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Amayopevetou 1 avTrypogt], amobrikevot) kot Staevopr tng mapovoag epyaciog, €€ oAoKkA -
PO 1) TUAHOTOG LTNG, Yot epopLkd okond. Emrpémeton 1) avatdnwor, amodrkevon kot
Stovopr] yia oxortd pr kepdooKoTTLKd, EKTAOEVTIKAG 1} EPEVVITIKTG UGG, VIO TNV TTPOT-
160eon v avapépetal 1) Tnyn TpoéAevong kot va diatnpeital to mapdv privopa. Epotripa-
TQL OV CLPOPOVV TN XPNOT) TNG EPYATLNG Yo kKePOOOTKOTMIKO 6KOTO TTPéTel va amtevfivovTon

TPOG TOV GLYYPOUPEQL.

H éyxpron tng ddaktopikng SratpiPrig amd tnv Avortarn Xyoir) Hlektpoddywv Mnyavi-
KoV ko Mnyavikodv Yrohoyotdv tov E. M. TToAvteyveiov Sev vmodnAdvel ammodoyr] twv

YVop®V oL cvyypagéa (N. 5343/1932, ApOpo 202).
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IlepiAnyn

e avtr) v ddaktopikn datpiPny, peletpe dpecovg alyoplpovg yia tpofAnparto Av-
vopkng ZuvaBpolong. Ztnv mepintwon Tov Apecwv alyoplBpnv Bewpolpe 6TL 1) elcodog
TV TTPOPANHATWY deVv elvall YVOOTH €K TWV TTPOTEPWV, AAAX ATTOKAAVTTETOL KOPPKTL-KOL-
patL atov odyopilpo. To amotedéopato pog a@opobv Apeces ekd0YXES TV TPOPANHATOV
KéaAvyng Zvvorov EAdyiotov ABpoicpatog, Avakatavopng K-Ynnpeowodv kot Avvopikng
Xwpobétnong Ynnpeoidv. Ta 6o avtd toe TpoPAnpoto oyedidlovpe Gpecovg adyopld-
HOUG Kol AITOSELKVOOUHE TNV OTTOTEAECHATIKOTITA TOVG. LUYKEKPIHEVX, ATTOSELKVOOUNE G-
VO QPAYHATA GTOV AOYO AVTOYWOVIOTLKOTNTOG TOV AHETOV aAyopiBpwv pag. O Adyog o-
VTOYWOVLIOTIKOTNTOG OPLLeTOL WG 0 XELPOTEPOS SUVATO AOYOG VAHEG T GTO KOGTOG TNG AD-
OTG TOVL AHEGOV XAYOPIBHOL Kol 6TO KOGTOG TG AbonG evog PéATIoTOL ahyopiBpov, o omoi-
0G emAéov Yvwpilel OAN NV eic0do ek TV TpoTtépwv. EmmAéov, oxedidlovpe dSdokola
OTLYHLOTUTTOL Yot OAoL T TTPOPATHOTA TTOL PEAETANE, T oToi pog divovv tnv duvartdTh-
Tl vor todelEOVHE KATW QPAYHATA GTOV KAADTEPO SUVATO AOYO AVTAYWVIGTIKOTNTOG TTOV
uropel va emitoyel omoloodnmote dpecog aAyoplOpog. Avtd onpaivel OTL Koevévag olyo-
pOpog dev pmopel va metd)eL KOADTEPO AOYO OVTAYWOVIGTIKOTNTOG OTO TO KATW PPOYHO
7OV LoYVEL YLt Tot SUGKOAQ GTLYHLOTUTIAL. XTIG TEPLOCOTEPEG TEPLITTWOCELS, TA KATW PPAY-
pota elvat TOAD KOVTA 6T Avew Ppaypata (o€ KATTOLEG TEPLTTOCELS TALTILOVTOL) KoL TO
YEYOVOG ouTO atodelkVOeL OTL oL A yOPLOpOL TTOL €XOUpE SLATLTTMOOEL KoL avaADoEL elvat

BéAtioToL 1} oxedov PéATIoTOL YLt TO aevTioTOLYO TPOPANHCL.
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Abstract

In this Ph.D thesis, we study online variants of Dynamic Aggregation problems that are
generalizations of prominent and well studied online problems. In the online setting, we
additionally assume that the input arrives piece-by-piece and that the online algorithm has
to provide a solution for the input piece of the current stage before it sees the upcoming
input pieces of future stages. The decision quality of the online algorithm is evaluated
against an optimal offline algorithm, which is given the whole problem data from the beginning.
The performance of the online algorithm is measured by the competitive ratio which is the
worst-case ratio between the online cost and the optimal offline cost. We consider the online
variants of the Min-Sum Set Cover problem, the K-Facility Reallocation problem and the
Dynamic Facility Location problem. For all the aforementioned problems, we design online
algorithms and we prove upper bounds on their competitive ratio. Moreover, we construct
difficult instances for these problems and we prove lower bounds on the competitive ratio
of online algorithms on these instances. The majority the upper bounds are close (or the
same) with the lower bounds that we prove and this ensures that our online algorithms are

optimal or near optimal.



Evyaplotieg

H mapotoa didaktopikr datpifr] dev Ba propovoe va eixe mpaypoatomondetl ywpig tnv
ovpPolr) Tov emiPAémovta pov k. Anuitpn Pwtdxn. Tov evyaplot® amd kapdidg yia T
BonBelx mov pov TPOGEPEPE TOCO G EMGTNHOVIKO OGO KL O€ TTPOCWILKO eTimed0, AL
KoL yLot OAO TO eVOLPEPOV, TNV LITOHOVT Kot TNV KatBodrynon Tov. ZNHavTLKEG EVXUPLOTIEG
opeihovtal kot oTor GAAa SVO PEAN TNG TPLHEAOVG GUUPOVAEVTIKTG EMLTPOTTHG POV, SNAdT|
TOUG K. XTdOn Zdxo ko Apn Hayovptln) yix tnv cvpmapdotact kot thv foreta wov pov
EXOLV TTPOCGPEPEL AN KL Y TO &pLoTo TepLlPaAlov ov éxovv dnpovpyroel poli pe Tov
K. Anpntpn dwtdakn oto epyaotnpro Corelab. Idiaitepeg evyaplotieg amevbovovtal oTov
K. Iwdvvn Epipn, pe tov omoio mpaypatonoinca tnv mpwtn dnpocisvot) pov ota mTAaiclo
Tov petottuylakod MITAA. Me tiud Wiaitepa emiong 1 ovppetoxn Tov k.x. Zopfovr, Ko-
VTOYLAVVI), ZNOIHOTOLAOL Kol XTAHOV OTNV eNTOpEAN emLTpomn) eEéTaong Tng Satplprig
OV, TOLG 0TTolovG Kot eVYAPLET®. TTOAAX evXaAPLOTKD Ge OAOLG TOVG GLVAdEAPOLG EVTOG
ko ektOg Corelab yio tnv otipién, Tig ouvepyaoieg kot yior OAeg TIG OpOPPeg Kol SVOKO-
Aeg oTiypég mov mepdooape. Idaitepa B Neda v evyaplotnow Tov ZTPaTh ZKOLAKKN
ko tov Ipnydpn Kovpotdtoo. Enpavtikég evyapiotieg opeilw kxat oto ITdpupa Kpatikdv
Yrotpoprodv (IKY) yiax tnv xpnpatodotnon g didaktopikng pov dratpirig. Télog, Oehw
VO EVYAPLOTIOW TNV OLKOYEVELX OV YLl TNV GTNPLEN KL TNV KATavon ot oe OAn avth tnv

wpaio aAA& koL SOoKoAN Stadpopr).



Extetapévn Hepiinyn

e avtiv m Sdaxtopikn diatpiPny, pedetape ToapoaAlayég dueowv mpoPAnpateov Avvo-
HKNG ZuvaBpolong mov elval YevikeDoelg JLoKEKPLUEVOVY KL KOAX PEAETNHEVOV AUECHV
npoPAnpatwv. H avtikeyevikn cuvaptnon twv mpoPfAnpatov Avvopikng Zovadpoiong
nepAopPavel pioe cLVAPTNGOT KOGTOLG ZVVAOPOLOTG e TUTILKA ToPAdELYHATA TIG GLVOP-
moelg Ehayiotou, Meyiotov, Mécouv Opov kat ABpoicpatoc. K&be mpdPAnpa Avvoyiikig
Svvabpoiong Bewpotpe 0Tt et pio Suvaikr) eEEAEN GTOV XpOVO, 1) OTTOL TPALYHATOTTOLEL-
ToL o€ Ztadioe. Avtr) 1) duvorpikt) eEEMEN ATOTLTOVETAL KL GTNV AVTIKELLEVLKT] GUVAPTNON
evog poPAnpatog Avvopikng Zvvabpolong, n omola mepLéxel emutAéov éva K06Tog Eval-
Aaynig (n Metakivnong) yio pioe Adon mov Siagépel amd Tn ADGT TOL TPOTNYOUHEVOL GTa-
diov. Katd cvvémeia, ot adyopiBpol yia tpofAnpata Avvopikng Xovabpolong otoxebovy
oTNV avokdALYT TG Xpovikng eEEMENG aToLyelwV, Ta ool dev elval TOAD evaioOnta oe

ToPOSIKES XAAQLYEC.

Av Bewpricovpe emutAéov OTL 1) elcodog Tov TpoPAnpatog Avvopkng Xuvabpolong dev ei-
VoL YVOOTH €K TOV TPOTEP®V, AAAX ATTOKAADTTTETOUL KOPPATL-KOPHATL o€ kK&Oe oTddlo, TOTE
peAetaype TNV dueon exdoyn evog tpofAnpartog Avvapikng Xovabpoiong. O dpeceg exdoyég
TPoPANpaTOV Avvopikng Zuvabpolong TPoKOTTOLY 6€ TOAAEG TPUKTLKEG EPUPHOYES TTPO-
EPYOHEVES OTTO dLoLPOPETIKOVG KAGDOUG OTTWG 1) emdnpLoAoyia, o oxedlacpog epfoAiacpon,
0 TTOAe0dOULKOG OXELUGHAC, TAL KOLVWVIKA SlKTLa KoL oL pnyavég avalntnong. Avtég ol
EPUPHOYES TEPLAOPPAVOLY évay Taxéwg avEavopevo dyko dtabéoipwv dedopévwv mov v-
TOKELVTOL OE YPNYOpeG kol pn mpoPAéipeg allayéc. Xe avtiBeon pe v @OoT ALTOV
TV TTPAKTLIKOV EGAPUOYDV, 1] OTTOLX ELVOL EYYEVOG AHECT), 1) ETKPATOVOX TTPOGEYYLOT) YLot
npoPAnipata Avvopikng Zvvabpolong otnv emotnpovikn PipAoypapio Tpodmobétel tnv
TANPN YVOOT] TV 1600wV ov Ba amokalveboiv oe kdbe otddlo otov alyopiBpo. To
Boaoud kiviTpo ko 0 6K0mOg TNG mapovoag epyaciog eival va e€epevviioel TpofAnpata
Avvopikng ZuvaBpolong o€ Lo peaALoTLKES TTEPUTTAOOELS, KATA TIG 0TToleg dev eivart dSuvatd

vo TpoPAepBoiv oL peAdlovtikég eicodol ko avalntovvTon armodoTikég AVoelg dedopévng
™G VIaPENG avTNG NG afePondTnTog.

O topéag mov acyoAeital pe Tnv avamtuén alyopibuwv, oL omoiot xelpilovtol KATAOTA-
oelg afePardotnrog, ovopdleton Apeon Bedtiotomoinon kot ot adyopibpol tov éxovv avté
TOL YOPOKTNPLOTIKG ovopdlovTon dpecol alyopibpol. Evag dpecog alyopibpog éxel tn du-
vatotnta vo emeepydleton TNV el6000 KOPUATI-KOHHATL HE TT) GELPA TTOL ATTOKOAVITTETOL
KoL VTTOYPEOVTAL VO EEVTINPETNOEL TO KOPHATL TNG ELGOJOV TTOL TOL €XeL ATTOKAALPOEL piar
dedopévn xpovikn oTLypr] TpLv Tov atokaAv@BOel To emdpevo Koppdtt etoddov. EmumAéov, n
amopaon yio To wg O eEumnpeTroel éval KOPPATL TNG eL60d0L eival auetakAnty, Sniadn
dev pmopet var adA el oo péALOV Kot 0Ty Box el OeL Ta eTOpEVa PEPT) TNG EL0OSOV. ALTOG
0 TTEPLOPLOROG 0dNYel TOUG dpeaovg adyopiBpovg oe pn fédtiores amopdoelg emnpedlovag

NV amodoTikOTHTA TOLG. [lot vo PeTprjcovpe TNV armodoTIKOTN T £VOG decov adyopibpov,
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xpnoipomolovpe pebddouvg amd v AviaywvioTikr) AVAALGT Kol GUYKEKPLUEVE TOV Adyo
QVTAYWVIOTIKOTHTAG, O 0TOL0G eiva 0 XeLpdTepog duvatdg AOyog petald Tov KOGTOVG £VOG
apecov alyopiBpov kot Tov kK66TOVG evOg PéATIOTOL ahyopiBpov, o omoiog yvwpilel OAN
NV €icodo ek TV npotépwv. H Pacikn emdin€n oto medio tng Apeong BeAtiotomoinong
elvat 1 avamTuEn alyopiBuwv pe BEATIOTO AOYO OVTOYWVIGTIKOTNTOS KOL 1) KATOGKELT)
KAT® PPAYHATOV GTOVG AOYOUG OVTRYWVLIOTIKOTN TG TWV AHECWV aAYopiBlwV, To omoio
amtotelovv TNV kaAlTepn duvartr) emidoon mov Popel var emLTOXEL OTTOLOGOTTTOTE KHEGOG
aAyopLOpog (Gpa koL 0 o atodoTLkodG ad Toug Gpecovg adyopiBpoug) yio éva cuyKeKpL-

pévo TTPOPANpOL.

H xbpla cuvelopopd tng mapodoas eMGTNHOVIKAG dTpLPrig elval 1) KATOGKELT] APECHOV
oAyopiBuwv ya ta mpofAnuata KaAvyng Zvvorov Eldyiotov-ABpoicpatog, Avakato-
voprg K-Yrnpeoidv ko Avvoyukrig Xwpobétnong Yanpeoidv. Olot ou pecor alydpibpot
TTOL TTOXPOLGLALOVE TTETLXALVOLVY PBEATIETOVG 1) oXedOV PEATIETOVG AOYOUG AVTAYWVLGTLIKO-
TG yo ta TpofAnpota mov e€etdllovpe, KaBwg yior OAa T TPOoPAHATO ATTOELKVDOULE
EMUTAEOV KATW PPAYHATA GTOV AOYO OVTRYWOVIOTIKOTNTAG, TO 0Ttoia dev autéxouv oD (1)
etvart 1dtor) oo Tor AV PPAYHATO TV ApEG®V 0AYopiBpwy poag. EmutAéov, e€epevvoipe
o0OVOEDT) TV TAPATAV® TPOPANUATOV PE YVOOTA Kol KOAG PHeAETHEVY Gpecar TPOPATHa-
TQ, OLTTO TAL OTTOLOL AVTAOVE LOEEG YLOL TNV KATAGKELT] TOV APEC OV OAYOP IOV pag aA K Ko
YLl TNV otOdeEn eyyvroewV GTNV ITOSOTLKOTITA TOVG OGO APOPAE TOV AOYO OLVTOYWVLOTL-
K0TNTOG. TéAOG, 1) 6UVIEGT) AVTH HOG ETLTPETEL VAL KATATKEVAGOVHE KATW PPAYHATA GTOV
AOYO OVTAYWVLIOTIKOTNTAG YL KOTTOL TPOPANHATA HECW avaywyl§ oe KAmolo TpofAnpa

ylot TO 0TT010 LTTAPYEL YVWOOTO KATW QPAYHCL.

370 TPAOTO ELGAYWYLKO KEPAAOLO TNG TopoLoag epyaciag (1), divovpe Tov 0pLoHO TV TPO-
BAnpatwv Avvapikng Zovadpolong kot Topovctdlovpe Topodelypata TOAADY EQUPHUOYDOV
oTtd SLPOPETLKOVG ETMLOTNHOVIKOUG TOELG. XTr ouvéxela, e€epeuvolpe TNV TAOVGLA ETTL-
otnpovikn PipAoypagia mov apopd dnpo@iAn aueca tpoPAnpata Avvopkng Xuvadpot-
ong 0mwg to TpoPAnpa twv K-E€unnpetntadv [54],[55],[60],[41] ko to mpofAnpe IIpo-
onélaong Aiotag [3], [66], [1],[2] kou oyxoldlovpe tnv oxéorn Touvg pe ta TpoPArjpoTa
KaAvymg Zvvorov Eddyiotov-ABpoicpatog, Avakartavopung K-Yanpeowwv kot Avvopiikng
Xwpobétnong Ynnpeowov. Akxolovbel n mapovsiactn twv mpoPfAnpudtov KaAvyng Zovvo-
Aov Eldyiotov-ABpoicpatog, Avakatavopng K-Yrnpeowov ko Avvapikig Xwpobétnong
Ynnpeowwdv ko 1) tapdBeon tng oxetikng PipAloypapiog kKabog Twv amoTeAeGUATOV HOG

ylo vt Tor TpoPARpATA.

H televtaio evOTNTA TOL ELCAYWOYIKOD KEPAAALOV TEPLEXEL TO ATTAPALTNTO TEXVIKO LITOPAX-
Bpo yx Tig évvoleg tng Apeong BeAtiotomoinong [23] ov xpnoyonolodpe otnv vidAourrn
EKTOOT) TOV KEEVOL. APXLKE, TTOPOLGLALOLHE TNV £Vvola TNG AVTAywVIeTIKNG AVAALGTG
[23], n omola ypnoipomoteitar atnv PipAloypagic yiow TV avaAven Tng atodoTikOTN TG

TV quecwv oAyopiBpwv. Ztnv Avtaywoviotikny Avalvor, vobétovpe tnv Omoapén evog
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KokoU avTidAov, o omoiog dnptovpyel eL.00d0VG TOL TPOPANIATOG KO TLG ATTOKAADITTEL pi-
a pio 6Tov Gpeco alydplOpo. Onwg mpoavapépape, LITOYPEWGT) TOL GUECOL CtAYOpiBpov
elvor va VTN peToEL TO KOPPATL TNG £Ll6OJ0L TNV idia oTLypr] kot dev popel va alrdel
QLT TNV AOPAoT) 0TO PEAAOV. 2Th ovvéxelx o avtimahlog Bo arokaAv el To emOpevo
KoppéTL TG e166dov. Vo0 apopd TOLG VTETEPULVIGTIKOVG adyopiBpovg, Oewpodpe OTL 0
aVTITOA0G YVpilel TOV KOJKX TOLG kal TOLG divel TG XeLpOTEPES SUVATEG ELGOSOVG e
oKoTd va aVENOEL TO CLVOALKO KOGTOG e€umnpétnong Tewv elc6dwv. Voo awopd Tovg -
BavoTtikog alyopiBpovg, éxovpe Tpiot dLoLPopPeTIKE HOVTEAX AVTITAA®Y TTOL avaAbovToL

dre€odikd otnv evotnTa 1.3.1.

310 devTepo Kepaharo (2), cuvopilovpe alyoplOpikég peBOd0VG TOL EYOLLE X PTOLULOTTOLT-
o€l ylo vor oxedLAGOUpE Kal avaADGOLHE Apecovg adyopiBpoug, kabawg kar pefddovg ov
pog Porinoay 6TV KATAOKELY KATW QPAYHATWV GTOVG AOYOUG AVTAYWVIOTIKOTNTAC. Ee-
Kwvéye pe tnv péBodo MébBodo Evnpépwaong oA amAaciactikodv Bapadv [58],[9], Tnv omoia
XPTOLHLOTTOLOVE Y vaL XeOLAGOUHE AAYOPLOpO pe BEATIOTO AOYO AVTOLYOVIGTLKOTN TG YL
t0 tpoPAnpa KaAving Zvvorov EAdyiotov-ABpoicpatog. Xtn ocvvéyela, mtapovotdlovpe
v MéBodo Avvnrikrg Zvvaptnong [23],[66], tnv omoia expetadAevopaote yio vo otodei-
Eovple AV PPAYHATH G AOYOUG OVTOYWOVLIGTIKOTNTOG 060 apopd To TtpofAnpa KaAvyng
Jvvorov EAdyiotov-AbBpoiopatog kot to tpofAnpa Avakatavoung K-Yanpeoiov. H Mé-
B0dog Avvntikng ZuvAPTNONG XPTCLHOTOLELTOL EVPEWS OTNV AVAALGT) TOUG KOGTOUG TMV
apecwv alyopibpwv, Opwg n emhoyn g KatdAANAng Avvntikig Zvvaptnong amontel Po-
Ou& yvaon Tev 1dlothtwv Tov ekdotote TpoPAnpatog aAAd ko diaicBnon. Axolovbel 1)
pébodog tng Kavovikomoinong [12], n omoia ypnotpomoeital evpéwg ota media tng Koptg
BeAtiotomoinong kot tng Mébnong. Epeig tnv xpnotpomolodpe ylo TNV KATaokevr) evog mi-
BovoTtiko apecov alyopiBpov yia to TpoPfAnpa Avvapikng Xwpobétng Yanpeoiov. Télog,
ekBétoupe peBOdOLE Y TNV KATAGKEDT KATW PPAYHATOV GTOV AOYO XVTAYWVLIOTIKOTNTAG
Gpecwv alyopibpwv 6mwg eivon 1 Apyxn Tov Yao [23] ko o YroAoyiopdg Méoov Opov A-

VT v [55].

Sto emopeva Tplo kKe@ahona tng didaktopikng drxtpiPrg mapovcLdlovpe Kol avaADOLE
T ATTOTEAECPATA OGS Yo TIG Gpeceg ekdoxég Twv mpoPAnpatwv Kaivyng Zvvorov Era-
xtotov ABpoiopatog, Avakatavopng K-Yanpeowov kot Avvapikng Xwpobétnong Ynnpe-

K&Avym Zvvorov EAdylotov ABpoiopartog

Eekivape pe o tpofAnpoa Kahvyng Zvvorov EAdyiotov-Abpoicpartog, To omoio amotelel
Hl @UOLOAOYLKT] Kol evdlapépovoa yevikevon tov mpofAnpatog Ipoonélaong Aliotog.
Snv dueon exdoyn tov mpofAnpartog Kalvymng Zvvorov EAdyiotov-AbBpoiopatog, o oh-
YopOpog dratnpet pio petdeomn oe n otoyeio pe Péomn ta viroobvola Sq, Sy, . . ., TAL OOl

amokaAvntovtal éva éva o k&be otadlo. O adyopiBpog eEvmnpetel k&dBe cOVOAO Sy kKT
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TNV APLET TOV, X PTCLLOTOLOVTAG TNV TPEXOVOA HETAOEDT) TOL T4, KoL TANPOVEL EVa KOGTOG
IpécPfaons ioo pe tn Béon Tov TP®TOL GToLKElOL St 0TN peTdBeom 7T, 2TN) GULVEXEL, O OA-
YOop1Opog popel viroAoyioel pia kavoopla petbeon 7y 1, He kOoTOG Metakivhong ico pe
v anodotaon Kendall tau peta€d tng 714 ko tng 7141, ONAadn twv aplOpd twv eldyi-
OTOV QVACTPOPOV CTOLYELWV TTOL TPETEL Vo Tpaypatomolnfoiv oe pioe amd Tig dvo étol
wote va yivel idua pe v &AAn. O otd)og eivar va ehayiotomonfel To GLUVOALKO KOGTOG
IIpocPacng ko To cLVOALKO KOGTOG MeTakivhong yia TV eEumnpétnon oAOKANPNG TNG O-
KoAovBiag TV LITOGLVOAWY 51, Sy, . . .. OewpoipE, xwpig PAEPN Tng yevikdTnTOg, OTL KGOE
St éxeL akplPadg r otoryela kol pedetdyle ovtr) TNV mepintwot). To mpofAnpa Ilpoomélacng

Alotag eivon 1 eldikr) mepintwon omov r = 1.

