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Abstract

Sentiment analysis (or opinion mining) refers to the use of natural language pro-

cessing (NLP) and machine learning (ML) to interpret and classify opinions in a

piece of human-written text. Sentiment analysis in social media data such as Twit-

ter messages (tweets) present an important topic of research and can refer to the

automatic identification of opinions of consumers towards an event, organization,

product, brand or person by analyzing their posts. Most studies related to senti-

ment analysis focus on the binary and ternary classification of these opinions, even

though the task of multi-class classification has always been the most interesting,

yet most challenging. This thesis researches the task of multi-class Twitter sentiment

analysis and aims to explore the views of the general public towards self-driving

cars or autonomous vehicles (AVs). We used an imbalanced annotated Twitter data

set with captured self-driving car-related tweets, and a data set containing movie

reviews used for fine-grained classification. We implemented and experimented

with various deep learning models, namely a 2-layer bi-directional long short-term

memory (BLSTM) network with self-attention (2-BLSTM+Att), and various state-

of-the-art (SOTA) bi-directional encoder representations from transformers (BERT)

models. Also, we used a weighted loss function in order to tackle the problem of

class imbalance. We evaluated our models using the accuracy and F1 score metrics.

To find people’s opinion regarding the controversial technology of AVs, self-driving

car-related tweets were captured using the Twitter API and classified in a five-scale

sentiment polarity from highly negative, negative, neutral, positive to highly positive.

Key Words

Sentiment analysis, Social media, Twitter sentiment analysis, Autonomous vehi-

cles, Multi-class classification, Machine learning, Deep learning, Natural language

processing, Transfer learning, Recurrent neural networks, Attention mechanisms,

Imbalanced data
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Περίληψη

Η ανάλυση συναισθήματος (ή η εξόρυξη γνώμης) αναφέρεται στη χρήση της επεξ-

εργασίας φυσικής γλώσσας (NLP) και της μηχανικής μάϑησης (ML) για την ερ-

μηνεία και την ταξινόμηση των συναισθημάτων σε ένα κομμάτι κειμένου γραμ-

μένο από άνθρωπο. Η ανάλυση συναισθήματος σε δεδομένα κοινωνικών μέσων

όπως τα Twitter μηνύματα (tweets) παρουσιάζει ένα σημαντικό ϑέμα έρευνας και

αναφέρεται στον αυτόματο προσδιορισμό των απόψεων των καταναλωτών για

ένα συμβάν, οργανισμό, προϊόν, επωνυμία ή άτομο αναλύοντας τις δημοσιεύσεις

τους. Οι περισσότερες μελέτες που σχετίζονται με την ανάλυση συναισθήμα-

τος επικεντρώνονται στη δυαδική και τριμερή ταξινόμηση αυτών των απόψεων,

παρόλο που η ταξινόμηση πολλαπλών τάξεων ήταν πάντα η πιο ενδιαφέρουσα,

αλλά και η πιο δύσκολη. Αυτή η διατριβή ερευνά την ανάλυση συναισθήματος πολ-

λαπλών κλάσεων από tweets και στοχεύει στη διερεύνηση των απόψεων του κοινού

σχετικά με τα αυτοκινούμενα αυτοκίνητα ή τα αυτόνομα οχήματα (AVs). Χρησι-

μοποιήσαμε ένα μη-ισορροπημένο σχολιασμένο σύνολο δεδομένων από συλλεγμένα

tweets που σχετίζονται με τα αυτοκινούμενα αυτοκίνητα και ένα σύνολο δεδομένων

που περιέχει κριτικές ταινιών, το οποίο χρησιμοποιείται για ταξινόμηση πολ-

λαπλών κλάσεων. Υλοποιήσαμε και πειραματιστήκαμε με διάφορα μοντέλα βαθιάς

μάϑησης, όπως ένα δίκτυο δύο στρωμάτων αμφίδρομης μακροπρόθεσμης μνήμης

(BLSTM) με αυτο-προσοχή (2-BLSTM+Att) και διάφορα υπερσύγχρονα (SOTA)

μοντέλα αμφίδρομων αναπαραστάσεων κωδικοποιητών από τους μετασχηματιστές

(BERT). Επίσης, χρησιμοποιήσαμε μια σταθμισμένη συνάρτηση απώλειας για να

αντιμετωπίσουμε το πρόβλημα των μη-ισορροπημένων δεδομένων. Για να βρεθεί

η γνώμη των ανθρώπων σχετικά με την αμφιλεγόμενη τεχνολογία των AVs, συλ-

λέχθηκαν tweets που σχετίζονται με τα αυτοκινούμενα αυτοκίνητα χρησιμοποιών-

τας το API του Twitter και ταξινομήθηκαν σε πολικότητα συναισθήματος πέντε

κλάσεων από εξαιρετικά αρνητικό, αρνητικό, ουδέτερο, ϑετικό σε πολύ ϑετικό.

Λέξεις κλειδιά

Ανάλυση συναισθήματος, Μέσα κοινωνικής δικτύωσης, Twitter ανάλυση συναισθή-

ματος, Αυτόνομα οχήματα, Ταξινόμηση πολλαπλών κλάσεων, Μηχανική μάϑηση,

Βαθιά μάϑηση, Επεξεργασία φυσικής γλώσσας, Μεταφορά μάϑησης, Επαναλαμ-

βανόμενα νευρωνικά δίκτυα, Μηχανισμοί προσοχής, Μη-ισορροπημένα δεδομένα
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Chapter 1

Introduction

1.1 Motivation

In everyday life, people make decisions and develop behaviors based on others’

thoughts and opinions. With the explosive growth of opinion-rich resources like

blogs, online forums, social media, and micro-blogging websites, new opportunities

and challenges arise as people can now actively use information technologies to

seek out and evaluate the opinions of others. Such resources contain opinionated

data about any service, product, topic, event, and idea. Thus, the aforementioned

resources can be effectively used for extracting valuable information from them.

Businesses and organizations no longer have to conduct surveys, focus groups, and

opinion polls to gather consumer or public opinion, as the abundance of online data

available makes it much easier to collect all the information needed to understand

the social sentiment of their brand, service or product.

Twitter is a popular micro-blogging and social networking service that, in the past

decade, has become one of the richest sources of opinionated data. Twitter users

create online postings, called "tweets", in order to share opinions, thoughts and

sentiments about any topic of their interest. Tweets are short messages, limited

to a rather small amount of characters, so they can be viewed as a sentence or a

headline rather than a document. The language used in tweets is quite informal,

and contains a variety of slang, spelling mistakes, emoticons, punctuation, URLs,

creative spelling, and genre-specific terminology and abbreviations, like "re-tweet"

(RT), and hashtags (#). Another aspect of tweets is that they include structured

information about the users involved in the communication, such as who follows

whom.

Mining opinions and sentiment from such online resources is very challenging due

to the vast amount of information generated everyday. Each source typically con-

tains a huge volume of text data that is nearly impossible for the average person

to decipher and summarize the opinions in them. For that reason, researchers

have started investigating and developing systems that can automatically detect, or

predict, sentiment in text and effectively mine opinionated information even from

a massive amount of data. The field of research in text mining that intends to

identify people’s opinions, thoughts, and views expressed in a piece of text is called

"sentiment analysis". Sentiment analysis (or opinion mining) applies a mix of statis-

tics, Natural Language Processing (NLP), and Machine Learning (ML) to identify

and extract subjective information from text files. In particular, Twitter Sentiment

17
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Analysis (TSA) is a technique that tackles the problem of analyzing the tweets in

terms of the sentiments they express. In other words, TSA involves dissecting tweets

and the content of these expressions.

In this thesis, we focus on Twitter users’ opinions regarding one of the most contro-

versial new products, namely self-driving cars. A self-driving car, also known as an

Autonomous Vehicle (AV), is a vehicle that is capable of sensing its environment

and moving safely with little or no human input. Tech companies like Google and

Tesla are competing with each other to attract more people to purchase AVs. How-

ever, there is a need to study the impact and consequences of these technologies

as they are completely unfamiliar to people or society. Despite the large number of

studies in this field, there is limited number of studies on TSA and self-driving cars.

Therefore, we aim to contribute to this direction; to study on people’s acceptance

level and perceptions regarding AVs.

1.2 Research Objectives & Contributions

Most of the State-Of-The-Art (SOTA) approaches on the automatic sentiment anal-

ysis of texts collected from social networks and micro-blogging services are mostly

focusing on the binary or ternary sentiment classification. In other words, they

classify texts into either "positive" and "negative", or into "positive”, "negative" and

"neutral". In this thesis, we aim to go deeper in the classification of texts collected

from Twitter and classify tweets in a five-scale sentiment polarity from highly neg-

ative, negative, neutral, positive to highly positive, based on the sentiment towards

self-driving cars. For this purpose, we research methods that can help algorithms

deal effectively with the task of multi-class sentiment analysis. Our work lies in the

intersection of NLP, ML, and Deep Learning (DL), as shown in Figure 1.1.

Figure 1.1: Relationship between Artificial Intelligence, Machine Learning, Deep

Learning and Natural Language Processing. [1]

More specifically, we employ supervised deep learning models, which get trained to

label tweets based on their expressed sentiment. The models are then tested and

evaluated for their performance on various evaluation metrics. To train and evaluate

the models, we use an imbalanced annotated Twitter data set with AV-related tweets,

and a data set containing movie reviews. In order to find people’s opinion regarding

AVs, we capture and classify AV-related tweets using the Twitter API. Then, we

present the results of the sentiment analysis performed on the captured Twitter

messages and the current acceptance levels of autonomous mobility.
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1.3 Thesis Structure

In chapter 2, we discuss prior research in the area of sentiment analysis, and

specifically TSA. In addition, we present studies that focus on the public perception

of self-driving cars or AVs.

In chapter 3, we introduce the field of machine learning and provide the knowledge

required for the subsequent chapters. In particular, after presenting the types of

learning in this field, we focus on classification problems and the basic steps needed

to solve and evaluate these kinds of problems.

In chapter 4, we introduce the reader to artificial neural networks and deep learning

in general. More specifically, we present the types of deep learning models that are

mostly used in the thesis, namely recurrent neural networks, and we explain the

concepts of attention mechanisms and transfer learning.

In chapter 5, we present the natural language processing background needed to

understand this work. First, we briefly present the task of sentiment analysis. Then,

after exploring popular text pre-processing techniques, we present language modeling,

initially in the form of a n-gram language model and then as a neural language

model. Finally, we explain word embedding and transfer learning methods that are

currently used to train natural language processing models.

In chapter 6, our main goal is to present our work on multi-class Twitter sentiment

analysis. We start with a description of the data sets that we train our models

on, as well as an explanatory data analysis. Then, we describe the models that we

used in our experiments and the corresponding results. In addition, we conduct

multi-class sentiment analysis on captured unlabelled tweets about AVs.

Finally, chapter 7 contains the conclusion where we summarize our findings and

discuss about future directions.
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Related Work

2.1 Twitter Sentiment Analysis

With the growth of social media and micro-blogging services, people began to openly

discuss their opinions and thoughts online. The Twitter platform has been the

subject of much recent sentiment analysis research, as tweets often express a user’s

opinion on a topic of interest. Researchers have utilized information derived through

TSA to explain and predict product sales [2], stock market movements [3], and the

outcomes of political elections [4], [5], [6], [7], [8]. Also, TSA has been used to

understand user opinion on diverse business and social issues, like a product brand

[9], nuclear power generation [10], and presidential candidate performances in a

debate [11].

Some of the research on tweets focus on their characteristics that make TSA chal-

lenging, such as the brevity of tweets and resulting compact, novel language with

Twitter-specific communication elements [6], [12], a strong sentiment class imbalance

[13], [14], and stream-based tweet generation [15], [16]. In addition, some researchers

has dealt with the form of the data, the use of slang and how these develop over

the time, the use of emoticons, and the nature of tweets themselves [17], [18].

The sentiment polarity classification problem is often modeled as a two-way (bi-

nary) or three-way (tenary) sentiment classification of text. Few researches have

been conducted on the multi-class sentiment classification task. Note that multi-

class classification has conventionally referred to the attribution of one of several

sentiment strengths to a text or a tweet. Most of the studies focused on assessing

the sentiment strength into different sentiment strength levels (e.g., “very negative”,

“negative”, “neutral”, “positive” and “very positive”), or simply give scores ranging

from −1 to 1 to the texts, showing at the same time the polarity and the strength

of the sentiment [19], [20]. Some researchers have evaluated five-class sentiment

models in brand-related TSA to target strong and mild positive and negative senti-

ments that provide more actionable intelligence to brand management practitioners

[9], [12], [21].

There are two commonly used approaches for analyzing the sentiment of texts: the

lexicon-based approach and ML methods. The first approach involves the use of a

lexicon of opinion-related terms with a scoring method to evaluate sentiment in an

unsupervised application [22], [23]. However, the performances of these methods

are limited, as they are unable to account for contextual information, nuanced indi-

20
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cators of sentiment expression, or novel vocabulary. The second approach quantify

the text based upon a feature representation and apply a ML algorithm to derive

the relationship between sentiment and feature values using supervised learning

[24], [25]. Models based upon this type of learning require a large training set with

sentiment class labels to calibrate model parameters.

Gao et al. [26] proposed an approach that focus in the frequency of sentiment

classes in the data set they analyze. The authors concluded that, in contrast to

regular classification-oriented algorithms, using a quantification-specific algorithm

presents a better frequency estimation. In addition, with the wide adoption of DL

as a cutting edge technology, more recent works went "deeper", and new models

have been built. For example, the task of multi-class sentiment analysis has been

dealt with as well in works such as that of Araque et al. [27].

2.2 Acceptance of Autonomous Vehicles

In recent years, there are a number of studies that focus on the public perception of

autonomous mobility and the factors that can influence the likelihood of potential

users adopting AVs. In 2016, Zmud et al. [28] conducted an online survey with 556

residents of metropolitan Austin, Texas, to determine potential user intent towards

AVs. The researchers classified the respondents into four intent-to-use categories.

The "extremely unlikely" category contained 18% of respondents, the "somewhat

unlikely" category contained 32% of respondents, 36% were in the "somewhat likely"

category, and 14% were in the "extremely likely" category.

In 2017, Greig [29] carried out two surveys to determine the public sentiment towards

the adoption of AVs. The study found that only one-fifth of the respondents think

AVs are a good idea, and the majority of them remained skeptical about the driver-

less cars’ promised benefits. Merat et al. [30] focused on the social-psychological

factors that can influence people’s trust and acceptance of shared SAE Level 4

shared AVs. The study found that the most effective pathway to the acceptance and

adoption of AVs is an incremental and iterative stage-by-stage process that provides

users with hands-on experience throughout every stage.

In 2018, Greaves et al. [31] conducted an online survey of 455 Australian adults to

investigate consumer sentiment toward AVs. The study found that younger, male

respondents, less frequent drivers, and people who are open to the idea of shar-

ing their car had more favourable attitudes towards AVs. Negative attitudes were

associated more with older, female respondents, those who drive more frequently,

and those who are less open to sharing their car. In another study, Liljamo et al.

[32] examined the results from a large citizen survey of 2036 people to determine

the magnitude and type of concerns that people have in regard to the adoption

of AVs. The study found that positive attitudes were associated more with men,

highly educated individuals, people living in densely populated area and those living

in households without a car. Also, the results indicate that the key perspectives that

affect public approval of AVs are traffic safety and ethical perspectives. Nordhoff et

al. [33] conducted a survey with 7,755 respondents from 116 countries to determine

the relationship between socio-demographic characteristics and people’s acceptance

of AVs. They concluded that self-reported acceptance of driver-less vehicles is more
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strongly determined by domain-specific attitudes than by socio-demographic charac-

teristics.

In 2019, Sener et al. [34] conducted online surveys to examine the factors influencing

people’s intent to use AVs in the future; the survey included people in various

Texas cities, including Dallas, Houston, and Waco. The study found that younger

individuals, males and individuals with physical conditions that prohibit them from

driving had a higher likelihood of intent to use. Also, the strongest associations with

intent to use were observed for attitudes towards self-driving vehicles, performance

expectation, perceived safety, and social influence. Moody et al. [35], in an extensive

survey of more than 30,000 individuals from more than 50 countries, explore the

perceived safety of AVs, the awareness of AVs and the expectations of when the

technology would be safe enough for use. They find young, male and highly educated

individuals to be more likely to perceive the use of AVs as being safe. Also, they

note that individuals who are generally more aware of AVs perceived AVs to be

safer.

In a more recent study, Rezaei and Caulfield [36] conducted a survey among 475

Irish people to evaluate their willingness to adopt AVs in their daily commute trends.

Also, they analyzed people’s acceptance and willingness to pay for AVs compared to

manually driven vehicles. The study found that only a fifth of the people expressed

a high interest in driving AVs. Most people had concerns about their privacy and

were also unsure about the safety and security of AVs’ operation. In addition, the

results revealed that people were much more interested in purchasing an AV when

the cost was not an issue.



