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Περίληψη

Διάφορες τεχνικές εξόρυξης δεδομένων χρησιμοποιούνται στις μέρες μας

για την ανάλυση δεδομένων. Ανάμεσα τους, η συσταδοποίηση είναι η πιο διαδε-

δομένη και χρησιμοποιείται σε περιπτώσεις που δεν υπάρχει κάποια προηγούμενη

γνώση για τη δομή των συστάδων. Δεδομένα από πολλά πεδία όπως η οικο-

νομία, η υγεία κ.α. αποθηκεύονται σε μορφή χρονοσειρών. Η συσταδοποίησή

τους έχει ποικίλες εφαρμογές στο γονιδιώμα, στην ιατρική, στα οικονομικά. Το

πρόβλημα είναι δύσκολο εξαιτίας του θορύβου και της μεγάλης διαστατικότητας

που εκ φύσεως έχουν οι χρονοσειρές. Σε αυτή τη διπλωματική ασχολούμαστε

με τη συσταδοποίηση χρονοσειρών με βάση το σχήμα τους. Το σημαντικότερο

συστατικό των αλγορίθμων αυτής της κατηγορίας είναι η επιλογή του κατάλλη-

λου μέτρου ομοιότητας. Το μέτρο αυτό θα πρέπει να συγκρίνει αποτελεσματικά

τα σχήματα των χρονοσειρών. Η πιο διαδεδομένη τέτοια απόσταση είναι η Dy-
namic Time Warping (DTW), η οποία όμως έχει τετραγωνική πολυπλοκότητα
που επηρεάζει σημαντικά την πολυπλοκότητα των αλγορίθμων συσταδοποίησης.

Οι περισσότερο υποσχόμενες λύσεις για τη μείωση της παραπάνω πολυ-

πλοκότητας περιλαμβάνουν πρώτα την εφαρμογή μεθόδων για τη μείωση της

διαστατικότητας των χρονοσειρών και έπειτα τη χρήση κλασικών αλγορίθμων

συσταδοποίησης στα μειωμένης διαστατικότητας δεδομένα. Σε αυτή τη διπλω-

ματική προτείνουμε μία νέα μέθοδο δύο σταδίων για τη συσταδοποίηση χρο-

νοσειρών. Πρώτα μοντελοποιούμε τις χρονοσειρές με ορισμένα σημεία που

ονομάζονται inducing points χρησιμοποιώντας Sparse Gaussian Process Re-
gression [68], η οποία είναι μια προσεγγιστική μέθοδος για Gaussian Process
Regression. Στη συνέχεια, οι χρονοσειρές περιγράφονται με τα λιγότερα σε
αριθμό inducing points τα οποία οργανώνονται σε συστάδες με την εφαρμογή
του αλγορίθμου k-means χρησιμοποιώντας ως μέτρο απόστασης μια τροποποι-
ημένη εκδοχή της DTW. Τα πειράματα μας δείχνουν ότι η προσέγγισή μας δίνει
μια γρήγορη και αποδοτική μέθοδο συσταδοποίησης.

Λέξεις κλειδιά

χρονοσειρά, συσταδοποίηση, Gaussian Process, DTW, k-means
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Abstract

Various data mining techniques are currently being used to analyse data
within different domains. Among all these approaches, clustering is the most-
used technique in cases when category information is not available. The
data in various systems such as finance, healthcare, and business, are stored
as time series. Clustering such complex data can discover patterns which
have valuable information. Time series clustering has been widely applied to
genome data, medicine, finance, and in general, in any domain where pattern
recognition is important. It is a challenging task because of the inherent noise
and high dimensionality of time series data. This thesis is concerned with
finding similar time series in shape. For shape-based clustering, the shape
of time series is the key factor in identifying pattern similarity. The most
important aspect of clustering algorithms is the similarity measure used to
compare the time series shapes. Dynamic Time Warping (DTW) distance is
particularly popular in that context. However, DTW has a quadratic time
complexity that slows down the process of clustering.

The most promising solutions to the time complexity problem involve
first performing dimensionality reduction on the time series data, and then
clustering the reduced data with a conventional algorithm. In this thesis, we
propose a two-stage framework for clustering time series data. First, we model
the raw series by a set of inducing data points using Sparse Gaussian Process
Regression (SGPR) [68], which is an approximation method for Gaussian
Process Regression. The series as described by a lower number of data points
are then grouped by applying k-means algorithm with a modified version of
DTW as the distance measure. The experimental results indicate that the
proposed approach leads to a fast, scalable and accurate clustering framework.

Keywords
time series, clustering, Gaussian Process, DTW, k-means
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Κεφάλαιο 1

Εκτεταμένη Ελληνική

Περίληψη

Αυτό το κεφάλαιο περιλαμβάνει μία περιληπτική παρουσιάση των περιεχο-

μένων αυτής της διπλωματικής εργασίας στα ελληνικά.

1.1 Συσταδοποίηση Χρονοσειρών

Η χρονοσειρά είναι ένα σύνολο από παρατηρήσεις που περιγράφουν την ε-

ξέλιξη της συμπεριφοράς ενός μεγέθους στο χρόνο. Τα μεγέθη που περιγράφο-

νται μπορούν να είναι οποιασδήποτε φύσης αρκεί να μπορούν να ποσοτικοποι-

ηθούν. Οι αυξανόμενες δυνατότητες αποθήκευσης δεδομένων τις τελευταίες

δεκαέτιες επιτρέπουν σε όλο και περισσότερες εφαρμογές τη διατήρηση δεδο-

μένων για μεγάλο χρονικό διάστημα. Αυτό έχει ως αποτέλεσμα όλο και μεγα-

λύτερος όγκος δεδομένων να παράγονται στη μορφή χρονοσειρών σε ποικίλα

πεδία. Συνεπώς οι χρονοσειρές συναντώνται σε πολλά πεδία όπως η οικονομία,

οι κοινωνικές επιστήμες, η επιδημιολογία και οι φυσικές επιστήμες.

Μια χρονοσειρά X μήκους n είναι μια ακολουθία σημείων:

X = [(x1, t1), (x2, t2), ..., (xn, tn)] || (t1 < t2 < ... < ti < ... < tn) (1.1)

οπου το xi είναι η τιμή μιας παρατήρησης και το ti αναπαριστά τη χρονική στιγμή
που η παρατήρηση xi μετρήθηκε. Αν έχουμε ισαπέχουσες χρονικές στιγμές οι
τιμές του χρόνου ti μπορούν να παραληφθούν.
Συσταδοποίηση ονομάζεται η διαδικασία εκείνη κατά την οποία ένα σύνολο

από αντικείμενα, διαχωρίζονται σε ομάδες. Η καταχώρηση αντικειμένων στην

ίδια ομάδα μεταφράζεται ως ομοιότητα των αντικειμένων αυτών και αντίστρο-

φα (αντικείμενα που ανήκουν σε διαφορετικές ομάδες είναι λιγότερο όμοια).
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Η συσταδοποίηση χρονοσειρών, λόγω της διαρκούς παραγωγής τέτοιων δεδο-

μένων στις μέρες μας, είναι ιδιαίτερα σημαντική σε πολλά διαφορετικά πεδία.

Η ανακάλυψη patterns των δεδομένων μας με τη συσταδοποίησή χρονοσει-
ρών έχει ποικίλες εφαρμογές στην οικονομικές αγορές, στην ανάλυση ιατρι-

κών δεδομένων, στη μελέτη της θερμοκρασίας κ.α. Μπορεί να χρησιμοποιηθεί,

παραδείγματος χάριν, για την κατανοήση της συμπεριφοράς μια μερίδας χρη-

στών σε κάποια δραστηριότητα. Επιπλέον, η συσταδοποίηση χρονοσειρών είναι

χρήσιμη για την αναγνώριση ιδιομορφιών και απότομων μεταβολών στις τιμές

των χρονοσειρών, όπως για τον εντοπισμό κάποιας ασθένειας από τη σύγκριση

δεδομένων από ιατρικές εξετάσεις. Επιπλέον, η συσταδοποίηση χρονοσειρών

χρησιμοποιείται και ως ρουτίνα άλλων αλγορίθμων όπως η πρόβλεψη και το

indexing. Στην διπλωματική αυτή θα ασχοληθούμε συγκεκριμένα με τη δια-
χωριστική συσταδοποίηση με βάση το σχήμα των χρονοσειρών (partitioning
shape-based clustering). Στην διαχωριστική συσταδοποίηση, ο στόχος είναι να
χωρίσουμε τα αντικείμενα σε k ομάδες, και κάθε ομάδα να περιέχει τουλάχιστον
ένα αντικείμενο. Ο αριθμός k των clusters μας είναι γνωστός πριν την έναρξη
της διαδικασίας. Ο πιο διαδεδομένος αλγόριθμος διαχωριστικής συσταδοποίη-

σης είναι ο αλγόριθμος k-means.
Ο σχεδιασμός αλγορίθμων για τη συσταδοποίηση χρονοσειρών είναι ιδια-

ίτερα απαιτητικός εξαιτίας της φύσης των χρονοσειρών. Οι χρονοσειρές είναι

πολύπλοκα δεδομένα μεγάλης διαστατικότητας, περιέχουν θόρυβο και απαιτο-

ύν σημαντικό χώρο για την αποθήκευσή τους. Αυτό έχει ως αποτέλεσμα οι

αντίστοιχοι αλγόριθμοι για τη συσταδοποίησή τους να έχουν μεγάλη χρονική

πολυπλοκότητα.

Για την κατηγορία συσταδοποίησης που μας ενδιαφέρει είναι απαραίτητη

πρώτα απ΄ όλα μια απόσταση που να μετρά πόσο όμοιες είναι δύο χρονοσειρές

με βάση το σχήμα τους. Μια τέτοια απόσταση θα πρέπει να μην επηρεάζε-

ται από τις μεταθέσεις στο χρόνο, από τον διαφορετικό ρυθμό δειγματοληψίας

και τα διαφορετικά μήκη που μπορεί να έχουν δύο χρονοσειρές. Γι΄ αυτούς

τους λόγους, μια απλή απόσταση όπως η Ευκλείδια δεν είναι κατάλληλη για τη

σύγκριση χρονοσειρών. Τα παραπάνω προβλήματα λύνονται με αποστάσεις που

έχουν την δυνατότητα να αντιστοιχούν ένα με πολλά σημεία. Αυτες οι απο-

στάσεις ονομάζονται ελαστικές. Η ελαστική απόσταση που θεωρείται ευρέως η

πιο αποτελεσματική για χρονοσειρές είναι η Dynamic Time Warping (DTW).

1.1.1 Dynamic Time Warping

Η Dynamic Time Warping (DTW) χρησιμοποιείται για τον υπολογισμό της
ομοιότητας μεταξύ δύο χρονοσειρών που διαφέρουν σε μήκος ή σε ταχύτητα.

Το βασικό της πλεονέκτημα είναι ότι επιτρέπει τη μη γραμμική στρέβλωση (επι-

μήκυνση ή συρρύκνωση) μιας αλληλουχίας τιμών ώστε να ταιριάξει με μία άλλη
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αλληλουχία ακόμα και αν αυτές παρουσιάζουν χρονική υστέρηση. Επιπλέον,

οι δύο χρονοσειρές που συγκρίνονται με την απόσταση DTW δεν χρειάζεται

να έχουν το ίδιο μήκος. Βασικό της μειονέκτημα είναι η τετραγωνική χρονική

πολυπλοκότητα ως προς το μήκος T της χρονοσειράς, O(T 2).
΄Εστω δύο χρονοσειρές x, y μήκους n, m αντίστοιχα. Για τον υπολογισμό

της απόστασης DTW δημιουργείται ένας πίνακας διαστάσεων n × m. Κάθε
στοιχείο ci,j (τοπικό κόστος) στη θέση (i, j) υπολογίζεται από τον τύπο:

ci,j = (xi − yj)2, i ∈ [1 : n], j ∈ [1 : m] (1.2)

Στη συνέχεια υπολογίζεται ένα warping path όπου ορίζεται ως:

W = w1, w2, ..., wK , max(n,m) ≤ K ≤ n+m− 1 (1.3)

Τέλος, η απόσταση DTW υπολογίζεται από τον τύπο:

DTW (x, y) =

√√√√ K∑
k=1

wk (1.4)

1.1.2 DTW Barycenter Averaging

΄Ενα δεύτερο απαραίτητο συστατικό για τους περισσότερους αλγορίθμους

διαχωριστικής συσταδοποίησης είναι ο υπολογισμός της χρονοσειράς-κέντρο

ενός σετ χρονοσειρών (εκπρόσωπός τους). Πιο συγκεκριμένα θέλουμε να βρο-

ύμε μια χρονοσειρά η οποία ελαχιστοποιεί το άθροισμα των αποστάσεων με

όλες τις χρονοσειρές ενός συνόλου. Ψάχνουμε να βρούμε τη λεγόμενη μέση

χρονοσειρά του συνόλου. Το πρόβλημα αυτό για την απόσταση DTW λύνεται
σε εκθετικό χρόνο και έτσι έχουν προταθεί διάφοροι ευρεστικοί αλγόριθμοι

για τη προσέγγισή του όπως ο NonLinear Alignment and Averaging Filters
(NLAAF) [30], ο Prioritized Shape Averaging (PSA) [47], ο Cross-Word
Reference Template (CWRT) [4]. Οι παραπάνω μέθοδοι ανήκουν στην κατη-
γορία των λεγόμενων προοδευτικών μεθόδων. Εδώ θα περιγράψουμε μόνο την

state-of-the-art μέθοδο για τον υπολογισμό της μέσης χρονοσειράς.
Ο γρηγορότερος και πιο αποτελεσματικός ευρεστικός αλγόριθμος που υ-

πάρχει στη βιβλιογραφία ειναι ο DTW Barycenter Averaging (DBA) [52]. Ο
DBA είναι ένας επαναληπτικός αλγόριθμος που στοχεύει στην ελαχιστοποίηση
της απόστασης DTW της χρονοσειράς-κέντρου με όλες τις χρονοσειρές του

σετ.

Ο αλγόριθμος ξεκινάει με μια προσωρινή χρονοσειρά-κέντρο (μπορεί να ε-

ίναι μια τυχαία) η οποία αναβαθμίζεται σε κάθε επανάληψη. Κάθε επανάληψη

περιλαμβάνει τα εξής:

19



• Υπολογισμός του DTW ανάμεσα στη χρονοσειρά-κέντρο και σε κάθε

άλλη χρονοσειρά για να βρούμε τις συνδέσεις ανάμεσα στις συντεταγμένες

της χρονοσειράς-κέντρου με όλες τις συντεταγμένες των χρονοσειρών του

σετ.

• Η κάθε συντεταγμένη της χρονοσειράς-κέντρου γίνεται ίση με την τιμή
του βαρύκεντρου των συνδεδεμένων με αυτή συντεταγμένων που υπολο-

γίστηκαν στο προηγούμενο βήμα.

Ο DBA είναι, όπως αναφέρθηκε, ένας επαναληπτικός αλγόριθμος που συ-
γκλίνει σε κάποιες επαναλήψεις. Κάθε επανάληψη έχει υπολογιστική πολυπλο-

κότητα Θ(N · T 2) για το πρώτο βήμα και Θ(N · T ) για το δεύτερο βήμα, όπου
N είναι ο αριθμός των χρονοσειρών και T το μήκος τους. Αν υποθέσουμε ότι
ο αλγόριθμος τρέχει για I επαναλήψεις τότε η συνολική πολυπλοκότητα του
αλγορίθμου είναι:

Θ(I(N · T 2 +N · T )) = Θ(I ·N · T 2) (1.5)

1.1.3 Αλγόριθμος k-means

Αφού περιγράψαμε τον αλγόριθμο DTW για τον υπολογισμό της απόστα-

σης των χρονοσειρών και της μεθόδου DBA για τον υπολογισμό της μέσης
χρονοσειράς ενός συνόλου, είμαστε έτοιμοι να περιγράψουμε τον αλγόριθμο

k-means για χρονοσειρές. Ο k-means είναι ίσως ο συνηθέστερος αλγόριθμος
διαχωριστικής συσταδοποίησης και γνωστός για την ταχύτητά του. Η εφαρμο-

γή του για τη συσταδοποίηση χρονοσειρών με βάση το σχήμα τους λειτουργεί

ως εξής:

1. Αρχικός καθορισμός των k συστάδων και των k εκπροσώπων των clus-
ters.

2. Για κάθε χρονοσειρά βρίσκεται ο πλησιέστερος εκπρόσωπός της σύμφωνα

με την απόσταση DTW.

3. Υπολογίζεται ο νέος εκπρόσωπος κάθε συστάδας με τον αλγόριθμο DBA.

4. Ο αλγόριθμος σταματάει είτε μετά από έναν προκαθορισμένο αριθμό επα-

ναλήψεων ή αν το συνολικό άθροισμα των αποστάσεων των χρονοσειρών

με τους εκπροσώπους τους γίνει μικρότερο άπο ένα προκαθορισμένο όριο.

Διαφορετικά, επιστροφή στο βήμα 2.

Ο k-means έχει υπολογιστική πολυπλοκότητα ίση με O(I ·N ·k ·T 2). ΄Οπως
βλέπουμε η χρονική πολυπλοκότητα της απόστασης DTW επηρεάζει σημαντικά
την ταχύτητα του k-means.
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1.2 Μοντελοποίηση Χρονοσειρών με Gaus-
sian Processes

Ο σκοπός της διπλωματικής αυτής είναι να μειώσουμε την παραπάνω χρονική

πολυπλοκότητα της συσταδοποίησης που οφείλεται στο DTW. Στη βιβλιογρα-
φία υπάρχουν διάφορες μέθοδοι για να αντιμετωπίσουν αυτό το πρόβλημα. Η

πιο σημαντική κατηγορία μεθόδων είναι οι μέθοδοι αναπαράστασης χρονοσει-

ρών. Κάθε χρονοσειρά αναπαρίσταται σε έναν διαφορετικό χώρο μικρότερης

διαστατικότητας και στη συνέχεια οι αναπαραστάσεις αυτές χρησιμοποιούνται

για την συσταδοποίηση των χρονοσειρών.

΄Εχουν προταθεί πολλές διαφορετικές μέθοδοι αναπαράστασης χρονοσειρών

που χρησιμοποιούνται για συσταδοποίηση. Σε αυτή την διπλωματική θα χρη-

σιμοποιήσουμε τη μέθοδο Sparse Gaussian Process Regression, η οποία είναι
μια προσεγγιστική μέθοδος για Gaussian Process Regression.

1.2.1 Gaussian Process Regression

Μια Gaussian Process (GP) αναπαριστά ένα ενδεχομένως άπειρο σύνολο
τυχαίων μεταβλητών διατεταγμένο στο χώρο ή στο χρόνο του οποίου κάθε

πεπερασμένο υποσύνολο ακολουθεί από κοινού γκαουσιανή κατανομή. Αν θε-

ωρήσουμε μια συνάρτηση ως ένα άπειρο σύνολο σημείων στο χώρο, τότε μια

Gaussian Process λέμε ότι είναι μια κατανομή πάνω στο χώρο των συναρτήσε-
ων. Μια GP περιγράφεται μοναδικά από μία συνάρτηση μέσης τιμής m(x) και
μία συνάρτηση συνδιακύμανσης (ή kernel) k(x, x′). Η επιλογή του kernel κα-
θορίζει την ομαλότητα της συνάρτησης. Οι πιο γνωστές συναρτήσεις kernel
είναι το RBF και το Matérn kernel.
Θεωρούμε ότι έχουμε ένα σετ δεδομένων (xi, yi) που αποτελείται από N

παρατηρήσεις και υποθέτουμε ότι κάθε παρατήρηση yi προέρχεται από μια συ-
νάρτηση f(x) με την προσθήκη κάποιου γκαουσιανού θορύβου, δηλαδή yi =
f(xi) + εi, με εi ∼ N(0, σ2). Μια GP μπορεί να χρησιμοποιηθεί ως prior
κατανομή και να συνδυαστεί με τα δεδομένα μας για να μας δώσει την pos-
terior κατανομή της συνάρτησης. Με την posterior κατανομή μπορούμε να
προβλέψουμε την τιμή της συνάρτησης f σε νέα x∗. Το κυριότερο μειονέκτη-
μα της Gaussian Process Regression είναι η κυβική της πολυπλοκότητα. Για
την επίλυση του προβλήματος αυτού έχουν αναπτυχθεί γενικά πολλές διαφο-

ρετικές προσεγγιστικές μέθοδοι. Για το σκοπό μας στη διπλωματική αυτή θα

επικεντρωθούμε σε μία τέτοια προσεγγιστική μέθοδο.
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1.2.2 Sparse Gaussian Process Regression

Η Sparse Gaussian Process Regression (SGPR) είναι μια προσεγγιστική
μέθοδος για Gaussian Process Regression που προτάθηκε από τον Τίτσια το
2009 [68]. Η SGPR χρησιμοποιεί ένα σετ έξτρα σημείων που ονομάζονται
inducing points τα οποία συνοψίζουν το σύνολο των δεδομένων που έχουμε.
Αυτά τα inducing points δεν ανήκουν στα δεδομένα, είναι νέα, λιγότερα σε
αριθμό, σημεία των οποίων οι τιμές και οι θέσεις πρέπει να υπολογιστούν. Ο

στόχος είναι να προσεγγιστεί η posterior κατανομή του πλήρους GP μοντέλου
με μια variational κατανομή. Αυτό γίνεται ελαχιστοποιώντας την KL divergence
ανάμεσα στις δύο αυτές κατανομές.

Οπότε, η τιμή και η τοποθεσία (time location) των inducing points μαθαίνε-
ται από τη βελτιστοποίηση μιας αντικειμενικής συνάρτησης. Με την posterior
κατανομή της μεθόδου, που υπολογίζεται αναλυτικά σε κλειστή μορφή, μπο-

ρεί κάποιος να κάνει προβλέψεις για την τιμή της συνάρητης f σε νέες θέσεις
του πεδίου ορισμού. Η κατανομή αυτή εξαρτάται μόνο από τα inducing points
και όχι από το σύνολο των δεδομένων όπως η posterior του πλήρους GP μο-
ντέλου. Στο σχήμα 1.1 απεικονίζεται η posterior κατανομή του προσεγγιστικού
μοντέλου SGPR όταν εφαρμόζεται σε μια χρονοσειρά.

Σχήμα 1.1: Μοντελοποίηση χρονοσειρών με SGPR.
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Η υπολογιστική πολυπλοκότητα της προσεγγιστικής αυτής μεθόδου είναι

O(nm2 +m3), όπου n ο συνολικός αριθμός των δεδομένων μας, m ο αριθμός
των inducing points και m < n. Ο αριθμός m των inducing points επιλέγεται
από τον χρήστη εκ των προτέρων.

Τέλος, ένα θεωρητικό αποτέλεσμα που έδειξε ο Burt [16] και λειτουργεί
ως ένδειξη για τη χρήση λίγων inducing points είναι ότι στη περίπτωση που
έχουμε δεδομένα που ακολουθούν κανονική κατανομή στο χώρο και το RBF
kernel, τότε ασυμπτωματικά αρκούν logn inducing points για το μηδενισμό της
KL divergence.

1.3 Προτεινόμενη μέθοδος

Σε αυτή τη διπλωματική προτείνουμε μία νέα μέθοδο δύο σταδίων για τη

συσταδοποίηση χρονοσειρών με βάση το σχήμα τους. Πρώτα, μοντελοποιούμε

τις χρονοσειρές με σύνολα από inducing points εφαρμόζοντας Sparse Gaussian
Process Regression σε κάθε χρονοσειρά. Στη συνέχεια, αυτά τα σύνολα από
inducing points οργανώνονται σε συστάδες με την εφαρμογή του αλγορίθμου
k-means. Για την εφαρμογή του αλγορίθμου k-means χρειαζόμαστε ένα μέτρο
απόστασης και μια μέθοδο για τον υπολογισμό του κέντρο ενός συνόλου από

σετ inducing points.
Το σύνολο των inducing points μιας χρονοσειράς διατηρεί το σχήμα της και

γι΄ αυτό αντιμετωπίζουμε κάθε σετ από inducing points ως μια χρονοσειρά με
λιγότερα στοιχεία. Για τη σύγκρισή τους χρησιμοποιούμε ως βάση την απόστα-

ση DTW. Η δυσκολία έγκειται στο γεγονός ότι οι τοποθεσίες (time locations)
των διαφορετικών σετ από inducing points είναι διαφορετικές. Γι΄ αυτό το λόγο
χρησιμοποιούμε μια δισδιάστατη εκδοχή της DTW με μία παράμετρο α. Το
μόνο που αλλάζει σε σχέση με τον κλασικό αλγόριθμο του DTW είναι ότι η

συνάρτηση τοπικού κόστους γίνεται:

ci,j = (xi − yj)2 + α · (txi − yyj)2 (1.6)

Για α = 0 έχουμε το κανονικό μονοδιάστατο DTW, ενώ για α = 1 έχουμε το
δισδιάστατο DTW. Η αύξηση της τιμής της παραμέτρου α έχει ως αποτέλεσμα
να αποτρέπεται η αντιστοίχιση πολλών σημείων μιας χρονοσειράς σε ένα και

μόνο σημείο της άλλης. ΄Ετσι, από μια μεγάλη τιμή της παραμέτρου α και μετά,
η αντιστοίχιση που ορίζει η απόστασή μας παραμένει ίδια.

Για τον υπολογισμό των κέντρων (μέσων) κατά τον αλγόριθμο k-means
χρησιμοποιείται ο αλγόριθμος DBA με τη νέα απόσταση χωρίς κάποια άλλη
αλλαγή. Συνεπώς, η υπολογιστική πολυπλοκότητα της μεθόδου μας είναι:

O(N · T ·m2 + k · I ·N ·m2) (1.7)
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όπου είναι N ο αριθμός των χρονοσειρών, T το μήκος των χρονοσειρών, m ο
αριθμός των inducing points, k ο αριθμός των συστάδων και I ο αριθμός των
επαλήψεων του k-means.
Στο πλήρες κείμενο προτείνεται και μια δεύτερη πιο πολύπλοκη απόσταση

βασισμένη και αυτή στον αλγόριθμο DTW που κάνει χρήση της δυνατότητας

που μας δίνει η Sparse Gaussian Process Regression για την πρόβλεψη τιμών
της συνάρτησης f . Η απόσταση αυτή παραλείπεται σε αυτή την περίληψη για
λόγους συντομίας. Η δεύτερη μέθοδος, σε αντίθεση με την απλούστερη που

περιγράψαμε παραπάνω, δεν ελέγχεται πειραματικά λόγω ενός θέματος υλοπο-

ίησης.

Η αποτελεσματικότητα και η ταχύτητα της μεθόδου μας με την απλή α-

πόσταση επαληθεύτηκε πειραματικά χρησιμοποιώντας 15 βάσεις χρονοσειρών
από το αρχείο UCR [20]. Συγκρίναμε την μέθοδό μας με m = x · logT inducing
points, όπου x = 1, 2, 3, 4 και 5, και ορισμένες τιμές της παραμέτρου α, με
την εφαρμογή του αλγορίθμου k-means με DTW και DBA σε ολόκληρες τις
χρονοσειρές. Ο k-means με DTW και DBA θεωρείται στη βιβλιογραφία state-
of-the-art μέθοδος όσον αφορά την ποιότητα της συσταδοποίησης. Η μέθοδός
μας έχει καλύτερα αποτελέσματα στις περισσότερες βάσεις χρονοσειρών και

είναι αρκετά ταχύτερη αφού έχει υπολογιστική πολυπλοκότητα:

O(N · T · log2T + k · I ·N · log2T ) (1.8)

Συμπερασματικά, η μέθοδος που προτείνουμε μείωνει το θόρυβο και τη δια-

στατικότητα των χρονοσειρών χάρη στη δύναμη των Gaussian Processes. Με
αυτό τον τρόπο, επιτυγχάνει σημαντική μείωση στην χρονική πολυπλοκότητα

της συσταδοποίησης χρονοσειρών χωρίς να περιορίζει την αποτελεσματικότητά

της.
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Chapter 2

Introduction

2.1 Background
A time series is a sequence of observations measured successively in time.

It is essentially classified as dynamic data because its feature values change
as a function of time. The most obvious example for a time series is probably
the Dow Jones or the development of certain stock prices. Nowadays, with
the increasing power of data storage during the last decades, many real-world
applications store and keep data for a long time. As a consequence, time
series data is generated in many different fields. It can be found in economics
(unemployment rates), social sciences (population), finance, epidemiology
(mortality rates), and the physical sciences (pollution levels) [88].

Time series analysis includes a variety of techniques, such as classification,
clustering, and forecasting. In this thesis, we consider time series clustering.
Clustering is considered the most important unsupervised learning problem.
It is a data mining technique where similar objects are placed into related or
homogeneous groups without advanced knowledge of the groups’ definitions.
Time series clustering problems arise when we observe a sample of time series
and we want to group them into different categories or clusters. Clustering
such complex objects is particularly advantageous because it leads to discovery
of interesting patterns in time series datasets. As these patterns can be either
frequent or rare, several research challenges have arisen such as: developing
methods to recognize dynamic changes in time series, anomaly detection and
character recognition. Time series clustering can also be used as a subroutine
in other data mining algorithms, such as rule discovery, and indexing. Finding
the clusters of time series has applications in many different fields [6]:

• Financial Markets: In financial markets, the values of the stocks
represent time series which vary with time. The clustering of such time
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series can provide insights into the trends in the underlying data.

• Medical Data: Different kinds of medical data such as EEG readings
are in the form of time series. The clustering of such time series can
provide an understanding of the common shapes in the data. These
common shapes can be related to different kinds of diseases.

• Earth Science Applications: Numerous applications in earth science,
such as temperature or pressure, correspond to series, which can be
mined in order to determine the frequent trends in the data.

• Spatio-temporal Data: Trajectory data can be considered a form of
multivariate time series data. The trends in these series can be used in
order to determine the important trajectory clusters in the data.

There are three different ways to cluster time series, namely shape-based,
feature-based or model-based [74]. In the shape-based method, the shapes of
two time series are matched as well as possible. In the feature-based approach,
static features from each time series are calculated and the clustered. In
model-based methods, a raw time series is transformed into model parameters
and then a clustering method is applied to the extracted model parameters.
This thesis is concerned with shape-based clustering.

From a different point of view, clustering algorithms can be classified as
partitioning, hierarchical, density-based, grid-based or model-based algorithms.
Here, we only consider partitioning clustering algorithms because they are
relatively scalable and and easy to implement. In partitioning clustering,
the goal is to make k groups from n unlabelled objects in the way that each
group contains at least one object. The most popular partitioning clustering
algorithm is the well-known k-means. This thesis focuses on partitioning
shape-based clustering.

2.2 Motivation
Time series clustering is a challenging issue for data miners. First of all,

time series databases are often very large databases. They require a large
amount of memory that dramatically slows down the process of clustering.
Another major challenge is that time series data is a type of temporal data
which is naturally high dimensional [7]. Handling such data to perform
clustering is difficult and leads to complicated clustering methods. Finally,
to make the clusters, similar time series should be found. An appropriate
similarity measure between time series is a key issue for any clustering process.
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However, such a process is complicated, because time series are inherently
noisy and include outliers and shifts, at the other hand the length of time
series varies and the distance among them needs to be calculated. These
issues have made the choice of the distance measure a major challenge for
researchers.

A suitable similarity measure must provide a concrete way of evaluating the
distance between any two points. For shape-based clustering, the shape of time
series is the key factor in identifying pattern similarity. Some transformations,
such as offset shifting, translation in time and time scaling will not change
the shape of a time series. We expect to find a dissimilarity measure that
is invariant to these transformations. Simply using Euclidean distance is
not a good choice as it can be easily affected by shifting. The distance
that outperforms every other in this context is the common Dynamic Time
Warping (DTW) [81]. DTW is a robust measure for time series and takes
into consideration the alignment along a time axis. Intuitively, the sequences
are warped in a non-linear fashion to match each other. Unfortunately, DTW
has a quadratic complexity that significantly reduces clustering speed.

Partitioning methods are relatively scalable and fast. The most typical
and widely used partitioning method is k-means, and many other algorithms
incorporate its basic ideas. This method consists of two steps: determine
the "closest" center for each object, and then update these centers. The
algorithm iteratively runs the above steps until convergence. First, it requires
an appropriate similarity measure between two time series. The common
distance measure for shape-based clustering is Dynamic Time Warping. To
find a method that calculates a center (average) of a set of time series under
DTW is a difficult problem, which can be seen as a multiple alignment
problem, and several heuristics have been proposed in the literature. The
state-of-the-art method for center calculation is DTW Barycenter Averaging
(DBA) [52]. DBA is a global averaging method which refines an initially
average time series, in order to minimize its squared distance (DTW) to the
set of time series. K-means algorithm with DTW as a distance measure and
DBA as an averaging method has a time complexity of O(I ·N · k ·T 2), where
I is the number of iterations, N is the number of time series, k is the number
of clusters and T is the length of the series. The problem here is the quadratic
complexity of DTW (O(T 2))

Considering all these difficulties in the clustering of time series, dimension-
ality reduction is the common solution to increase the performance and speed
of the clustering process. Dimensionality reduction is a preprocessing step
considered to be a fundamental and important process in time series data
mining. It represents the raw time series in another space by transforming
them to a lower dimensional space or by feature extraction. The learned
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representations are then clustered instead of the whole time series data. The
goal here is to represent the data without slowing down the execution time
and without a significant data loss.

There is a lot of work in the literature considering representation methods
for time series. For example, Adaptive Piecewise Constant Approximation
(APCA) [38] transforms each time series by a set of constant value segments
of varying lengths such that their individual reconstruction errors are minimal.
Another approach is the splines. Iorio et al. [34] proposed to model the time
series by using P-spline smoothers and then to cluster the functional objects
as summarized by the optimal spline coefficients using k-means algorithm
and Dynamic Time Warping.

2.3 Thesis contribution
In this thesis, we propose a novel two-stage framework for clustering time

series based on their shapes. First, we use Sparse Gaussian Process Regression
(SGPR) as a representation method to model the series by a (much) lower
number of data points. We then apply k-means algorithm on these learned
points with a modified version of Dynamic Time Warping (DTW) as the
distance measure.

We suppose each time series is a noisy realization of a functional form.
To find the function that better fits the time series we perform Gaussian
Process Regression. Gaussian Process (GP) is a collection of random variables
indexed by time, such that every finite collection of those random variables
has a multivariate normal distribution. It is completely characterized by a
mean and a kernel function. GPs are powerful tools and are widely used for
regression tasks. The main drawback of Gaussian Process Regression (GPR)
is its cubic complexity.

They have been proposed many methods to overcome this computational
issue. Here, we focus on a method, proposed by Titsias [68], called Sparse
Gaussian Process Regression (SGPR). SGPR learns m extra data points
(inducing points) that summarize the time series data. These m inducing
points are fewer than the series data points and are used to perform the
regression task. The method has a time complexity of O(T ·m2).

We model each of the N time series using Sparse Gaussian Process Re-
gression and we get N sets of m inducing points. We then perform clustering
with k-means using these representations. We propose two different distance
measures, based on DTW, and their corresponding averaging methods, based
on DBA, to handle the sets of inducing points. The framework has a total
time complexity of O(N · T ·m2 + k · I ·N ·m2).
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Our framework can handle noise and outliers and because of its adaptive
nature can reduce the dimensionality of the time series significantly. It
improves the time and space complexity of shape-based clustering without
losing quality. Due to implementation reasons we only tested our framework
with one of two proposed distances. The experimental study shows that
our framework using m = x · logT (where x = 1, 2, 3, 4, 5) inducing points
outperforms in most datasets the classical k-means algorithm with DTW on
the whole time series data, which is a state-of-the-art method.

2.4 Thesis structure
The remaining of the thesis is structured as follows. In Chapter 3 we review

similarity measures for time series, and emphasis is given to the description
of Dynamic Time Warping. In Chapter 4 we present existing methods for
averaging a set of time series data. Within Chapter 5, we describe some
representation methods for time series and present two well-known clustering
algorithms. In the next chapter (Chapter 6), we introduce Gaussian Processes
and Sparse Gaussian Process Regression. In Chapter 7 we review some
previous work and propose our framework for time series clustering. Finally,
in Chapter 8 we present the experimental results of our framework and in
Chapter 9 we make our concluding remarks.
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Chapter 3

Distance measures

Time series data is a collection of observations obtained through repeated
measurements over time. Time series data is everywhere, since time is a
constituent of everything that is observable. As our world gets increasingly
instrumented, sensors and systems are constantly emitting a relentless stream
of time series data.

In the following sections we give a formal definition of time series data
(Section 3.1) and we introduce shaped-based measures which compare the
overall shape of the time-series based on its actual values. Shaped-based
measures can be divided into two subgroups: lock-step measures (Section 3.2)
and elastic measures (Section 3.3).

3.1 Time series data
A time series is an ordered sequence of observations at successive time

points. It is a common type of dynamic data that naturally arises in many
different scenarios such as statistics, signal processing, pattern recognition,
astronomy, finance, and largely in any domain of applied science and en-
gineering which involves temporal measurements. Time series pose some
challenging issues due to their large size and high dimensionality [7]. In this
context, dimensionality of a series is related to time, and it can be understood
as the length of the series. Additionally, a single time series may consist
several values that change on the same time scale (multivariate time series).
Adopting the definition of time series stated by Esling and Agon [23], we have
the following:

Definition 3.1.1 (Time series). A time series X of length n is a sequence of
pairs

X = [(x1, t1), (x2, t2), ..., (xn, tn)] || (t1 < t2 < ... < ti < ... < tn) (3.1)
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where each xi is a data point in a d-dimensional space and each ti represents
the point in time when xi was measured. If the relevant time-series share the
same sampling rates, the time stamps can be omitted and the time series can
be regarded as an ordered sequence of d-dimensional data points.

Time series data are analyzed using a variety of statistical techniques,
such as classification, clustering, and anomaly detection. This thesis focuses
on time series clustering. Clustering is a well-known unsupervised machine
learning method for dividing observations into groups (called clusters) such
that observations within the same cluster tend to be more similar than those
in different clusters [91].

To determine whether time series data are similar, one must first decide on
a measure to quantify this similarity. The choice of distance is fundamental
and it is particularly important in the presence of dynamic data, such as time
series. Many different distance measures have been proposed in the literature.
Here we focus on shape-based measures.

3.2 Lock-step measures
In this section, we introduce the definition of Minkowski distance, a lock-

step measure. As with all lock-step measures, this distance measure require
both time series to be of equal length (n=m) and compare time point i of time
series x with the same time point i of time series y. Note that we examine
the lock-step distance measures from a time series perspective, but that these
measures can also be used for non-time series clustering assignments. The
only requirement is that all observations are numerical vectors of equal length.

3.2.1 Minkowski distance

The Minkowski distance is defined by

dmin(x, y) =

 n∑
i=1

|xi − yi|p
1/p

(3.2)

This is the Lp-norm of the difference between two equal length vectors.
It is the generalization of the commonly used Euclidean distance (p = 2),
Manhattan distance (p = 1) and Chebyshev distance (p =∞). The formulas
for those distance measures can be found in Equations (3.3) and (3.4). For
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clustering, usually only the Euclidean distance and Manhattan distance are
considered.

Euclidean distance: deuc(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (3.3)

Manhattan distance: dman(x, y) =
n∑
i=1

|xi − yi| (3.4)

Minkowski distance is a metric distance function, since it obeys to the
three fundamentals metric properties: non-negativity, symmetry and triangle
inequality. It is very intuitive, free of parameters, and takes linear time,
meaning that the time complexity for all p is O(n). On the other hand, it
has some limitations, such as: high sensitivity to small distortions in the time
axis [40], noise and outliers [56] because fixed pairs of data are compared.

3.3 Elastic measures
For most applications, simple distance measures such as Lp-norms are

sufficient and they also provide a low time complexity [73]. Nevertheless there
are cases when the overall shape of two time series is similar, but one of them
is accelerated or decelerated. Let’s take the example of recorded speech. The
same word spoken by two different speakers will produce time series similar
in shape, but deformed by the speakers pace and intonation. In order to find
the similarity and thus to achieve a better alignment, we have to warp the
time axis. This is illustrated by Figure 3.1. The upper part of the image
shows a simple alignment of two similar time series using Euclidean distance,
which will produce a rather high dissimilarity value due to its sensitivity to
irregularities in the time axis. This issue is addressed by elastic distance
measures, such as Dynamic Time Warping (DTW).

Elastic distance measures are designed to work with time-series data.
They create a non-linear mapping to align the series and allow comparison of
one-to-many points. This makes it possible for them to warp in time and be
more robust when it comes to, for example, handling outliers.

In this section, we introduce the most commonly used elastic distance
measure, Dynamic Time Warping (DTW). The experimentation in [23], [92],
[73] has shown that, on average, DTW is the best available distance measure
for time series.
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Figure 3.1: Euclidean vs DTW. Source: Employing Subsequence Matching in
Audio Data Processing (Fig. 6 in [71]).

3.3.1 Dynamic Time Warping (DTW)

The Dynamic Time Warping (DTW) is one of well-known elastic distance
measures between two given (time-dependent) sequences that finds an optimal
alignment between them under certain restrictions. Intuitively, the sequences
are warped in a non-linear fashion to match each other. While DTW originally
has been used to compare different speech patterns in automatic speech
recognition [57], it is currently used in many areas, such as data mining
and time series clustering [48], computer vision and computer animation [1],
protein sequence alignment and chemical engineering [70] and music and
signal processing [2].

In this subsection, we first introduce the main ideas of classical DTW
(Section 3.3.1.1) and then we summarize several modifications concerning
local (Section 3.3.1.2) and global parameters (Section 3.3.1.3).

3.3.1.1 Classical DTW

Given two time seriesX = (x1, x2, ..., xn), n ∈ N and Y = (y1, y2, ..., ym),m ∈
N represented by the sequences of values DTW yields optimal solution in
O(n · m). The only restriction placed on the data sequences is that they
should be sampled at equidistant points in time (this problem can be resolved
by resampling).

In the following, we fix a feature space denoted by Φ. Then xi, yj ∈ Φ for
i ∈ [1 : n] and j ∈ [1 : m]. To compare two different features X, Y ∈ Φ, one
needs a local distance measure which is defined to be a function:

d : Φ× Φ→ R≥ 0 (3.5)

Intuitively d has a small value (low cost) when sequences are similar
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Figure 3.2: Raw time series, dotted lines show the desirable alignment.
Source: Dynamic time warping for predictive modeling using sensor data
(Fig. 1 in [21]).

and large value (high cost) when they are different. Since the Dynamic
Programming algorithm lies in the core of DTW it is common to call this
function, the cost function. The task of optimal alignment of the sequences
then becomes the task of arranging all sequence points by minimizing the
overall cost.

Evaluating the cost measure for each pair of elements of the sequences
X and Y , one obtains the distance matrix C ∈ Rn×m. Algorithm starts by
computing this matrix, which is also called local cost matrix. The local cost
matrix for the alignment of two sequences X and Y is:

C ∈ Rn×m : ci,j = (xi − yj)2, i ∈ [1 : n], j ∈ [1 : m] (3.6)

After computing the local cost matrix, the goal is to find an alignment
between X and Y having minimal overall cost. Intuitively, such an optimal
alignment runs along a "valley" of low cost within the cost matrix C, Figure
3.3. This alignment path (or warping path) defines the correspondence of
an element xi ∈ X to yj ∈ Y following three conditions. The next definition
formalizes the notion of a warping path.

Definition 3.3.1 (Warping path). An (n,m)-warping path (or simply re-
ferred to as warping path) is a sequence p = (p1, ..., pL) with pl = (nl,ml) ∈
[1 : n]× [1 : m] for l ∈ [1 : L] satisfying the following three conditions:
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Figure 3.3: Time series alignment, cost matrix heatmap. Source: Dynamic
Time Warping Algorithm Review (Fig. 2 in [61]).

1. Boundary condition: p1 = (1, 1) and pL = (n,m).

2. Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nL and m1 ≤ m2 ≤ ... ≤
mL.

3. Step size condition: pl+1−pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : L−1].

Note that the step size condition (3) implies the monotonicity condition
(2), which nevertheless has been quoted explicitly for the sake of clarity. A
warping path p = (p1, ..., pL) defines an alignment between two sequences
X = (x1, x2, ..., xn) and Y = (y1, y2, ..., ym) by assigning the element xnl

of X
to the element yml

of Y . The boundary condition (1) states that the starting
and ending points of the warping path must be the first and the last points
of the aligned sequences. In other words, the alignment refers to the entire
sequences X and Y . The monotonicity constraint preserves the time-ordering
of points. Finally, the step size condition limits the warping path from shifts
in time while aligning sequences.
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Figure 3.4: The optimal warping path aligning time series from the Figure 3.3.
Source: Dynamic Time Warping Algorithm Review (Fig. 3 in [61]).

The cost associated with a warping path will be:

cp(X, Y ) =

√√√√ L∑
l=1

c(xnl
, yml

) (3.7)

The warping path which has a minimal (optimal) cost called the optimal
warping path. We will refer to this path as P*.

In order to find such an optimal path, we need to test every possible
warping path between X and Y which could be computationally challenging.
To overcome this challenge, DTW employs a Dynamic Programming-based
algorithm with complexity O(n ·m).

The DTW distance DTW (X, Y ) between X and Y is then defined as the
total cost of P*:

DTW (X, Y ) = cp∗(X, Y ) = min{cp(X, Y ), p ∈ P n×m} (3.8)

The P n×m is the set of all possible warping paths and builds the accumu-
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lated cost matrix or global cost matrix D which is defined as follows:

1. First row: D(1, j) =
∑j

l=1 c(x1, yl), j ∈ [1,m].

2. Second row: D(i, 1) =
∑i

l=1 c(xl, y1), i ∈ [1, n].

3. All other elements: D(i, j) = min{D(i − 1, j − 1), D(i, j − 1), D(i −
1, j − 1)}
+ c(xi, yj), i ∈ [1, n], j ∈ [1,m].

Algorithm 1 builds the accumulated cost matrix, where X and Y are the
input time series and C is the local cost matrix representing all the pairwise
distances between X and Y .

Algorithm 1 AccumulatedCostMatrix(X, Y, C)
1: n← |X|
2: m← |Y |
3: dtw[]← new[n×m]
4: dtw(0, 0)← 0
5: for i = 1; i ≤ n; i+ + do
6: dtw(i, 1)← dtw(i− 1, 1) + c(i, 1)

7: for j = 1; j ≤ m; j + + do
8: dtw(1, j)← dtw(1, j − 11) + c(1, j)

9: for i = 1; i ≤ n; i+ + do
10: for j = 1; j ≤ m; j + + do
11: dtw(i, j)← c(i, j)+min{dtw(i−1, j); dtw(i, j−1); dtw(i−1, j−1)}
12: return dtw

Once we built the accumulated cost matrix, the warping path could be
found by simple backtracking from the point pend = (m,n) to the pstart = (1, 1)
following the greedy strategy described by Algorithm 2.

We continue with some remarks about Dynamic Time Warping. First,
it is easy to see that the DTW distance is symmetric when the local cost
measure c is symmetric. Second, the DTW distance is in general not positive
definite even if this holds for c. For example, one obtains DTW (X, Y ) = 0
for the sequences X = (x1, x2) and Y = (x1, x1, x2, x2, x2) in case c(x1, x1) =
c(x2, x2) = 0. Furthermore, the DTW distance generally does not satisfy the
triangle inequality even when c is a metric. This fact is illustrated by the
following example.

Consider the three sequences x = [0, 1, 1, 2], y = [0, 1, 2] and z = [0, 2, 2].
Using the distance c(x, y) = |x− y| as a metric, we have that DTW (x, z) = 2,
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Algorithm 2 OptimalWarpingPath(dtw)
1: path[]← new array
2: i = rows(dtw)
3: j = columns(dtw)
4: while (i > 1)&(j > 1) do
5: if i = 1 then
6: j ← j − 1
7: else if j = 1 then
8: i← i− 1
9: else

10: if dtw(i− 1, j) = min{dtw(i− 1, j); dtw(i, j − 1);
11: dtw(i− 1, j − 1)} then
12: i← i− 1
13: else if dtw(i, j − 1) = min{dtw(i− 1, j); dtw(i, j − 1);
14: dtw(i− 1, j − 1)} then
15: j ← j − 1
16: else
17: i← i− 1; j ← j − 1

18: path.add((i, j))

19: return path
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DTW (x, y) = 0 and DTW (y, z) = 1. Therefore the triangle inequality does
not hold for DTW, since it is not true that: DTW (x, z) ≤ DTW (x, y) +
DTW (y, z).

The time complexity of the DTW algorithm is O(n ·m) [81]. Assuming
that n ≥ m, the time complexity is O(n2). The 50 years old quadratic time
bound was broken in 2018, an implementation due to Gold and Sharir that
enables computing DTW in O(n2/loglog(n)) time and space [27]. The natural
implementation of DTW also has O(n ·m) space complexity. This bound was
recently broken using a divide-and-conquer algorithm by Tralie and Dempsey,
yielding a linear space complexity of O(n+m). This algorithm has an added
advantage of being amenable to parallel computation [69].

Various modifications have been proposed in order to speed up DTW
computations as well as to better control the possible routes of the warping
paths. In the next sections, we will discuss some of these variations.

3.3.1.2 Slope Constraint

The step size condition of a warping path represents a kind of local
continuity condition, which ensures that each element of X is assigned to
an element of Y and vice versa. However, one drawback of this condition
is that sometimes it tends to create an unrealistic correspondence between
time series by assigning a single element of one sequence to many consecutive
elements of the other sequence. This leads to long vertical and horizontal
segments in the warping path.

In order to avoid such phenomena, one can modify the step size condition
to locally prevent horizontal and vertical displacements. For that, some
sideways displacements are artificially added to make the path as diagonal as
possible [46]. A first solution, presented in Figure 3.5, consists in considering
three local displacements. This process can be extended to a larger number
of possible displacements around the diagonal.

Let as call Kp the number of elementary steps of the longest local dis-
placement. The recursion of the resulting accumulated cost matrix D for
Kp = 2 is given by:

Di,j = min


Di−1,j−2 + di,j−1 + di,j

Di−1,j−1 + di,j

Di−2,j−1 + di−1,j + di,j

(3.9)
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Figure 3.5: The figure illustrates the allowed values used to compute the
new Di,j. (a) With a constraint slope Kp = 2, (b) the general case of local
constrained admissible steps with any Kp. Source: Time-series averaging
using constrained dynamic time warping with tolerance (Fig. 6 in [45]).

For the general case, it is given by:

Di,j = min



Di−1,j−Kp +
∑Kp

k=1 di,j−(Kp−k)

Di−1,j−(Kp−1) +
∑Kp−1

k=1 di,j−(Kp−1−k)

.

.

.

Di−1,j−2 + di,j−1 + di,j

Di−1,j−1 + di,j

Di−2,j−1 + di−1,j + di,j

.

.

.

Di−(Kp−1),j−1 +
∑Kp−1

k=1 di−(Kp−1−k),j

Di−Kp,j−1 +
∑Kp

k=1 di−(Kp−k),j

(3.10)
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3.3.1.3 Global path constraints

Another common DTW variant is to impose global constraint conditions
on the admissible warping paths. Such constraints improve the computa-
tional cost and optimize the DTW sensitivity similarly to the step function
constraints. More precisely, let R ⊆ [1 : n]× [1 : m] be a subset referred to as
global constraint region. Then a warping path with respect to R is a warping
path that entirely runs within the region R. The subset of matrix that the
warping path is allowed to visit is called a warping window or a band.

Figure 3.6: Examples of global constraints: (a) Sakoe-Chiba band, (b) Itakura
parallelogram. Source: Similarity Measures and Dimensionality Reduction
Techniques for Time Series Data Mining (Fig. 8 in [18]).

Two well-known global constraints are the Sakoe-Chiba band [57] and the
Itakura parallelogram [35], Figure 3.6. The Sakoe-Chiba region is defined
through a window size parameter which determines the largest temporal shift
allowed from the diagonal in the direction of the longest time series. On the
other hand, the Itakura constraint region is a parallelogram. Contrary to
the Sakoe-Chiba band, whose width is constant, the Itakura parallelogram
has a varying width, allowing for larger time shifts in the middle than at the
first and last time points. It is defined through a max slope parameter which
determines the slope of the steeper side.
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Chapter 4

Time series averaging

As mentioned in the previous chapter, the traditional Euclidean distance
metric is not, in general, an accurate similarity measure for time series.
Dynamic Time Warping (DTW) has been proposed and is widely recognized
as a relevant measure in various time series applications. Given this similarity
measure, many distance-based algorithms can be used in the time series
setting. However, many of them, like the well-known K-means algorithm,
also require an averaging method and highly depend on its quality.

Unfortunately, estimating the centroid of a set of time series under time
warp is not a trivial problem. In this chapter, we present initially the consensus
sequence problem (Section 4.1) and then we review the multiple temporal
alignment problem (Section 4.2) presenting some progressive and iterative
centroid estimation approaches under time warp.

4.1 Consensus sequence
As we focus on DTW, we will only detail the consensus sequence problem

from that side. In the context of sequences, the term consensus is used with
two meanings: (i) the medoid sequence (Section 4.1.1) and (ii) the average
sequence of the set of time series (Section 4.1.2).

4.1.1 Medoid sequence

The goal is to find a sequence in the center of a set of time series. The
commonly accepted definition of a center is the object minimizing the sum
of (squared) distances to time series within the same set. This sum is also
known as Within Group Sum of Squares (WGSS) or inertia. When the center
must be found in the dataset, it is called the medoid sequence. In the context
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of time series clustering, algorithms like K-medoids are using the medoid of
a set of sequences which in some cases can handle noises and outliers better
than K-means.

Figure 4.1: Medoid as a prototype. Source: Time-series Clustering by
Approximate Prototypes (Fig. 1 in [32]).

4.1.2 Average sequence

When the search space of the center is not restricted, we use the term
average sequence. We introduce the definition of an average sequence when
the corresponding similarity measure is Dynamic Time Warping.

Definition 4.1.1 (Average sequence). Let X = {x1, ...,xN} be a set of N
time series xi = (xi1, ...xiT ), i ∈ {1, ..., N} and S the space of all time series
sequences. ∀s ∈ S, the average sequence c should satisfy the following:

N∑
i=1

DTW (xi, c) ≤
N∑
i=1

DTW (xi, s) (4.1)

Since there is no information on the length of the average sequence c, the
search cannot be limited to sequences of a given length, so all possible length
values for averages have to be considered. In the following, we will review
some methods used to determine the multiple temporal alignment of a set of
time series.

4.2 Multiple temporal alignments
Temporal warping alignment of time series is a tricky problem [3] and has

been an active research topic in many scientific disciplines such as speech

43

http://cs.joensuu.fi/~villeh/time-series-clustering.pdf
http://cs.joensuu.fi/~villeh/time-series-clustering.pdf


recognition [17] and bio-informatics [3]. It can be shown that a multiple
alignment provides an average sequence and conversely [51]. In order to
estimate the centroid of two time series under DTW, one standard way is to
embed the time series into a new Euclidean space defined by their temporal
warping alignment. Then the centroid can be estimated as the average of the
linked elements. The problem becomes more complex when the number of time
series is more than two, as one needs to determine a multiple alignment that
links simultaneously all the time series on their commonly shared elements.

In this subsection, we first give an exact solution to the problem (Sec-
tion 4.2.1) and then we review some progressive (Section 4.2.2) and iterative
centroid estimation approaches (Section 4.2.3).

4.2.1 Exact solution

An exact solution to the multiple alignment problem can be given by
extending DTW for aligning N sequences [52]. For example, instead of
computing DTW by comparing three values in a square, one have to compare
seven values in a cube for aligning three sequences. This can be generalized
by computing DTW in a N -dimensional hypercube. Thus, C can be found by
averaging column by column the multiple alignment. However this method
presents two major difficulties that prevent its use. First, the multiple
alignment process has a time complexity of Θ(TN), with T being the time
series length. Second, the global length of the multiple alignment can be on
the order of TN , requiring unrealistic amounts of memory [72].

Unfortunately, many years of well-motivated research have not provided
any exact scalable algorithm, neither for the consensus sequence problem,
nor for the multiple alignment problem. In the following, we review several
methods for estimating the centroid of aligning more than two time series.

4.2.2 Progressive approaches

The progressive approaches estimate the global centroid by combining
pairwise time series centroids through different strategies. Here, we present
some of the most important ones.

4.2.2.1 NonLinear Alignment and Averaging Filters (NLAAF)

NonLinear Alignment and Averaging Filters (NLAAF) [30] is a time series
averaging strategy that uses a simple pairwise method where each coordinate
of the average sequence is calculated as the center of the mapping produced
by DTW. Initially, we randomly select (N/2) pairs of time series and we
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then apply the method to each pair. That way, (N/2) averaged sequences
are created. Then those (N/2) sequences, in turn, are pairwise averaged
into (N/4) sequences, and so on, until one sequence is left. As illustrated in
Figure 4.2, the averaging method (between two sequences) is applied (N − 1)
times.

Figure 4.2: Centroid estimation by random pairwise centroid combination.
Source: A Comparison of Progressive and Iterative Centroid Estimation
Approaches Under Time Warp (Fig. 1 in [64]).

The main drawback of the strategy is the growth of its resulting mean [52].
Each use of the averaging method can almost double the length of the average
sequence. As a result, the NLAAF procedure could produce a global average
sequence up to N ×T in length. Consequently, NLAAF is generally used with
a process that reduces the length of the average, which unfortunately leads
to loss of information and poor results. Furthermore, the average depends on
the selection of time series as different choices lead to different results.

NLAAF produces an average of two time series computing DTW between
these two series, which has a time complexity of Θ(T 2). Then, to compute
the temporary average series, it requires Θ(T ) operations. To reduce the
length of the average, Uniform Scaling is commonly used which has a time
complexity of Θ(T + 2T + 3T + ...+ T 2) = Θ(T 3), and thus the complexity
of averaging two series is Θ(T + T 2 + T 3) = Θ(T 3). Consequently, NLAAF
has time complexity [52]:

Θ((N − 1) · (T + T 2 + T 3)) = Θ(N · T 3) (4.2)

4.2.2.2 Prioritized Shape Averaging (PSA)

Prioritized Shape Averaging was introduced in [47] to avoid the bias
induced by the random selection of pairs during the NLAAF procedure. PSA
is a framework that uses the Ascendant hierarchical scheme. The pairwise time
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series averaging is guided by the dendrogram obtained through hierarchical
clustering, meaning that the most similar time series are averaged first.

Although this strategy removes the bias, the length of the average sequence
remains a problem. In case one alignment between two sequences leads to
two connected components, the overall resulting mean will have only two
coordinates. To solve this problem the authors proposed to replicate each
coordinate of the average sequence as many times as there were associations
in the corresponding connected component. Unfortunately, this repetition
causes the same problem observed with NLAAF.

Figure 4.3: Example of six time series sequence averaging using PSA.
Source: A Comparison of Progressive and Iterative Centroid Estimation
Approaches Under Time Warp (Fig. 2 in [64]).

PSA computes an average of two time series following the same procedure
as NLAAF. Additionally, as PSA is using a hierarchical strategy to order
time series, it has at least to compute a dissimilarity matrix, which requires
Θ(N2 · T 2) operations. The overall PSA averaging of a set of N series then
requires [52]:

Θ((N − 1) · (T + T 2 + T 3) +N2 · T 2) = Θ(N · T 3 +N2 · T 2) (4.3)

4.2.2.3 Cross-Word Reference Template (CWRT)

Abdulla et al. [4] proposed another way to estimate the centroid, where
DTW between each time series and a reference one, usually the time series
medoid, is first performed. The global estimated centroid is then computed
by averaging the time-aligned time series across each point. This approach is
called Cross-Word Reference Template (CWRT).
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Figure 4.4: Centroid estimation based on a reference time series. Source: A
Comparison of Progressive and Iterative Centroid Estimation Approaches
Under Time Warp (Fig. 3 in [64]).

The resulting centroid has the same length as the reference time series
and the advantage that does not depend on the order in which time series
are processed. Nevertheless, the method still remains a heuristic approach.

4.2.3 Iterative approaches

Iterative approaches work similarly to the progressive ones, but they
are able to reduce the error propagation by repeatedly refining the centroid
and realigning it to the initial time series, until its stabilization. Here we
introduce the most well-known iterative heuristic, DTW Barycenter Averaging
(DBA) [52].

4.2.3.1 DTW Barycenter Averaging (DBA)

DBA is a global averaging method which refines an initially (potentially
arbitrary) average time series, in order to minimize its squared distance
(DTW) to the set of time series.

Let us provide a description of the mechanism of DTW Barycenter Av-
eraging. The goal is to minimize the sum of squared DTW distances from
the average time series to the set of time series (WGSS). This sum is created
by single distances between each coordinate of time series and coordinates of
time series associated with it. Therefore, the contribution of one coordinate of
the average series to the total WGSS is actually a sum of euclidean distances
between this coordinate and coordinates of time series associated with it
during the computation of DTW. We should note that a single coordinate of
one of the time series may contribute to the new position of several coordinates
of the average. As a result, any coordinate of the average series is updated
with contributions from one or more coordinates of each series. To minimize
this partial sum for each coordinate of the average, we take the barycenter of
this set of coordinates. DBA computes each coordinate of the average series
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as the barycenter of its associated coordinates of the set of series. Thus, each
coordinate will minimize its part of the total WGSS in order to minimize
the total WGSS. The updated average is formed once all barycenters are
computed.

Figure 4.5: DBA iteratively adjusting the average of two time series.
Source: A global averaging method for dynamic time warping, with applica-
tions to clustering (Fig. 2 in [52]).

The barycenter is defined as:

barycenter{X1, ..., Xk} =
X1 + ...+Xk

k
(4.4)

Technically, for each refinement iteration, DBA runs in two steps:

• Computing DTW between each individual series and the temporary
average, in order to find associations between coordinates of the average
series and coordinates of the set of time series.

• Updating each coordinate of the average series as the barycenter of
coordinates associated to it during the previous step.
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After each iteration the associations created by DTW may change. As it
is impossible to predict how these associations will change, the two steps are
repeated until convergence. Thus, DBA is an iterative strategy. Figure 4.5
shows four iterations of DBA on an example with two series. Algorithm 3
presents the complete DBA computation.

The DBA algorithm starts with an initial average series, the length and
the values of which are selected by the user. Experiments have shown that
a length of around T performs well in practice. Regarding the values of
the initial coordinates, a random sequence or an element of the set of series
are usually used. It is important to note also that DBA has a guarantee of
convergence [52].

DTW Barycenter Averaging, as explained previously, consists of two
steps at each iteration. First, it determines the set of associations between
coordinates and thus it has to compute DTW once per series to average, that
is N times. Therefore the complexity of Step 1 is Θ(N · T 2). Second, it has
to update the average series, which requires Θ(N · T ) operations. If we let I
be the number of iterations of DBA, then the overall time complexity of the
algorithm is:

Θ(I(N · T 2 +N · T )) = Θ(I ·N · T 2) (4.5)

As I � T , the time complexity of DBA is smaller than PSA and NLAAF
ones.

DBA is currently a reference method to average a set of sequences consis-
tently with Dynamic Time Warping. Schultz and Jain [60] showed that DBA
can be seen as a majorize-minimize algorithm that converges to necessary
conditions of optimality after finitely many iterations. Empirical results have
showed that for increasing sample sizes the proposed stochastic subgradient
(SSG) algorithm is more stable and finds better solutions in shorter time than
the classical DBA algorithm on average.
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Algorithm 3 DBA
1: C = (C1, ..., CT ′) . The initial average series
2: S1 = (s11 , ..., s1T ) . The 1st series to average
3: .
4: .
5: .
6: Sn = (sn1 , ..., snT

) . The nth series to average
7: Let T be the length of time series
8: Let assocTab be a table of size T ′ containing in each cell a set of coordi-

nates associated to each coordinate of C
9: Let m[T, T ] be a temporary DTW (cost,path) matrix

10:
11: assocTab← [0, ..., 0]
12: i = rows(dtw)
13: j = columns(dtw)
14: for seq in S do
15: m← DTW (C, seq)
16: i← T ′

17: j ← T
18: while (i ≥ 1)&(j ≥ 1) do
19: assocTab[i]← assocTab[i] ∪ seqj
20: (i, j)← second(m[i, j])

21: for i=1 to T do
22: C ′i = barycenter(assocTab[i])

23: return C ′
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Chapter 5

Time series clustering

Clustering [79] is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar to each other
than to those in other groups (clusters). A special type of clustering that
handles dynamic data is time series clustering.

Time series clustering is an interesting data mining concept, which is
motivated by several research challenges including similarity search of bio-
informatics sequences [65], as well as the challenge of developing methods to
recognize dynamic change in time series [31]. It is also an important task in
the field of finance and marketing research [8]. For example, in a marketing
database, different daily patterns of sales of a specific product in a store can
be discovered. Furthermore, clustering time series has received significant
attention not only as a powerful stand-alone exploratory method, but also
as a preprocessing step or subroutine for other tasks such as prediction and
recommendation [74].

Reviewing existing works in the literature, it is implied that there are
essentially three different ways to cluster time series, namely shape-based,
feature-based and model-based [74].

In the shape-based method, the shapes of two time series are matched
as well as possible, by a non-linear stretching and contracting of the time
axes. This method has also been labelled as a raw-data-based method since
it typically works directly with the raw data. Shape-based algorithms usually
employ conventional clustering algorithms, which are compatible with static
data while their distance measure has been modified with an appropriate one
for time series.

In the feature-based approach, static features from each time series are cal-
culated. This greatly reduces the computational complexity of the clustering
process. Although the feature extraction process is often generic, extracted
features need not be similar for all applications. Every feature should be
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chosen based on its suitability for the domain in question.
In model-based methods, a raw time series is transformed into model

parameters (we assume an underlying parametric model for each time series)
and then a suitable model distance and a clustering method is chosen and
applied to the extracted model parameters. However, it is shown that usually
model-based approaches have scalability problems, and their performance
reduce when the clusters are close to each other.

In this thesis, we only consider shape-based clustering. Our goal is to
make k groups from n unlabelled objects in the way that each group contains
at least one object (partitioning clustering). The number k is considered
known beforehand.

A shared component of many different approaches for time series clustering
is dimension reduction. Time series dimension reduction is known as time
series representation as well. A representation method represents the raw time
series in another space by transforming them to a lower dimensional space.
A conventional clustering algorithm can be applied then to cluster these
representations instead of the whole time series. The reduced representation
can also be stored in memory instead of the whole series saving a large amount
of memory.

In this chapter, we initially describe some representation methods for time
series (Section 5.1) and then present two basic algorithms for partitioning
shape-based clustering (Section 5.2).

5.1 Representation methods
Data representation is one of the main challenging issues for time series

clustering. Because, all raw time series data cannot fit in the main memory [42]
that increases the need for dimensionality reduction. In addition, the time
series data are multidimensional, which is a difficulty for many clustering
algorithms to handle, and it slows down the calculation of the similarity
measurement. Consequently, it is very important to represent the data without
slowing down the algorithm’s execution time and without a significant data
loss. In fact, it is a trade-off between speed and quality and all efforts must
be made to obtain a proper balance point between quality and execution
time. Some requirements can be listed for any time series representation
methods [49]:

• Significantly reduce the data size.

• Maintain the local and global shape characteristics of the time series.
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• Acceptable computational cost.

• Reasonable level of reconstruction from the reduced representation.

• Insensitivity to noise or implicit noise handling.

In taxonomy of representations [9], there are generally four representation
types: non-data adaptive, data adaptive, model-based and data dictated
representation approaches as are depicted in Figure 5.1.

Figure 5.1: Hierarchy of different time series representation approaches.
Source: Time-series clustering - A decade review (Fig. 4 in [9]).

5.1.1 Non-data adaptive

Non data-adaptive techniques use the same set of parameters for dimen-
sionality reduction regardless of the underlying data. The first technique
suggested for dimensionality reduction of time series was the Discrete Fourier
Transform (DFT) [10].

The basic idea of spectral decomposition is that any signal, no matter
how complex, can be represented by the superposition of a finite number of
sine (or/and cosine) waves, where each wave represented by a single complex
number known as a Fourier coefficient. A time series represented in this
way is said to be in the frequency domain. Agrawal et al. [10] observed that
only the first few waves appear to be dominant and therefore the rest can
be omitted without any great impact on the reconstruction error. Thus the
final time series representation after DFT are the coefficients of the first k
waves. A very important property of DFT for data mining applications is
Parseval’s Theorem. It states that the total energy of a signal in the time
domain is preserved in its projection into frequency space [40]. Disregarding
the error introduced by the truncation at k, this means that the euclidean
distance will hold the same for the original signal as its transformation. The
reduction of dimensionality is implied by the usage of k complex coefficients.
Furthermore, the Parseval’s Theorem provides that the distance between
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Figure 5.2: The first 4 Fourier bases can be combined in a linear combination
to produce X ′, an approximation of the sequence X. Note each basis wave
requires two numbers to represent it (phase and magnitude). Source: Dimen-
sionality Reduction for Fast Similarity Search in Large TimeSeries Databases
(Fig. 4 in [39]).

series is preserved and DFT can be calculated efficiently with O(nlogn). A
concern is that the coefficient truncation of positive terms at k causes the
distance in the frequency space to be less than the truth distance, resulting
in false positives in applications such as similarity search.

A related approach is the Discrete Wavelet Transform (DWT) [80]. While
DFT uses sinusoidal waves to represent the general shape of a time sequence,
DWT processes the series at different scales and resolution. DWT uses
localised wavelets of final energy to represent the data. A key advantage it
has over Fourier transforms is temporal resolution: it captures both frequency
and location information (location in time). A mother wavelet defines the
overall shape and further analysing wavelets derived through shift and scaling
add the necessary details to the representation. Thus the characteristics of
the transform can be controlled by the choice of the mother wavelet as all
further wavelets derive from it. One drawback is that classical DWT is only
defined for sequences with length of powers of two, which can be overcome
by zero-padding, smooth-padding or periodic extension. Although there are
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Figure 5.3: B-splines Basis with 6 knots and 3rd-Degreee Polynomials.
Source: Using B-Splines and K-means to Cluster Time Series (Fig. 4 in [44]).

contradictory claims on the performance of DWT [40], DWT’s superiority
lies in its time complexity of O(n) and the multilevel resolution.

Another approach is B-splines [44]. B-Splines are a way to approximate
non-linear functions by using a piece-wise combination of polynomials. They
have two components, a basis and coefficients. The basis determines the
hyperparameters: how many local models to use (called knots) and what
degree of polynomial to use in each model. The coefficients (weights) are
then multiplied by this basis to approximate the original time series. Note
that these knots are equally spaced [34]. By summarizing the raw data using
the estimated spline coefficients, one obtains an efficient reduction of the
dimensionality of the partitioning task and can use conventional clustering
algorithms such as k-means (see Section 5.2.1) to cluster the data.

A completely different approach, especially targeting the domain of time
series, is the Piecewise Aggregate Approximation (PAA) [39]. The idea is
to segment a time series of length T into N consecutive sequences of same
length. Then the mean is calculated for each of those sequences resulting in
a new representation of N mean value points. PAA also supports comparison
of series with different lengths and supports the Euclidean distance measure.
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Figure 5.4: PAA method is illustrated. C represents the original time series
and C̄ is the PAA approximation using the averages of eight subsequences
of equal length. Source: Time Series Clustering in the Field of Agronomy
(Fig. 2.4 in [11]).

5.1.2 Data adaptive

Data adaptive representation methods are performed on all time series in
datasets and try to minimize the global reconstruction error using arbitrary
length (non-equal) segments.

As DFT and DWT, Singular Value Decomposition (SVD) is another trans-
formation based approach [24]. The important difference is that while DFT
and DWT apply local transformations, SVD acts globally. SVD examines
the entire data and rotates the axes to maximise variance along the first
few dimensions. The resulting representation consists of the first few dimen-
sions. Although SVD is an optimal transformation in the sense of minimal
reconstruction error, it requires the computation of eigenvalues for large data
matrices making it computationally very expensive.

Chakrabarti et al. [38] proposed an improved and data adaptive version
of PAA, called Adapive Piecewise Constant Approximation (APCA). While
PAA stores the means of consecutive fixed length segments, APCA allows
the segments to be of different length, thus more adapting to the data.
This means that a region of low activity can be represented by one long
segment and regions with high activity are depicted by several short segments.
The final representation stores two numbers per segment: its mean and the
segment length. In terms of dimensionality reduction, PAA with N segments
corresponds to APCA with N/2 segments. This now gives rise to the question
of how to determine the best possible segmentation for APCA. Chakrabarti et
al. proposed a method achieving an almost optimal representation for APCA
in O(nlogn) time.
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5.1.3 Model-based

Model-based approaches assume that a given time series was produced by
an underlying model. Dimensionality reduction is obtained by representing
the time series by the model’s parameters, used to produce the series. As a
consequence time series similarity is measured based on the model parameters.
There are several approaches using parametric temporal models such as the
ARMA [78] and ARIMA models [77]. More sophisticated approaches include
Markov Chains or Hidden Markov Models (HMM) [50]. Given this variety
of representations, it is a complex task to choose the best approach for a
given context, as each approach has its special properties which might be
inconvenient in one case but a virtue in another.

5.1.4 Data dictated

In the non-data adaptive, data adaptive, and model-based approaches user
can define the compression-ratio based on the application in hand. In contrast,
data dictated methods automatically determine the dimension reduction rate.
The most common example of data dictated method is clipped data [12]
(discretising time series data to above or below the median).

5.2 Partitioning shape-based clustering
Partitioning clustering is a type of clustering where all observations in

the data are partitioned into k different clusters. This type of clustering
can also be regarded as a combinatorial optimization problem, which aim at
minimizing intracluster distance while maximizing intercluster distance [59].
Finding a global optimum would require trying all possible clusterings, which
is infeasible even for small data sets. Therefore, several heuristics for finding
local optima are developed. Two of them, k-means and k-medoids, are
commonly used partitioning algorithms that build clusters around the means
and medoids of observations, respectively.

These heuristics work with a distance measure. As we have seen in
Chapter 3, the best on average similarity measure for shape-based clustering
is Dynamic Time Warping (DTW). In this section, we present k-means
(Section 5.2.1) and k-medoids (Section 5.2.2) algorithms with Dynamic Time
Warping as a distance measure.
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5.2.1 k-means

Even though k-means was first proposed in 1955, it is still one of the most
commonly used clustering methods. The general k-means algorithm can be
found in Algorithm 4.

Algorithm 4 k-means clustering algorithm (Lloyd).
1: Decide on a value for the number of clusters k.
2: Initialize k cluster centers c1, c2,..., ck.
3: while stopping condition not met do
4: for i = 1 to N do
5: - find the nearest centroid (c1, c2,..., ck) of datapoint xi.
6: - assign the datapoint xi to that cluster.
7: for j = 1 to k do
8: new centroid cj ← average of all datapoints assigned to that cluster.
9: return cluster assignment and centroids c1, c2,..., ck.

We describe k-means algorithm for time series clustering. The first step
is to determine the optimal number of clusters k. Unfortunately, there is no
definitive answer to this question. The optimal number of clusters is somehow
subjective and depends on the method used for measuring similarities and
the parameters used for partitioning. Here, we assume that the number of
clusters k is known.

The next step is to initialize k cluster centers. A common method is the
random initialization method. It randomly selects k time series from the
set of time series and takes these as the initial centers. To avoid finding
local optima when applying k-means, some implementations of the algorithm
consider multiple random initializations.

The third step in the k-means algorithm is the while-loop that runs until a
stopping criteria is met. Two commonly used stopping criteria are convergence
and maximum number of iterations. Convergence can take multiple forms, for
example when no time series are assigned a different cluster center. Within
the while-loop in step three, two for-loops can be found.

The first for-loop (steps 4-6) assigns to each time series xi the cluster
whose center has minimum distance to xi. Here, the distance is Dynamic
Time Warping (DTW). After the time series are assigned a cluster in the first
for-loop, the second for-loop (steps 7-8) determines the new cluster centers.
The centers are obtained by taking the DTW Barycenter Averaging (DBA),
which is the best method for averaging time series, of all sequences in a given
cluster. Once the stop condition for the while-loop is met, the algorithm
returns the cluster assignment for each time series and the cluster centroids.
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We now consider the time complexity of k-means algorithms for time
series clustering. If N is the number of time series, T is the maximum time
series length and k is the number of clusters then the first for-loop requires
O(N · k · T 2). If I ′ is the maximum number of iterations for DBA, then the
second for-loop has a time complexity of O(I ′ ·N · k · T 2). Both for-loops are
repeated in the while-loop for a numbers of iterations I ′′. If I = I ′ · I ′′, the
whole algorithm has a time complexity of O(I ·N · k · T 2), where I, k � N .
It must be noted that Algorithm 4 does not guarantee finding the optimal
k-means solution, due to the possibility of local minima to be found.

5.2.2 k-medoids

k-medoids is a clustering method related to k-means in the sense that its
objective is to partition the time series data into k sets. The main difference
between k-means and k-medoids is that in k-medoids observations are taken
as centers. It is an NP-hard optimization problem and thus heuristics are
used to obtain k-medoids partitions.

The most popular heuristic for k-medoids is the Partitioning Around
Medoids (PAM) algorithm [37]. The pseudo-code for this algorithm can
be found in Algorithm 5. Note that the initialization is similar to that of
Algorithm 4. The while-loop, however, is different. Here swaps are considered
in an iterative manner and if a swap decreases the total sum of distances
between all time series and their closest medoid, the swap is made. Here only
the distance measure is necessary, which is again Dynamic Time Warping
(DTW).

Algorithm 5 Partitioning Around Medoids (PAM) algorithm.
1: Decide on a value for the number of clusters k.
2: Initialize k observations as the initial medoids.
3: while no change in the centroid assignment do
4: for each medoid c do
5: for each non-medoid observation o do
6: if swapping c and o improves the solution then
7: Swap c and o.
8: return the k medoids and the cluster assignment.

We now examine the time complexity of the PAM algorithm. Observe
that in every iteration, for all k medoids, (N − k) swaps are considered.
Calculating the swapping cost for any of these swaps has time complexity
O(N −k). This gives every iteration in the PAM algorithm a time complexity
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of O(k · (N − k)2) and thus the whole algorithm has a time complexity of
O(I · k · (N − k)2). Note that this time complexity does not include the time
complexity of determining the distance (DTW) matrix. The main advantage
k-medoids has over k-means is that it is more robust in the presence of noise
and outliers. Also, being able to calculate the distance matrix in advance is
an advantage. A disadvantage of k-medoids compared to k-means is that it
comes with a higher time complexity.
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Chapter 6

Time series modelling with
Gaussian Processes

Gaussian Process is a powerful machine learning technique [55]. Its
simplest and most useful application is fitting a function to the data. This is
called regression and can be successfully used in time series modelling without
any adjustment. A regression function f(t) of a time series is just a function
that depends on time. For that reason, in this chapter we present modelling
(regression) with Gaussian Processes for any arbitrary dataset.

For a given set of data points, there are potentially infinitely many func-
tions that fit the data. Gaussian Processes offer an elegant solution by
assigning a probability to each of these functions. The mean of this proba-
bility distribution then represents the most probable characterization of the
data. Additionally, being a Bayesian method allows us to incorporate the
confidence of the prediction into the regression result.

In this chapter we initially give a detailed description of Gaussian Processes
(Section 6.1) and then present the basics of regression using Gaussian Processes
(Section 6.2). In the last section, we describe a well-known approximation
method for Gaussian Process Regression (Section 6.3).

6.1 Gaussian Process
To better understand Gaussian Processes, we first need to understand

the mathematical foundation that they are built on. As the name suggests,
the Gaussian distribution is the basic building block of Gaussian Processes.
In particular, we are interested in the multivariate case, where each random
variable is distributed normally and their joint distribution is also Gaussian.

In the following, we first explore some properties of multivariate Gaussian
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distributions (Section 6.1.1), we give a definition of Gaussian Processes
(Section 6.1.2) and then overview their components (Section 6.1.3).

6.1.1 Multivariate Gaussian distribution

The multivariate normal distribution or multivariate Gaussian distribution
is a generalization of the one-dimensional (univariate) normal distribution to
higher dimensions. One definition is the following [84]:

Definition 6.1.1 (Multivariate Gaussian distribution). A random vector is
said to be k-variate normally distributed if every linear combination of its k
components has a univariate normal distribution.

Figure 6.1: Multivariate Normal Distribution. Source: Wikipedia - Multivari-
ate normal distribution (Fig. 2 in [84]).

The multivariate Gaussian distribution is defined by a mean vector µ
and a covariance matrix Σ. The mean vector µ describes the expected value
of the distribution and each of its components describes the mean of the
corresponding dimension. The covariance matrix Σ models the variance along
each dimension and determines how the random variables are correlated. Σ
is always symmetric and positive semi-definite. The diagonal of the matrix
consists of the variance σ2

i of the i-th random variable. The off-diagonal
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elements σij describe the correlation between the i-th and j-th random
variable.

To denote that X follows a normal distribution, we write:

X =


x1

x2
...
xn

 ∼ N (µ,Σ) (6.1)

The covariance matrix Σ describes the shape of the distribution and is
defined as follows:

Σ = Cov(xi,xj) = E
[
(xi − µi)(xj − µj)T

]
(6.2)

Gaussian distributions are so useful in statistical modelling because they
have the nice algebraic property of being closed under conditioning and
marginalization. Being closed under conditioning and marginalization means
that the resulting distributions from these operations are also Gaussian,
which makes many problems tractable. Through marginalization we can
extract partial information from multivariate probability distributions. Given
a normal probability distribution over random variables X and y, we can
easily compute the marginalized probability distributions of X or y. On the
other hand, conditioning is used to determine the probability of one variable
depending on another variable. This operation is the cornerstone of Gaussian
Processes since it allows Bayesian inference.

6.1.2 Definition

Now that we have explored some of the basic properties of multivariate
Gaussian distributions, we are ready to define Gaussian Processes. We can
view Gaussian Process as a generalization of multivariate Gaussian distribution
to infinitely many variables. A formal definition of Gaussian Processes is [82]:

Definition 6.1.2 (Gaussian Process). A Gaussian Process is a stochastic
Process (a collection of random variables indexed by time or space), such
that every finite collection of those random variables has a multivariate
normal distribution, i.e. every finite linear combination of them is normally
distributed.

The distribution of a Gaussian Process is the joint distribution of all
those (infinitely many) random variables, and as such, it is a distribution over
functions with a continuous domain, e.g. time or space. Just like a Guassian
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distribution, a Gaussian Process is completely defined by a mean function
m(x) giving the mean at any point of the input space and a covariance matrix
Σ which is defined by its covariance functionK(x,x′) that sets the covariance
between points. The covariance function is also called kernel function. To
denote that a function f follows a Gaussian Process, we write:

f(x) ∼ GP(m(x),K(x,x′)) (6.3)

6.1.3 Kernels

The mean m(x) can take any value. If we have domain knowledge about
the expected values of the function f at every location, we can encode this
knowledge in m. But in most cases, we have no idea. So it is usual to
define the mean to be a zero function (m(x) = 0). This is possible because
you can always normalize your data so they have zero mean. Furthermore,
using a fixed (deterministic) mean functionm(x) is trivial [55]: Simply apply
fixed mean function the usual zero mean GP to the difference between the
observations and the fixed mean function.

The crucial ingredient in Gaussian Processes is the way we set up the
covariance matrix. The covariance matrix should be positive definite and
encodes our assumptions about the function which we wish to learn. The
matrix is generated by evaluating the kernel k, which is also called covariance
function, pairwise on all the points. The kernel receives two points x,x′ ∈ Rn

as an input and returns a similarity measure between those points in the form
of a scalar.

k : Rn × Rn → R, Σ = Cov(x,x′) = k(x,x′) (6.4)

A basic similarity assumption is that data points with inputs x which are
close are likely to be similar. In the language of Gaussian Processes, similar
means to have high positive covariance.

Kernel functions are widely used in machine learning, because they con-
ceptually embed the input points into a higher dimensional space in which
they then can measure the similarity efficiently. This approach is called the
"kernel trick" [83].

Kernels are separated into stationary and non-stationary kernels. Station-
ary kernels are functions invariant to translations, and the covariance of two
points is only dependent on their relative position. Thus, they are functions
of x− x′. If further the covariance function is a function only of ||x− x′||
then it is called isotropic. Non-stationary kernels do not have this constraint
and depend on an absolute location. In the following, we explore two of the
most commonly used stationary kernels.
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6.1.3.1 RBF kernel

The Radial Basis Function kernel, Gaussian kernel or Squared Exponential
Kernel has the form:

kSE(x,x′) = σ2
f exp

(
−||x− x

′||2

2`2

)
(6.5)

The RBF kernel has become the de-facto default kernel for Gaussian
Processes [85]. It is universal and you can integrate it against most functions
that you need to. It also has only two parameters:

• The lengthscale l determines the length of the ’wiggles’ in the function
f .

• The output variance σ2
f determines the average distance of the function

f away from its mean. Every kernel has this parameter out in front;
it’s just a scale factor.

Figure 6.2: RBF kernel. Source: The Kernel Cookbook: Advice on Covariance
functions (Fig. 1 in [22]).

6.1.3.2 Matérn kernel

The class of Matérn kernels is a generalization of the RBF [55]. It has
an additional parameter ν which controls the smoothness of the resulting
function. The smaller ν, the less smooth the approximated function is. As
ν →∞, the kernel becomes equivalent to the RBF kernel. Important values
are ν = 1.5 (once differentiable functions) and ν = 2.5 (twice differentiable
functions).

The kernel is given by:

k(xi,xj) =
1

Γ(ν)2ν−1

(√
2ν

l
d(xi,xj)

)ν

Kν

(√
2ν

l
d(xi,xj)

)
(6.6)
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Figure 6.3: Matérn kernel for different values of ν. Source: Gaussian Processes
for Machine Learning, Chapter 4: Covariance Functions (Fig. 4.1 in [55]).

where deuc(·, ·) is the Euclidean distance, Kν(·) is a modified Bessel function
and Γ(·) is the gamma function.

6.2 Gaussian Process Regression
In this section, we review Gaussian Process Regression. Regression is a set

of statistical processes for estimating the relationships between a dependent
variable and one or more independent variables, and is widely used for
prediction and forecasting [87]. More specifically, it is a supervised learning
problem in which we wish to learn a mapping from inputs to continuously
valued outputs, given a training set of input-output pairs.

Parametric models for regression assume that the training data has been
generated by an underlying function f defined in terms of some parameters
w. The functional mapping f along with a particular parameter set w
defines the model. The goal is to find the set of parameters that provide
the "best" explanation of the data. Some examples of parametric regression
are linear regression (Figure 6.4) and polynomial regression [76]. The main
problem with parametric regression is that complex models usually have poor
generalization performance and suffer from overfitting. Overfitting can be
avoided by using a simpler model. However, if the model is too simple, its
predictive performance in the training data will be poor [14].

The Bayesian framework is an alternative approach for regression that
counters the problem of overfitting [89]. It works by specifying a prior
distribution, p(w), on the parameters w of a functional form, and relocat-
ing probabilities based on evidence (i.e. observed data) using Bayes’ Rule.
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Figure 6.4: Linear Regression. Source: Regression analysis (Fig. 1 in [87]).

The updated distribution p(w|y,X), called the posterior distribution, thus
incorporates information from both the prior distribution and the dataset.

Gaussian Process Regression (GPR) is a Bayesian nonparametric model
(i.e. not limited by a functional form) [55], so rather than calculating the
probability distribution of parameters of a specific function, GPR calculates
the probability distribution over all admissible functions that fit the data.
However, similar to the above, we specify a prior (on the function space),
calculate the posterior using the training data, and compute the predictive
posterior distribution on our points of interest.

In the next subsections, we first review the Gaussian Process model
(Section 6.2.1) and then discuss how we can learn the hyperparameters of the
model (Section 6.2.2).

6.2.1 Gaussian Process model

Suppose we have n training inputs X = [x1...xn] which reside in an input
space X , which may be continuous or discrete. The input xi is associated with
a target yi. Combining the targets into a vector we get y = [y1...yn]T . We
want to find a regression function from X to y. This is a typical regression
task.

We restrict our attention here to functions that have a domain X and
range R, meaning that f : X → R. We assume that each observation yi is
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dependent on a latent variable fi as follows:

yi = fi + εi (6.7)

where εi ∼ N (0, σ2) is i.i.d noise. This noise assumption together with the
model directly gives rise to the likelihood, the probability density of the
observations given the parameters.

Collecting n latent variables into a vector we have f = [f1...fn]T . In the
Gaussian Process model for regression, we place a zero-mean multivariate
Gaussian prior distribution over f :

f |X, θ ∼ N (0,K) (6.8)

where K is a n× n covariance matrix dependent on X and some hyperpa-
rameters θ. The (i, j) element of K is equal to k(xi,xj), where k(., .) is a
kernel function which is parameterized by θ.

Given some observations and a covariance function, we wish to make a
prediction using the Gaussian Process model. We consider a test point x∗
and its associated latent variable f∗. The joint distribution of f and f∗ is
also a zero-mean multivariate Gaussian, and is found by augmenting (6.8)
with the new latent variable f∗:[

f
f∗

] ∣∣∣∣X,θ ∼ N

0,

[
K k
kT k

] (6.9)

where k = [k(x1,x∗)...k(xn,x∗)]
T is the n× 1 vector formed from the covari-

ance between the training inputs and x∗. The scalar k = k(x∗,x∗).
We can now express the joint distribution over the observed targets y and

test target y∗ given the Gaussian noise assumption:[
y
y∗

] ∣∣∣∣X,θ ∼ N

0,

[
K + σ2I k
kT k + σ2

] (6.10)

Because the joint distribution is Gaussian, we can condition on y to find the
posterior distribution [55]:

y∗|y,X,θ, σ2 ∼ N
(
m(x∗), var(x∗)

)
(6.11)

where the predictive mean and variance are:

m(x∗) = kT (K + σ2I)−1y (6.12)

var(x∗) = k + σ2 − kT (K + σ2I)−1k (6.13)
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Figure 6.5: Panel (a) shows three functions drawn at random from a GP
prior. Panel (b) shows three random functions drawn from the posterior, i.e.
the prior conditioned on the five noise free observations indicated. In both
plots the shaded area represents the point wise mean plus and minus two
times the standard deviation for each input value, for the prior and posterior
respectively.
Source: Gaussian Processes for Machine Learning, Chapter 2: Regression
(Fig. 2.2 in [55]).

More generally, we can compute the multivariate Gaussian predictive
distribution for a set of m test points X∗ = [x1∗...xm∗] as follows:

m(X∗) = KT
∗ (K + σ2I)−1y (6.14)

cov(X∗) = K∗∗ + σ2I −KT
∗ (K + σ2I)−1K∗ (6.15)

where K∗ is a n×m matrix of covariances between the training inputs and
test points, andK∗∗ is a m×m matrix of covariances between the test points.

In Gaussian Process Regression we find a posterior density over the latent
variables and then integrate over that posterior density to make predictions.
We can perform the integral analytically because all the distributions are
Gaussian. To find the marginal likelihood of the model, we have to calculate
the integral over the product of the likelihood function and the prior density.
The marginal likelihood is given by:

p(y|X,θ, σ2) =

∫
p(y|f ,X,θ, σ2)p(f |X,θ)df (6.16)

=

∫
N (f , σ2I)N (0,K) (6.17)
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=
1

(2π)n/2|K + σ2I|1/2
exp(−1

2
yT (K + σ2I)−1y) (6.18)

For numerical reasons the log marginal likelihood is useful:

log p(y|X,θ, σ2) = −n
2
log2π − 1

2
log|K + σ2I| − 1

2
yT (K + σ2I)−1y (6.19)

which is the log-evidence of this Gaussian Process model.

6.2.2 Learning the Hyperparameters

The GPR model has model parameters, the hyperparameters θ of the
covariance function and the observation variance σ2. We introduced them
as part of the modelling process, but we don’t know what values we should
set those model parameters to. We can see how the values of the parameters
affect the prediction of the model for a SE kernel in Figure 6.6. For the
model to be useful, we need a principled method to find optimal values for
the parameters θ, σ2. Optimal means that with those values, the model can
best explain the training data.

In many cases we may have a prior belief about the form of the data. To
incorporate this information into the learning of the values for the parameters,
we can first construct a prior distribution on the hyperparameters θ and the
noise variance σ2. We then find the posterior density over θ, σ2 as follows:

p(θ, σ2|y,X) ∝ p(y|X,θ, σ2) p(θ, σ2) (6.20)

which is the likelihood function times the prior density. We now can find
the parameters maximizing the posterior density. This gives us the so called
maximum a posteriori, or MAP values, which are used to make predictions [26].

For simplicity, the prior density is often ignored and the maximization
of the posterior probability of the parameters reduces to maximization of
the likelihood. The maximization problem is non-convex in general and it
is carried out through gradient-based optimization techniques such as the
Adam optimization algorithm [41], or L-BFGS [75]. Numerically, it is easier
to perform this maximization in the log domain with eq. (6.19).

As with all non-convex optimization problems, local optima can be a
problem, although perhaps not too serious a one in practice, since the number
of hyperparameters is usually small relative to the number of data points [43].
The asymptotic time complexity of Gaussian Process Regression is dominated
by the inversion of K, the covariance matrix, which takes O(n3) time.
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Figure 6.6: (a) Data is generated from a GP with hyperparameters (l, σf , σ)
=(1,1,0.1), as shown by the + symbols. Using Gaussian process prediction
with these hyperparameters we obtain a 95% confidence region for the un-
derlying function f (shown in grey). Panels (b) and (c) again show the 95%
confidence region, but this time for hyperparameter values (0.3,1.08,0.00005)
and (3.0,1.16,0.89) respectively.
Source: Gaussian Processes for Machine Learning, Chapter 2: Regression.
(Fig. 2.5 in [55])

6.3 Sparse Gaussian Process Regression
Although Gaussian Processes have many desirable properties from a

modelling point of view, they can handle regression problems with at most a
few thousand training cases on today’s desktop machines, due to their cubic
complexity. To overcome the computational limitations of GPs, numerous
authors have suggested a wealth of sparse approximation methods. Common
to most of these approximation schemes is that only a subset of the latent
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variables are treated exactly, and the remaining variables are given some
approximate, but computationally cheaper treatment [54].

Maybe the most popular family of sparse approximation schemes are
inducing point methods. These methods can be seen as learning about a
small number (m < n) quantities that are highly informative of what the
posterior Gaussian Process is doing more globally. Inducing point methods
have managed to scale up GP training and predictions to large datasets
(Smola & Bartlett [62]; Quinonero-Candela & Rasmussen [53]; Snelson &
Ghahramani [63]; Hensman et al. [33]; (Wilson & Nickisch [90]). In the
following, we present the elegant (VFE) Variational Free Energy framework
(or Sparse Gaussian Process Regression, SGPR) proposed by Titsias [68] in
2009.

6.3.1 Variational Free Energy

We wish to define a variational approximation to the posterior GP mean
and covariance function retaining the exact GP prior. For this reason, we
introduce a set of m extra variables (m < n), the inducing variables (or
pseudo-data points): let the vector u contain values of the latent function f
at locations (or pseudo-inputs) Z = [z1...zm] which live in the same space as
X.

In the VFE framework, one augments the joint distribution p(y,f) with
the inducing variables u so that the joint becomes:

p(y,f ,u) = p(y|f)p(f ,u) = p(y|f)p(f |u)p(u) (6.21)

We assume that u are function values drawn from the same GP prior as
the training function values f . The joint distribution of the latent function
values f and the inducing variables u according to the prior then becomes:

p(f ,u) = N

[f
u

] ∣∣∣∣0,
[
K Ku

KT
u Kuu

] (6.22)

where Ku = Kfu and KT
u = Kuf . Applying the multivariate Gaussian

conditional rule to eq. (6.22) we derive:

p(f |u) = N (f |KuK
−1
uuu,K −KuK

−1
uuK

T
u ) (6.23)

Applying the multivariate Gaussian marginalization rule to eq. (6.22) we
get:

p(u) = N (u|0,Kuu) (6.24)
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We want to approximate the exact posterior distribution p(f ,u|y) by
using the set of m auxiliary inducing variables u evaluated at the pseudo-
inputs Z, which are independent from the training inputs. To approximate
p(f ,u|y), we introduce the variational distribution q(f ,u). We wish that
u is a sufficient statistic for the parameter f in the sense that c and f are
independent given u, i.e. it holds p(c|u,f) = p(c|u) for any c. Then u
summarizes the training data, and q(c) = p(c|y) and p(f |u) = p(f |u,y) are
true. However, in practice the assumption of u being a sufficient statistic
is unlikely to hold and we should expect q(c) to be only an approximation
to the exact predictive distribution p(c|y). Notice also that the quality of
the approximation will crucially depend on the locations Z of the inducing
variables, which are variational parameters.

For an optimal setting of the inducing variables, the exact posterior
p(f ,u|y) factorises as p(f ,u|f) = p(f |u)p(u|y). This tells us that the
variational distribution q(f ,u), which is a joint distribution, must satisfy the
same factorization as well:

q(f ,u) = p(f |u)q(u) (6.25)

where p(f |u) is given by eq. (6.23), and we define the marginal variational
distribution q(u) to be a multivariate Gaussian distribution:

q(u) = N (u|µ,A) (6.26)

To find an approximation to the exact posterior p(f ,u|y) by q(f ,u), we
want to minimize the KL divergence:

KL[q(f ,u)||p(f ,u|y)] =

∫
q(f ,u) log

q(f ,u)

p(f ,u|y)
dfdu (6.27)

Minimizing the KL divergence in eq. (6.27) is equivalently expressed as
the maximization of the following variational lower bound on the true log
marginal likelihood [68] (evidence lowerbound (ELBO) or variational free
energy (VFE)):

log p(y) = log

∫
p(y|f)p(f |u)p(u)dfdu (6.28)

≥ FV (Z,θ) =

∫
p(f |u)q(u)log

p(y|f)p(f |u)p(u)

p(f |u)q(u)
dfdu (6.29)

=

∫
q(u)

{∫
p(f |u)log p(y|f)df + log

p(u)

q(u)

}
du (6.30)
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We can firstly maximize the bound by analytically solving for the optimal
choice of the variational distribution q. The bound after this maximization is:

FV (Z,θ) = log[N (y|0, σ2I +Q)]− 1

2σ2
Tr(K̃) (6.31)

where Q = KuK
−1
uuK

T
u and K̃ = Cov(f |u) = K −KuK

−1
uuK

T
u . Details of

this derivation of this bound are given in a technical report of Titsias [67].
The quantity in eq. (6.31) is computed in O(nm2 +m3) time and is a lower
bound of the true log marginal likelihood for any value of the inducing inputs
Z. Further maximization of the bound can be achieved by optimizing over Z
using gradient-based methods. To compute the optimal q, we differentiate
eq. (6.28) with respect to q(u) without imposing any constraints. This gives
us the mean and covariance matrix of q(u):

µ = σ−2Kuu ΣKT
u y (6.32)

A = Kuu ΣKuu y (6.33)

where Σ = (Kuu + σ−2KT
uKu)

−1. This now fully specifies our variational
GP.

