and also a circuit for the
control of the acquisition by an Arduino microcontroller.

This work demonstrates the utilization of ML and DL algorithms in the field of smart gas
sensors.  For  this  purpose  we  used  the  dataset  created  in  the  laboratory  but  also  some relevant
datasets freely available from the UCI Machine Learning Repository.

Keywords: smart gas sensing; MOX gas sensors; pattern recognition; machine learning; neural 
networks;



Περίληψη

Ο στόχος της παρούσας εργασίας ήταν η ανάπτυξη μιας μεθοδολογίας η οποία θα αξιοποιεί
αλγορίθμους τεχνητής νοημοσύνης για την ταξινόμηση διάφορων αερίων με βάση το είδος τους και
την συγκέντρωση στην οποία συναντώνται όταν ανιχνεύονται από αισθητήρες αερίων μεταλλικού
οξειδίου. Η ανίχνευση των αερίων – στόχων γινόταν από αισθητήρες μεταλλικού οξειδίου (MOX
gas  sensors),  βασικό  χαρακτηριστικό  των  οποίων  είναι  η  μεταβολή  ορισμένων  φυσικών  τους
ιδιοτήτων όταν βρίσκονται στο περιβάλλον αερίων που θα τους διεγείρουν. 

Στα πειράματα μας, κατά την έκθεση μιας συστοιχίας αισθητήρων αερίων (GSA) σε κάποιο
αέριο  καταγράφαμε  την  μεταβολή  της  ειδικής  αντίστασης  των  ανιχνευτών  λαμβάνοντας  έτσι
δεδομένα  χρονοσειρών.  Ακολούθησε  ένα  στάδιο  προ-επεξεργασίας  αυτών  των  δεδομένων,
προκείμενου  αυτά  να  χρησιμοποιηθούν  για  την  ανάλυση  του  κάθε  αποτυπώματος  που  είχε  η
συστοιχία κατά την έκθεσή της σε κάποιο διαφορετικό αέριο-στόχο. Σε αυτό το πλαίσιο έγινε χρήση
αλγορίθμων  μηχανικής  και  βαθειάς  μάθησης,  οι  οποίοι  αφού  εκπαιδευτούν  στα  μετρούμενα
δεδομένα,  θα είναι  ικανοί  να προβλέψουν την κατηγορία στην οποία θα ανήκει  μια μελλοντική
καταγραφή της απόκρισης της συστοιχίας.

Η πειραματική διαδικασία περιελάμβανε ένα σύστημα εκβολής των αερίων σε έναν κλειστό
θάλαμο εντός  του  οποίου  βρίσκεται  η  συστοιχία και την  καταγραφή της  απόκρισης  όλων  των
αισθητήρων από το καταγραφικό μηχάνημα Keithley 2400. Κατασκευάστηκαν επίσης το ηλεκτρικό
κύκλωμα της συστοιχίας και ένα κύκλωμα ελεγχόμενο από microcontroller (Arduino), που επέτρεπε
την  καταγραφή  της  αντίστασης  όλων  των  αισθητήρων  της  συστοιχίας,  από  το  καταγραφικό
μηχάνημα.

Η εργασία αναδεικνύει την αξιοποίηση αλγορίθμων  μηχανικής και βαθειάς μάθησης στο
πεδίο  των  έξυπνων  ανιχνευτών  αερίων  χρησιμοποιώντας  τα  πειραματικά  δεδομένα  που
συλλέχθηκαν στο εργαστήριο αλλά και σύνολα δεδομένων που υπάρχουν διαθέσιμα στο διαδίκτυο.

Keywords: smart  gas  sensing;  MOX gas sensors;  pattern recognition;  machine learning;  neural
networks;
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1 Introduction

1.1 Smart Gas Sensing

In  recent  years  with  the  development  of  Internet-of-Things (IoT)  technology,  gas
sensors are increasingly becoming an important part of our everyday lives. They can be found
in our homes (e.g., monitoring the level of CO in air from gas-fired boilers), in our workplace
(e.g.,  checking  the  levels  of  toxic  gases  and  odours  in  offices),  and  in  hospitals  (e.g.,
monitoring anaesthetic  and respiratory gases  during operations).  In  such complex sensing
scenarios, the gas sensor shows the defects of cross sensitivity and low selectivity. Therefore,
smart  gas  sensing methods have been proposed to  address  these issues  by adding sensor
arrays,  signal  processing,  and  machine  learning  techniques  to  traditional  gas  sensing
technologies.

1.2 Problem Statement

As  the  size  of  semiconductors  shrinks  into  the  nanometer  scale  regime,  many
uncertainties may be introduced during the manufacturing process of the sensing material
(metal  oxide  semiconductor)  as  new physical  phenomena  at  short  dimensions  occur,  and
limitations in material properties are reached. Thus, it is impossible to know a-priori the exact
response of a gas sensor device upon exposure to a volatile organic compound at a specified
concentration. For that reason, essential part of the manufacturing process of a sensor is the
calibration  stage  in  which  each  sensor  is  being  exposed  to  a  variety  of  gases  and
concentrations in order to construct its sensitivity basis. The sensor is then ready to be used as
a detector for specific target-gases in a limited range of concentrations.  Nevertheless,  the
sensor will be affected by non-target gases which have similar chemical characteristics, even
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if the sensor’s target gas is not present. This is known as cross sensitivity of the sensor, and
together  with  the  problem of  low selectivity  which  is  the  variations  in  sensor  responses
depending on the environmental temperature and humidity, are the main reasons why gas
sensors can not be used for the characterization of gases, and their applications are limited to
alarm activation.

To cope with the problem of low selectivity and cross sensitivity, we use  multiple
sensors  of different sensitivity characteristics.  In this project we combine sensors that show
different response to the same gas-concentration combination, in order to construct an array of
sensors which will provide a unique fingerprint upon exposure to an odor. The target-gas of
each individual sensor could either be different or the same (as long as they provide different
response). 

By using data analysis tools, we can extract information about the nature of the gas
stimuli by analyzing the fingerprint provided by gas the sensor array.

1.3 Thesis overview

This thesis consists of the following chapters:

• In Chapter 2 we mention some related works. 

• In Chapter 3 we refer to the theoretical background of gas sensors and also to the data
preprocessing techniques and pattern recognition methods used in smart gas sensing
technology.

• In Chapter 4 we go through the experimental process, we refer to the characteristics
of the datasets that we used and we mention the computational frameworks we used
for the analysis.

• In Chapter 5 we present the experimental results and the performance measures of the
models we used for the analysis.

• Finally,  Chapter  6  includes  a  discussion  section  on  the  derived  results  and  some
thoughts on future work.
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2 Related work

Many  studies  have  been  held  regarding  the  use  of pattern  recognition  (PARC)
methods for the classification  of gas sensor array data. In  [1] by  Hines et al., the authors
provide guidelines about the preparation of GSA raw data through a preprocessing stage, as
well as the most commonly used PARC methods applied to processed data, in order to extract
insights about the nature of the gas stimuli.  One of the first  articles on the use of PARC
methods  to  GSA  data  is  presented  by Gardner  et  al.  [2][3] where  the  use  of  principal
component  analysis  (PCA),  clustering  methods  and  artificial  neural  networks  for  the
classification of GSA data is presented.

