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Abstract— In this paper we propose a tube-based robust
model predictive control scheme for fractional-order discrete-
time systems of the Grünwald-Letnikov type with state and
input constraints. We first approximate the infinite-dimensional
fractional-order system by a finite-dimensional linear system
and we show that the actual dynamics can be approximated
arbitrarily tight. We use the approximate dynamics to design
a tube-based model predictive controller which endows to the
controlled closed-loop system robust stability properties.

Index Terms— Fractional-order systems, Model Predictive
Control, Grünwald-Letnikov derivative, Constraints satisfac-
tion.

I. INTRODUCTION

A. Background and Motivation

Non-integer order derivatives and integrals (known as frac-
tional) are natural extensions of the standard integer-order
ones which enjoy certain favourable essential properties; for
example they are linear operators, preserve analyticity, and
have the semigroup property [1], [2]. However, fractional
derivatives are non-local operators, that is, unlike their
integer-order counterparts, they cannot be evaluated at a
points x solely by knowing how the function behaves in a
neighbourhood of this point [1].

Their popularity in pharmacokinetics and pharmacody-
namics is particularly interesting. The work of Kytariolos et
al. introduced fractional dynamics in the field of pharmacoki-
netic modelling pointing out the main reasons for the failure
of the classical in-vitro-in-vivo correlations theory [3]. Often,
non-linearities, anomalous diffusion, deep tissue trapping,
diffusion across fractal manifolds, synergistic and compet-
itive action and a great many other factors give rise to
fractional-order pharmacokinetics [4]. Such fractional phar-
macokinetic dynamics can be cast as physiologically-based
pharmacokinetic models (PBPK) (see [5]) where the mass
balance equations are properly rewritten using fractional-
order derivatives. Recently, it seems that there is increasing
attention on modelling and control of such systems [5]–[7],
especially in presence of state and input constraints.

Overall, fractional-order dynamical systems have been
proven to be powerful modelling tools used to describe dy-
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namics with infinite memory and are becoming increasingly
popular as it is becoming evident that they can compactly
describe rather complex dynamics.

Very recently, fractional systems were combined with the
model predictive control (MPC) framework [8]–[12]; this
seems to be a very active and emerging topic of research and
has a great potential for applications [13], [14]. Domek pro-
posed an MPC setting for Takagi-Sugeno fuzzy fractional-
order systems [15] and switched MPC of fractional-order
systems [16]. Deng et al. [10] proposed a predictive control
scheme for the power regulation of a solid oxide fuel cell.
A common denominator of all approaches in the literature
is that they approximate the actual fractional dynamics
by integer-order dynamics and design controllers for the
approximate system using standard techniques. Although,
these approaches seem to work in practice, no theoretical
guarantee is provided for the stability of the closed-loop
system. Additionally, MPC is often employed in order to
address constraints on the state and input of the system, but
no theoretical guarantees for their satisfaction exist in the
literature. The main contribution of this paper is a design
methodology for a model predictive control scheme which
steers the system’s state towards a small neighbourhood of
the origin while it guarantees the satisfaction of state and
input constraints.

Two approaches can be identified in the literature in regard
to the stability analysis of discrete-time fractional systems.
The first one considers the stability of a finite-dimensional
linear time-invariant system, known as practical stability,
but fails to provide conditions for the actual fractional-order
system to be (asymptotically) stable [17], [18]. This approach
is tacitly pursued in many applied papers [12], [19]. On
the other hand, fractional systems can be treated as infinite-
dimensional systems for which various stability conditions
can be derived (See for example [20, Thm. 2]), but conditions
are difficult to verify in practice let alone to use for the design
of model predictive controllers.

In this paper we discretise linear continuous-time frac-
tional dynamics using the Grünwald-Letnikov scheme which
leads to infinite-dimensional linear systems. We use a finite-
dimensional approximation to arrive at a linear time-invariant
system with an additive uncertainty term which casts the
discrepancy with the infinite-dimensional system. We then
introduce a tube-based MPC control scheme which is known
to steer the state to a neighbourhood of the origin which can
become arbitrarily small as the complexity of the approxima-
tion of the fractional-order system increases. In our analysis,
we consider both state and input constraints which we show
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that are respected by the MPC-controlled system.

