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Abstract: Fractional-order dynamical systems were recently introduced in the field of phar-
macokinetics where they proved powerful tools for modeling the absorption, disposition, distri-
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other nonlinear phenomena. In this paper we present several ways to simulate such fractional-
order pharmacokinetic models and we evaluate their accuracy and complexity on a fractional-
order pharmacokinetic model of Amiodarone, an anti-arrhythmic drug. We then propose an
optimal administration scheduling scheme and evaluate it on a population of patients.
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1. INTRODUCTION

Pharmacokinetic (PK) models are systems of differential
equations which simulate the dynamic response of living
organisms in terms of the concentration of a drug or any
other substance in different compartments (organs) of the
body following its administration to the body. PK models
can assist in designing effective and safe administration
strategies for individual patients or populations thereof.
Among the different types of PK modeling, fractional
PK models have attracted the interest of researchers in
the field because they can model phenomena like anoma-
lous diffusion, deep tissue trapping and diffusion across
fractal manifolds, which traditional PK models fail to
describe (Dokoumetzidis and Macheras, 2008, 2011; Dok-
oumetzidis et al., 2010).

However, simulating such dynamics is not as straightfor-
ward as with integer-order systems. Analytical solutions
are rarely available and even then the evaluation of the
solution requires a numerical approximation method (Kac-
zorek, 2011). The availability of accurate discrete-time ap-
proximations of the trajectories of such systems is impor-
tant not only for simulating but also for the design of open-
loop or closed-loop administration strategies (Sopasakis
et al., 2015). In this paper we compare several approxi-
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mation methods on a specific PK model taken from the
recent literature (Dokoumetzidis et al., 2010).

Furthermore, we provide a survey of different approaches
for modeling fractional-order systems which arise in phar-
macokinetics. Our discussion revolves around the case
study of Amiodarone, an anti-arrhythmic drug that ex-
hibits fractional-order dynamics. We identify three major
classes of numerical algorithms for simulating fractional-
order systems in the literature: (i) using rational transfer
functions, (ii) time-domain methods and (iii) the numer-
ical inverse Laplace approach. We discuss their merits
and limitations and we present a comparative assessment
regarding precision of various methods. Our goal, however,
is to single out a method which is most suitable for con-
troller design. In the last section we formulate an optimal
control problem for administration scheduling to confirm
our findings.

2. FRACTIONAL PHARMOCOKINETICS:
MODELING AND SIMULATION

2.1 Fractional-order pharmacokinetics

Amiodarone is an anti-arrhythmic agent which can be ad-
ministered either intravenously (i.v.) or orally (Kühlkamp
et al., 1999). It is well-known for its highly nonlinear non-
exponential dynamics and singular long-term accumula-
tion pattern. Dokoumetzidis et al. (2010) modeled the
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pharmacokinetic distribution of Amiodarone with a frac-
tional compartmental model following a single intravenous
and a single oral dose. The compartmental topology of the
model is presented in Figure 1 where it is shown that the
diffusion from the tissues to the central compartment is
governed by a fractional-order dynamics.

Let A1 and A2 be the amounts of Amiodarone (in ng)
in the plasma and the tissues respectively and u be the
administration rate (in ng/day). We assume that the drug
is administered directly into the central (plasma) com-
partment while the control objective is the concentration
of the drug in the tissues attains a prescribed value (set-
point). The fractional dynamical model we employ reads
as follows:

dA1

dt
=−(k12 + k10)A1 + k21 · c D

1−αA2 + u, (1a)

dA2

dt
= k12A1 − k21 · c D

1−αA2, (1b)

with α ∈ (0, 1) and c D
1−α is the Caputo fractional

derivative which is defined in the following section.

