A%
;
%
EVS
Bl

e
/"Pz P l%
=

nvpPopos

s

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHooL oF ELECTRICAL AND COMPUTER ENGINEERING

DivisioN oF COMPUTER SCIENCE

Wavelet-based Algorithms for Approximate Processing in the Big Data Era

DOCTORAL DISSERTATION

IOANNIS A. MYTILINIS

Athens, November 2019

g%
)

3

POMMHOE!

i

AVPPOPO

WEa
A

W
Q

N\

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Di1visioN oF COMPUTER SCIENCE

ScuooL ofF ELECTRICAL AND COMPUTER ENGINEERING

Wavelet-based Algorithms for Approximate Processing in the Big Data Era

Advisory Committee:

DOCTORAL DISSERTATION

IOANNIS A. MYTILINIS

Nectarios Koziris
Dimitrios Tsoumakos

Panayiotis Tsanakas

Accepted by the seven-member committee on 20/11/2019.

Nectarios Koziris
Professor NTUA

Antonios Deligiannakis
Associate Professor TUC

Dimitrios Tsoumakos
Associate Professor

Tonian University

Symeon Papavassiliou
Professor NTUA

Yannis Kotidis
Associate Professor AUEB

Athens, November 2019

Panayiotis Tsanakas
Professor NTUA

Aris Pagourtzis
Associate Professor NTUA

IOANNIS A. MYTILINIS
Doctor of Electrical and Computer Engineering, NTUA

Copyright © IOANNIS A. MYTILINIS, 2019
All rights reserved.

Copying, storage and distribution of this work, in whole or part of it, is prohibited for commercial pur-
poses. Reproduction, storage and distribution for the purpose of non-profit, educational or research na-
ture, is allowed provided that the source of origin is mentioned and the copyright message is maintained.

Questions concerning the use of this work for commercial purposes should be addressed to the author.

The views and conclusions contained in this document reflect the author and should not be interpreted as

representing the official position of the National technical University of Athens.

To my family and my beloved Ioanna.

vi

Acknowledgments

This dissertation contains the main results of my research as a graduate student in the Computing
Systems Laboratory (CSLab) of the National Technical University of Athens. This work would
not have been completed without the invaluable support of my advisors Assoc. Prof. Dimitrios
Tsoumakos and Prof. Nectarios Koziris.

Dimitrios Tsoumakos, who was my main advisor and mentor, acted as a source of encour-
agement and inspiration throughout all these years. His guidance was of paramount importance
and made my PhD years a unique experience that helped me evolve both as a researcher and as
a person. Apart from his contribution to technical stuff like paper writing, Dimitrios had a great
impact on my mindset in general. He taught me to set high quality standards in my work and
not get discouraged no matter what obstacles may appear. Whatever I have achieved during my
PhD, would not have come true without his help and I am deeply thankful for that.

I would also like to thank Nectarios Koziris for the opportunity that he gave me to join CSLab
and be a part of a wonderful team. Nectarios always cares to provide all the necessary support,
both intellectual and material, to his students and colleagues. I was lucky enough to be a part
of his team and carry out my PhD research in an environment that stimulates innovation and
where access to cutting edge technologies is always available.

Finally, I would like to thank my friends and colleagues Katerina Doka, Giannis Giannakopou-
los, Ioannis Konstantinou and Nikos Papailiou that marked these years and without them the

beautiful journey of PhD would not have been the same.

vii

viil

Contents

2

3

0.1 Ewoayoyn
0.2 Wavelet Zvvoyelg oe Xtatikd Aedopéva
0.3 Poég Aedopévwv
0.4 Svvewogopd g Awtpprig L.
Introduction

1.1 Motivation
1.2 Wavelet Synopses Over Static Data . . .
1.3 'The Streaming Case
14 Contributions
1.5 Document Outline

Mathematical Background

2.1

2.2
2.3
2.4
2.5

One-Dimensional Haar Wavelets
2.1.1 Error-Trees
Multidimensional Haar Wavelets
The Haar Wavelet Basis for RV
Wavelet Thresholding

Unrestricted Haar Wavelets for Non-Lo Error

Parallel synopsis construction for maximum error metrics

3.1
3.2

Introduction

Scaling DP algorithms

ix

o 3 N =

11
11
15
16
17
18

21
21
22
23
26
28
30

31
31
31

Contents

3.3

34
3.5

3.21

Scaling DP Algorithms with Hardware Accelerators

Discussion

Parallel Greedy Approaches

3.3.1 GreedyAbs: The Centralized Solution
3.3.2 DGreedyAbs: Scaling the Greedy Algorithm
3.3.3 Speeding up the Distributed Greedy Solution
3.34 Maximum Relative Error L oo
CON: Constructing the Ly Synopsisin Parallel
Experimental Evaluation
3.5.1 Scalability
3.5.2 Comparison for Real Datasets
353 DatasetImpact
3.5.4 Constructing the Conventional Synopsis
3.5.5 Evaluating Accelerators

4 Extension to Multiple Dimensions

4.1
4.2
4.3
4.4
4.5

Introduction

MDMSpace: MinHaarSpace for Multiple Dimensions
MGreedyAbs: Extending GreedyAbs to Multiple Dimensions

Discussion

Experimental Evaluation . .

4.5.1
4.5.2
4.5.3

Scalability

Data Dimensionality and Maximum Absolute Error

Comparison for Real Datasets

5 Online Synopses for Sliding Window Aggregates

5.1
5.2

5.3

54
5.5
5.6

Introduction

Dynamic Synopsis Maintenance

5.2.1
5.2.2
5.2.3

Streaming Error-Tree
Algorithm Outline .

Error Guarantees . .

Query Answering

5.3.1

Discussion

Distributed Wavelets For Streams
Out-of-Order Arrivals
Workload Aware Synopses .

5.6.1

Disk Access Patterns

35
37
38
38
39
43
46
47
48
49
50
53
54
55

59
59
60
62
64
65
66
67
68

71
71
72
72
73
79
80
82
83
84
86
88

Contents xi

Path-based Organization 89

Subtree-based Organization 90

5.6.2 Maximizing Throughput 93

AQP L 93

Caching 93

5.7 Experimental Evaluation 0 0 L. 94
5.7.1 PositiveIntegers 96

5.7.2 Streams of Generic Numerical Data 98

5.7.3 Evaluating Workload Aware Synopses 98

Disk Organization Parameters 99

Exploring the Time-Accuracy Trade-off 100

5.74 General Range and Point Queries 101

5.7.5 Distributed Streams L Lo o 102

6 Related Work 105
6.1 The AQP Landscape 105
6.1.1 Sampling 106

6.1.2 Histograms 107

6.13 Sketches 108

6.2 Waveletsfor AQP 109
6.2.1 Wavelets for One-Dimensional Data 110

6.2.2 Synopses for Multidimensional Data 111

6.2.3 WaveletsonStreams Lo 112

6.3 Sliding-Window Streams 112

6.4 Systems e e 113

7 Conclusions 115
A The MinHaarSpace Algorithm 129
B MapReduce for L;-error Synopses 133
Bl Send-V e 133
B.2 Send-Coef 134
B.21 H-WTopk 135

Index of Algorithms 137

Acronyms 139

xii

Contents

List of Figures

1.1
1.2
1.3

2.1

2.2
2.3

3.1

3.2
3.3
34

H paydaia adénon twv dedopévwv pe faon tnv éxbeon tov HIPEAC VISION 2015.

SvoyeTiopog petakd dykov dedopévav, xpOvou ardKPLOTG KO TTOLOTITOG OITO-
TEAEOHATOV. « « v v v v v e e e e e e e e e e

Mopdderypo porig KUALOUEVOL TTaAPaBOPOL. « . . . v o v v e o oo

The “Data Deluge” gap according to the HIPEAC VISION 2015 report.
Trade-off among data volume, query response time and accuracy in the results.

Example of a sliding-window stream.

An error-tree that illustrates the hierarchical structure of the Haar wavelet de-

composition
Example of two-dimensional Haar wavelet decomposition

Two-dimensional error-tree. Each node contains 22 — 1 = 3 coefficients and has
22 = 4 children. The numbers in red color indicate the coefficients’ indexing

withinanode.

DP recursion on the error-tree. Node ¢; combines the M-rows of its children in

order to produce M [j]
Partitioning for parallelizing DP algorithms for Problem1
Partitioning used for parallelizing DP-based algorithms with OpenCL

Parallelization withina work group

xiii

12
13
16

22
25

25

32
33
36
37

xiv List of Figures
3.5 Partitioning for parallelizing GreedyAbs. The red line illustrates an example of
communication between two base subtrees. The blue-filled nodes show a possible
Chroot SEL. o o o e 40
3.6 Error-treeexample. 41
3.7 Equivalent representations of an error-tree. 44
3.7a e e 44
37D e 44
3.8 Example of merging solutions for BUDGreedyAbs. 46
3.9 Scalabilitywith B 49
3.10 Scalability with the dataset size (N) and number of parallel tasks. 51
3.11 Approximation quality and running-time experiments on 1-D real datasets. B =
NJ8 52
3.11a NYCT-Max AbsError. 52
3.11b NYCT-Running-time 52
3.11c WD-Max AbsError 52
3.11d WD-Running-time 52
3.12 Impact of data distribution and § on the performance and approximation quality
of DIndirectHaar. 53
3.12a Running-time 53
3.12b Approximation quality Lo L 53
3.13 Running time comparison for constructing a conventional synopsis with B = N /8. 54
3.13a NYCT . . . e 54
313b WD . e 54
3.14 Running time results for the NYCT datasetand B=50. 55
3.15 Running time of MinHaarSpace for various input sizes and values of e. 56
3.16 Performance gain due to memory coalescing. 57
4.1 Thresholding in a 2-dimensional error-tree. 60
4.2 Scalability with the space budget B. 66
4.3 Scalability for 2-dimensional datasets 67
44 Maximum Absolute Error for Zipfian dataand B = N/16. 68
4.5 Synopsis Construction and Query Time for real-life datasets. 69
45a Synopsis Construction Time 69
45b Querytime 69
5.1 Error-tree for streaming data. 0 L. 72
5.2 Range query anSweringot i e e e e e e 80

List of Figures XV
5.3 Composition of individual wavelet synopses. 84
5.4 Example demonstrating the pitfalls in workload-aware sliding-window synopses:

If g; is a query of interest, eventually all coefficients in paths t; > t,,0,, — ¢; Will

be requested. Hence, we have to delete coefficients that we know they will be

important in the future. o Lo o 86
5.5 Architecture of the proposed system for workload-aware range queries in sliding-

window streams. L 87
5.6 Example of the path-based data organization. 89
5.7 Example of the subtree-based data organization. 91
5.8 Relative error in streams of positive integers (query length =W). 95
5.9 Memory consumption in streams of positive integers (query length=W).. . . . 96
510 Memoryfore=0.01 97
5.11 Relative error in streams of arbitrary numerical data. 98
5.12 Experiments on disk placement parameters. 99
5.13 Impact of # GETs/query on throughput and relative error. 100
5.14 CDF of relative error in point queries. 102
5.15 Relative error and communication cost in distributed streams. 102

xvi List of Figures

List of Tables

2.1
2.2

3.1
3.2

4.1

5.1
5.2

Wavelet decomposition example Lo

Notation e

Characteristics of NYCT and WD datasets
Testbed details

Summary of presented algorithms

Running-time and accuracy performance of SW2G for various distributions

Relative error for AVG queries with randomranges

xXVvii

22
26

48
55

65

100

xviii List of Tables

[TepiAnym

To cbyxpova LOTAHATO AVaALTIKNAG emte€epyaciog KOAODVTOL VO AVTIHETWITIGOLY £V TEPXL-
oTlo 0yKo dedopévav. O dykog avtdg TV dedopéviv Kabmg KaL oL ALGTNPEG ATALTHOELS YLK
TOV XPOVO QITOKPLONG TOV EPWTNUATOV dLvouv OA0 KaL VEAVOHEVT] EHPACT) GTNV ATTOSOTIKO-
ta TV Texvikov [Ipoceyyiotikng Enetepyaciog Epotnuatwv (IIEE). H paoikn 18éx g ITEE
elvoll 1 KOTOOKELT] LG GURTTILEGPEVTG OVATTAPAOTOCTG £€VOG GLVOAOL SeSOpEVWVY KoL 1) EKTE-
Aeon TV epWTNHATOVY, TOL BéTOUV OL XPrioTEC, TAVW o€ AUt TN GOVOYN oVt ylor Tal Xp)LIK&
dedopéva. Mio onpoavtikn mpoKAncT ta TeEAevTOio YPOVLIAL ELVOL 1] KATAGKELT) GUVOYEWV TTOU
TOPEYOVV OULTLOKPOTLKEG EYYUNOELS YLOL TNV TTOLOTN T TOV ATOTEAECUATOG. Ol VTETEPILVIOTIKEG
EYYUNOELG TOPEXOLV LOYLPA ITOTEAEGHATA KoL elvoll EDKOAOTEPO YLOL TOVG XPTOTES VX TLG KO-
Tavorjoovy kat va Tig eppnveboouvy. Kabwg ta deiypoata ko ta sketches cuviibwg mapéyovv
OTOTIOTIKEG EYYUNOELS, YO TNV TOPOXT OLTLOKPATIKOV EYYUNOEDV KATOPEDYOVHE KUPLWG O
TEXVIKEG OTWG TA LOTOYPOPpoTo Koo Toe wavelets. Adyw tng tkavotnTtdg Tov va mpooceyyilel
EVTOVEG OLVEYELEC, O PETAOXTUATIONOG wavelet éxel autoderytel éva apretd amodotikd epyot-
Aeto yia n peiwon tov peyéBovg twv dedopévwv. QoTdG0, OL LITAPYOVLGES TEXVIKEG OL OTOLEG
eivor Paciopéveg otnv xpron Tov wavelets ko oL omoieg TapdAANAa 6TOXEVOLV GTNV EAO)L-
OTOTOLNOT) TOV TAPATIPOVHEVOL HEYLOTOU COAAUATOG TAOYOLVY oITO PEYAAT] TTOALTAOKOT T
7OV KaOLGTG TNV Xp1ion Tovg pn paktikt. EmumAéov, dev propodv va xelptotovv amodotikd To
npoPAnpa oe moAvdidotata dedopéva. Qg ek TOOTOV, 6TO TPAOTO PEPOG TNG dLaTpLPrig TpoTeivw
TopdAAnAovg alyopibpoug mov ekpeTaAledovtot TG Paoiiég LOLOTNTEG TOV HETAUOXNHATIGHOD
wavelet ko katackevalovy amodotikd cuvOYelg Tov edayLtotomotovv pn-EvkAeidieg petpuicég
ocporpatwv. H meipopatikn a€lohdynon oto katavepnpévo cbotnpa eneepynciog Hadoop é-

delke OTL oL TPOTELVOUEVOL OAYOPLOHOL ETTLTUYXAVOLV YPOHHLKT] KALLOUKWGIHOTITO KO HITOPOVVY

Xix

XX List of Tables

Vo et OVOLY TNV KAtaokevn Tng obvoyng péxpt ko 20 popég dtav o alyoplOpog pmopet vou
tpé€el TANpwG mopdAAnia oty cvotolyia. To dedtepo pépog tng SratpiPric peetdel to mpod-
BAnpo oe mepipaArovta podv dedopévwv mov cvvavtape oe epappoyég IoT. H emoxrn tov IoT
EXEL TPOKAAETEL HLOL HETATOTLOT) TWV GUOTNHATWV ATTO LoYLPOVG LITOAOYLOTIKG SLotkOLOTEG O
GUOKEVEG TTOL AELTOLPYOUV “GTNV dkpr) TOL SIKTOOUL” KL £XOUV TEPLOPLOPEVES SUVATOTNTES eTte-
Eepyaoiag kot pvipng. Ot adyopiBpol wov oyedidlovtal yio TEToleG apXLTeKTOVLIKEG Oar TTpémel
vou £XOUV YOUNAR XPOVLKY TTOALTTAOKOTNTO KoL EAGXLGTO ootV ot pvipn. Emiong, oe
TOAAEG ePappoYEG powV Sedopévav, Ta o tpoceata dedopéva Bewpovvtal o onpavtikd. To
HovTéAo KvAvopévou apaBbpovu eival pia Wiaitepn wepintwor enekepyaciog podv dedopévwv,
610V SLoPKOG POVO TX TTLO TTPOCPATH CTOLYELR TAPAPEVOLV EVEPYE KoL T LITOAOUTL AToppi-
nrovton. Kabwg otig IoT epappoyéc n dwabéoipun pviun eival coviBwg moAd pikpotepn amd to
péyebog tov opabvPOL, To EPWTNHATA AITAVTOVTOL Altd GLVOYELS OV KATACKELALOVTOL O
TpOYHOTIKO Xpovo. Tt TNV ammoTeAeGpATIKY] KATOOKELT] TETOLWV cLVOYewV TapovotdlovTol
alyopiBpol Baciopévol oe wavelets. Ot potelvopevol alyopLBpoL TopEYOUV VTETEPHIVIOTLKEG
EYYUNOELG Kol Topyouv oxedov ok pLfif] aroTeAéGHATO VIO Piot TTOLKLA L KOTOVOHMY dESOUEV®VY

KoL pOPTOL EPWOTNUATWV.

Abstract

Modern analytics involve computations over enormous numbers of data records, which often ar-
rive in the form of high-throughput streams. The need for real-time processing of huge amounts
of data places increasing emphasis on the efficiency of approximate query processing (AQP).
A common practice for enabling AQP is to construct a lossy, compressed representation of a
dataset and execute user queries against these synopses instead of the original data. A major
challenge over the past years has been the construction of synopses that provide deterministic
quality guarantees, often expressed in terms of maximum error metrics. Deterministic guaran-
tees are strong and easier for the user to understand and interpret. As samples and sketches
usually provide statistical guarantees, deterministic schemes are mainly supported by space-
partitioning techniques such as histograms and wavelets. By approximating sharp discontinu-
ities, wavelet decomposition has proven to be a very effective tool for data reduction. However,
existing wavelet thresholding schemes that minimize maximum error metrics are constrained
with impractical complexities for large datasets. Furthermore, they cannot efficiently handle
the multidimensional version of the problem. In order to provide a practical solution, the first
part of this dissertation proposes parallel algorithms that take advantage of key-properties of the
wavelet decomposition and efficiently construct synopses that minimize non-Euclidean errors.
The experimental evaluation over the Hadoop distributed processing framework showed linear
scalability with both the data and cluster size; when the whole execution fits in the cluster and
all workers can run fully in parallel, a synopsis construction speedup of 20 is witnessed. The
second part of the thesis targets the problem in an IoT streaming environment. The IoT era has

brought forth a computing paradigm shift from traditional high-end servers to “edge” devices

XX1

xxii List of Tables

of limited processing and memory capabilities. Thus, the designed algorithms for such architec-
tures should be “cheap” in time complexity and have a minimal memory footprint. Moreover,
in many streaming scenarios, fresh data tend to be prioritized. A sliding-window model is an
important case of stream processing, where only the most recent elements remain active and
the rest are discarded. As in IoT scenarios the available memory is typically much less than
the window size, queries are answered from compact synopses that are maintained in an online
fashion. For the efficient construction of such synopses, wavelet-based algorithms are presented.
The proposed algorithms provide deterministic guarantees and near exact results for a variety of

data distributions and query workloads.

Extetopévn epiAnym

0.1 Ewayoyn

To TexvoloyLkd emiTEOYHATO KOt OL KOLVVLIKEG eEEAIEELS TNG €O TG HOG EXOUV GOtV ATTOTEAEG AL
HLOt AVED TTPONYOULHEVOL TTOPOYWYH TEPAGTIOV OYkwv dedopévwv, Tow oTolor GLY VA oVoLPEéPOU-
pe oG “Meydda Aedopéva”[big]. Emiyeiprioelc, kuPepvrioelg kot Ymerakég vtodopés kabnpept-
V& GUVELGPEPOLY G auTh TN véa paypatikotnta. H agpbovia tov cuvolwv dedopévwv mov
vrtapyovv dabéoipa yio eme€epyacia £xel 0dnyroel T660 Tov akadNpAikd kOopHo, 660 KaL TN

Bopnyavio otnv vioBétnon data-driven mpoceyyicewv.

Axolovbmvrtog to podTuto OLAP [CDI7], o1 o0y poveg epappoyég avélvong dedopévwv e-
HITEPLEXOVV LITOAOYLGHOVG cuvaBpoicewv Thvw amtd cOvoda dedopévev ov mepthopfdvouy pe-
yo&ho TA00G eyypap®v addd ko Sraepopetik®v Staotdoewv. Ta mapdderypa, pio xprpatioTn-
pLakn eTalpia xpeldleTon vo GLYKPLVEL TIG TPEXOVOES TIHEG TWV HETOXWDV HE TO LOTOPLKO TWV Hé-
owv Opwv oe dropopeticég KApakeg (Y., ava efSopdda, piva KAT.) TPOKEHEVOL VAL AITOPOLV-
Bel av éva TPoidv eivon vITEPEKTIUNPEVO 1) LTTOTLUNHEVO. O VITOAOYLOHOG TETOLWV PECWV OPWV
TOPASOCLOKA ETLTUYXAVETAL PHECW TNG CELPLOKNG TPOCTEANCTG EVOG HEYGAOL TUAHOTOG HLOG
Béong dedopévav. e moANES TEPLTTAOOELS, OL TPOCTEANCELS VTEG MITOPEL VO YIVOLV LdLaiTepa
akpLPéc kot ta epyodeio enelepyociog dedopévwv mov Stabétovpe va pnv eivor tkovd vou Tig
Swxelprotodv aodotikd. TNV mepinTear OTov EXOLE peydha, etepoyevr] dedopéva, okOpo
KoL TOL YPIYOPOTEPX GLOTHHATA PAcEY SedOpEVWV HITOPEL VO YPELXGTODV DPEG 1) HEPES YLOL

VO OITOLVTIGOUY KoL TQ TTL0 oA epwthpate. O VTOAOYIGHOG VO PEGOU OpoL Tavw otd 10

2 List of Tables

terabytes dedopévwv, Ta omoia Bpickovron oumobnkevpévo oe 100 Py otvpoTo HITOPEL var X peLo-
otel mepimov 30-45 Aemtd ene€epyaociog oto Hadoop av ta dedopéva eivar oto dioko kot yopw
oto 5-10 Aemté ov T SeSopévar eivon ot pvriun [AMPT13].

KaBwg 1 e€epedivnon evog cuvorov dedopévav eivor pia Siadpaotiki ki emavainmniky Siadika-
ol [Moz15], Tétolol xpovol amokplong dev eival armodek ol e TOAAEG TEPUTTOCELS EQAPHOYADV.
S évor AANO TTOPASELYHO, OL AVOALTEG G [LOL ERTTOPLKT] ETTLYELPTIOT) OvardDoLY Ta Sedopéva Twv
TWATNCEWV YLK VX KATAVOT|GOLV TLG eTLOOGELG TNG emLyeipnong pe Pdon Sapopetikég SlaoTdoELS
(1my, emidoom o€ SLoLPopPeTIKA TPOLOVTAL 1] € SLAPOPETIKES YEWYPPLKES TTEPLOXES). Xe £Vl TETOLO
mopadetypa, ot Stadpactikoi xpovol ammdkplong eival Kpioung onpaciog, kabog oL avaAvTég
Bo pémel va propotv ypriyopa kit edkoAa va petofaivouy petad vmobécewy Kot TPAypOTIKO-
mrog. Meléteg mavw otnv adAnienidpacn avBpomov-pnyavrg éxovv deifel 6TL oL avBpwmot
XGVOLV TNV TPOGOYT] TOUG ALV 0 XPOVOG ATTOKPLOTG EVOG EPWTNHATOG VO PHeYarADTEPOG TOV eVOG
devteporémrov [Shn84]. Ilpokeipévou va avtomokplBovv 6Tig A0 Kol VEAVOHEVESG OTTOUTHOELS
70V TTPOPAAeL 1) VAALGT) SeSOPEVOV OTIG PEPEG LG, TOGO TOL EPITOPLKA CLOTHHATA, OGO KOL TCL
ovoThipata eAedBepov Aoylopikod mpoomabodv vo PEATLOGOVY TOLG XPOVOULS AUTOKPLOTIG TTOV
TPOGPEPOLV PECK SLALPOPWV TEXVIKOV OTTWG: 0 TOPUAANALONOG, 1) detktoddtnon twv dedopié-
vov, ko 1) fedticTomoinon tng eKTEAEOTG TOV EPWTNHATWV.

IMoapadociakd, oL meplocOTEPeg aAmd AVTEG TIG TEXVIKEG TTPOoTOHODY VO XPT|GLHOTTOLODV e
amodotikd Tpomo v dabéoiun pvripn. Qotdoo, n amobrkevon dAwv Twv Xprictpey dedopé-
VOV oTNV PVhpn Oev ototeAel pioe peALOTIKT] ETTLAOYT) 6TV emoxT Twv Meydhwv Aedopévwv.
H ayopd pvipung mov va xwpael €€ olokAnpov éva peydho cdvolo dedopévwv eivar viepPo-
Mké axpipr). EmumAéov, av Bewpeiton akpiPny owtr] T oTiypn, avopéVoupEe val elval okOpaL Lo
akptPr) Tov xpovov. To vAko (hardware), copmepihopfavopévng g pvnpng, exTipdrol 6Tt PeA-
TIOVETL) YiveTon o @Ttnvo akohovBdvtog Tov vopo tov Moore. to Eyrpa 1 popodpe va
TOPATNPTGOVHE OTL 0 PLBROG TNG bENONG TV dedopévwv Exel NN Eemepdoel aLTOV TOL VOpOU
Tov Moore. Qg éva Tpoypotikd mopddetypo ov to arodetkviel awtd, To Facebook [fbr] avépepe
Ot péoa oe évav ypovo ko AapPdavovtag dedopéva pe puBpd 600 TB nuepioing, €xel mopotn-
PHICEL TOV TPLTAXGLAGUO TNG TOCOTNTAG TNG TANPOPOPLaG oL artobnkeveTo GTLG LTTOSOUES
ToU.

O teyvikég mov Pacilovtar otnv kpven pvrun (cache) petpidlouvv to mpdPAnua kabog o-
mofnkevouvv povo ta dedopéva mov {ntiovvror ocuyvd. apdia avtd, akcdpa ko 1) amobrikevon
€VOC HLKPOU oLVOAOL dedopévav Tng Tdewg peptkdv GB dev Advel o TpdPAnpa. H avarvtiki
ene€epyaoio dedopévav ouyva meptlopPaver emovodnmricég dSiadikaoieg, 6mou droupopetid de-
dopéva pmopel va atotovvton e k&Be emavainym. H poptwon ot pvipn Stupopetikdv pepmv
evOG oLuVOAOUL dedopévwv popel va empépel onpovtikég kabuoteprioelg Adyw I/O Aettovpylov.

H éppaon otn onpocio tng pvipng elva akdpa peyoATepn o TV mepintwor) tng eneEepyaci-

ag powv dedopévwv. Eva onpovikd pépog tng YneLaknig IANpopopiog mov Tapiyetol oTig

0.1. Ewcaywyn 3

The“data
“deluge” gap

/ —@~ Data Growth Moore's Law

1 A F - T T
2006 2007 2008 2009 2010

Sxnpa 1: H paydaio adénon tewv dedopévwv pe Paor tnv éxbeon tov HIPEAC VISION 2015.

Hépeg pag eppaviCetor vd T popPr powv dedopévwv. OL epapoyEég Tov amontov enekepya-
olo peyaAov 0ykov SedOHEVWV GE TPAYHATIKO XPOVO TAPOLGLALOLY EVOLXPEPOVGEG TTPOKATCELG
ota kAaoolkd cvotripata eneepyaociog dedopévwv. To 2005, o Stonebraker opioe Tig 8 Paot-
KEG QUTALTIOELG TTOV TTPETLEL VO LKAVOTIOLEL €V OO TN eme€epyaciog powv dedopévwv [SCZ05].
SOpHEOVA [E TNV TPAOTN OITALTNOT), TTPOKELHEVOD VI ETLTUYXAVETOL XAUNAOG XPOVOG AIOKPLOTG,
évar ovotnpa Ba Tpémel va popel va eme€epyaoTel £val PVOHO XWPIG VO XPELGTEL VO OTTO-
ktroel TpocPaoct oe koo “akpiPod” péco amobrkevong, 6wg o dickog. Xe avtibeomn pe Tig
ovppatikég Paoelg Sedopévwv, OV EMTPETOLY TOAAATALG TPOCTEAATELS TAV®W AUTTO GTATIKK
dedopéva, oL alyopiBpol eme€epyaciog powv dedopévev cuyva atnpilovtal o po povo oeLpla-
k) Tpoomédaon tng poric. H amaitnon yia ene€epyacio oe mpoypaticd xpovo éxel mupodotrioel
TANB®pa epevvnTIKNG SpaoTnplotnTag otV mepLloyr. OpLopéveg XopoKTPLOTIKEG EPAPHOYES
nephapBévooy ta diktua cusOntipwv [CCCT02, MF02, YGT 03], cuothpata mtapakoroddnong
ko eAéyyov oe datacenters [GGRS07], cuotripato wov vtodoyilovv otatiotikd pe fdomn Tig Ti-
HEG TV peToXGV [ZS02] Kol LOTHHATH TOL AVAAVOLY Ge TTpaypatikd Xpovo logs Stapodpwv
tOmwv ovvodhaydv [CFPROO].

H Ipooeyyiotikn EneEepyaoia Epotnpatwv (IIEE) éxel mpokOyel wg pio Prdotun evorio-
KTIKY yia TNV SloxeipLon Tov TepAoTiov OYKOU SeSOUEVWV KOL TWV AVGTH POV ITALTHGEW®Y GTOV
xpovoug amdkpiong [CGRS01]. Adyw tng Siepevvyniktic pUong TOAAGY epappoy®v enelepyaoi-
og dedopévav, dev avalnrodpe Tavto pio ackpiPry advtnor). Avtd mov evOlopépeL TEPLECOTEPO
OTLG EQOPHOYES QUTEG ELVOLL 1] AVAKAAVYT TOV OTATIOTIKGOV HOTIPWV TOL LITEPYOLY KPUHHEVL
ota dedopéva. Ag okeptolpe To e€Ng mapadetypo: évog xpriotng Bélel va gl tpapel éva Voo
dedopévwv pe Paon Sidpopoa mpokaboplopéva KpLTHPLA KoL var KEVeEL KAITTOLOUG VITOAOYLGHOVG
XPNOWOTOLOVTHG HOVO Hiot GUYKeKpLpéVT TteployT] TV dedopévov. T va to emtdyel autd e
atodotikd TpoTo, Bor vToPddel 6TO CVGTHA Hiot aKOAOLBid EPWTNHATWY, OTTOL TaL APYLKE EPw-

TrpaTo Bo éxouv ©G povadikd okod Tov evTomiopd g meployng evdiapépovrog [HHWI7]. Ze

4 List of Tables

FAST

ANY
TWO

BIG ACCURATE

SxNuo 2: XVoyeTIopPOg peTaEd OyKkov dedopévwv, XpOVOL atOKPLOTG KL TOLOTNTOG OITOTEAE-
OHAT®V.

QLT TaL APYLKA epwThpata, eipaote Siotebpévol va Buosidcouvpe Tnv akpifeia viep YopnAo-
tepwv xpovwv amdkpiong. H IIEE cvoyetilel tnv axpifela Twv oatoteAeopATOV e TOV XpOVO
EKTENECTIG KOUL TNV KOTOVOANOKOMEVT pviun kot pog divel tn duvatdtnTa vo avtaAAdoooupe
To éva pe to dAAo. H oxéon avtr ammotunovetor 6to Zxnpa 2. Eqv embopodpe va emitdyovpe
YpPNyopotepoug xpovoug autdkplong, Ba mpémel vo petdoovpe eite to péyebog twv dedopévav
ot v eite va Buoidooupe v axpifeta Tov amoteAéopatog. Av To Kpiotpo {ntodpevo eivat
akpLpn atoteréopara, ToTe kamolog cupPipacpdg Bo mpémet va yivel yio Tov Xpovo ekTéAeong
kot To péyefog tng pvipng. OMTIKOTOLOVTAS VTOVG TOUG GUGYETLOHOVS, Ol VOAVTEG HITOPODV
vo puBpicovy kot v feATioTomojoovy Ty ekTéleon Twv epwtnpdtwv touvg [TK15]. Emiong,
Ol TTPOCEYYLOTIKEG OTTOVTHGELG TTOV TTPOEPXOVTOL QIO KATAAANAG KATAGKEVAGHEVEG TUVOYELS
prtopel vo elvon 1 povadikry evaAloktikn 0tav éva cOVOAO elvol otoBNKeELHIEVO KATTOL QLTOpAL-

kpuopéva 1} dev eivan Stbécyo [AFTUIT].

Me Baon avth tn Aoyikr, oto mapeAbov éxovv avasttuyBel TOAAEG TeXVIKEG TTPOGEYYLOTL-
kg enefepyaciog ovpmeplapPfovopévev tov: detypatoinyiog [AMPT13, GM98, AGPR99b],
wtoypoppdtov [IP99, GMP97, JKM198], sketches [GKMS01, AMS96] xou wavelets [CGRS01,
GKo04, KM05, KSM07, KM07]. Extog oo Tig moAvmAnBeic epeuvntikég mpoomdbeleg, morég
ETALPIEG KATACKEVTG CLOTNHATWV emeEepyacing £xouv emiong GUVELON TOMOLGEL TNV ALVOLYKXLO-
ta yrotnv IIEE ki éxouv elodyel tpooeyylotikég teyvikég ota tpoidovta toug (mt.)., To Facebook
Presto [pre], o Druid tng Yahoo [yah], SnappyData [RMW ™ 16], ko To Oracle 12C [SZB16]).

‘Eva tuyaio deiypa oumotelei éva “avTipoowmeutikd” vITocUVOLO TV THOV £VOG GLVOAOL
dedopévev Kol KaTaokeLALeTol PHEGW €VOG GTOXAOTLKOU pnyoaviopov. To Selypoto eivon €o-
KOAO VO KOTAGKELAGTOVV Kol PITOPOLV var Xproipomotnfodv ylo TV VITOAOYIGHO MLOG EVPEL-

0G YKAUOG EPWTNHATOVY. XAPNV AUTOV TOV XAPAKTIPLOTIKOV TOVG, TEXVIKES deLyHaTOANiog

0.1. Ewcaywyn 5

XPNOWOTOLOOVTAL OTNV TAELOYNPIX TWV CUCTNUATWV TPOceYYLoTIKG enetepyaoiag. T ma-
pé&Setypa, 1 BlinkDB [AMP113], 1 VerdictDB [PMSW18] xou to Quickr [KSV116] xvpiwg Sov-
Aevovv pe delyporto.

To wotoypdppoato cvvoyilovy éva GOVOAO deSOPEVOY OPADOTOLOVTAG TIG TIHES GE KAG-
oelg kol ylor k&Be po tétoto kAdomn voloyilovv éva oOvoro otatiotik®v. H teyvikég oto-
YPOUHUATOV £X0UV eKTEVQRS pHedetnBel otn PipAloypagplo KoL TAL LGTOYPAUHOTO EXOVV EVOWNOL-
Tw0el 6TOVG PEATIOOTONTEG EPOTNHATOV OAWV TWV ERTOPLKWOV GXEGLUKOV Phoewv dedopévwv
[mss, mar, ora].

Ta sketches eivor pioe katnyopior HUONPATIKOV KATAOKEVAGHUATOV TOL ToLPLALEL TTOAD Kot
A 6T0 povtédo TV powv dedopévev. Meplkd amd To XOPOKTNPLOTIKE TOUG eival OTL eival
evkoAa maparAniomomjotpa ko cuvBéoipa. Emiong pmopodv va Stoyelplotody meputtooeLg
67OV TO GUOTNHA AVTIHETOTLLEL OXL HOVO eloaywYT) aAA Ko Staypopég dedopévwv. Adyw ow-
TV TV 180TtV Toug Kou Ta sketcehs éxovv vioBetnBel amd Sidpopa epmopikd cvoTHpATO.
To SnappyData [RMW ™ 16] xpnoipomotei Count-Min sketches [CMO05] yix va viroloyicel top-k
epotripata oe pia porj dedopévwv. To Yahoo Druid [yah] xpnoipomotei sketches yia tov vitoo-
ylopé COUNT DISTINCT epwtnudtwv ki emtiong avty T oTiypn yivovtal tpoonddeleg yio tnv
evowpdtwon sketching texvikov oto Apache Flink [fli]. Hapdtt cvvrbwg ypnoipomotodvia
oe mepUTOoeLg powv dedopévwv, ta sketches éxovv eniong ypnopomownBei pe emtvyio kan oe
epLToELg 0mov ta dedopéva eivar otatiké. Ta mapdderypa, To Apache Hive mpoopépet po
mowctAia sketching odyopibpwv [yah].

O petaoyxnpatiopdg wavelet [SDS96] autotelel éva moAD amoteAeopatikd epyoeio yio Tnv
ouprtieot) TV dedopévav, pe epappoyég otnv e£6puEn dedopévwv [LLZO02], otnv ektipnomn tng
ETMAEKTIKOTNTOG TV ePpWTNHAT®V (selectivity estimation) [MVW98], otnv mpoceyyioTikt eme-
Eepyaoio oyeolak®v mvakwv [CGRS01, VW99] kabog ko powv dedopévwv [GKMS03, CGS06].
Me amAd Aoyla, Yo va KATookeLAooLpe pio wavelet cOvoyr, epoppolovpe TOV HETAOYXNHATL-
opo6 wavelet e éva 6OVOAO dedopEVV KL GTH cUVEXELD ETIAEYOULE £VO LTTOGVUVOAO QTTO TOVG
TOUPRYOUEVOVG OUVTEAETTEG Wavelet.

MopdAn v extevi BipAoypagpio otnv mepLoyr), oL Texvikég mov Pacilovtal oe wavelets é-
xouv xproipomoindel eAdyioTa TNV TPAEN Y GKOTOVG TPOCEYYLOTIKTG enteEepyaciog epwTnpd-
twv. Wavelet texvikég cuVaVTOVTOL PHOVO G€ OPLOPEVL KA HAIKG, EPEVVITIKA CUOTHUATA, €-
VO ot’ 660 Yvopilw dev YPOLHOTOLODVTAL G KAVEVQL EUTTOPLKO TTPOLOV. Xe avth Tnv dtatpLP
ovoAVovVTOL Tt TPOPAHIATO TTOV AVTLHETWITILOVV OL VIIAPYOVLOES TEXVIKEG YL TNV KOTAOKEL-
N ouvoewv péow wavelets, ko mpoteivoTon katvovplor alyopilpot mov ekpetadiebovtol ta
XOPOKTNPLOTIKG Twv wavelets ko ta kaBiotoOv ammodotikd otny emoyn Twv Meydhwv Aedopé-
vov. Kabog diopopetikd cevapla eme€epyaciog mopovotdlovv SlapopeTikég avaykeg, 1 do-
TpLP1) avtr) mpoteivel adyopiBpovg TOGO YLt TNV TEPITTMOT TWV GTATIKGOV OG0 KOL TWV PODV

dedopévov.

6 List of Tables

0.2 Wavelet Tuvoperg oe Statikd Aedopéva

O petaoynpatiopdg wavelet evog diaviopatog A eivor pioe avamapdotact ioov peyéboug pe
Tov apyLkd mivaka. Wavelet thresholding xaleiton to mpoPAnpa tov kaboplopod Twv cuvte-
AeoTOV TTOL MPETEL VAL KPATHoOULE oTnV obvoym, dobévtog evog meplopiopod otov dtabéoipo
XOPo pviung. Mia cupfatikr tpocéyyion oto Bépa amotelel Evag ypoppkdg alydplbpog mov
eAoyylotomolel To péco TeTpaywvikd o@dApa [SDS96]. O cuvoelg dpwg ov katackevdlovTol
pe owtr} T péBodo mapovoidlovv onpavtikd petovektripota [GK04], 6mwg vmir Sokdpoaven
oTNV TOLOTNTA TNG TTPOGEYYLOTG, TPOTIUNGT] Yot TTLo akpLPT] KAALYY 68 CLYKEKPLUEVES TTEPLO-
XEG TV SedOPEVOV KaL EANELYT) KOTAVONTOV EYYUNCEWV YIX HEPHOVOUEVA EpOTHpHOTA. ATO TNV
QAL pHEPLA, OL GUVOYELG TTOV EACYLOTOTOLOVY HETPLKEG HEYIOTWOV COUAPATOV EXOLV aodeLyTel
70 0ELOMLOTEG Yio TNV aKPLPT] avakotaokeLur) evog cuvorov dedopévav [GGO2, GK04].

Qo 1600, oL LTdpYOVTES A YOpLOpOL TOL EA Lo TOTOLOVV pn-EvicAeidio cpdApata oe onpeto-
K& epTHpATA Elvo Lo TN PG KeEVTPLKOL ko oL va Pacifovtol o TeXVIKEG SLUVAULKOD TTPOYPAppL-
TLOHOD, OL OTTOLEG ATTALTOVY OPKETH HVIT Kot LITOAOYLoTLKT Loy 0. To idlo toyvel kat yio adyopid-
HOUG 7OV PeATIOTOTOLOUV TL0 GOVOETH EPWTNHATA, OTMG T LEPOPYLKA EPWTANAT 0€ SLOGTH-
pota tipev [GPS08]. ITopovotdlovtog vmep-TETPOYWVIKT] TOAVTAOKOTNTA, OL aAYyOpLOpoL auTol
QITOTLYXAVOUV VO ETLTUYOUV KAUAKWOT) 08 PEYOAX GOVOAX deSopEVV.

O GreedyAbs [KMO05] eivou évog evproticdg alyoplOpog mwov éxet mpotobel yior Tnv avTipeT®-
7o TV Tpoavapepbiviwv mpofAnpdtev. O adydpBpog awtdg eivon mo amodotikds oo
TOoLG aAyopiBpovg SuvapLkoD TPOYPOUHATIOROD AL YL VAL TO ETTLTUXEL ALUTO TTATPOVEL KAITTOLO
K60TOG oTnV akpifeta twv aotedecpdtov. Ioapdla avtd, 00Te qvTdG propet vor TeTOyeL KALHE-
kwor o Meydha Aedopéva kaBwg akoArovbel éva oelpakd TpOTO EKTEAECTC.

O Aodyog mov ot mapdAAnior adydpiBpol eivon Wiaitepa onpavTikol oTnv emoyr twv Me-
YoAwv Aedopévov BplokeTal miow amd TNV apyLTEKTOVIKT TWV VTXPYXOVIWY GCUOTNHATWY eTte-
Eepyaoiog. H avatvtikn eme€epyoacia dedopévov ouviBug Aopfdvel xopo o KaTaVEPHEVES
mAaTPoppeg 6mwg eivar ta Apache Hadoop kou Spark. Ta cvotipate avtd propodv va otei-
Aovv TOAAEG epyaoieg TALTOXPOVA GE SLOUPOPETLIKOVG LITOAOYLOTEG KL £TOL ETLTPETIOVV EYYEVAG
™V ToapdAAnAn exktédeon. Emiong, pe toug emtayvvtég ot eminedo vALkoD va yivovtal Wiaite-
po dnpo@iieic yia epoppoyég Mnyoavikig Mabnong ko Meyddwv Aedopévwv, vtdpyouvv TAéov
Sdvvartotnteg yio emitevén akdpa peyadvtepov Pabpot mtapariniiog [KSH12]. H vynmAd {jtnon
YLOL ETTLTOX LVTEG O€ eMiTed0 LALKOV, £xeL 001 YN OEL TOUG TTaLPOYOUG DITOAOYLOTIK®OV VEPEAWUATWOV
va cupmeplA&Pouv TéToleg eldLIKEG GLOKEVEG OTIG TPOCPOPES Tovg (.., Amazon’s EC2 Elastic
GPUs [amaa], FPGA instances [amab]).

Extog amd v eyyevr] SuokoAio yior kKApaKkwaoT), éva dAAo TtpoPANpa mov avtipetwrilovy
TOAAEG TeXVLKEG TTOUL eival Paciopéveg oe wavelets eivor 0L prtopov va oy elploTody poévo po-

vodiaotata dedopéva. TNy mepinteot TOAAATAGOV SleTdoewy oL alyopLBpoL mov vtdpyovv

0.3. Poég Aedopévwv 7

Sewse¢ > 9, 6,8 4,7, 5,3, 4, 2,43 2
T IEE AR

Shkimg _ — -
w8 W &on R Hr P A S w{ “ﬁ 32
Sum > B 2 1 s 8 —> Cut

Sxnuo 3: Hopdderypo porig kvAvopévou mapabipov.

elvou T600 axpPol mov kabictavron amayopevtikol yioo Meydda Aedopéva. Qotdco, i vmtapén
TOALSLACTATWV SeSOpEVWV elval Vo LY VO PALVOEVO OTLG GUYXPOVES, TTPAYHUATIKES EQOPHOYES
Ko 1 advvapio diayeipiorg Tov atotelel éva Pfooticd epmddio yia Tnv viobétnon Twv wavelets.

Ipokeyévov va mpoteivel AV GTOVG TAPATAV® TEPLOPLGHONS, 1) SatpiPn) avtr] elod-
YEL TapdAAnAovg alyopiBpovg mov kataokevdlovy cuVOYELS Yior HOVOSLAoTATO XAAR KoL YLor
moAvdidctata dedopéva. O mpotetvopevol alyopiBpotr vAomototvtat kL aflodoyobvtol otnv

Kotovepnpévn tiatpoppa enefepyaciog Apache Hadoop.

0.3 Poég Aedopévov

3TIG PEPEG HOG, OL POEG SedOpPEVOV ATOTEAODV £val LOLALTEPOL GTHOVTLIKO HEPOS TWV GUOTHUATOV
ene€epyaoiog dedopévav. Evog Paocikdg meploplopds otovg alyopibuouvg powv eivan n outoi-
TNOT VO KAVOLV pia povadikr] mpootédact tave ota dedopéva. Ta va propodv vor amtavtave
oe dLpopa epoOTHHATA Xwpig va mapaPLdlovy avtdv Tov mEPLopLopd, oL alydpibuol avtoi ou-
xv& Pacilovtal oty Kataokevr) ouvoPewv. Zovibwg ol cuvoelg avtég kataropfdvouvy ToAD
HIKPO XDPO KoL TTPETTEL VO HTTOPOUV va evipepwBodv kot va epwtnfodv oe mpaypatikd xpovo
(vro-ypoppikd oto peyebog tng elgdd0v).

EmunAéov, kaBdg yio moAAEG epappoyég Ta o mpdopata dedopéva Exouv peyodltepn o-
Ela, ammoktolV emiong katL peyadbTepn mpoTepotdTnTH Koth TV eme€epyocio. To otatiotikd
IOV VUK TOVHE otd GLVOPELS Yia Tox TTLo TPOo Pt dedopévar mpémet var eivol LITOAOYLOHEVL JLE
peyaAvtepn akpifeia amd ovtd wov vroAoyilovpe yio adadtepeg Tég. T Tov okomd oo,
TTOAAG poOnpaticd povtéda éxouvv mpotabel otn Pipioypagio [CS03]. Aappdvovtag vdoyy
povo tic W tehevtaieg Tyuég mwov £xet det, To povtéAo tov kvAvopévou mapabdipov [DGIMO02] eivor
£val oITO TOL TTLO KATOVON T Kot evKoAa eppnvevotpa. To Zxnpa 3! avamtaplotd éva topadetypo
6mov vtoAoyiletal To dBpolopa Twv TV ToL Topabipov. Ot peTpricelg Tov atcbntipa oty
AV YPOUHT Tov oxfpatog eneepydlovton amd éva kKuALOpevo TtapdBupo peyéboug técoepa
ko Brjpatog dvo. O adyopiBpog Pydler wg €€0do To ABpolopa Twv avTicTolY®wV TGOV yia k&b

mopddupo.

TInyn ewcévag: https://flink.apache.org/news/2015/12/04/Introducing-windows.html

8 List of Tables

Onwg eivor avapevopevo, puo epoppoyr] dev prtopet va arobnkevoet €€ 0AoKA PO o dutel-
pn akorovBia TGV, Qg ek TovTOU, Tt TAPdBuper eivon pior BepeAddng évvola otnv Bewpio Tng
enekepyaciog podv. Xe TOANEG TEPLITAOOELS HAAOTA, HITOPEL Va pnv elvon dvvartr) 1) aodrkev-
o1 0TI RV akOpx Kot yioe T ototyeia evog mapadipov. Tia mopddetypo, To eVEOPATOREVY
oLGTHHATE TTOL GUVOVTApE oLY VA oe [oT epappoyEég pmopel va EXOLY HVAN XWPLTIKOTN TG HepL-
K&V MB. O vtoAoylopodg evog pécov Opov o€ pia por) dedopévawv Tov amoteAeitol amo aptOpoi
pnkovug 8 bytes o xabévag, xpedleton 800 MB pvipng (Bewpovrag éva mapdbuvpo W = 100M
oTolxeiwv) ta omolo popel va pnv eivon Stabéoipa. Emopévwg ovxva katapedyovpe ce Tpo-
OEYYLOTLKEG TEXVLKEG TTOL KATOGKELALOLY pia cVVOYT ToL TTapadvpov.

IToAMoi ahyopiBpol éxovv mpotabel yiot TOV VTOAOYLOHO SLPOPWOV CTATIOTIKOV XPTOLILO-
TOLOVTOG TO HOVTEAO TOV KLAVOpEVOL opalBipov. H mAetoynoia twv adyopibpwv avtdv metuv-
xotvel toAv-AoyoplBpikr) toAvmAokoTnTa 6to péyebog Touv mopabipov 1660 wg TPOG TOV XPOVo
660 kot Tov ywpo [DGIMO02, GT02, QAEA03, XTB08]. Qotdc0, To tpodfAnpa dev éxel pedetnOei
EMOPKAOG 0TNV TEPinTOOoT Tewv wavelets. H diatpifr) avtr) Siepevvé tnv kavotnta twv wavelets
va Tpoceyyioovv Pacikd otatiotikd peyédn (COUNT, SUM, AVG) ot poég dedopévwv KuAvo-

pévou mapabivpov.

0.4 XSvvesio@opd tng AtaTtpifng

H npotn ovvetopopd awtrig g datpiPfrig eivan n mapadAniomoinorn adyopibpwv yia tnv ka-
taockevr] wavelet cuvoyewv. Xto Kepdhato 3 mapovoidlovror alyopibpot yia tnv mapadin-
Aomoinon povodidotatwv dedopévwv. IIo cuykekplpéva, ToHPOLCLALETOL Lo TEXVLKY YO TNV
TOUPUAANAOTTOLNGT) KOl KAPAKWOT) OAwV TV 0AYopiBpmy SuvapLkold TPoyPOHHATIEHOD TOV V-
TapYoLV yia To TPOPANpa. H mpotewvdpevn mpooéyyion Paciletal 6 éva oxmpo SLapoLpacpo
Twv dedopévwy Tov emiTpémel TNV TApAAANAN ene€epyacio TV YPOpP®OY TOL Tivako Tov du-
vopkoL poypoppatiopot. To v Sodpe o amoteAéopata TG TEXVIKNAG LTS 6TV TTPAEn,
™V epappdlovpe o évav ToAD yvwoTo alydpiBpo [KSMO07] ko dnpiovpyodpe pia tapdAAnAn
ekdoyr) Tov pe TOAD KoaAVTEPES OLOTNTEG KALPAKWOOIHOTNTOGS.

KaBog opwg oL adydpiBpot Suvaypikov mpoypoppatiopod eivor akpifol oe xpovo kot Tdpoug,
otnv dratpiPr) avtr) mpoteivovral eniong dvo evplotikol adydplBpot mov PeATidvouy Tov Xpdvo
EKTENEOTG HE KATTOLO KOGTOG OTNV TOLOTHTA TWV TPOCEYYLOTIK®OV atoTeAecHATOV. OL aAyopLO-
pot awtol Pacilovtal oe Tpelg Paoiiég 1déeg: (i) tepapyicd dopotpacpd g doprg Tov wavelet
HETOOXNHOTIOHOD, (ii) TOAAQTAEG exTEAETELS TOV KEVTPLKOL ahyopiBpov, ko (iii) cvyydvevon
KoL QLATPAPLORR TV eVOLApEc®V amoTeAeapdTev. O Tp®dTOG eVPLOTLKOG ahyOpLOpOg TTOL TTPO-
teivetal oto Kepdahato 3 ypetdletor moAAEG KATAVEPNHEVEG EKTEAEGELS YLOL VO KATALOKEVAGEL
™ obvvoyr. Ta v mepautépw PeATinoT TOL XPOVOU eKTEAEOTG, TPOTEIVETAL £VAIG AKOHAL OA-

Yop1Opog, o omolog atattel povo pa kotovepnpévr ektédeor). Ta melpapota ov de€nyOnoav

0.4. Jvvelopopd g AwxtpiPrig 9

detyvouv Ot 1 emidoom mov emtTuyYdvouy kat oL 300 evploTikoi adyopLBpoL eivor kadOTepn amd
TOLG avTicToLYoLG duvakoD Ttpoypoppaticpov. EmumAéov dev mapovoidlouvv kdmola EkTnwon

OTNV TTOLOTITO TOV UTOTEAEGHATOG G€ GXECT] e TOV KeVTPLKO evuploTikd GreedyAbs.

Olot o1 aryopiBpor viomoirnkav oto Apache Hadoop kou tpoypotomoOnke exktevrg met-
POHATIKY OELOAGYNOT) XPNOHOTOLOVTOS TOG0 cuvOeTIkd 660 Kat Tpoypatikd dedopéva. T
Vv 0€LoAdyNon oAyopiBumy Tave 6To cLuyKeKpLEVO TPOPANHL, OAES OL TTPOTYOVUEVEG EPELVN-
Ticég dovAeLég éxouv ypnoipomolrjoel cOvora dedopéva tov mepiLéyouvv péxpt 262K tipés. Ta va
det€oupe TIg LOLOTNTES KAUAKWOHOTNTAG TWV TTPOTELVOPEVDV aAYopiBpwV, Ta meLpdpoTol TTov
SieEnyOnoav xpnoyomrolodv cvvora dedopévwv mov eivar peyaddTepo HéXPL Kol TPELG TAEELG

peyéBoug.

10 Kepdhaio 4 oL mpotetvopevol alyoplOpoL yix TNV KaTaokevr] cuvoyeny emekteivovtal
oe oOvola dedopévav ToAAamAdV dixotdcewv. [Ipdta mapovoidletal Evag kevtplkdg adyo-
pLOpog duvolkol TpoypappaTIopoD o eival Wiaitepa amodotikdg ko Paciletor oTov
IndirectHaar [KSMO07]. Xtn ovvéyela, deiyvoupe OTL 1) TEXVIKI] TOL XPNCLHOTOLOVHE YL TNV
noporAniomoinen Towv adyopibuwv duvoplkol TpoypoppaTicpot ot povodidotata dedopéva
propel vo epoppootel pe pikpég maparlayég kal oe dedopéva ToAAdV dixotdoewv. To idio t-
oy Vel KOl Yo TOUG eLPLETLKOVS adyopiBpoug tov Kepadaiov 3. Aeiyvw modg pmopodv va emekta-
Bo0v wote va dixyetpilovror moAvdidotata dedopéva kot Tapovotalm pa BewpnTikn avdlvon

ylo TOV XpOVO eKTEAECT|G TOUG,.

Y10 Keparowo 5 e€etaleton 1 amodotikdtnTar Twv wavelets ce mepuntooelg powv dedopé-
vV kvAvopévouv tapabopov. Iapdtt Aapfdvovtol vTOPLY Kot GTHeELoKd epOTHRATO AN Kol
EPWTNHOTO O€ SO THHATA TIH®VY, diveTal WOlaiTtepn) EUPAOT) 0TV TEPITTWOT GLVADPOLOTIK®OV
epOTNHaTwV 0mwg COUNT, SUM kot AVG. Avtd elvol T TTLO XOXPOKTPLOTIKA EPWTHIATA O
KuAvOpeva TapdBupa kat 1 enidoon twv wavelets otnv mepintwon avty dev éxel epevvnbel e-

TOPKOG 6TO TaLpeABOV.

ITio ovykekpipéva, Bewp® éva meplPdArov kKvAvopévou mapabbpou kal mTopovotdlw Ko-
voUplovg wavelet adyopiBpouvg yia Tov LITOAOYLGHO EPOTNHATWV TAVK G€ SLOUCTHATA TLHOV.
H moAvmhokotnta tewv adyopibpwv avtov avaldetal BewpnTikd, 0Twg eTioNg TAPEXOVTAL KOl
OULTOKPOTIKEG EYYUHOELS YIX TA GPAApOTA TV Tpoceyyicewv. O mpotetvopevol alyopibpol
epappolovrot emtiong o€ éva Katavepnpévo meptaAiov 61ov ToAAaTAé poég dedopévav vmo-
Aoyilouv atopikd, 1 koBepid tn cbOvoyn NG KoL VITEPYEL Evag Hovadikdg KOHBOG-CLVTOVIOTHG
OV OLYXYWVEVEL TIG CLVOPELS O TPAYHATIKO YPOVO KoL LITOAOYLI(EL ATMAVTINOELS EPWOTNUATWOV
AV OTNYV évwoT Twv podv. H meipaportiky a&lohdynon ce ouvBeticd ko mpaypotikd dedo-
péva delyvel OTL Yo Lo TANOOPO TEPLTTOOEMY, 0L AAYOPLOpOL TTOV TAPOLOLALOVTAL GE QUTHV
™ SwxtpPr) vepTepoy oe axpifela oe oxéon pe AANEG YVOOTEG TEXVIKEG OTWG TaL ekOeTIKG

wotoypappoarta. EmmAéov, oto Kepdhowo 5 mapovoidletal kL éva oot TO 0moio PeATidvel

10 List of Tables

epoUTEPW TNV akpifela Twv omoteAeopdTOV S00EVTWVY EMTAEOV TTANPOPOPLOV GYETIKA HE TOV

(POPTO TV EPOTNUATOV.

CHAPTER 1

Introduction

This dissertation introduces efficient wavelet-based algorithms that enable approximate query
processing (AQP) over big data. In the following, the rationale behind this work is presented.
Why AQP, why wavelets and what cases are covered in this thesis are some of the questions I

try to answer in this introductory Chapter.

1.1 Motivation

The technological and societal developments of our era have resulted in an unprecedented pro-
duction and processing of enormous data volumes, referred to with the term ‘Big Data’ [big].
Businesses, government organizations and digital infrastructures alike contribute to this Big
Data reality. This abundance of datasets has, in turn, given rise to data-driven approaches in
both academia and industry.

Following the OLAP paradigm [CD97], modern data analytics applications involve comput-
ing aggregates over a large number of records and along a variety of different dimensions. For
instance, a financial trading firm needs to compare the prices of securities to historical averages
of various granularities in order to determine items that are under- or over-valued. Computing
such averages has been traditionally accomplished via sequential scans of large fractions of a
database. Yet, there exist cases where existing data processing tools have become the bottleneck
and such scan operations can become extremely expensive. When huge heterogeneous data is

the case, even the fastest database systems can take hours or even days to answer the simplest of

11

12 Chapter 1. Introduction

The“data
“deluge” gap

/ —@~ Data Growth Moore's Law

1 . - T T
2006 2007 2008 2009 2010

Figure 1.1: The “Data Deluge” gap according to the HIPEAC VISION 2015 report.

queries. Computing a simple average over 10 terabytes of data stored on 100 machines can take
in the order of 30 - 45 minutes on Hadoop if the data is striped on disks, and up to 5 - 10 minutes

even if the entire data is cached in memory [AMP*13].

As data-driven discovery is often an interactive and iterative process [Moz15], such response
times are unacceptable to most users and applications. In another example, data analysts in a re-
tail enterprise slice and dice their sales data to understand the sales performance along different
dimensions (such as product and geographic location) using a varying set of filtering conditions.
Interactive query response time is critical in such data exploration; human analysts should be
able to rapidly iterate between hypotheses and evidence. Studies in human-computer interac-
tion show that the analyst typically loses the analysis context if the response time is above one
second [Shn84]. In order to meet the demands of interactive, human-in-the-loop data analytics,
both commercial and open source systems continuously strive to provide lower response times
through various techniques such as parallelism, indexing, materialization and query optimiza-

tion.

Traditionally, most of the aforementioned approaches try to better utilize available memory.
However, keeping all useful data in main memory may not be an affordable or realistic option in
the Big Data era. Buying memory that is big enough to hold the entire dataset does not consist
an affordable option. Furthermore, if it is too expensive now, it will be even more expensive to
do so next year. Hardware, including memory, is expected to improve or get cheaper according
to Moore’s law. In Figure 1.1, we can see that the data growth has already surpassed that rate.
In a real-world testimony, Facebook reported [fbr] that within a year, it has seen a 3 x growth in

the amount of stored data, with an incoming daily rate of 600 TB.

Caching techniques mitigate the problem, as they only store hot data in memory. Neverthe-

less, even caching only a working-set of some GB does not do the trick. Analytics usually include

1.1. Motivation 13

iterative processes, where different data may be of interest at each iteration. Loading different
parts of the dataset each time incurs significant I/O delays that may be not acceptable.

Memory is even more stressed in the case of stream processing. A significant part of the digi-
tal information currently produced comes in the form of data streams, i.e., continuous sequences
of items. Applications that require real-time processing of high-volume data steams are pushing
the limits of traditional data processing infrastructures. In [SCZ05], Stonebraker et al. have de-
fined the 8 requirements for stream processing systems. According to the first requirement, in
order to achieve low latency, a system must be able to perform message processing without hav-
ing a costly storage operation in the critical processing path. Unlike conventional database query
processing that allows several passes over static data, data-stream processing algorithms often
rely on a single pass over the stream. The requirement of real-time processing of continuous data
in high-volumes has triggered a flurry of research activity in the area. Some typical applications
include sensor networks [CCC*02, MF02, YGT 03], datacenter monitoring [GGRS07], financial

data trackers [ZS02], and real-time analysis of various transaction logs [CFPR0O0].

FAST

ANY
TWO

BIG ACCURATE

Figure 1.2: Trade-off among data volume, query response time and accuracy in the results.

Approximate Query Processing has emerged as a viable alternative for dealing with the huge
amount of data and the increasingly stringent response-time requirements [CGRS01]. Due to
the exploratory nature of many data analytics applications, there exists a number of scenarios
in which an exact answer is not required; we are interested in discovering statistical patterns
rather than obtain answers precise to the last decimal. For example, during a drill-down query
sequence in ad-hoc data mining, initial queries in the sequence frequently have the sole purpose
of determining the truly interesting query regions of the dataset [HHW97]. Thus, in these initial
queries, we are willing to forgo accuracy in favor of better response-times. AQP provides a
trade-off between accuracy, execution-time and memory consumption. This trade-off is depicted
in Figure 1.2: If we wish to achieve fast responses, we either reduce the size of the data or the

accuracy of the result. If we want accurate results, we need to compromise on time or data

14 Chapter 1. Introduction

volumes. By visualizing the trade-off, analysts can fine-tune the execution of queries [TK15].
Moreover, approximate answers obtained from appropriate synopses of the data may be the only

option when the base data is remote or unavailable [AFTU97].

To that end, several approximation techniques have been developed, including: sampling
[AMP*13, GM98, AGPR99b], histograms [IP99, GMP97, JKMT98], sketches [GKMS01, AMS96]
and wavelets [CGRS01, GK04, KM05, KSM07, KM07]. Apart from the numerous research ef-
forts, various industrial vendors have realized the necessity for AQP and have added approxi-
mation features in their products (e.g., Facebook’s Presto [pre], Yahoo’s Druid [yah], SnappyData
[RMWT16], and Oracle 12C [SZB*16]).

A random sample comprises a “representative” subset of the data values of interest, obtained
via a stochastic mechanism. Samples are usually fast to obtain, and can be used to approxi-
mately answer a wide range of queries. Due to their efficient computation and wide applicabil-
ity, sampling techniques are employed by the majority of AQP systems. To name a few, BlinkDB
[AMP113], VerdictDB [PMSW18], Quickr [KSV'16] mostly work with samples.

A histogram summarizes a dataset by grouping the data values into subsets, or “buckets”, and
then, for each bucket, computes a small set of summary statistics. Histograms have been exten-
sively studied and have been incorporated into the query optimizers of virtually all commercial

relational DBMSs [mss, mar, ora].

Sketch summaries are particularly well suited to streaming data, they are massively paral-
lelizable and easily composable. They can accommodate streams of transactions in which data
is both inserted and removed. Sketches have also been successfully used to estimate the answer
in COUNT DISTINCT queries, a notoriously hard problem in stream processing. Due to their
nice properties, sketches have been incorporated in industrial streaming systems. For example,
SnappyData [RMW*16] uses Count-Min sketches [CM05] to compute top-k queries on streams.
Yahoo Druid [yah] uses sketches for computing COUNT DISTINCT and quantile queries. There
is also an active effort to integrate sketches in the Apache Flink * system [fli]. While they par-
ticularly fit in the streaming case, sketches have also been used in batch processing systems too.

For example, Apache Hive ? offers a variety of sketching algorithms as built-in functions [yah].

Wavelet decomposition [SDS96] provides a very effective data reduction tool, with appli-
cations in data mining [LLZO02], selectivity estimation [MVW98], approximate and aggregate
query processing of massive relational tables [CGRS01, VW99] and data streams [GKMS03, CGS06].
In simple terms, a wavelet synopsis is extracted by applying the wavelet decomposition on an
input collection (considered as a sequence of values) and then summarizing it by retaining only a

subset of the produced wavelet coefficients. The original data can be approximately reconstructed

‘https://flink.apache.org/
*https://hive.apache.org/

1.2. Wavelet Synopses Over Static Data 15

based on this compact synopsis. Previous research has established that reliable and efficient ap-
proximate query processing can then be performed solely over such concise wavelet synopses
[CGRSO01].

However, wavelet-based techniques have hardly been adopted in practice for AQP purposes.
There are only a few academic prototypes (e.g., [SJBK08, MP04]) that approximate aggregates
based on wavelets and, to the best of my knowledge, no industrial product. In this dissertation,
I discuss the shortcomings of existing wavelet-based synopsis construction algorithms and pro-
pose new ones that unleash the power of wavelets and render them “affordable” in the Big Data
era. As different scenarios have different demands, this thesis covers the cases of both static and

streaming data.

1.2 Wavelet Synopses Over Static Data

The wavelet decomposition of a data vector A is a representation of equal size as the original
array. Wavelet thresholding is the problem of determining the coefficients to be retained in the
synopsis given an available space budget B. A conventional approach to this problem features
a linear-time deterministic thresholding scheme that minimizes the overall mean squared error
[SDS96]. Still, the synopses produced by this method exhibit significant drawbacks [GK04], such
as the high variance in the quality of data approximation, the tendency for severe bias in favor
of certain regions of the data and the lack of comprehensible error guarantees for individual
approximate answers. On the other hand, synopses that minimize maximum error metrics on
individual data values prove more robust in accurate data reconstruction [GG02, GK04].

However, the existing algorithms that minimize non-Euclidean error metrics in point queries
are strictly centralized and are usually based on dynamic programming (DP) approaches that
demand a lot of memory and processing power. The same also holds for algorithms that optimize
more complex queries such as hierarchical range queries [GPS08]. Featuring super-quadratic
complexities, all these algorithms fail to scale to big datasets.

In [KMO05], GreedyAbs, a heuristic solution is proposed. This algorithm is more time-efficient
than the DP algorithms but at the cost of loosened quality guarantees. Yet, it cannot scale to Big
Data either, as it follows a sequential path of execution that prevents a data-parallel approach.

The reason why data-parallel algorithms are of paramount importance lies behind the ar-
chitecture of the available data processing systems. Modern analytics usually take place in dis-
tributed, scale-out platforms such as Apache Hadoop * and Spark *. These systems can dispatch
multiple concurrent tasks across the workers of a cluster and we need to take advantage of that

capability. Furthermore, with hardware accelerators becoming extremely popular for Machine

*https://hadoop.apache.org/
*https://spark.apache.org/

16 Chapter 1. Introduction

Seusec > 9,6, 8, 4,7, 5, %, 4 2,432 5
T dpu Al

Shidhimg I — -
w8 Aﬁ &on R kfr P 2 S w }[ﬁ 32
Suwm > B 2 n s 8 — out

Figure 1.3: Example of a sliding-window stream.

Learning and Big Data Analytics workloads, there are massive capabilities for parallel execution
[KSH12]. The high demand for hardware accelerators has led cloud vendors to include special-
ized devices in their offerings, alongside general purpose CPUs (e.g., Amazon’s EC2 Elastic GPUs
[amaa] or FPGA instances [amab]).

Apart from their inherent difficulty in scaling-out, another shortcoming of existing wavelet
techniques is that most of them handle strictly one-dimensional data and come at a prohibitive
complexity when more dimensions are involved. Nevertheless, multidimensional datasets are a
common case in real-world applications and such a limitation makes the use of wavelets imprac-
tical.

To address all the aforementioned limitations, this dissertation introduces parallel algorithms
that construct wavelet synopses for both one- and multi-dimensional data. The proposed algo-

rithms are implemented and evaluated on top of the Apache Hadoop processing framework.

1.3 The Streaming Case

Nowadays, streams are a first class citizen in data processing infrastructures. Streaming algo-
rithms are generally restricted to allow only a single pass over the data. In order to achieve this,
they often rely on building real-time, concise synopses of the underlying streams. These syn-
opses typically need small space, update and query time (sub-linear to the input size) and can be
used to provide approximate, yet accurate answers.

Furthermore, as for most applications there is more value in real-time information, recent
data tend to be prioritized; statistics in fresh data items should be represented with higher pre-
cision than in older ones. For this purpose, various time-decay models have been proposed in
the literature [CS03]. The sliding-window model [DGIMO02] is one of the most intuitive ones as
it only considers the most recent data items seen so far. Figure 1.3’ illustrates an example of a
sliding-window stream, where a SUM aggregation takes place. The sensor measurements of the
topmost row are processed in a sliding window of length four and slide-step two. The algorithm

outputs the sum of the corresponding elements for each window.

*image source: https://flink.apache.org/news/2015/12/04/Introducing-windows.html

1.4. Contributions 17

Windows are a central concept in stream processing because an application cannot store an
infinite stream in its entirety. Nevertheless, in many cases, even storing only a window may
not be an option. For example, embedded devices, that are often met in IoT scenarios, have a
memory capacity of only a few MB. Keeping track of the average value in a stream of 8 byte long
numbers and a window size of W = 100M data elements requires 800 MB of RAM which may
not be available. Therefore, approximation techniques that summarize a sliding-window should
be employed.

Several algorithms have already been proposed for maintaining different types of statis-
tics over sliding-windows while requiring time and space poly-logarithmic to the window size
[DGIMO02, GT02, QAEA03, XTB08]. However, the problem has not attracted much attention
when using wavelets. In this dissertation, I investigate the capacity of wavelets to efficiently
approximate basic aggregates over a data stream under the sliding-window model. I focus on
COUNT, SUM and AVG queries, since more complex queries in sliding-windows usually need to

compute such basic aggregates under the hood [PGD12].

1.4 Contributions

The first contribution of this thesis is the parallelization of wavelet thresholding algorithms over
large-scale, static, one-dimensional data (Chapter 3). More specifically, a general theoretical
framework is presented for scaling-out the existing DP algorithms for the problem. The pro-
posed approach is based on a novel partitioning scheme that allows for the parallel processing
of DP table rows. In order to demonstrate the benefits of this framework, it is applied on the
state-of-the-art DP algorithm [KSM07] and a new parallel algorithm with much better scalabil-
ity properties is produced.

However, as DP algorithms are quite costly, two heuristic-based algorithms that improve on
the running-time at the cost of loosened error guarantees are also proposed. The first heuristic
algorithm follows three key-ideas: 1) hierarchical partitioning of the wavelet structure, 2) multi-
ple executions of the centralized algorithm, and 3) merging and filtering of intermediate results.
Nevertheless, as it initiates multiple distributed jobs, I further improve on its running-time and
also propose a second heuristic algorithm that requires only a single job for constructing the
synopsis. The conducted experiments show that the achieved performance of both distributed
greedy algorithms exhibits no quality degradation compared to their centralized counterpart.

All algorithms are implemented on top of the Hadoop processing framework and an ex-
tensive experimental evaluation is performed using both synthetic and real datasets. Previous
approaches to the problem used datasets of up to 262K datapoints. To put emphasis on the scala-
bility properties of this work, experiments with datasets larger by three orders of magnitude are

conducted.

18 Chapter 1. Introduction

After analyzing the problem for the one-dimensional case, the proposed ideas are extended
to also handle datasets of multiple dimensions (Chapter 4). First, a new centralized, multidi-
mensional algorithm based on IndirectHaar [KSMO07] is presented. Then, it is shown that the
proposed framework for parallelizing DP algorithms can be applied in that case too. The pro-
posed heuristic algorithms for one-dimensional data are also extended and a complete theoretical
analysis for the multidimensional case is provided.

In Chapter 5, I investigate the efficiency of wavelets for summarizing a sliding-window
stream. While workloads of both point and range queries are considered, particular empha-
sis is put on basic aggregates such as COUNT, SUM and AVG. This is the most common query
type in the sliding-window context and the performance of streaming wavelets in such queries
has not been studied before.

Specifically, new wavelet-based algorithms are presented for answering range queries over a
single stream in the sliding-window model. The complexity of these algorithms is theoretically
analyzed and deterministic error guarantees are provided. The proposed approach is also applied
and validated in a distributed setup, where multiple streams compute individual synopses and
a single coordinator merges them in real-time to produce global answers. The experimental
evaluation, in both synthetic and real data, shows that the work of this thesis outperforms in
terms of accuracy state-of-the-art techniques such as exponential histograms and deterministic
waves for a variety of workloads. Moreover, this dissertation also introduces a system that can

further improve on accuracy, given some information about the query workload.

1.5 Document Outline

The remainder of this document is organized as follows. Chapter 2 provides the mathematical
background needed for the understanding of the presented ideas.

Chapter 3 deals with the parallelization of algorithms that construct optimal synopses over
one-dimensional data. Section 3.2 presents a theoretical framework for the parallelization of DP
algorithms and discusses its application on top of the Hadoop processing platform as well as
on top of GPU accelerators. Section 3.3 introduces parallel greedy algorithms for the problem.
These algorithms achieve better a running-time at the cost of loosened quality guarantees. A
thorough experimental evaluation for wavelet algorithms over static, one-dimensional data is
presented in Section 3.5.

Chapter 4 extends the proposed algorithms to multiple dimensions. Both optimal and heuris-
tic algorithms are presented for the construction of synopses over multidimensional datasets.
Section 4.2 presents the optimal algorithm, Section 4.3 the heuristic one and in Section 4.4 there
is a qualitative discussion. In Section 4.5, the experimental evaluation for the multidimensional

case is presented.

1.5. Document Outline 19

While up to this point, all algorithms target batch processing scenarios, Chapter 5 introduces
wavelet-based techniques for streams. Section 5.2 describes an algorithm that can efficiently
approximate range queries under the sliding-window model. Extra improvements for the case we
have workload information are presented in Section 5.6 and an extension to distributed streams
can be found in Section 5.4. An experimental evaluation of the proposed streaming algorithms
is presented in Section 5.7.

Chapter 6 contains a thorough literature review related to approximate query processing.
Some important research works in the domain are listed and classified according to the em-
ployed technique. Of course, particular emphasis is put on wavelet-based techniques in order to
highlight the contributions of this thesis.

Finally, the contributions of this work are summarized in Chapter 7.

20

Chapter 1. Introduction

CHAPTER 2

Mathematical Background

Wavelet analysis is a major mathematical technique for hierarchically decomposing functions in
an efficient way. Wavelets are functions which have prescribed smoothness, are well localized
in both time and frequency, and form well-behaved bases for many of the important function
spaces of mathematical analysis. What makes wavelet bases especially interesting is their self-
similarity: every function in a wavelet basis is a dilated and translated version of one (or possibly
a few) mother functions.

The wavelet decomposition of a function consists of a coarse overall approximation together
with detail coefficients that influence the function at various scales [SDS96]. All wavelet co-
efficients are of the form: (A, ¢;), where A represents the input data. As such, the wavelet
decomposition is computationally efficient (linear time) and has excellent energy compaction
and decorrelation properties, which can be used to effectively generate compact representations

that exploit the structure of data.

2.1 One-Dimensional Haar Wavelets

Haar wavelets constitute the simplest possible orthogonal wavelet system. Assume a onedimen-
sional data vector A containing N = 8 data values A = [5, 5,0, 26, 1, 3, 14, 2]. The Haar wavelet
transform of A can be computed as follows: We first average the values in a pairwise fashion
to get a new “lower-resolution” representation of the data with the following average values:

[5,13, 2, 8]. The average of the first two values (i.e., 5 and 5) is 5, the average of the next two values

21

22 Chapter 2. Mathematical Background

Table 2.1: Wavelet decomposition example

Resolution Averages Detail Coef.
3 [5,5,0,26,1,3,14, 2] -
2 [5,13,2,8] [0,—-13,—1,6]
1 [9, 5] [—4, —3]
0 [7] 2]

(i.e., 0 and 26) is 13, etc. It is obvious that, during this averaging process, some information has
been lost and thus the original data values cannot be restored. To be able to restore the original
data array, we need to store some detail coefficients that capture the missing information. In Haar
wavelets, the detail coefficients are the differences of the (second of the) averaged values from
the computed pairwise average. In our example, for the first pair of averaged values, the detail
coeflicient is 0 (since 5 — 5 = 0) and for the second is —13 (13 — 26 = —13). After applying
the same process recursively, we generate the full wavelet decomposition that comprises a single
overall average followed by three hierarchical levels of 1, 2, and 4 detail coefficients respectively
(see Table 2.1). In our example, the wavelet transform (also known as the wavelet decomposition)
of Ais Wy = [7,2,—4,-3,0,—13,—1,6]. Each entry in Wy is called a wavelet coefficient.
The main advantage of using W, instead of A is that, for vectors containing similar values,
most of the detail coefficients tend to have very small values. Therefore, eliminating such small
coeflicients from the wavelet transform (i.e., treating them as zeros) introduces only small errors
when reconstructing the original array and thus results to a very effective form of lossy data

compression.

2.1.1 Error-Trees

G} Co
} * 1=0
24
cz@/‘ ‘\-?yca
A A 1=2
Ca 5C Ce C
Q) 13 > (1) (6) U
' _ * - | i ! =3
I5 9 1 W 3]
do dl d2 d3 d4 d5 d6 d7

Figure 2.1: An error-tree that illustrates the hierarchical structure of the Haar wavelet decom-
position

2.2. Multidimensional Haar Wavelets 23

The error-tree, introduced in [MVW98], is a hierarchical structure that illustrates the key
properties of the Haar wavelet decomposition. Figure 2.1 depicts the error-tree for our simple
example data vector A. Each internalnode ¢; (i = 0, ..., 7) is associated with a wavelet coefficient
value, and each leaf d; (i = 0, ..., 7) is associated with a value in the original data array. Given
an error-tree T and an internal node ¢ of T, we let leavesy, denote the set of data nodes in the
subtree rooted at ci. This notation is extended to le ftleavesy (rightleavesy) for the left (right)
subtree of c;,. We denote pathy, as the set of all nodes with nonzero coefficients in T which lie
on the path from a node ¢y, (dj) to the root of the tree T. Moreover, for any two data nodes d;
and dj, we use d (I : h) to denote the range sum Z?:l d;.

Given the error-tree representation of a one-dimensional Haar wavelet transform, we can

reconstruct any data value d; using only the nodes that lie on path;. That is

1 d; € leftleaves;
di=), bijcj = Z ’

c;€path; -1 otherwise

For example, in Figure 2.1, value ds = 7 —2 — 3 — (—1) = 3. A range sum d(l : h) can be
computed using only nodes ¢; € path; U pathy, by d(I : h) = Y¢; epathyUpathy, TjCj, Where

(h—1+1) =0

leftleaves; ;.;,| — |rightleaves. ;. otherwise
7, g 5,1:h

2.1)

Ty =

Here, le ftleaves; ., = leftleaves; N {d;, di41, ..,dp} and rightleaves; ., = rightleaves; N
{di,di+1,..,dp}. That means that node c; contributes to the range sum d (h : [) positively as
many times as there are leaf nodes of the left sub-tree of ¢; in the summation range, and neg-
atively as many times as there are leaf nodes of the right sub-tree of c;, while the value of ¢
contributes positively for each leaf node in the summation range. In our example, d (3 : 6) =
—1-(=13)+(-1)- () +(-2)-2+4-7T+1-(-3)+6 =44,

Thus, reconstructing a single data value involves summing at most log/N + 1 coefficients and
reconstructing a range sum involves summing at most 2log/N + 1 coeflicients, regardless of the

width of the range.

2.2 Multidimensional Haar Wavelets

The Haar wavelet decomposition can be extended to multiple dimensions using two distinct
methods, namely the standard and nonstandard decomposition [CGRS01]. Each of these trans-
forms results from a natural generalization of the one-dimensional decomposition. Considering

a D-dimensional array A of size IV, where N is the number of datapoints, the wavelet transform

24 Chapter 2. Mathematical Background

produces a D-dimensional array W4 of the same shape with A. To simplify the exposition to the
basic ideas of multidimensional wavelets, we assume all dimensions of the input array to be of
equal size.

The work presented in this thesis is based on the nonstandard decomposition. Abstractly, the
nonstandard decomposition alternates between dimensions during successive steps of pairwise
averaging and differencing: given an ordering for the data dimensions (1,2, ..., D), we perform
one step of pairwise averaging and differencing for each one-dimensional row of array cells along
dimension k, Vk € [1, D]. The results of earlier averaging and differencing steps are treated as
data values for larger values of k. One way of conceptualizing this procedure is to think of a 27
hyper-box being shifted across the data array, performing pairwise averaging and differencing.
We then gather the average value of each individual 2P hyper-box and we form a new array
of lower resolution. The process is then repeated recursively on the new array. An example of
this process for a two-dimensional 4 x 4 data array is illustrated in Figure 2.2. We demonstrate
the process for the lower left quadrant of the array. Initially, we have the values: 1, 4, 9 and
6. By pairwise averaging and differencing along the first dimension we get: (1 + 4)/2 = 2.5,
(1-4)/2=—-1.5and (9+46)/2 = 7.5, (9 —6)/2 = 1.5. The quadrant is now transformed to
the values: 2.5, —1.5, 7.5, 1.5. We repeat the same process along the second dimension and we
have: (2.5+7.5)/2=5,(25-75)/2=—25and (-1.5+1.5)/2=0,(-1.5—1.5)/2=—1.5
and the quadrant is transformed to the values: 5, 0, —2.5, —1.5 as shown in Figure 2.2. We apply
the same process on the other three quadrants of the array in order to complete the first level of
the wavelet decomposition. In the next step, we gather the computed averages of each hyperbox
(highlighted with grey color) and this way we form an array of lower resolution as shown in the
3rd step of Figure 2.2. We then repeat the same procedure for the next level of resolution. More
information about the wavelet transform can be found in [CGRS01].

Error tree structures are also defined for multidimensional Haar wavelets and can be con-
structed (once again in linear time) in a manner similar to the one-dimensional case. Neverthe-
less, the semantics and structure are somewhat more complex. Figure 2.3 illustrates the error-
tree structure for the two-dimensional decomposition presented above, annotated with the sign-
information for each coefficient. A major difference is that in a D-dimensional error-tree, each
node t (except for the root) contains a set of 2D _ 1 wavelet coefficients ¢;; that have the same
support region but different signs and magnitudes for their contribution. Furthermore, each node
t in a D-dimensional error-tree has 2” children corresponding to the quadrants of the support
region of all coefficients in node ¢. The sign of each coefficient’s contribution (sign (j, 7)) to the
j-th child of node ¢ is determined by the coefficient’s position in the 2P”-hyperbox. Coefficients
located in the same position of different 2”-hyperboxes will be assigned the same internal in-
dex. Thus, internal indexing determines the sign of contribution of a coeflicient ¢;; to each child

of node t. For example, we observe in Figure 2.3 the sign-information for the first coefficient

2.2. Multidimensional Haar Wavelets

1. Data Array A

3|7]6]2 ((2 -o.}%\

7135 |1|[5]|0/|35| 2]|5]|35]|]0875|-0875
O | e 8|6 |[-25-15/ 0 |o5]| > | 7| 512510125
Eilalols|[5]07 s 4. Avg and Diff

Dim 1 3. Lower-resolution.

2 hyperbox e ted mvroges
T Avg &Diff Avg & DI
9 |6 ﬁ'i‘,’:f 7.5\//1.5 gng 25 -15
K> 2.5)\-1.5 50

Figure 2.2: Example of two-dimensional Haar wavelet decomposition

of each node (internal index 0). Every coefficient with internal index equal to zero contributes

positively to the first and third child and negatively to the second and fourth.

Level 0

Figure 2.3: Two-dimensional error-tree. Each node contains 22 — 1 = 3 coefficients and has
22 = 4 children. The numbers in red color indicate the coefficients’ indexing within a node.

Based on the above generalization of the error-tree structure to multiple dimensions, we can
naturally extend the formula for data-value reconstruction to multidimensional Haar wavelets.
Once again, the reconstruction of a data-value d; depends only on the coefficients for all error-
tree nodes € path,,, where the sign of the contribution for each coefficient W in node t € pathg,
is determined by the sign-information for W. Thus, in our example of Figure 2.3, A[0, 1] = 5.125—

0.125 + 0.875 — 0.875 — 2.5 — (—1.5) = 4.

26 Chapter 2. Mathematical Background

Table 2.2: Notation

Symbol | Semantics

i€0..N-1

A Input data array

Wa Wavelet transform array

N Number of datapoints

D Number of dataset dimensions

B Target size of synopsis

T; Error tree rooted at node i

Tr, (ci) | Sub-tree rooted at left (right) child of node i
(Tr (i)

d; Data value at cell i of the data array
d; Reconstructed data value at cell i
leaves; | Set of data nodes in T}

C; Wavelet coefficient at cell i

M Matrix used by DP algorithm

err; Signed accumulated error for d;

R Size of the root subtree

S Size of a base subtree

2.3 The Haar Wavelet Basis for RY

In the previous Sections of this Chapter, we understood how the Haar Wavelet Transform (HWT)
works, we saw an efficient process for constructing it and we also saw how original data values
can be reconstructed. Here, I provide a more formal mathematical presentation of the transform.
The formalism used in this Section and the described computations are particularly useful in

stream processing cases.

Let us consider an array A of N data values; that is A € RY. The mathematical founda-
tion of HWT relies on vector inner-product computations over the vector space RV using the
Haar wavelet basis. In general, a wavelet basis {qﬁz}f\i _01 for RY is a basis where each vector is
constructed by dilating a single function, referred to as the mother wavelet ¢. The Haar mother

wavelet is defined as:

t

—_
)
AN
— N

<
<

-
T
—~
N
I
|

—
N[=
IN

t

0 otherwise.

The following Lemma describes the required dilation and translation process over ¢p in

order to create the Haar wavelet basis vectors.

2.3. The Haar Wavelet Basis for RY 27

Lemma 1. The Haar wavelet basis for RN is composed of the vectors

9l '_k.2logN—l 2l "QZ—kN
¢lk[1] = \/;d’H (ZWW) = \/; oH <ZN>

wherei € [0,N —1],1 = 0,....logN — 1 and k = 0,...,2" — 1, plus their orthonormal
L 4N
N)

complement vector)y =

Note that the ¢; j, vectors are essentially dilated and translated versions of the mother wavelet
function ¢y over the corresponding R;;, dyadic support intervals. To simplify notation, we
denote the Haar wavelet basis of R™V as the collection of vectors {¢; : i = 0, ..., N-1}, where
$o = Y and ¢; = ¢y with | = |logi| and k = i-2L19) for i = 0, ..., N-1. Considering this

notation, the Haar wavelet coefficients can be defined based on the following Lemma:

Lemma 2. Each of the (normalized) coefficients c;,© = 0, ..., N-1 in the HWT of the data array
A € RN can be expressed as the inner product of A with the corresponding Haar basis vector ¢;,

ie.,

N

[y

¢ =(A,¢i) = Aljleilil-

=0

<

It can be shown that the above Haar vector basis {¢;} i = 0, ..., N-1 is an orthonormal basis
of R™V. For any pair of basis vectors ¢, ¢y, it holds that (¢g, ¢;) = 1if k = [and 0 otherwise.
The reconstruction of the original data array A € R¥ is then based on the linear combination of

the Haar wavelet basis vectors and the corresponding HWT coefficients. More formally:
N-1
A= cidi
7=0

Haar wavelets are also an example of a wavelet system with compact support. The notion of

compact support is described in Lemma 3.

Lemma 3. A wavelet system is considered to have compact support if for any any basis vector ¢y,
there exists a closed interval I = |a, b] such that ¢i[z] = 0 forany x & I.

Haar wavelets, discovered in 1910, were the only known wavelets of compact support until

the discovery of the Daubechies wavelet families in 1988 [Dau92].

11" denotes the N-vector whose entries are all equal to 1.

28 Chapter 2. Mathematical Background

2.4 Wavelet Thresholding

The complete Haar wavelet decomposition W4 of a data array A is a representation of equal size
as the original array. Given a budget constraint B < NN, the problem of wavelet thresholding is
to select a subset of at most B coefficients that minimize an aggregate error measure in the re-
construction of data values. The non-selected coeflicients are implicitly set to zero. The resulting
wavelet synopsis W4 can be used as a compressed approximate representation of the original
data. For assessing the quality of a wavelet synopsis, many aggregate error-measures have
been proposed [CGHJ12]. Among the most popular metrics are the mean squared error (L2), the

maximum absolute error and the maximum relative error:

. 1M 2
Lo (WA, WA) =% (di _ di> 2.2)
i=1
max_abs (WA, WA> = maxf\il {ydz — dz\} (2.3)
maz_rel (WA, WA> = maxi]\il {m} (2.4)

In the above equations, d; denotes the approximate value for datapoint d; and S is a sanity
bound used to prevent the influence of very small values in the aggregate error [VW99, GG02,
GKo04].

A preliminary approach to the thresholding problem is based on two basic observations about
a coeflicient’s contribution in the reconstruction of the original data values. The first observa-
tion is that coefficients of larger values are more important, since their absence causes a larger
absolute error in the reconstructed values. Second, a coefficient’s significance is larger if its
level in the error-tree is higher, as it participates in more reconstruction paths of the error-tree.
Putting both together, the significance ¢ of a coefficient is defined by ¢ = |¢;|/v/2level(c),
where level (¢;) denotes the level of resolution at which the coefficient resides (0 corresponds to

the “coarsest” resolution level).

Accordingly, the conventional thresholding scheme is a greedy algorithm that retains the B
largest normalized wavelet coefficients; that is those with the greatest significance. It has been
shown [SDS96] that this approach minimizes the Ls-error. By the orthonormality of the Haar
wavelet basis, the HWT preserves the Euclidean length or Ly-norm of any vector (Parseval’s
Theorem) [Mal99, SDS96]; then, for the error vector we have:

2.4. Wavelet Thresholding 29

Ly (4. 4) = A~ Ao = | 3 (4l - A1) = [@)=L (WaWa) @5)

i=0 creWa

Thus, minimizing the Ly-norm in the wavelet domain also results in its minimization in the
domain of the original data. Nevertheless, the minimization of the Ly-error does not provide
maximum error guarantees for individual approximate answers. As a result, the approximation
error of individual values can be arbitrarily large, resulting into high variance in the quality
of data approximation and severe bias in favor of certain regions of the data. This problem is
particularly striking whenever a series of omitted coefficients lies along the same path of the
error-tree. Maximum error metrics are more robust [GG02, GK04], since they set a maximum
error guarantee on individual values. The problem of minimizing maximum error metrics can be

formulated as follows:

Problem 1 (Wavelet Thresholding for Non Ly-errors). Given a data array A of size N and a
budget B, construct a representation Wi of A that minimizes a maximum error metric, while it

retains at most B non-zero coefficients.

In order to assist the discussion of some algorithms, a definition of the dual of Problem 1 is

also provided:

Problem 2 (Dual Problem). Given a data array A of size N and an error bound €, construct a
representation Wi of A such that max_abs < € and the number of non-zero entries s* in Wy is

minimized.

In this dissertation, I focus on designing algorithms for Problem 1 that can specifically scale
in Big Data scenarios. The majority of existing algorithms for the problem are of quadratic com-
plexity and either need to load the whole dataset in memory or operate on a small working set
and make very frequent disk accesses to update it. The increasing sizes of data to be processed
render centralized approaches unusable in terms of performance and scalability. To overcome
these shortcomings, in this thesis, novel parallel algorithms are proposed. The initial problem is
decomposed to smaller local sub-problems which are solved in parallel and partial solutions are
derived; we then utilize these solutions to derive the final one.

As we are going to see in Chapter 3, to demonstrate the benefits of the proposed approach,
I apply it on a state-of-the-art DP algorithm [KSM07]. As the algorithm of [KSM07] makes use
of unrestricted Haar wavelets, in the next Section, a presentation of unrestricted wavelets is

provided.

30 Chapter 2. Mathematical Background

2.5 Unrestricted Haar Wavelets for Non-L- Error

As described in the previous Section, wavelet synopsis construction is a sparse wavelet represen-
tation problem where, given a wavelet basis {@}fvz _01 for R and an input data vector A € RY,
the goal is to construct an approximate representation A as a linear combination of at most B
basis vectors so as to minimize some normed distance between A and A. The sparse B-term
representation A belongs to the non-linear space {Zf\iol zidi 2z € R, || Z]o < B }, where the
Ly norm || Z||p denotes the number of non-zero coefficients in the vector Z = (29, 21, ..., 2N-1)-
In the analysis of this Section, the z; € R values do not have to be Haar wavelet coefficients.
For the case of Ly error, by Parseval’s theorem, the Ly norm of A — A is preserved in the

wavelet space; thus, generalizing Equation 2.5, we have:

2

4= Azl =3 | AW =Yzl | =3 (A6 —).
i j i

It is clear that the optimal solution under the Lo error measure is to retain the largest B
inner products (A, ¢;) which are exactly the largest (normalized) coefficients ¢ in the HWT
expansion of A. Thus, the greedy thresholding approach ? is optimal for Ls-error minimization
even in this generalized setting. For other error norms, however, restricting the z;-values to the
set of computed HWT coefficients of A can result in suboptimal solutions.

A first step in solving the generalized (unrestricted) sparse Haar wavelet representation
problem is demonstrating the existence of a bounded set R from which coefficient values in
Z can be chosen while ensuring a solution that is close to the optimal unrestricted solution
(where z;-values range over all reals). Guha and Harb [GHO05] prove that, for L,-error mini-
mization, the maximum (un-normalized) coefficient value in the optimal solution Z* satisfies
max; {|z7]} < 2N %amax, where a0, = maz; {|A[i]|} (ie., the maximum absolute value in
the input data). Furthermore, they demonstrate that, by rounding the coefficient values in the
optimal solution Z* to the nearest multiple of some 6 > 0 (obtaining a rounded solution Zs)

introduces bounded additive error in the target L, norm; more specifically,

~ ~ 1
1A~ Ay [l < |4~ Az-|l, + 6Nvmin {B,logN}.

Thus, the above additive error over the optimal solution can be guaranteed while restricting

the search for coefficient values over a set of size [GHO05]:

1
max; {|27]} < ANP Gz

IR =2- 5 =75

*Keeping the B largest normalized coefficients

CHAPTER 3

Parallel synopsis construction for maximum error

metrics

3.1 Introduction

In Chapter 2, we saw that the construction of a wavelet synopsis that minimizes the Ly-error is
an easy task to accomplish. However, this is not the case for non-Euclidean errors. The majority
of algorithms that target the problem of L, minimization with p # 2, present time complexities
that prevent scaling to big datasets. A complete survey of such algorithms is provided in Section
6.2.

In this Chapter, we are going to see how we can overcome the shortcomings of existing meth-
ods through parallelization. The proposed algorithms follow the MapReduce [DG08] paradigm
and target one-dimensional wavelets, where the original data array is of the form A € RY. The
presented experiments verify the linear scalability of the proposed design and demonstrate re-
sults on datasets more than three orders of magnitudes larger than the ones used in previous

related research.

3.2 Scaling DP algorithms

Since the majority of the proposed algorithms for Problem 1 are based on DP, in this Section

I present a general framework that can be used for their parallelization and efficient execution

31

32 Chapter 3. Parallel synopsis construction for maximum error metrics

over modern distributed platforms. To achieve that, a locality-preserving partitioning scheme
is proposed. The proposed scheme exploits the structure of the error-tree and assign different
sub-trees to different workers.

MIj] b

o

[2j+1]
MI2j]0)
/ \T \TJ
/ /

Figure 3.1: DP recursion on the error-tree. Node c; combines the M-rows of its children in order
to produce M [j]

In DP-based algorithms, each row of the DP-matrix M is assigned to a node of the error-
tree. The contents of such a row differ between algorithms. Despite the different structure of
the rows of M, all these algorithms follow a bottom-up fashion, where the rows corresponding
to the leaves of the error-tree are computed first. The row for each internal node is computed by
combining the already computed rows of its children according to an optimality criterion. Thus,
computing the row for any node of the error-tree, demands two more rows to be in memory.
To compute the values for a single cell of a row j, many cells of the children-rows are examined
and, eventually the one that optimizes a defined metric is selected. This procedure is illustrated
in Figure 3.1. The shadowed cells represent the examined values and the bold colored ones the
finally selected values. In Figure 3.1, the left and right subtree of a node ¢; (T, (j) and T (j)
respectively) can be computed independently of each other. Based on this observation, the idea
is to apply a partitioning scheme that hierarchically decomposes the error-tree to independent
subtrees of a fixed height h, h < logN. This partitioning scheme is presented in Figure 3.2 and
results to (lozNW layers of subtrees. We denote Layer; to be all the subtrees located in layer ¢
and it holds that:

e i=1,., [
| Layer;| = 2 T (3.1)
i = [logN+1-|
- h+1

For the parallelization of the existing DP algorithms for Problem 1, a MapReduce strategy is
followed. The idea is to run a distributed job for each layer of sub-trees with the bottommost layer
starting first. The map function of a job .J; computes the DP matrix row for the local root of a sub-
tree in layer;. More specifically, if the local root is the node c;, the emitted key-value is (j, M [5]).

The pseudocode for the map function can be found in Algorithm 1. Naturally, proper partitioning

3.2. Scaling DP algorithms 33

jobi+1

Figure 3.2: Partitioning for parallelizing DP algorithms for Problem 1

should be applied in order to preserve the sub-tree locality during suffling. The reducers collect
the received key-values and output them in appropriately created partitions. This way the leaves
of the sub-trees in layer;;+1 have been created and job J;; is ready for execution. In the case of
the topmost distributed job, instead of writing down the collected key-values, the reducer keeps
them in-memory and directly runs the DP algorithm on the corresponding sub-tree. Algorithm

2 presents the whole procedure.

Algorithm 1: Map Function

Require: Data values for a sub-tree s
1: Run DP on s.
2: emit (j, M [j]) / ¢; is the local root

Algorithm 2: Parallel execution of a DP algorithm for Problem1

Require: Data size N, sub-tree height h
1: Partition the error-tree to sub-trees of fixed height h.

2:1=1

3: while i < |22 | do

4: if 7 > 1 then Combine M-rows from layer ¢ — 1

5. forall Tj € Layer; in parallel do

6 Run DP on T}

7: Send the computed row of node j to the next layer
8 1=1+4+1

9: Run DP on topmost subtree.

As a distributed approach, it is clear that this idea incurs a communication overhead. For
every sub-tree of the error-tree, the row of M that corresponds to the local root is transferred

over to the workers of the next stage. The following Lemma quantifies the cost of this overhead.

34 Chapter 3. Parallel synopsis construction for maximum error metrics

Lemma 4. The overall communication cost of Algorithm 2 is:

o (Amar MUY

2h

(3.2)

Proof. Let | M [j] | denote the size of the row corresponding to node ¢;. Then, according to Equa-

tion 3.1, the communication overhead for the i-th stage is:
. 1 .
O ILayers| masyesamer, IM UL = O (grayems N - masyesaper (011}) G
and thus, the overall communication overhead: O (W) O

Equation 3.2 represents the generic communication complexity of all DP algorithms when

the proposed partitioning scheme is applied. The maximum M-row size max {|M [j] |}, which

determines the complexity, depends on the used algorithm.

After the completion of Algorithm 2, it is only the optimal approximation error that is com-
puted and not the synopsis itself. To compute the synopsis, all DP algorithms require one addi-
tional step: a top-down recursive procedure on the error-tree in order to select the appropriate
coefficients. Starting from the root this time, we re-enter the sub-problem of the topmost sub-
tree and select the coefficients to retain. When the processing of the topmost subtree is over,
we know which coefficients are retained from this subtree and also the leaves of the subtree are
aware of which cells of the M-rows of their children are the best choice in order to obtain the
optimal synopsis. Thus, each leaf-node of the topmost subtree sends a message to its children
to inform them about the optimal choice they can make. With this message, the children recur-

sively re-enter the sub-problems of the next layer of subtrees. This procedure has O (V) time

N

complexity, as it needs to visit exactly once each node, and O (ﬁ

) communication complexity
between the partitions-subtrees.

For demonstrating the merits of the proposed approach, the described methodology is ap-
plied on IndirectHaar [KSMO07] creating DIndirectHaar; a distributed version of the centralized
algorithm. The conducted experiments in Section 3.5 show that DIndirectHaar scales linearly
over both data and cluster size.

At this point, I also want to discuss the choice of IndirectHaar. An exact solution for Problem
1 demands tabulation over all possible space allocations for each node of the error-tree. This
burden renders the majority of DP-algorithms impractical in terms of memory consumption.
IndirectHaar exploits the dual error-bound problem (Problem 2) which is easier to be solved and
employs a binary search procedure (Algorithm 3) to derive a solution for the initial problem.

Thus, in the case of IndirectHaar, the DP algorithm that is actually parallelized by the described

3.2. Scaling DP algorithms 35

framework is MinHaarSpace' [KSM07] and targets Problem 2. Obviously, this results in multiple
distributed jobs of input size N. Furthermore, in order to compute the lower and upper error
bounds (lines 1-2), an overhead of two extra jobs is required. For the lower bound, we compute
the (B+1)-largest coefficient. Each worker emits its local wavelet coefficients in reverse order,
i.e, largest first, and in a next step these coefficients are merged and the first B + 1 are retained.
For the upper bound, assuming that a B-term synopsis fits in memory, we load the B-largest-
terms synopsis in the main memory of each worker and we bottom-up compute the maximum
absolute error. Assuming that £ (j) denotes the maximum absolute error in sub-tree 7}, it holds
that F (j) = maz{E (25),F (25 +1)}. Thus, for computing the upper bound of the error
for the binary search of Algorithm 3 a MapReduce job is required. The mappers compute the
max_abs of a sub-tree in a bottom-up fashion and emit the key-value: (j, E (j)). The reducers

collect and combine the errors in order to prepare the input for the next job.

Algorithm 3: DIndirectHaar

1: e, =maximum absolute error for B-largest-terms synopsis
2:) = (B + 1)-largest coefficient

3: €low = €;Chigh = €u

4: while not finished do

5. Crmid = ehigh;elow

6 Wa =DMHaarSpace(€,,;q); B =size of Wa
7: € —actual maximum absolute error of WA
8
9

if B < B then
: W4 =DMHaarSpace(< €);B =size of W4
10: if B > B then finished=1
11: else ep;gp = €
12: else
13: if B > B then ¢;,, = €mid
14: else finished=1

For achieving even better results, IndirectHaar can also be applied on Haar+ trees [KMO07].
However, as Haar+ trees have a slightly different structure and work on triads of coefficients, for

the ease of understanding, I keep the presentation on the classic Haar error-tree.

3.2.1 Scaling DP Algorithms with Hardware Accelerators

The MapReduce algorithms naturally fit distributed platforms like Apache Hadoop and Spark.
However, as they expose a SPMD style of programming, they can also be efficiently executed

over accelerators that favor data parallelism (e.g., GPUs).

'For the ease of understanding, a detailed description of MinHaarSpace along with all technical details can be
found in Appendix A

36 Chapter 3. Parallel synopsis construction for maximum error metrics

In this Section, it is described how MinHaarSpace can be further parallelized for taking full
advantage of the available hardware. Although the discussion is restricted to MinHaarSpace,
since all DP algorithms for constructing wavelet synopses share a common computational pat-
tern, the same approach can be followed for any of them. In order to enable portability among

different architectures (x86, GPU), an implementation in OpenCL [ope] is presented.

For the parallelization of MinHaarSpace in OpenCL, we follow a partitioning scheme similar
to the one discussed above. Each layer of sub-trees corresponds to at least one kernel-launch.
The idea is to first run dynamic programming in parallel over the sub-trees of the bottommost

layer. This computation is packed into a kernel and takes place at the target device.

As OpenCL does not support dynamic memory allocation, we should pre-allocate the whole
amount of space that is required for storing the DP matrix. However, depending on the ¢, §
parameters of MinHaarSpace, the DP matrix may not fit in global memory. In that case, we also
apply a vertical partitioning as demonstrated in Figure 3.3 by the dashed line; we first execute
the part of the error-tree that is at the left of the dashed line, followed by the part at the right

side and then we combine them.

Host
Code A

WG1 / \ VAR VAN

‘ AostLoae ; AostLode I

7 AN 7 AN 4 AN 7 AN
LTy ey ey e e LTy Ly i e

WG1 WG2 WG3 WG4 WG1 WG2 WG3 WG4

Figure 3.3: Partitioning used for parallelizing DP-based algorithms with OpenCL

When processing of the bottommost layer is over, the computed rows for the roots of these
sub-trees are returned to the host that prepares the kernels and data for the next layer in order

to repeat the same process towards the root.

In the presented implementation, the computation of a sub-tree is assigned to a work group.
The size of a work group cannot be arbitrarily set but depends on the device. It follows that
the maximum h we can set and thus, the minimum number of kernel launches is hardware-

dependent.

3.2. Scaling DP algorithms 37

Output Work
¢ [ITTTTT] Group

Barrier ~o

t, g (TTTTTT) t2 —
Barrier/ L/
- > .
t, t, 't t,

Figure 3.4: Parallelization within a work group

The execution of work items within a work group is depicted in Figure 3.4. Initially, each
thread/work item takes on the computation of a leaf of the error-tree. The computed row is
persisted into the global memory of the device. When processing of a leaf is over, a work item
waits at a barrier until all work items of the same group finish their computations. As the first
level of the error-tree contains half the number of the leaves, only half of the initially spawned
work items continue processing. Then, a reduction takes place, and the active threads combine
the M-rows of the leaves in order to produce the corresponding rows of the first level. This
process is repeated towards the root of the work group by halving the number of active threads
at each level. Finally, it is only the first work item of the group that computes and persists the

output. In Figure 3.4, we illustrate threads of different lifetime with a different color.

Discussion

One of the benefits of OpenCL is the support for heterogeneous computing. The same kernel
can run exactly as is over different hardware devices. However, depending on the device, we can
make targeted optimizations in order to boost performance. In our case, we slightly differentiate
the kernels for x86 and GPU architectures with respect to memory access patterns. While the
DP matrix is hierarchically represented in Figure 3.4, in reality it is a one dimensional array that
resides in global memory. In the x86 case, a single thread is benefited from sequential memory
accesses. Contrarily, in GPU architectures we try to make coalesced memory transactions and
consecutive threads should access consecutive memory addresses. Thus, the kernels we provide
for both architectures are identical apart from the pointer arithmetic in global memory.

With the OpenCL implementation, we can speedup the construction of a wavelet synopsis

by taking advantage of accelerators that may locally exist. When using a framework such as

38 Chapter 3. Parallel synopsis construction for maximum error metrics

Hadoop, the construction process is scaled by distributing work to different machines. As the
Hadoop workers described in Section 3.2 are single-threaded, I argue that these two approaches
are orthogonal to each other and a combination of the two could bring the best results in the
case of a large dataset. The idea is to partition the dataset into sub-trees at various levels: (i) in
the big data framework level, a first partitioning is applied and each machine obtains a different
sub-tree, (ii) then, in the node level, where the sub-tree of a single machine is further partitioned
into work groups as explained. For implementing such an idea, one needs to run OpenCL code
through Java®. However, there are already tools for this purpose, like SWAT [GS16] that permits
writing Spark UDFs as OpenCL kernels.

3.3 Parallel Greedy Approaches

As the DP-based solutions incur high computational overhead, there is often a need for a faster
approach at the cost of approximation quality. This is exactly what the GreedyAbs [KM05] al-
gorithm achieves. However, this algorithm is not easily parallelizable and cannot scale for big
datasets. In this Section, two novel, fully parallel greedy algorithms are presented that both are
based on : (i) a partitioning scheme similar to the one presented in Section 3.2, and (ii) merging

and filtering of partial results.

3.3.1 GreedyAbs: The Centralized Solution

For the ease of understanding, I first give a description of the GreedyAbs algorithm [KMO05]. Let
err; = dAj — d; be the signed accumulated error for a data node d; in a synopsis Wa, yielded by
the deletions of some coefficients. To assist the iterative step of the greedy algorithm, for each
coefficient ¢, not yet discarded, we introduce the maximum potential absolute error M A;, that

cy, will contribute on the running synopsis, if discarded:
MA, = maxdjeleavesk{]errj — 0jk - ¢k} (3.4)

Computing M A}, normally requires information about all err; values in leaves;. A naive
method to compute M Ay, is to access all leavesy, where err; are explicitly maintained. The
disadvantages of this approach are the explicit maintenance of all err; values at each step and
the cost required to update M Ay, values after the removal of a coefficient.

A more efficient solution for updating M Ay, is reached by exploiting the fact that the removal
of a coefficient equally affects the signed costs of all data values in its left or right sub-tree.
For example, in Figure 2.1, the removal of coefficient ¢ = —4 increases the signed errors of

data nodes dy, dy, and decreases the signed errors of do, d3 by 4. Accordingly, the maximum

’Big data frameworks usually work over the JVM.

