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Abstract 

The increasing energy needs of the contemporary world have rendered renewable energy 

sources a condition for sustainable future. Wind energy, in particular, has turned out to be one 

of the most efficient and cost-effective options, the employment of which gets more widely-

spread every year. However, it does not come without any environmental consequences, with 

noise pollution being among the most alarming ones. The present study aims for the prediction 

of wind turbine noise immission under neutral or stable atmospheric conditions and over flat 

terrain. Sound propagation is simulated by the development of a code that calculates the 

solution to the Parabolic Equation, assuming a monopole point source. The solution 

independency of the grid density and the dimensions of the computational domain and the 

absorbing layer is also investigated. The method reliability is validated by comparing the results 

to other numerical predictions and experimental measurements. Finally, the specific case of 

wind turbine noise propagation is assessed by applying experimental data to the developed 

code. The results are compared to in-situ measurements.  

 

Περίληψη 

Οι ολοένα αυξανόμενες ενεργειακές ανάγκες του σύγχρονου κόσμου έχουν καταστήσει τις 

ανανεώσιμες πηγές ενέργειας προϋπόθεση για βιώσιμο μέλλον. Η αιολική ενέργεια, 

ειδικότερα, έχει αποδειχθεί μια από τις πιο αποτελεσματικές και οικονομικές επιλογές, η 

αξιοποίηση της οποίας γίνεται όλο και πιο διαδεδομένη κάθε χρόνο. Ωστόσο, δεν είναι αμιγής 

περιβαλλοντικών επιπτώσεων, με την ηχορύπανση να είναι μια από τις πιο ανησυχητικές. Η 

παρούσα εργασία στοχεύει στην πρόλεξη της διάδοσης του θορύβου από ανεμογεννήτρια υπό 

ουδέτερες ή σταθερές ατμοσφαιρικές συνθήκες και κατά μήκος επίπεδης τοπογραφίας. Η 

διάδοση του ήχου προσεγγίζεται με την ανάπτυξη κώδικα που υπολογίζει τη λύση της 

Παραβολικής Εξίσωσης, υποθέτοντας μονοπολική σημειακή πηγή. Επίσης διερευνάται η 

ανεξαρτησία της λύσης από την πυκνότητα πλέγματος, καθώς και τις διαστάσεις του 

υπολογιστικού χωρίου και του απορροφητικού στρώματος. Η αξιοπιστία της μεθόδου 

πιστοποιείται μέσω σύγκρισης των αποτελεσμάτων με άλλες αριθμητικές προλέξεις και 

πειραματικές μετρήσεις. Τέλος, η ειδική περίπτωση της διάδοσης θορύβου από 

ανεμογεννήτρια εκτιμάται εφαρμόζοντας πειραματικά δεδομένα στον προκύπτοντα κώδικα. 

Τα αποτελέσματα συγκρίνονται με επί τόπου μετρήσεις. 
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1.Introduction 

1.1. Technological problem analysis 

Overpopulation and fast economic growth around the globe have been changing drastically the energy 

requirements over the past few decades. As a result, fossil fuels, widely used in the past to cover such needs, 

are now being depleted in alarming rates, only to leave behind the devastating effects of climate change on 

both humans and nature.  

Renewable energy sources seem to be the only way to a sustainable future, with wind turbines standing among 

the most prominent options. Indicatively, there are currently 743 GW of installed wind capacity worldwide, 

93 GW of which were added by China and U.S. just in 2020 [1]. However, wind power stations are often 

claimed to cause discomfort or even deterioration of everyday life to the local residents and fauna.  

The construction of a wind park often leaves behind a deforested land, prone to soil erosion, causing significant 

habitat loss, if not properly restored [2]. Furthermore, air-collision of birds and bats with the moving rotor 

blades contributes to rise in their mortality rates. Shifting to issues that affect humans directly, the interference 

of the wind turbine with the electromagnetic signals is among common complains of the locals. To their 

disturbance also constitutes the visual impact, attributed not only to the intimidating physique of the wind 

turbine, often ill-assorted to the adjacent landscape, but also to the flickering effect caused by the passing of 

the sunlight through the rotating blades, creating a repeatedly occurring shadow. Last but not least, the noise 

produced by a wind turbine is often reported by the locals as a source of nuisance [3]. Such annoyance can 

have various indirect health effects, including migraines, dizziness, tinnitus, stress, rise in blood pressure and 

sleep disturbance [4]. It can also be associated with increased stress levels of the fenced animals that live 

nearby, as long as with communication disturbance among wild species, due to sound masking or hearing 

impairments [2]. 

The effects of noise disturbance on the local residents and fauna, along with the financial damage entailed by 

a possible operation interruption of a wind farm due to above-limit measured noise levels in residential areas, 

call for the development of numerical models that provide safe estimations of wind turbine noise generation 

and propagation. The aim of the present study is the development of a fast and reliable numerical tool, capable 

of simulating noise propagation in the atmospheric environment and, therefore, permitting the accurate 

estimation of noise levels at critical distances around a wind turbine. 
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1.2. Noise propagation methods: A literature Review 

During the past decades, a number of computational methods have been developed for the numerical 

simulation of atmospheric noise propagation. Among the most common ones lie the Parabolic Equation, the 

Ray Theory, the Wavenumber Integration and the Normal Modes methods that have been developed for 

underwater acoustics models. Furthermore, during the last two decades, due to the increase in computer 

capacity, sound propagation can be calculated through the solution of the Linearized Euler Equations by use 

of finite differences or finite volumes. A brief description of the principles, the developed models and the 

applications of each method follows, along with the choice finally applied in this study. 

The Parabolic Equation (PE) method is used for the computation of the sound field produced by a monopole 

source in a refracting atmosphere and above the ground surface. Assuming waves travelling only in the 

positive direction and, thus, negligible back-scattering, this is achieved through the solution of a parabolic 

equation. This method ignores contributions to the field of sound waves with large elevation angles.  Hence, 

there is a maximum for elevation angle values, beyond which its accuracy is put into question [15, App.G, 

"Parabolic Equation (PE) method", pg. 163-180]. 

Although the method is now widely used in atmospheric acoustics, it was introduced as an underwater model 

by Hardin and Tappert [6, Ch.6: "Parabolic Equations", pg. 457–529] for the development a full-wave 

alternative to ray-tracing methods [17]. The necessary adaptations for the prediction of atmospheric noise 

propagation were made by Gilbert and White [16], who developed a wide-angle PE model that can be applied 

to the case of flat, locally reacting ground surfaces. Furthermore, in [17], they used the latter model, called 

"Crank-Nicholson PE method" [15, App.G, "Parabolic Equation (PE) method", pg. 163-180], to study the 

refractive effects of atmospheric profiles to sound propagation over flat, open, finite-impedance ground.  

A variation of the PE was developed by Di and Gilbert, called the "Green Function PE method", also an 

axisymmetric approximation [40]. Albeit less accurate than the CNPE in cases of wide-angle propagation and 

large sound speed profiles, the CFPE method is faster, due to the larger extrapolation steps used in the 

parabolic direction [15, App. H, "Green's Function Parabolic Equation (GFPE) method", pg. 181-202]. 

Another interesting feature of this method, developed by Di and Gilbert [18] is that it can be extended to three-

dimensional problems.  

Barlas et al. employed the PE method [19] to predict the noise propagation from a wind turbine, having 

estimated the flow field, by use of a model that employs the Large Eddy Simulation and Actuator Disc 

methods. In [20] they used a two-dimensional PE method, coupled with an analytical wake model and Large 

Eddy Simulation and Actuator Disc methods for the assessment of the effects of wake-induced velocity and 

turbulence on the sound that propagates from a wind turbine.  

Lee et al. [21] developed a PE tool for wind turbine noise propagation, aiming at the expression of the effects 

of wind and temperature profiles on sound propagation and, hence, on the perceived sound in the far field. As 

an input for sound propagation prediction with evolving wake flows, the model used CFD-calculated evolving 

wake flows. However, it underestimated far-field noise levels in the upwind direction*, as a result of ignoring 

the turbulence scattering effect. 

According to Ray Theory, sound propagates along rays, normal to surfaces on which the phase of the acoustic 

waves remains constant, called wave fronts [5]. Each ray follows a trajectory, calculated through the ray 

tracing technique, that involves the integration of the trajectory differential equations in some time interval. 

The rays that start from the source and reach the receiver are called "eigenrays". The contribution of each 

eigenray to the total sound pressure level is calculated by subtracting the losses along the trajectory from the 

sound power level of the source. This provides the amplitude of the complex pressure field, whilst the phase 

is estimated from the integration time along the eigenray. The total sound pressure field, perceived by the 

receiver is then calculated as a superposition of the components from the total number of eigenrays [41]. 

A serious flaw of this theory is the underprediction of the sound pressure level in the case of upwind sound 

propagation. To this contributes the occurrence of the "shadow zones", in which the pressure field is calculated 

 
* as defined in [21], par. III. C  
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as identically zero [6, Ch.3: "Ray Methods", pg. 155–232]. In reality, however, the diffraction of sound on 

obstacles can be the cause of some level of sound pressure. Berry and Daigle overcame that problem [7], by 

formulating the diffraction theory in terms of a residue series and then extending the solution to the general 

case of a finite impedance by removing restrictive approximations and retaining higher-order terms. The 

geometrical theory, that considers reflections from a curved surface, was used for the calculation of the sound 

field above the shadow boundary.  

This approach was used by L’ Espérance et al. [8] for the development of a tool for outdoor sound propagation 

assessment that took under consideration the fact that acoustical rays appear as circular arcs for a linear sound 

speed profile, as was proved by Hidaka [9]. The common energy loss mechanisms of geometrical spreading, 

atmospheric absorption, ground effect and atmospheric refraction were also considered by this model. 

Another drawback of the ray theory is that accuracy can be achieved principally for high frequencies [5, 6]. 

However, Raspet et al. [10] showed that, in long distances from the source, ground absorption cancels out the 

effects of lower frequencies, that do not fit the ray tracing accuracy criteria, set by Brekhovskikh in [11]. 

Ray theory was applied in the work of Prospathopoulos and Voutsinas for the investigation of wind turbine 

and wind park noise propagation, taking atmospheric absorption, wave refraction and diffraction as well as 

atmospheric turbulence into account [12]. They have examined how noise emissions from isolated wind 

turbines and from wind parks are affected by parameters such as ground impedance, temperature, humidity, 

turbulence, and wind velocity [13]. In addition to that, they have developed a ray-tracing model, that uses 

axisymmetric calculations for the estimation of the sound pressure field around an isolated source, to 

determine appropriate sound speed profiles for near ground propagation, taking into account sound energy 

losses from ground and atmospheric absorption as well as atmospheric turbulence [14]. 

