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Περίληψη

Σε αυτή την διδακτορική διατριβή, μελετάμε άμεσους αλγόριθμους για προβλήματα Δυ-
ναμικής Συνάθροισης. Στην περίπτωση των άμεσων αλγόριθμων θεωρούμε ότι η είσοδος
των προβλημάτων δεν είναι γνωστή εκ των προτέρων, αλλά αποκαλύπτεται κομμάτι‐κομ-
μάτι στον αλγόριθμο. Τα αποτελέσματα μας αφορούν άμεσες εκδοχές των προβλημάτων
Κάλυψης Συνόλου Ελάχιστου Αθροίσματος , Ανακατανομής Κ‐Υπηρεσιών και Δυναμικής
Χωροθέτησης Υπηρεσιών. Για όλα αυτά τα προβλήματα σχεδιάζουμε άμεσους αλγόριθ-
μους και αποδεικνύουμε την αποτελεσματικότητά τους. Συγκεκριμένα, αποδεικνύουμε ά-
νω φράγματα στον λόγο ανταγωνιστικότητας των άμεσων αλγορίθμων μας. Ο λόγος α-
νταγωνιστικότητας ορίζεται ως ο χειρότερος δυνατό λόγος ανάμεσα στο κόστος της λύ-
σης του άμεσου αλγορίθμου και στο κόστος της λύσης ενός βέλτιστου αλγορίθμου, ο οποί-
ος επιπλέον γνωρίζει όλη την είσοδο εκ των προτέρων. Επιπλέον, σχεδιάζουμε δύσκολα
στιγμιότυπα για όλα τα προβλήματα που μελετάμε, τα οποία μας δίνουν την δυνατότη-
τα να αποδείξουμε κάτω φράγματα στον καλύτερο δυνατό λόγο ανταγωνιστικότητας που
μπορεί να επιτύχει οποιοσδήποτε άμεσος αλγόριθμος. Αυτό σημαίνει ότι κανένας αλγό-
ριθμος δεν μπορεί να πετύχει καλύτερο λόγο ανταγωνιστικότητας από το κάτω φράγμα
που ισχύει για τα δύσκολα στιγμιότυπα. Στις περισσότερες περιπτώσεις, τα κάτω φράγ-
ματα είναι πολύ κοντά στα άνω φράγματα (σε κάποιες περιπτώσεις ταυτίζονται) και το
γεγονός αυτό αποδεικνύει ότι οι αλγόριθμοι που έχουμε διατυπώσει και αναλύσει είναι
βέλτιστοι ή σχεδόν βέλτιστοι για το αντίστοιχο πρόβλημα.
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Abstract

In this Ph.D thesis, we study online variants of Dynamic Aggregation problems that are
generalizations of prominent and well studied online problems. In the online setting, we
additionally assume that the input arrives piece-by-piece and that the online algorithm has
to provide a solution for the input piece of the current stage before it sees the upcoming
input pieces of future stages. The decision quality of the online algorithm is evaluated
against an optimal offline algorithm, which is given thewhole problem data from the beginning.
The performance of the online algorithm is measured by the competitive ratio which is the
worst-case ratio between the online cost and the optimal offline cost. We consider the online
variants of the Min-Sum Set Cover problem, the K-Facility Reallocation problem and the
Dynamic Facility Location problem. For all the aforementioned problems, we design online
algorithms and we prove upper bounds on their competitive ratio. Moreover, we construct
difficult instances for these problems and we prove lower bounds on the competitive ratio
of online algorithms on these instances. The majority the upper bounds are close (or the
same) with the lower bounds that we prove and this ensures that our online algorithms are
optimal or near optimal.
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Εκτεταμένη Περίληψη

Σε αυτήν τη διδακτορική διατριβή, μελετάμε παραλλαγές άμεσων προβλημάτων Δυνα-
μικής Συνάθροισης που είναι γενικεύσεις διακεκριμένων και καλά μελετημένων άμεσων
προβλημάτων. Η αντικειμενική συνάρτηση των προβλημάτων Δυναμικής Συνάθροισης
περιλαμβάνει μια συνάρτηση κόστους Συνάθροισης με τυπικά παραδείγματα τις συναρ-
τήσεις Ελαχίστου, Μεγίστου, Μέσου Όρου και Αθροίσματος. Κάθε πρόβλημα Δυναμικής
Συνάθροισης θεωρούμε ότι έχει μια δυναμική εξέλιξη στον χρόνο, η οποία πραγματοποιεί-
ται σε Στάδια. Αυτή η δυναμική εξέλιξη αποτυπώνεται και στην αντικειμενική συνάρτηση
ενός προβλήματος Δυναμικής Συνάθροισης, η οποία περιέχει επιπλέον ένα κόστος Εναλ-
λαγής (ή Μετακίνησης) για μια λύση που διαφέρει από τη λύση του προηγούμενου στα-
δίου. Κατά συνέπεια, οι αλγόριθμοι για προβλήματα Δυναμικής Συνάθροισης στοχεύουν
στην ανακάλυψη της χρονικής εξέλιξης στοιχείων, τα οποία δεν είναι πολύ ευαίσθητα σε
παροδικές αλλαγές.

Αν θεωρήσουμε επιπλέον ότι η είσοδος του προβλήματος Δυναμικής Συνάθροισης δεν εί-
ναι γνωστή εκ των προτέρων, αλλά αποκαλύπτεται κομμάτι-κομμάτι σε κάθε στάδιο, τότε
μελετάμε την άμεση εκδοχή ενός προβλήματος Δυναμικής Συνάθροισης. Οι άμεσες εκδοχές
προβλημάτων Δυναμικής Συνάθροισης προκύπτουν σε πολλές πρακτικές εφαρμογές προ-
ερχόμενες από διαφορετικούς κλάδους όπως η επιδημιολογία, ο σχεδιασμός εμβολιασμού,
ο πολεοδομικός σχεδιασμός, τα κοινωνικά δίκτυα και οι μηχανές αναζήτησης. Αυτές οι
εφαρμογές περιλαμβάνουν έναν ταχέως αυξανόμενο όγκο διαθέσιμων δεδομένων που υ-
πόκεινται σε γρήγορες και μη προβλέψιμες αλλαγές. Σε αντίθεση με την φύση αυτών
των πρακτικών εφαρμογών, η οποία είναι εγγενώς άμεση, η επικρατούσα προσέγγιση για
προβλήματα Δυναμικής Συνάθροισης στην επιστημονική βιβλιογραφία προϋποθέτει την
πλήρη γνώση των εισόδων που θα αποκαλυφθούν σε κάθε στάδιο στον αλγόριθμο. Το
βασικό κίνητρο και ο σκοπός της παρούσας εργασίας είναι να εξερευνήσει προβλήματα
Δυναμικής Συνάθροισης σε πιο ρεαλιστικές περιπτώσεις, κατά τις οποίες δεν είναι δυνατό
να προβλεφθούν οι μελλοντικές είσοδοι και αναζητούνται αποδοτικές λύσεις δεδομένης
της ύπαρξης αυτής της αβεβαιότητας.

Ο τομέας που ασχολείται με την ανάπτυξη αλγορίθμων, οι οποίοι χειρίζονται καταστά-
σεις αβεβαιότητας, ονομάζεται Άμεση Βελτιστοποίηση και οι αλγόριθμοι που έχουν αυτά
τα χαρακτηριστικά ονομάζονται άμεσοι αλγόριθμοι. Ένας άμεσος αλγόριθμος έχει τη δυ-
νατότητα να επεξεργάζεται την είσοδο κομμάτι-κομμάτι με τη σειρά που αποκαλύπτεται
και υποχρεούται να εξυπηρετήσει το κομμάτι της εισόδου που του έχει αποκαλυφθεί μια
δεδομένη χρονική στιγμή πριν του αποκαλυφθεί το επόμενο κομμάτι εισόδου. Επιπλέον, η
απόφαση για το πως θα εξυπηρετήσει ένα κομμάτι της εισόδου είναι αμετάκλητη, δηλαδή
δεν μπορεί να αλλάξει στο μέλλον και όταν θα έχει δει τα επόμενα μέρη της εισόδου. Αυτός
ο περιορισμός οδηγεί τους άμεσους αλγορίθμους σε μη βέλτιστες αποφάσεις επηρεάζοντας
την αποδοτικότητά τους. Για να μετρήσουμε την αποδοτικότητα ενός άμεσου αλγορίθμου,
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χρησιμοποιούμε μεθόδους από την Aνταγωνιστική Aνάλυση και συγκεκριμένα τον λόγο
ανταγωνιστικότητας, ο οποίος είναι ο χειρότερος δυνατός λόγος μεταξύ του κόστους ενός
άμεσου αλγορίθμου και του κόστους ενός βέλτιστου αλγορίθμου, ο οποίος γνωρίζει όλη
την είσοδο εκ των προτέρων. Η βασική επιδίωξη στο πεδίο της Άμεσης Βελτιστοποίησης
είναι η ανάπτυξη αλγορίθμων με βέλτιστο λόγο ανταγωνιστικότητας και η κατασκευή
κάτω φραγμάτων στους λόγους ανταγωνιστικότητας των άμεσων αλγορίθμων, τα οποία
αποτελούν την καλύτερη δυνατή επίδοση που μπορεί να επιτύχει οποιοσδήποτε άμεσος
αλγόριθμος (άρα και ο πιο αποδοτικός από τους άμεσους αλγορίθμους) για ένα συγκεκρι-
μένο πρόβλημα.

Η κύρια συνεισφορά της παρούσας επιστημονικής διατριβής είναι η κατασκευή άμεσων
αλγορίθμων για τα προβλήματα Κάλυψης Συνόλου Ελάχιστου-Αθροίσματος, Ανακατα-
νομής K-Υπηρεσιών και Δυναμικής Χωροθέτησης Υπηρεσιών. Όλοι οι άμεσοι αλγόριθμοι
που παρουσιάζουμε πετυχαίνουν βέλτιστους ή σχεδόν βέλτιστους λόγους ανταγωνιστικό-
τητας για τα προβλήματα που εξετάζουμε, καθώς για όλα τα προβλήματα αποδεικνύουμε
επιπλέον κάτω φράγματα στον λόγο ανταγωνιστικότητας, τα οποία δεν απέχουν πολύ (ή
είναι ίδια) από τα άνω φράγματα των άμεσων αλγορίθμων μας. Επιπλέον, εξερευνούμε τη
σύνδεση των παραπάνω προβλημάτων με γνωστά και καλά μελετημένα άμεσα προβλήμα-
τα, από τα οποία αντλούμε ιδέες για την κατασκευή των άμεσων αλγορίθμων μας αλλά και
για την απόδειξη εγγυήσεων στην αποδοτικότητά τους όσο αφορά τον λόγο ανταγωνιστι-
κότητας. Tέλος, η σύνδεση αυτή μας επιτρέπει να κατασκευάσουμε κάτω φράγματα στον
λόγο ανταγωνιστικότητας για κάποια προβλήματα μέσω αναγωγής σε κάποιο πρόβλημα
για το οποίο υπάρχει γνωστό κάτω φράγμα.

Στο πρώτο εισαγωγικό κεφάλαιο της παρούσας εργασίας (1), δίνουμε τον ορισμό των προ-
βλημάτων Δυναμικής Συνάθροισης και παρουσιάζουμε παραδείγματα πολλών εφαρμογών
από διαφορετικούς επιστημονικούς τομείς. Στη συνέχεια, εξερευνούμε την πλούσια επι-
στημονική βιβλιογραφία που αφορά δημοφιλή άμεσα προβλήματα Δυναμικής Συνάθροι-
σης όπως το πρόβλημα των K-Εξυπηρετητών [54],[55],[60],[41] και το πρόβλημα Προ-
σπέλασης Λίστας [3], [66], [1],[2] και σχολιάζουμε την σχέση τους με τα προβλήματα
Κάλυψης Συνόλου Ελάχιστου-Αθροίσματος, Ανακατανομής K-Υπηρεσιών και Δυναμικής
Χωροθέτησης Υπηρεσιών. Ακολουθεί η παρουσίαση των προβλημάτων Κάλυψης Συνό-
λου Ελάχιστου-Αθροίσματος, Ανακατανομής K-Υπηρεσιών και Δυναμικής Χωροθέτησης
Υπηρεσιών και η παράθεση της σχετικής βιβλιογραφίας καθώς των αποτελεσμάτων μας
για αυτά τα προβλήματα.

Η τελευταία ενότητα του εισαγωγικού κεφαλαίου περιέχει το απαραίτητο τεχνικό υπόβα-
θρο για τις έννοιες της Άμεσης Βελτιστοποίησης [23] που χρησιμοποιούμε στην υπόλοιπη
έκταση του κειμένου. Αρχικά, παρουσιάζουμε την έννοια της Ανταγωνιστικής Ανάλυσης
[23], η οποία χρησιμοποιείται στην βιβλιογραφία για την ανάλυση της αποδοτικότητας
των άμεσων αλγορίθμων. Στην Ανταγωνιστική Ανάλυση, υποθέτουμε την ύπαρξη ενός
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κακού αντιπάλου, ο οποίος δημιουργεί εισόδους του προβλήματος και τις αποκαλύπτει μί-
α μία στον άμεσο αλγόριθμο. Όπως προαναφέραμε, υποχρέωση του άμεσου αλγορίθμου
είναι να εξυπηρετήσει το κομμάτι της εισόδου την ίδια στιγμή και δεν μπορεί να αλλάξει
αυτή την απόφαση στο μέλλον. Στη συνέχεια ο αντίπαλος θα αποκαλύψει το επόμενο
κομμάτι της εισόδου. Όσο αφορά τους ντετερμινιστικούς αλγορίθμους, θεωρούμε ότι ο
αντίπαλος γνωρίζει τον κώδικα τους και τους δίνει τις χειρότερες δυνατές εισόδους με
σκοπό να αυξήσει το συνολικό κόστος εξυπηρέτησης των εισόδων. Όσο αφορά τους πι-
θανοτικούς αλγορίθμους, έχουμε τρία διαφορετικά μοντέλα αντιπάλων που αναλύονται
διεξοδικά στην ενότητα 1.3.1.

Στο δεύτερο κεφάλαιο (2), συνοψίζουμε αλγοριθμικές μεθόδους που έχουμε χρησιμοποιή-
σει για να σχεδιάσουμε και αναλύσουμε άμεσους αλγορίθμους, καθώς και μεθόδους που
μας βοήθησαν στην κατασκευή κάτω φραγμάτων στους λόγους ανταγωνιστικότητας. Ξε-
κινάμε με την μέθοδοΜέθοδο Ενημέρωσης Πολλαπλασιαστικών Βαρών [58],[9], την οποία
χρησιμοποιούμε για να σχεδιάσουμε αλγόριθμο με βέλτιστο λόγο ανταγωνιστικότητας για
το πρόβλημα Κάλυψης Συνόλου Ελάχιστου-Αθροίσματος. Στη συνέχεια, παρουσιάζουμε
τηνΜέθοδο Δυνητικής Συνάρτησης [23],[66], την οποία εκμεταλλευόμαστε για να αποδεί-
ξουμε άνω φράγματα σε λόγους ανταγωνιστικότητας όσο αφορά το πρόβλημα Κάλυψης
Συνόλου Ελάχιστου-Αθροίσματος και το πρόβλημα Ανακατανομής K-Υπηρεσιών. Η Μέ-
θοδος Δυνητικής Συνάρτησης χρησιμοποιείται ευρέως στην ανάλυση τους κόστους των
άμεσων αλγορίθμων, όμως η επιλογή της κατάλληλης Δυνητικής Συνάρτησης απαιτεί βα-
θιά γνώση των ιδιοτήτων του εκάστοτε προβλήματος αλλά και διαίσθηση. Ακολουθεί η
μέθοδος της Κανονικοποίησης [12], η οποία χρησιμοποείται ευρέως στα πεδία της Κυρτής
Βελτιστοποίησης και τηςΜάθησης. Εμείς την χρησιμοποιούμε για την κατασκευή ενός πι-
θανοτικού άμεσου αλγορίθμου για το πρόβλημα Δυναμικής Χωροθέτης Υπηρεσιών. Τέλος,
εκθέτουμε μεθόδους για την κατασκεύη κάτω φραγμάτων στον λόγο ανταγωνιστικότητας
άμεσων αλγορίθμων όπως είναι η Αρχή του Yao [23] και o Υπολογισμός Μέσου Όρου Α-
ντιπάλων [55].

Στα επόμενα τρία κεφάλαια της διδακτορικής διατριβής παρουσιάζουμε και αναλύουμε
τα αποτελέσματά μας για τις άμεσες εκδοχές των προβλημάτων Κάλυψης Συνόλου Ελά-
χιστου Αθροίσματος, Ανακατανομής K-Υπηρεσιών και Δυναμικής Χωροθέτησης Υπηρε-
σιών.

Κάλυψη Συνόλου Ελάχιστου Αθροίσματος
Ξεκινάμε με το πρόβλημα Κάλυψης Συνόλου Ελάχιστου-Αθροίσματος, το οποίο αποτελεί
μια φυσιολογική και ενδιαφέρουσα γενίκευση του προβλήματος Προσπέλασης Λίστας.
Στην άμεση εκδοχή του προβλήματος Κάλυψης Συνόλου Ελάχιστου-Αθροίσματος, ο αλ-
γόριθμος διατηρεί μια μετάθεση σε n στοιχεία με βάση τα υποσύνολα S1, S2, . . ., τα οποία
αποκαλύπτονται ένα ένα σε κάθε στάδιο. Ο αλγόριθμος εξυπηρετεί κάθε σύνολο St κατά
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την άφιξη του, χρησιμοποιώντας την τρέχουσα μετάθεση του πt, και πληρώνει ένα κόστος
Πρόσβασης ίσο με τη θέση του πρώτου στοιχείου St στη μετάθεση πt. Στη συνέχεια, ο αλ-
γόριθμος μπορεί υπολογίσει μια καινούρια μετάθεση πt+1, με κόστος Μετακίνησης ίσο με
την απόσταση Kendall tau μεταξύ της πt και της πt+1, δηλαδή των αριθμό των ελάχι-
στων αναστροφών στοιχείων που πρέπει να πραγματοποιηθούν σε μία από τις δύο έτσι
ώστε να γίνει ίδια με την άλλη. Ο στόχος είναι να ελαχιστοποιηθεί το συνολικό κόστος
Πρόσβασης και το συνολικό κόστος Μετακίνησης για την εξυπηρέτηση ολόκληρης της α-
κολουθίας των υποσυνόλων S1, S2, . . .. Θεωρούμε, χωρίς βλάβη της γενικότητας, ότι κάθε
St έχει ακριβώς r στοιχεία και μελετάμε αυτή την περίπτωση. Το πρόβλημα Προσπέλασης
Λίστας είναι η ειδική περίπτωση όπου r = 1.

Συγκρίνουμε τον λόγο ανταγωνιστικότητας των άμεσων αλγορίθμων μας για το προβλή-
μα της Κάλυψης Συνόλου Ελάχιστου Αθροίσματος με δύο διαφορετικούς βέλτιστες λύ-
σεις, οι οποίες δίνονται από αλγορίθμους που γνωρίζουν εκ των προτέρων την ακολουθία
S1, S2, . . . και την εξυπηρετούν βέλτιστα. Ο πρώτος αλγόριθμος, τον οποίο ονομάζουμε
στατικό βέλτιστο αλγόριθμο, υπολογίζει την βέλτιστη λύση δεδομένου ότι διατηρεί μί-
α μόνο μετάθεση π∗. Ο δεύτερος αλγόριθμος, τον οποίο ονομάζουμε δυναμικό βέλτιστο
αλγόριθμο, υπολογίζει την βέλτιστη λύση έχοντας τη δυνατότητα να αλλάζει την μετάθε-
ση του μεταξύ των σταδίων. Ουσιαστικά, ο δυναμικός βέλτιστος αλγόριθμος υπολογίζει
την βέλτιστη ακουλουθία μεταθέσεων π∗1 , π∗2 , . . . για την εξυπηρέτηση των υποσυνόλων
S1, S2, . . .. Είναι εύκολο να αποδείξει κανείς ότι υπάρχουν στιγμιότυπα του προβλήματος,
για τα οποία ο βέλτιστος δυναμικός αλγόριθμος μπορεί να εξυπηρετήσει την ακολουθία
των υποσυνόλων S1, S2, . . . με κόστος n φορές μικρότερο από τον στατικό βέλτιστο αλ-
γόριθμο.

Όσο αφορά την περίπτωση του βέλτιστου στατικού αλγορίθμου, αρχικά παρουσιάζουμε
ένα κάτω φράγμα ίσο με (r + 1)(1− r

n+1) για τον λόγο ανταγωνιστικότητας οποιουδήπο-
τε ντετερμινιστικού άμεσου αλγορίθμου, χρησιμοποιώντας την τεχνική του Υπολογισμού
Μέσου Όρου Αντιπάλων. Προφανώς αυτό το κατω φράγμα ισχύει και για την περίπτω-
ση του δυναμικού βέλτιστου αλγορίθμου. Στη συνέχεια, εξετάζουμε αρκετές φυσιολογικές
γενικεύσεις αποδοτικών άμεσων αλγορίθμων του προβλήματος Προσπέλασης Λίστας και
αποδεικνύουμε ότι δεν καταφέρνουν να πετύχουν καλό λόγο ανταγωνιστικότητας ακόμα
και σε πολύ απλά στιγμιότυπα, όπου τα υποσύνολα περιλαμβάνουν μόνο δύο στοιχεία
(r = 2). Το γεγονός αυτό μας οδηγεί να στραφούμε σε μια εντελώς διαφορετική προ-
σέγγιση για τον σχεδιασμό ενός αποδοτικού άμεσου αλγορίθμου και να εκμεταλλευτούμε
τεχνικές που χρησιμοποιούνται ευρύτατα στη Άμεση Μάθηση. Το αποτέλεσμα αυτής της
προσπάθειας είναι η κατασκευή του άμεσου ντετερμινιστικού αλγόριθμου Lazy Rounding
με λόγο ανταγωνιστικότητας 5r + 2, ο οποίος βασίζεται στη Μέθοδο Ενημέρωσης Πολ-
λαπλασιαστικών Βαρών. Η συνεισφορά μας βασίζεται στο ότι καταφέρνουμε να μετατρέ-
ψουμε την πιθανοτική λύση της Μεθόδου Ενημέρωσης Πολλαπλασιαστικών Βαρών σε μια
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ντετερμινιστική λύση χάνοντας μόνο έναν παράγοντα r στο κόστος Πρόσβασης σε σχέση
με την πιθανοτική λύση. Επιπλέον, αποδεικνύοντας ιδιότητες που συνδέουν τις κατανομές
πιθανότητας της Μεθόδου Ενημέρωσης Πολλαπλασιαστικών Βαρών με το κόστος Πρό-
σβασης που πληρώνει η μέθοδος, καταφέρνουμε να φράξουμε και το κόστος Μετακίνησης
του Lazy Rounding και να επιτύχουμε τον επιθυμητό λόγο ανταγωνιστικότητας.

Ένα μειονέκτημα του Lazy Rounding είναι ότι έχει χρόνο εκτέλεσης (n!), ο οποίος είναι εκ-
θετικός ως προς την είσοδο του προβλήματος Κάλυψης Συνόλου Ελάχιστου Αθροίσματος.
Το γεγονός αυτό μας οδήγησε στο να μελετήσουμε πιο αποδοτικούς σε χρόνο εκτέλεσης
αλγορίθμους και να εξετάσουμε τον λόγο ανταγωνιστικότητας τους. Σε αυτή την κατεύ-
θυνση, σχεδιάσαμε τον αλγόριθμο Move-All-Equally , ο οποίος σε κάθε στάδιο t μετακινεί
όλα τα στοιχεία του υποσυνόλου St με την ίδια ταχύτητα προς την αρχή της μετάθεσης
μέχρι το πρώτο από αυτά να βρεθεί στην πρώτη θέση της μετάθεσης. Μια ενδιαφέρουσα
ιδιότητα του Move-All-Equally είναι ότι δεν έχει μνήμη, δηλαδή ο τρόπος που εξυπηρετεί
το κάθε υποσύνολο δεν εξαρτάται από τα πως εξυπηρέτησε τα προηγούμενα υποσύνολα.
Δείχνουμε ότι ο Move-All-Equally έχει κάτω φράγμα στον λόγο ανταγωνιστικότητας ίσο
με Ω(r2) και άνω φράγμα στον λόγο ανταγωνιστικότητας ίσο με 2O(

√
log n·log r) σε σχέση

με τον στατικό βέλτιστο αλγόριθμο. Η εικασία μας είναι ότι η ανάλυση για το άνω φράγμα
μπορεί να βελτιωθεί έτσι ώστε να αποφευχθεί η εξάρτηση από το n.

Όσο αφορά τον δυναμικό βέλτιστο αλγόριθμο, εξετάζουμε την αποδοτικότητα του Move-
All-Equally. Όπως είναι αναμενόμενο, σε αυτή την περίπτωση είναι πολύ πιο δύσκολο να
πετύχουμε αποδοτικές λύσεις και αυτό αποτυπώνεται στο κάτω φράγμα για τον λόγο α-
νταγωνιστικότητας του Move-All-Equally, το οποίο είναι ίσο με Ω(r

√
n). Αυτό το κάτω

φράγμα απαιτεί την κατασκευή ενός περίπλοκου στιγμιοτύπου, κατά το οποίο εξασφαλί-
ζεται ότι ο Move-All-Equally πληρώνει για κάθε υποσύνολο r

√
n φορές παραπάνω από

τον δυναμικό βέλτιστο αλγόριθμο. Όσο αφορά το άνω φράγμα στον λόγο ανταγωνιστικό-
τητας του Move-All-Equally, αποδεικνύουμε χρησιμοποιώντας την Μέθοδο της Δυνητικής
Συνάρτησης ότι είναι ίσο με O(r3/2√n), δηλαδή απέχει μόνο κατά ένα παράγοντα

√
r

από το κάτω φράγμα.