2.2 Fractional-order derivatives

Several fractional-order derivatives have been proposed in
the literature the most popular of which are the Riemann-
Liouville rl D

α, the Caputo c D
α and the Grünwald-

Letnikov gl D
α derivatives (Samko et al., 1993). These op-

erators are used to formulate fractional-order differential
equations, that is functional equations of the form

F (x(t),Dα1 x(t), . . . ,Dαp x(t)) = 0, (2)

where Dα is a generalized derivative of order α ≥ 0.
Typically, the Caputo derivative is used in this context
as the initial conditions are easier to postulate.

The generalized Riemann-Liouville fractional-order inte-
gral operator of order α > 0 is given by

(rl I
αf)(t) = 1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, t ≥ 0. (3)

For α ∈ R let us denote by m = �α� the smallest natural
number m so that m ≥ α. The following operator is known
as the Caputo derivative of order α:

(c D
αf)(t) = rl I

m−α d
mf(t)

dtm
. (4)

The Grünwald-Letnikov fractional-order derivative is de-
fined as

(gl D
αf)(t) = lim

h→0

1
hα

∞∑
i=0

(−1)i
(
α
i

)
f(t− ih), (5)

where
(
α
0

)
= 1 and

(
α
i

)
=

∏i−1
l=0

α−l
l+1 .

The Laplace transform of the Caputo derivative of frac-
tional order α ∈ (0, 1) with zero initial conditions is
given as L [(c D

α)(t)] = sαF (s), where F (s) is the
Laplace transform of function f(t). The transfer function
Gi(s) = Ai(s)/U(s) which associates the administration

rate U(s) = Lu(t) to the concentrations Âi(s) = LAi(t)
are:

Fig. 1. Strucutre of the fractional-order PK model of
Amiodarone.

G1(s) =
sα + k21

sα+1 + k21s+ (k12 + k10)sα + k10k21
, (6a)

G2(s) =
k12s

α−1

sα+1 + k21s+ (k12 + k10)sα + k10k21
, (6b)

with α = 0.587, k10 = 1.4913 day−1, k12 = 2.9522 day−1

and k21 = 0.4854 day−α.

2.3 Solutions of FDEs

There can be identified four types of solutions for
fractional-order differential equations: (i) analytical solu-
tions, (ii) approximations in the s-domain using integer-
order rational transfer functions and (iii) numerical ap-
proximation schemes in the discrete time domain, (iv) the
numerical inverse Laplace transformation.

Analytical solutions. Analytical solutions, when avail-
able, involve special functions such as the Mittag-Leffler
function Eα,β(t) =

∑∞
k=0 t

k/Γ(αk + β) whose evaluation
requires in turn some numerical approximation scheme.
Typically for the evaluation of this function we resort to
solving an FDE numerically (Garrappa, 2015).

Transfer function approximations. Rational approxima-
tions aim at approximating the transfer function of a
fractional-order system — which involves terms of the
form sα — by ordinary transfer functions of the form

T (s) = P (s)
Q(s) ,where P and Q are polynomials and the

degree of P is no larger than the degree of Q.

Padé Approximation: The Padé approximation of order
[m/n], m,n ∈ N, at a point s0 is rather popular and leads
to rational functions with degP = m and degQ = n (Silva
et al., 2006).

Matsuda-Fujii Method: This method consists in interpolat-
ing a function H(s), which is treated as a black box, across
a set of logarithmically spaced points (Matsuda and Fujii,
1993). By letting the selected points be sk, k = 0, 1, 2, . . . ,
the approximation is written as the continued fractions
expansion

H(s) = α0 +
s− s0

α1 +
s−s1

α2+
s−s2
α3+...

(7)

where, αi = υi(si), υ0(s) = H(s), υi+1(s) =
s−si

υi(s)−αi
.
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pharmacokinetic distribution of Amiodarone with a frac-
tional compartmental model following a single intravenous
and a single oral dose. The compartmental topology of the
model is presented in Figure 1 where it is shown that the
diffusion from the tissues to the central compartment is
governed by a fractional-order dynamics.