In later studies,  Pardo and Sberveglieri  [4] investigates the use of Support Vector
Machines (SVM), where the authors express the error of the SVM as a function of the number
of principal components, the kernel parameter value for both the polynomial and the RBF
kernel,  and the regularization parameter  C.  In the same context,  the use of Gradient Tree
Boosting  algorithm is  investigated by  Luo et  al.,  [5].  This  approach is  proposed for  fast
recognition as the sensors in the GSA do not reach their steady-state, hence, only the transient
signals are being analyzed. 

In another study held by Krivetskiy et al. [6], the authors make use of PARC methods
such as random forest, support vector machine and shallow multi-layer perceptron algorithms,
to selectively detect the presence of individual gases at low concentrations by a single SnO 2

gas sensor. It is reported that artificial neural networks are more effective compared to the
other PARC methods, as they exhibit an error of 13.2%. The same study also investigates the
ability of a single sensor to detect the presence of a gas mixture. For that case the results
indicate an error less than 10%.

Regarding the problem of fault  detection by sensors,  Yang et al. [7] make  use of
clustering-k-Nearest Neighbors (kNN) algorithm to address this problem. The results indicate
that the proposed method solves the problem of fault detection faster than the traditional kNN.
Hence, the use of clustering-kNN is more suitable for handling bigger datasets as well as for
real-time process monitoring.

One of the main problems in the operation of gas sensors is the effect of drift which is
the gradual variation of the chemo-sensory signal responses when exposed to the same analyte
under identical  conditions,  caused by the reorganization of the sensor’s surface over long
periods of time. Belhouari et al.  [8] demonstrate a system which provides fast recognition of
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volatile organic compounds, accompanied by a Gaussian Mixture model for the counteraction
of sensor drift. In the same context, Vergara et al. [9] shows the effect of drift in sensors in a
dataset collected over a period of three years. They address the problem of drift by using an
ensemble of SVMs, each one trained at different points of time.

There are also many reports on the literature regarding the use of deep convolutional
neural networks (DCNN) for gas classification.  Zhao et al.[10] presented the use of a one-
dimensional DCNN for automatically extracting features and classifying mixture gases. This
network  exhibits  higher  recognition  accuracy  (96.3%)  compared  to  conventional  pattern
recognition algorithms such as SVM, ANN, k-nearest neighbor and random forest. Peng et al.
[11] proposed a novel 1D-DCNN consisting of 38 layers, named GasNet, tailored for gas
classification.  It  is  shown  that  GasNet  can  provide  higher  classification  accuracy  than
comparable SVM methods and Multiple Layer Perceptron (MLP).

Two-dimensional  DCNN,  which  are being  widely  used  for  computer  vision
applications, have also been used in gas classification. In order to create input data for a 2D-
DCNN, one should transform the multivariate time series data of a GSA into a 2-D coloured
image. Three different transformation methods for encoding time series as images (Gramian
Angular Summation Field, Gramian Angular Difference Field, Markov Transition Field) are
presented by Yang et al. in [12]. In another study held by Wei et al. [13] a gas identification
CNN based  on  the  LeNet-5  architecture  proposed  by  Yann  LeCun  [14] is  used  for  the
discrimination of CO, CH4 and their mixtures in various concentrations. The time series data
are encoded as greyscale images and the final accuracy reached is 98.67%. Another approach
regarding the encoding of time series as images is presented by Han et al.  in  [15]. In this
study the  images  which  are  lately  fed  into  a  2D-DCNN  are the  plots  of  the  time  series
acquired from the GSA. Four different  mapping methods of the time series and five pre-
trained 2D-DCNN were used. The final accuracy reached is 96.67%. 
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3 Machine Olfaction

Machine olfaction can be defined as the instrumental replication of the human olfactory
sense.  A system capable of simulating the sense of smell consists of several different gas
sensors  which  produce  electrical  signals  depending  on  the  nature  of  the  surrounding
atmosphere. Next, the acquired signals go through a processing stage in order to prepare the
raw data for multivariate pattern analysis by utilizing a pattern-recognition method. By the
end  of  this  stage,  we  can  derive  meaningful  insights  about  the  volatile  compounds  that
compose the environment of the sensors [16].
     This chapter aims at introducing the reader to the fundamental  elements of which an
intelligent olfactory system consists.

~ 5 ~
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3.1 Chemical Gas Sensors

A chemical gas sensor is a device which upon exposure to volatile compounds alters one
or  more  of  its  physical  properties,  such  as  mass,  electrical  conductivity  or  dielectric
properties,  in  a  way that  is  possible  to  measure  and  quantify.  These  changes  deliver  an
electrical signal, with a magnitude that is proportional to the concentration of the gas under
test  [17].  Most  commonly  used  chemical  gas  sensors  are  the  metal  oxide  (MOX)
semiconductors, organic crystals and conductive polymers [18]. In this present thesis we used
MOX gas sensors.

3.1.1 MOX Sensing Mechanism

In 1953 Brattain and Bardeen discovered that the adsorption of a volatile compound on
the surface of a semiconductor can cause a great change of its resistance. This phenomenon
has been observed since then in many metal oxides including SnO2, ZnO, TiO2 and In2O3 with
the SnO2 being the most commonly used material for gas sensing applications.  Tin oxide
under  certain  circumstances  behaves  as  an  n-type  semiconductor  at  oxygen-containing
environment (e.g. air). The basic reactions that occur within the porous sintered film can be
represented by the following reactions:

(3.1)

(3.2)

First,  vacant  sites  within  the  non-stoichiometric  tin  oxide  lattice  react  with  atmospheric
oxygen to abstract electrons out of the conduction band of the tin oxide creating chemisorbed
oxygen sites such as O-, O2

- , and so on (Eq.  3.1). Next, this reversible reaction is disturbed
when the analyte molecule X reacts with the chemisorbed oxygen species to release electrons
and promulgate further reactions (Eq. 3.2) [19]. Consequently, the conductivity is increased as
a result of the increase in carrier concentration.

The schematic diagram in Figure 2 explains the conductivity increment due to the carrier
mobility for SnO2 gas sensors. In clean air, oxygen atoms that trap free electrons in the bulk
of SnO2, are adsorbed onto the SnO2 particle surface, forming a potential barrier in the grain
boundaries as shown in Fig. 2a. This potential barrier restricts the flow of electrons, causing
the electrical  conductivity  to  decrease,  because the potential  barrier  acts  as  the  scattering
centre  for  electron  conduction.  When the  sensor  is  exposed  to  an  atmosphere  containing
reducible  gases,  e.g.  combustible  gases,  CO,  and other  similar  vapours,  the  SnO2 surface
adsorbs these gas molecules and causes oxidation. This lowers the potential barrier, allowing
electrons to flow more easily, thereby increasing the electrical conductivity as shown in Fig.
2b.
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3.1.2 MOX Gas Sensing Devices

     A schematic of a typical conductivity sensor design is shown in Figure 3. The sensing
material is deposited over interdigitated or two parallel electrodes, which form the electrical
connections through which the relative resistance change is measured. The heater is required
because very high temperatures are required for effective operation of metal oxide sensors for
several  reasons  [20].  First,  and most  important,  the chemical  reaction is  more specific at
higher temperatures,  and second,  the reaction kinetics are much faster,  that  is,  the device
responds in just a few seconds. Finally, operating the device well above a temperature of 100
°C ameliorates the effect of humidity upon its response – a critical factor for many chemical
sensors [19].

