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Euyapiotieg

Y10 onuelo auTtd OAOXANPEOVETAL EVOC TOAD ONUAVTIXNOS XUXAOS TNE LoNE Lo xat XAeVEL TO
1WOLUTERA OUOPYPO XEPIAALO TWV TEOTTUYLIIXWY 6ToLdWY cTo Edvind Metodflo Ilohuteyveio.
H nopeia aut| epmioutiotnxe and mohholg avipnhmoug, Toug onoloug indw TNy avdyxn va
guYAELOTHOW amd Tor Bdn Tne xoEdlde wou. Apyixd, o ieha va euyoploThow Tov emPBAEnovia
xadny Nt TNS TapoloaS BITAWUATIXAC EpYasoiac, Tov xUpto Anunitelo XolvTen Tou Hou €dwoe
TN BUVATOTATA XU TNV euxanpia Vo EXTOVI oW €va V€U BIMAWUATIXAC AXEWS EVOLUPEROV Yia
gUEVaL.

Yy ouvéyelo Yo Hleda vor ex@pdow TNV ELVYVOUKMGUVY HOU TEOG TOV UETAOWDAXTOPLXO
gpeLYNTH Lo Then 200N xou Tov unodrplo diddxtopa Bacikn Aéwv, ol onolol cuvéBaiay ce
onNuovTixd Podud T000 GTNY XAANERYELN TOU TEOTOU OXEYNC UOU WS TEOE TNV TEOGEYYIOT
oxeTX®OY INTNUAT®Y, 600 XoL GTNY XUANERYELL XU OVATTUEN VEWY 1BEDY Xt XU TELHOVEEWY
TIOL 0POEOVGAY TNV EXTOVNOT] AUTNG TNG €pYaciag. OEAW Vo TOUS ELYUPIETHCH WOLUTERWS YLdL
TOV YPOVO TOU aPLECKCAY OOTE VoL avTAAAGEoUE oxéPelC xan 1Béec oyeTd Ye {nTruaTa Tou
TEOEXLYAY XATA TNV BLAEXELN TN OLTAWUATIXAS.

Ou fleha va euyoEloTHow Toug GIAOUC You Tou BploxovTol GTO TAEUEO UOU YEOVLAL KoL
opoppatvouv TN LoY) wou. To toudid and to oyohelo, Tov I'dvvn xou Tov Pdvn mou yeyarwooue
pall xou €youue potpaotel TOoEC wpaieg oTYpES. Axdun, TOuC avlp®OTOUE TOU YVMELoN GTA
QOLTNTXA LoV YeoVia, Tov Baciin xau tov Bactin, to Ytéhio,to Nixo, tov TOAn, Tov Aeutépn,
tov Aoteplo, Tov Oavdorn xon guoixd Ty xomélo wou Tty TCévn. Toug cuyaplotd moAD
Wdtepa yioe Ty TeAsuTala TEplodo TOU UTEUEVOY TIC WOLOTEOTIES WO Xl TIC avnouyleg pou
oe xonuepwvr Bdon xaw ue Boriinooy pe tic TohOTES cUPBOURES TouC.

Téhog, Yo Hleha var ELYOPICTACL TNV OXOYEVELX oL TOU amd pxer) nitxio €decay To
Yepého yior TNV Topelol Hou, UE TopdTEUVIY Vo adpdEn euxatpieg xou TEocEpepay xoodryno
xan evidppuvon oe xde Briua. XtéxovTon dimha HOU OTo XAUAY X TA XX, TEVTOL UE UTIOUOVH
xa oydmn. Méoa and mpoowmxég xou xoinuepvéc Yuoie xahhiépynooayv to Tep3dAlov Tou

HOU ETUTEETEL VAL XUVNYHIO TA OVELRE. LOU.






HeptAngm

Tnv tedeutaia dexoetion oo Buvehtind Nevpwvixd Aixtuo (ENA) avodelydnxov o pio
amo TIC XUAOTEPEC TEOCEYYIOE Yl TNV AVTIIETWTLON 0poPEVLY TpoxAcewy TN ‘Opaong
TToAoYoTOY, 0K 1) THEVOUNOY) EIXOVLY X0k O EVIOTUOHOS aVTIXEWEVLDY ot auTtég. O te-
Aeutaleg €peuveg Belyvouy capO OTL Ta VELPWVIXE BixTUA OLETOUY WLl EYYEVT] LOLOTNTA
oVIEXTIXOTNTAG OTA opdAyata. Ao Tn oTiyyr mou ol yproteg dlatidcovton Vo avextoly opl-
OUEVOL CPIAUATA O XATOLEG TEPLTTWOELS, Ol dpy€C Tou approximate computing uropodv vo

ETMUOTEATEUTOLY YIA TNV OYEOLACT| EPUQUOYHY ATOBOTIXMY (S ROV TNY XATAVIAWCT) EVEQYELAS.

21N mopoloa BIMAWUATIXY, GTOYEVOUUE GTNY AVATTUEY VEOY TEOCEYYICTIXWDY TEYVIXWY
ToU TEOGPEEOLY €va xahd trade-off uetald xotavdhwone evépyelag xon oQIAIATOS GTNY o-
xp{Bela, TEoyUaTOTOLOVTIC Wi SleE0dIXT) EEEPEVVNOT Y WEOU TEOXEWEVOL Vo Bpolue TIC BEATL-
oteg duvatég Aooele. Iho cuyxexpéva, exgetodievtrhixaue Ty PUBA00RXTN avoryTo) %o
[1] mou enextetver to Tensorflow nopéyovtag mpooeyyioTixd cuvehixtixd layer, dnhady layer
UE UELWUEVT axplfBEla YeNOLHOTOLOVTIS TROCEYYIoTIX0US TohhanAactaotéc. Enexteivaye tnv
BBAoO N auty| oyedldlovTag xat avanTUoCoVTAS TECOERLS VEEC TROOEYYIO TIXEC TEYVIXES OF
wo tpoomdiela va Bpolue Tic BEATIOTES duvaTég AUoelg Tou meTuyakvouv €va xahod trade-off
peTol xatavdhwong evépyetag xau axpifeloc. ITpoxewévou va avantdouUEe aUTES TIC TEYVIXES
oxohoutfiooue pio tepapyxr oepd. Ilio cuyxexpuuéva, oTny TEOTN TEYVIXT OXONOLUCUUE (Lol
un ouoldpopen dour| ava layer, avtixanho TMVIAC TOUC TOMATAAGIAOUOUE OE XATOLY CUVEATIXA
layers ye 0laopeTiX0UC TEOCEYYLOTIXOUE TOAATAACLAC TEC Xal TOURAAANACL SLUTNEWVTAS GTA
unéhowna layers tov axplf3r) toAamhaclacTh. Xty 0e0Tepn TEX VXY, Olanpécoue To TARYog
TV @ilTpwy o xdie layer oe k 1oodlvoua uéen xan avadéoaue o xdde pépoc Evar Blapo-
PETUO TPOCEYYICTIXO TOANUGIAOTY. XTNV TelTn TEYVIXY, TEAYUATOTOW|CUUE TEOCEYYIOEWS
péoa ot QiATea €lte AVTIXIOTOVTOS TOUC TOAATAACLAGUOUS, ONAAOT To UEQIXA YIVOUEVA
HE DLUPOPETIXOUE TROCEY YO TWOUS TOAUTAACLIGTES ElTe TapahelnovTag Toug Onhady ur &-
ATEAWMVTAUC TOUC XoOAOL. 3TNy TETUETN o TEAELUTOLA TEYVIXY| TapATNErioope OTL Tar Bden
TV QIATELY axohovlolv xavovixt| xatavopn ava layer xou Bacilouevol oe autd mpoteivayue
VoL EXTEAEGOUPE HOVO TOUC TOAATAACLAGHOUS OV €Y0UV TYT| QIATEOU 1) omtola aviXEL OE eva
ano To Qo THROT [U-o,u+0], [u-20,u+20]. H aflordynon twv texvixmy npoypatono{dnxe
oto Tensorflow néve 6Tto vevpwvixd dixtuo to Resnet-8 xau yenoiwomowwvtoag to validation
set Tou CIFAR-10 xoddc xou Tpelc Tpooey Yo Tixo0¢ TOAATAACIIC TEG UE OLapopeTid perfo-
ration. Xtnv mpoomdiela pag vo cuyxplivouue Tig TeyVIxES YeTag) TOUS Xol VoL XoTaAAEOUUE

OTO TOLEG €Val OL XohUTERES eeTdooPe TNV axpifelor xou TNV EVEQYELX TOU AMOLTELTAL YLol TO

3



4 Iepidngm

inference plag exdvac. To telhnd anotedéopata €6eiloy OTL 1 TplTn xou 1 BevTEEN TEYVIXY
elvar oL xo\OTepeS xaddde TaPEYOLY oNuavTiX eZoxoudvnon oTny evépyela we xot 33.5% avd
30.4% ovtiotoya, CUYXEWVOUEVES YE TNV UAOTOOT KE TOV oxpifr) TOMATAXCLoTY, €YOVToC
TEAAANAC TOAD pixer) TTWoT oTnv axpifela.

Télog, cuyxpivaue Tnv axpifeio xou TNV EVERYELX OTAY XATOLOL TEOCEYYLO TLXOL TOANATANL-
oo Ttéc and v [2] yenowwonowivtar oto Resnet-8 pe tnv axpifela xou tnv evépyeto Tou
TEOXUTTOUY OO TIC DIXES UOC XANVTEPEC TROCEYYIOTIXES TEYVIXESC. ATO TIC LY XPICEC TTPO-

€xule OTL oL Suég pag ANOoELS Elvol aVITERES Xl WS TEOS TIG BU0 AUTES UETEIXEC.

AéCeic KAewdd

[Tpooceyyiotixol utohoyiouol, Batd cuvehxtind dixtua, Resnet-8, Yuvehutind Nevpwwi-
%d Alxtua, Hpooeyyiotixol tolamhaciactég, Tensorflow, CIFAR-10, E€owovounon Evée-
yewg, AxpiBeio IpdBhedng



Abstract

Over the past decade Convolutional Neural Networks (CNNs) emerged as the state-of-
the-art approach to tackle certain Computer Vision problems such as image classification
and object detection.The state-of-the-art works clearly indicate that neural networks fea-
ture an intrinsic error-resilience property. Since they often process noisy or redundant
data and their users are willing to accept certain errors in many cases, the principles of
approximate computing can be employed in the design of their energy efficient implemen-

tations.

In this thesis, we target the development of novel approximation techniques that pro-
vide a good trade-off between between energy consumption, performance and error, by
performing an in-depth design space exploration to find optimal solutions. In particular,
we exploited the open-source library [1] that extends Tensorflow by providing Approximate
Convolutional layers i.e., layers with reduced precision implemented using approximate
multipliers. We extended this library by designing and developing four new approxi-
mation techniques in an effort to find the optimal solutions that achieve a good a good
trade-off between between energy consumption and inference accuracy. In order to develop
this techniques we followed an hierarchical order. More specifically, in the first technique
we followed a non-uniform structure per layer, by replacing the multiplications in various
convolutional layers with diverse approximate components while maintaining the accurate
multiplications in other layers. In the second technique, we split the number of filters in
each layer into k equivalent parts and assign in each of these parts a different approximate
multiplier. In the third technique, we performed approximations inside the filters by either
replacing the multiplications i.e., partial products, with diverse approximate components
or simply skipping this operations i.e, not executing them at all. In the fourth and final
approximation technique we observed that the filter weights of each layer follow a normal
distribution and based on this we proposed to execute only the multiplications that have
filter weights that belong in either this range [ — o, 1 + o] or this [ — 20, u 4 20]. The
evaluation of our proposed techniques is performed in Tensorflow with Resnet-8 using the
validation set from CIFAR-10 and three inexact multipliers with different perforation, by
examining the inference accuracy and energy for the inference of one input image. The
final results show that the third and second technique are the best since they provide a
significant energy saving up to 33.5% and 30.4% compared to the accurate implementation

respectively with a negligible drop in the inference accuracy.

5



6 Abstract

Finally, we compared the inference accuracy and the energy when some approximate
multipliers from the EvoApproxLib[2] were employed in the Resnet-8 with the inference
accuracy and energy that are provided by are best approximation techniques. The com-
parisons showed that our solutions are far better in terms of both inference accuracy and

energy.

Keywords

Approximate Computing, Deep Neural Network, Resnet, CNN, Approximate Multi-
pliers, Tensorflow, CIFAR-10, Energy Efficiency, Inference Accuracy
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Extetopevn Ilepiindmn

Ewcaywyn

Trv tehevtada Sexoetio, T Buvehixtind Nevpwvind Atxtua (ENA) avadetydnxoay o évag
a6 TOUC XAUADTEPOUS TEOTOUE Yial TNV ENMLALCT OPLoPEVWY TEOPANUATLY and To medio tng O-
poong TToAoyloT@Y, TS evol 1 ToEVOUNOY EIXOVWY XOL 1) Aoy VRLoT, ovTxeévoy. Ta
Yuvehutind Nevpovind Aixtua etvon pla utoxatnyopio twv Teyvntodv Nevpwvixdv Axtiony
X0l EVOIL ELVEUCUEVOL A0 TOV TEOTO UE TOV 0To{0 AELToupYEl 0 avpdWmivog eYXEPUROS. Luvl-
0100V €val TOAU oNpavTiXd xouudtt tne Mnyavixre Mdadnong.

[ToAAé¢ eqopuoYEg oL omoleg ewvan TOAD BATAVNPEES OGOV APOEA TOU UTOAOYLOTIX0UE TOPOUS
(vt mapdBELy UL 1) ovary VdpLoT) ExOVLY, 1 eE6puon dedouévwy xou 1 enedepyaoio exdvag xau
Bivteo) drodétouv Yl ecwtepxt| WBLOTNTa oviexTdTNTaG 08 o@dApoTte. Ano Tn oTiypr Tou
oL YeNOTEC BEYOVTAL OE OPIOPEVES TEPLITWOELS OPLOUEVO GOANIATO OTIC EQURUOYES TOUG, OL
0EYEC TWV TPOCCEYLOTIXWY UTOAOYLoU®Yvapproximate computing unopotv va alomondoiyv.

To approximate computing ewou pio eVvoloxTixr] TEOCEYYIOT OYEBLICUO) TOU EXHUEL-
TUAAEVETOL TNV ECWTEPIXN WOLOTNTA VIEXTIXOTNTOG OE GPIAIATO TWV EQPUPUOYDV QUTMY XAl
umopel vo yahap®oel TNV oxplBeld 6TOUC UTOAOYLIOUOUEC TROXEWEVOL VO TOREYEL CNUAVTIXS
XEEOT GTNY XATAVIAWDCT) EVEQRYELOC.

H dimhopotiny autn anooxonel ota e€hg:

o No peheticoupe xan vo xatahdBoupe toe Aettovpyel 1 BiBhodrixn [1]. Auth ewor 7

BBMoMxn méve otny onola Boaciotnxe auTh 1 SITAGUATIXN.

e Na enextetvouye auth ™ BiAotxn npoxelpévou va uropel vo utootnpléel ToAamholg

TPEOCEYYIOTIXOUE TOAMATAACIACTES TAUTOYEOVAL.

o Na enexteivoupe Eavd autn ) BBAodxn avarntioovtag xon oyedldloviag VEEC TpOaEY-

Yo TiéC TeEY VIS oE BlopopeTixd enineda uéoa oto Badd Nevpwvind Alxtuo.

e No avoahOCOUUE To TELQUUATIXG ATOTEAECUATA TOU TEOXVUTTOLY ano xale Ui omo Tig
TPOTEWVOUEVES TEYVIXES UAC TTROXEWWEVOL VoL EAEYEOUUE TNV OMOTEAECUATIXOTNTO TNS XO0-
Yeplog petpwvTag TNV axplBela Tou VELpwVIXOD BIXTOOU xS Xo TNV EVERYELXL TOU
amonteltan yior plor Etdval, YENOHIOTOLOVTIS BLAPORETIXOUE GUVOLACUOUS TROCEYYLOTI-

AWV TOAATAAGLACUOY.
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o No chéylouue TNV amoteleopatixdTNTa TNC xadeUiog X0 VoL CUUTEQEVOUUE TOLEG ELVOL
OL XUAUTEPES TEYVXES CUYXPIVOVTAC TIC UE TO AMOTEAECUATA TTIOL TIOUEVOUUE OTOV YETOL-

HOTIOLOUUE TOV ox@U31| TOAATAACIAC TH.

o No cuYXEIVOUUE TIC TPOTEWVOUEVES TPOCEYYIOTIXES TEYVIXEG UOG UE TEOGEYYLOTIXOUS

nohhanhaoté ano tnv EvoApproxLib.

BOeswpentixd YTroBadpo

My avixy Mddnon

H Mnyavixry Médnon cuvavtiéton 6e apxeTég TTUYES TN XAIMUEQVOTNTOS TOV avUp®TWY.
H xatnyopronoinon ahinroypapiog, 10 cOoTNUL TEOTACENY SLPNUICE®Y i TEOTACEWY GYE-
TIXOV UE T EVOLUPEQOVTA TOU YPNOTY], CTNV OV VWELOT] XEWEVOU Xl POV AXOUA XL OFE
QUTOVOUOL AUTOXIVTA 1| AUTOUATOTOLACELS OLAPOPWY EQYUCLDY TOU EXTEAOUVTOL OO TOV dv-
Yowno. H teyvnty) vonuooivn éter ta epdytnuota T elvon 1 euguior xon g oautry Souréuel’
xo "Mmopolue v gTid€ouue €€umveg unyoavéc. ‘Onmg LTOBEVOEL Xou TO OVOUL, UE TNV UN-
xovixr) pdinom mpoonadolUe Vo EXTUBEUGOUPE TOUG UTOAOYLOTEC (OTE VoL udouv vor ADvouy
TEOBAAUATA YwElC Vo EVOL EXTEVMS TEOYPOUUATIONEVOL Yiol QUTOV Tov oxoTo. Evog mo e-
nionuog oploude yiow TNV udinon eivon o €€rg 7 "Eva mpdypoupa UTohoylo Ty, AéyeTon ot
pordabver and Ny eunetplor E pe dedopévn xdmowa epyacio T xou xdmowa pétenomn tne anddoong
I1, av n amédoon tou oty T onwe yetpiétan amo v IT Bertiwdvetan e v eunepio E°. Mtov
TupnvaL TG LTdEyEL 1 uTO¥eoT OTL 1) YV&oT uropel v avarydel amd to dedouéva. H Mrnyavixn
Mdrinon npoywedel €va Priua uteocTd and Ti¢ EEUTVES UNYOVES XL UTOCYETAL Lol UEYAAUTE-
pou elpoug xat Bddoug autopatornoinon oTic avipnmvee dpactnedtnTe. Ot wovdTovES Yo

EMAVOANTTIXEC EQYACIEC OE EVay GUYYEOVO XOGUO Vol EXTEAOUVTOL UTO UNYAVES.

//" \\
/' Artificial
" Intelligence

Exhpa 1: Yuoyétion tne Mnyaviric Mddnone oe oyéon ue dhha emiotnuovixd nedio
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Yuvehxtind Nevpwvixd Alxtua

Ta Xuvehixtnd Nevpwvixd Alxtua elvon plor IoLodTtepn xatnyoplas VEUROVIXGY SXTUOY Yo
enelepyooio dedopévwy o onola €youv pla Yoo tonoloyla tAéyuoatog. Eilvar grioryuéva
amb VEUPWVES oL omofol €youv exmoudeloda Bdern xar mohwoelc. Kde vevphvag 6éyeton
xdmolo. €lc0d0, extehel Evol ECWTERINO YIVOUEVO TO OTO0 TEOMMEETIXG axohouvdeltar amd Uia
un yeoupotnTa. Autd Tar BixTua €Y0UV EUTVELCTEL amd TO HOVTENO TO OTolo ToL UNAdCTIXG
AoB&vouv TNy TANEoQoplo TOL XOCUOU YUEK TOUS YENOWOTOLOVTOS Ulal XATIAANAT cucTotyia
BLOAOYIX®Y VEUROVWY GTOV EYXEPUAO TOUG YLOL VAL oIy VWweloouY To avTixéyevo autd. €lg
TEABELY O UToEoVUE Vo Vewphooupe Eva auToxivNTo Xl VoL EEETACOUNE TOV TEOTIO TOU EVaC
avipwnog to ayayvwpellet. O dvipwrog dhdyver yio yopoxtnelotixd ta onola Eeywpilouy €va
ouTOXVNTO amd GAAAL UECU UETAPORAS OTWS Vol OL TEOYOL, To UTPOGTIVA PWTA, Ol TOPTES, TO
v1enolito, To xand, ol xotpépteg xou To mopuneil xou dAla. Ilapduota 6tay avoryvwellet évoy
TEOY O YAy ver yior avTixeipeva xuxAxol oyfuatog, oxolpou yewuatog Ta onola Beloxovia
%4Te amd TNV wOpta dopn Tou autoxvitou. ‘Ohec auTtég oL Uixpéc TAnpogopiec cuvdudlovTal
poall Yo vor oynuoticouy €va GUYXEXPWEVO YoRoXTNELOTIXG TO omolo elvol Yovadixd ot €va
avtixe{yevo to omolo avayvwpllouye. Kdade eninedo evog cuvehixtinold veupmvixo) dixTiou
oyetiCetar pe TNV TapaywYY) TANeogoplac and TWES oL onolec €pyovial Amd TEOTYOVUEV
enineda oe plor axodpa o oOVIET TANEoYopia Xou TNV MEEAUTEPW OLIBOCT NG OF ETOUEV

enimeda yior var YIVEL TEpaUTER® YEVIXOTONGT).

TN ey SOPTMAX
~ A )

FEATURE LEARNING CLASSIFICATION

ExApa 2: Hopdderypo doung CUVEAXTXOD BXTOOL VLol TNV AVAY VORI HECWY UETAPORAS

ITpooeyyiotixol Yroloyiopol

H gopnth xan evowuatouévn @UoT TwV UTOAOYLOTIXMOY CUCTNUATWY TNG ENOY NG Hag, EXEL
odnyNoeL oe plar ENUEVT avaryxn YLot UTERBOALXGL YAUUNAY XATAVAAWGCT Loy VOGS, UXET| ETLPAVELY
xou LPMAY anddoor. O TEOCEYYIOTINOS UTOAOYIOUOS elvol €val avaBUOUEVO UTOAOYLOTIXG
TEOTUTIO TIOU oG ETUTEETEL VO ETUTUYYAVOUNE owTd Tor VeTind xdvovtag ouulBiBacuolc otny
aprdunux axplBelo. IIoAAd cuc THuATH OE TOUEIC OTWE To TOAVPESH, TOL VEUROVLXA BIXTUOL X0
1 avdhuor Pry dotar Tapouctdlouy pLol EUQUTN avoy Y| OE Vo GUYXEXPUEVO eTinedo avaxpeifelog
GTOUG LUTIOAOYLOUOUE XAl UToEoVY Vo WPEANUOOY amd TOUG TEOCEYYICTIXOUS UTOAOYIGUOUS.
Ot unohoYLo TIXES X ATOINUEVTINES UMOUTAOELS TWV LOVTEPVOY CUCTNUATWY EYOLY EEMERATEL
xatd TOAL Toug dldéooug topous. Ilpofiémeton OTL oTNV emMEpyduEV deXaETio, O GYXOC
e TAnpogoplag TNV omolo Soryeiptlovton T tayxéouio x€vtpa dedouévwy Yo audndel xatd

TEVAVTA PopEc, xodig o apltiuog Tev dladéouwy enelepyact®y Yo auviniel uévo xatd déxa
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POPES. LNV TEAYHATIXOTNTA, 1) XATUVIAWOT NAEXTEIXAC EVEQYELAS UOVO TWV XEVTPKY OEDO-
uévwy tne Auepixhc avopéveton va augniel and 61 dioexatouulpeta xhoBatdpees to 2006 xon
91 dioexatoupleta xhoPatwees to 2013 oe 140 doexatoypdpa xhoBatopees to 2020. Eivon
TROYaVES OTL 1) amalTnom Yo auEavouevn anddoor cbvtopa Yo Eenepdoetl TNV avdnTUEN GTOUG
otd€oipoug mopoug. OndTe 1 amoxhelo T Tapoy ) Tépwy dev Yo AUcel Tov Yelgpo tng Plo-
unyoviag oto xovtvé uélhov. H npooceyylotiny hettovpylo oto UAO, xuplws aoyoleiton e
TNV OYEGLOOT TEOCEYYIGTIXOV APLIUNTIX®Y HOVABWY, OTwWS Elvor oL adpOloTEC oL Ol TOAAO-
TACLo TS, O BlapopeTnd enineda apalpeang omwe etvon to TeavliGTop, TO XUXAWUITIXG, TO
eninedo MUAGY xan TN eqopuoync. Mepixol alloonuelwTtol tpoceyyioTixol adpoloTée mepl-
€youv uoVeTIX00E POIGTES, XATUXEPUATIOUEVOUS AUPOLGTES X0 TPOCEYYLOTIXOUS TATPELS
adpolotéc. Enlong, otov Toéa TV TpoceyYIo TNV TOAATAACIAG TGV, oL ontolol eivat To o
amouTNTXO o€ Véua Topwv oTolyelo Tou LAX0U, €xel Yivel onuoavTixy épeuva.

O Ipooeyyiotxol Tnoloyioyol xou 1 amodixeLcT) TAEOVEXTOUY GTNV TUEOUGLH AVEXTIXWV
OTOL GOANIATO TEQLOY WV HWDOLXA OE EQPUPUOYES X0 TEOPUVELS TEPLOPIOUOUS TV YPNOTWY VoL
Bloyetplotoly €€unva TNV LhoTolnar, Ty amohxeuan xou TV oxplBela Tou anoTeEréoUaToq
Yo TACOVEXTAUATA GTNY AMOBOGT 1| TNV EVEQYELN. LTNY TEAYUATIXOTNTA O TEOGEYYIGTIXOS
UTIOAOYLOUOC EXPETAAAEVETOL TO XEVO PETAED Tou emmédou axpifelag mou amoutelton and TNV
EQUPUOYT 1 TOV YEHOTN XU AUTO) TOU TUEEYETAL AN TO UTOAOYIGTIXG GUGTNUO YLOL VO XAIVEL

TS XATIANAES BeATioTOTOOELS.

ITpooceyyioTind Aprduntind Kuxhopato
ITpooceyyiotixol Adpolotég

Ye mpooeyyloTixég vhomoinoelg, oL alpoloTéC ToAWY Bt yweilovtal oc 800 BlaopeTid
uépn 1 To axEIBEC TAVL PEPOC TV TO CNUAVTIXGY PBIT X0 TO TEOCEYYIGTIXO XATe PEPOC TWV
Ayo6tepo onuavTtixwy Bit. o xdde younhd it , évog mpooeyyioTinds adpoloThg Tou evog
Bt mpaypaTonolel Uiot TEOTOTOMNUEYY), EMOUEVWLS avaxelr) Bladxaota tne mpocdeone. Autd
oLVAWE ETTUYYAVETOL UE TNV ATAOTOMOT EVOS TATIPOUS adpOoloTr O XUXAWUATIXO ETENEDO,
avtiotorya pe W Swadixactio 1 omolor ahhdlel xdmoteg elodbouc otov Tivoxar akndeiog evog

Thfpoug alpoloTy| oe AeltoupYixd ETnEDO.

ITpooeyyiotixol IToANanAaciacTég

Ye avtideon pe Tov oYESLICUO TROCEYYLOTIXWY oEOLG TRV, 1) CYEDINOT TROCEYYIO TIXWY
TOAMATAACLIC TGV eV €yl epeuvniel oto énaxpo. IlpooeyyioTixol ToAamhacLlGTEC OL OTO-
lol yenotomololy Toug LTo¥eTiNoUg adEOLoTES Yiol Vo UTOAOYIGOUY TO dpOLoUA TWV PERLXWY
ywvopévwy €youy oyedtaotel. Tlapdha autd, 1 dueoTn e@upuoyY| TwWV TEOCEYYICTIXWY ool
oTOV ot évay ToAamhactao T (owg efval un anodotixr 6cov apopd TNV avtohhayr) axpelBetag
yior €0OVOUNOT| OE EVERYELX xou empdvela. ‘Eva onuavtixd otoyelo otny oyedioocr evog
TEOCEYYLOTIX0U TOAAUTAAGLG T, efvan 1 pelworn Tou xplowou povoratiol otny ddpolor Twv

HEEXMY Yvouevey. O moAlamhactaouog cuvidwe viomoleiton amd €vory GUYOEDEUEVO Ttivaa
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adpolotidv. Yto [4] yepind Aybdtepa onuavtind Bitg oo Yepind adpolo TéC umopoly var oo
petoly and Tov Tivoxo 0dNYdVTaC ot YeNnyopdTepn hertoupyia. 3to [5], évoc ueydhog mTohho-
TAACLOG TG XATAOKEVALETAL ATO 2 X 2 AMAOTONUEVOUS TOAATAACLIUC TES YIA VO UEWDTEL TNV
oErIUNTIXT XU UTOAOYLO TixY| ToAUTAOXOTNTA. Evog anodotixdg cuviuaouds Tou yenoLLoToLel
npo-eneepyaoia xou emtnpdoletn avtio tédlulon o@diatoc Tpoteivetar oTo [6] Yio var UELDOEL
TNV xoUG TEPNOT TOU XEIGYOU LOVOTIOTIOV. XUVOUACUOL TNG TRy WY NS UEQIXOY YIVOUEVWY
%0l TPOCEYYIoEWY EQuEUOLoVTaL GUVBLUG TIXE YIal TEPAUTERW UEWOT TNG XATAVIAWONE Loy VOC
[7],[8],[9]. O xlpoc 6T6Y0C GTNV ONUEPWVT EPEUVE GOV APOEE TOUS TPOCEYYLOTIX0UE TOA-
Amhaotac TEG ebvon vor EtwUEl 0 aptiudg TwV UEPIXOY YIVOUEVWY YENOWOTOWMVTUS UPBELOXKES

xwdonothoel [10] yior vor eQopudooUUE TROOEYYIOES OTNY Topoy WYY LEPLXDY YIVOUEVKV.

ITeooeyyioTtind XuveAuxtixd Enineda tou Tensorflow

Tensorflow

To TensorFlow eivou plor BiBAo07xn avolytol x®Bxa Yo TNV XUTACKEUT] LOVTEAWY UT)-
Yovixig udinong Ueyding xhipaxoc. Efvor xotd mohd 1 mo onpo@iirc BBAodxn o tnv
xATaoXELVY| ovTEAWY Padide pdidnong. ‘Eyel eniong tnv oyupdTtepn xou Ui TERAGTIAL XOL-
VOTNTA TROYEAUUUATICTOY, EEELYNTGY xat cuvteAecT®y. To TensorFlow xataoxeudlel éva
UTIOAOYLOTIXO YRAPNUa Yia XdE EI50UC UTOAOYIOUO oL YivETL, amd TNy TEdcVesT) 6UO apLl-
M@V, UEYPEL TNV XATACKELY| EVOG Tep(mAoxou ouvehxTol duxtiou. Mol onuovpyniel éva

Yedpnua, exteleiton o€ o emovogalOuevn tepiodo Aettoupyiog sessioncecalov).

