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Abstract

Gears are used under demanding operating conditions which lead to a continuous change of the tooth
surface. There are various wear and fatigue mechanisms through gear’s life circle that can lead them
to failure. Increasing operation time might have as a result the development of ‘pitting” which is
appearances of fatigue on the surface of the tooth flank. The development of pitting is possible to
ensue growing micro-cracks in the tooth surface causing intense stresses. According to Hertz’s theory,
which is presented thoroughly in this thesis, these stresses are directly related to the equivalent
curvature of the bodies in contact. As a result of this analysis, methods to reduce pitting are proposed
including redesign of the gear pair geometry. However, there are some geometrical criteria and
constraints that must be met according to theory of gearing such as the law of gearing or pitch
compatibility. Furthermore, constrains is predominant part of the present analysis. The optimization
of gear profiles is attempted with genetic algorithms, Fmincon method (gradient based method) and
with steepest descent method (deterministic optimization) -in MATLAB/SIMULINK environment-
for both closed contact path and open contact path. The profile of pinion or rack gear is modeled with
4" degree B-Splines and the optimization algorithm determines the optimum positions of the control
points in order to minimize the equivalent curvature of the conjugate flanks at each point. This analysis
leads to the comparison of the three optimization methods given the results provided and their
computational cost. An optimum solution corresponding to a typical one-stage speed reducer was
reached and the performance of the optimized gear pair was found to surpass the performance of
involute and sine-rack of similar geometry in terms of both root strength and pitting resistance. Finally,
a finite element analysis completes this thesis comparing the best optimization result with the involute
gears.






MeplAnn

Ot odovtwtol Tpoyol YPNOWOTOVVTAL VIO ATUTNTIKEG GLVONKEG TOL GLYVE 00MYOUV GTNV
KOTAGTPOPY] TOVG AOY® TOV UNYOVIGU®OV eBopdc 6Tovg omoiovg vrdkewtal. Yapyovv S1dpopot
unyaviopoi @Bopdg kol KOT®OMG KOl €vOS OmO TOLG TAEOV GNUOVTIKOVUG &ivor 1 avdmruén
EKKOIAAVGE®V ETL TNG EMPAVELNS TNG KATATOUNS. AVTO TO GOVOUEVO GLYVE TPOKOAEL LUKPO-POYLES
OTNV EMPAVELL TOV 00OVTO TPOKOAAMVTOG EVTOVES KOTOMOVNGELG KOl TAGES. ZOUpmva pe ) Bempia
tov Hertz mov mapovcidletonr degodkd, avtég ol thoelg oyetiCovror dueca pe TNV 1600LVAUN
KOUTOUAOTNTO TOV COUATOV 7oL €pYoviol o€ €moeY. €2 OMOTEAECUO OVLTNG TNG OVAALONG,
npoteivovtal HéBodot ylo T HEl®OT TNG 1603VVOUNG KOUTVAOTNTOS KOl GUVETMG TNG KATUTOVIONG
TOV KOTOTOU®MY, GUUTEPIAAUPOVOUEVOD TOV EMOVOCYESICUOD TNG YEMUETPIOG TOV 000VTOTMV
TPOY®V. Q6TOGO, VLAPYOLY OPICUEVO YEMUETPIKA KPLTHPLOL KO TTEPLOPICHOT TOV TPETEL VO, TAT|POVVTOL
ovpemva pe TN Bewpio TV 0d0VTOGE®V, OTWG PETAED AAAWV 0 Pacikog vopog odovidcemv (BNO)
N N cvpPoatdtmra Tov Ppatoc. EmmAéov, ot meplopiopoi eivon factkn Ttuyn T mopovcas Epyaciog.
H Bektiotomoinon tov kotatopdv emyyelpeiton Pe YEVETIKOVS aAyOplOpovs, e TovV aAyoppo
Fmincon (gradient based optimization) ka1 pe v pébodo g amdTounc kabodov (steepest descent)
(vtetepuviotikn Pektiotonoinom) oto mepParirov e MATLAB/SIMULINK 1660 yoo kAeiom
TPOYIA ETAPDOV OCO KO Y10 OVOIKTH TPOYLL eTap®V. Movtelomoteiton gite 10 mvidv gite o Kavovag,
avaroya T eEumnpetel Kahdtepa oty KaOe mepintwon, pe B-Splines 4ov Babpo, evd, o adydpBpog
déyeTon ¢ €16000 TN BEom TV onueiwv eAéyyov Kot kaBopilel TNV 1I600HVOUN KOUTOAT KAUTOUAOTNTOGC
o€ OAOKAN PN TNV KoTaTour cOpeova pe ) Bewpio Tov Hertz. Avti n avdivon odnyet 6tn cvykpion
TOV TPIOV HeBOOV PBEATIOTONTOIMNGNC JEGOUEVOV TOV OTOTEAECUAT®OV TOV TAPEYOVIOL KOl TOV
VTOAOYIGTIKOU KOGTOLG Tovg. EmitevyOnke pia Pértiomn Avom mov avtiotorel oe éva (evyog
000VIMTAOV TPOYDOV TOL 1 IGOSVVOUT KAUTLAITNTA £ival onpavTikd PEATIOUEVT GE GYECT UE TOVG
000VIMTOVG TPOYOVG EEEIATYIEVTG KOl UITOVOELDOVE KOVOVO, OGOV 0popd TOGO TNV avtoyn 0G0 Kot
otV €UeAvion ekkoldvoewv. Téhog, to amoteléopota emPePordvovion pe T HEOBOdO TV
TEMEPACUEVOV OTOYEI®V Kol cvykpivetow 1M PEATIOTH AVOTM pe ovth Ta avtiotoryo ypoavalio

eEetrypévnge.
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1. Introduction

Gears are one of the most common machine components used in modern industry. Although their use
has been known since antiquity, their widespread use was achieved after the improvement of their
construction machines, which were able to produce wheels of high precision and profile quality and
deliver shapes suitable for more complex forms of transmission. Their ability to allow stable
transmission and the transfer of high power at high efficiency has made their application valuable or
even necessary in a wide range of applications and has allowed their incorporation in machines and
mechanisms of great importance, in critical positions. For this reason, their production today is
massive and their quality is of great interest to the industry.

The effort to model the kinematics and strength of gears dates back to the late 18" and early 19'"
century with the discovery of Euler-developed involute and the modeling of gear kinematics by Relaux
respectively. Although in the beginning the predominant gears were those with cycloidal teeth, they
were quickly displaced by the involute gears, and especially the 20° involute gears which combines
sufficient overlap between meshing gears and increased load capacity.

The first attempt to compute the stresses in gears belongs to Lewis, who formulated the classic method
of estimating the bending stresses in a gear tooth (Lewis’s equation). The first to compile pre-existing
theories and formulations of computation concerning involute gears was Buckingham in his book
“Analytical Mechanics of Gears” [11]. Later, many researchers such as Timoshenko [12], Kelley [13],
Nieman [14], Small [15], Wellauer [16], Heywood [17] have worked on the to the development of
stresses in gears while others such as Dolan and Broghamer [18] calculated with the method of
photoelasticity an empirical formula to calculate the stress coefficient.

Around the middle of the 20" century F. Livtin [19,20] began to develop the "Theory of Gearing"
according to which it was possible to calculate any gear tooth pair in mesh. At the same time, various
methodologies and theories for calculating the geometry of gears were developed either by individual
researchers (Baxter, Colbourne, Dudley, Henriot, Merrit, Salamoun, Stipelman, Wildhaber) or by
manufacturers (Gleason, Illinois Tool Works) [21-23]. Given the geometry of the gears in the stress
analysis with the Finite Element Method, many researchers were engaged in the optimization of the
gears while the computational optimization methods were being developed. This optimization focuses
mainly on how displacements of gears are distributed (geometrical optimization) in order to design
gears that for given loads they will experience less fatigue while there are studies focusing on new
materials that will contribute to a better stress distribution (Hoffman, Townsend [24]) or new
construction methods (Daniewicz [25]). Finally, methods that suggest the use of parametric curves
such as polynomials are also sporadically implemented (Tsai [26]).

Additionally, H. Hertz with his two papers in 1881 and 1882 [32], has introduced his theory for the
stress distribution generated between two elastic bodies in contact at a single point or line upon being
pressed together with a force. Hertz’s theory, remains the foundation for the analysis of most contact
problems. This theory is described in detail in the present thesis because the optimization methods
that are being developed are based on the principles of his theory.

Optimization methods for gear transmissions are classified mainly into two categories. Firstly,
methods that provide low computational cost by using a combination of analytical and empirical
formulations for the determination of stress calculations and as a result they are less reliable to give
an optimum solution (Mabie [27], Rogers [28]). Secondly, methods that use more accurate methods
for the estimation of stresses but with an extensive computational cost. Finally, standards such as
AGMA [29], DIN [30] or ISO [31] have given design and computational instructions that are based
on theoretical results of the prementioned methods and observations from industrial implementations.
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In modern days, gears are very often used in power transmissions. They mesh at high rotational speeds
and carry high loads. Under these unfavorable conditions, gears fatigue and possibly fail, with their
failure impeding the functionality of the mechanical construction in which they are included. Failure
can occur either statically, due to high load, or due to dynamic phenomena, such as wear and fatigue.
Static failure is the result of either poor design (resizing) or misuse (operation in worse conditions
than those provided by the designer). So, neglecting the case of static failure, which can be avoided
with proper design and use, we examine the wear and fatigue of gears. These two phenomena will
certainly occur during the meshing of two gears, as they are in contact withstanding dynamic loads.

Even if the appearance of wear and fatigue is a given, it is not necessary that the functionality of a
gear will be affected. With an alternative design the consequences of the above for a certain system
may be insignificant during the life of the construction. So, by examining the mechanisms of wear and
fatigue we can reduce their negative effects and achieve more reliable constructions, cheaper, with
longer life.

Some other benefits that can derive from the reduction of pitting (appearances of surface fatigue) in
gears are the following. Firstly, the reduction of the mean equivalent curvature of the flanks leads to
the reduction of mean surface pressure in gears and to its normalization. This means that now we are
able to also use materials other than steel for gear manufacturing. For instance, ceramic materials that
have low resistance in surface pressure could be an option while they present better behavior in high
temperatures and in intense compression loads. Furthermore, the development of high surface pressure
in gears can also create problems in their lubrication since it can cause a squeeze flow of the oil and
change its viscosity with the development of high temperatures. So, we are forced to use more
sophisticated lubricants which are also more expensive. However, if the surface pressure is lowered
then we are given the option to use cheaper lubricants and even plain water in some applications like
when we have ceramic gears or when the application is marine. [7]

The present thesis is divided in 7 main chapters. The first topic to cover is Hertz’s theory of contact
and surface fatigue as a failure mechanism. In this chapter possible ways to reduce pitting in a gear
transmission are proposed. The next chapter discusses some of the most important equations according
to which the optimization is achieved. In the 4" chapter the optimization process that was suggested
is being discussed; The use of B-Spline curves, kinematics and modeling of gear meshing, the
constraints that should be taken into consideration and the optimization methods that are more efficient
for this problem are some of the topics that are discussed in this chapter. Moreover, in the 5" and 6™
chapter the closed contact path analysis and the open contact path analysis and the respective results
are presented thoroughly. In chapter 7 a finite analysis method confirms the optimization results
comparing them with the involute gears. Finally, conclusions are presented in order to assess the
efficiency of the present modeling.
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2. Bodies in Contact

2.1 Hertz theory
Let two bodies be in contact as shown in the figure below and let them be deformed under the load,
creating a contact zone. [4]

£1

Ri

Figure 2.1.1. Two bodies in contact on the plane [10]
Ignoring higher order terms, the surfaces of bodies in the point of contact can be expressed as
71 = A1x? + Ayxy + Agy? (2.1.1)
Z, = B1x? + Byxy + B3y? (2.1.2)
The distance between two points M and N of the two bodies (figure 2.1.1) can be written as:
Z1 + 2z, = (A; + By)x? + (A, + By)xy + (43 + B3)y? (2.1.3)

By choosing an appropriate coordinate system we can delete the product term xy whenever equation
(2.1.3) can be written as:

Z; + z, = Ax? + By? (2.1.4)

The coordinate system to which equation (2.1.4) applies is the system of main curvatures. Let R,, R';,
be the major radii of curvature of body 1 and R,, R’,, the main radii of curvature of body 2. R,, R';,
belong to planes perpendicular to each other as well as R,, R',, respectively. Let 1y be the angle formed
between the planes containing R, and R,. Then the constants of equation (2.1.4) arise as the solution
of the system :

A+B—1 1+1+1+1 (2.1.5)
"~ 2\R, R, R, R, o
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1
2 2 3
1 1 1 1 1 1 1 1
o - =\ == (2.1.6)
<R1 Ri) ¥ (Rz Ré) e <R1 Ri) (Rz Ré) COSI/J]

Suppose that the coordinate system of the figure 2.1.1 is the coordinate system of the main curvatures
with the angleyy = 0 the angle between the planes containing R4, R,. As the two bodies are deformed
locally, around the point of contact, under the influence of compressive load, the points M, N are
displaced by w, and w; respectively in the directions Z, and Z; respectively, as shown in the figure
2.1.1. If the distance between M, N was originally d, then:

B A—1
2

W4 + Wy + Al + Zy = d (217)
Combining equations (2.1.4) and (2.1.7) we have:
w; +w, =d — Ax? — By? (2.1.8)

Assuming that bodies 1 and 2 are semi-continental (this is especially true for low-yield materials, such
as gears, as the contact deformation zone is very small) we can we get the following expression:

1-v2 1-v2 qdA
= 2.1.9
Wit W, ( nE, + Tk, ff r (21.9)

Where qdA is the infinite load exerted on an infinite surface dA at a distance r from the center of the
contact zone (theoretical point of contact). The integration extends over the entire contact area
(surface). Let E;, E, be the measure of elasticity of body material 1 and 2 respectively and v,, v, let
be the Poisson ratios.

2

= 2.1.10
= (2.1.10)
1-— 2
= (2.1.12)
E,
Combining equations (2.1.8), (2.1.9), (2.1.10) and (2.1.11) we have:

dA

(ky + k) ff qT — d — Ax? — By? (2.1.12)

Based on equation (2.1.12) the task is to find stress distribution g that verifies it. Hertz showed that a
stress distribution forming a half-ellipsoid satisfies equation (2.1.12). Hertz's case has also been
proven experimentally. Obviously if the stresses follow such a distribution, the contact zone has an
elliptical shape. Figure 2.1.2 shows the contact zone as well as the stresses distribution (view of the 2
dimension distribution)
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F'Y

Figure 2.1.2. Deformation zone and distribution of compressive stresses in it according to
Hertz

If the load exerted between the surfaces is P then the maximum pressure develops at the center of the
ellipse of contact and is:

9o =30p (2.1.13)

Where a, b let be the axes of the ellipse of contact. These are calculated by the following formulas:

313mP(ky + ky)
_ 02T R iep) 21.14
_°3 2.1.15)
b ”\/4 A+B

Where m, n coefficients depend on the ratio and their value is obtained from arrays that arrays that

have emerged experimentally. An example is the one proposed by H. L. Whittemore and S. N.
Petrenko [33]:

m | 2.731 | 2397 | 2137 | 1926 | 1.754 | 1.611 | 1486 | 1.378 | 1.284 | 1.202 | 1.128 | 1.061 | 1.000

n | 0493 | 0530 | 0.567 | 0.604 | 0.641 | 0.678 | 0.717 | 0.759 [ 0.802 | 0.846 | 0.893 | 0.944 | 1.000

Where:
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From equations (2.1.13), (2.1.14), (2.1.15) the factors that determine the magnitude of the growing
surface pressure are derived. These are:

1) The load P. Reduction of the load leads to lower surface pressure.

2)

3)

The material of the gears (k,, depend on E; , and v, , ,equations (2.1.10) and (2.1.11)). The
more compliant the material, the lower the growing pressure (for large magnitudes of elasticity
E the deformation around the contact point is limited, hence the dimensions of the contact
zone)

Curvature of tooth profile at the point of contact. The term A + B (referred to as equivalent
curvature) depends on the curvature of the teeth, equation (2.1.5). Increasing the radius of
curvature of the tooth (i.e. decreasing the curvature k = 1 / R) leads to a decrease in surface
pressure.

The above refers to the general case of two bodies in contact. Applying the results to spur gears results
in some simplifications:

1)

2)
3)

4)
5)

The radii of curvature R’; and R’, tend to infinity as the teeth have no curvature in the direction
of the width. So, the equivalent curvature is given by the following formula:
A+B—1(1+1) 2.1.17
~2\R, R, (2.1.17)

For the angle y formed between the planes containing R;,R, , ¥ = 0
The theoretical contact is made on a line and not a point, so the contact zone is no longer
elliptical in shape but a rectangle of length h (the width of the gear) and height b, where:
- 4P'(ky + k,)RyR, (2.1.18)
R, + R,
P
S 2.1.19
Pl = ( )

The stress distribution is elliptical but has fixed profile along the contact line.

The maximum magnitude of surface pressure is:
2P’
Qo =" (2.1.20)

2.2 Surface fatigue - Pitting

The requirements of the machines in terms of efficiency, durability and power density are steadily
increasing. This situation is intensified especially for gears due to climate change and therefore
originated legal regulations that lead to the need of e.g., effective car gearboxes or wind turbine
transmission. To favor the development of these advanced future tools is essential to understand the
mechanical and tribological mechanisms in detailed contact of the gears. The analysis and
understanding of these mechanisms will allow the design of optimized gear flanks with maximum
power density and increased safety and durability. Tools such as the fatigue simulation, are necessary
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for this kind of future engineering. The models are based on detailed understanding the contact of the
gear teeth and the prevailing conditions.

When meshing profiles transmit loads, a small pressure band appears at the point of contact of the
meshing teeth. In this area the loads are intense and at the same time the surface on which they are
exerted is very small. In a pair of gears the contact theoretically takes place in a line and the stresses
are infinite. Of course, the teeth are deformed locally, so a small contact area appears.

As it results from the above, the stresses that appear in the contact zone, are very high but they are
compressing, so at a first glance they do not seem dangerous. However, due to the Poisson effect,
shear stresses appear from the surface of the tooth inwards. These shear stresses take a maximum
value at a certain depth in the center of the contact zone.

Referring to a specific point of the working profile, the resulting shear stresses are periodic since each
tooth engages with a given frequency and in addition each "point” of the working side comes into
contact with the meshing tooth. Therefore, due to shear fatigue, small cracks appear at shallow depths
below the tooth surface, which then are gradually developing. These appearances of fatigue are known
as pitting.

Figure 2.2.1. Gear tooth with micropitting area — micropitting in detailed pictures [6]

The loads at the point of contact are compressive and during compression the stress concentration
phenomenon is absent. Thus, the cracks do not have a significant effect on the functionality of the
teeth while they are below the surface. However, as they gradually develop, under certain conditions
they come to the surface when the following phenomenon is observed. Lubricant enters the crack and
is trapped below the tooth surface. Along with the zone above, the "lubricated” crack enters into
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meshing, the strong compressive stresses that develop cause high pressures to develop inside the crack
due to the minimal compressibility of the lubricant. These pressures extend the cracks to the surface
of the tooth. The end result is the detachment of thin and small sheets of material from the working
profile.[6]

Figure 2.2.2. Scanning electron microscope pictures of a micropitting area [6]

During this phenomenon the working side loses its original geometry and surface quality. At the same
time the increased roughness favors the wear mechanisms mentioned above so gears are soon driven
to failure. Failure may not necessarily mean fracture but generally operation that is over specifications
(increased oscillations, uneven power transmission etc.).

To avoid the pitting effect, we would ideally like to avoid (practically reduce) the appearance of micro-
cracks, their development and their "climbing™ to the surface. This could be achieved in two ways in
general.

LIRR) [ ] j
distribution of stress

Figure 2.2.3. Micropitting area transition and test gears with pitting [6]

The cause of the appearance of cracks and their development is, as mentioned above, the shear fatigue
that occurs just below the surface due to the pressure in the contact zone of the gears. Therefore, the
factors that determine the pressure in the contact zone and consequently the shear caused (maximum
shear depth and magnitude) must be determined. The theory of contact of deformable bodies (for small
deformations) has been developed by Hertz and has been experimentally verified. The causes that lead
to cracks in the surface must also be identified.

2.2.1 Rise of cracks on the surface

It has been reported above that surface pressure causes secondary shear at a shallow depth below the
contact zone. This depth z, depends on the ratio a / b (half-axis ratio of the lack of contact) and is of
the same order of magnitude as a, b.
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At this depth, cracks appear first and then develop. Their rise to the surface can be caused by various
factors such as material defects or persistent stresses on the tooth surface. But there is a main
mechanism that causes them to rise and this is based on the change of surface pressure from the
engagement of the teeth.

...... ar 2
E’ - material fatigue rolling g’ material fatigue rolling
£ Pn v, direction E Pn v, direction
asperity and 2f  dHid = — o Hg% — —
micropitting H] L 2 e
L S efect .S | micropitting
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o by = el ot M = —
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diiy — — Vi — —
-:—_.;%-.._#—
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Figure 2.2.4. Surface and subsurface crack initiation mechanisms and dimensions [6]

The distribution of stresses obtained above refers to firm bodies. The working sides of the gears,
however, slide among themselves. With the superimposition of the friction the distribution is not
symmetrical with respect to the center of the contact zone (elliptical or cylindrical distribution). This
results in the development of torque to the center of the contact zone. This torque "pushes” the cracks
towards the surface. Similarly, cracks are driven to the surface when the developing stresses differ
significantly between adjacent positions during the course of the engagement of the teeth.

2.2.2 Ways to reduce surface fatigue
Based on the previous analysis, we conclude that the pitting effect could be reduced in the following
ways (for a specific gear material):

1) Reduction of the applied load P between the working flanks. For a given transmitted torque
the load per tooth can be reduced by increasing the degree of overlap, i.e., the number of teeth
at all times in engagement.

2) Reduction of the equivalent curvature A + B. In this way a larger surface area of the contact
zone is achieved, so that the growing surface pressure is lower.

3) Maintain a constant surface pressure during tooth engagement to limit the rise of cracks on the
surface. This is achieved when the product P (A + B) is kept constant throughout the contact
trajectory.

Suppose we want to reduce the pitting effect to a degree that conveys a certain torque. The ways of
limiting the pitting that we ended up above lead us to the search for a suitable geometry of the gears.
This is for the following reasons:

1) For a given transmitted torque, the developing load P depends on the degree of overlap, a size
determined by the geometry of the meshing profiles.

2) Equivalent curvature is purified on the basis of equation (2.1.17) from the curvatures of the
meshing profiles. These are also determined by the geometry of the profiles.

All the above analysis shows that the criterion that must be met by a gear wheel to minimize the pitting
effect is stable and minimum P (A + B) throughout the contact trajectory.
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2.3 Aims of optimization

The basic aim of this optimization is to produce a pair of gears with a constant equivalent curvature
curve. However, there are a lot of parameters that have to be designated such as the optimization
variables, the constraints and others that will be thoroughly discussed in the next chapters. This
optimization focuses mainly in minimizing the contact pressure and as a result the surface fatigue. The
bending stresses are important as well as the contact pressure however they have not been taken into
consideration in the optimization process. The final solution though is compared with the involute
gears in both contact pressure and bending stresses.

The objective function could become more complicated aiming to optimize both contact pressure and

bending stresses. To be specific a constant bending stresses curve would be much better than a non-
stable curve.
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3. Theory of Gears

Taking into consideration the known curves used for the construction of gears (involute, epicyclic,
orthocyclic, other special curves that have been proposed such as S-gears) none meet the above
criterion. Of course, the curve we are looking for must, in addition to satisfying the above condition,
be able to be used in the construction of gears

In summary we are looking for a pair of collaborating curves that:

1) They satisfy the basic law of gearing

2) They have pitch compatibility

3) They allow continuous meshing (depends on the overlap ratio)
4) Satisfy the condition P (A + B) = min,c where c is constant.