Figure 4 illustrates a typical behavior of the sensor’s resistance when the sensor is exposed to
and then removed from a deoxidizing gas.

~ 7 ~

Figure 2: Schematic diagram explaining the conductivity increment caused
by the carrier mobility increase in SnO2 gas sensors. (General Information

for TGS Sensors, Figaro USA Inc.)

Figure 3: Typical structure of a conductivity sensor



The relationship between sensor resistance and the concentration of deoxidizing gas can be
expressed by the following equation over a certain range of gas concentration:

(3.3)

where RS is the electrical resistance of the sensor,  A is a constant  depending on the sensor’s
operating temperature and on the type of target gas, C is the gas concentration and α is the
slope  of  RS curve.  As  can  be  seen  from  the  above  equation,  the  relationship  of  sensor
resistance to gas concentration is linear on a logarithmic scale within a practical range of gas
concentration (from several ppm to several thousand ppm). Figure 5 shows a typical example
of the relationship between sensor resistance and gas concentration.  R0 is the reading of the
sensor’s resistance upon exposure to a specific concentration of a target-gas of interest.
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Figure 4: Typical sensor response when exposed to a
deoxidizing gas (General Information for TGS Sensors,

Figaro USA Inc.)

Figure 5: Typical sensitivity characteristics (Figaro,
General Information for TGS Sensors, Figaro

Engineering, Inc., Osaka, Japan, 1996.)



The sensor will show sensitivity to a variety of deoxidizing gases, with relative sensitivity to
certain gases optimized by the formulation of sensing materials and operating temperature.
Since  actual  sensor  resistance  values  vary  from  sensor  to  sensor,  typical  sensitivity
characteristics are expressed as a ratio of sensor resistance in various concentrations of gases
(RS) over resistance in a certain concentration of a target gas (RO).

3.1.3 Gas Sensor Array

Due to cross sensitivity and low selectivity of commercial gas sensors, their applications
are limited to alarms activation. In order to use sensors for the analysis of gases, an array of
sensors  needs  to  be  used  which  consists  of  several  sensors  with different  sensitivity
characteristics.  The exposure of a gas sensor array (GSA) to a volatile organic compound
produces a unique fingerprint. An example is shown in Fig.  6 where a GSA consisting of
eight MOX sensors  is  exposed  to  75  ppm of  Ethane  [21].  Each of  the  sensors shows a
different response to the gas stimulus. Through the  interpretation  of the acquired data, it is
possible to extract meaningful insights about the nature of the gas or mixture.

3.2 Signal processing

Signal processing is the first computational stage after the sensor array data has been
sampled  and  stored  into  computer  memory.  The  goal  of  this  step  is  to  extract  relevant
information from the sensor responses and prepare the data for multivariate pattern analysis.

3.2.1 Normalization

The first  step in  signal  processing consists  of  normalizing our  dataset  in  the  0–1
range. This was done by applying the following relation across each GSA fingerprint:

(3.4)
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Figure 6: Response of an 8-sensor array to 75 ppm of ethanol



where R is the acquired value, and Rmin and Rmax are the minimum and maximum value of each
individual fingerprint of the GSA. 

3.2.2 Downsampling

Downsampling produces  an  approximation of  the  sequence that  would have been
obtained by sampling the signal at a lower rate. We choose to downsample  the signals (if
necessary) by a factor of ten, that is, keeping one sample every tenth sample. So for example,
if we choose to perform downsampling to a signal acquired at 100 Hz sampling rate, the
resulting sampling rate is 10 Hz.

This  procedure is  useful  as  it  reduces  dramatically the size  of  the  datasets,  while
keeping all the necessary informations in order to perform the analysis.
Fig. 7 shows the example depicted in Fig. 6 after normalization and downsampling:

3.2.3 Response Matrix

Let us now consider an array of  discrete sensors, where each sensor  produces a

time-dependent output signal  in response to an odour . The electrical signal depends
on several physical parameters (fluid dynamics of odour delivery system, ambient pressure,
temperature,  humidity,  etc.),  but  the  output  is  expected  to  reach  constant  values  when
presented with a constant input stimulus. It has been common practice to use only the static
values (i.e. steady-state) of the sensor signals rather than the dynamic (i.e. transient) response.

In that case the response is a time-independent parameter, . [1].
In order to extract relevant key features from the data in terms of the static change in

sensor  parameter  (e.g.  resistance  or  conductivity),  a  good  choice  is  to  use  a  fractional
difference model:

(3.5)

where  is the response of sensor i to the sample odor j, and  is the baseline signal,

~ 10 ~

Figure 7: GSA response after normalization and downsampling



such as the value in ambient room air. The response generated by the  n-sensor array to an
odor j can then be represented by a time-independent vector:

(3.6)

When the same array is presented to a set of m odors, the responses can be regarded as a set of
m vectors, which are best represented by a response matrix  :

(3.7)

Each column represents  a response vector  associated with a particular odour, whereas the
rows are the responses of an individual sensor to the different measurands [1].

By the end of the data process stage, the final dataset is ready to be used for pattern
recognition by utilizing learning algorithms. These techniques are non – parametric, in the
sense that there is no need to assume any specific underlying probability density function for
the sensor data.

3.3 Pattern Analysis

Data analysis provides a large number of available pattern recognition techniques that
are being widely used in physical, chemical and engineering sciences. A pattern recognition
method is the final stage in an intelligent olfactory system. This section aims at presenting the
pattern  recognition  methods  that  we  used  in  this  thesis,  for  the  discrimination  of  GSA
examples.

3.3.1 Machine Learning

Machine learning is an application of artificial intelligence that involves the study of
algorithms and statistical models that computer systems use to perform a specific task without
using explicit instructions, relying on pattern recognition and inference instead. The process
of  learning  begins  with  observations  of  data,  such  as  examples,  direct  experience,  or
instructions, in order to look for patterns in data and make better decisions in the future based
on the examples that the user provided.  According to the definition by Mitchel (1997) “A
computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E”.

The algorithms that we used in this work can be characterized as supervised learning
algorithms. These algorithms  are able to build a mathematical model from a set of labeled
data, that is, a set which contains both the inputs and the desired outputs. The precise form of
this mathematical model is determined during the training phase, also known as the learning
phase, on the basis of the set of the labeled data (we refer to this set as the training set). By
the end of the training processes, the system can provide targets (predictions) for any new
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input. In order to evaluate the model’s performance, we often measure its accuracy, which is
the proportion of examples for which the model produces the correct output [22].

In this work we address a multiclass classification problem, that is, classifying sensor
array fingerprints into several categories defined by the type and concentration of the gas
stimulus that produced each fingerprint.