We are ready now to make predictions in unseen input points X∗ about
their function values f ∗. For that reason we use p(f ∗|y). Following the
derivation in [93] we have:

p(f ∗|y) =

∫
p(f ∗|u)q(u) (6.34)

We know q(u) = N (u|µ,A) and we can derive the formula for p(f ∗|u)
by applying the multivariate Gaussian conditional rule on the prior p(f ∗,u).
This results in the formula for the predictive distribution:

p(f ∗|y) = N (f ∗|Bµ, BABT +K∗∗ −BKT
∗u) (6.35)

where B = K∗uK
−1
uu .

This formula shows that we only need to invert the matrix Kuu. It also
confirms that to make predictions, the VFE model does not need training
data anymore - the formula uses the inducing points. Therefore, training and
prediction take O(nm2 +m3) and O(m2) time respectively.

VFE is guaranteed to recover the true posterior when Z = X. The bound
FV monotonically improves with more resources [89]. However, local optima
in the objective function may cause suboptimal solutions to be found with
different initializations. In practice, an optimizer for the FV allocates more
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Figure 6.7: Regression with VFE framework. Source: Sparse and Variational
Gaussian Process (SVGP) — What To Do When Data is Large (Fig. 4 in [93]).

inducing locations in regions where the training data changes more quickly
[93].

The lower bound FV to the marginal likelihood provides some way to assess
the quality of the approximation. While knowledge of the KL divergence
between the posterior and approximation would be ideal, the lower bound
can guide when to add more capacity to the approximation: a halt in the
increase of the bound with increasing m can indicate that the bound has
become tight. A practical rule of thumb is to use as many inducing variables
as your budget, such as time, memory, permits.

Burt et al. [16] showed recenlty that with high probability the KL di-
vergence can be made arbitrarily small by growing m more slowly than n.
A particular case is that for regression with normally distributed inputs in
d-dimensions with the Squared Exponential kernel, m = O(logdn) suffices.

On the other hand, there are challenging datasets that remain far out
of VFE framework’s reach [15]. The problem arises from the fact that the
method in practice is functionally local in the sense that each pseudo-data
point sculpts out the approximate posterior in a small region of the input
space around it. Consequently, when the range of the inputs is large compared
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to the range of the dependencies in the posterior, many pseudo-data points
are required to maintain the accuracy of the approximation. This means that
the number of pseudo-data points must grow with the number of data points
if restoration accuracy is to be maintained. In other words, m must be scaled
with n and so VFE scheme has not reduced the scaling of the computational
complexity in these datasets.
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Chapter 7

Proposed Framework

For most shape-based clustering algorithms, the quality of the output
depends highly on the distance measure used. In the last decade, a consensus
has emerged that the DTW distance measure is the best measure in most
time series domains, almost always outperforming the Euclidean distance
and other rivals. Because DTW is intrinsically slow due to its quadratic
time complexity, there are two ideas that are commonly used to mitigate the
problem of using such a distance measure.

The first one is to make DTW faster. They have been proposed many
methods to speed up Dynamic Time Warping. There are methods that
use constraints to reduce the time complexity of DTW, such as the Sakoe-
Chiba band and the Itakura parallelogram (Section 3.3.1.3). Other approaches
address the complexity issue by using lower bound based pruning that provides
approximately linear time complexity [19]. There are also methods that
approximate Dynamic Time Warping to speed it up, such as fastDTW that
performs nearly in linear time [58]. Unfortunately, most of these methods
cannot be used for clustering due to the absence of an averaging method. The
methods that can be used for clustering can’t handle the noise and outliers
that naturally time series have.

The second idea is to develop representation techniques that can reduce
the dimensionality (and thus the required memory) of time series, while
still preserving their fundamental characteristics. These methods reduce
the complexity of clustering algorithms with DTW by performing DTW on
the reduced representation of the data. There is a plethora of time series
representation methods, each of them proposed for the purpose of supporting
similarity search and clustering (Section 5.1).

Based on the second class of methods, we propose a novel two-stage frame-
work called Sparse Gaussian Processes for Clustering (SGPC) for clustering
time series data. SGPC uses Sparse Gaussian Process Regression (SGPR) as
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a representation method and then k-means algorithm with a modified version
of DTW for clustering. We first review some related work (Section 7.1) and
then present our framework (Section 7.2).

7.1 Related work
The field of clustering is vast, and even the subfield of clustering time series

has an enormous literature. Much of the works on time series clustering are
concerned with clustering based on time series representation methods, which
are directly related to our goals. Here, we are only interested in partitioning
clustering based on time series shapes. In the following, we present such
previous work.

Gullo et al. [29] proposed an approach for time series clustering using DSA
as the representation method, DTW as the distance measure and k-means as
the clustering algorithm. By using the DSA model (Derivative time series
Segment Approximation) [28], which is a data adaptive representation method,
a time series of length n is transformed in linear time (O(n)) into a new,
smaller sequence by the following steps:

• Derivation: computation of the first derivatives of the original series
to capture its significant trends. The model considers for each point the
slope of the line from the left neighbour to the right neighbour.

• Segmentation: identification of segments consisting of tight derivative
points. The segmentation of a time series of length n consists in
identifying a set of break-points to partition it into p (p� n) contiguous,
variable-length subsequences of points (segments) having similar features.
The critical aspect in segmentation is to determine the segment break-
points. DSA uses the sliding windows approach: a segment grows until
the first point such that the absolute difference between it and the mean
of the previous points is above a certain threshold, and the process
repeats starting from the next point not yet considered.

• Segment Approximation: representation of each segment by involv-
ing synthetic information. All individual segments of a derivative time
series are finally modeled with a synthetic information capturing their
respective main features. More precisely, each segments mapped to a
pair formed by the timestamp of the last point in the segment, and an
angle that explains the average slope of the segment.

The authors then proposed to cluster the new smaller sequences by using
k-means with DTW. This approach uses a fast representation method that
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runs in linear time and reduces significantly the time complexity of time series
clustering. On the downside, it has only been applied to mass spectrometry
data and is also sensitive to noise.

Unfortunately, the approach mentioned above does not facilitate the
removal of the noise from time series data. In order to handle noisy time
series, many authors have suggested to exploit a flexible definition of the series
functional form and to adopt some dimensionality reduction strategy. These
methods are based on the functional data analysis framework introduced by
Ramsay and Silverman [13]. The main idea is to describe the data by using
optimal linear combinations of basis functions (e.g. by using B-spline bases)
and to perform the clustering on the extracted signals or on the estimated
basis coefficients.

An example is the proposal of Abraham, Cornillon, Matzner-Løber and
Molinari [5]. They suggested a two-stage clustering method: fitting the
functional data by B-splines and partitioning the estimated model coefficients
using k-means algorithm. In a similar direction, Iorio et al. [34] proposed a
parsimonious model-based framework for clustering longitudinal data. They
modeled the raw series by a linear combination of P-spline smoothers. The
series as described by the lower dimensional vectors of P-spline coefficients are
then grouped by applying k-means algorithm with an appropriate distance
measure, such as Dynamic Time Warping. The authors defined the splines
over a domain spanned by equidistant knots across the series. This approach
can be seen as in a half-way between the non-data adaptive and model based
representation methods according to the classification made in Chapter 5.
The main disadvantage of this category of approaches is that such approaches
highly depend on the locations of the knots, which are selected by the user.
The proposal is to place a generous number of equally spaced knots (but still
smaller than the available observations), which has a negative impact on the
time complexity of clustering.

Our framework differs from the previous ones due to the choice of the
representation technique. Sparse Gaussian Process Regression (SGPR) can
be seen as a model based and data adaptive representation method. SGPR
can handle noisy data with outliers (model-based) and because of its adaptive
nature can reduce the dimensionality of the time series significantly. The
resulting representations also lead to memory reduction. In the following
section, we present Sparse Gaussian Processes for Clustering (SGPC).
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7.2 SGPC Framework
SGPC framework consists of two stages. First, we model the raw series

by a set of inducing data points using Sparse Gaussian Process Regression
(Section 7.2.1). The series as described by a (much) lower number of data
points are then grouped by applying k-means algorithm. We propose two
different distance measures for SGPC (Section 7.2.2) that are based on
Dynamic Time Warping (DTW). In the last subsection, we study the time
complexity of our framework (Section 7.2.3).

Figure 7.1: SGPC uses Sparse Gaussian Process Regression (SGPR) for
dimensionality reduction and then k-means algorithm with a modified version
of DTW for clustering.

7.2.1 Modelling stage

Suppose we have a dataset of N univariate time series. Each time series
X i has length T with inputs (ti,1, ti,2, ..., ti,T ) and corresponding outputs
(yi,1, yi,2, ..., yi,T ). Here we suppose that the time series have equal length, but
our framework can also handle time series of different lengths without any
modification.

In order to denoise our data, we model each time series X i as a latent
function f i corrupted by some random noise. We assume that each observation
yi,t of X i is dependent on a latent variable fi,t as follows:

yi,t = fi,t + εi,t (7.1)

where εi,t ∼ N (0, σ2) is i.i.d noise.
We model each time series by using Sparse Gaussian Process Regression

(also called Variational Free Energy). Each time series X i is summarized
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from m (m� T ) inducing variables ui and their corresponding locations zi.
In fact, we get a multivariate gaussian distribution over ui, but for clustering
we are only interested in their mean values. Covariance matrices are not
important for clustering. They also require O(m2) in memory and every
distance between them has cubic time complexity O(m3).

Therefore, we transform each time series X i to the vector X ′i that retains
the shape of the series (see Figure 7.2):

X ′i = (ui, zi) =
(
(ui,1, zi,1), (ui,2, zi,2), ..., (ui,m, zi,m)

)
(7.2)

Figure 7.2: SGPR uses a set of inducing points for dimensionality reduction
(red points).

The number of inducing points m is selected by the user. We should
also choose a mean and a kernel function for SGPR. We usually place a
constant-mean GP prior and the kernel function encodes our assumptions
about the nature of the data. The only restriction here is that the kernel
should be stationary. Then the learned representations are used for time
series clustering.

7.2.2 Clustering stage

We wish to cluster our time series based on their shapes, so k-means
algorithm with DTW is a convenient and effective method. The problem here
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is that the inducing variables of two different transformed series x, y have
different corresponding locations zx, zy. In the following, we propose two
different distance measures and their averaging methods for our framework.

7.2.2.1 Simple approach

To solve the problem of different timestamps between inducing points of
different time series we use Dynamic Time Warping in two dimensions. We
also add an extra parameter α changing the local cost function as follows:

c(xi, yj) = (xi − yj)2 + α · (txi − yyj)2 (7.3)

The rest DTW algorithm remains unchanged. We should note that when
α→ 0 we get the 1-D version of DTW. When α→ 1 we get the normal 2-D
version of DTW. When the value of α grows, the timestamps term of the
distance becomes dominant and our distance becomes a lock-step measure.
We remind that the optimizer allocates more inducing locations to regions
where the training data changes more quickly and allocates less inducing
locations to regions where the training data is smoother. Therefore, we can
say that the timestamps term captures differences between time series shape’s
complexity.

We can now use k-means algorithm with this modified version of DTW
for clustering the inducing variables and their locations. This distance has
time complexity O(m2).

As an averaging method we use DTW Barycenter Averaging without any
modification. Therefore, the average method has time complexity O(I ·N ·m2),
and the total complexity of the k-means algorithm is O(k · I ·N ·m2), where
k is the number of clusters and I is the number of iterations used.

7.2.2.2 Second approach

In the previous approach we have not take into account the power of
Gaussian Process Regression. We can actually predict the function value at
every test point x∗ with the following formula:

p(f ∗|y) = N (f ∗|Bµ, BABT +K∗∗ −BKT
∗u) (7.4)

where q(u) = N (u|µ,A), B = K∗uK
−1
uu . We want to predict only the mean

value of the function’s random variable. This prediction costs O(m) which is
too expensive.

The idea here is to approximate the predictive mean f(x∗) taking into
account only the first inducing point uL to the left of x∗, and the first inducing
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point uR to the right of x∗. We approximate f(x∗) at test point x∗ ∈ (uL, uR)
between two inducing points uL and uR with:

f(x∗) ≈
[
k(x∗, uL) k(x∗, uR)

]
·

[
k(uL, uL) k(uL, uR)
k(uR, uL) k(uR, uR)

]−1
·

[
uL
uR

]
(7.5)

For ease of explanation, we assume that we have a Gaussian kernel (RBF)
and a zero-mean GP prior. The distance works for every simple stationary
kernel and a constant-mean GP prior. The formula 7.5 with the RBF kernel
becomes:

f(x∗) ≈ A exp

(
−(x∗ − xuL)2

2`2

)
+B exp

(
−(x∗ − xuR)2

2`2

)
(7.6)

where A,B ∈ R. The formula 7.6 gives us an approximation to f(x∗) in
constant time O(1).

We wish now to use this formula to improve our distance (the simple
approach). To do that we have to use (predict) more points to better capture
the shape of each time series.

Figure 7.3: The case when A · B > 0. The blue and green curves are the
Gaussians, and the red one is the predictive curve. The black line shows us
the intersection point.

The formula 7.6 consists of two Gaussian components with centers xuL
and xuR , respectively. We want to find the intersection point of these two
Gaussians and predict the function value at that input. We can find that
point using a simple modified version of binary search at (xuL , xuR). Running
binary search, until a given precision is reached, costs us practically O(1).
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Figure 7.4: The case when A · B < 0. The blue and green curves are the
Gaussians, and the red one is the predictive curve. The two Gaussians don’t
intersect.

The case when A ·B > 0 is illustrated in Figure 7.3. As we can see, the
extra predicted point better captures the shape of the curve between the
centers of the two Gaussians.

When A ·B < 0, the two Gaussian components don’t intersect as we can
see in Figure 7.4. The solution is to reflect the negative component over x-axis
and then to find the intersection point. This is illustrated in Figure 7.5.

The new distance is also based on Dynamic Time Warping with cost
function:

c(xi, yj) = d∗(xi, yj)
2 + α · d∗(txi , tyj)2 (7.7)

The distance d∗ uses the predictions as presented above to better compare
the local shapes of two inducing points. Let pred(xl, xr) be the predicted value
at the intersection point between inducing points xl and xr. The distance d∗
is:

d∗(xi, yj) = |xi − yj|+ |pred(xi−1, xi)− pred(yj−1, yj)|
+ |pred(xi, xi+1)− pred(yj, yj+1)|

The distance d∗ between timestamps can be computed accordingly with
the inputs of the predicted values. It is obvious that the extra predicted
points don’t affect the complexity of the distance which is again O(m2).
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Figure 7.5: The case when A · B < 0. The blue and green curves are the
Gaussians, and the red one is the predictive curve. The reflection of the green
Guassian gives us the intersection point.

As an averaging method we can use DTW Barycenter Averaging with
a small modification. For every coordinate of the temporary average (at
every DBA’s iteration) we now compute 3 values, the new central value (the
"former" inducing point), the left and the right value (the "former" predicted
points). The new central value is computed by taking the barycenter of all
central values of the association, created by the alignment under the new
distance. The new left value is computed by taking the barycenter of all left
values of the association. The right value is computed accordingly.

After the computation of the temporary average, we should ensure that
the right value of a central point xi−1R , which is pred(xi−1R), is equal with
the left value of the next central point xiL , which is pred(xiL). To solve this
continuity problem we just take the average of the two values:

pred′(xi−1R) = pred′(xiL) =
pred(xi−1R) + pred(xiL)

2
(7.8)

The same procedure is followed for the timestamps. The complexity of
this modified version of DBA is O(I ·N ·m2). Therefore, the total complexity
of the k-means algorithm is O(k · I ·N ·m2).

7.2.3 Complexity

Both distances have the same time complexity, and thus we do a single
computational analysis.
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In the first stage of our framework, Sparse Gaussian Process Regression is
used for each time series. SGPR runs in O(T ·m2), and thus the first stage
has a time complexity of O(N · T ·m2).

In the second stage, k-means algorithm is applied which has a time
complexity of O(k · I ·N ·m2). Consequently, Sparse Gaussian Processes for
Clustering framework has a total complexity of:

O(N · T ·m2 + k · I ·N ·m2) (7.9)

It is obvious that the time complexity of our framework depends directly
on the number of inducing points used. It has been confirmed over many
experiments that we can approximate time series using a much smaller
number of inducing points than the series length. A particular case, which
acts as a strong indication of using a small number of inducing points, is
that for normally distributed inputs with the Squared Exponential kernel,
m = O(logT ) suffices (see Chapter 6). Therefore, we use m = x · logT
inducing points for our framework, where x� T , and the total complexity
becomes:

O(N · T · log2T + k · I ·N · log2T ) (7.10)

Consequently, SGPC has a time complexity an order lower than the
complexity of k-means algorithm with DTW.
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Chapter 8

Experimental study

In this chapter, we compare the proposed SGPC framework to the k-means
algorithm with DTW applied on the whole time series data. The k-means
algorithm with DTW and DBA is a state of the art method for time series
shape-based clustering [36]. Unfortunately, we study experimentally only the
first distance proposed (simple approach) due to an implementation issue.
The existing implementation of DBA uses a majorize-minimize algorithm that
converges to necessary conditions of optimality, which is better in practice
than the classical DBA’s implementation. The modification of this majorize-
minimize algorithm for the second proposed distance is, if possible, far from
trivial. The simple distance gives us very good clustering results as we show
in this chapter. We believe that an implementation of the second distance
with the modification of the classical DBA’s algorithm will not significantly
improve our results (if they improve them at all), and thus we omit such a
study.

