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Abstract
In this work, we present a robust Model Predictive Control (MPC) strategy
based on linear matrix inequalities (LMIs) for the intravenous administration of
Propofol, a drug which is used for anesthesia during surgeries. The controller is
designed for a population of patients and takes into account constraints on the
amount of administered drug and on the drug concentration profile. A detailed
compartmental mathematical model available in the literature is adjusted to the
available data and provides the future predictions of the process. In the con-
text of the application, only the depth of anesthesia (BIS index) is assumed
to be measured—as it is common in practice. The state of the system (drug
amount in organs) is estimated in real-time by incorporating a state observer.
The derived control scheme, along with the designed state observer are able
to deal with major challenges in controlling the depth of anesthesia which are
inter- and intra-patient variability, model nonlinearity, and model uncertainty.
The controller is able to satisfy the divergent characteristics of the patients of the
dataset, while satisfying in parallel all the imposed constraints. Moreover, we
show that by considering smaller groups of patients with similar characteristics
the corresponding responses are significantly improved.
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1 INTRODUCTION

1.1 Background

Anesthesia is a typical process during a surgery and/or in intensive care units. The purpose of regulation of anesthesia
is to guarantee hypnosis, analgesia, and muscle relaxation. The process of anesthesia captured the attention of control
engineers due to challenging issues that arise such as: inter- and intra-patient variability, multivariable characteristics,
variable time delays, dynamics dependent on the hypnotic agent, model analysis variability, agent, and stability issues.1-5

There is no golden rule for achieving and maintaining unconsciousness and usually, anesthesiologists monitor hemo-
dynamic signals and manually control the administration of the anesthetic agent in an open-loop fashion. Administered
doses are determined based on an empirical estimation of the response of the patient over a future time horizon. Manual
control may cause over-dose or under-dose of the anesthetic agent which are both undesired and unsafe for the patient.6

Automation and optimization of the delivery of anaesthetic drugs would pave the way toward safe healthcare, less
prone to excessive over-dosages and under-dosages often resulting in side effects and risk of awareness. For the purpose
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of automating the process of anesthesia, numerous control schemes have been proposed over the last years.7-9 Many
automated drug delivery methodologies use the proportional-integral-derivative (PID) architecture.3,10-15 The main draw-
back of these controllers is that they cannot anticipate the response of the patient. Moreover they do not have any prior
knowledge of the drug metabolism, so the performances are sub-optimal.

Model-based control (MBC) schemes can overcome this limitation, by including dynamic mathematical models that
describe the underlying processes within the human body. Various MBC approaches have been proposed, using fuzzy
control16 adaptive control,17-19 model based PID controllers20 and model predictive control (MPC).4,21-23 More recently,
an extension24 on the usual MPC studies on anesthesia, considers simultaneous administration of Propofol and remifen-
tanil in order to gain control on the analgesic-hypnotic balance. MPC algorithms have the important advantage that can
explicitly take into account constraints on the manipulated and on the controlled variables in the formulation of the
optimisation problem that is solved at each discrete time instance. Multiparametric MPC solves offline the optimisation
problem using multiparametric programming and derives the control inputs as a set of explicit functions of the system
states.4

Most MBC methodologies aim to design controllers by assuming a nominal linear time-invariant (LTI) model to pre-
dict the future behavior of the system. The challenge of taking into account inter-patient variability has been emphasized
in the scientific literature.25 Robustness on inter and intra-patient variability has been studied by applying the same
controller to patients with different characteristics from the nominal patient or by using robustness tests after the con-
troller has been designed.21 In Reference 22, an individualised physiologically-based pharmacokinetic (PBPK) modeling
approach is proposed. The PBPK model is adapted to the individual physiological characteristics, and practically a dif-
ferent controller is designed for each patient. These references in literature reveal the need of an administration strategy,
robust enough to deal with inter- and intra- patient variability, and the individualized characteristics of each patient.

1.2 Contributions

In this article, we are studying the problem of robust MPC control of anesthesia, by considering the patient variabil-
ity explicitly in the design phase. The problem has been addressed in Reference 26 where a mixed H2/H∞ controller
is proposed to robustly control a population of patients. But in this methodology, no input or output constraints are
incorporated.

In this work, we are applying the robust MPC strategy using linear matrix inequalities (LMIs) described in details in
Reference 27. Mathematical models of a group of virtually generated realistic patients represent the model uncertainty
during the anesthesia process. These models are based on a statistical analysis on inter-patient variability28 as described
in References 6 and 29. Moreover, it is assumed that only the output of the system is measured, that is, the quantified
expression of the depth of anesthesia. In order to get an accurate estimation of the state vector of the system, namely the
amount of the drug over the various compartments, a state observer is incorporated.

The main outcome of this article is the derivation of a robust control law that can be applied for the derivation of the
administered dose over the entire population or subpopulations, while satisfying drug administration and drug concen-
tration constraints. This way we derive generic control laws—optimal over populations of patients—to achieve the desired
depth on anesthesia, while in parallel, the imposed constraints are satisfied. Moreover a Kalman filter is incorporated to
get accurate knowledge of the unmeasured state vector of the system, at each instant of the simulation.

As mentioned in the previous subsection, a number of MPC based approaches have addressed the problem of regu-
lating the depth of anesthesia (DOA). Many of them, consider the problem from a multi-parametric point of view.4,30-32

There are also relative papers where state estimation is incorporated.33,34

The advantage of the proposed methodology is robustness to model uncertainty and noise. Namely, instead of knowing
the exact model of a patient, it suffices that the characteristics of the patient lie in the convex hull of a group of known
patients, for which the control law has been designed. By considering smaller groups of similar patients, the controller
achieves rapidly the desired depth of anesthesia. The incorporation of a state observer completes a realistic setup for usage
during a typical surgery.