3.3.2 Multiclass Classification

A classification method always starts with a pair of variables . The first variable

 is an input vector and the set  is the input space. We assume that each input

vector  has  a  dimensionality   which  is  finite.  The  second  variable  

denotes the class label of the classes  . In order to train a classifier we assume

that  we  have  a  training  set  ,  which  is  a  collection  of  paired  variables  ,  for
. The vector  denotes the j-th sample input in , and  denotes the corresponding

class  label. The  relationship  between   and   is  specified  by  the  target  function

 such that . 
In this type of task the computer program is asked to specify which of   categories

some input belongs to. To solve this task, the learning algorithm is usually asked to produce a
function  . When , the model assigns an input described by vector  to a
category identified by numeric code . 

Many algorithms can perform multiclass classification and in this work we use some
of them in order to select the one that has the highest accuracy. But first let us refer to the
main idea behind each classifier.

3.3.2.1 Support Vector Machines (SVM)

The main idea of SVM is the construction of a hyperplane as the decision surface in
such a way that the margin of separation between examples of different classes of a training
set is maximized [23].

Considering  the  training  example   we  assume  that  the  pattern

represented  by  the  subset   and  the  pattern  represented  by   are  linearly
separable.  The  equation  of  a  decision  surface  in  the  form of  a  hyperplane  that  does  the
separation is

(3.8)
where  x is an input vector,  w is an adjustable weight vector, and b is a bias. We may thus
write:

 for  
 for  (3.9)

For a given weight vector w and bias b, the separation between the hyperplane defined in Eq.
3.8 and the closest data point is called the margin of separation, denoted by . The goal of a
support vector machine is to find the particular hyperplane for which  is maximized. Under
this  condition,  the  decision  surface  is  referred  to  as  the  optimal  hyperplane.  Figure  8
illustrates the geometric construction of an optimal hyperplane for a two-dimensional input
space.
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If we denote by   and   weight and bias values of the optimal hyperplane, it is
proven that [23].

(3.10)

SVM  performs  multiclass  classification  by  splitting  the  dataset  into  multiple  binary
classification problems. For training the classifier, two different strategies are being used:

• “One-versus-rest”:  A  binary  classifier  is  trained  on  each  binary  classification
problem and predictions are made using the model that is the most confident

• “One-versus-one”:  Splits  the  dataset  into one dataset  for  each class  versus  every
other class.

3.3.2.2 K-nearest-neighbors

Neighbors-based  classification  is  a  type  of  instance-based  learning or  non-
generalizing learning: it does not attempt to construct a general internal model, but simply
stores instances of the training data. Classification is computed from a simple majority vote of
the nearest neighbors of each point: a query point is assigned the data class which has the
most  representatives within the nearest  neighbors of the point.  The algorithm  implements
learning based on the k  nearest neighbors of each query point, where k  is an integer value
specified by the user. The optimal choice of the value k is highly data-dependent: in general a
larger  k suppresses the effects of noise, but makes the classification boundaries less distinct
[24].
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Figure 8: Support Vector Machine
classification

Figure 9: K-nearest neighbors
classification



3.3.2.3 Decision trees

Decision  trees  are  powerful  and  popular  tools  for  classification  and  prediction.
Decision trees represent rules, which can be understood by humans and used in knowledge
system such as database. The goal is to create a model that predicts the value of a target
variable based on several input variables. A  decision tree is a flowchart like tree structure,
where each internal node denotes a test on an attribute, each branch represents an outcome of
the test, and each leaf node (terminal node) holds a class label. The topmost node in a tree is
the root node. A tree can be “learned” by splitting the source set into subsets based on an
attribute value test. This process is repeated on each derived subset in a recursive manner
called recursive partitioning. The recursion is completed when the subset at a node all has the
same value of the target variable, or when splitting no longer adds value to the predictions
[25].

3.3.2.4 Random Forest

Random forest  is  an  ensemble method as it  uses multiple  different  decision trees
estimators for making predictions. Each decision tree takes a different random sample from
our set of training data and constructs a tree from it. Then each resulting tree can vote on the
right result [26].

3.3.3 Artificial Neural Networks

Artificial  neural  networks (ANN) are  information-processing mathematical  models
inspired by the biological neural  networks that constitute the human brain. As its original
counterpart, they are able to learn from observational data, that is, by considering examples
without being programmed with any task-specific rules. The basic component of a NN is the
artificial neuron. An artificial neuron, denoted with  is a processing unit which performs the
following operations:

• It receives an input signal  from the synapse 
• It multiplies the signal by the synaptic weight 
• It sums all input signals   with their respective weights  , for all the synapses

 and adds a bias term .
• It  processes the sum of the input  signals through an activation function   and

outputs the result .
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Figure 10: Decision Tree Algorithm



Fig. 11 shows the graphical representation of a neuron.

In mathematical terms, the neuron  can be described by the equation:

(3.11)
where

(3.12)

The purpose of the activation function is to add the non-linearity needed in the network.
In this context, a neural network is an oriented graph with neurons being the nodes of

the graph and the synapses being the oriented edges.  The synaptic weights are calibrated
through a training process based on observational data.

Depending on the interconnection of neurons, different types of neural networks arise.
Among them, the most popular and widely applied type is the feed-forward neural network
(FFNN), also known as a multilayer perceptron (MLP) (Fig. 12). In terms of the architecture,
an FFNN consists of the input layer, the hidden layer(s) and the output layer. Neural networks
with  more  than  one  hidden  layer  are  referred  to  as  deep  neural  networks.  In  terms  of
connectivity, in FFNN neurons from a layer can only be connected with neurons from the
next layer towards the output layer. This means that the information moves in one direction,
forward, from the input nodes, through the hidden nodes and to the output nodes [27].

The propagation of the information from the input to the output layer is called the forward
pass. During this pass the weights remain unaltered throughout the network and the function
signals of the network are computed on a neuron-by-neuron basis.
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Figure 11: Graphical representation of a neuron

Figure 12: FFNN network architecture



When  the  propagation  reaches  neuron  j  of  the  output  layer,  an  error  signal  is
computed as follows:

(3.13)

where  is the desired output of neuron j. The desired output is provided along with the input

data at the beginning of the training process, as a set of Ntr labelled data . The

output  of  Eq.  3.13  will  be  used by a  cost  function  ,   such as  the  least  mean-squared

algorithm (LMS), in order to compute the instantaneous error energy  of neuron j, and then,

the total instantaneous error energy of the whole network :

(3.14)

where set C includes all the neurons in the output layer.
Now the training of the network consists in finding the optimal weights that minimize

the cost function . In order to solve this (non-convex) optimization problem we make use of
the so-called back-propagation algorithm [27] [23]. During the backward pass, a correction

 is  applied to the  synaptic weight  ,  that  is  proportional  to  the partial  derivative

 :

(3.15)

where  is the learning rate of the back-propagation algorithm. After the computation of the

weight correction  by the back-propagation algorithm, this information is now available
for other algorithms,  such as  gradient  descent  or  adaptive moment estimation,  to perform
parameter update:

(3.16)

By the end of the training process all  weights have been adjusted to their optimal values,
resulting to the global minimum of the loss function. 

Based on the above, FFNNs essentially establish a non-linear map from the space of
the input data to the space of the output data (Fig. 13).