Chapter 3

Machine Learning

3.1 Definition of Machine Learning

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that provides sys-

tems the ability to automatically learn and improve without following strictly static

program instructions. More specifically, machine learning is an approach to data

analysis that involves building and adapting mathematical models, which allow pro-

grams to improve at problem solving through experience. According to Prof. Tom

M. Mitchell, a computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at tasks in T ,

as measured by P, improves with experience E [37].

Machine learning focuses on the development of computer programs that can access

data and use it to learn for themselves, automatically, without human intervention

or assistance and adjust actions accordingly in order to adapt to new data. The

process of learning begins with observations or sample data, known as "training

data", in order to look for patterns in data and correctly generalize to new settings,

known as "test data", based on the provided examples.

Machine learning algorithms are used in a vast range of applications, such as speech

recognition, search engines, traffic prediction, email filtering, medical diagnosis,

image processing and self-driving cars, where it is difficult or unfeasible to develop

conventional algorithms to perform the needed tasks. A subset of machine learning

is closely related to computational statistics, which focuses on making predictions

using computers. However, not all machine learning is statistical learning. In

its application across business problems, machine learning is also referred to as

predictive analytics.

3.2 Types of Machine Learning

Machine learning approaches are traditionally classified into three broad categories,

depending on how much feedback they present to the learning system. In some

cases, the computer is provided a significant amount of example inputs and their

desired outputs, also known as "labelled data", which is called supervised learning.

In other cases, no labelled data is provided and this is known as unsupervised

learning. Lastly, in reinforcement learning, a computer program interacts with a

dynamic environment in which it must perform a certain goal. As it navigates its

23
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problem space, the program is provided feedback that’s analogous to rewards, which

it tries to maximize. Other types of learning algorithms have been developed which

don’t fit neatly into this three-fold categorisation, such as semi-supervised learning,

in which some labelled training data is provided, but most of the training data is

unlabelled.

3.2.1 Supervised Learning

Supervised learning is the most practical and widely adopted form of machine learn-

ing. It is the task of learning a mathematical function f that maps input variables

X to the preferred output variable Y , also known as a supervisory signal, based on

example input-output pairs:

Y = f (X) (3.1)

A supervised learning algorithm analyzes a large amount of labeled training data

and produces an inferred function, which can be used to determine the class la-

bels for new unlabeled examples. Optimally, this function will allow the algorithm

to generalize from the training data and accurately predict the output for unseen

instances. An algorithm that improves the model performance over time is said to

have learned to perform that task and the learning stops when an acceptable level

of accuracy is achieved.

Tasks in supervised learning can be categorized further as "classification" or "re-

gression" problems. Classification problems (such as logistic regression) use statis-

tical classification methods to output a class label. On the other hand, regression

problems (such as linear regression) use statistical regression analysis to provide

a numerical output. Both classification and regression problems may have one or

more input variables of any data type, such as numerical or categorical. Popular

examples of supervised machine learning algorithms include: decision trees, support

vector machines, naive Bayes, and many more.

3.2.2 Unsupervised Learning

Unsupervised learning differs from supervised learning in describing data rather

than predicting. In this learning method, also known as self-organization, all input

is unlabelled and the algorithm must create structure out of it on its own (without

guidance). The goal is to extract relationships or find undetected patterns in a

data set with a minimum of human supervision. Unsupervised learning allows for

modeling of probability densities over inputs.

One of the main method used in unsupervised learning is cluster analysis. Clus-

tering refers to discovering groupings within the input data in such a way that

members of a common group (called a cluster) are similar to each other and dif-

ferent from members of other groups (clusters). In this case, a similarity metric is

measured between input data in order to group them into clusters of similar sam-

ples. This approach helps detect anomalous data points that do not fit into either

cluster. However, it is often difficult to know how many clusters should exist or how

they should look. Clustering algorithms can be categorized into a few types, such as

connectivity-based, centroid-based, distribution-based, density-based and grid-based

clustering.
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Figure 3.1: Unsupervised vs. Supervised Machine Learning. The left finds logical

groupings; the right identifies a boundary between 2 classes. [38]

Another interesting subclass of unsupervised tasks is generative modeling. Gener-

ative modeling involves automatically discovering and learning the regularities or

patterns in input data in such a way that the model can be used to generate or

output new samples that plausibly could have been drawn from the original data

set.

3.2.3 Reinforcement Learning

Reinforcement learning is an area of machine learning concerned with how software

agents ought to take actions in an environment as to maximize some notion of

cumulative reward. It focuses on training an algorithm following the trial-and-error

approach in order to come up with a solution to the problem. The algorithm (agent)

evaluates a current situation (state), takes an action, and receives feedback from

the environment after each act. Positive feedback is a reward, negative feedback is

a penalty for making a mistake and the goal is to maximize the total reward. An

agent basically interacts with the environment and learns from its experience.

The environment is typically represented as a Markov Decision Process (MDP). Re-

inforcement learning algorithms do not assume knowledge of an exact mathematical

model of the MDP, and are used when exact models are infeasible. Many reinforce-

ment learning algorithms use dynamic programming techniques and are commonly

used in autonomous vehicles and in learning to play a game against a human

opponent.

3.3 Feature Engineering

Machine learning tasks, such as classification or prediction, often require input that

is mathematically and computationally convenient to process. However, real-world

data such as images, video, and sensor measurement is usually complex, redundant

and high-dimensional, making it harder to find patterns and anomalies. Thus, it is

necessary to discover useful features or representations from raw data.
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The process of extracting features from raw data by using domain knowledge is

called feature engineering. Its purpose is to transform the given data into formats

compatible with the ML algorithm at hand, and to improve its performance. Some

popular techniques that can be useful in different problems are presented next.

3.3.1 One-Hot Encoding

Categorical variables represent types of data that can divided into a limited number

of groups. The representation of categorical data as binary vectors (a numerical

format) is called one-hot encoding.

Figure 3.2: Example of One-Hot Encoding. [39]

One-hot encoding is one of the most common encoding methods in ML. It creates

a vector with length equal to the number of categories in the data set. If a sample

belongs to the i-th category, then the i-th component of the vector is assigned a

value of 1 and all the other components are assigned the value 0. An example of

this method is presented in Figure 3.2.

3.4 Feature Learning

Manual feature engineering often requires expensive human labor, relies on expert

knowledge and normally does not generalize well. This motivates the design of effi-

cient feature learning techniques, to automate and generalize this. Feature learning,

also called representation learning, is a set of techniques that learn representations

of raw data input, typically by transforming it or extracting features from it. This

makes it easier for a machine to both learn the features and use them to perform a

machine learning task. These techniques allow reconstruction of the inputs coming

from the unknown data-generating distribution, while not being necessarily faithful

to configurations that are implausible under that distribution.

Feature learning can be divided into two categories: supervised and unsupervised

feature learning, analogous to these categories in machine learning generally. In

supervised feature learning, features are learned using labeled input data. Examples

include artificial neural networks, multilayer perceptrons, and supervised dictionary

learning. In unsupervised feature learning, features are learned with unlabeled

input data. Examples include principal component analysis, dictionary learning,

independent component analysis, auto-encoders and various forms of clustering.
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3.4.1 Principal Component Analysis

Principal Component Analysis (PCA) [40] is a linear dimensionality reduction

method. It combines the input features in a way that allows the least important

features to be dropped while retaining the most valuable parts of all features. In

other words, PCA reduces the dimensionality of a multivariate data set, and ex-

presses the important information as a set of few new variables, called principal

components, that correspond to a linear combination of the originals. These new

variables are all independent of one another and their number is less than or equal

to the number of original variables.

The total variation of a given data set contains corresponds to the information in

it. PCA performs a linear mapping of the data to a lower-dimensional space in such

a way that the variance of the data in the new representation is maximized. It does

so by computing the eigenvectors from the covariance matrix. A significant fraction

of the variance of the original data is reconstructed by using the eigenvectors that

correspond to the largest eigenvalues (the principal components).

3.4.2 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) [41] is an unsupervised non-

linear technique for dimensionality reduction that helps with identifying relevant

patterns. It is particularly well suited for visualizing high-dimensional data sets.

Specifically, it models each high-dimensional object by a lower-dimensional point

in such a way that similar objects are modeled by nearby points and dissimilar

objects are modeled by distant points with high probability. It is applied in image

processing, natural language processing, genomic data and speech processing.

In simple terms, t-SNE minimizes the divergence between a distribution that mea-

sures pairwise similarities of the input objects and a distribution that measures

pairwise similarities of the corresponding low-dimensional points in the embedding.

In this way, t-SNE maps the multi-dimensional data to a two- or three-dimensional

space and attempts to find patterns in the data by identifying observed clusters based

on similarity of data points with multiple features.

3.5 Classification Problems

As mentioned in Section 3.2.1, classification problems are a type of supervised ma-

chine learning, where the training data is already labeled. They are problems of

identifying which category a particular new observation falls into. Μore specifically,

the classification predictive modeling is the task of approximating the mapping func-

tion ( f ) from input variables (X) to discrete output variables (Y), in order to identify

which class/label/category the new data will most likely belong in.

The algorithm that implements classification is known as a classifier. Labeled data

is used to train a classifier so that the algorithm performs well on data that are

not yet labeled. Repeating this process of training a classifier on already labeled

data is known as “learning”. In supervised machine learning algorithms, we want

to minimize the error for each training example during the learning process. This is
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done using some optimization strategies like gradient descent, and this error comes

from a loss function.

3.6 Loss Function

In mathematical optimization and decision theory, a loss function is a function that

maps an event or values of one or more variables onto a real number intuitively

representing some "cost" associated with the event. In statistics, typically a loss

function is used for parameter estimation, and the event in question is some function

of the difference between estimated and true values for an instance of data. Loss

functions play an important role in any statistical model, as they define an objective

which the performance of the model is evaluated against. The parameters learned

by the model are determined by minimizing a chosen loss function.

In machine learning, loss (or error) functions for classification are computationally

feasible loss functions representing the penalty for inaccuracy of predictions in

classification problems. It is a method of evaluating how well a specific algorithm

models the given data. Formally, a loss function L(ŷ, y) assigns a real number to

a predicted output ŷ given the true expected output y. If the prediction deviates

too much from the actual result, the loss function would output a large number.

Gradually, with the help of some optimization technique, loss function learns to

reduce the error in prediction. The loss function should be bounded from below,

with the minimum attained only for cases where the prediction is correct.

There are multiple ways to determine loss. Not all of them fit to the total of possible

tasks. Choosing a loss function for a specific problem involves various factors, such

as type of machine learning algorithm chosen, ease of calculating the derivatives

and to some degree the percentage of outliers in the data set. Broadly, loss functions

can be classified into two major categories depending upon the type of learning task

we are dealing with: classification and regression loss functions. Some of the most

popular loss functions used for training classifiers are presented next.

3.6.1 Binary Cross-Entropy Loss

Generally, the term ‘entropy’ refers to the disorder or uncertainty in data. The

greater the entropy value, the higher the level of uncertainty. For a random discrete

variable y with probability distribution q(y), it is measured as:

H(q) = −

C∑
c=1

q(yc) log(q(yc)) (3.2)

where C is the number of possible outcomes. The entropy is basically the negative

summation of the product of the probability of occurrence of an event with its log

over all possible outcomes. So, if the true distribution of a random variable is

known, its entropy can be computed. However, the true distribution of the data in

most cases is unknown, and we try to approximate it with some other distribution

p(y). Cross-entropy measures entropy between two probability distributions. It is

the average number of bits required to communicate an event from one distribution
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to another distribution. Formally:

Hp(q) = −

C∑
c=1

q(yc) log(p(yc)) (3.3)

If the distributions p(y) and q(y) match perfectly, the computed values for both

cross-entropy and entropy match as well. Otherwise, cross-entropy will have a

bigger value than the entropy computed on the true distribution. The best possible

p(y) is the one that minimizes the cross-entropy.

Cross-entropy as a concept is applied in the field of machine learning when al-

gorithms are built to predict from the model build. Model building is based on

a comparison of actual results with the predicted results. Cross-entropy signifies

reducing entropy or uncertainty for the class to be predicted, and it is suitable as

a loss function because the goal is to minimize its value. In a binary classification

problem, C = 2 and the output label y can take values 0 and 1. In such case, the

Binary Cross-Entropy (BCE) per sample is defined as:

BCE = −(yi log(p(yi)) + (1 − yi) log(1 − p(yi))) (3.4)

where p(yi) is the predicted probability that the sample i belongs to class 1 (or positive

class), and 1 − p(yi) is the predicted probability that the sample i belongs to class 0

(or negative class).

Figure 3.3: Log Loss when True Label = 1. [42]

In summary, binary cross-entropy loss, also called Log Loss, measures the per-

formance of a classification model whose predicted output is a probability value

between 0 and 1. Log loss penalizes both types of errors, but especially those pre-

dictions that are confident and wrong. Figure 3.3 shows the range of possible

loss values given a true observation. As the predicted probability approaches 1, log

loss slowly decreases, whereas as the predicted probability decreases, the log loss

increases rapidly.
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Since probability requires a value in between 0 and 1, the Sigmoid function can

be used to calculate p. The sigmoid function, presented in Section 4.1.5.3, is also

known as a squashing function because it can squish any real value into the range

[0, 1], which makes it suitable for a model where we have probability as our model

output.

3.6.2 Categorical Cross-Entropy Loss

The Categorical Cross-Entropy Loss is a loss function that is used in multi-class

classification tasks. These are tasks where an observation can only belong to one

out of three or more possible categories with probability 1, and to other categories

with probability 0. The model must predict one possible class output every time.

In the usual case of multi-class classification, the labels are provided in a one-hot

representation.

The Categorical Cross-Entropy (CCE) is essentially the binary cross-entropy ex-

panded to multiple classes. It is calculated as a sum of separate loss for each class

label per observation. Mathematically, it is given as the following equation:

CCE = −

C∑
c=1

yi,c log(p(yi,c)) (3.5)

where C is the number of classes, yi,c is a binary indicator (0 or 1) that indicates

whether c is the correct class for the sample i, and p(yi,c) denotes the probability of

observation i for class c.

When probabilities for multiple classes are considered, one needs to ensure that

the sum of all the individual probabilities is equal to 1. Applying sigmoid does not

ensure that the sum is always equal to 1, hence there is a need for another function

in order to calculate p. The Softmax function, presented in Section 4.1.5.6, ensures

that all the output nodes have values between 0–1 and the sum of all output node

values equals to 1 always.

3.7 Cost Function

A cost function is a function that measures the performance of a machine learning

model for given data. It returns the cost between predicted outcomes compared with

the actual outcomes and presents it in the form of a single real number. When

the difference between the output and the correct answer is small, the error is

low. Depending on the problem, the cost function can be formed in many different

ways. While it is possible to define a cost function ad hoc, frequently the choice

is determined by the function’s desirable properties or because it arises from the

model.

Although cost function and loss function are synonymous and used interchangeably,

they are different. A loss function is for a single training example. A cost function,

on the other hand, is the average loss over the entire training data set. The aim

of supervised machine learning is to minimize the overall cost, thus optimizing the

correlation of the model to the system that it is attempting to represent.
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For example, based on Section 3.6.1, one can determine the binary cross-entropy

cost function as follows: during its training, the classifier uses each of the N points

in its training set to compute the binary cross-entropy loss (), effectively fitting the

distribution p(y). Since the probability of each point is 1/N, and y ∈ {0, 1}, the BCE

cost function over the complete set of samples is defined as:

JBCE = −
1

N

N∑
i=1

yi log(p(yi)) + (1 − yi) log(1 − p(yi)) (3.6)

3.8 Hyper-parameter

In machine learning, the term hyper-parameter is used in order to distinguish from

standard model parameters that can be directly learned from the regular training

process to fit the data. A hyper-parameter is a constant parameter that is set before

the learning process begins and whose value is used to control the learning process.

Hyper-parameters can be classified as model hyper-parameters, that cannot be in-

ferred while fitting the machine to the training set because they refer to the model

selection task, or algorithm hyper-parameters, that in principle have no influence

on the performance of the model but affect the speed and quality of the learning

process.

3.9 Optimization Strategies

The main goal of machine learning is to create a model that performs well and

gives accurate predictions in a particular set of cases. In order to achieve that, we

need machine learning optimization. Optimization is the problem of adjusting the

hyper-parameters in order to minimize the defined loss function/cost function by

using some optimization technique.

There are perhaps hundreds of popular optimization algorithms, which can make it

challenging to know which algorithms to consider for a given optimization problem.

The choice, however, of optimization algorithm can make a difference between get-

ting a good accuracy in hours or days. Fundamental optimization methods are

typically categorised into first-order, high-order and derivative-free optimization

methods. One usually comes across methods that fall into the category of the

first-order optimization such as the gradient descent and its variants, which use the

first derivative (gradient) to choose the direction to move in the search space.

