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Abstract

This doctoral thesis is concerned with the mathematical formulation, program-
ming and verification of the continuous adjoint method to a hybrid noise predic-
tion tool in order to perform aeroacoustic shape optimization with an affordable
computational cost, even in industrial applications.

Aeroacoustic noise radiated by unsteady flows can be computed using a hybrid
acoustic prediction tool, in which the near–field flow results from an unsteady CFD
simulation while the acoustic propagation to far–field from the acoustic analogy.
In this thesis, the GPU–enabled URANS solver PUMA (Parallel Unstructured Multi–
row Adjoint), developed by the Parallel CFD & Optimization Unit of the NTUA, is
used as the CFD tool. The compressible flow prediction variant of PUMA is ex-
tended with noise prediction capabilities based on the permeable surface Ffowcs
Williams and Hawkings (FW-H) equation solver, in the frequency domain, result-
ing to a hybrid URANS/FW-H solver. At first, the implementation of the FW–H
integral is verified through comparisons with the analytical solution of the sound
field from a monopole source in uniform flow. The accuracy of the hybrid solver
is additionally verified in different test cases by comparing results computed by
the FW-H analogy with those of exclusively URANS runs.

The unsteady continuous adjoint solver of PUMA, previously developed for
aerodynamic objective functions, is extended to deal with aeroacoustic shape op-
timization problems. The aeroacoustic objective function is defined in the fre-
quency domain and stands for the total energy contained in the sound pressure
spectrum. The method allows the computation of the sensitivity derivatives (SDs)
of objective functions with respect to (w.r.t. ) the shape controlling parameters
(design variables) at a cost independent of their number, enabling the efficient
use of Gradient–Based optimization methods.

The SDs are computed based on the so–called Field Integral (FI) adjoint formu-
lation, resulting to the sum of surface and volume integrals in the final expres-
sion. Throughout the adjoint development, variations in the eddy viscosity and
distance from the nearest wall due to shape changes are taken into account by
differentiating the Spalart-Allmaras turbulence model and the Eikonal equation,
i.e. a PDE computing distances from the walls, respectively. Use of a permeable
FW–H surface located outside the grid displacement area, offers some simplic-
ities regarding the mathematical development and includes the contribution of
the acoustic analogy to the adjoint mean–flow and turbulence equations solely
as source terms. The unsteady problems are treated in different ways depending
on whether the period is constant or may change during the optimization. For
the former, flow fields over a single period of the phenomenon are stored only; in
contrast, the latter requires the flow fields over the whole solution time window,
resulting to increased solution time and storage requirements.
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A verification of the part of the code that differentiates the FW–H integral is
performed by comparison of its results with closed–form derivatives’ expressions.
For cone of the constrained optimization problems, a method to handle equal-
ity constraints is developed based on a gradient projection with a new deferred
correction scheme.

The developed aeroacoustic shape optimization tool is applied to a series of
problems. Since a URANS based flow solution is performed, cases are selected
from those with strong tonal behavior in their acoustic footprint. In all applica-
tions, a good agreement between predicted noise from the hybrid solver and pure
URANS is achieved. For a number of pitching and plunging 2D airfoils at different
flow conditions, adjoint–based computed SDs are verified w.r.t. those computed by
finite differences. Aeroacoustic shape optimization is performed for these airfoils,
achieving omni–directional noise reduction. Among them, a lift–constrained noise
minimization is also performed which shows to be able to successfully retain the
mean lift at its baseline level while still reducing noise. For a plunging airfoil in
transonic flow, an evolutionary algorithm is also used to perform shape optimiza-
tion for a multi–objective function (noise and lift) and results are compared with
those of the adjoint–based optimization. Two cases with varying period during
the optimization are considered, namely a 2D vortex shedding cylinder in laminar
flow and the rod–airfoil benchmark. For the latter, aerodynamic and aeroacoustic
results are extensively compared and validated w.r.t. available data in the liter-
ature. In addition, an early termination of the unsteady adjoint solution in the
rod–airfoil case is shown to be able to considerably reduce the solution time and
storage requirement while still computing acceptable SDs. In the same case, it is
shown that the developed optimization tool supports objective functions defined
in specific frequency ranges.

Regarding 3D applications, the flow around a sphere is solved and acoustic
results are verified by comparison to URANS and then a shape optimization is
performed. The industrial application of the developed software is conducted
within the MADELEINE project funded by the European Union, by optimizing the
geometry of an aero–engine intake. To save computational cost, periodic boundary
conditions are used to reduce the solution domain size together with the use of
a moving reference frame which leads to steady flow and adjoint runs. In order
to assure a periodic adjoint solution, a continuous circumferential distribution
of receivers at given radius and axial position is used for the computation of the
objective function. The unsteady flow fields required for computing the SDs are
achieved by properly rotating the steady flow fields.

The first 3 years of this PhD was conducted within the SmartAnswer project
funded by the European Union.

Keywords: Aerodynamic, Computational Fluid Dynamics, Computational Aeroa-
coustic, Shape Optimization, Continuous Adjoint Method, FW-H Analogy.
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Chapter 1

Introduction

Effects of noise pollution on human health are increasingly receiving attention.
Noise exposure is not only injurious to the auditory system, but also linked with
sleep disturbances, impaired cognitive performance and cardiovascular disease
[92]. In [49], high levels of aircraft noise were associated with increased risks
of stroke, coronary heart disease, and cardiovascular disease for both hospital
admissions and mortality in areas near Heathrow airport in London. In response,
governments and aviation regulatory bodies around the world are imposing tight
regulations regarding noise pollution, particularly during the last decades. For
example, based on the Flightpath 2050 report of the European Commission [60],
it is mandated to reduce the perceived noise level by 65% from the level in 2000
by the year 2050. This means designers must investigate innovative methods to
further improve the process of designing quieter and more efficient systems.

Besides, the sensitivity of the human ear to the noise is based on the logarithm
of the acoustic power which adds an extra challenge for noise reduction. For
instance, in order to reduce the perceived sound loudness by half, it is required
to reduce the noise by almost 10 dB, corresponding to a significant drop by 90%
in acoustic power.

Nowadays, flow–induced noise is a major concern in a wide range of indus-
trial applications. Noise from fans in cooling system [145] and side–view mirrors
[36, 51] are recognized as important challenge in automotive industry. The noise
radiation is also a key factor in wind turbine applications [128] and design of
heating, ventilating and air conditioning systems [62]. Noise in aeronautical ap-
plications, depending on its source, is divided to engine and air–frame noise. The
latter includes the noise emitted by the landing gear [125, 138], wings and the
high–lift devices [120, 59]. In high by–pass ratio turbofans, the blade tips of the
large diameter fan constitute an important source of noise generation. In addi-
tion, the design of the intake is of paramount importance since it is responsible for
providing a uniform air supply to the engine while, at the same time, regulating
the fan noise propagation towards far–field. During the last decades, the design
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2 1. Introduction

trend for civil aircraft engines has been towards high and ultra high by–pass ratio
turbofans, resulting to a significant reduction in engine noise. Consequently, for
many modern aircraft, the air–frame noise is as important as engine noise.

It is therefore essential for the aeroacoustic community to seek for efficient
noise reduction strategies for both air–frame and engine noise. In its first step,
this requires accurate (and fast) flow simulation tools to identify different noise
sources resulting from air–frame and engine together with a noise propagation tool
to realize the acoustic behavior in far–field. Of utmost importance is the second
step which calls for the incorporation of the acoustic simulation tool within an
efficient optimization algorithm. This thesis addresses these two steps; firstly, by
making use of a Graphic Processing Unit (GPU)–enabled flow simulation software
and extending it with an aeroacoustic noise prediction tool; secondly, by develop-
ing a continuous adjoint–based shape optimization method for the acoustic tool.
Evolutionary algorithm is also selectively used in this thesis.

1.1 Use of GPUs for Flow Solution

With major progresses made in the field of Computational Fluid Dynamics (CFD),
during the last decade, use of GPUs, that were initially designed for graphics
rendering, have been increasing as accelerators for high performance computing.
Major drawbacks of GPUs were their programming languages and their Applica-
tion Programming Interface (API)s that were either extremely low–level or oriented
exclusively towards graphics processing (OpenGL, Microsoft DirectX e.t.c. ). With
a goal to fix this shortcoming, Brook programming model was released. This of-
fered one of the first development platforms for General Purpose Graphic Process-
ing Unit (GPGPU) programming [17]. Afterwards, a more advanced programming
model, namely the Compute Unified Device Architecture (CUDA), was released
by NVIDIA for its own GPUs [21]. Since then GPUs are being extensively used
for computationally demanding simulation methods such as Unsteady Reynolds-
Averaged Navier-Stokes (URANS), Large Eddy Simulation (LES), Direct Numerical
Simulation (DNS) [114] and Lattice Boltzmann Metod (LBM) [76]. The latter is well
suited for parallel processing due to its highly localized computations.

In [12], a GPU capable Euler solver is developed using both CUDA and Brook,
and it is shown that the CUDA implementation of the 3D solver outperforms the
former by almost 5×. Most of the GPU programming applications in CFD problems
were restricted to structured grids [129, 13]. In [129], incompressible flow Navier–
Stokes solver is implemented on a multi–GPUs platform with one CPU assigned to
each GPU, for cavity flow simulation. The single GPU implementation in [12], was
extended in [13] to account for multiple GPUs by the same group of authors. It is
shown that use of the limited size shared memory of GPUs which is characterized
by its low latency can effectively increase the memory band–width.

However, an efficient GPU implementation of unstructured CFD codes re-
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mained a cumbersome task, especially for unstructured codes with vertex storage.
This is due to the lack of a priori knowledge of the neighbors of a vertex and the
number of neighbors in such a case. This problem was first addressed in [64]
for Parallel Unstructured Adjoint Multi-row (PUMA) by the Parallel CFD & Opti-
mization Unit of the National Technical University of Athens (PCOpt/NTUA). By
optimizing the use of available GPU cache memory together with a delicate mem-
ory access patterns, a speed–up of approximately 25× and 17.5× was achieved for
Single and Double Precision Arithmetics (SPA and DPA), respectively. This work
also introduced a Mixed Precision Arithmetics (MPA) technique which improves
the memory band width and reaches 22.5× speed–up for 3D inviscid flows, while
respecting DPA accuracy. In [7], several flux computation schemes are stud-
ied and it is shown that the appropriate flux computation scheme for a certain
application requires compromising between parallel speed–up and GPU memory
consumption.

1.2 Acoustic Analogies

Acoustic analogies [79, 140] together with the Kirchhoff method [85] are ana-
lytically based approaches that propagate near field sound sources to far–field.
In such hybrid approaches, the near field data which result from an unsteady
flow solver using a reasonable mesh that does not extend too far from the source
area. Lighthill’s formulation [79] of aeroacoustic wave equation is the backbone
of the modern aeroacoustics, which is a relatively young research field. Thanks
to the source terms in the Lighthill’s equation, it became possible to physically
understand the sound produced by free turbulence for the first time. This formu-
lation was later extended by Ffowcs Williams and Hawkings (FW-H), giving rise to
the FW-H analogy. Although other analogies are in use nowadays [101, 61], the
FW-H analogy is known as the most complete version of acoustic analogies with
considerable popularity in aeroacoustic community.

Compared to the Kirchhoff integral method, a major advantage of the FW-
H analogy for aeroacoustics problems is its validity even in the non–linear flow
regime as it is based upon the conservation laws of fluid mechanics rather than the
wave equation as in the Kirchhoff approach. In [50], a Potential–Theoretic Method
(PTM) is introduced as an alternative to the classical Kirchhoff formulations in
the frequency domain; this overcomes the computation of normal derivatives over
the control surface and makes use of an arbitrary Kirchhoff surface without the
need of performing interpolation for computing the pressure on this surface. This
method together with the FW-H analogy are used in [116] to compute the far–field
sound resulted from the NACA12 airfoil at a Reynolds number equal to 1.4 × 105

and zero angle of attack. The near–field results from implicit LES. It is shown that
the FW-H analogy provides more robust results and is not limited in the control
surface selection process, compared to PTM.
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Among different formulations of the FW-H analogy in the literature, two com-
monly used formulations are Farassat’s 1 and 1A [30], for application in time
domain, because of their relative low computation cost and their robustness, and
Lockard’s formulation [83] for frequency domain applications which takes into
account the presence of a mean flow (wind tunnel applications). The latter can
also be used in 2D problems [152, 151, 90, 42]. In [95], formulation 1C is intro-
duced as a possible extension of Farassat’s formulations 1 and 1A based on the
convective form of the FW-H equation, and its implementation is demonstrated
for some canonical test cases with analytical solution such as a monopole and
a dipole radiating in a moving medium as well as a rotating monopole. Other
formulations are also proposed for moving medium applications [11, 40].

A widely made assumption in the aeroacoustic community is neglecting the
quadrupole term in the FW-H analogy. This, however, might be prone to spurious
sound, particularly for cases in which strong vortical gusts cross the permeable
FW-H surface. In the literature, different methods are suggested to address this
issue. Averaging the results based on different integration surfaces is proposed
in [124, 88] while an open integration surface is recommended for a subsonic jet
noise simulations in [34]. An extrapolation method [148] and use of a correction
term based on the frozen gust assumption [82] are among other possible options
to fix the spurious sound issue. However, these methods lack robustness, require
user intervention and are case–dependent. In addition, the error caused by the
wake passing through the FW-H surface is small in comparison to the main noise
signal, making thus safe to neglect the quadrupole terms for a wide range of cases
[82, 128, 45, 125].

The FW-H analogy is also widely used for far–field propagation in intake fan
noise prediction [109, 111] as well as propeller noise [48]. In [48], a URANS simu-
lation, combined with the FW-H analogy, is used to simulate the noise generated
by a high speed 8–bladed propeller, resulting to a good prediction of propeller
harmonics compared to experimental data.

The accuracy of the results provided by the FW-H analogy is directly affected by
the accuracy of the near–field flow data. Hence, in a wide range of aeroacoustic
simulations, this analogy is used with a high fidelity flow solver such as DNS,
LES and DES [45, 39] which are characterized with high computational cost,
which might be unaffordable for an optimization process. It is known that URANS
solvers tend to over–predict the peak levels of the power spectrum [55]; however,
they are used in the literature as they are able to predict the overall trend and
provide results in qualitative and quantitative agreement with high fidelity solvers,
particularly for cases with strong tonal acoustic footprint. In [94], the far–field
noise of a pitching airfoil is computed using the FW-H analogy fed by both LES
and URANS. It is shown that the URANS based results are in good agreement
with LES, though some high–frequency components are absent. In [74], the FW-
H analogy combined with URANS is used for acoustic analysis of slat free shear
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layer.
Use of the URANS equations for acoustic simulations allows the investigation

of noise mitigation techniques, with an affordable computational cost. The ap-
plication of porous coatings as a passive flow control method for reducing the
aerodynamic sound from tandem cylinders is studied in [81] using the hybrid
URANS/FW-H noise prediction. A popular benchmark case for the numerical
simulation of sound generation in air–frame applications is the rod–airfoil config-
uration in a turbulent flow. In [55], it was shown that a 3D URANS simulation of
the rod-airfoil case practically matches the spanwise repeated 2D one and results
to minor improvement compared to the 2D solution. Using the URANS/FW-H
noise prediction tool for the same benchmark case, in [121], the role of a rotating
cylinder is investigated as a noise reduction technique and, in [96], an adjoint–
based shape optimization was used to reduce the far–field noise.

1.3 Methods for Aeroacoustic Optimization

Aeroacoustic and/or aerodynamic shape optimization problems can be solved
using either gradient–based or global search methods (evolutionary algorithms,
simulated annealing, or other meta–heuristics, otherwise referred as stochastic
optimization methods). In what follows, a literature survey for both methods are
presented.

1.3.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are, by far, the most widely used representative
of population–based, gradient–free, stochastic optimization methods. An indis-
putable advantage of EAs is that they may accommodate any ready–to–use eval-
uation software, to be referred to as the Problem Specific Model (PSM), without
having access to its source code. Access to such a tool, even as a black–box solver,
is all EAs need. As the search algorithm evolves from generation to generation, the
use of appropriate evolution operators (crossover, mutation, elitism) to form the
new generation of candidate solutions guarantees that, after an adequate number
of generations, the global optimal solution can be found, without being entrapped
into local minima. Compared to other optimization methods, EAs are also advan-
tageous as they can easily treat constraints and be extended for Multi–Objective
Optimization (MOO) problems to compute Pareto fronts of non–dominated solu-
tions [142]. However, to reach the global optimum without the add–ons to be
discussed below, a standard EA usually requires a great number of evaluations
and a high computational cost, particularly if the PSM is computationally expen-
sive.

The most common practice for enhancing the EAs efficiency is the use of
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surrogate evaluation models or metamodels, which gives rise to the so–called
Metamodel–Assisted EAs (MAEAs). Surrogate models approximate the response
of the PSM, using a set of already evaluated individuals, at much lower com-
putational cost and, of course, with reduced accuracy. The MAEAs use either
on–line or off–line trained metamodels, based on whether the metamodel(s) is/are
trained before or during the evolution. Also, metamodels might be valid over the
entire design space or just in the neighborhood of each individual to be evaluated
(usually referred to as global or local metamodels, respectively) [15, 27].

Off–line trained metamodels usually implement a single (global) metamodel
and a Design of Experiments (DoE) technique, [91] which selects the initial train-
ing patterns. The trained metamodel is exclusively used to evaluate the population
members within the EA run. The optimal solution(s) obtained by by such an EA–
based run must be re–evaluated on the PSM and, depending on the deviations
between performances evaluated on the metamodel and the PSM, the algorithm
terminates or goes on with a new search after training a new metamodel.

MAEAs with on–line trained metamodels rely upon the combined use of the
PSM and the metamodel. Both tools are employed on the entire EA population,
either periodically or by switching from metamodels to the PSM depending on
several criteria. A MAEA based on the Low–Cost Pre–Evaluation (LCPE) is pro-
posed by the PCOpt/NTUA in [69], where metamodels are used to pre–evaluate
all individuals in a generation and only a few promising population members are
re–evaluated on the PSM.

Another way to reduce the computational cost of EAs is the use of distributed
and hierarchical optimization schemes [70]. In distributed EAs (DEAs or DMAEAs)
[69], a number of sub–populations evolve in semi–isolation and exchange infor-
mation regularly. According to [63], Hierarchical EAs (HEAs or HMAEAs) are
multilevel schemes that each level can be associated with a different evaluation
tool, search techniques and/or problem parameterization. In multilevel evalua-
tion, a different evaluation tool/software is assigned to each level. In multilevel
search, each level is associated with a different search technique. Any combina-
tion of stochastic/heuristic and gradient–based methods can be used. In multi-
level parameterization, where different parameterizations are used and each level
corresponds to a design space of possibly different dimensionality [147]. Again,
populations in each level evolve separately and exchange members or genetic ma-
terial regularly. The communication among the different levels may be one-way
or bidirectional. All of the above variations are available in the general pur-
pose optimization platform Evolutional Algorithms SYstem (EASY) [3] developed
by PCOpt/NTUA.

Even if MAEAs are used, the large number of design variables causes a high
computational cost, and worsens its prediction capability (this is the so-called
"curse of dimensionality" [10]). As a remedy, unsupervised learning techniques
that selectively reduce the number of design variables can be used. Principal
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Component Analysis (PCA) is used in this context, introduced into the EASY
platform in [77] and extended later in [67].

The above mentioned techniques can be used to perform aeroacoustic opti-
mization, given that a noise prediction tool is available. In [126], a GPGPU based
aeroacoustic shape optimization is performed for a contra–rotating fan. More than
one objectives are used concerning the aerodynamic efficiency and acoustic per-
formance. The sound pressure is evaluated directly using a LBM solver and a
MAEAs is utilized for optimization process. Use of metamodels is also reported
in [19] where aerodynamic and aeroacoustic shape optimization is performed for
a high–speed propeller. The far–field sound is computed by the FW-H integral.
A similar strategy is employed in [42] to perform shape optimization, considering
noise and lift as objectives, using the PCA–driven MAEA for a plunging airfoil in
transonic flow.

1.3.2 Gradient–Based Methods

The second optimization method, which is extensively used in this thesis, is the
Gradient–Based (G-B) optimization which is by far the dominant one in the class
of deterministic methods. There are plenty of G-B optimization methods [33,
144] requiring computation of the objective function gradient, also referred to as
sensitivity derivatives (SDs), or approximation of higher–order SDs, in order to
use them in efficient Newton or quasi–Newton methods. Compared to stochastic
optimization methods, the main advantage of deterministic, and in particular G-B
ones is their computational efficiency, as they guarantee a better solution (closer
to the local or global optimum) at each optimization cycle [35]. However, they may
easily be trapped into local optima. Also, the choice of the step–size, especially
for line search methods, can greatly affect the convergence rate [97].

The most important and demanding constituent of a G-B optimization is the
computation of SDs. There are several methods that can compute accurate gra-
dients in problems governed by Partial Differential Equations (PDEs) such as
finite differences (FDs), complex variable method and the direct differentiation of
the governing PDEs. The simpler is the FD method where each design variable
bi, i = 1, . . . , N is perturbed by positive and negative value of a small quantity ε,
followed by a call to the PSM (i.e. a CFD or CFD–CAA solver for aerodynamic and
aeroacoustic optimization, respectively) to compute the objective function value J
for each perturbed configuration. δJ

δbi
are, then, computed by

δJ
δbi

= J(b1, b2, . . . , bi + ε, . . . , bN) − J(b1, b2, . . . , bi − ε, . . . , bN)

2ε

that approximates the gradient with second–order accuracy w.r.t. to the selected
ε. Obviously, such a method requires 2N (or N for first–order accuracy) calls to
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the PSM to compute all gradient components. In addition, the choice of the ε
value can strongly affect the accuracy as large values deteriorate the accuracy of
the predicted SDs, while very small values may lead to numerical errors due to
the denominator approaching zero. Similarly, using other methods, (i.e. complex
variable method [87, 4] and direct differentiation [26]) have a computational cost
proportional to N .

In industrial problems with many design variables, a key issue is the cost for
computing the N derivatives of J . This is the reason for which, during the last two
or three decades, there is a great interest in the development of adjoint methods
[107, 56]. In these methods, the optimization problem is treated as a constrained
one, where J is minimized (or maximized) subject to the constraint of satisfying
the state equations denoted as Rn = 0. Introducing the adjoint variable Ψ into
the Lagrangian function Jaug = J + ΨnRn, one can formulate a dual problem.
Differentiation of Jaug w.r.t. bi and elimination of the derivatives of state quantities
w.r.t. bi yields a set of adjoint equations. The cost of solving these equations is
about the cost of a single run of the PSM, hence, making the cost of computing
the objective function gradient independent ofN . The origin of the adjoint method
can be traced back to Lions work in 1971 [80]. The first application of this method
in aerodynamic was in 1984 by Pironneau for potential flow problems [108]. It was
later extended to flows governed by the compressible Euler equations by Jameson
[57, 58].

In the literature, the adjoint method appears in two variants namely, discrete
and continuous adjoint. In the former, the governing or primal equations are first
discretized and then differentiated and, thus, the adjoint equations are derived
directly in discrete form. The discretized residuals of the flow equations can be
differentiated "by hand" or by using code transformation tools and/or operator
overloading. The latter approach is widely known as Algorithmic Differentiation
(AD) [47, 137]. Oppositely, in continuous adjoint, the governing PDEs are first
differentiated and then a mathematical development gives rise to the adjoint PDEs,
which are discretized and solved [5, 98].

This thesis does not implement discrete adjoint; therefore, any further descrip-
tion and literature review of related research is skipped. However, a few general
comments on the two approaches must be provided. Since the continuous adjoint
leads to adjoint PDEs, this gives insight into the adjoint equations and boundary
conditions. In general, the developer of continuous adjoint method is flexible in
choosing the discretization scheme for the adjoint PDEs, which may differ from
that used for the primal PDEs, but this should be made carefully in order to com-
pute accurate the gradients of J . On the other hand, discrete adjoint provides
the exact gradient of the discrete objective function, with a considerably higher
memory footprint though. One should keep in mind that, with a very fine grid and
for smooth solutions, both approaches tend to become consistent, computing the
exact gradients, [43, 93].
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The final expression for computing δJ
δbi

in the continuous adjoint can be de-
rived in different ways which affects the accuracy of the gradients. One option is
to obtain an expression that depends only on the quantities computed along the
CFD domain boundaries, neglecting the boundary terms containing the residuals
of the flow equations (referred to as the severed Surface Integral, severed-SI, ap-
proach) [99], the other option leads to expressions that involve also field integrals
on the CFD domain (Field Integral, FI, approach) [104]. A comparative study be-
tween these two approaches for aerodynamic applications can be found in [73],
where it is shown that the FI approach provides more accurate SDs; however, by
more complex expressions for the objective function gradient. A third approach
known as Enhanced–Surface Integral (E–SI) is introduced by incorporating the
adjoint grid displacement equations [71], resulting in boundary integrals only,
while matching the accuracy of the FI approach. In this thesis, the FI approach
will be employed.

Moreover, in turbulent flows, the differentiation of the turbulence model has
been shown to be a key player regarding the accuracy of the computed objective
function gradient. Variations in the eddy viscosity were neglected in continuous
adjoint development under the commonly used "frozen turbulence" assumption
[100]. However, this assumption was questioned by PCOpt/NTUA in [158] (for
the first time) and [159] by differentiating the Low–Reynolds Spalart-Allmaras
and the High-Reynolds k− ε turbulence models (introducing the notion of adjoint
wall functions), respectively. Both these developments improved the accuracy of
the computed gradient. This was followed by a series of works on the continu-
ous adjoint to different turbulence models by PCOpt/NTUA [72, 106], and other
groups [18]. In [18], the Spalart-Allmaras model for compressible flows is differ-
entiated and variations of the distance from the wall is also taken into account by
incorporating the Eikonal equation in the adjoint formulation.

A major obstacle when developing adjoint for unsteady flows is that the adjoint
equations march backwards in time, demanding either an excessive amount of
data storage for the flow field instants or, an excessive amount of flow field re–
computations. Although different techniques such as flow field reconstruction,
data compression [143] and temporal/spatial coarsening [96] are proposed to
overcoming this issue, unsteady adjoint still remains a quite taxing job. This
serves as a reason why adjoint methods have a much stronger background in
aerodynamic shape optimization [56, 158, 73] (to name a few of them), than
in aeroacoustic ones [115, 153, 154, 29, 66, 89], as aeroacoustic problems are
unsteady by nature.

One of the first works involving the adjoint method for aeroacoustic shape
optimization is presented in [115] where a discrete adjoint to the 2D URANS
equations’ solver is developed for inverse shape design and blunt trailing edge
noise reduction in turbulent flow. In that work, noise prediction is based on the
FW-H analogy. It is shown that drag and noise improvements lead to approxi-



10 1. Introduction

mately similar results but they do not yield the same optimized shapes. In [153],
a URANS/FW-H based aeroacoustic optimization framework is developed by ap-
plying algorithmic differentiation to an open-source solver [127], and is used to
reduce the far–field noise from a pitching airfoil in transonic inviscid flow. The
same optimization tool is used in [154] to reduce the emitted noise of a 2D jet–flap
interaction in turbulent flow by optimal positioning of the wing and flap with re-
spect to the jet nozzle as well as the flap deflection angle. It is also discussed there
the effects of using open and closed FW-H integration surface. In addition, use of
the same tool can be found in [150, 152] for aeroacoustic shape optimization of
a 2D wing–flap configuration and a vortex shedding cylinder. A stochastic noise
generation model is coupled with a RANS solver in [155] to be used for broadband
noise reduction. In order to reduce the cost of unsteady adjoint, in [96], temporal
and spatial coarsening techniques are presented for aeroacoustic shape optimiza-
tion. The effectiveness of the method is shown for a 2D rod–airfoil configuration.
Other acoustic applications of the discrete adjoint can be found in the literature
for shape optimization of helicopter rotors for noise minimization [29, 28], aeroa-
coustic shape optimization for Propeller and rotor-craft [53] and identifying the
acoustically optimal distribution of porous material of a flat plate with a porous
trailing edge in subsonic flow [156]. In all the above cited papers, discrete adjoint
supported by automatic differentiation was used.

As regards continuous adjoint, early papers focused on the optimal control of
jet or mixing layer noise. In [122], the sensitivity of aeroacoustic noise radiated by
a 2D mixing layer with respect to (w.r.t.) local perturbations of mass and energy
is studied. A continuous adjoint–based optimization technique for an LES model,
to control the jet noise using active flow actuation, is developed in [38]. In [86],
a similar control technique for jet noise shows that, in order to compute reliable
gradient directions, the length of the optimization time needs to be restricted.
Use of the continuous adjoint for aeroacoustic shape optimization is rare in the
literature, even though it offers a lower memory footprint compared to the discrete
approach. In [25], the permeable FW-H formula is solved using a finite element
method, leading to the necessary continuous adjoint conditions at the interface
between the CFD and CAA domains. In [105], a steady continuous adjoint method
for the reduction of the side mirror noise of a car using a turbulence-based surro-
gate objective function is presented. With this model, the omission of the adjoint
to the turbulence model equations would merely lead to zero sensitivities, since
the objective depends exclusively on turbulence. In regard to engine–intakes, the
continuous adjoint to the linearized Euler equations to optimize the shape of a
turbofan inlet duct can be found in [109, 110]; however, in these two works, the
FW-H analogy in not differentiated. The unsteady continuous adjoint for a hybrid
solver including a high fidelity incompressible flow solver and the Kirchhoff inte-
gral, for automotive applications, can be found in [66, 65] where the flow-induced
sound of the side mirror of a vehicle is reduced. The continuous adjoint method
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to compressible flows based on the FW-H analogy first appeared by the author of
the present thesis in [89] for minimizing the far–field noise from a pitching airfoil.
However, [89] was exclusively dealing with an inviscid flow model.