Let A1 and A2 be the amounts of Amiodarone (in ng)
in the plasma and the tissues respectively and u be the
administration rate (in ng/day). We assume that the drug
is administered directly into the central (plasma) com-
partment while the control objective is the concentration
of the drug in the tissues attains a prescribed value (set-
point). The fractional dynamical model we employ reads
as follows:

dA1

dt
=−(k12 + k10)A1 + k21 · c D

1−αA2 + u, (1a)

dA2

dt
= k12A1 − k21 · c D

1−αA2, (1b)

with α ∈ (0, 1) and c D
1−α is the Caputo fractional

derivative which is defined in the following section.

2.2 Fractional-order derivatives

Several fractional-order derivatives have been proposed in
the literature the most popular of which are the Riemann-
Liouville rl D

α, the Caputo c D
α and the Grünwald-

Letnikov gl D
α derivatives (Samko et al., 1993). These op-

erators are used to formulate fractional-order differential
equations, that is functional equations of the form

F (x(t),Dα1 x(t), . . . ,Dαp x(t)) = 0, (2)

where Dα is a generalized derivative of order α ≥ 0.
Typically, the Caputo derivative is used in this context
as the initial conditions are easier to postulate.

The generalized Riemann-Liouville fractional-order inte-
gral operator of order α > 0 is given by

(rl I
αf)(t) = 1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, t ≥ 0. (3)

For α ∈ R let us denote by m = �α� the smallest natural
number m so that m ≥ α. The following operator is known
as the Caputo derivative of order α:

(c D
αf)(t) = rl I

m−α d
mf(t)

dtm
. (4)

The Grünwald-Letnikov fractional-order derivative is de-
fined as

(gl D
αf)(t) = lim

h→0

1
hα

∞∑
i=0

(−1)i
(
α
i

)
f(t− ih), (5)

where
(
α
0

)
= 1 and

(
α
i

)
=

∏i−1
l=0

α−l
l+1 .

The Laplace transform of the Caputo derivative of frac-
tional order α ∈ (0, 1) with zero initial conditions is
given as L [(c D

α)(t)] = sαF (s), where F (s) is the
Laplace transform of function f(t). The transfer function
Gi(s) = Ai(s)/U(s) which associates the administration

rate U(s) = Lu(t) to the concentrations Âi(s) = LAi(t)
are:

Fig. 1. Strucutre of the fractional-order PK model of
Amiodarone.

G1(s) =
sα + k21

sα+1 + k21s+ (k12 + k10)sα + k10k21
, (6a)

G2(s) =
k12s

α−1

sα+1 + k21s+ (k12 + k10)sα + k10k21
, (6b)

with α = 0.587, k10 = 1.4913 day−1, k12 = 2.9522 day−1

and k21 = 0.4854 day−α.

2.3 Solutions of FDEs

There can be identified four types of solutions for
fractional-order differential equations: (i) analytical solu-
tions, (ii) approximations in the s-domain using integer-
order rational transfer functions and (iii) numerical ap-
proximation schemes in the discrete time domain, (iv) the
numerical inverse Laplace transformation.

Analytical solutions. Analytical solutions, when avail-
able, involve special functions such as the Mittag-Leffler
function Eα,β(t) =

∑∞
k=0 t

k/Γ(αk + β) whose evaluation
requires in turn some numerical approximation scheme.
Typically for the evaluation of this function we resort to
solving an FDE numerically (Garrappa, 2015).

Transfer function approximations. Rational approxima-
tions aim at approximating the transfer function of a
fractional-order system — which involves terms of the
form sα — by ordinary transfer functions of the form

T (s) = P (s)
Q(s) ,where P and Q are polynomials and the

degree of P is no larger than the degree of Q.

Padé Approximation: The Padé approximation of order
[m/n], m,n ∈ N, at a point s0 is rather popular and leads
to rational functions with degP = m and degQ = n (Silva
et al., 2006).