B. Mathematical preliminaries

For the paper to be self-contained, in this section we
introduce some notation and definitions that will be useful
throughout the whole paper. Let N, Rn, R+, Rm×n denote
the set of non-negative integers, the set of column real
vectors of length n, the set of non-negative numbers and the
set of m-by-n real matrices respectively. For any nonnegative
integers k1 ≤ k2 the finite set {k1, . . . , k2} is denoted by
N[k1,k2]. Let x be a sequence of real vectors of Rn. The k-th
vector of the sequence is denoted by xk and its i-th element
is denoted by xk,i. We denote by Bnε = {x ∈ Rn : ‖x‖ < ε}
the open ball of Rn with radius ε and we use the shorthand
Bn = Bn1 . We define the point-to-set distance of a point
z ∈ X from A as dist(z,A) = infa∈A ‖z − a‖.

The space of bounded real sequences is denoted by `∞

and is a Banach space with norm ‖z‖∞ = supk∈N |zk|. We
define the space `∞n of all sequences of real n-vectors z
so that (zk,i)k ∈ `∞ for i ∈ N[1,n] which, equipped with
the norm ‖z‖∞ = maxi=1,...,n ‖zk,i‖∞, becomes a Banach
space.

Let Γ be a topological real vector space and A,B ⊆ Γ.
For λ ∈ R we define the scalar product λC = {λc : c ∈ C}
and the Miknowski sum A ⊕ B = {a + b : a ∈ A, b ∈ B}.
The Minkowski sum of a finite family of sets {Ai}Ki=1 will
be denoted by

⊕K
i=1Ai. The Minkowski sum of a sequence

of sets {Ai}i∈N is denoted as
⊕

i∈NAi and is defined as the
Painlevé-Kuratowski limit (see [21]) of

⊕K
i=1Ai as K→∞.

The Pontryagin difference between two sets A,B ⊆ Γ is
defined as A	B = {a ∈ A : a+ b ∈ A,∀b ∈ B}. A set C
is called balanced if for every x ∈ C, −x ∈ C.

II. FRACTIONAL-ORDER SYSTEMS

A. Discrete-time fractional operators

Let x : R → Rn be a uniformly bounded function, i.e.,
there is a M > 0 so that ‖x(t)‖ ≤ M for all t ∈ R. The
backward Grünwald-Letnikov fractional-order difference of
x of order α > 0 and step size h > 0 is defined as the linear
operator [13] B∆α

h : `∞n → `∞n :

B∆α
hx(t) =

∞∑
j=0

(−1)j
(
α

j

)
x(t− jh), (1)

and its forward counterpart is defined as F∆α
hx(t) =

B∆α
hx(t+ h), or

F∆α
hx(t) =

∞∑
j=0

(−1)j
(
α

j

)
x(t+ (1− j)h), (2)

where
(
α
0

)
= 1 and for j ∈ N, j > 0(

α

j

)
=

j−1∏
i=0

α− i
i+ 1

(3)

Define

cαj = (−1)j
(
α

j

)
(4)

and notice for all j ∈ N that |cαj | ≤ αj/j!, thus, the sequence
(cαj )j is absolutely summable and, because of the uniform
boundedness of x, the series in (2) converges, therefore, ∆α

h

is well-defined. It is worth noticing that at time t and for
non-integer orders α the whole history of x is needed in
order to estimate ∆α

hx(t).
The Grünwald-Letnikov difference operator gives rise to

the Grünwald-Letnikov derivative of order α which is defined
as

Dαx(t) = lim
h→0

F∆α
hx(t)

hα
= lim
h→0

B∆α
hx(t)

hα
, (5)

provided that both limits exist. This derivative is then used
to describe fractional-order dynamical systems with state x :
R→ Rn and input u : R→ Rm as follows:

l∑
i=0

AiD
αix(t) =

r∑
i=0

BiD
βiu(t), (6)

where l, r ∈ N, Ai are Bi are matrices of opportune
dimensions, all αi and βi are nonnegative, and by convention
D0x(t) = x(t) for any x.

