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Abstract

In recent years, the rapidly growing field of human neuromodelling has undergone sig-

nificant changes. Neuroscientists have been taking impressive steps in unveiling the

elaborate functionality of the human brain. In doing so, complex mathematical models

have been the focus of efforts for describing detailed electrochemical processes that gov-

ern the human brain’s behaviour. Such efforts require tremendous computational power

in order to render, simulate and analyze in traditional computing systems. As such,

the field of computational neuroscience presents an imposing challenge that the realm

of high performance computing is tasked with meeting.

The evolution of our understanding and mapping of the human brain has been ac-

companied by a steady increase in the processing power made available in manycore

processors. Processors such as Intel’s Xeon Phi line of products have grown to incor-

porate more advanced computing capability over the years. Due to their nature, they

also provide traditional parallel coding tools, which can significantly impact the ease at

which applications can be developed, tested and marketed. As a result, manycore CPUs

are presented as an attractive alternative to other high-performance computing fabrics,

such as GPUs and FPGAs.

In this Doctoral thesis, we investigate the impact that manycore processors can have in

the domain of computational neuroscience, specifically from the viewpoint of high-detail

neuromodelling. By identifying a lack of research efforts in high-performance, large-scale,

detailed neuronal simulations, the thesis presents the development of a simulator rich ‘in

biophysical detail in manycore x86-based processors. Furthermore, the simulator acts as

a means to study how manycore processors have evolved in architecture and behaviour,

as well as highlight their strengths and drawbacks, in an effort to understand the role

that they can play in the landscape of high-performance neuromodelling.

This Doctoral thesis presents the complete development effort of the aforementioned

simulator. The effort commences with an application specifically designed for the ear-

liest, experimental manycore processors. We meticulously re-configure the simulator

and its implementation design in order to take advantage of the continuously evolving

architecture of manycore processors. Through this process, the simulator incorporates

more modelling options, supports a wider range of simulation parameters and operates

on a scalable, modern manycore system. The end product of this thesis is a simulator

that constitutes an efficient solution for studying demanding neuronal models, in terms

of both performance and energy. The thesis starts with a design that can simulate an

average network of 50k neurons and 2million synapses in 40 minutes for every second

of simulated brain activity; the final design on a modern, small cluster of manycore
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processors vastly improves on this design by simulating 2million neurons and 2billion

synapses in under 10 minutes for every second of simulated brain activity.

Our point of focus and contributions lie in the analysis of manycore processor perfor-

mance when tasked with demanding neuromodelling workloads. Through the proposed

simulator, we highlight how the significant wealth of neuromodelling parameters affects

simulation in different manycore processors. The thesis will provide a clear map on

matching the correct amount, and type, of hardware to different network simulation

configurations. As such, we take an important step towards defining proper utilization

of high-performance hardware in order to match simulation challenges imposed by the

domain of computational neuroscience.

Furthermore, significant effort is expended in incorporating the simulator in a larger,

collaborative framework aimed at serving as an online resource for high-performance

neuromodelling simulations. The designed framework, named “BrainFrame”, leverages

a heterogeneous ensemble of accelerators, namely manycore processors, FPGAs and

GPUs, in order to provide efficient solutions for different modelling and network config-

urations. We provide a proof of value in the framework by identifying different use cases

where a switch in the underlying accelerator hardware yields significant gains in perfor-

mance, thus reinforcing the value of heterogeneity in high-performance neuromodelling.

In particular, the framework further highlights the value of matching the accelerating

hardware of choice with the computational workload at hand by indicating differences

in performance by orders of magnitude between the different accelerators examined in

different network configuration scenarios.
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Περίληψη Στα Ελληνικά

Στα πρόσφατα χρόνια, το ταχύτατα εξελισσόμενο πεδίο της μοντελοποίησης του ανθρώπινου

εγκεφάλου παρουσίασε σημαντικές εξελίξεις. Οι νευροεπιστήμονες ανά τον κόσμο σημείω-

νουν εντυπωσιακά βήματα στην χαρτογράφηση του λεπτομερούς τρόπου λειτουργίας του

ανθρώπινου εγκεφάλου. Στην προσπάθεια τους αυτή, αναπτύχθηκαν πολύπλοκα μαθημα-

τικά μοντέλα τα οποία επιτρέπουν την περιγραφή και μελέτη λεπτομερών ηλεκτροχημικών

διεργασιών που διέπουν τη συμπεριφορά του εγκεφάλου. Τέτοιες προσπάθειες συνοδεύο-

νται από εξαιρετικά μεγάλα υπολογιστικά φορτία προκειμένου να προσομοιωθούν και να

αναλυθούν τα απαραίτητα δεδομένα, συνήθως δε σε απλά υπολογιστικά συστήματα. Ως εκ

τούτου, το πεδίο της υπολογιστικής νευροεπιστήμης παρουσιάζει επιβλητικές προκλήσεις

που η επιστήμη της υπολογιστικής επεξεργασίας υψηλής ισχύος καλείται να απαντήσει.

Η εξέλιξη της κατανόησης και της χαρτογράφησης του ανθρώπινου εγκεφάλου έχει συ-

νοδευθεί από μια σταθερή αύξηση στη διαθέσιμη υπολογιστική ισχύ που προσφέρουν οι

πολυπύρηνοι επεξεργαστές. Επεξεργαστές όπως ο Xeon Phi της Intel εξελίσσονται διαρ-

κώς ώστε να διαθέτουν αυξανόμενη υπολογιστική ικανότητα. Χάρη στον σχεδιασμό τους,

προσφέρουν την ικανότητα προγραμματισμού με παραδοσιακά εργαλεία λογισμικού παράλ-

ληλης επεξεργασίας. Η δυνατότητα αυτή επηρεάζει σημαντικά την ευκολία με την οποία

οι εφαρμογές λογισμικού μπορούν να αναπτυχθούν, να ελεγχθούν για την ποιότητά τους

και να προωθηθούν στην αγορά. Ως αποτέλεσμα, οι πολυπύρηνοι επεξεργαστές αποτελο-

ύν μια ενδιαφέρουσα εναλλακτική οδό σε σύγκριση με άλλα εδραιωμένα συστήματα υψηλής

επεξεργαστικής ισχύος, όπως οι κάρτες γραφικών και τα FPGA.

Η παρούσα διατριβή ερευνά την αποτελεσματικότητα των πολυπύρηνων επεξεργαστών στα

προβλήματα που απαντώνται στον τομέα της υπολογιστικής νευροεπιστήμης, κυρίως στο

κομμάτι της μοντελοποίησης νευρώνων με μεγάλο βαθμό λεπτομέρειας. Μετά την τεκ-

μηρίωση μιας ανιχνευμένης έλλειψης έρευνας σε προσομοιώσεις μεγάλων, λεπτομερών δι-

κτύων νευρώνων σε υψηλής επεξεργαστικής ισχύος συστήματα, η διατριβή παρουσιάζει την

ανάπτυξη ενός προσομοιωτή με έμφαση στη μοντελοποίηση βιοφυσικής λεπτομέρειας σε πο-

λυπύρηνους επεξεργαστές αρχιτεκτονικής x86. Ο προσομοιωτής επίσης δρα ως αντικείμενο

μελέτης για το πώς οι πολυπύρηνοι επεξεργαστές έχουν εξελιχθεί σε αρχιτεκτονική και

συμπεριφορά, καθώς και βοηθά στην ανάλυση των δυνατών και αδύνατων σημείων των πο-

λυπύρηνων επεξεργαστών, ώστε να διερευνηθεί ο ρόλος που μπορούν να έχουν στον τομέα

της μοντελοποίησης δικτύων νευρώνων με μεγάλη υπολογιστική ισχύ.

Η διατριβή παρουσιάζει ολοκληρωμένα την ανάπτυξη του προαναφερθέντος προσομοιωτή.

Το έργο ξεκινά με μια εφαρμογή ειδικά σχεδιασμένη για τους πρώτους πειραματικούς πολυ-

πύρηνους επεξεργαστές. Καθώς η πολυπύρηνη αρχιτεκτονική εξελίσσεται, επαναπροσδιο-

ρίζουμε τις παραμέτρους και τον σχεδιασμό του προσομοιωτή με ακρίβεια προκειμένου να

εκμεταλλευθούμε τις προόδους της εξελισσόμενης τεχνολογίας. Καθ΄ όλη τη διαδικασία, ο

προσομοιωτής ενσωματώνει περισσότερες επιλογές μοντελοποίησης, υποστηρίζει μεγαλύτε-

ρο εύρος παραμέτρων προσομοίωσης και τελικά, λειτουργεί σε ένα σύγχρονο, κλιμακώσιμο
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πολυπύρηνο επεξεργαστικό σύστημα. Το τελικό προϊόν αυτής της διατριβής είναι ένας προ-

σομοιωτής που αποτελεί μια αποτελεσματική λύση για τη μελέτη απαιτητικών μοντέλων

νευρώνων, τόσο από άποψη υπολογιστικής επίδοσης αλλά και καταναλώσης ενέργειας.

Οι προσφορές μας στην επιστήμη του τομέα εστιάζονται στην ανάλυση των επιδόσεων των

πολυπύρηνων επεξεργαστών όταν καλούνται να επεξεργαστούν μαθηματικά μοντέλα νευ-

ρώνων. Μέσω του προτεινόμενου προσομοιωτή, αναδεικνύουμε πώς το ευρύ φάσμα των

παραμέτρων μοντελοποίησης νευρώνων επηρεάζει την προσομοίωση σε πολυπύρηνους επε-

ξεργαστές. Ως εκ τούτου, κάνουμε ένα σημαντικό βήμα προς την αποτελεσματική αξιοποίηση

υπολογιστικών συστημάτων υψηλών επιδόσεων με σκοπό την αντιμετώπιση των προκλήσε-

ων που επιβάλλονται από τον τομέα της υπολογιστικής νευροεπιστήμης.

Σημαντικό κομμάτι της διατριβής ασχολείται με την ενσωμάτωση του προσομοιωτή σε μια ευ-

ρύτερη, συνεργατική, διαδικτυακή πλατφόρμα που στοχεύει στην εκτέλεση προσομοιώσεων

μοντέλων νευρώνων με υψηλή επεξεργαστική ισχύ. Η πλατφόρμα που παρουσιάζεται, με την

ονομασία “BrainFrame”, αξιοποιεί ενα ετερογενές σύνολο από επιταχυντές, συγκεκριμένα

πολυπύρηνους επεξεργαστές, κάρτες γραφικών και FPGA, προκειμένου να δώσει αποτε-

λεσματικές λύσεις για διαφορετικές περιπτώσεις μοντελοποίησης και παραμέτρων δικτύου

νευρώνων. Αποδεικνύουμε την αξία της πλατφόρμας μέσω της ανίχνευσης διαφορετικών πε-

ριπτώσεων προσομοίωσης όπου μια αλλαγή στον επιταχυντή που εκτελεί την προσομοίωση

προσφέρει σημαντικά κέρδη στην ταχύτητα προσομοίωσης, υπογραμμίζοντας έτσι την αξία

της ετερογένειας στην προσομοίωση μοντέλων νευρώνων με μεγάλη επεξεργαστική ισχύ.
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Chapter 1

Introduction

1.1 Computational Neuroscience

1.1.1 Challenges

Computational neuroscience is an interdisciplinary field which encompasses studies of

the brain’s functionality and cognitive operations in conjunction with the advances of

modern computer science. The field represents the advancement of knowledge concerning

the world’s most crucial phenomena, such as the human brain, through the aid of modern

technology.

The last decade has witnessed a great amount of advances in the field of computational

neuroscience. Neuroscientists have been gradually unveiling details of neuron operation.

Using this knowledge, there is a wide research interest in studying the behaviour of single-

neurons, as well as small networks of neurons and eventually brain-sized populations of

neurons. Simulating these neuronal networks on various platforms is an active field of

research; a major challenge is the sheer computational complexity that many of these

neuron models entail.

Mapping the human brain, discovering its functionality and replicating its behaviour are

all endeavours that entail multiple challenges and obstacles to overcome. The human

brain is a particularly large and complicated organ. Compared to the rest of our bio-

logical organs, human knowledge is still in its infancy regarding how our brains operate.

These factors lead to the existence of multiple mathematical approaches in an effort to

model brain functionality. Each modelling effort has its own merits and shortcomings

and all share a common trait: they require massive amounts of computations in order

to simulate a meaningful portion of the brain’s operations.

Massive computing power is necessary to calculate neuronal processes and their interac-

tions, since our brain is comprised of billions of neurons [6]. The amount of information

1
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that is exchanged within our formed neuronal networks is also vast due to the large

amount of synapses, the “bridges” that connect the aforementioned neurons. This great

volume of data needs to be modelled and interpreted in order to gain a grasp on how

the human brain functions at a low, neuronal level.

The massive volume of calculations that are undertaken by the human brain is not the

sole challenge that renders the neuroscientific field difficult to navigate. As science delves

deeper into the complex nature of the human brain, hopes of replicating parts of its ac-

tivity arise; and so does the need to design simulation systems that can respond within

logical time limits. Ideally, the tools used to probe brain functionality would operate

within the same time scale as our brains in real life. Such tools would lessen experimen-

tation setup times and aid neuroscientists in designing complex, in-silico experiments

that help unravel how the brain responds to real-time stimuli. In the future, designing

simulation systems that survey and process the conditions under which a brain operates

in real time can be a crucial step to achieving implantable monitoring devices.

Furthermore, computational neuroscience is a relatively young field of science. The first

book produced by the field was only published in 1990 and edited by Eric L. Schwartz

[7]. As such, it is a rapidly evolving field full of potential, with new approaches to

new obstacles being invented frequently. Neuroscientists have a lot of options in their

arsenal when tasked with studying a certain phenomenon and choosing which avenue

to pursue for their given task and circumstances can be a daunting problem. This is a

common problem in the discipline of mathematical modelling, where different degrees of

complexity and scale can expose or obscure details of the studied phenomenon. Thus, the

goal of exploring each modelling option’s benefits and shortcoming becomes increasingly

relevant in the young field of computational neuroscience.

While computational neuroscience is a young and emerging field, the domain of neuro-

science itself has a long and rich history. Neuroscientists have amassed an impressive

amount of knowledge concerning the human nervous system, its physiology, anatomical

details and biology. This vast knowledge needs to be updated and translated to formats

that are suitable to utilize in today’s processors. The challenge of porting the existing

wealth of resources to modern, cutting-edge processing systems is far from a trivial task.

It is, however, a necessary task in order for the field of computational neuroscience to

be able to exploit the technological advances of high-performance computing.

1.1.2 Motivation

The intersection of two different domains, neuroscience and computer science, is aptly

named “Computational Neuroscience” and aims at revolutionizing what is possible in

the field of human brain studies.
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In-vitro or in-vivo neuroscientific experiments are very costly, time-consuming and re-

quire testing on animals. They are also highly complex, often difficult to reproduce

and offer limited access. Hence, constructing and exploring realistic simulations of bi-

ological neural networks on computing platforms has come across as a very viable and

useful alternative for neuroscientists in recent years [8, 9]. The resulting discipline of

computational neuroscience comprises a powerful tool in the hands of the community.

It helps elucidate fundamental brain mechanisms underlying many obscure neurological

maladies and guide possible new therapies. In-vivo and in-vitro experiments, while being

traditional and powerful experimentation tools for neuroscience, inherently present the

possibility of the experimental data to become contaminated (from factors such as the

effects of anesthesia). Many of the complex brain-system dynamics that define biological

behavior are hypothesized and many in-vivo or in-vitro techniques are not always able

to provide the means to validate them. Such challenges further increase the value of

in-silico experimentation.

For decades, scientists have been fascinated by the methods and computational capa-

bilities of the biological brain. The US National Academy of Engineers has listed the

simulation of the human brain as one of the Grand Engineering Challenges. Inspired by

the scientific effort, engineers began to copy computational concepts found in the brain,

which led to the creation of the first Artificial Neural Networks (ANNs) with the creation

of the perceptron. ANNs do not execute commands sequentially like the typical Von

Neumann computer, but each node (or neuron) in a neural network is a separate set of

functions and they are all evaluated concurrently during execution. The relation between

input and output is defined largely by the network size, topology and interconnectivity

of the neurons. Interconnectivity could eventually be adaptive, thus, mimicking the

behavior of biological systems. Eventually, more advanced versions of neural-network

models were developed, based upon greater understanding of the biological processes.

Spiking Neural Networks (SNNs) do not abstractly mimic biological-neuron behavior

but outright simulate the computational behavior of brain processes. True to their bio-

logical counterparts, SNNs have the ability to encode information using the transfer rate,

amplitude and spike-train patterns, which gives them more capabilities than traditional

ANNs. As a result, they are currently heavily used to model the complex behavior of

biological-brain systems in neuroscientific research.

Regardless of the plethora of models and execution platforms, there has been reduced em-

phasis on systematically optimizing the model execution on a many-core platform. Given

the capabilities of modern computing systems, the degrees of freedom that are available

to the community allow an aggressive exploration of the performance vs. quality-cost

trade-off. This enables cost-conscious execution of biologically accurate neural mod-

els on multi-/many-core systems. There is significant potential using such systematic

approaches, given the magnitude and energy budget [10] of computing infrastructure

employed for brain modeling [11].
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Ultimately, computational neuroscience attempts to use neuronal network models of var-

ious complexities, the accuracy of which can provide predictive behavior and insight, and

exploit them to guide further biological experiments. Long-term advancement in compu-

tational neuroscience can hopefully lead to improved medical treatment of brain-related

health issues, novel artificial-intelligence applications and groundbreaking computer ar-

chitectures.

Computational neuroscience can advance our understanding of human cognitive abili-

ties and brain functionality, as well as reveal opportunities for evolving the nature of

computer architecture. On one hand, mapping the human brain allows for detecting the

cause of brain-related health issues and possibly, reveal methods for repairing damage

caused to our nervous system. On the other hand, there have been emerging processing

systems designed after certain aspects of our brains’ method of operation. Artificial

intelligence has been growing in popularity and applicability in different domains and

novel computer architectures seek to emulate the human brain’s high degree of inter-

communication and multi-tasking.

Despite momentous achievements in the simulation of large scale neural systems, the

path ahead is no less daunting. In the last decade, the computational neuroscience

literature has seen the publication of brain scale models that include numbers of neurons

comparable with those of biological systems, or patches of brain with high level of

detail. Izhikevich and Edelman [12] simulated the whole thalamocortical system with

quadratic 2D models and simple synapses, the Blue Brain Project has simulated detailed

networks of a whole reconstructed cortical column with compartmental models and

detailed synaptic models [13], as well as Erik De Schutter et al, who produced a highly

detailed model of the cerebellar granular layer [14] . Going forward, it is the stated goal

of the human brain project of expanding on the work of the Blue Brain Project and

simulating a whole brain. Many other large scale reconstruction and analysis projects

should be expected in the future, examining both larger neuron populations and more

detailed neuron models [15].

The projects named above should be taken as isolated ’proofs of principle’, and even if the

authors have searched parameter spaces, the parameter space of possible networks has

barely been scratched. The goal of computational neuroscience is not only to simulate

a single column or even brain, but enormous classes of possible virtual brains. Making

matters worse, it is likely that the future will demand that these brains be hooked to

sensors and actuators and be required to function in real time and closed-loops.

This type of work pushes multiple boundaries of knowledge and technology. On the

knowledge front, it commits the computational neuroscientist to a level of detail of the

representation that exposes the free or unknown parameters of the system. This includes

both the procurement of biological data, and the exploration of the gigantic parameter

spaces. In fact, biological measurements of neuronal parameters can only take us so

far, since neural network parameter spaces are far from convex [16, 17], hence simply
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measuring biophysical properties of neurons will not be sufficient to recreate plausible

neurodynamics. To make matters worse, biological neurons are in continuous change

[18], and future brain models will need to tackle the problem of changeability as well,

introducing yet another level of computational demands on the simulation.

A caveat of large scale simulations often put forth is that the correct level of detail for

simulating brains is not known. This alone should be taken as justification for maintain-

ing an agnostic view on the “a priori” required level of detail of the simulation. It is not

inconceivable that future models will continue to biological detail that is relevant in par-

ticular scientific domains, and hence this agnosticism is commendable. The best means

to define that required level of detail is in the simulation of large scale systems and the

comparison with reduced version, to gauge the contribution of the extra amounts of de-

tail. The work of reducing a model to its essentials, often passes through understanding

the implications of more complex assumptions, and hence, to simplify one often has to

complexify.

Hence, we should predict that the computational requirements for future neurocompu-

tational models will demand ever increasing computational resources, particularly in

the problems of parameter space exploration, large network homeostasis and real time

embedding of brain sized simulations.

1.2 Manycore Computing Systems

1.2.1 Transition from Single-Core to Manycore

Traditionally, single-threaded programming has been the go-to programming model for

most research-oriented applications, including modelling. Single-threaded is a relatively

simpler programming paradigm which naturally fits the design of the modeller. Specifi-

cally in the realm of neuromodelling, GENESIS and Matlab have been extensively used

to cater to the needs of the community [19–22]. Processors largely remained single-core

as long as they were sufficient for the needs of the industry and academic research.

However, with processors reaching their power consumption limits [23], it became in-

creasingly apparent that continuous escalation of a single-core’s clock frequency would be

unsustainable and different avenues for gaining more processing power out of computing

systems needed exploration.

Multi-core architectures have been a large step in the evolution of high-performance

computing, as well as algorithm design. In 2001, IBM’s Power 4 processor [24] is the

first step for the well-established semiconductor chip maker in the realm of incorporating

more than one core on a single die. In order to take advantage of having multiple

cores on a chip, the paradigm of parallel processing was made necessary. While the

concept of parallel programming greatly predates the design of industry-grade multicore
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Figure 1.1: Image of the Xeon Phi Knights Corner Coprocessor, the first industry-
grade manycore processor designed by Intel [1]. This particular model is a 7120p, a

PCI-Express card that depends on a processor host in order to boot.

architectures [25, 26], a systematic approach to parallel coding and the corresponding

shift in the coding paradigm was made more prevalent once keeping up with Moore’s

Law became an increasingly difficult goal to attend via single-core chips.

Multi-core processors focus on a mixture of single-threaded performance and a lim-

ited amount of independent cores available on the die for parallel processing. The

cores remain relatively complex, integrating most of the technological advancements

that decades of single-threaded processing have added to engineering knowledge. Multi-

core processors continue to evolve and take up a large share of the modern processor

market [27], increasing in processing power as well as energy efficiency [28].

As the necessity for massive parallel processing of unprecedented amounts of data grew

in recent years in various fields, such as communication [29], finance [30] and life sci-

ences [31], the industry responds with increased availability of computational resources

on chip. As a continuation of Moore’s Law in a different form, the amount of cores

integrated in a single die has risen exponentially, with supercomputers making the Top

500 list (the “who-is-who list in the field of high performance computing” [32]) com-

prised of processors with continuously increasing cores-per-die. The term “manycore”

computing has been coined for a sub-category of multi-core processors which place an

emphasis on their high degree of parallel processing power, offering tens to thousands of

independent processor cores and frequently stressing the quantity, over the complexity

of their available computational resources.



Chapter 1. Introduction 7

1.2.2 Manycore Systems Progression

Manycore computing systems have continuously increased the density of their computa-

tional power over the years; the amount of CPUs that can “fit” in a single die has been

an escalating number over the past decade. An interesting case in manycore systems

evolution has been Intel’s line of products in the manycore genre.

The semiconductor chip manufacturer Intel started an early project in 2007 code-named

Intel Tera Scale Computing Research Program, which aimed at providing its customers

with unprecedented, for its era, amounts of potential processing power. A first prototype

that emerged out of this project was the 80-core Polaris chip [33] which was aimed

towards research and allowing engineers to work with massively parallel applications in

practice, rather than in theory. The die contained 80 routers for its core communication

needs and produced great peak computational performance per watt.

However, not all early members of the Tera Scale Program were successful products.

Larrabee was a manycore chip originally designed to act as a GPU [34]. Larrabee

used multiple in-order x86-based CPU cores that featured vector processing units for

single-instruction multiple-data (SIMD) commands. In 2010, the chip was discontinued

shortly after its production, unsuccessful in its original intended purpose of rivalling

general-purpose GPUs [35].

A significant entry in the list of early manycore processors is the Single-Chip Cloud

Computer (SCC), announced in 2010 [36]. The 48-core processor held interesting fea-

tures such as adjustable scaling of operating voltage and frequency levels, as well as

the ability to code using familiar parallel computing paradigms. Since its cores did not

share memory, a message-passing API code-named RCCE [37] was used that had signif-

icant similarities to the well-established MPI library [38]. The product was shipped to

multiple research facilities and universities for experimental development and has been

extensively used in many academic fields, long after the discontinuation of its production

[39, 40].

The early products of the Tera Scale Program culminated in Intel’s “Xeon Phi” line

of manycore processors. The processors focus on the availability of parallel computing

resources and their ease of programming. The Xeon Phi products are based on x86

cores, which support traditional coding tools, thus being able to run software that has

been developed for regular, industrial CPUs with minimal effort. Their ease of usage,

which increased as the products matured and more generations were produced, allowed

for an attractive alternative to the high-performance-computing standard platform, the

GPUs.

The prototype of Xeon Phi products was the Knights Ferry platform, produced in 2010

[41]. The chip is a derivative of the Larrabee prototype and was offered as a PCIe card

with 32 in-order cores at up to 1.2 GHz with four threads per core, 2 GB GDDR5 memory
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and 8 MB coherent L2 cache (256 KB per core with 32 KB L1 cache). It was built at a

45nm process and had a power consumption of approximately 300W. Despite supporting

only single-precision floating point instructions, its high peak processing power at 750

GFLOPS allowed it to be used for research purposes by establishments such as CERN

[42].

Following the Knights Ferry prototype, the Xeon Phi line of products officially recognizes

the Knights Corner chip as the first generation of the Xeon Phi manycore processors [1].

The Xeon Phi Knights Corner is a manycore co-processor; it is designed as a Pci-Express

card that requires a host in order to boot. However, after booting, the co-processor can

act autonomously, is reachable via SSH protocols through its host and operates with a

custom, down-to-basics lightweight Linux image. The focus of the co-processor lies in its

wealth of computing resources, with 61 available cores and 4 threads available per core,

as well as a 512-bit-wide vector processing unit for SIMD instructions. The processor

becomes the object of experimentation for many research fields [43–45].

The most mature product in the Xeon Phi line of processors was the Xeon Phi Knights

Landing [4]. This manycore processor was a stand-alone processor offering significant

peak performance and energy efficiency. Variations of the processor as a Pci-Express

accelerator card were also produced, but discontinued and not offered to consumers.

The processor had a significant impact in the industry, making the top ranks of Top500

supercomputer lists [46]. The Knights Landing processor offered more resources than its

predecessors, simplified inter-core communication schemes by using a well-established

mesh interconnection pattern and its instruction set allowed for binaries compiled for

any x86-based architecture to run on the Knights Landing without any modifications.

Its ease of usage, its efficiency and peak performance were marketed as the platform’s

strong points, particularly against competing general-purpose GPUs.

The Xeon Phi line of products was officially announced to be discontinued by Intel in

2018 [47]. However, the manufacturer is expected to fabricate manycore platforms in its

upcoming, at the time of writing, Xeon processor line. Manycore processors have already

been made widely available to the market by AMD via their “Ryzen Threadripper” line

of products [48], based on AMD’s “Zen” architecture [49], processors integrating up to

32 CPU cores and 64 threads in a single chip. In an effort to maintain market share

dominance, Intel’s “Skylake” architecture products are projected to integrate 28 cores

and 56 threads on chip. The products maintain architectural design aspects from the

Xeon Phi Knights Landing, such as the interconnection fabric “Omni-Path” for low-

latency inter-node communication in multinode systems, an AVX-512 instruction set

and vectorization processing units [50]. With the volume of CPU cores offered by a

single chip being being continuously driven higher by important chipset manufacturers,

manycore processing will remain a valuable resource for high-performance computing in

the future.
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1.2.3 Modern Usage

Manycore processors are utilized in a variety of domains today. As the need for parallel

processing of demanding datastreams continues to grow, manycore processors and GPUs

offer an abundance of processing cores to be utilized in parallel fashion in order to satisfy

the computational needs of such applications. There is a variety of manycore processor

architectures being designed and used today.

An emerging category of specialized, manycore processors derive from neuromorphic

chip design, a design philosophy that seeks to emulate the brain’s functionality in order

to solve problems in an efficient and reliable way. Such chips replicate the interactivity of

thousands to millions of neural cells by integrating massive amounts of processing cores

on a single die. A prominent example of this class of processors is IBM’s TrueNorth

[51, 52], a chip integrating more than 4,000 cores and a total of approximately 1 million

programmable artificial neurons. The chip aims at great energy efficiency and has been

successfully used for artificial-intelligence-oriented applications. Another manycore pro-

cessor from the domain of artificial intelligence is Eyeriss [53], designed for the promising

class of deep convolutional neural networks.

Supercomputers continue using manycore processors as their basis for achieving peak

performance approaching the scale of Exaflops. One of the most dominant supercom-

puters at the time of writing, the Sunway TaihuLight [54] chinese supercomputer hosts

a wide range of applications in its manycore RISC processors codenamed SW26010 [55–

58]. The supercomputer’s RISC processors allow for good performance per watt.