Matsuda-Fujii Method: This method consists in interpolat-
ing a function H(s), which is treated as a black box, across
a set of logarithmically spaced points (Matsuda and Fujii,
1993). By letting the selected points be sk, k = 0, 1, 2, . . . ,
the approximation is written as the continued fractions
expansion

H(s) = α0 +
s− s0

α1 +
s−s1

α2+
s−s2
α3+...

(7)

where, αi = υi(si), υ0(s) = H(s), υi+1(s) =
s−si

υi(s)−αi
.
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Oustaloup’s method: Oustaloup’s method is based on the
approximation of a function of the form:

H(s) = sα, (8)

with α > 0 by a rational function

Ĥ(s) = c0

N∏
k=−N

s+ ωk

s+ ω′
k

(9)

within a range of frequencies from ωb to ωh (Oustaloup
et al., 2000). The Oustaloup method offers an approxi-
mation at frequencies which are geometrically distributed
about the characteristic frequency ωu =

√
ωbωh — the

geometric mean of ωb and ωh. The parameters ωk and ω′
k

are determined via the design formulas (Petrás, 2011)

ω′
k = ωb

(
ωh

ωb

) k+N+0.5(1+α)
2N+1

, (10a)

ωk = ωb

(
ωh

ωb

) k+N+0.5(1−α)
2N+1

, (10b)

c0 =

(
ωh

ωb

)− r
2

N∏
k=−N

ωk

ω′
k

. (10c)

Parameters ωb, ωh and N are design parameters of the
Oustaloup method.

Other methods: There are a few more methods which
have been proposed in the literature to approximate
fractional-order systems by rational transfer functions
such as (Charef et al., 1992; Carlson and Halijak, 1964), as
well as data-driven system identification techniques (Gao
and Liao, 2012).

Time domain approximations. Several methods have
been proposed which attempt to approximate the solution
to a fractional-order initial value problem in the time
domain.

Grünwald-Letnikov: This is the method of choice in the
discrete time domain where gl D

αf is approximated by its
discrete time variant

(gl∆
αx)k = 1

hα

∞∑
i=0

(−1)i
(
α
i

)
xk−i, (11)

which is in turn approximated by a discrete operator with
finite memory ν

(gl∆
α
νx)k = 1

hα

ν∑
i=0

(−1)i
(
α
i

)
xk−i, (12)

which is proven to have bounded error with respect to
(gl∆

αf)k (Sopasakis and Sarimveis, 2017).

Numerical integration methods: Fractional-order initial
value problems can be solved with various numerical
methods such as the Adams-Bashforth-Moulton predictor-
corrector (ABMPC) method (Zayernouri and Matza-
vinos, 2016) and fractional linear multi-step methods
(FLMMs) (Lubich, 1986).These methods are only suitable
for a system of FDE’s in the form

c D
γx(t) = f(t, x(t)), (13a)

x(k)(0) = x0,k, k = 0, . . . ,m− 1 (13b)

where γ is a rational, and m = �γ�.
In order to bring (1) in this form, we need to find a rational
approximation of two derivatives, 1 − α and 1. If we can

find a satisfying rational approximation of 1 − a � p/q,
then the first order derivative follows trivially. Now, (1)
can be written as

c D
γ x0 = x1 (14a)

c D
γ x1 = x2 (14b)

...

c D
γ xq−1 = −(k12 + k10)x0+k21xq+p+u (14c)

c D
γ xq = xq+1 (14d)

...

c D
γ x2q−1 = k12x0 − k21xq+p (14e)

subject to x0(0) = A1(0), xq(0) = A2(0) and xi(0) = 0
for i /∈ {1, q}, and γ = 1/q. This system is in fact a lin-
ear fractional-order system for which analytical solutions
are available (Kaczorek, 2011). The number of states of
system (14) is 2q, therefore, the rational approximation
should aim at a small q. Yet another reason to choose
small q is that small values of γ render the system hard to
simulate numerically. A reasonable approximation of 1−α
is 19/46 with error 0.413 − 19/46 = −4.3478 · 10−5. Such
approximations can be obtained by means of continued
fractions expansions of 1− α.