To TensorFlow emtpénet otov yehotn var SNULOURYHOEL Sloty paUpaTol P0G BEGOUEVMLY XAl
douéc mou opilouv mwg To Sedouéva xvouvton péoa amo to yedgnua. Ildipver we elcodo

Tivaxeg TOMATAG)Y Blaotdoenmy Tou ovoudlovton Tensor.

ITpooeyyioTind Suvehixtixd Enineda

H BiBrodfpn [1] tnv omolo 9éhoupe vor ETEXTEVOUUE GE aUTH 1 DITAWUOTIXT, EWVOL Lol
BBV N avoryTod xmOa ToU TERLAUUPBAVEL TEOGEYYIOTIXd GUVEAXTIXS oTpGpata. H Bi-
Bhodfnm auth enextelvel Ty LiBAlodrxn tou Tensorflow mopéyovtag mpoceyyloTind cuve-
AXTIXG OTEOUATA, To OTOloL EWVOL OTEMUATH To MELWPEVNS axpifela, cuvwiwe 8-bit to omola
UAOTIOLOUVTOL YPTOWOTOWWVTAS TROCEYYLoTiX0UEC Todlhamiactactés. Tho cuyxexpiéva 1 Pi-
Brodixn autr enexteiver to Tensorflow npoc¥étovtac to veo AxConv2D otpiua to onoio
vhonotel To QuantizedConv2D otpwua pe npoceyyioxols mohhaniactactéc. To oTpdua
QUTO ETUTEETEL PECW TAUPAUUETEOU OTOV YPNOTT Vo OPICEL TOLOV TEOGEYYIC TG TOAMATAACIAC TH
Véher va yenoylonotioet. Ot tohhamiactactég etvon utoronotuevol oe C. H Bifhiodfxn auvt

xenowonoteltan wovo v o inference.
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Validation Set

DNN
construction

Resnet
Constructor

+

Tensorflow
Learning

-f'

Tensorflow
transform_graph

NN with

AxConv2D
extension

AxConv2D Layers
(AXNN protobuf)

Tensorflow
Inference

-f-

SxAune 3: Tensorflow Approximate Layers Library

To vevpwvind dixtuo Resnet-8 emAéyetan xou yetor exmoudedton HOTE VoL avary vopllel et

w6vec and to Cifar-10 dataset.

To veupwvixd BixTUO TOU TEOXUTTEL TAYOVETAL, ONAAdN

onuovpyeitar to protobuf opyéio e xotdhnin .pb, xBavtonoleitor xou Tol GUVENXTIXA TOUL

OTEGUATA AVTXOHo TOUVTAL a6 Tl TEOCEY VLo T cUVEATIXG ductia AxConv2D yenowonol-

OVTOC TPOCEYYLOTIXOUEC TOAATAACIIC TES, HEcw Tou epyahetou Tou Tensorflow, to trasform

graph.

MnopoUye Vo OTTIXOTOLGOVUE TOV oy WUEVO Yo , dnhadr To protobuf apyeio evog di-

hou egpyodelou tou Tensorflow, to Tensorboard. To mopoxdtw oyfua ancixovilet To yedpnuo

Tou Resnet-8 yéow tou Tensorboard.
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denga

global_avg_p...

Yyxnpo 4: I'pdgog tou Resnet-8

Or napodte ewdveg Setyvouv v mpdén e ouvéhéne Conv2D mewv v xBévtion (o
oTepd), xou petd Ty xBavtion (Seid).
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guia import/resnet/tower_0/stage_1
e /residual_v1/conv2d/Conv2D/eightbit
g /(eightbit)
conv2d

Operation: QuantizedConv2D

requantize Attributes (6)
. Thilter {'type""DT_QUINT8'}
3 Tinput {'type""DT_QUINT8'}
Y dilations {list{'i[1,1,1,1])
] out_type {‘type""DT_QINT32"}
tequant’r padding {'S""VALID'}
strides {list{"[1,22,11}
Inputs (5)
Conv2D % import/resnet/tower_0/stage_1/residual_v1
i /conv2d/Conv2D_eightbit/resnet/tower_0/stage_1
com2d pame e CN ) Iresidual v1/Paciquantize
i import/resnet/tower_0/stage_1/r
/conv2d/Conv2D_eightbit/resnet/tower_|
/residual_v1/Pad/quantize
import/resnet/conv2d_3

/kemel_quantized_const .
- import/resnet/conv2d_3
> /kemnel_quantized_min
o import/resnet/conv2d_3
/kernel_quantized_max

, , . . (B") Zuvehuxh npdén petd v xBdvtion Quantized-
o) Buvektixh tedén uetd tnv xBévtion Conv2D
() 1 Tpd€n petd Ty xBdvion ConvaD

YxAue 5: Ilpw tnv xBavtion vs Metd tnv x3dvtion

[Tpoxewévou vo umopolue Vo LUTOCTNEIEOUPE TNV YPNOT TROCEYYIOTIXMY TOMAUTAAUCLO-
OTOV 0T0 XBAVTIOUEVO TAEOV CUVEMXTIXG GTEWUO YENOHLOTOWVUE Uidt EVIOAT Tou epyaAeiou

transform graph, tnv rename op, 1 onolo nofpvel cav elcodo dvoua e QuantizedConv2D
xat to petotpénet o AxConv2D.

H npd&n AxConv2D Sev ewvar xotoywenuévn otov nuprve tou Tensorflow. Yto [1], vho-
noelton 1 mpddn auth oe CH++ xou YeTd xoToywpeeltan otov mupriva Tou Tensorflow. Autn 7
véo mpdEn vroonpiler xBavtiopévec(8-bit) twv cuvehixtixdy tpdiewy. H onuavting diagpopd
avapeosa ot AxConv2D xou ) QuantizedConv2D eivan 61t 1 AxConv2D unoctneiler tny
XP1ON TEOCEYYIOTIXWY TOAATAACLIACOTMY OTIC GLUVEAXTIXEC TEdEelc. Autd onualvel 6TL oL
YENOTES UTopOLY Vo 8MGOUY cav {0000 OTOLOBNTOTE TEOCEYYIOTIXO TOAUTAACLAC TH XOL OL

TRAEELS TIC GUVENEELS VAL EXTEAECTOUY UE AUTOY TOV TOAAATAACLOGTH VTl Yiot TOV oxEUBY.

IxAra 6: Ewdyovtac to npoceyyouxo cuvehxuxd otpmpa AxConv2D otov naywuévo

Ypdypo
(3]

CIFAR-10

To Cifar-10 etvon eva dataset mou anotehetton amo 60000 32 X 32 ypwUATIOTES EXOVEC OF
10 Supopetinég xatnyopies, we 6000 exdveg o xde xatnyopta. Trdopyouvv 50000 eixdves yia
EXTAUOELOT] TOU VEUR®VLXOU OxtOou xar 10000 ewxdveg Yo v emahrideuon tou. To dataset
ywetletow oe 5 training batches xou oe 1 test batch pe 10000 eixdéveg to xo¥éva. To test
batch nepthapBdver axpiBoc 1000 Tuyaleg ewxdveg amo xdide xatnyopla.
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ExApa 7: lapovoidon tou CIFAR-10

Ilcooeyyiotinég Teyvineg

Enextelvouye v Bihodfxn [1] avortdoovtog xow SnuovpyhvTtag VEES TROOEYYIOTIXES
TEYVIXES DNnplovpyvTag €Tol Ty O woc Bihiotixn. H BiBAodhxn poc tpocpéeet Tic &g

000 XoUVOTOUIES:
1. Troothplln TOAATAOY TEOCEY YIOTIXWY TOAATAACLIACTOY TAVTOY POV ovTl UOVO EVOC.
2. IpooeyYIoTXES TEYVIXEC GE OLAPOPETIXG ETUTESA TOU VEURPWVIXOU BLXTUOL.

Ol TPOTEWVOUEVES TPOCEYYIOTIXEG TEYVIXEG TEAYUAUTOTOLOUYTOL UE OUCLACTIXE 600 BLapo-

peTéc petddoug:

1. AVTiXaTtdoTaon TwV TOMATAACIAOUMY UE BIUPOPETIXOUC TPOCEYYLOTIXOUC TOAAUTAC-

Ol TEC
2. Hopdheupn TOAATAAGIACUDY

Autéc ol 800 pédodol ypnowomot(inxoay TEOXEWEVOU Vo avamTOZOUUE Xl Vo BNULOVE-
YHOOUUE TIC TEYVIXES OTA OLpOPETIXd EMIMED TOU VELPWVIXOD BixTOouU xou Vo e€nyniodv
xahUTepa Topoxdte. Tlpémel vor onueiwlel 6TL OAeg oL TeyVinéC auTég Tpaypatorotinxay cTo
Resnet-8.
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DNN
construction INITIAL LIBRARY

Constructor
Learning Set L | 1~Tensorflow + Tensorflow
Validation Set Learnin, transform_graph

ecccccccccccccccaads

NN with
AxConv2D Layers
(AXNN protobuf)

extension

Ly

AxConv2D ‘

Tensorflow
Inference

Proposed Approximation
Techniques

OUR EXTENSIONS

IxAna 8: Ou dixéc poc ENEXTAOELS

ITowtn mpooeEYYLoTIXY] TEYVIXY]: AVIAUELXTA TEOCEYYLIO TLXAL XA AXEL-
BY otpdpata ( ETEROYEVAC doph Avd CTEOUA)

H teyvinn auth vhomoinxe avTixodio THVTAg ToUG TOAATAAGUO0UE OTa SLPOpd G TEOUO-
Ta UE BLOPORELXOVS TROCEYYIOTIXOUS TOMAATAACIAOTEC. AUTO onualvel oTL Bev €youv Ao Ta
CTEOUTA TOL OxTOOoUL ToV (Blo Badud mpocéyylong. Kdmota otpmuata extehobY TOUC TOAI-
TAACLAGUOUS TOUG UE TOV oXELBT] TOAAATAACLIG TH) EVE GAAYL GTROUATA UE TOV TROCEY YO TIXO.

To Resnet-8 éyel 7 cuvehixtixd o TpmdUATOL.
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0 43AV1ANOD

|

T 43AV1 ANOD

C 43IAV1 ANOD

€ 43AV1 ANOD

¥ 43AV1 ANOD

SxApe 9: H npdtn npoceyyiotiny teyvixn

S 43AV1 ANOD

9 43IAV1 ANOD

ITivaxag 1: TTopdderypa pe o 4 TphTo OTEMUATO VO £XOUY TEOCEYYIOTIXO TOAATAACIACTY EVEY Ta
Telo Tedeutaio axplBn

Layers

Layer0

Layerl

Layer2

Layer3

Layer4

Layerb

Layer6

Inference Accuracy

Multiplier

p=1

p=1

p=1

p=1

p=0

p=0

p=0

0.826

Ytov mapamdve mivaxo 4.1 eval ToEdOELY o qUTAS TG TEOCEY YO TS TEYVIXAC Olveton. Ta

TECOERO TPMTAL OTEWUOTOL YENOLLOTOUY TEOCEYYLoTIXG ToAanAactaoty [11] ue perforation

p = 1. H axpifeia mou naipvoupe yenowonoumviag auth TNV TEYVIXY UE TOV CUYXEXPWEVO
GUVOLIOUO TOAATAACLAGTGY Efval YOUUERO.

AcU\TEPN TEOCEYYLOTIXY] TEYVIXY]: AVIUEIXTA axplBr-TpooEYYIoTIXd
QAT VA CTEMUA

Avuty) 1 ey v vhomolinxe avTiXahoTOVTIC TOUC TOAATAACLACUOUS UE OLOPORETIXOVC

TpooeyYloTixolg mtolamhactactéc. Ilio ouyxexpyéva xdlde éva amo ta ENTA CUVEAIXTIXG

otpwuata oto Resnet-8 eyel Stapopetind apriud @iltpwy 6Tewe golvetal 0ToV Tapaxdte Tivoxa

4.2:
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ITivaxag 2: Apriuodg gpihtpwy o xdde GUVEATIXG OTEWUA

Layers Layer0 | Layerl | Layer2 | Layer3 | Layerd | Layerb | Layer6
Apibude pihtpwy 16 16 16 32 32 64 64

e auTh TNV TEYVIX OXEQTINUUE Vo BLoEEGOVUE TOV o Twv QIATewY ot xdie oTpmua
oe k 10odlvopo xopudtia, €TolL WOTE To GQUPOLoUA AUTWY TWY Kk XOUUATIOV Vo LoOUTOL UE
Tov apiud TV QilTewy ot xdie oTpwua 5.1 xou 1 SlpoEd AVIUESH GTO PEYAAVTEQO XU TO
UxeoTERO oprlud amo TNy axohoudia vo etvar 1 eAdyloT).

‘Eotw N o apudude twv giktpwy, ov N mod k = 0, t6te 1 ehdyiotn dapopd Yo elvon
mavtor 0 xan 1 axohouvdion Yo amotedeiton ano icoug apriuole mou Ya eivon oot pe N + k.
Adide 1 Brapopd Yo etvan 1 xan 1 axohovdia o etvan N +k, N+k, ... ,(N+k) + 1, (N=+k)
+1.

party + party + .. .party = N (1)

Koéva amo autd tor xopudtior TEpIEYEL EVOL GUYXEXRIIEVO apldud giltpwy. Euel avadétouue

o€ x€va Ao AUTA To XOUUATIO EVAL DLPORETING TTROCEYYLOTIXO TOMAATAAGTY| UE DLUPOPETING

perforation.
Convolutional Layer
Partl " part2 " Part3
. SFILTERS /

S FILTERS 6 FILTERS

D
Filter
13

Filter
14

Filter
10

Filter
6

Filter Filter
11 12

Filter Filter Filter Filter
1 2 15 16

Filter
3

Filter
4

Filter
5

Filter Filter Filter
7 8 9

YxAue 10: H decitepn mpooeyyiotiny teyvixn

. T mapdderypa ag mdpouye To TEMTO oTEMOUA To onolo €yel 16 ¢lhtpa xou ag TO Slai-
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péoouye o€ k = 3 10000V Lépn Tov aptiud Tov piltewy. T mpwta 800 uéen Ya £youy ano 5
pihtpo eved To TplTo Vo ExEl avaryxooTind 6 giktea. Ye xadéva amo autd To Yépr avardéTouue
EVOLY OLIPOPETING TPOCEY YO TIXO TOANATAACLAC TH.

Y10V TopoxdTey Thvoror BlveTan EVor TURAOELYUO AUTAS TNG TEYVIXNS

ITivaxag 3: Aclteen teyvixy yenowonowvioc k = 3

k =3 | Multiplierl | Multiplier2 | Multiplier3d | Inference Accuracy
p=1 p=2 p=2 0.798

Teltn npooeyyLoTIXY] TEY VXA

e ITpooceyyiopol ava @QIATEO UE AVTIXATACTACY] TWV TOAAATAACLACAOY

KE OLAPOPETIXOVE TEOCEYYLOTIXOUSG TOANATTAACIACTES

Auth 1 tey v vhomotinxe avTixaho THOVTAC TOUG TOAAATAXCLACUOUE UECA GTO PIATEO
HE BLopopETIXOVC TROTEY Yo TiXoUE ToAamAactactég. Kde eixdva ano to Cifar-10 €yel tpewc
oo tdoelc: Oog,mhdtog, Bddoc. To (Bo toylel xou yia o @iktpo. Xe avtiveon ye v
TEONYOUUEVY TEYVIXY| , O AUTAV TNV TeXVIXT| Beloxduoacte péoa oTo QIATEo xon YEAOUUE Vo
UAOTIOLACOUUE TOUC TOANATAAGIAUOUS OTNV TEAEN TNG GUVEMENS YENOULOTOLOVTAS TEOCEY Y-
o TWO0C TOAMATAACLAC TEC.

Or mpooeyylotxol tolamhactacpol cupfaivouy eite 6to Uoc 1) oto TAdTog ¥ oTo Bddoc.
Y ToUg TapOXdTL TEELS Tivoxeg amexovi{eTon evar 3 X 3 X 3 @iATpO, TO OTOIO ATOTUTIWVETAUL WS

3 mivaxee dlaotdowy 3 X 3.

ITivaxacg 4: 3 x 3 gihtpo yio Bddoc = 0

ap | az2 | as

a4 as Qg

ar | asg | ag

ITivaxcag 5: 3 x 3 glhtpo yio Badoc = 1

a1o | ail | @12

aisz | ai4 | ais

ai6 air a18

ITivaxag 6: 3 x 3 gliteo yio Bddoc = 2

a19 | a0 | G21

G22 | A23 | 424

a2s5 26 a7
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ROW=1 //1\ / /2\ / /3\ ROW=1 //10\ / /11\ / /12\ ROW=1 /19 /zt;\ /2]\.\
= W W, W = .2 .2 W = W w. w.
/ \H’ \‘ ! \‘ / \‘ ! \I! \‘ ;/ \ "/ \ ’/ \
' | T \ ' I I \ 1 I [ \
ROW=2 | wa l| w5 ,[ w6 ROW=2 | wi3 , wi4 wi5 , ROW=2 | w22 , w23 , w24 ,
gy e ey S S
ROW=3 \\“,1/ \\wﬁ/ \ wo /| Rrowss \w/ {1/7/ \ wis/  Row-3 \{2/5/ \{2/5/ \\wzj/
COLUMN=1 COLUMN=2 COLUMN=3 COLUMN=1 COLUMN=2 COLUMN=3 COLUMN=1 COLUMN=2 COLUMN=3
CHANNEL=1 CHANNEL=2 CHANNEL=3

ExAner 11: H tpitn npoceyyiotnd teyvind: A’

Toe vor e€nyndel xohOtepa oauty| 1 teyvixn do yenotponotioouyue 3 napadelypota:

Y10 Tp®TO ToEddEtypa Vo TAPOUUE TO TEMTO CUVEAXTIXO oTpwpd. O SlaoTdoES TwY
PpihTowV 0TO GTEOU aTO eval 3 X 3 X 3. Ag molue 6Tl oL TohhamAactoouol yia Bddoc=0
Yo eExTEAECTOUV YENOWOTOLOVTOS TOV oxEl3Y) TOAATAACIAOTH EVE) Ol TOAMAATAACLOOUOL Yot
Badoc=1 xan Bdrioc=2 Yo eXTEAECTOVV YENOWOTOLOVTOS TOV TROCEYYIOTIXO TOAATAACIUCTH

ue perforation p = 2. Lougpwva Ue TOUG TEELG TAUPATAVE TVUXES Ol TOAAATAAGIACUOL:

1. ar-%1,a2 %2 , ... , ag - ig Vo eEXTEAECOTOUV UE TOV axEIBT| TOMATAACLIOTH

2. a1p - %10, Q11 - 911, - - -, 18 - 118 VA EXTEAECTOUV UE TOV p = 2

3. aig - 119, a0 - 121, ..., G27 - 127 VO EXTEAECTOUV UE TOV P = 2

,OTOL 41,12, ..., 127 €bval oL TWES TG oTNY TEEYoLca Tomovesia Tng exovag, dnhadh To
pixel.

Y10 tpito mapdderypo Yo mdpouue Eaval TO TEWTO CUVEAXTIXG oTpwua. Ag¢ molue 6TL oL
Tolamhactacyol yia Thdtoc=0 Ja eEXTEAECTOUV YENOULOTOLWVTAS TOV axEL3Y) TOAATAACLUCTH
eve oL Tolhamhactaopol yio TAatoc=1 xar Thatoc=2 Vo EXTEAEGTOOV YENOHLOTOLOVTOS TOV
TPOCEYYoTIXO ToAhamAactaoTh Ue perforation p = 2. Xlugwvo Ue TOUC TEEIC TUEATAVE

nivaxeg oL ToAAamhaclacuol:
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1. ay i1, a4 -ig , a7y -i7 , a1o - 410, Q13 - 913, @16 * 116, G19 * 119, A22 - 122, 425 - i25 VA
EXTEAEGTOUV UE TOV oxpU31) TOANATAACLIGTY

2. a2 12 , a5 -5 , ag - i , A11 - 411, Q14 - 114, Q17 - 117, G20 - 120, 23 - 123, 26 - 126 VA
EXTEAEOTOUY UE TOV P = 2

3. a3 -13, ag - g , ag - i9 , A12 - 112, 415 - U115, Q18 - 118, A21 - 121, A24 - 124, Q27 - 127 VA
EXTEAEOTOUY UE TOV P = 2

,OTIOV i1, 12, ..., 127 €lvou oL TWEC TNg oTNY TEEYoLoH Tonovesia TNG EXOVaS, dNAadT Ta

pixel.

Y10 tpito Tapddelypo Yo mdpouue Eavol TO TEMTO GUVEAXTIXG oTpwua. Ag molUE 6TL oL
rohhamhactacuol Yo Opog=0 Yo eXTEAEGTOUV YENOWOTOLOVTUS TOV axELBT) TOAATAACLUC TH
eve ol toAhamhactaopol Yo Opoc=1 xou Opoc=2 Yo exTEAEGTOOV YPNOUWOTOWWBVTAS TOV TTPO-
oEYYLoTIXO ToAamAaclao T pe perforation p = 2. Y0ugwva Ue TOUC TRELC TUPATAVE TUVIXES

Ol TOAMITAAGLAGUOL:

1. ay -4, az 42 , az -3 , aio - 410, @11 - 411, @12 - 412, @19 - 419, @20 - 420, @21 - 421 Vo
EXTEAEOTOUV UE TOV oxEU31) TOAATAACLUGTY

2. a4 14 , a5 15 , a6 - I , Q13 - 113, Q14 - 14, G15 - 115, G22 - 122, (23 - 123, 24 - 24 Vo
EXTEAECTOUV UE TOV P = 2

3. a7 -i7, ag-ig , ag -9 , Q16 - t16, A17 - L17, Q18 - 118, 425 - 125, A26 - 126, Q27 - l27 VA
EXTEAECTOVY UE TOV p = 2

,OTIOV 41, @2, .. ., l27 VoL OL TWEC TNg oTNV TEEyouoa Tonovesia NG exovag, dnhadr ta

pixel.

o Ilpooeyyiopol ava @iltpo pwéow tNng mapdiedng npdleswy

H teyviny| auth vhomotinxe mapahelnovtog xdmoloug TOAATAACIAOHOUS OTNY TEdEN NG
CUVENENG, ONhadr) Oev exTteAéoTnnay xodlou autol oi tolhamhactacuol. OuolacTixd oTnv
TEYVIXY| QUTH) OLYPAPOUNE UEELXA YIVOUEVA ONAaDT| Oev Tar exTeAolUE xoddrou. Tao uepnd

oTA YWVOUEVAL €xouv avapepVel Topamdve.
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CHANNEL=1 CHANNEL=2

COLUMN=1 COLUMN=2 COLUMN=3 COLUMN=1 COLUMN=2 COLUMN=3

ROW=1 >< >< >< ROW=1 w10 wil w12
ROW=2 >< >< >< ROW=2 wi3 wi4 wis

ROW=3 >< >< >< ROW=3 w16 w17 w18

CHANNEL=3

COLUMN=1 COLUMN=2 COLUMN=3

ROW=1 w19 w20 w21l
ROW=2 w22 w23 w24
ROW=3 w25 w26 w27

Yxfpa 12: H tpltn npoceyyiotny teyvinry: B

INo mopddeyua ag mopolue v Sldo oot Tou Batdoug. Emiéyouue va exteAécouue yovo
Toug TtoAamhactacpols e Bddoc=0. Autd onualvel 6Tt EXTEAOUUE UOVO TOUC TOANATAAGL-
ouolc ay - 11 , @z -2 , ... , Qg - i9 , EV® OL UTOAOLTOL TOAATAaCIaoUol ag, a1, - - ., a27
napahelnovTon, OnAadY dev exterolvTaL xodAoUL.

To (8o ouyPatvel xou oTIC dhheg BV0 SacTdoelc. T'ar mopdderypa oG TdEOLUE TNV BLAGTAOT
Tou TAdtouc. Eméyoupe va exterécoupe povog Toug TohamAdctaopols ue TAdtoc=1. Autd
onpaivel OTL EXTEAOUUE LOVO TOUC TOANATAAGLIGUOUS ag - %2 , a5 - 15 , ag - 18 , @11 - t11, G414 - 414,
a7 - 417, @20 - 120, 423 - 123, 426 - 126 , EVE OL UTOAOLTOL TOMATAXGIAOUOL TopaAElTOVTAL, ONAXDT

0ev extehoVvTaL XordONOUL.

Tetaptn Ilpooeyyiotiny] Texyvixn: llpoceyyioeig ava @ilTpo pwEow
nopdAEtPNG TEAEEWY PACICUEVT] OTY XATAVOUY] TOYV TUAWY TOL @iATpou

Kdie otpiua €xet eva cuyxexpiuévo aptiud giltpwy. Kdde 3 x 3 x 3 gpihtpo nepiéyer 27
Tipég Tou ovoudlovton Bden. Agou To Bden €xouv xBavTioTel xou YENOYLOTOLOUUE ATPOCTUOUS
roMomlactaotée Ta Bden tou xdde giktpou Bploxovton oto Swdotnua [0,255]. Agou xdlde
OTPOUA EYEL TOV OXO TOU aELiUs QIATEWY EWVOL TEOPAVES OTL 1) XATAVOUT TwV Bopmy Twv
PIATEOY Elvol DLAPORETIXT VoL CTEOU.

Y€ AUTA TNV TEOCEYYIOTIXN TEYVIXY|, TUTWOOUE TIC THIES TWV Paptdy OAWY TwV QIATEMWY Yo
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%dde oTPLU Xou xaTOAAEoUE GTO GUUTEPACHa OTL To BT TV QIATE®Y axohoudoly xavovixt
xatovouy) ava otpwpa. Kalde otpduo €yel v Suad tou uéor Ty xol TUTLXY) anOXALoT TwV

Bapv TV GikTemy.

, OTIOL N Vol O VELIUOS TV OPWY XAl T; 1) TWH Tou xdde dpou.

4 7 e 4 7 / 4 7.
O mapoxdte mivoxag 4.7 Topouctdlel TNV U€om T XaL TNV TUTLXY amoXALoT) TwV By

TV QPIATEwY Yoo xode oTEMU EEYWEIGTA:

ITivaxag 7: Méooc bpog xan TuUTixY| omOXMoN TV GIATEGY ovo GTEMUA

Layer0O | Layerl | Layer2 | Layer3 | Layer4 | Layerb | Layer6
w| 126.7 133.7 147 154.4 133.1 134.3 115.8
o | 29.2 19.05 25 20.6 27.5 29 23.7

Ta mopaxdtw oyfuata anexoviCouy TNV XAVoviXY| XaTavour| Tou axorouloly o Bden Twv

PIATEOV OVOL CTEWUAL

Layer O
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EyApe 13: Koatavoun twv Bopdv twv @IATpwy 6T0 TpdTo 6TeMUd
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Layer 1
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Exfpa 14: Kotovoun tov Bapdv tov @iltpwy oto dedtepo atpmua
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EyxApo 15: Koatavour tev Bapdv twv ¢iktpwy 610 Tpito otptua

Layer 3
0.025
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Exfpa 16: Kotavoun tov Bapdy twv @giktpwy 610 T€TopTo oTphpd
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Layer 4
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Exfpa 17: Kotoavoun tov Bapdy tov @iltpwy 6T0 TEUTTO GTROU

Layer 5
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IyApa 18: Kotavoun tev Bapdy twv giktpwy 670 €XT0 oTptua

Layer 6
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Exhua 19: Katovoun twv Bapdv twv @iltewy oto éBdopo otpdua

OvuclaoTixd o auTAY TNV TEYVIXT| TEOTEVOUNE VoL EXTENOVUE UOVO TOUC TOAATAAGLICUOUS
UE TWES TV @ilTprv Tou Beloxovtat eite oto ddotnua [u—o, p+o] f oto dlactua [n—20, p+
20]. Auto onpaiver 6Tt Ghot oL dAhot tohhamhactacuol Le Bden Tou gikteou Tou dev avixouy

oe éva amod Tor 8V0 Tapamdve daoTAaTa 6ev Yo exteholvTaL, BNAadY| Vo TopoAelmovTo.
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FILTER
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YxAua 20: H tétoptn mpooeyyioting texvixn

IMTeipopoatinry; AELoAdynon

Ola o merpduota extélestnxay oto Tensorflowl.14. H Bihodrxn avorytold x@dixa 1o
[1] yenoworoydnxe npoxeuévou vo petpfiooupe Ty axplPeta twv teopdtwy pac. Enmiéov
1) EVEQYELX TV TEOCEYYLO TIXWY TOAATAACIACTOV YOG UETEHUNXE YENOOTOLOVTISC TO Syn-

opsysDC ot teyvohoyia twv 45nm [11]. Ot nopduetpot tou divovton oty elcodo ebvou:
e To ypdgnuo Tou Resnet-8
e To Evaluation dataset tou Cifar-10 nou nepthapBdver 10000 euxdveg
e Téooepic SlapopeTinolec Torhamhactactéc ano to [11] pe dpopetind perforation
e To filter parameter (k) uévo yio Tnv SelTEEY TEOCEYYLOTIXT TEYVIXT

Or nopduetpol allohdynong etvau:

o H axpiBela mpdPredne tou yoviéhou mou mpoxdNTEL ano XGVE TEOGEYYIOTIXY TEYVIXN
YENOWOTOUWVTAS OLAUPORETIXOVS GUVOUACHOUS TOATAACLIGTOVY UE OLopopeTind perfo-

ration , xododg xan To Xgdiua mou utoloyiletan we Lpdiuo= 1- Axp{Bela
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o Evépyewo yia o inference wiag emdvag , mou UTOAOYICETOL WE TO YWVOUEVO TNV EVEQYELOC
TOU EVOC MEOGEYYIOTIXOU TOAATAACIAOTH €Tl TOV 0ptdud TWV TOAATAACLICUNDY TOU

cLUPAVOLY UE QUTOV TOV TOANATAACLAGTY| XaToL T1) SLdpxela Tou inference.

e Throughput 6nAadn to frames per second.

[Mo xdde mpooeyyloTiny Teyvixy diveton to Pareto Frontier xadwe xan eva féhtioto umo-
GUYOAO TOV ATOTEAECUATWY Tou avijxouy oto Pareto Frontier

‘Eva onueio avrjxer otov Pareto Frontier av 8ev yiveton strictly dominated omd xdmoto
dAho orueio.

