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Abstract  

 

The rising popularity of monoclonal antibodies used as therapeutic proteins has created a 

demand for agile, robust bioprocesses. However, the biological and modelling challenges 

presented in upstream and downstream processes, as well as the interplay between them 

demand an extensive knowledge of the processes that can only be achieved through a quality 

by design approach. More specifically, downstream purification processes involved in 

monoclonal antibody biomanufacturing present many challenges in modeling, optimization, 

and control, due to the increased complexity of the phenomena describing them. In this 

thesis, the development of computational tools is proposed as a solution to those challenges, 

for a specific twin-column countercurrent solvent gradient purification ion-exchange 

chromatography process, in order to overcome the complexity and time consumption of the 

processes, as well as analyze and optimize over the degrees of freedom. A data-based 

approach is deployed to simplify the complex model into generic data-driven models that 

reduce complexity with excellent accuracy and capabilities to reproduce the physical process. 

Through a series of model simulations and sensitivity analyses, a design space for the 

multicolumn countercurrent solvent gradient purification ion-exchange chromatography is 

identified and a data-driven model of the process is created. The dissertation outlines the 

motivation and the incentives, presents the proposed methodology, and explains the 

application of the approach with a detailed discussion of the results and their significance. 

 

 

 

 

 

 

 

 

 

 

 

 



Περίληψη 

 

Η αυξανόμενη δημοτικότητα των μονοκλωνικών αντισωμάτων που χρησιμοποιούνται ως 

θεραπευτικές πρωτεΐνες έχει δημιουργήσει μια ζήτηση για ευέλικτες και σταθερές 

βιοδιεργασίες. Ωστόσο, οι βιολογικές προκλήσεις και οι προκλήσεις μοντελοποίησης που 

παρουσιάζονται στις διεργασίες παραγωγής και επεξεργασίας των αντισωμάτων, καθώς και 

η αλληλεπίδραση μεταξύ τους, απαιτούν εκτεταμένη γνώση των διαδικασιών, η οποία 

μπορεί να αποκτηθεί μόνο μέσω μιας ποιοτικής προσέγγισης σχεδιασμού. Πιο 

συγκεκριμένα, οι διαδικασίες καθαρισμού που εμπλέκονται στη βιοπαραγωγή 

μονοκλωνικών αντισωμάτων παρουσιάζουν πολλές προκλήσεις στη μοντελοποίηση, τη 

βελτιστοποίηση και τον έλεγχο, λόγω της αυξημένης πολυπλοκότητας των φαινομένων που 

τις διέπουν. Σε αυτή τη διπλωματική εργασία, προτείνεται η ανάπτυξη υπολογιστικών 

εργαλείων ως μέσο αντιμετώπισης των προκλήσεων αυτών, για να ξεπεραστεί η 

πολυπλοκότητα και ο απαιτούμενος υπολογιστικός χρόνος μιας χρωματογραφίας 

ιοντοανταλλαγής δύο στηλών, καθώς και να επιτευχθεί η ανάλυση και βελτιστοποίηση της 

διεργασίας με βάση τους βαθμούς ελευθερίας της. Χρησιμοποιείται μια προσέγγιση βάσει 

δεδομένων για την απλοποίηση του σύνθετου μοντέλου σε γενικά μοντέλα βάσει 

δεδομένων, που μειώνουν την πολυπλοκότητα του συστήματος, διατηρώντας εξαιρετική 

ακρίβεια, και επιδεικνύουν δυνατότητες αναπαραγωγής της φυσικής διεργασίας. Μέσω μιας 

σειράς προσομοιώσεων και αναλύσεων ευαισθησίας, καταστρώνεται ένας «χώρος» 

βέλτιστων συνθηκών λειτουργίας για την χρωματογραφία ιοντοανταλλαγής που 

χρησιμοποιείται για τον καθαρισμό των μονοκλωνικών αντισωμάτων και κατασκευάζεται 

ένα μοντέλο βάσει δεδομένων της διαδικασίας με τη χρήση μηχανικής μάθησης. Η 

διπλωματική αυτή εργασία περιγράφει τα κίνητρα που οδήγησαν σε αυτή την προσέγγιση, 

παρουσιάζει την προτεινόμενη μεθοδολογία και εξηγεί την εφαρμογή της προσέγγισης, με 

μια λεπτομερή συζήτηση των αποτελεσμάτων και της σημασίας τους. 

 

 

 

 

 

 

 

 



Contents 

Design Space Identification and Data-Driven Modelling of Downstream Bioprocess .............. 0 

Ευχαριστίες ................................................................................................................................ 2 

Abstract ...................................................................................................................................... 3 

Περίληψη ................................................................................................................................... 4 

List of Figures ............................................................................................................................. 7 

List of Tables ............................................................................................................................ 10 

Nomenclature .......................................................................................................................... 11 

1. Introduction ..................................................................................................................... 12 

2. Literature Review ............................................................................................................. 13 

2.1. Monoclonal Antibody Biomanufacturing ................................................................ 13 

2.1.1. Upstream Process .............................................................................................. 13 

2.1.2. Downstream Process ......................................................................................... 16 

2.1.3. Biological Challenges .......................................................................................... 18 

2.1.4. Modelling Challenges ......................................................................................... 18 

2.2. Quality by Design ..................................................................................................... 20 

2.3.1. Critical Quality Attributes .................................................................................. 22 

2.3.2. Critical Process Parameters ............................................................................... 30 

2.3.3. Control Strategy and Control System ................................................................ 31 

3. Process System Engineering Background and Motivation .............................................. 32 

3.1. Process System Engineering Advances in Bioprocess Modelling ............................ 32 

3.1.1. Process Modelling .............................................................................................. 32 

3.2. Motivation, Aim and Objectives .............................................................................. 38 

4. Proposed Methodology and Model Description ............................................................. 40 

4.1. Methodology ............................................................................................................ 40 

4.1.1. Model Development and Simulation ................................................................. 40 

4.1.2. Sensitivity Analysis ............................................................................................. 40 

4.1.3. Data-Driven Modelling ....................................................................................... 42 

4.2. Model Analysis ......................................................................................................... 42 

4.2.1. The Multicolumn Countercurrent Solvent Gradient Purification ...................... 42 

4.2.2. Cyclic Steady State Operation ............................................................................ 47 

5. Results and Discussion ..................................................................................................... 48 



5.1. Model Simulation ..................................................................................................... 48 

5.2. Digital Design Space Identification .......................................................................... 49 

5.2.1. Local Sensitivity Analyses ................................................................................... 51 

5.2.2. Global Sensitivity Analysis and Design Space Identification .............................. 67 

5.3. Data-Driven Modelling ............................................................................................. 73 

6. Conclusions and Future Work .......................................................................................... 82 

References ............................................................................................................................... 84 

Appendix A: First ANN Prediction and Validation Diagrams ................................................... 95 

Appendix B: Second ANN Prediction Diagrams ....................................................................... 98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Figures 

Figure 1: Schematic manufacturing process of monoclonal antibodies from cell culture, 

adapted from Sommerfeld and Strube .................................................................................... 13 

Figure 2: A typical upstream process ....................................................................................... 14 

Figure 3: Summary of upstream process' optimization parameters ....................................... 14 

Figure 4: Flowchart of downstream processing ...................................................................... 17 

Figure 5: Description of the Quality by Design (QbD) approach ............................................. 21 

Figure 6: Presentation of Critical Quality Attributes ............................................................... 21 

Figure 7: Schematic representation of white-box, black-box and grey-box models ............... 33 

Figure 8: Methodology ............................................................................................................. 40 

Figure 9: Comparison between batch and MCSGP Chromatographic processes. ................... 44 

Figure 10: Schematic overview of a complete cycle of the twin-column MCSGP process, 

adapted from Krättli et al. ....................................................................................................... 45 

Figure 11: Average error (orange) on the monitored process variables across the samples and 

average time taken (blue) to complete one simulation of a sample with different number of 

collocation points. .................................................................................................................... 48 

Figure 12: Concentration of product at the end of the column against time for 10 process 

cycles. The black dash-dotted lines represent the end and start of a new cycle. ................... 49 

Figure 13: Weak Impurities’ feed concentration effect on Purity and Yield ........................... 52 

Figure 14: Product’s feed concentration effect on Purity and Yield ....................................... 53 

Figure 15: Strong Impurities’ feed concentration effect on Purity and Yield .......................... 54 

Figure 16: Maximum flowrate’s (QMAX)   effect on Purity and Yield ........................................ 56 

Figure 17: Effect of inlet flowrate of the column executing the gradient elution during phase 

I1 (Q1) on Purity and Yield. ....................................................................................................... 57 

Figure 18: Effect of inlet flowrate of the column executing the gradient elution (Q2) during 

phase I2 on Purity and Yield. ................................................................................................... 57 

Figure 19: Effect of modifier’s feed concentration (Cfeed,M) on Purity and Yield ..................... 60 

Figure 20: Effect of initial modifier’s concentration for the column executing the gradient 

elution (CM,1) on Purity and Yield. ............................................................................................ 60 

Figure 21: Effect of initial modifier’s concentration for the column executing the recycling and 

feeding tasks (CM,2) on Purity and Yield. .................................................................................. 61 

Figure 22: Column length’s effect on Purity and Yield ............................................................ 63 

Figure 23: Column length to diameter rate’s effect on Purity and Yield ................................. 64 

Figure 24: Effect of the column porosity for the modifier on Purity and Yield ....................... 65 

Figure 25: Effect of the column porosity for the feed components on Purity and Yield ........ 66 

Figure 26: Global sensitivity analysis first-order indices ......................................................... 67 

Figure 27: Design Space of feed composition. Blue markers indicate that the constrains are 

satisfied and orange markers indicate that they are violated. ................................................ 68 

Figure 28: Design Space of the flowrates during the interconnecting phases I1 and I2. Blue 

markers indicate that the constrains are satisfied and orange markers indicate that they are 

violated. ................................................................................................................................... 69 



Figure 29: Design Space of the initial concentrations of the modifier for each column. Blue 

markers indicate that the constrains are satisfied and orange markers indicate that they are 

violated. ................................................................................................................................... 70 

Figure 30: Design Space of the column dimensions. Blue markers indicate that the constrains 

are satisfied and orange markers indicate that they are violated. ......................................... 71 

Figure 31: Design Space of the column porosity for each component of the process. Blue 

markers indicate that the constrains are satisfied and orange markers indicate that they are 

violated. ................................................................................................................................... 72 

Figure 32: Mean squared error against time for the first ANN. .............................................. 74 

Figure 33: ANN predictions of the solid phase concentration of the product against the actual 

values calculated by gPROMS. ................................................................................................. 75 

Figure 34: The solid phase concentration of the product throughout 10 process cycles 

calculated by the ANN and by gPROMS. .................................................................................. 76 

Figure 35: Mean squared error against time for the second ANN. ......................................... 77 

Figure 36: ANN predictions of the liquid phase concentration of the product against the actual 

values calculated by gPROMS. ................................................................................................. 78 

Figure 37: The liquid phase concentration of the modifier throughout 10 process cycles 

calculated by the ANN and by gPROMS. .................................................................................. 79 

Figure 38: The liquid phase concentration of the weak impurities throughout 10 process cycles 

calculated by the ANN and by gPROMS. .................................................................................. 79 

Figure 39: The liquid phase concentration of the product throughout 10 process cycles 

calculated by the ANN and by gPROMS. .................................................................................. 80 

Figure 40: The liquid phase concentration of the strong impurities throughout 10 process 

cycles calculated by the ANN and by gPROMS. ....................................................................... 81 

Figure 41: ANN predictions of the solid phase concentration of the modifier against the actual 

values calculated by gPROMS. ................................................................................................. 95 

Figure 42: The solid phase concentration of the modifier throughout 10 process cycles 

calculated by the ANN and by gPROMS. .................................................................................. 95 

Figure 43: ANN predictions of the solid phase concentration of the weak impurities against 

the actual values calculated by gPROMS. ................................................................................ 96 

Figure 44: The solid phase concentration of the weak impurities throughout 10 process cycles 

calculated by the ANN and by gPROMS. .................................................................................. 96 

Figure 45: ANN predictions of the solid phase concentration of the strong impurities against 

the actual values calculated by gPROMS. ................................................................................ 97 

Figure 46: The solid phase concentration of the strong impurities throughout 10 process 

cycles calculated by the ANN and by gPROMS. ....................................................................... 97 

Figure 47: ANN predictions of the liquid phase concentration of the modifier against the actual 

values calculated by gPROMS. ................................................................................................. 98 

Figure 48: ANN predictions of the liquid phase concentration of the weak impurities against 

the actual values calculated by gPROMS. ................................................................................ 98 



Figure 49: ANN predictions of the liquid phase concentration of the strong impurities against 

the actual values calculated by gPROMS. ................................................................................ 99 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Tables 

Table 1: Inputs considered for the local and global sensitivity analyses. ................................ 50 

Table 2: Outputs calculated in the local and global sensitivity analyses. ................................ 51 

Table 3: First-order indices for the feed concentration .......................................................... 55 

Table 4: Total effect indices for the feed concentration ......................................................... 55 

Table 5: First-order indices for the flowrate ............................................................................ 58 

Table 6: Total effect indices for the flowrate .......................................................................... 58 

Table 7: First-order indices for the modifier concentrations .................................................. 62 

Table 8: Total effect indices for the modifier concentrations ................................................. 62 

Table 9: First-order indices for the column length .................................................................. 64 

Table 10: Total effect indices for the column length ............................................................... 64 

Table 11: First-order indices for the column porosity ............................................................. 66 

Table 12: Total effect indices for the column porosity ............................................................ 66 

Table 13: Mean squared error and coefficient of determination for each output of the first 

ANN. ......................................................................................................................................... 74 

Table 14: Mean squared error and coefficient of determination for each output of the second 

ANN. ......................................................................................................................................... 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Nomenclature 
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1. Introduction 

 

Monoclonal antibodies (mAbs) constitute one of the most rapidly increasing fields in 

pharmaceutical industry. MAbs are “Y” shaped molecules, consisting of two light and two 

heavy chains connected by disulfide bonds. They are able to identify or induce a neutralizing 

immune response when they identify foreign bodies such as bacteria, viruses, or tumour cells. 

Owing to their specificity, mAbs have a broad use in tumoral therapy and diagnosis, for 

example anti-cancer applications [1]. MAbs used against cancer cells are modified to deliver 

a toxin, radioisotope, cytokine or other active conjugate [2]. Furthermore, they are used for 

the treatment of autoimmune diseases, like Crohn’s disease and sexually transmitted 

infections (STIs) [3]. It is a rapidly evolving class of drugs, that many scientists are working on, 

by targeting the creation of new therapeutic molecules, as well as the improvement of the 

existing ones [4]. 

A significant disadvantage however of monoclonal antibodies is their production cost coupled 

with the problems of mass production. To be effective they must be administered in large 

quantities, while their production requires huge amounts of cultures from mammalian cells 

followed by expensive techniques, and specialized facilities [5]. Despite that, they are among 

the top-ranked products in the on-going increasing market of high value biologics. In fact, in 

comparison to other biotechnological drugs, their sales are considered to build twice as quick. 

As per market projections, the worth of the mAb market is anticipated to increase up to 75 

billion USD by 2025 [6].  Their demand relies profoundly upon the patient populace and their 

expense can rise up to $35000 P/A per patient for mAbs treating cancer conditions [7].  

