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Power-Split Strategies for Hybrid Marine Propulsion Plants in Transient

Loading Conditions for Optimal Energy Management and Emissions

Reduction

Abstract

The need to increase vessels’ efficiency, reduce their environmental footprint and adapt quickly
to new regulations, makes it as urgent as possible to develop and use novel control technologies
on ship energy management systems. Marine hybrid propulsion plants are complex multivari-
able systems, in terms of the underlying technology, principles of operation, size, and physical
limitations. System performance specifications strive for competitive objective satisfaction to
ensure efficiency and safety.

This Thesis investigates power-split strategies for hybrid marine propulsion plants for optimal
energy management and emissions, during the operation in transient loading conditions. In
this context, two predictive control schemes were developed, implemented, and experimentally
evaluated. At first, a NMPC-based control scheme was proposed to deal with the load-split
between the power sources during transient loading conditions, ensuring the dynamic torque
delivery with respect to the powertrain physical and operating limits. In the next step, the
optimal control problem is reformulated and extended to develop an energy management and
emissions minimization strategy. The energy management planning is performed according to
the trade-off criteria between fuel consumption and NOx emissions minimization.

For the development of the Energy Management and Emissions Minimization System (EMEMS),
the following procedure was followed. Initially, first principle and data-based models were fitted
to powertrain measurement data to derive models that approximated accurately the dynamical
system behavior during transient operation, as well as the patterns that were observed within
the measured data. Secondly, to evaluate the interaction of the system "power plant-propulsion
system-environment", a parametric propulsion plant model that matches the experimental facil-
ity was employed, to apply propeller loading considering several vessel operating scenarios and
irregular wave disturbance. Also, a propeller observer is designed and implemented to quantify
the propeller load characteristics, without knowledge of the uncertain propulsion plant param-
eters. The approach is based on the propeller law principle to produce accurate estimates, in
both steady-state and transient loading conditions. Thirdly, using machine learning techniques
and data from actual ship operation, identification and prediction of the operator’s reference
input during ship maneuvering are performed. Profiles that contain rich information about
the transient operation were identified and utilized for control system development. A neural
network model is designed to predict future speed reference input based on historic data. The
online information generated by the prediction model is used along with the propeller observer
by the controller to calculate the future propeller load disturbance. EMEMS is tuned to perform
similarly to the benchmark optimization problem and the trade-off performance between fuel
consumption and NOx emissions is investigated in simulation.

HIPPO-2 experimental facility at LME/NTUA is used for the experimental implementation
and evaluation of the developed power-split control schemes. The EMEMS are experimentally
tested in real-time operation, where their capabilities for robustness to disturbance load char-
acteristics are investigated. Offset-free reference tracking independently of the propulsion plant
size, the uncertainty of the propeller and ship characteristics, as well as the modeling errors
between the powertrain components and the internal model of the controller is achieved. In
parallel, with the EMEMS design, the power-split control can be performed according to the
energy management and emission minimization targets. For the considered scenario, where the
aim was to have a charge sustaining strategy at the end of the load cycle, fuel consumption and
NOx emissions reduction up to 6.5% and 8%, respectively, were achieved.
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Στρατηγικές Κατανομής Ισχύος σε Ναυτικές Υβριδικές Εγκαταστάσεις

Πρόωσης κατά την Διάρκεια Μεταβατικής Φόρτισης για Βέλτιστη

Διαχείριση Ενέργειας και Ελαχιστοποίηση Αέριων Ρύπων

Περίληψη

Η ανάγκη αύξησης της ενεργειακής αποδοτικότητας των πλοίων και της ταυτόχρονης μείωσης των

εκπομπών αέριων ρύπων από τα συστήματα πρόωσης των πλοίων, καθιστούν επείγουσα την ανάπτυ-

ξη και την χρησιμοποίηση νέων τεχνολογιών που θα επιτύχουν την άμεση εναρμόνιση στους νέους

κανονισμούς.Οι υβριδικές εγκαταστάσεις πρόωσης αποτελούν πολυμεταβλητά συστήματα και εμφα-

νίζουν αυξημένη πολυπλοκότητα, όσον αφορά την υποκείμενη τεχνολογία, τις αρχές λειτουργίας,

το μέγεθος και τους φυσικούς περιορισμούς. Οι προδιαγραφές απόδοσης του συστήματος δια-

χείρισης ενέργειας ορίζουν την ικανοποίηση ανταγωνιστικών στόχων για την επίτευξη αυξημένης

αποδοτικότητας και ασφαλούς λειτουργίας του συστήματος.

Η παρούσα Διδακτορική Διατριβή διερευνά στρατηγικές κατανομής ισχύος σε ναυτικές υβριδικές

εγκαταστάσεις πρόωσης πλοίων για βέλτιστη διαχείριση ενέργειας και εκπομπές αέριων ρύπων,

κατά την διάρκεια επιβολής μεταβατικού φορτίου. Σε αυτό το πλαίσιο, αναπτύχθηκαν στρατηγικές

ελέγχου βασισμένες σε μη-γραμμικό προβλεπτικό έλεγχο (MPC). Σε πρώτο επίπεδο, προτείνεται μια
στρατηγική για τον υπολογισμό της κατανομής φορτίου μεταξύ των πηγών ισχύος κατά τη διάρκεια

μεταβατικής φόρτισης, η οποία εξασφαλίζει τη δυναμική παραγωγή και απόδοση ροπής στον άξονα

της προπέλας, σε συμμόρφωση με τα φυσικά και λειτουργικά όρια του συστήματος πρόωσης. Στο

επόμενο βήμα, το πρόβλημα βελτιστοποίησης αναδιατυπώνεται και επεκτείνεται για να αναπτυχθεί

μια στρατηγική διαχείρισης ενέργειας και ελαχιστοποίησης εκπομπών αέριων ρύπων. Ο σχεδιασμός

διαχείρισης ενέργειας πραγματοποιείται σύμφωνα με έναν συντελεστή που καθορίζει την στάθμιση

μεταξύ κατανάλωσης καυσίμου και ελαχιστοποίησης εκπομπών οξειδίων του αζώτου NOx.
Για την ανάπτυξη του Συστήματος Διαχείρισης Ενέργειας και Ελαχιστοποίησης Εκπομπών

(EMEMS), ακολουθήθηκε η διαδικασία που περιγράφεται παρακάτω. Σε πρώτο επίπεδο, ανα-
πτύχθηκαν μοντέλα βασισμένα τόσο σε βασικές αρχές μηχανικής όσο και σε δεδομένα, τα οποία

βασίστηκαν σε πειραματικά δεδομένα, στοχεύοντας στην προσέγγιση της δυναμικής συμπεριφοράς

του συστήματος κατά τη διάρκεια μεταβατικής λειτουργίας, καθώς και στην αναγνώριση μοτίβων που

παρατηρήθηκαν στα πειραματικά δεδομένα. Κατά δεύτερον, για την αξιολόγηση της αλληλεπίδρα-

σης του συζευγμένου συστήματος ¨κινητήρες - σύστημα πρόωσης - περιβάλλον¨, χρησιμοποιήθηκε

ένα μοντέλο πρόωσης πλοίου όμοιου μεγέθους με την πειραματική εγκατάσταση, για προσομοίωση

φορτίου έλικας, λαμβάνοντας υπόψη διάφορες καταστάσεις λειτουργίας του πλοίου και την διαταρα-

χή μη-αρμονικών κυματισμών. Επιπλέον, σχεδιάστηκε και υλοποιήθηκε ένας παρατηρητής έλικας,

προκειμένου να ποσοτικοποιούνται, κατά την λειτουργία του συστήματος σε πραγματικό χρόνο, τα

χαρακτηριστικά του φορτίου της έλικας, χωρίς γνώση των παραμέτρων του συστήματος πρόωσης

πλοίου, οι οποίες περιλαμβάνουν αβεβαιότητα. Η προσέγγιση βασίζεται στην αρχή του νόμου της

προπέλας για την εκτίμηση του φορτίου, τόσο σε συνθήκες σταθερής πλεύσης όσο και σε κα-

τάσταση μεταβατικής φόρτισης. Σε τρίτο επίπεδο, χρησιμοποιώντας τεχνικές μηχανικής μάθησης

και δεδομένα από πραγματική λειτουργία πλοίου, πραγματοποιήθηκε αναγνώριση και πρόβλεψη της

εισόδου αναφοράς στο σύστημα από τον χειριστή, κατά τη διάρκεια πραγματοποίησης ελιγμών πλο-

ίου. Αναγνωρίστηκαν μοτίβα που περιέχουν πληροφορίες σχετικά με την μεταβατική λειτουργία, τα

οποία χρησιμοποιήθηκαν για την ανάπτυξη συστήματος ελέγχου. Τέλος, σχεδιάστηκε ένα μοντέλο

βασισμένο σε νευρωνικό δίκτυο για την πρόβλεψη μελλοντικής εισόδου αναφοράς βάσει ιστορικών

δεδομένων. Οι πληροφορίες που παράγονται κατά την λειτουργία από το μοντέλο πρόβλεψης, χρη-

σιμοποιούνται, μαζί με τον παρατηρητή έλικας, από τον ελεγκτή για την εκτίμηση της μελλοντικής

ζήτησης του φορτίου της έλικας. Τέλος, έγινε ρύθμιση έτσι ώστε το EMEMS να αποδίδει πα-
ρόμοια με το πρόβλημα βελτιστοποίησης αναφοράς, το οποίο επιλύεται με εκ των προτέρων γνώση

του κύκλου φόρτισης. Διερευνήθηκε η αντιστάθμιση μεταξύ της κατανάλωσης καυσίμου και των

εκπομπών αέριων ρύπων NOx κατά την λειτουργία του υβριδικού συστήματος πρόωσης.
Για την πειραματική επιβεβαίωση και αξιολόγηση των στρατηγικών ελέγχου κατανομής ισχύος
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που αναπτύχθηκαν, χρησιμοποιήθηκε η πειραματική εγκατάσταση HIPPO-2 στο ΕΝΜ / ΕΜΠ.
Το EMEMS δοκιμάστηκε σε λειτουργία σε πραγματικό χρόνο, όπου διερευνήθηκε η ευρωστία
έναντι διαταραχών του φορτίου της προπέλας.Με βάση τα πειραματικά αποτελέσματα, επιτυγχάνεται

παρακολούθηση της τιμής αναφοράς χωρίς σφάλμα, ανεξάρτητα από το μέγεθος του συστήματος

πρόωσης, την αβεβαιότητα των παραμέτρων της έλικας και του πλοίου, καθώς και τα σφάλματα

μοντελοποίησης μεταξύ της συμπεριφοράς του συστήματος παραγωγής ισχύος και του εσωτερικού

μοντέλου του ελεγκτή. Παράλληλα, με τον σχεδιασμό του EMEMS, η στρατηγική κατανομής
ισχύος μπορεί να ικανοποιήσει ταυτόχρονα τους στόχους διαχείρισης ενέργειας και ελαχιστοποίησης

εκπομπών αέριων ρύπων. Για το σενάριο το οποίο εξετάστηκε, με ζητούμενο την διατήρηση του

επιπέδου φόρτισης της μπαταρίας στο τέλος του κύκλου φόρτισης, επιτεύχθηκε μείωση κατανάλωσης

καυσίμου έως 6.5% και εκπομπών αερίων ρύπων NOx έως 8%.
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Preface

Thesis Objective

Hybrid propulsion is an attractive technology for ships with multivariable operation profile

and vessels that operate in coastal areas and within ports where strict emission regulations

are applied. Hybrid powertrains can provide increased operational efficiency of the vessel and

compliance with strict environmental legislation. However, marine hybrid propulsion plants are

complex multivariable systems, as the installed power-sources diversify in terms of the underlying

technology, principles of operation, size, and physical limitations. On the other hand, system

performance specifications strive for competitive objective satisfaction, such as immediate power

availability at the propeller shaft, maximized engine energy efficiency, and minimized emissions.

In this context, the control strategy has to explicitly tackle the non-linear system behavior,

system physical and operating limits, and ensure optimal energy management and minimized

environmental burden during ship operation. This Thesis focuses on integrated Energy Man-

agement and Emissions Minimization Strategies (EMEMS) in the operation of parallel marine

hybrid propulsion plants in transient loading conditions. It addresses the development of en-

ergy management strategies for the transient and fluctuating propeller load sharing for optimal

energy management and minimized emissions.

Thesis Contributions

The core contribution of the present work is the development and implementation of an inte-

grated, real-time capable, predictive control scheme for the power-split control of parallel hybrid

diesel-electric propulsion plants, able to satisfy the current and predicted propeller load and

minimize both fuel consumption and NOx emissions efficiency of the system according to the

selected criteria.

The tasks of the control scheme are to perform the power-split calculation for minimized

consumption and emissions, propeller load estimation, and operator demand prediction within

a future time window. Consequently, an optimal energy management plan can be drawn. Fur-

thermore, a framework for energy management system development for hybrid ship propulsion
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with the implementation of data-driven models and machine learning techniques in the develop-

ment loop is proposed. Marine loading profiles are developed using measured data that resemble

typical operator input in marine applications.

For proof of concept, the validation of the control concept is performed using a propeller

load emulation model and one of the created marine loading cycles, in simulation, where the

performance of the energy management system is compared to benchmark problem results as

well as in experiments, where the control scheme is experimentally implemented and tested

for different fuel consumption to NOx emissions weighting parameters. In this framework, the

overall behavior of the EMEMS is optimized and evaluated.

The research performed in the context of this Thesis yielded the following scientific publica-
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Vol. 34, No. 2, pp.147-157.
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MPC", 21st IFAC World Congress, Berlin, Germany, 2020.
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[8] N. Planakis, G. Papalambrou and N. Kyrtatos, "Power-Split Strategies for Hybrid Diesel

Electric Marine Power Plant Using Predictive Control and Transient Load Preview", 29th

CIMAC World Congress, Vancouver, June 2019.

[9] N. Planakis, G. Papalambrou and N. Kyrtatos, "Predictive Control for a Marine Hybrid

Diesel-Electric Plant During Transient Operation," 2018 5th International Conference on
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Publications currently under review:
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learning techniques", in revision for Applied Energy, 3/2021.
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IEEE Transactions on Control Systems Technology, 9/2020.

Thesis Outline

The Thesis is divided in the following chapters:

Introduction The introductory chapter provides a survey on the current state-of-the-art re-

search and applications on the control of hybrid powertrains, as well as a description of the

problem and the operation principles of the marine hybrid powertrain used for this Thesis.

Experimental Facility and Virtual Sensor Design In this chapter, the experimental setup of

the hybrid powertrain used for this Thesis, as well as the design of virtual sensors, are described.

Powertrain Modeling This chapter introduces the powertrain modeling to derive models for

control system design and powertrain behavior simulation.

Load Emulation and Observer Design for Propeller In this chapter, emulation, and estimation

of the propeller load characteristics are investigated, to simulate and observe the interaction of

the system controller-powertrain-propulsion plant-environment.

Transient Operational Profile Identification and Prediction This chapter deals with the op-

erating profile of a marine propulsion plant in transient operating conditions. Based on data
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from ship operations, typical marine loading cycles are identified and a prediction model for the

operator’s future input is developed.

Transient Power-Split Controller In this chapter the framework of designing and implement-

ing a fast real-time non-linear predictive controller is presented. A predictive control scheme is

designed to perform the power-split control during transient and disturbed loading conditions,

which is experimentally implemented and evaluated.

Energy Management and Emissions Minimization Strategy This chapter introduces a refor-

mulation of the predictive control scheme to incorporate energy management and NOx emissions

minimization. The trade-off between fuel economy and emissions reduction is investigated. Sim-

ulation results and experiments on the hybrid testbed are presented.

Conclusions and Future Work This is the closing chapter of this Thesis, where the main

results are summarized and research for future work is proposed.



Chapter 1

Introduction

1.1 Motivation

The growing global environmental concern results in the implementation of ever tightening

legislation regarding the emission limits during ship operation. This effort to reduce pollutant

emissions has rapidly changed the operating conditions of ships. The need for vessels to increase

their efficiency and adapt quickly to new regulations makes it as urgent as possible to research

and use novel control technologies on ship energy management systems. As such, the interest in

alternative powertrain technologies for marine propulsion plants that are capable to increase the

overall efficiency of the vessel energy generation system is increasing. Hybrid propulsion is used

mainly in ships with multivariable operation profiles and vessels that operate in coastal areas

and within ports where strict emission regulations are applied, such as offshore supply vessels,

naval vessels, tugboats, and passenger ships. Marine powerplant installations are designed based

on each specific application.

Hybrid propulsion is defined as the combination of more than one power-sources that delivers

propulsion power to assure ship operational capability, by providing at each moment the required

amount of power and torque to the propeller. Several marine applications have been developed

and many hybrid topologies have been considered so far, [10]. Usually, the hybrid powertrain

includes one or more internal combustion engines, which consume a high energy density fuel

that can provide the required operational range. Additionally, a PTI/PTO unit, that can either

contribute to propulsion power take up or buffer energy at a high efficiency, which is consumed

by other shipboard systems (e.g. electric loads) or utilized at moments when a conventional

system would under-perform, e.g. at low speed cruising.

The configuration is justified by the connection between ship power sources and the pro-

peller shaft. In a series hybrid configuration, the power sources are electrically connected to

the propulsion motor. On the other hand, the parallel configuration includes mechanical con-

nections, where the system components are connected on a common shaft. The mechanical
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Figure 1-1: Schematic representation of the parallel hybrid diesel electric powertrain.

connection implies a constraint on the system rotational speeds, but the electrical power trans-

mission losses of the series configuration are avoided. Furthermore, series-parallel configurations

can benefit from the advantages of both series and parallel systems. The special characteristic in

marine hybrid applications, as compared with the automotive sector, is that there does not exist

braking where a considerable amount of the system energy can be regenerated. As such, energy

storage is not always considered or it can buffer energy from renewable energy sources, e.g. solar

or wind-powered. A parallel hybrid ship propulsion system is depicted in Fig. 1-1. The physical

connections, as well as the interaction between the power sources, the energy storage, the propul-

sion plant, the vessel, and the environment, are also shown in the schematic diagram. As it can

be noted, it is a multi-variable system with increased complexity as compared to a conventional

propulsion plant. Each subsystem is physically constrained or should be operationally limited,

e.g maximum brake torque of internal combustion engine and the range of battery charge which

can be utilized.

The power management problem in hybrid marine powertrains, which is assessed in this

Thesis, remains a challenging issue. It decides how much power shall be produced by the

internal combustion engine and how much should be supplied by the electric motor to achieve

the total power demand at the driving shaft of the propeller. High system complexity and the

extra degrees of freedom that are introduced by the new subsystems, as well as the numerous

system limitations, increase the need for sophisticated controls for the Energy Management

System (EMS) that lead to the optimal operation of the plant, [11]. Moreover, as compared to

conventional propulsion plants, with the proper control system design, it can deal with issues

that affect the propulsion plant operation, such as the transient propeller load during ship

acceleration and engine power fluctuations that are caused by environmental conditions and
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particularly irregular wave disturbance. The interaction of the system engine-propeller-ship-

environment, shown in Fig. 1-1, has to be taken into consideration, as it could lead to additional

system limitations or introduce further performance specifications to the control system design

[12, 13, 14].

As such, energy management control systems of hybrid marine propulsion plants in novel

applications must perform multiple tasks; reference tracking, disturbance load estimation, and

energy management according to the selected criteria, assist the engine during transient loading

by engaging the EM to take up propeller load and finally ensure that the physical and operating

constraints, such as the engine overloading, of the hybrid system are not violated. Also, the

control system has to deal with the different nature of the underlying dynamics of the propulsion

plant, as the various subsystems have multi-scale time constants. On top of that, the energy

management system should meet the performance and applicability requirements of the end-user.

1.2 Literature Review

Methodological approaches

The various novel control concepts and methodologies that are applied to marine hybrid propul-

sion power-split problems are derived mainly from the automotive sector, where several strategies

for the optimal power management of hybrid powertrains have been developed and implemented

with success, such as dynamic programming (DP), stochastic dynamic programming (SDP),

Pontryagin’s minimization principle (PMP), equivalent fuel consumption minimization strate-

gies (ECMS), and model predictive control (MPC). In [15], the power management of a hybrid

electric vehicle (HEV) is optimized along with the engine thermal management and cabin heat-

ing to achieve minimized fuel consumption. In [16] DP and PMP are compared for off-line and

real-time integrated management of the diesel engine and the after-treatment unit of a heavy-

duty powertrain is performed, to optimize the total costs of fuel and additive NOx abatement

fluid.

ECMS is a formulation that considers the energy consumption of all the available power

sources, scaled with a factor that represents the equivalence fuel consumption cost, and is widely

used for online implementation of optimal power-split control in HEVs, [17, 18]. Reference [19]

performs a comparative analysis between DP, PMP and ECMS. Moreover, [20] deals with the

transient behavior of the engine while following the ECMS control commands, by using transient

power smoothing ECMS strategies to avoid additional fuel consumption or increased emissions

respectively.

Among the advanced control design methodologies, MPC seems the most promising, as it

can optimize a performance index by generating a sequence of appropriate control actions over

a future prediction window, within which the available information can serve the optimization
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problem. It is capable to handle at the same time multivariable processes, satisfy constraints,

deal with long-time delays and utilize knowledge for plant disturbance response. It has been

widely considered for HEV applications. Furthermore, linear MPC has been used in a broad

range of applications in automotive and engine control and has been integrated into mass pro-

duction, [21].

The current research and development focus is the application of nonlinear MPC (NMPC)

in real-time applications. So far NMPC has been applied to numerous problems such as energy

management of HEV, [22, 23] and engine control, [24, 25, 26, 27, 28]. In [22], the nonlinear

equations which describe the plant dynamics, as well as the nonlinear equations of the weighting

factors and the constraints are integrated into the controller, which performs the power-split

objective, which is to operate the engine on its optimal operation line and track the desirable

battery state of charge.

Optimal transient load sharing for the minimization of fuel consumption and emissions in

hybrid electric vehicles has not been investigated widely in the literature. In [29], the problem

of fuel and time-optimal path of diesel engine transient loading is investigated in a hybrid diesel-

electric powerplant. In [30], the effect of the powertrain dynamics has been considered in the

power split optimization problem, while [31] considers the effects of turbo lag phenomenon on

the engine efficiency during load application to the hybrid powerplant, to achieve better fuel

economy. In [32], the effect of sudden engine loading, on transient NOx and soot emissions is

considered. An objective function is proposed, which takes into consideration the weighted fuel

consumption and engine emissions of a HEV, and Pareto graphs are designed to identify the most

satisfying trade-off solution. It is shown that although using a quasi-static NOx model does not

affect the cumulative emissions, the solution diversifies when a transient particle matter model

is used; however, from a practical point of view, in both cases, the legislation limits could be

satisfied. Moreover, [20] and [33] deal with the transient behavior of the engine while following

the ECMS control commands, by using transient power smoothing strategies to avoid additional

fuel consumption or increased emissions respectively.

In most recent applications, also emissions efficiency has gained importance and its equivalent

production has been integrated into the optimization problem to be minimized as well. However,

fuel consumption and pollutant emissions production goals cannot be minimized simultaneously

and the trade-off between them has to be justified. According to this, in [32], the effect of sudden

engine loading, on transient NOx and soot emissions is considered. An objective function is

proposed, which takes into consideration the weighted fuel consumption and engine emissions of

a HEV, and Pareto graphs are designed to identify the most satisfying trade-off solution. It is

shown that although using a quasi-static NOx model does not affect the cumulative emissions,

the solution diversifies when a transient particle matter model is used; however, from a practical

point of view, in both cases, the legislation limits could be satisfied. In [34], authors propose
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a multi-linear MPC control scheme that considers the averaged emissions over the prediction

window, so that the engine behavior does not lack in instant performance, but also comply with

the required average emissions constraints over a time window.

Today’s state-of-the-art applications, strategies including Machine Learning (ML) are imple-

mented, either in an effort to address the issue of computational effort of optimization algorithms

online or to provide information to the optimization algorithm. Machine-learning techniques are

utilized to complement the system energy optimization problem. Data-driven models are trained

using machine learning algorithms to simulate, reproduce or predict the behavior of various sub-

systems such as the operator demand (system input), environmental conditions (disturbance),

control actions, or the behavior of powerplant (system output). In [35, 36] the optimal control

problem is solved offline and neural networks are trained to apply the optimal solution online.

On the other hand, in [37, 38] authors use a neural network which is trained using measured

vehicle and trip data, to predict the future vehicle speed, while in [23] a Markov chain model is

trained online to represent the driver behavior. In both works, these models are used to perform

future vehicle velocity predictions, which are provided to the optimization algorithm as future

reference or disturbance values. With this technique, the control system performance can get

closer to the solution of optimization with full knowledge of the operational profile.

Hybrid marine applications

Hybrid propulsion can be reviewed in accordance with the implemented configuration. In ap-

plications with series hybrid electric power plants, the propulsive and auxiliary power demand

are satisfied by a number of generator sets. As such, the optimal number of generators that

operate in order to achieve minimum fuel consumption. However, in series topologies, a trade-

off exists between the achieved power plant adaptability and the electric transmission losses

at higher loads, which lower the overall power plant efficiency. On the other hand, in parallel

hybrid applications where the propeller is driven by a main propulsive system, such as a diesel

engine, the electric motor is connected to the main shaft line. The underlying idea is that an

internal combustion engine provides propulsive power at higher speeds and loads, where the

engine efficiency is increased. Additionally, an electric motor, which is mechanically connected

to the propeller shaft, is used to produce power in generation mode which can be stored to the

battery or supplied to the electric grid of the vessel, and provides propulsive power in operation

points or during load transients and when the diesel engine efficiency is significantly lower.