1.4 Thesis Outline

This PhD thesis emphasizes on aeroacoustic shape optimization. In the chapters
of this thesis, a hybrid noise prediction tool is developed, the continuous adjoint
method for the hybrid solver is formulated and different test cases are presented.

In chapter 2, the governing flow equations are presented together with some
details regarding the discretization and numerical solution of the flow equations
used by GPU–enabled flow solver PUMA of PCOpt/NTUA which this PhD is exclu-
sively using to predict flow fields. The GPU implementation of PUMA is also briefly
outlined in chapter 2.

Chapter 3 is concerned with the development of the noise prediction module for
PUMA, resulting to the hybrid URANS/FW-H solver. Details are given regarding
the solution of the FW-H solution in both 2D and 3D cases, and then, the coupling
of the acoustic module in the frequency domain with the existing URANS solver
(PUMA) is outlined.

In chapter 4, the continuous adjoint method for the hybrid solver is presented.
The adjoint is formulated for compressible flows using the FI approach with the
differentiation of the SA turbulence model included. The adjoint to the FW-H
analogy is also presented. The derivation of the adjoint boundary conditions on
CFD boundaries is also examined in this chapter.

Chapter 5 is concerned with exclusively verification of the developed acoustic
tools. Results of the hybrid solver are compared with the analytical solution of a
monopole sound source in a flow–stream, for both 2D and 3D implementations.
Additionally, part of the code that differentiates the FW-H integral is verified by
comparison of its results with analytical differentiation.

In chapter 6, applications of the adjoint–based optimization by means of the
continuous adjoint method developed in chapter 4 are presented. As the flow so-
lution is based on the URANS equations, applications that are characterized with
strong tonal behavior in noise generation are selected. In most of the applications,
results of the hybrid solver are compared with outcome of pure URANS simula-
tions, also, adjoint–based computed SDs are compared with FDs. A pitching air-
foil in inviscid flow is optimized separately for maximum lift and minimum noise.
Then, a pitching airfoil in inviscid flow undergoes lift–constrained aeroacoustic
shape optimization. Next, a gradient verification is performed for a pitching airfoil
in turbulent flow. For a plunging airfoil in transonic flow shape optimization is
performed using both adjoint and EAs. The first case with varying period during
the optimization is a vortex shedding cylinder in laminar flow. This is followed
by the aeroacoustic shape optimization and result validation for the rod–airfoil
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benchmark case. Finally, shape optimization is performed for an industrial case
of an aero–engine intake, separately for minimum total pressure loss and mini-
mum noise.

The conclusions alongside with some recommendations for future work are
drawn in chapter 7.



Chapter 2

The Navier–Stokes Equations and Their
Numerical Solution

The main focus of this thesis is to develop the aeroacoustic optimization method
using the gradient–based technique assisted by the continuous adjoint method.
Before proceeding to the aeroacoustic noise prediction tool (Chapter 3) and the
development of the corresponding continuous adjoint method (Chapter 4), the
flow model used to provide the input data for the acoustic analogy is presented.
The flow model consists of the URANS equations for compressible flows and the
SA turbulence model (to effect closure in turbulent flows). Since, the industrial
case to be examined in the last part of this thesis is concerned with a turbofan
application (rotating), the governing flow equations are written in a relative frame
of reference rotating with a constant angular velocity. The CFD solver together
with its adjoint counterpart made part of the in–house software PUMA. The devel-
opment of PUMA started about two decades ago in the framework of a number of
PhD theses carried out in the PCOpt/NTUA ([146],[6],[131], [132]) and, during the
last years, it has been transferred to GPUs and enriched with new features and
capabilities. This PhD thesis relies exclusively upon the GPU-enabled variant of
PUMA.

In this chapter, the governing flow equations are presented followed by their
boundary conditions.

2.1 The URANS Equations for Compressible Flows

Let O(x1 x2 x3) be a coordinate system rotating at a constant rotation speed
ωm (m = 1, 2, 3). In this system, the Navier–Stokes equations for compressible
flows are expressed as

13
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RMF
n =

∂Un
∂t
MFt

+
∂f inv

nk

∂xk
MFinv

− ∂f
vis
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∂xk
MFvis
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= 0 (2.1.1)

In Eq. 2.1.1, Un stands for the conservative flow variables namely Un =[
ρ ρvA1 ρvA2 ρvA3 ρE

]
, with ρ being the fluid density, vAm (m = 1, 2, 3) the velocity

components w.r.t. the absolute/inertial frame of reference and E the total energy
per unit mass. Inviscid fluxes f inv

nk , viscous fluxes f vis
nk and the source terms Sn

(corresponding to the Coriolis acceleration) are defined as
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 (2.1.2)

where p stands for the static pressure. In Eqs. 2.1.1-2.1.2 and the rest of the
thesis (unless stated otherwise), the Einstein convention is employed according to
which summation is indicated by repeated indices in the same term. The relative
velocity components vRm are linked to the absolute ones vAm through the equation
vAm = vRm + vFm, with vFm = εm`kωk

(
xk − xCk

)
being the rotating/non–inertial frame

velocity and xCk the position vector of the center of rotation. In Eqs. 2.1.2, τkm is
the viscous stress tensor for a Newtonian fluid defined by

τkm = (µ+ µt)

(
∂vAk
∂xm

+
∂vAm
∂xk
− 2

3
δkm

∂vA`
∂x`

)
(2.1.3)

qk is the k–th component of the heat flux

qk =
Cp

Re0

(
µ

Pr
+

µt
Prt

)
∂T

∂xk
(2.1.4)

where Cp is the specific heat under constant pressure. T is the static temperature;
by assuming a perfect gas, T is related to pressure and density through the
equation of state p = ρRgT with Rg being the specific gas constant. Pr and Prt

are the Prandtl and turbulent Prandtl numbers, respectively. γ = Cp
Cv is the specific

heat ratio with Cv being the specific heat under constant volume. ht = E + p
ρ

is
the total enthalpy which for a perfect gas is linked to pressure (p), density (ρ) and
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velocity (vA` , ` = 1, . . . , 3) through

ht =
γp

ρ (γ − 1)
+

1

2
vA` v

A
` (2.1.5)

The absolute Mach number is defined by M =

√
vA` v

A
`

c
where c is the local speed

of sound which, for perfect gases, is given as c =
√
γRgT . The total temperature,

Tt, is given by

Tt = T +
vA` v

A
`

2Cp
(2.1.6)

and the total pressure for perfect gases in a compressible flow is defined by

pt = p

(
1 +

γ − 1

2
M2

) γ
γ−1

(2.1.7)

The Reynolds number is defined by Re = ρvl
µ

where ρ and v take on their far–field
values. l is the characteristic length of the problem, such as the chord length for
an airfoil. µ is the dynamic viscosity which is linked to the kinematic viscosity ν
through µ = ρν.

Turbulent viscosity µt is computed by the one-equation Spalart–Allmaras tur-
bulence model [123]. According to this model, an additional PDE is solved for the
turbulence field ν̃, namely

RSA =
∂ (ρν̃)

∂t
SAt

+
∂
(
ρν̃vRk

)
∂xk
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− ρ

Re0 σ

{
∂
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]
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}
SAd

− ρcb1 (1− ft2) S̃ν̃ +
ρ

Re0

(
cw1fw −

cb1
κ2
ft2

)( ν̃
M

)2

SAs

(2.1.8)

where M stands for the distance of each point in the flow domain from the closest
wall boundary. Solving Eq. 2.1.8, µt is computed from ν̃ by µt = ρν̃fv1. Eq. 2.1.8
is supplemented by the following relations and constants [123]:
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χ =
ν̃

ν
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)
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2

, (2.1.9)

cv1 = 7.1, cb1 = 0.1355, cb2 = 0.622, cw1 =
cb1
κ2

+
1 + cb2
σ

,

cw2 = 0.3, cw3 = 2.0, σ =
2

3
, κ = 0.41, ct3 = 1.2, ct4 = 0.5

2.2 Boundary Conditions

To fully define the flow problem, Eqs. 2.1.1 and 2.1.8 must be associated with
a set of appropriate boundary conditions. In this section, some of the available
boundary conditions within the PUMA code, presented in the PhD thesis of K.
Tsiakas [132], are summarized in below items. These are imposed in a strongly
or weakly manner depending on the boundary condition type.

� For no–slip wall boundaries, the absolute velocity is set equal to the wall
velocity vAk = vWk . In addition, the turbulence variable ν̃ is set to zero in case
the turbulent boundary layer is resolved down to the wall (Low-Reynolds
approach) ν̃ = 0 .

� For slip walls, the no–penetration condition applies, namely the normal com-
ponent of the relative to the wall velocity is set to zero. Let the velocity of the
wall boundary be denoted by vWk , (k = 1, 2, 3) (i.e. vWk = 0 for stationary walls
and non-zero otherwise). Then the no–penetration condition is expressed as

vAk nk = vWk nk (2.2.1)

� On the symmetry boundary, symmetry conditions are imposed, i.e. ∂Um
∂xk

n̂sym
k =

0, (m = 1, 2, 3, 4, 5) and n̂sym
k , (m = 1, 2, 3) are the components of the unit nor-

mal to the symmetry plane. The no–penetration condition is also imposed,
similar to the slip walls (see previous item).

� Along pairs of periodic boundaries, periodic conditions are imposed. In case
of peripheral blade rows, two points are periodically paired if their projec-
tions on the meridional plane coincide and their circumferential position



2.3. Discretization of the Governing Equations 17

differs by the blade row pitch. Two paired points share all scalar quantities
while vector and tensor quantities (e.g. velocities or their spatial derivatives)
should firstly be rotated by the row pitch and then apply similar qualities.

� Depending on the case, the thermal conditions for the wall boundaries can
be a) adiabatic, b) constant temperature (TW ) or c) constant heat flux (qW ),
which can respectively be written as

qknk = 0, T = TW and qknk = qW (2.2.2)

� Far–field boundaries are treated by appropriately combining the inlet and
outlet boundary conditions, depending on the local velocity field. If flow
enters the domain the boundary is locally treated as inlet, otherwise as
outlet.

� For subsonic inlet boundaries, the total pressure (pINt ), total temperature
(T INt ), and inlet absolute velocity direction are specified. The inlet velocity
direction is given in terms of two angles, namely θIN1 and θIN2 . Thus, for
the subsonic inlet boundaries, four quantities are specified and a fifth one
are extrapolated from the flow domain. The usual options are to extrapolate
a) the static pressure, b) the absolute velocity magnitude or c) the local Mach
number. Then, Eqs. 2.1.6-2.1.7 together with the Mach number expression
are used to compute all the necessary flow quantities. For supersonic inlet
conditions, all five necessary flow quantities are set. Concerning turbulence,
the inlet turbulence level is prescribed by setting the values of either the inlet
turbulence variable ν̃IN or the viscosity ratio

(
νt
ν

)IN .

� At the subsonic outlet boundary, a single flow quantity is specified which
can be a) the outlet static pressure distribution, b) the outlet mean static
pressure or c) the outlet mass flow rate. For the last two options, since
only the value of an integral quantity over the whole outlet boundary is
given, values for pressure and normal to the outlet velocity, respectively,
are computed iteratively by uniformly correcting the ones extrapolated from
the fluid domain. The remaining four flow quantities are extrapolated from
the fluid domain. For the turbulence model, a zero Neumann boundary
condition is applied for ν̃ in the outlet boundaries.

2.3 Discretization of the Governing Equations

Equations 2.1.1and 2.1.8 are spatially discretized using the vertex–centered vari-
ant of the finite volume technique on unstructured meshes, consisting of tetrahe-
dra, pyramids, prisms and hexahedra. At each real–time step, a finite volume is
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formed around each mesh node by connecting the edges midpoints, face centers
and element barycenters of the edges, faces and elements attached to this node.
An example of the finite volume formed around a boundary node P is shown in
Fig. 2.1, for a 2D case. Note that nPQjk = n

PQLj
k + n

PQRj
k .

Figure 2.1: A vertex–centered finite volume formed around boundary node P . The
normal vectors (nk) on the finite volume interface are also shown.

2.3.1 Discretization of the Inviscid Terms

Applying the Green–Gauss theorem to the integral of the inviscid terms for the
finite volume of node P and discretizing the result, one obtains

∫
V
ti+1
P

∂f inv
nk

∂xk
dV =

∫
∂V

ti+1
P

f inv
nk n̂kd (∂V ) '

∑
∀Q∈N (P )

Φinv,PQ
n +

∑
∀
�
∈B(P )

Φinv,
�
∈VP

n (2.3.1.1)

where ∂V
ti+1

P is the boundary of the finite volume formed around node P at
real–time step ti+1 and n̂k (t) , (k = 1, 2, 3) the corresponding unit normal (out-
ward) vector components. Q ∈ N (P ) is a node neighbouring P ,

�
∈ B (P ) is a

boundary face (if any) emanating from node P . In case of mesh elements other
than tetrahedra, only the nodes connected to P through a mesh edge are assumed
as neighbours. Φinv,PQ

n is computed using the Roe’s approximate Riemann solver
[112] as

Φinv,PQ
n =

1

2

(
f inv,P
nk + f inv,Q

nk

)
nk −

1

2

∣∣∣ÃPQnmknk∣∣∣ (UR
m − UL

m

)
(2.3.1.2)
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where Anmk =
∂f inv
nk

∂Um
is the flux Jacobian, and nk = n

PQ,ti+1

k is the normal vector to
the finite volume interface between nodes P and Q at time ti+1, with magnitude
equal with the area of the interface, Fig. 2.1.

∣∣∣ÃPQnmknk∣∣∣ = Pn` |Λ`r|P−1
rm where |Λ|

is the diagonal matrix containing the absolute eigenvalues of Anmknk computed
using the Roe–averaged quantities between the left (L) and right (R) states. The
flow variables at L and R are extrapolated from P and Q using spatial gradients
and appropriate limiting functions [134, 9, 135]. In the first term of Eq. 2.3.1.2
, the nodal values are used instead of L and R states. According to [5], this
maintains the second–order accuracy of the scheme and facilitates the use of a
similar scheme in the numerical solution of the continuous adjoint equations.

The last term in Eq. 2.3.1.1 is computed differently for the wall and inlet/outlet
boundaries. For the wall boundaries,

�
∈ BW (P ),

Φinv,
�
∈VP

n = f
inv,

�
∈VP

nk nk (2.3.1.3)

where f inv,
�
∈VP

nk is computed by Eq. 2.1.2 using the flow quantities at node P and
taking into account the slip wall conditions, as described in section 2.2. In Eq.
2.3.1.3, nk are the components of the normal vector on the boundary face

�
, with

magnitude equal to face corresponding to the finite volume of node P .

For the inlet/outlet boundaries, Φ
inv,

�
∈VP

n is computed using Eq. 2.3.1.2, where

nk is replaced by n
�
∈V

ti+1
P

k and node Q represents a halo (fake) node whose flow
variables are set using the inlet and outlet boundary conditions as described in
section 2.2.

Both Eqs. 2.3.1.2 and 2.3.1.3, include terms of the form vRk nk along the finite
volume boundaries which can be computed as vRk nk = vAk nk − vFk nk. Computation
of vFk nk must satisfy the Geometric Conservation Law (GCL) [78] as

d

dt

∫
V
ti+1
P

dV =

∫
∂V

ti+1
P

vGk n̂kd (∂V ) (2.3.1.4)

where vGk is the velocity of the grid. In case of mesh movement (flow around of
inside moving boundaries), the finite volume V ti+1

P is computed using a second–
order backward difference formula (BDF2). When solving the flow equations in a
relative frame of reference on a non–deformable grid, one may substitute vFk for
vGk into Eq. 2.3.1.4. Taking into account that, in such a case, the volume of a cell
remains constant, Eq. 2.3.1.4 becomes∫
∂V

ti+1
P

vFk n̂kd (∂V ) '
∑

∀Q∈N (P )

(
vF,PQk nPQk

)ti+1

+
∑

∀
�
∈B(P )

(
v
F,

�
∈VP

k n
�
∈VP
k

)ti+1

= 0 (2.3.1.5)
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2.3.2 Discretization of the Viscous Terms

Applying the Green–Gauss theorem to the integral of the viscous terms and dis-
cretizing the result one obtains

∫
V
ti+1
P

∂f vis
nk

∂xk
dV =

∫
∂V

ti+1
P

f vis
nk n̂kd (∂V ) '

∑
∀Q∈N (P )

Φvis,PQ
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�
∈B(P )

Φvis,
�
∈VP

n (2.3.2.1)

where Φvis,PQ
m+1 = τPQmk n

PQ,ti+1

k , (m = 1, 2, 3) are the momentum viscous fluxes cross-

ing the finite volume interface between nodes P andQ, and Φvis,PQ
5 = vA`

(
τPQ`k + qPQk

)
n
PQ,ti+1

k

the corresponding energy viscous fluxes with τPQmk and qPQk being the stress tensor
and the components of the heat flux, respectively. In order to compute the velocity
and temperature spatial derivatives at the finite volume interface between P and
Q which is a prerequisite for computing τPQmk and qPQk , the scheme proposed in
[139] is used. For any quantity φ, ∂φ

∂xm

∣∣∣
PQ

is computed using

∂φ

∂xm

∣∣∣∣
PQ

=

(
∂φ
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)
PQ
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)
PQ
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)
 tm (2.3.2.2)

where

tm =
xQm − xPm√(

xQ` − xP`
)(
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) (2.3.2.3)

and
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)
PQ

=
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)
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(
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)
Q

]

Along the boundaries, the viscous fluxes for the momentum and energy equa-

tions are computed as Φ
vis,

�
∈VP

m+1 = τPmkn
�
∈V

ti+1
P

k , (m = 1, 2, 3) and Φ
vis,

�
∈VP

5 =[(
τ`kv

A
`

)�∈VP + q
�
∈VP

k

]
n
�
∈V

ti+1
P

k , respectively, by also taking the appropriate bound-
ary conditions defined in section 2.2 into account.
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2.3.3 Discretization of the Temporal Term

The integral of the temporal term of Eq. 2.1.1 can be expanded using the Reynolds
transport theorem as∫

V
ti+1
P

∂Un
∂t

dV =
d

dt

∫
V
ti+1
P

UndV −
∫

∂V
ti+1
P

Unv
G
k n̂kd (∂V ) (2.3.3.1)

Discretizing the first integral on the right-hand-side (r.h.s.) using a second–order
accurate backward difference formula (BDF2), for constant time-step ∆t, together
with the discretization of the second integral, Eq. 2.3.3.1 reads

∫
V
ti+1
P

∂Un
∂t

dV ' 1

2∆t

(
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)PQ,ti+1 and Φ
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Grid velocities vGk are computed so as to satisfy the GCL, Eq. 2.3.1.4. Employ-

ing a BDF2 scheme, this leads to

∑
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)
(2.3.3.3)

which must be satisfied by the discretization scheme. Employing the same scheme
for the time-integration of the flow quantities as for computing the grid velocities
fulfills the GCL.

2.3.4 Discretization of the Source Terms

The source values are assumed to remain constant within each finite volume and
are, thus, discretized as ∫

V
ti+1
P

SndV ' SPn V
ti+1

P (2.3.4.1)
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2.3.5 Discretization of the Turbulence Model Terms

The temporal, diffusion and source terms of the Spalart–Allmaras equation are
discretized with the same schemes as for the mean flow equations. The dis-
cretization of the convection term is different. Applying the Green–Gauss theorem
to this term leads to the following form
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where an upwind scheme is used to compute (µ̃)PQ expressed as

µ̃PQ =

{
µ̃P , for

(
vRk nk

)PQ,ti+1 > 0

µ̃Q , for
(
vRk nk

)PQ,ti+1 < 0
(2.3.5.2)

2.4 Numerical Solution of the Discretized Equations

The unsteady residuals of the discretized equations can be expressed as
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(2.4.1)

where U stands for either Un (n = 1, . . . , 5) or µ̃ and GE (Governing Equation) for
either MF or SA. Equations 2.4.1 are solved using a dual time-stepping technique
that updates of the flow variables as follows

VP
∆τP

∆UPn = −RGE,P
n (2.4.2)

where τ is the pseudo–time. Using a point–implicit scheme and denoting the
real-time iteration by i and the pseudo–time one by j, the system of equations
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reads [
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By splitting the left-hand-side (l.h.s. ) term of these equations in diagonal and
off–diagonal terms, these are written as(
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The system of Eq. 2.4.4 is solved using the Jacobi method, as no synchronizations
are required in each iteration when the solution of the system is parallelized on
the GPU.

For more details regarding the solution of the discretized equations and the
computation of the pseudo–time step, one should refer to [132].

2.5 GPU Implementation of the Flow Solver

GPUs and CPUs are different in terms of architecture and hardware capabilities.
GPUs are shared memory processors, meaning that all GPU threads which are
executed in parallel, access the same RAM. This may lead to thread race con-
ditions particularly in scatter-add algorithms, employed in the computation of
the numerical fluxes and the corresponding numerical flux Jacobians, making
the numerical solution process unpredictable. In addition, GPUs (even the lat-
est ones) have limited cache memory compared to CPUs, demanding a different
memory handling, so as to minimize the overall memory latency. For these rea-
sons, an efficient GPU-based flow solver calls for different implementation of some
numerical algorithms and memory access compared to a CPU-based one.

In this section, some of the GPU–specific techniques, initially developed in the
PhD Thesis of X. Trompoukis [131] are summarized. These techniques result in
a GPU variant of the flow solver which can be up to 45 times faster compared to
the CPU variant of the same flow solver. At this point, it must be noted that the
speed-up figures may vary, depending on the actual GPU and CPU device used
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for the comparison.

2.5.1 Computation of Numerical Fluxes and Flux Jacobians

Use of an edge–based algorithm is the most efficient method for computing the
numerical fluxes and their Jacobians in a vertex–centered CPU–based flow solver.
In this approach, a sweep over all mesh edges is performed, the numerical fluxes
and Jacobians are computed at the finite volume interface associated with each
edge and, then, these are added to each of the edge’s end-nodes, forming r.h.s.
(residuals) and l.h.s. (Jacobian) terms. The GPU equivalent of such an approach
is to parallelize this procedure by associating each GPU thread with a mesh edge.
However, this may result to a race condition among threads executed in parallel
as the GPU memory is shared.

Atomic operations can be used to avoid racing condition. However, this implies
an implicit synchronization among the parallel threads if racing condition hap-
pens. To overcome this problem, three different techniques have been developed
in [131], namely the edge coloring method, the one-kernel and the two-kernel
scheme. These techniques are summarized herein.

Computation using Edge Coloring

Historically, this was the first method developed to avoid using atomic operations.
In this technique, mesh edges are grouped in a way that threads belonging to the
same warp do not access the same memory. The kernel that computes the right-
hand-side (r.h.s.) and left-hand-side (l.h.s.) terms is called consecutively for each
color group. The parallel efficiency is deteriorated by this method particularly for
unstructured meshes that results to a large number of groups. For this reason,
the edge coloring technique is not used in the scope of this thesis.

Computation Using a One-Kernel Scheme

In this technique, each mesh node is associated with a GPU thread that computes
the numerical fluxes and Jacobians of all mesh edges emanating from the node
and add them to the memory position corresponding to this node. This solves the
problem of race condition at the expense of extra computations as the numerical
fluxes and their corresponding Jacobian matrices are computed twice for all in-
ternal mesh edges. Despite the excessive computation, this method outperforms
the edge coloring technique as it offers a higher GPU occupancy by the kernel
thanks to a more efficient memory access. In addition, this technique offers a low
memory requirement as no intermediate data are stored (similarly to the case of
the two-kernel technique to be presented right next). Since it offers the best com-
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promise between execution time and memory consumption, it is used for most
scatter-add operations in the flow solver.

Computation Using a Two-Kernel Scheme

This technique was proposed in [7] to eliminate the extra computations associ-
ated with the one-kernel technique. The scatter-add operation is performed in two
steps using two GPU kernels. In the first step, a kernel is launched assigning each
mesh edge to a GPU thread to compute the numerical fluxes and Jacobian ma-
trices at the finite volume interface corresponding to every edge and store them
using intermediate memory positions. Then, a second kernel associates every
GPU thread with a mesh node and sweeps all edges emanating from the node and
adds flux and Jacobian contributions to the r.h.s. and l.h.s. Computing the fluxes
and Jacobian matrices once for each mesh edge, this technique is computation-
ally efficient and provides the highest speed–up. However, the higher memory
requirements of the two–kernel technique restricts its use in the flow solver es-
pecially when large 3D meshes are involved, due to the well–known limitations in
GPU memory.

2.5.2 GPU Memory Handling

Cache memory in GPUs are limited compared to CPUs rendering the importance
of the pattern of storing and accessing data in memory on the efficiency of a GPU
code. In this section, the patterns used for storing l.h.s. coefficients are described,
since accessing them represents the majority of the memory accesses performed
during the numerical solution of the flow equations.

In the CPU implementation of the flow solver, the diagonal terms (D) on the
l.h.s. are stored as a list of 5 × 5 (for compressible flow) matrices. This is far
from optimal for a GPU code as the amount of cached memory is small and, in
order to minimize cache miss memory accesses, each memory segment transferred
through the bus to each multi–processor must contain as much useful data for the
threads of the current warp as possible. Therefore, a different pattern is followed.
The (0, 0) element of the matrix D for the node associated with thread 0 is stored,
followed by the (0, 0) matrix element of the node associated with thread 1 and
so on, up to thread 31, completing the first thread warp (collection of 32 threads
which are executed simultaneously). Then, the second element of the matrix D
for node of thread 0 follows, and so on. After the whole matrix is stored for all
the nodes associated with the first warp, storage continues similarly for the next
warps. In case the number of nodes on the mesh is not a multiple of 32, a small
amount of extra memory is used so as to ensure that even the last warp will follow
the same memory access pattern. This method ensures that memory accesses
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performed by the threads of a warp are as few as possible and, as a result, the
memory bandwidth achieved is close to the hardware nominal value.

The storage in memory of the off–diagonal terms Z is even more challenging.
The number of Z matrices that need to be stored is equal to two times the number
of mesh edges. In a CPU code, matrices would be stored similar to D, one after
the other, but following the ordering of mesh edges. Using such an approach on
a GPU code would not guarantee a minimum memory accesses required by the
threads of a warp. To overcome this, the Z matrices for the first edges emanating
from the nodes associated with warp 0 are first stored, followed by the Z matrices
for the second edges and so on. The storage of each matrix follows the same
pattern used for storing matrices D. However, since the number of neighbors per
node is not fixed, threads of the same warp may need to access different number
of Z matrices. To eliminate redundant memory accesses, the nodes of the mesh
are ordered w.r.t. the number of their neighbors. By doing so, we ensure that the
threads of the same warp need to access approximately the same number of Z
matrices. To keep the same memory pattern for all the threads of a warp, even if
the number of neighbors differs slightly among them, the memory space allocated
for each node is equal to the one needed from the warp thread with the greater
number of neighbors.

2.5.3 Mixed Precision Arithmetics

Apart from improving the memory access pattern (described in the previous sub-
section), reducing the amount of data to be accessed can also reduce the time
spent on accessing memory. This can be achieved by using MPA [64]. In MPA,
different arithmetics are used to store the l.h.s. and r.h.s. terms. The r.h.s. terms,
contain the residuals of the flow equations represent the physics of the system
of equations, while l.h.s. terms (D and Z matrices) are linked to the convergence
properties of the numerical solution. This means that using inexact values for
l.h.s. terms will slightly affect the convergence history of the numerical solution
without jeopardizing the solution accuracy. Hence, in MPA approach, r.h.s. terms
are computed and stored using DPA, while l.h.s. terms are computed using DPA
but stored using SPA. Using MPA not only reduces the number of memory ac-
cesses and cache–miss operations needed for accessing the l.h.s. terms, but also
reduces memory consumption for storing the demanding l.h.s. terms, which can
be crucial in applications involving meshes with a large number of nodes.



Chapter 3

The Noise Prediction Method

Computational Aeroacoustics (CAA) is related to methods and numerical compu-
tations which predict the sound emitted by aerodynamic bodies. In a broad sense,
these can be classified as direct and hybrid methods, which are shortly discussed
in what follows.

Direct methods are based on pure CFD approaches for sound prediction. In
fact, the sound field together with the flow field are computed by solving the com-
pressible flow equations. Flow solvers based on DNS [37] or LES [136], capable of
resolving principal noise–generating features of the turbulent flow, are the most
suitable models for direct noise prediction. Detached Eddy Simulations (DES)
can also provide good results if only large flow structures are considered. URANS
computations can be used to predict the trend of tonal component in problems
with a strong periodic behavior. In contrast to hybrid methods (to be presented
next), direct ones can take the effect of sound on flow and inhomogeneity in
acoustic medium into account. However, the use of direct methods in industrial
applications is rather limited. This is due to the high computational cost of these
methods, particularly if the acoustic noise at a location far from the source area
must be computed as a fine grid should be extended far away from the near–field,
up to the receiver location.