In an Euler discretisation fashion we approximate the Dα

in (6) using either h−αF∆α
h or h−αB∆α

h for a fixed step
size h. In particular, we use the forward operator for the
derivatives of the state and the backward one for the input
variables. For convenience, let us define xk = x(kh) and
uk = u(kh) for k ∈ Z; the discretisation of (6) becomes

l∑
i=0

ĀiB∆αi

h xk+1 =

r∑
i=0

B̄iB∆βi

h uk, (7)

with Āi = h−αiAi and B̄i = h−βiBi. The involvement
of infinite-dimensional operators in the system dynamics
deem these systems computationally intractable and call for
approximation methods for their simulation and the design
of feedback controllers.

In what follows, we will approximate (7) by a finite-
dimensional state-space system treating the approximation as
a bounded additive disturbance. We then propose a control
setting which guarantees robust stability properties for (7).

B. Finite-dimension approximation

It turns out that discrete-time fractional-order dynamical
systems are systems with infinite memory and encompass an
infinite number of state variables. Consequently, the results
of standard control theory cannot be applied directly. For this
purpose, we introduce the following truncated Grünwald-
Letnikov difference operator or length ν

∆α
h,νxk =

ν∑
j=0

cαj xk−j , (8)

and the approximate finite-dimensional variant of (7), for
ν ≥ 1, becomes

l∑
i=0

Āi∆
αi

h,νxk+1 =

r∑
i=0

B̄i∆
βi

h,ν−1uk. (9)
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C. State space representation

System (9) can be written in state space format as a
linear time-invariant (LTI) system with a proper choice of
state variables x̃k as we shall explain in this section. In
the common case where the right-hand side of (9) is of the
simple form Buk, it is straightforward to recast the system
in state-space form. Here, we study the more general case
of equation (9), which can be written in the form

ν∑
j=0

Âjxk−j+1 =

ν∑
j=0

B̂juk−j , (10)

with

Âj =

l∑
i=0

Āic
αi
j , (11a)

B̂j =

r∑
i=0

B̄ic
βi

j , (11b)

for j ∈ N[0,ν]. We hereafter assume that matrix Â0 is
nonsingular. Then, defining

Ãj = −Â−1
0 Âj , (12a)

B̃j = Â−1
0 B̂j , (12b)

the dynamic equation (10) becomes

xk+1 =

ν−1∑
j=0

Ãjxk−j +

ν∑
j=1

B̃juk−j + B̃0uk. (13)

This can be written in state space form with state variable
x̃k = (xk, xk−1, . . . , xk−ν+1, uk−1, . . . , uk−ν)′, as

x̃k+1 = Ax̃k +Buk. (14)

System (14) is an ordinary finite-dimensional LTI system
which will be used in the next section to formulate a model
predictive control problem. Throughout the rest of the paper
we assume that the pair (A,B) is stabilisable.

III. MODEL PREDICTIVE CONTROL

A. Control-oriented modelling

Inevitably, the use of the truncated difference operator
∆α
h,ν introduces some error in the system dynamics. In

particular, the fractional-order difference operator B∆α
h can

be written as

B∆α
h = ∆α

h,ν +Rαh,ν , (15)

where Rαh,ν : `∞n → `∞n is the operator Rαν (xk) =
h−α

∑∞
j=ν+1 c

α
j xk−j . Let X be a compact convex subset

or Rn containing 0 in its interior and at time k assume that
xk−j ∈ X for all j ∈ N. Then, given that xk−j ∈ X for all
j ∈ N,

Rαh,ν(xk) ∈
∞⊕

j=ν+1

cαjX. (16)

The fractional dynamics (7) can now be written in terms of
x̃ (cf. (14)) as the linear uncertain system

x̃k+1 = Ax̃k +Buk +Gdk, (17)

where dk is a additive disturbance term (which depends on
xk−ν−j and uk−ν−j for j ∈ N) with G = [ I 0 ... 0 ]

′. Assume
that uk−j ∈ U for j = 1, 2, . . . and xk−j ∈ X for j ∈ N,
where X and U are convex compact sets containing 0 in
their interiors. Then, dk is bounded in a compact set Dν

given by

Dν = Dx
ν ⊕Du

ν , (18)

where

Dx
ν =

l⊕
i=0

−Â−1
0 Āi

∞⊕
j=ν+1

cαi
j X, (19a)

Du
ν =

r⊕
i=0

Â−1
0 B̄i

∞⊕
j=ν+1

cβi

j U. (19b)

Under the prescribed assumptions, both Dx
ν and Du

ν are
compact sets, therefore Dν will also be compact.