3.3. Parallel Greedy Approaches 39

and minimum signed errors in the left (right) sub-tree of a removed coeflicient ¢; are decreased
(increased) by ¢;. The maximum absolute error incurred by the removal necessarily occurs at one
of these four positions of existing error extremum. Hence, the computation of M Ay, requires that
only four quantities be maintained at each internal node of the tree. These are the maximum and
minimum signed errors for the le ftleavesy and rightleavesy, and are denoted by max%, minﬁc,

maxy,, and miny, respectively. It follows that Equation 3.4 is equivalent to:

MA, = maz{|lmazl — |, |mink — e, |mazl + ¢, |min + cx|} (3.5)

In the complete wavelet decomposition, these four quantities are all 0, since err; = 0, Vd;. Thus,
M Ay, = |cg|, Vk and the greedy algorithm removes the smallest |cg| first. In order to efficiently
decide which coefficient to choose next, all coefficients are organized in a min-heap structure
based on their M Aj. After the removal of a coefficient ¢y, err; for all leavesy, changes, so the
information of all descendants and ancestors of ¢, must be updated. All the error quantities of
the descendants in the left (right) sub-tree of cj, are decreased (increased) by cg. During this
process, a new M A; is computed for each descendant ¢; of ¢i. In accordance, the changes in
error quantities are propagated upwards to ancestors c¢; of ¢ and M A; values are updated as
necessary. While updating error quantities and M A values, the position of ¢;’s descendants and
affected ancestors are dynamically updated in the heap. This procedure of removing nodes is
repeated until only B nodes are left on the tree.

Another important thing to note is that the maximum absolute error does not change mono-
tonically when a coeflicient is removed. In other words, after deleting a coefficient ¢, the max-
imum absolute error of its affected data values may decrease. As a result, choosing exactly B
coeflicients may not be the best solution given a space budget B. For this reason, we keep re-
moving coefficients after the limit of B has been reached, until no coefficient remains in the tree.
From all B + 1 coefficient sets (B coefficients left, B-1 coefficients left, etc.) produced at the last

B steps of the algorithm, the one with the minimum maximum absolute error is kept.

3.3.2 DGreedyAbs: Scaling the Greedy Algorithm

GreedyAbs presents an inherent drawback for its parallelization. At each step, it needs global
knowledge of the whole error-tree. To solve the problem in parallel, I consider a partitioning
similar to the one we used for the parallelization of the DP algorithms. In the proposed scheme,
the error-tree is partitioned into one root subtree and multiple base subtrees, as shown in Figure
3.5.

At each iteration of GreedyAbs, the node cj, with the smallest MA is selected to be discarded.
After its deletion, all the other nodes that lie either in path;, or T}, may update their MA values.

Ideally, we would like to take decisions at each base sub-tree independently of each other. For the

40 Chapter 3. Parallel synopsis construction for maximum error metrics

Root
Sub-tree

Figure 3.5: Partitioning for parallelizing GreedyAbs. The red line illustrates an example of com-
munication between two base subtrees. The blue-filled nodes show a possible Cj.,0¢ set.

parallelization of the algorithm, the main difficulty is that the base sub-trees communicate with
each other through the root sub-tree. For example, consider a scenario, like the one depicted
in Figure 3.5, where node cy; is selected to be removed from the base sub-tree 7; and, at the
same time, node cy; is selected from 7. The removal of co; may dictate that node c; /4 should be
discarded at the next step. On the other hand, discarding c4; can make ¢; /4 a really important
coefficient for sub-tree 7} and thus its deletion could produce a big maximum error. It is clear
that such situations lead to conflicts that prohibit a straight-forward parallel implementation.

In order to proceed towards a correct parallel computation, we need to offer more isolation
to the base sub-trees. The idea behind our solution is the following: Let us assume that we
somehow know which nodes of the root sub-tree are retained in the final synopsis and call this
set of nodes Croot. Having selected a Cio0t, We can remove the remaining root sub-tree and there
are B — |Co0t| nodes that still need to be selected for the synopsis.

Consider now a base sub-tree T}. The deletion of nodes ¢; € root sub-tree\C\ 0 incurs an
incoming error to Tj. For example, in the error-tree of Figure 3.6, if we delete nodes {co, c2},
there is an incoming error —7 — 4 = —11 to sub-tree 75. Thus, if the incoming error to sub-tree
T} is e;n, we set the signed accumulated errors to: err; = €;y,, Vd; € T; and run GreedyAbs on
Tj. The output of GreedyAbs (1)) is an ordered list L; of N, (7)) coefficients, where N (1})
is the number of non-zero coefficients in the sub-tree. The list is in reverse order of the one in
which coefficients ¢; € T} were deleted by GreedyAbs. More specifically, each element of the
list is a tuple (delOrd, id, err) that indicates the order with which the coefficient with index id
was deleted and the incurred maximum absolute error err. This procedure of locally executing
GreedyAbs on a sub-tree, is carried out in parallel for all base sub-trees in the map phase of a
MapReduce job. In a pre-processing step, the error-tree is partitioned and each base sub-tree is

stored in a separate HDFS file. Then, each mapper takes on a sub-tree and runs GreedyAbs on it.

3.3. Parallel Greedy Approaches 41

Ve 2 (o}
+ — —
c — / i — ¢ =1
)~ /7
-4) { —Ey 3
“) 3% o 6
+ - N . y i * 1=3
| [0] |
do d; dy ds da ds dg d;

Figure 3.6: Error-tree example.
When this stage of parallel GreedyAbs runs is over, in the reduce phase, we collect and error-

wise merge the outputs from all the base sub-trees (i.e., VI; € base sub-trees merge L;), thus
obtaining a global list where the node deletion order of each sub-tree is preserved. The synopsis
needs to contain those coefficients that are the most important for each sub-tree, i.e., the ones
that were last emitted. Therefore, by keeping the last B — |Cl.o0¢| elements of the global list, let
us call them Cjs, we form the final synopsis: Cyoor U Cpase- This pseudocode for the whole
MapReduce job is presented in Algorithm 4.

Algorithm 4: distrGAbs: MR job for computing the synopsis given a Cy.oo; set

Require: error-tree, space budget B, Co0t set
1: for all T; € base sub-trees in parallel do
2 err; = err; + e, Verr; € T // e;p: incoming error from Cioot
3: Lj = GreedyAbs (T});emit L;
4: L = merge(L; lists)
5: store last Croot U (B — |Croot|) elements of L as synopsis
6: return min {L [0] .error,...,L[B — |Cyroot| — 1] .error}

So far, we have ignored the procedure that finds the appropriate nodes to be retained from
the root sub-tree, assuming it is provided by an “oracle”. As we cannot compute a-priori which
these nodes are, we need to speculatively create the synopses for different C).,,; sets and finally
retain the one that produces the best approximation. Let R denote the size of the root sub-tree.
Since we do not know the number of nodes that should be retained from the root sub-tree, we
should consider at least min{R, B} + 1 different C,,. sets, with each candidate C.,,; having
different size: The empty set, as we may keep none of these nodes, keep only 1 node, keep
2 nodes, etc., until we examine the case where min{R, B} nodes are kept. In order to find
min{R, B} + 1 candidate C),, sets, we run GreedyAbs on the root sub-tree. The intuition

behind this choice is that, since only the root sub-tree is considered known at this stage, we

42 Chapter 3. Parallel synopsis construction for maximum error metrics

should try to optimize the local problem and each time discard the node that incurs the minimum
error. GreedyAbs on the root sub-tree runs in a centralized fashion. Since the root sub-tree can
be exponentially smaller than the original dataset, its processing on a single machine is done
without compromising performance. The candidate C).,.; sets are generated by the gen RootSets

function presented in Algorithm 5.

Algorithm 5: genRootSets: Generates candidate C,; sets of different lengths

Require: root subtree,B
1: Lyoot = GreedyAbs(root sub-tree)
2. C = {{}}; lastIndex = Lyopt.Size
3: for (i = lastIndex;i > lastInder — B;i =i — 1) do
4 Crooti = {Lroot [1] s --s Lyoot [lastIndex]}; C' = C U {Croot,i }
5. return C

For example, we consider as root sub-tree the nodes {cy, 1, c2, c3} of the error-tree depicted
in Figure 3.6. The run of GreedyAbs selects to discard the nodes according to the following order:
[c1, 3, ca, co. Thus, the candidate C) 0t sets are the following 5:
I' = [{c1,e3,¢2,¢0}, {c3,c2,c0}, {c2,c0}, {co}, {}]. For constructing the synopsis, we perform
a search in the space of possible solutions. We start by examining the achieved quality of the
corner cases, i.e., keeping in the synopsis 0 and min{ R, B} coefficients from the root sub-tree. If
these extreme cases result in errors ey, e; with |e, — ;| < € — 0, then the algorithm finishes and
we keep as a final synopsis the one that produced the min{ey, ¢;}. Otherwise, we replace the
C'root that produced the max{ey,, €; } with another C, oo produced by Algorithm 5 and repeat the
same process. The selection of the next C'.,,¢ does not come from a random choice. When the
distributed execution of the greedy algorithm for a given C;.,t set is over, we know the maximum
absolute error that appeared in each base subtree. By knowing that information, we know which
subtrees need further improvement. Thus, we select C'.,o sets that contain coefficients which
support these subtrees. In our example, we begin by running GreedyAbs on each base subtree
for the Cyoor sets: {}, {c1,¢3,c2,c0}. Let us assume that they yield synopses with errors 10 and
5 respectively. In that case, as {} produced the worst error, it is replaced by {cy} and we now
compare the quality of the synopses yielded by {co} and {c1, c3, c2, co} Croor sets. The described
procedure implies that O (R) jobs may be demanded. However, our experiments in Section 3.5
show that the number of jobs that the algorithm needs in order to converge is constant in practice.
The complete DGreedyAbs algorithm is presented in Algorithm 6.

The running-time and communication complexity of DGreedyAbs are provided by the fol-

lowing Lemma:

Lemma 5. Let us denote with R the size of the root sub-tree, S the size of a base sub-tree and

Nz (S) the number of non-zero coefficients of a base sub-tree. Then, the asymptotic running-time

3.3. Parallel Greedy Approaches 43

Algorithm 6: DGreedyAbs
Require: error-tree, space budget B
1: I' = genRootSets(root subtree,B)
C’7°oot7l = {}
Chroot,n = the min{R, B}-th set of T’
e, = distrGAbs (Croot,h)
e; = distrGAbs (Croot,1)
while e¢;, — ¢; > e do
find maximum error e; ; per subtree from the run for C,.oo
sort {e;;} errors in descending order
find the first k-largest errors E that satisfy: |e; — ;| < €
Consider the set C' = all coefficients € path,.,Ve € E
Croot,; = next set € I' that contains at least one more coefficient from C'
e; = distrGAbs (Croot,1)
: CF ot = Croot set that yielded the min{e;, ey}
: FINAL_SYNOPSIS = the produced synopsis for C, ,
: return FINAL SYNOPSIS

e e o e
G b W N = O

complexity of a DGreedyAbs mapper is O (Nz (S)log?Nz (S)), the complexity of a reducer is
O (Rmaz{B, Nz (S)}) and the communication cost is O (Rmax{B, Nz (S)}).

Proof. The worst-case cost of GreedyAbs is O (N log? N) [KMO05], thus it follows that the map-
pers of DGreedyAbs will have the same complexity. A distributed job over an error-tree with
a root sub-tree of size R is going to have R partitions. Since each mapper emits discarded co-
efficients in the form of a list of size max{B, Nz (S)}, then it follows that the total number
of coefficients transferred over the network is O (Rmaz{B, Nz (S)}). In order to merge the
results, the reducer makes a linear pass over the collected sorted lists. Therefore, its complexity

is expected to be the same with the communication cost of the job. O

3.3.3 Speeding up the Distributed Greedy Solution

While the DGreedyAbs algorithm succeeds in offering a viable solution to the problem, it suffers
from a basic drawback: There are multiple distributed jobs that may be required to create the syn-
opsis, and thus, the centralized algorithm needs to run multiple times over the same data. Since
we do not know in advance which are the appropriate nodes to retain from the root sub-tree, we
run GreedyAbs for many possible Cyoo: sets, incurring extra computational and communication
overhead.

In order to alleviate this overhead, in this Section we propose BUDGreedyAbs: a modified,
bottom-up version of DGreedyAbs that makes only one pass over the dataset and executes the

centralized greedy algorithm only once per sub-tree.

44 Chapter 3. Parallel synopsis construction for maximum error metrics

Clico Root
c Sub-tree ry ry r| R|-1 r| R|
[R1/2 .-
Base Base
sub-trees sub-trees

(a) (b)

Figure 3.7: Equivalent representations of an error-tree.

In order to avoid the multiple jobs, consider the following strategy. Assume that the size of
the root sub-tree is less than B and we a-priori decide to retain it all in the synopsis and then
run GreedyAbs to all workers in parallel. One could say that this is the safest choice as we keep
a maximal amount of information about the part of the tree that creates dependencies among
partitions. However, this is not optimal. Some nodes of the root sub-tree may be of negligible
importance and by keeping them, we sacrifice budget space that could be allocated in a smarter
way. For example, assume that the harder sub-tree to approximate in Figure 3.5 is 7; and that
the blue-filled nodes of the root sub-tree have an absolute value close to zero. Instead of keeping
these two nodes, it might be preferable to keep two nodes from within 7;. The basic idea behind
BUDGreedyAbs is to start from the safest choice of keeping all of the root sub-tree and adaptively
refining it.

We start with a Lemma that follows directly from the properties of the wavelet transform.

The idea of Lemma 6 is also presented graphically in Figure 3.7.

Lemma 6. An error-tree partitioned to one root-subtree and many base subtrees S;,© = 1,.., R, is
equivalent to R independent error-trees S}, i = 1, .., R, where each S| = S; with an extra coefficient
r; as root. The value of r; is defined as: r; = Zc]-epaths.5ij - ¢;j and is also equal to the average of

all data values in base-subtree S;.

According to Lemma 6, instead of computing the full wavelet transform of the error-tree,
we can compute the transform up to the height of the base-subtrees and also keep the local
root-average of each subtree. That is what BUDGreedyAbs does. It first computes a wavelet
structure as the one of Figure 3.7b. Then, it triggers a parallel execution of GreedyAbs at each
base-subtree. The outputs are merged in the same way as in Section 3.3.2 and a maximum error
is computed. As the yielded synopsis may contain some of the r; coefficients, in order to better

exploit the available space budget, in a next step the algorithm examines opportunities for further

3.3. Parallel Greedy Approaches 45

compression and computes the root-subtree solely based on these r; coefficients contained in the
synopsis.

As the first part of the algorithm is the same with DGreedyAbs, we discuss the algorithmic
details of merging and how more accurate configurations for the root-subtree are explored. For
explaining these details, we give the following example:

Example. In Figure 3.8 we present two base-subtrees S, S2. The lists L1, Ly show the
most important coefficients from the corresponding outputs of GreedyAbs. Thus, in subtree 1,
the last nine coefficients that the algorithm would delete are the ones in the array L; with cgs
discarded first. As we have said, in order to create the final synopsis, we need to merge L1 and
L, from left to right and examine the errors of the first B coefficients. Let us assume B = 16.
The first nine coefficients of the synopsis would be c,1, ..., cqq and cpq, ..., Cp5. At this point, we
check the r; coefficients. Instead of keeping both of them and waste two slots in the synopsis,
we examine the possible merits of increasing compression in the root-subtree. We calculate the
wavelet transform of the root-subtree considering as data values the 7;,7 = 1,2 coefficients.
In our example of Figure 3.8, the transform results in the creation of ¢y and ¢;. According to
Lemma 6, keeping both ¢y and c; is completely equivalent to keeping r; and r3 both in terms
of appoximation quality and space overhead. Thus, we also examine the chance of keeping only
co or ¢1 or even none of them. In order to preserve correctness, as GreedyAbs has run at each
subtree considering all r; nodes retained in the synopsis, the posterior deletion of coefficients
from the root-subtree should be accompanied by some error updates. Let us assume that we first
examine the deletion of node c¢;. Some of the nodes in L; and Lo should update their observed
signed errors by —c;.

But which nodes need to be updated? The errors which are reported by the coefficients in
the red box, i.e., the ones in the right side of r; in Figure 3.8, are calculated taking into account
that r; is retained in the synopsis. Thus, a deletion of a node that contributes to the r; value
must be reflected to the errors observed by these nodes. On the other hand, the nodes in the left
side of 1 consider 7 already discarded and as such, nothing more is needed to be done on them.

Which nodes of the root-subtree should we consider to delete? Do we have to try all R nodes
in all possible combinations? We treat this issue the same way as we did for DGreedyAbs. We
run GreedyAbs on the root-subtree and then execute Algorithm 5. The output of Algorithm 5
represents the candidate combinations for deletion. For each of them, we update the errors in
L; lists and merge them in a final list where the B first nodes are considered for the synopsis.
BUDGreedyAbs is formally presented in Algorithm 7.

Complexity Analysis. The complexity of the parallel workers of BUDGreedyAbs is the
same with that of GreedyAbs, i.e., O (N log? N) However, in the next stage of BUDGreedyAbs,
as we have seen there are R merge operations that take place and in the worst case, each of

them needs to process B elements. Furthermore, we also need to run GreedyAbs once on

46

Chapter 3. Parallel synopsis construction for maximum error metrics

Figure 3.8: Example of merging solutions for BUDGreedyAbs.

the root-subtree. Thus, the complexity of the reduce workers that derive the final synopsis is

O (Rlong + RB).

Algorithm 7: BUDGreedyAbs

Require: error-tree, space budget B

1:

e e e
g W N =R O

for all T; € base subtrees in parallel do
L; = GreedyAbs (T;); emit L;
L = merge(L; lists)
synopsis =first B elements of L; error = max_abs(synopsis)
RA = {r;|L[j]=7i N0 <j < B}//r; avg of data values in T;
Root-subtree= WaveletTransform (RA)
I' = genRootSets(Root-subtree, B)
for all C,,,; € I' do
for all L; do
if L; [j] = r; then update errors at L; [k] , k > j
L = merge(L; lists)
if max_abs(first B elements of L) < error then
synopsis =first B elements of L
error = max_abs(synopsis)

: return synopsis

3.34

Maximum Relative Error

Minimizing the maximum relative error is arguably more essential compared to absolute error

minimization in approximate query processing, as the same absolute error in two different data

values may express huge differences in relative error. At the same time, relative error measures

3.4. CON: Constructing the L2 Synopsis in Parallel 47

tend to be inordinately dominated by small data values. For instance, returning 2 as the approx-
imate answer for 1 amounts to an 100% relative error, while in fact it is insignificant in a data
context dominated by much larger values. In order to overcome such problems, several tech-
niques have been developed for combining absolute and relative error metrics [VW99]. As in
earlier approaches ([GG02], [GK04]), we have opted for the relative error metric with a sanity-
bound S > 0. Our aim is to produce wavelet synopses in near-linear time and space such that, for
each approximation d; of a data value d;, the ratio is kept lower than a feasible bound.

For this problem, in [KMO05] the GreedyRel algorithm is presented. GreedyRel follows the
greedy paradigm introduced in Section 3.3.1, wherein, instead of using M Ay, it chooses to dis-
card the coeflicient with the minimum maximum potential relative error, defined as follows:
lerr; — &k - ci

maz (14, 5) | (6

MR/c = mamdj Eleavesk{

Nevertheless, the four error quantities of Equation 3.5 cannot be used for the calculation or
update of the M Rj. The reason is the denominator in Equation 3.6, which implies that the effect
a coefficient ¢y, is different in the signed relative error of different data values.

In order to provide a scalable solution to this problem, we use a similar approach with that

of DGreedyAbs, but instead of using GreedyAbs at the workers, we use GreedyRel.

3.4 CON: Constructing the L, Synopsis in Parallel

For evaluating the efficiency of the proposed partitioning scheme, I also employ it for construct-
ing the conventional, Ly-optimal wavelet synopsis. Then, the results are compared with the ones
achieved by the approach used in [JYL11] The algorithms of [JYL11] can be found in Appendix
B. In order to compute the conventional synopsis in parallel, we partition the data as described
in Section 3.2 (see Figure 3.2). Each mapper reads a portion of the input in the size of a power
of two and locally constructs the corresponding sub-tree by pairwise averaging and differencing
coefficients, as explained in Chapter 2. As the wavelet transform is of linear complexity and the
mapper computes the coefficients only for its local data, the computational complexity of each
map task is O (S). After the construction of the sub-trees is over, each mapper emits all the com-
puted coefficients to the reduce stage. Thus, the communication between the map and reduce
phase is O (N). The reducer reads all the coefficients that are computed in the map phase and
inserts them in a priority queue, where only the B largest ones in absolute normalized value are
retained. It also computes the wavelet coefficients of the root sub-tree and inserts them in the
queue as well. When this process is over, there are B coefficients in the queue which comprise
the conventional synopsis. This approach assumes that B coefficients can fit in main memory

which is a logical assumption to make.

48 Chapter 3. Parallel synopsis construction for maximum error metrics

3.5 Experimental Evaluation

In this Section, there is an evaluation of the proposed algorithms in terms of (i) synopsis con-
struction time and (ii) achieved error. The results show that the proposed distributed solutions
present linear scalability and we are able to run experiments on bigger datasets than any previous

work. All algorithms are implemented in Java 1.8.

Datasets. The experiments are conducted using both synthetic and real datasets. Synthetic
data (SYN) allows easy testing over different data distributions and value ranges. Distributions
utilized are uniform and zipfian (with exponents 0.7 and 1.5). Data values lie between [0, 1000].
For real-life datasets we utilize NYCT [nyc] and WD [lin]. NYCT describes taxi trips in the New
York City and contains records for the trip time in seconds. WD consists of observations on wind
direction (azimuth degrees) captured during hurricanes in the USA. Table 3.1 gives an overview
of NYCT and WD. All datasets are partitioned in order to test scalability over different sizes.
The smallest partition comprises the first 1M records, while each subsequent partition is 2 the

previous one. The largest used dataset consists of 268 M datapoints.

Table 3.1: Characteristics of NYCT and WD datasets

Name #Records | Avg | Stdv Max
NYCT2M 2M 672 483 10800
NYCT4M 4M 511 519.5 10800
NYCT8M 8M 255 646.6 10800

NYCT16M 16M 127 745 10800
NYCT32M 32M 63 3566.3 | 4293410
NYCT64M 64M 31 25410.3 | 4294966

WD2M 2M 121 119.7 655

WD4M 4M 122 119.9 655

WDSM 8M 138 1194 655
WD16M 16M 127 118.8 655

Platform setup. As a deployment platform, a Hadoop 2.6.5 cluster of 9 machines has been
used. Each of the 9 machines features eight Intel Xeon CPU E5405 @ 2.00GHz cores and 8 GB of
main memory. One machine is used as the master node and the remaining ones as slaves. Each
slave is allowed to run simultaneously up to 5 map tasks and 1 reduce task. Each of these tasks is
assigned 1 physical core and 1 GB of main memory. For all the remaining properties, the default

Hadoop configuration has been kept.

For experimenting with the centralized algorithms, one machine with the same specifications
as the ones listed above has been used. Thus, centralized algorithms may have up to 8 GB of

available main memory for their execution.

3.5. Experimental Evaluation 49

3.5.1 Scalability

T T T T T
% - % BUDGreedyAbs |
A- A DGreedyAbs
B—H DIndirectHaar

1400
1200

51000/]
Z 800"]
o [4
£ 600~]
= I A A i Al

4001 AA A o

20050k |

B (in millions)

Figure 3.9: Scalability with B

In this Section, synthetic data is used to assess the scalability with respect to the available
budget for the synopsis B, the number of datapoints N and the number of tasks running in
parallel. The results show that the algorithms proposed in this dissertation can scale to data
sizes that state-of-the-art centralized approaches are incapable of. For all the experiments of this
Section, data consists of uniformly distributed values in the range of [0, 1K].

Varying space budget. In this experiment I examine the scalability with respect to the
space budget B. I run DGreedyAbs, BUDGreedyAbs and DIndirectHaar for one-dimensional
data of size N = 17M and vary B from N /64 to N /2. The results of Figure 3.9 show that for
DGreedyAbs, running-time is not considerably affected by the size of the synopsis. However, this
is not true for DIndirectHaar and BUDGreedyAbs. For DIndirectHaar, a larger I3 is more probable
to lead in a smaller error and decrease the § factor of its complexity formula. Thus, a larger
budget may lead to faster execution of the algorithm. For BUDGreedyAbs, as the complexity of
the reducer is O (Rlog?> R + RB), running-time can linearly increase with B.

Varying datasize and number of parallel tasks. Figure 3.10 shows the scalability with re-
spect to the number of datapoints (V) and tasks running in parallel for DIndirectHaar, DGreedyAbs
and BUDGreedyAbs respectively. We set B = 1M for all the experiments of this subsection and
vary the datasize from 2M to 268M datapoints for all the algorithms and the number of parallel
map tasks from 10 to 40. Both algorithms are also compared with the corresponding centralized
implementations in order to assess the difference in performance. Please note that the y-axis in
Figures 3.10-(a), 3.10-(b) and 3.10-(c) follows a logarithmic scale.

All the algorithms scale linearly with the dataset size. The running-time is almost constant at

first, when all data can be processed fully in parallel, and is linearly growing as the cluster is fully

50 Chapter 3. Parallel synopsis construction for maximum error metrics

utilized and more tasks need to be serialized for execution. Linear scalability is also observed
with the number of parallel running tasks. By halving the capacity of the cluster, running-time

is almost doubled for all the examined algorithms.

The centralized algorithms were not able to run for datasizes greater than 17M datapoints,
as their execution demands more than the available main memory. Compared to the centralized
GreedyAbs, BUDGreedyAbs appears to be 20x faster for a dataset of 17M datapoints when all
of its map tasks can run fully in parallel. In Figures 3.10-(b), 3.10-(c) we also observe that BUD-
GreedyAbs is twice as fast as DGreedyAbs. This is because DGreedyAbs needed to try two Co0t
sets in order to converge, while BUDGreedyAbs always needs a single MapReduce job. As we
notice in Figure 3.10-(a), even if DIndirectHaar scales linearly, it is slower than the greedy algo-
rithms, being 1.5x and 3x slower than DGreedyAbs and BUDGreedyAbs respectively. More-
over, we see that the centralized IndirectHaar is faster than DIndirectHaar when the dataset
size is small or few parallel tasks are running. That is because the centralized implementation
loads the whole dataset in memory and the required multiple jobs do not need to perform I/O
operations. On the other hand, the Hadoop implementation is disk-based and for each job, the
algorithm has to read the input and write the output from and to the HDFS respectively.

The main results of this Section are that: (i) all distributed algorithms scale linearly with the

datasize, and (ii) greedy algorithms are much faster than the state-of-the-art DP.

3.5.2 Comparison for Real Datasets

In this Section, DGreedyAbs, BUDGreedyAbs and DIndirectHaar are compared with each other,
as well as with their centralized counterparts using real-life one-dimensional datasets. Further-
more, they are also compared against CON (Section 3.4). As CON is less compute-intensive, I
wanted to investigate the tradeoffs in running-time and produced maximum error. Note that In-
directHaar is not included in the approximation quality experiments, as it theoretically achieves

the same results as DIndirectHaar.

NYCT dataset. In Figure 3.11a, the approximation quality results for the NYCT dataset are
presented. The utilized space budgetis B = %. The construction of an accurate synopsis for this
dataset is a difficult task to accomplish as it contains values of high magnitude and variance. Two
important observations are that: (i) scalability does not come at a cost; the distributed greedy
algorithms achieve the same error with GreedyAbs and (ii) all algorithms targeting maximum
error metrics outperform CON from 2 to 5 times.

Figure 3.11b presents the running-time results for the same dataset. With the maximum ab-
solute error over 550 for all datasizes, the multiplicative factor (%)2 of the complexity formula

of DIndirectHaar is equal to 121. As such, for this dataset, the execution of the DP algorithms

3.5. Experimental Evaluation 51

10000}
10000+ _ O [-
i) SIS >
o] > I
X e T e memm
B 21
= 10005 3 1 & 000 .
%—% IndirectHaar] Tp! 7 %%k GreedyAbs
p—p DindirectHaar-10map | ‘' p—pDGreedyAbs-10map
Q@ ©DIndirectHaar-20map 1 4 G -©DGreedyAbs-20map
- B DIndirectHaar-40map 1 - B DGreedyAbs-40map
L | L | L L L | L L L L | L | L L L | L L
100550 100 150 200 250 10075100 150 200 250
N (in millions) N (in millions)
(a) DIndirectHaar (b) DGreedyAbs
T T T T T T
10000+ 1
/a /////
g ¥ -
é/ 1000 T
; [///O '/.-"‘/
/® I %% GreedyAbs]
- p—»BUDGreedyAbs-10map 1
/:- G -©BUDGreedyAbs-20map 1
10 ‘ - B BUDGreedyAbs-40map

50 100 150 200 250
N (in millions)
(c) BUDGreedyAbs

Figure 3.10: Scalability with the dataset size (N) and number of parallel tasks.

is very compute-intensive. We observe that for datasizes smaller than 60M datapoints, BUD-
GreedyAbs is the most time-efficient algorithm among the ones that target maximum error met-
rics. In Section 3.5.1, we said that the available budget affects the running-time performance
of BUDGreedyAbs. Since we have set B = N /8, an increase in the number of datapoints im-
plies an increase in the synopsis’ size which in turn increases the running-time of the algorithm.
At this point, we observe a trade-off between DGreedyAbs and BUDGreedyAbs. On the one
hand, DGreedyAbs needs multiple passes over the data in the map phase of the job, while BUD-
GreedyAbs needs only one. On the other hand, DGreedyAbs has a lightweight reducer, while the
one of BUDGreedyAbs is compute-intensive and can become a bottleneck. Thus, when datasize is
large, we suggest BUDGreedyAbs for datasets that can be easily approximated with a small avail-
able budget and DGreedyAbs when a higher budget is demanded. As the conventional synopsis

is easier to be computed, we observe CON to be much faster than all the other algorithms.

52 Chapter 3. Parallel synopsis construction for maximum error metrics

i ‘<4 qBUDGreedyAbs '
3000 30000 1 T DIndirectHaar i
. ,] A-ADGreedyAbs
g 25001 I O-OGreedyAbs O
a2 I |~ TS @ ®IndirectHaar .-~
Y 2, : *%CON .-~
=2000¢ <</ BUDGreedyAbs | £ 20001 / L
2z 1 G—OGreedyAbs g / /O o - R
<1500 A -ADGreedyAbs - = i gl
= | 3- ODIndirectHaar | . el i
g ol e Reod 1 tooo- Rt &
, Ei;%/xf/“
SOOQ‘Q’“S“‘ﬁ“““Aﬁ O - : ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60
N (in millions) N (in millions)
(a) NYCT-Max Abs Error (b) NYCT-Running-time
400 ©~ T T T T T T T T TI— 1400 [<F< BUD‘Greédy‘Ab‘s t
E ol Blcl}ldlr(eictggar e
35 1 1200 A-ADGreedyAbs 7
g | OO GreedyAbs ,/‘/
3] PR | @ IndirectHaar e
5300 A ADGreedyAbs 2 1000 CON 7 -
= GO GreedyAbs Z
22501 <</ BUDGreedyAbs | 2
< C1 £ DIndirectHaar =
22001 *=% CON
=

N (in millions) N (in millions)
(c) WD-Max Abs Error (d) WD-Running-time

Figure 3.11: Approximation quality and running-time experiments on 1-D real datasets. B =
N/8

WD dataset. Figure 3.11c shows the approximation quality and running-time results for
the WD dataset and B = %. The conclusions are similar to the ones for the NYCT dataset. In
Figure 3.11d we see that IndirectHaar outperforms DIndirectHaar for datasizes up to 8M data-
points. When data fits in main memory, IndirectHaar avoids the I/O overhead of the multiple
MapReduce jobs, that DIndirectHaar requires. Still, the most efficient algorithm, that targets the
minimization of maximum error metrics, is BUDGreedyAbs as it outperforms GreedyAbs by a
factor of 6.7 and DGreedyAbs by a factor of 2 for a 17M dataset.

3.5. Experimental Evaluation 53

3.5.3 Dataset Impact

In this subsection, synthetic data is used to evaluate the impact of different distributions on both
running-time and approximation quality. For all the experiments of this subsection, there have
been used datasets of size N = 17M datapoints and a budget of B = N /8.

Varying distribution and 6. As the parameter ¢ of DIndirectHaar provides a “knob” for
tuning the tradeoff between resource requirements and solution quality, in Figure 3.12 I show
the impact of data distribution on DIndirectHaar when different J-values are used. The main
observation is that biased distributions favor both the synopsis construction time and the ap-
proximation quality [PZHMO09]. In Figure 3.12a, we see that for the Zipf-0.7 distribution and for
all d-values, the algorithm is about 25% faster compared to the Uniform distribution. Further-
more, the run for the Zipf-1.5 distribution outperforms the one for Zipf-0.7 by 45% when 6 = 10
and 20% when § = 20. Accordingly, in Figure 3.12b we see that when the Zipf-1.5 distribution is
the case, the maximum absolute error is 8.4 times smaller than the one achieved for the Uniform

data.

400F =]
1000 8 \H —
, \E 5
W delta=10 || _ § \H TSR
g = delu=p0 || 220 W W E Mg
2 \ [delta=100/| \i § E delta=50
56007 § i | 2200 %E § [delta=100]
’ §EE - 1 <100 %E %E -
200 §;E g . \H \
] N B HBE m
0 Uniform Zipf 0.7 Zipf 1.5 0 Uniform Zipf 0.7 Zipf 1.5
Distribution Distribution
(a) Running-time (b) Approximation quality

Figure 3.12: Impact of data distribution and ¢ on the performance and approximation quality of
DIndirectHaar.

We also observe that usually the smaller ¢ is, the higher is the running-time of the algorithm
and the better the approximation quality, since more candidate values are examined for the in-
coming values and the wavelet coefficients. For values of § equal to 50 or 100, the algorithm
reaches its lower bound of execution time on this data and thus, higher values for ¢ do not affect
performance. For the Zipf-1.5, we see that the run for § = 10 outperforms the one for § = 20.
As we get more approximate results for higher values of §, DIndirectHaar requires more jobs to
converge and provide the final answer. Moreover, the algorithm could not run for Zipf-1.5 and

0 = 50, 100 as these values were higher than the space they need to quantize.

54 Chapter 3. Parallel synopsis construction for maximum error metrics

3.5.4 Constructing the Conventional Synopsis

In this Section, the construction of conventional synopses is evaluated. For the evaluation, the
real datasets NYCT and WD have been used and the cluster is configured with 20 map and 1
reduce slots. For any given dataset, all four described algorithms (CON, Send-V, Send-Coef, H-
WTopk) produce exactly the same synopses. Thus, there is no need to compare them in terms of

approximation quality but only with respect to running time.

e —— 4001
1200 == H-WTopK - mmH-WTopK —
| AA geng-g . 1 350r AASend-V 7
— dEnd-Loe | — _ 1

3 800 2250;
£ 600 2 200/
= I 1= 150
400/ 100F 3
200 5
0 10 20 30 40 50 60 46 8 10 12 14 16
N (in millions) N (in millions)
(a) NYCT (b) WD

Figure 3.13: Running time comparison for constructing a conventional synopsis with B = N /8.

Figure 3.13 shows the running time results for both datasets when a synopsis of size B = N /8
is requested. Since Send-V ends up to be a sequential algorithm, it presents much worse running
time performance than CON and Send-Coef for both examined datasets.

In Figure 3.13, we also observe CON is the most time-efficient algorithm for computing the
conventional synopsis. The performance gain of CON stems from its locality-preserving parti-
tioning, which results in less computational and communication complexity. CON is 1.5 x faster
on average than Send-Coef, that is the second most efficient algorithm, both for the NYCT and
the WD datasets.

For both datasets, we observe that despite the communication optimizations, H-WTopk presents
the worst performance. Furthermore, for datasizes larger than 8 millions of datapoints, it runs
out of memory. This is because of the selected synopsis size. H-WTopk can be very efficient if
B is much smaller than the input size of the mapper. Otherwise, since it needs to emit the B
largest and B smallest coefficients, it ends up emitting twice the input size. Furthermore, it also
has the extra overhead of three MapReduce jobs. In [JYL11], the wavelet transform was applied
to a histogram and thus, data had been already compacted and smaller budget space was needed
to achieve accurate results. The impact of B in the communication cost is discussed in [JYL11],

where the corresponding values were only chosen in the range [10, 50].

55

3.5. Experimental Evaluation

N ‘
12001 wm H-WTopK
" AA Send-V
1000+ — Send-Coef
| %% CON

[0.]
S
=)

Time (sec)

N (in millions)

Figure 3.14: Running time results for the NYCT dataset and B=50.

Table 3.2: Testbed details

Name Model Processor Memory
(GB)
High-end server (CMT1) || Intel(R) Xeon(R) Gold | 2 sockets, 14 hyper- | 256
5120 CPU @ 2.20GHz | threaded cores/socket
Commodity server | Intel(R) Core(TM) | 1 socket, 4 hyper- | 64
(CMT?2) i7-4820K CPU (@ | threaded cores/socket
3.70GHz
GPU NVIDIA Tesla V100- | #SM = 80 32
SXM2

Figure 3.14 shows the corresponding results for the NYCT dataset when a synopsis of stable
size B = 50 is used. This figure verifies the results of [JYL11]: H-WTopk dominates the other
approaches only when B is very small and the dataset size large enough to not be affected by the
overhead of the three MapReduce jobs. Thus, in our case, where the transform is applied directly
on the data and not on a histogram, this algorithm is not of practical use as it is very difficult to

construct a good quality synopsis with so few coefficients.