3.1 Law of gearing

Suppose two meshing profiles such as those in figure 3.1.1. At a given time they touch at point E. The
two profiles rotate with respect to points 0; and 0, with angular velocities w, and w, respectively.
The linear velocities at point E due to the rotation of profiles 1 and 2 are plotted as v, and
v, respectively. The TT is denoted by the common tangent of the profiles at the point of meshing E
and the NN is the common perpendicular to the TT. [1],[10]
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Figure 3.1.1. Kinematic analysis two random meshing profiles [10]

If at the given time the projections of v; and v, on NN are not equal then either one profile would
tend to penetrate the other (v; > v,) or the profiles would tend to move away from each other (v,
<v,). Both of these conditions are undesirable as they lead to uneven power transfer and discontinuous
transmission. Therefore, the projections of velocities v; and v, on the common perpendicular NN
must be equal at all times. This condition consists the law of gearing.
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Figure 3.1.2. Detailed illustration of the velocities of two meshing profiles in the plane and
their analysis on the common perpendicular and tangent to the point of meshing [10]

Using 3.1.2, the law of gearing can be formulated in a format that is particularly easy to use when

designing profiles. From the previous we have:

Vicosx = V,cosyp =V, (3.1.2)

In addition to the triangles 0, EN and 0,EN' we get the equations:

cosx = g
Ry

< 92
siny = R,

And from the kinematics we get the equations:

Vi = wiRy

(3.1.2)

(3.1.3)

(3.1.4)
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VZ == (l)sz (315)
Combining the equations (3.1.1) - (3.1.5) we have:

w1 _ 0,C 316
w, 0,C o

If C is the rolling point on the center 0,0, of the profiles of figure 3.1.2, then due to the definition of
the gear ratio:

w, 0,C

(U_z = m 3.1.7

From equations (3.1.6) and (3.1.7) we conclude that if points C and C' are not identical then the
transmission ratio =2 changes during meshing. So, the law of gearing can be formulated as follows:

w2
The smooth and continuous transfer of power and transmission of motion between two meshing
profiles is ensured when the common verticality of the profiles at any point of contact passes through
the rolling point. The pitch point is defined as the point of contact of the gear wheel rolling cycles.

3.2 Pitch compatibility
Two meshing profiles that satisfy the law of gearing have a given transmission relationship defined
as:

wq
o, (3.2.1)

lip =

In order to be able to make gears from the specific profiles, there must be integers Z1 and Z2 that
correspond to the number of teeth of the two meshing gears such that:

wq Z,

=0, "7 (3.2.2)

li2

3.3 Continuous meshing

The law of gearing and the pitch compatibility are necessary conditions but not sufficient for the
operation of a stage of meshing gears. The last condition is the continuous and smooth succession of
the meshing teeth. This is ensured when at least one pair of teeth is in meshing at any given time. The
average number of teeth in meshing is given by the overlap ratio with the step. So, the last necessary
condition is:

e=>1 (3.3.1)
Particularly when the working profile is involute the overlap ratio is defined as follows. The figure

3.3.1 shows two gears in meshing. The contact of path KA is observe where meshing starts at point K
and end at point A.
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Figure 3.3.1. Involute gears in meshing [8]

From the definition of overlap ratio, we have the following equation:

_ KA _K/l 337
S_tocos(ao)_ ty (3.32)

where a, is the pressure angle, t, is the pitch at base circle and ¢, is the pitch at pitch circle.

3.4 Flank Geometry Design, simplifications and assumptions

Before proceeding to the description of how to solve the optimization problem, we represent how to
find the tooth profile, the meshing profile and the path of contact if the geometry of the respective rack
gear is known. Both of these processes will be used in the optimization cycle

If Z is the number of the first gear, Z2 the number of the meshing gear and m is the module for these
two gears we have the Pitch Circle Diameter D,

Dy =7Zm (3.4.1)
and,
Ty = % (3.4.2)

If y = F(x) is the function that defines the geometry of gear rack and (x,, y;) the coordinates of gear
flank. These coordinates will be defined by B-Spline polynomials that we are going to analyze in the
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next chapter. The control points that will describe these polynomials will be our optimization variables.
When the gear rotates by the center of base circle of the gear. Let 6 be the rotation angle of the gear
and K the respective displacement of the rack, these two are connected by the following equation:

As it results from the law of gearing, the displacement of the rack is given by:

K=- (yj—i: + x) (3.4.4)

The coordinates (x,,y,) of the gear flank are given by:
x; = (x + K)cosO — (y + 1y)sinf (3.4.5)
y1 = (x + K)sinf + (y + ry)cosf —r, (3.4.6)
The Contact path coordinates (x.,, .. ) are given by:
Xcp =x+K (3.4.7)

Yo =Y (3.4.8)

The second gear (external gear) that is in meshing with the first gear has the following coordinates:

Xy = X €050, — (Yo, — 192)Sinb, (3.4.9)
Vo = X1 Sin0, + (Yo, + 192)c0s0, + 19, (3.4.10)

Where,
Tog0y = —To0 (3.4.11)

Now that we have the gear coordinates, we can compute the curvature for the two gear flanks by the
following equation:

d?y;
1 dx?
R, 3 (3.4.12)

(e

Where i could be either 1 for the pinion or 2 for the wheel. Thus, the equivalent curvature is:
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1

According to Hertz’s theory of elastic contact, the most critical factor which controls the initialization
and the development of pitting is the curvature of the gear tooth profiles. So, the optimization function
might be:

1
G = mean (ﬁ) (3.4.14)
Or alternatively it might be:
- 1 (L 1f12d 1 (3.4.15)
=w; mean(ﬁ> + w, st (E) +W3§ (E) x4+ w, max(|§|) 4.

Where mean is the mean function for the set of points of the gear flanks that are in meshing and std is
the standard deviation function and w;, w,, w; and w, are weights.

It is crucial to decide the design variables of our optimization problem. These will be the control points
of the pinion flank or the rack gear that will be modeled with 4 degree B-Splines Polynomials.

3.5 Gear Tooth flank Involutization

The problem of identifying the rack gear flank coordinates that produces a particular gear flank is
crucial given the fact that the rack gear can be used as cutting tool in order to produce gears. Thus,
one scenario could be to optimize the rack gear, as it was fists attempted. In this case, the Control
Points would model the rack gear’s profile. However, in the present thesis it was preferred to model
the gear profile so that the conditions and constraints are imposed effortlessly. The theory of
involutization is an analytical way to find the coordinates of the path of contact given the coordinates
of any gear profile. [3]

In a two-dimensional gear tooth profile (not necessarily involute), where the working tooth profile
ve = G(x) and the rolling circle of the gear r, are given (3.5.1). The problem of conjugate tooth
geometry is to determine the path of contact y, = P(x), the tooth profile of the generating rack y, =
R(x). and the tooth profile of the conjugate gear y,, = W (x). Let us also consider a random point
G(x¢,yc) on the working gear tooth profile y; = G(x) and the Oxy Cartesian coordinate system,
where O is the center of rotation of the gear and Oy coincides with the tooth centerline. At point G
the tooth profile is approximated with an involute segment with corresponding pressure angle equal
to ay¢, such that the local involute has the same tangent with the actual profile at that point. The

normal (g,) to the profile at point G has inclination equal to — ﬁ and equation:
axl(x6,y6)
1
1= 90 +B (35.1)
/dx

(x¢¥e)

where B is a constant.
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Figure 3.5.1. The concept of local involute [3]

Point G (x¢, y;) belongs to (&,) and therefore should verify equation (3.5.1):

XG XG

and B =G(x;) + IR
d

xl(xGJ/G)

Yo = B — dG/
axl(x6,y6)

By substituting B equation (3.5.1) becomes:

x —
y=G(xg) + g

dG (3.5.2)

dx | (x6.¥6)

From the center O of the gear, line (&;) normal to (&) is drawn, so that it intersects with it at point
A(xy,v4). Since (&) is parallel to the tangent to the profile at point G, its inclination is

dG and its formula:
xXGYG)

/dX(

da +D (3.5.3)
= x —_— .
Y dx (x6¥y6)

where D is a constant.
Since (&,) passes through the center (x = 0,y = 0) we have the following equation:

da (3.5.4)
= X— ..
Y dx (x6.y6)
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while point A(x,, y,4) must verify both (3.5.2) and (3.5.4):

dG X¢ X4
xA_ - G(XG) + -
dx (x6.6) dG/d | dG/d |
Xl (x6v6) Xl xeye)
or
X
G(xG)+dG/ |G
dx
(x6.y6)
4= g5 1G g (3.5.5)
dx (x6ye) dG/dx|
(xy6)

and from equation (3.5.4) we have:

dG
Ya=Xa 5o (3.5.49)
Xl(x6y6)
The radii of the local base circle . at point G is:
A dG 2
Ty = [¥a tYa=2x4 |1+ E( :
XGYG
or
X + G(xG)dG/dx|(xGyG)
TgG = .
3.5.6
1+ (7
Xl (x6.y6)
The local pressure angle to the local involute at G is:
T,
Aoe = cos‘lf—G (3.5.7)
o

Equations (3.5.6) and (3.5.7) are independent of the chosen coordinate system. Thus, these equations
remain the same even if the coordinate system changes. In the following procedure the path of contact
coordinates is being calculated:

Let y, = G(x;) be the tooth profile and (0, x¢, y;) the coordinate system (Figure 3.5.2). The local

involute segment corresponds to a straight segment on the path of contact. Let a,. be the inclination
of point P of the path of contact which lies on the intersection of the circle (0, ;) and line CP.

32



Sas ¥

Path of Contact

/"__‘#_\(.\J P =
// C/A ~*r
|4 A ~ \\' a6
= | |
|
'} l\_ Rolling circle
Y

Gear tooth T,

i -
0o Xg

Figure 3.5.2. Path of contact and local pressure angle [3]

Point P satisfies of course the equation of the circle:
x2+y? =12 (3.5.8)
and the equation of the line CP:
y=xtana,; + 1, (3.5.9)
From the above equations we have:

x?+ (xtanay,g +71,)2 =18

and

x (1+tan? a,g) + x(2r,tan a,g) + (P2 +1¢) =0
therefore,

—21, tan a,g + 2+/(1 + tan? a )12 — 12
Xp = =
d 2(1 +tan? a,g)
B 2 _ 2 | _Tytanaeg
(1+tan?a,;) (1+tan?a,;)? 1+tan?a,g

Therefore,
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Xp = \/rGZ cos? a,; — (1, cosa,g)? cos? a,g — 1, COS Ay SN Ayg
2 2 2
TG Tgc Tg6
xp =1 | () = () - [1- (% (3.5.10)
TO TO rO

2 2 2 2
T, T T T
Vp = Xptana,; +1, = rgg\/<i> -1 \[(T—G) - (i—c) - \[1 - (f—G) (3.5.11)
o o o

g

and

Hence the radii r,; and 75 are given by the following equations:

xG+G(xG)dG/d |x
roG = | al( G'yG)| and ¢ = x§ + G*(x¢) (3.5.12)

dG 2
1+<d—‘ >
*(x6.y6)

The coordinates of the conjugate rack profile y, = R(x) and the tooth profile of the conjugate gear
yw = W (x) can be calculated with known equations some of which are in the previous chapter.
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4. Optimization process

4.1 Optimization Terminology
In order to apply an optimization method to a problem like this, it must be preceded by the
determination of the following three basic features [2]:

i.  Objective function that mathematically describes the problem and what needs to be achieved
via optimization.

ii.  Optimization parameters that describe how the system adapts to achieve the goals set. These
are usually identified by the number of variables of an objective function and the result of an
optimization method is to find the vector of the optimization parameters, which satisfies the
objective function in the required way.

iii.  Constraints that regulate the variables of the problem and lead to optimization through
requirements that must be met.

4.2 Classification of optimization algorithms

One of the most popular classifications of optimization methods is based on whether derivatives of
the objective function are used for the optimization process. Thus, there are zero order’s, first order’s
and second order’s optimization methods. The zero order’s optimization methods do not use
information concerning derivatives, the first order’s optimization methods, use information
concerning the first derivative and the second order’s optimization methods, require the computation
of the first and the second derivative [2].

Zero order’s optimization methods are classified into deterministic methods and stohastic methods
depending on how they choose the potential solution.

Deterministic methods are based on the gradual shifting of an initial solution to the optimal one
through stepwise corrections. Unfortunately, any changes to the cost function or modeling of the
problem require a redefinition of the optimization model. Although deterministic methods are
particularly fast, they run the risk of not converging to the optimum but being trapped in local extrema,
depending on the choice of initial solution.

Stochastic methods, on the other hand, are based on the almost random search for new solutions that
are better than the existing one, which ultimately leads to the best. Their main feature is that they are
not easily trapped in local extrema and are therefore preferred for solving convoluted optimization
problems. Their only drawback is that they often have a high computational cost compared to
deterministic methods.

Apart from this categorization other criteria on the basis of which we separate the algorithms are:

1. Optimization through the trial-and-error process and optimization through mathematical
transfer function. There are cases where we do not know enough about how the input
parameters of a system affect its output. In contrast, theorists prefer that optimization which is
based on revealing the correlation between input and output and then modeling it.

2. If there is only one parameter then the optimization is characterized as one-dimensional. A
problem with two or more parameters requires the use of multidimensional optimization. As
the parameter algorithm increases, so does the difficulty of solving the corresponding problem.
Several multidimensional optimization methods rely on reducing the problem to a series of
one-dimensional optimizations.
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3. Dynamic optimization means that output is a function of time, as opposed to static optimization
which is time independent. For example, the shortest distance is not always the least time
consuming. Thus, with the addition of the time parameter the optimization problem becomes
more complicated.

4. Optimization methods are also categorized based on the continuous or discrete nature of the
parameters. Discrete parameters can only take certain values, while continuous parameters can
take an infinite number of values. In a discrete optimization problem, the optimal solution is
one of the possible combinations of discrete sizes.

5. Parameters usually have constraints. Unrestricted optimization means that the parameters can
take any value. Constrained optimization means that the optimal solution is sought by
simultaneously imposing certain parameters-related conditions. In some cases, problems with
constraints can be expressed in problems without constraints. Most can be equality or
inequality constraints, linear or non-linear constraints. When the optimization problem is
characterized by linear constraints then it is characterized as linear optimization problem.
Otherwise, it is characterized as non-linear optimization problem.

4.2.1 Steepest Descent Method

One of the most popular optimization methods is Steepest Descent method. Although this is an
unconstrained optimization method its results are always judged to ensure that the desired constraints
are met. It was first pioneered by Cauchy concerning solving of linear equations system. According
to this method the direction resulting the minimization of

n
of
Tg — — .
ViTs = Z 52 (4.2.1)
i=

where s is the unit vector at n-dimensional space:
sT.s=1 (4.2.2)
and it is equal to:

vt

S

The minimization of function the function f is achieved through the following formulation:
Xp41 = Xy +as (4.2.3)

The variable a is selected in a way that f is minimized in the direction of s. For a second order’s
function

1
f(x) = EXTQX +bTx+c (4.2.4)

It is proved that there is the following formulation for the size of the step a:
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T T
b')s
o (i +bY)s (4.2.5)
(sTQs)
where the symmetry of the Hessian matrix Q has been used. In case f is not in a square formation —
square function- or Q is not in an analytical formation, a can be determined through one-dimension
techniques of search.

It is clear that the convergence of this method depends on f and in case f diverges from square
formation - square function - steepest decent results in a vacillation or zig-zag in the parametric space.

[2]

4.2.2 Genetic Algorithm

Genetic Algorithms are one category of Evolutionary Algorithms which are based on Darwin’s theory
of evolution. According to Darwin’s theory the natural evolution of population depends on sorting
(skillful and fast animals have more chances to survive), reproduction (species reproduce by
transferring genes) and mutation (throughout centuries all species undergo mutations that change their
features).

Similar to the biological analogue, Genetic Algorithms are based on the existence of populations that
are potential solutions of the problem. Population varies from one generation to another while it
undergoes (a) selection that depends whether it is suitable, (b) crossover in order to transfer its features
to the next generations and (c) mutation in order to cover the whole space of potential solutions.

In Genetic Algorithms, exploitation is achieved through the parent selection mechanism while
exploration is achieved through crossover and mutation. [5],[9].

4.3 Mathematical formulation of B-Splines by De Boor

4.3.1 General definitions
De Boor's formulation is widely used in modern software today and the optimization problems
presented in the present thesis are using this formulation. [34]

Based on the interpolation points (breakpoints) and depending on the choice of continuity (C?~*) we
create the knot vector consisting of the two ends of the span, with multiplicity (p + 1) in each, and
the (n — 1) intermediate points of the vector each with multiplicity A.

Thus, for the interpolation points &,, ¢4,..., &,, the corresponding knot vector is:

U =805 805 §10 s 1 s wvs St s Sn=15 §qur o0 S (4.3.1)

p+1 A A p+1

and it consists of
m=2p+1)+A(n—-1) (4.3.2)

elements.
Therefore if 0 < x < L the interpolation points acquire secondary importance since the new view
consists in the parameterization of the geometric curve by the introduction of Control Points,

Pi(i =0,.., np) whose number is equal to the number of polynomial coefficients that we will analyze.
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Thus, the position of the corresponding point of the intervening function is given by the equation

X(§) = ) Bin, (x5, 0§ <1 (4.33)
i=0

Where B, (&) are the B-Spline base functions. That is, the interpolation of the coordinates of the
Control Points gives exactly the coordinate of that point.

On the other hand, if the values of a random function, let u(¢) be this function, are considered at the
(n, + 1) control points, the equation (4.3.3) cannot be implemented without determining certain

coefficients a;, i = 0, ... ,n,,, according to which this function is interpolated with sufficient accuracy.

4.3.2 Base functions
There are many ways to define B-Splines base functions and prove their important properties. At this
point we use the retrospective formula as it is the most efficient for programming.

Let U = {¢,, ..., &,,} be a non-descending sequence of real numbers with ¢; < ¢,,,,i =0,...,m — 1.
&; let be the knots and U let be the knot vector. The i-th base function of B-Spline’s depth p, let be
N;, (&) is described as:

N; o (&) = {1 if & Sog <$i+1

. o (4:3.)
Nip©) = e Ny () 4 2SN )
i+p i

Sivpr1 — Sit1
It should be noted that:

i.  N;o(&) is astep function that equals to zero everywhere except §; < & < &;,4.
ii. Ifp>0thenN;,(£) isa linear combination of two base functions order’s p — 1.
iii.  The computation of a set of bases requires the determination of the knot vector, U, and the
value of p.
iv.  The equation (4.3.4) includes the quotient 0/0 that is defined equal to zero.
v.  The functions N;,,(¢) are partial polynomials that are defined for all the real values but they
are of interest only in [&y, &,,].

vi.  The semi-open space [&;, &;41) is called it" knot span and it can have zero length given the fact
that the knots are not always discrete values.

vii. ~ When the knot spam is of the following formulation U = { u , L_/l }then
p+1lterms p+1terms
concludes to Berstein Polynomials of p degree in Bezier Curves.
viii.  N;,(&) = 0 when uis out of [¢;, ;,,,41) according to local support property.
ix.  Inagiven knot span [¢;, &;1p,4+1) @amaximum of p + 1 base functions N; ,, are not equal to zero
and particularly N;_, , ... Nj ,
X.  N;,(&) = 0 for every i, p and u (non negative).
xi. It is proved that Z%_p N;,(w) =1 V & € [, &;41) for a random knot span (Partition of
unity)
xii.  All the derivatives of N;,,(§) appear in the interior of a knot span in which they are
polynomials. In a particular knot, N; ,,(¢) can be differentiated p — k times where k is the
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multiplicity of the knot.
xiii.  Apart from the case where p = 0, N;,(£) receives exactly a maximum value.

4.3.3 Derivatives of B-Splines
It is proved that the first derivative of B-Spline curve can be evaluated as:

N';, (&) = %Ni,p—l(f) -
i+p i

p
Niy1p-1(§) (4.3.5)
€i+p+1 - €i+1
Let N, (&) be the k-order’s derivative of N;,(§); After repeated differentiations we conclude to
the following general formulation:

N =1, N&-1)

ip—1 i+1,p—-1

N®,;, (&) =p( ) (4.3.6)

€i+p - fi €i+p+1 - fi+1

An alternative way to compute the k-order’s derivative as function of N;,_g, ..., Niixp—x is the
following:

k
p!
D = —k)'z ak’]'NH_]"p_k (437)

N &),
(p- L
j=0

where,
ago =1

P Ar—1,0
k0= %7 £
Ei+p—k,+1 - Sti

Ar-1,j — Ag-1,j-1

ak,j ,j:].,...,k—].

Sivp—k+1 — Sit)

. = —Ag—1k-1
Kk=7 7
Sivpr1 — Sitk

4.4 Flowchart

The flowchart that describes the optimization methodology of the present thesis is the one presented
in figure 4.4.1. It consists of two equivalent options which are the following. It is possible to either
start by modelling the pinion’s flank or the pinion’s rack gear flank. Our choice depends on whether
the contact path is closed or open. In closed contact path the rack gear is modeled while in open contact

path the pinion’s flank is modeled. Both choices are equivalent; However, in closed contact path it is
easier to determine the position of the control points for the rack gear.
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Figure 4.4.1. Flowchart of the optimization process
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5. Optimizing gear flanks in closed contact path

5.1 General and constraints

Point of contact is defined as any point where the two working profiles intersect while the set of these
points is defined as path of contact. The path of contact could be either closed which is discussed in
the present chapter or open which is discussed in chapter 6. One example of closed contact path is the
contact path of sinusoidal gears.

However, this is a theoretical model since the meshing profiles not always mesh in closed contact path
shown in the figure 5.1.1. It is true that they might mesh in points that do not belong to this closed
contact path. The following figure shows how such a case could be:

FigUre 5.1.2. Meshing out of the contact path [8]

In the present thesis, we assume that the meshing gears always mesh in the defined closed contact path
which means that the working profiles have no other contact points apart from it.

One of the most important steps in the optimization procedure is to define the constraints of the
problem and the coordinate system. At first glance, it might seem easier to figure out the parameters
of the problem when the tooth is in position 1 (Figure 5.1.3). A closer examination, though, reveals
that this is not the best choice. Let y = G(x) be the profile of the gear shown in position 1 of the
following figure. That does not necessarily mean that every element of set x corresponds to only one
element of set y = G (x) and the most common example that proves this is the involute profile.

Figure 5.1.3 Potential coordinate systems
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However, rotating the coordinate system by —n #tz:th rad (n=2, #tooth=19 in our case study) we

observe that every element of set x corresponds to only one element of set y = G(x) with always
ascending x coordinate of working profile and always descending y coordinate of working profile and
also these are two of the restrictions imposed. In case these limitations are neglected it is possible that
the pinion profile will be as presented in the next figure, a set of not ascending x and not descending

y.

(Pinion)

Figure 5.1.4 Undesirable result when constraints are neglected

Another constraint to be considered is the overlap ratio which has to be greater than 1. In closed contact
path overlap ratio equals to 1 but in case of open contact path this factor should be taken into
consideration.

One of the most common results, no matter if the problem is being solved with deterministic or genetic
algorithms, is abrupt changes in equivalent curvature curve. In the figure below it is shown an
undesirable steep change in the curve which corresponds in an abrupt change in stress. This is the
main reason to cause pitting. Thus, such results in our attempt are immediately rejected.

1
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e ——Optimal profile
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Involute profile

-157

0.5 1 15 2 25 3
x coordinate of working profile (mm)
Figure 5.1.5 Undesirable steep change in equivalent curvature curve
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Although it has this steep change in the curve, it has a better average equivalent curvature in
comparison with sinusoidal and involute profile. This feature is a problem faced in both open contact
path and closed contact path cases. However, there are ways to avoid such steep changes. This could
be achieved with two kinds of terms in the objective function. The first is:

std (%) (5.1.1)
and the second is:
max( %D (5.1.2)

Both these two terms are very efficient to confront abrupt changes in the equivalent curvature curve.
Of course, sometimes the presence of weights is necessary to reach a better result.

5.2 Steepest Descent Results

Steepest descent algorithm of the present thesis consists an original code written for the purposes of
this optimization problem. In contrast to genetic algorithm optimization of MATLAB-SIMULINK
where the restrictions are imposed through MATLAB’s optimization toolbox, the constraints are part
of the original code. Nevertheless, there are several ways to do this such as to include them in the
objective function. For example, in some of the following cases one of the objective function’s terms
is a weight multiplied by the inverse of overlap ratio (in open contact path cases) so as to exclude
results with overlap ratio less than 1.

One of the advantages, among others, of modeling the rack gear profile is that the first two and the
last two control points are in the same height. As a result, in an optimization problem of closed contact
path with five control points results in a number of four objective variables {X p,, Xcp3, Yeps, Xcpat
while the others are defined as far as gears parameters are designated (Figure 5.2.1).

2 L
1 L
=
@ Of
>
(341
.
1t
2| Rack Optimal profile
©  Control Points CP4 CP5
-1 0 1 2 3 4 5

y axis (mm)
Figure 5.2.1 Rack gear profile modeled with B-Spines
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Optimization parameters

Modeled with Control Points Pinion’s rack gear

Number of Control Points 5

Number of variables 4

Number of iterations 100

Tolerance -Golden Section- le8

Number of searching steps 100

Obijective function < 1 1 1

max | abs (—)) + mean <abs (—)) + std (—)

R R R

Gear parameters

Gear (Z1) 19

Conjugate Gear (Z2) 55

module 2.5

B-Spline parameters

Polynomial’s degree | 4

Table 5.2.1 Case 1 parameters

In the following figure we have the path of contact of both sinusoidal and the optimal solution of
steepest descent’s algorithm. It is true that they have at least 3 points that these two contact paths
intersect which in our case are (0,0),(0,2.5) and (0,—2.5) . The last two are directly related with
module’s value that is equal to 2.5.