JUYKPLVOUHE TOV AOYO OVTAYWVLIOTIKOTITAG TOV AHECHV aAYyopiOuwV pog yio To mtpofAr)-
po tng Kadvyng Zuvorov Eldyiotov ABpoiopatog pe dvo Stapopeticovs PéAtioteg AO-
oeLg, oL omoieg divovtal ad adyopibpovg ov yvwpilovv £k TV TPOTEPWV TNV crkoAovBic
51,52, ... xau v e€umnpetodv BédTiota. O mpwtog alydpiBpog, Tov omoio ovopdlovpe
otaniké PBéATioto alyoplOpo, voloyilel tnv PéATioTn Abon dedopévou OTL dratnpel pi-
a povo petébeon t*. O devtepog alyodpibpog, tov omoio ovopdlovpe Svvapikd PEATIOTO
alyopiBpo, vtoroyilel tnv BéATioTn Abon éxovtag Tn SuvaTdTnTa Vo aAA& el TNV peTdBOe-
o1 Tov peTald TV otadiwv. OvolaoTikd, 0 duvaptkog PéATIoTOg alyopLBpog vitodoyilel
v BéATIoTN akovAovbia petabécewy 7Ty, 7Ty, . . . yio TV eELNPETNOT) TV LITOGLVOAGDVY
51,52, . ... Eivan ebxolo va amodei&el kavelg OTL LITEAPYOLV GTLYHLOTLTTO TOL TPOPANHATOG,
yla T ool 0 BEATIOTOG Suvarkog ahyoplOpog popel va e€vmnpetroel Tnv akolovdia

TWV LITOGLVOAWV 51,57, . . . e KOOTOG 1 POPESG HIKPOTEPO AITO TOV GTATLKO PEATIOTO OA-
Yyop16po.

Oco apopd v mepintworn tov BEATIOTOL 6TATIKOD adyopiBpov, apyikd mapovoidlovpe
éva kT gpérypa ico pe (r + 1) (1 — 547) yio Tov A6Y0 avTayovioTikd T TG 07T0L0vdHTo-
T€ VTETEPPLVIGTLKOD GPEGOL XAYOPIOHOV, XPIGLLOTOLOVTOG TNV TEXVLKT] TOU YTOAOYLGHOD
Méoov Opov Avtimddwv. IIpo@avdg avtd To KAT® PP&ypa LoXVEL KaL it TNV TePinTw-
o tov duvaypkot BEATIoTOL ahyopiBpov. Xtn cvvéyela, eEeTAlOVHE APKETEG PUGLOAOYLKEG
YEVIKEVGELG TTOJOTIKAOV Gpecv alyopibuwv tov tpoPAnpartog IIpoomélaong Alotog kot
atodeLKVOOULE OTL JeV KATAPEPVOLV VO TTETOXOVV KAAO AOYO XVTXYWOVIGTIKOTNTOG OKOOL
KoL o€ TOAD OTAQ GTLYHLOTLTIO, OTTOL T LITOGUVOAX TTepthapPfdvovy povo dvo cTolyeia
(r = 2). To yeyovdg avtd pag odnyel v oTpapolpe G L EVTEAMG JLOUPOPETLKT] TTPO-
o€yylon yio Tov 6XedLaopo evOg amrodoTIkob Apecov aAyopiBpov ko vor eKpeTAAAELTOVNE
TeXVIKEG TTOL Xprjopomotobvtal evpvutata ot Apeon Mabnon. To amotéleopa avThg TG
TpooTaOeLlG ELvaL 1) KATAGKELT) TOL APECOV VTETEPULVIOTLKOV ahyoplBpov Lazy Rounding
pe Adyo avtaywviotikotntag 5t + 2, o omoiog Paciletal ot MéBodo Evnpépwong IToA-
Aamhaoiootikdv Bapov. H cuvelopopd pog Baciletol 6To OTL KATAPEPVOUIE VO HETOTPE-

Yovpe v mbavotikn Abon tng MeBodov Evnpépwong IloAamhaciaotikdv Bapdv oe pia



X

VTETEPULVLOTLKT] ADGT) XAVOVTOG HOVO Evay TTapdyovta ¥ oto kootog [IpdcPacng oe oyxéon
pe Tnv mbavotikn Avor. Emmhéov, amodetcvoovtag t8LOTnTeg 1oL GLVIEOUV TIG KATOUVOUEG
mBavotntag tng MeBodov Evnpépwong MoAamiaoiaotikdv Bapodv pe to k6otog IIpo-
ofaong mov TAnpovel n péBodog, katapépvoupe vo ppAEove KoL To k66TOg MeTakivnong

tov Lazy Rounding ko va emitdyovpe tov emtupntd AOyo avtoyovioTIKOTNTOS.

‘Eva perovéxtnpa tov Lazy Rounding eivan 611 éxel xpovo extédeong (n!), o omotog eivar ex-
BeTIkOGg wg Tpog TNV eicodo Tov TpoPAnpatog Kalvyng Zvvorov EAdyiotov ABpoicpatog.
To yeyovog avtd pHag 0dMynNoe 6TO VO PHEAETICOVHE TLO ATTODOTIKOVG GE XPOVO EKTEAECTG
alyopiBpovg kat vo eEeTGOLE TOV AOYO OVTOYWVIGTIKOTNTOG TOVG. X€ XUTH TNV KoTED-
Buvon, oxediaoape Tov alyopibpo Move-All-Equally , o omoiog oe k&Be otaddio t petoivel
6\a Ta oToL el TOL LITOGLVOAOL Sy pe TNV 8L TaxbTNTO TPOG TNV AP)T] TNG HeTAOBETNG
HEXPL TO TTPWOTO ad avtd va Ppebel otnv mpidn Béomn g petdbeong. Miax evdiopépovoa
Wiotnta tov Move-All-Equally etvon 6tL dev éxet pvipn, dnAadr o Tpomog mov e€umnpetel
70 KOs LITOoVLVOAO dev eEapTATAL ATTO T TWG EEVTINPETNOE TA TPOTYOVHEVA VITOGOVOALL.
Aeixvouvpe 60TL 0 Move-All-Equally éxel k&tow @pdypa otov AOY0 avToywvIoTIKOTNTAG LGO
pe Q(r2) ko Gvo epéypa 6Tov Aoyo avtayovietikdtnrag oo pe 20(V10871087) ¢ Gyean
pe Tov otatiko PéATioTo adlyopiBpo. H eltkaoio pog eivat 0TL ) avaALoT) Yot TO AV @paypo

propet va PeAtiodel étol wote va ao@evyBel 1 eEdptnon amd to n.

Ooo agpopd tov duvopikd PéATioto alyopiBpo, e€etdlovpe Tnv amodotikdtnToe Tov Move-
All-Equally. Onwg eivan avopevopevo, e autr) v mepintwon eivat oAb o ddokoro va
TeTOYOVHE oTOSOTIKEG ADGELG KOl UTO OUTOTLTTOVETOL GTO KATW PPAYHA YLa TOV AOYO -
viayovieTikotnTag Tov Move-All-Equally, to omoio eivou ico pe Q(ry/n). Avtd 1o kdtw
QPAYHO ATTOLTEL TNV KATATKELY) £VOG TTEPITAOKOV GTLYHLOTOTOV, KATA TO 070l0 eEXTPai-
Cetau 611 0 Move-All-Equally mAnpavet yio k&e vtochvolo 74/1 gopég mapaméve ortd
Tov duvoikd BéATioto adyoplOpo. Oco apopd To Avw PPEYHO 6TOV AOYO AVTOYW®VIOTIKO-
rtoag tov Move-All-Equally, amodeikviouvpe xpnoipomotwvrag tnv MéBodo tng Avvntikig
Sovaptnong ot eivon ico pe O(r3/2y/n), Snhadh améxel povo katd éva Tap&yovTta /7

o TO KATW QPAYHO.
Avoxoatavopur] K-Yrnpeoiov

310 TéTapTOo KePAAXLO peAeTOpE TO TTPOPANp Avakatavopng K-Ymnpeoidv étav o petpt-
KOG XWpog eivor 1 evbeiat TOV TPAYHATIKOV aplOpmv. e avtd To TPOPANHA, 0 AHECOG
alyopiBpog kabopilel Tig Béoelg Twv K vmnpeoiodv mave otnyv evbeio ypoppn yio évo o0-
volo T otadiowv. H emhoyn twv Bécewv yiveton pe faon tig eEaptdpeveg amd 1o k&be
otadio Bécelg evog cuvOLoL 1 TEAATOV. Bewpolpe OTL kK&Oe TeEAXTNG elva cLVOEdEEVOG
oTNV TANCLECTEPT) 0 ALTOV LTI Pecio e K&Be 6TAdL0 KA OL LT PETieg PTOPODV VO HETO-
KvnBovv atd to évar 6TASL0 6TO AANO, Yo vor eELTINPETHGOLY KAADTEPX TIG SLOUPOPETLKEG

tonofecieg Twv melatwv. O 6Td)0g eival va eAayioTomonfel 1 O TACT) TOV TEAXATOV



artd TNV TANCLESTEPT) LI pecia TOUG (kK6GTOG XHVOEOTC) UV TO GLVOALKO KOOTOG HETOKI-
VNoNG TV LINPecLOV (k06oTog Metakivnong) yu OAa Tt otédie. To TpdPAnpa Avorkarto-
vopng K- Ynnpeowov mapovoidotnke yiax mpotn gopd amd tovg de Keijzer ko Wojtczak

[35], ot omoiot peAétnoav Kupiwg TNV d1kT mepintwon g piag vrnpeoiog (K = 1).

To mtpdTO pog amotélespa yioe To TPOPANpH Avokatavopng -Ynpeoswov eivot éva KAt
QPAYHO LoO e 0TOV AOYO AVTAYWVIGTIKOTTAG TV VIETEPHLVIGTIKOV eV alyopiBpwv.
T va arodet€ovpie To KATW PPAYHA, delVOUE OTL OTOLOGONTOTE APEGOS VIETEPHLVIOTIKOG
oAyopBpog yia to TpoPAnpa Avakatavopung K-Yanpeoiov pe AOyo aviaywvioTikOTNTog
C WItOpEL VoL HETATPOTTEL GE APECO VTETEPULVIOTIKO pE AOYO AVTOYWOVLIOTIKOTNTOG € YLO TO
npoPAnpa K-E€umnpetntadv. Avtd onpaivel 0tL av vmfpxe alyopiBpog pe Adyo avtoyw-
vieTikoTnTog pLikpotepo amtd K yia 1o mpoPAnpa Avokatavoung K-Yanpeowov, tote Oa
HITOPOVCE VO TOV HETATPEPOULE GE VALY GHEGO VTETEPULVIOTLKO aAyOpLOpo yia to mtpo-
PAnpo K-E€umnpetntadv pe Aoyo pikpotepo amd K. Avtod odnyel oe &tomo, apov eivoart 1101
YVOGTO 0TL dev Popel vor LITaPEeL ApECOG VIETEPULVIOTIKOG OAYOPLOpOG e AOYO avTaryw-

vioTikoTnTag pLkpotepo artd Ky to mpoPAnpa twv K-E€umnpetntodv [55].

I'vopilovtag ot dev Popoovpe va aro@OYoLpe TNV eEAPTNOT TOL AOYOU VTAYWVLIGTIKO-
TG atd Tov apldpo twv dbésipwv vrnpesidv (K), oTpé@oupe TNV TPOGoXTH HOG GTOV
oxedlacpo evog alyopiBpou pe AOyo avToywvIeTIKOTNTAC, 0 0TT0l0G dev e€apTdTal outd ToV
aplOpd twv meAatodV (11). AvTO TO KATOPEPVOLLE Yia TNV eLOLKY TTEPITTWOT], OTTOL £XOUE
axppog 2 Siabéoeg vinpeoteg (K = 2). To devtepo amotéheopa pog apopd vt TNV
TEPLTTWOOT) KOl €LvaLL €VOIG VIETEPULVIOTIKOG Gplec0g alyopLOpog pe AOYyo avTay®VIeTIKOTN-
tag oo pe 63. To TpoTo Pripa Tov alyopiBpov pog eival ennpeacpévo ad Tov alyoplOpo
Double Coverage [20], o omoiog Abvel éATiota To TpoPAnpa twv K-E€umnpetntadv otnv
evBelor ypapprn. e auto to Pripa e€acparilovpe OtL kol Yrnpeoia O Pploketon oe
K&Oe 6Tddl0 KOVTA 0TO GUVOAO TV eAat®v. ['ae va Tpocdiopioel Tig TeAkég Bécelg Twv
VINPEGLOV, 0 aAYOPLOHOG pag TpaypatoTolel éva devtepo Pripa, oto omoio Aapfdvet viTo-
1 TOL KoL TO KOGTOG ZVVIECTG TWV TEAATMOV KOl HETOKLVEL AVAAOYWG TIG VTN PEGLEG OTLG

TeALKEG TOUG DETELS YLt TO CUYKEKPLUEVO OTALO.
Avvapikrn Xopobétnon Ynnpeoiov

OAoKANPOVOLE TNV PEAETT) PG TTAVR G apeca TpoPAnpata Avvapikig Xuvabpolong, -
Eetalovtag tnVv dpeon ekdoyn Tov mpoPAnpatog Avvapikng Xwpobétnong Ynnpeoiov. To
poPAnpa Avvopiknig Xwpobétnong Ynnpeoiov yevikedel To kKAaotko tpoPfAnua tpoPAn-
po Xwpobétnong Yanpeowov [44, 62] pe tnv évvola 0TL 0 PETPLKOG XWPOG HETOED peTAED
TV VITNPECLOV KoL TV TEAXATOV 0AAAeL o€ k&Be oTadlo Tov TpoPArpatog. O 6Td)X0G o€
ouTh TNV SUVapLKA XpovoeEapTopevn Topodlloyn xwpobétnong vinpeotov eivor 1 PeA-

TLOTOTTOLNGT) TOVL AVTIoTAOPIoPATOG HETAED TNG KAXCLKTG AVTLKEWHEVIKTG CLVAPTNONG KAl



pel

NG otabepotntag tng Avong. H khaowkn avtikelpevikr cuvaptnon mepthopfavel éva ko-
070G AVOLYHOTOG VTN PECLAG Kol Ve KOGTOG X0UVEECTC TOL TTEART GTNV KOVTLVOTEPT) TOV
vrnpecia. Oco apopd v otabepdTnTa TNG AVOTC, 1) HOVTEAOTTOLNGT) ETLITAEOV TTEPLACLYL-
Bavel éva k6oTog Evaldaync, To omolo yxpemvetot yio k&Be aldayr) ovvdeong evog et

oe v pecio peTo€ dV0 dLdox KOV oTASIWV.

To ntpoPAnpa Avvoyikng Xwpobétnong Yanpeoiowv peletnOnke apyikd amxd toug [37], o
omoiot oxediacav mbavotikd alyopbpo pe Adyo mpoocéyyiong ico pe O(lognT), dmov n
0 opOpog Twv meAatdv Kot T o aplBpog Twv otadiewv. 2T cuvéXELr, AUTO TO ATOTEAECHA
BeAtiwbnke dpoapatikd amd toug [5], ot omoiol oyediacav mbavotikd adyopiBpo pe Adyo
npocéyylong 14. e avtry v didaktopikn StatpiPr} mapovsldlovpe TNV TPHOTN CLGTN-
HOTLKY) HEAETT) OYETIKA He TNV Gpeotn ekdoxn Tov mpoPAnpatog Avvopikng Xwpobétnong
Yrnpeoidv, 6mov 1 daepopd oe oxéon pe TV pn dpeon ekdoxn tov tpofAnpartog eivat 6-
TL OL HETPLKOL XOPOL HETAED TEAATOV KAL DTINPECLOV WTOKOAADTTTOVTAL £Vag évag oe Kabe

othdio.

Ta tpodTa amoteAéopatd pog yio o tpofAnpa Avvapikng Xwpobétnong Yanpeoiov eivot
d00 KATW PPAYHATH GTOV AOYO AVTAYWVIGTIKOTNTAG TWV AHECHOV VIETEPULVIOTIKOV XAYO-
POV KL TV Gpecwv TOaVOTIKOV aAyopiBpwy. I TO KATW PPAYHX TOV VTETEPULVIGTL-
KOV 0AyopiBpwv kataokevdlovpe évo GTLYPLOTUTIO, GTO 0TT0L0 K&Oe APEGOG VIETEPULVLOTL-
KOG alyopLOpog elval avaykaopévog va TANpooeL peydho k6otog Evaliaync. Awadéyo-
VTG KATAAANAR TIG TTOPOHETPOVG TOV TTPOPATIHATOG, ATTOSELKVOOUHLE EVal KAT®W QPAYHO TNG
téEng Q)(m), dmov m eivon 0 aptBpdg TV LINPESLOV. Me TAPOHOLA KATAGKELT KOL XPNOL-
pomoldvTag Ty Apyr Tov Yao, autodetkvioupe éva k&tw gpdrypa tng tdEng Tov Q(log m)

yto Toug mlavoTikovg apesouvg alyopibpoug.

Ooo apopd to avw Ppdypa yio to TpoPfAnpa Avvoyukrg Xwpobétnong Yanpeoidv, oye-
dualovpe évav ahyopiBpo, o omoiog paypartomotel dvo Pripata oe k&be oTAdL0. 2TO TPOTO
Bripo vitodoyilet pi kAaopariky Avon Aovovtog TNV ypapukh yaddpwon Tov TpofApotog
Avvayukng Xwpobétnong Yrnpeoiwv, n omoia tepthapfavel emmpocBeta kot évav 0po ka-
VOVLKOTIOLN oG o TNV avTLkelpevikn ouvaptnot. O 6pog avtog eEaopaiiler 6TL dvo dradoyt-
Kég Aboelg dev Ba améyouvv ToAD peta€d Toug kat étol To kK6oTog Evaldayng Oo mapopével
ppaypévo ard o O(log m) oe oxéon pe Tnv Pédtiotn Abon. Eto dedtepo Pripa petatpémon-
He TNV KAoopaTiky Aot o€ pio aképate Avon yu to tpofAnpo Avvaypukng Xwpobétnong
Ynnpeowodv, emPapvvovrag emmiéov pe évav abpototicd o6po O(logn). Zvvohikd, metv-
XCLLVOUE TNV KATOoKELT] £VOG TBaVOTLKOD aAyopiBpov pe AOYo avToy®VIGTIKOTNTOG (6O

pe O(log m + log n) yua to mpdPAnpa Avvapikric Xeopobétnong Yanpeoiodv.
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1 Introduction

Aggregation is the task of combining a set of objects in such a way that we can refer to
them collectively as an aggregated object. The aggregated object is the result of an Aggre-
gate Function and serves as the representative of the objects with respect to the Aggregate
Function. Common aggregate functions include the Average, Sum and the Minimum. If we
further hypothesize that the task of aggregation is performed in stages and at each stage
we have to aggregate a different set of objects, then we have the concept of Dynamic Ag-
gregation. Dynamic Aggregation problems arise in many applications such as epidemiology,
vaccination planning, anti-virus design, management of human resources, urban planning,

advertising and search engines.

A very topical example from epidemiology, which reveals the significance of Dynamic Ag-
gregation, is monitoring the spread of a pandemic such as COVID-19 in a given population.
The patterns of spread and the measures taken to prevent it vary dynamically across dif-
ferent populations and have temporal aspects depending on the weather, the mobility of
people, their culture and many other factors. Therefore, it is necessary to conduct many
aggregation tasks such as recognizing groups of people susceptible to conduct the virus,
finding groups of people which could probably have a severe outcome due to the virus and
many others. This groups may change abruptly due to new scientific data, mutations of the
virus, weather conditions or behavioral transitions of the people. Another example from ur-
ban planning is the problem of aggregating (or clustering) in urban traffic networks. Traffic
is a strongly time-variant process that needs to be studied in the spatiotemporal dimen-
sion in order to better understand and reveal the hidden information during the process of

congestion formation and dissolution.

Advertising companies can also benefit from Dynamic Aggregation by recommending al-
ternatives to users dynamically based on the users’ temporal preferences. In a realistic
scenario, users’ preferences gradually change and the suggestions should adjust to the new
information in order to increase the effectiveness of the recommendation. In this example,
there is a limited number of alternatives, which are represented as an ordered list; alterna-
tives which are closer to the front of the list are the most popular alternatives. A closely
related instance of Dynamic Aggregation is that of a web search engine, such as Google.
Each query asked might have many different meanings depending on the user. For example,

the query “Python” might refer to an animal, a programming language or a movie. Given



the pages related to “Python”, a goal of the search engine algorithm is to rank them such

that for each user, the pages of interest appear as high as possible in the ranking.

The aforementioned practical examples are instances of Dynamic Aggregation problems,
in which the problem input is usually not known at the start and is revealed piece-by-
piece. Algorithms that address such kind of problems are called online algorithms. In this
thesis, we study the design of online algorithms for Dynamic Aggregation problems. An
online algorithm can process its input piece-by-piece in the order that the input is fed to the
algorithm, without having the entire input available from the start. Thus, online algorithms
operate in a serial fashion and make decisions for a piece of the input before the next piece
of the input arrives. We evaluate the performance of online algorithms by using the notion
of the competitive ratio, which is the worst case ratio between the solution cost of an online
algorithm and the solution cost of an optimal offline algorithm that knows the entire input
(notions regarding online algorithms are defined in Section 1.3). The concept of online
algorithms was introduced to capture more realistic scenarios where the whole data are not

available before the execution of the algorithm, which is the case for offline algorithms.

Our main motivation is to design online algorithms for Dynamic Aggregation problems,
which are competitive against the optimal offline solution. We study three remarkable on-
line Dynamic Aggregation problems, namely the Online Dynamic Facility Location prob-
lem [37], the Online K-Facility Reallocation problem [35] and the Online Min-Sum Set Cover
problem [18]. For these problems, we also investigate the limitations of online solutions
by designing instances, where any online algorithm is forced to take suboptimal decisions
due to lack of information about future requests. Our contribution is twofold in the sense
that we improve the performance of the best known online algorithm and we prove lower
bounds on the performance of any online algorithm for each problem. In order to achieve
these results, we carefully craft techniques from the fields of competitive analysis, convex

optimization and online learning and show interesting connections between these fields.

The introduction is structured as follows. In Section 1.1, we survey the results regarding Dy-
namic Aggregation problems and explore related areas. Then, in Section 1.2, we introduce
the specific online Dynamic Aggregation problems studied in this thesis and present our
results. Section 1.2 is subdivived into three subsections corresponding to the three online
Dynamic Problems that we study. Finally, in Section 1.3, we discuss some basic concepts

and notions regarding the scientific fields related to our work.

1.1 Dynamic Aggregation Problems

Aggregation problems have been extensively studied in the literature. The input to an Ag-
gregation problem can be a set, a multiset, or a list from some input domain I and the re-

spective aggregate function outputs an element of an output domain O. Typical examples



of aggregate functions include:

1. The Sum function, which is the addition of elements of mathematical objects such as

numbers, functions, arrays, matrices or even polynomials.

2. The Average function, which is the sum of the numbers divided by how many num-

bers are being averaged.

3. The Count function, which determines the number of elements of a finite set of ob-

jects.

4. The Minimum and Maximum functions, which calculate the smallest and the largest
value of the function respectively. The values are either calculated within a given
range resulting to a local extreme, or on the entire domain resulting to a global ex-

treme.

Dynamic Aggregation problems introduce an additional temporal dimension in Aggrega-
tion problems by letting the problems process in stages (stages can also be referred as rounds
or timesteps). Thus, an algorithm for a Dynamic Aggregation problem solves a possible
different instance of an Aggregation problem at each stage. This fact has a major impact
on the objective function of a Dynamic Aggregation problem, which is extended to favor
solutions that do not change dramatically between timesteps. The extension involves an
additional fixed amount of a switching cost (or moving cost), which is incurred every time
a solution between two consecutive time steps changes. Consequently, algorithms for Dy-
namic Aggregation problems aim at discovering temporal evolution of elements that is not

too sensitive to transient changes.

Towards a more formal generic definition of Dynamic Aggregation problems, let T' be the
number of stages andlet f : I — O be an aggregate functionand g : I " O'bea switching
cost function. At each stage t,1 < t < T, there is a request 7 having the form of a set,
multiset, vector, matrix or list, which the algorithm has to serve. The objective function of

the problem has the form:

T T

Y f(Soly) + Y g(Soly, Soly 1)

t=1 t=1

where the first term is the cost incurred by f at stage t due to to the solution Sol; produced
by the algorithm to serve the request r; at stage ¢, and the second term is the switching cost

incurred by ¢ due to the distance between two consecutive solutions of the algorithm.

The family of the Dynamic Aggregation problems is closely related to another famous family
of problems called Metrical Task Systems (MTS). In MTS, we are given a set of N states and
a metric function d specifying the cost of moving between the states. At each step, a task

arrives; the cost of serving the task at state i is ¢;. An algorithm has to choose a state to



process the task. If it switches from state i to state j and processes the task there, it incurs
a cost d (i, ]) + Cj. Given an initial state and a sequence of requests, the goal is to process

all tasks at minimum cost.

The most notable difference between Metrical Task Systems and Dynamic Aggregation
problems is that MTS are inherently online, whereas Dynamic Aggregation problems are
defined in both the offline and the online setting. Moreover, in Dynamic Aggregation prob-
lems the cost of serving a request is an aggregate function, while MTS allows more general
functions to be considered. Additionally, the switching cost functions in Dynamic Aggre-
gation problems usually measure the distance between two consecutive solutions provided
by the algorithm as opposed to the switching cost of MTS, which measures the distance
between two states (or configurations) of the algorithm. Despite the aforementioned minor
differences, the cost of serving a task in MTS can be an aggregate cost function as well as
to different states in MTS may correspond to two different solutions, thus almost all online

problems considered in this thesis belong to both families.

The list update problem

A typical Dynamic Aggregation problem is the list update problem, where we are given
a set of 7 items in a list and the cost of accessing an item is proportional to its distance
from the first item in the list. An algorithm has to reorder the list by transposing elements
so that the total cost of accesses is minimized. The reordering actions include two types

transpositions:

« A free transposition of the accessed item.

« A paid transposition of unit cost for exchanging two adjacent items.
The objective of the list update problem can be written in the form

T T

Y f(Soly) + Y g(Soly, Sol; 1)

t=1 t=1

by plugin in an aggregate function f that counts the position of the accessed item in the
solution (list) at stage ¢t and by counting paid transpositions between any two consecutive
solutions with the Kendall tau distance, which counts the number of inversions between the
two solutions. The list update problems is the special case of the online Min-Sum Set Cover,
where the requests have the form of sets of items S; and the access cost is the positions of

the first element of S; in the list. Moreover, all transpositions in online MSSC are paid.

The list update problem is one of the most classic and famous online problems [23], which

has been studied comprehensively and extensively in the literature. The deterministic com-

2

T and there are several deterministic

petitive ratio of the list update problem is at least 2 —



algorithms achieving almost matching upper bounds. The most famous of them is the sim-
ple and intuitive Move-to-Front (MTF) algorithm, which moves the (unique) element of S;
to the first position of the permutation. MTF is known to be 2-competitive [66] and several
other 2-competitive algorithms can be found in [1, 38]. Another intuitive algorithm for
the list update problem is the Frequency Count (FC) algorithm, which orders the elements
in decreasing order according to their frequencies. Despite the fact that the FC algorithm
appears to be a suitable algorithm for the problem, it is surprising that it’s competitive ratio
is Q)(n). For randomized algorithms, the best known competitive ratio is 1.6 [2] and the
best lower bound is 1.50115 [3].

Interestingly, all prior work on the list update problem does not seem to provide us with
the right tools for obtaining an algorithm for online Min-Sum Set Cover, which we study
in this thesis. Almost all natural generalizations of successful list update algorithms (e.g.,
Move-to-Front, Frequency Count) end up with a competitive ratio way far from the desired
bound. In fact, even for sets with two elements, most of them have a competitive ratio

depending on 7, such as (/1) or even Q)(n).

The K-server problem

Another important and well-studied online optimization problem which falls into the cate-
gory of Dynamic Aggregation problems is the K-server problem. In the K-server problem,
we have K mobile servers located at some points of a metric space. The input is a request
sequence ¥ = (r1,...r7), where 7} is the point requested at time  in an online fashion. The

goal is to minimize the total distance traveled by the servers for serving r:

T
2 d(St, St—l)
t=1

where S; is the configuration of the algorithm at time ¢, which describes the positions of the
K servers in the metric space at stage T. Observe that the K-server problem can be described
as a Dynamic Aggregation problem, where the aggregated cost at stage ¢ is the distance
traveled by the server that serves r; and the switching cost is the sum of all distances traveled

by the other servers between two stages.

The K-server problem was introduced by Manasse et al. [60] as a far-reaching general-
ization of various online problems, the most notable of which is the paging problem. The
paging problem is the special case of the k-server problem in a uniform metric, i.e. when
all distances between distinct points are 1. Here, the K-servers correspond to the K slots
in the cache, and the pages correspond to the points. Evicting a page from the cache and
bringing a new one maps to moving a server between the corresponding points at a cost of

1. Manasse et al. [60] showed that the competitive ratio of deterministic algorithms is at



least k, even if the metric space contains only 7 = K + 1 points. For the paging problem,

Sleator and Tarjan [66] showed that many natural algorithms are K-competitive.

The initial research for the K-server problem focused on special metrics like weighted stars,
lines and trees, and for many cases tight K-competitive algorithms were obtained [30, 31] .
For general metric spaces, Fiat et al. [41] obtained the first f(k)-competitive algorithm, with
competitive ratio O((k!)3). Several improvements followed (but with ratio still exponential
in K) until Koutsoupias and Papadimitriou [55] showed that the Work Function Algorithm
(WFA) is (2K — 1)-competitive for every metric space. This impressive result remains up
to date the best known upper bound on the deterministic competitive ratio of the K-server

problem.

1.2 Considered Problems and Results

In this section, we present the online Dynamic Aggregation problems considered in this
thesis, namely the Online Min-Sum Set Cover problem, the Online 2-Facility Reallocation
Problem and the Online Dynamic Facility Location problem. The section is divided into
three subsections, one for each considered online problem. We start with the Online Min-

Sum Set Cover problem.

1.2.1 The Online Min-Sum Set Cover Problem

A typical representative of the class of online Dynamic Aggregation problems is the online
Min-Sum Set Cover (MSSC). In MSSC, we are given a universe U on 1 elements and at each
stage t, a subset S; C U arrives in an online fashion. The goal is to construct online T
permutations 71y, ..., 7t of elements of U so as to provide the best covering time for the
subsets of S. The covering time of S; is measured with the aggregate function 71;(S;) and
is the position of the first element of S; in 714, ie., 71:(S;) = min{i|m (i) € S;}. The
switching cost between two consecutive solutions is the number of inversions between 77
and 77;,1, known as the Kendall tau distance dr(7t, 71;11). The goal is to minimize the

total cost:
T

Y (7e(Se) + dcr (71, mi41)).
t=1

The motivating example for online MMSC is that of a web search engine, where each query
asked might have many different meanings depending on the user and the goal of the search
engine algorithm is to rank them such that for each user, the pages of interest appear as
high as possible in the ranking. Another example news streams include articles covering
different reader interests each. We want to rank the articles so that every reader finds an
article of interest as high as possible. The MSSC problem serves as a theoretical model for

practical problems of this type, where we want to aggregate disjunctive binary preferences



(expressed by the input sets) into a total order. E.g., for a news stream, the universe U
corresponds to the available articles and the sets S; correspond to different user types. The
cost of a ranking (i.e., permutation on U) for a user type is the location of the first article of
interest. Clearly, in such applications, users arrive online and the algorithm might need to

re-rank the stream (i.e., change the permutation) based on user preferences.

The online MSSC generalizes the famous list update problem, where the sets have cardinal-
ity 1 (|S¢| = 1). However, all natural generalizations of nearly optimal algorithms for the
list update problem fail to achieve a competitive ratio better than ()(n), even if |S;| = 2
for all t. This suggests that online MSSC has a distinctive combinatorial structure, very dif-
ferent from that of list update, whose algorithmic understanding calls for significant new
insights. The main reason has to do with the disjunctive nature of the definition of the
access cost 77(S¢). In list update, the optimal solution is bound to serve a request S; by
its unique element. The only question is how fast an online algorithm should upgrade it
(and the answer is “as fast as possible”). In MSSC, the hard (and crucial) part behind the
design of any competitive algorithm is how to ensure that the algorithm learns fast enough
about the element e; used by the optimal solution to serve each request S;. This is evident
in the highly adaptive nature of the deceptively simple greedy algorithm of [39] and in the

adversarial request sequences for generalizations of Move-to-Front.

Related Work

The Min-Sum Set Cover problem has been mainly studied in the offline non dynamic ver-
sion, where one seeks to find the best permutation 7t that covers all subsets {S1,..., S}
of § with minimum covering time. Since, the solution remains the same for all stages, there
is no switching cost and therefore the goal is simply to minimize }; 77(S;). This variant of
the MSSC problem generalizes various NP-hard problems such as Min-Sum Vertex Cover
and Min-Sum Coloring and it is well-studied. Feige, Lovasz and Tetali [39] showed that the
greedy algorithm, which picks in each position the element that covers the most uncovered
sets, is a 4-approximation and that no (4 — €)-approximation is possible, unless P = NP.

Also, in [19] it was shown that greedy is no better than 4-approximation.

Multiple Intents re-ranking is an interesting generalization of MSSC, where for each set Sy,
there is a covering requirement K(S;), and the cost of covering a set S is the position of the
K(S¢)-th element of S; in 77. The DMSSC problem is the special case where K(S;) = 1 for
all sets S;. Another notable special case is the Min-Latency Set Cover problem, which cor-
responds to the other extreme case where K(S;) = |S¢| [49]. Multiple Intents Re-ranking
was first studied by Azar et. al. [11], who presented a O(log r)-approximation; later O(1)-
approximation algorithms were obtained [17, 65, 53]. Further generalizations have been

considered, such as the Submodular Ranking problem, studied by Azar and Gamzu [10],
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which generalizes both Set Cover and MSSC, and the Min-Latency Submodular Cover, stud-
ied by Im et.al [52].

It is easy to see that the online version of MSSC problem is a MTS, where the states corre-
spond to permutations, thus N = n!, and the distance between two states is their Kendall
tau distance. For a request set Sy, the request is a vector specifying the cost 77(S;) for every
permutation 77. Although there has been a lot of work on understanding the structure of
MTS problems [24, 34, 25, 55, 64, 63, 8, 14, 15], there is not a good grasp on how the structure
relates to the hardness of MTS problems. Getting a better understanding on this area is a

long-term goal, since it would lead to a systematic framework for solving online problems.

The online MSSC has an interesting connection with the prediction from expert advice prob-
lem. In this problem, there are N experts and expert 7 incurs a cost Cf in each step. A learn-
ing algorithm decides which expert i; to follow (before the cost vector ¢! is revealed) and
incurs a cost of Cft. The landmark technique for solving this problem is the multiplicative
weights update (MWU - ak.a. Hedge) algorithm. For an in-depth treatment of MWU, we
refer to [58, 46, 9].

In the classic online learning setting, there is no cost for moving probability mass between
experts. However, in a breakthrough result, Blum and Burch [22] showed that MW U is (1 +
€)-competitive against the best expert, even if there is a cost D for moving probability mass
between experts. By adapting this result to MSSC (by viewing permutations as experts),
we can get an (inefficient) randomized algorithm with competitive ratio (1 + €), for any
constant € € (0,1/4).

Results

We consider the r-uniform case, where all request sets have the same size |S;| = r and

initiate a systematic study on online MSSC.

The first of our main results is a tight bound on the deterministic competitive ratio of On-
line MSSC. This is achieved by showing first a lower bound of (r + 1)(1 — ;%) on the
competitive ratio of deterministic algorithms. Note that for » = 1, this bound evaluates to
2 — %H, which is exactly the best known lower bound for the list update problem. Then,
we complement this result by providing a matching (up to constant factors) upper bound of
(57 4 2) on the competitive ratio. Our algorithm uses a rounding scheme, to derandomize

the multiplicative weights update (MWU) algorithm.

We then turn our attention to computational efficient algorithms and we propose a mem-
oryless algorithm called Move-All-Equally (MAE). We show that MAE has a lower bound
of O(r?) and an upper bound of 20(v1081987) op jts competitive ratio. and we conjecture

that an O(r) guarantee cannot be achieved by memoryless algorithms.
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Finally, we study the much more general dynamic version of online MSSC, where the al-
gorithm is compared against an optimal solution allowed to change permutations over
time. We investigate the performance of the MAE algorithm and obtain an upper bound of
o(r¥/ 2,/n) on its competitive ratio. Although this guarantee is not very strong, we show
that, rather surprisingly, it is essentially tight and no better guarantees can be shown for
this algorithm by showing a lower bound of Q(7+/n).

1.2.2 Online K-Facility Reallocation Problem

In the K-Facility Reallocation problem, K facilities are initially lying at points (x?, cee, x%)
of a metric space M. There are n clients, also residing on the same metric space, that use
the facilities for T consecutive days. Each day, every client connects to the facility closest to
their location and incurs a connection cost equal to this distance. Since the clients are free to
move around on M from day to day, the algorithm can also move the facilities accordingly,
to keep the connection cost low. Naturally, moving a facility is not free, but costs a price
equal to the distance traversed. Our goal is to specify the exact positions of the facilities
at each day so that the total connection cost plus the total moving cost over all T days is

minimized:

T

K n
-1 .
Cost(x) = Y | k; |xf — x| + ;12}(121( |t — x|

where af is the position of client i at stage t.

It is easy to see that the K-Facility Reallocation problem is a Dynamic Aggregation problem,
where the aggregate function is the sum of distances of all clients to the facilities (connection
cost) and the switching cost function is the distance travelled by the facilities at each stage.
The Facility Reallocation problem was introduced by [35] and studied in the case the metric
space is the real line. The motivating example considered in [35] for K = 1 consists of a
political party moving along the spectrum from left to right wing, in an attempt to please
more voters. Extending to K, this setting applies to clustering and advertising: following
[57] from Yahoo Labs, companies often have a limited number of slots to suggest alternatives
to users (such as ads or movie suggestions), given previously collected data. The users’
preferences gradually change however and the limited number of suggestions need to stay

enticing, without appearing to have abruptly adjusted to the new information.

For another intuitive example from the operations research field, consider a beach, where
two ice cream vendors are to be located for the next three days. The beach is visited by
ten customers for the next three days and these customers may change their location on
the beach. Naturally, each customer wants to have an ice cream vendor close to him in

order to buy ice cream. The goal is to minimize the total distance traveled by the customers
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FIGURE 1.1: The picture on the left is an instance of 2-Facility Reallocation
problem on the line. The initial ice cream vendor locations are illustrated in
day 0 and the dots indicate the customer locations. The right picture shows a

good solution for this instance, namely the facility locations at each day.

plus the total distance traveled by the ice cream vendors. Figure 1.1 depicts the instance on
the left and the solution for this instance on the right respectively. The black dots are the

customers, which appear in different locations throughout the days.

The previous example is an instance of the K-Facility Reallocation problem, where the num-
ber of mobile facilities is two (the ice cream vendors), the number of stages is three (the
days) and the number of agents is 10 (the customers). Moreover, the metric space is the real
line (the beach) and the variant is the offline if we know all customer locations throughout
the days at the beginning of the first day. The problem is online if we learn the customer
positions of the next day only after we have served (located the ice cream vendors) the

customers of the current day.

Related Work

The K-Facility Reallocation problem was first studied by [35], who designed optimal offline
and online algorithms for the case of K = 1 and presented a dynamic programming algo-
rithm for K > 1 facilities with running time exponential in K. The result for general K in
the offline variant was improved by [45], who presented an optimal algorithm with run-
ning time polynomial in the combinatorial parameters of K-Facility Reallocation (i.e., n, T
and K). This substantially improves on the complexity of the algorithm, presented in [35],
that is exponential in K. Their algorithm solves a Linear Programming relaxation and then
rounds the fractional solution to determine the positions of the facilities. The main technical
contribution is showing that a simple rounding scheme yields an integral solution that has

the exact same cost as the fractional one.
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The K-Facility Reallocation problem can be seen as multi-winner election (or committee
selection) problem in utilitarian voting with single peaked preferences, especially under
the Chamberlin-Courant rule. Two papers related to such problems are [7] and [61]. These
deal with selecting the best among many possible outcomes in order to maximize the agents’
utility. However, our setting is dynamic in the sense that the agents preferences change
between stages, thus the goal is to minimize a social cost function over T stages and we
also have to take into account that the solution provided at each stage should be close to

the solution of the previous stage.

In [47], a mobile facility location problem was introduced, which can be seen as a one
stage version of our problem. They showed that even this version of the problem is NP-
hard in general metric spaces using an approximation preserving reduction from K-median

problem.

Online facility location problems and variants have been extensively studied in the litera-
ture, see [44] for a survey. In [36], an online model where facilities can be moved with zero
cost was studied. Despite achieving a constant competitive ratio, this model has the draw-
back that a misplaced facility can be moved for free to an optimal point without causing a
penalty for the initial error. To remove this obstacle, [40] proposed a model, where moving

a facility incurs a cost proportional to the distance it has moved.

The online variant of the K-Facility Reallocation problem is closely related to the K-server
problem, which is one of the most natural online problems. [54] showed a (2K — 1)-
competitive algorithm for the K-server problem for every metric space, which is also K-
competitive, in case the metric is the real line [21]. Other variants of the K-server problem
include the (H, K)-server problem [16, 13], the Infinite server problem [33] and the K-taxi
problem[41, 32].

Regarding online clustering, [28] proposed an approach, which stems from Hierarchical Ag-
glomerative Clustering. A set of K clusters is maintained while data points are presented
in online fashion. Clusters can be merged, making space for an extra cluster to be used
for incoming data. Clusters cannot be split however: this is both computationally expen-
sive and would change the classification of preexisting data points, which is undesirable
in hierarchical clustering. Also, the number of clusters is fixed from the start at K and it
is impossible to ‘buy’ more of them. The fast increasing volume of available data and the
requirement for responsive services has led to yet another approach by [57], namely on-
line clustering algorithms balancing the quality of the clusters with their rate of change
over time. The model is semi-online, meaning there is some information such as the length
of the stream and the total clustering cost of optimal K-means. The algorithm proposed
achieves a polylog competitive ratio using a polylogarithmicaly larger fraction of clusters.

The authors also present a similar algorithm for the purely online case.
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Results

Our first result is a lower bound of K on the deterministic competitive ratio for the on-
line K-Facility Reallocation problem. In order to prove this lower bound, we show that no
deterministic algorithm can achieve a better competitive ratio for the online K-Facility Re-
allocation problem that is better than the competitive ratio of the K-server problem. Since
we know that the K-server problem has a lower bound of K, the same holds for K-Facility

Reallocation.

The above arguments rule out the existence of a deterministic algorithm for the 2-Facility
Reallocation problem with competitive ratio lower than 2. Thus, we focus on designing
an online algorithm with competitive ratio that does not depend on the number of clients
n. The result is a O(1)-competitive algorithm, which is inspired by the double coverage

algorithm that solves optimally the K-server problem on the line.

1.2.3 The Online Dynamic Facility Location

Problem

The last online Dynamic Aggregation problem we study in this thesis is the Online Dynamic
Facility Location problem (ODFL). ODFL is the online variant of the Dynamic Facility Loca-
tion problem, which was introduced by Eisenstat et al. [37] to model the temporal aspects
of temporally evolving social or infrastructure networks. In this time-dependent variant
of the Facility Location problem, clients or facilities may change their location over time
and the goal is to achieve the best tradeoft between the optimal connections of clients to

facilities and the stability of solutions between consecutive timesteps.

The temporal aspect of the Dynamic Facility Location problem is modeled by T metrics
given on the same set of clients and facilities, each representing the metric at time round
t € {1,...,T}. In the Online Dynamic Facility Location, the T metrics on clients and
facilities are revealed one by one at each round. The online algorithm must make its decision
before the metric of the next round is revealed and without knowing the total number of

rounds. More formally:

In Online Dynamic Facility Location, we are given a set of facilities F, |[F| = m, a set

of clients C,

C| = n, a switching cost ¢ and a facility opening cost f. At each round
t € {1,..., T}, a new metric between clients and facilities is revealed with the form of a
n X m dimensional vector d;, which has entries corresponding to distances over F x C. We
denote by d;(i, j) the distance between client j and facility i at time . At each round ¢, the
goal is to find a subset Ay C F of open facilities and an assignment ¢; : C — A; of clients
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FIGURE 1.2: An instance of the Dynamic Facility Location problem, withn = 5
clients (the black circles) and T = 4 stages. At Stage 1, the algorithm de-
cides to open two facilities (the red triangles) to serve the clients. At Stage 2,
the clients move away from the facilities and increase the connection cost of
the solution. At Stage 3, all clients are near and far from the previously two
opened facilities. Thus, the algorithm decides to close the two facilities by
paying the resulting switching cost and opens a new facility near the clients.
At Stage 4, the clients have moved again away from the open facility, thus the
algorithm closes the facility, pays the switching cost and opens a new facility
near them.

to open facilities so as to minimize the objective:

T T T
ftZ%!AtH Y dlee(i) ) +g Y () # pa(i)}

t=1,jeC t=1,jeC

where 1{p} is the indicator function of proposition p. The assignment ¢; of round f is cho-
sen without knowing the distance vectors d; 1, . .., dr of upcoming rounds. The objective
function is the sum of the hourly opening costs for each open facility plus the connection
costs of each client plus the switching costs (¢ per change of facility per client). We remark
that any solution pays switching cost gn at round ¢t = 1, since it switches to an initial

assignment of the clients to facilities.

Observe that Online Dynamic Facility Location is a Dynamic Aggregation problem, where
at each stage t the aggregate function are the sum of the first two term of the objective
function and the switching cost function is the third term. In Figure 1.2, we illustrate an

example of Dynamic Facility location with 1 = 5 clients and T = 4 different metrics.
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Related Work

The offline and online variant of Facility Location have been studied extensively in the
literature. For the offline Facility Location problem the approximability is @ (log #) [51] for
the non-metric case while for the metric case the best lower bound is 1.463 [48] and the best
algorithm has approximation ratio 1.488 [56]. Online Facility Location is known to have a
competitive ratio of @(logn/ loglogn) in the adversarial case for both deterministic and
randomized algorithms [43] and constant competitive ratio if the clients are drawn from a

known distribution [6].

In the Incremental Facility Location problem, which was first studied by [42], additional
facilities can be opened and pairs of facilities can be merged at any point. The number of
facilities does not need to remain fixed throughout and the final cost paid depends only on
the number of open facilities at the end. Using techniques from streaming algorithms, the
authors presented a constant competitive algorithm for incremental facility location as well

as Incremental K-median clustering (also studied by [29]) using O(K) additional clusters.

The study of Dynamic Facility Location so far concerns the offline case where the changes
between distances of clients and facilities are known in advance. Eisenstat et al. [37] showed
an upper bound of O(log nT) for the most interesting variant of Dynamic Facility Location
with hourly facility costs, where facilities can be closed and are paid for all rounds in which
they remain open. This result was later improved dramatically by [4], which gave an O(1)-

approximation algorithm by exploiting a very interesting randomized rounding procedure.

Another problem closely related to Dynamic Facility Location, which is studied in the offline
variant is the Dynamic Sum-Radii clustering problem, where clients arrive and depart, and
the solution must be updated efficiently while remaining competitive with respect to the
current optimal solution. In [50], they presented a data structure that maintains a solution
whose cost is within a constant factor of the cost of an optimal solution in metric spaces with
bounded doubling dimension an with worst-case update time logarithmic in the parameters

of the problem.

Results

We give a comprehensive study on the competitive ratio of the Online Dynamic Facility
Location problem. Towards this end, we provide lower bounds on the competitive ratio of
deterministic and randomized algorithms and prove an almost matching upper bound on

the competitive ratio of randomized algorithms.

Our first result considering ODFL is a lower bound of Q2(1) on the competitive ratio of any
deterministic online algorithm. By using Yao’s principle, we extend this result to prove that

no randomized algorithm can achieve a competitive ratio better than Q)(log m).
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Regarding the upper bound, we design a randomized algorithm, which is O(log m + log n)-
competitive. At each stage, the algorithm solves the LP relaxation of Dynamic Facility
Location and then rounds the fractional solution to an integral one. We show that the
fractional solution increases the switching cost by a factor of O(logm) and the rounding

increases the facility cost by O(logn) resulting to an additive competitive ratio.

1.3 Technical Background

In this chapter, we present the main concepts and tools of online optimization problems.
Online optimization problems where introduced to capture realistic scenarios, where the in-
put of a problem is revealed piece-by-piece as opposed to traditional optimization problems,
which assume complete knowledge of all data of a problem instance. Most of the times, we
need to solve optimization problems, while taking decisions with incomplete information
about the input. This observation has motivated the research on online optimization. An
online algorithm processes its input sequentially in the order that is fed to the algorithm,

without knowing the the pieces of input that will arrive in the future.

The field that studies optimization problems having no or incomplete knowledge of the
future is called online optimization. Online optimization is challenging and it is not far
from the truth that nearly all known algorithmic techniques have been applied in online
optimization offer satisfactory solutions. Typically, the effectiveness of an online solution

is measured with the method of competitive analysis.

1.3.1 Competitive Analysis

Competitive analysis, which was introduced by Sleator and Tarjan [66], is a method in-
vented for analyzing online algorithms, which are forced to make decisions that may later
turn out not to be optimal, since they have no access to the whole input. The study of online

algorithms has focused on the quality of decision-making that is possible in this setting.

The performance of online algorithms is evaluated by comparing the quality of the pro-
duced solution against the solution from an optimal offline algorithm that knows the whole
sequence of information a priori. Competitive analysis measures the performance of online
algorithms using the notion of the competitive ratio. Since we focus on minimization prob-
lems in this thesis, we give the formal definition of the competitive ratio for minimization

problems:

Definition 1.1. Let ¢ > 1 be a real number and let ALG(0) be the cost of an online deter-
ministic algorithm on a request sequence 0. The algorithm is called c-competitive if there exists

a constant b such that

ALG(0) < c-OPT(c)+b
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holds for any request sequence o, where OPT () is the optimal offline algorithm which knows

o in advance.

Since a competitive algorithm should give guarantees that it performs well against any
request sequence, we may assume that the request sequence is generated by a malicious
adversary. The malicious adversary knows the strategy of the online algorithm and there-
fore can construct a request sequence which maximizes the ratio between the algorithm’s

cost and the optimal offline cost.