3.9.1 Gradient Descent

Gradient Descent (GD) is the most popular optimization method that’s used when

training a machine learning model. It is a first-order iterative optimization algorithm

for finding a local minimum of a differentiable objective function J(θ) parameterized

by a model’s parameters θ ∈ Rd
. The idea is to iteratively update the parameters

in the opposite direction of the gradient (or approximate gradient) of the objective

function ∇θJ(θ) with regard to the parameters, because this is the direction of

steepest descent. With every update, this method guides the model to find the target

and gradually converge to the optimal value of the objective function.
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There are three variants of GD that differ in the total number of samples from a data

set (batch) that is used to compute the gradient of the objective function. Depending

on the amount of data, there is a trade-off between the accuracy of the parameter

update and the time it takes to perform an update.

In order to perform Batch Gradient Descent (BGD), one has to iterate over the

entire training data set while readjusting the model. The batch in this case is

taken to be the whole data set. More specifically, BGD calculates the error for each

example within the training data set, but only after all training examples have been

evaluated does the model get updated. This whole process is like a cycle and it’s

called a training epoch.

To get started, the entire training data set has to be in memory and available to

the algorithm, and the initial parameters’ values have to be defined. From there,

BGD uses calculus to iteratively adjust these values so they minimize the given cost

function:

θ = θ − η · ∇θJ(θ). (3.7)

The learning rate η, presented in Section 3.9.3, determines the size of the step taken

at each iteration. When improvement is no longer observed, the optimization is over

and a minimum is found. In other words, one follows the direction of the slope of

the surface created by the cost function downhill until a valley is reached.

Classical GD is guaranteed to converge to the global minimum for convex error

surfaces only. If the surface is non-convex, then it will stop searching when it finds

a local minimum. If the cost function is highly non-convex, meaning it consists of

many minimum points, then the gradient may settle on any one of the sub-optimal

local minima, which depends on the initial parameters and the learning rate.

Figure 3.4: Gradient Descent Stuck at Local Minima. [43]

3.9.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) [44] can be regarded as a stochastic approxima-

tion of gradient descent optimization, since it replaces the actual calculation of the

gradient from the entire data set by an estimated gradient computed on a randomly

selected subset of the data (called a "mini-batch"), which may be as small as a single

training sample. SGD performs a parameter update for each training example x(i)
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and label y(i)
as follows:

θ = θ − η · ∇θJ(θ; x(i); y(i)) (3.8)

SGD is generally noisier than batch gradient descent as, because of its randomness

in its descent, it usually takes a higher number of iterations to reach the minimum.

However, it is still computationally much less expensive than BGD, which in large

data sets is a significant aspect. Memory usage is also reduced compared to BGD,

as SGD does not store values of loss functions. SGD has frequent updates with a

high variance that cause a lot of fluctuations in the loss vs iterations graph, as in

Figure 3.5.

Figure 3.5: Gradient Descent vs Stochastic Gradient Descent Error Rate During

Training. [45]

While batch gradient descent converges to the minimum of the basin the param-

eters are placed in, SGD’s fluctuation enables it to jump to minima farther away,

potentially reaching a better minimum. This ultimately makes it a bit complicated to

converge to the exact minimum. However, it has been shown that when the learn-

ing rate η decreases with an appropriate rate, SGD shows the same convergence

behaviour as BGD, almost certainly converging to a local or the global minimum

for non-convex and convex optimization respectively.

3.9.3 Learning Rate

As already mentioned, the learning rate is a tuning parameter in an optimization

algorithm that determines the size of the corrective step at each iteration while

moving toward a minimum of a loss function. It controls how much to change

the model in response to the estimated error each time the model parameters are

updated. It metaphorically represents the speed at which a machine learning model

"learns".

In setting a learning rate, there is a trade-off between the rate of convergence and

overshooting. While the descent direction is usually determined from the gradient

of the loss function, the learning rate determines how big a step is taken in that

direction. As shown in Figure 3.6, a value too small may result in a long training

process that could get stuck in an undesirable local minimum, and a value too

large may result in learning a sub-optimal set of parameters too fast or an unstable

training process.
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Figure 3.6: Choosing a Learning Rate. [46]

In order to achieve faster convergence, avoid oscillations and getting stuck in un-

desirable local minima, the learning rate is often varied during training. This can

be done either in accordance to a learning rate schedule or by using an adaptive

learning rate that increases or decreases as appropriate.

Learning rate schedules seek to adjust the learning rate during training by reducing

the learning rate according to a pre-defined schedule. Their hyperparameters have

to be defined in advance and they depend heavily on the type of model and problem.

Also, the same learning rate is applied to all parameter updates. However, if the data

are sparse, one may want to update the parameters in different extent instead. In

this case, an adaptive learning rate method can be used to find individual learning

rates for different parameters.

3.9.4 Adaptive Moment Estimation

As an improvement to traditional gradient descent algorithms, the adaptive gradient

descent optimization algorithms or adaptive learning rate methods can be utilized.

Adaptive gradient descent algorithms such as Adagrad [47], which works really well

in settings with sparse gradients, but struggles in non-convex optimization, RMSprop

[48], which tackles to resolve some of the problems of Adagrad and works really

well in on-line setting, and Adam [49], which is almost similar to RMSProp but

with momentum [50], provide an alternative to classical SGD. These per-parameter

learning rate methods provide heuristic approach without requiring expensive work

in tuning hyperparameters for the learning rate schedule manually.

Adaptive Moment Estimation (Adam) is maybe the best optimizer at present. The

reason it is called that is because it uses estimations of first (the mean) and second

(the uncentered variance) moments of gradient to adapt the learning rate for each

parameter. Note, that the n-th moment of a random variable is defined as the

expected value of that variable to the power of n. To estimates the moments, Adam

utilizes exponentially moving averages, computed on the gradient evaluated on a

current mini-batch. Formally:

mt = (1 − β
1
)gt + β

1
mt−1 (3.9)

υt = (1 − β
2
)g2

t + β
2
υt−1 (3.10)
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where m and υ are moving averages, g is gradient on current mini-batch, and β
1
, β

2

are new introduced hyper-parameters of the algorithm with default values close to

1. This results in a bias of moment estimates towards 0, which is overcome by first

calculating the biased estimates and then calculating bias-corrected estimates:

m̂t =
mt

1 − βt
1

(3.11)

υ̂t =
υt

1 − βt
2

(3.12)

Finally, the parameters of the model are updated similar to the previous optimization

methods:

θt+1 = θt − η ·
m̂t
√
υ̂t + ε

(3.13)

where η is the learning rate and ε is a small term (10
−8
) preventing division by 0.

Adam is easy to implement, works well on problems with noisy or sparse gradients

and with large data sets and large parameters. Also, it is computationally efficient

and it requires little memory space.

3.10 Class Balancing

A common problem that appears in machine learning classification tasks is the class

imbalance problem. It appears when the occurrence of one or more classes (majority

classes) is very high compared to the other classes (minority classes) present. In

other words, there are distinct classes with higher number of instances compared

to other classes in the data set. This skewness towards the majority class creates

problems as most ML algorithms are based on the assumption that the data is

balanced, i.e., the data is equally distributed among all of its classes. Therefore,

when training a model on an imbalanced data set, the learning becomes biased

towards the majority classes.

A simple technique used in order to cope with this problem is having a cost-sensitive

loss function. The idea is to weight the loss computed for different samples differ-

ently based on whether they belong to the majority or the minority classes. Essen-

tially, a higher weight is assigned to the loss encountered by the samples associated

with under-represented classes and lower for the majority ones. The following equa-

tion computes the weights of each class:

wc =
n

Cnc
(3.14)

where wc is the weight of the class c, n is the number of all observations, C is

the total number of classes, and nc is the number of observations in class c. For

example, the weighted log loss function is described by the following formula:

BCEweighted = −(w
0
(yi log(p(yi)))) + w

1
((1 − yi) log(1 − p(yi))) (3.15)

where w
0
is the weight assigned to class 0 and w

0
is the weight assigned to class

1. For multi-class classification, the categorical cross-entropy loss function can be

weighted by class to reflect equal error from both majority and minority classes.
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3.11 Evaluation Metrics

Evaluating the performance of a trained machine learning model is an essential

part of any data science project. How well the model generalizes on the unseen data

is what defines adaptive vs. non-adaptive models. By using different evaluation

metrics one should be able to improve the overall predictive power of the model.

The choice of metrics completely depends on the type of algorithm and influences

how the performance of it is measured and compared. An important aspect of

evaluation metrics is their capability to discriminate among model results.

3.11.1 Confusion Matrix

Confusion Matrix, or Error Matrix, is the easiest way to measure the performance

of a classification problem where the output can be of two or more type of classes.

This matrix is an N × N matrix, where N is the number of classes being predicted.

It is a tabular representation of model predictions vs. actual values, where each

column and row is dedicated to one class.

For example, suppose some samples in a binary classification problem (N = 2) belong

to two classes. Also, suppose a binary classifier which predicts a class for a given

input sample. On testing the model on a number of test samples for which the true

values are known, we get the following table with two dimensions (“True Class” and

“Predicted Class”), and sets of classes in both dimensions.

Figure 3.7: Confusion Matrix with 2 Class Labels. [51]

Each prediction can be one of the following outcomes, based on how it matches up

to the true class:

• True Positive (TP): The actual class of the data point is True and the predicted is

also True.

• True Negative (TN): The actual class of the data point is False and the predicted

is also False.

• False Positive (FP): The actual class of the data point is False but the predicted

is True.

• False Negative (FN): The actual class of the data point is True but the predicted

is False.

Ideally, the model should give 0 False Positives and 0 False Negatives. Based on the

type of problem at hand, the minimization of either FP or FN might be considered.
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3.11.2 Accuracy

Accuracy (ACC) in classification problems is the number of true predictions (TP and

TN) made by the model over all kinds of predictions made (total number of samples).

It basically calculates the proportion of the total number of predictions that were

correct. Its mathematical formula is:

ACC =
TP + TN

TP + TN + FP + FN

(3.16)

As mentioned before, accuracy can give wrong impressions about the model, es-

pecially in situations where the data set is severe imbalanced, ie. there are many

samples of one class and not much of the others. Meaning, if the model is perform-

ing well on the class that is dominant in the data set, accuracy will be high, even

though the model might not perform well in other cases. Also, note that models

that over-fit have an accuracy score of 1.

3.11.3 Precision

Precision is a very useful metric that caries more information than the accuracy

metric and it can help when the costs of false positives are high. It is the proportion

of positive cases that were correctly identified by the model. Its value can go from

0 to 1 and it is calculated for each class separately with the formula:

Precision =
TP

TP + FP

(3.17)

3.11.4 Recall

Recall, also known as Sensitivity or True Positive Rate (TPR), can be described as the

ability of the classifier to find all the positive samples. It is the proportion of actual

positive cases which are correctly identified. It is defined as the fraction of samples

from a specific class which are correctly predicted by the model. Mathematically:

Recall =
TP

TP + FN

(3.18)

This metric falls within the 0-1 range, with the 1 being the best value. In contrast to

precision, which is a measure of result relevancy, recall is a measure of how many

truly relevant results are returned and it can help when the cost of false negatives

is high.

3.11.5 Specificity

Specificity, also known as True Negative Rate (TNR) or 1 – False Positive Rate

(FPR), can be defined as the proportion of actual negative cases which are correctly

identified. Specificity is the exact opposite of recall. It is easily calculated by

confusion matrix with the help of the following formula:

Specificity =
TN

TN + FP

(3.19)
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3.11.6 Balanced Accuracy

Balanced Accuracy (bACC) is a metric that is especially useful when the classes are

imbalanced. It is based on two more commonly used metrics: sensitivity (or recall)

and specificity. Balanced accuracy is simply the arithmetic mean of the two:

bACC =
Sensitivity + Specificity

2

(3.20)

3.11.7 F-Measure

Fβ Score is the most popular metric used for multi-class classification or for binary

classification where the number of observations is not balanced across the classes.

The generalized formula of F-score for classification problems with two or more

classes is defined as:

Fβ =
(1 + β2) · Precision · Recall
β2 · (Precision + Recall)

(3.21)

where β is a non-negative real number and equal to 1 in binary classification, ie.

it represents the number of possible classes reduced by 1. F1 score is the harmonic

mean of precision and recall. Its best value is 1, indicating perfect precision and

recall, and its worst score is 0, if either the precision or the recall is 0. For a

multi-class classification task, in order to combine the F1 score of each class into

a single score, the macro or micro F1 metric can be used. The macro F1 score is

computed as the arithmetic mean of the N classes’ F1 scores as follows:

F1macro =
1

N

N∑
i=1

F1i (3.22)

where F1i is the F1 score of the i-th class computed using Equation 3.21 (where β = 1)

in a one vs. rest manner. The micro F1 score treats all predictions on all classes as

one vector and then calculates the F1 measure. Note that micro-averaging is biased

by class frequency and macro-averaging takes all classes as equally important.
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Deep Learning

4.1 Artificial Neural Networks

Performing machine learning tasks involves creating a model, which is trained on

some training data and then can process additional unseen data to make predictions.

An Artificial Neural Network (ANN), usually simply called Neural Network (NN),

is a computational model vaguely inspired by the structure and functional aspects

of biological neural networks that constitute animal brains, like the human brain.

ANNs are an attempt to simulate the network of neurons that make up a human

brain so that the computer will be able to replicate the way that we humans learn.

ANNs are created by programming regular computers to behave as though they are

interconnected brain cells.

Modern neural networks are non-linear statistical data modeling tools. They are

usually used to model complex relationships between inputs and outputs, to find

patterns in data, or to capture the statistical structure in an unknown joint proba-

bility distribution between observed variables. They are excellent tools for finding

patterns which are far too complex or numerous for a human programmer to ex-

tract and teach the machine to recognize. Neural networks are often used in image

recognition, language translation, and other common applications today.

4.1.1 Components

An ANN is based on a collection of connected units or nodes called artificial neu-

rons, which loosely model the neurons in a biological brain. A neuron, as shown in

Figure 4.1, is the basic computational unit of the brain. The human nervous system

has more than 86 billion neurons that communicate with each other via synapses.

Each neuron has on average 7 thousand synaptic connections to other neurons, and

the neurons pass signals to each other via as many as 100 to 500 trillion synapses.

Each neuron receives input signals from its dendrites and produces output signals

along its (single) axon. The axon eventually branches out and connects via synapses

to dendrites of other neurons. The dendrites carry the signal to the cell body where

they all get summed. If the final sum is above a certain threshold, the neuron can

fire, sending a spike along its axon.

39
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Figure 4.1: Structure of a typical Biological Neuron. [52]

In parallel to the biological structure, a typical example of an artificial neuron is

depicted in Figure 4.2. In the computational model, the signals that travel along

the "axons" (e.g. x
0
) interact multiplicatively (e.g. w

0
x
0
) with the "dendrites" of

the other neuron based on the "synaptic strength" at that "synapse" (e.g. w
0
). A

"synapse" (connection) between artificial neurons is called an edge and the "synaptic

strength" of that edge is called weight. The weight changes during the training

procedure and increases or decreases the strength of the signal at the connection.

Each connection can transmit a signal to other neurons. An artificial neuron that

receives a signal then processes it and can signal neurons connected to it. The

"signal" at a connection is a real number.

Figure 4.2: Computation Model of a Neuron. [53]

The output of an artificial neuron is computed by summing the multiplication of each

input by the corresponding edge weight and then adding a bias term b to this sum.

This weighted sum is sometimes called the activation. Neurons may have a threshold

such that a signal is sent (the neuron "fires") only if the aggregate signal crosses that

threshold. Ιn contrast to the biological model, the precise timings of the "spikes"

do not matter, and only the frequency of the "firing" communicates information.

Based on this rate code interpretation, the firing rate of the neuron is modeled with

a function f , called activation function, which represents the frequency of the spikes

along the axon. Simply put, the aggregate signal is passed through an activation

function and generates an output. In summary, each neuron performs a dot product

with the input and its weights, adds the bias and applies the non-linearity (or

activation function).
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4.1.2 Organization

Neurons are connected to each other in various patterns, to allow the output of some

neurons to become the input of others. The network forms a directed, weighted

graph. Typically, neural networks consist of an input and an output layer, as well

as (in most cases) a hidden layer consisting of units that transform the input into

something that the output layer can use. Different layers may have a different

number of neurons and perform a different transformation on their inputs. Signals

are fed into the network through the input layer and travel to the output layer,

possibly after traversing the layers multiple times.

Between two layers, multiple connection patterns are possible. They can be fully

connected, with every neuron in one layer connecting to every neuron in the next

layer. They can be pooling, where a group of neurons in one layer connect to a

single neuron in the next layer, thereby reducing the number of neurons in that

layer. Neurons with only such connections form a directed acyclic graph and are

known as Feed-Forward Neural Network (FFNN).

Figure 4.3: Overview of a typical Fully Connected Feed-Forward Artificial Neural

Network. [54]

FFNNs are used in general regression and classification problems. The structure of

a fully connected FFNN with a hidden layer is shown in Figure 4.3. Alternatively,

networks that allow connections between neurons in the same or previous layers

are known as recurrent networks. In the case of multiple hidden layers, the network

is referred to as a Deep Neural Network (DNN).