— Optimal profile
Sinusoidal profile

-1

0 1 2 3
X axis (mm)

Figure 5.2.2 Path of contact - case 1

The working profiles that correspond to these paths of contact are shown in figure 5.2.3 They both
have common start and end which was expected.
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Figure 5.2.3 Pinion working profiles - case 1

Finally, the figure 5.2.4 shows our optimization aim. The equivalent curvature should be as stable as
possible so as to avoid abrupt changes in stresses of the working profile. Although the results of
optimal’s profile in figure 5.2.4 are better that sinusoidal’s profile, they are not satisfying enough due
to the fact that the optimal curve is still wavy.

1 T T
— Optimal profile
Sinusoidal profile
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0 0.5 1 1.5 2 25 3
x coordinate of working profile (mm)
Figure 5.2.4 Equivalent curvature - case 1

The following table shows the some of the main factors that were used in order to optimize and assess
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the results of the problem. First, the average (mean) should be as smaller as possible because is directly
related with the stress magnitude according to Hertz. Furthermore, the maximum of the equivalent
curve indicates where the maximum stress could take place in the working profile; it was a very
efficient term to use in the objective function because in association with the standard deviation of the
equivalent curvature the results of the optimization become more stable.

Optimization Results (absolute values)
Sinusoidal profile | Optimal profile Decrease %
mean of equivalent curvature 0.1333 0.0708 94.69
max of equivalent curvature 0.6719 0.1644 75.53
std of equivalent curvature 0.1542 0.0490 68.21

Table 5.2.2 Case 1 results

Wheel

Rolling circle
(Wheel)

(Pinion)

Figure 5.2.5 Generating pinion and wheel - case 1
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Figure 5.2.6 Pinion and wheel in meshing - case 1
As it was previously mentioned the equivalent curvature curve should be much more stable than the
one in figure 5.2.4 Thus the same problem is being solved with genetic algorithm in chapter 5.3.
Although the equivalent curvature curve is not as expected, it can be considered improved for closed
contact path cases. The number of control points is another important factor to take into account and
for this reason the following result is presented.

Optimization parameters

Modeled with Control Points Pinion’s rack gear
Number of Control Points 8
Number of variables 10
Number of iterations 100
Tolerance -Golden Section- le~8
Number of searching steps 100
Obijective function
max <abs (R)) + mean (abs (R)) + std (R)
Gear parameters
Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
B-Spline parameters
Polynomial’s degree | 4

Table 5.2.3 Case 2 parameters
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Figure 5.2.7 Equivalent curvature - case 2
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Figure 5.2.8 Pinion and wheel in meshing - case 2

Path of contact

Rolling circle
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Optimization Results (absolute values)

Sinusoidal profile | Optimal profile Decrease %
mean of equivalent curvature 0.1333 0.0899 93.25
max of equivalent curvature 0.6719 0.1392 79.27
std of equivalent curvature 0.1542 0.0410 73.42

Table 5.2.4 Case 2 results

This result shows that the increased number of control points cannot assure the desirable improvement.
Although the curve is not as equal as expected we observe reduction in the values in table 5.2.4 which
shows that an improvement has been achieved. Between the first two cases the first is by far more

stable than the second one.

5.3 Genetic Algorithm Results

Genetic algorithms are a credible way to reduce the equivalent curvature. However, every run of a
genetic algorithm code could last from 5 to 45 minutes in contrast with steepest descent that needed
less than 1 minute until convergence. It is true that the objective function is critical to reach satisfying
results. In order to find the best objective function for the genetic algorithm often steepest descent was
used to assess the objective function’s credibility.

Optimization parameters

Modeled with Control Points

Pinion’s rack gear

Number of Control Points 7
Number of variables 9
Population Size 200
Generation Size 900
Crossover 0.4

Obijective function

max <abs (%)) + mean <abs (%)) + std (%)

Gear parameters

Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
B-Spline parameters

Polynomial’s degree | 4

Table 5.3.1 Case 3 parameters

The path of contact shown in figure 5.3.1 still remains an eight-shape path which always intersects the

pitch point (0,0) .
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Figure 5.3.1 Path of contact - case 3

The pinion’s working profile of the genetic algorithm’s result is shown in figure 5.3.2. Again, as it
was expected both curves have common start and end.

29 F
£ 24/
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E
2ol 23t
22
— Optimal profile
— Sinusoidal profile
21 C 1 1 1
-2 -1 0 1 2 3 4
X axis (mm)

Figure 5.3.2 Pinion working profiles - case 3
The results shown in figure 5.3.3 are improved in comparison with the steepest descent’s results

previously shown. The equivalent curvature is not as wavy as presented before while it is much better
than sinusoidal’s profile.
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objective function's focus
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Equivalent curvature

— Optimal profile
— Sinusoidal profile
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x coordinate of working profile (mm)

1 1.5

Z 2.5

Figure 5.3.3 Equivalent curvature - case 3

The truth is that this was not the first result that the genetic algorithm converged. The whole process
was very time-demanding given the fact that alternative objective functions were used. Apart from
this, a certain objective function does not necessarily correspond only to a particular result. For
example, an objective function might aim to optimize the whole array of equivalent curvature or just
a part of it. In the figure above it is shown which part of the curve was optimized in the present result.

It is worth to mention that even a small change in this area might have totally unexpected results.

Optimization Results (absolute values)

Sinusoidal profile

Optimal profile

Decrease %

mean of equivalent curvature 0.1333 0.0915 93.14
max of equivalent curvature 0.6719 0.1245 81.48
std of equivalent curvature 0.1542 0.0222 85.58

Table 5.3.2 Case 3 results

The factors of this optimization result are shown in the table above and are much better than the
previous shown given the percentage decreases.

51



Wheel

Rolling circle
(Wheel)

Rolling circle
(Pinion)

Pinion

Figure 5.3.4 Generating pinion and wheel - case 3
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Figure 5.3.5 Pinion and wheel in meshing - case 3
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Although the result above shows an improved equivalent curve in comparison with other genetic
algorithm results for closed contact path it is characterized by the problem shown in figure 5.1.4. As
a result, the it is only possible to mesh with the wheel only if a part of the meshing flank is used. For
this reason, in the figure 5.3.5 part of the path of contact is intermittent. It is the part of contact that
corresponds to the problematic part of the pinion’s flank. Another genetic algorithm result, without
this kind of problem is shown below.

Optimization parameters

Modeled with Control Points Pinion’s rack gear

Number of Control Points 5

Number of variables 5

Population Size 300

Generation Size 900

Crossover 0.4

Obijective function < 1 1 1

max | abs (—)) + mean <abs (—)) + std (—)

R R R

Gear parameters

Gear (Z1) 19

Conjugate Gear (Z2) 55

module 2.5

B-Spline parameters

Polynomial’s degree | 4

Table 5.3.3 Case 4 parameters

Equivalent curvature

-1.5 71

— Optimal profile
Sinusoidal profile

0 0.5

1

1.5 2 2.5 3

x coordinate of working profile (mm)

Figure 5.3.6 Equivalent curvature - case 4
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Figure 5.3.7 Generating pinion and wheel - case 4
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Figure 5.3.8 Pinion and wheel in meshing - case 4
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Optimization Results (absolute values)

Sinusoidal profile | Optimal profile Decrease %
mean of equivalent curvature 0.1333 0.0718 94.61
max of equivalent curvature 0.6719 0.1601 76.17
std of equivalent curvature 0.1542 0.0499 67.64

Table 5.3.4 Case 4 results

In this case we have a completely accurate pair of gears of closed contact path as shown in the figure
5.3.8. The table 5.3.4 shows the reduction of this case which is not as high as case 3 but still consists
an interesting result with an average reduction of equivalent curvature around 95%, reduction 76% int
the maximum value and reduction around 68% in the standard deviation.
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6. Optimizing gear flanks in open contact path

6.1 General and constraints
In open contact path cases the control points model the pinion’s profile instead of the rack gear’s
profile.

Figure 6.1.1 Pinion’s flank profile modeled with B-Spines

In an optimization problem of open contact path with six control points results in a number of height
objective variables {Xcp1, Xcp2, Yepzs Xcps, Yops Xcpar Yepar Xcps, Yeps Xcpe} While the others are

defined as far as gears parameters are designated (figure 6.1.1). Y.p,and Y,p, are not free dofs because
they must satisfy the following equations:

2 2 _ .2
Xep1 + Yipr = 1%

5.3.1
Xépe + Yips =15 (:3.3)

In open contact path cases we have to take into consideration the overlap ratio which must be greater than 1.
Otherwise, we might end up in results that cannot be implemented in practice. For this reason, one of the
objective’s function terms is related to the overlap ratio.

Furthermore, the coordinates of the first and last control point have limitations too. When the pinion and wheel
are generated, the flanks must not overlap. In order to understand how crucial is this factor the figure 6.1.3
presents the case where no constraints have been set for x coordinate of the first control point. We observe that
the x coordinate of the first control point is negative and this is undesirable while it has a minimum and a
maximum positive value related with S;.. The same condition must be reach for the last control point which has
a minimum and a maximum value related with S, . It is true that these restrictions refer to the flank when it is
in position 1 figure 5.1.3. As a result, in order to impose these restrictions a rotation from position 2 to position
1 (figure 5.1.3) is needed in the optimization algorithm.

Notwithstanding these limitations an investigation was attempted so as to conceive the relation between the
control points position and the equivalent curvature curve.
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Figure 6.1.2 Pinion’s flank profile modeled with B-Spines with absence of overlap ratio from
the objective function

The equivalent curvature of this result is very close to zero and is quite stable which both are desirable.

The main disadvantage of this result is that the profiles of the same tooth overlap and that the overlap
ratio is lower than 1.

' —@— (ontrol Points

Figure 6.1.3 Undesirable pinion’s flank

It is obvious that the result shown in figure 6.1.2 cannot be accepted. A closer examination though
reveals that the first and the last control points have the tendency to move as the arrows shows in
figure. This could encourage running the algorithm when only the first control point is designated,
only the second control point is designated or both are designated. The results show that the best
choice between the previous case studies is when all five (or more) control points are free to move.
One of these results is presented in the next chapter.

6.2 Steepest Descent Results

Optimization algorithms of this kind need an initialization array so as to start the loop. In closed
contact path the initialization usually was the sinusoidal profile while in open contact path the
initialization was the involute profile.
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The present result is of the most encouraging and satisfying among others because with only five
control points and less than one minute to run the code the working profile is highly improved.

Optimization parameters

Modeled with Control Points Pinion
Number of Control Points 5
Number of variables 8
Number of iterations 100
Tolerance (Golden Section) le8
Number of searching steps 100

Obijective function

zsj(l)zd + td(1)+01 !
' R) “* TR " overlap ratio

Gear parameters

Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
overlap 1.04
B-Spline parameters

Polynomial’s degree | 4

Table 6.2.1 Case 5 parameters

The figure below presents the contact paths of sinusoidal profile, involute profile and optimal profile.
As it known, the involute contact path is a straight line with inclination tan(a,) where a,is the
pressure angle. The optimal contact path is an open contact path which is not a straight line. All of
them, though, intersect at the pitch point (0,0).
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— Optimal profile
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Involute profile

-6 -4 -2 0 2 4
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Figure 6.2.1 Path of contact - case 5
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The working profile of this result is shown in figure 6.2.2 and it is compared with involute and
sinusoidal profile.
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Figure 6.2.2 Pinion working profiles - case 5

The equivalent curvature of the present case study is one of the most stable curves among other results.
It is permanently above involutes equivalent curvature and by far mor stable than sinusoidal’s profile.
This is obvious from the factors that are used to assess the curves in the optimization results table.
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Figure 6.2.3 Equivalent curvature - case 5
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Optimization Results (absolute values)

Sinusoidal Involute Optimal Decrease % | Decrease %
profile profile profile (rel. to Sin) (rel. to Inv)
mean of equivalent 01333 0.1783 0.1130 91.52 36.62
curvature
max of equivalent 06719 0.6708 0.1148 82.92 82.89
curvature
std of equivalent | 4 )54 0.0762 0.0014 99.10 98.18
curvature

Table 6.2.2 Case 5 results

The standard deviation of equivalent curvature is decreased 98% in comparison with involute which
is generally much more stable curve than sinusoidal. This means that the optimal profile of this case
study will have much less abrupt changes in stress magnitudes in surface fatigue.
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Figure 6.2.4 Generating pinion and wheel - case 5
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Figure 6.2.5 Pinion and wheel in meshing - case 5

One of the disadvantages of this result might be the low overlap ratio which is equal to 1.04. However,
the fact that the equivalent curvature curve is almost a straight line encourages us to use the same
objective function but with different weights in its terms. Particularly the following parameters
correspond to another interesting result.

Optimization parameters

Modeled with Control Points Pinion
Number of Control Points 5
Number of variables 8
Number of iterations 100
Tolerance (Golden Section) le~8
Number of searching steps 100
Objective function 1\? 1
O.Sf (—) dx + 0.5 std (—) + 0. -
R R overlap ratio
Gear parameters
Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
overlap 1.45
B-Spline parameters
Polynomial’s degree | 4

Table 6.2.3 Case 6 parameters

61



o
o
T
1

y axis (mm)

-0.5} .
1k — Optimal profile
Sinusoidal profile
Involute profile
-1.5F .

1 | | 1 1 |

0.5 1 1.5 2 2.5 3

X axis (mm)
Figure 6.2.6 Equivalent curvature - case 6

*Y

Pinion

—— Wheel
Path of contact

Rolling circle
(Wheel)

-----

"""" Rolling circle
(Pinion)

\

Figure 6.2.7 Pirllion and wheel in meshing - case 6

Optimization Results (absolute values)

Sinusoidal Involute Optimal Decrease % Decrease %
profile profile profile (rel. to Sin) (rel. to Inv)
mean of equivalent | ) 335 0.1783 0.1627 87.80 8.73
curvature
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max of equivalent | 6719 0.6708 0.1655 75.38 75.33
curvature

std of equivalent 0.1542 0.0762 0.0018 98.84 97.64
curvature

Table 6.2.4 Case 6 results

By adding one more control point we observe that the equivalent curvature curve is not as straight as
the previous results. To be specific we apply the following parameters and the result is shown below.

Optimization parameters

Modeled with Control Points Pinion
Number of Control Points 6
Number of variables 8
Number of iterations 100
Tolerance (Golden Section) le8
Number of searching steps 100

Obijective function

1)° 1 1
2.5J (—) dx + 1.4 std (—) +0.1 -
R R overlap ratio

Gear parameters

Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
overlap 1.22
B-Spline parameters

Polynomial’s degree | 4

Table 6.2.5 Case 7 parameters
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Figure 6.2.8 Equivalent curvature - case 7
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Figure 6.2.9 Pinion and wheel in meshing - case 7

Optimization Results (absolute values)
Sinusoidal Involute Optimal Decrease % Decrease %
profile profile profile (rel. to Sin) (rel. to Inv)
mean of equivalent 0.1333 0.1783 0.1312 90.15 26.38
curvature
max of equivalent 0.6719 0.6708 0.1449 78.43 78.39
curvature
std of equivalent 0.1542 0.0762 0.0085 94.50 88.87
curvature

Table 6.2.6 Case 7 results

Cases 5, 6 and 7 consist the best results in the present thesis given the fact that they have the highest
percentage reduction in standard deviation in comparison with the others. The following chapter
present results from genetic algorithm in MATLAB/SIMULINK.

6.3 Genetic Algorithm Results

In this case study the rack gear is modeled with 6 control points. The number of control points is of
course another important factor to take into account. As it is shown in the following table the
generation size is equal to 1900 in order to get an accepted result. The more the objective variables
are the more factors such as population or generation size should become greater rendering the
problem a very difficult task that could probably take hours to be solved. The parameters below are
chosen so as to have an acceptable result converged in less than one hour.
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Optimization Results (absolute values)

Modeled with Control Points Pinion’s rack gear
Number of Control Points 6
Number of variables 8
Population Size 400
Generation Size 1900
Crossover 0.8
Objective function < 1 1 1
max | abs (—)) + mean <abs (—)) + std (—)
R R R
additional constraints 1
max <abs (§)> <0.2
Gear parameters
Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
overlap 1.14
B-Spline parameters
Polynomial’s degree | 4

Table 6.3.1 Case 8 parameters

The first and the last control point of this case study are designated so the four control points are free
to move in both axes. As a result, we have the following contact path which reminds in some of its
first part the sinusoidal contact path and that is because the two control points that are defined (first
and last) are in the same positions as the closed path case.

2 L
€ o}
E
R
X
M 22 F
>
-4+ — Optimal profile
— Sinusoidal profile
Involute profile

-6 -4 -2 0 2 4
x axis (mm)
Figure 6.3.1 Theoretical path of contact - case 8

The working profiles of the present case study are shown in the figure below.
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Figure 6.3.2 Pinion working profiles - case 8

The equivalent curvature is improved in comparison with the involute and sinusoidal profile but it is
not better than the steepest descent’s result. It is much above the involute curve however is not as

stable as desired.

057

Equivalent curvature
O
(&)

15+

— Optimal profile
Sinusoidal profile
Involute profile

0.5 1 1.9 2 25 3
x coordinate of working profile (mm)
Figure 6.3.3 Equivalent curvature - case 8
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Optimization Results (absolute values)
Sinusoidal Involute Optimal Decrease % Decrease %
profile profile profile (rel. to Sin) (rel. to Inv)
mean of equivalent | ) 333 0.1783 0.0649 95.13 63.58
curvature
max of equivalent | 6719 0.6708 0.1228 81.73 81.70
curvature
std of equivalent 0.1542 0.0762 0.0416 73.05 45.44
curvature

Table 6.3.2 Case 8 results

In this case, a decrease around 64% is observed in the average of equivalent curvature, a decrease
around 82% in the maximum value of the curve and a 45% decrease in standard deviation. While this
is not the best solution among the other cases, it consists an important improvement in comparison
with involute and sinusoidal profile.

Rolling circle
(Wheel)

Figure 6.3.4 Generating pinion and wheel - case 8
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Figure 6.3.5 Pinion and wheel in meshing - case 8

Another effort is attempted by increasing the number of the control points and the generation size in

order to ensure that these factors do not set limits to the optimization results. The outcome is not
very different from what was presented above. However, two more cases are presented with the

respective figures:

Optimization Results (absolute values)

Modeled with Control Points

Pinion’s rack gear

Number of Control Points 7
Number of variables 10
Population Size 400
Generation Size 2300
Crossover 0.8

Obijective function

s (a (3 e (s (3 24}

additional constraints

o (avs(3)) = 0

Gear parameters

Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
overlap 1.17
B-Spline parameters

Polynomial’s degree | 4

Table 6.3.3 Case 9 parameters
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Figure 6.3.7 Equivalent curvature - case 9
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Optimization Results (absolute values)

Sinusoidal Involute Optimal Decrease % Decrease %
profile profile profile (rel. to Sin) (rel. to Inv)
mean of equivalent | ;333 0.1783 0.0625 95.31 64.93
curvature
max of equivalent | 4 571q 0.6708 0.1263 81.19 81.16
curvature
std of equivalent 0.1542 0.0762 0.0396 74.30 47.97
curvature

Table 6.3.4 Case 9 results

In this case the population size is twice the one in the previous cases. The number of control points

remain the same.

Optimization Results (absolute values)

Modeled with Control Points

Pinion’s rack gear

Number of Control Points 7
Number of variables 10
Population Size 800
Generation Size 2300
Crossover 0.8

Obijective function

s (a (3 e (s (3 243

additional constraints

max <abs (%)) <0.2

Gear parameters

Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
overlap 1.19
B-Spline parameters

Polynomial’s degree | 4

Table 6.3.5 Case 10 parameters
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Optimization Results (absolute values)

Sinusoidal Involute Optimal Decrease % Decrease %
profile profile profile (rel. to Sin) (rel. to Inv)
mean of equivalent | ;333 0.1783 0.0617 95.37 65.39
curvature
max of equivalent | 5 571q 0.6708 0.1277 80.99 80.96
curvature
std of equivalent 0.1542 0.0762 0.0395 74.39 48.17
curvature

Table 6.3.6 Case 10 results

It is clear that cases 8,9 and 10 have the same behavior and this can be shown from the corresponding
tables. In all these three cases an important improvement is observed. Particularly in all of them the
equivalent curve is above involute’s equivalent curve. However, they cannot be considered as the best
results because the reduction in standard deviation is smaller in comparison with other cases.

6.4 Fmincon Algorithm

Apart from the above results an attempt was made with fmincon algorithm in MATLAB/SIMULINK.
Fmincon is a gradient-based method that is designed to work on problems where the objective and
constraint functions are both continuous and have continuous first derivatives. It is true that one of the
main problems in this optimization method is that the solution converges very close to the initial vector
and as a result the algorithm is not searching enough for satisfying solutions. However, the following
results prove that this algorithm can converge in remarkable solutions.

Optimization Results (absolute values)

Modeled with Control Points

Pinion’s flank

Number of Control Points 6
Number of variables 10
Max iterations 1000
Max function evaluations 3000
X Tolerance le-6
Function tolerance le-6
Constraint tolerance le-6
Crossover 0.8

Obijective function

2

1 1 1
2f (E) dx + max (|E|> + 0.5 std (E) + 0.12

1

overlap ratio

Gear parameters

Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
overlap 1.0227
B-Spline parameters

Polynomial’s degree | 4

Table 6.4.1 Case 11 parameters
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Figure 6.4.1 Equivalent curvature - case 11

2.5

Optimization Results (absolute values)

Sinusoidal Involute Optimal Decrease % | Decrease %
profile profile profile (rel. to Sin) (rel. to Inv)
mean of equivalent 01333 0.1783 0.1093 91.79 38.67
curvature
max of equivalent 06719 0.6708 01174 82.52 82.49
curvature
std of equivalent 0.1542 0.0762 0.0042 97.29 94.53
curvature

Table 6.4.2 Case 11 results

Optimization Results (absolute values)

Modeled with Control Points Pinion’s flank
Number of Control Points 6

Number of variables 10

Max iterations 1000

Max function evaluations 3000

X Tolerance le-6

Function tolerance le-6
Constraint tolerance le-6
Crossover 0.8
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Objective function

2

1 1 1
1.2f (3) dx+05std(3)+0.14 .
R R overlap ratio

Gear parameters

Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
overlap 1.49
B-Spline parameters

Polynomial’s degree ’ 4

Table 6.4.3 Case 12 parameters
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Figure 6.4.2 Equivalent curvature - case 12

Optimization Results (absolute values)
Sinusoidal Involute Optimal Decrease % Decrease %
profile profile profile (rel. to Sin) (rel. to Inv)
mean of equivalent |, ;34 0.1783 0.1678 87.41 5.88
curvature
max of equivalent 0.6719 0.6708 0.1719 74.41 74.37
curvature
std of equivalent 0.1542 0.0762 0.0027 98.22 96.40
curvature

Table 6.4.4 Case 12 results
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Optimization Results (absolute values)

Modeled with Control Points Pinion’s flank
Number of Control Points 6
Number of variables 10
Max iterations 1000
Max function evaluations 3000
X Tolerance le-6
Function tolerance le-6
Constraint tolerance le-6
Crossover 0.8
Objective function 1\2 1 1
2[ (—) dx + 2 max —| + 0.5 std (—) + 0.3 -
R R R overlap ratio
Gear parameters
Gear (Z1) 19
Conjugate Gear (Z2) 55
module 2.5
overlap 1.1378
B-Spline parameters
Polynomial’s degree ’ 4

Table 6.4.5 Case 13 parameters
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Optimization Results (absolute values)

Sinusoidal Involute Optimal Decrease % Decrease %

profile profile profile (rel. to Sin) (rel. to Inv)
mean of equIvalent | 91333 0.1783 0.1254 90.59 29.64
max o eduivalent | g,6719 0.6708 0.1255 81.31 81.28
s ot eduivalent | 1542 0.0762 0.0001 99.95 99.91

Table 6.4.6 Case 13 results

The above results are very similar to the ones of the steepest descent algorithm. Although the algorithm
is not capable to reduce the value of the equivalent curvature to zero, it assures that the equivalent
curvature curve is stable. That is an indication that the optimization function is characterized by
robustness given the fact that with two different methods we had the same results converged.
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7. Contact analysis with Finite Element Model

7.1 Case study description

For the case study in which we were going to test the optimized gears (case 5) versus the involute
gears, we selected the following pair of gears. The pinion gear has 19 teeth and the gear in meshing
has 55 teeth. The module of the gears is 2.5 and their width is 20mm. Moreover, we assume the
following parameters for the calculation of the moment applied in the pinion gear:

Z, 19
Z, 55
m 2.5

Where Z; is the teeth of the pinion gear, Z> is the teeth of the gear in meshing, and m is the module of
gears.
The material used for the simulation is steel with the following properties:

E(MPa) 2x10°
v 0.3

7.2 Cad models

Apart from the Involute gears whose cad models were imported to SOLIDWORKS —for the creation
of the assembly- from the software KISSSOFT, all the others were created with the following
procedure. Firstly, from a MATLAB code a .txt file with the coordinates of the tooth profile for each
gear was created. Afterwards, the file was inserted in Design Modeler of Ansys Workbench where the
2D-surface of the entire gear was designed and then the assembly of the gear-set was completed. The
CAD models for each case of gears are shown in the following pictures.

