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Περίληψη

Τα σύγχρονα συστήματα αναλυτικής επεξεργασίας καλούνται να αντιμετωπίσουν έναν τερά-
στιο όγκο δεδομένων. Ο όγκος αυτός των δεδομένων καθώς και οι αυστηρές απαιτήσεις για
τον χρόνο απόκρισης των ερωτημάτων δίνουν όλο και αυξανόμενη έμφαση στην αποδοτικό-
τητα των τεχνικών Προσεγγιστικής Επεξεργασίας Ερωτημάτων (ΠΕΕ). Η βασική ιδέα της ΠΕΕ
είναι η κατασκευή μιας συμπιεσμένης αναπαράστασης ενός συνόλου δεδομένων και η εκτέ-
λεση των ερωτημάτων, που θέτουν οι χρήστες, πάνω σε αυτή τη σύνοψη αντί για τα αρχικά
δεδομένα. Μία σημαντική πρόκληση τα τελευταία χρόνια είναι η κατασκευή συνόψεων που
παρέχουν αιτιοκρατικές εγγυήσεις για την ποιότητα του αποτελέσματος. Οι ντετερμινιστικές
εγγυήσεις παρέχουν ισχυρά αποτελέσματα και είναι ευκολότερο για τους χρήστες να τις κα-
τανοήσουν και να τις ερμηνεύσουν. Καθώς τα δείγματα και τα sketches συνήθως παρέχουν
στατιστικές εγγυήσεις, για την παροχή αιτιοκρατικών εγγυήσεων καταφεύγουμε κυρίως σε
τεχνικές όπως τα ιστογράμματα και τα wavelets. Λόγω της ικανότητάς του να προσεγγίζει
έντονες ασυνέχειες, ο μετασχηματισμός wavelet έχει αποδειχτεί ένα αρκετά αποδοτικό εργα-
λείο για τη μείωση του μεγέθους των δεδομένων. Ωστόσο, οι υπάρχουσες τεχνικές οι οποίες
είναι βασισμένες στην χρήση των wavelets και οι οποίες παράλληλα στοχεύουν στην ελαχι-
στοποίηση του παρατηρούμενου μέγιστου σφάλματος πάσχουν από μεγάλη πολυπλοκότητα
που καθιστά την χρήση τους μη πρακτική. Επιπλέον, δεν μπορούν να χειριστούν αποδοτικά το
πρόβλημα σε πολυδιάστατα δεδομένα. Ως εκ τούτου, στο πρώτο μέρος της διατριβής προτείνω
παράλληλους αλγορίθμους που εκμεταλλεύονται τις βασικές ιδιότητες του μετασχηματισμού
wavelet και κατασκευάζουν αποδοτικά συνόψεις που ελαχιστοποιούν μη-Ευκλείδιες μετρικές
σφαλμάτων. Η πειραματική αξιολόγηση στο κατανεμημένο σύστημα επεξεργασίας Hadoop έ-
δειξε ότι οι προτεινόμενοι αλγόριθμοι επιτυγχάνουν γραμμική κλιμακωσιμότητα και μπορούν
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να επιταχύνουν την κατασκευή της σύνοψης μέχρι και 20 φορές όταν ο αλγόριθμος μπορεί να
τρέξει πλήρως παράλληλα στην συστοιχία. Το δεύτερο μέρος της διατριβής μελετάει το πρό-
βλημα σε περιβάλλοντα ροών δεδομένων που συναντάμε σε εφαρμογές IoT. H εποχή του IoT
έχει προκαλέσει μια μετατόπιση των συστημάτων από ισχυρούς υπολογιστικά διακομιστές σε
συσκευές που λειτουργούν “στην άκρη του δικτύου” κι έχουν περιορισμένες δυνατότητες επε-
ξεργασίας και μνήμης. Οι αλγόριθμοι που σχεδιάζονται για τέτοιες αρχιτεκτονικές θα πρέπει
να έχουν χαμηλή χρονική πολυπλοκότητα και ελάχιστο αποτύπωμα στη μνήμη. Επίσης, σε
πολλές εφαρμογές ροών δεδομένων, τα πιο πρόσφατα δεδομένα θεωρούνται πιο σημαντικά. Το
μοντέλο κυλυομένου παραθύρου είναι μια ιδιαίτερη περίπτωση επεξεργασίας ροών δεδομένων,
όπου διαρκώς μόνο τα πιο πρόσφατα στοιχεία παραμένουν ενεργά και τα υπόλοιπα απορρί-
πτονται. Καθώς στις ΙοΤ εφαρμογές η διαθέσιμη μνήμη είναι συνήθως πολύ μικρότερη από το
μέγεθος του παραθύρου, τα ερωτήματα απαντώνται από συνόψεις που κατασκευάζονται σε
πραγματικό χρόνο. Για την αποτελεσματική κατασκευή τέτοιων συνόψεων παρουσιάζονται
αλγόριθμοι βασισμένοι σε wavelets. Οι προτεινόμενοι αλγόριθμοι παρέχουν ντετερμινιστικές
εγγυήσεις και παράγουν σχεδόν ακριβή αποτελέσματα για μια ποικιλία κατανομών δεδομένων
και φόρτου ερωτημάτων.



Abstract

Modern analytics involve computations over enormous numbers of data records, which often ar-
rive in the form of high-throughput streams. The need for real-time processing of huge amounts
of data places increasing emphasis on the efficiency of approximate query processing (AQP).
A common practice for enabling AQP is to construct a lossy, compressed representation of a
dataset and execute user queries against these synopses instead of the original data. A major
challenge over the past years has been the construction of synopses that provide deterministic
quality guarantees, often expressed in terms of maximum error metrics. Deterministic guaran-
tees are strong and easier for the user to understand and interpret. As samples and sketches
usually provide statistical guarantees, deterministic schemes are mainly supported by space-
partitioning techniques such as histograms and wavelets. By approximating sharp discontinu-
ities, wavelet decomposition has proven to be a very effective tool for data reduction. However,
existing wavelet thresholding schemes that minimize maximum error metrics are constrained
with impractical complexities for large datasets. Furthermore, they cannot efficiently handle
the multidimensional version of the problem. In order to provide a practical solution, the first
part of this dissertation proposes parallel algorithms that take advantage of key-properties of the
wavelet decomposition and efficiently construct synopses that minimize non-Euclidean errors.
The experimental evaluation over the Hadoop distributed processing framework showed linear
scalability with both the data and cluster size; when the whole execution fits in the cluster and
all workers can run fully in parallel, a synopsis construction speedup of 20× is witnessed. The
second part of the thesis targets the problem in an IoT streaming environment. The IoT era has
brought forth a computing paradigm shift from traditional high-end servers to “edge” devices

xxi
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of limited processing and memory capabilities. Thus, the designed algorithms for such architec-
tures should be “cheap” in time complexity and have a minimal memory footprint. Moreover,
in many streaming scenarios, fresh data tend to be prioritized. A sliding-window model is an
important case of stream processing, where only the most recent elements remain active and
the rest are discarded. As in IoT scenarios the available memory is typically much less than
the window size, queries are answered from compact synopses that are maintained in an online
fashion. For the efficient construction of such synopses, wavelet-based algorithms are presented.
The proposed algorithms provide deterministic guarantees and near exact results for a variety of
data distributions and query workloads.



Εκτεταμένη Περίληψη

0.1 Εισαγωγή

Τα τεχνολογικά επιτεύγματα και οι κοινωνικές εξελίξεις της εποχής μας έχουν σαν αποτέλεσμα
μια άνευ προηγουμένου παραγωγή τεράστιων όγκων δεδομένων, τα οποία συχνά αναφέρου-
με ως “Μεγάλα Δεδομένα”[big]. Επιχειρήσεις, κυβερνήσεις και ψηφιακές υποδομές καθημερι-
νά συνεισφέρουν σε αυτή τη νέα πραγματικότητα. Η αφθονία των συνόλων δεδομένων που
υπάρχουν διαθέσιμα για επεξεργασία έχει οδηγήσει τόσο τον ακαδημαϊκό κόσμο, όσο και τη
βιομηχανία στην υιοθέτηση data-driven προσεγγίσεων.

Ακολουθώντας το πρότυπο OLAP [CD97], οι σύγχρονες εφαρμογές ανάλυσης δεδομένων ε-
μπεριέχουν υπολογισμούς συναθροίσεων πάνω από σύνολα δεδομένων που περιλαμβάνουν με-
γάλο πλήθος εγγραφών αλλά και διαφορετικών διαστάσεων. Για παράδειγμα, μια χρηματιστη-
ριακή εταιρία χρειάζεται να συγκρίνει τις τρέχουσες τιμές των μετοχών με το ιστορικό των μέ-
σων όρων σε διαφορετικές κλίμακες (πχ., ανά εβδομάδα, μήνα κλπ.) προκειμένου να αποφαν-
θεί αν ένα προϊόν είναι υπερεκτιμημένο ή υποτιμημένο. Ο υπολογισμός τέτοιων μέσων όρων
παραδοσιακά επιτυγχάνεται μέσω της σειριακής προσπέλασης ενός μεγάλου τμήματος μιας
βάσης δεδομένων. Σε πολλές περιπτώσεις, οι προσπελάσεις αυτές μπορεί να γίνουν ιδιαίτερα
ακριβές και τα εργαλεία επεξεργασίας δεδομένων που διαθέτουμε να μην είναι ικανά να τις
διαχειριστούν αποδοτικά. Στην περίπτωση όπου έχουμε μεγάλα, ετερογενή δεδομένα, ακόμα
και τα γρηγορότερα συστήματα βάσεων δεδομένων μπορεί να χρειαστούν ώρες ή μέρες για
να απαντήσουν και τα πιο απλά ερωτήματα. Ο υπολογισμός ενός μέσου όρου πάνω από 10
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terabytes δεδομένων, τα οποία βρίσκονται αποθηκευμένα σε 100 μηχανήματα μπορεί να χρεια-
στεί περίπου 30-45 λεπτά επεξεργασίας στο Hadoop αν τα δεδομένα είναι στο δίσκο και γύρω
στα 5-10 λεπτά αν τα δεδομένα είναι στη μνήμη [AMP+13].

Καθώς η εξερεύνηση ενός συνόλου δεδομένων είναι μια διαδραστική κι επαναληπτική διαδικα-
σία [Moz15], τέτοιοι χρόνοι απόκρισης δεν είναι αποδεκτοί σε πολλές περιπτώσεις εφαρμογών.
Σε ένα άλλο παράδειγμα, οι αναλυτές σε μια εμπορική επιχείρηση αναλύουν τα δεδομένα των
πωλήσεων για να κατανοήσουν τις επιδόσεις της επιχείρησης με βάση διαφορετικές διαστάσεις
(πχ, επίδοση σε διαφορετικά προϊόντα ή σε διαφορετικές γεωγρφικές περιοχές). Σε ένα τέτοιο
παράδειγμα, οι διαδραστικοί χρόνοι απόκρισης είναι κρίσιμης σημασίας, καθώς οι αναλυτές
θα πρέπει να μπορούν γρήγορα κι εύκολα να μεταβαίνουν μεταξύ υποθέσεων και πραγματικό-
τητας. Μελέτες πάνω στην αλληλεπίδραση ανθρώπου-μηχανής έχουν δείξει ότι οι άνθρωποι
χάνουν την προσοχή τους αν ο χρόνος απόκρισης ενός ερωτήματος είναι μεγαλύτερος του ενός
δευτερολέπτου [Shn84]. Προκειμένου να ανταποκριθούν στις όλο και αυξανόμενες απαιτήσεις
που προβάλει η ανάλυση δεδομένων στις μέρες μας, τόσο τα εμπορικά συστήματα, όσο και τα
συστήματα ελεύθερου λογισμικού προσπαθούν να βελτιώσουν τους χρόνους απόκρισης που
προσφέρουν μέσω διαφόρων τεχνικών όπως: ο παραλληλισμός, η δεικτοδότηση των δεδομέ-
νων, και η βελτίστοποίηση της εκτέλεσης των ερωτημάτων.

Παραδοσιακά, οι περισσότερες από αυτές τις τεχνικές προσπαθούν να χρησιμοποιούν με
αποδοτικό τρόπο την διαθέσιμη μνήμη. Ωστόσο, η αποθήκευση όλων των χρήσιμων δεδομέ-
νων στην μνήμη δεν αποτελεί μια ρεαλιστική επιλογή στην εποχή των Μεγάλων Δεδομένων.
Η αγορά μνήμης που να χωράει εξ’ ολοκλήρου ένα μεγάλο σύνολο δεδομένων είναι υπερβο-
λικά ακριβή. Επιπλέον, αν θεωρείται ακριβή αυτή τη στιγμή, αναμένουμε να είναι ακόμα πιο
ακριβή του χρόνου. Το υλικό (hardware), συμπεριλαμβανομένης της μνήμης, εκτιμάται ότι βελ-
τιώνεται ή γίνεται πιο φτηνό ακολουθώντας τον νόμο του Moore. Στο Σχήμα 1 μπορούμε να
παρατηρήσουμε ότι ο ρυθμός της αύξησης των δεδομένων έχει ήδη ξεπεράσει αυτόν του νόμου
τουMoore. Ως ένα πραγματικό παράδειγμα που το αποδεικνύει αυτό, το Facebook [fbr] ανέφερε
ότι μέσα σε έναν χρόνο και λαμβάνοντας δεδομένα με ρυθμό 600 ΤΒ ημερισίως, έχει παρατη-
ρήσει τον τριπλασιασμό της ποσότητας της πληροφορίας που αποθηκεύεται στις υποδομές
του.

Οι τεχνικές που βασίζονται στην κρυφή μνήμη (cache) μετριάζουν το πρόβλημα καθώς α-
ποθηκεύουν μόνο τα δεδομένα που ζητιούνται συχνά. Παρόλα αυτά, ακόμα και η αποθήκευση
ενός μικρού συνόλου δεδομένων της τάξεως μερικών GB δεν λύνει το πρόβλημα. Η αναλυτική
επεξεργασία δεδομένων συχνά περιλαμβάνει επαναληπτικές διαδικασίες, όπου διαφορετικά δε-
δομένα μπορεί να απαιτούνται σε κάθε επανάληψη. Η φόρτωση στη μνήμη διαφορετικών μερών
ενός συνόλου δεδομένων μπορεί να επιφέρει σημαντικές καθυστερήσεις λόγω I/O λειτουργιών.

Η έμφασηστη σημασία της μνήμης είναι ακόμα μεγαλύτερη στην περίπτωση της επεξεργασί-
ας ροών δεδομένων. Ένα σημαντικό μέρος της ψηφιακής πληροφορίας που παράγεται στις
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Σχήμα 1: Η ραγδαία αύξηση των δεδομένων με βάση την έκθεση του HiPEAC VISION 2015.

μέρες μας εμφανίζεται υπό τη μορφή ροών δεδομένων. Οι εφαρμογές που απαιτούν επεξεργα-
σία μεγάλου όγκου δεδομένων σε πραγματικό χρόνο παρουσιάζουν ενδιαφέρουσες προκλήσεις
στα κλασσικά συστήματα επεξεργασίας δεδομένων. Το 2005, ο Stonebraker όρισε τις 8 βασι-
κές απαιτήσεις που πρέπει να ικανοποιεί ένα σύστημα επεξεργασίας ροών δεδομένων [SÇZ05].
Σύμφωνα με την πρώτη απαίτηση, προκειμένου να επιτυγχάνεται χαμηλός χρόνος απόκρισης,
ένα σύστημα θα πρέπει να μπορεί να επεξεργαστεί ένα μήνυμα χωρίς να χρειαστεί να απο-
κτήσει πρόσβαση σε κάποιο “ακριβό” μέσο αποθήκευσης, όπως ο δίσκος. Σε αντίθεση με τις
συμβατικές βάσεις δεδομένων, που επιτρέπουν πολλαπλές προσπελάσεις πάνω από στατικά
δεδομένα, οι αλγόριθμοι επεξεργασίας ροών δεδομένων συχνά στηρίζονται σε μια μόνο σειρια-
κή προσπέλαση της ροής. Η απαίτηση για επεξεργασία σε πραγματικό χρόνο έχει πυροδοτήσει
πληθώρα ερευνητικής δραστηριότητας στην περιοχή. Ορισμένες χαρακτηριστικές εφαρμογές
περιλαμβάνουν τα δίκτυα αισθητήρων [CÇC+02, MF02, YG+03], συστήματα παρακολούθησης
και ελέγχου σε datacenters [GGRS07], συστήματα που υπολογίζουν στατιστικά με βάση τις τι-
μές των μετοχών [ZS02] και συστήματα που αναλύουν σε πραγματικό χρόνο logs διαφόρων
τύπων συναλλαγών [CFPR00].

Η Προσεγγιστική Επεξεργασία Ερωτημάτων (ΠΕΕ) έχει προκύψει ως μια βιώσιμη εναλλα-
κτική για την διαχείριση του τεράστιου όγκου δεδομένων και των αυστηρών απαιτήσεων στου
χρόνους απόκρισης [CGRS01]. Λόγω της διερευνητικής φύσης πολλών εφαρμογών επεξεργασί-
ας δεδομένων, δεν αναζητούμε πάντα μια ακριβή απάντηση. Αυτό που ενδιαφέρει περισσότερο
στις εφαρμογές αυτές είναι η ανακάλυψη των στατιστικών μοτίβων που υπάρχουν κρυμμένα
στα δεδομένα. Ας σκεφτούμε το εξής παράδειγμα: ένας χρήστης θέλει να φιλτράρει ένα σύνολο
δεδομένων με βάση διάφορα προκαθορισμένα κριτήρια και να κάνει κάποιους υπολογισμούς
χρησιμοποιώντας μόνο μια συγκεκριμένη περιοχή των δεδομένων. Για να το επιτύχει αυτό με
αποδοτικό τρόπο, θα υποβάλει στο σύστημα μια ακολουθία ερωτημάτων, όπου τα αρχικά ερω-
τήματα θα έχουν ως μοναδικό σκοπό τον εντοπισμό της περιοχής ενδιαφέροντος [HHW97]. Σε
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Σχήμα 2: Συσχετισμός μεταξύ όγκου δεδομένων, χρόνου απόκρισης και ποιότητας αποτελε-
σμάτων.

αυτά τα αρχικά ερωτήματα, είμαστε διατεθιμένοι να θυσιάσουμε την ακρίβεια υπερ χαμηλό-
τερων χρόνων απόκρισης. Η ΠΕΕ συσχετίζει την ακρίβεια των αποτελεσμάτων με τον χρόνο
εκτέλεσης και την καταναλησκώμενη μνήμη και μας δίνει τη δυνατότητα να ανταλλάσσουμε
το ένα με το άλλο. Η σχέση αυτή αποτυπώνεται στο Σχήμα 2. Εάν επιθυμούμε να επιτύχουμε
γρηγορότερους χρόνους απόκρισης, θα πρέπει να μειώσουμε είτε το μέγεθος των δεδομένων
στη μνήμη είτε να θυσιάσουμε την ακρίβεια του αποτελέσματος. Αν το κρίσιμο ζητούμενο είναι
ακριβή αποτελέσματα, τότε κάποιος συμβιβασμός θα πρέπει να γίνει για τον χρόνο εκτέλεσης
και το μέγεθος της μνήμης. Οπτικοποιώντας αυτούς τους συσχετισμούς, οι αναλυτές μπορούν
να ρυθμίσουν και να βελτιστοποιήσουν την εκτέλεση των ερωτημάτων τους [TK15]. Επίσης,
οι προσεγγιστικές απαντήσεις που προέρχονται από κατάλληλα κατασκευασμένες συνόψεις

μπορεί να είναι η μοναδική εναλλακτική όταν ένα σύνολο είναι αποθηκευμένο κάπου απομα-
κρυσμένα ή δεν είναι διαθέσιμο [AFTU97].

Με βάση αυτή τη λογική, στο παρελθόν έχουν αναπτυχθεί πολλές τεχνικές προσεγγιστι-
κής επεξεργασίας συμπεριλαμβανομένων των: δειγματοληψίας [AMP+13, GM98, AGPR99b],
ιστογραμμάτων [IP99, GMP97, JKM+98], sketches [GKMS01, AMS96] και wavelets [CGRS01,
GK04, KM05, KSM07, KM07]. Εκτός από τις πολυπληθείς ερευνητικές προσπάθειες, πολλές
εταιρίες κατασκευής συστημάτων επεξεργασίας έχουν επίσης συνειδητοποιήσει την αναγκαιό-
τητα για τηνΠΕΕ κι έχουν εισάγει προσεγγιστικές τεχνικές στα προϊόντα τους (π.χ., το Facebook
Presto [pre], το Druid της Yahoo [yah], SnappyData [RMW+16], και το Oracle 12C [SZB+16]).

Ένα τυχαίο δείγμα αποτελεί ένα “αντιπροσωπευτικό” υποσύνολο των τιμών ενός συνόλου
δεδομένων και κατασκευάζεται μέσω ενός στοχαστικού μηχανισμού. Τα δείγματα είναι εύ-
κολο να κατασκευαστούν και μπορούν να χρησιμοποιηθούν για των υπολογισμό μιας ευρεί-
ας γκάμας ερωτημάτων. Χάρην αυτών των χαρακτηριστικών τους, τεχνικές δειγματοληψίας
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χρησιμοποιούνται στην πλειοψηφία των συστημάτων προσεγγιστικής επεξεργασίας. Για πα-
ράδειγμα, η BlinkDB [AMP+13], η VerdictDB [PMSW18] και το Quickr [KSV+16] κυρίως δου-
λεύουν με δείγματα.

Τα ιστογράμματα συνοψίζουν ένα σύνολο δεδομένων ομαδοποιώντας τις τιμές σε κλά-
σεις και για κάθε μια τέτοια κλάση υπολογίζουν ένα σύνολο στατιστικών. Η τεχνικές ιστο-
γραμμάτων έχουν εκτενώς μελετηθεί στη βιβλιογραφία και τα ιστογράμματα έχουν ενσωμα-
τωθεί στους βελτισοποιητές ερωτημάτων όλων των εμπορικών σχεσιακών βάσεων δεδομένων
[mss, mar, ora].

Τα sketches είναι μια κατηγορία μαθηματικών κατασκευασμάτων που ταιριάζει πολύ κα-
λά στο μοντέλο των ροών δεδομένων. Μερικά από τα χαρακτηριστικά τους είναι ότι είναι
εύκολα παραλληλοποιήσιμα και συνθέσιμα. Επίσης μπορούν να διαχειριστούν περιπτώσεις
όπου το σύστημα αντιμετωπίζει όχι μόνο εισαγωγή αλλά και διαγραφές δεδομένων. Λόγω αυ-
τών των ιδιοτήτων τους και τα sketcehs έχουν υιοθετηθεί από διάφορα εμπορικά συστήματα.
Το SnappyData [RMW+16] χρησιμοποιεί Count-Min sketches [CM05] για να υπολογίσει top-k
ερωτήματα σε μια ροή δεδομένων. Το Yahoo Druid [yah] χρησιμοποιεί sketches για τον υπολο-
γισμό COUNT DISTINCT ερωτημάτων κι επίσης αυτή τη στιγμή γίνονται προσπάθειες για την
ενσωμάτωση sketching τεχνικών στο Apache Flink [fli]. Παρότι συνήθως χρησιμοποιούνται
σε περιπτώσεις ροών δεδομένων, τα sketches έχουν επίσης χρησιμοποιηθεί με επιτυχία και σε
περιπτώσεις όπου τα δεδομένα είναι στατικά. Για παράδειγμα, το Apache Hive προσφέρει μια
ποικιλία sketching αλγορίθμων [yah].

Ο μετασχηματισμός wavelet [SDS96] αποτελεί ένα πολύ αποτελεσματικό εργαλείο για την
συμπίεση των δεδομένων, με εφαρμογές στην εξόρυξη δεδομένων [LLZO02], στην εκτίμηση της
επιλεκτικότητας των ερωτημάτων (selectivity estimation) [MVW98], στην προσεγγιστική επε-
ξεργασία σχεσιακών πινάκων [CGRS01, VW99] καθώς και ροών δεδομένων [GKMS03, CGS06].
Με απλά λόγια, για να κατασκευάσουμε μια wavelet σύνοψη, εφαρμόζουμε τον μετασχηματι-
σμό wavelet σε ένα σύνολο δεδομένων και στη συνέχεια επιλέγουμε ένα υποσύνολο από τους
παραγόμενους συντελεστές wavelet.

Παρόλη την εκτενή βιβλιογραφία στην περιοχή, οι τεχνικές που βασίζονται σε wavelets έ-
χουν χρησιμοποιηθεί ελάχιστα στην πράξη για σκοπούς προσεγγιστικής επεξεργασίας ερωτημά-
των. Wavelet τεχνικές συναντώνται μόνο σε ορισμένα ακαδημαϊκά, ερευνητικά συστήματα, ε-
νώ απ’ όσο γνωρίζω δεν χρησιμοποιούνται σε κανένα εμπορικό προϊόν. Σε αυτή την διατριβή
αναλύονται τα προβλήματα που αντιμετωπίζουν οι υπάρχουσες τεχνικές για την κατασκευ-
ή συνόψεων μέσω wavelets, και προτείνοται καινούριοι αλγόριθμοι που εκμεταλλεύονται τα
χαρακτηριστικά των wavelets και τα καθιστούν αποδοτικά στην εποχή των Μεγάλων Δεδομέ-
νων. Καθώς διαφορετικά σενάρια επεξεργασίας παρουσιάζουν διαφορετικές ανάγκες, η δια-
τριβή αυτή προτείνει αλγορίθμους τόσο για την περίπτωση των στατικών όσο και των ροών
δεδομένων.
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0.2 Wavelet Συνόψεις σε Στατικά Δεδομένα

Ο μετασχηματισμός wavelet ενός διανύσματος A είναι μια αναπαράσταση ίσου μεγέθους με
τον αρχικό πίνακα. Wavelet thresholding καλείται το πρόβλημα του καθορισμού των συντε-
λεστών που πρέπει να κρατήσουμε στην σύνοψη, δοθέντος ενός περιορισμού στον διαθέσιμο
χώρο μνήμης. Μια συμβατική προσέγγιση στο θέμα αποτελεί ένας γραμμικός αλγόριθμος που
ελαχιστοποιεί το μέσο τετραγωνικό σφάλμα [SDS96]. Οι συνόψεις όμως που κατασκευάζονται
με αυτή τη μέθοδο παρουσιάζουν σημαντικά μειονεκτήματα [GK04], όπως υψηλή διακύμανση
στην ποιότητα της προσέγγισης, προτίμηση για πιο ακριβή κάλυψη σε συγκεκριμένες περιο-
χές των δεδομένων και έλλειψη κατανοητών εγγυήσεων για μεμονωμένα ερωτήματα. Από την
άλλη μεριά, οι συνόψεις που ελαχιστοποιούν μετρικές μεγίστων σφαλμάτων έχουν αποδειχτεί
πιο αξιόπιστες για την ακριβή ανακατασκευή ενός συνόλου δεδομένων [GG02, GK04].

Ωστόσο, οι υπάρχοντες αλγόριθμοι που ελαχιστοποιούν μη-Ευκλείδια σφάλματα σε σημεια-
κά ερωτήματα είναι αυστηρά κεντρικοί και συχνά βασίζονται σε τεχνικές δυναμικού προγραμμα-
τισμού, οι οποίες απαιτούν αρκετή μνήμη και υπολογιστική ισχύ. Το ίδιο ισχύει και για αλγορίθ-
μους που βελτιστοποιούν πιο σύνθετα ερωτήματα, όπως τα ιεραρχικά ερωτήματα σε διαστή-
ματα τιμών [GPS08]. Παρουσιάζοντας υπερ-τετραγωνική πολυπλοκότητα, οι αλγόριθμοι αυτοί
αποτυγχάνουν να επιτύχουν κλιμάκωση σε μεγάλα σύνολα δεδομένων.

ΟGreedyAbs [KM05] είναι ένας ευριστικός αλγόριθμος που έχει προταθεί για την αντιμετώ-
πιση των προαναφερθέντων προβλημάτων. Ο αλγόριθμος αυτός είναι πιο αποδοτικός από
τους αλγορίθμους δυναμικού προγραμματισμού αλλά για να το επιτύχει αυτό πληρώνει κάποιο
κόστος στην ακρίβεια των αποτελεσμάτων. Παρόλα αυτά, ούτε αυτός μπορεί να πετύχει κλιμά-
κωση σε Μεγάλα Δεδομένα καθώς ακολουθεί ένα σειρακό τρόπο εκτέλεσης.

Ο λόγος που οι παράλληλοι αλγόριθμοι είναι ιδιαίτερα σημαντικοί στην εποχή των Με-
γάλων Δεδομένων βρίσκεται πίσω από την αρχιτεκτονική των υπαρχόντων συστημάτων επε-
ξεργασίας. Η αναλυτική επεξεργασία δεδομένων συνήθως λαμβάνει χώρα σε κατανεμημένες
πλατφόρμες όπως είναι τα Apache Hadoop και Spark. Τα συστήματα αυτά μπορούν να στεί-
λουν πολλές εργασίες ταυτόχρονα σε διαφορετικούς υπολογιστές κι έτσι επιτρέπουν εγγενώς
την παράλληλη εκτέλεση. Επίσης, με τους επιταχυντές σε επίπεδο υλικού να γίνονται ιδιαίτε-
ρα δημοφιλείς για εφαρμογές Μηχανικής Μάθησης και Μεγάλων Δεδομένων, υπάρχουν πλέον
δυνατότητες για επίτευξη ακόμα μεγαλύτερου βαθμού παραλληλίας [KSH12]. Η υψηλή ζήτηση
για επιταχυντές σε επίπεδο υλικού, έχει οδηγήσει τους παρόχους υπολογιστικών νεφελωμάτων
να συμπεριλάβουν τέτοιες ειδικές συσκευές στις προσφορές τους (π.χ., Amazon’s EC2 Elastic
GPUs [amaa], FPGA instances [amab]).

Εκτός από την εγγενή δυσκολία για κλιμάκωση, ένα άλλο πρόβλημα που αντιμετωπίζουν
πολλές τεχνικές που είναι βασισμένες σε wavelets είναι ότι μπορούν να διαχειριστούν μόνο μο-
νοδιάστατα δεδομένα. Στην περίπτωση πολλαπλών διαστάσεων οι αλγόριθμοι που υπάρχουν
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Σχήμα 3: Παράδειγμα ροής κυλυομένου παραθύρου.

είναι τόσο ακριβοί που καθίστανται απαγορευτικοί για Μεγάλα Δεδομένα. Ωστόσο, η ύπαρξη
πολυδιάστατων δεδομένων είναι ένα συχνό φαινόμενο στις σύγχρονες, πραγματικές εφαρμογές
και η αδυναμία διαχείρισής του αποτελεί ένα βασικό εμπόδιο για την υιοθέτηση των wavelets.