Even though FFNN are universal function approximators, yet, they do not provide
any  guidelines  for  selecting  the  exact  network  architecture,  nor  the  number  of  samples
required to train the network. In addition, to identify the network parameters only heuristics
can  be  employed  to  solve  the  non-convex  optimization  problem.  As  a  consequence,  the
optimal network architecture and parameters  are  achieved in practice  via  a trial-and-error
process which can be quite cumbersome (if not intractable) for large-scale problems [28].
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Figure 13: Mapping the space of the input data to the space of the output data



3.3.3.1 Convolutional Neural Networks

Convolutional  Neural  Networks  (CNN)  is  another  class  of  deep  neural  networks
commonly  applied  to  tasks  such  as  pattern  recognition  in  images  and  videos,  image
segmentation and classification, time-series analysis and more. The main advantage they have
over  FFNNs is that they can handle data with high dimensionality. In CNNs the input is a
tensor (which is viewed as nD-array), such as a set of images, which can be given by the 4D-
matrix: (number of images) × (image height) × (image width) × (input channels)[27]. Image
height and width represents the number of pixels each dimension has. The number of input
channels is 1 in the case of greyscale images, and 3 for coloured images (RGB channels).

The  name  “convolutional  neural  networks”  indicates  that  the  network  employs  a
mathematical operation called “convolution” which is a specialized kind of linear operation.
Convolutional networks are simply neural networks that use convolution in place of general
matrix multiplication in at least one of their layers [22].

The input image in a CNN is represented as an array where the values correspond to
the color of a pixel of the image. Then the convolution operation takes place between the
input array and a pre-selected kernel.  We call  the output of the convolution operation the
feature map. Fig. 14 provides an example of a discrete convolution where the input  and the
kernel  produce the feature map . 

At each location, the product between each element of the kernel and the input element it
overlaps,  is  computed and the results  are  summed up to  obtain the  output  in  the  current
location. If there are multiple input feature maps (as it is the case in coloured images), the
kernel will have to be 3-dimensional – or, equivalently each one of the feature maps will be
convolved with a distinct kernel – and the resulting feature maps will be summed up element-
wise to produce the output feature map.

The output size of the convolution layer can be affected by the input size, the kernel
size,  the  stride  (the  distance  between  two  consecutive  positions  of  the  kernel  in  both
horizontal  and  vertical  directions)  and  the  zero  padding,  which  is  the  number  of  zeros
concatenated at the beginning and at the end of both axes of the input [29] [22] [30].

• Pooling layer

In addition to discrete convolutions themselves, pooling operations make up another
important building block in CNNs. Pooling operations reduce the size of feature maps by
using some function to summarize sub-regions, such as taking the average or the maximum
value.
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Figure 14: An example of 2D convolution operation



Pooling works by sliding a window across the input and feeding the content of the
window to  a  pooling  function.  In  some  sense,  pooling  works  very  much  like  a  discrete
convolution,  but  replaces the linear combination described by the kernel  with some other
function [30].

• Fully connected layer

This  layer  forms  the  last  block  of  the  CNN  architecture,  related  to  the  task  of
classification.  The output  matrix  of the  convolution block (convolution layer  and pooling
layer) is a 3-D matrix in the case where the input is a coloured image. Fully connected layer
flattens the shape of the output into a 1-D matrix. It is essentially a fully connected simple
neural network, consisting of two or three hidden layers and an output layer that performs the
work of classification.

3.3.3.2 Transfer Learning

It is a popular approach in deep learning to reuse a model developed for a task as the
starting point for a model on a second task. Transfer learning and domain adaption refer to the
situation where what has been learned in one setting is exploited to improve generalization in
another setting [22].

A pre-trained  model  is  typically  trained  one  a  huge  dataset  and  it  is  capable  of
classifying  data  into  a  large  number  of  categories.  By  using  those  models  we  have  the
freedom to choose weather or not we want to use the adjusted weights of the pre-trained
network, the layers we want to train, and the number of classes.

The use of CNN pre-trained models for pattern-recognition of GSA data  is being
investigated by Han et al. [15]. In that paper the authors compare the performance of various
models in order to select the one which discriminates volatile compounds with the highest
accuracy. Bellow we briefly present one of those models which we also used (VGG-16) for
classifying GSA data.
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Figure 15: Basic architecture of a CNN

Figure 16: Transfer Learning



• VGG-16

VGG-16 is a convolutional neural network model proposed by K. Simonyan and A.
Zisserman [31]. The model achieves 92.7% test accuracy in ImageNet dataset [32], which is a
dataset of over 14 million images belonging to 1000 classes. The architecture of the network
is depicted in Fig. 17.

The input layer is of fixed size 224×224 RGB image. The image is passed through a
stack of convolutional layers,  where the filters were used with a 3×3 receptive field.  The
convolution stride is fixed to 1 pixel; the spatial padding of convolutional layer input is such
that the spatial resolution is preserved after convolution, i.e. the padding is 1-pixel for 3×3
convolutional layers. Spatial pooling is carried out by five max-pooling layers, which follow
some of the convolutional layers. Max-pooling is performed over a 2×2 pixel window, with
stride 2.

Three fully-connected layers follow a stack of convolutional layers: the first two have
4096  channels  each,  the  third  performs  1000-way  classification  and  thus  contains  1000
channels. The final layer uses the softmax activation function to normalize the output of a
network to a probability distribution over predicted output classes. The configuration of the
fully connected layers is the same in all networks. All hidden layers are equipped with the
rectification (ReLU) non-linearity.

~ 19 ~

Figure 17: VGG-16 architecture



4 Experimental Process

4.1 Sensors – GSA

The experiments were performed using three MiCS 3110 sensors which are designed
for ethanol detection (Micro Chemical Systems MiCS-3110). The sensor response is shown in
Fig.  18 . The mode of operation for the heater resistance RH is a constant voltage mode at
VH=2.4 V. This causes the sensing resistor (RS) temperature to reach about 430  oC. VH was
applied to each of the sensors using the device shown in Figure 19. The measurement circuit
is shown in Fig. 20.
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Figure 18: RS / R10ppm as a function of gas concentration at 23°C.
(MicroChemical Systems MiCS-3110 Data Sheet)



A GSA was constructed by attaching each of the sensors to a circuit as shown in Figure 21.
During the experiments the sensing resistance RS is being measured. For this purpose we used
the Keithley 2400 Source Meter  Unit  (SMU) (Fig.  22) and performed I-V measurements
while applying a constant voltage VS = 5 V.