0.00 50.00 100.00 (mm)

25,00 75,00

Figure 7.2.1. CAD model of involute gears
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0.00 50.00 100.00 (mm)
I .

25.00 75.00

Figure 7.2.2. CAD model of optimal gears

7.3 Ansys model
The analysis was performed in the Static Structural section of ANSYS with the surface model of the
assembly imported from SOLIDWORKS. The steps for the setup of the analysis where the following.

7.4 Meshing

For the meshing of the gears the Hertzian contact formulas were used to calculate the theoretical area
of contact. The contact area calculates was then divided by using approximately 100 elements and the
mesh was creates using the option of Edge Sizing and Refinement. The mesh created is shown in the
following image for the case of involute gears (it is similar for the other cases).

Figure 7.4.1. Mesh of involute gears.
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7.5 Contact
Since a comparison of the results from ANSYS with the theoretical formulas derived for a Hertzian
contact was necessary for the validity of the model, the contact between the teeth of the gears was set

to Frictionless and the following parameters where used:
Details of "Frictionless - pinion To in_collaboration”

[=| Scope
Scoping Method Geometry Selection
Contact 1 Edge
Target 1 Edge
Contact Bodies
Target Bodies
Shell Thickness Effect Mo
Protected Mo
[=]| Definition
Type Frictionless
Scope Mode Manual
Behavior Symmetric
Trim Contact Off
Suppressed Mo
[=| Advanced
Small Sliding Off
Detection Method On Gauss Point
Penetration Tolerance Program Controlled

Figure 7.5.1. Definition of contact between gears.

7.6 Boundary conditions
For the definition of the boundary conditions the option of Remote Point was used. Two Remote
Points were defined; one at the center of each

0.00 50.00 100.00 (mm)
I .. )

25.00 75.00
Figure 7.6.1 Application of Remote Points in gears
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Moreover, the option of Remote Displacement was used. Two Remote Displacement were defined;
one at each Remote Point. For the pinion gear all the degrees of freedom were set to zero except for
the rotation around Z-axis and for the gear in collaboration all the degrees of freedom were set to zero.

7.7 Load
The load that was applied was a torque of 5000 Nmm magnitude. Particularly it was applied in the
remote point located in the center of the pinion gear as shown below.

0.00 50.00 100.00 (mm)
N ..

25.00 75.00
Figure 7.7.1. Application of Moment in pinion gear

7.8 Results
The Von-Mises stress and surface pressure are presented for all the cases in the position where the
gears have contact in their pitch circle.

7.8.1 Equivalent Von-Mises Stress
For the calculation of Von-Mises stress the option Equivalent Von-Mises stress was inserted from the

Solution Tab. The results are shown in the following figures.
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Figure 7.8.1. Von-Mises stress - Involute gears, Maximum stress is 240.4 MPa

O EED

Figure 7.8.2. Von-Mises stress - Optimal gears, Maximum stress is 210.62 MPa

7.8.2 Surface pressure
For the calculation of the surface pressure the option Pressure of the Contact Tool was enabled. The
results are shown in the following figures.
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Figure 7.8.3. Surface pressure - Involute gears, Maximum stress is 241.61 MPa

Figure 7.8.4. Surface pressure - Optimal gears, Maximum stress is 211.47 MPa
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7.9 Verification of Finite Element Model
To verify that the finite element model yields proper results, the surface pressure of the gears was
calculated for the above point of contact with the theoretical Hertz formula for the involute gear and

the results are presented below:

Hertz surface pressure(MPa)

Finite Element Model surface pressure (MPa)

254.13

241.61

We can observe that the values of surface pressure are very close. In fact, the error between the
theoretical and the numerical value is -5.1%. Furthermore, we observe that the optimal gears have
lower stresses than the involute gears. This is another verification of the functionality of the model,
since in this point of contact the equivalent curvature of involute gears is lower than the one in the
optimal gears. Therefore, we can verify that the model works properly.

In addition, after running the finite element model in different points throughout the flanks of the gears
the following data were gathered in order have a more complete comparison between them.

280 [

A
~l
o

260 |
250 1
240 1
230 1
220

—4- Optimal
== [nvolute

—t

200 1

210

Maximum Contact Pressure (MPa)

+H

-

-2 -1

0 1 2 3 4
x of Path of contact (mm)

Figure 7.9.1. Variation of surface pressure in different points of contact of the gears.
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Figure 7.9.2. Variation of bending stress in different points of contact of the gears.

The following table contains the total results:

3 4

Z1=19, Z2=55, m=2.5 Involute gears Optimal gears - case 5
Mean of equivalent curvature 0.1783 0.1130
Mean surface pressure (MPa) 241.4067 210.02
Mean bending stress (MPa) 14.7187 11.40

Table 7.9.1 Case 5 Finite Element c

Finally, in figure 7.9.3 the generated pinion and wheel is presented while the figure 7.9.4 shows a
better view of the gears in meshing.
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Pinion

Figure 7.9.3. Generating pinion and wheel - case 5

Wheel

85



y axis (mm)

27

26

25

24

23

22

21

Pinion
Wheel
Path of Contact

X axis (mm)

Figure 7.9.4. Pinion and wheel in meshing - case 5
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8. Conclusions

Taking into consideration all these results we observe that the steepest descent’s solution in open
contact path shows better behavior than the rest. The Fmincon algorithm came up with solutions very
close to those that Steepest Descent came up with given the fact that both methods generated gears
with constant equivalent curvature curves. The equivalent curvature of case 5 is permanently above
involute’s equivalent curvature and by far mor stable than sinusoidal’s profile. This is confirmed by
the respective factors that were suggested in order to assess the results (average curvature, standard
deviation and maximum of equivalent curvature). As a result, we expect an improved stress behavior
in comparison with involute gears while the optimal solution is likable to resist surface fatigue in
comparison with sinusoidal gears. However, there are improvements to be done such as attempts to
“push” the equivalent curvature curve towards zero. That would ensure lower stresses magnitudes
when gears mesh.

Steepest Descent and Fmincon algorithm are more sensitive in abrupt changes in the equivalent
curvature curve than genetic algorithms and this can be seen in the results. The main problem in
genetic algorithms is that the solutions have undesirable peaks that will be responsible for pitting.
Another problem faced in this optimization attempt is when the algorithm sticks to the initialization
vector which means that the algorithm has not searched enough for a desirable solution.

One of the main parts of this modeling is the objective function. It is true that the same method can
provide a totally different result only with subtle changes in the objective function. There are terms in
the objective function useful to avoid solutions that do not satisfy the geometrical criteria and
constraints that must be met according to theory of gearing such as the law of gearing or pitch
compatibility.

The results presented prove that there are ways to reduce surface fatigue while the bending stresses in
the root could also be reduced. The standard deviation of the equivalent curvature curve is reduced up
to 98.2% relatively to the involute gears and this is depicted in the finite elements confirmation.
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Appendix
The scripts concern the open contact path.
Steepest Descent

Starting_Script.m
clear all;clc;
format short

% To paron programma ekkinei ton algorithmo ths steepest descent
n=5; % Control Points

z=19; % pinion

m=2.5; % module

tooth=2; % posa dontia aristera tha ginei h modelopoihsh tou flank
profile

functname = 'fitness';

dvar0 =LeastmS (Z,m,n, tooth) ;
niter = 100;

tol = le-8;

lowbound = 0;

intvl = 1;

ntrials = 100;

[x,Y]=SD Project (functname, dvar0O, niter, tol, lowbound, intvl,
ntrials);

LeastmS.m
%% LEAST MIN SQUARES
function b = LeastmS(Z,m,n, tooth)

o\°
o\°

o\©

Sto paron programma eisagontai ol suntetagmenes involute line 11
strefontaili aristera kata duo dontia (kata voulhsh auto) wste na
inai panta

sunarthsh oi suntetagmenes tou flank profile

kai meta montelopoiountai me B-Splines gia na dwthoun ws arxikh
imh ston

algoruthmo veltistopoihshs

o° o° (t o° o° (D o°
o\°

o\°

Zz= dontia pinion

m= module

n= numel of Control Points

tooth = # twn dontiwn aristera pou tha ginoun oi upologismoi
% Input Data SIN - (x,y) coordinates ths Troxias Epafwn P : Data
to interpollate P(:,1)=x;P(:,2)=y;

[xfl,yfl]=Involute Coordinates (Z,m);

do=Z*m; ro=do/2; % [pcd] Pitch Circle Diameter
phi=tooth*2*pi/Z;

x9=xfl*cos (phi) - (yfl+ro) *sin (phi) ;
y9=xfl*sin (phi)+ (yfl+ro) *cos (phi) ;

P(:,1)=x9";P(:,2)=y9";

div=size (P);

Q

%% Input of B-Spline parameters

o°® o o©

o°
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n Number of CP , proekupsan apo sxesh n+k+l-numel (T) = O
% k : deg of B-Spline , elaxisto 3
4
T

knot vector , numel (T)=n+k+1 , pollaplothta : 1 h parapanw
analoga

T=[zeros(l,k+1) 1:1:n-k-1 (n-k)*ones(l,k+1)];

Basis Functions of B-Splines

=T (1) :(T(end)-T(1))/(div(1l)-1):T (end);

o\

-

o\

N=zeros (k+n, k+1, numel (t)) ;
for it=1:numel (t)
for i=1:numel

( 1
i1f t(it)>=T
)

T) -
(1) && t(it) < T(i+1)
1

N(i,1,it)=1;
else
N(i,1,it)=0;
end
end
a=1;

for j=2:k+1
for i=l:numel (T)-1-a
if (N(i,j-1,it)==0 && N(i+l,j-1,it)==0) % zero kai oi
duo oroi
N(i,J,1it)=0;

if i<=n
dN(i,it)=0;
end
elseif N(i,j-1,it)==0 % zero los oros
N(i,j,it)=((T(i+3j) -t (it)) /(T (i+3)=T(i+1)))*N(i+1,7-
1,1it);
if i<=n
dN(i,it)=- (k/(T(i+3)-T(i+1)))*N(i+1,j-1,1it);
end
elseif N(i+1l,j-1,it)== $ zero 20S Oros
N(i,3,it)=((t(it)=T(i))/(T(i+j-1)=T(i)))*N(i,j-1,it)
if i<=n
dN (i,it)=(k/(T(i+Jj-1)-T(i)))*N(i,j-1,it);
end
else
N(i,3,it)=((t(it)=T(i))/(T(i+j=1)-T(i)))*N(i,J-

1,it)+ ((T(1+3) -t (it)) /(T (i+3)-T(i+1)))*N(i+1,j-1,1it);
if i<=n
dN(i,it)=(k/(T(i+J-1)-T(i)))*N(i,j-1,it) -
(k/ (T (i+3)-T(i+1)))*N(i+1,3-1,1it);
end
end
if (i==n && j==k+1 && t(it)==T (end))
N(:,:,it)=round(N(:,:,it-1),0);
dN(:,it)=round (dN(:,it-1),0);
end
end

.
4
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a=a+t+l;
end
% Nk(:,1it)=N(l:n,k+1,1it); % basis functions
end
CO=zeros (numel (t), 2);

%% Least mean Squares

B sp k=zeros (n,numel (t));

for i=1:n

B sp k(i,:)=N(i,k+1,:);

end

CP(1l,:)=inv (B _sp k*transpose(B sp k))*B sp k*P(:,1); % Euresh
Control Points

CP(2,:)=1inv (B _sp k*transpose (B sp k))*B sp k*P(:,2);

oo
°o

CP(1,1)=P(1,1); CP(l,end)=P(end,1); % To prwto kai to teleutaio
CP

CP(2,1)=P(1,2); CP(2,end)=P(end, 2); $ ta orizw me vash ta shmeia
paremvolhs

b=[CP(1,:),CP(2,2:end-1)]; % prin thn allagh -tmhmata
end

Involute_Coordinates.m
function [xfl,yfl] = Involute Coordinates (Z,m)

% Sto paron programma briskoume tis suntetagmenes tou profile ths
involute
% gia pinion me Z dontia kai module m

o\

a0=deg2rad (20) ;
div=1le4;

%% Gear parameters
dk=(Z+2) *m; rk=dk/2;
do=Z*m; ro=do/2;
dg=do*cos (a0) ;
rg=ro*cos (ao)
rg=dg/2; [rbase]

So=(0.475*pi) *do/Z; %$(0.475-0.5) Tooth thickness at pcd Cost pp
46 (7)

pressure angle
#of nodes

o\

o\

[od] Outside diameter Cost pp 48
[pcd] Pitch Circle Diameter
[bcd] Base Circle Diameter Cost pp,

o\

o\

o\°

inva0 = tan(al0) - a0; %$Involute function

%% Involute generation

for i = 1:div

r(i) = rk-((rk-rg)/(div-1))*(i-1); % radius from rk to rg

a(i) = acos(dg / (2 * r(i))); % angle a of each involute
point

inva (i) = tan(a(i)) - a(i); % involute function fi for
each involute point

S(i) = So * (r(i) / ro) + 2 * (inva0 - inva(i)) * r(i); % Tooth
thickness at each point Cost pp 46 (10)

ak=acos (rg/rk) ; % Cost pp 46

xp(i)= r(i) * sin(inva(i)); % change from polar coordinates
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Q

yp(i)= r(i) * cos(inva(i)); % to cartesian coordinates
end
Sg=S (div) ; % paxos at base circle

% Rotation of involute to its symmetrical initial position
for i=0:2-1

el=(2*pi*rg-2*3qg)/Z;

phig = i*((Sg+el)/rq);

rot = [ cos(phig) -sin(phig);
sin(phig) cos(phig)];

inv_rot = rot * [xp; yp]l;

Xxp rot = inv rot(l,:);

yp rot = inv rot(2,:);
phi=deg2rad (360*Sg/ (2*pi*rqg)) /2;
xp _rotl= cos(phi)*xp rot -sin(phi)*yp rot;
yp rotl= sin(phi)*xp rot+ cos(phi) *yp rot;
if i==

xfl=-xp rotl;

yfl=yp rotl-ro;
end
end

UpperBound.m [2]
function ReturnValue = UpperBound (functname, x,s,a0,da,ns)
if (ns~=0)
ntrials = ns;
else
ntrials =10;
end
if (da~=0)
das = da;
else
das =1;
end
for i=l:ntrials
j=0;
dela = j*das;
a00 = alO+dela;
dx0 = a00*s;
x0 = x + dx0;
f0 = feval (functname, x0) ;
J=J+1;
dela = j*das;
a0l = alO+dela;
dx1=a0l*s;
x1l=x+dx1;
fl = feval (functname, x1) ;
fls=£f1;
if f£1<£0
for j=2:ntrials
a0l=a0+j*das;
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dx1=a0l*s;
x1l=x+dx1;
fl = feval (functname, x1) ;
fls=min(fls, £f1);
if fl1>fls
ReturnValue = [a0l £f1 x17];
return;
end
end
disp ('Cannot increase function in ntrials')
ReturnValue = [a0l £f1 x17;
return;
else
das=0.5*das;
end
end
ReturnValue = [a0 f0 x07];
end

o\

SD_Project.m [2]

function [designvar,Y] = SD Project (functname, dvar0O, niter, tol,
lowbound, intvl, ntrials)

el=1.0e-08;

nvar = length (dvar0);

xs(l,:) = dvar0;

)= feval (functname, x) ;

- (GradFun (functname, X)) ;
convg (l)=s*s';
for i=l:niter-1
output = GoldenSection (functname, tol, x, s, lowbound, intvl,
ntrials);
as (i+1) output (1) ;
fs(i+1l) = output(2);
for k=1l:nvar
xs (i+1, k) = output (2+k);
x (k) = output (2+k);
end
s = - (GradFun (functname, x)) ;
convg (i+1)=s*s’';
if (i<niter-1)
agel=feval (functname, x) ;
age=(i/(niter-1))*100;

name='%";

fprintf ('%.2£%s Loading. .. F equals %d
cycle %d.\n',age,name,agel, i)

else

age=100;

name='%";
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fprintf ('%d%s Completed min F equals sd
cycle %d.\n',age,name,agel, i)
end
if (convg(i+l)<=el) break; end;
end

len=length(as);

designvar = xs(length(as), :);

Y=fs(len);

disp('***** Application of Steepest Descent Method **#***!')

disp('Optimized design vector')

disp (designvar)
(
(

disp('Optimized Objective Function Value')
disp(fs(len))

end

GradFun.m [2]

function Return = GradFun (functname, x)

hstep=1.0e-3;
n = length (x);

f = feval (functname, x) ;
for i=1:n
XS = X;
xs (i) = xs (i) + hstep;
gradx (i) = (feval (functname,xs)-f) /hstep;
end
Return = gradx;
end

GoldenSection.m [2]

function ReturnValue = GoldenSection (functname, tol, x, s,
lowbound, intvl, ntrials)

upval = UpperBound (functname, x, s, lowbound, intvl, ntrials);
au = upval(l);

fau = upval(2);

if (au<=1.0e-06)

alL = lowbound; xL=xtal*s;
falL = feval (functname, xX) ;
ReturnvValue = [al fal x];
return

end

if (tol == 0) tol = 1.0e-04;

end

epsl = tol/(au - lowbound);
tau = 0.38197;
nmax = round(-2.078*log(epsl));

al. = lowbound;
xL, = x+al*s;
falL = feval (functname, xL) ;

al = (l-tau)*al +tau*au;



x]l = x + al*s;
fal = feval (functname, x1);
a2 = tau*al +(l-tau) *au;
X2 = X + a2*s;
fa2 = feval (functname, x2) ;
avec = [alL al a2 au;fal fal faz2 fau];

for i=1:nmax
if fal>=fa?2
alL=al;
fal=fal;
al=a2;
fal=fa2;
a2 = tau*al + (l-tau) *au;
X2 = x+al*s;
fa2 = feval (functname, x2) ;
au=au;
fau=fau;
avec = [al al a2 au;fal fal fa2z2 fau];
else
au=az;
fau=fa2;
az=al;
faz2=fal;
al=(l-tau) *aL+tau*au;
xl=x+al*s;

fal = feval (functname, x1);
al=al;
fal=fal;
avec = [al al a2 au;fal fal fa2z2 fau];
end
end
avec = [al al a2 au;fal fal faz fau];
ReturnvValue=[al fal x1];
end

EvaluationScript.m

clear all;clc;close all;

format short

tic

x=[-15.8981 -14.4656 -13.5060 -12.6621 -11.7163 20.4769
20.0263 19.6103];% potential result

n=5;
72=19;722=55; % number of teeth
m=2.5; % module

tooth=2; % Posa dodia aristera apo th symetria 8a einai to donti

div=500;%
Rtar=-(1.e-18) *zeros (1,div); % Target

Q

o

do=Z*m; ro=do/2;
do2=72*m; ro2=do2/2;

o\

[pcd] Pitch Circle Diamete
[pcd] Pitch Circle Diamete

o\
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o\°

dk=(Z+2) *m; rk=dk/2; [od] Outside diameter Cost pp 48
dk2=(Z2+2) *m; rk2=dk2/2; % [od] Outside diameter Cost pp 48

al=deg2rad(20) ;
dg=do*cos (al) ;
rg=ro*cos (ao)
rg=dg/2;

o°

pressure angle
[bcd] Base Circle Diameter Cost pp,

o°

o°

[rbase]$

o°

dg2=do2*cos (a0) ;
rg=ro*cos (ao)

[bcd] Base Circle Diameter Cost pp,

rg2=dg2/2; % [rbase]%
CP=[x(1l:n)
sgrt ((rk)"2-x(1)"2) X (n+l:end) sgrt ((rg) "2-x(n)"*2)1;%

phi=-tooth*2*pi/Z;
CPO(1,:)=CP(1,:)*cos(phi)-CP(2,:)*sin(phi);
CPO(2,:)=CP(1,:)*sin(phi)+CP (2, :) *cos (phi);
clearvars CP

CP=CPO;
% n : Number of CP , proekupsan apo sxesh ntk+l-numel(T) = 0O

n=numel (CP)/2;
deg of B-Spline , elaxisto 3

knot vector , numel (T)=n+k+1 , pollaplothta : 1 h parapanw

=

=[zeros(l,k+1) 1:1:n-k-1 (n-k)*ones(1l,k+1)1]1;
% Basis Functions of B-Splines
T(1): (T(end)-T(1))/(div-1) : T (end) ;

o+
Il

o\

N=zeros (k+n, k+1,numel (t)) ;

for it=1:numel (t)
for i=1:numel (T) -

i) && t(it) < T(i+1)

1

a=1;
for j=2:k+1
for i=1l:numel(T)-1-a
if (N(i,j-1,it)==0 && N(i+l1l,j-1,it)==0) % zero kai oi
duo oroi
N(i,j,1t)=0;

if i<=n
dN (i,it)=0;
end
elseif N(i,j-1,it)== % zero los oros
N(i,3,it)=((T(i+3) -t (it)) /(T (i+3)-T(i+1)))*N(i+1,73-
llit);
if i<=n

97



dN(i,it)=- (k/(T(i+j)-T(i+1)))*N(i+1,3j-1,1it);

end

elseif N(i+1,3-1,1it)==0
N(i,j,it)=((t(it)-T(1))/(T(i+j-1)-T (1
if i<=n

dN(i,it)=(k/(T(i+J-1)-T(i)))*N(i,J-1,1it);

end

else
N(i,j,1t)

if i<=n

dN (i,it)=(k/ (T (i+3-1)-T(i)))*N(i,j-1,1it)

(k/(T(1+3)-T(i+1)))*N(i+1,3-1,1it);

end
end
if (i==n && j==k+1 && t(it)==T (end))
N(:,:,it)=round(N(:,:,it-1),0);
dN(:,it)=round (dN(:,it-1),0);
end
end
a=a+1l;

end

% Nk(:,it)=N(l:n,k+1,it); % basis functions

end

for it=1:numel (t)

for i=1:n

alld= 1/ (T(i+k)—- T(1));
all=-1/(T(1i1+k+1)-T(i+1));
a20=al0/ (T (1+k-1)-T (1)) ;
a2l=(all-al0) /(T (i+k)-T (i+1));
a22=-all/ (T (i+k+1)-T(i+2));

if N(i,end-2,it)==0 && N(i+l,end-2,1it)~=0 &&

N (i+2,end-2,1it)~=0
dN2 (i,it)=(k-1)*k* (
2,1t)+a22*N(i+2,end-2,1it)) ;

elseif N(i,end-2,it)~=0 && N(i+l,end-2,it)==0 &&

N (i+2,end-2,1it)~=0
dN2 (1i,it)=
a22*N(i+2,end-2,1it)) ;

elseif N(i,end-2,it)~=0 && N(i+l,end-2,it)~=0 &&

N (i+2,end-2,1it) ==

(k-1) *k* (a20*N (i, end-2,1it) +

ero 20sS 0ros
))*N(lrj_lrlt);

=((£(it) =T (1)) /(T (i+j-1)~-T(i))) *N(i,J~
1,it)+ ((T(i+3)-t(it)) /(T (i+3)-T(i+1)))*N(i+1,3-1,1it);

a2l*N (i+1,end-

dN2 (i, it)=(k-1)*k*(a20*N(i,end-2,1it)+a21*N(i+1l,end-2,1it))

elseif N(i,end-2,it)==0 && N(i+l,end-2,it)==0 &&

N (i+2,end-2,1it)~=0
dN2 (1,it)=(k=1) *k* (
a22*N(i+2,end-2,1it)) ;
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elseif N(i,end-2,1it)~=0 && N(i+l,end-2,it)==0 &&
N (i+2,end-2,1t)==0
dN2 (i,it)=(k-1)*k* (a20*N(1i,end-2,1t))

elseif N(i,end-2,1it)==0 && N(i+1l,end-2,it)~=0 &&
N(i+2,end-2,1it)==

dN2 (1,1it)=(k-1) *k* ( +a2l1*N(i+1l,end-2,1it))

elseif N(i,end-2,it)==0 && N(i+l,end-2,it)==0 &&

N(i+2,end-2,1it)==0
dN2 (i,it)=0;
else
dN2 (i,it)=(k-1)*k* (a20*N(i,end-2,it)+a21*N(i+1, end-
2,1t)+a22*N(i+2,end-2,1it));
end
end

end
dN2 (:,it)=flip(dN2(:,1));

for it=1:numel (t)

x1(it) =N(l:n,k+1,it) "*CP (1, :)"
yl(it) =N(l:n,k+1,it) '*CP(2,:)"
dx1 (it)=dN(:,it) "*CP(1,:)"';

dyl (it)=dN(:,it) "*CP(2,:)";
d2x1 (it)=dN2 (:,it) "*CP(1,:)";

d2yl (it)=dN2 (:,it) "*CP(2,:)";

end

dydxl=dyl./dxl; % 1lst Derivative of B-Splines

f=dyl; % = dy/dt
g=dx1; dx/dt

o\

d2ydxl=((d2yl.*g-d2x1.*f)./(g."2))./g; % 2nd Derivative of B-
Splines

rgG=abs (x1+yl.*dydx1l) ./ (sgrt (1+dydx1.72)); %1.50 dr V.Spita
rG=sqrt (x1.72+yl1.%2);