Adams-Bashforth-Moulton predictor-corrector (ABMPC):
Methods of the ABMPC type have been generalized to
solve fractional-order systems. The basic concept is to
evaluate (rl I

γf)(t, x(t)) by approximating f with appro-
priately selected polynomials. Solutions of (13) satisfy the
following integral representation

x(t) =
m−1∑
k=0

x0,k
tk

k!
+ (rl I

γf)(t, x(t)), (15)

where the first term on right hand side will be denoted
with Tm−1(t). The integral on the right hand side of the
previous equation can be approximated, using an uni-
formly spaced grid tn = nh, by hγ

γ(γ+1)

∑n+1
j=0 aj,n+1f(tj)

for suitable coefficients aj,n+1 (Diethelm et al., 2002). The
numerical approximation of the solution of (13) is

x(tn+1) = Tm−1(tn+1) +
hγ

Γ(γ+2)f(tn+1, xp(tn+1))

+
n∑

j=1

aj,n+1f(tj , x(tj)). (16a)

The equation above is usually referred to as the corrector
formula and xp(tn+1) is given by the predictor formula

xP (tn+1) = Tm−1(tn) +
1

Γ(γ)

n∑
j=0

bj,n+1f(tj , x(tj). (16b)

Unfortunately, the convergence error of ABMPC when
0 < γ < 1 is O(h1+γ), therefore, a rather small step size h
is required to attain a reasonable approximation error. A
modification of the basic predictor-corrector method with
more favorable computational cost is provided in (Gar-
rappa, 2010) for which the MATLAB implementation
fde12 is available.

Lubich’s method: In our case study simulations we have
found that values of γ smaller than 0.1 give poor results
and often do not converge. But when we used a crude
approximation given by γ = 1/5, an implementation of
this method was outperforming fde12 in terms of accuracy
and stability with respect to bigger step size h.
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Numerical inverse Laplace. Several numerical inverse
Laplace methods provide an approximation of

f(t) = lim
T→∞

1

2πi

∫ σ+iT

σ−iT

est F (s) ds, (17)

for a given transfer function F (s). Numerical methods can
be used to directly evaluate the inversion integral (17) for
non-rational transfer functions. One of the most popular
methods is to convert the inversion integral into a Fourier
transform and then approximate it by a Fourier series via
trapezoid rule (de Hoog et al., 1982). These methods are
considered to be precise for a broad class of functions,
but computationally demanding. An implementation of
the above method is available online (Hollenbeck, 1998). A
somewhat different approach is taken by Valsa and Brančik
(1998), where authors approximate est, the kernel of the

inverse Laplace transformation, by est

1+e−2ae2st and choose
a appropriately so as to achieve an accurate inversion.

In general, numerical inversion methods can achieve high
precision, but they are not suitable for control design
purposes, especially for optimal control problems.

2.4 Assessment

In order to assess the accuracy of each approximation
method presented above we introduce the following error
indices

‖ei‖ =

√∫ Ts

0

ei(τ)2dτ , (18)

‖ei‖∞ = max
t∈[0,Ts]

ei(t), (19)

where Ts is a fixed simulation time and ei(t) is the
difference between the approximate response of the system
Âi and the one estimated by the inverse Laplace method
of Valsa and Brančik (1998) with a = 11 which is
considered to be the most accurate.

In Tables 1, 2 and 3 we show the errors of transfer
function methods. It seems that they achieve adequately
high precision. However, approximations in the s-domain
are not suitable for constrained systems since there is no
theoretical bound on the approximation error in the time
domain.