Recall that for a balanced set C ⊆ Rn and scalars λ1, λ2 it
is λ1C⊕λ2C = (|λ1|+|λ2|)C. In case X and U are balanced
sets, the above expressions for Dx

ν and Du
ν can be simplified.

First, for ν ∈ N, we define the function Ψν : R+ → R+ as
the following convergent series:

Ψν(α) =

∞∑
j=ν+1

|cαj |. (20)

Then, Dx
ν is written as the finite Minkowski sum

Dx
ν =

⊕
i∈N[0,l]

−Â−1
0 ĀiΨν(αi)X, (21)

and of course the same simplification applies to Du
ν if

U is a balanced set. Notice that the computation of Dx
ν

by (21) boils down to determining a finite Minkowski sum,
which is possible when constraints are polytopic [22], while
overapproximations exists when they are ellipsoidal [23].

The size of Dν is controlled by the choice of ν; Dν can
become arbitrarily small provided that a sufficiently large ν
is chosen. Notice also that Dν → {0} as ν → ∞. In light
of (17), the fractional system can be controlled by standard
methods of robust control such as min-max [24] or tube-
based MPC [25] as we do in this paper. In what follows, we
elaborate on how the tube-based MPC methodology can be
applied for the control of fractional-order systems.

B. Tube-based Model Predictive Control

MPC is an optimisation-based control methodology where
at each time instant a performance index is optimised along
an horizon of future time instants using a discrete-time model
of the controlled process taking into account the constraints
on the state and input variables.

MPC, by solving an optimisation problem, produces a
sequence of control actions whose first element in applied
to the system as input while all other elements are discarded
and the same procedure is repeated at every time instant;
this control scheme defines the receding horizon control
approach [25].

Here, we require that the state and input variables are
constrained in the sets X ⊆ Rn and U ⊆ Rm respectively,
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Nominal System
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Fig. 1: Tube-based MPC for fractional order systems. The
nominal system is a finite dimension LTI system in discrete-
time.

both convex, compact and contain the origin in their interior.
The constraints are written as follows:

x̃k ∈ X̃, (22a)
uk ∈ U, (22b)

for all k ∈ N and where X̃ = Xν × Uν , i.e., x̃ =
(xk, xk−1, . . . , xk−ν+1, uk−1, . . . , uk−ν)′ ∈ X̃ if and only if
xk−i ∈ X for i ∈ N[0,ν−1] and uk−i ∈ U for all i ∈ N[1,ν].
Typically, in MPC X̃ and U can be polytopes or ellipsoids,
but for our analysis no particular assumptions on X and U
need to be imposed.

The tube-based MPC scheme is illustrated in Figure 1. The
fractional-order system is controlled by an input u which is
computed according to

uk = vk +Kek, (23)

where vk is a control action computed by the tube-based
MPC controller and ek is defined as the deviation between
the actual system state and the response of the nominal
system. In particular the nominal dynamics in terms of the
nominal state z̃k with input vk is

z̃k = Az̃k−1 +Bvk−1, (24)

and ek = x̃k− z̃k. The deviation variable e follows the stable
dynamics ek+1 = AKek +Gdk. Matrix K in (23) is chosen
so that AK = A+BK is strongly stable. We define

Sk =

k⊕
i=0

AiKGDν . (25)

The set S∞, defined as the limit S∞ = limk→∞ Sk, is
well-defined (the limit exists), is compact, and is positive
invariant for the deviation dynamics ek+1 = AKek + Gdk.
In what follows, S∞ will be assumed to contain the origin
in its interior. For the needs of tube-based MPC, any over-
approximation of S∞ may be used instead – a comprehensive
discussion on various computational aspects regarding S∞
can be found in [25].