Additionally, their demand in the past year has skyrocketed, since several neutralizing mAbs 

have proven to be effective in dealing with the COVID-19 (SARS-CoV-2) pandemic [8]. Amidst 

the current COVID-19 pandemic, an assortment of prophylactic and therapeutic treatments 

is being created or repurposed to battle COVID-19. In fact, quite a few neutralizing 

monoclonal antibodies (mAbs) have passed the developmental state and are currently under 

assessment in clinical trials. They are considered to be one of the most efficient and innovate 

ways to guarantee passive immunization from the infectious disease. Furthermore, scientists 

are currently trying to develop treatments based on specific mAbs to block and/or neutralize 

SARS-CoV-2 in infected patients. Some of these treatments have been already administered 

in hospitals whereas others are still being evaluated [9].  

In light of these recent events, the optimization of the mAbs manufacturing process is of 

utmost importance, in order to increase the production and reduce the high costs presented. 

However, experimental optimization of the process, especially in the case of downstream 

processes, proves to be extremely expensive and challenging, which leads to the search of 

alternative methods [10]. It is for that reason that in the past years the focus has shifted to 

the development of computational tools to help optimize and control the mAbs 

manufacturing process. 



2. Literature Review 

2.1. Monoclonal Antibody Biomanufacturing  

 

Due to the ever-increasing demand of monoclonal antibodies, it is most essential to reduce 

their production costs. For that matter, emphasis has been given to the optimisation of both 

upstream and downstream processes. The upstream process (USP) involves all the steps 

included in the production of monoclonal antibodies in cell culture systems. Consequently, 

the downstream process (DSP) focuses mainly on the purification of the product collected 

from the bioreactor and the removal of any impurities from the final product. Both processes 

are to be investigated in the following section and for that reason a schematic approach of a 

typical mAb manufacturing is presented:  

 

 

Figure 1: Schematic manufacturing process of monoclonal antibodies from cell culture, adapted from Sommerfeld and 
Strube [11] 

 

2.1.1. Upstream Process 

 

Upstream processing refers to the first step of mAb production, in which biomolecules are 

grown in bioreactors. Mostly utilised for their production are mammalian cell lines.  Using 

batch and fed batch cultures, monoclonal antibodies reach a desired density and are then 

harvested and in order to enter the downstream section of the bioprocess [12]. The 



antibodies are collected from the bioreactor using industrial continuous centrifuges and are 

clarified by using depth and membrane filters [13].  

A diagram of a typical upstream process is presented below [13]:  

 

 

Figure 2: A typical upstream process 

 

For the optimisation of the upstream process the main decision-factors to be considered are 

[14]:  

• Cell lines able to synthesize the required antibodies quickly, at high productivities and 

low cost 

• Culture media and bioreactor culture conditions that ensure the desired productivity 

and also meet product quality requirements. This includes type of reactor, medium 

conditions and operation type 

• Continuous process monitoring via appropriate sensors 

• Excessive understanding of the culture and its performance at different scales, so 

smooth scale-up is achieved 

A summary of the parameters that should be consider when modelling upstream process is 

presented in the following graph [15]:  

 

 

Figure 3: Summary of upstream process' optimization parameters 



Upstream modelling and optimisation depend typically on biological limits, like the nature of 

the cell line or medium used. Thus, higher titers in upstream processes do not require other 

equipment and they can still occur in the same reactor set-ups as lower titers. Henceforth, 

upstream processes can be altered without an increase in costs since the processed volumes 

are the same, but the amount of antibody is increased. However, the limiting factor is 

downstream processing, where the products of upstream process enter after they created. 

Downstream processing has its physical limits, and it is intended for much lower quantities of 

antibody than those that are entered. In other words, upstream capacity can be increased 

without any further economic burden, whereas downstream capacity, due to its physical 

limitations for purifying, scales up linearly with the expenses [16].  

Initially, the most important step is to choose the most productive cell line. For recombinant 

proteins, like antibodies, mammalian cells are mostly utilized since they can yield protein 

folding and post-translational modifications similar to human ones [14]. However, the usage 

of yeast systems, like Pichia Pastoris, is under investigation. Yeast systems have not only faster 

growth rates than mammalian cells, but they are also cheaper and simpler systems, due to 

their lack of complex biological routes. Nevertheless, microorganisms do not have the 

required physicochemical and biological characteristics needed for the appropriate post-

translational mechanisms required for mAbs [17]. Moreover, modified plants have been 

searched as potential candidates to host mAbs, since plants are easy to cultivate, require low-

cost medium and maintenance and achieve relatively high production yields cell cultures. 

However, there are some limitations in their utilization for mAbs manufacturing, since plants 

lack in post-translational mechanisms, such as glycosylation. As already stressed glycosylation 

is the most crucial biological aspect to consider when picking a proper candidate for the 

manufacturing of monoclonal antibodies [18].  

Apart from all the potential cells for mAb production mentioned above, the most broadly 

used mammalian cell is Chinese hamster ovaries (CHO) [19]. Mammalian cells require 

complex culture medium, as they are in need for many nutrients including many trace 

elements. The use of serum provides the cells with those essential nutrients [1]. However, 

animal sourced ingredients tend to be avoided in the manufacture of mAbs due to concerns 

about bovine spongiform encephalitis (BSE).  

The main reactors used for mAbs manufacturing, each with their own advantages and 

disadvantages, are [12]: 

• Membrane reactors 

• Stirred Tank reactors 

• Fluidised beds 

• Airlift reactors 

The operations used for mAbs production are batch, semi-batch (or fed-batched), continuous 

and perfusion. Batch systems are already prepared with a medium containing all the nutrients 



required. The main drawback of this method is that it is hard to keep the initial conditions and 

waste metabolites are accumulated in the medium, resulting to lower cell density and 

productivity [20].  The second alternative is continuous systems, but the quantity of medium 

used increases and the recovery is harder, and the same goes for perfusion systems. The most 

popular operation is fed-batch systems, where fresh medium is fed, and it is easier to control 

the medium conditions. As a result, higher titers can be achieved [16].   

 

2.1.2. Downstream Process 

 

Downstream process revolves around the purification of the final product after its production 

in the bioreactor. This series of processes, aiming to the recovery and purification of mAbs 

from the cell culture media, is one of the most essential parts of the whole system of 

manufacturing antibodies. Moreover, downstream process has a strong impact on the 

economics and, thus, optimisation is vital to decrease costs [21].  

Undoubtedly the main purpose of downstream process is to achieve a high level of purity, 

regarding the quality by designed that has been devised beforehand. In addition to that, 

speed is another factor that should be considered, bearing in mind that all these processes 

take place before an antibody is released for clinical trials and then released for commercial 

use. In the light of these, some approaches have been made to use universal platforms for 

purification and continuous operations instead of the well-established batch processes. More 

information on these breakthroughs is given in section 2.3.4. below [22].     

As it has been already deliberated, downstream processing has more modelling challenges 

and is harder to be improved due to its physical limitation. To enumerate, a scale-up is usually 

followed by a similar scale-up in costs. Henceforth, downstream processing is less eager to 

alterations [21].  

A flowchart describing the downstream process is presented here [23]: 

 



 

Figure 4: Flowchart of downstream processing 

 

First, antibodies should be separated from the culture broth. This broth has namely high cell 

density, in order for costs to be reduced in the upstream process [24].  A mean concentration 

of solids in the culture broth is 40% to 50%, but after the clarification steps solids should be 

negligible. For that reason, centrifugation, depth filtration and sterile filtration are utilised, 

with the most predominant practice being the centrifugation. The reason for that is 

centrifugation’s ability to scale up easily in industrial scale and work with large volumes 

(typically between 2-15,000L per batch) [22].  This separation step, although it seems trivial, 

is vital and it can rise up to one quarter of the total costs of the whole downstream process 

[25].  

After centrifugation, the mAbs must be captured from the liquid. The most popular approach 

is using protein A (proA) affinity chromatography [26]. ProA is a polypeptide that is naturally 

fastened in the membrane of the bacteria Staphylococcus aureus [27]. This chromatography 

method is the most preferable because it can achieve up to 99% percent purity of the desired 

product in a single step [22].  

Despite the advantages of mammalian cells in production of complex protein structures 

where post translational modifications are indispensable, endogenous retroviruses can be 

produced by them. As a result, a viral inactivation step in acidic environment is much needed. 

During proA chromatography the elusion takes place either way in low pH values, so the 

existing conditions are exploited to reduce costs.  



Even after the affinity chromatography, trace impurities like leached proA, HCP or endotoxins 

exist. Henceforth, polishing steps such as cation-exchange chromatography (CEX), anion-

exchange chromatography (AEX) or hydrophobic interaction chromatography (HIC) are 

utilised [22]. Undoubtedly the polishing step used is affected by the mAb present and its 

impurities. However, the existence of at least one ion-exchange chromatography step is 

observed in most mAb purification processes, since it allows the removal of high molecular 

weight impurities [24]. The optimum pH for these methods is as further as possible from the 

antibodies’ pI, so that they are charged. However, mAbs have usually high pI values and, thus, 

AEX columns are preferred. The reason for that is that even in mild pH conditions mAbs are 

positively charged and consequently easily eluted from the AEX matrix, while negatively 

charged impurities are anchored [28]. 

Finally, the purification process is finalised with a viral clearance and an ultrafiltration. The 

ultrafiltration’s parameters, like the imposed pressure across the two sides of the membrane, 

the type of the membrane used, the flow velocity, and the concentration, can be modelled 

easily and generalised for all the mAbs [24].   

 

2.1.3. Biological Challenges 

 

The most important biological challenge that occurs in antibodies revolves around the 

impurities involved. Since it is already stressed that production can hit a peak without 

overfloating costs too, the real trial lies on the purification.  

Both upstream and downstream processes affect the product purity. In the case of the 

former, the cell line selected, the fermentation process or the culture time and conditions are 

vital for the impurities content of the broth. Regarding the latter, the methods used on the 

downstream process can affect both the selectivity and the yield of purification and the 

impurities or not of the final product. This goes vice versa too, as the impurities nature and 

content determine the downstream [29].  

 

2.1.4. Modelling Challenges 

 

With regards to bioprocesses, computational techniques have turned into a valuable tool due 

to their calculation power and their capability to shorten the processing time, when 

contrasted with the costly and monotonous experiments. The significance of mechanistic 

modelling lies in its ability to tackle challenges like the integration of process analytical tools, 

the frequency in which data are obtained and the real-time data measurement and control. 

Nevertheless, new issues can emerge. The dynamic profile of the cell cultures is susceptible 



by multiscale changes all through the bioprocess. This complex nature represents an obstacle 

to the bioprocess monitoring approaches. Under that premise, the potential to monitor the 

non-linear profile of the microorganisms and the multiscale interaction within the 

chromatographic steps by non-linear ordinary differential equations has been arisen [30]. 

However, in this case the complexity of the system is greatly increased due to the non-linear 

equations compared to the ordinary differential counterparts. More specifically, the number 

of parameters constituting the mathematical expression of the system is significantly 

increased due to the fact that the variables are as a function of multi scales (i.e., time and 

space).  In this manner, approaches such as discretization or other techniques of 

transformation from the partial to ordinary differential equations ought to be taken into 

consideration before the application of such mechanistic model [31]. 

 

2.1.4.1. Process control and digital twins 

 

After the process model has been developed, arises the issue of process control. In order to 

move towards a quality by control (QbC) environment in biopharmaceutical manufacturing, 

there are many significant challenges regarding process data and models that need to be 

resolved. The principal challenge is to accomplish a better understanding of different Critical 

Quality Attributes (CQAs) and the causes of their variation, as well as the ability to measure 

them in real-time. The development of comprehensive predictive dynamic models can be 

achieved through advancement in process modeling. Models utilized for process control 

ought to be sufficiently precise and avoid irreversible negative effects through inappropriate 

control actions, but simple enough for quick optimization of control actions. The 

heterogeneity of the collected data in both time and type is another identified challenge. In 

time scale it is collected at different sampling intervals, whereas in type, for instance, at-line, 

and in-line collected data [32].  

A valuable tool when tackling the challenges of process control appear to be the digital twins. 

Digital twins are models using real-time data along with machine learning techniques, in order 

to predict the results of a process. They can be used both for producing data prior to the 

process, so as to optimize the process, and for on-line control of the process, due to their 

decreased complexity and time demand [33].  

 

2.1.4.2. Adaptive design space and integrated process design 

 

Any adjustment in process operation or design leads to variation in performance and CQAs 

that can propagate all through the drug substance production chain.  The experimental effort 

needed to identify the impact and optimal levels of each component in a bioprocess could be 



exhaustive. However, sophisticated statistical methods can then be utilized to detect 

compounds that could individually have negligible impacts but can have strong impacts in 

combination with others. 

Considering the effect of upstream process conditions on downstream performance, process 

optimization ought to be done on the overall process assessment [34]. The first attempt for 

holistic risk and quantification for impurity propagation across multiple unit operations using 

an integrated process model was presented by Zahel et al. [35]. The risk for an out of 

specification final drug substance of a biopharmaceutical product was measured and the 

model was utilized to pinpoint potential changes in process parameters for risk reduction. 

 

2.2. Quality by Design 

 

Quality by design is a systematic approach towards the development of drug products and 

processes using rational and scientific based methodology. The aim of these approaches is 

the manufacture of final products with the desired quality standards. The term “quality by 

design” or QbD for short has been introduced in the 1970s by J.M. Juran, an American 

Engineer, and as a practice has been widely used in automotive and aviation industries, where 

high end products are manufactured [36]. These methods of QbD have been used in 

pharmaceutics since the 1990s to ensure better end products and the highest possible profit 

for the companies [36]. To enumerate, QbD relies on careful planning and not on luck to 

achieve high-quality product and lessen shortcomings [37].  

Hence two are the main recipients of QbD, patients and pharma industries. On the one hand 

the production of drugs with the minimum number of defects and implications is at the most 

beneficial for patients, which are the main addressees of QbD. On the other hand, the benefits 

for companies are not to be overlooked. Indisputably, QbD offers a better understanding of 

both the nature of the product and the processes critical parameters. As a result, less batch 

failures occur, the scale-up is more feasible and efficient than before and there is a better 

return of investment. All this contribute to cost savings and, thus, a more lucrative 

opportunity for the pharmaceutical company [38].  

Figure 5 recapitulates the main doctrines of QbD: 



 

Figure 5: Description of the Quality by Design (QbD) approach 

The main steps of QbD are critical quality attributes, process parameters, process controls 

and product specifications/ control strategy. These categories are presented in the figure 

below and are further analyzed in the upcoming sections.   

 

Figure 6: Presentation of Critical Quality Attributes 



2.3.1. Critical Quality Attributes 

 

CQAs are physical, chemical, biological, or microbiological properties or characteristics that 

should be within an appropriate limit, range, or distribution to ensure the desired product 

quality [39]. They are selected through a risk-based analysis, during which an evaluation of 

the product quality attributes takes place, in order to assess their potential impact on patient 

safety and product efficacy. 

Proteins are often subjected to a variety of post-translational modifications, which can be 

linked to diseases such as inflammatory and autoimmune disorders. However, only a 

relatively limited number are commonly encountered in biopharmaceutical proteins. The 

quality attributes that can be generally observed in recombinant therapeutic proteins can be 

divided into two categories: the product‐related impurities and substances and the process‐

related impurities and contaminants [40]. 

 

2.3.1.1. Product-Related Impurities and Substances 

 

Product-related impurities are molecular variants created during manufacture and storage 

that have properties different from those of the desired product with respect to activity, 

efficacy, and safety [41].  

 

Aggregation 

 

Proteins are marginally stable given their three-dimensional structure. In addition, they are 

particularly prone to forming aggregates when they are in stages where they have not yet 

folded or partially folded. It is therefore possible at these stages to form stable aggregates, 

which are a major problem in the production of therapeutic molecules and are responsible 

for inducing immune responses in patients [42]. 

Protein aggregation is one of the major challenges faced during the development protein-

based drug products as it is a common source of protein instability [43]. Protein aggregation 

is observed in all stages of protein product development and manufacturing processes, as 

well as during storage and handling. 

There are various reasons that can cause protein aggregation and each one can result in 

different properties for the product, according to the type of physical or chemical interaction. 

As such, the aggregates can have different solubilities and sizes from the initial product. 



Additionally, they may be covalently or noncovalently associated and the interaction may be 

reversible or irreversible [44]. 

Factors that can result in protein aggregation are primary and secondary structure, the 

presence of hydrophobic patches on the surface of the molecule, temperature, buffer type, 

pH and ionic strength, protein concentration, physical stresses such as shaking or stirring, 

shearing, freezing, thawing, and refolding [40]. 

The various ways of describing the aggregation of therapeutic molecules that have been 

proposed are summarized in five main mechanisms [45]: 

• Reversible association of the native monomer, where the surface of the native protein 

monomer is self-complementary, meaning that it will form reversible small oligomers  

by  self-associating.  

• Aggregation of conformationally-altered monomer, where aggregation will be 

promoted by triggering an initial conformational change of the protein using stresses 

such as heat or shear. 

• Aggregation of chemically modified product, where the difference in covalent 

structure causes a change in protein conformation, which in turn leads to the protein 

aggregation that precedes aggregation. 

• Nucleation-controlled aggregation, where an area on the surface of the monomer can 

form a nucleus to initiate aggregation with other monomers. 

• Surface-induced aggregation, where patches on the surface of the molecules lead to 

the formation of stable aggregates. 

Protein aggregation can have a significantly negative impact on the quality of the product, as 

it may cause reduced biological activity, which in turn minimizes the product’s efficacy [43]. 

Additionally, there is a chance they may induce immune responses, such as neutralizing 

antibodies that limit efficacy or causing severe immediate hypersensitivity responses (e.g., 

anaphylaxis). Consequently, the presence of any insoluble aggregates is unacceptable when 

it comes to therapeutical proteins [46]. 

 

Fragmentation 

 

Despite the remarkable stability of the peptide bond, its enzymatic or chemical disruption 

leads to protein fragments. The resulting proteins differ according to how much and where 

cleavage occurs [40]. In the case of monoclonal antibodies, fragmentation is a CQA that needs 

to be monitored, since it gravelly affects the product purity and integrity. It can occur during 

protein production in the cell culture, which is then modulated by the purification process. 

However, chances are it will reoccur during storage or circulation in the blood [47]. 



Fragmentation rates of monoclonal antibodies are affected by many factors, such as pH, 

temperature, solvent composition and the presence of metals or radicals [47]. As a result, 

each case is unique, and the impact of fragmentation is product dependent. The most 

common issues that can arise include loss of biological activity, reduction of half-life and 

decreased immunogenicity caused by the generation of novel epitopes. 

The effect of fragmentation on the function of monoclonal antibodies can vary depending on 

the cleavage site. Fragmentation in the complementarity-determining regions (CDRs) is likely 

to have an effect on the monoclonal antibody’s ability to bind to the target and, consequently, 

have an effect on its potency. Fragmentation in the hinge region may have more implications 

on the function of a monoclonal antibody molecule, such as reduced circulation half-time or 

complete loss of biological activity [47]. 

 

C- and N- Terminal Modification 

 

One of the most common modifications of recombinant monoclonal antibodies is C‐terminal 

lysine processing of the heavy chain. Carboxypeptidase activity during mammalian cell culture 

can cause truncation of the C‐terminal lysine of antibody heavy chains, which usually leads to 

a heavily or even completely truncated product [48]. This modification can be important since 

it is sensitive to the production process [49]. 

Cyclization of glutamine of IgG antibody heavy chain can result to pyroglutamate, due to 

instability of N‐terminal. This can also occur with Lambda light chains can start with a 

glutamine residue [48]. However, any impact of pyroglutamate on the safety and efficacy of 

mAbs is yet to be proven [40]. 

 

Oxidation 

 

Protein oxidation is a covalent modification of an amino acid side chain, or a protein backbone 

caused by two types of reactions.  More specifically, it can be caused through direct reactions 

with reactive oxygen species (ROS), as well as through indirect reactions with secondary by-

products of oxidative stress. It can result in protein fragmentation or protein-protein cross-

linkages [50]. Although the modification by ROS reaction is possible for all amino acids, the 

predominant reaction is the conversion of methionine (Met) residues to methionine 

sulfoxide, due to the high reaction susceptibility presented in the sulfur group in this amino 

acid.  

Oxidative modifications of proteins can lead to changes in their physical and chemical 

properties, such as conformation, structure, solubility, susceptibility to proteolysis, and 



enzyme activities. More specifically, for some Met residues, oxidation has an impact on 

conformation, stability, and biological activity, whereas for other Met residues, oxidation has 

little or no impact [40]. The possible negative impacts of oxidation result in loss of biological 

activity and can affect immunogenicity, often through the induction of aggregation. Although 

it is yet unclear at what stage these residues are oxidized, under most circumstances, 

oxidation can be readily detected in monoclonal antibodies after long‐term storage, 

incubation at elevated temperatures or incubation with oxidizing reagents [48]. 

 

Deamidation/Isomerization 

 

Another common post‐translational protein modification is the nonenzymatic deamidation 

and isomerization of asparagine (Asn) residues. In the case of recombinant monoclonal 

antibodies, it can occur during at any stage of the process, e.g., during cell culture, protein 

purification and storage [48]. However, its impact on biological activity and immunogenicity 

is product dependent [40]. 

Both deamidation and isomerization occur naturally and in a constant rate in the bloodstream 

and can be increased with a rise in pH or temperature. It is therefore expected for therapeutic 

proteins to undergo deamidation after being administrated in the bloodstream, especially for 

those who have a long circulatory half‐life and are consequently more likely to be affected 

[40]. 

 

Glycosylation 

 

The post‐translational modification by which oligosaccharide structures covalently bind to the 

polypeptide backbone of a protein is called protein glycosylation [51]. It is most likely induced 

during oligosaccharide synthesis and processing, where the oligosaccharide heterogeneity 

can cause monoclonal antibody heterogeneity [48]. 

According to the type of link created, protein glycosylation can be categorized into two types: 

serine/threonine‐linked glycosylation (O‐linked) and asparagine‐linked glycosylation (N‐

linked) [51]. However, between the two, O‐linked glycosylation is rarely presented in mAbs, 

and therefore, when studying therapeutic proteins, the focus falls on N‐linked glycosylation. 

This type of glycosylation begins in the endoplasmic reticulum and is completed when the 

protein reaches the Golgi apparatus [52]. 

The two major levels of glycoprotein heterogeneity associated with glycosylation are 

macroheterogeneity and microheterogeneity. The former begins in the endoplasmic 

reticulum and is triggered by the presence or absence of specific sequons in the structure of 



the oligosaccharide. The latter takes place in the Golgi apparatus, where different levels of 

processing occur [51]. 

The effects of glycosylation vary and can greatly affect the biological activity of the protein. 

The protein’s resistance to proteolysis, as well as its tendency to aggregate in vitro are 

increased by the invariant glycan at N297 [53] in the Fc domain [54]. Additionally, studies of 

aglycosylated mutants (containing N297Q or N297H mutations) of IgG1 have shown that their 

sensitivity to digestion by pepsin, trypsin, chymotrypsin, and pronase was greater than the 

one of their glycosylated counterparts [55]. The only exception to that was papain, which was 

less effective at digesting the aglycosylated antibody. Glycosylation also affects thermal 

stability, given that protein’s protection to proteolysis is subject to the presence of certain 

glycan patterns [54] and that the removal of glycosylation results in thermal stability loss of 

both full-length antibodies and Fc fragments [56]. 

During the culture of mammalian cells, a great a variety of antibody glycoforms is 

encountered, that are very difficult to separate. Consequently, most clinical antibodies 

comprise of a population of glycoforms whose relative abundance in the therapeutic 

preparation dictates their effector function [57]. This high degree of heterogeneity is 

determined by the cell line, the manufacturing process and the cell culture conditions and 

need to be taken into account when evaluating the impact of glycosylation on the safety and 

efficacy of a particular therapeutic protein [40]. 

 

Sialylation 

 

The ultimate sugar residue of the oligosaccharide chain of N‐linked glycans is sialic acid. Be 

that as it may, sialic acid site occupancy and composition is specific for each protein and 

species. This means that 60–95% of glycoproteins and about 10% of antibodies in human 

serum are sialylated, whereas these numbers are reduced in recombinant proteins [58]. 

Sialyation can have a positive (e.g., in the case of rhIFN‐β1a) [59] or negative (for EPO) [60] 

biological activity, which makes its role in effector functions of monoclonal antibodies 

unclear.  

Both the importance of sialytion on circulatory half-life and the elimination of nonsialylated 

proteins from the circulatory system by the asialo‐glycoprotein receptors in the liver are 

important aspects of sialytion [61]. An additional advantage of the lower clearance provided 

by sialyation is the improvement of the in vivo efficacy, as in the case of tetrasialylated EPO 

[60]. A great number of glycoengineered therapeutic proteins have been developed thanks 

to this effect [62]. 



Even though sialic acids have the tendency to cover antigenic determinants and, 

subsequently, potentially lessen immunogenicity [63], exceptionally sialylated proteins tend 

to produce weak immune responses [64].  

There are two forms of sialic acids found in the cells of mammas that are usually utilized for 

the creation of recombinant proteins. These two are the N‐acetyl‐ and N‐glycolyl‐neuraminic 

acid, however, just one (the N‐acetyl structure) is normally found in adult human 

glycoproteins. Thus, in humans, N‐glycolylneuraminic acid (NeuGc) is antigenic [65]. 

Furthermore, in CHO cell expressed proteins the NeuGc levels are usually low and therefore 

are not believed to be a be an immunogenicity concern [66], but higher levels may enhance 

antigenicity [67]. Moreover, the presence of terminal NeuGc on a recombinant protein is by 

all accounts corresponded with a quicker expulsion of the molecule from the bloodstream 

[68]. Finally, another factor for the efficacy of the protein is type of linkage between the 

terminal sialic acid and the preceding galactose residue [69]. 

 

Glycation 

 

Glycation is the result of a nonenzymatic reaction between reducing sugars and the N‐

terminal primary amine or the amine group of lysine side chains [48]. It is observed when the 

protein is incubated in presence of reducing sugars. However, even though fructose and 

galactose have higher rates of glycation, it occurs mostly in the presence of glucose, which is 

the main carbon source used during cell culture of recombinant proteins [70]. 

Studies have been made to determine the impact of glycation on proteins, but its effects are 

not yet clear. It is shown that glycation may have an impact on the biological activity 

(increased or decreased) of a protein as well as its PK, but its impact on potency is expected 

to remain limited, since glycation sites are distributed at lysine residues over the entire 

molecule [71]. Finally, given that human plasma proteins are 10–20% glycated due to the 

presence of glucose in serum, it is not expected that glycation has an impact on 

immunogenicity and safety [40]. 

 

Conformation 

 

Proteins are complex, three‐dimensional structures that exist as an ensemble of different 

conformations in equilibrium instead of a single rigid structure [72]. This was first proven by 

Foote and Milstein, who studied the complex binding kinetics of hapten at various 

concentrations to three specific antibodies and proposed that monoclonal antibodies exist as 

more than one conformation, at least at the combining site, in equilibrium. 



Changes in conformation can have a number of causes, including chemical modifications such 

as oxidation and deamidation, and can occur throughout the manufacturing process [73]. 

They can result in the loss of biological activity and the formation of new epitopes with 

immunogenic potential. Proteins that are particularly at risk of conformational changes during 

the refolding steps are those that are denatured as part of their manufacturing process such 

as inclusion bodies produced by microbial expression. This misfolding of therapeutic proteins 

can be responsible for enhanced immunogenicity of biopharmaceuticals and breaking of 

tolerance [74]. 

 

Disulfide Bond Modifications 

 

IgG molecules are composed of two heavy chains and two light chains, all connected with 

disulfide bonds. Specifically, each light chain is connected to each heavy chain by one disulfide 

bond and each heavy chain is connected to the other heavy chain by two to four disulfide 

bonds depending on the subtypes of the antibodies. It is therefore quite clear that disulfide 

bond formation is important for the assembly and maintenance of the structural integrity of 

antibodies [48]. 

Heterogeneity related to disulfide bonds can be introduced at different stages, given that 

disulfide bonds may dissociate, leading to the generation of half molecules. Thus, protein 

folding might be affected, potentially resulting in a change in protein structure and function. 

A common alteration of disulfide bonds in IgG antibodies is the creation of trisulfide bonds, 

resulting from insertion of a sulfur atom within a disulfide bond. However, this particular 

change doesn’t seem to affect biological activity [40], [75]. 

Under denaturing conditions, the presence of incomplete disulfide bonding can trigger 

disulfide bond scrambling, which can result in the formation of disulfide bond related 

fragments [76]. These resulting artifacts are different combinations of complete heavy chains 

and light chains linked by interchain disulfide bonds and constitute a serious problem for IgG4 

because of the instability of the hinge region interchain disulfide bonds [77], [78]. 

 

2.3.1.2. Process-Related Impurities and Contaminants 

 

Process-related impurities are derived from the materials used throughout manufacturing 

process, as well as from the host cell itself. 

 



DNA 

 

As mentioned above, the cell lines used for the production of therapeutic proteins have an 

infinite life span. This leads to a great concern for tumourigenic activity conferred by the DNA 

released during cell culture by the host cell. This can occur by direct integration of a DNA 

sequence capable of expressing activated oncogenes or by integration next to a dominant 

proto‐oncogene thus activating its expression [40]. 

The levels of host cell DNA per dose that can be considered as acceptable, according to the 

Expert Committee of the World Health Organization, are up to 10 ng [79]. However, studies 

have shown that the actual risk of tumourigenic activity appears to be very small. More 

specifically, an experiment including the regular injection of much higher amounts of DNA 

than the recommended level in nonhuman primates did not result in any tumours during an 

evaluation period of 10 years, despite the fact that the DNA injected contained an activated 

oncogene from human tumour cells [80]. 

 

Host Cell Proteins (HCP) 

 

During culture, in the occurrence of cell apoptosis, physical breakage of cells, or secretion, 

endogenous proteins of the host cell can be released. Since most therapeutic proteins are 

expressed in non‐human mammalian cell lines such as CHO, NS0, or SP2/0, the immune 

system of human patients is expected to recognize endogenous proteins of these cells as 

foreign. However, until this point in time, only a fraction of clinical adverse events has been 

attributed to HCP impurities. In any case, since there is a possibility of allergic reaction to HCPs 

or a possible risk of adjuvant effects, it is considered necessary to minimize their levels.  