In  order  to  measure  RS for  each  of  the  sensors  in  the  array  it  was  necessary  to
construct a circuit which allows VS  to be applied to a different sensor each time. This was
done by using electrically operated switches (relays). When a relay is ‘open’, gives access to
SMU to apply VS to its  corresponding sensor,  while the rest  relays remain ‘closed’.  This
procedure was controlled by a microcontroller (Arduino – Fig. 23) which ‘opens’ and ‘closes’
each relay in a circular manner. The delay time between two consecutive measurements was
100 ms, resulting to a delay time of 300 ms between two measurements of the same sensor.
This leads to a sampling rate of 3.33 Hz.
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Figure 20: Measurement circuit of MiCS 3110
(top view).(MicroChemical Systems MiCS-3110

Data Sheet) 

Figure 22: Keithley 2400 Source Meter UnitFigure 21: Gas Sensor
Array

Figure 19: Heater Voltage supplier



4.2 Odor delivery system

The GSA was placed in an airtight test chamber of known inner volume. The sample
gas was taken from the gas cylinder using a syringe and then injected into the chamber. In
order to ensure that the gas was uniformly mixed, a compact fan was placed inside the test
chamber.
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Figure 24: Test chamber

Figure 23: Arduino board
and circuit for the control of

the acquisition



4.3 Experimental Protocol

The experimental protocol includes three stages: the array is first exposed to a gas
reference (ambient air), then to the gas sample, and finally to the reference again to recover
the initial state. The duration of each stage varies for the datasets we used. 

4.4 Datasets

Along  with  the  data  collected from  the  experiments,  we  also  used  some  freely
available  datasets  from the UCI  Machine Learning Repository.  In  this  section we briefly
present all the datasets that we used.

4.4.1 Dataset 1 – Experimental Dataset

The  dataset  that  was  created  from  the  experiments  consists  of  252  experiments
(examples).  The duration of  each experiment  was 5 minutes.  During the first  minute  the
response of the GSA in ambient air was recorded (baseline).  Then the gas under test was
injected  into  the  chamber  and  for  the  next  three  minutes  the  response  of  the  GSA was
recorded.  Next  the  gas  was released from the chamber and for the  remaining minute we
recorder the recovery response of the array.

Due to some unexpected technical limitations we had to stop the experiments long
before we came up with the initially designed dataset. As a consequence the final dataset is
too unbalanced in terms of gas concentrations. Hence, the examples in the dataset can be
distributed  into  three  classes  depending  only  on  the  target  gas:  “Hydrogen”,  “Butane”,
“Mixture”.  The  number  of  examples  each  class  contains  are  78  for  “Hydrogen”,  95  for
“Butane” and 79 for “Mixture”. Each example has three features (sensor readings) and 1000
rows (300 sec duration of experiment with 0.3 sec sampling rate). An example of the acquired
time-series can be seen in Fig. 25.
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Figure 25: Response of the GSA when exposed to Butane



Fig. 26 shows the response of each individual sensor to the three volatiles used in this dataset.

4.4.2 Dataset 2 – “Gas sensor array exposed to turbulent gas mixtures”

This  dataset  [33] provides  the  acquired time series  from an array of  8-MOX gas
sensors  exposed to turbulent gas mixtures.  The array was exposed to mixtures of Ethylene
with  Methane  or  Carbon  Monoxide.  Each  volatile  was  released  at  four  different
concentrations:  zero  (non-mixture  example),  low,  medium  and  high  providing  up  to  30
different  mixture  configurations:  15  mixtures  of  Ethylene  with  CO  and  15  mixtures  of
Ethylene with Methane. Each configuration was repeated 6 times. Hence, the complete dataset
was composed of 180 measurements. Each measurement had a total duration of 300 seconds:
clean air for 60 sec, gas exposure for 180 sec and 60 sec recovery time. The sampling rate was
10 Hz resulting to approximately 3000 rows for a typical dataframe.

We assumed that each example belongs to a class defined by the type of the volatile.
As a consequence, we addressed a classification problem with five classes: “CO”, “Ethylene”,
“Methane”,  “CO+Ethylene”,  “Methane+Ethylene”.  Figure  27 illustrates  the  response  to
mixture of ethylene and carbon monoxide.

4.4.3 Dataset 3 – “Twin gas sensor arrays” 

Next we  used the dataset mentioned in  [21].  The dataset includes the recordings of
five replicates of an 8-sensor array. The units were exposed to ten concentration levels of
Ethanol,  Methane,  Ethylene,  and  Carbon Monoxide.  For  each  target-gas  we  assumed the
existence of three concentration categories (Table 4.1): Low (concentrations 1 – 3), Medium
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Figure 27: Response of the GSA to mixture of Ethylene and CO

Figure 26: Response of each sensor to different volatile compounds



(concentrations 4 – 7) and High (concentrations 8 – 10). Each concentration level consists of
16 examples, thus, the number of instances each concentration category has are: Low: 192,
Medium: 256, High: 192. Thus the dataset consists of 640 examples.

For the classification task we assume the existence of 12 classes; three (low, medium,
high) for each of the four volatiles.

Table 4.1 Concentration levels in Dataset 3 (in ppm)

Low Medium High

Ethanol 12.5 25 37.5 50 62.5 75 87.5 100 112.5 125

CO 25 50 75 100 125 150 175 200 225 250

Ethylene 12.5 25 37.5 50 62.5 75 87.5 100 112.5 125

Methane 25 50 75 100 125 150 175 200 225 250

The duration of each experiment was 600s; 0 – 50s exposure to clean air, 50s – 150s
exposure to gas stimuli, 150s – 600s recovery time. The sampling rate was 100 Hz and we
down sampled it at 10 Hz.

A typical response of the GSA for this dataset can be seen in Figure 28.

4.5 Data Augmentation

Data augmentation are techniques  used to  increase the amount  of data  by adding
slightly modified copies of already existing data. We used three techniques in order to extend
the number of examples:

• Jitter: addition of gaussian noise on existing time-series
• Scale: slightly change the position of each time-series on the vertical axis
• Interpolation: cubic spline for generating random curves

We should mention that the augmentation is only applied on the training sets. It is important
to use only original samples for validation and test sets. The above functions were retrieved
from [34].
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Figure 28: Response of 8-sensors array to 100 ppm of Methane



4.6 Pictures creation & processing

Each of the aforementioned datasets were further processed in order to create the
images that we fed into the pre-trained convolutional neural network for image classification
(VGG-16). The first step in this process was the illustration of the  response of the GSA to
each stimulus. Next,  each figure was resized to (224, 224) pixels and saved to computer. In
order to create inputs for the VGG-16, a 3-D matrix was extracted from each image. Each
matrix has (224, 224, 3) size which corresponds to the number of pixels in horizontal and
vertical axis, and 3 is the number of channels a coloured image has: red – green – blue. Each
entry in these tensors is a number between 0–255; 0 being black and 255 white. The final step
consists of scaling these values to range 0–1.