4.1.3 Learning

An ANN is a complex adaptive system that can change its internal structure based on

the information passing through it and the change in environment. Being a complex

adaptive system, learning in ANNs implies the adaptation of the network to better

handle a task by considering sample observations. Learning involves adjusting the

parameters of the network (weights, biases and optional thresholds) in order to

change its input/output behavior and improve the accuracy of the result. This is

done by minimizing the observed errors.

Learning is complete when examining additional observations does not usefully

reduce the error rate. Even after learning, the error rate typically does not reach
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0 and, in case it is too high, the network must be redesigned. Practically this is

done by defining a cost function that is evaluated periodically during learning. As

mentioned in Section 3.9, an optimization algorithm is used in order to minimize the

defined cost function by adjusting the hyper-parameters of the network. Examples

of hyper-parameters include the learning rate, the number of epochs, the number of

hidden layers and the mini-batch size.

4.1.4 Back-propagation

Back-propagation (backprop) is a widely used algorithm for training (feed-forward)

neural networks. Generalizations of backprop exists for other ANNs, and for func-

tions generally. These classes of algorithms are all referred to generically as "back-

propagation".

When the neural network is initialized, weights are set for its neurons. Inputs are

loaded, they are passed through the network of neurons, and the network provides

an output for each one, given the initial weights. Back-propagation helps to adjust

the connection weights of the neurons to compensate for each error found during

learning. The error amount is effectively divided among the connections. Tech-

nically, backprop computes the gradient of the loss function with respect to each

weight by the chain rule, , computing the gradient one layer at a time, iterating

backward from the last layer to avoid redundant calculations of intermediate terms

in the chain rule. The weight updates to minimize loss can be done via gradient

descent, stochastic gradient descent or other methods.

Figure 4.4: A simple Neural Network Model. [55]

4.1.5 Activation Function

In ANNs, the activation function of a node is a mathematical equation that de-

termines the output of that node given an input or set of inputs. The function

is attached to each neuron in the network, and determines whether it should be

activated or not, based on whether each neuron’s input is relevant for the model’s

prediction. Activation functions also help normalize the output of each neuron to
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a range between 1 and 0 or between −1 and 1. Increasingly, NNs use non-linear

activation functions, which can help the network learn complex data, compute and

learn almost any function representing a question, and provide accurate predictions.

An additional aspect of these functions is that they must be computationally efficient

because they are calculated across a large number of neurons for each data sample.

Some of the most popular activation functions are presented next.

4.1.5.1 Binary Step Function

The binary step function, depicted in Figure 4.5, is a threshold-based classifier, i.e

whether or not the neuron should be activated based on the value from the linear

transformation. In other words, if the input value is greater than a threshold, then

the neuron is activated and the signal is sent to the next layer without any trans-

formation. Otherwise, the neuron is deactivated and its output is not considered

for the next layer. The binary step function has the mathematical form:

f (x) =

{
0 x < 0

1 x ≥ 0

(4.1)

Figure 4.5: Binary Step Activation Function. [56]

One of the limitations of this function is that its output only takes two values, so it

cannot support classifying the inputs into one of multiple categories. Moreover, the

gradient of the step function is zero which causes a problem in the back propagation

process, as the weights and biases don’t update.

4.1.5.2 Linear Function

The linear activation function, shown in Figure 4.6, takes the inputs, multiplied by

the weights for each neuron, and creates an output signal proportional to the input.

The linear function has the mathematical form:

f (x) = x (4.2)
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Figure 4.6: Linear Activation Function. [56]

A linear function is better than a step function, because it allows multiple outputs.

However, it has two major problems. Firstly, the derivative of the function is a

constant, and has no relation to the input, x, so it’s not possible to use backprop

(gradient descent) to train the model. Secondly, a neural network with a linear

activation function is simply a linear regression model. No matter how many

layers the network has, the last layer will be a linear function of the first layer.

This results in the network having limited power and ability to handle complexity

varying parameters of input data.

4.1.5.3 Sigmoid Function

The logistic sigmoid function, shown in Figure 4.7, is a non-linear mathematical

function having a characteristic "S"-shaped curve or sigmoid curve. It takes a real-

valued input (the signal strength after the sum) and squashes it to range between 0

and 1. Thus, it is used especially when a model has to predict the probability as an

output. The sigmoid non-linearity is defined for all real input values by the formula:

f (x) = σ(x) =
ex

1 + ex =
1

1 + e−x (4.3)

However, the sigmoid function has some disadvantages. Towards either end of the

sigmoid function, for very high or very low values of x, there is almost no change

to the prediction Y . The gradient at that region is going to be small or "vanished"

(almost zero), causing a problem of "vanishing gradients". This can result in the

network being too slow to reach an accurate prediction, or refusing to learn further.

Furthermore, the function is computationally expensive, and its outputs are not

zero-centered. This is a major drawback, since the data coming into a neuron is

always positive, causing the gradient of the weights to either all be positive, or all

negative and undesirable zig-zagging dynamics would be introduced to the network.
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Figure 4.7: Sigmoid Activation Function. [56]

4.1.5.4 Hyperbolic Tangent Function

The hyperbolic tangent (tanh) non-linearity is shown in Figure 4.8. As an activation

function, tanh it is mostly used to model inputs that have strongly negative and

positive values as it is zero-centered. Its outputs range between −1 and 1, making

it easier to model inputs that have strongly negative, neutral, and strongly positive

values. The zero-centered values help the next neuron during propagating. The tanh
activation function is continuous and differentiable at all points and follows the

function:

f (x) = tanh(x) =
ex − e−x

ex + e−x (4.4)

Figure 4.8: Tanh Activation Function. [56]
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Tanh function is basically a rescaled sigmoid function, where

tanh(x) = 2σ(2x) − 1 (4.5)

The gradient of the tanh function is steeper as compared to the sigmoid func-

tion. Deciding between the sigmoid or tanh depends on the requirement of gradient

strength, but usually tanh is preferred over the sigmoid function since it is sym-

metric around the origin and the gradients are not restricted to move in a certain

direction. However, like sigmoid, tanh also has the vanishing gradient problem.

4.1.5.5 Rectified Linear Unit

Rectified Linear Unit (ReLU), also known as ramp function, is a non-linear function

and one of the most widely used activation functions. It is a simple calculation that

returns the value of the input x, or 0 if the input value is negative. ReLU, depicted

in Figure 4.9, computes the function:

f (x) = x+ = max(0, x) (4.6)

where x is the input to a neuron. ReLU is less computationally expensive than tanh
and sigmoid and allows the network to converge very quickly. The main advantage

of using the ReLU function however is that it does not activate all the neurons at

the same time. This means that the neurons will only be deactivated if the output

of the linear transformation is less than 0.

Figure 4.9: ReLU Activation Function. [56]

The range of ReLU is [0, in f ), meaning it is not bound, and it can blow up the

activation. Also, it is not zero-centered. The main disadvantage, however, of the

ReLU function is a problem called "dying ReLU problem", which is a form of

the vanishing gradient problem. When inputs approach zero, or are negative, the

gradient of the function becomes zero. Due to this reason, during the backprop

process, the weights and biases for some neurons are not updated. This can create
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"dead" neurons which never get activated, making a substantial part of the network

passive. This problem typically arises when the learning rate is set too high. It can

be taken care of by the ‘Leaky’ ReLU function, which simply assigns a small positive

slope for x < 0, however the performance is reduced. There are other variations

too, but the main idea is to let the gradient be non zero and recover during training

eventually.

4.1.5.6 Softmax

The softmax function, also known as softargmax function, is often used as the

last activation function of a neural network to normalize the output of a network

to a probability distribution over multiple predicted output classes. The function

turns a vector of K real values into a vector of K real values that sum to 1. The

input values can be positive, negative, zero, or greater than one, but the softmax

transforms them into values between 0 and 1, so that they can be interpreted as

probabilities. Basically, it normalizes the outputs for each class between 0 and 1,

and divides by their sum, giving the probability of the input value being in a specific

class. The standard softmax function is defined by the formula:

f (x)i =
exi∑K

n=1 exn
(4.7)

4.1.6 Regularization

When training a machine learning model, and especially a neural network, there

are two major kinds of problems that may arise: bias and variance problems. The

term bias refers to the simplifying assumptions made by a model to make the target

function easier to learn. Variance is the amount that the estimate of the target

function will change if different training data was used. The goal of any supervised

ML algorithm is to achieve low bias and low variance.

The high bias and low variance problems are called under-fitting of the model and

the high variance and low bias problems are called over-fitting of the model. In

the case of under-fitting, the network is not trained properly and results in high

training and test errors. In the case of over-fitting, the network is trained in such

a way that it has adapted for the training values but when given unseen data, the

model performs poorly and gives errors in the result.

Figure 4.10: Under-fitting vs. Appropriate-fitting vs. Over-fitting. [57]
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The collection of techniques used to combat over-fitting and reduce the error on the

test set is known as Regularization. Regularization can be defined as any modifi-

cation made to a learning algorithm that is intended to reduce its generalization

error and, ideally, not reduce its training error. This is often achieved by adding

an additional penalty term in the error function. Some of the most commonly used

regularization techniques are presented next.

4.1.6.1 L1 Regularization

L1 Regularization adds an L1 penalty equal to the absolute value of the magnitude of

coefficients. In other words, it limits the size of the coefficients. L1 can yield sparse

models, i.e. models with few coefficients. It tends to shrink coefficients to zero and

of them can become zero and eliminated. L1 is therefore useful for feature selection,

as any variables associated with coefficients that go to zero can be dropped.

4.1.6.2 L2 Regularization

L2 Regularization adds to the loss function an L2 penalty equal to the square of

the magnitude of coefficients. It will not yield sparse models and all coefficients are

shrunk by the same factor (none are eliminated). L2 is useful when the features

are codependent. This technique is also known as weight decay since it reduces

the magnitudes of neural network weights during training, resulting in an improved

trained model that is not as likely to be over-fitted.

4.1.6.3 Dropout

Dropout [58] is a regularization technique for reducing over-fitting in neural net-

works by preventing complex co-adaptations on training data. The idea is that it

randomly selects a number of neurons which are “dropped-out”, or ignored along

with their incoming and outgoing connections during training. This means that,

in each weight update cycle, the contribution of the selected ignored nodes to the

activation of downstream neurons is temporally removed on the forward pass, and

any weight updates are not applied to the neuron on the backward pass.

Figure 4.11: Dropout Neural Net Model. Left: A standard neural net with 2 hidden

layers. Right: An example of a thinned net produced by applying dropout to the

network on the left. Crossed units have been dropped. [58]
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Dropout can be easily implemented by randomly selecting nodes to be dropped-out

with a given probability (defined by a dropout hyper-parameter) each iteration. This

way, each iteration consists of a different set of nodes that produce different outputs.

It is only used during the training of the model, and is not used when evaluating

the model. A visualization of this regularization technique is shown in Figure 4.11.

4.1.6.4 Data Augmentation

Data Augmentation is an interesting regularization technique that is mostly used

when the data set available is small. This technique generates new (fake) training

data from the original data set, increasing the number of observations and thus

controlling over-fitting. More specifically, it increases the amount of data by adding

slightly modified copies of already existing data or newly created synthetic data

from existing data. It is a cheap and easy way to increase the amount of training

data.

4.1.6.5 Early Stopping

One of the biggest problem in training neural networks, especially dealing with large

data sets, is how long to train the model. Training too little will lead to under-fit in

train and test sets and training too much will result in over-fitting the training set

and give poor results in test sets. Thus, the challenge is to train the network long

enough that it is capable of learning the mapping from inputs to outputs, but not

training the model so long that it over-fits the training data.

One technique to prevent over-fitting is to use validation error to decide when to

stop the training. The validation error is evaluated on a holdout data set, called

validation set, after each epoch while building the model. If the accuracy of the

model on the validation set starts to degrade (loss begins to increase or accuracy

begins to decrease), then the training process is stopped. This technique is called

Early Stopping. In order to denote the number of epochs after which the training

will stop if no further improvement is made, a hyper-parameter called patience is

defined.

4.2 Definition of Deep Learning

Deep Learning (DL), also known as deep structured learning, is part of a broader

sector of ML based on artificial neural networks with representation learning. Ac-

cording to Jeff Dean [59], deep learning algorithms are using very deep neural

networks, where “deep” refers to the number of layers in the neural network, or

iterations between input and output. DL can be supervised, semi-supervised or un-

supervised. DL architectures have been applied to numerous fields of study including

computer vision, speech recognition, natural language processing, audio recognition,

machine translation, time series prediction and bioinformatics.
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4.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a generalization of feed-forward neural net-

works that has an internal “memory”. It is a class of artificial neural networks

where connections between nodes form a directed graph along a temporal sequence,

which allows it to exhibit temporal dynamic behavior. While traditional deep neu-

ral networks assume that inputs and outputs are independent of each other, RNNs

consider the current input and the output that it has learned from the previous

input for making a decision. In other words, they are networks with feedback loops

that allow information to persist - a trait that is analogous to short-term memory.

Unlike a feed-forward network, depending on the preceding inputs the same input

may produce different outputs.

Figure 4.12: Comparison of Recurrent Neural Networks (on the left) and Feed-

forward Neural Networks (on the right). [60]

The core reason that RNNs are important is that, because of their internal state

(memory), they allow the operation over sequences of vectors: sequences in the

input, the output, or in the most general case both. They are perfectly suited for

machine learning problems that involve text, audio, video, and time series. The four

different types of RNNs are depicted in Figure 4.13.

Figure 4.13: Each rectangle is a vector and arrows represent functions. Input vectors

are in red, output vectors are in blue and green vectors hold the RNN’s state. From

left to right: (1) Vanilla mode of processing without RNN, from fixed-sized input

to fixed-sized output. (2) Sequence output. (3) Sequence input. (4) Sequence input

and sequence output. (5) Synced sequence input and output. Notice that in every

case are no pre-specified constraints on the lengths sequences because the recurrent

transformation (green) is fixed and can be applied as many times as we like. [61]
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4.3.1 Uni-Directional Recurrent Neural Networks

Like feed-forward neural networks, recurrent neural networks utilize training data

to learn. They are distinguished by their “memory”, which is preserved in the

recurrent network’s hidden state vector and represents the context based on the

prior inputs and outputs. While future events would also be helpful in determining

the output of a given sequence, uni-directional (vanilla) recurrent neural networks

cannot account for these events in their predictions.

An unrolled one-to-many vanilla recurrent neural network is depicted in Figure

4.14. Firstly, during forward propagation, the RNN takes the x
0
from the sequence

of input and it produces an output h
0
(hidden state). Note that the production of

hidden state is simply a matrix multiplication of input and hidden state by some

weights W . In the next time-step, the hidden state h
0
along with the next input x

1

is given as input. Accordingly, h
1
along with x

2
is the input for the next step and

so on. So, the “memory” mechanism of RNNs is implemented using an internal

hidden layer that produces a hidden state, which remembers all information about

what has been calculated. Formally, at each time-step t, the hidden state ht and the

output yt are calculated as:

ht = fh(Whhht−1 + Whxxt + bh) (4.8)

yt = fy(Wyhht + by) (4.9)

where xt is the input vector, bh is the bias for h, by is the bias for y and fx, fh are

the activation functions for x and h respectively. Also, Whh represents the weight at

the previous hidden state, Whx the weight at current input state and Wyh the weight

at the output state.

Figure 4.14: A simple Recurrent Neural Network Unrolled in time. All RNNs have

the form of a chain of repeating modules of a neural network (green box). In vanilla

RNNs, this repeating module will have a very simple structure, such as a single tanh
layer. The arrows indicate memory or simply feedback to the next input. [62]

RNNs leverage the Back-propagation Through Time (BPTT) algorithm to determine

the gradients. This algorithm is different from the traditional backprop described

in Section 4.1.4, as it is specific to sequence data. The principles of BPTT are the

same as traditional backprop, where the model trains itself by calculating errors

from its output layer to its input layer in order to adjust and fit the parameters

of the model appropriately. However, BPTT differs because it sums errors at each

time-step, whereas feed-forward networks do not need to sum errors as they do not

share parameters across each layer.
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Through this process, RNNs tend to run into two major problems, known as van-

ishing gradients and exploding gradients. These issues are defined by the size of the

gradient (the slope of the loss function along the error curve). When the gradient

is small, it continues to become smaller, updating the weight parameters until they

become insignificant. This makes the learning of long data sequences difficult. In

contrast, exploding gradients occur when the the slope tends to grow exponentially

instead of decaying, creating an unstable model. In this case, the weight parameters

will grow too large (approaching infinity) during the training process resulting in

poor performance. One solution to these issues is to reduce the number of hidden

layers within the RNN, eliminating some of its complexity.

4.3.2 Bi-Directional Recurrent Neural Networks

Bi-directional Recurrent Neural Network (BRNN) [63] is a variant network archi-

tecture of RNNs and was introduced in order to increase the amount of input

information available to the network. While uni-directional RNNs can only draw

information from previous inputs (backwards) to make predictions about the current

state, BRNNs pull in future data (forward) simultaneously to improve the accuracy

of it.