The Xeon Phi line of products, particularly the Knights Landing, is still used exten-

sively in the industry. Since they support traditional coding tools, such as OpenMP [59]

and MPI [38] libraries, their ease of usage marks the, now discontinued, platforms as

attractive choices for researchers globally. Along with its processing power, the Knights

Landing processors host simulators for various natural phenomena [60], complex math-

ematical calculations [61] and life-science-oriented applications [62].

For manycore processors, ease of usage plays an important role in their adoption rate.

Today, a number of programming paradigms are available for manycore architectures.

Specialized hardware, such as IBM’s Truenorth which specializes in artificial-intelligence-

related research, utilizes specific programming models designed for its intended usage

[63]. Other manycore processors use general-purpose programming frameworks. Shared-

memory applications favour OpenMP, whereas multinode, split-memory applications

use message passing protocols between nodes, such MPI. Heterogeneous systems and

applications that seek portability in different accelerator engines, such as both GPUs

and x86-based manycore systems, encourage the usage of frameworks such as OpenCL

[64] for compatibility across different accelerator architectures.
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Given the advent of specialized accelerator fabric in modern High Performance Comput-

ing infrastructure, it is imperative that applications are well understood, especially in the

context of the accelerating platforms that are utilized. Additionally, these applications

are to be used in scientific research that is very dynamic and many times conducted by

non-HPC experts. Moving forward, the goal should not be to over-optimize them, but

keeping the programming effort moderate, resulting to short development times, while

providing sufficient performance. These factors can be critical in achieving widespread

usage of manycore accelerators and their potential processing power in research.
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1.3 Contributions in Computational Neuroscience

Challenge I

Current approaches for experimentation in the field of neuroscience can be placed under

two categories, each with significant challenges to overcome:

(i) traditional in-vivo (or in-vitro) experimentation, which is very time-consuming, costly

and requires significant lab equipment, training and experience by the researcher and

(ii) emerging in-silico experimentation, which has been mostly focusing on simpler mod-

elling due to the computational demands of large-scale neuronal network simulation.

Solution I

This dissertation shall prove that efficient neuromodelling of high complexity, scale and

detail can be achieved, as long as enough engineering effort is provided. The proposed

system achieves simulation of 1second of brain activity in 10minutes of execution time

of a very demanding workload (2million neurons with 1k synapses per neuron of a de-

tailed, conductance-based model). Furthermore, engineering insights will be given in

order to help navigate future neuromodelling applications towards more efficient imple-

mentations, stressing neuromodelling parameters that significantly impact simulation

speed and efficiency.

Challenge II

Although there already exist multiple frameworks for neuromodelling, those who are

focused more towards biophysically-accurate model simulation are older tools, which

can be difficult to use without prior engineering and programming knowledge. This can

prove challenging for users from the traditional neuroscientific domain.

Solution II

This dissertation ultimately builds towards a simulation framework that works as an

online service, available to any scientist and requires no engineering effort since it is

entirely hosted on cloud computing services. Experimentation via the framework is

achieved through a Python-based modelling software package that is widely used in

the neuroscientific community. The thesis provides a detailed synopsis of the proposed

framework, a product of collaboration between the Microprocessors and Digital Systems

Lab of the National Technical University of Athens and Neurasmus B.V.
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1.4 Contributions in Manycore Computing

Challenge III

Application design in manycore processors meets a significant challenge generated by

overheads due to thread-level and inter-node communication. For non-embarassingly

parallel workloads, coherence-imposed delays can be prohibitive, particularly in the case

of neuronal networks simulating rapid brain activity.

Solution III

In this dissertation, delays imposed by synchronization between computational resources

in both single- and multi-node manycore systems are examined through numerous ap-

proaches, highlighting the most efficient solution for a category of workloads which are

especially demanding and communication-heavy. Through a combination of methods,

an efficient implementation is achieved that utilizes a small cluster of manycore proces-

sors in order to reach a level of performance previously achievable only by much larger

and more expensive computing systems. In addition to simulating large, demanding

networks, the design proposed in this thesis provides, throughout the generations of

technology researched in this paper, a steady performance speedup ranging from 10×
to 50×, depending on network configuration, when compared to simulating on more

traditional processors with fewer multithreading capabilities and smaller core counts.

Challenge IV

There is a wealth of options for acceleration platforms that offer better potential perfor-

mance (FPGAs) or have established a wider usage rate (GPUs) compared to manycore

computing fabrics. For any engineer working on the field high performance computing,

the challenge of picking suitable hardware for her application is significant and the role

of manycore computing fabrics in this endeavour is relatively unclear.

Solution IV

In this dissertation, the benefits and hindrances of manycore processors are well-defined

and elaborately compared to other widely-used accelerator options. By integrating

manycore computing in an ensemble of different accelerator fabrics, their potential usage

in the emerging world of heterogeneous computing is highlighted. Important speedup

gains can be derived from switching between different hardware as computational plat-

forms depending on the configuration of the simulated network, where in some cases a

successful switch can result in more than doubling (2×) the execution speed of the re-

quested simulation. Furthermore, the designed framework presented in this dissertation

operates on a cloud computing platform which can act as a prime candidate for efficient

heterogeneous computing.
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1.5 Overview of the Doctoral Thesis

• In Chapter 1, the reader was introduced to the domain of computational neuro-

science. An overview of the appearance and evolution of manycore computing was

then provided. The contributions of this Doctoral thesis were summarized, both

in the field of neuroscience and high-performance computing.

• In Chapter 2, a review of the available relevant literature in the domain of computa-

tional neuroscience will be provided. The Chapter will commence with an analysis

of the landscape of human neuromodelling. It will then introduce pre-existing

research in computational neuroscience by examining significant modelling efforts

and the respective tools used. The Chapter will place an emphasis on the simu-

lation frameworks currently used by the neuroscientific community and highlights

their advantages and shortcomings.

• In Chapter 3, the development of a biologically complex neuromodelling simulator

will be presented. A brief biological background of the studied model will be given

before going into detail concerning its implementation on a research-grade many-

core single-chip processor. After disclosing the experimental processor’s assets and

configuration options, a detailed evaluation of the implementation’s performance

and efficiency will be provided.

• In Chapter 4, the evolution of the designed simulator through different generations

of manycore processors will be thoroughly presented. The Chapter will introduce

the different implementation options of a more flexible and scalable simulator on a

1st Generation Xeon Phi processor, followed by the simulator’s optimized version

on the processor. The Chapter will continue with the simulator’s porting on the

second Generation Xeon Phi processor and provide an analysis on a multinode

implementation. Through elaborate experimental evaluation, the Chapter will

highlight parameters that affect the simulator’s behaviour and scalability.

• In Chapter 5, an heterogeneous computational system for neuromodelling will be

studied. The Chapter will commence with an introduction to heterogeneous com-

puting and online cloud services. The Doctoral thesis will then present an online,

cloud-backed heterogeneous platform for high-performance neuromodelling simu-

lations, as well as analyze its design and different layers. A thorough performance

evaluation will highlight how heterogeneity can support the strengths and weak-

nesses of manycore processors in the domain of computational neuroscience.

• Finally, in Chapter 6, a summary of this doctoral thesis will be presented and

future directions will be given.



Chapter 2

Related Work

2.1 Human Brain Modelling

2.1.1 Overview

There is a wide range of phenomena occuring during neuronal activity. Scientific efforts

in unveiling the human brain functionality has lead to the utilization of mathematical

modelling methods for neuron representation. As neuroscientists continue to unveil

more details in neuronal electrochemical synthesis and functionality, their developed

mathematical models attempt to integrate such discoveries in their behaviour. As such,

multiple models with vastly different behaviours are constantly being developed and

shared with the scientific world via online libraries, such as the widely-used by the

neuroscientific community modelDB [65]. Models do not invalidate one another; rather,

each model focuses on displaying different aspects of neuron behaviour.

A significant factor that contributes to this differentiation between neuronal models is

their level of complexity and accuracy in depicting the functionality of an individual

neuron. There are different conceptual layers based on which the complex neuronal

structure can be studied. The deepest level of analysis can be found in molecular-

level models, in which the “building blocks” for the neuron model are the molecules

of each chemical substance that make up the neuron [66, 67]. On the opposite side

of the spectrum, models that are mostly concerned with replicating network dynamics

and inter-neuron communication can depict neurons, or clusters of, as single points in a

graph or network [68].

As such, different models are suitable for different use-cases. While simpler models

cannot offer the complete electrochemical picture of a neuron or synapse during a studied

phenomenon, their level of abstraction can simplify the study of network behaviour under

different circumstances. A suite of models that are mostly concerned with the timings

and propagation of signals within a neuronal network is the Integrate-and-Fire models,

14
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whereas models that aim at depicting the neuron’s electrochemical properties belong to

the Conductance-based category of models. Both categories have been given considerable

attention in the literature; however, due to their simplicity, Integrate-and-Fire models

have been experimented with to a larger degree.

2.1.2 Integrate-and-Fire Models

Models that primarily focus on network behaviour and spike generation are broadly cat-

egorized as Integrate-and-Fire (I&F) models. I&F models primarily focus in simulating

spike responses and exchanges between neurons in networks. They tend to treat neurons

as “points” in a network that communicate via their synapses, which may or may not

have complicated mechanisms for their operation.

I&F models are the simplest spiking neural network (SNN) models, primarily focusing

on receiving a spike input and determining the neuron’s response based on a voltage

threshold. They are widely used due to their simplicity and extensibility, resulting in a

large range of I&F variants in the literature (e.g. leaky I&F [69, 70] and exponential I&F

[71] models). This model category allows for customization of their functionality and

extensions to their behaviour, so that they can represent multiple phenomena studied

by researchers. As such, they are widely used by the neuroscientific community.

The idea of Integrate-and-Fire models can be attributed to Lapicque back in 1907 [72].

In 1936, Hill [73] combined the model with a second equation in order to describe adap-

tation, i.e. the process of coupling threshold and sub-threshold voltage in the neuronal

membrane. Fuortes and Mantegazzini introduced the concept of spike-triggered adapta-

tion via an adjustable threshold for the Integrate-and-Fire models in their experimental

work on neuronal refractoriness [74].

The Leaky Integrate-and-Fire model in its modern form is the combination of spike-

related adaptation mechanisms introduced by Treves in 1993 [75] and sub-threshold-

related formulas developed by Izhikevich in 2001 [76] and Brunel et al in 2003 [77]. The

model has then been used in a wide category of studies [78–80].

If the equation of the Leaky Integrate-and-Fire model is replaced by a quadratic non-

linear formula, known in the field of neuroscience as the canonical form of a neuron model

with a continuous gain function (Type I neuron model) [81], one arrives at the model

of Izhikevich [82]. The Izhikevich model bridges the gap between simpler I&F models

and more complicated, biophysically accurate ones. This model is computationally sim-

ple and, although it does not expose the electrochemical details of biological neurons,

Izhikevich neurons display biologically plausible input-output interactions. They feature

computational complexity significantly smaller than that of biologically-accurate models.

To put their differences in perspective, an Izhikevich neuron requires 13 floating-point

operations to simulate 1 ms of its operation, whereas the widely-used Hodgkin-Huxley
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neuron will need thousands of floating-point operations for the same amount of activity

[83].

If an exponential non-linear equation is attached to the Leaky Integrate-and-Fire model

in order to approximate the functionality of biologically-accurate models [84], the result-

ing model forms the Adaptive-Exponential Integrate-and-Fire model [85]. The Adaptive-

Exponential Integrate-and-Fire model, also called AdEx, is a spiking neuron model with

two variables, in the same fashion as the aforementioned Izhikevich model. The first

equation describes the dynamics of the membrane potential and includes the mechanics

for the membrane’s activation and exponential spiking. The membrane’s voltage levels

are coupled to a second equation which describes the adaptation of the model. Both

variables are reset upon spike triggering. The combination of adaptation and exponential

voltage dependence forms the name Adaptive-Exponential Integrate-and-Fire model.

The Adaptive-Exponential Integrate-and-Fire model is capable of describing a wide

range of observed neuronal firing patterns; for example it can be used to describe both

delayed and fast spiking, as well as adapting and bursting spiking. The AdEx model

builds on and combines features of previously studied integrate-and-fire models. Its

flexibility renders it an important tool in the field [86–88].

2.1.3 Conductance-based Models

Conductance-based models lie on the opposite side of the spectrum, using complicated

differential equations. They constitute models that aim to expose electrophysiological

qualities in the human brain, due to their emphasis on modelling the neuronal cellular

structure as an electronic circuit. They offer valuable insight into the electrochemical

properties of the neuron and the ability to study its ion channels. However, the high

modeling accuracy they offer comes at the cost of significant computational complexity,

often deeming them too expensive to use in daily experiments.

While there are lower-level models with increased complexity and biological detail,

conductance-based models are the simplest possible biophysical representation of an ex-

citable neuron, in which its ion channels are represented by conductances and its bilayer

membrane by a capacitor. Conductance-based models are based on an equivalent circuit

representation of a cell membrane as first put forth by Hodgkin and Huxley in 1952 [89].

They utilized their model to explain the ionic mechanisms underlying the initiation and

propagation of voltage spikes in the squid giant axon, the very large axon that controls

part of the water jet propulsion system in squid. Their work still constitutes the most

prominent example of the conductance-based models.

The Hodgkin–Huxley model can be thought of as a differential equation with four state

variables that change with respect to time. The system is difficult to study because it

is a nonlinear system and cannot be solved analytically. However, there are numeric
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methods available to analyze the system. Euler-based solutions for the complicated

system of ordinary-differential equations of the Hodgkin-Huxley model are used [90].

Abstractions and additions to the widely-used Hodgkin-Huxley model exist. The FitzHugh

and Nagumo model [91] is a two-dimensional simplification of the Hodgkin-Huxley

model, where the state variables are reduced to the voltage levels of the neuronal mem-

brane and a recovery variable. The motivation for the FitzHugh-Nagumo model was to

conceptually separate the essential properties of neuron excitation and spike propaga-

tion from the detailed neuronal electrochemical functionality. This approach simplifies

the study of the aforementioned phenomena but limits which aspects of the neuronal

functionality can be modeled [92].

Another important abstraction of the Hodgkin-Huxley model is the Morris-Lecar model

[93]. The Morris-Lecar model is also a two-dimensional reduction of the Hodgkin-Huxley

model that utilizes two non-inactivating voltage-sensitive conductances. The Morris-

Lecar equations are particularly useful for modelling fast-spiking neurons. Morris-Lecar-

type models may prove useful for studying scaling phenomena involving cell growth.

Such problems on real systems involve more biological channels than those featured in

two-dimensional models but the Morris-Lecar model may give some insight into the

phenomena that allows for maintaining functionality stability while a real organism

grows. A thorough classification of available neuron models and related simulators has

been made by Brette et al. [94].

2.2 High Performance Computing in Neuromodelling

2.2.1 In-Silico Experiments

The 21st century has marked the domain of neuroscience by introducing a significant rise

in in silico experimentation, i.e. computer-aided simulations and neuromodelling. The

transition to utilizing computational resources in order to unveil mysteries surrounding

the human brain functions lead to tremendous investment efforts in the field of compu-

tational neuroscience globally [31, 95, 96]. In silico experimentation attracts attention

from both the academic and industrial world.

In the literature, there is a large amount of noteworthy experiments, both in mag-

nitude and biological significance, which were conducted via computer simulation. A

significant amount of early experimentation focused on the fine details in the biology

of a sole neuron, using primarily conductance-based models. Seung et al. [97] utilized

a biophysically-accurate representation of 15 neurons in order to study the persistent

effects of transient events on the oculomotor system. Their study was based on the

earlier work of Lee et al [98]. Otsuka et al. [99] used a conductance-based model in

order to study the firing rate of the subthalamic nucleus, a part of the brain’s basal
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ganglia system of yet unexplored functionality. More recently, Tian et al. [100] devel-

oped a biomechanical model stemming from the Hodgkin-Huxley model that attempts

to integrate mechanical detail and the impact of stretching forces into the existing elec-

trochemical model. In a similar fashion to other past and recent works, their study

focuses on verification and functionality of the model, rather than its behaviour when

scaling to larger neuronal networks.

Simulations of larger network behaviour followed the study of single-neuron modelling,

due to advances both in computer science and neuroscientific understanding. Simpler

integrate-and-fire models have been the model of choice for such cases. One of the largest

experiments to date, carried out on a cutting-edge supercomputer, managed to study

a network which matched a small animal’s brain in size and connection density [101].

Hines et al. have also used a Blue Gene supercomputer to simulate up to 4 millions of

simple spiking neurons [102]. Fidjeland et al. [103] have successfully deployed densely

connected neuronal networks on GPUs, reaching network sizes of 40, 000 Izhikevich

neurons. Bhuiyan et al. [104] use various platforms to scale up to millions of Izhikevich

neurons, coupled with 50 Hodgkin-Huxley neurons in a 2-level neuronal structure; it

should be noted, however, that their work aims at utilizing the neuronal networks for

character recognition rather than studying their biophysiological behaviour. Choi et al.

[105] have developed 1,000 silicon spiking neurons on a Xilinx Field Programmable Gate

Array (FPGA), based on the Izhikevich model.

Large-scale conductance-based modelling is scarcer in the literature. A significant effort

was undertaken by partners of the Human Brain Project, utilizing GPUs and FPGAs

for Hodgkin-Huxley modeling of the human cerebellum [106]. Their implementation

scales up to 400,000 neurons. Their experiments, however, impose a significantly simple

network interconnectivity pattern, partly due to the difficulty of representing a dense,

biophysically-accurate neuronal network.

2.2.2 Neuronal Simulation Frameworks

The domain of computational neuroscience fields various simulation environments, tuned

towards tackling different experimental workloads.

Traditionally in the domain of neuroscience, the most common methods for simulating

neuron models and studying their behaviour were through widely-known mathematical

software suites such as MATLAB [107]. While these tools have been used extensively

to advance the field of computational neuroscience, simulating neuronal networks of

realistic sizes in high detail remains a challenge. Traditional execution of accurate models

on CPUs with generic mathematical computing tools, such as MATLAB, could take a

prohibitive amount of time to complete.
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A dedicated reference tool in this domain is NEURON [108], a flexible neural simulator

with a rich library of neuron models [109] from Yale university. Since its creation,

NEURON has supported neuroscientific research and continues being widely used today

[110]. The greatest asset that NEURON can offer is the diversity in its model library.

Due to its long history and its widespread usage, the tool has reached a level in maturity

that few other neuromodelling suites can match. As such, it attracts the interest of a

large part of the neuroscientific community, which continues to explore and modify the

tool to suit each laboratory’s unique experimentation needs. However, since its original

implementation in 1997, the software has undergone a lot of changes in order to adapt

to the modern age of high performance computing. It was not inherently designed to

expose massive parallelism required by demanding neuronal networks, although such

efforts exist in the literature [111].

Another staple in the field is the GENESIS software [112]. Development of GENESIS

software was initiated in Caltech and then spread to various labs of U.S. and Europe.

GENESIS (which stands for General Neural Simulation System) is a simulation envi-

ronment for constructing realistic models of neurobiological systems at many levels of

scale, from sub-neuronal processes to entire neuronal networks and systems. The tool

focuses on the anatomical and physical detail of neuronal systems [113]. GENESIS is

intended to quantify the physical framework of the nervous system in a way that allows

for easy understanding of the physical structure of the nerves in question. As such, it

has a very specific purpose, which it serves in a satisfactory manner.

NEST [114] is a lighter tool that mostly aims at simulating large networks of simpler

neuron models. NEST allows MPI, multithreading and hybrid usage thereof as paral-

lelization methods, thus providing another interesting alternative for high-performance

neuron modeling that has been tested on high-end supercomputers [115]. NEST also

focuses on recreating an environment that the experimenter is familiar with, by intro-

ducing devices which represent the various instruments (for measuring and stimulation)

found in an experiment. The framework, however, is not the tool of choice for more

complicated, biophysically-meaningful experimentations.

Another framework that enjoys significant usage is Brian [116]. It is written in Python,

a programming language that is familiar to the neuroscientific community. It utilizes

vectorisation techniques for accelerating the simulator, however Python is an interpreted

language and as such, its speed is only “good enough”; Brian’s developers aim at pro-

viding a tool that performs sufficiently and is easy to deploy, rather than offering a true

high-performance computing tool. Its lack of intermediate scripting tool marks it as an

attractive choice to the community, who can thusly avoid learning and using the specific

scripting requirements of NEURON, GENESIS and NEST.

CARLsim [117], on the other hand, is a GPU-oriented library for spiking neural network

simulation and model-testing. CARLsim, currently in its 4.0 release, allows execution

of networks of Izhikevich spiking neurons with realistic synaptic dynamics. The tool
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focuses on GPU implementations, although it supports running in any x86-architecture.

It allows for rapid development of experimentation environments, with an emphasis on

synaptic dynamics. However, the library limits itself to simple models of spiking neurons,

as its intended usage was in the field of robotics [118].

A different approach is explored by the European research project FACETS [119],

whereby instead of using software-based numerical methods, analog neuromorphic hard-

ware directly simulates complex neuron models. The tool describes an accelerated hard-

ware neuron capable of emulating the adaptive exponential integrate-and-fire neuron

model. Furthermore, an FPGA toolbox for simulating spiking neural networks in hard-

ware has been developed by Qingxiang et al. [120]. These approaches, although novel

and highly interesting, face inherent limitations and are difficult to be adopted by the

broader neuroscientific community.

The aforementioned tools have been used extensively to advance the field of compu-

tational neuroscience. However, simulating neuronal networks of realistic sizes in high

detail remains a challenge; high-performance computing has been recognized as a viable

means for coping with this obstacle [121–125]. Neuronal complexity and computational

demands call for high processing power with high inherent parallelism. Thus, they are

very much in-line with the multi- and many-core paradigm observed in modern com-

puting infrastructure [126]. The processing power of such systems has already been

harnessed in significant brain modeling projects [127].

Finally, it should be noted that lately, due to large projects such as the Human Brain

Project [31], a need for software that takes care of not only the calculation, but also

the visualization of important details in neuron functionality and networking has arisen.

VIOLA [128] is designed for initial visual inspection of massively parallel data generated

primarily by simulations of spatially organized spiking neuronal networks. Its 2D and

3D visualizations support the exploration of neuronal activity across space and time.

Such a tool can be used alongside a high-performance, biophysically-detailed simulator

for powerful analysis of brain activity.

2.2.3 Model and Network Description Tools

There is a necessity in developing a widely-accepted application programming interface

(API) that unites how different laboratories across the globe develop a mathematical

model for brain simulation and how it inter-operates with different models of other

parts of the brain. The neuronal simulation frameworks described in Section 2.2.2 each

have a different set of expected expressions for describing an experimental setup. As

such, cooperation between different scientific groups can prove to be difficult without a

consensus on a programming paradigm.
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Since 2008 [8], an important attempt at providing a unified interface for simulation

frameworks in computational neuroscience has been undertaken. PyNN is a Python

Interface for Neuronal Networking that attempts to loosely describe such an aforemen-

tioned API. It is a simulator-independent language for building neuronal network models.

A neuroscientist can write the code for a model using the PyNN API and the Python

programming language. He can then run the model without modification on any simula-

tor that PyNN supports. NEURON, NEST and Brian, which were mentioned in Section

2.2.2, support PyNN’s API, which is a major attraction for the interface since these

simulators drive a large portion of neuroscientific research today.

The PyNN API aims to support modelling at a high-level of abstraction (for example,

by offering the ability to describe neuronal networks as populations of neurons in layers,

columns and the connections between them) while still allowing access to the details of

even individual neurons and their synaptic electrochemistry, if required by the scientist.

To this end, PyNN provides a library of standard neuron, synapse and synaptic plasticity

models, which have been verified to work the same on the different supported simulators.

The library continues to grow as more simulators provide support for the interface and

more standard models are defined and used by the community.

In this way, PyNN works as a “middleman” between the neuroscientist and the developer

of a framework. It sets a standard API the developer must adhere to and guarantees

to the neuroscientist that basic principles she is familiar with, will be supported by

the desired simulator (or alerts the scientist that a certain feature is missing from the

simulator). It also allows for the developer to work independently from the scientific

community and continuously implement features that are valuable to the community,

leading to a steady and controlled growth in simulator maturity. These aspects mark

PyNN as a very encouraging undertaking in the interdisciplinary field of computational

neuroscience.

It should be noted that PyNN’s design also introduces some limitations. By design,

PyNN enforces the use of standard models, chosen from an expanding library. As such,

research that uses custom, or heavily modified models, may not benefit from the utiliza-

tion of PyNN. PyNN provides a low-level API with increased flexibility that allows for

the description of any custom model. However, in such a case, a language designed for

model description, such as NeuroML [129, 130], may be a better fit for the researcher’s

needs.

The NeuroML project focuses on the development of a description tool based on an

extensible markup language (XML). It provides a common data format for defining and

exchanging descriptions of neuronal cell and network models. The project uses XML

schemas to define the model specifications. The biggest asset of NeuroML is that it

focuses on models which are based on the biophysical and anatomical properties of real

neurons. The described models can include details of neuronal morphologies, anatomical
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connectivity and membrane conductances and their role in action potential generation;

as such, NeuroML is a very good framework for describing a conductance-based model in

a standard, well-defined manner. Other XML-based approaches exist in the field [131].

Today, these model-describing tools are widely in a variety of neuroscientific research

topics and are continuously expanded to meet the ever-increasing needs of the community

[132–136]. They can prove to be invaluable tools in achieving efficient cooperation

between computer engineers and neuroscientists; as such, their usage has been included

in this dissertation’s work.

2.3 Summary

The field of computational neuroscience is relatively young and as such, there is much

activity in order to discern the efficiency of each modelling approach towards the discov-

ery of the human brain. There is a number of neuromodelling approaches, each focusing

on different levels of detail. This chapter presented the most prominent and widely-used

models. We note that an increased amount of research has been focused on models

with less biological detail, treating neurons as simple nodes in a network and with re-

duced mathematical complexity for their functionality. Conductance-based models, such

as those inspired by the work of Hodgkin and Huxley [89], provide more information

concerning neuronal electrochemical activity and are the focus of this Doctoral thesis.

Their computational complexity serves as an important benchmark for high-performance

computational platforms.

While there is an increasing amount of modelling approaches to exposing neuronal

anatomy, an attempt at presenting these models in a well-defined manner is present with

widely-accepted modelling languages. The efforts presented in this chapter are a Python-

based package named PyNN and an entity-description language named NeuroML. They

offer a much-needed API that unifies how a neuronal model and its components are

represented, simplifying their porting on computational platforms.

There is a significant amount of frameworks aimed at bringing efficient computing tools

to the world of neuroscience. Some of the most widely-used, well-known and more tra-

ditional frameworks, such as Yale’s NEURON, aim at including most known modelling

efforts and accommodating to emerging modelling needs from new neuroscientific dis-

coveries. Other, more modern approaches, such as NEST, focus on performance and

scalability with computational resources. Table 2.1 offers a synopsis of the most impor-

tant undertakings presented in this chapter, as well as present the scale and performance

achieved in this Doctoral thesis. It relays an overview of the landscape to the reader,

although an extensive survey is outside the scope of this engineering-focused Doctoral

thesis.
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Table 2.1: Prior Art

Reference Platform

Model
Com-
plex-
ity

Problem
Size

(nrns×syn.)

Solution
Cost

(time×nodes)

Perf.
Ratio
(size /
cost)

Kunkel, 2014
[115]

Supercomputer
K

Low 2.1e22 8.1e10 2.6e11

Hines, 2011 [102]
Supercomputer
Intrepid BG/P

Low 1.0e18 1.5e6 6.8e11

Sripad, 2018 [137] Multi-FPGA Mid 4.0e7 2.0e-3 2.0e10

Beyeler, 2015
[117]

GPU Mid 2.7e13 1.5e1 1.8e12

Hoang, 2013[138]
Multinode

GPU
Mid 1.0e14 8.0e0 1.3e13

Ananthanarayanan,
2009 [101]

Supercomputer
Dawn BG/P

Mid 8.1e21 1.1e7 7.4e14

Florimbi, 2016
[106]

GPU High 1.3e12 4.8e3 2.8e8

Nguyen, 2015
[139]

GPU High 8.0e12 4.0e2 2.0e10

Chatzikonstantis,
2017 [140]

Xeon CPU
and Phi KNC

High 1.0e14 1.4e3 6.9e10

Chatzikonstantis,
2018 [141]

Multinode Phi
KNL

High 4.0e15 4.8e3 8.3e11

Table detailing the efforts in the literature to simulate neuronal models of varying
complexity in high-performance computing platforms. The Table attempts to extract
information from the cited studies concerning each work’s best-effort network simulation
and respective simulation speed. Platform indicates the computational fabric used in
the work. Model complexity is categorized as either Low for Integrate-and-Fire models,
Mid for Izhikevich-based models and High for conductance-based models. In column
problem size, the amount of neurons is multiplied by the amount of totals synapses
present in the largest network simulation reported by the literature. Metric “solution
cost” represents the resources used for solving the simulation problem by multiplying
the amount of execution time (measured in seconds) required for simulating a second
of brain activity by the amount of computational nodes employed in the simulation,
either CPU, GPU or FPGA nodes. For ease of comparison, a ratio between these two
metrics, named performance ratio, is supplied where problem size is divided by solution

cost. The metrics are reported as pure numbers in scientific notation format.



Chapter 3

Neuromodelling on a Manycore

Processor

3.1 Introduction

Chapter 2 has established the difficulty of challenges with modelling complex, computa-

tionally demanding neuronal models. As mentioned, most of the modelling effort in the

community has focused primarily on simpler neurocomputing models which are easier to

both implement and scale. Even existing neurocomputing software tools that offer the

capability to perform biophysically-accurate simulations face significant obstacles with

computational performance, workload scaling and ease of usage. As such, the existing

literature has not defined a clear, go-to solution to the important challenge of neuronal

simulations, particularly for complex networks of biological detail.

This dissertation will present the full development of such a simulator, from the perspec-

tive of a computer engineer and will address how the advent of manycore computing, as

well as the evolution in the computing capabilities of available accelerating processors

can help cross boundaries that have limited previous efforts in this field. It aims at

presenting the reader with a full disclosure of years of development.

The presented simulator began with focusing on a particular region of the human brain,

called the Inferior Olivary Nucleus. The first manycore platform used for its implemen-

tation was Intel’s 48-core research manycore chip, named Single-Chip Cloud Computer.

Both the modelled region, the implementation and the platform will be presented in

this chapter, as well as the results of the initial effort. This chapter will serve as an

establishing point for the evolution of the modelling effort, along with the evolution of

the manycore processors, as detailed in Chapter 2.

24
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(a) Sagittal section through
right cerebellar hemisphere.

(b) Microcircuitry of the cerebellum.

Figure 3.1: Anatomical and circuit-level representations of the brain regions studied.

3.1.1 The Human Inferior Olivary Nucleus

The human inferior olivary nucleus (ION) is the region of interest for the studied model.

It constitutes a sub-part of the human brain’s cerebellum.

More specifically, the inferior olivary nucleus is a structure found in the medulla oblon-

gata underneath the superior olivary nucleus [142]. In vertebrates, the ION is known

to coordinate signals from the spinal cord to the cerebellum to regulate motor coordi-

nation and learning. These connections have been shown to be tightly associated, as

degeneration of either the cerebellum or the ION results in degeneration of the other

[143].

Patient studies revealed the connection between the inferior olivary nucleus ION and

the cerebellum. Lesions in the ION impair the ability to learn higher level motility,

such as performing a jumpshot in basketball [144]. Further investigation of the neu-

roanatomy confirmed the intimate connection between the ION and the cerebellum in

motor coordination and learning [145, 146].

The ION sends signals to the cerebellum based on information sent from the spino-

olivary tract. Regulation following this point is highly debated. The original hypothesis

as to how the ION influenced the cerebellum involved Long Term Depression (LTD). In

this scenario, granule cells from the cerebellum send GABA to inhibit ION activation.

However, this hypothesis was brought in to question when multiple laboratories inhibited

LTD and motor learning was intact.

More recent studies [147] suggest that encoding the timing of sensory input is the key

component of these connections. The ION sends signals through different cell clusters.

These signals vary in location and in frequency bundles and appear inconsistent. How-

ever, the temporal pattern of these signals is consistent. Therefore, ongoing research on
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motor learning is investigating how these timed signals develop and their role in motor

learning.

The inferior olivary nucleus expresses key enzymes involved in steroidogenesis required

for neuroprotection and maintenance. The most crucial of these enzymes is aromatase,

which is the enzyme that is necessary for the conversion of testosterone into estradiol.

Without aromatase, the ION is unable to make estradiol, and cannot recover from injury

properly.

Because the inferior olivary nucleus is tightly associated with the cerebellum, lesions

in either the IO or the cerebellum results in degeneration in the other. There is little

known about damage to the inferior olivary nucleus independent from the cerebellum.

To date, the only known disorder which specifically targets the ION is an extremely rare

form of degeneration called hypertrophic olivary degeneration (HOD).

Although the ION is not often investigated on its own, degeneration in the ION has been

identified in disorders that are typically associated with the cerebellum. These disorders

include supranuclear palsy, Leigh disease and SCA6, and there are several more. These

disorders all involve motor coordination [148–150].

3.1.2 InfOli Simulator

The simulator that will be presented here aims at modelling the human inferior olivary

nucleus via an extended version of the Hodgkin-Huxley conductance-based model; as

such, it is named InfOli simulator. It is a product of a joint of collaborative effort

between the National Technical University of Athens (NTUA) and the Erasmus Medical

Centre of Rotterdam (EMC Rotterdam).

The importance of the simulator lies in the computational complexity of the model.

The conductance-based model uses Ordinary Differential Equations (ODE) in order

to simulate the behaviour of the ionic channels in each neuron. The ODE-system that

describes the model is solved with the forward Euler method [151]. Due to the sensitivity

of the model and the nature of its mathematical modelling, the simulator works in

transient mode. In each step, the full suite of parameters for each neuron in the network

is calculated accurately, without the possibility to “skip” any timestep even in the case

of absence of activity in the network (either due to a lack of external stimuli or any

internal disturbances). Put simply, even the small sub-threshold oscillations in the

voltage levels of the neuron membrane layers are necessary to be calculated accurately

in every timestep.

These aspects of the model in question cause the simulator to be demanding in both com-

putational power and memory. Furthermore, these traits offer a biophysically-accurate,

rich-in-detail simulator which can serve as a suitable case study for the capacities of the
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high-performance manycore processors in the field of computational neuroscience and

complex mathematical modelling in general.

As a result, the study of performance vs. quality-cost trade-off is particularly interesting.

In particular, the manycore platform that was first used and will be presented in this

chapter, the Single Chip Cloud computer, is a platform with various power-management

and application-mapping capabilities. Among others, the target chip features Dynamic

Voltage and Frequency Scaling (DVFS) and on-die message passing. The SCC experi-

mental processor [152] is a 48-core “concept vehicle” created by Intel Labs as a platform

for many-core software research. The InfOli simulator essentially is a self-contained

and highly realistic computational model of the inferior olivary nucleus. As such, this

chapter will present a feasibility study of the IO simulator on a research-grade manycore

chip, incorporating all elements of a full system realization.

3.2 Target Architecture

In this thesis, we target manycore systems as the computational fabric of choice, specifi-

cally for their scalability and coding paradigms. The outline of the different generations

of manycore processors has been relayed in Chapter 1, however a more detailed presen-

tation of the first manycore processor used for the InfOli simulator, the SCC, will be

given here.

3.2.1 The Single Chip Cloud Computer

In 2005, Intel launched single-chip manycore processors, initially designed towards re-

search applications and manycore coding exploration. Intel developed the chip architec-

ture based on cloud data centers, the cores being separated across the chip but able to

directly communicate with each other.

The platform that was first used for designing the InfOli simulator is the Intel SCC [152].

It is a homogeneous, many-core chip consisting of 48 cores, organized in pairs called tiles

that are interconnected through a mesh network organized in a 4×6 2D-fashion. Each

individual core is of limited computing capability, based on IA-32 P54C cores; the chip

focuses instead on the large amount of available hardware. An overview of the chip can

be seen in Figure 3.2a. Each tile constitutes a separate frequency island. Pairs of tiles

create an individual voltage island. Each core of the SCC has its own private memory

space and also access to a low-level Message-Passing Buffer (MPB) that is used for the

exchange of messages between SCC cores. In each tile, the two P54C cores share the

16 KB (8 per core) MPB which acts as a router. The MPB allows SCC cores to avoid

sending information back to the main memory and re-routing it to other cores.
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(b) Illustration of the IO simulator runtime.

Figure 3.2: High level view of the target platform and the target application that are
discussed in this Chapter.

Each core in the SCC chip is booted with a custom Linux distribution. The chip is in-

stalled on a board that communicates with a Management-Console Personal Computer

(MCPC) through Ethernet (for power monitoring) and PCIe (for disk access) connec-

tions. The /shared directory is common between the MCPC and each core of the SCC.

That way, exchange of files and executables is made possible between the MCPC and

SCC cores. Source code is written and cross-compiled on the MCPC and executed on

the SCC. A special library called RCCE [153] is available on the MCPC, providing com-

mands for message passing and dynamic voltage and frequency scaling. A set of software

utilities on the MCPC allows dispatching of tasks across SCC cores and monitoring of

performance metrics of the chip (e.g. measurement of the chip’s power consumption

etc).

The SCC contains 1.3 billion 45nm transistors that can amplify signals or act as a switch

and turn core pairs on and off. These transistors use anywhere from 25 to 125 watts of

power depending on the processing demand. Each quarter of the chip is assigned a Dual

Inline Memory Module (DIMM) through a Memory Controller (MC). The four DDR3

memory controllers on each chip are connected to the 2D-mesh as well. These controllers

are capable of addressing 64 GB of random-access memory. The DDR3 memory is used

to help each tile communicate with the others. These controllers also work with the

transistors to control when certain tiles are turned on and off to save power when not

in use.

The SCC has two modes that it can operate under, processor mode and mesh mode.

In processor mode, cores are on and executing code from the system memory. Loading

memory and configuring the processor for bootstrapping (sustaining after the initial

load) is done by software running on the MCPC. In mesh mode, cores are turned off.

Only the routers, transistors and RAM controllers are on and exchanging large packets

of data. Additionally there is no memory map.
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Figure 3.3: Illustration of IO neuron cell connectivity: the central cell is connected
to the highlighted cells around it.

When proper coding is implemented, the aforementioned assets constitute a functional

processor that was capable at the time of its manufacturing and energy efficient. Its

coding paradigm and design that closely follows that of a network of cloud computers.

3.3 Implementation

The simulator is a C-based repository that aims at providing extensive support for

various experimental parameters. It uses particular libraries, exclusive to the SCC, like

the RCCE libraries mentioned in this Chapter’s 3.2.1 that aim at passing data between

the fabric’s cores. We shall examine the application in question, namely the inferior

olive neuron-network simulator.

3.3.1 Algorithm

For a given cluster of ION neurons, the simulator calculates the membrane potential

of each cell as the latter is affected by a mix of external and internal input stimuli

(currents). The simulator is transient with a constant step ∆t = 50µs. The data flow

during simulation steps t0, t1, t2, ... can be seen in Figure 3.2b.

The simulated cell population can be visualized as a two-dimensional mesh, similar to the

ones presented in Figure 3.3. A very important element is the interconnectivity between

the cells. In order to realistically calculate the potential of each cell, the simulator needs

to consider the voltage levels of neighboring cells. For the experiments presented in this

paper, we assume an 8-way cell interconnectivity (Figure 3.3a). Our implementation is

parameterized to support more complicated schemes (e.g. Figure 3.3b) in order to more

closely model different loci in the neural ensemble. In order to run a simulation, the

user needs to specify the size of the cell network, the duration of the simulated brain
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Figure 3.4: Profiling of 100 iterations of the IO neuron cell model to extract timing
information for each compartment

activity, the external input currents to each cell as well as the desired interconnectivity

scheme. The simulator solves the model for each of the simulated neurons. This model

is multi-compartmental and splits each cell into three segments:

1. The dendrite compartment is responsible for exchanging information with other

connected IO cells and also receiving the input current. At the beginning of each

simulation step, voltage levels of neighboring cells are recorded to be used in further

computations.

2. After information from the environment has been received, the soma compartment

performs the most computationally intensive part of the neuron.

3. The axon component serves as the output stage of the neuron. Its so-called action

potential is – in fact – the voltage output recorded for the entire cell.

The entire simulator is a system with memory and parameters of each compartment are

always reused in the next iteration of the simulation. We start from a single-threaded

implementation that includes these three cell compartments for an arbitrary cell network

size, brain activity duration and connectivity scheme. Before exploring mapping options

of the simulator on the SCC, we perform a profiling experiment to derive the workload

distribution between the three compartments. The results are shown in Figure 3.4

for 100 executions of a 6-second simulation for a single IO cell. The UNIX function

getttimeofday has been used to record execution times. Immediately, we verify that

the soma compartment is the most computationally intensive part of the simulator’s

runtime. The axon compartment exhibits the shortest processing times. The dendrite

component lies in the middle. However, given that it is highly related to inter-neuron

communication, we can expect that it will occupy a large fraction of the overall execution

time in case we employ a more complicated interconnectivity scheme (as in the case of

Figure 3.3b) requiring communication with more than 8 neighboring neural cells.
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Figure 3.6: Initial benchmarking with the SCC trained at Vdd = 1.2 V with a 533
MHz clock. The baseline represents a single-threaded version of the simulator, running

on a single SCC core with the above voltage and frequency.

If we imagine a plane of ION neurons, the most intuitive mapping option of the respective

model would be to assign a subset of the cell population to each of the cores of a many-

core system. This effectively represents data partitioning of the simulation and it will be

the first mapping explored in this paper. That way, we submit a cell network size that

is a multiple of 48 to the SCC chip, in order to maintain a homogeneous distribution of

workloads across the SCC cores. This mapping option is illustrated in Figure 3.5a.

With respect to inter-cell communication, cells assigned to the same core communicate

through the private memory of the core. Cells assigned to different cores communicate

using the RCCE send and RCCE recv commands [153] of the SCC for inter-core commu-

nication through the MPB.

By inspecting the profiling information of Figure 3.4, we can approximate the execution-

time ratios among the three neuron compartments. Based on this information, it is

further interesting to explore the splitting of the simulation with respect to neuron com-

partments. Assigning the simulation of each compartment to a different core effectively
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Figure 3.7: Two power management schemes, tailored to the data and combined task
and data partitioning mapping schemes

constitutes task partitioning. With a total of 48 available cores, we can additionally

perform data partitioning of the simulation, thus implementing combined task and data

partitioning of the IO neuron simulator, a concept that is illustrated in Figure 3.5b.

More specifically, we assign each compartment to a single core. Thus, an entire IO

neuron requires a triplet of SCC cores. That way, each core will take up the simulation

of a single compartment of N ÷ 16 cells, where N is the size of the cell network that is

simulated (preferably a multiple of 16, to avoid workload imbalance across SCC cores).

In Figure 3.6, we can see the execution times for the data- and combined task- and data-

partitioning schemes. For both small and larger cell populations the data-partitioning

mapping is the faster option. We achieve a constant speedup of about an order of mag-

nitude compared to the single-threaded execution (Baseline). The combined data- and

task-partitioning mapping exhibits a somewhat lower speedup in comparison, which was

expected due to the increased inter-core traffic required for intra-cell, inter-compartment

communication. However, this combined partitioning enables more efficient power-

management strategies with significant energy savings. Finally, it is important that

both proposed mappings have been verified against the baseline and show no accuracy

degradation.

3.3.2 Platform Considerations

The Single-chip Cloud Computer (SCC) provides interesting capabilities in regulating

its voltage and frequency levels of operation in real time.

As transient neuron simulations contain an increasing number of cells, their demands

in terms of computational resources are also increasing over time. This leads to a

subsequent increase in the energy budget required to complete such simulations. This
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is a known problem in existing supercomputing ensembles used for large-scale brain-

simulation (and other) applications [154–156]. In order to make the IO-simulator map-

ping as efficient as possible on the SCC, we can utilize power-management strategies for

the data-only- (Figure 3.5a) and the combined task- and data-partitioning case (Figure

3.5b).

Based on the data-partitioning option as outlined in Figure 3.5a, a power-management

strategy should be applied that is global across the SCC chip. The reason is that

there is no difference between cores on the basis of executed workload. As the profiling

information of the IO-neuron simulator has revealed (Figure 3.4), the dendrite and

soma compartments each require roughly twice the execution time taken up by the

axon compartment. The dendrite component is a bit faster in comparison to the soma,

however given a more complicated interconnectivity scheme, its computational overhead

is bound to increase.

If we were to be conservative with the clock frequency of each core, an interesting

opportunity would arise: Given the Dynamic-Frequency-Scaling (DFS) capabilities of

the SCC (at tile granularity), we can manipulate the frequency of the cores depending

on the compartment that they are simulating in each case. We can alternate between

the 533 MHz and 800 MHz clock frequencies, by properly setting each tile frequency

divider. The Finite-State Machine (FSM) of Figure 3.7a is illustrating this concept.

Since both frequencies need to be supported at runtime, the voltage supply is set at the

minimum allowed value of 1.1 V. We avoid voltage manipulation at runtime, since the

SCC voltage regulators are less responsive than the frequency dividers [157].

3.4 Evaluation

3.4.1 Experimental Setup

In order to evaluate this version of the simulator on the experimental manycore proces-

sor SCC, a set of experiments has been conducted. A variety of different voltage and

frequency management scenarios were tested. Each scenario is evaluated for increasing

network sizes, and consumed energy and total execution time are measured.

We test alternating frequencies of CPU operation according to the FSM of Figure 3.7a.

We also test two other power-management schemes for this mapping option. The first in-

volves a constantly high clock frequency (800 MHz) along with the lowest user-selectable

voltage (1.1 V). The other scheme involves a constantly low frequency (533 MHz) with

the associated Vdd setting (0.8 V). Simulation accuracy remains unaffected by the various

power-management strategies applied.

These voltage and frequency scenarios are tested in two different mapping schemes.

As mentioned in Section 3.3, the three different compartments of neurons, soma, axon
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Figure 3.8: Performance vs. quality cost assessment for different power management
schemes of the strictly data partitioning mapping, for various neuron network sizes

and dendrite, can either be mapped indiscriminately on the SCC cores, or they can be

divided in groups of cores, according to their processing needs. We test both options by

evaluating mapping of strictly data partitioning, as well as a mapping strategy where

both data and task partitioning is utilized.

For the measurements, and without loss of generality, simulator interim output messages

are deactivated, which reduces simulation time significantly. Thus, the simulator reports

only on its starting and ending network state (at simulation termination).

3.4.2 Results

In Figures 3.8a and 3.8b we present the performance and energy budget of each power-

management strategy for various neuron-network sizes of the data-partitioning case. It

turns out that a constant, high frequency is a preferable choice, especially as the neuron

population increases. DFS is not a good solution since it consumes the most energy

with a very mediocre acceleration, in comparison to the low-frequency case. This is to be
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Figure 3.9: Performance vs. quality cost evaluation for different power management
schemes of the task and data partitioning mapping option, for various cell network sizes

expected, given the overhead of signaling the frequency divider for every transition of the

FSM of Figure 3.7a. In case the voltage regulator could be of the same responsiveness as

the frequency divider, we could witness higher energy benefits, assuming that Vdd could

follow clock-frequency alterations.

In the case of combined task and data partitioning (depicted in Figure 3.5b), we can have

different power-management strategies per core since the cores are executing different

tasks. We isolate tasks that simulate specific compartments and map them to separate

voltage islands of the chip [158]. Based on the profiling information collected previously,

voltage islands simulating somata or dendrites need to operate at twice the frequency of

voltage islands simulating axons. Dendrites are assigned to high-frequency execution due

to the potential for intensive inter-core communication, in case complex interconnectivity

schemes are simulated.

Hence, cores that need to run “fast” will be set at 800 MHz and “slow” cores will run

at 533 MHz. Frequency scaling needs to be performed only once before the simulation

begins. That way, we have the chance to (statically) “train” the SCC system to the
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appropriate voltages. “Fast” voltage islands will be configured at 1.1 V (minimum

voltage setting to support a 800 MHz clock) and “slow” voltage islands will run at 0.8 V

(minimum voltage that supports a 533 MHz clock). We refer to this power management

as Static Voltage and Frequency Scaling (SVFS), shown in Figure 3.7b.

We also test two extra power-management schemes: a static high-frequency (800 MHz

/ 1.1 V) and a static low-frequency (533 MHz / 0.8 V) option. The performance and

energy-budget evaluation is presented in Figures 3.9a and 3.9b, respectively. In terms of

acceleration the static, low-frequency option is less desirable. The SVFS and static high-

frequency options appear to perform similarly with larger neuron populations. However,

for a network of 8,000 neurons, SVFS saves 19.5% energy for a negligible 0.6% loss

in performance, in comparison to the static high-frequency setting (see annotation in

Figure 3.9b). Similar observations can be made for other network sizes and for the

comparison of the SVFS option with the low-frequency setting. In general, SVFS is

a very good power-management strategy for the combined task- and data-partitioning

mapping of the IO simulator. It yields significant energy savings which are important if

we consider the energy bills generated by large computing infrastructure when running

large brain-scale simulations, such as the IO simulator.

Given the different frequencies and voltages used by the SVFS setting, it is important to

average out the stressing of the cores of the SCC (i.e. avoid hot spots or heterogeneous

aging across the many-core chip). In regards to addressing this issue, effective solutions

have been already proposed in the literature [159].

The variety of design-time choices that can be made when mapping the IO simulator

on the SCC create a set of design points. Each point comes as a different combination

of task/data partitioning and represents a specific power-management strategy. Each

point can also be evaluated in terms of certain cost metrics, such as execution time or

consumed energy. This set of points creates a design space which can be treated in

a formal way in order to derive the subset of Pareto-optimal [160] design points. In

this formal treatment, the cell-network target size, the interconnectivity scheme and the

duration of simulated brain activity are left as independent variables. The reason is that

these three parameters have an adverse effect on the performance and quality cost of

any neuron-simulator implementation.

Figure 3.10 illustrates the Design-Space Exploration (DSE) steps that lead to optimal

mapping of the IO-neuron-simulator on the SCC. Initially, the target cell-network size,

the assumed cell interconnectivity and the duration of brain activity are defined. Then,

a set of n available design points is identified. Each design point Pi is evaluated in terms

of certain cost metrics xj (Pi), where j = 1, 2, ...,m. Examples of such include execution

time, average power or total energy consumption. The front of Pareto optimality is a

set V containing all the design points Pi that satisfy Equation 3.1, assuming n design

points and m cost metrics:
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Figure 3.10: DSE flow for optimal IO cell simulation
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Figure 3.11: DSE for two different neuron network sizes; mapping and power man-
agement details are given only for each point belonging to the Pareto front

xj (Pi) ≤ xj (Pk) ,

∀ k = 1, 2, ..., n and ∀ j = 1, 2, ...,m
(3.1)

The derivation of the Pareto front can be automated using an algorithm that calculates

minima of a set of vectors [161]. To accelerate exploration, the Pareto front can be

pruned even further if constraints are imposed on any of the cost metrics, as in the case

of real-time IO-neuron simulation (where any execution time exceeding the duration of

simulated activity is not allowed). Obviously, to perform the aforementioned method-

ology, knowledge of the performance of the various IO-simulator mapping options is

required. This can originate from a extensive benchmarking session at design time,

where possible mappings and power-management strategies are evaluated. Obviously,

the degree of detail achieved in this benchmarking session will affect the accuracy of

each derived Pareto front.

In order to substantiate the proposed DSE methodology, we identify the Pareto front

of optimal IO-simulator mappings for two different cell populations: 480 and 2,400

neurons. The DSE results are displayed in Figures 3.11a and 3.11b respectively. In both

cases, the simulated duration of brain activity is set to 6 seconds and 8-way neuron

interconnectivity is assumed. This means that two of the three inputs to the DSE

methodology are kept constant, for the sake of simplicity. From the DSE results, we

identify that mapping and power-management options that are Pareto-optimal for a
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Figure 3.12: Exploitation of the DSE results

certain size of neuron network, are not necessarily Pareto-optimal for other network

sizes. This is a very important observation, since we prove that the front of Pareto

optimality is changing based on the parameters of the IO simulation problem (neuron-

network size in this case).

3.5 Summary

In view of the results presented in this Chapter, we strongly motivate that for the

proposed simulator to optimally occupy the resources of the SCC platform, we need to

exploit the DSE results for the specific simulator. This exploitation can be generalized

to any neuron simulator and any many-core platform. The overall concept is illustrated

in Figure 3.12. For the case of the IO simulator and the SCC, the methodology employed

should be as follows: The user (i.e. a neuroscientist) needs to specify the target neuron

network size, interconnectivity and duration of the simulation. Based on the DSE results,

the developer (i.e. the parallel programmer of the platform) needs to adapt the provided

user model to a Pareto-optimal configuration for the target many-core system (i.e. adjust

the mapping and power-management options). Using this arrangement, any experiments

of the user are bound to occupy the target platform in a Pareto-optimal way. Given the

variations found in the Pareto space (e.g. around 50% variation in energy as illustrated

in Figure 3.11b for the SCC–IO-simulator combination), we believe that exploitation

of a thorough DSE campaign can greatly improve the energy efficiency [10] of larger

systems running biologically accurate brain simulations [11].

We have presented a thorough design-space exploration for the mapping of a biologi-

cally accurate neuron simulator on an industrial grade many-core platform. The sim-

ulator of our choice is based on a transient model of the inferior-olive neurons which

are of major importance for human sensorimotor control. The target platform is the
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Single-Chip Cloud Computer, developed by Intel Labs. We explored different mapping

options, including data partitioning and combined task and data partitioning. Also,

we exploited the power-management options of the chip, implementing both Dynamic

Frequency Scaling and Static Voltage and Frequency Scaling. Combinations of map-

ping and power-management options create a design space, which is formally treated

in order to derive Pareto-optimal executions of the simulator on the target platform.

The achieved energy savings, along with the sensitivity of the Pareto space in problem

parameters, motivate a close collaboration between the user (neuroscientist) and the

developer (platform programmer) of this neuron-activity model. Given the importance

of energy efficiency for many-core systems, this collaboration paradigm is strongly moti-

vated in order to achieve optimal and cost-conscious utilization of computing resources

used for biologically accurate neuron modeling.

This initially presented version of the simulator will act as a starting point for the

development of a more generic and powerful tool developed for the purposes of the field

of computational neuroscience.



Chapter 4

Scaling the Neuromodelling

Application

4.1 Introduction

The SCC, as presented in Chapter 3, is a research-oriented manycore processor which

acted as a starting point for the generation of manycore processors. The transition to

the more industrial-focused generation of Xeon Phi processors was deemed beneficial;

the main drive behind the transition lies in the level of maturity behind the Xeon Phi

products, as compared to the SCC.

From a technological standpoint, the Xeon Phi processors offer superior computational

power for workloads that can be processed by multiple, parallel threads. As a commercial

and mature product, the Xeon Phi processors are significantly more powerful proces-

sors than the SCC. A design point that limits the SCC’s processing power is its older,

simpler-design cores. As mentioned in Chapter 3.2.1, the SCC uses P54C cores. As the

design of the simulator expands to contain more elaborate and difficult-to-process mod-

elling detail, the single-threaded performance of each P54C core becomes increasingly

inadequate. The Xeon Phi line of products upgrade their processor cores, particularly

in the case of 2nd generation Knights Landing manycore processors, where their Atom

cores also offer efficient, low-energy-cost computing.

On top of superior quality in processor cores, Xeon Phi products offer a larger quantity of

computational resources. The manycore processors that succeeded the SCC integrated

a larger count of processing cores on die (approximately 60 versus the SCC’s 48 cores).

Furthermore, the Xeon Phi cores are able to process multiple threads simultaneously,

increasing the amount of parallel processes running during execution. Finally, each com-

putational resource can take advantage of the Single Instruction Multiple Data (SIMD)

paradigm by utilizing their Vectorization Processing Units (VPU) and AVX instruction

sets.

40
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There are further attributes to the Xeon Phi line of products that allow them to be

considered more mature and industrial-grade products. The SCC chip required a host

PC to manage and oversee its function. A suite of tools specifically made for monitoring

of SCC’s status, as well as its voltage and frequency scaling, are required by the user of

the management console in order to utilize the SCC. This design complicates the usage

of the SCC, especially when aiming at utilizing multiple SCC processors for the parallel

processing of a demanding task, such as large network simulation. Multi-SCC usage is

further complicated by the existence of the RCCE library, as mentioned in Section 3.2.1,

which excludes the usage of more traditional HPC tools, such as the MPI library [38].

These concerns are lifted when moving to the Xeon Phi line of products, whose coding

paradigm is simpler to manage and support native code execution. In particular, the

2nd generation of Xeon Phi processors, the Knights Landing, is a standalone manycore

processor which operates like a regular x86-based processor.

These aspects motivated the porting of the simulator, as described in Chapter 3, to the

Xeon Phi line of manycore processors. The simulator grew in the number of features

supported, particularly in the domain of network connectivity patterns, as well as in

modelling detail. As such, the more capable and easily programmable and maintainable

Xeon Phi platforms were preferred for hosting the simulator.

4.2 Porting to Intel Xeon Phi 1st Generation

4.2.1 Platform Architecture

Intel Xeon Phi Knights Corner belongs to the Many Integrated Core (MIC) architecture;

the processor model used for the mapping of the previously presented simulator features

61 cores with multithreading capabilities and VPUs, allowing Single Instruction Multiple

Data execution of FP operations.

The Intel Xeon Phi Knights Corner co-processor is primarily composed of processing

cores, caches, memory controllers, PCIe client logic, and a high-bandwidth bidirectional

ring interconnect [2]. Each core in the KNC co-processor is designed to be power efficient

while providing a high throughput for highly parallel workloads. The core uses a short

in-order pipeline and is capable of supporting 4 threads in hardware. Each core comes

complete with a private L2 cache that is kept fully coherent by a global-distributed tag

directory. The memory controllers and the PCIe client logic provide a direct interface

to the GDDR5 memory on the co-processor and the PCIe bus, respectively. All these

components are connected together by the ring interconnect.

The Intel Phi card is treated as an accelerator and requires a Xeon host to boot a Linux

image on it; however it can also be thought of as a standalone processor, executing any

series of instructions independently from the main processor. In contrast to the SCC, the
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Figure 4.1: The Knights Corner die organization [2]. The reader can notice the bidi-
rectional ring that constitutes the communication avenue for the cores of the Knights
Corner co-processor [1]. Each core is accompanied by a private L2 cache that is kept
fully coherent by a global-distributed tag directory (TD). The bidirectional ring also

connects to the PCIe bus and to the GDDR5 memory via respective controllers.

Linux image on the Knights Corner allows to directly operate in the manycore processor

natively, usually through an ssh connection that passes through the Xeon host.