Προκειμένου να προτείνει λύση στους παραπάνω περιορισμούς, η διατριβή αυτή εισά-
γει παράλληλους αλγορίθμους που κατασκευάζουν συνόψεις για μονοδιάστατα αλλά και για
πολυδιάστατα δεδομένα. Οι προτεινόμενοι αλγόριθμοι υλοποιούνται κι αξιολογούνται στην
κατανεμημένη πλατφόρμα επεξεργασίας Apache Hadoop.

0.3 Ροές Δεδομένων

Στις μέρες μας, οι ροές δεδομένων αποτελούν ένα ιδιαίτερα σημαντικό μέρος των συστημάτων
επεξεργασίας δεδομένων. Ένας βασικός περιορισμός στους αλγορίθμους ροών είναι η απαί-
τηση να κάνουν μια μοναδική προσπέλαση πάνω στα δεδομένα. Για να μπορούν να απαντάνε
σε διάφορα ερωτήματα χωρίς να παραβιάζουν αυτόν τον περιορισμό, οι αλγόριθμοι αυτοί συ-
χνά βασίζονται στην κατασκευή συνόψεων. Συνήθως οι συνόψεις αυτές καταλαμβάνουν πολύ
μικρό χώρο και πρέπει να μπορούν να ενημερωθούν και να ερωτηθούν σε πραγματικό χρόνο
(υπο-γραμμικό στο μεγεθος της εισόδου).

Επιπλέον, καθώς για πολλές εφαρμογές τα πιο πρόσφατα δεδομένα έχουν μεγαλύτερη α-
ξία, αποκτούν επίσης και μεγαλύτερη προτεραιότητα κατά την επεξεργασία. Τα στατιστικά
που ανακτούμε από συνόψεις για τα πιο πρόσφατα δεδομένα πρέπει να είναι υπολογισμένα με
μεγαλύτερη ακρίβεια από αυτά που υπολογίζουμε για παλαιότερες τιμές. Για τον σκοπό αυτό,
πολλά μαθηματικά μοντέλα έχουν προταθεί στη βιβλιογραφία [CS03]. Λαμβάνοντας υπόψιν
μόνο τιςW τελευταίες τιμές που έχει δει, το μοντέλο του κυλυομένου παραθύρου [DGIM02] είναι
ένα από τα πιο κατανοητά και εύκολα ερμηνεύσιμα. Το Σχήμα 3¹ αναπαριστά ένα παράδειγμα
όπου υπολογίζεται το άθροισμα των τιμών του παραθύρου. Οι μετρήσεις του αισθητήρα στην
πάνω γραμμή του σχήματος επεξεργάζονται από ένα κυλυόμενο παράθυρο μεγέθους τέσσερα
και βήματος δύο. Ο αλγόριθμος βγάζει ως έξοδο το άθροισμα των αντίστοιχων τιμών για κάθε
παράθυρο.

¹Πηγή εικόνας: https://flink.apache.org/news/2015/12/04/Introducing-windows.html
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Όπως είναι αναμενόμενο, μια εφαρμογή δεν μπορεί να αποθηκεύσει εξ’ ολοκλήρου μια άπει-
ρη ακολουθία τιμών. Ως εκ τούτου, τα παράθυρα είναι μια θεμελιώδης έννοια στην θεωρία της
επεξεργασίας ροών. Σε πολλές περιπτώσεις μάλιστα, μπορεί να μην είναι δυνατή η αποθήκευ-
ση στη μνήμη ακόμα και για τα στοιχεία ενός παραθύρου. Για παράδειγμα, τα ενσωματωμένα
συστήματα που συναντάμε συχνά σε IoT εφαρμογές μπορεί να έχουν μνήμη χωριτικότητας μερι-
κών MB. Ο υπολογισμός ενός μέσου όρου σε μια ροή δεδομένων που αποτελείται απο αριθμούς
μήκους 8 bytes ο καθένας, χρειάζεται 800 ΜΒ μνήμης (θεωρώντας ένα παράθυρο W = 100M

στοιχείων) τα οποία μπορεί να μην είναι διαθέσιμα. Επομένως συχνά καταφεύγουμε σε προ-
σεγγιστικές τεχνικές που κατασκευάζουν μια σύνοψη του παραθύρου.

Πολλοί αλγόριθμοι έχουν προταθεί για τον υπολογισμό διαφόρων στατιστικών χρησιμο-
ποιώντας το μοντέλο του κυλυομένου παραθύρου. Η πλειοψηφία των αλγορίθμων αυτών πετυ-
χαίνει πολυ-λογαριθμική πολυπλοκότητα στο μέγεθος του παραθύρου τόσο ως προς τον χρόνο
όσο και τον χώρο [DGIM02, GT02, QAEA03, XTB08]. Ωστόσο, το πρόβλημα δεν έχει μελετηθεί
επαρκώς στην περίπτωση των wavelets. Η διατριβή αυτή διερευνά την ικανότητα των wavelets
να προσεγγίσουν βασικά στατιστικά μεγέθη (COUNT, SUM, AVG) σε ροές δεδομένων κυλυο-
μένου παραθύρου.

0.4 Συνεισφορά της Διατριβής

Η πρώτη συνεισφορά αυτής της διατριβής είναι η παραλληλοποίηση αλγορίθμων για την κα-
τασκευή wavelet συνόψεων. Στο Κεφάλαιο 3 παρουσιάζονται αλγόριθμοι για την παραλλη-
λοποίηση μονοδιάστατων δεδομένων. Πιο συγκεκριμένα, παρουσιάζεται μια τεχνική για την
παραλληλοποίηση και κλιμάκωση όλων των αλγορίθμων δυναμικού προγραμματισμού που υ-
πάρχουν για το πρόβλημα. Η προτεινόμενη προσέγγιση βασίζεται σ’ ένα σχήμα διαμοιρασμού
των δεδομένων που επιτρέπει την παράλληλη επεξεργασία των γραμμών του πίνακα του δυ-
ναμικού προγραμματισμού. Για να δούμε τα αποτελέσματα της τεχνικής αυτής στην πράξη,
την εφαρμόζουμε σε έναν πολύ γνωστό αλγόριθμο [KSM07] και δημιουργούμε μια παράλληλη
εκδοχή του με πολύ καλύτερες ιδιότητες κλιμακωσιμότητας.

Καθώς όμως οι αλγόριθμοι δυναμικού προγραμματισμού είναι ακριβοί σε χρόνο και πόρους,
στην διατριβή αυτή προτείνονται επίσης δυο ευριστικοί αλγόριθμοι που βελτιώνουν τον χρόνο
εκτέλεσης με κάποιο κόστος στην ποιότητα των προσεγγιστικών αποτελεσμάτων. Οι αλγόριθ-
μοι αυτοί βασίζονται σε τρεις βασικές ιδέες: (i) ιεραρχικό διαμοιρασμό της δομής του wavelet
μετασχηματισμού, (ii) πολλαπλές εκτελέσεις του κεντρικού αλγορίθμου, και (iii) συγχώνευση
και φιλτράρισμα των ενδιάμεσων αποτελεσμάτων. Ο πρώτος ευριστικός αλγόριθμος που προ-
τείνεται στο Κεφάλαιο 3 χρειάζεται πολλές κατανεμημένες εκτελέσεις για να κατασκευάσει
τη σύνοψη. Για την περαιτέρω βελτίωση του χρόνου εκτέλεσης, προτείνεται ένας ακόμα αλ-
γόριθμος, ο οποίος απαιτεί μόνο μια κατανεμημένη εκτέλεση. Τα πειράματα που διεξήχθησαν
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δείχνουν ότι η επίδοση που επιτυγχάνουν και οι δύο ευριστικοί αλγόριθμοι είναι καλύτερη από
τους αντίστοιχους δυναμικού προγραμματισμού. Επιπλέον δεν παρουσιάζουν κάποια έκτπωση
στην ποιότητα του αποτελέσματος σε σχέση με τον κεντρικό ευριστικό GreedyAbs.

Όλοι οι αλγόριθμοι υλοποιήθηκαν στο Apache Hadoop και πραγματοποιήθηκε εκτενής πει-
ραματική αξιολόγηση χρησιμοποιώντας τόσο συνθετικά όσο και πραγματικά δεδομένα. Για
την αξιολόγηση αλγορίθμων πάνω στο συγκεκριμένο πρόβλημα, όλες οι προηγούμενες ερευνη-
τικές δουλειές έχουν χρησιμοποιήσει σύνολα δεδομένα που περιέχουν μέχρι 262Κ τιμές. Για να
δείξουμε τις ιδιότητες κλιμακωσιμότητας των προτεινόμενων αλγορίθμων, τα πειράματα που
διεξήχθησαν χρησιμοποιούν σύνολα δεδομένων που είναι μεγαλύτερα μέχρι και τρεις τάξεις
μεγέθους.

Στο Κεφάλαιο 4 οι προτεινόμενοι αλγόριθμοι για την κατασκευή συνόψεων επεκτείνονται
σε σύνολα δεδομένων πολλαπλών διαστάσεων. Πρώτα παρουσιάζεται ένας κεντρικός αλγό-
ριθμος δυναμικού προγραμματισμού που είναι ιδιαίτερα αποδοτικός και βασίζεται στον
IndirectHaar [KSM07]. Στη συνέχεια, δείχνουμε ότι η τεχνική που χρησιμοποιούμε για την
παραλληλοποίηση των αλγορίθμων δυναμικού προγραμματισμού σε μονοδιάστατα δεδομένα
μπορεί να εφαρμοστεί με μικρές παραλλαγές και σε δεδομένα πολλών διαστάσεων. Το ίδιο ι-
σχύει και για τους ευριστικούς αλγορίθμους του Κεφαλαίου 3. Δείχνω πώς μπορούν να επεκτα-
θούν ώστε να διαχειρίζονται πολυδιάστατα δεδομένα και παρουσιάζω μια θεωρητική ανάλυση
για τον χρόνο εκτέλεσής τους.

Στο Κεφάλαιο 5 εξετάζεται η αποδοτικότητα των wavelets σε περιπτώσεις ροών δεδομέ-
νων κυλυομένου παραθύρου. Παρότι λαμβάνονται υπόψιν και σημειακά ερωτήματα αλλά και
ερωτήματα σε διαστήματα τιμών, δίνεται ιδιαίτερη έμφαση στην περίπτωση συναθροιστικών
ερωτημάτων όπως COUNT, SUM και AVG. Αυτά είναι τα πιο χαρακτηριστικά ερωτήματα σε
κυλυόμενα παράθυρα και η επίδοση των wavelets στην περίπτωση αυτή δεν έχει ερευνηθεί ε-
παρκώς στο παρελθόν.

Πιο συγκεκριμένα, θεωρώ ένα περιβάλλον κυλυομένου παραθύρου και παρουσιάζω και-
νούριους wavelet αλγορίθμους για τον υπολογισμό ερωτημάτων πάνω σε διαστήματα τιμών.
Η πολυπλοκότητα των αλγορίθμων αυτών αναλύεται θεωρητικά, όπως επίσης παρέχονται και
αιτοκρατικές εγγυήσεις για τα σφάλματα των προσεγγίσεων. Οι προτεινόμενοι αλγόριθμοι
εφαρμόζονται επίσης σε ένα κατανεμημένο περιβάλλον όπου πολλαπλές ροές δεδομένων υπο-
λογίζουν ατομικά, η καθεμιά τη σύνοψή της και υπάρχει ένας μοναδικός κόμβος-συντονιστής
που συχγωνεύει τις συνόψεις σε πραγματικό χρόνο και υπολογίζει απαντήσεις ερωτημάτων
πάνω στην ένωση των ροών. Η πειραματική αξιολόγηση σε συνθετικά και πραγματικά δεδο-
μένα δείχνει ότι για μια πληθώρα περιπτώσεων, οι αλγόριθμοι που παρουσιάζονται σε αυτήν
τη διατριβή υπερτερούν σε ακρίβεια σε σχέση με άλλες γνωστές τεχνικές όπως τα εκθετικά
ιστογράμματα. Επιπλέον, στο Κεφάλαιο 5 παρουσιάζεται κι ένα σύστημα το οποίο βελτιώνει
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περαιτέρω την ακρίβεια των αποτελεσμάτων δοθέντων επιπλέον πληροφοριών σχετικά με τον
φόρτο των ερωτημάτων.



CHAPTER 1

Introduction

This dissertation introduces efficient wavelet-based algorithms that enable approximate query
processing (AQP) over big data. In the following, the rationale behind this work is presented.
Why AQP, why wavelets and what cases are covered in this thesis are some of the questions I
try to answer in this introductory Chapter.

1.1 Motivation

The technological and societal developments of our era have resulted in an unprecedented pro-
duction and processing of enormous data volumes, referred to with the term ‘Big Data’ [big].
Businesses, government organizations and digital infrastructures alike contribute to this Big
Data reality. This abundance of datasets has, in turn, given rise to data-driven approaches in
both academia and industry.

Following the OLAP paradigm [CD97], modern data analytics applications involve comput-
ing aggregates over a large number of records and along a variety of different dimensions. For
instance, a financial trading firm needs to compare the prices of securities to historical averages
of various granularities in order to determine items that are under- or over-valued. Computing
such averages has been traditionally accomplished via sequential scans of large fractions of a
database. Yet, there exist cases where existing data processing tools have become the bottleneck
and such scan operations can become extremely expensive. When huge heterogeneous data is
the case, even the fastest database systems can take hours or even days to answer the simplest of

11
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Figure 1.1: The “Data Deluge” gap according to the HiPEAC VISION 2015 report.

queries. Computing a simple average over 10 terabytes of data stored on 100 machines can take
in the order of 30 - 45 minutes on Hadoop if the data is striped on disks, and up to 5 - 10 minutes
even if the entire data is cached in memory [AMP+13].

As data-driven discovery is often an interactive and iterative process [Moz15], such response
times are unacceptable to most users and applications. In another example, data analysts in a re-
tail enterprise slice and dice their sales data to understand the sales performance along different
dimensions (such as product and geographic location) using a varying set of filtering conditions.
Interactive query response time is critical in such data exploration; human analysts should be
able to rapidly iterate between hypotheses and evidence. Studies in human-computer interac-
tion show that the analyst typically loses the analysis context if the response time is above one
second [Shn84]. In order to meet the demands of interactive, human-in-the-loop data analytics,
both commercial and open source systems continuously strive to provide lower response times
through various techniques such as parallelism, indexing, materialization and query optimiza-
tion.

Traditionally, most of the aforementioned approaches try to better utilize available memory.
However, keeping all useful data in main memory may not be an affordable or realistic option in
the Big Data era. Buying memory that is big enough to hold the entire dataset does not consist
an affordable option. Furthermore, if it is too expensive now, it will be even more expensive to
do so next year. Hardware, including memory, is expected to improve or get cheaper according
to Moore’s law. In Figure 1.1, we can see that the data growth has already surpassed that rate.
In a real-world testimony, Facebook reported [fbr] that within a year, it has seen a 3× growth in
the amount of stored data, with an incoming daily rate of 600 TB.

Caching techniques mitigate the problem, as they only store hot data in memory. Neverthe-
less, even caching only a working-set of some GB does not do the trick. Analytics usually include



1.1. Motivation 13

iterative processes, where different data may be of interest at each iteration. Loading different
parts of the dataset each time incurs significant I/O delays that may be not acceptable.

Memory is even more stressed in the case of stream processing. A significant part of the digi-
tal information currently produced comes in the form of data streams, i.e., continuous sequences
of items. Applications that require real-time processing of high-volume data steams are pushing
the limits of traditional data processing infrastructures. In [SÇZ05], Stonebraker et al. have de-
fined the 8 requirements for stream processing systems. According to the first requirement, in
order to achieve low latency, a system must be able to perform message processing without hav-
ing a costly storage operation in the critical processing path. Unlike conventional database query
processing that allows several passes over static data, data-stream processing algorithms often
rely on a single pass over the stream. The requirement of real-time processing of continuous data
in high-volumes has triggered a flurry of research activity in the area. Some typical applications
include sensor networks [CÇC+02, MF02, YG+03], datacenter monitoring [GGRS07], financial
data trackers [ZS02], and real-time analysis of various transaction logs [CFPR00].

ANY 
TWO

FAST

ACCURATEBIG
Figure 1.2: Trade-off among data volume, query response time and accuracy in the results.

ApproximateQuery Processing has emerged as a viable alternative for dealing with the huge
amount of data and the increasingly stringent response-time requirements [CGRS01]. Due to
the exploratory nature of many data analytics applications, there exists a number of scenarios
in which an exact answer is not required; we are interested in discovering statistical patterns
rather than obtain answers precise to the last decimal. For example, during a drill-down query
sequence in ad-hoc data mining, initial queries in the sequence frequently have the sole purpose
of determining the truly interesting query regions of the dataset [HHW97]. Thus, in these initial
queries, we are willing to forgo accuracy in favor of better response-times. AQP provides a
trade-off between accuracy, execution-time and memory consumption. This trade-off is depicted
in Figure 1.2: If we wish to achieve fast responses, we either reduce the size of the data or the
accuracy of the result. If we want accurate results, we need to compromise on time or data
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volumes. By visualizing the trade-off, analysts can fine-tune the execution of queries [TK15].
Moreover, approximate answers obtained from appropriate synopses of the data may be the only
option when the base data is remote or unavailable [AFTU97].

To that end, several approximation techniques have been developed, including: sampling
[AMP+13, GM98, AGPR99b], histograms [IP99, GMP97, JKM+98], sketches [GKMS01, AMS96]
and wavelets [CGRS01, GK04, KM05, KSM07, KM07]. Apart from the numerous research ef-
forts, various industrial vendors have realized the necessity for AQP and have added approxi-
mation features in their products (e.g., Facebook’s Presto [pre], Yahoo’s Druid [yah], SnappyData
[RMW+16], and Oracle 12C [SZB+16]).

A random sample comprises a “representative” subset of the data values of interest, obtained
via a stochastic mechanism. Samples are usually fast to obtain, and can be used to approxi-
mately answer a wide range of queries. Due to their efficient computation and wide applicabil-
ity, sampling techniques are employed by the majority of AQP systems. To name a few, BlinkDB
[AMP+13], VerdictDB [PMSW18], Quickr [KSV+16] mostly work with samples.

A histogram summarizes a dataset by grouping the data values into subsets, or “buckets”, and
then, for each bucket, computes a small set of summary statistics. Histograms have been exten-
sively studied and have been incorporated into the query optimizers of virtually all commercial
relational DBMSs [mss, mar, ora].

Sketch summaries are particularly well suited to streaming data, they are massively paral-
lelizable and easily composable. They can accommodate streams of transactions in which data
is both inserted and removed. Sketches have also been successfully used to estimate the answer
in COUNT DISTINCT queries, a notoriously hard problem in stream processing. Due to their
nice properties, sketches have been incorporated in industrial streaming systems. For example,
SnappyData [RMW+16] uses Count-Min sketches [CM05] to compute top-k queries on streams.
Yahoo Druid [yah] uses sketches for computing COUNT DISTINCT and quantile queries. There
is also an active effort to integrate sketches in the Apache Flink ¹ system [fli]. While they par-
ticularly fit in the streaming case, sketches have also been used in batch processing systems too.
For example, Apache Hive ² offers a variety of sketching algorithms as built-in functions [yah].

Wavelet decomposition [SDS96] provides a very effective data reduction tool, with appli-
cations in data mining [LLZO02], selectivity estimation [MVW98], approximate and aggregate
query processing ofmassive relational tables [CGRS01, VW99] and data streams [GKMS03, CGS06].
In simple terms, a wavelet synopsis is extracted by applying the wavelet decomposition on an
input collection (considered as a sequence of values) and then summarizing it by retaining only a
subset of the produced wavelet coefficients. The original data can be approximately reconstructed

¹https://flink.apache.org/
²https://hive.apache.org/



1.2. Wavelet Synopses Over Static Data 15

based on this compact synopsis. Previous research has established that reliable and efficient ap-
proximate query processing can then be performed solely over such concise wavelet synopses
[CGRS01].

However, wavelet-based techniques have hardly been adopted in practice for AQP purposes.
There are only a few academic prototypes (e.g., [SJBK08, MP04]) that approximate aggregates
based on wavelets and, to the best of my knowledge, no industrial product. In this dissertation,
I discuss the shortcomings of existing wavelet-based synopsis construction algorithms and pro-
pose new ones that unleash the power of wavelets and render them “affordable” in the Big Data
era. As different scenarios have different demands, this thesis covers the cases of both static and
streaming data.

1.2 Wavelet Synopses Over Static Data

The wavelet decomposition of a data vector A is a representation of equal size as the original
array. Wavelet thresholding is the problem of determining the coefficients to be retained in the
synopsis given an available space budget B. A conventional approach to this problem features
a linear-time deterministic thresholding scheme that minimizes the overall mean squared error
[SDS96]. Still, the synopses produced by this method exhibit significant drawbacks [GK04], such
as the high variance in the quality of data approximation, the tendency for severe bias in favor
of certain regions of the data and the lack of comprehensible error guarantees for individual
approximate answers. On the other hand, synopses that minimize maximum error metrics on
individual data values prove more robust in accurate data reconstruction [GG02, GK04].

However, the existing algorithms that minimize non-Euclidean error metrics in point queries
are strictly centralized and are usually based on dynamic programming (DP) approaches that
demand a lot of memory and processing power. The same also holds for algorithms that optimize
more complex queries such as hierarchical range queries [GPS08]. Featuring super-quadratic
complexities, all these algorithms fail to scale to big datasets.

In [KM05], GreedyAbs, a heuristic solution is proposed. This algorithm is more time-efficient
than the DP algorithms but at the cost of loosened quality guarantees. Yet, it cannot scale to Big
Data either, as it follows a sequential path of execution that prevents a data-parallel approach.

The reason why data-parallel algorithms are of paramount importance lies behind the ar-
chitecture of the available data processing systems. Modern analytics usually take place in dis-
tributed, scale-out platforms such as Apache Hadoop ³ and Spark ⁴. These systems can dispatch
multiple concurrent tasks across the workers of a cluster and we need to take advantage of that
capability. Furthermore, with hardware accelerators becoming extremely popular for Machine

³https://hadoop.apache.org/
⁴https://spark.apache.org/
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Figure 1.3: Example of a sliding-window stream.

Learning and Big Data Analytics workloads, there are massive capabilities for parallel execution
[KSH12]. The high demand for hardware accelerators has led cloud vendors to include special-
ized devices in their offerings, alongside general purpose CPUs (e.g., Amazon’s EC2 Elastic GPUs
[amaa] or FPGA instances [amab]).

Apart from their inherent difficulty in scaling-out, another shortcoming of existing wavelet
techniques is that most of them handle strictly one-dimensional data and come at a prohibitive
complexity when more dimensions are involved. Nevertheless, multidimensional datasets are a
common case in real-world applications and such a limitation makes the use of wavelets imprac-
tical.

To address all the aforementioned limitations, this dissertation introduces parallel algorithms
that construct wavelet synopses for both one- and multi-dimensional data. The proposed algo-
rithms are implemented and evaluated on top of the Apache Hadoop processing framework.

1.3 The Streaming Case

Nowadays, streams are a first class citizen in data processing infrastructures. Streaming algo-
rithms are generally restricted to allow only a single pass over the data. In order to achieve this,
they often rely on building real-time, concise synopses of the underlying streams. These syn-
opses typically need small space, update and query time (sub-linear to the input size) and can be
used to provide approximate, yet accurate answers.

Furthermore, as for most applications there is more value in real-time information, recent
data tend to be prioritized; statistics in fresh data items should be represented with higher pre-
cision than in older ones. For this purpose, various time-decay models have been proposed in
the literature [CS03]. The sliding-window model [DGIM02] is one of the most intuitive ones as
it only considers the most recent data items seen so far. Figure 1.3⁵ illustrates an example of a
sliding-window stream, where a SUM aggregation takes place. The sensor measurements of the
topmost row are processed in a sliding window of length four and slide-step two. The algorithm
outputs the sum of the corresponding elements for each window.

⁵image source: https://flink.apache.org/news/2015/12/04/Introducing-windows.html
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Windows are a central concept in stream processing because an application cannot store an
infinite stream in its entirety. Nevertheless, in many cases, even storing only a window may
not be an option. For example, embedded devices, that are often met in IoT scenarios, have a
memory capacity of only a few MB. Keeping track of the average value in a stream of 8 byte long
numbers and a window size ofW = 100M data elements requires 800 MB of RAM which may
not be available. Therefore, approximation techniques that summarize a sliding-window should
be employed.

Several algorithms have already been proposed for maintaining different types of statis-
tics over sliding-windows while requiring time and space poly-logarithmic to the window size
[DGIM02, GT02, QAEA03, XTB08]. However, the problem has not attracted much attention
when using wavelets. In this dissertation, I investigate the capacity of wavelets to efficiently
approximate basic aggregates over a data stream under the sliding-window model. I focus on
COUNT, SUM and AVG queries, since more complex queries in sliding-windows usually need to
compute such basic aggregates under the hood [PGD12].

1.4 Contributions

The first contribution of this thesis is the parallelization of wavelet thresholding algorithms over
large-scale, static, one-dimensional data (Chapter 3). More specifically, a general theoretical
framework is presented for scaling-out the existing DP algorithms for the problem. The pro-
posed approach is based on a novel partitioning scheme that allows for the parallel processing
of DP table rows. In order to demonstrate the benefits of this framework, it is applied on the
state-of-the-art DP algorithm [KSM07] and a new parallel algorithm with much better scalabil-
ity properties is produced.

However, as DP algorithms are quite costly, two heuristic-based algorithms that improve on
the running-time at the cost of loosened error guarantees are also proposed. The first heuristic
algorithm follows three key-ideas: 1) hierarchical partitioning of the wavelet structure, 2) multi-
ple executions of the centralized algorithm, and 3) merging and filtering of intermediate results.
Nevertheless, as it initiates multiple distributed jobs, I further improve on its running-time and
also propose a second heuristic algorithm that requires only a single job for constructing the
synopsis. The conducted experiments show that the achieved performance of both distributed
greedy algorithms exhibits no quality degradation compared to their centralized counterpart.

All algorithms are implemented on top of the Hadoop processing framework and an ex-
tensive experimental evaluation is performed using both synthetic and real datasets. Previous
approaches to the problem used datasets of up to 262K datapoints. To put emphasis on the scala-
bility properties of this work, experiments with datasets larger by three orders of magnitude are
conducted.
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After analyzing the problem for the one-dimensional case, the proposed ideas are extended
to also handle datasets of multiple dimensions (Chapter 4). First, a new centralized, multidi-
mensional algorithm based on IndirectHaar [KSM07] is presented. Then, it is shown that the
proposed framework for parallelizing DP algorithms can be applied in that case too. The pro-
posed heuristic algorithms for one-dimensional data are also extended and a complete theoretical
analysis for the multidimensional case is provided.

In Chapter 5, I investigate the efficiency of wavelets for summarizing a sliding-window
stream. While workloads of both point and range queries are considered, particular empha-
sis is put on basic aggregates such as COUNT, SUM and AVG. This is the most common query
type in the sliding-window context and the performance of streaming wavelets in such queries
has not been studied before.

Specifically, new wavelet-based algorithms are presented for answering range queries over a
single stream in the sliding-window model. The complexity of these algorithms is theoretically
analyzed and deterministic error guarantees are provided. The proposed approach is also applied
and validated in a distributed setup, where multiple streams compute individual synopses and
a single coordinator merges them in real-time to produce global answers. The experimental
evaluation, in both synthetic and real data, shows that the work of this thesis outperforms in
terms of accuracy state-of-the-art techniques such as exponential histograms and deterministic
waves for a variety of workloads. Moreover, this dissertation also introduces a system that can
further improve on accuracy, given some information about the query workload.

1.5 Document Outline

The remainder of this document is organized as follows. Chapter 2 provides the mathematical
background needed for the understanding of the presented ideas.

Chapter 3 deals with the parallelization of algorithms that construct optimal synopses over
one-dimensional data. Section 3.2 presents a theoretical framework for the parallelization of DP
algorithms and discusses its application on top of the Hadoop processing platform as well as
on top of GPU accelerators. Section 3.3 introduces parallel greedy algorithms for the problem.
These algorithms achieve better a running-time at the cost of loosened quality guarantees. A
thorough experimental evaluation for wavelet algorithms over static, one-dimensional data is
presented in Section 3.5.

Chapter 4 extends the proposed algorithms to multiple dimensions. Both optimal and heuris-
tic algorithms are presented for the construction of synopses over multidimensional datasets.
Section 4.2 presents the optimal algorithm, Section 4.3 the heuristic one and in Section 4.4 there
is a qualitative discussion. In Section 4.5, the experimental evaluation for the multidimensional
case is presented.
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While up to this point, all algorithms target batch processing scenarios, Chapter 5 introduces
wavelet-based techniques for streams. Section 5.2 describes an algorithm that can efficiently
approximate range queries under the sliding-windowmodel. Extra improvements for the case we
have workload information are presented in Section 5.6 and an extension to distributed streams
can be found in Section 5.4. An experimental evaluation of the proposed streaming algorithms
is presented in Section 5.7.

Chapter 6 contains a thorough literature review related to approximate query processing.
Some important research works in the domain are listed and classified according to the em-
ployed technique. Of course, particular emphasis is put on wavelet-based techniques in order to
highlight the contributions of this thesis.

Finally, the contributions of this work are summarized in Chapter 7.
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CHAPTER 2

Mathematical Background

Wavelet analysis is a major mathematical technique for hierarchically decomposing functions in
an efficient way. Wavelets are functions which have prescribed smoothness, are well localized
in both time and frequency, and form well-behaved bases for many of the important function
spaces of mathematical analysis. What makes wavelet bases especially interesting is their self-
similarity: every function in a wavelet basis is a dilated and translated version of one (or possibly
a few) mother functions.

The wavelet decomposition of a function consists of a coarse overall approximation together
with detail coefficients that influence the function at various scales [SDS96]. All wavelet co-
efficients are of the form: ⟨A,ϕl,k⟩, where A represents the input data. As such, the wavelet
decomposition is computationally efficient (linear time) and has excellent energy compaction
and decorrelation properties, which can be used to effectively generate compact representations
that exploit the structure of data.

2.1 One-Dimensional Haar Wavelets

Haar wavelets constitute the simplest possible orthogonal wavelet system. Assume a onedimen-
sional data vector A containingN = 8 data valuesA = [5, 5, 0, 26, 1, 3, 14, 2]. The Haar wavelet
transform of A can be computed as follows: We first average the values in a pairwise fashion
to get a new “lower-resolution” representation of the data with the following average values:
[5, 13, 2, 8]. The average of the first two values (i.e., 5 and 5) is 5, the average of the next two values

21
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Table 2.1: Wavelet decomposition example
Resolution Averages Detail Coef.