[Mo Topdderyuo 6TO ToEoXETL Gy AN To XOUTAXIN ATOTEAOVY XATOLL OTUELN XU TEOTHIAUE
TIC WXEOTEPES TWES amo TI¢ UeYaAUTEpES. Anhadr| YENOUUE Vo €YEL Xou XEOTERY TETUNUEVT,
(%) kot xou uixpdtepn tetorypévn(). To ornueio C Bev avixelr oto Pareto Frontier Si6t
yivetan strictly dominated xou amo to onuelo A xau and to onuelo B. To onueia A xou B
oev yivovtan strictly dominated amo xdmoto dhho onuelo xou yia aTd TO AOYO AVAXOUV GTO

Pareto Frontier.

]
]
C n O
| oo
B ]
Parem
f2(A) < 2(B) 7

YxApno 21: Iopddeyyo tov Pareto Frontier

Ocpehddeg Metproeig

Ou mpooeyyioTixol TOMATAACIAOTEG TOU YETOWOTOIOVUE OTO TEWRAUOTA Hog Efval omo To
[11]. Ewon nohhamhoaotootés pe dapopetind perforation (p=0p=1p=2,p=3)

To perforationue p = k Siaypdgetl kK cUVEYOUEVIL UEEIXE YIVOUEVA EEXIVMVTAS OO TAL AUTOL
pe ™ wxpotepn olla.  Anladh o TEOCEYYIOTIXOC ToAamhaoloTiC e p = 1 Yo €yel To
TEAEUTOUO PEPIXO YIVOUEVO TOU OLEYQOUUEVO.

O nopaxdte mivoxag Topouctdlel Ty axpifelo 6tay xodévag amo Toug TaEUTAVE TEOCEY-

Y10 TW00G TOAATAAGLAC TEG YENOUWOTOETOL UOVOS AUTOS GTO BiXTUO:!
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ITivaxac 8: AxpiBela twv nodamhacwactdv p=0,p=1,p=2,p=3

Multiplier | Inference Accuracy
p=0 0.833
p=1 0.815
p=2 0.78
p=3 0.193

O mopodte mivaxog Tapouctdlel TNV EVERYELX TwY TOAATAACIAC TWY QUTWY (S COMPO-

nent oe teyvoloyia 65nm xou 45nm

ITivaxoag 9: Evépyewa tou xdde nohhamhaoiaoth (uW - ns)

65nm, 16 bit-width | 45nm, 16 bit-width
p=0 3748.5 385.725
p=1 2880 296.355
p=2 2472.48 254.421
p=3 2341.68 240.961

Topo Vé€NouYe var UETENOOLUE TNV CUVOAIXT evEépyela Tou amouteiton Yo To inference o
EOVOC CUUPOVOL PE Tal 60 €YOLUE TeL Topamdve. O cuvolxde apriudg TOAATAACIACUDY

Tou exteloUVTAL Yl To inference plog exovog eivon 12238848.

ITivaxac 10: Xuvolxy evépyeta tou amoute(ton yia pat exdva (nJ)

Energy
p=0| 4720.7
p=11 3626.9
p=2] 3113.8
p=3 | 2949.1

IMTepapatixr agloAdYNoT TNS TEWING TEYVIXNS

Or mapoxdte mivaxeg amewxoviCouy v axplBeta tpoAiedng, tny evépyela yio To inference

uloc edvag xadwe xaw to throughput oe tpla dlapopetind cevdpla:

o ['la 6houc toug miavolc cUVBLACUOUC TEOCEYYLOTIXWY TOMATAACLHOTOY P = 0 Xou

p=1

o ['la 6houc toug miavolc cUVBLACUOUC TEOCEYYLOTIXWY TOMITAACLHOTOY P = 0 Xou

p=2
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o [ 6houc toug miavolc GUVBLAOUOUC TEOCEYYLOTIXWY TOAAATAACLOTOY P = 0 xou

p=3
ITivaxoag 11: P=0xw P =1
Layer 0 | Layer 1 Layer 3 | Layer 4 | Layer 5 | Layer 6 | Inference Accuracy | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 p=0 p=0 p=0 p=0 0.833 4720.7 18.34 0.167
p=1 p=20 p=0 p=20 p=20 p=0 0.832 4681.2 18.55 0.168
p=0 p=1 p=0 p=0 p=0 p=0 0.826 4509.9 19.04 0.174
p=0 p=0 p=0 p=0 p=0 p=0 0.829 4509.9 19.08 0.171
p=0 | p=0 p=1 | p=0 | p=0 | p=0 0.831 4615.3 19.12 0.169
p=0 | p=0 p=0 | p=1 | p=0 | p=0 0.828 4509.9 19.04 0.172
p=0 p=0 p=0 p=0 p=1 p=0 0.829 4615.3 19.08 0.171
p=0 p=0 p=0 p=0 p=0 p=1 0.832 4509.9 19.12 0.168
p=1 p=1 p=0 p=0 p=0 p=0 0.831 4470.3 19.19 0.169
p=1 p=1 p= p=0 p=0 p=0 0.829 4259.5 19.45 0.171
p=1 p=1 p= p=0 p=0 p=0 0.826 4154.1 19.76 0.174
p=1 p=1 =1 p=1 p=1 p=0 p=0 0.824 3943.2 20 0.176
p=1 p=1 =1 p=1 p=1 p=1 p=0 0.821 3837.8 20.16 0.179
p=1 | p=1 =1 | p=1 | p=1 | p=1 | p=1 0.82 3626.9 20.32 0.18
p=0 p=0 =0 p=0 p=0 p=1 p=1 0.831 4404.4 19.26 0.169
p=0 p=0 =10 p=0 p=1 p=1 p=1 0.83 4193.6 19.49 0.17
p=0 p=0 =0 p=1 p=1 p=1 p=1 0.827 4088.2 19.72 0.173
p=0 p=0 =1 p=1 p=1 p=1 p=1 0.822 3877.3 20 0.178
p=0 p=1 =1 p=1 p=1 p=1 p=1 0.821 3666.5 20.24 0.179

‘Onwe PAETOVUE MO TOV TUEATAVE™ THVOXA, OEV UTHEYOUV OTUAVTIXES OLPORES OTNY O-

xpBeta TedPBAedng Yo autole Toug cUVBLACUOUS oTaY GuYXpeivouue ue To 0.833 Tou evou 1|

oxplBelar dtav yenowonotelton o axpnc tolhamiactactic. H ntwon otny axplBelo xupaiveton

petaZu 0,1%—1,3%. Emnhéov dev €xoupe xEmolo onuavtind x€pd0C WS TEOS TNV XUTOVAAWON

evépyetag xadwe xou we tpog to throughput .

To mopaxdtw scatter plot ancixovilel Tnv oyéon uetald eVEQYELNC X GQPIALATOS:
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Energy vs Error (p=0 and p=1)
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Sxhua 22: Evépyelo-Sgpdipa tav éxw p=0xu p =1

H x&xavn ypauyut ebvar to Pareto Frontier xou 6ha ta onueio mou avixouy o auth T
Yeouur) aroteholy To BéEATIoTAL onuela. Autd o onpeior ToviCovTon Ue YpoU GTOV TURATAVE
nivaxa. Iopatnpolue 6TL o TeplocdTepa omnuelor Tou avixouy oto Pareto Frontier eivon dtav
npooeyylloupe Ta TEAeUTala oTPWUATA. AUTO oTuaivel OTL EWVAL TEOTWWOTERO VAL YEYNOWOTOLO-
OUE TOV TPOCEYYIOTIXG ToOMamAdoo T p = 1 oo TeAeuTador GTEOUAT , SNhadT) EEXVMVTOG
amo 1o oTEOUA 6 xou Tnyaivovtag mpog T Tow mpog to otpwua 0. ‘Onwg galvetan and To
TUEATAVE OY AN OTAV YENOWOTOOVUE LOVO Tov axpelY) tolamiactacth p = 0 to onueio mou
nabpvoupe €yel Error = 0.167, Energy = 4720.7nJ. ‘Otav cuyxpivouye to utdhoina onueio
mou avrixouv oto Pareto Frontier pc oautd to anoteAéopato BAEmouye OTL €youpe pixpen

TTWON oTNV axpiBetar oAl BEV €YOUUE XATOLO CNUAVTIXG XEEDOC OTN) EVEQYELXL.
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ITivaxac 12: P=0xu P =2

Layer 0 | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6 | Inference Accuracy | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 p=0 p=0 p=0 p=0 p=0 0.833 4720.768451 18.34 0.167
p=2 p=0 p=0 p=0 p=0 p=0 p=0 0.821 4662.685532 18.79 0.179
p=0 p= p= p=0 p=0 p=0 p=0 0.819 4410.992886 19.23 0.181
p= p= p=2 p=0 p=0 p=0 p=0 0.824 4410.992886 19.19 0.176
p=0 p= p= p=2 p=0 p=0 p=0 0.826 4565.880668 19.15 0.174
p=0 p=0 p=0 p=0 p=2 p=0 p=0 0.825 4410.992886 19.26 0.175
p=0 p=0 p=0 p=0 p=0 p=2 p=0 0.829 4565.880668 19.19 0.171
p= p=0 p=0 p=0 p= p=0 p=2 0.831 4410.9 19.30 0.169
p= p= p=0 p=0 p= p=0 p=0 0.798 4352.9 19.34 0.202
p= p=2 p=2 p=0 p=0 p=0 p=0 0.792 4043.1 19.64 0.208
p= p=2 p=2 p=2 p= p=0 p=0 0.789 3888.2 20 0.211
p= p=2 p=2 p=2 p= p=0 p=0 0.787 3578.4 20.28 0.213
p=2 p=2 p=2 p=2 p=2 p=2 p=20 0.786 3423.5 20.45 0.214
p= p=2 =% D=2 p=2 p=2 =% 0.78 3113.8 20.66 0.22
p= p=0 p=0 p=0 p=0 p=2 p=2 0.828 4256.1 19.41 0.172
p= p=0 p=0 p=0 p= p=2 p=2 0.818 3946.3 19.72 0.182
p=0 p=0 p=0 D=2 p=2 p=2 D=2 0.811 3791.4 19.96 0.189
p= p=0 p=2 p=2 p= p=2 p=2 0.789 3481.6 20.36 0.211
p= p=2 p=2 p=2 p= p=2 p=2 0.786 3171.8 20.53 0.214

‘Onwe PAETOVUE AmO TOV THEATAVE™ TVOXA, OEV UTHEYOUY CNUAVTIXES OLIPORES GTNY O-
xp{Belo mpdPAedne yior autole Toug cuVBLUGUOUC oTay cuYXplvouue Ye To 0.833 mou evon 1)
oxplBela dtay yenowonotelton o axpnic tolhamiactac g, H ntwon otny axplBelo xupaiveton
petau 0,2% — 5, 3%, mou onuaiver 6Tt éyoupe peyolbTepn TTHON 0TV axpiBela tpa and ot
TELY.

To mopaxdtw scatter plot ancixovilel Tnv oyéon uetald eVEQYELNC XU GQPIALATOS:

Energy vs Error
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YxAua 23: Evépyelo-Xodipo 6tav Exyw p =0 xou p = 2

H xbxoavn yeouur| eivar 1o Pareto Frontier xou ol to onuela mou avixouv oe aut
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™ Yeouuy amoteholv to BéATioTor onueio.  Autd Ta onuela Tovi{ovtan UE Ye®Ud OTOV To-
pomdvey mivoxa.  Tlopoatneodue ot tar teplocdtepa onueia mou avrxouv oto Pareto Frontier
elvon oty mpooeyyilovpe Tar TEAELTAA OTEOUATA. AUTO onuaivel OTL EVaL TEOTIIOTERO VoL
YENOWOTOLOVUE TOV TROCEYYLOTIXO TOAMIATAACIICTH P = 2 OTa TEASUTAUO GTEOUATA , ONAXDT
Eexwvavtag ano to otpwua 6 xou mnyadvovtog meog Ta mow meog to otpwpa 0. ‘Onwe ¢o-
(VETaL O TO TUEATAVE CYTUA OTAY YENOWOTOLOVUE HOVO ToV oxpl3H) ToAamhactocth p = 0
7o onueio mou malpvouue €xel Error = 0.167, Energy = 4720.7nJ. ‘Otav cuyxplvoupe Ta
umohotna onpeio Tou aviixouy cto Pareto Frontier ye autd to anoteAéopata BAémouvye 6T
€youue TTwoT oty axpifeta Tou elvan yeyoritepn and mowv. Tlapdhha autd mapatnpolue ot
€YOLUE TILO ONUOVTIXG XEEDT OTNY XATAVIAWOT| EVERYELNS Twpa. ['tar mapddetypo 0 cUVBLUCUOS
p=0,p=0,p=0,p=2,p=2,p=2p =2 oc xde otpwua aviicTolya divel axplelo
0.811 xou cuvolxr evépyelia 3791.4 nJ mou av T0 GUYXEIVOUUE UE TA ATOTEAEGUATO IOV To-
{pvouye amo Tov axpBn TolamAaclac T pog divel TTdon otny oxpiBetor xator 2, 2% xon €youpe

uelwon oty xotavdhwon evépyetag xata 19.7% .

ITivaxac 13: P=0xu P =3

Layer 0 | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6 | Inference Accuracy | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 p=0 p=0 p=0 p=0 p=0 0.833 4720.7 18.34 0.167
p=3 p= p=0 p=0 p=0 p=0 p=0 0.619 4656.7 18.93 0.381
p=0 p=3 p=0 p=0 p=0 p=0 p=0 0.599 4379.2 19.34 0.401
p=20 p= p=3 p=0 p=20 p=20 p=0 0.741 4379.2 19.34 0.259
p=0 p= p=0 p=3 p=0 p=0 p=0 0.756 4550.1 19.30 0.244
p=20 p= p=20 p= p=3 p=20 p=0 0.756 4379.2 19.41 0.244
p=0 p=0 p=0 p=0 p=0 p=3 p=0 0.7759 4550.1 19.37 0.2241
p=0 p=0 p=0 p=20 p=0 p=0 p=3 0.76 4379.2 19.45 0.24
p=3 p=3 p=0 p=0 p=0 p=0 p=0 0.31 4315.1 19.49 0.69
p=3 p=3 p=3 p=0 p=0 p=0 p=0 0.255 3973.6 19.92 0.745
p=3 p=3 p=3 p=3 p=0 p=0 p=0 0.231 3802.9 20.24 0.769
p=3 p=3 p=3 p=3 p=3 p=0 p=20 0.204 3461.3 20.61 0.796
p=3 p=3 p=3 p=3 p=3 p=3 p=20 0.196 3290.6 20.79 0.804
p=3 p=3 p=3 p=3 p=3 p=3 p=3 0.193 2949.0 21.05 0.807
p=0 D= p=0 p=0 p=0 p=3 D= 0.68 4208.4 19.56 0.32
p=0 p=0 p=0 p=0 p=3 p=3 p=3 0.585 3866.9 20 0.415
p=0 p=0 p=0 p=3 p=3 p=3 p=3 0.503 3696.1 20.32 0.497
p=0 = p=3 p= p=3 p=3 = 0.435 3354.6 20.61 0.565
p=0 p= p=3 p= p=3 p=3 p= 0.306 3013.1 20.83 0.694

‘Onwg PAETOUYE amo TOV TUEATEVE Tivoxa €YOUUE TAEOV OMUAVTIXES OLUPOPES OTNV O-
xp(Belo ouyxplrtxd pe to 0.833 Tou axplh mtolarmhaclacth. H mtwon oty axplBeo topa
wogaiveton petol 5, 7% — 64%. Autd ewvon avapevépevo xaddg o p = 3 €yel TOAU YEYEAO
SO INVIA

Autd mou duwe evar TOND GNUAVTIXG EVAL TO YEYOVOS OTL YENOWOTOIOVTOC ToV p = 3

ot TEAeUTAlo OTEPOUUTA THlEVOUUE TOAD xOAUTERT axpifela amd OTL 0TAY TOV YENOULOTOLOVUE

42




ot TEWTO oTE®UAT. ['ar Topdderypa dTay ToV YENoULOTOWVUE 0T0 TEAeUTAlo 500 GTEMUATA
1 axp{Betor ebvan 0.68% eved otay Tov yenotponoolue ota dvo mpwTa 1 axpifela etvon 0.31%.

Kotahyouue dpa 610 cuumépaoua OTL YEVIXS EVOL TEOTUIOTERO OTAY Y ETNOYLOTOLOUUE au-
TH TNV TEYVIXY VA YENOWOTOWUUE TOUS TPOCEYYIOTIXOUC TOMAATAACIAOTEC OTal TEAEUTALN
O TEOUATO OVTL YL To TEMTA.

To mapaxdtw scatter plot anewovilel Tnv oyéon YeTaLD EVERYELNS XOL CQAUAUTOC:

Energy vs Error
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Ixhua 24: Evépyeio-Xodipa otav €xw p =0 xou p =3

Yuyxptvovtag o onuelo tou avixouv to Pareto Frontier pe to ornyeio mou mpoxintel
aro tov axpl3 tohhamhactac T BAENOVUE 6TL 1) TTHoN 6TV oxplfBelo ewvon TepdoTio (Ewe xou
64%) Mnopel vo undpyouv onuavtixd x€pdn oTnV evépyeta ahha 1) TTOOT oTNY axplfBela evou
TOGO UEYYAT) TOU OEV UTOREL VoL YIVEL AVEXTY).
IMepapatiny, aglohdynor BeLTEENE TEYVIXNS

o o k = 3 parts

To scatter plot mopaxdte Tapoustdlel T oy€an eVERYELIS Xot GQANIATOC GTOY Y wellouUEe

Tov apuiud Twv QilTpwy ot xde OTEWUA OE 3 LGOBUVAUA XOUUATIO X0t Yl 6 BlopopeTixd

oevdpLaL:

1. T 6houg ToUG BLAPOPETIXOUE GUVBUACHOUE TEOCEYYLOTIXMY TOAATAACLACTGY p = 0

xorp =1

2. T 6houg Toug BLaPoEETX0VE GLYBLACUOUE TEOCEYYICTIXWY TOMAATAUCIAOT®Y p = 0

xou p =2

3. Tt Ghoug Toug BLAPOPETIXOUE GUVBLUCUOVS TEOCEYYIOTIXWY TOAATAACLICTOV p = 0

xoLp =3
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4. Tow 6houg TOUG BLAPOPETIXOVE GUVBUAGHUOUS TROCEYYLOTIXWY TOAANATAACLICTOV p = 1

xou p =2

5. T 6houg Toug BLaPOEETINOUE GUVOLICUOUS TROCEYYICTIX®Y TOAATAACIICTOY p = 1

xoup=3

6. ot GhouC TOUG BLUPOEETINOVUE GUVOLUGUOVS TROCEYYICTIXWY TOAIATAACWIOTOY P = 2

xoup=3

Energy vs Error (k=3 parts)
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YxAua 25: Acltepn npooeyylotixr teyvir): Evépyelo-YXodiyo yio k = 3

H xonavn Yooyt etvon o Pareto Frontier xou 6Ao to onueior mou avixouy o€ auto etvan
Ta BérTiota xatd Pareto onueioa. Ot Moeig autée mopouctdlovion 0Tov TopaxdTe) Tivaxol.
To pdupo tetpdywvo mepthaufdvel evol UTOGUVOAO TwV BEATIOTOV AUTOY ONUElY Tou gUEl]
YewpolUe we To o BEATIOTH 6 aUTA TNV e VXY Ue Bdom 6o meploplopols. OE€houue To
oo var efvon uixpdtepo amo 22%, xou 1 GUVORIXT EVEpYELa Vo efvat TouASyLoTov xotar 1000.

nJ UxpoTERN OO UTH TOU XAUTAVOUADVETOL OTAY YENOWOTOOVUE TOV oxE31] TOMATAACLACTH.

Ta onueior auTd elvor YpwUATIOUEVA GTOV TOEOXATE THhvoras:
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ITivaxag 14: Ilupéto onueio yia k =3

1%t part | 2" part | 3"¢ part | Energy(nJ) | Throughput(FPS) | Error
p=0 | p=0 | p=0 4720.7 18.34 0,167
p= p=1 p=0 4364.1 19.49 0.171
p=20 p=1 p=1 3973.7 19.76 0.172
p= p=1 p=1 3464.2 20.61 0.178
p=1 p=2 p=1 3459.6 20.40 0.187
p= p=2 p=1 3296.9 21.09 0.195
p= p=1 p=2 3281.1 21.05 0.201
p= p=2 p=3 3055.0 21.59 0.422
p= p=3 p=3 3001.2 21.36 0.668
p= p=3 p=2 3007.8 21.83 0.74
p= p=2 p=3 3002.7 21.69 0.752

[opatnpolye 6Tl T0 LUTOGOVORO AUTH TV BEATIOTWV CNUEIWY TEOXUTTEL OTAV YENOLWO-
TOLOVUE TOUC TPOCEYYLOTIX0UC TOMATAACLOTEC p = 1 avd p = 2. Eivon moAu xohéc Adoelc
xadwg ouyxplvovtag Tic Aboelg autég ue tov p = 0, 1 pelworn oty axplBelar etvon TOAL pixen
xodide xupadveton petall 1, 1% — 3,4% evdd €youye peiwon otny xatavdhwon evépyelac €we

xou 30.5%), anmotéheopa Toh) xahd dedouévou Ot 1) pelwon otny axpiBeta eivon TG0 pxEY.

To heatmap mapoxdte amewxoviler twg oAAdLeL 1 axp{Bela YpNOIUOTOWOVTAS GE AUTH TNV

TEYVIXY| OLAPOPETIXOUE TTROCEYYIOTIXOUS TOAMATAACIACTES.
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Mixed approximate-accurate filters per layer for k=3 parts
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IxApa 26: Adldayéc oty axplBela v k = 3

Ané 1o mopondve heatmap mopoatneolue ot 1 axpifeio apyiler va mégtel 6ty apyilouue
VO YPNOWOTOIOVUE TOUC TEOGEY YO TIXO0UE TOANATAACLIC TES. LUYHEXQUIEVO TUPATNEOVUE OTL
oL oLYOLACUOL UE TOUC TOANATAACGTEG P = 0, p = 1 avd p = 2 eV €yel YUEYAAO avTIXTU-
no oty axpifeia xadwg oL Teployés auTES ToEUUEVOUY 6xoLEOYPMWUES. TlopdAha autd dTav
apy(Coude Vo YeNOWOTOLOVUE TOV TEOCEYYIC TGO TOAAATAACLICTH P = 3 BAénoupe Eexdiopa

ot 1 axpifelo apylletl vor TEQPTEL ONUOVTIXG Xt AUTO PUEVETAL ATO TIS TO JOTPES TEPLOYEC.

ITewpapatinny aglohdynon telitng TeVixnc

IMpooeyyiosic avd @IATEO YETNOLLOTOLWOVIAS OLAPOPETIXOVE TEOCEYYL-

CTIXOUC TTOAANATTAALGLAC TEC
¢ Exninedo Bddoug

To mopoxdte scatter plot Selyver tnv oyéorn petoll evépyelog xal o@PIApaTOC Yo €EL

OLUPOPETIXG GEVApLa 6To eninedo Tou Bddoc:

1. T 6houg Toug BLAPORETIXOUE GUVBLACUOUE TEOCEYYLOTIXMY TOAATAACIACTGY p = 0

xoau p =1

2. T 6houg Toug BLaPOEETIXOUE GUVOLAICUOUE TEOCEYYIGTIXWY TOAATAUCIACTOY p = 0

XL p = 2
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3. Tt Ghoug Toug BLAPOEETIXOVUE GUVBLUCUOUS TEOCEYYIOTIXWY TOAATAACLICTOY p = 0
xaup=3

4. Tt 6houg Toug BLAPOPETIXOUE GUVBLAGUOUS TROCEYYLIOTIXWY TOAANJTAACLICTOV p = 1

o p = 2

5. T 6houg Toug BLAPORETIXOUE GUVBUICHOUE TEOCEYYLOTIX®Y TOANATAACLOCTGY p = 1

xaup=3

6. I Ghoug Toug BLAPOPETIXOUE GUVOLUCUOVS TEOCEYYICTIX®Y TOAIATAACIWICTOV p = 2

xor p =3

Energy vs Error (input depth)
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EyxApo 27: Teltn npoceyyiome teyvixrc: Evépyea-Xgpdipo oto eninedo Bddoug

H xdnavn yeouur etvor to Pareto Frontier xou 6ha to onueior mou avrixouv o€ auto etvan
Ta BélTiota xotd Pareto onueioa. Ot Aoeig autég mopoucidlovion 0Tov Topaxdte Thvoo.
To pdupo teTEdywvo TepLAofdveL EVaL UTOGUVOAO ToV BEATIOTWY QUTWV ONUEiwY Tou euelc
Yewpolue w¢ o mo PBEATIOTA O auUTY TNV TeXVxT| Pe Bdom dLo meploplouols. O€houpe To
oo var ebvon uixpdtepo amo 22%, xou 1 cuvohxT evEpyeLa Vo efvat Touldytotov xota 1000.

nJ PxeoTERT amd AUTY| TOU XATUVIADVETAL OTAY YENOUOTOVUE TOV axEL31) TOAATAACLIGTH.

Ta onueior auTd elvor YpwUATIONEVA GTOV TOEUXATE THvoras:
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ITivaxag 15: Ilupéto onueio xan 1o BéATIoTO UTOGUVORO TOUE GTO eninedou Bddoug

0—1|1-2]| 2-3 | Energy(nJ) | Throughput(FPS) | Error
p=0|p=0|p=0]| 47207 18.34 0,167
p=0|p=1|p=0 4661.4 19.76 0.168
p=1|p=0|p=0 4180.4 19.88 0.169
p=1|p=0|p=1 3686.2 19.96 0.174
p=1|p=2|p=1 3599.1 20.24 0.18
p=1|p=1|p=2 3395.1 20.24 0.19
p=2|p=1|p=1| 33734 20.16 0.199
p=2|p=0|p=2| 32009 20.20 0.206
p=2|p=1|p=2| 31416 20.36 0.214
p=2|p=3|p=2 3104.8 20.79 0.277
p=2|p=2|p=3 3039.3 20.74 0.527
p=2|p=3|p=3 3030.4 21.05 0.599
p=3|p=2|p=2| 30324 20.70 0.7

p=3|p=3|p=2 3023.5 21.05 0.73
p=3|p=0|p=3 3045.1 20.70 0.78
p=3|p=1|p=3 2985.8 20.83 0.787
p=3|p=2|p=3 2958.0 21.14 0.795

[Topatneolue 6TL T0 LTOGGVORO AUTH TV PEATIOTWY ONUElWY TEOXUTTEL OTAV YENOLULO-
TOLOVUE TOUC TPOCEYYLOTIXOUE TOAATAACWOTES p = 1 avd p = 2. Elvon mohv xahéc Adoelc ,
xadwe cuyxpelvovtag Tic Aboelg auTég Ye tov p = 0, 1 pelworn oty axplBelor etvar TOAL puxen
%0 xupaiveton Yetoll 0.7% — 4.7% evéy éyoupe peiwon oty xatavdAnon evEpYeLlas €mg

xou 33.5%, omotéheoua Toh) xohd dedouévou OTL 1) Uelwon oty axplBeta elvon TG00 Uixph.

To heatmap napaxdte amewxovilel mwg oAAdlel 1 axp{Bela YpNoWOTOWOVTAS G AUTH TNV

TEYVIXT] OLUPOPETIXOVUE TPOCEYYIGTIXOUS TOANATAACLUCTES.
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Third Approximation technique” Approximations per filter at input depth
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Yxhpa 28: Teltn mpooeyylotin Teyviaric: Ahhayéc otny axpifBeia oto eninedou Badoug

Ané 1o mopondve heatmap mopotneodue 6t 1 axpifeio apyilel va tégter dtav opylovue
VO YPNOWOTOLO0UE TOUG TEOCEYYLOTIX0UE TOAATAACLIUCTEG. LUYHEXQLIEVO TUPATNPOVUE OTL
oL ouVBLIoUOL e Toug ToANATAUCLGTEG p = 0, p = 1 avd p = 2 Bev €yel YeYdAO avTiXTU-
To otV axpifelo xadwe oL TeployEs aUTEC ToEOUEVOUY oxoLEOYPwUES. Tlopdiha autd dtav
apy(Couye Vo YpNOHLOTOLOVUE TOV TEOCEYYLOTIXO TOAATAUGCIGTH p = 3 BAénoupe Eexdiopa

ot oxpifBetor apyilel vor TEQPTEL ONUOVTIXG X0 AUTO QPALVETOL MO TIC TILO GOTPES MEPLOYEC.

o Erninedo ntAdrtouc

To mapoxdtw scatter plot detyver tnv oyéon yetald evépyelag xou oQIAUOTOC Yo €EL

BlapopETING GEVAPLNL OTO ENMESO TOL TAYTOUS:
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Energy vs Error (filter width)
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Exhpa 29: Teltn npooeyylote teyvinnc: Evépyeia-Xpdiuo oo eninedo mhdtoug

H »xoxavn ypouu? etvon to Pareto Frontier xou 6Ao to onueior Tou aviixouy o€ auTo etvan
Ta BélTiota xatd Pareto onueia. Ot Moeg autée mopouctdlovion 0Tov TopaxdTe) Tivaxo.
To pydupo tetpdywvo mepthaufdvel evol UTOGUYOAO TwV BEATIOTOV auTOY orNuelny Tou guelg
Yewpolue we To o BEATIOTO 0 aUTA TNV TeY VXY Ye Bdom dlo meploplopols. O£houye To
o@éhua vo etvan wixpdtepo omo 23%, xau 1 cuvokny| evépyeta vau efvar Touldytotov xatar 1000

nJ UxEOTERT AnO AUTY| TOU XATOUVOAWVETAUL OTAY YPTOULOTIOLOUUE TOV axEL3Y) TOANATAACLIGTY.

Ta onueior auTd elvor YpwUATIOUEVA GTOV TOEOXATE THhvoxas:
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ITivaxag 16: Ilupéto onueio xar 10 BEATIOTO UTOGUVORO TOUE GTO EM{neEdOU TAdTOUC

0—11]1-2|2-=3| Energy(nJ) | Throughput(FPS) | Error
p=0|p=0|p=0 | 4720.768451 18.34 0,167
p=0|p=1|p=0 4356.1 19.8019802 0.168
p=1|p=0|p=1 3991.5 19.96007984 0.172
p=1|p=1|p=2| 3455.9 20.28397566 | 0.194
p=2|p=1|p=2 3284.8 20.32520325 0.198
p=2|p=2|p=1| 32848 20.40816327 | 0.217
p=1|p=2|p=2| 32848 20.36659878 | 0.226
p=3|p=2|p=2 3058.8 20.70393375 0.47

p=2|p=2|p=3 3058.8 20.83333333 0.505
p=2|p=3|p=2 3058.8 20.74688797 0.578
p=3|p=3|p=2 3003.9 20.96436059 0.71

p=3|p=2|p=3 3003.9 21.09704641 0.726
p=2|p=3|p=3 3003.9 20.96436059 0.757

[opatnpolye 6TL T0 LUTOGGVORO QUTO TV BEATIOTWY ONUEIWY TPOXUTTEL OTAV YENOLLO-
TOLOVUE TOUC TPOCEYYLO TIX0UC TOMATAACLOTEC p = 1 avd p = 2. Eivon moAu xohéc Adoelc
xadwg ouyxplvovtag Tic Aboelg autég ue tov p = 0, 1 peiworn oty oxplBelar elvon TOAL pixen
xode xupaiveton petad 2.7% — 5.9% evdd éyoude UElmOT GTNY XATAVIAWOT EVEQPYELNS €6C

xou 30.4%, anotéheopa TON) xahd dedopévou OTL 1) uelwon otny axpiBeta eivon TG0 uxE.