The article is structured as follows: In Section 2, the mathematical model used to describe the process of anesthesia
is presented. In Section 3, we describe the methodology of robust infinite-horizon MPC based on LMIs for systems with
polytopic uncertainty. Moreover a short description of state estimation is presented with special focus on Kalman filter.
Finally, in Section 4, the robust infinite-horizon MPC for the control of anesthesia is applied to a dataset of patients
using Propofol, as the anesthetic agent. It is illustrated that the MPC control strategy achieves the desired set-points and
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satisfies the imposed constraints for all patients in the dataset. It is also demonstrated that similar results are obtained
after applying the same control law to additional patients, with the only requirement that they belong to the convex hull
of the original dataset. It is shown that the desired setpoints are achieved during both the induction and maintenance
phases, with the ability of rejecting disturbances while maintaining the imposed constraints.

2 MODELING OF INTRAVENOUS ANESTHESIA

The drugs used to induce anesthesia can be either gases/vapors, such as desflurane, sevoflurane, and isoflurane7 or
are injected intravenously as in case of Propofol6 and Etomidate.35,36 Intravenous administration is consider to induce
anesthesia smoother and much faster. For the intravenous anesthesia, Propofol6 is used as the standard agent, using elec-
tronically controlled intravenous infusion pumps. For measuring the effect of Propofol administration, various methods
have been developed,37 but the bispectral index (BIS) method is the most popular and widely used.7 The BIS index makes
use of a signal derived from the electro-encephalogram (EEG).38 The BIS algorithm gets this signal in a complex formula
as referred in Reference 39 with advanced artifact rejection techniques, and produces a dimensionless number between 0
and 100, which measures the level of consciousness during anesthesia. Range 90-100 corresponds to a fully awake patient,
while ranges 60–70 and 40–60 represent light and moderate hypnotic state, respectively.

2.1 Pharmacokinetics/pharmacodynamics model

In Figure 1, the compartmental model of the patient is presented containing the pharmacokinetic (PK) and the pharma-
codynamic (PD) models, where in each compartment, the drug concentration is assumed to be uniform, as in a perfect
and instantaneous mixing. The state space model is described by a system of ordinary differential equations (ODEs),6,30

as depicted in (1):

ẋ1 (t) = −
[
k10 + k12 + k13

]
⋅ x1 (t) + k21 ⋅ x2 (t) + k31 ⋅ x3 (t) + u (t) (1a)

ẋ2 (t) = k12 ⋅ x1 (t) − k21 ⋅ x2 (t) (1b)

ẋ3 (t) = k13 ⋅ x1 (t) − k31 ⋅ x3 (t) (1c)

ẋe (t) = k1e ⋅ x1 (t) − ke0 ⋅ xe (t) (1d)

where x1 (mg) denotes the amount of drug in the central compartment namely the intravascular blood. The corresponding
blood concentration is denoted as C1 and is equal to x1/V 1, where V 1 is the volume of the compartment 1 namely the
blood. The Compartments 2 (muscle) and 3 (fat) model the drug exchange of the blood with well and poorly diffused body
tissues. The masses of drug in these peripheral compartments are denoted by x2 and x3, respectively. The coefficients kij for
i≠ j denote the drug transfer frequency from the ith to the jth compartment and u (t) is the infusion rate of the anaesthetic
drug into the central compartment. In general, the parameters of kij depend on age, weight, height, and gender.30,40

In order to simulate the lag between drug concentration and the drug response, a hypothetical effect compartment
is added at the compartmental representation of the system. Its corresponding drug concentration is denoted by Ce and

F I G U R E 1 Compartmental model presenting the
pharmacokinetic (PK) and the pharmacodynamic (PD) models of
the patient6 [Colour figure can be viewed at wileyonlinelibrary.com]
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in Reference 30 and in Reference 6 is referred as the effect-site compartment. The mass of the drug at this compartment
is considered to be the last element of the state vector denoted by xe. This theoretical effect compartment receives drug
from the central compartment by a first-order process and in clinical practice it is considered that the transfer frequency
for Propofol from the central compartment to the effect compartment is equal to the removal frequency from the effect
compartment. Thus, in Equation (1), it is considered that ke0 = k1e (min−1).41-43

The pharmacodynamic model relates the BIS index to the concentration of the anaesthetic agent Ce by the empirical
static but time varying nonlinear Equation (2), which is also known as the Hill curve:29,44

BIS (t) = E0 − Emax ⋅
C𝛾1

e (t)
C𝛾1

e (t) + EC𝛾1
50
. (2)

In Equation (2), E0 denotes the BIS value in a fully awake state, which by convention is equal to 100. Emax represents
the maximum effect achieved by the drug infusion, EC50 denotes the drug concentration at the 50% of the maximal effect,
which in essence is the measure of the sensitivity of the patient to the drug. Finally, the value of 𝛾1 determines the steepness
of the Hill curve. If we solve Equation (2) for Ce(t), the following nonlinerar equation is obtained:21,41-43,45

Ce (t) = EC50

(
E0 − BIS (t)

Emax − E0 + BIS (t)

) 1
𝛾1
. (3)

Derivation of Equation (3) illustrates that the function defined in Equation (2) is invertible, that is, it is strictly mono-
tonic and there is 1-1 correspondence between Ce and BIS, meaning that each Ce value is mapped to a single BIS value
and vice versa. Therefore, the Hill curve function and more specifically, Equation (3) is used only to define the set-point
for Ce given a desired BIS value and the linear state space model is adequate for designing the controller.