A wide range of datasets is used to evaluate the efficiency of the proposed
approach, in the context of clustering. We first describe the experimental
settings for the evaluation of both methods (Section 8.1), and then present the
results obtained (Section 8.2). Finally, we discuss some difficulties encountered
in the experimental study (Section 8.3).

8.1 Experimental settings
In this section, we provide the details about our experimental settings to

make all the experiments reproducible.
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Dataset NB. CLUSTER NB. TS. TS. LENGTH
Beef 5 60 470

ECG200 2 200 96
Arrowhead 3 211 251

Meat 3 120 448
Plane 7 210 144

ProximalPhalanxTW 6 605 80
Fish 7 350 463

DiatomSizeReduction 4 322 345
DistalPhalanxTW 6 539 80

Trace 4 200 275
Lightning7 7 143 319

ECGFiveDays 2 884 136
SonyAIBORobotSurface 2 621 70

OSULeaf 6 206 242
Coffee 2 56 286

Table 8.1: Datasets description.

8.1.1 Data description

While it is easy to measure the performance of supervised learning al-
gorithms, such as algorithms for classification problems, it is often hard to
measure the performance of unsupervised learning algorithms, such as clus-
tering algorithms. The reason for this, is that it is subjective what makes
a clustering ’good’. The performance of a clustering depends on the goal
and criteria of the clustering and may therefore differ per application. Our
approach is to quantify clustering quality by using classification datasets.

For this, we use the largest public collection of class-labeled time series
datasets, namely, the UCR time series collection [20]. These datasets are
annotated and every sequence can belong to only one class, which, in the
context of clustering, should be interpreted as the cluster where the sequence
belongs. We work with 15 of these datasets, both synthetic and real, which
span several different domains. Each dataset is univariate and contains
from 56 to 884 sequences. The sequences in each dataset have equal length,
but from one dataset to another the sequence length varies from 70 to 470.
Table 8.1 indicates for each dataset: the number of clusters it includes (NB.
CLUSTER), the number of instances (NB. TS.) and the time series length
(TS. LENGTH).

8.1.2 Data preprocessing

It is important to decide on which preprocessing should be applied to the
data. We apply scaling, since we want to cluster based on similar shapes
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in the time series. Two common ways of scaling are normalization and
standardization. In normalization between −1 and 1, the data is scaled into
a range of [−1, 1] by using the following formula:

X ′ = 2 · X −Xmin

Xmax−Xmin
− 1 (8.1)

In standardization, the data is scaled to have mean 0 and a standard deviation
of 1. This is done by using the following formula:

X ′ =
X − µ
σ

(8.2)

where µ represents the mean and σ the standard deviation of all values
in vector X. We scale time series values to the interval [−1, 1] and also
standardize the time-axis with mean zero and standard deviation one.

8.1.3 Platform & Implementation

We run our experiments on an Intel Core i5-9300H processor running at
2,4 GHz with 8 GB of RAM. Both approaches are implemented in Python.
We use GPyTorch library [25] for implementing Sparse Gaussian Process
Regression (SGPR) and Tslearn package [66] for k-means algorithm with
DTW as a similarity measure and DBA as an averaging method.

8.1.4 Metrics

We compare the two approaches on both accuracy and runtime. For
accuracy, we use an external index to measure the similarity of formed
clusters to the externally supplied class labels (ground truth). In particular,
we use Adjusted Rand Index (ARI) [86] to evaluate clustering accuracy over
the fused training and test sets of each dataset. Here, we don’t report standard
deviations since their values are similar for both methods.

• Rand Index (RI): computes a similarity measure between two clus-
terings by considering all pairs of samples and counting pairs that are
assigned in the same or different clusters in the predicted and true clus-
terings. RI is defined as RI = TP+TN

TP+TN+FP+FN
, where TP is the number

of time series pairs that belong to the same class and are assigned to
the same cluster, TN is the number of time series pairs that belong to
different classes and are assigned to different clusters, FP is the number
of time series pairs that belong to different classes but are assigned to
the same cluster, and FN is the number of time series pairs that belong
to the same class but are assigned to different clusters.
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• Adjusted Rand Index (ARI): RI does not take a constant value
(such as zero) for two random clustering. ARI is a corrected-for-chance
version of the RI which works better than RI and many other indices.
The Adjusted Rand index is thus ensured to have a value close to 0.0 for
random labeling independently of the number of clusters and samples
and exactly 1.0 when the clusterings are identical.

As both methods evaluated are nondeterministic, we report the average
Adjusted Rand Index (ARI) over 20 runs; in every run we use a different
random initialization.

For runtime, we compute CPU time utilization and report time ratios for
our comparison.

8.1.5 Parameter & Initialization settings

We use m = x · logT inducing points for our SGPC framework, where T
is the time series length and x = 1, 2, 3, 4, 5. We choose a constant-mean
GP prior and a Matérn kernel function with parameter ν = 1.5. We use a
modified version of DTW with a parameter α (simple approach). We conduct
our experiments with parameters α = [0, 10−3, 10−2, 10−1, 1, 10].

We use the Adam algorithm to optimize the parameters of SGPR with
learning rate lr = 0.1 for the GP parameters (kernel + noise) and lr = 0.1/x
for the inducing point locations. For the initialization of inducing points
locations, m equally spaced points in time are used.

All initializations used in k-means and DBA algorithms are random. The
maximum number of iterations of the k-means algorithm for a single run is
50 and DBA’s 100.

8.2 Experimental results
In this section, we present our experimental results. We compare the two

approaches mentioned on both clustering quality (Section 8.2.1) and runtime
(Section 8.2.2).

8.2.1 Clustering quality

We compare the Adjusted Rand Index (ARI) of the two methods for 15
UCR datasets. We ran experiments for the different values of the number
of inducing points m = x · logT , where x = [1, 2, 3, 4, 5], and the parameter
α = [0, 10−3, 10−2, 10−1, 1, 10].
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Metric
Adjusted Rand Index

(ARI)
k-means SGPR+k-means

(m=3logT)

Dataset a=1 worst best
Beef 0.084 0.1 0.083 0.11

ECG200 0.13 0.12 0.11 0.2
Arrowhead 0.11 0.22 0.064 0.22

Meat 0.47 0.44 0.44 0.47
Plane 0.72 0.7 0.68 0.73

ProximalPhalanxTW 0.41 0.35 0.33 0.41
Fish 0.25 0.24 0.14 0.24

DiatomSizeReduction 0.28 0.83 0.59 0.83
DistalPhalanxTW 0.44 0.44 0.34 0.44

Trace 0.72 0.78 0.65 0.84
Lightning7 0.22 0.3 0.21 0.3

ECGFiveDays 0.11 0.1 0.094 0.14
SonyAIBORobotSurface 0.26 0.28 0.28 0.6

OSULeaf 0.12 0.12 0.1 0.15
Coffee 0.24 0.12 0.079 0.2

Table 8.2: Adjusted Rand Index scores for m = 3 · logT .

Here we report the experimental results for m = 3 · logT inducing points.
Table 8.2 indicates the best and the worst ARI scores among the scores for
the different values of α, and the ARI score for the constant value α = 1. As
we can see the results are very good and in some datasets, such as Diatom
Size Reduction, even impressive. The bad results (worst ARI) for the datasets
Arrowhead and Coffee are given by low values of α. The distance for low
values of α can match many points of a time series to one point of another
series. When the total points are few, this may cause unwanted results.

The results for m = x · logT , where x = 2, 4 and 5 are similar with a few
exceptions. These low scores (exceptions) are given by low or high values of
the parameter α. The reasons that high values of the parameter can cause
problems are the following. Our distance becomes a lock-step measure and
also the optimizer, due to the non-convexity of the objective function, can
fail to allocate the inducing points correctly. The clustering results for x = 1
are similar but quite unstable varying α, which is expected. To obtain both
good clustering quality and low running time, we propose to use x = 2, 3, or
4 for the number m = x · logT of inducing points.

The datasets that overall are difficult for our method are Coffee, Fish and
Meat. The proposed framework achieved lower ARI scores (for all values of
α) on these datasets for most cases (number of inducing points). The full
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SGPR+k-means
(m=xlogT)

x=1 x=2 x=3 x=4 x=5
a=1 best a=1 best a=1 best a=1 best a=1 best

Winning
performances 7 11 9 12 8 13 11 12 8 12

Table 8.3: Winning performances for different numbers of inducing points.

results can be found in Appendix A.
We report in Table 8.3 only the number of datasets that our method has

better ARI score than the k-means algorithm (winning performances) when
taking the best ARI score for the different numbers of α and the ARI score
for α = 1. As we can see our framework gives good clustering results.

8.2.2 Runtime

We report time ratios between the two approaches. We remind that the
k-means algorithm with DTW and DBA on the whole time-series has time
complexity:

O(k · I ·N · T 2) (8.3)

and our framework has a total complexity of:

O(N · T · log2T + k · I ·N · log2T ) (8.4)

We can see that our framework is asymptotically faster. We let Tk be
the CPU utilization time of the k-means algorithm on the whole time series,
Ta be the CPU utilization time of the modelling stage (SGPR) and Tb be
the CPU utilization time of the clustering stage of our framework. The first
stage of our framework is a preprocessing step, and thus we report two ratios.
We report the ratio Tk/Tb comparing the clustering stages and also the ratio
Tk/(Ta + Tb) comparing the total runtime of the methods.

Table 8.4 shows that our framework is significantly faster in most cases
even though the datasets are relatively small. The 4 datasets that the classical
method is approximately 2 times faster than our framework have the smallest
lengths among the datasets (70, 80, 80, 96).

8.3 Discussion
Here we discuss some of the problems encountered when conducting our

experiments. In the following, we report the issues we faced and the proposed
solutions:
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Dataset NB. TS. TS. LENGTH Ratio
Tk/Tb

Ratio
Tk/(Ta+Tb)

Beef 60 470 524.9 38.4
ECG200 200 96 7 0.48

Arrowhead 211 251 161 14.1
Meat 120 448 148.7 9.7
Plane 210 144 26 1.9

ProximalPhalanxTW 605 80 5.1 0.6
Fish 350 463 229.7 32.3

DiatomSizeReduction 322 345 219.1 22.4
DistalPhalanxTW 539 80 4.7 0.65

Trace 200 275 148.6 11.9
Lightning7 143 319 108.7 15.2

ECGFiveDays 884 136 70.7 5.2
SonyAIBORobotSurface 621 70 5.7 0.57

OSULeaf 206 242 272.5 38.3
Coffee 56 286 163.4 11

Table 8.4: Experimental CPU time ratios.

• Initialization of inducing points locations: due to the non-convexity
of the SGPR’S objective function for parameter learning, we get differ-
ent inducing point locations for different initializations (local optima).
The solution proposed is to initialize the inducing point locations of
each time series in the same way. We can either initialize the inducing
points with equally spaced points in time, or initialize them randomly
with the same seed.

• Adam’s learning parameter: SGPR’s objective function for the
inducing points locations is sensitive to the choice of Adam’s learning
rate. When the learning rate is too large, we might get some inducing
points outside the range of the training data on the time-axis. When it
is too small, the learning becomes local in the sense that each inducing
point sculpts out the approximate posterior in a small region of the
input space around it. The learning rate should be selected carefully.

• Normalizing/Standardizing the data: GPyTorch requires all data
(timestamps included) to be normalized/standardized since it expects
all computed distances to be on the order of 1. That’s the reason we
standardize our timestamps.
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Chapter 9

Conclusion

In this thesis, we provided a novel two-stage framework for shape-based
time series clustering using Sparse Gaussian Process Regression. The proposed
framework leads to fast, scalable and accurate clustering. Experiments
conducted on 15 time series datasets show that our framework is state-of-
the-art compared to a widely used existing method. We believe that using
Gaussian Processes for time series clustering is a promising research direction
for the future. The next step would be to design appropriate distance measures
for more expressive kernel functions. More expressive kernels would allow us
to model more complex time series and thus extend the clustering power of
our framework.
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Appendix A

More experimental results

In the following, we report the experimental results for m = x · logT
inducing points, where x = [1, 2, 4, 5]. We report the best and the worst ARI
scores among the scores for the different values of α, and the ARI score for
the constant value α = 1.
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Metric
Adjusted Rand Index

(ARI)
k-means SGPR+k-means

(m=logT)

Dataset a=1 worst best
Beef 0.084 0.11 0.091 0.11

ECG200 0.13 0.16 0.08 0.16
Arrowhead 0.11 0.17 0.063 0.17

Meat 0.47 0.23 0.12 0.48
Plane 0.72 0.67 0.44 0.68

ProximalPhalanxTW 0.41 0.4 0.27 0.4
Fish 0.25 0.22 0.11 0.22

DiatomSizeReduction 0.28 0.32 0.25 0.39
DistalPhalanxTW 0.44 0.43 0.21 0.48

Trace 0.72 0.7 0.49 0.81
Lightning7 0.22 0.31 0.13 0.31

ECGFiveDays 0.11 0.079 0.079 0.19
SonyAIBORobotSurface 0.26 0.3 0.12 0.65

OSULeaf 0.12 0.087 0.057 0.094
Coffee 0.24 0.3 0.07 0.71

Table A.1: Adjusted Rand Index scores for m = logT .

Metric
Adjusted Rand Index

(ARI)
k-means SGPR+k-means

(m=2logT)

Dataset a=1 worst best
Beef 0.084 0.097 0.087 0.12

ECG200 0.13 0.1 0.1 0.22
Arrowhead 0.11 0.15 0.075 0.18

Meat 0.47 0.17 0.16 0.2
Plane 0.72 0.69 0.69 0.77

ProximalPhalanxTW 0.41 0.42 0.42 0.45
Fish 0.25 0.21 0.16 0.21

DiatomSizeReduction 0.28 0.47 0.42 0.49
DistalPhalanxTW 0.44 0.44 0.31 0.48

Trace 0.72 0.76 0.61 0.86
Lightning7 0.22 0.29 0.23 0.29

ECGFiveDays 0.11 0.088 0.088 0.12
SonyAIBORobotSurface 0.26 0.57 0.14 0.7

OSULeaf 0.12 0.12 0.12 0.14
Coffee 0.24 0.07 0.07 0.22

Table A.2: Adjusted Rand Index scores for m = 2 · logT .
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Metric
Adjusted Rand Index

(ARI)
k-means SGPR+k-means

(m=4logT)

Dataset a=1 worst best
Beef 0.084 0.096 0.084 0.12

ECG200 0.13 0.12 0.11 0.14
Arrowhead 0.11 0.21 0.073 0.21

Meat 0.47 0.44 0.42 0.46
Plane 0.72 0.73 0.66 0.74

ProximalPhalanxTW 0.41 0.43 0.33 0.44
Fish 0.25 0.25 0.13 0.25

DiatomSizeReduction 0.28 0.77 0.43 0.86
DistalPhalanxTW 0.44 0.37 0.32 0.41

Trace 0.72 0.81 0.75 0.89
Lightning7 0.22 0.28 0.24 0.3

ECGFiveDays 0.11 0.11 0.1 0.17
SonyAIBORobotSurface 0.26 0.26 0.26 0.5

OSULeaf 0.12 0.12 0.093 0.15
Coffee 0.24 0.12 0.1 0.16

Table A.3: Adjusted Rand Index scores for m = 4 · logT .

Metric
Adjusted Rand Index

(ARI)
k-means SGPR+k-means

(m=5logT)

Dataset a=1 worst best
Beef 0.084 0.1 0.086 0.13

ECG200 0.13 0.084 0.084 0.15
Arrowhead 0.11 0.22 0.12 0.22

Meat 0.47 0.37 0.33 0.38
Plane 0.72 0.71 0.63 0.74

ProximalPhalanxTW 0.41 0.41 0.33 0.42
Fish 0.25 0.26 0.12 0.26

DiatomSizeReduction 0.28 0.56 0.11 0.84
DistalPhalanxTW 0.44 0.43 0.34 0.43

Trace 0.72 0.85 0.61 0.89
Lightning7 0.22 0.3 0.22 0.3

ECGFiveDays 0.11 0.1 0.1 0.17
SonyAIBORobotSurface 0.26 0.25 0.25 0.48

OSULeaf 0.12 0.12 0.096 0.15
Coffee 0.24 0.16 0.11 0.19

Table A.4: Adjusted Rand Index scores for m = 5 · logT .
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