The structure of a typical BRNN is illustrated in Figure 4.15. BRNNs split the neu-

rons of a regular RNN into two directions, one for positive time direction (forward

states), and another for negative time direction (backward states). Those two states’

output are not connected to inputs of the opposite direction states. Ιn order to

find the hidden state for each time step, BRNNs combine the two hidden layers of

opposite directions to the same output.

Figure 4.15: A Bi-directional Recurrent Neural Network. [64]

BRNNs can be trained using similar algorithms to RNNs, because the two directional

neurons do not have any interactions. However, when BPTT is applied, additional

processes are needed because updating input and output layers cannot be done at

once. Generally, for forward pass, forward states and backward states are passed

first, then output neurons are passed. For backward pass, output neurons are passed

first, then forward states and backward states are passed next. After forward and

backward passes are done, the weights are updated.
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4.3.3 Long Short-Term Memory Networks

The Long Short-Term Memory (LSTM) [65] is a popular RNN architecture used

in the field of deep learning. It was introduced as a solution to the vanishing

gradient problem in back-propagation, which cause RNNs to be inherently deficient

at retaining information over long periods of time. More specifically, if the previous

state that is influencing the current prediction is not in the recent past, the RNN

model may not be able to accurately predict the current state. LSTMs can overcome

this problem by preserving key information, retain it over long periods of time, and

then use this information when necessary much later on in the sequence.

The chain like structure of an LSTM is depicted in Figure 4.16. It is composed of

"cells" in the hidden layers, which have three gates: a forget gate, an input gate and

an output gate. A cell remembers values over arbitrary time intervals and the three

gates regulate the flow of information into and out of the cell. At every time-step t,
each LSTM cell updates its internal state vector ct and generates an output hidden

vector ht based on the cell state. The equations for the forward pass of an LSTM

unit with a forget gate are described next.

Figure 4.16: Long Short-Term Memory Chain. The repeating module in an LSTM

contains four interacting layers. [66]

• Forget gate: It decides which non-important information to delete from the cell

state. The current input xt and the previous hidden state ht−1 are passed through

the sigmoid function, which outputs a number between 0 (completely forget this)

and 1 (completely keep this) for each bit in the cell state ct−1. Formally, the forget

gate’s activation vector is computed as follows:

ft = σ(W f xt + U f ht−1 + b f ) (4.10)

• Input/Update gate: It controls what information should be stored in the cell state.

First, the sigmoid function (called the input gate layer) decides which values to

let through by squashing them between 0 and 1 as follows:

it = σ(Wixt + Uiht−1 + bi) (4.11)

where it is the input gate’s activation vector. Next, the previous hidden state and

the current input are also passed to the tanh function, which forces the values
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to be between −1 and 1, deciding their level of significance. Mathematically, the

vector of new candidate values that could be added to the state, called the cell

input activation vector, is defined as:

c̃t = tanh(Wcxt + Ucht−1 + bc) (4.12)

By element-wise multiplying the tanh output with the sigmoid output, the impor-

tant information of the current input is filtered.

• Cell state: The old state ct−1 gets element-wise multiplied by the forget vector in

order to forget the information decided by the previous steps. The output of this

multiplication is then added to the output vector from the input gate (it ◦ c̃t) in

order for the state to be updated. The cell state ct now contains the new values

that the neural network considers as relevant.

ct = ft ◦ ct−1 + it ◦ c̃t (4.13)

• Output gate: Finally, this gate decides the output based on the input and the

memory of the block. The sigmoid function once again squashes the previous

hidden state and the current input between 0 and 1 in order to decide which

values to let through. So, the output gate’s activation vector is computed as:

ot = σ(Woxt + Uoht−1 + bo) (4.14)

The updated cell state ct is passed to the tanh function, and its output is element-

wise multiplied with the sigmoid output ot. This multiplication generates the new

hidden state ht which is carried over to the next time-step:

ht = ot ◦ tanh(ct) (4.15)

Note that W, U and b are the weight matrices and bias vector parameters which

need to be learned during training. Also, the initial values are c
0

= 0 and h
0

= 0

and the operator ◦ denotes the Hadamard product (element-wise product).

4.4 Attention Mechanisms

Attention [67] is a mechanism that was developed as a solution to the limitations of

the Encoder-Decoder model for RNNs [68] [69] in machine translation, where input

sequences differ in length from output sequences. Specifically, it helps memorizing

long source sentences in neural machine translation.

Attention is a technique that mimics cognitive attention, and it is one of the most

important breakthroughs in DL research in the last decade. It helps models to direct

their focus and devote more computing power to the important parts of the input

data, while fading out the rest. Which part of the data is more important depends on

the context and is learned through training data by GD. Therefore, attention in deep

learning can be broadly interpreted as a vector of importance weights. Attention

mechanisms are extensively used in Transformer networks [70], illustrated in Figure

4.17, in order for them to achieve their expressive power.
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Figure 4.17: The Transformer - model architecture. [70]

The attention mechanism introduced in neural machine translation [67] can be

defined as follows. Suppose a source sequence x of length n, x = [x
1
, x

2
, . . . , xn], and

an output sequence y of length m, y = [y
1
, y

2
, . . . , ym]. Also, suppose the encoder is a

BRNN with both a forward and a backward hidden state. A simple concatenation

of the two represents the encoder state hi, i = 1, . . . , n. Both the preceding and

following words should be included in the annotation of one word. For the output

word at position t, t = 1, . . . ,m, the decoder network has a hidden state:

st = f (st−1, yt−1, ct) (4.16)

where the context vector ct is a weighted by alignment scores sum of the hidden

states of the input sequence:

ct =

n∑
i=1

at,ihi (4.17)

at,i = align(yt, xi) =
escore(st−1,hi)∑n

i′=1 escore(st−1,hi′ )
(4.18)

The alignment model assigns a score at,i to the pair (yt, xi), based on how well they

match. The set of {at,i} are weights, and they define how much of each source hidden

state should be considered for each output.

Some of the most common attention mechanisms used are the additive [67], the dot-

product [71], and the content-based attention [72]. Also, attention mechanisms can

be categorized into broader categories, such as self-attention [73]. Self-attention,

also known as intra-attention, is a mechanism relating different positions of a

single sentence in order to compute a representation of the same sentence. Finally,

note that the multi-head attention is a module which runs through an attention

mechanism several times in parallel.
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4.5 Transfer Learning

Transfer Learning (TL) is a machine learning technique where a model trained

on one task is reused as the starting point for a model on a second task. It is

a popular approach especially in deep learning because of the vast compute and

time resources required to develop neural networks for tasks like computer vision

and natural language processing. Also, it allows the development of deep neural

network models with comparatively little data. This is really useful as the supervised

models which solve complex problems require vast amounts of labeled data that

typically cannot be obtained due to the time and effort it takes to label data points.

Moreover, most models that are specialized to a specific task suffer a significant

performance drop when used in new tasks which might still be similar to the one

they were trained on. The goal of TL is to improve target task performance/results

by leveraging knowledge from the source task, as illustrated in Figure 4.18.

Figure 4.18: Traditional Learning vs. Transfer Learning. [74]

In order to define transfer learning, the terms of domains and tasks are used.

According to the survey by Weiss et al. [75], a domain D consists of two parts: a

feature space X and a marginal probability distribution P(X), where X = {x
1
, ..., xn} ∈

X. For a given domain D = {X, P(X)}, a task T is defined by two components: a

label space Y and an objective predictive function f : X → Y, which is learned

from the training data consisting of label pairs {xi, yi}, where xi ∈ X and yi ∈ Y. So,

T = {Y, f (x)}. Given a source domain DS with corresponding task TS and a target

domain DT with learning task TT , where DS , DT , or TS , TT , transfer learning’s

objective is to improve the target predictive function fT (·) in TT by using the related

information from DS and TS . As both the domain D and the task T are defined

as tuples, these inequalities give rise to four transfer learning scenarios:

• XS , XT : The feature spaces of the source and target domains are not equal.

• P(XS ) , P(XT ): The marginal probability distributions of source and target do-

mains are not equal.

• YS , YT : The label spaces of the source and the target tasks are not equal.

• P(YS |XS ) , P(YT |XT ): The conditional probability distributions of the source and

the target tasks are not equal.

Pan and Yang [76] segregate TL mainly into transductive TL, where the source

and target task are the same, and inductive TL, where the source and the target

task is different. It is further divided into domain adaption (data from different

domains), cross-lingual learning (data from different languages), multi-task learning

(several tasks are learnt simultaneously) and sequential TL (the source data’s general
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knowledge is transferred to only one task), as shown in Figure 4.19.

Figure 4.19: Types of Transfer Learning. [77]
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Natural Language Processing

5.1 Definition of Natural Language Processing

Natural Language Processing (NLP) is a branch of AI, computer science, and com-

putational linguistics (rule-based modeling of human language) that is primarily

concerned with the interactions between computers and natural (human) languages.

In simple terms, NLP represents the automatic processing of natural language like

speech (voice data) or text in order for it to be understood, interpreted and ma-

nipulated. By utilizing NLP, machines can perform tasks such as automatic text

summarization, sentiment analysis, speech recognition, translation, relationship ex-

traction, topic segmentation, named entity recognition, and more.

The main challenge that NLP faces is that human language is filled with ambi-

guities. Besides the existence of many different languages and dialects, each lan-

guage include irregularities in grammar and syntax, idioms, sarcasm, metaphors,

homonyms, and homophones. So, understanding and manipulating language is

extremely complex, which makes it difficult to write software that accurately deter-

mines the intended meaning of text or voice data. For this reason, it is common

to use algorithms like tokenization, stop words removal, stemming, lemmatization,

topic modeling, etc., described in Section 5.3.

5.2 Sentiment Analysis

Sentiment analysis, also called opinion mining or emotion AI, is a type of text

research or text mining. It applies a mix of NLP, text analysis, computational

linguistics, and biometrics to identify and extract subjective information (people’s

opinions, sentiments, emotions, evaluations, etc.) towards entities such as products,

events, topics, and services. In involves classifying feelings in text into categories

such as "positive", "negative" or "neutral". Consequently, this task can be consider

as a text classification problem that aims at categorizing a text based on the senti-

ment that the text contains. Sentiment analysis in text bodies can be applied on the

following different levels:

• Document level sentiment analysis: Sentiment is extracted from the whole doc-

ument, and a whole opinion is classified based on the overall sentiment of the

opinion holder. The goal is to classify opinion document into a positive, negative

or neutral sentiment.

58
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• Sentence level sentiment analysis: It is associated with a phrase or sentence. It

determines whether each sentence expresses a positive, negative or neutral opinion

for a product or service.

• Aspect based sentiment analysis: It is the opinion mining and summarization

based on aspect/feature in a review. The goal is to identify and extract object

features from the source data and determine whether the opinion is positive,

negative, or neutral.

5.3 Text Pre-processing

In order to develop a NLP application, usually a huge amount of text data is needed.

A large and structured collection of machine-readable texts that have been produced

by written or spoken natural language material is called a corpus (plural corpora).

Therefore, it is crucial to prepare and transform the text data into a standard format

that can be easily processed by algorithms.

5.3.1 Tokenization

Tokenization is a method in which a piece of text is segmented into smaller units,

or "tokens". Tokens are the building blocks of natural language, and can be either

characters, words, or subwords. Hence, tokenization can be classified into three

types: character, word, and subword (n-gram characters) tokenization.

Tokenization can also discard certain unnecessary characters, such as punctuation,

easing the path to a proper word segmentation but also triggering possible compli-

cations. For example, when dealing with biomedical text domains which contain

many punctuation marks, tokenization can be particularly problematic.

Figure 5.1: Word Tokenization Example. Tokenization can split a sentence written

in English (a segmented language) into individual words by a blank space and also

remove punctuation characters at the same time. [78]

The most common way of processing raw text happens at the token level so the

first step while modeling text data is performing tokenization. In a NLP task,

tokenization is performed on the corpus to obtain tokens, which are then used to

prepare a vocabulary. Vocabulary refers to the set of unique tokens used in the

text corpus, and can be constructed by considering either each unique token in the

corpus or the top k frequently occurring words.

5.3.2 Lowercasing

Lowercasing all the text data, or the tokenized words, is one of the simplest and

most effective form of text preprocessing. It is applicable to most text mining and
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NLP tasks as it helps with consistency of expected output. For example, the words

"NLP", "nlp", and "Nlp" are not treated as different words after using the lower

casing.

5.3.3 Stop Word Removal

Stop words are the most common words in any natural language (articles, pronouns,

prepositions, conjunctions, etc.). They are generally filtered and excluded before

processing the text as they do not add much information to it. Examples of stop

words in English include “and”, “the”, “to”, “a”, “an”, and “so”. Stop words can be

safely removed by performing a lookup in a pre-defined list of keywords, reducing

the data set size and improving processing time.

The removal of stop words is not always a good idea and it is highly dependent on

the NLP task at hand. In tasks like text classification, stop words are not generally

needed as the other words present in the data set are more important and give the

general idea of the text. However, sentiment analysis tasks cannot be accomplished

properly after the removal of certain stop words.

5.3.4 Stemming

Stemming is the process of reducing inflected (or sometimes derived) words to their

word stem or root form through dropping unnecessary characters, usually affixes

(lexical additions to the root of the word). Note that affixes that are attached

at the beginning of the word are called prefixes and affixes that are attached at

the end of the word are called suffixes. Related words are usually mapped to the

same root form and thus are treated as synonyms by algorithms. However, the

"root" in this case may not be identical to the morphological root of the words.

Stemming uses a crude heuristic process that removes the ends of words hopping to

correctly transform them into their base forms. For example, the words "trouble",

"troubled" and "troubles" would be reduced to "troubl" instead of "trouble". A

computer program or subroutine that stems words is called a stemmer. Stemmers

are the way to go if speed and performance are important in the NLP model since

they are simple to use and perform simple operations.

5.3.5 Lemmatization

Lemmatization is the process of grouping together the inflected forms of a word

so they can be analysed as a single item, identified by the word’s lemma (plural

lemmas). For example, the verb "to walk", which may appear as "walk", "walked",

"walks" or "walking", would be reduced to its canonical or dictionary form "walk",

called the lemma of the word. Lemmatization is quite similar to stemming. However,

unlike a stemmer that operates on a single word without knowledge of the context,

lemmatization depends on correctly identifying the intended part of speech and

meaning of a word in a sentence, as well as within the larger context surrounding

that sentence. Since lemmatization requires more knowledge about the language

structure than a stemming approach, it demands more computational power as well.
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Figure 5.2: Stemming vs. Lemmatization. [79]

5.3.6 Topic Modeling

Topic modeling is a type of statistical model for discovering the hidden structures, or

abstract "topics", that occur in a corpus. In essence, it is an unsupervised learning

method that scans a set of documents, detects word and phrase patterns within

them and groups together (clusters) word groups and similar expressions that best

characterize this set.

This technique is based on the assumptions that each document is a mixture of

multiple topics in different proportions and that each word’s presence is attributable

to one of the document’s topics. This means that if these hidden topics can be

spotted, the meaning of the text will become clear. Topic modeling is extremely

useful for classifying texts, building recommendation systems or even detecting

trends in online publications. Some popular topic models include Latent Dirichlet

Allocation (LDA), Latent Semantic Analysis (LSA) and Term Frequency-Inverse

Document Frequency (tf–idf).

Figure 5.3: Schematic of Topic Modeling. [80]

5.3.6.1 Latent Dirichlet Allocation

The Latent Dirichlet Allocation (LDA) is the most commonly used topic modeling

technique. The word ‘Latent’ indicates that the model identifies hidden topics within

the documents. ‘Dirichlet’ denotes the assumption that the distribution of topics in
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a document and the distribution of words in topics are both Dirichlet distributions.

Lastly, the word ‘Allocation’ indicates the distribution of topics in the document.

LDA accepts documents as input and outputs topics. It assumes that each document

is produced from a mixture of topics, and each topic from a mixture of words. Also,

it assumes that every piece of text that is fed into the algorithm will contain words

that are related. In particular, in order for the algorithm to find groups of related

words, firstly the number of topics wished to be uncovered is being defined. LDA

will assign all documents to the topics in a way that the words in each document are

captured by those topics. It then reassigns iteratively each word to a topic by taking

into consideration the probability that it belongs to a topic, and the probability that

the document will be created by a topic. These probabilities are calculated multiple

times, until the algorithm convergences and each document is being assigned to a

mixture of topics.

5.4 Language Modeling

Language Modeling (LM) is the use of various techniques in order to predict the

probability of occurrence of a sequence of words in a sentence. Formally, given a

sequence of T words, w
1
, . . . ,wT , a probabilistic language model assigns to the whole

sequence the probability:

P(w
1
,w

2
, . . . ,wT ) =

T∏
t=1

P(wt|w1
,w

2
, . . . ,wt−1) (5.1)

The goal of LM is to provide adequate probabilistic information so that the likely

word sequences have a higher probability. Language models are useful in many

NLP-based applications, especially those that generate text as an output.