3 [5, 5, 0, 26, 1, 3, 14, 2] –
2 [5, 13, 2, 8] [0,−13,−1, 6]

1 [9, 5] [−4,−3]

0 [7] [2]

(i.e., 0 and 26) is 13, etc. It is obvious that, during this averaging process, some information has
been lost and thus the original data values cannot be restored. To be able to restore the original
data array, we need to store some detail coefficients that capture the missing information. In Haar
wavelets, the detail coefficients are the differences of the (second of the) averaged values from
the computed pairwise average. In our example, for the first pair of averaged values, the detail
coefficient is 0 (since 5 − 5 = 0) and for the second is −13 (13 − 26 = −13). After applying
the same process recursively, we generate the full wavelet decomposition that comprises a single
overall average followed by three hierarchical levels of 1, 2, and 4 detail coefficients respectively
(see Table 2.1). In our example, the wavelet transform (also known as the wavelet decomposition)
of A is WA = [7, 2,−4,−3, 0,−13,−1, 6]. Each entry in WA is called a wavelet coefficient.
The main advantage of using WA instead of A is that, for vectors containing similar values,
most of the detail coefficients tend to have very small values. Therefore, eliminating such small
coefficients from the wavelet transform (i.e., treating them as zeros) introduces only small errors
when reconstructing the original array and thus results to a very effective form of lossy data
compression.

2.1.1 Error-Trees

7

2

-4 -3

0 -13 -1 6

5 5 0 26 1 3 14 2
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Figure 2.1: An error-tree that illustrates the hierarchical structure of the Haar wavelet decom-
position
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The error-tree, introduced in [MVW98], is a hierarchical structure that illustrates the key
properties of the Haar wavelet decomposition. Figure 2.1 depicts the error-tree for our simple
example data vectorA. Each internal node ci (i = 0, ..., 7) is associatedwith awavelet coefficient
value, and each leaf di (i = 0, ..., 7) is associated with a value in the original data array. Given
an error-tree T and an internal node ck of T, we let leavesk denote the set of data nodes in the
subtree rooted at ck. This notation is extended to leftleavesk (rightleavesk) for the left (right)
subtree of ck. We denote pathk as the set of all nodes with nonzero coefficients in T which lie
on the path from a node ck (dk) to the root of the tree T. Moreover, for any two data nodes dl
and dh, we use d (l : h) to denote the range sum

∑h
i=l di.

Given the error-tree representation of a one-dimensional Haar wavelet transform, we can
reconstruct any data value di using only the nodes that lie on pathi. That is

di =
∑

cj∈pathi

δij · cj , δij =

1 di ∈ leftleavesj
−1 otherwise

For example, in Figure 2.1, value d5 = 7 − 2 − 3 − (−1) = 3. A range sum d(l : h) can be
computed using only nodes cj ∈ pathl ∪ pathh, by d(l : h) = Σcj∈pathl∪pathh

xjcj , where

xj =

(h− l + 1) j = 0(
|leftleavesj,l:h| − |rightleavesj,l:h|

)
otherwise

(2.1)

Here, leftleavesj,l:h = leftleavesj ∩ {dl, dl+1, .., dh} and rightleavesj,l:h = rightleavesj ∩
{dl, dl+1, .., dh}. That means that node cj contributes to the range sum d (h : l) positively as
many times as there are leaf nodes of the left sub-tree of cj in the summation range, and neg-
atively as many times as there are leaf nodes of the right sub-tree of cj , while the value of c0
contributes positively for each leaf node in the summation range. In our example, d (3 : 6) =

−1 · (−13) + (−1) · (−4) + (−2) · 2 + 4 · 7 + 1 · (−3) + 6 = 44.
Thus, reconstructing a single data value involves summing at most logN +1 coefficients and

reconstructing a range sum involves summing at most 2logN + 1 coefficients, regardless of the
width of the range.

2.2 Multidimensional Haar Wavelets

The Haar wavelet decomposition can be extended to multiple dimensions using two distinct
methods, namely the standard and nonstandard decomposition [CGRS01]. Each of these trans-
forms results from a natural generalization of the one-dimensional decomposition. Considering
a D-dimensional array A of sizeN , whereN is the number of datapoints, the wavelet transform
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produces a D-dimensional arrayWA of the same shape withA. To simplify the exposition to the
basic ideas of multidimensional wavelets, we assume all dimensions of the input array to be of
equal size.

The work presented in this thesis is based on the nonstandard decomposition. Abstractly, the
nonstandard decomposition alternates between dimensions during successive steps of pairwise
averaging and differencing: given an ordering for the data dimensions (1, 2, ..., D), we perform
one step of pairwise averaging and differencing for each one-dimensional row of array cells along
dimension k, ∀k ∈ [1, D]. The results of earlier averaging and differencing steps are treated as
data values for larger values of k. One way of conceptualizing this procedure is to think of a 2D

hyper-box being shifted across the data array, performing pairwise averaging and differencing.
We then gather the average value of each individual 2D hyper-box and we form a new array
of lower resolution. The process is then repeated recursively on the new array. An example of
this process for a two-dimensional 4× 4 data array is illustrated in Figure 2.2. We demonstrate
the process for the lower left quadrant of the array. Initially, we have the values: 1, 4, 9 and
6. By pairwise averaging and differencing along the first dimension we get: (1 + 4)/2 = 2.5,
(1 − 4)/2 = −1.5 and (9 + 6)/2 = 7.5, (9 − 6)/2 = 1.5. The quadrant is now transformed to
the values: 2.5, −1.5, 7.5, 1.5. We repeat the same process along the second dimension and we
have: (2.5+7.5)/2 = 5, (2.5−7.5)/2 = −2.5 and (−1.5+1.5)/2 = 0, (−1.5−1.5)/2 = −1.5

and the quadrant is transformed to the values: 5, 0,−2.5,−1.5 as shown in Figure 2.2. We apply
the same process on the other three quadrants of the array in order to complete the first level of
the wavelet decomposition. In the next step, we gather the computed averages of each hyperbox
(highlighted with grey color) and this way we form an array of lower resolution as shown in the
3rd step of Figure 2.2. We then repeat the same procedure for the next level of resolution. More
information about the wavelet transform can be found in [CGRS01].

Error tree structures are also defined for multidimensional Haar wavelets and can be con-
structed (once again in linear time) in a manner similar to the one-dimensional case. Neverthe-
less, the semantics and structure are somewhat more complex. Figure 2.3 illustrates the error-
tree structure for the two-dimensional decomposition presented above, annotated with the sign-
information for each coefficient. A major difference is that in a D-dimensional error-tree, each
node t (except for the root) contains a set of 2D − 1 wavelet coefficients cti that have the same
support region but different signs andmagnitudes for their contribution. Furthermore, each node
t in a D-dimensional error-tree has 2D children corresponding to the quadrants of the support
region of all coefficients in node t. The sign of each coefficient’s contribution (sign (j, i)) to the
j-th child of node t is determined by the coefficient’s position in the 2D-hyperbox. Coefficients
located in the same position of different 2D-hyperboxes will be assigned the same internal in-
dex. Thus, internal indexing determines the sign of contribution of a coefficient cti to each child
of node t. For example, we observe in Figure 2.3 the sign-information for the first coefficient
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Figure 2.2: Example of two-dimensional Haar wavelet decomposition

of each node (internal index 0). Every coefficient with internal index equal to zero contributes
positively to the first and third child and negatively to the second and fourth.
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Figure 2.3: Two-dimensional error-tree. Each node contains 22 − 1 = 3 coefficients and has
22 = 4 children. The numbers in red color indicate the coefficients’ indexing within a node.

Based on the above generalization of the error-tree structure to multiple dimensions, we can
naturally extend the formula for data-value reconstruction to multidimensional Haar wavelets.
Once again, the reconstruction of a data-value di depends only on the coefficients for all error-
tree nodes ∈ pathdi , where the sign of the contribution for each coefficientW in node t ∈ pathdi
is determined by the sign-information forW.Thus, in our example of Figure 2.3,A[0, 1] = 5.125−
0.125 + 0.875− 0.875− 2.5− (−1.5) = 4.
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Table 2.2: Notation

Symbol
i∈0..N-1

Semantics

A Input data array
WA Wavelet transform array
N Number of datapoints
D Number of dataset dimensions
B Target size of synopsis
Ti Error tree rooted at node i
TL (ci)
(TR (ci))

Sub-tree rooted at left (right) child of node i

di Data value at cell i of the data array
d̂i Reconstructed data value at cell i
leavesi Set of data nodes in Ti
ci Wavelet coefficient at cell i
M Matrix used by DP algorithm
erri Signed accumulated error for di
R Size of the root subtree
S Size of a base subtree

2.3 The Haar Wavelet Basis for RN

In the previous Sections of this Chapter, we understood how the HaarWavelet Transform (HWT)
works, we saw an efficient process for constructing it and we also saw how original data values
can be reconstructed. Here, I provide a more formal mathematical presentation of the transform.
The formalism used in this Section and the described computations are particularly useful in
stream processing cases.

Let us consider an array A of N data values; that is A ∈ RN . The mathematical founda-
tion of HWT relies on vector inner-product computations over the vector space RN using the
Haar wavelet basis. In general, a wavelet basis {ϕi}N−1

i=0 for RN is a basis where each vector is
constructed by dilating a single function, referred to as the mother wavelet ϕ. The Haar mother
wavelet is defined as:

ϕH (t) =


1 0 ≤ t < 1

2

−1 1
2 ≤ t < 1

0 otherwise.

The following Lemma describes the required dilation and translation process over ϕH in
order to create the Haar wavelet basis vectors.



2.3. The Haar Wavelet Basis for RN 27

Lemma 1. The Haar wavelet basis for RN is composed of the vectors

ϕl,k[i] =

√
2l

N
· ϕH

(
i− k · 2logN−l

2logN−l

)
=

√
2l

N
· ϕH

(
i · 2l − kN

N

)
where i ∈ [0, N − 1], l = 0, ..., logN − 1 and k = 0, ..., 2l − 1, plus their orthonormal

complement vector ψN = 1√
N
1N ¹.

Note that theϕl,k vectors are essentially dilated and translated versions of themotherwavelet
function ϕH over the corresponding Rl,k dyadic support intervals. To simplify notation, we
denote the Haar wavelet basis of RN as the collection of vectors {ϕi : i = 0, ..., N−1}, where
ϕ0 = ψN and ϕi = ϕl,k with l = ⌊logi⌋ and k = i−2⌊logi⌋ for i = 0, ..., N−1. Considering this
notation, the Haar wavelet coefficients can be defined based on the following Lemma:

Lemma 2. Each of the (normalized) coefficients c∗i , i = 0, ..., N−1 in the HWT of the data array

A ∈ RN can be expressed as the inner product of A with the corresponding Haar basis vector ϕi,

i.e.,

c∗i = ⟨A,ϕi⟩ =
N−1∑
j=0

A[j]ϕi[j].

It can be shown that the above Haar vector basis {ϕi} i = 0, ..., N−1 is an orthonormal basis
of RN . For any pair of basis vectors ϕk, ϕl, it holds that ⟨ϕk, ϕl⟩ = 1 if k = l and 0 otherwise.
The reconstruction of the original data array A ∈ RN is then based on the linear combination of
the Haar wavelet basis vectors and the corresponding HWT coefficients. More formally:

A =

N−1∑
j=0

c∗iϕi

.
Haar wavelets are also an example of a wavelet system with compact support. The notion of

compact support is described in Lemma 3.

Lemma 3. A wavelet system is considered to have compact support if for any any basis vector ϕk
there exists a closed interval I = [a, b] such that ϕk[x] = 0 for any x ̸∈ I .

Haar wavelets, discovered in 1910, were the only known wavelets of compact support until
the discovery of the Daubechies wavelet families in 1988 [Dau92].

¹1N denotes the N -vector whose entries are all equal to 1.
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2.4 Wavelet Thresholding

The complete Haar wavelet decompositionWA of a data arrayA is a representation of equal size
as the original array. Given a budget constraint B < N , the problem of wavelet thresholding is
to select a subset of at most B coefficients that minimize an aggregate error measure in the re-
construction of data values. The non-selected coefficients are implicitly set to zero. The resulting
wavelet synopsis ŴA can be used as a compressed approximate representation of the original
data. For assessing the quality of a wavelet synopsis, many aggregate error-measures have
been proposed [CGHJ12]. Among the most popular metrics are the mean squared error (L2), the
maximum absolute error and the maximum relative error :

L2

(
WA, ŴA

)
=

√√√√ 1

N

N∑
i=1

(
d̂i − di

)2
(2.2)

max_abs
(
WA, ŴA

)
= maxNi=1

{
|d̂i − di|

}
(2.3)

max_rel
(
WA, ŴA

)
= maxNi=1

{
|d̂i − di|

max{|di|, S}

}
(2.4)

In the above equations, d̂i denotes the approximate value for datapoint di and S is a sanity
bound used to prevent the influence of very small values in the aggregate error [VW99, GG02,
GK04].

A preliminary approach to the thresholding problem is based on two basic observations about
a coefficient’s contribution in the reconstruction of the original data values. The first observa-
tion is that coefficients of larger values are more important, since their absence causes a larger
absolute error in the reconstructed values. Second, a coefficient’s significance is larger if its
level in the error-tree is higher, as it participates in more reconstruction paths of the error-tree.
Putting both together, the significance c∗i of a coefficient is defined by c∗i = |ci|/

√
2level(ci),

where level (ci) denotes the level of resolution at which the coefficient resides (0 corresponds to
the “coarsest” resolution level).

Accordingly, the conventional thresholding scheme is a greedy algorithm that retains the B
largest normalized wavelet coefficients; that is those with the greatest significance. It has been
shown [SDS96] that this approach minimizes the L2-error. By the orthonormality of the Haar
wavelet basis, the HWT preserves the Euclidean length or L2-norm of any vector (Parseval’s
Theorem) [Mal99, SDS96]; then, for the error vector we have:
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L2

(
A, Â

)
= ∥A− Â∥2 =

√√√√N−1∑
i=0

(
A[i]− Â[i]

)2
=

√ ∑
c∗i∈ŴA

(c∗i )
2 = L2

(
WA, ŴA

)
(2.5)

Thus, minimizing the L2-norm in the wavelet domain also results in its minimization in the
domain of the original data. Nevertheless, the minimization of the L2-error does not provide
maximum error guarantees for individual approximate answers. As a result, the approximation
error of individual values can be arbitrarily large, resulting into high variance in the quality
of data approximation and severe bias in favor of certain regions of the data. This problem is
particularly striking whenever a series of omitted coefficients lies along the same path of the
error-tree. Maximum error metrics are more robust [GG02, GK04], since they set a maximum
error guarantee on individual values. The problem of minimizing maximum error metrics can be
formulated as follows:

Problem 1 (Wavelet Thresholding for Non L2-errors). Given a data array A of size N and a

budget B, construct a representation ŴA of A that minimizes a maximum error metric, while it

retains at most B non-zero coefficients.

In order to assist the discussion of some algorithms, a definition of the dual of Problem 1 is
also provided:

Problem 2 (Dual Problem). Given a data array A of size N and an error bound ϵ, construct a

representation ŴA of A such that max_abs ≤ ϵ and the number of non-zero entries s∗ in ŴA is

minimized.

In this dissertation, I focus on designing algorithms for Problem 1 that can specifically scale
in Big Data scenarios. The majority of existing algorithms for the problem are of quadratic com-
plexity and either need to load the whole dataset in memory or operate on a small working set
and make very frequent disk accesses to update it. The increasing sizes of data to be processed
render centralized approaches unusable in terms of performance and scalability. To overcome
these shortcomings, in this thesis, novel parallel algorithms are proposed. The initial problem is
decomposed to smaller local sub-problems which are solved in parallel and partial solutions are
derived; we then utilize these solutions to derive the final one.

As we are going to see in Chapter 3, to demonstrate the benefits of the proposed approach,
I apply it on a state-of-the-art DP algorithm [KSM07]. As the algorithm of [KSM07] makes use
of unrestricted Haar wavelets, in the next Section, a presentation of unrestricted wavelets is
provided.
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2.5 Unrestricted Haar Wavelets for Non-L2 Error

As described in the previous Section, wavelet synopsis construction is a sparse wavelet represen-
tation problem where, given a wavelet basis {ϕi}N−1

i=0 for RN and an input data vector A ∈ RN ,
the goal is to construct an approximate representation Â as a linear combination of at most B
basis vectors so as to minimize some normed distance between A and Â. The sparse B-term
representation Â belongs to the non-linear space

{∑N−1
i=0 ziϕi : zi ∈ R, ∥Z∥0 ≤ B

}
, where the

L0 norm ∥Z∥0 denotes the number of non-zero coefficients in the vector Z = (z0, z1, ..., zN−1).
In the analysis of this Section, the zi ∈ R values do not have to be Haar wavelet coefficients.

For the case of L2 error, by Parseval’s theorem, the L2 norm of A − Â is preserved in the
wavelet space; thus, generalizing Equation 2.5, we have:

∥A− ÂZ∥22 =
∑
i

A[i]−∑
j

zjϕi[j]

2

=
∑
i

(⟨A,ϕi⟩ − zi)
2 .

It is clear that the optimal solution under the L2 error measure is to retain the largest B
inner products ⟨A,ϕi⟩ which are exactly the largest (normalized) coefficients c∗i in the HWT
expansion of A. Thus, the greedy thresholding approach ² is optimal for L2-error minimization
even in this generalized setting. For other error norms, however, restricting the zi-values to the
set of computed HWT coefficients of A can result in suboptimal solutions.

A first step in solving the generalized (unrestricted) sparse Haar wavelet representation
problem is demonstrating the existence of a bounded set R from which coefficient values in
Z can be chosen while ensuring a solution that is close to the optimal unrestricted solution
(where zi-values range over all reals). Guha and Harb [GH05] prove that, for Lp-error mini-
mization, the maximum (un-normalized) coefficient value in the optimal solution Z∗ satisfies
maxi {|z∗i |} ≤ 2N

1
pamax, where amax = maxi {|A[i]|} (i.e., the maximum absolute value in

the input data). Furthermore, they demonstrate that, by rounding the coefficient values in the
optimal solution Z∗ to the nearest multiple of some δ > 0 (obtaining a rounded solution Ẑδ)
introduces bounded additive error in the target Lp norm; more specifically,

∥A− ÂẐδ
∥p ≤ ∥A− ÂZ∗∥p + δN

1
pmin {B, logN} .

Thus, the above additive error over the optimal solution can be guaranteed while restricting
the search for coefficient values over a set of size [GH05]:

|R| = 2 · maxi {|z
∗
i |}

δ
≤ 4N

1
pamax

δ
.

²Keeping the B largest normalized coefficients



CHAPTER 3

Parallel synopsis construction for maximum error
metrics

3.1 Introduction

In Chapter 2, we saw that the construction of a wavelet synopsis that minimizes the L2-error is
an easy task to accomplish. However, this is not the case for non-Euclidean errors. The majority
of algorithms that target the problem of Lp minimization with p ̸= 2, present time complexities
that prevent scaling to big datasets. A complete survey of such algorithms is provided in Section
6.2.

In this Chapter, we are going to see howwe can overcome the shortcomings of existingmeth-
ods through parallelization. The proposed algorithms follow the MapReduce [DG08] paradigm
and target one-dimensional wavelets, where the original data array is of the form A ∈ RN . The
presented experiments verify the linear scalability of the proposed design and demonstrate re-
sults on datasets more than three orders of magnitudes larger than the ones used in previous
related research.

3.2 Scaling DP algorithms

Since the majority of the proposed algorithms for Problem 1 are based on DP, in this Section
I present a general framework that can be used for their parallelization and efficient execution

31
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over modern distributed platforms. To achieve that, a locality-preserving partitioning scheme
is proposed. The proposed scheme exploits the structure of the error-tree and assign different
sub-trees to different workers.

M[j]

M[2j]

M[2j+1]

TL(j) TR(j)

b

biL biR

Figure 3.1: DP recursion on the error-tree. Node cj combines the M-rows of its children in order
to produceM [j]

In DP-based algorithms, each row of the DP-matrix M is assigned to a node of the error-
tree. The contents of such a row differ between algorithms. Despite the different structure of
the rows of M, all these algorithms follow a bottom-up fashion, where the rows corresponding
to the leaves of the error-tree are computed first. The row for each internal node is computed by
combining the already computed rows of its children according to an optimality criterion. Thus,
computing the row for any node of the error-tree, demands two more rows to be in memory.
To compute the values for a single cell of a row j, many cells of the children-rows are examined
and, eventually the one that optimizes a defined metric is selected. This procedure is illustrated
in Figure 3.1. The shadowed cells represent the examined values and the bold colored ones the
finally selected values. In Figure 3.1, the left and right subtree of a node cj (TL (j) and TR (j)

respectively) can be computed independently of each other. Based on this observation, the idea
is to apply a partitioning scheme that hierarchically decomposes the error-tree to independent
subtrees of a fixed height h, h < logN . This partitioning scheme is presented in Figure 3.2 and
results to ⌈ logNh ⌉ layers of subtrees. We denote Layeri to be all the subtrees located in layer i
and it holds that:

|Layeri| =

 N
2h·i+i−1 i = 1, .., ⌊ logN+1

h+1 ⌋

1 i = ⌈ logN+1
h+1 ⌉

(3.1)

For the parallelization of the existing DP algorithms for Problem 1, a MapReduce strategy is
followed. The idea is to run a distributed job for each layer of sub-trees with the bottommost layer
starting first. Themap function of a job Ji computes the DPmatrix row for the local root of a sub-
tree in layeri. More specifically, if the local root is the node cj , the emitted key-value is (j,M [j]).
The pseudocode for the map function can be found in Algorithm 1. Naturally, proper partitioning
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job i+1

job i

h

h

Figure 3.2: Partitioning for parallelizing DP algorithms for Problem 1

should be applied in order to preserve the sub-tree locality during suffling. The reducers collect
the received key-values and output them in appropriately created partitions. This way the leaves
of the sub-trees in layeri+1 have been created and job Ji+1 is ready for execution. In the case of
the topmost distributed job, instead of writing down the collected key-values, the reducer keeps
them in-memory and directly runs the DP algorithm on the corresponding sub-tree. Algorithm
2 presents the whole procedure.

Algorithm 1: Map Function
Require: Data values for a sub-tree s
1: Run DP on s.
2: emit (j,M [j]) // cj is the local root

Algorithm 2: Parallel execution of a DP algorithm for Problem1
Require: Data size N, sub-tree height h
1: Partition the error-tree to sub-trees of fixed height h.
2: i = 1
3: while i ≤ ⌊ logN+1

h+1 ⌋ do
4: if i > 1 then Combine M-rows from layer i− 1
5: for all Tj ∈ Layeri in parallel do
6: Run DP on Tj
7: Send the computed row of node j to the next layer
8: i = i+ 1
9: Run DP on topmost subtree.

As a distributed approach, it is clear that this idea incurs a communication overhead. For
every sub-tree of the error-tree, the row of M that corresponds to the local root is transferred
over to the workers of the next stage. The following Lemma quantifies the cost of this overhead.
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Lemma 4. The overall communication cost of Algorithm 2 is:

O

(
N ·max {|M [j] |}

2h

)
(3.2)

Proof. Let |M [j] | denote the size of the row corresponding to node cj . Then, according to Equa-
tion 3.1, the communication overhead for the i-th stage is:

O (|Layeri| ·maxj∈Layeri {|M [j] |}) = O

(
1

2h·i+i−1
N ·maxj∈Layeri {|M [j] |}

)
(3.3)

and thus, the overall communication overhead: O
(
N ·max{|M [j]|}

2h

)
Equation 3.2 represents the generic communication complexity of all DP algorithms when

the proposed partitioning scheme is applied. The maximum M-row size max {|M [j] |}, which
determines the complexity, depends on the used algorithm.

After the completion of Algorithm 2, it is only the optimal approximation error that is com-
puted and not the synopsis itself. To compute the synopsis, all DP algorithms require one addi-
tional step: a top-down recursive procedure on the error-tree in order to select the appropriate
coefficients. Starting from the root this time, we re-enter the sub-problem of the topmost sub-
tree and select the coefficients to retain. When the processing of the topmost subtree is over,
we know which coefficients are retained from this subtree and also the leaves of the subtree are
aware of which cells of the M-rows of their children are the best choice in order to obtain the
optimal synopsis. Thus, each leaf-node of the topmost subtree sends a message to its children
to inform them about the optimal choice they can make. With this message, the children recur-
sively re-enter the sub-problems of the next layer of subtrees. This procedure has O (N) time
complexity, as it needs to visit exactly once each node, and O

(
N
2h

)
communication complexity

between the partitions-subtrees.
For demonstrating the merits of the proposed approach, the described methodology is ap-

plied on IndirectHaar [KSM07] creating DIndirectHaar; a distributed version of the centralized
algorithm. The conducted experiments in Section 3.5 show that DIndirectHaar scales linearly
over both data and cluster size.

At this point, I also want to discuss the choice of IndirectHaar. An exact solution for Problem
1 demands tabulation over all possible space allocations for each node of the error-tree. This
burden renders the majority of DP-algorithms impractical in terms of memory consumption.
IndirectHaar exploits the dual error-bound problem (Problem 2) which is easier to be solved and
employs a binary search procedure (Algorithm 3) to derive a solution for the initial problem.
Thus, in the case of IndirectHaar, the DP algorithm that is actually parallelized by the described
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framework is MinHaarSpace¹ [KSM07] and targets Problem 2. Obviously, this results in multiple
distributed jobs of input size N. Furthermore, in order to compute the lower and upper error
bounds (lines 1-2), an overhead of two extra jobs is required. For the lower bound, we compute
the (B+1)-largest coefficient. Each worker emits its local wavelet coefficients in reverse order,
i.e., largest first, and in a next step these coefficients are merged and the first B+1 are retained.
For the upper bound, assuming that a B-term synopsis fits in memory, we load the B-largest-
terms synopsis in the main memory of each worker and we bottom-up compute the maximum
absolute error. Assuming that E (j) denotes the maximum absolute error in sub-tree Tj , it holds
that E (j) = max {E (2j) , E (2j + 1)}. Thus, for computing the upper bound of the error
for the binary search of Algorithm 3 a MapReduce job is required. The mappers compute the
max_abs of a sub-tree in a bottom-up fashion and emit the key-value: (j, E (j)). The reducers
collect and combine the errors in order to prepare the input for the next job.

Algorithm 3: DIndirectHaar
1: eu =maximum absolute error for B-largest-terms synopsis
2: el = (B + 1)-largest coefficient
3: elow = el;ehigh = eu
4: while not finished do
5: emid =

ehigh+elow
2

6: ŴA =DMHaarSpace(emid);B̄ =size of ŴA

7: ē =actual maximum absolute error of ŴA

8: if B̄ < B then
9: W̃A =DMHaarSpace(< ē);B̃ =size of W̃A

10: if B̃ > B then finished=1
11: else ehigh = ē
12: else
13: if B̄ > B then elow = emid

14: else finished=1

For achieving even better results, IndirectHaar can also be applied on Haar+ trees [KM07].
However, as Haar+ trees have a slightly different structure and work on triads of coefficients, for
the ease of understanding, I keep the presentation on the classic Haar error-tree.

3.2.1 Scaling DP Algorithms with Hardware Accelerators

The MapReduce algorithms naturally fit distributed platforms like Apache Hadoop and Spark.
However, as they expose a SPMD style of programming, they can also be efficiently executed
over accelerators that favor data parallelism (e.g., GPUs).

¹For the ease of understanding, a detailed description of MinHaarSpace along with all technical details can be
found in Appendix A
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In this Section, it is described how MinHaarSpace can be further parallelized for taking full
advantage of the available hardware. Although the discussion is restricted to MinHaarSpace,
since all DP algorithms for constructing wavelet synopses share a common computational pat-
tern, the same approach can be followed for any of them. In order to enable portability among
different architectures (x86, GPU), an implementation in OpenCL [ope] is presented.

For the parallelization of MinHaarSpace in OpenCL, we follow a partitioning scheme similar
to the one discussed above. Each layer of sub-trees corresponds to at least one kernel-launch.
The idea is to first run dynamic programming in parallel over the sub-trees of the bottommost
layer. This computation is packed into a kernel and takes place at the target device.

As OpenCL does not support dynamic memory allocation, we should pre-allocate the whole
amount of space that is required for storing the DP matrix. However, depending on the ϵ, δ
parameters of MinHaarSpace, the DP matrix may not fit in global memory. In that case, we also
apply a vertical partitioning as demonstrated in Figure 3.3 by the dashed line; we first execute
the part of the error-tree that is at the left of the dashed line, followed by the part at the right
side and then we combine them.

WG1 WG2 WG3 WG4 WG1 WG2 WG3 WG4

WG1 WG1
Host Code Host Code

Host 
Code

Figure 3.3: Partitioning used for parallelizing DP-based algorithms with OpenCL

When processing of the bottommost layer is over, the computed rows for the roots of these
sub-trees are returned to the host that prepares the kernels and data for the next layer in order
to repeat the same process towards the root.

In the presented implementation, the computation of a sub-tree is assigned to a work group.
The size of a work group cannot be arbitrarily set but depends on the device. It follows that
the maximum h we can set and thus, the minimum number of kernel launches is hardware-
dependent.
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Figure 3.4: Parallelization within a work group

The execution of work items within a work group is depicted in Figure 3.4. Initially, each
thread/work item takes on the computation of a leaf of the error-tree. The computed row is
persisted into the global memory of the device. When processing of a leaf is over, a work item
waits at a barrier until all work items of the same group finish their computations. As the first
level of the error-tree contains half the number of the leaves, only half of the initially spawned
work items continue processing. Then, a reduction takes place, and the active threads combine
the M -rows of the leaves in order to produce the corresponding rows of the first level. This
process is repeated towards the root of the work group by halving the number of active threads
at each level. Finally, it is only the first work item of the group that computes and persists the
output. In Figure 3.4, we illustrate threads of different lifetime with a different color.

Discussion

One of the benefits of OpenCL is the support for heterogeneous computing. The same kernel
can run exactly as is over different hardware devices. However, depending on the device, we can
make targeted optimizations in order to boost performance. In our case, we slightly differentiate
the kernels for x86 and GPU architectures with respect to memory access patterns. While the
DP matrix is hierarchically represented in Figure 3.4, in reality it is a one dimensional array that
resides in global memory. In the x86 case, a single thread is benefited from sequential memory
accesses. Contrarily, in GPU architectures we try to make coalesced memory transactions and
consecutive threads should access consecutive memory addresses. Thus, the kernels we provide
for both architectures are identical apart from the pointer arithmetic in global memory.

With the OpenCL implementation, we can speedup the construction of a wavelet synopsis
by taking advantage of accelerators that may locally exist. When using a framework such as
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Hadoop, the construction process is scaled by distributing work to different machines. As the
Hadoop workers described in Section 3.2 are single-threaded, I argue that these two approaches
are orthogonal to each other and a combination of the two could bring the best results in the
case of a large dataset. The idea is to partition the dataset into sub-trees at various levels: (i) in
the big data framework level, a first partitioning is applied and each machine obtains a different
sub-tree, (ii) then, in the node level, where the sub-tree of a single machine is further partitioned
into work groups as explained. For implementing such an idea, one needs to run OpenCL code
through Java². However, there are already tools for this purpose, like SWAT [GS16] that permits
writing Spark UDFs as OpenCL kernels.

