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ITepiindn

H urodetins extéleon eviohdv (speculative execution) eivon yior teyvixm
TOU YPNOWOTOLE(TOL €D XU UPXETE YEOVIN GTN OYEdlIoT TV GUYYEOVWY -
TEEEPYATTAOV PE OXOTO TNV alENon NS amb6dochc Touc. AuTh 1 TEY VXY OEV
pouvoTary VoL dnptovpyel xdmota VEpata aoPaAelds 0TOUE ETECEPY AT TES, EWE OTOU
70 2018 epgavictnray ot eméoelg Timou Spectre xou Meltdown. Ou emdéoeig
awTeS ebvan emxtvouveS ot BUOXOAA AVTHIETWTIOWES, XD EXUETAAEVOVTOL BUO
VePeMmOELS TEYVIXES YloL TNV aUENOT NG AmdOOONG TOU EMEEEPYUOTH: TNV U-
ToVeTIXY) EXTENEDT) o TNV EXTEAEST) EXTOG OELRAS EVTIOAWY. [l autd T0 AbYoO,
oL unyoviopol UV EVOVTL AUTOY TV ETWECEWY Tou eivan Paciouévol 6To
hoylouxd xplvovton avemopxeic yioo duo Adyoug. Ilpdtov, empépouy pEyain
emfBpdduvon oty anédoor tou encéepyaoT. AeldTepoy, BV TUPEYOUV Xo-
Yohunt| mpooTacta amd OAeC TIC MaPAAAAYES AUTOY TV eMIEcEWY, xong oL
eméoelg aUTEC EXUETAMAEVOVTOL XUPlWE TNV LUTOVETIX EXTEAEDT] EVTOAGY, YE-
YovO¢ Tou aopd To TG elvor dounuévog o enelepyaotic. ‘Etol, ta teheutaia
Yeovia avamtOydnxoy unyoviopol duuvae PacioUévol 6To UAXO, TOREYOVTOG
YEVIXOTERT TEOO TAGIA ot SLTNEWMVTAG UPMAY amddoon. e authv Tn Otmhwyo-
T €pyoctol XEVOUNE Lol AETTOUERT] XOTAYPAPY| TWV BLapdpmy emIEcewmy TOTOU
Spectre xou Meltdown, meg Aettoupyoly xon TMC XATAPERVOLY VoL UTOXAEPOUY
evalointec TANPOYopieg, oA XoL TWY UNYAVICHOY JULVAS BaCIOUEVEDY GTO
UAXO. DUYXEXQUIEVA, XUTNYORLOTOUUE TIG TEYVIXES JULVAC OF TEEIC XVPLES X0
TNYOplES: OF TEYVXESG amdxpLPNG, o TEYVIXES xaHUGTERNONG XAl OF TEYVIXEG
avaipeong. Tlopdhhnha, alohoyoUue Tor TASOVEXTAUATA XO TO UELOVEXTAUOTA
TWV PNYoViodov TNg xoe xatnyoplag. Télog, TEoyUUTOTOOVUE AvVUTaRUYWYT
TWYV TELQOUUTIXGY ATOTEAEOUATOV AT EVOL UNYUVIOUO duuvag Tng xdide xotn-
Yoplag UEGK TOU TROCOUOLWTY| EEMD X0k TWV UETPOTPOYPUUUATLY TNG COLLTAS
SPEC CPU2006. H mewpopotiny poc allohdynorn detyvel 6Tt oL unyoviopol mou
OVAXOLY GTIG XATNYORIES TWV TEYVIXOY ATOXEUPNE Kol aVIEESTC TEOCPEPOUY
TNV XOADTERES EMUOOTELS, OUMS XUAUTTOUV TORATAEURA XovdALa Tou oyeTilovTon
uovo ue v Data-Cache. e avtideon, ol unyoaviopol mou avijxouv oTic Te)VI-
xé¢ xaduotépnong, av xou cuVAYLS lodyouy TeplocoTepo overhead, Topéyouv
xadohxr) TpooTacta Yo xdde TUEATAEUPO XUVIAL TOU UTOREL VoL EXUETOANEUTEL
EVag XoxOBouhog YeHoTng.



Abstract

Speculative execution is one the most broadly known techniques used
for improving the performance of processors. Until recently, speculative ex-
ecution has not any security implications. However, the recent disclosure
of transient execution attacks in January 2018 has called the security pro-
tections of processors into question as they can cause critical data leakage.
Namely, Spectre and Meltdown are threats that are challenging to defeat, be-
cause they exploit two fundamental concepts of modern processors that boost
performance and efficiency which are completely independent of the Operat-
ing System they running: Speculative execution and Out-of-Order execution.
On top of that, proposed software-based mitigation solutions are considered
to be inadequate for two main reasons. First, software-based defenses suf-
fer from excessive high overhead. Second, software-based fail to provide a
catholic and comprehensive protection against every cache-based side chan-
nel attack. Therefore, the severity of the transient execution attacks has
motivated computer architects in both industry and academia to rethink the
design of the processors and to propose hardware defenses. In this diploma
thesis we describe in detail how Spectre and Meltdown type attacks work.
In addition, we analyze and summarize proposed hardware mitigation mech-
anisms and categorize them into three main approaches: (i) hiding-based,
(ii) delaying-based, and (iii) undo-based solutions. Finally, we replicate and
evaluate the statistics results of one mitigation mechanism of each category
by using the gem5 simulator and the SPEC CPU2006 benchmarks, and dis-
cuss the possible trade-offs among the mechanisms. Our evaluation shows
that hiding-based and undo-based solutions incur usually lower performance
overhead, but they protect only data caches. In contrast, delaying-based so-
lutions although they incur usually higher performance overhead they achieve
catholic protection of any covert channel.



Euyopiotieg

Me autAv 0 SimA@PATIXY OAOXANEGVETAL €VaL UaxED, DUGKONO GAAG Xou
oLVEP TOAD Guoppo Takidl 6 etV oto Edvixd Metodfeio Ilohuteyvelo. 3t
Oldipxela auToL Tou TOEIBOY AMOXTNO TOAMES YVWOELS X0l EUTEIRIES, Exava
ghiec Cwng, xapdoytimnoo. ‘Oko autd Ue €xavay Evay TLO OAOXANEWUEVO
dvdpwro.

Oa fideha vo euyaplotiow Tov Kadnyrtn Aovicio Ilveupatixdro yio tnv
euxanpla Tou You €8WoE VoL EXTIOVACL aUTH T dtmhwuatxt| epyacia oto Epya-
othplo TTohoYIo TGOV Do TNUdTwy. Méow authc tne Simhnuotixic elohiio
o€ JovoTdtia TNg oLYyeovng epeuvag. Emimhiéoy, Yo el va euyaplothon Tov
Aodxtopa Baoiin Kapoxdota yioo tnv eConpetiny| pog ouvepyasia oo TAaloLa
NG DIMAWUATIXAG EpYaolag, TOU av xat EfYE POPTWUEVO TEGY UM OAT) T1) Y PO-
Vid Aoy vt exel yior vor ue oupBouledel utopoveTixd. Enlong, Yo fdeha va
TOUC ELYOEIG TAOL Yia TN Porjdelar xou yiar Tic cUUBOUAEC Tou pou mapetyay xaTd
TN OLdPXEL TWV KUTHOEWY Pou i Btduxtopxd otny Auepix. H cuveiogopd
Toug YTay oD TN Xou TpyadvovTog Briuc BrAua o€ xdde oTddto, xoTdpepa xdTL
Tou 0eVv TO elya 0UTE OVELREUTEL.

Téhog, Va tav mapdhe)n vor unv euyoEloTHOw TOUG YOVEIS UoU, TOUG O-
pavelg foweg. Xe xde Prjun xou e xde Tpoondleld uou ATay exel yior Vo Ue
otnpiCouv. Toug euyaEICT® Yiot TNV oYAmN TOUC OAAG XOL YLt TNV aBLAXOTY
mpoomdield Toug Vo pou Toviouv 6Tl 6TN) YVWoT xaL 6Ty exntofdevoT ailel va
emeVOUEL XOVELS yior Wit xohOTeRT Lot

Ocbowpoc Tpoydtoc,
TIoOhoc 2021
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1  Extevrc llepiindn

2170 TEQPUOUA TOV DEXAETLMV, OL UNYAVIXOL UTOAOYLOTMY XAl EOXOTEQY OL OYE-
OLOO TEC TNG APYITEXTOVIXN|C TWV UTOAOYLO TWV EQYALOVTAY OXATd UE OXOTO TNV
eniteudn TN YEYIOTNE AmdBOCNE TOU EMELEQYAUOC TY| OLUTNEMVTAS YAUUNAL TIC Bla-
OTAOEIC TOU oL TO EVERYElaxO x6otoc. H unodetinr extéleon eviohwy elvou
utor YeEMMONG TEYVIXT TIOU YenotdoToleital xotd x0pov TI¢ TeheuTaleg dexo-
etieg pe oxomd TNy enitevdn Tou mupamdve dUoxohou cToyou. Ilapdho mou
oUTY| 1 TEYVIXA HTaY €val LoYURd EPYOUAEID YId TNV XUTUOXELY| YRYOPWY ETE-
CepyaoTov ywelc va eugaviCovton Vépata aopdielag, ta TeEAsuTala yeoVLL 1
aVAOEILT) OTO TEOGKAVIO TwV EMIECEWMY TOU EXUYETAAAEDOVTOL TNV LTOVETIXY
extéheon eviohdv (Spectre [13] xouw Meltdown [15]) €yet Véoer coPupd epw-
THUATOL YLoL TNV do@AEla ToV enelepyactmy. To yeyovog 6Tl expetoriedovTon
e euehiddn teyvixr) mou otnpellovton ol enelepyaoTES Xou EVAL EVIEANS OVE-
EdpTNTEC TOU AELTOLEYWO) GUOTAUNTOS, TIC XoGTA Lol EEUPETING. OTUAVTIXY
amethr). O Aéyog ebvan 6TL av xou 8ev 0AAGCEL TNV AEYITEXTOVIXT) XATAC TAOT), 1)
unoveTixy) extéheon umopel vor PETUBAAAEL TNV UXEOUPYITEXTOVIXT| XUTAG TAOT)
Tou enelepyaotr. Iapadelyuatog ydetv, xatd 0 Sdpxela TG LUTOVETIXNC €-
XTEAEONG TWY EVIOADY, oL Tpocfdoelc otny (cache) extehodvTon Xxovovixd xou
agrivovton xdmota fyvr. X1n ouvEyELd Evag xoxOBouLOg YEHoTNG 1) AOYLOULXO
UE BLdPOEOUE TEOTOUC EXUETAMAEVETAL T TURATAEURA ATOTEAEGUOTOL XAk TOL (Y VN
NG UTOVETIXAG EXTENEDTC Xl QPTAVEL OTNY UTOXAOTY| EVACUNTWY TANPOPORLOY.

Av xon tpoc@dtwe €youv dnuovpyniet apxéteg TEYVIXES dULVIC BACIOUEVES
oto hoylouxd (Software) evévtio otic npoavagepdeioee emdéoele, n anddoot
Toug xpiveton avemapxrc. Avo etvar ot x0ptol Adyol authc tne adlordynong. O
TEWTOC AOYOC glvon OTL Ol TEYVIXES GUUVOC OF ETUTESO AOYLOWUXOD €YOLY TOAY
UEYHAO X60TOS TaPOUGIALoUVTOE TOAD UEYAAT ETBEABUYVOT GTNY AmOdOCT) TwV
eneepyaoTOY (Tne téEewe Tou 50% xon yeyahiTteEn) xaro TMVTOC TOUC Un) TEo-
xtwxog. O dedtepog Aoyog ebvar 6Tt 6Tw¢ mpoavagépdnxe ol emléoelc auTég
elvon aveldptnTtec Tou hoylopxol. Autd onuaivel 6Tl 6ev uTdpyel évag xado-
AMXOC TEOTOC AVTETWOTIONS TETOWOU EID0OUC EMVECENMY UECK TEYVIXWY GUUVIS
07O hOYIOUWXO, ool 1 LUTOVETIXY EXTEAEST) EVTIOA®Y elval %dTL Tou aopd T
Aettoupyla Tou UALXOU Tou ETEEEQYAoTH.

Aedouévou Ty Topandve, ol emdéocelc Tomou Spectre xou Meltdown €youv
AEVTPIOEL TO EVOLUPEQOY TV UMY UVIXMY UTOAOYLOTMOVY XL TOUG EYEL XAVEL VO
oTpaolV oe dAAou €ldoug AICELS, TO TEUXTIXES, TUEEYOVTUG TO XoJOALXY
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xGhudn xon wxedTEPo %60TOC OTNY ENidoon Tou emelepyaoTr. Autéc elvon
unyaviopol duuvog Baclolévol 6To UAG Tou ETECEpYUoTH.

2NV Topoloo BITAGUATIXT Aoy OMOVUACTE xLEIKG UE TIC OLAPOPES XATTYO-
PlEC UNYUVIOU®Y GUUVIC OTO UAIXO, XEVOUUE Lol AETTOUERY| XOTOY QUpY| TOV Blak-
POEOY ETIECEWY KO TV UNYUVIOUMY GUUVAS EVE AELOAOYOUUE X0t GUYXEIVOUNE
OLUPOPES TEYVIXES duuVaC PETAEY Toug. O teyvinéc duuvoag Bactopéveg 6To ho-
YOS OEV EfVal AVTIXEWEVO EQEUVOC OE QUTHY T1) OLTAWUNTIXT| XOL AVUPEPOVTAL
ETLYEAUUUOTIXG.

XwplCouue Toug unyaviopols duuvag oe TEES Bacxéc xatnyoplec:

o Teyvixég Andxpudng: Xe authy Ty xatnyopio avixouy unyaviouot
oo 1o InvisiSpec [35], to SafeSpec [12] xoaw to Ghost Loads [24]. Boowd
TOUG yopaxTneoTixd elvon 6Tt mpociEtouv wixpég dopég buffer dimia o
#(&de enimedo xEUPHC UVHUNG OUTWE MOTE To BEBOUEVA VoL TTNYAUvOUY EXEl
ugyet 1 uTOVETIXT EXTEAEDT] VOl TEAELWOEL X0 VoL EYEL ATOCAPNVIGTEL oty OL
TeoPBrédels Aoy owotéc i Adboc. Mty nepintwon mou ol tpofBiédel etvou
owoTES, Tal BEdOoPEVY popT®vovTal and Toug buffers otnv xpugr uvrun xou
1 oY) EXTEAEOTC EVIOAGDY ouveyileton xovovxd. Av ol mpofiédeic etvon
Adog, tote o Bedopéva atoug buffers Siorypdgpovton (squashed).

o Teyvixég Kaduotépnong: e autriv tnv xoatnyopio evidcoovto
unyoviopol 6nwe 1o DOLMA (18], to STT [39], to NDA [32] xa o0
Delay-on-Miss [25]. Kowd yopaxtnpelotxd toug eivor to yeyovog Ot
%x00UGTEPOLY TN BLABOCT Wi U aoPaA0DS EVIOMAC UEYPL VoL ATOCAPY-
vio Tel To amotéheoua Tne utodeTnhc extéreonc. Mo un acgalr)’ eVIony
elvan GLVAYKG ULoL EVTOAT] PORTKOTG TOL ETETAL OO Lol EVTOAY| OLAXAADw-
ong 1 onoto dev Eyet eZéhder axdpo omd tov Re-Order Buffer (ROB).

o Teyvixég Avalpeorng: Kiplo mopdderyuo authc Tng xatnyopiog etvor
o unyaviopée CleanupSpec [23]. H xevtpwr| 1déo €8¢ elvon dtL 1) umto-
Vetinr] extéleon eviohodv ouveyileton aneploTacTar Xon avoeolvTaL U6vVo
TOL TOPATAELUPOL ATOTEAEOUOTA TNG UTOVETIXNG eEXTENEOTC OTNY TepimTwoN
wag Aovdoopévne meofBredne. To xbéotog oty enidoon tou enelepyo-
o T eMNEEdCETOL YUOVO OO TO UNYAVIONO TOU EXTEAEL TNV AValpEST) TV
TOEATAEUPWY ATOTEAEOUATLY TNG UTOVETIXAC EXTEAECTC OTNY TERITTWON
hovdaouévng meoBhedng.
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1.1 Oewpntxd Ynofadpo

Apyxd, Slvoupe TANREOYOPlEC OYETXA HE TNV SUVOUIXY| EXTEAECT] EVIOADY €-
%TOC GELRAC o TNY UTOVETINY EXTEAEST) EVIOAMY. LT GUVEYELN EENYOUUE TS
N Aovioouévn TedBAedrn oty unoleTixr] EXTEAEOT) EVIOA®Y UTOREl Vol Y eNoL-
uomotniel amd €vav xoxdBouho yerotn KoTe v UTdEEEL dlapeor| eualoUnTwy
TANROPOELOV.

1.1.1 Extéleomn eVvIOA®V exTOC OELRAC

Ov clyypovol enelepyacTéC YENOWOTOUY T BUVAULXY YEOVOBEOUOAGYNON
TWY EVIOADY [UE TO VO EXTEAOLY avedpTNnTeG UETOEY TOUG EVTOAES TORIAANAL,
EXTOC TNG OELRAC TOU TROYEUUUITOS, ETOL WOTE VoL EXUETUANELTOOY TNV TTUEUA-
Anhlo o eninedo evioh®y yio vor BEATIOO0LY TI¢ EmdOoEL Toug. Ot eviohég
exdidovtar o€ oelpd (issued), exteholvton (executed) xou Bydlouv ta amote-
MEoUATE TOUC EXTOC OELRAC TPOYRGUUATOS Xt TEAXS Emtxupivovtal (retired)
O€ OELEd, PETOBIANOVTAG XL TIC XAUTUO TUCELG UXPOVQYLTEXTOVIXTC.

1.1.2 YmroUetixr] exTEAECT EVTIOA®YV

‘Otav éva mpdypauuo exTEEiTOL O €vay UIXPOETECERPYUOTH, LY VS YpeeLdleTal
Vo xduc TEPAOEL 1) POT) EXTEAECTC TOU (HOTE VAL AMOXTACEL TNV TANROPopia ToU
yeewdleton mou ebvon amodnreupévn otny xOptar uviAun. Mo tétola evépyela
Opwe etvon apxeTd ypovoBopa, xddwe to vo épdel war evIolY| and Ty xUpLa
UVAUN UTOPEL Vo XPUTHOEL 0EXETOUS XUXAOUS PONOYLOU |UE CUVETELX VO UTdp-
et ueydhn emPpdduvor otny anddoon Tou enelepyacth. Ou mo e€ehryuévol
emelep YO TES TOV TEAEUTAUWY BEXVETIOV YETNOWOTOO0Y TNV TEYVIXY TNG UTO-
Vetnhc extéheong eviohwy (speculative execution) oUtwe Hote vo fekTidcouy
NV en{doon xou TNy amodotixdTNTd Toug. H umodetiny extéheon eviohwy Bek-
TIOVEL TNV 0m6d00T) TOU ENECEQYACTY aPpol) EXTENOVUVTAL EVTOAES TWV OTOlWY 1|
eyxvpoTnTa bvor of3éBoun avtl vor TEQUIEVEL TO TROYROUMO VAL ATOCUPNVIOTEL 1)
EYNVEOTNTA TOUG. LNV TERITTWON Tou N TEOBAEd Tng utoVeTnhc exTéAEoTg
elvat owo Ty, 1 eviolh) gebyetl and tov Re-Order Buffer (ROB), énou nepiuével
uéypet n urodetn| extéheon va amocapnovio tel, xat yiveton "retired”. Xtnv me-
eintworn mou anodetyVel 6Tt 1 TEOBAed ATy AavIaGUEVT), 1) EVTOAT) 0XURKOVETOL
(squashed) xou n xatdotoon Tou enelepyoo T Yupiler 6TV TEONYOUUEVN €yXL-
1) XATEC TAOT).
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Av Véloupe vo SOOOUVUE Evay Cop| AAAG CUVTNENTIXG OPLOPO TOU TOTE
war evTohr) Yewpelton 6Tt exteheiton utoVeTnd, Yo Aéyoue 6Tl 1) VIO auTH Yot
TEETEL VoL EXTEAECTEL TPV PTdoeL oty xopu@r| Tou ROB xou e&éhdel and autov.
Hoapadetypatog ydptv, oy Uiar EVIOAT] PORTWONG EXTEAECTEL UETH AT UL EVIOAY
dApotog, 1 omola dev Exel @Tdoel oty xopupr Tou ROB xan tehind 1 apyiny
TeOPBAedn oy havdaouévr, Tote dTay Sramo twiet oTL 1 TeoBhedn fray Aavio-
ouEVN 1) eVTOhT dApatog Vo axupewiel. 261600, 1 axdpwor TNE EVIOAAS dAUaTog
oev ebvon apxeTy, xordode Yo TEENEL var oaxupUOUY Xal Ol EROUEVES EVTIOAEC TOU
€V BLVAEL UToPoLY va €youy amodnxeloel xdmota evaicVnTn TANPOPopio TNV
%N uvrun. Kdt tétolo dev oupfoalvel, ue arnotéheoya 1 utoVeTinr extéleoT)
EVTOAGDY Vo BEATIOVEL TNV ToyUTNTA TOU ENEEEPYAOTY, AAAS vor Srutovpyel xa
€va UeYdAo TEdO Yo Vo To EXHETUAAELTEL Evag xoxbBouAog yeNoTNG Xou Vo
amooTdoel evafoUnTeC TANEOPORIEC TOU GUOTAUATOC.

1.2 Ilwg Aertoupyolv ol emtdEoELg;
1.2.1 Enwéoeic ITapdnicsvpny xavaiidv

2ITIC PEPES UUC 1) AOPAAELN EVOC CUCTAUNTOS EVOL TRMTAPYIXOS OTOYOG TV
unyevixwy utohoytotov. To onueptvd cuoTrdota elvar apxeTd TOAITAOXA, Xa:-
UiC T0 LA, TO AOYIOUXO XAl TO AELTOURYIXG cUCTNUA ouVERYALovTon £TOL
®oTe 10 oVOTNUA Vo AetTovpyel amotedecpatixnd. 20T600, TévTa oL xaxdBou-
Aot yefotee Bploxouv xou exuetoalhebovton Tor adUVaTo oTuEla EVOC GUCTAUA-
toc. T autéd T0 AoYO, ebvan peiCovog onuaciog ot pnyovixol UTOAOYIGTOVY Vo
TapEyouy ThRen tpocTacia ot xdie Badulda Tou cucTAuATOC Yo Vo Elvor TO
Lo TNUO aoPurég and xaxdfBovieg emiéoeic. 'evind, undpyouv apxetol un-
Yaviopol duuvag o€ ETUTEDO AOYIOUIXOU TIOU XEVOUV TO TEOYEUUUN Vol TEEYEL
Ywelc opdpata 1§ GUUVES oL aYopoly To Aertoupyixd clotnua [10]. Ouwc,
ol eTECELS TUPATAELPWY XOVOAWY TUTOU Elval 1XavES VoL Topoxdouy OAeg
autéc TIC Guuveg un aghvovtag byvn [36], [21], [22], [7], [30], [13], [15], [33],
[14]. Mo enideon mopdmievpmv xavohidy uropet vo akeboet evoiotnteg TAN-
eopopleg amd Eva OO TN, EXHETUAAEVOUEVT] TA TUPATAEUON UTOTEAECUATA TNG
EXTEAEOTC TOV TROYEAUUAUTOS TURATNEOVTOS TS TO TEOYPUUUN Yenotuonolnoe
ToUC BLopoLpalOUEVOUS TOPOUC TOU UAXOD (n.X. XEUPT) VAN, TEOPAETTES ah-
udtov, enavanpoypoppotiloyevec toAee xhn). Ta mapdmieupa anoteléopata
Tou umopel vo exuetaAieuTel o emiTidEuevog cuVtwe agopoly yeovixn Oude-
XELOL, XUTOVAAOT) EvEpYELag 1) axdun xou Yyo [6], [11], [17].
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e auTH TN OLTAWUATIXT ETUIXEVTPWVOUACTE GTNV EWOWXT TERITTMON TV To-
EAUTAEUPMY XAVIALWY AOYW TNEG UTOVETIXNG EXTEAEONC EVTOADY, Xl EGTIACOUNE
OTOL TORATAELEOL XAUVEALOL XEUPTIC UVAUNG. ATIO GAOUC TOUC TUTOUC TURETAELEWY
AAVOALOY, AUTE TOU apoEOVY TNV XEUEY| UVIUT EVaL AUTE TOL TEOCPEPOLY TNV
To gupelal EMPAVELNL OUTKS WOTE Ol XaXOBOUAOL YPNOTES Vo avamTUEOLY Uia
mandopa and emixivouveg emiéoeic. Lto TapdTAEUEA XOVIAA XEUPTG UVARNS O
emndéuevog Eyel mpooPoon ot evaicUnTee TANEOYOoplec TOLU GLUCTAUATOS EEUL-
tloag TNe aAAnhenidpoomng NG EXTEAECTC TOU TEOYPUUUOTOS UE TIC XATAUO TAGELS
NG XEUPNC UVAUNG. DUYXEXPLUEVY, Ol TEQLOCOTEQOL XAXOBOUAOL YPNOTEG EXUE-
TAAAEVOVTOL TO YEYOVOSG OTL Ui TPdofacn TNy uvhurn dipxel Toh) TepioooTE-
eouc x0xhoug av etvar dotoyn (Snhady) to {nroluevo dedopévo de Bploxeto
oTNY xEUGT UVAUY) amtd dTL av elvon edoToyT. Auto elvon xdtt Tou xahoTd T
avtioTorye emUECES TUPATAEUPOY XAVOhL)Y TOAD emixivouves, xaddg 1 Ypo-
vixn SLopopd 0T BLEEXELL YLAC EUGTOYTE TEOGHBUGNC GTNY XEUPT) UVAUT O Lot
dotoyn, ebvar Uit EYYEVAS WIOTNTOL TWV XPUPWY UVIUDY.

1.2.2 Merafatixég Emdcoeig Iapdnicvpwy Kavaiiwy

2Ti¢ ETOPaTIXEG EMVECELS TURATASUPWY XUVOALWY Ol ETUTIIEUEVOL EXUETUAAE-
VovToL TNV UTOVETIXY EXTEAEDT] EVIOAWY, WUMVTAS TOUG TPOBAETTES UAUGTLY
oe Addoc mpofBiedm Blvovtde Toug XUTIAANAES El0O00UC, €TOL WOTE Vo €€0-
VoY xdoouy T eot) exTéleon Vo cuveyioel and to haviacuévo povormdtt. H
extéheon) and To hovaoUEVO UOVOTATL TNG oG EXTERECTC, OVOULETOL UETA-
Botiny) exteéleon eVIOA®Y xoOG auUTY| Olapxel UEypL TN YPOoVIXT| OTLyUY| Tou
amocagnvileton 6Tt 1 TEOBAEd Aoy AovIaouévr, oL TUEdTAEURES WLOTNTES TNG
opaEo VYT AGYW TNS oxdPMOTNS TWV EVIOADY %ol 1) EXTEAECT) cUVEY(LEL amd To
owoTo povordtl. ‘Ouwe, x4t tétoto de cupfalvel xon yioawtd dnutovpyeiton Evog
TEQAO TIOC YWPOS OUTWS MOTE Vo ovamTLYVoUV Bldopec emECELS.

O petafatinéc emiéoelc TopdmAcupwy xavalwy eZoutiog LTOVETIXNC €-
ATENEONC EVTIOADY opilovTon w¢ ol emiEatlc Tou €youy TEOGPUcT O BEGOUEVL
(n.x. MEC® WIS EVTOANC cpépr(oong) xoTd TN Oldipxelal TNG YeTaBuTinng exTéAe-
onNg xou EMELTAL UETAPEROUY TNV VooV TN TANPOoQopia UEGw EVOS TURETAEUEOU
xavohioV otov emtidéuevo. T vo Yewpelton meTuyuéEVn wo petofotiny| entie-
oM TOEATAELEOL Xavahol Vo TEETel vor amoteleiton and duo éer. Apyixd, Vo
TEETEL, Ao 1) POT) EXTEAESTS TOL TEOYEAUUATOS EloEA)EL 0TO AavDaouévo po-
vomdt, va éyel mpdofaon oty evdtointn TAnpogopio (cuvidng autd yiveto
uéow g eviolic péptwonc). To Bevtepo pépoc e entdeonc eivar eZicou
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ONUOVTIXG, ONAAOT 1) UETAOOOT TNE TANPOQORIaS HEGW EVOS TUPATAEUPOU Xa-
voAoU. Av xon undpyouv TOAG €l0N TUEATAEUPEY XUVAALDY TOU UTOPEL Vo
Oloop@woly, To TO TOALYENCTIXG XAl TO EUPEMS EXUETOUAAEUCLUO Efval To
TOEAMAEUPOL XOVELaL TOL apopoly TNV xeuet uviun [36], [6], [11], [17].

1.2.3 Auwtieg MetaBatixig Extéleong

Hopoxdte mopouctdCoude UEpiXd YEYOVOTA TOU TEOXAAOLY TNV UETHBUTIXT €-
ATENEOT) EVIOAWY.

o AavOaocpévr npoPBiedr: H haviaouévn tpdBredn etvon 1) mpcytn xan
o Oadedouévn antior TNe ueToPBatinfic extéleog eviohawy. Ot clyypovol
enelepyaotéc PaoiCoviar 6T0 Vo xdvouv ToAAéC TpofBiédelg éTol wote
vo emiTOYoLY xohUTERT amédoor. Edv 1 mpdBiedn eivoar cwoty| t6TE 1
P01} EXTEAEOTC TOU TEOYEAUUATOS TROYWEJEL xavovixd. Etol 1 anddoor
au&dveTat, apol oL eVIOAES extelolVTOL Vopltepa. Edv anodetydel Aavio-
OUEVT], TOTE OL EVTORES XATw amtd TO AvDAGUEVO LOVOTATL Vot Blory popolv.
Y10 oufdy pag Aavioouévne TedBiedng elvor xuplwe BactoUEves oL e-
miéoeic TOnou Spectre. Trdpyouv teta €ldn TEOPAEPEWY:

(1) IpoBrédeic poric eréyyou mpoypdupatoc: Autéc npofAémouy To po-
vordtt extéheonc mou Yo axorouvdniel

(2) HpoPréders Sievduvone: Autég tpofhénouy oe mota puotxt dtebiuvon
Vo yiver pdpTwon 1) amotrixeuoT) SEBOUEVKV.

(3) HpoPrédewc twhc: T vo Behtiwdel tepartépe 1 anddoor tou enelep-
Yoo TY), unopel va tpoBAepUoly oL THES ToU TEQLUEVEL Vo AGBEL Wiot EVTOAY
(Moyw e€dptnong amd meonyoUueveES EVTIOAES) xou Vo Uny xaduotepel 1
TEYVIXY OLoYETEVOTC.

o E€oupéoeig: H deltepn mo mdavr outio petaBatiniic extéheong evro-
AV ebvan oL e€onpéoelc. Av i evToht] Tpoxaécel Ui eE3upeaT), 1) Blarye-
fenon e eldupeong unopel va xaduoTepoeL xou £TOL VoL APOEL APXETO
Yeovo vo exterelton petofatind. To yeyovée autd exyetariedovton xu-
olwe ol emdéoelc timou Meltdown.
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1.2.4 Disclosure Gadget
‘Eva disclosure gadget nepihouf3dver duo ctouyeio
o 1. Tn @bptwon tng cvaloUntng mAnpopoplag e Evay XUTayWENTH
o 2. T yetagopd Tng UECW EVOC TURATAELEOU XAVUALOU
‘Onwe padvetan xou amd to XyAua 1, yio Tapdmhevpa xovaAlo XpUQPHG WVAUNG

Yo mpémnel var umdipyel W TedoBaot uviung tng onolag 1 dieduvorn eCoptdTon
amd TV TANEOPopio Tou VEAOUUE Vo UTOXAEPOULE.

struct array *arrl = ...;
struct array *arr2 = ...;
unsigned long offset = ...;
if (offset < arrl_len) {

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

sec = arrl|offset]; // 1. Load secret
value2 = arr2[sec*c|;} // 2. Encode

Yyfuo 1: Disclosure Gadget

1.2.5 Avaxtoviag tny evaicIntn nAnpogpopic

Avo ebvan oL x0pIEG TEYVIXES YLOL TNY AVEXTNON TNE TANEOPORIIG TOU UTOXAATNXE
and tov emtdéuevo. Autéc eivar oo Prime+Probe [37] xou Flush+Reload [38].
H mpdytn teyvier yeptlel pe tuyaio dedopéva o 0T NG %euPrc uviAung. ‘Otav
TO TEOYPOUMO TUPAEEL XATOLES AVAPORES OTN UVAY, xdmoleg mpoofdoeic Vo
OVTIXATACTACOUY ToL UTHEYoVTo Bedouéva oTny xeugr) uviun. ‘Etol uetd o
emndéuevog Yo Eavagyel TpdaBaon TNy xeueT UVAUTN xou Vo GUUTEQAVEL oV 1)
EXTEAEDT) TOU TROYEUUUATOS OOHYNOE OTNV OVTIXATACTACT) XATOUWY DEBOUEVWYV.
Me 1 0eltepn o emtwdéuevog umopel va cuumepdvel ol Atay 1) eualoin
TANEOQOpia, EUUECH, OmO TN YEOVIXT OLdEXELN TOU XEATdEL Ula Tpdofacn o1

V).
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1.3 Ilwg Aertovpyel to Meltdown

To Meltdown, emitpénel 6Toug emiTilEuEvoUS va Eyouy Tpdofact ot TAnpopo-
plec aogaheiog Yéow ToU AEITOLEYIXOV CUCTAUATOC EVOS UTOROYIGTH. Apyind,
o emtdépevoc {nrdet vo daPdoel pviun  kernel. Ilopdro mou éva tétolo o-
fTnuo Tpdxetton var amoppetpiel amd To UNyavIoUd TEOCTAGIAS TN UVAUNG, UL
hovdaouévn TeoBAedn xoatd T didpxeta TN utodeTnrc extéreonc Yo el o
amoteheoua TeEAS 1) euadoinTn TAnpogopla va elvon opath otov emttiEuevo,
APOU TEMTAL TNV EYEL UETAPEPEL HECK TOU TURUTASUPOU XUVAUALO) TPOG TO UEROG
TOou.

1.4 Ilwg Aertovpyel To Spectre

To Spectre, divel T duvatdTnTa o *xaxdBouloug yeroTeg va "eanaThHoOLY”
Tov emelepYao T OOTE v EExviioeL 1) utoVeTr| exTéleon eviohwy. ‘BEtol Ya
umopolV va Swfdcouy Ta evaiodnta dedopéva mou Slardétel o emedepyao TS
xodod¢ mpoonadel va yavtéder Tt Aertoupyion Voo EXTEAECEL O UTOAOYIGTAC GTN)
ouvéyeta. I'evind, po enideon Spectre Timou exyeTaAAeleTon TO YEYOVOS OTOY
ouuPel wa Addog medPAedr. ‘Onwg gaivetar xon oto LyAua 2, o entdeon
TUTou Spectre anoteieiton and Tt pepn. H mpadytn @don nepthauBdver evar xa-
%(6Boulo YENOTN 1) AOYLOULXO TOU BlVEL ETUTNOEVUEVY CUYXEXQUIEVES ELCOBOUSG
o€ €vay TEOPBAETTH, £TOL WOTE VoL TOV AvoryXAoEL VoL xdvel Adog TedBhedn xotd
T OtdpXELd TNG UTOVETIXNG EXTEAEOTC XAl VoL OONYTOEL TNV POT) EXTEAECTC TOU
TEOYEAUMOTOC 0TO Addog UovVOTdTL (psrocﬁomxr’] sxré%scn). H debtepn @don
amotekeiton and to disclosure gadget To onolo mpoTH YECK UG EVTOMAS POE-
TWoNg ExeL TeocPuot oty eualoUnTn TANEoPopia oL ETELTA PECW ULAG EX VEOU
EVTOAAC TpOGPoong oty uviAun 1 omola e€aptdral ond TNy evaloUnTr TANEOQO-
plo onutovpyel To TapdTheupo xavahl ueTapopds tne. Téhog, n tpitn @dorn amo-
Tehelton amd TNV avdxTnom TNg evadoUnTng TANEOQORlAC UESEL TOU TUEATAELEOU
xavohloV amd Tov emttidéuevo. Autod yivetar cuvATWE PE TIC TEYVIXES TTOU TIpO-
OVAUPEQUUE TIORAUTAV®, UETEWVTAS xUPIKG TN YEOoVIXY| BIdEXELL TV TEOCPBACEWY

OTNY XU VAU,
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uint?d A[10];
uintd B [256+64];
void victim ( size_t addr) {

if (addr <= 10) { // mispredicted branch
Mu: uintd val = Afladdr]; // secret is accessed
Ma2: w = B[64 « val); // secret is transmitted

Yyfuo 2: Spectre enideon tinou 1

1.5 Mnyavicpol ‘Apuvvog Baciopévol atn Myediaon
YT Ao

H mo amhy| xan cuvoud e€oupetind amoTeAeoUaTIXr AVOT) GYETIXG UE TNV AVAo)E-
o1 eTWECENMY TUPATAEUPOY XUVIALWY e€outlag TN LTOUETINC EXTEAEDTC EVTO-
AoV elvon 1) extéreon ot oelpd. ‘Ouwe, mapdlo Tou o auth TNV neplntworn Yo
Vo OTTAUE XAJOAXE OAEC TIC EMVETELC TOU EXUETUAAEVOVTOL TOL TTUEATAEUEOL O
TotehéoUATa TG UTOVETIXAS EXTEAEDTS EVIOAWY, TO TiUNUA 0 XOGTOG ETBOOTG
Yo Aty peydho. ‘Etot, ol enelepyaotéc Yo yivovtay e€oupetind apyol xou dpo
un mpaxtxol. Kdmoleg undpyoucec Acelg Paciouéveg 6to Aoylouind xplvovto
elte avemopxelc, xadde TPOCTATEVOLY UOVO XATOLEC TOMD EWBXEC TEQLTTAOELS
AUTWY TV ETWECEWY, