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Evuyxapioticg
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dlapkela vdoroinong g StatpBrig pou. H PBorBesia tou frav kat e§akodoubei va eivat
AVEKTINTH TO00 O€ EPEUVNTIKO £TTNEO, 1€ EVOTOXEG TIAPATNPLOEIS KAl Kaipleg H10pOwaoelg
orou xpetadotav, aAdd Kat o€ IIPOOPITIKO £rinedo Pe tv apéplotn Katavonor Kat UTopo-
vr] Tou. AloBdavopatl §a1peTiKA TUXEPOG TTOU HOU £6®OE TNV €UKA1PIA VA EPYACT® O AUTH
1 HOVIEPVA KAl OUVAPITIACTIKY] EPEUVITIKY] TIEPLOXT] UTIO TNV Kabodrynon kat emiBAsyn
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nng, Kabnynt) EppavounA IMaonaddkn kat AvarAnpetr) Kabnynty) loavvny ®avornoulo,
OIS KAl TA UTIOAOTA PEAN TG EMTAPEA0US CUPBOUAEUTIKYG emTitporig, AvarAnpot Ka-
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IlepiAnyn

H xBavtikr] vavop®ToVIKY] £ival 1o medio Eépeuvag 10 o11oio adopd ot PeALT] TOV KBAVIIK®OV
1810t TOV TOU PXOTOG Katd TNV aAAnAenidpaoct) 1ou pe v UAn oto eminedo g vavoxkAipa-
Kag. Zinv nepimmworn mou o1 vavodoleg eival PetaAAkeg Kat, 161aitepd, KATAOKEUAOHEVES
anod euyevr) PETAAAd TOTE 01 VAVOSOEG, Y1a OUYKEKPIHEVEG TIEPIOXEG TOU 0PATOU NAEKTPO-
payvnukou (HM) @dopatog (o€ apKeTEG MEPUTIROOELS KAl TOU UTEPUBpou) epdavidouv Evav
Turno d1eyEpoemv, Ta Asyopeva empavelakda miaopovia ornou 1o HM niebio, Bplokopevo oe
oUdeudn pe tadaviwoelg @optiou (MAdopa) oty ermpavela g vavodopung, eviortidetat oe
ECAIPETIKA NIKPEG TIEPIOXEG TOU XMPOU, TTOAU PIKPOTEPES ATIO AUTEG ITOU PITOPOUV VA EITL-
TeuxBouv pe oupBatikd orukd péoa AOYy® tou oplou S1akpltiking Kavotntag rnou JEtet 1o
@awvopévo g riepibAaong. To avukeipevo tng tapouong diatpBrng apopd otn PeALT NG
aAAnlenidpaong UANG-aktivoBoAiag OtV CUYKEKPIIEVT TIEPLOXT]. ZUYKEKPIHEVA PeAeTdTatl
n aAAnAemnidpaon kBavikav eknopnav, 6nAadr) oxedov onuelakov nnyov HM aktivoBo-
Alag omwg eivatl Ta atopa, ta popla 1) ot KBaviikeg teAeieg, e petadAikd (1) tortodoyikd)
vavooeuatidla, ta onoia aktivoBolouvial arod opatod (1) uTEpUOPOo) PKg.

I'a ) Sewpntikr)/ UTTIOAOY10TIKY] PEALT TETO1OV UBPIOIKOV PROTOVIK®V CUCTHAT®V, d-
vantuxOnke £évag @opHaAiopog mOAAAANIG OKESAONG TTIOAAPITOVIK®V TEAECTOV OTOV OIT010
evoopat®dnke n péBodog oudeuypévav Simodev yia vavooopatibia, ouvodeuopevog aro
TNV KATAOKEUI] OXETIKOU UTIOAOY10TIKOU Kd1ka ot yAwooa Fortran 90. Zupgweva pe
TOV QOPHAAIoPO autld, meptypadovial MANPeg 6Aa ta mbavd povordtia PEow TV OIto-
iov okedddetal 10 pwg péoa oe pla UBp1d1KY) oUAAOyYr) AT KBAVIIKOUG EKITOUITOUG Kl
vavooopatidia. 'Etol, mépa amno v KAaooikn moAAarnAr] (eAaotikr)) okeSaon 10U Q®TOG
anod 1a vavooopatidla, o goppadiopog nepldapBavel kat gaivopeva d1€yepong/ amnodi-
gyepong/ mayideuong tou PETOG 0Toug KBAVIIKOUG EKMTOUTTIOUS. ApX1KdA, 1 avartuxBeioa
1€6060g epappooInKe ot PEALTH YPAPMIKLG aAuoidag arotedoupevng ano Sipepr| KBa-
VIIKQV EKTIOUITIOV KAl PETAAAKOV vavooaPatidiov rmou aAAnAermbpouv otnv mep1oxn) g
10XUpng oudeudng, orou mapatnpeitat n avade§n piag rmietadag rmAeItovikOV ouviovi-
OpOV ®g arodppola pag dadikaociag uBp1d1o0U PeTaly TV MAESITOVIKOV GUVIOVIOH®OV
KaBevog pepovepévou d1pepous. X1 oUVEXEld, Yida 10 1610 oUoTtnpa EKTEAEOTNKAV EKTE-
velg uttodoylopol yla ta gdaopata @eTog Kal mapouctdaletal £vag OUCTNHATIKOG TPOTT0G
EPUNVEIAG TOV PACUATOV KAO®OG KAl £€vag TPOTIOG MPOBAEWNS TOV IOV QACHATIKGOV TACE-
@V yla uBpdikég aduoideg aubaipetou pnkoug. Katormv pedemOnke n adAnienidpaon
OtV TEPLOXN TG 10XUPHS OULEUENG evog S11epoUg KBAVIIKOU EKITOPUITIOU KAl VAVOO®Id-
11610U TOMOAOYIKOU POVRTH OTOU rapatnpeitat n avadei§n evog vEou TPOIoU TaAAVI®ONG
IAPOPO10U HE TOV TMAESITOVIKO TTOU Iapatnpeital oe Sipepr) KBAVIIKOV EKTIOUIIOV KAl HE-
TaAAKGV vavooepatidiov. Tédog, epappdotnke povo 1) PEB0d0g TV OUEUYHEVROV HITOAGV
0€ £va VAVO-OUCOOUATOHA ATOTEAOUHEVO Artd KBAVIIKOUG EKITOPITOUS KAl NETAAAKA va-
voompatidla, 61ou PeAeT|OnKe 0 TPOIT0G € TOV 011010 1] AAANAenidpact) TV EMPAVEIAKDV
MAAOPOVIOV TOV PETAAAKOV vavoo®uatidiov pe Toug e§1TOVIKOUG OUVIOVIOHOUS TV KBa-
VIIKOV EKTIOUTIOV AVIIKATOMIPIdETAl O TEPAPATIKA HETPNOA PeEYEDN OMwG 11 EVEPYOS
S6latopr) anoppopnong T0U Vavo-cUCCHUATOIATOG.






Abstract

Quantum nanophotonics is the research field that concerns the study of quantum
properties of light during its interaction with matter at the nanoscale. In the case
where the nanostructures are metallic and, especially, made from noble metals then, for
specific regions of the visible electromagnetic spectrum (EM) (in several cases infrared
as well) new types of excitations emerge, the so-called surface plasmons where the EM
field, coupled with charge oscillations (plasma) at the surface of the nanostructure,
is located in extremely small regions of space much smaller than those that can be
accomplished by conventional optical means due to the diffraction limit. The object
of the present thesis is the study of light-matter interactions in the regime described
above. Specifically, we study the interaction between quantum emitters, i.e. almost
pointlike sources of EM radiation such as atoms, molecules or quantum dots, with
metallic (or topological) particles, that are illuminated by visible (or infrared) light.

For the theoretical/computational study of such hybrid photonic systems, a mul-
tiple scattering polaritonic operator formalism that incorporates the coupled dipole
method for nanoparticles was developed, accompanied by the construction of a rel-
evant computational code in Fortran 90. The formalism is suitable to describe all
possible paths through which light can be scattered by a hybrid collection of quantum
emitters and nanoparticles. Thus, beyond the classical multiple (elastic) scattering of
light by the nanoparticles, the formalism incorporates phenomena such as light exci-
tation/decay/entrapment in the quantum emitters. The developed method is initially
implemented in the study of a linear binary chain comprising of quantum emitter -
metallic nanoparticle dimers, where the emergence of a multiplet of plexcitonic res-
onances is observed as a result of a hybridization process between the plexcitonic
resonances of each individual dimer. Next, for the same system, extensive numeric
calculations are performed for the light spectrum, and a systematic means to interpret
the spectra is presented as well as a means to predict the spectral trends for hybrid
chains of arbitrary length. Afterwards, the interaction of a quantum emitter - topolog-
ical insulator nanoparticle dimer was studied in the strong coupling regime where the
emergence of a novel mode was observed, similar to the plexcitonic one that appears
in quantum emitter - metallic nanoparticle dimers. Finally, the coupled dipole method
was applied to a nanocluster that consists of quantum emitters and metallic nanopar-
ticles in order to study the ways in which the interaction between the surface plasmons
of the metallic nanoparticles with the excitonic resonances of the quantum emitters is
reflected on experimentally observable quantities such as the absorption cross section
of the nanocluster.
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Chapter 1

ZUVoWn TV ANOTEAECRATWOV NG

618artopirng Sratpibrg

1.1 Euwayoyn

Ta erugavelakd mdaopovia (ETI) etvat nAektpopayvnukd (EM) kupata ta oroia oudeuyo-
viat pe tg oUAAOYIKEG TAAAVIWOELS @optiou otr Sieradr petady duo péonv pe Sarte-
PATOTNTEG H1APOPETIKOU TPOCH IOV, OMKG HETASU £VOG SINAEKTPIKOU KAl TOU aépda 1) EVOG
petdddou. Ta evioruiopéva ETI, eival tadaviwoelg mAdopatog mou AapBavouv Xopa otnv
EMPAVELN £VOG TIETEPAOPEVOU PETAAAIKOU aVIIKEIPEVOU pe Hlaotdoelg oty KA{paka tou
vavopétpou. 'Eva amo ta 1o onuavilkd XapakKinplotiKd 1OV PETAAAKOV vavodouav TTou
@1A0gEVOUV ermPavelakd mAaopovia eivat i IKavotnta toug va rayldevouy 10 oS O Tie-
PLOXEG TOU X®POU TTOU £ival TTOAU PIKPOTEPES ATTO TO HIKOG KUHPATOG, £vad XAPAKTIIPLOTIKO
10 ormoio Tig Kab1otd 16avika OUCTATIKA OTOIXEld O£ PIKPOOKOTIKA (PROTOVIKA KUKA®A-
ta. O 10XUpOg EVIOTIOPOG TOU NAEKTIPOPAYVITIKOU TEDIOU £VIOG TETOIRV TEPIOXMV EXEL
©G ATIOTEAEOUA TEPAOTIEG TIHEG OTO NAEKTIPIKO Tedio KaBwg KAl 10XUPT) TPOITOIOiNor ToU

PAoPAtog aubBopunIng EKMOUIING, TA OToild eVioXUoUV TV dAAnAemnidpaocn 10U QETOS He
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KBavtikd ouotpata nmou Ppiokoviatl MANoiov MAACPOVIK®OV vavodop®v Kat odnyouv ot
onpavtika drapoporoinpéva (Kuping evioxupéva) OmtiKkdA @Aatvopeva ot VAVOKATaKda.

[6aitepo evBrapépov rapouotdouv vavodiatdielg rmou reptdapBavouv KBAVIIKOUG K-
roprnoug (KE) onwg xBaviikég tedeieg, Bagég, dtopa K.a. avapelypéva pe éva 1) Ie-
ploootepa petaddikda vavooopatidia (NX). Ze autr v MEPIMIOON 1] OIMTIKI ATIOKP1oN
TOV KBAVIIK®OV EKTTOPIOV EMNPEAleTal aro TG O1EYEPOELS TOV EVIOTTIOHEVAV ETLPAVEIAKWV
MAAOHOVIEV TOV vavoomuatidi®v. Z1o 0p1o tng acBevoug ouUleudng 1) OITTIKY ATOKP10T] TRV
KBAVIIKOV EKMTOPTNAOV PetaBAAAstal POvo og oxEon He Tov pubpo aubopuning eKIONIIHG O
ortoiog, Péo® tou @atvopévou Purcell , eivat avdAoyog pe 1o @aviaotiko pepog ToU tavu-
o] Green 1tV PETAAMK®V vavooopatdiov. ZInv meploxn g 10xXupng ouleuing ®otdoo,
otav déndadr o1 ouXVOTNTEG OUVIOVIOHOU TV KBAVIIKAOV eKMOPn®V dev eival paopauxkda
O1aKPITEG Ao TIG CUXVOTNTES TV EMPAVEIAK®V TMTAACHOVIOV TOV PETAAAKGOV VAVOORIATL-
b6lwv, eKk10g amo ) petaBoln tou pubpou aubopuning eknopnng, peta8aidovial Kat ta
EVEPYELAKA £TUITESA TOV 1610V TOV KBAVIIK®V EKITOPII®OV, AVASEIKVUOVIAG VEA EVEPYELAKA
ertineda Kat tpoOnoug taAdvimong Ot 01toiotl oxetidovial otevd Pe Toug TPOToUS TAAAVIOONS
TRV EMPAVEIAKOV TTAAOUOVIOV TV vavooouatidiov. Av ol KBaviikoi eKmournoi eivat nua-
YOYIHES KBAVTIKEG TeEAEieg, OTIOU Ol OITTIKOL OUVIOVIOHOL £ival €§ITOVIKLG IIPOEAEUONG, Ot
avadudpevot Tporot TaAdvimong otny MEPLOXN NG 10XUPNS o0Uleudng armokailovuviat moAd-
pltovia rmAacpoviou-g§itoviou 1) mAstovia.

Ta Bacikd XapaKinpiokd T®V MEPAPATIKOV @AOUATeV TToU §1EpEUVOUV TOUG TTAESITO-
VIKOUG OGUVTOVIOHOUG UBP181KGV OUCTNHATOV ATIOTEAOUHEVA ATIO KBAVIIKOUG EKTIOHITIOUS
KAl vavooepatidla propouv va epUNVEUTOUV UIO T0 MPIopa £VOG POVIEAOU (KAAOOIK®OV)
OULEUYHEVOV TAAAVIOTOV. QO0TO00, TEPIOCOTEPO “"Aemtd” KBAVIIKA @AVOPEVA OTIRG 1 U-
repaktivoBoAia [12] 1) n artooBeon tou @Ooplopoy [69] dev prmopouv va avadstxBouv edv
b6ev AngOet untown n kKBaviopnyavikny @uorn tou uBpidikou cuotnuatog KE-NZ [70-74]. H

10 MMANPNG meptypadn g aAAnAenidpaong OTOg Petady evog 1) IEPIOCOTEP®Y KBAVIIKOV
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EKTTOUIIOV KAl EVOG SOUNPEVOU PXTOVIKOU Mep1BaiAovtog eivatl autr) rou Baociletatl oe pa
1€6060 TIOAAATIANG 0KEHAONG TTIOAAPITOVIKGV TeEAeoT®V [75], epappodopevn oty MepIinToon
evog vavooopatidiou [69, 76].

Zinv tapouoa datpibr), mapootadoupe pa véa pébodo yia ) pedétn uBptdikov cuddo-
Y®V anotedovpeveg amo vavoompatidia kat kBaviikoug eknoprnoug. H péebodog sivat évag
ouvduaopog g IoAapPItoviknig Pebodou moAdamnAng okeédaong twv [69, 75], pe tnv kabie-
popévn nAsktpopayvnuiki péBodo twv ouleuypévav dumoAwv [30, 31, 77-79]. Zuykekpl-
Héva evoepatovoupe ] PEB0d0 tov ouleuypévav S1moAav eviog g pebodou moAdamdng
OKE€6A0NG TTOAAPITOVIKOV TEAECTOV PEO® TOU UIOAOY1IOPOU tou duadikou tavuotry Green
0 OTT010G PAG ETUTPETIEL va PEAETHoOUNE UBP1d1KA ouctrpata arnotedovupeva ano moAddd

vavoopatidla kat KBaviikoug EKIMOPIOUG.
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1.2 O nAsrrpopayvyniikog tavuotng Green

Zto kepdAao 3 napouoiadetatl 1 Baoiky) Yewpia tou nAekrpopayvnukou tavuotr Green
rou arotedet ) Bdaon g avarntuéng Tou @OPHAAIoHOU TOU XPNOIHOIolEital ota endpe-
va kepdlawa. ITo ouykekppéva napouotadoviat ot PéBodotl OAOKANPOPAT®V GYKOU Ot
OTI01eG ATIOTEAOUV €vav POPHAAICHO Y1d TNV £IMAUCT TOU NAEKTPOPAYVNTIKOU TIPOBATa-
10G plag ouAdoyng anod oopatidia (ta oroia npooeyyidoviatl g 6iroAa) 6rmou 10 CUVOAIKO
niedio oe KABe oopatidlo amoteAel vTEPOEOT NG MpOoOoTIIIoucag aktivoBoAiag Kabmg Kat
O0Awv 1oV nediov ta omoia €xouv okedaotel ano ta vnolouna cepatidia. XInv OUYKEKPL-
Pévn meplmeon anatteital évag @opPaAiopog yia va ermAUEl AUTOOUVENTROG Ta edia evog
auBaipetou ap1Bpou ocupPpovesg aAAnAemdpoviov ocopatidieov. Ta copatibia dev sival a-
napaitto va eivat Xepikd dtaxepliopéva petaiu toug, aAdd priopouv va oxnuatidouv éva
HAKPOOKOITIKO avtikeipevo. Tote, 1 anmokpion g UANG otnv IPooTintouca aktivoBoAia
propel va povieAoron el @G Pia OUAAOYIKY ATTOKP10T TOV PEPOVOHEVROV OIIMOA®V Kabéva
and ta onoia katadapBavetl éva otoixeio oykou. H unépBeon tov otoixeldwv SmoAkev
nediov (ouvaptrjoelg Green ) mpémnet TOTE va yivel pe évav autoouvert) tporo, dnAadn to
péyebog kat o pooavatoAiopog Kabevog pepoveapévou dirtdAou eival pia ouvdaptnor Tou
Torukou nediou mou opidetal ano ) 61€yepon Kat twv rept8ailoviev Sutddwv. Ot pébo-
601 mou Bacilovial oe avtr] tnv €vvola nepldapBavouv abpoiocelg TIAve o€ 0Aa Ta KEvipa
TV SudAev. Z1o 6pto 1ou 1o peyebog twv Suddmv pndevidetal, ot abpoioelg petatpéno-
vtal oe 0AOKANPOUAta OyKOU, P& TOUG aVIioTOlX0US (OPHAAIOHNOoUS va avapEépovial ot
BBAloypadia wg pEB0S01 OAOKANPOPATOV OYKGV.

L1 ouvéxela rapouotadetatl 1) e§10wor 0AOKANP®IATOG OYKOU ATlo TV Ortoia Propouv
va e§axBouv uo 100dUuvapeg pEBodot ot BBAloypadia, ol oroieg eMAUOUV T0 ITAPATIAVE
POBANHIa kat SiadpEépouv PoOvVo @G MPOog To IIPiopa UIo 10 Ortoio avipeteti¢ouy to nie-
Ktpopayvnuko npoBAnpa. H mpotn eivar n pébodog tov portwv (method of moments -

MOM) 1 oroia avuipet®ti¢et 1) cuAdoyr) ano copatidla wg £va PaKPOOKOTIIKO AVIIKETHEVO
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10 ortoio Sralpeital oe PIKPEG opoyeveig uropovadeg kat reptdapbavet ta rnedia ta onoia
etval mapovta os £va 6edopévo onpueio r. H deutepn pébBodog (rou ypnotpiomnoieital Kat
otV gpyaocia pag), n peBodog tav ouleuypévav dimddav [coupled-dipole method (CDM)
1) discrete-dipole approximation (DDA)] avtupetormnidet ) culdoyr) ®g €éva oUVOAo Aro
HKPOOKOTIIKA SIMOAIKA 0@PATI®Oa Ta 0TToia CUVEVOVOVTAL Y1d VA OXNHIATICoUV pid PaKpo-
OKOITIKY] OUAAOYT). X1V IPOKePEv repintoorn n pébodog CDM AapBavet unioynyv g ta
nedia mou katapOdavouv oTo oNMEIo ' KAl KATA CUVETEWA OLEYEPOUY 1A HUIKPN TIEPIOXT)

oykou AV pe xkévrpo 1o r.
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1.3 <PoppaAiopdg noAAanAng oKESaong MOAAPITOVIRGV
TEAEOTOV YVia UBp1dika mMAfypata PETAAALROV vavo-
oopatdiov xat
RKBAVTIROV EKMOPUNAOV

Zto kepalalo 4 mapouotadetal availutika n ouvappoyn g pebodou twv ouleuypévav
SumoAwv pe 1 PEBodo MOAAATIAYIG OKESAOTNG TTIOAAPITOVIKGV TEAECTMV OE £vav £ViAIO (POp-
paliopo og 6uo Pripata, Kat v epappodoupe Oty MEPITIOOT £vog UBP1H1KOU OUCTHIATOG
HETAAAK®OV vavooaPatidiov Kat KBAVIIKGOV EKITOPINIOV. 10 MPKOTo Bripa g pebodou de-
®POUHE J1a oudAoyr amnd petaAdika vavooopatidia (MNX) epBartiopévn péoa oe €va
SinAektpiko (e = 2.13). Ta pertaddikd vavoompatidia Poviedornolouvial ©g oNpelakd
birmoAa péowm pag reploodtepo akp1Boug eE10WONG MTOA®OTOTNTAS
a’(w)

1— ial(w)w3/feg’
6mc3

alw) = (1.1)

wote va AngBet vndyn n enidpaon g aktivoBoldiag (radiation reaction effect ) [27, 30,
80] Eba, a’(w) etvat n "yupvn” modeoyidtnta, mou MPOKUIIet ano tn oxéon Clausius-
Mossoti , 1 oroia eivat cuvrOng yla pikpd opaipika vavooepatidla aktivag S, Pe OXETK

S1nAekTpikn SlamepatoTId €, EPBATITIONEVA O UAIKO OXETIKNG O1NAeKTP1IKNAG 0tabepdg €

(W) = 4W€Bg3em(“’)—_€3

em(w) + 265 (1.2)

O1 kBaVvTiKoi EKTIOUTTO1 10VIEAOTTO10UVIAL ®G TTAACHATIKA ONpelaKd 6irmoAa pndevikng mo-
Awopotntag torofetnpéva EKTOG NG GUAAOYNS TV petaddikov NZ. Ze autd 1o Brjpa to
napandave “yupvo” ouotnpa neptypdadetatl péo® g pebodou CDM .

Apxikd urodoyidetat 1o (tormko) nAekIpko medio otig 9éoelg TV MAACPATIK®V O1)-
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petakev Sutodwv (KE) wg 1o dbpotopa tou dpeoa mpoortirttoviog rediou pe 1o rnedio rmou
okeddadetatl aro oAa 1a petadAdikd vavooopatidia Kat mpooKpouet otlg J9€0e1§ TV TAaoyd-

TIKQV ONUEIAKOV SUTOAGV, OIMOG MIEPTYPAPETAL ATIO TNV EMOMEV £6100O0T)
w? &
En(w) = E“(w) + — > GHi(w) - Pj(w). (1.3)
J

Ly napandve e§iowon to torukd nedio E,(w) mou aiobavetat éva maopauxos Siro-
o eival o aBpotopa tou mediou mou mpoortirntel dpeca os autd E¢(w) kat tou nediou
°;—22 ij ij (w) - Pj(w) mou okeddetal amd ) cuddoyn] eV (MPAYHATIKOVY) ONHEIAKOV
OUTOA®V TOV PETAAAIK®OV vavoooatidimv. G,Efj etvat o tavuotrg Green tou ATEPOU OPO10-
YEVOUG X®WPOU TOU Xapaktnpidetat anod oxetkr dindektpiky) otabepd €5 petagy tou n-otou
MAQOPATIKOU ONPEIAKOU HIMOAOU Kal TOU j-0ToU (MPaypatikou) Onpelakou S1rmoAou g
ouldoyng v MNEZ. Pj(w) etvat n 8utoAkn) port) tou j-010U ([paypatikoy) onpelaKoy
d1oAou n oroia propet va urtoAoyiotet ano tig ouvrBelg e§lonoetg g pebodou CDM .
Zto mAaioto tng CDM propet kaveig va uroAoyioet tov mArpn nAeKIpopayvntiko dua-

816 tavuotr) Green G(w) piag ouddoyng and M vavooopatidia péoe [83]

M 2
>[5 - Gante) - 68| - Gusto) - G (1.4
k

Qotooo yua ) ouvappoyr g CDM pe ) pébodo moAAarnAng okeSAong MmOAAPITOVIKGV
teAeot®V apKel va urodoytotouv ot KAtwbt tavuotés G, (w) = G (1, w), G (W) =
G (rp,rpw), Gagp(w) = G(rg,r;w) = G(R,r,;w), 6nou ta n,m apopouv déoeig N
KBAVTIK®V EKTTOUTIOV, Kal gy = R agopd tn 9éon tou aviyveutr g didtagng. e autd
10 Bfrjpa 0Aa ta MAPATIAVE HOVIEAOTIOUVIAL ®G MAACHATIKA onpelaka dirmoda pndevi-

KIG TI0A@OIOTTAg, KAl ev yével propei kaveig va urodoyioet 1o Gy, (W) ermvoviag to
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naparde ypappiko cvotnpa 3(M + 1) e§iowoewv

M+1 w2
> {@-k - (W) - GH(w)| - Gij(w) = GE(w), (1.5)

k

N @opég, pia gopd yia kabe mhaopatiko §irmodo [to eruridéov (M + 1)-oto mMdaopauxo
6irmolo oto maparndave dBpotopa mou avtiotoixel oe KABe évav ard toug N kBavikoug
EKTTOPITOUG].

Me tov 1610 tpdmo, pnopei kaveig va urodoyioet 10 Gy, (w) kat Gy, (w) (ev yévet

G (w) erudvoviag 1o mapakdte ypappiko ovotnpa 3(M + 2) e§iohoenv

M+2 w2
> {5% — (W) GH(w)| - Gij(w) = GE(w), (1.6)

k

F(F —1) = (N + 1)N @opég, pia gopd yla kabe {gUyog | TaUTOONHGOV MAAOHATIKGOV
dirnoAwv [ta eruAéov (M + 1)-oto kat (M + 2)-oto &iroda oto napandve abpotopa mou
avtiotolouv oe T€To10 {eUyog péoa ot cuddoyn aro ta F mlaopatka Sirodal. Zin
ouvexela rmapouotadetal 1o deutepo Pripa g pebodou Kal ) CUVAPHOYT] TOU HE TO IIPXTO.

O PAKRPOCKOTIKOG (POPIAAIo0G KBAVIIKYG nAekTpoduvapikng [84,85] eivatl faciopévog
oe éva poviedo Hopfield yia 1o vAko (vavooopatibia kat dinAekipiko), ta omoia aAAnAe-
mMOPOUV PE T0 POG PEo® deutepng KBAVIOONG KAl £va AOUTPO APHOVIKGOV TAAAVIOI®OV TO
ortoio AapBavet urtoyn tou 1§ antwdeteg. H Siabdikaoia mou akoAoubeitat £xel wg apetnpia

g, TV MAPAKAT® Srayevortonpévn Xapdtoviavy) eAdx1iotng ouleudng.

N
> . . h

H= /d3r/ dwshw T (v, wpit) - £(r,wpst) + g §Qn6fL(t)
0 n=1

= [oF ) + 6, ()] Py - Flra; ). (1.7)
Eb0 o mpwtog opog tng Xaptdtoviavng nepldapBavel toug rmoAapttovikoug diavuopartt-
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KoUG Ted1akoUg TeAEOTEG f (r,wy;t) KAl AVIUITPOOWITEVEL TG OTOIXEWWSELS B1EYEPOEIG TOU
OUOTHATOS PATOG-UANG. Ot kBaviikoi ekmoprol elo0ayovial A0V G IPAYHATIKA O1)-
pelaka dinmoAa pe durodikr) porr) P, kat uoikr ouxvotnta €2,,. péoe tewv tedsotov Pauli
otov 6evtepo Opo g Xapdtoviavrg. O 1pitog 6POG AVUITIPOOKITEVEL T OULEUSH petady
NG OUAAOYTG TOV KBAVIIK@V EKTIOUTIOV KAl TOU "YUupvou”™ cuctrjpatog (vavooopatidia kat
dnAekTp1KO). AUTO erITUYXAVETAL PEOK TOU TEAEOTH] NAEKTPIKOU Tediou F(r; t) (oug Séoerg

TOV KBAVIIK@V EKITOPII®OV), O 0TI010G YPAPETAl ©OG

F(r;t) = FO(r;t) + FO(r; ) (1.8)
F(+)(r;t):/ dwE(r,wy; t) (1.9)
0
N L W , T
B(rwpit) =iy~ a1, wp)Glr ¥ wy) - B w1, (1.10)

G(r,r’;wy) etvar n duadikr) ouvaptnon Green tou “yupvou” cuotrpatog (vavoompatidia
Kat riepBdAdov SinAektpiko), ) oroia onwg dei§ape mapandve, Popel va uroAoyiotet ota
rmiaiola mg pebodou ouleuypévav Sddev. €, (r,w) eivat n dindektpiky ouvaptnon TV
vavoopuatidiov. Avadiatuniovoviag 1o poBAnpa og éva npobAnpa rmoAAaning orEdaong
[75], priopoupe va e§ayoupe pia ediowon turou Lippman-Schwinger yia tov mediaxko
tedeotn F, 6rnou ot kBavtixot EKTIOUTTON e avidovial WG ONPIEIAKOl OKEOAOTEG KAl TEAEOTEG

KBAVIIKGV MNY®V,

A

(@) + Vi (w) (rn;w)) . (1.11)

Fr
5
E

I

=

(=}
=
£

+

~
=

]
S
£

/—

[0»N

v napanave e&iocwon E°(r;w) eival o ouvodikég medlakdg teAeotrg T@V YURVOVY vavo-
oopatdiov, ou oupnepldapBavetl mpoortintovia Kat okedadopeva nedia (ta omoia uro-

Aoyidovtal pe KAaooko 1poro). Ot kBavukoi ekroprtol epgavidovial Og KBAVIIKEG MNYES

23



A

péow TV tedectov S, 6rou V,, sival ta duvapikd okédaong, eve mapdAAnda éxoupe
Kat v avadedn mg yevikeupévng duadikng ouvaptnong Green tou Swpakiopévou (pe
kBavuikoug exkrnioprtoug) ouotrjpatog K, n oroia oyxetidetat pe ) ouvdptmon Green tou
“yupvou” ouotrjpatog (vavoompatidia spBantiopéva oe SINAEKTIPIKO) PEO® TOV OXEOEDV

Kramers-Kronig
Ao(r — 1)

e(r) (1.12)

K(r,r';w) = G(r,r';w) —

Ze 0Aa 1a Mapakdi®, Iy,,r, £ival ta Siavuopata Y€ong 1OV KBAVIIKOV EKTIOUTIOV KAl

R eivat 1o 61avuopa 9€ong evog aviyveutr] otnv meploxn tou paxkpivou rediou. Xpnoipo-
o1VIag ouvnOelg teXvikeg roAdarng okedaong, n EE. (1.11) propet va ypadtel wg

mn

N
F(r;w) = Fi(r;w) + Z K(r,rp;w) - T (W) - Fy(r,; w). (1.13)

Fi(r;w) = E'(r;w) + ZK(r,rn; w) - Sp(w), (1.14)

TN (w) eival o mivakag okédaong T Tou euBUvetal yia ta arnepa 1o TARBog yeyovota
okédaong rou AapBavouv xwpa s§attiag piag ouddoyng and N kBaviikoug EKITOPITOUS.

Me 6A0Ug TOUG IAPATIAVE 0P10I0UG UTTOPOUHE VA ATTOPOVOOOUHE évav 6po [V -okEdaong
Kdl O€ €vav Opo MINYLHG Ao T0V OUVOATKO TTED1UKO TEAEOTT F, EMITPETIOVTIAG TOV OP1OH0 HU0
"Bepariopévev” duadikev ocuvaptioeev Green , CUYKEKPIPEVA TOV YOPAKIOPEVO TAVUOTY)
Green N-0kédaong OXETIKO Pe T0 POBANPA NG OKESAONG

N
G (r,r,;w) = ZK(r,rm;w) - TW (W), (1.15)

scatt
m=1

Kkat tov Yopakiopévo tavuotr] Green N-okéSaong oXeTkO pe 1o poBAnpa tou eOoplopPou



1OV KBAVIIKOV EKTIOUTTOV.

N
G (r,rpw) =K(r r,;w) + Z K(r,r,,,w) - T%)(w) - K(rp, 1ty w). (1.16)

source
m,p=1

O tavuotrig Green g E&.(1.16) €xel nepapatikn adia 61011 eival Apeoa CUCKETIOPEVOG
HE 10 onpa evog aviyveutn torobstnpévou oto r = R, kat meprypaget v nAnpn 61adoon
anod TV 1-00T0 KBAVIIKO €KITOPMO IIPOG TOV aviyveutr], 6ivovidg pag 10 @gdopd Q®Tog
S(R,w) [69]

S(R,w) = <[]§‘(R,w)r : [F(R,w)] > (1.17)

To @daopa tou ny-ootou KE mou dieyeipetal apyikd vrodoyiletat Sexopiota

wQ
_G(N) (R7 I'y; Ld) : Pn

6062 source

2
( 10 > + ,02_|_ ;120 2) )
lw — Q| lw + Q| lw + Q|

(1.18)

Snp(Row) =)

Katormv abpotdoupe aouppova rmave oe 0Aoug T0Ug KBAVIIKOUG EKITOUITIOUS Ny 1€ OKOITIO
va MAPOUHE TO @ACHA @XTOG IMOU MNYAdel ard 0Aoug Toug KBAVIIKOUG EKITOPITOUS Kat

TIPOCUETPATAL Ot €01 TOU AVIXVEUTH),

N
SR,w) =D [bny|* S (R, w), (1.19)

no
Eb®, b,, = P, - Eo(r,,,w). Eg eivat 10 (kAacoiko) rmddatog 1ou cUVOAKOU (Torukou)

E-niediou evog e1oepxopevou eminedou KUPATOg 1o oroio okedddetal and ta vavooud-
tid1a (kat mpoortirttetl otlg Y9€0e1g 1OV KBAVIIKOV EKITOPII®OV) KAl PITOPEL va UIOAOY10TEel
ota miaiola tng pebddou CDM péow tng EE.(1.3). T'a va urodoyiotei o GO (R, rp;w),
xpewaletat kaveig va unodoyioetl tg rooodtnieg G (1, ry;w), G (r,, ry;w), G (R, ry,;w),
€K T®OV OIOI®V OAEG PITOPOUV VA UIOAOy1lotouv ota rmAaiola g CDM péowm tov e§l00oenv

[(1.5)-(1.6)].
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H ouykekpipévn pébodog epappodetal oty mepini®on ypappikov duadikov p1ovodt-
aotatev rmeypdtov (aAuoidev) petaddikeov NZ kat KE. Ot kBavukoi ekroproi eivat toro-
Setnuévot oto péocov g andotaong petay dUo 51a60X1IKOV PETAAAMKGOV vavooopatidiov.
MelAetoupe mAéypata pe nerepacpévo apopo N dyuepov. Ta petaddikd vavooopatidia
€Xouv aktiva 7 nm Kal €ivat amno apyupo pe T SINAEKTPIKY TOUG ouvaptnon va divetat

arno to poviédo Drude

w?

_ p
€(w) = €x —w(w ) (1.20)

He € = 4.6,w, = 9eV,v, = 0.1eV. Ot xBavuxoi eknoprnot (opyavika popla) povie-
Aorolovvial ®G onueElaKda d1otabpika ocuotpata pe ouxvotnta petaBaong wy (n omoia
petaBdAAstal TApAPEIPIKA OTOUS UTTOAOYIOPOUG TIOU akoAouBouv), pubpd arnodieyepong
Yge = 15meV kat SumoAkn porr) petaBaong P = 0.19¢e-nm. To mAéyna eivat epBarttiopiévo
oe ¢va riep1BaAdov péoo pe dinAextpikr) otabepd e = 2.13. H aAuoida aktivoBolAeitat anod
éva erninedo KUPa 1o ortoio rpoortirttel KAOeta otov agova g aAuoidag Kat 1o aviiotoiXo

NAEKTP1KO medio eivat mapdAAndo pe tov asova ng aAuoidag.
Erc = Eince™ %23 k= wy/eg/c (1.21)

Ot dutoA1kég poreg petabaong T®V Opyavik®v popiov eivatl emiong rmapdAAnleg pe tov
agova mg aduoidag. Apxika uroBétoupe Ot 1] AMOOTACT] PETASU TOV EMMPAVEIQDV SUO
YEUOVIKOV PETAAAKGOV vavooopatdiov eivat 2 nm eve o0 KBaviikog eKmoprnog Bpioketat
oto péoov autng g anootaong. To @dopa @etog unodoyiletal and myv EE. (1.19) oe
(Bewpnuirad) drnelpn) anootacn anod v Akpn g aAuoidag Kal Katd PrKog autrg Oote va
oUAAdBel POVO TG OUVIOTOOEG PIAKPIVOU Mediou ToU PRTOG.

Zta oxfpata 1.2, 1.3,1.4 6eixvoupe ta @dopata (os aubaipeteg povadeg) yia aAuoideg
pe Sagpopetikd apOpo and duepry KE-NZ (N = 3,6, 10) ywa v i6ia andotaon peta-

&U emgavelwv dvo yertovikov NX (2 mm). Autd mou xapaxktnpilelt oAa ta Swaypappata
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@PAOPATOV glval pia meploxn avitdiéAeuong PNetail Tou e§1TOVIKOU OUVIOVIoHOoU (opyavi-
KO HOP10 OTnV TEPITTOON HPaAg) KAl IOV TMAAOPOVIK®OV CUVIOVIOHR®OV TOU vavooPuatidlou
apyupou. O evepyelaKog H1aX®POP0g O AUt TV IeP1oxr) aviidiedeuong opidet tov emno-
vouadopevo dtaxywptoud Rabi kat eivat pia ouvhOng 1610t ta tng aAAnAemnidpaong petady
600 ouleuypévev (KAaooKaV 1] KBavTKOV) appovikev tadaviotov [10]. Zinv mepintoon
pag o Saxwplopog Rabi eivat g tééng tou 0.1 eV . H Sour) tou nAeKipopayvnikou
TPOTIOU TAAAVIOONG EVIOG NG TEPIOXNS AVIIOIEAEUONS TTAPOUCIAlEl XAPAKINPIOTIKA KAl
TOV EMPAVEIAKOV TTAAOPOVIOV aAAd KAl TV EITOVIKGOV GUVIOVIOR®V, TTOU S1KA10AOYEl TV
ovopaocia Tou véou Tportou taddaviewong g rmieditovikou [10]. Makpid and autr) ) @a-
OHATIKY] TIEPLOXI], O TPOTIOG TAAAVIOONG £XE1 TA XAPAKINPEIOTIKA TOU CUVIOVIOHOU KAOevog
anod ta empépoug ouotatika tou dipepoug KE-NZ. Tlpodpaveg, UmdpXouv meEPIOCOTEPES
arod pia neploxeg avudiéAeuong rmapouoess, Pe tov aptbpod toug va audavel kabwg au§ave-
tat o apOpog wwv dipepwv KE-NZ ownv aluoiba. Ilpokewtal, amd oco yvepioupe, yua
Vv PO eK6AA®OT MAe1ddag MAESITOVIKOV KATAOTACE®V Kat rnydadet ano 1) datadn tev
dpepav oe pla ypappikn aduoida. Zuykekpipéva, 1 nAekrpopayvnukn dopr) mg ypap-
HKng aAuoibag eival arotédeopa tou UBp1S100U TOV PEPOVOUIEVAOV MAESITOVIKOV TPOTIQOV
TAAAVI®ONG TTOU €X0UV TO EMMIKEVIPO TOUG 0¢ KAOe dipepég. Me €vav tporo nmapopolo pe
auTOV TOU POVIEAOU 10XUPA S£0IV (EVIOTIOPEV®V) NAEKTPOVIOV O PNOVOTEG, O TIAESITOVI-
KOG TPOTOG TAAAVI®ONG KaBevog diuepoug, EMKAAUITIETAL PE TOUG AVIIOTO1X0US TPOTIOUG
YEUOVIK®V dipepmv (Yia pa ypappikn aAuoida pe toug yeitoveg He€1d kat apiotepd), Ka-
TaAfyovtag og évav Pnxaviopo petanndnong, O Ormoiog yla pia Menepacpevn aAduoida
aro Supepr), yevvd pia moAAarniotta and mAegitovikoug OUVIOVIOHOoUS EVIOG H1AG TTETTE-
PACHEVNG PACHUATIKAG MEPLOXHS. AUTOL 01 TIAE§ITOVIKOT1 oUVTIoViopol ekdnA®vovial wg pia
oe1lpd Ao IePloxXEg avidiédeuong ota aviiotolya gaopata okedaong ewtog. O apBpog
1OV UBP1B1oPEVGOV TTAESITOVIK®Y CUVIOVIOU®V £ival 100G He tov aplfuod tov S1uepwv Onwg

paivetal kat ano 10 Zx. 1.5 mou amewkovidel 1o @aopa yla pia ouyvotnia oUVIOVIGHOoU
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KE, r.x. hwy = 1.98 eV tou avtiotoixou @daopatog tou Zx. 1.4. IIpodpaveg, o apibuog
TV IIAPATNPHOTHOV KOpUuPaV (6éka) eivat 1d10g pe tov apdpo twv dipepadv KE-NZ. TTpénet
va TovicoUupE ®OoTOoo OTL Hev PIopel va TIPOCPETPr|oel Kaveilg eUKOAA TOUG S1aPOPETIKOUG
AeE1TOVIKOUG OUVTOVIOHROUG arod ta gacpata v ZY. 1.2-1.4 kabwg eivat ouyvo gawvope-
vo 800 TEP10XEG aviISIEAEUONG VA ETIKAAUTITOVIAL OTIOG OtV Mepim®on tou Y. 1.4 yupe
aro ) ouyxvomta hw = hwy ~ 1.5 eV . T'a éva darnepo neplodikd miéypa arod dipepr)
KE-NZ kaveig rmepipével 10 oXNUatiopo piag {Ovng mAESItovIKGOV OUXVOTTOV. 10 XX. 1.6
belxvoupe ta @aopata okEdaong yla ypappikeg aluoideg arnotedoupeveg arto 10 dipepr)
KE-NZ, yia Stagpopetikég arootdoetg petaiu NZ. I[apatnpoupe 6tt Kabwg o d1axmwplopog
petadu duo yettovikov N auddvetatl, 1 evepyog MePLOXT] €VIOG tng oroiag spgavidoviat
01 TIAESITOVIKEG TTEPIOXEG AVTIBIEAEUONG YiIVETAL TIEPIOCOTEPO CUNIIAYTG KAl Ol AvIioToliyol
MAe§1TOVIKOl ouvtoviopol evrortidovial 0e Pl OTEVOTEPT PACHUATIKI TEPLOXT). AUTO ava-
pévetatl kabmg n ermkAAuYn petady yettovikwv rieitoviov e§aobevel pe v avdnon g

arootacng HETaiy v diuepmv. e €va KAVOVIKO TEipapd, yld va PIopEecouV va Katd-

E
—_

L 0-0-0-0-0-0-

Zxnpa 1.1: Atdtadn: Mua ypapuiky Suadikny aAluoiba arotedovpevn and evaddacoopeva
HeTtaAka vavooepatidia kat kBaviikoug ekroprtoug. H 6idta§n aktivoBoleitat aro kabeta
IIPOOTIIITIOV PKG VO TO NAEKTPIKO nedio eival moAopévo katd tov dafova tng aiuvoidag. Ta
HeTaAAKA vavoowpatidla sival arno dpyupo eved ot KBAVIIKOl EKIMOMPITOL eival opyavika

popa.
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Zxnpa 1.2: ddopa [oniwg €xouv unodoyiotei and v ES. (1.19)] yia duadikég ypappikeg
aAuoideg dipepwv NZ-KE pe N = 3. H amnootaon petady v emeavelowv duo diadoxikov
NZ eivat 2 nm pe kadBe KE va torobeteital 0to KEVIPO aUtig TG Arootaong.

HETPNOOoUV o1 Srapopetikol TMAESITOVIKOL GUVIOVIONOl, o1 avtiotolxol daxwpiopoi Rabi Sa
TIPETIEL VA €ival PEYAAUTEPOL ATIO TA £UPN TOV KOPUPHV TOV ETIPAVEIAKOV TTAACHOVIOV KAl

TV €§ITOVIK®OV Kataotdoswv [10].
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Zxnpa 1.3: To 1610 pe o ZX. 1.2 adAd yua N = 6.

Zxnpa 1.4: To i610 pe o £X. 1.2 adda yua N = 10.
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Zxfpa 1.5: ®dopa yua N = 10 (Zx. 4.4) xat iwg = 1.98 eV .
1.4 Zuotnpatikoi UNOAOYLOROi MAESITOVIROV
OXNINATIOR®OV Ot YPARPRLREG aAuoideg KBavTIRAOV
EXMOPUNAV KAl HETAAALKOV VAVOCORATIELOV

210 RePAAalo 5 rmapouotaloupe EKTETAPEVOUS UTIOAOYIOPOUS TOV TAESITOVIKOV XAPAKTIL)-
PLoTIKOV anod aduocideg Sipepwv KE-NZ. Zuykekpipéva, POVIEAOTTOIOUHE TV HETATOITION)
IPOG 10 £pUOPO TV KUPIRV MAESITOVIKOV cuvioviopoVv (KIIZ) (ekeivov dndadn rmou xouv
10 10XUPOTEPO ONPa 0To PAacpa okedaong) yia aduoideg arotedovpeveg amo 1 og kat 10
depr). E1dikdtepa, n mAaopovik petatornion npog 1o epubpod kabevog KITE poviedorot-
HOnke ot PAoh £vog EKOETIKOU EUMEIPIKOU TUTIOU O OTI010G TIEPIYPAPEL Pe akpiBela tnv
HETATOITIoN OUXVOtNTag o€ aAuoibeg aroteAoupieveg € OAOKANPOU ATTO PETAAAIKA VAVOO®-
patidia [110], kat ermTpErnel Tov Poad10p1o0 EVOG ACUHUITIOTIKOU EAAY10TOU GUVIOVIOHOU
yla pnkog aAuoidav arotedoupeveg amno 20 Sipepr|, 0 CUPPGVIA PE TA aroteAéopatd TV

UTIOAOY101®V TOU aplOpuntikou Kodika rou xpnowporoovpe. Ta apOunuika anotedéopa-
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Zxnpa 1.6: ddaopata eotog [urodoyiopéva aro v EE. (1.19)] yia ypappikeég aAuoideg
N = 10 dpepwv NZ-KE, yia 51apopeTikég emMPavelakEG Artootdoelg petaiy U0 yertovikav
NZ (2 nm: ndve, 4 nm: péon, 6 nm: KATL).

10 UITOPOUV VA AVIIOTOIX10TOUV Ot Hia arAr XaptAtoviavi) 1 oroia armoKaAurtel 0Tl to

€upog tou dlaxwpilopou Rabi evog KIIZ eivat avadloyo tou v N orou N eivat o apibpog
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TV S1pepdV rmou arnotedouv v aducida. H mpog pedétn Siatadn eivatl idia pe auvtr) tou
IIPO1YOUHPEVOU KEPAAAIOU OTI®G KAl Ol AVIIOTOIXEG VEMHETPIKEG KAl (PUOIKEG TTAPANETPOL
=x.1.7).

Zinv epyaoia [110] pedetriBnkav ot 1610tTeg OKEHAONG TOU POTOG Y1d YPAPUHUIKES AAU-
oideg vavooopatdiov Xpuoou arotedoUpeveg arnod éva ewg Kat €61 N pe andotaon 1 nm
petady toug. Zta mnepapatnkd Sedopéva epappootnke Eva eKOETIKO POVIEAO TO OIMOI0 &-
METPEYE TOV IIPO0O10P100 £VOG PEYI0TOU ACUNITIOTIKOU OUVIOVIOHOU yia aAuoideg prkoug
10-12 vavooopatudiov. ZUyKeKpipéva, N MEPAPATIKA TTAPATI PO PETATOOT TTPOG TO
€pPUBOPO TOU H1aPNKOUG OULEUYHEVOU TPOTTOU TaAAVInog BpiéOnke va akoAoubel pia ekBett-
KI] TAon og oupdevia pe ta dewpnukd povieda twv Maier k.a. [115] kat Fung k.a. [116].
H exBetikn taon otabepormoieital yia aiuoibeg prjkoug 10 mepinou vavooeopaudiov, os
oupdpavia pe Sepntikeég IPoBAEgYElg TTOU adopouv aAuoideg NZ pe pikpég Siacopatdia-
KéG arootaoelg (< 5 nm ) xpnotpornoloviag auvotnpég npooeyyioeg [106, 117-119]. To

€EKOETIKO POVIEAO TTIOU Xpnotponow)Onke otnv epyaoia [110] frav 1o mapakate
A=+ (Ao — o) (L —e™N), (1.22)

OTI0U )\ €ival T0 MEPAPATIKO HKOG KUPATOG TOU £MMPAVEIAKOU MAACHOVIOU £VOG HENO-
VOUEVOU 0UATISIioU OTIG aVIioTOXEG MEIPAPATIKEG OUVONKEG, A\, €ival 1o TpoBAemtOpevo
QOUPITIOTIKO PHKOG KUPATog plag aduoidag aneipou pnkoug, N eivat to prkog g aiu-
oidag, kat T eival n mapaperpog pooappoyng. Epappoéoape pla avtiotoixn npooEyylon
yla tv uBp1dikn aAuoiba KE-NZ, 6rou 10 eKOeTIKO 110VIEAO TIOU TIEPIYPAPEL TNV TTAACHIOVL-
KI] PETATOITOT 1pog 1o £pubpd (Zx.1.10) mpoékuye katd avadoyia pe autd ng EE. (1.22)

aAAd 010 X®PO TV cuxvottav (eV),

WJJ\ZPREW]V[PR(N) :w;?}PR— (wc—wf/[PR) (1—6_TN) (1.23)
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Eb®, w}@ pr N TTAAOPOVIKY ouxvotnta tou (povadukou) KIIZ nou avriotoiyel oe éva Sipe-
PEG, 1 OUXVOTNTA TOU OTToioUy, yia To UBP181KO ouotnpa 1ou peAstoupe eivat w;\q/[ pr ~3.01
eV (BA. 2x.1.10). w, etvatl pla kpioyn ocuxvotnta mou OXETETAl PE TV ACUHRITIOTIKY)
OUXVOTHTA TOU MMAACHOVIOU evog petaAAdikou NE rmou avtiotoikel os pia uBp1dikr) aiuociba
ATEiPOU PNKOUG PECK TNG OXEONG w]\]\/flﬁl%o = 2w;€1 pr — We, N glvat o apBpog v dipepaov
g aluoibag, Kat 7 €ivai, pla mapdaperpog npoocappoyng. Ilpémet va onpeindel ot n
Eg. (1.23) &&nxOn kat avaloyia pe avtyv g EE.(1.22), kat n akpiBrg mAACPoOVIKL) He-
TATOINON TIPOG T0 £pUBPO PIMoPel va PNV KATpakavetatl anapaitta katd e~ ™, 16t otnv
nepinoor] pag dev €xoupe aiuoida petaddikov NX aAdd aduoida amotedoupevn ano o1-
pepn KE-NZ. Enopévag o1 TAQCI0VIKEG GUXVOTITEG TIOU HOVIEAOTIOI0UVIAL, CUHPHEIEXOUV
oto oxnpatopo rmie§itoviov (KIIZ), KAT TOU avapéveral va avilkatoItiploTel 0To POVIEAO
pag.

Ta @dopata okédbaong yla aAuoideg pnkoug 1-10 dipepwv emavunoAoyiotnkav otnv
[EPLOXT] OUXVOTT®V OTOU 01 MAESITOVIKOl ouvtoviopol AapBavouv xopa (0.9 - 3.6 eV )
Xpnotpornoloviag to 1610 mAéypa ouxXVoTT®V HE IIPV, PE OKOIO vd avayveplotouv ot
ouyvotnteg tov KITE 600 akpiBéotepa yiveral, Katl va T1§ XPNOTHOMO00UHE KAtd 1) dia-
dwkaoia mpooappoyrg tng ES.(1.23). Emniong unoloyiotnkav anod v apxt] ta eaopata
ywa aduoibeg pe N > 10 oto 1610 €Upog ouyvotrtev pe ta Sipepr) Oote va eAéysoupe v
npooappoyr twv dedopévev oty EE.(1.23). To ox. 1.9 anewovidel ta @dopata @otog
yla aAuoideg 3,6, kat 9 dipep®v 0to VEO €UPOG OUXVOTNT®V eve TO LY.(1.11) Seiyver v
eKOeTIKY] TAON TNG HPETATOINONG TIP0G 10 £pubpo. H apiBunukn nipooappoyr) éAaBe xopa
yua péytioto pnkog aiuoidag N = 10 dpepn) kat Ppednke va BeATidveral onpuavika pe tmy
NPOoBNKI £vAG OPOU 816pORONG TG POPPNG T Y (%)m ortou m givatl o aplBpog TV OpKV
616pOwong

whipr = wWiipr = (e = wiipr) (1— M2 2(F)"). (1.24)
To Zx.1.11 &eixvel ) oUupeP1Popd TOU POVIEAOU MPOCAPHOYHS Yia Toug 0poug H10p-
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Swong m = 1,m = 2,m = 3. Eivat eppavég Ott 1 POVIEAOTIOUNUEVT PETATOTNOT] ITIPOG
10 €pUBPO Yla 10 NNKOG NG aAuoibag mou ermAEaple va EKTEAECOUNE TV TIPOCAPHOPYT),
Oev petaBdAAetal onpaviikA Pe TV €10aYOY] IOV EMUTALOV Opwv. Avtifeta, pe autég ug
POooONKeg, PEATIOVETAL 1] TIPOCEYY1OT TG ACUHPITIOTIKYG CUNIEPIPOPAS. AVESAPTHTOG TNG
14éng 610pbwong, 10 w,. Ppioketat oy mepoxr) 4.68 eV - 4.73 eV (Zx.1.8) rou urodet-
KVUEL TNV apX1KN 1ag mapatrpnon repi tmg urapéng ouxvotntag aroxkorrg. H avtiotoiyn
AOUNTTIROTIKY oUXVvotnta wﬁ?ﬁf Bploketal katd mPootyylon oty reploxr) petadu 1.3 kat
1.35 eV . 'Evag napayovtag yla v emioyn v opev 810pbwong m eivatl to mAéypa ou-
xvoutev. I'a 6Aoug toug mapandve UMoAOY10HoUg OIOU XPNOTHOITONoape €va AEyRd
dlakpiroroinong 201 X 201 BNPAT®V 0TO X®OPEO T®V CUXVOINI®V, BPHKAHE TIOG 1] E10AYWYT)
6U0 opwv 610pbwong ermapkel yla va cUAAABEl EMAPKAOG TNV AOUUITIOTIKY] CUPIEPLPopd
NG PETATOIONG P0G 10 £pUbpo.

MrmiopoUpe va Xp1oOlHoTojooupe €va armdo poviedo XapiAtoviavig yld va TIPOoEy-

ylooupe ) oupniepipopd v KIIE kabepiag pepovopévng aluoidag

N) — i, /2 VN
Hy = wnpr(N) =/ g . (1.25)

g\/N Wo — i’qu/Q

Eb6® wypr(N) eival n mAacpoviky) ouxvotnta mou avilotoiXei OTtov KUPLo MAESITOVIKO
OUVIOVIONO KABe aAucibag arotedoupevng aro N dipepr), 0nwg autr) €Xel IPood1oplotel
péow g EE.(1.24) omou ermdéfape ug PéAtoteg mapapérpoug yia m = 2 (w, = 4.71
eV, = 023 xat 5, = 0.12 ). wp elvat n e&tovikr ouxvotnta v KE kat g eivat
n otaBepd oUleuing MAAoHOVIOU-£§1TOVIOU TIOU IIPOKUITIEL Ao oV Slax®plopo Rabi kat
UTIOAOY1{ETAl ATIO TOV EVEPYEIAKO O1aXWPIONO OTNV TEPLOXI] AVIOIEAEUONG TOU PACPATOS
EKTTOUITAG Y1ld €va POVOo S1pepég. Le auTnV vV MEPIMIaon, Oonwg @aivetat amo 1o £x.1.10,

o Sayxwplopog Rabi eivat ~0.04 eV (FWHM). To g urnodoyidetat Kovid Oto OUVIOVIOPO
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néow g e§lowong [10]

. Nge 1 e\ ?
wi:wo—z%—z%i§\/z4—<%—%}) (1.26)
Kdtl
— (M Yae)?
Aw—\/A <2 2), (1.27)
2
g2EA:(Aw)2—I—(%—%> , (1.28)

dtvovtag g ~ 0.06 eV . 1o Zx.1.12 mapouotddoupe amotedéopatd yia TG IEPUTIOOELS
aAuoidag pe 5 kat 10 Sipepry. Mmopel Kaveig va apatnproel 0Tl 0 EVEPYEIAKOG dlaxw®-
PLOPNOG OTNV IMEPLOXT] AVTIOIEAEUONS KATPAKOVETAL KATA VN (Zx.1.12) oxeuka kadda. Katu
TIAPOP010 €Xel TTapatnpnOel oe peA€teg UBPIG1IKGOV cuotnNAteV anotedoupeva ano éva NZ
Kat rtoAdoug KE oty reploxr) g 10xupng ouleudng, Ormou eKel 0 S1axwplopog oty mepio-
X1] Tou ouvioviopou [10] kApakovetatl Kkatd \/W . Z& auty] Vv nepinworn ootoco, N
etvat o ap1Opog 1wv KE 1ou ouvelopEpouv otou uBp1d1ko cuotnpa eve otr) pedétn pag N e-
tvat o ap1Bpog twv Sipepwv KE-MNZ. Embewpaviag to Zx. 1.13, mapatnpoupe ott, Kabwg
0 ap1Opog v dipepav g aduoibag audavetat, 0 oAoéva au§avopevog ap1Bog mAesitoviov
ou petatortidoviatl mpog 1o epubpo evioridetal oe P1a 0AOEva OTEVOTEPT] TIEPIOXT] TUXVO-
U TRV YEYOVOG TI0U 08nyel o€ Pia aAANAETUKAAUYT) PETASU YETOVIKOV MAESITOVIK®V TPOTIOV
taddviwong. Auth nj aAAnAerukdaAuywn petadu 61adoX1IKOV MEPIOXOV AVIIOIEAEUONGS AVIIKA-
tortrpidetatl otov Ave TAESIToVIKO KAAdo tou Xapidtoviavou poviédou [Zx.1.13 (Méon)].
LUYKEKPIIEVA, OUYKPIVOVIAG PE TOV AV TAESITOVIKO KAAS0 TOU aviioTolXou @Aacpatog eK-
rournng [£X.5.7 (Aplotepd)], armokaAUetal pia OXETKI PETATOron Petady twv duo, mou
OoQeiAeTal OTOV MPOOSEVUTIKO CUVROTIORO TRV TMAESITOVIQOV TIOU CUVEIGPEPOUV OTHV TIEPIOXT)
ouxvottev orou evrorti¢etat o KIIX, kabwg audavetatl 1o prkog g aiuoidag. 'Etot, o

KAt MAL§ITOVIKOG KAA60g Tou XapAtoviavou HOVIEAOU XPNOIHEVEL WG 00Nyog yid ) @a-
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Zxfpa 1.7: Zompa mpog pedétn: Mua ypappikn duabikr aAduoida amo dipepr) petad-
Akov NX (kitpvo) - KE (mipdowvo). Ot KE eivatl toroBetnpévotl oto péoov (1 nm) wng
arootaocng petasyu duo Sadoyxikov NZ (2 nm) axtivag 7 nm, Ta NZ eivat and apyupo kat
n S1NAeKTIPIKY TOUG OUVAPTNON MPOKUITel Bdoel Tou poviédou Drude mou nmapouoiaotn-
KE OTO IPONYOUHEVO KEPAAALO, P €5 = 4.6,w, = 9 eV, v, = 0.1 eV. Ot KE (opyavika
Hop1a) poviedonolovvial ®g H10TabpIKA onPElaKA CUCTAPATA PE ouXVvotnta petabaong wy,
(n ornoia petaBadAetal MAPAPEIPIKA OTOUG UTOAOY10R0UG), pubpod anodiéyepong e = 15
meV kat durtoAikn portr) petaBaong P = 0.19 e-nm. Ot urtoAikég poreg petdBaong twv
KE Sswpouvial mapdAAndeg pe tov afova g aduoidag, eve 1o mAéypa eivat epBantiopévo
oe éva dindektpikd SinAektpikng otabepag ¢4 = 2.13. Kdabeta otov dfova tng aduoidag
TIPOOTTITIEL €va eMInMed0 KUPA HE TO aviiotolXo nAeKtpiko medio va eivatl mapdaAAndo pe
tov &€ova autig E'¢ = Ei"e~*=7. To pdona @etdg urodoyiletat [EE. (1.19)] oe (Sewpn-
TIKA) ATEpn ArootacTt) Ao 10 AKPO KAl KAtd UHKOG Tou afova tng aAuoidag (rmpaktkd oe
HeyaAn arnootaor) ©ote va oUuAAdBel TI§ OUVIOT®OES PAKPIVOU IeEdioU TOU P®TOS.

opatikr) 9¢on tou KIIZ piag uBpidikrg aducibag aubaipetou prkoug (Sipepr) KE-NX), eved
0 Av® KAAB0G Xpnotpevel oG deiktng tou MANOoUg TwV AAANAEMIKAAUNTIOPEV®OV TIAESITOVL-

KOV Tpornev taddvioong rinoiov tou KIIZ, kabog au§avetat to pnkog tng aiuvoidag.
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Zxnpa 1.8: ddopata gatog oe aubaipeteg povadeg yia aduoibeg amotedovpeveg ano 3
(Aplotepd), 6 (Méon), kat 9 (Aedid) Syuepry. Ta @AOPATA EKITOUIG £XOUV UIMOAOY1O0TEL
PE€0® £VOG TPOYPAPHATIOTIKOU KMOOIKA ITOU £pappodetl ) pébodo mou meptypdPnke oto
ponyoupevo Kedpddatlo, xprnowponowwviag pa diakptroroinon 201 Pnpdtev oto X®po
TOV OUXVOTIT®V, ITOU avtiototyel oe éva mAéypa 201x201 ouyvottev. Ma mAetada aro
AEEITOVIKOUG OUVIOVIONOUG ekdnAwvetal Kabmg augavetal to PrKog g aduoidag pe tov
KUP10 TTAESITOVIKO OUVIOVIOHO va €ival onpavilkd 10XUPOTEPOG A0 TOUG a0BeVECTEPOUG.
Ermiong, mapatnpeitat pla @aopatuky neptoxy) (4.7 - 4.8 €V) orou 1o @dopa eivat on-
pavukda e§aocBevnpévo. To tedeutaio Xapakmplotikd Ya PIopouos va UModekvUEl pid
OUXVOTNTA ATTOKOITG ITOU IMAPATEUIIEL OTO0 ACUHPITI®TIKO HIKOG KUpAtog plag aiuoidag
aneipou prHKoug ornwg oupBaivetl oe pedéteg aduoldwv arotedovupeveg and NZ.

10°
10°®
107
108
10°°
10103
10-11
10-12
10-13
10-14
10-15

3.5 3.5 3.5

w

1 15 2 25 3 35 1 15 2 25 3 35
@ (eV) @ (eV)

Zxnpa 1.9: Yrodoylopéva gaopata os auBaipeteg povadeg yia duadikég aduoidbeg arote-
Aoupeveg aro 3 (Aptotepd), 6 (Méon), kat 9 (AeS1d) yia 10 HIKPOTEPO EUPOG CUXVOTLTOV TTOU
avagépetal oto Keipevo. H moAAanAotmta 1oV mAESITOVIK®V CUVIOVIOH®OV £1vat ITEPIO0OTEPO
gnpavrg.
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Zxfpa 1.10: (Apwotepd) ddopa aduoidag amotedovpevng ano €va dipepeg. (Méon) A-
vtiotolxn ypadikn rnapdotact) tou mpaypatikou pépoug tov idlotipmv g EE.(1.25). (As-
§1d) To aviiotolo PACHA EKIIOMUIIG UMTOAOYIOPREVO yia otabepr) tipn (hwy ~ 3.013 eV )
NG OUXVOTNTAg KBAVIIKOU EKITOUITOU ITOU AVIIOTOLXEL OTO PEYIOTO TOU (PACHATOS TO OIToio
napatnpeitat oy ooty ypapikn napaoctaon (KIIX). O daxwpiopog Rabi oe avt v
rniepintoon eivat & 0.04 eV (FWHM).

N
N
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3.4 - 3.4 .
3.2~ B 3.2 m
3fo E 3 e
2.8 - 2.8 .
— 2.6~ - __ 26 ]
s 24 ° 4 324 .
s 22 o - g 2.2 _
2 o - 2F .
1.8~ %% E 1.8 B
1.6 ST . 1.6 .
1.4 ©000000004] 14 T ESSsse. =
1.2 - 1.2 —

1 | | | | 1 | | | |

0 2 4 6 8 1"(\)l 1‘2 1‘4 1‘6 1‘8 2‘0 0 2 4 6 8 1‘,(3‘ 1‘2 1‘4 1‘6 1‘8 2‘0
Zxnpa 1.11: (Apiotepd) H ouxvotnta w tou @Aopatog rmou avilotolXel 0Tov KUP1o MAESITo-
VIKO OUVIOVIONO KaBepiag mAe€itovikng aAluoidag ouvaptr)oet Tou aplOpou Tev S1uep®v g
yla 1o gupog ouyxvotntov 0.9 - 3.6 eV. Ot tipég yia aduoideg mou anotedouvviat ano 1-10
Opepn (PwB) xpnoornowm)Onkav yia to fit, eved ot TipEg TTou avtiotolXouv os aAuoideg 11-
20 d1pepdv (Kuavo) XpnotpornotOnKav og Te0t yia v aptdunukn mpooappoyr). (As§ia) H
aplOPNTIKY IPOoAPPOoYT) TV ouxvottev tov KIIX rmou avuotolxouv oe aAluoideg dipepav
petaBAntou pnkog (1-10) (pwB kukAol) péow g ES. (1.24). (Maupo) H apiBunukn npo-
ocappoyn ya m = 1 kat BéAtioteg nmapapérpoug w, = 4.68 eV, 7 = 0.249 xar 75 = 0.254,
(Koxkkwvo) IIpooappoyn yia m = 2 kat BéAtioteg napapérpoug w, = 4.71 eV, 74 = 0.234
kat 72 = 0.12.(MrmAg) IIpoocappoyr) yia m = 3 kat BéAtioteg napapérpoug w, = 4.73 eV,
71 = 0.225 xat = 0.077.
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Zxnpa 1.12: (IlIave). (Aptotepd) Paopa piag aivoidag 5 dpepwv. (Méon) pagikr) na-
PAOCTAOT) TOU IPAYHATIKOU PEPOUG TRV 1810TIHAV TG XAPATOVIavEg Tou poviédou yia KITE.
(Aeg1a) O avtiotoryog Sraxwplopodg Rabi (FWHM) Aw = 0.16 eV yia tov KUp1o mAeSItoviko
ouvtoviopo. H otaBepd ouleuéng tng EE.(1.25) oe autfjv tnv nepirmwor eivat g\/g ou
avtiotoixei o évav daxwplopd Rabi [Ex.(1.28)] Aw ~ 0.13 eV . (Kaww) To 610 yia pa
aluoida arnotedovpevn ard 10 dipepr). Ed® 1o g\/ﬁ avtiotoryet oe évav dayxwpilopd Rabi
Aw =~ 0.18 eV evm 0 Siaxwppog Rabi rou napatnpeitat otov kUp1o mAeEIToviKG GuVIoviouo
(FWHM) sivat Aw ~ 0.19 eV.
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Zxfipa 1.13: (Aplotepd) Pdaopata xkatr (Méon) aviiotoixion tov oxetukov KIIX otnv
ES.(1.25), yia aluoibeg anotedovpeveg amnd (ITdve) 15 kat (Katwe) 20 Syuepry. H EE.(1.25)
dev propet va avadeifel minpwg tov Staxwpiopo Rabi tov KIIZ egattiag tng aAAnAerukdalu-
PNG HE YEITOVIKOUG MAESITOVIKOUG OUVIOVIOHOUS KaBwg 1o péyebog g aduoibag augdvet.
AuTto givatl rieploodtepo eppavég ano ta edopata (AeSia) ou €xouv urodoytotel ya ota-
9epo wy ou avtiotoixel oe kabe KIIZ.

1.5 Ioxupn nAsktpopayvytikry ouleudn oe Sipepn)
AMOTEAOUNEVA ANO VAVOCOHATIOA TONOAOYIKAOV
HOVOTOV KAl KBAVIIRMV ERMOPNGV

Zv epyaoia [18], pedetiOnke 0 aviiKTuIiog TV TOMTOAOYIKA IPOCTATEVPEVMYV (ETiIdavetla-
KQV) KATAOTAGERDV OTIS OITTIKEG 1810TNTEG VavooPATISinV TOroAOYIKOV povetev (TNX) kat

drapdavnke nwg, unod Vv enidpacn TOU PATOG, Eva NAEKTPOVIO Ot pa t€tota Katdotaor) On-
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H10UpYEL Pla EMPAVEIAKT] TTUKVOTNTA QOPTIOU Iapopold HE autr) €vog MAAOHI0VIoU og éva
PetaAA ko vavooopatidlo. ErmmAéov éva 1€to1o nAeKtpovio propel va Ae1toupyroet og Eva
erinebo dwpaxiong, €§aobevoviag v ArnoppoOPpnon HECA OT0 ORUATIO0 eve), ertIAéov,
propet va ouleudel eeVOVIa KAl @KG, dNPIoUpy®vIag pid véa MOAAPIIOVIKY KATAoTAOT)
TOU tortoAoyikou oopatdiou (Surface Topological-Particle mode - kataotaon SToP ). Zto
KePAAalo 6 PeAETOUNE 1) CUPIEPIPOPA AUTOU TG KATAOTAONG EMMPAVEIAKOU TOTIOAOY1KO-
U oopatdiou (SToP) otnv mepintoworn 1ou 1o TNE aAAnAemibpd 1oxupd pe €vav KBaviiko
ekniopno (KE), untoAoyidoviag 10 @Aojia eKITOPTG T0U ouothpatog. Bpiokoupe ouykekpt-
péva ou n katdotaon SToP aAAnAemdpd 1oxupd pe tov ouvioviopo tou KE dnpoupyoviag
Hla uBp1d1kn Kataotaon g oroiag 1o ofpa Kabng Kal 1 acpatikn 9€on Propouv va
pubpiotouv petaBailoviag 1o peyebog tou TNE.

Zto kepdAato 6, xpnotpornorjoape £€va opapikd vavoomapuatidlo TormoAoyikou povetn
arto BiySes tou oroiou ) dindektpikr) ouvdptnorn anotedeitat and ) SINAEKTPIKY ouvap-
won wou BisSes [144] pe v mpoobnkn evog 6pou 1ou egaptdral and v axktiva tou
vavooopatidiouv [18, 141, 145] yia va AdBet uroyn tv emidpaoct) TV TOTOAOYIKA ITPO-
OTATEUPEVOV ETMPAVEIAKDOV KATAOTUACEDV (€jnp = €inp + Op) . To ZX.1.14 meprypdpet TG
(YEVIKEG) VEMHETPIKEG KAl PUOIKEG TTAPAPETPOUG TOU OUCTIHATOS TTOU ¥Xprnotporotoupe (1
Spepeg TNZ-KE gpBantiopévo oto Kevo), eve 1o XX.1.15 amewkovidel tnv evepyo diatopr)
anoppo¢nong (urodoyiopévn ota miaiowa g CDM ) yia opaipikd TNZ nokid@v aktivov
(armoucia KE) pe okormo va ameikoviotouv ta Kupla oupnepdopata wmg epyaoiag [18],
6nAadn n katdotaorn em@avelakou ToroAoyikou copatidiou (SToP ) kat to onpeio pnde-
VIKIG artoppodnong. Lto Lx.1.16 ouykpivoupe tv evepyo Siatopr| anoppopnong tou TNZ
He autnv evog vavooapatidiou ouvrfoug povetr) (MNE). Ta untdéAdouna oxnuata apopouv
UTIOAOY1010UG (ACPATOV OKEHAONG TOU MAPATIAVE UBP181KOU CUCTLATOS OTd ortoia peta-
BaAAstal eotEPIKOG PUONOG armodieyepong ToU KBAVIIKOU eKITOPITOU KAO®G Kat 1) aktiva

tou TNZ. O1 petaBoAég auteg ennpeddouv avilotoixwsg v ekONAwon tng véag uBp1d1kng
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KATAotaong Iou IPOKUITIEL ATlo 1) 0ULeusn Tou ouvioviopou SToP pe tov Guvioviono Tou
KE 6nwg emiong kat v petatormorn g véag uBptdikng Katdotaong IIpog to epubpod 1) 1o

KUuavo ToU @Aopatog okESAoNG.

AN Z

QE —@— E
5k

detector

TINP

A 4

™
L

Zxfipa 1.14: Aldradn yia tov uroAoylopd tou @dopatog: éva dipepég BioSe; TNZ-KE
axtvoBoAeitatl and @ag (k || z) 6rou to avtiotoo nAektpiko nedio eival moAdwpévo kata
tov afova x . O KE eivat torobetnpévog oe arootaon d and v srmddveia tou TNZ
eve 1 duroAkr) portr) P tou Sewpeital mapdAAnAn pe 10 nAektpiko rnedio. O avixveutrg
Bpioketal ToTOOeTNPEVOG O Je@PNTIKA ATIELPT ATIOOTAOT] (MTPAKTIKA O TI0OAAT] HEYAAN
amnootaocr) ®ote va cUAAABEL 1OVO TIS OUVIOT®WOES NAKPIVOU TIEGIOU TOU @RTOG. L OAOUG
TOU UMOAOY10P0UG T0 ouotnpa eivatl epBarntiopévo oto Kevo € = 1.
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Zxfipa 1.15: Evepyog Siatoprn aroppodnong evog TNE and BisSes, epBarttiopévou oto
Kkevo anouoia KE yia 6idpopeg aktiveg. Ta KUpla Xapaktnplotkda ivat nj avadei§n tou ou-
vioviopou SToP ocuvobeuopevou aro éva onpeio pndevikrg aroppodpnong. Kabog auiave-
tat n aktiva tou TNZ ta gpaivopeva 0yKou ekONA@vovial TEPIooOTEPO VIOV OTIRNG Paive-
1Al ATIO T1G TIPOOOEVTIKA 10XUPOTEPES KOPUPESG ETIPAVEIAKRDV TTAACHOVIOV KAl B-prvoviou
(euplokopeveg ota 1 Thz kat 3.72 Thz avtiotorxa). EmmAéov, o cuvtoviopog SToP ma-
pouo1adetal onuaviika e§aoHevNIEVOG Y1d AKTIVEG TTOU TOV TOITOOETOUV KOVTA OtV IEPLOXH
10U a-@evoviou tou BiySe; . H tedeutaia nmapatrpnorn ouprnvéel pe éva ano ta Bacika
oupnepaocpata g epyaociag [18], cupgpava pe v onoia n kataotaorn SToP ekdndwve-
tat Aoye g aAAnlAemidpaong 1@V NAEKIPOVIOV TOV EMIPAVEIAKOV KATACTACERDV HE TO A
@P®VOvio oykou (bulk ).
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Ixfua 1.16: Evepyog diatour) aroppogpnong evog TN ard BigSes (KOKKVO) o avura-
paBoAr pe v evepyo dratopr] anoppodpnong evog ocuvriBoug MNE (prmAe) i61ag aktivag.
IMa R = 50 nm (apiotepd) 1o onpeio pndevikng armoppodnong ouvodevetal amo myv (Ku-
plapxn) kataotaon SToP . T'a R = 73.8 nm (6e§1d), n kataoctaon SToP eivail cuvtoviopévn
Ot ouXVOTTA TOU (v P®VOVIOU OYKOU, KaB10t@wviag tnv MPAKIKA avurnapkro. Movn na-
patnpnoun dtagopd otig evepyég dratopég anoppodnong v MNE, TNX eivat to onpeio
HNdeviKnG aroppopnong.
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Zxfpa 1.17: ddopa patog 1ou uBp1d1koU CUCTHIATOG OTNV TMEPIMTOOT KBAVTIKOU €KTIO-
prou pe apyo pubuo amodiéyepong (Y, = 15 mel) (apiotepd) xat pe ypriyopo pubpod
(Yge = 0.8 peV) (peoov - 6e§1d). O KE é€xet dumodwkr| porr) P = 0.2e - nm kat Bploketat
tortoBstnpévog o arnootaocn d = 1 nm anod wmv ermgavela tou TNZ. BAénoupe nog ot
bevtepn nepimwon o cuvioviopog tou KE oudeuyetat pe 10 moAapttovio SToP dnpioup-
yoviag évav véo tporo tadavioong. H 6e§1d ewkova eivat ibia pe v peocaia addd pe
MEVIE QOPEG Peyalutepn dirmoAikr) porny) yia tov KE wote va nmapatnpnBouv eukpivéotepa
Ta XAPAKINPEOTIKA TG o0uleudng. Ipémnet motdéoo va onpuewdel ot Sewpaviag évav KE pe
ypriyopn anodiéyepon (Y. = 0.8 pel’) onpaivel nog Sewpovpe tov £§1T0ViKO OUVIOVIONO
plag KBavukrg tedeiag tng oroiag to péyebog propet va @taocet ta 10 nm. Xe autiv
IV TMEPIUMTIOOL, 0 POPHAAIONOG pag, o orntoiog avipetrilel 1oug KE wg onpelaka avti-
relpeva dev propel va ouprepiddBet mbava gaiwvopeva Aoye peyéboug ta oroia propet
va IPOKUYPouUV. Xe auty Vv nepimworn, @awvopeva Aoyw tou peyéboug tou KE pmopouv
va AngOouv unoynv anod Vv AvIPEIOINOT TOV £§ITOVIOV UMo 10 Mpiopa g KAAOOIKHAG
nAektpoduvapikng. Qotoco, ePloootepo "Aemtd” KBAVIIKA @AIVOPEVA OTIRG 1] UTIEPAKTL-
voBoAia 1 n artocBeon tou eHop1opPoU dev Propouv va rieptypadouv av dev AndOeil unoyn
1 KBavtopnxavikn @uor tou uBp1dikou cuotnpatog KE-NZ.

46



[N
o
=
o
=
o

)

10143

f (Thz)
o = N w > (6)] (o] ~ 0] ©
f (Thz)
o = N w £ (6)] o ~ [e¢] [(e]
f (Thz)
o - N w > (6)] o ~ 0] [{e]
= =
o 9
5 5

Light spectrum (a

=

S
N
o

[y

Ov
N
N

0123456738910 012345678910

fo (Thz) fo (Thz) fo (Thz)

0123456738910

Zxnpa 1.18: ddaopata @utog evog uBpidikou ouotrpatog TNZ-KE pe v, = 0.8 peV,
P =0.2e-nm, d =1 nm yua aktiveg TNZ R = 30 nm (apiotepd), R = 20 nm (péon), R =
10 nm (6e€14). Kabwg 1o péyebog tou TNZ edattwvetat, n oueudn petady tou noAapitoviou
SToP kat tou ouvtoviopou tou KE yivetat 1oxupotepn Kat petatorti¢etat rmpog to kuavo. To
nEyebog tng ouleuing Kabwg Katl n @aouatik g Yo (HEoov g reploxng aviidiéAeuong)
HIopouv va pubpiotouv eAéyyoviag 1o peyebog tou TNE.
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Zxfpa 1.19: Tpagpikeég Tapactdoelg IOV @AoHAT®V ToU UBp161koU cuctrpatog tou Xx.1.18
yua aktiveg TNZ (apiotepd) R = 30 nm, (péon) R = 20 nm, (6e§a) R = 10 nm, og ocuvap-
0N NG OUXVOTNTAG IMPOOIIIoUcag aKTtivoBoAiag Katd v MePUton Orou O OUVIOVL-
onog tou KE (fo) AdapBavet g tipgg (apiotepd) fo = 4.4 THz, (péon) fo = 6.1 TH z, (6e§14)
fo = 8.8 T Hz, o1 oroieg aviiototxouv oto péoo Kabe rneploxrg avudiédeuong tou £x.1.18.
Zuv nepimeon orou 1 aktiva tou TNX AapBavet tig tipég R = 30 nm katr R = 20 nm,
UTIAPX0UV eVOeEelg oXNUATIOPNOU §UO0 H1aKPITOV KOPUP®V OTH (PACHATIKY TIEPLOXN TRV d-
vtiotoxwv reproxov avudiédevong. Ta R = 10 nm, ot KopupEG paivovial pe peyalutepn
€UKpliveLd.
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Zxfpa 1.20: ®dopata getog yia 1o UBp1diko cuotnpa mou peAstdratl yia aktiveg tou TNZ
R =90 nm (apiotepd), R = 80 nm (péon), R = 70 nm (6e§1a). Ilapatnpoupe tv oxedov
KaBoAkr) arnouoia g nmoAapttovikng kataotaong SToP ownv nepinmwon mou 1o péyebog
tou TNZ eival pubuiopévo ®ote n kataotaorn SToP va cupnéoet pe to bulk @avovio tou
BiySes. Te autd 1o onueio mpénet va ermonuavOei 0t o8 0Aoug TOUG UTTOAOY10H0US 1aAg
10 TNXZ vurnotifstatl onpuelako 6irodo, KATL TIOU attioAoyeitatl ano 10 HIKpO peyebog ng
aKtivag CUYKPITIKA PE TO PNKOG KUpatog (n @aopatikr rnepoxn v THz avtiotoryel oe
PNKnN KUpatog ta oroia eivat moAu peyaAutepa oe 0X€0n He Ta Peyedn Tov aktivev rmou
XPNO1HOTIOUHE £6® - £mg Kat 100 nm). Qotooo yia MmoAU PeYyaAUTEPES AKTIVEG VAVOORLA-
T16iwv, 0 PoppaAiopog rmoAAaring okedaong MOAAPITOVIKGV TEAECT®V TTOU XPTOIHOTIOI0UHE
€60 pmopel va pag mapdacyetl évav unoAoylopo yia 1o TNX ota mAdaiola tng mmpooEyyiong
dlakprtou 6utddou (DDA ), kaBog propet va AdBet urniown cuddoyég arno aubaipeto a-
P06 onuelakav S1roA®v. MIopel €101 va TIPOCOLIOINOEL TTEPIOCOTEPO PEAAIOTIKA €va
TNZ 9ewpoviag 10 ®g Pia oUAAoy1 aro onpelakd dirmoda oto niveupa g peboddou DDA .
Qo1600, AOY® TOU KATd MOAU PEYAAUTEPOU PIKOUG KUHATOG TG IIPOOTIIIoucag aktivoBo-
Alag ouykpluka pe 1o peyebog tov TNE, pia tétola 610p0won Sa emédepe pia aveu Adyou
TTOAUTTAOKOTNTA OTOUG UTIOAOY10H0UG TNG PEALTNG 11aG.
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1.6 Y6p181ka ogaipika vavo-cucoORATORATA
anoteAoupsva and Kéaviikoug EKMOPNOUS Kat
petaAAira vavoonpatidia.

Y10 RePAAalo 7, PEAETAE TNV OITIKY ATTOKP10T] UBP1S1IK®V VaVO-CUCO®OIATOIAT®V ATIOTE-
Aoupeva aro petaddika NZ kat KX ta onoia oxnpuatidovial péom auto-opydveorng urtoBor-
Youpevng ano dopég DNA . OcpoUie £va vavo-OUCOOPATOLLA TO OIT010 MEPLEXEL oRPATIOIa
tontoBetnpéva oe tuxaieg 9€oeig rmou oxeddv ayyidouv 1o éva 1o dAAo Kat rmou propet va
etvat eite petadAdika vavooopatidia 1) kBavtikoi eknopriol. MeAetoupe v aAAnAenidpaon
TV EMNPAVEIAKOV MAACHOVIOV TOV PETAAAKOV vavooOPATISi®V PE TOUG £§1TOVIKOUG OU-
VIOVIOH0UG TRV KBAVIIKOV EKTIOPTIOV, KAO®G KAl TOV TPOTIO HE TOV OTT010 avilkatornipidetat
autr) 1 aAAnAenidpaon os MEPAPATIKA PETPNORA PeYEDn onwg 1) evepyog diatopr| amnop-
PO(PNONG TOU VAVO-CUCCOIATOATOS.

O1 kBavuikoi eknoprioi Yewpouviatl Hiotabfpika kKBaviika cucTPATA KAl Td PETAAAIKA
vavooopatidla eivat ano xpuoo, éva euyeveg PETAAAO TOU urnootnpidel erm@pavelakd mia-
opovia otnv meploxr) tou opatou. H omtikr) anokpion twv KE Baoidetatl otov urtodoyiopo
G nAekipikrg ermdekukontag twv KE péowm g peBodoloyiag tou mivaka mukvotntag.
Ze autd 1o onpeio AapBavoupe UTIOWn TV TPOITOIIOIN0L ToU pubpou aubopuntng KO-
prng kabevog KE xwplotd, s§attiag g rnapouoiag tov petaddikov NE tou cucoopatopa-
10G. Auto smituyxavetal untodoyidoviag tov aviiototyo HM tavuotr] Green tov petaAAKov
NZ tou cuooeEPATOPATOS PEO® NG HeBOdoU twv ouleuypévav dmodev (CDM ). Auty n
Aemttopépela Sragoporolel v napovca PeAETn ano ddAeg orou o pubuog aubopuning
ekropnig ouddoyov and KE €xet tnv 1d1a tpr naviov oto ovooopdtopa. Katérmv e-
@appoddetal n peBodog CDM yia va urtodoyiotet 1o @dopa aroppodnong tou ubpidikou
ouooEPATORATog AapBavoviag uroyn 11g rnoAeopotnteg 1ov KE kat tov petaAdikov NX.