In hybrid methods, the computation of the flow is decoupled from that of
sound [20, 118]. The main advantage of such an approach is that it may perform
the acoustic propagation in a much cheaper way. In fact, the sound prediction
is performed into two steps, namely source computation and noise propagation.
The first step performs the computation of the noise sources in an area close to
the real source of the noise. This step requires an unsteady flow simulation. In
the next step, the sound signal is propagated to the receivers location. The main
assumption of any hybrid method is the one–way coupling of flow and sound,
as the effect of the sound on the flow field is neglected. The fact that the flow
field should become available only in a restricted area around the source of noise,
further reduces the computational cost of hybrid methods. Classical CFD tools

27
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based on DNS, LES, DES or URANS can be used to obtain the unsteady flow field
in the source area. The acoustic propagation part can be performed by methods
based on either computational or analytical methods.

The computational approach may involve the numerical solution of the lin-
earized Euler equations (LEE) [52] or the linearized Navier–Stokes equations [75].
In contrast to analytical methods, computational ones are not limited by the free
field propagation requirement and are able to handle refractional effects and re-
flection at solid boundaries. However, these approaches are usually prone to
dispersion and diffusion errors; specific treatment of boundary conditions and
discretization techniques must be used to avoid them. They also need their own
computational grid, thus the cost increases whenever the receiver is located quite
far from the source area.

The analytical propagation methods are based on either the Kirchhoff inte-
gral [14, 31] or acoustic analogies [140, 23, 79]. These methods propagate the
acoustic noise by means of the analytical solution of the wave equation in a free
field. Therefore, they are valid only for free field propagation as they cannot take
interactions with other surfaces within the propagation field into account.

The Kirchhoff integral can be used only in regions where the linear wave equa-
tion accurately describes the flow. This means that the input acoustic pressure
and its time and normal derivatives on the integration surface must be within the
linear flow region. In [8], this technique was used to compute the radiated noise
from an airfoil encountering a vortical gust. In [119], results from two different
Kirchhoff formulations were compared to the results from LEE and acoustic anal-
ogy for supersonic jet problems. It was shown that all methods including the
Kirchhoff formulations provides solutions which are consistent with the outcome
of a LES simulation.

Acoustic analogies can also be used to propagate noise from the source region.
These are derived by rearranging the flow equations. Equivalent noise sources
are distributed over a data surface to simulate the noise generation mechanism
inside/on that data surface. The origin of the acoustic analogies can be traced
back to Lighthill [79] who first addressed the problem of turbulence and jet noise.
This was later extended by Curle [23] to account for the presence of stationary
solid surface and, finally, generalized by Ffowcs Williams and Hawkings [140] to
include moving surfaces. The FW-H analogy is considered as the most complete
acoustic analogy. In contrast to the Kirchhoff method, the FW-H analogy is able
to use non–linear input data. A comparison of the FW–H analogy and the Kirch-
hoff method, both using permeable surfaces for integration, is performed in [14].
Herein, the permeable version of FW-H analogy is used. Details regarding the
derivation of the FW-H equation, its analytical solution and its implementation
into the PUMA software are given in following.
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3.1 The Ffowcs Williams and Hawkins Analogy

For the cases demonstrated in this thesis, the permeable version of the FW-
H analogy is used to propagate the noise to receivers. As shown in Fig. 3.1,
the data surface from which the noise sources are propagated is mathematically
represented by f = 0, enclosing the near-field CFD domain. This surface will
be referred to as the FW-H surface and f is a signed distance from this surface,
with negative and positive values of f corresponding to its interior and exterior,
respectively. H(f) is the Heaviside function which is zero for f < 0 and unity
for f > 0. Since solid boundaries are displaced due to either a body motion
and/or during a shape optimization loop and the grid or part of it is adapted to
the displaced boundaries, it was decided to limit such a grid displacement within
the area encapsulated by the FW-H surface. In other words, care is taken to
define the FW–H surface in the part of the grid that is not displaced either by the
moving body or during the optimization.

C
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ain

 f<0, H(f)=0

f=0, FW-H surface

f>
0, H

(f)
=1

Receiver

Free Stream, u Near-field CFD

nFWH

Figure 3.1: Schematic of a permeable FW-H surface, along which f = 0. f < 0
corresponds to the near-field CFD domain while f > 0 refers to the area outside of
the FW–H surface. The CFD domain boundaries (red line) delineates the area (2D) or
volume (3D) filled with the CFD grid.

The FW-H equation is a rearrangement of the continuity and momentum equa-
tions. In this section, vA is replaced by v. In order to derive the permeable version
of the FW-H equation in differential form, it is assumed that there is no mean–flow
and the FW-H surface is assumed to have the velocity vFWH

i . As already mentioned,
the location of the FW-H surface is defined by f(~y, t) = 0 which satisfies
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∂f

∂t
+ vFWH

i

∂f

∂yi
= 0 (3.1.1)

Let us rewrite the continuity and momentum equations in the following form

∂ρ

∂t
+
∂ρvi
∂yi

= 0 (3.1.2)

∂ρvi
∂t

+
∂ρvivj
∂yj

= − ∂p
∂yi

+
∂τij
∂yj

(3.1.3)

A reference state without the presence of a mean–flow can be defined as

ρ′ = ρ− ρ∞
p′ = p− p∞
v′ = v

(3.1.4)

where the subscript∞ indicates free–stream quantities. Using Eq. 3.1.4 in Eqs.
3.1.2 results to

∂ρ′

∂t
+
∂ρvi
∂yi

= 0 (3.1.5)

Multiplying Eq. 3.1.5 with H(f) results to

∂(H(f)ρ′)

∂t
+
∂(H(f)ρvi)

∂yi
= ρ′

∂H(f)

∂t
+ ρvi

∂H(f)

∂yi
(3.1.6)

The Heaviside function has the following properties

∂H(f)

∂t
=
∂H(f)

∂f

∂f

∂t
= −δ(f)vFWH

i

∂f

∂yi
∂H(f)

∂yi
= δ(f)

∂f

∂yi

(3.1.7)

where δ(f) is the Dirac delta function. Substituting Eq. 3.1.7 into Eq. 3.1.6 and
rearranging terms

∂(H(f)ρ′)

∂t
+
∂(H(f)ρvi)

∂yi
= Qδ(f) (3.1.8)

where

Q = (ρvi − ρ′vFWH
i )nFWH

i (3.1.9)

and it has been used that ∂f
∂yi

= nFWH
i |∇f | where ~nFWH is the unit outward normal



3.1. The Ffowcs Williams and Hawkins Analogy 31

vector to the FW-H surface. For the sake of simplicity, without loss of generality,
f is defined in such a way that |∇f |= 1.

The same steps can be performed on Eq. 3.1.3 which leads to

∂(H(f)ρvi)

∂t
+
∂(H(f)ρvivj)

∂yj
+
∂(H(f)p)

∂yi
− ∂(H(f)τij)

∂yj
= Fiδ(f) (3.1.10)

where

Fi =
(
ρvi
(
vj − vFWH

j

)
+ pδij − τij

)
nFWH
j (3.1.11)

The next step is to subtract the divergence of Eq. 3.1.10 from the time deriva-
tive of Eq. 3.1.8 . Doing so results to

∂2(H(f)ρ′)

∂t2
=

∂

∂t
(Qδ(f))− ∂

∂yi
(Fiδ(f))+

∂2

∂yi∂yj
(H(f)(ρvivj+pδij−τij)) (3.1.12)

Subtracting c2
∞
∂2(H(f)ρ′)

∂y2i
from both sides of Eq. 3.1.12 gives the FW-H equation

as

(
∂2

∂t2
− c2

∞
∂2

∂yi∂yi

)
(H(f)ρ′) =

∂

∂t
(Qδ(f))− ∂

∂yi
(Fiδ(f)) +

∂2

∂yi∂yj
(H(f)Tij)

(3.1.13)
where

Tij(~y, t) = ρvivj +
(
p− c2

∞ρ
′) δij − τij (3.1.14)

is the Lighthill’s tensor. The l.h.s. of Eq. 3.1.13 contains a wave operator and the
r.h.s. different source terms contributing to noise generation. The contribution
of Tij is known as the quadrupole term. Fi is known as the dipole term, related
to unsteady force, and Q can be thought of as an unsteady mass addition also
known the monopole contribution.

Using an appropriate Green function, Eq. 3.1.13 can be solved analytically,
given that the r.h.s. terms are available. Different formulation are available in the
literature for 3D problems [95, 40, 24]. Although most of the significant acous-
tic phenomena are 3D, the computational cost of performing a 3D simulation to
gather the required acoustic sources in the near–field might be limiting, partic-
ularly if to be used within an optimization framework. Besides, in cases where
the flow mechanism generating noise are pseudo–2D, a 2D simulation predicts
well the overall features of the radiated sound with over–predicted amplitudes.
Therefore, 2D results can be used to determine the trends even though they do
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not capture all relevant physics. The usefulness of such 2D simulations is shown
in [120] through comparison of 2D and 3D solutions for slat noise and in [96, 89]
where 2D acoustic simulations are used for shape optimization with affordable
cost. For this reasons, and since herein both 2D and 3D cases are tested, this
thesis makes use of both 2D and 3D solutions of the FW-H equation which are
presented below.

3.1.1 FW-H Integral for 2D problems

Herein, for two reasons, the frequency domain solution to the FW-H equation is
sought. First reason is that this thesis aims to develop the continuous adjoint
for an aeroacoustic objective function defined in the frequency domain (to be
presented in chapter 4). The second reason is that a time domain solution for 2D
problems faces several difficulties due to the tail effect. This is presented below.

A solution to Eq. 3.1.13 in the time domain can be obtained using the Green
function. The Green function satisfies the following equation(

∂2

∂t2
− c2

∞
∂2

∂yi∂yi

)
G2D(~xr, t; ~xs, τ) = δ(~xr − ~xs)δ(t− τ) (3.1.1.1)

where ~xr and ~xs are the receiver and any source position vectors, respectively,
and τ is the source time. G2D is the 2D Green function given by

G2D(~xr, t; ~xs, τ) =
H(c∞(t− τ)− r)

2πc∞
√
c2
∞(t− τ)2 − r2

(3.1.1.2)

where r = |~xr−~xs|. The FW-H equation, Eq. 3.1.13 , can be solved by convolution
of the sources on the r.h.s. with the Green function,

H(f)ρ̂′(~xr, τ) =

+∞∫
−∞

+∞∫
−∞

Src(~xs, τ)G2D(~xr, t; ~xs, τ)dSdτ (3.1.1.3)

where Src includes all the sources on the r.h.s. of Eq. 3.1.13 . One of the ad-
vantages of the permeable version of the FW-H analogy is that the FW-H surface
can be placed at a distance where the quadrupole term Tij is insignificant from
that distance on. Doing so together with taking the Dirac delta functions in the
monopole and the dipole term into account, reduces the surface integral of Eq.
3.1.1.3 to a line integral. However the problem of infinite bounds of the time in-
tegral still remains in Eq. 3.1.1.3 . The Heaviside function can be used to cut the
upper bound of the time integral whereas the lower bound is always infinite. This
is the tail effect that might introduce inaccuracies if a quite large time integration
limit is not used [83].
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To avoid this problem, Eq. 3.1.13 can be solved in the frequency domain.
However, applying Fourier transform directly to this equation results to spatial
integrals that are difficult to simplify due to the sifting property of δ(f). The
remedy proposed by Lockard [83], is to apply a Galilean transformation before the
Fourier transformation, resulting to a convective wave equation.

In air frame noise applications, the Galilean transformation may transform
a given problem of one type to another. For example, a problem with a moving
receiver can alternatively be seen as one with a stationary receiver in a moving
medium, which is the case of a wind tunnel study. In order to account for the
presence of a mean flow with constant speed, the convective wave equation can be
solved instead of Eq. 3.1.13 , by applying the Galilean transformation to the latter.
In this way, simplifications regarding the math and implementation, particularly
in 2D problems are made. Here the mean flow is v∞; the surface velocities vFWH

i

in the expressions of Q, Fi and Tij should be replaced by the relative surface
velocity vFWH

i −v∞i, practically −v∞i since the FW-H surface is not moving in the
wind tunnel case (vFWH

i = 0). To drive the convective wave equation, the Galilean
transformation

xi = yi + v∞i
t

t̄ = t

∂

∂yi
=

∂

∂xi
∂

∂t
=

∂

∂t̄
+ v∞i

∂

∂xi

is applied to Eq. 3.1.13 yielding

(
∂2

∂t̄2
+ v∞iv∞j

∂2

∂xi∂xj
+ 2v∞i

∂2

∂xi∂t
− c2

∞
∂2

∂xi∂xi

)
(H(f)ρ′)

=
∂

∂t̄
(Qδ(f))− ∂

∂xi
(Fiδ(f)) +

∂2

∂xi∂xj
(TijH(f))

(3.1.1.4)

with

Q(~x, t̄) = (ρui − ρ∞u∞i)nFWH
i

Fi(~x, t̄) =
(
ρ (vi − 2u∞i) vj + ρ∞v∞iv∞j + pδij − τij

)
nFWH
j

Tij(~x, t̄) = ρ (vi − v∞i)
(
vj − v∞j

)
+
(
p− c2

∞ρ
′) δij (3.1.1.5)

Eq. 3.1.1.4 is rewritten in the frequency domain, by using the Fourier trans-
formation, as follows



34 3. The Noise Prediction Method

(
∂2

∂xi∂xi
+ k2 − 2iMik

∂

∂xi
−MiMj

∂2

∂xi∂xj

)
(H(f)p̂′)

= −iωQ̂δ(f) +
∂

∂xi

(
F̂iδ(f)

)
− ∂2

∂xi∂xj

(
T̂ijH(f)

) (3.1.1.6)

where the hat symbol (̂ ) represents variables expressed in the frequency domain
and ω is the frequency. Mi = v∞i/c∞ and the wave number is defined by k =
ω/c∞. The integral solution to Eq. 3.1.1.6 provides the pressure fluctuation, with
computations performed in the frequency domain, at the receiver’s location as
follows

H(f)p̂′(~xr, ω) =−
∫
f=0

F̂i(~xs, ω)
∂Ĝ(~xr, ~xs, ω)

∂xsi
ds−

∫
f=0

iωQ̂(~xs, ω)Ĝ(~xr, ~xs, ω)ds

−
∫
f>0

T̂ij(~xs, ω)
∂2Ĝ(~xr, ~xs, ω)

∂xsi∂xsj
dV

(3.1.1.7)
Ĝ(~xr, ~xs, ω) is the Green function for 2D problems in the frequency domain

which is given by

Ĝ2D(~xr, ~xs, ω) =
i

4β
exp

(
iMkx̄1/β

2
)
H

(2)
0

(
k

β2

√
x̄2

1 + β2x̄2
2

)
(3.1.1.8)

where

x̄1 = (xr1 − xs1) cos θ + (xr2 − xs2) sin θ

x̄2 = −(xr1 − xs1) sin θ + (xr2 − xs2) cos θ
(3.1.1.9)

where the angle θ = arctan(u∞2/u∞1) is the far-field flow angle and β =
√

1−M2

is the Prandtl-Glauert factor. H
(2)
0 (z) = J0(z) − iY0(z) stands for the Hankel

function of the second–kind of zero–order and J0(z) and Y0(z) are the Bessel
function of first and second kind, respectively.

3.1.2 FW-H Integral for 3D problems

As mentioned before, the purpose of this thesis is to develop the continuous
adjoint for an aeroacoustic objective function defined in the frequency domain. For
this reason, in 3D problems, similar to 2D ones, the frequency domain solution
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of the FW-H analogy is employed. To do so, the same FW-H integral as in 2D
problems in Eq. 3.1.1.7 is used with the only difference that the Green function
is changed to the one for 3D problems which for subsonic flows is given by

Ĝ3D(~xr, ~xs, ω) = −exp(−ikr+)

4πr∗
(3.1.2.1)

where r+ and r∗ are given by

r+ = (− ~M · ~r + r∗)

r∗ =

√
( ~M · ~r)2 + |~r|2 β2

~r = ~xr − ~xs
~M = ~v∞/c∞

(3.1.2.2)

The monopole and dipole sources are computed as in the 2D case using Eq.
3.1.1.5 .

3.1.3 Implementation of the FW-H Integral in PUMA

The contribution of the quadrupole term in the FW-H integral Eq. 3.1.1.7 re-
quires a volume integral resulting to a higher computational cost compared to the
monopole and dipole terms that require only a surface integral. The quadrupole
term is thus assumed to be negligible in many studies. Luckily, this is a safe
assumption in many cases since the monopoles and dipoles are the dominant
sources [14, 149]. Besides, errors introduced by neglecting volume sources can
be even smaller if a permeable integration surface is used; in this case, the surface
should enclose all the noise sources. In fact, in this case the quadrupole contri-
butions are implicitly taken into account. As a result, the far–field sound signal
can be computed only based on flow variables on the integration surface. How-
ever, in the presence of strong wakes, the passage of vortical structures through
the FW-H surface can lead to spurious noise which is canceled only if quadrupole
terms are included [141]. To address this problem some methods such as the use
of an open FW-H surface [133] or on body integration [44] was proposed.

For the cases included in this thesis, a closed permeable FW-H surface is used
and the quadrupole terms are neglected. The same set–up is also used for similar
test cases in the literature [113, 153, 152]

The FW-H analogy is hybridized with PUMA according to the following steps.

� The unsteady flow solution is performed and, at the end of each time step,
terms Q and Fi are computed using Eq. 3.1.1.5 and stored at all grid nodes
lying on the FW-H surface.
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� At the end of the unsteady flow simulation, the mean values of Q and Fi are
subtracted from their instantaneous values. This is because mean values
correspond to the zero frequency without contributing to noise generation.

� Since it is almost infeasible to achieve perfectly periodic flow data from CFD
simulations, a Hanning window H(t) is applied to Q and Fi to eliminate
possible discontinuities between the beginning and the end of each signal
and avoid spectral leakage [83, 88]. The Hanning window H(t) used in this
work is the one proposed in [83], given by

H(t) =

{
0.5(1− cos(8πt/Ts)) if 0 6 t < Ts/8 or 7Ts/8 6 t < Ts

1 if Ts/8 6 t < 7Ts/8
(3.1.3.1)

where Ts is the length of the time window andH(t) is the scaling factor. One
can notice that no scaling is applied in the central (3/4) part of the input
signal; thus, this windowing technique preserves the relative amplitude of
the signal center. This window is designed to be energy preserving while the
amplitude is not necessarily preserved. Note that inaccuracies in the peak
amplitude of the signal are introduced if the amount of the unsteady flow
data are inadequate.

� Fourier transformation is performed to transform Q and Fi into the fre-
quency domain (Q̂ and F̂i).

� Pressure fluctuations in the frequency domain are computed by numerically
integrating Eq. 3.1.1.7 . In practice, this computationally cheap integral (a
surface integral after neglecting the quadrupole terms) must be computed
for each receiver at each frequency. At the end, an inverse Fourier transfor-
mation is applied to recover the signal in the time domain.



Chapter 4

The Continuous Adjoint Method for
Aeroacoustic Shape Optimization

This chapter focuses on the development of the continuous adjoint method for
aeroacoustic shape optimization problems. In gradient–based optimization meth-
ods, applied to problems governed by (systems of) PDEs, such as in aerodynamic
or aeroacoustic optimization, a main burden is to compute (sometimes, to ap-
proximate) the gradient of an objective function J w.r.t. a set of design variables
bi, i = 1, . . . , N , in each optimization cycle. In order to avoid any confusion with
the spatial gradient of flow quantities, from this point on, the gradient δJ

δbi
will be

referred to as the SDs.

For the sake of demonstration, let J be an integral quantity defined along some
surface boundaries of the flow domain S and/or over the fluid volume Ω.

J =

∫
Ω

JΩdΩ +

∫
S

JSdS (4.1)

Note that S along which the quantity J is defined is generally a subset of the
whole boundary of the flow ∂Ω.

Any field quantity Φ can be expressed as a function of the flow variables
Un, (n = 1, . . . , 6 with Um := Um for m = 1, . . . , 5 and U6 := ν̃) and the position in
space xk, (k = 1, . . . , 3). It is important to distinguish between the partial deriva-

tive of a field quantity Φ w.r.t. bi

(
∂Φ

∂bi

)
and the corresponding total derivative(

δΦ

δbi

)
. The partial derivative refers to the change in Φ caused only by changes in

the flow variables Un due to changes in bi, while the total derivative includes also
the change in Φ caused by the change in position xk of all mesh nodes. Thus,
partial and total derivatives are linked through

37
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δΦ

δbi
=
∂Φ

∂bi
+
∂Φ

∂xk

δxk
δbi

(4.2)

Equation 4.1 can be differentiated by taking Eq. 4.2 into account and using also
the Leibniz rule, resulting to

δJ

δbi
=

∫
Ω

∂JΩ

∂Un
∂Un
∂bi

dΩ +

∫
∂Ω

JΩ
δxk
δbi

nkdS +

∫
S

∂ (JSdS)

∂Un
δUn
δbi

+

∫
S

∂ (JSdS)

∂ (nkdS)

δ (nkdS)

δbi
+

∫
S

∂ (JSdS)

∂xk

δxk
δbi

(4.3)

The second, fourth and fifth integrals of Eq. 4.3 can be computed by taking
the parameterization of the surface into account. However, the first and third
integrals contain variations in the flow variables w.r.t. bi which are associated
with high computational cost. Note that the simplest method for computing this
gradient is by means of FDs with a cost that scales with N ; it, thus, becomes
very expensive in problems with many design variables (N >>). For example, if
central FDs are used, the cost is equal to two equivalent flow solutions (EFS)
for each design variable (one around the geometry resulting by perturbing the
design variable by a small number ε and one around the geometry resulting by
altering the design variable by −ε). Even if direct differentiation is employed,
the cost is equivalent to one EFS per design variable. In this thesis, FDs are
occasionally used to compute ‘‘accurate’’ SDs to compare with the outcome of the
adjoint method. The adjoint method, however, makes the cost of computing δJ

δbi
independent of the number of design variables.

Between the two variants of the adjoint method (discrete and continuous), the
continuous adjoint method for compressible turbulent flows with an earoacoustic
objective function will be developed in the following sections. The continuous ad-
joint method can be formulated in two different ways, namely the surface integral
(SI) [99, 157], and FI [103, 84] formulations. Although they are mathematically
equivalent but lead to different sensitivity derivative expressions with different
accuracy, especially in turbulent flow cases. The development of the continuous
adjoint method will be presented based on the FI formulation.

In aerodynamic optimization problems, the objective function (such as total
pressure losses, lift or drag) is usually defined along some of the boundaries of
the CFD domain. This contributes to the adjoint boundary conditions (ABC) and
the SDs. Conversely, in aeroacoustic problems, the objective function is defined
at the remote receiver location and does not affect the ABC and SDs, while it
contributes to the adjoint equations by source terms applied along the FW-H
surface. A proper objective function J for aeroacoustic cases can be expressed in
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the frequency domain as the total energy contained in the spectrum of the sound
pressure at ~xr as

J =

∫
ω

|p̂′(~xr, ω)| dω (4.4)

where p̂′(~xr, ω) results from Eq. 3.1.1.7 and |p̂′| =
√
p̂
′2
Re + p̂

′2
Im; subscripts Re

and Im refer to the real and imaginary part of a complex variable. The integral
may cover all resolved or a predetermined range of frequencies. Throughout this
thesis, Eq. 4.4 may be referred to as the aeroacoustic or noise objective function.

The aeroacoustic objective function is linked to the flow data on the FW-H
surface through the FW-H integral. Therefore, differentiation of this objective
function w.r.t. bi results to variations in the flow variables w.r.t. bi. In order to
avoid this computationally expensive term, the augmented objective function Jaug

is introduced, which is defined as

Jaug = J +

∫
Ts

∫
Ω

ΨnRndΩdt+

∫
Ts

∫
Ω

ν̃aRµ̃dΩdt, n = 1, . . . , 5 (4.5)

In Eq. 4.5, Ψn, (n = 1, . . . , 5) are the mean flow adjoint variables and ν̃a the adjoint
turbulence model variable. Both Ψn and ν̃a act as Lagrange multipliers since
they multiply the equality constraints of the flow equations in the problem of
minimizing Jaug. Ts is the time window in which the flow simulation is performed,
practically from time 0 till the end of the unsteady simulation. Upon convergence
of the flow equations (i.e. Rn = 0 and Rµ̃ = 0 ) Jaug = F and, consequently the
SDs can be computed from δJaug

δbi
.

Next step is to differentiate Jaug w.r.t. the design variables bi. The volume
integrals of Jaug are differentiated by directly passing the δ

δbi
operator inside the

integrals. Since these integrals contain spatial gradients of flow–related quantities
(e.g. inviscid and viscous fluxes), a useful relation of treating variations of such
quantities is sought [103, 71]. Using Eq. 4.2 and computing the spatial gradient
of the total variation of an arbitrary flow related quantity Φ one obtains

∂

∂x`

(
δΦ

δbi

)
=

∂

∂x`

(
∂Φ

∂bi

)
+

∂2Φ

∂xk∂x`

δxk
δbi

+
∂Φ

∂xk

∂

∂x`

(
δxk
δbi

)
(4.6)

Using Eq. 4.2, one can also get an expression for the total derivative of the
spatial gradient of Φ as

δ

δbi

(
∂Φ

∂x`

)
=

∂

∂bi

(
∂Φ

∂x`

)
+

∂2Φ

∂xk∂x`

δxk
δbi

(4.7)

Subtracting Eq. 4.6 from Eq. 4.7, the total variation of the gradient of Φ is linked
to the gradient of the total variation of Φ through
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δ

δbi

(
∂Φ

∂x`

)
=

∂

∂x`

(
δΦ

δbi

)
− ∂Φ

∂xk

∂

∂x`

(
δxk
δbi

)
(4.8)

Eq. 4.8 is extensively used in the remainder of this section, in which the FI
continuous adjoint is presented.

Differentiation of Jaug results to

δJaug

δbi
=
δJ

δbi
+

∫
Ts

∫
Ω

Ψn
δRn

δbi
dΩdt

︸ ︷︷ ︸
IMF

+

∫
Ts

∫
Ω

ν̃a
δRµ̃

δbi
dΩdt

︸ ︷︷ ︸
ISA

(4.9)

During the mathematical development of δJaug
δbi

, volume and surface integrals
containing ∂Un

∂bi
arise. These integrals are associated with high computational cost.

In order to eliminate the expensive volume integral, these are collected together
and the multiplier of δUn

δbi
is set to zero. By doing so, a new set of PDEs, the so–

called field adjoint equations (FAE) arises. Similar approach is followed for the
surface integrals leading to the introduction of ABC. Surface or volume integrals
including variation of geometric quantities contribute into the final SDs formula.
Volume integrals of such a kind are computed by differentiating the mesh mor-
phing technique that is employed to deform the CFD mesh in each optimization
cycle. This differentiation is done either analytically, should an analytical mesh
morphing method be used, or through FDs.

In what follows, the three terms on the r.h.s. of Eq. 4.9 are differentiated.

4.1 Differentiation of the Mean Flow Equations

Term IMF, corresponding to mean flow equations, is expanded as

IMF =

∫
Ts

∫
Ω

Ψn
δ

δbi

(
∂Un
∂t

)
dΩdt

︸ ︷︷ ︸
IMF_temp

+

∫
Ts

∫
Ω

Ψn
δ

δbi

(
∂f invnk

∂xk

)
dΩdt

︸ ︷︷ ︸
IMF_inv

−
∫
Ts

∫
Ω

Ψn
δ

δbi

(
∂f visnk

∂xk

)
dΩdt

︸ ︷︷ ︸
IMF_vis

+

∫
Ts

∫
Ω

Ψn
δSn
δbi

dΩdt

︸ ︷︷ ︸
IMF_src

(4.1.1)

Introducing Eq. 4.8 into IMF_temp and since time discretization does not depend
on bi this term becomes
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IMF_temp =

∫
Ts

∫
Ω

∂

∂t

(
Ψn

δUn
δbi

)
dΩdt−

∫
Ts

∫
Ω

δUn
δbi

∂Ψn

∂t
dΩdt

︸ ︷︷ ︸
FAE

−
∫
Ts

∫
Ω

Ψn
∂Un
∂xk

∂

∂t

(
δxk
δbi

)
dΩdt

︸ ︷︷ ︸
SD

(4.1.2)

The second term on the r.h.s. contains variations in the flow variables w.r.t. bi
and, since this is a volume integral, it contributes to the FAE. The last term on
the r.h.s. of Eq. 4.1.2 contains only variations in geometric terms, hereby it gives
contribution to the SDs expression. The first term of the r.h.s. of Eq. 4.1.2 is
expanded as follows

∫
Ts

∫
Ω

∂

∂t

(
Ψn

δUn
δbi

)
dΩdt =

∫
Ω

Ψn
δUn
δbi

dΩ

∣∣∣∣∣∣
Ts

0

−
∫
Ts

∫
∂Ω

Ψn
δUn
δbi

vgridm nmdSdt

︸ ︷︷ ︸
S.I_1

(4.1.3)

where vgridm = δxm
δt

is the grid velocity on the boundary. A zero initial Dirichlet
condition for the adjoint field at the end of the primal solution time eliminates the
first term on the r.h.s. of Eq. 4.1.2 at Ts; this term is also eliminated at t = 0 as
the initial flow field is fixed. If the exact period of the unsteady problem is known
and this remains constant during the optimization, the first term on the r.h.s. of
Eq. 4.1.2 , is eliminated due to the periodic adjoint and flow field. The second
term on the r.h.s. involves variations in the flow variables w.r.t. bi and, since this
is a surface integral, contributes to the definition of boundary conditions for the
adjoint equations.