3.5.5 Evaluating Accelerators

In this Section, I experimentally evaluate the performance gains obtained by parallelizing the
construction of a wavelet synopsis. The experiments use synthetic one-dimensional data uni-
formly distributed in the range [0 — 1K].

Hardware. As OpenCL requires devices of massive parallelism, for these experiments differ-
ent hardware platforms than before have been used. We consider three different architectures:
(i) a high-end server (CMT1), (ii) a commodity server (CMT2) and (iii) a GPU device. Details

56 Chapter 3. Parallel synopsis construction for maximum error metrics

T 800 T T T
ST . ST m.
2500 (| GPU I==d E 700 {{ GPU = B
CMTL =1 600 | CMT1 =3 |
52000 cMT2 B — CMT2
a $ 500 1
0 (2]
p 1500 - 1 ‘G—J‘ 400 - 4
1S € L |
{£1000 |] = 300
200 B
500 -
- 100 |
0 7] XX 0 ;x%
200k 500k. 1M 200k 500k 1M
#datapoints #datapoints
(@) e=190 (b) e = 50
40 T
ST .
35 GpPu=a 1
30 | eMTL =1 |
—_ cMT2
o 25+ 1
K
o 20 - J
E 15} 1
'_
10+ .
5 L
0 =
200k 500k 1M
#datapoints

(c)e=10

Figure 3.15: Running time of MinHaarSpace for various input sizes and values of €.

for the testbed can be found in Table 3.2. Henceforth, I denote CMT1 (CPU MultiThreaded) the
high-end server and CMT2 the commodity one. As a baseline for the experiments we consider
the single-thread (ST) performance of CMT1. For maximizing the utilization of each platform,
the multi-threaded executions have available all the threads of a machine. Work group size is set
to 256. I also experimented with 512 and 1024 which was the maximum value supported by the

device but there was no significant difference noticed in performance.

Figure 3.15 demonstrates running times for different dataset sizes. In MinHaarSpace, the
combination of ¢, § parameters determines the size of a single row of the DP matrix and thus, the
running time complexity of the algorithm. For experimenting with tasks of different compute

intensity, I test various sizes for the DP rows by varying e and keeping J fixed to 0.1.

For all configurations, running time scales linearly to the dataset. This verifies the theoretical
complexity of the algorithm which is O ((%)2 N) According to this formula and as can be
verified in Figure 3.15, high values of € lead to higher running times. The high-end server CMT1
can reach a speedup of up to 23x compared to the baseline. The corresponding result for the

GPU is 15x, while CMT2 achieves a more modest performance improvement of 5x.

As explained in Section 3.2.1, due to the structure of the error-tree, at each level of execution
within a work group, half of the parallelism is lost. Thus, a device that can offer massive data

parallelization (e.g., GPU) cannot be exploited to the full of its potential. Even in that case though,

3.5. Experimental Evaluation 57

60
e=90 —A—

°\°50 e=50 - - R
< e=10 --® -
G40 e |
[} i X
230 N o
IS
§20 —————————————————————— -7 |
L
_
g 10 |

0 !

200k 500k 1M

#datapoints

Figure 3.16: Performance gain due to memory coalescing.

the execution over the GPU outperforms the one of CMT2 by more than twice in all examined
cases.

We also notice that the smaller the dataset is, the smaller is the performance gap between
CMT1 and the GPU. For the compute intensive case of Figure 3.15-(a), CMT1 is 30% faster than
the GPU for a dataset of 200K datapoints, 49% for 500k datapoints and 57% faster when 1M of
datapoints is the case. Data transfers cause significant delays in the GPU case. Reducing I/O has
a direct impact on running-time.

In Figure 3.16 we observe the performance gain in GPU execution when memory coalescing
is used. Ifirst run the experiments employing exactly the same kernel as in the CPU case and then
repeat them, this time using the kernel that makes memory coalescing and report the relative
percentile difference. We notice that the gains stemming from memory coalescing are always

higher than 20% and can reach up to 50%.

58

Chapter 3. Parallel synopsis construction for maximum error metrics

CHAPTER 4

Extension to Multiple Dimensions

4.1 Introduction

The algorithms discussed so far are applicable on one-dimensional datasets. However, datasets
with multiple dimensions involved are a common case in real-life applications. In this Chap-
ter, I discuss the modifications required in order to extend both the centralized GreedyAbs and
MinHaarSpace [KSM07] to deal with multiple dimensions. The main difference is that now the
distributed algorithms of Chapter 3 run over a multidimensional error-tree and instead of using
GreedyAbs and MinHaarSpace, they employ the modified algorithms we are going to present in
this Chapter.

The structure of a D-dimensional error-tree (Figure 2.3) is somewhat more complex. As op-
posed to the one-dimensional case, each node of the tree contains many coefficients and thus the
terms node and coefficient should be distinguished. During thresholding, it is not necessary to
pick or discard all coefficients of a node at the same time. In Figure 4.1 we see a snapshot where
the black-filled coefficients are retained in the synopsis, while the blank ones are discarded. For
the navigation in a multidimensional error-tree, we follow the indexing presented in Figure 2.3.
The first node at each level has index 27/¢v¢!| The rest of the nodes of the same level maintain
index values increased by one each. For our example and the two-dimensional case, in level 1,
the first node has index 22! = 4, the next node of this level has index 5 and the remaining two
have indices 6 and 7 respectively. With that indexing scheme, we can easily navigate the error-

tree. Dividing a node’s index by 27 leads us to the parent of the node. For the identification

59

60 Chapter 4. Extension to Multiple Dimensions

Figure 4.1: Thresholding in a 2-dimensional error-tree.

of an individual coefficient within a node, we apply internal indexing. The internal index of a
coefficient ¢;; belongs in the interval: [0, 2P — 1). The notation ¢;j denotes the j-th coefficient

in node 1.

4.2 MDMSpace: MinHaarSpace for Multiple Dimensions

In order to explain the required modifications for extending MinHaarSpace [KSM07] to multi-
ple dimensions, an understanding of the original algorithm is required. A detailed description
of MinHaarSpace can be found in Appendix A. Since the algorithm works with unrestricted
wavelets (Section 2.5), Lemma 17 in Appendix A bounds the space we have to explore for se-
lecting coefficient values in the one-dimensional case. For extending this Lemma to multiple
dimensions, we have first to understand the basic idea which is based on. The following proof

provides an intuition into it.

Proof. Let us consider a wavelet node c¢;, with real coefficient value z; and incoming value® v;.
Then, the incoming value to its left child will be vo; = v; + 2. With v} and 2 we denote the
incoming value and wavelet coefficient in the unrestricted case, where z; does not come from

the Haar wavelet transform but is selected from R. According to Lemma 16 we have:

[vgi —v3;| < €= [(vi +2i) — (v +27)| S e= (v —vf) + (20— 2)| < e (4.1)

If we choose z; values such that |(z} — z})| < € — |v; — v}], then the triangular inequality

gives us:

(i = v7) + (20 =)] < oi =07 [+ [20 = 27| < Joi =i+ e =i —vj[=€ (42)

which holds according to Inequality 4.1. Thus, the inequality |(z} — 2})| < € — |v; — v

appropriately delimits the z; values without violating the constraints of the problem. O

'For the notions of incoming value and real wavelet coefficient, look at the MinHaar description in Appendix A

4.2. MDMSpace: MinHaarSpace for Multiple Dimensions 61

The inequality of Lemma 16 is also satisfied in the multidimensional case and implies that
the finite set of possible incoming values we have to examine at node ¢; consists of the multiples
2
Sil=1F]+1=0(5).

For bounding the search space for coefficients in multidimensional datasets, we extend the

of § in the interval S; = [v; — €, v; + €]; thus,

above idea and present the following Lemma:

Lemma 7. Let v; be the real incoming value to node c;, z; j the real assigned coefficients at c;,

vy € S; bea possible incoming value to c; for which the maximum error bound e can be satisfied, and
e—|v;—v}|
2D

z; 1, be avalue that can be assigned for incoming value v; satisfyinge. Then, |z; j, — sz\ <

Proof. Anode c; of a D-dimensional error-tree contains 2P — 1 coefficients z; ; that all contribute
to its 27 children. Thus, for an incoming value v; at node ¢;, the incoming value at its j-th child

. D—
is: 004 ; = v + S22 o2 (2ixsign (K, 7)). Following a similar reasoning as before, we have:

2P —2
Viop 15 = Vigp il < €= [(vi —vf) + Z (zik — 2i3) sign (k,j)| <€ (4.3)
k=0
If we choose z7 values such that: |2 k —z; pl < %, then from the triangular inequality,
we have:
2P -2 2P —2
(0i = o)+ > (zig — 25y) sign (k,3) | < Jvi — v} [+ D |zik — 254l <
k=0 k=0

€—|v; — v}

vi —vf| + (2P — 1) - 2D_1J_e (4.4)

e—|v;—v|
2D 1
the space of candidate values for the wavelet coefficients. O

which holds according to Inequality 4.3 and thus |2; , — 27| < effectively delimits

For a given incoming value v at node c¢;, the possible assigned values for every coefficient

Zigs b = 0,..,20 — 2 comprise the finite set of the multiples of § in the interval: SYp =
ef\vif'uzt\
e—fvi—v}] e—fvi—v}] (

2(—p)
2D _ 2
Zik — oD _1 s 2,k + oD 1 . As |S;),k| < 0 =0 (2D71

g), and each node con-

2P -1
tains 2 — 1 coefficients, the number of examined values for node c; is O ((25_1;)

Similarly to MinHaarSpace, the MDMSpace procedure works in a bottom-up left-to-right
scan over the error-tree. At each visited node ¢; it calculates an array A of size |.S;| from the
precalculated arrays of its children nodes. A holds an entry A[v] for each possible incoming
value v at ¢;. Such an entry contains: (i) the minimum number A[v].s = S(i,v) of non-zero

coefficients that need to be retained in the sub-tree rooted at ¢; with incoming value v, so that the

62 Chapter 4. Extension to Multiple Dimensions

resulting synopsis satisfies the error bound e, (ii) the d-optimal values A[v]. (zf 0r 1 %1 D_Q) to
assign at ¢;, for incoming value v, and (iii) the actual minimized maximum error A[v].e obtained

in the scope of ¢;. S(i, v) is recursively expressed as:

2P+l 2D _2
S(i,v) = mi S(-
(i,v) min, E;D (v + Z zisign(j, k) + kzo (2ix # 0)
j=i =

S(O, 0) = min (S(l, Z(),()) + (2070 =+ O))

20,0638,0

The above equations compute the smallest between (i) the minimum required space if a non-zero
coefficient value z; j, is assigned at ¢; ;; and (ii) the required space if a zero value is assigned at
it. The latter case applies only if 0 € S7;.. Let S7; denote the set of those assigned values at ¢;
for incoming value v that require the minimum space in order to achieve the error bound e: The
d-optimal value to select is the one among these candidates that also minimizes, in a secondary

priority, the obtained maximum absolute error in the scope of ¢;. So, we also need the equations:

D_
i2D+1_1 e

E(i,v) = Zi,?eigﬁk]mg)]g E(j,v+ kzo i ksign(j, k))

E(0,0) = min (E(1,200))
20,065870
Complexity Analysis. The result array A on each node ¢; holds |\S;| entries, one for each

possible incoming value, hence its size is O (g) Moreover, at each node ¢; and for each v € S;,

2P -1
we loop through all H2 2 1SPel = O <(2D il 6)) possible assigned values. Thus, the

5 \27-1 oD
runtime of MDMSpace(0, €) is O ((le) . (%) N).

4.3 MGreedyAbs: Extending GreedyAbs to Multiple Dimensions

For extending the algorithms of Section 3.3 to multiple dimensions, we first need to modify the
centralized GreedyAbs algorithm.

As in the one-dimensional case, the greedy algorithm picks each time the coefficient c;;, with
the lowest M A and discards it. According to Equation 3.5, the computation of M Ay, for a node
¢, demanded four values (ma:nf,g, mmﬁC mazxy,, ming): the maximum and minimum error for
each of the two subtrees of ¢;. A node of a D-dimensional error-tree has 20 children. Thus,
in order to compute M A, we need to know the maximum and minimum error in each of the

20 subtrees of Cjk. thus 2D+1 values are required. We can see that all the coeflicients of a node

4.3. MGreedyAbs: Extending GreedyAbs to Multiple Dimensions 63

support the same region of the original data, and so they should observe the same errors in the
reconstruction of the corresponding data values. In that way, we do not need to store at each
coeflicient the maximum and minimum error observed in each sub-tree, but all the coeflicients

of a node can share the same 2P values. The equation for the computation of M Ay, is:

MAj, = max {|maz; — sign (s) cj|, |minj — sign (s) cji|} (4.5)
0<s<2D -1

where s is the index of each sub-tree of node j and sign (s) is the sign of the error caused in sub-
tree s when deleting coefficient c;;. Similarly to the one-dimensional case, when a coefficient c;y,
is discarded, its maximum and minimum errors need to be updated, as well as the M A-values of
all coefficients in the sub-trees of node j and if needed the coefficients in the ancestors of node
j. Furthermore, this time we also need to update the M A-values of the remaining coefficients
in node j that are not yet discarded. Algorithm 8 formally presents MGreedyAbs, the modified

algorithm for handling multidimensional data.

Complexity Analysis. The initial heap H can be constructed in O (V) time. The algorithm
performs O(N) discarding operations. A dropped coefficient c;j, at height h of the error-tree has
at most 2P" descendant nodes and each of them at most 2° — 1 non-deleted coefficients. Thus,
each coefficient at height h has at most 2°”(2” — 1) non-deleted descendant coefficients which
must be updated. Moreover, at height h of the error-tree, there are 9D(log,p N=h) (2P — 1) coef-
ficients. As all of them will eventually be discarded, the total number of updates in descendants

for all coeflicients is:

logop N
> [2PP(2P 1) - 2PUenp N=h (9P — 1)) = (2P — 1)°Nlogon N (4.6)
h=1
However, as it holds logypx = %loga:, the above quantity becomes: (2D51)2 NlogN. A

discarded coefficient c;;, has at most logyp [N ancestor nodes with at most 2P — 1 non-deleted

coefficients each, and thus the total number of updates in ancestors for all deleted coefficients

is also O((QDB Dy logN'). Furthermore, for each dropped coefficient c;j, we need to update at

most 2P — 2 coefficients in node 7, 1.e., in the same node of the discarded coefficient. As there
are O(N) discarded nodes, the cost of updates in the same node is: O((2P —2)N) in total. Thus,
the total update operations of the algorithm are: O(NlogN + N). Moreover, each update in a
coefficient costs its re-positioning in H which is an O(logN) operation. The complexity of the
algorithm is thus: O((QDT_I)QNZOQQN + (2P — 2)NlogN), that asymptotically remains to be
O(Nlog?N) as in the one-dimensional case. Please also note, that in contrast to MDMSpace, the

term 2° does not have exponential impact on the running-time complexity.

64 Chapter 4. Extension to Multiple Dimensions

Algorithm 8: MGreedyAbs

1: Input: Wy vector of N Haar wavelet coeflicients
2: H := create_heap(W,)
3: while H not empty do

4 discard c;;, := H.top // coefficient with smallest M A,
5 fors=0;5s<2P —1;s++ do
6: max; = maz; — sign (s) cji; minz; = minz; — sign (s) ¢k
7 fori=0;i<2P —2:i++do
8 if c;; not discarded then
9 recalculate M Aj;;update cj;’s position in H
10: for each subtree s € [O, oD _ 1] of node j do
11: for each coefficient ¢,,,, € s do
12: if ¢,y not discarded then
13: Update all error measures in c;,,, by ¢
14: recalculate M A,,,;update ¢,,,,’s position in H
15: MATepr = Oggggil mamik, mawj-k ;
16: MiNepr = ogsrgiz%—l (minjk, mzn;’k) node; = node;.parent
17 while node; # NULL do
18: mamé = MATepr; miné ‘= MiNegy,
19: if any of {max}, mini}, s € [0, 2D 1] changed then
20: if ¢; not discarded then
21: recalculate M A;;update ¢;’s position in H
22: MAL ey ‘= 0552%71 maxjk, maa;;fk)
23: MM epy 1= 035122%—1 (mznjk, mmjk)
24: node; = node;.parent
25: else break

4.4 Discussion

From an algorithmic perspective, the main difference in the construction of one- and D-dimen-

sional wavelet synopses is the structure of the error-tree. All the modifications on the proposed

algorithms aim at handling error-trees in which each node can have an arbitrary number of

children.

We observe that the complexity of MDMSpace becomes prohibitive even for low dimension-

alities. A dimension of D = 4 can lead to billions of iterations for the algorithm. On the other

hand, the complexity analysis of the greedy algorithms shows that an error-tree of a D-dimen-

sional dataset incurs a computational overhead in the order of 22”. The conducted experiments

in Section 4.5 show that the synopsis construction for a 4-dimensional dataset is only 1.5 times

4.5. Experimental Evaluation 65

slower than the synopsis construction for a one-dimensional same-sized dataset when the greedy
algorithms are employed.

As the experiments indicate, it is more difficult to yield accurate wavelet synopses for datasets
of high dimensionality. Intuitively, the higher the number of dimensions, the higher is the num-
ber of neighbors for a data-value in the input array. Depending on the distribution, this can lead
to an increased number of discontinuities that should be captured by the synopsis.

Table 4.1 summarizes the discussed algorithms. IndirectHaar and DIndirectHaar can han-
dle the multidimensional case only if they use MDMSpace instead of MinHaarSpace. Similarly,
DGreedyAbs and BUDGreedyAbs should use MGreedyAbs for handling multiple dimensions.

Table 4.1: Summary of presented algorithms

Algorithm Distributed | Multidimensional
MinHaarSpace no no
MDMSpace (this dissertation) no yes
IndirectHaar no yes
DIndirectHaar (this dissertation) yes yes
GreedyAbs no no
MGreedyAbs (this dissertation) no yes
DGreedyAbs (this dissertation) yes yes
BUDGreedyAbs (this dissertation) yes yes

4.5 Experimental Evaluation

The proposed algorithms are evaluated in terms of (i) synopsis construction time and (ii) achieved
maximum absolute error. All algorithms are implemented in Java 1.8.

Datasets. The experiments are conducted using both synthetic and real datasets. As syn-
thetic data, uniform and zipfian distributions are used, with data values that lie between [0, 1000].
As multidimensional real-life datasets, we utilize NOAA [noa] and NYCT2D [nyc]. NYCT2D is
a 2-dimensional dataset of 1.5 billion records that contains trip distances and total fares for the
taxi rides. For NOAA, the following four dimensions are considered: Wind Direction, Wind speed,
Temperature and Dew point. All datasets are partitioned in order to test scalability over different
sizes. The smallest partition comprises the first 1M records, while each subsequent partition is
2D times the previous one, where D is the dataset’s dimensionality. The largest dataset consists
of 268 M datapoints.

Platform setup. As a deployment platform, a Hadoop 2.6.5 cluster of 9 machines is used.
Each machine features eight Intel Xeon CPU E5405 @ 2.00GHz cores and 8 GB of main memory.

One machine is used as the master node and the remaining ones as slaves. Each slave is allowed

66 Chapter 4. Extension to Multiple Dimensions

—————— 700; |
C— K — e — 600 - dim]

| 600/@-&Idim]
—g———8 3500 %%4idim . _.-%
124000 g— - —H]
] k3

23456 2 34 5 6

B (in milslions) B (in ml?hons)
(a) DGreedyAbs (b) BUDGreedyAbs
50007z S o= ‘ !

~4000f]
Q b i

23000 1
O B8] dm]
£2000,G-©2 dim -

= k
1000?—!—-\.
1 23 456 7 8
B (in millions)
(c) DIndirectHaar

100 78 9

7 8 9

Figure 4.2: Scalability with the space budget B.

to run simultaneously up to 5 map tasks and 1 reduce task. Each of these tasks is assigned 1
physical core and 1 GB of main memory. For all the remaining properties, we keep the default
Hadoop configuration.

For experimenting with the centralized algorithms one machine with the same specifications
as the ones listed above is employed. Thus, centralized algorithms may have up to 8 GB of

available main memory for their execution.

4.5.1 Scalability

In this Section, we use synthetic data to assess the scalability with respect to the available budget
for the synopsis B and the number of datapoints N. The dataset consists of values uniformly
distributed in the range: [0, 1K].

Varying space budget. We run DGreedyAbs, BUDGreedyAbs and DIndirectHaar for N =
17M datapoints and vary B from N /64 to N /2. Figures 4.2-(a), 4.2-(b) and 4.2-(c) show the
results for DGreedyAbs, BUDGreedyAbs and DIndirectHaar respectively. As expected, for all
algorithms, the higher the dataset dimension is, the higher is the running-time of the algorithm.

For the greedy algorithms and for budget sizes smaller than the partition size of the distributed

4.5. Experimental Evaluation 67

80 k: T T T T T T T T T T]
<< DGreedyAbs-2D »

.

%o—o BUDGreedyAbs-2D ° |
60 k;” - DIndirectHaar-2D -~ :

Time (sec)
N
=
2
|

‘fm— == :&
50 100 150 200 250
N (in millions)

4

20k

Figure 4.3: Scalability for 2-dimensional datasets

job (1M datapoints), better running-time is observed. This is due to an optimization where each
worker emits only the B most important coefficients to the reduce stage. When the budget is
over 1M datapoints, the performance of DGreedyAbs is not affected by B, while BUDGreedyAbs
is linearly affected. For Figure 4.2-(c), we note that the complexity of DIndirectHaar for a 4-

dimensional dataset is too high and the algorithm is not able to run.

Varying datasize. Figure 4.3 presents scalability results when two-dimensional datasets of
different sizes are used. Once again, all examined algorithms scale linearly with the dataset size.
The important observation here is that the running-time gain of the greedy algorithms com-
pared to DIndirectHaar increases along with the dimensionality. For the 2-dimensional datasets,
the greedy algorithms present almost the same performance with the 1-dimensional case while

DindirectHaar becomes considerably slower.

The main results of this Section are that: (i) dimensionality positively affects running-time

and (ii) the higher the dimensionality, the higher is the benefit of using a greedy algorithm.

4.5.2 Data Dimensionality and Maximum Absolute Error

In this Section, we investigate how dimensionality affects maximum absolute error and what
trade-offs DIndirectHaar offers for the high computational overhead. For this experiment, syn-
thetic datasets of 1, 2 and 4 dimensions are considered and budget is set to B = I—J\é. All datasets
follow a zipfian-1.5 distribution, with a size of N = 17M datapoints. The choice of distribution
is inline with previous research [GKO05], as it has been shown that wavelets can better capture

skewed distributions.

In Figure 4.4, we notice that the achieved accuracy is negatively affected by an increase in

dimensionality. The higher the dimensionality, the higher is the observed error. This is probably

68 Chapter 4. Extension to Multiple Dimensions

an effect of the enhanced locality in high-dimensional spaces. Furthermore, DIndirectHaar com-
pensates for its high computational complexity with an error 30% smaller than the one achieved

by the greedy algorithms for both multidimensional datasets.
400

[DGreedyAbs
'] BUDGreedyAbs
DIndirectHaar .

(98]
(o)
(=)

Maximum Absolute Error
= S
= 8

Dimensionality

Figure 4.4: Maximum Absolute Error for Zipfian data and B = N/16.

4.5.3 Comparison for Real Datasets

For the multidimensional experiments, the NYCT2D and NOAA datasets are used. Furthermore,
in order to demonstrate the merits of wavelet thresholding in exploratory analysis tasks, a query-
time evaluation for the constructed synopses is also presented. For answering queries on wavelet
synopses, I have implemented the work of [CGRS01]. As proposed there, instead of applying the
wavelet transform directly on the data, we first construct a datacube of joint frequencies. After
the synopsis is constructed, it can be loaded in main memory and provide in-memory query
answering.

Figure 4.5a presents the results of the construction time comparison when B = N /16. For
both datasets, BUDGreedyAbs is the most time-efficient algorithm. DP algorithms are able to
run only for the NYCT2D dataset, where IndirectHaar is 12x and DIndirectHaar 7x slower than
BUDGreedyAbs. Despite the dimensionality of these datasets, we observe that all algorithms
achieve lower running-times than the ones achieved in Figure 3.11b. This may seem counter-
intuitive, but the explanation lies behind the distribution of the wavelet transform. The trans-
forms of NOAA and NYCT2D are sparse enough and the data that the thresholding algorithms
actually process are fewer than the original dataset.

Regarding quality guarantees, all greedy algorithms produced a maximum absolute error of
1.8 and 0.9 for the NYCT2D and NOAA datasets respectively. As the errors are already small
enough, the DP algorithms could not yield an interesting trade-off for the high-running time
they present.

4.5. Experimental Evaluation 69

1400 N BUDGreedyAbs] 600

S ISy DGreedyAbs

@ 1200{:|MGr§edyAbs T A 1 CSV

° '==DIndirectHaar+ 13 Y Parquet

'E 1000 BEEE IndirectHaar 1 2400 Il Wavelets 7
Q

g 8005 b g

5 600- t,

5 400/ £ 200 i

2 B

g o

O 2001 N\

NYCT-2D NOAA-4D
Dataset
(a) Synopsis Construction Time (b) Query time

Figure 4.5: Synopsis Construction and Query Time for real-life datasets.

Figure 4.5b shows the results of the query time experiment. We consider queries of the form
select {sum, count,avg} from T where p; A ... A py, where p; is an inequality predicate. For
each dataset, we run a workload of 10 random queries of that form and present the average
query time. We compare query time on wavelet synopses against SparkSQL [spa] queries on
raw csv and Parquet [par] files. The csv text files do not fit in the aggregate memory of the
cluster we have configured and thus they produce the worst query latencies. As Parquet enables
lossless compression mechanisms, the corresponding Parquet files fit in our cluster’s memory
and improve a lot on the observed query time. However, our wavelet synopses with B = N /16
can fit in a single machine’s main memory and thus present the best query times.

The main conclusions from the comparisons in this Section are that: (i) The proposed dis-
tributed approaches scale to datasizes that the traditional centralized algorithms are unable to
process. (ii) The most time-efficient algorithms are BUDGreedyAbs and DGreedyAbs and each
of these algorithms can be the most appropriate choice in a different use-case; when B is not
too large, the BUDGreedyAbs algorithm is suggested. (iii) DIndirectHaar produces results of
better quality but it presents the worse running-time and ends up to be impracticable in higher

dimensions.

70

Chapter 4. Extension to Multiple Dimensions

CHAPTER D

Online Synopses for Sliding Window Aggregates

5.1 Introduction

In this Chapter, efficient algorithms are proposed for the computation and online maintenance of
wavelet synopses. The construction process should be constrained to a limited memory budget,
that is usually much smaller than the window size (B << W). This is a realistic requirement
in many real-life applications. For example, embedded devices such as Arduinos’, that are often
met in IoT scenarios, possess memory in the order of KB [arda]. Thus, a space budget B should
be defined and cap the number of retained wavelet coefficients. In the analysis of this Section,
synopses logarithmic in the window size are considered, i.e., B = O (logWV).

The goal is to evaluate the ability of wavelets to accurately compute point queries and basic
range statistics (SUM, COUNT, AVG) in a data stream that follows the time-based sliding-window
model and where data elements are expected to arrive in the stream-order. Such a stream is
formally defined in Definition 1. Henceforth, the term stream is used to describe such a data

sequence.

Definition 1 (Ordered Time-based Stream). An ordered, time-based data stream is an infinite
sequence of tuples in the form: S = {(t1,v1), (t2,v2),...},t1 < ta < ..., where t; denotes the

arrival time of tuple i and v; its value.

‘https://www.arduino.cc/

71

72 Chapter 5. Online Synopses for Sliding Window Aggregates

front

nodes {v1, level = 3} {v2, level = 2} {v3, level =1]
array
(3.1)
(2,1) (2,2) (23) |
(1.1) (1.4)(1,5 (1,6) (1.7)

>v

|6 6 & O OO0 60 6o & o o O |
Data Stream

Figure 5.1: Error-tree for streaming data.

Both the sliding-window point and range queries are defined in Definition 2. A point query
can ask for the stream value at any time moment lying within the active window. Similarly, a
range query has always the current time as the end of its interval, while the start of it can be any

time moment within the window.
Definition 2. Let S be a stream, t the current time and W the window size.

¢ A sliding-window point query P (t,) on S returns an estimation for the value v, that
arrived at timety, t, € [t — W, t].

e A sliding-window range query AGG (t,) on S returns an estimation for an aggregate

AGG € {SUM,COUNT, AV G} computed over the time range: [t,, t|, wheret, € [t — W, 1].

While this Chapter mainly discusses range queries of the described form, in order to demon-
strate the general applicability of the proposed approach, in Section 5.7, queries of the form [s, €],

where t — W < s < e <t are also investigated.

5.2 Dynamic Synopsis Maintenance

5.2.1 Streaming Error-Tree

Similarly to previous works, we operate on the streaming version of an error-tree [LTC10, KMO05].
Each pair of newly arrived items is subjected to the wavelet transform and inserted into the error-
tree. During this construction process, at some time ¢, the number of stream data that have
arrived may be unequal to a power of two. Hence, the error-tree has not formed a full binary

tree as in the static case and unconnected sub-trees of different heights may exist. That means

5.2. Dynamic Synopsis Maintenance 73

that there can be at most one such sub-tree rooted at each error-tree level (thus, |logW | sub-
trees). Figure 5.1 depicts an example, where there are three unconnected sub-trees of heights:
one, two and three respectively. In order to avoid information loss and be able to continue the
decomposition process, we need to keep track of all sub-trees in the active window. For this
purpose, the front nodes array structure is used. For each sub-tree, that we want to track, we
create a fnode (i.e., a new element of the front nodes array) annotated with: (i) the timestamp
of the first supported item, (ii) the level of the sub-tree and (iii) the average value of its data.
We then set the created fnode to point to the sub-tree and append it in the front nodes array, as

shown in Figure 5.1.

Indexing Coefficients. In the streaming error-tree, a wavelet coefficient ¢; is indexed by a
tuple (1;, 0;), where [; is the level of the coefficient in the error-tree and o; its order in the specific
level. Figure 5.1 illustrates the indexing scheme for our example. Given two coefficients ¢;, ¢;,
where c; is an ancestor of ¢;, ¢; belongs to the left sub-tree of ¢; if: 2-0; —1 < (2 - 0; — 1) - 267l

This dissertation exploits the sliding-window and proposes an efficient representation that
minimizes the space overhead for a coefficient. The key observation is that we do not have to
index an infinite stream but, at any given time, the synopsis approximates a single window of
size W. As the level of a coefficient can be at most logW, for I; we need at most loglogW bits.
For reducing the size of the o; values, which are infinite in an unbounded stream, we use a wrap
around counter o} = [(Oi -1) mod% + 1] that uses log% bits for a coeflicient in level /;. With
this scheme and for a window of size 1 billion, a coefficient needs at most 35 bits for storing both

l; and o;.

5.2.2 Algorithm Outline

Algorithm 9 shows the outline of the streaming algorithm for the construction of a wavelet
synopsis. Each pair of newly arrived data is transformed into a wavelet coefficient and inserted
into the error-tree. The addition of a new coefficient may trigger the creation of more coefficients
in higher levels. In Figure 5.1, when two more items arrive, a new wavelet coefficient will be
inserted in the first level of the error-tree. As there is already one node in the first level, the
two coefficients will be averaged and differenced and create a new coefficient in level two. The
process will be recursively repeated and new wavelet coefficients are expected to be also added
in levels three and four. In general, every new item in the stream can fire up to [logW'| insert-
updates in the wavelet structure.

In line 4, we first check whether there are coeflicients that lie outside the active window and
thus have expired. If such coefficients exist, we can safely discard them releasing this way space

without compromising accuracy (they support a range we are no longer interested in).

74 Chapter 5. Online Synopses for Sliding Window Aggregates

Algorithm 9: Streaming Algorithm for Constructing a Sliding-Window Wavelet Syn-
opsis
input: Stream S, Budget B, Window size W
1 currTime = 0; wSynopsis = new WaveletSynopsis();
2 for data items in S do

3 currTime = currlime + 2; dy, dy = read(S);
4 wSynopsis.deleteExpired(currentTime, W);
5 wSynopsis.insert(currTime,W dy, d2);

6 while wSynopsis.size > B do

7 ‘ wSynopsis.discardNext();

Next, we insert the new elements. Depending on the data distribution, the wavelet transform
may produce some zero coefficients. These coefficients are never inserted in the structure we
maintain. If after the insert-step, the size of the synopsis still exceeds B, we discard coefficients
according to a greedy criterion (will be later discussed) until the size of the synopsis respects the

available budget.
We now delve into the internals of each of the insert, deleteExpired and discardNext functions.

Insert. The algorithm for the insertion of new coefficients in the synopsis is presented in
Algorithm 10. For each pair of arrived items dy, do, we perform averaging and differencing (line
7) and create a new wavelet coeflicient ¢;. If ¢; is non-zero, we add it to a min-heap (line 16) in
order to specify its order of deletion. In line 18, we check if ¢; is the only node at level [. If this
is the case, we create a new fnode (line 19) that points to ¢;, else we continue the process at the

next level of the error-tree, as explained in the example of Figure 5.1.

According to the proposed algorithm, all fnodes that support a part of the active window are
retained in the synopsis. This is the reason why fnodes are not inserted into the min-heap. As
we will explain in Section 5.3, this design choice improves the approximation quality of range

queries.

Moreover, in line 5 of the algorithm, we notice that a cap is enforced on the maximum level
of a sub-tree; the wavelet decomposition is not allowed to continue further than maxLevel levels.
This decision permits the existence of more than one fnodes with maxLevel levels. We store
these fnodes in a separate structure called topLevelFnodes (line 22). We claim that a limit on the
maximum level of the error-tree offers two advantages: i) lower bounded update times, and ii)

allows for the more accurate computation of range queries.

The first claim can be trivially verified. From the while condition of Algorithm 10, we can see
that an insert operation can trigger up to logW updates. For a maxLevel < logWW, we directly
restrict the number of updates at every time unit. The impact of maxLevel in the accuracy of range

queries will be discussed in Section 5.3, where the query answering mechanism is described.

5.2. Dynamic Synopsis Maintenance 75

Algorithm 10: Insert

input: Number of arrived items N, window size W, item d ,item da
1 f = fnode with lowest level; tmp = null; 1 = 0

2 maxLevel = log <%>
3 while N>0 and N mod2 = 0 do

4 N=N/2;1=1+1
5 if [> maxLevel then break
6 if tmp = null then
7 avg =(dy +dg)/ 2;v=(dy -dg) /2
8 minCf = maxCf = v
9 else
10 avg = (avg + tmp) / 2; v = tmp - avg
11 minCf = min (prevFnode.minCf, tmpMin, v)
12 maxCf = max (prevFnode.maxCf, tmpMax, v)
13 ¢; = new WaveletCoef(l; = 1, 0; = N, value = v)
14 ¢;.maxCoefInSubtree = maxCf
15 ¢;.minCoeflnSubtree = minCf
16 if ¢; # 0 then put ¢; in min-heap
17 delete fnode below f
18 if no fnode in level | then
19 f = new Fnode(level = [, value = avg)
20 f. minCf = minCf; f maxCf = maxCf
21 if [< maxLevel then frontNodesArray.add(f)
22 else topLevelFnodes.add(f)
23 else
24 tmp = f.value
25 tmpMin = f minCf; tmpMax = f.maxCf;
26 if f.pointer = null then f.pointer = ¢;
27 f = fnode at next level

76 Chapter 5. Online Synopses for Sliding Window Aggregates

Now, we are going to investigate what is an appropriate value for maxLevel. A small value
offers the advantages we just mentioned. Nevertheless, as all fnodes are retained in the synopsis,
a cap on the maximum level increases the space we need to dedicate to the front nodes array.
Thus, we need to set a value such that we enjoy the benefits of a short tree without significantly
increasing space complexity. The value we select is [log (%) |. The following Lemma shows
that with this choice we only require poly-logarithmic space in the window size for storing the

front nodes array.

Lemma 8. Consider a wavelet error-tree I" built over W data points. Setting the constraint that
each sub-tree of T' cannot have more than [log (%)] levels, results in storing at most O (logW')
fnodes.

Proof. Let k denote the maximum permitted size for a sub-tree. Thus, within a window of size
W there can be up to (%1 such sub-trees, and thus [%1 fnodes. As the given budget B is
usually poly-logarithmic in W, we want to store at most O (logWV) fnodes. So, it should hold:

% <c-logW,c > 1=k > c-lz‘;W' Thus, the minimum sub-tree size we can tolerate without

violating the constraint of O (logWW') fnodes is the first power of 2 that is larger than % and

has M = [log (C l‘o/VW)W levels. However, the construction process of a wavelet tree is such that
‘log

we may have more than [%°] sub-trees in the window. As it is known that N 2l =2m — 1,

we can substitute a sub-tree of size k with up to M — 1 sub-trees of levels | = 1,..,M — 1.