Ανακατανομή K-Υπηρεσιών
Στο τέταρτο κεφάλαιο μελετάμε το πρόβλημα Ανακατανομής K-Υπηρεσιών όταν ο μετρι-
κός χώρος είναι η ευθεία των πραγματικών αριθμών. Σε αυτό το πρόβλημα, ο άμεσος
αλγόριθμος καθορίζει τις θέσεις των K υπηρεσιών πάνω στην ευθεία γραμμή για ένα σύ-
νολο T σταδίων. Η επιλογή των θέσεων γίνεται με βάση τις εξαρτώμενες από το κάθε
στάδιο θέσεις ενός συνόλου n πελατών. Θεωρούμε ότι κάθε πελάτης είναι συνδεδεμένος
στην πλησιέστερη σε αυτόν υπηρεσία σε κάθε στάδιο και οι υπηρεσίες μπορούν να μετα-
κινηθούν από το ένα στάδιο στο άλλο, για να εξυπηρετήσουν καλύτερα τις διαφορετικές
τοποθεσίες των πελατών. Ο στόχος είναι να ελαχιστοποιηθεί η απόσταση των πελατών
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από την πλησιέστερη υπηρεσία τους (κόστος Σύνδεσης) συν το συνολικό κόστος μετακί-
νησης των υπηρεσιών (κόστος Μετακίνησης) για όλα τα στάδια. Το πρόβλημα Ανακατο-
νομής K- Υπηρεσιών παρουσιάστηκε για πρώτη φορά από τους de Keijzer και Wojtczak
[35], οι οποίοι μελέτησαν κυρίως την ειδική περίπτωση της μιας υπηρεσίας (K = 1).

Το πρώτο μας αποτέλεσμα για το πρόβλημα Ανακατανομής -Υπηρεσιών είναι ένα κάτω
φράγμα ίσο με στον λόγο ανταγωνιστικότητας των ντετερμινιστικών άμεσων αλγορίθμων.
Για να αποδείξουμε το κάτω φράγμα, δείχνουμε ότι οποιοσδήποτε άμεσος ντετερμινιστικός
αλγόριθμος για το πρόβλημα Ανακατανομής K-Υπηρεσιών με λόγο ανταγωνιστικότητας
c μπορεί να μετατραπεί σε άμεσο ντετερμινιστικό με λόγο ανταγωνιστικότητας c για το
πρόβλημα K-Εξυπηρετητών. Αυτό σημαίνει ότι αν υπήρχε αλγόριθμος με λόγο ανταγω-
νιστικότητας μικρότερο από K για το πρόβλημα Ανακατανομής K-Υπηρεσιών, τότε θα
μπορούσαμε να τον μετατρέψουμε σε έναν άμεσο ντετερμινιστικό αλγόριθμο για το πρό-
βλημα K-Εξυπηρετητών με λόγο μικρότερο από K. Αυτό οδηγεί σε άτοπο, αφού είναι ήδη
γνωστό ότι δεν μπορεί να υπάρξει άμεσος ντετερμινιστικός αλγόριθμος με λόγο ανταγω-
νιστικότητας μικρότερο από K για το πρόβλημα των K-Εξυπηρετητών [55].

Γνωρίζοντας ότι δεν μπορούμε να αποφύγουμε την εξάρτηση του λόγου ανταγωνιστικό-
τητας από τον αριθμό των διαθέσιμων υπηρεσιών (K), στρέφουμε την προσοχή μας στον
σχεδιασμό ενός αλγορίθμου με λόγο ανταγωνιστικότητας, ο οποίος δεν εξαρτάται από τον
αριθμό των πελατών (n). Αυτό το καταφέρνουμε για την ειδική περίπτωση, όπου έχουμε
ακριβώς 2 διαθέσιμες υπηρεσίες (K = 2). Το δεύτερο αποτέλεσμα μας αφορά αυτή την
περίπτωση και είναι ένας ντετερμινιστικός άμεσος αλγόριθμος με λόγο ανταγωνιστικότη-
τας ίσο με 63. To πρώτο βήμα του αλγορίθμου μας είναι επηρεασμένο από τον αλγόριθμο
Double Coverage [20], ο οποίος λύνει βέλτιστα το πρόβλημα των K-Εξυπηρετητών στην
ευθεία γραμμή. Σε αυτό το βήμα εξασφαλίζουμε ότι κάποια Υπηρεσία θα βρίσκεται σε
κάθε στάδιο κοντά στο σύνολο των πελατών. Για να προσδιορίσει τις τελικές θέσεις των
υπηρεσιών, ο αλγόριθμος μας πραγματοποιεί ένα δεύτερο βήμα, στο οποίο λαμβάνει υπό-
ψη του και το κόστος Σύνδεσης των πελατών και μετακινεί αναλόγως τις υπηρεσίες στις
τελικές τους θέσεις για το συγκεκριμένο στάδιο.

Δυναμική Χωροθέτηση Υπηρεσιών
Ολοκληρώνουμε την μελέτη μας πάνω σε άμεσα προβλήματα Δυναμικής Συνάθροισης, ε-
ξετάζοντας την άμεση εκδοχή του προβλήματος Δυναμικής Χωροθέτησης Υπηρεσιών. Το
πρόβλημα Δυναμικής Χωροθέτησης Υπηρεσιών γενικεύει το κλασικό πρόβλημα πρόβλη-
μα Χωροθέτησης Υπηρεσιών [44, 62] με την έννοια ότι ο μετρικός χώρος μεταξύ μεταξύ
των υπηρεσιών και των πελατών αλλάζει σε κάθε στάδιο του προβλήματος. Ο στόχος σε
αυτή την δυναμικά χρονοεξαρτώμενη παραλλαγή χωροθέτησης υπηρεσιών είναι η βελ-
τιστοποίηση του αντισταθμίσματος μεταξύ της κλασικής αντικειμενικής συνάρτησης και
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της σταθερότητας της λύσης. Η κλασική αντικειμενική συνάρτηση περιλαμβάνει ένα κό-
στος Ανοίγματος υπηρεσιάς και ένα κόστος Σύνδεσης του πελάτη στην κοντινότερη του
υπηρεσία. Όσο αφορά την σταθερότητα της λύσης, η μοντελοποίηση επιπλέον περιλαμ-
βάνει ένα κόστος Εναλλαγής, το οποίο χρεώνεται για κάθε αλλαγή σύνδεσης ενός πελάτη
σε υπηρεσία μεταξύ δύο διαδοχικών σταδίων.

Το πρόβλημα Δυναμικής Χωροθέτησης Υπηρεσίων μελετήθηκε αρχικά από τους [37], οι
οποίοι σχεδίασαν πιθανοτικό αλγόριθμο με λόγο προσέγγισης ίσο με O(log nT), όπου n
ο αριθμός των πελατών και T ο αριθμός των σταδίων. Στη συνέχεια, αυτό το αποτέλεσμα
βελτιώθηκε δραματικά από τους [5], οι οποίοι σχεδίασαν πιθανοτικό αλγόριθμο με λόγο
προσέγγισης 14. Σε αυτή την διδακτορική διατριβή παρουσιάζουμε την πρώτη συστη-
ματική μελέτη σχετικά με την άμεση εκδοχή του προβλήματος Δυναμικής Χωροθέτησης
Υπηρεσιών, όπου η διαφορά σε σχέση με την μη άμεση εκδοχή του προβλήματος είναι ό-
τι οι μετρικοί χώροι μεταξύ πελατών και υπηρεσιών αποκαλύπτονται ένας ένας σε κάθε
στάδιο.

Τα πρώτα αποτελέσματά μας για το πρόβλημα Δυναμικής Χωροθέτησης Υπηρεσιών είναι
δύο κάτω φράγματα στον λόγο ανταγωνιστικότητας των άμεσων ντετερμινιστικών αλγο-
ρίθμων και των άμεσων πιθανοτικών αλγορίθμων. Για το κάτω φράγμα των ντετερμινιστι-
κών αλγορίθμων κατασκευάζουμε ένα στιγμιότυπο, στο οποίο κάθε άμεσος ντετερμινιστι-
κός αλγόριθμος είναι αναγκασμένος να πληρώσει μεγάλο κόστος Εναλλαγής. Διαλέγο-
ντας κατάλληλα τις παραμέτρους του προβλήματος, αποδεικνύουμε ένα κάτω φράγμα της
τάξης Ω(m), όπου m είναι ο αριθμός των υπηρεσιών. Με παρόμοια κατασκευή και χρησι-
μοποιώντας την Αρχή του Υαο, αποδεικνύουμε ένα κάτω φράγμα της τάξης του Ω(log m)

για τους πιθανοτικούς άμεσους αλγορίθμους.

Όσο αφορά το άνω φράγμα για το πρόβλημα Δυναμικής Χωροθέτησης Υπηρεσιών, σχε-
διάζουμε έναν αλγόριθμο, ο οποίος πραγματοποιεί δύο βήματα σε κάθε στάδιο. Στο πρώτο
βήμα υπολογίζει μια κλασματική λύση λύνοντας την γραμμική χαλάρωση του προβλήματος
Δυναμικής Χωροθέτησης Υπηρεσίων, η οποία περιλαμβάνει επιπρόσθετα και έναν όρο κα-
νονικοποίησης στην αντικειμενική συνάρτηση. Ο όρος αυτός εξασφαλίζει ότι δύο διαδοχι-
κές λύσεις δεν θα απέχουν πολύ μεταξύ τους και έτσι το κόστος Εναλλαγής θα παραμένει
φραγμένο από τοO(log m) σε σχέση με την βέλτιστη λύση. Στο δεύτερο βήμα μετατρέπου-
με την κλασματική λύση σε μια ακέραια λύση για το πρόβλημα Δυναμικής Χωροθέτησης
Υπηρεσιών, επιβαρύνοντας επιπλέον με έναν αθροιστικό όρο O(log n). Συνολικά, πετυ-
χαίνουμε την κατασκευή ενός πιθανοτικού αλγορίθμου με λόγο ανταγωνιστικότητας ίσο
με O(log m + log n) για το πρόβλημα Δυναμικής Χωροθέτησης Υπηρεσιών.



xii

Αντιστοιχία Όρων

Μετάφραση Αγγλικός Όρος

Άθροισμα Sum
Ακέραια λύση Integer solution
Άμεση Βελτιστοποίηση Online Optimization
Άμεση Μάθηση Online Learning
Άμεσο πρόβλημα Online problem
Άμεσος αλγόριθμος Online algorithm
Αμετάκλητος Irrevocable
Αναγωγή Reduction
Ανακατανομή K-Υπηρεσιών K-Facility Reallocation
Ανταγωνιστική Ανάλυση Competitive Analysis
Άντικειμενική συνάρτηση Objective function
Αντίπαλος Adversary
Άνω φράγμα Upper bound
Αποδοτικότητα Efficiency
Αρχή Yao Yao’s principle
Βέλτιστος Optimal
Δυναμική Συνάθροιση Dynamic Aggregation
Δυναμική Χωροθέτηση Υπηρεσιών Dynamic Facility Location
Δυναμικός Dynamic
Εγγυήσεις Guarantees
Ελάχιστο Minimum
Κάλυψη Συνόλου Ελάχιστου-Αθροίσματος Min-Sum Set Cover
Κανονικοποίηση Regularization
Κάτω φράγμα Lower bound
K-Εξυπηρετητές K-server
Κλασματική λύση Fractional solution
Κόστος Ανοίγματος Υπηρεσίας Facility opening cost
Κόστος Εναλλαγής Switching Cost
Κόστος Συνάθροισης Aggregation cost
Κόστος Μετακίνησης Moving Cost
Κόστος Πρόσβασης Access Cost
Κόστος Σύνδεσης Connection cost
Κυρτή Βελτιστοποίηση Convex Optimization
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1 Introduction

Aggregation is the task of combining a set of objects in such a way that we can refer to
them collectively as an aggregated object. The aggregated object is the result of an Aggre-
gate Function and serves as the representative of the objects with respect to the Aggregate
Function. Common aggregate functions include the Average, Sum and the Minimum. If we
further hypothesize that the task of aggregation is performed in stages and at each stage
we have to aggregate a different set of objects, then we have the concept of Dynamic Ag-
gregation. Dynamic Aggregation problems arise in many applications such as epidemiology,
vaccination planning, anti-virus design, management of human resources, urban planning,
advertising and search engines.

A very topical example from epidemiology, which reveals the significance of Dynamic Ag-
gregation, is monitoring the spread of a pandemic such as COVID-19 in a given population.
The patterns of spread and the measures taken to prevent it vary dynamically across dif-
ferent populations and have temporal aspects depending on the weather, the mobility of
people, their culture and many other factors. Therefore, it is necessary to conduct many
aggregation tasks such as recognizing groups of people susceptible to conduct the virus,
finding groups of people which could probably have a severe outcome due to the virus and
many others. This groups may change abruptly due to new scientific data, mutations of the
virus, weather conditions or behavioral transitions of the people. Another example from ur-
ban planning is the problem of aggregating (or clustering) in urban traffic networks. Traffic
is a strongly time-variant process that needs to be studied in the spatiotemporal dimen-
sion in order to better understand and reveal the hidden information during the process of
congestion formation and dissolution.

Advertising companies can also benefit from Dynamic Aggregation by recommending al-
ternatives to users dynamically based on the users’ temporal preferences. In a realistic
scenario, users’ preferences gradually change and the suggestions should adjust to the new
information in order to increase the effectiveness of the recommendation. In this example,
there is a limited number of alternatives, which are represented as an ordered list; alterna-
tives which are closer to the front of the list are the most popular alternatives. A closely
related instance of Dynamic Aggregation is that of a web search engine, such as Google.
Each query asked might have many different meanings depending on the user. For example,
the query “Python” might refer to an animal, a programming language or a movie. Given
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the pages related to “Python”, a goal of the search engine algorithm is to rank them such
that for each user, the pages of interest appear as high as possible in the ranking.

The aforementioned practical examples are instances of Dynamic Aggregation problems,
in which the problem input is usually not known at the start and is revealed piece-by-
piece. Algorithms that address such kind of problems are called online algorithms. In this
thesis, we study the design of online algorithms for Dynamic Aggregation problems. An
online algorithm can process its input piece-by-piece in the order that the input is fed to the
algorithm, without having the entire input available from the start. Thus, online algorithms
operate in a serial fashion and make decisions for a piece of the input before the next piece
of the input arrives. We evaluate the performance of online algorithms by using the notion
of the competitive ratio, which is the worst case ratio between the solution cost of an online
algorithm and the solution cost of an optimal offline algorithm that knows the entire input
(notions regarding online algorithms are defined in Section 1.3). The concept of online
algorithms was introduced to capture more realistic scenarios where the whole data are not
available before the execution of the algorithm, which is the case for offline algorithms.

Our main motivation is to design online algorithms for Dynamic Aggregation problems,
which are competitive against the optimal offline solution. We study three remarkable on-
line Dynamic Aggregation problems, namely the Online Dynamic Facility Location prob-
lem [37], the Online K-Facility Reallocation problem [35] and the Online Min-Sum Set Cover
problem [18]. For these problems, we also investigate the limitations of online solutions
by designing instances, where any online algorithm is forced to take suboptimal decisions
due to lack of information about future requests. Our contribution is twofold in the sense
that we improve the performance of the best known online algorithm and we prove lower
bounds on the performance of any online algorithm for each problem. In order to achieve
these results, we carefully craft techniques from the fields of competitive analysis, convex
optimization and online learning and show interesting connections between these fields.

The introduction is structured as follows. In Section 1.1, we survey the results regarding Dy-
namic Aggregation problems and explore related areas. Then, in Section 1.2, we introduce
the specific online Dynamic Aggregation problems studied in this thesis and present our
results. Section 1.2 is subdivived into three subsections corresponding to the three online
Dynamic Problems that we study. Finally, in Section 1.3, we discuss some basic concepts
and notions regarding the scientific fields related to our work.

1.1 Dynamic Aggregation Problems

Aggregation problems have been extensively studied in the literature. The input to an Ag-
gregation problem can be a set, a multiset, or a list from some input domain I and the re-
spective aggregate function outputs an element of an output domain O. Typical examples
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of aggregate functions include:

1. The Sum function, which is the addition of elements of mathematical objects such as
numbers, functions, arrays, matrices or even polynomials.

2. The Average function, which is the sum of the numbers divided by how many num-
bers are being averaged.

3. The Count function, which determines the number of elements of a finite set of ob-
jects.

4. The Minimum and Maximum functions, which calculate the smallest and the largest
value of the function respectively. The values are either calculated within a given
range resulting to a local extreme, or on the entire domain resulting to a global ex-
treme.

Dynamic Aggregation problems introduce an additional temporal dimension in Aggrega-
tion problems by letting the problems process in stages (stages can also be referred as rounds
or timesteps). Thus, an algorithm for a Dynamic Aggregation problem solves a possible
different instance of an Aggregation problem at each stage. This fact has a major impact
on the objective function of a Dynamic Aggregation problem, which is extended to favor
solutions that do not change dramatically between timesteps. The extension involves an
additional fixed amount of a switching cost (or moving cost), which is incurred every time
a solution between two consecutive time steps changes. Consequently, algorithms for Dy-
namic Aggregation problems aim at discovering temporal evolution of elements that is not
too sensitive to transient changes.

Towards a more formal generic definition of Dynamic Aggregation problems, let T be the
number of stages and let f : I → O be an aggregate function and g : I

′ → O
′ be a switching

cost function. At each stage t, 1 ≤ t ≤ T, there is a request rt having the form of a set,
multiset, vector, matrix or list, which the algorithm has to serve. The objective function of
the problem has the form:

T

∑
t=1

f (Solt) +
T

∑
t=1

g(Solt, Solt+1)

where the first term is the cost incurred by f at stage t due to to the solution Solt produced
by the algorithm to serve the request rt at stage t, and the second term is the switching cost
incurred by g due to the distance between two consecutive solutions of the algorithm.

The family of theDynamic Aggregation problems is closely related to another famous family
of problems called Metrical Task Systems (MTS). In MTS, we are given a set of N states and
a metric function d specifying the cost of moving between the states. At each step, a task
arrives; the cost of serving the task at state i is ci. An algorithm has to choose a state to
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process the task. If it switches from state i to state j and processes the task there, it incurs
a cost d(i, j) + cj. Given an initial state and a sequence of requests, the goal is to process
all tasks at minimum cost.

The most notable difference between Metrical Task Systems and Dynamic Aggregation
problems is that MTS are inherently online, whereas Dynamic Aggregation problems are
defined in both the offline and the online setting. Moreover, in Dynamic Aggregation prob-
lems the cost of serving a request is an aggregate function, while MTS allows more general
functions to be considered. Additionally, the switching cost functions in Dynamic Aggre-
gation problems usually measure the distance between two consecutive solutions provided
by the algorithm as opposed to the switching cost of MTS, which measures the distance
between two states (or configurations) of the algorithm. Despite the aforementioned minor
differences, the cost of serving a task in MTS can be an aggregate cost function as well as
to different states in MTS may correspond to two different solutions, thus almost all online
problems considered in this thesis belong to both families.

The list update problem

A typical Dynamic Aggregation problem is the list update problem, where we are given
a set of n items in a list and the cost of accessing an item is proportional to its distance
from the first item in the list. An algorithm has to reorder the list by transposing elements
so that the total cost of accesses is minimized. The reordering actions include two types
transpositions:

• A free transposition of the accessed item.

• A paid transposition of unit cost for exchanging two adjacent items.

The objective of the list update problem can be written in the form

T

∑
t=1

f (Solt) +
T

∑
t=1

g(Solt, Solt+1)

by plugin in an aggregate function f that counts the position of the accessed item in the
solution (list) at stage t and by counting paid transpositions between any two consecutive
solutions with the Kendall tau distance, which counts the number of inversions between the
two solutions. The list update problems is the special case of the online Min-Sum Set Cover,
where the requests have the form of sets of items St and the access cost is the positions of
the first element of St in the list. Moreover, all transpositions in online MSSC are paid.

The list update problem is one of the most classic and famous online problems [23], which
has been studied comprehensively and extensively in the literature. The deterministic com-
petitive ratio of the list update problem is at least 2− 2

n+1 and there are several deterministic



7

algorithms achieving almost matching upper bounds. The most famous of them is the sim-
ple and intuitive Move-to-Front (MTF) algorithm, which moves the (unique) element of St

to the first position of the permutation. MTF is known to be 2-competitive [66] and several
other 2-competitive algorithms can be found in [1, 38]. Another intuitive algorithm for
the list update problem is the Frequency Count (FC) algorithm, which orders the elements
in decreasing order according to their frequencies. Despite the fact that the FC algorithm
appears to be a suitable algorithm for the problem, it is surprising that it’s competitive ratio
is Ω(n). For randomized algorithms, the best known competitive ratio is 1.6 [2] and the
best lower bound is 1.50115 [3].

Interestingly, all prior work on the list update problem does not seem to provide us with
the right tools for obtaining an algorithm for online Min-Sum Set Cover, which we study
in this thesis. Almost all natural generalizations of successful list update algorithms (e.g.,
Move-to-Front, Frequency Count) end up with a competitive ratio way far from the desired
bound. In fact, even for sets with two elements, most of them have a competitive ratio
depending on n, such as Ω(

√
n) or even Ω(n).

The K-server problem

Another important and well-studied online optimization problem which falls into the cate-
gory of Dynamic Aggregation problems is the K-server problem. In the K-server problem,
we have K mobile servers located at some points of a metric space. The input is a request
sequence r = (r1, . . . rT), where rt is the point requested at time t in an online fashion. The
goal is to minimize the total distance traveled by the servers for serving r:

T

∑
t=1

d(St, St−1)

where St is the configuration of the algorithm at time t, which describes the positions of the
K servers in themetric space at stage T. Observe that the K-server problem can be described
as a Dynamic Aggregation problem, where the aggregated cost at stage t is the distance
traveled by the server that serves rt and the switching cost is the sumof all distances traveled
by the other servers between two stages.

The K-server problem was introduced by Manasse et al. [60] as a far-reaching general-
ization of various online problems, the most notable of which is the paging problem. The
paging problem is the special case of the k-server problem in a uniform metric, i.e. when
all distances between distinct points are 1. Here, the K-servers correspond to the K slots
in the cache, and the pages correspond to the points. Evicting a page from the cache and
bringing a new one maps to moving a server between the corresponding points at a cost of
1. Manasse et al. [60] showed that the competitive ratio of deterministic algorithms is at
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least k, even if the metric space contains only n = K + 1 points. For the paging problem,
Sleator and Tarjan [66] showed that many natural algorithms are K-competitive.

The initial research for the K-server problem focused on special metrics like weighted stars,
lines and trees, and for many cases tight K-competitive algorithms were obtained [30, 31] .
For general metric spaces, Fiat et al. [41] obtained the first f (k)-competitive algorithm, with
competitive ratio O((k!)3). Several improvements followed (but with ratio still exponential
in K) until Koutsoupias and Papadimitriou [55] showed that the Work Function Algorithm
(WFA) is (2K − 1)-competitive for every metric space. This impressive result remains up
to date the best known upper bound on the deterministic competitive ratio of the K-server
problem.

1.2 Considered Problems and Results

In this section, we present the online Dynamic Aggregation problems considered in this
thesis, namely the Online Min-Sum Set Cover problem, the Online 2-Facility Reallocation
Problem and the Online Dynamic Facility Location problem. The section is divided into
three subsections, one for each considered online problem. We start with the Online Min-
Sum Set Cover problem.

1.2.1 The Online Min-Sum Set Cover Problem

A typical representative of the class of online Dynamic Aggregation problems is the online
Min-Sum Set Cover (MSSC). In MSSC, we are given a universe U on n elements and at each
stage t, a subset St ⊆ U arrives in an online fashion. The goal is to construct online T
permutations π1, . . . , πT of elements of U so as to provide the best covering time for the
subsets of S . The covering time of St is measured with the aggregate function πt(St) and
is the position of the first element of St in πt, i.e., πt(St) = min{i |πt(i) ∈ St}. The
switching cost between two consecutive solutions is the number of inversions between πt

and πt+1, known as the Kendall tau distance dKT(πt, πt+1). The goal is to minimize the
total cost:

T

∑
t=1

(
πt(St) + dKT(πt, πt+1)

)
.

The motivating example for online MMSC is that of a web search engine, where each query
askedmight have many different meanings depending on the user and the goal of the search
engine algorithm is to rank them such that for each user, the pages of interest appear as
high as possible in the ranking. Another example news streams include articles covering
different reader interests each. We want to rank the articles so that every reader finds an
article of interest as high as possible. The MSSC problem serves as a theoretical model for
practical problems of this type, where we want to aggregate disjunctive binary preferences
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(expressed by the input sets) into a total order. E.g., for a news stream, the universe U
corresponds to the available articles and the sets St correspond to different user types. The
cost of a ranking (i.e., permutation on U) for a user type is the location of the first article of
interest. Clearly, in such applications, users arrive online and the algorithm might need to
re-rank the stream (i.e., change the permutation) based on user preferences.

The online MSSC generalizes the famous list update problem, where the sets have cardinal-
ity 1 (|St| = 1). However, all natural generalizations of nearly optimal algorithms for the
list update problem fail to achieve a competitive ratio better than Ω(n), even if |St| = 2
for all t. This suggests that online MSSC has a distinctive combinatorial structure, very dif-
ferent from that of list update, whose algorithmic understanding calls for significant new
insights. The main reason has to do with the disjunctive nature of the definition of the
access cost π(St). In list update, the optimal solution is bound to serve a request St by
its unique element. The only question is how fast an online algorithm should upgrade it
(and the answer is “as fast as possible”). In MSSC, the hard (and crucial) part behind the
design of any competitive algorithm is how to ensure that the algorithm learns fast enough
about the element et used by the optimal solution to serve each request St. This is evident
in the highly adaptive nature of the deceptively simple greedy algorithm of [39] and in the
adversarial request sequences for generalizations of Move-to-Front.

Related Work

The Min-Sum Set Cover problem has been mainly studied in the offline non dynamic ver-
sion, where one seeks to find the best permutation π that covers all subsets {S1, . . . , Sm}
of S with minimum covering time. Since, the solution remains the same for all stages, there
is no switching cost and therefore the goal is simply to minimize ∑t π(St). This variant of
the MSSC problem generalizes various NP-hard problems such as Min-Sum Vertex Cover
and Min-Sum Coloring and it is well-studied. Feige, Lovasz and Tetali [39] showed that the
greedy algorithm, which picks in each position the element that covers the most uncovered
sets, is a 4-approximation and that no (4− ε)-approximation is possible, unless P = NP.
Also, in [19] it was shown that greedy is no better than 4-approximation.