% Contact Line Coordinates

terml=((rG/ro) ."2-(rgG/ro) ."2);

term2=(1-(rgG/ro) ."2);

xp=rgG.* (sgrt (terml) -sqgrt (term2)); %1.48 dr V.Spita / Contact Line
term3=((ro./rgG) ."2-1);

yp=sqrt (term3) . *xp; $1.49 dr V.Spita / Contact Line

o

for i=1l:numel (xp)
A=[x1 (1) y1 (i)
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vyl (i) -x1(i)]; % exw vgalei ta ro apo ton tupo 30 & 31 pp

41

rot (:,1)=inv(A) *[xp (1) ;yp (i) +trol;
end
thita=atan(rot(2,:)./rot(1l,:)):
K=thita*ro;

% rack

xr=xp-K;

Yr=yps

v=rot (2,:)."2+rot(l,:)."2; % sin”2 + cos”2 =1
t0=K./ro; % Cost pp 39 (19)

[e)

% (xp,yp) coordinates ths Troxias Epafwm sta (xl1 exw,yl exw)
Sunergazomenos troxos coordinates
t2=-t0*ro/ro2;

x1 exw=xp.*cos (t2)-(yp-ro2).*sin(t2); % Cost pp 40
(27)
yl exw=xp.*sin(t2)+ (yp-ro2) .*cos (t2)+ro2; % Cost pp 40
(28)

Sl=gradient (yl exw)./gradient (x1 exw);
sa=(S1(2)-51(3))/ (x1 exw(2)-x1 exw(3));

sb=S1(2) -sa*x1 exw(2);

S1(1)=sa*x1l exw(l)+sb;
sa=(S1(end-2)-Sl(end-1))/(x1l exw(end-2)-x1 exw(end-1));
sb=S1 (end-1) -sa*x1 exw(end-1);

S1 (end)=sa*x1l exw(end) +sb;

S2=gradient (S1) ./gradient (x1 exw) ;
sa=(52(2)-52(3))/ (2l exw(2)-x1 exw(3));

sb=52 (2) -sa*x1 exw(2);

S2(1l)=sa*x1l exw(l)+sb;

sa=(S2 (end-2)-S2(end-1))/ (x1l exw(end-2)-x1 exw(end-1));
sb=S2 (end-1) -sa*x1 exw(end-1);

S2 (end)=sa*x1l exw(end) +sb;

o

Rl1=d2ydx1l./ ((1+dydx1.72) .7~ (3/2)); % tupos (54) kostakis
R2=52./((1+S1.72) .7 (3/2));% tupos (54) kostakis
R=R1-R2;

dR=gradient (R) . /gradient (x1) ;

sa=(dR(2)-dR(3))/ (x1(2)-x1(3));
sb=dR (2) -sa*x1(2);

dR(1)=sa*x1 (1) tsb;
sa=(dR(end-2)-dR (end-1)) / (x1 (end-2) -x1 (end-1)) ;
sb=dR (end-1) -sa*x1 (end-1) ;

dR (end) =sa*x1 (end) +sb;

fun=0.5* (R-Rtar) ."2;

funl=0.5* (dR-Rtar) ."2;

fun=0.5* (R-Rtar) ."2;
YO0=trapz (x1, fun);
kapa=abs (max (d2ydx1)) ;

o

[¢]
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AB=0;
for i=l:div-1
AB=AB+sqrt ((xp (i+1l)-xp(i)) "2+ (yp (i+l)-yp (1)) "2);
end
overlap=AB/ (pi*dg/Z)
flag=0;
for i=l:numel (yl)-1
if yl(i+1)>yl (i)
flag=flag+l;
end
end
flagl=0;
for i=l:numel (x1)-1
if x1(i+1)<x1 (1)
flagl=flagl+l;
end
end
flag2=0;
for i=l:numel (yl exw)-1
if yl exw(i+l)>yl exw(i)
flag2=flag2+1;
end
end
flag3=0;
for i=l:numel (x1 exw)-1
if x1 exw(i+1)<x1l exw (1)
flag3=flag3+1;

end
end
C=[flag
flagl % ? mallon oxi
flag2
flag3

overlap];

hold on;axis equal;

plot (xp, yptro, "Color', "blue', 'LineWidth', 2)
c=[0;ro02];

for 1i=0:22-1
phi=i*2*pi/Z2;
Tr=[cos (phi) -sin(phi);
sin (phi) cos (phi) 1;
d=[x1 exw;yl exw]-c;
xd=Tr*d+c;
plot(xd(1,:),xd(2,:)+ro, 'Color',[0.9 0 0], 'LineWidth', 2)

end

for 1i=0:722-1

phi=i*2*pi/Z2;

Tr=[cos (phi) -sin(phi);
sin(phi) cos(phi)];
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d=[-x1 exw;yl exw]-c;
xd=Tr*d+c;
plot(xd(1l,:),xd(2,:)+ro, 'Color',[0.9 0 0], 'LineWidth',2)
if i==
xh=xd (:,end) ;
end
end

dsegl=[x1(1l) -x1(1);

y1(1) y1(1)];
for i=0:Z-1
phi=i*2*pi/7Z;
xfc=dsegl (1, :) *cos (phi) -dsegl (2, :) *sin (phi) ;
yfc=dsegl (1, :) *sin (phi)+dsegl (2, :) *cos (phi) ;
plot (xfc,yfc, 'Color', [0 O 0.5], 'LineWidth',2)
end

circle (0,0, rk);
circle(0,0,rqg);
circle (0, rot+ro2,rg2);
circle (0, ro+ro2,rk2);
rf=ro-1.25*m;

circle (0,0, ro0);
circle(0,0,rf);

circle (0, ro+ro2,ro2);
circle(0,0,rk/5);
circle (0, ro+ro2,rk2/5);

—

title('ST-D,Open contact path,overlap=1.04")

xt = [-10 -6]-60;

yt = [-10 -16]+45;

str = {'Rolling circle', ' (Wheel) '};
text (xt,yt,str)

xt = [-10 -6]+35;

vyt = [-10 -16]1+20;

str = {'Rolling circle', ' (Pinion) '};
text (xt,yt,str)

Xt = [35 -151+35;

yt = [100 -40]1+20;

str = {'Wheel', 'Pinion'};

text (xt,yt,str)

for i=0:2-1

phi=i*2*pi/Zz;

xc=x1*cos (phi) - (yl) *sin (phi) ;
yc=x1*sin (phi)+ (yl) *cos (phi) ;

plot (xc,yc, "Color', [0 O 0.5], 'LineWidth', 2)
end

for 1i=0:2-1

phi=i*2*pi/Z%;
xc=-x1*cos (phi) - (yl) *sin (phi) ;
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yc=-x1*sin (phi)+ (yl) *cos (phi) ;
plot (xc,yc, 'Color', [0 O 0.5], "LineWidth', 2)
end

%% TROXOEIDES PINION

% SECTION 1

ar=(yr (end) -yr (end-1)) / (xr (end) -xr (end-1)) ;
br=yr (end) —ar*xr (end) ;

xf=(-1.25*m-br) /ar;

xr trox=xr(end) :0.01:xf;

yr trox=ar*xr trox+br;

[e)

o

hold on

X =Xr trox; % glia na emfanistei to lo oxtari
y =yr trox;

dydx =gradient(y )./gradient(x );

[e)

o\

K =-(y .*dydx +x ); % Cost pp 39 (22)
t =K ./ro; % Cost pp 39 (19)
% Apo (x,y) coordinates tou Kanona sta (x1,yl) coordinates tou gear

flank
xl =(x +K ) .*cos(t )-(y +ro).*sin(t ); % Cost pp 39 (23)

yl =(x +K ) .*sin(t )+ (y +ro).*cos(t )-ro; % Cost pp 39 (24)

[e)

% Apo (x,y) coordinates tou Kanona sta (x te,y te) ths Troxias

Epafwn

X te =x +K ; % Cost pp 40
(20)

y te =y ; % Cost pp 40
(20)

¢}

% (x _te,y te) coordinates ths Troxias Epafwm sta (x1 exw,yl exw)
Sunergazomenos troxos coordinates

ro2=22*m/2;
t2 =-t *ro/ro2;
x1l exw =x te .*cos(t2 )-(y te -ro2).*sin(t2 );

vyl exw =x te .*sin(t2 )+(y te -ro2).*cos(t2 )+ro2;

atrox=ar:0.01:0;

K =-(yr trox(end).*atrox+xr trox(end)); % Cost
pp 39 (22)
t =K ./ro; % Cost pp 39 (19)

[

6_Kpo (x,y) coordinates tou Kanona sta (xl,yl) coordinates tou gear
flank

x1l__=(xr_trox(end)+K_).*cos(t_ )-(yr_trox(end)+ro).*sin(t_ ); %
Cost pp 39 (23)
vyl =(xr trox(end)+K ).*sin(t )+ (yr trox(end)+ro).*cos(t )-ro; %

Cost pp 39 (24)
hold on;axis equal;

% SECTION 2
r_=(yr(l)-yr(2))/(xr(l)-xr(2));
br =yr(l)-ar *xr(l);

QO
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X _start=(l*m-br )/ar ;
xr trox =x start:0.01l:xr(1l);
yr trox =ar *xr trox +br ;

Xrack=[xr_trox_ XY Xr_trox];
Yrack=[yr trox yr yr trox];

rc=0.09*m;aj=608;

at=rad2deg (atan ((Yrack (end) -Yrack (end-1))/ (Xrack (end) -Xrack (end-
1))))+90;

xo=(cosd (at) +tand (at) *sind (at) -tand (at)) *rc+Xrack (end) ;
yo=Yrack (end) trc;

x radi=Xrack(aj) :0.001:xo0;
y radi=-sqgrt(rc”2-(x_radi-xo) ."2)+yo;

dydx radi=gradient (y radi)./gradient (x radi);

o
°

K radi=-(y radi.*dydx radi+x radi); 5 Cost pp
39 (22)
t radi=K radi./ro; % Cost pp 39 (19)

¢}

% Apo (x,y) coordinates tou Kanona sta (x1,yl) coordinates tou gear
flank

x1l radi=(x radi+K radi).*cos(t radi)-(y radi+ro).*sin(t radi); %
Cost pp 39 (23)

yl radi=(x radi+K radi).*sin(t radi)+(y radi+ro).*cos(t radi)-ro; 3
Cost pp 39 (24)

plot(x1l ,yl +ro,'Color', [0 O 0.5], 'LinewWidth',2)
plot (-x1 ,yl +ro,'Color', [0 O 0.5], 'LinewWidth',2)
plot (x1 radi,yl radi+ro, 'Color',[0 O 0.5], '"LinewWidth',2)
plot (-x1 radi,yl radi+ro, 'Color', [0 O 0.5], '"LineWidth',2)

pP=Z2*m*pi/2;
XrackPI=Xrack*cos (pi)-Yrack*sin(pi) +p;XrackPI=flip (XrackPI);
YrackPI=Xrack*sin (pi) +Yrack*cos (pi) ;YrackPI=flip(YrackPI);

%% TROXOEIDES WHEEL

arpi=(YrackPI (end) -YrackPI (end-1))/ (XrackPI (end) -XrackPI (end-1));
brpi=YrackPI (end) —arpi*XrackPI (end) ;

xfpi=(-1.25*m-brpi) /arpi;

xr troxPI=XrackPI(end) :0.01:xfpi;

yr troxPI=arpi*xr troxPI+brpi;

y =[YrackPI yr troxPI];

x =[XrackPI xr troxPI];

aj2=642;

at2=rad2deg (atan((y (end)-y (end-1))/(x (end)-x (end-1))))+90;
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x02=(cosd(at2)+tand(at2) *sind(at2)-tand(at2)) *rc+x (end);
yo2=y (end)+rc;

x radi2=x (ajz2):0.001:x02;
y radiZ2=-sqrt(rc”2-(x _radi2-xo2)."2)+yo2;

dydx radi=gradient (y radi2)./gradient (x radi2);

o

o

K radi2=-(y radi2.*dydx radi+x radi2); % Cost
pp 39 (22)
t radi2=K radi2./ro2; $ Cost pp 39 (19)

[e)

% Apo (x,y) coordinates tou Kanona sta (xl,yl) coordinates tou gear
flank

x1 radi2=(x_radiZ+K radiZ2) .*cos(t radi2) -

(y radi2+roZ2) .*sin(t radiZ2); % Cost pp 39 (23)

vyl radi2=(x radi2+K radiZ2) .*sin(t radi2)+(y radi2+ro2) .*cos(t radiZ2
)—-ro2; % Cost pp 39 (24)

plot (x1 radi2,yl radi2+ro2+ro+ro2, 'Color',[0.9 0 0], 'LineWidth"',2)
% <————- thmhma B / Troxoeides

plot (-x1 radi2,yl radi2+roZ2+ro+ro2, 'Color',[0.9 0 O], 'LineWidth',2)

dydx =gradient(y )./gradient(x );

K =-(y .*dydx +x ); % Cost pp 39 (22)
t =K ./ro2; % Cost pp 39 (19)
% Apo (x,y) coordinates tou Kanona sta (x1,yl) coordinates tou gear
flank
xl =(x +K ) .*cos(t )-(y +ro2).*sin(t ); % Cost pp 39 (23)
= (

vyl =(x +K ) .*sin(t )+ (y +ro2).*cos(t )-ro2; % Cost pp 39 (24)

plot (x1 (45:end),yl (45:end)+ro2+ro+ro2, 'Color',[0.9 0
0], 'Linewidth', 2)
plot (-x1 (45:end),yl (45:end)+ro2+ro+roz, 'Color',[0.9 O
0], 'Linewidth', 2)

rf2=ro02-1.25*m;

box on

% set(gca, 'visible', 'off")
hold off

figure2 = figure;

hold on;

plot (x1,R, 'Color', [0 O 0.5], "LinewWidth', 2)

function h = circle(x,vy,r)

hold on

th = 0:pi/50:2*%pi;

xunit = r * cos(th) + x;

yunit = r * sin(th) + y;

h = plot(xunit, yunit,'-.','Color','k', ' 'LineWidth',1);
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end

SinRackGear.m

This script is to compare the equivalent curvature (1/R) of optimal gears with the Sin-Rack Gears and
it is independent of the optimization method chosen.

clear all;clc

format long

2=19;722=55;m=2.5; % number of teeth % module
h=2*m; theight imitonoeidous kanona (mm)
div=1leb5; $#of nodes

[e)

s Gear parameters

dk=(z2+2) *m; rk=dk/2; %[od] Outside diameter Cost pp 48

df=(zZ2-2.5) *m; $[rd] Root diameter Cost pp 48

do=Z*m; ro=do/2; % [pcd] Pitch Circle Diamete

So=(0.475*pi) *do/7Z; %$(0.475-0.5) Tooth thickness at pcd Cost pp
46 (7)

rc=ro; %kuklos kulhshs

o\

(x,y) coordinates tou Kanona Cost pp 38-39

% x=0:(Z*m*pi)/ (div-1) : Z*m*pi;

x=0: (1*m*pi/2)/ (div-1) :1*m*pi/2; % gia na emfanistei to 1o
oxtari

y=(h/2)*cos (Zz*x/rc) ;

dydx=-(h/2)*(Z/rc) *sin ((Z/rc) *x) ;

[e)

o

K=-(y.*dydx+x) ; % Cost pp 39 (22)
t=K./ro; % Cost pp 39 (19)

[e)

% Apo (x,y) coordinates tou Kanona sta (x1,yl) coordinates tou gear
flank

x1=(x+K) .*cos (t) - (y+ro) .*sin(t) ; % Cost pp 39 (23)

y1l=(x+K) .*sin (t) +(y+tro) .*cos (t)-ro; % Cost pp 39 (24)

% Apo (x,y) coordinates tou Kanona sta (x te,y te) ths Troxias
Epafwn

X te=x+K; % Cost pp 40 (20)
y te=y; % Cost pp 40 (20)

[

% (x _te,y te) coordinates ths Troxias Epafwm sta (xl1 exw,yl exw)
Sunergazomenos troxos coordinates

ro2=722*m/2;

t2=-t*ro/ro2;

x1l exw=x te.*cos(t2)-(y te-ro2).*sin(t2);

vyl exw=x te.*sin(t2)+(y te-ro2).*cos(t2)+ro2;
% Aktina kabilothtas - Gear 1

dydx l=gradient (yl)./gradient (x1);

derivative (x1,vy1l);

d2ydx l=gradient (dydx 1) ./gradient (x1); %
derivative (x1,dydx 1);

Rl=d2ydx 1./ ((l+dydx 1.72).7(3/2)); % tupos (54) kostakis

% Aktina kabilothtas - Gear 2

dydxl exw=gradient (yl exw)./gradient (x1l exw);

d2ydxl exw=gradient (dydxl exw)./gradient (xl exw);

R2=d2ydxl exw./ ((l+dydxl exw.”2).”(3/2));% tupos (54) kostakis

0\
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o)

o

R=R1-R2;

InvoluteGear.m

This script is to compare the equivalent curvature (1/R) of optimal gears with the Involute Gears and
it is independent of the optimization method chosen.

clear all

close all;clc;

%% 1input data

72=19;722=55; % number of teeth
al0=deg2rad(20) ; % pressure angle
m=2.5; % module
div=leb; % #of nodes

[pcd] Pitch Circle Diamete
pcd] Pitch Circle Diamete
] Outside diameter Cost pp 48
] Outside diameter Cost pp 48

o°

do=Z*m; ro=do/2;
do2=72*m; ro2=do2/2;
dk=(z2+2) *m; rk=dk/2;
dk2=(Z2+2) *m; rk2=dk2/2;

o°

o°

[
[od
[od

o°

o\

a0=deg2rad (20) ;
dg=do*cos (a0) ;
rg=ro*cos (ao)
rg=dg/2;

pressure angle
[bcd] Base Circle Diameter Cost pp,

o\

o\

[rbase]%

o®

dg2=do2*cos (a0) ;
rg=ro*cos (ao)
rg2=dg2/2;

%% Gear parameters
So=(0.475*pi) *do/7Z; 5 (0.475-0.5) Tooth thickness at pcd Cost pp
46 (7)

inva0 = tan(al0) - a0; % Involute function

x0=0;%-rg*sin (a0l) ;

% (x _te,y te) coordinates ths Troxias Epafwm

X te=linspace (-rg*sin(al),rg*sin(al),div); % Sunolikh troxia epafwn
y te=tan(al)*x te; % dierxetai apo to (0,0) Fine!

% (x,y) coordinates tou Kanona Cost pp 38-39
x=(-(tan(a0))"2) *x te+(l+(tan(al))"2)*xo0; % Cost pp 36

y=y te; % Cost pp 36
dydx=(-1/tan(a0));

[bcd] Base Circle Diameter Cost pp,

o©

[rbase]%

\O

K== (y.*dydx+x) ; % Cost pp 39 (22)
t=K./ro; % Cost pp 39 (19)

% Apo (x,y) coordinates tou Kanona sta (x1,yl) coordinates tou gear

x1=(x+K) .*cos (t) - (y+ro) .*sin (t) ; % Cost pp 39 (23)
y1l=(x+K) .*sin (t) +(y+tro) .*cos (t)-ro; % Cost pp 39 (24)
phig = 0;

xle = cos(phig)*x1 - sin(phig) * (yl+ro);

yle = sin(phig)*x1 + cos (phig) * (yl+ro);

xl=xle;yl=yle;

% (x_te,y te) coordinates ths Troxias Epafwm sta (x1 exw,yl exw)
Sunergazomenos troxos coordinates
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ro2=72*m/2;

t2=-t*ro/ro2;

x1l exw=x te.*cos(t2)-(y te-ro2).*sin(t2);

yl exw=x te.*sin(t2)+(y te-ro2).*cos(t2)+ro2;

% Aktina kabilothtas - Gear 1

dydx l=gradient(yl)./gradient (x1);

d2ydx l=gradient (dydx 1) ./gradient (x1);

Rl1=d2ydx 1./ ((l+dydx 1.72).7(3/2)); % tupos (54) kostakis
% Aktina kabilothtas - Gear 2

dydxl exw=gradient (yl exw)./gradient (xl exw);

d2ydxl exw=gradient (dydxl exw)./gradient (x1 exw);
R2=d2ydxl_exw./((l+dydxl_exw.A2).A(3/2));% tupos (54) kostakis

[e)

R=R1-R2;

axis equal;hold on;grid on;

plot (x1,yl)

plot (x1(9000:end),R(9000:end) +ro)

o

Genetic Algorithm

GA start_code.m
clc;clear all;close all;

tic

numelCP=7;

InitialPopulationMatrix Data=LeastmS (numelCP) ;
PopulationSize Data=300; % population size

o)

CrossoverFraction Data=0.8; % crossover fraction
MaxGenerations Data=100* (4*numelCP-5) ;

¢}

o

(¢}

m=2.5;

nvars=2* (numelCP-2); % number of variables

1b=] zeros (1,nvars/2) -m*ones (1,nvars/2)1;
ub=[ (m*pi/2) *ones (1, nvars/2) m*ones (1,nvars/2)1;

Aineg=zeros (nvars,nvars);
bineg=zeros (nvars, 1) ;

¢

o

[x,fval,exitflag, output, population, score] =
fitness ga code(nvars, ...

Aineq,bineq, 1lb,ub, InitialPopulationMatrix Data, PopulationSize Data,
CrossoverFraction Data,MaxGenerations Data);

toc

fitness_ga_code.m

function [x,fval,exitflag,output,population, score] =

fitness ga code(nvars,Aineq,bineq,1lb,ub,InitialPopulationMatrix Dat
a,PopulationSize Data,CrossoverFraction Data,MaxGenerations Data)

Q

% This is an auto generated MATLAR file from Optimization Tool.