In the marine sector, several contributions have been made regarding hybrid propulsion

and electric power distribution, which either refer to battery-aided power plants or regard the

control of multiple power sources to achieve optimal energy management. The control objective

diversifies according to the selected topology. In series applications, the engines operate at a

constant speed, where voltage or frequency control is performed by regulating the delivered
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power of the generator engines. Fuel consumption and emission curves of the engine are used

to find the optimal operating points. In parallel topologies, the power plant is operated such

as to meet either the desired propeller rotational speed or the reference torque demand at the

propeller shaft. As such, fuel and emissions performance mapping of the engine, as well as more

intensive search, are required in order to find the optimal operation path and achieve minimum

usage of energy, fuel consumption, and emissions.

The operational profile of each ship as well as its power consumption demands is unique and

change over the life-time of the vessel. Besides, marine propulsion plants have slow dynamics,

due to their size; as a result, transients last longer compared to automotive engines. Rapid

load acceptance of diesel engines leads to higher fuel consumption, and consequently to the

production of more CO2 as well as higher NOx concentration and smoke formation, and usually

happen in emissions regulated areas. In such cases, the ship-specific needs are considered as

criteria for the system design. Therefore rule-based power management strategy, such as the

one proposed in [39], which is the common-place in current applications, in combination with

the operator’s experience has shown to achieve remarkable fuel savings, that is comparable to

these of advanced control strategies.

On the contrary, off-line optimization for component sizing and system control using specific

operational scenarios is still the main focus in many applications. In [40], the energy storage

capacity based on various EMS and operational profiles is optimized. The battery load fol-

lows the power fluctuations, while the generator engines are loaded according to the average

power demand, avoiding power fluctuations. In [41], a strategic loading strategy is developed

and the various operation points of the power sources for maximized efficiency are determined.

Optimization over a known profile to minimize the total fuel consumption for a series hybrid

application is studied in [42].

Dynamic optimization generally provides the optimal solution for a problem over a certain

driving cycle; as such the solution can only be utilized as a benchmark problem. However, in

the marine environment, the operation profile for vessels cannot be known a priori and there is

no driving cycle for testing such power plants. As a consequence, the optimization should be

short-termed, depending on the knowledge of the present state of the power plant.

Implementable sub-optimal control schemes were developed in the last decade. In [43], a

control system architecture is proposed in order to satisfy the power demand during crane opera-

tions. In [44, 45, 46] for series hybrid power-trains, where greater fuel savings have been achieved,

however with lower final state of charge in the battery. In [14], the shaft motor/generator is

used to mitigate speed and power fluctuations during the operation of the propulsion plants in

waves. However, optimal power management is not guaranteed. ECMS has been studied widely,

as it is a sub-optimal method that can be implemented online. [44] proposes an ECMS strategy

for series hybrid tugs, where the equivalence factor depends on the efficiencies of the genera-
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tor engine and the battery. In [47], an ECMS controller is developed for a parallel hybrid tug

with shore charging capability, where the equivalence factor is adapted based on probabilistic

operating load estimation.

Most recent and advanced works use predictive control for the power-split problem and the

power-plant performance. In [45], a predictive ECMS over a future time window. For each

subsequent window, the operating load estimation is performed based on the percentage of time

on low- medium- and high- power demand of the vessel. [48] also follows a predictive strat-

egy, where the objective function includes fuel consumption, engine emissions, and powertrain

efficiency. On top of that, the load prediction is made by a neural network with wavelet ex-

citation functions. The implementation of MPC problem in real-time and sample time-critical

applications has been considered in [49, 50, 51, 52], where Sequential Quadratic Programming

(SQP) methods are utilized to solve the optimization problem online. The power sources and

the energy storage device are operated optimally, to minimize the power losses of the system

and ensure the high quality of the electric power in means of frequency or voltage regulation

during power demand fluctuations and transient loading.

In some cases, the power-split control is performed taking into account also the satisfaction

of the vessel dynamics. In [53] a multilevel predictive control approach is used for the energy

calculation and optimal power split control of a series hybrid OSV during maneuvering under the

presence of environmental disturbance. The first level employs robust tube-based MPC to predict

the power within the prediction horizon, while the second, linear MPC, performs the power-

split control with minimum fuel consumption and power demand tracking error. Furthermore,

in [54] the optimal power sources management of an autonomous tug is calculated using trip

information. Here, the propulsion power demand is predicted using the input-output feedback

linearization formulation, and the power-split is conducted to achieve minimum specific fuel oil

consumption of the diesel generator sets.

Further research areas

The core research topic of this Thesis is energy management systems for hybrid marine propulsion

plants. To achieve this, several interrelated problems had to be addressed, regarding the research

and development framework ad well as the implementation of the control system. They are

further discussed below.

The development of new technologies includes a loop of continuous testing, evaluation of

the test results, and improvement. It is of crucial importance that the testing environment

resembles as close as possible the conditions of real-world applications. The same applies also

to marine propulsion plants, where one factor is the load profile that will be used in simulation

or the experimental facility. Moreover, a detailed and accurate simulation of the plant is a

prerequisite for the design of an optimal control system and performance evaluation during
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experimental testing. Hence, the modeling of the propulsion system of the ship as well as the

external environmental disturbances, such as sea waves, should be well defined to implement

realistic information including the transient effects of system operation.

Further to a relative discussion, evaluation of energy management strategies should be made

using a number of widely accepted loading profiles, like the driving cycles that are used in the

automotive industry, where extensive literature material exists, [55, 56, 57]. Another approach

in [58] compared the existing standard driving cycles with objective methods, including corre-

lation analysis or automatic clustering, and chooses a combination of driving cycles that can

be representative. However, comparison of driving cycles regarding ship operation is still diffi-

cult to perform and the lack of a definition of representative driving cycles enables subjective

judgments.

Hence, the creation of representative loading cycles of vessels, will contribute to the optimiza-

tion of marine powertrain operation and will assist in pattern identification and categorization

in the maritime environment. A group of realistic general loading cycles that resemble these

situations would be a useful tool to test and benchmark different engine control strategies.

A substantial number of neural network permutations have been validated as virtual sensors

in the automotive, railway, and aerospace industry, [59, 60, 61, 62]. RNN is the corresponding

representation of a state-space model, that can be used for dynamic systems modeling, [63]. A

dynamic neural network approach has been validated successfully in [64], with recurrent neural

networks (RNN) models for predicting the NOx emissions of CI engines. In [65], the previous

work was supplemented with online model adaptation. As a result, neural network models,

especially RNN, have been widely validated in simulating the dynamic behavior of diesel engines

successfully.

1.3 Research Questions and Problem Approach

The objective of this Thesis is to investigate real-time Energy Management and Emissions Min-

imization Strategies, with optimal transient and steady-state performance in regards to energy

consumption and emissions production, as well as robust behavior against external disturbances.

In this context, the following research questions are addressed:

1. Which are the dynamic characteristics of the load applied to marine propulsion plants,

from a control-oriented perspective?

2. How can the dynamic and steady-state characteristics of the propeller load be estimated

by utilizing only basic powertrain measurements, and how can the load disturbance be

anticipated in order to achieve offset-free power-split control?
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Figure 1-2: Interrelated subproblems addressed in the context of this Thesis.

3. Which is the typical operational profile of a marine propulsion plant during transient

operation and how can the future operator demand be predicted?

4. How can the transient and fluctuating behavior of the diesel engine be mitigated with the

use of the hybrid power plant, without any lack in power-availability performance?

5. How can the ship power plant be optimally operated to achieve minimum energy consump-

tion and emissions production in transient loading conditions?

The main research areas as well as their interconnection in the overall system design were

defined with respect to the above research questions. The interrelated sub-problems that were

identified and independently addressed in the context of this Thesis, are presented graphically

in Fig. 1-2.
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Chapter 2

Experimental Facility and Virtual

Sensor Design

In this chapter, the Hybrid Integrated Propulsion POwertrain (HIPPO-2) experimental facility

at LME/NTUA, which was modified and operated in the context of this work, is presented. The

testbed represents a full-scale integrated parallel hybrid diesel-electric ship propulsion plant. To

complement the physical sensor system that is installed by the engine manufacturer, virtual

sensors for engine-out emissions are developed. In addition, on this experimental facility, several

power-split and energy management strategies were implemented and evaluated in real-time

operation.

2.1 HIPPO-2 Testbed

The experimental facility, seen in Fig. 2-1, is composed of three major components: the Internal

Combustion Engine (ICE), the Electric Motor/Generator (EM) and the Electric Brake (EB), all

connected on a common shaft. In this configuration, the rotational speed of the ICE and the

EM are identical and the supplied torques add together to maintain the total torque demand

applied by the electric brake (EB). From a systems point of view, it is noted here that, an Energy

Storage component was also considered in modeling; It was considered to be connected at the

EM inverter system and was emulated in series configuration during EM operation.

The ICE is a turbocharged CATERPILLAR model C9.3, 6-cylinder, 9.3-liter, 4-stroke in-

dustrial diesel engine, rated at 261 kW at 1800-2200 rpm and maximum torque 1596 Nm at 1400

rpm. The EM is a standard AC induction 3-phase, 4-pole motor, with a rated power of 90 kW

at 1483 rpm. The speed and torque output of the electric motor is individually controlled by a

frequency inverter, based on the direct torque control scheme, [66]. The EM is operated both

as a motor and generator by the power-split algorithms that were developed in this work.

The ICE is electronically controlled either in speed control mode or by demanding the desir-

33
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(a) Experimental facility in the Laboratory.

(b) Layout of the experimental testbed.

Figure 2-1: HIPPO-2 experimental testbed at LME/NTUA.

able indicated torque output which leads to injection of a certain amount of fuel by the engine

ECU using an internal mapping and is considered as an electronic fuel index. The engine is de-

signed to meet U.S. EPA Tier 4 Final, EU Stage IV emission standards. The HIPPO-2 engine is

fitted with Exhaust Gas Recirculation (EGR) and Selective Catalytic Reduction (SCR) systems

for NOx reduction, along with a Diesel Particulate Filter (DPF) for soot particles trapping.

The powertrain components are connected in a parallel configuration, thus the operating

speed range of HIPPO-2 is from 600 to 2200 rpm, with a maximum load of 351 kW (ICE

and EM combined power). The principal concept for component sizing was the need that EM

assists the ICE in low speed and load (1200 rpm and 30% of nominal load), where the fuel

and emissions efficiency of the ICE are lower. As such, the EM was selected to account for the
1
3 of ICE nominal load. In addition, as ICE transient response is poor, primarily due to the

turbocharger lag phenomenon, the EM dynamics allow for immediate torque availability. With

proper control, EM can be used in motoring or generating mode to deal with the fast powertrain

dynamics and let the diesel engine follow in a quasi-static way and following the most efficient

power path within its operating envelope. The torque curves of HIPPO-2 components are
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Figure 2-2: HIPPO-2 powertrain torque curves.

presented in Fig. 2-2, where the sizing as well as the behavior of the various power sources can

be identified.

2.2 HIPPO-2 Sensors and Prototyping Platform

The control and data acquisition system of the testbed is based on the sensors that are installed

by the manufacturer on the ICE and the Electric motors and CAN bus communication protocol,

[67]. Also, analog sensors for the torque and two coriolis mass-flow meters were installed during

the modifications at LME/NTUA. The flow meters measure the diesel fuel mass flow and density

on the feed and return pipes of the engine. They were used to calibrate engine fuel consumption

maps and measure the fuel consumption during experimental testing, allowing to evaluate the

performance of the power-split algorithms in terms of fuel efficiency.

The torque meter, installed between EM and EB, was used for the mapping of the supplied

command to brake torque output of the EB and EM and estimate the rotating friction of the

testbed components. In closed-loop control, the speed measurement was used as a feedback

signal to the control scheme, while with the torque flange, the actual dynamic behavior of the

EM during power-split control was measured and evaluated. Finally, with the use of the torque

flange, shaft rotational vibration issues were identified that led to the modification of the testbed
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Figure 2-3: Inputs and outputs for 𝑁𝑂𝑥 and 𝜆 NN models.

shafting configuration.

The control and data acquisition system of the powertrain is based on the dSpace MicroAuto-

Box II (MAB 2) DS1401/1511 platform, with rapid control prototyping capability, programmed

under the MATLAB/Simulink environment and MATLAB Code Generation Toolbox. Taking

into account the system dynamics as well as the refresh rate of CAN messages, the fundamental

sampling time for data acquisition and testbed control was specified at 100 Hz.

2.3 Engine virtual sensors

To complement the physical sensor system that is installed by the engine manufacturer, virtual

sensors for engine-out emissions were developed and used for engine monitoring and powertrain

control purposes. Several architectures have been used in the bibliography to capture the steady-

state and dynamic response of a system output such as principle and data-based models. From

the possible candidates, neural network models were used that can capture dynamic instanta-

neous phenomena in both transient and static operation of the marine diesel engine and that

can be utilized as virtual sensors online. For more details about design and implementation in

the testbed in the experimental rig at LME/NTUA, see [2].

Network development The model inputs were chosen based on which signals represent the

specific operating point of the engine. For, 𝑁𝑂𝑥 emissions, the intake manifold pressure (𝑀𝐴𝑃 ),

the engine shaft speed, load demand (𝐿𝑜𝑎𝑑) and 𝜆 value, which expresses the Air Fuel Ratio

(AFR) to the stoichiometric AFR, are used as representative quantities of the injection param-

eters, which are not measured in the experimental setup. The same principles apply to the 𝜆

model; 𝑀𝐴𝑃 , rotational speed, and 𝐿𝑜𝑎𝑑 were selected, as shown in Fig. 2-3. This approach is

preferred not only because it adheres to the lack of sophisticated measurements, but also sat-

isfies the portability and re-usability purposes. Also, most of the engine operating parameters

are correlated with these basic variables that explicitly determine the operating point of the

engine and the neural network structure can be used to make all the input-output relations and

produce accurate predictions.

Time-delay neural network (TDNN) with input history and recurrent neural networks (RNN)

with input and output history, shown in Fig. 2-4 are used to model the engine 𝑁𝑂𝑥 emissions
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Figure 2-4: (a) Recurrent NN and (b) Time delay NN.

Table 2.1: Internal architecture of the neural network models.

Parameter NOx RNN NOx TDNN 𝜆 RNN 𝜆 TDNN

Hidden layers 1 1 1 1
Nodes of hidden layer 2 10 6 7
Input size 8 48 17 18
Input delay 1 12 4 6
Output feedback delay 4 - 5 -

and 𝜆 value. For each engine output, the RNN and TDNN models are using the same inputs and

their main difference is only the external feedback loop that characterizes RNN models. This

enables a direct comparison between models with and without a prediction feedback loop. Both

TDNN and RNN models have a tanh function as input and hidden layers activation function

and a linear output layer activation function, which helps to capture the non-linear behavior

of the process. The structure of the final models for 𝑁𝑂𝑥 and 𝜆 prediction is summarized in

Table 2.1.

Real-time NN validation The models were implemented in the testbed and validated in

real-time as virtual sensors in scenarios within their training range but in different patterns

than the training data and were also tested near the limits of the training range to evaluate

their performance. Fig. 2-5 shows the validation test points and loading patterns that were

applied. Some scenarios included load steps with constant ICE shaft speed (Steady Speed -Step

Torque) and cases with alternating load and speed (Alt. Speed Torque 1 & 2).

𝑁𝑂𝑥 TDNN and RNN models are evaluated against an engine map and 𝜆 models against a

physics-based 𝜆 observer; both were developed in previous works for control purposes using the

same training datasets. The criteria for the neural network models validation are the following

as compared to the engine sensors measurements

1. Their average 𝑅2 accuracy over each of the validation experiments.

2. Their ability to predict the steady-state value without oscillating behavior or instability,
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especially at high engine loads.

3. Their accuracy to predict the transient dynamics of the 𝑁𝑂𝑥 and 𝜆 traces.

In Table 2.2, the accuracy of the neural network virtual sensors during the validation exper-

iments is summarized. Although in validation experiments 𝜆 TDNN model achieves borderline

better 𝑅2 score, in visual evaluation, it lacks in transient performance and is more sensitive to

noisy inputs. Also, particularly for validation experiments with alternating speed and torque,

where a mediocre 𝑅2 accuracy is scored by the 𝜆 models, it refers to a steady-state error at low

engine load (and higher 𝜆 values), which is not important according to validation criterium 2,

which is smaller than the prediction error of the physics-based observer.

Figure 2-5: Validation area and patterns for the 𝑁𝑂𝑥 and 𝜆 models.

In Fig. 2-6, the results of the experimental testing by applying unknown loading and speed

patterns are presented. It is noted that RNN virtual sensors reproduce well the transient dy-

namics, even at the speed change time instances, and approach the steady-state values with a

small offset at some operating points. 𝜆 RNN has offset in predicting values > 4, which is not of

great concern. A comparison between the 𝑁𝑂𝑥 and 𝜆 TDNNs shows that the 𝜆 models produce

more accurate results than the 𝑁𝑂𝑥 models, as compared to their respective RNN counterparts,

indeed both are more accurate and stable than the first principles observer. Overall, the vali-

dation proves that the RNN models can generalize in patterns similar but different than their

Table 2.2: Average 𝑅2 accuracy score of the NN models during validation experiments.

Dataset 𝑁𝑂𝑥 RNN 𝑁𝑂𝑥 TDNN 𝜆 RNN 𝜆 TDNN

Training data 0.987 0.983 0.981 0.950
Steady Speed - Step Torque 0.977 0.782 0.858 0.865
Alt. Speed Torque 1 0.918 0.340 0.708 0.733
Alt. Speed Torque 2 0.947 0.021 0.589 0.602
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(a) Validation results for the 𝑁𝑂𝑥 RNN virtual
sensor at alternating engine speed and torque test
1, compared against the actual measurement and
an engine map.

(b) Validation results for the 𝜆 TDNN and RNN
virtual sensors at alternating engine speed and
torque test 2, compared against the actual mea-
surement and a physics based virtual sensor.

Figure 2-6: Validation results for 𝑁𝑂𝑥 and 𝜆 virtual sensors.

training dataset. Moreover, the RNN models have significantly higher accuracy during transient

loading, as compared to TDNN models, static maps, and first principle observers.

2.4 Conclusion

In this chapter, the hybrid diesel-electric experimental facility HIPPO-2 at LME/NTUA was

presented. To complement the physical sensor system that is installed by the engine manufac-

turer, data-based virtual sensors for engine-out emissions were developed and experimentally

evaluated. The testbed configuration, component selection, and constraints regarding control

system implementation, such as the unavailability of sophisticated measurements, are very close

to a commercial application. As a result, the experience of experimental testing resembles

working on an actual, full-scale marine hybrid propulsion plant onboard a vessel. Based on the

particular configuration and specifications of the experimental system, the next chapters present

the modeling methodology as well as control systems development and implementation in the

HIPPO-2 experimental powertrain.
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Chapter 3

Powertrain Modeling

In this thesis, predictive control schemes are designed for the optimal power-split calculation for

marine hybrid diesel-electric power plants in transient operation. In this context, this chapter

is dedicated to control-oriented system modeling. The powertrain model is then utilized as the

internal model of the controller.

3.1 Methodology

The model of the powertrain that will be used for controller design, must capture system behavior

in a precise manner and be simple enough, so that the optimization problem can be solved online

within the time period of a sampling interval, [68]. As predictive control is to a large extent a

feedforward approach, it depends strongly on the internal model quality. Besides, many system

variables cannot be measured onboard in marine applications; neither are they available as model

inputs.

First-principle models have been the main choice of modeling and simulation engineers, as

they allow physical insight into the system’s design changes; however, sometimes they tend

to be too simple to describe the real system behavior to the necessary degree of precision to

meet the increasing controller performance requirements, [69]. The alternative to first principle

models are data-based models, which typically refer to a parameterized candidate model without

any reference to the physics of the real plant. In this case, the choice of the excitation signal

during the system identification procedure is critical, [70]. However, for some cases, such as

emissions, the candidate model structure will in general not contain the true model, therefore

system identification becomes essentially an approximation tool, [71].

Against this background, there is a rationale for combining both approaches so to get simple

and high-performing models. Gray-box models use physical understanding to describe explicitly

aspects of the models that can be described analytically and combines them with data-based

models, [72]. In this context, an efficient approach is to observe global patterns in the data

41
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Figure 3-1: Identification and validation engine data points.

which can be expressed analytically with few parameters and thus infer not only the parameters

of a given model but also its structure from the data, [73].

3.1.1 Data, Model structure and Input selection

For the system identification procedure, data acquired from HIPPO-2 testbed operation were

utilized. These datasets capture ICE operation in step changes of the ICE’s electronic fuel index

at constant rotational speeds and cover the whole engine operating area, as it can be seen in

Fig. 3-1.

For building up data-based models, at first input quantities have to be defined. Here, all

available ECU values have been considered as possible inputs. However, priority was given to

manipulated variables, such as engine speed and torque, which define the powertrain operating

points, and as a consequence, all other quantities change indirectly, according to these manipu-

lated variables. As such, the selection of the model structure was mainly based on black- and

gray-box models that yield from some physical knowledge that is included in the structure of 𝑓

and other terms have to be identified from patterns that were observed in the output quantities

according to the selected inputs.

The parametric equations that are derived, describe the ICE and EM quantities directly,

and not via their derivatives, by fitting steady-state engine maps to polynomial equations. The

advantage of these models is that they are simple, and computationally efficient since no integra-

tion is needed. Therefore, this quasi-static approach is popular in hybrid marine and automotive

applications, [23].
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3.1.2 Data-based model identification

In the data-based model identification, the parameters of each model which relate the input

quantities 𝑢 (here the available powertrain measurements) to the output quantities 𝑦, are fitted

to measurement data. The relationship is defined by a linear or nonlinear function 𝑓 which

contains parameters that are given in a vector of regressors 𝜃 and the prediction error 𝜀 as

follows

𝑦 = 𝑓(𝑢, 𝜃) + 𝜀 (3.1)

Parametric model identification methods are utilized to find the optimal value of 𝜃, given a

criterion 𝐽 so that the model error 𝜀 = 𝑦− 𝑓(𝑢, 𝜃) becomes minimal for the data set 𝑍 of length

𝑛 that is used for this optimization procedure. For each model, the optimization criterion for

parameter fitting is the sum of the squared residuals over all 𝑛 samples as follows

𝐽𝑛(𝜃, 𝑍𝑛) =
1

𝑛

𝑛∑︁
𝑖=1

1

2
𝜀2𝑖 (𝜃, 𝑍

𝑛) (3.2)

To solve the above minimization, standard solution methods are used for both cases of linear

and nonlinear parameter estimation problems, where linear and nonlinear least squares and the

Levenberg-Marquardt algorithm are employed respectively.

3.2 Control-Oriented Modeling

The parallel marine hybrid propulsion plant which is investigated in this thesis is presented

in Fig. 3-2. It consists of an internal combustion engine (ICE) connected on the same shaft

with an electric machine (EM) The EM is connected, through an inverter device to the energy

storage. The mechanical and electrical power flow, the input signals, as well as the system

outputs (measurements) of interest are also shown in the schematic diagram.

For the design purposes of the energy management system, a MIMO model of the parallel

hybrid powertrain is developed to be integrated into the controller. It consists of the following

components: the engine, the EM, the battery, and the mechanical shafting. The system dynamics

include battery and shaft dynamics, as the engine and EM response time constants are much

smaller than the controller’s computational interval and it can be assumed that they have a

quasi-static behavior.

As system inputs, the commands to the ICE (𝑢𝑖𝑐𝑒) and EM (𝑢𝑒𝑚) for torque production are

selected, and the external load that acts as disturbance (𝑄𝑙𝑜𝑎𝑑). System outputs are selected

the engine rotational speed (𝜔𝑒𝑛𝑔) and the battery state of charge (𝑆𝑂𝐶). System outputs are

the state variables and, in addition, engine fuel consumption (�̇�𝑓 ) and NOx emissions (�̇�𝑁 ) of

the ICE.
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Figure 3-2: Schematic representation of a parallel hybrid diesel electric powertrain.

The control-oriented model consists of four sub-models that are described below. In total,

the system state x, input u, disturbance input ud, and output y vectors are the following

state variables: x =
[︁
𝜔𝑒𝑛𝑔 𝑆𝑂𝐶

]︁𝑇
input variables: u =

[︁
𝑢𝑖𝑐𝑒 𝑢𝑒𝑚

]︁𝑇
disturbance input variable: ud = 𝑄𝑙𝑜𝑎𝑑

output variables: y =
[︁
𝜔𝑒𝑛𝑔 𝑆𝑂𝐶 �̇�𝑓 �̇�𝑁

]︁𝑇
(3.3)

Measurements that are utilized for system modeling and control are the ICE rotational

speed, fuel consumption and NOx emissions, ICE and EM torque production, electric power

consumption, and battery state of charge. For closed-loop control, only ICE speed and battery

state of charge are used. Also, any disturbance characteristics are unknown and should be

estimated.

3.2.1 Rotational shaft dynamics

The rotational dynamic behavior of the power plant is derived from

𝑑𝜔𝑒𝑛𝑔

𝑑𝑡
=

1

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
(𝑄𝑖𝑐𝑒 + 𝑄𝑒𝑚 −𝑄𝑙𝑜𝑎𝑑) (3.4)

where 𝜔𝑒𝑛𝑔 is the engine shaft rotational speed, 𝐽𝑠𝑦𝑠𝑡𝑒𝑚 is the powertrain moment of inertia at

the engine side, 𝑄𝑖𝑐𝑒 is the brake torque of the engine delivered at the shaft, 𝑄𝑒𝑚 is the output

torque of the electric motor/generator (positive if the EM is motoring), and 𝑄𝑙𝑜𝑎𝑑 is the torque

load which is applied to the powertrain at the engine side of the gearbox.
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(a) Diesel-engine BSFC map [gr/kWh].