Observe that the competitive ratio of an online algorithm involves an additive constant b in
its definition. The definition of competitiveness varies in the literature and mainly depends
on the nature of the specific online problem. In some problems, the constant b may depend
to instance specific parameters such as the the diameter of the metric space, in which the
problem is studied. In some other problems, the goal is to achieve the best competitive ratio
(the best constant c¢) assuming that b = 0. This is the notion of the strict competitiveness. In
most cases, the additive constant b may depend on the initial configuration of the problem

but it is required to not be dependent on the request sequence o.

Another important observation regarding the definition of the competitive ratio is that it
does not involve a restriction on the computational resources that the online algorithm
may need to produce a solution. The main principal for competitive analysis is the design
of online algorithms that deal with uncertainties about the future in the best possible fash-
ion. The competitive ratio is the loss factor that an online algorithm has to pay, since it
has no access to future requests even though it may have unlimited computational power.
However, in practical applications we may sacrifice the solution quality in favor of more
computationally efficient solutions or seek for the best balance between solution quality

and efficiency.

1.3.2 Randomized Algorithms

The need for online algorithms that achieve the best possible competitive ratio has led to the
use of randomized algorithms. A randomized algorithm employs a degree of randomness as

part of its strategy, typically using random bits as an auxiliary input to guide its behavior.

Randomized algorithms usually outperform significantly deterministic algorithms in terms
of solution quality. In this case the competitive ratio depends on the type of the adversary
with which the online randomized algorithm is compared. The most common adversary

models are the following.

Oblivious Adversary: The oblivious adversary knows the code of the online algorithm,
but it has no access to the random bits of the online algorithm. Furthermore, it has to

construct the whole input before the algorithm begins its execution. Due to this limitations,
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the oblivious adversary is sometimes called the weak adversary. Usually, randomization
can be very helpful for improving the solution quality of an online algorithm against an

oblivious adversary.

A randomized online algorithm ALG is c-competitive against oblivious adversaries if there

exists a constant ¢, such that for any request sequence generated by an oblivious adversary,

E[ALG(c")] < cOPT(c) + b.

Adaptive Online Adversary: The adaptive online adversary knows all actions of the algo-
rithm, including its random choices. This adversary must make its own decision before it is
allowed to know the decision of the algorithm and therefore is called the medium adversary.
Specifically, at each step, the adversary gives a request maximizing the cost of the online
algorithm. However, the adversary must also serve the each request in an online fashion.
A randomized online algorithm ALG is c-competitive against adaptive online adversaries,
if there exists a constant c, such that for any request sequence generated by an adaptive

online adversary ADV,
E[ALG(c)] < c-E[ADV(0)] + b,

where ADV(0) is the cost of ADV to serve 0.

There is another type of adversary for randomized algorithms, which is stronger than the

oblivious adversary and the adaptive online adversary, called the adaptive offline adversary.

Adaptive Offline Adversary The adaptive offline adversary defers serving the request
sequence until he has generated the last request. He then uses an optimal offline algorithm

to serve it. In contrast, the adaptive online adversary must serve the input sequence online.

This adversary knows everything, even the random number generator, and is so strong
that randomization does not help against it. Therefore it is sometimes called the strong

adversary.
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2 Methodologies and Techniques

In this chapter, we discuss the main methodologies and techniques we have used to provide

our results for the online problems considered. We start with the potential function method.

2.1 Potential Function Method

We use the potential function method to analyze the performance of the MAE algorithm
(Chapter 3) for the online Min-Sum Set Cover problem as well as to analyze the performance
of our online algorithm for the K-Facility Reallocation problem on the line ( Chapter 4). This
method is extensively applied in computational complexity theory, in order to analyze the
amortized time and space complexity of a data structure. Amortized analysis measures

operations that smooth out the cost of infrequent but expensive operations.

Potential functions are an important tool for online optimization since they can be used for
proving competitiveness results. We now summarize this technique for an online algorithm
that attempts to minimize the cost of serving a request sequence ¥ = (rq,...,77) over T

stages.

Let ALG be an online algorithm for some online minimization problem and OPT be the
optimal offline algorithm for this problem. The potential ® maps the current configurations
of ALG and OPT to a non-negative value ®. We denote by @ the potential after request i.
Let ALG(7;) be the cost incurred by ALG on request r; and OPT(r;) be the cost incurred
by the optimal offline algorithm on request 7;. The amortized cost a; for serving request 7;

is defined as
a;, = ALG(T’Z) + |q)1' — CDZ'_1|

The intuition behind a potential function and the amortized cost is to measure how good the
current configuration of the online algorithm is compared to an optimal offline algorithm.
The potential can be viewed as a bank account. If the difference |®; — ®;_1| is negative,
then the amortized cost underestimates the real cost cost;. The difference is covered by

withdrawal from the account. We have that the total cost of the online algorithm ALG for
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serving request 7 is:

T T T
Y ALG(ri) =Y aj+ (g — Pu) < Y a;+ Dy
i=1 i=1 i=1

where the second equality follows from a telescopic sum. Notice that ® is a constant
that only depends on the initial configurations of ALG and OPT. Thus, up to an additive
constant, the real cost is bounded from above by the amortized cost. If we can show that
a; < ¢-OPT(r;), where OPT(r;) is the cost incurred by the optimal offline algorithm on

request 7;, then it follows that the online algorithm ALG is c-competitive.

2.2 Averaging over Adversaries

In this section, we present the averaging technique for proving lower bounds in online
optimization problems. This method has been applied in the K-server problem to provide
a lower bound of K on the competitive ratio of deterministic algorithms [55] and in the list
update problem to show that no deterministic algorithm can be better than (2 —2/(n+1))-
competitive, where 7 is the length of the list [23]. We use this method to provide a lower
bound for the online Min-Sum Set Cover problem (Chapter 3).

Usually, the optimal offline cost is hard to bound both from above and below. For proving
lower bound results on the competitive ratio of online algorithms, averaging over adver-
saries can help. The proof is based on a simple trick: Instead of comparing the online
algorithm against one offline algorithm, we compare its cost against distinct offline algo-
rithms. The basic idea is to have a set B of algorithms each of which serves the same request

sequence 7. If the sum of the costs of all algorithms in B is at most C, then there must be

OPT(r) < C/|B|.

For example, the lower bound idea for the list update problem is constructed as follows:
Given a deterministic algorithm ALG and a list with 7 elements, there is a cruel adversary,
which chooses a sequence r of length T that always requests the last element in ALG’s list.
Hence, the online cost is the n for each request and T - n for serving the whole request
sequence. The averaging technique considers all static offline algorithms that correspond
to all permutations of the list. Each of these algorithms initially sorts the list according to
its permutation and then keeps the list fixed for the rest of the sequence. The sorting cost of
each algorithm can be bounded by a constant b that depends only on list size is negligible for
large T. It is easy to prove that the average cost paid by the statlc algorithmsisb + T - ”+1
thus for T — oo, the ratio between ALG and OPT becomes +1 =2-2/(n+1).
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2.3 Yao’s Principle

In this section, we present Yao’s principle (also called Yao’s minimax principle or Yao’s
lemma) used to prove lower bounds on the competitive ratio of randomized algorithms. We
apply Yao’s principle in the online Dynamic Facility Location problem to show that the no
randomized algorithm can be better than Q)(log m)-competitive, where m is the number of

facilities (Chapter 5).

A lower bound on the competitive ratio is usually derived by providing a set of specific
instances on which no online algorithm can perform well compared to an optimal offline
algorithm. Here, again, we have to distinguish between deterministic and randomized algo-
rithms. For deterministic algorithms, finding a suitable set of request sequences is in most
cases comparatively easy. For randomized algorithms, however, it is usually very difficult to
bound the expected cost of an arbitrary randomized algorithm on a specific instance from
below. A standard tool for proving lower bounds for randomized algorithms is expressed

below.

Theorem 2.1 (Yao’s Principle for Online Problems). Let {ALG, : y € Y} denote the set of
all deterministic online algorithms for an online minimization problem. If X is a probability

distribution over input sequences {ry : x € X} and ¢ > 1 is a real number such that

inf E[ALG,(ry)] > ¢E[OPT(ry)],
yeY X

P

then C is a lower bound on the competitive ratio of any randomized algorithm against an

oblivious adversary.

Yao’s principle states that the expected cost of a randomized algorithm on the worst-case
input is no better than the expected cost for a worst-case probability distribution on the
inputs of the deterministic algorithm that performs best against that distribution. Thus, it
suffices to find an appropriate distribution of difficult inputs, and to prove that no deter-

ministic algorithm can perform well against that distribution.

2.4 Multiplicative Weights Update Method

The multiplicative weights update method is an algorithmic technique most commonly used
for decision making and prediction, and also widely deployed in game theory and algorithm
design. We use one of the simplest use cases of this algorithm, called the Multiplicative
Weights Update (MWU or Hedge) algorithm [58, 46, 9], to obtain an upper bound of O(7) on
the competitive ratio of the online Min-Sum Set Cover problem (Chapter 3). Our algorithm

uses a rounding scheme to derandomize MWU.
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Algorithm 1 Multiplicative Weights Update Algorithm

At every stage t, we have a weight wlt assigned to expert i. Initially, wll = 1 for all i. For
each stage t, we associate the distribution D' = {p1,p2,..., pu} on the experts where

pf = wf-/ Zwlt(. At stage t, we pick an expert according to distribution D and use it to
k

make our prediction. Based on the outcome j; € P in stage f, at stage t + 1, the weight of
expert i is updated as follows for each i:

1 wl(1— MO MG, ) > 0

i { wh(1+e)MET if M(i, ') < 0

The MWU algorithm comes from the online learning setting and is the standard tool used
for prediction with expert advice. In prediction with expert advice, a decision maker needs
to iteratively decide on an expert whose advice to follow. We have N experts and expert
i incurs a cost czt. in each step. A learning algorithm decides which expert i; to follow (be-
fore the cost vector ¢! is revealed) and incurs a cost of clt.t. In the first round, all experts’
opinions have the same weight. The decision maker will make the first decision based on
the majority of the experts’ prediction. Then, in each successive round, the decision maker
will repeatedly update the weight of each expert’s opinion depending on the correctness of
his prior predictions. The weights are reduced in case of poor performance, and increased

otherwise.

To motivate the Multiplicative Weights Update algorithm, consider the naive strategy that,
at each iteration, simply picks an expert at random. The expected penalty will be that of
the average expert. Suppose now that a few experts clearly outperform their competitors.
This is easy to spot as events unfold, and so it is sensible to reward them by increasing their
probability of being picked in the next round. Intuitively, being in complete ignorance about
the experts at the outset, we select them uniformly at random for advice. This maximum
entropy starting rule reflects our ignorance. As we learn who the hot experts are and who
the duds are, we lower the entropy to reflect our increased knowledge. The multiplicative

weight update is our means of skewing the distribution.

Towards a formal description of the MWU algorithm, let P be the set of events/outcomes.
We assume there is a matrix M such that M(i, ) is the penalty that expert i pays when the
outcome is j € P. The algorithm is described in Algorithm 1.

2.5 Regularization

An important technique used in online convex optimization is regularization. We use reg-
ularization to design a randomized O(log m + log n)-competitive algorithm for the online

Dynamic Facility Location problem (ODFL), where m is the number of facilities and 7 is
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the number of clients. (Chapter 5). Our algorithm regularizes the objective function of the
linear program formulation of ODFL by adding a smooth convex function to its standard
objective function. Then, the algorithm greedily solves the new online problem and obtains
good bounds. The goal of regularization is to stabilize the solution so as to avoid drastic

shifts in the solution from round to round that will lead to large switching cost.

The idea of regularization is age-old. One can think of “learning” the underlying phe-
nomenon from the scarce observed data is an ill-posed inverse problem: out of many possi-
ble hypotheses that explain the data, which one should we choose? To restore uniqueness
and reinforce the choice of simple models, regularization is the method that comes to mind.
Support Vector Machines and many other successful algorithms arise from these consider-

ations.

On the surface, it is not obvious why regularization methods would have anything to do
with online learning. Indeed, the game described above does not aim at reconstructing some
hidden phenomenon, as in the batch learning case. However, it is becoming apparent that
regularization is indeed very natural. Just as regularization presents a cure to overfitting in
the batch setting, so does regularization allow the online algorithm to avoid being fooled
by an adversary. Indeed, blindly following the best decision given the past data implies,
in some cases, playing into adversary’s hands. Regularization is a way to choose “safe”

decision.
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3 Algorithms for the Static and
Dynamic Online Min-Sum Set Cover

Problem

3.1 Introduction

In this chapter, we consider the r-uniform version of OMSSC, where each Sy has cardinality
r. We obtain tight bounds on the competitive ratio of deterministic online algorithms for
MSSC against a static adversary, that serves the entire sequence by a single permutation.

First, we show a lower bound of (r + 1)(1 — ;%) on the competitive ratio.

Theorem 3.1. Any deterministic online algorithm for the Online Min-Sum Set Cover problem
has competitive ratio at least (r +1)(1 — 1)

2
n+1-

bound for the list update problem. Since there are several algorithms matching this bound,

Note that for r = 1, this bound evaluates to 2 — which is exactly the best known lower

this lower bound is the best possible for general values of 7.
We complement this result by providing a matching (up to constant factors) upper bound.

Theorem 3.2. There exists a (51 + 2)-competitive deterministic online algorithm for the On-

line Min-Sum Set Cover problem.

Interestingly, all prior work on the list update problem (case = 1) does not seem to provide
us with the right tools for obtaining an algorithm with such guarantees! As we discuss in
Section 3.2, virtually all natural generalizations of successful list update algorithms (e.g.,
Move-to-Front, Frequency Count) end up with a competitive ratio way far from the desired

bound. In fact, even for r = 2, most of them have a competitive ratio depending on 1, such
as Q(y/n) or even Q)(n).

This suggests that online MSSC has a distinctive combinatorial structure, very different
from that of list update, whose algorithmic understanding calls for significant new insights.
The main reason has to do with the disjunctive nature of the definition of the access cost
7T (St). In list update, where r = 1, the optimal solution is bound to serve a request S¢ by

its unique element. The only question is how fast an online algorithm should upgrade it
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(and the answer is “as fast as possible”). In MSSC, the hard (and crucial) part behind the
design of any competitive algorithm is how to ensure that the algorithm learns fast enough
about the element e; used by the optimal solution to serve each request S;. This is evident
in the highly adaptive nature of the deceptively simple greedy algorithm of [39] and in the

adversarial request sequences for generalizations of Move-to-Front, in Section 3.2.

To obtain the asymptotically optimal ratio of Theorem 3.2, we develop a rounding scheme
and use it to derandomize the multiplicative weights update (MWU) algorithm. Our analysis
bounds the algorithm’s access cost in terms of the optimal cost, but it does not account for
the algorithm’s moving cost. We then refine our approach, by performing lazy updates to

the algorithm’s permutation, and obtain a competitive algorithm for online MSSC.

We also observe that based on previous work of Blum and Burch [22], there exists a (com-
putationally inefficient) randomized algorithm with competitive ratio 1 + €, for any € €
(0,1/4). This implies that no lower bound is possible, if randomization is allowed, and

gives a strong separation between deterministic and randomized algorithms.

Memoryless Algorithms. While the bounds of Theorems 3.1 and 3.2 are matching, our
algorithm from Theorem 3.2 is computationally inefficient since it simulates the MWU al-
gorithm, which in turn, maintains a probability distribution over all n! permutations. This
motivates the study of trade-offs between the competitive ratio and computational effi-
ciency. To this end, we propose a memoryless algorithm, called Move-All-Equally (MAE),
which moves all elements of set S; towards the beginning of the permutation at the same
speed until the first reaches the first position. This is inspired by the Double Coverage al-
gorithm from k-server [30, 31]. We believe that MAE achieves the best guarantees among
all memoryless algorithms. We show that this algorithm can not match the deterministic

competitive ratio.
Theorem 3.3. The competitive ratio of the Move-All-Equally algorithm is Q(r?).

Based on Theorem 3.7, we conjecture that an O(r) guarantee cannot be achieved by a mem-
oryless algorithms. We leave as an open question whether MAE has a competitive ratio

f(r), or a dependence on 7 is necessary. To this end, we show that the competitive ratio of

MAE is at most 20(V1087°1087) (see Section 3.4 for details).

Dynamic Min-Sum Set Cover. We also consider the dynamic version of online MSSC.
Dynamic MSSC is much more general and the techniques developed for the static case do
not seem adequately powerful. This is not surprising, since the MWU algorithm is designed
to perform well against the best static solution and not against a dynamic solution trajectory.
We investigate the performance of the MAE algorithm. First, we obtain an upper bound

on its competitive ratio.
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Theorem 3.4. The competitive ratio of the Move-All-Equally algorithm for the dynamic online
Min-Sum Set Cover problem is O(r3/%\/n).

Although this guarantee is not very strong, we show that, rather surprisingly, it is essen-

tially tight and no better guarantees can be shown for this algorithm.

Theorem 3.5. For anyr > 3, the competitive ratio of the Move-All-Equally algorithm for the
dynamic online Min-Sum Set Cover problem is Q(r\/n).

This lower bound is based on a carefully crafted adversarial instance; this construction re-
veals the rich structure of this problem and suggests that more powerful generic techniques
are required in order to achieve any f(r) guarantees. In fact, we conjecture that the lower
bound of Theorem 3.1 is the best possible (ignoring constant factors) even for the dynamic

problem and that using a work-function based approach such a bound can be obtained.

3.2 Lower Bounds on the Deterministic Competitive Ra-
tio

We start with a lower bound on the deterministic competitive ratio of online MSSC. For the
proof, we employ an averaging argument, similar to those in lower bounds for list update
and k-server [60, 66]. In each step, the adversary requests the last 7 elements in the algo-
rithm’s permutation. Hence, the algorithm’s cost is at least (n — r + 1). Using a counting
argument, we show that for any fixed set S; of size ¥ and any i € [n —r+ 1], the number of

permutations 7T with access cost 71(S;) = i is (:Z__li)r! (n —r)!. Summing up over all permu-

n+1)r!(nfr)! _ n+l
r+1 n! or41-

and the competitive ratio of

tations and dividing by 1!, we get that the average access cost for S; is (

(n+1)
r+1 °

Therefore, the cost of the optimal permutation is a most

(n—r+1)(r+1)

the algorithm at least T .

Theorem 3.1. Any deterministic online algorithm for the Online Min-Sum Set Cover problem

has competitive ratio at least (r +1)(1 — ;7).

Proof. Let ALG be any online algorithm. The adversary creates a request sequence in which
every request is composed by the 7 last elements of the current permutation of ALG. At
each round f, ALG incurs an accessing cost of at least n — (r — 1). Thus for the whole

request sequence of m requests, Cost(ALG) > m - (n —r +1).

The non-trivial part of the proof is to estimate the cost of the optimal static permutation.
We will count total cost of all n! static permutations and use the average cost as an upper
bound on the optimal cost. For any request set 5S¢, we intend to find the total cost of the n!
permutations for S;. To do this, we will count the number permutations that have access

costof i, for every 1 < i < n — (r — 1). For such counting, there are two things to consider.
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First, in how many different ways we can choose the positions where the r elements of S;
are located and second how many different orderings on elements of S; and of U \ S; exist.

We address those two separately.

1. For a permutation 7t that incurs an access cost of i, it follows that, from the elements
in Sy, the first one in 77 is located in position i and no other element from the set is
located in positions j < i. The other r — 1 elements of S; are located among the last
n — i positions of 7t. There are (r”__ll) different ways to choose the locations of those

elements.

2. Once the positions of elements of S; have been fixed, there are r! different ways to
assign the elements in those positions, equal to the number of permutations on
elements. Similarly, there are (n — r)! different ways to assign elements of U \ S; to

the n — r remaining positions.

Gathering the above, we conclude that the number of permutations that incur access cost

(’:__Dr!(n—r)!.

1. Z?;{H (:’__f)r! (n —r)! = n! (since each permutation has a specific cost for request

S).

exactly i for a fixed request Sy is

The latter implies two basic facts:

2. The total sum of access costs for fixed request of size 7 is:

n—r+1 n—i
Total-Access-Cost = Y i- ( >r!(n —7)!

i=1 r—1
n—r+1n—r+1 n _]-
=Y ) ( )r! (n —r)! By reordering the terms
= = -l
n—r+ln—r+1 n _]-
— ((n— 7)1
Y ) (r_l)r.(n r)!

=1 j=i

J/

-~

permutations with access cost>i

CE

where the last equality follows by the fact that Y7/ (f__li)r!(n —r)! = n! (see number

1 above) with n <— n + 1 and r <— r 4+ 1. Hence for a request sequence of length m, we get
that
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n! r+1 r+1

We conclude that for any deterministic algorithm ALG, we have:

l(n — )
Cost(OPT)gm-M(n—'—l) :m-n+1.

Cost(ALG) _ m-(n—r+1) r r(r+1)
> = 1) (1———— ) = 1-——=. O
Cost(OPT) — m . 1l (r+1) n+1 e n+1
r+1
Lower Bounds for Generalizations of Move-to-Front.For list update, where r = 1,

simple algorithms like Move-to-Front (MTF) and Frequency Count achieve an optimal com-
petitive ratio. We next briefly describe several such generalizations of them and show that

their competitive ratio depends on 7, even for r = 2.

MTFg,¢: Move to the first position (of the algorithm’s permutation) the element of S;
appearing first in 77 .

Lower bound: Let the request sequence Sq, Sy, ... Sy, in which S; contains the last two
elements of MTFg,;" s permutation at round ¢ — 1. Formally, Sy = {m;(n — 1), t4(n)}.
MTFg, moves the first element of the request in the first position and in every round the
last element in MTFg,’ s permutation remains the same (71;(n) = 7mp(n)). As a result,
MTFg, pays Q(n) in each request, whereas OPT has the element 77y [1] in the first position
and just pays 1 per request.

MTFj,5: Move to the first position the element of Sy appearing last in 77; .

Lower bound: Let the request sequence S1, Sy, . . . Sy, in which each set S; always contains
the last element of 71; — 1 and the fixed element 1. Clearly MTFy,q pays Q(m - n), while
cost(OPT) = m by having element 1 in the first place.

MTF,);: Move to the first 7 positions all elements of S; (in the same order as in 71;) .

Lower bound: The same as previous.

MTF; . ndom: Move to the first position an element of S; selected uniformly at random.

Lower bound: Let the request sequence S, Sy, .. .Sy, in which each set S; always con-
tains an element selected uniformly at random from 77; and the fixed element 1. Therefore
elements in the last 71/2 positions of 71; have probability 1/2 to be chosen. At each round
t, MTF andom moves with probability 1/2 to the first position of the list, the element of S;
that was randomly selected. Thus at each round t, MTF,,,qom pays with probability 1/4,
moving cost at least 71/2, meaning that the overall expected cost is at least m - n/8. As a

result, the ratio is ()(n) since OPT pays m by keeping element 1 in the first position.
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MTFy,s, MTF,; and MTF,,,qom have a competitive ratio of ()(n) when each request S;
consists of a fixed element e (always the same) and the last element in 714, because they all

incur an (expected for MTF,,,4om) moving cost of @ (1) per request.

The algorithms seen so far fail for the opposite reasons: MTFg,¢ cares only about the first
element and ignores completely the second, and the others are very aggressive on using the

second (rth) element. A natural attempt to balance those two extremes is the following.

MTF,jative: Let 7 be the position of the first element of S; in 77;. Move to the first positions
of the algorithm’s permutation (keeping their relative order) all elements of S; appearing
up to the position ¢ - i in 714, for some constant c.

Lower bound: Let the request sequence Sy, ... S, in which S; contains the L”?_IJ th and
the nth element of the list at round t — 1. MTF,jative never moves the last element and thus

71,(0) belongs in all sets S;. As in first case, this provides an (}(n) ratio.

All generalizations of MTF above are memoryless and they all fail to identify the element
by which optimal serves S;. The following algorithm tries to circumvent this by keeping

memory and in particular the frequencies of reqested elements.

MTF ount: Move to the first position the most frequent element of S; (i.e., the element of
St appearing in most requested sets so far).
Lower bound: The request sequence Sy, . . ., Sy, is specifically constructed so that MTF oyt

never moves the last b elements of the initial permutation 71.

o = [x1, - - s Xy Xn—p+1, - - .,x@]

NV NV
n—>b elements b elements

The constructed request sequence S, . . ., S;; will be composed by m/n sequences of length

n. Each piece of length n will have the following form:

1. n — brequests {x1,x2}, {x1,x3},...{x1,x,_p} (all requests contain x7).

2. {element in position n — b, x,,_p;} for i = 1 to b (additional b requests).