Bpiokoupe 611 10 paopa aroppodnong tou uBp1dikoU vavo-cuooOPIATORATOS £ival dpa-
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otkda Stagoporonpévo otav o pubpog aubopunng ekropnng v KE eivat Stapopetikog
oe Kabe 9o, oe OXEON HE TV MEPITITOOT OTIoU £XE1 TTavIoU v i61a tipr). EmumAéov, ano
Vv avdAuor ToU eAcpatog aroppopnong tou uBp1d1kou vavo-ocucomPaT®patog e§etalou-
HE Y1a @AaOPATIKL) IIEPIOXT] OIOU UMApXouVv IMAeSItovikeég Kataotdaoelg tou HM nediou, ot
OTT01eG PTTOPOUV VA TPOTIOTIO|COUV OIHAVIIKA T0 oUvVNOeg TIPOPiA amtoppOPnong TRV EITL-
(PAVEIAKOV MAAOHPOVI®V EVOG APTYHDG MTAACHIOVIKOU OUCO®PATOHIATOS, AKOU KAl Y1d PKPES

ouykevipaoelg tov KE evidg tou cucoopatopatos.
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Au nanoparticle

Quantum emitter

Zxnpa 1.21: 'Eva uBp181ko vavo-cucocopdatopa aro (petaddika) NE kat KE (kBavtikég
tedeieg 1 popta). To cucowpdtopa arnotedeitat ard 170 copatibia (N 11 KE). f sivat to
I0000TO (OUYKEVIP®OT) TOV EKITOUNIOV OT0 vavo-oucoopdtopd. Ta petaddika NI xouv
aktiva 20 v kat eivat ano Xpuoo. H avtiotoixn S1nAeKIpikr) cuvApTnon IIPOKUIIIEL ATTO
nieipapa [159], 6l0pBepévn wote va AdBet unown g @awvopeva mou oxeti{oviat pe 1o
TIEMIEPACPEVO PEYeDog tav N [okéSaon v NAEKTPOVI®V 0TO0 CUVOPO TOU OPAIPIKOU VAVO-
oopaudiou, BA. ES. (2) aro [160]]. Ze 6Aoug tou Unodoyiopoug pag £xoupe Yewprjoet ot
10 ouocoopAateua Bpioketal oto kevo eg = 1. Ot KE Sewpouvial ToAU pikpotepot 1oV NZ
He oyko g ta€ng tou 1 nm?3. To vavo-cucoopdtopa £Xel oXed0V 0PalpIKO OXHHd e PEoT
aktiva nepirou 160 nm. Ot kBavtikoi exroprnoi £€xouv durtodiky portry P = 0.19 e - nm
Kat pubpo exroprr)g oo kevo hyy = 0.015 eV . H yoviakr ocuxvotta wy petaBaiAetat
TIAPAMETPIKA.
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Zxfpa 1.22: Kabe KE 10U cucoopatopatog “aicfavetal” éva §1apopeTtiko OITTIKO TEPL-
BaAdov oe oxéon pe toug urtodowrtoug KE, yeyovog rou aviikatortpidetatl amno v Ty tou
v (n ortoia mpoxuITtel and tov urnodoylopo tou HM tavuotr) Green). I'a va avadei§oupe
1 onpaocia tou va AndBei uoYn o cwotdg pubpog exkrmoprnrg (6nA. Ox1 AUtOv TOU KeVOU),
otav aAAnAembpouv KBAVIIKOL EKTTOUTIOL PE TIAQOOVIKEG VAVOSOEG, TIAPOUCIAOUHE eva
delypa tov oxetkmv (0g rpog to Kevo) pubuov exkrnopnrg ¥(r) /v wv KE yia A = 472 nm
, Héoa Ot £éva vavo-OUCOOUATOUA AToTEAOUNEVO Katd 10% ard KBAVIIKOUG EKTIOUITIOUS
Kat katd 90% anod vavooopatibia xpuoou (f = 0.1). Ta vavoowpatibia xpuoou £xouv
axtiva 20 nm evo yua toug KE AapBavooupe hwy = 2.25 nm . ZNPEIOVOUHE TG TO OXHa
amne1kovidel Tov PEco 0p0 Tou PUBPOU aubBOpPUNTNG EKTTOUITS ava Kateubuvor mou opidetatl
@G v = (Vz + Yy + 72)/3. Hapampolpe onuavikn PetaBoln) otig Tipég T0U puBIOY EKITO-
Hng 7y rmou e§aptatal aro ) 9€orn 10U KBAVIIKOU EKITOUITOU EVIOG TOU CUCOOUATOHATOG.
Zuykekplpéva, 1o 7 Kupaivetat amno v (oubpog eKIopIg oto Kevo) eng Kat 7 (pOpES AV
arno vp. AUto 10 YEYOVOG ATTOKAAUITIEL MG 08 0UVNOe1g UTOAOY1o0p0UGg g aAAnAenidpaong
petadu KE kat NT / vavoSopov, Kate arod oroteaodrmnote ouvOrnkeg aktivoBoAnong, 1 1po-
TTOTTOIN G0N TOU PUBOU aubopUNTNG EKTIOPING TOV ATOUIKGOV PeTaBdoenmv mou Aapbdavouv
Xopa mpénet va Anglet unoyn péoe uvrodoyiopev tou HM tavuotr) Green.
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Zxfpa 1.23: 'Exovtag AdBel umioyn v Ipornonoinon tou pubpou eknoprnr)g kabs KE tou
OUOOOUATOHIATOG, O OTTO10G UTIEIOEPXETAL OTOV TUTTO TG NAEKIPIKIG EMMOEKTIKOTNTAG, HITO-
POULE VA IIPOX®PI)COULLE OTOV UITOAOY10H0 TG EVEPYOU H1aTOPNG ATToPPOP1|0NG OAOKANPOU
10U ouooepatOnatog (ota miaiowa mg pebdédou CDM ). To oxrpa amnelkovidel tnv evepyo
d1atopr) arnoppodpnong evog cuconpatopatog KE kat NT xpuoou, yia ouykévipeor f = 0.1
KE. Ot KE éxouv hwy = 2.25 nm evo ta NZ €xouv aktiva 20 nm . H KOKKvr KapItuAn
AVTIOTO1XEl O€ (PACHA Y1d TO OToio £Xoupe UmobEoel otl pubuog exnournng tov KE eivat
rmaviou o 1610g, icog pe autdv tou kevou Ayy = 0.015 nm . H pdupn kapmudn avuotoiyel
OT0 @Aopa anoppoPnong oto oroio €xel ouprnepAngOel n torukn 610pOwon (Pé€ow Tou
HM tavuotr) Green ) oto pubuo eknoprnr)g kabevog KE. Eivat epgaveg ot 1 1pornornoinon
TO0U PUOBPOU auBOPUNTNG EKITOUITAG £6A1TIAG TOU TOIMKOU QP®TOVIKOU Tep1BAAAoviog (rAa-
OpoVvIKY vavodopr]) yua kabe éva KE smgpépetl éva onpaviika diagoporomnpévo @acpa
anoppoPnong Kat mpenet va AneOet uroyn.
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Zxnpa 1.24: ddaopa anoppopnong evog vavo-ocUucomdPATONATOg arotedoupevou ano KE
kat NZ xpuoou yia S1apopetikeg 1ég tou rocootou f tov KE. Ta N xpuoou éxouv aktiva
20 nm eve ot KE é€xouv hwy = 2.25 nm . T'a f = 0 (to cucoopdtopa arotedéttat € oAo-
KAnpou amno NZ xpuoou) 10 @dopa napouctddel tnv ouvrrn Kopugr] mmou mnyadet anod mv
d1€yepon Tou CUVTIOVIOPOU TOU £IPAVEIAKOU ITAACHOVIOU TOU OUCO®PATOUATOS TO OIToio
etvat anotédeopa g aAAnAenidpaong OV EMEPAVEIAKOV MAAOHOVIOV TOV PEPOVAOUEVROV
NZ mou 1o anapti¢ouv. To gUpog NG KOPUGPHG ival PEYAAUTEPO ATTIO TO €UPOG KOPUPNS
TOU £MPAVEIAKOU TTAACPOVIOU evog pepoveapéevou NI xpuoou aktivag 20 nm . Ia ouyke-
vipooeg f = 0.1,0.2, mapampovpe nwg n swoaynyr) KE oto cucoopdtopa, akopn kat
0€ TIOAU MIKPEG OUYKEVIPWOELS, PETaBAAAel SpaoTIKA TO TV KAPITUAL TOU EMMIPAVEIAKOU
nAaopoviou otnv evepyo diatopr) anoppopnong. To eUpog g Kopuprg oteveuel Kabwg
auavetat n ouykévipwor v KE. Tautdxpova, 1 OUVOAKY| aroppopnon eAATIOVETAL O
0X£0T] HE TO0 APIy®S MAAOHOVIKO vavo-cucoopatopa (f = 0). Autd mpoxkuIouy ano 1o
yeyovog ot kabmg audavetatl ) ouykévipwor), 1 HM aAAnAenidpaon petady tov petadAt-
KoV NI e§aoBevel kabwg n péon andotaon Petady 1OV oopatidiov auavetal, £Xoviag ®g
ATIOTEAECIA P1d OTEVOTEPT] TTAACHOVIKY KOPUPr). A0 TNV dAAn IMAEUpAd 000 10XUPOTEPD
etvatl n aAAnAenidpaon petagu NI tooo o eninedog eivat 0 KUP10g MAACHOVIKOG GUVIOVL-
opog. To KupldteEPOo XapaKINP1oTIKO lval n mapouocia piag dopng aroteAovupevng ano dUo
KOPUQEG OTNV IMEPITIMOT OV UIIAPXEL OUYKEVIP®OT) KBavukov exkroprov (f = 0,0.1,0.2)
1n oroia rnyddet and Tov oUVIovViopd ToU erm@avelakou rmiacpoviou v NX xpuoou kat
1oV £§1TOVIKO oUVToVIopno TV KE. 'Otav o e§1tovikdg ouvioviopog mAnotddet tnv Kopudr| 10U
ermg@avelakou rmiacpoviou ota 515 nm , 1 woxupr] aAAndenidpaon petady v dvo kata-
otace®v 0dnyei oty avadedn evog véou turou HM katdotaong. TEtoleg Kataotdoelg 6ev
potadouv pe g ouvrfelg Kataotdoelg tov PetadAik®v NZ (mAaopovia) 1) tov KE (e§itovia),
Katl eivatl yvaotég otn PiBAoypadia wg mielitovia. Ta Baocikd otoixeia tov MeEpapatik®v
@PAOPATOV TTOU HPEAETOUV TOUG TMAESITOVIKOUG OUVIOVIoHoUS UBp1dik®v cuotnudteav NZ-KE
HITOPOUV va EPUINVEUTOUV UIO TO IMPiopa £vog PovieéAou (KAaooikou) culeuypévou tada-
VIT.

55



56



Chapter 2

Introduction to the thesis

2.1 Plexcitons

Surface plasmon resonances in metallic nanoparticles have attracted a significant
amount of research work in the field of nanophysics thanks to the efficient confine-
ment of light in subwavelength volumes induced by exciting the plasmon resonances.
When a surface plasmon field of a particular nanoparticle interacts with electronic ex-
citations such as excitons, of a nearby nano-object, two interaction regimes emerge. In
the weak coupling regime, the optical response of the corresponding quantum emit-
ters is modified only via the spontaneous emission rate by means of the Purcell factor,
whereas interaction in the strong coupling regime results in the formation of plasmon-
exciton hybrid states or plexcitons [1]. The most prominent feature of these hybrid
states is the appearence of avoided crossings in the corresponding dispersion diagrams
of the coupled system that are manifested in scattering or reflectivity spectra as spectral
doublets. Plexcitons have been experimentally achieved in many configurations [1-12],
including thin metal films covered with thin excitonic layers, monolayer coatings on

nanoparticles, and homogeneous thin films covering nanoparticles.
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Plexcitons are Bosonic quasi-particles half excitons, half plasmons possessing the
lightest to-date reported effective masses, a characteristic which would enable the ob-
servation of Bose-Einstein condensation at room temperature [13]. Plexcitons are also
promising candidates for achieving the phenomenon of polariton lasing at the nanoscale
with strongly suppressed threshold values as compared to conventional lasers. Con-
trary to mainstream polariton devices which need the use of micrometer optical cav-
ities, plexciton states can readily occur in single metal nanoparticles which are of
sub-wavelength size. In order to create structures that support plexciton states, the
obvious requirement is that these structures contain materials that support surface

plasmon resonances and can interact with an excitonic material.

Scattering
Scattering

"W‘aveléﬁﬁ_ﬁl

Figure 2.1: A typical setup for generating a plexciton resonance. A dimer of metallic
(plasmonic) nanodisks placed at a 15nm distance from each other. In the space between
the nanodisks, J-aggregates (molecules) supporting excitonic resonances, are placed. A
strong interaction between the nanodisks and the J-aggregate is achieved when incident
light is polarized along the dimer axis (left panel). For light polarized normal to the dimer
axis no coupling occurs (right panel). The picture is taken from Ref. [7].

In Fig. 2.1 we observe a typical setup for achieving a plexciton resonance. Namely,
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we have a dimer of metallic (plasmonic) nano-objects (in Fig. 2.1 a dimer of nanodisks)
made of e.g., gold or silver which are placed at a very small distance the one from
the other (of the order of 20 nm or even below). The dimer supports a multitude of
surface-plasmon resonances which are manifested as maxima in the corresponding
light absorption/ scattering spectra. In the gap between the nanodisks, one usually
places a quantity of quantum emitters which can be atoms, molecules or quantum dots.
Usually, in solid-state setups like the one depicted in Fig. 2.1, we choose either organic
molecules or quantum dots as they are much easier to place in the vicinity of nanoscopic
objects (atoms require sophisticated experimental setups as they must first be cooled
and then trapped in the space between the nano-objects). In the case of Ref. [7] and
Fig. 2.1, J-aggregates were chosen (a type of organic molecules) which support excitonic
resonances in the spectral region of the surface-plasmon resonances of the plasmonic
dimer. The purpose of inserting the quantum emitters (J-aggregates) in the gap between
the nanodisks and not, e.g., on top of the disks, is the fact that upon excitation of the
surface-plasmon resonance of the dimer by external illumination, the electric-field is
strongly enhanced in the gap resulting in a much stronger interaction between the
exciton resonance of the J-aggregate and the corresponding plasmon resonance of the
dimer. As we saw above, this strong interaction is a requisite for the emergence of
a plexciton resonance. However, as it is evident from the corresponding scattering
spectra [7] of Fig. 2.1, only when light is polarized along the nanodisk axis we achieve
the strong-coupling condition in order to obtain a plexciton resonance. The latter
results in the splitting of the original plasmon peak of the dimer into two new resonance
maxima. On the other hand, when light is polarized normal to the dimer axis, the
surface-plasmon mode is not excited leading to weak coupling between the exciton
state of the emitter and plasmon state of the dimer and, therefore, a plexcitonic state

is not realized, as it is evident by the presence of a single peak in the right panel of
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Fig. 2.1.

2.2 Outline of the thesis

In the present thesis, we employ a new theory based on a multiple-scattering approach
in order to study theoretically systems similar to that of Fig. 2.1. Namely, we present
a new theoretical tool which can provide numerical spectra of scattered light in order
to explore the emergence of plexciton states in collections of quantum emitters placed
within a certain photonic environment. Of particular interest is a photonic environ-
ment consisting by a finite number of nano-objects, e.g., nanoparticles, which support
electromagnetic modes such as plasmonic modes which would be able to interact with
the intrinsic resonances of the collection of quantum emitters. The presence of the
arbitrary photonic environment (in this thesis we assume collections of nanoparticles)
is expressed mathematically by the so-called electromagnetic Green’s tensor which
provides directly the spontaneous emission rate of a each quantum emitter of the col-
lection.

The presented theory is based on macroscopic quantization theories of the electro-
magnetic field in inhomogeneous lossless dielectrics [14-16]. An important feature of
the macroscopic theories is that photons can be defined as the elementary excitations
of the true modes of the photonic environment surrounding the collection of quantum
emitters. Corresponding mode functions are the (classical) harmonic solutions of the
wave equation. In the theory presented in the current thesis, the spontaneous emis-
sion rate of a quantum emitter is influenced not only by the photonic environment
(plasmonic nanoparticles) via the electromagnetic (EM) Green’s tensor but, also, by the
presence of other quantum emitters supporting the same exciton resonance. This is

based on the pioneering work by Dicke [17] which stated that resonant quantum emit-
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ters in each other’s neighborhood can decay cooperatively. Depending on the collective
state, the emitters may decay faster than a single emitter up till twice the single-emitter
rate (superradiance) or decay slower or not at all (subradiance).

The structure of the thesis is as follows. In chapter 3 we discuss the concept
of the Green’s tensor in relation to the EM waves. The EM Green’s tensor is at the
heart of the presented formalism as it models mathematically the optical response of
the photonic environment, e.g., a finite collection of metallic nanoparticles. For this
particular system, the EM Green'’s tensor is calculated via the so-called coupled-dipole
method which is a standard numerical method for studying the optical response of a
single nanoparticle of arbitrary shape as well as finite collections of such.

In chapter 4 we introduce the developed multiple-scattering polaritonic-operator
formalism in detail. In addition, we discuss the relevant numerical methods needed
to generate results comparable to experiment such as light-scattering spectra. In the
same chapter, we apply the method to the case of a linear binary chain of alternating
metallic nanoparticles and quantum emitters. In chapter 5, we present a separate more
in-depth numerical study of the light-scattering spectra of the binary chain. At the
same time, we provide a simple systematic means to interpret the calculated numerical
spectra as well as predict the spectral trends for arbitrary long binary chains.

In chapter 6, we change the material of the nanoparticles. Instead of a noble metal,
we study the spectra of nanoparticles made of a topological insulator. Recently, the
role of topologically protected (surface) states in the optical properties of topological
insulator nanoparticles was investigated [18], demonstrating that under external light
illumination, a single electron in such a state induces a surface charge density similar
to a plasmon in a metallic nanoparticle. Furthermore such an electron can act as a
screening layer, effectively suppressing absorption inside the particle and can couple

phonons and light, giving rise to a previously unreported topological particle polariton
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mode. Due to the nature of this polariton mode, when interacting with the corre-
sponding resonant mode of an adjacent quantum emitter, the requirement of a strong
particle-emitter coupling is much more easily satisfied so that a hybrid mode emerges,
reminiscent of the plexciton mode of metallic nanoparticle-quantum emitter dimers.

In chapter 7 we study the optical response of hybrid clusters containing metallic
nanoparticle and quantum emitters which are usually fabricated via DNA-assisted self-
assembly. Namely, the nanocluster contains randomly positioned, almost touching
particles which may either be plasmonic nanoparticles or quantum emitters. Our
aim is to study the interaction of the surface plasmons supported by the metallic
nanoparticles with the excitonic resonances of the quantum emitters as well as how this
interaction can be probed experimentally in absorption cross-section experiments of
light incident on the nanocluster. Due to the large number of the metallic nanoparticles
of such clusters (usually more than 100 particles per cluster) the computer time needed
to calculate the light spectra via the multiple-scattering polaritonic-operator method
employed in previous chapters becomes prohibitively long. Therefore, we employ only
one pillar of the present technique, i.e., the coupled-dipole method so as to probe
numerically the light-absorption spectrum from such hybrid nanoclusters.

Finally, in chapter 8 we present the future outlook of the multiple-scattering method
providing some systems and setups which can be modelled by the method introduced

in this thesis.
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Chapter 3

Electromagnetic Green’s Tensor

In this chapter we follow closely the work of [19]. An important concept in field theory
is the Green’s function G, i.e. the fields due to a point source. In electromagnetic
theory, the dyadic Green’s function is essentially defined by the electric field E at the
field point r generated by a radiating electric dipole P located at the source point r’. In

mathematical terms this reads as

E(r) = w?uouG (r,r') P. (3.1)

Here, w is the angular frequency, 1 is vacuum permeability, p is the relative per-

meability of the medium and P is the electric dipole moment.

3.0.1 Mathematical basis for Green’s functions

Consider the following, general inhomogeneous equation:

LA (r)=B(r). (3.2)

Here, L is a linear operator acting on the vector field A representing the unknown
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response of the system. The vector field B is a known source function and makes the
differential equation inhomogeneous. A well-known theorem for linear differential equa-
tions states that the general solution is equal to the sum of the complete homogeneous
solution (B = 0) and a particular inhomogeneous solution. Here, the homogeneous
solution (Ag) is assumed to be known. We thus need to solve for an arbitrary solution
of the inhomogeneous equation.

Usually it is difficult to find a solution of Eq. (3.2) and it is easier to consider the
special inhomogeneity § (r — 1), which is zero everywhere, except in the point r = r’ .

Then, the linear equation reads

LG;(r,v)=nd(r—71") (i=x,v,2), (3.3)

where n; denotes an arbitrary constant unit vector. In general, the vector field G; is
dependent on the location r’ of the inhomogeneity ¢ (r —r’). Therefore, the vector r;
has been included in the argument of G; .The three equations given by Eq. (3.3) can

be written in closed form as

LG (r,r') =16 (r,r) (3.4)

where the operator £ acts on each column of G separately and I is the unit dyad [20].
The unit dyad is defined by its property I - a = a -1 = a where a is any vector and is
similar to the identity matrix whose defining property is 1,, - x = x - 1,, = x where X is
any matrix (of dimension n). The dyadic function G fulfilling Eq. (3.4) is known as the
dyadic Green’s function.

In a next step, assume that Eq. (3.4) has been solved and that G is known. Post-
multiplying Eq.(3.4) with B (r’) on both sides and integrating over the volume V in

which B # 0 gives

65



/ LG (r,r)B(r')dV' = / B(r')d(r—r')dV". (3.5)
v v

The right hand side simply reduces to B (r) and with Eq.(3.2) it follows that

ﬁA@):[}xunfnnﬁmv' (3.6

If on the right hand side the operator is taken out of the integral, the solution of

Eq.(3.2) can be expressed as

A@zLGmﬁBWMV 5.7)

Thus, the solution of the original equation can be found by integrating the product
of the dyadic Green’s function and the inhomogeneity B over the source volume V.

The assumption that the operators £ and f dV' can be interchanged is not strictly
valid and special care must be applied if the integrand is not well behaved. Most
often G (r,1’) is singular at r = r’ and an infinitesimal exclusion volume surrounding
r = r’ has to be introduced. Depolarization of the principal volume must be treated
separately resulting in a term (L) depending on the geometrical shape of the volume.
Furthermore, in numerical schemes the principal volume has a finite size giving rise
to a second correction term commonly designated by M. As long as we consider field

points outside the source volume V, i.e. r ¢ V, we do not need to consider these issues.

3.0.2 Derivation of the Green’s function for the electric field

By considering the time-harmonic vector potential A and the scalar potential ¢ in
an infinite and homogeneous space characterized by the constants p and €, one may

conveniently derive the Green’s function for the electric field. A and ¢ are defined by
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the following relationships

E(r) =iwA(r) — Vo(r) (3.8)
H(r) = ﬁv X A (r) (3.9

Using the electric displacement D = ¢y¢E, the above equations can be inserted in

Maxwell’s second equation yielding

V XV x A(r) = popj (r) — iwpopeoe [iwA (r) — Vo (r)], (3.10)

The potentials A,¢ are not uniquely defined by Egs. (3.8), and (3.9). We are still free to

define the value of V - A which we choose as

V- A =iwpgpeped (1) (3.11)

A condition that fixes the redundancy of Egs. (3.8), and (3.9) is called a gauge condi-
tion. The gauge chosen through Eq. (3.11) is the so-called Lorentz gauge. Using the
mathematical identity V x Vx = —V? 4+ VV. together with the Lorentz gauge we can

rewrite Eq.(3.10) as
[VZ+ k] A (r) = —popj (r), (3.12)

which is the inhomogeneous Helmholtz equation. It holds independently for each com-

ponent A; of A. A similar equation can be derived for the scalar potential ¢

(V24 k] ¢ (r) = —p(r) /eoe. (3.13)

Thus we obtain four scalar Helholtz equations of the form

[V2+ k] f(r)=—g(r). (3.14)
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To derive the scalar Green’s function G (r,r’) for the Helmholtz operator we replace

the source term g (r) by a single point source § (r — r’) and obtain
(V24 k| Go(r,r') = -6 (r—1'). (3.15)

The coordinate r denotes the location of the field point, i.e the point at which the fields
are to be evaluated, whereas the coordinate r’ designates the location of the point
source. Once we have determined Gy we can state the particular solution for the vector

potential in Eq. (3.12) as

A(r)= ,uo,u/ j (") Gy (r,x")dV". (3.16)
v

A similar equation holds for the scalar potential. Both solutions require the knowledge
of the Green’s function defined through Eq.(3.15). In free space the only physical

solution of this equation is [21]

A
e:i:zk:|r /|

Gy (r, 1) (3.17)

B A|r — 1|

The solution with the plus sign corresponds to a spherical wave propagating out of
the origin while the solution with a minus sign denotes a wave that converges towards
the origin. In all the following we retain only the outwards propagating wave. The
scalar Green’s function can be introduced into Eq. (3.16) and the vector potential can
be calculated by integrating over the source volume, allowing for the calculation of the
vector and the scalar potential for any current distribution j and charge distribution p.
It must be noted that the Green’s function of Eq. (3.17) applies only to a homogeneous
three-dimensional space. The Green’s function of a two-dimensional space or a half-

space will have a different form.
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So far, we have reduced the treatment of Green’s functions to the potentials A
and ¢ because it allows us to work with scalar equations. The formalism becomes
more involved when one considers the electric and magnetic fields, since a source
current in the x-direction leads to an electric and magnetic field with z- y-, and z—
components, while for the vector potential a source current in x only gives rise to
a vector potential with an x-component. Therefore, in the case of the electric and
magnetic fields, a Green’s function is needed that relates all components of the source
with all components of the fields, i.e. the Green’s function must be a tensor. This type
of Green’s function is denoted as a dyadic Green’s function and has been introduced in
the previous section. To determine the dyadic Green’s function we start with the wave

equation for the electric field,

V x 'V x E — kjeE = iwpio] (3.18)

which in a homogeneous space reads as

V x V x E(r) - k’E (r) = iwpopj (r) . (3.19)

For each component of the current distribution j a corresponding Green’s function can

be defined. For instance, for j, we have

V xVxG,(r,r)—-EkG,(r,r') =6 (r —r')n,, (3.20)

where n, is the unit vector in the x-direction. A similar equation can be formulated for

a point source in the y- and z- directions. In order to account for all orientations we
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can write the general definition of the dyadic Green’s function for the electric field [22]
VxVxG(,1)-kG@r)=Ir-r), (3.21)

I being the unit dyad (unit tensor). The first column of the tensor G corresponds to
the field due to a point source in the z-direction, the second column to the field due
to a point source in the y-direction, and the third column corresponds to the field due
to a source point in the z-direction. Thus a dyadic Green’s function is just a compact
notation for the three vectorial Green’s functions.

The source current in Eq. (3.19) can be viewed as a superposition of point currents.
Thus, if the Green’s function G is known, a particular solution of Eq. (3.19) can be

stated as

E(r) = iwuuo/ G (r,v)j(")dV’ (3.22)
v

The general solution for the electric field needs to add any homogeneous solution Ej

turning out to be

E(r)=Eq(r)+ iw,uuo/ G (r,v)j (") aV’ (3.23)
v

while the corresponding general solution for the magnetic field is

H(r) =H,(r) + /V [V x G (r,r)]j(x')dV’ (3.24)

These equations are denoted as volume integral equations. They are very important
since they form the basis for various formalisms such as the "method of moments", the
"Lippman-Schwinger equation”, or the "coupled dipole method". In order to avoid the
apparrent singularity of G at r = r’ we have limited the validity of the volume integral
equations to the space outside the source volume V, (r ¢ V).