(b) Diesel-engine BSNE map.

Figure 3-3: Measured diesel-engine brake fuel and NOx efficiency maps.
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3.2.2 Diesel engine control-oriented model

The ICE considered in this Thesis is a 4-stroke diesel engine with a high-pressure Exhaust Gas

Recirculation (EGR) system. The main particulars of the ICE are presented in section ??, and

in Fig.3-3 the measured brake engine performance in terms of fuel efficiency and NOx emissions

can be seen. Although the main processes of a diesel engine are theoretically well understood,

first-principle models describing these processes, are either not able to provide control-oriented

models with sufficient accuracy, as most information is not available or is complicated and cannot

serve fast real-time predictive control. Therefore, the main challenge in powertrain modeling

consists in finding models that represent the highly non-linear process, such as engine-out NOx

emissions with sufficient accuracy, but still can be parameterized using only information available

on a typical commercial setup.

The brake torque of the ICE, fuel consumption, and NOx emissions were modeled according

to the manipulated input 𝑢𝑖𝑐𝑒 of the diesel engine and the controlled speed output 𝑁𝑒𝑛𝑔, which

also determine the operating point within the ICE loading envelope. The measured brake specific

fuel consumption (BSFC) and NOx emissions (BSNE) maps of the diesel engine are shown in

Fig. 3-3. Engine brake torque output 𝑄𝑖𝑐𝑒 and fuel consumption �̇�𝑓 were modeled as polynomial

functions of these inputs as follows

𝑄𝑖𝑐𝑒 = 𝜃𝑇𝑄[1 𝑢𝑖𝑐𝑒 𝑁𝑒𝑛𝑔 𝑁2
𝑒𝑛𝑔]𝑇 (3.5)

�̇�𝑓 = 𝜌𝑓 (𝑓, 𝑇𝑓 )𝜃𝑇𝑓 [1 𝑢𝑖𝑐𝑒 𝑁𝑒𝑛𝑔 𝑁𝑒𝑛𝑔𝑢𝑖𝑐𝑒 𝑢2𝑖𝑐𝑒 𝑁2
𝑒𝑛𝑔]𝑇 (3.6)

where 𝑢𝑖𝑐𝑒 is the electronic fuel index which is fed to engine ECU, 𝑁𝑒𝑛𝑔 is the rotational shaft

speed in rpm, (i.e. 𝑁𝑒𝑛𝑔 =
𝜔𝑒𝑛𝑔 ·60

2𝜋 ) , 𝜃𝑖 are matrices of regressors which are fitted to the

equations above, using experimental data. In Eq. (3.5), the terms related with rotational speed

refer to torque losses due to shaft frictions, etc, [74]. Finally, 𝜌𝑓 is the measured fuel density,

which depends on the fuel quality 𝑓 and temperature 𝑇𝑓 . The fitting accuracy of Eq. (3.5) and

Eq. (3.6) are presented in Fig. 3-4 and Fig. 3-5.

As far as the NOx emissions of the diesel engine are concerned, the modeling problem becomes

more complicated. The NOx production depends not only on the engine operating point but

also on the operation of a high-pressure Exhaust Gas Recirculation (EGR) system. However,

in the HIPPO-2 testbed, the EGR actuator is controlled by the engine Electronic Control Unit

(ECU) and it cannot be regulated with an external input signal. Besides, the control law of

the EGR system cannot be approximated due to the lack of specific measurements such as the

intake manifold air mass flow rate which is not available. As such, it was decided to be excluded

from the NOx model.

To develop the NOx model, typical model structures have been considered and tested, such
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Figure 3-4: Diesel-engine command to brake torque output mapping, Eq. (3.5).

Figure 3-5: Diesel-engine fuel consumption mapping, Eq. (3.6).
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(a) Conceptual approach for NOx model, Eq. (3.7).

(b) Diesel engine NOx emissions behavior, Eq. (3.7).

(c) Residual error of NOx emissions model, Eq. (3.7).

Figure 3-6: Diesel engine NOx emissions modeling.
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Table 3.1: Fitting results of the engine models

Model Symbol R-Square

Torque production 𝑄𝑖𝑐𝑒 0.994
Fuel consumption �̇�𝑓 0.995
NOx emissions �̇�𝑁 0.953

as polynomial models and sigmoid functions. Sigmoid functions are widely used for system

modeling, as they can approach accurately non-linear patterns, as the one observed in the NOx

emissions of the engine in Fig. 3-6a, according to the engine operation point. As it can be

observed in Fig. 3-6b, the NOx behavior follows an increasing trend in higher speed and torque

load with two local minima observed near speed 𝑁𝑒𝑛𝑔,𝑁,0 = 1050 𝑟𝑝𝑚, where the EGR system is

activated as well as above speed 𝑁𝑒𝑛𝑔,𝑁,1 = 1750 𝑟𝑝𝑚 and 𝑢𝑖𝑐𝑒,𝑁,1 = 80%. Hence, these points

were used as threshold values of the sigmoid curves. Overall, the NOx model is formed as

�̇�𝑁 = 𝑏𝑁,1[𝑎𝑁,1 − 𝑎𝑁,2𝜎1(𝑧1)]𝑢
𝑎𝑁,4

𝑖𝑐𝑒 𝑁𝑒𝑛𝑔 − 𝑏𝑁,2𝜎2(𝑧2)𝜎3(𝑧3)𝑢𝑖𝑐𝑒𝑁𝑒𝑛𝑔 (3.7)

where

𝜎𝑖(𝑧𝑖) =
1

1 + 𝑒−𝑧𝑖
is the sigmoid function

and

𝑧1 = 𝑎𝑁,3(𝑁𝑒𝑛𝑔 −𝑁𝑒𝑛𝑔,𝑁,0)

𝑧2 = 𝑎𝑁,5(𝑢𝑖𝑐𝑒 − 𝑢𝑖𝑐𝑒,𝑁,1)

𝑧3 = 𝑎𝑁,6(𝑁𝑒𝑛𝑔 −𝑁𝑒𝑛𝑔,𝑁,1)

Parameters 𝑎𝑁,𝑖 and 𝑏𝑁,𝑖 are fitted to the measured data, as it is shown in Fig. 3-6b. The fitting

R-square results of the diesel engine models is presented in Table 3.1.

3.2.3 Electric machine

Powertrain’s electric interconnection is presented in Fig. 3-2, where the EM operation charges

and discharges the battery, without consideration of any auxiliary electric power consumption

or generation. The output torque of the EM is regulated via a frequency inverter, which is

aligned between the EM and the battery. The response time of the EM torque generation can

be neglected in the context of this work since its time scale is much smaller than the controller’s

sample time.

Although electric machines are considered dynamical systems, dynamic models are rarely

used for hybrid power plant simulation and its control-orientated applications, [18]. From the

control engineering point of view, the AC motor output which is required for the controller is

the power flow, given the output torque and rotational speed as inputs. As such, in the present
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Figure 3-7: Willan’s model fitting results, compared to test data from manufacturer.

Figure 3-8: Willan’s model comparison with experimental data.

work, a quasi-static approach was followed.

Therefore, the EM torque is modeled as the following linear relation

𝑄𝑒𝑚 = 𝑐𝑒𝑚 · 𝑢𝑒𝑚 (3.8)

where 𝑢𝑒𝑚 is the torque command as a percentage of the maximum torque which is fed to the

drive and 𝑐𝑒𝑚 expresses the transformation to torque units.

A widely used quasi-static model, which connects the output rotating speed and torque with

the required power input, is the Willans approach, [18]. This model considers that the electrical

power input and the mechanical power output, have a linear dependency. The model is valid for

both motoring and generating modes. consequently, the mechanical torque output 𝑄𝑒𝑚 of the

EM was evaluated as

𝑄𝑒𝑚 · 𝜔𝑒𝑛𝑔 = 𝑒 · 𝑃𝑚 − 𝑃0, (Motoring)

𝑄𝑒𝑚 · 𝜔𝑒𝑛𝑔 =
𝑃𝑚

𝑒
− 𝑃0, (Generating)

(3.9)

where 𝑃𝑒𝑚 is the electric power and 𝑒 and 𝑃0 are the Willans model coefficients, related with

power conversion efficiency. These are considered to be constant. The Willan’s model is fitted

to HIPPO- 2 AC motor data, and then it is compared to experimental results. The data used

for fitting was derived from the manufacturer’s data-sheets. The result of Willan’s model and

its comparison with the experimental results is illustrated in Fig. 3-7 and Fig. 3-8.
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Considering the fitting results, it is clear that the model can satisfactorily predict the required

power demand, for low and high loads for both motoring and generating modes. Therefore, the

model was integrated inside the NMPC controller and was also used in simulations.

Model parameters

The model coefficients that are presented in this chapter were calculated by using data from the

testbed and the manufacturers’ test sheets. The numerical values are listed in Table B.1.

3.2.4 Battery model

The main function of battery devices in hybrid propulsion plants, is to transform and store

electrical energy in chemical form and then re-transform it back to electricity, to be used by the

electric motors, when it is required, [75]. Each battery is characterized by the nominal capacity

𝑄𝑛𝑜𝑚 and the maximum electric power that it can provide. Also, the dimensionless parameter

State of Charge (SoC) describes the remaining capacity 𝑄𝑡 of the battery, and is expressed as a

percentage or fraction of the nominal capacity

𝑆𝑜𝐶(𝑡) =
𝑄(𝑡)

𝑄𝑛𝑜𝑚
(3.10)

The battery charge, and therefore SoC, is difficult to be measured directly. Subsequently, it

is calculated indirectly, from the electric current flow as

�̇�(𝑡) = −𝐼𝑏(𝑡) (3.11)

Several battery modeling approaches have been presented in the literature. The use of partial

differential equations and a large number of unknown parameters, often leads to high compu-

tational cost and consequently, these models are not desirable for control-oriented applications

in HEV, [76]. Most of the modeling approaches refer to the linear operating region, since the

nonlinearities appear mostly outside of the battery operational limits, [77].

In the present work, two Equivalent Circuit Models (ECMs) were finally used, a quasi-static

and a dynamic approach, which are presented in Fig. 3-9. Regarding the capacity and model

parameters of the battery, they are given in respect to each power-split control system design,

where the suitable battery sizing was made.

Quasi-static model for controller design

This model was utilized as a part of the internal model of the controller for 𝑆𝑜𝐶 prediction. It

is based on the widely used equivalent circuit, which is presented in Fig. 3-9a, and was firstly

used for lead-acid batteries [18]. The ECM consists of a voltage source and a resistance. The
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𝐼𝑏

−
+ 𝑈𝑜𝑐

𝑅𝑖

+

−

𝑈𝑏

(a) Equivalent circuit of battery model for
controller design

𝐼𝑏
𝑅𝑃𝐼𝑃

−
+ 𝑉𝑂𝐶

𝐶𝑉𝑂𝐶

𝑅𝑂

𝐶𝑑

+

−

𝑉𝐿

(b) Equivalent circuit of battery model for
state of charge emulation.

Figure 3-9: Battery models used in this work.

first component refers to the open source voltage 𝑈𝑜𝑐, and represents the equilibrium potential

of the battery. Since this quantity depends on the charge level, it is parameterized using the

following affine relationship

𝑈𝑜𝑐(𝑡) = 𝑘2 · 𝑆𝑂𝐶(𝑡) + 𝑘1 (3.12)

The internal battery resistance 𝑅𝑖, takes into account several phenomena and can be evalu-

ated as a function of SoC. Thus, in HEV optimization problems, internal resistance is considered

as a constant quantity [74]. In the present work, the battery modeling is oriented for control

purposes, and therefore, the input variable is the required power 𝑃𝑏(𝑡) = 𝐼𝑏(𝑡)𝑈𝑏(𝑡) that the

battery should balance, and the output variable is the SoC of the battery. The terminal battery

voltage equation for the quasi-static ECM is calculated via the Kirchhoff voltage law

𝑈𝑏(𝑡) =
𝑈𝑜𝑐(𝑡)

2
+

√︂
𝑈2
𝑜𝑐(𝑡)

4
− 𝑃𝑏(𝑡) ·𝑅𝑖 (3.13)

And the yielding equation for battery current is

𝐼𝑏(𝑡) =
𝑈𝑜𝑐(𝑡)−

√︀
𝑈2
𝑜𝑐(𝑡)− 4𝑃𝑏(𝑡) ·𝑅𝑖(𝑡)

2𝑅𝑖
(3.14)

Finally the SoC, is calculated by combining Eq. (3.11) and Eq. (3.10). As a result, a differ-

ential equation for the state of charge is formulated

𝑑𝑆𝑂𝐶

𝑑𝑡
= − 100

𝑄𝑛𝑜𝑚
·
𝑈𝑜𝑐(𝑡)−

√︀
𝑈2
𝑜𝑐(𝑡)− 4𝑃𝑏(𝑡) ·𝑅𝑖

2𝑅𝑖
(3.15)

The operating limits of the above model, can be derived considering Eq. (3.13), [18]. For

the discharge case, the following limitation are applied: 𝑃𝑏 ≥ 0 and 𝑈𝑏 < 𝑈𝑜𝑐, leading to the

following expressions for the maximum power, the battery can provide, and the corresponding

voltage and current
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𝑃𝑏,𝑚𝑎𝑥(𝑡) =
𝑈2
𝑜𝑐(𝑡)

4𝑅𝑖(𝑡)
, 𝑈𝑏,𝑃𝑚𝑎𝑥(𝑡) =

𝑈𝑜𝑐(𝑡)

2
, 𝐼𝑏,𝑃𝑚𝑎𝑥(𝑡) =

𝑈𝑜𝑐(𝑡)

2𝑅𝑖(𝑡)
(3.16)

In the case of control schemes including battery cell components, additional constraints

regarding the battery function are applied, such as rate of SoC alteration, maximum current,

and voltage, etc., [76, 78]. These constraints refer to battery health management, and are usually

defined by the manufacturer. In this work, the battery component is virtual, and therefore, no

further analysis is conducted.

Battery model utilization

The quasi-static battery model was integrated inside the NMPC controller. The reason is,

that the only output variable of importance considering the battery, for control purposes, is the

battery 𝑆𝑜𝐶. As for both models, this parameter evolution is almost the same, and the prediction

horizon will be a maximum of 10 seconds, the quasi-static approach returns an accurate result.

Moreover, the quasi-static model is contains only one differential equation and one algebraic

loop. However, there are limitations, as compared to the actual battery behavior.

To generate more realistic conditions, a more complicated model than the one for controller

design was used, from [79], which is presented in Appendix A. The virtual battery component

is considered to be charged/discharged by the electrical energy that is produced/consumed by

the EM of the HIPPO-2 testbed. The battery state of charge is simulated during the experi-

ments. The selection of different battery models for SOC simulation and controller design was

intentional, to evaluate the controller performance with modeling inaccuracies.

3.3 Conclusion

In this chapter, the powertrain modeling methodology and fitting results were presented. Each

subsystem’s outputs, i.e. engine torque and speed, fuel consumption and NOx emissions, electric

motor torque, and electric power flow, as well as battery state of charge were modeled. First

principle and data-based models were fitted to powertrain measurements and the component

interconnection was identified. As inputs, the manipulated variables of the powertrain were

primarily used, which are the torque production commands of the engine and the electric motor,

and the shaft rotational speed as they determine the operating point within the engine loading

envelope. Fitting results showed that the proposed approach can approximate accurately the

dynamical system behavior during transient loading, as well as patterns that were observed

within the measured data. The powertrain models will be used for control system design and

powertrain simulation. In the next chapter, the propeller disturbance modeling and estimation

are explained.
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Chapter 4

Load Emulation and Observer Design

for Propeller

In the previous chapter, the control-oriented modeling of the ship power plant was presented.

The models of the hybrid powertrain are going to be used for the controller design process. This

chapter focuses on the modeling of ship and propeller dynamics and also on the estimation of

propeller disturbance parameters that are required for optimal control.

This chapter aims to employ a parametric propulsion plant model that fits the experimental

facility to apply propeller loading considering several vessel operating scenarios and conditions.

For this, the main propulsion plant components and their dynamic interaction are taken into

account. Also, a propeller observer is designed and implemented to quantify the propeller load

characteristics, as acting disturbance, which are required for the optimal power-split calculation,

without knowledge of the uncertain propulsion plant parameters.

4.1 Propulsion Plant Model

As it can be seen in Fig 4-1, propulsive load variation, induced by ship operation and environ-

mental conditions, affects the overall system performance, as it can lead to engine overloading or

cause oscillating behavior of the propulsion powertrain. As such, a realistic simulation environ-

ment of the ship propulsion plant is a prerequisite for the design and evaluation of the control

system. The modeling of the propulsion system of the ship has to be well defined and pro-

vide information for the transient effects during system operation as well as the influence from

external-environmental disturbances, such as sea waves. Moreover, optimal control systems, also

require reliable disturbance models and information, to perform an accurate prediction for the

system operation within a short future time horizon.

HIPPO-2 experimental facility is a full-scale prototype hybrid diesel-electric marine power-

train, which could potentially be fitted in a small vessel, as the main or one of the main propeller

55
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Figure 4-1: Subsystem interaction and modeling approach for the parallel hybrid propulsion
plant considered in this Thesis.

prime movers, e.g a port tug vessel. As such, a model for the surge motion of a similar ship

(shown in Fig. 4-2) was employed to perform emulation of the propeller load demand during ship

maneuvering and cruising conditions under wave disturbance. The importance of considering

the engine-propeller-ship-environment interaction in propulsion controller design procedure is

highlighted in [13]. The aim is to generate realistic loading conditions for the powerplant, to

perform control system tuning and robustness evaluation in cases such as

∙ Engine overloading

∙ Increased transient load demand due to fast accelerations

∙ Propeller load fluctuations due to wave disturbance

For this purpose, the basic principles of ship propulsion were considered.

The propulsion plant model includes the shafting components to calculate the delivered

power to the propeller, the propeller performance characteristics, the ship dynamics as well

as an environmental model for the wave disturbance which affects the mean and the instant

propulsion plant equilibrium point. The principal vessel particulars, the propulsion plant model

parameters as well as the wave spectral characteristics are summarized in Table B.2.

4.1.1 Gearbox and shaftline

The gearbox reduction ratio 𝑖𝑔𝑏 projects on the engine side (𝑙𝑜𝑎𝑑/𝑒𝑛𝑔) the torques 𝑄𝑖, the rotat-

ing speeds 𝜔𝑖 and the inertias 𝐽𝑖 of the connected parts on the propeller shaft side (𝑠ℎ𝑎𝑓𝑡/𝑝𝑟𝑜𝑝)
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Figure 4-2: The tug vessel considered in this work, model DAMEN Stun Tug 1205 from Damen
Shipyards Group (NL), 𝐿 = 13.8 𝑚, ∆ = 58 𝑡.

as follows

𝑄𝑙𝑜𝑎𝑑 =
𝑄𝑠ℎ𝑎𝑓𝑡

𝑛𝑔𝑏𝑖𝑔𝑏
(4.1a)

𝜔𝑒𝑛𝑔 = 𝑖𝑔𝑏𝜔𝑠ℎ𝑎𝑓𝑡 (4.1b)

𝐽𝑙𝑜𝑎𝑑 =
𝐽𝑠ℎ𝑎𝑓𝑡
𝑖2𝑔𝑏

(4.1c)

The gearbox efficiency 𝑛𝑔𝑏 =
𝑄𝑠ℎ𝑎𝑓𝑡

𝑄𝑙𝑜𝑎𝑑
= 𝑄𝑙𝑜𝑎𝑑−𝑄𝑙𝑜𝑠𝑠

𝑄𝑙𝑜𝑎𝑑
was considered from [80], where the gearbox

losses are calculated as

𝑄𝑙𝑜𝑠𝑠 = 𝛼𝑔𝑏 + 𝑏𝑔𝑏𝜔𝑒𝑛𝑔 + 𝑐𝑔𝑏𝑄𝑙𝑜𝑎𝑑 (4.2)

and the shaft line efficiency was evaluated from [81] as

𝑛𝑠𝑙 = 1− 𝑏𝑠𝑙𝜔𝑠ℎ𝑎𝑓𝑡 +
𝛼𝑠𝑙

1− 𝑏𝑠𝑙
(𝑏𝑠𝑙𝜔𝑠ℎ𝑎𝑓𝑡 − 𝜔2

𝑠ℎ𝑎𝑓𝑡) (4.3)

The total mechanical efficiency of the shaftline is calculated as 𝑛𝑚 = 𝑛𝑔𝑏𝑛𝑠𝑙 and the propeller

torque is transmitted to the engine as

𝑄𝑙𝑜𝑎𝑑 =
𝑄𝑝𝑟𝑜𝑝

𝑛𝑚𝑖𝑔𝑏
(4.4)

4.1.2 Propeller

A ducted, 4-blade, fixed pitch Wageningen Ka 4-40 with Nozzle 19A propeller with a pitch to

diameter ratio 𝑃
𝐷 = 1.2 was considered, which is commonly used in small size harbor tugs. The

propeller model was obtained from [82].

The propeller performance characteristics, torque demand 𝑄𝑝 and thrust production 𝑇𝑝, are
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Figure 4-3: Wageningen Ka4-70 P/D=1.2 ducted propeller with Nozzle 19A 𝐶𝑄, 𝐶𝑇 coefficients.
𝐶𝑇𝑛 coefficient shows the thrust fraction that is produced from the duct itself.

based on the propeller advance angle 𝛽 at 70% of the propeller radius, which is defined as

𝛽 = arctan
𝑉𝑎

0.7𝜋𝑛𝑝𝐷
(4.5)

where 𝑉𝑎 is the propeller effective wake velocity, 𝑛𝑝 is the propeller rotational speed (in rps) and

𝐷 the propeller diameter. 𝑉𝑎 is the propeller inflow velocity which is affected by the ship hull

shape, therefore it differs from the ship speed 𝑉𝑠 by the effective wake fraction 𝑤, as

𝑉𝑎 = (1− 𝑤)𝑉𝑠 + 𝑣𝑤𝑑 (4.6)

where 𝑣𝑤𝑑 is the wake field speed disturbance due to waves from Eq. (4.14).

As such the torque and thrust of the propeller are calculated as follows

𝑇𝑝 =
𝜋

8
𝐶𝑇𝜌[𝑉 2

𝑎 + (0.7𝜋𝑛𝑝𝐷)2]𝐷2 (4.7a)

𝑄𝑝 =
𝜋

8
𝐶𝑄𝜌[𝑉 2

𝑎 + (0.7𝜋𝑛𝑝𝐷)2]𝐷3 (4.7b)

𝐶𝑇 = 𝐶𝑇 (𝛽) and 𝐶𝑄 = 𝐶𝑄(𝛽) coefficients are propeller specific, based on the propeller advance

angle 𝛽, as shown in Fig. 4-3, and are derived from Fourier series models fitted to the propeller

open water experimental results, such as in [83]. The actual torque that is absorbed from the

propeller shaft depends on the relative rotative efficiency 𝜂𝑟 as

𝑄𝑝𝑟𝑜𝑝 =
𝑄𝑝

𝜂𝑟
(4.8)

The propeller inertia 𝐽𝑝𝑟𝑜𝑝 consists of the rotating mass inertia 𝐽𝑀 plus the hydrodynamic mass

inertia 𝐽𝑃 , as calculated in [82, 84].
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4.1.3 Ship dynamics

The propeller loading model depends on the ship advance speed; therefore the ship longitudinal

motion was taken into account. The vessel surge dynamics for the ship acceleration are calculated

𝑑𝑉𝑠

𝑑𝑡
=

𝑁𝑝𝑇𝑝 − 𝑅𝑡
(1−𝑡) −𝑅𝑤𝑑 − 𝐹𝐵𝑃

𝑀𝑑𝑖𝑠𝑝 + 𝑀ℎ𝑦𝑑
(4.9)

where 𝑀𝑑𝑖𝑠𝑝 is the ship displacement and 𝑀ℎ𝑦𝑑 is the added hydrodynamic mass of the ship.

The above equation depends on the following forces

∙ 𝑁𝑝𝑇𝑝 is the propellers’ thrust force, where 𝑁𝑝 is the number of fitted propellers, 𝑇𝑝 is the

thrust contribution of each propeller.

∙ 𝑅𝑡 is the total ship resistance, which consists of the calm water frictional and wave-making

resistance 𝑅𝑡 = 𝑅(𝑉𝑠), 𝑡 is the thrust deduction factor due to hull and propeller interaction.

∙ 𝑅𝑤𝑑 is the added mean resistance force due to adverse weather conditions and wave dis-

turbance, which is calculated from Eq. (4.15).

∙ 𝐹𝐵𝑃 is the external force that acts on the ship during tug operations.

4.1.4 Wave disturbance

For more realistic simulation scenarios, irregular wave disturbance was considered. The wave

disturbance affects the propulsion plant in two ways. The wave orbital motion changes propeller

inflow velocity, as presented in Eq. (4.6) and on the other hand a mean wave resistance is

considered to act on the hull due to the additional water pressures of the waves acting on the

hull, Eq. 4.9.