The Wavenumber Integration and the Normal Modes methods are both numerical implementations of the 

Integral Transform Technique. The latter is widely used in boundary value problems, regarding environments 

where the boundary conditions and the coefficient of the Helmholtz equation are both independent of any 

number of space coordinates. Application of integral transforms, i.e., Fourier transforms, or separation of 

variables to these cases can lead to dimension reduction of the wave equation and the boundary conditions [6, 

Ch.2: "Wave Propagation Theory", pg. 65–153]. The sound pressure is expressed as a wavenumber integral 

of the solutions of the reduced wave equation that is evaluated differently in each method. Namely, in the 

wavenumber integration method, numerical quadrature calculations are employed (often the Fast Fourier 

Transforms, hence the term FFP -Fast Field Programs- for that approach), while in the normal mode method, 

a complex contour integration is implemented to reduce the integral representation to a sum of residues. [6, 

Ch.4: "Wavenumber Integration Techniques", pg. 233-335]. 

The FFP method, originally developed for underwater acoustics by Pekeris [22] and seismic propagation in 

few-layer waveguides by Jardetzky [23] and Ewing et al. [24], was first applied to atmospheric sound 

propagation by Lee et al. [25] for the case of complex impedance ground. The numerical overflow problems 

that emerged for high frequencies and multiple layers were eliminated by the new formulation, developed by 

Lee et al. [26], involving the calculation of the equivalent impedance for each layer, starting from the top and 

bottom ones and moving successively towards the source.  

Wilson [27] developed a three-dimensional FFP method, similar to the one of Li et al. [28], but used the 

theoretical basis applied by Nijs and Wapenaar in [29], differing only in that he expressed the wave equation 

of a moving medium in terms of velocity potential, instead of acoustic pressure and particle velocity, 

simplifying it significantly. The global matrix methods suggested by Schmidt and Tango [30] facilitated 

considerably the numerical calculations. 

The normal modes method was employed by Raspet et al. [31] for the prediction of low-frequency sound 

propagation in a downward refracting atmosphere and across a complex impedance ground surface, since the 

ray tracing approaches give unsatisfactory results in such conditions. The proof of the intense dependency of 

sound propagation in a downward refracting atmosphere on the interaction between the finite-impedance 

ground surface and the refracted sound was the outcome of this study. 
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Keith, Daigle and Stinson, in the framework of "Health Canada’s Community Noise and Health Study" 

assessed the wind turbine infrasound and low frequency levels near 1238 dwellings. The FFP was one of the 

methods they used to estimate wind turbine noise propagation and it proved to give satisfactory results for 

large distances, large wind turbine numbers and in the case where specific meteorological classes are used to 

replace on-site meteorological data, given that infrasound approaches perceptible levels [32]. 

Prospathopoulos et al. [33] proposed an axisymmetric model for wind turbine noise propagation along 

complex terrain, called "NOISEPRO". This code consists of the model "KRAKEN", that is based upon the 

normal modes method for the low-frequency domain, and the model "AERAS" that uses a ray tracing 

technique for the high-frequency domain. At the same time, it takes under consideration the mean wind 

velocity vertical profile, the ground surface variations and the range dependence on the medium 

characteristics. The results for high-frequency noise propagation proved compatible to the measurements, in 

contrast to the ones for low-frequency noise propagation, that, in most cases, deviated significantly, proving 

that the normal modes method failed to predict credibly the ground effect. 

The Linearized Euler Equations (LEEs), obtained by applying basic aeroacoustics assumptions to the Euler 

Equations [34] is a more advanced and, yet, computationally more demanding method for sound propagation 

simulation. The equation set is solved using the finite volumes or finite differences method [35]. In the latter 

case, and when time-domain solutions are required, the method is called "Finite Difference Time Domain 

method", or "FDTD method" and, during the past three decades, it has been acknowledged for its ability to 

include into calculations complicated wave effects such as scattering, reflection or diffraction near bodies of 

random shape. Additionally, it can predict complex medium effects, with convection, refraction and turbulent 

or non-turbulent scattering being among the most common ones [36]. These merits were taken advantage of 

by Van Renterghem et al. [37], along with the virtues of the PE method, namely small computational time and 

accurate predictions of sound propagation to a distant receiver, for the development of a hybrid model that 

calculates the sound propagation in situations where the source is close to several obstacles. The FDTD part 

of this model was responsible for calculations near the complex source and the PE part for propagation to a 

distant receiver, across a flat terrain. 

An adaptive FDTD model was developed by Shiguang and Jin Liu [38] for the calculation of sound 

propagation in three-dimensional outdoor scenes. The atmospheric inhomogeneity and ground effects on the 

pressure field were considered. The results were realistic and computationally cost-effective. However, there 

is still a significant precomputational cost, while the fact that the PE method assumes a single propagation 

direction hinders the predictions in the case of multiple sources. 

The effects of topography and atmosphere on sound propagation were also studied by Blumrich and Heimann 

[39]. In their study, they developed a sound propagation model along with a flow model, both based on the 

solution of the LEEs for the prediction of sound propagation in a three-dimensionally inhomogeneous 

atmosphere and across a rigid, partly reflective or fully absorptive terrain. Comparison of the model results to 

analytical predictions and measurements proves it to be a reliable tool. Nevertheless, it entails time-consuming 

calculations, especially in the case where finite ground impedance modelling is required.  

The present study aims for the development of an efficient model, suitable for the simulation of noise 

propagation in the atmospheric environment and able to focus on wind turbine noise immission. This can be 

achieved in the cases of flat or smooth terrain, where the crosswind propagation effect can be neglected, 

allowing for the adoption of an axisymmetric approach. As such, the Parabolic Equation (PE) method was 

selected. Indeed, a parabolic approach complies favorably with either flat or smooth terrain cases, where no 

back-scattering propagation occurs. Furthermore, the PE calculations are performed in the frequency domain, 

thus permitting the investigation of the pressure field only for frequencies of interest. In the low-frequency 

domain, such a consideration allows for the employment of coarse grids, reducing significantly the 

computational cost. Finally, the wide-angle approximation, adopted in the present work, removes any angular 

limitations of the PE method and renders it adequate for the simulation of wind turbine-originated sound 

propagation. 

Knowing the method to be employed determines the course of the study that is described in the three remaining 

chapters of this dissertation. In Chapter 2 the narrow and wide-angle parabolic equations are derived from the 



5 
 

two-dimensional Helmholtz equation. The resulting system of equations, along with the initial and boundary 

conditions, are then discretized numerically for the model development. This is followed by the investigation 

of the solution independency of the grid density as well as the dimensions of the computational domain and 

the absorbing layer. In Chapter 3, the code credibility gets validated by comparing the results to ones from 

other theoretical predictions, using the same initial conditions. Then, the model is applied to actual wind 

turbine cases, using data from onsite measurements. Conclusions and future work suggestions can be found 

in Chapter 4. 
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2. The Parabolic Equation (PE) method 

In the present chapter the mathematical equations and their discretization, along with the boundary conditions 

required for the calculation of the pressure field are presented. The simulation also includes the modelling of 

the atmospheric absorption, the ground effect and the noise source. A study of numerical parameters, namely 

grid density as well as computational domain and absorbing layer dimensions, is finally conducted.  

 

2.1. Mathematical formulation 

For the mathematical setup, the Crank-Nicholson Parabolic Equation (CNPE) method is followed, as 

described by Salomons [15, App.G, "Parabolic Equation (PE) method", pg. 163-180]. Since it is an 

axisymmetric approximation, the three-dimensional Helmholtz equation reduces to its two-dimensional form: 

∂
2
q

∂r
2

+
∂

2
q

∂z
2

+k
2
·q=0,                                                              (2.1) 

                                                    

where the r-z coordinates are shown in Fig.2.1 and the wave number k is equal to ω/c, with ω being the angular 

frequency and c the sound speed. The quantity q(r, z) has the following relation with the complex pressure 

amplitude, p(r, z): 

q=p·√r                                                                             (2.2) 
                                                              

 

Fig.2.1: The cylindrical rzφ coordinated for the axisymmetric approach (sound field variation with the azimuthal angle, φ, is 

neglected). Source: [15, App.E, "Basic acoustic equations for a layered refracting atmosphere", pg. 139-151]. 

The solution of the PE can vary, depending on whether a narrow-angle or a wide-angle approximation is 

considered. The PE, as modified for each approach, is derived in the next two paragraphs. 

For the Narrow-angle Approximation, valid only for angles up to about 10°, the solution of eq.(2.1) is set as 

follows: 

q(r, z)=ψ(r,z)·ei·k0·r,                                                                   (2.3) 

where k0 is the value of the wave number k(z) at the ground surface. 

Substitution of (2.3) into (2.1) yields: 
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∂
2
ψ

∂r
2

+2·i·k0·
∂ψ

∂r
+

∂
2
ψ

∂z
2

+(k2
-k0

2)·ψ=0                                                  (2.4)  

                                       

However, in most cases, ψ varies slowly with r, therefore, the first term of the left-hand side of (2.4), being 

considerably smaller than the other two, can be neglected.  

Additionally, one can substitute the difference (k2
-k0

2) , with the quantity δk
2
. 

Given the last two remarks, eq. (2.4) can be written as: 

2·i·k0·
∂ψ

∂r
+

∂
2
ψ

∂z
2
+ δk2·ψ=0,                                                         (2.5) 

                                          

which is called “the narrow-angle parabolic equation”. 

It is interesting to note here that there is an alternative to the derivation of eq. (2.5). That is, by introducing the 

operator: 

H2(z)=k
2
(z)+

∂
2

∂z
2

,                                                                 (2.6) 

one can write equation (2.1) as: 

∂
2
q

∂r
2

+ H2(z)·q=0                                                                   (2.7) 

                                                     

However, from (2.6) it is also true that: 

H2(z)=[k
2
(z)-k0

2
]+k0

2
+

∂
2

∂z
2

δk
2
=k(z)

2
+k0

2

⇒         H2(z)=δk
2
+k0

2
+

∂
2

∂z
2

                                   (2.8) 

                          

Introducing the operator s as: 

s=

δk
2
+

∂
2

∂z
2

k0
2

,                                                                      (2.9) 

 

(2.8) can be written as:  

H2(z)=k0
2
·(1+s)                                                                 (2.10) 

                                  

Taking (2.10) one step further, one can write:  

H2(z)=(k0·√1+s)
2
                                                              (2.11) 
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Substituting the quantity k0·√1+s with the operator H1(z), (2.11) becomes: 

H2(z)=H1
2(z)                                                                  (2.12)* 

Equation (2.7) can, now, be written as: 

[
∂

∂r
- i·H1(z)]·[

∂

∂r
 + i·H1(z)]·q =0                                                (2.13)†  

                              

The first term of the left-hand side of eq. (2.13) expresses waves that travel in the positive r direction, while 

the second term, expresses waves traveling in the negative direction. However, in this study, the source is 

considered to be at r=0 and the receiver at r>0. Hence only the waves that travel towards the positive r direction 

are of interest. Neglecting any back-scattering, eq. (2.13) reduces to: 

∂q

∂r
- i·H1(z)·q=0                                                                          (2.14) 

                                                   

Neglecting any term of order greater than two in the expansion of the operator √1+s, H1(z) can be written as: 

H1(z)= k0·(1+
1

2
s)                                                                      (2.15) 

                                                         

Substitution of (2.9) and (2.15) into (2.14), gives: 

∂q

∂r
- i·k0·q- i·

δk
2
+

∂
2

∂z
2

2·k0

·q=0                                                        (2.16) 

                                                

A final substitution of eq. (2.3) into eq. (2.16) yields the final form of the narrow-angle parabolic equation 

(2.5): 

2·i·k0·
∂ψ

∂r
+

∂
2
ψ

∂z
2

+δk
2
·ψ=0 

This calculation route can be followed for the Wide-Angle Approximation as well. The same steps can be 

taken, until equation (2.15) in which, this time, a more accurate expansion of the square-root operator is used: 

H1(z)=k0·
1+

3
4

·s

1+
1
4

·s

,                                                                 (2.17) 

 
*The square-root of the differential operator (1+s) is defined by the expansion: √1+s=1+

1

2
s-

1

2
s2+…, just like the 

expansion of a common square-root function. Therefore, the operator √1+s behaves as a square-root function and 

equations like (2.12) hold true. 