2.2 Patients population

Equations (1) and (2) constitute a generic PK-PD model for the administration of Propofol to patients, but the specific
parameter values in these models differ among patients, due to different sensitivities to Propofol. Sensitive patients are
modeled by lower drug transfer coefficients from intravascular blood to muscle, fat and the effect site compartments,
k10, k12, k13, and by higher k21 and kk31 values. As far as PD parameters are concerned, sensitive patients are modeled
by lower EC50 indicating the need for smaller drug doses to achieve the desired hypnotic results and by lower 𝛾1 values.
Therefore, a different continuous state-space model of the form of Equation (1) is used to describe each patient, which
can be converted to the discrete-time counterpart assuming zero-order hold:46

x(k + 1) = Ajx(k) + Bju(k) (4a)

y(k) = Cx(k) (4b)

where j∈ 1, 2, … , L, L is the number of patients, u(k) is the infusion rate of Propofol, x(k)= [x1(k), x2(k), x3(k), xe(k)]T is
the state vector, and y(k)= xe(k) is the output of the system at the discrete time instant k.

3 ROBUST INFINITE HORIZON MPC WITH POLYTOPIC UNCERTAINTY

3.1 Polytopic uncertainty or multimodel systems

The uncertainty of the system of patients which is due to different state-space models of the form of Equation (4) can be
described by considering the following discrete-time linear time invariant (LTI) system:

x(k + 1) = Ax(k) + Bu(k) (5a)

y(k) = Cx(k) (5b)[
A B

]
∈ Ω (5c)
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where u(k) ∈ Rnu is the control input, x(k) ∈ Rnx is the state vector, y(k) ∈ R
ny is the output of the system, and Ω is a

polytope defined by the convex hull of the matrices Aj, Bj, j∈ 1, 2, … , L:

Ω = Co
{[

A1 B1

]
,

[
A2 B2

]
, … ,

[
AL BL

]}
. (6)

According to Equation (6) when model uncertainty is present, the exact model
[
A B

]
is unknown. Instead it is suf-

ficient to know that the model belongs to the convex hull described by Equation (6) or alternatively it should hold that[
A B

]
=
∑L

j=1 𝜆j
[
Aj Bj

]
,
∑L

j=1 𝜆j = 1, 𝜆j ≥ 0,∀j.

3.2 Robust model predictive control using linear matrix inequalities

3.2.1 Unconstrained problem

In this section, we present the problem formulation for the unconstrained problem of the robust MPC using LMIs as it is
presented in Reference 27. Extensive references for the use of LMIs in formulation of robust MPC can be found in Refer-
ences 47-51. In this approach, instead of minimizing a nominal objective function, we consider one objective function for
each patient and then minimize the worst-case objective function for the case of infinite-horizon MPC problem. At first the
unconstrained problem is described and next input and output constraints are incorporated. Given the state-space model
described by Equations (5) and (6), the problem of minimizing the worst-case objective function is formulated next:

min
u(k+i|k),i=0,1,… ,m

max
[A B]∈Ω

J∞(k) (7)

where

J∞(k) =
∞∑

i=0

[
x(k + i|k)TQ1x(k + i|k) + u(k + i|k)TRu(k + i|k)] (8)

and Q1 > 0, R> 0 are the weighting matrices. The notation x (k + i|k) corresponds to the state vector at time k+ i, predicted
based on measurements at k, for i= 0, 1, 2, … ; u (k + i|k) is the control move at time k+ i, computed by the optimization
problem based on measurements at k, for i= 0, 1, 2, …m; and m is the control horizon. It is assumed that there is no
control action after time instant k+m, that is, u (k + i|k) = 0, i > m.

This min-max problem over the set Ω ensures that the reference model used for predictions is the one that leads to
the largest or worst-case value of J∞ among all systems ∈ Ω. This problem is not computationally tractable especially as
the number of LTI systems increases. Instead the problem of formulating Equation (8) is addressed in Reference 27 by
deriving an upper bound on the robust performance objective. Then this upper bound is minimized resulting in a control
law with constant state feedback gain of the form:

u(k + i|k) = F ⋅ x(k + i|k), i ≥ 0. (9)

For the calculation of the upper bound a quadratic function of the form V(x)= xTPx of the state is used27 with P> 0
and V(0)= 0. At each sampling time k, suppose V for any system contained in Ω satisfies:

V (x (k + i + 1|k)) − V (x (k + i|k)) ≤ −
[
x(k + i|k)TQ1x (k + i|k) + u(k + i|k)TRu (k + i|k)] . (10)

The sum of terms of Equation (10) from i= 0 to ∞ is equal to:

−V (x (k|k)) ≤ −J∞ (k) . (11)

So function V(x)= xTPx could be considered as an upper bound of the cost function of the systems contained in Ω,
that is,

max
[A B]∈Ω

J∞(k) ≤ V (x (k|k)) . (12)
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Consequently, for the purposes of robust MPC, it is sufficient to minimize the upper bound of the objective functions.27

The outcome of this minimization problem at each time step k is a constant state-feedback control law u (k + i|k) =
F ⋅ x (k + i|k). As it is common practice in MPC theory, only the first computed input u (k|k) = F ⋅ x (k|k) is implemented.
At the next time instant, the state vector x (k + 1) is computed again and is used as input to formulate again the opti-
mization problem, and the procedure is repeated. The following theorem gives the conditions for the existence of the
appropriate P> 0 and the corresponding state feedback matrix F as it is given in Reference 27:

Theorem 1. Let x (k) = x (k|k) be the state of an uncertain system described in Equation (1), measured at sampling
time k. Assume that there are no constraints on the control input and system’s output. Moreover suppose that the uncer-
tainty lies in a polytopic set Ω as in Equation (6). Then the state feedback matrix F in the control law u (k + i|k) =
F ⋅ x (k + i|k) , i ≥ 0 that minimizes the upper bound V (x (k|k)) on the robust performance objective function at sampling
time k is given by:

F = Y ⋅ Q−1 (13)

where Q> 0 and Y are obtained from the solution (if it exists) of the following linear objective minimization problem:

min
𝛾,Q,Y

𝛾 (14)

subject to: [
1 x(k|k)T

x (k|k) Q

]
≥ 0 (15)

and

⎡⎢⎢⎢⎢⎢⎣

Q QAT
j + Y TBT

j QQ1∕2
1 Y TR1∕2

AjQ + BjY Q 0 0
Q1∕2

1 0 𝛾I 0
R1∕2T 0 0 𝛾I

⎤⎥⎥⎥⎥⎥⎦
≥ 0, j = 1, 2, … ,L. (16)