Irregular waves are formed from 𝑁 contributing regular monochromatic waves. As such,

using the superposition principle, the water surface elevation is calculated

𝜁(𝑡) =

𝑁∑︁
𝑖=1

𝜁𝑖 sin(𝜔𝑖𝑡 + 𝜖𝑖) (4.10)

where 𝜁𝑖, 𝜔𝑖 and 𝜖𝑖 are the amplitude, the frequency, and the phase of each contributing regular

wave component. A snapshot of the water surface elevation is presented in Fig. 4-4. Assuming

deep seawater, the wavenumber 𝑘𝑖 is given

𝑘𝑖 =
𝜔2
𝑖

𝑔
(4.11)

so the ship moving reference frame with encounter angle 𝜒 is excited by the waves with encounter
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Figure 4-4: Snapshot of water free surface elevation with one-directional irregular waves, 𝜒 =
180𝑜, generated with GNC toolbox [85].

Figure 4-5: Normalized added resistance coefficient for head sea considered in this work.

frequency 𝜔𝑒𝑖

𝜔𝑒𝑖 = 𝜔𝑖 − 𝑘𝑖𝑉𝑠 cos(𝜒) (4.12)

At depth ℎ𝑝𝑟𝑜𝑝, where the propeller hub is immersed, the water orbital velocity is

𝜁𝑝(𝑡) =

𝑁∑︁
𝑖=1

𝜁𝑖𝜔𝑒𝑖 cos(𝜔𝑒𝑖𝑡 + 𝜖𝑖)𝑒
−ℎ𝑝𝑟𝑜𝑝𝑘𝑖 (4.13)

Finally, the propeller inflow velocity disturbance 𝑣𝑤𝑑 is evaluated as

𝑣𝑤𝑑(𝑡) = −𝜁𝑝 cos(𝜒) (4.14)

The added resistance can be calculated using experimental or simulation data for the ship

seakeeping response at each frequency that contributes to the irregular wave, as shown in Fig. 4-
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5. These experimental data are from [86] and are scaled to the ship that is studied here with the

Froude similarity principle ( 𝑉𝑠√
𝑔𝐿

fraction is kept constant). Using the superposition principle

𝑅𝑤𝑑(𝑡) =
𝑁∑︁
𝑖=1

𝑅𝑤𝑑,𝑖(𝑉𝑠, 𝜁𝑖,
𝑔

𝜔𝑖
) (4.15)

The characteristics of the regular waves that contribute to the irregular wave formation are

selected based on a specific wave spectrum, where the sea state is defined from the significant

wave height 𝐻𝑠 (that is the mean value of the 1/3 highest free surface elevation observations)

and the peak frequency 𝜔𝑝, which is the wave frequency at which the maximum spectral density

occurs. Like sea state, wave spectrum determines, in ocean engineering science, the relation

between 𝐻𝑠 and 𝜔𝑝 that are observed at a specific sea area. The value of 𝐻𝑠 considered in this

work corresponds to a sea state condition that is at the upper limit of the sea state that a ship

of this size will face during operation.

Remark: In the above propeller and environmental disturbance model, many assumptions

have been made and many parameters, such as the ship 6-DOF motions, the propeller immersion

or the wind disturbance have not been taken into account. However, the scope of the above model

is to generate a control-oriented disturbance scenario, for advanced propulsion control systems

development and evaluation. An advanced approach was followed, as compared to the studies

that have been made so far, in the related literature of marine powertrain control, which consider

simplistic environmental models, such as white noise or monochromatic sinusoidal waves. Engine

control systems design is very critical for propulsion plant performance. Sea state and adverse

weather conditions can excite the propulsion powertrain system in a wide range of frequencies and

above their operational limits as well. Therefore, the advantage of irregular waves simulation, as

compared to regular waves oscillating at only one frequency, is that they facilitate the design and

evaluation of the control system architecture and tuning using realistic engine loading scenarios.
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4.2 Propeller Load Observer

One of the critical questions that always needs to be answered in marine propulsion plant control

is how to quantify the propeller load that needs to be satisfied by the ship power plant in an

optimal fashion. The underlying physics and the number of systems that interact in a complex

and interconnected manner, make the problem difficult to be explicitly solved. The reason is that

ship operation is performed mainly in off-design conditions, due to environmental disturbances,

operational conditions, system aging, etc., most of which cannot be measured or quantified.

Optimal control methodologies require full quantitative knowledge of the system operating

parameters and conditions, which proves to be challenging in complex and uncertain systems,

such as a marine propulsion plant. The knowledge of the propeller load disturbance is important

for the control system equilibrium. In the same framework, to achieve high vessel control per-

formance and perform energy management, all propulsion system variables that are considered

in the problem formulation should be available. In practice, this is often difficult due to reasons

such as the inability to place a sufficient number of sensors, the high cost of specialized sensors

installation, the uncertainties regarding the propulsion plant, propeller, and ship resistance char-

acteristics over time. On the other hand, observer signals can be more accurate, less expensive

to produce, and more appropriate than measured signals, reducing the phase lag inherent in the

sensor. In general, observers offer an inviting alternative to adding new sensors or upgrading

existing ones. In some cases, the observer can be used to enhance system performance. EKF

has been recently the subject of extensive research and application, particularly in the area of

autonomous or assisted navigation.

Although propeller load can be measured or calculated using Eq. (4.1)-(4.9), these methods

are either unreliable or cannot serve fast real-time control. Taking into account the practical

issues, as well as the fact that modeling errors cannot guarantee an offset-free NMPC control, in

this work, the use of an extended state observer (ESO) for 𝑄𝑙𝑜𝑎𝑑 disturbance and propeller law

coefficient 𝑐𝑝𝑟𝑜𝑝 estimation is proposed. In [87], a propeller load observer is proposed to estimate

the propeller torque using the engine speed and engine torque measurements. A load torque

observation scheme based on nonlinear parameter estimation using adaptive control techniques

is also presented. Moreover, in [88], a generalized form of Extended State Observer (ESO) is

proposed regarding non-integral form systems. In [89, 90], methods for state and disturbance

estimation are presented, to compensate modeling inaccuracies and guarantee offset-free model-

based control with satisfying transient behavior.

Regarding the value of the propeller load disturbance, as the engine speed elevates, it cannot

be considered constant within the prediction horizon. According to the propeller law, propeller
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Figure 4-6: Schematic diagram with propeller observer.

power demand 𝑃𝑝𝑟𝑜𝑝 is proportional to the cubic power of rotational speed 𝑁𝑠ℎ𝑎𝑓𝑡

𝑃𝑝𝑟𝑜𝑝 = 𝑄𝑝𝑟𝑜𝑝𝜔𝑠ℎ𝑎𝑓𝑡 = 𝑐𝑝𝑟𝑜𝑝𝑁
3
𝑠ℎ𝑎𝑓𝑡 ⇔ (4.16)

𝑄𝑝𝑟𝑜𝑝 =
60

2𝜋
𝑐𝑝𝑟𝑜𝑝𝑁𝑠ℎ𝑎𝑓𝑡|𝑁𝑠ℎ𝑎𝑓𝑡| (4.17)

This proportional parameter 𝑐𝑝𝑟𝑜𝑝 is vessel specific and changes over time depended on ship

loading conditions, environmental conditions, aging, etc. However, it is reliable to consider that

𝑐𝑝𝑟𝑜𝑝 remains constant within the prediction horizon. As such, in this section, the Extended

State Observer (ESO) formulation is utilized to develop a disturbance model and an Extended

Kalman Filter (EKF) is designed for non-linear parameter estimation to complement online

NMPC control.

4.2.1 Extended state space model formulation

On the engine side of the gearbox, 𝑄𝑝𝑟𝑜𝑝 and 𝑁𝑠ℎ𝑎𝑓𝑡 are expressed as 𝑄𝑒𝑛𝑔 and 𝑁𝑒𝑛𝑔 according to

Eq. (4.1). Here, function 𝑄𝑙𝑜𝑎𝑑 = 𝑓(𝑁𝑒𝑛𝑔) =
60

2𝜋
𝑐𝑙𝑜𝑎𝑑𝑁

2
𝑒𝑛𝑔, which describes the propeller law, has

varying parameter 𝑐𝑙𝑜𝑎𝑑 that changes with time, loading condition of ship and environmental dis-

turbance. As such, the system of Eq. (3.4) has to be considered in order to design a disturbance

observer using the propulsion plant rotational dynamics, such that 𝑄𝑙𝑜𝑎𝑑 = 𝑓(𝑁𝑒𝑛𝑔, 𝑢𝑖𝑐𝑒, 𝑢𝑒𝑙).

Initially, it is needed to incorporate 𝑄𝑙𝑜𝑎𝑑 in the system state equations. The system described
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in Eq. (3.4) can be written in a state-space form as follows

�̇� = 𝐴𝑥 + 𝐵𝑢𝑢 + 𝐵𝑑𝑑; 𝑦 = 𝐶𝑥 (4.18)

where 𝑥 = 𝜔𝑒𝑛𝑔, 𝑢 =

⎡⎣𝑄𝑖𝑐𝑒

𝑄𝑒𝑚

⎤⎦, 𝑑 = 𝑄𝑙𝑜𝑎𝑑, 𝐴 = [0], 𝐵𝑢 =
[︁

1
𝐽𝑠𝑦𝑠𝑡𝑒𝑚

1
𝐽𝑠𝑦𝑠𝑡𝑒𝑚

]︁
, 𝐵𝑑 =

[︁
− 1

𝐽𝑠𝑦𝑠𝑡𝑒𝑚

]︁
and

𝐶 = [1].

As 𝑑 is unknown, the state space model has to be augmented by adding an extended variable

𝑥𝑛+1 = 𝑑. As such the state space matrices of the augmented system are

˙̄𝑥 = 𝐴�̄� + �̄�𝑢𝑢; 𝑦 = 𝐶�̄� (4.19)

where variables

�̄� =

⎡⎣𝑥
𝑑

⎤⎦ ; 𝑦 = 𝑥

and matrices

𝐴 =

⎡⎣𝐴 𝐵𝑑

0 0

⎤⎦ ; �̄� =

⎡⎣ 𝐵𝑢

01𝑥2

⎤⎦ ; 𝐶 =
[︁
𝐶 0

]︁
System Eq. (4.19) is observable and can be used for observer design.

4.2.2 Disturbance model

The propeller torque load can be calculated from Eq. (4.7b). In this equation, however, it

becomes necessary to know both the 𝐶𝑄 coefficient and the propeller inflow velocity 𝑉𝑎. Equa-

tion (4.7b) can be rewritten in the following form

𝑄𝑝 = 𝐾𝑄𝜌𝐷
5𝑛𝑝|𝑛𝑝| =

𝐾𝑄𝜌𝐷
5

4𝜋2
𝜔𝑠ℎ𝑎𝑓𝑡|𝜔𝑠ℎ𝑎𝑓𝑡| (4.20)

where

𝐾𝑄 =
𝜋

8
𝐶𝑄

[︃(︂
𝑉𝑎

𝑛𝑝𝐷

)︂2

+ (0.7𝜋)2

]︃
In this formula, the propeller torque calculation is based on the propeller rotational speed, which

is available from rotational speed sensors. As such, by estimating the 𝐾𝑄 = 𝑓(𝑛𝑝(𝑡), 𝑉𝑎(𝑡))

coefficient, the propeller load torque can be calculated without the knowledge of any further

parameter from the propulsion plant. Thus, Eq. (4.20) is used instead of Eq. (4.7b).

The control model of the plant, described in Eq. (3.4), is rewritten using Eq. (4.20) and the

unknown parameter 𝜃, as defined in [87], as follows

�̇�𝑒𝑛𝑔 =
1

𝐽𝑠𝑦𝑠𝑡𝑒𝑚
(𝑄𝑖𝑐𝑒 + 𝑄𝑒𝑚 − 𝜃𝑖−3

𝑔𝑏 𝜔𝑒𝑛𝑔|𝜔𝑒𝑛𝑔|) (4.21)
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where

𝜃 =
𝐾𝑄𝜌𝐷

5

4𝜋2
(4.22)

Using the ESO formulation, unknown parameter 𝜃 is considered as disturbance input 𝑑 = 𝜃

and 𝑑 = 0 is the state equation of the augmented system that has to be estimated. Also 𝑑

includes any modeling inaccuracies. The control plant model presented in Eq. (4.21) can be

written using augmented state vector �̄� = [𝑥, 𝑑]𝑇 , input 𝑢, output 𝑦, including process noise 𝑤,

and measurement noise 𝑣, as follows

�̄�𝑘+1 = 𝑓(�̄�𝑘, 𝑢𝑘) + 𝑤𝑘 , 𝑤𝑘 ∼ (0, 𝑄𝑘)

𝑦𝑘 = ℎ(�̄�𝑘, 𝑢𝑘) + 𝑣𝑘 , 𝑣𝑘 ∼ (0, 𝑅𝑘)
(4.23)

where �̄� =

⎡⎣𝑥
𝑑

⎤⎦, 𝑢 =

⎡⎣𝑄𝑖𝑐𝑒

𝑄𝑒𝑚

⎤⎦, 𝑥 = 𝜔𝑒𝑛𝑔, 𝑑 = 𝜃 and 𝑦 = 𝜔𝑠ℎ𝑎𝑓𝑡.

4.2.3 Observation scheme

For the disturbance estimation, an EKF is designed. The EKF method is a two-step process: the

first step predicts the state of the system, and the second step uses the measurements to refine

the estimate of the system state. The EKF operates by propagating the mean and covariance of

the state through time. The algorithm computes the state estimates �̂� of the nonlinear system

using state transition and measurement functions.

Regarding Eq. (4.23), 𝑓 is a nonlinear state transition function that describes the evolution

of states ˆ̄𝑥 from one time step to the next. The measurement function ℎ relates �̄� to the mea-

surements 𝑦 at time step 𝑘. 𝑤 and 𝑣 are the zero-mean, uncorrelated process and measurement

noises, respectively. The noise terms in both equations are additive. �̄�𝑘 is linearly related to

the process noise 𝑤𝑘−1, and 𝑦𝑘 is linearly related to the measurement noise 𝑣𝑘. The two-step

Extended Kalman Filter observation algorithm includes the estimation step

ˆ̄𝑥−𝑘 = 𝑓(ˆ̄𝑥𝑘−1, 𝑢𝑘−1) state estimation

𝑃−
𝑘 = 𝐿𝑎𝑘𝑃𝑘−1𝐿𝑎

𝑇
𝑘 + 𝐿𝑏𝑘𝑄𝑘−1𝐿𝑏

𝑇
𝑘 error covariance

followed by the correction step

𝐾𝑘 = 𝑃−
𝑘 𝐿𝑐𝑇𝑘 (𝐿𝑐𝑘𝑃

−
𝑘 𝐿𝑐𝑇𝑘 + 𝐿𝑑𝑘𝑅𝑘𝐿𝑑

𝑇
𝑘 )−1 Kalman gain

ˆ̄𝑥𝑘 = ˆ̄𝑥−𝑘 + 𝐾𝑘(𝑦𝑘 − ℎ(ˆ̄𝑥−𝑘 )) estimate update

𝑃𝑘 = (𝐼 −𝐾𝑘𝐿𝑐𝑘)𝑃−
𝑘 error covariance update

where

𝐿𝑎 =
𝜕𝑓

𝜕𝑥

⃒⃒⃒⃒
^̄𝑥

𝐿𝑏 =
𝜕𝑓

𝜕𝑤

⃒⃒⃒⃒
^̄𝑥

𝐿𝑐 =
𝜕ℎ

𝜕𝑥

⃒⃒⃒⃒
^̄𝑥

𝐿𝑑 =
𝜕𝑓

𝜕𝑣

⃒⃒⃒⃒
^̄𝑥
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It is noted that the "-" superscript denotes the estimates from the previous time instant which

are a priori known. All measurements before (but not including) time 𝑘 are available for use in

an estimate of 𝑥𝑘 and a priori estimation of �̂�𝑘 can be calculated. 𝐼 is the identity matrix. As

it can be seen from the EKF algorithm, given the state transition and measurement functions,

𝑄𝑘 and 𝑅𝑘 are the corresponding noise covariances that are used as tunning parameters of the

observer. The input 𝑢 that is fed to the Kalman filter is 𝑢 = �̂� = [�̂�𝑖𝑐𝑒 �̂�𝑒𝑚]𝑇 , where �̂�𝑖𝑐𝑒,

�̂�𝑒𝑚 are the torque outputs of the engine and the EM calculated using NMPC commands and

Eq. (3.5) and Eq. (3.8).

4.2.4 Propeller law parameter calculation and utilization

Using the above method to gather the disturbance estimation, 𝜃 is used for the propeller law

parameter using Eq. (4.24).

𝑐𝑙𝑜𝑎𝑑 =
𝑐𝑝𝑟𝑜𝑝
𝑖3𝑔𝑏

=
2𝜋𝜌𝐷5

603𝑖3𝑔𝑏
�̂�𝑞 =

8𝜋3

603𝑖3𝑔𝑏
𝜃 (4.24)

The propeller law parameter value is utilized in run-time in order to solve the online op-

timization problem. In more detail, at sampling instant 𝑘 parameter 𝑐𝑙𝑜𝑎𝑑 is calculated and

assuming that 𝑐𝑙𝑜𝑎𝑑 is kept constant within a future prediction window 𝑘...𝑘 + 𝑁 , within which

a model-based controller must calculate future 𝑥[𝑘 + 𝑖|𝑘], 𝑖 = 1...𝑁 . As such, it is needed to

estimate resulting propeller torque as follows

𝑄𝑙𝑜𝑎𝑑[𝑘 + 𝑖|𝑘] =
60

2𝜋
𝑐𝑙𝑜𝑎𝑑[𝑘]𝑁𝑒𝑛𝑔[𝑘 + 𝑖|𝑘]2 (4.25)

instead of assuming that 𝑄𝑙𝑜𝑎𝑑[𝑘 + 𝑖|𝑘] = �̂�𝑙𝑜𝑎𝑑[𝑘].

4.3 Simulation Results

To demonstrate the engine-propulsion plant-environment dynamic interaction and evaluate the

observer performance, the model of the propulsion plant was coupled with the engine model, so

that the engine, in speed control mode, serves the propeller load demand and follow the desired

engine speed reference. The main ship particulars, as well as the propulsion model parameters,

are presented in Table B.2. In Fig. 4-7 the simulation results of a fast and a slow engine and

Table 4.1: Design parameters of EKF propeller observer

Parameter Symbol Value

EKF Scheme - Model
State noise covar. matrix 𝑄[𝑘] 7 10−4

Input noise covar. matrix 𝑅[𝑘] 5
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ship transient acceleration in waves are presented.

(a) Engine performance during slow and fast ship acceleration with wave disturbance.

(b) Engine loading envelope and propeller load at engine crankshaft during slow and fast ship acceleration
with wave disturbance, compared to the propeller load curve with 15% power margin due to bad weather.

(c) Engine power-ship speed phase in slow and fast ship acceleration with wave disturbance.

Figure 4-7: Engine-propulsion plant interaction in slow and fast ship acceleration with wave
disturbance.
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(a) Propeller torque, speed and torque coefficient 𝐾𝑄 estimation.

(b) Propeller law coefficient 𝑐𝑙𝑜𝑎𝑑 at the engine side calculation.

Figure 4-8: Propeller observer performance in fast and slow ship acceleration, with wave distur-
bance.

Fig 4-7a shows the resulting engine load, as the engine speed follows the desired speed

reference in slow and fast acceleration scenarios. In Fig. 4-7b the engine loading in respect

to the engine operating envelope is shown. Regarding the transient system response, it can
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be noted from Fig. 4-7b and 4-7 that the ship speed affects the propeller inflow speed, and

thus the propulsion plant loading. In fast transients, propeller load is increased up to 30%

as compared to the propeller law (power is proportional to the cube of the rotational engine

speed, 𝑃 = 𝑐𝑁3
𝑒𝑛𝑔), where 𝑐 is constant for static and steady-state operation points. Thus,

the 𝑐 parameter is increased during transient loading or in adverse weather conditions, as it is

presented in Fig. 4-7b. Besides, it can be seen in Fig. 4-7a that the propeller load fluctuates

around an increased mean value. The wave disturbance results in increased engine power and

fluctuations of the engine and vessel speeds as well as decreased vessel speed due to the added

resistance, as it can be observed in the engine operating envelope and the engine power-vessel

speed phase diagram in Fig. 4-7b.

The Extended Kalman Filter estimation results of the propeller rotational speed and torque

during slow and fast acceleration (with wave disturbance) are shown in Fig. 4-8. As it can be

seen, the observed values follow the course of the corresponding real values with small error

and small time shift. A very good performance of the observer is achieved in transient and

steady-state operation. Particularly, in Fig. 4-8b it can be seen that the estimation propeller

load parameter follows the actual value, which fluctuates due to the wave disturbance. During

the engine acceleration, an overshoot can be observed. Finally, as it can be noted from the

results, the mean value of the propeller law parameter 𝑐𝑙𝑜𝑎𝑑 remains constant, even though

propeller rotational speed and load elevate. As such, it can be utilized to perform calculation

and prediction of the future propeller load, based on rotational speed elevation.

4.4 Conclusion

In this chapter, the emulation and estimation of the propeller load and its characteristics were in-

vestigated. At the initial stage, the ship surge motion was modeled, based on the basic principles

of ship propulsion. The purpose was to use a realistic emulation model during control system

development and experimental testing, to evaluate the interaction of the system controller-

powertrain-propulsion plant-environment. In the second step, the propeller load characteristics

should be estimated, as the calculation of the propeller load demand is essential for the system

equilibrium. The approach was based on the propeller law principle (power is proportional to

the cubic power of shaft speed).

Through simulations in cases of slow and fast accelerations, it was shown that the modeling

adequately corresponds to the actual sizing and operating conditions of a small tug vessel and the

observer can respond efficiently, giving accurate estimates, in steady-state and transient loading

conditions. The observer was used to develop and implement the predictive control schemes and

provide online information regarding the disturbance response.

This chapter responded to research questions 1 and 2.
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Chapter 5

Transient Operational Profile

Identification and Prediction

In the previous chapter, the emulation and identification of propeller load characteristics

were investigated. Load demand can be calculated using the engine rotational speed and the

propeller law coefficient, which is estimated and can be considered as constant within a short

time horizon. In this chapter, the focus is on the identification and prediction of the operator’s

reference input during ship cruising and maneuvering. The first step is to recognize typical

marine loading profiles, so as to perform the design and performance evaluation of the EMS.

Secondly, a prediction model for the operator’s speed reference input is developed, which utilizes

past operator’s inputs and its output will be provided as online information to the optimization

algorithm. These objectives were achieved, following a data-based identification methodology

and using Machine Learning (ML) techniques.

5.1 Marine Transient Profile Identification

Marine driving cycles have not been developed and investigated to the same extent as automotive

driving cycles. There is not sufficient literature about marine diesel engine loading cycles that

can be used for the scientific research that is relative to the objective of this Thesis. Therefore,

concepts of automotive driving cycle analysis are examined and taken into consideration for the

identification of marine loading cycles.

A driving cycle, or driving schedule, is represented by vehicle speed versus time. Some exam-

ples are the European certification driving cycle for light-duty vehicles and the New European

Driving Cycle (NEDC), which are used for test approval that the vehicle manufacturers follow

the legislation. Driving cycles are important components for evaluating vehicles and have a

fundamental role in vehicle design, since they affect the cost, lifetime performance, fuel con-

sumption, and pollutant emissions of vehicles, [91]. Driving cycles have been widely used to

assess exhaust gas emissions of vehicles, [92], but they are also used to evaluate different control

71
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Figure 5-1: Silhouette score graph

strategies for vehicles, [93, 94], as well as, during vehicle design and sizing of components, [95].

There are several approaches to generate new driving cycles that are representative for a certain

region of interest. There have been many proposals of new driving cycles that are representative

of a certain region of interest in [96, 97]. Recently, pattern recognition in time-series using data

analytics and machine learning methodologies has been investigated, [98, 99].

This section presents the generation of standard (or representative) load cycles using concepts

of automotive driving cycle analysis and machine learning methods such as unsupervised pattern

recognition in time-series data. This is achieved by finding and grouping similar load profiles

and, then, a proper averaging procedure is applied to create representative templates (cycles),

[100]. The main aspects of the proposed methodology can be summarized to

∙ dimensionality reduction

∙ similarity matching

∙ hierarchical clustering

∙ prototype creation

using time-series averaging methods. The methodological approach is graphically presented in

Fig. 5-1.

5.1.1 Preprocessing of data

Data available from the legacy of the Laboratory (LME/NTUA), measured at 200 Hz from

marine engines during maneuvering and before the stop of the vessel, for different vessels, with

different engines were utilized. Data contain 638 time-series in total. Measurements include

∙ Engine Speed (𝑁𝑒𝑛𝑔)

∙ Engine Speed Reference (𝑁𝑟𝑒𝑓 )

∙ Electronic Fuel Index (𝑢𝑖𝑐𝑒)
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The measurements are normalized signal values. A filter with cut-off frequency 2 Hz was applied

on raw data.

The first step of preprocessing is dimensionality reduction. From the correlation analysis

between each pair of variables, which is calculated and presented in Table 5.1, it can be seen

that the correlation between each pair of variables is higher than 0.8, so it is concluded that all

variables are highly correlated with each other and their representative variable is selected to

be the engine speed reference, which is the most reliable and easily implementable variable in

simulation and experiments.

Table 5.1: Correlation matrix for each pair of measured variables.