The errors of fde12 are presented in Table 4. Using
a step size as small as h = 10−5, fde12 achieves an
approximation error which is uniformly lower than 10−4.
In Figure 2 and Table 5 we show the approximation errors
of the Grünwald-Letnikov method. It can be seen that the
use of a long history is more important for the attainment
of high precision compared to a small step size.

Table 1. Errors using the Padé approximation.

Order ‖e1‖/10−4 ‖e2‖/10−4 ‖e1‖∞/10−4 ‖e2‖∞/10−4

[2/3] 2.833 1.907 15 10
[3/4] 1.105 59 6.094 113
[4/5] 0.4514 0.2406 3.076 1.774
[5/6] 0.2327 0.2685 1.752 1.976

3. ADMINISTRATION SCHEDULING

In this section we address the problem of administration
scheduling. Our objective is to devise an administration

Table 2. Errors using the Oustaloup approxi-
mation.

ωb ωh N ‖e1‖/10−4 ‖e2‖/10−4 ‖e1‖∞/10−4 ‖e2‖∞/10−4

10−2 103 8 23 43 228 25
10−2 104 20 5.744 45 54 27
10−3 103 8 33 5.084 332 6.555
10−3 104 20 7.451 4.597 74 2.765

Table 3. Errors using the Matsuda-Fujii ap-
proximation with sk = βαk .

β αk ‖e1‖/10−4 ‖e2‖/10−4 ‖e1‖∞/10−4 ‖e2‖∞/10−4

2 −1 : 10 0.701 3.162 0.482 2.111
2 1 : 10 16 36 8.7 32
2.3 −1 : 11 2.2 32 18 33
3 1 : 10 34 127 17 75
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Fig. 2. Absolute error of GL method for various step sizes
and history lengths.

Table 4. Approximation errors of fde12

h ‖e1‖/10−4 ‖e2‖/10−4 ‖e1‖∞/10−4 ‖e2‖∞/10−4

10−2 333 223 584 368
10−3 20 13 83 55
10−4 1.782 1.157 7.982 5.204
10−5 0.1669 0.1113 0.7412 0.4824

Table 5. Approximation errors of the
Grünwald-Letnikov method

h hν ‖e1‖/10−4 ‖e2‖/10−4 ‖e1‖∞/10−4 ‖e2‖∞/10−4

10−2 3 8.165 22 8.223 21
10−2 5 5.302 4.571 8.223 5.911
10−2 7 5.126 3.640 8.223 5.911
10−3 3 6.390 22 4.735 21
10−3 5 1.454 2.760 1.727 4.057
10−3 7 0.5060 0.3594 8.067 5.797

schedule — a sequence of dosages — so that the concen-
tration of Amiodarone in the tissues is close to a desired
value, while the concentration in both compartments never
exceeds certain safety limits. We also have to account for
a limit on allowed drug dose at each time instant. In
doing so, we must assume that we are not able to measure
drug concentrations during the treatment. All of these
requirements and constraints can be elegantly integrated
within the framework of constrained optimal control.
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difference between the approximate response of the system
Âi and the one estimated by the inverse Laplace method
of Valsa and Brančik (1998) with a = 11 which is
considered to be the most accurate.

In Tables 1, 2 and 3 we show the errors of transfer
function methods. It seems that they achieve adequately
high precision. However, approximations in the s-domain
are not suitable for constrained systems since there is no
theoretical bound on the approximation error in the time
domain.

The errors of fde12 are presented in Table 4. Using
a step size as small as h = 10−5, fde12 achieves an
approximation error which is uniformly lower than 10−4.
In Figure 2 and Table 5 we show the approximation errors
of the Grünwald-Letnikov method. It can be seen that the
use of a long history is more important for the attainment
of high precision compared to a small step size.

Table 1. Errors using the Padé approximation.