% Start with the default options
options = optimoptions ('gamultiobij');

Q

% Modify options setting
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o)

% options = optimoptions (options, 'InitialPopulationRange’,
InitialPopulationRange Data);

options = optimoptions (options, 'InitialPopulationMatrix',
InitialPopulationMatrix Data);

options = optimoptions (options, "PopulationSize',
PopulationSize Data);

options = optimoptions (options, 'CrossoverFraction',
CrossoverFraction_Data);

options = optimoptions (options, "'MaxGenerations',
MaxGenerations Data);

% options = optimoptions (options, 'CrossoverFcn', {
@crossoverintermediate [] });

% options = optimoptions (options, 'MutationFcn', @YourFcnNameHere) ;
options = optimoptions (options, 'Display', 'off');
[x,fval,exitflag,output,population, score] = ...5%

gamultiobj (€fitness,nvars,Aineq,bineq, [], [],1b,ub,@nonlinear constr
aints,options);

[e)

gamultiobj (€fitness function,nvars,Aineq,bineq, [], [],1b,ub,options)

%% LEAST MIN SQUARES

% elisagontai ta theorytika (x,y) tou rack kai pianoume thn katatomh
% elaxista tetragwnaz

function b=LeastmS (n)

% Kost pp 44 (23) means Kostopoulos selida 44 sxesh 23

%% Input Data SIN - (x,y) coordinates ths Troxias Epafwn P : Data
to interpollate P(:,1)=x;P(:,2)=y;

2=19;722=55;m=2.5; % number of teeth % module
h=2*m; %theight imitonoeidous kanona (mm)

div=1leb5; $#of nodes

% Gear parameters

dk=(Z+2) *m; %[od] Outside diameter Cost pp 48
do=Z*m; ro=do/2; %[pcd] Pitch Circle Diamete

rc=ro; %kuklos kulhshs

x=0: (1*m*pi/2)/ (div-1) : 1*m*pi/2; % gia na emfanistei to lo
oxtari

y=(h/2)*cos (Z*x/rc) ;
P(:,1)=x";P(:,2)=y";

div=size (P);

% Input of B-Spline parameters

n Number of CP , proekupsan apo sxesh n+k+l-numel (T) = O
% k : deg of B-Spline , elaxisto 3
k=4;
5 T knot vector , numel (T)=n+k+1 , pollaplothta : 1 h parapanw

analoga

T=[zeros(l,k+1l) 1:1:n-k-1 (n-k)*ones(l,k+1)];
% Basis Functions of B-Splines

=T (1) : (T(end)-T(1))/(div(1l)-1):T(end);

-

o\°
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N=zeros (k+n, k+1, numel (t)) ;
for it=l:numel (t)
for i=1:numel

(
if t(it)>=T
N(i,1,1it) ;
else
N(i,1,1it)=0;
end
end
a=1;

for j=2:k+1
for i=1:numel (T)-1-a
if (N(i,j-1,it)==0 && N(i+1l,j-1,it)==0) % zero kai oi
duo oroi
N(i,3,1t)=0;

if i<=n
dN (i, it)=0;
end
elseif N(i,j-1,it)== % zero los oros
N(i,3,it)=((T(i+3) -t (it))/ (T (i+3)-T(i+1)))*N(i+1,3-
1,it);
if i<=n
dN(i,it)=- (k/(T(i+3)-T(i+1)))*N(i+1,j-1,1it);
end
elseif N(i+1l,j-1,it)== % zero 20S 0Oros
N(i,9,it)=((t(it)-T(i))/(T(i+j-1)-T(i)))*N(i,j-1,1it);
if i<=n
dN (i,it)=(k/(T(i+J-1)-T(i)))*N(i,j-1,it);
end
else
N (i, 3, it)=((t(it)=T(i))/(T(i+j-1)-T(i)))*N(i,j-

1,it)+ ((T(i+3) -t (it)) /(T (i+3)-T(i+1)))*N(i+l,j-1,1it);
if i<=n
dN(i,it)=(k/(T(i+J-1)-T(i)))*N(i,j-1,it) -
(k/ (T (i+3)-T(i+1)))*N(i+1,3-1,1it);
end
end
if (i==n && j==k+1 && t(it)==T (end))
N(:,:,it)=round(N(:,:,1it-1),0);
dN(:,it)=round (dN(:,it-1),0);

end
end
a=a+t+l;
end
% Nk(:,1it)=N(l:n,k+1,1it); % basis functions

end

%% Least mean Squares

B sp k=zeros (n,numel (t));
for i=1:n

B sp_k(i,:)=N(i,k+1,:);
end
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CP(1l,:)=inv (B _sp k*transpose(B sp k))*B sp k*P(:,1); % Euresh
Control Points
CP(2,:)=1inv (B _sp k*transpose (B sp k))*B sp k*P(:,2);

oo
7o

CP(1,1)=P(1,1); CP(l,end)=P(end,1); % To prwto kai to teleutaio
CP

CP(2,1)=P(1,2); CP(2,end)=P(end,2); % ta orizw me vash ta shmeia
paremvolhs

% CP(2,2)=CP(2,1);
b=[CP(l,2:end-1),CP(2,2:end-1)1];

GradFun.m

function Return = GradFun (functname, x)
hstep=1.0e-3;

n = length(x);

f = feval (functname, x) ;
for i=1:n
Xs = X;
xs (i) = xs(i) + hstep;
gradx (i) = (feval (functname,xs)-f) /hstep;
end
Return = gradx;
end
fitness.m
function Y = fitness (x)
72=19;722=55;m=2.5; % number of teeth % module

o©

dk=(Z+2) *m; rk=dk/2;
a0=deg2rad (20) ;
do=Z*m; ro=do/2;
dg=do*cos (a0) ;
rg=ro*cos (ao)

[od] Outside diameter Cost pp 48
pressure angle

[pcd] Pitch Circle Diameter

[bcd] Base Circle Diameter Cost pp,

o° oo

o\

rg=dg/2; % [rbase]
div=1le3;%
Rtar=-(1.e-3) *ones (div,1); % Target

% PX=x(l:numel (x)/2+1);
PY=[sqrt (rk"2-x(1)"2)-ro, x(numel (x)/2+2:end) ,sqgrt(rg”2-
X (numel (x) /2+2)"2)-ro];
CP=[0 x (1:numel (x) /2) m*pi/2
m x (numel (x) /2+1:end) -m] ;

o\°

Input data 1 - Gear parameters

% n : Number of CP , proekupsan apo sxesh n+k+l-numel(T) = 0
numel (CP) /2;

deg of B-Spline , elaxisto 3

o}
Il

knot vector , numel (T)=n+k+1 , pollaplothta : 1 h parapanw
analoga

T=[zeros(l,k+1l) 1:1:n-k-1 (n-k)*ones(l,k+1)];

% Basis Functions of B-Splines

t=T (1) : (T(end)-T(1))/ (div-1) :T (end);
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N=zeros (k+n, k+1, numel (t)) ;
for it=1:numel (t)

for i=1l:numel (T) -
i) && t(it) < T(i+1)
1

for j=2:k+1
for i=1:numel (T)-1-a
if (N(i,j-1,it)==0 && N(i+1l,j-1,it)==0) % zero kai oi
duo oroi
N(i,3,1t)=0;

if i<=n
dN (i, it)=0;
end
elseif N(i,j-1,it)== % zero los oros
N(i,3,it)=((T(i+3) -t (it))/ (T (i+3)-T(i+1)))*N(i+1,3-
1,it);
if i<=n
dN(i,it)=- (k/(T(i+3)-T(i+1)))*N(i+1,j-1,1it);
end
elseif N(i+1l,j-1,it)== % zero 20S 0Oros
N(i,J,it)=((E(it)-T(1))/(T(i+j-1)-T(i)))*N(i,j-1,1it);
if i<=n
dN (i,it)=(k/(T(i+J-1)-T(i)))*N(i,j-1,1it);
end
else
N(i,J,it)=((E(it)-T(1))/(T(i+J-1)-T(i)))*N(i,]-

1,it)+ ((T(1+3) -t (it)) /(T (i+3)-T(i+1)))*N(i+1l,j-1,1it);
if i<=n
dN(i,it)=(k/(T(i+Jj-1)-T(i)))*N(i,j-1,it) -
(k/ (T (i+3)-T(i+1)))*N(i+1,3-1,1it);
end
end
if (i==n && j==k+1 && t(it)==T (end))
N(:,:,it)=round(N(:,:,1it-1),0);
dN(:,it)=round (dN(:,it-1),0);

end
end
a=a+t+l;
end
% Nk(:,1it)=N(l:n,k+1,1it); % basis functions

end

Q

o

CO=zeros (numel (t),2);
for it=1:numel (t)
CO(it,1) =N(l:n,k+1,it)"*CP(1,:)"';
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CO(it,2) =N(l:n,k+1,it)'*CP(2,:)";

dCO(it,1)=dN(:,it) "*CP(1,:)"';

dCO(it,2)=dN(:,1it) "*CP(2,:)"';

end

dydx=dC0(:,2)./dC0(:,1); % 1st Derivative of B-Splines
interpolation

% Metatopish Kanona
K=-(CO(:,2) .*dydx+CO(:,1)); Cost pp 39 (22)

t0=K./ro; Cost pp 39 (19)

% Apo (x,y) coordinates tou Kanona sta (x1,yl) coordinates tou gear

flank

o°

o°

x1=(CO(:,1)+K) .*cos (t0)—-(CO(:,2)+ro) .*sin(t0); % Cost pp 39 (23)
y1=(CO(:,1)+K) .*sin(t0)+(CO(:,2)+ro) .*cos (t0)-ro; % Cost pp 39 (24)
% yl=yl+ro;

x te=CO(:,1)+K; % Cost pp
40 (20)

y te=CO0(:,2);
% (x_te,y te) coordinates ths Troxias Epafwm sta (xl1 exw,yl exw)
Sunergazomenos troxos coordinates

ro2=722*m/2;

t2=-t0*ro/ro2;

x1l exw=x te.*cos(t2)-(y te-ro2).*sin(t2); % Cost pp 40
(27)
vyl exw=x te.*sin(t2)+(y te-ro2).*cos (t2)+ro2; % Cost pp 40
(28)

% Aktina kabilothtas - Gear 1

dydx l=gradient (yl) ./gradient (x1);

derivative (x1,vyl);

d2ydx l=gradient (dydx 1)./gradient (x1); %
derivative (x1,dydx 1);

Rl1=d2ydx 1./ ((l+dydx 1.72).7(3/2)); % tupos (54) kostakis
% Aktina kabilothtas - Gear 2

dydxl exwO=gradient (yl exw) ./gradient (x1 exw);
derivative (x1 exw,yl exw);

d2ydxl exwO=gradient (dydxl exw0)./gradient (x1 exw);%
derivative (x1 exw,dydxl exw);

R2=d2ydxl exw0./ ((l+dydxl exw0.72).7(3/2));% tupos (54) kostakis
% R=gradient (R1-R2) ./gradient (x1) ;%270

R=R1-R2;

fun=0.5* (R-Rtar) ."2;

sum=[0 0];

for i=2:2:div-1

sum(l)=sum(l)+4*fun (i) ;

end

for i=3:2:div-2

sum (2)=sum(2)+2*fun (i) ;

end

Y=(fun (1) +fun(div)+sum(l)+sum(2))/ (3* (div-1));

o

o\
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nonlinear_constraints.m

function [C,Ceg] = nonlinear constraints(x)
72=19;722=55;m=2.5; % number of teeth % module

dk=(Z+2) *m; rk=dk/2;
al0=deg2rad(20) ;
do=Z*m; ro=do/2;
dg=do*cos (a0) ;
rg=ro*cos (ao)

o\°

[od] Outside diameter Cost pp 48
pressure angle

[pcd] Pitch Circle Diameter

[bcd] Base Circle Diameter Cost pp,

o0 o©

o°

rg=dg/2; % [rbase]

div=1le3;%

Rtar=-(1.e-3) *ones(div,1); % Target

% PX=x(l:numel (x)/2+1);

% PY=[sqrt(rk"2-x(1)"2)-ro, x(numel (x)/2+2:end) ,sqgrt(rg”2-

x (numel (x) /2+2)"*2)-ro];

% CP=[0 x (l:numel (x)/2) m*pi/2

% m x (numel (x) /2+1:end) -m] ;

CP=[1.156000000000000 X (1l:numel (x)/2) 2.87
1.948416103110457 x (numel (x /2+l end) -

2.760760193834766];

% Input data 1 - Gear parameters

% n Number of CP , proekupsan apo sxesh n+tk+l-numel(T) = O

n=numel (CP)/2;

deg of B-Spline , elaxisto 3

knot vector , numel (T)=n+k+1 , pollaplothta : 1 h parapanw
analoga

T=[zeros(l,k+1l) 1:1:n-k-1 (n-k)*ones(l,k+1)];

% Basis Functions of B-Splines
=T(1l):(T(end)-T(1l))/(div=-1) : T (end) ;

t

o\

N=zeros (k+n, k+1,numel (t)) ;
for it=1l:numel (t)
for i=1:numel (
if t(it)>=T
N(i,1,it)
else
N(i,1,it)=0;
end
end
a=1;
for j=2:k+1
for i=1l:numel (T)-1-a
if (N(i,j-1,it)==0 && N(i+1l,j-1,it)==0) % zero kai oi

T)-1
(1) && t(it) < T(i+1)
=1;

duo oroi
N(i,j,1it)=0;

if i<=n
dN (i,it)=0;
end
elseif N(i,j-1,it)==0 % zero los oros
N(i,3,it)=((T(i+])-t(it)) /(T (i+J)-T(i+1)))*N(i+1,3-

ll lt) 7
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1f i<=n

dN(i,it)=- (k/(T(i+3)-T(i+1)))*N(i+1,3-1,1t);
end
elseif N(i+1,3-1,it)==0 % zero 20S 0ros
N(i,j,it)=( (t(j—t)_T(i))/(T(l+j_1)_T(l) ))*N(irj_lrit);
if i<=n
dN(i,it)=(k/(T(i+j-1)-T(i)))*N(i,j-1,1it);
end
else
N(i,3,it)=((c(it)-T(1))/ (T(i+J-1)-T(1)))*N(i,]-

1,i0) +((T(i+3) -t (it)) /(T (i+3)-T(i+1))) *N(i+1,3-1,1t);
if i<=n
dN(i,it)=(k/(T(i+3j-1)-T(i)))*N(i,j-1,it) -
(k/ (T (i+3) =T (i+1)))*N(i+1,3-1,1it);

end
end
if (i==n && j==k+1 && t(it)==T (end))
N(:,:,it)=round(N(:,:,it-1),0);
dN(:,it)=round (dN(:,it-1),0);
end
end
a=a+1l;
end
% Nk(:,it)=N(l:n,k+1,it); % basis functions

end

¢}

o

CO=zeros (numel (t),2);

for it=1:numel (t)

CO(it,1) =N(1l:n,k+1,it) "*CP (1, :)"
CO(it,2) =N(1l:n,k+1,1it) "*CP(2,:)"
dCO(it,1l)=dN(:,it) "*CP(1,:)"';
dCO(it,2)=dN(:,it) "*CP(2,:)"';

end

dydx=dCO0 (:,2) ./dC0(:,1); % 1lst Derivative of B-Splines
interpolation

¢

% Metatopish Kanona

K=-(CO (:,2) .*dydx+CO (:,1)); % Cost pp 39 (22)
t0=K./ro; % Cost pp 39 (19)

[

% Apo (x,y) coordinates tou Kanona sta (x1,yl) coordinates tou gear
flank

xX1=(CO(:,1)+K) .*cos (t0)—-(CO(:,2)+ro) .*sin (t0); % Cost pp 39 (23)
y1=(CO(:,1)+K) .*sin(t0)+(CO(:,2)+ro) .*cos (t0)-ro; % Cost pp 39 (24)
yl=yl+ro;

o

x te=CO(:,1)+K; % Cost pp
40 (20)

y te=C0(:,2);

% (x _te,y te) coordinates ths Troxias Epafwm sta (x1 exw,yl exw)
Sunergazomenos troxos coordinates

ro2=722*m/2;

t2=-t0*ro/ro2;
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x1l exw=x te.*cos(t2)-(y te-ro2).*sin(t2); % Cost pp
(27)

yl exw=x te.*sin(t2)+(y te-ro2).*cos(t2)+ro2; 5 Cost pp
(28)

% Aktina kabilothtas - Gear 1

dydx l=gradient(yl)./gradient (x1);

derivative (x1,vyl);

d2ydx l=gradient (dydx 1) ./gradient (x1); %
derivative (x1,dydx 1);

Rl=d2ydx 1./ ((l+dydx 1.72).7(3/2)); % tupos (54) kostakis
% Aktina kabilothtas - Gear 2

dydxl exwO=gradient (yl exw)./gradient (x1 exw);
derivative (x1 exw,yl exw);
d2ydxl_exw0=gradient(dydxl_ewa)./gradient(xl_exw);%
derivative (x1 exw,dydxl exw);
R2:d2ydxl_exw0./((l+dydxl_ewa.A2).A(3/2));% tupos (54) kostakis
% R=gradient (R1-R2) ./gradient (x1) ;%270

R=R1-R2;

AB=0;

for i=l:numel (x te)-1

AB=AB+sqrt ((x te(i+l)-x te(i)) "2+ (y te(i+l)-y te(i))"2);

end

overlap=AB/ (pi*dg/Z) ;

o\°

o\

flag=0;
for i=l:numel (yl)-1
if vyl (i+1l)>y1l(i) || x1(i+1)<x1 (i)
flag=flag+l;
end
end
C=[flag;
% (0.751890311618654-x1(1)) ;

max (abs (R))-0.2
- (overlap-1)1;
Ceq =[];%abs (R1-R2)-0.05;

EvaluationScript.m

clc;clear all;close all;

format short

x=[0.6139 1.4593 2.1734 2.93064 3.5574 2.4978
1.9106 0.0138 -1.2411 -2.10621;

72=19;722=55;m=2.5; number of teeth % module

dk=(Z+2) *m; rk=dk/2; [od] Outside diameter Cost pp 48
dk2=(z22+2) *m; rk2=dk2/2; % [od] Outside diameter Cost pp 48
a0=deg2rad (20) ; pressure angle

do=Z*m; ro=do/2; [pcd] Pitch Circle Diameter
dg=do*cos (a0) ; [bcd] Base Circle Diameter Cost pp,
rg=ro*cos (ao)
rg=dg/2;
div=1le3;%

o\

o0 o0 “e o0

o\

o\

[rbase]

40

40
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Rtar=-(1.e-3) *ones (div,1); % Target

Q
[

[0 x (l:numel (x) /2) m*pi/2

m x (numel (x) /2+1:end) -m];

Input data 1 -
n

n=numel (CP)/2;

analoga

Gear parameters

Number of CP , proekupsan apo sxesh ntk+l-numel(T) = 0
deg of B-Spline , elaxisto 3

knot vector , numel (T)=n+k+1 , pollaplothta : 1 h parapanw

T=[zeros(1l,k+1l) 1:1:n-k-1 (n-k)*ones(l,k+1)];
% Basis Functions of B-Splines

o+
Il

T(1l): (T (end)-T(

1))/ (div-1) :T (end) ;

N=zeros (k+n, k+1, numel (t)) ;
f

or it=1l:numel (t)

for i=1:numel (T
(

1

) -
i) && t(it) < T(i+1)
1

if t(it)>=T
N(i,1,it) ;
else
N(i,1,it)=0;
end
end
a=1;

for j=2:k+1
for i=1l:nu
if  (N(
duo oroi
N (i
if

end
elseif
N (i
llit);
if

end
elseif

if

end
else
N (i
1,1it) + ((T(i+3) -t (
if

(k/(T(1+3)-T (i+1)
end

mel (T)-1-a
i,j-1,it)==0 && N(i+1l,j-1,it)==0) % zero kai oi

,j,it)=O;

i<=n

dN (i, it)=0;

N(i,j-1,it)== % zero los oros
;3o it)=((T(i+3) -t (it)) /(T (i+43)-T(i+1)))*N(i+1,]-
i<=n

dN (i,it)=- (k/(T(i+3)-T(i+1)))*N(i+1,3-1,1it);
N(i+1l,3-1,1it)== % zero 208 0ros
yJ i) =((t(it)-T(1)) /(T (i+3-1)-T(1)))*N(i,3-1,1it
i<=n

dN(i,1it)=(k/(T(i+J-1)-T(1)))*N(i,J-1,1t);

yJ,1)=((E (1) =T (1)) /(T (i+J-1)-T(i)))*N(i,J-
it)) /(T (i+3)-T(i+1))) *N(i+1,J-1,1it);

i<=n
dN(i,1it)=(k/(T(i+3-1)-T(1)))*N(i,3-1,1it) -
)) *N(i+1,3-1,1it);

) ;
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end

if (i==n && j==k+1 && t(it)==T (end))
N(:,:,it)=round(N(:,:,it-1),0);
dN(:,it)=round (dN(:,it-1),0);

end
end
a=a+t+l;
end
% Nk(:,it)=N(l:n,k+1,it); % basis functions

end

[e)

o

CO=zeros (numel (t),2);

for it=1l:numel (t)

CO(it,1) =N(l:n,k+1,1it) "*CP (1, :)"
CO(it,2) =N(l:n,k+1,1it) "*CP (2, :)"
dCO(it,1l)=dN(:,it) "*CP(1,:)"';
dCO(it,2)=dN(:,it) "*CP(2,:)"';

end

dydx=dC0(:,2)./dC0(:,1); % 1st Derivative of B-Splines
interpolation

[e)

% Metatopish Kanona

K=-(CO0(:,2) .*dydx+C0(:,1)); % Cost pp 39 (22)
t0=K./ro; % Cost pp 39 (19)

¢}

% Apo (x,y) coordinates tou Kanona sta (x1,yl) coordinates tou gear
flank

xX1=(CO(:,1)+K) .*cos (t0)—-(CO(:,2)+ro) .*sin(t0); % Cost pp 39 (23)
y1=(CO(:,1)+K) .*sin(t0)+(CO(:,2)+ro) .*cos(t0)-ro; % Cost pp 39 (24)

¢}

5 yl=yl+ro;

—

x te=CO(:,1)+K; % Cost pp
40 (20)

y te=CO0(:,2);

% (x _te,y te) coordinates ths Troxias Epafwm sta (xl exw,yl exw)
Sunergazomenos troxos coordinates

ro2=722*m/2;

t2=-t0*ro/ro2;

x1l exw=x te.*cos(t2)-(y te-ro2).*sin(t2); 5 Cost pp 40
(27)
vyl exw=x te.*sin(t2)+(y te-ro2).*cos(t2)+ro2; 5 Cost pp 40
(28)

% Aktina kabilothtas - Gear 1

dydx l=gradient (yl)./gradient (x1);

derivative (x1,vyl);

d2ydx l=gradient (dydx 1) ./gradient (x1); %
derivative (x1,dydx 1);

Rl=d2ydx 1./ ((l+dydx 1.72).7(3/2)); % tupos (54) kostakis
% Aktina kabilothtas - Gear 2

dydxl exwO=gradient (yl exw) ./gradient (x1 exw);
derivative (x1 exw,yl exw);

d2ydxl exwO=gradient (dydxl exw0)./gradient (x1 exw);%
derivative (x1 exw,dydxl exw);

0\

o\°
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R2=d2ydxl exw0./ ((l+dydxl exw0.72).7(3/2));% tupos (54) kostakis
R=R1-R2;%270
% dR=GradFun (Rcurva, xX) ;
fun=0.5* (R-Rtar) ."2;
sum=[0 07];
for i=2:2:div-1
sum(l)=sum(l)+4*fun (i)
end
for i=3:2:div-2
sum(2)=sum(2)+2*fun (i) ;
end
Y= (fun(1l)+fun (div)+sum(l)+sum(2))/ (3* (div-1));
AB=0;
for 1i=1:865%div-1
AB=AB+sqgrt ((x_te(i+l)-x te (1)) "2+ (y _te(i+l)-y te(i))"2);
end
overlap=AB/ (pi*dg/Z)
flag=0;
for i=l:numel (yl)-1
if yl(i+1)>yl (i)
flag=flag+l;
end

P

mhden=x1."2+yl."2-rg."2;

% d0=865;
d0=865;

circle(0,0,rqg);
circle (0,0, rk);

x1g=x1(1:d0);ylg=yl(1:d0);
x1g e=x1 exw(1:d0) "';ylg e=yl exw(1l:d0)"';

clearvars x1 yl x1 exw yl exw
x1=x1g;yl=ylg+ro;xl exw=xlg e;yl exw=ylg e;
hold on;axis equal;

plot(x te(l1:d0),y te(l:d0)+ro, 'Color', "blue', 'LineWidth', 2)
c=[0;ro02];
for i=0:22-1
phi=i*2*pi/Z2;
Tr=[cos (phi) -sin(phi);
sin (phi) cos (phi) 1;
d=[x1 exw;yl exw]-c;
xd=Tr*d+c;
plot(xd(1,:),xd(2,:)+ro, 'Color',[0.9 0 0], 'LineWidth', 2)
end
for i=0:22-1
phi=i*2*pi/Z2;
Tr=[cos (phi) -sin(phi);
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sin(phi) cos(phi)];
d=[-x1 exw;yl exw]-c;
xd=Tr*d+c;
plot(xd(1,:),xd(2,:)+ro, 'Color',[0.9 0 0], 'LinewWidth', 2)
if i==
xh=xd (:,end) ;

dsegl=[x1(1l) -x1(1);
yl(1) yl(1)];
% plot(dsegl(l,:),dsegl(2,:),'Color', [0 O 0.5], ' 'LineWidth',1)
for i=0:72-1
phi=i*2*pi/7Z;
xfc=dsegl (1, :) *cos (phi)
yfc=dsegl (1, :) *sin (phi)
% plot(xfc,vyfc, 'Color',
end
dseg=[x1 exw(end) xh (1) ;
yl exw(end)+ro xh(2)+ro];

% plot(dseg(l,:),dseg(2,:),'Color',[0.9 0 0], 'LineWidth', 1)
for i=0:722-1
phi=i*2*pi/Z2;
Tr=[cos (phi) -sin(phi);

sin (phi) cos (phi) 1;
d=[dseg(l, :);dseg(2,:)-ro]-c;
xdseg=Tr*d+c;
% plot(xdseg(l, :),xdseg(2,:)+ro,'Color',[0.9 0 0], 'LineWidth',2)
end
circle (0,0, ro0);

-dsegl (2, :) *sin(phi) ;
+dsegl (2, :) *cos (phi) ;
[0 0 0.5], "LineWidth', 2)

do2=7Z2*m; ro2=do2/2; % [pcd] Pitch Circle Diamete
dg2=do2*cos (a0) ; % [bcd] Base Circle Diameter Cost pp,
rg=ro*cos (ao)

rg2=dg2/2; % [rbasel$%

% plot(x1l,R,'Color', [0 O 0.5], 'LineWidth',2)
circle (0, ro+ro2,ro2);

circle (0, rot+ro2,rg2);

circle (0, ro+ro2,rk2);

circle(0,0,rk/5);

circle (0, ro+ro2,rk2/5);

plot ([0 O0],[0 ro+tro2+80],'-.","'Color','k', 'LineWidth',1)
plot ([0 ro+tro2],[ro ro],'-.",'Color','k'"', 'LineWidth', 1)

xt = [-10 -6]-60;

yt = [-10 -16]+45;
str = {'Rolling circle', ' (Wheel) '};
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text (xt,yt,str)
xt = [-10 -6]+35;
yt = [-10 -16]+4+20;
str = {'Rolling circle', ' (Pinion) '};
text (xt,yt,str)
Xt [35 -15]1+35;
vyt [100 -40]1+20;
str = {'Wheel', '"Pinion'};
text (xt,yt,str)
% Gear 1
for i=0:Z-1
phi=i*2*pi/7Z;
xc=x1l*cos (phi) - (yl) *sin (phi) ;
yc=x1*sin (phi)+ (yl) *cos (phi) ;
plot (xc,yc, "Color', [0 O 0.5], 'LineWidth', 2)
end
for i=0:Z-1
phi=i*2*pi/7Z;
xc=-x1*cos (phi) - (yl) *sin (p
yc=-x1*sin (phi)+ (yl) *cos (p
plot (xc,yc, "Color', [0 O O.
if i==7-1

xh2=[xc (end) yc(end)];