𝑁𝑒𝑛𝑔 𝑁𝑟𝑒𝑓 𝑢𝑖𝑐𝑒

𝑁𝑒𝑛𝑔 1 0.8706 0.8997
𝑁𝑟𝑒𝑓 0.8706 1 0.9759
𝑢𝑖𝑐𝑒 0.8997 0.9759 1

Also, time-series with a percentage of empty cells greater than 4%, a relative difference from

the average length greater than 2% or the ones that have only zero values were eliminated

from the process. The remaining time-series were cut-off at average length and any empty cells

were replaced with the value of the previous measurement. Additionally, time-series with only

zero values are excluded because they do not offer any valuable information for the clustering

procedure. After all, the resulted dataset contains 584 time-series out of 638 that were initially

before preprocessing; 8.46% of the initial time-series data is excluded from the analysis.

The preprocessing process resulted in time-series with a length of 17 ·104 samples each. Most

algorithms in literature need extreme processing time and computational resources to handle

such datasets. Therefore, resampling at the frequency of 2 Hz, was performed before analysis

can take place that will reduce the computational effort without causing loss of information.

5.1.2 Time-series clustering

Such a database of time-series is difficult to be processed and evaluated by human means, it is

necessary to use grouping methods to group the available data and extract a number of repre-

sentative time-series that can be then human-managed. Visualization and scalar measurements

are major techniques for the evaluation of clustering quality, which is also known as clustering

validity, [101]. Clustering is a method for classifying a big amount of data when there is not

any earlier knowledge about data grouping. Since it is an unsupervised clustering problem, in

this Thesis the silhouette score metric [102], was employed to identify the optimal quantity of

clusters.

The average silhouette approach briefly, measures the quality of a clustering procedure. It

determines how well each object lies within its cluster. A high average silhouette magnitude
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Figure 5-2: Silhouette score graph

indicates a good clustering. Specifically, the average silhouette method computes the average

value of silhouette of the individual observations for a different total number of clusters 𝑘. The

optimal number of clusters 𝑘 is the one that maximizes the average silhouette over a range of

possible 𝑘 values. The silhouette coefficient is defined for each profile and is composed of the

following two features

1. the mean distance between a profile and all other profiles in the same class 𝑎.

2. the mean distance between a profile and all other profiles in the next nearest cluster 𝑏.

The Silhouette Coefficient 𝑠 for a single profile is then given as:

𝑠 =
𝑏− 𝑎

max(𝑎, 𝑏)
(5.1)

The optimal number of clusters may be in a range of values and appears where the Silhouette

score is maximized. Based on Fig. 5-2, the optimal number of clusters is between 19 and 25.

The maximums in the range from 2 to 8 are considered inappropriate because this number of

clusters is considered very low (risk of overfitting). Also at 41 clusters, a step is observed, which

is explained as the upper bound of classes where the data can be grouped.

In the clustering procedure, using a summed distance metric R𝑛 → R, where 𝑛 is the number

of samples in each profile, shape similarities between the measured time-series are identified

and the time-series with similar time profile are categorized in the same cluster. Hierarchical

clustering is an approach to cluster analysis that makes a hierarchy of clusters. This work focus

is on agglomerative clustering, where each sample starts as an individual cluster and the closest

pairs of clusters merge until only one cluster remains (bottom-up approach).
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Figure 5-3: Hierarchical clustering dendrogram

A commonly used algorithm for agglomerative hierarchical clustering is Ward’s linkage

method, [103]. In Ward’s linkage, the two clusters that lead to the minimum increase of the

total within-cluster sum of squared errors (SSE) distance are merged during every iteration of

the clustering algorithm. It is calculated as follows: let 𝑑(𝑠, 𝑡) be the distance between two clus-

ters 𝑠 and 𝑡 in a dendrogram. When two clusters 𝑠 and 𝑡 from this dendrogram are combined

into a single cluster 𝑢, then 𝑠 and 𝑡 are removed from the initial data dendrogram, and 𝑢 is

added to the dendrogram until only one cluster remains in the dendrogram. A distance matrix

is maintained at each iteration. The 𝑑[𝑖, 𝑗] corresponds to the distance between cluster 𝑖 and 𝑗

in the original dendrogram.

The new entry 𝑑(𝑢, 𝑣) in each iteration is computed as follows

𝑑(𝑢, 𝑣) =

√︂
|𝑣|+ |𝑠|

𝑇
𝑑(𝑣, 𝑠)2 +

|𝑣|+ |𝑡|
𝑇

𝑑(𝑣, 𝑡)2 +
|𝑣|
𝑇

𝑑(𝑠, 𝑡)2 (5.2)

where 𝑢 is the newly joined cluster consisting of clusters 𝑠 and 𝑡, 𝑣 is an unused cluster in the

dendrogram, 𝑇 = |𝑣|+ |𝑠|+ |𝑡|, and | * | is the cardinalityof its argument. This is also known as

the incremental algorithm.

The results of hierarchical clustering, where Ward’s method was used, are presented using a

hierarchical tree, as shown in Fig. 5-3. In the 𝑥 axis, the volume of time-series grouped in each

cluster are denoted and the 𝑦 axis refers to the summed Euclidean distance between neighbor

clusters. The clustering is performed by cutting off the hierarchical tree in a specific distance

(marked with a horizontal red line in Fig. 5-3), resulting in a specified number of clusters.
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Figure 5-4: Averaging results, templates derived with Soft-DTW method, 𝛾 = 0.5.

5.1.3 Time-series averaging

For the time-series that were classified in each cluster, a template profile was extracted, which

represents the average behavior of the time-series in the specific cluster. The representative

average profile was created with Soft Dynamic Time Warping (Soft DTW) averaging method.

Dynamic time warping (DTW) finds the optimal non-linear alignment between two time-

series. Its advantage is that it allows distortion in the time axis, as compared to the euclidean

distance metric. However, dynamic time warping is quadratic in the length of the time-series

used and it is very slow to compute. Dynamic programming is used for the calculation of the

path that minimizes the distance between the time-series. The advantage of DTW based against

euclidean distance methods is that DTW can produce a geometrical, shape average result.

Additionally, modifications of the recursive function to define smoothed dynamic program-

ming distances have been proposed, [104]. When applied to the DTW discrepancy, that regular-

ization results in a soft-DTW output, which considers the soft-minimum of the distribution of all

costs spanned by all possible alignments between two time-series. In short, Soft-DTW proposes

to replace the minimum in DTW with a soft minimum. The main advantage of soft-DTW comes

from the fact that it is differentiable everywhere and that its gradient can also be computed in

quadratic time. Variable 𝛾 is used in the recursive function to smoothen the average result.

𝛾 is a positive regularization parameter in the range [0, 1], with lower values resulting in less
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smoothing. The closer the value to zero, the closer are the results to those of the DTW method.

In Fig. 5-4, averaging results derived from clustered time-series are presented. In each sub-

figure, time-series of the corresponding cluster are plotted on the background and the resulting

average template is demonstrated with red color. It can be noted that the template averages

the shape of the time-series contained in each class.

5.1.4 Marine loading cycles extraction

To preserve as much of the information contained in the initial data, a two-step methodology

was followed, where iteratively clustering and averaging were applied

1. The available preprocessed 584 time-series are clustered in 40 clusters and templates for

each of these clusters are produced with the Soft-DTW method.

2. The 40 produced templates will be clustered in 20 clusters and templates for every cluster

will also be created, resulting in 20 templates, shown in Fig. 5-5.

Based on the results, shown in Fig. 5-5, the output of the averaging step is 20 templates

(representative profiles). These templates can be evaluated as follows

∙ The templates that were derived with the soft-DTW method are favorable in terms of

smoothness and representation of realistic marine loading profiles.

∙ These templates contain patterns that can be identified in vessels’ operating profiles. As

such, they can be utilized as marine loading cycles.

∙ Some templates, such as clusters 2, 3, and 14 in Fig. 5-5, contain useful information for

steady-state engine operation and may be used for system design.

∙ Some templates, such as clusters 15, 17, and 20 in Fig. 5-5, contain information for transient

marine engine behavior and are more appropriate for control systems evaluation.
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Figure 5-5: Averaging results, loading cycles representing typical ship operational profiles.
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5.2 Reference Input Predictor

5.2.1 Problem statement

To perform optimal energy management control, the knowledge of the operating profile in terms

of speed and load variations over time is favorable to calculate the global optimal strategy. How-

ever, the profile is not a priori known and actual loading conditions differ from these that may

have been considered during system design. The optimality of the EMS algorithm’s solution is

not totally dependent on the optimization algorithm itself but on the availability and reliabil-

ity of the information that the EMS receives in run-time, based on which the optimal energy

management planning is performed. Therefore, the expected operator’s reference input over a

short-term future time window would be useful to aid the optimization procedure.

The proposed EMS, which is an NMPC-based scheme, is used to optimize the powerplant

performance while satisfying the operator’s desired engine speed. In the automotive industry,

the reference of vehicle velocity is used as prediction input to the EMS. However, in the marine

industry, due to the scale differences between ships, each vessel has its nominal conditions (time

constants and top speed); Additionally, ship cruising conditions are greatly affected by ship

loading and environmental conditions, e.g. the propulsion power demand may differ by over

20% between two different cruising conditions at the same vessel speed. As such estimation of

powertrain dynamics should be decoupled from ship dynamics.

The objective of the operator’s demand prediction module is to provide an estimation, at each

sampling interval 𝑘, of the future propeller operational points within a time window of length

𝑇 , which are determined by shaft rotational speed 𝑁𝑒𝑛𝑔[𝑘 + 𝑡|𝑘] and torque load 𝑄𝑙𝑜𝑎𝑑[𝑘 + 𝑡|𝑘],

𝑡 ∈ (0...𝑇 ]. Using the propeller observer, developed in section 4.2, 𝑄𝑙𝑜𝑎𝑑 can be calculated as a

function of 𝑁𝑒𝑛𝑔. As such, only 𝑁𝑒𝑛𝑔 needs to be estimated, and particularly 𝑁𝑒𝑛𝑔,𝑟𝑒𝑓 is selected,

as it is the operator’s reference input to the EMS.

Engine speed reference prediction within the prediction time window is particularly impor-

tant to ensure maximum energy efficiency and fuel economy. Reference predictors have been

used for marine energy management applications. In [47], probabilistic operating load estimation

is performed to adapt the energy management controller. In [45], for each prediction window,

the operating load estimation is performed based on the percentage of time on low- medium-

and high- power demand of the vessel. Moreover, in [48] the load prediction is made by a neural

network with wavelet excitation functions.

The parameters that determine the appropriate model structure selection and development

are the availability of measurements and computational complexity. When referring to design

cases based on the restricted availability of information, approaches based on artificial neural

networks (NN) have gained attention. Usually, historical data of vehicle velocity are utilized

to predict the future vehicle velocity request, [105, 106]. Moreover, in [107], various stochastic
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and deterministic prediction models of vehicle velocity are compared. It is shown that Neural

Networks (NN) can outperform other types of models and perform very accurate predictions.

In this work, a feedforward NN is used for the prediction of future engine speed reference.

5.2.2 Prediction model design

The focus is on engine rotational speed predictions over the 1 to 10 steps prediction horizon.

The engine speed was chosen as the NN output variable as it is also the reference input to the

controller. To train the neural network, it became necessary to provide sufficient relevant data.

The dataset was provided from MarineTraffic platform. Specifically, speed data of tugboats were

taken during four consecutive days of operation, located worldwide. Using the propulsion plant

model, these data were converted to engine rotational speed. The data were normalized and

time-scaled according to the Froude similarity principle for ship time constant 𝑇𝑠, [82].

The neural network function that was fitted using the available data is

𝜉 = 𝑓(𝜉) = 𝑊𝑥2𝜑𝑥(𝑊𝑥1𝜉 + 𝑏𝑥1) + 𝑏𝑥2 (5.3)

where 𝑓, 𝜉, 𝜉 ∈ R10, 𝜉 = [𝑥𝑘−1, ..., 𝑥𝑘−10]
𝑇 and 𝑓 produces 𝜉 = [�̂�𝑘+1|𝑘, ..., �̂�𝑘+10|𝑘], 𝑥𝑖 is the

normalized 𝑁𝑒𝑛𝑔,𝑟𝑒𝑓 , 𝜑𝑥 is the tansig activation function and 𝑊𝑥𝑖,10×10, 𝑏𝑥𝑖,10×1 are the fitted

weights of the 𝑖𝑡ℎ network layer. The structure of the NN hidden layer is composed of 10 nodes.

As such the computational complexity of the model is kept simple, in contrast to deep neural

network structures that require great computational effort.

For training, MATLAB neural network toolbox was used and Levenberg-Marquardt opti-

mization algorithm was employed to minimize the mean squared prediction error over the actual

values. To increase online prediction robustness and produce a transferable result, the data

were populated with 3 different time scales [0.8𝑇𝑠 𝑇𝑠 1.2𝑇𝑠]. Data points were derived from ship

operational profiles with sample time 0.5 s. In total, 56700 data points were used for training

and 24300 for testing.

Fig. 5-6 shows the speed predictions of the neural network on a horizon of 1 to 10 steps

forward, in relation to the corresponding real values, for a specific period of the tugboat oper-

ation. It can be observed that as the prediction step increases, so does the deviation from the

corresponding real values. However, the overall performance of the neural network is particularly

high. It can also be noted that the neural network predictions follow the course of the target

values, with both small error and small time shift. The largest deviations are observed in the

very high and very low-speed values and in speed abrupt alternations. This is due to the speed

variation in the collected dataset, which consists of constant speed segments and intense accel-

erations and decelerations due to the tugboat operation. In conclusion, for the operation of the

MPC presented in this work, the neural network described above gives satisfactory predictions
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Figure 5-6: Neural Network velocity predictions up to 10 steps forward.

up to 10 samples ahead.

5.3 Conclusion

This chapter dealt with the operating profile of a marine propulsion plant in transient operating

conditions. Shaft speed was determined as the representative system variable for the operational

profile. Initially, 20 marine loading cycles were extracted and evaluated as typical marine oper-

ational profiles. Cycles that contain rich information about the transient operation are utilized

in the next chapter for control system tuning and evaluation. Moreover, to ensure optimal en-

ergy management planning, a prediction model for the future operator’s reference was designed.

From the possible model structure candidates, the neural network gives the most accurate pre-

dictions within a horizon of 10 sampling instants ahead. The online information generated by

the prediction model is used along with the propeller observer, to calculate future propeller load

disturbance.

This chapter responded to research question 3.
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Chapter 6

Transient Power-Split Controller

The application of Model Predictive Control (MPC) is attractive for problems related to optimal

power-split and energy management of hybrid power plants. In this chapter, the theoretical and

implementation framework of NMPC is discussed. Then, the problem formulation of the torque-

split control during transient operation of the hybrid propulsion powertrain under investigation is

performed. A power management, NMPC-based control scheme is designed and experimentally

evaluated in transient propeller loading conditions.

6.1 NMPC Theoretical Framework

Model Predictive Control is an advanced, model-based, control method, which is intuitively able

to deal with multiple input and output constrained systems, complex interconnected dynamics

and in particular, offers a systematic design procedure for constrained control. Model Predictive

Control (MPC) solves an optimization problem online to compute the optimal sequence of control

commands over a finite time window, called prediction horizon. The problem is formulated based

on (i) the available plant measurements, (ii) the plant prediction model, (iii) control objectives,

and (iv) plant/actuator limitations. Only the first control command of this sequence is applied

to the plant in closed-loop in a receding-horizon planning. An illustrative representation of the

MPC application is shown in Fig. 6-1.

In this section, elements of basic theoretical background for the NMPC controller schemes

which are applied in the context of this Thesis are presented.

6.1.1 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is based on the principal MPC idea, however, it can

tackle problems with nonlinear dynamics and constraints, and is not known to be convex as well.

Due to the increased complexity, these problems are considered to be difficult to be solved, and it

is suggested that there is no global efficient way to solve them, but only a few approaches under

83
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Figure 6-1: Concept of Model Predictive Control.

a number of compromises. NMPC was first introduced in the chemical industry where systems

evolve at a very slow rate, giving time to the controller to complete the required calculations. In

recent years, the development of optimization algorithms and embedded control platforms have

greatly reduced the required time for the NMPC algorithms to solve the optimization problem,

leading to an increased number of implementations and faster applications [108].

Before the Nonlinear Model Predictive Control (NMPC) scheme is analyzed, it is appropriate

to describe the basic structure of the finite horizon Optimal Control Problem (OCP). In this

class of problems, the objective is to compute the best control strategy, for the given horizon,

which would not violate the physical constraints of the problem and would minimize a specific

cost function. The optimal problem can be defined as

𝑚𝑖𝑛
𝑥(·),𝑢(·)

∫︁ 𝑡𝑁

𝑡0

𝐹 (𝑇𝑘, 𝑥(𝑡𝑘), 𝑢(𝑡𝑘))𝑑𝑡𝑘 + 𝐸(𝑡𝑁 , 𝑥(𝑡𝑁 ), 𝑥(𝑡𝑁 ))

subject to

𝑥(𝑡0) = 𝑥0 (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉 𝑎𝑙𝑢𝑒𝑠)

𝑥𝑘+1 = 𝑓(𝑡𝑘, 𝑥(𝑡𝑘, 𝑢(𝑡𝑘)) (𝑆𝑦𝑠𝑡𝑒𝑚 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠)

ℎ(𝑥𝑡𝑘 , 𝑢𝑡𝑘) ≤ 0 (𝑆𝑡𝑎𝑔𝑒 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

𝑟(𝑥(𝑡𝑁 )) ≤ 0 (𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

where 𝐹 is the stage cost function and 𝐸 is the terminal cost function, which form the objective

function 𝐽 . The objective function is minimized in interval 𝑡0, ..., 𝑡𝑁 . 𝑥 = 𝑥0, ..., 𝑥𝑛 denotes the
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state vector and 𝑢 = 𝑢0, ..., 𝑢𝑚 denotes the control vector of the system. Solving the problem

gives the best sequence of controls 𝑢𝑘 that delivers the sequence of states 𝑥𝑘, for every time

interval 𝑘 = 𝑡0, ..., 𝑡𝑁−1, satisfying the stage constraints 0 ≥ ℎ(𝑥𝑡𝑘 , 𝑢𝑡𝑘) and ending up such that

𝑥𝑁 satisfies the terminal constraint 0 ≥ 𝑟(𝑥𝑡𝑁 ).

Model predictive control (both linear and nonlinear) is a procedure that aims to solve the

above optimal problem recursively online. To give a better illustration of the procedure, and

since the chosen algorithm for this work depends on the linear approach, the principles of both

schemes are described.

To implement and solve NMPC in fast real-time applications, several algorithmic approaches

have been proposed. In the present work, the implementation is performed using the widely

used approach of the Real Time Iteration (RTI) Scheme [108]. Since the NMPC problem is

approximated with the RTI scheme by solving one properly structured linear Quadratic Problem

(QP) per sampling time, the NMPC here can be conceived as a special case of linear time-varying

MPC, with the particularity that system dynamics are linearized online, according to the current

state and control prediction and a numerical integration scheme is employed to simulate the

system dynamics.

6.1.2 NMPC problem formulation and solution via Real Time Iteration

The RTI approach for the NMPC problem is based on the Quadratic Programming (QP) struc-

ture of MPC for nonlinear systems. In order to illustrate the approach, a time-invariant discrete

nonlinear dynamic system 𝑥+ = 𝑓(𝑥, 𝑢), with inequality constraints ℎ(𝑥, 𝑢) ≤ 0, is considered.

The NMPC problem can be formulated as

𝑁𝐿𝑃 (�̂�𝑖,x
𝑟𝑒𝑓
𝑖 ,u𝑟𝑒𝑓

𝑖 ) =

𝑎𝑟𝑔𝑚𝑖𝑛
x,u

𝑁−1∑︁
𝑘=0

⎡⎣𝑥𝑖,𝑘 − 𝑥𝑟𝑒𝑓𝑖,𝑘

𝑢𝑖,𝑘 − 𝑢𝑟𝑒𝑓𝑖,𝑘

⎤⎦𝑇

𝑊𝑖,𝑘

⎡⎣𝑥𝑖,𝑘 − 𝑥𝑟𝑒𝑓𝑖,𝑘

𝑢𝑖,𝑘 − 𝑢𝑟𝑒𝑓𝑖,𝑘

⎤⎦ (6.1)

𝑠.𝑡.

𝑥𝑖,0 = �̂�𝑖,

𝑥𝑖,𝑘+1 = 𝑓(𝑥𝑖,𝑘, 𝑢𝑖,𝑘), 𝑘 = 0, ..., 𝑁 − 1

ℎ(𝑥𝑖,𝑘, 𝑢𝑖,𝑘) ≤ 0, 𝑘 = 0, ..., 𝑁 − 1

At every time instant, the problem provides the NMPC control solutions in the following

form

𝑢𝑁𝑀𝑃𝐶
𝑖 = 𝑢𝑖,0, (x𝑖,u𝑖) = 𝑁𝐿𝑃 (�̂�𝑖,x

𝑟𝑒𝑓
𝑖 ,u𝑟𝑒𝑓

𝑖 ) (6.2)
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The above problem is a structured Nonlinear Program (NLP), which can be solved with

various approaches. In this work, the Sequential Quadratic Programming (SQP) algorithmic

approach is used. It is noted that the stage cost matrix is considered to be quadratic positive

and semi-definitive. According to [108], although more generic costs could be more suitable,

closed-loop stability and algorithmic issues might occur. Moreover, for sake of simplicity, the

terminal cost is omitted.

Sequential Quadratic Programming (SQP) for NMPC

The SQP approach for NMPC occurs from QPs delivering Newton directions for performing

steps towards the solution starting from an available guess. The iteration is repeated performing

Newton steps until convergence. At guess [𝑥𝑔𝑢𝑒𝑠𝑠𝑖 , 𝑢𝑔𝑢𝑒𝑠𝑠𝑖 ], the nonlinear problem is formulated

as
𝑄𝑃𝑁𝑀𝑃𝐶(�̂�𝑖,x

𝑔𝑢𝑒𝑠𝑠
𝑖 ,u𝑔𝑢𝑒𝑠𝑠

𝑖 ,x𝑟𝑒𝑓
𝑖 ,u𝑟𝑒𝑓

𝑖 ) =

𝑎𝑟𝑔 𝑚𝑖𝑛
Δx,Δu

𝑁−1∑︁
𝑘=0

1

2

⎡⎣∆𝑥𝑖,𝑘

∆𝑢𝑖,𝑘

⎤⎦𝐻𝑖,𝑘

⎡⎣∆𝑥𝑖,𝑘

∆𝑢𝑖,𝑘

⎤⎦ + 𝐽𝑇
𝑖,𝑘

⎡⎣∆𝑥𝑖,𝑘

∆𝑢𝑖,𝑘

⎤⎦ (6.3)

s.t. ∆𝑥𝑖,0 = �̂�𝑖 − 𝑥𝑔𝑢𝑒𝑠𝑠𝑖,0 ,

∆𝑥𝑖,𝑘+1 = 𝐴𝑖,𝑘∆𝑥𝑖,𝑘 + 𝐴𝑖,𝑘∆𝑢𝑖,𝑘 + 𝑟𝑖,𝑘, 𝑘 = 0, ..., 𝑁 − 1

𝐶𝑖,𝑘∆𝑥𝑖,𝑘+1 + 𝐷𝑖,𝑘∆𝑢𝑖,𝑘 + ℎ𝑖,𝑘 ≤ 0, 𝑘 = 0, ..., 𝑁 − 1

where ∆𝑥𝑖,𝑘 = 𝑥𝑖,𝑘 − 𝑥𝑟𝑒𝑓𝑖,𝑘 and ∆𝑢𝑖,𝑘 = 𝑢𝑖,𝑘 − 𝑢𝑟𝑒𝑓𝑖,𝑘 , 𝑘 = 0, ..., 𝑁 − 1.