Order ‖e1‖/10−4 ‖e2‖/10−4 ‖e1‖∞/10−4 ‖e2‖∞/10−4

[2/3] 2.833 1.907 15 10
[3/4] 1.105 59 6.094 113
[4/5] 0.4514 0.2406 3.076 1.774
[5/6] 0.2327 0.2685 1.752 1.976

3. ADMINISTRATION SCHEDULING

In this section we address the problem of administration
scheduling. Our objective is to devise an administration

Table 2. Errors using the Oustaloup approxi-
mation.

ωb ωh N ‖e1‖/10−4 ‖e2‖/10−4 ‖e1‖∞/10−4 ‖e2‖∞/10−4

10−2 103 8 23 43 228 25
10−2 104 20 5.744 45 54 27
10−3 103 8 33 5.084 332 6.555
10−3 104 20 7.451 4.597 74 2.765

Table 3. Errors using the Matsuda-Fujii ap-
proximation with sk = βαk .

β αk ‖e1‖/10−4 ‖e2‖/10−4 ‖e1‖∞/10−4 ‖e2‖∞/10−4

2 −1 : 10 0.701 3.162 0.482 2.111
2 1 : 10 16 36 8.7 32
2.3 −1 : 11 2.2 32 18 33
3 1 : 10 34 127 17 75
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Fig. 2. Absolute error of GL method for various step sizes
and history lengths.

Table 4. Approximation errors of fde12

h ‖e1‖/10−4 ‖e2‖/10−4 ‖e1‖∞/10−4 ‖e2‖∞/10−4

10−2 333 223 584 368
10−3 20 13 83 55
10−4 1.782 1.157 7.982 5.204
10−5 0.1669 0.1113 0.7412 0.4824

Table 5. Approximation errors of the
Grünwald-Letnikov method

h hν ‖e1‖/10−4 ‖e2‖/10−4 ‖e1‖∞/10−4 ‖e2‖∞/10−4

10−2 3 8.165 22 8.223 21
10−2 5 5.302 4.571 8.223 5.911
10−2 7 5.126 3.640 8.223 5.911
10−3 3 6.390 22 4.735 21
10−3 5 1.454 2.760 1.727 4.057
10−3 7 0.5060 0.3594 8.067 5.797

schedule — a sequence of dosages — so that the concen-
tration of Amiodarone in the tissues is close to a desired
value, while the concentration in both compartments never
exceeds certain safety limits. We also have to account for
a limit on allowed drug dose at each time instant. In
doing so, we must assume that we are not able to measure
drug concentrations during the treatment. All of these
requirements and constraints can be elegantly integrated
within the framework of constrained optimal control.
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3.1 Optimal control

In this section we describe the optimal control problem
formulation. We start by discretizing (1) with a sampling
time tc yielding

t−1
c (xk+1 − xk) = Axk + F gl∆

1−a
ν xk +Buk (20)

where xk = [A1(ktc) A2(ktc)]
′
. The left hand side of (20)

corresponds to the forward Euler approximation of the
first-order derivative, and we shall refer to tc = 10−2 days
as the control sampling time. Matrices A,F and B are

A =

[
−(k12 + k10) 0

k21 0

]
, F =

[
0 k21
0 −k21

]
, B =

[
1
0

]
. (21)

The discrete-time dynamic equations of the system can
now be stated as

xk+1 = xk + tc

(
Axk +

F

t1−a
c

ν∑
j=0

c1−a
j xk−j +Buk

)
, (22)

where cαj = (−1)j
(
α
j

)
. By augmenting the system with past

values as x̃k = (xk, xk−1, . . . , xk−ν+1) we can rewrite (22)
as a finite-dimension linear system

x̃k+1 = Âx̃k + B̂uk. (23)

Matrices Â and B̂ are straightforward to derive and are
given in (Sopasakis and Sarimveis, 2017). The therapeutic
session will last for Nd = Ntc = 7days in total, where
N is called the prediction horizon. It is not realistic to
administer the drug to the patient too frequently, so we
assume that the patient is to receive their treatment every
td = 0.5 days. The administration schedule must ensure
that the concentration of drug in all compartments never
exceeds the minimum toxic concentration limits while
tracking the prescribed reference value as close as possible.
To this aim we postulate the following constrained optimal
control problem.

min
{u0,...,uNd−1}

J =

Nd/tc+1∑
k=0

(xref,k − xk)
′Q(xref,k − xk)

(24a)

subject to

x̃k+1 = Âx̃k + B̂uj , for ktc = jtd (24b)

x̃k+1 = Âx̃k, otherwise (24c)

0 ≤ xk ≤ 0.5 (24d)

0 ≤ uj ≤ 0.5 (24e)

for k = 0, . . . , N ; j = 0, . . . , Nd − 1.

In the above formulation xref,k is the desired drug concen-
tration at time k and operator ′ denotes vector transposi-
tion. Any deviation from set point is penalized by weight
matrix Q = diag([0 1]). Note that we are tracking only
the second state. Our underlying GL model has a relative
history of tcν = 5days. Optimal drug concentrations are
denoted by u�

k, for k = 0, . . . , Nd − 1 and they correspond
to dosages administered intravenously at times ktd. In the
optimal control formulation we have implicitly assumed
that td is an integer multiple of tc, which is not restrictive
since tc can be chosen arbitrarily. Finally, we can recog-
nize that problem (24) is a standard quadratic problem
that can be readily solved. In our simulations, we have
used YALMIP (Löfberg, 2004) to model the problem and
MOSEK (MOSEK ApS, 2016) as the underlying solver.

3.2 Simulations

To argue for the soundness and the applicability of our
approach in real-world scenarios, we will apply the optimal
drug dosage schedule to a more precise model than (23).
For this purpose we will use fde12 solver. As evident from
the results in the previous section, for sufficiently small
solver time h, we can have a realistic simulation of the
system.

After solving the optimal control problem we applied the
optimal sequence to the FDE simulator fde12. Results are
shown in Figures 3 and 4. It can be seen that open loop
predictions of GL model and fde12 simulation show high
agreement. This should not be surprising considering that
all of the parameters describing the patient are nominal,
but still testifies on behalf of the efficiency of the model.

Next, we consider multiple patients that are characterized
by perturbed parameters. We will simulate the behaviour
of 100 different patients with multiplicative perturbations
on parameters k10, k12 and k21. Each parameter will be
multiplied by a constant drawn from a uniform distri-
bution on the interval [0.85, 1.15]. Moreover, fractional
derivative α = 1 − p̂/q, will be given by a random choice
of p̂ from a set of discrete values {17, 18, 20, 21}, each
one having the same probability. Denominator q is fixed
at q = 46, while the nominal numerator is p = 19. We
simulate each patient by applying the same optimal drug
scheduling sequence that was computed for the nominal
one. Results are shown in Figure 5.
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Fig. 3. Open loop control of drug administration with a
fixed scheduling. Step size was set to h = 10−5.

4. CONCLUSIONS

This paper gives an overview of methods for solution of
fractional differential equations validated on a relevant
case study of Amiodarone drug. Most popular methods
are juxtaposed and compared on basis of how relevant they
are for controller design. Next, we present an exemplary
administration scheduling problem based on the previous
analysis. Results are shown for an open loop control law
for a patient whose parameters are assumed to be perfectly
known. Additionally, we present results for different pa-
tients whose parameters are not know perfectly to estimate
how sensitive the administration scheduling is.
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Fig. 5. Fixed schedule drug administration for a population
of 100 patients. Step size was set to h = 10−5.
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J. Valsa and L. Brančik. Approximate formulae for
numerical inversion of Laplace transforms. Int. J. Num.
Modell.: Electronic Networks, Devices and Fields, 11(3):
153–166, 1998.

M. Zayernouri and A. Matzavinos. Fractional
adams–bashforth/moulton methods: An application to
the fractional keller–segel chemotaxis system. J. Comp.
Phys., 317:1 – 14, 2016.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

10155