To heatmap napoxdte amewxoviler mwg oAdLer 1 axp{Bela YpNOIUOTOWOVTAS GE AUTH TNV

TEYVINY| OLUPOPETIXOUE TTROCEYYIOTIXOUS TOAMAUTAACIACTES.
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Third Approximation Technique: Approximations per filter at filter width
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ExAue 30: Teitn mpooeyyiotind Teyvuer: AXNhayéc oty axplBela oo eninedou mAdtoug

Ané to mopondve heatmap mopotneodue ot 1 axpifelo apyiler va négtet 6tay apyilouue
VO YPNOYOTOLOVUE TOUG TEOGEYYLO TIX0UE TOAATAACLUG TEG. LUYHEXQUIEVO TUEAUTNEOVUE OTL
ol ouvduaouol pe Toug ToAamAacLcTéC p = 0, p = 1 avd p = 2 Bev €yel ueydho avtixtu-
To oTnyv axpifeia xadwe oL TeployEg aUTEC ToEUUEVOUY oXx0LEOYPWUES. TlopdAha autd dtay
apy(Coude Vo YeNOLOTOOVUE TOV TEOCEYYIO TG TOAAATAACLOCTH p = 3 BAénoupe Eexdiopa

ot ) oxeifelo apyilel vor TEQTEL ONUOVTIXG XaL AUTO QUUVETAL IO TIC TO JOTPES TMEPLOYES.

¢ Exninedo Odoug

To mapoxdtew scatter plot detyver v oyéon petald evépyelag xou oPIAUNTOS Yo EEL

OlopopeTIXd oEVdpLY 0TO eT{medo Tou oug:
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Energy vs Error (filter height)
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EyApo 31: Tpltn npooeyyiomr teyvixic: Evépyela-Xpdlpa oto eninedo Goug

H xdnavn yeouur etvor to Pareto Frontier xou 6ha to onueior mou avrixouv o€ auto etvan
Ta BéATiota xatd Pareto onueioa. Ot Aoeig autée mopoucidlovion oTov Topaxdte Thvoo.
To udupo teTedywvo Tep aBdver evar UTOGUVOLO TwV BEATICTOV AUTWY ONUElWY TOU EUELS
Yewpolue we o mo PBEATIOTO 08 aUTYH TNV TeXVxT| pe Bdom dLo meploployols. O€houpe To
oo va efvon tixp6Ttepo amo 22%, xou 1 cUVOAIXT evépyELa va elvat ToLRytoTov xata 1000

nJ UxeOTERT amd AUTY| TOU XATUVIADVETAL OTAY YENOUOTOWVUE TOV axEL31) TOAAATAACLIGTH.

Ta onueio auTd elvor YpwUATIONEVA GTOV TOEUXAT THvoras:
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IMTivaxag 17: Toeitn mpooeyylom| teyvixnc: Evépyeia-Egpdiuo oo eninedo Gpoug

0—1|1-2]| 2-3 | Energy(nJ) | Throughput(FPS) | Error
p=0|p=0|p=0]| 47207 18.34 0,167
p=1|p=0|p=0 4356.1 19.80 0.169
p=1|p=0|p=1| 39915 19.92 0.173
p=2|p=1|p=1| 34559 20.16 0.189
p=2|p=1|p=2| 32848 20.40 0.196
p=1|p=2|p=2 3284.8 20.32 0.202
p=2|p=2|p=1 3284.8 20.36 0.209
p=2|p=2|p=3 3058.8 20.70 0.482
p=3|p=2|p=2 3058.8 20.70 0.512
p=2|p=3|p=2 3058.8 20.74 0.615
p=2|p=3|p=3 3003.9 21.09 0.716
p=3|p=2|p=3 3003.9 21.09 0.719
p=3|p=3|p=2 3003.9 21.18 0.773

[Topatnpolye 6Tl T0 UTOGOVORO WTH TV BEATIOTWY ONUElWY TPOXUTTEL OTAV YENOLLO-
TOLOVUE TOUC TPOCEYYLOTIX0UC TOMITAACLHOTESC p = 1 avd p = 2. Etvon moAu xahéc Aooeic ,
g ouyxpelvovtag Tic Aboelg autég ue tov p = 0, 1 pelworn oty axp{Belor etvan ToAL pixen
xode xupaiveton petadd 2.2% — 4.2% evdd éyoude Pelnom 6TV XaTavdhwoT EVERYELNS €0G

xou 30.4%, omotéheoya TOA) %ok dedouévou 6TL 1) ueiwon oty axpifBela eivon TG0 Uixph.

To heatmap napoxdte amewxovilel mwg oAAdlel 1 axp{Bela YpNoWOTOWOVTAS O AUTH TNV

TEYVIXT] OLUPOPETIXOUE TTPOCEYYIGTIXOUS TOANATAACLUCTES.
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Third Approximation Technique: Approximation per filter at filter height
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Yo 32: Teltn npooeyyiotn) Teyvixic: Ahhayég otnyv axplBeia oto eninedou Uoug

Ané 1o mopondve heatmap mopoatneoiue 6t 1 axpifeio apyilel va tégter dtay opylouvue
VoL YENOWOTOLOUUE TOUS TROGEY YO TIXOUEC TOANATAACIAO TES. LUYEXPUIEVOL TUPATNEOVUE OTL
oL oLYBLACUOL UE TouC TOAATAACGTEG p = 0, p = 1 avd p = 2 eV €yl YUeYAAO AVTIXTU-
To otV axpifela xadwg oL TeployEg aUTES ToEUUEVOUY oxoLEOYPwWUES. [lopdAha autd dtav
apy(Couue Vo YpNOHIOTOLOVUE TOV TEOCEYYLOTIXO TOAAATAXCIGTH p = 3 BAénoupe Eexdiopa

ot oxpifBeto apyilel vor TEPTEL GNUAVTIXG X0 AUTO PALVETOL ATTO TIC TILO GOTPES MERLOYEC.

ITpooceyyiosig avd @iltpo nopaleinoviag nedielg

e Erninedo Bddoug

H axp{Belar auth) mpoxintel 6oy exTEAOVUE UOVO TG TRAEELS TTOU IXOVOTIOLOUY TNV UV XY

NS TEAOTNG OTHANG TOU Tapadtey Ttivona:
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IMTivaxag 18: AxpiBela dtav napaelnovpe mpdéeic oo eninedo Bddoug

Number of multiplications | Inference Accuracy | Energy(nJ) | FPS(Throughput)
Input Depth =0 6045696 0.115 2331.9 52.63
Input Depth =1 663552 0.105 255.9 62.5
Input Depth = 2 5529600 0.104 2132.8 54.05
Input Depth =0 and 1 6709248 0.12 2587.8 50
Input Depth =1 and 2 6193152 0.138 2388.8 52.63
Input Depth =0 and 2 11575296 0.507 4464.8 22.72

e Eninedo ITAdrouc

H axpiBerta autr mpoxdntel 6tay eEXTENOVUE HOVO TIC TRAEELS TTOL LXAVOTIOLOUY TNV GUVUTHXT

NG TEAOTNG OTAANG TOU TOEAX T TTivonaL:

ITivaxcag 19: Axp{Belo 6tav mapakeinovpe mpdéelc oto eninedo mAdTOUC

Number of multiplications | Inference Accuracy | Energy(nJ) | FPS(Throughput)
Filter Width = 0 4079616 0.11 1573.5 74.62
Filter Width =1 4079616 0.151 1573.5 81.30
Filter Width = 2 4079616 0.082 1573.5 73.52
Filter Width =0 and 1 8159232 0.227 3147.1 42.55
Filter Width =1 and 2 8159232 0.163 3147.1 41.15
Filter Width = 0 and 2 8159232 0.205 3147.1 39.84

¢ Exnincdo "Ydoug

H axp{Bela autr) mpoxintel 6oy extelolue LOVO TIG TRAEELS TTOU IXAVOTIOLOUY TNV GUVITXT,

NG TEWTNG OTAANG TOU TOROXATE Trivorxa:

ITivaxag 20: AxpiBela 6tav napakeinovpe mpdeic oto eninedo Voug

Number of multiplications | Inference Accuracy | Energy(nJ) | FPS(Throughput)
Filter Height =0 4079616 0.092 1573.5 74.07
Filter Height =1 4079616 0.162 1573.5 54.64
Filter Height =2 4079616 0.098 1573.5 56.81
Filter Height =0 and 1 8159232 0.219 3147.1 33.89
Filter Height =1 and 2 8159232 0.178 3147.1 32.46
Filter Height =0 and 2 8159232 0.127 3147.1 33.00

And Toug TeElC ToROTAVL TVOXES OTL 1) TTOOY 6NV axpeifelor cuyxelTind pe Ty oxpelBeia
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TOU TAlEVOUNE OTUY YENOWOTOLOUUE HOVO TOV axEl3Y) TOMATAAGTH YWELS VO TORUAETOVUE
xaplo TEAEN, elvon TEPAOTIL EVE OTWE EVOL AVOUEEVOUEVO EYOUUE UEYSAN TTOOY TNV XoTA-
VIAWOT| EVERYELOG.

[MopdAho autd 1) TERAO TIAL TTWOT 6TNY axEiBetor xoho T TNV TEYVIXT AUTH U1 ATOTEAECUA-

%)

IMepapatiny, agloAdYNoT TN TETARTNG TEYVIXNAG

O mopaxdte mivoxag amewoviler ta dtoothpatafu — o, u + o] , [ — 20, 1+ 20] yio xdde

OTEOUA TOU VEURWVIXOUD SIXTUOU EEY0ELOTA:

ITivaxag 21: Awotipata yio xdde oTpduo Tou VEUPKOVIXOL BixTOoU

Layer 0 | Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 | Layer 6
v —o,pu+ o] [98,156] | [114,153] | [122,172] | [133,175] | [105,161] | [105,163] | [92,140]
@ — 20, u 4+ 20] | [69,185] | [95,172] [97,197] | [112,196] | [77,189] [76,192] | [68,164]

ITivaxag 22: Apiludc nohhamhaclacu®y oe xdde oTeoOUA YLol dUTd To SlcTHUTA

Layer O | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6 || '"AQpoicua
[0 —o,pu+ o] 339968 | 1264640 | 1703936 | 829952 | 1702400 | 792320 | 1617472 8250688
[4— 20,0+ 20] | 418816 | 1783808 | 2238464 | 1118720 | 2241792 | 1107584 | 2228928 || 11138112

1. Extehdvtoc u6vo Tic Tedelc Ye TWéS @iATpou Tou avixouy 6To didotnua [ — o, 1+ o]
TOU XQUE CTEWUATOS XU TUPUAEITOVTAS ONAXDY| TG UTOAOLTES EYEIC WS AMOTEAEOUA VoL
radpvoupe axpifela fon ue 0.553 xan cuvolixy| evépyeta yior Wa ewxova (on pe 3182.4
nJ, mou onuoiver 6Tt exoupe Uelwon otny evépyela xotd 32.6% cuyxplTind pe Tov axplBn
rohhamhactaoth. lapddho owtd 1 tTworn otny axpelBeta eivon TOAD YeydAT xou Bev UTOpEL

VoL YIVEL BEXTY.

2. Exteldvtog povo tig tpdEelc pe Tés gpiltpou mou avixouy oto ddotnua [pn—20, p+20]
TOU XAUE CTPOUATOC XoU TORUAEITOVTAC ONAADY| TIC UTOAOLTES EYELC W ATOTEAECUA VAl

radpvoupe axpifela ton ue 0.686 xon cUVOAXT EVERYELX Yiar plot EtxOVaL {om pe 4296.1nJ

20OYX®ELON TWV TEOCEYYLOTIX®Y TEYVIXWYV

Y1y 0¢ pag €66 ewvon Vo BpollE TOLEG OO TIG TUEATAVE TEYVIXES EVOL OL TLO ATOTEAECHO-
TIXEC ONADT] Olvouy To BEATIOTA AMOTEAECUATA WG TTEOS TNV EVEQYELX Xal TNV axpifBeta.

Mo tov oxomd autd Ya cuyxpelvoupe 10 LTOGUVORO TwWV BEATIGTWY AUCEWY TTOU TEOXVTTOUY
a6 xdde TEYVIXY.

To mapoxdtw oyrfua amexoviler dha ta BEACTH UTOCGUVORX ONUEWY TOU TEOEXLYAY amd

xdde Tey VI
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Comparison of the Techniques (Energy vs Error)

‘\\ 31 Approx Technaue: At Deth 3rd Approx Technigue: At Height
\\ - 3rd Approx Technique: At Height
3600 .
\ - - 2nd Approx Technigue: k=3
\ [ 2nd Apprax Technique: k=3 3rd Approx Technigue: At Depth

——

— .
‘\\ 3rd Approx Technique: At Depth

Energy(nJ)
£
-
L]

2nd Approx Technique: k=3 5

3rd Approx Technique: At Depth ~l_
2nd Approx Technigue: k=3

017 018 0.19 0.2 0.21 0.22 0.23
Error

Byxnpo 33: Y0YXQIOT TROCEYYIOTIXWY TEYVIXOY

H »xdravn yoouuy| etvar to Pareto Frontier xaw 6ho o onpeior mou avixouv o auty etvan to

Béhota xotd Pareto onueta. Autd ta BéATiota onueio TopouctdlovTon GTOV TopoxdTe Tivaxo:

ITivaxag 23: Ilapéto BéAtiota onueia and 1 oUYXELON TWV TEOCEYYIOTIXWY TEYVIXDY

Teyvixh 0—1|1-2|2-3| Energy(nJ) | Error | Energy Saving %
374 Depth | p=1|p=0|p=1 3686.2 0.174 21.9%
ol k=3 | p=2|p=1|p=1 3464.2 0.178 26.62%
7 k=3 |p=1|p=2|p=1 3459.6 0.187 26.71%
374 Height | p=2 | p=1|p=1]| 34559 | 0.189 26.79%
3 Depth | p=1|p=1|p=2 3395.1 0.19 28.08%

k=3 |p=2|p=2|p=1 3296.9 0.195 30.16%
374 Height | p=2 | p=1|p=2| 32848 | 0.196 30.41%
2 k=3 | p=2|p=1|p=2 3281.1 0.201 30.5%
3% Depth | p=2|p=0]|p=2 3200.9 0.206 32.2%
3 Depth | p=2|p=1|p=2 3141.6 0.214 33.45%

Mrnopolue €0xola Vo Topatneiooupe 0Tl To TeplocoTepa BéEATIoToL xatd Pareto onue-
la TpoxOmTOUY 6Ty €QUEUOLOUE TNV TELTH TROCEYYIOTIXY TEYVIXT|, avTiXaHoTOVIUS TOUG
TOMNNATAAGLAGUOUE UE OLUPORETINOUG TTROCEYYLOTIXOUEC TOAATAUCLACTES Xo XURlWG OTAY €-
popuolouye auTh TRV TEYVIXY oTo eninedo tou Bddouc. To umdhoina BErtioTa onueia Tpo-
%0OTTOLY a6 TNV SEVUTERY TEOCEYYICTIXY TEXVIXT| OTaY Y WEILOVUE TOV aptiud Twv QIATpwY o

xade oTpwUa 6 3 XOPPATLOL .

YUVETHS oL 5V0 aUTEG TEYVIXES Elval Ol XaA)TERES apoU) EVaL OL XAAVTEPEC TPOCEYYIOTIXES

TEYVIXES ool Topéyouy Ta xahUTepa trade-off uetall opdiuoatog xan evépyelag.
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YOvxpior pe State-of-the-art

Oa cuyxplvouue TNV axpifBela TOL TEOXVOTTEL GTAY XYUTOLOL ATO TOUS XAAVTELOUC TOANUTAG-
0TéC , WS PO TO o@dhua Toug aro tnv EvoApproxLib [2] yenowonotolvton 6to veupwvixo
Y Welg xalar Amo TIC TEOCEYYIOTIXEG YOG TEYVIXES UE TNV axELPBELol ToU TEOXVTTEL OTAV OL (Lot
TOAMATAAGLAC TES EPOEUOLOVTAL OTIC XUNDTEPES TROCEYYLIO TIXES TEYVIXES TIOL TEPLY PQPoE TTat-
QUTIAVE.

Emmiéov Yo ouyxplvouue tny evépyelo mou amonteiton yiar pio etxdvor 6ty ot (Lot Tohha-
mhaoloctég and v EvoApproxLib yenowonowoivion ywelc xopio teyviny ye tnv evépyela
TOU TEOXUTTEL OTAY EPAPUOLOVTAL OL XUAUTERES O TEYVIXES YENOWOTOLOVTOS TOUS TOAAA-
mhootootég amo [11] , dnhady) torhamhactac tég e dapopeTtixd perforation.

Ytov mapaxdte mivaxo amewxcoviCetan 1 axpifeta, 1 evépyela mou amonteiton yia pio ecdvol
XL TO oQAUa OTav Uepxol amd Toug xoAUTEPOUS TolhamAactacTée ano tnv EvoApprox-
Lib yenowonowivtar oto Resnet-8 ywplc va epapuoleton xoplo ano T TEOEYYIOTIXES HaG

TEYVIXEC.

ITivaxoag 24: Axpifewa, Evépyeia xon opdipa yia gepixolc ToAATAAGIAoTES omo TNv[2]

Multiplier | Inference Accuracy | Energy(nJ) | Error
mul8u 2AC 0.798 5290.7 0.202
mul8u 2HH 0.767 5322.4 0.233
mul8u 2P7 0.829 6708.3 0.171
mul8u 14VP 0.828 6147.8 0.172
mul8u 150Q 0.83 6124.3 0.17
mul8u GS2 0.826 6012.7 0.174
mul8u NGR 0.77 4627.7 0.23
mul8u ZFB 0.767 4204.2 0.233

Or Suxéc pog xahOtepeg AoELS oL TRoExUPaY amd TNV TEOTYOUUEVY GUYXELOT Eival TOAY
AANVTERES CLYXELTIXG UE TIC ADOELC TTOU TPOGPEROUY OL TEOGEYYLOTIXO! TOAATAACLIUCTES AT
v EvoApproxLib 1660 w¢ mpog 1o o@dhua 660 %o ¢ TEOg TNV EVERYELX

Oa cuyxplvouue TNV axp{Belo xou TNV EVEQYELN TOU TEOXVTTEL OTAV YENOWOTOLOUUE TOUG
rolhamhaotieg ano v EvoApproxLib ywelc tny egapuoy tov teY VXY pog pe Ty axplBela
X0 TNV EVEPYELN TOU TTodpVOUUE amto TIC BEATIOTES pag AUOELS PEGH TWV XUADTEQWY TEYVIXWY
MO,

[Mo mapddetypo o tohamiaotic mul8u GS2 dtav yenowonoteitar Lovog Tou ywpeic xouio
eV pog divel ogpdhua oty axpiBela 17.4% xou evépyela yio pla exdva ion pe 6012.7
nJ , eve 6tav yenowonoloVue Ty Tpltn pag TeEYVx oTo eninedou Tou Bddouc mou €youue
CUUTERAVEL TO THAvVe OTL EWValL iol amo TS XAAVTERES, YENOWOTOLWVTAS ToV €ENE GUYOLACUO
TPOCEYYIOTXWY ToMhamhactootdy p =1, p =0, p = 1 éyoupe o B0 o@dhua 17.4% ol
ue evépyewa fon ue 3686.2 nJ , mov ewvou xotd 38.7% hiydtepn,.
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Enlong, 6tav yenowomnoteiton o tohhaniactoothc mul8u 2AC dvog tou yweic xauio te-
Yvixn| poe Oiver opdhua otny axpiBeta 20.2% xar evépyeta yio pla edva ion e 5290.7 nJ |
EVG OTaY YpnoylonotoVue TNy Beltepn yweilovtag Tov aprdud Twv @iktpwy ot xdde cTemUa
oe k = 3 xoppdTio, TOU xou QUTH EVAL YOl IO TIG XUADTEQES TEYVIXES UAC, YPTOULOTOLWMVTAS
Tov €€¥i¢ CUVOLAOUO TROGEYYLO TV TOAATAAGIUCTOV p = 2, p = 1, p = 2 eybuue GPIAUL
too pe 20.1% xou evépyewo {on pe 3281.1 nJ |, mou eivan xatd 38% hydtepn. Autd onuaivel
OTL OYL LOVO EYOUUE ULXPOTERO GQAAUO TTOU EVOL ETLHUUNTO AAAS XKoL 1) XATAVIAWCY) EWVOL TOAD
Ay otepn.

AuTd o ooV TING ®EEDT GTNV XATAVIANDGT) EVERYELNG TTETUYVOVTAS TERITOL TO (B0 G-
ot ebvor amoTENEOHOL TNS YENONS TOV CUYXEXPLEVKDY AUTMY TodamAaclaotédy [11] mou o xo-
Vévag €xel Slaupopetind perforation. Ilpogavng BéPona opethovion xou 6Ty Ypnon Twv dixwy
HOG TPOGEYYIOTIXWY TEYVIXWY TOU ETUTEETOUY TNV TAUTOYQEOVY YPNOT QUTMY TWV TOAATA-

OLOLO TMV.
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Chapter 1

Introduction

Machine Learning is of particular interest in creating autonomous machines and further
automate parts of the human activities. We seek to equip machines with the capability
of dealing with sensory inputs and employ them for tasks that the humans are carrying
out based on their visual ability. Over the past decade Convolutional Neural Networks
(CNNs) emerged as the state-of-the-art approach to tackle problems of Computer Vision,
such as image classification and object detection. Convolutional Neural Networks are
a particular class of Artificial Neural Networks (ANNs), which are computing systems
and/or algorithms vaguely inspired by the way brain works and constitute an important
part of the Machine Learning field. ANNs learn to perform the desired function by itera-
tively examining a large amount of data and tuning their internal components accordingly.
Even though CNNs were first introduced at the beginning of the 1990s, work on ANNs
had already emerged by the mid-twentieth century with software and hardware implemen-
tations of ANNs in a multitude of applications, like character recognition in OCR, time

series prediction in real estate and process control in manufacturing.

Many computationally intensive applications (such as image recognition, video pro-
cessing and data mining) feature an intrinsic error-resilience property [12]. Since they
often process noisy or redundant data and their users are willing to accept certain errors
in many cases, the principles of approximate computing can be employed in the de-
sign of their energy efficient implementations [13]. At the circuit level, approximations
(i.e. circuit simplifications) are intentionally introduced to find a good trade-off between
power consumption, performance and error. A distinguished class of applications among
all these error resilient applications are hardware accelerators of deep neural networks
(DNNs) [14]. Due to the increased computation requirements of modern DNN workloads,
inference engines are implemented either in FPGA or ASIC technology, which provide
increased throughput and/or low power consumption. In this context, several FPGA-
based [15], [16] and ASIC-based [17], [18] DNN accelerators have been proposed in the
literature. In the case of DNNs, approximate implementations have been proposed at
the level of DNN architecture, data representation, arithmetic operations, memory access

and memory cells [14], [19], [20]. The approximations can be introduced to the circuit in
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various steps of the standard circuit design flow.

Approximate Computing (AC) [13] is an alternative design approach that exploits the
inherent error tolerance of algorithms and applications from domains such as machine
learning (ML), DSP, numerical analysis, etc, and relaxes the accuracy in the calculations
to provide significant gains in power and/or energy consumption, area, latency, etc. It can
be applied at different layers of the design abstractions, i.e., starting from the application
level and moving to the hardware and VLSI level [21].

1.1 Motivation and Thesis Objectives

This dissertation contributes to the areas of deep neural networks and approximate
computing, focusing on the development new approximation techniques. Our motivation
is to design and create new approximation techniques using approximate multipliers in
Deep Neural Networks that achieve a good trade-off between inference accuracy and en-
ergy. More specifically, we desire to extend via multiple new approximation techniques
the open-source library [1] that already extends TensorFlow library providing Approxi-
mate Convolutional (ApproxConv) layers. Specifically, this library provides the user the
chance to approximate one Deep Neural network uniformly (i.e the same approximation
everywhere of the neural network) using only one approximate multiplier. Contrary to
this library [1] , in our proposed extended library of approximation techniques we offer

two new main innovations:

1. Support of multiple approximate multipliers at the same time instead of only 1 as

proposed in [1].
2. Approximations at different levels , which will be analyzed in chapter 4.

We want to study the impact of using multiple approximate multipliers simultaneously in
our design on the inference accuracy- energy trade-off, as well as design and create new
approximation techniques using this approximate multipliers at different levels inside the
Deep Neural Network and test their efficiency by counting the inference accuracy and the
enengy required for the inference of one input image that each approximation technique
has as a result using various combinations of approximate multipliers.

What we want to achieve is to give the opportunity to any user to test his/her ar-
bitrary multipliers on the proposed different approximation techniques. Thus with these
proposed approximation techniques we offer a new extended library of Tensorflow. Our
proposed extended library of approximation techniques is better than the library in [1]
, because while this library restricts the users to use only one approximate multiplier,
our proposed library provides the users the opportunity to use more than 1 approximate
multiplier simultaneously. Furthermore, while the library in [1] provides only one way of
approximation (i.e uniform approximation using one approximate multiplier all around

the Deep Neural Network), our proposed extended library provides users the opportunity
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to test their approximate multipliers at different approximation levels using our proposed
various approximation techniques. Overall, with our proposed library users can experi-
ment using various approximate multipliers at different approximation levels and adjust
the level of approximation he wants based on the accuracy-energy trade-off he wants to
achieve.

To summarize, the current thesis aims at:

e Studying and understanding how the library in [1] works. This is the library on
which this thesis is based.

e Extending this library, so it can support multiple approximate multipliers at the

same time.

e Extending this library by designing and creating new approximation techniques at

different levels inside the Deep Neural Network.

e Analyzing the experimental results so we can test the efficiency of our proposed ap-
proximation techniques by measuring the inference accuracy and the energy required
for the inference of one input image using various combinations of approximate mul-

tipliers.

e Comparing our proposed approximation techniques with each other as well as with

the accurate implementation and coming up with the best approximation techniques.

e Comparing our proposed approximation techniques with approximate multipliers

from the EvoApproxLib [2] and drawing conclusions about our techniques.

1.2 Thesis Outline

In chapter 2 some theoretical mandatory background will be given in order to better
understand the broader meaning of deep neural networks and approximate computing.
More specifically, we will dive further into the world of convolutional neural networks and
the basic concepts of what approximate computing is.

In chapter 3 the basic library basic library/tool called TensorFlow Approximate Layers
[1] that was used in this theses will be described. More specifically, we will describe how
this open source library works and we will provide simple examples for its usage.

Following, in chapter 4 we will present and describe the different approximation tech-
niques we propose in this thesis. These proposed approximation techniques are extensions
of the open source library already described in the chapter 3. More specifically, a detailed
explanation of how each approximation technique works will be given.

Finally, in chapter 5 the experimental results of each approximation technique will be
displayed and some comparisons between approximate techniques will be made as well
as with some approximate multipliers from EvoApproxlib [2]. More specifically, we will

study how each approximation technique influences the classification accuracy as well as
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the energy consumed for the inference of one input image. Furthermore, we will provides
some scatter plots illustrating the relation between the energy and the error with their
Pareto frontier as well and some heatmaps depicting how the inference accuracy changes
when different approximate multipliers are employed.

Chapter 6 shows some conclusion drawn from the previous results, as well as some

suggestions for future work.
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Chapter 2

Theoretical Background and
Related Work

This chapter’s goal is to present the two main technological advancements that this

Thesis is based on: Convolutional Neural Networks (CNNs) and Approximate Computing.

2.1 Convolutional Neural Networks

2.1.1 The bigger picture of Machine Learning

Before we dive into the specifics of Convolutional Neural Networks, we first have to
put them in context: CNNs belong to a wide range of algorithms in the field of Machine
Learning (ML). ”What is Machine Learning”, one may ask, ”and why should one care”? If
we search the net about the importance ML, we’ 1l find plenty of success stories of how ML
is already integrated in several aspects of everyday-life in the developed world: e-mail spam
filters, voice, text and image recognition, reliable web search engines, Grandmaster’s level
chess opponents, personal recommendations of music, increasingly autonomous vehicles,
etc. However important, this simple listing of ML applications, does not really answer the
questions posed.

Machine Learning is a computational sub-field of Artificial Intelligence. Artificial In-
telligence itself poses two main questions: ”What is intelligence and how does it work?”
and ”Can we build intelligent machines?”. Correlated with the latter one and as its name
suggests, in Machine Learning we try to train computers, in a way that they can learn
to solve problems without being explicitly programmed. Using a more formal definition
for ”learning” in this context : ”A computer program is said to learn from experience E,
with respect to some task T and some performance measure P, if it’s performance on T
as measured by P is improved with experience E”. At the core of Machine Learning lies
the assumption that knowledge can be derived from data. Based on this assumption, the
majority of ML algorithms so far are data-driven in contrast to other AI approaches which

may be symbolic,knowledge based etc. Machine Learning takes steps towards ”intelligent”
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machines, promising a wider range and greater depth of automation in human activities.
Both the theoretical work and its technological applications contribute to the material

preconditions for a world where monotonous and repetitive ill be carried out by machines.

. - _-' \\
/ Artificial
" Intelligence

Figure 2.1: Machine Learning’s relation to other fields

Types of Machine Learning
So far, there are two major types of Machine Learning: Supervised Learning and

Unsupervised Learning. CNNs usually employ supervised learning techniques.

e Supervised Learning: In Supervised Learning we have the input variables (X)
and the output variables and the goal is for the algorithm to learn an approximation
of the mapping unction from the input to the output, ¥ = F(X). It is called
”supervised” because there is a form of "teacher”, giving feedback to the algorithm,
based on the already known correct answers. The most common problems that fall
under supervised learning are classification and regression, depending on whether the
output is discrete (i.e classes) or continuous, respectively. Both classification and
regression problems may have one or more input variables and input variables may be
any data type, such as numerical or categorical. Some machine learning algorithms
are described as “supervised” machine learning algorithms as they are designed for
supervised machine learning problems. Popular examples include: decision trees,

support vector machines, and many more.

e Unsupervised Learning: In Unsupervised Learning we are only given the input
data (X) and no corresponding output variables. The goal is to model the underlying
structure in the data, if of course there is one. As such, unsupervised learning does
not have a teacher correcting the model, as in the case of supervised learning. The
most common problems in unsupervised learning are those of clustering: We are
interested in grouping a set of objects in such a way that objects in the same group,
the ”cluster”, are more similar to each other than to those in other clusters. An
example of a clustering algorithm is k-Means where k refers to the number of clusters

to discover in the data.
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The problems we dealt with in this thesis are classification problems, so supervised

learning will be further discussed.