3.3 Parallel Greedy Approaches

As the DP-based solutions incur high computational overhead, there is often a need for a faster
approach at the cost of approximation quality. This is exactly what the GreedyAbs [KM05] al-
gorithm achieves. However, this algorithm is not easily parallelizable and cannot scale for big
datasets. In this Section, two novel, fully parallel greedy algorithms are presented that both are
based on : (i) a partitioning scheme similar to the one presented in Section 3.2, and (ii) merging
and filtering of partial results.

3.3.1 GreedyAbs: The Centralized Solution

For the ease of understanding, I first give a description of the GreedyAbs algorithm [KM05]. Let
errj = d̂j − dj be the signed accumulated error for a data node dj in a synopsis ŴA, yielded by
the deletions of some coefficients. To assist the iterative step of the greedy algorithm, for each
coefficient ck not yet discarded, we introduce the maximum potential absolute error MAk that
ck will contribute on the running synopsis, if discarded:

MAk = maxdj∈leavesk{|errj − δjk · ck|} (3.4)

Computing MAk normally requires information about all errj values in leavesk. A naive
method to compute MAk is to access all leavesk, where errj are explicitly maintained. The
disadvantages of this approach are the explicit maintenance of all errj values at each step and
the cost required to updateMAk values after the removal of a coefficient.

Amore efficient solution for updatingMAk is reached by exploiting the fact that the removal
of a coefficient equally affects the signed costs of all data values in its left or right sub-tree.
For example, in Figure 2.1, the removal of coefficient c2 = −4 increases the signed errors of
data nodes d0, d1, and decreases the signed errors of d2, d3 by 4. Accordingly, the maximum

²Big data frameworks usually work over the JVM.
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and minimum signed errors in the left (right) sub-tree of a removed coefficient ci are decreased
(increased) by ci. Themaximum absolute error incurred by the removal necessarily occurs at one
of these four positions of existing error extremum. Hence, the computation ofMAk requires that
only four quantities be maintained at each internal node of the tree. These are the maximum and
minimum signed errors for the leftleavesk and rightleavesk, and are denoted bymaxlk,minlk,
maxrk, andminrk, respectively. It follows that Equation 3.4 is equivalent to:

MAk = max{|maxlk − ck|, |minlk − ck|, |maxrk + ck|, |minrk + ck|} (3.5)

In the complete wavelet decomposition, these four quantities are all 0, since errj = 0,∀dj . Thus,
MAk = |ck|,∀k and the greedy algorithm removes the smallest |ck| first. In order to efficiently
decide which coefficient to choose next, all coefficients are organized in a min-heap structure
based on their MAk. After the removal of a coefficient ck, errj for all leavesk changes, so the
information of all descendants and ancestors of ck must be updated. All the error quantities of
the descendants in the left (right) sub-tree of ck are decreased (increased) by ck. During this
process, a new MAi is computed for each descendant ci of ck. In accordance, the changes in
error quantities are propagated upwards to ancestors ci of ck and MAi values are updated as
necessary. While updating error quantities andMA values, the position of ck’s descendants and
affected ancestors are dynamically updated in the heap. This procedure of removing nodes is
repeated until only B nodes are left on the tree.

Another important thing to note is that the maximum absolute error does not change mono-
tonically when a coefficient is removed. In other words, after deleting a coefficient ck the max-
imum absolute error of its affected data values may decrease. As a result, choosing exactly B
coefficients may not be the best solution given a space budget B. For this reason, we keep re-
moving coefficients after the limit of B has been reached, until no coefficient remains in the tree.
From all B + 1 coefficient sets (B coefficients left, B-1 coefficients left, etc.) produced at the last
B steps of the algorithm, the one with the minimum maximum absolute error is kept.

3.3.2 DGreedyAbs: Scaling the Greedy Algorithm

GreedyAbs presents an inherent drawback for its parallelization. At each step, it needs global
knowledge of the whole error-tree. To solve the problem in parallel, I consider a partitioning
similar to the one we used for the parallelization of the DP algorithms. In the proposed scheme,
the error-tree is partitioned into one root subtree and multiple base subtrees, as shown in Figure
3.5.

At each iteration of GreedyAbs, the node ck with the smallest MA is selected to be discarded.
After its deletion, all the other nodes that lie either in pathk or Tk may update their MA values.
Ideally, we would like to take decisions at each base sub-tree independently of each other. For the
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Figure 3.5: Partitioning for parallelizing GreedyAbs. The red line illustrates an example of com-
munication between two base subtrees. The blue-filled nodes show a possible Croot set.

parallelization of the algorithm, the main difficulty is that the base sub-trees communicate with
each other through the root sub-tree. For example, consider a scenario, like the one depicted
in Figure 3.5, where node c2i is selected to be removed from the base sub-tree Ti and, at the
same time, node c4j is selected from Tj . The removal of c2i may dictate that node ci/4 should be
discarded at the next step. On the other hand, discarding c4j can make ci/4 a really important
coefficient for sub-tree Tj and thus its deletion could produce a big maximum error. It is clear
that such situations lead to conflicts that prohibit a straight-forward parallel implementation.

In order to proceed towards a correct parallel computation, we need to offer more isolation
to the base sub-trees. The idea behind our solution is the following: Let us assume that we
somehow know which nodes of the root sub-tree are retained in the final synopsis and call this
set of nodesCroot. Having selected aCroot, we can remove the remaining root sub-tree and there
are B − |Croot| nodes that still need to be selected for the synopsis.

Consider now a base sub-tree Tj . The deletion of nodes ci ∈ root sub-tree\Croot incurs an
incoming error to Tj . For example, in the error-tree of Figure 3.6, if we delete nodes {c0, c2},
there is an incoming error −7− 4 = −11 to sub-tree T5. Thus, if the incoming error to sub-tree
Tj is ein, we set the signed accumulated errors to: erri = ein,∀di ∈ Tj and run GreedyAbs on
Tj . The output of GreedyAbs (Tj) is an ordered list Lj of Nz (Tj) coefficients, where Nz (Tj)

is the number of non-zero coefficients in the sub-tree. The list is in reverse order of the one in
which coefficients ci ∈ Tj were deleted by GreedyAbs. More specifically, each element of the
list is a tuple (delOrd, id, err) that indicates the order with which the coefficient with index id
was deleted and the incurred maximum absolute error err. This procedure of locally executing
GreedyAbs on a sub-tree, is carried out in parallel for all base sub-trees in the map phase of a
MapReduce job. In a pre-processing step, the error-tree is partitioned and each base sub-tree is
stored in a separate HDFS file. Then, each mapper takes on a sub-tree and runs GreedyAbs on it.
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Figure 3.6: Error-tree example.
When this stage of parallel GreedyAbs runs is over, in the reduce phase, we collect and error-

wise merge the outputs from all the base sub-trees (i.e., ∀Tj ∈ base sub-trees merge Lj), thus
obtaining a global list where the node deletion order of each sub-tree is preserved. The synopsis
needs to contain those coefficients that are the most important for each sub-tree, i.e., the ones
that were last emitted. Therefore, by keeping the last B − |Croot| elements of the global list, let
us call them Cbase, we form the final synopsis: Croot ∪ Cbase. This pseudocode for the whole
MapReduce job is presented in Algorithm 4.

Algorithm 4: distrGAbs: MR job for computing the synopsis given a Croot set
Require: error-tree, space budget B, Croot set
1: for all Tj ∈ base sub-trees in parallel do
2: erri = erri + ein,∀erri ∈ Tj // ein: incoming error from Croot

3: Lj = GreedyAbs (Tj);emit Lj

4: L = merge(Lj lists)
5: store last Croot ∪ (B − |Croot|) elements of L as synopsis
6: return min {L [0] .error, ..., L [B − |Croot| − 1] .error}

So far, we have ignored the procedure that finds the appropriate nodes to be retained from
the root sub-tree, assuming it is provided by an “oracle”. As we cannot compute a-priori which
these nodes are, we need to speculatively create the synopses for different Croot sets and finally
retain the one that produces the best approximation. Let R denote the size of the root sub-tree.
Since we do not know the number of nodes that should be retained from the root sub-tree, we
should consider at least min{R,B} + 1 different Croot sets, with each candidate Croot having
different size: The empty set, as we may keep none of these nodes, keep only 1 node, keep
2 nodes, etc., until we examine the case where min{R,B} nodes are kept. In order to find
min{R,B} + 1 candidate Croot sets, we run GreedyAbs on the root sub-tree. The intuition
behind this choice is that, since only the root sub-tree is considered known at this stage, we
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should try to optimize the local problem and each time discard the node that incurs the minimum
error. GreedyAbs on the root sub-tree runs in a centralized fashion. Since the root sub-tree can
be exponentially smaller than the original dataset, its processing on a single machine is done
without compromising performance. The candidateCroot sets are generated by the genRootSets
function presented in Algorithm 5.

Algorithm 5: genRootSets: Generates candidate Croot sets of different lengths
Require: root subtree,B
1: Lroot = GreedyAbs(root sub-tree)
2: C = {{}}; lastIndex = Lroot.size
3: for (i = lastIndex; i > lastIndex−B; i = i− 1) do
4: Croot,i = {Lroot [i] , .., Lroot [lastIndex]}; C = C ∪ {Croot,i}
5: return C

For example, we consider as root sub-tree the nodes {c0, c1, c2, c3} of the error-tree depicted
in Figure 3.6. The run of GreedyAbs selects to discard the nodes according to the following order:
[c1, c3, c2, c0]. Thus, the candidate Croot sets are the following 5:
Γ = [{c1, c3, c2, c0}, {c3, c2, c0}, {c2, c0}, {c0}, {}]. For constructing the synopsis, we perform
a search in the space of possible solutions. We start by examining the achieved quality of the
corner cases, i.e., keeping in the synopsis 0 andmin{R,B} coefficients from the root sub-tree. If
these extreme cases result in errors eh, el with |eh−el| < ϵ→ 0, then the algorithm finishes and
we keep as a final synopsis the one that produced the min{eh, el}. Otherwise, we replace the
Croot that produced themax{eh, el}with anotherCroot produced by Algorithm 5 and repeat the
same process. The selection of the next Croot does not come from a random choice. When the
distributed execution of the greedy algorithm for a givenCroot set is over, we know themaximum
absolute error that appeared in each base subtree. By knowing that information, we knowwhich
subtrees need further improvement. Thus, we select Croot sets that contain coefficients which
support these subtrees. In our example, we begin by running GreedyAbs on each base subtree
for the Croot sets: {}, {c1, c3, c2, c0}. Let us assume that they yield synopses with errors 10 and
5 respectively. In that case, as {} produced the worst error, it is replaced by {c0} and we now
compare the quality of the synopses yielded by {c0} and {c1, c3, c2, c0}Croot sets. The described
procedure implies that O (R) jobs may be demanded. However, our experiments in Section 3.5
show that the number of jobs that the algorithmneeds in order to converge is constant in practice.
The complete DGreedyAbs algorithm is presented in Algorithm 6.

The running-time and communication complexity of DGreedyAbs are provided by the fol-
lowing Lemma:

Lemma 5. Let us denote with R the size of the root sub-tree, S the size of a base sub-tree and

Nz (S) the number of non-zero coefficients of a base sub-tree. Then, the asymptotic running-time
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Algorithm 6: DGreedyAbs
Require: error-tree, space budget B
1: Γ = genRootSets(root subtree,B)
2: Croot,l = {}
3: Croot,h = themin{R,B}-th set of Γ
4: eh = distrGAbs (Croot,h)
5: el = distrGAbs (Croot,l)
6: while eh − el > ϵ do
7: find maximum error el,i per subtree from the run for Croot,l

8: sort {el,i} errors in descending order
9: find the first k-largest errors E that satisfy: |ei − ej | < ϵ

10: Consider the set C = all coefficients ∈ pathe,∀e ∈ E
11: Croot,l = next set ∈ Γ that contains at least one more coefficient from C
12: el = distrGAbs (Croot,l)
13: C∗

root = Croot set that yielded themin{el, eh}
14: FINAL_SYNOPSIS = the produced synopsis for C∗

root

15: return FINAL_SYNOPSIS

complexity of a DGreedyAbs mapper is O
(
Nz (S) log2Nz (S)

)
, the complexity of a reducer is

O (Rmax{B,Nz (S)}) and the communication cost is O (Rmax{B,Nz (S)}).

Proof. The worst-case cost of GreedyAbs is O
(
Nlog2N

)
[KM05], thus it follows that the map-

pers of DGreedyAbs will have the same complexity. A distributed job over an error-tree with
a root sub-tree of size R is going to have R partitions. Since each mapper emits discarded co-
efficients in the form of a list of size max{B,Nz (S)}, then it follows that the total number
of coefficients transferred over the network is O (Rmax{B,Nz (S)}). In order to merge the
results, the reducer makes a linear pass over the collected sorted lists. Therefore, its complexity
is expected to be the same with the communication cost of the job.

3.3.3 Speeding up the Distributed Greedy Solution

While the DGreedyAbs algorithm succeeds in offering a viable solution to the problem, it suffers
from a basic drawback: There aremultiple distributed jobs that may be required to create the syn-
opsis, and thus, the centralized algorithm needs to run multiple times over the same data. Since
we do not know in advance which are the appropriate nodes to retain from the root sub-tree, we
run GreedyAbs for many possible Croot sets, incurring extra computational and communication
overhead.

In order to alleviate this overhead, in this Section we propose BUDGreedyAbs: a modified,
bottom-up version of DGreedyAbs that makes only one pass over the dataset and executes the
centralized greedy algorithm only once per sub-tree.
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Figure 3.7: Equivalent representations of an error-tree.

In order to avoid the multiple jobs, consider the following strategy. Assume that the size of
the root sub-tree is less than B and we a-priori decide to retain it all in the synopsis and then
run GreedyAbs to all workers in parallel. One could say that this is the safest choice as we keep
a maximal amount of information about the part of the tree that creates dependencies among
partitions. However, this is not optimal. Some nodes of the root sub-tree may be of negligible
importance and by keeping them, we sacrifice budget space that could be allocated in a smarter
way. For example, assume that the harder sub-tree to approximate in Figure 3.5 is Ti and that
the blue-filled nodes of the root sub-tree have an absolute value close to zero. Instead of keeping
these two nodes, it might be preferable to keep two nodes from within Ti. The basic idea behind
BUDGreedyAbs is to start from the safest choice of keeping all of the root sub-tree and adaptively
refining it.

We start with a Lemma that follows directly from the properties of the wavelet transform.
The idea of Lemma 6 is also presented graphically in Figure 3.7.

Lemma 6. An error-tree partitioned to one root-subtree and many base subtrees Si, i = 1, .., R, is

equivalent toR independent error-trees S′
i, i = 1, .., R, where each S′

i = Si with an extra coefficient

ri as root. The value of ri is defined as: ri = Σcj∈pathSi
δij · cj and is also equal to the average of

all data values in base-subtree Si.

According to Lemma 6, instead of computing the full wavelet transform of the error-tree,
we can compute the transform up to the height of the base-subtrees and also keep the local
root-average of each subtree. That is what BUDGreedyAbs does. It first computes a wavelet
structure as the one of Figure 3.7b. Then, it triggers a parallel execution of GreedyAbs at each
base-subtree. The outputs are merged in the same way as in Section 3.3.2 and a maximum error
is computed. As the yielded synopsis may contain some of the ri coefficients, in order to better
exploit the available space budget, in a next step the algorithm examines opportunities for further
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compression and computes the root-subtree solely based on these ri coefficients contained in the
synopsis.

As the first part of the algorithm is the same with DGreedyAbs, we discuss the algorithmic
details of merging and how more accurate configurations for the root-subtree are explored. For
explaining these details, we give the following example:

Example. In Figure 3.8 we present two base-subtrees S1, S2. The lists L1, L2 show the
most important coefficients from the corresponding outputs of GreedyAbs. Thus, in subtree 1,
the last nine coefficients that the algorithm would delete are the ones in the array L1 with ca8
discarded first. As we have said, in order to create the final synopsis, we need to merge L1 and
L2 from left to right and examine the errors of the first B coefficients. Let us assume B = 16.
The first nine coefficients of the synopsis would be ca1, ..., ca4 and cb1, ..., cb5. At this point, we
check the ri coefficients. Instead of keeping both of them and waste two slots in the synopsis,
we examine the possible merits of increasing compression in the root-subtree. We calculate the
wavelet transform of the root-subtree considering as data values the ri, i = 1, 2 coefficients.
In our example of Figure 3.8, the transform results in the creation of c0 and c1. According to
Lemma 6, keeping both c0 and c1 is completely equivalent to keeping r1 and r2 both in terms
of appoximation quality and space overhead. Thus, we also examine the chance of keeping only
c0 or c1 or even none of them. In order to preserve correctness, as GreedyAbs has run at each
subtree considering all ri nodes retained in the synopsis, the posterior deletion of coefficients
from the root-subtree should be accompanied by some error updates. Let us assume that we first
examine the deletion of node c1. Some of the nodes in L1 and L2 should update their observed
signed errors by −c1.

But which nodes need to be updated? The errors which are reported by the coefficients in
the red box, i.e., the ones in the right side of r1 in Figure 3.8, are calculated taking into account
that r1 is retained in the synopsis. Thus, a deletion of a node that contributes to the r1 value
must be reflected to the errors observed by these nodes. On the other hand, the nodes in the left
side of r1 consider r1 already discarded and as such, nothing more is needed to be done on them.

Which nodes of the root-subtree should we consider to delete? Do we have to try allR nodes
in all possible combinations? We treat this issue the same way as we did for DGreedyAbs. We
run GreedyAbs on the root-subtree and then execute Algorithm 5. The output of Algorithm 5
represents the candidate combinations for deletion. For each of them, we update the errors in
Li lists and merge them in a final list where the B first nodes are considered for the synopsis.
BUDGreedyAbs is formally presented in Algorithm 7.

Complexity Analysis. The complexity of the parallel workers of BUDGreedyAbs is the
same with that of GreedyAbs, i.e., O

(
Nlog2N

)
. However, in the next stage of BUDGreedyAbs,

as we have seen there are R merge operations that take place and in the worst case, each of
them needs to process B elements. Furthermore, we also need to run GreedyAbs once on
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Figure 3.8: Example of merging solutions for BUDGreedyAbs.

the root-subtree. Thus, the complexity of the reduce workers that derive the final synopsis is
O
(
Rlog2R+RB

)
.

Algorithm 7: BUDGreedyAbs
Require: error-tree, space budget B
1: for all Ti ∈ base subtrees in parallel do
2: Li = GreedyAbs (Ti); emit Li

3: L = merge(Li lists)
4: synopsis =first B elements of L; error = max_abs(synopsis)
5: RA = {ri|L [j] = ri ∧ 0 ≤ j < B} // ri: avg of data values in Ti
6: Root-subtree=WaveletTransform (RA)
7: Γ = genRootSets(Root-subtree,B)
8: for all Croot ∈ Γ do
9: for all Li do

10: if Li [j] = ri then update errors at Li [k] , k > j
11: L = merge(Lj lists)
12: if max_abs(first B elements of L) < error then
13: synopsis =first B elements of L
14: error = max_abs(synopsis)
15: return synopsis

3.3.4 Maximum Relative Error

Minimizing the maximum relative error is arguably more essential compared to absolute error
minimization in approximate query processing, as the same absolute error in two different data
values may express huge differences in relative error. At the same time, relative error measures
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tend to be inordinately dominated by small data values. For instance, returning 2 as the approx-
imate answer for 1 amounts to an 100% relative error, while in fact it is insignificant in a data
context dominated by much larger values. In order to overcome such problems, several tech-
niques have been developed for combining absolute and relative error metrics [VW99]. As in
earlier approaches ([GG02], [GK04]), we have opted for the relative error metric with a sanity-
bound S > 0. Our aim is to produce wavelet synopses in near-linear time and space such that, for
each approximation d̂i of a data value di, the ratio is kept lower than a feasible bound.

For this problem, in [KM05] the GreedyRel algorithm is presented. GreedyRel follows the
greedy paradigm introduced in Section 3.3.1, wherein, instead of usingMAk, it chooses to dis-
card the coefficient with the minimum maximum potential relative error, defined as follows:

MRk = maxdj∈leavesk{
|errj − δjk · ck|
max (|dj |, S)

} (3.6)

Nevertheless, the four error quantities of Equation 3.5 cannot be used for the calculation or
update of theMRk. The reason is the denominator in Equation 3.6, which implies that the effect
a coefficient ck is different in the signed relative error of different data values.

In order to provide a scalable solution to this problem, we use a similar approach with that
of DGreedyAbs, but instead of using GreedyAbs at the workers, we use GreedyRel.

3.4 CON: Constructing the L2 Synopsis in Parallel

For evaluating the efficiency of the proposed partitioning scheme, I also employ it for construct-
ing the conventional, L2-optimal wavelet synopsis. Then, the results are compared with the ones
achieved by the approach used in [JYL11] The algorithms of [JYL11] can be found in Appendix
B. In order to compute the conventional synopsis in parallel, we partition the data as described
in Section 3.2 (see Figure 3.2). Each mapper reads a portion of the input in the size of a power
of two and locally constructs the corresponding sub-tree by pairwise averaging and differencing
coefficients, as explained in Chapter 2. As the wavelet transform is of linear complexity and the
mapper computes the coefficients only for its local data, the computational complexity of each
map task isO (S). After the construction of the sub-trees is over, each mapper emits all the com-
puted coefficients to the reduce stage. Thus, the communication between the map and reduce
phase is O (N). The reducer reads all the coefficients that are computed in the map phase and
inserts them in a priority queue, where only the B largest ones in absolute normalized value are
retained. It also computes the wavelet coefficients of the root sub-tree and inserts them in the
queue as well. When this process is over, there are B coefficients in the queue which comprise
the conventional synopsis. This approach assumes that B coefficients can fit in main memory
which is a logical assumption to make.
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3.5 Experimental Evaluation

In this Section, there is an evaluation of the proposed algorithms in terms of (i) synopsis con-
struction time and (ii) achieved error. The results show that the proposed distributed solutions
present linear scalability andwe are able to run experiments on bigger datasets than any previous
work. All algorithms are implemented in Java 1.8.

Datasets. The experiments are conducted using both synthetic and real datasets. Synthetic
data (SYN) allows easy testing over different data distributions and value ranges. Distributions
utilized are uniform and zipfian (with exponents 0.7 and 1.5). Data values lie between [0, 1000].
For real-life datasets we utilize NYCT [nyc] and WD [lin]. NYCT describes taxi trips in the New
York City and contains records for the trip time in seconds. WD consists of observations on wind
direction (azimuth degrees) captured during hurricanes in the USA. Table 3.1 gives an overview
of NYCT and WD. All datasets are partitioned in order to test scalability over different sizes.
The smallest partition comprises the first 1M records, while each subsequent partition is 2× the
previous one. The largest used dataset consists of 268M datapoints.

Table 3.1: Characteristics of NYCT and WD datasets

Name #Records Avg Stdv Max
NYCT2M 2M 672 483 10800
NYCT4M 4M 511 519.5 10800
NYCT8M 8M 255 646.6 10800
NYCT16M 16M 127 745 10800
NYCT32M 32M 63 3566.3 4293410
NYCT64M 64M 31 25410.3 4294966
WD2M 2M 121 119.7 655
WD4M 4M 122 119.9 655
WD8M 8M 138 119.4 655
WD16M 16M 127 118.8 655

Platform setup. As a deployment platform, a Hadoop 2.6.5 cluster of 9 machines has been
used. Each of the 9 machines features eight Intel Xeon CPU E5405 @ 2.00GHz cores and 8 GB of
main memory. One machine is used as the master node and the remaining ones as slaves. Each
slave is allowed to run simultaneously up to 5 map tasks and 1 reduce task. Each of these tasks is
assigned 1 physical core and 1 GB of main memory. For all the remaining properties, the default
Hadoop configuration has been kept.

For experimenting with the centralized algorithms, onemachine with the same specifications
as the ones listed above has been used. Thus, centralized algorithms may have up to 8 GB of
available main memory for their execution.
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3.5.1 Scalability
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Figure 3.9: Scalability with B

In this Section, synthetic data is used to assess the scalability with respect to the available
budget for the synopsis B, the number of datapoints N and the number of tasks running in
parallel. The results show that the algorithms proposed in this dissertation can scale to data
sizes that state-of-the-art centralized approaches are incapable of. For all the experiments of this
Section, data consists of uniformly distributed values in the range of [0, 1K].

Varying space budget. In this experiment I examine the scalability with respect to the
space budget B. I run DGreedyAbs, BUDGreedyAbs and DIndirectHaar for one-dimensional
data of size N = 17M and vary B from N/64 to N/2. The results of Figure 3.9 show that for
DGreedyAbs, running-time is not considerably affected by the size of the synopsis. However, this
is not true for DIndirectHaar and BUDGreedyAbs. For DIndirectHaar, a largerB is more probable
to lead in a smaller error and decrease the ϵ

δ factor of its complexity formula. Thus, a larger
budget may lead to faster execution of the algorithm. For BUDGreedyAbs, as the complexity of
the reducer is O

(
Rlog2R+RB

)
, running-time can linearly increase with B.

Varying datasize and number of parallel tasks. Figure 3.10 shows the scalability with re-
spect to the number of datapoints (N ) and tasks running in parallel for DIndirectHaar, DGreedyAbs
and BUDGreedyAbs respectively. We set B = 1M for all the experiments of this subsection and
vary the datasize from 2M to 268M datapoints for all the algorithms and the number of parallel
map tasks from 10 to 40. Both algorithms are also compared with the corresponding centralized
implementations in order to assess the difference in performance. Please note that the y-axis in
Figures 3.10-(a), 3.10-(b) and 3.10-(c) follows a logarithmic scale.

All the algorithms scale linearly with the dataset size. The running-time is almost constant at
first, when all data can be processed fully in parallel, and is linearly growing as the cluster is fully
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utilized and more tasks need to be serialized for execution. Linear scalability is also observed
with the number of parallel running tasks. By halving the capacity of the cluster, running-time
is almost doubled for all the examined algorithms.

The centralized algorithms were not able to run for datasizes greater than 17M datapoints,
as their execution demands more than the available main memory. Compared to the centralized
GreedyAbs, BUDGreedyAbs appears to be 20× faster for a dataset of 17M datapoints when all
of its map tasks can run fully in parallel. In Figures 3.10-(b), 3.10-(c) we also observe that BUD-
GreedyAbs is twice as fast as DGreedyAbs. This is because DGreedyAbs needed to try two Croot

sets in order to converge, while BUDGreedyAbs always needs a single MapReduce job. As we
notice in Figure 3.10-(a), even if DIndirectHaar scales linearly, it is slower than the greedy algo-
rithms, being 1.5× and 3× slower than DGreedyAbs and BUDGreedyAbs respectively. More-
over, we see that the centralized IndirectHaar is faster than DIndirectHaar when the dataset
size is small or few parallel tasks are running. That is because the centralized implementation
loads the whole dataset in memory and the required multiple jobs do not need to perform I/O
operations. On the other hand, the Hadoop implementation is disk-based and for each job, the
algorithm has to read the input and write the output from and to the HDFS respectively.

The main results of this Section are that: (i) all distributed algorithms scale linearly with the
datasize, and (ii) greedy algorithms are much faster than the state-of-the-art DP.

3.5.2 Comparison for Real Datasets

In this Section, DGreedyAbs, BUDGreedyAbs and DIndirectHaar are compared with each other,
as well as with their centralized counterparts using real-life one-dimensional datasets. Further-
more, they are also compared against CON (Section 3.4 ). As CON is less compute-intensive, I
wanted to investigate the tradeoffs in running-time and produced maximum error. Note that In-
directHaar is not included in the approximation quality experiments, as it theoretically achieves
the same results as DIndirectHaar.

NYCT dataset. In Figure 3.11a, the approximation quality results for the NYCT dataset are
presented. The utilized space budget isB = N

8 . The construction of an accurate synopsis for this
dataset is a difficult task to accomplish as it contains values of high magnitude and variance. Two
important observations are that: (i) scalability does not come at a cost; the distributed greedy
algorithms achieve the same error with GreedyAbs and (ii) all algorithms targeting maximum
error metrics outperform CON from 2 to 5 times.

Figure 3.11b presents the running-time results for the same dataset. With the maximum ab-
solute error over 550 for all datasizes, the multiplicative factor

(E
δ

)2 of the complexity formula
of DIndirectHaar is equal to 121. As such, for this dataset, the execution of the DP algorithms
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Figure 3.10: Scalability with the dataset size (N) and number of parallel tasks.

is very compute-intensive. We observe that for datasizes smaller than 60M datapoints, BUD-
GreedyAbs is the most time-efficient algorithm among the ones that target maximum error met-
rics. In Section 3.5.1, we said that the available budget affects the running-time performance
of BUDGreedyAbs. Since we have set B = N/8, an increase in the number of datapoints im-
plies an increase in the synopsis’ size which in turn increases the running-time of the algorithm.
At this point, we observe a trade-off between DGreedyAbs and BUDGreedyAbs. On the one
hand, DGreedyAbs needs multiple passes over the data in the map phase of the job, while BUD-
GreedyAbs needs only one. On the other hand, DGreedyAbs has a lightweight reducer, while the
one of BUDGreedyAbs is compute-intensive and can become a bottleneck. Thus, when datasize is
large, we suggest BUDGreedyAbs for datasets that can be easily approximated with a small avail-
able budget and DGreedyAbs when a higher budget is demanded. As the conventional synopsis
is easier to be computed, we observe CON to be much faster than all the other algorithms.
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(a) NYCT-Max Abs Error
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(c) WD-Max Abs Error
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Figure 3.11: Approximation quality and running-time experiments on 1-D real datasets. B =
N/8

WD dataset. Figure 3.11c shows the approximation quality and running-time results for
the WD dataset and B = N

8 . The conclusions are similar to the ones for the NYCT dataset. In
Figure 3.11d we see that IndirectHaar outperforms DIndirectHaar for datasizes up to 8M data-
points. When data fits in main memory, IndirectHaar avoids the I/O overhead of the multiple
MapReduce jobs, that DIndirectHaar requires. Still, the most efficient algorithm, that targets the
minimization of maximum error metrics, is BUDGreedyAbs as it outperforms GreedyAbs by a
factor of 6.7 and DGreedyAbs by a factor of 2 for a 17M dataset.
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3.5.3 Dataset Impact

In this subsection, synthetic data is used to evaluate the impact of different distributions on both
running-time and approximation quality. For all the experiments of this subsection, there have
been used datasets of size N = 17M datapoints and a budget of B = N/8.