In order to solve Egs (3.23) and (3.24) for a given distribution of currents we still
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need to determine the explicit form of G. Introducing the Lorentz gauge (3.11) into (3.8)
leads to
. 1
E(r)=iw [1 + pVV} A(r). (3.25)
The first colummn vector of G, i.e G,,defined in Eq. (3.20) is simply the electric field

due to a point source current j = (iwsg) " 0 (r — r') ny. The vector potential originating

from this source current is, according to Eq.(3.16)
A (r) = (iw) " Gy (r, ') ny (3.26)
Inserting this vector potential into Eq.(3.25) we find

1
G, (r,r')= {1 + EVV} Go (r, 1) ny, (3.27)

with similar expressions for G, and G.. Tying the three solutions together to form
a dyad is accomplished via the definition V - [GyI] = VG,. Thus the dyadic Green’s
function can be calculated from the scalar Green’s function G in Eq.(3.17) as

G(r,r) = {I + %VV} Go (r,1'). (3.28)

3.1 Volume integral methods

Small particles can often be approximated by dipolar cells as in the case of Rayleigh
scattering. The induced dipole moment in such a particle is proportional to the local
field at the dipole’s position. As long as a single particle is considered, the local field
corresponds to the illuminating incident field. However, if an ensemble of particles is
considered, the local field is a superposition of the incident radiation and all the partial

fields scattered by the surrounding particles. It then turns out that each particle is
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dependent on all the other particles. To solve this problem, a formalism is needed
for solving self-consistently the fields of an arbitrary number of coherently interacting
particles.

The particles are not required to be spatially separated from each other. They can
be joined together to form a macroscopic object. Indeed, the response of matter to
incident radiation can be formulated as a collective response of individual dipoles each
of them occupying a volume element. The superposition of elementary dipole fields
(Green’s functions) has to be done in a self-consistent way, i.e. the magnitude and
the orientation of each individual dipole is a function of the local field defined by the
excitation and other surrounding dipoles.

Methods based on this concept usually involve summations over all dipolar centers.
In the limit, as the size of the dipolar centers goes to zero, the summations become
volume integrals. Therefore these formalisms are denoted as volume integral methods.

Both a microscopic and a macroscopic point of view exist for basically the same
formalism. While in the former, microscopic dipolar particles are joined to form a
macroscopic ensemble the latter considers a macroscopic object that is divided into
small homogeneous subunits. It will be shown in section 3.5 that the two types of
formalism are physically and mathematically equivalent. The method following the
microscopic point of view will be denoted the coupled dipole method (CDM) and the
method following the macroscopic point of view as the method of moments (MOM).

Both the CDM as well as the MOM are well established methods for solving Maxwell’s
equations in various fields of study. The CDM is widely used in astrophysics for the
investigation of interstellar grains, but it also finds applications in other fields such
as meteorological optics or surface contamination control. The MOM has its origins
in electromagnetic practice with special focus on antenna theory. However, the MOM

also finds applications in biological investigations, in optical scattering or in near-
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field optics. In the literature, the two methods very often bear different names. As
an example, the CDM is also called the discrete dipole approximation (DDA) and the
MOM is designated as the digitized Green’s function method [23] or simply as the
volume integral equation method [24]. Furthermore, because of the analogy to quantum
mechanics, the volume integral method is denoted by some authors as the Lippmann-
Schwinger equation.

Both the CDM and the MOM can be derived from the same volume integral equation.
In the past, some authors compared inadequate forms of the two methods and stated
that one method is superior to the other [25]. However, as shown by Lakhtakia [26]
for bianisotropic scatterers in free space, the two methods are fully equivalent to each
other. The main difference between the CDM and the MOM is the point of view. While
the MOM involves the fields that are actually present at a given point r, CDM considers
the fields that arrive at the point r and thus excite the small region AV centered around
r. Lakhtakia distinguishes between weak and strong forms of the two methods and we

shall adopt the same terminology.

3.2 The volume integral equation

Consider an arbitrary reference system, such as a planar layered interface, whose
dielectric properties are sufficiently represented by a spatially inhomogeneous dielectric
constant, €,.¢(r), r being the position vector. For simplicity, the reference frame is
assumed to be non-magnetic (/. = 1) and isotropic. All the fields are further assumed
to be time harmonic. The dielectric constant of all space will be denoted as € (r).
Then, as long as the reference system is unperturbed (no other objects are present) € is
identical to ¢,.y. In the presence of perturbing objects embedded in the reference system

[e (r) — €7 (r)] defines the dielectric response of the objects relative to the reference
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system.
In the absence of any source currents and charges, Maxwell’s curl equations read
as

V x E(r) =iwpeH (r), (3.29)
V x H(r) = —iwegeres (r) E(r) +je (r) , (3.30)

where j. is the volume distribution of the induced electric current density
e (r) = —iweg [ (r) — €7 (r)| E(r). (3.31)

From Eqgs.(3.29) and(3.30) it follows that E has to fulfill the inhomogeneous wave equa-
tion

V x V x E(r) — ki€res (v) E () = iwpoje (r) (3.32)

where the free space wavenumber ky is equal to w/c. Using the definition of the dyadic

Green’s function of the previous section
VxVxG(r,t)—kee ()G (rr)=10(r — 1), (3.33)

the electric field can be represented as

E(r)=Eq(r) + w / G(r,t)j.(r)dV' re¢V, (3.34)
1%

6002

where the prime in V' indicates that the integration refers to r’. While E, denotes the
homogeneous solution (jo = 0 everywhere), the term on the right side represents the
particular solution. A similar procedure can be applied to obtain the magnetic field.
One finds

H(r) =H,(r) + /v [V xG(r,r)]je()dV' v &V, (3.35)

74



Upon substitution of j. into Egs.(3.34) and (3.35) implicit integral equations (Fredholm
equations of the second kind) are obtained for the fields E and H. These equations are
denoted as the volume integral equations for the electric and magnetic fields and form
the basis for the MOM.

The current density of an electric dipole with moment P located at r = rj is

j(r) = —iwPyd (r,ro) , (3.36)

where the delta function has the units m 3. Inserting this current into Egs.(3.34) and
(3.35) and assuming the homogeneous solution is zero (no external excitation), the

electomagnetic fields can be expressed in terms of G (r,r’) as

w
E(r)= EO?G (r,ro) Py, (3.37)
H(r) = —iw[V x G(r,19)| Po. (3.38)

Thus, the E field of a dipole with orientation Py = |P|n, located at r = r( cor-
responds to the first column of G (r,ry). Similarly, the E field of a y-oriented (z-
oriented) dipole corresponds to the second (third) column of G (r, I‘o). In other words,
the columns of G (r,ry) render the E vectors for the three major components of the
dipole. The same relationship holds for the H field and [V x G (r,ry)]. The electromag-
netic field of an arbitrarily oriented dipole can therefore simply be represented in terms
of G and [V x GJ.

For later purposes it will be convenient to split G into two separate contributions

G (r,rg) = Go (r,rg) + G4 (r,10) (3.39)

G; is the scattering part of the Green’s function and accounts for the electromagnetic
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field, i.e. the field that is reflected from or transmitted through inhomogeneities in the
environment. Similarly, Gy is the primary part of the Green’s function [Eq. (3.40)] and
determines the direct dipole field. While G is singular at its origin r = r’, the scattering
part behaves regularly. G will only contribute to the field in the (sub)domain in which
it is located. G corresponds to the Green’s dyadic in free space and can be determined
in closed analytical form from the scalar Green’s function according to the previous

section

Gy (r,r') = {I + %VV} Go (r, 1) (3.40)

where G (r,1’) is a solution of
V3G (r, 1) + kK*Gy (r,1') = —6 (r — 1) (3.41)

The solution of this equation is

A
6:i:zl€|r r'|

Gy (r, 1) (3.42)

- A|r — 1

where the plus sign corresponds to an outgoing wave and the minus sign to an incoming
wave.

So far, the field E has been derived for points outside the scattering objects (r ¢ V).
However, if the fields within the source volume (r € V) are to be evaluated, a principal
volume V5 must be introduced to exclude the singularity of Gy at r = r’. In this case

the solution of (3.32) reads

B (r) =B (1) + 5 [ Gulen)i, () av”
€oC v
iw Lj. (r) (3.43)
W Go(r.x')j, () dV' + —3) ey
€0C2 VoV, 0 (I‘, r ).] (I‘ ) + iCUE0€Tef (I‘) rec

A similar expression can be found for the magnetic field H. In the limit as the
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maximum length of the integration area § approaches zero, the exclusion volume Vj
becomes infinitely small. For arbitrary exclusion volumes Vs and time harmonic fields,
the source term L can be interpreted physically as a generalized depolarizing dyadic
and turns out to depend entirely on the geometry of the principal volume [27]

1 n(r')(r—r)
dm Ss ‘I‘—I"|3

ds’. (3.44)

The limit as 0 — 0 is omitted in the expression for L because the surface depends only
on the geometry of V5. For cubic or spherical principal volumes the source dyadic turns
out tobe L = (1/3) 1.

Eq.(3.43) is known as the (electric) volume integral equation. It can be represented

by the simpler equation (3.34) if the Green’s function is written in the symbolic form

Ly (r—1')

G(r,r')=PV.[G(r,1)] — K2erer ()

(3.45)

The symbol P.V. denotes the principal value and was introduced by van Bladel [28]. A
volume integral over P.V [G (r,1’)] acting on a current j (r') implies that an infinitesimal

exclusion volume at r = r’ must be taken into account. In other words

/ PV G (r,r')]j. (r')dV' = lim G (r,r)j. (r")dV' + LJe—<1“> (3.46)
v

0=0 Jy_v; kgeres (x)

In the usual notation the symbol P.V. is taken out of the integral. The principal volume
notation is only stated here for completeness and will not be used in the following. The

source volume V' can be split into /N volume elements AV, such that

N
V= Z AV, (3.47)
n=1
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It is assumed that the individual volume elements are sufficiently small, such that the

current density j. can be regarded as constant over the dimensions of AV,
Je (r) =Je(rn) T €AV, (3.48)

where r,, is an arbitrary point inside AV,,. In this case, the solution for the field E can

be written as
N N
E(r)=E(r)+ Y AE)(r)+ > AE;(r), (3.49)
n=1 n=1
where AE? is the primary field generated by the current in the subvolume AV}, and
AE? is the corresponding scattered field. AE? and AE? are determined by

p

| far, Gor,x)dV'|je(ra) x ¢ AV,

AE? (r) = (3.50)
& lims o fay, v, Go (r0)dV' = sl (r) 1€ AV,
AE;, (r) = — { G, (r,7) dv'} jo (12) - (3.51)
€oC AV,

Due to the smooth behavior of Gy at r # r’,the integral in the expression for r ¢ AV}, can
be approximated by AV,,Gq (r,r’). This approximation cannot be applied for r € AV,
because of the strong variation of G near r = r’. Instead, the volume integral has to be
carried out explicitly for a given geometry of the principal volume Vj. Since G; is well
behaved for all r, the integration of G, can be replaced by AV, G (r,1’) everywhere.

For later convinience the remaining integral will be denoted as

M = lim Gy (r,r')dV". (3.52)
6—0 Avn_v(s

After inserting Eqgs.(3.50) and (3.51) into Eq.(3.49) and evaluating the field E at the
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positions r; = r,,, the following N vectors are obtained:

E (ry) = Ep (1) +€% [M (1) — /-cg?(—,% + AVAG, (rr,te) | 3o (r2)

: N
iw .
+60? Z G (ry, 1) je (rn) AV, k=1,...,N. (3.53)

n=1

n#k

These N equations are the basis for both the MOM and the CDM. The dyadics L and
M are given by Egs. (3.44) and (3.52) respectively. G is the Green’s function and Gy
denotes its scattering part. Note that the term in brackets, containing M, L and G,
defines the interaction of the subvolume element AV}, with itself, whereas the sum in
the second row accounts for interactions with other dipolar subunits.

The dyadics L and M can be evaluated for a specific geometry of Vj,but their sym-
bolic representation will be maintained for general validity. It can be shown that
M (r,) approaches zero as the subvolume AV, is reduced arbitrarily. Therefore, in
the limit AV,, — 0 the contribution of M (r,) can be ignored. The dyadic L (r,), on
the other hand, does not vanish in the limit AV,, — 0. This dyadic accounts for the
self-depolarization and its incorporation is absolutely necessary in a self consistent
formalism.

Since Eq. (3.53) considers both M and L, the equation represents a so-called strong
form. The weak form is obtained if M is ignored and only L is considered. According to
Lakhtakia [26], only comparisons between strong forms or weak forms are appropriate.
A comparison between the strong form of the MOM and the weak form of the CDM will
show the same inconsistency as a comparison between the strong and weak forms of

the same method.
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3.3 The Method of moments (MOM)

The method of moments considers the fields that are actually present at a given point
r. These fields are directly represented by Eq. (3.53). In order to arrive at a solvable

system of equations, the electric current density
je (r) = —iweg [€ (r) — €ref (r)] E(r) = —iwegAe (r) E (1) (3.54)
is introduced into Eq.(3.53). This leads to the following system of equations

N
E(ry) = Y Ap.E(r,) (3.55)
n=1
where the submatrices A,, are given by

A, = [I — {kéM (ry) — % + AViki G, (1, rk)} Ae (rk)} Sken

— [AVnkSG (I‘k, I'n) AE (I‘k)] (1 — 514:71)

(3.56)

Since Eq. (3.55) is a vector matrix equation, Ay, is a 3N x 3N submatrix. Different
computational schemes, such as the conjugate gradient method, serve to solve the
system of equations. It is probably the most difficult task of the MOM to find an
efficient and reliable algorithm for solving Eq. (3.55). Because the resulting matrices
usually have low conditions, a direct solution might become numerically unstable for
large systems. To overcome this problem Martin et al. introduced an iterative procedure
that is based in Dyson’s equation [29].

The current j; given by Eq.(3.54) can also be inserted into Eq.(3.34) or Eq.(3.43) in
order to obtain an integral formulation of Eq.(3.53). Furthermore it should be noted
that the formalism is not restricted to isotropic scatterers. Eq.(3.55) remains unaffected

if € (r) is assumed to be a tensor. The extension to bianisotropic scatterers can be found
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in [26].

3.4 The coupled dipole method (CDM)

Contrary to the MOM, the CDM cosiders the field E.,. that excites a given volume
element. This field is different from the field in Eq.(3.53). In order to obtain the field
E..., the “self-field" associated with M and L have to be subtracted from the actual
field E to yield

B () = By () + 5 G (v, 12) o (12) AV

2
0

w

N
> G(rera)je(tn) AV, k=1,...,N (3.57)

n=1

n#k

€0C2

while the dyadics M and L define the direct interaction, the term containing G; ac-
counts for the indirect interaction. The field associated with G (r, ry) is the field that
was emitted at r = r; at former times and now arrives back to r = r; after having
been scattered in the environment. Therefore, this field also contributes to the exterior
excitation of the volume element at AV}, and hence must be included in Eq. (3.57).
Using the microscopic polarizability oy, the dipole moment P, induced in the volume

element AV}, can be related to the field E.,. (ry) by

Pk = akEeac(r (3.58)

This relationship can be introduced in Eq. (3.57) after expressing the current density
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in terms of the dipole moment

W

~AVh

je (ri) = P,. (3.59)

The resulting system of equations in matrix form reads as

N
Eo(ri) =Y BuBee(r,), k=1,...,N, (3.60)
n=1
where the submatrices By,, are given by

2
By, = {I - :J?Gs (i, Tx) ak] Okn — [G (Tks T0) Q] (1 — Opa) - (3.61)
0

If Eq. (3.60) is multiplied by «;, on both sides, a system of equations is obtained for the
dipole moments

N
OzkE[) (I‘k) = Z C]mPn, k= 1, Ce 7]\/v, (3.62)
n=1
where the submatrices Cy,, are given by

w? w?

Ckn = |I- —Oést (I‘k, I‘k):| 5kn — |i—OénG (I'k, I‘n)} (1 — 5k:n) . (363]

6002 60C2

Once the dipole moments are determined, the field can easily be calculated everywhere
in space. It has to be emphasized once more that E.,. is identical with E only outside
the scatterer occupied by the volume V. Inside V' the two fields are different. In order
to obtain the actual field inside V from E.,., the “self-dyad" associated with L and M
has to be added to every interior point. However, outside the volume V the field due to

the /N induced dipoles reads as

75 N

E(r)=Eo(r) + 5> G(rr)P, reV. (3.64)

2
€pC
0 n=1
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In order to compare the CDM and the MOM, the polarizabilities < have to be
expressed in terms of L (r;),M (r;) and €(ry). The requirement for the CDM to be
identical with the MOM leads to

L (ry)

ay = AVieoAc (1) [I - [kgM (re) — -~ (rk)} Ae (rk)] B : (3.65)

This relation follows from the equality of the current density in Eq. (3.54) in the MOM
and the current density Egs. (3.58) and (3.59) in the CDA. The exciting field E.,. has

further to be expressed in terms of the actual field E according to

Bun () = B(ne) ~ 25 | M (r;)(— %] i (x2) e
— lI — [k;gM (ry,) — %f%} Ae (l“k)} E(ry),

which follows from Egs. (3.53), (3.54), (3.57). It remains to be shown that Eq.(3.65)

reduces to the known forms for the polarizability.

3.5 Equivalence of the MOM and the CDM

In the weak forms of the MOM and the CDM, the contribution of the dyadic M is

ingored. In this case, EqQ.(3.65) can be expressed as

€ (rg) — €res (vr)

= 3eoeres (1) AV ’
e €0€ref (ry) ke (ry) + 2€ref (rx)

(3.67)

where the explicit value of L = (1/3)I was used. Eq. (3.67) is recognized as the
quasi-static polarizability of an electrically small sphere. Thus, the MOM and the CDM
turn out to be identical in their weak forms. Furthermore, since Eq. (3.66) relates

the exciting field E.,. to the actual field E, it can be shown that the field inside the
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subvolume AV, is
3 Eref (rk)

E (I'k) - € (I‘k) + 2€ref (I‘k

)Eem (ry). (3.68)

This relationship is consistent with the corresponding expression obtained for a small
sphere in a homogeneous external field.

In order to compare the strong forms of the MOM and the CDM, an explicit value
for the dyadic M has to be determined. The calculation is most easily performed for a
spherical principal volume Vj. In this case, the integral in Eq.(3.52) can be determined

and the expression for M reads as [28]

M (1) = 2 11— ke () Ry eere 1] (3.69)

2

In this expression, Ry is the radius of the spherical subvolume AV}, = (47/3) R} and
krer is given by k:?ef = kgeref. As expected, M equals zero for R, — 0. Inserting
Eq.(3.69) into the expression for the polarizability (3.65) and using L = (1/3)1 one

obtains

(3.70)

3k2 A -
ar = |3e0eres (4) Ae (ry) AV, ] [I _ Bkes (ry) A€ (ry) |

€(ry) + 2€ref (ry) €(ry) + 2€r¢f (ry)

The first factor is recognized as the weak form of the polarizability, whereas the second
expression defines a correction term that accounts for the finite subvolume Vj. For
AV} — 0 this term equals I. The polarizability o}, was first determined by Lathtakia [26],
and it is this form that must be considered in comparison with the strong form of the
MOM. It therefore turns out that the strong forms of the MOM and the CDM are also
equivalent. Since the strong forms account for the finite size of the subvolumes, they
generally lead to faster convergence than the weak forms.

It has been shown by several authors that the electrostatic polarizability given by
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Eq.(3.67) fulfills neither energy conservation nor the optical theorem for particles mod-
elled by a single dipole [30,31]. According to the equivalence of the MOM and the CDM
neither does the weak form of the MOM provides physical solutions for single dipolar
scatterers. Therefore, the dyadic M is significant even for very small particles. In order
to achieve physical solutions, various other forms of the CDM were proposed but all of
them modify the weak form of the CDM to include higher-terms in ks (ryRy).

It is repeated here that the main difference between the MOM and the CDM is
the point of view. While the CDM considers the field incident on a subvolume(exciting
field), the MOM deals with the field that is actually present in the subvolume. Therefore,
the field of the CDM only represents the solution for the fields outside the scatterer,
whereas inside the scatterer the relation between the exciting field E.,. and actual filed

E is given by Eq.(3.66).

3.6 Effective polarizability

The effective polarizability «. is often introduced in order to account for the interaction
of a single dipolar particle with its environment. The interaction originates from the
fact that part of the field emitted by the dipole at previous times is reflected back and
influences the dipole’s properties. The dipole moment P of a polarizable particle located
atr = ro with polarizability « (w) is related to the local exciting field Ejpeq; = Ecse (r = 1p)
by

P = o (w) Epear (3.71)

where the polarizability is given by Eq. (3.65). Note that E,;,.,; is the field that excites
the particle and is thus not equal to the actual field at r = ry. E;,.; can be split into
two contributions

Elocal = EO (I'()) + Es (I'()) 5 (372]
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where Ej is the exciting field and E; is the dipole’s field that is reflected back to its

position (scattered field). The latter can be written as

2

E, (r)) = —

EGS (I’(),I'O) P. (373]
0

Note that G;, unlike G, has no singularity and hence may be evaluated at its origin.

With Eqgs. (3.71)-(3.73), it follows that
P——a« (w) GS (I'(), I'()) P=q« ((U) EO (I'()) (3.74)

This equation is identical to Eq (3.62) of the CDM if a single particle is considered. The
right hand is simply the primary dipole moment F, i.e. the dipole moment induced by

the exciting field E,. Thus Eq. (3.74) can be rewritten as

w2

P — L (w) Gs (ro,rg) P = Py (3.75)
€o

which can be solved for P. The self-consistent dipole moment P is determined by
G, containing the information of the optical properties of the environment and by «,
describing the properties of the particle itself. From Eq. (3.73) an effective polarizability,
Qff, can be calculated as

P = Qleff (w) EO (I‘o) . (3.76)

In free space oy is equal to . Inhomogeneities in the environment change the po-
larizability from « to a.;r. These changes are due to the dipole’s interaction with the
environment. If o represents a molecule or atom with well-defined transition energies,
then the interaction with environment leads to resonance shifts and alterations of the

decay rates.
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3.7 The Total Green’s function

The entire electromagnetic information of a system consisting of an arbitrary number
of particles can be represented by a single dyadic function. This function is denoted
as G; where the index ¢ stands for “total". The term “particle” represents any dipolar
center, whether spatially isolated from others or merged together with others to form a
macroscopic medium. Consider an arbitrary number of particles embedded in an in-
homogeneous reference system, such as a planar layered structure. It is assumed that
the Green’s function G accounts for the inhomogeneous reference system. According
to Eq.(3.66), the actual field E (r) outside of all the particles in the system is equal to
the exciting field E.,. because r is an exterior point. For = 1 this field is given by

Eqgs.(3.60) and (3.61) and reads

E(r)=Eo(r) + —5 > G(r,r,)aE(r,) (3.77)

where E is the field in the absence of the particles. For the present purpose, E is the
field of an exciting dipole at r = r; with the dipole moment Pj. According to Eq. (3.37)

the dipole field can be expressed in terms of the Green’s function as

2

w
Eo (r) = —5G (r,1;) Py (3.78)
€g9C
The combination of both equations leads to
w2
E(r)= —G(r,rg) Pk—l— — g G (r,r,) a,E(r,). (3.79)

€oC2

87



If the Green’s function of the entire system were known, the field at r could simply be

calculated from

w2

E(r) = —Gy(r,ry) Py. (3.80)

€02
Here, G; not only accounts for the inhomogeneous reference system, but also for the
particles. The field in Eq. (3.80) can be substituted for the fields E (r) and E (r,,) in

Eq.(3.79) to obtain
5 N
w
G (r,1) P = G (r,00) P+ —— > G (r,1,) ay () Gy (v, 11) Py (3.81)
0 n=1
This equation can be post-multiplied by P,/ | P,|” to give

N
G (r,r) = G (r,13) + Wi Z G (r,r,) a, (w) Gy (rp,rk) - (3.82)

n=1

This is the discrete form of Dyson’s equation [32] and was first derived in quantum
mechanics. In the present approach it was assumed that only exterior points are
considered. The derivation for interior points follows the same steps but with a slightly
more complicated expression for Eq.(3.77) including the scattering part of G. Eq.(3.82)
incorporates all information about the environment. Once G; is known, the field of
a dipole placed at an arbitrary location r; is readily calculated using Eq.(3.80). The
formalism of Dyson’s equation is elaborated in more detail by Martin et al. for van der
Waals interactions and for electromagnetic scattering [33]. In the former, G; is denoted
as the “field susceptibility”, whereas for the latter, it bears the name “generalized field

propagator”.
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Chapter 4

A Multiple-Scattering
Polaritonic-Operator Method for
Hybrid Arrays of Metal Nanoparticles

and Quantum Emitters

4.1 Introduction

Surface plasmons (SPs) are electromagnetic (EM) waves coupled to the collective charge
oscillations at an interface between two media with permittivities of opposite sign, typ-
ically a dielectric or air and a metal. Localized SPs, also called particle plasmons, are
plasma oscillations occurring at the surface of a finite metallic object of nanometer-scale
dimensions, i.e., a nanosphere or a nanorod. One of the most important features of
metallic nanostructures supporting SPs is their ability to restrict light in subwavelength
volumes, i.e., regions in space that are much smaller than the wavelength, a feature

which makes them as ideal components in miniaturized photonic circuitry. The strong
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localization of the EM field within subwavelength volumes results in enormous values
of the electric field and strong modification of the spontaneous emission, boosting the
interaction of light with quantum systems near plasmonic nanostructures and lead-
ing to significantly modified (mainly enhanced) optical phenomena at the nanoscale.
Some of the effects that have been studied in this research area are Fano effects in en-
ergy absorption [34-37], ultrafast switching and controlled population transfer [38-45],
gain without inversion [46-49], quantum-coherence-enhanced surface plasmon ampli-
fication [50], controlled optical bistability and multistability [51-53], strongly modified
four-wave mixing [54-57], enhanced second-harmonic generation [58,59] and nonlinear
optical rectification [60], single [61] and double [62] optical transparency accompanied
by slow light, phase control of absorption and dispersion [63], strongly enhanced Kerr
nonlinearity [64-67], and controlled Goos-Hanchen shift [68]. These phenomena have
various potential applications in nanophotonics and quantum nanotechnology, such as
in ultra-sensitive sensing, in quantum-information processing, in ultra-fast switching,
to name a few.

Of particular interest are nanoscale setups involving quantum emitters (QEs) (dyes,
quantum dots, atoms, etc) intermixed with one or several metallic nanoparticles (NPs).
In this case, the optical response of the QEs is influenced by the presence of the localized
SP excitations of the NPs. In the weak-coupling regime, the optical response of the QEs
is altered only in terms of the spontaneous emission rate which is, via the Purcell effect,
directly proportional to the imaginary part of the Green’s tensor of the metallic NPs.
In the strong-coupling regime however, i.e., when the resonance frequencies of the
QEs are not too spectrally distinct from the SP resonances of the metallic NPs, apart
from the modification of the spontaneous emission rate, the energy levels of the QEs are
themselves altered, giving rise to new levels and corresponding modes which are closely

liaised with the SP modes of the NPs. If the QEs are semiconducting quantum dots
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wherein the optical resonances are of exciton origin, these newly proclaimed modes of
the strong-coupling regime are called plasmon-exciton polaritons or plexcitons [1-9].

The basic features of the experimental spectra probing the plexciton resonances of
hybrid QEs-NPs systems can be interpreted under the prism of a (classical) coupled-
oscillator model [6, 7,10, 11]. However, finer quantum phenomena such as superra-
diance [12] or quenching of fluorescence [69] cannot be captured unless the quantum
mechanics of the QE-NP hybrid comes to play [70-74]. Perhaps, the most complete
description of the light interactions among one or more QEs and a structured photonic
enviroment is that based on a multiple-scattering polaritonic-operator technique [75],
as applied to the case of a single NP [69, 76].

In this chapter, we present a new method for the treatment of hybrid collections
consisting of nanoparticles and quantum emitters. The method is a combination of
the multiple-scattering polaritonic method of [69, 75], with the standard EM coupled-
dipole method [30,31,77-79]. Namely, we incorporate the coupled-dipole method within
the multiple-scattering polaritonic-operator technique [75] via the calculation of the
Green’s tensor dyadic which enables us to study hybrid systems containing collections
of many nanoparticles and quantum emitters. At the same time, the presented formal-
ism can be extended to treat cases of a single non-spherical object (nanorod, nanocube,
nano-pyramid, etc) interacting with collections of quantum emitters, in which case the
nanoparticles, treated as point scatterers, are merged together so as to form a single
nano-object (the variant of the coupled-dipole method for single objects called discrete-

dipole approximation).
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4.2 Theory

Our method consists of two major components. The first is the coupled-dipole method
which: (a) solves the problem of light scattering by a finite collection of nanoparticles
and (b) provides the classical EM Green’s tensor dyadic, again, for a finite collection
of nanoparticles. The second major component is a multiple-scattering technique for
polaritonic operators which treats the interaction of light with a finite collection of
arbitrary quantum emitters and nanoparticles.