 

Raw Material Derived Impurities 

 

The utilization of raw materials in manufacturing is a well-known fact. However, they can 

sometimes co‐elute with the product, raising concern for the product’s safety, in the case that 

they are toxic in humans. These materials include: 

• Chemically defined and nonchemically defined components of cell culture media 

• Feed solutions and cell culture additives 

• Components of purification buffers and solutions  

• Excipients of the drug substance and the drug product 



• Toxic components of process consumables or equipment in contact with the product 

(such as chromatography resins, ultrafiltration membranes, filters, containers, tubing, 

O‐rings for instance) 

Additionally, the leaching of toxic components or release of components from drug substance 

and drug product containers and container closure systems can occur and can cause product 

alteration. Therefore, raw materials and their components should be assessed for the 

probability of negatively impacting the health of patients through a risk assessment [40].  

 

Contaminants 

 

The possibility of contaminants of recombinant protein therapeutics, the production of which 

takes place in the cell expression systems of mammals, being unintentionally introduced at 

any time all through the manufacturing process is known and can be caused by the 

introduction of contaminated raw materials, the utilization of defective equipment or the 

operation under nonaseptic conditions. Some common contaminants are: viruses, living 

organisms, bacteria, fungi, mycoplasma, as well as their toxic by-products (for instance 

endotoxins). Contaminants can have harmful consequences for patient wellbeing. 

Furthermore, endotoxins, which are a significant component of the outer cell wall of bacteria 

that are Gram negative, have high levels of toxicity, which can cause inflammations or even 

sepsis, with the latter being usually lethal [81]. There two types of viruses based on their 

origins: exogenous or endogenous. Recombinant therapeutic proteins commonly expressed 

by mammalian cell lines often include endogenous retroviruses. These retroviruses can either 

be infectious as in the case of NS0 cells or defective and noninfectious as in the case of CHO 

cells [82]. Therefore, validation studies are of the outmost importance in order to ensure 

sufficient clearance of endogenous viruses through the purification process [83]. 

 

2.3.2. Critical Process Parameters 

 

Critical process parameters (CPPs) are variables that have an effect on critical quality 

attributes (CQAs), that have been investigated before. Thus, they should be calculated and 

manipulated in order for the desired quality of the final product to be achieved. Without a 

shadow of doubt, defining the CPPs requires a great understanding of both how the processes 

work and how they impact the CQAs [84].   

Another term used when studying the CPPs is the design space. As has been defined by the 

International Conference on Harmonisation (2008) design space is the multidimensional 

combination and interaction of process parameters and input variables that have been 



demonstrated to provide assurance of quality [85]. Hence, a deep understanding of the 

nature of the process and how each variable affects the CQAs are perquisites to define the 

design space. A change within this design space has little to no effect on the final product, 

where a change outside the boundaries of this space leads to tremendous changes that may 

worsen its quality. Moreover, a design space can be limited to just an operation, a series of 

operations or the whole factory [37].  

Both the terms CPPs and design space are used to determine the acceptable range of the 

processes’ variables, without affecting the product quality. Of course, prior knowledge of the 

processes and the desired product in laboratory or pilot level are required in order for the 

CPPs to be defined and the design space to be created [86].  

 

2.3.3. Control Strategy and Control System 

 

Control strategy is a methodology which focuses on the creation of a control system. A control 

system is a series of tests and controls which stems from the deep knowledge of the process 

and the nature of the desired final products. Control strategy has two aspects: control system 

testing and process monitoring [37], [87].  

Control system testing involves stability tests, tests about endotoxins and inhibitors, as well 

as tests for substances that may reduce the yield and the quality of the product. Also observed 

during control system testing are decomposition and secondary actions [37].  

Process monitoring is about the process itself rather than its products. On the one hand, 

process is assured that works withing the limits of design space and thus it is kept in check. 

On the other hand, process monitoring offers a better understanding on the process’ 

gimmicks. As a result, opportunities to enhance the productivity of the process are presented 

[37].  

 

 

 

 

 



3. Process System Engineering Background and Motivation 

3.1. Process System Engineering Advances in Bioprocess Modelling 

 

The requirement for a change in perspective in the biopharmaceutical industry for quality 

assurance has been recognized for quite some time. This was made possible, by the 

introduction of the process analytical technology (PAT) guide by the U.S. Food and Drug 

Administration (FDA) [88].  

Traditionally, off-line and off-site laboratories have been used in order to perform the 

chemical analyses needed in downstream operations during manufacturing. Because of their 

remote location, aftereffects of these assays are regularly delayed (going from hours to days) 

and therefore cannot be used to control and monitor the downstream process in real time. 

Instead, they are simply relegated to a compilation of databases. It is for that reason that on-

line control techniques have long been considered as credible opportunities to improve 

product quality and efficiency in pharmaceutical production by the FDA [89].  

This PAT guide requires an enhanced process understanding that underlines a new quality by 

design (QbD) approach. In this design approach the mentioned item quality is guaranteed by 

the actual process and does not have to be tested afterward. Design of experiments (DoE), 

which is used in studies to gather process knowledge, is among the most prominent 

approaches to enable QbD [90]. In order to set up a DoE for a product, critical process 

parameters (CPP) which impact the products' critical quality attributes (CQA) must be defined 

[91].  To systematically investigate these CPP combinations and their multifactorial influence 

as well as to keep the number of experiments manageable, different designs can be applied. 

Such designs are usually evaluated by application of process modelling. 

 

3.1.1. Process Modelling  

 

The response surface methodology is the most well-known modelling technique, used in 

combination with DoE studies. In this technique, the experimental results of a design space 

are represented on a surface as responses of the CPPs. This, in turn, is utilized to discover the 

optima for the investigated conditions [92]. This particular technique is generally utilized in 

media development and optimization for production processes.  

The models created that utilise this technique can be separated into two categories, 

descriptive and predictive models. As a matter of fact, descriptive models provide real-time 

information, that is, certain information for only up to the current time point of the process. 

Comparatively, predictive models can predict future values of state variables and, since the 

input data can be simulated for the future, give an educated guess about the trajectory [93].  



Moreover, the expansion of the existing process knowledge can be achieved with the 

appliance of exploratory data analysis, for example, principal component analysis (PCA) and 

parallel factor analysis (PARAFAC). With these methods, hidden structures and latent 

variables, the so-called principal components (PC), in the investigated spectra can be 

determined [94]. In general, there are two diverse modelling approaches. The first one 

includes nonparametric (black-box) models, while the second one includes parametric (white-

box) models. Nonparametric models are based on experimental data only and do not need 

any further process knowledge. Therefore, various regression techniques are available and 

commonly applied to develop nonparametric models [95]. Conversely, parametric models 

utilize empirical knowledge and first principles, that is, their structure is well defined and 

transparent [96]. Because of their respective model structures, both modelling approaches 

have separate distinctive advantages just as disadvantages and limitations. Finally, the 

combination of a nonparametric and a parametric model into a single semi-parametric model 

structure is defined as hybrid (grey-box) modelling and it permits the fuse of both process 

knowledge and data-driven information. 

 

Figure 7: Schematic representation of white-box, black-box and grey-box models 

 

In the remainder of this chapter an indicative but not exhaustive list of main contributions in 

the field of product and process modelling are discussed. 

 



High Fidelity Modelling  

 

In high fidelity models or mechanistic models, the process is described with a series of 

complex equations. These equations derive from the fundamental scientific laws. Physical and 

biochemical principles establish these model equations. However, a variety of experimental 

data are still required to regulate the model and determine some unidentified model 

parameters. Of course, dynamic systems respond to a system of differential equations [97]. 

Mechanistic models regarding both the upstream and the downstream process are worth 

mentioning. To begin with, advances on the upstream process should be presented.  

In 2019 Kotidis et al. conducted a research where the impact of glycosylation precursor 

feeding on cellular growth and metabolism and on antibody productivity and glycoform 

distribution was quantified [98]. On the one hand, the cell culture and nucleotide sugar donor 

metabolic models were namely utilized. Thus, 102 unknown parameters were involved, from 

which 17 parameters were allocated fixed values based on bibliography available and the rest 

85 were calculated by fitting the model equations to the existing experimental data using 

gPROMS. On the other hand, in the n-linked Glycosylation model, the other model used, 

unidentified parameters were valued using the work by del Val et al. [97].  

Moreover, advances were made on the already known fed-batch systems. Namely Amribt et 

al. (2013) suggesting a macroscopic modelling for hybridoma cell cultures where the three 

metabolism states: respiratory metabolism, overflow metabolism and critical metabolism 

were taken into account. The parameters in this study were estimated with the least square 

method and were validated with experimental data. Hence, the model effectively predicted 

the cell growth and death, substrate consumption and lactate and ammonia production, 

which are the main metabolites, as the time passes [99].  

Nevertheless, fed-batch reactors are not that productive and tend to be preplaced with 

perfusion reactors. In 2019 a study was performed by Shirahata et al., comparing a fed-batch 

and a perfusion bioreactor of CHO culture. The mechanistic model used was once again 

validated with the experimental data available in literature and the cell, substrate and product 

concentrations were successfully predicted. Even the by-product concentrations were 

accurate. Economic factors were also considered, as an economic analysis was also conducted 

[100]. 

Undoubtedly process has been made regarding the downstream process too. Müller-Spath et 

al. in 2011 uses a lumped kinetic model to describe the cation-exchange capture step of a 

monoclonal antibody (mAb) at the purification process using multicolumn continuous 

chromatography (its nomenclature is MCSGP). Model parameters including porosity, mass 

transfer of purified mAbs and retention factors were experimentally determined. 

Nevertheless, the saturation capacity was calculated through peak fitting, assuming a 

Langmuir-type adsorption isotherm. In the end, the model was substantiated using linear 



batch gradient elution. This model approach was precisely predicting product concentration. 

However, it failed to provide information regarding the product purity [101]. 

An earlier publication of Hahn et. al in 2005 was focused on different protein-A affinity resins 

for mAb purification. Mass transfer in these resins was designated by a model including film 

and pore diffusion. The study was shown that all the media in were suited for capture of feed 

stocks with high antibody content, which is a prerequisite in nowadays mAb production [102]. 

Additionally, Steinebach et al. in 2016 implemented a semi-continuous twin protein A 

chromatography column model. All in all, 10 equations are utilized in this model. This 

mechanistic model namely considers both the specific adsorption as well as transport through 

the resin beads, which was considered a novelty for that time. To enumerate, the adsorption 

mechanism is defined with a two-site Langmuir isotherm and transport phenomena in the 

resin pores are described using lumped driving force mass transfer [103]. 

In this study was noted that the internal pore diffusion is the rate-limiting phase. This result 

was supported too in the work of Grom et al. in 2018. where five different types of affinity 

protein A chromatography resins for CHO cell culture were investigated. In this study, the 

absorbance of mAbs onto the protein A ligands was designed based again on single site 

Langmuir adsorption kinetics [104]. 

Moreover, Close et al. suggesting a mechanistic model regarding industrial hydrophobic 

interaction chromatography (HIC). The main aim of this study was to underline how helpful 

may modelling be to get a better understanding on industrial scale processes. Even though 

purification of products is a well-studied subject monomer subunit ratio, which affects 

product quality, may arise challenges. This model predicted namely this ratio for a wide range 

of inlet concentrations and inlet product distributions. The results of this studies were 

validated with a series of scale-down experiments [105]. 

Lastly, one of the earliest works on chromatography-based separation was made by Aumann 

et al. in 2007. Multicolumn ion-exchange chromatography is needed when high purity levels 

are on demand. This chromatography technique was modelled and validated in this study. Of 

course, the adsorption of both strong and weak impurities was taken into account [106]. 

 

Data-Driven Modelling 

 

Pharmaceutical processes are well known for their complexity. Hence, theoretical models, 

based on mathematical expression, describing the behaviour of the product, the cells or the 

substrate are difficult to originate from literature or are computationally impossible to be 

calculated. These highly multifaceted processes are considered as black-box processes [107].   



In these cases, data-driven modelling is utilised, where model equations used derive not from 

a physical or chemical approach but from data fitting. The main advantage of data-driven 

models is that a great understanding of the process is not required [108]. 

Data-driven models are more popular in downstream process where real-time predictions are 

needed, and mechanistic modelling is more challenging. The reason for that is that upstream 

process operates in a timelapse of days, whereas downstream process is completed in a 

matter of hours.  

Some of the advantages that have been namely made in downstream process were focused 

on individual process units. For example, the dynamic behaviour of protein A chromatography 

columns has been designed with data-based models by Rüdt et al. in 2017. In this research, 

Partial Least Squares Regression (PLS) modelling was exploited to measure mAbs after protein 

A capture step, during the load phase. This PLS model predicted accurately the mAbs’ 

concentration [109].  

PLS modelling is one of the most wide-spread used data driven approaches. Walch et al. in 

2019 managed to predict protein concentration, high molecular weight impurities (like host 

cell protein and DNA impurities) during elution phase by online data from UV, pH, 

conductivity, light scattering, and refractive index detectors, as well as a fluorescence and a 

mid-infrared spectrometer. PLS modelling was used in this case too. Even though in this study 

no mechanistic modelling is used, real- time predictions were rather accurate [110]. 

Furthermore, another interesting study where both parametric and non-parametric 

approaches were used is that of Joshi et al. in 2017. In this study a mechanistic model is used 

to describe separation mechanism. The mechanistic model in question is a combination of 

modified Langmuir binding kinetics, which is capable of displaying the effect of even nonlinear 

changes. However, a data- based approach is helpful to simplify a bit the optimization process 

[111]. 

Aside PLS, other approaches are used too. For instance, Liu and Papageorgiou in 2019 

preferred the piecewise linear regression modelling, because it’s simpler and more accurate 

that other methods available. This study was against focused on chromatography-based 

processes and loaded mass, flow velocity, and column bed height where the inputs. The data 

provided were sprung from microscale experiments [112]. 

 

Hybrid Modelling 

 

Hybrid modelling is the idea of combining a nonparametric and a parametric model into a 

single semi-parametric model structure. This permits the fuse of both process knowledge and 

data-driven information. The hybrid model structure is able to overcome the shortcomings of 



each separate modelling technique. To give an illustration of what that means, the black box 

can be utilized to calculate parameters in the white box, which therefore do not have to be 

solely assumed, and that reduces errors at the cost of increased complexity [113]. The last 

example highlights the fact that the values of specific rate expressions are known unknowns 

a priori for a bioprocess and should first be determined, for instance, by process modelling. 

Having said that, by solely utilizing a white-box model these rate values should be assumed 

from data using a defined causal method, however in a hybrid model, they initially can be 

estimated in a defined black box and afterward transferred to the white box. Not to mention 

that, by utilizing process variables that have an influence on these rates as input to the black 

box, the incorporation of this impact can also be taken into account in the white box, and 

therefore generate hybrid model predictions closer to the analytical values. For this process 

artificial neural networks (ANN) are regularly utilized [114]. For robust bioprocess modelling, 

accurate rate estimations are of great importance and accomplishing these as precisely as 

possible is of high interest [115]. 

Despite the fact that a hybrid model gives improved performance contrasted with other 

approaches [116], the chance of misprediction actually exists. To determine the chance of 

such model uncertainty, cross validation is regularly performed in machine learning for the 

calculation of the average misprediction possibility [117].  

Owing to these benefits, hybrid modelling is gaining in popularity for bioprocess modelling. 