Having chosen z̃0 = x̃0, it is x̃k ∈ {z̃k} ⊕ S∞ for all
k ∈ N. This implies that constraint (22a) is satisfied if z̃k ∈
X 	S∞ and constraint (22b) is satisfied if vk ∈ U 	KS∞.
These constraints will then be involved in the formulation of
the MPC problem which produces the control actions vk =
vk(z̃k).

The MPC problem amounts to the minimisation of a
performance index VN along an horizon of future time
instants, known as the prediction horizon, given the initial
state at time k, z̃k. Let N be the prediction horizon. We
use the notation z̃k+i|k for the predicted state of the nominal
system at time k+i using feedback information at time k. Let
vk = {vk+i|k}i∈N[0,N−1]

be a sequence of input values and
{z̃k+i|k}i∈N[1,N]

the corresponding predicted states obtained
by (24), i.e., it is z̃k+i+1|k = Az̃k+i|k + Bvk+i|k for
i ∈ N[0,N−1]. We introduce following performance index
VN : Rn̄×RmN → R+ given the current state of the system
z̃k|k = z̃k:

VN (z̃k|k,vk)=Vf (z̃k+N |k)+

N−1∑
i=0

`(z̃k+i|k, vk+i|k), (26)

where ` and Vf are typically quadratic functions. We assume
that

`(z, v) = z′Qz + v′Rv, (27)

where Q is symmetric, positive semidefinite and R is sym-
metric positive definite and

Vf (z) = z′Pz, (28)

where P is symmetric and positive definite. The following
constrained optimisation problem is then solved:

PN :V ?N (z̃k) = min
vk∈VN (z̃k)

VN (z̃k,vk), (29)

with

VN (z̃k)=


v

∣∣∣∣∣∣∣∣∣∣∣∣

z̃k+i+1|k=Az̃k+i|k+Bvk+i|k,
∀i∈N[0,N−1]

z̃k|k = z̃k
z̃k+i|k ∈ X̃ 	 S,∀i∈N[1,N ]

vk+i|k ∈ U 	KS,∀i∈N[0,N−1]

z̃k+N |k ∈ X̃f


, (30)

where S is any over-approximation of S∞, i.e., S ⊇ S∞ and
X̃f ⊆ X̃ is the terminal constraints set. In what follows we
always assume that X̃ 	 S and U 	KS are nonempty sets
with the origin in their interior. In regard to the terminal cost
function Vf and the terminal constraints set X̃f we assume
the following:

Assumption 1: Vf and X̃f satisfy the standard stabilising
conditions A1-A4 in [26].

Remark 2: Typically, matrix P in (28) is chosen to be
the (unique) solution of the discrete-time algebraic Riccatti
equation P = (A+BF )′P (A+BF )+Q+F ′RF with F =
−(B′PB + R)−1B′PA and X̃f to the maximal invariant
constraint admissible set for the system z̃k+1 = (A+BF )z̃k.
Alternatively, one may choose X̃f to be an ellipsoid of the
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form X̃f = {z : Vf (z) ≤ γ} and γ > 0 is chosen so that
X̃f ⊆ X̃ and KX̃f ⊆ U . �
The solution of PN , namely the optimiser

v?(z̃k) = argmin
vk∈VN (z̃k)

VN (z̃k,vk), (31)

is a sequence {v?0(z̃k), v?1(z̃k), . . . , v?N−1(z̃k)} and its first
element v?0(z̃k), in a receding horizon control fashion, defines
the control law

κN (z̃k) = v?0(z̃k), (32)

and the control action applied to the system is computed
as ρ(z̃k, x̃k) = κN (z̃k) + K(x̃k − z̃k) and the closed-loop
system is now expressed in terms of both z̃k and x̃k as

x̃k+1 = Ax̃k +Bρ(z̃k, x̃k) +Gdk, (33a)
z̃k+1 = Az̃k +BκN (z̃k). (33b)

The stability properties of the controlled system are studied
for the composite system (33) with state variable (x̃, z̃).