There are primarily two categories of language models: count-based and continuous-

space language models. The count-based methods, such as statistical language

models, use traditional statistical techniques like n-grams, Hidden Markov Mod-

els (HMM) and certain linguistic rules to develop probabilistic models that are able

to predict the next word or character in a document, given a sequence of words that

precede it. Continuous-space language models make use of different kinds of neural

networks to model language and are often considered as an advanced approach to

execute NLP tasks.

5.4.1 N-Gram Language Model

N-grams models are one of the simplest approaches to LM. They create a probability

distribution for a sequence of n, where the number n defines the size of the "gram"

(or sequence of words being assigned a probability). For example, if n = 4, a gram

might look like this: "can you help me". There are different types of n-grams such

as unigrams (n = 1), bigrams (n = 2), and trigrams (n = 3), as shown in Figure 5.4.

Note that the n-gram model is trained on a train corpus and evaluated on a test

corpus.
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Figure 5.4: Exemplary split of a phrase into uni-, bi- and trigrams. [81]

In order to simplify the problem of estimating the language model from data, the

n-gram model makes the assumption that each word depends only on the last n − 1

words instead of the preceding t − 1 words. So, the probability of observing the t-th
word wt can be approximated by the probability of observing it in the shortened

context history of the preceding n − 1 words ((n − 1)-th order Markov property).

Therefore, the probability P(w
1
, . . . ,wT ) is approximated as:

P(w
1
,w

2
, . . . ,wT ) ≈

T∏
t=1

P(wt | wt−(n−1), . . . ,wt−1) (5.2)

where the conditional probability can be computed from n-gram model frequency

counts:

P(wt | wt−(n−1), . . . ,wt−1) =
count (wt−(n−1), . . . ,wt−1,wt)
count (wt−(n−1), . . . ,wt−1)

(5.3)

However, for moderately large n’s there is a data sparsity problem and the language

is not modeled accurately. Data sparsity is a term that describes the phenomenon

of many possible word sequences having too few occurrences in a corpus, meaning

they are not observed enough during training.

There are several ways to evaluate a language model. Perplexity (PP) is the inverse

of the probability that the model assigns to the test corpus normalized by the number

of words in the test corpus. The PP score of a test set W = w
1
,w

2
, . . . ,wN on an

n-gram model is calculated as follows:

PP(W) = (P(w
1
,w

2
, . . . ,wN))−1/N =

 N∏
t=1

P(wt | wt−(n−1), . . . ,wt−1)

−1/N (5.4)

Better language models will have a lower PP score, as it indicates that the probability

distribution or the probability model is good at predicting the sample. PP can also be

interpreted as the weighted average branching factor of a language in predicting the

next word. Note that the branching factor of a language is the number of possible

next words that can follow any word.

5.4.2 Neural Language Model

Neural language models use word embeddings, described in Section 5.5, in order

to make their predictions. Continuous space embeddings help with reducing the

impact of the "curse of dimensionality" in LM, i.e. as the models are trained on

larger and larger corpora, the size of the vocabulary (the number of unique words)



64 Chapter 5. Natural Language Processing

and consequently the number of possible sequences increases, resulting in a data

sparsity problem. More specifically, neural language models avoid this problem by

using non-linear neural networks, such as FFNNs or RNNs, that have the ability to

represent words in a distributed way, as non-linear combinations of weights in a

network.

Figure 5.5: Neural Probabilistic Language Model Architecture. [82]

As in n-grams, most probabilistic language models approximate the probability of a

sequence of words P(wt|w1
,w

2
, . . . ,wt−1) using a fixed context of size n−1. The neural

probabilistic language model introduced by Bengio et al. [82], uses a FFNN of three

layers to obtain this probabilistic prediction. First, each word in the (n − 1)-word

context is mapped into a d-dimensional feature vector Cwt−i , which is column wt−i of

parameter matrix C. The feature vectors (columns of C) are learned simultaneously

with the parameters of the NN. The concatenation of these n − 1 feature vectors,

denoted by vector x, is the input to the FFNN:

x = (Cwt−(n−1),1, . . . ,Cwt−(n−1),d,Cwt−(n−2),1, . . . ,Cwt−2,d,Cwt−1,1, . . . ,Cwt−1,d) (5.5)

The vector x is fed into a hidden layer with tanh activation which then feeds into a

softmax layer to estimate the probability of the next word k:

P(wt = k|wt−(n−1), . . . ,wt−1) =
eak∑N
l=1 eal

(5.6)

where

ak = bk +

h∑
i=1

Wkitanh

ci +

(n−1)d∑
j=1

Vi jx j

 (5.7)
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where the vectors b, c and matrices W, V are parameters of the model, and h is

the number of hidden units. The NN is trained using a gradient-based optimization

algorithm to maximize the training set log-likelihood:

L(θ) =
∑

t

log P(wt|wt−(n−1), . . . ,wt−1) (5.8)

where θ denotes the concatenation of all the parameters.

5.5 Word Embeddings

In NLP, a word embedding is a learned numerical representation of words for text

analysis that can be obtained using a set of feature learning and language modeling

techniques. Typically, it is in the form of a real-valued vector in a predefined vector

space that encodes the meaning of the word such that the words that have the

same meaning have a similar representation. Word embeddings have introduced an

efficient way of representing strings and plain text as vectors of real numbers, that

can be processed by most ML algorithms. Also, when used as the underlying input

representation, they improve the performance of NLP tasks.

The different techniques of word embeddings can be broadly classified into two

categories: frequency based embedding techniques and prediction based embedding

techniques. Frequency based embeddings, such as count vector, TF-IDF vectoriza-

tion, and co-occurrence matrix, vectorize the text depending on the frequency of

occurrence of the words in the corpus. Prediction based embeddings include meth-

ods such as Word2Vec [83], and GloVe [84]. Finally, both PCA and t-SNE can

be used in order reduce the dimensionality of the word vector spaces and visualize

word embeddings and clusters.

5.5.1 Term Frequency-Inverse Document Frequency Vector

Term Frequency-Inverse Document Frequency (tf–idf) is a term-weighting scheme

that reflects how relevant a word is to a document in a collection of documents or

corpus. The tf–idf value increases proportionally to the number of occurrences of a

word in the document and is offset by the number of documents in the corpus that

contain the word. This way, words that are common in every document, such as

‘the’, ‘if’, and ‘is’, rank lower than the words that appear in some documents only,

since the former do not contain important information and the latter indicate they

might be relevant.

The tf–idf score for the word t in the document d from the document set D is the

product of the following two metrics:

• Term Frequency (tf): It refers to the frequency of a word, i.e. how often a given

word appears within each document. There are several ways of calculating this

metric. The simplest of them is using the raw count ft,d of the instances the term

t appears in the document d:
tf(t, d) = ft,d (5.9)
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Then, there are several ways to adjust it. For example, tf could be adjusted by the

length of the document:

tf(t, d) =
ft,d∑

t′∈d ft′,d
(5.10)

or by the augmented frequency in order to prevent a bias towards longer docu-

ments:

tf(t, d) = 0.5 + 0.5 ·
ft,d

max{t′∈d} ft′,d
(5.11)

The term frequency could also be defined as the logarithmically scaled frequency:

tf(t, d) = log(1 + ft,d) (5.12)

• Inverse Document Frequency (idf): The idf of a word across a set of documents

is the count of the number of documents the word appears in. The idf metric

measures how significant the word is in the entire corpus. This metric can be

computed by dividing the total number of documents in the corpus, N = |D|, with

the number of documents that contain the specific word t, |{d ∈ D : t ∈ d}|, and
then calculating the logarithm of the result. If the word is common in many

documents, this number will approach 0. Otherwise, if the word is rare, it will

approach 1. Mathematically:

idf(t,D) = log
(

N
1 + |{d ∈ D : t ∈ d}|

)
(5.13)

Formally, the tf–idf score is calculated as:

tfidf(t, d,D) = tf(t, d) · idf(t,D) (5.14)

A high tf in the given document and a low document frequency of the word in the

whole corpus causes a high weight in tf–idf to be reached. Thus, the weights tend to

filter out common terms. In conclusion, tf–idf provides a way to map documents to

word vectors by associating each word in a document with a number that represents

how relevant each word is in that document. Documents with similar, relevant

words will have similar vectors.

5.5.2 Word2Vec

Word2Vec [83] is a family of model architectures and optimizations that can be

used to produce word embeddings. These models are shallow, two-layer neural

networks that turn text into a numerical form that deep neural networks can un-

derstand. In contrast to techniques like common Bag-of-Words (BOW) and tf–idf,

Word2Vec models can capture the meaning or relation of the words once trained.

Word2Vec takes as input a text corpus and outputs a vector space, typically of sev-

eral hundred dimensions. In this space, each unique word in the corpus is being

assigned a corresponding vector. The vectors are chosen in such a way that a simple

mathematical function, like the cosine similarity between the vectors, indicates the

level of semantic similarity between the words represented by those vectors. The

aim is to have words that share common contexts in the corpus located close to one

another in the vector space.
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Word2Vec has two forms, the Skip-Gram model and the Continuous Bag-of-Words

(CBOW) model, as illustrated in Figure 5.7. In the first way, a given word is used to

predict a target context (surrounding words) while in the second, context is used to

predict a target word. Note that both models only have one hidden layer, probably

due to the restriction of computation cost at that time these models were proposed.

Figure 5.6: Word2Vec model architectures: (a) CBOW, (b) Skip-Gram. [85]

5.5.2.1 Continuous Skip-Gram Model

The Skip-Gram model predicts the surrounding window of context words from the

target word. The skip-gram architecture is illustrated in Figure 5.7. The input layer

of the model is of size (1 × V), where V is the number of words in the vocabulary.

The input to the network is the one-hot representation of the target word. This input

vector is transformed by the weight matrix W of size (V × E), and goes through a

hidden layer of size (1 × E), where the hyperparameter E is the desired embedding

dimensions or features the model is trying to learn. The higher the value of this

hyperparameter is, the more information the embeddings will capture, but the harder

it will be to learn it. Finally, the weight matrix W ′
of size (E × V) transforms the

hidden layer into the output layer of size (1 × V), since the outputs to be predicted

are going to be the one-hot encoded context words.

The skip-gram model will learn by training to predict the context given a target

word. Once the training is done in the whole vocabulary, a weight matrix WV×E that

connects the input to the hidden layer is going to be produced, and the embeddings

can be obtained. This representation, ideally, encapsulates semantics, and similar
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words are close to each other in the vector space. Skip-gram performs better with

small amount of data and is found to represent infrequent words well.

5.5.2.2 Continuous Bag-of-Words Model

The Continuous Bag-of-Words (CBOW) model looks like the opposite process of the

skip-gram model, since it predicts the current word based on surrounding context

words. The context consists of a window of words around the current (middle)

word, i.e. a few words before and after the center word. The CBOW architecture is

illustrated in Figure 5.7. The input layer of size (1×V) consists of the context words

in one-hot encoding, and for every such word the weight matrix WV×E results in the

hidden layer. Then they are averaged into a single hidden layer, which is passed

on to the output layer.

The CBOW model is essentially learning word embeddings by training a model to

predict a word given its context. Again, the weight matrix WV×E is used to generate

the word embeddings from the one-hot encodings once the training is done. CBOW

can better represent more frequent words and is faster than skip-gram. Note that

this architecture is called a bag-of-words model because the order of the context

words does not influence prediction.

5.5.3 Global Vectors for Word Representation

Global Vectors (GloVe) [84] is an unsupervised learning algorithm for obtaining

vector representations for words. Like most unsupervised algorithms, it is based

on measures like word frequency and co-occurence counts. GloVe model trains

on global co-occurrence counts of words, which indicate how frequently each pair

of words is used in the given corpus, and makes a sufficient use of statistics by

minimizing least-squares error. As a result, it produces a meaningful word vector

space, where the distance between words is related to semantic similarity. Note

that GloVe combines the features of two primary families of learning word vectors,

namely the global matrix factorization (e.g. LSA) and local context window methods

(e.g. skip-gram).

Formally, GloVe constructs an explicit word-context or word co-occurrence matrix

X using statistics across the whole corpus. Each cell Xi j represents how often the

word i appears in the context of the word j. Usually, for each word in the corpus,

context terms are searched within some area defined by a window size before and

a window size after the term. Also, more distant words are given less weight. Soft

constraints are defined for each word pair:

wT
i w j + bi + b j = log(Xi j) (5.15)

where wi, bi are the vector and scalar bias for the main word and w j, b j are the

vector and scalar bias for the context words. GloVe uses a weighted least squares

objective that minimizes the difference between the dot product of the vectors of two

words and the logarithm of their number of co-occurrences:

J =

V∑
i, j=1

f (Xi j)(wT
i w j + bi + b j − log(Xi j))2 (5.16)
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where f is a weighting function that assigns lower weights to rare and frequent

co-occurrences. One class of weighting functions found to work well can be param-

eterized as:

f (Xi j) =


(

Xi j

Xmax

)a

, if Xi j < Xmax

1 , otherwise

(5.17)

5.6 Transfer Learning in Natural Language Processing

Most of the tasks in NLP are sequence modeling tasks. In contrast to traditional

NNs, recurrent neural networks like RNNs and LSTMs can model sequential in-

formation present in the text, so they are commonly used for these types of tasks.

However, these networks have some major issues that make the need for transfer

learning in NLP obvious. One of them is that, in the case of a text sequence, RNNs

or LSTMs can not be parallelized, as they take one token at a time as input. Hence,

training such a model on a large data set will take a lot of time.

Transfer learning, as seen in Section 4.5, is a technique where a deep learning model

trained on a large labelled data set, called a pre-trained model, is used as a starting

point to solve a problem on another, usually smaller, data set. The form of TL

that has led to the biggest improvements so far in NLP is sequential TL. It involves

transferring knowledge with a sequence of steps, where the source and target task

are not necessarily similar. The general practice is to pre-train representations on a

large unlabelled text corpus using a method like ELMo [86] or BERT [87], and then

to adapt these representations to a supervised target task using labelled data.

Figure 5.7: The general procedure of sequential transfer learning. [88]

5.6.1 Embeddings from Language Models

Embeddings from Language Models (ELMo) [86] is a type of deep contextualized

word representation, that models both complex characteristics of word use, such as

syntax, and how these uses vary across linguistic contexts. Unlike earlier vector

approaches such as Word2Vec and GloVe, ELMo embeddings are context-sensitive.

In other words, they are able to capture the context of the word used in the sentence

and can generate different representations for the same word used in a different

context in different sentences. ELMo is trained on predicting the next word in a

sequence of words, which is a task called language modeling. This model is trained

on a massive data set, and then it can be used as a component in other architectures

in order to perform specific language tasks.
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ELMo uses a particular type of language model called Bi-directional Language

Model (biLM), which is a combination of a forward and backward language model,

as illustrated in Figure 5.8. Word vectors are learned functions of the internal

states of this biLM, which is pre-trained on a large text corpus. More specifically,

according to Peters et al. [86], ELMo is a task specific combination of the inter-

mediate layer representations in the biLM. Given that for each token tk, xLM
k is a

context-independent token representation (via token embeddings or a Convolutional

Neural Network (CNN) over characters), a L-layer bi-directional LSTM computes a

set of 2L + 1 representations

Rk = {xLM
k ,
−→
h LM

k, j ,
←−
h LM

k, j | j = 1, . . . , L} = {hLM
k, j | j = 0, . . . , L} (5.18)

where hLM
k,0 is the token layer and hLM

k, j = [
−→
h LM

k, j ;
←−
h LM

k, j ], for each bi-directional LSTM

layer. ELMo embeddings are computed by a task-specific weighting of all biLM

layers:

ELMotask
k = E(Rk; Θtask) = γtask

L∑
j=0

stask
j hLM

k, j (5.19)

where stask
are softmax-normalized weights and the scalar parameter γtask

allows the

task model to scale the entire ELMo vector.

Figure 5.8: ELMo uses internal representations of multi-layer biLM. [89]

5.6.2 Bidirectional Encoder Representations from Transformers

Bi-directional Encoder Representations from Transformers (BERT) [87] is a

Transformer-based machine learning technique for NLP pre-training. It improves

upon standard Transformers, shown in Figure 4.17, by using a Masked Language

Model (MLM) that allows bi-directional training in models which it was previously
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impossible. More specifically, BERT is pre-trained with two objectives:: masked lan-

guage modeling and Next Sentence Prediction (NSP). Taking a sentence, the MLM

(Figure 5.9) randomly masks 15% of the words in the input, and then it tries to

predict them. Masking means that the model looks in both directions and it uses

the full context of the sentence, both left and right surroundings, in order to pre-

dict the masked word. Unlike the previous left-to-right language models, it takes

both the previous and next tokens into account at the same time, which allows to

pre-train a deep bidirectional Transformer. In addition to the MLM, BERT uses a

NSP (Figure 5.10) that jointly pre-trains text-pair representations. More precisely,

the model concatenates two masked sentences as inputs during pre-training, and

then it has to predict whether or not the two sentences were following each other.