The proof of theorem above is given in Reference 27. According to this theorem, the solution of the robust MPC
problem, that is, the minimization of the upper bound of the objective functions, is redefined in solving a simple min-
imization problem based on a system of two LMIs. LMI problems can be solved in polynomial time, which means that
they have low computational complexity. Nowadays, there are effective and powerful algorithms that they can compute
the global optimum very fast, with non-heuristic stopping criteria. This is the reason why transformation of optimal con-
trol problems to LMI formulations is an attractive approach.52 Problems of LMIs are usually cast as Semidefinite Program
(SDP) problems, which in turn are transformed to cone programs with no second-order cone constraints. Solution of this
type of problems leads to the solution of a pair of primal and dual cone programs. For an in-depth review in LMI-based
optimization theory and applications, reader is referred to Reference 53. In Reference 27 it has been proved that the fea-
sible receding horizon state feedback control law defined by Equations (13)–(16) (Theorem 1) robustly asymptotically
stabilizes the closed-loop system.

3.2.2 Constrained problem

In many practical applications, input and output constraints are imposed. This also holds for the anesthesia process. An
upper bound is imposed on the infusion rate of the intravenous infusion pump due to physical limitation of the process
equipment. A lower bound is imposed on the BIS index because an excessive degree of anesthesia (as a result of very low
value of BIS index) causes severe side effects and longer recovery times. This constraint is translated to an upper bound
on the actual output xe(k) of the state space system (4), using Equation (3).
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According to Reference 27, the input constraint for a single input variable at each sampling time k, can be described
by the following equation:

|u (k + i|k)| ≤ umax, i ≥ 0. (17)

It should be noted here that input constraints are imposed over the entire future horizon input sequence, although only
the first control input u (k|k) = u (k) is implemented. By referring to Reference 53, constraint (17) could be transformed to:[

u2
max Y
Y T Q

]
≥ 0. (18)

Similarly, for a single output variable, the output constraints can be expressed by the following inequality:

max
[A B]∈Ω

|y(k + i|k)| ≤ ymax, i ≥ 1. (19)

This is a worst-case constraint over the set Ω and is imposed strictly over the future prediction horizon (i ≥ 1). As it is
shown in Reference 27 based on Reference 53, constraint (19) can be written as:[

Q (AjQ + BjY )TCT

C(AjQ + BjY ) y2
max

]
≥ 0, j = 1, 2, … ,L. (20)

Condition (20) represents a set of LMIs in Y and Q> 0.

3.2.3 Constant set-point tracking

The analysis presented up to this point addresses the problem of an infinite horizon regulator with zero tracking. For the
purposes of the application presented here, this is not sufficient. Instead, the system output xe(k) is required to achieve
a desired steady-state rs different from the origin, given that system matrices A and B are constant and lie in the convex
hull Ω, that is,

[
A B

]
∈ Ω. The system at steady state is described by:

xs = A ⋅ xs + B ⋅ us (21a)

ys = C ⋅ xs, (21b)

under the assumption that xs, us, and ys are feasible. The steady state vectors xs and us can be calculated off-line by solving
the linear system: [

A − I B
C 0

]
⋅

[
xs

us

]
=

[
0
rk

]
. (22)

The cost function can be written as follows:27,54

J∞ (k) =
∞∑

i=0

{[
Cx (k + i|k) − Cxs

]T
⋅ W1 ⋅

[
Cx (k + i|k) − Cxs

]
+
[
u (k + i|k) − us

]T
⋅ R ⋅

[
u (k + i|k) − us

]}
W1 > 0,R > 0. (23)

By defining the deviation vectors, x̃ (k) = x (k) − xs, ũ (k) = u (k) − us and ỹ (k) = y (k) − ys, which are equal to the full
vectors minus the vectors at steady state, the cost function can be written in the form of Equation (8):

J∞ (k) =
∞∑

i=0

{[
x̃ (k + i|k)]T

⋅ CTWC ⋅
[
x̃ (k + i|k)] + [

ũ (k + i|k)]T
⋅ R ⋅

[
ũ (k + i|k)]} (24)



8 NTOUSKAS and SARIMVEIS

by considering Q1 =CTWC. The input and output constraints are modified accordingly:

|ũ (k + i|k)| ≤ umax − us, i ≥ 0 (25)

max
[A B]∈Ω

|ỹ(k + i|k)| ≤ ymax − ys, i ≥ 1. (26)

Therefore, the complete set-point tracking problem is presented in a form where we can apply Theorem 1 with the
addition of LMIs (18) and (20).

3.3 State estimation

Quite often in drug administration applications, the knowledge of the quantities of the drug over the various com-
partments during treatment, is completely or partially missing.55 In order to handle the lack of such critical data, it is
requisite to design a state observer.56 A state observer is a dynamical system whose aim is to provide estimates for the
(unmeasured) state vector of the patient dynamics. The information required as input to the state observer is the input
applied to the system (the drug administration rate) and the corresponding output, in our case the BIS index57 or alter-
natively the concentration of Propofol in the effect-site compartment xe(k). Requirement for the application of a state
observer is the system to be observable, that is, the rank of the observability matrix to be equal to the number of state
variables.

The type of state observer chosen for the current application is the discrete Kalman filter. Kalman filter optimally
addresses the problem of estimating the state vector x ∈ Rn of a process governed by a linear equation of the form:

x (k + 1) = Ax (k) + Bu (k) + w (k) (27a)

y ((k) = Cx (k) + v (k) . (27b)

The random variables w (k) and v (k) are used to model the process and measurement noise, respectively, and they are
assumed to be independent on each other, white and with normal probability distributions, that is,

p (w) ∼  (0,Qkalman) (27c)

p (v) ∼  (0,Rkalman) . (27d)

A detailed description of the Kalman filter methodology is beyond the scope of this article, and the interested reader can
refer to various resources on the subject, as in References 58 and 59.