2.1.2 Introduction to Artificial Neural Networks

In this section we’ 11 briefly present Artificial Neural Networks (ANNs), a very inter-
esting part of Machine Learning, with rich history and theoretical foundation. Artificial
Neural Networks have regained attention in the past two decades, being in the center of
the Deep Learning approach. They have been employed in multiple tasks, such as: Pattern
Association, Pattern Recognition, Function Approximation and Processes Control.

Work on ANNs emerged in the mid-twentieth century and has been motivated by the
recognition that the human brain computes in an entirely different way compared to the
conventional digital computer. The brain is a highly complex, nonlinear, and parallel
information-processing system, with the capability to organize its structural constituents,
known as neurons. While computers perform extremely well in a variety of tasks, out-
performing humans in speed and accuracy when coming to the manipulation of numerical
data, that has not been the case for problems like pattern recognition, perception and mo-
tor control. Artificial Neural Networks are computing systems inspired by the biological
neural networks.

A biological as well as a mathematical model of a neuron can be seen in figure 2.2 and

2.3 respectively.
Biological Neuron
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Figure 2.2: Biological Neuron

A single neuron also called a perceptron is the basic building block in Artificial Neural
Networks. Neurons are the basic computational units and are consisted by three main
parts. The input data expressed in numerical form, the activation function and the output

data. A neuron receives a number of input signals x; multiplied by weights w;. These
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Figure 2.3: Single Neuron Model

weighted input data are summed biased with a fixed value b; and are fed into the activation
function ® that produce the final output.

In this section we’ 1l briefly present Artificial Neural Networks (ANNs), a very inter-
esting part of Machine Learning, with rich history and theoretical foundation. Artificial
Neural Networks have regained attention in the past two decades, being in the center of
the Deep Learning approach. They have been employed in multiple tasks, such as: Pattern
Association, Pattern Recognition, Function Approximation and Processes Control.

The equations in figure 2.3 are described by 5.1 and 5.4

N
Net:Z:ri*wi+b (2.1)
i=1
N
Output = ®(Net) = (ID(Z x; * w; + b) (2.2)
=1

A single neuron is the basic building block in Artificial Neural Networks. By intercon-
necting many of these neurons, a network is created, which exhibits behaviour far more
complex than that of a single neuron.1 The network’s weights are adjusted based on a
learning algorithm, the most common of which is Backpropagation. The behaviour of the
network is highly dependent on its structure and new forms of neural networks are contin-
ually being created. Several techniques also exist with which the ANNs can dynamically

adapt both their weights and their own structure.

layer 2 (hidden layer) laver 3 (hidden layery layer 4 (hidden layer)

layer | (Input layer)

ayer 5 (output layer)

Figure 2.4: Example of a Feed-Forward Neural Network with tree hidden layers, three inputs

and two outputs. The weights of the network are illustrated with the arrows.
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As it can be clearly seen in figure 2.4, the input is a [1x3] vector and the output a
[1x2] vector.All the weights of a layer can be stored in a single matrix. For example, the
weights that connect the input to the second layer in figure 3.8 are a matrix of size [3x5].
Then, in the forward pass phase, the values at the second layer can be calculated through
multiplication of the input vector by the weight matrix, resulting to a [1x5] vector. By
applying the activation function F' to each one of the vector’s elements, the values at
the second layer are calculated. In a similar way the output of each of the next layers is
calculated. The full forward pass of this 4-layer neural network is then simply four matrix
multiplications, interwoven with the application of the activation function.

The first step in order to construct a neural network is to train the model using the
training data. In order to do so, weights are initialized randomly. Considering training,
we should take care of the loss function. Loss function shows how good a neural network
is on a specific task. The intuitive way to implement it is to take each training example,
pass it though the network, get the output value and subtract it from the actual value

that was expected in the output.

N
J(’yaﬂ)zzﬂfi*wﬁ-b (2.3)
i=1

Where i is the index of training example, y stands for the output number we expect
from the network and ¢ for the number we actually got by passing our example through
the network. We want as small number as possible regarding Loss Function. If the Loss
Function has a big value, that means our network does not perform very well.

Since initial weights are randomly initialized, we expect a bad performance of the
network. In the process of training, we want to start with a bad performing neural network
and wind up with a network with high accuracy. In terms of loss function, we should get
the minimum value in the end of training. In each iteration, weights are adjusted in order

to achieve higher accuracy. The problem of training is equivalent to the problem

2.1.3 Introduction to Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special kind of neural networks for pro-
cessing data that has a known grid-like topology. Data can be thought as 1D time-series
data and image data that can be thought as a 2D grid of pixels. As the name indicates
these networks employ the mathematical operation called convolution. CNNs are very
similar to ordinary Neural Networks. They are made up of neurons that have learnable
weights and biases. Each neuron receives some inputs, performs a dot product and op-
tionally follows it with a non-linearity. CNNs are biologically inspired models by research
of D.H. Hubel and T.N. Wiesel. They proposed and explanation for the way in which
mammals visually perceive the world around then using a layered architecture of neurons
in the brain and this in turn inspired engineers to attempt to develop similar pattern

recognition mechanisms in computer vision. As an example, let’s consider a car. How
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does a human recognize that is a car? Humans search for the characteristics that are
unique to a car like wheels, head-lights, doors, rear trunk, glass windows, hood and other
features that differ it from other models of transport. Similarly when recognizing a wheel,
we look for circular-shaped objects, comparatively dark colored with a rough texture po-
sitioned below the main structure of the car. All these little details are taken into account
to form some basic information. These little information together bunch up to form a
particular characteristic that is unique to an object that we are recognizing. “A simple
CNN is a sequence of layers, and every layer of a CNN transforms one volume of activation
to another through a differentiable function.” What it actually means is that, each layer
is associated with converting the information from the values, available in the previous
layers, into some more complex information and pass on to the next layers for further
generalization.
The CNN is a combination of two basic building blocks:

e The Convolution Block:This block consists of the Convolution Layer and theP-

ooling Layer. This layer forms the essential component of feature extraction.

e The Fully Connected Block: Consists of a fully connected neural network archi-
tecture. This layer performs the task of classification based on the input from the

convolutional block.

Below two different examples of convolutional neural networks are illustrated. 2.5
illustrates how a convolutional neural network works in general while 2.6 illustrates a

detailed convolutional neural network, the VGG-16 network

I & =T T— - - J".. - 1=4 { W
' = Tl. O O EICTCLE

_ T - M. S . S, . PULLY .
NP I.JN'\'L-.uIIb'i-‘-I.J POCLING CONYOLWTION + RILU POOLING . LATTEN COMNELTED SOFTMAX
* e % s

FEATURE LEARMING CLASSIFICATION

Figure 2.5: Example of a Convolutional Neural Network that categorizes means of transport

from an input image

Filters or Kernels or Convolutional Matrices are also an image that depict a particular
feature for example a curve or a dot. Convolution is a special operation applied on a
particular matrix (usually the Image matrix), using another matrix (usually the Filter
matrix). Kernel is simply a small matrix of weights. This kernel slides over the 2D input
data, performing an element wise multiplication with the part of the input it is currently

on and then summing up the results into a single output pixel.
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Figure 2.6: Example of a Convolutional Neural Network,Network ”VGG-16
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Figure 2.7: Convolution of an image with known kernels, from the traditional Computer Vision
field: Blur, sharpen, edge detection.

Data arrangement in a CNN

Each layer in a CNN takes as input a stack of Cj, 2D matrices, of dimension h;, X Wiy,
each; the input feature maps. Each layer then produces a stack of Cy,,; 2D matrices, of
dimension hgy: X Weyt €ach, the output feature maps. Since the input at each layer is
essentially a 3D matrix, we tend to think the neurons of a CNN as being arranged in
3D (width, height, depth). The feature maps are also called channels or activation maps,
or activation volumes, or slices of depth, planes, etc. As a general observation, there is
still not a unified nomenclature in the field of Machine Learning and several concepts and

techniques keep re-appearing with different names.

2.1.4 2D Convolution Operation

When we apply 2D convolution, one tricky issue is that we tend to lose pixels on the
perimeter of our image. Since we typically use small kernels compared to image size, we
might only lose a few pixels but this may sum up when we apply many convolutional layers
connected in a row. One straightforward solution to this problem is to add extra pixels

of filler around the boundary of our input image, thus increasing the effective size of the
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= Height: 4 pixels

Width: 4 Pixels

Figure 2.8: Example of an RGB image: A 3D matrix of size 4x4x3

image. Typically we set the extra pixels to 0 called Zero-Padding.

Figure 2.9: 2D convolution using ”"Same” Padding for 3x3 Kernel and 5x5 Image. Borders of

Image are extended by zeros and we have the same size 5x5 output Image.

Figure 2.10: 2D Cross-correlation: a 3x3 kernel slides over a 4x4 input with unit stride and no
padding (i.e H;, =4 K = 3,5 =1, P = 0. The output Image has reduced size 2x2compared to
the 4x4 input Image.

As mentioned before when running a convolution layer, we want an output with a
lower size than the input. One way to accomplish this is by using a pooling layer. Yet
another way to do it is to use a stride. The idea of stride is to skip some of the slide
locations of the kernel. A stride of 1 means to pick slides a pixel apart, so basically every
single slide, acting as a standard convolution. A strife of 2 means picking slides 2 pixels
apart, skipping every other stride in the process, downsizing by roughly a factor of 2. A
stride of 3 means skipping every 2 slides, downsizing by roughly a factor 3 and so on.

When a 2D input Image x is convolved with a kernel h of size N x M and the output
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Figure 2.11: Comparing two different types of stride.

image is y, then to calculate output pixel (i, j) we use the following formula.

M-1N-1
y(i,j) = Z Z x[i +m,j +n] x h[n.m],i € ImageWidth,j € ImageHeight  (2.4)

m=0 n=0

2.1.5 Different type of layers used in a CNN

Convolution Layer

The convolution layer is the basic building block of a Convolutional Neural Network,
as its name suggests. These are also the layers that occupy the most of the computation
time. - A convolution layer extracts IV output feature maps, from M input feature maps,
by convolving each one of the M input feature maps with N filters.

Each one of the input feature maps has size of Imageiqin X Imageneight = Iy, x Imy,.
Since the number of input feature maps is M , then the input of the layer is a 3D matrix
with size M x I'm,, x I'my,. Each filter is of size K x K x M. Each one of the K x K 2D
matrices of a filter is called a kernel. Each one of the NV - K x K x M values that compose
the N filters of a convolution layer is called a weight. If each input feature map is square,
of size H;, X H;;, and each output feature map is of size H,y,: X Hopyt , then the convolution
layer consists of Hj, X Hy, X N neurons (height x width x depth) and N - K - K - M weights.
The receptive field of each neuron is of size K x K x M of the input 3D volume. A total
of Hyyt - Hoyt - N - K - K - M multiplications is required for every convolution layer. The

forward pass in these layers is computed as:

M K-1K-
F=ni,jl=bnl+ > ®lm, i+ x,j + ylwln, m, z,y] (2.5)
=0

—
—

m=1 =0

<

Where

e F'is a tensor of output feature maps
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e b[n] is the bias term applied to each "pixel” of the output feature map n
e ® is a tensor of input feature maps

e w is a tensor of pre-learned filters

Although it is called convolution layer, this layer actually performs a cross-correlation
operation, also known as a sliding dot product, between each of the input feature maps and
the filters’ kernels. The 3D operation can be performed by adding the results of multiple 2D
operations. In the equation 5.6 above, the two inner sums perform the 2D cross-correlation
over an input feature map, while the external sum realizes the 3D operation by adding the
results of all the M input feature maps at each kernel location. In the 2D cross-correlation
operation, each ”pixel” of the input feature map is replaced with a linear combination of
its neighbours Figure 2.12 illustrates an example of the 3D convolution operation, while
figure 2.10 illustrates how a kernel slides upon the input feature map during the 2D
cross-correlation operation. The size of the output feature maps is dependent to Padding
and Stride as it was mentioned before. Thus the size of the output feature map can be
calculated with the following equation 2.5

Hyut = Hin = K+2P (2.6)

S

where S is the stride with which the 2D kernel slides upon the 2D input feature map and
P is the amount of padding used at the border of the input feature map. The size of the
output feature map is Hyyt X Hyyr This is also the number of times that the 2D kernel
fits inside the 2D input feature map. Looking a bit ahead, the computations described in
equation 5.6 exhibit a large amount of potential parallelism, since all the multiplications
involved are independent of one another. That means that all the K x K multiplications
within a kernel can be computed concurrently, while all the M input feature maps can be
convolved concurrently, while all the N output feature maps can be generated concurrently.
Moreover, all the H,,: X H,y "pixels” of each of the N output feature maps can be
calculated simultaneously.

Pooling Layer The pooling layer operates independently on every feature map and
it performs a spatial sub-sampling of its input. It is common to insert a pooling layer
between successive convolution layers in a CNN architecture. The operation of this layer
is similar to that of the convolution layer in the sense that there is a kernel that slides
upon the input feature map. This time however, the kernel does not have a set of tunable
weights. Instead, at each position it performs a predefined function on the corresponding
pixels” of the input feature map. Common functions are the max and the average.
More specifically the Maximum Pooling calculates the maximum value of each patch of
the feature map, while the Average Pooling calculates the average value of each patch on
the feature map. The pooling layer accepts a volume of size H; x W1 x D and outputs a
volume of size Hy x Wy x Dy, where Wo = (W7 — K)/S + 1, Hy = (H; — K)/S + 1 and
Dy = Dy. S is the stride with which the K x K kernel slides upon the feature map. The
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Figure 2.12: Example of 3D Convolution operation: Three input feature maps, gettingconvolved
with two filters, generating two output feature maps. Padding=1, Stride=1. The marked pixel
on the output feature map is a sum of all the dot products between the marked area of the input
feature maps and the WO filter’s kernels

pooling layer leaves the depth dimension of its input unchanged. Figure 2.13 illustrates
this procedure when the max pooling is utilized.

The result of using a pooling layer and creating down sampled or pooled feature maps
is a summarized version of the features detected in the input. They are useful as small
changes in the location of the feature in the input detected by the convolutional layer
will result in a pooled feature map with the feature in the same location. This capability
added by pooling is called the model’s invariance to local translation. The results of max
pooling are down sampled or pooled feature maps that highlight the most present feature
in the patch.

Activation Layer/Function

The activation function is a node that is put at the end of or in between Neural
Networks. They help to decide if the neuron would fire or not. If the input value of a neuron

exceeds a threshold then the activation function fires this neuron otherwise it disables it.
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Figure 2.13: Left: In this example, the input volume of size [224x224x64] is pooled with filter
size 2, stride 2 into output volume of size [112x112x64]. Right: Max pooling with a stride of 2.

Here, each max is taken over 4 numbers and so a 2x2 square is produced

The activation function is an integral part of the artificial neuron’s model. Without it, an
Artificial Neural Network would just be performing a multiplication between its input and
a weighted matrix, which means that the model of the classic ANN would degenerate to
that of linear regression. Thus, an activation layer is being attached to every convolution
layer and the element-wise operation is being performed at the output of every neuron.

Figure 2.14 illustrates several of these functions:

Leaky RelLU
max(0.1x, x)
tanh Maxout i
tanh max(wl z + by, wix + ba)
RelLU / ELU J
T =0
{n[r-" =1} =<0 g

max(0, )
Figure 2.14: The most Popular Activation Functions in Neural Network

Elgmmd

l+| =2

Among these, ReLLU is the easiest one to implement and the less expensive one from a
computational point of view, thus making it the most widely used activation function in
neural networks nowadays. One of the greatest advantage ReLLU has over other activation
functions is that it does not activate all neurons at the same time. From the image for
ReLU function above, we will notice that it converts all negative inputs to zero and the
neuron does not get activated and this is why ReLU is very computational efficient as few
neurons are activated per time.

Flattening and Fully-Connected Layers

Flattening and fully-connected layers are what we have at the last stage of CNN.
Flattening is converting the data into a 1-dimensional array for inputting it to the next

layer. We flatten the output of the convolutional layers to create a single long feature
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vector. And it is connected to the final classification model, which is called a fully-
connected layer, which will be described next. In other words, we put all the pixel data

in one line and make connections with the final layer.

-

*:F'.Cl'!"I'Ew\-h-vaJ

‘EU'I\H' tonnected layers

Figure 2.15: Once the pooled featured map is obtained, the next step is to flatten it. Flattening
involves transforming the entire pooled feature map matrix into a single column which is then fed

to the fully connected layers for processing.

The objective of a fully connected layer is to take the results of the convolution process
and use them to classify the image into a label. As mentioned before the output of
convolution and pooling process is flattened into a single vector of values. After flattening,
the flattened feature map is passed through a neural network. This step is made up of the
input layer, the fully connected layer, and the output layer. The fully connected layer is
similar to the hidden layer in ANNs but in this case it’s fully connected. This means that
all neurons in these layer are connected to all neurons in the previous layer. The output
layer is where we get the predicted classes. The information is passed through the network
and the error of prediction is calculated. The fully connected part of the CNN network
goes through its own backpropagation process to determine the most accurate weights.
Each neuron receives weights that prioritize the most appropriate label. This means that

the error is backpropagated through the system to improve the prediction.
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Flattening

Figure 2.16: Example of the Fully Connected Part of a CNN that classifies images of cats and
dogs.

Softmax Layer

The softmax layer is the most common classifier. A classifier layer is added after the
last convolution or fully-connected layer in image classification CNNs, and normalizes the
raw class scores Z; produced from the rest of the network in the [0,1] range, to interpret

them as probabilities P; according to 2.7

Z;
k=1
2.1.6 In one shot

Figure 2.17 illustrates what has been described so far:

Output
t-—u_]. Horse
Zebra
'v. ....-..
So!IMa
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Kermel RelU RelU RelU Flatten
Layer
- Feature Maps -

Figure 2.17: Example of how a CNN works
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2.1.7 Resnet Architecture

Since all the experiments in this theses are being conducted on Resnet-8 |, a brief
description of its architecture will be given. Over the years, researchers tend to make
deeper neural networks (adding more layers) to solve such complex tasks and to also
improve the classification/recognition accuracy. But, it has been seen that as we go
adding on more layers to the neural network, it becomes difficult to train them and the
accuracy starts saturating and then degrades also. Here ResNet[22] comes into rescue and
helps solve this problem. This problem of training very deep networks has been alleviated
with the introduction of ResNet or residual networks and these Resnets are made up from
Residual Blocks.

weight layer

F(x)

X
weight layer identity

Figure 2. Residual learning: a building block.

Figure 2.18: Residual Learning: A Building Block

The very first thing we notice to be different is that there is a direct connection which
skips some layers(may vary in different models) in between. This connection is called ’skip
connection’ and is the core of residual blocks. Due to this skip connection, the output
of the layer is not the same now. Without using this skip connection, the input ‘x’ gets
multiplied by the weights of the layer followed by adding a bias term.

Next, this term goes through the activation function, f() and we get our output as
H(x):

H(x) = F(wz +0b) or H(z) = F(x)

Now with the introduction of skip connection, the output is changed to:

H(z)=F(x)+z (2.8)

Figure 2.18 illustrates equation ?? . The intermediate building blocks consist mainly
of convolutional networks that differ in number, size of features and sequence, depending

on their architectures. What is really important about the ResNet architecture is that it
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does not add additional parameters for training and therefore their use does not increase
the complexity, unlike other architectures.

The smallest Resnet-8 network consists of three stages with n = 1 residual blocks in
each stage(2.19)

Fesidual block

Figure 2.19: Architecture of ResNet convolutional neural network

2.2 Approximate Computing

2.2.1 The basics of approximate computing

The pervasive, portable, embedded and mobile nature of present age computing sys-
tems has led to an increasing demand for ultra low power consumption, small footprint
and high performance. Approximate computing [21] is nascent computing paradigm that
allow us to achieve these objectives by compromising the arithmetic accuracy. Many sys-
tems used in domains, like multimedia, neural networks and big data analysis, exhibit an
inherent tolerance to a certain level of inaccuracies in computation and thus can benefit
from approximate computing. The computational and storage demands of modern sys-
tems have far exceeded the available resources. It is expected that, in the coming decade,
the amount of information managed by worldwide data centers will grow 50-fold, while
the number of 5 processors will increase only tenfold. It is clear that rising performance
demands will soon outpace the growth in resource budgets; hence, over provisioning of
resources alone will not solve the conundrum that awaits the computing industry in the
near future. Functional approximation[5], in hardware, mostly deals with the design of
approximate arithmetic units, such as adders and multipliers, at different abstraction lev-
els, i.e. transistor, gate, RTL and application. Some notable approximate adders include
speculative adders [23], segmented adders[4] carry select adders[24] and approximate full
adders[25]. Most of approximate multipliers have been designed at higher levels of ab-
straction, i.e., gate, RTL and application. Also, in the field of approximate multipliers,
i.e., the most power-hungry component of hardware, accelerators, significant research has
been conducted [11, 26, 27, 28]. A promising solution for this dilemma is approximate
computing (AC), which is based on the intuitive observation that, while performing exact
computation or maintaining peak-level service demand require a high amount of resources,
allowing selective approximation or occasional violation of the specification can provide

disproportionate gains in efficiency. For example, for a k-means clustering algorithm, up
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to 50 times energy saving can be achieved by allowing a classification accuracy loss of
5% [29]. Similarly, a neural approximation approach can accelerate an inverse kinematics
application by up to 26 times compared to the GPU execution, while incurring an error of
less than 5% [30]. Approximate computing and storage approach leverages the presence
of error-tolerant code regions in applications and perceptual limitations of users to intelli-
gently trade off implementation, storage, and /or result accuracy for performance or energy
gains. In brief, approximate computing exploits the gap between the level of accuracy re-
quired by the applications/users and that provided by the computing system, for achieving
di-verse optimizations. Thus, approximate computing has the potential to benefit a wide
range of applications/frameworks, for example, data analytics, scientific computing, mul-
timedia and signal processing, machine learning and MapReduce, etc. However, although
promising, approximate computing is not a panacea. Effective use of approximate com-
puting requires judicious selection of approximable code/data portions and approximation
strategy, since uniform approximation can produce unacceptable quality loss [31, 32, 33].
Even worse, approximation in control flow or memory access operations can lead to catas-
trophic results such as segmentation fault [34] Further, careful monitoring of output is
required to ensure that quality specifications are met, since large loss makes the output
unacceptable or necessitates repeated execution with precise parameters. Clearly, lever-

aging the full potential of approximate computing requires addressing several issues.

2.2.2 Approximate Arithmetic Circuits

There are two basic approximate arithmetic components: approzimate adders and
approximate multipliers.

Approximate Adders

In approximate implementations, multiple-bit adders are divided into two modules:
the accurate upper part of more significant bits and the approrimate lower part of less
significant bits. For each lower bit, a single-bit approximate adder implements a modified,
thus inexact function of the addition. This is often accomplished by simplifying a full
adder design at the circuit level, equivalent to a process that alters some entries in the
truth table of a full adder at the functional level.

Approximate Multipliers

Significant research has been conducted on the optimization of multiplication circuits
[35], i.e., the key processing units of DSP accelerators, which inherently affect the per-
formance of the entire application. In this context, several approximate multipliers have
been proposed in the literature. Approximate multipliers that use the speculative adders
to compute sum of partial products have been designed in [36],[37]. However, the straight-
forward application of approximate adders in a multiplier may be inefficient in terms of
of trading off accuracy for savings in energy and area. For an approximate multiplier, the
main key design aspect is reducing the critical path by adding the partial products. Since

multiplication is usually implemented by a cascaded array of adders, some of the least
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Figure 2.20: A general architecture for an approximate adder divided into two modules: the

accurate MSBs and approximate LSBs

significant bits in the partial products are simply omitted (with some error compensation
mechanisms) and also some adders can be removed in array for a faster operation.

The approximate multipliers are classified into four categories:

—

. Approximation in Generating Partial Products

[\)

. Using simpler structure to generate partial products
3. Approximation in the Partial Product Tree

4. Omitting some partial products

In [5], a large multiplier is constructed by 2 x 2 simplified multipliers to reduce arith-
metic and computation complexity. An efficient design that uses input preprocessing and
additional error compensation is proposed in [6] to reduce the critical path delay. Combi-
nations of both partial product generation and approximations are applied in collaboration
to further reduce power consumption [7], [8], [9]. The main goal in nowadays research con-
sidering approximate multipliers is to reduce the number of partial products using hybrid
radix encoding [10] to apply approximations on the partial product generation. Finally,

approximate floating-point multipliers have been proposed in the literature [38], [39].

2.3 Related Work

Approximations in Neural Networks

As neural networks are inherently error-resilient, various approaches have been pro-
posed to approximate them. A straightforward approach for the automated construction
of NNs with approximate CP is to optimize the bit precision for the data structures used

in NN [40]. A recent research shows that in specific cases one bit can be sufficient to
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represent the weights[41]. Let us suppose that the bit width is fixed to n bits due to ar-
chitectural constraints. There are several ways how to improve the energy efficiency of the
n-bit arithmetic operations. Venkataramani et al.[31] proposed a methodology of identify-
ing error-resilient neurons based on the backpropagation gradients. For the error-resilient
neurons, an approximation using precision modification and piecewise-linear approxima-
tion of activation function was applied to create an approximate neural network. Since
training is by itself an error-healing process, after creating the approximate version, the
NN is retrained. They also proposed a neuromorphic processing engine platform to deter-
mine the best tradeoff between the precision and energy. Zhang et al.[42] used a different
approach for the critical neuron identification. A neuron is considered as critical, if small
jitters on the neurons computation introduce a large output quality degradation; other-
wise, the neuron is resilient.They presented a theoretical approach for finding the critical
neurons. The least critical neurons are candidates for approximation. Due to the tight
interconnection between the neurons, the ranking of candidate neurons is updated after
approximation of each neuron. Hence, an iterative algorithm for the criticality ranking
and approximation was developed. Three approximation strategies were used — precision
scaling, memory access skipping and approximating the multiplier circuits. To increase
the overall accuracy, the resulting neural networks were retrained. This approach was
only evaluated on a MLP. In the case of CNNs, Mrazek et al. [43] introduced approxi-
mate multipliers to convolutional layers of the LeNet neural network. They showed that
the back-propagation algorithm can adapt the weights of CNN to the used approximate
multipliers and significant power saving can be achieved for a negligible loss in accuracy.
Approximate multipliers based on the principles of multiplierless multiplication were in-
troduced to complex CNNs in [44].The authors modified the learning algorithm in such
a way that only those weights could be used for which an efficient implementation of ap-
proximate multiplication exists. The authors showed that the approximations can provide
significant power savings in the computational path even for deep neural networks. How-
ever, the major limitation of this approach is that arbitrary approximate multiplier cannot
be introduced to the NN.Although the aforementioned approximation methods decrease
the accuracy of the NNs, the resulting NNs can be beneficial for other approaches, for
example, in progressive chain classifiers (PCCs) [45]. In PCCs, there is a chain of classifier
models that progressively grow in complexity and accuracy. After evaluating a stage it
is checked whether its confidence is high; if so the remaining stages of the PCC are not

evaluated.
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Chapter 3
Tensorflow Approximate Layers

This chapter’s goal is to present and describe the basic library/tool called TensorFlow
Approximate Layers [1] that was used in this theses. This library was extended via various

ways which will be described in the next chapter.

3.1 Tensorflow

First of all, an introduction to Tensorflow is considered necessary before we proceed

any further.

3.1.1 What is TensorFlow?

TensorFlow is an open-source end-to-end platform for creating Machine Learning ap-
plications. It is a symbolic math library that uses dataflow and differentiable programming
to perform various tasks focused on training and inference of deep neural networks. It al-
lows developers to create machine learning applications using various tools, libraries, and
community resources. Currently, the most famous deep learning library in the world is
Google’s TensorFlow. Google product uses machine learning in all of its products to im-
prove the search engine, translation, image captioning or recommendations. TensorFlow
is a library developed by the Google Brain Team to accelerate machine learning and deep
neural network research. It was built to run on multiple CPUs or GPUs and even mobile
operating systems, and it has several wrappers in several languages like Python, C++ or

Java.

3.1.2 How TensorFlow Works

TensorFlow enables you to build dataflow graphs and structures to define how data
moves through a graph by taking inputs as a multi-dimensional array called Tensor. It
allows you to construct a flowchart of operations that can be performed on these inputs,

which goes at one end and comes at the other end as output.
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3.1.3 TensorFlow Architecture

Tensorflow architecture works in three parts:

1. Preprocessing the data
2. Build the model

3. Train and estimate the model

It is called Tensorflow because it takes input as a multi-dimensional array, also known
as tensors. You can construct a sort of flowchart of operations (called a Graph) that you
want to perform on that input. The input goes in at one end, and then it flows through
this system of multiple operations and comes out the other end as output. This is why it
is called TensorFlow because the tensor goes in it flows through a list of operations, and

then it comes out the other side.

3.1.4 Basic components of Tensorflow

e Tensor

Tensorflow’s name is directly derived from its core framework: Tensor. In Tensorflow,
all the computations involve tensors. A tensor is a vector or matrix of n-dimensions that
represents all types of data. All values in a tensor hold identical data type with a known
(or partially known) shape. The shape of the data is the dimensionality of the matrix
or array. A tensor can be originated from the input data or the result of a computation.
In TensorFlow, all the operations are conducted inside a graph. The graph is a set of
computation that takes place successively. Each operation is called an op node and are
connected to each other. The graph outlines the ops and connections between the nodes.
However, it does not display the values. The edge of the nodes is the tensor, i.e., a way

to populate the operation with data.
e Graphs

TensorFlow makes use of a graph framework. The graph gathers and describes all the

series computations done during the training. The graph has lots of advantages:

1. It was done to run on multiple CPUs or GPUs and even mobile operating system

2. The portability of the graph allows to preserve the computations for immediate or

later use. The graph can be saved to be executed in the future.

3. All the computations in the graph are done by connecting tensors together. A tensor
has a node and an edge. The node carries the mathematical operation and produces
an endpoints outputs. The edges the edges explain the input/output relationships

between nodes.
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3.1.5 Why is Tensorflow popular?

TensorFlow is the best library of all because it is built to be accessible for everyone.
Tensorflow library incorporates different API to built at scale deep learning architecture
like CNN or RNN. TensorFlow is based on graph computation; it allows the developer to
visualize the construction of the neural network with Tensorboard. This tool is helpful to
debug the program. Finally, Tensorflow is built to be deployed at scale. It runs on CPU
and GPU.