† The difference of squares in (2.13) is valid assuming that H1·
∂

∂r
=

∂

∂r
 ·H1, which is true only for the case of layered 

atmosphere, where k=k(z), which is considered here. For a range dependent wave number, i.e. k=k(r,z), assuming 

commutation between the two operators is an approximation. 
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where 
1

1+
1

4
·s

 is the inverse of the operator 1+
1

4
·s.  

Substitution of (2.17) in (2.14), yields: 

∂q

∂r
 - i·k0·

1+
3
4

·s

1+
1
4

·s

·q=0                                                             (2.18) 

                                                     

Considering, finally, eq. (2.3), one can write the wide-angle parabolic equation as: 

∂ψ

∂r
 - i·k0·

1
2

·s

1+
1
4

·s

·ψ=0                                                            (2.19) 
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2.2. Numerical Simulation 

i. PE discretization 

The finite-differences method is employed for the solution of the narrow-angle and wide-angle parabolic 

equations derived in the sections above. 

Solution of the Narrow-angle PE 

Defining the parameters α and β as: α=
i

2·ka
 and β=

i·δk
2

2·ka
 respectively and substituting them in eq. (2.5), one gets: 

∂ψ

∂r
=α·

∂
2
ψ

∂z
2

+β·ψ                                                              (2.20) 

                                                      

The grid used for the field computation is an rz plane and is depicted in Fig.2.2. It is divided in sections of Δr 

length horizontally and of Δz height vertically. As will be proven in Sec.2.3.i, accurate results can be obtained 

for Δr and Δz equal to λ/10 or less, where λ is an average wavelength. It is also evident from Fig.2.2 that the 

ground surface is placed at z=0, while the total height of the grid is finite and equal to zM. The area between 

zt and zM at the top serves as an absorbing layer and will be further analyzed in Sec.2.3.ii. The grid spacings 

are at heights: 

zj=j·Δz, j=1, 2, 3, …, M                                                         (2.21) 

 

Fig.2.2: The employed grid in the r-z plane. The ground surface is at z=0, the top of the grid at z=zM and the absorbing layer 

covers the region zt≤ z ≤ zM. 

The field ψ that is to be calculated is denoted at range r as a vector: ψ⃗⃗ (r), the elements of which are symbolized 

as: ψj=ψ(r, zj). 

For the discretization of the second-order term in eq.(2.20), the central difference formula is used as follows: 

(
∂

2
ψ

∂z
2
)

zj

=
ψ

j+1
-2·ψ

j
+ψ

j-1

(Δz)
2

                                                        (2.22) 

                                                

With the aid of eq.(2.22), (2.20) can be written as: 
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∂

∂r

(

 
 
 

ψ
1

ψ
2

ψ
3

⋮
ψ

Μ-1
ψ

Μ )

 
 
 

=

[
 
 
 
 
 
 

γ

(

  
 

-2 1

1 -2 1
1 -2 1

⋱ ⋱ ⋱
1 -2 1

1 -2)

  
 

+

(

 
 
 
 

β
1

β
2

β
3

⋱
β

Μ-1

β
Μ)

 
 
 
 

]
 
 
 
 
 
 

·

(

 
 
 

ψ
1

ψ
2

ψ
3

⋮
ψ

Μ-1
ψ

Μ )

 
 
 

+γ

(

  
 

ψ
0

0

0
⋮
0

ψ
Μ+1)

  
 
 ,       (2.23) 

where γ=
α

(Δz)
2 and βj=β(zj).  

A closer observation of eq.(2.23) leads to the conclusion that the last vector of the right-hand side replaces the 

two terms that are missing from the first and the last row of the tridiagonal matrix. Its elements ψ
0
 and ψ

M+1
, 

represent the field for z0=0, i.e. ground level, and zM+1=(M+1)·Δz, i.e, top of the grid, respectively, where the 

boundary conditions, set in Sec.2.2.ii are satisfied. 

That said, ψ
0
 is calculated from the relationship: 

ψ
0
=σ1ψ

1
+σ2ψ

2
,                                                                       (2.24)  

                                                    

where coefficients σ1 and σ2 depend on the ground impedance.  

On the other hand, ψ
M+1

 is given by the relation: 

ψ
M+1

=τ1ψ
Μ

+τ2ψ
Μ-1

,                                                             (2.25) 

where coefficients τ1 and τ2 can be similarly derived as σ1 and σ2, as will be proven in the next section. 

All in all, the vector equation (2.23) is a set of M equations, each one of them relating an element 
∂ψ

j

∂r
 to the 

elements ψ
j-1

, ψ
j
and ψ

j+1
. 

Introducing a tridiagonal matrix, T⃡, defined as: 

T⃡ =

(

  
 

-2+σ1 1+σ2
1 -2 1

1 -2 1

⋱ ⋱ ⋱
1 -2 1

1+τ2 -2+τ1)

  
 

                                             (2.26)  

                                  

and a diagonal matrix, D⃗⃡  , defined as: 

D⃗⃡ =

(

 
 
 
 

β
1

β
2

β
3

⋱
β

Μ-1

β
Μ)

 
 
 
 

,                                                    (2.27) 

                                         

equation (2.23) can be written as: 
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∂ψ⃗⃗ 

∂r
= (γ·T⃡+D⃗⃡ )· ψ⃗⃗                                                                 (2.28) 

                                                   

Integration of equation (2.28) from r to r+Δr, yields: 

ψ⃗⃗ (r +Δr) - ψ⃗⃗ (r) = (γ·T⃡+D⃗⃡ )· ∫ ψ⃗⃗ ·dr                                                 (2.29)

r+Δr

r

 

                               

For the approach of the integral on the right-hand side of eq.(2.29), the Crank-Nicholson approximation is 

used, according to which: 

∫ ψ⃗⃗ ·dr

r+Δr

r

 
1

2
 ·[ψ⃗⃗ (r +Δr) + ψ⃗⃗ (r)]·Δr                                                   (2.30) 

                                       

Substitution of (2.30) into (2.29) gives: 

ψ⃗⃗ (r +Δr)- ψ⃗⃗ (r) = (γ·T⃡+D⃗⃡ )·
1

2
·[ψ⃗⃗ (r +Δr) + ψ⃗⃗ (r)]·Δr  [1-

1

2
 ·(γ·T⃡+D⃗⃡ )]· ψ⃗⃗ (r +Δr)= [1 + 

1

2
 ·(γ·T⃡+D⃗⃡ )]· ψ⃗⃗ (r) 

Defining the above tridiagonal matrices in brackets as: 

M⃗⃗⃡ 1= [I⃡  + 
1

2
 ·Δr·(γ·T⃡+D⃗⃡ )]                                                          (2.31) 

                                               

and 

M⃗⃗⃡ 2= [I⃡ - 
1

2
 · Δr· (γ·T⃡+D⃗⃡ )]                                                          (2.32) 

                                               

one receives the final discretized form of the above narrow-angle parabolic equation: 

M⃗⃗⃡ 2· ψ⃗⃗ (r +Δr) = M⃗⃗⃡ 1· ψ⃗⃗ (r)                                                           (2.33) 
                                               

The step-wise solution of the PE, from ψ⃗⃗ (r) to ψ⃗⃗ (r +Δr), is reduced to the solution of the set of M linear 

equations presented in eq. (2.33) for the M unknowns ψ⃗⃗ 
j
(r+Δr). Given that M1 and M2 are tridiagonal matrices, 

this can be achieved through the Thomas algorithm [43]. 

 

Solution of the Wide-Angle PE 

Dividing equation (2.5) with the quantity (2·i·k0) and substituting the operator s, as defined in eq. (2.9), one 

can bring the narrow-angle parabolic equation to the following form: 

∂ψ

∂r
 - 

1

2
 ·i·k0·s·ψ=0                                                               (2.34) 
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Comparison of the latter equation with the wide-angle parabolic equation (2.19) reveals that the only 

difference between them is the factor: (1+ 
1

4
·s) on the left-hand side. 

Another comparison between the two forms of the narrow-angle PE (2.5) and (2.28) shows that (γ·T⃡+D⃗⃡ ) is the 

finite difference matrix form of the operator 
1

2
 ·i·k0·s, meaning that the operator s corresponds to the matrix: 

2

i·k0
· (γ·T⃡+D⃗⃡ ).  

Therefore, the matrix for the wide-angle PE operator (1+
1

4
·s) is: [1+

(γ·T⃡+D⃗⃡ )

2·i·k0
]. 

All of the above considered, the wide-angle parabolic equation (2.19) can be written in the form of eq. (2.33), 

with matrices M⃗⃗⃡ i this time equal to: 

M⃗⃗⃡ 1= [I⃡ + 
1

2
 · Δr· (γ·T⃡+D⃗⃡ )] + 

(γ·T⃡+D⃗⃡ )

2·i·k0

                                                   (2.35) 

                                    

and 

M⃗⃗⃡ 2= [I⃡ - 
1

2
 · Δr· (γ·T⃡+D⃗⃡ )] + 

(γ·T⃡+D⃗⃡ )

2·i·k0

                                              (2.36) 

                                     

respectively. 
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ii. Boundary conditions 

Boundary condition at the ground surface 

Assuming a non-rigid, locally reacting ground surface, the complex pressure amplitude, pc, and the normal 

component of the complex velocity amplitude in the negative z-direction, vc,z, must be continuous at z=0. 

Mathematically, this can be expressed as: 

(
p

c

vc,z

)
z=-ε

= (
p

c

vc,z

)
z=+ε

,                                                         (2.37) 

where ε>0 and ε→0.  

The right-hand side of (2.37) is the impedance of the ground surface and is equal to Zρc, where Z is the 

normalized impedance of the ground surface and ρ·c the air impedance, evaluated just above the ground 

surface. Therefore, (2.37) can be written as: 

(
p

c

vc,z

)
z=0

= Zρc                                                                 (2.38) 

                                                         

Writing the pressure and velocity fields respectively as: 

p=Re{pc·e-iωt}                                                                   (2.39) 

v⃗ = Re {v⃗ c·e-iωt},                                                                 (2.40) 

the linear acoustic equation for momentum conservation can be expressed in the following simplified form: 

vc,z= - 
1

i·ω·ρ
· 

∂p
c

∂z
                                                                (2.41) 

                                                     

The first-order finite-difference approximation of the partial derivative of the complex pressure amplitude 

shown in (2.41) is: 

∂p
c

∂z
 =

p
1
-p

0

Δz
,                                                                     (2.42) 

where p
j
=p

c
(zj).  