Varying distribution and δ. As the parameter δ of DIndirectHaar provides a “knob” for
tuning the tradeoff between resource requirements and solution quality, in Figure 3.12 I show
the impact of data distribution on DIndirectHaar when different δ-values are used. The main
observation is that biased distributions favor both the synopsis construction time and the ap-
proximation quality [PZHM09]. In Figure 3.12a, we see that for the Zipf-0.7 distribution and for
all δ-values, the algorithm is about 25% faster compared to the Uniform distribution. Further-
more, the run for the Zipf-1.5 distribution outperforms the one for Zipf-0.7 by 45% when δ = 10

and 20% when δ = 20. Accordingly, in Figure 3.12b we see that when the Zipf-1.5 distribution is
the case, the maximum absolute error is 8.4 times smaller than the one achieved for the Uniform
data.
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Figure 3.12: Impact of data distribution and δ on the performance and approximation quality of
DIndirectHaar.

We also observe that usually the smaller δ is, the higher is the running-time of the algorithm
and the better the approximation quality, since more candidate values are examined for the in-
coming values and the wavelet coefficients. For values of δ equal to 50 or 100, the algorithm
reaches its lower bound of execution time on this data and thus, higher values for δ do not affect
performance. For the Zipf-1.5, we see that the run for δ = 10 outperforms the one for δ = 20.
As we get more approximate results for higher values of δ, DIndirectHaar requires more jobs to
converge and provide the final answer. Moreover, the algorithm could not run for Zipf-1.5 and
δ = 50, 100 as these values were higher than the space they need to quantize.
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3.5.4 Constructing the Conventional Synopsis

In this Section, the construction of conventional synopses is evaluated. For the evaluation, the
real datasets NYCT and WD have been used and the cluster is configured with 20 map and 1
reduce slots. For any given dataset, all four described algorithms (CON, Send-V, Send-Coef, H-
WTopk) produce exactly the same synopses. Thus, there is no need to compare them in terms of
approximation quality but only with respect to running time.
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Figure 3.13: Running time comparison for constructing a conventional synopsis with B = N/8.

Figure 3.13 shows the running time results for both datasetswhen a synopsis of sizeB = N/8

is requested. Since Send-V ends up to be a sequential algorithm, it presents much worse running
time performance than CON and Send-Coef for both examined datasets.

In Figure 3.13, we also observe CON is the most time-efficient algorithm for computing the
conventional synopsis. The performance gain of CON stems from its locality-preserving parti-
tioning, which results in less computational and communication complexity. CON is 1.5× faster
on average than Send-Coef, that is the second most efficient algorithm, both for the NYCT and
the WD datasets.

For both datasets, we observe that despite the communication optimizations, H-WTopk presents
the worst performance. Furthermore, for datasizes larger than 8 millions of datapoints, it runs
out of memory. This is because of the selected synopsis size. H-WTopk can be very efficient if
B is much smaller than the input size of the mapper. Otherwise, since it needs to emit the B
largest and B smallest coefficients, it ends up emitting twice the input size. Furthermore, it also
has the extra overhead of three MapReduce jobs. In [JYL11], the wavelet transform was applied
to a histogram and thus, data had been already compacted and smaller budget space was needed
to achieve accurate results. The impact of B in the communication cost is discussed in [JYL11],
where the corresponding values were only chosen in the range [10, 50].
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Figure 3.14: Running time results for the NYCT dataset and B=50.

Table 3.2: Testbed details
Name Model Processor Memory

(GB)
High-end server (CMT1) Intel(R) Xeon(R) Gold

5120 CPU @ 2.20GHz
2 sockets, 14 hyper-
threaded cores/socket

256

Commodity server
(CMT2)

Intel(R) Core(TM)
i7-4820K CPU @
3.70GHz

1 socket, 4 hyper-
threaded cores/socket

64

GPU NVIDIA Tesla V100-
SXM2

#SM = 80 32

Figure 3.14 shows the corresponding results for the NYCT dataset when a synopsis of stable
size B = 50 is used. This figure verifies the results of [JYL11]: H-WTopk dominates the other
approaches only whenB is very small and the dataset size large enough to not be affected by the
overhead of the three MapReduce jobs. Thus, in our case, where the transform is applied directly
on the data and not on a histogram, this algorithm is not of practical use as it is very difficult to
construct a good quality synopsis with so few coefficients.

3.5.5 Evaluating Accelerators

In this Section, I experimentally evaluate the performance gains obtained by parallelizing the
construction of a wavelet synopsis. The experiments use synthetic one-dimensional data uni-
formly distributed in the range [0− 1K].

Hardware. As OpenCL requires devices of massive parallelism, for these experiments differ-
ent hardware platforms than before have been used. We consider three different architectures:
(i) a high-end server (CMT1), (ii) a commodity server (CMT2) and (iii) a GPU device. Details
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Figure 3.15: Running time of MinHaarSpace for various input sizes and values of ϵ.

for the testbed can be found in Table 3.2. Henceforth, I denote CMT1 (CPU MultiThreaded) the
high-end server and CMT2 the commodity one. As a baseline for the experiments we consider
the single-thread (ST) performance of CMT1. For maximizing the utilization of each platform,
the multi-threaded executions have available all the threads of a machine. Work group size is set
to 256. I also experimented with 512 and 1024 which was the maximum value supported by the
device but there was no significant difference noticed in performance.

Figure 3.15 demonstrates running times for different dataset sizes. In MinHaarSpace, the
combination of ϵ, δ parameters determines the size of a single row of the DP matrix and thus, the
running time complexity of the algorithm. For experimenting with tasks of different compute
intensity, I test various sizes for the DP rows by varying ϵ and keeping δ fixed to 0.1.

For all configurations, running time scales linearly to the dataset. This verifies the theoretical
complexity of the algorithm which is O

((
ϵ
δ

)2
N
)
. According to this formula and as can be

verified in Figure 3.15, high values of ϵ lead to higher running times. The high-end server CMT1
can reach a speedup of up to 23× compared to the baseline. The corresponding result for the
GPU is 15×, while CMT2 achieves a more modest performance improvement of 5×.

As explained in Section 3.2.1, due to the structure of the error-tree, at each level of execution
within a work group, half of the parallelism is lost. Thus, a device that can offer massive data
parallelization (e.g., GPU) cannot be exploited to the full of its potential. Even in that case though,
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Figure 3.16: Performance gain due to memory coalescing.

the execution over the GPU outperforms the one of CMT2 by more than twice in all examined
cases.

We also notice that the smaller the dataset is, the smaller is the performance gap between
CMT1 and the GPU. For the compute intensive case of Figure 3.15-(a), CMT1 is 30% faster than
the GPU for a dataset of 200K datapoints, 49% for 500k datapoints and 57% faster when 1M of
datapoints is the case. Data transfers cause significant delays in the GPU case. Reducing I/O has
a direct impact on running-time.

In Figure 3.16 we observe the performance gain in GPU execution when memory coalescing
is used. I first run the experiments employing exactly the same kernel as in the CPU case and then
repeat them, this time using the kernel that makes memory coalescing and report the relative
percentile difference. We notice that the gains stemming from memory coalescing are always
higher than 20% and can reach up to 50%.
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CHAPTER 4

Extension to Multiple Dimensions

4.1 Introduction

The algorithms discussed so far are applicable on one-dimensional datasets. However, datasets
with multiple dimensions involved are a common case in real-life applications. In this Chap-
ter, I discuss the modifications required in order to extend both the centralized GreedyAbs and
MinHaarSpace [KSM07] to deal with multiple dimensions. The main difference is that now the
distributed algorithms of Chapter 3 run over a multidimensional error-tree and instead of using
GreedyAbs and MinHaarSpace, they employ the modified algorithms we are going to present in
this Chapter.

The structure of a D-dimensional error-tree (Figure 2.3) is somewhat more complex. As op-
posed to the one-dimensional case, each node of the tree contains many coefficients and thus the
terms node and coefficient should be distinguished. During thresholding, it is not necessary to
pick or discard all coefficients of a node at the same time. In Figure 4.1 we see a snapshot where
the black-filled coefficients are retained in the synopsis, while the blank ones are discarded. For
the navigation in a multidimensional error-tree, we follow the indexing presented in Figure 2.3.
The first node at each level has index 2D·level. The rest of the nodes of the same level maintain
index values increased by one each. For our example and the two-dimensional case, in level 1,
the first node has index 22·1 = 4, the next node of this level has index 5 and the remaining two
have indices 6 and 7 respectively. With that indexing scheme, we can easily navigate the error-
tree. Dividing a node’s index by 2D leads us to the parent of the node. For the identification

59
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0	

1	

4	 5	 6	 7	

Figure 4.1: Thresholding in a 2-dimensional error-tree.

of an individual coefficient within a node, we apply internal indexing. The internal index of a
coefficient cij belongs in the interval: [0, 2D − 1). The notation cij denotes the j-th coefficient
in node i.

4.2 MDMSpace: MinHaarSpace for Multiple Dimensions

In order to explain the required modifications for extending MinHaarSpace [KSM07] to multi-
ple dimensions, an understanding of the original algorithm is required. A detailed description
of MinHaarSpace can be found in Appendix A. Since the algorithm works with unrestricted
wavelets (Section 2.5), Lemma 17 in Appendix A bounds the space we have to explore for se-
lecting coefficient values in the one-dimensional case. For extending this Lemma to multiple
dimensions, we have first to understand the basic idea which is based on. The following proof
provides an intuition into it.

Proof. Let us consider a wavelet node ci, with real coefficient value zi and incoming value¹ vi.
Then, the incoming value to its left child will be v2i = vi + zi. With v∗i and z∗i we denote the
incoming value and wavelet coefficient in the unrestricted case, where z∗i does not come from
the Haar wavelet transform but is selected from R. According to Lemma 16 we have:

|v2i − v∗2i| ≤ ϵ⇒ |(vi + zi)− (v∗i + z∗i )| ≤ ϵ⇒ |(vi − v∗i ) + (zi − z∗i )| ≤ ϵ (4.1)

If we choose z∗i values such that |(z∗i − z∗i )| ≤ ϵ − |vi − v∗i |, then the triangular inequality
gives us:

|(vi − v∗i ) + (zi − z∗i )| ≤ |vi − v∗i |+ |zi − z∗i | ≤ |vi − v∗i |+ ϵ− |vi − v∗i | = ϵ (4.2)

which holds according to Inequality 4.1. Thus, the inequality |(z∗i − z∗i )| ≤ ϵ − |vi − v∗i |
appropriately delimits the z∗i values without violating the constraints of the problem.

¹For the notions of incoming value and real wavelet coefficient, look at the MinHaar description in Appendix A
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The inequality of Lemma 16 is also satisfied in the multidimensional case and implies that
the finite set of possible incoming values we have to examine at node ci consists of the multiples
of δ in the interval Si = [vi − ϵ, vi + ϵ]; thus, |Si| = ⌊2ϵδ ⌋+ 1 = O

(
ϵ
δ

)
.

For bounding the search space for coefficients in multidimensional datasets, we extend the
above idea and present the following Lemma:

Lemma 7. Let vi be the real incoming value to node ci, zi,k the real assigned coefficients at ci,

v∗i ∈ Si be a possible incoming value to ci for which themaximum error bound ϵ can be satisfied, and

z∗i,k be a value that can be assigned for incoming value v∗i satisfying ϵ. Then, |zi,k−z∗i,k| ≤
ϵ−|vi−v∗i |
2D−1

Proof. A node ci of a D-dimensional error-tree contains 2D−1 coefficients zi,j that all contribute
to its 2D children. Thus, for an incoming value vi at node ci, the incoming value at its j-th child
is: vi·2D+j = vi +

∑2D−2
k=0 (zi,ksign (k, j)). Following a similar reasoning as before, we have:

|vi·2D+j − v∗i·2D+j | ≤ ϵ⇒ |(vi − v∗i ) +

2D−2∑
k=0

(
zi,k − z∗i,k

)
sign (k, j) | ≤ ϵ (4.3)

If we choose z∗i,k values such that: |zi,k−z∗i,k| ≤
ϵ−|vi−v∗i |
2D−1

, then from the triangular inequality,
we have:

|(vi − v∗i ) +

2D−2∑
k=0

(
zi,k − z∗i,k

)
sign (k, j) | ≤ |vi − v∗i |+

2D−2∑
k=0

|zi,k − z∗i,k| ≤

|vi − v∗i |+ (2D − 1) · ϵ− |vi − v∗i |
2D − 1

= ϵ (4.4)

which holds according to Inequality 4.3 and thus |zi,k − z∗i,k| ≤
ϵ−|vi−v∗i |
2D−1

effectively delimits
the space of candidate values for the wavelet coefficients.

For a given incoming value v at node ci, the possible assigned values for every coefficient
zi,k, k = 0, .., 2D − 2 comprise the finite set of the multiples of δ in the interval: Sv

i,k =[
zi.k −

ϵ−|vi−v∗i |
2D−1

, zi,k +
ϵ−|vi−v∗i |
2D−1

]
. As |Sv

i,k| ≤
2(

ϵ−|vi−v∗i |
2D−1

)

δ = O
(

2
2D−1

ϵ
δ

)
, and each node con-

tains 2D − 1 coefficients, the number of examined values for node ci is O
((

2
2D−1

ϵ
δ

)2D−1
)
.

Similarly to MinHaarSpace, the MDMSpace procedure works in a bottom-up left-to-right
scan over the error-tree. At each visited node ci it calculates an array A of size |Si| from the
precalculated arrays of its children nodes. A holds an entry A[v] for each possible incoming
value v at ci. Such an entry contains: (i) the minimum number A[v].s = S(i, v) of non-zero
coefficients that need to be retained in the sub-tree rooted at ci with incoming value v, so that the
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resulting synopsis satisfies the error bound ϵ, (ii) the δ-optimal values A[v].
(
zvi,0, .., z

v
i,2D−2

)
to

assign at ci, for incoming value v, and (iii) the actual minimized maximum error A[v].e obtained
in the scope of ci. S(i, v) is recursively expressed as:

S(i, v) = min
zi,k∈Sv

i,k

i2D+1−1∑
j=i2D

S(j, v +
2D−2∑
k=0

zi,ksign(j, k)) +
2D−2∑
k=0

(zi,k ̸= 0)


S(0, 0) = min

z0,0∈S0
0,0

(S(1, z0,0) + (z0,0 ̸= 0))

The above equations compute the smallest between (i) the minimum required space if a non-zero
coefficient value zi,k is assigned at ci,k; and (ii) the required space if a zero value is assigned at
it. The latter case applies only if 0 ∈ Sv

i,k. Let Sv
i,k denote the set of those assigned values at ci,k

for incoming value v that require the minimum space in order to achieve the error bound ϵ: The
δ-optimal value to select is the one among these candidates that also minimizes, in a secondary
priority, the obtained maximum absolute error in the scope of ci. So, we also need the equations:

E(i, v) = min
zi,k∈Sv

i,k

i2D+1−1max
j=i2D

E(j, v +
2D−2∑
k=0

zi,ksign(j, k))


E(0, 0) = min

z0,0∈S0
0,0

(E(1, z0,0))

Complexity Analysis. The result array A on each node ci holds |Si| entries, one for each
possible incoming value, hence its size is O

(
ϵ
δ

)
. Moreover, at each node ci and for each v ∈ Si,

we loop through all
∏2D−2

k=0 |Sv
i,k| = O

((
2

2D−1
ϵ
δ

)2D−1
)

possible assigned values. Thus, the

runtime of MDMSpace(0, ϵ) is O
((

2
2D−1

)2D−1
·
(
ϵ
δ

)2D
N

)
.

4.3 MGreedyAbs: Extending GreedyAbs to Multiple Dimensions

For extending the algorithms of Section 3.3 to multiple dimensions, we first need to modify the
centralized GreedyAbs algorithm.

As in the one-dimensional case, the greedy algorithm picks each time the coefficient cjk with
the lowestMA and discards it. According to Equation 3.5, the computation ofMAk for a node
ck demanded four values (maxlk, minlk, maxrk, minrk): the maximum and minimum error for
each of the two subtrees of ck. A node of a D-dimensional error-tree has 2D children. Thus,
in order to compute MAjk, we need to know the maximum and minimum error in each of the
2D subtrees of cjk, thus 2D+1 values are required. We can see that all the coefficients of a node
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support the same region of the original data, and so they should observe the same errors in the
reconstruction of the corresponding data values. In that way, we do not need to store at each
coefficient the maximum and minimum error observed in each sub-tree, but all the coefficients
of a node can share the same 2D+1 values. The equation for the computation ofMAjk is:

MAjk = max
0≤s≤2D−1

{|maxsj − sign (s) cjk|, |minsj − sign (s) cjk|} (4.5)

where s is the index of each sub-tree of node j and sign (s) is the sign of the error caused in sub-
tree swhen deleting coefficient cjk. Similarly to the one-dimensional case, when a coefficient cjk
is discarded, its maximum and minimum errors need to be updated, as well as theMA-values of
all coefficients in the sub-trees of node j and if needed the coefficients in the ancestors of node
j. Furthermore, this time we also need to update the MA-values of the remaining coefficients
in node j that are not yet discarded. Algorithm 8 formally presents MGreedyAbs, the modified
algorithm for handling multidimensional data.

Complexity Analysis. The initial heapH can be constructed inO(N) time. The algorithm
performsO(N) discarding operations. A dropped coefficient cjk at height h of the error-tree has
at most 2Dh descendant nodes and each of them at most 2D − 1 non-deleted coefficients. Thus,
each coefficient at height h has at most 2Dh(2D − 1) non-deleted descendant coefficients which
must be updated. Moreover, at height h of the error-tree, there are 2D(log

2D
N−h)(2D − 1) coef-

ficients. As all of them will eventually be discarded, the total number of updates in descendants
for all coefficients is:

log
2D

N∑
h=1

[2Dh(2D − 1) · 2D(log
2D

N−h)(2D − 1)] = (2D − 1)2Nlog2DN (4.6)

However, as it holds log2Dx = 1
D logx, the above quantity becomes: (2D−1)2

D NlogN . A
discarded coefficient cjk has at most log2DN ancestor nodes with at most 2D − 1 non-deleted
coefficients each, and thus the total number of updates in ancestors for all deleted coefficients
is also O( (2

D−1)2

D NlogN). Furthermore, for each dropped coefficient cjk, we need to update at
most 2D − 2 coefficients in node j, i.e., in the same node of the discarded coefficient. As there
areO(N) discarded nodes, the cost of updates in the same node is: O((2D−2)N) in total. Thus,
the total update operations of the algorithm are: O(NlogN + N). Moreover, each update in a
coefficient costs its re-positioning in H which is an O(logN) operation. The complexity of the
algorithm is thus: O( (2

D−1)2

D Nlog2N + (2D − 2)NlogN), that asymptotically remains to be
O(Nlog2N) as in the one-dimensional case. Please also note, that in contrast to MDMSpace, the
term 2D does not have exponential impact on the running-time complexity.
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Algorithm 8: MGreedyAbs
1: Input: WA vector of N Haar wavelet coefficients
2: H := create_heap(WA)
3: while H not empty do
4: discard cjk := H.top // coefficient with smallestMAjk

5: for s = 0; s ≤ 2D − 1; s++ do
6: maxsj = maxsj − sign (s) cjk;minxsj = minxsj − sign (s) cjk
7: for i = 0; i ≤ 2D − 2; i++ do
8: if cji not discarded then
9: recalculateMAji;update cji’s position in H

10: for each subtree s ∈
[
0, 2D − 1

]
of node j do

11: for each coefficient cmn ∈ s do
12: if cmn not discarded then
13: Update all error measures in cmn by cjk
14: recalculateMAmn;update cmn’s position in H
15: maxerr := max

0≤s≤2D−1

(
maxsjk,max

s
jk

)
;

16: minerr := min
0≤s≤2D−1

(
minsjk,min

s
jk

)
; nodei = nodej .parent

17: while nodei ̸= NULL do
18: maxli := maxerr; minli := minerr
19: if any of {maxsi ,minsi}, s ∈

[
0, 2D − 1

]
changed then

20: if ci not discarded then
21: recalculateMAi;update ci’s position in H
22: maxerr := max

0≤s≤2D−1

(
maxsjk,max

s
jk

)
23: minerr := min

0≤s≤2D−1

(
minsjk,min

s
jk

)
24: nodei = nodei.parent
25: else break

4.4 Discussion

From an algorithmic perspective, the main difference in the construction of one- and D-dimen-
sional wavelet synopses is the structure of the error-tree. All the modifications on the proposed
algorithms aim at handling error-trees in which each node can have an arbitrary number of
children.

We observe that the complexity of MDMSpace becomes prohibitive even for low dimension-
alities. A dimension of D = 4 can lead to billions of iterations for the algorithm. On the other
hand, the complexity analysis of the greedy algorithms shows that an error-tree of a D-dimen-
sional dataset incurs a computational overhead in the order of 22D . The conducted experiments
in Section 4.5 show that the synopsis construction for a 4-dimensional dataset is only 1.5 times
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slower than the synopsis construction for a one-dimensional same-sized dataset when the greedy
algorithms are employed.

As the experiments indicate, it is more difficult to yield accurate wavelet synopses for datasets
of high dimensionality. Intuitively, the higher the number of dimensions, the higher is the num-
ber of neighbors for a data-value in the input array. Depending on the distribution, this can lead
to an increased number of discontinuities that should be captured by the synopsis.

Table 4.1 summarizes the discussed algorithms. IndirectHaar and DIndirectHaar can han-
dle the multidimensional case only if they use MDMSpace instead of MinHaarSpace. Similarly,
DGreedyAbs and BUDGreedyAbs should use MGreedyAbs for handling multiple dimensions.

Table 4.1: Summary of presented algorithms

Algorithm Distributed Multidimensional
MinHaarSpace no no

MDMSpace (this dissertation) no yes
IndirectHaar no yes

DIndirectHaar (this dissertation) yes yes
GreedyAbs no no

MGreedyAbs (this dissertation) no yes
DGreedyAbs (this dissertation) yes yes

BUDGreedyAbs (this dissertation) yes yes

4.5 Experimental Evaluation

Theproposed algorithms are evaluated in terms of (i) synopsis construction time and (ii) achieved
maximum absolute error. All algorithms are implemented in Java 1.8.

Datasets. The experiments are conducted using both synthetic and real datasets. As syn-
thetic data, uniform and zipfian distributions are used, with data values that lie between [0, 1000].
As multidimensional real-life datasets, we utilize NOAA [noa] and NYCT2D [nyc]. NYCT2D is
a 2-dimensional dataset of 1.5 billion records that contains trip distances and total fares for the
taxi rides. For NOAA, the following four dimensions are considered: Wind Direction,Wind speed,
Temperature and Dew point. All datasets are partitioned in order to test scalability over different
sizes. The smallest partition comprises the first 1M records, while each subsequent partition is
2D times the previous one, whereD is the dataset’s dimensionality. The largest dataset consists
of 268M datapoints.

Platform setup. As a deployment platform, a Hadoop 2.6.5 cluster of 9 machines is used.
Each machine features eight Intel Xeon CPU E5405 @ 2.00GHz cores and 8 GB of main memory.
One machine is used as the master node and the remaining ones as slaves. Each slave is allowed
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Figure 4.2: Scalability with the space budget B.

to run simultaneously up to 5 map tasks and 1 reduce task. Each of these tasks is assigned 1
physical core and 1 GB of main memory. For all the remaining properties, we keep the default
Hadoop configuration.

For experimenting with the centralized algorithms one machine with the same specifications
as the ones listed above is employed. Thus, centralized algorithms may have up to 8 GB of
available main memory for their execution.

4.5.1 Scalability

In this Section, we use synthetic data to assess the scalability with respect to the available budget
for the synopsis B and the number of datapoints N . The dataset consists of values uniformly
distributed in the range: [0, 1K].

Varying space budget. We run DGreedyAbs, BUDGreedyAbs and DIndirectHaar for N =

17M datapoints and vary B from N/64 to N/2. Figures 4.2-(a), 4.2-(b) and 4.2-(c) show the
results for DGreedyAbs, BUDGreedyAbs and DIndirectHaar respectively. As expected, for all
algorithms, the higher the dataset dimension is, the higher is the running-time of the algorithm.
For the greedy algorithms and for budget sizes smaller than the partition size of the distributed
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Figure 4.3: Scalability for 2-dimensional datasets

job (1M datapoints), better running-time is observed. This is due to an optimization where each
worker emits only the B most important coefficients to the reduce stage. When the budget is
over 1M datapoints, the performance of DGreedyAbs is not affected byB, while BUDGreedyAbs
is linearly affected. For Figure 4.2-(c), we note that the complexity of DIndirectHaar for a 4-
dimensional dataset is too high and the algorithm is not able to run.

Varying datasize. Figure 4.3 presents scalability results when two-dimensional datasets of
different sizes are used. Once again, all examined algorithms scale linearly with the dataset size.
The important observation here is that the running-time gain of the greedy algorithms com-
pared to DIndirectHaar increases along with the dimensionality. For the 2-dimensional datasets,
the greedy algorithms present almost the same performance with the 1-dimensional case while
DIndirectHaar becomes considerably slower.

The main results of this Section are that: (i) dimensionality positively affects running-time
and (ii) the higher the dimensionality, the higher is the benefit of using a greedy algorithm.

4.5.2 Data Dimensionality and Maximum Absolute Error

In this Section, we investigate how dimensionality affects maximum absolute error and what
trade-offs DIndirectHaar offers for the high computational overhead. For this experiment, syn-
thetic datasets of 1, 2 and 4 dimensions are considered and budget is set to B = N

16 . All datasets
follow a zipfian-1.5 distribution, with a size of N = 17M datapoints. The choice of distribution
is inline with previous research [GK05], as it has been shown that wavelets can better capture
skewed distributions.

In Figure 4.4, we notice that the achieved accuracy is negatively affected by an increase in
dimensionality. The higher the dimensionality, the higher is the observed error. This is probably
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an effect of the enhanced locality in high-dimensional spaces. Furthermore, DIndirectHaar com-
pensates for its high computational complexity with an error 30% smaller than the one achieved
by the greedy algorithms for both multidimensional datasets.
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Figure 4.4: Maximum Absolute Error for Zipfian data and B = N/16.

4.5.3 Comparison for Real Datasets

For the multidimensional experiments, the NYCT2D and NOAA datasets are used. Furthermore,
in order to demonstrate the merits of wavelet thresholding in exploratory analysis tasks, a query-
time evaluation for the constructed synopses is also presented. For answering queries on wavelet
synopses, I have implemented the work of [CGRS01]. As proposed there, instead of applying the
wavelet transform directly on the data, we first construct a datacube of joint frequencies. After
the synopsis is constructed, it can be loaded in main memory and provide in-memory query
answering.

Figure 4.5a presents the results of the construction time comparison when B = N/16. For
both datasets, BUDGreedyAbs is the most time-efficient algorithm. DP algorithms are able to
run only for the NYCT2D dataset, where IndirectHaar is 12× and DIndirectHaar 7× slower than
BUDGreedyAbs. Despite the dimensionality of these datasets, we observe that all algorithms
achieve lower running-times than the ones achieved in Figure 3.11b. This may seem counter-
intuitive, but the explanation lies behind the distribution of the wavelet transform. The trans-
forms of NOAA and NYCT2D are sparse enough and the data that the thresholding algorithms
actually process are fewer than the original dataset.

Regarding quality guarantees, all greedy algorithms produced a maximum absolute error of
1.8 and 0.9 for the NYCT2D and NOAA datasets respectively. As the errors are already small
enough, the DP algorithms could not yield an interesting trade-off for the high-running time
they present.
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Figure 4.5: Synopsis Construction and Query Time for real-life datasets.

Figure 4.5b shows the results of the query time experiment. We consider queries of the form
select {sum, count, avg} from T where p1 ∧ ... ∧ pk, where pi is an inequality predicate. For
each dataset, we run a workload of 10 random queries of that form and present the average
query time. We compare query time on wavelet synopses against SparkSQL [spa] queries on
raw csv and Parquet [par] files. The csv text files do not fit in the aggregate memory of the
cluster we have configured and thus they produce the worst query latencies. As Parquet enables
lossless compression mechanisms, the corresponding Parquet files fit in our cluster’s memory
and improve a lot on the observed query time. However, our wavelet synopses with B = N/16

can fit in a single machine’s main memory and thus present the best query times.
The main conclusions from the comparisons in this Section are that: (i) The proposed dis-

tributed approaches scale to datasizes that the traditional centralized algorithms are unable to
process. (ii) The most time-efficient algorithms are BUDGreedyAbs and DGreedyAbs and each
of these algorithms can be the most appropriate choice in a different use-case; when B is not
too large, the BUDGreedyAbs algorithm is suggested. (iii) DIndirectHaar produces results of
better quality but it presents the worse running-time and ends up to be impracticable in higher
dimensions.
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CHAPTER 5

Online Synopses for Sliding Window Aggregates

5.1 Introduction

In this Chapter, efficient algorithms are proposed for the computation and online maintenance of
wavelet synopses. The construction process should be constrained to a limited memory budget,
that is usually much smaller than the window size (B << W ). This is a realistic requirement
in many real-life applications. For example, embedded devices such as Arduinos¹, that are often
met in IoT scenarios, possess memory in the order of KB [arda]. Thus, a space budget B should
be defined and cap the number of retained wavelet coefficients. In the analysis of this Section,
synopses logarithmic in the window size are considered, i.e., B = O (logW ).

The goal is to evaluate the ability of wavelets to accurately compute point queries and basic
range statistics (SUM, COUNT, AVG) in a data stream that follows the time-based sliding-window
model and where data elements are expected to arrive in the stream-order. Such a stream is
formally defined in Definition 1. Henceforth, the term stream is used to describe such a data
sequence.

Definition 1 (Ordered Time-based Stream). An ordered, time-based data stream is an infinite

sequence of tuples in the form: S = {(t1, v1) , (t2, v2) , ...} , t1 ≤ t2 ≤ ..., where ti denotes the

arrival time of tuple i and vi its value.

¹https://www.arduino.cc/
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Data Stream
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Figure 5.1: Error-tree for streaming data.

Both the sliding-window point and range queries are defined in Definition 2. A point query
can ask for the stream value at any time moment lying within the active window. Similarly, a
range query has always the current time as the end of its interval, while the start of it can be any
time moment within the window.

Definition 2. Let S be a stream, t the current time andW the window size.

• A sliding-window point query P (tq) on S returns an estimation for the value vq that

arrived at time tq , tq ∈ [t−W, t].

• A sliding-window range query AGG (tq) on S returns an estimation for an aggregate

AGG ∈ {SUM,COUNT,AV G} computed over the time range: [tq, t], where tq ∈ [t−W, t].

While this Chapter mainly discusses range queries of the described form, in order to demon-
strate the general applicability of the proposed approach, in Section 5.7, queries of the form [s, e],
where t−W ≤ s ≤ e ≤ t are also investigated.