The matrices 𝐴𝑖,𝑘, 𝐵𝑖,𝑘, 𝐶𝑖,𝑘, 𝐷𝑖,𝑘 are derived from the linearization of system dynamics and

dynamic constraints. Contrary to the linear MPC for nonlinear systems, the linearization occurs

at the initial guess [𝑥𝑔𝑢𝑒𝑠𝑠𝑖 , 𝑢𝑔𝑢𝑒𝑠𝑠𝑖 ]. Therefore, the sensitivity matrices are

𝐴𝑖,𝑘 =
𝜕𝑓(𝑥, 𝑢)

𝜕𝑥

⃒⃒⃒⃒
𝑥𝑔𝑢𝑒𝑠𝑠
𝑖 ,𝑢𝑔𝑢𝑒𝑠𝑠

𝑖

𝐵𝑖,𝑘 =
𝜕𝑓(𝑥, 𝑢)

𝜕𝑢

⃒⃒⃒⃒
𝑥𝑔𝑢𝑒𝑠𝑠
𝑖 ,𝑢𝑔𝑢𝑒𝑠𝑠

𝑖

𝐶𝑖,𝑘 =
𝜕ℎ(𝑥, 𝑢)

𝜕𝑥

⃒⃒⃒⃒
𝑥𝑔𝑢𝑒𝑠𝑠
𝑖 ,𝑢𝑔𝑢𝑒𝑠𝑠

𝑖

𝐷𝑖,𝑘 =
𝜕ℎ(𝑥, 𝑢)

𝜕𝑢

⃒⃒⃒⃒
𝑥𝑔𝑢𝑒𝑠𝑠
𝑖 ,𝑢𝑔𝑢𝑒𝑠𝑠

𝑖

(6.4)

𝑟𝑖,𝑘 = 𝑓 (𝑥𝑔𝑢𝑒𝑠𝑠𝑖 , 𝑢𝑔𝑢𝑒𝑠𝑠𝑖 )− 𝑥𝑔𝑢𝑒𝑠𝑠𝑖,𝑘+1 ℎ𝑖,𝑘 = ℎ (𝑥𝑔𝑢𝑒𝑠𝑠𝑖 , 𝑢𝑔𝑢𝑒𝑠𝑠𝑖 ) , 𝐽𝑖,𝑘 = 𝑊𝑖,𝑘

⎡⎣𝑥𝑔𝑢𝑒𝑠𝑠𝑖,𝑘 − 𝑥𝑟𝑒𝑓𝑖,𝑘

𝑢𝑔𝑢𝑒𝑠𝑠𝑖,𝑘 − 𝑢𝑟𝑒𝑓𝑖,𝑘

⎤⎦
(6.5)

The matrix 𝐻𝑖,𝑘 is the Hessian approximation of the Lagrangian of Eq. (6.3). The popular

Gauss-Newton Hessian approximation is given directly by assuming 𝐻𝑖,𝑘 = 𝑊𝑖,𝑘. Therefore, the

SQP procedure for time instant i, is given by Algorithm 1.
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Algorithm 1: SQP for NMPC at discrete time i

Input: current state estimate �̂�𝑖, reference trajectory (x𝑟𝑒𝑓
𝑖 ,u𝑟𝑒𝑓

𝑖 ) and initial guess
(x𝑔𝑢𝑒𝑠𝑠

𝑖 ,u𝑔𝑢𝑒𝑠𝑠
𝑖 )

1 while Not converged do
2 Evaluate 𝑟𝑖,𝑗 ,ℎ𝑖,𝑘, and the sensitivities 𝐴𝑖,𝑘, 𝐵𝑖,𝑘, 𝐶𝑖,𝑘, 𝐷𝑖,𝑘, 𝐻𝑖,𝑘, 𝐽𝑖,𝑘 using Eq. (6.4);
3 Construct and solve 𝑄𝑃𝑁𝑀𝑃𝐶(�̂�𝑖,x

𝑔𝑢𝑒𝑠𝑠
𝑖 ,u𝑔𝑢𝑒𝑠𝑠

𝑖 ,x𝑟𝑒𝑓
𝑖 ,u𝑟𝑒𝑓

𝑖 ) as in Eq. (6.3) to get the
Newton direction (∆x𝑖 ∆u𝑖);

4 Compute step - size 𝛼 ∈ [0, 1] to guarantee descent;
5 Update (x𝑔𝑢𝑒𝑠𝑠

𝑖 ,u𝑔𝑢𝑒𝑠𝑠
𝑖 ) with the Newton step

(𝑥𝑔𝑢𝑒𝑠𝑠𝑖 𝑢𝑔𝑢𝑒𝑠𝑠𝑖 )← (𝑥𝑔𝑢𝑒𝑠𝑠𝑖 𝑢𝑔𝑢𝑒𝑠𝑠𝑖 ) + 𝛼(∆x𝑖 ∆u𝑖)

6 end
return: NMPC solution (𝑥𝑖, 𝑢𝑖) = 𝑆𝑄𝑃 (𝑥𝑖, 𝑢𝑖) = 𝑥𝑔𝑢𝑒𝑠𝑠𝑖 , 𝑢𝑔𝑢𝑒𝑠𝑠𝑖

The NMPC solution of the 𝑁𝐿𝑃 (𝑥𝑖,x
𝑟𝑒𝑓
𝑖 ,u𝑟𝑒𝑓

𝑖 ) is the obtained from the SQP Algorithm 1,

starting from the initial guess (𝑥𝑔𝑢𝑒𝑠𝑠𝑖 , 𝑢𝑔𝑢𝑒𝑠𝑠𝑖 ), as follows

𝑢𝑁𝑀𝑃𝐶
𝑖 = 𝑢𝑖,0, (x𝑖,u𝑖) = 𝑆𝑄𝑃 (�̂�𝑖,x

𝑔𝑢𝑒𝑠𝑠
𝑖 ,u𝑔𝑢𝑒𝑠𝑠

𝑖 ,x𝑟𝑒𝑓
𝑖 ,u𝑟𝑒𝑓

𝑖 ) (6.6)

The choice of appropriate initial guess input is of great importance since they play a major role

in the convergence and reliability of the SQP iterations. While for linear MPC, the initial guess

is chosen to be the reference trajectory, in the present context of SQP for NMPC, a good initial

guess for the discrete time instant 𝑖 can be obtained, provided that a good solution has been

obtained at the previous time instant 𝑖−1. This procedure assumes that the evolution of system

dynamics follows the predicted trajectory (i.e. �̂�𝑖 ≈ 𝑥𝑖−1,1), and can be expressed as

𝑥𝑔𝑢𝑒𝑠𝑠𝑖,𝑘 = 𝑥𝑖−1,𝑘+1, 𝑘 = 0, ..., 𝑁 − 1 (6.7)

𝑢𝑔𝑢𝑒𝑠𝑠𝑖,𝑘 = 𝑢𝑖−1,𝑘+1, 𝑘 = 0, ..., 𝑁 − 2 (6.8)

𝑥𝑔𝑢𝑒𝑠𝑠𝑖,𝑁 = 𝑓(𝑥𝑔𝑢𝑒𝑠𝑠𝑖,𝑁−1, 𝑢
𝑔𝑢𝑒𝑠𝑠
𝑖,𝑁−1) (6.9)

It is suggested that if the solution (𝑥𝑖−1, 𝑢𝑖−1) is feasible, then the shifted solution should be

also feasible, regarding the dynamic constraints. Furthermore, if the guess which was obtained

from the shifting procedure is close enough to the real solution of the NMPC problem, then

full Newton steps can be selected for SQP iterations and the first iteration would be a close

approximation of the exact solution to the NMPC problem, [109]. Several approaches have been

proposed to select the control input guess 𝑢𝑔𝑢𝑒𝑠𝑠𝑖,𝑁−1, with the most common being that the last

control input is equal to the previous i.e 𝑢𝑔𝑢𝑒𝑠𝑠𝑖,𝑁−1 = 𝑢𝑔𝑢𝑒𝑠𝑠𝑖,𝑁−2 = 𝑢𝑖−1,𝑁−1.

The SQP procedure starts when the new state estimate is obtained. While the iterations

of the algorithm are performed, the physical system evolves, and consequently, when the SQP

finally converges, the information which was used to compute the state estimate �̂�𝑖 are outdated.
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This problem can be overcome by employing prediction algorithms to estimate the state when

the iterations have been completed. However, since the update of the control law requires

the completion of the SQP algorithm and thus large computational delays can occur. The RTI

approach which is presented here chooses to begin the SQP algorithm and constantly incorporate

the latest information of the system evolution in the iterations.

Real Time Iteration approach (RTI)

The RTI approach is a method that efficiently solves the NMPC problem via the SQP, via

performing the Newton steps always using the latest information of the system evolution. The

RTI procedure is based on Algorithm 1 which was previously presented, with some modifications.

At first, it is considered that the initial guess is derived from the shifting procedure. Secondly,

the NMPC solution is updated via a single Newton step for every time instant, on the previously

constructed initial guess, instead of applying the SQP to full convergence. Assuming, that the

solution which was obtained at time instant 𝑖− 1 is a good initial guess, then according to the

previous, the solution of the NMPC with 𝛼 = 1 (in Algorithm 1) is an excellent approximation

of the fully converged solution. Thirdly, besides the above, the RTI, divides the calculations

into two phases, to reduce the feedback time. Considering the fact that the shifting procedure

and calculation of the sensitivities (linearization of the system) on the initial guess, does not

require the knowledge of the state estimate �̂�𝑖, and therefore they can be performed before the

state estimate is available. Therefore, the RTI procedure consists of two phases which are

1. The preparation phase, in which shifting and sensitivity calculations occur prior obtaining

the state estimate

2. The feedback phase, in which the rest of the calculations occur after obtaining the state

estimate

For the above scheme, the Hessian approximation, i.e. 𝐻𝑖,𝑘 = 𝑊𝑖,𝑘 is usually used in order not

to calculate second order derivatives, receive a positive semi-definite approximation. The RTI

algorithm is presented below [108].

As it was mentioned before, NMPC optimization is non-convex, and therefore the compu-

tation of global solution for each time instant is not guaranteed. However, according to [108],

under some specific assumptions, the solution provided from the RTI, can be proved to be global.

The above algorithm applies to discrete-time systems. RTI procedure requires to compute the

dynamic sensitivities,∇𝑓(𝑥, 𝑢), which for the above systems is straightforward. However, in most

cases, the controlled systems are described by continuous time ordinary differential equations,

in form of �̇�(𝑡) = 𝐹 (𝑠(𝑡), 𝑣(𝑡)), where 𝑠(𝑡) and 𝑣(𝑡) are the states and controls respectively.
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Algorithm 2: RTI for NMPC at discrete time i
1 Preparation Phase performed over time interval [𝑡𝑖−1, 𝑡𝑖];

Input: previous NMPC solution (x𝑖−1,u𝑖−1), reference (x𝑟𝑒𝑓
𝑖−1,u

𝑟𝑒𝑓
𝑖−1)

2 Shift (x𝑖−1,u𝑖−1) in order to construct (x𝑔𝑢𝑒𝑠𝑠
𝑖 ,u𝑔𝑢𝑒𝑠𝑠

𝑖 );
3 Evaluate 𝑟𝑖,𝑗 ,ℎ𝑖,𝑘, and sensitivities 𝐴𝑖,𝑘, 𝐵𝑖,𝑘, 𝐶𝑖,𝑘, 𝐷𝑖,𝑘, 𝐻𝑖,𝑘, 𝐽𝑖,𝑘 at (x𝑔𝑢𝑒𝑠𝑠

𝑖 ,u𝑔𝑢𝑒𝑠𝑠
𝑖 ) using

6.4;
4 Form QP omitting �̂�𝑖, prepare all possible calculations (e.g. condensing, matrices

factorization) return: QP
5 Feedback Phase performed at time 𝑡𝑖 upon availability of �̂�𝑖;

Input: �̂�𝑖,prepared QP
6 Compute (∆𝑥𝑖,∆𝑢𝑖) by introducing �̂�𝑖 in QP and solving it ;
7 Apply the full Newton step

(𝑥𝑔𝑢𝑒𝑠𝑠𝑖 𝑢𝑔𝑢𝑒𝑠𝑠𝑖 )← (𝑥𝑔𝑢𝑒𝑠𝑠𝑖 𝑢𝑔𝑢𝑒𝑠𝑠𝑖 ) + (∆x𝑖 ∆u𝑖) (6.10)

return: NMPC solution (𝑥𝑖, 𝑢𝑖)

Therefore, discretization of the system should be conducted before the RTI algorithm proceeds.

To do this, several methods have been proposed. However, the accuracy and the computational

efficiency of each method mainly depend on the application. In [108], several methods are

presented and analyzed. In the present work, it is chosen that the discretization is conducted

first using a 4th order implicit Runge-Kutta method and then the linearization to take place at

every time instant the previous solution, as it is proposed by the RTI algorithm. The NMPC

controller and the RTI scheme were implemented with the ACADO Toolkit, [110, 111].

6.1.3 Feasibility and stability

The stability of systems controlled by MPC is in generality not trivial. Feasibility and stability

are explicitly ensured by introducing terminal cost and terminal constraints, which guarantee

that a solution exists and that the system trajectories will converge to the origin. However, the

terminal constraint usually reduces the region of attraction. Regarding the stability of NMPC

without terminal constraints see [112]. In relation, a sufficient long prediction horizon is usually

selected in practice to ensure recursive feasibility. Additionally, soft constraints using slack

variables in the cost function can enlarge the feasibility set that the state converges to the origin

and enhance robust stability, [113].

In this Thesis, MPC design practices that are proposed in the literature were followed. The

weights of the stage and terminal cost values are scaled considering the prioritization of the

control objectives. In addition, a higher terminal cost for each state variable is selected to

ensure the recursive feasibility of the NMPC problem. Also, system states are soft-constrained,

as due to load disturbance in marine applications, a violation can often be tolerated for short

time periods. Regarding the terminal constraints, they remain the same as state constraints, in

order not to reduce the region of attraction. The stability was also practically proved during
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simulations and experiments, as the proposed control schemes were tested in multiple operating

scenarios and a variety of disturbance excitation amplitudes.

The RTI scheme performs the preparation and the feedback steps in different time instants, to

maximize the time efficiency of the solution, [108]. RTI scheme introduces a dynamic interaction

between the system and the optimizer. The stability of the RTI scheme was initially proved in

[114] for problems in the absence of inequality constraints. The stability of the RTI scheme for

optimization problems with inequality constraints is discussed further in [115].

6.2 Transient Power-Split Controller Design

Marine propulsion plants are complex MIMO systems, as the installed power-sources diversify

in terms of the underlying technology, principles of operation, size, and physical limitations. On

the other hand, system performance specifications strive for competitive objective satisfaction,

such as immediate power availability at the propeller shaft, maximized engine energy efficiency,

and minimized emissions. In this context, the control system has to explicitly tackle the non-

linear system behavior, respect system input and operating limits, and ensure system operation

in a manner that is a) optimal according to the desired objectives and b) comfortable in e.g.

disturbance rejection.

In relation to powertrain control, the objectives could be prioritized as follows

1. Dynamic torque delivery: Follow the desired operators speed reference changes without

lags and delays.

2. Disturbance rejection: Reject speed and load disturbances and avoid oscillating behavior.

3. Robustness against external load: Robust behavior against steady-state and dynamic dis-

turbances.

4. Smooth ICE loading: Avoid shock loads of the diesel engine that lead to overshoot in fueling

and emissions production (inertial load take-up and turbo-charger lag phenomena).

5. Minimum electric energy usage: Minimize EM engagement to avoid electric energy con-

version losses and long period electric operation which requires increased battery capacity.

6. Battery charge sustainability: Maintain in the long term the battery state of charge re-

gardless of the vessel operational profile.

Also, system input and state constraints should be respected. These objectives should be

achieved by determining the optimal control inputs, which are the torque output commands

supplied to the ICE ECU and the EM inverter system.



Chapter 6. Transient Power-Split Controller 91

The application of an NMPC controller requires the solution of a nonlinear Optimal Control

Problem (OCP) at each time step. The solution provides an optimal sequence of control inputs

that minimize an appropriate cost function over a short horizon window and the first value is

applied to the system at each sampling instant. The optimization model that was integrated

in the problem formulation was presented in Chapter 3. Equations (3.4), (3.5), (3.8)-(3.15) are

utilized as information about the evolution of system behavior over time for the variables of

interest. NMPC problem is structured considering the following four differential states

x = [𝑁𝑒𝑛𝑔, 𝑆𝑂𝐶, 𝑢𝑖𝑐𝑒, 𝑢𝐸𝑀 ]𝑇 (6.11)

two controlled outputs

y = [𝑁𝑒𝑛𝑔, 𝑆𝑂𝐶]𝑇 (6.12)

three control variables

u = [�̇�𝑖𝑐𝑒, �̇�𝑒𝑚, 𝜀]𝑇 (6.13)

and the disturbance variable

d = 𝑐𝑙𝑜𝑎𝑑 (6.14)

As it can be noted, the system inputs are considered as differential states and their derivatives

as control inputs. In this way, the rate of change of the system inputs can be weighted and

constrained to control the transient behavior of the power sources and avoid sudden changes of

the ICE and EM torque outputs.

The constraints in consideration and the controller tuning guarantee that 𝑄𝑙𝑜𝑎𝑑 is mainly

satisfied by the diesel engine in steady-state operation and the EM is motoring only in transient

loads to mitigate diesel engine fast accelerations and load fluctuations. This power smoothing

strategy, achieves a quasi-steady like operation for the diesel engine and can achieve further

emissions reduction, with minimum battery usage, [20, 33]. Moreover, the slack variable 𝜀 is

introduced as an additional control input, to implement soft constraints formulation, with which

the limit violation within the prediction horizon is heavily penalized in the cost function. As

such, the optimization problem remains feasible.

The load disturbance 𝑄𝑙𝑜𝑎𝑑, is not measured. Here, the observed propeller law parameter

projected on the engine side 𝑐𝑙𝑜𝑎𝑑, which is calculated using the propeller load observer presented

in Section 4.2, is provided to the NMPC and 𝑄𝑙𝑜𝑎𝑑 = �̂�𝑙𝑜𝑎𝑑 is calculated over the prediction

horizon according to the predicted engine speed elevation, from Eq. (4.25). As explained be-

fore, the developed observer guarantees an offset-free tracking of the operator’s desired speed

reference, given the fact that none of the system constraints is violated.
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The cost function 𝐽 , which is required to be minimized to solve the OCP is the following

𝐽(�̇�𝑖𝑐𝑒, �̇�𝑒𝑚, 𝑢𝑒𝑚, 𝑁𝑒𝑛𝑔,𝑆𝑂𝐶, 𝜀) =

=
𝑁−1∑︁
𝑖=0

𝑊𝑖

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝑁𝑒𝑛𝑔,𝑖 −𝑁𝑒𝑛𝑔,𝑟𝑒𝑓 )2

(𝑆𝑂𝐶𝑖 − 𝑆𝑂𝐶𝑟𝑒𝑓 )2

𝑢2𝑒𝑚,𝑖

�̇�2𝑒𝑚,𝑖

�̇�2𝑖𝑐𝑒,𝑖

𝜀2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇

+

𝑊𝑁

⎡⎣(𝑁𝑒𝑛𝑔,𝑁 −𝑁𝑒𝑛𝑔,𝑟𝑒𝑓 )2

(𝑆𝑂𝐶𝑖 − 𝑆𝑂𝐶𝑟𝑒𝑓 )2

⎤⎦𝑇

(6.15)

where 𝑊𝑖 is the stage cost matrix and 𝑊𝑁 is the final cost matrix. The optimization problem

is formulated as follows

𝑚𝑖𝑛
�̇�𝑖𝑐𝑒,�̇�𝑒𝑚,𝜀

𝐽(�̇�𝑖𝑐𝑒, �̇�𝑒𝑚, 𝑢𝑒𝑚, 𝑁𝑒𝑛𝑔, 𝑆𝑂𝐶, 𝜀)

𝑠.𝑡. Equations (3.4), (3.5), (3.8)-(3.15)

𝑄𝑙𝑜𝑎𝑑,𝑖 =
60

2𝜋
𝑐𝑙𝑜𝑎𝑑,𝑖=0𝑁

2
𝑒𝑛𝑔,𝑖

𝑆𝑂𝐶𝑚𝑖𝑛,ℎ𝑎𝑟𝑑 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,ℎ𝑎𝑟𝑑

𝑢𝑒𝑚,𝑚𝑖𝑛 ≤ 𝑢𝑒𝑚 ≤ 𝑢𝑒𝑚,𝑚𝑎𝑥

0 ≤ 𝑢𝑖𝑐𝑒

𝑄𝑖𝑐𝑒 ≤ 𝑄𝑖𝑐𝑒,𝑚𝑎𝑥(𝑁𝑒𝑛𝑔)

�̇�𝑖𝑐𝑒,𝑚𝑖𝑛 ≤ �̇�𝑖𝑐𝑒 ≤ �̇�𝑖𝑐𝑒,𝑚𝑎𝑥

�̇�𝑒𝑚,𝑚𝑖𝑛 ≤ �̇�𝑒𝑚 ≤ �̇�𝑒𝑚,𝑚𝑎𝑥

𝑁𝑒𝑛𝑔,𝑚𝑖𝑛,𝑠𝑜𝑓𝑡 − 𝜀 ≤ 𝑁𝑒𝑛𝑔 ≤ 𝑁𝑒𝑛𝑔,𝑚𝑎𝑥,𝑠𝑜𝑓𝑡 + 𝜀

𝑆𝑂𝐶𝑚𝑖𝑛,𝑠𝑜𝑓𝑡 − 𝜀 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,𝑠𝑜𝑓𝑡 + 𝜀

𝜀 ≥ 0

𝑈2
𝑜𝑐 − 4𝑃𝑏𝑅𝑖 ≥ 0

(6.16)

where 𝑄𝑖𝑐𝑒,𝑚𝑎𝑥(𝑁𝑒𝑛𝑔) is the maximum ICE torque curve from the engine envelope (Fig. 2-2)

and the last equation refers to battery overloading, as described by Eq. (3.16). By solving

the above optimization problem over the prediction horizon, the appropriate commands for

power-split are calculated that satisfy the control objectives. To realize that, a real-time NMPC

scheme was designed and generated with ACADO toolkit, [110], where the Sequential Quadratic

Programming (SQP) method is deployed and qpOASES3 [116] is selected as solver.
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Figure 6-2: NMPC architecture and experimental implementation.

To reduce testbed hours, controller tuning and evaluation were performed in simulation.

Also, the controller was experimentally implemented and evaluated in extreme transient loading,

where it coped with step disturbance application and step reference tracking. Although such

aggressive conditions are rarely faced in real operation, step input is commonly used to test the

transient behavior of the system. The experimental results of this procedure are extensively

presented in [5, 6] and [7].

6.3 Experimental Testing

6.3.1 Experimental implementation

For the evaluation of the transient power-split controller, a number of experiments were per-

formed using the HIPPO-2 experimental facility at the Laboratory of Marine Engineering

(NTUA/LME) (seen in Fig. 2-1). The control set up consists of the controller scheme (NMPC

and observer), the propulsion plant, wave disturbance and battery emulation models, as shown

in Fig. 6-2.

The NMPC, based on the information provided by measurements, the propeller observer,

and the reference from the operator, calculates the optimal control commands (i.e. load rate

of ICE and EM), which are provided to the power sources. The parameters of the internal

model are summarized in Table B.1. The controller tuning was performed in simulation. In

simulation and experiment the same control system tuning was used. Simulation results are

similar to experimental results leading to the same conclusions and as such, they are omitted.

The numerical values of the tuning parameters, as well as the constraints of the NMPC problem,

are presented in Table 6.1.
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Table 6.1: Parameters and tuning of the NMPC.

Parameter Symbol Value

NMPC Sample Time 𝑇𝑠 0.1 s
Prediction Horizon 𝐻𝑝 10 steps
Control Horizon 𝐻𝑐 10 steps
Cost Matrix 𝑊𝑖 diag(15 200 0 .5 5 0.5 103)
Terminal Cost Matrix 𝑊𝑁 diag(15 1000)

Constraints
Soft SOC 𝑆𝑂𝐶𝑠𝑜𝑓𝑡 [25 75] %
Soft 𝑁𝑒𝑛𝑔 𝑁𝑒𝑛𝑔,𝑠𝑜𝑓𝑡 [700 2000] rpm
EM cmd 𝑢𝑒𝑚 [-90 90] %
EM cmd rate �̇�𝑒𝑚 [-50 50] %/s
ICE cmd rate �̇�𝑖𝑐𝑒 [-20 3] %/s

Prop. observer
State noise covar. matrix 𝑄[𝑘] 7 10−4

Input noise covar. matrix 𝑅[𝑘] 5

The propulsion plant and environmental disturbance emulation model, developed in Sec-

tion 4.1 (its parameters are summarized in Table B.2), was utilized for the propeller load cal-

culation that is applied to the experimental testbed by the electric dynamometer. It interacts

dynamically with the physical system and the controller behavior. On the other hand, the pro-

peller observer is based on the information that would be available onboard a vessel, which refers

to the controller commands and the engine speed measurement, provided by the ICE ECU.

Finally, the battery SOC calculation is based on the electric power flow measurement, re-

ceived by the power electronics (inverter system) of the EM. A 3.5 kWh battery pack was

considered for the present scenario, to avoid long-term electric operation. The numerical pa-

rameters of the quasi-static and dynamic battery models are presented in Table 6.2. As it was

explained in subsection 3.2.4, different battery models for SOC simulation and controller design

was intentional, to evaluate the NMPC behavior with modeling inaccuracies and the fact that

actual or experimental battery performance deviates from the modeled parameters.

6.3.2 Experimental results

During experiments, two consecutive propeller speed accelerations were applied. The two accel-

erations have different slopes. The first profile applied includes a 900-1600 rpm ramp in 10 s

(�̇�𝑒𝑛𝑔 = 70 𝑟𝑝𝑚/𝑠), and the second a 900-1600 rpm ramp in 5 s (�̇�𝑒𝑛𝑔 = 140 𝑟𝑝𝑚/𝑠). These

scenarios resemble a typical propeller acceleration profile during ship maneuvering. During ex-

perimental testing, it is intentional to make a comparison between the proposed control scheme

and a standard industrial controller. Therefore transient behavior of the proposed NMPC con-

trol scheme (NMPC experiment) is evaluated against the operation of the conventional set-up,

without operation of the EM, where the powertrain is controlled by the diesel engine ECU speed



Chapter 6. Transient Power-Split Controller 95

Table 6.2: Battery models sizing for Transient Controller testing.

Description Parameter Value and Unit

Battery Dynamic Model Parameters
Open Source Voltage 𝑉𝑂𝐶 696 𝑉
Ohmic Resistance 𝑅𝑂 0.241 Ω
Polarization Resistance 𝑅𝑃 0.271 Ω
Open Source
Capacitance 𝐶𝑉𝑂𝐶

17600 𝐹

Polarization Capacitance 𝐶 960 𝐹
Nominal Capacity 𝑄𝑛𝑜𝑚 5 𝐴ℎ / 3.5 𝑘𝑊ℎ

Battery Internal Model Parameters
Open Source
Voltage Coeff. 𝑘1 696 𝑉

Open Source
Voltage Coeff. 𝑘2 1.022 𝑉 𝑜𝑙𝑡𝑠/%𝑆𝑂𝐶

Internal Resistance 𝑅𝑖 0.512 Ω

controller, which has its industrial calibration (ICE ECU experiment). The experimental results

are presented in Fig. 6-3, 6-4 and 6-5.