Multiple Intel Xeon Phi co-processors can be installed in a single host system. Within a

single system, the co-processors can communicate with each other through the PCIe

peer-to-peer interconnect without any intervention from the host. Similarly,the co-

processors can also communicate through a network card such as InfiniBand or Ethernet,

without any intervention from the host.

A developer can use the Phi to code via traditional tools of parallel programming, such

as the OpenMP library [59]. This fact differentiates it from other acceleration platforms

such as GPUs by allowing the programmer to avoid using specialized libraries, such as

CUDA [162] or OpenCL [163], allowing for rapid code development. This benefit is

partially tempered when attempting to exploit the platform’s SIMD instructions, a task

which is not trivial for complicated codebases. To that end, there exist tools that aid

with the use of the VPUs and enhance vectorization [164].

The VPUs are an especially important asset for the manycore processors examined in

this thesis. For the KNC, the VPU features a 512-bit SIMD instruction set, officially

known as Intel Initial Many Core Instructions (Intel IMCI). Thus, the VPU can execute

16 single-precision (SP) or 8 double-precision (DP) operations per cycle. The VPU also
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supports Fused Multiply-Add (FMA) instructions and hence can execute 32 SP or 16

DP floating point operations per cycle. It also provides support for integers. Vector

Processing Units are designed to be power efficient for HPC workloads. A single oper-

ation can “package” multiple functionalities and does not incur energy costs associated

with fetching, decoding, and retiring many instructions.

In order to support such “tightly-packed”, power-efficient SIMD instructions, adjust-

ments were made to the KNC architecture. A mask register supports the VPU to allow

per lane predicated execution. This helps in vectorizing short conditional branches,

thereby improving the overall software pipelining efficiency. The VPU also supports

gather and scatter instructions, which are non-unit stride vector memory accesses, di-

rectly in hardware. Thus, for codebases with sporadic or irregular access patterns, vector

scatter and gather instructions help in keeping the code vectorized. The VPU also fea-

tures an Extended Math Unit (EMU) that can execute transcendental operations such

as reciprocal, square root, and log, thereby allowing these operations to be executed in

a vector fashion with high bandwidth. The EMU operates by calculating polynomial

approximations of these functions.

For the purposes of evaluating the benefits and costs of exploiting the platform to its

fullest, two varieties of implementations will be presented. Initially, implementations

that are generic enough to be seamlessly portable on both the processor and the co-

processor will be evaluated. Later on in this Section, the most promising generic imple-

mentation for the neuronal simulator will be enhanced with fine-grain vectorization in

order to take full advantage of the underlying platform. The process of increasing the

effectiveness of vectorization can be applied to any program running on a VPU-equipped

manycore processor; however, the details of each processor’s architecture may force re-

compilation, or tweaking of the codebase in order to attain the best results specifically

for each processor.

4.2.2 Application Mapping

The simplest method a programmer can employ to parallelize a neuron modeling (or

any other) workload is to assign different parts of the workload to different cores. Each

core computes independent parts of the workload and communicates with other cores in

order to complete operations that require input from them. Our InfOli model is data-

partitionable in the above way, with communication imposed by gap junctions. These

constitute the biological mechanism through which a neuron receives input from con-

nected neurons based on the voltage differential of the respective dendritic membrane

potentials. Thus, in each step of the simulation, collection of the dendritic membrane

potential from all neurons that connect to any of the core’s neurons, is required. The con-

nection is determined by a user-defined connectivity map. This task requires inter-core

communication that can be achieved by using several different programming paradigms,
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(a) MPI (b) OpenMP (c) Hybrid

Figure 4.2: Flowchart of the implementations discussed in this chapter [3].

such as MPI, OpenMP or a hybrid combination of the two. The InfOli simulator has

been ported to the KNC according to these configurations, as presented in Figure 4.2.

These three alternatives are explored in the following Subsections.

4.2.2.1 MPI Implementation

MPI is a library for distributed-memory systems where coordination between cores is

achieved by message-passing through fast-memory buffers. While both the Xeon host

and the Phi co-processor share memory between their cores, the MPI implementation

is still useful for evaluating the shared-memory performance and serves as a baseline

towards the hybrid method. It is also a well-supported and continuously updated tool

which can aid in multi-node-system implementations [165, 166]. In such multi-node

systems, message passing is achieved over TCP or Infiniband. In a single-node system,

shared memory is used instead.

The primary unit of execution of this implementation is the MPI rank, with a one-to-one

correspondence between ranks and cores. Each rank handles a subset of the neuronal

network as well as its data-exchanging needs; in order to properly model gap junctions,

neurons exchange states before simulating each time-step. One approach to this task is

to perform neuron-to-neuron communication based on user-defined connectivity and the

respective MPI commands. Assuming a neuron population N , the worst-case number

of MPI Isend and MPI Irecv pairs executed is (N − 1)2.1

1Note that the MPI functions for transmitting and receiving data used in this work are asynchronous.
The non-blocking nature of these functions facilitates irregular core communication. This trait was taken
advantage of, since the InfOli simulator aims at supporting any network interconnection pattern, causing
unpredictable core-communication schemes.
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Furthermore, we explore an alternative data-grouping technique, whereby data is ex-

changed in buffers. Each MPI rank consolidates all dendritic membrane potentials that

are to be sent to another core into a single buffer. Packing is the procedure of determin-

ing which values need to be sent over and then, bundling them together in one buffer,

designated for the recipient core. Unpacking is the procedure of analyzing data in the

received buffer so as to distribute the values to the neurons that need them based on

the the neuron connectivity map. Assuming k MPI ranks, the worst-case number of

MPI Isend and MPI Irecv pairs is (k − 1)2, whereas each bundle contains at the most

N/k more data than the naive neuron-to-neuron case.

Both packing and unpacking take place in each iteration of the InfOli model. During

the first simulation step, each core “marks” neurons that are necessary for a core-data-

exchange; packing marked data into the buffer can then be performed efficiently. Un-

packing, however, requires each neuron to extract marked data from the buffer, which is

done in a sequential manner since no OpenMP threads are employed in this implemen-

tation. Thus, while packing is completed in each step with little computational effort,

unpacking imposes a non-negligible overhead. However, this bundling technique is more

efficient than issuing MPI calls for every neuron that needs to communicate.

Figure 4.2a describes the MPI implementation. The simulator starts by initializing the

neuron states and processes the connectivity map. The neuron population is divided

and assigned to MPI ranks. The execution then proceeds to the main loop which lasts

for a fixed, user-defined number of simulation steps. In each step, the neurons receive

input stimulus current. The cores then pack their data in k − 1 buffers. These buffers

are exchanged via asynchronous MPI communication and unpacked. Each core checks

for the completion of all relevant MPI communication functions to ensure that neurons

have access to updated data regarding their connections to other neurons. Only then can

the neuronal network be updated to its new state while avoiding stale data-propagation.

Each core performs a set of calculations for each neuron it handles and stores the neuron’s

new state values locally. The simulation step then ends and the cycle begins anew.

4.2.2.2 OpenMP Implementation

OpenMP uses #pragma omp directives to designate parallel regions of code to the com-

piler. We mainly use OpenMP’s #parallel for, which flags the iterations of a for

loop as eligible for parallelization. Since data-exchange is transparent in OpenMP and

does not involve manual coordination of message-passing, there is no need to pack and

unpack data. This makes the OpenMP implementation much simpler in terms of coding

effort.

The primary unit of execution is the OpenMP thread. The main loop of the InfOli model

is divided between threads with #parallel for. Each thread handles a different part of

the network, much like the MPI ranks do in the message-passing implementation. Since
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memory is shared between the primary units of execution, each unit can freely access

another unit’s data, thus allowing the dendritic-voltage exchange to be a completely local

and independent process. Pure computation (i.e. solution of the respective ODE) is also

carried out locally, allowing the whole loop to be parallelized efficiently. On the other

hand, since data is shared between different cores, preserving cache coherence introduces

MESI-protocol-related overheads. This may cause the implementation to slow down

considerably; this behaviour becomes particularly prominent when the network solver

operates on a small-sized network and is saturated with too many OpenMP threads.

Determining the optimal number of threads to alleviate the burden of such overheads is

important for the OpenMP implementation.

4.2.2.3 Hybrid Implementation

An OpenMP implementation, as proposed in the previous Subsection, may appear to

be the most intuitive parallelization strategy for the InfOli model. Given both imple-

mentations’ strengths and weaknesses, it may be interesting to explore a hybrid im-

plementation, combining both MPI and OpenMP. This course of action is even more

compelling for the Phi, since it combines the platform’s multithreading capabilities and

the option to distribute the workload across multiple Phi cards. The hybrid implemen-

tation developed stems primarily from our MPI implementation (Subsection 4.2.2.1).

While the primary unit of execution is an MPI rank, each MPI rank further spawns

OpenMP threads to create a hybrid porting. These threads are used to boost packing

and unpacking, as well as the main computation process.

In Figure 4.2c, we organize the cores of a platform into groups. Within each group,

all cores communicate over shared memory. They spawn OpenMP threads to perform

and accelerate computations. Each group is perceived as a single MPI rank in the MPI

environment. Within the group, one “master” core handles MPI communication and

sends necessary data from the entire group to another shared-memory group on every

simulation step. The packing and unpacking of this data is performed by the OpenMP

threads spawned by the entire group. Only the actual MPI calls are performed in single-

threaded fashion by one core per group.

This implementation treats any single-node system (with processor and co-processor)

as a potential multi-node one. It aims at dividing its computing resources (hardware

cores and instruction streams) in standalone islands of shared memory that communicate

with each other via message passing. This method is logically extensible to multi-node

platforms, assuming that computing resources of different nodes belong to different

shared-memory islands. Thus, it serves as a bridge from single- to multi-node systems.

The granularity of the hybrid implementation shall be expressed as the ratio of MPI

ranks to OpenMP threads spawned by each rank. Similar to the pure OpenMP case,
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this ratio needs to be fine-tuned in order to minimize the overheads of OpenMP threads

(stemming from maintaining cache coherence) and of implementing message-passing.

4.2.3 Experimental Evaluation

Thorough experimentation has been undertaken in order to evaluate the simulator’s

performance on the KNC. This Section focuses on the evaluation of the initial imple-

mentation of the simulator on KNC, where vectorization has been enabled in the Intel

compiler (icc), but not fine-tuned specifically for the platform. Each implementation, as

presented in Figure 4.2, will be evaluated in its dedicated subsection.

4.2.3.1 Experimental Setup

All experiments performed involve a simulation of 5s of brain time. This time interval

is sufficient for our measurements since the InfOli simulator represents a deterministic

workload of highly predictable behaviour - which is typical of time-driven simulators.

The simulator has been set up to operate with a constant step δ= 50 µs due to modeling-

accuracy requirements. Thus, the entire simulation ends after 105 simulation steps.

Neuronal networks simulated in this work are represented as a three-dimensional (3D)

mesh. Furthermore, network topology is important, since it dictates the coordinates of

each neuron based on which a pseudo-distance between any two neurons is calculated.

For these calculations, the model does not take into account the geometrical properties

of individual neurons. The simulator treats each neuron as a point in the 3D-space. The

functionality of each gap junction is unaffected by the neurons’ spacial orientation and

size, thus this level of detail is assumed to be sufficient for the model.

As far as network connectivity is concerned, we employed two different connectivity

patterns. Firstly, we made an assumption reasonable for the inferior-olivary nucleus

that the closer neurons are to one another, the more likely they are to form connec-

tions (i.e. gap junctions) and exchange information. Thus, we employed a probabilistic

connectivity pattern where the probability of connection between two neurons depends

on their cartesian distance and is calculated using the formula of a normal distribution,

with a standard deviation of 5 neurons. This deviation results in an average of 50− 200

connections formed per neuron, varying with network size, which is an adequate con-

nectivity density for the purposes of testing the implementations’ scaling capabilities.

Alternatively, we also explored set amounts of connections per neuron, which allows a

more direct control over the network’s density. Experiments carried out using this con-

nectivity pattern can provide insight into how each implementation handles increased

network traffic and data-storage needs.

Connections are created at a pre-processing stage (based on the aforementioned patterns)

and are stored in the connectivity map of the simulation, represented as an adjacency
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matrix. To decrease input file sizes, sparse-matrix formats are used for large neuronal

networks (≥ 10, 000 neurons).

The entirety of our experiments has been carried out in the Blue Wonder cluster, at

the Hartree Center of the Science & Technology Facilities Council (STFC) in the United

Kingdom. Access to Xeon/Xeon Phi systems (one single node) is enabled over ssh. Each

node contains an Intel Xeon E5-2697v2 processor (dual-socket arrangement) with 64 GB

of RAM, operating at 2.7 GHz and one Intel Phi 5110P accelerator. All measurements

presented in the current paper have been taken from execution of the target application

on a single node of the cluster. The Intel MPI compiler (Intel MPI-5.0.3) is used for

the MPI and hybrid implementations. The Intel C compiler (Intel compiler 15.0.2) is

used for the OpenMP implementation, as well as the related Intel OpenMP runtime

library (following the OpenMP 4.0 standard). Performance measurements of small-scale

runs (maximum network size of 10,000 neurons) have been performed using the Intel

VTune performance analyzer (Intel VTune Amplifier XE 2016). Since VTune collects

hardware events during execution, its overhead (both in execution time and disk space)

is prohibitive for larger simulations; the Linux default time command (GNU time 1.7)

has been used in large-scale simulations instead. We present performance measurements

in execution time per InfOli simulation step, so that we mitigate transient effects at

simulation start/end, as well as depict the simulator’s performance in a manner more

easily comparable to related work in the literature.

4.2.3.2 Evaluation
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(b) MPI Network Den-
sity Exploration - Xeon
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(c) MPI Network Den-
sity Exploration - Phi

Figure 4.3: Depiction of MPI measurements on the host and the Phi.

The three implementations have been tested natively both on the Xeon host and the

Phi co-processor, creating a total of six different evaluations. We explore the granularity

of each implementation and evaluate a variety of problem sizes (neuron populations,

network density). Findings are reported next.
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In Figure 4.3, we present results for the pure MPI implementation. Figure 4.3a explores

the granularity of the implementation by varying the number of MPI ranks. We used

up to 20 ranks for the Xeon processor and up to 50 ranks for the Phi co-processor, since

it offers more hardware cores than the Xeon processor. The figures reveal that the Phi

is outperformed by the dual-Xeon processor host. One of the primary reasons for this is

the inability of a strictly MPI-based implementation to take advantage of the entirety of

the Phi’s computing resources. The Phi accelerator cards feature cores that base much

of their processing power on their multithreading capabilities, capable of supporting up

to 4 instruction streams in parallel. The MPI implementation however, only uses a single

thread per rank.

From the figure, we also observe a difference in performance gains as we employ more

MPI ranks. There is an irregularity in efficiency when simulating relatively small net-

works of 1,000 to 2,000 neurons on the Phi device. On the Xeon host, there is reduced

performance gain for a network of only 1,000 neurons as we reach 20 MPI ranks. This

behavior suggests that such problem sizes pose relatively small workloads that do not

fully exploit the computational resources of each platform, especially the Phi. The afore-

mentioned trend disappears for problem sizes increase to at least 5, 000 neurons. When

solving for such networks, we get a near-linear performance gain when we increase the

number of MPI ranks employed. This behavior is interesting since, as explained in Sub-

section 4.2.2.1, an increase in MPI ranks increases communication overheads in data

exchange as well as in data packing and unpacking. Linear performance gains, on the

Phi device in particular, indicate the following: given that the MIC architecture focuses

on high memory bandwidth, it can handle the scaling message exchanging demands im-

posed by as many as 50 communicating MPI ranks, as long as the workload per rank is

large enough.

This statement is further supported by data in Figures 4.3b and 4.3c, where the MPI

implementation is tested with the maximum amount of MPI ranks available on both

platforms, for networks representing varying degrees of communication activity. The

Xeon host consistently remains the better choice out of the two computational fabrics for

the MPI implementation. However, a variation in the performance differences is observed

with varying degrees of network density and size. For sparse and small networks (1, 000

neurons with 10− 20 synapses each), the Xeon host outperforms the Phi by a margin of

10-20×. As networks grow denser and larger, the performance difference becomes less

pronounced, down to a range of 3-4× for networks of 10, 000 neurons, each with 1, 000

synapses.

In Figure 4.4, we illustrate the performance assessment of the OpenMP implementation.

For network sizes between 1,000 and 10,000 neurons the shared-memory implementation

works better on the Phi device compared to the purely MPI equivalent. Particularly for

smaller networks, OpenMP runs for a fraction of the execution times reported for MPI.

By design, Phi supports many more threads (up to 240 when fully utilizing 60 cores)
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(b) OpenMP Network
Density Exploration -

Xeon

Problem Size (neurons)

103 104

A
v
e

ra
g

e
 S

y
n

a
p

s
e

 C
o

u
n

t 
p

e
r 

N
e

u
ro

n
 (

p
.u

.)

101

102

103

lo
g

1
0
{t

_
p
e
r_

s
im

S
te

p
 (

µ
s
)}

0.5

1

1.5

2

2.5

3

3.5

(c) OpenMP Network
Density Exploration -

Phi

Figure 4.4: Depiction of OpenMP measurements on the host and the Phi.

than the Xeon processor. Thus, in the OpenMP paradigm, we can exploit the accelera-

tor’s resources much more aggressively. This leads to a performance improvement when

compared to MPI in the case of the Phi. Besides, the Xeon host can be expected to

have similar performance between MPI and OpenMP, given that the number of threads

that can be supported is smaller.
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Figure 4.5: OpenMP thread activity on the Xeon host.

According to Figure 4.4a, the Phi accelerator’s performance increases in a near-linear

fashion with the amount of OpenMP threads invoked. This is an expected observation if

we consider the design of the Phi as a platform for massive multithreading. In contrast,

the Xeon host does not exhibit consistent scaling as more OpenMP threads are added

for small populations of simulated neurons. More specifically, after using half of its

resources, employing more OpenMP threads does not speed the processor further up.

We can generally form the following hypothesis for non-linear scaling of small neuron

populations on the Xeon host: The benefit of the OpenMP implementation is that, for

sufficiently large problem sizes, increasing the available thread count reduces the compu-

tational burden assigned per thread. In other words, more threads means less simulated

neurons per thread. On the other hand, the cost of an OpenMP implementation is
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related to the overhead of shared-memory operations. More OpenMP threads on the

same platform results in thread concurrency taking a larger hit due, for instance, to

race conditions on shared resources. Conclusively, and as the Xeon host’s performance

in 4.4a indicates, small problem sizes can be efficiently tackled with a small number of

threads. On the contrary, when the problem size is sufficiently large, initializing more

OpenMP threads is beneficial, the coherency penalties notwithstanding.

The Xeon host’s OpenMP performance issues for small workloads are further supported

by data in Figure 4.5. By using Intel VTune to analyze the application performance

on the host, we collected data concerning the OpenMP threads CPU time, which is

defined as: “the amount of time a thread spends executing on a logical processor and,

for multiple threads, the CPU time of the threads is summed” [167]. By dividing the

collective CPU time with the number of threads employed by an application, we thus

calculate the time spent executing on the processor, averaged across all threads. We

then compare this time against the real elapsed time of the workload to calculate the

percentage of time spent executing on the processor, averaged across all threads. It is

then, demonstrated that, for 1, 000 neurons, using 20 threads drastically decreases the

average time of thread activity. When not executing on the processor, the threads are

idle, as would be the case of waiting for thread synchronization. This idleness appears

to be prevalent when spawning multiple OpenMP threads for small workloads.

In addition, in Figure 4.4b, the increase in execution time per simulation step of the

OpenMP implementation is erratic when examining smaller and sparser networks. This

observation builds further upon the statement that the Xeon host’s performance is rela-

tively inefficient when using the maximum number of OpenMP threads for small work-

loads. On the contrary, for larger and denser networks, the Xeon host performs in a

more predictable manner. Furthermore, the Phi accelerator, in Figure 4.4c, features a

more linear increase in execution time as the workload increases.
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Figure 4.6: Depiction of Hybrid measurements on the host and the Phi.
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In Figure 4.6, we present the performance assessment of the hybrid implementation. We

examine a range of ratios between the number of MPI ranks and the number of OpenMP

threads each rank spawns. For this implementation, multiplying the number of MPI

ranks employed by the corresponding number of OpenMP threads a rank utilizes yields

the total amount of OpenMP threads spawned across the platform. In all measurements

presented for this implementation, this number will always be equal to 20 for the Xeon

host and 200 for the Phi accelerator. In this manner, the implementation takes advantage

of each platform’s assets in a consistent manner throughout the ratio-sweep. In general,

measurements shown in 4.6a indicate that a “middle-of-the-road” ranks-to-threads ratio

yields the best performance.

In the case of the Xeon host, spawning 5 MPI ranks, with each rank using 4 OpenMP

threads, offers the best results. Using more MPI ranks does not offer any additional ben-

efit. A similar behavior is observed on the Phi co-processor. A configuration of 20 MPI

ranks, each spawning 10 OpenMP threads, offers the best performance. Additionally,

simulations of reduced neuron populations using the hybrid implementation on the Phi

exhibit performance unpredictability beyond the 5:40 rank-to-thread ratio. In general,

we observe that both platforms perform better with a moderate balance between MPI

ranks and OpenMP threads. Using these ratios, extensive measurements for networks

of varying size and complexity are depicted in Figures 4.6b and 4.6c.

Moreover, the hybrid implementation appears to be performance-bound by the two

previous ones (strictly MPI or OpenMP): On the one hand, when too many ranks

are employed, the implementation behaves more or less like the purely MPI codebase.

Apart from the message-passing overhead, a slight performance drop is attributed to

OpenMP thread creation and maintenance. When few MPI ranks are deployed and

shared-memory threads are emphasized, the application behaves more or less like the

OpenMP implementation. Apparently, a balanced configuration distributes the burden

of message exchange between a reasonable number of core-groups, while keeping the

workload of each group big enough in order to near-maximally utilize computational

resources for OpenMP thread maintenance. Thus, for the hybrid implementation as a

whole, balanced configurations appear to minimize the combined message-passing and

shared-memory overheads.

Having swept the parameters of the discussed implementations on the Xeon host and

Phi co-processor, we attempt to scale the best of them to neuroscientifically-relevant

problem sizes, namely beyond half a million neurons [168]. From each of the discussed

implementations, we isolate the configurations behaving optimally in Figures 4.3a, 4.4a,

and 4.6a and increase the simulated neuron populations. The results of this final set

of experiments are illustrated in Figure 4.7. As expected from Figures 4.3a, 4.4a, and

4.6a, the Phi accelerator cannot compete with the host for native execution of these

implementations. Clearly, the only way for potentially gaining more performance from
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Figure 4.7: Comparing the best implementations on host and accelerator, before
manual AVX-oriented optimizations.

the MIC accelerator is by performing source code vectorization after identifying the

implementation of choice for the Phi.

After examining each implementation independently, we observe that the Phi behaves

significantly better under a shared-memory programming paradigm. For smaller net-

works, it achieves execution times that are comparable to those of the Xeon host, even

without manual code vectorization. However, as network size increases, OpenMP im-

plementations display a steeper performance curve. This causes MPI-based methods to

catch up with the shared-memory implementation when solving for networks of more

than 20,000 neurons. At this point, the message-passing-based porting methods, that

aim at dividing the network in groups, become attractive. Furthermore, MPI-based im-

plementations are the only viable option for carrying out large simulations on a multi-

node system with Phi cards.

Comparing the two message-passing methods on the accelerator, the hybrid implementa-

tion outperforms the pure MPI method by drawing on more of the platform’s resources.

A small performance gain is created by spawning OpenMP threads in each MPI rank,

that slowly grows as network size increases. The hybrid approach was expected to

improve on the MPI implementation by a wider margin. The overhead of spawning

OpenMP threads on each simulation step appears be a limiting factor to its efficiency.

On the Xeon host, all implementations perform comparably to each other. In a sim-

ilar fashion to the Phi platform, OpenMP is the implementation of choice for smaller

networks. When the problem size scales to very large networks of more than 50, 000 neu-

rons, we can observe a trend where pure-MPI and OpenMP implementations outperform

their hybrid utilization. On the Xeon host, hybrid coding is not an improvement over

the strictly MPI method since the platform does not support multithreading.

All three implementations can use the entirety of the Xeon computing capacity and the

larger workloads demand a pure approach, rather than a hybridized one. There is no

significant difference between MPI and OpenMP when aiming at simulations of more
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than 105 neurons. We discern a slight inclination for MPI to outperform OpenMP when

the network reaches the 1 million neurons barrier.

4.2.4 Vectorized Implementation

In order to exploit the Phi device to its fullest potential, extensive micro-optimizations,

as well as code transformations are needed. Section 4.2.3.2 showed clearly that the Phi’s

performance is inadequate without spending development time in optimizing the code-

base. The initial study of the un-optimized code presented evidence that the OpenMP

programming paradigm provides the most efficient porting solution. Thus, the efforts

of drawing the platform’s resources were focused on the shared-memory version of the

simulator. This decision was reinforced by the fact that the MPI message-exchanging

functions are incapable of using VPUs for acceleration.

4.2.4.1 Basics of Vectorization

VPUs are units that enable fine-grain parallelism and are present on Intel’s Xeon ar-

chitecture - both on Xeon processors and Phi cards. At their core, VPUs are registers

that allow the execution of a specific instruction set, named Advanced Vector Exten-

sions (AVX) [169], which is an extension to the well-known x86 instruction set. AVX

originated in an older extension to the x86 instruction set designed to support Single In-

struction Multiple Data (SIMD), named Streaming SIMD Extensions (SSE) [170]. AVX

features multiple versions and varying width in the vectorization registers, with current

Intel Phi models (Knight’s Corner - KNC) supporting AVX2 and future models (i.e.

Knight’s Landing - KNL), supporting AVX512.

The Knight’s Corner Phi that is under evaluation in this work utilizes 512-bit wide

VPUs. They allow up to 16 single-precision or 8 double-precision operations to be

carried out simultaneously by each of the 240 hardware threads of the device. There

already are multiple case studies taking advantage of VPUs and AVX instructions to

significantly boost the performance of evaluated applications from a variety of scientific

fields [171, 172].

In practice, the application developer should picture the VPUs as an effort to unroll

and parallelize the iterations of a loop, whereas they would otherwise be executed se-

quentially. This level of parallelism requires that the loop’s iterations can be executed

independently from each other and in any sequence. This is not always possible; for

example, loop iterations may present Read-After-Write (RAW) and Write-After-Read

(WAR) dependencies when reading and storing data in the same memory addresses.

The developer is assisted in vectorizing his code by the compiler’s optimizations, which

circumvent some of these limitations. In other cases, regions of code are designated as not
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vectorizable, due to dependencies that cannot be avoided by the compiler in an automatic

fashion. In this work, we used the Intel C Compiler (ICC) to compile our application

for the Phi architecture and enabled the compiler’s built-in vectorization assistance by

compiling with the -vec-report flag for Linux Operating Systems. Furthermore, there

are various documents detailing guidelines for efficient vectorization particularly on the

Phi [173, 174].

In our study, a number of steps was taken in order to vastly improve the efficiency of

AVX instruction implementation. Each step introduces some form of modification of

the codebase. We classify these modifications under two general categories. There are

steps that should be taken into consideration by any developer that aims at porting

an application on an AVX-compliant computing fabric, regardless of the application’s

nature. We also performed transformations that fit the particular algorithm used for

this simulator and can be of use in other codebases that follow similar patterns. For ease

of reference, we term the former as generic modifications and the latter as specialized

transformations.

4.2.4.2 User-assisted Dependency Disambiguation (DD)

In order to ensure correct program functionality, the compiler assumes a conservative

approach when determining the existence of a dependency. If the limits of data structures

cannot be calculated with certainty, which is often the case for dynamically-allocated

data, then the compiler is forced to assume that segments of memory appointed to

different structures may overlap. The case of accessing the same memory address under

two different names, such as by using two pointers with the same value, is called aliasing

and it forces conservative compilation without SIMD-operations in order to protect an

application’s coherence.

In Figure 4.8, the compiler may be unable to determine whether pointers a and b refer to

entirely separate memory regions, particularly if there is no pre-compiling information

regarding the region sizes. However, when a developer is certain that assumed depen-

dencies and aliasing-caused precautions can be ignored, the compiler may be instructed

to override its assumptions and produce vectorized loops.

In the case of the icc compiler, this can be achieved using the #pragma ivdep directive, as

demonstrated in algorithm 4.8. This is a generic modification; in this particular example,

the developer is aware that proper coding ensures there is at least 4 ∗ upper bound bytes

worth of memory space separating the values of pointers a and b; thus, there are no

memory accesses in this loop for pointer a that could interfere with pointer b’s and vice

versa. Declaring pointers using the restrict keyword is also recommended, acting as

a way to communicate to the compiler that the developer guarantees exclusive memory

accessing.
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1: int * restrict a, * restrict b;
2: ...
3: #pragma ivdep
4: for i = 0 to upper bound do
5: b[i] = a[i] * constant k;
6: end for

Figure 4.8: An example of preventing aliasing.

1: int *a = mm malloc(upper bound*sizeof(int), 64);
2: int *b = mm malloc(upper bound*sizeof(int), 64);
3: ...
4: #pragma ivdep
5: for i = 0 to upper bound do
6: b[i] = a[i] * constant k;
7: end for

Figure 4.9: Using mm malloc.