4.7 Frameworks and libraries

The programming language used for the analysis was Python 3.7. There are many
open source frameworks available for implementing  ML and DL algorithms. In the present
work the ones we used was Tensorflow 1.14.0 [35] and Scikit Learn 0.23.2 [24]. Other python
libraries  used  are:  Numpy 1.19.2  for  numerical  computations  and  Pandas  1.1.3  for  data
management.
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Figure 29: Initial plot and resized image – input for the VGG-16



5 Results

5.1 Experimental Dataset

We  first  examine  the  performance  of  VGG-16  on  the  experimental  dataset.  The
dataset  was augmented according to  section 4.5 and the extended dataset  consists  of  618
examples. The dataset was split into training, validation and test set:

• Training set examples: 488 (78.9%)
• Validation set examples 65 (10.55%)
• Test set examples: 65 (10.55%)

We should note that all synthetic examples were used only in the training set.
The output of the network is a probability distribution over three classes: ‘Butane’,

‘Hydrogen’ and ‘Mixture’. The network was trained over the training set and we used the
validation set for parameter selection. The network’s hyper-parameters were:

• Epochs: 100
• Initial Learning Rate: 5e-3
• Batch Size: 256
• Kernel Regularization: L1 = 1e-3, L2 = 1e-3
• Dropout: 0.1

The learning rate was programmed to decay as a function of epochs. As a result the last value
of the learning rate was 0.0185. The selection of hyper-parameters was done by trial-and-error
strategy. The trained network was evaluated over the test set and an accuracy of 87.7% was
obtained. Below we present the learning curves and the confusion matrix which sums up the
classification results over the test set.
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5.2 Dataset 2

We also tested the performance of VGG-16 on the dataset–2. The dataset was split as
follows:

• Training set examples: 360 (66.6 %)
• Validation set examples 90 (16.6 %)
• Test set examples: 90 (16.6 %)

The  network  classifies  the  examples  into  5  categories:  “Methane”,  “CO”,  “Ethylene”,
“CO+Ethylene”, “Methane+Ethylene”. The selected hyper-parameters were:

• Epochs: 150
• Learning Rate: 0.01
• Batch Size: 128
• Kernel Regularization: L2 Regularizer(0.01)
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Figure 31: Classification result on the test set of dataset 1

Figure 30: Learning curves of the VGG-16 for dataset 1



The learning rate was not changed during the training process. The accuracy obtained was
94.4 %.

5.3 Dataset 3

➢ VGG-16  

Dataset 3 was also used to evaluate the performance of VGG-16. The dataset was split as
follows:

• Training set examples: 432 (67.5 %)
• Validation set examples 104 (16.25 %)
• Test set examples: 104 (16.25 %)

The network classifies  the  examples  over  12 categories  (see  §4.4.3).  The selected hyper-
parameters were:

• Epochs: 300
• Initial Learning Rate: 5e-3 – Final learning rate: 2.4768e-4
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Figure 32: Learning curves of the VGG-16 for dataset 2

Figure 33: Classification result on the test set of dataset 2



• Batch Size: 256
• Kernel Regularization: L1 = 1e-3, L2 = 1e-4

The accuracy achieved was 55.8% on the test set. Bellow are the plots of the learning curves
and the corresponding confusion matrix.

  

We then tried to increase the accuracy of the model by generating more examples. For
this  purpose  we  used  the  “Jitter”  and  “Scale”  functions  described  in  section  4.5.  The
augmented dataset consists of 1920 examples and it was split as follows:

• Training set examples: 1332 (70 %)
• Validation set examples 292 (15 %)
• Test set examples: 292 (15 %)

We trained the network for 300 epochs while decaying its learning rate from 1e-2 to
1.4e-3. The batch size was 256. The network now seems to classify the given examples more
accurately  as  the  accuracy  on  the  test  set  is  67.1%.  Bellow we present  the  performance
measures:
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Figure 34: Learning curves of VGG-16 on dataset 3

Figure 35: Classification results of VGG-16 on the test set



In an attempt to further increase the accuracy of the model, we tried to illustrate the
GSA responses in a different way. Considering that a typical response contains a lot of useless
information,  we  only  included  the  transient  recordings  between  50  –  200  seconds.  The
transformation for a typical picture is illustrated in Fig. 38.
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Figure 38: Modification on the pictures of dataset 3

Figure 36: Learning curves of VGG-16 on the augmented dataset

Figure 37: Classification results on the augmented dataset



For the modified pictures, we first  tested the performance of the network  on the  original
dataset and then on the augmented dataset. The accuracy achieved for the original dataset was
63.5%. The corresponding learning curves and confusion matrix are depicted bellow.

We then used the same procedure for the augmented dataset. Here we observe a significant
increase  of the  model’s  accuracy,  since  the  accuracy  now  is  79.5%.  The  performance
measures are depicted bellow:
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Figure 39: Learning curves of VGG-16 on the modified pictures of the original dataset

Figure 40: Classification results of VGG-16 for modified images



All the above results can being summarized in the following table:

Original Dataset Augmented Dataset

Normal
Illustration

Modified
Illustration

Normal
Illustration

Modified
Illustration

Train Accuracy (%) 55.8 63.5 67.1 79.5

➢ ML algorithms  

Apart  from VGG-16,  we  also  used  Machine  Learning  algorithms  to  perform the
classification  task.  We used  some of  the  ML algorithms most  commonly  referred to  the
bibliography as pattern-recognition methods applied to gas sensor array data.
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Figure 41: Learning curves of VGG-16 on the modified-augmented dataset

Figure 42: Classification result for the modified images of the
augmented dataset



• Support Vector Classifier (SVC)
• K-Nearest Neighbors (KNN)
• Random Forest (RF)
• Decision Tree (DT)

Now each example is not represented as an image, but as the fractional difference
between the baseline response of each sensor, and its steady-state response. Therefore the
dataset  was organized in  a  matrix  similar  to  Eq.  3.7.  For  the  implementation of  the  ML
algorithms we use the non-augmented dataset. We split the dataset into a training set (80% –
512 instances) and a test set (20% – 128 instances). In order to select the parameters for each
classifier, we used a brute-force strategy in which we kept one parameter constant and alter all
the others.  In  order to avoid overfitting,  we selected the combination of parameters that
minimize the difference between the train and the test accuracy. The results were validated
using k-fold cross validation with k = 5 (i. e. the split of the dataset into k different sets (folds)
and selecting each time a different fold to use as the test set, while the rest  k - 1 folds were
used for the training). Bellow we present the performance of each classifier.

• Support Vector Classifier
We altered the regularization parameter C of SVC. All the other parameters were set to their
default vales. The minimum difference between the train and the test accuracy was obtained
for C = 0.1. The results of the 5-fold cross validation are:

Train Accuracy Test Accuracy 
k = 1 0.4 0.41
k = 2 0.44 0.41
k = 3 0.43 0.45
k = 4 0.44 0.41
k = 5 0.43 0.43
Mean 0.43 0.42

The results for the rest of the selected classifiers are:

• k-Nearest Neighbors
Train Accuracy Test Accuracy 

k = 1 0.68 0.66
k = 2 0.65 0.62
k = 3 0.66 0.63
k = 4 0.68 0.64
k = 5 0.66 0.66
Mean 0.67 0.64

• Random Forest
Train Accuracy Test Accuracy 

k = 1 0.66 0.66
k = 2 0.65 0.60
k = 3 0.64 0.59
k = 4 0.58 0.54
k = 5 0.60 0.59
Mean 0.63 0.60
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• Decision Tree
Train Accuracy Test Accuracy 

k = 1 0.63 0.63
k = 2 0.68 0.66
k = 3 0.62 0.60
k = 4 0.68 0.65
k = 5 0.57 0.56
Mean 0.64 0.62

Three of the four selected classifiers exhibit similar test accuracy. The k-NN algorithm shows
the highest accuracy of 64%, while SVC shows the lowest accuracy of 42%.