Substitution of (2.42) and (2.38) in (2.41) yields: 

p
0
=

1

1-
i·k0·Δz

Z

 · p
1
,                                                               (2.43) 

where k0=
ω

c0
 is the wave number at the ground surface. 

Nevertheless, one must bear in mind that the wide-angle parabolic equation requires a second-order 

approximation of 
∂pc

∂z
 for accurate results. In that case, the following expression can be used instead of eq. 

(2.42): 
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∂p
c

∂z
 =

-
3
2

p
0
+2p

1
-
1
2

p
2

Δz
,                                                         (2.44) 

Now, substituting (2.44) and (2.38) in (2.41), one gets: 

p
0
=

4·p
1
-p

2

3-
2·i·k0·Δz

Z

 ,                                                              (2.45) 

Some important notes regarding the calculation of this section are: 

• Since (2.2) and (2.3) hold true, equations (2.43) and (2.45) can be rewritten by replacing pj with ψj. 

Therefore, by comparison with eq. (2.24), one can deduce that: 

→ σ1=
1

1-
i·k0·Δz

Z

  and σ2=0 for the case, where the first-order approximation of 
∂pc

∂z
 is used, while 

→ σ1=
4

3-
2·i·k0·Δz

Z

 and σ2=-
1

3-
2·i·k0·Δz

Z

 for the case, where the first-order approximation of 
∂pc

∂z
 is used. 

• The normalized impedance, Z, is assumed constant within a range step and, unless otherwise mentioned, 

is usually calculated from the expression used by Delany and Bazley [42]: 

Z= 1+ 9.08· (
1000·f

σ
)

-0.75

+ i·11.9· (
1000·f

σ
)

-0.73

,                                      (2.46) 

where f is the sound frequency and σ is an indicative parameter for the ground absorbing capacity, called "flow 

resistivity".   

 

Boundary condition at the top of the grid 

The top of the surface is where z=zM. This time, the normalized impedance of air is used (Z=1), instead of the 

ground impedance. Following a procedure similar to the one described in the previous paragraph, one gets: 

p
M+1

=
4·p

M
-p

M-1

3+2·i·k0·Δz
                                                                (2.47) 

                                                     

A comparison with equation (2.25) yields: 

→ τ1=
1

1-i·k0·Δz
  and τ2=0 for the case, where the first-order approximation of 

∂pc

∂z
 is used and 

→ τ1=
4

3- 2·i·k0·Δz
 and τ1=-

1

3-2·i·k0·Δz
 for the case, where the first-order approximation of 

∂pc

∂z
 is used. 
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Top surface absorbing layer 

To avoid partial reflections of plane waves to the z<zM region, an absorbing layer from z=zt to z=zM (Fig. 2.2) 

must be added to the top of the grid. This is possible if an imaginary term is added to the wave number k(z), 

in the region zt ≤ z ≤ zM. This aims for a gradual wave attenuation in the absorbing layer. According to 

numerical tests, an efficient choice for this term is i·At·
(z-zt)

2

(zM-zt)
2, where At here takes the value of 1, 0.5, 0.4 and 

0.2 at the frequencies 1000, 500, 125 and 30 Hz respectively, while for the intermediate ones, it is estimated 

through linear interpolation. 

Important notes for this paragraph are: 

• Salomons [15, App.G, "Parabolic Equation (PE) method", pg. 163-180] suggests that a safe value for the 

absorbing layer thickness is 50 times the wavelength of the used frequency. This is further examined in 

Sec. 2.3.ii, where numerical calculations are conducted under different values for the absorbing layer 

thickness.  

• The top of the grid should be adequately high so that the absorbing layer will n ot influence the sound 

field. So, as will be shown during the rest of the calculations course, zMwill be equal to at least 1000 

vertical grid spacings, complying to Salomons’ instructions.  

• The wave number, k(z), is calculated from the relation: 

k(z)=
ω

c(z)
                                                                      (2.48) 

                                                          

Unless otherwise stated, in this study the following logarithmic profile is used for the expression of the speed 

of sound: 

c(z)=c0+b·ln(1+
z

z0

),                                                            (2.49) 

where c0 is the nominal speed of sound, b is the refraction factor, describing the cases of downward, upward 

or non-refracting atmosphere and z0 is the roughness length of the ground. 
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iii.  Atmospheric absorption and other propagation losses 

Atmospheric absorption causes an exponential decrease of the amplitude of the complex pressure, which can 

be taken into account by adding a small imaginary term, i·ki, to the wave number, thus replacing k with k+i·ki. 

This term is calculated as follows: 

ki =
α

20·loge
,                                                                   (2.50) 

where α is the absorbing coefficient, determined by the following relationship: 

α=8.686·f
2
·√τr·(

1.84

1011·ρ
r

+
b1+b2

τr
3
) ,                                               (2.51) 

  

where τr=
T

T20
, T20=293.15 K and ρr=

pa

pr

, pr= 101 325 Pa. The quantities b1 and b2 are calculated from the 

expressions: 

b1=0.1068·
e

- 
3352

T

fr,N+
f
2

fr,N

                                                             (2.52) 

                                                   

and 

b2=0.01275·
e

- 
2239.1

T

fr,O+
f
2

fr,O

                                                            (2.53) 

                                                  

fr,N and fr,O are the relaxation frequencies of nitrogen and oxygen, respectively, calculated from the 

relationships: 

fr,N=
ρ

r

√τr

·[9+280·h·e
-4.17·(

1

√τr
3 -1)

]                                                  (2.54) 

                                        

fr,O=ρ
r
·(24+40400·h·

0.02+h

0.0391+h
)                                                   (2.55) 

                                         

In the above equations, h is the percentage of molar water vapor concentration in the atmosphere and is a 

function of the relative humidity, rh, i.e. the percentage of the water vapor pressure in the atmosphere over the 

saturation vapor pressure, p
sat

: 

h=
rh · ρsat

ρ
r

,                                                                     (2.56) 

where ρsat=
psat

pr

, by definition. However, ρsat is calculated as: 
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ρ
sat

=10Csat,                                                                        (2.57) 

with  

Csat=-6.8346· (
T01

T
)

1.261

+4.6151,                                                     (2.58) 

where T01=273.16 K is the triple-point temperature of water. 

It is important to note here that the factors of propagation losses mentioned above are not the only ones to 

occur. Indeed, ground absorption is also a significant parameter and is taken under consideration through the 

boundary condition (2.45), that includes the ground impedance. The losses due to spherical spreading 

contribute significantly to the complex pressure field values as well. Nevertheless, they are, by default, 

encompassed in the calculations for the solution of the PE. 
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iv. Simulation of acoustic source 

In order for the computations to begin, a starting field is required, which should represent a monopole source. 

The exact expression for the field q(r,z) of a monopole source in an unbounded, non-refracting atmosphere is: 

q(r,z)=
ei·k·R

R
·√r,                                                                 (2.59) 

where R is the radial distance from the source.  

However, this expression cannot be used here, since it produces sound waves with elevation angles so large, 

that the PE method is no longer valid. It is also obvious that this formula diverges at the source, positioned at 

r=0. Instead, the following starting field will be used: 

q(0,z)=q
0
(z-zs)+C·q

0
(z+zs),                                                         (2.60) 

under the assumption that the ground surface is of a finite impedance and that the source is positioned at 

(r,z)=(0,zs).  

In eq.(2.60), the reflection coefficient, C, is attained by the expression: 

C=
Z-1

Z+1
,                                                                         (2.61) 

where Z is the normalized ground impedance. 

The function q
0
(z) is defined as the starting field for a source at position (r, z)=(0, 0) in an unbounded 

atmosphere and it satisfies the following relationships: 

• q
0
(0,z) =√i·k0·e

-
1

2
k0

2
z2

  (2.62), for the case of a narrow-angle propagation and 

• q
0
(0,z) = √i·k0·(1.3717-0.3701·ka

2
z2)·e

-
ka
2

z2

3  (2.63), for the case of a wide-angle propagation. 

Equations (2.60), (2.62) and (2.63) can be written, replacing every q or q
0
 with ψ, according to equation (2.3), 

since the source is always positioned at r=0. 

It is interesting to point out, that the first term of the right-hand side of (2.60) represents the direct field of the 

source, while the second term stands for the field that is reflected by the ground surface. 
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2.3 Numerical Parameters Study 

i. Grid Density 

The grid independency of the numerical solution is investigated using a case that corresponds to short range 

noise propagation and resembles the noise immission from a wind turbine. The following parameters were 

used for the setup: 

• Source position: (rs, zs) = (0, 80) [m] 

• Receiver position: (rr, zr) = (500, 1.36) [m] 

• Refraction factor of eq. (2.49): b=0 m/s (non-refracting atmosphere) 

• Roughness length: z0=0.1 m 

• Maximum grid height: zmax=2000 m for the low frequency and 500 m for the medium and the high 

frequency. 

• Absorbing layer thickness: 50·λ = 50·
c0

f
, with λ being the wavelength 

• Reference speed of sound: c0=340 m/s 

• Absolute temperature: T=293,15 K 

• Relative humidity: rh=70% 

The numerical grid is considered uniform and equidistant in the r,z directions (Δr=Δz). To check the grid 

independency, the relative sound pressure level is plotted against the r-range for different values of the Δr and 

Δz intervals. Simulations are performed for a low (50 Hz), medium (500 Hz) and high (5000 Hz) frequency. 

The relative sound pressure level is defined as: 

ΔL=10·log(
|p

c
|
2

|p
free
|
2

),                                                           (2.64) 

where |p
c
| is the amplitude of the complex pressure and |p

free
| is the amplitude of the complex free field 

pressure.  

The free field is the sound field of the source in an unbounded, homogenous atmosphere and can be calculated 

from the relationship: 

p
free

=S·
ei·k0·R1

R1

,                                                                 (2.65) 

with R1 being the radial distance from the source and S a constant, equal to 1.   

The wide-angle approximation will be considered, along with second-order initial conditions. Unless 

differently stated, this will hold for the rest of the study as well. 

The resulting graphs for the frequencies of 50, 500 and 5000 Hz are presented in Figures 2.3, 2.4 and 2.5 

respectively:  
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Fig.2.3: The relative sound pressure level along the r-range, for different values of Δr=Δz and for f=50 Hz, as calculated from 

the developed model. 

 

 

Fig.2.4: The relative sound pressure level along the r-range, for different values of Δr=Δz and for f=500 Hz, as calculated 

from the developed model. 