After the requests of type 1, the list is the same as the initial one, since x; has frequency
n—band xp,...x,_j have frequency 1. Now consider the requests of type 2. MTF ount
moves always to the front the element which is in position n — b, since has already been
involved in a type 1 request and has greater frequency. Therefore, MTFcount pays b - (n — b).
Repeating the same request sequence m/n times, we can construct a sequence of length m.
In this request sequence, OPT keeps the element x; in the first position and the elements
{Xy_ps1,---,Xn} in the next b positions. Thus, OPT pays (n — b) - m/n for the requests
of type 1 and b? - m/n for the requests of type 2. MTFcoun: pays (n — b) - m/n for the
requests of type 1 (same as OPT), but (n — b) - b - m/n for the requests of type 2. Setting
b = \/n, we get a QO(/n) lower bound for the competitive ratio of MTFount.
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Concluding this section, we remark that although the MTF algorithm achieves the best
possible competitive ratio against the optimal dynamic solution for r = 1, it’s natural gen-
eralizations are far from closing the gap with the lower bound of theorem 3.1 even when
r = 2 and against the optimal static solution. The reason for this phase transition is that
if r > 2 all these algorithms fail to get closer to the optimal solution which is the basic
idea of the MTF algorithm for r = 1. As a result, we have to turn our attention to com-
plicated memory-keeping strategies such as the one Algorithm 3 realizes by running the
MWU algorithm in the background.

3.3 An Algorithm with Asymptotically Optimal Com-

petitive Ratio

Next, we present algorithm Lazy-Rounding (Algorithm 3) and analyze its competitive ra-

tio. The following is the main result of this section:

Theorem 3.2. There exists a (51 + 2)-competitive deterministic online algorithm for the On-

line Min-Sum Set Cover problem.

The remainder of this section is devoted to the proof of Theorem 3.2. At a high-level, our

approach is summarized by the following three steps:

1. We use as black-box the multiplicative weights update (MWU) algorithm with learn-
ing rate 1/n>. Using standard results from learning theory, we show that its expected
access cost is within a factor 5/4 of OPT, i.e., AccessCost(MWU) < 2 Cost(OPT)
(Section 3.3.1).

2. We develop an online rounding scheme, which turns any randomized algorithm A
into a deterministic one, denoted Derand (.A ), with access cost at most 27 - E[AccessCost(.A)]
(Section 3.3.2). However, our rounding scheme does not provide any immediate guar-

antee on the moving cost of Derand(.A).

3. Lazy-Rounding is a lazy version of Derand(MWU) that updates its permutation
only if MWU’s distribution has changed a lot. A phase corresponds to a time interval

that Lazy-Rounding does not change its permutation. We show that during a phase:

(a) The upper bound on the access cost increases, compared to Derand (MWU), by
afactor of at most 2, i.e., AccessCost(Lazy-Rounding) < 4r - E[AccessCost(MWU))]
(Lemma 3.6).
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(b) The (expected) access cost of MWU is at least #2. Since our algorithm moves

only once per phase, its movement cost is at most #2. Thus we get that (Lemma 3.7):

MovingCost(Lazy-Rounding) < [E[AccessCost(MWU)] .

For the upper bound on the moving cost above, we relate how much MWU'’s distri-
bution changes during a phase, in terms of the total variation distance, to the cost of
MWU and the cost of our algorithm.

Based on the above properties, we compare the access and the moving cost of Lazy-Rounding

against the access cost of MWU and to get the desired competitive ratio:

Cost(Lazy-Rounding) < (47 + 1) E[AccessCost(MWU)| < (5r 4 2) Cost(OPT) .

Throughout this section we denote by dtv(, ") the total variation distance of two discrete
probability distributions 8,6’ : [N] — [0, 1], defined as dyv(6,0") = YN max{0,5(i) —
5 (i)}

3.3.1 Using Multiplicative Weights Update in Online Min-Sum Set

Cover

In this section, we explain how the well-known MWU algorithm [58, 46] is used in our

context.

The MWU Algorithm. Given n! permutations of elements of U, the algorithm has a
parameter B € [0,1] and a weight w, for each permutation 7t € [n!], initialized at 1.
At each time step the algorithm chooses a permutation according to distribution P, =

wh./ (Ene[n!] w!.). When request S; arrives, MWU incurs an expected access cost of

E[AccessCostMWU(t))] = Y PL-7(Sy)

e(n!]

3
and updates its weights w1 = w!_- [371(5,), where f = e~1/"; this is the so-called learning

rate of our algorithm. Later on, we discuss the reasons behind choosing this value.

On the Access Cost of MWU. Using standard results from learning theory [58, 46] and
adapting them to our setting, we get that the (expected) access cost of MWU is bounded
by Cost(OPT). This is formally stated in Lemma 3.1, which states that the MWU is 5/4-

competitive for access costs.
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Lemma 3.1. For any request sequence 0 = (S1,...,Sy,) we have that

E[AccessCost(MWU)| < Z - Cost(OPT) +2n*Inn.

Proof. By the standard results in learning theory [58, 46], we know that for any sequence
o= 1(S1,...,5m), the MWU algorithm satisfies

i Y Pl - AccessCost(, S;) < n(1/8) min i () + In(n!)

t=1 ren] 1-8 reln)5 1-8°
where B = o1/, Thus, 3/4 < B < 1, for any n > 2. Using standard inequalities we get

that % <5/4and1— B > 1/2n3for any n > 2. We finally get that,

[E[AccessCost(MWU)] < = - Cost(OPT) + 2n* Inn.

= 1

On the Distribution of MWU. We now relate the expected access cost of the MWU algo-
rithm to the total variation distance among MWU'’s distributions. More precisely, we show
that if the total variation distance between MWU'’s distributions at times #; and £, is large,
then MWU has incurred a sufficiently large access cost. The proof of the following makes
a careful use of MWU’s properties.

Lemma 3.2. Let P! be the probability distribution of the MWU algorithm at time t. Then, the
probability distribution P**1 of the algorithm satisfies

1
dry (P!, P < 3 E[AccessCost(MWU(t))].

Proof. To simplify notation, let W! = Yreln] w'.. We remind that by the definition of
MWU, wtl = wt . e=7(50)/ " Moreover, by the definition of total variation distance,

dry (P! PtH) _ 2 pt _ pt+l — Z w_g'( o whH!
vV ’ - T T Wt Wt+1

. t+1 . t+1
Pt >PLF Pt >PLE

wt wt+1
< L (W)

. 41
Pt >PLF

wt wt+1 wl’ (S

me(n!]
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= Z P <1—g_(”(5t)/”3)) < Z Pt . ni‘if)

meln!] me(n!]

1
= - [E[AccessCost(MWU(t))] .

In the first inequality we used that W1 < W, In the second inequality we used that for
to_ i1
all 71 we have that w1 < w!_ which implies that %

used that 1 — ¥ < —x, for any x. O]

> 0. In the last inequality we

The following lemma is useful for the analysis of Lazy-Rounding. Its proof follows from

Lemma 3.2 and the the triangle inequality.

Lemma 3.3. Let t| and tp two different time steps such that dry(P",P2) > 1/n. Then,
during the time interval [t1,t2) the cost of the MWU algorithm is at least n?,

th—1
Y E[AccessCost(MWU(t))] > n*.
t=h

Proof. By Lemma 3.2 and summing over all f such that | <t < t,, we have that

t—1 t—1
Y dpy (P, P < % - Y E[AccessCost(MWU(#))]. (3.1)
=t =h

By triangle inequality we have that dvy (P, P2) < Z?;tll dry (P!, Pt*1). Combined with (3.1),

this implies that
th—1

dry (P, PR2) < % Y E[AccessCost(MWU(t))].
=h

By rearranging and using that dpy (P, P2) > 1/n, we get that

t—1
Y E[AccessCost(MWU(t))] > n’ - 1_ n’ O

t=H

=

3.3.2 Rounding

Next, we present our rounding scheme. Given as input a probability distribution J over
permutations, it outputs a fixed permutation p such that for each possible request set S of
size 1, the cost of p on S is within a O(r) factor of the expected cost of the distribution é on

S. For convenience, we assume that /7 is an integer. Otherwise, we use (n / ﬂ .
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Algorithm 2 Greedy-Rounding (derandomizing probability distributions over the permu-
tations)

Input: A probability distribution ¢ over [n!].
Output: A permutation p € [n!].

1 R« U

2. fori =1 to n/rdo

3 Si¢ arg mingc gyr Eqs[71(S)]
4. Place the elements of S* (arbitrarily) from positions (i — 1) -7+ 1to i - 7 of p.
5:. R+ R\S!
6: end for
Return p

Our rounding algorithm is described in Algorithm 2. At each step, it finds the request S
with minimum expected covering cost under the probability distribution J and places the
elements of S as close to the beginning of the permutation as possible. Then, it removes
those elements from set R and iterates. The main claim is that the resulting permutation
has the following property: any request S of size r has covering cost at most O(r) times of its

expected covering cost under the probability distribution 9.
Theorem 3.6. Let & be a distribution over permutations and let p be the permutation output

by Algorithm 2 on §. Then, for any set S, with |S| = r,

p(S) <2r- E [n(S)].

TT~0

Proof. Let e be the element used by p to serve the request on set S. Pick k such that (k —
1) -r4+1 < AccessCost(p,S) < k- r. That means, e was placed at the permutation p at
the kth iteration of the rounding algorithm.

Let S1,...,S"/" be the sets chosen during the rounding algorithm. Recall that 0 uses an
element from S¥ to serve the request. To this end, we use the technical Lemma 3.4 in order

to get a lower bound on the expected cost of . We distinguish between two cases:
k+1
1. Case S = S. In that case, by Lemma 3.4 we get that E,_s[7(S)] > &L,

2. Case S # Sk, That means, ¢ is one element of S in S and no elements of S are in sets

S1,...,Sk_1. By construction of or rounding algorithm, we have that

E [7(S)] > E [n(Sy)] >

T~0

We get that in both cases Es[7(S)] > 5L, We conclude that
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AccessCost(p, S) < k-r <2.r O

Es[AccessCost(4,S)] = K1 —

We now proceed to the lemma omitted in the proof of Theorem 3.6.

Lemma 3.4. Let § be a probability distribution over permutations and 1 %, Let
S1,---,Sk be disjoint sets such that S; C U and |S;| = r forall1 < j et & =
IEnNg[TC(S]')] forany1l < j < k. If& < ... < &, then, we have that & > HTl, for
1<j<k

<k <
<k L

Proof. We have that

1 1
&Z—Z&:fZZ?mrmw Using & < ... < &
J i3 J i3 w
1 j
== Pr(r] - Z 7t(Sy) Linearity of summation
J meln!] 0 =1
21. ) Pr[n]-](]+1)
] nemy ° =
_j+1 _j+1
= L=

where Z]é:l t(Sp) > 1G ;1) follows by the fact that 77(Sy) take j different positive integer

values (the sets S, are disjoint). 0

3.3.3 The Lazy Rounding Algorithm

Lazy-Rounding, presented in Algorithm 3, is essentially a lazy derandomization of MWU.
At each step, it calculates the distribution on permutations maintained by MWU. At the
beginning of each phase, it sets its permutation to that given by Algorithm 2. Then, it sticks
to the same permutation for as long as the total variation distance of MWU’s distribution
at the beginning of the phase to the current MWU distribution is at most 1/7. As soon as

the total variation distance exceeds 1/7, Lazy-Rounding starts a new phase.

The main intuition behind the design of our algorithm is the following. In Section 3.3.2 we
showed that Algorithm 2 results in a deterministic algorithm with access cost no larger than
2r E[AccessCost(MWU)|. However, such an algorithm may incur an unbounded moving
cost; even small changes in the distribution of MWU could lead to very different permuta-
tions after rounding. To deal with that, we update the permutation of Lazy-Rounding only

if there are substantial changes in the distribution of MWU. Intuitively, small changes in
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Algorithm 3 Lazy Rounding

Input: Sequence of requests (S, ..., Sy,) and the initial permutation 79 € [n!].
Output: A permutation 774 at each round ¢, which serves request S;.

1: start-phase < 1

2: P! < uniform distribution over permutations

3: for eachround t > 1 do

4 if dy (P!, PStartphasey < 1 /4 then

5 T0 <— TTr_q

6: else

7: 7t <— Greedy-Rounding (P?)

8 start-phase < ¢

9: endif

10:  Serve request S; using permutation 7t;.

1w =wt . e (S0/7 for all permutations 77 € [n!].
122 P! < Distribution on permutations of MWU, Pt = w! / (e wh)-
13: end for

MWU’s distribution should not affect much the access cost (this is formalized in Lemma 3.5).
Moreover, Lazy-Rounding switches to a different permutation only if it is really required,

which we use to bounds Lazy-Rounding’s moving cost.

Bounding the Access Cost. We first show that the access cost of the algorithm Lazy-Rounding
is within a factor of 4r from the expected access cost of MWU (Lemma 3.6). To this end, we
first show that if the total variation distance between two distributions is small, then sam-
pling from those distributions yields roughly the same expected access cost for any request
S. The proof of the following is based on the optimal coupling lemma and can be found in

the full version of this paper.
Lemma 3.5. Let 6 and d' be two probability distributions over permutations. Ifthatdry(5,6") <

1/n, for any request set S of size r, we have that

E [7(S)] <2- E [x(5)].

~o' T~0

Proof. By coupling lemma there exists a coupling (X, Y) such that
PI‘[X 75 Y] = dTV(5/ 5/) (3.2)

Clearly, IE[AccessCost(X, S)] = Es[7t(S)] and E[AccessCost(Y, S)] = E s [7(S)].
Note that since minimum cost for serving a request is 1 and maximum #, it will always hold
that

1 < IE[AccessCost(X, S)], [E[AccessCost(Y, S)] < n.
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We will show that E[AccessCost(Y, S) — AccessCost(X, S)] < 1. This implies the lemma

as follows:

E [71(S)] = E[AccessCost(Y, S)]

~o

< E[AccessCost(X,S)] +1 < 2E[AccessCost(X, S)]
=2 E [n(9)].
T~6

Thus it remains to show that IE[AccessCost(Y, S) — AccessCost(X,S)] < 1. For nota-
tional convenience, let the random variable Z = AccessCost(X,S) — AccessCost(Y, S).
It suffices to show that E[Z] < 1. We have that

E[Z] < Pr[AccessCost(X,S) = AccessCost(Y,S)] -0
+ Pr[AccessCost(X, S) # AccessCost(Y,S)] - n, (3.3)

since whenever X # Y, the difference in the cost is upper bounded by .

Observe that Pr[X(S) # Y(S)] < Pr[X # Y]; thisisbecause if X = Y, then AccessCost(X, S) =
AccessCost(Y, S), but it may happen that X # Y but AccessCost(X,S) = AccessCost(Y,S).
From (3.3) we get that

E[Z] < Pr[X # Y] - n. (3.4)

Combining (3.2) with (3.4) we get that

lE[Z] SdTv((S,y)-i’lS%-n:l. O

We are now ready to upper bound the access cost of our algorithm.

Lemma 3.6. AccessCost(Lazy-Rounding) < 4r - E[AccessCost(MWU)].

Proof. Consider a phase of Lazy-Rounding starting at time f;. We have that at any round
t > t1, 1y = Greedy-Rounding(P1), as long as drv (P!, P"1) < 1/n. By Theorem 3.6 and

Lemma 3.5, we have that,

AccessCost(Lazy-Rounding(t)) = 71;(S;) <2r- E [7(S¢)] <4r E [7(S:)].

~Ph T~Pt

Overall we get,

m
AccessCost(Lazy-Rounding) = Y 7;(S) < 4r E[AccessCost(MWU)]. O
=1
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Bounding the Moving Cost. We now show that the moving cost of Lazy-Rounding is
upper bounded by the expected access cost of MWU.

Lemma 3.7. MovingCost(Lazy-Rounding) < [E[AccessCost(MWU)].

Proof. Lazy-Rounding moves at the end of a phase incurring a cost of at most 1%, Let t; and
t> be the starting times of two consecutive phases. By the definition of Lazy-Rounding,
dry(Ph, P22) > 1/n. By Lemma 3.3, we have that the access cost of MWU during ¢; and
t, is at least n?. We get that

MovingCost(ALG) < n’# different phases

=1 0O
E[AccessCost(MWU)] — n2#different phases

Theorem 3.2 follows from lemmas 3.6, 3.7 and 3.1. The details can be found in the full

version.

Proof of Theorem 3.2. We now give the formal proof of the competitive ratio of Lazy-Rounding

algorithm.

Theorem 3.2. There exists a (51 + 2)-competitive deterministic online algorithm for the static

version of the Online Min-Sum Set Cover problem.

Proof. We show that our algorithm ALG is (57 + 2)-competitive.

By lemmata 3.6 and 3.7 we get that

Cost(Lazy-Rounding) < (47 + 1) - AccessCost(MWU). (3.5)

Now, we connect the access cost of MWU to the optimal cost. By Lemma 3.1 we have that

AccessCost(MWU) < Z - Cost(OPT) + 2n*Inn. (3.6)
By (3.5) and (3.6) we get that
Cost(Lazy-Rounding) < (57 +2) - Cost(OPT) +2- (47 + 1) - n*Inn O

On our Approach.Note that to a large extent, our approach is generic and can be used to
provide static optimality for a wide range of online problems. Consider any MTS problem
with N states such that in each request the service cost of each state is at most Cpyax and
the diameter of the state space is D. Assume that there exists a rounding scheme providing

a derandomization of MWU such that the service cost is within « factor of the expected
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Algorithm 4 Move-All-Equally

Input: A request sequence (Sy, ..., Sy,) and the initial permutation 71y € [n!]
Output: A permutation 774 at each round ¢.

1: for eachroundf > 1 do

2 ki < mm{z ‘ nt—l[i] € St}

3:  Decrease the index of all elements of S; by k; — 1.

4: end for

service cost of MWU. We explain how our technique from Section 3.3 can be used to obtain

a O(a)-competitive algorithm against the best state.

Algorithm. The algorithm is essentially the same as Algorithm 3, using the MWU al-
gorithm with learning rate 1/ (D - Cpax) and moving when the total variation distance

between the distributions exceeds 1/ Cmax.

This way, Lemma 3.2 would give a bound of
t pt+1 1
dry (P, P) < D - AccessCost(MWU(t))

and as a consequence in Lemma 3.3 we will get that the (expected) cost of MWU during a
phase is at least D. Since the algorithm moves only at the end of the phase, incurring a cost
of at most D, Lemma 3.7 will still hold. Last, it is easy to see that Lemma 3.5 will then hold
for dry(6,6’) <1/ Cmax- This way, Lemma 3.6 would give that

AccessCost(ALG) < 2aE[Cost(MWU)].

Combining the above, we get that the algorithm is O(a)-competitive.

3.4 A Memoryless Algorithm

In this section we focus on memoryless algorithms. We present an algorithm, called Move-
All-Equally (MAE), which seems to be the “right” memoryless algorithm for online MSSC.
MAE decreases the index of all elements of the request S¢ at the same speed until one of them
reaches the first position of the permutation (see Algorithm 4). Note that MAE belongs to
the Move-to-Front family, i.e., it is a generalization of the classic MTF algorithm for the list
update problem. MAE admits two key properties that substantially differentiate it from the

other algorithms in the Move-to-Front family presented in Section 3.2.

1. Let e; denote the element used by OPT to cover the request S;. MAE always moves

the element e; towards the beginning of the permutation.
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2. It balances moving and access costs: if the access cost at time f is k¢, then the moving
cost of MAE is roughly r - k; (see Algorithm 4). The basic idea is that the moving
cost of MAE can be compensated by the decrease in the position of element ;. This

is why it is crucial all the elements to be moved with the same speed.

Lower Bound. First, we show that this algorithm, besides its nice properties, fails to

achieve a tight bound for the online MSSC problem.

In the lower bound instance, the adversary always requests the last 7 elements of the algo-
rithm’s permutation. Since MAE moves all elements to the beginning of the permutation,
we end up in a request sequence where 1 /r disjoint sets are repeatedly requested. Thus the
optimal solution incurs a cost of @(#/7) per request, while MAE incurs a cost of Q(7 - )
per request (the details are in the full version) . Note that in such a sequence, MAE loses
a factor of r by moving all elements, instead of one. However, this extra movement seems
to be the reason that MAE outperforms all other memoryless algorithms and avoids poor

performance in trivial instances, like other MTF-like algorithms.

Theorem 3.3. The competitive ratio of the Move-All-Equally algorithm is Q(r?).

Proof. MAE is given an initial permutation 77¢ with size 11, where n = r - k, for integers r, k
both greater than 1. At each round t, the adversary gives requests St, which consist of the
last r elements in the permutation 77;_1 of MAE. Since MAE moves all the elements of S;
to the beginning of 714, the request S;1 contains the 7 elements preceding the elements of
St in 714 Thus, the request sequence can be divided in m/k requests containing the same
k pairwise disjoint requests, denoted as S* = {Sj,...S; }. The optimal static solution can
serve the request sequence by using only k elements, where each of these elements belongs
to exactly one of the S;-k, 1 < j < k. OPT has these elements in the first k positions and
pays 1 +2+...+k < k2 for every k consecutive requests (Sj,... S;). MAE clearly
pays n — r + 1 access cost and 7 - (n — r + 1) moving cost on every request, therefore
MAE =m - (r+1)- (n —r+1). Then, the competitive ratio of MAE is at least

Cost(MAE) _ m-(r+1)-(n—r+1) (r4+1)-(r-k—r+1)
Cost(OPT) = (m/k) - k2 - I =Q(r*) O

Upper Bounds. Let £ denote the set of elements used by the optimal permutation on a
request sequence such that | £| = ¢. That means, OPT has those £ elements in the beginning
of its permutation, and it never uses the remaining n — ¢ elements. Consider a potential
function ®(t) being the number of inversions between elements of £ and U \ £ in the
permutation of MAE (an inversion occurs when an element of £ is behind an element of
U \ £). Consider the request S; at time f and let k; be the access cost of MAE.
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Let e; be the element used by OPT to serve S;. Clearly, in the permutation of MAE, e; passes
(i.e., changes relative order w.r.t) k; — 1 elements. Among them, let L be the set of elements
of £ and R the elements of U \ L. Clearly, |[L| + |R| = k; — 1 and |L| < |L£| = ¢. We get
that the move of e; changes the potential by —|R|. The moves of all other elements increase
the potential by at most (r — 1) - £. We get that

ki+®(t) —P(t—1) < |L|+|R|—|R|+(r—1)-L<|L|+(r—1)-£<r-L

Since the cost of MAE at step f is no more than (7 + 1) - ks, we get that the amortized cost
of MAE per request is O(7? - £). This implies that for all sequences such that OPT uses
all elements of £ with same frequencies (i.e, the OPT pays on average ()(¢) per request),
MAE incurs a cost within O(r?) factor from the optimal. Recall that all other MTF-like

algorithms are (/1) competitive even in instances where OPT uses only one element!

While this simple potential gives evidence that MAE is O(r?)-competitive, it is not enough
to provide satisfactory competitiveness guarantees. We generalize this approach and define
the potential function ®(t) = Y a; - 71;(j), where 714(j) is the position of element j at
round ¢ and «; are some non-negative coefficients. The potential we described before is the

special case where a; = 1 for all elements of £ and a; = 0 for elements of U \ L.

By refining further this approach and choosing coefficients «; according to the frequency
that OPT uses element j to serve requests (elements of high frequency are “more important”

so they should have higher values &), we get an improved upper bound.
Theorem 3.7. The competitive ratio of MAE algorithm is at most 20(v1ognlogr)

Note that this guarantee is 0(1€) and w(logn). The proof is based on the ideas sketched
above but the analysis is quite involved. The main technical contribution of this section is

proving the following lemma, from which Theorem 3.7 follows.

Lemma 3.8. For any parameterﬁ > 1,
Cost(MAE) < 4B(2r)**1. Cost(OPT) + (2r)*n?

where k = [2logn/log B].

Note that Theorem 3.7 follows from Lemma 3.8 by balancing the values of B and (2r)k+1,

It is easy to verify that by setting f = 2V 8logn-log2r e obtain a competitive ratio at most
ﬁZ < 28y/lognlogr

Notation and Definitions.Let the frequency of an element e be the fraction of requests
served by e in the optimal permutation. At a high-level, we divide the optimal permutation

into k + 1 blocks where in each of the first k blocks the frequencies of all elements are
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within a factor of B and the last block contains all elements with frequencies at most 1/ n2.

By construction, in worst-case k ~ %. More formally:

Let f; € [0, 1] denote the covering frequency, which is the total fraction of requests served

by the optimal permutation with element j. For convenience, we reorder the elements such

that fi > fo > ... > fu. Asaresult, Cost(OPT) = m -3 ;- f;.

We partition the elements of U into k + 1 blocks, as follows. The last block, Ej 1 contains all
elements j with f] <1/n?% intuitively those are the least important elements. The block E;
for 1 < i < k contains all elements with frequencies in the interval [f; /871, f1/B'). Note
that in worst case, k = [2logn/ log B]; we need that f;/B* < 1/n2, which is equivalent

to k > f 2logﬁn

Lower Bound on optimal cost. Using this structure, we can express a neat lower bound
on the cost of the optimal static permutation, which is formally stated in the following
lemma. Lemma 3.9 provides a lower bound on Cost(OPT) using the first k blocks. For the
rest of this section let F; = Ui. 1 Ej the set of all elements in the first i blocks, for 1 < i < k.