By combining non-parametric and parametric modelling, the complex, time-consuming, 

equations describing the model can be eliminated. Consequently, the resulting model will 

have high accuracy and precision when it comes to the results produced, while simultaneously 

demanding only a fraction of the original computational time, compared to the parametric 

model. This could prove to be the key to on-line control for downstream processes.  

Some indicative studies about both the upstream and downstream progress are to be 

presented, even though hybrid modelling in downstream process is a newly-hatched field and 

further progress is about to be made.  

Regarding the upstream process, Narayanan et al. in 2020 presented a hybrid modelling of a 

mammalian cell culture in perfusion reactor. The aim of this study was a better precision in 

real-time monitoring and online decision making. In this work, two different models were 

considered, a hybrid-EKF (namely the extended Kalman filter) and the popular PLS data 

driven-model. The hybrid model consists of both ANNs (artificial neural networks) and a 

parametric system of mass balance differential equations. The result of this study shows 35% 

better prediction than the standard PLS model, an upgrade that clearly indicates the potential 

of hybrid modelling [118].  

ANN modelling was utilised too for the prediction of protein glycosylation by Kotidis and 

Kontoravdi in 2020. This modelling was applied on 4 different glycoproteins. Undoubtedly this 



accuracy of the model was outstanding; namely 1.1 % average error in prediction of glycoform 

distributions [119]. 

Nevertheless, about the downstream process little information could be found on the 

literature. An intriguing study was made in 2021 by Narayanan et al. proposed a hybrid ANN 

model to predict the absorbance of the chromatographic processes for protein capture. This 

study is considered a novelty, because in chromatography processes mechanistic methods 

are more popular. However, in hybrid models there is no need for a deep understanding of 

the process’ nature, thus hybrid models are less intensive in terms of effort. Not only that, 

but they are also more accurate too. The hybrid model had three times more accurate results 

that the mechanistic Lumped kinetic model that was put in test. As a result, hybrid models 

are not only simpler to apply but also much more precise than its widespread mechanistic 

counterparts [120].  

 

3.2. Motivation, Aim and Objectives 

 

The importance of DSP in antibody biomanufacturing has been made clear, given its role in 

the purification of the product. However, despite the significance of the process, fewer 

advances have been made regarding the optimization and on-line control of the process, 

when compared to the ones reported in USP. The higher complexity of DSP, along with its 

dependency on USP performance pose great challenges, that have yet to be overcome in 

order to achieve efficient on-line control of the process.  

The aim of this thesis is two-fold and focuses on the development of computational tools with 

the potential to provide a solution to the aforementioned challenges. The purpose of these 

tools will be to (a) aid in the design of an agile, robust bioprocess and (b) be used as digital 

twins for on-line applications. 

MAb manufacturing is particularly challenged by the interplay between USP and DSP. USP 

performance may be variable, rendering the design of a robust DSP process a challenging task. 

For this, thorough understanding of the USP-DSP interactions is of key importance and will 

aid in the creation of a QbD approach. Given the fact that the DSP studied in this thesis is a 

purification process, the QbD approach is centred around the maximization of the product 

purity, while maintaining an efficient process yield. In order to achieve maximum purity, a 

thorough understanding of the impurities throughout the process is needed, along with a 

clear knowledge of the desired quality attributes and their allowed thresholds. In addition, 

the interplay between process parameters and quality attributes needs to be carefully 

studied, in order to ensure that the process will be operating within the optimal range.  The 

set of feasible and/or optimal process conditions that yield within-spec products is also known 

as “design space”. The identification of such a design space can be the key to the creation of 



many similar processes, without the need for complex calculations and with a beforehand 

knowledge of the expected product purity and process yield. 

Beyond design space identification and optimisation, digital tools offer cost-efficient 

platforms for in silico testing, monitoring and control. The capabilities and ease of use of such 

tools depends highly on the complexity of the process model, which in separation processes 

is often prohibiting. More specifically, downstream purification processes are described by 

complex partial differential equations that are challenging to simulate and use for post-

modelling analysis, such as dynamic optimisation. Computer-based models describing such 

processes are often complex and computationally expensive to use. For this reason, the 

second pillar of this thesis is focusing on alleviating this complexity of the model through data-

driven modelling. By replacing the complex partial differential equations of the model with 

simpler algebraic equations derived from the results of an initial, experimentally validated, 

simulation model, a simplified data-driven model can be created. Consequently, this model 

will require less computational power and time to complete a simulation, enabling it to act as 

a possible controller for the purification process.  

The specific objectives of this thesis can be summarised in three main parts (a) the modelling 

of the MCSGP periodic process presented in section 4.2.1, (b) the execution of a sensitivity 

analysis and identification of a design space for said process and (c) the development of a 

digital twin of the process. 

 

 

 

 

 

 

 

 

 

 

 

 



4. Proposed Methodology and Model Description 

 

4.1. Methodology 

 

A flowchart of the proposed methodology presented in sections 4.1.1 - 4.1.3 is depicted in 

Figure 8. 

 

Figure 8: Methodology 

 

4.1.1. Model Development and Simulation 

 

The framework developed and followed in this work begins with the development and 

simulation of a high-fidelity process model describing the system at hand. Here, gPROMS® 

ModelBuilder v.7.0.7 is used for the computational experiments. 

Once the model structure has been finalized, a preliminary sensitivity analysis is performed 

to determine the optimal operation parameters of the model, followed by simulations, 

executed to provide further insight on the behaviour of the process.  

 

4.1.2. Sensitivity Analysis 

 

Sensitivity Analysis (SA) is performed for the identification of the uncertainty introduced by 

parameter values to the model outputs. SA can be either local (LSA) or global (GSA). LSA is 



assesses the local impact of input factors' variation on model response by concentrating on 

the sensitivity in vicinity of a set of factor values [121]. However, due to the interactions 

between inputs, observed in many complex and nonlinear spatial phenomenon or processes, 

it is inappropriate to only evaluate the impact of one input factor on the model output with 

other factors being constant. It is for that reason that a global sensitivity analysis is also 

executed. 

GSA focuses on estimating the uncertainty in outputs to the uncertainty in each input factor 

over their entire range of interest, for a certain process. In this case, all the input factors are 

varied simultaneously, and the sensitivity is evaluated over the entire range of each input 

factor [122]. Using GSA, the importance of model inputs and their interactions with respect 

to model output can be quantified, and the result is more realistic to the real world since it 

allows all input factors to be varied simultaneously. Few of the many GSA methods available 

include the Sobol's sensitivity estimates, the Fourier amplitude sensitivity test (FAST), and the 

Monte-Carlo-based regression–correlation indices [122]. 

In this work, the simulations needed to later perform the local and global sensitivity analyses 

are going to be executed using gPROMS’s feature: Global System Analysis. After that, the 

results of the global system analysis will be processed using the SobolGSA Software. As 

indicated by its name, the software uses the Sobol indices approach, which is in turn is based 

on the ANOVA decomposition, which is generated by a method called Random Sampling - 

High Dimensional Model Representation (RS-HDMR). The advantage of the RS-HDMR 

technique is that the model is constructed from randomly sampled input-output data and is 

represented as a sum of component functions with increasing dimensionality [123]. The 

reason behind the selection of this particular method rests on the fact that the Sobol indices 

approach has a better performance with regards to nonlinear models and introduces the 

individual and total sensitivity index of each input. The two different Sobol indices which are 

mainly considered are the first-order effect and total effect indices [124]. 

The first-order effect index indicates the main contribution of each individual input factor on 

the variance of an output.  Therefore, the larger the value of the index, the more impactful 

the input is on the monitored output. What needs to be noted is that the total sum of indices 

across the inputs for a particular response is always less than or equal to one. When the total 

sum is equal to one, then the model is additive. When it is close to one, a small higher order 

interaction between the inputs is implied, and when it is much smaller than one, it is an 

indication of significant higher order interactions between the inputs [124]. 

In the cases where there is an indication of significant higher order interactions between the 

inputs the total effect index needs to be calculated. This index considers the total contribution 

including the individual contribution and all of the higher order effects due to its interaction 

with other inputs. When the total effect index of a factor is equal (or close) to its first-order 

index, then this factor has no interactions with the other factors. However, if it is larger than 



the first-order index, that is an indication of significant interactions. By definition the total 

effect index is always larger or equal to one [124]. 

Finally, after the sensitivity analyses have been completed and the Sobol indices calculated, a 

design space identification will be performed, using the information gathered in the previous 

steps. 

 

4.1.3. Data-Driven Modelling 

 

Following the sensitivity analyses, an assessment of the equations describing the model will 

be performed. The complex equations detected will then be replaced by an Artificial Neural 

Network (ANN), that will be developed on Python using TensorFlow.  

Artificial neural network models are developed by training the network to represent the 

relationships and processes that are inherent within the data. Since they are non-linear 

regression models, they perform an input–output mapping using a set of interconnected 

simple processing nodes or neurons. That means that each neuron takes in inputs (entry data 

important for predicting the outputs) either externally or from other neurons and passes it 

through an activation or transfer function such as a logistic or sigmoid curve. These data 

entries enter the network through the input units arranged in an input layer and are then fed 

forward through successive layers (including a hidden layer) to emerge from the output layer 

[125]. 

In this case, after determining the equations to be removed, the variables used to calculate 

these equations will be identified. Using the results of the previously executed GSA, the values 

of these variables will be used as inputs for the ANN and the values previously calculated by 

the equations will become the outputs.  

After the training of the ANN is complete, a new set of inputs and outputs will be generated 

using the original high-fidelity model on gPROMS. This set will be used in turn for the 

assessment and the validation of the model. 

 

4.2. Model Analysis 

4.2.1. The Multicolumn Countercurrent Solvent Gradient Purification  

 

This work focuses on the simulation and post-modelling analysis of the Multicolumn 

Countercurrent Solvent Gradient Purification (MCSGP). MCSGP is based on ion-exchange 

chromatography. It was developed at the Swiss Federal Institute of Technology (ETH) Zürich 



by Aumann and Morbidelli, and is used to separate or purify biomolecules from complex 

mixtures [106]. The process consists of two to six chromatographic columns, which are 

switched in position opposite to the flow direction. They are connected to one another in 

such a way that as the mixture moves through the columns the compound is purified into 

several fractions [126]. 

Generally, a single column process is made up of four parts [106]: 

• Equilibration 

• Load 

• Elution  

• Stripping 

In turn, the elution of the feed can be divided in five steps [106]:  

• Elution of weak impurities (W). 

• Overlapping region containing weak impurities and product (W/P). 

• Window where the product (P) is pure. 

• Overlapping region containing product and strong impurities (P/S). 

• Elution of strong impurities (S). 

In batch chromatography, weak and strong impurities (R1 and R2 respectively as depicted in 

Figure 9) often have to be discarded to reach a certain product purity. This is due to the fact 

that the overlapping windows are undoubtedly contaminated. However, they do contain a 

large quantity of target product, that cannot be wasted and needs to be recovered, in order 

to obtain a satisfactory process yield. In batch processes, this is performed through an 

external recycle, which increases the process time and the risk of errors made by the 

operator. The automation of this step is achieved through the MCSGP technique [127]. 

With MCSGP, weak and strong impurities are internally recycled in a periodic closed loop 

process, while pure product is continuously extracted. As a result, little product is lost, and 

the yield of pure product is maximized without any accumulation of impurities, whilst 

retaining target purity. This leads to a significant improvement in process economics, since 

MCSGP gives higher yield and purity than batch chromatography [128].  

 



 

Figure 9: Comparison between batch and MCSGP Chromatographic processes. 

 

Twin-Column MCSGP 

 

The twin-column MCSGP system comprises two identical, ion‐exchange, chromatographic 

columns, operating in countercurrent mode, in order to purify a mAb from a ternary mixture, 

composed by weak impurities (W), the product (P), and strong adsorbing impurities (S), as 

mentioned above. Alternated between batch (phases B1 and B2) and interconnected (phases 

I1 and I2) state, these two columns operate in a semicontinuous fashion, as shown in Figure 

10 [127]. 

 



 

Figure 10: Schematic overview of a complete cycle of the twin-column MCSGP process, adapted from Krättli et al. [127] 

 

Figure 10 illustrates the main process setup of the twin column MCSGP. The general approach 

of the MCSGP process is to divide the product collection into three different steps, where only 

the central fraction containing the product (phase B1) within specifications is withdrawn from 

the unit, while the two overlapping regions are recycled within the unit. These regions contain 

product contaminated by weak (phase I1) or strong (phase I2) impurities and therefore are 

recycled onto a second column [129]. 

More specifically, at the beginning of phase I1, column 2 starts empty and equilibrated, in 

order to be filled with the outlet flow of column 1 mixed with an additional fraction of 

adsorbing eluent (E). This is done to favor adsorption since elution occurs at higher modifier 

concentration/solvent strength than adsorption. By the end of I1 and at the beginning of 

phase B1, the feed (F) is introduced to column 2 and the product is eluted from column 1. This 

is the only step during which product collection occurs. Similarly, in phase I2 the outlet flow 

exiting column 1 enters column 2, containing the impure fraction of product mixed with 

strong impurities. By the end of I2 phase and at the beginning of phase B2, column 1 starts 

eluting pure S, whilst column 2 starts eluting pure W. When the overlapping region of W and 

P reach the end of column 2, phase B2 ends and phase I1 starts again, with the columns 

switching positions. This means that column 1 will go through the recycling and feeding tasks 

as described above, while column 2 will continue with the gradient elution [130]. 

 

 

 



The Process Model 

 

The model used in this work has been previously developed and validated by the Morbidelli 

Group [131]. Due to confidentiality agreement between Imperial College London and the 

Morbidelli Group (ETH Zürich) the exact values for parameters and outputs cannot be 

disclosed and therefore only estimates are provided. 
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Where, j = 1,…, ncycle, the cycle index 

  s = 1,…, noutlet, the outlet stream  

 

4.2.2. Cyclic Steady State Operation 

 

One of the critical difficulties in developing a chromatographic system is the challenge in 

optimizing and controlling it. Chromatographic systems are classified into the greater 

category of periodic systems. As a result of the motion of the sorbate concentration of the 

liquid and solid phase axially along the bed, their concentration profiles are time and space 

dependent. In that regard, the continuous model is as a function of time that can reach a 

pseudo steady state, the cyclic steady state (CSS) [132]. What is basically anticipated in the 

responses of the model is a periodic nature, meaning that in each cycle after CSS has been 

reached, the profiles will be indistinguishable from each previous and subsequent cycle. 

 

 



5. Results and Discussion 

5.1. Model Simulation 

 

During the first step of the framework presented, i.e., the model simulation, a preliminary 

sensitivity analysis on the model (section Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν 

βρέθηκε.)  is performed to determine the optimal collocation points, at which the model has 

an acceptable precision and accuracy, without increasing greatly the computational time. The 

number of collocation points considered ranges from 10 to 70, while the original model has 

been experimentally optimised for 50 collocation points. 

 

Figure 11: Average error (orange) on the monitored process variables across the samples and average time taken (blue) to 
complete one simulation of a sample with different number of collocation points. 

 

As can been seen in Figure 11, the error indicated by the orange dots decreases as the number 

of collocation points increases. However, the simulation time increases at a faster rate as the 

number of collocation point increases. Essentially, there is a trade-off between speed and 

accuracy as the number of collocation points is increased. The results indicate that after 50 

collocation points, any increase in their number causes a very small respective decrease in 

error. Therefore, given that the model was already validated using 50 collocation points, it 

was decided that for the rest of the analysis, 50 collocation points will be used. 

After determining the collocation points, the cycle of the process, during which cyclic steady 

state is achieved, needs to be identified. Using 50 discretization points, as dictated before, a 

simulation is run completing 10 process cycles. The results of said simulation are presented 

in the figure below, where the liquid concentration of product at the end of each column was 

measured against time. 
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Figure 12: Concentration of product at the end of the column against time for 10 process cycles. The black dash-dotted lines 
represent the end and start of a new cycle. 

 

As can be easily observed, each process cycle is separated by a dotted black line. To declare 

that the process has reached CSS, the total mAb concentration at the end of the column is 

recorded at a time just after elution has started in each cycle (beginning of phase I1). Then 

the value recorded is compared to the value of the previous cycle for the exact same situation 

time. This process is repeated for every cycle and when the error between the two values is 

below 0.1 % (absolute percentage error) or correct to the fourth significant figure, it can be 

assumed that the process had reached CSS. It is therefore clear from Figure 12 that after the 

fourth process cycle the peaks of each column become almost identical and cycle steady state 

is reached.  

Having determined the collocation points and the process cycle where CCS begins, the model 

assessment is complete and its optimal operation parameters are identified. Using these, the 

global sensitivity analysis can be, in turn, executed. 

 

5.2. Digital Design Space Identification 

 

Here the model was used for the design of a digital operating space (digital design space). For 

that, computational sensitivity analysis was conducted, divided two parts. Firstly, the inputs 



analysed, i.e., the concentration of the feed, the flowrate, the concentration of the modifier, 

the column length, and the column porosity, are analysed separately in a local sensitivity 

analysis. This gives great insight to the effect of each input regarding the process. Secondly, a 

global sensitivity analysis is executed, in order to assess the total effect of each input on the 

process as well as their interactions. 

The most important values of the process are the process yield and the product purity. It is 

for that reason that, in all the sensitivity analyses, these two are the main constrains. In order 

for the process yield to be considered satisfactory a minimum of 80% is required. At the same 

time, given the nature of the product, only a purity of at least 98% is accepted, to assure the 

safety of the product. Given that the product purity of interest, is that of the collected 

product, all the sensitivity analyses are executed at the end of each column during the 

collection phases (B1). 

The inputs analysed (Table 1: Inputs considered for the local and global sensitivity analyses.) 

and the outputs calculated (Table 2) are presented in the tables below.  

Due to confidentiality agreement between Imperial College London and the Morbidelli Group 

(ETH Zürich) the exact values for parameters and outputs cannot be disclosed and therefore 

only estimates are provided. 

Table 1 

Table 1: Inputs considered for the local and global sensitivity analyses. 

 
Input 

Baseline 

Value 

Lower 

Bound 

Upper 

Bound 
±% Units Description 

LSA1 

Cfeed,W 0.07 0.05 0.08 20 mg/ml Feed concentration of weak impurities 

Cfeed,P 0.4 0.3 0.4 20 mg/ml Feed concentration of product 

Cfeed,S 0.04 0.03 0.05 20 mg/ml Feed concentration of strong impurities 

LSA2 

QMAX 1 0.5 1 - ml/min Max flowrate 

 Q1 0.1 0.1 1 - ml/min 
Inlet flowrate of the column executing 

the gradient elution during phase I1 

 Q2 0.1 0.1 1 - ml/min 
Inlet flowrate of the column executing 

the gradient elution during phase I2 

LSA3 

Cfeed,M 2 1.6 2.4 20 mg/ml Feed concentration of modifier 

 CM,1 2.5 2 3 20 mg/ml 
Initial modifier concentration for the 

column executing the gradient elution 



CM,2 1 0.8 1.2 20 mg/ml Initial modifier concentration for the 

column executing the recycling and 

feeding tasks 

LSA4 
Lcol 15 9 21 40 cm Column length 

 LDcol 20 14 26 30 - Column length to diameter ratio 

LSA5 

 εM 0.8 0.5 1 30 - Column porosity for modifier 

 ΕW,P,S 0.6 0.4 0.7 30 - Column porosity for product and 

impurities 

 

Table 2: Outputs calculated in the local and global sensitivity analyses. 

Input Baseline Value Units Description 

Purity 0.98 mg/ml Product purity 

Yield 0.88 mg/ml Process yield 

 CM 2.6 mg/ml 
Modifier concentration at the end of the column during 

product collection 

 CW 0.0003 mg/ml 
Weak impurities concentration at the end of the column 

during product collection 

 CP 0.3 mg/ml 
Product concentration at the end of the column during 

product collection 

 CS 0.007 mg/ml 
Strong impurities concentration at the end of the column 

during product collection 

 

 

5.2.1. Local Sensitivity Analyses 

 

Concentration of Feed 

 

The first local sensitivity analysis executed is to determine the effect of the feed 

concentration, coming from the bioreactor, on the process. As has already been explained in 

the section above, the feed form the bioreactor is only introduced in the columns during 

stages B1 and consists of the product and weak and strong impurities. 

In this particular case, the feed concentration does not constitute a degree of freedom, since 

it is predetermined by the upstream process. It is however a disturbance that may vary during 



the process. Therefore, the purpose of this sensitivity analysis is to determine the bounds in 

between which, the product collected has the desired qualities.  

In order to study the effect of each feed component on the process, the following diagrams 

are designed: 

 

Figure 13: Weak Impurities’ feed concentration effect on Purity and Yield 

 

It can easily be observed that the effect of the weak impurities on the product purity and the 

process yield does not follow a certain pattern. When it comes to the latter, it appears that 

no matter the concentration of weak impurities, the yield is held above the 80% threshold. 

This is to be expected if one considers the bounds chosen for the sensitivity analysis. The 

variation of the concentration of feed was kept at a maximum of 20% (the maximum of the 

expected disturbance), which is the variation for which the model has been validated, and a 

yield above 80% is assured [129].  

In the case of the product purity, it appears that more than half the concentrations analysed 

produce a product of unacceptable quality. However, there is no clear indication that the 

concentration of weak impurities has any effect on it. On the contrary, what should be 

considered is the fact that the concentration of the total feed was analysed, and not simply 

of the weak impurities. It is therefore necessary to proceed to an examination of the impact 

of the concentration of the product, as well as the concentration of the weak impurities, 

before arriving to further conclusions. 
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Figure 14: Product’s feed concentration effect on Purity and Yield 

 

Contrary to the concentration of weak impurities, the concentration of the product appears 

to have a significant impact on both the product purity and the process yield. More 

specifically, an increase in the product concentration of the feed leads directly to an increase 

in purity and yield. Starting from the latter, this behaviour is expected, since the yield is 

calculated by dividing the product concentration at the moment of collection with the product 

concentration of the feed. Considering the principles of ion-exchange chromatography, while 

it is not entirely possible to completely separate the three feed components, it can be done 

to a great degree, with only a fraction of the product being eluted with the other two 

components, outside of the collection points. By increasing the concentration of the feed 

there is only a small increase of this fraction, and therefore a larger percentage of the product 

is collected.  

Consequently, this increase in the concentration of the product being collected leads to an 

increase to the product’s purity. In this case however, the increase is not as linear as in the 

case of the process yield. That indicated that there is another factor influencing the purity of 

the collected product. Since the weak impurities have so far proven to have insignificant 

impact, the strong impurities need to be examined. 
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Figure 15: Strong Impurities’ feed concentration effect on Purity and Yield 

 

By examining the effect of the concentration of the strong impurities on the product purity 

and the process yield, the previous theory that the concentration of strong impurities has a 

large impact on the product purity proves to be correct. The effect that strong impurities have 

on product purity appears to be the exact opposite of the one the feed concentration of the 

product has. This means that a larger initial concentration of strong impurities in the feed 

leads to a reduced product quality.  

However, this was not the case with the weak impurities. The reason behind this difference 

in behaviour is the very nature of the impurities. By definition, weak are the impurities easier 

to separate, whilst strong are the ones that are the hardest to remove. As a result, a 20% 

disturbance in the concentration of the weak impurities is quickly corrected by the 

chromatographic process, leaving no lasting effects on the product. Contrary to that, a 20% 

disturbance in the concentration of strong impurities, can lead to a reduced product quality 

by greatly affecting the product’s purity. 

Finally, similar to weak impurities, strong impurities appear to not have a significant impact 

on the process yield. This is explained by the fact that the yield is calculated solely by the 

concentration of the product collected and a variance in the concentration of impurities does 

not directly affect the concentration of the collected product. 

To further understand the interactions between the inputs and the outputs the following first-

order and total effect indices are calculated: 
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Table 3: First-order indices for the feed concentration 

 
Pur Y  CM  CW  CP CS 

 Cfeed,W 0.05 0.04 0.04 0.18 0.04 0.01 

 Cfeed,P 0.15 0.11 0.08 0.12 0.25 0.07 

Cfeed,S 0.10 0.14 0.14 0.09 0.10 0.51 

Sum 0.30 0.29 0.26 0.39 0.39 0.59 

 

Table 4: Total effect indices for the feed concentration 

 
Pur Y  CM  CW  CP CS 

 Cfeed,W 0.50 0.48 0.52 0.58 0.40 0.29 

 Cfeed,P 0.58 0.54 0.56 0.48 0.62 0.36 

Cfeed,S 0.62 0.69 0.67 0.55 0.59 0.75 

Sum 1.70 1.71 1.75 1.61 1.61 1.40 

 

When studying the tables above, only values larger or equal to 0.1 are considered significant. 

By looking at the first-order indices it is once again confirmed that the feed concentration has 

no significant impact on any of the outputs, i.e., the product purity, the process yield, and the 

concentrations at the end of the column at the moment of collection, except of course the 

concentration of weak impurities during product collection. Additionally, it appears that the 

feed concentration of the product has a higher impact on the product purity than the strong 

impurities do, while the strong impurities have a larger impact on the process yield, which 

was not predicted by the diagrams above. However, it needs to be noted that all those 

impacts are very small, with their sum being very small in almost every case, which is an 

indication for significant interactions between the feed concentrations themselves.  

Looking at Table 4, the total effect indices of every input are significantly larger, which 

confirms the existence of input interactions. These interactions are the very reason that the 

chromatography is needed. By definition, these three components of the feed are difficult to 

separate due to their similar structure and the interactions taking place between them. 

 



Flowrate 

 

After studying the effect of the feed concentration on the process the focus swifts to the 

flowrate. Unlike the concentration of the feed, which was approached as a disturbance, the 

flowrate is a degree of freedom of the process, along with the modifier concentration and the 

switching times.  

Throughout the process the flowrate is kept constant and equal to QMAX. The only two 

instances where there is a change of flowrate in one of the columns are during phase I1, 

where the flowrate of the column executing the gradient elution is set to Q1, and during phase 

I2, where the flowrate of the same column is set to Q2. For that reason, when studying the 

effect of the flowrate on the process, all three values are taken into consideration, as can be 

seen from the following diagrams. 

 

 

Figure 16: Maximum flowrate’s (QMAX)   effect on Purity and Yield 

 

It is clear from the diagrams depicting the impact of the maximum flowrate of the process on 

the product’s purity and the process yield that the flowrate has a significant effect on the 

process. Certain values can lead to a desired purity and yield, whilst others can lead to a 

complete failure of the purification process. This is due to the fact that a change in flowrate, 

given that all the other process parameters are constant (i.e., pH and switching times), affects 

the velocity of each component inside the column. Starting from the column executing the 

recycling and feeding tasks, a change in flowrate can affect the initial separation. Having a 

higher or lower velocity, each component interacts differently with the charged field, 

meaning that the overlapping regions containing product along with either weak or strong 

impurities can increase. Additionally, all three feed components arrive at the end of the 

column at a different time point. Having not changed the switching times and therefore the 
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product collection time, there is a very high chance that the “product” collected, may not in 

fact contain any product at all, or if it does, that it will be highly contaminated with impurities, 

as is depicted in the diagrams above. 

 

 

Figure 17: Effect of inlet flowrate of the column executing the gradient elution during phase I1 (Q1) on Purity and Yield. 

 

Along with the maximum flowrate, the flowrate during the interconnection of the columns of 

phase I1 (Q1) appears to have an impact on the outputs. The value of said flowrate determines 

the amount of mobile phase, supposedly containing the overlapping weak impurities and 

product region, that is transferred from the elution column to the recycling column for further 

separation and purification of the product. This flowrate by itself should not have a significant 

impact on either the process yield or the product purity. However, when coupled with 

changes in the maximum flowrate of the process, it could lead to a recycling of mostly 

impurities instead of product, therefore greatly affecting the final product by making the 

already difficult separation from the weak impurities even harder.    

 

Figure 18: Effect of inlet flowrate of the column executing the gradient elution (Q2) during phase I2 on Purity and Yield. 
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Similarly to Q1, the flowrate during the interconnection of the columns of phase I2 (Q2) 

appears to also have an impact on the outputs. A pattern however is once again not indicated 

by the diagrams. The value of this flowrate determines the amount of mobile phase, 

containing the overlapping strong impurities and product region, that is transferred from the 

elution column to the recycling column for further separation and purification of the product. 

Contrary to Q1, however, the recycling of this overlapping region has a greater impact on the 

process due to the fact that it is the strong impurities that are being recycled along with the 

product. By definition, the strong impurities are the hardest to separate and therefore small 

miscalculations or changes in the recycling feed can lead to a significant impact on the whole 

process. Furthermore, it is safe to assume that the already significant impact of Q2, when 

coupled with changes in QMAX and Q1 as well, will be further increased. 

For a better understanding of the significance of each flowrate the first-order and toral effect 

indices are calculated: 

 

Table 5: First-order indices for the flowrate 

 
Pur Y  CM  CW  CP CS 

QMAX 0.06 0.08 0.19 0.11 0.08 0.10 

 Q1 0.09 0.04 0.13 0.10 0.04 0.06 

 Q2 0.17 0.24 0.17 0.09 0.24 0.13 

Sum 0.32 0.36 0.49 0.30 0.36 0.31 

 

Table 6: Total effect indices for the flowrate 

 
Pur Y  CM  CW  CP CS 

QMAX 0.50 0.57 0.47 0.68 0.57 0.69 

 Q1 0.40 0.25 0.41 0.32 0.25 0.26 

 Q2 0.78 0.82 0.63 0.70 0.82 0.74 

Sum 1.68 1.64 1.51 1.70 1.64 1.69 

 

With a first look at the indices when it comes to the product purity and process yield, it 

appears that indeed only Q2 has a significant direct impact on these two outputs, but they all 



affect them greatly through the interactions between them. However, after examining them 

further, their direct and indirect impact on the modifier concentration holds great interest.  

By changing the flowrates, it is not only the velocity of the feed components in the column 

that is changed, but the velocity of the modifier as well. Given that the process is an ion-

exchange chromatography, the whole outcome of the process is dependent on the charge 

inside the columns, i.e., the pH. By changing the flowrates without adjusting the modifier 

concentration as well, there is a subsequent chance in the columns’ pH. This in turn leads to 

variations in the columns’ ability to separate the product from the impurities, as well as the 

time points at which the product is eluted.  