C. Stability results

In this section we discuss the stability properties of
the controlled closed-loop system presented previously. In
robust control the following stability definition is usually
employed [25, Def. B4]:

Definition 3 (Asymptotic Stability): Let S be a closed
nonempty set, positive invariant for xk+1 = f(xk). The set S
is locally stable for the aforementioned system if for all ε > 0
there is δ > 0 so that dist(xk, S) < ε for all k ∈ N whenever
dist(x0, S) < δ. If in addition, limk dist(xk, S) = 0, we say
that S is locally asymptotically stable.
A stronger form of stability, namely exponential stability is
defined as follows:

Definition 4 (Exponential stability): The set S is locally
exponentially stable for xk+1 = f(xk) if there are η > 0,
c > 0 and γ ∈ (0, 1) so that dist(xk, A) ≤ cdist(x0, A)γk

for all k ∈ N whenever dist(x0, A) < η.
The following result, which readily follows from [25,
Prop. 3.15], states that the system’s state converges towards
S∞ exponentially provided that S = S∞ is used in the
formulation of the MPC problem.

Proposition 5 (Exponential stability): Assume that the
MPC control law κN stabilises the nominal dynamical sys-
tem (33b). The set S∞ × {0} is locally exponentially stable
for system (33) with region of attraction (ZN ⊕ S∞)×ZN ,
where ZN is the domain of VN , i.e., ZN = {x : VN (x) 6=
∅}.

In addition, the controlled trajectory of the system’s state
xk and input uk satisfy constraints (22) at all time instants
k ∈ N.

Notice that S∞ can become arbitrarily small with an
appropriate choice of ν and the system’s state can be steered
this way very close to the origin, although, in practice large
values of ν should be avoided to limit the complexity of PN .

0 5 10 15 20 25 30
10

-2

10
-1

10
0

Fig. 2: Dependence of Ψν(α) on ν for α = 0.7 and selection
of a reasonably and adequately large approximation order ν.

IV. NUMERICAL EXAMPLE

We apply the proposed methodology to the following
fractional-order system

Dαx =

[
0 1
−1 0.3

]
x+

[
0
−0.5

]
u, (34)

with x ∈ R2 and u ∈ R and α = 0.7. We discretise the
system with sampling period h = 0.05 and we use ν = 20
based on Figure 2 so that Ψν(α) is adequately small. In
particular, we have Ψ20(0.7) = 0.0408. This way, we derive
a discrete-time LTI system of the form x̃k = Ax̃k−1+Buk−1

as in Section II-B. The system state and input are subject to
the constraints

−
[
0.5
0.5

]
≤xk ≤

[
0.5
0.5

]
, (35a)

−0.15 ≤uk ≤ 0.15. (35b)

The terminal cost Vf and the terminal constraints set X̃f

were computed according so that the stabilising conditions
A1-A4 of [26] are satisfied. In particular X̃f was chosen
to be a sublevel set of Vf as explained in Remark 2. The
prediction horizon was chosen to be N = 20 and the closed-
loop state and input trajectory of the controlled system are
presented in Figure 3.

The controller was implemented in MATLAB
using Yalmip [27] and the solver mosek
(https://www.mosek.com/). Out of 100 randomly selected
(feasible) inital points, the MPC optimisation problem was
solved on average in 15.5ms (maximum 22.3ms).

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a robust MPC scheme for
fractional systems with guaranteed satisfaction of state and
input constraints where the state converges exponentially fast
to a neighbourhood of the origin whose size is controlled by
the order of approximation ν. The underlying optimisation
problem we have to solve is a quadratic problem which can
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Fig. 3: Closed-loop simulations of system (34) with the
proposed MPC controller.

be solved very efficiently online. The order of approximation
ν affects linearly the state dimension of the MPC problem
for which the optimisation problem is solved leading to a
computationally tractable setting. This work paves the way
for the application of model predictive control to fractional-
order pharmacokinetics, as we discussed in the introduction,
where satisfaction of constraints is of high importance.

An important question that needs to be answered is under
what condition the closed loop system is asymptotically
stabilising to the origin and how the MPC controller needs
to be designed so as to achieve asymptotic stability to the
origin. Future work will also focus on the study of sampled-
data fractional-order systems, coming as an extension of [28]
for linear time-invariant sustems, and applications of the
proposed methodology to biomedical systems.
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