The inviscid term IMF_inv in Eq. 4.1.1 is expanded as

IMF_inv =

∫
Tsol

∫
Ω

Ψn
∂

∂xk

(
δf invnk

δbi

)
dΩdt−

∫
Tsol

∫
Ω

Ψn
∂f invnk

∂x`

∂

∂xk

(
δx`
δbi

)
dΩdt

︸ ︷︷ ︸
SD

(4.1.4)

The last integral on the r.h.s. contributes to the SD expression; the first integral
can be expanded as
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∫
Tsol

∫
Ω

Ψn
∂

∂xk

(
δf invnk

δbi

)
dΩdt =

∫
Tsol

∫
∂Ω

Ψn
δf invnk

δbi
nkdSdt

︸ ︷︷ ︸
S.I_2

−
∫
Tsol

∫
Ω

∂Ψn

∂xk
Anmk

δUm
δbi

dΩdt

︸ ︷︷ ︸
FAE

(4.1.5)

The viscous term in Eq. 4.1.1 is expanded as

IMF_vis = −
∫
Ts

∫
∂Ω

Ψn
δf visnk

δbi
nkdSdt

︸ ︷︷ ︸
S.I_3

+

∫
Ts

∫
Ω

∂Ψn

∂xk

δf visnk

δbi
dΩdt

︸ ︷︷ ︸
IMF_vis1

+

∫
Ts

∫
Ω

Ψn
∂f visnk

∂xe

∂

∂xk

(
δxe
δbi

)
dΩdt

︸ ︷︷ ︸
SD

(4.1.6)

In order to expand IMF_vis1, two new variables are defined namely, the adjoint
stress tensor τadjmk and heat flux qadjk , given by

τadjmk = (µ+ µt)

[
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm
+
∂Ψ5

∂xm
vAk +

∂Ψ5

∂xk
vAm −

2

3
δmk

(
∂Ψl+1

∂xl
+
∂Ψ5

∂xl
vAl

)]
qadjk = Cp

(
µ

Pr
+

µt
Prt

)
∂Ψ5

∂xk
(4.1.7)

Since the turbulence model is also differentiated, variations of some in the func-
tions related to the Spalart-Allmaras model in Eq. 2.1.9, are required too. A new
operator P (a, c) is defined, similar to the one used in [132], denoting the partial
derivative of function a w.r.t. quantity c is introduced. The differentiation of each
term in Eq. 2.1.9 can be found in [132]. Therefore, IMF_vis1 is expanded as follows

IMF_vis1 =−
∫
Ts

∫
Ω

(
∂τadjmk
∂xk

− ∂Ψ5

∂xk
τkm

)
∂vAm
∂Ul

δUl
δbi

dΩdt

︸ ︷︷ ︸
FAE

−
∫
Ts

∫
Ω

∂qadjk

∂xk

∂T

∂Ul

δUl
δbi

dΩdt

︸ ︷︷ ︸
FAE

−
∫
Ts

∫
Ω

(
τadjmk

∂vAm
∂xl

+ qadjk

∂T

∂xl

)
∂

∂xk

(
δxl
δbi

)
dΩdt

︸ ︷︷ ︸
SD

+

∫
Ts

∫
∂Ω

τadjmknk
δvAm
δbi

dSdt

︸ ︷︷ ︸
S.I_4

+

∫
Ts

∫
∂Ω

qadjk nk
δT

δbi
dSdt

︸ ︷︷ ︸
S.I_5

(4.1.8)
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+

∫
Ts

∫
Ω

∂Ψm+1

∂xk

τkm

µ+ µt
[P (µt, µ̃) + P (µt, fv1)P (fv1 , χ)P (χ, µ̃)]

δµ̃

δbi
dΩdt

︸ ︷︷ ︸
FAE_SA

+

∫
Ts

∫
Ω

∂Ψ5

∂xk
vAm

τkm

µ+ µt
[P (µt, µ̃) + P (µt, fv1)P (fv1 , χ)P (χ, µ̃)]

δµ̃

δbi
dΩdt

︸ ︷︷ ︸
FAE_SA

+

∫
Ts

∫
Ω

Cp
Prt

∂Ψ5

∂xk

∂T

∂xk
[P (µt, µ̃) + P (µt, fv1)P (fv1 , χ)P (χ, µ̃)]

δµ̃

δbi
dΩdt

︸ ︷︷ ︸
FAE_SA

(4.1.9)

The last term on the r.h.s. of Eq. 4.1.1 leads to

IMF_src =

∫
Ts

∫
Ω

εm`kΨm+1ρω`
∂vAk
∂Uq

δUq
δbi

dΩdt+

∫
Ts

∫
Ω

εm`kΨm+1ω`v
A
k

∂ρ

∂Uq

δUq
δbi

dΩdt

︸ ︷︷ ︸
FAE

(4.1.10)

4.2 Differentiation of the Spalart-Allmaras Equation

Term ISA into Eq. 4.9 is split in four terms arising from the differentiation of the
temporal, convection, diffusion and source terms of the SA PDE,

ISA =

∫
Ts

∫
Ω

ν̃a
δSAt

δbi
dΩdt

︸ ︷︷ ︸
ISA_temp

+

∫
Ts

∫
Ω

ν̃a
δSAc

δbi
dΩdt

︸ ︷︷ ︸
ISA_conv

+

∫
Ts

∫
Ω

ν̃a
δSAd

δbi
dΩdt

︸ ︷︷ ︸
ISA_diff

+

∫
Ts

∫
Ω

ν̃a
δSAs

δbi
dΩdt

︸ ︷︷ ︸
ISA_src

Temporal term ISA_temp is developed as

ISA_temp =

∫
Ts

∫
Ω

∂

∂t

(
ν̃a
δµ̃

δbi

)
dΩdt−

∫
Ts

∫
Ω

δµ̃

δbi

∂ν̃a
∂t

dΩdt

︸ ︷︷ ︸
FAE_SA

−
∫
Ts

∫
Ω

ν̃a
∂µ̃

∂xk

∂

∂t

(
δxk
δbi

)
dΩdt

︸ ︷︷ ︸
SD

(4.2.1)
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The first term of the r.h.s. of Eq. 4.2.1 is expanded as

∫
Ts

∫
Ω

∂

∂t

(
ν̃a
δµ̃

δbi

)
dΩdt =

∫
Ω

ν̃a
δµ̃

δbi
dΩ

∣∣∣∣∣∣
Ts

0

−
∫
Ts

∫
∂Ω

ν̃a
δµ̃

δbi

δxm
δt

nmdSdt

︸ ︷︷ ︸
S.I_6

(4.2.2)

Similar to Eq. 4.1.3 , a zero initial condition for the adjoint field at the end of
the primal solution time eliminates the first term on the r.h.s. of Eq. 4.1.2 at Ts.
This term is also eliminated at t = 0 thanks to the fixed initial flow field. The
second term on the r.h.s. involves variations in the flow variables w.r.t. bi and,
since is a surface integral, contributes to the boundary conditions of the adjoint
SA equation.

Convection term (ISA_conv) can be developed as

ISA_conv =−
∫
Ts

∫
Ω

∂ν̃a
∂xk

µ̃
∂vAk
∂U`

δU`
δbi

dΩdt

︸ ︷︷ ︸
FAE

−
∫
Ts

∫
Ω

∂ν̃a
∂xk

vRk
δµ̃

δbi
dΩdt

︸ ︷︷ ︸
FAE_SA

+

∫
Ts

∫
∂Ω

ν̃ank
δ

δbi

(
µ̃vRk

)
dSdt

︸ ︷︷ ︸
S.I_7

−
∫
Ts

∫
Ω

ν̃a
∂
(
µ̃vRk

)
∂x`

∂

∂xk

(
δx`
δbi

)
dΩdt+

∫
Ts

∫
Ω

∂ν̃a
∂xk

µ̃
∂vFk
∂x`

δx`
δbi

dΩdt

︸ ︷︷ ︸
SD

(4.2.3)

The diffusion term is treated similarly

ISA_diff = − 1

σ

∫
Ts

∫
Ω

ν̃a

{
∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
∂ρ

∂U`

δU`
δbi

dΩdt

︸ ︷︷ ︸
FAE

− 1

σ

∫
Ts

∫
Ω

ρν̃a
δ

δbi

(
∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

})
dΩdt

︸ ︷︷ ︸
ISA_diff1

+
cb2
σ

∫
Ts

∫
Ω

ρν̃a
δ

δbi

(
ν̃
∂2ν̃

∂x2
k

)
dΩdt

︸ ︷︷ ︸
ISA_diff2

(4.2.4)
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where

ISA_diff1 =
1

σ

∫
Ts

∫
Ω

∂ (ρν̃a)

∂xk

∂ν̃

∂xk
P (ν, ρ)

∂ρ

∂U`

δU`
δbi

dΩdt

︸ ︷︷ ︸
FAE

− 1

σ

∫
Ts

∫
Ω

ν̃

ρ

(
∂ (ρν̃a)

∂xk

∂ν̃

∂xk
(1 + cb2)−

∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ (ρν̃a)

∂xk

})
∂ρ

∂U`

δU`
δbi

dΩdt

︸ ︷︷ ︸
FAE

+
1

σ

∫
Ts

∫
Ω

1

ρ

(
∂ (ρν̃a)

∂xk

∂ν̃

∂xk
(1 + cb2)−

∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ (ρν̃a)

∂xk

})
δµ̃

δbi
dΩdt

︸ ︷︷ ︸
FAE_SA

+
1

σ

∫
Ts

∫
Ω

ρν̃a
∂

∂x`

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}
∂

∂xk

(
δx`
δbi

)
dΩdt

︸ ︷︷ ︸
SD

(4.2.5)

− 1

σ

∫
Ts

∫
Ω

∂ (ρν̃a)

∂xk
[ν + (1 + cb2) ν̃]

∂ν̃

∂x`

∂

∂xk

(
δx`
δbi

)
dΩdt

︸ ︷︷ ︸
SD

− 1

σ

∫
Ts

∫
∂Ω

ρν̃ank
δ

δbi

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk

}
dSdt

︸ ︷︷ ︸
S.I_8

+
1

σ

∫
Ts

∫
∂Ω

∂ (ρν̃a)

∂xk
[ν + (1 + cb2) ν̃] nk

δν̃

δbi
dSdt

︸ ︷︷ ︸
S.I_9

ISA_diff2 =
cb2
σ

∫
Ts

∫
Ω

1

ρ

{
ρν̃a

∂2ν̃

∂x2
k

+
∂

∂xk

[
∂ (ν̃aµ̃)

∂xk

]} δµ̃
δbi

dΩdt

︸ ︷︷ ︸
FAE_SA

−cb2
σ

∫
Ts

∫
Ω

ν̃

ρ

{
ρν̃a

∂2ν̃

∂x2
k

+
∂

∂xk

[
∂ (ν̃aµ̃)

∂xk

]} ∂ρ

∂U`

δU`
δbi

dΩdt

︸ ︷︷ ︸
FAE
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−cb2
σ

∫
Ts

∫
Ω

ρν̃aν̃
∂

∂x`

(
∂ν̃

∂xk

)
∂

∂xk

(
δx`
δbi

)
dΩdt+

cb2
σ

∫
Ts

∫
Ω

∂ (ρν̃aν̃)

∂xk

∂ν̃

∂x`

∂

∂xk

(
δx`
δbi

)
dΩdt

︸ ︷︷ ︸
SD

+
cb2
σ

∫
Ts

∫
∂Ω

ρν̃aν̃nk
δ

δbi

(
∂ν̃

∂xk

)
dSdt

︸ ︷︷ ︸
S.I_10

−cb2
σ

∫
Ts

∫
∂Ω

∂ (ρν̃aν̃)

∂xk
nk
δν̃

δbi
dSdt

︸ ︷︷ ︸
S.I_11

(4.2.6)

For the differentiation of the source terms, the following definitions are used

C1 = P
(
S̃, fv2

) [
P (fv2 , χ) + P (fv2 , fv1)P (fv1 , χ)

]
C2 =

{
0 , for r > 10

P (fw, g)P (g, r)
(
ν̃
∆

)2 , else
C3 = C2P

(
r, S̃
)
, C4 = C2P (r, ν̃) , C5 = C2P (r,∆)

C6 =
[
−cb1 (1− ft2) ν̃ +

cw1

Re0
C3

]
C7 =

{
cb1

[
S̃ν̃ − 1

Re0 κ2

(
ν̃
∆

)2
]}
P (ft2 , χ)

(4.2.7)

Then, the differentiation of the source terms leads to

ISA_src =

∫
Ts

∫
Ω

ν̃a

[
−
(
cw1fw −

cb1
κ2
ft2

)( ν̃
∆

)2
]
∂ρ

∂U`

δU`
δbi

dΩdt

︸ ︷︷ ︸
FAE

+

∫
Ts

∫
Ω

ν̃a

[
−cb1 (1− ft2) S̃ + 2

(
cw1fw −

cb1
κ2
ft2

)( ν̃

∆2

)]
δµ̃

δbi
dΩdt

︸ ︷︷ ︸
FAE_SA

−2

∫
Ts

∫
Ω

ρν̃a

(
cw1fw −

cb1
κ2
ft2

) ν̃2

∆3

δ∆

δbi
dΩdt+ cw1

∫
Ts

∫
Ω

ρν̃aC5
δ∆

δbi
dΩdt

︸ ︷︷ ︸
FAE_DISTANCE

+

∫
Ts

∫
Ω

(cw1 ν̃aC4 + ν̃aC7P (χ, ν̃))
δµ̃

δbi
dΩdt

︸ ︷︷ ︸
FAE_SA

+

∫
Ts

∫
Ω

ρν̃aC6
δS̃

δbi
dΩdt

︸ ︷︷ ︸
IS̃

(4.2.8)

−
∫
Ts

∫
Ω

{
ν̃(cw1 ν̃aC4 + ν̃aC7P (χ, ν̃))− ρν̃aC7P (χ, ν)P (ν, ρ)

} ∂ρ

∂U`

δU`
δbi

dΩdt

︸ ︷︷ ︸
FAE
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where

IS̃ =

∫
Ts

∫
Ω

ρν̃aC6P
(
S̃, S

) δS
δbi

dΩ

︸ ︷︷ ︸
IVORTICITY

+

∫
Ts

∫
Ω

ν̃aC6

[
P
(
S̃, ν̃

)
+ C1P (χ, ν̃)

] δµ̃
δbi

dΩdt

︸ ︷︷ ︸
FAE_SA

+

∫
Ts

∫
Ω

ρν̃aC6P
(
S̃,∆

) δ∆
δbi

dΩdt

︸ ︷︷ ︸
FAE_DISTANCE

+

∫
Ts

∫
Ω

ρν̃aC6C1P (χ, ν)P (ν, ρ)
∂ρ

∂U`

δU`
δbi

dΩdt

︸ ︷︷ ︸
FAE

−
∫
Ts

∫
Ω

ν̃ν̃aC6

[
P
(
S̃, ν̃

)
+ C1P (χ, ν̃)

] ∂ρ
∂U`

δU`
δbi

dΩdt

︸ ︷︷ ︸
FAE

(4.2.9)

with

IVORTICITY = −
∫
Ts

∫
Ω

∂

∂x`

[
ρν̃aC6P

(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

]
∂vAm
∂Up

δUp
δbi

dΩdt

︸ ︷︷ ︸
FAE

−
∫
Ts

∫
Ω

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

∂vAm
∂xp

∂

∂x`

(
δxp
δbi

)
dΩdt

︸ ︷︷ ︸
SD

+

∫
Ts

∫
∂Ω

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

n`
δvAm
δbi

dSdt

︸ ︷︷ ︸
S.I_12

(4.2.10)

4.3 Differentiation of the Aeroacoustic Objective Function

To complete the differentiation of Eq. 4.9, the only remaining task is to differentiate
the aeroacoustic objective function, Eq. 4.4 . Doing so, δJ

δbi
reads

δJ

δbi
=

∫
ω

1

|p̂′|

(
p̂′Re

δp̂′Re

δbi
+ p̂′Im

δp̂′Im
δbi

)
dω (4.3.1)
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For the sake of simplicity, hereafter, p̂′(~xr, ω), Ĝ(~xr, ~xs, ω), F̂k(~xs, ω) and Q̂(~xs, ω)
are shorted to p̂′, Ĝ, F̂k and Q̂, respectively. The real and imaginary part of p̂′

can be found based on Eq. 3.1.1.7 . Since the grid does not change at the FW-H
surface location during the optimization, the derivatives of the Green function and
its spatial derivatives as well as those of the surface element dS, w.r.t. bi are zero.
So, variations in the real and imaginary part of p̂′ w.r.t. bi read

δp̂′Re

δbi
=−

∫
f=0

[(
δF̂k
δbi

)
Re

(
δĜ

δxsk

)
Re

−

(
δF̂k
δbi

)
Im

(
δĜ

δxsk

)
Im

]
dS

+

∫
f=0

ω

[(
δQ̂

δbi

)
Re

ĜIm +

(
δQ̂

δbi

)
Im

ĜRe

]
dS

δp̂′Im
δbi

=−
∫
f=0

[(
δF̂k
δbi

)
Re

(
δĜ

δxsk

)
Im

+

(
δF̂k
δbi

)
Im

(
δĜ

δxsk

)
Re

]
dS

−
∫
f=0

ω

[(
δQ̂

δbi

)
Re

ĜRe −

(
δQ̂

δbi

)
Im

ĜIm

]
dS (4.3.2)

Introducing Eq. 4.3.2 to 4.3.1 results to

δJ

δbi
=−

∫
ω

∫
f=0

[
1

|p̂′|

{
p̂′Re

(
δĜ

δxsk

)
Re

+ p̂′Im

(
δĜ

δxsk

)
Im

}(
δF̂k
δbi

)
Re

]
dSdω

−
∫
ω

∫
f=0

[
1

|p̂′|

{
p̂′Im

(
δĜ

δxsk

)
Re

− p̂′Re

(
δĜ

δxsk

)
Im

}(
δF̂k
δbi

)
Im

]
dSdω (4.3.3)

−
∫
ω

∫
f=0

ω
1

|p̂′|

[(
p̂′ImĜRe − p̂′ReĜIm

)(δQ̂
δbi

)
Re

+
(
p̂′ReĜRe − p̂′ImĜIm

)(δQ̂
δbi

)
Im

]
dSdω

In Eq. 4.3.3 , δF̂k
δbi

and δQ̂
δbi

include derivatives of the flow variables w.r.t. bi in the
frequency domain. These should be expressed in the time domain to contribute
to the adjoint flow equations. To do so, the Fourier transformation needs to be
included in Eq. 4.3.3 , subtracting the time–averaged value of Fk and Q from their
instantaneous values, along with a multiplication with a Hanning window H(t)
before transforming them into the frequency domain. The Fourier transformation
for an arbitrary signal s(t) is performed as follows
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ŝ(ω) =
1

TO

∫
TO

H(t)
[
s(t)− 1

TO

∫
TO

s(t)dt
]
e−2iπωtdt (4.3.4)

where TO is the optimization time window during which Fk and Q are computed
and stored. In practice, TO is a part of Ts. For example, in periodic flows, the
transient phase is included in Ts though excluded from TO.

Including Eq. 4.3.4 into Eq. 4.3.3 and permuting time and frequency inte-
grals, δJ

δbi
reads:

δJ

δbi
= −

∫
TO

∫
f=0

[
Ak
δFk
δbi

+B
δQ

δbi

]
dSdt (4.3.5)

with

Ak =
1

TO

{∫
ω

[
p̂′Re

|p̂′|

(
δĜ

δxsk

)
Re

+
p̂′Im
|p̂′|

(
δĜ

δxsk

)
Im

]
[H(t) cos(2πωt)−Hc(ω)] dω

+

∫
ω

[
p̂′Re

|p̂′|

(
δĜ

δxsk

)
Im

− p̂′Im
|p̂′|

(
δĜ

δxsk

)
Re

]
[H(t) sin(2πωt)−Hs(ω)] dω

}
B =

1

TO

{∫
ω

ω

(
p̂′Im
|p̂′|

ĜRe −
p̂′Re

|p̂′|
ĜIm

)
[H(t) cos(2πωt)−Hc(ω)] dω

+

∫
ω

ω

(
p̂′Im
|p̂′|

ĜIm −
p̂′Re

|p̂′|
ĜRe

)
[H(t) sin(2πωt)−Hs(ω)] dω

}
(4.3.6)

Hc(ω) =
1

TO

∫
TO

H(t) cos(2πωt)dt

Hs(ω) =
1

TO

∫
TO

H(t) sin(2πωt)dt

Equation 4.3.5 contains a double time/surface integral over the FW-H surface.
In order to eliminate the expensive derivatives of the flow variables w.r.t. bi, when
solving the adjoint equations, these terms contribute as sources in the cells lying
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along the FW-H surface and their neighbors. Derivatives of Fk and Q w.r.t. bi read

δFk
δbi

=

[
δkj(γ − 1)|~v|2

2
− vjvk

]
nFWH
j︸ ︷︷ ︸

CFWH1
k

δU1

δbi
+ δkj(γ − 1)

δU5

δbi
nFWH
j

+
[
(vk − 2v∞k)n

FWH
m + vjn

FWH
j δkm − δkj(γ − 1)nFWH

j vAm
]︸ ︷︷ ︸

CFWH2
km

δUm+1

δbi
− δτkj

δbi
nFWH
j

δQ

δbi
=
δUk+1

δbi
nFWH
k

(4.3.7)
where

δτkj
δbi

nFWH
j =− (µ+ µt)

∂
(
vAk
ρ

)
∂xj

+
∂
(
vAj
ρ

)
∂xk

− 2

3
δkj

∂
(
vAm
ρ

)
∂xm

nFWH
j︸ ︷︷ ︸

EFWH1
k

δU1

δbi

+ (µ+ µt)

∂
(

1
ρ

)
∂xi

nFWH
i δkm +

∂
(

1
ρ

)
∂xk

nFWH
m −

2

3

∂
(

1
ρ

)
∂xm

nFWH
k


︸ ︷︷ ︸

EFWH2
km

δUm+1

δbi
(4.3.8)

−(µ+ µt)

ρ

[
vAk n

FWH
m + vAj n

FWH
j δmk −

2

3
nFWH
k vAm

]
∂

∂xm

(
δU1

δbi

)
︸ ︷︷ ︸

IFWH_vis1

+
(µ+ µt)

ρ

[
nFWH
j δkm + nFWH

m δkj −
2

3
nFWH
k δmj

]
∂

∂xj

(
δUm+1

δbi

)
︸ ︷︷ ︸

IFWH_vis2

+
τkj

µ+ µt
nFWH
j [P (µt, µ̃) + P (µt, fv1)P (fv1 , χ)P (χ, µ̃)]︸ ︷︷ ︸

EFWH3
k

δµ̃

δbi

The last two terms in Eq. 4.3.8 include the spatial gradient of δ~U
δbi

requiring the
application of the Green-Gauss theorem to the finite volumes formed around any
node P on the FW-H surface. For such a node, the spatial gradient of any variable
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Φ can be obtained by

∂Φ

∂xj
' 1

ΩP

∫
ΩP

∂Φ

∂xj
dΩP =

1

ΩP

∫
∂ΩP

Φn̂jd(S) ' 1

ΩP

ΦPQlnPQlj (4.3.9)

where ΩP is the area/volume of the finite volume formed around P , l = 1, ...,W
with W being the number of the neighbors Ql of P and nPQlj is the jth component
of the normal vector with magnitude equal to the length of the edge shared by the
finite volumes of P and Ql. ΦPQl is approximated by ΦPQl = ΦP+ΦQl

2
. Using Eq.

4.3.9 , terms IFWH_vis1 and IFWH_vis2 become

IFWH_vis1 = −(µ+ µt)

2ρΩP

[
vAk n

FWH
m + vAj n

FWH
j δmk −

2

3
nFWH
k vAm

](
δU1

δbi

)Ql
nPQlm

IFWH_vis2 = +
(µ+ µt)

2ρΩP

[
nFWH
j δkm + nFWH

m δkj −
2

3
nFWH
k δmj

](
δUm+1

δbi

)Ql
nPQlj

(4.3.10)

Finally, the variation in the objective function can be written as

δJ

δbi
= −

∫
TO

∫
f=0

(SFWH
l + SQ_FWH

l )
δUl
δbi

dSdt

︸ ︷︷ ︸
FAE

−
∫
TO

∫
f=0

SSA_FWH δµ̃

δbi
dSdt

︸ ︷︷ ︸
FAE_SA

(4.3.11)

where SFWH
l , SSA_FWH and SQ_FWH

l appear as three sets of source terms, with the first
two valid on the finite volumes formed around the FW-H surface nodes and the
latter valid at the neighbors of the FW-H nodes; these are given by

SFWH =


(CFWH1
k − E FWH1

k )Ak
(CFWH2
k1 − E FWH2

k1 )Ak + nFWH
1 B

(CFWH2
k2 − E FWH2

k2 )Ak + nFWH
2 B

(CFWH2
k3 − E FWH2

k3 )Ak + nFWH
3 B

(γ − 1)nFWH
k Ak

 (4.3.12)
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SQ_FWH =



{
∑

∀P∈N (Q)

(µ+µt)
2ρΩP

(
−vAk nFWH

m − vAj nFWH
j δmk + 2

3
nFWH
k vAm

)
nPQm }Ak

{
∑

∀P∈N (Q)

(µ+µt)
2ρΩP

(
nFWH
j δk1 + nFWH

1 δkj − 2
3
nFWH
k δ1j

)
nPQj }Ak

{
∑

∀P∈N (Q)

(µ+µt)
2ρΩP

(
nFWH
j δk2 + nFWH

2 δkj − 2
3
nFWH
k δ2j

)
nPQj }Ak

{
∑

∀P∈N (Q)

(µ+µt)
2ρVP

(
nFWH
j δk3 + nFWH

3 δkj − 2
3
nFWH
k δ3j

)
nPQj }Ak

0


(4.3.13)

SSA_FWH = E FWH3
k Ak (4.3.14)

where P ∈ N (Q) is any FW-H node connected with Q by an edge. SQ_FWH is zero at
nodes that are not neighbor to any FW-H node; SFWH and SSA_FWH are non–zero only
for the nodes along the FW-H surface, Fig. 4.1.

Figure 4.1: Schematic of the finite volume formed around node P , located on the
permeable FW-H surface. nFWH

k are pointing outwards the FW-H surface. SFWH and
SSA_FWH are non–zero only at Q1, P and Q4, while SQ_FWH is non–zero for all nodes except
Z which is not neighbor to any FW-H node.

4.4 Field Adjoint Equations

So far, all terms in Eq. 4.9 are differentiated. The next step is to merge all
terms denoted by FAE and setting them to zero, which gives rise to the mean flow
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field adjoint PDEs. Similarly, terms denoted as FAE_SA vanish, resulting to the
adjoint SA PDE. The FAE_DISTANCE terms are either computed directly by the
parameterization and mesh morphing technique (assuming that the distance of a
particular node from the wall is always measured from the same closest to this
node point on the wall) or included into the adjoint distance equation (by also
differentiating the Eikonal equation) [102].

− ∂Ψm

∂t
− Anmk

∂Ψn

∂xk
−Km + Sadj

m +KSA
m − SFWH

m − SQ_FWH
m = 0 (4.4.1)

where terms Km, Sadj
m and KSA

m read

Km = (
∂τadj

kq

∂xk
− τkq

∂Ψ5

∂xk
)
∂vAq
∂Um

+
∂qadj

k

∂xk

∂T

∂Um
(4.4.2)

Sadj
m = ρεn`kΨn+1ω`

∂vAk
∂Um

+ εn`kΨn+1ω`v
A
k

∂ρ

∂Um
(4.4.3)

KSA
m = KSA,ρ

m

∂ρ

∂Um
+KSA,vAk

m
∂vAk
∂Um

(4.4.4)

with

KSA,ρ
m = − ν̃a

σ

{
∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
+

1

σ

∂(ρν̃a)

∂xk

∂ν̃

∂xk
P (ν, ρ)

− 1

σ

ν̃

ρ

(
∂ (ρν̃a)

∂xk

∂ν̃

∂xk
(1 + cb2)−

∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ (ρν̃a)

∂xk

})
− cb2

σ

ν̃

ρ

{
ρν̃a

∂2ν̃

∂x2
k

+
∂

∂xk

[
∂ (ν̃aµ̃)

∂xk

]}
− ν̃a

(
cw1fw −

cb1
κ2
ft2

)( ν̃
∆

)2

−
{
ν̃(cw1 ν̃aC4 + ν̃aC7P (χ, ν̃))− ρν̃aC7P (χ, ν)P (ν, ρ)

}
+ ρν̃aC6C1P (χ, ν)P (ν, ρ)− ν̃ν̃aC6{P

(
S̃, ν̃

)
+ C1P (χ, ν̃)}

KSA,vAk
m = −ρν̃ ∂ν̃a

∂xk
− ∂

∂x`

[
ρν̃aC6P

(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

]

Similarly, the field adjoint equation for the Spalart-Allmaras model reads

− ∂ν̃a
∂t
− ∂ν̃a
∂xk

vRk + GSA,diff + GSA,src + Gµt ∂µt
∂ν̃
− SSA_FWH = 0 (4.4.5)



54 4. The Continuous Adjoint Method for Aeroacoustic Shape Optimization

where

GSA,diff =
1

σρ

(
∂ (ρν̃a)

∂xk

∂ν̃

∂xk
(1 + cb2)−

∂

∂xk

{
[ν + (1 + cb2) ν̃]

∂ (ρν̃a)

∂xk

})
+
cb2
ρσ

{
ρν̃a

∂2ν̃

∂x2
k

+
∂

∂xk

[
∂ (ν̃aµ̃)

∂xk

]}
GSA,src = ν̃a

[
−cb1 (1− ft2) S̃ + 2

(
cw1fw −

cb1
κ2
ft2

)( ν̃

∆2

)]
+ {cw1 ν̃aC4 + ν̃aC7P (χ, ν̃)}+ ν̃aC6{P

(
S̃, ν̃

)
+ C61P (χ, ν̃)}

Gµt =
τkm

µ+ µt
[P (µt, µ̃) + P (µt, fv1)P (fv1 , χ)P (χ, µ̃)] (

∂Ψm+1

∂xk
+
∂Ψ5

∂xk
vAm +

Cp
Prt

∂Ψ5

∂xk
)

The numerical solution of Eqs. 4.4.5 and 4.4.1 is similar to the procedure
used for the flow equations. However, the time integration of these two equa-
tions has to be performed backward in time. This calls for the storage of the
computed unsteady flow field, requiring considerable memory particularly for in-
dustrial cases. Herein, depending on the unsteady nature of the problem, two
different storage and solution methods are used. For periodic cases with a known
period (apriori) which is not changing during the optimization (such as a plung-
ing or pitching airfoil), the flow field over a single period of the phenomena is
stored and, the unsteady adjoint equations are repeatedly integrated backwards
over the single period, until a periodic adjoint solution be established. On the
other hand, if the period of the case changes during the optimization (such as a
vortex shedding cylinder), the flow field over the whole solution time window is
stored (including the transient phase) and unsteady adjoint equations are solved
backwards during this time window.