From this point on, it is easy to comprehend that these changes in pH directly affect the 

concentrations of the product and the impurities at the end of the column during product 

collection, as can be seen in the tables above. As a result, given the length of the effect the 

flowrate has on the process, it is preferable for it to be treated as a factor to be optimised, 

along with the modifier concentration and the switching times, rather than a sensitivity 

analysis input. 

 

Concentration of Modifier 

 

The last LSA executed for the process parameters concerns the modifier concentration 

throughout the process. In order to assess the modifier’s effect on the process the 

concentrations are broken down to three parts, the first being the modifier concentration 

inserted into the column during phase B1 along with the feed from the bioreactor, the second 

being the initial modifier concentration inserted into the column executing the gradient 

elution during phase I1, and the third being the initial modifier concentration inserted into 

the column executing the feed and recycling tasks during phase I1. These three initial 

concentrations constitute a degree of freedom of the process and dictate the modifier 

concentration in the columns at any given moment. 

In order to study the effect of the beforementioned concentrations on the process, the 

following diagrams are designed: 

 



 

Figure 19: Effect of modifier’s feed concentration (Cfeed,M) on Purity and Yield 

 

Based on the two diagrams presented above, the modifier’s concentration inserted along with 

the feed from the bioreactor (Cfeed,M) appears to have little effect on the purity of the product, 

as well as the yield of the process. This is justified due to the fact this concentration is only 

inserted in the column executing the feeding and recycling tasks during phase B1, which only 

lasts for a small fraction of the process cycle. Moreover, right after phase B1 a new dose of 

modifier is introduced in the column, the concentration of which is dependent on the initial 

concentration inserted into the column executing the recycling and feeding during phase I1 

(CM,2). As a result, the concentration of the modifier added with the feed is expected to not 

have a significant impact on the process outputs, it is expected however to have significant 

interactions with the rest of the inputs, i.e., the other modifier concentrations added 

throughout the process. 

 

 

Figure 20: Effect of initial modifier’s concentration for the column executing the gradient elution (CM,1) on Purity and Yield. 
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Given that the initial concentration of the modifier entering the column executing the 

gradient elution (CM,1) directly dictates the modifier’s concentration during product 

collection, it is expected to have a large impact. More specifically, the concentration of the 

modifier affects the column’s pH, which in turn affects the ion-exchange chromatography. 

The principles of ion-exchange chromatography dictate that during product elution, the closer 

the pH is to the pl of the product, the larger the amount of product that is eluted. However, 

small deviations in pH during the designated time for product collection, can lead to an 

electrically charged product that cannot yet be or has already been eluted. At the same time, 

a delayed or rushed elution of the product can be followed by an increased elution of 

impurities during collection.  

These phenomena can be observed in the diagrams above. Both product purity and process 

yield present small peaks for a small range of CM,1, and outside of those peaks the values of 

purity and yield quickly drop to zero. This indicates that the elution of the product happens 

at a completely different time than that of the collection of the product. Much like in the case 

of the flowrate, it is clear that the concentration of the modifier should not be optimized by 

itself, but should be accompanied by a respective optimization of the switching times, in order 

to ensure that the product elution and the product collection occur at the same time. 

 

 

Figure 21: Effect of initial modifier’s concentration for the column executing the recycling and feeding tasks (CM,2) on Purity 

and Yield. 

 

The last modifier concentration that can be changed and therefore optimised in the process, 

is the initial concentration entering the column executing the recycling and feeding tasks 

during phase I1 (CM,2). The diagrams constructed above show no clear sign of a significant 

impact of CM,2 to the product purity and the process yield. However, contrary to the modifier 

concentration of the feed, in this case it is not expected. CM,2 affects the modifier 

concentration of the column executing the recycling and feeding tasks during phases I1, I2 
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and B2. It is therefore clear that it controls the pH of the column during the first separation 

of the feed components. This separation is detrimental to the purity of the process, since if it 

is not successful, the product eluted afterwards from the other column, will be accompanied 

by an increased concentration of impurities. 

Since the importance of CM,2 is not reflected in the diagrams, the first-order and total effect 

indices of the three modifier concentrations are calculated and presented in the tables 

bellow: 

 

Table 7: First-order indices for the modifier concentrations 

 
Pur Y  CM  CW  CP CS 

Cfeed,M 0.04 0.06 0.11 0.03 0.06 0.00 

 CM,1 0.15 0.40 0.25 0.48 0.40 0.75 

 CM,2 0.26 0.02 0.10 0.11 0.02 0.03 

Sum 0.45 0.48 0.46 0.62 0.48 0.78 

 

Table 8: Total effect indices for the modifier concentrations 

 
Pur Y  CM  CW  CP CS 

Cfeed,M 0.41 0.38 0.48 0.30 0.38 0.15 

 CM,1 0.44 0.70 0.59 0.74 0.70 0.90 

 CM,2 0.70 0.44 0.48 0.34 0.44 0.17 

Sum 1.55 1.52 1.55 1.38 1.52 1.22 

 

Starting from Cfeed,M, the first order indices indicate that it indeed has no direct impact on the 

process outputs. However, as was expected, it has a great impact on the outlet 

concentrations, as well as on purity and yield, through its interactions with the other inputs. 

Similarly, the impact of CM,1 on purity is confirmed, along with the larger impact, both directly 

and through interactions with the rest of the modifier concentrations, that it has on process 

yield. Finally, the most interesting information derived from these tables is the effect of CM,2 

on purity and yield. Even though it was not reflected on the diagram, CM,2 has the largest 



direct impact on the product’s purity, as well as the largest indirect (throughout interactions) 

one. 

 

Column Length 

 

After completing the LSAs concerning the process parameters, the design parameters are 

studied. In order to assess the shape of the column, a sensitivity analysis for the column length 

and the length to diameter ratio is executed. The reason behind this approach, instead of a 

sensitivity analysis over the length and the diameter of the column, is to ensure that the shape 

of the column remains, otherwise the results produced have no physical meaning and 

therefore no actual applications. 

 

 

Figure 22: Column length’s effect on Purity and Yield 

 

As shown in Figure 22, column length has a significant impact of the process yield and product 

purity. Keeping in mind that the flowrates are kept constant along with the product collection 

points, changes in the column length lead to changes in the elution time points of the product. 

Consequently, a smaller length would lead to the product arriving at the end of the column 

before the designated time, whilst a bigger length would find it still crossing the column at 

the moments of collection.  

If, however, the switching times were optimized along with the changes in the length of the 

column, then the results would be different. A bigger length could result in more time for the 

separation of components to be completed and therefore in higher product purity. 

Unfortunately though, this increase in product purity would be accompanied by an increase 

in the cost of the column. 
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Figure 23: Column length to diameter rate’s effect on Purity and Yield 

 

When changing the length of the column, the changes in the length to diameter ratio of the 

column represent the changes of the column’s diameter. Therefore, by studying the diagrams 

of Figure 23, the effect of the column’s diameter can be estimated. Since by changing the 

diameter of the column there are subsequent changes in the column’s surface, it would be 

expected for the diameter to affect the concentrations of the components inside the column. 

By increasing or decreasing the adsorption sites there is an accompanying increase or 

decrease in the effectiveness of the separation process. However, these are merely 

estimations and are not clearly depicted in Figure 23. To further understand the effect of the 

length and diameter of the column, the first-order and total effect indices are calculated.  

Table 9: First-order indices for the column length 

 
Pur Y  CM  CW  CP CS 

Lcol 0.16 0.16 0.48 0.16 0.16 0.31 

 LDcol 0.02 0.10 0.05 0.06 0.10 0.14 

Sum 0.18 0.26 0.53 0.22 0.26 0.45 

 

Table 10: Total effect indices for the column length 

 
Pur Y  CM  CW  CP CS 

Lcol 0.98 0.90 0.95 0.94 0.90 0.86 

 LDcol 0.84 0.84 0.52 0.84 0.84 0.69 

Sum 1.82 1.74 1.47 1.78 1.74 1.55 
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By examining the first-order and total effect indices it is clear that, as expected, the column 

length has a significant effect on the process yield and the product purity, but an even more 

significant through its interaction with the column diameter. The actual meaning of the 

“interaction” effect is that the shape of the column plays a significant part in the purification 

process. It can therefore be concluded that a change in column would need to be 

accompanied by an optimization of all the other parameters of the system, in order for the 

separation process to remain effective.  

 

Column Porosity 

 

The last local sensitivity analysis conducted studies the effect of the column porosity on the 

product purity and yield. This analysis is relatively simple, given that the porosities of the 

column are only two, one meant for the modifier, and one meant for the components of the 

feed, due to their similar size and structure.  

 

 

Figure 24: Effect of the column porosity for the modifier on Purity and Yield 

 

The column porosity for the modifier, by definition only affects the concentration of the 

modifier. It is therefore not expected to have a significant (or any) direct effect on the product 

purity and the process yield. However, by affecting the concentration of the modifier inside 

the column, it can lead to unpredicted changes in the pH of the column, with in turn greatly 

affects the separation process, as well as the elution times of the components. As a result, 

even though there are no direct effect, a change in the column’s porosity for the modifier 

could indirectly have a significant impact on the collected product.  
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Figure 25: Effect of the column porosity for the feed components on Purity and Yield 

 

Contrary to the porosity for the modifier, the column’s porosity for the feed components has 

significant impact on the products purity, as well as the process yield. The purpose of the 

column’s porosity is to be able to withhold the components of the feed during their journey 

through the column. Therefore, slight changes to the porosity result in a reduced ability to 

separate the product from the impurities.  

For more insight into the effects of the porosity, the first-order and total effect indices are 

calculated:  

 

Table 11: First-order indices for the column porosity 

 
Pur Y  CM  CW  CP CS 

εM 0.01 0.00 1 0.07 0.00 0 

 εW,P,S 0.82 0.96 0 0.75 0.96 1 

Sum 0.83 0.96 1 0.82 0.96 1 

 

Table 12: Total effect indices for the column porosity 

 
Pur Y  CM  CW  CP CS 

εM 0.18 0.04 1 0.25 0.04 0 

 εW,P,S 0.99 1.00 0 0.93 1.00 1 

Sum 1.17 1.04 1 1.18 1.04 1 
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By looking at the indices produced, the greatest interest is held by the values of the first-order 

and total effect indices of the column porosity for the components and the concentration of 

the strong impurities. Given that the index is equal to one, there are no other interactions, as 

are in the case of the product and the weak impurities. This observation leads to the 

conclusion that the porosity of the column chosen, during the design of the column, mainly 

aims in capturing the strong impurities and separating them from the rest of the components. 

Such a strategy can help improve the effectiveness of the process, since the greatest challenge 

is separating the strong impurities from the product.  

 

5.2.2. Global Sensitivity Analysis and Design Space Identification  

 

Having completed all the local sensitivity analyses and acquired an insight on the inner 

workings of each variable in the process, a global sensitivity analysis is executed, to study the 

interactions occurring between the all the process variables. Since an individual study of the 

effect of each variable would be tedious, a 3D bar chart is created, depicting all the inputs and 

outputs of the GSA, along with their corresponding indices: 

 

 

Figure 26: Global sensitivity analysis first-order indices 
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In Figure 26, the highly complicated effect each input has on the process is presented. Out of 

all the indices, highlighted with a red outline are the once that are considered significant, i.e., 

the ones whose value is higher than 0.1. By studying the inputs that have a significant impact 

on the process, it appears that the only inputs not affecting the process directly (though they 

could be affecting it indirectly throughout interactions with the rest of the inputs) are the 

feed concentrations of modifier and weak impurities, the maximum flowrate, and the length 

to diameter ratio of the column.  

To identify the desirable operating spaces, a purity and yield constrain are used. More 

specifically, the purity required for a product of the desired quality is: 

Purity ≥ 98% 

And the yield required for the process to be considered profitable is: 

Yield ≥ 80% 

Therefore, excluding the variables that do not have a significant direct impact on the process, 

the following design spaces are identified. 

 

Composition of Feed 

 

For first design space identified, the variables of the feed with significant impact 

(concentration of product and concentration of strong impurities) are considered., as shown 

in Figure 27. 

 

 

Figure 27: Design Space of feed composition. Blue markers indicate that the constrains are satisfied and orange markers 
indicate that they are violated. 
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As can be easily observed in Figure 27, there is a clear line separating the combinations of 

feed composition that satisfy the set constrains, from the ones that violate them. An 

increased concentration of the product in the feed, coupled with a decreased concentration 

of strong impurities, leads to higher chances of the separation process being successful.  

Additionally, as was explained in section 5.2.1, the concentration of the weak impurities is not 

included in the design space, since it has little to no effect in either the product purity or the 

process yield, when it remains within the expected range of disturbances.  

 

Flowrates During Interconnecting Phases 

 

Continuing with the effect of the flowrate of the process, Figure 26 indicates that the 

flowrates that have direct impact on the process outputs and the set constrains are the ones 

used during the interconnecting phases I1 and I2. Therefore, a design space of those two 

variables is identified to visualize the effect of the flowrate. 

 

 

Figure 28: Design Space of the flowrates during the interconnecting phases I1 and I2. Blue markers indicate that the 
constrains are satisfied and orange markers indicate that they are violated. 

 

Similarly to the design space of the feed composition, in Figure 28 a clear line of values with 

satisfied constrains is created. However, as can be seen, some of these values are very close 

with values that violate the constrains of either purity or yield. This is due to the fact that 

small changes in flowrates, can lead to respective changes in the elution time points of the 

components. This does not constitute a problem, since the flowrates of the process are 
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constant and are not subject to unpredicted variations, that may lead to reduced product 

quality, throughout the process. 

 

Initial Concentrations of Modifier in Each Column  

 

Regarding the concentrations of the modifier, the ones identified on Figure 26 with significant 

impact on the process outputs are the ones introduced into the column executing the 

gradient elution tasks during phases I1 and I2. Therefore, a design space of these two 

concentrations is presented in Figure 29.  

 

 

Figure 29: Design Space of the initial concentrations of the modifier for each column. Blue markers indicate that the 
constrains are satisfied and orange markers indicate that they are violated. 

 

Comparing this design space with the ones concerning the feed composition and the 
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columns used. Since the separation process in an ion-exchange chromatography, changes in 

the concentration of the modifier, and consequently in the pH inside the columns, need to be 

accompanied by process optimization, otherwise the resulting process will not lead to the 

required product purity and yield.  In this case however, the rest of the parameters were kept 

constant, hence resulting in a very restrictive design space.  

Moreover, what holds particular interest is the fact that one of the two operating points 

suggested from the design space is very close (almost overlapping) to a non-satisfactory 
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below the accepted threshold. However, insignificant as it may seem, this small deviation 

from the desired purity could lead to out-of-spec products that may need to be discarded.  It 

is therefore very important to choose carefully the operating parameters of the process.  

 

Column Dimensions 

 

Having completed the identification of the design spaces of the process parameters, the 

optimal operating space for the design parameters needs to be identified. Starting from the 

column dimensions, the only two parameters affecting it are the length of the column and 

the diameter, which in this case is investigated through the column length to diameter ratio. 

The design space for these two variables can be seen in Figure 30. 

 

 

Figure 30: Design Space of the column dimensions. Blue markers indicate that the constrains are satisfied and orange 
markers indicate that they are violated. 

 

Much like the concentration of the modifier, the column length has very strict operation 

parameters, as shown in Figure 30. Given the particular parameters of this process (which 

were kept constant), there is only one column dimension that meats the required criteria for 

the process, with all the rest of the column dimensions showing a process yield below 80%. 