During the first step of the following method, a collection of nanoparticles is initialy
assumed to be embedded inside a material, while the quantum emitters are assumed to
be inserted a posteriori. This initial "bare" system (NPs+dielectric) is described in terms
of the coupled dipole method (CDA) wherein the metallic nanoparticles are modelled as
point dipoles and quantum emitters are modelled as fictitious point dipoles with zero
polarizability. This allows for the calculation of the (local) electric field E (r; w), that
excites a fictitious dipole located at r as the sum of the directly incident field on the
(fictitious) dipole plus the field scattered by all other dipoles (corresponding to the NPs
of the bare system) incoming to the specific dipole. Via the same scheme, one may
calculate the EM Green’s tensor dyadic G (r,r’;w) where r, r’ are positions of fictitious
dipoles both for r = r’ and r # r’. Namely, G (r,r’; w) of a collection of M NPs (where r,r’
are two position vectors in space outside the NP collection) is calculated in the following
manner. In order to calculate G for r = r/, M + 1 dipoles are constructed, where the
first M correspond to the NPs of the above collection (with polarizabilities as described
in the following section) while the last one corresponds to a fictitious dipole (at r = r’)
with polarizability set to zero. Similarly, in order to calculate G for r # ', M + 2
dipoles are constructed and the last two polarizabilities are set to zero, corresponding
to two fictitious dipoles (located at r and r’).

During the second step of the method, the quantum emitters are assumed to be in-
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serted into the bare system. The resulting emitter-dressed system (QEs+NPs+dielectric)
is then described by means of a multiple-scattering formalism involving polaritonic op-
erators that takes into account all scattering effects due to the presence of the QEs.
This joint formalism can then be employed to describe the quantum optical properties
of light propagating and being scattered through a hybrid system of QEs-NPs embedded

in a material.

4.2.1 Coupled Dipole Method

In this section we follow closely the work of Martin et al [80] that introduced a fully
vectorial formalism for the investigation of electromagnetic scattering in polarizable
backgrounds and apply it to the coupled dipole method (or DDA). Let us consider a
scattering system described by a dielectric function €(r) embedded in an infinte homo-
geneous background medium ez. We shall assume nonmagnetic materials and an e ™!
time dependence for the fields. The scattering system does not need to be homogeneous
and can be composed by several distinct bodies embedded in the infinite background.
When the background medium is not vacuum (eg # 1) the scatterers may have a lower
permittivity ¢(r) than ep. Finally, realistic metals can be considered by using a complex
value dielectric functions.

When this system is illuminated by an incident field E™(r) propagating in the

background medium, the total electric field (incident field plus scattered field) is a

solution of the vectorial wave equation

V x V x E(r) — kje(r)E(r) = 0, 4.1)

where ky = % For the sake of simplicity the discussion is limited to scalar dielectric

functions although the following formalism can handle anisotropic scatterers described
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by a tensorial dielectric function.

Introducing the dielectric contrast

Ae(r) = €(r) — ep, 4.2)

we can rewrite Eq. (4.1) as an inhomogeneous equation,

V x V x E(r) — k}egE(r) = k2 Ae(r)E(r) (4.3)

where the incident field E™(r) must be a solution of the corresponding homogeneous
solution

V x V x E™(r) — kiegE™(r) = 0 (4.4)

To compute the total field E(r), let us introduce the Green’s tensor GZ(r, ') asso-
ciated with the infinite background ep. This dyadic is the solution of the vector wave

equation (4.4) with a point source term.

V x Vx GE(r,v) — k2epGP(r,r') = I6(r — 1) (4.5)

where 1 is the unit dyad. G?(r,r’) for an infinite homogeneous background is readily

obtained from [81]

GB(r,r') = (I + %) gbn(r, 1), (4.6)

where
g3p(r,r') = % 4.7)
is the scalar Green’s function associated with the background, R = |R| = |r — 1’| the

relative distance between source and observation points, and kg is the wave number
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in the background medium:

U.)2

k% = 7B (4.8)
Introducing Eq.(4.7) into Eq.(4.6) leads to the explicit form of GZ(r,r’):

~ ] exp(ikpR)
RoOR| ———
© 4tR

ikpR — 1) 3 — 3ikpR — k% R? @9

B N
o) = Kl TR KR
where R = R/|R|. Now, by introducing Eq.(4.5) into Eq. (4.3) it is a simple matter to

find that the total field E(r) is given by

B(r) =) + [ d'G(r ) Adr)B() (.10
14

where the integration runs over the entire scatterer volume V'

We can see that GP(r,r’) diverges for r = r’. Therefore, whenever both r and r’ are
inside the scatterer V/, the principal value must be taken for the integral in Eq.(4.10),
and the singularity of the Green’s tensor must be treated separately. This is emphasized

by rewriting Eq.(4.10) as

Br) = ")+ fim [ aVG () gadnE() -1 20

E(r) (4.11)

where the infinitesimal volume 0V centered at the point r is used to exclude the singu-
larity. The source dyadic L depends on the shape of the exclusion §V'. Its derivation
is given with much detail by Yaghijan [27]. Note the important factor ¢z in the L term
of Eq.(4.11). This factor does not appear in the work of Yaghjian as the author only
considers scattering in vacuum. When the observation point r is located outside the
scatterer, no singularity shows up since the integration in Eq. (4.10) is limited to the
scatterer volume.

To solve Eq.(4.11) numerically, let us define a grid with D meshes over the system.
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Each mesh ¢ is centered at position r; and has a volume V;, i = 1, ..., N (for 2D systems
V; represents the area of the mesh). A regular mesh with constant volume V; is not
mandatory and a higher mesh refinement can be used where a precise knowledge of
the field is required or the dielectric constant A¢(r) is large.

Introducing the discretized field E; = E(r;), the discretized dielectric constant Ae; =
Ae(r;) and the discretized Green’s tensor G;7 = G”(r;, r;) we can rewrite Eq.(4.11) as

a dense system of linear equations:

A A¢g; Ag; .
E; = E"™ + Z GPI =SBV, + M- k=B, —L;- — &, i=1,.,N, (412
€B €B €B
J=L1j#i
with k% = k2ep and
M; = lim dV'G"(r;, 1) (4.13)

a correction term that arises as a direct consequence of the discretization process and
is associated with the finite size of the exclusion volume. Kahnert [82] distinguished
the CDM from the MoM by the fact that the MoM solves directly Eq. (4.12) for unknown
E;, while the CDM seeks not the total, but the exciting electric field, i.e the field that
excites volume cell V;, because it consists of the incident field and the contributions

originating from all other cells. This becomes apparent by the following equations:

AEZ‘

€B

B = (1 + (L~ M) = ) By = B — B (.14

Where Ei*/ the field induced by the subvolume on itself i.e.:

Ag;

€B

EY = (KAM; — L)

E; (4.15)
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By introducing the polarizability tensor

Ae\

€B

Eq. (4.12) can be expressed in terms of the exciting field

D
E" = E{" -k »  GlloyES™ (4.17)

J#1
The above equation,in its present form, illustrates that the effect of the exciting field can
be interpreted as inducing a dipole moment on each discrete volume cell (P; = a;E™).
This is the origin of the term discrete dipole approximation. Furthermore, this allows
us to recast Eq.(4.17) into a more computationally suitable form involving the dipole

moments, which is the main equation of the CDM.

D
E" =Pio;' — kY GIP, (4.18)

j#i
Before inserting the scatterers (MNPs) and the fictitious dipoles (QEs), we introduce
some conventions regarding notation. For all fields and tensors of Eq.(4.16-Eq.(4.18)
we move from the purely vectorial formalism presented so far and explicitly state the
angular frequency dependence (w) useful for the numerical studies that take place.
Furthermore, for Eqs.[(4.21)-(4.23)] we denote Gf; (w) = GE (v, r;;w) as the Green’s
tensor for an infinite homogeneous 3D background medium between the i-th and j-
th point dipoles, of a collection of M point dipoles, corresponding to the (metallic, in
the present work) nanoparticles located at r;, r; respectively. In addition, ij (w) =
G? (r,,r;;w) is the Green’s tensor for an infinite homogeneous 3D background medium
between the n-th fictitious dipole of a collection of N fictitious dipoles, (corresponding to

the respective quantum emitter located at r,,), and the j-th point dipole, of a collection
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of M point dipoles, (corresponding to the respective (metallic) nanoparticle located at
r;. A similar notation is applied to the classical EM Green’s tensor dyadic G introduced
in Eq.(4.24). Eqgs.[(4.25)-(4.26)] follow a slightly different notation for reasons that will
become apparent.

We now introduce a collection of M spherical metallic nanoparticles in the homoge-
neous system ep using an accurate formula for the polarizability of the ¢ — th metallic

nanoparticle, so as to account for radiation-reaction effect [27, 30, 80],

a’(w)
(W) = —— (4.19)
1 - 6med

Here, a’(w) is the bare polarizability, given by the Clausius-Mossoti relation, typical
for small spherical nanoparticles of radius S, with relative dielectric permittivity e,,

embedded in a material of relative dielectric permittivity ep

ozo(w) = 4repS? em(w) — €5

em(w) + 2€p (420

The local electric field E; at the position of the :-th NP can be obtained through [78, 79]
M

Ei(w) =E"(w) + k Y GH(w) - a;(w) - E;(w) (4.21)
j#i

As shown before, within the CDM the dipole moment P;(w) [= o;(w)E;(w)] at each NP

can be initially calculated via the following system of 3 equations [78]

M
P;(w) = a;(w) |E"(w) + k3 Y GH(w) - P;(w)]| (4.22)
Ji

where M is the number of the NPs and E!"“ is the incident field at the position of the

i-th metallic nanoparticle. Having calculated the dipole moments of the nanoparticles,

99



one can afterwards evaluate the (local) field at the position of each fictitious dipole of a
collection of N+ M dipoles where N correspond to fictitious ones with zero polarizability
(N quantum emitters to be inserted) and M correspond to metallic nanoparticles again
via Eq.(4.21),

M
E,(w) = E(w) + £ Y~ Gl (w) - Pj(w). (4.23)
J

Here however, n always concerns the n-th fictitious dipole while ;7 runs through the
entire collection of the M dipoles corresponding to the nanoparticles of the bare system.

In the context of fluctuational electrodynamics [83], one may also calculate the clas-
sical EM Green'’s tensor dyadic of a collection of M nanoparticles within the framework

of CDA, via the following linear system of 3}/ equations,
M
> [bir — kjon(w) - GR(w)] - Gij(w) = GH(w). (4.24)
k

In order to proceed with the second part of the method, i.e. the formulation of the
multiple scattering formalism, one needs to determine only G, (w) = G (r,,r,;w),
G (W) = G (ry, ryw), Gay (w) = G(rg,ry;w) = G (R, r,;w), where the subscripts
n,m concern positions of each of the N quantum emitters, and r; = R concerns the
position of the detector. All of the above are assumed to be inserted at the second
step of the method, and at this point, can be modelled as an ensemble of F' = N + 1
fictitious point dipoles with zero polarizability (which we generally assume located at
positions r; outside the MNP collection). Namely, N fictitious dipoles corresponding
to each of the quantum emitters located at r,, plus one corresponding to the position
of the detector r,;. In the following two equations, subscripts ¢, j, k are not limited to
dipoles corresponding to NPs but may include fictitious dipoles as well.

Implementing the scheme mentioned in the beginning of this section, one may
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obtain G, (w) via solving the following linear system of 3() + 1) equations

M+1

> [0 — Kgon(w) - GR(w)] - Giy(w) = GH(w), (4.25)

k

N times, once for each fictitious dipole [the additional (M + 1)-th dipole in the above
sum correspond to each of the N quantum emitters].
Similarly, in order to obtain G, (w), and Gy, (w) (in general G;) one needs to

solve the following linear system of 3(M + 2) equations
M+2
> [0 — kjak(w) - GR(w)] - Gij(w) = GH(w), (4.26)

k

F(F —1)= (N +1)N times, once for each pair of (non identical) fictitious dipoles [the
additional (M + 1)-th, and (M + 2)-th dipoles in the above sum, correspond to each

such pair among the collection of F' fictitious dipoles].

4.2.2 QED Hamiltonian-Multiple scattering formalism

The macroscopic QED formalism [84, 85] is based on a Hopfield model for the material
(nanoparticles and dielectric), interacting with light in second quantization and a bath
of harmonic oscillators accounting for losses. The following procedure relies on the

following diagonalized minimal-coupling Hamiltonian
H= /dgr/ dwphweft (v, wet) - £(r, wp;t) + Z §Qn&fl(t)
0 n=1

= [oh ) + 6, ()] P - Flra; ). 4.27)

The first term of the Hamiltonian involves the polaritonic vector field operators Af(r, wy;t),

and represents the elementary excitations of the light-matter system. The quantum
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emitters are introduced as point dipoles with dipole moment P,, and natural frequency
), through the Pauli operators 7, in the second term of the Hamiltonian. The third
term represents the coupling between the ensemble of quantum emitters and the bare
system (nanoparticles and dielectric). This is achieved through the electric field opera-

tor ﬁ‘(r; t) (at the position of the quantum emitters), which is written as
F(r;t) = FO(r;t) + FO(r;¢) (4.28)

F(r;t ):/ dwF(r,wy; t) (4.29)

F(r,wy;t) \/ - = /d3 ’\/\sm lem (', wy)]G(r, r' wy) - Af(r wyit). (4.30)

G(r,r’;wy) is the dyadic Green’s function of the bare system (nanoparticles and sur-

rounding dielectric), which, as shown above, can be calculated within the framework of
the coupled-dipole method. Sm/e,, (r,w)] is the imaginary part of the dielectric function
of the nanoparticles.

From the above Hamiltonian (Eq.4.27), one may follow the procedure presented
in [75] also used in [69], [86], . We write the equations of motion for the operators

ihd0 |t = [O, H } and perform the Laplace transform O(w) = [ O(t)e™!dt to get !

io) (W) +6, (W)
W — Wy
(4.31)

Smlen(r,wy)]

mheg

2 N
I . _ 0 . wf * .
frywpw) =1"(r,wpw) + \/ = 7?1 P, - G*(r,,r;wy)

oy (w) + 0, (W)]
W+ wy
(4.32)

3

A Ao\ T )
f1(r,wpw) = (f0> (I‘,Wf;W)—i-\/w ZP -G(ry, 1] wf)z[

mheg “
n=

INote that [ dte™'O;(t) = —iwO;(w) — O;(t = 0).



R iog, (t=0) P,
st —
. o (t= )_Pn

h(w — Qn) (4.33)

cF(rp;w) x 62 (w)
h(w—+ Q) (4.34)
n (W] (4.35)

hw

where * stands for the convolution product. The Laplace transformed operators

verify O(w)" = O(—w). f(r,w;;w) are the polaritonic operators of the free field without

quantum emitters and are eigenfunctions of the bare system: f0(r, wy; w) = £O(r, wy; 0)e=™",

Note that the quantum emitters frequencies (2,

were chosen to be complex in order to

account for the internal non-radiative decay rate vog (§2, = wo — iygr/2). The induced

non hermiticity of the Hamiltonian was forced back by imposing [5,, (t)]" = 5,7 (t), i.e.

by replacing €2,, by {2 in Eq.(4.34). This ansatz, simpler than the more general intro-

duction of a stochastic noise term in the Heisenberg equations of motion, is equivalent

to include losses a posteriori, as in [86].

The low excitation hypothesis can then be applied to perform the bosonization

x07 — —1. While this is exact in one excitation subspace, in this approach it is only

approximate because the rotating wave approximation was not performed. Eqgs.[(4.33)-

(4.34)] are then reduced to

. ig, (t =0)
. i6, (t =0)
U: (w) = w + QF

Afterwards, via the identity SmGp(r,r', w) =

103

P, F(r,;w) (4.36)
h(w—Q,) '

P, F(r,;w) (4.37)
h(w+ Q) '

zjfd?’s‘;’—j%m[em(s,w)]ij(r,s,w) (' s,w),



one may trace out the QE operators from Eqs.[(4.31)-(4.37)] and obtain a Lippman-
Schwinger equation for the field operator F, where the quantum emitters appear as

point scatterers and quantum source operators.

=]
=
£
|
=
o
=
£
_l’_
~
=
=
3
£
/N
[0}

(@) + Vi (w) - F(rn;w)) . (4.38)

In the above Lippman-Schwinger equation the quantum emitters are seen as quan-

tum sources through the operators Sn

A w2 (6.(t=0) 65 (t=0)
S, (w) =i n n P, 4.39
(w) zEOCQ(w_Qn + w+92> (4.39)

V,, are the scattering potentials

w? 2%Re [Q,]

Vo(w) = —
@) = = e (02 = 2ioSm [0, = [07)

P, P,, (4.40)

and finally a generalized dyadic Green’s function of the emitter-dressed system K,

2

0 203 G .
K(r,r,;w) = / dwy J; Sm | 2(r7 nj wy)] (4.41)
0 W w? — w}

which is related with the Green function of the bare system ( nanoparticles embedded
in dielectric), through Kramers-Kronig relations

Ao(r —r')

K(r,r';w) = G(r,r';w) — S2e(n)

(4.42)

It should be noted that the emergence of the generalized dyadic Green’s function K
instead of G depends on whether a quantum emitter couples with the displacement
field D (as is the former case due to the multi-scattering approach of the formalism)

or the electric field E (in the latter). In cases of lossless systems (i.e. Smleg] = 0)
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as ours, one can see that Sm [G] = Qm [K], so calculation of quantities such as the
photonic LDOS is not affected within this formalism. The only difference between K
and G lies in the contribution of the real part of K which merely displaces the diagonal
elements of G, by inducing a (small) frequency shift (which depends on the background
permittivity in which the quantum emitters are embedded) to quantities of interest such
as the spontaneous emission spectrum. In the following, r,,, r,, are position vectors of
the quantum emitters, and R is the position vector of a detector in the far-field region.

Using standard multiple scattering techniques, Eq (4.38) can be recast as
N

F(r;w) = Fi(r;w) + Z K(r,rp;w) - T (W) - Fy(r,; w). (4.43)

m,n=1

F;(r;w) is the direct incident field, and E°(r,;w) is the total field operator of the bare

nanoparticles, including incident and scattered fields (calculated classically)
Fi(r;w) = E°(rjw) + > K(r,ry;w) - Sy (w). (4.44)

TY (w) is the scattering T-matrix that accounts for the infinite scattering events created

by a a collection of N quantum emitters,

TV (W) =P, T (w)M 1P, (4.45)
My (W) = G — (1 = G ) P - G, Tz w) - P T (w) (4.46)
T(w) = —— V(@) . (4.47)

1-P, -K(ry,rp;w) - PV (w)

T,,(w) represents the self-scattering potential for the m-th dipole. With all of the above

definitions we can identify the N-scattered field operator and the source field operator
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as

N N
Foear(tw) = ) K1 1niw) T (@) E2(rniw) = Y Gl (r,reiw) B(r;w), (4.48)
m,n=1 n=1
N N
Fsource r; W Z I' y Iy W Z K(I‘, rm;w) : T,(TZL\Q : K(I'p, rn;w) . Sn(a})
n=1 m,p=1
(V)
Z source I‘ I'n;UJ) ' Sn<w)7 (449)

allowing for the definition of two “dressed” dyadic green functions, namely the N-

scattering dressed Green’s tensor relevant for the scattering problem
N
ngc\fltt I' y Ty W Z K r,Iy;wW T(N)<w)7 (450)
m=1

and the N-scattering Green’s tensor associated with the fluorescence of the quantum

emitters

N
G (r,ryw) =K(r r,;w) + Z K(r,r,,w) - T%)(w) -K(rp, ry;w). (4.51)

source
m,p=1

The physical quantity of experimental relevance is the light spectrum related to the

signal output of a detector placed at r = R,

S(R,w) = / dt, / dtye(ti=t2) <F—(R,t1)-F+(R,t2)> (4.52)
0 0

S(R,w) = < (/OOO dte™'F* (R, t))T - (/OOO dte™'F* (R, t)) > (4.53)

Examining the first term in Eq.(4.53),
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> A o0 ) 1 o0 N
/ dte™'FT (R, t) :/ dte™! [2—/ dw'e ™ "F(R, w’)}
0

0 0 n
1 [ee) R o] ) ,
= / dw'F(R, W) / dtel@=t
2m Jo 0
1 [~ A
=3 ) dw'F(R,w") {iP.V. [w — w,] + 7o (w — w/)] (4.54)

where we have used the relation fooo dteiw—"t — PV, ( L ) +7§(w—w') [87]. The prin-

w—w’

cipal value can be evaluated directly using Cauchy’s integral formula as P.V. (ij/) =

—1im giving

/ dte™'F*(R,t) = F(R,w) (4.55)

0

which reduces Eq.(4.54) to

S(R,w) <[]§‘(R,w)r [F®.w)] > | (4.56)

We define the initial wavefunction of the system by considering a single QE excita-
tion (the no-th out of N QEs of the ensemble), i.e. [iy) = |e,,,0), meaning that
(6,7 (t =0)6,, (t =0)) = 1. To mimic typical experimental setups where the QEs are in-

coherently pumped at high energies, the light spectrum for the ny-th QE being initially

excited is calculated separately

N T
s (R, w) = (eng, 0| [F(R, w)] F(R,w) |y, 0) (4.57)
Sun(Bew) = |25 G0 (Roryiw) - P 2( Onmo 17 Onmg O )
o — | egc? e T\w=l W+l W+

(4.58)
Eq.(4.58) is not further reduced to illustrate that the third term directly comes from the

bosonization process: more than one excitation can be put in the QEs (see Suppl. Mat.
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of [69]). It is then summed incoherently over 7, in order to obtain the light spectrum

stemming from all quantum emitters measured at the position of the detector,
N
SR,w) =D [bny|* Sy (R, w), (4.59)
ng

with b,, = P, - Eo(r,,,w). Eo is the (classical) E-field amplitude of an incoming plane
wave scattered by the nanoparticles (evaluated at the positions of the QEs), and can be
calculated via the procedure discussed through Eqs.[(4.21)-(4.23)] for an incident plane
wave that excites the QE-MNP collection. To evaluate GS(XB,,CS(R, r,;w), one needs to
obtain G (r,,r,;w), G (r,,ry,;w), G (R, r,;w), all of which can be calculated by means

of the procedure discussed through Eqgs.[(4.25)-(4.26)].

4.3 Results and discussion

O-0V-0V-0V-0-0Q-
< L
X
Figure 4.1: Calculation setup: A linear binary chain consisting of alternating metallic
NPs and QEs. The structure is illuminated by normally incident light while the electric

field is polarized along the chain axis. The metallic NPs are made of silver while the
QEs are organic molecules.

The presented method is applied (via a programming code developed in Fortran 90)

to the case of linear binary arrays (chains) of metallic NPs and QEs, (see Fig. 4.1). The
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Figure 4.2: Light spectra [as obtained by Eq. (4.59)] for binary linear chains of NP-QE
dimers with N = 3. The material and geometrical characteristics of the NPs and QEs
are provided in the text. The surface-to-surface distance between two NPs is 2 nm while
each QE is placed in the middle of the above distance.

QEs are chosen to be placed in the middle of the distance between two consecutive NPs.
We study arrays with a finite number of N QE-NP dimers. The NPs have a radius of
7 nm while the array is embedded within a host medium of dielectric constant ez = 2.13
corresponding to the experiment reported in [88] .The NPs are assumed to be made of

silver in which case the dielectric function is provided by the Drude model

w2

_ . p
€(w) = € —w(w ) (4.60)

with parameters €., = 4.6,w, = 9eV, v, = 0.1eV taken from tables [89]. The QEs are
modelled as point-like two-level systems with transition frequency wy (to be parametri-
cally varied in what follows), internal nonradiative decay rate v, = 15mel” and tran-

sition dipole moment ;1 = 0.19e - nm which are typical values for organic molecules [90].
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Figure 4.3: The same as Fig. 4.2 but for N = 6.

The entire chain is illuminated by a plane wave which is incident normally on the chain

and the corresponding electric field is parallel with the chain axis, i.e.,

E:)nc _ Eénce—ikz:%’ L — w\/@/c (4.61)

The transition dipole moments of the organic molecules (QEs) are also assumed to be
parallel with the chain axis (see Fig.4.1). Firstly, we assume that the surface-to-surface
distance between two neighboring NPs is 2 nm while, as stated above, the QE stands
in the middle of the NP separation. The light spectrum as calculated by Eq. (4.59)
is obtained at (theoretically) infinite distance from the edge and along the chain axis
(practically at a large distance) so as to capture only the far-field components of light.
For these calculations we have chosen a discretization of 201 steps in the frequency
domain (w). Since wy is also parametrically varied, this corresponds to a discretization

mesh of 201x201 steps.
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Figure 4.4: The same as Fig. 4.2 but for N = 10.

In Figs. 4.2, 4.3, 4.4 we show the light spectrum (in arbitrary units) for chains of
different numbers N = 3,6,10 of QE-NP dimers for the same surface-to-surface dis-
tance between two neighboring NPs (2 nm). The most characteristic feature from all
diagrams of light spectra, is the presence of the avoided crossing of the excitonic reso-
nance of the QE (organic molecule in our case) with the SP resonances of the silver NP.
The energy separation in the avoided crossing area defines the so-called Rabi splitting
and it is a typical property of the interaction between two coupled (classical or quan-
tum) harmonic oscillators [10]. In our case, the Rabi splitting is of the order of 0.1 eV.
The EM mode structure within the avoided-crossing area possesses characteristics of
both the SP and exciton resonances which justifies the name of the plexciton mode
described in the introduction [10]. Away from this spectral area, the mode structure
has the characteristics of the resonance of each individual component of the QE-NP
dimer.

Evidently, there are more than one avoided crossings present with their number
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Figure 4.5: Light spectrum for the case of N = 10 (Fig. 4.4) and for hwy = 1.98 eV.

increasing with the number of QE-NP dimers in the chain. To the best of our knowledge,
this is the first manifestation of a multiplet of plexciton states and stems from the
arrangement of the QE-NP dimers in a linear chain. Namely, the EM mode structure
of the linear chain is a result of the hybridization of the individual plexciton modes
centered at each QE-NP dimer. In a manner similar to the tight-binding description of
localized electrons in insulating solids, the plexciton mode at each dimer overlaps with
the corresponding modes of its neighbouring dimers (for a linear chain with its left and
right neighbours) resulting in a plexcitonic hopping mechanism which, for a finite chain
of dimers, generates a multiplet of plexciton resonances within a finite spectral area.
These plexciton resonances manifest themselves as a series of avoided-crossing regions
in the corresponding light spectra. The number of the hybridized plexciton resonances

is equal to the number of dimers. This can be also observed in Fig. 4.5 which shows
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the light spectrum for a particular QE resonance frequency, i.e., liwy = 1.98 eV of the
contour plot of Fig. 4.4. Evidently, the number of observable peaks (ten) is the same
as the number of QE-NP dimers. We must stress, however, that one cannot easily
enumerate the different plexciton resonances from the light spectra of Figs. 4.2-4.4 as
it is often the case where two avoided-crossing areas overlap, see, e.g., Fig. 4.4 around
hw = hwy ~ 1.5 eV. For an infinitely periodic array of QE-NP dimers, one expects the
formation a plexciton frequency band.

In Fig. 4.6 we show the light spectra for linear chains of 10 QE-NP dimers, for
different NP-NP separations [2 nm (top),4 nm (middle) and 6 nm (bottom)]. We remind
that the QEs stand in the middle of the NP-NP separation. We observe that as the
separation between the NP increases, the effective area within which the plexciton
avoided-crossings appear more compact and the corresponding plexciton resonances
are located within a narrower spectral region. This is more or less expected since
the interaction (overlap) of neighboring plexcitons becomes weaker as the distance
between the dimers increases. In an actual experiment, in order to enumerate the
different plexcitonic resonances, the corresponding Rabi splitting should be larger than

the linewidths of the SP and exciton states [10].

4.4 Conclusions

In this chapter, we have introduced a new theoretical method for assessing the inter-
action of light with hybrid collections of metallic nanoparticles and quantum emitters.
The method is based on a multiple-scattering polaritonic-operator formalism in con-
junction with an electromagnetic coupled-dipole method. The developed method has
been applied to the case of a linear chain consisting of dimers of quantum emitters

and metallic nanospheres. We have found, in particular, that such a system supports
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a multiplet of plexcitonic resonances as a result of a hybridization process among the
plexciton resonances of each individual dimer. The method can be extended to treat
the interaction of quantum emitters with a single non-spherical object to be treated as

a collection of point-like scatterers.
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Figure 4.6: Light spectra [as obtained by Eq. (4.59)] for binary linear chains of
N = 10 dimers of NP-QEs, for different surface-to-surface distances between two NPs
(2 nm: top, 4 nm: middle, 6 nm: bottom). The material and geometrical characteristics
of the NPs and QEs are provided in the text.
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Chapter 5

Systematics of Plexciton Formation in
Linear Chains of Quantum Emitters

and Metal Nanoparticles

5.1 Introduction

The subject of light propagation in linear chains of metal nanoparticles (NPs) has at-
tracted a lot of research efforts [91-102]. Metal NP chains, with an interparticle separa-
tion less than approximately 2.5 times the particle diameter, are able to accommodate
the propagation of light as a result of near field interactions between NPs that occur due
to the overlap of their respective electromagnetic fields [103-105]. Thus, the prospect
of using metal NP chains as waveguides is promising with regards to integrated optics
applications, since it can lead to optical processing circuitry of small dimensions [106],
that cannot be realised with conventional integrated optics techniques, due to the
diffraction limit. The extent of potential applications such as the merging of electronic

circuits to photonic devices [107], the realization of biological nanosensors [108] and
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subwavelength imaging [109], to name a few, illustrates the growing interest of inves-
tigating mode propagation in metal NP chains [110].