4.5 Adjoint Boundary Conditions

So far, all volume integrals arising from the differentiation of Jaug, have been
treated and the remaining terms are the surface integrals. These integrals are
marked with S.I_1-S.I_12 in Eq. 4.1.3 to Eq. 4.2.10 . The surface integrals are
split into two groups depending on whether they include variations in the geomet-
ric quantities or flow variables w.r.t. the design variables. The former contribute
into sensitivity derivatives while the latter must be eliminated, giving rise to the
adjoint boundary conditions. However, the flow boundary conditions must also
be taken into account, meaning that variations in the imposed quantities using
Dirichlet condition are zero. The remaining flow quantity variations are grouped
together and their multipliers are set to zero.
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When the steady equations are solved in a relative reference frame, the ad-
joint boundary conditions can be found in the PhD Thesis of K. Tsiakas [132].
Therefore, herein, the adjoint boundary conditions are given for an unsteady case
without a moving frame i.e. vA = vR. Boundary conditions are given for wall, split
to slip or no-slip, and far–field boundaries.

During the development, terms that contribute to the adjoint boundary condi-
tion and sensitivity derivative formula are marked by ABC and SD, respectively,
while those being zero are eliminated using an oblique Strikethrough.

4.5.1 Slip Wall Boundaries

For slip walls, the flow boundary conditions are no-penetration (vAmnm = vgridk nk)
together with an adiabatic thermal condition (qknk = 0). If the flow is turbulent, a
mirror condition for ν̃ is imposed, namely ∂ν̃

∂xk
nk = 0. These are taken into account

when developing the adjoint boundary conditions.
Starting from the first two surface integrals, S.I_1 and S.I_2 read

S.I_1 = −
∫
Ts

∫
SSlip

Ψn
δUn
δbi

vgridm nmdSdt

= −
∫
Ts

∫
SSlip

vgridm nm(Ψ1 + vAmΨm+1 +
|vA|2

2
Ψ5)

δρ

δbi
dSdt

−
∫
Ts

∫
SSlip

vgridm nm
{
ρ(Ψk+1 + vAk Ψ5)

δvAk
δbi

+
1

γ − 1
Ψ5

δp

δbi

}
dSdt

S.I_2 =

∫
Tsol

∫
SSlip

Ψn
δf invnk

δbi
nkdSdt

= −
∫
Ts

∫
SSlip

Ψnf
inv
nk

δnk
δbi

dSdt+

∫
Ts

∫
SSlip

vgridm nm(Ψ1 + vAmΨm+1 +
|vA|2

2
Ψ5)

δρ

δbi
dSdt

+

∫
Ts

∫
SSlip

{
vgridm nmρ(Ψk+1 + vAk Ψ5)

δvAk
δbi

+ (vgridm nm
γ

γ − 1
Ψ5 + Ψm+1nm)

δp

δbi

}
dSdt

+

∫
Ts

∫
SSlip

(Ψ1ρ+ Ψkρv
A
k + Ψ5ρht)

δ(vgridm nm)

δbi
dSdt+

∫
Ts

∫
SSlip

pΨk+1
δnk
δbi

dSdt
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Variation in density and velocities cancel by adding S.I_1 and S.I_2. Therefore

S.I_1 + S.I_2 = −
∫
Ts

∫
SSlip

{
(Ψnf

inv
nk − pΨk+1)

δnk
δbi
− (Ψ1ρ+ Ψkρv

A
k + Ψ5ρht)

δ(vgridm nm)

δbi

}
dSdt

︸ ︷︷ ︸
SD

+

∫
Ts

∫
SSlip

(vgridm nmΨ5 + Ψm+1nm)
δp

δbi
dSdt

︸ ︷︷ ︸
ABCp

(4.5.1.1)

The S.I_3 term is expanded as follows

S.I_3 = −
∫
Ts

∫
SSlip

Ψn
δf visnk

δbi
nkdSdt = −

∫
Ts

∫
SSlip

Ψn
δ(f visnk nk)

δbi
dSdt

︸ ︷︷ ︸
S.I_3Mom&Ener

+

∫
Ts

∫
SSlip

Ψnf
vis
nk

δnk
δbi

dSdt

︸ ︷︷ ︸
SD

(4.5.1.2)

where

S.I_3Mom&Ener =−
∫
Ts

∫
SSlip

Ψm+1nm
δ

δbi
(τk`nkn`) dSdt

︸ ︷︷ ︸
ABC(τk`nkn`)

−
∫
Ts

∫
SSlip

Ψm+1τk`nkn`
δ (nm)

δbi
dSdt

︸ ︷︷ ︸
SD

���
���

���
���

���
��

−
∫
Ts

∫
SSlip

Ψm+1
δ

δbi
(τk`nkt`tm) dSdt

���
���

���
���

���
��

−
∫
Ts

∫
SSlip

Ψ5
δ

δbi

(
vA` τkmnktmtl

)
dSdt−

∫
Ts

∫
SSlip

Ψ5v
grid
` n`

δ

δbi
(τkmnknm) dSdt

︸ ︷︷ ︸
ABC(τmknknm)

−
∫
Ts

∫
SSlip

Ψ5τkmnknm
δ

δbi

(
vgrid` n`

)
dSdt

︸ ︷︷ ︸
SD

���
���

���
���

�
−
∫
Ts

∫
SSlip

Ψ5
δ

δbi
(qknk) dSdt

(4.5.1.3)

S.I_4 reads
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S.I_4 =

∫
Ts

∫
SSlip

τ
adj
mknk

δvAm
δbi

dSdt =

∫
Ts

∫
SSlip

τ
adj
k` nkn`

δ
(
vgridm nm

)
δbi

dSdt

︸ ︷︷ ︸
SD

−
∫
Ts

∫
SSlip

τ
adj
k` nkn`v

A
m

δnm
δbi

dSdt

︸ ︷︷ ︸
SD

−
∫
Ts

∫
SSlip

τ
adj
k` nkt`

δ
(
vAmtm

)
δbi

dSdt

︸ ︷︷ ︸
ABC(vAmtm)

−
∫
Ts

∫
SSlip

τ
adj
k` nkt`v

A
m

δtm
δbi

dSdt

︸ ︷︷ ︸
SD

(4.5.1.4)

Term S.I_5 is zero due to the adiabatic condition on the solid walls.

The sum of S.I_6 and S.I_7 yields

S.I_6 + S.I_7 =

∫
Ts

∫
SSlip

ν̃aµ̃
δ(vgridm nm)

δbi
dsdt−

∫
Ts

∫
SSlip

ν̃aµ̃v
A
k

δnk
δbi

dsdt

︸ ︷︷ ︸
SD

(4.5.1.5)

The rest of the terms are analyzed as follows

S.I_8 =
1

σ

∫
Ts

∫
SSlip

ρν̃a [ν + (1 + cb2) ν̃]
∂ν̃

∂xk

δnk
δbi

dSdt

︸ ︷︷ ︸
SD

((((
(((

((((
(((

((((
(((

(((

− 1

σ

∫
Ts

∫
SSlip

ρν̃a
δ

δbi

{
[ν + (1 + cb2) ν̃]

∂ν̃

∂xk
nk
}

dSdt (4.5.1.6)

S.I_9 + S.I_11 =

∫
Ts

∫
SSlip

{ 1

σ

∂ (ρν̃a)

∂xk
[ν + (1 + cb2) ν̃]− cb2

σ

∂ (ρν̃aν̃)

∂xk

}
nk
δν̃

δbi
dSdt

︸ ︷︷ ︸
ABCν̃

(4.5.1.7)



58 4. The Continuous Adjoint Method for Aeroacoustic Shape Optimization

S.I_10 =

���
���

���
���

���
�

cb2
σ

∫
Ts

∫
SSlip

ν̃aµ̃
δ

δbi

(
∂ν̃

∂xk
nk

)
dSdt−cb2

σ

∫
Ts

∫
SSlip

ν̃aµ̃
∂ν̃

∂xk

δnk
δbi

dSdt

︸ ︷︷ ︸
SD

(4.5.1.8)

S.I_12 =

∫
Ts

∫
SSlip

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

nlnm
δ(vgrids ns)

δbi
dSdt

︸ ︷︷ ︸
SD

+

∫
Ts

∫
SSlip

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

nlv
grid
s ns

δnm
δbi

dSdt

︸ ︷︷ ︸
SD

+

∫
Ts

∫
SSlip

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

nltm
δ(vAs ts)

δbi
dSdt

︸ ︷︷ ︸
ABC(vAs ts)

+

∫
Ts

∫
SSlip

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

nlv
A
s ts

δtm
δbi

dSdt

︸ ︷︷ ︸
SD

(4.5.1.9)

To eliminate of both ABCp and ABC(τk`nkn`) the following adjoint boundary
condition

vgridm nmΨ5 + Ψm+1nm = 0 (4.5.1.10)

must be imposed. Terms ABC(vAmtm) and ABCν̃ are eliminated by the following
adjoint boundary conditions

ρν̃aC6P
(
S̃, S

) 1

S
εk`mεkqr

∂vAr
∂xq

nltm − τadj
k` nkt` = 0 (4.5.1.11)
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{ 1

σ

∂ (ρν̃a)

∂xk
[ν + (1 + cb2) ν̃]− cb2

σ

∂ (ρν̃aν̃)

∂xk

}
nk = 0 (4.5.1.12)

4.5.2 No-Slip Wall Boundaries

Along no-slip walls, vAm = vgridm and an adiabatic thermal condition (qknk = 0) are
applied. The boundary condition imposed for the Spalart-Allmaras variable is
ν̃ = 0. S.I_1 and S.I_2 are expanded similarly to the slip-wall.

The S.I_3 integrals are expanded as follows

S.I_3 = −
∫
Ts

∫
SNoSlip

Ψn
δ(f visnk nk)

δbi
dSdt

︸ ︷︷ ︸
S.I_3Mom&Ener

+

∫
Ts

∫
SNoSlip

Ψnf
vis
nk

δnk
δbi

dSdt

︸ ︷︷ ︸
SD

(4.5.2.1)

where
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Analyzing S.I_4, we get

S.I_4 =

∫
Ts

∫
SNoSlip

τ
adj
mknk

δvgridm

δbi
dSdt

︸ ︷︷ ︸
SD

(4.5.2.3)

Term S.I_5 is zero due to the adiabatic condition on the wall and term S.I_6 +
S.I_7 is expanded the same was as for the slip-wall. The rest of the terms read
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S.I_12 =
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εk`mεkqr
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∂xq
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δvgridm

δbi
dSdt
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Collecting and eliminating the ABCp terms, the following condition

Ψm+1nm + Ψ5v
grid
m nm −

1

σ
ρν̃a

∂ν̃

∂xm
nmP (ν, ρ)P (ρ, p) = 0 (4.5.2.9)

results. Elimination of the ABC(τ`knkn`) and ABC(τ`knkt`) terms leads to

Ψm+1nm + Ψ5v
grid
m nm = 0 (4.5.2.10)

Ψm+1tm + Ψ5v
grid
m tm = 0 (4.5.2.11)

Elimination of terms ABC
(
∂ν̃
∂xk

nk

)
leads to the following adjoint condition

ρν̃a [ν + (1 + cb2) ν̃] = 0 (4.5.2.12)

4.5.3 Far–Field Boundaries

Along the far–field, it is assumed that the total variation in the viscous stresses
and heat flux is zero. Hereby, the surface integrals that arise from the differenti-
ation of the viscous terms are neglected there. In addition, the far–field boundary
is fixed during the optimization, resulting to zero variation in the geometric quan-
tities there.

Two sets of adjoint far–field conditions are derived depending on the far–field
flow condition (standard or non–reflecting). In the standard method, the flow far–
field condition is treated as inlet and outlet. In the following subsections, two sets
of adjoint boundary conditions are derived.

4.5.3.1 Far–Field Boundaries as Inlet/Outlet

Herein, the inlet and outlet conditions are presented for subsonic cases. A set
of local flow quantities (V loc

` , ` = 1, . . . , 5) is defined at these boundaries. For
subsonic inlet boundaries (SIsub ) the value of a one flow quantity, say V loc

5 , is
extrapolated from the interior domain while, for the rest, a Dirichlet condition is
imposed, meaning δV loc

`

δbi
= 0, ` = 1, . . . , 4. As a result, term S.I_2 leads to
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S.I_2 =
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(4.5.3.1)

Eliminating term ABCV loc
5 leads to the following expression

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

5

= 0 (4.5.3.2)

The rest of the terms vanish by taking the Dirichlet boundary condition imposed
on ν̃ at the inlet boundaries into account and imposing ν̃a = 0.

For a subsonic outlet (SOsub ), V loc
5 is imposed by a Dirichlet condition, resulting

to δV loc
5

δbi
= 0. V loc

` , (` = 1, . . . , 4) are extrapolated from the flow domain. Taking this
into account, term S.I_2 reads
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(4.5.3.3)

Eliminating the ABCV loc
` , (` = 1, . . . , 4) terms requires the following conditions

Ψnnk
∂f invnk

∂Um

∂Um
∂V loc

`

= 0 (4.5.3.4)

A zero Neumann condition is imposed on ν̃, meaning that
δ

δbi

(
∂ν̃

∂xk
nk

)
= 0. The

remaining surface integrals eliminated by setting the multiplier of δν̃
δbi

equal to
zero.

4.5.3.2 Far–Field Boundaries, Non–Reflecting

In case of using a non–reflecting far–field boundary condition for flow solution,
the far–field adjoint conditions are derived based on the non-reflecting boundary
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conditions presented in [130] for hyperbolic PDEs. For simplicity, let us assume
that the far–field boundary is aligned with the x–direction; thus, y stands for the
normal to the far–field boundary. Field adjoint equation can be re–written as

− ∂Ψm

∂t
− LnpΛpqL

−1
qm

∂Ψn

∂y
= Anm1

∂Ψn

∂x
−Radj

visc,m −Radj
source,m (4.5.3.5)

whereRadj
visc,Radj

source are the adjoint diffusion and source terms, respectively. Anm1,
Anm2 (diagonalized as Anm2 = LnpΛpqL

−1
qm) are the Cartesian components of the

flux Jacobian. Multiplying both sides with Lmk and introducing DΨ̆k = LmkDΨm,
where D refers to any partial derivative, Eq. 4.5.3.5 takes the form

− ∂Ψ̆k

∂t
− λk

∂Ψ̆k

∂y
= Lmk

(
Anm1

∂Ψn

∂x
−Radj

visc,m −Radj
source,m

)
(4.5.3.6)

Based on the sign of the eigenvalues λk (diagonal entries of Λ), the incoming and
outgoing adjoint characteristic variables Ψ̆k are identified. The outgoing ones
contribute to the residuals at the far–field nodes while the incoming ones are set
to zero. The above can readily be generalized for far–field boundaries not aligned
with x.

Once the flow and adjoint fields are obtained, all terms denoted by SD are used
to compute the sensitivity derivatives that are necessary for the G-B optimization.
The CFD–CAA optimization workflow is shown in Fig. 4.2.
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Unsteady CFD solution and com-
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Computation of p′ at the
receiver location, Eq. 3.1.1.7

Computation of the objec-
tive function J , Eq. 4.4
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and SSA_FWH, Eqs. 4.3.12
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tions, Eqs. 4.4.5 and 4.4.1
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sign variables

Updating the geometry
and mesh deformation

Stop

No

Yes

Figure 4.2: Work-flow of the CFD-CAA Optimization. Primal and adjoint parts of the
workflow are in yellow and gray, respectively.



Chapter 5

Verification of the Hybrid CFD-FW-H solver

In this section, two verification cases for the coupled CFD–CAA solver are pre-
sented for 2D and 3D problems. They both refer to the sound field created by a
monopole source. The purpose of these test cases are to verify the implementa-
tion of the FW-H analogy and its differentiation. Since the flow field is given by an
analytical solution these test cases provide the opportunity of exclusively testing
the developed acoustic software. Validation of the software is also included in the
next chapter where the FW-H results are compared to other results computed by
just numerically integrating the URANS equations.

5.1 2D Monopole in uniform flow

In this section, the implementation of the FW-H integral is verified in a 2D prob-
lem. To do so, results of the FW-H integral, Eq. 3.1.1.7, are compared with the
analytical solution of the sound field generated by a monopole source in a uni-
form flow. Additionally, in order to verify the part of the code that differentiates
the FW-H integral, derivatives of the objective function, Eq. 4.4 , w.r.t. the coordi-
nates of the monopole source, ~xs, are computed by the code and compared with
the outcome of a central second–order FD based on the analytical solution. The
monopole source is located at the origin of the coordinate system and is exposed
to a uniform flow v∞ along the +x direction. The complex velocity potential of the
case is [83]

φ(~xo, ~xs, ω) =
Ai

4β
exp i(ωt+M∞kx̄1/β

2)H
(2)
0

(
k

β2

√
x̄2

1 + β2x̄2
2

)
(5.1.1)

where x̄1 and x̄2 are the same as in Eq. 3.1.1.9. The perturbation field of flow
variables are obtained from the real parts of

65
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p′ = −ρ0(
∂φ

∂t
+ v∞1

∂φ

∂x
), v′ = ∇φ, ρ′ = p′/c∞

2 (5.1.2)

These variables are used to compute the flow data on the FW-H surface which
are required to compute Fi and Q in the FW-H integral. In this case, M∞ = 0.6,
A = 0.02 m2/s and ω = 0.162 rad/s. The FW-H surface is a circle with radius
4m having its center in the center of the coordinate and 150 nodes on it. Fig.5.1
compares the time history of the pressure fluctuations p′ for a receiver located at
~xo = (500m, 0m) and the directivity plot of the root mean squared (r.m.s.) of p′ at
the radius of R = 500m with their analytical solution. The results of the FW-H
integral exactly match the analytical solution. This is a convincing verification
of the implementation of the 2D FW-H formulation, in problems with a uniform
mean flow. The derivatives w.r.t. to the source coordinates are also compared in
Fig. 5.2. There is a very good agreement between FDs of the analytical solution
and the differentiation of the FW-H. Being a saddle point, the derivative w.r.t. xs2
is zero.
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Figure 5.1: 2D Monopole in uniform flow: (a) Comparison of the time history of pres-
sure fluctuation within a period, for a receiver located at (500m, 0m). (b) Comparison
of the directivity plots at R = 500m.

5.2 3D Monopole in uniform flow

This section is to verify the implementation of the FW-H analogy for 3D problems.
To do so, results of the FW-H integral are compared to a well-known analytical
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Figure 5.2: 2D Monopole in uniform flow: Comparison of the derivatives of the acous-
tic objective function w.r.t. to the three coordinates (xsi , i = 1, 2) of the monopole
computed by the differentiation of the FW-H and FDs applied to the closed–form ex-
pressions.

solution of the sound field generated by a monopole source in a uniform 3D flow.
Similarly to the 2D case in section 5.1, the stationary monopole source is located
at the origin of the coordinate system and there is a uniform flow v∞ along the +x
direction. The complex velocity potential of the case is

φ(~xo, ~xs, ω) = A exp(iωt)
exp(−ikr+)

4πr∗
(5.2.1)

where r+ and r∗ are the same as in Eq. 3.1.2.2. The perturbation fields of flow
variables are computed the same as Eq. 5.1.2 . In this case, M∞ = 0.5, A = 0.004
m2/s and ω = 3.095 rad/s. The FW-H surface is a cube extending from −0.5m
to 0.5m in all three direction, with 20 nodes on each edge (400 on each face). A
sketch of the case is shown in Fig. 5.3. Fig.5.4a compares the time history of p′

at a receiver located at ~xo = (10m, 0m, 10m). The results of the FW-H integral
exactly match the analytical solution. This is a convincing verification of the
implementation of the 3D FW-H formulation, in problems with a uniform mean
flow. The derivatives w.r.t. to the source coordinates are compared in Fig. 5.4b.
The agreement between FDs of the analytical solution and the differentiation of
the FW-H is very good. Since this is a saddle point, the derivative w.r.t. xs2 is zero.
The analytical derivatives can be found in Appendix B.
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Figure 5.3: 3D Monopole in uniform flow: Schematic illustration of the monopole
source, the FW-H surface and the receiver.
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Figure 5.4: 3D Monopole in uniform flow: (a) Comparison of the time history of pres-
sure fluctuation within a period, for a receiver located at (10m, 0m, 10m). (b) Compar-
ison of the derivatives of the acoustic objective function w.r.t. to the three coordinates
(xsi , i=1, 2, 3) of the monopole computed by the differentiation of the FW-H and FDs
applied to the closed–form expressions.



Chapter 6

Aeroacoustic (& Aerodynamic)
Optimization Cases

In this chapter, the continuous adjoint technique (developed in Chapter 4) sup-
ported by shape parameterization methods used to perform gradient-based meth-
ods (such as steepest-descent) for the aeroacoustic shape optimization. Since the
accuracy of flow data on the FW-H surface affects the application of the FW-H
analogy, the implementation of the FW-H analogy is verified, in most of the cases
in this chapter, by comparing its results to those achieved by post–processing the
flow quantities’ time–series computed from the numerical solution of the URANS
equations.

6.1 Unconstrained Aerodynamic & Aeroacoustic Optimization

of a Pitching NACA12 Airfoil - Inviscid Flow

This test case is concerned with a NACA12 isolated airfoil which is pitching about
the quarter–chord point in an inviscid flow, with a 2 deg amplitude and frequency
of f = 10Hz. The free–stream Mach number and flow angle are M = 0.6 and 0
deg, respectively. These correspond to a reduced frequency of ωred = 2πfC

2v∞
= 0.153

where C is the airfoil chord length. A 2D unstructured grid which extends 50
chords away from the airfoil’s mid–chord is used, with 51000 nodes overall, among
which 202 nodes on the airfoil contour. The airfoil is parameterized using two
Bezier curves with 8 Control Points (CPs) each, Fig. 6.1a. The simulation computes
the solution at 40 time steps per period of pitching, with 200 pseudo–time steps
per time step, which is sufficient for the residuals to drop at least 6 orders of
magnitude at each time step. The numerical solution of a period takes ∼ 9 min
on a single NVIDIA Tesla K40 GPU. After the first 3 transient periods, the monopole
and dipole source terms of the FW-H analogy are computed and stored during the
4th period. These data are then used to compute the FW-H integral.
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Both aerodynamic and aeroacoustic shape optimizations are performed in this
case. Since the exact period of pitching is known a priori, the primal fields are
stored only during the last (4th) period in order this to be used for the unsteady
adjoint solution. For both optimizations, the adjoint solver runs for 4 periods
backwards in time to reach a periodic state. Since 200 pseudo–time steps are per-
formed within each adjoint time step, the adjoint solution takes almost the same
time as the primal. An algebraic–based model is used for the grid displacement
due to both pitching motion and optimization, and the displacement terminates
at R = 3C. In what follows, the results of aerodynamic and aeroacoustic opti-
mizations are separately presented in two subsections.

6.1.1 Aerodynamic Optimization

In order to verify the implementation of unsteady continuous adjoint solver, a
shape optimization of a pitching isolated NACA12 for time–averaged lift force is
performed. Figure 6.1b compares the SDs, obtained by the adjoint solver w.r.t.
those computed by second–order accurate central FDs. For the latter, the CPs are
perturbed by 10−7C. SDs from the two methods are in an excellent agreement.
Then, the so–computed adjoint SDs are used in shape optimization. Figure 6.2a
shows how the lift force has increased from its initial value which is zero (a sym-
metric airfoil pitching around zero angle of attack) after 4 optimization cycles, by
changing the shape basically at the trailing edge, Fig. 6.2b. Since the flow is invis-
cid, the lift force increases almost linearly during the optimization and since there
is no constraint imposed, it was decided to perform only 4 optimization cycles.

6.1.2 Aeroacoustic Optimization

Next, the optimization method is used for aeroacoustic noise reduction. The case
is the same as that about lift maximization while the objective function is defined
by Eq. 4.4. The FW-H surface is placed at R = 4C (outside the grid displacement
zone) from the airfoil mid–chord (0.5C, 0). The receiver is located at 20C under-
neath the leading edge, ~xr = (0,−20C). In order to verify the SDs of the aeroa-
coustic objective function obtained by the unsteady continuous adjoint solver,
they are compared with the outcome of FDs. FDs are performed as in subsection
6.1.1. Figure 6.3a shows that the two methods are in a good agreement.

The so–computed SDs are then used to perform aeroacoustic shape optimiza-
tion. Three different sub-cases are considered here. In Case 1, the whole shape
of the airfoil can be changed during the optimization, while in Case 2 the opti-
mization is allowed to change only the shape of the suction side. In Case 3, the
whole shape of the airfoil, excluding though the trailing edge which is fixed, can
be changed. As illustrated in Fig. 6.3b, after 4 design cycles, the noise objective
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Figure 6.1: Unconstrained Aerodynamic Optimization of a Pitching NACA12 Airfoil -
Inviscid Flow: Results after 4 design cycles. (a) A view of the grid close to the airfoil
and control points of the Bezier curves. FD computations were performed only for
the labeled CPs, colored in red. (b) Comparison of the time–averaged lift sensitivity
derivative computed using the adjoint method and FDs.
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Figure 6.2: Unconstrained Aerodynamic Optimization of a Pitching NACA12 Airfoil
- Inviscid Flow: (a) Evolution of the time–averaged lift coefficient during the first 4
optimization cycles. (b) Baseline and optimized (after 4 cycles) airfoils in black and
red, respectively.

function, Eq. 4.4 is reduced by about 2%, 8% and 20%, in Cases 3, 2 and 1,
respectively. This is expected as the optimization gain increases by increasing the
degrees of freedom. Also, the reduction in the objective value results in pressure
fluctuations with a lower amplitude, as it can be seen in Fig. 6.4a, with the lowest
amplitude occurring in Case 1. Comparison of the sound directivity plots of the
baseline and optimized airfoil of Case1, in Fig. 6.4b, shows an omni–directional
sound reduction. Figure 6.5 compares the baseline airfoil with the optimized
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shapes. It can be seen that shapes optimized for noise become slightly thinner
close to the leading edge and much thicker at the trailing edge (apart, of course,
from Case 3 in which the trailing edge is not allowed to change). This is, of course,
the outcome of an optimization for the selected receiver’s location. The effect of
the trailing edge being the main mechanism in noise generation, reflects on the
difference between the outcomes of Cases 2 and 3; Case 3 by keeping the trailing
edge fixed during the optimization, resulted to a lower noise drop even though
a great part of the airfoil can be reshaped. Regarding lift, the baseline airfoil
has a zero lift coefficient due to its symmetric shape and the pitching around the
horizontal axis. The time–averaged lift of the noise optimized shape in Case 1
becomes negative and equal to −0.132. The reduced design spaces in Cases 2 and
3 increase the time–averaged lift coefficient to 0.64 and 0.06, respectively.
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Figure 6.3: Unconstrained Aeroacoustic Optimization of a Pitching NACA12 Airfoil -
Inviscid Flow: (a) Comparison of the noise SDs computed using the adjoint to the
hybrid method and FDs. (b) Evolution of the noise objective value during the first 4
optimization cycles.
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Figure 6.4: Unconstrained Aeroacoustic Optimization of a Pitching NACA12 Airfoil -
Inviscid Flow: (a) Time–history of pressure fluctuation in a period for the receiver at
~xr = (0,−20C). (b) Comparison of the directivity plots of p′rms at radius R = 20C,
between the baseline and optimized airfoils.

Figure 6.5: Unconstrained Aeroacoustic Optimization of a Pitching NACA12 Airfoil -
Inviscid Flow: Shape of the baseline (NACA12) and optimized airfoils after 4 optimiza-
tion cycles.