3.2 Approximate Convolutional Layers

3.2.1 Overview of the library

The library[1] on which this thesis is based, is an open-source library of approximate
convolutional layers. This library extends TensorFlow library providing Approximate Con-
volutional (ApproxConv) layers, i.e. layers with reduced precision (typically 8 bits) imple-
mented using approximate multipliers. More specifically this library extends TensorFlow
library by AxConv2D layer that implements QuantizedConv2D layer with approxi-
mate multiplier. The proposed layer enables to specify via parameter which approximate
multiplier should be used. The approximate multipliers are implemeted in C. The layers
optionally allow to use weight tuning algorithm that tries to modify weights of the layer
to minimize mean arithmetic error of the multipliers. In contrast with standard imple-
mentation, the proposed layer introduces additional two parameters: AxMult(str) and

AxTune(bool). It should be noted that this library can be used for inference path only.

DNN
construction
Resnet
Constructor
Tensorflow NN y  EEy
L Learning Protobuf * transform_graph
Validation Set
NN with
- AxConv2D Layers <
’ (AXNN protobuf)
AxConv2D
extension
C models
Tensorflow

2

Inference

Figure 3.1: Tensorflow Approximate Layers Library
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3.2.2 How does this library work?

ResNet networks [22] are chosen and trained to recognize images from CIFAR-10
dataset. The resulting neural networks are frozen, quantized and the convolutional layers

are replaced by approximate multipliers by means of transform graph tool.

3.2.2.1 Freezing Tensorflow models

Neural networks are computationally very expensive. For example Alexnet[46] has
more than 60 million parameters that are needed to calculate a prediction on one image.
Apart from it, there is also a similar number of gradients that are calculated and used
to perform backward propagation during training. Tensorflow models contain all of these
variables. However someone don’t need the gradients when he deploys his model on a
webserver so why carry all this load. Freezing is the process to identify and save all of
required things(graph, weights etc) in a single file that you can easily use.

A typical Tensorflow model contains 4 files:

1. Model-ckpt.meta: This contains the complete graph. It contains the graphDef
that describes the data-flow, annotations for variables, input pipelines and other

relevant information

2. Model-ckpt.data-0000-0f-00001: This contains all the values of variables(weights,

biases, placeholders,gradients, hyper-parameters etc).
3. Model-ckpt.index: Metadata.

4. Checkpoint: All checkpoint information

So, in summary, we want to get rid of unnecessary meta-data, gradients and unneces-
sary training variables and encapsulate it all in a single file . This single encapsulated file
(.pb extension) is called frozen graph def. 1t’s essentially a serialized graph def protocol
buffer written to disk.

3.2.2.2 Quantization on Neural Networks

Quantization focuses on reducing the size of the model as well as the inference time
of a CNN and at the same time have minimal accuracy losses. Despite the abundance
of quantization methods, a fairly efficient technique in the programming environment of
Tensorflow is the technique of 8-bit quantization. There are several reasons in order for

us to us this efficient technique:

1. Arithmetic with lower bit-depth is faster, assuming the hardware supports it. Even
though floating-point computation is no longer “slower” than integer on modern
CPUs, operations with 32-bit floating point will almost always be slower than, say,

8-bit integers.
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2. In moving from 32-bits to 8-bits, we get almost 4 x reduction in memory straightaway.
Lighter deployment models mean they hog less storage space, and are easier to share

over smaller bandwidths.

3. Lower bit-widths also mean we can squeeze more data into the same caches/registers.
This means we can reduce how often we access things from RAM, which usually

consumes a lot of time and power.

4. Floating point arithmetic is hard — which is why it may not always be supported on
microcontrollers on some ultra low-power embedded devices, such as drones, watches,

or IoT devices. Integer support, on the other hand, is readily available.

There has been an increasing amount of work in quantizing neural networks, and there
are, broadly speaking, two reasons for this. First, DNNs are known to be quite robust
to noise and other small perturbations once trained. This means even if we subtly round
off numbers, we can still expect a reasonably accurate answer. Moreover, the weights and
activations by a particular layer often tend to lie in a small range, which can be estimated
beforehand. This means we don’t need the ability to store 10 and 1079 in the same data
type — allowing us to concentrate our precious fewer bits within a smaller range, say —3
to +3. As you might imagine, it’ll be crucial to accurately know this smaller range — a
recurring theme you’ll see below. So, if done right, quantization only causes a small loss

of precision, which usually doesn’t change the output significantly.
e 8-Bit Quantization uint

First, a quick primer on floating/fixed-point representation. Floating point uses a
mantissa and an exponent to represent real values and both can vary. The exponent
allows for representing a wide range of numbers, and the mantissa gives the precision.
The decimal point can float meaning it can appear anywhere relative to the digits.

If we replace the exponent by a fixed scaling factor, we can use integers to represent
the value of a number relative to (i.e. an integer multiple of) this constant. The decimal
point’s position is now fized by the scaling factor. Going back to the number line example,
the value of the scaling factor determines the smallest distance between 2 ticks on the line,
and the number of such ticks is decided by how many bits we use to represent the integer
(for 8-bit fixed point, 256 or 28). We can use these to tradeoff between range and precision.
Any value that is not an exact multiple of the constant will get rounded to the nearest
point.

Unlike floating-point, there is no universal standard for fixed-point numbers, and is
instead domain-specific. Our quantization scheme (mapping between real and quantized

numbers) requires the following:

1. It should be linear or affine. If it isn’t, then the result of fixed-point calculations

won’t directly map back to real numbers.
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2. It allows us to always represent 0.f accurately. If we quantize and dequantize
any real value, only 256 or generally, 28 of them will return the exact the same
number, while all others will suffer some precision loss. If we ensure that 0.f is one of
these 256 values , it turns out that CNNs can be quantized more accurately. The au-
thors claim that this improves accuracy because 0 has a special significance in CNNs
(such as padding). Besides, having 0.f map to another value that’s higher/lower

than zero will introduce a bias in the quantization scheme.

So our quantization scheme will simply be a shifting and scaling of the real number line
to a quantized number line. For a given set of real values, we want the minimum /maximum
real values in this range [rmin,rmax] to map to the minimum/maximum integer values

[0,28-1] respectively, with everything in between linearly distributed.

sign  exponent mantissa
I \f . |
variable 1 [1]o[1]oJof1[4Jof4To a4 4]0 4]
Floating point —
varave 2 [oJo]1]oJooJoJo 4 e o To aT1T1]
[ shared exponent nnnmn
Fixedpoint = variable1 [1[1]1[1]of1 o1 ]1]o]1]
variable 2 [0 JoJoJofo o1 o1 1 o]

Figure 3.2: Floating point versus Fixed point

This gives us a pretty simple linear equation:

Tmax — Tmin

r:Tx(q—z):SX(q—z) (3.1)

Here,
1. r is the real value (usually float32)

2. q is its quantized representation as a B-bit integer (uint8, uint32, etc)

3. S (float32) and z (uint) are the factors by which we scale and shift the number line.

Here z is the quantized ‘zero-point’ which will always map back exactly to 0.f.

Therefore, thanks to transform graph tool the Resnet is implemented with quantized

weights and constants of type 8-bit uint, ie positive integers with values from 0-255

3.2.2.3 Replacement of Convolutional Layer by Approximate Layers

After the neural network is frozen as it was mentioned earlier, it must be quantized
and the convolutional layer replaced by approximate implementation. In order to quantize
the frozen neural network and replace the convolutional layers by approximate ones, the

transform graph tool is used. The Graph Transform framework offers a suite of tools
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for modifying computational graphs, and a framework to make it easy to write your own
modifications. The Graph Transform tool is designed to work on models that are saved
as GraphDef files, usually in a binary protobuf format. This is the low-level definition of
a TensorFlow computational graph, including a list of nodes and the input and output
connections between them. The binary protobuf format usually has a ”.pb” suffix.

The Graph Transform tool can be called like this:

$bazel build tensorflow/tools/graph_transforms:transform_graph
bazel—bin/tensorflow /tools/graph_transforms/transform_graph \
——in_graph=tensorflow_inception_graph.pb \
—out_graph=optimized_inception_graph .pb \
—inputs="Mul:0" \
—outputs="softmax:0’ \
—transforms=’
strip_unused_nodes (type=float , shape="1,299,299,3”)
remove_nodes (op=Identity , op=CheckNumerics)
fold_old_batch_norms
'$

The arguments here are specifying where to read the graph from, where to write the
transformed version to, what the input and output layers are, and what transforms to
modify the graph with. The transforms are given as a list of names, and can each have
arguments themselves. These transforms define the pipeline of modifications that are
applied in order to produce the output. Sometimes you need some transforms to happen
before others, and the ordering within the list lets you specify which happen first.

In our case, after the Resnet-8 is trained to recognized images from CIFAR-10 dataset
it is frozen , so that the binary protobuff file can be produced. After that the neural
network is quantized and and convolutional layers are replaced by approximate multipliers

by means of transform graph tool using the following commands:

tensorflow /bazel—bin/tensorflow /tools/graph_transforms/
transform_graph \
—in_graph=resnet_8 .pb \
—out_graph=resnet8_quant_ax.pb \
—outputs="resnet /tower_0/fully_connected/dense/
BiasAdd:0" \

—inputs="input ' \
—transforms=’
add_default_attributes
strip_unused_nodes (type=float , shape="1,299,299,3”)
remove_nodes (op=Identity , op=CheckNumerics)
fold _constants(ignore_errors=true)

fold_batch_norms
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quantize_weights

quantize_nodes

strip_unused_nodes

sort_by_execution_order

rename_op (old_op_name=QuantizedConv2D ,new_op_name=
AxConv2D)’

We have to specify the input and output node in order to use this tool. This can be
thanks to Tensorboard. TensorBoard is a tool for providing the measurements and vi-
sualizations needed during the machine learning workflow. It enables tracking experiment
metrics like loss and accuracy, visualizing the model graph, projecting embeddings to a
lower dimensional space, and much more. Here we use Tensorboard in order to visualize
the model graph and find the input and output node. Figure 3.3 illustrated the graph of

Resnet-8 which is visualized with Tensorboard.
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denga

global_avg_p...

Figure 3.3: Graph of the Resnet-8 provided by Tensorboard

Figure 3.4a illustrates the input node on the left and the output node on the right.

93



import/input % import/resnet/tower_0/fully_connected ~

Operation: Placeholder tc /dense/BiasAdd
BatchNorm... tower_0 Operation: BiasAdd
Attributes (2)
dtype {‘type""DT_FLOAT'} fully_connected Attributes (2)
shape {"shape"{"dim"[{"size":- - T {"type""DT_FLOAT"}
1){size"32) {'size":32), data_format  {s"“NHWC’)
dense e {'size"3))} pr—
Inputs (0) » net/to /fully_connected
ouputs() | EEk /dense
impor net/tower_0/truediv denee. S lense/bias/read
£ i Outputs (0)
& Math
input aense Remove from main graph
(a) Input node (b) Output Node

Figure 3.4: Visualization of input and output node

Two other important commands which are given in the tranform graph tool are quan-

tizeweights and quantizenodes.

e The command quantizeweights converts any large float Const op into an eight-bit
equivalent, followed by a float conversion op so that the result is usable by subsequent
nodes. This is mostly useful for shrinking file sizes, but also helps with the more

advanced quantizenodes transform.

e The command quantizenodes replaces any calculation nodes with their eight-bit
equivalents (if available), and adds in conversion layers to allow remaining float
operations to interoperate. This is one of the most complex transforms, and involves
multiple passes and a lot of rewriting. It’s also still an active area of research, so
results may vary depending on the platform and operations we are using in our
model 3.5 Quantizeweights should be run first in order to ensure your Const ops are

in eight-bit form. This commands needs the following arguments:

1. the inputmin which is the lowest float value for any quantized placeholder

inputs

2. the inputmaz which is the highest float value for any quantized placeholder
inputs. If both inputmin and inputmax are set, then any float placeholders in
the graph will be replaced with quantized versions, and consts will be created

to pass the range to subsequent operations.

3. The fallbackmin which is the lowest float value to use for requantizing activation

layers.

4. The fallbackmax which is the highest float value to use for requantizing activa-
tion layers. If both fallbackmin and fallbackmax are set, then instead of using
RequantizationRange ops to figure out the useful range dynamically when con-
verting the 32-bit output of ops like QuantizedConv2D and QuantizedBiasAdd,
hardwired consts with these values will be used instead. This can help perfor-

mance, if you know the range of your activation layers ahead of time.
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Figure 3.5: Quantization operation in the graph as described above
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Figure 3.6: Conv2D vs QuantizedConv2D

Finally the most important command is the rename op(old opname=Quantized Conv2D,new
op name=AxConv2D). After the quantization, the old Conv2D operation becomes Quan-
tizedConv2D. Now we want to be able to support approximate multipliers in the now
quantized convolutional layer. In order to do that we use the rename op command which
takes as input the current name of the operation (QuantizedConv2D) and transforms it
to the name we want to change it to (AxConv2D). In other words, this command finds all
ops with the given name, and changes them to the new one.

AxConv2D is an operation that is not registered in the Tensorflow Kernel. The
authors in [1] implement this operation in C++ and after its implementation ,the operation
is registered in the Tensorflow Kernel. This new operation implements quantized eight-bit
versions of the convolution operations. However, the important difference between this
AxConv2D and QuantizedConv2D is that AxConv2D supports the use of approximate
multipliers in the convolutions operations. The memory layout of the data in this new

operation is from biggest stride to smallest:
e input data = [input batches, input height, input width, input depth]
o filter data = [filter height, filter width, input depth, filter count]
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e output data = [input batches, output height, output width, filter count]

Basically AxConv2D expects expects two 4D input tensors and produces another 4D
tensor.The first input tensor represents a batch of 3D input images given in NHWC format
(Batch x Height x Width x Channels ), where the number of channels corresponds with
the fastest changing index. The second tensor is a set of 3D filters (or kernels of the
convolution) stored in the Height x Width x Channels x FilterCount format, where
Filter Count specifies the number of filters applied to the same input. The output of the
convolution shares the same layout as the input data. However, the height and width
are determined according to the shape of the kernel and the depth of each output image
depends on the number of applied filters. This leads to a system of nested loops (over each
input image in the batch, each output pixel, each output channel etc.) The approximate
version of the 2D convolution is extended by four scalar inputs that provide the minimum

and maximum values computed independently for each input vector

Figure 3.7: Introducing the approximate convolutional layer (AxConv2D) into the existing graph

consisting of a single convolutional layer Conv2D [3]

Furthermore the new AxConv2D operation supports the use of approxiamate mul-
tipliers in the convolution operation. This means that the user can give as an input an
arbitrary approximate multiplier of his choice and the convolution operations inside the

neural network will be performed by this multiplier instead of the accurate.

3.2.3 Summary of the process

ResNet networks are chosen and trained to recognize images from CIFAR-10 dataset.
The resulting NNs were frozen, quantized and convolutional layers were replaced by ap-

proximate multipliers by means of transform graph tool.

e CIFAR-10

The CIFAR-10 dataset consists of 60000 32 x 32 colour images in 10 classes, with 6000
images per class. There are 50000 training images and 10000 test images. The dataset
is divided into five training batches and one test batch, each with 10000 images. The
test batch contains exactly 1000 randomly-selected images from each class. The training
batches contain the remaining images in random order, but some training batches may

contain more images from one class than another. Between them, the training batches
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contain exactly 5000 images from each class. In the following figure 3.8 classes in the

dataset, as well as 10 random images from each class are presented.
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Figure 3.8: CIFAR 10 CNN dataset presentation

3.2.4 Usage and Example

The library is implemented symbolic library that is dynamically included. This means
that firstly it must be build. This can be done in a Linux terminal with the following

commands:

cd axqconv

make

Then it can be included to the run in a python script with the following commands:

import tensorflow as tf

tf.load—op—library ( ’../axqconv/axqconv.so ")

In order to better understand this library a simple example that approximates the
ResNet-8 neural network trained for CIFAR-10 dataset, will be given. Firstly, the dataset
must be downloaded and preprocessed. After the model has been trained, it is then frozen

and the protobuf file resnet-8.pb is produced which contains the graph definition as well as the weights of t

Then, the frozen network must be quantized and the layer replaced by approximate im-
plementation, which is something that is done with the help of tranform graph tool and
thus the protobuf file resnet-8-quant-ax.pb is generated. In order to perform the inference
of approximate Resnet-8 there is a script written in python named cifarl0-ax-inference.py.
This inference script approximates the input Neural Network with the same multiplier
(uniform structure) and gives as an output the inference accuracy of the approximated

neural network. The input arguments of this script are:

e graph: The frozen graph which in our case is resnet-8-quant-ax.pb
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data-dir: The directory where the CIFAR-10 input data is stored

mult: Name of multiplier. Can be any multiplier the user wishes to use.

batch-size:Number of images in the batch. By default it is 1000

iterations:Number of iterations of batches, batchsize - iterations <= datasize ,
batchsize >> iterations. By default it is 10

From a more technical point of view, the inference script searches the input graph
for nodes that have execute the operation AxConv2D. These are as mentioned earlier
convolutional 2D operations that have been quantized and replaced with approximate
implementation with the use of approximate multipliers. Whenever it finds a node with
this new operation, the operation of convolution with the use of the approximate multi-
plier that the user has specified is performed. This new operation has been registered as
mentioned earlier in the Tensorflow Kernel and has been written in C++.

In order to better understand how this library [1] works , we are going to demonstrate
an example. In the following example , we are going to give as input graph the resnet-8-
quant-ax.pb, (i.e the Resnet-8 that has been trained with CIFAR-10 dataset and frozen)
and as an input multiplier the accurate multiplier mul8u-1JFF. This multiplier is from
EvoApproxLib [2], a library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods. The python inference script is run on Linux

using the following command the output screen is the this:

python3 cifarl0_ax_inference.py cifar —10—graphs/
resnet_8_quant_ax.pb —data—dir cifar —10—data/ —tune true —
mult mul8u_1JFF

The inference script carries out 10 runs(iterations) each with a batch size of 1000. After
the 10 runs the whole validation set consisting of 10000 images has been tested. Each run
produces an number which represents the inference accuracy and after the termination
of the inference script the average inference accuracy is produced which in our example
is0.833
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Chapter 4
Approximation Techniques

This chapter’s goal is to present and describe the different approximation techniques
we propose in this thesis. The approximation techniques we propose are extensions of the
library already described in the previous chapter. What we want to achieve is to give
the opportunity to any user to test his/her arbitrary multipliers on the proposed different
approximation techniques. Thus with these proposed approximation techniques we offer

a new extended library of Tensorflow.

4.1 Our Goals

Contrary to the library proposed in [1] , in our proposed extended library of approxi-

mation techniques, we offer two new main innovations:

1. Support of multiple approximate multipliers at the same time instead of only 1 as

proposed in [1]

2. Approximations at different levels , which will be analyzed on the following sections

First of all, as mentioned above the library [1] , could support the use of only one
multiplier for the convolution operations all over the Neural Network. We extended this
library by providing the ability to any user to give as input up to 3 different arbitrary
multipliers of his/her choice. This was done by modifying the operation AxConv2D which
was mentioned in the previous chapter. From a more technical point of view, we modified
the C++ file namely axconv.cc which defines the operation of AxConv2D as well as the
inference python script. We enabled on both of these files to support the use of multiple
multipliers instead of only one , by adding two more parameters in each of them.

Finally, regarding the proposed approximations at different levels, these were done

with two different ways:
e Replacement of multiplications with diverse approximate components

e Computation skipping
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These two methods were used in order to create the proposed approximation tech-
niques on various levels which will be described below. These techniques will be described
beginning from an upper level and gradually reducing the level of approximation.

It should be noted that all the approximation techniques are conducted on a Resnet-8,
so from now on we will be reffering only to Resnet-8. Resnet-8 consists of 7 convolutional

layers.
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; renshron . Tensorflow
Validation Set Learnin, S
NN with
AxConv2D Layers
(AXNN protobuf)
AxConv2D H
extension E
: Tensorflow
+ Inference

Proposed Approximation
Techniques

OUR EXTENSIONS

Figure 4.1: Our proposed extensions

4.2 First approximation technique

4.2.1 Mixed approximate-accurate layers (non-uniform structure per
layer)

This technique was implemented by replacing the multiplications in various layers
with diverse approximate components. More specifically, we approach a non-uniform
structure per layer in the Neural Network. This means that not all layers have the
same level of approximation. Some layers perform their convolution operations using an
accurate multiplier whereas others perform their convolution operations using approximate

multipliers. The Resnet-8 on which this approximation technique was performed has 7

100



convolutional layers. In order to fully understand, a more technical approach of this

approximation will be given. Furthermore an example will help to fully understand this
technique.
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Figure 4.2: First Approximation Technique

4.2.2 Technical point of view

As mentioned, in Chapter 3 the C++ file axconv.cc implements the AxConv2D opera-
tion, meaning it executes the approximate multiplications in the convolutional multiplier
given the approximate multipliers from the user. Resnet-8 consists of 7 convolutional lay-
ers. When the inference python script is executed , the axconv.cc file runs 7 times , for
each convolutional layer separately. Knowing this, we created a variable named conv-layer-
counter which increases each time the axconv.cc is called from the inference script. The
value of the conv-layer-counter shows us in which convolutional layer we currently are. For
example counter = (0 means that the convolutional operations in the first convolutional
layer are being executed, while counter = 4 means that the convolutional operations in
the fourth convolutional layer are being executed. We exploited the fact that we knew
each time on which convolutional layer we currently are while executing the inference and

with this way we could decide the level approximation we wanted for our Neural Network.
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4.2.3 Example of this approximation technique

Table 4.1: Example with the 4 first layers approximated while the last 3 are have accurate

implemantion
Layers Layer0 | Layerl | Layer2 | Layer3 | Layerd | Layer5 | Layer6 | Inference Accuracy
Multiplier p=1 p=1 p=1 p=1 p=0 p=0 p=0 0.826

In table 4.1 an example of this approximation technique is given. The four first layers
of Resnet-8 are approximated and the approximate multiplier is a multiplier [11] with
perforation=1 and rounding=0 (p=1 and r=0). The inference accuracy using this approx-
imation technique is 0.826.

The user can choose thanks to this approximation technique:

1. The level of the approximation he/she wants to implement (i.e which convolutional

layers he wants to approximate)

2. Up to three different multipliers of his/her choice to approximate the selected con-

volutional layers

4.3 Second approximation technique

4.3.1 Mixed approximate-accurate filters per layer

This technique was implemented by replacing the multiplications with diverse approx-
imate components.More specifically, each of the seven convolutional layers in the Resnet-8

has a different number of filters as shown is 4.2

Table 4.2: Number of filters per convolutional layer

Layers LayerO | Layerl | Layer2 | Layer3 | Layer4d | Layerd | Layer6

Number of filters 16 16 16 32 32 64 64

In this proposed approximation technique, we came up with the idea to split the
number of filters in each layer into k equivalent parts, so that the sum of the k parts
are equal to the number of filters 5.1 and the difference between the maximum and the
minimum number from the sequence is minimized. If Number of filters mod k = 0
then the minimum difference will always be 0 and the sequence will contain all equal
numbers i.e. Number of filters + k. Else, the difference will be 1 and the sequence will
be Number of filters +k, Number of filters +k, ...,(Number of filters k) + 1,
(Number of filters + k) +1.

number of filters; +number of filterso+...number of filters, = Number of filters
(4.1)
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Each of this parts contains a specific number of filters. We assign in each of these
parts a different multiplier [11] with a different perforation setting. In order for this to be
better understood, we will demonstrate an example.

It should be noted that each filter kernel produces one output channel.

Convolutional Layer
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Figure 4.3: Second Approximation Technique

4.3.2 Example of this approximation technique

Layer0 has 16 filters. Let’s say we want to split these 16 filters in £ = 3 equivalent
parts. The first two parts will contain 5 filters each, while the third part will contain
6 filters , so that 5+ 54 6 = 16 filters. We assign in each of these parts a different or the
same multiplier. These multiplier are from [11] changing only the perforation parameter.
So the first part containing 5 filters will execute the convolution operations with these
filters using radix4 multiplier with perforation p = 1 and the other 2 remaining parts
will execute the convolution operations with these filters using radix4 multiplier with
perforation p = 2. The same split is applied to the filters of the other layers and the
assign of the multipliers in each part is the same. Let’s take Layer3. Layer3 has 32 filters.
We split these 32 filters as mentioned earlier in k = 3 equivalent parts. The first part
will contain 10 filters, while the two last parts will contain 11 filters each. So the first
part containing 11 filters will execute the convolution operations with these filters using

radix4 multiplier with perforation p = 1 and the other 2 remaining parts will execute the
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convolution operations with these filters using radix4 multiplier with perforation p = 2.

This approximation technique is applied the same way in each layer.

In table 4.3 an example of this approximation technique is given:

Table 4.3: Mix of approximate filters in each layer with k=3

k=3 | Multiplierl | Multiplier2 | Multiplier3 | Inference Accuracy
p=1 p=2 p=2 0.798

4.3.3 Technical point of view

As mentioned in Chapter 3, the C++ file axconv.cc implements the AxConv2D opera-
tion, meaning it executes the approximate multiplications in the convolutional multiplier
given the approximate multipliers from the user while the inference python script executes
the inference and searches for all the nodes that execute the newly registered operation
AxConv2D. In order the achieve the proposed approximation technique we added a new
input argument in the inference python script namely filter-parameter. This new argument
defines the number of parts in which we want to split the number of filters in each layer.
Furthermore, this new argument in added in the C++ file axconv.cc as an attribute of the

AxConv2D operation. This new attribute is named k.

4.4 Third approximation technique

In order to to understand better how this approximation technique is performed a brief

introduction on how a convolution on 3D data is performed.

4.4.1 Convolution with 3D Data

The filter itself will be 3D. The depth of the filter will be chosen to match the number

of color channels and our color image.
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3D Filter

0 0 1
0 1 0
1 0 0
- | N |/~ Depth
Kernel = Filter (Number of color channels)

Figure 4.4: 3D Filter.

This is because we’re going to convolve each color channel with its own two-dimensional

filter. Therefore, if we're working with RGB images, our 3D filter will have a depth of
three. 4.5

3D Filter
0191 ° [Fitter3
1 [} 1
0 0 1
—_—f 110 |/
1 0 0
0 1 0 y V Filter 2
0 /] 1
1 0 0
o 1 0

[}
V Filter 1

Figure 4.5: Analazying the 3D Filter.

Instead of a 6 x 6 image, an RGB image could be 6 x 6 x 3 where the 3 here corresponds
to the 3 color channels. We can think of this as a stack of three 6 x 6 images. In order
to detect edges or some other feature in this image, we convolve it not with a 3 x 3 filter,
but now with a 3 — dimensional filter. That’s gonna be a 3 x 3 x 3 , so the filter itself will

also have three layers corresponding to red, green and blue channels.
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6x6x3]
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Figure 4.6: The RGB image with the corresponding filter. The 3rd dimension must be the same.

This first 6 here is the height of the image, the second 6 is the width, and the 3 is
the number of channels. Similarly, the filter also have a height, width and the number of
channels. Number of channels in the image must match the number of channels in our
filter, so these two numbers have to be equal. The output of this will be a 4 x 4 image,
and what should be noticed is that this is 4 x 4 x 1 , there’s no longer 3 at the end.

. -

3><3 4x4

6 X6 1
PR
7 // //

height ’wid'th channels
Figure 4.7: Result of a convolution applied on a RGB image

In order to understand this better, we are going to use a a more nicely drawn image.

Ix3Ix3

ﬁxﬁxli

Figure 4.8: RGB image, corresponding filter for convolution and the result of a convolution

Here we can see the 6 x 6 x 3 image and the 3 x 3 x 3 filter. The last number is
the number of channels and it matches between the image and the filter. To simplify the
drawing the 3 x 3 x 3 filter, we can draw it as a stack of three matrices.

To compute the output of this convolution operation, we take the 3 x 3 x 3 filter and
first place it in that most upper left position. Notice that 3 x 3 x 3 filter has 27 numbers.
We take each of these 27 numbers and multiply them with the corresponding numbers from

the red, green and blue channel. So, take the first nine numbers from red channel, then
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the three beneath it for the green channel, then three beneath it from the blue channel
and multiply them with the corresponding 27 numbers covered by this 3 x 3 x 3 filter.
Then, we add up all those numbers and this gives us the first number in the output. To
compute the next output we take this cube and slide it over by one. Again we do the

twenty-seven multiplications sum up 27 numbers and that gives us the next output.

=

3x3x3]

27 numbers

6%63]

Figure 4.9: When we apply 3 x 3 x 3 filter on the RGB image it is as we implement the volume

So now we have to answer another important question: Why our filter has tree channels
and what are the coefficients in that filter? For example, we choose the first filter as
1,0,—1,1,0,—1,1,0,—1. This can be for a red color, for the green channel the values will
be all zeros and for the blue filter as well. We stack these three matrices together to form
our 3 x 3 x 3 filter. Then, this would be a filter that detects vertical edges, but only in

the red channel.

* =

3x3x3] 4x4

27 numbers
R G B

1(0]-1 0o(0|0 o(0|0

1/0)-1 ojo|oO ojlofjo > 3x3Ix3
1|0 1 ojo|o0O ojo|o
R G 8

110 1 1101 1|0 1

1|01 1101 1(0}-1 > Ix3x3
110 1 1|01 1|0 1

Figure 4.10: Red color edge detector and vertical edge detector for all 3 channels

Alternatively, if it is not important what color the vertical edges are, then we might

have a filter with 1s and —1s in all three channels. In this way we got a3 x 3 x 3 edge
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detector that detects edges in any color. Different choices of the parameters will result
in different feature detectors. By convention, in computer vision when you have an input
with a certain height and width, and a number of channels, then your filter can have a
different height and width, but number of channels will be the same. Again, the important
thing here is that convolving a 6 x 6 x 3volume with a 3 x 3 x 3 gives a 4 x4 , a 2D output.

Another question that must be answered is what if we want to use multiple filters at
the same time? We can add a new second filter denoted by orange color, which could be
a horizontal edge detector. Convolving an image with the filters gives us different 4 x 4
outputs. These two 4 x 4 outputs, can be stacked together obtaining a 4 x 4 x 2 output
volume. The volume can be drawn this as a box of a 4 x 4 x 2 volume, where 2 denotes
the fact that we used two different filters. 4.11

Vertical edge

4x4x2

Ix3Ix3 434 "
Horizontal edge
IIIIIIII |

Ix3Ix3

Figure 4.11: When we convolve with two different filters simultaneously

This means that each filter kernel produces one output channel. Another example is
illustrated in 4.12

A 201461 8 130 /
5624 12| 5 |30]42 - @ 1/ 7z
28] 18] 3 [aa[4s[ a0 P—
5 —F ¥
1M|15|10| 2 |42|28 o
10( 3 [17]25(33 |20 3 ®
12|15| 2 17|18 5 o /
30115| 5 |35/20|16 e
TeTxD ® AL AL

Figure 4.12: When we convolve with two different filters simultaneously

Here we are trying to detect the certain features with 4 filters on a 7 x 7 x 3 volume
and thus the convolution computation occurs for each filter. As mentioned earlier, the

number of filters determines the depth of the outcome.
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4.4.2 A) Approximations per filter via replacement of multiplications

with diverse approximate components

This technique was implemented by replacing the multiplications with diverse approx-
imate components. Each input image from the CIFAR-10 dataset has three dimensions:
height, width, depth. The same thing applies also for filters. Filters also have three dimen-
sions: filter height, filter width, depth. The depth of the filters for each layer is the same
as the number of input channels for each layer. Contrary to the previous approximation
technique, here we are currently inside the filter and we want to implement approximate

multiplications on the convolution operations inside the filter.