Of further interest, is the interaction of optical modes in structured electromagnetic
environments, such as metal nanoparticle chains, with the photons emitted by quan-
tum emitters (molecules, semiconducting quantum dots, or organic dyes etc), in the
regime where plasmons can confine light to small volumes that largely overcome the
diffraction limit. This strong-coupling regime, i.e the regime of enhanced light-matter
interactions, is characterized by Rabi oscillations of the emitter occupation and hybrid
optical states of mixed light-matter nature [1-3,111, 112]. If the resonance frequencies
of the QEs are not too spectrally distinct from the surface plasmon (SP) resonances of
the metallic NPs, the energy levels of the QEs are themselves altered, giving rise to new
levels and corresponding modes which are closely liaised with the modes of the MNPs.
In the case where the QEs are semiconducting quantum dots, such a coupling results in
the formation of plasmon-exciton polaritons, the so called plexcitons [1,4-8,113]. The
resulting plexciton resonances of such hybrid systems display quantum phenomena
that cannot be captured unless the quantum mechanics of the QE-NP hybrid comes to
play [70-74].

In the previous chapter (section 4.2) we incorporated the electromagnetic (EM)
coupled-dipole theory [30, 31, 77-79] within the theoretical framework of a multiple-
scattering polaritonic operator technique [75], as applied to the case of a single NP
[69, 76] via the calculation of the Green’s tensor dyadic by means of the coupled-dipole
method. The resulting joint formalism enables the study of hybrid systems comprised
of many NPs and QEs, enabling the study of light-matter interaction in the strong-
coupling regime. The method was implemented to the case of a linear array of dimers
of QEs and metallic NPs wherein all corresponding parameters were chosen so as to

ensure strong coupling interaction between the metallic NP and the QE, revealing a
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multitude of plexciton modes equal to the number of the dimers in each chain, result-
ing from the hybridization of the plexciton resonances of each individual dimer.

In the present chapter we present extensive numerical calculations of the plexcitonic
properties of chains of QE - NP dimers. Namely, we model the redshift of the main
plexcitonic resonances (MPR) (i.e with the strongest output signal in the light spectrum)
in chains comprised of up to 10 dimers. Specifically the plasmon redshift of each
MPR was modelled after an exponential empirical formula that accurately describes
the frequency shift of chains up to 20 dimers similar to the case of chains comprised
solely of MNPs [110], and allows for the determination of an asymptotic minimum
resonance at a length of approximately 20 dimers, in accordance with calculations
obtained through our numerical code. The numerics can then be mapped to a simple
Hamiltonian that reveals that the Rabi splitting of a MPR scales proportionally to VN

where N is the number of dimers contributing in the chain.

5.2 Results and Discussion

< L

X
Figure 5.1: System under study: A linear binary chain of metallic NPs (yellow) - QE
(green) dimers, illuminated by normally incident light. The corresponding electric field

is polarized along the chain axis, while the transition dipole moments of the QEs are
assumed parallel to the chain axis.

The developed method is applied to the case of linear binary arrays (chains) of
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metallic NPs and QEs that consist of a finite number of N QE - NP dimers. The QEs are
chosen to be placed in the middle (1 nm) of the distance between two consecutive NPs
(2 nm). The NPs have a radius of 7 , while the array is embedded within a host medium
of dielectric constant e = 2.13 corresponding to the experiment reported in [88] . The
NPs are made of silver in which case the dielectric function is provided by the Drude
model of Eq. (4.60) of chapter 4, with €, = 4.6, w, = 9 eV, v, = 0.1 eV. The QEs (organic
molecules) are modelled as point-like two-level systems with transition frequency wy
(which is parametrically varied in what follows), internal nonradiative decay rate v, =
15 meV and transition dipole moment P = 0.19 e-nm. The transition dipole moments
of the QEs are assumed parallel with the chain axis. The entire chain is illuminated by
an plane wave which is incident normally on the chain and the corresponding electric

field is parallel with the chain axis (Fig.5.1), i.e.,

Eénc _ Eéncefik-zi.’ k= w\/@/c (5.1)

The light spectrum as calculated by Eq. (4.59) is obtained at (theoretically) infinite
distance from the edge and along the chain axis (practically at a large distance) so as
to capture only the far-field components of light.

The light spectra have been calculated via a programming code implementing the
method described in Sect.4.2 for a number of binary chains ranging from 1-10 dimers
using a discretization of 201 steps for the frequency domain, corresponding to a mesh
of 201 x 201 frequencies. The calculations were initially in the frequency range of 0.1-9
eV in order to draw qualitative conclusions about a broad frequency range so as to
evaluate our proposed method. Results for chains that consist of 3,6, and 9 dimers
are presented in Figs. 5.2. Inspection of the light spectra reveals the formation of a
multiplet of plexcitonic resonances manifested as a series of avoided crossings within

a finite spectral area, equal to the number of dimers that form each chain [114]. In
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Figure 5.2: Calculated light spectra in arbitrary units for binary chains comprised of 3
(Left), 6 (Middle), and 9 (Right) dimers. A multiplet of plexcitonic resonances manifests
with increasing chain length, with the MPR being significantly stronger than the lesser
ones. It should also be noted that there is a spectral area (4.7 - 4.8 eV) where the light
spectrum is significantly weak.

each figure, one also notes that the value of the light spectrum of the most redshifted
plexcitonic resonance of each chain [which will, from here on out, be referred to as the
main plexcitonic resonance (MPR)] is many orders of magnitude larger than the rest, a
fact that could be utilized in experimental configurations in order to model and predict
the emergence of the MPRs for a hybrid MNP-QE chain consisting a large number of
dimers. The second common characteristic all figures share, is a spectral area located
approximately between 4.7-4.8 eV wherein the light spectrum presents a significant
dip by many orders of magnitude. The latter remark could indicate a cut-off frequency,
which by extension can be traced back to the asymptotic wavelength of an infinitely
long chain as is the case in studies of NP chains [110].

In [110] the light scattering properties of linear chains of gold NPs with up to six
NPs and an interparticle spacing of 1 nm were studied. An exponential model was
applied to the experimental data allowing the determination of an asymptotic maximum
resonance at a chain length of 10-12 particles. Specifically, the experimentally observed

red shift of the longitudinal coupled mode was found to follow an exponential trend in
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Figure 5.3: Calculated light spectra in arbitrary units for binary chains comprised of 3
(Left), 6 (Middle), and 9 (Right) dimers for the narrower frequency band mentioned in
text. The multiplet of plexcitonic resonances are more clearly identified.

accordance with the theoretical models of Maier et al. [115] and Fung et al. [116],
that plateaus at a chain length of approximately 10, in accordance with theoretical
predictions concerning NP chains at small interparticle separations (< 5 nm) using

rigorous approaches [106, 117-119]. The exponential model used in [110] was

A=+ (Moo — o) (1 —e7™N), (5.2)

where )\ is the measured single particle surface plasmon wavelength in the correspond-
ing experimental conditions, A\, is the predicted asymptotic wavelength of an infinitely
long chain, N is the chain length, an 7 is the fitted parameter. We have implemented a
similar approach for the hybrid MNP-QE chain, where an exponential model to describe
the plasmon redshift of the MPRs (Fig.5.5) was derived by analogy to that of Eq.(5.2)

albeit in the frequency domain (eV),

Wi or = wypr(N) = Wiipp — (we — wf/[PR) (1- e’TN) (5.3)

Here, wypp is the plasmon frequency of the (single) MPR corresponding to one
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Figure 5.4: (Left) Frequency w of the light spectrum corresponding to the main plexci-
tonic resonance of each binary chain with respect to the number of its dimers, in the
frequency range of 0.9 - 3.6 eV. The corresponding values for chains comprised of 1-10
dimers (purple) were used in the fitting procedure, while the values corresponding to
chains of 11 - 20 dimers (cyan) were used as a testbed of the fit. (Right) Fitting of the
frequencies of the MPRs of dimer chains of variable length (1-10) (purple circles) via
Eq.(5.4). (Black) Fit with m = 1 and optimal parameters w, = 4.68 eV, 71 = 0.249 and
79 = 0.254, (Red) Fit with m = 2 and optimal parameters w. = 4.71 eV, 71 = 0.234 and
79 = 0.12.(Blue) Fit with m = 3 and optimal parameters w. = 4.73 eV, 71 = 0.225 and
7o = 0.077.

dimer, which for the hybrid system under study is w5, pr ~3.01 €V (see Fig.5.5). w,
is a critical frequency that is related to the asymptotic frequency of the plasmon of
a MPR corresponding to an infinitely long hybrid chain by wﬂ;’? = Zw]\S/I pr — Wer N
is the number of dimers in the chain, and 7 is, again, a fitting parameter. We stress,
again, that Eq.(5.3) was derived by analogy to that of Eq.(5.2), and the exact exponential
plasmon redshift may not necessarily scale as ¢~""V, due to the fact that this is not a
MNP chain but a chain comprised of QE-MNP dimers. Therefore the modelled plasmon
frequencies participate in the formation of plexcitons (MPR), a fact that one expects to
be reflected in any proposed model.

The light spectra for binary chains with lengths of 1-10 dimers where recalculated

in the frequency domain where the plexcitonic hybridizations take place (approximately
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Figure 5.5: (Left) Light spectrum of a chain consisted of a single dimer. (Middle)
Corresponding plot of the real parts of the eigenvalues of Eq.(5.5). (Right) Corresponding
light spectrum calculated for a fixed value (hwy ~ 3.013 eV) of QE natural frequency
corresponding to the maximum of the light spectrum observed in the contour plot
(MPR). The Rabi splitting in this case is ~ 0.04 eV (FWHM).

0.9 - 3.6 eV), using the same frequency mesh as before, with the intention of identify-
ing the frequencies of the MPRs as accurately as possible, and fitting them to Eq.(5.3).
Light spectra for binary chains with > 10 dimers were also calculated using the same
frequency range in order to test the fitting procedure. Fig.5.3 presents the light spectra
for chains comprised of 3, 6, and 9 dimers in the new narrower frequency region, while
Fig.(5.4) illustrates the exponential trend of the redshift. The fit was performed in the
above range for up to a maximum length of 10 dimers, and was found to improve sig-
nificantly with the introduction of a correction in the exponential the form of 75 » (%) "

where m is the number of the correction terms,
_ - 1\
Wirpr = Wirpr — (We — WirpR) <1 — e N E(R) > : (5.4)

Fig.5.4 shows the behaviour of the fitting model for 1, 2, and 3 correction orders,
and the corresponding optimal parameters. It is evident that the modelled redshift in

the chain length we chose to fit does not change significantly with the introduction
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of these extra terms, but instead it is the asymptotic behaviour that is better probed
with these corrections. One should note that, regardless of the correction order, w,
is within the spectral region 4.68 eV - 4.73 eV (see Fig.5.2), justifying our intuition
about a cuttoff frequency in that region. The predicted asymptotic frequency w)2% is
then approximately expected to be in the region between 1.3 and 1.35 eV. As observed
in Fig.5.4, calculating the light spectra of hybrid chains that include up to 10 QE-
MNP dimers (via the joint CDA-multiple scattering formalism discussed in Sect.4.2),
suflices to qualitatively capture the exponential redshift of the MPR plasmons. However,
in order to obtain meaningful quantitative predictions for the emergence of MPRs in
longer chains, as well their corresponding asymptotic frequency, while ensuring that
the proposed scheme is of practical use to experiment (i.e. calculating the minimum
necessary light spectra to obtain the MPRs to be fitted), one needs to include the
correction terms in Eq.(5.4). A parameter for the choice of m, since the light spectra are
calculated numerically via Eq.4.59, is the refinement of the frequency mesh. For all the
above calculations, where we used a 201 x 201 discretization mesh in the frequency
domain, we found that the introduction of two correction terms in Eq.(5.4) suffices to
adequately capture the asymptotic behaviour of the redshift.

A simple model Hamiltonian can be employed to emulate the behaviour of the MPRs
of each individual chain.

N) —iv,/2 VN
Ny = WMPR( ) Z’Yp/ g . (5.5)

g\/N Wo — i'yqe/Q

Here wy pr(N) is the plasmon frequency corresponding to the main plexcitonic reso-
nance of each chain that consists of N QE-MNP dimers, derived from Eq.(5.4) where
we have chosen the optimized parameters of m = 2 (w. = 4.71 eV, 4 = 0.234 and

75 = 0.12) ), wy is the exciton frequency of the QEs and g is the plasmon-exciton cou-
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Figure 5.6: (Above). (Left) Light spectrum of a 5 dimer chain, (Middle) plot of the real
parts of the eigenvalues of the MPR model Hamiltonian. (Right) Corresponding Rabi
splitting (FWHM) Aw =~ 0.16 eV at the MPR. The coupling constant of Eq.(5.5) in this
instance is g\/g corresponding to a Rabi splitting [Eq.(5.8)] Aw ~ 0.13 eV. (Below) The
same for a chain comprised of 10 dimers. Here g\/m corresponds to a Rabi splitting
Aw =~ 0.18 eV while the Rabi splitting observed at the MPR (FWHM) is Aw & 0.19 eV.

pling constant derived from the Rabi splitting obtained from the energy seperation in
the avoided crossing area of the one dimer chain. As shown in Fig.5.5, in this case, the

Rabi splitting is ~0.04 eV (FWHM). g can be determined near resonance via [10]

) »yp ) fyqe 1 \/ (fyp f'}/qe ) 2
- — 0 — —/— :I: - A - - — .
Wt =Wy — 1 1 ) 1 5 5 5 (5.6)
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and

Aw = \/A— (%—%)2 (5.7)

2 _ A 2, (Mo _ Dae)?
g_A—(Aw)+(2 2), (5.8)

yielding g ~ 0.06 eV. In Fig.5.6 we present results for the case of chains with 5 and
10 dimers. One can see that the energy separation in the area of the avoided crossing
of the MPRs scales reasonably well as VN (Fig.5.6), a fact well reported in studies of
single NP - many QEs systems in the strong coupling regime [10] where the splitting
on resonance scales as \/W . However, in the latter case, /V is the number of the
contributing QEs of the hybrid system, while in our study N is the number of QE - NP
dimers. By inspecting Fig.5.7, it is evident that as the number of dimers participating in
the chain increases, the increasing number of redshifted plexcitons is located within a
narrower frequency region inducing an overlap between neighbouring plexciton modes.
This overlap between consecutive avoided crossing regions is reflected in the upper
plexctiton branch of the model Hamiltonian (Fig.5.7 (Middle)), where comparison with
the respective plexciton branch of the corresponding light spectra (Fig.5.7 (Left) ) reveals
a relative displacement between the two, due to the progressive crowding of contributing
plexcitons in the frequency region the MPRs are located, with increasing chain length.
Thus the lower plexciton branch of the model Hamiltonian serves as a guide for the
spectral location of the MPR of a hybrid binary chain of arbitrary (QE-MNP dimer)
length while the upper branch serves as a measure of the overlapping plexciton modes

in the vicinity of the MPR with increasing chain length.
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Figure 5.7: (Left) Light spectra and (Middle) mapping of their corresponding MSR to
Eq.(5.5), for the cases of chains comprised of (Above) 15 and (Below) 20 dimers. Eq.(5.5)
cannot entirely capture the MPR Rabi splitting due to its overlap with neighbouring
plexcitonic resonances as the chain length increases. This is further evident by (Right)
the light spectra obtained for fixed w, corresponding to each MPR.

5.3 Conclusions

In conclusion, we have applied a theoretical method based on a multiple-scattering
polaritonic-operator formalism in conjunction with an electromagnetic coupled-dipole
method to assess the interaction of light with hybrid collections of metallic NPs and
QEs presented in chapter 4, to a linear chain consisting of a finite number of MNP-QE
dimers. The light spectra of the above hybrid QE-MNP systems were calculated within

the context of the above formalism. A method was then presented to describe and
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predict the main plexcitonic resonance of such an (experimentally feasible) configura-
tion, whose corresponding value in the light spectrum is many orders of magnitude
larger than the secondary plexcitonic resonances, thus most likely to be experimen-
tally observable. First, an empirical formula was derived to describe the redshift of the
plasmons participating in the main plexcitonic resonances of each chain, in a manner
similar to that applied in (plasmonic) chains consisting solely of NPs, which serves to
predict reasonably well the frequencies of the MPR of a hybrid chain of arbitrary length,
and reveals an asymptotic behaviour at twice the length expected in NP chains [110]. A
model Hamiltonian was then introduced that serves to approximately predict the energy
splitting defined by the avoided crossing area of the MPR, found to scale reasonably
well as /N where N is the number of QE-MNP dimers and assess the overlapping sec-
ondary plexciton modes in the vicinity of the MPR. The presented method may serve, in
conjunction with the technique presented in chapter 4, supplementary to experiments
as a guide for an approximation of the spectral location of the MPR and a reasonable
estimation of the energy region of its corresponding avoided crossing area.

We should note that in chapters 4 and 5 we considered chains of NP-QE dimers. In
all cases, the corresponding light spectra where calculated with the detector placed at
theoretically infinite (practically, very large) distance along the chain axis with respect to
dimer chain length in order to capture only the far-field components of light. As future
work, one could investigate the effect of the detector position to the optical properties of
such hybrid systems, especially in the near-field region. Furthermore, in this region, as
opposed to the light spectrum at the position of the detector that we used in the present
thesis, a more suitable quantity to calculate would be the polarization spectrum of each

QE which corresponds to the light spectrum at the position of each QE.
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Chapter 6

Strong electromagnetic coupling in
dimers of topological-insulator

nanoparticles and quantum emitters

6.1 Introduction

In condensed matter physics, classifying distinct phases of matter has been tradition-
ally understood in terms of the spontaneous breaking of underlying symmetries [120]
of the relevant systems. A notable exception regarding this classification paradigm is
the quantum spin Hall effect [121] introducing the notion of topological order [122, 123]
i.e. the fact these states of matter do not spontaneously break any symmetries, yet de-
fine a topological phase in the sense that certain fundamental properties of such states
remain unaffected with respect to smooth changes in material parameters. Recently, a
new class of materials has emerged, namely, that of topological insulators (TI) [124], at-
tracting a lot of attention in the field of solid state physics [125]. Topological insulators

are electronic materials that have a bulk band gap like an ordinary insulator but have
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protected conducting states on their edge or surface. Such states are possible due to
the combination of spin-orbit interactions and time-reversal symmetry [126, 127]. They
have been experimentally observed in mercury telluride quantum wells [128, 129], bis-
muth antimony alloys [130, 131] and BisTe3 and BiySes bulk crystals [132-135], while
further studies have been performed in spherical [136-138] and cylindrical [139-141]
geometries as well as bulk TIs terminated at an arbitrary crystal face [142] and thin
films [143].

Recently, the impact of such topologically protected (surface) states in the optical
properties of topological insulator nanoparticles (TINPs) was investigated [18], illus-
trating that under the influence of light, a single electron in such a state creates a
surface charge density similar to a plasmon in a metallic nanoparticle. Furthermore
such an electron can act as a screening layer, effectively suppressing absorption inside
the particle and can couple phonons and light, giving rise to a previously unreported
topological particle polariton mode.

In the present chapter, we theoretically investigate the behaviour of this surface
topological particle (SToP) mode in the case where the TINP interacts strongly with a
single quantum emitter (QE), by means of calculation of the light spectrum of the sys-
tem. We find, in particular, that the SToP mode couples strongly with the resonance of
the QE giving rise to a novel hybrid mode the signal output of which, as well its spectral
location can be primarily tuned by controlling the TINP size. This result could prove
useful in enhanced light-matter interactions in the THz range where the systems under
study are QE-TINP arrays (for instance binary chains) and calls for more investigation.
The calculations were performed by implementing the multiple-scattering polaritonic-
operator formalism in conjunction with the EM coupled-dipole method, as described in

chapter 4.
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Figure 6.1: Calculation (of light spectrum) setup: A BiySesz TINP-QE dimer is illumi-
nated by a normally incident field (k || z). The corresponding electric field is polarized
along the x-axis while the dipole moment of the QE is assumed to be parallel with the
former. The detector is placed at a theoretically infinite distance, (practically at a very
large distance) so as to capture only the far-field components of light. The absorption
cross-section (see main text) is calculated for the TINP in the abscence of QE.

6.2 Results and Discussion

The spherical insulator nanoparticle (INP) under study is made of BiySes in which case

the bulk dielectric function is modelled by

2

) = > 2 .1

2 2 ;
. Wh: — We — 17Y;W
j=anp.f 0 i

and includes contributions from « and [ transverse phonons, and free charge carriers
(f) arising from the bulk defects. The parameters for the three terms present in Eq.(6.1)
are taken from a fit to experimental data [144] on bulk BiySes. In [18] the surface states
were found using a low energy Hamiltonian valid close to the Dirac point [141, 145].
Specifically, time-dependent perturbation theory was employed to the analytical model
of a spherical TINP of [141] which, for small radii, yields a discretized Dirac cone on
a spherical surface. The effect of the topologically protected surface states is then

reflected on the dielectric function of Eq.(6.1) via inclusion of a TINP radius-dependent
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term g [18],

5. — e? 1 N 1 6.2
B 6reg \24 — hwR ' 2A + hwR )’ '

Here, R is the TINP radius, w is the angular frequency of the incident light, and A = 0.3
eV -nm, is a constant obtained from DFT calculations [145], related to the equally spaced
surface states of the TINP that stem from spin-orbit coupling [see the supplemental
material of Ref. [18]]. Introducing this term results in the modified dielectric function
for a TINP,

Etinp = €inp + OR- (6.3)

In Fig.6.2 we present results of the absorption cross-section of a single BisSes TINP
(which for the following calculations is modelled as a point dipole) of varying radius
embedded in vacuum (e = 1) in order to probe the two main features reported in
Ref. [18], namely the surface topological particle mode (SToP) and the point of zero

absorption, via

Ak 2
Cabs = e > [%m (Pi - E}) — 21 [Pi[* 6.4)
0 i=1

where F;, P, are the local electric field at the position of each point dipole and its
corresponding dipole moment, both calculated within the CDM. The TINP is illuminated

by a normally incidented plane wave (k || z),

Ej" = E*e "k (6.5)

For TINP radii in the range of 40-90 nm, the SToP mode lies in the frequency range
between the Bi,Se3; LSPP mode located at 1 T"Hz and the § phonon located at 3.72
THz. For the above range, aside from the presence of the SToP mode, it is evident

that the zero in absorption is present at frequencies obeying 2A = AwR [18]. Of note,
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Figure 6.2: Absorption cross section of a single BiySe; TINP embedded in vacuum
of varying radius as discussed in main text. The key features are the emergence of
the SToP mode accompanied by a zero in absorption. With increasing TINP radius
bulk effects become more prominent reflected in the progressively stronger LSPP and
£ phonon peaks. The SToP mode peak is significantly weaker in the vicinity of the «
phonon hinting at the coupling of the surface topological plasmon with the former.

is the fact that the SToP mode diminishes with increasing particle size as the former
approaches the frequency of the a phonon of BiySes located at 2 T'H z, hinting at one
of the conclusions of [18], namely, that the mode arises due to the interaction of the
electrons in the surface states with the bulk « phonon. For a TINP size of R ~ 73.8
nm, the SToP mode is located directly at the location of the o phonon, thus nearly fully
suppressed, yielding an absorption cross-section that differs from the corresponding of
an ordinary insulator nanoparticle only by the zero in absorption (Fig.6.3).

In all the following we calculate the light spectra (in arbitrary units) of TINP-QE
hybrid systems with respect to incident light angular frequency (w) as described by

Eq.4.59 and the method discussed in chapter 4, wherein the QE transition angular
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frequency (wo) is parametrically varied. The light spectra have been calculated via a
programming code implementing the above method using a discretization of 201 steps
for the frequency domain, corresponding to a mesh of 201 x 201 frequencies. The results
in all subsequent figures are presented in terms of incident light frequency (f) and QE
transition frequency (fy). For the first set of calculations we choose a TINP of R = 50
nm. Namely we calculate the light spectrum of a hybrid nanostructure comprised of a
single TINP interacting with a two-level quantum emitter (QE) placed 1 nm above it, to
ensure strong interaction between the TINP and QE. The system, as with the previous
calculations, is assumed to be embedded in vacuum and illuminated by a normally
incident plane wave with an electric field polarized along the x axis. The transition
dipole moment of the quantum emitter is set to P = 0.2 e - nm, parallel with the electric
field. The light spectrum is obtained at (theoretically) infinite distance along the x
axis (practically at a large distance) so as to capture only the far-field components of
light. Fig.6.4, illustrates the importance of the value of the internal nonradiative decay
rate 7., to the coupling of the SToP polariton with the QE resonance. Corresponding
light spectra are presented respectively for the case of a QE with a slow decay rate,
Yge = 15 meV (e.g., an organic molecule) and a fast decay rate, v, = 0.8 peV, (e.g.,
a QD [146, 147]). For the slow decay rate (left panel of Fig. 6.4), the light spectrum
is almost featureless. For the fast decay rate (middle and right panel of Fig. 6.4),
it is evident that there is an avoided crossing area in the region of the SToP mode
corresponding to the coupling between the QE resonance and the surface topological
particle polariton, giving rise to a novel mode. The mode, as can be seen in Fig.6.4
(right panel) wherein the coupling strength was tuned at fivefold to accurately capture
the features of the coupling, presents a bottleneck below the avoided crossing area
that stems from the spectral vicinity of the SToP mode with the zero in the absorption

cross-section of the TINP (Fig.6.2). We must stress here that, by assuming a QE with
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Figure 6.3: Absorption cross section of a single BiySes TINP (red) embedded in vac-
uum juxtaposed with the absorption cross section of an ordinary INP (blue) of the same
radius. For R = 50 nm (left panel) the zero in absorption is accompanied by the (promi-
nent) SToP mode. For R = 73.8 nm (right panel) the SToP mode is tuned to frequency
of the bulk « phonon, rendering it nearly nonexistent with the zero in absorption re-
maining the only discernible difference with the absorption cross-section of an ordinary
insulator nanoparticle of the same radius.

fast decay rate (v, = 0.8 pel’) means considering the exciton resonance of a quantum
dot which might reach the size of 10 nm. In that case, our formalism which treats
QEs as point objects, cannot account for possible size-effects that may occur and can
be taken into account by classical EM treatments of the excitons [7-9]. However, finer
quantum phenomena such as superradiance or quenching of fluorescence cannot be
captured unless the quantum mechanics of the QE-NP hybrid comes to play [70-74].
In all the following calculations we assume a TINP-QE system with v, = 0.8 pel/
embedded in vacuum (e = 1) with QE transition dipole moment set at P = 0.2 e - nm.
In Fig.6.5, we present the light spectra for the hybrid system under study for various
TINP radii R < 50 nm, up to the lower threshold the TINP model presented in Ref. [18]
remains valid, ensuring that there is enough bulk material to support the surface

states. We observe that he hybrid mode is blueshifted, and characterized by wider
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Figure 6.4: Light spectra of the hybrid system under study for the case for v, = 15
meV (left panel) and for 7, = 0.8 peV (middle and right panel). It can be seen that the
QE resonance couples with the SToP polariton giving rise to a previously unreported
mode. The right panel is the same as the middle one, but for a five times larger value
of the dipole moment, in order to clearly discern the characteristics of the coupling.

avoided crossing areas, i.e. stronger coupling. Of note is the fact that no bottleneck
regions are present in the spectral vicinity of the (more well defined) avoided crossing
area, hinting at the progressively diminishing effect of the zero in the absorption cross-
section of the TINP.

In Fig.6.6, we present the light spectra for the hybrid system under study as a func-
tion of single frequency. Specifically we keep the quantum emitter transition frequency
fo fixed at the value corresponding to each crossing point observed in Fig.6.5, and
present the corresponding light spectrum as a function of incident light frequency (f).
In all cases, one can observe the formation of two spectrally distinct peaks due to the
coupling of the SToP polariton and the QE resonance which become more pronounced
with decreasing TINP size. In Fig.6.7 we extract a value for the corresponding Rabi
splitting of the above cases. We note that, in an actual experiment, for this hybrid
system to be in the strong coupling regime, the energy separation corresponding to the

avoided crossing area, the Rabi splitting, should be larger than the linewidths of the
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Figure 6.5: Light spectra of the hybrid system under study for TINP radius R = 30 nm
(left panel), R = 20 nm (middle panel), R = 10 nm (right panel). The coupling between
the SToP polariton and the QE resonance grows stronger and blueshifts as the TINP
size decreases. The output signal of the coupling (middle of the avoided crossing area)
as well as its spectral location can be tuned simply by controlling the TINP size (in all
cases the system is assumed to be embedded in air).

surface topological particle polariton and QE resonance states [10].