In a nutshell, Kalman filter performs its estimates in a two-step process: time update step and measurement update
step. During the time update step, the observer performs a-priori estimates on the system state and the error covariance
matrix. Next, on the measurement update step, the observer enriches the a-priori estimations with the new measurements,
to obtain improved a-posteriori estimates.

Based on the description above, the Kalman filter can be classified as a predictor-corrector algorithm as illustrated in
Figure 2.

F I G U R E 2 Kalman Filter iterative functionality. On time update step, filter
estimates state ahead in time. Next, on measurement step, estimates are adjusted by the
incoming measurements
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As long as (C,A) is observable, the observer should be asymptotically stable, that is, for a constant input u, the observer’s
error defined as 𝜀 (k) = x̂ (k) − x (k), satisfies the condition ‖𝜀 (k)‖ → 0 as k→∞.

4 APPLICATION: ROBUST MPC SCHEME FOR THE CONTROL OF THE
PROCESS OF ANESTHESIA

In this section, the proposed unconstrained and the constrained robust MPC methodologies are applied to the problem
of controlling anesthesia in a diverse group of L= 17 different patients, which was originally presented in Reference 6.
The patients, in broad lines, are classified in decreasing order of their BIS sensitivity to the infused amount of Propofol.
So patients with lower values of ID (e.g., ID= 1) are considered to be more sensitive to Propofol infusion and therefore a
relatively smaller amount of the drug would be sufficient to achieve the desired setpoint. On the other hand, patients with
higher ID values (e.g., ID= 17) are considered to be insensitive in general and would require relatively larger amount of
Propofol for the desired effect. Patient with number (ID) equal to 1 is considered to be the most sensitive patient, and he
is used as the reference patient. The continuous state-space models described by equation 1 are converted to their discrete
time counterparts (Equation 4) for all 17 patients assuming zero-order hold.46 The full discrete time state-space models
for all 17 patients are presented in Appendix A.

4.1 Application of unconstrained MPC

The main objective in MPC is to drive the BIS index for all patients to the desired set-point of 50. The setup of the admin-
istration loop is as follows: At first, the state observer provides an estimate of the state vector of the system, that shall
be used as input by the MPC controller. Next, according to MPC principles, the optimization problem is solved at each
discrete time instant and the outcome is a sequence of optimal inputs along a future horizon. From this sequence, only
the first element is applied. At the next time instant the state of the system is updated and the problem is formulated and
solved all over again. The control loop is depicted in Figure 3.

The pool of the patients of the dataset is quite diverse. For this reason, the MPC should be rather conservative in its
actions, in order to satisfy all the (possibly) conflicting requirements for each one of them. To this end, the matrices Q1
and R have been selected as diagonal matrices of size 4 and 1 and their diagonal elements are equal to 10−4 and 10−1,
respectively.

Despite the fact that Ce and BIS index are correlated by the non-linear relation (2), the proposed control scheme
actually considers the output of the system to be the concentration of the drug in the effect-compartment Ce instead of
BIS index. This is achieved by the inverse transformation of the desired level of anesthesia in terms of BIS index into the
desired level of Propofol concentration in effect compartment using Equation (3). Calibration of Kalman Filter parameters
has a critical influence on its performance, especially regarding process noise covariance (QKalman). Too small QKalman
values means that measurements are somehow untrustworthy resulting in significant lag. On the other hand, if QKalman
is too large then predictions will be closer to measurements, resulting in noisy estimations. In the presented example,
it is assumed that there is quite confidence in sensors measurements, so corresponding values are RKalman = [100] and
QKalman is a diagonal matrix of appropriate dimensions and diagonal elements equal to 104. Inequality (16) is formulated
by considering all 17 patients in the dataset, that is, the discrete matrices Aj and Bj for j= 1, … , L. The steady state vectors
xjs and ujs for each patient j were calculated off-line by solving the linear system described in Equation (22).

F I G U R E 3 Suggested administration loop. State observer
(Kalman Filter) uses current output (BIS index) and current input to
estimate future state of the system on next time instant and feeds
MPC. Then, the controller calculates optimal input (administration
rate) to be applied to the patient and then the loop is repeated
[Colour figure can be viewed at wileyonlinelibrary.com]
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The time length of the simulation was set to 20 minutes, and measurements were taken every second. So at each
second, the state of the system is re-evaluated, the robust MPC optimization problem is solved and the new optimal input
is applied. The setpoint for the BIS index is set equal to 50. Patient No.1 is considered as the nominal patient and according
to his characteristics, he is the most sensitive to Propofol among all 17 patients in the dataset,6 that is, the patient who
most likely violates the lower bound of the BIS index.

The results are shown separately for the nominal patient and then for the full set of 17 patients. Figure 4 depicts the
optimal Propofol dosing trajectory for the nominal patient derived by the solution of the zero-tracking problem. All next
figures referring to the input trajectory, also present solutions for the zero-tracking problems. The true dosing schemes
are produced by adding the steady state input, which ranges between 8.6 and 34 mg/min for the 17 diverse patients. In
Figure 5, the estimated and the actual output of the system are depicted (Ĉe and Ce, respectively). As it is shown in the
magnified region, not highly accurate initial estimations finally converge to the actual values of the system’s output. This
shows that the state observer is a reliable tool for providing accurate and valid state estimations to the MPC scheme.
Figure 6 presents the BIS index as functions of time. A red dashed line indicates the BIS= 40 level, which will be consid-
ered as a low bound for the Propofol administration in the constrained MPC problem that will be studied next. It is clear
that this bound is violated when no constraints are assumed in the formulation of the control problem.