The approximate multiplications occur either on filter height, or filter width or
input depth (which is equal to the number of input channels in each layer). Below a
3 x 3 x 3 filter is depicted as 3 matrices of dimensions 3 x 3 according to everything that

was mentioned above.

Table 4.4: 3 x 3 filter: channel=1

a1 ag as

aq | G5 | Q6

ar | ag | ag

Table 4.5: 3 x 3 filter: channel=2

G1p | a1l | @12

a1z | ai4 | ais

a1 | ai7 | @18

Table 4.6: 3 x 3 filter: channel=3

a19 | a0 | G21

G22 | A23 | 424

a2s5 26 a7
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Figure 4.13: Third Approximation Technique: A’ (per channel)

For example, let’s take the first convolutional layer. The dimensions of the filters in
this layer are 3 x 3 x 3. Let’s say that the multiplications with weights of channel = 1
will be executed with the accurate radix4 mutliplier with perforation p = 0, while the
multiplications with weights of channel = 2 and channel = 3) will be executed with the
approximate radix4 mutliplier with perforation p = 2. According to the 3 tables illustrated

above the multiplications:

1. a1-41 ,az 12, ... , ag - ig will be executed with the approximate radix4 multiplier

with perforation p =0

2. aip-110, @11 911, - - - , a18 918 Will be executed with the approximate radix4 multiplier

with perforation p = 2

3. ai9-119, a0 121, - . ., a7 197 Will be executed with the approximate radix4 multiplier

with perforation p = 2

,where 1,49, ...,127 are the input sources value from the current position of the input

image.
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Figure 4.14: Third Approximation Technique: A’ (per column)

For example, let’s take again the first convolutional layer. The dimensions of the filters
in this layer are 3 x 3 x 3. Let’s say that the multiplications with weights of column = 1)
will be executed with the approximate radix4 mutliplier with perforation p = 0, while the
multiplications with weights of column = 2) and column = 3) will be executed with the
approximate radix4 mutliplier with perforation p = 2. According to the 3 tables illustrated

above the multiplications:

1. a1 41, a4 44, a7 -i7 , aio - 410, Q13 - 413, Q16 * 116, A19 - 119, A22 - 122, A25 - G25Will be
executed with the approximate radix4 multiplier with perforation p =0

2. a-i2, a5 15, ag i , a11 - 411, 14 - 114, Q17 * 417, A20 - G20, A23 - 123, G26 - 126 Will be
executed with the approximate radix4 multiplier with perforation p = 2

3. az i3, ag i , ag -9 , @12 - 112, 415 * 115, G18 - 118, A21 * 921, 424 * 124, Q27 - G27 Will be
executed with the approximate radix4 multiplier with perforation p = 2

,where 1,19, ...,797 are the input sources value from the current position of the input

image.
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Figure 4.15: Third Approximation Technique: A’ (per row)

For example, let’s take again the first convolutional layer. The dimensions of the filters
in this layer are 3 x 3 x 3. Let’s say that the multiplications with weights of row = 1
will be executed with the approximate radix4 multiplier with perforation p = 0, while
the multiplications with weights of row = 2) and row = 3) will be executed with the
approximate radix4 multiplier with perforation p = 2. According to the 3 tables illustrated

above the multiplications:

1. ay-41,az-12, a3 i3, aio - 410, @11 * 911, A12 * 12, 419 - 119, A20 - 120, A21 - 121 Will be
executed with the approximate radix4 multiplier with perforation p =0

2. a4 -i4 , a5 15 , ag - i , A13 - 113, Q14 * 114, A15 * 115, A22 * 122, A23 * 123, A24 - 24 Will be
executed with the approximate radix4 multiplier with perforation p = 2

3. ar-i7 ,ag-18 , ag - lg , 16 * 116, 417 * U117, A18 * 118, A25 * 125, A26 * 126, A27 - 127 Will be
executed with the approximate radix4 multiplier with perforation p = 2

,where 1,49, ...,127 are the input sources value from the current position of the input

image.
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4.4.3 B) Approximations per filter via computation skipping

This technique was implemented by skipping (i.e not performing) the multiplications.
Each input image from the CIFAR-10 dataset has three dimensions: height, width, depth.
The same thing applies also for filters. Filters also have three dimensions: filter height, filter width, depth.
The depth of the filters for each layer is the same as the number of input channels for
each layer. In this approximation technique, instead of executing the multiplications with
approximate multipliers , we just don’t execute them at all What we actually do in this
approximation technique is that we eliminate some partial products of our choice. The

partial products have been referred above.

CHANNEL=1 CHANNEL=2

COLUMN=1 COLUMN=2 COLUMN=3 COLUMN=1 COLUMN=2 COLUMN=3

ROW=1 >< >< >< ROW=1 w10 wil w12
ROW=2 >< >< >< ROW=2 wi3 wi4 wis

ROW=3 >< >< >< ROW=3 w16 w17 wis

CHANNEL=3

COLUMN=1 COLUMN=2 COLUMN=3

ROW=1 w19 w20 w21l
ROW=2 w22 w23 w24
ROW=3 w25 w26 w27

Figure 4.16: Third Approximation Technique: B’(per channel)

For example, let’s take the input input depth dimension of the filter. We decide to
execute only the multiplications with weights of channel = 1). This means that we only
execute these multiplications: a1 -41 , ag-i2, ... , ag - ig , while the rest multiplications
ao, aii, - ..,a27 are being skipped (i.e not executed). The same approximation technique
can also be applied in the other 2 dimensions. For example, let’s take the filter width
dimension of the filter. We decide to execute only the multiplications with weights of
column = 2) . This means that we only execute these multiplications: as - i3 , as - i5 ,

ag -8 , 11 - 111, @14 - 114, Q17 * 117, @20 - 120, Q23 - 123, A2g - 126 , While the rest multiplications
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are being skipped (i.e not executed).

4.5 Fourth Approximation Technique

4.5.1 Approximations per kernel via computation skipping based on
weight distribution

Each layer has a specific number of filters 4.2 . Every 3 x 3 x 3 filter contains 27 values
called weights. Since the weights have been quantized and we use unsigned multiplier the
filter weights are in the range [0, 255]. Since every layer has its own number of filters, it is
obvious that the weights of these filters are different between the layers. In this proposed
approximation technique, we printed all the filter weights of each layer and came up with
the conclusion that these weights follow a normal distribution. Each layer has its own

arithmetic mean and standard deviation of the weights of its filter.
e Normal distribution

In probability theory, a normal distribution is a type of continuous probability dis-
tribution for a real-valued random variable. The general form of its probability density
function is:

1

fx) = o ke 2 o (4.2)

The parameter p is the arithmetic mean or expectation of the distribution (and also its

median and mode), while the parameter o is its standard deviation. The variance of the
distribution is 02. A random variable with a Gaussian distribution is said to be normally
distributed, and is called a normal deviate. A normal distribution is sometimes informally
called a bell curve. The Standard Deviation is a measure of how spread out numbers are.
When we calculate the standard deviation we find that generally:

About 68% of values drawn from a normal distribution are within one standard devi-
ation o away from the mean; about 95% of the values lie within two standard deviations;

and about 99.7% are within three standard deviations

0.4

34.1% 34.1%

00 01 02 0.3

Figure 4.17: Normal distribution
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4.5.2 Distribution of weights in each Layer

After we printed all the filter weights of each layer, we calculated the arithmetic mean
and standard deviation of the weights of all the filters in each layer. The arithmetic mean
w is described by 5.5 while the standard deviation o is described by 5.6

_sum of the terms Y| x; (4.3)
- number of terms ~ n ’

> iy (@i — p)? (4.4)

n

g =

, where n is the size of the population (number of terms) and z; is each value from the

population.

The table below 4.7 depicts the arithmetic mean and the standard deviation of the
weights of all the filters for each layer separately:

Table 4.7: Arithmetic mean and standard deviation of the filters of each layer.

Layer0 | Layerl | Layer2 | Layer3 | Layer4d | Layerb | Layer6
w| 126.7 133.7 147 154.4 133.1 134.3 115.8
o | 29.2 19.05 25 20.6 27.5 29 23.7

The following figures illustrate the normal distribution that the weights of the filters

per layer follow:

Layer O
0.016
0.014
0.012
001
0.008
0.006
0.004
0.002
0
o 50 100 150 200 250

Figure 4.18: Distribution of the weights of the filters in Layer 0
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Layer 1
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Figure 4.19: Distribution of the weights of the filters in Layer 1

Layer 2
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Figure 4.20: Distribution of the weights of the filters in Layer 2

Layer 3
0.025

002
0.015
0.0

0.005

] 50 100 150 200 250

Figure 4.21: Distribution of the weights of the filters in Layer 3
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Layer 4
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Figure 4.22: Distribution of the weights of the filters in Layer 4
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Figure 4.23: Distribution of the weights of the filters in Layer 5

Layer 6
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Figure 4.24: Distribution of the weights of the filters in Layer 6

4.5.3 How this technique works

In this approximation technique we propose to execute only the multiplications with
the filter weights that belong to either this range [ — o, u + o] or this [u — 20, u + 20].

This means that all the other multiplications with filter weights that do not belong in one
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of these ranges are skipped (i.e not performed).

FILTER
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Figure 4.25: Fourth Approximation Technique
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Chapter 5

Experimental Evaluation

This chapter’s goal is to present the experimental results from were obtained from the
multiple different approximations techniques we proposed. Using the library described in
chapter 3 we measured how the classification accuracy was affected as well as the energy

consumed for the inference of one input image.

5.1 Experimental Setup

All the experiments were conducted in Tensorflow 1.14. The open-source extension|[1]
of tensorflow described in chapter 3 was used in order to measure the inference accuracy of
our experiments for the different parameters. Furthermore the Energy of our approximate
multiplier was measured with the help of Synopsys DC using fabrication technology of

45nm [11] was used The input parameters are:
e The graph of Resnet-8, which is given as a protobuf file(.pb extension)
e Evaluation data set of 10000 images from CIFAR-10
e Four different multipliers from [?] with different settings in perforation
e filter parameter (k) only for the approximation technique described in 4.3.1
The evaluation metrics are:

e Inference accuracy of the model that occurs from each technique using various com-
binations of approximate multipliers as well as the error which is calculated as

Error =1 — Accuracy

e Energy for the inference of one input image , which is calculated as the multiplication
of the energy the multiplier used times the number of multiplications which occurred

during the inference with that multiplier.

Energy = Energy of multiplier x # of multiplications with this multiplier (5.1)
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e Throughput (Frames per second) for the inference

For each approximation technique the Pareto frontier will be given as well as a subset
of the optimal results that belong in the Pareto Frontier.

Pareto efficiency or Pareto optimality is a situation where no individual or preference
criterion can be better off without making at least one individual or preference criterion

worse off or without any loss thereof. The following three concepts are closely related:

1. Given an initial situation, a Pareto improvement is a new situation where some

agents will gain, and no agents will lose.

2. A situation is called Pareto dominated if there exists a possible Pareto improve-

ment.

3. A situation is called Pareto optimal or Pareto efficient if no change could lead
to improved satisfaction for some agent without some other agent losing or if there’s

no scope for further Pareto improvement.

The Pareto frontier is the set of all Pareto efficient allocations, conventionally shown
graphically. It also is variously known as the Pareto front or Pareto set.The notion
of Pareto efficiency has been used in engineering. The Pareto frontier is a set of non-
dominated solutions, being chosen as optimal, if no objective can be improved without
sacrificing at least one other objective. On the other hand a solution x* is referred to as
dominated by another solution x if, and only if, x is equally good or better than x* with

respect to all objectives.

£2(A) < £2(B) f2

Figure 5.1: Example of Pareto Frontier

In 5.1 the boxed points represent feasible choices, and smaller values are preferred to
larger ones. Point C is not on the Pareto frontier because it is strictly dominated by both
point A and point B. Points A and B are not strictly dominated by any other, and hence

lie on the frontier.
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5.2 Fundamental Measurements

In this section we will present the approximate multipliers that were deployed in our
experiments. More specifically, we will present the inference accuracy which was measured
when only one approximate multiplier was used for all the convolutional operations inside
the Renset-8 , as well as the Energy which is consumed for the inference of one input
image for each of these multipliers.

The approximate multipliers which are deployed in our experiments are from [?]. The
models of the approximate multipliers are written in C and are given as input parameter
in the python inference script. The only configuration parameter which can be modified
is the perforation paramater. Hence we have perforation=0, perforation=1, perfo-
ration=2 and perforation=3.

The partial product perforation method dismisses the generation of k successive partial
products starting from the least significant ones. This means that the multiplier with
configuration parameter of perforation=1 , will have its least significant partial product
eliminated, the multiplier with configuration parameter of perforation=2, will have its 2
least significant partial products eliminated e.t.c.

The table below presents the inference accuracy when only one of these 4 multi-

pliers is used for the inference of our model:

Table 5.1: Inference accuracy of the approximate multiplier p=0,p=1,p=2,p =3

Multiplier | Inference Accuracy
p=0 0.833
p=1 0.815
p=2 0.78
p=3 0.193

In order to calculate the Energy of each of the 4 multipliers, we used the results from
[?]. We had to to measure the Energy of each of these multipliers in 45nm fabrication
technology and in 8-bit width. [?] presents the energy of the accurate multiplier (p=0)
with 8 bits as well as 16 bits and on both 65nm and 45nm technology.

Table 5.2: Energy of accurate multiplier (uWns)

8 bit-width | 16 bit-width
65nm 1088.64 3735.91
45nm 384.43 1186.26

In order for us to obtain the energy of the other 3 multipliers we had to find two scaling

factors: technology-scaling and bit-scaling.
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Energyesnm,i6bit
Energyasnm,iebit

Energyssnm,i6bit
Energyasnm gvit

Paper [11] presents the energy of the approximate multiplier p = 1, p = 2, p = 3 in

technology scaling = ~ 3.15 (5.2)

bit scaling = ~ 3.09 (5.3)

65nm technology and their bit-width is 16. In order for us to obtain the energy of these

multiplier in 45nm technology and bit-width of 8 we performed the following operations.

Ener 9Y(65nm,16bit)
technology scaling

temporary = (5.4)

temporary

Energyasnm,sbit) = (5.5)

bit scaling
Using the above transformation we can obtain the energy of our multipliers in 45nm
technology and 8 bit-width.

Table 5.3: Energy of approximate multipliers (uWWns)

65nm, 16 bit-width | 45nm, 8 bit-width
p=0 3748.5 385.725
p=1 2880 296.355
p=2 2472.48 254.421
p=3 2341.68 240.961

Now that we have measured the energy of multipliers in the proper settings , we can
measure the energy for the inference of on input image using 5.1. The number of

multiplications for the inference of one input image is 12238848.

Table 5.4: Energy for the inference of one input image (n.J)

Energy
p=0 | 4720.7
p=1 | 3626.9
p=2 | 3113.8
p=3 | 2949.1

5.3 Evaluation of first approximation technique

As mentioned in chapter 4 , in this technique we approach a non-uniform structure
per layer in the Neural Network. This means that not all layers have the same level of
approximation. Some layers perform their convolution operations using an accurate mul-

tiplier whereas others perform their convolution operations using approximate multipliers.
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The Resnet-8 on which this approximation technique was performed has 7 convolutional

layers.

The number of multiplications in each convolutional layer for the inference of one input

image is:

Table 5.5: Number of multiplications in each convolutional layer

Layer 0

Layer 1

Layer 2 | Layer 3

Layer 4

Layer 5 | Layer 6

Number of multiplications

442368

2359296

2359296 | 1179648

2359296

1179648 | 2359296

The tables below depicts the inference accuracy, the error, the energy for the

inference of one input image as well as the throughput (fps) in three different

scenarios:

1. For all the possible combinations of the approximate multipliers p = 0 and p = 1

2. For all the possible combinations of the approximate multipliers p = 0 and p = 2

3. For all the possible combinations of the approximate multipliers p =0 and p = 3

Table 5.6: P=0 and P=1 deployed

Layer 0 | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6 | Inference Accuracy | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 p=0 p=0 p=0 p=0 p=0 0.833 4720.7 18.34 0.167
p=1 p=0 p=0 p=0 p=0 p=0 p=0 0.832 4681.2 18.55 0.168
p=0 p=1 p=0 p=0 p=0 p=0 p=0 0.826 4509.9 19.04 0.174
p=0 p=0 p=1 p=0 p=0 p=0 p=0 0.829 4509.9 19.08 0.171
p=0 p=0 p=0 p=1 p=0 p=0 p=0 0.831 4615.3 19.12 0.169
p=0 p=0 p=0 p=0 p=1 p=0 p=0 0.828 4509.9 19.04 0.172
p=0 p=0 p=0 p=0 p=0 p=1 p=0 0.829 4615.3 19.08 0.171
p=0 p=0 p=0 p=0 p=0 p=0 p=1 0.832 4509.9 19.12 0.168
p=1 p=1 p=0 p=0 p=0 p=0 p=0 0.831 4470.3 19.19 0.169
p=1 p=1 p=1 p=0 p=0 p=0 p=0 0.829 4259.5 19.45 0.171
p=1 p=1 p=1 p=1 p=0 p=0 p=0 0.826 4154.1 19.76 0.174
p=1 p=1 p=1 p=1 p=1 p=0 p=0 0.824 3943.2 20 0.176
p=1 p=1 p=1 p=1 p=1 p=1 p=0 0.821 3837.8 20.16 0.179
p=1 p=1 p=1 p=1 p=1 p=1 p=1 0.82 3626.9 20.32 0.18
p=0 p=0 p=0 p=0 p=0 p=1 p=1 0.831 4404.4 19.26 0.169
p=0 p=0 p=0 p=0 p=1 p=1 p=1 0.83 4193.6 19.49 0.17
p=0 p=0 p=0 p=1 p=1 p=1 p=1 0.827 4088.2 19.72 0.173
p=0 p=0 p=1 p=1 p=1 p=1 p=1 0.822 3877.3 20 0.178
p=0 p=1 p=1 p=1 p=1 p=1 p=1 0.821 3666.5 20.24 0.179

As we can see from 5.6 there are not significant differences in the Inference Accuracy

of these combinations when compared to the inference accuracy (0.833) which is achieved
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when the accurate multiplier (p = 0) is employed uniformly. The accuracy loss compared
to the accurate multiplier ranges from 0,1% — 1, 3%. Furthermore not any significant gains

are achieved in the throughput when using the approximate multiplier as described above.

The scatter plot below illustrates the relation between the Energy and Error for the

combinations above:

Energy vs Error (p=0 and p=1)
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Figure 5.2: First Approximation technique: Energy vs Error when p=0 and p=1 are deployed

The red line is the Pareto frontier and all the points that belong to this line consist
of the Pareto optimal solutions. Those solutions are highlighted in the table 5.6. We can
clearly see that most points that belong in the Pareto Frontier occur when the last layers
are approximated. This means that it is preferable to employ the approximate multiplier
p = 1 in the last layers (i.e starting from the Layer6 and going backwards to Layer0).As
can be seen from 5.2, employing uniformly the accurate multiplier p = 0 provides a point
that also belongs in the Pareto Frontier (Error=0.167,Energy=4720.768451 nJ). When
comparing the rest points that belong in the Pareto Frontier with the point that is provided
by the accurate multiplier we can clearly seen that the accuracy loss is very low, however
there is not any significant saving in the Energy required for the inference of one input
image.
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Table 5.7: P=0 and P=2 deployed

Layer 0 | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6 | Inference Accuracy | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 p=0 p=0 p=0 p=0 p=0 0.833 4720.7 18.34 0.167
p=2 p=0 p=0 p=0 p=0 p=0 p=0 0.821 4662.6 18.79 0.179
p=0 p=2 p=0 p=0 p=0 p=0 p=0 0.819 4410.9 19.23 0.181
p=0 p=0 p=2 p=0 p=0 p=0 p=0 0.824 4410.9 19.19 0.176
p=0 p=0 p=0 p=2 p=0 p=0 p=0 0.826 4565.8 19.15 0.174
p=0 p=0 p=0 p=0 p=2 p=0 p=0 0.825 4410.9 19.26 0.175
p=0 p=0 p=0 p=0 p=0 p=2 p=0 0.829 4565.8 19.19 0.171
p=0 p=0 p=0 p=0 p=0 p=0 p=2 0.831 4410.9 19.30 0.169
p=2 p=2 p=0 p=0 p=0 p=0 p=0 0.798 4352.9 19.34 0.202
p=2 p=2 p=2 p=0 p=0 p=0 p=0 0.792 4043.1 19.64 0.208
p=2 p=2 p=2 p=2 p=0 p=0 p=0 0.789 3888.2 20 0.211
p=2 p=2 p=2 p=2 p=2 p=0 p=0 0.787 3578.4 20.28 0.213
p=2 p=2 p=2 p=2 p=2 p=2 p=0 0.786 3423.5 20.45 0.214
p=2 p=2 p=2 p=2 p=2 p=2 p=2 0.78 3113.8 20.66 0.22
p=0 p=0 p=0 p=0 p=0 p=2 p=2 0.828 4256.1 19.41 0.172
p=0 p=0 p=0 p=0 p=2 p=2 p=2 0.818 3946.3 19.72 0.182
p=0 p=0 p=0 p=2 p=2 p=2 p=2 0.811 3791.4 19.96 0.189
p=0 p=0 p=2 p=2 p=2 p=2 p=2 0.789 ’ 3481.6 20.36 0.211
p=0 p=2 p=2 p=2 p=2 p=2 p=2 0.786 3171.8 20.53 0.214

As we can see from 5.7 there are not significant differences in the Inference Accuracy
of these combinations when compared to the inference accuracy (0.833) which is achieved
when the accurate multiplier (p = 0) is employed uniformly. The accuracy loss compared
to the accurate multiplier ranges from 0,2% — 5,3%, which means that there is bigger
accuracy loss compared to that caused by employing the p = 1 approximate multiplier.

The scatter plot below illustrates the relation between the Energy and Error for the

combinations above:
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Figure 5.3: First Approximation technique:Energy vs Error when p=0 and p=2 are deployed

125



The red line is the Pareto frontier and all the points that belong to this line consist
of the Pareto optimal solutions. Those solutions are highlighted in the table 5.7.

Again we can clearly see that almost all of points that belong in the Pareto Frontier
occur when the last layers are approximated. This means that it is preferable to employ
the approximate multiplier p = 2 in the last layers (i.e starting from the Layer6 and going
backwards to Layer0).

As can be seen from 5.3, employing uniformly the accurate multiplier p = 0 provides
a point that also belongs in the Pareto Frontier (Error=0.167,Energy=4720.7 nJ). When
comparing the rest points that belong in the Pareto Frontier with the point that is provided
by the accurate multiplier we can clearly seen that the accuracy loss is a bit higher now (
up to 5,3%).However, there are significant savings in the Energy required for the inference
of one input image. For example applying p=0,p=0,p=0,p=2,p=2,p=2,p =2
in each layer respectively we achieve an inference accuracy of 0,811 and a total energy
for the inference of one input image equal to 3791.4 n.J , which compared to the solution
provided by the employment of the accurate multiplier uniformly gives us only a 2,2%
in accuracy loss while providing a 929.3 nJ energy saving which is translated in a 19.7%
compared to that of the accurate, quite significant given that the loss in accuracy is only
2,2%.

Table 5.8: P=0 and P=3 deployed

Layer 0 | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6 | Inference Accuracy | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 p=0 p=0 p=0 p=0 p=0 0.833 4720.7 18.34 0.167
p=3 p=0 p=0 p=0 p=0 p=0 p=0 0.619 4656.7 18.93 0.381
p=0 p=3 p=0 p=0 p=0 p=0 p=0 0.599 4379.236762 19.34 0.401
p=0 p=0 p=3 p=0 p=0 p=0 p=0 0.741 4379.2 19.34 0.259
p=0 p=0 p=0 p=3 p=0 p=0 p=0 0.756 4550 19.30 0.244
p=0 p=0 p=0 p=0 p=3 p=0 p=0 0.756 4379.2 19.41 0.244
p=0 p=0 p=0 p=0 p=0 p=3 p=0 0.7759 4550 19.37 0.2241
p=0 p=0 p=0 p=0 p=0 p=0 p=3 0.76 4379.2 19.45 0.24
p=3 p=3 p=0 p=0 p=0 p=0 p=0 0.31 4315.1 19.49 0.69
p=3 p=3 p=3 p=0 p=0 p=0 p=0 0.255 3973.6 19.92 0.745
p=3 p=3 p=3 p=3 p=0 p=0 p=0 0.231 3802.9 20.24 0.769
p=3 p=3 p=3 p=3 p=3 p=0 p=0 0.204 3461.3 20.61 0.796
p=3 p=3 p=3 p=3 p=3 p=3 p=0 0.196 3290.6 20.79 0.804
p=3 p=3 p=3 p=3 p=3 p=3 p=3 0.193 2949.1 21.05 0.807
p=0 p=0 p=0 p=0 p=0 p=3 p=3 0.68 4208.4 19.56 0.32
p=0 p=0 p=0 p=0 p=3 p=3 p=3 0.585 3866.9 20 0.415
p=0 p=0 p=0 p=3 p=3 p=3 p=3 0.503 3696.1 20.32 0.497
p=0 p=0 p=3 p=3 p=3 p=3 p=3 0.435 3354.6 20.61 0.565
p=0 p=3 p=3 p=3 p=3 p=3 p=3 0.306 3013.1 20.83 0.694

As we can see from 5.8 many significant differences start to occur in the Inference

Accuracy of these combinations when compared to the inference accuracy (0.833) which
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is achieved when the accurate multiplier (p = 0) is employed uniformly. The accuracy
loss compared to the accurate multiplier ranges from 5, 7% — 64%, which means that there
is a huge accuracy loss compared to that caused by employing the p = 0 approximate
multiplier. This is totally expected since the approximate multiplier p = 3 has a very big
error.

What is truly remarkable is the fact that employing the approximate multiplier p = 3
in the latest layers has as a result a much better inference accuracy than employing it
in the first layers. For example when p = 3 is employed only in the last two layers,
the inference accuracy is 0,68% while when it is employed only in the first two layers,
the inference accuracy is 0,31%. There is a huge difference between this two accuracies.
Another example is when p = 3 is employed only in the first layer where the inference
accuracy is 0,619% and when it is employed only in the last layer , where the inference
accuracy is 0,76% . So we came up with the conclusion that when using this approximate
technique it is better to employ the approximate multiplier in the latest layers rather than
the first ones.

The scatter plot below illustrates the relation between the Energy and Error for the

combinations above:
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Figure 5.4: First Approximation technique: Energy vs Error when p=0 and p=3 are deployed

The red line is the Pareto frontier and all the points that belong to this line consist
of the Pareto optimal solutions. Those solutions are highlighted in the table 5.8.

Again we can clearly see that almost all of points that belong in the Pareto Frontier
occur when the last layers are approximated. This means that it is preferable to employ
the approximate multiplier p = 3 in the last layers (i.e starting from the Layer6 and going
backwards to Layer0).

As can be seen from 5.3, employing uniformly the accurate multiplier p = 0 provides a
point that also belongs in the Pareto Frontier (Error=0.167,Energy=4720768451 uW -ns).
When comparing the rest points that belong in the Pareto Frontier with the point that
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is provided by the accurate multiplier we can clearly seen that the accuracy loss is a bit
higher now ( up to 64%). However, there are significant savings in the Energy required
for the inference of one input image. For example applying p=0,p=0,p=0,p=3,p =
3,p = 3,p = 3 in each layer respectively we achieve an inference accuracy of 0.503 and a
total energy for the inference of one input image equal to 3696.1 nJ , which compared
to the solution provided by the employment of the accurate multiplier uniformly gives us
a huge a 33% in accuracy loss while providing a 1024.5 nJ which is translated in a 21.7%
compared to that of the accurate, quite significant. However the loss in the accuracy is
very high and cannot be tolerated.