Fig.6.8 illustrates the dependence of the hybrid mode with respect to the QE-TINP
distance, for a fixed TINP radius, R = 20 nm. As expected, decreasing the separation
between the TINP and the QE results in stronger coupling between the two, reflected in
the progressively more well defined avoided crossing area in the spectral region of the
SToP mode corresponding to a TINP of the above radius.

Fig.6.9 presents, for completeness, the light spectra of the system under study
wherein the TINP radius is set at R > 50 nm, illustrating the diminishing effect of the
SToP mode (and by extension the hybrid mode due to the presence of the quantum
emitter) with increasing TINP size, as well as an almost complete abscence of the SToP
mode in the case where the TINP size is tuned so that the former coincides with the
bulk « phonon of BiySes. Here, we must stress that in all our calculations, the TINP

is treated as point dipole which is justified by the small sphere radii compared to
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Figure 6.6: (Left panel) Line plots of the light spectra of the hybrid system under
study for a TINP radius (left panel) R = 30 nm, (middle panel) R = 20 nm, (right
panel) R = 10 nm, with respect to incident light frequency (f) wherein the quantum
emitter resonance (fy) is kept fixed at (left panel) fy = 4.4 T'Hz, (middle panel) f, = 6.1
THz, (right panel) fy = 8.8 T'Hz, corresponding to the middle of each avoided crossing
area depicted in Fig.6.5. For the case where the TINP radius is R = 30 nm and
R = 20 nm, there is evidence of two distinguishable peaks forming in the spectral
region of the corresponding avoided crossing points. For the case where the TINP
radius is R = 10 nm, the two peaks are more pronounced.

the wavelength (the THz regime is an ultra-subwavelength regime for the sphere radii
considered here - up to 100 nm). However, for much larger nanoparticle radii, the
multiple-scattering polaritonic operator formalism employed here can readily provide a
discrete-dipole-approximation (DDA) calculation for the TINP, as it can treat collections
of an arbitrary number of point dipoles. It can thus simulate more realistically a TINP by
considering it as a collection of point dipoles in the spirit of DDA. However, as explained
above, due to much longer wavelength of incident radiation (THz regime) compared to
the TINP sizes, a DDA correction would rather be an unnecessary calculation complexity
to our study.

Lastly, we should note that the hybrid TINP-QE mode is of similar nature with

respect to the modes emerging when a plasmonic nanoparticle interacts strongly with

140



3.5X10_12 T T T T 1.8X10_10 T T T T 1.2X10—9 T T T T
‘ ‘ ‘ ‘ 10| : i i i ‘ ‘ ‘ ‘
12 L L e L
10 - DA
. 1.4x107 1O P P P : : : :
__25x10° P i i s s s s
=] 1.2x1071%| h P P ] 8x10'10—""'j """" e P
S 20 aol [l TN
€ 110 p T T 10 : : : :
2 S 6x107 0
0 I
2 B oo A aa
k=) 1x10 : : : : : : ] :
- 11 | . . .
E T o R J4 ‘
3 | . 2x1070
5x10 2X1O_11—”';' ,,,,,,, TR T — : : : ;
oL LA AN b
4 42 44 46 48 5 6 62 64 66 68 7 8 82 84 86 88 9
f (Thz) f (Thz)

f (Thz)

Figure 6.7: Light spectra of Fig.6.6 in a narrower frequency range to assess the mag-
nitude of the Rabi splitting. A Rabi splitting of aproximately fr ~ 0.1 T'"Hz can be
extracted for the case where the TINP radius is R = 30 nm (left panel). For a TINP
radius of R = 20 nm (middle panel) the Rabi splitting is slightly larger (fr ~ 0.11 T H ).
Finally, a larger Rabi splitting of approximately fr ~ 0.22 T'H z is observed for the case
where the TINP radius is R = 10 nm (right panel).

a QE. [114] However, in the case of the present work, i.e., the TINP-QE interaction, all
phenomena manifest themselves much more dramatically due to the lower amount of
inherent losses of the TINP in the region around the SToP resonance. This results in
more pronounced peaks in the corresponding spectra, larger Rabi splittings (relative
to the resonance frequency), wider avoided-crossing areas, etc. Moreover, the current
mode lies in the THz regime which is unreachable with ordinary plasmonic materials
while, at the same time, allows for easier tuning of the resonance frequency with TINP

size.

6.3 Conclusions

In summary, we have theoretically investigated the interaction between a spherical

topological insulator nanoparticle and a single quantum emitter. Namely, we calcu-
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Figure 6.8: Light spectra of the hybrid system under study for TINP radius R = 20 nm
wherein the QE distance (d) from the surface of the TINP is set at d = 10 nm (left
panel), d = 5 nm (middle panel) and d = 1 nm (right panel). It is evident that the
SToP polariton- QE resonance coupling becomes stronger with decreasing interparticle
distance.

lated the light spectrum of a single TINP-QE dimer via the method presented in chapter
4, suitable to treat the interaction of light with hybrid collections of QEs-NPs . The TINP
was modelled via a radius-dependent correction in the ordinary insulator nanoparticle
dielectric function so as to take into account the effect of the topologically protected
surface states on the optical properties of the TINP [18]. We found that, under suitable
conditions, the surface topological particle polariton of the former can couple strongly
with the resonance state of the QE giving rise to a previously unreported mode. Fur-
thermore the wavelength shift of this novel mode can be controlled simply via tuning
the TINP size circumventing the need to alter the surrounding dielectric material as
is the norm in hybrid systems of metallic nanoparticles and quantum emitters. In-
vestigating the conditions under which TINP-QE systems enter the strong coupling
regime should prove useful in applications to lasers, waveguides and sensors in the
THz range [148, 149]. The case examined in the present work is the simplest one, i.e.

that of a single dimer, in order to provide a first glimpse of the underlying physics of
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Figure 6.9: Light spectra of the hybrid system under study for TINP radius R = 90 nm
(left panel), R = 80 nm (middle panel), R = 70 nm (right panel).

such novel hybrid structures before moving on to (in general, more complex) arrays of

many TINPs-QEs via methods such as the one presented in chapter 4.
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Chapter 7

Hybrid Spherical Nanoclusters
Containing Quantum Emitters and

Metallic Nanoparticles

7.1 Introduction

In the present chapter, we study the optical response of hybrid clusters contain-
ing metallic NPs and QEs which are usually realized via DNA-assisted self-assembly
[150-155]. Namely, we consider a nanocluster containing randomly positioned, almost
touching particles which may either be metallic NPs or QEs. Our aim is to study the in-
teraction of the SPs supported by the metallic NPs with the excitonic resonances of the
QEs, as well as how this interaction is tracked in experimentally observable quantities
such as the absorption cross section of the nanocluster.

The QEs are assumed to be two-level quantum systems and the metallic NPs to be
made of gold, a noble metal supporting SPs in the visible regime. The optical response

of the QEs is based on calculating the electric susceptibility of the QE by means of the
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density-matrix methodology. At this point, we take into account the modification of the
spontaneous-emission rate of each QE separately, due to the presence of the metallic
NPs in the hybrid nanocluster. This is achieved by calculating the corresponding
electromagnetic (EM) Green’s tensor for the metallic NPs of the cluster based on the
coupled-dipole method. This distinguishes the present study from previous works in
this area, where the spontaneous emission rate of collections of QEs is taken to have
the same value everywhere in the cluster. The coupled-dipole method is then applied
to determine the absorption spectrum of the hybrid cluster by taking into account the
polarizabilities of the QEs and the metallic NPs. We find that the absorption spectrum
of the hybrid cluster is distinctively different when the spontaneous decay rates of the
emitters are different in each position, from the case where they all have the same
value. In addition, from the analysis of corresponding absorption spectra of the hybrid
cluster, we examine a spectral region where plexcitonic EM modes exist, which can
modify drastically the typical SP absorption profile of a purely plasmonic cluster, even
for small concentrations of the QEs within the nanocluster.

The chapter is structured as follows. In the next section we present the theory for the
calculation of the electric susceptibility of the QEs and provide the methodology for the
EM Green’s tensor of the nanocluster using the coupled-dipole method. In addition, we
provide a methodology for the calculation of the scattering, extinction and absorption
cross sections of the nanocluster. In Section 7.3, we present numerical results for the
spontaneous decay rates of the QEs and the absorption spectra of the nanocluster of
metallic NPs and QEs and show the influence of the different decay rates of the QEs on
the absorption spectra and also the emergence of plexitonic modes. Finally, in Section

7.4 our work is summarised.
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7.2 Theory

7.2.1 Calculation of the electric susceptibility of the QEs

The QEs studied in this work are described a two-level quantum system with lower
level |1) and upper state |2). We assume that a single QE interacts with an EM wave of
electric-field amplitude £y and angular frequency w. This is the local field at the position
of the QE and consists of the direct incident laser field as well as that scattered off the
other QEs and metallic NPs of the cluster (see below). This local field couples the state
|1) with state |2).

The density matrix equations of the two-level system, assuming a Markovian re-

sponse and under the rotating wave approximation, are given by:

a(t) = (10 —~)o(t) +iQA(t), (7.1)

A(t) = —2v[A(t) — 1] + 20 (t) — 2iQ0™ (1), (7.2)

with A(t) = p11(t) — paa(t), o(t) = par(t)e™?, where p11(t), paa(t), p21(t) are the density
matrix elements, () = pFy/h is the Rabi frequency, with p being the electric dipole
matrix element and 0 = w — wy is the field detuning from resonance, with hw, being the
energy of the exciton resonance. The decay rate v is provided by [156, 157]

2 2
y(r) = %é -ImG(r,1;w) - €. (7.3)

Here, G(r,1r;wy) is the dyadic EM Green’s tensor, where r refers to the position of the
QE, ¢ is a unit vector along the direction of the transition dipole moment p, and f is
the permeability of vacuum.

The absorption and dispersion properties of the system for a weak laser field is
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determined by the linear electric susceptibility that is given by [158]

Np S _ Np? wo —w+iy(r)
eoFp goh (wo —w)2+~2(r)’

X (w;ir) = (7.4)

where N is the atomic density. We note that in the above formula, the decay rate y(r)
as provided by Eq. (7.3) depends on the position of the QE in space and, as such, it
provides a spatially varying dielectric function of the emitter, i.e., e(w;r) = 1+ XV (w;r).
The decay rate at the position of each QE of the cluster is calculated by a Green’s tensor

formalism, based on the coupled-dipole method (see chapter 4).

7.2.2 Scattering of light by a collection of QEs and metallic NPs

We assume a collection of both metallic NPs and QEs embedded in vacuum (eg = 1).
The collection is excited by an incident field E;,.. The (local) electric field E; at the
position r; of the i-th dipole (being either a NP or emitter), within the coupled-dipole

method, is provided by solving [78, 79]

E;(w) = (Emm(w) + k? Z Gy (w) - oj(w) - Ej(w)> ) (7.5)

J#i

where G?j (w) is the free space Green’s tensor and k = £. Specifically, given that

P;(w) = a;(w) - E;(w), where «; is the polarizability tensor of the i-th dipole (emitter or
NP, and P, the corresponding dipole moment), the dipole moment for each dipole can
be calculated at first via the following system of 3N equations
M
D [0 — Fai(w) - Gh(w)] - Pj(w) = i(w) - Bipei(w), (7.6)
J
where M is the total number of QEs and NPs; E;,,.; is the incident field at the position

of the i-th dipole (emitter or NP). We note here that Eq. (7.5) contains all types of dipole
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interactions, e.g., among NPs, among QEs and NP-QEs.
Having determined the dipole moment P; at each point dipole, one can calculate

quantities such as the scattering, extinction and absorption cross sections, i.e.,

Ak L2
_ 3D 2 -
OSC Bl |E7jnc|2 ;[gk |PZ| Sm(PZ Eself,i):| (7.7)
N
Atk .
Ce:ct = ’Einc‘g ; Sm(PZ . El‘nc,i) (78)

Cabs

SIS

EE
[
-

2

where Eself,i = Ez — Einc,z’- Evidently, Cezt = Csc -+ Cabs-

7.3 Results and discussion

Next, we apply the theory developed above to the case of a spherical cluster containing
both metallic NPs and QEs (quantum dots or molecules). A characteristic cluster is
depicted in Fig. 7.1. It consists of 170 particles in total (either NPs or emitters). The
percentage (concentration) of emitters in the cluster is denoted by f. The metallic NPs
have a 20 nm radius and are made of gold, the corresponding dielectric function is taken
from experiment [159], corrected for the finite size effects of the NPs (electron scattering
at the boundary of the spherical NP, see Eq. (2) of Ref. [160]). In our calculations
e¢g = 1. The QEs are considered much smaller, namely, of 1 nm? volume. In this case,
the density IV appearing in Eq. (7.4) is N = 1 nm 3. The entire nanocluster is of almost
spherical shape and its average radius about 160 nm. The parameters of the QEs are
taken as the dipole moment p = 0.19 e - nm, the decay rate in vacumm hvy, = 0.015 eV
which are typical values for organic molecules [90]. The angular frequency wy is taken

as a varying parameter.
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Figure 7.1: A hybrid nanocluster of gold NPs and QEs.

As explained above, each QE in the cluster feels’ a different optical environment
from the rest of the emitters of the cluster, a fact which is reflected in the spontaneous
emission decay rate . The value of the decay rate 7 is dictated by the EM Green’s
tensor, which, in our case, is calculated by the procedure analyzed in section 4. In
order to demonstrate the importance of taking into account the correct decay rate, i.e.,
not the vacuum one, when QEs and plasmonic nanostructures interact with each other
and with incident light, in Fig. 7.2, we show the values of the decay rate 7 for various
QEs placed within a hybrid nanocluster, with concentration f = 0.1, for A = 472 nm.
We note, here, that Fig. 7.2 depicts the orientational average of the decay rate defined
as 7 = (72 + 7y +7:)/3. Evidently, we observe a significant variation in the values of
the decay rate -, which, depend on the position of the QE inside the cluster. Namely,
~ ranges from 7, (decay rate in vacuum) to about 7 times larger than ~,. This demon-
strates that in typical calculations of the interaction of QEs and NPs/ nanostructures,

under arbitrary illumination conditions, the modification of the spontaneous-emission
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Figure 7.2: A sample of the relative (to vacuum) decay rates ~(r)/v, of the QEs at
A = 472 nm, lying within a nanocluster of 10% emitters and 90% gold NPs (f = 0.1).
The gold NPs have a 20 nm radius while for the QEs hwy = 2.25 eV.

rate for the atomic transitions involved must be taken into account via calculations of
the EM Green’s tensor. Such a correction is not taken into account when solving simul-
taneously the time-dependent rate equations of the density matrix in conjunction with
Maxwell’s equations, usually in the formulation of the finite-difference time-domain

scheme.
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Figure 7.3: Absorption spectrum for nanocluster of QEs and gold NPs, for f = 0.1
concentration of QEs. The gold NPs have a 20 nm radius while for the QEs, hwy =
2.25 eV.

Having taken into account the modification of the decay rate for each QE of the
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nanocluster, which enters the formula of electric susceptibility of Eq. (7.4), we may
proceed to the calculation of the absorption cross section of the entire cluster, as
outlined in section 7.2.2. Namely, in Fig. 7.3, we show the spectrum of the absorption
cross section C,,, for a cluster with concentration f = 0.1 of QEs. The red curve
corresponds to the absorption spectrum where for all the QEs we have assumed that
the decay rate is the same, equal to the natural rate in free space, i.e., iy = 0.015 eV.
The black curve corresponds to the absorption spectrum where the local correction
(via the EM Green'’s tensor) to the decay rate for each QE has been taken into account
in the manner of the previous discussion and Fig. 7.2. Evidently, the modification of
the spontaneous emission decay rate due to the local photonic environment (presence
of a plasmonic nanostructure) for each QE provides a noticeably different absorption

spectrum and must be taken into account.
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Figure 7.4: Absorption spectrum for nanocluster of QEs and gold NPs, for different
values of the percentage f of QEs. The gold NPs have a 20 nm radius while for the QEs
7&00 = 2.25 eV.

In Fig. 7.4, we show the spectrum of the absorption cross section Cy;; for clusters
of different concentrations of QEs, i.e., for f = 0,0.1,0.2 (obviously, f = 0 corresponds
to the case of a cluster of purely gold NPs). For f = 0, the absorption spectrum

possesses a typical peak structure which stems from the excitation of the surface
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plasmon resonance of the cluster which is the result of the interaction of the surface
plasmons of the individual NPs comprising the cluster. As such, its width is larger
that the width of the surface plasmon peak of an individual 20 nm gold NP. For [ =
0.1,0.2, we observe very clearly that, the introduction of QEs in the cluster, even in
small proportions, modifies significantly the surface-plasmon-dictated spectrum of the
absorption cross section of the cluster. Namely, we observe that the absorption peak
becomes narrower and higher as the percentage of QEs within the cluster increases.
At the same time, the total amount of absorption (total area below the absorption
spectrum) is decreased relative to the purely plasmonic nanocluster (f = 0). All these
are natural consequences of the fact that as f increases, the EM interaction among
the gold NPs becomes weaker since the average interparticle increases resulting in a
narrower plasmon peak. In the opposite direction, the stronger the interaction among
the NPs means the flatter is main plasmon resonance.

The most important feature is the presence of a double-peaked structure not present
in the purely plasmonic nanocluster (f = 0). This structure is very clear for f =
0.1 whilst it is much less prominent for f = 0.2. The introduction of this double-
peaked structure stems from the surface-plasmon resonance of the gold NPs and the
exciton resonance of the QEs. When the exciton resonance approaches the surface-
plasmon peak located at around 515 nm, a strong interaction between these two modes
occurs which leads to the emergence of new type of EM modes; these modes do not
resemble the pure modes of either the metallic NP or the emitter, and are known in
literature as plexcitons. [1-9] The basic features of the experimental spectra probing
the plexciton resonances of hybrid NP-emitter systems can be interpreted under the
prism of a (classical) coupled-oscillator model [6, 7, 10, 11] which predicts a double-

peak structure in corresponding light spectra.
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7.4 Summary

We have presented a theoretical formalism for the study of the optical response of hybrid
clusters of spherical metallic NPs and two-level type QEs. By taking into account the
modification of the decay rate of each QE due to the presence of the metallic NPs in the
nanocluster, we placed the polarizabilities of the QEs and those of the metallic NPs into
a coupled-dipole formalism in order to obtain the light absorption spectra of the entire
cluster. There, we identify a double-peaked structure stemming from the individual
resonances (surface plasmons and excitons) of both types of particles, which, in a
narrow spectral range combine to yield composite plasmon-exciton (plexciton) modes.
The presented formalism can be applied to numerous cases of hybrid clusters of metallic
NPs and QEs which are usually realized by DNA-assisted self-assembly. [150-155] Such
application is plausible provided that the exact positions of the QEs and the NPs are
given by experiment or by numerical simulations (Monte Carlo, molecular dynamics,
etc) of the self-organization process of hybrid clusters.

We note here that the presented formalism is applicable in the weak coupling regime
and, as such, it cannot treat hybrid systems where the QEs are very close to the surface
of the nanoparticles and/ or the incident field assumes high values. For such cases we
must resort to the multiple-scattering polaritonic-operator method of chapter 4. How-
ever, the presented technique can be trivially extended to multilevel quantum emitters
(three-level V- or lambda-type, ladder systems, etc). At the same time, the presented
method allows the calculation of the scattering T-matrix of the hybrid cluster which
means that one would in principle be able to calculate the response of collections of
many hybrid clusters or even the response of two-dimensional and three-dimensional
periodic metamaterials consisting of hybrid clusters. Finally, the computer time re-
quired for conducting numerical calculations with the present formalism is a very small

fraction of the time required with the multiple-scattering polaritonic-operator technique
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of chapter 4 for the same collection of emitters and nanoparticles.
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Chapter 8

Concluding remarks and outlook

In the current thesis we presented a new technique for the study of hybrid collections
of quantum emitters (atoms, molecules, quantum dots) with nanoparticles. The tech-
nique, introduced in chapter 4, is based on a multiple-scattering polaritonic-operator
formalism in conjunction with an electromagnetic coupled dipole method. Apart from
collections of quantum emitters and nanoparticles, the method can equally treat the
interaction of a collection of quantum emitters with a single nano-object of arbitrary
shape in which case the nano-object is treated as a finite three-dimensional lattice
of point scatterers. We have applied our method to the case of linear array (chain)
of dimers of quantum emitters and metallic nanoparticles wherein the corresponding
(geometrical and physical) parameters of the dimers are chosen so as the interaction
between the emitter and the nanoparticle lies in the strong-coupling regime in order to
enable the formation of plexciton states in the dimer. In particular, for a linear chain
of dimers, we have shown that the corresponding light spectra reveal a multitude of
plexciton modes resulting from the hybridization of the plexciton resonances of each
individual dimer in a manner similar to the tight-binding description of electrons in

solids. As future work one could investigate the emergence of plexciton modes for more
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complex configurations such as 2D or 3D arrays of MNP-QE collections.

In chapter 5 we presented systematic numerical calculations of plexcitonic proper-
ties for the configuration of chapter 4, namely that of a linear chain comprised of quan-
tum emitters - metal nanoparticle dimers interacting in the strong coupling regime.
Specifically, we calculated the two main features corresponding to the formation of
plexcitonic chain modes: the primary plexcitonic resonance as well as the correspond-
ing Rabi splitting associated with the generation of an avoided-crossing area. We ap-
plied an exponential model to the numerical results obtained via the above technique to
describe the plexciton redshift induced with increasing chain length. We also identified
an asymptotic plexciton frequency at a chain length of approximately 20 dimers. A
model Hamiltonian was employed to assess the energy splitting defined by the avoided
crossing area of the main plexciton resonance which was found to scale as VN where
N is the number of dimers in the chain.

In chapter 6 we theoretically investigated the optical properties of a topological-
insulator nanoparticle-quantum emitter dimer interacting in the strong-coupling regime.
We calculated the light spectrum of the above dimer and found the emergence of a mode
that stems from the coupling of the surface topological particle polariton of the topo-
logical insulator with the resonance state of the quantum emitter.

In chapter 7 we studied theoretically the optical response of a hybrid spherical clus-
ter containing quantum emitters and metallic nanoparticles. The quantum emitters
were modeled as two-level quantum systems whose dielectric function is obtained via
a density matrix approach wherein the modified spontaneous emission decay rate at
the position of each quantum emitter is calculated via the electromagnetic Green’s ten-
sor. The problem of light scattering off the hybrid cluster was solved by employing the
coupled-dipole method. We found, in particular, that the presence of the quantum

emitters in the cluster, even in small fractions, can significantly alter the absorption
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spectra of the sole cluster of the metallic nanoparticles, where the corresponding elec-
tromagnetic modes can have a weak plexcitonic character under suitable conditions.

Hybrid systems of metallic (plasmonic) or topological (polaritonic) nanoparticles
combined with quantum emitters (atoms/molecules/quantum dots) are in the forefront
of modern physics research, mainly due to the direct applications in quantum technol-
ogy. As a general trend, the presence of plasmonic/ polaritonic entities increases the
potential of the mutual interaction among quantum emitters. Furthermore, as also dis-
cussed in the current thesis, it creates new states of light (plexcitons) with features that
can be of particular use to the quantum technology. The theoretical tool presented in
the current thesis enables the study of various hybrid systems apart from those consid-
ered here. This can be accomplished by tuning the physical parameters of the system
[i.e. the background material () that hosts the hybrid collection, the material, size and
shape (polarizability) of the NPs, as well the QE characteristics (i.e. non-radiative decay
rate, transition dipole moment)] in conjuction with its geometric parameters (distance
between QEs-NPs, detector position etc.). This tuning of parameters enables the opti-
mization of the configuration under study for use in specific applications, illustrating
its practical value to guide and supplement experiments.

To further discuss future outlook, we start from the last chapter where we have
employed only one pillar of the presented method (the coupled-dipole method) due to
the large number of nanoparticles. Namely, one potential application would be the
study of the role of nanoparticle size in the formation of plexciton modes in a metallic
NP - QE dimer. In particular, the calculations presented in the current thesis involve
metallic NPs which have a macroscopically large radius. Practically this means that
the NPs have a radius of 2nm and above. However, for dimensions smaller than 2nm,
the nanoparticle can hardly be treated as a macroscopic object in terms of macroscopic

classical electrodynamics since its atomic nature becomes much more important.
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Nanoparticle Atomic cluster

Figure 8.1: Classical EM (left) and atomistic EM (right) models for a metallic nanopar-
ticle. In the atomistic EM model, a metallic NP is viewed a BCC atomic cluster. The
picture is taken from Ref. [161].

For very small nanoparticles, the treatment of the particle as a homogeneous sphere
made of the same macroscopic material (EM model of Fig. 8.1) reaches its limits as the
atomic structure of the particle becomes significant, especially if a hypothetical QE is
placed in close proximity to its surface. In reality, the nanoparticle should be treated
as an atomic cluster rather than a homogeneous sphere (see right panel of Fig. 8.1).
Usually, the EM modelling of a single NP of that size (below 2 nm) requires atomistic
calculations [162-172] for the study of their optical response.

However, since we are interested in modelling hybrid collections of metallic NPs and
QEs, wherein the NPs are in the quantum-size regime (below 2nm), a fully quantum-
mechanical treatment of the optical properties of each NP is a formidable task due
to the large number of electrons involved. Due to this, fully quantum-mechanical
calculations have been restricted to very small nanospheres [162, 163] consisting of
a few thousand conduction electrons while typical plasmonic systems of interest may
contain millions or even billions of electrons. To this end, alternative approaches have
been proposed which are based on macroscopic Maxwell’s equations, in principle, but

contain corrections to account for quantum-mechanical effects. Such an atomistic-
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electrodynamics approach has been proposed wherein a NP is treated as an atomic
cluster whose optical response results from the mutual EM interactions of the atomic
polarizabilities of each individual atom [161, 173]. Essentially, it is an atomistic variant
of the coupled-dipole method examined in the current thesis. The advantage of this
atomistic coupled-dipole method is the much lesser computing time needed to simulate
the EM response of a single metallic NP which makes it far more easier to model
collections of many NPs treated as atomic clusters. And, obviously, it is far more
easier to model a hybrid nanocluster containing quantum-sized NPs and QEs (such as
those of chapter 7) with an atomistic coupled-dipole method than with purely quantum-
mechanical techniques.

A further extension of the method employed in the sixth chapter would be to consider
multi-level quantum emitters, i.e., three- or four-level quantum systems. This would
be achieved by calculating the susceptibilities of multi-level quantum emitters by stan-
dard techniques such as the density-matrix approach considered here in the framework
of the rotating-wave and Markovian approximations. The extension of the method to
multi-level quantum emitters would open the window to a plethora of exciting phe-
nomena in quantum optics such as quantum interference, self-induced transparency,
slow light, non-linear optical rectification, quantum correlations, etc which have not
been studied in such complex systems (hybrid nanoclusters of metallic nanoparticles
and quantum emitters). One can also extend the full multiple-scattering polaritonic-
operator method so that it can deal with multi-level QEs. In this case, one has to extend
the formulae of Egs. (4.39) and (4.40) for multi-level quantum systems.

Apart from extending the formalism itself, one can apply the method to different ex-
perimental setups. In Fig. 8.2 we show a very characteristic example of a gold nanopar-
ticle coated with CdS quantum dots which act as QEs. The method developed here is

ideally suited for numerical study and comparison with experiment of this particular
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system.

Figure 8.2: Left panel: Schematic illustration of a gold nanoparticle with a corona of
quantum emitters. Right panel: Experimental TEM image of a gold NP coated with CdS
quantum dots. The picture is taken from Ref. [174].

Finally, the method presented in this thesis can be extended in the direction of treat-
ing non-spherical NPs. In Fig. 8.3 we show DNA-based gold-QE nanocluster. In prin-
ciple, this structure can be readily modelled with the multiple-scattering polaritonic-
operator method since the number of QEs and NPs is not very high. However, the
method needs to be extended so as to treat non-spherical NPs in order to account
for the DNA strands (cylindrical NPs) which form the scaffold supporting the gold-QE
nanocluster. Namely, for non-spherical objects, one has to discritize each object into
a certain number of point dipole and employ the coupled-dipole method for each non-
spherical NP. Luckily, for small non-spherical objects one can employ semi-analytical
formulae for the polarizability [175] in order to model them as point dipoles and thus
save a significant amount of computing time. However, not all non-spherical nanoparti-
cles can be described by a single analytic formula for the polarizability and one needs to
resort to the full coupled-dipole method in order to model the response of nanoparticles

such as the gold nanodendrites depicted in Fig. 8.4.
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Figure 8.3: A gold-QD nanocluster made via a DNA origami scaffold. The QD is CdTeSe
and lies at the center of the structure. The gold NPs are the yellow spheres whilst the
grey cylinders depict the DNA strands which hold together the entire structure. The
picture is taken from Ref. [155].
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Figure 8.4: Schematic illustration of dendritic gold NPs coated with CdTe quantum
dots. The picture is taken from Ref. [176].
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