4.2.4.3 Inline Expansion (IE) and Memory Alignment (MM)

By vectorizing a loop, memory accesses that would otherwise take place in different

iterations of the loop happen in parallel. Hence, it is imperative that when cache lines

are fetched from the main memory, all simultaneous memory accesses are satisfied. To

this end, data structures need to be aligned with cache lines; this essentially means that

each data allocation for a structure begins in an address that is also the beginning of a

cache line. Vectorized accesses to the memory space of an aligned data structure coincide

with a single cache-line-fetching. Memory alignment is a crucial step that avoids latency

in the execution of SIMD-instructions due to multiple cache-line-retrievals for a single

instruction. Since this applies to any application regardless of its nature, this is a generic

modification.

In order to ensure aligned memory allocations, the developer is encouraged to avoid

using standard C malloc function calls and opt instead for Intel’s mm malloc. This

icc-compatible function allows the developer to ensure that data allocation will begin

at an address divisible by the size of the platform’s cache line. As shown in Figure 4.9,

for the Phi (KNC) architecture with cache-line size of 64 bytes, data structures need to

be allocated at an address that is divisible by 64, whereas the Xeon host has 32-byte

alignment.

In addition, using function calls in a vectorized loop is discouraged. When vectorizing

a loop, an identical instruction pattern must be maintained across all iterations so that

their execution can be parallelized. Instructions that alter the flow of a program, such

as conditional instructions and function calling, can pose obstacles for efficient vector-

ization. Function inlining is a practice extensively researched [175] and automatically

performed by the compiler in many cases; however, in our work, manual inline expansion

proved beneficial in regions of code where the compiler did not intervene.
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1: for i = 0 to NW Size do
2: #pragma ivdep
3: for j = 0 to Synapse Count do
4: incoming current[i][j] = calculate synapse(i, j);
5: end for
6: calculate new state(incoming current[i], i);
7: end for

Figure 4.10: Nested Loop example.

1: for i = 0 to NW Size do
2: #pragma ivdep
3: for j = 0 to Synapse Count do
4: incoming current[i][j] = calculate differential(i, j);
5: end for
6: end for
7: #pragma ivdep
8: for i = 0 to NW Size do
9: calculate new state(incoming current[i], i);

10: end for

Figure 4.11: Split Loop example.

4.2.4.4 Vectorization-Driven Loop Splitting (LS)

As mentioned before, vectorizing a loop involves using SIMD operations in order to

execute iterations of a loop in parallel. In the case of nested loops, the compiler always

chooses the innermost level of the loop to vectorize. This decision is supported by the

fact that vectorized loops include as few alterations in the execution of each iteration as

possible. Should the compiler vectorize the outer level of a nested loop, the produced

vectorized code would include the conditional branching instructions of the inner loop,

which would hamper the performance of the program.

The described behaviour also forces the compiler to ignore any other instructions con-

tained in the nested loop outside its innermost layer. Nonetheless, a program’s perfor-

mance may be affected by operations outside the inner loop. In Figure 4.10, an example

from the InfOli simulator presented in this paper is given. The algorithm operates in two

phases: for every neuron in the network, the simulator calculates the effect each synapse

has on the neuron, represented in the inner loop, and then evaluates the changes in the

neuron’s state. While the former phase claims a large portion of the total workload,

the latter phase features a large amount of exponential functions due to neuron-channel

calculations.

In order to produce vectorized code for both phases of the algorithm, we split the

simulation loop in two dedicated loops. The first is a two-layer loop for the synapse-

evaluation phase whereas the second is a single-layer loop estimating the changes in the

neuron’s state. The two loops are then vectorized separately; this also allows for exclusive
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modifications in each loop’s code. This specialized transformation is presented in Figure

4.11. The example contains function calls for the sake of clarity and compactness;

however, as stated in Subsection 4.2.4.3, the functions’ code has been inlined in the

main loop.

4.2.4.5 Data Restructuring (DR)

Subsection 4.2.4.3 discussed the importance of matching the execution of vectorized

regions of code with cache-line-aligned memory accesses in order to maximize the effec-

tiveness of VPU usage. However, allocating data structures in aligned memory addresses

does not guarantee optimal memory-access patterns. It is equally important to ensure

that data is accessed in a serial, unit-stride manner across all iterations of the vector-

ized loop. Unit-stride memory references ensure memory is accessed in a sequential and

continuous manner, which is important in the case of vectorized code, since memory

accesses happen in parallel.

Since unit-stride memory accesses are paramount to obtaining good performance, data

structures need to be designed accordingly. In Figure 4.12, a data structure is used that

contains all relevant information for the main object under examination in this work,

a neuron. While the structure presents the data in a meaningful and compact way, its

usage in a vectorized algorithm proves to be problematic.

In the main loop, each of the neuron’s channels is accessed and processed in a sequential

manner. For the unvectorized code, data should be allocated in the memory in such a

way that each neuron stores the entirety of its data, such as channel states and membrane

voltage levels, as compactly as possible. In this case, the data structure presented in

Figure 4.12 is beneficial to use. In order to generate a network of such neurons, the

programmer would allocate an array of the struct Neuron.

However, in the case of vectorized code, the order of data accesses changes. Since there

are parallel iterations of the loop, data from different neurons will be accessed simulta-

neously; the processor computes each of the model’s parameters for the entire network

in parallel. This order of memory accesses points towards storing each parameter’s data

from the entirety of the network as compactly as possible. In this case, a struct, such

as Neuron, is unsuitable. In order for memory accesses to happen in unit stride, it

is advisable to represent each of the model’s parameters as an array that stores data

for the entire network, as shown in Figure 4.13. These arrays can then be packed, if

desired, in a different struct that represents the neuron network, rather than each neu-

ron individually. This technique is an Array-of-Structs (AoS) to Struct-of-Arrays (SoA)

specialized transformation and it, along with other data-structure transformations, has

been extensively used in the literature, in multiple fields of HPC and SIMD computing

[176, 177].
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1: struct Neuron {
2: float Na;
3: float K;
4: ...
5: };
6: ...
7: #pragma ivdep
8: for i = 0 to NW Size do
9: calculate channel Na(Neuron[i].Na);

10: calculate channel K(Neuron[i].K);
11: ...
12: end for

Figure 4.12: Data represented as a struct.

1: float *Na = mm malloc(NW Size*sizeof(float), 64);
2: float *K = mm malloc(NW Size*sizeof(float), 64);
3: ...
4: #pragma ivdep
5: for i = 0 to NW Size do
6: calculate channel Na(Na[i]);
7: calculate channel K(K[i]);
8: ...
9: end for

Figure 4.13: Data represented as multiple arrays.

4.2.4.6 Evaluation

The simulator’s codebase features a baseline version, which largely ignores the AVX

instruction set due to the compiler’s conservative strategy concerning assumed depen-

dencies. The techniques mentioned in Subsections 4.2.4.2, 4.2.4.3, 4.2.4.4 and 4.2.4.5

are successively applied to this version, revealing a steady increase in the efficiency with

which the simulator uses the platform’s resources. The application’s performance is

then measured and the contribution of each modification is evaluated. In Figure 4.14,

networks that are both sparsely and densely connected are tested, on both the host and

the co-processor. Multiple measurements of each test are conducted and the mean value,

along with an error margin corresponding to a confidence interval of 95%, is plotted.

Different behaviour patterns are observed based on network complexity.

In the case of sparse networks, performance gains are highly dependent on the vector-

ization technique used, as well as the size of the network. Small and sparse networks

present both platforms with a small workload. Particularly for the Xeon host, using the

AVX instruction set does not guarantee a boost in performance. It is observed that the

aforementioned techniques of Section 4.2.4, such as memory alignment and loop split-

ting, are mandatory in order to attain an improvement in performance; prior to applying

them, small-workload-processing is not accelerated via vectorization. In this case, the

Xeon host performs better without taking advantage of the VPUs.
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(a) Sparse network on Xeon host (10
synapses per neuron)
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(b) Sparse network on Phi (10
synapses per neuron)
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(c) Dense network on Xeon host (500
synapses per neuron)
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(d) Dense network on Phi (500
synapses per neuron)

Figure 4.14: Effects of vectorization on networks of varying size and complexity.

This behaviour can be explained by reflecting on the trade-offs made when using the

AVX instruction set. Compared to the scalar instruction set, the average vector in-

struction requires an increased amount of clock cycles until completion. The reward of

using vector instructions lies in processing multiple data simultaneously. As Figure 4.14

demonstrates, this gain diminishes when there is a relatively small amount of neurons

to be simulated per OpenMP thread, as the amount of data processed by each thread is

insufficiently large to fill the VPUs. Suitable memory-alignment of aforementioned data

also plays a critical role in performance. As a result, scalar instructions may outper-

form an improperly vectorized codebase, particularly for the Xeon which features better

scalar performance than the Phi.

On the other hand, dense networks provide a larger workload and thus, a better oppor-

tunity to take advantage of the platform’s resources. Cases of not-fully-optimized code

outperform the unvectorized codebase, even for the Xeon host. It can be assumed that,

in cases where the workload is sufficiently heavy (due to the large amount of calcula-

tions required by neuronal synapses), vector instructions are largely “safe” to use. In

Figure 4.14d, the increase of neuron populations alters execution time only slightly for

properly-vectorized code. This is an indication that, with proper manual vectorization,

the accelerator can utilize its assets efficiently and can handle increases in workload well,

until the entirety of its computational resource pool is expended. Thus, vectorization
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can potentially yield significant boosts in performance, with larger benefits observed for

the Phi accelerator due to a larger amount of available resources.

Figure 4.15 evaluates the properly-vectorized code when solving for scaled-up networks,

on both platforms. In Figure 4.15a, there is a small and stable performance gap between

the Phi device and the Xeon host. The accelerator outperforms the host in a predictable

manner. On the contrary, denser networks in Figures 4.15b and 4.15c depict a more

complicated behaviour. There is a range of neuron populations where the Phi accelerator

outperforms the host. Furthermore, as network size increases, approaching populations

of realistic, human inferior olivary nucleus’ numbers, the performance gap between the

two computing fabrics diminishes. For larger populations, the Xeon host may outperform

the Phi.
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Figure 4.15: Scaling up the best and properly vectorized implementation on the host
and the accelerator.

These observations can be justified by network density being closely correlated to how

parallelizable the code is. From a programmer’s point of view, the synapse count per

neuron signifies the degree by which the simulator will differ from an embarrassingly

parallel application. The neuron’s dendritic compartment forces OpenMP threads to

sync due to shared-memory accesses and MPI ranks to exchange data via messages. In

addition, it imposes irregularities in memory access patterns due to the fact that the

network connectivity matrix is unknown before the simulation begins and thus, data

required by each neuron cannot be stored in a sequential, unit-stride manner. This

holds especially true for simulations that would require the connectivity matrix to be

constantly changing during a run, in order to study the constantly changing connections

forming in the human brain. Non-unit stride accesses have an adverse effect on the

efficiency of vectorization, as presented in Subsection 4.2.4.5.
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The results illustrated in Figure 4.15 can be traced back to the model’s shifting behaviour

based on network connectivity. Sparse networks can be parallelized and vectorized effi-

ciently; the Phi accelerator will outperform the Xeon host due to an increased amount

of available resources, for any non-trivial neuron population. Dense networks, on the

other hand, cannot be accelerated as efficiently. The Xeon host is the superior platform

for small networks of high connectivity due to its better single-threaded performance,

as well as the fact that small networks present less opportunities for the Phi accelerator

to utilize its available threads and larger VPUs. As the network size increases, the ac-

celerator can use more of its assets. A point is reached where the Phi outperforms the

host by meeting workload demands with aggressive usage of its computational assets.

Once the Phi’s computational resources are working at maximum capacity, a saturation

point is reached; in Figure 4.15c, the performance gap between the two platform grad-

ually narrows for populations beyond 10, 000 neurons, whereas this point is reached at

20, 000 neurons in Figure 4.15b. From then on, the Xeon host’s superior single-threaded

performance handles the application in a better manner, outperforming the accelerator

for human inferior-olive numbers (≥ 100, 000).

4.3 Porting to Intel Xeon Phi 2nd Generation

Intel’s second generation of Xeon Phi processors introduced several architectural dif-

ferences with respect to its predecessor, designed as a more mature and easier to use

manycore processor. The departure from mandatory PCIe connections to host PCs and

the re-design as a standalone processor (although there have also been Knights Landing

models that follow the co-processor paradigm) which runs the same binaries as other

x86-based processors significantly simplifies development for the Knights Landing. Most

importantly, it encourages utilization of HPC methods which have been used in other

processors and are well-researched.

Furthermore, the manycore processor was a technological step-up from its previous gen-

eration, offering more cores per processor, higher bandwidth, superior single-threaded

performance and significantly better peak FLOPS performance [178]. As such, at the

time of its launch, the Knights Landing manycore processor was the best-suited pro-

cessor for the growing needs of a biophysically-accurate neuroscientific simulator that

focuses on the functionality of massive, complex neuronal networks.

4.3.1 Platform Architecture

Knights Landing (KNL) is a standard Intel Many-Integrated Core (MIC) Architecture

standalone series of processors that can boot stock operating systems and connect to a

network directly via common interconnects such as Infiniband, Ethernet, etc. They fea-

ture an x86-based many-core architecture that specializes in servicing demanding HPC
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Figure 4.16: The Knights Landing die organization [4]. Each tile consists of 2 cores
that share an L2 cache. Inter-core communication is orchestrated as a mesh, in contrast

to the previous generation (Knights Corner) which employed bidirectional rings [1].

applications. The specific Knights Landing processor model examined in the present

thesis features 64 14-nm Airmont cores. Each core utilizes two 512-bit-wide vectoriza-

tion processing units, as opposed to the single VPU per core present in KNC models,

which enable AVX-512 instructions for parallel data processing. Furthermore, best prac-

tices indicate that each Knights Landing core can support the execution of up to four

software threads in parallel [179].

In total, the KNL processor examined offers up to 64 Airmont cores, each capable of

hyperthreading for a total of 256 threads, and 144 VPUs. Communication between its

32 tiles is achieved through an on-die 2D mesh interconnect (also indicated in Figure

4.16) which replaces the bidirectional ring bus used on the KNC co-processor.

The cores of the KNL processor each have access to a private 32KB L1 cache and pairs

of cores have a 1MB L2 cache shared between the two cores. Via the L2 caches, the

tiles are connected to each other in a mesh fashion. There are options available to the

KNL user concerning the mode of operation followed by the processor’s cache hierarchy.

These options are referred to as “cache clustering modes”, are configured at boot time

and determine how the memory address space is distributed across the chip. The KNL

features four modes: all-to-all, hemisphere/quadrant and sub-NUMA cluster modes of

cache operation.

In all-to-all clustering mode, memory addresses are uniformly distributed across all of the

tiles’ tag directories. In hemisphere clustering mode, the 36 tiles of the KNL are divided

into two spacial halves called hemispheres, ensuring that messages can be constrained

within the hemisphere. The quadrant clustering mode follows the same mentality as the
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hemisphere but partitions the die’s tiles in four spacial parts instead of two. Finally,

the sub-NUMA cluster (SNC) modes are Non-Uniform Memory Access extensions of the

hemisphere and quadrant cache operation modes; they are divided in SNC-2 and SNC-

4, respectively. In our research, symmetrical networks act as well-balanced workloads

evenly distributed throughout the KNL’s cores. As such, we treat the KNL processor as a

symmetrically-distributed multiprocessor and opt for quadrant mode of cache operation.

Another feature of the KNL processor aimed at reducing memory-access latency is

the 16GB multi-channel dynamic random access memory (MCDRAM). This is an on-

package high-bandwidth memory spacially located next to the processing cores that

can deliver significantly higher (more than 400GB/s) bandwidth than the chip’s 384GB

DDR4 RAM (approximately 90 GB/s bandwidth). It also comes with three modes of

operation chosen at boot time. When the MCDRAM operates in “flat” mode, it serves

as a high-speed extension of the DDR4 memory. Alternatively, it can be configured to

serve in “cache” mode, where it is treated as a last-level cache (LLC). Finally, it can

be set up in “hybrid” mode where a pre-determined part of the memory is used in flat

mode, while the remaining MCDRAM serves as an LLC. We utilize the MCDRAM en-

tirely in cache mode, since some of the larger neuronal networks explored in this paper

cannot be allocated on 16GBs of “flat” MCDRAM; additionally, “cache” mode is the

most generalizable configuration for any other type of model we choose to port to the

KNL and it bears resemblance to shared LLCs present in Xeon processors.

The aforementioned assets and the combination thereof hint on the massive potential

parallelism, data access speed and peak computational performance present on the pro-

cessor. As such, codebases operate best on Knights Landing processors if they feature

high degrees of parallelism, vectorization and ideally, well-designed accesses to memory.

Our simulator is designed with these aspects in mind, marking the KNL as a suitable

platform for our implementation.

4.3.2 Application Mapping

The application has been designed with other x86-based systems in mind, in order to

increase portability in other architectures. Due to this fact, only small amounts of alter-

ations were necessary in order to transition from the first (KNC) to the second (KNL)

generation of Xeon Phi manycore processors. In addition, the micro-optimizations used

to boost simulator performance are also beneficial to other x86 systems.

“KNL-exclusive” hardware assets are configured in a fashion that can be encountered

in other processors as well; for example, we use a special low-latency on chip memory

called “MCDRAM” as shared last-level-cache, which is a commonly found in Intel Xeon

processors. As such, we refrain from limiting our conclusions to the KNL family of

processors and ensure effective portability to other platforms.
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Like previous iterations of the simulator, in each simulation step, the simulator has

the task of updating the status of each neuron in a pre-defined network. The neurons

are based on an elaborate, Hodgkin-Huxley model of the human neuron. The model is

tri-compartmental: the dendrite, the soma and the axon.

The dendritic compartment holds the important task of communicating with the rest

of the network; it features a set of ordinary differential equations (ODEs) that simu-

late current exchange with other neurons of the inferior olivary network. This exchange

happens between dendrites that have formed Gap Junctions (GJ), i.e. the electrotonic

connections or synapses among them. Each dendritic compartment forms multiple such

electrical synapses, allowing inter-neuron communication and introducing, for denser

networks, a major source of computational complexity and multiprocessing synchro-

nization overhead.

The somatic compartment is the main body of the neuron, where most calculations for

the neuron’s membrane and ionic channels take place. These channels are crucial to

evaluating the neuron’s state in each simulation step. In sparser networks, the floating-

point operations demanded by each somatic compartment dictates the majority of the

simulation’s computational workload.

Finally, the axonal compartment acts as the output port of the neuron (specifically, in

our application, of the Inferior Olivary neuron) to other parts of the brain (such as, the

cerebellum). It features less floating-point operations than the soma and its simulation

is less complex than the other compartments of the neuron.

In each step, the simulator processes the current flow in the GJs of the network and then,

re-calculates the states of the three compartments of each neuron. This is achieved

by solving the Ordinary Differential Equations (ODE) governing the model via the

Euler forward method [180]. Each neuron may also receive an external stimulus by its

environment, in each step of the simulation.

In order to boost simulation speed, OpenMP [59] has been employed to parallelize the

application. This implementation has proven effective in KNC’s case as well, as exhibited

in Section 4.2.3.2. The network is divided in equal parts and assigned to different

OpenMP threads, ensuring a balanced distribution of workload.

4.3.3 Experimental Evaluation

4.3.3.1 Experimental Setup

The measurements presented in this section have been carried out using two different

generations of Intel Xeon Phi. The Knights Corner co-processor’s model is 3120P, fea-

turing 57 cores at 1.1GHz, each supporting up to 4 threads running concurrently via
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multithreading technology. Cores run at 300W thermal design power (TDP). The ap-

plication is designed to run natively on the co-processor, thus excluding any impact

from its Intel Xeon host on its measured performance. Specifically, after compiling and

transfering via Secure Copy Protocol (scp) all necessary binaries to the co-processor, the

host remains idle throughout the experiment. The Knights Landing processor’s model

is 7210, with 64 cores at 1.3GHz and similar multithreading capacities. Its TDP is

noticeably lower at 215W.

For the power measurements in this section, different methodologies have been followed

for the two platforms. For the Knights Landing processor, the processor’s power con-

sumption was sampled via Intelligent Platform Management Interface (IPMI) [181] via a

script running concurrently with each experiment’s execution. Polling frequency was set

to approximately 1 Hz. Energy consumption for each experiment was then calculated

by integrating the power samples over the simulation’s duration. On the other hand,

power measurements on the Knights Corner co-processor is achieved by accessing the

host’s logs of information and errors regarding the co-processor. These logs are attained

via a built-in tool named micrasd which can track the KNC’s power in intervals of 5

milliseconds. The reports are generated from the beginning of the simulation and by

summation of each report until the end of the experiment, an accurate estimation of

total energy consumption can be attained.

In each experiment, a network of neurons connecting to each other via the Gap Junc-

tion mechanism, as explained in the application description of Subsection 4.2.2 for the

Knights Corner processor, is generated. The neuron connections are generated randomly,

with each pair of neurons given a chance to form a bond regardless of their position on

the neuronal grid. This chance is calculated based on the amount of connections each

neuron is designed to have for each experiment, as well as the total neuronal network

size; a division of the two variables calculates the network’s average connection density,

which, in turn, directly leads to the chance of a pair of neurons forming a bond.

4.3.3.2 Evaluation

In Figure 4.17, we can observe obtained simulation speed of each platform for networks

of varying connectivity density. The measurements explore varying network sizes, where

each neuron has a fixed average amount of connections to the rest of the network.

All experiments in Figure 4.17 have been carried out using approximately the maxi-

mum amount of threads available to each platform. For the KNC, we used 220 threads,

whereas the KNL offered 256 threads. On average the KNL platform outperforms the

KNC platform by 2.4× in terms of execution time. The maximum speed-up is 6×, while

in some cases the KNC comes in front with up to 1.6× speed up over the KNL. More

specifically, we can observe that, in the cases of low connectivity density, which trans-

lates to a low amounts of workload per thread, the KNL shows a superior performance to



Chapter 4. Scaling the Neuromodelling Application 67

Number of Neurons (p.u.)

10
3

10
4E

x
e
c
u
ti
o
n
 T

im
e
 p

e
r 

S
e
c
o
n
d
 o

f 
B

ra
in

 A
c
ti
v
it
y
(s

)

10
0

10
1

10
2

KNC

KNL

KNC-novec

KNL-novec

Xeon

(a) 0 synapses/neuron

Number of Neurons (p.u.)

10
3

10
4E

x
e
c
u
ti
o
n
 T

im
e
 p

e
r 

S
e
c
o
n
d
 o

f 
B

ra
in

 A
c
ti
v
it
y
(s

)

10
1

10
2

KNC

KNL

KNC-novec

KNL-novec

Xeon

(b) 250 synapses/neuron

Number of Neurons (p.u.)

10
3

10
4E

x
e
c
u
ti
o
n
 T

im
e
 p

e
r 

S
e
c
o
n
d
 o

f 
B

ra
in

 A
c
ti
v
it
y
(s

)

10
1

10
2

KNC

KNL

KNC-novec

KNL-novec

Xeon

(c) 500 synapses/neuron

Number of Neurons (p.u.)

10
3

10
4E

x
e
c
u
ti
o
n
 T

im
e
 p

e
r 

S
e
c
o
n
d
 o

f 
B

ra
in

 A
c
ti
v
it
y
(s

)

10
1

10
2

KNC

KNL

KNC-novec

KNL-novec

Xeon

(d) 1000 synapses/neuron

Figure 4.17: Execution Time per second of simulated brain activity, comparison
between KNC and KNL on different Simulator configurations

the KNC. In cases of small workloads, the efficiency in usage of parallelization assets is

diminished, thus single-threaded performance becomes much more important for over-

all simulation speed. The KNL demonstrates a considerably stronger single-threaded

processing power and overtakes the KNC by a fair margin.

On the other hand, as the computational workload assigned to each thread increases for

denser networks, the KNC performs significantly better. The performance gap between

the two platforms lessens as the KNC can use its assets with increasing efficiency, since

the application has been optimized with the KNC architecture in mind. For workloads

of more than 4,000 neurons, each forming approximately 1,000 synapses, the KNL is

outperformed by the KNC.

It should be noted, however, that in terms of performance predictability, the KNL is

heavily favoured. Its performance is linear and very predictable. On the contrary, the

KNC’s performance is harder to anticipate. The platform’s capability to take advantage

of its computational resources increases with the supplied workload. Because of this

behaviour, it forms a plateau, during which simulation time for larger networks remains

stable or even lessens. Beyond a certain point in network sizes, which differs based
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Figure 4.18: Energy Consumption per second of simulated brain activity, comparison
between KNC and KNL on different Simulator configurations

on how dense the network is, “this plateau” ceases to exist and its performance curve

resumes its linear nature. The existence of such “plateaus” impacts the performance

predictability of the KNC, whereas the KNL does not exhibit similar behaviour.

In Figure 4.18, we present information regarding the energy required by each computing

fabric in order to simulate a second of brain activity, measured in mWh. The Figure

is directly linked to Figure 4.17, since energy consumption is dependent on execution

time needed for simulation of each second of brain activity. As such, we can observe

similar patterns between the two Figures. On average we have to note that the KNL

consumes 48% less energy than the KNC. Because of the KNL’s lower TDP and better

performance for light workloads, there is a significant reduction in energy consumption

when computing for small networks. To put this claim into perspective, whereas the

simulation of one second of brain activity in a network of 4000 neurons, with a density

of 250 synapses per neuron, requires over 1200mWh for the KNC, the KNL consumes

under 300mWh for the same workload, improving on energy efficiency by a factor of 4×.
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On the contrary, due to the KNC’s smaller execution times for larger, denser networks,

it is preferable from a power consumption standpoint to the KNL for such workloads.

A network of 10,000 neurons, each forming 1,000 synapses with the rest of the network,

requires 27% less energy on the KNC (1600mWh per second of simulated time) than on

the KNL (2200mWh for the same amount of activity).
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Figure 4.19: Threading Efficiency on the KNC and the KNL, for different Simulator
configurations

In Figure 4.19, information regarding the efficiency with which each platform manages

its OpenMP threads is displayed. In HPC, the efficiency with which an application

utilizes the underlying platform’s resources can be calculated as the speedup yielded by

employing said resources, compared to a single-threaded performance, divided by the

amount of resources used, such as the number of processors used to run the application,

or the number of threads spawned by the application. In our case, we calculated the

efficiency metric by dividing execution speedup with the number of OpenMP threads

spawned, with a range of OpenMP threads utilized from 1 to 200, on both platforms.
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In each subfigure, network density has been set to 1,000 synapses per neuron and we

explore networks of different size.

For the KNL, we can observe that the efficiency of utilizing up to approximately 50

threads remains at satisfactory levels. In these cases, each core spawns either one or

two threads (due to the selected balanced thread affinity) and, in contrast to the KNC,

the KNL’s cores operate significantly better when operating with only one thread [4].

The KNL maintains a reliable efficiency for low degrees of threading regardless of the

simulated network’s size, whereas the KNC’s efficiency suffers for small workloads, such

as for networks of 4000 neurons.

Larger networks, however, offer better opportunities for the KNC to utilize its compu-

tational assets efficiently, maintaining a speedup-to-threads ratio above 70% even for

200 threads. The KNL’s threading efficiency sharply declines when employing massive

degrees of parallelism, dropping below 40% when using more than 150 threads. The

application’s inability to utilize the entirety of KNL’s assets efficiently to tackle de-

manding simulations explains the performance gap between the two platforms for larger

workloads. This inability is mostly attributed to the fact that the simulator has been

fine-tuned to the KNC environment and has been tested “out-of-the-box” on the KNL.

4.4 Multinode Implementation

A significant step in the process of scaling a demanding neuromodelling application is

the efficient transition to multinode implementations. In this venture, an advantage of

using Intel Xeon Phi Knights Landing 2nd generation processors as a high-performance

computing fabric over its predecessor, the KNC, as well as other accelerators, is the ease

of employing a multinode implementation. The Xeon Phi line of products supports tra-

ditional parallel coding paradigms, such as MPI and OpenMP for task-level parallelism.

These tools have been well-studied and are constantly improved upon, significantly re-

ducing the difficulty and time-to-market of a scalable, highly-parallel implementation of

the simulator’s algorithm.

A multinode implementation of the simulator allows taking advantage of a more com-

putational resources, as well as data storage. This is especially important in the class

of models studied in this thesis - the conductance-based, biophysically accurate models,

as briefly presented in Section 2.1.3. These models place particular emphasis on the

accurate restructuring of the mechanics in inter-neuron communication. In large and

dense networks, which are usually the object of study in significant experiments that at-

tempt to recreate real phenomenons occurring in the human brain [31], the existence of

billions of inter-neuron connection points is common occurrence. Whether the modeled

mechanism for such connections is an electrochemical synapse, or a more complicated
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Figure 4.20: Schematic of the simulator multinode implementation on the Knights
Landing. In this example, each KNL processor operates at maximum capacity, meaning
all of its 64× 4 = 256 threads are employed, while a variable n amount of MPI Ranks
are spawned per platform. It should be noted that in our work, we opted for spawning
n = 4 MPI Ranks per KNL platform. A number of i neurons is assigned to each thread
in this simulation, totalling a simulated network of l = i× 512 neurons over two KNLs.
The implementation schema can be extended to include as many KNL machines as

necessary and available.

electrotronic gap junction, the massive amounts of data used to model these connections

can feasibly be handled by a computing system of equally massive computational assets.