Multiple Intents re-ranking is an interesting generalization of MSSC, where for each set St,
there is a covering requirement K(St), and the cost of covering a set St is the position of the
K(St)-th element of St in π. The DMSSC problem is the special case where K(St) = 1 for
all sets St. Another notable special case is the Min-Latency Set Cover problem, which cor-
responds to the other extreme case where K(St) = |St| [49]. Multiple Intents Re-ranking
was first studied by Azar et. al. [11], who presented a O(log r)-approximation; later O(1)-
approximation algorithms were obtained [17, 65, 53]. Further generalizations have been
considered, such as the Submodular Ranking problem, studied by Azar and Gamzu [10],
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which generalizes both Set Cover andMSSC, and the Min-Latency Submodular Cover, stud-
ied by Im et.al [52].

It is easy to see that the online version of MSSC problem is a MTS, where the states corre-
spond to permutations, thus N = n!, and the distance between two states is their Kendall
tau distance. For a request set St, the request is a vector specifying the cost π(St) for every
permutation π. Although there has been a lot of work on understanding the structure of
MTS problems [24, 34, 25, 55, 64, 63, 8, 14, 15], there is not a good grasp on how the structure
relates to the hardness of MTS problems. Getting a better understanding on this area is a
long-term goal, since it would lead to a systematic framework for solving online problems.

The onlineMSSC has an interesting connectionwith the prediction from expert advice prob-
lem. In this problem, there are N experts and expert i incurs a cost ct

i in each step. A learn-
ing algorithm decides which expert it to follow (before the cost vector ct is revealed) and
incurs a cost of ct

it . The landmark technique for solving this problem is the multiplicative
weights update (MWU - a.k.a. Hedge) algorithm. For an in-depth treatment of MWU, we
refer to [58, 46, 9].

In the classic online learning setting, there is no cost for moving probability mass between
experts. However, in a breakthrough result, Blum and Burch [22] showed that MWU is (1+
ε)-competitive against the best expert, even if there is a cost D for moving probability mass
between experts. By adapting this result to MSSC (by viewing permutations as experts),
we can get an (inefficient) randomized algorithm with competitive ratio (1 + ε), for any
constant ε ∈ (0, 1/4).

Results

We consider the r-uniform case, where all request sets have the same size |St| = r and
initiate a systematic study on online MSSC.

The first of our main results is a tight bound on the deterministic competitive ratio of On-
line MSSC. This is achieved by showing first a lower bound of (r + 1)(1 − r

n+1) on the
competitive ratio of deterministic algorithms. Note that for r = 1, this bound evaluates to
2− 2

n+1 , which is exactly the best known lower bound for the list update problem. Then,
we complement this result by providing a matching (up to constant factors) upper bound of
(5r + 2) on the competitive ratio. Our algorithm uses a rounding scheme, to derandomize
the multiplicative weights update (MWU) algorithm.

We then turn our attention to computational efficient algorithms and we propose a mem-
oryless algorithm called Move-All-Equally (MAE). We show that MAE has a lower bound
of Ω(r2) and an upper bound of 2O(

√
log n·log r) on its competitive ratio. and we conjecture

that an O(r) guarantee cannot be achieved by memoryless algorithms.
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Finally, we study the much more general dynamic version of online MSSC, where the al-
gorithm is compared against an optimal solution allowed to change permutations over
time. We investigate the performance of the MAE algorithm and obtain an upper bound of
O(r3/2√n) on its competitive ratio. Although this guarantee is not very strong, we show
that, rather surprisingly, it is essentially tight and no better guarantees can be shown for
this algorithm by showing a lower bound of Ω(r

√
n).

1.2.2 Online K-Facility Reallocation Problem

In the K-Facility Reallocation problem, K facilities are initially lying at points (x0
1, . . . , x0

K)

of a metric spaceM. There are n clients, also residing on the same metric space, that use
the facilities for T consecutive days. Each day, every client connects to the facility closest to
their location and incurs a connection cost equal to this distance. Since the clients are free to
move around onM from day to day, the algorithm can also move the facilities accordingly,
to keep the connection cost low. Naturally, moving a facility is not free, but costs a price
equal to the distance traversed. Our goal is to specify the exact positions of the facilities
at each day so that the total connection cost plus the total moving cost over all T days is
minimized:

Cost(x) =
T

∑
t=1

[ K

∑
k=1
|xt

k − xt−1
k |+

n

∑
i=1

min
1≤k≤K

|αt
i − xt

k|
]

.

where at
i is the position of client i at stage t.

It is easy to see that the K-Facility Reallocation problem is a Dynamic Aggregation problem,
where the aggregate function is the sumof distances of all clients to the facilities (connection
cost) and the switching cost function is the distance travelled by the facilities at each stage.
The Facility Reallocation problem was introduced by [35] and studied in the case the metric
space is the real line. The motivating example considered in [35] for K = 1 consists of a
political party moving along the spectrum from left to right wing, in an attempt to please
more voters. Extending to K, this setting applies to clustering and advertising: following
[57] fromYahoo Labs, companies often have a limited number of slots to suggest alternatives
to users (such as ads or movie suggestions), given previously collected data. The users’
preferences gradually change however and the limited number of suggestions need to stay
enticing, without appearing to have abruptly adjusted to the new information.

For another intuitive example from the operations research field, consider a beach, where
two ice cream vendors are to be located for the next three days. The beach is visited by
ten customers for the next three days and these customers may change their location on
the beach. Naturally, each customer wants to have an ice cream vendor close to him in
order to buy ice cream. The goal is to minimize the total distance traveled by the customers
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Figure 1.1: The picture on the left is an instance of 2-Facility Reallocation
problem on the line. The initial ice cream vendor locations are illustrated in
day 0 and the dots indicate the customer locations. The right picture shows a

good solution for this instance, namely the facility locations at each day.

plus the total distance traveled by the ice cream vendors. Figure 1.1 depicts the instance on
the left and the solution for this instance on the right respectively. The black dots are the
customers, which appear in different locations throughout the days.

The previous example is an instance of the K-Facility Reallocation problem, where the num-
ber of mobile facilities is two (the ice cream vendors), the number of stages is three (the
days) and the number of agents is 10 (the customers). Moreover, the metric space is the real
line (the beach) and the variant is the offline if we know all customer locations throughout
the days at the beginning of the first day. The problem is online if we learn the customer
positions of the next day only after we have served (located the ice cream vendors) the
customers of the current day.

Related Work

The K-Facility Reallocation problem was first studied by [35], who designed optimal offline
and online algorithms for the case of K = 1 and presented a dynamic programming algo-
rithm for K ≥ 1 facilities with running time exponential in K. The result for general K in
the offline variant was improved by [45], who presented an optimal algorithm with run-
ning time polynomial in the combinatorial parameters of K-Facility Reallocation (i.e., n, T
and K). This substantially improves on the complexity of the algorithm, presented in [35],
that is exponential in K. Their algorithm solves a Linear Programming relaxation and then
rounds the fractional solution to determine the positions of the facilities. The main technical
contribution is showing that a simple rounding scheme yields an integral solution that has
the exact same cost as the fractional one.
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The K-Facility Reallocation problem can be seen as multi-winner election (or committee
selection) problem in utilitarian voting with single peaked preferences, especially under
the Chamberlin-Courant rule. Two papers related to such problems are [7] and [61]. These
deal with selecting the best amongmany possible outcomes in order tomaximize the agents’
utility. However, our setting is dynamic in the sense that the agents preferences change
between stages, thus the goal is to minimize a social cost function over T stages and we
also have to take into account that the solution provided at each stage should be close to
the solution of the previous stage.

In [47], a mobile facility location problem was introduced, which can be seen as a one
stage version of our problem. They showed that even this version of the problem is NP-
hard in general metric spaces using an approximation preserving reduction from K-median
problem.

Online facility location problems and variants have been extensively studied in the litera-
ture, see [44] for a survey. In [36], an online model where facilities can be moved with zero
cost was studied. Despite achieving a constant competitive ratio, this model has the draw-
back that a misplaced facility can be moved for free to an optimal point without causing a
penalty for the initial error. To remove this obstacle, [40] proposed a model, where moving
a facility incurs a cost proportional to the distance it has moved.

The online variant of the K-Facility Reallocation problem is closely related to the K-server
problem, which is one of the most natural online problems. [54] showed a (2K − 1)-
competitive algorithm for the K-server problem for every metric space, which is also K-
competitive, in case the metric is the real line [21]. Other variants of the K-server problem
include the (H, K)-server problem [16, 13], the Infinite server problem [33] and the K-taxi
problem[41, 32].

Regarding online clustering, [28] proposed an approach, which stems fromHierarchical Ag-
glomerative Clustering. A set of K clusters is maintained while data points are presented
in online fashion. Clusters can be merged, making space for an extra cluster to be used
for incoming data. Clusters cannot be split however: this is both computationally expen-
sive and would change the classification of preexisting data points, which is undesirable
in hierarchical clustering. Also, the number of clusters is fixed from the start at K and it
is impossible to ‘buy’ more of them. The fast increasing volume of available data and the
requirement for responsive services has led to yet another approach by [57], namely on-
line clustering algorithms balancing the quality of the clusters with their rate of change
over time. The model is semi-online, meaning there is some information such as the length
of the stream and the total clustering cost of optimal K-means. The algorithm proposed
achieves a polylog competitive ratio using a polylogarithmicaly larger fraction of clusters.
The authors also present a similar algorithm for the purely online case.
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Results

Our first result is a lower bound of K on the deterministic competitive ratio for the on-
line K-Facility Reallocation problem. In order to prove this lower bound, we show that no
deterministic algorithm can achieve a better competitive ratio for the online K-Facility Re-
allocation problem that is better than the competitive ratio of the K-server problem. Since
we know that the K-server problem has a lower bound of K, the same holds for K-Facility
Reallocation.

The above arguments rule out the existence of a deterministic algorithm for the 2-Facility
Reallocation problem with competitive ratio lower than 2. Thus, we focus on designing
an online algorithm with competitive ratio that does not depend on the number of clients
n. The result is a O(1)-competitive algorithm, which is inspired by the double coverage
algorithm that solves optimally the K-server problem on the line.

1.2.3 The Online Dynamic Facility Location
Problem

The last online Dynamic Aggregation problemwe study in this thesis is the Online Dynamic
Facility Location problem (ODFL). ODFL is the online variant of the Dynamic Facility Loca-
tion problem, which was introduced by Eisenstat et al. [37] to model the temporal aspects
of temporally evolving social or infrastructure networks. In this time-dependent variant
of the Facility Location problem, clients or facilities may change their location over time
and the goal is to achieve the best tradeoff between the optimal connections of clients to
facilities and the stability of solutions between consecutive timesteps.

The temporal aspect of the Dynamic Facility Location problem is modeled by T metrics
given on the same set of clients and facilities, each representing the metric at time round
t ∈ {1, . . . , T}. In the Online Dynamic Facility Location, the T metrics on clients and
facilities are revealed one by one at each round. The online algorithmmustmake its decision
before the metric of the next round is revealed and without knowing the total number of
rounds. More formally:

In Online Dynamic Facility Location, we are given a set of facilities F, |F| = m, a set
of clients C, |C| = n, a switching cost g and a facility opening cost f . At each round
t ∈ {1, . . . , T}, a new metric between clients and facilities is revealed with the form of a
n×m dimensional vector dt, which has entries corresponding to distances over F×C. We
denote by dt(i, j) the distance between client j and facility i at time t. At each round t, the
goal is to find a subset At ⊆ F of open facilities and an assignment φt : C −→ At of clients
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Figure 1.2: An instance of theDynamic Facility Location problem, with n = 5
clients (the black circles) and T = 4 stages. At Stage 1, the algorithm de-
cides to open two facilities (the red triangles) to serve the clients. At Stage 2,
the clients move away from the facilities and increase the connection cost of
the solution. At Stage 3, all clients are near and far from the previously two
opened facilities. Thus, the algorithm decides to close the two facilities by
paying the resulting switching cost and opens a new facility near the clients.
At Stage 4, the clients have moved again away from the open facility, thus the
algorithm closes the facility, pays the switching cost and opens a new facility
near them.

to open facilities so as to minimize the objective:

f
T

∑
t=1
|At|+

T

∑
t=1,j∈C

dt(φt(j), j) + g ·
T

∑
t=1,j∈C

1{φt(j) 6= φt−1(j)}

where 1{p} is the indicator function of proposition p. The assignment φt of round t is cho-
sen without knowing the distance vectors dt+1, . . . , dT of upcoming rounds. The objective
function is the sum of the hourly opening costs for each open facility plus the connection
costs of each client plus the switching costs (g per change of facility per client). We remark
that any solution pays switching cost gn at round t = 1, since it switches to an initial
assignment of the clients to facilities.

Observe that Online Dynamic Facility Location is a Dynamic Aggregation problem, where
at each stage t the aggregate function are the sum of the first two term of the objective
function and the switching cost function is the third term. In Figure 1.2, we illustrate an
example of Dynamic Facility location with n = 5 clients and T = 4 different metrics.



16

Related Work

The offline and online variant of Facility Location have been studied extensively in the
literature. For the offline Facility Location problem the approximability is Θ(log n) [51] for
the non-metric case while for the metric case the best lower bound is 1.463 [48] and the best
algorithm has approximation ratio 1.488 [56]. Online Facility Location is known to have a
competitive ratio of Θ(log n/ log log n) in the adversarial case for both deterministic and
randomized algorithms [43] and constant competitive ratio if the clients are drawn from a
known distribution [6].

In the Incremental Facility Location problem, which was first studied by [42], additional
facilities can be opened and pairs of facilities can be merged at any point. The number of
facilities does not need to remain fixed throughout and the final cost paid depends only on
the number of open facilities at the end. Using techniques from streaming algorithms, the
authors presented a constant competitive algorithm for incremental facility location as well
as Incremental K-median clustering (also studied by [29]) using O(K) additional clusters.

The study of Dynamic Facility Location so far concerns the offline case where the changes
between distances of clients and facilities are known in advance. Eisenstat et al. [37] showed
an upper bound of O(log nT) for the most interesting variant of Dynamic Facility Location
with hourly facility costs, where facilities can be closed and are paid for all rounds in which
they remain open. This result was later improved dramatically by [4], which gave an O(1)-
approximation algorithm by exploiting a very interesting randomized rounding procedure.

Another problem closely related to Dynamic Facility Location, which is studied in the offline
variant is the Dynamic Sum-Radii clustering problem, where clients arrive and depart, and
the solution must be updated efficiently while remaining competitive with respect to the
current optimal solution. In [50], they presented a data structure that maintains a solution
whose cost is within a constant factor of the cost of an optimal solution inmetric spaces with
bounded doubling dimension an with worst-case update time logarithmic in the parameters
of the problem.

Results

We give a comprehensive study on the competitive ratio of the Online Dynamic Facility
Location problem. Towards this end, we provide lower bounds on the competitive ratio of
deterministic and randomized algorithms and prove an almost matching upper bound on
the competitive ratio of randomized algorithms.

Our first result considering ODFL is a lower bound of Ω(m) on the competitive ratio of any
deterministic online algorithm. By using Yao’s principle, we extend this result to prove that
no randomized algorithm can achieve a competitive ratio better than Ω(log m).
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Regarding the upper bound, we design a randomized algorithm, which is O(log m+ log n)-
competitive. At each stage, the algorithm solves the LP relaxation of Dynamic Facility
Location and then rounds the fractional solution to an integral one. We show that the
fractional solution increases the switching cost by a factor of O(log m) and the rounding
increases the facility cost by O(log n) resulting to an additive competitive ratio.

1.3 Technical Background

In this chapter, we present the main concepts and tools of online optimization problems.
Online optimization problemswhere introduced to capture realistic scenarios, where the in-
put of a problem is revealed piece-by-piece as opposed to traditional optimization problems,
which assume complete knowledge of all data of a problem instance. Most of the times, we
need to solve optimization problems, while taking decisions with incomplete information
about the input. This observation has motivated the research on online optimization. An
online algorithm processes its input sequentially in the order that is fed to the algorithm,
without knowing the the pieces of input that will arrive in the future.

The field that studies optimization problems having no or incomplete knowledge of the
future is called online optimization. Online optimization is challenging and it is not far
from the truth that nearly all known algorithmic techniques have been applied in online
optimization offer satisfactory solutions. Typically, the effectiveness of an online solution
is measured with the method of competitive analysis.

1.3.1 Competitive Analysis

Competitive analysis, which was introduced by Sleator and Tarjan [66], is a method in-
vented for analyzing online algorithms, which are forced to make decisions that may later
turn out not to be optimal, since they have no access to the whole input. The study of online
algorithms has focused on the quality of decision-making that is possible in this setting.

The performance of online algorithms is evaluated by comparing the quality of the pro-
duced solution against the solution from an optimal offline algorithm that knows the whole
sequence of information a priori. Competitive analysis measures the performance of online
algorithms using the notion of the competitive ratio. Since we focus on minimization prob-
lems in this thesis, we give the formal definition of the competitive ratio for minimization
problems:

Definition 1.1. Let c > 1 be a real number and let ALG(σ) be the cost of an online deter-
ministic algorithm on a request sequence σ. The algorithm is called c-competitive if there exists
a constant b such that

ALG(σ) ≤ c ·OPT(σ) + b
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holds for any request sequence σ, where OPT(σ) is the optimal offline algorithm which knows
σ in advance.

Since a competitive algorithm should give guarantees that it performs well against any
request sequence, we may assume that the request sequence is generated by a malicious
adversary. The malicious adversary knows the strategy of the online algorithm and there-
fore can construct a request sequence which maximizes the ratio between the algorithm’s
cost and the optimal offline cost.

Observe that the competitive ratio of an online algorithm involves an additive constant b in
its definition. The definition of competitiveness varies in the literature and mainly depends
on the nature of the specific online problem. In some problems, the constant b may depend
to instance specific parameters such as the the diameter of the metric space, in which the
problem is studied. In some other problems, the goal is to achieve the best competitive ratio
(the best constant c) assuming that b = 0. This is the notion of the strict competitiveness. In
most cases, the additive constant b may depend on the initial configuration of the problem
but it is required to not be dependent on the request sequence σ.

Another important observation regarding the definition of the competitive ratio is that it
does not involve a restriction on the computational resources that the online algorithm
may need to produce a solution. The main principal for competitive analysis is the design
of online algorithms that deal with uncertainties about the future in the best possible fash-
ion. The competitive ratio is the loss factor that an online algorithm has to pay, since it
has no access to future requests even though it may have unlimited computational power.
However, in practical applications we may sacrifice the solution quality in favor of more
computationally efficient solutions or seek for the best balance between solution quality
and efficiency.

1.3.2 Randomized Algorithms

Theneed for online algorithms that achieve the best possible competitive ratio has led to the
use of randomized algorithms. A randomized algorithm employs a degree of randomness as
part of its strategy, typically using random bits as an auxiliary input to guide its behavior.

Randomized algorithms usually outperform significantly deterministic algorithms in terms
of solution quality. In this case the competitive ratio depends on the type of the adversary
with which the online randomized algorithm is compared. The most common adversary
models are the following.

Oblivious Adversary: The oblivious adversary knows the code of the online algorithm,
but it has no access to the random bits of the online algorithm. Furthermore, it has to
construct the whole input before the algorithm begins its execution. Due to this limitations,
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the oblivious adversary is sometimes called the weak adversary. Usually, randomization
can be very helpful for improving the solution quality of an online algorithm against an
oblivious adversary.

A randomized online algorithm ALG is c-competitive against oblivious adversaries if there
exists a constant c, such that for any request sequence generated by an oblivious adversary,

E[ALG(σ)] ≤ c OPT(σ) + b.

Adaptive Online Adversary: The adaptive online adversary knows all actions of the algo-
rithm, including its random choices. This adversary must make its own decision before it is
allowed to know the decision of the algorithm and therefore is called themedium adversary.
Specifically, at each step, the adversary gives a request maximizing the cost of the online
algorithm. However, the adversary must also serve the each request in an online fashion.
A randomized online algorithm ALG is c-competitive against adaptive online adversaries,
if there exists a constant c, such that for any request sequence generated by an adaptive
online adversary ADV,

E[ALG(σ)] ≤ c · E[ADV(σ)] + b,

where ADV(σ) is the cost of ADV to serve σ.

There is another type of adversary for randomized algorithms, which is stronger than the
oblivious adversary and the adaptive online adversary, called the adaptive offline adversary.

Adaptive Offline Adversary The adaptive offline adversary defers serving the request
sequence until he has generated the last request. He then uses an optimal offline algorithm
to serve it. In contrast, the adaptive online adversary must serve the input sequence online.

This adversary knows everything, even the random number generator, and is so strong
that randomization does not help against it. Therefore it is sometimes called the strong
adversary.





21

2 Methodologies and Techniques

In this chapter, we discuss the main methodologies and techniques we have used to provide
our results for the online problems considered. We start with the potential functionmethod.

2.1 Potential Function Method

We use the potential function method to analyze the performance of the MAE algorithm
(Chapter 3) for the onlineMin-Sum Set Cover problem as well as to analyze the performance
of our online algorithm for the K-Facility Reallocation problem on the line ( Chapter 4). This
method is extensively applied in computational complexity theory, in order to analyze the
amortized time and space complexity of a data structure. Amortized analysis measures
operations that smooth out the cost of infrequent but expensive operations.

Potential functions are an important tool for online optimization since they can be used for
proving competitiveness results. We now summarize this technique for an online algorithm
that attempts to minimize the cost of serving a request sequence r = (r1, . . . , rT) over T
stages.

Let ALG be an online algorithm for some online minimization problem and OPT be the
optimal offline algorithm for this problem. The potential Φ maps the current configurations
of ALG and OPT to a non-negative value Φ. We denote by Φ the potential after request i.
Let ALG(ri) be the cost incurred by ALG on request ri and OPT(ri) be the cost incurred
by the optimal offline algorithm on request ri. The amortized cost ai for serving request ri

is defined as
ai = ALG(ri) + |Φi −Φi−1|

The intuition behind a potential function and the amortized cost is to measure how good the
current configuration of the online algorithm is compared to an optimal offline algorithm.
The potential can be viewed as a bank account. If the difference |Φi − Φi−1| is negative,
then the amortized cost underestimates the real cost costi. The difference is covered by
withdrawal from the account. We have that the total cost of the online algorithm ALG for



22

serving request r is:

T

∑
i=1

ALG(ri) =
T

∑
i=1

ai + (Φ0 −Φn) ≤
T

∑
i=1

ai + Φ0

where the second equality follows from a telescopic sum. Notice that Φ0 is a constant
that only depends on the initial configurations of ALG and OPT. Thus, up to an additive
constant, the real cost is bounded from above by the amortized cost. If we can show that
ai ≤ c ·OPT(ri), where OPT(ri) is the cost incurred by the optimal offline algorithm on
request ri, then it follows that the online algorithm ALG is c-competitive.

2.2 Averaging over Adversaries

In this section, we present the averaging technique for proving lower bounds in online
optimization problems. This method has been applied in the K-server problem to provide
a lower bound of K on the competitive ratio of deterministic algorithms [55] and in the list
update problem to show that no deterministic algorithm can be better than (2− 2/(n+ 1))-
competitive, where n is the length of the list [23]. We use this method to provide a lower
bound for the online Min-Sum Set Cover problem (Chapter 3).

Usually, the optimal offline cost is hard to bound both from above and below. For proving
lower bound results on the competitive ratio of online algorithms, averaging over adver-
saries can help. The proof is based on a simple trick: Instead of comparing the online
algorithm against one offline algorithm, we compare its cost against distinct offline algo-
rithms. The basic idea is to have a set B of algorithms each of which serves the same request
sequence r. If the sum of the costs of all algorithms in B is at most C, then there must be
some algorithm in B which has cost at most C/|B|, the average cost. Hence, we get that
OPT(r) ≤ C/|B|.

For example, the lower bound idea for the list update problem is constructed as follows:
Given a deterministic algorithm ALG and a list with n elements, there is a cruel adversary,
which chooses a sequence r of length T that always requests the last element in ALG’s list.
Hence, the online cost is the n for each request and T · n for serving the whole request
sequence. The averaging technique considers all static offline algorithms that correspond
to all permutations of the list. Each of these algorithms initially sorts the list according to
its permutation and then keeps the list fixed for the rest of the sequence. The sorting cost of
each algorithm can be bounded by a constant b that depends only on list size is negligible for
large T. It is easy to prove that the average cost paid by the static algorithms is b + T · n+1

2 ,
thus for T → ∞, the ratio between ALG and OPT becomes 2n

n+1 = 2− 2/(n + 1).
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2.3 Yao’s Principle

In this section, we present Yao’s principle (also called Yao’s minimax principle or Yao’s
lemma) used to prove lower bounds on the competitive ratio of randomized algorithms. We
apply Yao’s principle in the online Dynamic Facility Location problem to show that the no
randomized algorithm can be better than Ω(log m)-competitive, where m is the number of
facilities (Chapter 5).

A lower bound on the competitive ratio is usually derived by providing a set of specific
instances on which no online algorithm can perform well compared to an optimal offline
algorithm. Here, again, we have to distinguish between deterministic and randomized algo-
rithms. For deterministic algorithms, finding a suitable set of request sequences is in most
cases comparatively easy. For randomized algorithms, however, it is usually very difficult to
bound the expected cost of an arbitrary randomized algorithm on a specific instance from
below. A standard tool for proving lower bounds for randomized algorithms is expressed
below.

Theorem 2.1 (Yao’s Principle for Online Problems). Let {ALGy : y ∈ Y} denote the set of
all deterministic online algorithms for an online minimization problem. If X̃ is a probability
distribution over input sequences {rx : x ∈ X} and c̃ > 1 is a real number such that

inf
y∈Y

E
X̃
[ALGy(rx)] ≥ c̃ E

X̃
[OPT(rx)],

then c̃ is a lower bound on the competitive ratio of any randomized algorithm against an
oblivious adversary.

Yao’s principle states that the expected cost of a randomized algorithm on the worst-case
input is no better than the expected cost for a worst-case probability distribution on the
inputs of the deterministic algorithm that performs best against that distribution. Thus, it
suffices to find an appropriate distribution of difficult inputs, and to prove that no deter-
ministic algorithm can perform well against that distribution.