Figure 5.9: BERT: Masked Language Model. [90]

Figure 5.10: BERT: Next Sentence Prediction. [90]
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Note that the special tokens [SEP] and [CLS] that appear in the above Figures are

special tokens required by BERT. The special token [SEP] is used to differentiate

between the different input sentences. The [CLS] token always appears at the start

of the text, and is specific to classification tasks.

BERT consists of two steps (Figure 5.11): pre-training and fine-tuning. During the

pre-training step, the BERT model is trained on unlabeled text data, over different

pre-training tasks. For the fine-tuning step, the model is initialized with the pre-

trained parameters, and then all of the parameters are fine-tuned using labeled data

from the downstream tasks. Each downstream task, even though they are initialized

with the same pre-trained parameters, has separate fine-tuned models.

Figure 5.11: BERT: The two steps of how it is developed. [90]

The original English-language BERT has two pre-trained versions depending on the

scale of the model architecture:

Figure 5.12: BERT-base vs. BERT-large. [90]
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• BERT-base: 12 encoder layers (transformer blocks), 12 attention heads, and 110

million parameters.

• BERT-large: 24 encoder layers, 16 attention heads and, 340 million parameters.

Both models, illustrated in Figure 5.12, are pre-trained from unlabeled data extracted

from the English Wikipedia and the BooksCorpus in a self-supervised fashion. In

other words, they were pre-trained on the raw texts only, with an automatic process

to generate inputs and labels from those texts.



Chapter 6

Experiments

6.1 Data Sets

6.1.1 Twitter Sentiment Analysis Self-Driving Cars

We use a data set from CrowdFlower
1
that consists of Twitter messages about

self-driving cars. More specifically, contributors read tweets and classified them as

"very negative", "negative", "neutral", "positive", or "very positive". Contributors

were also asked to mark if the tweet was not relevant to self-driving cars. This

data set contains 7, 156 observations and 11 variables. In this analysis, we focus

on two features, namely the "sentiment", which contains the sentiment of the tweet

(denoted by the numbers 1 through 5), and the "text", which contains the text of the

tweet. Table 6.1 depicts a sample of the data set.

sentiment text

5 Two places I’d invest all my money if I could: 3D printing and Self-driving cars!!!

5 Awesome! Google driverless cars will help the blind travel more often; https://t.co/QWuXR0FrBpv

2 Why would anyone need a self driving car?

3 How is an automated vehicle supposed to behave in an emergency? #AutoAuto

4 Driverless cars?! I want one

3 Will driverless cars eventually replace taxi drivers in cities?

Table 6.1: A sample of the Twitter Sentiment Analysis Self-Driving Cars Data Set.

The data set was randomly split into training (85%), validation (7.5%) and testing

(7.5%) set. The training set consists of 5, 901 samples and the validation set consists

of 521 samples. The proposed models were evaluated on the independent testing set

consisting of totally 521 samples. Table 6.2 shows the number of samples in the

different sets for each class. We notice that the data set is heavily imbalanced.

Sentiment Training Set Validation Set Testing Set

very positive 390 35 34

positive 1227 108 109

neutral 3608 319 318

negative 582 51 52

very negative 94 8 8

Table 6.2: Samples distribution among classes in the training, validation and testing

data set.

1
http://www.crowdflower.com/data-for-everyone

74
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6.1.2 Stanford Sentiment Treebank

The Stanford Sentiment Treebank (SST) [91] is one of the most popular corpora for

fine-grained (five-way) sentiment classification. The data set consists of 11,855 single

sentences extracted from movie reviews on Rotten Tomatoes. It was also parsed by

the Stanford constituency parser [92] and includes a total of 215,154 unique phrases

from those parse trees, each annotated by 3 human judges.

Each phrase is labelled as either "very negative" (1), "negative" (2), "neutral" (3),

"positive" (4) or "very positive" (5). The corpus with all 5 labels is referred to as

SST-5 or SST fine-grained. Models are often evaluated using this data set as a

benchmark for fine-grained classification based on accuracy. Table 6.3 shows some

sample reviews from the SST-5 data set.

label text

1 A predictable , manipulative stinker.

4 If you love reading and/or poetry , then by all means check it out.

5 You ’ll probably love it.

3 Some movies blend together as they become distant memories.

2 It ’s not a great monster movie .

2 The movie generates plot points with a degree of randomness usually achieved only by lottery drawing.

Table 6.3: A sample of the Stanford Sentiment Treebank Data Set.

Note that we are going to use this data set only for evaluation purposes, so we are

not going to describe the pre-processing steps or conduct an explanatory analysis as

with the Twitter sentiment analysis self-driving cars data set.

6.2 Explanatory Data Analysis

In this section, we describe the pre-processing steps necessary in order to prepare

the tweets in the Twitter sentiment analysis self-driving cars data set to a form

suitable for a basic explanatory analysis.

6.2.1 Pre-processing

As the Twitter sentiment analysis self-driving cars data set is crawled from the

internet, raw tweets may contain a lot of useless or misleading information, such

as punctuation and abbreviations. Therefore, we perform a few data cleaning steps,

or pre-processing steps, to improve the quality of the raw tweets in data:

1. We remove null values, i.e. the tweets that are not relevant to self-driving cars.

2. We remove the Twitter handles, i.e. the "@username", as they don’t give any

relevant information about the nature of the tweet.

3. We remove all URL addresses (‘www.’ pattern). Most of them are short and

located at the end of a tweet.

4. We decode HTML to general text.

5. We restore some abbreviations in the tweets, e.g., substituting ”have” for ”ve”.

6. We remove some meaningless numbers, punctuation (e.g. semicolon and colon),

and special characters (except hashtags symbol "#").

7. We convert all characters to lower-case.
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8. We remove stop words, except some words such as "not", "nor" and "can" that

play a significant role in differentiating the sentiments of tweets.

9. We remove small words (length less than three characters), as they do not add

significant value for the analysis. After this step, we can visualize the length

of the tweets in the data set, as in Figure 6.1. We see that the average tweet

consists of 61 characters.

10. We perform tokenization of the tweets.

11. We experiment with lemmatization and stemming.

Figure 6.1: Distribution of Tweets’ Character Length in the Twitter Sentiment

Analysis Self-Driving Cars Data Set.

6.2.2 Keyword & Entity Analysis

First, we find the most frequent words in the data set (Table 6.4). We can also create

a word-cloud in order to simply visualize the data and which words are shown in

varying sizes depending on how often they appear in the tweets, as shown in Figure

6.2. We present the results before and after performing lemmatization that reduces

inflected words to their root words.

Without Lemmatization With Lemmatization

Word Count Word Count

driving 4248 car 6921

self 4018 drive 4533

car 3643 self 4040

cars 3209 google 2937

google 2674 driverless 1893

driverless 1810 just 570

not 733 autonomous 398

can 458 vehicle 365

autonomous 369 future 331

future 306 driver 322

Table 6.4: Most Common Words of Twitter Sentiment Analysis Self-Driving Cars

Data Set.
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Figure 6.2: Word Cloud of Most Common Words of Twitter Sentiment Analysis

Self-Driving Cars Data Set (a) without Lemmatization (b) with Lemmatization.

In addition, we can find the most frequent words for every class in the data set

(Table 6.5). We see that the top 10 words of each class are almost the same, so we

can not make any assumptions about the data from this information. However, if

we visualize the top 100 words of each class, we start to see the differences that

lead to the sentiment in question. For example, a "very negative" tweet consists

of words like "destroy", "hell" and "dangerous", while a "very positive" tweet about

AVs has words like "love", "amazing", and "excited". Note that we do not perform

lemmatization in this case.

Very Negative Negative Neutral Positive Very Positive

Word Count Word Count Word Count Word Count Word Count

driving 61 driving 458 driving 2439 driving 982 driving 308

car 60 self 428 self 2334 self 911 self 289

cars 56 cars 394 car 2264 car 731 car 253

self 56 car 335 cars 1853 cars 710 cars 196

driverless 36 google 228 google 1716 google 529 google 171

not 30 driverless 200 driverless 1147 driverless 324 driverless 103

google 30 not 166 not 319 not 163 not 55

would 17 like 44 autonomous 255 would 104 awesome 39

think 10 think 36 future 185 cool 80 wait 38

people 9 people 35 saw 177 drive 78 one 36

Table 6.5: Most Common Words of Twitter Sentiment Analysis Self-Driving Cars

Data Set.

Entity analysis shows the top entities related to tweets on self-driving cars. For

instance, Google cars, Uber, Audi and Tesla Motors. Similarly, by analyzing top

hashtags, an interesting linkage of autonomous cars was revealed. For example,

#codecon, which was an annual conference for software hackers and technology

enthusiasts.
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Top Mentions Top Hashtags

Twitter Handle Count Hashtag Count

@google 150 #Google 118

@Uber 49 #google 103

@Google 45 #tech 34

@Audi 17 #cars 27

@TeslaMotors 16 #technology 21

@nytimes 15 #googlecar 20

@ComputerHistory 11 #future 19

@USATODAY 11 #car 19

@nvidia 9 #codecon 19

@audi 9 #innovation 18

Table 6.6: @-Analysis and Top Hashtags of Twitter Sentiment Analysis Self-Driving

Cars Data Set.

6.2.3 Topic Modeling

We are going to perform topic modeling on the Twitter data set in order to create

topics along with the probability distribution for each word in our vocabulary for

each topic. Before fitting into LDA model, tf–idf vectorizer feature extraction was

done. The number of components is 5, the number of max iterations is taken as 10,

and the random state was predefined as 42.

We can visualize the topics as circles in the two-dimensional plane [93], as shown

in Figure 6.3. In addition, we create word-clouds (Figure 6.4) that show the top

words in the extracted topics. Based on this we see that the topics can somehow

differentiate the sentiments regarding AVs. For example, topic #3 contains words

such as "problem", "kill", "bad" and "accident", and topic #1 words like "great",

"hope" and "pretty". However, we still have a long way to go if we want to classify

the tweets correctly.

Figure 6.3: Intertopic Distance Map (via Multidimensional Scaling).
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Figure 6.4: Topic Modeling: Word Clouds of Top Words (a) Topic #1 (b) Topic #2

(c) Topic #3 (d) Topic #4 (e) Topic #5.
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6.3 Proposed Systems

In this section, we describe the LSTM based models and the BERT based models

that we used in order to tackle the problem of multi-class Twitter sentiment analysis.

In addition, we train and evaluate the models, and present the results in the form

of classification reports and confusion matrices.

6.3.1 LSTM Based Network

Initially, LSTM based models were developed, including a bi-directional stacked

LSTM neural network with self-attention. Note that the output vectors of this Bi-

directional LSTM (BLSTM) model are sent through an attention layer and then

a series of dense and dropout layers to a final softmax layer to build a sentence

classifier.

6.3.1.1 Pre-processing

First, we first present the preparation of the data to a form suitable for the classifier

training. Note that the pre-processing steps described here are different than the

ones described in Section 6.2.2. More specifically:

1. We remove null values.

2. We replace the Twitter handles with the string "_MENTION_".

3. We replace all URL addresses with the string "_URL_".

4. We decode HTML to general text.

5. We restore some abbreviations in the texts.

6. We replace numbers with the string "_NUMBER_".

7. We perform tokenization of the texts.

In this case, the average tweet of the data set consists of almost 100 characters.

6.3.1.2 Model Architecture

After applying the different steps of the pre-processing part, we can now focus on

the machine learning part. In order to perform fine-grained sentiment analysis for

tweets, we experiment with a self-attention-based BLSTM model. The model consists

of an embedding layer, two BLSTM layers forming a stacked BLSTM, an attention

layer and three dense layers.

• Embedding Layer: The input to the network is a tweet, treated as a sequence

of words, w
1
,w

2
, . . . ,wT . In order to extract the semantic information of tweets,

each sequence of words is represented as a sequence of word embeddings. We

use an embedding layer of size d to project the words to a low-dimensional

vector space and create word embeddings, x
1
, x

2
, . . . , xT . In this approach, the

embedding layer is initialized with a pre-trained word embedding model that uses

Word2Vec technique [83] on tweets. The Word2Vec 400M Twitter model [94]

has an embedding dimension of d = 400. Note that the weights of the embedding

layer does not remain frozen during training.

• BLSTM Layers: After the embedding layer, the sequence of word embeddings

is fed into a 2-layer Bi-directional LSTM to achieve another representation of
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h
1
, h

2
, . . . , hT , where ht is the hidden state at time-step t. Note that BLSTM net-

works [95] are sequence processing models that consist of 2 LSTMs: one taking

the input in a forward direction, and the other in a backwards direction. The

second LSTM is basically a reversed copy of the first one, so that we can take full

advantage of both past and future input features for a specific time-step. BLSTM

networks are trained using BPTT.

• Attention Layer: The attention mechanism lets the model decide the importance

of each word for the prediction task by weighing them when constructing the

representation of the text. We use a simple approach presented in Felbo et al.

[96], inspired by [67], [97] with a single parameter input channel:

et = htwa + ba (6.1)

at =
exp(et)∑T
i=1 exp(ei)

(6.2)

υ =

T∑
i=1

aihi (6.3)

where ht is the hidden representation of the word at time-step t, wa is the weight

matrix and ba the bias term for the attention layer. The attention importance

scores, or attention weights, for each time-step, at, are obtained by multiplying the

hidden representations with the weight matrix and then normalizing to construct

a probability distribution over the words. Lastly, the representation vector for the

text, υ, is defined as a weighted average of the vectors hi.

• Dense Layers: The attention layer is followed by 3 dense layers with different sizes

of neurons. First, the output of the attention layer is used as input to a dense

layer of 128 hidden neurons, with Leaky ReLU (LReLU) activation function. In

order to avoid potential over-fitting, a dropout layer is utilized between the first

and the second dense layer. Then, the output is fed into the next dense layer of

64 units with LReLU activation function, followed by a dropout layer. Note that

we try different dropout rates in order to find the best configurations. Finally, the

output is used as input to a softmax layer, which outputs a probability distribution

over all classes.

We can visualise the embeddings by using techniques such as PCA and t-SNE, as

shown in Figure 6.5.

Figure 6.5: Visualization of the Embeddings using (a) PCA (b) t-SNE.
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6.3.1.3 Experimental Setup

To optimize our model, we use the categorical-cross entropy loss function and the

Adam algorithm. Note that the default parameters of Adam are: η = 0.001, β
1

= 0.9,
β
2

= 0.999, ε = 1e − 08. All the hyper-parameters used are shown in Table 6.7.

Hyperparameter Value

Number of epochs 10

Learning rate 0.001

Sequence length 128

Early stopping patience 2

Embedding layer size 400

First BLSTM layer size 400

Second BLSTM layer size 400

BLSTM dropout rate 0.2

First dense layer size 128

First dropout rate 0.5

Second dense layer size 64

Second dropout rate 0.4

Table 6.7: Hyper-parameters of the 2-BLSTM+Att Model.

In addition, in order to tackle the imbalance problem of the Twitter sentiment anal-

ysis self-driving cars data set, we perform cost-sensitive learning. In this method,

the misclassifications of the minority class are penalized more heavily than the ones

of the majority class, meaning the loss is different for each class. Such a penalty

system may induce the model to pay more attention to the minority class. The

weight of each class is presented in Table 6.8

Twitter Data Set SST-5 Data Set

sentiment weight weight

very negative 12.555 1.565

negative 2.028 0.770

neutral 0.327 1.052

positive 0.962 0.736

very positive 3.026 1.327

Table 6.8: Cost-Sensitive Learning: Class Weights.

To implement the models, we used the TensorFlow [98] the Scikit-learn [99] libraries.

We trained the neural network on a GTX 2060 (8GB) GPU.

6.3.1.4 Results

The model is evaluated on the test (unseen) data sets. To evaluate the classification

performance, we use three metrics: accuracy, macro average and weighted average

F1 score. The results are depicted in Table 6.9. Also, we illustrate the confusion

matrix (Figure 6.6).

Based on the classification report of the Twitter data set, we see that the model has a

problem classifying the three classes that have the lowest proportions in the training
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data as compared to the other classes, namely "very negative", "negative" and "very

positive". If we focus on the classification matrices, we see that the classifier, even

though it has problems distinguishing between some classes, does not confuse the

overall positive sentiments with the negative sentiments. The accuracy in this data

set is 62% and the macro F1 metric is 42%. A similar behavior can be seen in the

SST-5 data set, where the accuracy and the macro F1 score are almost identical at

42%.

Twitter Data Set SST-5 Data Set

sentiment precision recall f1-score support precision recall f1-score support

very negative 0.18 0.38 0.24 8 0.42 0.36 0.39 279

negative 0.32 0.38 0.35 52 0.51 0.39 0.44 633

neutral 0.81 0.74 0.77 318 0.27 0.35 0.30 389

positive 0.40 0.46 0.43 109 0.39 0.45 0.42 510

very positive 0.40 0.29 0.34 34 0.54 0.51 0.52 399

accuracy 0.61 521 0.42 2210

macro avg 0.42 0.45 0.42 521 0.42 0.41 0.41 2210

weighted avg 0.64 0.61 0.62 521 0.43 0.42 0.42 2210

Table 6.9: Classification Report of 2-BLSTM+Att Model.