6.2 Lift–Constrained Aeroacoustic Optimization of a Pitching

RAE2822 Airfoil - Inviscid Flow

This test case is based on a RAE2822 isolated airfoil which is pitching about
the quarter–chord point in an inviscid flow. The amplitude and frequency of the
pitching motion is 2 deg and f = 10Hz. The free–stream Mach number and
flow angle are M = 0.6 and 0 deg, respectively. These correspond to a reduced
frequency of ωred = 0.153. A view of the grid and location of the FW-H surface
is shown in Fig. 6.6. The 2D unstructured grid extends 50 chords away from
the airfoil and includes 51000 nodes, among which 202 nodes are located on the
airfoil contour. The FW-H surface is placed at R = 4C from the airfoil mid–chord
(0.5C, 0) (origin) with 151 nodes on it. Each period of pitching is formed by 40 time
steps. 200 pseudo–time steps per time step are performed and this is sufficient
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for the residuals of the primal and adjoint equations to drop by at least 6 orders
of magnitude at each time step.

The numerical solution of a period of either the primal or adjoint problem takes
∼ 9 min on a single NVIDIA Tesla K40 GPU. The numerical solution is carried for
4 periods of pitching, and the FW-H integral is computed by accounting for the
monopole and dipole source terms computed during the 4th period. Only the 4th

period’s flow field is stored and used during the backward in time integration of
the adjoint equations. The adjoint solution is continued for 5 periods to reach a
periodic state. Similar to the previous case, grid displacement for both pitching
and optimization is performed up to R = 3C using an algebraic–based model.

Figure 6.6: Lift–Constrained Aeroacoustic Optimization of a Pitching RAE2822 Airfoil
- Inviscid Flow: A view of the grid close to the location of the FW-H surface, shown in
red, at radius R = 4C.

6.2.1 Comparison Between the Hybrid method and URANS

To verify the developed acoustic tool in this case, a comparison between the hybrid
solver and the outcome of a pure URANS–based aeroacoustic simulation is per-
formed. The directivity pattern of the p′rms at R=9C is plotted in Fig. 6.7 and shows
a very good agreement between results of the unsteady CFD (post–processing of
the computed pressure time–series at grid nodes lying along a circle with R = 9C)
and the application of the FW-H integral on the flow time–series computed on the
FW-H surface.
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Figure 6.7: Lift–Constrained Aeroacoustic Optimization of a Pitching RAE2822 Airfoil
- Inviscid Flow: Comparison of the directivity plots of p′rms at radius R = 9C between
the hybrid method and pure CFD solvers.

6.2.2 Adjoint–Based Aeroacoustic Optimization

In the aeroacoustic shape optimization, the objective function is defined using
Eq. 4.4, integrated over all resolved frequencies. The airfoil pressure and suction
sides are parameterized using two Bezier curves, with 20 CPs each, which are free
to move in the y direction. Since the first and last CPs are fixed, this case has
36 design variables. The receiver is located at ~xo = (0, −20C). In this case, an
equality constraint is imposed on the time–averaged lift so as to respect the initial
lift force during the optimization. This is done using a gradient projection method
with a deferred correction (see Appendix A).

In order to verify the computed SDs of the function of Eq. 4.4 using the
adjoint solver, these are compared with those obtained by second–order accurate
central FDs where CPs were perturbed by 10−7C. Result in Fig. 6.8a shows a good
agreement between the two methods. There are some discrepancies at the CPs
at the trailing and leading edge areas; however, even for those control points, the
SDs obtained by the two methods have the same signs.

Then, the adjoint–based shape optimization takes place. As illustrated in Fig.
6.8b, after 18 design cycles, the noise objective function is reduced by more than
60%. This figure also shows that the proposed constraint imposition method
keeps the time–averaged lift value almost constant, as it changes about 3% by the
end of the optimization. As expected, the reduction in the objective value results
in a lower amplitude in pressure fluctuations, as shown in Fig. 6.10a.

Figure 6.9 compares the baseline and the optimized airfoil shapes. It shows
that the airfoil’s shape is changed mainly close to the trailing edge while the rest
of it remains almost intact. Figure 6.10b compares the p′rms directivity plot of the
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baseline and the optimized airfoils at the radius of R=20C and shows that the
reduction in noise is omni–directional. Finally, in Fig. 6.11, iso–areas of pressure
fluctuations are compared between the baseline and optimized geometries at dif-
ferent time steps. Fluctuation amplitudes in the optimized geometry are lower
than in the baseline one.
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Figure 6.8: Lift–Constrained Aeroacoustic Optimization of a Pitching RAE2822 Airfoil
- Inviscid Flow: Results after 18 design cycles. (a) Comparison of the noise (Eq. 4.4 )
SDs for some CPs, using the adjoint to the hybrid solver and FDs. (b) Convergence
of the objective and constraint functions. The constraint is imposed on the initial lift
value (0.007) and the captured value at the end of the optimization is (0.0068).

Figure 6.9: Lift–Constrained Aeroacoustic Optimization of a Pitching RAE2822 Airfoil
- Inviscid Flow: Shapes of the baseline and optimized airfoils.
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(a) (b)

Figure 6.10: Lift–Constrained Aeroacoustic Optimization of a Pitching RAE2822 Airfoil
- Inviscid Flow: Results after 18 optimization cycles. (a) Time history of pressure
fluctuation within a period at the receiver’s location. (b) Comparison of the directivity
plots of p′rms for the baseline and optimized airfoils, at R = 20C.

Figure 6.11: Lift–Constrained Aeroacoustic Optimization of a Pitching RAE2822 Airfoil
- Inviscid Flow: Iso-areas of pressure fluctuations around the baseline (top row) and
aeroacoustically optimized airfoil (bottom row) at different instants within a period.
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6.3 Gradient Verification of a Pitching NACA12 Airfoil - Turbu-

lent Flow

This test case is referred to a 2D isolated NACA12 airfoil in turbulent flow and aims
exclusively at verifying the adjoint based sensitivities w.r.t. FDs in turbulent flows.
The airfoil is pitching about the quarter-chord point with an amplitude equal to 2.0
deg and frequency f = 10Hz. The Reynolds and Mach numbers are Re = 4.8×106

and M = 0.2, respectively. A 2D hybrid grid which extends 50 chords away from
the airfoil is used, with 67000 nodes overall, among which 602 nodes on the airfoil
contour and 151 nodes on the FW-H surface which is located at radius R = 3C
from the airfoil’s mid–chord. The Spalart-Allmaras turbulence model is employed
and the non-dimensional distance (y+) of the first node off the wall distance is
below 1.

The simulation computes 40 time steps per period of pitching with 200 iteration
per time step making sure at least 6 orders of magnitude drop in residuals within
each time step of primal and adjoint solution. After 4 periods that the transient
phase is passed, one period of pitching is stored. The numerical solution of each
period of pitching takes ∼ 5 min, for either the primal or the adjoint equation, on
a single NVIDIA Tesla P100 GPU. The adjoint solution is performed for 4 periods
to reach a periodic state.

The pressure and suction sides of the airfoil are parameterized using 8 Bezier
CPs each, which are free to move in the y direction. Since the first and the last
CPs are fixed, this case has 12 design variables. The grid displacement is based
on the linear spring analogy [32]. The displacement is confined in an area with
with radius R = 2.5C.

In order to verify the computed gradients of aeroacoustic (Eq. 4.4 integrated
over all resolved frequencies) and aerodynamic (time–averaged lift and drag) ob-
jective functions using the adjoint solver, these are compared with those obtained
by central FDs where CPs were perturbed by 10−7C. As presented in Fig. 6.13, the
gradients of the time–averaged lift and noise objective functions, obtained by the
adjoint solver, perfectly match FDs; for the time–averaged drag, the agreement is
quite satisfactory.

In Fig. 6.14, iso–areas of adjoint density is plotted for each objective function
at different time instants within a period of pitching. Streamlines of the adjoint
velocities are also drawn. One may notice that the adjoint field resulted from the
aeroacoustic objective function has much stronger unsteadiness compared to the
adjoints for the time–averaged lift and drag.
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(a)

(b)

Figure 6.12: Gradient Verification of a Pitching NACA12 Airfoil - Turbulent Flow: (a)
A view of the grid close to the location of the FW-H surface shown in red at radius
R = 3C, in red. (b) A view of the grid close to the airfoil and control points of the
Bezier curves. FDs are performed for the labeled CPs which are marked in red.
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Figure 6.13: Gradient Verification of a Pitching NACA12 Airfoil - Turbulent Flow: Com-
parison of the SDs using the adjoint to the hybrid solver and FDs for (a) time–averaged
lift, (b) time–averaged drag and (c) noise objective (Eq. 4.4 ).



6.3. Gradient Verification of a Pitching NACA12 Airfoil - Turbulent Flow 81

Figure 6.14: Gradient Verification of a Pitching NACA12 Airfoil - Turbulent Flow: Iso-
areas of adjoint density together with the streamlines of adjoint velocities for the (top
row) time–averaged drag, (middle row) time–averaged drag and (bottom row) aeroa-
coustic objective functions at different time instants within a period of pitching.
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6.4 Optimization of a Plunging NACA64A010 Airfoil - Tran-

sonic Flow

This test case is concerned with a 2D isolated plunging NACA 64A010 airfoil in
transonic flow. The airfoil is plunging with an amplitude equal to 5% of the chord
length (C = 1m) and period equal to 0.2 seconds. The Reynolds number of the
case is Re = 4.9×106 and the free-stream Mach number is M = 0.8 with a zero
angle of attack. A hybrid grid is used with a number of structured layers close to
the airfoil walls, followed by an unstructured mesh extending up to the circular
far–field, located at a 50C distance from the airfoil’s mid–chord. The 2D mesh,
shown in Fig. 6.15, includes almost 60K nodes overall, among which 302 nodes
are on the airfoil contour and 151 nodes on the FW-H surface at radius R = 3C.
The Spalart-Allmaras turbulence model is used and the wall distance of the first
node off the wall is below 1 (y+ < 1).

The simulation computes 50 time steps per period of pitching (T ) with 500
pseudo–time steps within each time step. This is sufficient for the primal and
adjoint residuals to drop by at least 6 orders of magnitude at each time. The
numerical solution of a period takes∼ 14 min on a single NVIDIA Tesla P100 GPU.
After the first 4 periods that the transient phase is passed, the instantaneous flow
fields during the 5th period are stored to be used for computing the monopole
and dipole source terms of the FW-H analogy and unsteady adjoint solution.
The adjoint code runs for 4 periods backwards in time to reach a periodic state.
Figure 6.16 illustrates the iso–Mach number contours around the baseline airfoil
at different time instants. It shows two shocks (one over each side of the airfoil)
located between the mid–chord and the trailing edge.

In this case, both EA and the developed continuous adjoint to the hybrid
solver are used to perform (aerodynamic and) aeroacoustic shape optimizations.
The former optimization is performed using the Evolutionary Algorithm software
EASY developed by PCOpt/NTUA [3].

The airfoil shape is parameterized using a Free–Form Deformation (FFD) box
comprising 5×8 CPs, among which 24 are free to move in the y direction during
the optimization, Fig. 6.17. The leading and training edges are kept fixed being
associated with still CPs. This parameterization remains the same for both opti-
mization methods (EA and adjoint). The linear spring analogy method is used for
grid displacement, being confined inside a region with R = 2.5C, due to either the
plunging motion or shape optimization.

6.4.1 Comparison Between the Hybrid Method and URANS

Since the accuracy of the acoustic analogy depends on the accuracy of flow data
on the FW-H surface, in Fig. 6.18, the directivity plots of the pure CFD results
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Figure 6.15: Optimization of a Plunging NACA64A010 Airfoil - Transonic Flow: View of
part of the computational grid along with the FW-H surface (shown in red, located at
R=3C from the airfoil’s mid–chord) and close-up view of the grid close to the trailing
edge.

Figure 6.16: Optimization of a Plunging NACA64A010 Airfoil - Transonic Flow: Iso-
areas of Mach number around the baseline airfoil at different time instants within a
period of plunging.

and those obtained by the hybrid method at the area relatively close to the FW-H
surface, R = 6C and R = 9C, are compared. The directivity patterns show a very
good agreement between the two methods at both radii.
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Figure 6.17: Optimization of a Plunging NACA64A010 Airfoil - Transonic Flow: CPs
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Figure 6.18: Optimization of a Plunging NACA64A010 Airfoil - Transonic Flow: Com-
parison of the directivity plot of p′rms between the hybrid method and that computed
by post–processing the CFD results, at R=6C and R=9C.

6.4.2 EA–Based Shape Optimization

The most common way to increase the efficiency of EA is the use of surrogate eval-
uation models or metamodels, which gives rise to the MAEA. [16, 68]. However,
the high number of design variables increases the metamodel(s) training cost and
deteriorates their prediction ability. This is known as curse of dimensionality.
This problem can be tackled through dimensionality reduction techniques, such
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as the PCA of appropriate, dynamically–updated, individual sets recomputed reg-
ularly during the evolution. The PCA can be used during the LCPE phase of MAEA
[41].

Based on above, the software EASY is used to run the EA–based shape opti-
mization. For the previously described case, a two–objective problem was solved
for min. noise (expressed by Eq. 4.4 for a receiver located at ~xr = (1C, 30C)) and
max. time–averaged lift. A (10, 18) PCA–driven MAEA is used. On–line trained
metamodels are activated after the first 35 evaluated solutions are stored in the
data base. During the LCPE phase of the MAEA, only the 4 top individuals, ac-
cording to the metamodel, are re–evaluated. The metamodel training for each
individual uses 16 inputs after the PCA–driven truncation of the design space.

For the sake of a fair comparison, it was decided to keep the computational cost
of the EA run comparable to that of the adjoint–based optimization. Thus, having
first conducted the adjoint optimization, it was decided to keep the computational
budget of the EA–based optimization run to 200 evaluations. However, such a
very low–budget run was not expected to give a converged front of non–dominated
solutions, i.e. the Pareto front, and for this reason, the EA run was finally stopped
after performing 450 evaluations. This is why two fronts are shown in Fig. 6.19.
The noise is normalized by the corresponding value of the baseline geometry; in
contrast, lift cannot be normalized in this way as the initial lift is zero due to
the symmetric baseline shape. All non–dominated solutions are characterized
by improved performance in terms of noise and lift. No need to say that the
run terminated at 450 evaluations provided a better front that dominates that
obtained after 200 evaluations. For the latter, maximum noise mitigation occurs
for solution C having nose less than 30% of the baseline whereas a great increase
in the lift is observed for solution A. After 450 evaluations, the EA reaches almost
the same noise reduction as with 200 evaluations; however, the lift performance
of the optimal solutions is greatly improved.

Solutions corresponding to max. lift (A), min. noise (C) and a selected mid-
point (B) after 200 evaluations are further examined. Table 6.1, shows that, com-
pared to the baseline airfoil, the time–averaged drag coefficients of the optimized
ones are at least 2.5 times bigger, with the biggest increase resulted from airfoil
B. This is inline with other studies for noise reduction of a blunt trailing edge in
the subsonic flow [115], and a pitching airfoil in transonic flow regime [153], that
the drag and noise are reported as competing objectives. As shown in Fig. 6.20,
the shapes of these three airfoils altered in a similar way, becoming thinner close
to the leading edge and thicker close to mid–chord, while the trailing edge area
is shifted upward. The leading edge and mid–chord of the solution yielding the
lowest noise is slightly thicker than the other two. As shown in Fig. 6.21a, the
amplitudes of pressure fluctuations resulted from these three airfoils are reduced
compared to the baseline one, with the biggest reduction achieved by airfoil C.
This can also be seen by comparing the directivity plots at R = 9C, Fig. 6.21b,
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Figure 6.19: EA–Based Shape Optimization of a Plunging NACA64A010 Airfoil - Tran-
sonic Flow: Front of non–dominated solutions after 200 and 450 evaluations. A and C
are the solutions on the first front with max. lift and min. noise, respectively.

according to which airfoil C has the lowest p′rms. The noise reduction can also
be seen in Fig. 6.22 for airfoil C where pressure fluctuations are compared to the
baseline geometry at different time steps. As seen, the amplitude of fluctuations
in the optimized geometry is lower compared to the baseline.

Table 6.1: EA–Based Shape Optimization of a Plunging NACA64A010 Airfoil - Tran-
sonic Flow: Drag coefficients of the baseline and optimized airfoil.

Airfoil Baseline A B C

Cd 3.5×10−3 9.7×10−3 10.3×10−3 10.1×10−3
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Figure 6.20: EA–Based Shape Optimization of a Plunging NACA64A010 Airfoil - Tran-
sonic Flow: Comparison of the baseline and three optimized airfoils (A, B and C)
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Figure 6.21: EA–Based Shape Optimization of a Plunging NACA64A010 Airfoil - Tran-
sonic Flow: (a) Time–history of the pressure fluctuation at ~xr = (1C, 30C). (b) Direc-
tivity plots of p′rms at R = 9C.
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Figure 6.22: EA–Based Shape Optimization of a Plunging NACA64A010 Airfoil - Tran-
sonic Flow: Iso-areas of pressure fluctuations around the baseline (top row) and airfoil
C (bottom row) at a number of time instants within a period.
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6.4.3 Adjoint–Based Shape Optimization Results

The same problem is also solved using a gradient–based method supported by the
continuous adjoint to the hybrid solver. The baseline geometry, parameterization,
receiver location and case set–up are as in the previous section. Figure 6.23
depicts the contour of the adjoint density at time instants 0.2 T and 0.6 T around
the baseline airfoil. A strong gradient of adjoint density can be seen in the vicinity
of the FW-H surface, where the sources to the adjoint equations are defined.

Figure 6.23: Adjoint–Based Shape Optimization of a Plunging NACA64A010 Airfoil -
Transonic Flow: Iso–areas of adjoint density around the baseline airfoil at two different
time instants within a period of plunging.

In order to assess the accuracy of the adjoint solver, adjoint sensitivities are
compared with FDs. In order to reduce the computational cost, FDs are performed
only for the labeled CPs in Fig. 6.17, with a step size equal to 10−7C. The flow
solver is initialized using the same stored flow field for both adjoint and FDs.
As shown in 6.24, adjoint and FDs satisfactorily match each other for the time–
averaged lift and noise objective functions while the agreement is excellent for the
time–averaged drag. Part of the discrepancies in noise sensitivities can be due to
the inaccuracies in FDs due to round–off error [152].

Next, the above verified adjoint solver is used for aeroacoustic and aerodynamic
shape optimizations. The weighted sum of the noise, Eq. 4.4, and time–averaged
lift, with different weights, is the objective function; hence, the objective is defined
as Wnoisenoise −Wliftlift, where Wnoise and Wlift are weight factors, given in table
6.2. According to this, case I corresponds to a pure noise whereas case V to a
pure lift optimization. The minus sign of Wlift is due to the fact that lift is to be
maximized while running a minimization problem.

The convergence of the objective function, illustrated in Fig. 6.25, shows that
in case I, the objective value of the pure noise optimization is reduced by more than
80% after 20 cycles and, in case V, the time–averaged lift is considerably improved
with the same computational cost. All five optimizations run for 20 cycles, as this
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Figure 6.24: Adjoint–Based Shape Optimization of a Plunging NACA64A010 Airfoil -
Transonic Flow: Comparison of the adjoint and FD sensitivities for (a) time–averaged
lift, (b) time–averaged drag and (c) noise perceived by a receiver located at ~xr =
(1C, 30C).

Table 6.2: Adjoint–Based Shape Optimization of a Plunging NACA64A010 Airfoil -
Transonic Flow: Weight factors of noise and lift used in the objective function.

Case name I II III IV V

Wnoise 1 0.75 0.5 0.25 0
Wlift 0 0.25 0.5 0.75 1

is enough for the objectives to converge, and the obtained solutions are compared
with those obtained by the MAEA in Figure 6.26. Since the computational cost
of adjoint and primal are almost the same, the total computational budget spent
by the adjoint optimization is ∼ 260 primal solutions (this computational cost
could be lowered as in almost the last 5 cycles the objective values are already
converged). A comparison with the one obtained by the EA after 200 evaluations
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shows that, at a similar noise (or lift) level, the adjoint–based optimization offers
an improved lift (or noise) compared to the EA (comparison based on the same
computational budget). For example, airfoil I has a lower noise level compared to
airfoil C of the EA–based optimization with a slightly better lift. Another example
is airfoil II which has the same lift coefficient (∼ 0.053) as the airfoil B while its
noise level is significantly lower. It can also be noticed that the trend of adjoint
results are closer to those obtained by EA after 450, rather than 200, evaluations.
One may easily notice that the lowest noise was achieved by one of the adjoint
runs. The time–averaged drag coefficients are given in table 6.3. As seen, similar
to the EA-based results, all optimized airfoils are marked with increased drag,
with the biggest rise occurred in the airfoil corresponding to min. noise (I ).

Figure 6.27 (top) compares the baseline and optimized airfoils I, III and V. The
trailing edge area of the optimized airfoils are shifted upward and at mid–chord
they became thicker. It can also be seen that the leading edge of the airfoil having
max. lift is thicker than the other two. It should be noted that some control
points reach their maximum bound. In addition, this figure, makes a comparison
between the optimized shapes obtained by the adjoint and EAs. It compares the
two airfoils corresponding to min. noise (I from the adjoint and the C from EA)
(middle) and, also, airfoils II and B from adjoint and EA, respectively (bottom),
which have comparable lift value.

As expected, the reduction in the objective value results in a lower amplitude in
pressure fluctuations, Fig. 6.28. Comparison of the directivity plot of the baseline
and optimized airfoils at R = 9C, Fig. 6.29, shows that noise reduction occurs in
almost all directions, except for airfoil V between angle 180◦ and 230◦. As seen,
unlike the baseline geometry, the directivity plot is not symmetric in the optimized
geometries as airfoil shapes are no more symmetric.

Table 6.3: Adjoint–Based Shape Optimization of a Plunging NACA64A010 Airfoil -
Transonic Flow: Drag coefficients of the baseline and optimized airfoil.

Airfoil Baseline I II III IV V

Cd 3.5×10−3 11.5×10−3 11.02×10−3 10.2×10−3 9.2×10−3 9.03×10−3
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Figure 6.25: Adjoint–Based Shape Optimization of a Plunging NACA64A010 Airfoil
- Transonic Flow: (a) Convergence of the noise objective value (case I ) for a receiver
located at ~xr = (1C, 30C) normalized by its initial value. (b) Convergence of the
time–averaged lift coefficient during the lift–only optimization (case V ).
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Figure 6.28: Adjoint–Based Shape Optimization of a Plunging NACA64A010 Airfoil -
Transonic Flow: Comparison of the time–history of the pressure fluctuation at ~xr =
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6.5 Optimization of a Vortex Shedding Cylinder - Laminar Flow

A 2D cylinder in a laminar flow undergoing vortex shedding is studied. The
cylinder’s diameter is D = 0.019m and the free–stream Mach number is M = 0.2
with zero angle of attack. This corresponds to the Reynolds number of Re = 1000.
The O-type grid (generated as structured, treated as unstructured), shown in Fig.
6.30, contains 49280 nodes among which 308 are located on the cylinder and
160 in the radial direction. The grid extends 35D from the center and the FW-H
surface is located at the radius of R = 3.5D containing 308 nodes. The time step
size for the unsteady solution was set to 0.00122 seconds which includes almost 50
time steps per period of shedding. 500 pseudo–time steps are performed per time
step of both the primal and adjoint solution, which is sufficient for the residuals
to drop at least by 15 orders of magnitude at each time step. The computed
Strouhal number based on the period of lift variation is St = 0.24 and the mean
drag coefficient is C̄d = 1.42. These numbers are close to 0.234 and 1.56 of the
URANS simulation presented in [22]. After the flow reaches periodic state, the
290 next time steps are used to perform the FW-H integration.

Figure 6.30: Optimization of a Vortex Shedding Cylinder - Laminar Flow: O-type grid
around the cylinder and the location of the FW-H surface at R = 3.5D shown in red.

6.5.1 Comparison Between the Hybrid Method and URANS

In order to verify the accuracy of the implementation of the FW-H analogy for
this case, the outcome of the hybrid solver is compared with the results of a
URANS simulation for two receivers located at ~xr1 = (−0.4D, 6.97D) and ~xr2 =
(−3.15D,−6.23D), shown in Figs. 6.31a and 6.31b, respectively. The two methods
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are in good agreement and the discrepancies at the beginning and ending parts
are due to the application of a Hanning window.
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Figure 6.31: Optimization of a Vortex Shedding Cylinder - Laminar Flow: Comparison
of the time history of the pressure fluctuation computed using pure CFD and hybrid
method for a receiver located at (a) ~xr1 = (−0.4, 6.97). (b) ~xr2 = (−3.15,−6.23).

6.5.2 Adjoint–Based Optimization Results

In contrast to the cases studied so far, here the exact period of the problem is
not known a priori. Therefore, storing the flow field over a single period of the
shedding, so as to integrate the unsteady adjoint equations repetitively over this
period until it reaches the periodic state is not possible. Thus, in this case, the
unsteady adjoint solution must be performed over a longer time window.

Each flow solution, during FDs or the adjoint optimization, is initialized using
the same field in a fully periodic state, stored for 600 time steps. The unsteady
adjoint equations are integrated backward in time during this time window. The
numerical solution of either the primal or adjoint problem takes ∼ 87min on
a single NVIDIA Tesla P100 GPU. The aerodynamic and aeroacoustic objective
functions are defined over a specific time range, known as the optimization time
window, outside of which there are no contributions to the adjoint equations. For
all objective functions, the optimization time window starts at time step 300 and
finishes at 590. The aeroacoustic objective function is defined for a receiver located
at ~xo = (−4D, −20D). The shape of the upper and lower half of the cylinder is
parameterized using two Bezier curves with 7 CPs each; these are free to move
only in the y direction during the optimization, Fig. 6.32. Since the first and last
CPs are fixed, the problem includes 10 design variables in total.

Gradients of aerodynamic and aeroacoustic objective functions computed us-
ing the adjoint solver are compared with the outcome of FDs in Fig. 6.33. It
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shows that the continuous adjoint solver well–duplicates FDs results for the time–
averaged lift (Fig. 6.33a) and drag (Fig. 6.33b) and satisfactorily matches FDs for
the noise objective function (Figs. 6.33c). Figure 6.34 depicts the contours of den-
sity and adjoint density resulted from the noise objective function at time steps
220 and 251. High values of adjoint density can be seen close to the FW-H surface
as well as the top and bottom of the cylinder at time steps 220 (Fig. 6.34b) and
251 (Fig. 6.34d), respectively.
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Figure 6.32: Optimization of a Vortex Shedding Cylinder - Laminar Flow: Control
points of the Bezier curves.

Next, the above–computed aeroacoustic sensitivities are employed within the
adjoint–based shape optimization. The objective function is defined as the average
of Eq. 4.4 over 4 receivers located at ~xr1 = (−4D,−20D), ~xr2 = (4D,−20D),
~xr3 = (−4D, 20D) and ~xr4 = (4D, 20D). A constraint on the minimum allowed
area is imposed during the optimization. The grid displacement is based on
the linear spring analogy, performed inside a circular area with R = 3C. As
illustrated in Fig. 6.35, after 23 design cycles, the area of the optimized shape
meets the imposed constraint and, then, stops becoming smaller. The noise
objective function has reduced by more than 80%. As expected, the reduction
in the objective value results in a lower amplitude in pressure fluctuations for
all receivers, as shown in Fig. 6.36. Comparison of the iso-areas of the sound
pressure between the initial and optimized geometries in Fig. 6.37 shows that the
sound reduction is omni-directional.
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Figure 6.33: Optimization of a Vortex Shedding Cylinder - Laminar Flow: Comparison
of the sensitivities using the proposed adjoint method and FDs for (a) time-averaged
lift, (b) time-averaged drag and (c) noise objective (Eq. 4.4 ).
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Figure 6.34: Optimization of a Vortex Shedding Cylinder - Laminar Flow: Contours of
flow and adjoint densities. (a) Flow density at time step 220. (b) Adjoint density at
time step 220. (c) Flow density at time step 250. (d) Adjoint density at time step 250.
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Figure 6.35: Optimization of a Vortex Shedding Cylinder - Laminar Flow: Results
after 23 design cycles. Convergence of the noise objective function (J as in Eq. 4.4 )
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Figure 6.36: Optimization of a Vortex Shedding Cylinder - Laminar Flow: Results after
23 design cycles. Comparison of time history of the pressure fluctuation between the
baseline and optimized geometries at the receiver’s locations (a) ~xr1 = (−4,−20), (b)
~xr2 = (4,−20), (c) ~xr3 = (−4, 20), (d) ~xr4 = (4, 20).
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Figure 6.37: Optimization of a Vortex Shedding Cylinder - Laminar Flow: Results after
23 design cycles. Comparison of the iso-areas of the pressure fluctuation between the
baseline (top row) and optimized geometries (bottom row) at two different time steps
550 (left column) and 575 (right column).
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6.6 Optimization of a Rod-Airfoil configuration

The rod-airfoil configuration is selected as a test case not only due to the availabil-
ity of experimental and numerical results for both the flow and acoustic fields [55]
but, also, due to the flow features that make it an ideal test for numerical sound
modeling in simplified air-frame components such as a landing gear. The periodic
vortex shedding from the rod results to the quasi–tonal noise component while
the impingement of vortices on the airfoil contributes to the broadband noise [45].