2.4 Multiplicative Weights Update Method

Themultiplicative weights update method is an algorithmic techniquemost commonly used
for decision making and prediction, and also widely deployed in game theory and algorithm
design. We use one of the simplest use cases of this algorithm, called the Multiplicative
Weights Update (MWU or Hedge) algorithm [58, 46, 9], to obtain an upper bound of O(r) on
the competitive ratio of the online Min-Sum Set Cover problem (Chapter 3). Our algorithm
uses a rounding scheme to derandomize MWU.
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Algorithm 1 Multiplicative Weights Update Algorithm
At every stage t, we have a weight wt

i assigned to expert i. Initially, w1
i = 1 for all i. For

each stage t, we associate the distribution Dt = {p1, p2, . . . , pn} on the experts where
pt

i = wt
i / ∑

k
wt

k. At stage t, we pick an expert according to distribution Dt and use it to

make our prediction. Based on the outcome jt ∈ P in stage t, at stage t + 1, the weight of
expert i is updated as follows for each i:

wt+1
i =

{
wt

i(1− ε)M(i,jt) if M(i, jt) ≥ 0
wt

i(1 + ε)M(i,jt) if M(i, jt) < 0

The MWU algorithm comes from the online learning setting and is the standard tool used
for prediction with expert advice. In prediction with expert advice, a decision maker needs
to iteratively decide on an expert whose advice to follow. We have N experts and expert
i incurs a cost ct

i in each step. A learning algorithm decides which expert it to follow (be-
fore the cost vector ct is revealed) and incurs a cost of ct

it . In the first round, all experts’
opinions have the same weight. The decision maker will make the first decision based on
the majority of the experts’ prediction. Then, in each successive round, the decision maker
will repeatedly update the weight of each expert’s opinion depending on the correctness of
his prior predictions. The weights are reduced in case of poor performance, and increased
otherwise.

To motivate the Multiplicative Weights Update algorithm, consider the naive strategy that,
at each iteration, simply picks an expert at random. The expected penalty will be that of
the average expert. Suppose now that a few experts clearly outperform their competitors.
This is easy to spot as events unfold, and so it is sensible to reward them by increasing their
probability of being picked in the next round. Intuitively, being in complete ignorance about
the experts at the outset, we select them uniformly at random for advice. This maximum
entropy starting rule reflects our ignorance. As we learn who the hot experts are and who
the duds are, we lower the entropy to reflect our increased knowledge. The multiplicative
weight update is our means of skewing the distribution.

Towards a formal description of the MWU algorithm, let P be the set of events/outcomes.
We assume there is a matrix M such that M(i, j) is the penalty that expert i pays when the
outcome is j ∈ P. The algorithm is described in Algorithm 1.

2.5 Regularization

An important technique used in online convex optimization is regularization. We use reg-
ularization to design a randomized O(log m + log n)-competitive algorithm for the online
Dynamic Facility Location problem (ODFL), where m is the number of facilities and n is
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the number of clients. (Chapter 5). Our algorithm regularizes the objective function of the
linear program formulation of ODFL by adding a smooth convex function to its standard
objective function. Then, the algorithm greedily solves the new online problem and obtains
good bounds. The goal of regularization is to stabilize the solution so as to avoid drastic
shifts in the solution from round to round that will lead to large switching cost.

The idea of regularization is age-old. One can think of “learning” the underlying phe-
nomenon from the scarce observed data is an ill-posed inverse problem: out of many possi-
ble hypotheses that explain the data, which one should we choose? To restore uniqueness
and reinforce the choice of simple models, regularization is the method that comes to mind.
Support Vector Machines and many other successful algorithms arise from these consider-
ations.

On the surface, it is not obvious why regularization methods would have anything to do
with online learning. Indeed, the game described above does not aim at reconstructing some
hidden phenomenon, as in the batch learning case. However, it is becoming apparent that
regularization is indeed very natural. Just as regularization presents a cure to overfitting in
the batch setting, so does regularization allow the online algorithm to avoid being fooled
by an adversary. Indeed, blindly following the best decision given the past data implies,
in some cases, playing into adversary’s hands. Regularization is a way to choose “safe”
decision.
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3 Algorithms for the Static and
Dynamic Online Min-Sum Set Cover
Problem

3.1 Introduction

In this chapter, we consider the r-uniform version of OMSSC, where each St has cardinality
r. We obtain tight bounds on the competitive ratio of deterministic online algorithms for
MSSC against a static adversary, that serves the entire sequence by a single permutation.
First, we show a lower bound of (r + 1)(1− r

n+1) on the competitive ratio.

Theorem 3.1. Any deterministic online algorithm for the Online Min-Sum Set Cover problem
has competitive ratio at least (r + 1)(1− r

n+1).

Note that for r = 1, this bound evaluates to 2− 2
n+1 , which is exactly the best known lower

bound for the list update problem. Since there are several algorithms matching this bound,
this lower bound is the best possible for general values of r.

We complement this result by providing a matching (up to constant factors) upper bound.

Theorem 3.2. There exists a (5r + 2)-competitive deterministic online algorithm for the On-
line Min-Sum Set Cover problem.

Interestingly, all prior work on the list update problem (case r = 1) does not seem to provide
us with the right tools for obtaining an algorithm with such guarantees! As we discuss in
Section 3.2, virtually all natural generalizations of successful list update algorithms (e.g.,
Move-to-Front, Frequency Count) end up with a competitive ratio way far from the desired
bound. In fact, even for r = 2, most of them have a competitive ratio depending on n, such
as Ω(

√
n) or even Ω(n).

This suggests that online MSSC has a distinctive combinatorial structure, very different
from that of list update, whose algorithmic understanding calls for significant new insights.
The main reason has to do with the disjunctive nature of the definition of the access cost
π(St). In list update, where r = 1, the optimal solution is bound to serve a request St by
its unique element. The only question is how fast an online algorithm should upgrade it
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(and the answer is “as fast as possible”). In MSSC, the hard (and crucial) part behind the
design of any competitive algorithm is how to ensure that the algorithm learns fast enough
about the element et used by the optimal solution to serve each request St. This is evident
in the highly adaptive nature of the deceptively simple greedy algorithm of [39] and in the
adversarial request sequences for generalizations of Move-to-Front, in Section 3.2.

To obtain the asymptotically optimal ratio of Theorem 3.2, we develop a rounding scheme
and use it to derandomize themultiplicativeweights update (MWU) algorithm. Our analysis
bounds the algorithm’s access cost in terms of the optimal cost, but it does not account for
the algorithm’s moving cost. We then refine our approach, by performing lazy updates to
the algorithm’s permutation, and obtain a competitive algorithm for online MSSC.

We also observe that based on previous work of Blum and Burch [22], there exists a (com-
putationally inefficient) randomized algorithm with competitive ratio 1 + ε, for any ε ∈
(0, 1/4). This implies that no lower bound is possible, if randomization is allowed, and
gives a strong separation between deterministic and randomized algorithms.

Memoryless Algorithms. While the bounds of Theorems 3.1 and 3.2 are matching, our
algorithm from Theorem 3.2 is computationally inefficient since it simulates the MWU al-
gorithm, which in turn, maintains a probability distribution over all n! permutations. This
motivates the study of trade-offs between the competitive ratio and computational effi-
ciency. To this end, we propose a memoryless algorithm, called Move-All-Equally (MAE),
which moves all elements of set St towards the beginning of the permutation at the same
speed until the first reaches the first position. This is inspired by the Double Coverage al-
gorithm from k-server [30, 31]. We believe that MAE achieves the best guarantees among
all memoryless algorithms. We show that this algorithm can not match the deterministic
competitive ratio.

Theorem 3.3. The competitive ratio of the Move-All-Equally algorithm is Ω(r2).

Based onTheorem 3.7, we conjecture that an O(r) guarantee cannot be achieved by a mem-
oryless algorithms. We leave as an open question whether MAE has a competitive ratio
f (r), or a dependence on n is necessary. To this end, we show that the competitive ratio of
MAE is at most 2O(

√
log n·log r) (see Section 3.4 for details).

Dynamic Min-Sum Set Cover. We also consider the dynamic version of online MSSC.
Dynamic MSSC is much more general and the techniques developed for the static case do
not seem adequately powerful. This is not surprising, since the MWU algorithm is designed
to performwell against the best static solution and not against a dynamic solution trajectory.
We investigate the performance of the MAE algorithm. First, we obtain an upper bound
on its competitive ratio.
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Theorem 3.4. The competitive ratio of the Move-All-Equally algorithm for the dynamic online
Min-Sum Set Cover problem is O(r3/2√n).

Although this guarantee is not very strong, we show that, rather surprisingly, it is essen-
tially tight and no better guarantees can be shown for this algorithm.

Theorem 3.5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for the
dynamic online Min-Sum Set Cover problem is Ω(r

√
n).

This lower bound is based on a carefully crafted adversarial instance; this construction re-
veals the rich structure of this problem and suggests that more powerful generic techniques
are required in order to achieve any f (r) guarantees. In fact, we conjecture that the lower
bound of Theorem 3.1 is the best possible (ignoring constant factors) even for the dynamic
problem and that using a work-function based approach such a bound can be obtained.

3.2 Lower Bounds on theDeterministic Competitive Ra-
tio

We start with a lower bound on the deterministic competitive ratio of online MSSC. For the
proof, we employ an averaging argument, similar to those in lower bounds for list update
and k-server [60, 66]. In each step, the adversary requests the last r elements in the algo-
rithm’s permutation. Hence, the algorithm’s cost is at least (n− r + 1). Using a counting
argument, we show that for any fixed set St of size r and any i ∈ [n− r + 1], the number of
permutations π with access cost π(St) = i is (n−i

r−1)r!(n− r)! . Summing up over all permu-
tations and dividing by n!, we get that the average access cost for St is (n+1

r+1)
r!(n−r)!

n! = n+1
r+1 .

Therefore, the cost of the optimal permutation is a most (n+1)
r+1 , and the competitive ratio of

the algorithm at least (n−r+1)(r+1)
n+1 .

Theorem 3.1. Any deterministic online algorithm for the Online Min-Sum Set Cover problem
has competitive ratio at least (r + 1)(1− r

n+1).

Proof. Let ALG be any online algorithm. The adversary creates a request sequence in which
every request is composed by the r last elements of the current permutation of ALG. At
each round t, ALG incurs an accessing cost of at least n − (r − 1). Thus for the whole
request sequence of m requests, Cost(ALG) ≥ m · (n− r + 1).

The non-trivial part of the proof is to estimate the cost of the optimal static permutation.
We will count total cost of all n! static permutations and use the average cost as an upper
bound on the optimal cost. For any request set St, we intend to find the total cost of the n!
permutations for St. To do this, we will count the number permutations that have access
cost of i, for every 1 ≤ i ≤ n− (r− 1). For such counting, there are two things to consider.
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First, in how many different ways we can choose the positions where the r elements of St

are located and second how many different orderings on elements of St and of U \ St exist.
We address those two separately.

1. For a permutation π that incurs an access cost of i, it follows that, from the elements
in St, the first one in π is located in position i and no other element from the set is
located in positions j < i. The other r− 1 elements of St are located among the last
n− i positions of π. There are (n−i

r−1) different ways to choose the locations of those
elements.

2. Once the positions of elements of St have been fixed, there are r! different ways to
assign the elements in those positions, equal to the number of permutations on r
elements. Similarly, there are (n− r)! different ways to assign elements of U \ St to
the n− r remaining positions.

Gathering the above, we conclude that the number of permutations that incur access cost
exactly i for a fixed request St is (

n− i
r− 1

)
r!(n− r)!.

The latter implies two basic facts:

1. ∑n−r+1
i=1 (n−i

r−1)r!(n− r)! = n! (since each permutation has a specific cost for request
St).

2. The total sum of access costs for fixed request of size r is:

Total-Access-Cost =
n−r+1

∑
i=1

i ·
(

n− i
r− 1

)
r!(n− r)!

=
n−r+1

∑
i=1

n−r+1

∑
j=i

(
n− j
r− 1

)
r!(n− r)! By reordering the terms

=
n−r+1

∑
i=1

n−r+1

∑
j=i

(
n− j
r− 1

)
r!(n− r)!︸ ︷︷ ︸

permutations with access cost≥i

=
n−r+1

∑
i=1

(
n− i + 1

r

)
r!(n− r)!

= r!(n− r)!
(

n + 1
r + 1

)

where the last equality follows by the fact that ∑n−r+1
i=1 (n−i

r−1)r!(n− r)! = n! (see number
1 above) with n← n + 1 and r ← r + 1. Hence for a request sequence of length m, we get
that
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Cost(OPT) ≤ m · r!(n− r)!
n!

(
n + 1
r + 1

)
= m · n + 1

r + 1
.

We conclude that for any deterministic algorithm ALG, we have:

Cost(ALG)

Cost(OPT)
≥ m · (n− r + 1)

m · n+1
r+1

= (r + 1) ·
(

1− r
n + 1

)
= r + 1− r(r + 1)

n + 1
.

Lower Bounds for Generalizations of Move-to-Front.For list update, where r = 1,
simple algorithms like Move-to-Front (MTF) and Frequency Count achieve an optimal com-
petitive ratio. We next briefly describe several such generalizations of them and show that
their competitive ratio depends on n, even for r = 2.

MTFfirst: Move to the first position (of the algorithm’s permutation) the element of St

appearing first in πt .
Lower bound: Let the request sequence S1, S2, . . . Sm, in which St contains the last two
elements of MTFfirst’ s permutation at round t − 1. Formally, St = {πt(n − 1), πt(n)}.
MTFfirst moves the first element of the request in the first position and in every round the
last element in MTFfirst’ s permutation remains the same (πt(n) = π0(n)). As a result,
MTFfirst pays Ω(n) in each request, whereas OPT has the element π0[n] in the first position
and just pays 1 per request.

MTFlast: Move to the first position the element of St appearing last in πt .
Lower bound: Let the request sequence S1, S2, . . . Sm, in which each set St always contains
the last element of πt − 1 and the fixed element 1. Clearly MTFlast pays Ω(m · n), while
cost(OPT) = m by having element 1 in the first place.

MTFall: Move to the first r positions all elements of St (in the same order as in πt) .
Lower bound: The same as previous.

MTFrandom: Move to the first position an element of St selected uniformly at random.
Lower bound: Let the request sequence S1, S2, . . . Sm, in which each set St always con-
tains an element selected uniformly at random from πt and the fixed element 1. Therefore
elements in the last n/2 positions of πt have probability 1/2 to be chosen. At each round
t, MTFrandom moves with probability 1/2 to the first position of the list, the element of St

that was randomly selected. Thus at each round t, MTFrandom pays with probability 1/4,
moving cost at least n/2, meaning that the overall expected cost is at least m · n/8. As a
result, the ratio is Ω(n) since OPT pays m by keeping element 1 in the first position.
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MTFlast, MTFall and MTFrandom have a competitive ratio of Ω(n) when each request St

consists of a fixed element e (always the same) and the last element in πt, because they all
incur an (expected for MTFrandom) moving cost of Θ(n) per request.

The algorithms seen so far fail for the opposite reasons: MTFfirst cares only about the first
element and ignores completely the second, and the others are very aggressive on using the
second (rth) element. A natural attempt to balance those two extremes is the following.

MTFrelative: Let i be the position of the first element of St in πt. Move to the first positions
of the algorithm’s permutation (keeping their relative order) all elements of St appearing
up to the position c · i in πt, for some constant c.
Lower bound: Let the request sequence S1, . . . Sn in which St contains the bn−1

c cth and
the nth element of the list at round t− 1. MTFrelative never moves the last element and thus
πn(0) belongs in all sets St. As in first case, this provides an Ω(n) ratio.

All generalizations of MTF above are memoryless and they all fail to identify the element
by which optimal serves St. The following algorithm tries to circumvent this by keeping
memory and in particular the frequencies of reqested elements.

MTFcount: Move to the first position the most frequent element of St (i.e., the element of
St appearing in most requested sets so far).
Lower bound: The request sequence S1, . . . , Sm is specifically constructed so thatMTFcount
never moves the last b elements of the initial permutation π0.

π0 = [x1, . . . , xn−b︸ ︷︷ ︸
n−b elements

, xn−b+1, . . . , xn︸ ︷︷ ︸
b elements

]

The constructed request sequence S1, . . . , Sm will be composed by m/n sequences of length
n. Each piece of length n will have the following form:

1. n− b requests {x1, x2}, {x1, x3}, . . . {x1, xn−b} (all requests contain x1).

2. {element in position n− b, xn−b+i} for i = 1 to b (additional b requests).

After the requests of type 1, the list is the same as the initial one, since x1 has frequency
n − b and x2, . . . xn−b have frequency 1. Now consider the requests of type 2. MTFcount
moves always to the front the element which is in position n− b, since has already been
involved in a type 1 request and has greater frequency. Therefore, MTFcount pays b · (n− b).
Repeating the same request sequence m/n times, we can construct a sequence of length m.
In this request sequence, OPT keeps the element x1 in the first position and the elements
{xn−b+1, . . . , xn} in the next b positions. Thus, OPT pays (n− b) ·m/n for the requests
of type 1 and b2 · m/n for the requests of type 2. MTFcount pays (n − b) · m/n for the
requests of type 1 (same as OPT), but (n− b) · b ·m/n for the requests of type 2. Setting
b =
√

n, we get a Ω(
√

n) lower bound for the competitive ratio of MTFcount.
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Concluding this section, we remark that although the MTF algorithm achieves the best
possible competitive ratio against the optimal dynamic solution for r = 1, it’s natural gen-
eralizations are far from closing the gap with the lower bound of theorem 3.1 even when
r = 2 and against the optimal static solution. The reason for this phase transition is that
if r ≥ 2 all these algorithms fail to get closer to the optimal solution which is the basic
idea of the MTF algorithm for r = 1. As a result, we have to turn our attention to com-
plicated memory-keeping strategies such as the one Algorithm 3 realizes by running the
MWU algorithm in the background.

3.3 An Algorithm with Asymptotically Optimal Com-
petitive Ratio

Next, we present algorithm Lazy-Rounding (Algorithm 3) and analyze its competitive ra-
tio. The following is the main result of this section:

Theorem 3.2. There exists a (5r + 2)-competitive deterministic online algorithm for the On-
line Min-Sum Set Cover problem.

The remainder of this section is devoted to the proof of Theorem 3.2. At a high-level, our
approach is summarized by the following three steps:

1. We use as black-box the multiplicative weights update (MWU) algorithm with learn-
ing rate 1/n3. Using standard results from learning theory, we show that its expected
access cost is within a factor 5/4 of OPT, i.e., AccessCost(MWU) ≤ 5

4 Cost(OPT)
(Section 3.3.1).

2. We develop an online rounding scheme, which turns any randomized algorithm A
into a deterministic one, denotedDerand(A), with access cost atmost 2r ·E[AccessCost(A)]
(Section 3.3.2). However, our rounding scheme does not provide any immediate guar-
antee on the moving cost of Derand(A).

3. Lazy-Rounding is a lazy version of Derand(MWU) that updates its permutation
only if MWU’s distribution has changed a lot. A phase corresponds to a time interval
that Lazy-Rounding does not change its permutation. We show that during a phase:

(a) The upper bound on the access cost increases, compared to Derand(MWU), by
a factor of atmost 2, i.e., AccessCost(Lazy-Rounding) ≤ 4r ·E[AccessCost(MWU)]

(Lemma 3.6).
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(b) The (expected) access cost of MWU is at least n2. Since our algorithm moves
only once per phase, itsmovement cost is atmost n2. Thuswe get that (Lemma 3.7):

MovingCost(Lazy-Rounding) ≤ E[AccessCost(MWU)] .

For the upper bound on the moving cost above, we relate how much MWU’s distri-
bution changes during a phase, in terms of the total variation distance, to the cost of
MWU and the cost of our algorithm.

Based on the above properties, we compare the access and themoving cost ofLazy-Rounding
against the access cost of MWU and to get the desired competitive ratio:

Cost(Lazy-Rounding) ≤ (4r + 1)E[AccessCost(MWU)] ≤ (5r + 2)Cost(OPT) .

Throughout this section we denote by dTV(δ, δ′) the total variation distance of two discrete
probability distributions δ, δ′ : [N] → [0, 1], defined as dTV(δ, δ′) = ∑N

i=1 max{0, δ(i)−
δ′(i)}.

3.3.1 Using Multiplicative Weights Update in Online Min-Sum Set
Cover

In this section, we explain how the well-known MWU algorithm [58, 46] is used in our
context.

The MWU Algorithm. Given n! permutations of elements of U, the algorithm has a
parameter β ∈ [0, 1] and a weight wπ for each permutation π ∈ [n!], initialized at 1.
At each time step the algorithm chooses a permutation according to distribution Pt

π =

wt
π/(∑π∈[n!] wt

π). When request St arrives, MWU incurs an expected access cost of

E[AccessCost(MWU(t))] = ∑
π∈[n!]

Pt
π · π(St)

and updates its weights wt+1
π = wt

π · βπ(St), where β = e−1/n3 ; this is the so-called learning
rate of our algorithm. Later on, we discuss the reasons behind choosing this value.

On the Access Cost of MWU. Using standard results from learning theory [58, 46] and
adapting them to our setting, we get that the (expected) access cost of MWU is bounded
by Cost(OPT). This is formally stated in Lemma 3.1, which states that the MWU is 5/4-
competitive for access costs.
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Lemma 3.1. For any request sequence σ = (S1, . . . , Sm) we have that

E[AccessCost(MWU)] ≤ 5
4
·Cost(OPT) + 2n4 ln n .

Proof. By the standard results in learning theory [58, 46], we know that for any sequence
σ = (S1, . . . , Sm), the MWU algorithm satisfies

m

∑
t=1

∑
π∈[n!]

Pt
π ·AccessCost(π, St) ≤

ln(1/β)

1− β
· min

π∈[n!]

m

∑
t=1

π(St) +
ln(n!)
1− β

.

where β = e−1/n3 . Thus, 3/4 < β < 1, for any n ≥ 2. Using standard inequalities we get
that ln(1/β)

1−β ≤ 5/4 and 1− β ≥ 1/2n3 for any n ≥ 2. We finally get that,

E[AccessCost(MWU)] ≤ 5
4
·Cost(OPT) + 2n4 ln n.

On the Distribution of MWU.We now relate the expected access cost of the MWU algo-
rithm to the total variation distance among MWU’s distributions. More precisely, we show
that if the total variation distance between MWU’s distributions at times t1 and t2 is large,
then MWU has incurred a sufficiently large access cost. The proof of the following makes
a careful use of MWU’s properties.

Lemma 3.2. Let Pt be the probability distribution of the MWU algorithm at time t. Then, the
probability distribution Pt+1 of the algorithm satisfies

dTV(Pt, Pt+1) ≤ 1
n3 ·E[AccessCost(MWU(t))].

Proof. To simplify notation, let Wt = ∑π∈[n!] wt
π . We remind that by the definition of

MWU, wt+1
π = wt

π · e−π(St)/n3 . Moreover, by the definition of total variation distance,

dTV(Pt, Pt+1) = ∑
π:Pt

π>Pt+1
π

Pt
π − Pt+1

π = ∑
π:Pt

π>Pt+1
π

(
wt

π

Wt −
wt+1

π

Wt+1

)

≤ ∑
π:Pt

π>Pt+1
π

(
wt

π

Wt −
wt+1

π

Wt

)

≤ ∑
π∈[n!]

(
wt

π

Wt −
wt+1

π

Wt

)
= ∑

π∈[n!]

wt
π

Wt ·
(

1− e−π(St)/n3
)
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= ∑
π∈[n!]

Pt
π ·
(

1− e−(π(St)/n3)

)
≤ ∑

π∈[n!]
Pt

π ·
π(St)

n3

=
1
n3 ·E[AccessCost(MWU(t))] .

In the first inequality we used that Wt+1 ≤ Wt. In the second inequality we used that for
all π we have that wt+1

π ≤ wt
π which implies that wt

π−wt+1
π

Wt ≥ 0. In the last inequality we
used that 1− ex ≤ −x, for any x.

The following lemma is useful for the analysis of Lazy-Rounding. Its proof follows from
Lemma 3.2 and the the triangle inequality.

Lemma 3.3. Let t1 and t2 two different time steps such that dTV(Pt1 , Pt2) ≥ 1/n. Then,
during the time interval [t1, t2) the cost of the MWU algorithm is at least n2,

t2−1

∑
t=t1

E[AccessCost(MWU(t))] ≥ n2 .

Proof. By Lemma 3.2 and summing over all t such that t1 ≤ t < t2, we have that

t2−1

∑
t=t1

dTV(Pt, Pt+1) ≤ 1
n3 ·

t2−1

∑
t=t1

E[AccessCost(MWU(t))]. (3.1)

By triangle inequalitywe have that dTV(Pt1 , Pt2) ≤ ∑t2−1
t=t1

dTV(Pt, Pt+1). Combinedwith (3.1),
this implies that

dTV(Pt1 , Pt2) ≤ 1
n3

t2−1

∑
t=t1

E[AccessCost(MWU(t))].

By rearranging and using that dTV(Pt1 , Pt2) ≥ 1/n, we get that

t2−1

∑
t=t1

E[AccessCost(MWU(t))] ≥ n3 · 1
n
= n2

3.3.2 Rounding

Next, we present our rounding scheme. Given as input a probability distribution δ over
permutations, it outputs a fixed permutation ρ such that for each possible request set S of
size r, the cost of ρ on S is within a O(r) factor of the expected cost of the distribution δ on
S. For convenience, we assume that n/r is an integer. Otherwise, we use dn/re.
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Algorithm 2 Greedy-Rounding (derandomizing probability distributions over the permu-
tations)
Input: A probability distribution δ over [n!].
Output: A permutation ρ ∈ [n!].

1: R← U
2: for i = 1 to n/r do
3: Si ← arg minS∈{R}r Eπ∼δ[π(S)]
4: Place the elements of Si (arbitrarily) from positions (i− 1) · r + 1 to i · r of ρ.
5: R← R \ Si

6: end for
Return ρ

Our rounding algorithm is described in Algorithm 2. At each step, it finds the request S
with minimum expected covering cost under the probability distribution δ and places the
elements of S as close to the beginning of the permutation as possible. Then, it removes
those elements from set R and iterates. The main claim is that the resulting permutation
has the following property: any request S of size r has covering cost at most O(r) times of its
expected covering cost under the probability distribution δ.