Figure 6.6: Confusion Matrix of 2-BLSTM+Att Model (a) Twitter Sentiment Anal-

ysis Self-Driving Cars Data Set (b) SST-5 Data Set.

6.3.2 BERT-Based Networks

We train a BERT-base for sequence classification model, a bare BERT-base model

[87], a DistilBERT model [100], a RoBERTa model [101] and a BERTweet model

[102]. Regarding the data pre-processing, it is a little different in this case. The

transformer models are available pre-trained on the text corpora in two different

versions: cased and uncased. Each model is trained with its own tokenization

method using its cased version.

6.3.2.1 Model Architecture

First, let’s briefly describe the different BERT language models we used:

• BERT-Base: BERT [87], as seen in Section 5.6.2, is a Transformers model pre-

trained on a large corpus of English data in a self-supervised fashion. BERT-base,

in particular, is a version of BERT that consists of 12 encoder layers, 768 hidden
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layers, 12 attention heads, and 110 million parameters. The BERT-base model we

are going to use in this case is trained on cased English text.

• DistilBERT [100]: It is a small general-purpose language representation model

based on the BERT architecture that can be fine-tuned with good performances

on a wide range of NLP tasks. It is a fast, cheap and light Transformer model

that performs knowledge distillation during the pre-training phase to reduce the

size of a BERT model by 40%. DistilBERT runs 60% faster while preserving over

97% of BERT’s performances as measured on the GLUE language understanding

benchmark. The authors introduce a triple loss combining language modeling,

cosine-distance losses and distillation in order to leverage the inductive biases

learned by larger models during pre-training.

• RoBERTa [101]: It is a model that builds on BERT pre-training [87] and modifies

key hyper-parameters and training data size, More specifically, it removes the

next-sentence pre-training objective and trains with much larger mini-batches

and learning rates, achieving SOTA results on GLUE, RACE and SQuAD.

• BERTweet [102]: It is the first public large-scale pre-trained language model for

English Twitter messages. It has the same architecture as BERT-base [87] and

it is trained using the RoBERTa pre-training procedure [101]. Experiments show

that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base

[103], producing better performance results than the previous SOTA models on

three Tweet NLP tasks: part-of-speech tagging, named-entity recognition, and

text classification.

Fine-tuning a BERT model is pretty straightforward and relatively inexpensive com-

pared to the pre-training step. Basically, we plug in the task-specific inputs and

outputs into a pre-trained BERT language model, and fine-tune all the parameters

end-to-end for a few epochs. For the given task of sentence classification, the in-

puts stay unchanged. At the output, the [CLS] representation is fed into a dropout

layer for some regularization, which is followed by a simple fully-connected layer

with softmax activation function for classification. The final output represents the

predicted probability distribution of the classes.

6.3.2.2 Experimental Setup

To optimize our models, we use the cross entropy loss function and a special case

of the Adam algorithm with weight decay fix [104] . We also create a schedule

with the learning rate that decreases linearly from its initial value to 0, after a

warm-up period during which it increases linearly from 0 to its initial value set.

Note that we set the number of warm-up steps to 0. In addition, in order to tackle

the imbalance problem of the Twitter data set, we perform cost-sensitive learning

(described in Section 6.3.1.3). Devlin et al. [87] found that the range of possible

BERT hyper-parameters’ values depicted in Table 6.10 work well across most tasks.

Hyperparameter Values

Batch size {16, 32}

Number of epochs {2, 3, 4}

Learning rate {5e − 5, 3e − 5, 2e − 5}

Table 6.10: Default hyper-parameters’ values of BERT.



6.3. Proposed Systems 85

In order to find the optimal hyper-parameters for our task, a search over these

parameters (the number of epochs was extended to 8 and a learning rate of 1e − 5

was added) was run for all the models. Based on this search, we choose the values

of the hyper-parameters as shown in Table 6.10.

BERT (base) DistilBERT (base) RoBERTa (base) BERTweet (base)

Hyperparameter Value Value Value Value

Maximum sequence length 128 128 128 128

Batch size 16 16 32 16

Number of epochs 4 4 8 5

Learning rate 2e − 5 3e − 5 1e − 5 1e − 5

Dropout rate 0.5 0.5 0.5 0.5

Manual seed 42 42 42 42

Table 6.11: Hyper-parameters of our BERT based models.

To implement the models, we used the PyTorch [105] framework and the Transform-

ers [106] library. We trained the neural networks on a GTX 2060 (8GB) GPU.

6.3.2.3 Results

The models are evaluated on the test (unseen) data sets. To evaluate the classifi-

cation performance, we use three metrics: accuracy, macro average and weighted

average F1 score. The following tables present the classification reports of the afore-

mentioned fine-tuned models. Also, we illustrate the confusion matrices (Figures

6.7, 6.8, 6.9, and 6.10).

Twitter Data Set SST-5 Data Set

sentiment precision recall f1-score support precision recall f1-score support

very negative 0.20 0.12 0.15 8 0.43 0.45 0.44 279

negative 0.33 0.42 0.37 52 0.48 0.48 0.48 633

neutral 0.83 0.79 0.81 318 0.32 0.41 0.36 389

positive 0.48 0.55 0.52 109 0.49 0.49 0.49 510

very positive 0.50 0.35 0.41 34 0.69 0.49 0.57 399

accuracy 0.66 521 0.47 2210

macro avg 0.47 0.45 0.45 521 0.48 0.46 0.47 2210

weighted avg 0.68 0.66 0.67 521 0.49 0.47 0.47 2210

Table 6.12: Classification Report of BERT (base) Model.

Figure 6.7: Confusion Matrix of BERT (base) Model (a) Twitter Sentiment Analysis

Self-Driving Cars Data Set (b) SST-5 Data Set.
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Twitter Data Set SST-5 Data Set

sentiment precision recall f1-score support precision recall f1-score support

very negative 0.14 0.12 0.13 8 0.42 0.44 0.43 279

negative 0.27 0.42 0.33 52 0.46 0.52 0.49 633

neutral 0.83 0.72 0.77 318 0.31 0.31 0.31 389

positive 0.43 0.50 0.46 109 0.42 0.43 0.43 510

very positive 0.60 0.53 0.56 34 0.63 0.49 0.55 399

accuracy 0.62 521 0.45 2210

macro avg 0.45 0.46 0.45 521 0.45 0.44 0.44 2210

weighted avg 0.66 0.62 0.64 521 0.45 0.45 0.45 2210

Table 6.13: Classification Report of DistilBERT (base) Model.

Figure 6.8: Confusion Matrix of DistilBERT (base) Model (a) Twitter Sentiment

Analysis Self-Driving Cars Data Set (b) SST-5 Data Set.

Twitter Data Set SST-5 Data Set

sentiment precision recall f1-score support precision recall f1-score support

very negative 0.12 0.12 0.12 8 0.46 0.64 0.54 279

negative 0.31 0.62 0.41 52 0.58 0.53 0.55 633

neutral 0.93 0.68 0.78 318 0.37 0.41 0.39 389

positive 0.41 0.43 0.42 109 0.55 0.50 0.52 510

very positive 0.41 0.76 0.54 34 0.66 0.59 0.63 399

accuracy 0.62 521 0.53 2210

macro avg 0.44 0.52 0.46 521 0.52 0.53 0.53 2210

weighted avg 0.71 0.62 0.64 521 0.54 0.53 0.53 2210

Table 6.14: Classification Report of RoBERTa (base) Model.

Figure 6.9: Confusion Matrix of RoBERTa (base) Model (a) Twitter Sentiment

Analysis Self-Driving Cars Data Set (b) SST-5 Data Set.
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Twitter Data Set SST-5 Data Set

sentiment precision recall f1-score support precision recall f1-score support

very negative 0.33 0.38 0.35 8 0.49 0.65 0.56 279

negative 0.34 0.56 0.42 52 0.59 0.47 0.52 633

neutral 0.89 0.71 0.79 318 0.39 0.52 0.44 389

positive 0.45 0.50 0.47 109 0.57 0.51 0.54 510

very positive 0.51 0.71 0.59 34 0.67 0.60 0.63 399

accuracy 0.65 521 0.53 2210

macro avg 0.50 0.57 0.53 521 0.54 0.55 0.54 2210

weighted avg 0.71 0.66 0.67 521 0.55 0.53 0.54 2210

Table 6.15: Classification Report of BERTweet (base) Model.

Figure 6.10: Confusion Matrix of BERTweet (base) Model (a) Twitter Sentiment

Analysis Self-Driving Cars Data Set (b) SST-5 Data Set.

Based on the results, we see that the BERTweet model gives the best macro F1

score in both data sets. RoBERTa also gives satisfactory results, especially for the

SST-5 data set. DistilBERT falls a little behind BERT-base, in both accuracy and F1

score. Note that most models have a problem identifying the class with the lowest

proportion in the training Twitter data set, namely the "very negative" class. In the

case of the SST-5 data set, "neutral" seems to be the most misclassified sentiment.

6.4 Summarized Results

Twitter Data Set SST-5 Data Set

Model Accuracy macro F1 Accuracy macro F1

2-BLSTM+Att 61% 42% 42% 41%

BERT (base) 66% 45% 47% 47%

DistilBERT (base) 62% 45% 45% 44%

RoBERTa (base) 62% 46% 53% 53%

BERTweet (base) 65% 53% 53% 54%

SOTA 59% [107]

Table 6.16: Comparison of the models across the data sets.

Table 6.16 compares the performance of the LSTM based architecture augmented

with a self-attention mechanism we proposed in Section 6.3.1, with the BERT-based

models we described in Section 6.3.2. We observe that the best model in regards to
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both accuracy and F1 score is the BERTweet model for all data sets. However, we

still have not managed to match the SOTA performance on the SST-5 data set
2
.

6.5 Classifying Unlabelled Tweets about Autonomous Vehicles

Twitter is a fantastic source of data, with a very large number of tweets sent per

second. Those tweets can be downloaded and used to investigate mass opinion on

particular issues, such as self-driving cars. As mentioned before, autonomous cars

are controversial topics and the perception of the public plays a vital role in the

acceptance of this technology.

We use the Twitter API
3
to collect relevant unlabelled data about AVs. Several key-

words have been used during the data collection process, such as "autonomouscar",

"autonomousvehicle", "automatedcar", "automatedvehicle", "driverlesscar", "driver-

lessvehicle", "driverless", "selfdrivingcar" and "selfdrivingvehicle". A total of 4, 052
unique tweets were collected. Table 6.17 depicts a sample of the unlabelled data set.

id text

1 Why does anyone even want a driverless car?

2 impressive ~electric driverless flying taxi at your service

3 @RyanfDuffy Why I will never get into a driverless car.

4 Remember all the hype about driverless cars a few years ago? Yeah that was all transparent horseshit

5 This futuristic #bus is 100% Electric Vehicle and Self-Driving! https://t.co/3liZsBoX9b

6 Police share photos of smiling man riding in backseat of driverless Tesla. https://t.co/B00qExzjAq

Table 6.17: A sample of the Unlabelled Tweets about Autonomous Vehicles Data

Set.

We classify the collected tweets using the BERTweet model we trained in Sec-

tion 6.3.2 on the Twitter sentiment analysis self-driving cars data set. In order

to evaluate the results, we look at the sample tweets presented in Table 6.17 and

illustrate the confidence of each sentiment of our model.

Figure 6.11: Confidence of each sentiment of sample tweet with (a) id=1, (b) id=2,

(c) id=3, (d) id=4, (e) id=5, (f) id=6.

2
https://paperswithcode.com/sota/sentiment-analysis-on-sst-5-fine-grained

3
https://developer.twitter.com/en/docs
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The confidence of the sentiments shown in Figure 6.11, based on our understanding,

are really satisfactory, so we continue our analysis by illustrating the classification

results of all 4, 052 tweets, as shown in Figure 6.12. We observe that the vast

majority of tweets seem to be neutral towards AVs. However, it seems that the

negative opinions prevail over the positive ones. More specifically, 1.7% of the

tweets were very negative, 11.8% were negative, 8.2% were positive and 2% were

very positive.

Figure 6.12: Opinions about Autonomous Vehicles.

Finally, we perform the pre-processing steps described in Section 6.2.2, and we

calculate the unigrams of each sentiment using the tf–idf vectorizer. The results are

presented in Table 6.18.

Very Negative Negative Neutral Positive Very Positive

Unigram Count Unigram Count Unigram Count Unigram Count Unigram Count

driverless 7.20 driverless 35.29 driverless 237.33 driverless 21.37 driverless 6.72

car 5.46 cars 25.86 waymo 172.30 cars 14.62 exciting 3.49

cars 3.96 industry 17.30 service 130.14 future 8.01 waymo 3.41

want 2.41 car 14.64 public 116.21 car 7.67 cars 3.07

think 2.13 tesla 13.44 phoenix 112.55 driving 6.28 fully 2.80

going 1.77 problem 10.98 ride 83.45 autonomous 6.27 car 2.48

hell 1.59 cause 10.28 fully 79.80 fully 6.17 ride 2.30

people 1.54 time 9.83 cars 78.36 waymo 5.69 public 2.03

pizza 1.42 autopilot 9.30 autonomous 77.64 self 4.76 milestone 2.02

wants 1.39 crash 9.19 taxi 73.05 phoenix 4.70 wait 1.99

Table 6.18: Top Unigrams of Unlabelled Tweets about Autonomous Vehicles.
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Conclusions

In this thesis, we discussed and compared methods to tackle the problem of the

multi-class Twitter sentiment analysis. We implemented in TensorFlow a simple 2-

layer bi-directional LSTM model with self-attention (2-BLSTM+Att), the embedding

layer of which used a pre-trained Word2Vec model. In addition, we leveraged

the PyTorch framework and the Transformers library for conducting experiments

using SOTA models including BERT (base), DistilBERT (base), RoBERTa (base),

and BERTweet (base). We also added a weighted loss to all models in order to

tackle the class imbalance problem in the data sets we used. More specifically, our

experiments conducted using the Twitter Sentiment Analysis Self-Driving Cars data

set and the SST-5 data set. The Twitter data set consists of tweets about self-driving

cars, and it is highly imbalanced. The SST-5 data set consists of movie reviews,

and it is used for benchmarking SOTA models. We managed to obtain a F1 score

of 0.53 in the Twitter test data set and 0.54 in the SST-5 test data set.

Using the model that gave the best F1 score, we classified 4, 052 unlabelled tweets

about AVs that we collected from Twitter by using the Twitter API. The classifier

was trained using the Twitter sentiment analysis self-driving cars training data set.

We observed that the vast majority of the tweets (76.3%) were neutral towards au-

tonomous cars. Furthermore, 1.7% were very negative, 11.8% negative, 8.2% positive

and 2% very positive. So, our findings show that people are still cautious over this

controversial technology.

Due to lack of resources, we could not deal with larger versions of BERT and

bigger deep learning models in general. Research shows that models with far more

parameters than the ones we used, augmented with knowledge-based methods, can

achieve sufficient semantic context for accuracy of 70–80% in fine-grained sentiment

analysis. So, an idea for future work is to experiment with expensive SOTA models.

In addition, we can experiment with more data sets and perform a hyper-parameter

optimization, since we did not extensively tune the hyper-parameters of our models.

Therefore, further improvements may be possible with hyper-parameter tuning.
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Acronyms

ACC Accuracy

Adam Adaptive Moment Estimation

AI Artificial Intelligence

ANN Artificial Neural Network

AV Autonomous Vehicle

bACC Balanced Accuracy

backprop Back-propagation

BCE Binary Cross-Entropy

BERT Bi-directional Encoder Representations from Transformers

BGD Batch Gradient Descent

biLM Bi-directional Language Model

BLSTM Bi-directional LSTM

BOW Bag-of-Words

BPTT Back-propagation Through Time

BRNN Bi-directional Recurrent Neural Network

CBOW Continuous Bag-of-Words

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

ELMo Embeddings from Language Models

FFNN Feed-Forward Neural Network

FN False Negative

FP False Positive

FPR False Positive Rate

91



92 Chapter 7. Conclusions

GD Gradient Descent

GloVe Global Vectors

HMM Hidden Markov Models

idf Inverse Document Frequency

LDA Latent Dirichlet Allocation

LM Language Modeling

LReLU Leaky ReLU

LSA Latent Semantic Analysis

LSTM Long Short-Term Memory

MDP Markov Decision Process

ML Machine Learning

MLM Masked Language Model

NLP Natural Language Processing

NN Neural Network

NSP Next Sentence Prediction

PCA Principal Component Analysis

PP Perplexity

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SOTA State-Of-The-Art

SST Stanford Sentiment Treebank

t-SNE t-Distributed Stochastic Neighbor Embedding

tf Term Frequency

tf–idf Term Frequency-Inverse Document Frequency

TL Transfer Learning

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

TSA Twitter Sentiment Analysis
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