The engine speed profile, the resulting propeller load for NMPC and ICE ECU experiments

and the battery state of charge, the propeller load observation, the power-split are shown in

Fig. 6-3. As it can be observed in the first subplot, during the acceleration intervals the NMPC

regulates the ICE and EM torques to accelerate the shaft and to satisfy the propeller load de-

mand. The EM immediately provides torque, while the diesel engine load transition is performed

according to the �̇�𝑖𝑐𝑒 constraint. In the second acceleration, the EM maximum torque limit is

reached and a small speed error is observed until the ICE can balance the load demand at the

reference speed.

During steady speed intervals, EM operates in generating mode to recharge the battery,

while ICE works near its torque limit to satisfy the propeller load and generate battery power

for battery charging. The EM torque value is controlled to reject speed disturbance that is

caused by the propulsion plant environment and achieve reduced engine power fluctuations. At

decelerations, EM operates in regenerating mode to balance the excess power generated by the

engine while unloading, as well as absorb kinetic energy of the shaft and reduce the rotational

speed. Finally, it can be noted that offset-free speed reference tracking is achieved.

As compared with the loading in the ICE ECU experiment, which is shown in Fig. 6-3 second

subplot, the diesel engine is forced to perform extreme transient operations, that need power

margin availability at low engine speeds, where diesel engines in general under-perform. In addi-

tion, at higher speeds, the system "controller-power train-propulsion plant-vessel-environment"

interaction leads to high amplitude power oscillations that affect the ICE performance and sys-

tem safety, in contrast to the NMPC case where this interaction is smoothened.
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Figure 6-3: Loading, power-split, shaft speed and battery state of charge at experimental testing.

In Fig. 6-4 the ICE performance during the NMPC and ICE ECU experiments is presented.

As it can be seen, with NMPC, ICE obtains a quasi-steady like operation, as compared to

the ICE ECU experiment where more aggressive behavior is observed, in terms of fuel feed

overshoots and oscillations, more exhaust gas pollutants during fast accelerations, and worse

emissions efficiency in deceleration and lower speeds. In total, the calculated cumulative NOx

emission is 10.10 gr with NMPC as compared to 10.35 gr that were emitted during the ICE

ECU experiment. The cumulative fuel consumption was 0.80 l in both experiments.

In Fig. 6-5, the speed-power phase diagram for each acceleration-deceleration slope for each

experiment is presented. In the left column, the transient engine loading can be seen during

acceleration and deceleration, as well as the steady-state power fluctuations of the engine power

due to environmental disturbance. On the right column diagrams, the total load-split during

acceleration and deceleration is plotted. As it can be noted, the acceleration path has increased
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Figure 6-4: Diesel engine performance at experimental testing.

Figure 6-5: Phase plots of power vs. engine speed at experimental testing.
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power demand, as compared to the power path during deceleration. As such different propeller

law constant is observed. Furthermore, during the 5 s transient which occurs between time 80-

150 s, increased power has to be delivered at engine speed range 900-1200 rpm, as compared to

the 10 s transient which occurs in the time interval between 0-80 s, as it can be seen in Fig. 6-3.

The ICE in NMPC experiments, as compared to the ICE ECU experiment, follows a different

power-speed path to balance the total propeller load demand in cooperation with the EM. As a

result, during acceleration, the ICE accelerates on lower load, according to the �̇�𝑖𝑐𝑒,𝑚𝑎𝑥 constraint

and decelerates on higher load, since EM is in generating mode. Finally, as it can be observed,

the EM power limit is reached during acceleration between 1400-1600 rpm in the NMPC - 5 s

transient diagram.

During experimental testing, NMPC achieved a 2.4% reduction in mean and 3.3% total NOx

emissions, while the mean specific NOx production was decreased by 20.2% as compared to the

system operation with conventional control. At the end of the experiment, The EM cumulative

energy flow was 73.58 𝑘𝐽 and the battery was discharged by 4% at the end of the experiment.

6.4 Conclusion

When referring to powertrain control, NMPC is one of the appropriate control methods that can

inherently deal with system non-linearity, manage physical and operational limitations and uti-

lize knowledge of system and disturbance response to produce an optimal result. In relation, this

chapter proposed a Nonlinear Model Predictive Control (NMPC) scheme for solving the optimal

transient power-split problem of a parallel hybrid diesel-electric marine propulsion plant, consid-

ering transient propeller load and environmental disturbance, from the viewpoint of achieving

smooth power transitions and mitigation of power fluctuations of the internal combustion engine.

The developed power-split strategy utilized EM to deal with the powertrain fast dynamics to

deliver the required torque load at the propeller shaft and achieves quasi-static loading of the ICE

that leads to suppression of ICE fast acceleration, as well as mitigation of ICE load oscillations

that produce overshoots in NOx emissions and fueling. In addition, indirect energy management

was performed, i.e the fuel consumption and NOx emissions models were not utilized by the

controller internally. At the same time, battery charge sustaining, in the long-term, was achieved.

Finally, the proposed control scheme is robust to disturbance load characteristics, meaning

that it achieves offset-free reference tracking independently of the propulsion plant size, the

uncertainty of the propeller and ship characteristics, as well as the modeling errors between the

actual powertrain behavior and the internal NMPC model. As such, it is concluded that the

problem of transient power-split control was well defined and properly formulated.

This chapter responded to research question 4.



Chapter 7

Energy Management and Emissions

Minimization Control System

In the previous chapter, an integrated torque-split control scheme was proposed for the oper-

ation of ship hybrid propulsion plants in transient loading conditions. The main performance

specifications were torque availability as well as mitigation of ICE fast accelerations and load

oscillations, that lead to NOx and fueling overshoots. In this way, a robust but indirect energy

management was achieved. The contribution of the present Chapter is the development and

implementation of an integrated, real-time capable, Energy Management and Emissions Mini-

mization System (EMEMS) for parallel hybrid ship propulsion plants, that is able to satisfy the

current and predicted propeller load and maximize both fuel consumption and NOx emissions

efficiency of the system according to the selected criteria.

7.1 Energy Management System Design

Along this line, the optimal control problem is reformulated so as to perform energy management

planning according to a weighting factor which determines the trade-off between fuel consump-

tion and NOx emissions minimization. The EMEMS calculates the optimal power-split strategy,

based on the internal model information for system performance in addition to operator’s ref-

erence prediction, which is received online. A simulation study is performed to investigate the

trade-off between fuel efficiency and NOx performance for different weighting factors and eval-

uate results in respect to the solution of the optimal control problem, where the loading profile

is known in advance. Finally, for the validation of the control concept, the control scheme is

experimentally implemented and tested under realistic operating conditions.

As compared to section 6.2, the control system objectives are modified, as follows:

1. Dynamic torque delivery: Follow the desired speed reference changes without lags and

delays.

99
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2. Disturbance rejection: Reject speed and load disturbances and avoid oscillating behavior.

3. Robustness against external load: Robust behavior against steady-state and dynamic dis-

turbances.

4. Smooth ICE loading: EM deals with fast system dynamics and ICE follows in a quasi-static

manner.

5. Minimized weighted energy consumption and emissions production: The weighted cumu-

lative equivalent fuel consumption and NOx emissions production 𝑚𝑒𝑐 over the prediction

time window should be minimized.

6. Battery charge sustainability: In the nominal test-case, the battery charge should be equal

at the end of the operational cycle in order to evaluate the capabilities of the EMS regarding

fuel savings and emissions reduction.

7. Constraints satisfaction: Ensure that the physical and operating constraints, such as the

engine overloading, of the hybrid system are not violated.

Regarding the above objectives, items 1-4 and 7 were explained in Section 6.2. As such, here

only the aspects regarding the reformulation of the optimal control problem will be discussed.

With the use of the equivalent consumption formulation, the battery energy flow is

penalized with an equivalence factor 𝜆 which depends on the battery state of charge and the

electric energy consumption of the EM, which is expressed in equivalent fuel mass consumption

when divided with the lower heating value of the engine fuel 𝑄𝑓 . Also, NOx emissions are

scaled with maximum fuel consumption to maximum NOx emissions ratio 𝜆𝑁 in order to be

comparable with the range of fuel consumption values. As such, the equivalent consumption

�̇�𝑒𝑐 is defined as
𝑑𝑚𝑒𝑐

𝑑𝑡
=�̇�𝑒𝑐

�̇�𝑒𝑐 =(1−𝐴)�̇�𝑓 + 𝐴𝜆𝑁�̇�𝑁 + 𝜆
1

𝑄𝑓
𝑃𝑏

(7.1)

where
𝜆 = 𝜆𝑆𝑂𝐶𝜆𝑒𝑐𝑒𝑚𝑠

𝜆𝑆𝑂𝐶 = 1−
(︂

2𝑆𝑂𝐶 − (𝑆𝑂𝐶𝑚𝑖𝑛 + 𝑆𝑂𝐶𝑚𝑎𝑥)

𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛

)︂3

𝜆𝑁 =
max (�̇�𝑓 )

max(�̇�𝑁 )

(7.2)

where 𝜆𝑒𝑐𝑒𝑚𝑠 is a tuning parameter which is determined in simulation to derive the same initial

and final battery state of charge. In this way, the savings regarding the hybrid operation can be

evaluated in relation to the achieved energy efficiency and battery energy conservation.



Chapter 7. Energy Management and Emissions Minimization Control System 101

The optimality of energy management planning does not depend only on the particular

optimization methods deployed to solve the minimization problem, but on the availability and

reliability of the information received in run-time. As such, the propeller observer, from Sec-

tion 4.2, as well as the results of Chapter 5 were utilized to provide off- and online information

that are required in order to produce the nearest-optimal possible result.

The optimization model that was integrated into the problem formulation was presented in

Chapter 3. Equations (3.4)-(3.15), (7.1) and (7.2) are utilized as information about the evolution

of system behavior over time for the variables of interest. NMPC problem is restructured

considering the following five deferential states

xc = [𝑁𝑒𝑛𝑔, 𝑆𝑂𝐶,𝑚𝑒𝑐, 𝑢𝑖𝑐𝑒, 𝑢𝑒𝑚]𝑇 (7.3)

two controlled outputs

y = [𝑁𝑒𝑛𝑔,𝑚𝑒𝑐]
𝑇 (7.4)

three control variables

uc = [�̇�𝑖𝑐𝑒, �̇�𝑒𝑚, 𝜀]𝑇 (7.5)

and the disturbance variable

d = 𝑐𝑙𝑜𝑎𝑑 (7.6)

The system input variables are considered as differential states, and their derivatives as

control inputs. Hence, the rate of change of the system inputs can be weighted and constrained

in order to control the transient behavior of the power sources. Moreover, the slack variable 𝜀 is

used as additional control input, in order to consider soft constrained variables, with which the

limits violation within the prediction horizon is heavily penalized in the cost function. As such,

the optimization problem remains feasible.

To solve the OCP, the following cost function 𝐽 is considered

𝐽(𝑁𝑒𝑛𝑔,𝑚𝑒𝑐, �̇�𝑖𝑐𝑒, �̇�𝑒𝑚, 𝜀) =

=

𝑁−1∑︁
𝑖=0

𝑊𝑖

⎡⎢⎢⎢⎢⎢⎣
(𝑁𝑒𝑛𝑔,𝑖 −𝑁𝑒𝑛𝑔,𝑟𝑒𝑓,𝑖)

2

�̇�2𝑖𝑐𝑒,𝑖

�̇�2𝑒𝑚,𝑖

𝜀2

⎤⎥⎥⎥⎥⎥⎦

𝑇

+

+𝑊𝑁

⎡⎣(𝑁𝑒𝑛𝑔,𝑁 −𝑁𝑒𝑛𝑔,𝑟𝑒𝑓,𝑁 )2

𝑚2
𝑒𝑐,𝑁

⎤⎦𝑇

(7.7)

where 𝑊𝑖 is the stage cost matrix and 𝑊𝑁 is the final cost matrix. 𝑁𝑒𝑛𝑔,𝑟𝑒𝑓,0 is the operator’s

speed reference input and 𝑁𝑒𝑛𝑔,𝑟𝑒𝑓,𝑖, 𝑖 = 1 : 𝑁 are predictions of the future operator’s input
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provided by the neural network prediction model, (5.3), developed in Section 5.2, utilizing past

values of 𝑁𝑒𝑛𝑔,𝑟𝑒𝑓 .

The mathematical formulation of the OCP is

𝑚𝑖𝑛
˙𝑢𝑖𝑐𝑒, ˙𝑢𝑒𝑚,𝜀

𝐽(𝑁𝑒𝑛𝑔,𝑚𝑒𝑐, �̇�𝑖𝑐𝑒, �̇�𝑒𝑚, 𝜀)

𝑠.𝑡. Equations (3.4)-(3.15),(7.1),(7.2)

𝑄𝑙𝑜𝑎𝑑,𝑖 = 𝑐𝑙𝑜𝑎𝑑,𝑖=0𝑁
2
𝑒𝑛𝑔,𝑖

𝑆𝑂𝐶𝑚𝑖𝑛,ℎ𝑎𝑟𝑑 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,ℎ𝑎𝑟𝑑

𝑢𝑒𝑚,𝑚𝑖𝑛 ≤ 𝑢𝑒𝑚 ≤ 𝑢𝑒𝑚,𝑚𝑎𝑥

0 ≤ 𝑢𝑖𝑐𝑒 ≤ 𝑢𝑖𝑐𝑒,𝑚𝑎𝑥(𝑁𝑒𝑛𝑔)

�̇�𝑖𝑐𝑒,𝑚𝑖𝑛 ≤ �̇�𝑖𝑐𝑒 ≤ �̇�𝑖𝑐𝑒,𝑚𝑎𝑥

�̇�𝑒𝑚,𝑚𝑖𝑛 ≤ �̇�𝑒𝑚 ≤ �̇�𝑒𝑚,𝑚𝑎𝑥

𝑁𝑒𝑛𝑔,𝑚𝑖𝑛,𝑠𝑜𝑓𝑡 − 𝜀 ≤ 𝑁𝑒𝑛𝑔 ≤ 𝑁𝑒𝑛𝑔,𝑚𝑎𝑥,𝑠𝑜𝑓𝑡 + 𝜀

𝑆𝑂𝐶𝑚𝑖𝑛,𝑠𝑜𝑓𝑡 − 𝜀 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,𝑠𝑜𝑓𝑡 + 𝜀

𝜀 ≥ 0

𝑈2
𝑜𝑐 − 4𝑃𝑏𝑅𝑖 ≥ 0

(7.8)

where 𝑢𝑖𝑐𝑒,𝑚𝑎𝑥(𝑁𝑒𝑛𝑔) is the maximum ICE torque curve and the last equation refers to battery

overloading. By solving the above optimization problem over the prediction horizon, the appro-

priate commands for power-split are calculated, in order to track the reference shaft speed based

on a mid-term plan to minimize the weighted fuel consumption and NOx emissions. Then, the

first control value is applied to the system at each sampling instant. To achieve a mid-term

prediction horizon, it is defined as 10 𝑠 within which reliable predictions can be made. NMPC

sample time must be prolonged to 0.5 𝑠 as compared to the transient NMPC controller of Sec-

tion 6.2. As such, the computational effort is kept low and the sampling interval sufficient in

order to solve the online optimization problem. For off-line system tunning and evaluation in

simulation and experiments, the marine load emulation model as well as the created loading

cycle 20 from Fig 5-5 will be used.

Remark 1: Speed reference prediction refers to 𝑁𝑟𝑒𝑓 [𝑘 + 𝑖|𝑖], 𝑖 = 1...𝑁 and is relevant to the

energy management planning. As such, a wrong prediction, does not affect tracking of 𝑁𝑟𝑒𝑓 [𝑘|𝑘]

which is the actual set-point requested by the operator; only the energy management planning

is affected.

Remark 2: 𝑚𝑒𝑐 was selected to be implemented as terminal term, as it is the integral of �̇�𝑒𝑐 at

each instant 𝑘+ 𝑖|𝑘 within the prediction horizon. This formulation has an economic perspective



Chapter 7. Energy Management and Emissions Minimization Control System 103

Figure 7-1: Control scheme architecture and experimental implementation.

and was preferred instead of using integral of squared �̇�𝑒𝑐 that has a tracking meaning. The

first proved to be more efficient in order to find the minimal 𝑚𝑒𝑐 power path.

To implement the controller, ACADO toolkit , [110], was used to create an implementable

and real-time capable NMPC algorithm. In order to perform the power-split calculation over

a sufficient long time horizon and at the same time keep the computational effort low, the

NMPC sample time was set to 0.5 s. The control architecture and implementation is presented

in Fig. 7-1, where the essential information flow between software and hardware subsystems is

presented.

The NMPC sample time is not sufficient for speed reference tracking when wave disturbance

acts on the system. For this reason, a PD controller was used in parallel to the NMPC in order to

regulate the 𝑢𝑒𝑚 between the NMPC sampling intervals. Input to the PD controller is the speed

tracking error. The control command that was provided to the EM was 𝑢𝑒𝑚 = 𝑢𝑒𝑚,𝑛𝑚𝑝𝑐+𝑢𝑒𝑚,𝑃𝐷.

The PD controller was tunned in order to minimize the speed reference tracking error. According

to seakeeping theory, irregular wave disturbance has zero mean value. As such, the PD controller

regulates the EM and the mean value of 𝑢𝑒𝑚 is 𝑢𝑒𝑚,𝑛𝑚𝑝𝑐 at steady state conditions. 𝑢𝑒𝑚,𝑃𝐷 is

saturated to ±10%𝑢𝑒𝑚,𝑚𝑎𝑥 so that 𝑢𝑒𝑚 does not exceed the physical limits of the EM.
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7.2 Benchmark Controller Design

Predictive control is considered as a (sub-)optimal control method, that is appropriate for online

implementation of optimal control. It is very popular, as its concept combines optimization and

online adaptation to alterations of its environment. When designing and tuning MPC, the aim

is to achieve a performance similar to the optimal result, that would be achieved if all the input,

disturbance, and system response information were available a priori.

However, it is common that an optimal controller is used as a benchmark problem, to evaluate

and improve, off-line, the performance of MPC designs. As such, using [117], an off-line optimal

controller was designed, which is solved using Dynamic Programming (DP). In the DP case, the

operation profile is a-priori known and the power-split has to be decided to minimize the term

(1−𝐴)𝑚𝑓 + 𝐴𝜆𝑁𝑚𝑁 over the known speed and load profile.

To reduce problem complexity and calculation time (solution time increases quadratically to

the number of system states), only battery dynamics were taken into account. In DP problem

formulation, only the quasi-static characteristics of the powertrain were considered, neglecting

the transient performance of the power sources that was not weighted or constrained. This is

commonly considered in automotive and energy applications. As such, the benchmark problem

is mathematically formulated as follows

𝑚𝑖𝑛
𝑢𝑖𝑐𝑒,𝑢𝑒𝑚

(1−𝐴)𝑚𝑓 + 𝐴𝜆𝑁𝑚𝑁

𝑠.𝑡. Equations (3.5)-(3.15)

𝑁𝑒𝑛𝑔,𝑟𝑒𝑓,𝑖 −𝑁𝑒𝑛𝑔,𝑖 = 0

𝑄𝑙𝑜𝑎𝑑,𝑛𝑚𝑝𝑐,𝑖 −𝑄𝑖𝑐𝑒,𝑖 −𝑄𝑒𝑚,𝑖 = 0

𝑆𝑂𝐶𝑚𝑖𝑛,ℎ𝑎𝑟𝑑 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,ℎ𝑎𝑟𝑑

𝑢𝑒𝑚,𝑚𝑖𝑛 ≤ 𝑢𝑒𝑚 ≤ 𝑢𝑒𝑚,𝑚𝑎𝑥

0 ≤ 𝑢𝑖𝑐𝑒 ≤ 𝑢𝑖𝑐𝑒,𝑚𝑎𝑥(𝑁𝑒𝑛𝑔)

𝑈2
𝑜𝑐 − 4𝑃𝑏𝑅𝑖 ≥ 0

𝑆𝑂𝐶𝑖=0 = 𝑆𝑂𝐶𝑖=𝑁𝑓

(7.9)

where 𝑢𝑖𝑐𝑒,𝑚𝑎𝑥(𝑁𝑒𝑛𝑔) is the maximum ICE torque curve and the last equation refers to bat-

tery overloading. By solving the above optimization problem, the optimal control inputs u⋆ =

[𝑢⋆𝑖𝑐𝑒, 𝑢
⋆
𝑒𝑚]𝑇 over the provided operational profile [𝑁𝑒𝑛𝑔,𝑛𝑚𝑝𝑐,𝑖, 𝑄𝑙𝑜𝑎𝑑,𝑛𝑚𝑝𝑐,𝑖]

𝑇 , 𝑖 = 1...𝑁𝑓 are calcu-

lated. In order to create a truly comparable result against the same conditions, the operational

profile consists of the speed 𝑁𝑒𝑛𝑔,𝑟𝑒𝑓 and disturbance 𝑄𝑒𝑛𝑔,𝑛𝑚𝑝𝑐 that the system produced in

simulation under closed-loop control. The discretization interval in DP problem formulation

was same as the NMPC sample time.
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7.3 Controller Implementation

The control architecture and implementation are presented in Fig. 7-1. As it can be seen, the

controller scheme (NMPC, observer, and NN predictor), the propulsion plant, wave disturbance

as well as the dynamic battery emulation models were integrated into the prototype controller

board of the experimental facility. The essential information flow between the software and

hardware subsystems is also depicted in Fig. 7-1.

The NMPC, based on the information provided by measurements, the propeller observer

as well as the reference received by the operator and the NN predictor, calculates the optimal

control commands (rate of ICE and EM commands), which are integrated and provided to

the power sources. The NMPC internal model parameters are summarized in Table B.1. The

controller tuning was performed in simulation, based on cycle 20 from Fig. 5-5 as reference input

and without application of wave disturbance. Cycle 20 was selected as it has the most transient

operating profile and covers almost the whole shaft rotational speed range. In simulation and

experiment the same control system’s tuning parameters were used. The numerical values of the

tuning parameters, as well as the constraints of the NMPC problem, are presented in Table 7.2.

The battery SOC calculation is based on the electric power flow measurement, received by

the power electronics (inverter system) of the EM. A 27.84 kWh battery pack was considered for

the present scenario, in order to avoid long-term electric operation. The numerical parameters

of the quasi-static and dynamic battery models are presented in Table 7.1. As it was explained

in subsection 3.2.4, different battery models for SOC simulation and controller design was in-

tentional, in order to evaluate the NMPC behavior with modeling inaccuracies and the fact

that actual or experimental battery performance deviates from the modeled parameters. The

difference between the simulation model and the model used for NMPC design is depicted in

Fig. 3-9a and Fig. 3-9b.

The propulsion plant and environmental disturbance emulation model, developed in Sec-

tion 4.1, which parameters are summarized in Table B.2, was utilized for the propeller load

calculation that is applied to the experimental testbed by the electric brake. It interacts dy-

namically with the physical system and the controller behavior. On the other hand, propeller

observer and NN predictor are based on the information that would be available onboard a ves-

sel, which is the operator’s input, the controller commands, and the engine speed measurement,

provided by the ICE ECU., the propulsion plant, and environmental disturbance emulation

model, developed in Section 4.1 and its parameters summarized in Table B.2, was utilized for

the propeller load calculation that is applied to the experimental testbed by the electric brake.

It interacts dynamically with the physical system and the controller behavior. On the other

hand, propeller observer and NN predictor are based on the information that would be available

onboard a vessel, which is the operator’s input, the controller commands, and the engine speed
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Table 7.1: Sizing of control oriented and simulation models.

Description Parameter Value

Battery Dynamic Model Parameters
Open Source Voltage 𝑉𝑂𝐶 696 𝑉
Ohmic Resistance 𝑅𝑂 0.0301 Ω
Polarization Resistance 𝑅𝑃 0.0339 Ω
Open Source
Capacitance 𝐶𝑉𝑂𝐶

140800 𝐹

Polarization Capacitance 𝐶𝑝 7680 𝐹
Battery Internal Model Parameters

Open Source
Voltage Coeff. 𝑘1 696 𝑉

Open Source
Voltage Coeff. 𝑘2 1.022 𝑉 𝑜𝑙𝑡𝑠/%𝑆𝑂𝐶

Internal Resistance 𝑅𝑖 0.0640 Ω
Nominal Capacity 𝑄𝑛𝑜𝑚 40 𝐴ℎ / 27.84 𝑘𝑊ℎ

Shafting and Propeller
Gear Ratio 𝑖𝑔𝑏 4 : 1
Propeller type (for 𝐶𝑄, 𝐶𝑇 ) Wageningen C 4-40
Pitch to diameter ratio 𝑃

𝐷 1.2
Propeller Diameter 𝐷 1.05 𝑚
Shaftline and propeller inertia 𝐽𝑠ℎ𝑎𝑓𝑡 16.52 𝑘𝑔𝑚2

Environment
Sea state condition 3
(for experimental testing)

measurement, provided by the ICE ECU.

7.4 Simulation Analysis

The control system tuning and off-line performance evaluation were performed in Simulation,

using the created cycle 20, from Fig. 5-5, without application of wave disturbance. Parameter

𝜆𝑒𝑐𝑒𝑚𝑠 of the controller was tuned to achieve the same initial and final Battery SOC. The

numerical values of model and tuning parameters, as well as the constraints of the NMPC

problem, are presented in Table 7.1 and Table 7.2 accordingly. The cumulative results of fuel

consumption and NOx emissions by varying fuel to NOx weighting parameter 𝐴 were derived.