 

Fig.2.5: The relative sound pressure level along the r-range, for different values of Δr=Δz and for f=5000 Hz, as calculated 

from the developed model. 
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It is evident that solution convergence can be achieved for Δr=Δz=λ/20, proving that the developed model is 

indeed grid-density independent. Yet, for distances far from the source (i.e., for r > 230 m), solution 

independence can also be acquired for Δr=Δz=λ/10. The rest of the study concerns noise levels at points of 

long distances from the source, therefore the value Δr=Δz=λ/10 can henceforth be employed. 

A closer look in Fig.2.5 (see Fig.2.6) reveals the existence of secondary oscillations in the curves of 

Δr=Δz=λ/20 or Δr=Δz=λ/40. This reflects the presence of instabilities during the calculations for small interval 

spacing values, a defect of the developed model. However, for the adopted value Δr=Δz=λ/10, which has 

proved to be of sufficient accuracy, such instabilities do not occur and this is another reason for choosing this 

value for future calculations.    

 

Fig.2.6: The effect of small Δz intervals on the solution stability. 
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ii. Top grid surface height and absorbing layer thickness 

The case of noise propagation in an atmosphere without an absorbing layer is initially examined for a better 

understanding of its effect on the pressure field. Use of the same parameter values as in the previous section 

but with the maximum grid height this time varying, results in Fig.2.7 below:  

 

Fig. 2.7: The relative sound pressure level against the r-range for different values of the maximum grid height, zmax. The 

receiver is placed at 1.36 m from the ground. 

The lack of an absorbing layer leads to sound wave back-scattering that disturbs the pressure field, especially 

when the top surface height is low. As can be seen from Fig.2.7, acceptable results were received only for the 

cases with a grid of a relatively high top surface, namely for zmax=544 and 1088 m. Nevertheless, for a source-

receiver distance greater than 200 m and 400 m respectively, the pressure field is in those cases influenced as 

well. 

Although placing the receiver about up to 1.5 m above the ground for sound pressure level measurements is 

common practice, the case of zr=15×1.36=20.4 m was investigated here as well, representing the possible 

existence of a tall building in the vicinity of the wind turbine. Studying Fig.2.8 leads to conclusions similar to 

the previous ones: the sound pressure level is significantly disturbed if the absorbing layer is not considered. 

A second remark may also be added: the back-scattering, caused by omitting the absorbing layer at the top 

grid surface is more intense on the higher grid levels. This accounts for the secondary oscillations, present 

only in Fig.2.8, where the receiver height is fifteen times the one considered for Fig.2.7, where such 

disturbances do not seem to appear. 

 

Fig. 2.8: The relative sound pressure level against the r-range for different values of the maximum grid height, zmax. The 

receiver is placed at 20.4 m from the ground. 
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The above results make clear that the presence of an absorbing layer at the top surface of the grid is necessary 

for acquiring realistic results. In this paragraph, the values of 10·λ, 20·λ and 50·λ are given to the absorbing 

layer thickness, along with a gradually decreasing maximum grid height (zmax = 136, 272 and 544 m), in order 

to find the right combination under which the pressure field is unaffected. The rest of the parameters remain 

the same as in the previous paragraphs. The results are shown in Figures 2.9 up to 2.11: 

 

Fig.2.9: The relative sound pressure level against the r-range for maximum grid height, zmax=544 m and a varying absorbing 

layer thickness. The receiver was placed 1.36 m above the ground. 

 

Fig.2.10: The relative sound pressure level against the r-range for maximum grid height, zmax=272 m and a varying 

absorbing layer thickness. The receiver was placed 1.36 m above the ground. 

 

 

Fig.2.11: The relative sound pressure level against the r-range for maximum grid height, zmax=136 m and a varying 

absorbing layer thickness. The receiver was placed 1.36 m above the ground. 
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As was expected, although the disturbances are less prominent for grid height equal to 544 m, where the 

solution converges even for an absorbing layer thickness of 20·λ, they are still distinct in the lower grid heights, 

if the absorbing layer is not thick enough. Moreover, from Figures 2.9 and 2.10 it is evident that a low 

maximum grid height can actually be selected with the right choice of an absorbing layer thickness. For 

example, in Fig.2.11 the intense disturbances caused by the thin absorbing layer of 10·λ completely disappear 

if the thickness is raised to 50·λ. Therefore, a relatively low, hence computationally less demanding, height 

can be chosen for the top grid surface, as long as it is combined with an absorbing layer of a suitable thickness.  

Another important remark is that, comparing Figures 2.9 up to 2.11 with Fig. 2.7 one realizes that the shape 

of the resulting curves is completely different. This is attributed to the presence of the absorbing layer that, 

even for the case where its thickness equals to 10·λ, mitigates sound wave reflection from the top surface of 

the grid. 

The same conclusions can be drawn for the case, where the receiver is placed at zr=20.4 m from the ground 

(Figures 2.12-2.14). Although, in a higher receiver position, sound pressure level disturbances are more 

intense, it is clear from the following plots that the right absorbing layer thickness (generally 50·λ but also 

20·λ for the case of zmax=544 m) can tone them down considerably. 

 

Fig.2.12: The relative sound pressure level against the r-range for maximum grid height, zmax=544 m and a varying 

absorbing layer thickness. The receiver was placed 20.4 m above the ground. 

 

 

Fig.2.13: The relative sound pressure level against the r-range for maximum grid height, zmax=272 m and a varying 

absorbing layer thickness. The receiver was placed 20.4 m above the ground. 
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Fig.2.14: The relative sound pressure level against the r-range for maximum grid height, zmax=136 m and a varying 

absorbing layer thickness. The receiver was placed 20.4 m above the ground. 

 

The effect of the absence or presence of an absorbing layer on the top grid surface can be better visualized on 

a contour plot. For this, the case of zmax=272 m was chosen, since, in such a medium height, sound wave 

reflections are still of significant intensity, hence prominent on these diagrams. 

 

Fig.2.15: The contour diagram for the case of no absorbing layer. The top grid surface is at 272 m from the ground. 
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Fig.2.16: The contour diagram for the case of an absorbing layer thickness equal to 10·λ. The top grid surface is at 272 m 

from the ground. 

 

Fig.2.17: The contour diagram for the case of an absorbing layer thickness equal to 50·λ. The top grid surface is at 272 m 

from the ground. 
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Comparison between Fig.2.15 and Fig.2.16 or 2.17 shows that even the relatively thin absorbing layer of 10·λ 

can minimize sound wave reflections. However, since they cannot be completely eliminated, they still affect 

the sound pressure levels perceived by the receiver. That does not appear clearly on the contour plots but rather 

on Figures 2.10 and 2.13.  

From Figures 2.9 up to 2.14 it is clear that solution convergence is achieved chiefly for absorbing layer 

thickness equal to 50·λ, a value suggested by Salomons [15, Par.G.9] as well. It would, therefore, be useful to 

create plots where zmax is varying, as in Figures 2.7 or 2.8, but this time with an absorbing layer thickness of 

this constant value. The results are shown in Figures 2.18 and 2.19 below: 

 

 

Fig.2.18: The effect of the maximum grid height on relative pressure level for a constant absorbing layer thickness. The 

receiver was placed 1.36 m above the ground. 

 

Fig.2.19: The effect of the maximum grid height on relative pressure level for a constant absorbing layer thickness. The 

receiver was placed 20.4 m above the ground. 

 

It can be seen from both of the above plots that the curves acquired for a top layer height greater than or equal 

to 136 m are identical. The only case that deviates from the rest is the one where zmax is equal to 102 m. This 

happens because the absorbing layer, beginning from such a low zmax and having the thickness of 50·λ=34 m, 

reaches well below the source height (equal to 80 m), thus interfering with the starting field. Nevertheless, 

since this is not the case for the value of 136 m, which is still relatively low, even lower than twice the source 

height, top surface heights as low as this can be trusted to yield reliable results on future calculations, given 

that they are combined with an adequately thick absorbing layer.  
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iii. Comparison to narrow-angle approximation results 

The values of grid density, maximum grid height and absorbing layer thickness that were selected in the 

previous paragraphs are now applied to the case in which the narrow-angle approximation is used for 

calculations. The same parameter values as before are used here as well. 

The range diagrams of both approximations in Figures 2.20 and 2.21 appear close to one another but only for 

long source-receiver distances. A coincidence between the curves was, of course, expected, since a grid 

specifically chosen for the computationally more demanding wide-angle approximation is bound to apply to 

the narrow-angle case as well. Nevertheless, for the case in which the receiver is placed higher than usual, as 

in Fig.2.21, an agreement between results seems to happen a lot further that 500 m. This is unsurprising, since 

the sound waves that propagate in a narrow angle need a longer horizontal distance to reach a highly-placed 

receiver. The narrow propagation cone, clearly visible from the contour plot on Fig.2.22, is also responsible 

for the low-quality results yielded for distances lower than 70 m from the source, since, in this approximation, 

the calculations begin further from the source.  

All in all, for long source-receiver distances and short receiver heights, the narrow angle approximation could 

provide accurate results and this, thanks to the simpler formulas it is mathematically expressed with, quite 

efficiently. However, the target of this study is the noise prediction around a wind turbine, a case of short-

range propagation while, a restriction to the receiver height is not desired. For these reasons, the more general 

wide-angle approximation will be applied to all future calculations. 

 

Fig.2.20: Comparison between the relative sound pressure level against the r- range for the narrow and wide-angle 

approximations. The receiver is placed at a height of 1.36 m from the ground. 

 

Fig.2.21: Comparison between the relative sound pressure level against the r- range for the narrow and wide-angle 

approximations. The receiver is placed at a height of 20.4 m from the ground. 
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Fig.2.22: The contour plot for the narrow-angle approximation. The absorbing layer thickness is 50·λ and the top grid 

surface is at zmax=272 m from the ground. 
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3. Results 

The present chapter is divided in two sections. In the first one, the developed model is validated by comparing 

results with the analytical solution and predictions of other methods for a theoretical benchmark case, where 

the sound speed profile is constant or linear, as well as with experimental data from systematic measurement 

campaigns. In the second section, the code is applied to real wind turbine cases, using available on-site 

experimental data. 

 

3.1. Method validation 

i. Comparison with the analytical solution and with predictions of other methods 

The benchmark cases, studied by Attenborough et al. [44] were determined by the following parameter values: 

• Source position: (rs, zs) = (0,5) [m] 

• Receiver position: (rr, zr) = (200,1) [m] 

• Absorbing layer thickness: 50·λ = 50·
c0

f
 

• Absolute temperature: T=293,15 K 

• Relative humidity: rh=70% 

• Reference speed of sound: c0=343 m/s 

A flat terrain was considered for the calculations, with the normalized impedance expressed, this time, by the 

following relationship: 

Z=
ω·ρ

b
(ω)

kb·ρ
0
·c0

,                                                                        (3.1) 

where ω is the angular frequency, ρ
0
=1,205 kg/m3 is the air density at 20°C and ρ

b
(ω) and kb are parameters 

that depend on frequency and ground characteristics. For the frequencies of 10, 100 and 1000 Hz that will be 

dealt with here, Z takes the complex values of 38.79+38.41·i, 12.81+11.62·i and 5.96+2.46·i, respectively. 