This is due to the fact that the process has been optimized for this particular column 

dimension and not the other way around. As a result, even a slight change in the column 

length and diameter (as can be seen from the overlapping operating point in violation of the 

constrains), will lead to a significantly reduced product quality and process yield. 
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Column Porosity 

 

The last design space created depicts the impact of the column porosity, as can be seen in 

Figure 31. 

 

 

Figure 31: Design Space of the column porosity for each component of the process. Blue markers indicate that the 
constrains are satisfied and orange markers indicate that they are violated. 

 

The operation points depicted in Figure 31 that satisfy the constrains follow a horizontal line. 

Therefore, there is a wider number of porosities for that satisfy the constrains, than the one 

of porosities of the components. This is due to the fact that the porosity for the components 

has an active role in their adsorption in the column and therefore their separation. Being the 

components of the feed have a certain size and structure, changes in the porosity of the 

column would lead to significant decrease in the adsorption capabilities of the column. 

However, changes in the adsorption of the modifier, that would subsequently cause changes 

in the pH inside the column, can be optimized through changes in the modifier concentration. 

Additionally, is should be noted that the operation points, included in the constraint-satisfying 

horizontal line, that violate the constrains, show very small deviation from the required yield, 

whilst still producing a product of sufficient purity.  
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5.3. Data-Driven Modelling 

 

The first step in order to proceed with the data-driven model is to identify the equations that 

are going to be replaced by the artificial neural network. By looking at the equations in 

paragraph 4.2.1, it is clear that the two most complex equations of the system are the partial 

differential equations describing the liquid and solid phase concentrations of the four 

components (i.e., the modifier, the weak impurities, the product and the strong impurities). 

By removing these two equations the rest of the system is turned into a linear model. 

However, their removal is not as simple as that. Since the equations are a function of time 

and space, calculating the values of each concentration at any given time at any given space 

would demand great computational power as well as great number of GSAs conducted. Since, 

however, when it comes to controlling the process, the main concern is the concentration of 

the product collected at the end of the column, it is decided to calculate with the ANN the 

concentrations at any point in time, at the end of the column. 

Moving on to the identification of the variables used in the calculation of the two 

concentrations, it appears that the only variables used for the calculation of the solid phase 

concentrations are the equilibrium solid phase concentrations. However, in the case of the 

liquid phase concentrations, the needed variables are the column cross-section, the column 

porosity, the flowrate, and the solid phase concentration for each component. This poses a 

problem since an ANN is unable two calculate two outputs at the same time, when the value 

(output) of the one is an input for the other. 

This problem is overcome by creating two different consecutive ANNs, each one calculating 

only one concentration. The two ANNs created are identical, except from the inputs given and 

the outputs calculated. The inputs dataset of each ANN is first shuffled and split into two 

separate datasets, one used for training (80% of the original dataset) and one used for testing 

(20% of the original dataset) the model. Afterwards, the training dataset created is used to 

train the model through three hidden layers using a rectified linear  activation function (ReLU), 

which is described by the equation: 

𝑓(𝑥) =  {
  𝑥,      𝑥 > 0
  0,      𝑥 ≤ 0

 

The results of each individual artificial neural network created are presented in the following 

paragraphs.  

 

 



 

ANN for the Solid Phase Concentrations 

 

The first ANN trained is the one calculating the solid phase concentration of each component. 

After training the ANN the first indication of how well the training was executed is the diagram 

presenting the learning curve: 

 

Figure 32: Mean squared error against time for the first ANN. 

 

This diagram depicts the mean squared error of the outputs calculated by the ANN 

throughout time (epochs). As can be seen from the two overlapping lines the ANN adapts 

extremely quickly and presents very high accuracy.  This is also confirmed by the calculation 

of the mean squared error (MSE) as well as the coefficient of determination (R2) for each 

output (q): 

 

Table 13: Mean squared error and coefficient of determination for each output of the first ANN. 

 qM qW qP qS 

MSE 0.0098 0.0021 0.0208 0.0013 

R2 0.9988 0.9995 0.9981 0.9995 

 



The high accuracy of the model presented is expected due to the very nature of the 

relationship between the inputs and the outputs. Even though the equation replaced was a 

partial differential equation, each output is only dependant on one input. That leads to a 

relatively simple connection between the inputs and the outputs, which can be easily 

determined by the ANN.  

Additionally, the accuracy of the model is examined through the diagrams of the predictions 

of the ANN against the outputs calculated by the model.  

 

 

Figure 33: ANN predictions of the solid phase concentration of the product against the actual values calculated by gPROMS. 

 

Since the diagrams for all the outputs have the same behaviour, only the one concerning the 

solid phase concentration of the product, which is the most important component of the 

process, is analysed further and the rest of the diagrams can be found in Appendix A. As can 

be observed from the diagram above, the predictions of the ANN coincide perfectly with the 

testing values calculated by gPROMS. However, these calculations along with the diagrams 

presented are not sufficient to validate the model. 

As a final step, a new set of input values is generated by the original high-fidelity model on 

gPROMS and is fed to the ANN model in order to evaluate its performance. Once again, the 

diagram depicting the values of the solid phase concentration of the product is depicted 



below, whilst the rest of the diagrams follow a similar pattern and can be found in Appendix 

A. 

 

 

Figure 34: The solid phase concentration of the product throughout 10 process cycles calculated by the ANN and by gPROMS. 

 

This diagram comparing the results generated by the original high-fidelity gPROMS model and 

by the ANN is concluding proof of the ANN’s high performance. As can be easily observed, the 

two lines of the diagram are almost identical, with only some small deviations in 

concentrations with values close to zero. However, these deviations are insignificant, given 

their small values and the even smaller values of the corresponding concentrations.  

It is therefore concluded that the ANN can safely replace the partial differential equation 

describing the solid phase concentration of the modifier, the weak impurities, the product, 

and the strong impurities., at the end of the column. 

 

ANN for the Liquid Phase Concentrations 

 

The second ANN trained is the one calculating the liquid phase concentration of each 

component. After training the ANN the first indication of how well the training was executed 

is the diagram presenting the learning curve: 



 

 

Figure 35: Mean squared error against time for the second ANN. 

 

This diagram depicts the mean squared error of the outputs calculated by the ANN 

throughout time (epochs). As can be seen from the two overlapping lines the ANN adapts 

quickly and presents very high accuracy.  This is also confirmed by the calculation of the mean 

squared error (MSE) as well as the coefficient of determination (R2) for each output (q): 

 

 

 

Table 14: Mean squared error and coefficient of determination for each output of the second ANN. 

 qM qW qP qS 

MSE 0.0434 0.0012 0.0043 0.0005 

R2 0.9985 0.9979 0.9989 0.9981 

 

Despite the high accuracy of the model, it appears to have a slightly larger error in its 

predictions compared to the first ANN. however, these errors are still small enough to be 

considered insignificant (less than 0.1). This small difference in prediction can be explained 



by the higher complexity of the model (i.e., the larger number of inputs it receives and the 

various interactions between those inputs).  

In order to further examine the accuracy of the model, the diagrams of the predictions of the 

ANN against the outputs calculated by the model are created.  

 

 

Figure 36: ANN predictions of the liquid phase concentration of the product against the actual values calculated by gPROMS. 

 

Much like in the case of the first ANN, since the diagrams for all the outputs have the same 

behaviour, only the one concerning the liquid phase concentration of the product is analysed 

further and the rest of the diagrams can be found in Appendix B. As can be observed from the 

diagram above, the predictions of the ANN coincide with the testing values calculated by 

gPROMS, with only small deviations presented when the concentration gets higher. The 

impact of these deviations, however, is not clear by the prediction diagrams alone. 

To assess their impact on the outputs, a new set of input values is generated by the original 

high-fidelity model on gPROMS and is fed to the ANN. The liquid concentration of each 

component at the end of one column throughout a time of 10 process cycles is presented in 

the following diagrams. 

 



 

Figure 37: The liquid phase concentration of the modifier throughout 10 process cycles calculated by the ANN and by gPROMS. 

The above diagram depicts the changes in the liquid concentration of the modifier throughout 

the process. It can be easily observed that the two lines (of the ANN prediction and the 

gPROMS calculations) overlap for the most part, with only some small deviations. Therefore, 

the ANN can safely predict the liquid concentration of the modifier, with small errors. 

 

Figure 38: The liquid phase concentration of the weak impurities throughout 10 process cycles calculated by the ANN and by 
gPROMS. 



The second diagram presented depicts the liquid phase concentration of the weak impurities 

as calculated by gPROMS and as predicted by the ANN. Similarly to the previous diagram, for 

the most part the two lines overlap. However, in this case, during the peaks in concentration 

there appear to be significant mispredictions. This can be explained by the irregularity of the 

peaks in each cycle, which increases the difficulty of training the ANN. However, the 

concentrations during the peaks are of high importance since they have a greater impact on 

the model. As a result, if this ANN were to be integrated into a hybrid model it is possible that 

these concentrations would cause significant problems. A solution to this problem could be a 

change in the number of layers used for the creation of the ANN or in the activation functions 

used. 

 

Figure 39: The liquid phase concentration of the product throughout 10 process cycles calculated by the ANN and by 
gPROMS. 

 

Continuing with the predictions of the liquid phase concentration of the product at the end 

of the column, it is observed that the ANN predictions are significantly higher from the actual 

value during the peaks, i.e., during the time points of product collection. However, in this 

case, this cannot be attributed to irregularities in the high levels of concentration. 

Nonetheless, it could be explained by the wide range of values of the concentration of the 

product. Contrary to the impurities, the product’s concentration reaches significantly high 

values for a very small period of time. The fact that the concentration is for the most time 

close to zero and then presents with a very large value, could be leading the ANN to 

mispredictions. To resolve this, more experiments on the structure of the ANN should be 

performed, as was already suggested. If, however, none of them proved to solve this issue, 



another approach would be to create an ANN that would only predict the concentrations at 

the times of product collection. If that where the case, then unfortunately, the ANNs prospect 

of being integrated to a hybrid model and used for the control of the process would be 

reduced. 

 

 

Figure 40: The liquid phase concentration of the strong impurities throughout 10 process cycles calculated by the ANN and 
by gPROMS. 

 

Finally, the last diagram created depicts the liquid phase concentration of the strong 

impurities as calculated by the high-fidelity model and as predicted by the ANN. After looking 

at the ANN predictions, what is baffling in this case, is the fact that even though the actual 

values of the concentration are constant, after the process has reached cyclic steady state, 

the predicted values of the ANN show an increase in each process cycle.  

It is therefore clear that, unlike the first ANN created that calculates the solid phase 

concentration of each component, this ANN presents many mispredictions when the values 

of the concentrations increase, due to the increased complexity of the inputs used and their 

interactions. It shows however very promising results and has the potential to provide 

accurate results when integrated into a hybrid model, if the larger concentration values are 

first regulated.  



6. Conclusions and Future Work 

 

In the present work, a high-fidelity model describing the MCSGP chromatographic process 

was simulated in gPROMS in order to further the understanding of the process. Through a 

series of sensitivity analyses an attempt was made to identify the optimal operation 

parameters of the process and develop a digital twin of the model, to be used for on-line 

applications. 

In order to generate data from the high-fidelity model, a preliminary sensitivity analysis was 

conducted to determine the optimal discretization points of the model, for which maximum 

accuracy was achieved, but not at the cost of an increased computational time. The analysis 

showed a sufficient accuracy at 50 collocation points, which were also the collocation points 

used in the validation of the model, so the decision was made to utilize 50 discretization 

points. To complete the assessment of the model, a simulation was run to identify the cycle 

during which cycle steady state is reached. The results of the simulation showed that after 

the completion of the third cycle, the cycles become identical and therefore CSS is achieved.  

Following the assessment of the model, a sensitivity analysis, consisting of five local and one 

global sensitivity analysis, was executed. The sensitivity analyses conducted proved the high 

complexity of the system and gave insight on the impact of the input variables of the system 

on the process, both directly and indirectly (through further interactions among the inputs). 

The variables with the greatest direct impact were then further studied, to identify the 

optimal operation spaces for each one given a certain expected level of product purity (higher 

than 98%) and process yield (higher than 80%). As a result, five separate design spaces where 

created, concerning the composition of the feed, the flowrates of the interconnected phases, 

the initial modifier concentrations, the column diameter, and the column porosity. 

With the conclusion of the sensitivity analysis, the creation of a data-driven model of the 

process was attempted. Having identified the partial differential equations of the model to 

be replaced, the inputs of each equation were evaluated, to distinguish the actual variables 

from the set parameters. The complexity of the model, however, proved once again an issue 

due to the correlation between the two equations, and more specifically due to the utilization 

of the outputs of the first equation as inputs for the second. This complication created the 

need for two separate artificial neural networks, each one calculating only one of the 

equations. After the two ANNs were created, an evaluation of their performance against 

gPROMS’s performance was executed. The first ANN, calculating the solid phase 

concentration of the components, showed great accuracy in the prediction of results and 

insignificant errors. However, the second ANN, calculating the liquid phase concentration of 

the components, presented significant errors in the predictions of higher concentrations. A 

potential solution to the errors presented, would be the creation of a third, separate ANN, 

calculating only the large concentrations of each component, to work alongside the second 

one created. 



Regarding the future work to be done, the work conducted in this thesis is the first step to 

developing an effective on-line control model for downstream separation processes. The 

ANNs created show great potential in accurately predicting the concentrations of the process. 

By integrating them into the high-fidelity model on gPROMS and replacing the partial 

differential equations, a hybrid model will be created, that will provide results with great 

accuracy at a fraction of the original time. With the significant reduction in the computational 

time needed, the model will be able to provide accurate future predictions of the process that 

can be used to control it. Additionally, the design space identification can aid in establishing 

the controller’s bounds, so that the purity of the product and the yield of the process are 

guaranteed throughout the process.  

Finally, the use of the ANNs created as a modular unit in gPROMS is only one of the 

opportunities presented. These alternative and convenient models can be additionally 

connected with flowsheeting, control and optimization tasks in a large number of processes, 

downstream or otherwise. Based on the application and the product specs, future use of 

these simplified models provides with additional and apparent possibilities for model 

reduction, visualization, and customization. 
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Appendix A: First ANN Prediction and Validation Diagrams 

 

 

Figure 41: ANN predictions of the solid phase concentration of the modifier against the actual values calculated by 
gPROMS. 

 

Figure 42: The solid phase concentration of the modifier throughout 10 process cycles calculated by the ANN and by gPROMS. 



 

Figure 43: ANN predictions of the solid phase concentration of the weak impurities against the actual values calculated by 
gPROMS. 

 

Figure 44: The solid phase concentration of the weak impurities throughout 10 process cycles calculated by the ANN and by 
gPROMS. 

 



 

Figure 45: ANN predictions of the solid phase concentration of the strong impurities against the actual values calculated by 
gPROMS. 

 

Figure 46: The solid phase concentration of the strong impurities throughout 10 process cycles calculated by the ANN and 
by gPROMS. 

 



Appendix B: Second ANN Prediction Diagrams 

 

 

Figure 47: ANN predictions of the liquid phase concentration of the modifier against the actual values calculated by 
gPROMS. 

 

Figure 48: ANN predictions of the liquid phase concentration of the weak impurities against the actual values calculated by 
gPROMS. 



 

 

Figure 49: ANN predictions of the liquid phase concentration of the strong impurities against the actual values calculated by 
gPROMS. 