5.2 Dynamic Synopsis Maintenance

5.2.1 Streaming Error-Tree

Similarly to previousworks, we operate on the streaming version of an error-tree [LTC10, KM05].
Each pair of newly arrived items is subjected to the wavelet transform and inserted into the error-
tree. During this construction process, at some time t, the number of stream data that have
arrived may be unequal to a power of two. Hence, the error-tree has not formed a full binary
tree as in the static case and unconnected sub-trees of different heights may exist. That means
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that there can be at most one such sub-tree rooted at each error-tree level (thus, ⌊logW ⌋ sub-
trees). Figure 5.1 depicts an example, where there are three unconnected sub-trees of heights:
one, two and three respectively. In order to avoid information loss and be able to continue the
decomposition process, we need to keep track of all sub-trees in the active window. For this
purpose, the front nodes array structure is used. For each sub-tree, that we want to track, we
create a fnode (i.e., a new element of the front nodes array) annotated with: (i) the timestamp
of the first supported item, (ii) the level of the sub-tree and (iii) the average value of its data.
We then set the created fnode to point to the sub-tree and append it in the front nodes array, as
shown in Figure 5.1.

Indexing Coefficients. In the streaming error-tree, a wavelet coefficient ci is indexed by a
tuple (li, oi), where li is the level of the coefficient in the error-tree and oi its order in the specific
level. Figure 5.1 illustrates the indexing scheme for our example. Given two coefficients ci, cj ,
where ci is an ancestor of cj , cj belongs to the left sub-tree of ci if: 2 ·oj−1 < (2 · oi − 1) ·2li−lj .

This dissertation exploits the sliding-window and proposes an efficient representation that
minimizes the space overhead for a coefficient. The key observation is that we do not have to
index an infinite stream but, at any given time, the synopsis approximates a single window of
sizeW . As the level of a coefficient can be at most logW , for li we need at most loglogW bits.
For reducing the size of the oi values, which are infinite in an unbounded stream, we use a wrap
around counter o′i =

[
(oi − 1)modW

2li
+ 1

]
that uses logW

2li
bits for a coefficient in level li. With

this scheme and for a window of size 1 billion, a coefficient needs at most 35 bits for storing both
li and oi.

5.2.2 Algorithm Outline

Algorithm 9 shows the outline of the streaming algorithm for the construction of a wavelet
synopsis. Each pair of newly arrived data is transformed into a wavelet coefficient and inserted
into the error-tree. The addition of a new coefficient may trigger the creation of more coefficients
in higher levels. In Figure 5.1, when two more items arrive, a new wavelet coefficient will be
inserted in the first level of the error-tree. As there is already one node in the first level, the
two coefficients will be averaged and differenced and create a new coefficient in level two. The
process will be recursively repeated and new wavelet coefficients are expected to be also added
in levels three and four. In general, every new item in the stream can fire up to ⌈logW ⌉ insert-
updates in the wavelet structure.

In line 4, we first check whether there are coefficients that lie outside the active window and
thus have expired. If such coefficients exist, we can safely discard them releasing this way space
without compromising accuracy (they support a range we are no longer interested in).
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Algorithm 9: Streaming Algorithm for Constructing a Sliding-Window Wavelet Syn-
opsis
input: Stream S, Budget B, Window sizeW

1 currT ime = 0; wSynopsis = new WaveletSynopsis();
2 for data items in S do
3 currT ime = currT ime + 2; d1, d2 = read(S);
4 wSynopsis.deleteExpired(currentT ime,W );
5 wSynopsis.insert(currT ime,W ,d1, d2);
6 while wSynopsis.size > B do
7 wSynopsis.discardNext();

Next, we insert the new elements. Depending on the data distribution, the wavelet transform
may produce some zero coefficients. These coefficients are never inserted in the structure we
maintain. If after the insert-step, the size of the synopsis still exceeds B, we discard coefficients
according to a greedy criterion (will be later discussed) until the size of the synopsis respects the
available budget.

We now delve into the internals of each of the insert, deleteExpired and discardNext functions.

Insert. The algorithm for the insertion of new coefficients in the synopsis is presented in
Algorithm 10. For each pair of arrived items d1, d2, we perform averaging and differencing (line
7) and create a new wavelet coefficient ci. If ci is non-zero, we add it to a min-heap (line 16) in
order to specify its order of deletion. In line 18, we check if ci is the only node at level l. If this
is the case, we create a new fnode (line 19) that points to ci, else we continue the process at the
next level of the error-tree, as explained in the example of Figure 5.1.

According to the proposed algorithm, all fnodes that support a part of the active window are
retained in the synopsis. This is the reason why fnodes are not inserted into the min-heap. As
we will explain in Section 5.3, this design choice improves the approximation quality of range
queries.

Moreover, in line 5 of the algorithm, we notice that a cap is enforced on the maximum level
of a sub-tree; the wavelet decomposition is not allowed to continue further thanmaxLevel levels.
This decision permits the existence of more than one fnodes with maxLevel levels. We store
these fnodes in a separate structure called topLevelFnodes (line 22). We claim that a limit on the
maximum level of the error-tree offers two advantages: i) lower bounded update times, and ii)
allows for the more accurate computation of range queries.

The first claim can be trivially verified. From the while condition of Algorithm 10, we can see
that an insert operation can trigger up to logW updates. For a maxLevel < logW , we directly
restrict the number of updates at every time unit. The impact ofmaxLevel in the accuracy of range
queries will be discussed in Section 5.3, where the query answering mechanism is described.
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Algorithm 10: Insert
input: Number of arrived items N , window sizeW , item d1,item d2

1 f = fnode with lowest level; tmp = null; l = 0

2 maxLevel = log
(

W
logW

)
3 while N > 0 and N mod 2 = 0 do
4 N = N / 2; l = l + 1
5 if l > maxLevel then break
6 if tmp = null then
7 avg = (d1 + d2) / 2; v = (d1 - d2) / 2
8 minCf = maxCf = v
9 else
10 avg = (avg + tmp) / 2; v = tmp - avg
11 minCf =min (prevFnode.minCf, tmpMin, v)
12 maxCf =max (prevFnode.maxCf, tmpMax, v)
13 ci = new WaveletCoef(li = l, oi = N, value = v)
14 ci.maxCoefInSubtree = maxCf
15 ci.minCoefInSubtree = minCf
16 if ci ̸= 0 then put ci in min-heap
17 delete fnode below f
18 if no fnode in level l then
19 f = new Fnode(level = l, value = avg)
20 f.minCf = minCf; f.maxCf = maxCf
21 if l < maxLevel then frontNodesArray.add(f)
22 else topLevelFnodes.add(f)
23 else
24 tmp = f.value
25 tmpMin = f.minCf; tmpMax = f.maxCf;
26 if f.pointer = null then f.pointer = ci
27 f = fnode at next level
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Now, we are going to investigate what is an appropriate value for maxLevel. A small value
offers the advantages we just mentioned. Nevertheless, as all fnodes are retained in the synopsis,
a cap on the maximum level increases the space we need to dedicate to the front nodes array.
Thus, we need to set a value such that we enjoy the benefits of a short tree without significantly
increasing space complexity. The value we select is ⌈log

(
W

logW

)
⌉. The following Lemma shows

that with this choice we only require poly-logarithmic space in the window size for storing the
front nodes array.

Lemma 8. Consider a wavelet error-tree T built over W data points. Setting the constraint that

each sub-tree of T cannot have more than ⌈log
(

W
logW

)
⌉ levels, results in storing at mostO (logW )

fnodes.

Proof. Let k denote the maximum permitted size for a sub-tree. Thus, within a window of size
W there can be up to ⌈Wk ⌉ such sub-trees, and thus ⌈Wk ⌉ fnodes. As the given budget B is
usually poly-logarithmic in W , we want to store at most O (logW ) fnodes. So, it should hold:
W
k ≤ c · logW, c ≥ 1 ⇒ k ≥ W

c·logW . Thus, the minimum sub-tree size we can tolerate without
violating the constraint of O (logW ) fnodes is the first power of 2 that is larger than W

c·logW and

hasM = ⌈log
(

W
c·logW

)
⌉ levels. However, the construction process of a wavelet tree is such that

we may have more than ⌈Wk ⌉ sub-trees in the window. As it is known that Σn−1
i=0 2

i = 2n − 1,
we can substitute a sub-tree of size k with up to M − 1 sub-trees of levels l = 1, ..,M − 1.
This way, there are at most ⌈Wk ⌉ − 1 +M − 1 = ⌈Wk ⌉+ ⌈log

(
W

c·logW

)
⌉ − 2 sub-trees and thus

fnodes in the window. As we want to save space, we set c = 1 and in the worst case we have
logW + log

(
W

logW

)
= O(logW ) fnodes.

The cost for inserting new elements in the wavelet synopsis is given by Lemma 9.

Lemma 9 (Insertion Time). Considering a synopsis size of B = O (logW ), an arriving pair of

data items leads to a worst case insertion time of O
(
log W

logW · loglogW
)
and

Θ
(
log W

logW

)
in the average case.

Proof. The cost of an insert-update consists of the cost of creating new coefficients and the cost
of re-configuring the binary heap. The proof for the worst-time case is straightforward: As we
discussed, an insert-update can lead to the creation of L new wavelet coefficients, where L is
the size of the tree. Since our algorithm permits only sub-trees of height up to ⌈log

(
W

logW

)
⌉,

it follows that this is also the maximum number of operations that an insert-update can cause.
Moreover, since the synopsis should occupy only poly-logarithmic space, we assume a min-heap
of size B = O (logW ). Thus, the worst-case insertion in the heap is O (loglogW ). It follows
that the total needed worst-case time for updating the synopsis when two new data items arrive
is O

(
log W

logW · loglogW
)
.
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We now computeΘ complexity. The insertion in a binary heap needsΘ(1) time on average.
The question is how many wavelet coefficients are created with every new arrival in the average
case. Without loss of generality, we assume a tree of size N , where N is a power of two. Each
arriving item can trigger the creation of 1 ≤ i ≤ logN coefficients. Since there are N items
within the window, we first compute how many of them create 1 coefficient, how many 2, etc.
Let a (j) denote the number of coefficients within a window that lead to the creation of paths
of length logN − j. We observe that only the last element can create a path of length logN ,
i.e., a (0) = 1. The same holds for a path of length logN − 1. There are two paths in the
window that have length at least logN −1. However, the one of them has length logN and thus,
a (1) = 1. With similar reasoning, we observe that the following recursion holds: a (0) = 1

and a (j) =
∑j−1

i=0 a (i). As the first two elements of the a (j) sequence add up to 2, it is easy to
derive that:

a (j) =

1 j = 0

2j−1 j ̸= 0

Since it is known that
∑n−1

i=0 2i = 2n − 1, we observe that:

logN−1∑
j=0

a (j)

N
=

1 +
∑logN−1

j=0 2j

N
=

1 + 2logN − 1

N
= 1

and thus the term a(j)
N can represent the probability of creating a path of length logN − j.

Let the random variableX express the number of updates a newly arriving data pair yields. The
expected value of X can be expressed as:

E(X) =

logN−1∑
j=0

a (j)

N
· (logN − j) =

logN

N
+
logN

N

logN−1∑
j=1

2j−1 − 1

N

logN−1∑
j=1

j · 2j−1 =

logN

N

1 +

logN−1∑
j=1

2j−1

− 1

N

logN−1∑
j=1

j · 2j−1 (5.1)

We use again the fact that
∑n−1

i=0 2i = 2n−1 in order to compute the first term. For k = j−1,
we have:

∑logN−1
j=1 2j−1 =

∑logN−1−1
k=0 2k = 2logN−1−1 = N

2 −1 and the first term of Equation
5.1 is equal to logN

2 . For the second term, it is easily proven that when n is a finite number, it



78 Chapter 5. Online Synopses for Sliding Window Aggregates

holds:∑n
j=1 j · xj−1 = 1− xn

(1−x)2
+ nxn

1−x . For x = 2 and n = logN − 1, we get that:

logN−1∑
j=1

j · 2j−1 = 1− 2logN−1 − (logN − 1) · 2logN−1 = 1− NlogN

2

Thus, Equation 5.1 becomes:

E(X) =
logN

2
− 1

N

(
1− NlogN

2

)
= logN − 1

N

Thus, the total update time for every arrived pair in the stream is Θ(1) · Θ
(
logN − 1

N

)
. As

for the sub-trees there is the constraint that the maximum size N is the first power of 2 that is
greater than W

logW , the complexity becomes: Θ
(
log W

logW − 1
N

)
= Θ

(
log W

logW

)
.

Delete Expired. We first check if all fnodes still support the active window. As an fnode f
supports 2f.level data points beginning from f .start, we have to discard all fnodes with: f .start
+ 2f.level < currT ime−W . If a fnode is deleted, so is the whole sub-tree underneath it.

We then scan all the remaining elements to check if there are coefficients that also need to
be removed. The criterion for removing a coefficient ci is: oi · 2li − 1 < currT ime−W . As we
require B = O (logW ), the cost of this scan operation is also O (logW ).

Discard Next. When budget is exceeded, we need to discard some coefficients. The heuris-
tic for selecting coefficients to discard depends on the error metric we need to optimize. If
L2-norm is the targeted metric, we should always keep the B largest coefficients in normal-
ized value. If the minimization of L∞ is required, we select each time the coefficient ck with
the minimum maximum potential absolute error MAk [KM05]. The MAk value is defined as:
maxdj∈leavesk{|errj − δjk · ck|}, where errj is the signed error for item j, and shows the max-
imum error that the removal of ck would produce. In either case, for efficiently identifying the
node that should be discarded and assist the greedy selection, the synopsis is organized as a min-
heap structure. In this work, the L∞ norm is used and the min-heap is implemented as a binary
heap.

Lemma 10 gives the cost of deletions either due to expiration or budget excess.

Lemma 10 (Deletion Time). The time spent in delete operations every time the synopsis is updated

is O (logW ) in both worst and average case.

Proof. Delete operations occur due to either window sliding or a manual coefficient removal in
order to respect the budget constraint. We observe that in the permanent state of the algorithm
(more than B data items have already arrived) the synopsis size increases by at most two ele-
ments with every new arrival. Thus, there are at most two deletions that we need to make. As
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the deleteExpired function can delete at most one coefficient, the discardNext function is called
at most twice. The manual removal of a coefficient results in the extraction of the minimum ele-
ment of a binary heap. Considering B = O (logW ), this operation has a worst-case complexity
O (loglogW ) and average time Θ(1). As for identifying an expired coefficient we need to scan
the whole synopsis, a O (logW ) operation is needed for both the worst and average case.

5.2.3 Error Guarantees

Regardless of which error-metric is optimized, the constructed synopsis should be able to provide
queries with deterministic guarantees. As shown in [KM05], providing guarantees for point
queries demands each node to maintain the maximum and minimum signed errors of its left and
right sub-trees.

This dissertation also provides deterministic guarantees for range queries. As mentioned in
Chapter 2, the value of a SUM query over a range [t1, t2] can be exactly reconstructed, by only
using the coefficients cj ∈ path[t1,t2], according to Equation 2.1. Here, we observe that under the
sliding-window model, the sum can be computed solely based on the coefficients cj ∈ patht1 ,
i.e., the ones that belong to the left path of the queried interval. As it is explained in detail in
Section 5.3, in the sliding-window model, we expect some sub-trees to be fully-contained in the
query-range and one last sub-tree to partially overlap with it. Let us consider that [t1, t2] is the
range of overlap with the last sub-tree. Thus, by definition, patht2 is the rightmost path of a
full binary tree. As such, every coefficient cj in patht2\patht1 is expected to have xj = 0 and
does not contribute to the sum, either it is contained in the synopsis or not. Thus, SUM[t1,t2] =∑

cj∈patht1
cjxj .

For providing error guarantees, we need to bound this sum. No matter if we have deleted
a coefficient cj or not, the xj value is always known since it only depends on the coefficient’s
position in the error-tree and the query range. So, if we had some bounds for the deleted (and
thus, unknown) coefficients cj , such that lj ≤ cj ≤ hj , it would hold:

• xj ≥ 0 ⇒ ljxj ≤ cjxj ≤ hjxj

• xj < 0 ⇒ hjxj ≤ cjxj ≤ ljxj

By summing up these inequalities for all deleted coefficients cj , we obtain deterministic guar-
antees for the SUM[t1,t2]. The idea for bounding cj values is to keep track of the minimum
and maximum coefficients in each sub-tree. In Algorithm 10, it is annotated with blue color all
required modifications for tracking minimum/maximum coefficients in each sub-tree.
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5.3 Query Answering

Point queries P (tq) are answered as explained in Chapter 2, i.e., P (tq) = Σcj∈pathqδqj · cj +
f.value, where f is the corresponding fnode of the sub-tree where tq belongs. We are now going
to focus on the query answering mechanism for range queries.

Data Stream

{v1, level = 3} {v2, level = 2} {v3, level =1}front 
nodes 
array

Query Range

ts

tq

tnow

TP

Figure 5.2: Range query answering

Figure 5.2 depicts a range queryAGG (tq). The range of interest [tq, tnow] is highlighted with
grey color. We observe that there are sub-trees which are fully-contained in the range and a last
sub-tree Tp that partially overlaps with it. Let us denote ts the moment in time that separates Tp
with the leftmost fully-contained sub-tree.

For the part of the query that corresponds to fully-contained sub-trees we can provide an
exact answer. Thus, AGG (tq) = AGGapprox ⊕ AGGexact = AGG[tq ,ts] ⊕ AGGt>ts , where ⊕
is a function that combines partial aggregates. This function is a simple addition for the case of
COUNT and SUM queries, while for AVG Lemma 11 holds.

Lemma 11. Let avg (·) and n (·) denote the averaging and counting functions respectively. The

average value of region X =
∪
xi, i = 1, 2, .., k with xi ∩ xj = ∅ can be computed as:

AV G (X) = ⊕ (avg (x1) , ..., avg (xk)) =
∑ n (xi) · avg (xi)

n (X)

We first show how to compute the exact part of the aggregate and then discuss how to ap-
proximate the range that intersects with the last sub-tree Tp. Recall that each fnode fi keeps
information about the level of its sub-tree Ti and the average value of the corresponding data
elements. Thus, an aggregate of Ti can be computed solely based on fi. Considering that a
data item arrives at each time unit, a COUNT query can be computed as 2fi.level, the answer to
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an AVG query is fi.value and the SUM can be derived by fi.value · 2fi.level. So, AGGt>ts =

⊕
(
AGGTi , ..., AGGTj

)
, where {Ti, ..., Tj} are all the sub-trees that are fully-contained in the

range query AGG (tq).

For approximating AGG[tq ,ts] we use the wavelet coefficients that lie in pathtq . We remind
that for coefficients cj in pathts\pathtq we expect xj = 0. As there is exactly one item that
arrives at each time unit, we know that there are ts − tq + 1 items in the range. A SUM query
can be approximated as: SUM[tq ,ts] =

∑
cj∈pathtq

cjxj + fp.value · (ts − tq + 1) and an AVG

query can then be easily answered as:
SUM[tq,ts]
(ts−tq+1) . Guarantees for the approximate AGG[tq ,ts]

are provided as follows: we traverse pathtq in a bottom-up fashion. For each position j of the
error-tree, we check if coefficient cj exists in the synopsis. If it does, we compute its contribution
cjxj . If it does not, we buffer the xj value that corresponds to the missing coefficient until we
find the next coefficient that exists in the synopsis. Then, we use the minimum and maximum
coefficients stored in this node, in order to bound the contribution of the missing coefficients.

Thus far, we have assumed that an item arrives at each time unit. However, in reality, streams
may be bursty and arrival rates do not follow a regular pattern. In order to handle the general
case and be able to answer all COUNT, SUM and AVG queries, we maintain two distinct wavelet
structures. The first one keeps track of a bit-stream {(t, b) , b ∈ {0, 1}} that indicates whether a
tuple has appeared at time t. The second one approximates the value distribution of the actual
input stream. LetBW denote the wavelet synopsis of the bit-stream and VW the synopsis of the
value-stream. The procedure for updating BW,VW is presented in Algorithm 11. Every time
t a data item (t, v) appears, we insert it in VW exactly as explained in Section 5.2. Moreover,
we insert the tuple (t, 1) in BW and note the time when the update takes place (line 11). While
the stream is inactive and no data arrives, we keep the system idle. The next time a tuple arrives
after an inactivity period, we insert t− lastT imeActive− 1 zero values to both BW and VW
(line 6). This mechanism ensures that a direct mapping between the time and wavelet domains
always exists. Let us also note that keeping two structures does not constitute a deficiency of
the proposed approach. Exponential histograms and waves do the same in order to support both
COUNT and SUM queries.

Answering COUNT queries on the stream is translated into SUM queries on the BW struc-
ture. For instance, if we need to know the number of measurements that a sensor produced
between times t1 and t2, we have to add the 1-bits that exist in the corresponding time range.
SUM queries on the input stream are answered by the VW structure. Since in the absence of
arrived data we insert zero-values to VW , we do not affect the result of additive operations. For
AVG and point queries, we have to “touch” both structures. For an AVG query, we compute the
sum from VW , the count from BW and divide the results.
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Algorithm 11: BW-VW updates
1 Initialize BW,VW ;
2 lastT imeActive = 0;
3 for every time unit t do
4 (t, v) = listenToStream();
5 if (t, v) ̸= null then
6 for t∗ in [lastT imeActive+ 1, t) do
7 BW.insert((t∗, 0));
8 VW.insert((t∗, 0));
9 BW.insert((t, 1));

10 VW.insert((t, v));
11 lastT imeActive = t;

5.3.1 Discussion

Having described the query answering mechanism of the proposed algorithm, we now discuss
the impact of limiting the maximum level of a sub-tree. We saw that an error is introduced
only due to the range [tq, ts]. Intuitively, the higher is the TP wavelet sub-tree, the larger this
range can be. By keeping sub-trees short, we increase the possibility to have more sub-trees
fully-contained in the query-range and thus, increase the exact part of the answer AGGt>ts .
The following Lemma shows how the maximum level we allow for sub-trees affects the relation
between the [tq, ts] and [ts+1, tnow] ranges.

Lemma 12. LetQ a range query, E =[ts+1, tnow]⊆ Q the sub-range ofQ for which our structure

provides an exact result and A the sub-range of Q that we need to approximate. It holds that:
|A|
|E| ≥

1
2logW .

Proof. We distinguish two cases depending on whether A overlaps with a sub-tree of height
⌈log W

logW ⌉ or not. Let us initially assume that A overlaps with a sub-tree of size 2k, with k <
⌈log W

logW ⌉. The maximum length of the range we need to approximate is |A| = 2k−1. By the
wavelet construction, it is guaranteed that there can be up to k−1 trees inE of sizes 2, 4, .., 2k−1

and thus |E| ≤
∑k−1

i=2 2i = 2k. It follows: |A|
|E| ≥

1
2 . We now consider the case where A overlaps

with a sub-tree of size M , where M is the first power of 2 which is greater than W
logW . In that

case, it holds that |E| ≤W and |A| = M
2 , and so we have |A|

|E| ≥
M
2W ≥

W
logW

2W = 1
2logW .

Lemma 12 implies that for range queries of length near to W , the proposed method has to
approximate only the 1

2logW of the query. The larger thewindow size, the larger the portion of the
query we can exactly compute. For windows larger than 1 million items, we have to approximate
less than 3% of the queried range. This is a direct consequence of limiting the maximum level a
sub-tree can have. According to the proof, the corresponding ratio in classic wavelets is 1

2 in the
best case.
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As factor 1
2logW bounds the range we have to approximate but does not contain information

on data values distribution, it favors mostly COUNT queries but no theoretical guarantees can
be given for SUM and AVG. However, the experiments of Section 5.7 show that the proposed
approach is very robust and that for queries of lengthW high quality results are achieved for all
examined datasets, both real and synthetic.

Othermethods, such as exponential histograms (EH), provide theoretical guarantees by track-
ing query results over time. Instead of approximating the data distribution of the stream, as this
work does, they approximate the distribution of a query over time. For example, in the case of a
SUM query, they maintain a structure that tracks the SUM at different time intervals. The benefit
of wavelet-based techniques compared to such approaches is flexibility to handle more generic
query types and underlying data distributions. EH-like techniques are restricted to only handle
streams of positive integers and answer a single query. While due to Lemma 12, our method
performs better when applied to positive numbers, in Section 5.7, it is shown that it can also be
efficiently applied to streams of arbitrary numerical data. Moreover, the same structure can be
used to also answer point queries and more general range queries, where the end of the query
range is not equal to the current time.

5.4 Distributed Wavelets For Streams

This thesis also addresses the problem of tracking basic sliding-window aggregates over the
union of local streams in a large-scale distributed system. By union, we mean a linear com-
bination (e.g., average) of the remote streams. In the described setting, the remote sites are not
allowed to exchange information with each other but communicate through the network with
a centralized coordinator node. Let us consider a linear function F applied on a set of N dis-
tributed streams Si, i = 1, .., N . Our goal is to answer COUNT, SUM and AVG queries on F ,
i.e.,AGG (F (S1, .., SN )), while minimizing communication; collecting all streaming data is too
costly to afford in many real use-cases. Therefore, similarly to [GKMS07], each remote site com-
putes a wavelet synopsis (WS) on its local stream (S) and it is only the synopses that are sent
to the coordinator. This way, the communication cost is reduced.

The coordinator computes the requested aggregate directly in the wavelet domain. As Haar
wavelets are linear functions of the original streams and F is also a linear function, if we apply
F on the individual synopsesWSi, we are going to get a wavelet synopsis ofF (S1, .., SN ). Thus,
WS (F (S1, .., SN )) = F (WS1, ..,WSN ) andwe can approximate the queryAGG (F (S1, .., SN ))

as AGG (F (WS1, ..,WSN )).
Figure 5.3 illustrates an example. Sites 1, 2 monitor their local streams s1i, s2i and construct

the corresponding wavelet synopses. At the coordinator node, we want to track the stream
F (s1i, s2i). Instead of collecting the s1i, s2i values, applying F on them, computing the wavelet
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s21     s22  s23    s24   s25    s26  s27  s28s11     s12  s13    s14   s15    s16  s17 s18

c1i c2i

F(c1i,c2i)

F(s11,s21) F(s12,s22)            …                           F(s18, s28)

Stream1 Stream2

Coordinator

Figure 5.3: Composition of individual wavelet synopses.

transform and constructing the synopsis, we observe that for each coefficient with index i, it
holds that cmi = F (c1i, c2i), where cmi is the corresponding coefficient in the error-tree of the
coordinator. Thus, it suffices to aggregate the coefficients by index and compute the F func-
tion. The following Lemma shows that the maximum error guarantees in the wavelet synopsis
of the coordinator also follow the F function. Therefore, we are able to provide deterministic
guarantees to queries on the union of the streams.

Lemma 13. Let S1, S2, .., SN be N streams and ϵ1k, ϵ2k, .., ϵNk the corresponding maximum ab-

solute errors for the reconstruction of the data value at t = k. The corresponding error in the stream

F (S1, .., SN ), where F is a linear function, is F (ϵ1k, ϵ2k, .., ϵNk).

Proof. Since the reconstruction error of stream Si for t = k is ϵik, it holds: |
∑
δkjcij−dik| ≤ ϵik,

where cij are the wavelet coefficients of Si that have been retained in the synopsis. Let F =

a1x1+..+aNxN . By applyingF on the above inequalities we get: −aiϵik ≤
∑
δkjcijai−aidik ≤

aiϵik. Summing up for all streams yields:

|
∑

δkjF (c1j , .., cNj)− F (d1k, .., d2k) | ≤ F (ϵ1k, .., ϵNk)

5.5 Out-of-Order Arrivals

While so far we have considered time-based streams where items arrive in order, this is not a
real restriction of the algorithm. In favor of completeness, in this Section it is described how the
scheme can be generalized to handle out-of-order arrivals. In Algorithm 11, we saw that in case
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arrivals are in order but a discontinuity in time exists, i.e., the next arrived value has a timestamp
t = tnow +k, k > 1, we pad the stream with zero-values. This way it is ensured that the wavelet
transform is performed over a continuous time domain and the error-tree contains a path for
each possible time t.

Algorithm 12: Out-of-Order Updates
input: Synopsis S, update tuple (tp, v), tnow −W ≤ tp ≤ tnow

1 // find the sub-tree where tp belongs fnode = null;
2 for f in fnodes do
3 if f.start ≤ tp ≤ f.start+ 2f.level then
4 fnode = f ;
5 break;
6 // compute new coefficients;
7 level = 1;
8 order = ⌈ tp2 ⌉;
9 while level ≤ fnode.level do
10 if (level, order) in S then
11 c = S.get((level, order));
12 c.value+=δij · v

2level
;

13 update theMA-value of c;
14 update max/min coefficients in sub-tree rooted at (level, order);
15 else
16 cj = findDirectAncestor(level, order);
17 c = ((level, order), δij · v

2level
);

18 c.errorInfo = cj .errorInfo;
19 update theMA-value of c;
20 update max/min coefficients in sub-tree rooted at (level, order);
21 S.add(c);
22 level += 1;
23 order = ⌈order2 ⌉;

It is now described how we handle the case where a tuple (tp, v) with tp < tnow arrives. The
only restriction we have is: tp ≥ tnow −W , i.e., the tuple should lie within the active window.
We first have to find the sub-tree where this tuple belongs. This can be accomplished by a linear
scan over the fnodes. It is reminded that each fnode f maintains the start point f.start of its
coverage in time as well as its level f.level. Thus, the range it spans in time is [f.start, f.start+
2f.level]. Then, for the f.level levels of the sub-tree, we compute the contribution of value v to the
wavelet nodes in pathtp . The contribution of v to a wavelet node ci with index (li, oi) is δij v

2li
,

where δij = 1 if tp ∈ leftleavesci and −1 otherwise. Each of the newly computed coefficients
((li, oi), δij

v
2li

) has to be inserted into the synopsis. If a coefficient ((li, oi), vold) already exists
for the index (li, oi), then we just update its value and the quantities that help us provide error
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guarantees (e.g.,MA-value). If the node that corresponds to index (li, oi) has been deleted, the
newly computed node is directly inserted into the synopsis. Nevertheless, in the latter case, the
new coefficient misses some information (maximum/minimum errors and coefficients in sub-
tree) for providing error-guarantees. For dealing with this issue, we can find its first available
ancestor cj in the error-tree and inherit that information from there. However, as the ancestor cj
covers a larger part of the time domain than ci does, the max/min values it maintains are derived
not only from the sub-tree rooted at ci but from other sub-trees too. Hence, the error-guarantees
will still hold but are expected to be loosened compared to the in-order case. Algorithm 12
describes the process in more detail.

5.6 Workload Aware Synopses

Section 5.3.1 provides an intuition on why the proposed scheme works well in a variety of cases
but also indicates some of its weaknesses: it does not provide theoretical guarantees and it is
not expected to present a good behavior when the query range is significantly smaller thanW .
In this Section, we are going to demonstrate how we can boost performance in these cases too,
assuming we have knowledge of the workload.

Front nodes array F2={v1, level = 5} F1={v2, level = 3}

qi tnowtj

Figure 5.4: Example demonstrating the pitfalls in workload-aware sliding-window synopses: If
qi is a query of interest, eventually all coefficients in paths tj > tnow − qi will be requested.
Hence, we have to delete coefficients that we know they will be important in the future.