This way, there are at most [%-] — 1+ M — 1 = [2] + [log (%)] — 2 sub-trees and thus

fnodes in the window. As we want to save space, we set ¢ = 1 and in the worst case we have

logW + log (lo?W) = O(logW) fnodes. O

The cost for inserting new elements in the wavelet synopsis is given by Lemma 9.

Lemma 9 (Insertion Time). Considering a synopsis size of B = O (logW), an arriving pair of

data items leads to a worst case insertion time of O (log% . loglogW) and

S) <log ZOI;VW> in the average case.

Proof. The cost of an insert-update consists of the cost of creating new coefficients and the cost
of re-configuring the binary heap. The proof for the worst-time case is straightforward: As we
discussed, an insert-update can lead to the creation of L new wavelet coefficients, where L is
the size of the tree. Since our algorithm permits only sub-trees of height up to [log (%)}
it follows that this is also the maximum number of operations that an insert-update can cause.
Moreover, since the synopsis should occupy only poly-logarithmic space, we assume a min-heap
of size B = O (logW). Thus, the worst-case insertion in the heap is O (loglogW). It follows

that the total needed worst-case time for updating the synopsis when two new data items arrive
is O (log lo‘;VW . loglogW).

5.2. Dynamic Synopsis Maintenance 77

We now compute © complexity. The insertion in a binary heap needs O (1) time on average.
The question is how many wavelet coefficients are created with every new arrival in the average
case. Without loss of generality, we assume a tree of size N, where NNV is a power of two. Each
arriving item can trigger the creation of 1 < 7 < logN coefficients. Since there are IV items
within the window, we first compute how many of them create 1 coefficient, how many 2, etc.
Let a (j) denote the number of coefficients within a window that lead to the creation of paths
of length logN — j. We observe that only the last element can create a path of length logV,
ie, a(0) = 1. The same holds for a path of length logN — 1. There are two paths in the
window that have length at least log/N — 1. However, the one of them has length log N and thus,
a(l) = 1. With similar reasoning, we observe that the following recursion holds: a (0) = 1
and a (j) = ZZ —o @ (7). As the first two elements of the a (j) sequence add up to 2, it is easy to
derive that:

1 j=0
271 j#£0
Since it is known that Z?:_()l 2t — 92" _ 1, we observe that:

logN—1 CL(] 1 + ZZOQN 1] 1 + 2logN -1

> N N - N =1

=0

(J)

and thus the term can represent the probability of creating a path of length logN — j.
Let the random variable X express the number of updates a newly arriving data pair yields. The

expected value of X can be expressed as:

logN—1

200 = Y Y (ogN -
7=0

logN—1 logN—1
logN logN 11 1_
9i—1 _ — 97—

RS SDIRAEE S

loaN logN—1 logN 1

g 1+ 2:2ﬂ1 - }:g 9i—1 (5.1)

We use again the fact that Z?:_Ol 2! = 2" —1 in order to compute the first term. For k = j—1,

we have: Zgo:g{\f—l 271 = Zégo:gévflfl ok — glogN—1_ 1 — % — 1 and the first term of Equation

5.1 is equal to @. For the second term, it is easily proven that when n is a finite number, it

78 Chapter 5. Online Synopses for Sliding Window Aggregates

holds:
Z?zlj il =1— (li)g + % For x =2 and n = logN — 1, we get that:
logN—1
) NlogN
Z j'2]—1:1_2lOgN—1_(lOgN_l).2lOgN—1:1_%
j=1

Thus, Equation 5.1 becomes:

logN 1 NlogN

SRR YA
Thus, the total update time for every arrived pair in the stream is © (1) - © (logN — %) As
for the sub-trees there is the constraint that the maximum size NN is the first power of 2 that is
greater than %, the complexity becomes: © (log% — %) =0 (log%). U

Delete Expired. We first check if all fnodes still support the active window. As an fnode f
supports 27¢v¢! data points beginning from f.start, we have to discard all fnodes with: f.start
+ 2Flevel o cyrrTime — W. If a fnode is deleted, so is the whole sub-tree underneath it.

We then scan all the remaining elements to check if there are coefficients that also need to
be removed. The criterion for removing a coefficient ¢; is: 0; - 2l 1 < currTime — W. As we
require B = O (logW), the cost of this scan operation is also O (logW).

Discard Next. When budget is exceeded, we need to discard some coefficients. The heuris-
tic for selecting coefficients to discard depends on the error metric we need to optimize. If
Lo-norm is the targeted metric, we should always keep the B largest coefficients in normal-
ized value. If the minimization of L., is required, we select each time the coefficient ¢, with

the minimum maximum potential absolute error M Aj, [KMO05]. The M Ay, value is defined as:

mamdjeleaveskﬂerrj — 0k - ck|}, where err; is the signed error for item j, and shows the max-
imum error that the removal of ¢, would produce. In either case, for efficiently identifying the
node that should be discarded and assist the greedy selection, the synopsis is organized as a min-
heap structure. In this work, the Lo, norm is used and the min-heap is implemented as a binary
heap.

Lemma 10 gives the cost of deletions either due to expiration or budget excess.

Lemma 10 (Deletion Time). The time spent in delete operations every time the synopsis is updated

is O (logW) in both worst and average case.

Proof. Delete operations occur due to either window sliding or a manual coefficient removal in
order to respect the budget constraint. We observe that in the permanent state of the algorithm
(more than B data items have already arrived) the synopsis size increases by at most two ele-

ments with every new arrival. Thus, there are at most two deletions that we need to make. As

5.2. Dynamic Synopsis Maintenance 79

the deleteExpired function can delete at most one coefficient, the discardNext function is called
at most twice. The manual removal of a coefficient results in the extraction of the minimum ele-
ment of a binary heap. Considering B = O (logW), this operation has a worst-case complexity
O (loglogW') and average time © (1). As for identifying an expired coefficient we need to scan

the whole synopsis, a O (logW') operation is needed for both the worst and average case. [

5.2.3 Error Guarantees

Regardless of which error-metric is optimized, the constructed synopsis should be able to provide
queries with deterministic guarantees. As shown in [KMO05], providing guarantees for point
queries demands each node to maintain the maximum and minimum signed errors of its left and

right sub-trees.

This dissertation also provides deterministic guarantees for range queries. As mentioned in
Chapter 2, the value of a SUM query over a range [t1, t2] can be exactly reconstructed, by only
using the coefficients ¢; € paths, 1,], according to Equation 2.1. Here, we observe that under the
sliding-window model, the sum can be computed solely based on the coefficients ¢; € pathy,,
i.e., the ones that belong to the left path of the queried interval. As it is explained in detail in
Section 5.3, in the sliding-window model, we expect some sub-trees to be fully-contained in the
query-range and one last sub-tree to partially overlap with it. Let us consider that [¢;, 2] is the
range of overlap with the last sub-tree. Thus, by definition, path;, is the rightmost path of a
full binary tree. As such, every coefficient ¢; in pathy, \pathy, is expected to have z; = 0 and
does not contribute to the sum, either it is contained in the synopsis or not. Thus, SUM{;, ;,] =
2 c;epathy, CiTi-

For providing error guarantees, we need to bound this sum. No matter if we have deleted
a coefficient ¢; or not, the x; value is always known since it only depends on the coefficient’s
position in the error-tree and the query range. So, if we had some bounds for the deleted (and

thus, unknown) coefficients c;, such that I; < ¢; < hj, it would hold:
* Tj >0= ljxj < CjT; < hj:(}j
e x; < 0= hjxj < CiT; < ljﬂ?j

By summing up these inequalities for all deleted coefficients c;, we obtain deterministic guar-
antees for the SUM(|, ;,. The idea for bounding c; values is to keep track of the minimum
and maximum coefficients in each sub-tree. In Algorithm 10, it is annotated with blue color all

required modifications for tracking minimum/maximum coefficients in each sub-tree.

80 Chapter 5. Online Synopses for Sliding Window Aggregates

5.3 Query Answering

Point queries P (Z;) are answered as explained in Chapter 2, i.e., P (t;) = ¢, epatn,0gj - ¢j +
f.value, where f is the corresponding fnode of the sub-tree where ¢, belongs. We are now going

to focus on the query answering mechanism for range queries.

nodes
array

front {v1, level = 3} {v2, level = 2} {v3, level =1]

________ A A

|6 &6 & o ébébéébéb O O

Data Stream %, - Query Range !

Figure 5.2: Range query answering

Figure 5.2 depicts arange query AGG (t,). The range of interest [ty, tnou) is highlighted with
grey color. We observe that there are sub-trees which are fully-contained in the range and a last
sub-tree T}, that partially overlaps with it. Let us denote ¢, the moment in time that separates 7},
with the leftmost fully-contained sub-tree.

For the part of the query that corresponds to fully-contained sub-trees we can provide an
exact answer. Thus, AGG (t;) = AGGapprox © AGGegact = AGGy, 1,0 ® AGGysy,, where &
is a function that combines partial aggregates. This function is a simple addition for the case of
COUNT and SUM queries, while for AVG Lemma 11 holds.

Lemma 11. Let avg (-) and n (-) denote the averaging and counting functions respectively. The

average value of region X = Jx;,1 = 1,2, ..,k withx; N x; = () can be computed as:

n (x;) - avg (x;)

AVG(X) =& (avg (1) , ..., avg (xf)) = Z n (X)

We first show how to compute the exact part of the aggregate and then discuss how to ap-
proximate the range that intersects with the last sub-tree 7),. Recall that each fnode f; keeps
information about the level of its sub-tree 7; and the average value of the corresponding data
elements. Thus, an aggregate of T; can be computed solely based on f;. Considering that a

data item arrives at each time unit, a COUNT query can be computed as 2/i/¢"*!_ the answer to

5.3. Query Answering 81

an AVG query is f;j.value and the SUM can be derived by f;.value - ofidevel - gq AGGist, =
® (AGGTZ., e AGGT].), where {77, ..., T;} are all the sub-trees that are fully-contained in the
range query AGG (t,).

For approximating AGG|;, ;,) we use the wavelet coefficients that lie in path,. We remind
that for coefficients c; in paths, \path;, we expect x; = 0. As there is exactly one item that
arrives at each time unit, we know that there are ¢, — ¢, 4 1 items in the range. A SUM query
can be approximated as: SUMj; ;. = ZCjEpathtq cjxj + fp.value - (ts — ty + 1) and an AVG

then be easil das: o Ml t]
query can en eea31yanswere as: m

are provided as follows: we traverse path, in a bottom-up fashion. For each position j of the

Guarantees for the approximate AGG|;_ 4,

error-tree, we check if coefficient ¢; exists in the synopsis. If it does, we compute its contribution
cjx;. If it does not, we buffer the z; value that corresponds to the missing coefficient until we
find the next coefficient that exists in the synopsis. Then, we use the minimum and maximum

coeflicients stored in this node, in order to bound the contribution of the missing coefficients.

Thus far, we have assumed that an item arrives at each time unit. However, in reality, streams
may be bursty and arrival rates do not follow a regular pattern. In order to handle the general
case and be able to answer all COUNT, SUM and AVG queries, we maintain two distinct wavelet
structures. The first one keeps track of a bit-stream {(¢,0) ,b € {0,1}} that indicates whether a
tuple has appeared at time ¢. The second one approximates the value distribution of the actual
input stream. Let BW denote the wavelet synopsis of the bit-stream and V' 1/ the synopsis of the
value-stream. The procedure for updating BW, VW is presented in Algorithm 11. Every time
t a data item (¢, v) appears, we insert it in VW exactly as explained in Section 5.2. Moreover,
we insert the tuple (¢, 1) in BW and note the time when the update takes place (line 11). While
the stream is inactive and no data arrives, we keep the system idle. The next time a tuple arrives
after an inactivity period, we insert t — lastTimeActive — 1 zero values to both BW and VW
(line 6). This mechanism ensures that a direct mapping between the time and wavelet domains
always exists. Let us also note that keeping two structures does not constitute a deficiency of
the proposed approach. Exponential histograms and waves do the same in order to support both
COUNT and SUM queries.

Answering COUNT queries on the stream is translated into SUM queries on the BW struc-
ture. For instance, if we need to know the number of measurements that a sensor produced
between times ¢; and to, we have to add the 1-bits that exist in the corresponding time range.
SUM queries on the input stream are answered by the VW structure. Since in the absence of
arrived data we insert zero-values to VW, we do not affect the result of additive operations. For
AVG and point queries, we have to “touch” both structures. For an AVG query, we compute the
sum from VW, the count from BW and divide the results.

82 Chapter 5. Online Synopses for Sliding Window Aggregates

Algorithm 11: BW-VW updates

1 Initialize BW, VWV,

2 lastTimeActive = 0;
3 for every time unitt do

4 (t,v) = listenToStream();
5 if (t,v) # null then
6
7
8
9

for t* in [lastTimeActive + 1,t) do
BW.insert((t*,0));
VW.insert((t*,0));

BW.insert((t,1));
10 VWe.insert((t,v));
11 lastTimeActive = t;

5.3.1 Discussion

Having described the query answering mechanism of the proposed algorithm, we now discuss
the impact of limiting the maximum level of a sub-tree. We saw that an error is introduced
only due to the range [,,t,]. Intuitively, the higher is the T’» wavelet sub-tree, the larger this
range can be. By keeping sub-trees short, we increase the possibility to have more sub-trees
fully-contained in the query-range and thus, increase the exact part of the answer AGGt>+,.
The following Lemma shows how the maximum level we allow for sub-trees affects the relation

between the [t,,ts] and [ts41, thow] ranges.

Lemma 12. Let) a range query, F2 =[ts11, thow] C Q the sub-range of Q) for which our structure
provides an exact result and A the sub-range of () that we need to approximate. It holds that:

14| 1

|[E] = 2logW *

Proof. We distinguish two cases depending on whether A overlaps with a sub-tree of height
[log IOI;VWW or not. Let us initially assume that A overlaps with a sub-tree of size 2%, with k <
[log laI;;VWW' The maximum length of the range we need to approximate is |A| = 2¥~1. By the

wavelet construction, it is guaranteed that there can be up to k — 1 trees in E of sizes 2,4, .., 271

and thus |F| < Zf:; 21 = 2F Tt follows: f%l‘ > % We now consider the case where A overlaps

with a sub-tree of size M, where M is the first power of 2 which is greater than %. In that
Al Tog T
case, it holds that |[E| < W and |A| = %, and so we have |If\ > % > 2 = 2lo_1]W' d

Lemma 12 implies that for range queries of length near to W, the proposed method has to

1
2logW

query we can exactly compute. For windows larger than 1 million items, we have to approximate

approximate only the of the query. The larger the window size, the larger the portion of the
less than 3% of the queried range. This is a direct consequence of limiting the maximum level a
sub-tree can have. According to the proof, the corresponding ratio in classic wavelets is % in the

best case.

5.4. Distributed Wavelets For Streams 83

As factor m bounds the range we have to approximate but does not contain information
on data values distribution, it favors mostly COUNT queries but no theoretical guarantees can
be given for SUM and AVG. However, the experiments of Section 5.7 show that the proposed
approach is very robust and that for queries of length W high quality results are achieved for all
examined datasets, both real and synthetic.

Other methods, such as exponential histograms (EH), provide theoretical guarantees by track-
ing query results over time. Instead of approximating the data distribution of the stream, as this
work does, they approximate the distribution of a query over time. For example, in the case of a
SUM query, they maintain a structure that tracks the SUM at different time intervals. The benefit
of wavelet-based techniques compared to such approaches is flexibility to handle more generic
query types and underlying data distributions. EH-like techniques are restricted to only handle
streams of positive integers and answer a single query. While due to Lemma 12, our method
performs better when applied to positive numbers, in Section 5.7, it is shown that it can also be
efficiently applied to streams of arbitrary numerical data. Moreover, the same structure can be
used to also answer point queries and more general range queries, where the end of the query

range is not equal to the current time.

5.4 Distributed Wavelets For Streams

This thesis also addresses the problem of tracking basic sliding-window aggregates over the
union of local streams in a large-scale distributed system. By union, we mean a linear com-
bination (e.g., average) of the remote streams. In the described setting, the remote sites are not
allowed to exchange information with each other but communicate through the network with
a centralized coordinator node. Let us consider a linear function F' applied on a set of N dis-
tributed streams S;,7 = 1,.., N. Our goal is to answer COUNT, SUM and AVG queries on F',
ie, AGG (F (Si,..,Sn)), while minimizing communication; collecting all streaming data is too
costly to afford in many real use-cases. Therefore, similarly to [GKMS07], each remote site com-
putes a wavelet synopsis (WS) on its local stream (S) and it is only the synopses that are sent
to the coordinator. This way, the communication cost is reduced.

The coordinator computes the requested aggregate directly in the wavelet domain. As Haar
wavelets are linear functions of the original streams and F' is also a linear function, if we apply
F on the individual synopses WS;, we are going to get a wavelet synopsis of F' (51, .., Sy). Thus,
WS (F (Si,..,Sn)) = F (WS, .., WSy) and we can approximate the query AGG (F (S1, .., Sn))
as AGG (F (W Sy,.., WSn)).

Figure 5.3 illustrates an example. Sites 1,2 monitor their local streams s1;, s2; and construct
the corresponding wavelet synopses. At the coordinator node, we want to track the stream

F (s14, 52i). Instead of collecting the sy, so; values, applying F’ on them, computing the wavelet

84 Chapter 5. Online Synopses for Sliding Window Aggregates

% Stm%

6 S

17 18 21 26 27

\ F(C1|’CZ|)/

Coordinator

F(81185) F(812:85,)

Figure 5.3: Composition of individual wavelet synopses.

transform and constructing the synopsis, we observe that for each coefficient with index 4, it
holds that cm; = F' (c14, ¢2;), where ¢m;; is the corresponding coefficient in the error-tree of the
coordinator. Thus, it suffices to aggregate the coefficients by index and compute the F' func-
tion. The following Lemma shows that the maximum error guarantees in the wavelet synopsis
of the coordinator also follow the F' function. Therefore, we are able to provide deterministic

guarantees to queries on the union of the streams.

Lemma 13. Let S1, Sy, .., Sy be N streams and €1, €2y, .., €ENi; the corresponding maximum ab-
solute errors for the reconstruction of the data value att = k. The corresponding error in the stream

F (Sy,..,SN), where F' is a linear function, is F' (€1, €ak, ., €ENK)-

Proof. Since the reconstruction error of stream S; for t = k is €;3,, itholds: | Y~ dpjcij —dir| < €,
where c;; are the wavelet coefficients of S; that have been retained in the synopsis. Let ' =
a1z1+..+anzy. By applying F' on the above inequalities we get: —a;€;, < Y Opjcijai—aidi <

a;€;,. Summing up for all streams yields:

!Z5kjF(01j, cnj) — F(dig, .. do) | < F (€1ks -, €NE)

5.5 Out-of-Order Arrivals

While so far we have considered time-based streams where items arrive in order, this is not a
real restriction of the algorithm. In favor of completeness, in this Section it is described how the

scheme can be generalized to handle out-of-order arrivals. In Algorithm 11, we saw that in case

5.5. Out-of-Order Arrivals 85

arrivals are in order but a discontinuity in time exists, i.e., the next arrived value has a timestamp
t = tpow +k, k > 1, we pad the stream with zero-values. This way it is ensured that the wavelet
transform is performed over a continuous time domain and the error-tree contains a path for

each possible time t.

Algorithm 12: Out-of-Order Updates
input: Synopsis S, update tuple (¢,,v), thow — W < t, < thow
1 // find the sub-tree where t, belongs fnode = null;
2 for f in fnodes do
3 if f.start <t, < f.start + 2flevel then
4 fnode = f;
5 break;
6 // compute new coefficients;
7 level = 1;

8 order = [%’1
9 while level < fnode.level do

10 if (level,order) in S then

11 ¢ = S.get((level, order));

12 cvalue+=0;j + siters

13 update the M A-value of ¢;

14 update max/min coefficients in sub-tree rooted at (level, order);
15 else

16 ¢; = findDirect Ancestor(level, order);

17 c = ((level, order), 6ij - 5rever);

18 c.errorinfo = cj.errorinfo;

19 update the M A-value of ¢;

20 update max/min coefficients in sub-tree rooted at (level, order);
21 S.add(c);

22 level +=1;

23 order = [2rdery;

It is now described how we handle the case where a tuple (), v) with t,, < t;,0, arrives. The
only restriction we have is: t, > t,,0,, — W, i.e., the tuple should lie within the active window.
We first have to find the sub-tree where this tuple belongs. This can be accomplished by a linear
scan over the fnodes. It is reminded that each fnode f maintains the start point f.start of its
coverage in time as well as its level f.level. Thus, the range it spans in time is [f.start, f.start+
2f ‘le”el]. Then, for the f.level levels of the sub-tree, we compute the contribution of value v to the
wavelet nodes in pathy,. The contribution of v to a wavelet node ¢; with index (l;,00) is 51’3‘%,
where 0;; = 1if t, € leftleaves., and —1 otherwise. Each of the newly computed coefficients
((li;0i), 6ij5r;) has to be inserted into the synopsis. If a coefficient ((l;, 0;), voia) already exists

for the index (I;, 0;), then we just update its value and the quantities that help us provide error

86 Chapter 5. Online Synopses for Sliding Window Aggregates

guarantees (e.g., M A-value). If the node that corresponds to index ([;, 0;) has been deleted, the
newly computed node is directly inserted into the synopsis. Nevertheless, in the latter case, the
new coefficient misses some information (maximum/minimum errors and coefficients in sub-
tree) for providing error-guarantees. For dealing with this issue, we can find its first available
ancestor ¢; in the error-tree and inherit that information from there. However, as the ancestor c;
covers a larger part of the time domain than ¢; does, the max/min values it maintains are derived
not only from the sub-tree rooted at ¢; but from other sub-trees too. Hence, the error-guarantees
will still hold but are expected to be loosened compared to the in-order case. Algorithm 12

describes the process in more detail.

5.6 Workload Aware Synopses

Section 5.3.1 provides an intuition on why the proposed scheme works well in a variety of cases
but also indicates some of its weaknesses: it does not provide theoretical guarantees and it is
not expected to present a good behavior when the query range is significantly smaller than W.
In this Section, we are going to demonstrate how we can boost performance in these cases too,

assuming we have knowledge of the workload.

Front nodes array | F2={v1, level = 5} | F1={v2, level = 3} |

qi tj tow

Figure 5.4: Example demonstrating the pitfalls in workload-aware sliding-window synopses: If
gi is a query of interest, eventually all coefficients in paths ¢; > £,,, — ¢; will be requested.
Hence, we have to delete coefficients that we know they will be important in the future.

We consider workload to be a set of fixed queries in the form @ = {q1, ¢, ..., gx } which are
known a priori and can be asked at any time. Each ¢; represents a range query [tnow — 4is tnow)
and thus it should be 0 < ¢; < W. The problem of constructing an optimal wavelet synopsis

with respect to a set of range queries has been extensively studied [GPS08]. Guha et al. propose

5.6. Workload Aware Synopses 87

both DP and heuristic algorithms not only for prefix queries?, which is our case, but also for the
more general case of hierarchical range queries. However, they examine the static version of the
problem where data is fixed and does not change over time. The real-time requirements we have,

and the sliding-window model render the approach of [GPS08] inapplicable to our case.

In Section 5.2 we observed that in order to compute a range sum over [t;, t,0,) We only need
the coefficients ¢; € pathtj. Then, the answer is derived by the fnodes of the sub-trees that are

fully contained in the query and the term ¢T3, where t; belongs to the last sub-tree,

ciepathy;
that partially overlaps the query range. If we knew the coefficients ¢; € path,; for all ¢; € Q

then the provided answers would always be exact.

In-memory Structures

Workload Index Front Nodes Array Cache
94 " Fon Fs F, c, subtree_,
Sub-tree Buffer
q2 I"2
Cg subtrees1
C, subtreeci
.
% k cy substree,
WaveletStore

(disk-based)

Figure 5.5: Architecture of the proposed system for workload-aware range queries in sliding-
window streams.

For understanding the extra difficulties the streaming case introduces, we consider the ex-
ample of Figure 5.4. Let us assume a budget of B = 5 coefficients and a workload @ = {¢;}. If
we keep in the synopsis the whole path,,, then at ¢,,,, = t; we will be able to provide an exact
answer. Nevertheless, in order to achieve this, we have discarded all the other coefficients in
the active window. Hence, since we always care for g;, in a later time (e.g., tnon = t1 + 9), the
coefficients of path;; (annotated with green color) will be of interest but they will have already
been deleted.

’In prefix range queries, the start (or end) of a range is always the same for all queries of the workload

88 Chapter 5. Online Synopses for Sliding Window Aggregates

In order to overcome this obstacle, this thesis introduces a system design that violates the
“one-pass” over the data feature but offers very interesting trade-offs between accuracy and real-
time responsiveness. Besides the limited memory, many IoT devices are also equipped with
a secondary storage (e.g., SD card) [ardb] with larger capacity but which is more “expensive”
to access. Based on this observation, the system of Figure 5.5 is proposed. According to the
presented design, we do not keep in-memory the whole wavelet synopsis as before, but only the
front nodes array and some helping structures that are going to be explained. Moreover, there is
an analysis that shows that the helping structures we maintain do not incur a memory overhead

larger than logW and thus, the memory constraints still hold.

The main idea of the system is the following: as data items arrive, the Haar wavelet transform
is dynamically computed. However, as soon as a new coefficient is created, it is persisted into the
WaveletStore: a disk-based storage device. This way we can retrieve in the future coeflicients that
have been discarded. Please also note that as write operations are performed asynchronously,
the ingestion of data into the disk does not delay the construction of the synopsis. In order to
answer a query, we perform a lookup in the Workload Index. This is a structure that contains
the materialized results for the queries of interest. For having fresh data in the Workload Index,
we need to continuously update it. An update consists of computing the answer for every query
g; € Q. As usually, the computation of a query g; consists of two parts: (i) one fully contained
in range and (ii) a sub-tree that partially overlaps with it. For the part of the query that is fully
contained in the range, we derive the answer by using the front nodes array. But for the last sub-
tree, we can now retrieve the coefficients ¢; € path,, from the WaveletStore. A naive solution

would require O ([loglol;VWD GET operations, i.e., as many as the coefficients in a maximal

path. Nevertheless, such an approach would result in excessive accesses of the considerably more
expensive secondary storage and would defeat the purpose of the fast, in-memory approximate

query processing.

In the following, I present how we can limit disk accesses and create a fast system that can

accurately answer workload-aware range queries under the sliding-window model.

5.6.1 Disk Access Patterns

The data organization on disk plays a crucial role on the system’s performance. In this Section,
we discuss how data should be stored and retrieved in order to obtain better response times
compared to the naive solution where a logarithmic number of GET requests is required for each
query. In the following discussion, we assume the WaveletStore to be any disk-based lightweight

key-value store.

5.6. Workload Aware Synopses 89

Path-based Organization

The first approach for limiting the number of issued GET requests per query is to store in a single
value all the coefficients that have been created at a specific time. Let us denote P (t) the set of

coefficients that are created at ¢. Thus, at each time ¢, we persist a key-value of the form:

(key,value) = (t, P (t))

As all |P(t)]| coefficients must have been created before they are persisted on disk, a buffer
of size | P(t)| should exist. According to Section 5.2, the arrival of two data items can trigger

the creation of up to O ([log%]) new coeflicients, and thus the memory overhead of this

approach is O ([loglo‘;vw])

| Front nodes array | F2={v1, level = 5} | F1={v2, level = 3} |

qi ti Kk tnow

Figure 5.6: Example of the path-based data organization.

For the query answering, consider the example of Figure 5.6. The construction process of
the error-tree implies that all coefficients that are surrounded by curve A have been created at
tnow — Gi> and thus are stored in a single key-value (tn00w — i, P(tnow — ¢;)). Similarly, the
coefficients surrounded by B have been created at ¢; and by C at ¢;.. For computing ¢;, we need
to fetch from disk P(tnow — i), P(t;), P(t)) and filter in memory the coefficients that belong
to pathg,. Algorithm 13 presents the exact procedure for achieving this task. This way, for
the example of Figure 5.6, we perform 3 GET requests instead of the 5 that the naive approach

requires. Lemma 14 places the bounds for the improvements this approach can bring.

Lemma 14. For reconstructing the exact answer, the path-based organization needs 1 GET in the

best case and has the same behavior as the naive approach in the worst case.

90 Chapter 5. Online Synopses for Sliding Window Aggregates

Proof. The worst case is observed when the start of the query range is near to the leftmost path

of a sub-tree. In that case, each coeflicient of the path has been created at a different time and

thus, O (floglOI;VWW) GETs are required. The best case is observed, if we query the rightmost

path of a sub-tree. The rightmost path is wholly created at a single time moment and can be

fetched with a single request. O

Algorithm 13: Query Answering under the Path-based Data Organization

input: ¢4y, q;, max Level

time = tpow — ¢is

level = 1;

result = 0;

order = [H2€];

while level < maxLevel do

time = order x 2'°!; // a coefficient with index (I, o) is created at time = o * 2!
fetchedPath = waveletStore.get(time);
7 for coefficient c; in fetchedPath do

8 if ¢;.level = level then

9 result += x;c;;

10 if [order] . olevel+1 > time then

11 ‘ break;

A G e W N =

12 level +=1;
order .
45

5

13 order = |
14 level +=1;

__ rordern.
15 order = [25E];

16 return result;

Subtree-based Organization

Similarly to Chapter 3, the subtree-based organization partitions the error-tree into sub-trees of
fixed size s°. For persisting a sub-tree into the WaveletStore, we use as key the index of its root

coefficient and as a value the sub-tree itself. Hence, we have key-values of the form:

(key,value) = ((r(S).level,r(S).order), S)

where S denotes a sub-tree and () its root coefficient. This approach is more time-efficient
as it achieves better locality and retrieves more “useful” coefficients with a single GET request.
However, this is accomplished at the cost of a higher memory overhead. Figure 5.7 depicts an ex-

ample where partitions of size 7 are annotated. We observe that this partitioning scheme divides

*The size of a partition is of the form s = 2% — 1,k > 0

5.6. Workload Aware Synopses 91

Front nodes array | {v1, level = 4} | {v2, level = 2} l{v3, level = 1}|

Layer 2

Layer 1

Figure 5.7: Example of the subtree-based data organization.

the error-tree into layers and at any time there can be at most one semi-completed partition at
each layer. Partitions that are not yet fully completed should be buffered in memory. Buffering
sub-trees until they are flushed to disk is responsibility of the Sub-tree Buffer component which
is illustrated in Figure 5.5.

Since we can have at most one semi-completed partition at each sub-tree layer, the memory

overhead the Sub-tree Buffer incurs is:

O(s - #Layers) = O(s - [loglOIg/W]/Llog(s)J)

A question that naturally arises is what is a proper value for s. The conducted experiments in
Section 5.7 indicate that the larger the value of s the higher is the memory consumption and the
better is the query response time. Moreover, the experiments suggest that the optimal s-value is
dependent on the window size W. Setting s equal to a sub-linear function of the window size,
such as logW, leads to log?W space complexity and thus, the constraint for poly-logarithmic

memory is not violated.

For answering queries under this model, we traverse path,, in a top-down manner and fetch
from disk the sub-trees that intersect with the path. As some sub-trees of interest may reside
in the Sub-tree Buffer and have not been persisted on disk yet, we also check if the query-path
intersects with any of the sub-trees contained in memory. Algorithm 14 presents the technical

details of this process.

The improvements on disk-accesses that can be achieved with the subtree-based approach

are presented in Lemma 15.

92 Chapter 5. Online Synopses for Sliding Window Aggregates

Algorithm 14: Query Answering under the Subtree-based Data Organization

input: Partition size s, {0, ¢, maxLevel
1 time = tpow — G5
2 result = 0;
3 level = 1;
4 rootLevel = log(s);
5 order = [12e];
6 rootOrder = [H2e];
7 // compute path and subtree roots’ indices;
8 path = new map();
9 subtreeRoots = new array();
10 subtreeRoots.add((rootLevel, rootOrder));

11 for ent = 0; ent < [mazkevel]. opty i do

log(s
12 while level < min(f’(()())tLevel, maz Level) do
13 path.put(level, order);
14 level +=1;
15 order = [%‘ler];
16 root Level+=log(s);
17 rootOrder = [rootOrdery,
18 subtreeRoots.add((root Level, rootOrder));

19 // compute answer;
20 for i = 0;i < subtreeRoots.size() — L;i++ do

21 index = subtreeRoots.size() — 1 — i

22 rootLevel = subtree Roots.get(index).level;

23 rootOrder = subtree Roots.get(index).order;

24 level = rootLevel — log(s) + 1;

25 order = path.get(level);

26 if rootLevel in subtreeBuf fer then

27 ‘ fetchedSubtree = subtreeBuf fer.get(rootLevel);
28 else

29 ‘ fetchedSubtree = waveletStore.get((root Level, rootOrder));
30 for coefficient c; in fetchedSubtree do

31 if ¢;.level = level && c;.order = order then

32 result += x;c;;

33 level +=1;

34 order = [%‘le"];

35 return result;

5.6. Workload Aware Synopses 93

Lemma 15. The subtree-based organization can reconstruct the exact answer without any disk

access in the best case and with at most [log(zoI;VWﬂ /|log(s)| GET requests in the worst case.

Proof. The best case occurs when the query asks for one of the s rightmost paths of the sub-
tree. In that case, it can be answered solely based on the Sub-tree Buffer and no disk access is

needed. In the worst case, the query asks for a path of a maximum height sub-tree ([log%})

that does not have any overlap with the Sub-tree Buffer. Thus, there are [log(zoI;VWﬂ /|log(s)]

partitions/sub-trees that need to be fetched from the secondary storage. O

5.6.2 Maximizing Throughput

Selecting a good data placement in the secondary storage helps improving performance but there
are still too many disk accesses that need to be made. The experiments of Section 5.7 show that
even with the subtree-based organization the throughput of maintaining the wavelet structure
is 8x lower than the one achieved by the algorithm of Section 5.2 that works completely in-

memory. For speeding-up construction, two key-ideas are used: (i) AQP and (ii) caching.

AQP

Algorithm 14 computes the contribution of the last sub-tree, that partially overlaps with the
query range, to the final answer. To achieve that, the algorithm traverses the whole path,, and
computes an exact answer. However, this is too costly to afford as very frequent disk accesses
take place. Thus, it is suggested to fetch only the g topmost partitions that intersect with pathy,.
Retrieving from disk only a part of the path (g- s coefficients) leads to an approximate answer but
favors performance. Intuitively, loading the topmost coefficients of a path yields better quality
results, since these coefficients contribute to a larger part of the query range. Error guarantees
are provided in exactly the same way as described in Section 5.2.3. The evaluation of Section
5.7 shows that there are very interesting speed-accuracy trade-offs to explore by experimenting

with different g values.

Caching

For further boosting the synopsis’ construction throughput, a small cache is also used, as shown
in Figure 5.5. Similarly to Sub-tree Buffer, the cache is allowed to contain at most a logarithmic
number of sub-trees/partitions.

By observing Figure 5.7, we notice that each partition that intersects with path,, for a given
query g;, is going to be present in many consecutive GET requests. That means that each par-
tition will be fetched from disk multiple times. Retrieving over and over the same data incurs

a significant overhead that we can mitigate with caching. Having available memory space for

94 Chapter 5. Online Synopses for Sliding Window Aggregates

c partitions, the idea is to cache the ¢ partitions that are requested by the workload and will be
“active” for the longest period of time. The time a partition stays active depends on its layer; a
partition of size s in layer L has a time coverage of length: (s 4 1)”. In the simple example of
Figure 5.7, by considering a cache capable of storing a single partition, we can avoid 63 GET re-
quests. For many distributions, retrieving from disk even only the topmost partition for a query
can lead to very accurate results. This fact in combination with the caching mechanism create
a fast and accurate system where the secondary storage is merely accessed for retrieving data

values.

5.7 Experimental Evaluation

In this Section, the experimental evaluation of the proposed streaming algorithms is presented.
Algorithms are compared in terms of accuracy and memory consumption. As accuracy we mea-

sure the real observed relative error, i.e.,

|precise answer — approximate answer|
- 100%

Real Error = -

precise answer
For the disk-based approach of Section 5.6, the goal is to explore the speed-accuracy trade-off
that the secondary storage incurs. Thus, only for this case, synopsis construction throughput

experiments are also considered.

Algorithms. Henceforth, SW2G (Sliding Window Wavelets with Guarantees) denotes the
in-memory, approximate algorithm that is presented in Section 5.2. SW2G is compared to the
following techniques: (i) Exponential Histograms (EH) [DGIMO02], (ii) Deterministic Waves (DW)
[GT02] and (iii) the classic wavelet structure (WVLT) as discussed in [LTC10] for sliding-windows.
EH and DW are deterministic structures that provide theoretically e-approximate results in COUNT
and SUM queries for positive integers. However, it is proven [DGIMO02] that for general SUM
queries that also include negative numbers, providing theoretical guarantees requires §2 (1) bits
and these methods cease to work. As the guarantees of the proposed method of this thesis are
computed while constructing the synopsis and are not theoretical, we demonstrate the results of

the proposed approach even for the case of arbitrary data values.