) ;
) ;

hi
hi
5], 'LineWidth', 2)
end

end
dseg2=[x1(end) xh2(1l);vyl (end) xh2(2)];

for i=0:Z2-1
phi=i*2*pi/Z;
xcd=dseg2 (1, :) *cos (phi
ycd=dseg2 (1, :) *sin (phi

-dseg2 (2, :)*sin(phi) ;
+dseg2 (2, :) *cos (phi) ;
[

)
)
2 0 0 0.5],'LineWidth', 2)

% plot (xcd, ycd, 'Color',
end
title ('GA,Open contact path,overlap=1.18")

% set(gca, 'visible', 'off")
f2 = figure;

hold on

plot(x1(1:d0),R(1:d0), "Color', [0 O 0.5], "Linewidth', 2)
function h = circle(x,vy,r)

hold on

th = 0:pi/50:2*%pi;

xunit = r * cos(th) + x;

yunit = r * sin(th) + y;

h = plot(xunit, yunit,'-.','Color','k', ' 'LineWidth',1);

% hold off
end

Fmincon Algorithm

StartingScript.m
clear all;clc;close all;
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72=19;722=55;m=2.5; % number of teeth % module

o)

o

n=6;

tooth=2;

x0 = LeastmS(Z,m,n, tooth);
1lb=x0-4;

ub=x0+4;

[x,fval,exitflag,output, lambda, grad, hessian] =
fminconcode (x0, 1b, ub) ;

nonlinear_constraints.m

function [C,Ceg] = nonlinear constraints(x)
72=19;722=55;m=2.5; % number of teeth % module

[e)

o

div=1le3; %

Rtar=-(1.e-18) *zeros (1,div); % Target

do=Z*m; ro=do/2; % [pcd] Pitch Circle Diamete
do2=72*m; ro2=do2/2; % [pcd] Pitch Circle Diamete
dk=(z2+2) *m; rk=dk/2; % [od] Outside diameter Cost pp 48
dk2=(Z2+2) *m; rk2=dk2/2; % [od] Outside diameter Cost pp 48

o©

a0=deg2rad(20) ;
dg=do*cos (a0) ;
rg=ro*cos (ao)
rg=dg/2;

pressure angle
[bcd] Base Circle Diameter Cost pp,

o©

o©

[rbase]%

dg2=do2*cos (a0) ;
rg=ro*cos (ao)

o\

[bcd] Base Circle Diameter Cost pp,

rg2=dg2/2; % [rbasel$%

n=(numel (x)+2)/2;

CP=[x(1:n)

sgrt ((rk)"2-x(1)"2) X (n+1:end) sgrt ((rg)"2-x(n)"*2)1;%

n Number of CP , proekupsan apo sxesh ntk+l-numel (T) =
n=numel (CP) /2;
% k : deg of B-Spline , elaxisto 3

4

T

analoga

=[zeros(l,k+1l) 1:1:n-k-1 (n-k)*ones(l,k+1)];
% Basis Functions of B-Splines

t=T(1): (T (end)-T(1l))/(div-1) :T (end);

H

N=zeros (k+n, k+1, numel (t)) ;
for it=1:numel (t)

for i=1:numel (

if t(it)>=T

N(i,1,1it)=

-1
) && t(it) < T(i+1)

.
4

T)
(1
1

0

knot vector , numel (T)=n+k+1 , pollaplothta : 1 h parapanw
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else
N(i,1,1it)=0;

end
end
a=1;
for j=2:k+1

for i=l:numel(T)-1-a

if (N(i,3j-1,it)==0 && N(i+l,j-1,it)==0) % zero kai oi
duo oroi
N(i,j,1t)=0;

if i<=n
dN (i, it)=0;
end
elseif N(i,j-1,it)== % zero los oros
N(i,3,1it)=((T(i+3)-t(it)) /(T (i+3)-T(i+1)))*N(i+1,J-
1,it);
if i<=n
dN(i,it)=- (k/(T(i+3)-T(i+1)))*N(i+1,j-1,1it);
end
elseif N(i+1,3-1,it)== % zero 20sS 0ros
N(i,3,it)=((t(it)-T(1))/(T(i+j-1)-T(1i)))*N(i,j-1,1it);
if i<=n
dN (i,1it)=(k/(T(1+]j-1)-T(1)))*N(i,3-1,1it);
end
else
N(i,J,1t)=((t(it)=T(1))/(T(i+j=1)=T(i)))*N(i,J-

1,it)+ ((T(i+3) -t (it))/(T(i+3)-T(i+1)))*N(i+1,3-1,1it);
if i<=n
dN (i,it)=(k/(T(i+j-1)-T(i)))*N(i,3j-1,1it) -
(k/ (T (i+3) =T (i+1)))*N(i+1,3-1,1it);
end
end
if (i==n && j==k+1 && t(it)==T (end))
N(:,:,it)=round(N(:,:,it-1),0);
dN(:,it)=round (dN(:,it-1),0);

end
end
a=a+tl;
end
% Nk(:,1it)=N(l:n,k+1,1it); % basis functions

end
for it=1:numel (t)
for i=1l:n

alld= 1/ (T(1+k)—- T(1));
all=-1/(T(1+k+1)-T(1i4+1));
a20=al0/ (T (1+k-1)-T (1)) ;
a2l=(all-al0) /(T (i+k)-T(i+1));
a22=-all/ (T (1+k+1)-T(i+2));

if N(i,end-2,it)==0 && N(i+l,end-2,1it)~=0 &&
N (i+2,end-2,1it)~=0
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dN2 (1,it)=(k-1) *k* ( a2l*N (i+1, end-
2,1t)+a22*N(1+2,end-2,1it)) ;

elseif N(i,end-2,it)~=0 && N(i+l,end-2,1it)==0 &&
N(i+2,end-2,1it)~=0

dN2 (i,it)=(k-1)*k* (a20*N(i,end-2,1t)+
a22*N (1+2,end-2,1t));

elseif N(i,end-2,1it)~=0 && N(i+l,end-2,1it)~=0 &&
N(i+2,end-2,1t)==0
dN2 (i,it)=(k-1)*k* (a20*N (i,end-2,1t)+a21*N(i+1,end-2,1t))

elseif N(i,end-2,it)==0 && N(i+l,end-2,1it)==0 &&
N (i+2,end-2,1it)~=0

dN2 (i,it)=(k-1)*k*(
a22*N(i+2,end-2,1it));

elseif N(i,end-2,it)~=0 && N(i+l,end-2,it)==0 &&
N (i+2,end-2,it) ==
dN2 (i,it)=(k-1)*k* (a20*N(i,end-2,1t))

elseif N(i,end-2,it)==0 && N(i+l,end-2,it)~=0 &&

N (i+2,end-2,it) ==
dN2 (i,it)=(k-1)*k*( +a2l1*N(i+1l,end-2,1it))
elseif N(i,end-2,it)==0 && N(i+l,end-2,it)==0 &&

N (i+2,end-2,it) ==
dN2 (i,it)=0;
else
dN2 (i,it)=(k-1)*k* (a20*N(i,end-2,1it) +a21*N(i+1,end-
2,1t)+a22*N (1+2,end-2,1t)) ;
end
end

end
dN2 (:,it)=flip(dN2(:,1));

for it=1:numel (t)

x1(it) =N(l:n,k+1,it) "*CP(1,:)"
yl(it) =N(l:n,k+1,it)"*CP(2,:)"
dx1l (it)=dN(:,it) '*CP(1,:)";

dyl (it)=dN(:,1it) "*CP(2,:)"';
d2x1 (it)=dN2 (:,1it) "*CP(1,:)"';

d2yl (it)=dN2(:,1it) "*CP(2,:)"';

end

dydxl=dyl./dx1l; % 1lst Derivative of B-Splines

f=dyl; % = dy/dt
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g=dxl; % = dx/dt

d2ydxl=((d2yl.*g-d2x1.*f)./(g.”2))./g; % 2nd Derivative of B-
Splines

rgG=abs (x1+yl.*dydx1l) ./ (sqrt (1+dydx1.72)); %1.50 dr V.Spita
rG=sqrt (x1.72+yl."2);

% Contact Line Coordinates

terml=((rG/ro) ."2-(rgG/ro) ."2);

term2=(1-(rgG/ro) ."2);

xp=rgG.* (sgrt (terml) -sqgrt (term2)); %$1.48 dr V.Spita / Contact Line
term3=((ro./rgG)."2-1);

yp=sqgrt (term3) . *xp; $1.49 dr V.Spita / Contact Line

[e)

o

for i=1:numel (xp)

A=[x1(1) vyl (1)
vyl (1) -x1(i)]; % exw klasei ta ro apo ton tupo 30 & 31 pp
41
rot(:,1)=inv(A) *[xp (1), ,;yp (i) tro];
end

thita=atan(rot(2,:)./rot (1, :));
K=thita*ro;

% rack

xr=xp-K;

YI=ypr

v=rot (2,:)."2+rot(1l,:)."2; % sin”2 + cos”™2 = 1

¢}

% dydx=gradient (yr) ./ gradient(xr); % 1st Derivative of B-Splines
interpolation

% Metatopish Kanona || Allos tropos upologismou tou K ||
confirmation

% Ks=-(yr.*dydx+xr) ; % Cost pp 39 (22)
t0=K./ro; % Cost pp 39 (19)

% (xp,yp) coordinates ths Troxias Epafwm sta (x1 exw,yl exw)
Sunergazomenos troxos coordinates
t2=-t0*ro/ro2;

x1l exw=xp.*cos (t2)-(yp-ro2).*sin(t2); % Cost pp 40
(27)
vyl exw=xp.*sin(t2)+ (yp-ro2).*cos(t2)+ro2; % Cost pp 40
(28)

[

% [S1,S2]=bsplines (x1 exw,yl exw);
Sl=gradient (yl exw)./gradient (x1 exw);
sa=(S1(2)-S1(3))/ (x1 exw(2)-x1 exw(3));
sb=81(2) -sa*x1 _exw(2);

S1(1l)=sa*x1l exw(1l)+sb;
sa=(Sl(end—2)—Sl(end—l))/(xl_exw(end—Z)—xl_exw(end—l));
sb=51 (end-1) -sa*x1 exw(end-1);
S1(end)=sa*x1 exw(end)+sb;

S2=gradient (S1) ./gradient (x1 exw);
sa=(S2(2)-52(3))/ (x1 exw(2)-x1 exw(3));
sb=S82 (2) -sa*x1_exw(2);

S2(1l)=sa*x1 _exw(1l)+sb;
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sa=(S2(end—2)—S2(end—l))/(xl_exw(end—Z)—xl_exw(end—l));
sb=52 (end-1) -sa*x1 exw(end-1);

S2 (end) =sa*x1l exw(end) +sb;

o

[¢]

Rl1=d2ydx1l./ ((1+dydx1."2) .~ (3/2));
R2=S2./ ((14S1.72) .7~ (3/2));% tupos
$ 1f abs (R2 (end)-R2 (end-1))>10*abs

diorthwnei teleutaio shmeio
R2 (end) =R2 (end-1) ;

o\

R=R1-R2;
dR=gradient (R) ./gradient (x1) ;

sa=(dR(2)-dR(3))/(x1(2)-x1(3));

sb=dR (2) -sa*x1(2) ;
dR(1l)=sa*x1 (1) +sb;

sa=(dR (end-2) -dR(end-1)) / (x1 (end-2) -x1 (end-1)) ;

sb=dR (end-1) -sa*x1 (end-1) ;
dR (end)=sa*x1 (end) +sb;
AB=0;

for i=1l:div-1

AB=AB+sqrt ((xp (i+1l)-xp (1)) "2+ (yp(i+l)-yp(1))"2);

end

overlap=AB/ (pi*dg/Z)
if imag(overlap) ~=

overlap=0;

end

lag=0;

or i=l:numel (yl)-1
if y1(i+1)>yl (i)
flag=flag+l;
end

0

o° o\

o\°

f
f

end

flagl=0;

for i=l:numel (x1)-1
if x1 (1+1)<x1 (1)
flagl=flagl+1l;
end

end

flag2=0;

for i=l:numel (yl exw)-1
if yl exw(i+1l)>yl exw (1)
flag2=flag2+1;
end

end

f1lag3=0;

for i=l:numel (x1 exw)-1
if x1 exw(i+l)<x1l exw (i)
flag3=flag3+1;
end

end

C=[flag

kostakis
kostakis
(end-1)-R2 (end-2))
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flagl

flag?
flag3

kapa-15

abs (mean(R))-0.05
...% —(overlap-1.1)
1;
Ceq =[1];
LeastmS.m

function b = LeastmS(Z,m,n, tooth)

Z= dontia pinion

m= module

n= numel of Control Points

tooth = # twn dontiwn aristera pou tha ginoun oi upologismoi

% LEAST MIN SQUARES

eisagontai ta theorytika (x,y) tou rack kai pianoume thn katatomh
e

elaxista tetragwnaz

Kost pp 44 (23) means Kostopoulos selida 44 sxesh 23

% Input Data SIN - (x,y) coordinates ths Troxias Epafwn P : Data
o interpollate P(:,1)=x;P(:,2)=y;

[xfl,yfl]=Involute Coordinates(Z,m);

do=Z*m; ro=do/2; % [pcd] Pitch Circle Diameter
phi=tooth*2*pi/Z;

x9=xfl*cos (phi)-(yfl+ro) *sin (phi) ;
y9=xfl*sin (phi)+ (yfl+ro) *cos (phi) ;
% x9=x1d*cos (phi)-(yld) *sin (phi) ;
% y9=x1d*sin (phi)+ (yld) *cos (phi) ;
P(:,1)=x9"';P(:,2)=y9";

5 P(:,1)=x1 exw';P(:,2)=yl exw';
div=size (P);

o°® o° o° o° oo

o\

t o0 oo oo 3

%% Input data 1 - Gear parameters

% a0=deg2rad(20); % pressure angle

% dk=(Z+2) *m; rk=dk/2; % [od] Outside diameter Kost pp 48

% dg=do*cos (a0) ; % [bcd] Base Circle Diameter Kost pp,
rg=ro*cos (ao)

% rg=dg/2; % [rbase]

%% Input of B-Spline parameters

% n Number of CP , proekupsan apo sxesh n+k+l-numel (T) = O
% k : deg of B-Spline , elaxisto 3

k=4;

5 T knot vector , numel (T)=n+k+1 , pollaplothta : 1 h parapanw

analoga

T=[zeros(l,k+1l) 1:1:n-k-1 (n-k)*ones(l,k+1)];
% Basis Functions of B-Splines

t=T (1) : (T(end)-T(1))/ (div(1l)-1):T (end);

N=zeros (k+n, k+1, numel (t)) ;
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for it=1l:numel (t)
for i=1:numel (
if t(it)>=T
N(i,1,1it)
else
N(i,1,1it)=0;
end
end
a=1;
for j=2:k+1
for i=1:numel (T)-1-a
if (N(i,j-1,it)==0 && N(i+1l,j-1,it)==0) % zero kai oi

T)-1
(1) && t(it) < T(i+1)
=1;

duo oroi
N(i,j,1it)=0;

if i<=n
dN (i, it)=0;
end
elseif N(i,j-1,it)== % zero los oros
N(i,3,it)=((T(i+3) -t (it))/ (T (i+3)-T(i+1)))*N(i+1,3-
1,it);
if i<=n
dN(i,it)=- (k/(T(i+3)-T(i+1)))*N(i+1,j-1,1it);
end
elseif N(i+1l,j-1,it)== % zero 20S 0Oros
N(i,9,it)=((t(it)-T(i))/(T(i+j-1)-T(i)))*N(i,j-1,1it);
if i<=n
dN (i,it)=(k/(T(i+J-1)-T(i)))*N(i,j-1,it);
end
else
N(i,J,it)=((t(it)=T(i))/(T(i+j-1)-T(i)))*N(i,j-
1,it)+ ((T(i+3) -t (it))/(T(i+3)-T(i+1)))*N(i+1,3-1,1it);
if i<=n

dN(i,it)=(k/(T(i+j-1)-T(i)))*N(i,J-1,1it) -
(k/ (T (i+3)-T(i4+1)))*N(i+1,3-1,1t);
end
end
if (i==n && j==k+1 && t(it)==T (end))
N(:,:,it)=round(N(:,:,1it-1),0);
dN(:,it)=round (dN(:,it-1),0);

end
end
a=a+t+l;
end
% Nk(:,1it)=N(l:n,k+1,1it); % basis functions

end
CO=zeros (numel (t),2);

%% Least mean Squares

B sp k=zeros (n,numel (t));
for i=1:n

B sp_k(i,:)=N(i,k+1,:);

128



end

CP(1l,:)=1inv(B_sp k*transpose (B sp k))*B sp k*P(:,1); %

Control Points

Furesh

CP(2,:)=1inv (B _sp k*transpose (B sp k))*B sp k*P(:,2);

oo
°o

CP(1,1)=P(1,1);

CP

CP(2,1)=P(1,2);

paremvolhs
b=[CP(1,:),CP(2,2:end-1)]; %
end

Involute_Coordinates.m

function [xfl,yfl] =
al0=deg2rad(20) ;
div=le4;

[e)

%% Gear parameters
dk=(Z+2) *m; rk=dk/2;
% df=(Z2-2.5) *m;
do=Z*m; ro=do/2;
dg=do*cos (a0l) ;
rg=ro*cos (ao)
rg=dg/2;
So=(0.475*pi) *do/7Z;

CP(1l,end)=P(end,1); %

CP(2,end)=P(end, 2); %

s To prwto kai to teleutaio
ta orizw me vash ta shmeia

o

prin thn allagh -tmhmata

Involute Coordinates (Z,m)

% pressure angle
% #of nodes

%[od] Outside diameter Cost pp 48
%[rd] Root diameter Cost pp sel 48

% [pcd] Pitch Circle Diameter

% [bcd] Base Circle Diameter Cost pp,

% [rbase]

%(0.475-0.5) Tooth thickness at pcd Cost pp

46 (7)

inva0 = tan(a0) - a0; $Involute function

%% Involute generation

for 1 = 1l:div

r(i) = rk-((rk-rqg)/(div-1))*(i-1); % radius from rk to rg

a(i) = acos(dg / (2 * r(i))):; % angle a of each involute
point

inva (i) = tan(a(i)) - a(i); % involute function fi for
each involute point

S(1) = So * (r(i) / ro) 4+ 2 * (inva0 - inva(i)) * r(i); % Tooth

thickness at each point Cost pp 46

ak=acos (rg/rk) ;
xp(i)= r(1)
yp(i)= r(1i)

end
% Sk = S(1);
Sg=S (div) ;

oo

* gsin(inva(i)):;
* cos(inva(i));

(10)

% Cost pp 46

change from polar coordinates
to cartesian coordinates

o\

o\°

[

% paxos odontos kefalhs
% paxos at base circle

% Rotation of involute to its symmetrical initial position

for i=0:2-1

el=(2*pi*rg-2*Sqg) /7Z;

phig = i* ((Sg+el)/rqg);

rot = [ cos(phig) -sin(phig);
sin (phig) cos (phig)];

inv_rot = rot * [xp; ypl;

xp _rot = inv_rot(l,:);

yp_rot = inv _rot(2,:);
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o\°
o\°

phi=deg2rad(360*Sg/ (2*pi*rg))/2;
xp rotl= cos(phi)*xp rot -sin(phi)*yp rot;
yp_rotl= sin(phi)*xp rot+ cos(phi)*yp rot;
if i==

xfl=-xp rotl;

yfl=yp rotl-ro;
end
end

fminconcode.m

function [x,fval,exitflag,output,lambda,grad,hessian] =
fminconcode (x0, 1b, ub)

%% This is an auto generated MATLAB file from Optimization Tool.

%% Start with the default options

options = optimoptions ('fmincon');
%% Modify options setting
options = optimoptions (options, 'Display', 'off');

[x,fval,exitflag,output, lambda, grad, hessian] =
fmincon (@fitness,x0, [],[],[],[],1b,ub,@nonlinear constraints,option
s);

fitness.m

function Y = fitness (x)

2=19;722=55;m=2.5; % number of teeth % module
div=1le3;%

Rtar=-(1.e-18) *zeros (1,div); % Target

do=Z*m; ro=do/2; % [pcd] Pitch Circle Diamete
do2=7Z2*m; ro2=do2/2; % [pcd] Pitch Circle Diamete
dk=(Z+2) *m; rk=dk/2; % [od] Outside diameter Cost pp 48
dk2=(z22+2) *m; rk2=dk2/2; % [od] Outside diameter Cost pp 48

a0=deg2rad (20) ;
dg=do*cos (a0) ;
rg=ro*cos (ao)
rg=dg/2;

o\°

pressure angle
[bcd] Base Circle Diameter Cost pp,

o\°

o\°

[rbase] %

dg2=do2*cos (a0) ;
rg=ro*cos (ao)

o\

[bcd] Base Circle Diameter Cost pp,

rg2=dg2/2; % [rbasel$%

n=(numel (x)+2)/2;

CP=[x(1:n)

sqrt ((rk)*"2-x(1)"2) x(nt+l:end) sqrt ((rg) *2-x(n)"2)1;%

% Number of CP , proekupsan apo sxesh ntk+l-numel(T) = 0

n
n=numel (CP) /2;

o\°
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deg of B-Spline , elaxisto 3

knot wvector , numel (T)=n+k+1 , pollaplothta : 1 h parapanw
analoga

T=[zeros(l,k+1) 1:1:n-k-1 (n-k)*ones(l,k+1)];

Basis Functions of B-Splines

=T (1) :(T(end)-T(1))/(div-1) :T (end) ;

o\

-

o\

N=zeros (k+n, k+1, numel (t)) ;
for it=1:numel (t)
for i=l:numel (T)-1
(

) -
i) && t(it) < T(i+1)
1

if t(it)>=T
N(i,1,1it) ;
else
N(i,1,it)=0;
end
end
a=1;

for j=2:k+1
for i=l:numel (T)-1-a
if (N(i,j-1,it)==0 && N(i+l,j-1,it)==0) % zero kai oi
duo oroi
N(irjrit)zof

if i<=n
dN(i,it)=0;
end
elseif N(i,j-1,it)== % zero los oros
N(i,J,it)=((T(i+3J)-t(it))/(T(i+3)-T(i+1)))*N(i+1,J-
1,it);
if i<=n
dN(i,it)=- (k/(T(i+3)-T(i+1)))*N(i+1,j-1,1it);
end
elseif N(i+1l,j-1,it)== % zero 20S 0Oros
N(i,9,it)=((t(it)-T(i))/(T(i+j-1)-T(i)))*N(i,3-1,1it);
if i<=n
dN (i,it)=(k/(T(i+Jj-1)-T(i)))*N(i,j-1,it);
end
else
N(i,3,it)=((t(it)=T(i))/(T(i+j-1)-T(i)))*N(i,J-

1,it)+ ((T(1+3) -t (it)) /(T (i+3)-T(i+1)))*N(i+1l,j-1,1it);
if i<=n
dN (i,it)=(k/(T(i+J-1)-T(i)))*N(i,j-1,it) -
(k/ (T (i+3)-T(i+1)))*N(i+1,3-1,1it);
end
end
if (i==n && j==k+1 && t(it)==T (end))
N(:,:,it)=round(N(:,:,it-1),0);
dN(:,it)=round (dN(:,it-1),0);
end
end
a=a+t+l;
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end

% Nk(:,it)=N(l:n,k+1,it); % basis functions

end

for it=1:numel (t)

for i=1l:n

al0d= 1/(T(1+k)- T(1));
all=-1/(T(1+k+1)-T (i4+1));
a20=al0/ (T (1+k-1)-T (1)) ;
a2l=(all-al0) /(T (i+k)-T (1i+1));
a22=-all/ (T (i+k+1)-T(1i+2));

if N(i,end-2,it)==0 && N(i+l,end-2,1it)~=0 &&
N (i+2,end-2,1it)~=0
dN2 (i,it)=(k=1)*k*( a2l*N(i+1,end-

2,1t)+a22*N(i+2,end-2,1it));

elseif N(i,end-2,it)~=0 && N(i+l,end-2,it)==0 &&
N (i+2,end-2,1it)~=0

dN2 (i,it)=(k-1)*k* (a20*N(i,end-2,1it)+
a22*N(i+2,end-2,1it));

elseif N(i,end-2,it)~=0 && N(i+l,end-2,it)~=0 &&
N (i+2,end-2,it) ==
dN2 (i,it)=(k-1)*k* (a20*N(i,end-2,it)+a21*N(i+1,end-2,1it))

elseif N(i,end-2,it)==0 && N(i+l,end-2,1it)==0 &&
N (i+2,end-2,1it)~=0

dN2 (i,it)=(k-1) *k* (
a22*N(i+2,end-2,1it)) ;

elseif N(i,end-2,it)~=0 && N(i+l,end-2,it)==0 &&
N (i+2,end-2,it) ==
dN2 (i,it)=(k-1)*k* (a20*N(1i,end-2,1t))

elseif N(i,end-2,it)==0 && N(i+l,end-2,it)~=0 &&

N (i+2,end-2,1it)==0
dN2 (i,it)=(k-1)*k* ( +a2l1*N(i+l,end-2,1t))
elseif N(i,end-2,it)==0 && N(i+l,end-2,it)== &&