We consider workload to be a set of fixed queries in the form Q = {q1, q2, ..., qk} which are
known a priori and can be asked at any time. Each qi represents a range query [tnow − qi, tnow]

and thus it should be 0 ≤ qi < W . The problem of constructing an optimal wavelet synopsis
with respect to a set of range queries has been extensively studied [GPS08]. Guha et al. propose



5.6. Workload Aware Synopses 87

both DP and heuristic algorithms not only for prefix queries², which is our case, but also for the
more general case of hierarchical range queries. However, they examine the static version of the
problem where data is fixed and does not change over time. The real-time requirements we have,
and the sliding-window model render the approach of [GPS08] inapplicable to our case.

In Section 5.2 we observed that in order to compute a range sum over [tj , tnow]we only need
the coefficients ci ∈ pathtj . Then, the answer is derived by the fnodes of the sub-trees that are
fully contained in the query and the term

∑
ci∈pathtj

cixi, where tj belongs to the last sub-tree,
that partially overlaps the query range. If we knew the coefficients ci ∈ pathqj for all qj ∈ Q

then the provided answers would always be exact.

Workload Index

WaveletStore
   (disk-based)

Front Nodes Array

Sub-tree Buffer

In-memory Structures

Cache

cs1 subtrees1

... ...

csj substreesj

cc1 subtreec1

... ...

cci subtreeci

q1 r1

q2 r2

... ...

qk rk

Fm ... F2 F1

Figure 5.5: Architecture of the proposed system for workload-aware range queries in sliding-
window streams.

For understanding the extra difficulties the streaming case introduces, we consider the ex-
ample of Figure 5.4. Let us assume a budget of B = 5 coefficients and a workload Q = {qi}. If
we keep in the synopsis the whole pathqi , then at tnow = t1 we will be able to provide an exact
answer. Nevertheless, in order to achieve this, we have discarded all the other coefficients in
the active window. Hence, since we always care for qi, in a later time (e.g., tnow = t1 + 9), the
coefficients of pathtj (annotated with green color) will be of interest but they will have already
been deleted.

²In prefix range queries, the start (or end) of a range is always the same for all queries of the workload
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In order to overcome this obstacle, this thesis introduces a system design that violates the
“one-pass” over the data feature but offers very interesting trade-offs between accuracy and real-
time responsiveness. Besides the limited memory, many IoT devices are also equipped with
a secondary storage (e.g., SD card) [ardb] with larger capacity but which is more “expensive”
to access. Based on this observation, the system of Figure 5.5 is proposed. According to the
presented design, we do not keep in-memory the whole wavelet synopsis as before, but only the
front nodes array and some helping structures that are going to be explained. Moreover, there is
an analysis that shows that the helping structures we maintain do not incur a memory overhead
larger than logW and thus, the memory constraints still hold.

Themain idea of the system is the following: as data items arrive, the Haar wavelet transform
is dynamically computed. However, as soon as a new coefficient is created, it is persisted into the
WaveletStore: a disk-based storage device. This way we can retrieve in the future coefficients that
have been discarded. Please also note that as write operations are performed asynchronously,
the ingestion of data into the disk does not delay the construction of the synopsis. In order to
answer a query, we perform a lookup in the Workload Index. This is a structure that contains
the materialized results for the queries of interest. For having fresh data in the Workload Index,
we need to continuously update it. An update consists of computing the answer for every query
qi ∈ Q. As usually, the computation of a query qi consists of two parts: (i) one fully contained
in range and (ii) a sub-tree that partially overlaps with it. For the part of the query that is fully
contained in the range, we derive the answer by using the front nodes array. But for the last sub-
tree, we can now retrieve the coefficients cj ∈ pathqi from the WaveletStore. A naive solution
would require O

(
⌈log W

logW ⌉
)
GET operations, i.e., as many as the coefficients in a maximal

path. Nevertheless, such an approachwould result in excessive accesses of the considerablymore
expensive secondary storage and would defeat the purpose of the fast, in-memory approximate
query processing.

In the following, I present how we can limit disk accesses and create a fast system that can
accurately answer workload-aware range queries under the sliding-window model.

5.6.1 Disk Access Patterns

The data organization on disk plays a crucial role on the system’s performance. In this Section,
we discuss how data should be stored and retrieved in order to obtain better response times
compared to the naive solution where a logarithmic number of GET requests is required for each
query. In the following discussion, we assume theWaveletStore to be any disk-based lightweight
key-value store.
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Path-based Organization

The first approach for limiting the number of issued GET requests per query is to store in a single
value all the coefficients that have been created at a specific time. Let us denote P (t) the set of
coefficients that are created at t. Thus, at each time t, we persist a key-value of the form:

(key, value) = (t, P (t))

As all |P (t)| coefficients must have been created before they are persisted on disk, a buffer
of size |P (t)| should exist. According to Section 5.2, the arrival of two data items can trigger
the creation of up to O

(
⌈log W

logW ⌉
)

new coefficients, and thus the memory overhead of this

approach is O
(
⌈log W

logW ⌉
)
.

Front nodes array F2={v1, level = 5} F1={v2, level = 3}

qi tnowtj tk

A

B

C

Figure 5.6: Example of the path-based data organization.

For the query answering, consider the example of Figure 5.6. The construction process of
the error-tree implies that all coefficients that are surrounded by curve A have been created at
tnow − qi, and thus are stored in a single key-value (tnow − qi, P (tnow − qi)). Similarly, the
coefficients surrounded by B have been created at tj and by C at tk. For computing qi, we need
to fetch from disk P (tnow − qi), P (tj), P (tk) and filter in memory the coefficients that belong
to pathqi . Algorithm 13 presents the exact procedure for achieving this task. This way, for
the example of Figure 5.6, we perform 3 GET requests instead of the 5 that the naive approach
requires. Lemma 14 places the bounds for the improvements this approach can bring.

Lemma 14. For reconstructing the exact answer, the path-based organization needs 1 GET in the

best case and has the same behavior as the naive approach in the worst case.
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Proof. The worst case is observed when the start of the query range is near to the leftmost path
of a sub-tree. In that case, each coefficient of the path has been created at a different time and
thus, O

(
⌈log W

logW ⌉
)
GETs are required. The best case is observed, if we query the rightmost

path of a sub-tree. The rightmost path is wholly created at a single time moment and can be
fetched with a single request.

Algorithm 13: Query Answering under the Path-based Data Organization
input: tnow, qi,maxLevel

1 time = tnow − qi;
2 level = 1;
3 result = 0;
4 order = ⌈ time

2 ⌉;
5 while level ≤ maxLevel do
6 time = order ∗ 2level; // a coefficient with index (l, o) is created at time = o ∗ 2l

fetchedPath = waveletStore.get(time);
7 for coefficient ci in fetchedPath do
8 if ci.level = level then
9 result += xici;

10 if ⌈order2 ⌉ · 2level+1 > time then
11 break;
12 level += 1;
13 order = ⌈order2 ⌉;
14 level += 1;
15 order = ⌈order2 ⌉;
16 return result;

Subtree-based Organization

Similarly to Chapter 3, the subtree-based organization partitions the error-tree into sub-trees of
fixed size s³. For persisting a sub-tree into the WaveletStore, we use as key the index of its root
coefficient and as a value the sub-tree itself. Hence, we have key-values of the form:

(key, value) = ((r(S).level, r(S).order), S)

where S denotes a sub-tree and r(S) its root coefficient. This approach is more time-efficient
as it achieves better locality and retrieves more “useful” coefficients with a single GET request.
However, this is accomplished at the cost of a higher memory overhead. Figure 5.7 depicts an ex-
ample where partitions of size 7 are annotated. We observe that this partitioning scheme divides

³The size of a partition is of the form s = 2k − 1, k > 0
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Front nodes array {v1, level = 4} {v2, level = 2} {v3, level = 1}
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Figure 5.7: Example of the subtree-based data organization.

the error-tree into layers and at any time there can be at most one semi-completed partition at
each layer. Partitions that are not yet fully completed should be buffered in memory. Buffering
sub-trees until they are flushed to disk is responsibility of the Sub-tree Buffer component which
is illustrated in Figure 5.5.

Since we can have at most one semi-completed partition at each sub-tree layer, the memory
overhead the Sub-tree Buffer incurs is:

O(s · #Layers) = O(s · ⌈log W

logW
⌉/⌊log(s)⌋)

A question that naturally arises is what is a proper value for s. The conducted experiments in
Section 5.7 indicate that the larger the value of s the higher is the memory consumption and the
better is the query response time. Moreover, the experiments suggest that the optimal s-value is
dependent on the window size W . Setting s equal to a sub-linear function of the window size,
such as logW , leads to log2W space complexity and thus, the constraint for poly-logarithmic
memory is not violated.

For answering queries under this model, we traverse pathqi in a top-down manner and fetch
from disk the sub-trees that intersect with the path. As some sub-trees of interest may reside
in the Sub-tree Buffer and have not been persisted on disk yet, we also check if the query-path
intersects with any of the sub-trees contained in memory. Algorithm 14 presents the technical
details of this process.

The improvements on disk-accesses that can be achieved with the subtree-based approach
are presented in Lemma 15.
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Algorithm 14: Query Answering under the Subtree-based Data Organization
input: Partition size s, tnow, qi,maxLevel

1 time = tnow − qi;
2 result = 0;
3 level = 1;
4 rootLevel = log(s);
5 order = ⌈ time

2 ⌉;
6 rootOrder = ⌈ time

s ⌉;
7 // compute path and subtree roots’ indices;
8 path = new map();
9 subtreeRoots = new array();

10 subtreeRoots.add((rootLevel, rootOrder));
11 for cnt = 0; cnt < ⌈maxLevel

log(s) ⌉; cnt++ do
12 while level ≤ min(rootLevel,maxLevel) do
13 path.put(level, order);
14 level += 1;
15 order = ⌈order2 ⌉;
16 rootLevel+=log(s);
17 rootOrder = ⌈ rootOrder

s ⌉;
18 subtreeRoots.add((rootLevel, rootOrder));
19 // compute answer;
20 for i = 0;i < subtreeRoots.size()− 1;i++ do
21 index = subtreeRoots.size()− 1− i;
22 rootLevel = subtreeRoots.get(index).level;
23 rootOrder = subtreeRoots.get(index).order;
24 level = rootLevel − log(s) + 1;
25 order = path.get(level);
26 if rootLevel in subtreeBuffer then
27 fetchedSubtree = subtreeBuffer.get(rootLevel);
28 else
29 fetchedSubtree = waveletStore.get((rootLevel, rootOrder));
30 for coefficient ci in fetchedSubtree do
31 if ci.level = level && ci.order = order then
32 result += xici;
33 level += 1;
34 order = ⌈order2 ⌉;
35 return result;
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Lemma 15. The subtree-based organization can reconstruct the exact answer without any disk

access in the best case and with at most ⌈log( W
logW )⌉/⌊log(s)⌋ GET requests in the worst case.

Proof. The best case occurs when the query asks for one of the s rightmost paths of the sub-
tree. In that case, it can be answered solely based on the Sub-tree Buffer and no disk access is
needed. In the worst case, the query asks for a path of a maximum height sub-tree (⌈log W

logW ⌉)
that does not have any overlap with the Sub-tree Buffer. Thus, there are ⌈log( W

logW )⌉/⌊log(s)⌋
partitions/sub-trees that need to be fetched from the secondary storage.

5.6.2 Maximizing Throughput

Selecting a good data placement in the secondary storage helps improving performance but there
are still too many disk accesses that need to be made. The experiments of Section 5.7 show that
even with the subtree-based organization the throughput of maintaining the wavelet structure
is 8× lower than the one achieved by the algorithm of Section 5.2 that works completely in-
memory. For speeding-up construction, two key-ideas are used: (i) AQP and (ii) caching.

AQP

Algorithm 14 computes the contribution of the last sub-tree, that partially overlaps with the
query range, to the final answer. To achieve that, the algorithm traverses the whole pathqi and
computes an exact answer. However, this is too costly to afford as very frequent disk accesses
take place. Thus, it is suggested to fetch only the g topmost partitions that intersect with pathqi .
Retrieving from disk only a part of the path (g ·s coefficients) leads to an approximate answer but
favors performance. Intuitively, loading the topmost coefficients of a path yields better quality
results, since these coefficients contribute to a larger part of the query range. Error guarantees
are provided in exactly the same way as described in Section 5.2.3. The evaluation of Section
5.7 shows that there are very interesting speed-accuracy trade-offs to explore by experimenting
with different g values.

Caching

For further boosting the synopsis’ construction throughput, a small cache is also used, as shown
in Figure 5.5. Similarly to Sub-tree Buffer, the cache is allowed to contain at most a logarithmic
number of sub-trees/partitions.

By observing Figure 5.7, we notice that each partition that intersects with pathqi for a given
query qi, is going to be present in many consecutive GET requests. That means that each par-
tition will be fetched from disk multiple times. Retrieving over and over the same data incurs
a significant overhead that we can mitigate with caching. Having available memory space for
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c partitions, the idea is to cache the c partitions that are requested by the workload and will be
“active” for the longest period of time. The time a partition stays active depends on its layer; a
partition of size s in layer L has a time coverage of length: (s + 1)L. In the simple example of
Figure 5.7, by considering a cache capable of storing a single partition, we can avoid 63 GET re-
quests. For many distributions, retrieving from disk even only the topmost partition for a query
can lead to very accurate results. This fact in combination with the caching mechanism create
a fast and accurate system where the secondary storage is merely accessed for retrieving data
values.

5.7 Experimental Evaluation

In this Section, the experimental evaluation of the proposed streaming algorithms is presented.
Algorithms are compared in terms of accuracy and memory consumption. As accuracy we mea-
sure the real observed relative error, i.e.,

Real Error = |precise answer− approximate answer|
precise answer · 100%

For the disk-based approach of Section 5.6, the goal is to explore the speed-accuracy trade-off
that the secondary storage incurs. Thus, only for this case, synopsis construction throughput
experiments are also considered.

Algorithms. Henceforth, SW2G (Sliding Window Wavelets with Guarantees) denotes the
in-memory, approximate algorithm that is presented in Section 5.2. SW2G is compared to the
following techniques: (i) Exponential Histograms (EH ) [DGIM02], (ii) DeterministicWaves (DW )
[GT02] and (iii) the classicwavelet structure (WVLT ) as discussed in [LTC10] for sliding-windows.
EH andDWare deterministic structures that provide theoretically ϵ-approximate results in COUNT
and SUM queries for positive integers. However, it is proven [DGIM02] that for general SUM
queries that also include negative numbers, providing theoretical guarantees requiresΩ(W ) bits
and these methods cease to work. As the guarantees of the proposed method of this thesis are
computed while constructing the synopsis and are not theoretical, we demonstrate the results of
the proposed approach even for the case of arbitrary data values.

All single-stream algorithms are implemented in Java 8, except for the exponential histograms
where the Scala implementation of [alg] is used. For the distributed algorithms, the Apache Flink
1.6 stream processing framework is employed. The Flink implementation for distributed expo-
nential histograms is based on the Java code of [PGD12]. For the workload-aware case, where a
disk-based secondary storage is required, a port of the LevelDB [lev] key-value store in Java has
been used.
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Figure 5.8: Relative error in streams of positive integers (query length =W ).

Queries. The considered workloads are mainly range queries (COUNT, SUM, AVG) in
the form described in Section 5.1. This is the most common query type in the sliding-window
context. Moreover, the performance of wavelets in sliding-window aggregates has not been
studied before. In order to demonstrate the generality of the proposed approach, in Section 5.7.4,
aggregates over arbitrary ranges are also considered as well as point queries.

Datasets. For the assessment of the proposed algorithms, both synthetic and real data is
used. Synthetic data is used for experimenting with various data distributions. The generated
data values lie in the range [0− 1000] and follow a uniform, normal or highly biased (s = 2) zipf
distribution. As real data, we use the sensor measurements provided by NOAA [noa]. From the
various attributes contained in NOAA, the temperature (noaaTemp) andwind-speed (noaaSpeed)
time-series are selected. NOAA time-series consist of both positive and negative numerical data.

Platform. All single-stream algorithms are executed on top of a server with 8 Intel(R)
Xeon(R) CPU E5405 @ 2.00GHz processors and 8 GB of main memory. For the experiments on
distributed streams, a cluster of 4 machines with the same processing and memory capabilities
is used.
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Figure 5.9: Memory consumption in streams of positive integers (query length =W ).

5.7.1 Positive Integers

In the first experiment, SW2G is evaluated over a single stream of positive integers. As this is
the only case where EH and DW can be applied, a direct comparison among the various methods
can be performed.

Figure 5.8 presents accuracy results for various data distributions and window sizes. We
consider streams of 400 millions data points and window sizes in the range of [10k, 100M ]. At
random times, we query each structure for the COUNT, SUM or AVG of the stream elements over
the lastW time units. In the case of the noaaTemp dataset, a more complex query is computed:
we filter the stream on the fly and compute the average temperature only for tuples having a
temperature larger than 86F . In favor of a fair comparison, algorithms are tuned to use approx-
imately the same amount of memory. In EH and DW, the tuning knob of memory consumption
is the guaranteed error ϵ and for the wavelet-based techniques, the available budget B.

EH and DW respect the theoretical guarantees and both achieve an average error near 4%
for all datasets. The vanilla wavelet method, while performing well in uniform distributions,
it presents considerably large errors for the other two datasets. Particularly for noaaTemp, as
WVLT can reach up to a 60% relative error, it cannot provide an acceptable solution to the prob-
lem. By being near precise in all demonstrated cases, SW2G appears to be the best alternative
for approximating the examined datasets.
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Please recall that in sliding window range queries, an error is introduced only due to the
overlap of the query range with the last bucket of the active window. Techniques like EH and
DW control the size of the last bucket in a way that provides theoretical guarantees. By putting
a constraint on the maximum level of a sub-tree, SW2G also controls the size of the last bucket.
WVLT is not designed with range queries in mind; the whole window can be covered by a single
tree of sizeW . Thus, WVLT presents an unstable behavior where quality highly depends on the
current state and structure of the error-tree.

The overlap with the last bucket is also the cause for the high quality results of SW2G com-
pared to EH and DW. Both these techniques assume that half of the last bucket’s items lie in the
range of interest. On the other hand, wavelet-based techniques canmore accurately approximate
the number of items that should be considered. By combining the powerful wavelet structure
and the idea of limiting the maximum size of an error-tree, SW2G manages to present the best
results in all cases.

Figure 5.9 illustrates the corresponding memory consumption. We observe that as window
size increases, we need to consume more memory in order to preserve error guarantees. We
see that DW is the most expensive among the evaluated methods. Moreover, we observe that
COUNT queries use slightly less memory than SUM ones and AVG queries need the largest
amount of memory since we have to maintain two structures for each algorithm: one that keeps
track of counts and one for sums. However, in all cases, memory consumption is negligible. In
the case of W = 100M , the footprint of the exact solution is 400 MB, while all approximation
techniques need only around a single kilobyte. Especially in the case of SW2G, 1 Kb is enough
for achieving a relative error lower than 1% in all demonstrated cases.
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Figure 5.10: Memory for ϵ = 0.01

Figure 5.10 illustrates thememory EH andDWneed in order to achieve the same performance
as SW2G when W = 10M . For this purpose, we set ϵ = 0.01 for both EH and DW and issue
SUM queries to all datasets. In the case of noaaTemp, we notice that DW needs 7× and EH 4×
the memory that SW2G requires.

As window size does not affect accuracy, in all subsequent experiments we setW to 10M .
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5.7.2 Streams of Generic Numerical Data

In the case of positive numbers, we demonstrated that the proposed approach outperforms ex-
isting techniques. In this Section, the applicability and efficiency of SW2G are examined in more
general cases, where the stream also includes negative values. We experiment with SUM queries
in real and synthetic data. Uniform and zipf synthetic distributions are used, where each data
point di is drawn from range [0, 1000] and is converted to the corresponding negative value
−di with a probability of 1

2 . Since EH and DW do not work for negative numbers, they are not
considered for these experiments.
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Figure 5.11: Relative error in streams of arbitrary numerical data.

First, queries of lengthW andW/8 are computed on the noaaTemp and noaaSpeed datasets.
As the value distribution of the NOAA datasets does not present a great variance, it can be easily
approximated by wavelets. As such, both SW2G and WVLT achieved relative errors less than
1% in both workloads.

In order to stress wavelet algorithms, the described synthetic distributions are used. As each
subsequent data point can vary from −1000 to 1000 large discontinuities appear and the distri-
bution becomes hard to approximate.

Figure 5.11 illustrates relative error with respect to the consumed amount of memory. We
observe that for both distributions and query lengths, SW2G converges better than WVLT as
memory increases. In the case where the query is applied over the whole window, a budget size
ofW/10 is enough to achieve an error less than 10% both for the uniform and the zipfian data.

5.7.3 Evaluating Workload Aware Synopses

In this Section we evaluate the described system of Section 5.6 and explore the trade-offs it can
achieve between construction throughput and accuracy. For all the experiments of this Section,
we consider a workload of a single query, i.e., Q = {qi}. The query qi is randomly selected in
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the range [1,W ]. As it is shown, even a single query is enough to showcase the implications of
the secondary storage as well as the worst- and best-case performance of the proposed system.
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Figure 5.12: Experiments on disk placement parameters.

Disk Organization Parameters

First, we assess the proposed methods for organizing data in the secondary storage. As here we
want to investigate the pure impact of disk, for the experiments of this Section, we compute an
exact answer by fetching the whole pathqi and the caching mechanism is turned off.

Figure 5.12-(a) illustrates the throughput of constructing a synopsis when the subtree-based
organization is used and for various partition sizes. In the Figure, we denote with Sk a partition
that contains k wavelet nodes. The results suggest that in general larger partitions achieve better
throughput. We observe that the smallest partition S7 is always outperformed and in the case
of a window W = 1M , performance results strictly follow the order of partition sizes; the run
for the largest partition S63 is the fastest one, the run for S31 comes second, etc. However,
we also notice that performance-wise, the optimal partition size is dependent on the window.
For windows smaller than W = 1M , further increasing the partition size does not have an
impact on throughput. For the remainder of this Section, partitions of 15 wavelet coefficients
are considered. Larger partitions may achieve better running-time results but consume more
memory. As we want the Sub-tree Buffer to be of poly-logarithmic space in the window size,
partitions have been selected in a way to achieve a good trade-off between running-time and
memory consumption.

Figure 5.12-(a) presents a comparative analysis among the various data organizations on disk.
The subtree-based organization is 1.5× as fast as the path-based and 2× as fast as the naive
one for all evaluated window sizes. Nevertheless, we notice that as the window size increases,
throughput drops. When the secondary storage is involved, computing the exact answer for
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Figure 5.13: Impact of # GETs/query on throughput and relative error.

a window W = 1M is 7.5× more expensive, with respect to throughput, than using the in-
memory SW2G.

Exploring the Time-Accuracy Trade-off

In Figure 5.11, we noticed that under some circumstances SW2G does not behave well. More
specifically, when the stream contains negative numbers, the budget space is small and the query
range is much smaller thanW , the relative error increases considerably.

In this Section, it is demonstrated how the proposed system comes to the rescue when work-
load information exists. Based on the above observations, first, we create adversarial conditions
for SW2G and test its running-time and accuracy for various distributions. The results for SW2G
are shown in Table 5.1. Figure5.13 shows the corresponding results when the proposedworkload-
aware system is employed.

Table 5.1: Running-time and accuracy performance of SW2G for various distributions

Metric Uniform Zipf Normal
Throughput (ops/sec) 400K 385K 345K

Relative Error % 60 390 159
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For all examined distributions, Figure 5.13-(c) shows that even a single GET query to the sec-
ondary storage can ensure a relative error lower than 30%; that is a 90% improvement compared
to SW2G. When two GETs are issued per query, the corresponding error drops to lower than
10%, while three GETs provide an almost exact result.

Figure 5.13-(a) presents the corresponding throughput results when caches are disabled. The
firstGET request to the disk has a cost of 40%performance degradation compared to SW2G.How-
ever, the situation is much better when caches are enabled. In that case, the cost in throughput
is less than 15%. Thus, for all distributions, the proposed system can achieve an error lower than
30% with minimal performance overheads.

5.7.4 General Range and PointQueries

SW2G and WVLT are also evaluated in other query types such as aggregates over arbitrary
ranges and point queries.

Table 5.2 shows the results for a workload of random AVG queries where the limits of the
queried ranges are selected at random. For this experiment, a 200Kb-sized synopsis is used.
Moreover, all datasets contain both positive and negative values.

Table 5.2: Relative error for AVG queries with random ranges

Dataset SW2G WVLT % Gain
uniform 27 126 78

zipf 53 61 13
noaaTemp 0.12 1.04 88
noaaSpeed 0.75 5.4 86

Depending on the data distribution, the performance of both algorithms varies. However,
SW2G consistently outperforms WVLT, demonstrating this way the contribution of this thesis
to the wavelet structure for tackling range queries.

Figure 5.14 demonstrates the results for point queries. The applied workload in this case is
the following: Every W time units, we ask for the value of every item in the range [t −W, t],
where t is the current time. Both algorithms achieve the same accuracy in all examined cases.
Thus, while optimizing for range queries, the performance of the proposed algorithm in point
queries is not compromised. As noticed in Figure 5.14a, the distribution of the noaaSpeed dataset
needs more space than W/100 in order to be accurately represented. However, error drops as
space budget is increased. Having availableW/10 of memory leads to an error less than 20% for
the 70% of the workload.
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Figure 5.14: CDF of relative error in point queries.

5.7.5 Distributed Streams

This Section examines the behavior of SW2G in a distributed environment of multiple streams.
In this scenario, we track range queries in the average of the streams. Each stream maintains a
local synopsis; a coordinator node collects wavelet coefficients from all streams and composes a
global synopsis which is used to answer queries. SW2G is compared with the distributed version
of EH which is described in [PGD12]. For distributed exponential histograms we set an error of
ϵ = 0.1 both for the coordinator and all remote streams.
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Figure 5.15: Relative error and communication cost in distributed streams.

Figure 5.15 shows the real relative error and the communication cost for synthetic data of
uniform and normal distributions. Results are presented for 2 up to 16 streams. For each setupwe
plot the average error of the issued workload and the total bytes sent over the network each time
the streams emit their local synopses. Although EH are configured with ϵ = 0.1 and according to
[PGD12] are expected to have an error up to 2ϵ+ϵ2 = 21%, they present amaximum error of only
2%. SW2G performs even better and is almost exact in all cases. Furthermore, the guarantees
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it provides do not exceed 9%. As expected, communication increases linearly to the number of
streams for both techniques.
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CHAPTER 6

Related Work

This Chapter surveys the related work to this thesis. I present and discuss various techniques and
systems for building approximate synopses over massive data. While this dissertation focuses on
wavelets, in favor of completeness and in order to give an overview of the whole AQP landscape,
a short description of different techniques such as sampling and sketches is also provided. The
techniques are compared to each other and the pros and cons of each of them are discussed.

For the wavelet case, a complete review of the related database literature is presented. There
is a discussion about all major approaches for building wavelet synopses over batch and stream-
ing data. For the batch processing case, we put emphasis on techniques that optimize non-
Euclidean errors, since they can be directly compared to the proposed algorithms of this thesis
(Chapters 3, 4). For streaming synopses, apart from wavelet-based techniques, we also consider
algorithms that work under the sliding-windowmodel and thus are related to the ones presented
in Chapter 5.

While up to this point, the discussion is mainly restricted to the algorithmic level, Section
6.4 presents a list of research prototype systems that enable AQP in practice.

6.1 The AQP Landscape

Themain four families of data synopses are: random samples, histograms, sketches and wavelets.
Since the wavelet bibliography is going to be extensively discussed in a separate Section, here
the discussion is restricted to the remaining three categories.

105
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6.1.1 Sampling

Random samples are perhaps the most fundamental synopses for AQP, and the most widely
implemented [AMP+13, RMW+16, PMSW18]. The use of random samples as synopses for AQP
has an almost 35 year history in the database research literature, with the earliest major-venue
database sampling paper being published in 1984 [PSC84]. This arguably makes sampling the
longest studied method for AQP. Many different methods of extracting and maintaining samples
[CDN07, BDM02] of data have been proposed, along with multiple ways to build an estimator
for a given query.

For small tables, drawing a sample can be done straightforwardly. For larger relations, which
may not fit conveniently in memory, or may not even be stored on disk in full, more advanced
techniques are needed to make the sampling process scalable. For disk-resident data, sampling
methods that operate at the granularity of a block rather than a tuple may be preferred. Existing
indices can also be leveraged to help the sampling. For large streams of data, considerable effort
has been put into maintaining a uniform sample as new items arrive or existing items are deleted.
Finally, “online aggregation” algorithms [HHW97, LWYZ16, CCA+10] enhance interactive ex-
ploration of massive datasets by exploiting the fact that an imprecise sampling-based estimate
of a query result can be incrementally improved simply by collecting more samples.

In the exceptional survey of Cormode et al. [CGHJ12], the advantages and disadvantages of
sampling are summarized. The sampling benefits include:

• Simplicity: Conceptually, it is very simple to understand the idea of drawing items at
random from a dataset, then scaling up the result of a query over the sample to guess the
result of applying the query to the whole dataset.

• Pervasiveness: Sampling is widely supported by database systems (Section 6.4), and sup-
port for sampling is part of the current SQL standard (SQL-2016).

• Extensive theory: Almost 100 years of prior research in survey sampling can be applied
directly to sampling massive data.

• Flexibility: A sample is a very general-purpose data structure and as such, the same sample
can be used to answer a wide variety of arbitrary queries.

• Insensitivity to dimension. The accuracy of sampling-based estimates is usually indepen-
dent of the number of attributes in the data.

• Ease of implementation: Because sampling commutes with many of the common query
operations, it is possible to use a database engine itself to evaluate a query over a sample.

However, sampling also has its own drawbacks. Specifically:
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• Poor performance to highly selective queries. Sampling relies on having a reasonable
chance of selecting some of the data items that are relevant for answering a query. If
only ten tuples out of one million contribute to the answer, then a 1% sample of the data
is unlikely to select any of them.

• Worse running time performance than other types of synopses. Since the size of a sample
is proportional to the size of the original data, in the case of large datasets, even a 1%
sample can be considerably larger than a histogram or a sketch over the same data.

• Sensitive to skew and outliers.

6.1.2 Histograms

The histogram is a fundamental object for summarizing the frequency distribution of an attribute
or combination of attributes. As such, they have been an integral component of query optimizers
since at least the mid-1990s [Cha98], and are often used by the information management and
statistical communities for purposes of data visualization. As discussed in the review paper of
Ioannidis [Ioa03], use of histograms for data summarization and visualization goes back to the
18th century, and the term “histogram” itself was coined by statistician Karl Pearson in the 1890s.
Histograms have been studied in the database literature for over 30 years, starting with the paper
of Piatetsky-Shapiro and Connell [PSC84].