Let also f .., fi . denote the maximum and minimum covering frequencies in the set E;.

min

Lemma 3.9. For any request sequence the optimal cost is at least

k

Cost(OPT) > 5 Y IEil -1 Fil - fanine
i=1

§

Proof. Using the definitions above, OPT uses element j exactly m - f; times for a total cost
j-m- f. To account for all elements of the same bucket E; together, we underestimate this
cost and for an element j € E; we charge OPT only for m - f:

min < M - fj requests. We get
that:

Cost(OPT) = me] ]>m22f] ]>m2fmm2]

i=1jeE; =1 JEE;
k |Ei]

= MY fuin G+ [ Fical)
=1 j=1

k
' Eil(|Ei| +1
= ) i (1B1 B

i=1

m k :
1
e fenin - |Eil - (| Fiza| 4 |Ei])
]
k
m .
= 3 fonin - |Eil - | Fi] O
&
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Upper Bound on cost of MAE. Using the blocks, we also obtain an upper bound on the
cost of Move-All-Equally. This is formally stated in Lemma 3.10.

Lemma 3.10. For any request sequence the cost of MAE algorithm can be upper bounded as
follows:

k .
Cost(MAE) < (2r)™h . m Y | F||Ej| - fhax +2(2r) T m + (2r)F - 2.
i=1

Before proceeding to the proof of Lemma 3.10, which is quite technically involved, we show

how Lemma 3.8 follows from Lemmata 3.10 and 3.9.

Proof of Lemma 3.8. From Lemma 3.10 we have that

k .
Cost(MAE) < (21’)]‘H -m 2 |\ FillEi] - finax + 2(27)]‘+1 -m +(2r)k - n?
i=1

~ v —_———
<B-Cost(OPT) <2(2r)k+1.Cost(OPT)

< 4B(2r)*1 . Cost(OPT) + (2r)F - n?,

where in the inequality we used the lower bound on Cost(OPT) from Lemma 3.9 and that
flax=fi. -Bforalli. O

Proof of Lemma 3.10

It remains to prove Lemma 3.10 which gives the upper bound on the cost of MAE algorithm.
The proof lies on the right selections of the coefficients «; in the potential function ®(¢):

o(t) = Y ;- m(j),
j=1

where 77 (j) is the position of element j at round  and «; are some non-negative coefficients.

More precisely, if j € E; then a; = (Zr)k_i fori=1,...,kanda; = 0if j € E;.

At time t, let k; denote the access cost of MAE and let ¢; be the element used by OPT to
serve request S;. Using the coefficients mentioned above, we can break the analysis into
two different types of requests: (i) requests served by OPT using an element ¢; € E; for
1 < i < k and (ii) requests served by OPT using e; € Ey,q. At a high-level the first
case is the one where the choice of coeflicients is crucial; for the second, we show that the
frequencies are so “small”, such that even if MAE incurs an access cost of 7, this does not
affect the bound of Theorem 3.7.

We start with the first type of requests. We show the following lemma.
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Lemma 3.11. At timet, ife; € E;, for1 < i <k, then we have that

AccessCost(MAE(t)) + ®(t) — d(t — 1) < (2r)* - | F|

For the second type of requests we have the following lemma.

Lemma 3.12. The total amortized cost of MAE algorithm for all requests such thate; € E
is at most (2r)*m + m.

The proofs of those Lemmas are at the end of this section. We now continue the proof of

Lemma 3.10.

Proof of Lemma 3.10. We upper bound the total access cost of MAE, thatis ) " ; k. Clearly,
by construction of MAE, the total cost is at most (r + 1) - /" ; k;. We have that:

ikﬁ—cb(t) —®(t-1)
t=1
=fj< Y, ket @(t) —D(t-1)+ ), kt+<I>(t)—<I>(t—1))

i=1 \twe;€E; t:ie;€Ex 1
k

SIPMCNET (@)f+1)-m
; -Ct i

= Z;(Zr)k' | Fil - m - ZE: fjt + ((2r)k+ 1) - m
1= JEEL;

<Y AF e X fot (@) +1)-m
i=1 jEE;

I
™~

~
I
—_

@) |FIEl - fia -+ (20 1) - m,

where the first inequality comes from Lemmata 3.11, 3.12. Using ®(0) < (27) 112 we get

m
Cost(MAE) <2r- )k
t=1
k .
<2r ( @) | FE] - fhax-m+ (20) +1) -+ <2r>“n2>
i=1
k .
< @)Y | FNEL - faax - m 2205 m - (2r)F -0 O

i=1

We conclude the Section with the proofs of lemmata 3.11, 3.12, which were omitted earlier.
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Proof of Lemma 3.11. At time f, the access cost of MAE is k;. We have that

ki +®(t) —®(t—1) = kt—“et'kt+;"‘j(ﬂt(f)—”t—l(f))
J7et
< ke (=) + (20 |F] -
+ ) w0m() —ma(i),

JEUNF;

where the inequality follows from the fact that each element in F; can increase its position
by at most r and that the maximum coefficient «; is at most (2r)¥=1. We complete the proof

by showing that

ke-(1—ae)+ ) aj(m(j) — ma(f) <0
JEUNF;

If e; € Ey then &, = 1 and a; = 0 for all j € U \ F, thus the left hand side equals 0 and

the inequality holds. It remains to analyze the case where e; € E; and i < k.

ke (L) + ), aj(me(f) — m-a(f)

JEUNF,;
<k (1—ae)+ 2 - () — -1 ()]
]EU\}'
Skt'(l_lxet)‘f‘g'r’kt
:kt-(1—aet+%)§o.

The last inequality is due to the fact that a,, > 7, thus 1 — «,, /2 is negative if r > 2. OJ

Proof of Lemma 3.12. We sum the total amortized cost over all time steps t such that ¢; €
Eiy1. We have that

Y ke + () —D(t—1)

t:eteEk+1
< ) n+(2r)k_1-n-r§((2r)k+1)-n Y 1
tZEtEEk+1 tZEtGE;H,l
| Ex1]
<(@)*+1)-n-m- fi<(@)f+1) n-m-
(e 1) onom = (1) o B
< <(2r)k + 1) -m -

3.5 Dynamic Online Min-Sum Set Cover

In this section, we turn our attention to the dynamic version of online MSSC. In online dy-

namic MSSC, the optimal solution maintains a trajectory of permutations 71y, 717, . . ., 7T}, . . .
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and use permutation 77/ to serve each request S;. The cost of the optimal dynamic solution
is OPTaynamic = 2¢(77; (St) + dxr(7t;_1, 7)), where {71} }; denotes the optimal permu-

tation trajectory for the request sequence that minimizes the total access and moving cost.

We remark that the ratio between the optimal static solution and the optimal dynamic so-
lution can be as high as Q)(n). For example, in the sequence of requests {1}7{2}? ... {n}?,
the optimal static solution pays @ (12b), whereas the optimal dynamic solution pays @ (1> -+
n - b) by moving the element that covers the next 1 - b requests to the first position and
then incurring access cost 1. The above example also reveals that although Algorithm 3 is
©O(r)-competitive against the optimal static solution, its worst-case ratio against a dynamic

solution can be Q)(n).

Next, we investigate the competitive ratio of Move-All-Equally (MAE) algorithm from Sec-

tion 3.4 against the dynamic adversary. We begin with an upper bound:

Theorem 3.4. The competitive ratio of the Move-All-Equally algorithm for the dynamic online
Min-Sum Set Cover problem is O(r3/2\/n).

The approach for proving the upper bound is generalizing that exhibited in Section 3.4 for

the static case. We use a generalized potential function ®(t) = 3./, (x]t

7¢(j); ie, the mul-
tipliers a; may change over time so as to capture the moves of OPTgynamic. To select coeffi-
cients a; we apply a two-level approach. We observe that there is always a 2-approximate
optimal solution that moves an element of S; to the front (similar to classic MTF in list up-
date). We call this MTFopr. We compare the permutation of the online algorithm with
the permutation maintained by this algorithm; at each time, elements the beginning of the

offline permutation are considered to be “important” and have higher coefficients tx;.

We will use the above arguments to bound the total cost of MAE. Recall that the access
cost of MAE at round t is k;. We have that at each round t > 1,

n

ke +®(t) —@(t—1) = kH—Z(x 7(j Z“]t Lo
j= j=1

= (1- “et ) ke + Z zx]- (e (j) — -1 (j))
j#er

n
+ Y (o — o) ()
j=1

< r-c+ (th —zx > ‘n, (3.7)

J/

-

bounded by MTFopr(t)

where in the last inequality we used that océt = 1 and that for each element, its position

change from round  — 1 to round f 774(j) — 71;_1(j) can be at most .
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The following lemma shows an upper bound on the quantity 27:1 tx; — a;fl.

Lemma 3.13. Theterm}.; ; (IX; - oc;_l), which appears in the difference ®(t) — ®(t — 1) of
the potential function ®(t) can be bounded by the moving cost of the MTFopr(t) as follows:

;’:1(04; - 04571) <af — a1 < MovingCost(MTFopr(t))/c.

Proof. For the first part of the inequality, observe that from round t — 1 to round ¢, MTFgpt
only moves element ¢; towards the beginning of the permutation. The latter implies, that
for all elements j # e, 06; < zx;_l. For the second part of the inequality, observe that if

-1 _

Ko,

0, then by the definition of the coefficients, e; does not belong in the first ¢ positions
(of MTFQpt’s permutation) at round t — 1. Since at round t, MTFgopr moves ¢; in the first

position of the list, MovingCost(MTFopr(t)) > ¢ O

Notice that the overall access cost of both MAE and MTFqpr is just m since at each round ¢
both of the algorithms admit an element, covering S¢, in the first position of the permutation.

As a result by setting ¢ = v/n/r and applying Lemma 3.13,

Cost(MAE) = AccessCost(MAE) 4+ MovingCost(MAE)

m
= m+r Z ki
=1
m
< m+2r2y/n )" MovingCost(MTFopr(t)) + ®(0) — ®(m)
=1
< 21”3/2\/ﬁ . COSt(MTFOPT) + CI)(O) — CIJ(m)

< 213/2\/n Cost(MTFopr ).

The first inequality follows from inequality (3.7). The last inequality follows from the fact
that ®(0) < ®(m) since at round 0 the permutations of MAE and MTFqpr are the same.
We complete the section with the proof of Lemma 3.14, stating that Cost(MTFopr) <
2 - Cost(OPT gynamic)-

Lemma 3.14. For any sequence of requests (S1,...,Sm),
COSt(MTFOPT) <2- COSt(OPTdynamic)

Proof. To simplify notation, let x; and y; respectively denote the permutations of MTFgpt
and OPTgypamic at round t. We will use as potential the function ®(t) = dxr(xt,y:) ie.
the number of inverted pairs between the permutation x; and y;. Let L; denote the set of
elements that are on the left of ¢; in permutation x; and on the left of ¢; in permutation y;.
Respectively, R; denotes the set of elements that are on the left of e; in permutation x, but

on the right of ¢; in permutation ;. Clearly, at round ¢, MTFopt pays L; + R; for moving
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cost and 1 for accessing cost. At same time, OPTgynamic pays at least Ly + 1 for accessing

cost and dgr (Y, Y1) for moving cost.

Cost(MTFopr) + ®(t) — @(t — 1) Lt + R + 1+ dxr(xt, y¢) — drr(xr-1,Yt)

+ dxr(x—1, ) — drer (X1, Yi-1)
< Li+Ri+1+ (Li—Ry)

+ drr(xe-1,y¢) — der (X1, Y1)
< 2-(Le+1) +drr(ye, ye-1)

The first inequality follows by the definition of the of the sets Ry and L, while the second
by the triangle inequality in the Kendall-tau distance dgt(-, -). The proof is completed by
summing all over m and using the fact that dx(xg, yo9) = 0. O

Next, we show an almost matching lower bound. The lower bound is based on a complicated
adversarial request sequence; we sketch the main ideas. Let k be an integer. During a phase

we ensure that:

1. There are 2k “important” elements used by OPT; we call them e, ..., ey. In the
beginning of the phase, those elements are ordered in the start of the optimal permu-
tation 7t*, i.e., 7T* [ej] = j. The phase contains k consecutive requests to each of them,
in order; thus the total number of requests is &~ 2k?. OPT brings each element ej at
the front and uses it for k consecutive requests; thus the access cost of OPT is 2k2
(1 per request) and the total movement cost of OPT of order ®(k?). Over a phase of
2k? requests, OPT incurs an overall cost @ (k?), i.e., an average of O(1) per request.

2. The first k + r — 2 positions of the online permutation will be always occupied by the
same set of “not important” elements; at each step the r — 2 last of them will be part
of the request set and MAE will move them to the front. Thus the access cost will
always be k + 1 and the total cost more than (r + 1) - k.

The two properties above are enough to provide a lower bound Q)(7 - k); the optimal cost
is O(1) per request and the online cost Q(7 - k). The goal of an adversary is to construct a

request sequence with those two properties for the largest value of k possible.

The surprising part is that although MAE moves all requested elements towards the be-
ginning of the permutation, it never manages to bring any of the “important” elements
in a position smaller than r 4+ k — 2. While the full instance is complex and described in
the full version, at a high-level, we make sure that whenever a subsequence of k consec-
utive requests including element e; begins, ¢; is at the end of the online permutation, i..,
7tle;] = n. Thus, even after k consecutive requests where MAE moves it forward by dis-

tance k, it moves by k? positions; by making sure that n — k* > r 4+ k — 2 (which is true for
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some k = )(4/1)), we can make sure that e does not reach the first r + k — 2 positions of

the online permutation.

Lower bound. Next, we prove the following theorem showing a lower bound on MAE,

which nearly matches its upper bound.

Theorem 3.5. For anyr > 3, the competitive ratio of the Move-All-Equally algorithm for the
dynamic online Min-Sum Set Cover problem is Q) (r+/n).

The constructed request sequence (S, ..., Sy) will have the following properties:
1. The size of every request Sy is r > 3.
2. Every request forces the algorithm to pay an access cost of Q(1/1).

3. The request sequence contains Q(ﬁ) consecutive requests that share a common

element, which we call the pivot.

The first two properties ensure that MAE will pay Q)(r1/11) moving cost on every request.
The third property will enable the optimal dynamic solution OPTgypamic to pay 1 access

cost for the consecutive requests that share the common element.

Before proceeding to formal details of the proof of Theorem 3.5, we will present the main
ideas of the construction. To this end, let 779 be the MAE’s initial permutation and think of it
as being divided into k + 2 blocks. The first block contains k 4+ — 1 elements and all other
blocks contain k elements, therefore n = k? + 2k +7 — 1. The “important” elements, which
the optimal dynamic solution uses to cover all requests, are the elements of the second and
last block initially. Meaning that the optimal dynamic solution can cover all requests using
only the 2k “important” elements. Figure 3.1 depicts the structure of the initial permutation

for k = 3 and v = 3, where “important” elements are colored red and green.

Block 1 Block 2 Block 3  Block 4  Block 5

FIGURE 3.1: The structure in blocks for k = 3 and ¥ = 3. Blocks are drawn
with thick red borders. The elements that uses the optimal dynamic solution
to cover the request sequence are colored green and red and lie in the second

and last block initially .

The following definition formalizes the concept of blocks discussed above. Blocks are de-

fined in terms of the indices of the permutation.

Definition 3.15. Let 7T = (71, ..., 7Ty) be a sequence of permutations, where each permu-

tation has sizen = k> + 2k +r — 1. We divide each permutation into k 4 2 consecutive
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FIGURE 3.2: The permutation of MAE before the start of a round and after k
rounds, for k = 3 and » = 3. The elements of the second block have moved
to the last block and vice versa.

blocks by, by, . . . by o, where a block is a set of consecutive indices in each permutation with
b1l = k+r—1and |by| = |b3| = ... = |bxia| = k. Therefore, by = [1,...,k+r —1]
andb; = [(i—1)k+r,...,ik+r—1], for2 <i <k+2.

For ease of exposition, we will divide the analysis in phases, which are subdivided in rounds.
The first round starts with the request S1, which contains the last element of the permu-
tation 71g (pivot;) of the MAE algorithm and ends when pivot; arrives in position k 4 7.
Inductively, at the start of a round j, S j contains the last element of permutation 71; and
lasts until this element arrives in position k 4 7. A phase ends after 2k such rounds and a

new phase begins. Formally:

Definition 3.16. A phase defines the period, starting with k elements in block by and k el-
ements in block by, and ending after 2k rounds of requests with these elements back in the
blocks, where they started. A round j starts when the adversary requests the last element ,
denoted as pivot;, of the current permutation of MAE (with index k? 4+ 2k 4+ r — 1) and ends
when MAE places this element in the first position of the second block by (with index k + ).
The duration of the round is the number of requests from the start of the round until the end of
the round and will be k + 1.

In order to describe the request sequence, we give the color green to k elements and the
color red to k other. These are the elements, used by OPT gypamic and every request contains
one of them. The rest of them are colored black. Let all the green elements be in the second
block (by) and all red elements be in the last block (g ) initially. The request sequence
may seem complicated, however its constructed following two basic principles. The first is
to decrease the position of the pivot element (which is initially red) by k in the permutation
and the second is to increase the position of the k green elements by one on every request.

This is easily achieved by requests S; of the form:

~

St = {m(k+1),...,m(k+r—2),element succeeding the green block, pivot}
(. 7 N~

black black red
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Then, at the end of round j, pivotj will be in the first position of the second block and
the green elements will be in block j 4 2. After k rounds, all red elements will be in the
second block and all green elements will be in the last block, thus the adversary can repeat
the request sequence starting again from round 1. Figure 3.2 depicts the positions of the

“important” elements at the start of round 1 and at the end of round k.

The formal definition of the request sequence is shown in Algorithm 5.

Algorithm 5 Adversarial request sequence

Let S;; = [p1,...,pr| be the i-th request of round j, where py, ..., p; denote the indices
of the requested elements in the current permutation of MAE. The request sequence for k
consecutive rounds is (every round has k + 1 requests):

Round 1. The ith request of round 1, for 1 < i < k is:
Sn=Ik+1,....k+r—22k+r—1+i k> +2k+r—1— (i — 1)k

and the two last requests of round 1 are:

Su=1k+1,...,k+r—1,3k+r—1] and S 1)1 = k,...,k+r—22k+r—1].
Round j from 2 to k. The ith request of round j, fori ¢ {k —j+2,k+ 1} is:

Sij=lk+1,... . k+r=2,(+1)k+r—1+ik+2k+r—1—(i—1)k],

for the request i withi =k —j+21is:

Sl’]' = [k+1,...,k+1’—1,(j—‘r-1)k+1’—1]

andfori =k+1is:

S(k+1)j = [k,...,k+7—2,2k+7’—1].

Then, the request sequence starts again from round 1.

Notice that the last request of round j places pivot; in the first position of block by, just in
front of pivot elements of previous rounds. This way it is guaranteed that all k red elements
will be in by after k rounds. Moreover, at each round j > 1 there is a request (the (k — j +
1)th) that increases the positions of k — j 4 2 green elements by two, since they are passed
from both the element succeeding them and the pivot element (the other j — 2 elements
are passed only by the element succeeding the green block). Since, the adversary wants
all green elements to be in block j + 2 after round j, the next request does not move the
k —j + 2 green elements and the other j — 2 are moved because pivot; passes them (see

Figure 3.3).

The following lemma shows that MAE will arrive in a symmetric permutation after k

rounds.

Lemma 3.17. Let 7t be a permutation of definition 3.15 at the start of a round and let X =
{x1,%2,...,x} andY = {y1,y2,...,Yyx} be the elements in by and by, respectively before
the start of a round. Then, after k rounds, MAE has moved the elements of Y in block by and
the elements of X in block by 5.

Proof. We have to prove that after j rounds, j elements of Y will be in b, and all elements

of X will be in bj 5. Observe that the only way to increase the index of an element ¢ in
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a permutation by c is to move ¢ elements with higher index than e in the permutation to
positions with lower index than e (it increases by one if an element arrives at the position
of e).

Let pivot; be the pivot element of round j, which by definition is the last element in the
permutation at the start of a round. After k requests to pivot; involving also the (k + 1)th
element and elements in positions that do not increase the index of pivot;, pivot; moves a
total of k? positions to the left arriving in position 2k + r — 1 of the current permutation.
Then, the last request of this round will move it to the first position of by, moving the pivot
element of the previous phase to the second position of by. By construction of the request
sequence, pivotj is the jth element of Y requested so far. Therefore, at the end of round j, j

elements of Y will be in the first j positions of b, .

We now show that all elements of X will be in b]-+2 at end of round j. Particularly, we show
inductively that at the beginning of jth round all elements of X are in block b, 1 and MAE

moves all elements of X to block b;» when the jth round ends.

Induction Base: In the first round, k requests contain the element succeeding X, r — 2 ele-
ments in positions k + 1, ...,k + r — 2 of the permutation and an element, which has index
higher than k 4 r — 2 (which is pivot;) and does not change the positions of elements of
X. The (k + 1)th request does not change the positions of elements of X, since it contains
elements with lower index. Therefore, the algorithm moves all elements of X exactly k

positions to the right and they will be in b3 when round 1 ends.

Inductive Step: For j > 1, we have k — 1 requests, where each of them forces the algorithm
to move elements of X one position to the right. However, there is exactly one request S;;
withi = k — j + 1, where k — j 4 2 elements of X increase their positions by two. These
elements are passed by both the element succeeding X and the pivot element. The other
] — 2 elements are passed only by the element succeeding X, thus increasing their positions
by one. Therefore, the next request of the adversary (the k — j + 2-th) makes the algorithm
move pivot; and the elements in positions k + 1, ...k + r — 1, therefore moving only the
j — 2 elements of X one position to the right and the other elements of X remain in their

positions.

We conclude that at each round the elements of X move to the next right block. Since, they
are initially positioned in by, after k rounds they end up in block by, ». O
We are now ready to provide the proof of Theorem 3.5

Theorem 3.5. For anyr > 3, the competitive ratio of the Move-All-Equally algorithm for the
dynamic online Min-Sum Set Cover problem is Q(r\/n).
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Round 1 Round 2 Round 3

12345 678 91011 12 1314 151617 12345 67 8 91011121314 151617 12345 678 91011121314 151617

i=1 |.|.|.|.|.|.|.|.|..|.|.|..|.l:|.| i=1 |o‘o‘o‘o‘o|o‘o‘oloo‘olo‘o‘olo‘o‘ol i=1 |o|o|o|o|o|o|o|o|oo|o|o|o|o|o|o|o|
12345 67 8 9101112 1314 151617 12345 678 91011121314 151617 12345 678 9101112 1314 151617
=2 |.|.|.|.|.|.|.|.|.|.|.|.|..I.|.|.I i=2 |.‘.‘0‘.‘OIO‘.‘.IO.‘.l.‘.‘.l.‘.‘.l i=2 Io|o|o|o|o|o|o|o|oo|o|o|oo|o|o|o|
12345678 91011121314 151617 12345 678 91011121314 151617 12345 678 91011121314 151617
O e e e e e AR o e s e o IR e o e 2o 3
12345 678 91011 12 1314 151617 12345 678 91011121314 151617 12345 678 91011121314 151617
B e e, o e e AR o e o e o IR e e e 2

FiGuUre 3.3: Execution of MAE on the adversarial sequence for ¥ = 3 and
k = 3. The requested positions in the list have yellow background and the
arrows indicate the positions of the elements after every request. For round
j > 1, the ith request with i = k — j + 1 makes MAE increase the position
of k — j + 2 green elements by two. The next request is such that only the
j — 2 remaining green elements increase their position by one.

Proof. We compute the costs paid by MAE and OPT gynamic after k rounds of a phase, since

the request sequence of Definition 5 is then repeated.

First, we bound the optimal cost. Initially, the optimal solution incurs a moving cost O(k - 1)
to move the 2k elements of b, and by, in the first 2k positions of its permutation. Then,
at the start of round j, it brings pivot; to the first position and incurs an access cost of 1
for k 4 1 consecutive requests. So, after k rounds it pays at most 2k moving cost plus
k- (k+1) access cost, which sums to at most 4k

We now account the online cost. MAE pays 7 - k for the first k requests of each round and
r- (k — 1) for the last request. So, the total cost for k rounds is 7 - k - (k> +k — 1) > r- k.
From Lemma 3.17, all elements of by are in by, and all elements of by, are in by after k

rounds.

The adversary can repeat the same strategy to create an arbitrarily long request sequence.

Let [ be the number of times the same k-round strategy is applied. We get that

Cost(MAE) l-r-k3

> .
Cost(OPTgynamic) ~ 4l -k? +O(k - n) = O0F)

The result follows for [ — oo and k = Q(y/n).
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4 The Online K-Facility Reallocation

Problem on the Line

4.1 Introduction

In this chapter, we study the online variant of the K-Facility Reallocation problem on the

real line and we focus mostly on the special case with K = 2 facilities.

Our first result is a lower bound of K for the online K-Facility Reallocation problem. We

prove the following theorem, by constructing a reduction to the K-server problem.