A linear sound speed profile was employed, as it permits the analytical solution of the wave equation. Its 

expression is as follows: 

c(z)=c0+b·z                                                                       (3.2) 

The refraction factor b takes the values of 0 for the case of a wind speed equal to zero, +0.1 m/s for downwind 

propagation conditions and -0.1 m/s for upwind propagation conditions.  

The above parameters were applied to the model in order to compare its results with the ones of the analytical 

solution and the Fast Field Program model (FFP), presented by Attenborough et al. [44], as well as with the 

predictions of a ray tracing model, developed by Prospathopoulos and Voutsinas [14]. The quantity used for 

these comparisons was the Transmission Loss (TL), given by: 

TL=20·log [
|p

c
(r,z)|

|p
0
|
]                                                                (3.3) 

                                                  

The above relationship is similar to (2.64), with |p
c
| being the amplitude of the complex pressure and |p

0
| the 

amplitude of the sound pressure in a free field of radial distance around the source equal to 1 m. 
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Fig.3.1: Transmission loss against the r-range for the frequency of 10 Hz and a wind speed equal to zero. The solution of the 

developed CNPE model is compared to the ones of the analytical solution, the FFP method and the ray tracing method. 

 

Fig.3.2: Transmission loss against the r-range for the frequency of 100 Hz and a wind speed equal to zero. The solution of the 

developed CNPE model is compared to the ones of the analytical solution, the FFP method and the ray tracing method. 

 

Fig.3.3: Transmission loss against the r-range for the frequency of 1000 Hz and a wind speed equal to zero. The solution of the 

developed CNPE model is compared to the ones of the analytical solution, the FFP method and the ray tracing method. 
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Fig.3.4: Transmission loss against the r-range for the frequency of 10 Hz and downwind propagation conditions. The solution 

of the developed CNPE model is compared to the ones of the analytical solution, the FFP method and the ray tracing method. 

 

Fig.3.5: Transmission loss against the r-range for the frequency of 100 Hz and downwind propagation conditions. The solution 

of the developed CNPE model is compared to the ones of the analytical solution, the FFP method and the ray tracing method. 

 

Fig.3.6: Transmission loss against the r-range for the frequency of 1000 Hz and downwind propagation conditions. The solution 

of the developed CNPE model is compared to the ones of the analytical solution, the FFP method and the ray tracing method. 



34 
 

 

Fig.3.7: Transmission loss against the r-range for the frequency of 10 Hz and upwind propagation conditions. The solution of 

the developed CNPE model is compared to the ones of the analytical solution, the FFP method and the ray tracing method. 

 

Fig.3.8: Transmission loss against the r-range for the frequency of 100 Hz and upwind propagation conditions. The solution of 

the developed CNPE model is compared to the ones of the analytical solution, the FFP model and the ray tracing model. 

 

Fig.3.9: Transmission Loss against the r-range for the frequency of 1000 Hz and upwind propagation conditions. The solution 

of the developed CNPE model is compared to the ones of the analytical solution, the FFP model and the ray tracing model. 
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For each case of wind propagation condition (zero wind speed, downwind and upwind propagation) and for a 

low (10Hz), medium (100 Hz) and high (1000 Hz) frequency, the Transmission Loss was plotted against the 

r-range, creating the Figures 3.1 up to 3.9. 

As a general remark on these graphs, one could point out that, for the cases of zero wind speed and downwind 

propagation, the predictions of the CNPE model, the analytical solution, the FFP model and the ray tracing 

model are very close to one another. Nevertheless, during upwind propagation, the results from the ray tracing 

method deviate from the rest, especially as the frequency and the source-receiver distance increase. This 

divergence is an inherent defect of the ray tracing model, due to the reduced reliability of the geometrical 

approximation as the receiver approaches the shadow zone [14]. It can be, then, concluded that the results of 

the CNPE model are reliable and in fair agreement with the ones of Attenborough et al. 
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ii. Comparison with predictions for the Rock Springs experiment  

On July 7th 1990, L'Espérance et al. [45] conducted a series of meteorological and acoustical measurements in 

a farm field near Rock Springs, Pennsylvania. The frequency range of interest was from 160 up to 3000 Hz, 

while the measurements were taken for six different source-receiver distances, during six different times of 

the day, each one of a different wind speed direction.  

In this section, the source-receiver distances of 62, 125, 250 and 350 m will be used in the calculations for the 

cases of slightly upwind (Case 1), essentially upwind (Case 2) and essentially downwind (Case 3) wind 

propagation conditions. The relative sound pressure level is calculated with the aid of eq. (3.3) of 

Attenborough et al., but this time the reference distance from the source is equal to 4 m. Additionally, applying 

the same assumptions as L'Espérance et al. for comparison accuracy, the spherical spreading and atmospheric 

absorption losses were subtracted from the final relative sound pressure level, leaving only the ground effect. 

While the atmospheric absorption losses can be controlled by changing the input of the model, the spherical 

spreading losses had to be mathematically removed, as described in the next paragraph. 

Spherical spreading losses are expressed as: As.s.=10·log(4πr2). In order to cancel their effect on the relative 

sound pressure level, they must be added to the sound pressure level of both the complex pressure and the 

pressure of the free field with the following calculations: 

• The relative sound pressure level can be written as: 

ΔL=10· log(
|p|2

|p
free
|
2
)=10· log|p|2 -10· log|p

free
|
2
                                     (3.4) 

                               

• The relative sound pressure level without any spherical spreading is related to the one of eq.(3.4) as 

follows: 

ΔLno s.s=[10· log|p|2 +10·log(4πr2)]- [10· log|p
free
|
2
+ 10·log(4π·42) ]=ΔL+10· log(

r2

42
) 

      or else: 

ΔLno s.s=ΔL+20· log (
r

4
)                                                            (3.5) 

                                                  

The following parameter values were used during calculations, applying the assumptions of L’Espérance et 

al.: 

• Source position: (rs, zs) = (0,1.8) [m] 

• Receiver height position, rr: 62, 125, 250 or 350 m 

• Receiver range, zr:  1.75 m 

• Absorbing layer thickness: 50·λ = 50·
c0

f
 

• Reference speed of sound: c0=343 m/s 

• Flow resistivity: σ=15·104 Rayl mks 

• Roughness length: z0=0.01 m 

• Relative humidity: rh=50% 

• Ground impedance, Z, from eq. (2.46) of Delany and Bazley  
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Wind speed measurements were conducted at 10 m above the ground, while the temperature was measured at 

2 and 10 m above the ground. Table 3.1 contains the measured wind speed (u0) and temperature differences 

[T(10 m)-T(2 m)], along with the angle between the wind and the propagation path (θw), the Monin-Obukhov 

length (L) and the temperature at the ground surface (T0) for each one of the three cases that were dealt with 

here. These data were used to determine the logarithmic wind speed and temperature profiles by applying the 

similarity theory [46]. The estimation of T* and u*, required for these logarithmic relationships, is achieved 

through the iterative process, explained by L’Espérance et al. The variation of temperature affects the sound 

speed, c0, and, in turn, the effective sound speed profile, computed by eq. (2.49). 

 

Case Conditions u0(10 m)[
m

s
] θw [°] 

T(10 m)-T(2 m) 

[°C] 

L 

[m] 
T0[℃] 

1 Slightly upwind 1.34 180 -0.10 -150 14.06 

2 Essentially upwind 1.47 175 -0.41 -18 17.75 

3 Essentially downwind 2.47 -60 1.11 11 19.85 

Table 3.1: The meteorological conditions for three of the Rock Springs experiment cases. 

 

Fig.3.10: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of slightly upwind conditions. The source-receiver distance was set to 62 m. 

 

Fig.3.11: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of slightly upwind conditions. The source-receiver distance was set to 125 m. 
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Fig.3.12: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of slightly upwind conditions. The source-receiver distance was set to 250 m. 

 

Fig.3.13: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of slightly upwind conditions. The source-receiver distance was set to 350 m. 

 

Fig.3.14: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of essentially upwind conditions. The source-receiver distance was set to 62 m. 
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Fig.3.15: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of essentially upwind conditions. The source-receiver distance was set to 125 m. 

 

Fig.3.16: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of essentially upwind conditions. The source-receiver distance was set to 250 m. 

 

Fig.3.17: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of essentially upwind conditions. The source-receiver distance was set to 350 m. 
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Fig.3.18: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of essentially downwind conditions. The source-receiver distance was set to 62 m. 

 

Fig.3.19: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of essentially downwind conditions. The source-receiver distance was set to 125 m. 

 

Fig.3.20: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of essentially downwind conditions. The source-receiver distance was set to 250 m. 
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Fig.3.21: The Relative Sound Pressure Lever against a frequency range, as predicted from the CNPE model and measured 

experimentally for the case of essentially downwind conditions. The source-receiver distance was set to 350 m. 

 

Running each one of the three cases (slightly upwind, essentially upwind and essentially downwind) resulted 

in Figures 3.10-3.13, 3.14-3.17 and 3.18-3.21 respectively. Studying the plots of Case 1, one can’t fail to 

notice that, although there is a satisfying agreement between the model curves and the measured points for the 

short distances of 62 and 125 m, this does not happen for the longer distances of 250 and 350 m, especially 

for frequencies higher than 400 Hz. The same curve-from-point deviation is present in the respective plots of 

Case 2, this time for frequencies over 800 Hz. The upwind conditions are known to be the most difficult to 

model, hence the above-mentioned result disagreements. This point can be better understood by studying 

Figures 3.22 and 3.23, where the most demanding Case 2 (of essentially upwind conditions) is reproduced by 

the CNPE model, but also by the FFP model and the geometric ray theory model. It is obvious that the FFP 

and the ray theory models underestimate the final sound pressure levels, especially for high frequencies and 

long source-receiver distances, despite the linear sound speed profile they employ, which produces smaller 

sound speed gradients close to the ground. Thus, although all three solutions deviate from the measurement 

points, the one of the CNPE model seems to be the most accurate. 

 

Fig. 3.22: Comparison between the results of the CNPE, FFP and Ray Theory models for Case 2 (essentially upwind 

conditions) and a source-receiver distance of 250 m. 
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Fig. 3.23: Comparison between the results of the CNPE, FFP and Ray Theory models for Case 2 (essentially upwind 

conditions) and a source-receiver distance of 350 m. 

 

For the case of essentially upwind conditions, the absorption of sound wave reflections must be checked for 

the top surface layer of the grid, due to the occurrence of upwards refraction. Studying the respective contour 

plot (See Fig.3.24), one deduces that the predictions of the CNPE model are reliable. 

However, the downwind conditions, here represented by Case 3, favor noise propagation and are, therefore, 

the ones of interest. The results for this case appear to be in agreement with the measurements for every source-

receiver distance and along the entire frequency range (See Figs. 3.18-3.21). 