All single-stream algorithms are implemented in Java 8, except for the exponential histograms
where the Scala implementation of [alg] is used. For the distributed algorithms, the Apache Flink
1.6 stream processing framework is employed. The Flink implementation for distributed expo-
nential histograms is based on the Java code of [PGD12]. For the workload-aware case, where a
disk-based secondary storage is required, a port of the LevelDB [lev] key-value store in Java has

been used.

5.7. Experimental Evaluation 95

=
H

14

T :
DW . DW .

12 + EH 5 12 - EH B=
WVLT WVLT
C’\010 3 SW2G 1|1 o\0107 SW2G [
S 8r S 8r]
— —
6 56 :
() [}
A < 4l i
2 2t 1
0 0.0 0.1 1 10 100 0 1 1
Window (millions) Window (millions)
(a) COUNT-uniform (b) SUM-uniform values
14 T T T T T 70 T T T T
DW DW I
12 + - — EH H 60 - EH C=
WVLT] WVLT
C’\010 o SW2G 1 [c’\050 SW2G [
S 8r 540 ,
— —
Y6t Y30 :
[[}
< 4] €50 i
2 lj —| << 10 —‘]
X X
o I X 5 o Lame [-—I .
0.01 0.1 1 10 0.01 0.1 1 10 100
Window (millions) Window (millions)
(c) SUM-zipfian values (d) AVG-noaaTemp

Figure 5.8: Relative error in streams of positive integers (query length = W).

Queries. The considered workloads are mainly range queries (COUNT, SUM, AVG) in
the form described in Section 5.1. This is the most common query type in the sliding-window
context. Moreover, the performance of wavelets in sliding-window aggregates has not been
studied before. In order to demonstrate the generality of the proposed approach, in Section 5.7.4,

aggregates over arbitrary ranges are also considered as well as point queries.

Datasets. For the assessment of the proposed algorithms, both synthetic and real data is
used. Synthetic data is used for experimenting with various data distributions. The generated
data values lie in the range [0 — 1000] and follow a uniform, normal or highly biased (s = 2) zipf
distribution. As real data, we use the sensor measurements provided by NOAA [noa]. From the
various attributes contained in NOAA, the temperature (noaaTemp) and wind-speed (noaaSpeed)

time-series are selected. NOAA time-series consist of both positive and negative numerical data.

Platform. All single-stream algorithms are executed on top of a server with 8 Intel(R)
Xeon(R) CPU E5405 @ 2.00GHz processors and 8 GB of main memory. For the experiments on
distributed streams, a cluster of 4 machines with the same processing and memory capabilities

is used.

96 Chapter 5. Online Synopses for Sliding Window Aggregates

oW oW
EH =31 EH =221
1.5 [jwrE= | 1.5 [wwr =
_ T ||sw2e =1 _ T | sw2e =0
Ko} Qo
X X
£ e 1
() [
= =
0.5
: : 0 I , : %
0.01 0.1 1 10 0.01 0.1 1 10
Window (millions) Window (millions)
(a) COUNT-uniform (b) SUM-uniform values
T T T T T 2 T T T T
DW . DW - _
EH =31 EH =221
1.5 [jwr =1 | 1.5 [wwr = M o
_ T | |sw2e =1 _ T | [sw2e =
Ke} Qo
X X
g ! e 1
() ()
= =
0.5 0.5
<2
2 ~
0 0.01 0.1 1 0 0.01 0.1 1 10
Window (millions) Window (millions)
(c) SUM-zipfian values (d) AVG-noaaTemp

Figure 5.9: Memory consumption in streams of positive integers (query length = W).

5.7.1 Positive Integers

In the first experiment, SW2G is evaluated over a single stream of positive integers. As this is
the only case where EH and DW can be applied, a direct comparison among the various methods

can be performed.

Figure 5.8 presents accuracy results for various data distributions and window sizes. We
consider streams of 400 millions data points and window sizes in the range of [10k, 100M/]. At
random times, we query each structure for the COUNT, SUM or AVG of the stream elements over
the last W time units. In the case of the noaaTemp dataset, a more complex query is computed:
we filter the stream on the fly and compute the average temperature only for tuples having a
temperature larger than 86 F'. In favor of a fair comparison, algorithms are tuned to use approx-
imately the same amount of memory. In EH and DW, the tuning knob of memory consumption

is the guaranteed error € and for the wavelet-based techniques, the available budget B.

EH and DW respect the theoretical guarantees and both achieve an average error near 4%
for all datasets. The vanilla wavelet method, while performing well in uniform distributions,
it presents considerably large errors for the other two datasets. Particularly for noaaTemp, as
WVLT can reach up to a 60% relative error, it cannot provide an acceptable solution to the prob-
lem. By being near precise in all demonstrated cases, SW2G appears to be the best alternative

for approximating the examined datasets.

5.7. Experimental Evaluation 97

Please recall that in sliding window range queries, an error is introduced only due to the
overlap of the query range with the last bucket of the active window. Techniques like EH and
DW control the size of the last bucket in a way that provides theoretical guarantees. By putting
a constraint on the maximum level of a sub-tree, SW2G also controls the size of the last bucket.
WVLT is not designed with range queries in mind; the whole window can be covered by a single
tree of size W. Thus, WVLT presents an unstable behavior where quality highly depends on the
current state and structure of the error-tree.

The overlap with the last bucket is also the cause for the high quality results of SW2G com-
pared to EH and DW. Both these techniques assume that half of the last bucket’s items lie in the
range of interest. On the other hand, wavelet-based techniques can more accurately approximate
the number of items that should be considered. By combining the powerful wavelet structure
and the idea of limiting the maximum size of an error-tree, SW2G manages to present the best
results in all cases.

Figure 5.9 illustrates the corresponding memory consumption. We observe that as window
size increases, we need to consume more memory in order to preserve error guarantees. We
see that DW is the most expensive among the evaluated methods. Moreover, we observe that
COUNT queries use slightly less memory than SUM ones and AVG queries need the largest
amount of memory since we have to maintain two structures for each algorithm: one that keeps
track of counts and one for sums. However, in all cases, memory consumption is negligible. In
the case of W = 100M, the footprint of the exact solution is 400 MB, while all approximation
techniques need only around a single kilobyte. Especially in the case of SW2G, 1 Kb is enough

for achieving a relative error lower than 1% in all demonstrated cases.

10 I I
AS—‘ DW EEEE EH XX WVLT I SW2G 1| |
fe)
< 6 |
E 4. i
S 4
= 2+t .
0 —T I — —T—
Uniform Zipf noaaTemp
Dataset

Figure 5.10: Memory for € = 0.01

Figure 5.10 illustrates the memory EH and DW need in order to achieve the same performance
as SW2G when W = 10M. For this purpose, we set ¢ = 0.01 for both EH and DW and issue
SUM queries to all datasets. In the case of noaaTemp, we notice that DW needs 7x and EH 4 x
the memory that SW2G requires.

As window size does not affect accuracy, in all subsequent experiments we set W to 10M.

98 Chapter 5. Online Synopses for Sliding Window Aggregates

5.7.2 Streams of Generic Numerical Data

In the case of positive numbers, we demonstrated that the proposed approach outperforms ex-
isting techniques. In this Section, the applicability and efficiency of SW2G are examined in more
general cases, where the stream also includes negative values. We experiment with SUM queries
in real and synthetic data. Uniform and zipf synthetic distributions are used, where each data
point d; is drawn from range [0, 1000] and is converted to the corresponding negative value
—d; with a probability of % Since EH and DW do not work for negative numbers, they are not

considered for these experiments.

100 \ 120
SW2G-Uni —A—
2 80 Ssz-Zipf-- - i o\0100
,_ WVLT-Uni —5— . 80 000Ny S -
© 60 1 wyLT-Zipf - @ - 10
T C 60 F
g (0) L SW2G-Uni ——
[T 40 H sw2G-zipf - X-
© 20 5oL WVLT-Uni —5—
WVLT-Zipf - @ -
0 0 I I
8 270 2k 30k
Mem (Kb) Mem (Kb)
(a) Query length = W (b) Query length =W /8

Figure 5.11: Relative error in streams of arbitrary numerical data.

First, queries of length W and W /8 are computed on the noaaTemp and noaaSpeed datasets.
As the value distribution of the NOAA datasets does not present a great variance, it can be easily
approximated by wavelets. As such, both SW2G and WVLT achieved relative errors less than
1% in both workloads.

In order to stress wavelet algorithms, the described synthetic distributions are used. As each
subsequent data point can vary from —1000 to 1000 large discontinuities appear and the distri-
bution becomes hard to approximate.

Figure 5.11 illustrates relative error with respect to the consumed amount of memory. We
observe that for both distributions and query lengths, SW2G converges better than WVLT as
memory increases. In the case where the query is applied over the whole window, a budget size

of W /10 is enough to achieve an error less than 10% both for the uniform and the zipfian data.

5.7.3 Evaluating Workload Aware Synopses

In this Section we evaluate the described system of Section 5.6 and explore the trade-offs it can
achieve between construction throughput and accuracy. For all the experiments of this Section,

we consider a workload of a single query, i.e., Q = {¢;}. The query ¢; is randomly selected in

5.7. Experimental Evaluation 99

the range [1, W]. As it is shown, even a single query is enough to showcase the implications of

the secondary storage as well as the worst- and best-case performance of the proposed system.

__1.6x10° _3.0x105®" """t B e @ *
(9} 5 O
§ 1.4x10 $ 2.5x105]
2 1.2x10° Py
§'1 0x105 32.0x105’ Naive —A— [
- — i Path-based - X -
2 .8.0x10% 3 1.5x10° Subtree-based —5— |
< 4 < SW2G -®-
26.0x10 2 1.0x105% X-.
2 4.0x10% o
F 2.0x104 1 E5.0x10°
0 L L 0 L L
0.0x10% 10k 100k v 00x10%, 10k 100k 1Y
Window Size Window Size
(a) Impact of partition size (b) Compare various disk access patterns

Figure 5.12: Experiments on disk placement parameters.

Disk Organization Parameters

First, we assess the proposed methods for organizing data in the secondary storage. As here we
want to investigate the pure impact of disk, for the experiments of this Section, we compute an

exact answer by fetching the whole path,, and the caching mechanism is turned off.

Figure 5.12-(a) illustrates the throughput of constructing a synopsis when the subtree-based
organization is used and for various partition sizes. In the Figure, we denote with S, a partition
that contains k wavelet nodes. The results suggest that in general larger partitions achieve better
throughput. We observe that the smallest partition S7 is always outperformed and in the case
of a window W = 1M, performance results strictly follow the order of partition sizes; the run
for the largest partition Sg3 is the fastest one, the run for S3; comes second, etc. However,
we also notice that performance-wise, the optimal partition size is dependent on the window.
For windows smaller than W = 1M, further increasing the partition size does not have an
impact on throughput. For the remainder of this Section, partitions of 15 wavelet coefficients
are considered. Larger partitions may achieve better running-time results but consume more
memory. As we want the Sub-tree Buffer to be of poly-logarithmic space in the window size,
partitions have been selected in a way to achieve a good trade-off between running-time and
memory consumption.

Figure 5.12-(a) presents a comparative analysis among the various data organizations on disk.
The subtree-based organization is 1.5x as fast as the path-based and 2x as fast as the naive
one for all evaluated window sizes. Nevertheless, we notice that as the window size increases,

throughput drops. When the secondary storage is involved, computing the exact answer for

100 Chapter 5. Online Synopses for Sliding Window Aggregates

I Uniform —&— 3-5X105§ Uniform —&— ||
0 2.0x10° Zipf -X- [O 5T Zipf - X- ||
g Normal —&— g 3.0x10 Normal —&—
3 @ 50
21.5x105 g 2:5x10
= = 2.0x10°
21.0x10% 1 S15%105¢
g g 5|
g 5 0x104 - | g 1.0x10
= = 5.0x10% 1
0 L 0 |
0.0x10 1 2 3 0.0x10 1 2 3
#GETs / query #GETs / query
(a) Throughput — No Cache (b) Throughput — Cache Enabled
30 T
i Uniform —&—
25 Zipf - X~ ||
Normal —5—

Rel Error %
=
w

#GETs / auery

(c) Relative Error

Figure 5.13: Impact of # GETs/query on throughput and relative error.

a window W = 1M is 7.5x more expensive, with respect to throughput, than using the in-
memory SW2G.

Exploring the Time-Accuracy Trade-off

In Figure 5.11, we noticed that under some circumstances SW2G does not behave well. More
specifically, when the stream contains negative numbers, the budget space is small and the query
range is much smaller than W, the relative error increases considerably.

In this Section, it is demonstrated how the proposed system comes to the rescue when work-
load information exists. Based on the above observations, first, we create adversarial conditions
for SW2G and test its running-time and accuracy for various distributions. The results for SW2G
are shown in Table 5.1. Figure5.13 shows the corresponding results when the proposed workload-

aware system is employed.

Table 5.1: Running-time and accuracy performance of SW2G for various distributions

Metric Uniform | Zipf | Normal
Throughput (ops/sec) 400K 385K | 345K
Relative Error % 60 390 159

5.7. Experimental Evaluation 101

For all examined distributions, Figure 5.13-(c) shows that even a single GET query to the sec-
ondary storage can ensure a relative error lower than 30%; that is a 90% improvement compared
to SW2G. When two GETs are issued per query, the corresponding error drops to lower than

10%, while three GETs provide an almost exact result.

Figure 5.13-(a) presents the corresponding throughput results when caches are disabled. The
first GET request to the disk has a cost of 40% performance degradation compared to SW2G. How-
ever, the situation is much better when caches are enabled. In that case, the cost in throughput
is less than 15%. Thus, for all distributions, the proposed system can achieve an error lower than

30% with minimal performance overheads.

5.7.4 General Range and Point Queries

SW2G and WVLT are also evaluated in other query types such as aggregates over arbitrary

ranges and point queries.

Table 5.2 shows the results for a workload of random AVG queries where the limits of the
queried ranges are selected at random. For this experiment, a 200K b-sized synopsis is used.

Moreover, all datasets contain both positive and negative values.

Table 5.2: Relative error for AVG queries with random ranges

Dataset SW2G | WVLT | % Gain
uniform 27 126 78
zipf 53 61 13
noaaTemp 0.12 1.04 88
noaaSpeed | 0.75 5.4 86

Depending on the data distribution, the performance of both algorithms varies. However,
SW2G consistently outperforms WVLT, demonstrating this way the contribution of this thesis

to the wavelet structure for tackling range queries.

Figure 5.14 demonstrates the results for point queries. The applied workload in this case is
the following: Every W time units, we ask for the value of every item in the range [t — W,],
where ¢ is the current time. Both algorithms achieve the same accuracy in all examined cases.
Thus, while optimizing for range queries, the performance of the proposed algorithm in point
queries is not compromised. As noticed in Figure 5.14a, the distribution of the noaaSpeed dataset
needs more space than W /100 in order to be accurately represented. However, error drops as
space budget is increased. Having available W /10 of memory leads to an error less than 20% for
the 70% of the workload.

102 Chapter 5. Online Synopses for Sliding Window Aggregates

100 100
80 80
60 60 -
L L
S S
40 40 1
20t - 20t -
WVLT —o— WVLT —o—
o | | . sw2G o | | | SW2G
0 20 40 60 80 100 0 20 40 60 80 100

Relative Error %
(2) noaaSpeed, B = W /100

Relative Error %

(b) noaaSpeed, B = W /10

Figure 5.14: CDF of relative error in point queries.

5.7.5 Distributed Streams

This Section examines the behavior of SW2G in a distributed environment of multiple streams.

In this scenario, we track range queries in the average of the streams. Each stream maintains a

local synopsis; a coordinator node collects wavelet coefficients from all streams and composes a

global synopsis which is used to answer queries. SW2G is compared with the distributed version

of EH which is described in [PGD12]. For distributed exponential histograms we set an error of

€ = 0.1 both for the coordinator and all remote streams.

5 T T . .
SW2G-uniform [_]
4L SW2G-normal i
° EH-uniform
=3t EH-normal B
e
]
T 2 1
I
1 4
0 10 12 14 1%
Streams
(a) Error

Communication (Kb)

12 : ! |
SW2G-uniform D
10 [SW2G-normal D 1
gl EH-uniform |
EH-normal
. . ® |
) & ’
o ® |
0 @ 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Streams

(b) Communication

Figure 5.15: Relative error and communication cost in distributed streams.

Figure 5.15 shows the real relative error and the communication cost for synthetic data of

uniform and normal distributions. Results are presented for 2 up to 16 streams. For each setup we

plot the average error of the issued workload and the total bytes sent over the network each time

the streams emit their local synopses. Although EH are configured with e = 0.1 and according to

[PGD12] are expected to have an error up to 2¢+¢? = 21%, they present a maximum error of only

2%. SW2G performs even better and is almost exact in all cases. Furthermore, the guarantees

5.7. Experimental Evaluation 103

it provides do not exceed 9%. As expected, communication increases linearly to the number of

streams for both techniques.

104 Chapter 5. Online Synopses for Sliding Window Aggregates

CHAPTER 6

Related Work

This Chapter surveys the related work to this thesis. I present and discuss various techniques and
systems for building approximate synopses over massive data. While this dissertation focuses on
wavelets, in favor of completeness and in order to give an overview of the whole AQP landscape,
a short description of different techniques such as sampling and sketches is also provided. The
techniques are compared to each other and the pros and cons of each of them are discussed.

For the wavelet case, a complete review of the related database literature is presented. There
is a discussion about all major approaches for building wavelet synopses over batch and stream-
ing data. For the batch processing case, we put emphasis on techniques that optimize non-
Euclidean errors, since they can be directly compared to the proposed algorithms of this thesis
(Chapters 3, 4). For streaming synopses, apart from wavelet-based techniques, we also consider
algorithms that work under the sliding-window model and thus are related to the ones presented
in Chapter 5.

While up to this point, the discussion is mainly restricted to the algorithmic level, Section

6.4 presents a list of research prototype systems that enable AQP in practice.

6.1 The AQP Landscape

The main four families of data synopses are: random samples, histograms, sketches and wavelets.
Since the wavelet bibliography is going to be extensively discussed in a separate Section, here

the discussion is restricted to the remaining three categories.

105

106 Chapter 6. Related Work

6.1.1 Sampling

Random samples are perhaps the most fundamental synopses for AQP, and the most widely
implemented [AMP" 13, RMW 16, PMSW18]. The use of random samples as synopses for AQP
has an almost 35 year history in the database research literature, with the earliest major-venue
database sampling paper being published in 1984 [PSC84]. This arguably makes sampling the
longest studied method for AQP. Many different methods of extracting and maintaining samples
[CDN07, BDM02] of data have been proposed, along with multiple ways to build an estimator
for a given query.

For small tables, drawing a sample can be done straightforwardly. For larger relations, which
may not fit conveniently in memory, or may not even be stored on disk in full, more advanced
techniques are needed to make the sampling process scalable. For disk-resident data, sampling
methods that operate at the granularity of a block rather than a tuple may be preferred. Existing
indices can also be leveraged to help the sampling. For large streams of data, considerable effort
has been put into maintaining a uniform sample as new items arrive or existing items are deleted.
Finally, “online aggregation” algorithms [HHW97, LWYZ16, CCA'10] enhance interactive ex-
ploration of massive datasets by exploiting the fact that an imprecise sampling-based estimate
of a query result can be incrementally improved simply by collecting more samples.

In the exceptional survey of Cormode et al. [CGHJ12], the advantages and disadvantages of

sampling are summarized. The sampling benefits include:

« Simplicity: Conceptually, it is very simple to understand the idea of drawing items at
random from a dataset, then scaling up the result of a query over the sample to guess the

result of applying the query to the whole dataset.

« Pervasiveness: Sampling is widely supported by database systems (Section 6.4), and sup-

port for sampling is part of the current SQL standard (SQL-2016).

 Extensive theory: Almost 100 years of prior research in survey sampling can be applied

directly to sampling massive data.

« Flexibility: A sample is a very general-purpose data structure and as such, the same sample

can be used to answer a wide variety of arbitrary queries.

« Insensitivity to dimension. The accuracy of sampling-based estimates is usually indepen-

dent of the number of attributes in the data.

« Ease of implementation: Because sampling commutes with many of the common query

operations, it is possible to use a database engine itself to evaluate a query over a sample.

However, sampling also has its own drawbacks. Specifically:

6.1. The AQP Landscape 107

 Poor performance to highly selective queries. Sampling relies on having a reasonable
chance of selecting some of the data items that are relevant for answering a query. If
only ten tuples out of one million contribute to the answer, then a 1% sample of the data

is unlikely to select any of them.

« Worse running time performance than other types of synopses. Since the size of a sample
is proportional to the size of the original data, in the case of large datasets, even a 1%

sample can be considerably larger than a histogram or a sketch over the same data.

« Sensitive to skew and outliers.

6.1.2 Histograms

The histogram is a fundamental object for summarizing the frequency distribution of an attribute
or combination of attributes. As such, they have been an integral component of query optimizers
since at least the mid-1990s [Cha98], and are often used by the information management and
statistical communities for purposes of data visualization. As discussed in the review paper of
Ioannidis [Ioa03], use of histograms for data summarization and visualization goes back to the
18th century, and the term “histogram” itself was coined by statistician Karl Pearson in the 1890s.
Histograms have been studied in the database literature for over 30 years, starting with the paper
of Piatetsky-Shapiro and Connell [PSC84].

The most basic histograms are based on a fixed division of the domain (equi-width), or using
quantiles (equi-depth), and simply keep statistics on the number of items from the input which fall
in each such bucket. Nevertheless, many more complex methods have been designed, which aim
to provide the most accurate summary possible within a limited space budget [BLS™08, BSS07].
At query time, the summary and bucket information is used to approximately reconstruct the
data in the bucket in order to answer the query. Schemes differ in: (i) how the buckets are chosen,
(ii) what statistics are stored, (iii) how estimates are extracted, and (iv) what query classes are
supported. They are quantified based on their space and time requirements, as well as on the
provided accuracy guarantees.

The one-dimensional case is at the heart of histogram construction, since higher dimensions
are typically handled via extensions of one-dimensional ideas. Beyond equi-width and equi-
depth, end biased, high biased, maxdiff and other generalizations have been proposed. For a va-
riety of approximation-error metrics, DP methods can be used to construct an optimal histogram,
subject to an upper bound on the allowable memory space. An important class of histograms that
are constructed with DP and are really popular for several selectivity estimation problems are
the “V-optimal histograms” [IP95]. When the quadratic cost of DP is not practical, approximate
methods can be used [GMP02, GGIT02, DGRO01].

108 Chapter 6. Related Work

Histograms most naturally answer range-sum queries. They can also be used to approximate
more general classes of queries, such as aggregations over joins. Various negative theoretical
and empirical results indicate that one should not expect histograms to give accurate answers
to arbitrary queries [CGHJ12]. Nevertheless, due to their conceptual simplicity, they can be
effectively used for a broad variety of estimation tasks, including set-valued queries, real-valued
data, and aggregate queries over predicates more complex than simple ranges.

The advantages of histograms are the following:

« Easy to interpret: which makes it easier for system developers to construct and analysts

to query them.

« Well-established theory: Histograms have been studied in the database literature for over

30 years and there is a strong notion of optimality for various query classes.
Histogram drawbacks include:

+ They do not adapt well to high dimensional data.
+ They do not fit well in the streaming model.

« Many histogram techniques have several parameters which have to be set a priori, such
as the number of buckets, statistics to keep within each bucket, and other parameters that

determine when to split or merge buckets.

6.1.3 Sketches

While having the shortest history, sketching techniques have undergone extensive development
over the past few years. They are especially appropriate for streaming data, in which large quanti-
ties of data flow by and the sketch summary must continually be updated quickly and compactly.
Sketches are designed so that the update caused by each new piece of data is largely independent
of the current state of the summary [CGHJ12]. This design choice makes them faster to process,
and also easy to parallelize.

The basic properties that characterize a sketching algorithm are:

+ The supported queries. Unlike samples, we cannot simply execute a query on the sketch.

Instead, we need to perform a specific procedure to obtain an approximate answer.

+ The sketch size. A sketch has one or more parameters which determine its size. A com-
mon case is where parameters € and § are chosen by the user to determine the accuracy

(approximation error) and probability of exceeding the accuracy bounds, respectively.

6.2. Wavelets for AQP 109

« Update/Query speed. Dense transforms [AMS96] affects all entries in the sketch, and so
takes time linear in the sketch size. But typically the sketch transform can be made very
sparse [CMO05], and consequently the time per update may be much less than updating
every entry in the sketch.

Similarly to histograms and wavelets, sketches present a fundamental difference with sam-
pling regarding on how the data is observed. A sample “sees” only those items which were
selected to be in the sample whereas the sketch “sees” the entire input, but is restricted to retain
only a small summary of it. Therefore, to build a sketch, we must be able to perform a single
linear scan of the input data (in no particular order).

As mentioned, each sketching algorithm targets specific query types. Some popular sketch
categories are: (i) the “Set sketches” (e.g., Bloom Filters [Blo70]), (ii) the “Frequency based sketches”
(e.g., Count-Min Sketch [CM05]) and (iii) sketches for COUNT-DISTINCT queries (e.g., Flajolet-
Martin Sketches [FM85, FFGMO07]).

Set sketches answer membership queries. Specifically, the Bloom Filter guarantees no false
negatives, but may report false positives. Frequency based sketches are concerned with summa-
rizing the observed frequency distribution of a dataset. From these sketches, accurate estima-
tions of individual frequencies can be extracted. This leads to algorithms for finding approximate
“heavy hitters” — items that account for a large fraction of the frequency mass — and quantiles
such as the median and its generalizations. The same sketches can also be used to estimate the
sizes of joins between relations, self-join sizes, and range queries. Such sketching algorithms
can also be used as primitives within more complex mining operations [PGD12], and to extract
wavelet and histogram representations of streaming data [GKMS03, CGS06, GKMS01]. Finally,
problems relating to estimating the number of distinct items present in a sequence have been
heavily studied in the last three decades. The Flajolet-Martin (FM) sketch is probably the ear-
liest, and perhaps the best known method for approximating the distinct count in small space
[FM85].

The main advantage of sketches is that they are really efficient for high speed streams of data.
However, this comes at the cost of less flexibility. The main limitation of sketching techniques -
especially in contrast to the general-purpose sampling paradigm - is that each sketch tends to

be focused on answering a single type of query.

6.2 Wavelets for AQP

Wavelets have some commonalities with histograms as both techniques partition the input space
and compute simple statistics for sub-regions of the input domain. A theoretical difference is that

whereas histograms excel at capturing the local structure of contiguous data values, wavelets are

110 Chapter 6. Related Work

particularly well suited to capturing non-local structures. Moreover, due to the linearity of the

Haar wavelet transform, wavelets are easier to maintain than histograms in streaming scenarios.

In the following of this Section, we make a literature review on existing techniques that
construct wavelet synopses for maximum error metrics both for one- and multi-dimensional

data. In addition, algorithms that use wavelets for online synopses in streams are also discussed.

6.2.1 Wavelets for One-Dimensional Data

In [GGO02], a probabilistic DP algorithm is proposed. The running-time of the algorithm is
(0] (N 62Blog (6B)) However, as there is always a possibility of a “bad” sequence of coin flips,
this approach can lead to a poor quality synopsis. As an improvement, a deterministic DP ap-
proach is proposed in [GK04]. Unfortunately, the optimal solution provided has a high time
complexity of O (N 2BlogB). These solutions are very expensive in terms of time and space
and such requirements render them impracticable for the purpose of quick and space-efficient

data summarization.

In order to decrease space complexity, Guha introduces a generally applicable, space efficient
technique [Guh05] for all these DP-based approaches, that needs linear space for the synopsis

construction but at the cost of a O (N 2) running time.

A more recent and sophisticated approach is presented in [KM07]. Karras and Mamoulis
devise Haar+: a modified error-tree, whose structure gives more flexibility on choosing which
coeflicients to keep. For the thresholding, a DP algorithm with running-time complexity
@) ((%2> NB) is presented.

A different approach is proposed in [KSM07]. The authors design a solution that tackles the
space-bound problem (Problem 1 defined in Chapter 2) by running multiple times a DP algorithm
for the dual problem [KSM07, Mut05, PZHMO09]. The resulting complexity is O((%)QN (loge* +
logN)), where £ is the minimum maximum error that can be achieved with B — 1 coefficients
and €* is the real maximum error. This algorithm is considered to be the current state-of-the-art
for the problem, as it provides the optimal data reconstruction for the given budget and has the
best running-time complexity among the corresponding DP algorithms.

Similar DP algorithms have been also proposed for the minimization of general distributive
errors like the L, norm [GK05, GH05]. The proposed framework of Chapter 3 for the paral-
lelization of DP algorithms can be seamlessly used to speedup the execution of these algorithms
too.

In order to decrease running-time, greedy algorithms have been proposed [KM05, MP03] for
the minimization of the maximum absolute and relative error with worst-case running-time com-

plexities of O (N log®? N) and O (N log3 N) respectively. These algorithms present almost linear

6.2. Wavelets for AQP 111

behavior in practice and require less memory capacity than most of the DP-based ones. Never-
theless, since they run in a centralized fashion, as data scales close to the memory constraints
of the machine, their performance significantly deteriorates. Moreover, they have inherent dif-
ficulties in their parallelization and thus, the decomposition to local sub-problems is not an easy
task to accomplish.

In the literature, there is a lack of parallel implementations for wavelet synopses. Only the
work of Jestes et al. [JYL11] considers MapReduce-based algorithms for the wavelet decompo-
sition. However, the algorithms of [JYL11] target only the Ly-error minimization, which is a

considerably easier task to accomplish.

6.2.2 Synopses for Multidimensional Data

Although there is a lot of research for the one-dimensional case, few attempts have been made
to approach the multidimensional version of the problem. In [CGRS01], algorithms for multidi-
mensional wavelet decomposition and thresholding are presented. However, only conventional
thresholding is studied and there is no proposed algorithm for maximum-error metrics.

In [GK04] the authors present deterministic, exact and approximate DP-based algorithms
for the problem. The most time-efficient algorithm is a (1 + €)—approximation algorithm with
running time: O(@?D*?’D Nlog?N BlogB) for a D-dimensional dataset. Despite the opti-
mal quality, the running-time of these algorithms is prohibitive for real-world scenarios even
for small data dimensionalities (i.e., D € [2, 5], where wavelet-based data reduction is typically
employed?).

A multi-dimensional extension of the DP algorithm that targets the Haar+ tree is presented
in [KM08]. The algorithm has a running-time complexity of O (22D (%QD) N B). While this

D
result improves a lot upon the work of Garofalakis et al. [GK04] , the constant term 22" (%2

can easily explode even for small dimensionalities. Moreover, as A denotes the difference be-
tween the minimum and maximum values of the data, the performance of this algorithm is very
sensitive to data distribution.

For dealing with multi-dimensional datasets, the authors of [MP03] propose mapping all
data to one dimension by using a space filling curve. Then, a one-dimensional algorithm can
be applied. The drawback of this approach is that it destroys data locality and thus can lead to

sub-optimal quality results.

In [ZPH09], an algorithm of O(N') time complexity is proposed for solving the dual problem.
Once again, a space-bound synopsis can be constructed by employing the technique in [KSM07].

Due to the “dimensionality curse”, wavelets and other space-partitioning schemes become ineffective above 5-6
dimensions.

112 Chapter 6. Related Work

However, the algorithm of [ZPH09] is presented in a centralized setting and there is no evidence
of its performance on large scale datasets.
A similar algorithm is also presented in [LHZ'16] for image compression and thus only

covers two-dimensional datasets. However, the algorithm is still applicable on small datasets.

6.2.3 Wavelets on Streams

All approaches discussed thus far refer to batch jobs, where algorithms are applied to static data.
In [GKMS01, GKMS03], the authors compute Ly-optimal wavelets on streams. As they find
it more challenging, they put more emphasis on handling the unordered cash register stream
model. In [CGSO06], a similar sketching technique, that allows more efficient updates, is pre-
sented for the same problem. Streaming techniques have also been proposed for the optimization
of the Lo, norm. In [GHO05, GHO08], the authors present optimal algorithms for computing the
optimal error in a streaming way for a broad category of non-Euclidean errors. Nevertheless,
as dynamic programming needs a recursive top-down procedure in order to construct the final
synopsis, these algorithms are not suitable for the scenario of an unbounded stream where inac-
tive elements are permanently discarded. For L,-minimization, a greedy streaming algorithm
has appeared in [KM05]. However, opposed to the algorithms of Chapter 5, the work of [KM05]
does not support sliding-window queries.

The only wavelet-based algorithm that exists in the literature and considers the sliding-
window model is the work presented in [LTC10]. This work mainly covers point queries and
it does not take into account range queries such as COUNT and SUM, which are the most basic

and common queries in sliding-window streams.

6.3 Sliding-Window Streams

The bulk of existing work on the sliding-window model has focused on algorithms for efficiently
maintaining simple statistics, such as COUNT and SUM. By efficiently, we mean sub-linear space
and time (typically, poly-logarithmic) in the window size W. Exponential histograms [DGIM02]
are a state-of-the-art deterministic technique for maintaining e-approximate counts and sums
over sliding windows, using O (%l0g2W) space. Deterministic waves [GT02] solve the same
basic aggregates problem with the same space complexity as exponential histograms, but im-
prove the worst-case update time complexity to O (1). In the same work [GT02], Gibbons also
presents randomized waves to tackle COUNT-DISTINCT queries. Randomized waves, as most
randomized sketching techniques, are easily parallelizable and composable (in distributed set-
tings), but come with increased space requirements. In [XTB08], the authors describe a random-

ized, sampling-based synopsis, very similar to randomized waves, for tracking sliding-window

6.4. Systems 113

COUNT and SUM queries with out-of-order arrivals. As in randomized waves, the space require-
ments are also quadratic in the inverse approximation error. To address the high cost associated
with randomized data structures, Busch and Tirthapura propose a deterministic structure for
handling out-of-order arrivals in sliding windows [BT07]. Similar to other deterministic struc-
tures, this structure does not allow composition and focuses only on basic counts and sums. Fi-
nally, Chan et al. [CLLT12] investigate continuous monitoring of exponential-histogram aggre-
gates over distributed sliding windows. The main contribution of their work lies in the efficient
scheduling of the propagation of the local exponential-histogram summaries to a coordinator,
without violating prescribed accuracy guarantees.

Work has also been done on sketching techniques that are suitable to answer more com-
plex queries such as k-medians [BDMOO03], heavy hitters, inner products and self-joins [PGD12,
SMTZ17, RBM15]. However, as the majority of these techniques employ under the hood algo-
rithms for computing basic aggregates, this dissertation focuses only on point queries and basic
aggregates like COUNT, SUM and AVG.

6.4 Systems

Perhaps the introduction of approximation technology into DBMSs dates back to the first cost-
based query optimizers in 1970s. A query optimizer needs to quickly evaluate the size of in-
termediate query results, in order to evaluate competing query plans. Importantly, these result
sizes need to be determined only to a degree of accuracy sufficient for query-plan comparison.
Initial estimation schemes were rather crude, and usually assumed that the frequency distribu-
tion was uniform. However, over time, systems began to employ more elaborate techniques that
are efficient even in the presence of highly non-uniform distributions. A discussion of statistics
and query optimizers can be found in [HILMO09].

While there is a large adoption of synopses in commercial DBMSs for query optimization,
there have only been a few successes [RMW ™16, SZB"16] in the AQP area with the majority
of them being sampling-based. Historically, probably the first AQP research prototype is the
Aqua system [AGPR99a], developed at Bell Labs in the 1990s. Since then, a plethora of academic
systems have appeared and recently there is also an interest from the industry world.

BlinkDB [AMP™"13] and its successor SnappyData [RMW ' 16] use an optimization frame-
work based on Mixed Integer Linear Programming (MILP) to precompute a set of multidimen-
sional, multi-resolution samples. Then, they employ a dynamic sample selection strategy that
selects an appropriately sized sample based on a query’s accuracy and/or response time require-
ments. As SnappyData can also handle streaming data, it also uses Count-Min sketches to ap-
proximate frequencies. SnappyData has recently entered the industry world through a spin off

company.

114 Chapter 6. Related Work

VerdictDB [PMSW18] is a sampling-based engine that follows a different logic. The intuition
behind VerdictDB is that the adoption of AQP is hindered by the fact that each of the available
AQP engines are tied to specific platforms and require users to completely abandon their existing
databases. Thus, VerdictDB operates at the client-level, intercepts analytical queries issued to
the database and rewrites them into another query that, if executed by any standard relational
engine, will yield sufficient information for computing an approximate answer.

Quickr [KSVT16] approximates complex ad-hoc queries in big-data clusters by injecting sam-
plers on-the-fly. BigData queries may need several passes over the data. The idea is that when
samplers are injected at the appropriate location in the query plan, there can be substantial I/O
improvements.

In Section 6.1.1, where we discussed the pros and cons of sampling techniques, we saw that
one of the drawbacks of sampling is its poor performance in highly selective queries. Sam-
ple+Seek [DHC™16] is a sampling-based system that employs indices especially designed to
handle queries of high selectivity.