Theorem 3.6. Let δ be a distribution over permutations and let ρ be the permutation output
by Algorithm 2 on δ. Then, for any set S, with |S| = r,

ρ(S) ≤ 2r · E
π∼δ

[π(S)] .

Proof. Let e be the element used by ρ to serve the request on set S. Pick k such that (k−
1) · r + 1 ≤ AccessCost(ρ, S) ≤ k · r. That means, e was placed at the permutation ρ at
the kth iteration of the rounding algorithm.

Let S1, . . . , Sn/r be the sets chosen during the rounding algorithm. Recall that ρ uses an
element from Sk to serve the request. To this end, we use the technical Lemma 3.4 in order
to get a lower bound on the expected cost of δ. We distinguish between two cases:

1. Case S = Sk. In that case, by Lemma 3.4 we get that Eπ∼δ[π(S)] ≥ k+1
2 .

2. Case S 6= Sk. That means, e is one element of S in Sk and no elements of S are in sets
S1, . . . , Sk−1. By construction of or rounding algorithm, we have that

E
π∼δ

[π(S)] ≥ E
π∼δ

[π(Sk)] ≥
k + 1

2
.

We get that in both cases Eπ∼δ[π(S)] ≥ k+1
2 . We conclude that
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AccessCost(ρ, S)
Eπ∼δ[AccessCost(δ, S)]

≤ k · r
k+1

2

≤ 2 · r

We now proceed to the lemma omitted in the proof of Theorem 3.6.

Lemma 3.4. Let δ be a probability distribution over permutations and 1 ≤ k ≤ n
r . Let

S1, . . . , Sk be disjoint sets such that Sj ⊆ U and |Sj| = r for all 1 ≤ j ≤ k. Let Ej =

Eπ∼δ[π(Sj)] for any 1 ≤ j ≤ k. If E1 ≤ . . . ≤ Ek, then, we have that Ej ≥ j+1
2 , for

1 ≤ j ≤ k.

Proof. We have that

Ej ≥
1
j

j

∑
`=1
E` =

1
j

j

∑
`=1

∑
π

Pr
δ
[π] · π(S`) Using E1 ≤ . . . ≤ Ej

=
1
j ∑

π∈[n!]
Pr
δ
[π] ·

j

∑
`=1

π(S`) Linearity of summation

≥ 1
j ∑

π∈[n!]
Pr
δ
[π] · j(j + 1)

2

=
j + 1

2 ∑
π

Pr
δ
[π] =

j + 1
2

where ∑
j
`=1 π(S`) ≥

j(j+1)
2 follows by the fact that π(S`) take j different positive integer

values (the sets S` are disjoint).

3.3.3 The Lazy Rounding Algorithm

Lazy-Rounding, presented in Algorithm 3, is essentially a lazy derandomization of MWU.
At each step, it calculates the distribution on permutations maintained by MWU. At the
beginning of each phase, it sets its permutation to that given by Algorithm 2. Then, it sticks
to the same permutation for as long as the total variation distance of MWU’s distribution
at the beginning of the phase to the current MWU distribution is at most 1/n. As soon as
the total variation distance exceeds 1/n, Lazy-Rounding starts a new phase.

The main intuition behind the design of our algorithm is the following. In Section 3.3.2 we
showed that Algorithm 2 results in a deterministic algorithmwith access cost no larger than
2r E[AccessCost(MWU)]. However, such an algorithm may incur an unbounded moving
cost; even small changes in the distribution of MWU could lead to very different permuta-
tions after rounding. To deal with that, we update the permutation of Lazy-Rounding only
if there are substantial changes in the distribution of MWU. Intuitively, small changes in
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Algorithm 3 Lazy Rounding
Input: Sequence of requests (S1, . . . , Sm) and the initial permutation π0 ∈ [n!].
Output: A permutation πt at each round t, which serves request St.
1: start-phase← 1
2: P1 ← uniform distribution over permutations
3: for each round t ≥ 1 do
4: if dtv(Pt, Pstart-phase) ≤ 1/n then
5: πt ← πt−1
6: else
7: πt ← Greedy-Rounding(Pt)
8: start-phase← t
9: end if

10: Serve request St using permutation πt.
11: wt+1

π = wt
π · e−π(St)/n3 , for all permutations π ∈ [n!].

12: Pt+1 ← Distribution on permutations of MWU, Pt+1
π = wt

π/(∑π∈[n!] wt
π).

13: end for

MWU’s distribution should not affectmuch the access cost (this is formalized in Lemma 3.5).
Moreover, Lazy-Rounding switches to a different permutation only if it is really required,
which we use to bounds Lazy-Rounding’s moving cost.

Bounding theAccessCost. Wefirst show that the access cost of the algorithmLazy-Rounding
is within a factor of 4r from the expected access cost of MWU (Lemma 3.6). To this end, we
first show that if the total variation distance between two distributions is small, then sam-
pling from those distributions yields roughly the same expected access cost for any request
S. The proof of the following is based on the optimal coupling lemma and can be found in
the full version of this paper.

Lemma3.5. Let δ and δ′ be two probability distributions over permutations. If that dTV(δ, δ′) ≤
1/n, for any request set S of size r, we have that

E
π∼δ′

[π(S)] ≤ 2 · E
π∼δ

[π(S)].

Proof. By coupling lemma there exists a coupling (X, Y) such that

Pr[X 6= Y] = dTV(δ, δ′). (3.2)

Clearly, E[AccessCost(X, S)] = Eπ∼δ[π(S)] and E[AccessCost(Y, S)] = Eπ∼δ′ [π(S)].
Note that since minimum cost for serving a request is 1 and maximum n, it will always hold
that

1 ≤ E[AccessCost(X, S)], E[AccessCost(Y, S)] ≤ n.
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Wewill show that E[AccessCost(Y, S)−AccessCost(X, S)] ≤ 1. This implies the lemma
as follows:

E
π∼δ′

[π(S)] = E[AccessCost(Y, S)]

≤ E[AccessCost(X, S)] + 1 ≤ 2 E[AccessCost(X, S)]

= 2 E
π∼δ

[π(S)].

Thus it remains to show that E[AccessCost(Y, S) − AccessCost(X, S)] ≤ 1. For nota-
tional convenience, let the random variable Z = AccessCost(X, S)−AccessCost(Y, S).
It suffices to show that E[Z] ≤ 1. We have that

E[Z] ≤ Pr[AccessCost(X, S) = AccessCost(Y, S)] · 0
+Pr[AccessCost(X, S) 6= AccessCost(Y, S)] · n, (3.3)

since whenever X 6= Y, the difference in the cost is upper bounded by n.

Observe thatPr[X(S) 6= Y(S)] ≤ Pr[X 6= Y]; this is because if X = Y, thenAccessCost(X, S) =
AccessCost(Y, S), but itmay happen that X 6= Y butAccessCost(X, S) = AccessCost(Y, S).
From (3.3) we get that

E[Z] ≤ Pr[X 6= Y] · n. (3.4)

Combining (3.2) with (3.4) we get that

E[Z] ≤ dTV(δ, δ′) · n ≤ 1
n
· n = 1.

We are now ready to upper bound the access cost of our algorithm.

Lemma 3.6. AccessCost(Lazy-Rounding) ≤ 4r ·E[AccessCost(MWU)].

Proof. Consider a phase of Lazy-Rounding starting at time t1. We have that at any round
t ≥ t1, πt = Greedy-Rounding(Pt1), as long as dTV(Pt, Pt1) ≤ 1/n. By Theorem 3.6 and
Lemma 3.5, we have that,

AccessCost(Lazy-Rounding(t)) = πt(St) ≤ 2r · E
π∼Pt1

[π(St)] ≤ 4r E
π∼Pt

[π(St)].

Overall we get,

AccessCost(Lazy-Rounding) =
m

∑
t=1

πt(St) ≤ 4r E[AccessCost(MWU)].
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Bounding the Moving Cost. We now show that the moving cost of Lazy-Rounding is
upper bounded by the expected access cost of MWU.

Lemma 3.7. MovingCost(Lazy-Rounding) ≤ E[AccessCost(MWU)].

Proof. Lazy-Roundingmoves at the end of a phase incurring a cost of atmost n2. Let t1 and
t2 be the starting times of two consecutive phases. By the definition of Lazy-Rounding,
dTV(Pt1 , Pt2) > 1/n. By Lemma 3.3, we have that the access cost of MWU during t1 and
t2 is at least n2. We get that

MovingCost(ALG)

E[AccessCost(MWU)]
≤ n2# different phases

n2#different phases
= 1.

Theorem 3.2 follows from lemmas 3.6, 3.7 and 3.1. The details can be found in the full
version.

Proof ofTheorem3.2. Wenowgive the formal proof of the competitive ratio ofLazy-Rounding
algorithm.

Theorem 3.2. There exists a (5r + 2)-competitive deterministic online algorithm for the static
version of the Online Min-Sum Set Cover problem.

Proof. We show that our algorithm ALG is (5r + 2)-competitive.

By lemmata 3.6 and 3.7 we get that

Cost(Lazy-Rounding) ≤ (4r + 1) ·AccessCost(MWU). (3.5)

Now, we connect the access cost of MWU to the optimal cost. By Lemma 3.1 we have that

AccessCost(MWU) ≤ 5
4
·Cost(OPT) + 2n4 ln n. (3.6)

By (3.5) and (3.6) we get that

Cost(Lazy-Rounding) ≤ (5r + 2) ·Cost(OPT) + 2 · (4r + 1) · n4 ln n

On our Approach.Note that to a large extent, our approach is generic and can be used to
provide static optimality for a wide range of online problems. Consider any MTS problem
with N states such that in each request the service cost of each state is at most Cmax and
the diameter of the state space is D. Assume that there exists a rounding scheme providing
a derandomization of MWU such that the service cost is within α factor of the expected
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Algorithm 4 Move-All-Equally
Input: A request sequence (S1, . . . , Sm) and the initial permutation π0 ∈ [n!]
Output: A permutation πt at each round t.
1: for each round t ≥ 1 do
2: kt ← min{i |πt−1[i] ∈ St}
3: Decrease the index of all elements of St by kt − 1.
4: end for

service cost of MWU. We explain how our technique from Section 3.3 can be used to obtain
a O(α)-competitive algorithm against the best state.

Algorithm. The algorithm is essentially the same as Algorithm 3, using the MWU al-
gorithm with learning rate 1/(D · Cmax) and moving when the total variation distance
between the distributions exceeds 1/ Cmax.

This way, Lemma 3.2 would give a bound of

dTV(Pt, Pt+1) ≤ 1
D
·AccessCost(MWU(t))

and as a consequence in Lemma 3.3 we will get that the (expected) cost of MWU during a
phase is at least D. Since the algorithm moves only at the end of the phase, incurring a cost
of at most D, Lemma 3.7 will still hold. Last, it is easy to see that Lemma 3.5 will then hold
for dTV(δ, δ′) ≤ 1/ Cmax. This way, Lemma 3.6 would give that

AccessCost(ALG) ≤ 2α E[Cost(MWU)].

Combining the above, we get that the algorithm is O(α)-competitive.

3.4 A Memoryless Algorithm

In this section we focus on memoryless algorithms. We present an algorithm, called Move-
All-Equally (MAE), which seems to be the “right” memoryless algorithm for online MSSC.
MAE decreases the index of all elements of the request St at the same speed until one of them
reaches the first position of the permutation (see Algorithm 4). Note that MAE belongs to
the Move-to-Front family, i.e., it is a generalization of the classic MTF algorithm for the list
update problem. MAE admits two key properties that substantially differentiate it from the
other algorithms in the Move-to-Front family presented in Section 3.2.

1. Let et denote the element used by OPT to cover the request St. MAE always moves
the element et towards the beginning of the permutation.
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2. It balances moving and access costs: if the access cost at time t is kt, then the moving
cost of MAE is roughly r · kt (see Algorithm 4). The basic idea is that the moving
cost of MAE can be compensated by the decrease in the position of element et. This
is why it is crucial all the elements to be moved with the same speed.

Lower Bound. First, we show that this algorithm, besides its nice properties, fails to
achieve a tight bound for the online MSSC problem.

In the lower bound instance, the adversary always requests the last r elements of the algo-
rithm’s permutation. Since MAE moves all elements to the beginning of the permutation,
we end up in a request sequence where n/r disjoint sets are repeatedly requested. Thus the
optimal solution incurs a cost of Θ(n/r) per request, while MAE incurs a cost of Ω(n · r)
per request (the details are in the full version) . Note that in such a sequence, MAE loses
a factor of r by moving all elements, instead of one. However, this extra movement seems
to be the reason that MAE outperforms all other memoryless algorithms and avoids poor
performance in trivial instances, like other MTF-like algorithms.

Theorem 3.3. The competitive ratio of the Move-All-Equally algorithm is Ω(r2).

Proof. MAE is given an initial permutation π0 with size n, where n = r · k, for integers r, k
both greater than 1. At each round t, the adversary gives requests St, which consist of the
last r elements in the permutation πt−1 of MAE. Since MAE moves all the elements of St

to the beginning of πt, the request St+1 contains the r elements preceding the elements of
St in πt. Thus, the request sequence can be divided in m/k requests containing the same
k pairwise disjoint requests, denoted as S∗ = {S∗1 , . . . S∗k}. The optimal static solution can
serve the request sequence by using only k elements, where each of these elements belongs
to exactly one of the S∗j , 1 ≤ j ≤ k. OPT has these elements in the first k positions and
pays 1 + 2 + . . . + k ≤ k2 for every k consecutive requests (S∗1 , . . . S∗k ). MAE clearly
pays n − r + 1 access cost and r · (n − r + 1) moving cost on every request, therefore
MAE = m · (r + 1) · (n− r + 1). Then, the competitive ratio of MAE is at least

Cost(MAE)
Cost(OPT)

≥ m · (r + 1) · (n− r + 1)
(m/k) · k2 =

(r + 1) · (r · k− r + 1)
k

= Ω(r2)

Upper Bounds. Let L denote the set of elements used by the optimal permutation on a
request sequence such that |L| = `. Thatmeans, OPT has those ` elements in the beginning
of its permutation, and it never uses the remaining n − ` elements. Consider a potential
function Φ(t) being the number of inversions between elements of L and U \ L in the
permutation of MAE (an inversion occurs when an element of L is behind an element of
U \ L). Consider the request St at time t and let kt be the access cost of MAE.
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Let et be the element used by OPT to serve St. Clearly, in the permutation of MAE, et passes
(i.e., changes relative order w.r.t) kt− 1 elements. Among them, let L be the set of elements
of L and R the elements of U \ L. Clearly, |L|+ |R| = kt − 1 and |L| ≤ |L| = `. We get
that the move of et changes the potential by−|R|. The moves of all other elements increase
the potential by at most (r− 1) · `. We get that

kt + Φ(t)−Φ(t− 1) ≤ |L|+ |R| − |R|+ (r− 1) · ` ≤ |L|+ (r− 1) · ` ≤ r · `.

Since the cost of MAE at step t is no more than (r + 1) · kt, we get that the amortized cost
of MAE per request is O(r2 · `). This implies that for all sequences such that OPT uses
all elements of L with same frequencies (i.e, the OPT pays on average Ω(`) per request),
MAE incurs a cost within O(r2) factor from the optimal. Recall that all other MTF-like
algorithms are Ω(

√
n) competitive even in instances where OPT uses only one element!

While this simple potential gives evidence that MAE is O(r2)-competitive, it is not enough
to provide satisfactory competitiveness guarantees. We generalize this approach and define
the potential function Φ(t) = ∑n

j=1 αj · πt(j), where πt(j) is the position of element j at
round t and αj are some non-negative coefficients. The potential we described before is the
special case where αj = 1 for all elements of L and αj = 0 for elements of U \ L.

By refining further this approach and choosing coefficients αj according to the frequency
that OPT uses element j to serve requests (elements of high frequency are “more important”
so they should have higher values αj), we get an improved upper bound.

Theorem 3.7. The competitive ratio of MAE algorithm is at most 2O(
√

log n·log r).

Note that this guarantee is o(nε) and ω(log n). The proof is based on the ideas sketched
above but the analysis is quite involved. The main technical contribution of this section is
proving the following lemma, from which Theorem 3.7 follows.

Lemma 3.8. For any parameter β > 1,

Cost(MAE) ≤ 4β(2r)k+1 ·Cost(OPT) + (2r)kn2

where k = d2 log n/ log βe.

Note that Theorem 3.7 follows from Lemma 3.8 by balancing the values of β and (2r)k+1.
It is easy to verify that by setting β = 2

√
8 log n·log 2r, we obtain a competitive ratio at most

β2 ≤ 28
√

log n log r.

Notation and Definitions.Let the frequency of an element e be the fraction of requests
served by e in the optimal permutation. At a high-level, we divide the optimal permutation
into k + 1 blocks where in each of the first k blocks the frequencies of all elements are
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within a factor of β and the last block contains all elements with frequencies at most 1/n2.
By construction, in worst-case k ≈ log n

log β . More formally:

Let f j ∈ [0, 1] denote the covering frequency, which is the total fraction of requests served
by the optimal permutation with element j. For convenience, we reorder the elements such
that f1 ≥ f2 ≥ . . . ≥ fn. As a result, Cost(OPT) = m ·∑n

j=1 j · f j.

We partition the elements of U into k+ 1 blocks, as follows. The last block, Ek+1 contains all
elements j with f j ≤ 1/n2; intuitively those are the least important elements. The block Ei

for 1 ≤ i ≤ k contains all elements with frequencies in the interval [ f1/βi−1, f1/βi). Note
that in worst case, k = d2 log n/ log βe; we need that f1/βk ≤ 1/n2, which is equivalent
to k ≥ f1 · 2 log n

log β .

Lower Bound on optimal cost. Using this structure, we can express a neat lower bound
on the cost of the optimal static permutation, which is formally stated in the following
lemma. Lemma 3.9 provides a lower bound on Cost(OPT) using the first k blocks. For the
rest of this section, letFi = ∪i

j=1Ej the set of all elements in the first i blocks, for 1 ≤ i ≤ k.
Let also f i

max, f i
min denote the maximum and minimum covering frequencies in the set Ei.

Lemma 3.9. For any request sequence the optimal cost is at least

Cost(OPT) ≥ m
2

k

∑
i=1
|Ei| · |Fi| · f i

min.

Proof. Using the definitions above, OPT uses element j exactly m · f j times for a total cost
j ·m · f j. To account for all elements of the same bucket Ei together, we underestimate this
cost and for an element j ∈ Ei we charge OPT only for m · f i

min ≤ m · f j requests. We get
that:

Cost(OPT) = m
n

∑
j=1

f j · j ≥ m
k

∑
i=1

∑
j∈Ei

f j · j ≥ m
k

∑
i=1

f i
min ∑

j∈Ei

j

= m
k

∑
i=1

f i
min

|Ei|

∑
j=1

(j + |Fi−1|)

= m
k

∑
i=1

f i
min

(
|Ei||Fi−1|+

|Ei|(|Ei|+ 1)
2

)
≥ m

2

k

∑
i=1

f i
min · |Ei| · (|Fi−1|+ |Ei|)

=
m
2

k

∑
i=1

f i
min · |Ei| · |Fi|
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Upper Bound on cost of MAE. Using the blocks, we also obtain an upper bound on the
cost of Move-All-Equally. This is formally stated in Lemma 3.10.

Lemma 3.10. For any request sequence the cost of MAE algorithm can be upper bounded as
follows:

Cost(MAE) ≤ (2r)k+1 ·m
k

∑
i=1
|Fi||Ei| · f i

max + 2(2r)k+1 ·m + (2r)k · n2.

Before proceeding to the proof of Lemma 3.10, which is quite technically involved, we show
how Lemma 3.8 follows from Lemmata 3.10 and 3.9.

Proof of Lemma 3.8. From Lemma 3.10 we have that

Cost(MAE) ≤ (2r)k+1 ·m
k

∑
i=1
|Fi||Ei| · f i

max︸ ︷︷ ︸
≤β·Cost(OPT)

+ 2(2r)k+1 ·m︸ ︷︷ ︸
≤2(2r)k+1·Cost(OPT)

+(2r)k · n2

≤ 4β(2r)k+1 ·Cost(OPT) + (2r)k · n2,

where in the inequality we used the lower bound on Cost(OPT) from Lemma 3.9 and that
f i
max = f i

min · β for all i.

Proof of Lemma 3.10

It remains to prove Lemma 3.10 which gives the upper bound on the cost of MAE algorithm.
The proof lies on the right selections of the coefficients αj in the potential function Φ(t):

Φ(t) =
n

∑
j=1

αj · πt(j),

where πt(j) is the position of element j at round t and αj are some non-negative coefficients.
More precisely, if j ∈ Ei then αj = (2r)k−i for i = 1, . . . , k and αj = 0 if j ∈ Ek+1.

At time t, let kt denote the access cost of MAE and let et be the element used by OPT to
serve request St. Using the coefficients mentioned above, we can break the analysis into
two different types of requests: (i) requests served by OPT using an element et ∈ Ei for
1 ≤ i ≤ k and (ii) requests served by OPT using et ∈ Ek+1. At a high-level the first
case is the one where the choice of coefficients is crucial; for the second, we show that the
frequencies are so “small”, such that even if MAE incurs an access cost of n, this does not
affect the bound of Theorem 3.7.

We start with the first type of requests. We show the following lemma.
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Lemma 3.11. At time t, if et ∈ Ei, for 1 ≤ i ≤ k, then we have that

AccessCost(MAE(t)) + Φ(t)−Φ(t− 1) ≤ (2r)k · |Fi|

For the second type of requests we have the following lemma.

Lemma 3.12. The total amortized cost of MAE algorithm for all requests such that et ∈ Ek+1

is at most (2r)km + m.

The proofs of those Lemmas are at the end of this section. We now continue the proof of
Lemma 3.10.

Proof of Lemma 3.10. Weupper bound the total access cost of MAE, that is ∑m
t=1 kt. Clearly,

by construction of MAE, the total cost is at most (r + 1) ·∑m
t=1 kt. We have that:

m

∑
t=1

kt + Φ(t)−Φ(t− 1)

=
k

∑
i=1

(
∑

t:et∈Ei

kt + Φ(t)−Φ(t− 1) + ∑
t:et∈Ek+1

kt + Φ(t)−Φ(t− 1)

)

≤
k

∑
i=1

∑
t:et∈Ei

(2r)k · |Fi|+
(
(2r)k + 1

)
·m

=
k

∑
i=1

(2r)k · |Fi| ·m · ∑
j∈Ei

f t
j +

(
(2r)k + 1

)
·m

≤
k

∑
i=1

(2r)k · |Fi| ·m · ∑
j∈Ei

f i
max +

(
(2r)k + 1

)
·m

=
k

∑
i=1

(2r)k · |Fi||Ei| · f i
max ·m +

(
(2r)k + 1

)
·m,

where the first inequality comes from Lemmata 3.11, 3.12. Using Φ(0) ≤ (2r)k−1n2 we get

Cost(MAE) ≤ 2r ·
m

∑
t=1

kt

≤ 2r

(
k

∑
i=1

(2r)k · |Fi||Ei| · f i
max ·m +

(
(2r)k + 1

)
·m + (2r)k−1n2

)

≤ (2r)k+1
k

∑
i=1
·|Fi||Ei| · f i

max ·m + 2(2r)k+1 ·m + (2r)k · n2

We conclude the Section with the proofs of lemmata 3.11, 3.12, which were omitted earlier.
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Proof of Lemma 3.11. At time t, the access cost of MAE is kt. We have that

kt + Φ(t)−Φ(t− 1) = kt − αet · kt + ∑
j 6=et

αj(πt(j)− πt−1(j))

≤ kt · (1− αet) + (2r)k−1 · |Fi| · r
+ ∑

j∈U\Fi

αj(πt(j)− πt−1(j)),

where the inequality follows from the fact that each element in Fi can increase its position
by at most r and that the maximum coefficient αj is at most (2r)k−1. We complete the proof
by showing that

kt · (1− αet) + ∑
j∈U\Fi

αj(πt(j)− πt−1(j)) ≤ 0

If et ∈ Ek then αet = 1 and αj = 0 for all j ∈ U \ Fk, thus the left hand side equals 0 and
the inequality holds. It remains to analyze the case where et ∈ Ei and i < k.

kt · (1− αet) + ∑
j∈U\Fi

αj(πt(j)− πt−1(j))

≤ kt · (1− αet) + ∑
j∈U\Fi

αet

2r
· |πt(j)− πt−1(j)|

≤ kt · (1− αet) +
αet

2r
· r · kt

= kt · (1− αet +
αet

2
) ≤ 0.

The last inequality is due to the fact that αet ≥ r, thus 1− αet /2 is negative if r ≥ 2.

Proof of Lemma 3.12. We sum the total amortized cost over all time steps t such that et ∈
Ek+1. We have that

∑
t:et∈Ek+1

kt + Φ(t)−Φ(t− 1)

≤ ∑
t:et∈Ek+1

n + (2r)k−1 · n · r ≤
(
(2r)k + 1

)
· n ∑

t:et∈Ek+1

1

≤
(
(2r)k + 1

)
· n ·m · ∑

j∈Ek+1

f j ≤
(
(2r)k + 1

)
· n ·m · |Ek+1|

n2

≤
(
(2r)k + 1

)
·m

3.5 Dynamic Online Min-Sum Set Cover

In this section, we turn our attention to the dynamic version of online MSSC. In online dy-
namicMSSC, the optimal solutionmaintains a trajectory of permutations π∗0 , π∗1 , . . . , π∗t , . . .
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and use permutation π∗t to serve each request St. The cost of the optimal dynamic solution
is OPTdynamic = ∑t(π

∗
t (St) + dKT(π∗t−1, π∗t )), where {π∗t }t denotes the optimal permu-

tation trajectory for the request sequence that minimizes the total access and moving cost.

We remark that the ratio between the optimal static solution and the optimal dynamic so-
lution can be as high as Ω(n). For example, in the sequence of requests {1}b{2}b . . . {n}b,
the optimal static solution pays Θ(n2b), whereas the optimal dynamic solution pays Θ(n2 +

n · b) by moving the element that covers the next n · b requests to the first position and
then incurring access cost 1. The above example also reveals that although Algorithm 3 is
Θ(r)-competitive against the optimal static solution, its worst-case ratio against a dynamic
solution can be Ω(n).