In order to achieve such levels of computing power, a supercomputing, distributed sys-

tem is the most obvious choice. In this class of systems, a strong case can be made

for supercomputing clusters based on manycore, x86-processors, since they utilize tra-

ditional parallel processing tools. These tools are particularly effective for describing

and implementing efficiently the unpredictable behaviour of massive neuronal networks

and respective communication patterns. On the contrary, GPU-based systems follow a

coding paradigm that is better suited for algorithms with less frequent context switches

between tasks and less conditional jumps in the code, thus leaning towards more pre-

dictable network behaviour. After the aforementioned conclusions, I believe that a KNL-

based multinode system can be a suitable candidate for implementing the simulator and

scaling it further in order to suit significant neuronal network experiments.

4.4.1 Programming Model

In order to utilize multiple Xeon Phi manycore processors, message-passing (MPI) li-

braries are used for inter-node communication in multi-KNL systems. In each processor,

OpenMP threads parallelize the computation of each part of the network assigned to
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the processor. Multiple MPI ranks spawn per node; each MPI process spawns a number

of OpenMP threads, such that the total number of OpenMP threads spawned across all

MPI ranks of each node equal to the maximum amount of threads capable of running

concurrently on the KNL (256, as discussed in Section 4.3.1). Figure 4.20 describes the

design of a hybrid implementation on such a system.

On an algorithmic level, OpenMP threads operate on different parts of the neuronal net-

work. Each neuron in the network is assigned to a single thread in order to be processed.

Each thread handles an equal number of neurons, in order for the computational work-

load to remain balanced. Each neuron in the network is connected to others (except for

special cases of zero connectivity) via the modeled Gap Junctions. This mechanism ne-

cessitates the usage of MPI collective communication in order to exchange data between

processors that do not share memory. The amount of communication traffic between

MPI ranks, whether on the same or on different KNL processors, depends on the amount

of neurons in the network and the network’s density, which indicates the average number

of GJs each neuron has established.

During the simulation of any given neuronal network, each MPI rank is responsible for

the message-passing needs of its assigned subnetwork, which is processed in parallel by 64

threads. This procedure can be divided in two sub-processes: sending and receiving MPI

messages. In each simulation step, Gap Junctions need the dendritic membrane voltage

levels of the participating neurons in the connection in order to be computed. The MPI

rank satisfies the other ranks’ needs by packing the necessary values in a buffer after

OpenMP thread calculations. The buffer is then distributed by using MPI’s broadcast

function (MPI Bcast). The upper limit for this data-exchange instance happens when

each MPI rank needs to broadcast voltage values for each neuron they handle.

The specific amount of threads spawned by each MPI rank (64), in conjunction with the

amount of MPI ranks spawned on each node (4), was determined after a brief evaluation

of the optimal configuration on a KNL. Figure 4.21 depicts the exploration of these

parameters. The simplest implementation would spawn one rank in each KNL die and

attribute all of the 256 available OpenMP threads to the single MPI rank. However, a

brief design space exploration reveals that this is not the optimal configuration point

for the KNL. While multiple configurations where the number of MPI ranks per die are

kept low are viable, spawning 4 MPI ranks per die is suitable for all types of networks

tested in this thesis. In particular, a single MPI rank exhibits slightly worse performance

than spawning 4 MPI ranks per die when handling larger workloads, which are naturally

more demanding; as such, 4 MPI ranks per die becomes the selected configuration point

for the simulator.

After the MPI rank completes its MPI Bcast function, it receives the other MPI ranks’

broadcasts. The contents of each received buffer are processed by spawning 64 OpenMP

threads which operate on the buffer in parallel. In the worst-case scenario of 100%

connectivity density, each of the 64 threads needs access to the full content of the
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Figure 4.21: Exploration of KNL’s performance under different configurations of hy-
brid MPI-OpenMP clustering granularity. Three different networks of varying degrees
in neuron population size and density are examined for 100 milliseconds of simulated
brain time. We alter the amount of MPI ranks spawned on a single KNL processor.
Configurations employing a small amount of MPI ranks exhibit superior performance.
In particular, using 4 MPI ranks spawning 64 OpenMP threads offers good, reliable

performance for all neuronal networks.

received buffers; in this case, each rank gets updated on the entirety of the rest of the

network in every simulation step. Following the processing of the received data buffers,

the calculation of Gap Junctions, as well as the neuron compartmental states, can be

carried out by the threads. Upon completion of these calculations, the OpenMP threads

are joined, thus ensuring that the network state update is complete and ready to be

processed in the next simulation step, which begins with a new MPI Bcast function

from the MPI rank.

4.4.2 Scaling Considerations

Multinode manycore systems are complicated. Analysis and pattern-detection for a

heavy data-exchanging application, such as a Hodgkin-Huxley-model-based neuron sim-

ulator, is a challenge on such a system. We will first discuss impact factors that heavily

influence the simulator’s performance under different workloads and configurations. We

will, then, discuss our experimental results with these factors in mind.

There is a price all manycore systems pay for utilizing their resources in parallel. Spawn-

ing and joining software threads and/or tasks, via the usage of libraries such as the
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OpenMP, requires an amount of preparation and core-time that constitutes a non-

negligible overhead. In addition, unless examining an embarassingly parallel applica-

tion, parallelization resources of the manycore platform require synchronization at cer-

tain “checkpoints” in the algorithm. Simulations of biological neuronal networks entail

exchange of bio-signals, which invariably result in some way of thread communication

when using a manycore system with a shared memory hierarchy. Increasing the detail

and complexity of the model scales the amount of such bio-signals the application simu-

lates; as such, the biophysically realistic model studied in this paper is highly demanding

in synchronization when employing a complicated, dense neuronal network.

In addition, contemporary manycore processors feature a wealth of parallelization re-

sources for threading and vectorizing code. The KNL, for instance, by utilizing AVX-512

instructions by all of its available threads, can potentially execute more than 10, 000

floating-point operations in parallel. This parallelization potential requires a suitable

workload in order to be properly utilized. Since the simulator’s unit of operation is the

single neuron, a network’s population size is bound by a lower limit; simulations under

this size limit cannot be expected to utilize all of the manycore’s assets, especially when

investigating multinode systems.

As a result, under-utilization of the platform’s resources can severely hinder the plat-

form’s performance during a biophysically-complex simulation. The manycore proces-

sor’s parallelization assets go under-used, while still causing overheads of spawning/join-

ing tasks. Even if the simulation is large enough to feature high degrees of asset utiliza-

tion, stiff models, such as the one examined in this paper, enforce data synchronization

between threads in every simulation step, further reducing the efficiency with which the

processor’s hardware is employed. In conclusion, in order to attain acceptable efficiency

when using manycore processors such as the KNL, each of its threads need to be assigned

with the computation of a suitably large workload.

As far as data exchange between nodes is concerned, MPI-like communication between

the nodes in a multinode system is materialized through Infiniband. This type of commu-

nication poses a significantly heavier overhead than intra-node synchronization processes

do. As such, locality of data exchange between neurons in the simulator is particularly

important. Real neurons in the brain exchange current (data) by being physically ap-

proximate to each other; this translates well for locality in the hardware. By partitioning

the network in clusters of neurons which are physically close to one another, most mes-

sages between those neurons stay intra-node, avoiding using MPI functions to other

cores or processors.

As a result, simulations that do not allow for an efficient partitioning of the network

in local sub-clusters will exhibit significantly less scaling potential. When examining

different distributions for the network’s connectivity map, it becomes evident that the

overhead of inter-node communication is a limiting factor for utilizing multiple processors
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Table 4.1: Parameter Space

Variable Name Value Range

Network Size 1,000 - 2,000,000 nrns
Network Density 0 - 1,000 syn/nrn
Synaptic Pattern Uniform and Gaussian
KNL Nodes Used 1 - 8 nodes

Range of explored parameters in this paper. The Table details network configurations
considered, as well as the amount of hardware used during simulation.

if connections are spread out throughout the network. These types of networks can be

hard to partition in an effective manner.

4.4.3 Experimental Evaluation

In order to evaluate the performance of the proposed simulator, a number of simulated

runs in neuronal networks were conducted, ranging widely in connectivity patterns,

density and size. The goal of this evaluation is to highlight the factors that significantly

impact the scaling capacity of the multinode implementation. To this end, a wide range

of network configuration points were evaluated. It will be shown that, for multinode

manycore configurations, an aspect of the network that has been mostly unmentioned

thus far in this thesis, as well as in the existing literature, is of significant impact on

performance: the distribution of connections throughout the network. This particular

parameter will shape how the experiments are structured. The setup of the multinode

implementation evaluation follows in the next Subsection.

4.4.3.1 Experimental Setup

We organize neurons in a 3-dimensional grid. For exploring the impact of network

topology, we explore two different (and naturally occuring) distributions: a uniform

distribution of synapses in the network; and a Gaussian distribution of synapses where

neurons in proximate positions on the 3D grid are significantly more likely to form a

bond. The differences of these distributions are visualized (in a 2D grid, for ease of

reference) in Figure 4.22.

These distributions represent different patterns of connectivity in the biological brain;

neurons may exhibit local synaptic connectivity, as in the case of neocortical pyramidal

neurons [182], while long-range synaptic patterns can also play an important role in

neuron functionality [183]. Moreover, by exploring different connectivity patterns, it

will be evident that synapse distribution affects performance in a definitive manner.
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Uniform Distribution Gaussian Distribution

Figure 4.22: Depiction of two different 7x7 2D neuron-meshes. In each case, the
neuron in the center of the mesh forms 10 connections; the leftmost mesh follows a
uniform distribution, whereas the rightmost features a Gaussian distribution. Uniform
distribution creates spread-out connections, whereas the Gaussian distribution keeps
the connections closer to their point of origin (i.e. neuron in the center of the mesh).

Networks are tested on varying degrees of size, as summarized in Table 4.1. The smallest

networks evaluated are formed of 1,000 neuron populations, whereas the largest are

comprised of 2 million neurons. For exploring the impact of connectivity density, various

(fixed) amounts of synapses per neuron have been used; configurations of no-connectivity,

10, 100 and 1,000 synapses per neuron are tested. These particular configuration points

match (and surpass) connectivity as encountered in biological inferior olivary nucleus

and aim at revealing the simulator performance trends under increasing network density.

The measurements utilize the standard gettimeofday() C-function in order to evaluate

execution time for the simulation of the network after it has been set up. In these

measurements, input and output have been restricted to a minimum in order to measure

pure simulation execution time. The experiments simulate 100ms of brain time. Since

this is a time-driven simulator with a steady, incompressible time-step of 50µs, brain

activity during simulated brain time is not relevant to the simulator’s performance, in

contrast to event-driven simulators, whose performance is affected by neuronal spike

generation frequency.

In addition to differing network sizes, connectivity policies as well as densities, we per-

form scalability experiments by employing multiple KNL nodes (1, 2, 4 and 8), with

hardware assets as described in Section 4.3.1 and configured as in Section 4.4.1. A de-

tailed discussion on the scaling behaviour of the multi-KNL implementation is thus, also

included in this evaluation.
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Figure 4.23: Special use case of the simulator operating on non-connected networks.
The neurons oscillate in a solitary environment. Due to the absence of communication
between the cores’ assigned subnetworks, this use case can be considered as one of
the best cases for parallel processing from a scaling perspective. Utilizing increasing
amounts of hardware scales simulation speed in an efficient manner; network simulation
for 2 million isolated neurons requires execution time that is within the same order of

magnitude as real time.

4.4.3.2 Experimental Evaluation

We will present the results of the experiments carried out for this paper and assess

the simulator’s performance. We will analyze the behaviours exhibited in each case by

referring to the factors impacting the manycore processors’ performance, based on the

discussion relayed in Section 4.4.2.

Figure 4.23 depicts the special case of networks without the forming of GJ connections.

In these cases, neurons operate in isolation to each other in the network. The absence of

GJs relaxes communication needs as it translates to a lack of need for synchronization

between OpenMP threads and communication between MPI ranks. Furthermore, the

special conditions for these types of simulations permits the KNL to utilize its low-

latency memory assets without overheads from the MESIF cache coherency protocol.

Finally, there is also a considerable reduction in computational needs since the processor

skips the calculation of the GJs in each simulation step, which would otherwise take up

a major portion of CPU time.

These factors combined lead to overall low execution times which differ from real time

by less than two orders of magnitude even for populations of 2 million neurons. Each

performance curve in Figure 4.23 exhibits similar trends. The initial part of the curve,

which corresponds to low-population networks, is flat, since these simulations are “low-

effort” and under-utilize the hardware’s assets. This trend extends to higher-population
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Figure 4.24: Study of simulated networks following a uniform distribution of Gap
Junction bonds. In this scenario, neurons show no preference over which neuron they
form a bond with, resulting in GJ bonds being uniformly distributed across the en-
tirety of the network. In this fashion, the application’s performance and scalability
is hindered due to data messages being exchanged between cores, especially between
those belonging to different KNL machines. As such, only a small degree of speedup is
attained by employing two KNL nodes instead of one. Furthermore, no further gains

are observed when scaling to more hardware, particularly for heavier workloads.

networks as more KNL processors are added to the simulator. On the other hand, when

simulating larger neuronal networks, there is a linear increase in simulation speed as the

number of KNL processors used grows. These observations are consistent with how an

application with minimal communicational needs should behave.

The uniform distribution of connections in the network, depicted in Figure 4.24, is the

worst-case scenario for the simulator. In this method of distributing each neuron’s

connections over the network, every neuron pair has a uniformly equal chance of being

created. When examining a network of n neurons, each forming g connections, a neuron

pair, regardless of its location in the network, has a probability p = g/n of being formed.

Furthermore, if the network is simulated by c cores, then each core is tasked with

simulating n/c neurons and g × (n/c) GJs. Due to the uniform distribution of these

Gap Junctions, the core stores data locally concerning only n/c neurons, thus lacking

data necessary for the computation of (g − 1) × (n/c) GJs. This scenario causes the

simulation to be very “heavy” on utilizing MPI collective functions for data exchange.

Memory accesses degrade the simulator’s performance further, since L1 and L2 caches

are unlikely to hold necessary data, forcing processor’s cores to search in non-local caches.

This information explains the unsatisfactory performance exhibited by the simulator in

Figure 4.24. The application scales poorly, particularly when utilizing 8 processor nodes.

Due to the system’s lack of scalability, measurements of only up to 1 million neurons

are depicted. Larger network populations cannot be simulated effectively, regardless of
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the amount of hardware utilized. The performance curves of 8 KNL nodes in Figure

4.24 demonstrates that for larger networks, execution times show a sharp increase and 8

KNLs perform worse than a single-node system, rendering the option of adding further

hardware to the system ineffective.

The application’s performance curves are significantly erratic and hard to interpret in

this distribution case. A critical factor that determines simulation speed is the overhead

of MPI collectives imposed during inter-node communication, as mentioned before in

Section 4.4.2; this factor grows more dominant as the amount of machines employed

during a simulation run increases. For any experiment consisting of a network of l GJs

run on k different KNL machines, each processor needs to simulate the functionality

of l/k GJ. The processor holds data capable of completing the calculation of a GJ

without inter-node communication for l/k2 GJs. Thus, the ratio of “expensive” inter-

node communication versus “cheaper” intra-node data exchange directly correlates to the

amount k of processors used in the case of uniform distributions of neuron connections.

In addition, Figure 4.24 shows a qualitative difference between the performance curves

of dense networks with 1,000 GJs per neuron versus sparser networks. Dense networks,

which exhibit a naturally heavier workload than sparser networks, depict a better ten-

dency to benefit from using 2 KNL nodes over opting for single-node implementation.

There is a small, but noticeable speedup for million-neuron dense networks, which is

absent for similar in size, but sparser in connectivity populations.

This behaviour can be attributed to the fact that in our simulator, data exchange

between MPI ranks takes place with collective communication functions. MPI ranks

exchange bundles with relevant dendritic voltage data concerning their respective sub-

networks. In each simulation step, the MPI rank “builds” the bundle with data from

neurons in its assigned subnetwork. A neuron in said subnetwork will be added to the

bundle as long as there is a single GJ calculated by another MPI rank which needs this

datum. Thus, in the case of uniform distribution, the probability of a neuron being

added to the bundle grows quickly with the average amount of GJs formed by each neu-

ron and “caps off” to 100% even for sparsely connected networks. When this probability

reaches 100%, each MPI rank exchanges all of its subnetwork’s dendritic data in each

simulation step. In these cases, the maximum amount of data exchange between MPI

ranks is achieved and, as explained, these cases are present even for networks of sparser

density.

In conclusion, both sparse and dense networks must circulate large amounts of GJ-

related data through the KNL’s communication channels, both intra- and inter-node.

However, denser networks have significantly more operations to perform in order to

calculate GJ states, after acquiring all of the necessary data. These calculations happen

in parallel, thus benefiting from employing more hardware and ultimately favour 2-

KNL implementations over single-node. This benefit is “hidden” when employing more

than 2 nodes due to “heavier” penalties to performance from communication-related
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Figure 4.25: Evaluation of the simulator’s performance when computing networks of
varying size and density. The network’s connectivity map follows a Gaussian distri-
bution. Neurons are imagined in a 3D space and form Gap Junction bonds between
them. The likelihood of a neuronal pair forming is based on their proximity in the
3D space. The simulator’s performance is evaluated when utilizing 1, 2, 4 and 8 KNL
machines. Scalability is boosted by a significant factor due to the greater data locality.
For large enough workloads, simulation speed increases in an almost linear fashion with
the amount of hardware employed. Smaller speedups are attained for sparser, smaller

networks.

overheads. It should be noted, however, that the performance curves of both sparse

and dense networks follow the same trends when moving to 4-KNL simulations and that

sparser networks show worse degradations in performance than the heavier experiments.

The most realistic case of network connectivity, based on how real neurons in the inferior

olivary region band together to form Gap Junction connections, is evaluated in Figure

4.25, where neuronal proximity plays an important role in synapse forming according

to a Gaussian distribution. A quick observation of the logarithmic Y-axis in the figure

reveals that this scenario displays a decrease in overall execution times by nearly an

order of magnitude when compared to the worst-case scenario of uniform distribution

in Figure 4.24.

In this use case, a satisfactory amount of locality in message exchange is achieved by

clustering neurons according to their coordinates in the 3D-mesh. Neurons within a small

range of Cartesian distance are assigned to the same core. According to the Gaussian

distribution, this allows the core to calculate most of its GJs without referring to external

data, since most (but not all) of its neuron connections link to other neurons handled

locally by the same core. Hence, we limit the amount of messages exchanged between

cores intra- and inter-node, as well as reduce memory access latency by maximizing local

cache usage.
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Due to the favorable distribution, utilizing a multinode implementation yields positive

results. There is a considerable speedup by adding more Knights Landing processors to

the larger simulations. High efficiency is maintained for workloads that approach the

100k neuron-population mark in the case of dense network with 1k synapses per neuron.

On the other hand, smaller networks do not exhibit favorable results when moving from

single-node to multinode implementations. More specifically, Figure 4.25 shows that

there is a clear slowdown when employing 8 KNL nodes for relatively small networks of 5k

neurons or less, when compared to the single-node’s performance curve. Furthermore, an

8-KNL implementation for small and dense networks shows an improvement in execution

speed when increasing the neuronal network size from 1k to 10k neurons.

These findings can be attributed to the factors mentioned in Section 4.4.2. When using a

group of 8 manycore processors and spawning a large number of threads per processor,

each capable of executing vectorization instructions, underutilization of the hardware

assets causes considerable overheads that deteriorate performance based on how un-

derutilized the processors are. This causes the simulator to execute larger neuronal

networks faster, up to the point where the hardware’s assets are utilized efficiently. The

point at which the system’s resources are saturated depend on the amount of processors

used, as well as the network’s density. Denser networks show a clearer, more impact-

ful saturation point, as shown by comparing the performance curves of 100 versus 1k

synapses per neuron. Furthermore, saturation is reached earlier when employing less

manycore nodes due to less available resources to the system. When examining the

performance curves of the densest network configurations in Figure 4.25 (as noted with

a golden yellow line), 2 KNL nodes retain stable execution times until the 5k neurons

mark, whereas 8 KNL nodes show a true increase in execution times only past the 50k

neurons mark.

Another point of interest is a super-linear speedup when moving from a single-node

system to a 2-KNL configuration for 2 million neurons and 2 billion synapses. This

behaviour can be attributed to an increase of available low-latency assets. When using

additional nodes of computational fabric, in addition to enhancing the system’s potential

parallel processing power, its total cache space (as well as the KNL’s MCDRAM in our

particular setup) is also expanded. By allowing a larger, if not whole, part of the network

to be allocated in low-latency memory space, super-linear speedup can be observed in

manycore multinode systems.

The multinode implementation allows the simulation of up to 2 million Hodgkin-Huxley-

based neurons and 2 billion Gap Junctions for 100ms within two minutes. As such,

even in the case of the heaviest workload tested in this paper, the simulator exhibits

a simulation speed that differs from real time by two to three orders of magnitude.

In addition, networks of 5k neurons and 500k Gap Junctions, which represent sizable

experiments in neuroscientific research, can be simulated in a single node at a rate

that approaches 30-50% of a real brain’s operational speed. Thus, the simulator can



Chapter 4. Scaling the Neuromodelling Application 82

Neurons

Sy
n

ap
se

s 
/ 

N
e

u
ro

n
Processors

Used

Uniform
Distribution

Gaussian
Distribution

Figure 4.26: Footprint of suggested implementation for simulated networks of varying
sizes and connectivities. The colourmaps depict the amount of processors providing the
best simulation speed for networks of uniform (panel a) and Gaussian (panel b) synap-
tic patterns. Single-node implementations dominate networks with uniform synaptic
distributions due to poor scalability. In contrast, the case of Gaussian synaptic distribu-
tions varies with network density: highly dense networks require the maximal number

of KNL nodes, whereas lower densities can be tackled with less nodes.

calculate workloads both light and heavy at satisfactory speeds; the single-node approach

is recommended for smaller workloads, while multinode implementations are preferred

for demanding networks.

4.4.4 Resource Allocation

One of the focal points in this paper is the concept of matching hardware utilization to

the workload that requires calculating. The suggested amount of hardware to deploy

for each network simulation varies according to network size and its corresponding con-

nectivity map. By using data collected from the experiments presented in Section 4.4.3,

with parameter ranges described in Table 4.1, Figure 4.26 depicts a general guideline

for allocating the minimal KNL instances necessary for achieving the best possible per-

formance for workload instance. The Figure exhibits a number of interesting patterns.

Figure 4.26a depicts suggestions for networks with uniformly distributed connection

patterns. We observe that uniformly-distributed connectivity maps force the simulator

to become completely communication-bound, due to model complexity. These types of
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network benefit mildly from 2-node implementations, while employing more hardware

often yields no improvement. Figure 4.26 shows that only networks with populations

larger than 500,000 neurons and connectivity patterns denser than 100 synapses per

neuron (thus, totalling more than 50 million synapses in the network) have an optimal

configuration point of 2 to 4 processor nodes. In other cases, single-node implementations

are recommended due to poor scalability.

Figure 4.26b maps networks with connection patterns following a Gaussian distri-

bution. We come to the following general conclusions. The notion that neighbouring

neurons are more likely to form bonds leads to significantly more scalable network con-

figurations. Connectivity maps based on the Gaussian distribution expose data locality

better and support utilizing multiple KNL nodes. Figure 4.26 shows multiple network

configuration points where the maximal tested amount of processors is optimal for sim-

ulation speed. In this paper, up to 8 KNL processor nodes have been employed due

to availability (as noted in Table 4.1); a larger amount of processors may yield further

boosts to simulation speed.

Furthermore, network density directly correlates to the prevalence of cases where multin-

ode allocations are recommended. For example, in Figure 4.26b, networks featuring 10

synapses per neuron are suited for single-node solutions when population count is less

than 100,000 neurons. On the other hand, when network density approaches 1,000

synapes per neuron, network sizes of more than 10,000 neurons merit multinode config-

urations. This behaviour can be attributed to the fact that network density affects the

amount of floating-point instructions issued per simulation step; by increasing network

density, the computational workload becomes heavier and thus, can be calculated more

effectively by employing larger amounts of computational resources.

Both panels in Figure 4.26 show that when network sizes are large while network

synaptic count is low, the neuromodeling problem becomes an embarassingly parallel use

case and utilizing a high amount of processors is recommended. Small, dense networks

benefit from single-node allocations, otherwise computational resources are effectively

wasted and simulator performance suffers.

Networks featuring low synaptic connectivity maps behave in a similar fashion, since

there is negligible communication overhead for the simulator. In both panels of Figure

4.26, multi-node configurations are encouraged when simulating less than 10 synapses

per neuron in the network. This claim is challenged, to a degree, when simulating

very high population counts (more than 500,000 neurons), since even a small amount of

synapses per neuron can impose a non-trivial communication overhead.
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4.4.5 Workload Parameters

It is clear that fully understanding the performance patterns exhibited by a biologically-

accurate multinode simulator is not a trivial task. The simulator presented in this

paper works on x86-based processors, which are very well-documented and have been

extensively studied. Furthermore, in this paper, the parameter space we explored relates

to network size, density and connectivity distribution, as described in Table 4.1. In

this strictly-defined parameter space, the simulator behaviour, as depicted in Figures

4.23, 4.24, 4.25 and 4.26, clearly shows that even small changes to its parameters can

have a large impact on performance. Furthermore, this phenomenon is exacerbated by

increasing the amount of available computational resources.

Since predicting simulator behaviour in any given parameter space is hard, one is en-

couraged to create maps similar to the one featured in Figure 4.26, in order to discern

emerging trends. Such maps aid in choosing simulator configuration for future research

in related areas. This map generation process can be efficiently deployed in a Cloud

setting. Cloud services lend themselves to performing parameter-space explorations by

offering processing resources that can be otherwise difficult to access [184, 185]. In

addition, the resources can be scaled to match problem size in a cost-efficient manner.

Furthermore, when mapping simulator behaviour, one is encouraged to increase the

scope of parameter exploration as much as resource availability allows. In this manner,

the generated map is more effective at conveying hints related to simulator behaviour

trends. As an example, panel a of Figure 4.26 partially resembles the image that panel b

depicts for networks of 1,000 to 20,000 neurons. It is possible that by further increasing

the network size, trends that are already visible for Gaussian-distributed connectivity

maps become manifest in uniformly-distributed maps as well. This could be attributed

to the fact that uniformly-distributed networks face larger inter-node communication

penalties; as such, they would require computing heavier workloads before additional

computational resources prove to be beneficial.

A fundamental problem with extending parameter size is that heavier workloads demand

larger execution times to be calculated. This, in turn, implies longer simulation times

for evaluating optimal simulator configurations (here: number of nodes). Given that,

for this type of cycle-accurate models, simulator behaviour remains largely stable after

a small amount of warm-up steps is performed. Thus, it can be beneficial to reduce the

amount of simulation steps and increase the range of parameters explored.

4.5 Summary

This Chapter describes the modernization of the simulator work on state-of-the-art

manycore processors. We have ported the biophysically-accurate simulator of the inferior
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olivary nucleus, previously exhibited on the experimental single-chip cloud computer,

on a single-node Xeon CPU and Xeon Phi system. The selected simulator serves as

a significant benchmark for parallelization and scaling of biologically-plausible neuron

modeling workloads. We have evaluated three native implementations on the target

system: an MPI-based, an OpenMP-based and a combination of both.

MPI is consistently the worst choice for the Phi accelerator. Its poor performance

was expected due to the implementation’s inability to utilize the platform’s valuable

multithreading capabilities. OpenMP exhibits the best performance for any problem

size. The hybrid implementation is an improvement over MPI and for larger networks

(≥ 104 simulated neurons), its performance approximates OpenMP’s results. Since this

porting method is designed as easily scalable to multi-node systems, this is an interesting

finding when aiming at large network simulations.

On the Xeon host, small differences across implementations were observed. OpenMP

remains a more suitable choice for small networks. However, its performance can vary

wildly depending on network size and, when simulating more than 105 neurons, an

MPI implementation is preferred. The hybrid implementation offers little benefit and a

strictly MPI or OpenMP porting option is advisable here. Before manual vectorization,

the Xeon host offered better performance than the Phi co-processor and successfully

scaled up to networks of a million inferior olivary nuclei with normal distribution of

inter-neuron connections.

Since the shared-memory implementation was proven to be the most effective option,

it was subsequently further optimized, with an emphasis on vectorization performance.

A combination of pragma directives, function inlining and specific memory allocation

functions, specialized for cache line alignment, was used. These techniques are applicable

to any codebase and form the basis of vectorizing any application. Following these

alterations, modifications that were specifically aimed at the simulator’s algorithm were

employed.

A sizeable increase in attainable simulation speed was achieved for workload sizes that

were eligible for vectorization. Overall, these techniques were beneficial for both the

accelerator and the host. In particular, for networks that are large and densely-connected

enough to saturate the Phi’s assets, the difference in performance between manually

vectorized code and un-optimized code that relies solely on the compiler is an order of

magnitude. After applying these techniques, however, the platforms perform differently

depending on network connectivity density. Sparse networks are a good candidate for

acceleration via the Phi co-processor’s large pool of computation resources. Furthermore,

dense networks feature a range of populations between 5, 000 and 50, 000 neurons where

the co-processor can use its computational resources to outperform the host. On the

other hand, the host’s focus on single-threaded and scalar performance is a better fit for

dense networks outside this range due to their less well-parallelizable nature.
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Thus, we can endorse the usage of these optimizations on codebases that resemble the

algorithm, connectivity patterns and problem sizes encountered in the InfOli modeling

application; it is also worth noting that significant development time was necessary to

draw out the computational effectiveness of the Xeon Phi.