Theorem 4.1. Every c-competitive deterministic algorithm for the K-Facility Reallocation

problem can be turned to a c-competitive deterministic algorithm for the K-server problem.

Theorem 4.1 demonstrates that K-Facility Reallocation is harder than K-server. Since K-
server has a lower bound of K in the deterministic competitive ratio, the same is also true
for K-Facility Reallocation. From a technical viewpoint, the K-Facility Reallocation problem
poses a new challenge, since it is much harder to track the movements of the optimal algo-
rithm as the clients keep coming. It is not evident at all exactly how ideas from the K-server
problem can be applied to the K-Facility reallocation problem, especially for more general
metric spaces. As a first step towards this direction, we design a constant-competitive al-

gorithm, when K = 2.

Theorem 4.2. For K = 2, there exists a O(1)-competitive algorithm for the K-Facility Real-

location on the real line.

Our algorithm appears in Section 4.3 and is inspired by the double coverage algorithm pro-
posed for the K-server problem [54]. The online algorithm performs two steps at each stage.
In Step 1, facilities are initially moved towards the positions of the clients. The purpose of
this step is to bring at least one facility close to the clients. In Step 2, our algorithm deter-
mines the final positions of the two facilities. The algorithm decides if it will serve the clients
with one facility or if it will use both facilities taking into account the tradeoff between the

resulting connection and moving cost.
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4.2 Lower Bound for Online K-Facility Reallocation

In this section, we prove that the online K-Facility Reallocation problem has a lower bound

of K.

We start with the observation that the online K-Facility Reallocation problem with K > 2
facilities is a natural and interesting extension of the classical K-server problem, which has
been a driving force in the development of online algorithms for decades. The key difference
is that, in the K-server problem, there is a single client that changes her location at each
stage and a single facility has to be relocated to this new location at each stage. Therefore,

the total connection cost is by definition 0, and we seek to minimize the total moving cost.

The idea is to show that any algorithm for the K-server problem can be turned to an algo-
rithm for the online K-Facility Reallocation problem with the same competitive ratio. Since
the K-server problem has a lower bound of K, the same holds for the online K-Facility

Reallocation problem

Theorem 4.1. Every c-competitive deterministic algorithm for the K-Facility Reallocation

problem can be turned to a c-competitive deterministic algorithm for the K-server problem.

Proof. Consider an instance I of the K-server problem with requests rq, ... 77 on the line.
We construct an instance I’ for the K-Facility Reallocation problem with 2 clients on the
same metric with requests r7, . .., 77, where each / is an 2-dimensional (1 = 2) of the form
rg = (rt, rf), 1 <t < T. This essentially means that, at each round ¢, 2 clients are requested

on the location on the line, where the request of the K-server problem for round ¢ lies.

Now assume that we run a c-competitive algorithm ALG’ for the K-Facility Reallocation
problem problem on the instance I’. ALG’ can be transformed to an algorithm ALG for
the K-server problem as follows: Let f; denote the facility in I, which is closer to 7} than
any other facility and let s; be the corresponding server in I. Then, this server moves on r¢
to serve it and then returns to the position, where f; lies (f; may serve r; from a distance).

All other servers are moved to the positions of their corresponding facilities.

Since the initial positions of facilities in I’ and the servers in I are the same, all the servers
will be on the same positions on the line as their corresponding facilities at the end of each
round. Next, we analyze the costs paid by ALG and ALG' at each round t. All servers
except s; will move the same distance with their corresponding facilities, thus the cost paid
for them is the same for ALG and ALG'. Regarding f;, assume that it moves a and connects
r} from distance b. Then it pays a + 2b overall to serve both clients. Additionally, the request
r} is at distance 4 + b from f; at the start of round t. Then, s; will pay a + b for moving s;
on the corresponding request 7; and then b to move s; to the position of f;. Therefore, the
cost paid for all servers of ALG at each round is the same with the cost paid for all facilities
of ALG'. Let OPT} and OPT} denote the optimal solutions of I and I’ respectively. Since
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any feasible solution for I is feasible for I’, we have that OPT;; < OPT} and therefore
Cost(ALG) = Cost(ALG") < ¢ - Cost(OPTy) < c- Cost(OPTy).

]

The next section is dedicated to prove Theorem 4.2. The constant in the competitive ratio
is 63 and although it is possible to improve the competitive ratio of Algorithm 6 by a much
more technically involved analysis, we stress here that it is not possible to turn the result
into any constant factor, since the previous result rules out the existence of a deterministic

algorithm for the 2-Facility Reallocation problem on the line with competitive ratio lower
than 2.

4.3 A Constant Competitive Algorithm for the Online
2-Facility Reallocation Problem

In this section, we present a constant competitive algorithm for the online 2-Facility Real-

location problem and we discuss the core ideas that prove its performance guarantee.

The online algorithm, denoted as Algorithm 6, is inspired by the double coverage algorithm
proposed for the K-server problem [54]. The double coverage algorithm solves the K-server
problem on the line optimally in the sense that it achieves a competitive ratio of K, matching
the lower bound for this problem. This simple algorithm performs one of the following steps

based on the relevant positions of the facilities and the single client:

« If the client is located between two facilities, then it moves these facilities with the

same speed towards the client until the closest one of them reaches the client.
« Else, the closest facility is moved on the client.

Notice that the double coverage algorithm moves at most 2 facilities towards the client. This
helps us design the first step of our online algorithm for 2-Facility Reallocation problem,

which performs the following two basic steps.

In Step 1, facilities are initially moved towards the positions of the clients. This step is also
performed by the double coverage algorithm with one major difference. That is, we now
have n clients, which define the interval [txﬁ, tx,tq]. Thus, this step ends, when we reach the
leftmost (a}) or the rightmost (/) client. We remark that in Step 1, the final positions of
the facilities at stage t are not yet determined. The purpose of this step is to bring at least
one facility close to the clients. Note that this step is not performed if a facility is already

inside the interval [a}, a] at the beginning of stage f.

In Step 2, our algorithm determines the final positions of the facilities x}, x5. After Step 1,

at least one of the facilities is inside the interval [a},a},], meaning that at least one of the
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facilities is close to the clients. As a result, our algorithm may need to decide between
moving the second facility close to the clients or just letting the clients connect to the facility
that is already close to them. Obviously, the first choice may lead to small connection cost,
but large moving cost, while the second has the exact opposite effect. Roughly speaking,
Algorithm 6 does the following: If the connection cost of the clients, when placing just one
facility optimally, is not much greater than the cost for moving the second facility inside
[oci, a! ], then Algorithm 6 puts the first facility to the position that minimizes the connection
cost, if one facility is used. Otherwise, it puts the facilities to the positions that minimize
the connection cost, if two facilities are used. We formalize how this choice is performed,

introducing some additional notation.
Definition 4.1.
e C; = {txﬁ, ..., &t} denotes the positions of the clients at stage t ordered from left to
right.

o IfC is a set of positions with |C| = 2k, k € IN~, then M¢ denotes the median interval
of the set, which is the interval [, /2, &, /211]. If |C| = 2k + 1,k € Ny, then Mc is a

single point.

e H(C) denotes the optimal connection cost for the set C when all clients of C connect to
just one facility. That is H(@) = 0 and H(C) = Y ,cc |a — Mc
single point. In case Mc is an interval, then H(C) = Y ,cc | — b

, in case M¢ is a
, where b, € Mc

and is the nearest point from «.

» CJ; (resp. C5,) denotes the positions of the clients that connect to facility 1 (resp. 2) at
stage t in the optimal solution x*. Cy; (resp. Cy;) denotes the positions of the clients that
connect to facility 1 (resp. 2) at stage t in the solution produced by Algorithm 6.

With this notation, we are ready to present our algorithm for online 2-Facility Reallocation

problem.

4.3.1 The Online Algorithm and a Near Optimal Solution

In this subsection, we present Algorithm 6, which can be seen as a generalization of the dou-
ble coverage algorithm due to the following two reasons. First, it does not necessarily place
a facility on the position of the client, since it may connect him (or multiple clients) from a
different position. Furthermore, the decisions made by the algorithm have also to take into
account the connection cost incurred. Therefore, Step 2 of Algorithm 6 tries to achieve a
balance between the moving cost and the connection cost in order to be competitive with

the optimal offline solution.

We first mention that Algorithm 6 seems much more complicated than it really is (the first

two cases are symmetric both in Step 1 and Step 2). In fact, only the last two cases are
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difficult to handle and we explain them subsequently. The performance guarantee of Algo-

rithm 6 is formally stated in Theorem 4.2.

Theorem 4.2. Let x = {x}, x5 };>1 the solution produced by Algorithm 6 and x* the optimal
solution. Then,

Cost(x) < 63 - Cost(x*) + |x¥ — x|,

where xg, xg are the initial positions of the facilities.

Algorithm 6 Selecting x| and x}

At stage t > 1 the new client positions C; = {txﬁ, ...,al} arrive
Step 1: Moving the facilities towards the clients
Z1 xifl, Zy — xéﬁl
o If z; > al, move facility 1 to the left until it hits a!;: zq < o)
o Ifzp < oci move facility 2 to the right until it hits acﬁ: Zp — zxi
o If 21 < zxi and z; > af, move facility 1 to the right and facility 2 to the left until a
facility hits [a!, a,]:
z1 < z1 +min(|xd !t —ad |, [xb 7t — o))
zp < zp — min(|xd 7t —ad|, [xb 7T — &)
Step 2: Selecting the final position of the facilities
. Ifaf <z <af andz; —af, > 3H(Cy):
put facility 1 to the median of Cy: x} + Mg,
move facility 2 to the left by 3H(Cy): x5 < zp — 3H(Cy)
 Ifad <z, <aland o) — 2z > 3H(G):
put facility 2 to the median of Cy: xb + Mg,
move facility 1 to the right by 3H(Cy): x} < z1 + 3H(Cy)
« Else Compute the partition (O1,0,) of C; that minimizes the connection cost at stage
t. Put facility 1 to the median of Op and facility 2 to the median of Os. xﬁ —
Mol,XE — Mo2

First, we present Lemma 4.3 that is a key component in the subsequent analysis and that

reveals the real difficulty of the online 2-Facility Reallocation problem.

Lemma 4.3. Let the optimal solution be x* and let C,, C5, be the set of clients that connect
at stage t to facilities 1,2 respectively . Let the solution y' = (yﬁ, yb) be defined as follows:

MC;& lfcltt 75 D

Vi =
g fC =0

Then, the following inequality holds:
T 2

Yo | Y IH(CH) + Iy — v 'l]| < 3 Cost(x).
=1 Li=1
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Proof. Since YI_; Y7_, H(C})) = YL Y2 Yaecy, | |x;* — a|, we only have to prove that

T 2
ZZM( 1|<ZZZ[ th‘|‘|xk _xkt 1@
t=1k=1

t=1k=1

From the triangle inequality, we have that

T 2 T 2
DD S O DI (17 Al R VA v B YA v
t=1k=1 t=1k=1

t and y = x;;t ! then the right hand side of the inequality is simply the

*

Ify, =
optimal movmg cost, which is at most Cost(x*). If yt # x}! for k = 1,2, namely when

i+ 7 ©, then we can bound the quantity Zthl Zi:l | yk — xkt | by the optimal connection
cost. Since y} is the median client (lies in the median interval of C}, in the case |C},| = 2k)

of CZt in this case, we have that

LY bi-s< LY ¥ ool < L3 HG)

t=1k=1 t=1k=14a€Cy,

Since the same arguments hold in the case y e x*t ! for k = 1,2, we have that:

T 2 T 2
ZZ[|}/£-X?I+I}/$1—XZH!§2ZZ (Cie)-
t=1k=1

t=1k=1
[

Lemma 4.3 indicates that the real difficulty of the problem is not determining the exact
positions of the facilities in the optimal solution, but to determine the service clusters that
the optimal solution forms. In fact, if we knew the clusters Clt/ 54> then Lemma 4.3 provides
us with a 3-approximation algorithm. Obviously, this information cannot be acquired in the
online setting, since Cj,, C5, depend on the future positions of the clients that we do not
know. We prove that Algorithm 6 has an approximation guarantee of 21 with respect to
the solution v, that directly translates to an approximation guarantee of 63 with respect to

Cost(x*). The latter is formally stated in Lemma 4.4 and is the main result of this section.

Lemma 4.4. Let x = {x}],x}}i>1 be the solution produced by Algorithm 6. Then, the cost

paid by solution x at stage t, Y5y |xt — xt 1 + Y1 ming_q » |x} — a!
2 b -1 t t—1
21 ) [H(CE) + i — v 11+ @e(x') = @pa (x7),
k=1

where @4 (x1,x2) = 2(|x1 — yi| + |x2 = y5]) + 21 — x2].
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Lemma 4.4 directly implies Theorem 4.2 by applying a telescopic sum over all  and then
applying Lemma 4.3. Notice that the additive term |x? — xg | in Theorem 4.2 depends only
on the initial positions of the facilities and follows from the fact that ®p(x?) = [x{ —
xg\. Note that the additive term is a constant independent from the request sequence (the
client positions C;). As the request sequence grows, the additive term becomes negligible,
therefore it is common to define the competitive ratio of an online algorithm in such a way
[59, 55].

4.3.2 Bounding the Cost of the Online Algorithm

In this subsection, we present the proof ideas of Lemma 4.4, which come together with

explaining Steps 1 and 2 of our algorithm. Let us start with explaining Step 1.

We remind that Step 1 is performed by Algorithm 6 if both facilities are outside the interval
Ct at the beginning of stage t. Then, either both facilities are on the same side of C; or one of
them is on the left and the other on the right. Therefore, the online algorithm distinguishes
between the three cases depicted in Figure 4.1 (We show 2 cases since the case with both
facilities on the right of the clients is symmetric to the first). Notice that moving with the
same speed towards the interval [a}, a!,] results to the same moving cost for both facilities;

both facilities will move the distance of the facility which is closest to its closest client.

The following lemma bounds the online cost paid after the execution of Step 1. First, note
that since x(l) < xg, then xi < xé by our algorithm construction. Now, assume that xé_l <
ocﬁ (second case). Before deciding the exact positions of the facilities, we can safely move
facility 2 to the right until reaching ). The term safely means that this moving cost is
roughly upper bounded by the moving cost E%:l ] ylt{ — yltc_l\. This safe moving applies to
all three cases of Step 1 in Algorithm 6 and is formally stated in Lemma 4.5.

Lemma 4.5. Let z = (z1,2) denote the values of the variables z1,z; after Step 1 of Algo-
rithm 6. Then,

2 2
Yo lze = <2 vk — vy = Del(z) + @ (6.
k=1 k=1

Proof. Assume that xé_l < 045, then Algorithm 6 will first move facility 2 to txﬁ (z1 =

xi_l, zp = &), paying moving cost equal to |a} — xé_l\. This moving cost can be bounded
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with the use of the potential function ®. More specifically, we have that:
Oi(z) — D1 (x7) = By(2) — Dp () + D2 — Dy ()

2
= Qi(z) — Q") +2 ) (i — 7 =y =2

k=1
2
< Py(z) =P +2 ) Iy — vl (4.1)

k=1
In the considered case z; = xi_l, zp = al, the difference ®;(z ) — @;(x!1) in the potential
function equals the quantity 2(|y5 — af| — |yb — x2 )+ —ad | — [T = xb 1 By
the definition of solution y in Lemma 4.4, either i or 4 lies in the interval [a},al,]. Since
either yl or y lies in the 1nterva1 [al, az] and y1 < yz, we have that al < yz Meamng that
zp is closer to i/ than x5! and consequently 2(Jyh - a1| —|yh —x571)) = —2|x —all.
Therefore, Oy (z )—CI)t( D= —2[xbt —al |+ |« —ad| — |2t —x2 = —|al -

t—1| — |Z _ x2

Notice that inequality (4.1) holds for all three cases of Step 1. Thus, one just need to prove
that ®(z) — ®;(x'"1) < — Y7, |zx — x} '] for the other two cases. We prove it for the

third case of Step 1, since the second case (x1 I>y t) is just symmetric to the first case.

In the third case of Step 1, we have that x ™1 < af, x5™1 > 4,z = x/™! + min(|x! ™! -
al|,|x51 —at]) and zp = x5t — min(|x! —at|, |xi 7! — al)|). The difference ®;(z) —
®;(x*71) in the potential function equals the quantity 2(|z1 — y§| - |xt_1 — Y|+ |z2 —
=

vhl = x5 = yhl) + |21 —zof =[x — x5 Now, |21 — zo] - [x] ! — x5
al|, |x5 Tt —at|) = — Y2 |z — xt | Assume that v} € [af,a ] then y2_ 1(|zk —yt -
o = wil) < Osince |z —yi] =[x — 4| = —min(|x{™! — aj], ;7" — af]) and
20 — yb| — &b —yh| < min(|x§*1 —at],|xbt —ah]). As a result, inequality (4.1)

holds. Using the same argument in case y5 € [a}, a!,] completes the proof. ]

The proof of Lemma 4.5 reveals why we compare our algorithm with the solution y and not
directly with x*. All these safe moves are based on the fact that either ¥} or y lies in the
C = [aﬁ,tx,ﬁ] (the latter does not necessarily hold for x*). Finally, the potential function
®;(x1, x7) is crucial, since it permits safe moves, when all clients are on the right/left of the

facilities (first/second case) as well as when they are contained in the interval [x] i1 , X5 4

(third case).

It is clear, that any reasonable algorithm will move at least one facility inside C; in order to
serve the clients. Lemma 4.5 shows that this moving cost can be charged to the difference
—®;(x'71) + ®4(z) in the potential function. Now, we will show that we can charge the
cost of the second step of Algorithm 6 to the difference ®;(x") — ®;(z). In Step 2, we need

to bound the connection cost plus some additional moving cost from the point where the

= —2min(|x} !
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=
_
Q‘ﬂ-

t—1 t—1
1 )
If both facilities 1 and 2 are on the left of the clients, then facility 2 is

moved to the right until hitting the position of the leftmost client (the
case with facilities 1 and 2 on the right of clients is symmetric).

t t
061 ay
X ¢ —0 oo o X
t—1 t—1
x1 xz

If facility 1 is on the left of the clients and facility 2 is on the right of
the clients, then both facilities are moved with the same speed towards

the interval [af, a!

!] until one of them hits the interval.

FIGURE 4.1: Step 1 of Algorithm 6 is depicted. After this step, the positions of
the facilities are denoted by z1, z in Algorithm 6.

safe move stopped. This is the step, where the final positions of the facilities are determined
and also the most challenging one in the analysis, since Algorithm 6 has to decide whether
it will serve the clients using both facilities (one of them will definitely serve some of the

clients) without knowing what the optimal solution does.

Before we prove the guarantees of Step 2, we will explain the cases exhibited in this step
in high level (see Figure 4.2). In the first case, where the second facility is close to Cy,
the online algorithm serves the clients using both facilities. Then, Algorithm 6 will pay
optimal connection cost and small moving cost, since the first facility is already inside C;
and the second is close to C;. In the second case, where the second facility is far from C;,
the clients are served with one facility and the second facility is moved by an appropriate
distance towards C;. In this case, the optimal connection cost can be arbitrarily smaller
than the connection cost of our online algorithm. However, moving the second facility by
an appropriate distance decreases ®;(x!) — ®;(z) so as to cancel the cost incurred by the

online algorithm.

We are now ready to prove Lemma 4.6, which formalizes the guarantees provided by Algo-
rithm 6 after the execution of Step 2. Algorithm 6 keeps a balance between the moving cost
of the facilities and the connection cost in order to be competitive with the optimal solution

as will become apparent from the analysis.

Lemma 4.6. Let x! = (xi, x5) denote the locations of facilities at stage t after the execution
of Step 2. Then,

I;[H(th) + [k — zl] < 21}{_21H(Cl>ckt) — ®(x') + Di(2).
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X1 Z3

The first choice of Step 2 is depicted. In this case, the facility initially
lying inside the interval [a},a!,] moves to the median of clients. In this
position, the connection cost is minimized using one facility.

(14 14
t

Z1 X1 X

=

C

-1
X

The second choice of Step 2 is depicted. Facilities are placed to the po-

sitions, where the connection cost of the clients is minimized using two
facilities.

FIGURE 4.2: Step 2 of Algorithm 6 is depicted.

Proof. Observe that by Algorithm 6, either aﬁ <z; < afl or aﬁ <zp < afq. As a result, we

need to prove the claim for the following 4 cases:

e a1 <z <ayandzy —a, >3H(C

IN

)
e a1 <zy <a,andz; —a, <3H(C;)
)

(
o a1 Z7 <ay, and a1 — 21 > 3H(Ct
(

IN

e a1 <zy<a,anda; —z; < 3H(C)

We will prove just the first and the second case since the third is symmetric to the first
and the forth is symmetric to the second. In case a7 < z1 < g, and zo — a, > 3H(C;),
Algorithm 6 puts facility 1 in the median of C, namely x| = M, (or x} € M, in case the
number of clients is even), and moves facility 2 to the left by a distance of 3H(C) as can

be seen below.

> 3H(C;)
n I
z1 xd xh Z4)
3H(Ct)

First note that Y >_; H(Cy) < H(C;) since x! € Mc,. Then |x} —z;| < |2t —af| <
H(C;) because both x} and z1 lie in the interval [a}, a!,] and |x} — 25| = 3H(C}) by Algo-
rithm 6. Therefore, we have that the cost of the online algorithm is Y"2_; H(Cy;) + |x} —
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zx| < 5H(C¢). By the geometry of this case and the aforementioned bounds,

I
gl

Dy (x') — Py(z) (Ixp — vil = |2k — yil) + |2} — xh| — |21 — 2o

(I

.
I
—_

IN
N
Nl

=
Rall

— il — |z — vil) — 2H(Gy).

i
—_

Since
2

Z th + |Xk — ZkH < 5H(Ct)

bounding the term
2

Y (k= il = |zic = wil)

k=1

by the optimal connection cost Ei:l H(C;,) is now the challenge. The real difficulty arises
when Cy; # @ and Cy; # @, where Y 7_, H(Cy;) can be arbitrarily smaller than H(C;).

As we will see in this case (see also the figure below) x! gets closer to y’ and the term

Y% 1 (It =yt — |zx — yi|) becomes negative.

> 3H(Cy)
ay T @, o
Yy Y Y X5 22
3H(Cy)

Since Cy;, # @ and yj € Mc;, we get that y5 < aj, and as a result [x — y5| — |22 — y5| =
|xb — za] — 3H(Cy).

2
Py (x) — Dy(z) <2 2 (Ixg — vil =z — vil) —2H(Cy)

=2 (|} =i — |21 = ¥i]) + 2 (|5 — 22| — |22 — y3|) — 2H(Cy)
< 2|} —z1| — 8H(Cy)
< 2H(Ct¢) —8H(Cy)

< —6H(Cy)
2 2

<Y H(Cy) — Y_[H(Crr) + x5 — ztl].
] ]
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Now, assume that C}, = @ or C}, = @ meaning that Y"2_; H(C},) = H(Ct). As aresult,
bounding everything by H(C;) serves our purpose. More formally,

©
O
N
N
e

<I>t(xt) — (

— il = |z — vil) —2H(C)

=
Il
—_
=
e

| — 2l — 2H(Ct)

IA
N
gl

VAN
(@)Y
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O»—\
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§
?
~
|
N
x>

N

The fourth inequality follows from the fact that Y">_; H(Cy;) + |x} — zi| < 5H(Cy).

We now need to treat the second case where a1 < z1 < a, and zp — a,, < 3H(Cy). Since
Algorithm 6 computes the optimal clustering (Cy¢, C;) and puts x} in the interval Mc,,
and xé in the interval Mc,,, we are ensured that the connection cost of our solution is less
than the connection cost of yf, Y'2_; H(Cy) < Y2, H(C},), so we are mostly concerned
in bounding Y7_; |x — z|.