Next, we investigate the competitive ratio of Move-All-Equally (MAE) algorithm from Sec-
tion 3.4 against the dynamic adversary. We begin with an upper bound:

Theorem 3.4. The competitive ratio of the Move-All-Equally algorithm for the dynamic online
Min-Sum Set Cover problem is O(r3/2√n).

The approach for proving the upper bound is generalizing that exhibited in Section 3.4 for
the static case. We use a generalized potential function Φ(t) = ∑n

j=1 αt
j ·πt(j); i.e, the mul-

tipliers αj may change over time so as to capture the moves of OPTdynamic. To select coeffi-
cients αt

j we apply a two-level approach. We observe that there is always a 2-approximate
optimal solution that moves an element of St to the front (similar to classic MTF in list up-
date). We call this MTFOPT . We compare the permutation of the online algorithm with
the permutation maintained by this algorithm; at each time, elements the beginning of the
offline permutation are considered to be “important” and have higher coefficients αt

j .

We will use the above arguments to bound the total cost of MAE. Recall that the access
cost of MAE at round t is kt. We have that at each round t ≥ 1,

kt + Φ(t)−Φ(t− 1) = kt +
n

∑
j=1

αt
j · πt(j)−

n

∑
j=1

αt−1
j · πt−1(j)

= (1− αt
et
) · kt + ∑

j 6=et

αt
j · (πt(j)− πt−1(j))

+
n

∑
j=1

(αt
j − αt−1

j ) · πt−1(j)

≤ r · c +
(

n

∑
j=1

αt
j − αt−1

j

)
︸ ︷︷ ︸
bounded by MTFOPT(t)

·n, (3.7)

where in the last inequality we used that αt
et
= 1 and that for each element, its position

change from round t− 1 to round t πt(j)− πt−1(j) can be at most r.
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The following lemma shows an upper bound on the quantity ∑n
j=1 αt

j − αt−1
j .

Lemma 3.13. The term ∑n
j=1(α

t
j− αt−1

j ), which appears in the difference Φ(t)−Φ(t− 1) of
the potential function Φ(t) can be bounded by the moving cost of the MTFOPT(t) as follows:

∑n
j=1(α

t
j − αt−1

j ) ≤ αt
et
− αt−1

et
≤ MovingCost(MTFOPT(t))/c.

Proof. For the first part of the inequality, observe that from round t− 1 to round t, MTFOPT

only moves element et towards the beginning of the permutation. The latter implies, that
for all elements j 6= et, αt

j ≤ αt−1
j . For the second part of the inequality, observe that if

αt−1
et

= 0, then by the definition of the coefficients, et does not belong in the first c positions
(of MTFOPT’s permutation) at round t− 1. Since at round t, MTFOPT moves et in the first
position of the list, MovingCost(MTFOPT(t)) ≥ c

Notice that the overall access cost of both MAE and MTFOPT is just m since at each round t
both of the algorithms admit an element, covering St, in the first position of the permutation.
As a result by setting c =

√
n/r and applying Lemma 3.13,

Cost(MAE) = AccessCost(MAE) + MovingCost(MAE)

= m + r
m

∑
t=1

kt

≤ m + 2r3/2√n
m

∑
t=1

MovingCost(MTFOPT(t)) + Φ(0)−Φ(m)

≤ 2r3/2√n ·Cost(MTFOPT) + Φ(0)−Φ(m)

≤ 2r3/2√n Cost(MTFOPT).

The first inequality follows from inequality (3.7). The last inequality follows from the fact
that Φ(0) ≤ Φ(m) since at round 0 the permutations of MAE and MTFOPT are the same.
We complete the section with the proof of Lemma 3.14, stating that Cost(MTFOPT) ≤
2 ·Cost(OPTdynamic).

Lemma 3.14. For any sequence of requests (S1, . . . , Sm),

Cost(MTFOPT) ≤ 2 ·Cost(OPTdynamic)

Proof. To simplify notation, let xt and yt respectively denote the permutations of MTFOPT

and OPTdynamic at round t. We will use as potential the function Φ(t) = dKT(xt, yt) i.e.
the number of inverted pairs between the permutation xt and yt. Let Lt denote the set of
elements that are on the left of et in permutation xt and on the left of et in permutation yt.
Respectively, Rt denotes the set of elements that are on the left of et in permutation xt, but
on the right of et in permutation yt. Clearly, at round t, MTFOPT pays Lt + Rt for moving
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cost and 1 for accessing cost. At same time, OPTdynamic pays at least Lt + 1 for accessing
cost and dKT(yt, yt−1) for moving cost.

Cost(MTFOPT) + Φ(t)−Φ(t− 1) = Lt + Rt + 1 + dKT(xt, yt)− dKT(xt−1, yt)

+ dKT(xt−1, yt)− dKT(xt−1, yt−1)

≤ Lt + Rt + 1 + (Lt − Rt)

+ dKT(xt−1, yt)− dKT(xt−1, yt−1)

≤ 2 · (Lt + 1) + dKT(yt, yt−1)

The first inequality follows by the definition of the of the sets Rt and Lt, while the second
by the triangle inequality in the Kendall-tau distance dKT(·, ·). The proof is completed by
summing all over m and using the fact that dKT(x0, y0) = 0.

Next, we show an almost matching lower bound. The lower bound is based on a complicated
adversarial request sequence; we sketch the main ideas. Let k be an integer. During a phase
we ensure that:

1. There are 2k “important” elements used by OPT; we call them e1, . . . , e2k. In the
beginning of the phase, those elements are ordered in the start of the optimal permu-
tation π∗, i.e., π∗[ej] = j. The phase contains k consecutive requests to each of them,
in order; thus the total number of requests is ≈ 2k2. OPT brings each element ej at
the front and uses it for k consecutive requests; thus the access cost of OPT is 2k2

(1 per request) and the total movement cost of OPT of order Θ(k2). Over a phase of
2k2 requests, OPT incurs an overall cost Θ(k2), i.e., an average of O(1) per request.

2. The first k + r− 2 positions of the online permutation will be always occupied by the
same set of “not important” elements; at each step the r− 2 last of them will be part
of the request set and MAE will move them to the front. Thus the access cost will
always be k + 1 and the total cost more than (r + 1) · k.

The two properties above are enough to provide a lower bound Ω(r · k); the optimal cost
is O(1) per request and the online cost Ω(r · k). The goal of an adversary is to construct a
request sequence with those two properties for the largest value of k possible.

The surprising part is that although MAE moves all requested elements towards the be-
ginning of the permutation, it never manages to bring any of the “important” elements
in a position smaller than r + k − 2. While the full instance is complex and described in
the full version, at a high-level, we make sure that whenever a subsequence of k consec-
utive requests including element ej begins, ej is at the end of the online permutation, i.e.,
πt[ej] = n. Thus, even after k consecutive requests where MAE moves it forward by dis-
tance k, it moves by k2 positions; by making sure that n− k2 > r + k− 2 (which is true for
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some k = Ω(
√

n)), we can make sure that ej does not reach the first r + k− 2 positions of
the online permutation.

Lower bound. Next, we prove the following theorem showing a lower bound on MAE,
which nearly matches its upper bound.

Theorem 3.5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for the
dynamic online Min-Sum Set Cover problem is Ω(r

√
n).

The constructed request sequence (S1, . . . , Sm) will have the following properties:

1. The size of every request St is r ≥ 3.

2. Every request forces the algorithm to pay an access cost of Ω(
√

n).

3. The request sequence contains Ω(
√

n) consecutive requests that share a common
element, which we call the pivot.

The first two properties ensure that MAE will pay Ω(r
√

n) moving cost on every request.
The third property will enable the optimal dynamic solution OPTdynamic to pay 1 access
cost for the consecutive requests that share the common element.

Before proceeding to formal details of the proof of Theorem 3.5, we will present the main
ideas of the construction. To this end, let π0 be theMAE’s initial permutation and think of it
as being divided into k + 2 blocks. The first block contains k + r− 1 elements and all other
blocks contain k elements, therefore n = k2 + 2k + r− 1. The “important” elements, which
the optimal dynamic solution uses to cover all requests, are the elements of the second and
last block initially. Meaning that the optimal dynamic solution can cover all requests using
only the 2k “important” elements. Figure 3.1 depicts the structure of the initial permutation
for k = 3 and r = 3, where “important” elements are colored red and green.

Block 1 Block 2 Block 3 Block 4 Block 5

Figure 3.1: The structure in blocks for k = 3 and r = 3. Blocks are drawn
with thick red borders. The elements that uses the optimal dynamic solution
to cover the request sequence are colored green and red and lie in the second

and last block initially .

The following definition formalizes the concept of blocks discussed above. Blocks are de-
fined in terms of the indices of the permutation.

Definition 3.15. Let π = (π0, . . . , πm) be a sequence of permutations, where each permu-
tation has size n = k2 + 2k + r − 1. We divide each permutation into k + 2 consecutive
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Figure 3.2: The permutation of MAE before the start of a round and after k
rounds, for k = 3 and r = 3. The elements of the second block have moved

to the last block and vice versa.

blocks b1, b2, . . . bk+2, where a block is a set of consecutive indices in each permutation with
|b1| = k + r − 1 and |b2| = |b3| = . . . = |bk+2| = k. Therefore, b1 = [1, . . . , k + r − 1]
and bi = [(i− 1)k + r, . . . , ik + r− 1], for 2 ≤ i ≤ k + 2.

For ease of exposition, wewill divide the analysis in phases, which are subdivided in rounds.
The first round starts with the request S1, which contains the last element of the permu-
tation π0 (pivot1) of the MAE algorithm and ends when pivot1 arrives in position k + r.
Inductively, at the start of a round j, Sj contains the last element of permutation πt and
lasts until this element arrives in position k + r. A phase ends after 2k such rounds and a
new phase begins. Formally:

Definition 3.16. A phase defines the period, starting with k elements in block b2 and k el-
ements in block bk+2 and ending after 2k rounds of requests with these elements back in the
blocks, where they started. A round j starts when the adversary requests the last element ,
denoted as pivotj, of the current permutation of MAE (with index k2 + 2k + r− 1) and ends
when MAE places this element in the first position of the second block b2 (with index k + r).
The duration of the round is the number of requests from the start of the round until the end of
the round and will be k + 1.

In order to describe the request sequence, we give the color green to k elements and the
color red to k other. These are the elements, used by OPTdynamic and every request contains
one of them. The rest of them are colored black. Let all the green elements be in the second
block (b2) and all red elements be in the last block (bk+2) initially. The request sequence
may seem complicated, however its constructed following two basic principles. The first is
to decrease the position of the pivot element (which is initially red) by k in the permutation
and the second is to increase the position of the k green elements by one on every request.
This is easily achieved by requests St of the form:

St = {πt(k + 1), . . . , πt(k + r− 2)︸ ︷︷ ︸
black

, element succeeding the green block︸ ︷︷ ︸
black

, pivot︸︷︷︸
red

}
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Then, at the end of round j, pivotj will be in the first position of the second block and
the green elements will be in block j + 2. After k rounds, all red elements will be in the
second block and all green elements will be in the last block, thus the adversary can repeat
the request sequence starting again from round 1. Figure 3.2 depicts the positions of the
“important” elements at the start of round 1 and at the end of round k.

The formal definition of the request sequence is shown in Algorithm 5.

Algorithm 5 Adversarial request sequence
Let Sij = [p1, . . . , pr] be the i-th request of round j, where p1, . . . , pr denote the indices
of the requested elements in the current permutation of MAE. The request sequence for k
consecutive rounds is (every round has k + 1 requests):
Round 1. The ith request of round 1, for 1 ≤ i < k is:
Si1 = [k + 1, . . . , k + r− 2, 2k + r− 1 + i, k2 + 2k + r− 1− (i− 1)k]
and the two last requests of round 1 are:
Sk1 = [k + 1, . . . , k + r− 1, 3k + r− 1] and S(k+1)1 = [k, . . . , k + r− 2, 2k + r− 1].
Round j from 2 to k. The ith request of round j, for i /∈ {k− j + 2, k + 1} is :
Sij = [k + 1, . . . , k + r− 2, (j + 1)k + r− 1 + i, k2 + 2k + r− 1− (i− 1)k],
for the request i with i = k− j + 2 is :
Sij = [k + 1, . . . , k + r− 1, (j + 1)k + r− 1]
and for i = k + 1 is :
S(k+1)j = [k, . . . , k + r− 2, 2k + r− 1].
Then, the request sequence starts again from round 1.

Notice that the last request of round j places pivotj in the first position of block b2, just in
front of pivot elements of previous rounds. This way it is guaranteed that all k red elements
will be in b2 after k rounds. Moreover, at each round j > 1 there is a request (the (k− j +
1)th) that increases the positions of k− j + 2 green elements by two, since they are passed
from both the element succeeding them and the pivot element (the other j − 2 elements
are passed only by the element succeeding the green block). Since, the adversary wants
all green elements to be in block j + 2 after round j, the next request does not move the
k − j + 2 green elements and the other j − 2 are moved because pivotj passes them (see
Figure 3.3).

The following lemma shows that MAE will arrive in a symmetric permutation after k
rounds.

Lemma 3.17. Let π be a permutation of definition 3.15 at the start of a round and let X =

{x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk} be the elements in b2 and bk+2 respectively before
the start of a round. Then, after k rounds, MAE has moved the elements of Y in block b2 and
the elements of X in block bk+2.

Proof. We have to prove that after j rounds, j elements of Y will be in b2 and all elements
of X will be in bj+2. Observe that the only way to increase the index of an element e in
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a permutation by c is to move c elements with higher index than e in the permutation to
positions with lower index than e (it increases by one if an element arrives at the position
of e).

Let pivotj be the pivot element of round j, which by definition is the last element in the
permutation at the start of a round. After k requests to pivotj involving also the (k + 1)th
element and elements in positions that do not increase the index of pivotj, pivotj moves a
total of k2 positions to the left arriving in position 2k + r − 1 of the current permutation.
Then, the last request of this round will move it to the first position of b2, moving the pivot
element of the previous phase to the second position of b2. By construction of the request
sequence, pivotj is the jth element of Y requested so far. Therefore, at the end of round j, j
elements of Y will be in the first j positions of b2 .

We now show that all elements of X will be in bj+2 at end of round j. Particularly, we show
inductively that at the beginning of jth round all elements of X are in block bj+1 and MAE
moves all elements of X to block bj+2 when the jth round ends.

Induction Base: In the first round, k requests contain the element succeeding X, r− 2 ele-
ments in positions k + 1, . . . , k + r− 2 of the permutation and an element, which has index
higher than k + r − 2 (which is pivot1) and does not change the positions of elements of
X. The (k + 1)th request does not change the positions of elements of X, since it contains
elements with lower index. Therefore, the algorithm moves all elements of X exactly k
positions to the right and they will be in b3 when round 1 ends.

Inductive Step: For j > 1, we have k− 1 requests, where each of them forces the algorithm
to move elements of X one position to the right. However, there is exactly one request Sij

with i = k− j + 1, where k− j + 2 elements of X increase their positions by two. These
elements are passed by both the element succeeding X and the pivot element. The other
j− 2 elements are passed only by the element succeeding X, thus increasing their positions
by one. Therefore, the next request of the adversary (the k− j + 2-th) makes the algorithm
move pivotj and the elements in positions k + 1, . . . k + r− 1, therefore moving only the
j− 2 elements of X one position to the right and the other elements of X remain in their
positions.

We conclude that at each round the elements of X move to the next right block. Since, they
are initially positioned in b2, after k rounds they end up in block bk+2.

We are now ready to provide the proof of Theorem 3.5

Theorem 3.5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for the
dynamic online Min-Sum Set Cover problem is Ω(r

√
n).
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Round 1

 1   2   3   4   5    6   7   8   9  10  11  12  13 14  15 16 17  

 1   2   3   4   5    6   7   8   9  10  11  12  13 14  15 16 17  

 1   2   3   4   5    6   7   8   9  10  11  12  13 14  15 16 17  

 1   2   3   4   5    6   7   8   9  10  11  12  13 14  15 16 17  

Round 2

 1   2   3   4   5    6   7   8   9  10  11  12  13 14  15 16 17  

 1   2   3   4   5    6   7   8   9  10  11  12  13 14  15 16 17  

 1   2   3   4   5    6   7   8   9  10  11  12  13 14  15 16 17  

 1   2   3   4   5    6   7   8   9  10  11  12  13 14  15 16 17  

Round 3

Figure 3.3: Execution of MAE on the adversarial sequence for r = 3 and
k = 3. The requested positions in the list have yellow background and the
arrows indicate the positions of the elements after every request. For round
j > 1, the ith request with i = k− j + 1 makes MAE increase the position
of k− j + 2 green elements by two. The next request is such that only the

j− 2 remaining green elements increase their position by one.

Proof. We compute the costs paid by MAE and OPTdynamic after k rounds of a phase, since
the request sequence of Definition 5 is then repeated.

First, we bound the optimal cost. Initially, the optimal solution incurs amoving costO(k · n)
to move the 2k elements of b2 and bk+2 in the first 2k positions of its permutation. Then,
at the start of round j, it brings pivotj to the first position and incurs an access cost of 1
for k + 1 consecutive requests. So, after k rounds it pays at most 2k2 moving cost plus
k · (k + 1) access cost, which sums to at most 4k2.

We now account the online cost. MAE pays r · k for the first k requests of each round and
r · (k− 1) for the last request. So, the total cost for k rounds is r · k · (k2 + k− 1) > r · k3.
From Lemma 3.17, all elements of b2 are in bk+2 and all elements of bk+2 are in b2 after k
rounds.

The adversary can repeat the same strategy to create an arbitrarily long request sequence.
Let l be the number of times the same k-round strategy is applied. We get that

Cost(MAE)
Cost(OPTdynamic)

≥ l · r · k3

4l · k2 + O(k · n) → Ω(k) .

The result follows for l → ∞ and k = Ω(
√

n).
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4 The Online K-Facility Reallocation
Problem on the Line

4.1 Introduction

In this chapter, we study the online variant of the K-Facility Reallocation problem on the
real line and we focus mostly on the special case with K = 2 facilities.

Our first result is a lower bound of K for the online K-Facility Reallocation problem. We
prove the following theorem, by constructing a reduction to the K-server problem.

Theorem 4.1. Every c-competitive deterministic algorithm for the K-Facility Reallocation
problem can be turned to a c-competitive deterministic algorithm for the K-server problem.

Theorem 4.1 demonstrates that K-Facility Reallocation is harder than K-server. Since K-
server has a lower bound of K in the deterministic competitive ratio, the same is also true
for K-Facility Reallocation. From a technical viewpoint, the K-Facility Reallocation problem
poses a new challenge, since it is much harder to track the movements of the optimal algo-
rithm as the clients keep coming. It is not evident at all exactly how ideas from the K-server
problem can be applied to the K-Facility reallocation problem, especially for more general
metric spaces. As a first step towards this direction, we design a constant-competitive al-
gorithm, when K = 2.

Theorem 4.2. For K = 2, there exists a O(1)-competitive algorithm for the K-Facility Real-
location on the real line.

Our algorithm appears in Section 4.3 and is inspired by the double coverage algorithm pro-
posed for the K-server problem [54]. The online algorithm performs two steps at each stage.
In Step 1, facilities are initially moved towards the positions of the clients. The purpose of
this step is to bring at least one facility close to the clients. In Step 2, our algorithm deter-
mines the final positions of the two facilities. The algorithm decides if it will serve the clients
with one facility or if it will use both facilities taking into account the tradeoff between the
resulting connection and moving cost.
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4.2 Lower Bound for Online K-Facility Reallocation

In this section, we prove that the online K-Facility Reallocation problem has a lower bound
of K.

We start with the observation that the online K-Facility Reallocation problem with K ≥ 2
facilities is a natural and interesting extension of the classical K-server problem, which has
been a driving force in the development of online algorithms for decades. The key difference
is that, in the K-server problem, there is a single client that changes her location at each
stage and a single facility has to be relocated to this new location at each stage. Therefore,
the total connection cost is by definition 0, and we seek to minimize the total moving cost.

The idea is to show that any algorithm for the K-server problem can be turned to an algo-
rithm for the online K-Facility Reallocation problem with the same competitive ratio. Since
the K-server problem has a lower bound of K, the same holds for the online K-Facility
Reallocation problem

Theorem 4.1. Every c-competitive deterministic algorithm for the K-Facility Reallocation
problem can be turned to a c-competitive deterministic algorithm for the K-server problem.

Proof. Consider an instance I of the K-server problem with requests r1, . . . rT on the line.
We construct an instance I′ for the K-Facility Reallocation problem with 2 clients on the
same metric with requests r′1, . . . , r′T , where each r′i is an 2-dimensional (n = 2) of the form
r′t = (rt, rt), 1 ≤ t ≤ T. This essentially means that, at each round t, 2 clients are requested
on the location on the line, where the request of the K-server problem for round t lies.

Now assume that we run a c-competitive algorithm ALG′ for the K-Facility Reallocation
problem problem on the instance I′. ALG′ can be transformed to an algorithm ALG for
the K-server problem as follows: Let ft denote the facility in I′, which is closer to r′t than
any other facility and let st be the corresponding server in I. Then, this server moves on rt

to serve it and then returns to the position, where ft lies ( ft may serve r′t from a distance).
All other servers are moved to the positions of their corresponding facilities.

Since the initial positions of facilities in I′ and the servers in I are the same, all the servers
will be on the same positions on the line as their corresponding facilities at the end of each
round. Next, we analyze the costs paid by ALG and ALG′ at each round t. All servers
except st will move the same distance with their corresponding facilities, thus the cost paid
for them is the same for ALG and ALG′. Regarding ft, assume that it moves a and connects
r′t from distance b. Then it pays a+ 2b overall to serve both clients. Additionally, the request
r′t is at distance a + b from ft at the start of round t. Then, st will pay a + b for moving st

on the corresponding request rt and then b to move st to the position of ft. Therefore, the
cost paid for all servers of ALG at each round is the same with the cost paid for all facilities
of ALG′. Let OPTI and OPTI′ denote the optimal solutions of I and I′ respectively. Since
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any feasible solution for I is feasible for I′, we have that OPTI′ ≤ OPTI and therefore
Cost(ALG) = Cost(ALG′) ≤ c · Cost(OPTI′) ≤ c · Cost(OPTI).

The next section is dedicated to prove Theorem 4.2. The constant in the competitive ratio
is 63 and although it is possible to improve the competitive ratio of Algorithm 6 by a much
more technically involved analysis, we stress here that it is not possible to turn the result
into any constant factor, since the previous result rules out the existence of a deterministic
algorithm for the 2-Facility Reallocation problem on the line with competitive ratio lower
than 2.

4.3 A Constant Competitive Algorithm for the Online
2-Facility Reallocation Problem

In this section, we present a constant competitive algorithm for the online 2-Facility Real-
location problem and we discuss the core ideas that prove its performance guarantee.

The online algorithm, denoted as Algorithm 6, is inspired by the double coverage algorithm
proposed for the K-server problem [54]. The double coverage algorithm solves the K-server
problem on the line optimally in the sense that it achieves a competitive ratio of K, matching
the lower bound for this problem. This simple algorithm performs one of the following steps
based on the relevant positions of the facilities and the single client:

• If the client is located between two facilities, then it moves these facilities with the
same speed towards the client until the closest one of them reaches the client.

• Else, the closest facility is moved on the client.

Notice that the double coverage algorithm moves at most 2 facilities towards the client. This
helps us design the first step of our online algorithm for 2-Facility Reallocation problem,
which performs the following two basic steps.

In Step 1, facilities are initially moved towards the positions of the clients. This step is also
performed by the double coverage algorithm with one major difference. That is, we now
have n clients, which define the interval [αt

1, αt
n]. Thus, this step ends, when we reach the

leftmost (αt
1) or the rightmost (αt

n) client. We remark that in Step 1, the final positions of
the facilities at stage t are not yet determined. The purpose of this step is to bring at least
one facility close to the clients. Note that this step is not performed if a facility is already
inside the interval [αt

1, αt
n] at the beginning of stage t.

In Step 2, our algorithm determines the final positions of the facilities xt
1, xt

2. After Step 1,
at least one of the facilities is inside the interval [αt

1, αt
n], meaning that at least one of the
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facilities is close to the clients. As a result, our algorithm may need to decide between
moving the second facility close to the clients or just letting the clients connect to the facility
that is already close to them. Obviously, the first choice may lead to small connection cost,
but large moving cost, while the second has the exact opposite effect. Roughly speaking,
Algorithm 6 does the following: If the connection cost of the clients, when placing just one
facility optimally, is not much greater than the cost for moving the second facility inside
[αt

1, αt
n], thenAlgorithm 6 puts the first facility to the position thatminimizes the connection

cost, if one facility is used. Otherwise, it puts the facilities to the positions that minimize
the connection cost, if two facilities are used. We formalize how this choice is performed,
introducing some additional notation.

Definition 4.1.

• Ct = {αt
1, . . . , αt

n} denotes the positions of the clients at stage t ordered from left to
right.

• If C is a set of positions with |C| = 2k, k ∈N>0, then MC denotes the median interval
of the set, which is the interval [αn/2, αn/2+1]. If |C| = 2k + 1, k ∈ N0, then MC is a
single point.

• H(C) denotes the optimal connection cost for the set C when all clients of C connect to
just one facility. That is H(∅) = 0 and H(C) = ∑α∈C |α − MC|, in case MC is a
single point. In case MC is an interval, then H(C) = ∑α∈C |α− bα|, where bα ∈ MC

and is the nearest point from α.

• C∗1t (resp. C∗2t) denotes the positions of the clients that connect to facility 1 (resp. 2) at
stage t in the optimal solution x∗. C1t (resp. C2t) denotes the positions of the clients that
connect to facility 1 (resp. 2) at stage t in the solution produced by Algorithm 6.

With this notation, we are ready to present our algorithm for online 2-Facility Reallocation
problem.

4.3.1 The Online Algorithm and a Near Optimal Solution

In this subsection, we present Algorithm 6, which can be seen as a generalization of the dou-
ble coverage algorithm due to the following two reasons. First, it does not necessarily place
a facility on the position of the client, since it may connect him (or multiple clients) from a
different position. Furthermore, the decisions made by the algorithm have also to take into
account the connection cost incurred. Therefore, Step 2 of Algorithm 6 tries to achieve a
balance between the moving cost and the connection cost in order to be competitive with
the optimal offline solution.