In  order  to  visualize  the  classification  results  for  each  classifier,  we  present  the
corresponding confusion matrices.  The numbers from 0 to 11 correspond to labels:  “Low
CO”, “Medium CO”, High CO”, “Low Ethanol”, “Medium Ethanol”, High Ethanol”, “Low
Ethylene”, “Medium Ethylene”, High Ethylene”, “Low Methane”, “Medium Methane”, High
Methane” respectively.
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6 Conclusion

6.1 Discussion

In this work we tried to establish a common basis between the fundamental elements
and operating principles of MOX gas sensors, and the computational methods that are being
used for the development of an intelligent system capable of discriminating odors in complex
sensing scenarios.

For this purpose we first constructed an experimental setup for the acquisition of the
response signal of each one of the sensors in a gas sensor array. Due to some technical issues
we were not able to construct the dataset we had originally planned. As a consequence the
experimental dataset includes only recordings that are being characterized by the type of the
gas under investigation, and not by its concentration. In order to examine the classification
capabilities of the models we tested, on recordings that are being labeled by the gas type and
also by its concentrations, we used two other datasets available at the UCI Machine Learning
Repository.

Regarding the models we tested for the discrimination of volatile organic compounds
and their binary mixtures, we utilized various machine learning algorithms and a pre-trained
2D convolutional neural network (VGG-16) used for image classification.

As the results indicate for the experimental dataset and dataset 2, VGG-16 performs
well when classifying examples into categories defined by the type of the target-gas; whether
it is a pure gas or a mixture. The accuracy achieved when we evaluated the network on a test
set  was  87.7%  and  94.4%  for  datasets  1  &  2  respectively.  A  high  accuracy  for  both
classification tasks was somehow expected if we consider the low complexity of both datasets
and the fact that VGG-16 is a sophisticated network, trained on a huge dataset and capable of
classifying images into 1000 categories. Nevertheless, we should note that, despite the fact the
the classification of the examples in dataset 1 is simpler than the one in dataset 2 (since we
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have fewer classes), the accuracy of VGG-16 in dataset 2 is higher. One explanation to this
may be that the GSA of dataset 2  consists of eight sensors and thus,  more discriminatory
informations are available.

Dataset  3  was  also  used  for  the  evaluation  of  VGG-16.  The  task  now  is  more
complicated since it consists of classifying instances into 12 categories defined by the type of
target-gas (no mixtures)  and the concentration in which each gas is  detected.  In order to
evaluate the performance of VGG-16 to the given task, we used the original dataset and the
augmented version of it. We also tried two different ways to illustrate the pictures of the GSA
fingerprints. First, each picture illustrates the response of the GSA from the beginning to the
end of the experiment. The obtained  accuracy was 55.77%. Then, we tried to get rid of the
useless information that a picture contains such as, the response during the second half of the
experiment where no significant changes occur, and zoom-in to the transient response. The
accuracy now is 63.46%. The increment to the accuracy of the model is significant in the case
of  the  extended  dataset,  where  we  first  achieved  67.1%  accuracy  and  for  the  modified
illustration  of  the  pictures  the  obtained  accuracy  was  79.5  %.  The  impact  of  image
modification and of data augmentation is clear in this case as we can see an increment to the
accuracy of the model from 55.77% to 79.5%. Another way to further increase the accuracy
could be a more efficient hyper-parameter tuning of the network. Since this can be achieved
only by trial-and-error strategy, the implementation of this process could require a lot of time.

Finally  we  tested  some  machine  learning  algorithms  to  perform classification  on
dataset 3. This time the dataset was organized in a matrix similar to Eq.  3.7. We used four
different classifiers and in order to select the right parameters for the models we used a brute-
force  strategy.  Brute-force  could  require  a  lot  of  time  to  implement  since  it  solves  the
classification problem for every possible combination of parameters for a finite parameter
space. We tried to focus on the parameters that have the biggest impact on the final result. The
highest accuracy achieved was 64% for k-Nearest Neighbors classifier which is higher than
the ones of Decision Tree (DT) (62%), Random Forest (RF) (60%) and SVM (42%). The
accuracy of RF and DT may be close with k-NN, but looking at the confusion matrices, we
can see that the examples are gathered around the diagonal in the case of the k-NN. This is
interpreted as the ability of k-NN to classify better the examples into concentration-related
class, unlike RF and DT where they perform well only for the classification of examples to
gas-related category.

At the end of the day, the choice of model depends on the application and the trade-
off between the computational cost and the desired performance. As the results indicate, the
neural  network  we  put  on  the  test  has  better  performance  (79.5%  accuracy)  for  the
classification task of dataset 3, than k-NN algorithm (64% accuracy). Of course the training of
the neural network is a much more time-consuming process compared to the one of selecting
the right parameters for k-NN.

6.2 Future work

Some thoughts  about the  future  of  the  investigation, include the extension of  the
experimental  dataset,  by  adding  more  sensors  with  different  sensitivity  characteristics,
exposing them to more odors and their binary or ternary mixtures across a larger range of
concentrations.  We  should  design  an  experimental  process  that  simulates  the  prevailing
conditions of the working environment of the sensors as precise as possible. In this context we
could add more features to the acquired data, such as, humidity, environmental temperature
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and pressure, and record the response of the  GSA during the variations of those conditions.
Another factor we should take under consideration is the fluid dynamics of the odor delivery
system because the way a sensor detects the existence of an odor varies from one application
to another.

In addition to the precise simulation of the environment of the sensors, we should take
into account the effect of drift, that is, the gradual and unpredictable variation of the chemo-
sensory signal responses when exposed to the same analyte under identical conditions, caused
by  aging  (e.g.  the  reorganization  of  the  sensor  surface  over  long  periods  of  time)  and
poisoning (e.g. irreversible binding due to external contamination) [9].

On top of the approaches for the construction of a representative dataset, we should
also have in mind that a more extensive preprocessing stage  may be necessary. This could
include compressing and normalizing the acquired signal with local methods (operate across
the sensor array on each individual fingerprint) and global methods (operate across the entire
database for a single sensor), as well as reducing the dimensionality of the data utilizing a
decomposition method such as the principal component analysis which is being widely used
in smart gas sensing applications.

In  this  present  work,  we  used  the  static  descriptors  (baseline  and  steady-state
responses)  for  the  characterization  of  the  pattern  of  the  GSA  as  well  as  the  transient
responses. It has been reported that the dynamic response to an odor carries a wealth of odor-
discriminatory  information  that  cannot  always  be  captured  with  a  single  parameter  [36].
Therefore, the use of the sensor transients as dynamic fingerprints has multiple advantages
such as the improvement of selectivity by pattern-recognition means and reduction of the
acquisition time (it is not necessary to reach the steady-state of the sensor) which yields to an
increment of the sensor’s lifetime.

Regarding the pattern recognition methods, in this thesis we address a classification
problem. In order to give a different approach to the analysis of volatile organic compounds
and their mixtures, we could perform a regression analysis in which the final output is not a
discrete class, but a value in a continuous domain such as the concentration of individual
components in a mixture. In this context, along with other ML algorithms, we may use a 1-D
convolutional neural network which will perform the convolution operation on 1-d data, such
as time series, and not on 2-D images.
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