In this work, the configuration of [55] is used, as shown in Fig. 6.38. It
comprises a NACA0012 airfoil with chord length C = 0.1m, located one chord
downstream of a cylinder with diameter D = C

10
. Figure 6.38 shows the computa-

tional domain and the location of the FW-H surface. The origin of the coordinate
system is at the leading edge of the airfoil and the computational domain extends
6C upstream of and 7C downstream of the origin and, also, extends ±3C in the
crosswise direction. The grid close to the rod and airfoil is shown in Fig. 6.39.
The grid is formed only by quadrilaterals with 161906 grid nodes, among which
256, 414 and 1016 nodes are located on the rod, airfoil and the FW-H surface, re-
spectively. The first nodes off the wall are at the distance of approximately 10−4C
from the rod and 10−5C from the airfoil, resulting to y+ < 1.

The free–stream Mach number and density areM = 0.2. The Reynolds number
based on the airfoil chord is 4.8× 105 and the infinite flow angle is 0 deg The time
step is 2× 10−6 seconds and the simulation runs for 20000 time steps to reach a
periodic state with 120 iteration within each time step that assures 15 orders of
magnitudes drop in residuals. Afterwards, a time window of 2030 time steps is
used to compute the FW-H integral as well as time–averaged aerodynamic data.
This time window corresponds to about 7 shedding periods, according to the
computed Strouhal number.

6.6.1 Verification of the CFD Results

In order to verify the solution of the flow field, the vortex shedding frequency, the
mean stream-wise velocities and the mean pressure coefficient are compared with
results available in the literature. The computed Strouhal number is 0.24 and
agrees with the 2D URANS computation performed by Jacob [55], being different
than the experimental Strouhal number of [55] which is about 0.19. According to
[55], this overestimation is expected for URANS solutions which cannot accurately
capture vortex dynamics. The profiles of the stream–wise component of the flow
velocity are compared to the numerical results of Rousoulis [113] and Jacob [55]
as well as the outcome of LES and measurements. The velocity profiles computed
for two different stream–wise locations, x/C = −0.25 and x/C = 0.25, are shown
in Fig. 6.40. From Fig. 6.40a, at x/C = −0.25, the velocity profile from the
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Figure 6.38: Optimization of a Rod-Airfoil configuration: Computational domain. The
dashed line stands for the FW-H surface.

Figure 6.39: Optimization of a Rod-Airfoil configuration: CFD grid close to the rod and
the airfoil.
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current study agrees well with the 2D URANS results of [113], and seems to
outperform the outcome of the 2D URANS of [55]. At x/C = 0.25 (Fig. 6.40b), a
stronger overprediction of the measured distribution can be seen in all URANS
simulations, compared to LES. However, the overall trend is adequately captured,
and part of the slight disparities in the URANS results might be due to the different
turbulence model used in this study (Spalart-Allmaras) compared to the k-ω SST
of [113] and [55].
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Figure 6.40: Rod-Airfoil initial configuration. Comparison of the stream-wise velocity
profiles at (a) x/C = −0.25, (b) x/C = 0.25 with the URANS results of [55, 113], LES
and measurements of [55].

Figures 6.41a and 6.41b compare the distribution of the mean and r.m.s.
values of the pressure coefficient Cp on the airfoil’s pressure side with the 3D LES
results of [45] and 2D URANS of [96]. The mean Cp values are also compared
with the experiment [54]. It can be seen that the present results are in a good
agreement with the mean Cp of the LES while both overestimate the experimental
results. Comparison of the r.m.s. Cpwith the LES results in Fig. 6.41b shows that
the present results are slightly better than those of other 2D URANS solutions.
All these comparative studies confirm the acceptable accuracy of this set–up,
including the grid, numerical parameters and the flow solver, which will be used
in the remaining of this section.

6.6.2 Verification of the Acoustic Results

In order to verify the acoustic noise prediction tool, the outcome of the hybrid
solver is compared to pure unsteady CFD as well as the above cited computational
and experimental results. Figure 6.42 compares the time history of the pressure
fluctuation computed by (a) applying the FW-H analogy and (b) the URANS only,
for two receivers located outside, quite close though, to the FW-H surface. The
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Figure 6.41: Rod-Airfoil initial configuration. Comparison of the mean and r.m.s.
values of the pressure coefficient Cp on the pressure side of the airfoil with the other
CFD results [45, 96] and measurements [54]. (a) Mean Cp. (b) r.m.s. Cp.

receiver locations are ~xr1 = (0.31m, 0.101m) and ~xr2 = (−0.009m, 0.17m). As
shown in Figs. 6.42a and 6.42b, at both receiver locations, results from the two
methods are in good agreement. The discrepancies at the beginning and ending
part of the signal are expected due to the application of a Hanning window.

The power spectral density (PSD) for a far–field receiver located at ~xr = (0.05m, 1.85m)
is compared with the experimental and computational results of [55] and [113],
Fig. 6.43 . As seen in Fig. 6.43, the main peak and corresponding frequency from
the current study match the 2D URANS solution of [55] and are close to similar
solutions in [113]. Compared to the experiment, the value of the main peak is
adequately close, whereas the frequency of the tonal peak (1728Hz) is overesti-
mated. As mentioned before, this overprediction of the shedding frequency is
expected in any URANS simulation due to the weakness to accurately capture
vortex dynamics [55]. Five peaks, corresponding to the first five harmonics, can
be identified. In comparison with [113], harmonic frequencies estimated by the
current study are in a slightly better agreement with the computational data of
[55] whereas PSD peaks are of higher magnitude.

Figure 6.44 compares the directivity plot of the overall sound pressure level
(OASPL) from the current study with 2D URANS results and experimental data in
[96] and [55]. This figure also presents a grid dependency study. 100 receivers
are located at radius R = 1.85m from the mid-chord of the airfoil. It shows that
the directivity plot has a quadrupole shape for the coarse grid (124000 nodes)
whereas, for the medium size (161906 nodes) and dense (240000 nodes) grids, this
tends to a dipole. Since results on the dense and medium grids are almost the
same, the latter is used for this study. Figure 6.44, also shows that there is a good
agreement between the current study and the 2D URANS results of [96] and that
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Figure 6.42: Rod-Airfoil initial configuration. Comparison of the time history of the
pressure fluctuation computed using pure CFD and the hybrid solver at a receiver
located at (a) ~xr1 = (0.31m, 0.104m), (b) ~xr2 = (−0.009m, 0.17m).
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Figure 6.43: Rod-Airfoil initial configuration. Comparison of the power spectral den-
sity at a receiver located 1.85m above the center of the airfoil with other URANS
results in [55, 113] and LES as well as measurements of [55].

both follow the trend of the experiment. Overprediction of the OASPL is expected
in URANS simulation, see [121, 96].

Overall, despite some differences in the magnitude of the harmonics, the peak
tone and the fundamental frequencies are well predicted. Given that such a
problem is mainly dominated by the vortex shedding from the rod which governs



6.6. Optimization of a Rod-Airfoil configuration 107

 0  30  60  90  120  150

30

60

90

120

150

180

210

240

270

300

330

OASPL (dB)

Coarse mesh
Medium mesh

Dense mesh
Experiment [55]

URANS(2D) [96]

Figure 6.44: Rod-Airfoil initial configuration. Directivity of OASPL at R = 1.85m.
Comparison of the directivity, computed using 3 different grids, with other URANS
results in [96] and measurements in [55].

the tonal component of the generated sound, the present results capture the
main flow and noise mechanisms accurately enough to be used in the context of
an unsteady aeroacoustic shape optimization.

Adjoint–based aeroacoustic optimization is performed for two different objec-
tive functions, namely case A and case B. In case A, the aeroacoustic objective
function, Eq. 4.4 , is integrated over all the resolved frequencies, while in case B
it includes only the tonal component i.e. f = 1728Hz and two other frequencies
before and after the tonal one i.e. 1481Hz and 1975Hz.

6.6.3 Adjoint–Based Aeroacoustic Optimization, Case A

As mentioned above, the objective function in case A is given by Eq. 4.4 which in-
cludes all the resolved frequencies. The receiver is located at ~xr = (0.05m, 1.85m).
During the optimization, only the airfoil shape may change while the rod remains
intact. The airfoil shape is parameterized using a FFD box, with 108 control points
(9× 12) in total, out of which only 50 are free to move only in the y direction, Fig.
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6.45. Thus, the optimization problem includes 50 design variables.

Every CFD solution, in either the optimization loop or FDs, starts from the
same initial solution field in fully periodic state. As the shape changes during
the optimization or FDs, the solver first runs for 5460 time steps to make sure
that a periodic state is achieved and then 2030 time steps are sampled to perform
the FW-H analogy, which is practically the optimization time window TO. The
numerical solution for almost 7500 time steps takes ∼ 12 hrs on a single NVIDIA
Tesla P100 GPU. The fact that the unsteady adjoint equations are integrated
backward in time leads to memory issues in problems with many time steps since
it demands considerable space to store the flow field at every time step, including
the transient phase. However, the objective function contributes to the adjoint
equation only within the optimization time window whereas, outside this window,
the only contribution is from the unsteady term, meaning that the adjoint fields
gradually decay, Fig. 6.46. Plotted in this figure are the contours of instantaneous
adjoint density during the adjoint solution of the baseline geometry. As seen, for
snapshots taken outside the optimization time window (time steps below 5460),
the adjoint field decays, travels towards the inlet and has the trend to exit the
domain, as time goes back. The computational time for 7490 time steps of adjoint
solution (with 120 iteration per time step) is ∼ 11 hrs.

Decay of the adjoint field makes sensitivities reach a converged state, Fig.
6.47. This figure includes the reversed time series of the sensitivity for control
points No. 11 to 14 during the adjoint solution and, as seen in the plot, after 460
time steps from the end of the optimization window, variations in sensitivities
are greatly reduced. Hence, in order to reduce both computational cost and
memory footprint of the optimization, yet with adequately accurate sensitivity
derivatives, the unsteady adjoint solution continues for 460 time steps after the
end of the optimization time window, covering 2490 time steps in total. Doing
so, the computational time of an optimization cycle is ∼ 15.5 hrs (∼ 33% faster
than the full time horizon adjoint solution) and the required memory for storage
of the primal and adjoint fields is ∼ 80 GB (60% less than full time horizon adjoint
solution). The so–computed gradients are further verified through comparison to
central FDs with a step size of 10−7C. To reduce the computational cost, FDs are
conducted only for control points No. 9 to 14 among which some high sensitivity
values exist. As seen in Fig. 6.48, sensitivities computed by the hybrid adjoint
method agree with FDs.

These continuous adjoint based computed aeroacoustic sensitivities are then
used in the shape optimization of the airfoil. Design variable values are updated
using a descent algorithm with a constant step size of 1.5×10−12m2s

Pa
. Convergence

of the objective function, normalized by its initial value, during the optimization
is illustrated in Fig. 6.49a. Its initial value reduces by 30%, after 12 optimization
cycles. The biggest drop occurs at the first cycle followed by a small rise at the end
of the second cycle. The objective value eventually converges to the optimal value
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Figure 6.45: Optimization of a Rod-Airfoil configuration: Control points of the FFD
box. Red/labeled control points are free to move during the optimization

at the 8th cycle, where the SDs become small and, thereafter, fluctuates around
this extremum. Figure 6.49b depicts the geometry of the optimized airfoil after 12
cycles. The resulted shape does not have an improved aerodynamic performance
as the mean drag and lift coefficients of the airfoil change by ∆Cd = 0.011 and
∆Cl=−0.018; however, this work is focused on the aeroacoustic shape optimiza-
tion and this is why lift or drag are not used as objective functions or constraints.
Figure 6.50 plots the contours of instantaneous adjoint density during the adjoint
solution of optimized geometry. It shows that the adjoint field decays similarly to
what happens to the initial geometry (Fig. 6.46).

A comparative plot of the time series of the predicted sound pressure at the
receiver location generated by the baseline and optimized geometries is displayed
in Fig. 6.51a. It shows that pressure fluctuations in the optimized geometry are
slightly shifted in time while their amplitude is significantly reduced. A similar
comparison for the power spectrum, depicted in Fig. 6.51b, reveals that the opti-
mization leads to reduced PSD levels for a great part of the frequency range below
the third harmonic (3456Hz). The main peak, which is of the utmost importance
as the current simulation is performed using the URANS model, is reduced by
about 3.7 dB and drops to 90.7 dB. Similarly, the second harmonic reduces by
about 1.6 dB, whereas the third and fifth one increase by about 1.2 and 3.4 dB,
respectively, and the fourth one remains unchanged. The figure also shows that
all five harmonic frequencies remain unaffected by the optimization.

Figure 6.52 presents the OASPL directivity plot for the two geometries. As
in the previous section, 100 receivers are located at radius R = 1.85m from the
mid-chord point of the airfoil. Compared to the initial geometry, the directivity cor-
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Figure 6.46: Optimization of a Rod-Airfoil configuration: Instantaneous adjoint den-
sity iso–areas for the baseline geometry.

responding to the optimized one has a stronger tendency to a quadrupole shape.
Further study of the results in this graph shows insignificant noise reduction for
receivers located between 300◦ and 60◦, together with a sound amplification from
135◦ to 195◦. At other angles, a considerable sound mitigation is observed, with
the maximum reduction in the vicinity of 90◦. This is expected as this is the loca-
tion of the receiver for which J (Eq. 4.4 ) has reduced. A similar sound reduction
pattern can be seen in Fig. 6.53 where the iso-areas of the r.m.s. value of pressure
fluctuations of the baseline and optimized geometries are compared.

Finally, contours of instantaneous Mach numbers at time steps 7000 and 6000
are depicted in Fig. 6.54 for both the baseline and optimized geometries. In
the optimized geometry, low velocity areas appear close to the mid–chord of the
suction side where re-circulation takes place, and trailing edge of the pressure
side.
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Figure 6.49: Optimization of a Rod-Airfoil configuration: Results after 12 optimization
cycles. (a) Convergence of the noise objective function of case A normalized by its
initial value. (b) Comparison of the baseline and optimized geometries.

Figure 6.50: Optimization of a Rod-Airfoil configuration: Instantaneous adjoint den-
sity iso–areas for the optimized geometry.



6.6. Optimization of a Rod-Airfoil configuration 113

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0  500  1000  1500  2000

P
’ 
(p

a
)

Time step

Baseline Optimized

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000  10000

P
S

D
 (

d
B

)

Frequency (Hz)

Baseline Optimized

(b)

Figure 6.51: Optimization of a Rod-Airfoil configuration: Results after 12 optimization
cycles. (a) Comparison of the time history of the pressure fluctuation between the
baseline and optimized geometries at the receiver location ~xr = (0.05m, 1.85m). (b)
Comparison of the power spectral density of the pressure fluctuation resulted from
the baseline and optimized geometries at the same location.
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Figure 6.52: Optimization of a Rod-Airfoil configuration: Results after 12 optimization
cycles. Comparison of the directivity plot of OASPL at radius R = 1.85m from the
mid-chord of the baseline and optimized geometries.
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Figure 6.53: Optimization of a Rod-Airfoil configuration: Results after 12 optimization
cycles. Comparison of the r.m.s. of pressure fluctuations outside the FW-H surface
between the baseline (left) and optimized (right) geometries.

Figure 6.54: Optimization of a Rod-Airfoil configuration: Instantaneous Mach iso–
areas at different time steps for the baseline (top row) and optimized (bottom row)
geometries.
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6.6.4 Adjoint–Based Aeroacoustic Optimization, Case B

In case B, the primal and adjoint solution set–ups, parameterization and step size
are exactly the same as the case A in subsection 6.6.3 while the only difference
is the objective function. As already mentioned, in case B, the aeroacoustic
objective function Eq. 4.4 includes only the tonal component i.e. f = 1728Hz and
the two immediate neighboring frequencies i.e. 1481Hz and 1975Hz. The purpose
of this case is to check the ability of the developed aeroacoustic optimization tool
in targeting a specific frequency range.

As seen in Fig. 6.55a, the value of the objective function is reduced by 35%
after 13 design cycles. In Fig. 6.55b, the optimized shape from this case is com-
pared to the one from case A and the baseline geometry. Despite the differences
in geometries, the two optimized cases have quite similar acoustic performance
which can be seen in Figs. 6.56 to 6.58. Similarity in the acoustic results between
two cases is expected to some extent, given that the acoustic radiation of the rod–
airfoil case is mainly governed by the tonal component. As a result, reduction
in the objective value in case A, which includes all the resolved frequencies, is
achieved mostly by reducing the tonal component, similar to case B.
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Figure 6.55: Optimization of a Rod-Airfoil configuration: Results after 13 optimization
cycles. (a) Convergence of the noise objective function of case B normalized by its
initial value. (b) Comparison of the baseline and two optimized geometries.
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Figure 6.56: Optimization of a Rod-Airfoil configuration: Results after 13 optimization
cycles. Comparison of the time history of the pressure fluctuation between the base-
line and two optimized geometries at a receiver located at ~xr = (0.05m, 1.85m).
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Figure 6.57: Optimization of a Rod-Airfoil configuration: Results after 13 optimization
cycles. Comparison of the power spectral density of the pressure fluctuation resulted
from the baseline and two optimized geometries at the same location.
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Figure 6.58: Optimization of a Rod-Airfoil configuration: Results after 13 optimization
cycles. Comparison of the directivity plot of OASPL at radius R = 1.85m from the
mid-chord of the baseline and two optimized geometries.
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6.7 Shape Optimization of a Vortex Shedding Sphere

The first 3D case is concerned with flow around a sphere. The free–stream flow
is aligned with the +x direction with Mach number M = 0.18 . The Reynolds
number based on the sphere diameter is Re = 40000. A hybrid grid, with almost
172000 nodes is used. 2912 nodes are located on the FW-H surface at radius
R = D where D is the sphere’s diameter. Shown in Fig. 6.59 is the surface mesh
on the sphere. The time step size for the unsteady solution is set to 0.00001375
seconds. First, the equations are integrated for an adequate number of time steps
to establish a periodic state, which is used for initialization and, from that point
on, solution goes on for 800 more time steps. On a single Tesla V100 GPU, the
numerical solution for 800 time steps takes ∼ 6.5hrs and ∼ 10hrs for the primal
and adjoint equations, respectively. In order for the residuals to drop at least
10 orders of magnitude at each time step, 500 and 1000 pseudo–time steps are
performed per time step during the primal and adjoint solution.

Figure 6.59: Shape Optimization of a Vortex Shedding Sphere: Surface grid on the
sphere.

6.7.1 Comparison Between the Hybrid Method and URANS

Similar to the previous cases, in order to verify the accuracy of the implementation
of the FW-H analogy in this case, results of the hybrid solver are compared with
the outcome of the URANS equations’ solver. This is done for 6 different receivers’
locations shown in Fig. 6.60. As shown in Fig. 6.61, apart from some slight
discrepancies for receivers 2 and 6, results of two methods are in a very good
agreement for all receivers.
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Figure 6.60: Shape Optimization of a Vortex Shedding Sphere: Comparison of the time
history of the pressure fluctuation computed using pure CFD and hybrid method for
a receiver located at
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Figure 6.61: Shape Optimization of a Vortex Shedding Sphere: Comparison of the
time history of the pressure fluctuations computed using URANS (- - -) and the hybrid
solver (—–) at different receivers’ locations.
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6.7.2 Adjoint–Based Optimization Results

Next, an aeroacoustic shape optimization is performed. The main goal is to ensure
that the continuous adjoint solver is able to compute accurate gradients which
can be used to reduce the objective value. Therefore no more than 3 optimization
cycles are performed. The objective function is defined as Eq. 4.4 , integrated
over all resolved frequencies, for a receiver located at ~xr = (0, 0, 30D). The grid
displacement is based on the linear spring analogy, performed inside an area with
R = 0.8DC. In each cycle, the flow field is initialized using a stored periodic field
corresponding to the initial geometry, and runs for 800 time steps among which
the last 400 ones form the optimization time window. A 5 × 5 × 5 FFD box is
employed for parameterization with 27 control points being allowed to move in all
3 directions during the optimization, resulting to 54 design variables, Fig. 6.62a.
As illustrated in Fig. 6.62b, after 3 design cycles, the objective value is reduced
by 60 %, meaning that the hybrid adjoint solver predicted correct gradients for
optimization. The baseline and optimized shapes are drawn in Fig. 6.63b where it
shows that the optimized geometry is shrunk in the z direction while lengthened in
the y direction. This, can also be in Fig. 6.64, where the iso–areas of normal to the
surface displacement of the initial geometry to match the optimized one are shown.
Figure 6.65 compares the iso–areas of pressure on the sphere and streamlines
between the initial and optimized geometries at 3 different time instants.
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Figure 6.62: Shape Optimization of a Vortex Shedding Sphere: (a) Control points
of the FFD box. Blue control points are free to move during the optimization. (b)
Convergence of the aeroacoustic objective function for 3 design cycles.
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Figure 6.63: Shape Optimization of a Vortex Shedding Sphere: Results after 3 op-
timization cycles. (a) Comparison of the time history of the pressure fluctuation
between the baseline and optimized geometries. (b) Two different views of the base-
line (gray) and optimized (red) geometries.

Figure 6.64: Shape Optimization of a Vortex Shedding Sphere: Results after 3 op-
timization cycles. Two different views of the surface displacement (normalized by
diameter) of the baseline geometry in the normal to the surface direction to match the
optimized geometry.
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Figure 6.65: Shape Optimization of a Vortex Shedding Sphere: Results after 3 design
cycles. Comparison of the iso-areas of pressure on the sphere and flow streamlines
between the baseline (top row) and optimized (bottom row) geometries at three differ-
ent time steps of 600 (left column), 700 (middle column) and 800 (right column).
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6.8 Optimization of an Aero–Engine Intake

This is an industrial application of the developed optimization method, dealing
with the aeroacoustic shape optimization of an aero–engine intake. This case be-
came available thanks to the participation of the PCOpt/NTUA in the MADELEINE
project funded by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 769025. The initial intake geometry and
the boundary conditions of the fan inlet were provided by Rolls-Royce plc. and
the Institute of Sound and Vibration Research of the University of Southampton
(ISVR), respectively.

Shown in Fig. 6.66 is a perspective view of the engine–intake. As shown in
the previous sections, adjoint–based optimization in unsteady flows may become
very demanding in terms of time and memory which is even more challenging
for industrial cases. This is the main reason why the use of adjoint methods is
comparatively restricted in aeroacoustic shape optimization that are unsteady by
nature.

Figure 6.66: Optimization of an Aero–Engine Intake: Perspective view of the engine
intake with a snapshot of the static pressure distribution, normalized by the far-field
pressure, at the engine inlet serving as an instantaneous boundary condition.

In this particular application, in order to reduce the cost and since the intake
geometry is axisymmetric, a CFD domain that corresponds to a single blade pas-
sage of the fan with appropriate periodicity conditions is modeled. The flow and
adjoint equations are solved in a rotating (with the rotational speed of the en-
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gine) frame, thus leading to a steady-state solution for both the flow and adjoint
problems. In order to assure a periodic adjoint solution, a continuous circum-
ferential distribution of receivers at a given radius and axial position is used for
the computation of the objective function of Eq. 4.4 . The unsteady flow fields
are required for computing the FW-H integral. These are achieved by properly
rotating the steady flow field, while also transforming the kinematic field into the
absolute reference system. Therefore, the work–flow of the aeroacoustic shape
optimization is the one shown in Fig. 6.67.

Baseline geometry

Steady–state flow solu-
tion in the relative system

Rotate the flow field and compute time
series of Q & Fi on the FW-H surface

Fourier transform of Q & Fi

Compute the FW-H integral, Eq. 3.1.1.7

Compute the objec-
tive function J , Eq. 4.4 compute ∂J

∂Um
on the FW-H surface

Steady–state adjoint solution

Compute sensitivities

Update the design varib-
ales using steepest descent

Update geometry and grid

Figure 6.67: Optimization of an Aero–Engine Intake: Work-flow of the aeroacoustic
optimization using the hybrid method of this thesis. Primal and adjoint are shown in
yellow and gray, respectively.

Some basic dimensions of the aero–engine, normalized by the fan intake radius
R, can be found in Fig. 6.68 where the generatrix of the engine is plotted. The ge-
ometry of a single blade passage, shown in Fig. 6.69, has ∼ 3.7M nodes arranged
on 100 meridional planes. Air at far–field is still and the pressure distribution
on the fan–inlet, provided by ISVR, is used as boundary condition. The Spalart-
Allmaras turbulence model and its adjoint solver are employed. The numerical
solution takes ∼ 8 hrs on a single NVIDIA Tesla V100 GPU, and all residuals drop
by 5 orders of magnitude. The pressure contours on the nacelle and mid–plane of
the engine intake are plotted in Fig. 6.70.

The parameterized part of the nacelle, colored in red, is shown in Fig. 6.69. An
axisymmetric parameterization model is adopted for the nacelle. The generatrix is
firstly reconstructed using NURBS, giving rise to 15 design parameters controlling
the shape of the nacelle lips and the throat area, leaving its outer shape and the
part close to the fan intact. The NURBS control points are allowed to vary in both
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Figure 6.68: Optimization of an Aero–Engine Intake: Generatrix of the aero–engine,
normalized by R.

Figure 6.69: Optimization of an Aero–Engine Intake: Entire and close–up views of the
CFD domain and the surface grid on one of periodic boundaries. The parameterized
part of the nacelle is colored in red.

the axial and radial direction. Since the first and last control points are fixed, the
optimization has 2×13=26 design variables, Fig. 6.71.
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Figure 6.70: Optimization of an Aero–Engine Intake: Iso–areas of pressure on the
nacelle, mid–plane and engine inlet.
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Figure 6.71: Optimization of an Aero–Engine Intake: Distribution of the control points
for the parameterization of the nacelle generatrix using NURBS. The first and last
control points are fixed during the optimization.

6.8.1 Comparison Between the Hybrid method and URANS

The FW-H surface, illustrated in Fig. 6.72, has 16000 nodes. To perform the
FW-H integral, the FW-H surface should rotate to cover the full circumference.
However, as a cheaper alternative, the receivers (instead of the FW-H surface) are
rotated and the acoustic pressure field is retrieved by superimposing pressure
signals from each receiver. Before proceeding to the aeroacoustic optimization,
the acoustic results of the case are verified, as both the grid and numerical set–up
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may affect acoustic results. To do so, the acoustic pressure computed based on
the hybrid model is compared with that of the unsteady CFD code at 3 receiver
locations, shown in Fig. 6.72. In order to reduce the inaccuracies of the pressure
signals computed by pure CFD, the receivers are located relatively close to the FW-
H surface. As illustrated in Fig. 6.73, there is a reasonable agreement between
the results of the FW-H analogy and CFD, given that part of the discrepancies may
be due to the neglected quadrupole terms, representing the noise due to viscous
effects and turbulence.

Figure 6.72: Optimization of an Aero–Engine Intake: Location of the FW-H surface, in
green, and 3 receivers within the CFD domain. Streamlines are colored based on the
pressure values. Coordinates are normalized by the fan intake radius R.

6.8.2 Adjoint–Based Aeroacoustic Optimization, Single Receiver

In this optimization, the aeroacoustic objective function to be minimized, i.e.
that of Eq. 4.4, includes only the value corresponding to the blade passing fre-
quency (BPF). As already mentioned, a continuous circumferential distribution
of receivers is used for the computation of the objective function. In this opti-
mization, a single circumferential row of receivers (located at a single radial and
axial position) is used, as shown in Fig. 6.74. The convergence history of the
aeroacoustic objective function is presented in Fig. 6.75a. A clear reduction in
the objective value after 13 optimization cycles can be seen. This reduction is also
obvious in Fig. 6.75b which compares the amplitude of the sound pressure at the
receiver in the baseline and the optimized geometries. Plotted in Fig. 6.76 are the
directivities of SPL at the BPF. The SPL values are normalized by the initial value
of the aeroacoustic objective function and this is why the normalized SPL of the
initial geometry at θ = 90◦ is unit. As expected, the maximum reduction occurs
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Figure 6.73: Optimization of an Aero–Engine Intake: Comparison of the pressure
fluctuations computed by the hybrid method with those obtained by pure CFD, at
3 different receivers locations (a) ~xRec1 = (−2.8, 1.8, 0), (b) ~xRec2 = (−2.1, 1.8, 0), (a)
~xRec3 = (−2.63, 1.48, 0). Coordinates are normalized by the fan intake radius R.

at θ = 90◦ where the objective function is defined. However, this considerable
reduction is not omni–directional as the SPL is increased between 100◦ and 120◦

and below 80◦. This is due to the use of a single circumferential row of receivers
in the aeroacoustic optimization.

Changes of the parameterized part of the nacelle are illustrated in Figs. 6.77.
As seen, the biggest geometrical change occurs at the nacelle lip which is pushed
downward, while minor changes occur elsewhere. Regarding the aerodynamic
performance, the optimized shape increases the total pressure losses by 0.8%
compared to the initial one. Worsening the aerodynamic performance could be
expected as an aeroacoustic objective was only considered.
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r=2R

=90 

Figure 6.74: Optimization of an Aero–Engine Intake: Schematic of the circumferential
row of receivers based on which the aeroacoustic objective function is defined. Gen-
eratrix and receiver location are not in scale.
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Figure 6.75: Optimization of an Aero–Engine Intake: Results after 13 aeroacoustic
optimization cycles. (a) Convergence of the aeroacoustic objective value, normalized
by its initial value. (b) Comparison of the time history of the pressure fluctuation
within a period at one receiver.
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Figure 6.76: Optimization of an Aero–Engine Intake: Results after 13 aeroacoustic
optimization cycles. Comparison of the directivity plot of the SPL at the BPF for
receivers at r = 2R normalized by the initial value of the aeroacoustic objective
function.