Figure 7 contains the BIS index responses for all 17 patients, assuming that they are administered dosages based on
the optimal dosing scheme for patient No. 1. The BIS= 40 level and the BIS= 50 setpoint are shown with a red dashed line
and a blue continuous line, respectively. We can notice that the responses for patients with ID= 1, 2, 3, 4 do violate the
lower bound of BIS index. This is expected, because these patients are the most sensitive to Propofol, so the administered
dose of the drug acts very drastically, resulting in low values of BIS index at the beginning of the simulation.

F I G U R E 4 Optimal Propofol administration for the nominal
patient—Unconstrained zero-tracking problem [Colour figure can
be viewed at wileyonlinelibrary.com]

F I G U R E 5 Propofol concentration on Effect Compartment
for the nominal patient—Unconstrained problem. The magnified
part of the figure shows how the observer estimations converge to
the actual patient’s response [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 6 BIS index for the nominal patient—Unconstrained
problem [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 BIS Index for all 17 patients—Unconstrained
problem [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Constrained MPC problem

In this section, we are addressing the problem of Propofol administration for the anesthesia process in the presence of
input and output constraints. It is demonstrated that the same control law can be the basis for driving all 17 patients to the
desired setpoint while satisfying all constraints. The same administration scheme is adopted for the constrained problem,
as depicted in Figure 3. The state observer, at each time instant, is fed with the applied input and the measured output (BIS
index), and provides state vector estimations to be used in MPC. The MPC calculates the optimal input (administration
rate) to be applied to the patient, and the problem is re-formulated and re-solved at the next time instant.

Target controlled infusion systems, usually make use of syringe pumps with maximum infusion rates between 10 and
160 mg/kg/h.60 In our simulations, we considered 85 mg/kg/h as the upper bound on the infusion rate, which is converted
to umax=200 mg/min (= 3.3 mg/sec), considering a heavy patient weighted 140 kg. It should be noted, however, that the
actual infusion rates computed by the controllers are much lower than this bound, which agrees with other observations
reported in the literature.6,30 We also imposed an output constraint, namely the BIS value should be above the lower limit
of BIS= 40 for all patients during the entire simulation.

Figure 8 presents the optimal drug administration scheme for the constrained problem, while Figure 10 contains the
corresponding responses of the BIS index for all 17 patients. We observe that all input and output constraints are satisfied.
In particular, the BIS index is above the BIS= 40 level, even for the most sensitive patients, who violated this bound in
the unconstrained case.

In Figure 9, the Propofol concentration response in the effect compartment is presented. The enlarged region is indica-
tive for the observer’s behavior. Like in the unconstrained problem, although initial estimations for Propofol concentration
in the effect-site compartment are not highly accurate, they eventually converge to the actual states of the system.

http://wileyonlinelibrary.com
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F I G U R E 8 Optimal Propofol administration—Constrained
zero-tracking problem [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 9 Propofol concentration on effect compartment for
the nominal patient—Constrained problem. Enlarged detail shows
how observer’s estimations converge to actual patient’s response
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 10 BIS index for all 17 patients—Constrained
problem [Colour figure can be viewed at wileyonlinelibrary.com]

The BIS responses shown in Figure 10 are driven toward the desired setpoint for all 17 patients. The robust controller
applies an action (infusion rate) to satisfy simultaneously the requirements of the most sensitive and the less sensitive
patient, as well as all the other patients between them. The control law compromises between administering a large
enough quantity to drive the insensitive patient close to the BIS= 50 index and a smaller quantity to keep the BIS index
above the lower bound for the sensitive patients. For the less sensitive patients with higher IDs, the responses are slow
and need considerable large times to reach steady state. For example, for patient with ID= 15, 10 minutes are required to

http://wileyonlinelibrary.com
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drive its BIS index below 60, which is usually an acceptable upper bound in Propofol administration. These results are
comparable with other studies in the literature.6,30

In order to improve the results of the method, we created two smaller groups of patients, while maintaining the
configuration of the constrained problem as it has been presented before. The first group contains only the first three most
sensitive patients (ID= 1, 2, 3). The second group contains the three last patients (ID= 15, 16, 17) who are less sensitive to
Propofol. The problem is solved for the smaller groups and the results are compared with previous findings, which take
simultaneously into account all 17 patients.

The results obtained for the most sensitive group are shown in Figures 11 and 12. For easy comparison, the responses
of the same group of patients in the full constrained problem are marked with bold lines in Figure 13. A very small
improvement is observed in the responses of the three most sensitive patients when the smaller group is considered in
the proposed control scheme.

The results obtained for the least sensitive group are shown in Figures 14 and 15. Figure 16 marks with bold lines
the responses of the same group of patients in the full constrained problem. The responses differ significantly between
the two figures. More specifically, when the control scheme is applied to the small group of patients, the BIS indices are
driven fast to the desired value of BIS= 50, thus achieving an improved response.

The above analysis reveals that when a very diverse set of patients is considered in the proposed robust control scheme,
the most sensitive patients dominate the determination of the control law. This is because they are the first to violate the
low bound of the BIS index, when large Propofol infusion rates are used.

By considering smaller groups of patients, we can achieve better performances. In particular, the performance is dra-
matically improved, when it is applied to groups of the most insensitive patients. In this case, the controller acts more
aggressively by delivering larger amounts of drug and therefore achieving faster settling times.