The most basic histograms are based on a fixed division of the domain (equi-width), or using
quantiles (equi-depth), and simply keep statistics on the number of items from the inputwhich fall
in each such bucket. Nevertheless, many more complex methods have been designed, which aim
to provide the most accurate summary possible within a limited space budget [BLS+08, BSS07].
At query time, the summary and bucket information is used to approximately reconstruct the
data in the bucket in order to answer the query. Schemes differ in: (i) how the buckets are chosen,
(ii) what statistics are stored, (iii) how estimates are extracted, and (iv) what query classes are
supported. They are quantified based on their space and time requirements, as well as on the
provided accuracy guarantees.

The one-dimensional case is at the heart of histogram construction, since higher dimensions
are typically handled via extensions of one-dimensional ideas. Beyond equi-width and equi-
depth, end biased, high biased, maxdiff and other generalizations have been proposed. For a va-
riety of approximation-error metrics, DPmethods can be used to construct an optimal histogram,
subject to an upper bound on the allowable memory space. An important class of histograms that
are constructed with DP and are really popular for several selectivity estimation problems are
the “V-optimal histograms” [IP95]. When the quadratic cost of DP is not practical, approximate
methods can be used [GMP02, GGI+02, DGR01].
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Histogramsmost naturally answer range–sum queries. They can also be used to approximate
more general classes of queries, such as aggregations over joins. Various negative theoretical
and empirical results indicate that one should not expect histograms to give accurate answers
to arbitrary queries [CGHJ12]. Nevertheless, due to their conceptual simplicity, they can be
effectively used for a broad variety of estimation tasks, including set-valued queries, real-valued
data, and aggregate queries over predicates more complex than simple ranges.

The advantages of histograms are the following:

• Easy to interpret: which makes it easier for system developers to construct and analysts
to query them.

• Well-established theory: Histograms have been studied in the database literature for over
30 years and there is a strong notion of optimality for various query classes.

Histogram drawbacks include:

• They do not adapt well to high dimensional data.

• They do not fit well in the streaming model.

• Many histogram techniques have several parameters which have to be set a priori, such
as the number of buckets, statistics to keep within each bucket, and other parameters that
determine when to split or merge buckets.

6.1.3 Sketches

While having the shortest history, sketching techniques have undergone extensive development
over the past few years. They are especially appropriate for streaming data, inwhich large quanti-
ties of data flow by and the sketch summary must continually be updated quickly and compactly.
Sketches are designed so that the update caused by each new piece of data is largely independent
of the current state of the summary [CGHJ12]. This design choice makes them faster to process,
and also easy to parallelize.

The basic properties that characterize a sketching algorithm are:

• The supported queries. Unlike samples, we cannot simply execute a query on the sketch.
Instead, we need to perform a specific procedure to obtain an approximate answer.

• The sketch size. A sketch has one or more parameters which determine its size. A com-
mon case is where parameters ϵ and δ are chosen by the user to determine the accuracy
(approximation error) and probability of exceeding the accuracy bounds, respectively.
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• Update/Query speed. Dense transforms [AMS96] affects all entries in the sketch, and so
takes time linear in the sketch size. But typically the sketch transform can be made very
sparse [CM05], and consequently the time per update may be much less than updating
every entry in the sketch.

Similarly to histograms and wavelets, sketches present a fundamental difference with sam-
pling regarding on how the data is observed. A sample “sees” only those items which were
selected to be in the sample whereas the sketch “sees” the entire input, but is restricted to retain
only a small summary of it. Therefore, to build a sketch, we must be able to perform a single
linear scan of the input data (in no particular order).

As mentioned, each sketching algorithm targets specific query types. Some popular sketch
categories are: (i) the “Set sketches” (e.g., Bloom Filters [Blo70]), (ii) the “Frequency based sketches”
(e.g., Count-Min Sketch [CM05]) and (iii) sketches for COUNT-DISTINCT queries (e.g., Flajolet-
Martin Sketches [FM85, FFGM07]).

Set sketches answer membership queries. Specifically, the Bloom Filter guarantees no false
negatives, but may report false positives. Frequency based sketches are concerned with summa-
rizing the observed frequency distribution of a dataset. From these sketches, accurate estima-
tions of individual frequencies can be extracted. This leads to algorithms for finding approximate
“heavy hitters” – items that account for a large fraction of the frequency mass – and quantiles
such as the median and its generalizations. The same sketches can also be used to estimate the
sizes of joins between relations, self-join sizes, and range queries. Such sketching algorithms
can also be used as primitives within more complex mining operations [PGD12], and to extract
wavelet and histogram representations of streaming data [GKMS03, CGS06, GKMS01]. Finally,
problems relating to estimating the number of distinct items present in a sequence have been
heavily studied in the last three decades. The Flajolet–Martin (FM) sketch is probably the ear-
liest, and perhaps the best known method for approximating the distinct count in small space
[FM85].

Themain advantage of sketches is that they are really efficient for high speed streams of data.
However, this comes at the cost of less flexibility. The main limitation of sketching techniques –
especially in contrast to the general-purpose sampling paradigm – is that each sketch tends to
be focused on answering a single type of query.

6.2 Wavelets for AQP

Wavelets have some commonalities with histograms as both techniques partition the input space
and compute simple statistics for sub-regions of the input domain. A theoretical difference is that
whereas histograms excel at capturing the local structure of contiguous data values, wavelets are
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particularly well suited to capturing non-local structures. Moreover, due to the linearity of the
Haar wavelet transform, wavelets are easier to maintain than histograms in streaming scenarios.

In the following of this Section, we make a literature review on existing techniques that
construct wavelet synopses for maximum error metrics both for one- and multi-dimensional
data. In addition, algorithms that use wavelets for online synopses in streams are also discussed.

6.2.1 Wavelets for One-Dimensional Data

In [GG02], a probabilistic DP algorithm is proposed. The running-time of the algorithm is
O
(
Nδ2Blog (δB)

)
. However, as there is always a possibility of a “bad” sequence of coin flips,

this approach can lead to a poor quality synopsis. As an improvement, a deterministic DP ap-
proach is proposed in [GK04]. Unfortunately, the optimal solution provided has a high time
complexity of O

(
N2BlogB

)
. These solutions are very expensive in terms of time and space

and such requirements render them impracticable for the purpose of quick and space-efficient
data summarization.

In order to decrease space complexity, Guha introduces a generally applicable, space efficient
technique [Guh05] for all these DP-based approaches, that needs linear space for the synopsis
construction but at the cost of a O

(
N2

)
running time.

A more recent and sophisticated approach is presented in [KM07]. Karras and Mamoulis
devise Haar+: a modified error-tree, whose structure gives more flexibility on choosing which
coefficients to keep. For the thresholding, a DP algorithm with running-time complexity
O
((

∆
δ

2
)
NB

)
is presented.

A different approach is proposed in [KSM07]. The authors design a solution that tackles the
space-bound problem (Problem 1 defined in Chapter 2) by running multiple times a DP algorithm
for the dual problem [KSM07, Mut05, PZHM09]. The resulting complexity is O((Eδ )

2N(logϵ∗ +

logN)), where E is the minimum maximum error that can be achieved with B − 1 coefficients
and ϵ∗ is the real maximum error. This algorithm is considered to be the current state-of-the-art
for the problem, as it provides the optimal data reconstruction for the given budget and has the
best running-time complexity among the corresponding DP algorithms.

Similar DP algorithms have been also proposed for the minimization of general distributive
errors like the Lp norm [GK05, GH05]. The proposed framework of Chapter 3 for the paral-
lelization of DP algorithms can be seamlessly used to speedup the execution of these algorithms
too.

In order to decrease running-time, greedy algorithms have been proposed [KM05, MP03] for
theminimization of themaximum absolute and relative error withworst-case running-time com-
plexities of O

(
Nlog2N

)
and O

(
Nlog3N

)
respectively. These algorithms present almost linear
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behavior in practice and require less memory capacity than most of the DP-based ones. Never-
theless, since they run in a centralized fashion, as data scales close to the memory constraints
of the machine, their performance significantly deteriorates. Moreover, they have inherent dif-
ficulties in their parallelization and thus, the decomposition to local sub-problems is not an easy
task to accomplish.

In the literature, there is a lack of parallel implementations for wavelet synopses. Only the
work of Jestes et al. [JYL11] considers MapReduce-based algorithms for the wavelet decompo-
sition. However, the algorithms of [JYL11] target only the L2-error minimization, which is a
considerably easier task to accomplish.

6.2.2 Synopses for Multidimensional Data

Although there is a lot of research for the one-dimensional case, few attempts have been made
to approach the multidimensional version of the problem. In [CGRS01], algorithms for multidi-
mensional wavelet decomposition and thresholding are presented. However, only conventional
thresholding is studied and there is no proposed algorithm for maximum-error metrics.

In [GK04] the authors present deterministic, exact and approximate DP-based algorithms
for the problem. The most time-efficient algorithm is a (1 + ϵ)−approximation algorithm with
running time: O( logRZ

ϵ 22
D+3DNlog2NBlogB) for a D-dimensional dataset. Despite the opti-

mal quality, the running-time of these algorithms is prohibitive for real-world scenarios even
for small data dimensionalities (i.e., D ∈ [2, 5], where wavelet-based data reduction is typically
employed¹).

A multi-dimensional extension of the DP algorithm that targets the Haar+ tree is presented
in [KM08]. The algorithm has a running-time complexity of O

(
22

D
(
∆
δ

2D
)
NB

)
. While this

result improves a lot upon the work of Garofalakis et al. [GK04] , the constant term 22
D
(
∆
δ

2D
)

can easily explode even for small dimensionalities. Moreover, as ∆ denotes the difference be-
tween the minimum and maximum values of the data, the performance of this algorithm is very
sensitive to data distribution.

For dealing with multi-dimensional datasets, the authors of [MP03] propose mapping all
data to one dimension by using a space filling curve. Then, a one-dimensional algorithm can
be applied. The drawback of this approach is that it destroys data locality and thus can lead to
sub-optimal quality results.

In [ZPH09], an algorithm ofO(N) time complexity is proposed for solving the dual problem.
Once again, a space-bound synopsis can be constructed by employing the technique in [KSM07].

¹Due to the “dimensionality curse”, wavelets and other space-partitioning schemes become ineffective above 5-6
dimensions.
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However, the algorithm of [ZPH09] is presented in a centralized setting and there is no evidence
of its performance on large scale datasets.

A similar algorithm is also presented in [LHZ+16] for image compression and thus only
covers two-dimensional datasets. However, the algorithm is still applicable on small datasets.

6.2.3 Wavelets on Streams

All approaches discussed thus far refer to batch jobs, where algorithms are applied to static data.
In [GKMS01, GKMS03], the authors compute L2-optimal wavelets on streams. As they find
it more challenging, they put more emphasis on handling the unordered cash register stream
model. In [CGS06], a similar sketching technique, that allows more efficient updates, is pre-
sented for the same problem. Streaming techniques have also been proposed for the optimization
of the L∞ norm. In [GH05, GH08], the authors present optimal algorithms for computing the
optimal error in a streaming way for a broad category of non-Euclidean errors. Nevertheless,
as dynamic programming needs a recursive top-down procedure in order to construct the final
synopsis, these algorithms are not suitable for the scenario of an unbounded stream where inac-
tive elements are permanently discarded. For L∞-minimization, a greedy streaming algorithm
has appeared in [KM05]. However, opposed to the algorithms of Chapter 5, the work of [KM05]
does not support sliding-window queries.

The only wavelet-based algorithm that exists in the literature and considers the sliding-
window model is the work presented in [LTC10]. This work mainly covers point queries and
it does not take into account range queries such as COUNT and SUM, which are the most basic
and common queries in sliding-window streams.

6.3 Sliding-Window Streams

The bulk of existing work on the sliding-window model has focused on algorithms for efficiently
maintaining simple statistics, such as COUNT and SUM. By efficiently, we mean sub-linear space
and time (typically, poly-logarithmic) in the window sizeW . Exponential histograms [DGIM02]
are a state-of-the-art deterministic technique for maintaining ϵ-approximate counts and sums
over sliding windows, using O

(
1
ϵ log

2W
)
space. Deterministic waves [GT02] solve the same

basic aggregates problem with the same space complexity as exponential histograms, but im-
prove the worst-case update time complexity to O (1). In the same work [GT02], Gibbons also
presents randomized waves to tackle COUNT-DISTINCT queries. Randomized waves, as most
randomized sketching techniques, are easily parallelizable and composable (in distributed set-
tings), but come with increased space requirements. In [XTB08], the authors describe a random-
ized, sampling-based synopsis, very similar to randomized waves, for tracking sliding-window
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COUNT and SUM queries with out-of-order arrivals. As in randomized waves, the space require-
ments are also quadratic in the inverse approximation error. To address the high cost associated
with randomized data structures, Busch and Tirthapura propose a deterministic structure for
handling out-of-order arrivals in sliding windows [BT07]. Similar to other deterministic struc-
tures, this structure does not allow composition and focuses only on basic counts and sums. Fi-
nally, Chan et al. [CLLT12] investigate continuous monitoring of exponential-histogram aggre-
gates over distributed sliding windows. The main contribution of their work lies in the efficient
scheduling of the propagation of the local exponential-histogram summaries to a coordinator,
without violating prescribed accuracy guarantees.

Work has also been done on sketching techniques that are suitable to answer more com-
plex queries such as k-medians [BDMO03], heavy hitters, inner products and self-joins [PGD12,
SMTZ17, RBM15]. However, as the majority of these techniques employ under the hood algo-
rithms for computing basic aggregates, this dissertation focuses only on point queries and basic
aggregates like COUNT, SUM and AVG.

6.4 Systems

Perhaps the introduction of approximation technology into DBMSs dates back to the first cost-
based query optimizers in 1970s. A query optimizer needs to quickly evaluate the size of in-
termediate query results, in order to evaluate competing query plans. Importantly, these result
sizes need to be determined only to a degree of accuracy sufficient for query-plan comparison.
Initial estimation schemes were rather crude, and usually assumed that the frequency distribu-
tion was uniform. However, over time, systems began to employ more elaborate techniques that
are efficient even in the presence of highly non-uniform distributions. A discussion of statistics
and query optimizers can be found in [HILM09].

While there is a large adoption of synopses in commercial DBMSs for query optimization,
there have only been a few successes [RMW+16, SZB+16] in the AQP area with the majority
of them being sampling-based. Historically, probably the first AQP research prototype is the
Aqua system [AGPR99a], developed at Bell Labs in the 1990s. Since then, a plethora of academic
systems have appeared and recently there is also an interest from the industry world.

BlinkDB [AMP+13] and its successor SnappyData [RMW+16] use an optimization frame-
work based on Mixed Integer Linear Programming (MILP) to precompute a set of multidimen-
sional, multi-resolution samples. Then, they employ a dynamic sample selection strategy that
selects an appropriately sized sample based on a query’s accuracy and/or response time require-
ments. As SnappyData can also handle streaming data, it also uses Count-Min sketches to ap-
proximate frequencies. SnappyData has recently entered the industry world through a spin off
company.
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VerdictDB [PMSW18] is a sampling-based engine that follows a different logic. The intuition
behind VerdictDB is that the adoption of AQP is hindered by the fact that each of the available
AQP engines are tied to specific platforms and require users to completely abandon their existing
databases. Thus, VerdictDB operates at the client-level, intercepts analytical queries issued to
the database and rewrites them into another query that, if executed by any standard relational
engine, will yield sufficient information for computing an approximate answer.

Quickr [KSV+16] approximates complex ad-hoc queries in big-data clusters by injecting sam-
plers on-the-fly. BigData queries may need several passes over the data. The idea is that when
samplers are injected at the appropriate location in the query plan, there can be substantial I/O
improvements.

In Section 6.1.1, where we discussed the pros and cons of sampling techniques, we saw that
one of the drawbacks of sampling is its poor performance in highly selective queries. Sam-
ple+Seek [DHC+16] is a sampling-based system that employs indices especially designed to
handle queries of high selectivity.

TheDBO [JAPD08] and XDB [LWYZ16] systems are twoAQP engines based onOnline Aggre-
gation [HHW97]. Apart from queries over a single table, both these systems can also efficiently
approximate multi-way JOIN queries. DBO’s join algorithm is based on ripple join [HH99], while
the work of [LWYZ16] formulates the problem as random walks over a graph.

ApproxHadoop [GBNN15] and Sapprox [ZWY16] are two Hadoop-based systems that use
multi-stage sampling theory [Loh19] and extreme value theory [CBTD01] in order to speed up
arbitrary user defined functions of MapReduce programs.

Traditionally, In sampling-based techniques, in order to quantify the error there are twomain
approaches: (i) analytic error quantification and (ii) the bootstrap method. The first approach is
extremely efficient but lacks generality, whereas the second is quite general but suffers from its
high computational overhead. ABS [ZGG+14] is a system that bridges the gap between the two
through the analytical bootstrap method [ZGMZ14].



CHAPTER 7

Conclusions

In this thesis, I have examined the role of wavelets in modern AQP. In the first part of the dis-
sertation, batch processing scenarios are discussed and emphasis is given on the wavelet thresh-
olding problem when non-Euclidean errors are optimized. Traditionally, the optimal solution
of the problem comprises a DP-based approach. Having established that DP techniques do not
scale for big datasets when executed over a single machine, we opt for designing algorithms with
linear scalability over scale-out infrastructures. I first present a novel technique that allows the
parallel execution of all the existing DP algorithms for the problem and show that it works for
both one- and multi-dimensional datasets. The results indicate that we can scale DP algorithms
to data sizes that their centralized counterparts are incapable of processing. Moreover, in order
to further improve on the running-time for the synopsis construction, distributed heuristic algo-
rithms are proposed. These greedy algorithms are more time-efficient than the state-of-the-art
DP solutions and it is also shown that the performance gain they offer increases along with the
dimensionality.

The advent of IoT has put increasing emphasis on edge computing. Scaling to the edge of
the network relieves stress on centralized data stores and allows organizations to perform more
effective analysis of data by shortening the time between taking in the data and acting on it.
Furthermore, as for most applications there is more value in real-time information, recent data
tend to be prioritized. In order to enable real-time processing, I also investigate the problem of
constructing wavelet synopses under the sliding-window streaming model. Specifically, an ap-
proximate algorithm for answering range queries such as COUNT, SUM and AVG is proposed.

115
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The experimental evaluation shows that the proposed approach outperforms many well-known
techniques for a variety of data distributions and query workloads. Moreover, accuracy is fur-
ther improved in case the workload is known. In order to achieve that, this thesis proposes a
workload-aware system that trade-offs accuracy with synopsis construction time. The results
indicate that near exact results can be obtained regardless of data distribution, while the con-
struction throughput penalty is minimal.
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APPENDIXA

The MinHaarSpace Algorithm

MinHaarSpace [KSM07] is a DP algorithm that targets the error-bound Problem 2 that was de-
scribed in Section 2.4. The coefficients that MinHaarSpace selects for the synopsis are not strictly
in the set of the ones produced by the HWT but can be any value z ∈ R. However, as we dis-
cussed in Chapter 2 for unrestricted wavelets, we do not have to explore all real numbers but we
can restrict coefficient values in a bounded range.

For bounding the search space for candidate coefficient values, MinHaarSpace uses the notion
of the incoming value. An incoming value at node ci of the Haar tree is a value reconstructed
in the path of ancestors from the root node up to ci in the sparse representation Ẑ of A. In a
wavelet decompositionW (A), this is the average value in the interval I under the scope of ci,
henceforward called real incoming value at ci. With that in mind, the algorithm first bounds the
candidate incoming values for a node (Lemma 16) and then uses this bound to define the search
space for coefficient values (Lemma 17). For making the exploration of both incoming values
at ci and assigned values in the coefficients feasible, the real-valued domains of v and zvi are
quantized into multiples of a small resolution step δ.

Lemma 16. Let vi be the real incoming value at node ci. Let v be an incoming value to ci for which

the error bound ϵ under the L∞ can be satisfied, and ϵ̄ = ϵ
minj∈I

{|wj |}, where I is the interval

under the scope of node ci; then |vi−v| ≤ ϵ̄.
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Lemma 17. Let vi be the real incoming value at node ci, zi the real assigned value at ci, v ∈ Si be

a possible incoming value at ci for which the maximum error bound ϵ can be satisfied, and zvi be a

value that can be assigned at ci for incoming value v, satisfying ϵ; then |zi−zvi | ≤ ϵ̄¯−|vi−v|.

Lemma 17 implies that the finite set Sv
i ⊂ R of possible assigned values we have to examine

at node ci, for a given incoming value v ∈ Si, consists of the multiples of δ in the interval
[zi− (ϵ̄−|vi−v|) , zi + (ϵ̄−|vi−v|)]; hence, |Sv

i | ≤ ⌊2(ϵ̄−|vi−v|)
δ ⌋+ 1 = O

(
ϵ
δ

)
.

Based on that Lemma, MinHaarSpace comprises a bottom-up, left-to-right procedure over
the error-tree. At each visited node ci it calculates an arrayD of size |Si| from the pre-calculated
arrays L and R of its children nodes ciL , ciR (a single array C for the child iC of the root node).
D holds an entry D [v] for each possible incoming value v at ci. Such an entry contains: (i)
the minimum number D [v] .s = S (i, v) of non-zero coefficients that need to be retained in
the sub-tree rooted at ci with incoming value v, so that the resulting synopsis satisfies the error
bound ϵ; (ii) the δ-optimal valueD [v] .z to assign at ci, for incoming value v; and (iii) the actual
minimized maximum error D [v] .e that is obtained in the scope of ci. Then, a DP procedure is
formulated and recursively expressed as:

S (i, v) = min
z∈Sv

i

{S (iL, v + z) + S (iR, v − z) + (z ̸= 0)}

S (0, 0) = min
z∈S0

0

{S (iC , z) + (z ̸= 0)}

These equations tabulate all possible space allocations. They compute: (i) the minimum re-
quired space if a non-zero coefficient value z is assigned at node ci and (ii) the required space if
the coefficient is discarded. The latter case only applies if 0 ∈ Sv

i . Let S̄v
i ⊂ R denote the set of

those assigned values at node ci for incoming value v that require the minimum space in order
to achieve the error bound ϵ:

S̄v
i = argminz∈Sv

i
{S (iL, v + z) + S (iR, v − z) + (z ̸= 0)}

S̄0
0 = argminz∈S0

0
{S (iC , z) + (z ̸= 0)}

The δ-optimal value to select is the one among these candidates that also minimizes, in a
secondary priority, the obtained L∞-error in the scope of ci. Let E (i, v) be the minimum L∞

error obtained in the scope of ci with incoming value v and an assigned value z, with S (i, v)

coefficients retained in the sub-tree rooted at ci:

E (i, v) = min
z∈S̄v

i

{max {E (iL, v + z) , E (iR, v − z)}}
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E (0, 0) = min
z∈S̄0

0

{E (iC , z)}

Algorithm 15 presents the pseudocode of MinHaarSpace as a recursive procedure.

Algorithm 15: MinHaarSpace(i,ϵ)
input: Index i, error-bound ϵ, data vector A

1 if i = 0 then
2 C = MinHaarSpace(1, ϵ);
3 compute s, z ∈ S0

0 , e of D from C ;
4 else if i < N

2 then
5 L = MinHaarSpace(iL, ϵ);
6 R = MinHaarSpace(iR, ϵ);
7 for each v ∈ Si do
8 compute s, z ∈ Sv

i , e of D [v] from L,R;
9 else if i ≥ N

2 then
10 for each v ∈ Si do
11 compute s ∈ {0, 1}, z ∈ {0, ci}, e of D [v] from A;
12 return D;

Complexity Analysis. The result array D on each node ci holds |Si| entries, one for each
possible incoming value, hence its size is O

(
ϵ
δ

)
. Furthermore, at each node ci and for each

v ∈ Si, the loop through all |Sv
i | possible assigned values takes O

(
ϵ
δ

)
time. Hence, the run-

time of MinHaarSpace(0, ϵ) is O
((

ϵ
δ

)2
N
)
. Besides, since at most logN + 1 arrays need to be

concurrently stored, the space complexity is O
(
ϵ
δ logN +N

)
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APPENDIXB

MapReduce for L2-error Synopses

In this Appendix, there can be found a description of the Mapreduce algorithms presented in
[JYL11] for the construction of the L2-optimal wavelet synopsis. The described algorithms are:
Send-Coef, Send-V and H-WTopk. All the algorithms in [JYL11] compute wavelet synopses
over histograms. Thus, in order to compare them against the proposed algorithms of this thesis,
the algorithms are first modified not to compute histograms but perform the wavelet transform
directly on the input data. For all the descriptions that follow, we denote N as the dataset size,
m the number of map tasks, S the input size of a map task and R the size of the root sub-tree in
datapoints.

B.1 Send-V

The simplest algorithm presented in [JYL11] for the computation of a conventional synopsis is
Send-V. The Send-V algorithm computes a histogram in the map phase of the job. The reducer
centrally computes the wavelet coefficients and retains the B largest ones. As the histogram
computation is not required in our case, Send-V is, in effect, a sequential algorithm, where the
reducer reads and centrally computes the wavelet transform for all the input data.
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B.2 Send-Coef

For computing the wavelet coefficients, Send-Coef is based on the basis vectors method, as de-
scribed in Section 2.3. The distributed computation of Send-Coef is based on the following ob-
servation:

wi = ⟨A,ϕi⟩ =
m∑
j=1

⟨Aj , ϕi⟩,

where Aj is the j-th partition of the initial input data. Thus, every wavelet coefficient is a
linear combination of the data values that belong to its sub-tree in the error-tree.

Send-Coef partitions the data in a different way than the one proposed in Section 3.2. Each
mapper takes up as many datapoints as they fit in a typical HDFS block size. The block size
does not need to be aligned to a power of two. For every datapoint di, the mapper computes its
contribution to the final value of every wavelet coefficient in pathdi . Thus, a mapper partially
computes all the coefficients along the path from its datapoints to the root of the error-tree and
thus sub-tree locality is not preserved. The reducer computes the final coefficients by aggregating
the partially computed values and then retains the B largest ones in absolute normalized value.
Algorithm 16 gives the pseudocode for the mappers of the Send-Coef algorithm.

As data locality is not preserved and for every data value we need to compute its contribution
to logN+1 nodes (the path to the root), the computational complexity of a mapper isO (SlogN).
Furthermore, every mapper emitsO (S (logN − logS)) key-values to the reducer. By havingm
mappers, the whole communication cost is O (mS (logN − logS)) = O (N (logN − logS)).
Compared to Send-Coef, CON achieves better computational complexity by a factor of logN
and communication cost by logN − logS.

Algorithm 16: Send-CoefMapper
Require: S: mapper input data
1: for all datapoints di ∈ S do
2: for all error-tree nodes j ∈ pathdi do
3: compute contribution ci,j of di to coefficient cj
4: if cj is fully computed then emit (j, cj)
5: for all datapoints di ∈ S do
6: for all error-tree nodes j ∈ pathdi do
7: if cj is partially computed then emit (j, ci,j)
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B.2.1 H-WTopk

In order to reduce the communication cost between the map and the reduce phase, the H-WTopk
algorithm is proposed in [JYL11]. H-WTopk is based on the TPUT [CW04] algorithm for the
distributed top-k problem. In contrast to TPUT, H-WTopk can handle both positive and negative
values, as both are possible for a wavelet coefficient. The intuition behind the algorithm is to use
a partial sum to prune items that cannot be in the top-k. Thus, a mapper does not need to send
all of its data to the reducer but only a set of candidate nodes, according to the local partial sums.
The algorithm requires three communication rounds between the mappers and the reducer. For
a coefficient x, c (x) denotes its value and cj (x) its partially computed value at mapper j.

Round 1: Each mapper first emits the coefficients with the k highest and k lowest (i.e., most
negative) values. For each coefficient x seen at the reducer, a lower bound τ (x) is computed on
its total value’s magnitude |c (x) | (i.e., |c (x) | ≥ τ (x)), as follows. First, an upper bound τ+ (x)

and a lower bound τ− (x) are computed on its total value c (x) (i.e., τ− (x) ≤ c (x) ≤ τ+ (x)):
If a mapper sends out the value of x, its exact value is added. Otherwise, for τ+ (x), the k-th
highest value this mapper sends out is added and for τ− (x) the k-th lowest value is added. Then
we set τ (x) = 0 if τ+ (x) and τ− (x) have different signs and
τ (x) = min{|τ+ (x) |, |τ− (x) |} otherwise. Doing so ensures τ− (x) ≤ c (x) ≤ τ+ (x) and
|c (x) | ≥ τ (x). Now, the k-th largest τ (x), denoted as T1, is used as a threshold for the magni-
tude of the top-k coefficients.

Round 2: A mapper j next emits all local coefficients x having |cj (x) | > T1/m. This
ensures a coefficient in the true top-k in magnitude must be sent by at least one mapper after
this round, because if a coefficient is not sent, its aggregated value’s magnitude can be no higher
than T1.

Now, with more values available from each mapper, upper and lower bounds τ+ (x) , τ− (x)

are refined for each coefficient x ∈ L, where L is the set of coefficients ever received. If a
mapper did not send the value for some x, T1/m (−− T1/m) is now used for computing τ+ (x)

(τ− (x)). This produces a new better threshold, T2 (calculated in the same way as computing T1
with improved τ (x)’s), on the top-k coefficients’ magnitude.

Next, coefficients are further pruned from L. For any x ∈ L a new threshold τ ′ (x) =

max{|τ+ (x) |, |τ− (x) |} is computed based on refined upper and lower bounds τ+ (x) , τ− (x).
If τ ′ (x) < T2, coefficient x is deleted from L. The final top-k coefficients must be in the set L.

Round 3: Finally, the values of all coefficients in L are requested from each mapper. Then
the aggregated values of exactly these coefficients are computed, and the k of largest magnitude
among them are selected as the synopsis.
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Index of Algorithms

BUDGreedyAbs Distributed heuristic algorithm, that given a budget constraint, approximates
the L∞-optimal wavelet synopsis. BUDGreedyAbs is a contribution of this dissertation.
xiv, 43–46, 49–52, 65–69

CON Algorithm for the distributed computation of the L2-optimal synopsis. CON is a contri-
bution of this dissertation. x, 47, 51–53, 134

DGreedyAbs Distributed heuristic algorithm, that given a budget constraint, approximates the
L∞-optimal wavelet synopsis. DGreedyAbs is a contribution of this dissertation.. x, 39,
42, 43, 45, 47, 49–52, 65–67, 69

DIndirectHaar Distributed version of IndirectHaar. DIndirectHaar is a contribution of this
thesis and parallelization has been achieved through the proposed framework of Chapter
3. xiv, 34, 35, 49–53, 65–69

GreedyAbs Centralized heuristic algorithm, that given a budget constraint, approximates the
L∞-optimal wavelet synopsis. It works only for one-dimensional data. x, 15, 38–45, 47,
50, 52, 59, 62, 63, 65

H-WTopk Algorithm for the distributed computation of the L2-optimal synopsis. Proposed in
[JYL11]. xi, 53, 54, 133, 135
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IndirectHaar Centralized algorithm that, given a budget constraint, constructs an L∞-optimal
wavelet synopsis by solving multiple times the dual problem. Proposed in [KSM07]. 18,
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