 

Fig.3.24: The contour plot of Case 2 (essentially upwind conditions) for the frequency of 1995.26 Hz. The absorbing layer 

thickness is 50·λ and the top grid surface is at zmax=350 m from the ground. 
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iii. Comparison with predictions for the Radlett experiment  

Parkin and Scholes [47] conducted a series of measurements of near-ground horizontal sound propagation 

over a grassland at Radlett, Hertfordshire. The experiments took place during the summer (July to October 

and mid-April to July) and winter (November to mid-April) of 1964. The following parameter values were 

considered: 

• Source position: (rs, zs) = (0,1.83) [m] 

• Receiver height, rr: 19.5, 35, 62, 110, 195, 347, 616 or 1097 m 

• Receiver range, zr: 1.52 m 

• Absorbing layer thickness: 50·λ = 50·
c0

f
 

• Roughness length: z0=0.02 m 

• Relative humidity: rh=30% 

• Frequency range of calculations: [50, 4000] Hz  

Especially for the summer measurements 

• Absolute temperature: T=303,15 K 

• Reference speed of sound: c0=349.9 m/s 

• Flow resistivity: σ=105 Rayl mks 

• Especially for the winter measurements 

• Absolute temperature: T=278,15 K 

• Reference speed of sound: c0=335 m/s 

• Flow resistivity: σ=2·105 Rayl mks 

While for the summer experiments the eq. (2.46) of Delany and Bazley was used for the calculation of ground 

impedance, the slightly more complex eq. (3.6) was employed for the modeling of the ground effect during 

wintertime:  

Z=Zc·coth(-i·kb·d),                                                               (3.6) 

thus simulating the ground as a thin layer of thickness d=0.03 m, over a semi-infinite hard material. In eq. 

(3.6), Zc is the complex normalized ground impedance, from eq. (2.46), and kb the propagation wave number, 

given by: 

kb=α+i·β,                                                                       (3.7) 

with α and β being functions of the wave number at the ground surface, k0, as follows: 

α=k0· [1+10.8· (
1

1000
·

f

σ
)

-0.7

] ,                                                         (3.8) 

and  

β=k0· [10.3· (
1

1000
·

f

σ
)

-0.59

] ,                                                          (3.9) 

For all calculations, the logarithmic sound speed profile, described in eq. (2.49) was considered. For the case 

of downwind propagation conditions, the refraction factor, b, was calculated assuming a wind speed equal to 

4.5 m/s at z=10 m, namely: 

u=b· ln (1+
z

z0

) 4.5=b· ln (1+
10

0.02
) b=0.72 m/s                                       (3.10) 

In the case of a zero wind speed, b was, of course, considered equal to zero. 
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The quantity used for results comparison is the “Sound Pressure Level Attenuation”, defined as the measured 

sound pressure level, reduced by the sound pressure level of the first receiver (19.5 m away from the source). 

Atmospheric absorption and spherical spreading losses were removed from the final results in the same way 

as described in Sec.3.1.ii. Therefore, the following equation was used for the calculation of the sound pressure 

level attenuation: 

ΔL=10· log(
|p|2

|p
19.5
|
2
)+20· log (

r

19.5
) ,                                                (3.11) 

where |p
19.5
|
2
 is the complex pressure amplitude at 19.5 m from the source. 

The cases of a source-receiver distance equal to 62, 110, 195 and 347 m were reproduced here with the aid of 

the CNPE model, using both winter and summer data. The final results, presented in Figures 3.27 up to 3.32 

for the summer cases and 3.33 up to 3.40 for the winter cases are in fair agreement with the site measurements.   

 

3.25: The Sound Pressure Level Attenuation, calculated from the CNPE model for the summer case. The source-receiver 

distance is equal to 62 m and the wind speed is equal to zero. 

 

3.26: The Sound Pressure Level Attenuation, calculated from the CNPE model for the summer case. The source-receiver 

distance is equal to 62 m and the wind direction is downwind. 
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3.27: The Sound Pressure Level Attenuation, calculated from the CNPE model for the summer case. The source-receiver 

distance is equal to 110 m and the wind speed is equal to zero. 

 

3.28: The Sound Pressure Level Attenuation, calculated from the CNPE model for the summer case. The source-receiver 

distance is equal to 110 m and the wind direction is downwind. 

 

3.29: The Sound Pressure Level Attenuation, calculated from the CNPE model for the summer case. The source-receiver 

distance is equal to 195 m and the wind speed is equal to zero. 
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3.30: The Sound Pressure Level Attenuation, calculated from the CNPE model for the summer case. The source-receiver 

distance is equal to 195 m and the wind direction is downwind. 

 

3.31: The Sound Pressure Level Attenuation, calculated from the CNPE model for the summer case. The source-receiver 

distance is equal to 347 m and the wind speed is equal to zero. 

 

3.32: The Sound Pressure Level Attenuation, calculated from the CNPE model for the summer case. The source-receiver 

distance is equal to 347 m and the wind direction is downwind. 
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3.33: The Sound Pressure Level Attenuation, calculated from the CNPE model for the winter case. The source-receiver 

distance is equal to 62 m and the wind speed is equal to zero. 

 

3.34: The Sound Pressure Level Attenuation, calculated from the CNPE model for the winter case. The source-receiver 

distance is equal to 62 m and the wind direction is downwind. 

 

3.35: The Sound Pressure Level Attenuation, calculated from the CNPE model for the winter case. The source-receiver 

distance is equal to 110 m and the wind speed is equal to zero. 
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3.36: The Sound Pressure Level Attenuation, calculated from the CNPE model for the winter case. The source-receiver 

distance is equal to 110 m and the wind direction is downwind. 

 

3.37: The Sound Pressure Level Attenuation, calculated from the CNPE model for the winter case. The source-receiver 

distance is equal to 195 m and the wind speed is equal to zero. 

 

3.38: The Sound Pressure Level Attenuation, calculated from the CNPE model for the winter case. The source-receiver 

distance is equal to 195 m and the wind direction is downwind. 
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3.39: The Sound Pressure Level Attenuation, calculated from the CNPE model for the winter case. The source-receiver 

distance is equal to 347 m and the wind speed is equal to zero. 

 

3.40: The Sound Pressure Level Attenuation, calculated from the CNPE model for the winter case. The source-receiver 

distance is equal to 347 m and the wind direction is downwind. 
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3.2. Application on the prediction of wind turbine noise immission  

The general agreement, achieved between the CNPE model results and the experimental data and theoretical 

predictions in Sec.3.1., qualifies the code as well-developed and reliable. Therefore, it can be trusted to 

simulate realistic wind turbine noise propagation cases, which was the aim of this study in the first place. This 

section is dedicated to the comparison of model results with in-situ measurements of the sound pressure levels 

produced by actual wind turbines. 

i. The Tammhausen experiment  

 

In the framework of the "Noise Immission from Wind Turbines" (JOR3-CT95-0065) project, Osten and Klug 

[48] conducted a series of measurements in Tammhausen of Lower Saxony, in order to estimate the noise 

emitted by a MONOPTEROS 50- type wind turbine. For this, the "Excess Attenuation" was calculated, a 

quantity that represents the sound pressure level attenuation, compared to unbounded spherical propagation. 

The sound pressure level of a point, distanced about one wind turbine diameter away from the source, called 

"emission point", is defined as: 

SPLe=LW-10·log(4·π·re
2),                                                      (3.12) 

with LW being the sound power level of the source and re the source-emission point distance (See Fig.3.41). 

It is important to point out here that a pure spherical propagation was assumed for the emission point, ignoring 

the ground and air effects. 

Similarly, the sound pressure level of a point distanced far away from the source, called "immission point", is 

defined as: 

SPLi=LW-10·log(4·π·ri
2)-Ae,i,                                                 (3.13) 

with ri being the source-immission point distance (See Fig.3.41) and Ae,i the excess attenuation.  

 

 
Fig.3.41: The emission and immission points with relation to the source. 

A relationship for the excess attenuation can be attained by subtracting (3.13) from (3.12): 

Ae,i=SPLe-SPLi-20·log (
ri

re

) ,                                                     (3.14) 

 

Equation (3.14) can be written as: 
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Ae,i=(SPLe-SPL0)-( SPLi-SPL0)-20·log (
ri

re

)
eq.(3.3)
⇒    Ae,i=ΔLe-ΔLi-20·log (

ri

re

)                 (3.15) 

 

In eq. (3.15), SPL0 is the sound pressure level of a free field of radial distance around the source equal to 1 m. 

However, any sound pressure level could be used as a reference, since it will, eventually, be eliminated. 

For the calculation of the excess attenuation, the following parameter values were applied: 

• Source position: (rs, zs) = (0, 60) [m] 

• Emission point position: (re, ze) = (80, 0) [m] 

• Immission point position: (ri, zi) = (445, 1.5) or (533, 1.5) [m] 

• Absorbing layer thickness: 50·λ = 50·
c0

f
 

• Flow resistivity: σ=3·105 Rayl mks 

• Roughness length: z0=0.02 m 

• Absolute temperature: T=282,65 K 

• Relative humidity: rh=84% 

• Reference speed of sound: c0=337.684 m/s 

• Ground impedance, Z, from eq. (2.46) of Delany and Bazley  

• Frequency range of calculations: [160, 5000] Hz  

The wind speed was calculated in the same fashion as in the Rock Springs experiment, using wind speed 

measurements from five different heights above the ground, along with temperature measurements from two 

different heights above the ground. Pressure and relative humidity were measured as well and were taken into 

account in the calculation of the atmospheric absorption coefficient, α(f) [See eq. (2.51)]. 

Two important points, considering the calculations on the emission point are the following: 

• A closer look to the above parameter values informs the reader that the emission point is placed on the 

ground surface. Therefore, the boundary condition, expressed by eq. (2.45) was used exclusively for the 

calculation of the complex pressure in that particular point. Placing the receiver on the ground also means 

that the ground effect losses are non-existent, leaving only the spherical spreading and atmospheric 

absorption losses to affect the sound pressure level.  

The excess attenuation calculated by the CNPE model against a frequency range is shown in Figures 3.42 

and 3.43 for a source- immission point distance of 445 and 533 m respectively. A good agreement can be 

observed between the measurements and the results. 

 

 

3.42: Comparison of the excess attenuation values, predicted by the CNPE model with the on-site measurements for the case 

of a source-immission point distance equal to 445 m.  
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3.43: Comparison of the excess attenuation values, predicted by the CNPE model with the on-site measurements for the case 

of a source-immission point distance equal to 533 m.  

• Although, in theory, the ground effects can be ignored in the SPL calculation of the emission point, Fig. 

3.44 shows that the value of the flow resistivity affects significantly the CNPE predictions. This is a result 

of the fact that the acoustic pressure on the ground is calculated from the boundary condition in eq. (2.45), 

where the σ-dependent normalized ground impedance, Z, is involved. 

For the code simulations, the flow resistivity of the emission point was given the value of 0 Rayl mks, so 

as to be in agreement with the experiments, during which the emission point receivers were placed on a 

board, made of an absorbing material, in order to cancel any interaction with the ground [48]. This 

elimination of the ground effects was modelled by setting σ=0 Rayl mks. 