It is fair to say that employing p = 3 in more than two layers is not a good solution
since the loss in the accuracy loss is really significant while the energy savings do not differ

a lot from those achieved when employing the approximate multiplier p = 2

5.4 Evaluation of second approximation technique

As mentioned in Chapter 4, this technique was implemented by replacing the multi-
plications with diverse approximate components. More specifically, we split the number
of filters in each layer into k£ equivalent parts, so that the sum of the k parts are equal to
the number of filters. Each of this parts contains a specific number of filters. We assign

in each of these parts a different multiplier [11] with a different perforation setting.
e k=3 parts

The scatter plot below illustrates the relation between the Energy and Error when we

split the number of filters in each layer in k = 3 parts and for six different scenarios:

1. For all the possible combinations of the approximate multipliers p =0 and p =1
2. For all the possible combinations of the approximate multipliers p = 0 and p = 2
3. For all the possible combinations of the approximate multipliers p =0 and p = 3
4. For all the possible combinations of the approximate multipliers p =1 and p = 2
5. For all the possible combinations of the approximate multipliers p =1 and p = 3

6. For all the possible combinations of the approximate multipliers p =2 and p = 3

The scatter plot below illustrates the relation between the Energy and Error for the

combinations above:
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Energy vs Error (k=3 parts)
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Figure 5.5: Second Approximation technique:Energy vs Error for k=3 parts in each layer

The red line is the Pareto frontier and all the points that belong to this line consist
of the Pareto optimal solutions. These solutions are presented in the table 5.9. The
black square contains a subset of the Pareto optimal solutions which we regard as the

most optimal solutions of this approximation technique based on two constraints:

1. We want the total energy for the inference of one input image to be at least 1000000000
pW - ns less than the energy required for the input image when the accurate multi-
plier is used (4720768451) , which means the optimal subset consists of solutions with
total energy less than 3700.000000 n.J. This is because we only consider solutions

with quite a significant energy saving

2. We want the error to be less than 22% since the error introduced using the accurate

multiplier only is 16, 7%

The solution of the optimal subset based on the upon constrains are highlighted in 5.9

Table 5.9: Pareto efficient solutions and their optimal subset for k£ = 3 parts

1% part | 2" part | 3"¢ part | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 p=0 4720.7 18.34 0,167
p=0 p=1 p=0 4364.1 19.49 0.171
p=0 p=1 p=1 3973.7 19.76 0.172
p=2 p=1 p=1 3464.2 20.61 0.178
p=1 p=2 p=1 3459.6 20.40 0.187
p=2 p=2 p=1 3296.9 21.09 0.195
p=2 p=1 p=2 3281.1 21.05 0.201
p=2 p=2 p=3 3055 21.59 0.422
p=2 p=3 p=3 3001.2 21.36 0.668
p=3 p=3 p=2 3007.8 21.83 0.74
p=3 p=2 p=3 3002.7 21.69 0.752
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These four solutions of the optimal subset are produced when the approximate mul-
tipliers p = 1 and p = 2 are employed concurrently. They are very good solutions since
comparing them with the solutions that occurs when p = 0 is employed uniformly, the
accuracy loss is very small since it ranges between 1, 1% — 3,4% while there is huge energy
saving up to 1439.6 n.J, which translates in achieving up to 30.5% energy saving, quite
significant and beneficial given that the drop in the accuracy is that low

The heatmap below illustrates how the inference accuracy changes when different

approximate multipliers are deployed (for k = 3 parts):

Mixed approximate-accurate filters per layer for k=3 parts
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Figure 5.6: Second Approximation technique: Changes in Inference Accuracy for k=3 parts

As it can be clearly seen from the heatmap, the inference accuracy start to drops
slightly when we start to employ approximate multipliers in our design. We can observe
that using the various combinations of p = 0, p = 1 and p = 2 does not have a huge impact
on the accuracy, since the area remains black. However , when we start to employ the
approximate multiplier p = 3 we can clearly see its effect on the accuracy since it start to

drops and this can be clearly seen from the more white areas
o k=2 parts

The scatter plot below illustrates the relation between the Energy and Error when
we split the number of filters in each layer in k = 2 parts and for the same six different

scenarios as above:
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Figure 5.7: Second Approximation technique:Energy vs Error for k=2 parts in each layer

The red line is the Pareto frontier and all the points that belong to this line consist

of the Pareto optimal solutions. These solutions are presented in the table 5.10. The

black square contains a subset of the Pareto optimal solutions which we regard as the

most optimal solutions of this approximation technique based on two constraints:

1. We want the total energy for the inference of one input image to be at least 1000

nJ less than the energy required for the input image when the accurate multiplier is

used (4720.7 nJ ) , which means the optimal subset consists of solutions with total

energy less than 3700 nJ. This is because we only consider solutions with quite a

significant energy saving

2. We want the error to be less than 22% since the error introduced using the accurate

multiplier only is 16, 7%

The solution of the optimal subset based on the upon constrains are highlighted in

5.10

Table 5.10: Pareto efficient solutions and their optimal subset for k = 2 parts

1%t part | 2" part | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 4720.7 18.34 0.167
p=1 p=0 4173.8 19.49 0.169
p=2 p=0 3917.2 19.53 0.182
p=2 p=1 3370.3 19.54 0.19
p=1 p=2 3370.3 19.55 0.2
p=1 p=3 3288.0 19.34 0.568
p=2 p=3 3031.4 19.88 0.59
p=3 p=2 3031.4 19.56 0.727
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The solutions that belong in the optimal subset of the Pareto Frontier are very good
solutions since comparing them with the solution that occurs when p = 0 is employed
uniformly, the accuracy loss is very small since it ranges between 1,5% — 3,3% while the
is huge energy saving up to 1350.3 n.J, which translates in achieving up to 28.6% energy

saving, quite significant and beneficial given that the drop in the accuracy is that low

The heatmap below illustrates how the inference accuracy changes when different

approximate multipliers are deployed (for k = 2 parts):

Mixed approximate-accurate filters per layer for k=2 parts
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Figure 5.8: Second Approximation technique: Changes in Inference Accuracy for k=2 parts

As it can be clearly seen from the heatmap, the inference accuracy start to drops
slightly when we start to employ approximate multipliers in our design. We can observe
that using the various combinations of p = 0, p = 1 and p = 2 does not have a huge impact
on the accuracy, since the area remains green. However , when we start to employ the
approximate multiplier p = 3 we can clearly see its effect on the accuracy since it start to

drops and this can be clearly seen from the more white areas

132

Accuracy



5.5 Evaluation of third approximation technique

5.5.1 Approximations per filter via replacement of multiplications with

diverse approximate components

As mentioned in Chapter 4, this technique was implemented by replacing the multi-
plications with diverse approximate components. Contrary to the previous approximation
technique, here we are currently inside the filter and we want to implement approximate

multiplications on the convolution operations inside the filter.
e Per channel

The scatter plot below illustrates the relation between the Energy and Error for six

different scenarios at input depth level:

1. For all the possible combinations of the approximate multipliers p =0 and p =1
2. For all the possible combinations of the approximate multipliers p = 0 and p = 2
3. For all the possible combinations of the approximate multipliers p =0 and p = 3
4. For all the possible combinations of the approximate multipliers p =1 and p = 2
5. For all the possible combinations of the approximate multipliers p =1 and p = 3

6. For all the possible combinations of the approximate multipliers p =2 and p = 3

Energy vs Error (input depth)
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Figure 5.9: Third Approximation technique:Energy vs Error (per channel)
The red line is the Pareto frontier and all the points that belong to this line consist
of the Pareto optimal solutions. These solutions are presented in the table 5.11. The

black square contains a subset of the Pareto optimal solutions which we regard as the

most optimal solutions of this approximation technique based on two constraints:
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1. We want the total energy for the inference of one input image to be at least 1000
nJ less than the energy required for the input image when the accurate multiplier is
used (4720768451) , which means the optimal subset consists of solutions with total
energy less than 3700 nJ. This is because we only consider solutions with quite a

significant energy saving

2. We want the error to be less than 22% since the error introduced using the accurate

multiplier only is 16, 7%

The solution of the optimal subset based on the upon constrains are highlighted in
5.11

Table 5.11: Pareto efficient solutions and their optimal subset (per channel)

Channel =1 | Channel =2 | Channel =3 | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 p=0 4720.7 18.34 0,167
p=0 p=1 p=0 4661.4 19.76 0.168
p=1 p=0 p=0 4180.4 19.88 0.169
p=1 p=0 p=1 3686.2 19.96 0.174
p=1 p=2 p=1 3599.1 20.24 0.18
p=1 p=1 p=2 3395.1 20.24 0.19
p=2 p=1 p=1 3373.4 20.16 0.199
p=2 p=0 p=2 3200.9 20.20 0.206
p=2 p=1 p=2 3141.6 20.36 0.214
p=2 p=3 p=2 3104.8 20.79 0.277
p=2 p=2 p=3 3039.3 20.74 0.527
p=2 p=3 p=3 3030.4 21.05 0.599
p=3 p=2 p=2 3032.4 20.70 0.7
p=3 p=3 p=2 3023.5 21.05 0.73
p=3 p=0 p=3 3045.1 20.70 0.78
p=3 p=1 p=3 2985.8 20.83 0.787
p=3 p=2 p=3 2958.0 21.14 0.795

These six solutions of the optimal subset are produced when the approximate multi-
pliers mainly p = 1 and p = 2 are employed concurrently. These are very good solutions
since comparing them with the solution that occurs when p = 0 is employed uniformly, the
accuracy loss is very small since it ranges between 0, 7% — 4, 7% while the is huge energy
saving up to 1579.1 n.J, which translates in achieving up to 33.5% energy saving, quite
significant and beneficial given that the drop in the accuracy is that low

The heatmap below illustrates how the inference accuracy changes when different ap-

proximate multipliers are deployed at input depth:
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Third Approximation technique” Approximations per filter at input depth
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Figure 5.10: Third Approximation technique: Changes in Inference Accuracy (per channel)

As it can be clearly seen from the heatmap, the inference accuracy start to drops
slightly when we start to employ approximate multipliers in our design. We can observe
that using the various combinations of p = 0, p = 1 and p = 2 does not have a huge impact
on the accuracy, since the area remains green. However , when we start to employ the
approximate multiplier p = 3 we can clearly see its effect on the accuracy since it start to

drops and this can be clearly seen from the more white areas

e Per column

The scatter plot below illustrates the relation between the Energy and Error for the

same six different scenarios as above at filter width level:
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Energy vs Error (filter width)
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Figure 5.11: Third Approximation technique: Energy vs Error (per column)

The red line is the Pareto frontier and all the points that belong to this line consist
of the Pareto optimal solutions. These solutions are presented in the table 5.12. The
black square contains a subset of the Pareto optimal solutions which we regard as the

most optimal solutions of this approximation technique based on two constraints:

1. We want the total energy for the inference of one input image to be at least 1000
nJ less than the energy required for the input image when the accurate multiplier is
used (4720.7 n.J) , which means the optimal subset consists of solutions with total
energy less than 3700 nJ. This is because we only consider solutions with quite a

significant energy saving

2. We want the error to be less than 23% since the error introduced using the accurate

multiplier only is 16, 7%

The solution of the optimal subset based on the upon constrains are highlighted in
5.12
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Table 5.12: Pareto efficient solutions and their optimal subset at (per column)

Column =1 | Column =2 | Column =3 | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 p=0 4720.7 18.34 0,167
p=0 p=1 p=0 4356.1 19.80 0.168
p=1 p=0 p=1 3991.5 19.96 0.172
p=1 p=1 p=2 3455.9 20.28 0.194
p=2 p=1 p=2 3284.8 20.32 0.198
p=2 p=2 p=1 3284.8 20.40 0.217
p=1 p=2 p=2 3284.8 20.36 0.226
p=3 p=2 p=2 3058.8 20.70 0.47
p=2 p=2 p=3 3058.8 20.83 0.505
p=2 p=3 p=2 3058.8 20.74 0.578
p=3 p=3 p=2 3003.9 20.96 0.71
p=3 p=2 p=3 3003.9 21.09 0.726
p=2 p=3 p=3 3003.9 20.96 0.757

These four solutions of the optimal subset are produced when the approximate multi-
pliers mainly p = 1 and p = 2 are employed concurrently. These are very good solutions
since comparing them with the solution that occurs when p = 0 is employed uniformly, the
accuracy loss is very small since it ranges between 2, 7% — 5,9% while the is huge energy
saving up to 1435.9 n.J, which translates in achieving up to 30.4% energy saving, quite

significant and beneficial given that the drop in the accuracy is that low

The heatmap below illustrates how the inference accuracy changes when different ap-

proximate multipliers are deployed at input depth:
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Third Approximation Technique: Approximations per filter at filter width
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Figure 5.12: Third Approximation technique: Changes in Inference Accuracy (per column)

As it can be clearly seen from the heatmap, the inference accuracy start to drops
slightly when we start to employ approximate multipliers in our design. We can observe
that using the various combinations of p = 0, p = 1 and p = 2 does not have a huge impact
on the accuracy, since the area remains green. However , when we start to employ the
approximate multiplier p = 3 we can clearly see its effect on the accuracy since it start to

drops and this can be clearly seen from the more white areas

e Per row

The scatter plot below illustrates the relation between the Energy and Error for the

same six different scenarios as above at filter height level:
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Energy vs Error (filter height)
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Figure 5.13: Third Approximation technique: Energy vs Error (per row)

The red line is the Pareto frontier and all the points that belong to this line consist
of the Pareto optimal solutions. These solutions are presented in the table 5.13. The
black square contains a subset of the Pareto optimal solutions which we regard as the

most optimal solutions of this approximation technique based on two constraints:

1. We want the total energy for the inference of one input image to be at least 1000
nJ less than the energy required for the input image when the accurate multiplier is
used (4720.7 nJ) , which means the optimal subset consists of solutions with total
energy less than 3700 nJ. This is because we only consider solutions with quite a

significant energy saving

2. We want the error to be less than 22% since the error introduced using the accurate

multiplier only is 16, 7%

The solution of the optimal subset based on the upon constrains are highlighted in
5.13

139

=]

=)



Table 5.13: Pareto efficient solutions and their optimal subset (per row)

Row=1 | Row=2 | Row=3 | Energy(nJ) | Throughput(FPS) | Error
p=0 p=0 p=0 4720.7 18.34 0,167
p=1 p=0 p=0 4356.1 19.80 0.169
p=1 p=0 p=1 3991.5 19.92 0.173
p=2 p=1 p=1 3455.9 20.16 0.189
p=2 p=1 p=2 3284.8 20.40 0.196
p=1 p=2 p=2 3284.8 20.32 0.202
p=2 p=2 p=1 3284.8 20.36 0.209
p=2 p=2 p=3 3058.8 20.70 0.482
p=3 p=2 p=2 3058.8 20.70 0.512
p=2 p=3 p=2 3058.8 20.74 0.615
p=2 p=3 p=3 3003.9 21.09 0.716
p=3 p=2 p=3 3003.9 21.09 0.719
p=3 p=3 p=2 3003.9 21.18 0.773

These four solutions of the optimal subset are produced when the approximate multi-
pliers mainly p = 1 and p = 2 are employed concurrently. These are very good solutions
since comparing them with the solution that occurs when p = 0 is employed uniformly, the
accuracy loss is very small since it ranges between 2,2% — 4,2% while the is huge energy
saving up to 1435.9 n.J, which translates in achieving up to 30.4% energy saving, quite

significant and beneficial given that the drop in the accuracy is that low

The heatmap below illustrates how the inference accuracy changes when different ap-

proximate multipliers are deployed at input depth:
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Third Approximation Technique: Approximation per filter at filter height
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Figure 5.14: Third Approximation technique: Changes in Inference Accuracy (per row)

As it can be clearly seen from the heatmap, the inference accuracy start to drops
slightly when we start to employ approximate multipliers in our design. We can observe
that using the various combinations of p = 0, p = 1 and p = 2 does not have a huge impact
on the accuracy, since the area remains green. However , when we start to employ the
approximate multiplier p = 3 we can clearly see its effect on the accuracy since it start to

drops and this can be clearly seen from the more white areas

5.5.2 Approximations per filter via computation skipping

As mentioned in Chapter 4, this technique was implemented by skipping (i.e not per-
forming) the multiplications. In this approximation technique, instead of executing the

multiplications with approximate multipliers , we just don’t execute them at all.

e Per Channel

The resulting Inference Accuracy is acquired when we execute only the convolution

operations that satisfy the condition in the first column of 5.14
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Table 5.14: Inference Accuracy when skipping per channel

Execution of channel | Number of multiplications | Inference Accuracy | Energy(nJ) | FPS(Throughput)
Channel = 1 6045696 0.115 2331.9 52.63
Channel = 2 663552 0.105 255.9 62.5
Channel = 3 5529600 0.104 2132.8 54.05
Channel =1 and 2 6709248 0.12 2587.8 50
Channel = 2 and 3 6193152 0.138 2388.8 52.63
Channel =1 and 3 11575296 0.507 4464.8 22.72

e Per column

The resulting Inference Accuracy is acquired when we execute only the convolution

operations that satisfy the condition in the first column of 5.15

Table 5.15: Inference Accuracy when skipping per column

Execution of columns | Number of multiplications | Inference Accuracy | Energy(nJ) | FPS(Throughput)
Column =1 4079616 0.11 1573.5 74.62
Column = 2 4079616 0.151 1573.5 81.30
Column = 3 4079616 0.082 1573.5 73.52
Column =1 and 2 8159232 0.227 3147.1 42.55
Column =2 and 3 8159232 0.163 3147.1 41.15
Column =1 and 3 8159232 0.205 3147.1 39.84

e Per row

The resulting Inference Accuracy is acquired when we execute only the convolution

operations that satisfy the condition in the first column of 5.16

Table 5.16: Inference Accuracy when skipping per row

Execution of rows | Number of multiplications | Inference Accuracy | Energy(nJ) | FPS(Throughput)
Row =1 4079616 0.092 1573.5 74.07
Row =2 4079616 0.162 1573.5 54.64
Row =3 4079616 0.098 1573.5 56.81
Row =1 and 2 8159232 0.219 3147.1 33.89
Row =2 and 3 8159232 0.178 3147.1 32.46
Row =1 and 3 8159232 0.127 3147.1 33.00
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From the three tables above, we can clearly see that the Accuracy loss compared
when we do not skip any operation, is huge. The inference accuracies provided by this
approximation technique ranges from 0.082 to 0.227 with the only exception at input depth
level where when we only skip the multiplications with weights of channel = 1 the inference
accuracy is 0.507. We can say that this is expected since the number of multiplications
with weights of channel = 2 is very low compared to the number of multiplications with
weights of channel = 1 and channel = 3. This means that not a lot of multiplications are
being skipped and this is why there is not such a big loss in the inference accuracy. However
, the Throughput(FPS) is significantly increased which is something also expected since
the reduction of the operations that are executed has as a result the reduction of the time
that is needed to run the inference. As a consequence, the Throughput is significantly
higher when compared to the other proposed approximation techniques Regardless, of
this increase in the Throughput , we can easily conclude that this technique does not
provide good results since the accuracy is much lower than the allowed levels. In order
to better understand this, we will consider the following example: This approximation
technique when used at filter width level and more specifically when we only execute the
multiplications with weights of column = 1 and 2 , we can see from ?? that the inference
accuracy achieved is 0.227 and the energy for the inference of one input image is 3147.1
n.J . We can compare this numbers with the results that occur from the second proposed
approximation technique again at filter width level when we use the approximate multiplier
p=2,p=1p =2 at column = 1,column = 2, column = 3 respectively and clearly see
what computation skipping is not a good choice. This combination of approximate
multipliers using the second technique has as a result an inference accuracy of 0.802 and

the energy for the inference of one input image is 3284.8 nJ.

5.6 Evaluation of fourth approximation technique

As mentioned in Chapter 4, this technique was implemented by skipping (i.e not per-
forming) the multiplications. More specifically, our approach is to execute only the mul-
tiplications with the filter weights that belong to either this range [ — o, u + o] or this
[ — 20, p + 20], where p and o are the average arithmetic mean and standard deviation
of the weights of all the filters in each layer separately. This means that all the other
multiplications with filter weights that do not belong in one of these ranges are skipped

(i.e not performed).

The table below depicts the ranges [ — o, u + o] as well as [ — 20, u + 20] for each

layer separately.
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Table 5.17: Ranges for each layer

Layer0 Layerl Layer2 Layer3 Layer4 Layerb Layer6
[p—o,p+ o] [98,156] | [114,153] | [122,172] | [133,175] | [105,161] | [105,163] | [92,140]
[0 — 20, u+ 20] | [69,185] | [95,172] [97,197] | [112,196] | [77,189] [76,192] | [68,164]
Table 5.18: Number of multiplications in each layer for these ranges.
Layer0 | Layerl Layer2 Layer3 Layer4 Layerd Layer6 Total Sum
[u—o,u+ 0] 339968 | 1264640 | 1703936 | 829952 | 1702400 | 792320 | 1617472 8250688
[0 —20,u+20] | 418816 | 1783808 | 2238464 | 1118720 | 2241792 | 1107584 | 2228928 11138112

Executing only the convolution operations when the filter weight belongs in the range
[t — o, + o] has as a result the execution of a total of 8250688 multiplications for the
inference of one input image, while the executing only the convolution operations when the
filter weight belongs in the range [u — 20, 4 20] has as a result the execution of a total of
11138112 multiplications. Those are in contrast with the total 12238848 multiplications
that are required for the inference of one input image. This is totally expected since as we
mentioned earlier in this proposed approximation technique we skip some computations

(i.e multiplications) according to the filter weight distribution of each layer.

1. Executing only the multiplications with filter weights that belong in the range [1 —
o, 1+ o] , while skipping the rest, has as a result an Inference Accuracy of 0.553
and the Total Energy for the inference of one input image is 3182.4 nJ, which
translates in achieving up to 32.6% energy saving, quite significant. However, the

drop in the inference accuracy is very big and cannot be tolerated

2. Executing only the multiplications with filter weights that belong in the range [p —
20, 1 + 20] , while skipping the rest, has as a result an Inference Accuracy of
0.686 and the Total Energyfor the inference of one input image is 4296.1 n.J,

which translates in achieving up to 9% energy saving

5.7 Approximation Techniques Comparison

Our goal here is to determine in which of the proposed approximation techniques
provides the better results regarding the inference accuracy and the energy required
for the inference of one input image. For this purpose, we will compare the subset of the
optimal solutions that occurred from each technique and come up with the best solutions.
Obviously , we won’t compare the results from the third approximation technique using
computation skipping as well as from the fourth approximation technique since the the loss
in the accuracy is intolerable. Figure 77 illustrates all the optimal subsets that occurred

from each technique.

144



Comparison of the Techniques (Energy vs Error)
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Figure 5.15: Comparison of approximation techniques

The red line is the Pareto frontier and all the points that belong to this line consist

of the Pareto optimal solutions. These solutions are presented in the table 5.19.

Table 5.19: Pareto efficient solutions from the comparison of the techniques

Technique 0—1|1-—21]2-=3| Energy(nJ) | Error | Energy Saving %
374 Per channel | p=1 | p=0 | p=1 3686.2 0.174 21.9%
ond: k=3 p=2 | p=1 | p=1 3464.2 0.178 26.62%
ond. o — 3 p=1 | p=2 | p=1 3459.6 | 0.187 26.71%
374 Per row p=2 | p=1 | p=1 3455.9 0.189 26.79%
374: Per channel | p=1 | p=1 | p=2 3395.1 0.19 28.08%
ond:f =3 p=2 | p=2 | p=1 3296.9 0.195 30.16%
374 Per row p=2 | p=1 | p=2 3284.8 0.196 30.41%
ond, | =3 p=2 | p=1 | p=2 3281.1 0.201 30.5%
374 Per channel | p=2 | p=0 | p=2 3200.9 0.206 32.2%
374: Per channel | p=2 | p=1 | p=2 3141.6 0.214 33.45%

We can clearly see from the above table that most Pareto Optimal solutions occur when

we apply the third approximation technique( i.e Approximations per filter via replacement

of multiplications with diverse approximate components) and specifically when we apply

this technique at input depth level. However, all the optimal solutions that occurred from

the second approximation technique when we divided all the filters in & = 3 parts, are

included in the Pareto optimal solutions. This means that we can fairly say that the second

approximation technique (i.e Mixed approximate-accurate filters per layer via replacement

of multiplications with diverse approximate components) is a really good technique that

provides great trade-offs between Inference Accuracy and Energy for the inference of one

input image.
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So overall we come up with the conclusion that the second approximate technique
using k = 3 parts as well as the third approximation technique (via replacement of mul-
tiplications with diverse approximate components) at input depth level are the best

approximation techniques

5.8 Comparison with State-of-the-art approximate multipli-

ers

In this section, we will compare the inference accuracy when some of the best 8-bit
approximate multipliers (i.e in terms of error) from EvoApproxLib[2] ,are being employed
uniformly without any approximation technique with the inference accuracy provided by
the same approximate multipliers when they are being employed using the best approx-
imation techniques described above. Furthermore, we will compare the energy for the
inference of one input image consumed when the same multipliers from EvoApproxLib
are being employed uniformly with the energy consumed when our best approximation
techniques are implemented, while they employ the multipliers from [11] (i.e approximate
radix4 multipliers with different perforation setting).

In the table below, the power(uW) and the delay(ns) some of the best multipliers from
EvoApproxLib in terms of error when employed uniformly, as well as the energy of each

multiplier which is calculated via 5.6
Energy of multiplier = Power x Delay (5.6)

Table 5.20: Energy of best multipliers from EvoApproxLib [2] (in terms of error)

Multiplier | Power(uW) | Delay(ns) | Energy of Multiplier(uW - ns)
mul8u 2AC 311 1.39 432.29
mul8u 2HH 302 1.44 434.88
mul8u 2P7 386 1.42 548.12
mul8u 14VP 364 1.38 502.32
mul8u 150Q 360 1.39 500.4
mul8u 1446 388 1.35 523.8
mul8u GS2 356 1.38 491.28
mul8u NGR 276 1.37 378.12
mul8u ZFB 304 1.13 343.52

In the next table the inference accuracy, the energy and the error of the above selected
multipliers from EvoApproxLib when they are employed uniformly on Resnet-8 without

any implementation of our best proposed approximation techniques are presented:
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Table 5.21: Inference accuracy,Error and total energy for the inference of one input image of the

selected multipliers [2]

Multiplier | Inference Accuracy | Energy(nJ) | Error
mul8u 2AC 0.798 5290.7 0.202
mul8u 2HH 0.767 5322.4 0.233
mul8u 2P7 0.829 6708.3 0.171
mul8u 14VP 0.828 6147.8 0.172
mul8u 150Q 0.83 6124.3 0.17
mul8u GS2 0.826 6012.7 0.174
mul8u NGR 0.77 4627.7 0.23
mul8u ZFB 0.767 4204.2 0.233

Our best solutions provided by our best proposed approximation techniques mentioned

in the previous subsection are far better than the solutions provided individually by the

approximate multipliers from the EvoApproxLib in terms of error and energy.

be clearly seen from 5.16
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Error
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Figure 5.16: Comparison of with state-of-the-art approximate multipliers
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We will compare the inference accuracy and energy provided by some of the multipliers

mentioned in 5.20 with the inference accuracy and energy provided from the optimal

solutions mentioned previously in 5.19.

For example employing uniformly without any approximation technique the approxi-

mate multiplier mul8u GS2, the error in the inference accuracy of the network is 17.4%

and the energy for the inference of one input image is 6012.7 nJ , while when employing

our third proposed approximation technique at input depth level using our multipliers

p =1 and p = 0 with the following order :
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error as above 17.4% with only 3686.2 nJ which means the energy saving is 38.7%, quite
significant .

Similarly, when we employ uniformly without any approximation technique the ap-
proximate multiplier mul8u 2AC, the error in the inference accuracy is 20.2% and the
energy for the inference of one input image is 5290.7 nJ, while when employing our sec-
ond proposed approximation technique with k = 3 parts at each filter using our multipliers
with the following order p = 2, p =1, p = 2, the error in the inference accuracy is 20.1%
and the energy for the inference of one input image is 3281.1 nJ , which means that not
only we have a lower error but also the energy consumed is significantly lower (38%) this
achieving a high energy saving.

These significant energy savings with almost the same error are a result of the use
of these specific approximate multiplier with different perforations settings. However, it
is also thanks to our proposed approximation techniques that allow the employ of this
approximate multipliers in order to achieve these significant energy savings along with

almost the same error or in same cases lower error.
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Chapter 6

Conclusion

Approximate computing forms a design alternative that exploits the intrinsic error
resilience of various applications and produces energy-efficient circuits with small accuracy
loss.

In this current thesis we aimed at developing new approximation techniques using
approximate multipliers at Deep Neural Network (i.e Resnet-8), that achieve a good trade-
off between the inference accuracy of the network and the energy required for the inference
of one input image. Our research was carried out at four different levels of the Neural
Network in order to come up with the best techniques that combine both high accuracy
and low energy. Thus, a library of novel approximation techniques using approximate
multipliers in Deep Neural Networks were presented. Our proposed library is an extension
of the open source library of Approximate Convolutional Layers in Tensorflow [1]. More
specifically, our proposed extended library of approximation techniques is better than the
library in [1] , because while this library restricts the users to use only one approximate
multiplier, our proposed library provides the users the opportunity to use more than 1
approximate multiplier simultaneously. Furthermore, while the library in [1] provides only
one way of approximation (i.e uniform approximation using one approximate multiplier
all around the Deep Neural Network), our proposed extended library provides users the
opportunity to test their approximate multipliers at different approximation levels using
our proposed various approximation techniques.

After developing the new approximation techniques we tested test their efficiency by
counting the inference accuracy and the energy required for the inference of one input
image that each approximation technique has as a result using various combinations of
approximate multipliers. The approximate multipliers we used are from [11] and they are
radix4 multipliers with different perforation setting. After testing and comparing they
efficiency of each of our proposed approximation techniques, in terms of accuracy and
energy trade-off, which was done by finding the pareto optimal solutions of each technique,
we came up to the conclusion that the third approximation technique using replacement of
multiplications with diverse approximate components as well as the second approximation

technique while splitting the number of filters at each layer into k = 3 equivalent parts are
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the most efficient approximation techniques since they provide the best trade-offs between
inference accuracy and energy. More specifically, using the third approximation technique
at input depth and an appropriate combination of approximate multipliers with different
perforation settings we achieved up to 1579138007 uWW - ns saving in energy compared
to the energy required when the accurate multiplier is employed uniformly which is up
to 33.5% saving while having only a slight loss in the inference accuracy ranging between
0.7% — 4.7%. Furthermore, using the second approximation technique while splitting the
number of filters at each layer into kK = 3 equivalent parts and as mentioned before an
appropriate combination of approximate multipliers with different perforation settings, we
achieved up to 1439637903 uW - ns saving in energy compared to the energy required
when the accurate multiplier is employed uniformly which is up to 30.4% saving while
having only a slight loss in the inference accuracy ranging between 1.1% — 3.4%.

Finally, in a further effort to test the efficiency of our best proposed approximation
techniques we compared the inference accuracy when some approximate multipliers from
the EvoApproxLib [2] were employed uniformly in the Resnet-8 without any use of our
approximation techniques with the inference accuracy that occurred when the same multi-
pliers were employed in the same Neural Network using our best approximation techniques
and the results were positive. More particularly, the inference accuracy from the later was
up to 0.5% higher than the accuracy from the former thus showing the efficiency of our

approximation techniques and the improvement they can achieve.

6.1 Future Work

e Evaluate the proposed Approximation Techniques on Different Type of
Networks

The approximate techniques we proposed in this thesis can be tested in different types of
state of the art neural networks, such as LeNet,Recurrent Neural Networks (RNN) and
higher versions of the ResNet (i.e more convolutional layers) in order to evaluate how their

behavior is affected by this techniques and also the scalability of them.

e Evaluate the proposed Approximation Techniques on non-quantized deep

neural networks

If the deep neural network is not quantized, then we can employ approximate multipliers
not only with perforation but also with rounding. Thus we can we evaluate the accuracy

that occurs from the employment of multipliers with rounding

e Extend the approximations in more operations inside the Deep Neural
Network

The main purpose of approximate computing, is to insert approximate operations in almost

every aspect of the design.There is a huge amount of research in the field of approximate
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adders. The basic adder operation inside the MAC operation can be replaced with an
appropriate approximate adder that fulfils the design’s goals. The main goal is to maintain
a high classification accuracy but depending on different engines, adders that satisfy even
more criteria must be examined. The selection of the appropriate approximate adder
is up to the user and every adder can be used since it does not highly downgrade the
classification accuracy. Thus the user can combine the use of appropriate approximate
adders with the best of our approximation techniques employing approximate multipliers
in order to achieve better energy savings. Furthermore, approximate components that

perform the ReLLu and Max-Pooling operations can be designed.
e Design of more energy-efficient approximate multipliers

It would be very interesting to design and create more energy-efficient approximate multi-
pliers with low error and test these approximate multipliers in our proposed approximation

techniques.
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