F I G U R E 11 Optimal Propofol adminstration for patients with
ID= 1, 2, 3—Constrained zero-tracking problem [Colour figure can
be viewed at wileyonlinelibrary.com]

F I G U R E 12 BIS index for patients with
ID= 1, 2, 3—Constrained problem [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 13 BIS index for all 17 patients. In bold patients
with ID= 1, 2, 3—Constrained problem [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 14 Optimal Propofol administration for patients
with ID= 15, 16, 17—Constrained zero-tracking problem [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 15 BIS index for patients with
ID= 15, 16, 17—Constrained problem [Colour figure can be viewed
at wileyonlinelibrary.com]
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F I G U R E 16 BIS index for all 17 patients. In bold patients
with ID= 15, 16, 17—Constrained problem [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 17 BIS index evolution during induction phase for a
new patient [Colour figure can be viewed at wileyonlinelibrary.com]

4.3 New patient

In this section, the treatment of a new patient is presented, using the control laws calculated for the 17 original patients.
The matrices describing the dynamics of this patient are shown in Appendix B. It is easy to verify that this patient belongs
to the convex hull of the 17 original patients, and to the convex hull of the group of sensitive patients (ID= 1, 2, 3). The same
constraints are imposed regarding the input and the output of the system, as in previous simulations. We will examine
the performance of the MPC control scheme both during the induction phase, to verify that the controller drives the
patient to the desired setpoint with respect to the imposed constraints, and the maintenance phase, to verify that the
controller is able to maintain the desired level of anesthesia, regardless of the disturbances that may occur during a typical
surgery.

4.3.1 Induction phase

The goal is to bring the patient in the desired depth of anesthesia rapidly, so that the process is not detrimental and
painful for the patient and the surgeon can start the operation as soon as possible.6 In order to achieve the desired state,
his/her BIS index should fall to the level of 50 without much undershoot, that is, BIS values below 30 should be avoided.
The response of the BIS index after applying the MPC controller designed for the group of sensitive patients is shown in
Figure 17. The controller is able to drive the patient to the desired level of anesthesia in less than 2 minutes, smoothly
and without an undershoot.

http://wileyonlinelibrary.com
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4.3.2 Maintenance phase

Besides ensuring proper performance during induction phase, it is essential to also guarantee that the controller maintains
the BIS index value within the desired bounds, that is, is capable of rejecting any disturbances, during the entire surgery.
In order to examine the performance of the controller during the maintenance phase, a realistic scenario of disturbances
is defined, trying to mimic typical surgery stimuli that may happen in an operation theater, similar to References 6 and 30.
The scenario consists of different phases, each one representing a change in measured BIS index due to various reasons
as shown in Table 1. It is assumed that the patient has passed successfully the induction phase achieving the desired
setpoint of BIS index equal to 50; therefore, the time axis starts at a later time instance.

In Figure 18, the evolution of BIS index according to the scenario of Table 1 is presented. It can be seen that the
controller in all phases of the scenario manages to return rapidly the BIS index of the patient back to the desired setpoint.

In Figure 19, the corresponding administration rate is depicted. To achieve rapid responses of the BIS values back to
the desired levels, the controller initially delivers large quantities of Propofol (similar to bolus administration) and then
behaves smoother to avoid oscillations, until reaching the desired BIS value.

4.4 Computational aspects

All simulations were performed in Python in a Macbook Pro (version 10.13.6, 2.66 GHz Intel Core 2 Duo, 4 GB RAM) run-
ning Mac OS Sierra. For a single patient, as in case of Section 4.3.1, at each time instant the MPC optimization problem
was formulated and solved—on average—in 0.21 seconds, while the total simulation time was equal to 251 seconds. The

Phase Time BIS Reason

Start 60 50 Start of maintenance phase

A 70 70 Intubation

B 80 70 Surgical incision

C 86 30 No surgical stimulus (i.e., waiting for pathology result)

D 90 70 Onset of a continuous normal surgical stimulation

E 100 60

F 105 80

G 110 60 Short-lasting stimulation within the surgical period

H 115 80

I 125 60

End 150 50 Withdrawal of stimulation during the closing period

T A B L E 1 Stimuli scenario during
maintenance phase

F I G U R E 18 BIS index evolution according to stimuli scenario
for new patient—Disturbance rejection problem [Colour figure can
be viewed at wileyonlinelibrary.com]
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F I G U R E 19 Evolution of administration rate of Propofol
according to stimuli scenario for new patient—Disturbance rejection
problem [Colour figure can be viewed at wileyonlinelibrary.com]

maximum time for solving the MPC problem at a time instant was 0.27 seconds. For the formulation of the optimization
algorithm, CVXPY was used. CVXPY is a Python-embedded modeling language for convex optimization problems.61,62

The solver used for the solution of the optimization problems was CVXOPT,63,64 using function sdp for semidefinite
programming which acts as an interface to conelp for cone programs with no second-order cone constraints.

5 CONCLUSIONS

In this work, we presented a robust MPC application based on LMIs for the control of the administration of Propofol,
which is a widely used agent for anesthesia. The only measurable quantity is considered to be the BIS index, that is, the
output of the system, so no knowledge about the state of the system is available. To address this issue, a state observer is
used in order to compute accurate estimates of the state vector of the system. We illustrated that the proposed methodology
was able to compute a control law, that drives the BIS index to the desired set point for different patients, while satisfying
the constraints. The dynamic characteristics of the responses were improved when considering smaller groups of similar
patients. This defines a classification problem that will be addressed in a future work, that is, the selection of the most
suitable among many pharmacokinetic models based on macroscopic characteristics of the patient, such as age, height,
weight, and gender.
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APPENDIX A

Here we provide the matrices A and B for all 17 patients of the dataset that define set Ω and matrix C. Matrix C is the
same for all the patients of the dataset, and equal to:

C =
[
0 0 0 1

]
.

Matrices A and B are formulated after equations 1 in continuous time. Next, state space system is discretized by
using function cont2discrete contained in library scipy.46 The selected method for the discretization was the
zero-order hold.