In this way, the trade-off performance between fuel and emissions efficiency was investigated.

In Fig. 7-2 and Fig. 7-3, the simulation power-split results for 𝐴 = 0.7 are presented. In

the same plots, also the solution of the dynamic programming (DP) optimization algorithm are

shown. In Fig. 7-2 it can be seen that NMPC follows a smoother power path with fewer power

fluctuations, as compared to the DP solution. Moreover, NMPC is able to adapt to different

situations that will face online, such as application of external disturbance or an alternative

loading profile, while DP result is produced over a certain, "prerecorded" loading cycle. Despite
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Table 7.2: Control scheme parameters.

Parameter Symbol Value

Sample time 𝑇𝑠 0.5 s
Prediction horizon 𝑁 20 steps
Cost matrix 𝑊𝑖 diag(1 5 0.5 102)
Terminal cost matrix 𝑊𝑖 diag(2 0.1)
Equivalent cons. cost 𝜆𝑁 0.067

𝜆𝑒𝑐𝑒𝑚𝑠 1.56
Prop. gain (cont. time) 𝑃 0.3
Deriv. gain (cont. time) 𝐷 -0.02

Constraints
Soft SOC 𝑆𝑂𝐶𝑠𝑜𝑓𝑡 [25 75] %
Hard SOC 𝑆𝑂𝐶ℎ𝑎𝑟𝑑 [20 80] %
Soft 𝑁𝑒𝑛𝑔 𝑁𝑒𝑛𝑔,𝑠𝑜𝑓𝑡 [700 2000] rpm
EM cmd 𝑢𝑒𝑚 [-95 95] %
EM cmd rate �̇�𝑒𝑚 [-50 50] %/s
ICE cmd rate �̇�𝑖𝑐𝑒 [-20 10] %/s

Prop. observer
State noise covar. matrix 𝑄[𝑘] 7 10−4

Input noise covar. matrix 𝑅[𝑘] 5

the fact that NMPC and DP do not produce exactly the same solution, the ICE operational areas

of attraction, where the cost function can be minimized are common in both cases, especially in

the time interval between 𝑡 = 150 𝑠 and 350 𝑠. Also, NMPC follows a different transient loading

path between time 𝑡 = 70 𝑠 and 150 𝑠. While in DP solution the EM torque steps from motoring

to generating values forcing ICE to a big loading step, with NMPC the EM torque is regulated

to assist ICE acceleration before converging at the same negative value as DP at 𝑡 = 150𝑠. In

addition, in Fig. 7-3, first subplot, it can be noted that NMPC and DP utilize the same range

of battery capacity during the loading cycle.

In Fig. 7-4, the simulation results in terms of fuel consumption and NOx emissions for 𝐴

values in the range of 0 (fuel optimal) to 1 (NOx optimal) are presented. It is noted that

the trade-off follows an exponential trend, where the results for 𝐴 > 0.6 converge to similar

powerplant overall performance characteristics. Also, it is noted that up to 2% fuel reduction

with the fuel optimal strategy is achieved, while the NOx emissions reduction that can be

achieved in this specific profile is up to 6.5% as compared to the conventional, non-hybrid plant

operation and 8.5% as compared to the fuel optimal strategy. As it can be observed from

Fig. 7-4, the EMS achieves the same NOx emissions reduction and better performance in fuel

consumption as compared to DP results. Although that DP is considered to produce the global

optimal, NMPC seems to perform better in Fig. 7-4. This occurs as the DP problem a) does not

consider the inertial loads in acceleration and deceleration and b) DP and NMPC performance

evaluation was performed against different battery models, the quasi-static and the dynamic
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Figure 7-2: NMPC (A=0.7) simulation results in comparison to DP solution. Loading Profile
and power-split control are presented.

respectively and c) any positive speer tracking error would result in decreased magnitude of the

load disturbance, leading to slightly lower consumption.

It is noted that these results refer to the propeller load power-split, without consideration

of any additional electric load consumption, e.g from the ship’s grid. Also, the system under

investigation does not accommodate any decoupling mechanism between ICE and the gearbox.

As such, when EM satisfies the propulsion load, ICE is idling at zero output brake torque, or

excess battery energy is consumed to overcome ICE rotating friction, e.g between time 𝑡 = 0

and 𝑡 = 70 𝑠, leading to higher fuel consumption.
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Figure 7-3: NMPC (A=0.7) simulation results in comparison to DP solution. Battery and engine
performance over time are shown.

Figure 7-4: NMPC simulation results in comparison to DP solution. Trade-off performance
between fuel consumption and NOx emissions for different values of fuel to NOx weighting 𝐴.
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7.5 Experimental Testing

For the evaluation of the transient power-split controller, various experiments were performed

on the hybrid propulsion powertrain HIPPO-2 experimental facility at the Laboratory of Marine

Engineering (LME/NTUA) (seen in Fig. 2-1). During experimental testing, the EMS was tested

in real-time operation to evaluate its performance in realistic loading conditions applied using

the marine load emulation model. For the experiment set-up, the same loading profile with

simulation was used so that comparable results are produced. Between experiments, parameter

𝐴 was varied in order to test different fuel to emissions weighting strategies. The 𝐴 values

that were tested are shown in Table 7.3, which summarizes the experimental results as well.

Also, an experiment was carried out without EM operation, where the engine speed and load

were controlled by the engine ECU which has the manufacturer calibration. For the considered

scenario, where the aim was to have a charge sustaining strategy at the end of the load cycle, fuel

consumption and NOx emissions reduction up to 6 and 8%, respectively, were achieved during

experimental testing.

In addition, in experiments, the load that was applied by the dynamometer contained en-

vironmental disturbance characteristics, in order to emulate realistic conditions and evaluate

how the control scheme would mitigate severe load fluctuations and engine speed disturbance.

The environmental model emulates irregular wave disturbance which affects the instant and the

mean propeller torque load.

The results from experiments with 𝐴 = 0 (fuel optimal) and 𝐴 = 0.5 (Experimental NOx

optimal) are presented and compared in this Thesis. In Fig 7-5, the engine speed loading profile,

the power-split decisions as well as the battery SOC for the two experiments are presented and

in Fig. 7-6 the respective diesel engine performance is shown. As it can be noted in the first

subplot of Fig 7-5, the two NMPCs performed different power-split decisions. In the beginning,

at low speed, the fuel optimal strategy 𝑁𝑀𝑃𝐶 (𝐴 = 0) operated the EM in generating mode,

while 𝑁𝑀𝑃𝐶 (𝐴 = 0.5) operated the plant in full electric mode. At high speed and load (time

interval between 𝑡 = 150 𝑠 and 350 𝑠) 𝑁𝑀𝑃𝐶 (𝐴 = 0) regulated the ICE torque in a fuel-

Table 7.3: Experimental results analysis for different fuel to NOx weighting factors.

Experiment Weight 𝐴 Description Cumulative Cumulative SOC
(Fuel to NOx) of result fuel [l] NOx [g] Difference (%)

1. 𝐴 = 0 Fuel optimal 6.71 94.7 2.82
2. 𝐴 = 0.2 Disturbance 1 6.31 95.4 -3.44
3. 𝐴 = 0.2 Disturbance 2 6.23 92.7 -5.42
4. 𝐴 = 0.5 Exp. NOx optimal 6.83 91.8 3.41
5. 𝐴 = 0.8 Sim. NOx optimal 6.85 94.1 3.41
6. ICE only Non-hybrid setup 6.62 100.4 -
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Figure 7-5: Loading, power split, shaft speed and battery state of charge during experiments for
two different fuel to NOx weighting factors.

efficient point, while 𝑁𝑀𝑃𝐶 (𝐴 = 0.5) chose an ICE operating point which is NOx efficient

in order to charge the battery. Moreover, in Fig. 7-5, first subplot it can be seen that both

NMPCs perform the power-split with respect to the powerplant limits as well as that they make

use of the EM to reject speed disturbances, to mitigate ICE power fluctuations caused by wave

disturbance.

The diesel engine performance is presented in Fig. 7-6. The measured fuel consumption and

NOx emissions depend on the diesel engine operational point. NOx, in addition, depends also on

the operation of the EGR system, which is shown in the bottom subplot. For 𝑁𝑀𝑃𝐶 (𝐴 = 0.5)

some NOx production oscillations are observed during experimental testing. These are produced

from the EGR valve oscillating behavior which is self-regulated from the engine ECU. Although

this behavior affected NOx emissions, it did not change 𝑁𝑀𝑃𝐶 (𝐴 = 0.5) behavior. As it
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Figure 7-6: Diesel engine performance in experimental testing for two different fuel to NOx
weighting factors.

can be noted from Table 7.3, 𝑁𝑀𝑃𝐶 (𝐴 = 0) was more fuel-efficient while 𝑁𝑀𝑃𝐶 (𝐴 = 0.5)

resulted in lower cumulative NOx production. In both experiments, the final SOC was greater

than the initial, although the same NMPC tunning was used in simulations and experiments.

In Fig. 7-7, two phase plots of engine speed and load are presented, where the control

commands of the NMPCs to the diesel engine are shown with respect to the engine fuel efficiency

and NOx emissions performance. Diesel engine loading path within the engine specific fuel

consumption and engine specific NOx emissions production maps are shown in Fig. 7-7a and

Fig. 7-7b accordingly. As it can be observed, the density of 𝑁𝑀𝑃𝐶 (𝐴 = 0) control commands

is greater in operating points with lower specific fuel consumption (fuel-efficient) as compared

with 𝑁𝑀𝑃𝐶 (𝐴 = 0.5). On the contrary, 𝑁𝑀𝑃𝐶 (𝐴 = 0.5) operated the diesel engine either
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(a) Diesel engine loading path within brake specific fuel consumption map [g/kWh].

(b) Diesel engine loading path within brake specific NOx map [g/kWh].

Figure 7-7: NMPC commands within diesel engine envelope for A=0 and A=0.5 NOx to fuel
weighting.

in zero torque or in operating points where NOx emissions are minimized, such as the local NOx

minimum in high speed and torque (1700 rpm, 80%).

Finally, as far as the behavior of the control scheme is concerned, Fig. 7-8 shows the propeller

observer performance and the speed reference predictions within the prediction horizon. Both

subsystems have the desirable steady-state and transient performance. In the first subplot, only a

few predictions are shown, covering at each time interval 𝑘 the whole range of the prediction time

window 𝑘 + 𝑖|𝑘, 𝑖 = 1 : 𝑁 . The predictions have satisfying accuracy although the experimental

speed profile was not used in the training and validation process of the prediction model. The

disturbance estimation of the propeller observer and the load calculation are accurate and follow

the actual values, as it can be noted in the second and third subplot of Fig. 7-8.
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Figure 7-8: NN predictions and observer performance in experiment.

7.6 Discussion

With respect to the control system design that was proposed and evaluated in this chapter,

some remarks can be summarized. Firstly, the energy management problem was formulated

with respect to the design constraints of a real application. This means that the estimation

- prediction - optimization scheme should utilize only the measurements and information that

would be available onboard. Also, the NMPC tuning, 𝜆𝑒𝑐𝑒𝑚𝑠 was determined easily in simulation

for the presented loading profile in order to have a charge sustaining strategy and evaluate

controller effect on fuel consumption and NOx emissions. Further work would consider an

optimization-based calculation of 𝜆𝑒𝑐𝑒𝑚𝑠 as well as its online adaptation, in order to be more

effective in the real world.

Furthermore, the problem formulation in dynamic programming considers the quasi-static

problem and was formulated as the benchmark DP formulations in the literature. Only SOC

was considered as state, while the operating profile 𝑁𝑒𝑛𝑔,𝑟𝑒𝑓 and the resulting disturbance profile
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𝑄𝑙𝑜𝑎𝑑 were given as constraints. Although theoretically, DP solution should be the optimal and

NMPC a sub-optimal approximation of it, in the present study NMPC outperformed DP in

fuel consumption reduction. This result occurs as the DP problem a) does not consider the

inertial loads in acceleration and deceleration, b) DP and NMPC performance evaluation was

performed against different battery models, the quasi-static and dynamic respectively, c) any

positive tracking error in NMPC would reduce the resulting 𝑄𝑙𝑜𝑎𝑑 amplitude and lead to less

power generation (and resulting fuel consumption).

Finally, from the simulation and the experimental results it is shown that for the given set-

up, the fuel consumption reduction capabilities are limited, as compared to the NOx reduction

merits. This can be explained by the fact that a) in the usual vessel cruising conditions, the en-

gine is operated near the maximum fuel efficiency operating point, b) there is not any decoupling

mechanism between the engine and the propeller shaft. As such, an engine on/off functionality

in order to avoid idling consumption and would lead to greater fuel reductions (about 10%)

cannot be considered. Finally, c) in marine applications, there is no "braking" action, where

the ship kinetic energy could be recovered and stored in the battery. As such, the whole energy

demand over any operation profile should be covered by the internal combustion engine.

7.7 Conclusion

In this chapter, an integrated and real-time capable Energy Management and Emissions Mini-

mization System (EMEMS) was developed. It addresses the optimal power-split control problem

and handles the multi-variable control objectives regarding the performance specifications of the

powertrain and minimization of fuel consumption and emissions that are produced by the in-

ternal combustion engine. The optimal control problem was restructured to perform an energy

management planning according to a weighting factor that determines the trade-off between fuel

consumption and NOx emissions minimization.

To aid the optimization problem, estimation of the propulsion plant characteristics as well as

a prediction for future input by the operator were provided to the NMPC, in order to perform the

optimal energy management planning. Despite the fact that the proposed control scheme con-

tains numerous sub-systems that have to cooperate, the optimal problem formulation was simply

and plainly defined. Fuel consumption, NOx emissions as well as battery energy utilization and

restoration were expressed with the common variable of equivalent consumption.

The control scheme was tuned to perform similarly to the benchmark optimal control prob-

lem utilizing an operational profile that was created by ship operational data. In this framework,

the trade-off performance between fuel consumption and NOx emissions was investigated. Ex-

perimental results proved the robustness of the control scheme regarding the disturbance input
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as well as its capability to perform efficiently the power-split, leading to fuel consumption and

NOx emissions minimization over the considered profile.

This chapter responded to research question 5.



Chapter 8

Conclusions and Future Work

Marine propulsion plants are complex MIMO systems, as the installed power-sources diversify

in terms of the underlying technology, principles of operation, size, and physical limitations. On

the other hand, system performance specifications strive for competitive objective satisfaction,

such as immediate power availability at the propeller shaft, maximized engine energy efficiency,

and minimized emissions.

The objective of this Thesis was to develop a real-time Energy Management and Emissions

Minimization System (EMEMS) with optimal transient and steady-state performance in regards

to energy consumption and emissions as well as robust behavior against external disturbances.

HIPPO-2 experimental facility at LME/NTUA was used for the implementation and evaluation

of the developed power-split control schemes. As such, the modeling methodology and the con-

trol system were adapted to the specific configuration and the particular specifications of the

experimental system. First principle and data-based models were fitted to powertrain measure-

ment data. Fitting results showed that the derived models approximated accurately the system

behavior during transient loading, as well as the patterns that were observed within the data

and were simple enough in order to reduce the online computational cost.

In order to evaluate the interaction of the system controller - powertrain - propulsion plant

- environment, a parametric propulsion plant model that matches the experimental facility was

employed, to apply propeller loading considering several vessel operating scenarios and condi-

tions. In addition, a propeller observer is designed and implemented in order to quantify the

propeller load characteristics, as acting disturbance, which is required for the optimal power-split

calculation, without knowledge of the uncertain propulsion plant parameters. The approach was

based on the propeller law principle (power is proportional to the cubic power of shaft speed).

Through a number of simulations with slow and fast accelerations and irregular wave distur-

bance, it was shown that the modeling adequately corresponds to the actual sizing and operating

conditions of a small tug vessel and the observers can perform efficiently, giving accurate esti-

mates, in both steady-state and transient loading conditions.

117
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For the design and evaluation of the EMEMS, identification and prediction of the operator’s

reference input during ship maneuvering was performed. These objectives were achieved, fol-

lowing a data-based identification methodology and using machine learning techniques. Profiles

that contain rich information about the transient operation were identified and utilized for con-

trol system development. Regarding the prediction model for the future operator’s reference, a

neural network model was designed, which showed adequate performance over unknown opera-

tional conditions. The online information generated by the prediction model is used along with

the propeller observer by the controller, so as to calculate future propeller load disturbance.

The application of Model Predictive Control (MPC) is attractive for problems related to

optimal power-split and energy management of hybrid power plants. In this Thesis, non-linear,

MPC (NMPC) based, load-split control schemes were designed, implemented, and experimen-

tally evaluated. At first, an NMPC-based control scheme was proposed to deal with the load-split

between the power sources during transient loading conditions, ensuring the dynamic torque de-

livery with respect to the powertrain physical and operating limits. The energy management

was performed indirectly, i.e fuel consumption and NOx emissions models were not incorporated

in the controller design. In this design, the electric motor dealt with the powertrain fast dy-

namics to deliver the required torque load at the propeller shaft; the quasi-static loading of the

internal combustion engine that was achieved, led to damping of ICE fast acceleration, as well

as mitigation of ICE load oscillations that produce overshoots in NOx emissions and fueling.

In the second control scheme, the optimal control problem was reformulated and extended to

develop an energy management and emissions minimization strategy, which is calculated based

on the internal model for system performance, as well as the information received online. The

energy management planning is performed according to a weighting factor that determines the

trade-off between fuel consumption and NOx emissions minimization. Despite the fact that the

proposed control scheme contains numerous sub-systems that have to co-operate, the optimal

energy management problem formulation was simply and plainly defined. Fuel consumption,

NOx emissions, and battery energy utilization, and restoration were expressed with the common

variable of equivalent consumption. The control scheme was tuned to perform similarly to the

benchmark optimization problem and the trade-off performance between fuel consumption and

NOx emissions was investigated in simulation.

The developed control schemes were experimentally tested in real-time operation, where the

controllers coped with environmental disturbance rejection, followed the desired rotational speed

reference, and operated the plant within the desirable constraints. The control strategies proved

their robustness to disturbance load characteristics, achieving offset-free reference tracking inde-

pendently of the propulsion plant size, the uncertainty of the propeller and ship characteristics,

as well as the modeling errors between the powertrain components and the internal model.

In parallel, with the EMEMS design, the power-split control was performed with respect to
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the energy management and emission minimization targets, and the target to achieve a charge

sustaining strategy at the end of the load cycle. The capabilities of the control system were

exploited for the considered scenario, where fuel consumption and NOx emissions reduction up

to 6.5 and 8%, respectively, were achieved.

In conclusion, the power-split strategies that were proposed in this Thesis align with the state-

of-the-art trends and methodologies that are followed in the marine and automotive industry. To

exploit the system capabilities for optimal performance, optimal control and novel data-based

methodologies for the energy management system design were employed. Moreover, even though

the proposed design is based on sophisticated methodologies, it is integrated, real-time capable,

and easy to interface with existing vessel powertrain setups. As such, there is potential to be

implemented in full-scale propulsion plants.

Suggestions for Future Work

∙ In this Thesis, a deterministic approach was followed regarding a) the future operational

profile prediction, b) the disturbance load characteristics c) the control system tuning.

It would be interesting if the optimal control problem was realized following a stochastic

approach and system learning methodologies were followed to learn and adapt online for

the optimal power-split decisions during ship operation.

∙ For proof of concept, only one operating profile (cycle) was used to perform the fine-tuning

and the evaluation of the energy management and emissions minimization strategy. This

cycle was chosen as it contains the richest information about transient ship operation and

greater excitation amplitude, as compared to other profiles. It is suggested as a future work

extension, that the optimal equivalent consumption parameter tuning for each profile is

defined through optimization. Further to this, it is suggested that during ship operation,

classification to a specific cycle can be performed in order to apply the appropriate tuning

parameters.

∙ In this Thesis, a centralized control system was designed, aligned with the specific ex-

perimental set-up and sizing. The EMS design has the potential for practical application

onboard ships. However, during vessel life span and among the several vessel designs,

system complexity and size may vary (i.e. integration of photo-voltaic panels and fuel

cells). In this case, each power-source needs to be controlled by a local optimal control

module in respect to the optimal operation of the whole system. Here, in order to achieve

a more robust control system design, it would could be proposed to follow modular and

decentralized control approaches after powertrain modifications in design during lifetime.
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Appendix A

Dynamic model for battery emulation

The experimental facility does not accommodate any battery set yet, and therefore a virtual

battery emulation model was employed. The ECM of the dynamic battery model is a linear

lumped parameter battery model presented in Figure 3-9b. The model is based on a set of

parameters, which can be estimated by conducting several test to the cell, involving, mainly,

load pulses in several operating conditions, which are described in the PNGV testing procedure.

The equations which describe the model derives from the Kirchhoff voltage law

𝑉𝐿 = 𝑉𝑂𝐶 −
1

𝐶𝑉𝑂𝐶

∫︁
𝐼𝑏𝑑𝑡−𝑅𝑂𝐼𝑏 −𝑅𝑃 𝐼𝑃 (A.1)

where 𝑉𝑂𝐶 is the open circuit battery voltage, 𝑅𝑂 is the internal ohmic resistance, 𝑅𝑃 is the

internal polarization resistance (e.g., due to concentration gradients), 𝐶𝑑 is the shunt capacitance

around 𝑅𝑃 , 𝜏 = 𝑅𝑃𝐶𝑑 is the polarization time constant, 𝐼𝑏 is the battery load current, the

current through polarization resistance,is the battery terminal voltage, 1/𝑂𝐶𝑉 ′ is a capacitance

that accounts for the variation in open circuit voltage with the time integral of the load current

𝐼𝑏. 𝑂𝐶𝑉 is not usually equal to the slope of 𝑉𝐿 measured open circuit vs. battery state of

charge. The polar current, can be derived by solving the following deferential expression, with

a specified initial conditions 𝐼𝑃 = 0 at 𝑡 = 0

𝑑𝐼𝑃
𝑑𝑡

=
𝐼𝑏 − 𝐼𝑃

𝜏
(A.2)

where 𝐼𝑏 = 𝑃𝑏
𝑉𝐿

. The battery SOC can be calculated using Eq. (3.10) and Eq. (3.11).

The above parameters are considered to be constant for a given SoC, temperature, etc. In

this evidence, in literature [79], it is proposed for each voltage calculation step, the parameters

of the model should be recalculated according to the most recent measurements of SoC and

temperature. In this Thesis, due to lack of data and for simplification, this is disregarded.

121



122 Appendix A. Dynamic model for battery emulation

THIS PAGE INTENTIONALLY LEFT BLANK



Appendix B

Model Parameters

Table B.1: Parameters of the control-oriented powertrain models.

Description Parameter Value

Moment of inertia 𝐽𝑠𝑦𝑠𝑡𝑒𝑚 12.047 𝑘𝑔𝑚2

ICE torque coef. 𝜃𝑄 [15.96 238.75 0.2343 0.1247]𝑇

ICE fuel cons. coef. 𝜃𝑓 [23.18 14.3 4.678 2.668...
... 0.622 − 0.09324]𝑇

Fuel density 𝜌𝑓 825 𝑘𝑔𝑚−3

ICE NOx em. coef. 𝑎𝑁,𝑖 [0.79 0.5 0.051 1.1 0.4 0.01]
𝑏𝑁,1 2.9 10−3

𝑏𝑁,2 8 10−5

ICE torque norm. coef. 𝑢𝑖𝑐𝑒,𝑚 45.61
𝑢𝑖𝑐𝑒,𝑠𝑡𝑑 25.98

ICE torque norm. coef. 𝑁𝑒𝑛𝑔,𝑚 1382
𝑁𝑒𝑛𝑔,𝑠𝑡𝑑 320.6

EM torque coef. 𝑐𝑒𝑚 5.8
EM Power Parameter 𝑒 0.9598

𝑃0 385.18
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Table B.2: Parameters of the propulsion plant emulation model.

Description Parameter Value and Unit

Length overall 𝐿 13.8 𝑚
Beam overall 𝐵 5.28 𝑚
Draught aft 𝑇 1.8 𝑚
Depth at sides 𝐷𝑒𝑝𝑡ℎ 2.30 𝑚
Vessel displacement 𝑀𝑑𝑖𝑠𝑝 58 𝑡
Added hydrodynamic mass 𝑀ℎ𝑦𝑑 5% 𝑀𝑑𝑖𝑠𝑝

Propeller Diameter 𝐷 1.05 𝑚
Number of propellers 𝑁𝑝 2
Mean propeller Depth ℎ𝑝𝑟𝑜𝑝 1.4
Gear Ratio 𝑖𝑔𝑏 3.8 : 1
Gearbox losses 𝑎𝑔𝑏 0.5
Gearbox losses 𝑏𝑔𝑏 0.4
Gearbox losses 𝑐𝑔𝑏 0.1
Shaftline and propeller inertia 𝐽𝑠ℎ𝑎𝑓𝑡 16.52 𝑘𝑔𝑚2

Shaftline efficiency 𝑎𝑠𝑙 0.01
Shaftline efficiency 𝑏𝑠𝑙 0.01
Effective wake fraction 𝑤 0.15
Thrust deduction factor 𝑡 0.13
Relative rotating efficiency 𝜂𝑟 1.02
Water density 𝜌 1025 𝑘𝑔𝑚−3

Wave spectrum 𝑆(𝜔) ITTC
Wave spectrum peak frequency 𝜔𝑝 0.8 𝑟𝑎𝑑/𝑠
Significant wave height 𝐻𝑠 1.2 𝑚
Sea state condition 3
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