 

Figure 6.77: Optimization of an Aero–Engine Intake: Results after 13 aeroacoustic
optimization cycles. (Top) The generatrix of the baseline and optimized geometry of
the parameterized part of the nacelle. (Bottom) 3D views of the baseline and optimized
geometry.
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6.8.3 Adjoint–Based Aeroacoustic Optimization, Multi Receiver

The previous optimization showed that the noise reduction strongly depends on
the receiver location as it results in a sudden noise reduction in the vicinity of the
receiver and increase in other directions. Herein, with a goal to achieve a smooth
noise reduction pattern for a wider range of direction, the previous optimization
is repeated, this time with an objective function which takes receivers located
on 3 different circumferential rows into account, Fig. 6.78. This means that the
objective function is defined as the average of Eq. 4.4 over 3 receiver locations.
The receivers are located at a same radius of 8.8R and different angles of 90◦,
105◦ and 120◦. As already mentioned, a continuous circumferential distribution
of receivers is used at each receiver location.

The convergence history of the aeroacoustic objective function is presented in
Fig. 6.79a. The objective value is reduced by 20% after 12 optimization cycles
which is less than the reduction in the previous case. This is expected, due to the
involvement of more circumferential rows of receivers in the new optimization, as
objective values at different rows can be competing. This reduction is also obvious
in Fig. 6.79b - 6.79d that compare the amplitude of the sound pressure at the
receivers in the baseline and the optimized geometries. Plotted in Fig. 6.80 are the
directivities of normalized SPL at the BPF resulted from two optimized geometries
and the initial one. Despite the first optimization which reduces noise only at
θ = 90◦ direction, the second optimization results to an almost omni–directional
noise reduction.

Changes in the parameterized part of the nacelle are illustrated in Figs. 6.81.
As seen, the biggest geometrical change occurs at the nacelle lip which is pushed
forward, in contrast of the previous optimization. Regarding the aerodynamic per-
formance, the optimized shape has lower total pressure losses by 0.12% compared
to the initial one; this can be attributed to the slightly shorter axial length.
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θ
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θ3=120 

Figure 6.78: Optimization of an Aero–Engine Intake: Schematic of the receiver loca-
tions based on which the aeroacoustic objective function is defined. The generatrix
and receiver locations are not in scale.
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Figure 6.79: Optimization of an Aero–Engine Intake: Results after 12 aeroacoustic
optimization cycles. (a) Convergence of the aeroacoustic objective value, normalized
by its initial value. (b) to (d) Comparisons of the time histories of the pressure fluctu-
ation within a period at the 3 circumferential row locations.
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Figure 6.80: Optimization of an Aero–Engine Intake: Results after 12 aeroacoustic
optimization cycles. Comparison of the directivity plot of the SPL at the BPF for
receivers at r = 8.8R normalized by the initial value of the aeroacoustic objective
function.

 

Figure 6.81: Optimization of an Aero–Engine Intake: Results after 12 aeroacoustic
optimization cycles. (Top) The generatrix and of the baseline and optimized geometry
of the parameterized part of the nacelle. (Bottom) 3D views of the baseline and
optimized geometries.
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6.8.4 Adjoint–Based Aerodynamic Optimization

Finally, an aerodynamic optimization is also performed in order to reduce the
total pressure loss. This is equivalent to increasing the total pressure at the fan
inlet, as the far–field pressure remains constant. The aeroacoustic performance
is evaluated using the same distribution of receivers as in the previous case in
subsection 6.8.3.

The convergence history of the aerodynamic objective function in Fig. 6.82a
shows that the total pressure at the fan inlet is increased by 0.2% after 10 opti-
mization cycles. Results of the current aerodynamic optimization are compared to
the previous aeroacoustic one in Fig. 6.82b. As seen, aerodynamic performance
resulted from two optimizations are close to each other, while aeroacoustic results
are different, yet being improved compared to the baseline.

Figure 6.81 compares the optimized nacelle geometry resulted from the current
optimization with all previous aeroacoustic optimizations and the baseline. It
shows that the present optimization (green dashed line) leads to a similar geometry
to the previous aeroacoustic optimization (blue line). This explains the similar
aerodynamic performance. It also indicates that, compared to the total pressure,
the aeroacoustic objective function is much more sensitive to the nacelle shape.
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Figure 6.82: Optimization of an Aero–Engine Intake: Results after 10 aerodynamic
optimization cycles. (a) Convergence of the total pressure at fan inlet normalized by its
initial value. (b) Comparison of the results from current optimization (aerodynamic)
with the previous one (aeroacoustic).
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Figure 6.83: Optimization of an Aero–Engine Intake: Results after 10 aerodynamic
optimization cycles. (Top) The generatrix and of the baseline and optimized geometry
of the parameterized part of the nacelle. (Bottom) 3D views of the baseline and
optimized geometries.
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Chapter 7

Closure

7.1 Summary-Conclusion

The aim of this doctoral thesis was to develop an aeroacoustic shape optimization
tool, efficient and accurate enough, with an affordable computational cost even
in large–scale problems. The mathematical formulation, programming and verifi-
cation of the continuous adjoint method to a hybrid noise prediction tool, being
the backbone of the developed G-B optimization method, is the most important
contribution of this PhD thesis.

A hybrid method for noise prediction starts by simulating the unsteady flow
which, in this work, was performed using the GPU–enabled URANS equations’
solver PUMA of PCOpt/NTUA. All tools developed during this PhD have been
incorporated into this solver, and thus programming was entirely made in CUD-
A/C++.

The hybrid noise prediction chain is completed by implementing the FW-H
analogy. The permeable version of this analogy, in the frequency domain, was de-
veloped and coupled with the PUMA solver. The equations governing the physical
mechanisms of noise creation and transmission to far–field have been described
in chapter 3. Comparison to a well–known analytical solution of the sound field
from a monopole source in uniform flow verified the implementation of the FW-H
integral.

Prior the continuous adjoint development, the differentiation of the FW-H inte-
gral was verified in the above mentioned analytical test case. Then, the continuous
adjoint for the hybrid noise prediction tool was developed and coupled with the
unsteady adjoint solver of PUMA, presented in chapter 4. With this, the final soft-
ware was made able to compute the gradients of aeroacoustic objective functions
in addition to aerodynamic objective functions (such as lift, drag and total pres-
sure losses). The gradients of which could already be computed with accuracy
by the method and software which were available in the beginning of this thesis

137
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(work made in the past in the PCOpt/NTUA group and included in the recent PhD
thesis [132]). For the purpose of this thesis, an aeroacoustic objective function,
expressed in the frequency domain, was defined to quantify the energy contained
in the sound pressure spectrum. With the developed continuous adjoint method,
the computation of the SDs of aeroacoustic objective functions, defined not only
over all resolved frequencies but also over a specific frequency range, w.r.t. design
variables, at a cost independent of their number was made available.

The FI adjoint approach, which is characterized with high accuracy, have been
used to derive the SDs formula, including surface and volume integrals of the flow
and adjoint fields as well as of grid sensitivities. Variations in turbulent quantities
and distance from the wall have been taken into account by differentiating the SA
turbulence model and the Eikonal equation. Moreover, it was shown that incor-
poration of the FW-H analogy in the adjoint development leads to sets of source
terms in the adjoint mean–flow and adjoint SA equations. By defining the perme-
able FW-H surface outside the grid displacement area, a simpler mathematical
development results. In addition, chapter 4 paid attention to the time window
over which the simulation results (time–series) must be stored and the time win-
dow over which the objective function is evaluated. If the period of the unsteady
phenomenon is constant during the optimization, the two aforementioned time
windows are equal to a single period of the problem. Otherwise, the flow solution
over the whole time window must be stored, with the objective time window being
a part of it, resulting to memory- and time-wise expensive computations.

The developed software was applied to a series of aeroacoustic shape opti-
mization problems. The cases with strong tonal noise component were selected,
as the flow simulation was based on the URANS equations. It was shown that,
in all applications, the acoustic pressure predicted by the hybrid solver is in good
agreement with the one computed by a pure URANS equation model. Moreover,
the good agreement between adjoint–based computed SDs and FDs verified the ac-
curacy of the hybrid adjoint solver in a number of problems including pitching and
plunging airfoils at different flow conditions. For these airfoils, omni–directional
noise reductions were computed upon completion of the aeroacoustic shape opti-
mization. Besides, an equality constraint handling method was developed based
on a gradient projection with a deferred correction. The method proved to be
effective in a lift–constrained noise minimization of a pitching airfoil, where it
successfully retained the mean lift at its initial level while reducing the noise.

Comparison of the EA-based and adjoint–based shape optimization of a plung-
ing airfoil in transonic flow by considering a multi–objective function (noise and
lift) showed that the PCA–driven MAEA is able to provide results comparable to
the adjoint, however, with a higher optimization cost, as expected. In this case,
in agreement with earlier studies [115, 153], the drag and noise objective were
shown to be competing.

Concerning cases with varying period during the optimization, a 2D vortex
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shedding cylinder in laminar flow and the rod–airfoil benchmark were considered.
For the former, the optimizer successfully suppressed vortex shedding during
the shape optimization. For the latter, an extensive comparison of aerodynamic
and aeroacoustic results with available data in the literature verified the validity
of the noise prediction tool. For such a computationally expensive case, early
termination of the unsteady adjoint solution was shown to reduce the solution
time by 33% and storage requirement by 60% while providing acceptable SDs
w.r.t. FDs; this is very encouraging for large–scale industrial applications. An
unconventional airfoil was the outcome of the optimization. This was partly due to
the unconstrained optimization and the use of a high number of design variable in
the parameterization. We should keep in mind that airfoils with unconventional
wavy shape for this application can also be found in the literature [151]. The
peak SPL was reduced by 3.7dB while its frequency remained untouched. In this
case, sound reduction was not omni–directional. A second optimization with an
objective function defined only in the area of the tonal frequency led to similar
acoustic results, with a different geometry though which reveals the complexity
of the design space for this problem. This, also, highlighted tonal component
noise domination of such a case as well as the shortcoming of URANS solvers in
computing broadband noise.

Validity of the developed tool for 3D application was shown first, by perform-
ing aeroacoustic shape optimization after verifying the acoustic results for flow
around a sphere. Then, the shape of an aero–engine intake was optimized as an
industrial application of the developed software. Combination of periodic bound-
ary conditions and solution in a moving reference frame was already available
for aerodynamic optimizations. This application showed that, this combination
in PUMA can been extended to the aeroacoustic problems, leading to steady flow
and adjoint runs, resulting to significant reduction in computational cost. The
software was extended to perform the proper rotation of flow field to generate the
corresponding unsteady fields required for computing the FW-H integral. It was
shown that the proposed method can provide acoustic results in a good agreement
with the outcome of a URANS equations’ solver. In order to assure a periodic ad-
joint solution, a continuous circumferential distribution of receivers was used for
the computation of the objective function. The first aeroacoustic optimization
using a single circumferential distribution of receivers resulted to a directional
noise reduction while incorporating more receivers in the second optimization
successfully reduced the noise in an almost omni–directional pattern.

7.2 Novel Contributions

The novel contributions of this PhD thesis are summarized below:

� Formulation, development and verification of the unsteady continuous ad-
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joint for a hybrid aeroacoustic prediction tool. To the authors knowledge, it
is the first time in the literature that the continuous adjoint is developed for
a FW-H based noise prediction tool.

� Contribution of the acoustic analogy to the adjoint Spalart-Allmaras turbu-
lence model has been taken into account.

� The use of the permeable version of the FW-H analogy offered simpler adjoint
development. However, this resulted to some terms including spatial deriva-
tives of variations in flow variables w.r.t. the design variables. Use of the
discretized form of these terms has been shown to be a way to incorporate
these terms into the adjoint development.

� The proposed equality constraint handling has been shown to work properly
for cases with non–linear constraints.

� This PhD thesis is the first work using PUMA for shape optimization in
unsteady problems, therefore, it improved the capabilities of the unsteady
adjoint solver of PUMA not only for aeroacoustic but also for aerodynamic
shape optimization.

� A novel contribution is the extension of the developed tool to handle rotat-
ing cases such as the industrial application of this work. The aeroacoustic
adjoint solver has been extended to be consistent with a MRF–based steady
primal solution, by performing proper rotation of flow fields. By doing so,
steady flow and adjoint problems were solved and this reduced the compu-
tational cost.

7.3 Publications & Conference Presentations

� M. Monfaredi, X. Trompoukis, K. Tsiakas, and K. Giannakoglou. Continu-
ous Adjoint for Aerodynamic–Aeroacoustic Optimization Based on the Ffowcs
Williams and Hawkings Analogy. In Fluid-Structure-Sound Interactions and
Control: Proceedings of the 5th Symposium on Fluid-Structure-Sound Interac-
tions and Control 5, 329-334. Springer, 2021. (Chapter in book)

� M. Monfaredi, X. Trompoukis, K. Tsiakas, and K. Giannakoglou. An Un-
steady Aerodynamic/Aeroacoustic Optimization Framework Using Contin-
uous Adjoint. In Advances in Evolutionary and Deterministic Methods for
Design, Optimization and Control in Engineering and Sciences: Proceedings
of EUROGEN 2019, 147-162. Springer, 2021. (Chapter in book)

� M. Monfaredi, V. Asouti, X. Trompoukis, K. Tsiakas, and K. Giannakoglou.
Continuous Adjoint–Based Aeroacoustic Shape Optimization of an Aero–
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Engine Intake. In 14th International Conference on Evolutionary and De-
terministic Methods for Design, Optimization and Control. EUROGEN 2021,
28-30 June, Athens, 2021.

� K. Giannakoglou, M. Monfaredi, V. Asouti, X. Trompoukis and K. Tsiakas.
Aeroacoustic mitigation through shape optimization. In Von Karman Insti-
tute Lectures Series on Advanced concepts for the reduction of flow-induced
noise generation, propagation and transmission, November 23-26, 2020.

� M. Monfaredi, X. Trompoukis, K. Tsiakas, and K. Giannakoglou. Unsteady
Continuous Adjoint to URANS Coupled with FW-H Analogy for Aeroacoustic
Shape Optimization. In Journal of Computers and Fluids,2021 (Accepted)

7.4 Future Work

This PhD thesis was based on the previous works by the PCOpt/NTUA regarding
the PUMA code and its continuous adjoint tool for aerodynamic and hydrody-
namic shape optimization, and enhanced this software with new tools and novel
developments. Some suggestions for future work are listed below.

� Turbulent Boundary Layer (TBL) models [117, 46] can provide fair fast pre-
dictions of far–field sound based on low–cost RANS simulations. Therefore,
the aeroacoustic module of PUMA can be extended by incorporating these
models for an initial sound prediction for some applications. Developing
continuous adjoint for these models is also an interesting/challenging task
as TBL models are based on averaged boundary layer data.

� In order to explicitly reduce the broadband noise, optimizations must be per-
formed on the basis of turbulence-resolving simulations. Extending PUMA
and its adjoint solver to include simulations such IDDES or DDES can be
considered as a future work, which aeroacoustic shape optimization could
certainly profit it.

� Some interesting fields of research for unsteady adjoint applications are re-
lated to the cost reduction techniques for storing/recomputing intermediate
flow solutions, needed to perform the adjoint solution backwards in time.
Data compression and check pointing are two efficient methods that related
works regarding them are in progress in two PhD theses in PCOpt/NTUA.
However, their application in PUMA offers a new opportunity for future work.
Moreover, use of temporal/spatial coarsening for the unsteady adjoint so-
lution is an interesting cost reduction method to be considered as a future
development for PUMA.
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� A high fidelity simulation tool such as LES can be used to re–evaluate the
acoustic performance of the URANS–based optimized shape and provide
further insight to the physical mechanism of noise reduction as well as
the effects of such optimization on broadband noise.

� Current continuous adjoint development of aeroacoustic problem is based
on the permeable version of the FW-H analogy. However, an interesting
future work is to repeat the continuous adjoint development for the non–
permeable version of this analogy, giving contribution to SD expressions
and adjoint boundary conditions, and compare the accuracy of the two de-
velopments.

� Combining EAs and adjoint into a two–level hybrid optimization tool, taking
advantages of both, is worthy to be considered as a future work. In this case,
a fist level EA–based optimization can be performed using a few number of
design variables in order to obtain the initial design for the second (adjoint–
based) optimization level where higher number of design variables are used.



Appendix A

Constraint Imposition using Gradient
Projection with a Deferred Correction

In the constrained optimization case presented in section 6.2, a gradient pro-
jection method with an additional deferred correction term is used to impose an
equality constraint. The standard gradient projection method operates by elim-
inating the component of the computed gradient of the objective function which
is aligned with the gradient of the constraint function. This works effectively
when, close to the current design, the constraint function is almost linear w.r.t.
the design variables, bn (n = 1, ..., N). However, in case of a strongly non–linear
constraint, even if the optimization happens to meet the constraint value at an
optimization cycle, be it the first or ith cycle, the method fails making solution up-
dates still meet the constraint and gradually deviates from it. To overcome this,
the standard gradient projection method is enhanced with a deferred correction.

The method is graphically explained in Fig. A.1. Let J be the objective function
to be minimized, subjected to the equality constraint C = Ccnst, where Ccnst is a
known value. The design variables ~b are updated using steepest descent with a
step η. In cycle i − 1, let the objective function value be J i−1 and the equality
constraint met. The proposed deferred correction term is applied only if the newly
updated solution no more meets the equality constraint. Should this be the case,
in cycle i − 1, a standard gradient projection is performed and design variables
are updated as

~bi = ~bi−1 + δ~bi−1
projected (A.1)

where
δ~bi−1
projected = −η

[
∇J i−1 − (∇J i−1 · ∇∗Ci−1)∇∗Ci−1

]
(A.2)

where∇ is the gradient operator and∇∗C = ∇C
|∇C| . Depending on the non–linearity

of the constraint function, this may cause a deviation from the constraint value
in cycle i, ∆Ci = Ci − Ccnst, as shown in Fig. A.1. ∆Ci becomes known after
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evaluating the lastly updated solution, as long as this constraint is related to the
performance of the corresponding flow. The idea of the proposed method is to
partly compensate this "loss" using a deferred correction δ~biDC which is indexed
with i as it will be performed in the the ith cycle of the optimization loop. Since the
correction must be able to partly bridge the gap between the current constraint
value and the threshold (Lcnst), it must satisfy δ~biDC · ∇Ci = ∆Ci. This equation,
however, includes N unknowns namely the N components of δ~biDC . Therefore,
δ~biDC is chosen to be aligned with the constraint gradient i.e. δ~biDC = γi∇∗Ci,
shown by a green arrow in Fig. A.1. γi can be found as γi = ∆Ci

|∇Ci| .
In fact, instead of using Eq. A.1, the design variables are updated by

~bi+1 = ~bi + δ~bicorrected (A.3)

where
δ~bicorrected = δ~biprojected − δ~biDC (A.4)

Ji

Lcnst
L
i

L J δbprojected

δbcorrected

Ji-1

δbDC

Figure A.1: Gradient Projection with a Deferred Correction. Each axes stands for
a design variable. Iso–objective and constraint values are colored in blue and red,
respectively. Gradients of the objective function, ∇J , and constraint function, ∇C,
are shown by blue and red arrows, respectively. The green arrow represents the
correction term. The black dashed arrow shows the update of the design variable
after projection. The black continuous arrow shows the update of the design variable
after projection and correction.
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The proposed method is demonstrated in a simple example where J = (b1 −
2)2 +(b2−1)2 is the objective function to be minimized subjected to the constraint
C = (b1)2 + (b2)2 − 2 = Ccnst where Ccnst = 0. b1 and b2 are the design variables
with the initial values of b1

1 = 1 and b1
2 = 1. Therefore the constraint is met in

the beginning. A step size of η = 0.2 is used during the optimization. Figure A.2
illustrates the result after 10 optimization cycles and shows how the optimiza-
tion follows the equality constraint iso-line. The values of the design variables,
objective and constraint functions and their gradients are given in table A.1.
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Figure A.2: Gradient Projection with a Deferred Correction. Result of the demon-
stration example for 10 optimization cycles, labeled by cycle ID. A closed–up view of
the above in cycles 5 to 10 is also plotted.
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Table A.1: Gradient Projection with a Deferred Correction. Result of the demonstra-
tion example for 10 optimization cycles.

Cycle b1 b2 J C ∇J ∇C
1 1.0000 1.0000 1.0000 0.000e+ 0 (−2.000, 0.000) (2.000, 2.000)
2 1.2000 0.8000 0.6799 8.000e− 2 (−1.600, −0.3999) (2.400, 1.600)
3 1.2384 0.6923 0.6746 1.307e− 2 (−1.523, −0.6153) (2.476, 1.384)
4 1.2545 0.6540 0.6753 1.719e− 3 (−1.490, −0.6918) (2.509, 1.308)
5 1.2610 0.6403 0.6754 2.303e− 4 (−1.477, −0.7192) (2.522, 1.280)
6 1.2634 0.6353 0.6754 3.108e− 5 (−1.473, −0.7292) (2.526, 1.270)
7 1.2643 0.6335 0.6754 4.199e− 6 (−1.471, −0.7329) (2.528, 1.267)
8 1.2647 0.6328 0.6754 5.672e− 7 (−1.470, −0.7343) (2.529, 1.265)
9 1.2648 0.6325 0.6754 7.662e− 8 (−1.470, −0.7348) (2.529, 1.265)
10 1.2648 0.6325 0.6754 1.035e− 8 (−1.470, −0.7349) (2.529, 1.265)



Appendix B

Differentiation of the Analytical Solution
for Monopole Source in 3D Flow

In order to validate the part of the code that differentiates the FW–H integral, in
chapter 5, the variation in the objective function, Eq. 4.4 , w.r.t. the location of
the monopole source, ~xs, is computed by the code and compared with analytical
differentiation. The latter, for 3D cases, is detailed in this Appendix.

The complex velocity potential of the case is given by Eq. 5.2.1 . In what follows,
receivers location, ~xr, is replaced by ~x. The perturbed flow field is achieved as
follows

p′ =
ρ0A

4πr∗

[
sin(ωt− kr+)(ω − u∞1k

∂r∗

∂x1

) + cos(ωt− kr+)
u∞1

r∗
∂r∗

∂x1

]
u′i =

A

4πr∗

[
k
∂r+

∂xi
sin(ωt− kr+)− 1

r∗
∂r∗

∂xi
cos(ωt− kr+)

]
ρ′ =

p′

c2
∞

which are enough to compute the derivatives of J by performing FDs. In the
second method, the FW–H integral is differentiated as follows.

∂J

∂bn
= − 1

Ts

∫
Ts

∮
f=0

[
(Ak +Bk)

∂Fk
∂bn

+ (C +D)
∂Q

∂bn

]
dsdt
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where

Ak =

∫
ω

(
p̂′Re

|p̂′|

(
∂Ĝ

∂xk

)
Re

+
p̂′Im
|p̂′|

(
∂Ĝ

∂xk

)
Im

)
(cos(2πωt))dω

Bk =

∫
ω

(
p̂′Re

|p̂′|

(
∂Ĝ

∂xk

)
Im

+
p̂′Im
|p̂′|

(
∂Ĝ

∂xk

)
Re

)
(sin(2πωt))dω

C =

∫
ω

ω

(
p̂′Im
|p̂′|

ĜRe −
p̂′Re

|p̂′|
ĜIm

)
cos(2πωt)dω

D =

∫
ω

ω

(
p̂′Im
|p̂′|

ĜIm −
p̂′Re

|p̂′|
ĜRe

)
sin(2πωt)dω

Please note that bn are the xsn coordinates, so

∂Fk
∂xsn

=

[
δkn

∂p

∂xsn
+ (vk − 2v∞k) (vj

∂ρ

∂xsn
+ ρ

∂vj
∂xsn

) + ρuj
∂vk
∂xsn

]
nFWH
j

∂Q

∂xsn
= (ρ

∂vk
∂xsn

+ vk
∂ρ

∂xsn
)nFWH

k

Next, the variation in p, ~u and ρ w.r.t. xsn should be found based on the
analytical solution

∂p′

∂xsn
=
−1

r∗
p′
∂r∗

∂xsn

+
ρ0A

4πr∗

{
− k ∂r

+

∂xsn
cos(ωt− kr+)(ω − v∞1k

∂r∗

∂x1

)

− v∞1k
∂

∂xsn
(
∂r∗

∂x1

)sin(ωt− kr+) + k
∂r+

∂xsn
sin(ωt− kr+)

v∞1

r∗
∂r∗

∂x1

+ cos(ωt− kr+)[−v∞1

r∗2
∂r∗

∂xsn

∂r∗

∂x1

+
v∞1

r∗
∂

∂xsn
(
∂r∗

∂x1

)]
}

∂v′i
∂xsn

=
−1

r∗
v′i
∂r∗

∂xsn
+

A

4πr∗

{
k

∂

∂xsn
(
∂r+

∂xi
)sin(ωt− kr+)− (k2∂r

+

∂xi

∂r+

∂xsn
+

1

r∗2
∂r∗

∂xsn

∂r∗

∂xi

− 1

r∗
∂

∂xsn
(
∂r∗

∂xi
))cos(ωt− kr+)− 1

r∗
∂r∗

∂xi
k
∂r+

∂xsn
sin(ωt− kr+)

}
where the following relations hold
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∂r∗

∂xi
=

( ~M · ~r)Mi + β2(xi − xsi)
r∗

∂r∗

∂xsi
= −∂r

∗

∂xi
∂r+

∂xi
=

1

β2
(
∂r∗

∂xi
−Mi)

∂r+

∂xsi
=

1

β2
(
∂r∗

∂xi
+Mi)

∂

∂xsi
(
∂r∗

∂xk
) = − 1

r∗
∂r∗

∂xk

∂r∗

∂xsi
− 1

r∗
(MiMk + β2δik)
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source analysis of a rod–airfoil configuration using unstructured large-eddy
simulation. AIAA Journal, 53(4):1062–1077, 2015.

[46] M. Goody. Empirical spectral model of surface pressure fluctuations. AIAA
journal, 42(9):1788–1794, 2004.

[47] A. Griewank and A. Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA, second edition, 2008.



Bibliography 155

[48] J. Hambrey, D. Feszty, S.A. Meslioui, and J. Park. Acoustic prediction
of high speed propeller noise using urans and a ffowcs williams-hawkings
solver. In 35th AIAA Applied Aerodynamics Conference, page 3917, 2017.

[49] A.L. Hansell, M. Blangiardo, L. Fortunato, S. Floud, K. de Hoogh, D. Fecht,
R.E. Ghosh, H.E. Laszlo, C. Pearson, L. Beale, et al. Aircraft noise and
cardiovascular disease near heathrow airport in london: small area study.
Bmj, 347, 2013.

[50] S.I. Hariharan, J.R. Scott, and K.L. Kreider. A potential-theoretic method for
far-field sound radiation calculations. Journal of Computational Physics,
164(1):143–164, 2000.

[51] M. Hartmann, J. Ocker, T. Lemke, A. Mutzke, V. Schwarz, H. Tokuno,
R. Toppinga, P. Unterlechner, and G. Wickern. Wind noise caused by the
side-mirror and a-pillar of a generic vehicle model. In 18th AIAA/CEAS
aeroacoustics conference (33rd AIAA aeroacoustics conference), page 2205,
2012.

[52] D. Heimann and R. Karle. A linearized euler finite-difference time-domain
sound propagation model with terrain-following coordinates. The Journal
of the Acoustical Society of America, 119(6):3813–3821, 2006.

[53] R. Içke, O. Baysal, L.V. Lopes, B.Y. Zhou, B. Diskin, and A. Moy. Toward
adjoint-based aeroacoustic optimization for propeller and rotorcraft appli-
cations. In AIAA Aviation 2020 Forum, page 3140, 2020.

[54] M. Jacob, M. Ciardi, L. Gamet, B. Greschner, Y. Moon, and I. Vallet. As-
sessment of CFD broadband noise predictions on a rod-airfoil benchmark
computation. In 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA
Aeroacoustics Conference), page 2899, 2008.

[55] M.C. Jacob, J. Boudet, D. Casalino, and M. Michard. A rod-airfoil ex-
periment as a benchmark for broadband noise modeling. Theoretical and
Computational Fluid Dynamics, 19(3):171–196, 2005.

[56] A. Jameson. Aerodynamic design via control theory. Journal of scientific
computing, 3(3):233–260, 1988.

[57] A. Jameson. Aerodynamic Design via Control Theory. Journal of Scientific
Computing, 3(3):233–260, 1988.

[58] A. Jameson and J. Reuther. Control Theory based Airfoil Design using
the Euler Equations. In 5th Symposium on Multidisciplinary Analysis and
Optimization, Panama City Beach, FL, USA, 7 September - 9 September
1994.



156 Bibliography

[59] H.K. Jawahar, S.A. Ali, M. Azarpeyvand, and C.R. da Silva. Aerodynamic
and aeroacoustic performance of high-lift airfoil fitted with slat cove fillers.
Journal of Sound and Vibration, 479:115347, 2020.

[60] S. Kallas, M. Geoghegan-Quinn, M. Darecki, C. Edelstenne, T. Enders,
E. Fernandez, and P. Hartman. Flightpath 2050 europe’s vision for aviation.
Report of the high level group on aviation research, European Commission,
Brussels, Belgium, Report No. EUR, 98, 2011.

[61] M. Kaltenbacher, M. Escobar, S. Becker, and I. Ali. Numerical simula-
tion of flow-induced noise using LES/SAS and Lighthill’s acoustic analogy.
International journal for numerical methods in fluids, 63(9):1103–1122,
2010.
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