A1 =

⎡⎢⎢⎢⎢⎢⎣

0.394 0.181 0.01304 0
0.221 0.751 0.00282 0

0.0994 0.0176 0.981 0
0.485 0.1277 0.00876 0.10076

⎤⎥⎥⎥⎥⎥⎦
B1 =

[
3.1996 0.6882 0.2881 2.1423

]T

A2 =

⎡⎢⎢⎢⎢⎢⎣

0.206 0.089 0.00999 0
0.302 0.852 0.0041 0
0.127 0.015 0.981 0

0.2927 0.0465 0.005 0.3027

⎤⎥⎥⎥⎥⎥⎦
B2 =

[
2.453 1.0 0.4005 1.2287

]T

A3 =

⎡⎢⎢⎢⎢⎢⎣

0.242 0.0955 0.0107 0
0.259 0.8457 0.0034 0

0.1085 0.01285 0.981 0
0.318 0.049 0.0053 0.3027

⎤⎥⎥⎥⎥⎥⎦
B3 =

[
2.624 0.8392 0.3358 1.293

]T

A4 =

⎡⎢⎢⎢⎢⎢⎣

0.206 0.089 0.0099 0
0.3022 0.8512 0.0041 0
0.1268 0.0153 0.981 0
0.2927 0.0466 0.005 0.3027

⎤⎥⎥⎥⎥⎥⎦
B4 =

[
2.453 1.0 0.4005 1.228

]T
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A5 =

⎡⎢⎢⎢⎢⎢⎣

0.344 0.1112 0.00747 0
0.2265 0.84 0.0017 0
0.158 0.0178 0.988 0

0.4495 0.0778 0.0051 0.10076

⎤⎥⎥⎥⎥⎥⎦
B5 =

[
3.0395 0.697 0.466 2.06

]T

A6 =

⎡⎢⎢⎢⎢⎢⎣

0.3933 0.1812 0.00786 0
0.2214 0.751 0.0017 0
0.0998 0.0176 0.988 0
0.4624 0.1122 0.0046 0.1746

⎤⎥⎥⎥⎥⎥⎦
B6 =

[
3.199 0.688 0.289 1.874

]T

A7 =

⎡⎢⎢⎢⎢⎢⎣

0.2666 0.1515 0.00664 0
0.2468 0.758 0.0020 0
0.0843 0.0156 0.988 0
0.3809 0.1111 0.0046 0.1007

⎤⎥⎥⎥⎥⎥⎦
B7 =

[
2.704 0.815 0.257 1.874

]T

A8 =

⎡⎢⎢⎢⎢⎢⎣

0.286 0.131 0.00913 0
0.266 0.802 0.0028 0
0.116 0.0175 0.985 0

0.3854 0.0828 0.0055 0.175

⎤⎥⎥⎥⎥⎥⎦
B8 =

[
2.793 0.855 0.351 1.6889

]T

A9 =

⎡⎢⎢⎢⎢⎢⎣

0.286 0.131 0.00913 0
0.266 0.802 0.0028 0
0.116 0.0175 0.985 0
0.344 0.0667 0.0044 0.303

⎤⎥⎥⎥⎥⎥⎦
B9 =

[
2.793 0.855 0.351 1.353

]T

A10 =

⎡⎢⎢⎢⎢⎢⎣

0.286 0.131 0.00913 0
0.266 0.802 0.0028 0
0.116 0.0175 0.985 0
0.344 0.0667 0.0044 0.303

⎤⎥⎥⎥⎥⎥⎦
B10 =

[
2.793 0.855 0.351 1.353

]T

A11 =

⎡⎢⎢⎢⎢⎢⎣

0.393 0.1812 0.00786 0
0.2214 0.751 0.00169 0
0.0998 0.0176 0.988 0
0.485 0.1277 0.0053 0.1008

⎤⎥⎥⎥⎥⎥⎦
B11 =

[
3.1989 0.688 0.289 2.142

]T
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A12 =

⎡⎢⎢⎢⎢⎢⎣

0.2667 0.1515 0.00664 0
0.2247 0.758 0.00201 0
0.084 0.0156 0.988 0
0.369 0.0981 0.0041 0.175

⎤⎥⎥⎥⎥⎥⎦
B12 =

[
2.704 0.815 0.257 1.646

]T

A13 =

⎡⎢⎢⎢⎢⎢⎣

0.3933 0.1812 0.00786 0
0.2214 0.751 0.00169 0
0.0998 0.0176 0.988 0
0.4067 0.0901 0.0037 0.3027

⎤⎥⎥⎥⎥⎥⎦
B13 =

[
3.1989 0.688 0.289 1.497

]T

A14 =

⎡⎢⎢⎢⎢⎢⎣

0.3933 0.1812 0.00786 0
0.2214 0.751 0.00169 0
0.0998 0.0176 0.988 0
0.4067 0.0901 0.0037 0.3027

⎤⎥⎥⎥⎥⎥⎦
B14 =

[
3.1989 0.688 0.289 1.497

]T

A15 =

⎡⎢⎢⎢⎢⎢⎣

0.344 0.1112 0.00747 0
0.226 0.84 0.00172 0
0.158 0.0178 0.989 0
0.381 0.055 0.0035 0.3027

⎤⎥⎥⎥⎥⎥⎦
B15 =

[
3.0395 0.697 0.466 1.443

]T

A16 =

⎡⎢⎢⎢⎢⎢⎣

0.206 0.089 0.00999 0
0.302 0.852 0.0041 0

0.1268 0.015 0.981 0
0.323 0.0577 0.0062 0.175

⎤⎥⎥⎥⎥⎥⎦
B16 =

[
2.453 1.0 0.4005 1.528

]T
.

APPENDIX B

This Appendix provides numerical information regarding the new patient of Section 4.3. Matrices A and B are selected in
continuous time. Next, state space system is discretized by using functioncont2discretecontained in libraryscipy.46

The selected method for the discretization was the zero-order hold.

A =

⎡⎢⎢⎢⎢⎢⎣

0.2706 0.1186 0.01114 0.
0.2635 0.8162 0.0034 0.
0.1132 0.0159 0.981 0.
0.3653 0.0711 0.0064 0.2089

⎤⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎣

2.7352
0.8492
0.3452
1.5654

⎤⎥⎥⎥⎥⎥⎦
.