The DBO [JAPDO08] and XDB [LWYZ16] systems are two AQP engines based on Online Aggre-
gation [HHW97]. Apart from queries over a single table, both these systems can also efficiently
approximate multi-way JOIN queries. DBO’s join algorithm is based on ripple join [HH99], while
the work of [LWYZ16] formulates the problem as random walks over a graph.

ApproxHadoop [GBNN15] and Sapprox [ZWY16] are two Hadoop-based systems that use
multi-stage sampling theory [Loh19] and extreme value theory [CBTDO01] in order to speed up
arbitrary user defined functions of MapReduce programs.

Traditionally, In sampling-based techniques, in order to quantify the error there are two main
approaches: (i) analytic error quantification and (ii) the bootstrap method. The first approach is
extremely efficient but lacks generality, whereas the second is quite general but suffers from its
high computational overhead. ABS [ZGG™14] is a system that bridges the gap between the two
through the analytical bootstrap method [ZGMZ14].

CHAPTER /

Conclusions

In this thesis, I have examined the role of wavelets in modern AQP. In the first part of the dis-
sertation, batch processing scenarios are discussed and emphasis is given on the wavelet thresh-
olding problem when non-Euclidean errors are optimized. Traditionally, the optimal solution
of the problem comprises a DP-based approach. Having established that DP techniques do not
scale for big datasets when executed over a single machine, we opt for designing algorithms with
linear scalability over scale-out infrastructures. I first present a novel technique that allows the
parallel execution of all the existing DP algorithms for the problem and show that it works for
both one- and multi-dimensional datasets. The results indicate that we can scale DP algorithms
to data sizes that their centralized counterparts are incapable of processing. Moreover, in order
to further improve on the running-time for the synopsis construction, distributed heuristic algo-
rithms are proposed. These greedy algorithms are more time-efficient than the state-of-the-art
DP solutions and it is also shown that the performance gain they offer increases along with the
dimensionality.

The advent of IoT has put increasing emphasis on edge computing. Scaling to the edge of
the network relieves stress on centralized data stores and allows organizations to perform more
effective analysis of data by shortening the time between taking in the data and acting on it.
Furthermore, as for most applications there is more value in real-time information, recent data
tend to be prioritized. In order to enable real-time processing, I also investigate the problem of
constructing wavelet synopses under the sliding-window streaming model. Specifically, an ap-

proximate algorithm for answering range queries such as COUNT, SUM and AVG is proposed.

115

116 Chapter 7. Conclusions

The experimental evaluation shows that the proposed approach outperforms many well-known
techniques for a variety of data distributions and query workloads. Moreover, accuracy is fur-
ther improved in case the workload is known. In order to achieve that, this thesis proposes a
workload-aware system that trade-offs accuracy with synopsis construction time. The results
indicate that near exact results can be obtained regardless of data distribution, while the con-

struction throughput penalty is minimal.

Bibliography

[AFTU97] Laurent Amsaleg, Michael J Franklin, Anthony Tomasic, and Tolga Urhan. Improv-
ing responsiveness for wide-area data access. In IEEE Data Engineering Bulletin.
Citeseer, 1997.

[AGPR99a] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.
The aqua approximate query answering system. In ACM Sigmod Record, volume 28,
pages 574-576. ACM, 1999.

[AGPR99b] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.
Join synopses for approximate query answering. In ACM SIGMOD Record, vol-
ume 28, pages 275-286. ACM, 1999.

[alg] Abstract algebra for scala. https://twitter.github.io/algebird/.
[amaa] Amazon ec2 elastic gpus. https://aws.amazon.com/ec2/elastic-graphics/.
[amab] Amazon ec2 f1 instances. https://aws.amazon.com/ec2/instance-types/f1/.

[AMP"13] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. Blinkdb: queries with bounded errors and bounded response times
on very large data. In Proceedings of the 8th ACM European Conference on Computer
Systems, pages 29-42. ACM, 2013.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 20-29. ACM, 1996.

117

118

Bibliography

[arda]
[ardb]

[BDM02]

[BDMO03]

[Blo70]

[BLST08]

[BSS07]

[BT07]

[CBTDO1]

[CCAT10]

[CCCT02]

Arduino memory. https://www.arduino.cc/en/tutorial/memory.
Arduino sd library. https://www.arduino.cc/en/reference/SD.

Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving window
over streaming data. In Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 633-634. Society for Industrial and Applied Mathemat-
ics, 2002.

Brain Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining
variance and k-medians over data stream windows. In Proceedings of the twenty-
second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 234-243. ACM, 2003.

The definition of big data. https://www.oracle.com/big-data/guide/what-is-big-
data.html.

Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422-426, 1970.

Francesco Buccafurri, Gianluca Lax, Domenico Sacca, Luigi Pontieri, and Domenico
Rosaci. Enhancing histograms by tree-like bucket indices. The VLDB journal,
17(5):1041-1061, 2008.

Chiranjeeb Buragohain, Nisheeth Shrivastava, and Subhash Suri. Space efficient
streaming algorithms for the maximum error histogram. In Data Engineering, 2007.
ICDE 2007. IEEE 23rd International Conference on, pages 1026-1035. IEEE, 2007.

Costas Busch and Srikanta Tirthapura. A deterministic algorithm for summarizing
asynchronous streams over a sliding window. In Annual Symposium on Theoretical

Aspects of Computer Science, pages 465-476. Springer, 2007.

Stuart Coles, Joanna Bawa, Lesley Trenner, and Pat Dorazio. An introduction to

statistical modeling of extreme values, volume 208. Springer, 2001.

Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein, Khaled Elmeleegy,
and Russell Sears. Mapreduce online. In Nsdi, volume 10, page 20, 2010.

Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring
streams: a new class of data management applications. In Proceedings of the 28th
international conference on Very Large Data Bases, pages 215-226. VLDB Endowment,
2002.

Bibliography

119

[CD97]

[CDN07]

[CFPROO]

[CGHJ12]

[CGRSO01]

[CGS06]

[Cha9sg]

[CLLT12]

[CMO5]

[CS03]

[CW04]

Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and olap
technology. ACM Sigmod record, 26(1):65-74, 1997.

Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized stratified sam-
pling for approximate query processing. ACM Transactions on Database Systems
(TODS), 32(2):9, 2007.

Corinna Cortes, Kathleen Fisher, Daryl Pregibon, and Anne Rogers. Hancock: a
language for extracting signatures from data streams. In Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 9-
17. ACM, 2000.

Graham Cormode, Minos Garofalakis, Peter] Haas, and Chris Jermaine. Synopses
for massive data: Samples, histograms, wavelets, sketches. Foundations and Trends
in Databases, 4(1-3):1-294, 2012.

Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Ap-
proximate query processing using wavelets. The VLDB journal-The International
Journal on Very Large Data Bases, 10(2-3):199-223, 2001.

Graham Cormode, Minos Garofalakis, and Dimitris Sacharidis. Fast approximate
wavelet tracking on streams. In Advances in Database Technology-EDBT 2006, pages
4-22. Springer, 2006.

Don Chamberlin. A complete guide to DB2 universal database. Morgan Kaufmann,
1998.

Ho-Leung Chan, Tak-Wah Lam, Lap-Kei Lee, and Hing-Fung Ting. Continuous
monitoring of distributed data streams over a time-based sliding window. Algo-
rithmica, 62(3-4):1088-1111, 2012.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1):58-75, 2005.

Edith Cohen and Martin Strauss. Maintaining time-decaying stream aggregates.
In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 223-233. ACM, 2003.

Pei Cao and Zhe Wang. Efficient top-k query calculation in distributed networks. In
Proceedings of the twenty-third annual ACM symposium on Principles of distributed
computing, pages 206-215. ACM, 2004.

120

Bibliography

[Dau92]

[DGOS]

[DGIM02]

[DGRO1]

[DHC*16]

[fbr]

[FFGM07]

[FM85]

[GBNN15]

[GG02]

Ingrid Daubechies. Ten lectures on wavelets, volume 61. Siam, 1992.

Jeftrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107-113, 2008.

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining
stream statistics over sliding windows. SIAM journal on computing, 31(6):1794-1813,
2002.

Amol Deshpande, Minos Garofalakis, and Rajeev Rastogi. Independence is good:
Dependency-based histogram synopses for high-dimensional data. ACM SIGMOD
Record, 30(2):199-210, 2001.

Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and Chi Wang.
Sample+ seek: Approximating aggregates with distribution precision guarantee. In
Proceedings of the 2016 International Conference on Management of Data, pages 679-
694. ACM, 2016.

Scaling the facebook data warehouse to 300 pb.
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-
warehouse-to-300-pb/.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm. In Discrete Mathe-
matics and Theoretical Computer Science, pages 137-156. Discrete Mathematics and

Theoretical Computer Science, 2007.

Approximate calculation of frequencies in data streams.

https://issues.apache.org/jira/browse/FLINK-2147.

Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of computer and system sciences, 31(2):182-209, 1985.

Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D Nguyen. Approx-
hadoop: Bringing approximations to mapreduce frameworks. In ACM SIGARCH
Computer Architecture News, volume 43, pages 383-397. ACM, 2015.

Minos Garofalakis and Phillip B Gibbons. Wavelet synopses with error guarantees.
In Proceedings of the 2002 ACM SIGMOD international conference on Management of
data, pages 476-487. ACM, 2002.

Bibliography

121

[GGIT02]

[GGRS07]

[GHO5]

[GHO8]

[GK04]

[GKO5]

[GKMS01]

[GKMS03]

[GKMS07]

[GMO98]

[GMP97]

Anna C Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, Sivaramakrishnan
Muthukrishnan, and Martin J Strauss. Fast, small-space algorithms for approximate
histogram maintenance. In Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pages 389-398. ACM, 2002.

Sumit Ganguly, Minos Garofalakis, Rajeev Rastogi, and Krishan Sabnani. Streaming
algorithms for robust, real-time detection of ddos attacks. In Distributed Computing
Systems, 2007. ICDCS’07. 27th International Conference on, pages 4—4. IEEE, 2007.

Sudipto Guha and Boulos Harb. Wavelet synopsis for data streams: minimizing non-
euclidean error. In Proceedings of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining, pages 88-97. ACM, 2005.

Sudipto Guha and Boulos Harb. Approximation algorithms for wavelet transform

coding of data streams. IEEE Transactions on Information Theory, 54(2):811-830, 2008.

Minos Garofalakis and Amit Kumar. Deterministic wavelet thresholding for
maximum-error metrics. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 166—176. ACM, 2004.

Minos Garofalakis and Amit Kumar. Wavelet synopses for general error metrics.
ACM Transactions on Database Systems (TODS), 30(4):888-928, 2005.

Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin Strauss. Surfing
wavelets on streams: One-pass summaries for approximate aggregate queries. In
VLDB, volume 1, pages 79-88, 2001.

Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J Strauss. One-pass
wavelet decompositions of data streams. Knowledge and Data Engineering, IEEE
Transactions on, 15(3):541—554, 2003.

Anna C Gilbert, Ioannis Kotidis, Shanmugavelayutham Muthukrishnan, and Mar-
tin J Strauss. Method and apparatus for using wavelets to produce data summaries,
November 13 2007. US Patent 7,296,014.

Phillip B Gibbons and Yossi Matias. New sampling-based summary statistics for
improving approximate query answers. In ACM SIGMOD Record, volume 27, pages
331-342. ACM, 1998.

Phillip B Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental mainte-

nance of approximate histograms. In VLDB, volume 97, pages 466475, 1997.

122

Bibliography

[GMP02]

[GPS08]

[GS16]

[GT02]

[Guho5]

[HH99]

[HHW97]

[HILMO09]

[Toa03]

[IP95]

[1P99]

Phillip B Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental mainte-
nance of approximate histograms. ACM Transactions on Database Systems (TODS),
27(3):261-298, 2002.

Sudipto Guha, Hyoungmin Park, and Kyuseok Shim. Wavelet synopsis for hierar-
chical range queries with workloads. The VLDB Journal—The International Journal
on Very Large Data Bases, 17(5):1079-1099, 2008.

Max Grossman and Vivek Sarkar. Swat: A programmable, in-memory, distributed,
high-performance computing platform. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing, pages 81-92.
ACM, 2016.

Phillip B Gibbons and Srikanta Tirthapura. Distributed streams algorithms for slid-
ing windows. In Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures, pages 63-72. ACM, 2002.

Sudipto Guha. Space efficiency in synopsis construction algorithms. In Proceedings
of the 31st international conference on Very large data bases, pages 409-420. VLDB
Endowment, 2005.

Peter J Haas and Joseph M Hellerstein. Ripple joins for online aggregation. ACM
SIGMOD Record, 28(2):287-298, 1999.

Joseph M Hellerstein, Peter] Haas, and Helen] Wang. Online aggregation. In Acm
Sigmod Record, volume 26, pages 171-182. ACM, 1997.

Peter] Haas, Thab F Ilyas, Guy M Lohman, and Volker Markl. Discovering and
exploiting statistical properties for query optimization in relational databases: A
survey. Statistical Analysis and Data Mining: The ASA Data Science Journal, 1(4):223—
250, 2009.

Yannis Ioannidis. The history of histograms (abridged). In Proceedings 2003 VLDB
Conference, pages 19-30. Elsevier, 2003.

Yannis E Ioannidis and Viswanath Poosala. Balancing histogram optimality and
practicality for query result size estimation. In Acm Sigmod Record, volume 24, pages
233-244. ACM, 1995.

Yannis E Ioannidis and Viswanath Poosala. Histogram-based approximation of set-

valued query-answers. In VLDB, volume 99, pages 174-185, 1999.

Bibliography

123

[JAPDOS]

[JKM 98]

[JYL11]

[KMO05]

[KMO07]

[KMO08]

[KSH12]

[KSM07]

[KSVT16]

[lev]

[LHZ*16]

Chris Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra. Scalable
approximate query processing with the dbo engine. ACM Transactions on Database
Systems (TODS), 33(4):23, 2008.

Hosagrahar Visvesvaraya Jagadish, Nick Koudas, S Muthukrishnan, Viswanath
Poosala, Kenneth C Sevcik, and Torsten Suel. Optimal histograms with quality guar-
antees. In VLDB, volume 98, pages 275-286, 1998.

Jeffrey Jestes, Ke Yi, and Feifei Li. Building wavelet histograms on large data in
mapreduce. Proceedings of the VLDB Endowment, 5(2):109-120, 2011.

Panagiotis Karras and Nikos Mamoulis. One-pass wavelet synopses for maximum-
error metrics. In Proceedings of the 31st international conference on Very large data
bases, pages 421-432. VLDB Endowment, 2005.

Panagiotis Karras and Nikos Mamoulis. The haar+ tree: a refined synopsis data
structure. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference
on, pages 436—445. IEEE, 2007.

Panagiotis Karras and Nikos Mamoulis. Hierarchical synopses with optimal error
guarantees. ACM Transactions on Database Systems (TODS), 33(3):18, 2008.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097-1105, 2012.

Panagiotis Karras, Dimitris Sacharidis, and Nikos Mamoulis. Exploiting duality
in summarization with deterministic guarantees. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
380-389. ACM, 2007.

Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert
Grandl, Surajit Chaudhuri, and Bolin Ding. Quickr: Lazily approximating complex
adhoc queries in bigdata clusters. In Proceedings of the 2016 international conference
on management of data, pages 631-646. ACM, 2016.

Leveldb. https://github.com/google/leveldb.

Xiaoyun Li, Shizhong Huang, Huanyu Zhao, Xueyan Guo, Libo Xu, Xingsen Li, and
Youjia Li. Image compression based on restcted wavelet synopses with maximum
error bound. In Proceedings of the 9th International Conference on Utility and Cloud
Computing, UCC ’16, pages 333-338, New York, NY, USA, 2016. ACM.

124 Bibliography

[lin] Linked sensor data. https://wikiknoesis.org/index.php/SSW_Datasets.

[LLZO02] Tao Li, Qi Li, Shenghuo Zhu, and Mitsunori Ogihara. A survey on wavelet applica-
tions in data mining. ACM SIGKDD Explorations Newsletter, 4(2):49-68, 2002.

[Loh19] Sharon L Lohr. Sampling: Design and Analysis: Design and Analysis. Chapman and
Hall/CRC, 2019.

[LTC10] Ken-Hao Liu, Wei-Guang Teng, and Ming-Syan Chen. Dynamic wavelet synopses
management over sliding windows in sensor networks. IEEE Transactions on Knowl-
edge and Data Engineering, 22(2):193-206, 2010.

[LWYZ16] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggregation via
random walks. In Proceedings of the 2016 International Conference on Management
of Data, pages 615-629. ACM, 2016.

[Mal99] Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

[mar] Histogram-based statistics in mariadb. https://mariadb.com/kb/en/library/histogram-

based-statistics/.

[MFo02] Samuel Madden and Michael J Franklin. Fjording the stream: An architecture for
queries over streaming sensor data. In Data Engineering, 2002. Proceedings. 18th
International Conference on, pages 555-566. IEEE, 2002.

[Moz15] Barzan Mozafari. Verdict: A system for stochastic query planning. In CIDR, 2015.

[MP03] Yossi Matias and Leon Portman. Workload-based wavelet synopses. Technical re-

port, Technical report, Department of Computer Science, Tel Aviv University, 2003.

[MP04] Yossi Matias and Leon Portman. 7-synopses: a system for run-time management
of remote synopses. In International Conference on Extending Database Technology,
pages 865-867. Springer, 2004.

[mss] Sql server statistics. https://docs.microsoft.com/en-us/sql/relational-

databases/statistics/statistics?view=sql-server-ver15.

[Mut05] S Muthukrishnan. Subquadratic algorithms for workload-aware haar wavelet syn-
opses. In FSTTCS 2005: Foundations of Software Technology and Theoretical Computer
Science, pages 285-296. Springer, 2005.

[MVW98] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-based histograms for
selectivity estimation. In ACM SIGMOD Record, volume 27, pages 448-459. ACM,
1998.

Bibliography 125

[noa] National oceanic and atmospheric administration.
https://www1.ncdc.noaa.gov/pub/data/noaa/.

[nyc] Nyect. http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.

[ope] Opencl standard. https://www.khronos.org/opencl/.

[ora] Oracle 12c histograms. https://docs.oracle.com/database/121/TGSQL/tgsql_histo.htm.

[par] Parquet. https://parquet.apache.org/.

[PGD12] Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis. Sketch-based
querying of distributed sliding-window data streams. Proceedings of the VLDB En-
dowment, 5(10):992-1003, 2012.

[PMSW18] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. Verdictdb:
universalizing approximate query processing. In Proceedings of the 2018 International
Conference on Management of Data, pages 1461-1476. ACM, 2018.

[pre] Presto: Distributed sql query engine for big data. https://prestodb.github.io/.

[PSC84] Gregory Piatetsky-Shapiro and Charles Connell. Accurate estimation of the number
of tuples satisfying a condition. ACM Sigmod Record, 14(2):256-276, 1984.

[PZHMO09] Chaoyi Pang, Qing Zhang, David Hansen, and Anthony Maeder. Unrestricted
wavelet synopses under maximum error bound. In Proceedings of the 12th Inter-
national Conference on Extending Database Technology: Advances in Database Tech-
nology, pages 732-743. ACM, 2009.

[QAEA03] Lin Qiao, Divyakant Agrawal, and Amr El Abbadi. Supporting sliding window
queries for continuous data streams. In Scientific and Statistical Database Manage-
ment, 2003. 15th International Conference on, pages 85-94. IEEE, 2003.

[RBM15] Nicol6 Rivetti, Yann Busnel, and Achour Mostefaoui. Efficiently Summarizing Dis-

tributed Data Streams over Sliding Windows. PhD thesis, LINA-University of Nantes;
Centre de Recherche en Economie et Statistique; Inria Rennes Bretagne Atlantique,
2015.

[RMW™T16] Jags Ramnarayan, Barzan Mozafari, Sumedh Wale, Sudhir Menon, Neeraj Kumar,

Hemant Bhanawat, Soubhik Chakraborty, Yogesh Mahajan, Rishitesh Mishra, and
Kishor Bachhav. Snappydata: A hybrid transactional analytical store built on spark.
In Proceedings of the 2016 International Conference on Management of Data, pages
2153-2156. ACM, 2016.

126

Bibliography

[SCZ05]

[SDS96]

[Shn84]

[SJBKO08]

[SMTZ17]

[spa]

[SZBT16]

[TK15]

[VW99]

[XTB0S]

Michael Stonebraker, Ugur Cetintemel, and Stan Zdonik. The 8 requirements of
real-time stream processing. ACM Sigmod Record, 34(4):42-47, 2005.

Eric J Stollnitz, Tony D DeRose, and David H Salesin. Wavelets for computer graphics:
theory and applications. Morgan Kaufmann, 1996.

Ben Shneiderman. Response time and display rate in human performance with com-
puters. ACM Computing Surveys (CSUR), 16(3):265-285, 1984.

Cyrus Shahabi, Mehrdad Jahangiri, and Farnoush Banaei-Kashani. Proda: An end-
to-end wavelet-based olap system for massive datasets. Computer, 41(4):69-77, 2008.

Zubair Shah, Abdun Naser Mahmood, Zahir Tari, and Albert Y Zomaya. A technique
for efficient query estimation over distributed data streams. IEEE Transactions on
Parallel & Distributed Systems, (10):2770-2783, 2017.

Spark SQL. https://spark.apache.org/sql/.

Hong Su, Mohamed Zait, Vladimir Barriére, Joseph Torres, and Andre Menck. Ap-
proximate aggregates in oracle 12c. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management, pages 1603-1612. ACM,
2016.

Immanuel Trummer and Christoph Koch. An incremental anytime algorithm for
multi-objective query optimization. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, pages 1941-1953. ACM, 2015.

Jeffrey Scott Vitter and Min Wang. Approximate computation of multidimensional

aggregates of sparse data using wavelets. In ACM SIGMOD Record, volume 28, 1999.

Bojian Xu, Srikanta Tirthapura, and Costas Busch. Sketching asynchronous data

streams over sliding windows. Distributed Computing, 20(5):359-374, 2008.

Fast, approximate analysis of big data (yahoo’s druid).
https://yahooeng.tumblr.com/post/135390948446/data-sketches.

Yong Yao, Johannes Gehrke, et al. Query processing in sensor networks. In Cidr,
pages 233-244, 2003.

Kai Zeng, Shi Gao, Jiaqi Gu, Barzan Mozafari, and Carlo Zaniolo. Abs: a system for
scalable approximate queries with accuracy guarantees. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data, pages 1067-1070.
ACM, 2014.

Bibliography

127

[ZGMZ14]

[ZPH09]

[ZS02]

[ZWY16]

Kai Zeng, Shi Gao, Barzan Mozafari, and Carlo Zaniolo. The analytical bootstrap:
a new method for fast error estimation in approximate query processing. In Pro-
ceedings of the 2014 ACM SIGMOD international conference on Management of data,
pages 277-288. ACM, 2014.

Qing Zhang, Chaoyi Pang, and David Hansen. On multidimensional wavelet syn-
opses for maximum error bounds. In International Conference on Database Systems

for Advanced Applications, pages 646—661. Springer, 2009.

Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of
data streams in real time** work supported in part by us nsf grants iis-9988345 and
n2010: 0115586. In VLDB’02: Proceedings of the 28th International Conference on Very
Large Databases, pages 358-369. Elsevier, 2002.

Xuhong Zhang, Jun Wang, and Jiangling Yin. Sapprox: enabling efficient and accu-
rate approximations on sub-datasets with distribution-aware online sampling. Pro-
ceedings of the VLDB Endowment, 10(3):109-120, 2016.

128 Bibliography

APPENDIX A

The MinHaarSpace Algorithm

MinHaarSpace [KSM07] is a DP algorithm that targets the error-bound Problem 2 that was de-
scribed in Section 2.4. The coefficients that MinHaarSpace selects for the synopsis are not strictly
in the set of the ones produced by the HWT but can be any value z € R. However, as we dis-
cussed in Chapter 2 for unrestricted wavelets, we do not have to explore all real numbers but we

can restrict coefficient values in a bounded range.

For bounding the search space for candidate coeflicient values, MinHaarSpace uses the notion
of the incoming value. An incoming value at node c; of the Haar tree is a value reconstructed
in the path of ancestors from the root node up to ¢; in the sparse representation Zof A Ina
wavelet decomposition W (A), this is the average value in the interval I under the scope of ¢;,
henceforward called real incoming value at c;. With that in mind, the algorithm first bounds the
candidate incoming values for a node (Lemma 16) and then uses this bound to define the search
space for coefficient values (Lemma 17). For making the exploration of both incoming values
at ¢; and assigned values in the coefficients feasible, the real-valued domains of v and z} are

quantized into multiples of a small resolution step J.

Lemma 16. Let v; be the real incoming value at node c;. Let v be an incoming value to c; for which

the error bound € under the Lo, can be satisfied, and € = mi;je] {lw;

}, where I is the interval

under the scope of node c;; then |v;—v| < €.

129

130 Appendix A. The MinHaarSpace Algorithm

Lemma 17. Let v; be the real incoming value at node c¢;, z; the real assigned value at c;, v € S; be

a possible incoming value at c; for which the maximum error bound € can be satisfied, and z{ be a

value that can be assigned at c¢; for incoming value v, satisfying €; then |z;-z!| < € —|v;-v|.

Lemma 17 implies that the finite set 57 C R of possible assigned values we have to examine
at node ¢;, for a given incoming value v € S;, consists of the multiples of ¢ in the interval
syl < A=) +1=0(5).

Based on that Lemma, MinHaarSpace comprises a bottom-up, left-to-right procedure over

[2i— (€-|vi=v]) , z; + (€-|vi—v])]; hence,

the error-tree. At each visited node ¢; it calculates an array D of size |.S;| from the pre-calculated
arrays L and R of its children nodes ¢;, , ¢;;, (a single array C' for the child ¢ of the root node).
D holds an entry D [v] for each possible incoming value v at ¢;. Such an entry contains: (i)
the minimum number D [v].s = S (i,v) of non-zero coefficients that need to be retained in
the sub-tree rooted at c¢; with incoming value v, so that the resulting synopsis satisfies the error
bound ¢; (ii) the §-optimal value D [v] .z to assign at ¢;, for incoming value v; and (iii) the actual
minimized maximum error D [v] .e that is obtained in the scope of ¢;. Then, a DP procedure is

formulated and recursively expressed as:

S(i,v):?ggg{S(iL,v—l—z)+S(iR,U—z)+(z#0)}

i

S(0,0) = min {8 (ic, 2) + (z % 0)}

2658

These equations tabulate all possible space allocations. They compute: (i) the minimum re-
quired space if a non-zero coefficient value z is assigned at node ¢; and (ii) the required space if
the coefficient is discarded. The latter case only applies if 0 € SY. Let SY C R denote the set of
those assigned values at node c; for incoming value v that require the minimum space in order

to achieve the error bound e:

SY = argminesy {S (ip,v + z) + S (ig,v — 2) + (2 # 0)}

58 = argminzegg {S(ic,z) + (2 #0)}

The J-optimal value to select is the one among these candidates that also minimizes, in a
secondary priority, the obtained L,-error in the scope of ¢;. Let E (i, v) be the minimum L,
error obtained in the scope of ¢; with incoming value v and an assigned value z, with S (i, v)

coefficients retained in the sub-tree rooted at ¢;:

E (i,v) = ngggj {maz {E (ig,v + z), E (ir,v — 2)}}

131

E(0,0) = min {F (ic, 2)}

zesg

Algorithm 15 presents the pseudocode of MinHaarSpace as a recursive procedure.

Algorithm 15: MinHaarSpace(¢,e)
input: Index ¢, error-bound ¢, data vector A
if i = 0 then

C' = MinHaarSpace(1, €);

compute s,z € S, e of D from C;

else if i < & then

1

2

3

4 2

5 L = MinHaarSpace(ir,, €);
6

7

8

9

R = MinHaarSpace(ig, €);
for eachv € S; do
‘ compute s,z € S?, e of D [v] from L, R;
else if 7 > % then
10 for eachv € S; do
11 | compute s € {0,1}, z € {0, ¢}, e of D [v] from A;
12 return D;

Complexity Analysis. The result array D on each node ¢; holds |S;| entries, one for each
possible incoming value, hence its size is O (%) Furthermore, at each node ¢; and for each
v € S;, the loop through all |S}| possible assigned values takes O (%) time. Hence, the run-
time of MinHaarSpace(0, ¢) is O <(§)2 N). Besides, since at most log/N + 1 arrays need to be
concurrently stored, the space complexity is O (%logN +N)

132 Appendix A. The MinHaarSpace Algorithm

APPENDIX B

MapReduce for Ls-error Synopses

In this Appendix, there can be found a description of the Mapreduce algorithms presented in
[JYL11] for the construction of the Lo-optimal wavelet synopsis. The described algorithms are:
Send-Coef, Send-V and H-WTopk. All the algorithms in [JYL11] compute wavelet synopses
over histograms. Thus, in order to compare them against the proposed algorithms of this thesis,
the algorithms are first modified not to compute histograms but perform the wavelet transform
directly on the input data. For all the descriptions that follow, we denote IV as the dataset size,
m the number of map tasks, S the input size of a map task and R the size of the root sub-tree in

datapoints.

B.1 Send-V

The simplest algorithm presented in [JYL11] for the computation of a conventional synopsis is
Send-V. The Send-V algorithm computes a histogram in the map phase of the job. The reducer
centrally computes the wavelet coefficients and retains the B largest ones. As the histogram
computation is not required in our case, Send-V is, in effect, a sequential algorithm, where the

reducer reads and centrally computes the wavelet transform for all the input data.

133

134 Appendix B. MapReduce for Lo-error Synopses

B.2 Send-Coef

For computing the wavelet coefficients, Send-Coef is based on the basis vectors method, as de-
scribed in Section 2.3. The distributed computation of Send-Coef is based on the following ob-

servation:

m
j=1
where A; is the j-th partition of the initial input data. Thus, every wavelet coefficient is a

linear combination of the data values that belong to its sub-tree in the error-tree.

Send-Coef partitions the data in a different way than the one proposed in Section 3.2. Each
mapper takes up as many datapoints as they fit in a typical HDFS block size. The block size
does not need to be aligned to a power of two. For every datapoint d;, the mapper computes its
contribution to the final value of every wavelet coefficient in pathg,. Thus, a mapper partially
computes all the coefficients along the path from its datapoints to the root of the error-tree and
thus sub-tree locality is not preserved. The reducer computes the final coefficients by aggregating
the partially computed values and then retains the B largest ones in absolute normalized value.

Algorithm 16 gives the pseudocode for the mappers of the Send-Coef algorithm.

As data locality is not preserved and for every data value we need to compute its contribution
to log N +1 nodes (the path to the root), the computational complexity of a mapper is O (SlogN).
Furthermore, every mapper emits O (S (logN — l0gS)) key-values to the reducer. By having m
mappers, the whole communication cost is O (mS (logN — logS)) = O (N (logN — logS)).
Compared to Send-Coef, CON achieves better computational complexity by a factor of logN

and communication cost by logN — log5.

Algorithm 16: Send-CoefMapper
Require: S: mapper input data
1: for all datapoints d; € S do
2. for all error-tree nodes j € pathg, do
compute contribution ¢; ; of d; to coefficient ¢;
if ¢; is fully computed then emit (7, ¢;)
: for all datapoints d; € S do
for all error-tree nodes j € pathgy, do
if ¢; is partially computed then emit (7, ¢; ;)

N SoRw

B.2. Send-Coef 135

B.2.1 H-WTopk

In order to reduce the communication cost between the map and the reduce phase, the H-WTopk
algorithm is proposed in [JYL11]. H-WTopk is based on the TPUT [CW04] algorithm for the
distributed top-k problem. In contrast to TPUT, H-WTopk can handle both positive and negative
values, as both are possible for a wavelet coefficient. The intuition behind the algorithm is to use
a partial sum to prune items that cannot be in the top-k. Thus, a mapper does not need to send
all of its data to the reducer but only a set of candidate nodes, according to the local partial sums.
The algorithm requires three communication rounds between the mappers and the reducer. For
a coefficient z, ¢ (z) denotes its value and ¢; (z) its partially computed value at mapper j.
Round 1: Each mapper first emits the coefficients with the k highest and k lowest (i.e., most

negative) values. For each coefficient = seen at the reducer, a lower bound 7 (x) is computed on

its total value’s magnitude |c () | (i.e., |c (z) | > 7 (z)), as follows. First, an upper bound 77 (z)
and a lower bound 7~ () are computed on its total value ¢ (x) (ie., 7~ (z) < c(x) < 77 ()):
If a mapper sends out the value of z, its exact value is added. Otherwise, for 71 (z), the k-th
highest value this mapper sends out is added and for 7~ (z) the k-th lowest value is added. Then
we set 7 (z) = 0if 77 (z) and 7~ (x) have different signs and

7(x) = min{|7" (z)], |7~ ()|} otherwise. Doing so ensures 7~ (z) < c¢(z) < 71 (x) and
|c(x)| > 7 (x). Now, the k-th largest 7 (), denoted as 77, is used as a threshold for the magni-
tude of the top-k coefficients.

Round 2: A mapper j next emits all local coefficients = having |c; ()| > T1/m. This
ensures a coeflicient in the true top-k in magnitude must be sent by at least one mapper after
this round, because if a coefficient is not sent, its aggregated value’s magnitude can be no higher
than 7.

Now, with more values available from each mapper, upper and lower bounds 7+ () , 7~ (z)
are refined for each coefficient x € L, where L is the set of coeflicients ever received. If a
mapper did not send the value for some x, Ty /m (- — T} /m) is now used for computing 7" ()
(77 (z)). This produces a new better threshold, 75 (calculated in the same way as computing T}
with improved 7 (x)’s), on the top-k coefficients’ magnitude.

Next, coefficients are further pruned from L. For any z € L a new threshold 7/ (z) =
maz{|tT (x)]|,|7~ (x) |} is computed based on refined upper and lower bounds 7+ (z) , 7~ (z).
If 7/ (z) < T, coefficient x is deleted from L. The final top-k coefficients must be in the set L.

Round 3: Finally, the values of all coefficients in L are requested from each mapper. Then
the aggregated values of exactly these coefficients are computed, and the k of largest magnitude

among them are selected as the synopsis.

136 Appendix B. MapReduce for Lo-error Synopses

Index of Algorithms

BUDGreedyAbs Distributed heuristic algorithm, that given a budget constraint, approximates
the L,-optimal wavelet synopsis. BUDGreedyAbs is a contribution of this dissertation.
xiv, 43-46, 49-52, 65-69

CON Algorithm for the distributed computation of the Lo-optimal synopsis. CON is a contri-
bution of this dissertation. x, 47, 51-53, 134

DGreedyAbs Distributed heuristic algorithm, that given a budget constraint, approximates the
L.-optimal wavelet synopsis. DGreedyAbs is a contribution of this dissertation.. x, 39,
42, 43, 45, 47, 49-52, 65-67, 69

DIndirectHaar Distributed version of IndirectHaar. DIndirectHaar is a contribution of this
thesis and parallelization has been achieved through the proposed framework of Chapter
3. xiv, 34, 35, 49-53, 65-69

GreedyAbs Centralized heuristic algorithm, that given a budget constraint, approximates the
L-optimal wavelet synopsis. It works only for one-dimensional data. x, 15, 38-45, 47,
50, 52, 59, 62, 63, 65

H-WTopk Algorithm for the distributed computation of the Lo-optimal synopsis. Proposed in
[JYL11]. xi, 53, 54, 133, 135

137

138 Index of Algorithms

IndirectHaar Centralized algorithm that, given a budget constraint, constructs an L,-optimal
wavelet synopsis by solving multiple times the dual problem. Proposed in [KSM07]. 18,
34, 35, 50-52, 65, 68

MDMSpace A multidimensional extension of the MinHaarSpace algorithm. MDMSpace is a

contribution of this dissertation . x, 60-65

MGreedyAbs A multidimensional extension of GreedyAbs. MGreedyAbs is a contribution of
this dissertation. x, 62—-65

MinHaarSpace Centralized DP algorithm that solves the error-bound problem for constructing
an an Ls.-optimal wavelet synopsis. It works only for one-dimensional data. Proposed in
[KSMO07]. x, xiv, 35, 36, 56, 59-61, 65, 129-131

Send-Coef Algorithm for the distributed computation of the Ly-optimal synopsis. Proposed in
[JYL11]. xi, 53, 133-135

Send-V Algorithm for the distributed computation of the Ly-optimal synopsis. Proposed in
[JYL11]. xi, 53, 133

SW2G Streaming algorithm that works completely in-memory and can answer range queries

over sliding-window streams. SW2G is a contribution of this dissertation. 94

Acronyms

AQP Approximate Query Processing. xi, xxi, 11, 13-15, 93, 105-107, 109, 111, 113-115

DP Dynamic Programming. ix, x, xiii, 15, 17, 18, 26, 29, 31-39, 51, 52, 56, 68, 87, 107, 110, 111,
115, 129, 130

GPU Graphics Processing Unit. 16, 18, 35-37, 55-57
HWT Haar Wavelet Transform. 26-28, 30, 129

IoT Internet of Things. xxi, xxii, 17, 71, 88, 115

139