<3H(G)

t Z2

The easy case is when Y7_; H(C},) = H(C;). A small difference with the previous case
is that we don’t know how |x}, — z;| is. However, zq, x!, x5 € [ai, ...ab] and |xh — zo| =
x5 — | + |aj, — za]. xp — |+ |x; —ay| < H(C), (Ct) and
therefore Yz ;[H(Ci) + |xt — z¢|]] < 5H(C;). So we can again bound everything by
H(Cy).
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2
D (x') = Pi(z) =2 ) (I — vil — [z —yil) + 31 — 23] — 21 — 22
k=1
2
<3Y v~z
k=1
2 2
<4) |xe =zl = ) Jxg — 2z
k=1 k=1
2
< 20H(Ct) — Y [Iaf — zl]
k=1
2
<21 z H(Cy) — Y [H(Ci) + |xp — 2zl -
k=1 k=1

Things become more complicated, when the connection cost 2%21 H(C},) isrelatively small
(Cij; # @ and C3; # @), where bounding everything by H(C;) does not work. However,

the solutions x! and y’ will be relatively close in this case. More formally,

2
De(x') = Pe(z) =2 ) (I — il — lze — wil) + [x1 — 23] — |21 — 2o

2 2 2
Yol =yl —2) lze— el + ) | — 2
pa =1 ]
2 2 2
Yok —yhl+2 Y (k= zel — |z — k) — Y [xf — 2k
- =1 -
2 t t 2 t
4Y | —yl = Y [xg — 2zl
k=1 k=1

We need to upper bound the distance 2%21 |x,t( — y]t(| Observe that in the solution x!, the
client at position aﬁ connects to the left facility (facility 1) and the client at position al,
connects to the right facility (facility 2), |x! — al| + |x, — a,| < Y2_, H(Cy). Since C}, #
@ and C3, # @, the same holds for the solution yt. As a result,

2 2
Py(x') — @i(z) <4 ) | —yill = ) Ixi — =l
k=1

k=1

2
<4(lq-al+ i —al+ o —al+ - al) = ) |x -2

<4) [H(Cu)+ H(C)] Z|xk—zk!
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]

This completes the proof of the performance of our online algorithm Algorithm 6 and con-

cludes this section.
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5 Competitive Algorithms for the
Online Dynamic Facility Location

Problem

5.1 Introduction

In this chapter, we study the online variant of the Dynamic Facility Location problem. We
present a randomized O(logm + log n)-competitive algorithm, where m is the number
of facilities and 7 is the number of clients. The algorithm produces a fractional solution,
in each timestep, to the objective of Dynamic Facility Location involving a regularization
function. Then, it rounds the fractional solution of this timestep to an integral one with the
use of exponential clocks. We complement our result by proving a lower bound of Q)(m) for
deterministic algorithms and lower bound of ()(log m) for randomized algorithms. These

lower bound results are summarized in the following theorem.

Theorem 5.1. The competitive ratio of any deterministic online algorithm is Q)(m) and the
competitive ratio of any randomized online algorithm against the oblivious adversary is Q)(log m)

for the Online Dynamic Facility Location problem, where m is the number of facilities.

Our first step to design a competitive algorithm for ODFL is to prove that ODFL fits in
the framework of [26]. This framework provides a general algorithm for solving online
problems, which satisfy certain types of time varying constraints, by using a regularization
technique from online learning that can also produce competitive solutions for dynamic
online problems (see also [27]). This seemed intractable using standard competitive analysis
methods, despite the significant differences between the fields of competitive analysis and

online learning.

In order to design the randomized competitive algorithm , we first express the offline Dy-
namic Facility Location problem as a linear program P (Figure 5.1a). Then, we apply the

following two algorithms at each round f.

1. Algorithm 7 (Regularization algorithm): It solves a linear program minimizing
the objective function of P modified to include a smooth convex regularization term

and obtains the fractional solution Sol(t).
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2. Algorithm 8 (Rounding algorithm): It rounds the fractional solution Sol(t) of

Algorithm 7 to an integral solution using competing exponential clocks .

Algorithm 7 solves online a linear program to produce a fractional solution at each round ¢
involving the current distance vector d;. This algorithm is essentially the general algorithm
presented in [26], which we adapt to ODFL. The performance of the general regularization
algorithm is proved by Theorem 1.1 in [26] for the case of time varying covering constraints.
Although we follow the same steps to prove the existence of a O(log m)-competitive frac-
tional solution for ODFL, where m is the number of facilities, we must also address the

presence of both covering and precedence constraints in ODFL.

Algorithm 8 is the randomized procedure that rounds the fractional solution provided from
Algorithm 7 to an integral solution. Our contribution here is that we use an appropriate
rounding which works favorably with Algorithm 7 so as to produce a solution, which is
O(log m + log n)-competitive for ODFL. The rounding algorithm makes use of competing
exponential clocks, which have been applied in many similar problems like the Dynamic
Facility Location problem [4] and the Online Set Cover with Service Cost problem [26].
Combining Algorithm 7 and Algorithm 8 we get the following result.

Theorem 5.2. There is a randomized algorithm which is O (log m + log n)-competitive for the
Online Dynamic Facility Location problem, where m denotes the number of facility locations

and n denotes the number of clients.

5.2 Lower Bounds

In this section, we prove lower bounds of deterministic and randomized algorithms for
ODFL. In both cases, the metric space is a star graph with a client lying on the center of the

star for all rounds.

The core idea of the proofs is to force the online algorithm to pay the switching cost at each
round. By carefully selecting the parameters of ODFL, we can prove that any determinis-
tic online algorithm is O(m)-competitive. For the randomized lower bound we use Yao’s
principle (see examples in Chapter 8 in [23]). Specifically, we choose a randomized instance
such that the expected performance of any deterministic algorithm against the optimal of-
fline algorithm is Q)(log m). By Yao’s principle, any randomized algorithm has the same

lower bound.

Theorem 5.1. The competitive ratio of any deterministic online algorithm is Q)(m) and the
competitive ratio of any randomized online algorithm against the oblivious adversary is Q) (log m)

for the Online Dynamic Facility Location problem, where m is the number of facilities.
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Proof. Let OPT denote the optimal cost and ALG denote the cost of an online algorithm. The
instance consists of a star graph with m edges and the number of rounds is T = m. Facilities
can only be opened in the leaves (a total of m leaves) and there is one client (n = 1) sitting
at the center of a graph for all rounds. The distance of every leaf j to the center is initially

d; = d. Then, the adversary has the following simple strategy at eachround1 < ¢ < T —1:

For every leaf j, such that the online algorithm connects the client to the facility in j, d;
becomes arbitrarily large. At round T the distances remain the same as in the previous

round.

Observe that there is only one leaf with distance d from the center of a star for all rounds.
The optimal offline solution just opens a facility at this leaf and connects the client to it for
all rounds, thus pays ¢ + Tf + Td. On the other side, any competitive online algorithm
will prefer to open a new facility at distance d and connect the client to this facility at the
start of each round instead of paying the large distance. Therefore, the cost incurred by any
online algorithm is at least T¢g 4+ T f 4 Td. By setting ¢ > d = f, we have that

ALG _ Tg+Tf+Td
> e e
ot = g1 TraTa (D) =0(m)

Turning to the randomized case, the instance consists of the same metric as the deterministic
case and the only difference is that we will use randomized adversarial requests. Then, by
showing that any deterministic algorithm has competitive ratio at least log m and by Yao’s

principle, we will prove the lower bound for randomized algorithms.

Now, the adversary chooses uniformly at random an edge e, which has length d (has not
yet become arbitrarily large) at each round 1 <t < T — 1 and makes its length arbitrarily
large. At round T, where only one leaf has distance d, the distances remain the same as in
the previous round. Again, the optimal solution uses the leaf in distance 4 at all rounds and

pays ¢ + T'f + Td. However, the expected switching cost of any competitive algorithm is:

T-1 T-1
1
IE[switching cost] = g+ ) _ Pr[switchesatround {]-¢ =g+ ) ————-¢>Hr-g
=1 mm—ttl

since at each round ¢ the edge that the algorithm uses becomes arbitrarily large with prob-
ability 1/(m — t 4 1). By setting ¢ > Td = Tf,

E[ALG] _ g-Hr+Tf+Td
> = = .
oFT = gaTrrTa  (UegT)=0logm)
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This concludes this section with the lower bounds. In the following sections, we present a
randomized algorithm for the ODFL problem with a nearly matching bound of O(log m +
logn).

5.3 The Regularization Algorithm

In this section, we show that the regularization algorithm of [26] can be applied to ODFL
and that it produces a fractional solution at each round, which is O(log m)-competitive,

where m is the number of facility locations. We will prove the following theorem:

Theorem 5.3. The Regularization Algorithm produces an O(logm)-competitive fractional

solution for the Online Dynamic Facility Location problem, where m is the number of facilities.

Before proceeding to the details of Algorithm 7, we first express the offline Dynamic Facility
Location as a linear program, denoted as P (Figure 5.1a). Algorithm 7 will solve a linear
program P* at each round, which will be constructed from P combined with a regularization
function. Finally, we will show that the fractional solution of P* is O(log m )-competitive
with respect to the solution of the dual program D (Figure 5.1b) of P, which serves as lower

bound on the optimal offline solution.

Now, we express offline Dynamic Facility Location as an integer program, which will be
relaxed to obtain the linear program P. Recall that T, n, m are the number of rounds, clients
and facility locations, respectively. The first term of the objective function is the total facility
opening cost, where f is the cost to open a facility. The second term is the total connection
cost, where d;(i, j) is the distance between facility 7 and client j in round £, and the third

term is the total switching cost, where each change of a client’s connection to a facility costs
g

We use the decision variables ¥, xf]. and th.]-, where i € [m],j € [n],t € [Ty} = 1if
facility i is open at round t and yf = 0 otherwise, xf]- = 1 if client j is connected to facility
lt.]. = 1 if client j was connected to facility i at round

t but not connected to the same facility 7 at round f — 1 and ij

of the variable ij is imposed from the third constraint, which expresses the switching cost.

i at round f and xfj — 0 otherwise, z

= ( otherwise. The value

The first constraint (xfj < yf) ensures that whenever a client j is connected to a facility
i, the facility i is open. The second constraint (}_;" ; xjj > 1) guarantees that every client
is connected to a facility. Finally, relaxing the decision variables to take non-negative real

values we obtain the LP of Figure 5.1a, denoted as P.

Next, we are ready to present Algorithm 7. The algorithm is given at each round f a distance
vectord; € R containing the distances between clients and facilities. Then, Algorithm 7
finds the minimizer (!, x') of the linear program P* at each round ¢, which has two differ-

ences from P. The first one is that the last term of the objective function in P (the switching
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T n m T n m
min fZZyﬁZZZx dt(11)+gZZZz
t=1i=1 t=1j=1i=1 t=1j=1i=1
s.t. xf]. <yt Vt € [T],Vi € [m],Vj € [n]
T1Z>1 vt € [T],Vj € [n]
f] > xlj —xfj ! Vt € [T],Vi € [m],Vj € [n]
yh > O,xf]. > O,zlt.]. >0 Vt € [T],Vi € [m],Vj € [n]

(a) The linear program P for offline Dynamic Facility Location.

max Z Za
t=1j=1

s.t. ]1%_f Vt € [T],Vi € [m]
blt] <g Vt € [T],Vi € [m],Vj € [n]
byi—bggdﬂhﬁ+f%—a; Vt € [T],Vi € [m],Vj € [n]
bi; > 0,¢;; > 0,a; > 0 Vt € [T],Vi € [m],V] € [n]

(B) The dual D of the linear program P.

cost) is substituted by the regularization function in P*. The second is that the constraint
relative to the switching cost (ij > xlt-]- — xfj_l) in P is omitted in P*. We remark that the
regularized objective function includes both the previous solution as well as the current
cost vector. Thus, the solution in each round is determined greedily and independently of

rounds prior to t — 1.

To analyze the performance of Algorithm 7 we will need to construct a lower bound on the
optimal offline solution. Therefore, we derive the dual D of P (Figure 5.1b), which has the

following variables (corresponding to the primal constraints on the left):

. xt <yl — el forallt € [T],i € [m],j € [n]

]

CXx =1l forall t € [T, ] € [n]

. Zf]le]—x] —>bfj forallt € [T],i € [m],] € [n]

We will prove Theorem 5.3 by showing that the set of dual variables of the solutions that P*
returns is a feasible solution for D within a factor of (1 + (1 +€’) In(1 + Z)) of the optimal
offline solution, where €’ is a small constant. Specifically, we will use the KKT optimality
conditions of P* (the regularized LP) in each round. The constraints define dual variables,
which will be plugged in the formulation of the dual D in Figure 5.1b. This way we will
construct a dual solution to the original online problem, which will serve as a lower bound

on the optimal offline solution.

[26] remarks that their technique can be generalized to facility location problems, without
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Algorithm 7 The regularization algorithm

Parameters: € > 0,7 = In(1+n/e)

Initialization: Set y? = 0 Vi € [m] and x% =0Vie [m],jeE [n]

At each round t: Let d; € ]Rﬂxn be the distance cost vector and let S be the set of fea-
sible solutions. Solve the following linear program (P*) to obtain the fractional solution

(v', x"):

(yt, xt) = arg min {f iyi + i i Xjj - de(i, )

(yx)€S i=1 j=1i=1
1 non € xij + €
+—ZZ|:( xi]'-i—— lni—” _xij
Tiz1i= ( ”> xf]. e

providing any further technical details. In the next lemmas, we verify their claim, by adjust-

ing their approach and proof techniques to ODFL. Recall that the constraint Zzt'j > xf i xf]._l
is omitted in P*. In order to define a feasible solution for D, we introduce the variable bf]-
corresponding to this constraint and we let e;"j, a;-k be the optimal dual variables of D* cor-

responding to the precedence and covering constraints respectively.
Lemma 5.1. The set of optimal solutions for each round t of the dual LP D* of P* (a*!,e*1),

which satisfy the KKT conditions for an appropriate bf]., consist of a feasible solution for D.

Proof. Let x** be the optimal solution of P* at round t. Set the variables of D at time ¢ to
be:

14 €
b st ot ond bf;rl _ g n

a:a’,e:e
1] l] 17 x:;/t_|_%

To prove that the solution above is feasible for D, we prove that it satisfies its constraints
one by one. This is achieved using the following KKT conditions that hold for P* and its
dual:

a; > 0,Vj € [n] (5.1)

e;; > 0, Vi€ [m],Vj € [n] (5.2)
n

f=)_¢€j=0,Vi€ [m] (5.3)
j=1

R S o . .

dt(l,])"‘ﬁlnm"‘eﬁ—ai ZO,VZ € [m],V] € [Vl] (54)

ij n

The first group of constraints of the dual D (Figure 5.1b) (27:1 efj < f) follows easily from

KKT condition (3). The same holds for the last two groups of constraints (ef]- > 0and a]t- > 0)
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due to KKT conditions (1) and (2). Furthermore, by (4) and the construction of b we have
that:

+e 1+€ +§
b = &ln — &8 In n < § In—2r = —$ _In(Z
i = e T R Ny S me e T e Gt
1)=g
wtie (4)
BTt g Yi | t_ gt
*tq €
y g 1+ Y Slgl 14e
.b In *H:g > Ulan—O

l] n
The above inequalities prove that the second, third and fourth group of constraints of D also

hold, thus completing the proof of the lemma. ]

We are now ready to prove Theorem 5.3, by showing that the dual we constructed can
pay for the facility, connection and switching cost of the Algorithm 7. Since we bound
together the facility cost and connection cost, we will simply refer to them as the service

cost. Throughout the proofs, we will use the following relations:

*(1— Z xj;) =0, Vj € [n] (5.5)
i =0, Vi € [m] (5.6)
J=
X+ . .
x5 (di (i, ) + §1n s e =) =0 vie m Vi€ (5.7)
1]
ehi(xfi —yi) =0, Vj € [n],Vi € [m] (5.8)
h—k < hln(h/k) for any h,k > 0 (5.9)
Zh In(hi/k;) (Zh)logzl l (5.10)

Equalities 5.5, 5.6, 5.7, 5.8 are the KKT conditions of P* and its dual and the remaining
two inequalities are standard logarithmic inequalities. Theorem 5.3 will follow from the
next two lemmas. The analysis is similar with that of Theorem 1.1 in [26] adapted to the

objective of ODFL and also dealing with the presence of precedence constraints.

Lemma 5.2. The switching cost M of Algorithm 7 is at most 17(1 4 €I) times the cost of the

dual feasible solution of Lemma 5.1.

Proof. Let M; be the switching cost of Algorithm 7 at round t. The summation below is

*f—1 . .
taken over increasing values of connection variables, i.e. x F> X;i  since decreasing
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values only decrease the fractional switching cost.

s () =0 SEGT )
AL+ ()

n
..' —|-£
< *t NS T . .
_172(3(1] —|—n>771n x:;t 1—1—2 (by inequality (5.9))
m n
* € * * .o
<)Y (x5 )@ — e —di(i, ) by (7))

-~
I
—_
—.
I
—_

IN
=
1=
_
—. %
=
gk
/
=
o
_|_
S| m
N——
N——
I
Ry
7]
1S
= %
=
NgE
=
gt
_|_
m
E
N———

T
—_
I
—_
Il
—_
~
Il
_

=

n n
t em em iy

—p a1+ ) =y (149 Y by (59)

= J < n > ( n ) = ]

Hence,
T em T n .t

M:ZMf§’7<1+7)ZZ”j' (5.11)

=1 t=1j=1
This concludes the proof of the lemma. [

Lemma 5.3. The total service cost S of Algorithm 7 is less than the cost of the dual feasible
solution of Lemma 5.1.
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t=1 Li=1 j=1 j=1i=1 17 xz] +n
(by (5.7) and (5.6))
R RN t NETENE Ry t & t Z*Jt %
*, x, x, b % *
Y L e+ Lt S 1 Y
=1 Li=1j=1 j=1i=1 s it
Ll *, 1 . *,t 8 *,t ;k]t+%
=y (Lt (L) - WZZx T 1+J (by (5.8))
t=1 Lj=1 =1 j=li=1 1] n
T n nom e e
:Zza*,t_gzz{z it )1 ij n —EZln n:|
e e N e t:1< v xf]'t_lJF% = x:}'t T
(by (5.5))
Ll S coey, Dl R e x4
<3 -SSP (s ) = S
t=1j=1 TiZziz Lz LAY SIS S T
(by (5.10))

Notice that that the two terms in the bracket of the right hand side of the inequality above

cancel each other out, since:

*T | € 40 *0 | €
€ xij + n i = *,0 € xij + n 59 *,0 *,T
RS il C ) Db o/

Therefore, it holds that

We can now easily prove the performance of Algorithm 7 stated in Theorem 5.3.
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Algorithm 8 The rounding algorithm

1: Initialization: Choose i.i.d. random variables Z;; ~ exp(1), Vi, .
2: At each round t:

3: Let xf]. be the fractional value of round f obtained by Algorithm 7 .

. . . . Zyj S
4: For each client j, open i = argmin — and connect j to i.
it ij

Proof of Theorem 5.3. Let OPT(D) and OPT(P) denote the optimal solutions of the D and P
respectively. By Lemma 5.2 and Lemma 5.3, the total cost of Algorithm 7 is:

s+M< [1+p(1+20)] iia;"f

T n
=[1+In <1+Z) (1+%)} t;};a;‘f
<[t+m(1+ Z) (1+ %)} OPT(D) (by Lemma 5.1)
~[1+(1+¢)n (1 + g)} OPT(D) (since ¢’ = €11)
=1+ (+e)m (1+ g)} OPT(P)
O

The proof of Theorem 5.3 concludes this section.

5.4 The Rounding Algorithm

In this section, we present Algorithm 8, which makes use of the exponential distribution
to round the fractional solution to an integral solution at each round. The analysis shows
that the fractional solution grows up to a factor logarithmic in 7 regarding the facility cost
and up to constant factors regarding the switching and connection cost. Before proceeding
to the details of Algorithm 8, we give the definition of an exponential random variable and

some of their properties.

Definition 5.4. A random variable X is distributed according to the exponential distribution
with rate A, denoted as X ~ exp(A), if it has density fx(x) = AeM for every x > 0, and

fx(x) = 0 otherwise. We will use the following properties of exponential random variables:
1. IfX ~exp(A) andc > 0, then X/c ~ exp (Ac).

2. Let Xy,..., Xy be independent random variables with X; ~ exp (A;):
(a) min{Xy,..., X} ~exp(A1+ ...+ Ag)

) A
(b) Pr(X; < min;; Xj] = y"0y
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3. If X ~ exp(A) and Y ~ exp(u) are independent, then V't > 0:

Pr[XSlezt]:A)‘Ty-eW

The rounding algorithm samples independently a total of 1 - m (one for each client-facility
connection) random variables Z;; from the exponential distribution with rate A = 1 at
the beginning of its execution, which will be used throughout all rounds. Then, at each

round £, it chooses for each client j the connection {7, j} minimizing the ratio %, where

f]. is the fractional variable of this connection obtained by Algorithm 7. Noticg that by

the properties of Definition 5.4 the ratio % is also an exponential random variable. This

technique is referred to as competing exporliential clocks, since a random variable wins the

competition if it has the smallest value among all others (minimizes the ratio % in our
ij

X

case).

The high level idea of the analysis is that connection and switching cost of the rounded
solution add only constant factors to the cost of the connection and switching cost of the
fractional solution at each round t. The reason is that they favor connections to facilities
that are dependent to the increase/decrease of the fractional variables xf]-. This fact com-
bined with the properties of the exponential distribution leads to a rounding of the right
connections indicated by the fractional solution. On the other side, this leads to more open
facilities, since we prove that the rounding adds a factor logarithmic in 7 to the cost of the

fractional solution.

Next, we will analyze the performance of Algorithm 8 by bounding separately the facility,
connection, and switching cost. We will simply calculate the probabilities of opening any

facility, connecting a client to a facility and changing a connection.
Facility cost
We start with the facility cost of the rounding algorithm, which is O(log 1)-competitive

with respect to the facility cost of the fractional solution.

, . Zy .
Proof. Let Ej; denote the event that i = argmin x;:] for some client j and let 2 > 0 be
il )

chosen later. The probability of E;; equals:
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Pr(3j : E;j] =Pr EIj:Eij]x—?<a Pr|=2 <a

. Zjj ij
+Pr HJIEiHFZﬂ Pr|—>a

ij Xij

H]EZJ‘JZLI] - Pr [lZE[]
x..

- Pr

7.
x_l] > a] ( By the union bound)
ij

e—axij

:1_e*aXij_|_ZPr Eij|lZﬂ
=1 Xij

n —a( ¥ xg;—x;i
Xij (X xp=xj)
<axij+ ) e 7 e~ %ij

]':1 2 xi]'
i=1

(1 —e7* < x,Vx and by Definition 5.4)
n
<axii+ Y e "xij < ay; +ne” ;. (since x;; < ;)
=1

By choosing a = log nn we have the result. ]

Connection cost

Next, we show that the connection cost of the rounding algorithm is O(1)-competitive with

the connection cost of the fractional solution. Again, let 2 > 0 be chosen later.
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Proof. Similar arguments with the previous proof, show that the probability to choose con-

nection ij is:

. Za: 7
Priif] <Pr|—ZL <a| +Pr| =L =min— | =L >qa| .Pr|=ZL >4
Xij Xij il x,-/]- Xij ij
Zii L 7
<1—e i +Pr|—L =min— | =L > a| ¢ i
Xij i’ Xitj — Xij

(1 — e < x,Vx and by Definition 5.4)

< axij + - 1 e i# e~ i
Y X
i=1
<axji+e "xjj.
By choosing a sufficiently small 2 (for example a = 1) , we have the result. ]

Switching cost

Finally, we show that every step that incurs a fractional switching cost of d in a connection
variable x;;, incurs an expected increase of at most # in the randomized solution. Thus,

the expected number of new connections is O(1).

Proof. We break down the total movement from time  — 1 to ¢ in the fractional solution into
m x n intermediate steps, on each of which only the value of exactly one x;; is changed. We
take first all the x;;’s whose value increases and then all the x;;’s whose value decreases, thus
managing to preserve a feasible solution in all the intermediate steps. This way, the total
switching cost from time ¢ — 1 to time ¢ of the fractional solution does not change while the
integral switching cost could only increase due to possible changes in the intermediate steps.

First, we will prove the bound in the case the connection variable decreases: xt] xt] 1_g

Zy:
. Let Y;; = miny # where Yj; ~ exp(A) for A = 1 — xfj. When the value of x;;
]

decreases, the value of L increases. Therefore, connection i 7 cannot be chosen a time t if is
Xij

not chosen at time t — 1. However, due to the increase of x—?, another connection could turn
1
minimal that had not been chosen in the previous time step. This is the only case, when a

switching cost is incurred. The probability of this event is bounded by:

_ _ _ A A
Pr xl] 1 S Y s fl —a| = Byl FYif[O]_x;]fl_d+/\ H4A

This expression is maximized when xf]._l —d = 0,A = 1, therefore is less than

1—-1L — _d_
d+1 = d+1
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_ . AT

;;‘], = xf]. L4 d When Xjj increases, the ratio x—” decreases.
ij

Therefore, if facility i was chosen in the previous step it will be chosen again in this step,

Now, we turn to the case where x

thus not incurring switching cost. If facility was not chosen in the previous step, it will be

chosen in this step with probability

Pr xf]T1+d < Yz] < xf]j

which is no more than #, following the exact same analysis with the case of the decreasing

connection variables. ]
Finally, it is easy to provide the proof of Theorem 5.2, which concludes this section.

Proof of Theorem 5.2. First notice that by Lemma 5.3 the fractional solution of Algorithm 7 is
optimal with respect to the facility and connection cost. Therefore, Algorithm 8 will round
the solution to an integral one only losing a factor of O(log#) in the facility cost and a
factor O(1) in the connection cost, thus being O(log 1) competitive with the optimal offline
solution. Regarding the switching cost, by Lemma 5.2 the fractional solution is O(logm)
competitive with the fractional solution. The cost of this solution will only increase by a

factor of O(1) after the randomized rounding, thus proving the result. O]
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