We first mention that Algorithm 6 seems much more complicated than it really is (the first
two cases are symmetric both in Step 1 and Step 2). In fact, only the last two cases are
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difficult to handle and we explain them subsequently. The performance guarantee of Algo-
rithm 6 is formally stated in Theorem 4.2.

Theorem 4.2. Let x = {xt
1, xt

2}t≥1 the solution produced by Algorithm 6 and x∗ the optimal
solution. Then,

Cost(x) ≤ 63 · Cost(x∗) + |x0
1 − x0

2|,

where x0
1, x0

2 are the initial positions of the facilities.

Algorithm 6 Selecting xt
1 and xt

2

At stage t ≥ 1 the new client positions Ct = {αt
1, . . . , αt

n} arrive
Step 1: Moving the facilities towards the clients
z1 ← xt−1

1 , z2 ← xt−1
2

• If z1 > αt
n move facility 1 to the left until it hits αt

n: z1 ← αt
n

• If z2 < αt
1 move facility 2 to the right until it hits αt

1: z2 ← αt
1

• If z1 < αt
1 and z2 > αt

n move facility 1 to the right and facility 2 to the left until a
facility hits [αt

1, αt
n]:

z1 ← z1 + min(|xt−1
1 − αt

1|, |x
t−1
2 − αt

n|)
z2 ← z2 −min(|xt−1

1 − αt
1|, |x

t−1
2 − αt

n|)
Step 2: Selecting the final position of the facilities

• If αt
1 ≤ z1 ≤ αt

n and z2 − αt
n ≥ 3H(Ct):

put facility 1 to the median of Ct: xt
1 ← MCt

move facility 2 to the left by 3H(Ct): xt
2 ← z2 − 3H(Ct)

• If αt
1 ≤ z2 ≤ αt

n and αt
1 − z1 ≥ 3H(Ct):

put facility 2 to the median of Ct: xt
2 ← MCt

move facility 1 to the right by 3H(Ct): xt
1 ← z1 + 3H(Ct)

• Else Compute the partition (O1, O2) of Ct that minimizes the connection cost at stage
t. Put facility 1 to the median of O1 and facility 2 to the median of O2. xt

1 ←
MO1 , xt

2 ← MO2

First, we present Lemma 4.3 that is a key component in the subsequent analysis and that
reveals the real difficulty of the online 2-Facility Reallocation problem.

Lemma 4.3. Let the optimal solution be x∗ and let C∗1t, C∗2t be the set of clients that connect
at stage t to facilities 1,2 respectively . Let the solution yt = (yt

1, yt
2) be defined as follows:

yt
k =

MC∗kt
if C∗kt 6= ∅

x∗tk if C∗kt = ∅
.

Then, the following inequality holds:

T

∑
t=1

[ 2

∑
k=1

[H(C∗kt) + |yt
k − yt−1

k |]
]
≤ 3 · Cost(x∗).
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Proof. Since ∑T
t=1 ∑2

k=1 H(C∗kt) = ∑T
t=1 ∑2

k=1 ∑a∈C∗kt
|x∗tk − a|, we only have to prove that

T

∑
t=1

2

∑
k=1
|yt

k − yt−1
k | ≤ 2

T

∑
t=1

2

∑
k=1

[
H(C∗kt) + |x∗tk − x∗t−1

k |
]

From the triangle inequality, we have that

T

∑
t=1

2

∑
k=1
|yt

k − yt−1
k | ≤

T

∑
t=1

2

∑
k=1

[|yt
k − x∗tk |+ |y

t−1
k − x∗t−1

k |+ |x∗tk − x∗t−1
k |]

If yt
k = x∗tk and yt−1

k = x∗t−1
k , then the right hand side of the inequality is simply the

optimal moving cost, which is at most Cost(x∗). If yt
k 6= x∗tk for k = 1, 2, namely when

C∗kt 6= ∅, then we can bound the quantity ∑T
t=1 ∑2

k=1 |yt
k − x∗tk | by the optimal connection

cost. Since yt
k is the median client (lies in the median interval of C∗kt in the case |C∗kt| = 2k)

of C∗kt in this case, we have that

T

∑
t=1

2

∑
k=1
|yt

k − x∗tk | ≤
T

∑
t=1

2

∑
k=1

∑
a∈C∗kt

|x∗tk − a| ≤
T

∑
t=1

2

∑
k=1

H(C∗kt).

Since the same arguments hold in the case yt−1
k 6= x∗t−1

k for k = 1, 2, we have that:

T

∑
t=1

2

∑
k=1

[|yt
k − x∗tk |+ |y

t−1
k − x∗t−1

k | ≤ 2
T

∑
t=1

2

∑
k=1

H(C∗kt).

Lemma 4.3 indicates that the real difficulty of the problem is not determining the exact
positions of the facilities in the optimal solution, but to determine the service clusters that
the optimal solution forms. In fact, if we knew the clusters C∗1t, C∗2t, then Lemma 4.3 provides
us with a 3-approximation algorithm. Obviously, this information cannot be acquired in the
online setting, since C∗1t, C∗2t depend on the future positions of the clients that we do not
know. We prove that Algorithm 6 has an approximation guarantee of 21 with respect to
the solution y, that directly translates to an approximation guarantee of 63 with respect to
Cost(x∗). The latter is formally stated in Lemma 4.4 and is the main result of this section.

Lemma 4.4. Let x = {xt
1, xt

2}t≥1 be the solution produced by Algorithm 6. Then, the cost
paid by solution x at stage t, ∑2

k=1 |xt
k − xt−1

k |+ ∑n
i=1 mink=1,2 |xt

k − αt
i |, is at most

21
2

∑
k=1

[H(C∗kt) + |yt
k − yt−1

k |] + Φt(xt)−Φt−1(xt−1),

where Φt(x1, x2) = 2(|x1 − yt
1|+ |x2 − yt

2|) + |x1 − x2|.
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Lemma 4.4 directly implies Theorem 4.2 by applying a telescopic sum over all t and then
applying Lemma 4.3. Notice that the additive term |x0

1 − x0
2| in Theorem 4.2 depends only

on the initial positions of the facilities and follows from the fact that Φ0(x0) = |x0
1 −

x0
2|. Note that the additive term is a constant independent from the request sequence (the

client positions Ct). As the request sequence grows, the additive term becomes negligible,
therefore it is common to define the competitive ratio of an online algorithm in such a way
[59, 55].

4.3.2 Bounding the Cost of the Online Algorithm

In this subsection, we present the proof ideas of Lemma 4.4, which come together with
explaining Steps 1 and 2 of our algorithm. Let us start with explaining Step 1.

We remind that Step 1 is performed by Algorithm 6 if both facilities are outside the interval
Ct at the beginning of stage t. Then, either both facilities are on the same side of Ct or one of
them is on the left and the other on the right. Therefore, the online algorithm distinguishes
between the three cases depicted in Figure 4.1 (We show 2 cases since the case with both
facilities on the right of the clients is symmetric to the first). Notice that moving with the
same speed towards the interval [at

1, at
n] results to the same moving cost for both facilities;

both facilities will move the distance of the facility which is closest to its closest client.

The following lemma bounds the online cost paid after the execution of Step 1. First, note
that since x0

1 ≤ x0
2, then xt

1 ≤ xt
2 by our algorithm construction. Now, assume that xt−1

2 ≤
αt

1 (second case). Before deciding the exact positions of the facilities, we can safely move
facility 2 to the right until reaching αt

1. The term safely means that this moving cost is
roughly upper bounded by the moving cost ∑2

k=1 |yt
k − yt−1

k |. This safe moving applies to
all three cases of Step 1 in Algorithm 6 and is formally stated in Lemma 4.5.

Lemma 4.5. Let z = (z1, z2) denote the values of the variables z1, z2 after Step 1 of Algo-
rithm 6. Then,

2

∑
k=1
|zk − xt−1

k | ≤ 2
2

∑
k=1
|yt

k − yt−1
k | −Φt(z) + Φt−1(xt−1).

Proof. Assume that xt−1
2 ≤ αt

1, then Algorithm 6 will first move facility 2 to αt
1 (z1 =

xt−1
1 , z2 = αt

1), paying moving cost equal to |αt
1 − xt−1

2 |. This moving cost can be bounded
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with the use of the potential function Φ. More specifically, we have that:

Φt(z)−Φt−1(xt−1) = Φt(z)−Φt(xt−1) + Φt(xt−1)−Φt−1(xt−1)

= Φt(z)−Φt(xt−1) + 2
2

∑
k=1

(|yt
k − xt−1

k | − |y
t−1
k − xt−1

k |)

≤ Φt(z)−Φt(xt−1) + 2
2

∑
k=1
|yt

k − yt−1
k |. (4.1)

In the considered case z1 = xt−1
1 , z2 = αt

1, the difference Φt(z)−Φt(xt−1) in the potential
function equals the quantity 2(|yt

2− αt
1| − |yt

2− xt−1
2 |) + |x

t−1
1 − αt

1| − |x
t−1
1 − xt−1

2 |. By
the definition of solution y in Lemma 4.4, either yt

1 or yt
2 lies in the interval [αt

1, αt
n]. Since

either yt
1 or yt

2 lies in the interval [at
1, at

2] and yt
1 ≤ yt

2, we have that at
1 ≤ yt

2. Meaning that
z2 is closer to yt

2 than xt−1
2 and consequently 2(|yt

2− at
1| − |yt

2− xt−1
2 |) = −2|xt−1

2 − at
1|.

Therefore, Φt(z)−Φt(xt−1) = −2|xt−1
2 − at

1|+ |x
t−1
1 − αt

1| − |x
t−1
1 − xt−1

2 | = −|at
1 −

xt−1
2 | = −|z2 − xt−1

2 |, which completes the proof of Lemma 4.5 for this case of Step 1.

Notice that inequality (4.1) holds for all three cases of Step 1. Thus, one just need to prove
that Φt(z)−Φt(xt−1) ≤ −∑2

k=1 |zk − xt−1
k | for the other two cases. We prove it for the

third case of Step 1, since the second case (xt−1
1 ≥ αt

n) is just symmetric to the first case.

In the third case of Step 1, we have that xt−1
1 < at

1, xt−1
2 > at

n, z1 = xt−1
1 + min(|xt−1

1 −
at

1|, |x
t−1
2 − at

n|) and z2 = xt−1
2 −min(|xt−1

1 − at
1|, |x

t−1
2 − at

n|). The difference Φt(z)−
Φt(xt−1) in the potential function equals the quantity 2(|z1 − yt

1| − |x
t−1
1 − yt

1|+ |z2 −
yt

2|− |x
t−1
2 − yt

2|)+ |z1− z2|− |xt−1
1 − xt−1

2 |. Now, |z1− z2| - |xt−1
1 − xt−1

2 | = −2 min(|xt−1
1 −

αt
1|, |x

t−1
2 − αt

n|) = −∑2
k=1 |zk − xt−1

k |. Assume that yt
1 ∈ [at

1, at
n], then ∑2

k=1(|zk − yt
k| −

|xt−1
k − yt

k|) ≤ 0 since |z1 − yt
1| − |x

t−1
1 − yt

1| = −min(|xt−1
1 − αt

1|, |x
t−1
2 − αt

n|) and
|z2 − yt

2| − |x
t−1
2 − yt

2| ≤ min(|xt−1
1 − αt

1|, |x
t−1
2 − αt

n|). As a result, inequality (4.1)
holds. Using the same argument in case yt

2 ∈ [at
1, at

n] completes the proof.

The proof of Lemma 4.5 reveals why we compare our algorithm with the solution y and not
directly with x∗. All these safe moves are based on the fact that either yt

1 or yt
2 lies in the

Ct = [αt
1, αt

n] (the latter does not necessarily hold for x∗). Finally, the potential function
Φt(x1, x2) is crucial, since it permits safe moves, when all clients are on the right/left of the
facilities (first/second case) as well as when they are contained in the interval [xt−1

1 , xt−1
2 ]

(third case).

It is clear, that any reasonable algorithm will move at least one facility inside Ct in order to
serve the clients. Lemma 4.5 shows that this moving cost can be charged to the difference
−Φt(xt−1) + Φt(z) in the potential function. Now, we will show that we can charge the
cost of the second step of Algorithm 6 to the difference Φt(xt)−Φt(z). In Step 2, we need
to bound the connection cost plus some additional moving cost from the point where the
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xt−1
1 xt−1

2

αt
1 αt

n

If both facilities 1 and 2 are on the left of the clients, then facility 2 is
moved to the right until hitting the position of the leftmost client (the
case with facilities 1 and 2 on the right of clients is symmetric).

xt−1
1 xt−1

2

αt
1 αt

n

If facility 1 is on the left of the clients and facility 2 is on the right of
the clients, then both facilities are moved with the same speed towards
the interval [αt

1, αt
n] until one of them hits the interval.

Figure 4.1: Step 1 of Algorithm 6 is depicted. After this step, the positions of
the facilities are denoted by z1, z2 in Algorithm 6.

safe move stopped. This is the step, where the final positions of the facilities are determined
and also the most challenging one in the analysis, since Algorithm 6 has to decide whether
it will serve the clients using both facilities (one of them will definitely serve some of the
clients) without knowing what the optimal solution does.

Before we prove the guarantees of Step 2, we will explain the cases exhibited in this step
in high level (see Figure 4.2). In the first case, where the second facility is close to Ct,
the online algorithm serves the clients using both facilities. Then, Algorithm 6 will pay
optimal connection cost and small moving cost, since the first facility is already inside Ct

and the second is close to Ct. In the second case, where the second facility is far from Ct,
the clients are served with one facility and the second facility is moved by an appropriate
distance towards Ct. In this case, the optimal connection cost can be arbitrarily smaller
than the connection cost of our online algorithm. However, moving the second facility by
an appropriate distance decreases Φt(xt)−Φt(z) so as to cancel the cost incurred by the
online algorithm.

We are now ready to prove Lemma 4.6, which formalizes the guarantees provided by Algo-
rithm 6 after the execution of Step 2. Algorithm 6 keeps a balance between the moving cost
of the facilities and the connection cost in order to be competitive with the optimal solution
as will become apparent from the analysis.

Lemma 4.6. Let xt = (xt
1, xt

2) denote the locations of facilities at stage t after the execution
of Step 2. Then,

2

∑
k=1

[H(Ckt) + |xt
k − zk|] ≤ 21

2

∑
k=1

H(C∗kt)−Φt(xt) + Φt(z).
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xt
1

z1 z2

αt
1 αt

n

The first choice of Step 2 is depicted. In this case, the facility initially
lying inside the interval [αt

1, αt
n] moves to the median of clients. In this

position, the connection cost is minimized using one facility.

z1 xt
1 xt−1

2

αt
1 αt

n

xt
2

The second choice of Step 2 is depicted. Facilities are placed to the po-
sitions, where the connection cost of the clients is minimized using two
facilities.

Figure 4.2: Step 2 of Algorithm 6 is depicted.

Proof. Observe that by Algorithm 6, either at
1 ≤ z1 ≤ at

n or at
1 ≤ z2 ≤ at

n. As a result, we
need to prove the claim for the following 4 cases:

• a1 ≤ z1 ≤ an and z2 − an ≥ 3H(Ct)

• a1 ≤ z1 ≤ an and z2 − an < 3H(Ct)

• a1 ≤ z2 ≤ an and a1 − z1 ≥ 3H(Ct)

• a1 ≤ z2 ≤ an and a1 − z1 < 3H(Ct)

We will prove just the first and the second case since the third is symmetric to the first
and the forth is symmetric to the second. In case a1 ≤ z1 ≤ an and z2 − an ≥ 3H(Ct),
Algorithm 6 puts facility 1 in the median of Ct, namely xt

1 = MCt (or xt
1 ∈ MCt in case the

number of clients is even), and moves facility 2 to the left by a distance of 3H(Ct) as can
be seen below.

z1 xt
1 z2

at
1 at

n

xt
2

≥ 3H(Ct)

3H(Ct)

First note that ∑2
k=1 H(Ckt) ≤ H(Ct) since xt

1 ∈ MCt . Then |xt
1 − z1| ≤ |at

1 − at
n| ≤

H(Ct) because both xt
1 and z1 lie in the interval [at

1, at
n] and |xt

2 − z2| = 3H(Ct) by Algo-
rithm 6. Therefore, we have that the cost of the online algorithm is ∑2

k=1 H(Ckt) + |xt
k −
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zk| ≤ 5H(Ct). By the geometry of this case and the aforementioned bounds,

Φt(xt)−Φt(z) = 2
2

∑
k=1

(
|xt

k − yt
k| − |zk − yt

k|
)
+ |xt

1 − xt
2| − |z1 − z2|

≤ 2
2

∑
k=1

(
|xt

k − yt
k| − |zk − yt

k|
)
− 2H(Ct).

Since
2

∑
k=1

[
H(Ckt) + |xt

k − zk|
]
≤ 5H(Ct),

bounding the term
2

∑
k=1

(
|xt

k − yt
k| − |zk − yt

k|
)

by the optimal connection cost ∑2
k=1 H(C∗kt) is now the challenge. The real difficulty arises

when C1t 6= ∅ and C2t 6= ∅, where ∑2
k=1 H(C∗kt) can be arbitrarily smaller than H(Ct).

As we will see in this case (see also the figure below) xt gets closer to yt and the term
∑2

k=1
(
|xt

k − yt
k| − |zk − yt

k|
)
becomes negative.

z1 xt
1 z2yt

1 yt
2

at
1 at

n

xt
2

≥ 3H(Ct)

3H(Ct)

Since C∗2t 6= ∅ and yt
2 ∈ MC∗2t

we get that yt
2 ≤ at

n and as a result |xt
2 − yt

2| − |z2 − yt
2| =

|xt
2 − z2| − 3H(Ct).

Φt(xt)−Φt(z) ≤ 2
2

∑
k=1

(
|xt

k − yt
k| − |zk − yt

k|
)
− 2H(Ct)

= 2
(
|xt

1 − yt
1| − |z1 − yt

1|
)
+ 2

(
|xt

2 − z2| − |z2 − yt
2|
)
− 2H(Ct)

≤ 2|xt
1 − z1| − 8H(Ct)

≤ 2H(Ct)− 8H(Ct)

≤ −6H(Ct)

≤
2

∑
k=1

H(C∗kt)−
2

∑
k=1

[H(Ckt) + |xt
k − zk|].
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Now, assume that C∗1t = ∅ or C∗2t = ∅ meaning that ∑2
k=1 H(C∗kt) = H(Ct). As a result,

bounding everything by H(Ct) serves our purpose. More formally,

Φt(xt)−Φt(z) ≤ 2
2

∑
k=1

(
|xt

k − yt
k| − |zk − yt

k|
)
− 2H(Ct)

≤ 2
2

∑
k=1
|xt

k − zk| − 2H(Ct)

≤ 6H(Ct)

≤ 11H(Ct)−
2

∑
k=1

[
H(Ckt) + |xt

k − zk|
]

= 11
2

∑
k=1

H(C∗kt)−
2

∑
k=1

[
H(Ckt) + |xt

k − zk|
]

.

The fourth inequality follows from the fact that ∑2
k=1 H(Ckt) + |xt

k − zk| ≤ 5H(Ct).

We now need to treat the second case where a1 ≤ z1 ≤ an and z2 − an < 3H(Ct). Since
Algorithm 6 computes the optimal clustering (C1t, C2t) and puts xt

1 in the interval MC1t

and xt
2 in the interval MC2t , we are ensured that the connection cost of our solution is less

than the connection cost of yt, ∑2
k=1 H(Ckt) ≤ ∑2

k=1 H(C∗kt), so we are mostly concerned
in bounding ∑2

k=1 |xt
k − zk|.

z1 xt
1

z2

at
1 at

n

xt
2

≤ 3H(Ct)

The easy case is when ∑2
k=1 H(C∗kt) = H(Ct). A small difference with the previous case

is that we don’t know how |xt
2 − z2| is. However, z1, xt

1, xt
2 ∈ [at

1, . . . at
n] and |xt

2 − z2| =
|xt

2 − at
n| + |at

n − z2|. Thus, |xt
1 − z1| + |xt

2 − at
n| ≤ H(Ct), |at

n − z2| ≤ 3H(Ct) and
therefore ∑2

k=1[H(Ckt) + |xt
k − zk|] ≤ 5H(Ct). So we can again bound everything by

H(Ct).
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Φt(xt)−Φt(z) = 2
2

∑
k=1

(
|xt

k − yt
k| − |zk − yt

k|
)
+ |xt

1 − xt
2| − |z1 − z2|

≤ 3
2

∑
k=1
|xt

k − zk|

≤ 4
2

∑
k=1
|xt

k − zk| −
2

∑
k=1
|xt

k − zk|

≤ 20H(Ct)−
2

∑
k=1

[
|xt

k − zk|
]

≤ 21
2

∑
k=1

H(C∗kt)−
2

∑
k=1

[
H(Ckt) + |xt

k − zk|
]

.

Things becomemore complicated, when the connection cost ∑2
k=1 H(C∗kt) is relatively small

(C∗1t 6= ∅ and C∗2t 6= ∅), where bounding everything by H(Ct) does not work. However,
the solutions xt and yt will be relatively close in this case. More formally,

Φt(xt)−Φt(z) = 2
2

∑
k=1

(
|xt

k − yt
k| − |zk − yt

k|
)
+ |xt

1 − xt
2| − |z1 − z2|

= 2
2

∑
k=1
|xt

k − yt
k| − 2

2

∑
k=1
|zk − yt

k|+
2

∑
k=1
|xt

k − zk|

= 2
2

∑
k=1
|xt

k − yt
k|+ 2

2

∑
k=1

(
|xt

k − zk| − |zk − yt
k|
)
−

2

∑
k=1
|xt

k − zk|

≤ 4
2

∑
k=1
|xt

k − yt
k| −

2

∑
k=1
|xt

k − zk|.

We need to upper bound the distance ∑2
k=1 |xt

k − yt
k|. Observe that in the solution xt, the

client at position at
1 connects to the left facility (facility 1) and the client at position at

n

connects to the right facility (facility 2), |xt
1− at

1|+ |xt
2− at

n| ≤ ∑2
k=1 H(Ckt). Since C∗1t 6=

∅ and C∗2t 6= ∅, the same holds for the solution yt. As a result,

Φt(xt)−Φt(z) ≤ 4
2

∑
k=1
|xt

k − yt
k| −

2

∑
k=1
|xt

k − zk|

≤ 4
(
|xt

1 − at
1|+ |yt

1 − at
1|+ |xt

2 − at
n|+ |yt

2 − at
n|
)
−

2

∑
k=1
|xt

k − zk|

≤ 4
2

∑
k=1

[H(Ckt) + H(C∗kt)]−
2

∑
k=1
|xt

k − zk|

≤ 9
2

∑
k=1

H(C∗kt)−
2

∑
k=1

[
H(Ckt) + |xt

k − zk|
]

.
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This completes the proof of the performance of our online algorithm Algorithm 6 and con-
cludes this section.
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5 Competitive Algorithms for the
Online Dynamic Facility Location
Problem

5.1 Introduction

In this chapter, we study the online variant of the Dynamic Facility Location problem. We
present a randomized O(log m + log n)-competitive algorithm, where m is the number
of facilities and n is the number of clients. The algorithm produces a fractional solution,
in each timestep, to the objective of Dynamic Facility Location involving a regularization
function. Then, it rounds the fractional solution of this timestep to an integral one with the
use of exponential clocks. We complement our result by proving a lower bound of Ω(m) for
deterministic algorithms and lower bound of Ω(log m) for randomized algorithms. These
lower bound results are summarized in the following theorem.

Theorem 5.1. The competitive ratio of any deterministic online algorithm is Ω(m) and the
competitive ratio of any randomized online algorithm against the oblivious adversary isΩ(log m)

for the Online Dynamic Facility Location problem, where m is the number of facilities.

Our first step to design a competitive algorithm for ODFL is to prove that ODFL fits in
the framework of [26]. This framework provides a general algorithm for solving online
problems, which satisfy certain types of time varying constraints, by using a regularization
technique from online learning that can also produce competitive solutions for dynamic
online problems (see also [27]). This seemed intractable using standard competitive analysis
methods, despite the significant differences between the fields of competitive analysis and
online learning.

In order to design the randomized competitive algorithm , we first express the offline Dy-
namic Facility Location problem as a linear program P (Figure 5.1a). Then, we apply the
following two algorithms at each round t.

1. Algorithm 7 (Regularization algorithm): It solves a linear program minimizing
the objective function of P modified to include a smooth convex regularization term
and obtains the fractional solution Sol(t).
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2. Algorithm 8 (Rounding algorithm): It rounds the fractional solution Sol(t) of
Algorithm 7 to an integral solution using competing exponential clocks .

Algorithm 7 solves online a linear program to produce a fractional solution at each round t
involving the current distance vector dt. This algorithm is essentially the general algorithm
presented in [26], which we adapt to ODFL. The performance of the general regularization
algorithm is proved byTheorem 1.1 in [26] for the case of time varying covering constraints.
Although we follow the same steps to prove the existence of a O(log m)-competitive frac-
tional solution for ODFL, where m is the number of facilities, we must also address the
presence of both covering and precedence constraints in ODFL.

Algorithm 8 is the randomized procedure that rounds the fractional solution provided from
Algorithm 7 to an integral solution. Our contribution here is that we use an appropriate
rounding which works favorably with Algorithm 7 so as to produce a solution, which is
O(log m + log n)-competitive for ODFL. The rounding algorithm makes use of competing
exponential clocks, which have been applied in many similar problems like the Dynamic
Facility Location problem [4] and the Online Set Cover with Service Cost problem [26].
Combining Algorithm 7 and Algorithm 8 we get the following result.

Theorem5.2. There is a randomized algorithmwhich isO(log m+ log n)-competitive for the
Online Dynamic Facility Location problem, where m denotes the number of facility locations
and n denotes the number of clients.

5.2 Lower Bounds

In this section, we prove lower bounds of deterministic and randomized algorithms for
ODFL. In both cases, the metric space is a star graph with a client lying on the center of the
star for all rounds.