 

Fig.3.44: The effect of flow resistivity on the SPL of the emission point. 
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ii. The Lyse experiment  

During the experiment in Lyse, Sweden, a series of measurements was conducted around an NWP 400-type 

wind turbine. For the evaluation of the sound pressure levels in this area, the quantity of excess attenuation 

was used, in the same manner as in the Tammhausen experiment (See Sec.3.2.i).  

The following parameter values were assumed: 

• Source position: (rs, zs) = (0, 40) [m] 

• Roughness length: z0=0.001 m 

• Absorbing layer thickness: 50·λ = 50·
c0

f
 

• Frequency range of calculations: [40, 5000] Hz  

• Ground impedance, Z, from eq. (2.46) of Delany and Bazley  

• Wind speed profile, calculated using wind speed and temperature measurements, in the manner described 

in Sec.3.1.ii. 

Four combinations of emission and immission point positions were examined. This study focuses on cases 3 

and 4, defined by the conditions shown on Table 3.2.  

Case Position 

 (r, z) [m] 

Flow 

Resistivity, 

σ [Rayl 

mks] 

Absolute 

Temperature 

[K] 

Relative 

Humidity 

[%] 

Reference 

Speed of 

Sound [m/s] 

Wind 

direction-

propagation 

path angle, 

θw [°] 

Emission 

Point 3 

(0, 85) 0 283.15 70 341 9 

Immission 

Point 3 

(1.35, 350) 106 288.15 80 341 9 

Emission 

Point 4 

(0, 85) 0 283.15 70 340 7 

Immission 

Point 4 

(1.6, 250) 5·105 288.15 80 340 7 

Table 3.2: Data from the measurements around the emission and immission points of cases 3 and 4. 

It has to be mentioned here that for both Cases 3 and 4 the value of 105 was originally given to the emission 

point flow resistivity; however, in this study, σ was assumed equal to zero (See Table 3.2) for the same reasons, 

described in Sec.3.2.1. 

The results of the excess attenuation predictions of the CNPE model are compared with the actual on-site 

measurements in Figures 3.45 and 3.46 for Case 3 and Case 4 respectively. A general agreement between 

predictions and measurements can be observed for Case 3. In Case 4, predictions do reproduce the maximum 

dip at the frequency of 250 Hz, yet they do not follow neither the dip at the low frequency of 63 Hz nor the 

increase of excess attenuation at the high frequencies. This, however, was expected; the resulting curve is 

similar to the one of Case 3, since there is no qualitative difference between the two cases. 

The dip at the frequency of 63 Hz is probably the result of local air and ground effects or of erroneous 

measurements. Indeed, one should not forget that the measurements were taken for both the emission and the 

immission points; collecting the wrong data from either point, would affect significantly the final excess 

attenuation values. The steep decline of Ae,i in the high frequency range cannot represent an actual propagation 

case, under the given conditions; for a source-receiver distance of 250 m (Case 4), a higher value of excess 
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attenuation is expected, due to the increased atmospheric absorption losses, as is reasonably reproduced by 

the model (See Fig. 3.46). 

 

 

 
Fig.3.45: Comparison between the CNPE model predictions and the actual measurements of the excess attenuation for the 

emission-immission point combination No.3. 

 

 

 
Fig.3.46: Comparison between the CNPE model predictions and the actual measurements of the excess attenuation for the 

emission-immission point combination No.4. 
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iii. The Høvsøre experiment 

Søndergaard and Plovsing [50, 51] measured the sound propagation over a flat terrain, at Høvsøre, Denmark, 

from a loudspeaker, placed at wind turbine’s height. The cases reproduced by the CNPE model had the 

following parameter values: 

• Source position: (rs, zs) = (0,50) [m] 

• Receiver height, rr: 2 or 5 m 

• Receiver range, zr: 500 m 

• Absorbing layer thickness: 50·λ = 50·
c0

f
 

• Roughness length: z0=0.05 m 

• Relative humidity: rh=81% (typical for the month of July, when the experiments were conducted, for the 

nearby area of Fjaltring, [52])  

• Reference speed of sound: c0=334.83 m/s 

• Frequency range of calculations: [100, 2500] Hz  

• Ground impedance, Z, from eq. (2.46) of Delany and Bazley  

An average absolute temperature was considered for the calculations that resulted from Fig. 3. 47, in which 

the difference between the predicted absolute temperature at any height z and the respective at a height of 2 

m above the ground is plotted against the z-range. The absolute temperature at z=2 m was acquired from eq. 

(3.16) of the effective sound speed: 

c(z)=u(z)· cos(θw)+20.05·√T(z)+273.15,                                        (3.16) 

where u(z) is the wind speed profile, plotted in Fig. 3.48 and θw is the angle between the wind direction and 

the direction of propagation, equal to 0° here, since the case of downwind propagation is examined. The 

effective sound speed profile is depicted in Fig.3.49 and is calculated by the logarithmic-linear equation (3.17): 

c(z)=A·ln (1+
z

0.05
)+B·z+ C,                                                      (3.17) 

with A=0.6082, B=0.0173 and C=334.754 being constants, calculated from the measured values of the 

effective sound speed. 

For the height of z=2 m, Figures 3.48 and 3.49 read respectively: u(2m)=2.43 m/s and c(2m)=337.08 m/s. 

Therefore, from eq. (3.16), it follows that T(2 m)= 278.58 K. Taking, now, the values of Fig.3.47 into account, 

one calculates the average absolute temperature, T=278.178 K. 

 

Fig.3.47: The absolute temperature profile, measured and predicted by Søndergaard and Plovsing [50]. 
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Fig.3.48: The effective sound speed 

profile, measured and predicted by 

Søndergaard and Plovsing [50]. 

Fig.3.49: The wind speed profile, 

measured and predicted by 

Søndergaard and Plovsing [50]. 

The quantity used here for the evaluation of sound propagation is called "Excess Propagation 

Effect" and it contains the propagation effect of ground and air absorption. The excess 

propagation effect is given by eq. (3.18): 

ΔL=SPL- SPL0,                                                       (3.18) 

with SPL being the measured 1/3-octave band sound pressure level, calculated from eq. (3.19): 

SPL=10·log(

1
2

·|p
c
|
2

p
ref

2
) ,                                              (3.19) 

where 
1

2
·|p

c
|
2
is the squared sound pressure, averaged over an integral number of harmonic 

periods and p
ref

=2·10-5 Pa, is the reference pressure. 

In eq. (3.18) SPL0 is the free field sound pressure level, determined by eq. (3.20): 

SPL0=SPL1.29 m-20 log (
d

d0
)                                            (3.20)                                           

In eq. (3.20), d is the distance from the loudspeaker to the receiver and d0=1.29 m is the distance 

from the acoustical center of the loudspeaker to the "1 m" microphone, including the correction 

for the near field effect.  

The quantity SPL1.29 m is the sound pressure level at a distance of d0 from the source. For short 

distances from the source, the pressure field, calculated by the developed CNPE model was 

proven to almost coincide with the one that would result from the complex free field pressure, 

p
free
=

ei·k·r

r
, [See eq. (2.65)]. Therefore, in this case, SPL1.29 m can be calculated from eq. (3.19), 

with |p
c
|= |

ei·k·1.29

1.29
|=

1

1.29
=0.775 dB. 

Since there was no reference regarding the value of the flow resistivity, σ, it was studied here 

as a variable within the range of [105, 106] Rayl mks for the calculation of the excess 

propagation effect, as can be seen from Figures 3.50 and 3.51. For the first case (zr=2 m), the 

value of σ=105 Rayl mks seems to produce the closest results to the measurements, whereas for 

the second (zr=5 m), the value of σ=5·105 Rayl mks seems the more adequate. 
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Fig.3.50: The CNPE model results against a frequency range for a varying flow resistivity, compared to the 

on-site measurements for a receiver height of 2 m. Downwind conditions were considered. 

 

 

Fig.3.51: The CNPE model results against a frequency range for a varying flow resistivity, compared to the 

on-site measurements for a receiver height of 2 m. Downwind conditions were considered. 
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4. Conclusions and future work 

4.1 Conclusions 

The aim of the present study was the development of a model, able to predict sound propagation 

in the atmospheric environment and its application on real-life wind turbine cases. The code 

was programmed to solve the Parabolic Equation, using adequate ground surface and top layer 

boundary conditions. The sound source was modeled as a Gaussian starting field. Atmospheric, 

ground and spherical spreading losses were taken into account. A top surface absorbing layer 

was added for the elimination of the effect of sound wave reflections on the predicted sound 

pressure levels. 

An investigation of the grid density independence of the solution proved the grid spacing value 

of Δr=Δz= λ/10 to be a cost-efficient choice, that causes no instabilities during calculations and 

yields reliable results for the source-receiver distances of interest. Tests on various 

combinations of absorbing layer thickness and top grid surface height showed that accurate 

results can be collected, even for a relatively low upper boundary (of approximately twice the 

height of a wind turbine), as long as the absorbing layer has a thickness of at least 50·λ, a value 

adopted in the rest of the calculations. This investigation was conducted for both low (1.36 m 

A.G.L) and high (20.4 m A.G.L) receiver heights, leading to the same conclusions.  

The developed CNPE model was first validated against the analytical solution and the 

predictions of the FFP and the Ray Theory methods for typical benchmark cases. Next, the 

predictions of the model were compared against systematic experimental data for downwind 

and upwind propagation conditions. In the case of downwind conditions, which favor noise 

propagation, hence are the ones of interest for the wind turbine applications, the model results 

were in fair agreement with the on-site measurements. In the case of upwind propagation 

conditions, all methods overestimate the attenuation losses at long distances. However, the 

CNPE predictions present less deviation from the measurements, suggesting that the parabolic 

equation method is more suitable for the simulation of such cases. 

Having been validated, the code was applied to the estimation of wind turbine noise 

propagation, producing results fairly close to the measurements. During these simulations, it 

became evident that the ground and wind speed modeling affect the results significantly. 

Especially during measurements on the emission point, when the receiver is usually placed on 

a board of an absorbing material, the value of zero for the flow resistivity proved to provide 

better results since it better simulates the material of the board. A detailed knowledge of both 

ground material and the atmospheric conditions (temperature, humidity, wind speed) is, 

therefore, essential, since it provides the means for a more accurate simulation of noise 

immission from wind turbines. 
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4.2 Suggestions for future work 

Future research on sound propagation could focus on the amelioration of the CNPE model or 

the development of other, more complex numerical methods. More specifically, the effects of 

atmospheric turbulence and the irregularity of the terrain could be added to the simulation. 

Thus, the CNPE model could be applied to a relatively smooth terrain, as long as the crosswind 

effect and the back-scattering are not significant, ensuring that the assumptions of the 

axisymmetric and parabolic approximation remain valid. Following another direction, a model 

for solving the three-dimensional Green Function Parabolic Equation (GFPE) or a more 

advanced CFD method of solving the Linearized Euler Equations (LEEs) could be developed. 

In this respect, technical knowledge, acquired from the development of the CNPE model, such 

as the addition of a top surface absorbing layer, the choice of a Gaussian starting field and the 

boundary conditions could be proven useful. 
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