N (i+2,end-2,1it) ==
dN2 (i,it)=0;
else
dN2 (i,it)=(k-1)*k* (a20*N(i,end-2,1it)+a21*N(i+1,end-
2,1t)+a22*N(1i+2,end-2,1it));
end
end

end
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dN2 (:,it)=flip(dN2(:,1));

for it=1:numel (t)

x1(it) =N(1l:n,k+1,1it)'"'*CP(1,:)"

yl(it) =N(l:n,k+1,it) "*CP(2,:)"'

dx1 (it)=dN(:,it) "*CP(1,:)";

dyl (it)=dN(:,1it) "*CP(2,:)"';

d2x1 (it)=dN2 (:,it) "*CP(1,:)"';

d2yl (it)=dN2 (:,1it) "*CP(2,:)"';

end

dydxl=dyl./dxl; % 1lst Derivative of B-Splines

f=dyl; % = dy/dt
g=dx1; = dx/dt

o\°
|

d2ydxl=((d2yl.*g-d2x1.*f)./(g."2))./g; % 2nd Derivative of B-
Splines

rgG=abs (x1+yl.*dydx1l) ./ (sqrt (1+dydx1.72)); %1.50 dr V.Spita
rG=sqgrt (x1.72+yl."2);

% Contact Line Coordinates

terml=((rG/ro) ."2-(rgG/ro) ."2);

term2=(1-(rgG/ro) ."2);

xp=rgG.* (sqrt (terml) -sgrt (term2)); %$1.48 dr V.Spita / Contact Line
term3=((ro./rgG) ."2-1);

yp=sqgrt (term3) . *xp; %$1.49 dr V.Spita / Contact Line
for i=1:numel (xp)
A=[x1 (1) y1 (1)

y1 (1) -x1(i)]; % exw klasei ta ro apo ton tupo 30 & 31 pp
41
rot(:,1)=inv(A) *[xp (1) ,;yp (i) +tro];
end

thita=atan(rot(2,:)./rot (1, :));
K=thita*ro;

% rack

xr=xp-K;

yr=yp;

v=rot (2,:)."2+rot(1l,:)."2; % sin”2 + cos”2 =1

[

% dydx=gradient (yr) ./ gradient(xr); % 1lst Derivative of B-Splines
interpolation

% Metatopish Kanona || Allos tropos upologismou tou K ||
confirmation

% Ks=-(yr.*dydx+xr) ; % Cost pp 39 (22)
t0=K./ro; % Cost pp 39 (19)

Q

% (xp,yp) coordinates ths Troxias Epafwm sta (x1 exw,yl exw)
Sunergazomenos troxos coordinates

t2=-t0*ro/ro2;

x1l exw=xp.*cos(t2) - (yp-ro2).*sin(t2); % Cost pp 40
(27)
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yl exw=xp.*sin(t2)+(yp-ro2).*cos (t2)+ro2; % Cost pp 40

(28)

% [S1,S2]=bsplines (x1 exw,yl exw);

Sl=gradient (yl exw). /gradlent(xl exXw) ;
=(51(2)-S1(3))/(x1 exw(2)-x1 exw(3));

sb=S1(2) -sa*x1 exw(2);

S1(1)=sa*x1l exw(l)+sb;
=(Sl(end—2)—Sl(end—l))/(xl_exw(end—Z)—xl_exw(end—l));

sb=S1 (end-1) -sa*x1 exw(end-1);

Sl (end)=sa*x1l exw(end) +sb;

S2=gradient (S1) ./gradient (x1 exw);
=(52(2)-52(3))/(x1 _exw(2)-x1 exw(3));

sb=52(2) -sa*x1 exw(2);

S2(1)=sa*x1l exw(l)+sb;
=(S2(end—2)—s2(end—l))/(xl_exw(end—2)—xl_exw(end—l));

sb=52 (end-1) -sa*x1 exw(end-1);

S2 (end)=sa*x1l exw(end) +sb;

[e)

o

R1=d2ydx1./ (( l+dydxl ~2) 3/2) % tupos (54) kostakis
R2=S2./((14S1.72) .7~ (3/2) '% tupos (54) kostakis

% if abs(R2(end)—R2(end—l))>lO*abs( 2 (end-1) -R2 (end-2)) %<---
diorthwnei teleutaio shmeio

% R2 (end) =R2 (end-1) ;

% end

R=R1-R2;

dR=gradient (R) . /gradlent(xl),
=(dR(2)-dR(3))/(x1(2)-x1(3));

sb=dR (2) -sa*x1 (2);

dR(1)=sa*x1 (1) +sb;
=(dR(end-2)-dR(end-1))/ (x1l (end-2)-x1 (end-1)) ;

sb=dR (end-1) -sa*x1 (end-1) ;

dR (end) =sa*x1 (end) +sb;

AB=0;

for i=1l:div-1

AB=AB+sqrt ((xp (i+1l)-xp (1)) "2+ (yp(i+l)-yp (1)) "2);

end

overlap=AB/ (pi*dg/Z) ;

fun=0.5* (R-Rtar) ."2;

funl=0.5* (dR-Rtar) ."2;

% Y=15*trapz (x1l,fun)+0.0.15*abs (mean(R))+0.10*std (R) ;

5 Y=+;0.5*trapz (x1, fun)

Y=1*trapz(x1l, funl)+l*mean (abs(R))+1* (std(R));%+abs (CP(1,1)+15);%;

bs (mean(R))+0.50.05*max (abs (R) ) +2*+

end

\
o\O
)

EvaluationScript.m

clear all;clc;close all;
format short

tic
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x=[ -15.7080 -15.0546 -13.9610 -13.1249 -12.2167 -11.7355
20.8106 20.3594 19.9236 19.3419];

2=19;22=55;m=2.5; % number of teeth % module

n=6;

tooth=2; % Posa dodia aristera apo th symetria 8a einai to donti

[eX

o

div=1le3; %

Rtar=-(1.e-18)*zeros(1l,div); % Target

do=Z*m; ro=do/2; % [pcd] Pitch Circle Diamete
do2=72*m; ro2=do2/2; % [pcd] Pitch Circle Diamete
dk=(z2+2) *m; rk=dk/2; % [od] Outside diameter Cost pp 48
dk2=(Z2+2) *m; rk2=dk2/2; % [od] Outside diameter Cost pp 48

al0=deg2rad(20) ;
dg=do*cos (a0) ;
rg=ro*cos (ao)
rg=dg/2;

o°

pressure angle
[bcd] Base Circle Diameter Cost pp,

o\

o\

[rbase]%

dg2=do2*cos (a0) ;
rg=ro*cos (ao)

o\

[bcd] Base Circle Diameter Cost pp,

rg2=dg2/2; % [rbasel%
CP=[x(1l:n)
sgrt ((rk)"2-x(1)"2) X (n+1:end) sgrt ((rg)"2-x(n)"*2)1;%

phi=-tooth*2*pi/Z;

CPO(1,:)=CP(1,:)*cos(phi)-CP(2,:)*sin(phi);
CPO(2,:)=CP(1,:)*sin(phi)+CP (2, :)*cos (phi)

CK=CP;

clearvars CP

CP=CPO;

% n : Number of CP , proekupsan apo sxesh n+k+l-numel(T) = 0O
n=numel (CP) /2;

deg of B-Spline , elaxisto 3

O

o

(¢}

-

k
T

o\°

knot vector , numel (T)=n+k+1 , pollaplothta : 1 h parapanw
analoga

T=[zeros(l,k+1l) 1:1:n-k-1 (n-k)*ones(l,k+1)];

% Basis Functions of B-Splines

t=T (1) : (T(end)-T(1))/(div-1) :T (end);

N=zeros (k+n, k+1, numel (t)) ;
for it=1:numel (t)
for i=1:numel (T) -
if t(it)>=T (i) && t(it) < T(i+1)
N(i,1,it)=1;
else
N(i,1,1it)=0;
end
end
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a=1;
for 3j=2:k+1
for i=l:numel (T)-1-a
if (N(i,3-1,it)==0 && N(i+1l,3j-1,it)==0) % zero kai oi
duo oroi
N(i,j,1t)=0;

if i<=n
dN (i,1it)=0;
end
elseif N(i,j-1,it)==0 % zero los oros
N(i,9,it)=((T(i+3) -t (it)) /(T (i+3)-T(i+1)))*N(i+1,3-
1,it);
if i<=n
dN(i,it)=- (k/(T(i+3)-T(i+1)))*N(i+1,3j-1,1t);
end
elseif N(i+1,3-1,it)== % zero 208 0ros
N(i,3,it)=((t(it)-T(i))/(T(i+j-1)-T(i)))*N(i,3-1,it);
if i<=n
dN (i,1it)=(k/(T(1+j-1)-T(1)))*N(i,3-1,it);
end
else
N(i,3,it)=((t(it) =T (i))/(T(i+j-1)-T(i)))*N(i,]-

1,it)+ ((T(i+3) -t (it)) /(T (i+3)-T(i+1)))*N(i+1,3-1,it);
if i<=n
dN(i,it)=(k/(T(i+Jj-1)-T(i)))*N(i,j-1,it) -
(k/ (T (i+3) =T (i+1)))*N(i+1,3-1,1it);
end
end
if (i==n && j==k+1 && t(it)==T (end))
N(:,:,it)=round(N(:,:,it-1),0);
dN(:,it)=round (dN(:,it-1),0);

end
end
a=a+tl;
end
% Nk(:,1it)=N(l:n,k+1,1it); % basis functions

end
for it=1:numel (t)
for i=1l:n

alld= 1/ (T(1+k)- T(1));
all=-1/(T(1+k+1)-T(1i+1));
a20=al0/ (T (1+k-1)-T (1)) :
a2l=(all-al0) /(T (i+k)-T(i+1));
a22=-all/ (T (1+k+1)-T(i+2));

if N(i,end-2,it)==0 && N(i+l,end-2,1it)~=0 &&
N (i+2,end-2,1it)~=0
dN2 (i,it)=(k-1)*k* ( a2l*N(i+1,end-

2,1t)+a22*N(1+2,end-2,1it)) ;
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elseif N(i,end-2,1it)~=0 && N(i+l,end-2,it)==0 &&

N (i+2,end-2,1it)~=0
dN2 (1,1it)=
a22*N(i+2,end-2,1it)) ;

(k=1) *k* (a20*N(i,end-2,1it) +

elseif N(i,end-2,1it)~=0 && N(i+l,end-2,1it)~=0 &&

N(i+2,end-2,1it)==

dN2 (i,it)=(k-1)*k* (a20*N(i,end-2,it)+a21*N(i+1l,end-2,1it))

elseif N(i,end-2,it)==0 && N(i+l,end-2,it)==0 &&

N (i+2,end-2,1it)~=0
dN2 (i, it)=
a22*N (1+2,end-2,1t));

(k=1) *k*(

elseif N(i,end-2,it)~=0 && N(i+l,end-2,it)==0 &&

N (i+2,end-2,it) ==

dN2 (1i,it)=(k-1)*k* (a20*N(i,end-2,1t))

elseif N(i,end-2,it)==0 && N(i+l,end-2,it)~=0 &&

N (i+2,end-2,it) ==

dN2 (1,it)=(k=-1) *k*(

+a2l1*N(i+1l,end-2,1it))

elseif N(i,end-2,it)==0 && N(i+l,end-2,it)== &&

N (i+2,end-2,it) ==
dN2 (i,it)=0;
else

dN2 (i, it)=(k-1)*k*(a20*N(i,end-2,it)+a21*N(i+1,end-

2,1t)+a22*N (1+2,end-2,1t)) ;
end
end

end
dN2 (:,it)=flip(dN2(:,1));

for it=1:numel (t)
x1 (it) =N(l:n,k+1,it) '*CP

(1
yl(it) =N(l:n,k+1,1it) "*CP(2

dx1 (it)=dN(:,it) "*CP(1,:)"';
dyl (it)=dN(:,1it) "*CP(2,:)";
d2x1 (it)
d2y1 (it)
end

dydxl=dyl./dx1l; % 1lst Derivative of B-Splines

f=dyl; %
g=dx1;

dy/dt
dx/dt

o\°

dN2 (:,it) "*CP(1,:)";
dN2 (:,it) "*CP(2,:)";
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d2ydxl=((d2yl.*g-d2x1.*f)./(g.”2))./g; % 2nd Derivative of B-
Splines

rgG=abs (x1+yl.*dydx1l) ./ (sqrt (1+dydx1.72)); %1.50 dr V.Spita
rG=sqrt(x1.72+y1l.%2);

% Contact Line Coordinates

terml=((rG/ro) ."2-(rgG/ro) ."2);

term2=(1-(rgG/ro) ."2);

xp=rgG.* (sqgrt (terml) -sgrt (term2)); %1.48 dr V.Spita / Contact Line
term3=((ro./rgG)."2-1);

yp=sqgrt (term3) . *xp; $1.49 dr V.Spita / Contact Line

[e)

o

for i=1:numel (xp)

A=[x1 (1) vyl (1)
vyl (1) -x1(1)]; % exw vgalei ta ro apo ton tupo 30 & 31 pp
41
rot(:,1)=inv(A) *[xp (1), ,;yp (i) tro];
end

thita=atan(rot(2,:)./rot (1, :));
K=thita*ro;

% rack

xr=xp-K;

YIr=yps

v=rot (2,:)."2+rot(1l,:).”2; % sin”™2 + cos”™2 = 1

% Metatopish Kanona || Allos tropos upologismou tou K ||
confirmation

¢} ¢}

% dydx=gradient (yr) ./ gradient(xr); % 1st Derivative of B-Splines
interpolation

% Ks=-(yr.*dydx+xr); % Cost pp 39 (22)
t0=K./ro; % Cost pp 39 (19)

% (xp,yp) coordinates ths Troxias Epafwm sta (x1 exw,yl exw)
Sunergazomenos troxos coordinates
t2=-t0*ro/ro2;

x1 exw=xp.*cos (t2)-(yp-ro2) .*sin(t2); % Cost pp 40
(27)
vyl exw=xp.*sin(t2)+ (yp-ro2).*cos(t2)+ro2; % Cost pp 40
(28)

o)
°

Sl=gradient (yl exw)./gradient (x1 exw);
sa=(S1(2)-51(3))/ (x1l exw(2)-x1 exw(3));

sb=S1(2) -sa*x1l exw(2);

S1(1)=sa*x1 exw(l)+sb;
sa=(Sl(end—2)—Sl(end—l))/(xl_exw(end—Z)—xl_exw(end—l));
sb=51 (end-1) -sa*x1 exw(end-1);

S1 (end)=sa*x1l exw(end) +sb;

S2=gradient (51) ./gradient (x1 _exw);
sa=(S2(2)-S2(3))/ (x1 exw(2)-x1 exw(3));

sb=S82 (2) -sa*x1 _exw(2);

S2(1)=sa*x1 exw(1l)+sb;

sa=(S2 (end-2)-S2(end-1))/ (xl exw(end-2)-x1 exw(end-1));
sb=S2 (end-1) -sa*x1 exw(end-1);
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S2 (end) =sa*x1l exw(end) +sb;

Q

o

[¢]

Rl1=d2ydx1l./ ((1+dydx1."2) . (3/2));
R2=S2./((14+4S1.72) .7 (3/2)) ;% tupos
$ 1f abs (R2 (end)-R2 (end-1))>10*abs (R

diorthwnei teleutaio shmeio

% R2 (end) =R2 (end-1) ;
% end
R=R1-R2;

dR=gradient (R) ./gradient (x1) ;
sa=(dR(2)-dR(3))/ (x1(2)-x1(3)):
sb=dR (2) -sa*x1 (2);
dR(1l)=sa*x1 (1) +sb;

sa=(dR (end-2) -dR (end-1)) / (x1 (end-2) -x1 (end-1)) ;

sb=dR (end-1) -sa*x1 (end-1) ;
dR (end) =sa*x1 (end) +sb;
fun=0.5* (R-Rtar) ."2;
funl=0.5* (dR-Rtar) ."2;
fun=0.5* (R-Rtar) ."2;
YO=trapz (x1, fun)
kapa=abs (max (d2ydx1)) ;

o)
o

AB=0;
for i=l:div-1

AB=AB+sqrt ((xp (i+1l)-xp (1)) "2+ (yp(i+l)-yp(1))"2);

end

overlap=AB/ (pi*dg/Z)

flag=0;

for i=l:numel (yl)-1
if y1(i+1)>yl (1)
flag=flag+l;
end

end

flagl=0;

for i=l:numel (x1)-1
if x1(1+1)<x1(1)
flagl=flagl+1l;
end

end

flag2=0;

for i=l:numel (yl exw)-1
if yl exw(i+l)>yl exw (i)
flag2=flag2+1;
end

end

f1lag3=0;

for i=l:numel (x1 exw)-1
if x1 exw(i+l)<x1l exw (i)
flag3=flag3+1;
end

end

kostakis
kostakis
(end-1)-R2 (end-2))
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C=[flag
flagl % ? mallon oxi
flag?
flag3
overlap];
load ('R sin.mat")
load ('R inv.mat")
hold on;axis equal;
% plot(x1l,R,'Color', [0 O 0.5], 'LineWidth',2)
plot (xsin,Rsin, 'Color', [0.9 0 0], 'LineWidth',2)
plot (xinv,Rinv, 'LineWidth', 2)
plot (0,0, '0")

o\

o\°

o\°

% plot (xp,yptro, 'Color', 'blue', 'LineWidth', 2)
=[0;ro2];
lot (xp, yp+ro)
plot(x1l,yl)
plot (x1l exw,yl exw+ro, 'red')
for i=0:7Z2-1
phi=i*2*pi/72;
Tr=[cos (phi) -sin(phi);
sin (phi) cos (phi) 1;
d=[x1 exw;yl exw]-c;
xd=Tr*d+c;
plot(xd(1,:),xd(2,:)+ro, 'Color',[0.9 0O 0], 'LinewWidth', 2)

o0 03 N

end
for i=0:722-1
phi=i*2*pi/z2;
Tr=[cos (phi) -sin(phi);
sin (phi) cos (phi) 1;
d=[-x1 exw;yl exw]-c;
xd=Tr*d+c;
plot(xd(1,:),xd(2,:)+ro, 'Color',[0.9 0O 0], 'LineWidth', 2)
if i==
xh=xd (:,end) ;

dsegl=[x1(1l) -x1(1);
y1(1) yl(1)];
% plot(dsegl(l,:),dsegl(2,:),'Color', [0 O 0.5],'LineWidth',1)
plot (CK(1, :), CK(2, :), 'ro','LineWidth',0.5);
plot (CK(1, :), CK(2, :), 'b','LineWidth',0.5);

for 1i=0:2-1

phi=i*2*pi/Z7;

xfc=dsegl (1, :) *cos (phi) -dsegl (2, :) *sin (phi) ;
yfc=dsegl (1, :) *sin (phi) +dsegl (2, :) *cos (phi) ;
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if i==2 || i==
plot (xfc,yfc, 'Color', [0 O 0.5], 'LineWidth',2)
end
end
dseg=[x1 exw(end) xh (1) ;
yl exw(end)+ro xh(2)+ro];

% plot(dseg(l,:),dseg(2,:),'Color',[0.9 0 0], 'LineWidth', 1)
for 1=0:722-1
phi=i*2*pi/72;
Tr=[cos (phi) -sin(phi);

sin (phi) cos (phi) 1;
d=[dseg(l, :);dseg(2,:)-ro]-c;
xdseg=Tr*d+c;
plot (xdseg(l, :),xdseg(2,:)+ro, 'Color',[0.9 0 0], "LineWidth',2)
end

circle(0,0,rk);
circle(0,0,rqg);
% circle (0, rot+tro2,rg2);
% circle (0, ro+ro2,rk2);

circle (0,0, ro0);
circle (0, ro+ro2,ro2);

circle2 (0,0,rk/5);

% circle2 (0, ro+ro2,rk2/5);

plot ([0 O0],[0 rotro2+80],'-.","'Color','k', 'LineWidth',1)
plot ([0 rotro2],[ro ro],'-.",'Color','k'"', 'LineWidth', 1)
% title('ST-D,0Open contact path')$%,overlap=1.04")

% plot(0,0,'o','Color', k', 'LineWidth', 1)

plot (0, ro+ro2,'o', 'Color', 'k'", 'LineWidth', 1)

plot (0, ro, 'o', "Color', 'k', "LinewWidth', 1)

xt = [-10 -6]-60;

yt = [-10 -16]+45;

str = {'Rolling circle', ' (Wheel) '};

text (xt,yt,str)

xt = [-10 -6]1+35;
yt = [-10 -16]+20;
str = {'Rolling circle', ' (Pinion) '};

text (xt, yt, str)

xt = [35 -15]1+35;

yt = [100 -40]+20;

str = {'Wheel', '"Pinion'};
text (xt, yt, str)

Q

% circle (0, ro+ro2,rg2+1.6);
for i=0:2-1
phi=i*2*pi/Z7;
xc=x1*cos (phi) -
yc=x1*sin (phi)

Q

5 1if i==2 || i=

1) *sin (phi) ;
l * > .

N —_ —~
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plot (xc,yc, 'Color', [0 O 0.5], "LineWidth', 2)
% end

end

for 1i=0:2-1

phi=i*2*pi/Z;

xc=-x1*cos (phi)-(yl) *sin (phi);
yc=-x1*sin (phi)+ (yl) *cos (phi) ;

$ 1f i==2 || i==
plot (xc,yc, "Color', [0 O 0.5], 'LineWidth', 2)
% end
if i==7-1
xh2=[xc (end) yc(end)];
end
end

dseg2=[x1(end) xh2(1l);yl(end) xh2(2)];

for i=0:Z2-1
phi=i*2*pi/7Z;
xcd=dseg?2 (1, :) *cos (phi)
ycd=dseg2 (1, :) *sin (phi)
% plot(xcd,ycd, 'Color',
end

-dseg2 (2, :) *sin(phi) ;
+dseg2 (2, :) *cos (phi) ;
[0 0 0.5], "LineWidth', 2)

o\°

circle (0, ro+ro2,ro2)

for i=0:72-1

phi=i*2*pi/Z2;

xlc=x1 exw*cos (phi)-(yl exw+ro2) *sin (phi);

ylc=x1l exw*sin(phi)+(yl exw+ro2) *cos (phi);

plot (xlc,ylc+ro+ro2, "Color',[0.9 0 0], 'LineWidth', 2)
end

for i=0:722-1

phi=i*2*pi/Z2;

xlc=-x1 exw*cos (phi)-(yl exw+roZ) *sin(phi);

ylc=-x1 exw*sin(phi)+(yl exw+ro2) *cos (phi);

plot (xlc,ylc+ro+ro2, 'Color',[0.9 0 0], 'LineWidth', 2)
end

set (gca, 'visible', "off")

o o® o A° o A o° A° o° o o°

o\°

o\°

hold off

f2=figure;

hold on;axis equal;

plot (x1,R, 'Color', [0 O 0.5], '"LineWidth', 2)

plot (xsin,Rsin, 'Color', [0.9 0 0], 'LineWidth', 2)
plot (xinv,Rinv, 'LineWidth', 2)

o°® o o° o

o°

% pl = [0 0]; % First Point

5 p2 = [0 rk+5]; % Second Point
3 dp = p2-pl; % Difference

% figure

o\°

quiver (pl(1l),pl(2),dp(l),dp(2),0,LineSpec, 'filled")

142



o° A o0° o o° o o° o

o\

% grid

% axis ([0 10 0 10])

% text(pl(l),pl(2), sprintf('(%.0f,%.0f)"',pl))
% text(p2(l),p2(2), sprintf (' (%.0£f,%.0f)"',p2))
function h = c1rcl e(x,y,r)

hold on

th = 0:p1/50:2*pi;

xunit = r * cos(th) + x;

yunit = r * sin(th) + y;

h = plot(xunit, yunit,'-.','Color','k', ' 'LineWidth',1);
% hold off

end

function h = circle2(x,vy,r)

hold on

th = 0:pi1/50:2*pi;

xunit = r * cos(th) + x;

grid
axis ([0 10 0 10])

text (pl(1l),pl(2), sprintf('(%.0f,%.0f)"',pl))

text (p2(1),p2(2), sprintf('(%.0f,%.0f)"',p2))

pl = [0 0] % First Point

p2 = [rk+5 0]; % Second Point
dp = p2-pl; % Difference

% figure
quiver (pl(l),pl(2),dp(l),dp(2),0,LineSpec, "filled")

yunit = r * sin(th) + y;

h

[e)

o

= plot (xunit, yunit, 'Color', 'k','Linewidth',1);
hold off

end
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