The core idea of the proofs is to force the online algorithm to pay the switching cost at each
round. By carefully selecting the parameters of ODFL, we can prove that any determinis-
tic online algorithm is O(m)-competitive. For the randomized lower bound we use Yao’s
principle (see examples in Chapter 8 in [23]). Specifically, we choose a randomized instance
such that the expected performance of any deterministic algorithm against the optimal of-
fline algorithm is Ω(log m). By Yao’s principle, any randomized algorithm has the same
lower bound.

Theorem 5.1. The competitive ratio of any deterministic online algorithm is Ω(m) and the
competitive ratio of any randomized online algorithm against the oblivious adversary isΩ(log m)

for the Online Dynamic Facility Location problem, where m is the number of facilities.
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Proof. Let OPT denote the optimal cost and ALG denote the cost of an online algorithm. The
instance consists of a star graphwith m edges and the number of rounds is T = m. Facilities
can only be opened in the leaves (a total of m leaves) and there is one client (n = 1) sitting
at the center of a graph for all rounds. The distance of every leaf j to the center is initially
dj = d. Then, the adversary has the following simple strategy at each round 1 ≤ t ≤ T− 1:

For every leaf j, such that the online algorithm connects the client to the facility in j, dj

becomes arbitrarily large. At round T the distances remain the same as in the previous
round.

Observe that there is only one leaf with distance d from the center of a star for all rounds.
The optimal offline solution just opens a facility at this leaf and connects the client to it for
all rounds, thus pays g + T f + Td. On the other side, any competitive online algorithm
will prefer to open a new facility at distance d and connect the client to this facility at the
start of each round instead of paying the large distance. Therefore, the cost incurred by any
online algorithm is at least Tg + T f + Td. By setting g� d = f , we have that

ALG
OPT

≥ Tg + T f + Td
g + T f + Td

= Ω(T) = Ω(m)

Turning to the randomized case, the instance consists of the samemetric as the deterministic
case and the only difference is that we will use randomized adversarial requests. Then, by
showing that any deterministic algorithm has competitive ratio at least log m and by Yao’s
principle, we will prove the lower bound for randomized algorithms.

Now, the adversary chooses uniformly at random an edge e, which has length d (has not
yet become arbitrarily large) at each round 1 ≤ t ≤ T − 1 and makes its length arbitrarily
large. At round T, where only one leaf has distance d, the distances remain the same as in
the previous round. Again, the optimal solution uses the leaf in distance d at all rounds and
pays g + T f + Td. However, the expected switching cost of any competitive algorithm is:

E[switching cost] = g+
T−1

∑
t=1

Pr[switches at round t] · g = g+
T−1

∑
t=1

1
m− t + 1

· g > HT · g

since at each round t the edge that the algorithm uses becomes arbitrarily large with prob-
ability 1/(m− t + 1). By setting g > Td = T f ,

E[ALG]
OPT

≥ g · HT + T f + Td
g + T f + Td

= Ω(log T) = Ω(log m).
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This concludes this section with the lower bounds. In the following sections, we present a
randomized algorithm for the ODFL problem with a nearly matching bound of O(log m +

log n).

5.3 The Regularization Algorithm

In this section, we show that the regularization algorithm of [26] can be applied to ODFL
and that it produces a fractional solution at each round, which is O(log m)-competitive,
where m is the number of facility locations. We will prove the following theorem:

Theorem 5.3. The Regularization Algorithm produces an O(log m)-competitive fractional
solution for the Online Dynamic Facility Location problem, where m is the number of facilities.

Before proceeding to the details of Algorithm 7, we first express the offline Dynamic Facility
Location as a linear program, denoted as P (Figure 5.1a). Algorithm 7 will solve a linear
program P∗ at each round, which will be constructed from P combined with a regularization
function. Finally, we will show that the fractional solution of P∗ is O(log m)-competitive
with respect to the solution of the dual program D (Figure 5.1b) of P, which serves as lower
bound on the optimal offline solution.

Now, we express offline Dynamic Facility Location as an integer program, which will be
relaxed to obtain the linear program P. Recall that T, n, m are the number of rounds, clients
and facility locations, respectively. The first term of the objective function is the total facility
opening cost, where f is the cost to open a facility. The second term is the total connection
cost, where dt(i, j) is the distance between facility i and client j in round t, and the third
term is the total switching cost, where each change of a client’s connection to a facility costs
g.

We use the decision variables yt
i , xt

ij and zt
ij, where i ∈ [m], j ∈ [n], t ∈ [T]; yt

i = 1 if
facility i is open at round t and yt

i = 0 otherwise, xt
ij = 1 if client j is connected to facility

i at round t and xt
ij = 0 otherwise, zt

ij = 1 if client j was connected to facility i at round
t but not connected to the same facility i at round t− 1 and zt

ij = 0 otherwise. The value
of the variable zt

ij is imposed from the third constraint, which expresses the switching cost.
The first constraint (xt

ij ≤ yt
i ) ensures that whenever a client j is connected to a facility

i, the facility i is open. The second constraint (∑m
i=1 xij ≥ 1) guarantees that every client

is connected to a facility. Finally, relaxing the decision variables to take non-negative real
values we obtain the LP of Figure 5.1a, denoted as P.

Next, we are ready to present Algorithm 7. The algorithm is given at each round t a distance
vector dt ∈ Rm×n

+ containing the distances between clients and facilities. Then, Algorithm 7
finds the minimizer (yt, xt) of the linear program P∗ at each round t, which has two differ-
ences from P. The first one is that the last term of the objective function in P (the switching
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min f
T
∑

t=1

m
∑

i=1
yt

i +
T
∑

t=1

n
∑

j=1

m
∑

i=1
xt

ij · dt(i, j)+g
T
∑

t=1

n
∑

j=1

m
∑

i=1
zt

ij

s.t. xt
ij ≤ yt

i ∀t ∈ [T], ∀i ∈ [m], ∀j ∈ [n]
∑m

i=1 xt
ij ≥ 1 ∀t ∈ [T], ∀j ∈ [n]

zt
ij ≥ xt

ij − xt−1
ij ∀t ∈ [T], ∀i ∈ [m], ∀j ∈ [n]

yt
i ≥ 0, xt

ij ≥ 0, zt
ij ≥ 0 ∀t ∈ [T], ∀i ∈ [m], ∀j ∈ [n]

(a) The linear program P for offline Dynamic Facility Location.

max
T
∑

t=1

n
∑

j=1
at

j

s.t. ∑n
j=1 et

ij ≤ f ∀t ∈ [T], ∀i ∈ [m]

bt
ij ≤ g ∀t ∈ [T], ∀i ∈ [m], ∀j ∈ [n]

bt+1
ij − bt

ij ≤ dt(i, j) + et
ij − at

j ∀t ∈ [T], ∀i ∈ [m], ∀j ∈ [n]
bt

ij ≥ 0, et
ij ≥ 0, at

j ≥ 0 ∀t ∈ [T], ∀i ∈ [m], ∀j ∈ [n]

(b) The dual D of the linear program P.

cost) is substituted by the regularization function in P∗. The second is that the constraint
relative to the switching cost (zt

ij ≥ xt
ij − xt−1

ij ) in P is omitted in P∗. We remark that the
regularized objective function includes both the previous solution as well as the current
cost vector. Thus, the solution in each round is determined greedily and independently of
rounds prior to t− 1.

To analyze the performance of Algorithm 7 we will need to construct a lower bound on the
optimal offline solution. Therefore, we derive the dual D of P (Figure 5.1b), which has the
following variables (corresponding to the primal constraints on the left):

• xt
ij ≤ yt

i → et
ij for all t ∈ [T], i ∈ [m], j ∈ [n]

• ∑m
i=1 xt

ij ≥ 1→ at
j for all t ∈ [T], j ∈ [n]

• zt
ij ≥ xt

ij − xt−1
ij → bt

ij for all t ∈ [T], i ∈ [m], j ∈ [n]

We will proveTheorem 5.3 by showing that the set of dual variables of the solutions that P∗

returns is a feasible solution for D within a factor of (1+ (1+ ε′) ln(1+ m
ε′ )) of the optimal

offline solution, where ε′ is a small constant. Specifically, we will use the KKT optimality
conditions of P∗ (the regularized LP) in each round. The constraints define dual variables,
which will be plugged in the formulation of the dual D in Figure 5.1b. This way we will
construct a dual solution to the original online problem, which will serve as a lower bound
on the optimal offline solution.

[26] remarks that their technique can be generalized to facility location problems, without
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Algorithm 7 The regularization algorithm
Parameters: ε > 0, η = ln(1 + n/ε)
Initialization: Set y0

i = 0 ∀i ∈ [m] and x0
ij = 0 ∀i ∈ [m], j ∈ [n].

At each round t: Let dt ∈ Rm×n
+ be the distance cost vector and let S be the set of fea-

sible solutions. Solve the following linear program (P∗) to obtain the fractional solution
(yt, xt):

(yt, xt) = arg min
(y,x)∈S

{
f

m

∑
i=1

yi +
n

∑
j=1

m

∑
i=1

xij · dt(i, j)

+
1
η

n

∑
j=1

m

∑
i=1

[((
xij +

ε

n

)
ln

xij +
ε
n

xt−1
ij + ε

n

)
− xij

]}

providing any further technical details. In the next lemmas, we verify their claim, by adjust-
ing their approach and proof techniques to ODFL. Recall that the constraint zt

ij ≥ xt
ij− xt−1

ij
is omitted in P∗. In order to define a feasible solution for D, we introduce the variable bt

ij
corresponding to this constraint and we let e∗ij, a∗j be the optimal dual variables of D∗ cor-
responding to the precedence and covering constraints respectively.

Lemma 5.1. The set of optimal solutions for each round t of the dual LP D∗ of P∗ (a∗,t, e∗,t),
which satisfy the KKT conditions for an appropriate bt

ij, consist of a feasible solution for D.

Proof. Let x∗,t be the optimal solution of P∗ at round t. Set the variables of D at time t to
be:

at
j = a∗,tj , et

ij = e∗,tij and bt+1
ij =

g
η

ln
1 + ε

n

x∗,tij + ε
n

To prove that the solution above is feasible for D, we prove that it satisfies its constraints
one by one. This is achieved using the following KKT conditions that hold for P∗ and its
dual:

a∗j ≥ 0 , ∀j ∈ [n] (5.1)

e∗ij ≥ 0 , ∀i ∈ [m], ∀j ∈ [n] (5.2)

f −
n

∑
j=1

e∗ij ≥ 0 , ∀i ∈ [m] (5.3)

dt(i, j) +
g
η

ln
x∗ij +

ε
n

xt−1
ij + ε

n
+ e∗ij − a∗j ≥ 0 , ∀i ∈ [m], ∀j ∈ [n] (5.4)

The first group of constraints of the dual D (Figure 5.1b) (∑n
j=1 et

ij ≤ f ) follows easily from
KKT condition (3). The same holds for the last two groups of constraints (et

ij ≥ 0 and at
j ≥ 0)
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due to KKT conditions (1) and (2). Furthermore, by (4) and the construction of bt
ij we have

that:

• bt
ij = g

η ln 1+ ε
n

x∗,t−1
ij + ε

n
= g

ln(1+ n
ε )

ln 1+ ε
n

x∗,t−1
ij + ε

n

x∗,t≥0
≤ g

ln(1+ n
ε )

ln 1+ ε
n

ε
n

= g
ln( n

ε +1) ln(n
ε +

1) = g

• bt+1
ij − bt

ij = −
g
η ln

x∗,tij + ε
n

x∗,t−1
ij + ε

n

(4)
≤ dt(i, j) + et

ij − at
j .

• bt
ij =

g
η ln 1+ ε

n
x∗,t−1

ij + ε
n

x∗,t≤1
≥ g

η ln 1+ ε
n

1+ ε
n
= 0

The above inequalities prove that the second, third and fourth group of constraints of D also
hold, thus completing the proof of the lemma.

We are now ready to prove Theorem 5.3, by showing that the dual we constructed can
pay for the facility, connection and switching cost of the Algorithm 7. Since we bound
together the facility cost and connection cost, we will simply refer to them as the service
cost. Throughout the proofs, we will use the following relations:

a∗j (1−
m

∑
i=1

x∗ij) = 0, ∀j ∈ [n] (5.5)

y∗i ( f −
n

∑
j=1

e∗ij) = 0, ∀i ∈ [m] (5.6)

x∗ij(dt(i, j) +
g
η

ln
x∗ij +

ε
n

xt−1
ij + ε

n
+ e∗ij − a∗j ) = 0, ∀i ∈ [m], ∀j ∈ [m] (5.7)

e∗ij(x∗ij − y∗i ) = 0, ∀j ∈ [n], ∀i ∈ [m] (5.8)

h− k ≤ h ln(h/k) for any h, k > 0 (5.9)

∑
i

hi ln(hi/ki) ≤
(

∑
i

hi

)
log ∑i hi

∑i ki
(5.10)

Equalities 5.5, 5.6, 5.7, 5.8 are the KKT conditions of P∗ and its dual and the remaining
two inequalities are standard logarithmic inequalities. Theorem 5.3 will follow from the
next two lemmas. The analysis is similar with that of Theorem 1.1 in [26] adapted to the
objective of ODFL and also dealing with the presence of precedence constraints.

Lemma 5.2. The switching cost M of Algorithm 7 is at most η(1 + εm
n ) times the cost of the

dual feasible solution of Lemma 5.1.

Proof. Let Mt be the switching cost of Algorithm 7 at round t. The summation below is
taken over increasing values of connection variables, i.e. x∗,tij > x∗,t−1

ij , since decreasing
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values only decrease the fractional switching cost.

Mt = g ∑
(

x∗,tij − x∗,t−1
ij

)
= η · g

η ∑
(

x∗,tij − x∗,t−1
ij

)
= η · g

η ∑
(

x∗,tij +
ε

n
−
(

x∗,t−1
ij +

ε

n

))
≤ η ∑

(
x∗,tij +

ε

n

) g
η

ln
x∗,tij + ε

n

x∗,t−1
ij + ε

n

(by inequality (5.9))

≤ η
m

∑
i=1

n

∑
j=1

(
x∗,tij +

ε

n

)
(a∗,tj − e∗,tij − dt(i, j)) (by (5.7))

≤ η
n

∑
j=1

a∗,tj

( m

∑
i=1

(
x∗,tij +

ε

n

))
= η

n

∑
j=1

a∗,tj

( m

∑
i=1

x∗,tij +
εm
n

)
= η

n

∑
j=1

a∗,tj

(
1 +

εm
n

)
= η

(
1 +

εm
n

) n

∑
j=1

a∗,tj (by (5.5))

Hence,

M =
T

∑
t=1

Mt ≤ η
(

1 +
εm
n

) T

∑
t=1

n

∑
j=1

a∗,tj (5.11)

This concludes the proof of the lemma.

Lemma 5.3. The total service cost S of Algorithm 7 is less than the cost of the dual feasible
solution of Lemma 5.1.
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Proof.

S =
T

∑
t=1

[
f

m

∑
i=1

y∗,ti +
n

∑
j=1

m

∑
i=1

x∗,tij dt(i, j)
]

=
T

∑
t=1

[ m

∑
i=1

y∗,ti

( n

∑
j=1

e∗,tij

)
+

n

∑
j=1

m

∑
i=1

x∗,tij

(
a∗,tj − e∗,tij −

g
η

ln
x∗,tij + ε

n

x∗,t−1
ij + ε

n

)]
(by (5.7) and (5.6))

=
T

∑
t=1

[ m

∑
i=1

n

∑
j=1

(y∗,ti − x∗,tij )e
∗,t
ij +

n

∑
j=1

m

∑
i=1

x∗,tij a∗,tj −
g
η

n

∑
j=1

m

∑
i=1

x∗,tij ln
x∗,tij + ε

n

x∗,t−1
ij + ε

n

]

=
T

∑
t=1

[ n

∑
j=1

a∗,tj

( m

∑
i=1

x∗,tij

)
− g

η

n

∑
j=1

m

∑
i=1

x∗,tij ln
x∗,tij + ε

n

x∗,t−1
ij + ε

n

]
(by (5.8))

=
T

∑
t=1

n

∑
j=1

a∗,tj −
g
η

n

∑
j=1

m

∑
i=1

[ T

∑
t=1

(
x∗,tij +

ε

n

)
ln

x∗,tij + ε
n

x∗,t−1
ij + ε

n

− ε

n

T

∑
t=1

ln
x∗,tij + ε

n

x∗,t−1
ij + ε

n

]
(by (5.5))

≤
T

∑
t=1

n

∑
j=1

a∗,tj −
g
η

n

∑
j=1

m

∑
i=1

[ T

∑
t=1

(
x∗,tij +

ε

n

)
ln

∑T
t=1(x∗,tij + ε

n )

∑T
t=1(x∗,t−1

ij + ε
n )
− ε

n
ln

x∗,Tij + ε
n

x∗,0ij + ε
n

]
(by (5.10))

Notice that that the two terms in the bracket of the right hand side of the inequality above
cancel each other out, since:

− ε

n
ln

x∗,Tij + ε
n

x∗,0ij + ε
n

x∗,0ij =0
=

(
x∗,0ij +

ε

n

)
ln

x∗,0ij + ε
n

x∗,Tij + ε
n

(5.9)
≥ x∗,0ij − x∗,Tij

( T

∑
t=1

(x∗,tij +
ε

n
)
)

ln
∑T

t=1(x∗,tij + ε
n )

∑T
t=1(x∗,t−1

ij + ε
n )

(5.9)
≥

T

∑
t=1

(
x∗,tij +

ε

n

)
−

T

∑
t=1

(
x∗,t−1

ij +
ε

n

)
= x∗,0ij − x∗,Tij

Therefore, it holds that

S ≤
T

∑
t=1

n

∑
j=1

a∗,tj

We can now easily prove the performance of Algorithm 7 stated in Theorem 5.3.
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Algorithm 8 The rounding algorithm
1: Initialization: Choose i.i.d. random variables Zij ∼ exp(1), ∀i, j.
2: At each round t:
3: Let xt

ij be the fractional value of round t obtained by Algorithm 7 .

4: For each client j, open i = arg min
i′

Zi′ j
xt

i′ j
and connect j to i.

Proof of Theorem 5.3. Let OPT(D) and OPT(P) denote the optimal solutions of the D and P
respectively. By Lemma 5.2 and Lemma 5.3, the total cost of Algorithm 7 is:

S + M ≤
[
1 + η

(
1 +

εm
n

)] T

∑
t=1

n

∑
j=1

a∗,tj

=
[
1 + ln

(
1 +

n
ε

)(
1 +

εm
n

)] T

∑
t=1

n

∑
j=1

a∗,tj

≤
[
1 + ln

(
1 +

n
ε

)(
1 +

εm
n

)]
OPT(D) (by Lemma 5.1)

=
[
1 + (1 + ε′) ln

(
1 +

m
ε′

)]
OPT(D) (since ε′ = εm

n )

=
[
1 + (1 + ε′) ln

(
1 +

m
ε′

)]
OPT(P)

The proof of Theorem 5.3 concludes this section.

5.4 The Rounding Algorithm

In this section, we present Algorithm 8, which makes use of the exponential distribution
to round the fractional solution to an integral solution at each round. The analysis shows
that the fractional solution grows up to a factor logarithmic in n regarding the facility cost
and up to constant factors regarding the switching and connection cost. Before proceeding
to the details of Algorithm 8, we give the definition of an exponential random variable and
some of their properties.

Definition 5.4. A random variable X is distributed according to the exponential distribution
with rate λ, denoted as X ∼ exp(λ), if it has density fX(x) = λeλx for every x ≥ 0, and
fX(x) = 0 otherwise. We will use the following properties of exponential random variables:

1. If X ∼ exp (λ) and c > 0, then X/c ∼ exp (λc).

2. Let X1, . . . , Xk be independent random variables with Xi ∼ exp (λi):
(a) min{X1, . . . , Xk} ∼ exp(λ1 + . . . + λk)

(b) Pr[Xi ≤ minj 6=i Xj] =
λi

λ1+...+λk
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3. If X ∼ exp(λ) and Y ∼ exp(µ) are independent, then ∀t ≥ 0:

Pr[X ≤ Y | X ≥ t] = λ
λ+µ · eµt

The rounding algorithm samples independently a total of n ·m (one for each client-facility
connection) random variables Zij from the exponential distribution with rate λ = 1 at
the beginning of its execution, which will be used throughout all rounds. Then, at each
round t, it chooses for each client j the connection {i, j} minimizing the ratio Zij

xt
ij
, where

xt
ij is the fractional variable of this connection obtained by Algorithm 7. Notice that by

the properties of Definition 5.4 the ratio Zij

xt
ij

is also an exponential random variable. This

technique is referred to as competing exponential clocks, since a random variable wins the
competition if it has the smallest value among all others (minimizes the ratio Zij

xt
ij

in our

case).

The high level idea of the analysis is that connection and switching cost of the rounded
solution add only constant factors to the cost of the connection and switching cost of the
fractional solution at each round t. The reason is that they favor connections to facilities
that are dependent to the increase/decrease of the fractional variables xt

ij. This fact com-
bined with the properties of the exponential distribution leads to a rounding of the right
connections indicated by the fractional solution. On the other side, this leads to more open
facilities, since we prove that the rounding adds a factor logarithmic in n to the cost of the
fractional solution.

Next, we will analyze the performance of Algorithm 8 by bounding separately the facility,
connection, and switching cost. We will simply calculate the probabilities of opening any
facility, connecting a client to a facility and changing a connection.

Facility cost

We start with the facility cost of the rounding algorithm, which is O(log n)-competitive
with respect to the facility cost of the fractional solution.

Proof. Let Eij denote the event that i = arg min
i′

Zi′ j
xi′ j

for some client j and let a > 0 be

chosen later. The probability of Eij equals:
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Pr[∃j : Eij] =Pr

[
∃j : Eij |

Zij

xij
< a

]
· Pr

[
Zij

xij
< a

]

+Pr

[
∃j : Eij |

Zij

xij
≥ a

]
· Pr

[
Zij

xij
≥ a

]

≤Pr
[

Zij

xij
< a

]
+ Pr

[
∃j : Eij |

Zij

xij
≥ a

]
· Pr

[
Zij

xij
≥ a

]

≤Pr
[

Zij

xij
< a

]

+
n

∑
j=1

Pr

[
Eij |

Zij

xij
≥ a

]
· Pr

[
Zij

xij
≥ a

]
( By the union bound)

=1− e−axij +
n

∑
j=1

Pr

[
Eij |

Zij

xij
≥ a

]
e−axij

≤ axij +
n

∑
j=1

xij
m
∑

i=1
xij

e
−a( ∑

i′ 6=i
xi′ j−xij)

e−axij

( 1− e−x ≤ x, ∀x and by Definition 5.4)

≤ axij +
n

∑
j=1

e−axij ≤ ayi + ne−ayi. (since xij ≤ yi)

By choosing a = log n we have the result.

Connection cost

Next, we show that the connection cost of the rounding algorithm is O(1)-competitive with
the connection cost of the fractional solution. Again, let a > 0 be chosen later.
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Proof. Similar arguments with the previous proof, show that the probability to choose con-
nection ij is:

Pr[ij] ≤ Pr

[
Zij

xij
< a

]
+ Pr

[
Zij

xij
= min

i′

Zi′ j

xi′ j
|

Zij

xij
≥ a

]
· Pr

[
Zij

xij
≥ a

]

≤ 1− e−axij + Pr

[
Zij

xij
= min

i′

Zi′ j

xi′ j
|

Zij

xij
≥ a

]
e−axij

(1− e−x ≤ x, ∀x and by Definition 5.4)

≤ axij +
xij

m
∑

i=1
xij

e
−a( ∑

i′ 6=i
xi′ j−xij)

e−axij

≤ axij + e−axij.

By choosing a sufficiently small a (for example a = 1) , we have the result.

Switching cost

Finally, we show that every step that incurs a fractional switching cost of d in a connection
variable xij, incurs an expected increase of at most d

d+1 in the randomized solution. Thus,
the expected number of new connections is O(1).

Proof. We break down the total movement from time t− 1 to t in the fractional solution into
m× n intermediate steps, on each of which only the value of exactly one xij is changed. We
take first all the xij’s whose value increases and then all the xij’s whose value decreases, thus
managing to preserve a feasible solution in all the intermediate steps. This way, the total
switching cost from time t− 1 to time t of the fractional solution does not change while the
integral switching cost could only increase due to possible changes in the intermediate steps.
First, we will prove the bound in the case the connection variable decreases: xt

ij = xt−1
ij − d

. Let Yij = mini′ 6=i
Zi′ j
xt

i′ j
, where Yij ∼ exp(λ) for λ = 1 − xt

ij. When the value of xij

decreases, the value of Zij
xij

increases. Therefore, connection ij cannot be chosen a time t if is

not chosen at time t− 1. However, due to the increase of Zij
xij

, another connection could turn
minimal that had not been chosen in the previous time step. This is the only case, when a
switching cost is incurred. The probability of this event is bounded by:

Pr

[
Zij

xt−1
ij
≤ Yij ≤

Zij

xt−1
ij −d

]
= FYij [∞]− FYij [0] =

λ
xt−1

ij −d+λ
− λ

xt−1
ij +λ

This expression is maximized when xt−1
ij − d = 0, λ = 1, therefore is less than

1− 1
d+1 = d

d+1
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Now, we turn to the case where xt
ij = xt−1

ij + d. When xij increases, the ratio Zij
xij

decreases.
Therefore, if facility i was chosen in the previous step it will be chosen again in this step,
thus not incurring switching cost. If facility was not chosen in the previous step, it will be
chosen in this step with probability

Pr

[
Zij

xt−1
ij +d

≤ Yij ≤
Zij

xt−1
ij

]
which is nomore than d

d+1 , following the exact same analysis with the case of the decreasing
connection variables.

Finally, it is easy to provide the proof of Theorem 5.2, which concludes this section.

Proof of Theorem 5.2. First notice that by Lemma 5.3 the fractional solution of Algorithm 7 is
optimal with respect to the facility and connection cost. Therefore, Algorithm 8 will round
the solution to an integral one only losing a factor of O(log n) in the facility cost and a
factorO(1) in the connection cost, thus beingO(log n) competitive with the optimal offline
solution. Regarding the switching cost, by Lemma 5.2 the fractional solution is O(log m)

competitive with the fractional solution. The cost of this solution will only increase by a
factor of O(1) after the randomized rounding, thus proving the result.
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