The application was then ported to the second generation of Xeon Phi, the KNL, a more

commercially mature product. The simulator’s performance was tested using a range of

workloads, from small, unconnected neuronal populations to larger, dense networks. The

results were evaluated from both a simulation-speed and a power-efficiency standpoint.

On average KNL offered a speed up of 2.4× while consuming 48% less energy. Smaller

workloads, by taking advantage of the KNL’s superior single-threaded performance,

exhibited very significant gains in both speed and, even more so, energy consumption,

with specific experiments demanding 75% less Wh of energy per second of simulated

brain activity on the KNL. On the other hand, OpenMP-thread efficiency suffered when

running on the KNL, causing the simulator to handle more demanding networks poorly,

relatively to the extensively optimized KNC version. Furthermore, throughout the whole

range of experiments, it has been shown that the KNL offers a more robust, dependable

performance curve with little variability.

Concerning the multinode implementation of the simulator on the KNL, a system setup

of 8 processors was chosen to evaluate performance. The work highlighted that efficient

usage of a small cluster of manycore processors, such as the system used, was able

to achieve satisfactory performance even when facing a very demanding mathematical

model of the human neuron, in network and synaptic sizes numbering in the millions

and billions, respectively. It constitutes an efficient solution for studying demanding

neuronal models in a pursuit of attaining deeper understanding of the human brain’s

intricate details.

Furthermore, it has been demonstrated that a biologically-accurate simulator exhibits

performance patterns that are dictated by problem size and the nature of each network’s

connectivity map. A point of focus particularly in this Doctoral thesis was the system’s

multinode scalability; the system is highly sensitive to simulation parameters and as

such, careful steps need to be taken in order to discern trends in performance behaviour.
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Heterogeneous Neurocomputing

5.1 The Case for Heterogeneity Today

The world of neuroscience has nurtured a vast variety of different computational work-

loads to tackle. As seen in Section 2.1, there is a significant amount of different ap-

proaches to modelling neurons and their respective networking behaviour. Furthermore,

neuronal experimentation operates on different scaling levels. There are potential users

of neuronal simulation software who are primarily interested in real-time simulation of

smaller networks. On the other hand, different projects also concern themselves with

large-scale simulation of brain-wide phenomena, as well as the elaborate challenge of

connecting neuronal networks modelling different parts of the human brain.

Even though modern HPC platforms can often deal with such challenges, the vast di-

versity of the modeling field does not permit for a homogeneous acceleration platform

to effectively address the complete array of modeling requirements. As this thesis has

established thus far, different workloads require different approaches. As such, a case

can be made for heterogeneous platforms being a more suitable solution to the prob-

lem of designing a widely-used, multi-purpose neuronal simulator, particularly for the

demanding class of complex, biophysically meaningful models.

The point of heterogeneity in computational platforms can also be argued for challenges

of different domains. Python-based mathematical packages exist for heterogeneous sys-

tems supporting linear algebra [186], offering good performance for a system based on

an interpreted language. In graph theory, hybrid methods utilizing multicore CPUs

and GPUs according to the nature of the explored graph have been proposed [187].

Tree-structured index search in databases is a challenge that has been attempted to be

resolved in a combination of CPU and GPU systems [188]. More recently, the funda-

mental problem of rigid body simulation in physics engines for games and animation,

has been approached via a solution utilizing both the assets of the CPU and the GPU

of desktop computers [189]. In the field of pore-scale modeling, flow dynamics can be

87
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simulated and evaluated using distributed, hybrid computational systems of CPU and

GPU [190]. Hybrid systems involving FPGAs, as well as multicore CPUs and GPUs,

have been utilized in the domain of online security [191], cryptography [192] and deep

learning [193].

With these points in mind, it stands to reason to claim that heterogeneous computing is

a well-established approach that can help tackle the wide variety of workloads present

in the world of computational neuroscience. As such, it is important to further develop

further the simulator presented in Chapters 3 and 4 in order to be a more inclusive, het-

erogeneous tool capable of handling experimentation needs in the field of neuroscience.

5.1.1 Challenges

The adoption of heterogeneous computational platforms introduces difficulties that have

not been met in a definitive manner yet. As an ensemble of radically different hardware,

each computing fabric requires a different approach and coding paradigm. This fact leads

to obstacles in designing an application that can run on the entirety of the heterogeneous

system and utilize its assets efficiently. In neuroscience, another factor that impedes the

design of an all-purpose neuronal simulator is the wide range of still-developing modeling

efforts, which impose different constraints on performance based on the nature of the

workload.

Depending on the desired model characteristics, we identify two general types of sim-

ulations that are relevant in neuroscientific experiments. The first one has to do with

highly accurate (biophysically accurate and even accurate to the molecular level) mod-

els of smaller-sized networks that requires real-time or close to real-time performance.

These kinds of experiments can be used with artificial real-time set-ups or brain-machine

interfaces (BMI) and are closely related to brain-rescue studies (TYPE-I experiments).

The second type involves the simulation of large- or very large-scale networks in which

accuracy can often be relaxed. These experiments attempt to simulate network sizes

and connection densities closely resembling their biological counterparts (TYPE-II ex-

periments) [124] [194]. This, in combination to the variety of models commonly used,

makes for a class of applications that vary greatly in terms of workload, while also,

depending on the case, requiring high throughput, low latency or both. A single type of

HPC fabric, either software- or hardware-based cannot cover all possible use cases with

optimal efficiency.

A better approach is to provide scientists with an acceleration platform that has the

ability to adjust to the aforementioned variety of workload characteristics. This hetero-

geneous system, integrating multiple HPC technologies, instead of just one, would be

able to provide such flexibility. In addition, a framework for a heterogeneous system

using a popular user interface for all integrated technologies can also provide the ability

to select a different accelerator, depending on availability, cost and performance desired.
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Such a hardware back-end must overcome additional challenges to be used in the field.

It requires a front-end which should provide two crucial features: an easy and commonly

used interface through which neuroscientists can employ the platform, without the con-

stant mediation of an engineer and a front-end that can reuse the vast amount of models

already available to the community.

Developing and executing experiments with neuronal network models is a very rigor-

ous process since experimenting with the models presupposes their careful fitting to

experimental data. The neuroscientist should be able to interface with the acceleration

platform directly, which is not a standard practice today and incurs significant delays

in the research process. Lastly, the ability to program the accelerator platform in com-

monly used coding languages and the portability of legacy code, is essential for wide

adoption of the HPC technologies by the community.

5.1.2 HPC Projects for Heterogeneity

A number of funded HPC projects attempt to provide frameworks for easing the adoption

of heterogeneous systems, in order to combat the challenges mentioned in the previous

Section. Vineyard [195] has the main goal of increasing the performance and energy effi-

ciency of data centres by utilizing the advantages of heterogeneous ensembles of hardware

accelerators. An important contribution to the cause is the development of a high-level

programming framework and big-data infrastructure for allowing easy utilization of het-

erogeneous computing systems [196, 197]. Overall, the project focuses on the integration

of FPGAs, which lack in ease of adoption, in data centers and computing clusters and

promotes software for managing and coding on heterogeneous infrastructures, including

FPGAs.

TANGO [198] uses an approach that simplifies the creation and operation of next-gen

software by hiding the complexity between the distributed/parallel architecture level

and the level of application/software. Furthermore, they expose performance, energy

and other requirements of software applications to be incorporated into the overall de-

velopment and deployment process, enabling programmers to code and resource man-

agers execute being energy-aware. Overall, TANGO makes a compelling case concerning

utilization of a heterogeneous system from an efficient power-consumption perspective

and presents a framework for achieving energy efficiency at application construction,

deployment, and operation.

OPERA [199] also directs its efforts towards hard constraints on low power consump-

tion and proposes methods of modifying software to take advantage of a heterogeneous

architecture in order to achieve efficient computation energy-wise. The proposed ap-

proach is to decompose existing software and run the decomposed tasks in parallel

fashion. Each task component is analyzed for inter-dependencies with other tasks; re-

source requirements (processor speed, memory utilization) can then, be determined and
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the component can be routed to the appropriate hardware of a heterogeneous system.

This process aims at maximizing utilization of the system’s hardware. The framework

includes resource monitoring in order to perform real-time adjustments and reallocations

in the heterogeneous system [200].

A newly developed project focusing on heterogeneity and exascale computing, the project

of EXA2PRO [201] is developing a framework for the efficient deployment of applications

in heterogeneous (pre-)exascale computing systems. It focuses in the productive appli-

cation development and in enabling performance portability to address the diversity and

the increasing heterogeneity of supercomputing centers. The project focuses on produc-

tivity when deploying highly parallel applications in exascale computing systems. They

utilize a skeleton programming framework for hybrid execution on multicore CPUs and

accelerators [202]. Additionally, the project also aims to provide various fault-tolerance

mechanisms, both user-exposed and at runtime system level.

These projects, along with other unmentioned in this Section, have garnered a focus on

heterogeneous computing. A trend towards efficient usage of accelerators and their inte-

gration in large computing systems and data centres can be observed. The frameworks

described here are efforts to help meet the increase in demand of efficient development

in such systems.

5.1.3 Cloud Solutions

Having access to a system with sufficient computational resources, especially in the case

of a heterogeneous system, is not always easily achievable for a developer. Moreso in the

field of neuroscience, where traditional in-vivo and in-vitro experimentation, rather than

in-silico, is still the norm, research groups appreciate access to reliable, high-capacity

computational systems which cannot be easily found in traditional neuroscientific labs.

An option, that has been gaining traction over the last decade, for acquiring development

time on such resources are cloud infrastructures.

According to NIST [203], “cloud computing is a model for enabling ubiquitous, conve-

nient, on-demand network access to a shared pool of configurable computing resources

that can be rapidly provisioned and released with minimal management effort or ser-

vice provider interaction”. While private networks can host a computational cloud for

private usage, public providers of cloud services allow their clients the usage of their

infrastructure, usually through a web interface that is intuitive and accessible to users

specialized in field unrelated to computer science. These services can provide invaluable

access to processing power, as well as other benefits.

Cloud infrastructures are becoming an increasingly effective solution for many users to

access and develop on a large system, since launching applications on a cloud platform

is becoming swifter and easier as technology advances, with automated tools [204] and
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better-designed user interfaces lessening time-to-market. Furthermore, modern cloud

services provides tools for management of application scaling, allowing increase or de-

crease of running computing resources “on the fly”. This allows for swift capacity scaling,

matching the size of computational workload at any given moment of execution. Further-

more, cloud services provide control over booting and restarting running instances of the

application, thus providing invaluable tools for crash recovery and automation. These

benefits are supported by containerization technology [205], which provides portable,

light-on-overhead virtual environments equipped with a suite of tools tailored to each

application’s needs.

Cloud services are also a good option for gaining access to a system with diversity in

available resources. Modern cloud providers offer a variety of multiple instance types,

operating systems, and software packages. The variety in the underlying hardware

allows a selection of memory, CPU, instance storage and boot partition size that is

optimal for each application. Furthermore, cloud infrastructures have been able to

provide access to accelerators, such as GPUs (for example, Google GPU Cloud) and

FPGAs (for example, Amazon EC2 F1 instances). These factors combined make cloud

services a prime candidate for gaining access to a heterogeneous system.

As a result, cloud infrastructures provide an effective solution for having access to and

developing on large-scale systems. Cloud services, like the Amazon AWS [206], Ora-

cle Cloud and Microsoft Azure, have made their appearance in modern literature of

computational neuroscience. An EPFL-associated research group has undertaken the

task of automating the process of fitting model parameters to experimental data via

the processing power of cloud systems via NEURON packages [207]. Research effort has

undergone into utilizing cloud computing to enable easier data sharing between neurosci-

entific groups globally [208]. Furthermore, significant effort has been spent on increasing

security for Internet of Things (IoT) frameworks in neuroscientific research [209]. With

various research groups working on building secure and accessible frameworks aimed at

leveraging the processing power of the available cloud services for the neuroscientific

field, it is high time for an attempt at providing the domain with a complete service for

neuromodelling development and simulation.

5.2 BrainFrame: Bringing HPC to Neuroscience

In this thesis, BrainFrame is introduced, a heterogeneous acceleration platform that

incorporates separate distinct acceleration technologies: Intel Xeon-Phi CPU, NVidia

GP-GPU and Maxeler Dataflow Engine. The PyNN software framework (refer to Section

2.2.3) is also integrated into the platform. The framework is the fruit of collaborative

work between the author of this dissertation, my colleagues in the National Technical

University of Athens [210] and in the Erasmus Medical Centre, Rotterdam [211].
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The BrainFrame framework is designed to transparently configure and select the appro-

priate back-end accelerator technology for use per simulation run. PyNN integration

provides a familiar bridge to the vast number of models already available; the neu-

ronal models will run as-is, independently of the underlying hardware fabric, without

constant mediation by an engineer. Furthermore, the framework will be able to reuse

a large amount of models already available and commonly used by the neuroscientific

community. Finally, BrainFrame gives a clear roadmap for extending the platform sup-

port beyond the proof of concept, with improved usability and directly useful features

to the computational-neuroscience community, paving the way for wider adoption.

As a challenging proof of concept, an analysis of the performance of BrainFrame on

different experiment instances is presented, utilizing the state-of-the-art neuron model

introduced in Chapters 3 and 4, a biophysically-meaningful, extended Hodgkin-Huxley

representation. The model instances take into account not only the neuronal-network

dimensions but also different network-connectivity densities, which can drastically af-

fect the workload’s performance characteristics. The performance analysis will aim at

displaying that the model directly affects performance and all accelerator technologies

are required to cope with all the simulation use cases.

5.2.1 System Overview

BrainFrame framework aims to provide neuroscientists with a service that will be able to

adjust the target hardware fabric to be optimal to the characteristics of the simulation

(neuron model, size of the network, network density, etc.). The scientist will have access

to an easy graphical interface that he/she is comfortable (front-end) with, which will be

connected to a heterogeneous system that integrates multiple HPC technologies (back-

end). Handling the data provided by the scientist via the front-end and feeding it to

the appropriate fabric in the back-end is achieved by utilizing PyNN (middle-ware); the

generic Python-based modelling language allows for reconstructing the experimental

simulation requested by the scientist. The proposed framework will be able to pick

up the best accelerator to model under simulation such that it satisfies the cost and

performance required.

This heterogeneous system is built with scalability in mind. By utilizing resources from

a public cloud provider, such as Amazon AWS, the service can accomodate for multiple

requests in parallel. Furthermore, as shown in Section 4.4.2, simulations can be further

enhanced in efficiency and speed by utilizing more resources in each individual simulation

run; multinode simulation runs are also feasible through cloud computing.

At this Section, a rundown of the system’s layers will be presented, starting with the

integrated platforms that constitute the heterogeneous back-end which accomodate the

simulation runs. The middleware which utilizes PyNN, as well as the front-end interface

for interacting with the scientist will then be described.
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Table 5.1: Specifications of the accelerator fabrics used.

Specification Intel Xeon Phi CPU (5110P) Maxeler DFE (Maia) NVidia GPU (Titan X)
On-Board DRAM 8 Gb 48 Gb 12 Gb
RAM bandwidth 320 Gb/s 76.8 Gb/s 336.5 Gb/s
Memory streams/channels 16 15 –
On-chip memory 30 Mb (L2 cache) 6 Mb (FPGA BRAMs) 3 Mb (L2 cache)
Number of chip cores 61 – 3072 CUDA Cores
Chip frequency 1.053 GHz Depends on design kernel 1 GHz
Instructions set 64 bit n/a 32 bit
Power consumption (TDP) 225 W 140 W 250 W
IC process 22nm 65nm 28nm

5.2.1.1 Integrated Platforms

Our heterogeneous platform incorporates three accelerator fabrics; a Maxeler Maia Data-

Flow Engine (DFE) board [212], an Intel Xeon Phi 5110P CPU [1] and a Maxwell-based

Titan X GPU by NVidia [213] (Table 5.1). All there boards are PCIe-based which is how

they communicate with the host system. The three very different accelerators provide

broad enough features to cover a variety of characteristics of neuronal network instances.

Furthermore, the use of PCIe interfaces ensures that composition of BrainFrame-enabled

machines can been easily tailored on a per-case basis depending on the availability of

funds and hardware resources of a research laboratory. Different types and mixes of

PCIe-based accelerators can be selected.

The architecture of the Xeon Phi implementation has been described in detail already in

Section 4.2.2. Due to a single-node implementation that will be covered here, the design

utilizes the OpenMP implementation that was relayed in Section 4.2.2.2 and 4.2.4, since

it was proven to be most efficient option amongst other implementations in Section

4.2.3.2.

The Maia DFE is a Maxeler HPC technology based on reconfigurable hardware. Its

tool flow is designed and optimized to accommodate the acceleration of dataflow ap-

plications; that is, applications with the bulk of their implementation using purely raw

computations with the absence (partially or totally) of branching execution or feedback

paths. The Maxeler tools can exploit the nature of dataflow applications to imple-

ment uniquely massive pipelines, maximizing the throughput and overall performance.

The DFE boards also incorporate a high-bandwidth, multichannel, highly parallel, cus-

tomizable interface to the onboard DRAM memory resources (up to 96 GBs) making

it ideal for scientific applications. The DFE board used in our experimental setup is a

4th-generation Maia-DFE board implemented using an Altera Stratix V 5SGSD8 chip.

GP-GPUs have also been prominent in the HPC domain and in scientific computing in

particular. The Titan X includes 3,072 CUDA micro-cores, which are used to parallelize

computation execution, and 12 GB of on-board RAM. GPU implementations also ben-

efit from the generally good adoption of the NVidia CUDA-library open environment

that allows porting of applications with similar ease to the Phi OpenMP and OpenCL
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frameworks. GPUs also come at a relatively lower cost than the other two accelerator

types. However, as opposed to the the Xeon Phi, a GPU cannot act as its own host

increasing communication delays between host and accelerator during execution.

It should be noted that the backends depicted here should be treated as a proof of

concept. This setup has been used in order to provide a proof of concept for the value of

the framework, particularly in that heterogeneity has a case for biophysically-complex

simulation workloads, such as the one that has been developed in the previous Chapters

(3 and 4) of this dissertation and will be used to evaluate the framework. The system

is designed to utilize resources from a public cloud provider and is currently hosted

on the Amazon AWS cloud service, with expanded computational resources available.

Furthermore, the online system hosts a wide variety of models; only the InfOli model

will be used in this thesis to evaluate the system.

Lastly, it must be noted that BrainFrame is to be used in scientific research that is

very dynamic and fast-paced. The goal is not to over-optimize the different accelerator

implementations, but to propose and maintain a balance between the programming

effort and optimization needed, resulting in shorter development times for cutting-edge

research tools. In real research, such development times should be kept short so as not

to delay the scientific process.

5.2.1.2 Middleware

As mentioned in Section 2.2.3, PyNN [8] is a Python package that facilitates the in-

terchangeability and the study of different simulation environments within the compu-

tational neuroscience community . It allows for simulator-independent specification of

neuronal-network models and already supports many of the popular simulators men-

tioned in Section 2.2.2, like NEURON, NEST, PCSIM , Brian, and so on.

The PyNN API supports modeling at multiple levels of abstraction, both at the neuron

level and the network level. It provides a library of standard neuron, synapse and

synaptic-plasticity models and a set of commonly-used connectivity algorithms while

also supporting custom user-defined connectivity in a simulator-independent fashion.

We integrated the three accelerator fabrics, described in Section 5.2.1.1, as back-ends

on the BrainFrame system using PyNN as a front-end. The PyNN integration provides

the neuroscientific community with easy access on the accelerators without constant

mediation from the acceleration engineer while also providing an interface for the already

established models to be used with the new heterogeneous acceleration back-end. These

characteristics of PyNN can have decisive impact on the adoption of BrainFrame by the

community.

As a proof of concept for the front-end of the BrainFrame platform, we have added

the InfOli model the library of standard PyNN models. Following the PyNN paradigm,
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# Simulate on a DFE backend
if (ngj=TRUE) :   

execute(DFE-backend, *params);
print output;

# Simulate on a GPU backend
elif (sgj=TRUE) : 

execute(GPU-backend, *params);
print output;

 
# Simulate on a PHI backend
elif (rjg<=0.25 and 672<net_size<3840) : 

execute(PHI-backend.sh, *params);
print output;

Selecting a simulation kernel 

Figure 5.1: PyNN architecture and the proposed BrainFrame framework [5].

the user initially selects the simulator – in our case our BrainFrame simulator – and

then proceeds to select the neuron model, in our case the Inferior-Olive model. A

population of neurons using the chosen model is then generated, determining the inter-

neuron connectivity type and, finally, a projection of the specified neuronal network is

created.

The main difference between the proposed PyNN-backend substrate and the typical

simulator back-ends within the PyNN environment is an additional selection step. In

this step, a decision about which of the three alternative acceleration fabrics will be used

for a specific experiment is made, based on the available hardware and the characteristics

of the simulated neural network.

A conceptional view of the architecture of the PyNN BrainFrame module is shown

in Figure 5.1. For the simulator kernels to communicate with the PyNN frontend,

a intermediate BrainFrame-specific PyNN module (pynn.brainframe) is required that

implements and extends common methods and objects like the neuron models, synapse

models and projection methods and objects. In the case of the proposed BrainFrame

module, we implemented objects and methods: i) for the initialization of the simulator,

ii) for the description of the neuronal network in PyNN, and iii) for controlling the

simulation execution. In some cases, an additional interpreter module is needed to

translate these Python objects and parameters to each simulator’s native parameters

and language. For our system, we developed PyHet – the BrainFrame-specific Python

interpreter – which serves the aforementioned role and also implements the accelerator

selection.

5.2.1.3 Frontend and Automation

BrainFrame uses a combination of technologies in order to “tie” the underlying compu-

tational fabrics and modelling language into a reliable and expandable online platform.
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Figure 5.2: An abstract schema of BrainFrame’s Architecture.

These technologies are necessary for designing the framework as a flexible cloud applica-

tion, hosted on the Amazon AWS. They also aid with automation and recovering after

service disruption. The front-end serves as an online portal for any scientist to interact

with the framework without having prior engineering knowledge. The tools for achieving

a reliable service will be briefly presented here.

Figure 5.2 demonstrates a snapshot of BrainFrame’s state while functioning as an online

service. In this particular snapshot, four computational nodes are employed, where

three are acting as “swarm” workers and one is the “swarm” manager. In addition, ten

Docker containers [214] have been spawned; one container acts as the loadbalancer,

one container hosts the frontend service and the rest of the containers (eight) act as

backends. The Figure’s snapshot acts as an example. In this snapshot, there is only

one frontend container. However, there can be multiple replicas “living” on any node.

The framework’s client connects to BrainFrame infrastructure through the loadbalancer.

After a handshake, the loadbalancer forwards the incoming traffic to a frontend instance.

The instance redirects the client to an Auth0 authentication server in order to issue an

authentication token. Finally, the Auth0 authentication server redirects the client back

to the loadbalancer. The framework is then ready for handling the client’s simulation

requests, designed via the PyNN API mentioned in Section 5.2.1.2. Upon receiving one,
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the loadbalancer can select an optimal platform amongst those available; an option exists

for the client to request a specific computation platform. On the designated computation

node, a random backend container is assigned to execute the simulation.

The technologies that enable the Figure’s snapshot and the services described will be

briefly mentioned here.

• Application level Technologies

– Nodejs

– Traefik

– MongoDB

– Amazon S3

• Deployment level Technologies

– Amazon Ec2

– Docker

– Ansible

Docker is a containerization engine; containers can be described as “lightweight, stan-

dalone, executable packages of software that include everything needed to run an appli-

cation: code, runtime, system tools, system libraries and settings”. Each container is

spawned based on a Docker container image, which are described in special files, called

Dockerfiles, containing specific instructions for constructing the image.

Docker Swarm is a collection of computational nodes. Figure 5.2 showcases a swarm

that consists of four nodes, one of which is the manager, which directs the functionality

of the swarm, while the rest act as workers. Multiple managers can co-exist in any given

swarm; furthermore, all managers can act as workers, while maintaining orchestration

functionality.

Docker Overlay Network expands among the docker daemons of all the nodes of the

swarm. The containers of each node use this network to communicate with the containers

living on other nodes. In the current BrainFrame implementation, all containers are

connected using a single overlay network codenamed bf net. For security purposes,

bf net is not a public network but strictly an internal network.

Traefik is charged with feeding BrainFrame’s Docker Overlay Network with traffic com-

ing from the public network and acts as the framework’s loadbalancer. Traefik is the

only component of BrainFrame that has publicly exposed port, as all inbound traffic

passes through Traefik. As a loadbalancer, Traefik balances the inbound traffic amongst

multiple instances of backends, according to a specified loadbalancing strategy. In Brain-

Frame, the strategy used is named “session-affinity”. This strategy guarantees that upon
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user disconnection, the user will reconnect to the same container. Traefik also serves as

the endpoint of TLS communication; all traffic between client and Traefic is encrypted.

The SSL certificate used to achieve trusted and encrypted communication is issued by

“Let’s encrypt”, a certificate authority trusted by all popular browsers [215].

Docker Service is a collection of identical containers. A service can have zero or more

replicas of a container. A service deployed on a Docker swarm spreads its containers

on the nodes of the swarm according to rules defined by the developer. A collection of

different services is called a Docker Stack. Some of the Docker services employed by

BrainFrame are the following:

• load-balancer: a service that consists of containers running a traefik image.

• frontend: a service that consists of containers assigning simulation tasks to the

backend containers.

• backend: a service handling simulation tasks by the frontend service. There are

multiple backend services instead of a single one. These services are classified ac-

cording to the computing fabric they run on and its respective computing strength.

For instance, one backend service runs on compute-optimized processors, whereas

a different service runs on FPGA accelerators. In this manner, BrainFrame’s de-

sign allows the integration of new computing fabrics like a new collection of CPUs

or GPUs with ease, by simply spawning a different backend service.

Nodejs is a javascript framework for the creation of web applications. Nodejs instances

run in BrainFrame’s frontend containers. Nodejs integrates an application server. This

server is not directry accesed by the clients; rather, traffic is forwarded to the Nodejs ap-

plication server from Traefik. Nodejs uses npm as a package manager, which is currently

the most module-rich manager available.

MongoDB is the database used for BrainFrame, which is necessary for storing data con-

cerning clients and their requested simulation results. MongoDB is a NoSQL database.

Amazon S3 is the simplest data storage solution that Amazon AWS offers. User

scripts and experiment results are stored on Amazon S3 in order to be accessible by all

containers. Amazon S3 uses “buckets” to store data. BrainFrame creates a new bucket

for each user, using a naming convention for the bucket based on an md5 hash of the

user’s email. In each user’s bucket, her uploaded files are stored in a folder structure.

Nodejs and Amazon S3 instances communicate via a custom wrapper of the S3 Amazon

API.

Amazon Ec2 offers virtual machines of various specifications, most common of which

are:
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Figure 5.3: A screenshot of the BrainFrame online service.

• t2 and t3 which are general-purpose nodes.

• c4 and c5 which are compute-optimized nodes.

• r5, r4 and x1 which are memory-optimized nodes.

• p2, p3 and f1 which are accelerator nodes using either GPUs (p2, p3) or FPGAs

(f1).

Finally, Ansible is a tool that automates processes, called “plays”, which run on a

specified set of nodes. A play is considered complete only when all defined tasks are

carried out successfully. A set of plays can be written in a yaml-formatted file, which

Ansible refers to as the “playbook”. Ansible playbooks automate processes such as

stopping the production environment of BrainFrame, reinitializing it once completely

stopped from the ground up and performing live update of the production environment’s

image.

In order to put all of the aforementioned services into perspective, a screenshot of the

online service is presented in Figure 5.3. The user may upload his simulation scripts,

which are written in Python using PyNN, along with any auxilliary files necessary for his

experiment. He may choose amongst the available computational resources provided by

the computational cloud powering BrainFrame (which is hosted on the Amazon AWS

in the current implementation), or allow the loadbalancer to make a decision based

on the available resources and the performance cost estimator. The estimator gauges

the best-performing computational fabric out of those available in the heterogeneous

computation cloud. As it will be shown in the following experimental evaluation of the

framework, the best-performing fabric heavily relies on the specifics of the simulation

parameters.
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It should be noted that the estimator also takes the monetary cost of utilizing a specific

backend into consideration. In any heterogeneous cloud, virtual machines of different

computational capacity feature significantly different hourly usage rates. As such, the

estimator may prefer a slightly less powerful solution in terms of performance if the

projected cost of the simulation is significantly lower. The user can view the estimator’s

projected simulation cost and execution time for each available backend and make an

informed decision of his own.

5.2.2 Experimental Evaluation

In order to evaluate the performance of the presented framework, a series of experimental

simulations have been made on a variety of workloads. The evaluation will be presented

in this Section; it will be shown that significant gains in overall performance can be

attained by utilizing an heterogeneous collection of hardware.

An early evaluation of the comparative strengths of different accelerators in the presented

use case had been initially presented in the International Symposium on Performance

Analysis of Systems and Software (ISPASS) of 2016 [216]. However, part of the measure-

ments performed for the evaluation of large neuronal networks on Xeon Phi manycore

processors and presented on that paper have been later found to be contaminated. This

was caused by a bug in the algorithm generating the adjacency matrix for the networks

simulated on the Xeon Phi, resulting in inaccurate performance measurements for the

manycore processors, particularly for large networks. As such, the findings reported on

the paper of ISPASS 2016 will be omitted from this dissertation. Instead, the section will

focus on the evaluation presented in the Journal of Neural Engineering on 2017 [5], which

gave a more mature and bug-free picture of the merits of the proposed heterogeneous

framework.

5.2.2.1 Experimental Setup

In order to evaluate BrainFrame and provide a first proof of concept, we utilize the InfOli

model presented so far in this disseration. The model has been shown to be particularly

demanding in terms of processing power and inter-neuron communication and as such,

constitutes a proper benchmark for the framework’s potential. Furthermore, single-

node evaluations will be presented; in particular, for the Xeon Phi manycore processors,

a single Knights Corner processor has been used, according to the implementation shown

in Section 4.2. While more advanced implementations have been depicted in Sections

4.3 and 4.4 and will be integrated in the framework in the future, a proof of concept can

be attained nonetheless.
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To validate the correct functionality of the separate accelerator implementations, we

use a simple experiment that recreates a typical response that is found in the inferior-

olive network (axon response). In this experiment, each cell produces a spike, from

all simulated cells. 6 seconds of brain time are simulated, which translates to 120,000

simulation steps. The spike is produced by applying a small current pulse as input to

all InfOli cells at the same instance after a programmed onset, for about 500 simulation

steps (or 25 ms, in brain time). Despite being rudimentary, this experiment is easy

to validate, provided all neurons are initialized with the same state, and also gives a

good indication whether synchronization between neurons is correct, thus validating cell

interconnectivity (when present).

We identify two distinct tracks that can be followed in conducting neuroscientific ex-

periments, both covered in this evaluation. We perform one batch of measurements

ranging from 96 to 960 neurons representing small-scale, real-time TYPE-I experiments,

and a second batch ranging from 960 to 7,680 neurons representing larger-scale TYPE-

II experiments. The neuroscientific community typically considers meaningful network

sizes for experiments to start at approximately 100 neurons, thus our measurements for

TYPE-I experiments begin at 96 neurons. Since the evaluation is restricted to the per-

formance of single-node accelerators, a network-size cap is set by the smallest maximum

network supported by each of the three accelerator fabrics: in this case, the DFE fabric

limits network sizes to 7,680 cells.

The network connectivity is defined by an N ×N connectivity matrix (where N is the

network size) of floating-point weights signifying the weight of each connection. The

weight value is used in the Gap Junction computations to calculate the connection

impact on the neuron. The three use cases are focused around the biological complexity

of the modeled Gap Junctions:

1. Realistic Gap Junctions (RGJ) – InfOli cells modeled with biophysically real-

istic GJ interconnectivity as presented in the original work of De Gruijl et al [217].

The highest amount of detail is included in the GJ modeling.

2. Simplified Gap Junctions (SGJ) – InfOli cells modeled with GJs replaced by

simplified, passive connections. This constitutes a simpler connectivity in compar-

ison to the previous use case.

3. No Gap Junctions (NGJ) – InfOli cells modeled without accounting for GJs

and without any interconnectivity implementations. This is the simplest use case,

whereby the neurons are modeled as independent computational islands.

Since BrainFrame aims at being a framework which accomodates for multiple levels of

modelling detail, including a simplified version of the connectivity model in the evalu-

ation is important. The level of detail as in the RGJ case is useful for many modeling
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experiments; it is also an overkill in many other cases where simpler rudimentary con-

nections are involved, like in simple synapses that accumulate inputs. As such, lighter

workloads are represented by the SGJ case. As for the NGJ, it is the case where the

application becomes purely dataflow and can achieve the greatest parallelism possible,

representing the lightest workload with the smallest amount of floating point operations.

All performance measurements concerning the Xeon Phi have been carried out through

the VTune Amplifier XE 2015 profiling and analysis tool by Intel. Timing measurements

on the Maia DFE were taken by measuring the DFE-kernel time inlined within the host

code using timestamps before and after the kernel call. Since, the host code (in the CPU)

is blocking, only the DFE kernel is active during measurements. The time includes the

kernel execution (processing and DRAM data-exchange delay) and the activation delay

of the FPGA device. This activation takes about 1 ms, which is negligible compared

to the overall execution time that takes several seconds to several minutes in our test

experiment. GPU kernel-time measurements were taken using the CUDA Event API.

5.2.2.2 Results

Starting with the analysis for TYPE-I experimentation, in Figure 5.4a we plot the

execution time of a single simulation time-step (50 µsec) for the most demanding use

case, that of the RGJ with 100% connectivity density. Even though still not the most

common case, a brain-simulation platform must support such high interconnectivity

densities for certain TYPE-I experiments. The DFE exhibits the best performance

for all tested network sizes. The Xeon Phi is a close second due to the local-memory

delays and the less efficient use of its parallel threads: These network sizes are not large

enough to provide sufficient parallelism for the Phi threads to be fully utilized. The

GPU, on the other hand, has difficulties to cope with the computational intensity of the

GJs, which involve mostly division and exponent FP calculations. Since each CUDA

thread executes a single neuron, it cannot exploit any potential parallelism in the GJ

calculation. This, alongside the fact that the CUDA threads are underutilized at such

network sizes, impacts performance drastically.

The inefficiency of the Titan X GPU in performing the realistic GJ computations is

clearly revealed in the SGJ case, next (see Figure 5.4b). In this use case, that the

most demanding GJ calculations are dropped, the GPU presents excellent scalability

as the problem size increases, compared to the RGJ case. The Xeon Phi, on the other

hand, still suffers from core-to-local-memory synchronization delays even though the

actual calculations are much simpler now. The DFE needs to spend the same amount of

operation ticks as in the RGJ case to evaluate the connection influence, even though it

does enjoy gains in performance because of the simpler calculations involved (achieving

higher operation frequencies, larger GJ computation parallelism and shorter pipelines).

As a result, both latter accelerators show similar scaling properties to the RGJ case. In
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(a) RGJ execution time (TYPE I, 100% connectivity)

(b) SGJ execution time (TYPE I, 100% connectivity)

(c) RGJ execution time (TYPE I, <100% connectivity)

(d) SGJ execution time (TYPE I, <100% connectivity)

Figure 5.4: Type I experiments
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Figure 5.5: NGJ execution time (TYPE I, no connectivity).

contrast, the GPU scores performance benefits in the SGJ case compared to the robust

DFE for network sizes above 480 neurons.

Next, it is interesting to evaluate the three accelerators for connectivities of lower than

100% density. Although not relevant for the DFE which maintains the same implemen-

tation for any connectivity density, smaller densities can influence the Xeon Phi and

the GPU performance considerably. In Figure 5.4c, we plot the execution time of a sin-

gle simulation time-step for 25%, 50% and 75% connectivity densities, under the RGJ

case. The GPU delivers significant gains but the inefficient GJ execution still causes

it to perform worse than DFE, even though the latter operates as in a 100%-density

simulation. The Xeon Phi, on the other hand, manages to achieve enough performance

gains to become faster than the DFE for sufficiently large problem sizes; that is, sizes

≥960 neurons for 75% density, ≥864 neurons for 50% density and ≥672 neurons for 25%

density.

Under the SGJ use case (Figure 5.4d), we see similar trends as for the 100% SGJ use

case: The GPU exhibits great scalability and is the best option for network sizes higher

than 480 neurons. Besides, the DFE remains the most beneficial option for networks

smaller than 480.

Under the NGJ case (no connectivity), for TYPE-I experiments, the results point to the

DFE as the uniformly best option. In the complete absence of inter-neuron connectivity,

the application becomes a purely dataflow workload, fully compatible for acceleration

on a DFE, which is tailor-made for such cases, providing significant benefits over both

the Xeon Phi and the GPU (see Figure 5.5).

Lastly, recall that for TYPE-I experiments, real-time speeds are often desired. The

results show that, for real-time experimentation, the DFE accelerator is the best option
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across the board. In contrast, and as mentioned in our previous analysis, the GPU

and Xeon-Phi parallel threads tend to be underutilized at such small network sizes,

even though most of the delays of using them are present. Thus the DFE – using fine-

grain super-pipelined kernels – can achieve meaningful network sizes at real-time speeds

under all use-case instances, according to the objective set in the introduction (≥ 100

cells). For low (le50%) or zero densities, the GPU and Xeon Phi come close to the

real-time objective, yet it is interesting to note that the DFE can even support real-time

experimentation for TYPE-II experiments under the NGJ case.

For TYPE-II experiments, the trends under the RGJ case with 100% connectivity change

significantly (see Figure 5.6a). Here, the massive explosion of the GJ computations be-

gins to stress the parallelization capabilities of both the Xeon Phi and the DFE. The

DFE’s efficient parallelization of the GJs relies mostly on its ability to unroll the GJ

loop on the FPGA hardware, allowing for more iterations to finish per operation tick.

However, the achievable unrolling factor is limited by the available chip area. For net-

work sizes above 1,000 neurons, the DFE compiler is forced to reuse a lot of resources

in time (as the unrolling factor is reduced with increasing network sizes). In effect, the

dataflow paradigm gradually degenerates to a sequential execution, making the applica-

tion less scalable on the DFE. The Xeon Phi follows a similar trend, as the communi-

cation overhead between cores (which are interconnected through a moderately efficient

ring topology [218]) increases, leading to similarly diminished scalability. Opposite to

these accelerators, GPU scalability is largely improved. The GPU is underutilized until

all CUDA cores are used (3,072) simultaneously, so for experiments over 3,000 neurons

scalability is gradually improving. As a result, the GPU becomes the better performing

solution (surpassing the DFE) for network sizes of 4,800 neurons and above.

For lower connectivity densities under the RGJ case, we observe similar trends, although

the Xeon-Phi scalability is slightly better because of the lower interconnectivity (see

Figure 5.6c). Thus, the Xeon Phi retains the advantages it has for lower than 100%

densities, compared to the DFE. Still, the effect of the inter-core communications is

present allowing for the GPU to overtake the Xeon Phi for network sizes above 4,800

neurons (for densities of 50% and 75%) and above 3,840 neurons (for 25% density).

Under the SGJ case, the DFE and Xeon Phi follow similar trends, although they are

less pronounced (see Figures 5.6b and 5.6d). As in the RGJ case, the GPU maintains

its lead over the other two accelerator types for all tested network sizes and connectivity

densities. Finally, in the NGJ case, the situation is the same as with TYPE-I experi-

ments: The purely dataflow nature of the application allows the DFE to once more score

the best performance across the board.

The performance analysis discussed above can now be used to formulate a simple

accelerator-selection algorithm for BrainFrame automatically choosing the best-suited

accelerator fabric based on the problem parameters: mainly, connectivity detail (bio-

physically realistic: RGJ, simple: SGJ and not present: NGJ), density and network size.
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(a) RGJ execution time (TYPE II, 100% connectivity)

(b) SGJ execution time (TYPE II, 100% connectivity)

(c) RGJ execution time (TYPE II, <100% connectivity)

(d) SGJ execution time (TYPE II, <100% connectivity)

Figure 5.6: Type II experiments
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Figure 5.7: NGJ execution time (TYPE II, no connectivity).
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Figure 5.8: BrainFrame accelerator-selection map for TYPE-II experiments. Selec-
tion is heavily dependent on the experiment, involving all three accelerator fabrics. For

TYPE-I experiments, the DFE is always the optimal choice (not shown).

Figure 5.8 shows the selection for our use-case instances. The RGJ case selection, which

presents the most complex case in terms of accelerator choice, shifts between all three

options depending on the connectivity density. For the SGJ case, the GPU is always the

accelerator of choice, while for the NGJ case the DFE yields optimal results under all

experiment parameters. Lastly, if the experiment is flagged as a real-time experiment,

the algorithm exclusively chooses the DFE to accelerate the application, as it is the only

clearly viable accelerator for real-time experiments.
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5.2.3 Moving Forward

The evaluation presented in the previous Section 5.2.2 did not account for the entirety

of BrainFrame’s capability and potential; instead, it acted more as a proof of concept.

Moving forward, incorporating more advanced implementations, already presented in

this thesis, into BrainFrame is a significant priority. Incorporating more hardware fabrics

and developing appropriate implementations (and the respective environments in Docker

images) that utilize the underlying computing platform efficiently is a key factor in

sustaining BrainFrame and having an up-to-date framework.

Multinode implementations, in particular, are a priority in BrainFrame implementation.

As shown in Section 4.4.3, complex models can be accelerated efficiently in multinode

implementations, provided specific conditions. As such, the scalability of the frame-

work would be greatly increased by adding capability to handle simulations tasks by

employing multiple instances of hardware in the cloud. It should be noted that due to

how containerization technology operates, “housing” multiple hardware nodes in a single

container, as well as inter-container communication during a simulation, is not a trivial

matter; further research is needed in order to achieve an elegant design for multinode

neuronal simulations in a containerized environment.

Finally, while accurate biophysical neuromodelling is the focus of this dissertation, large-

scale modelling frequently uses simpler models for behavioural experiments. BrainFrame

is designed with flexibility in mind and aims at incorporating more options in its avail-

able library of supported models. A first step has been made by supporting popular

neuromodelling packages mentioned in Section 2.2.2, like NEURON and NEST. Moving

forward, finely-tuned implementations of simpler Integrate-and-Fire models, such as the

Izhikevich model mentioned in Section 2.1.2, will be able to better utilize the underly-

ing heterogeneous ensemble of computational power that the computing cloud provides.

Due to BrainFrame’s scalable design, such modelling kernels can be progressively added

to the existing library of models without disruptions in service.

5.3 Summary

A novel cloud-inspired methodology for supporting HPC-enabled neuroscientific exper-

iments in massive scale was presented in this Chapter. A heterogeneous system of

computational resources is effective for handling a large and varied stream of requests

for neuronal network simulations. Depending on the characteristics of each simulation

request, a different simulator can prove to be the most well-suited for the task. In order

to have access to the computational resources to build such a system, cloud services are

the option recommended in this Doctoral thesis.
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The system of BrainFrame was thoroughly presented as an online service hosted on the

Amazon AWS cloud platform. The system consists of three layers. A user-friendly and

intuitive frontend accepts simulation requests by the user and spawns containerized jobs.

These jobs contain user-submitted Python scripts based on a modelling tool, PyNN, that

is widely used in the neuroscientific community. BrainFrame’s middleware uses PyNN

to properly set up each task for the respective accelerator to handle. The tasks are

then executed by an heterogeneous ensemble of accelerators, consisting of manycore

CPUs, Dataflow Engines (FPGAs) and GPUs. Depending on each task’s simulation

parameters, as well as the cost of utilizing each resource, a specific accelerator is chosen

by the scheduler.

An evaluation of each accelerator was provided in order to highlight the significance of

heterogeneous computing in this effort. We have focused our analysis on biophysically-

accurate neuron models, like the InfOli model presented in the previous chapters of this

thesis, but the BrainFrame system is designed with the goal of potentially supporting

any modelling effort. The performance analysis of the system, employing use cases

that take into account connectivity density and modeling complexity, revealed that all

three fabrics (Xeon Phi, FPGA, GPU) are essential within the described simulation

platform so as to optimally serve all possible experimentation cases. The platform,

thus, achieved efficient large-network experiments as well as real-time performance for

meaningful network sizes (≥ 100 cells).



Chapter 6

Conclusions

6.1 Thesis Summary

This dissertation gave a complete presentation of handling the task of developing a

neuroscientific simulator on manycore processors. A thorough insight into the world

of computational neuroscience was given, briefly describing the nature of the computa-

tional workload. Existing frameworks are widely used by the neuroscientific community,

however they are not without shortcomings; many simulation tools lack the option of

detailed modelling and do not offer the level of detail many scientists require for their

experimentation. Furthermore, other tools that are a staple in the field are relatively

old software tools and impose significant difficulty in usage and in utilizing a high-

performance computing environment.

The task of developing a modern and biophysically accurate neuron simulator com-

mences by opting for a mostly research-grade manycore platform, the Single-chip Cloud

computer (SCC). The simulator of our choice is based on a transient, time driven model

for the inferior-olive neurons (hence named InfOli simulator), which are of major impor-

tance for human sensorimotor control. The selected InfOli simulator serves as a signifi-

cant benchmark for parallelization and scaling of biologically-plausible neuron modeling

workloads. We have presented a thorough Design Space Exploration (DSE); in this

feasibility study, we have explored different partitioning schemes, based on data and

combined task-and-data partitioning. Also, we explored the power-management options

of the chip, implementing both Dynamic Frequency Scaling and Static Voltage and

Frequency Scaling. Combinations of mapping and power-management options create

a design space of different points. The quality cost of the simulation along with the

sensitivity of the Pareto space in problem parameters, motivate a systematic treatment

of this design space, in order to guarantee truly optimal utilization of the platform. A

Pareto optimality problem has been formulated to extract such optimal platform config-

urations. The findings of the DSE reveal that a symmetric configuration, with identical
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workload-per-core and a global power management policy is optimal for the mapping of

the InfOli simulator on the SCC.

Following the findings on the research-oriented SCC, we ported the demanding neural-

network simulator on a more industrial-level manycore processor: a single-node, dual-

socket Xeon processor and Xeon Phi Knights Corner system. We initially tested three

native implementations while letting the compiler’s (icc) optimizations handle vectoriza-

tion: an MPI-based one, an OpenMP-based one and a combination of both. The MPI

implementation underperforms for the Xeon Phi accelerator since it does not utilize the

coprocessor’s multithreading resources, but performs well on the host, particularly for

more than 105 neurons. The hybrid implementation improves on MPI’s shortcomings

on the accelerator, whereas in the Xeon host’s case MPI already utilizes the platform

efficiently.

OpenMP was the optimal choice on both computing platforms for smaller networks, al-

beit its performance did not scale linearly in all use-cases. On the Xeon host, OpenMP

implementation can have significant variations in performance depending on network

size. Furthermore, it was shown that the accelerator’s hybrid implementation and the

host’s pure-MPI programming method rival OpenMP for large networks (≥ 104 sim-

ulated neurons) and should be considered due to them being extensible to multi-node

systems. It should be noted that overall, despite the Knights Corner having a larger

computational resource pool, the Xeon processor exhibited better overall performance

than the Knights Corner, scaling up to a million inferior-olivary nuclei. Due to their gap

in performance, a more elaborate and manual approach to fine-tuning the application,

particularly with vectorization in mind, was deemed necessary.

The shared-memory implementation via OpenMP was manually tuned for the under-

lying platforms. A combination of pragma directives, function inlining and specific

memory allocation functions, specialized for cache line alignment, was initially used.

These techniques are applicable to any codebase and form the basis of vectorizing any

application. Furthermore, modifications that are specifically designed for the simulator’s

algorithm, are employed. As a result, a sizeable increase in attainable simulation speed

was achieved for workload sizes that are eligible for vectorization. Thus, we encourage

the usage of these optimizations on codebases that resemble the algorithm, connectivity

patterns and problem sizes encountered in the InfOli modeling application. Overall,

the techniques presented in this paper were beneficial for both the accelerator and the

host. In particular, for networks that are large and densely-connected enough to satu-

rate the Phi’s assets, the difference in performance between manually vectorized code

and un-optimized code that relies solely on the compiler is an order of magnitude.

After fine-tuning the application, the platforms performed differently depending on net-

work connectivity density. Sparse networks are a good candidate for acceleration via

the Phi co-processor’s large pool of computation resources. Furthermore, dense networks

feature a range of populations between 5,000 and 50,000 neurons where the co-processor
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can use its computational resources to outperform the host. On the other hand, the

host’s focus on single-threaded and scalar performance is a better fit for dense networks

outside this range due to their less well-parallelizable nature.

The next step in increasing the performance scale of the simulator was to transition

to the industrial-grade manycore processor Knights Landing (KNL) and work towards

a multinode implementation. For this implementation in particular, the simulator has

been designed with a broader manycore architecture in mind, since the KNL hardware

assets are found on most x86-based manycore processors. This approach allows the

portability of the simulator and the extraction of meaningful insight concerning the

behaviour of similar workloads.

The InfOli simulator’s performance was tested using a range of workloads, from small,

unconnected neuronal populations to larger, dense networks. The results were evaluated

from both a simulation-speed and a power-efficiency standpoint. On average KNL offers

a speed up of 2.4× while consuming 48% less energy. Smaller workloads, by taking

advantage of the KNL’s superior single-threaded performance, exhibit very significant

gains in both speed and, even more so, energy consumption, with specific experiments

demanding 75% less watt-hours of energy per second of simulated brain activity on

the KNL. On the other hand, OpenMP-thread efficiency suffers when running on the

KNL, causing the simulator to handle more demanding networks poorly, relatively to the

optimized version of the 1st generation Xeon Phi. Furthermore, throughout the whole

range of experiments, it has been shown that the KNL offers a more robust, dependable

performance curve with little variability.

The implementation was then scaled to work on a multinode manycore processing sys-

tems via a hybrid usage of the MPI and OpenMP libraries. The simulator was tested on

a system of 8 Xeon Phi KNL manycore processors. The work has proven that efficient

usage of even a small cluster of manycore processors is able to achieve satisfactory per-

formance even when facing a very demanding mathematical model of the human neuron,

in network and synaptic sizes numbering in the millions and billions, respectively. It

constitutes an efficient solution for studying demanding neuronal models in a pursuit of

attaining deeper understanding of the human brain’s intricate details.

Furthermore, it has been demonstrated that a biologically-accurate simulator exhibits

performance patterns that are dictated by problem size and the nature of each network’s

connectivity map. A focal point in our analysis was the system’s scalability in multin-

ode setups. It has been highlighted that the system is highly sensitive to simulation

parameters and as such, careful steps need to be taken in order to discern trends in

performance behaviour.

After achieving satisfactory performance in a very demanding class of models and iden-

tifying the shortcomings of the simulator that were tied to the nature of manycore

processors, an effort was made to transition to heterogeneous systems. In particular,
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the system integrated implementations in accelerators that have demonstrated potential

in this particular domain of the neuromodelling field: an Intel Xeon Phi Knights Corner

implementation, as it was presented in this dissertation, a Maxeler Vectis Data-Flow

Engine (DFE) implementation and an NVIDIA GPU implementation. Both quality and

quantity of inter-neuron connections acted as a means for evaluating the system under

varying neuronal network parameters. In all cases, the target neuron simulator scaled

gracefully in terms of DRAM utilization, with both Xeon Phi and DFE platforms ex-

hibiting enough slack in DRAM timing overhead. Regarding overall performance, the

Maxeler Vectis DFE was clearly optimal for small- and medium-scale, real time sim-

ulations. Executing a fixed synthesized implementation, the performance of the DFE

was not affected by changes in neuron connectivity density. The Xeon Phi implementa-

tion, on the other hand, appeared more suitable for large-scale simulations, with many

neurons and dense interconnectivity between them, as was expected from the manycore-

focused research presented in this dissertation. The GPU implementation also was a

strong candidate for the most demanding of the evaluated networks.

The evaluation was carried out via an online service that was presented in this disser-

tation. BrainFrame is an heterogeneous acceleration platform that serve computational

neuroscience studies in conducting the variety of real experimentation often required for

the study of brain functionality. It is hosted on a cloud computing service, which at the

moment of writing is the Amazon AWS, in order to have access to a wealth of hetero-

geneous computing resources. By utilizing the fabrics presented in the evaluation, the

platform achieves efficient large-network experiments as well as real-time performance

for meaningful network sizes (100 cells).

The system has an intuitive user interface that any neuroscientist can interact with,

demands no prior engineering knowledge and utilizes scripts of a Python-based mod-

elling package (PyNN) which is widely used in the neuroscientific field. The PyNN

front-end makes the heterogeneous platform immediately accessible to a multitude of

prior modeling works, which is an essential strategy for the wide adoption of complex

HPC platforms in the neuroscientific community. Furthermore, building on the elegant

PyNN infrastructure, a simple accelerator-selection algorithm has also been integrated

in BrainFrame for automatically identifying the most suitable HPC fabric (Xeon Phi,

GPU, DFE) per neuroscientific experiment, as well as present the relative cost of utiliz-

ing each platform available on the cloud service. Overall, BrainFrame has been designed

as a scalable, easy-to-use and flexible solution to utilizing high-performance computing

fabrics in the demanding domain of complex neuromodelling.
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6.2 Thesis Highlights

Overall, the goal of this Doctoral thesis was to research and design a tool for a realistic

and detailed class of neuromodelling simulations that would be scalable and efficient

enough to meet the computational demands of the most intense in-silico experiments

carried out by neuroscientists.

The challenges for this endeavour focused around the limited prior research available for

large-scale, rich-in-detail simulations and the difficulty of scaling a communication-heavy

application in a manycore computing fabric.

With these tasks in mind, the following contributions were made in this Doctoral Thesis:

Contribution I

a simulation design efficient enough to be able to simulate high-complexity, very-large-

size networks (millions of neurons, billions of synapses) with a satisfactory simulation

speed (minutes of execution time per second of simulated brain time) has been proposed

and evaluated.

Contribution II

through this simulator, a thorough analysis of the behaviour of manycore x86-based com-

puting systems was provided for the class of biophysically-meaningful neuromodelling

applications and the workload parameters impacting performance, scalability and effi-

ciency thereof, focusing on how network connectivity patterns can influence inter-node

communication delays by orders of magnitude.

Contribution III

building on this analysis concerning simulation in manycore hardware, developer insights

are provided, concerning effective development and evaluation of neuromodelling tools

for a vast amount of different workloads, as well as the challenges thereof.

Contribution IV

by identifying the challenge of supporting neuronal networks with vast differences in

setup configuration, the Thesis introduces a collaborative, cloud-based, heterogeneous

online service (BrainFrame) that offers a complete solution for the problem of detailed

neuromodelling; by combining the strengths of different accelerators, we achieve design

flexibility and scalability that, in some cases, can more than double the simulation speed

of non-heterogeneous, single-accelerator setups.
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6.3 Future Work

There are multiple directions in which the work presented in this Doctoral thesis can

evolve. In particular, concerning the BrainFrame service, a number of features can be

added. Furthermore, emerging new, cutting-edge technologies can aid in the difficult

task of achieving mapping the human brain via accurate model simulation.

6.3.1 Framework Expansion

BrainFrame is designed as a fully-scalable solution that continuously integrates new

models and hardware solvers. As such, one of the immediate future goals for this work

is to add support for newer neuronal models to BrainFrame. As computational neu-

roscience is still a young domain, mathematical models are constantly being developed

and adopted by the neuroscientific community. Keeping the service up to date with new

demands is a necessity for maintaining a framework that offers efficient solutions for

neuroscientific labs specializing in different aspects of brain mapping studies.

Several auxilliary tools can also improve BrainFrame’s functionality. An important part

of performing a study with a neuronal model is the task of analyzing and visualizing

the collected data. Especially for the complex, biophysically-accurate models studied

in this Doctoral thesis, the amount of generated data by a long simulation can be

massive; as such, the task of properly utilizing the collected data is non-trivial. A set

of tools to assist in this challenge can boost BrainFrame’s adoption by the community.

Data visualization tools can be added via standard Python libraries in the middleware;

this way, instead of receiving raw data, a user of the BrainFrame service can opt for

organized and well-defined graphs and other visual cues for comprehending the output

of his requested simulation.

In addition, designing more advanced schedulers for the heterogeneous hardware en-

semble can help better handle incoming traffic when the system has scaled enough to

accomodate a large amount of simulation requests simultaneously. A number of param-

eters can affect the decision of which fabric is optimal for a particular simulation. While

execution time is the most important, the cost of a simulation as well as its storage needs

can also play a critical role. A scheduler would need to make a decision while the service

is constantly online based on multiple factors for a number of different use-cases. In

order to achieve this, acquiring a data set of successful simulation requests for different

neuronal models and simulation parameters is required. Given a large enough data set,

the scheduler would be able to make a selection amongst the available hardware for a

multitude of different in silico experiments.
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6.3.2 Emerging HPC Technologies

Currently, new technologies and trends in high performance computing can influence

the domain of computational neuroscience. Neuromorphic engineering [219], also known

as neuromorphic computing, is a concept developed in the late 1980s, describing the

use of very-large-scale integration (VLSI) systems containing electronic analog circuits

to mimic neuro-biological architectures present in the nervous system. Recent develop-

ments and research efforts have brought attention to the applicability of neuromorphic

hardware in the domain of computational neuroscience [220]. While the technology is

primarily used in areas more attuned to Artificial Intelligence, the concept has also been

shown to lend itself to traditional neuromodelling applications [221].

The demand for data can grow to be very high for large-network simulations, particularly

in the case of complex neuronal models. As cloud services continue providing increasing

amounts of available RAM to meet the memory demands of the field, the emerging tech-

nology of in-memory computing becomes an attractive option. In-memory computing

refers to using combinations of software and specialized hardware in order to enable data

storage directly in RAM, distributed across multiple platforms and to allow data to be

processed in parallel. The technology has been tested on simpler Spiking Neural Net-

work models for event-driven simulation [222]; additional research is necessary for the

application of in memory computing in the case of transient high-detail neuromodelling.

It should be also mentioned that the technology in manycore processors is constantly

evolving. While the Xeon Phi line of products is discontinued, the Xeon processors

are evolving towards more resources and heavier usage of the AVX instruction set.

An interesting notion in the domain of processor architecture is the development of

non-homogeneous processor chips; AMD has been reported to develop Zen-architecture

multicore processors with different lithography figures for the I/O (14nm) and the cores

(7nm) of the processor [223, 224]. The prospect of a single-chip heterogeneous system is

interesting and ties in well with the proposed benefits of heterogeneity for neuromodelling

simulations presented in this Doctoral thesis.
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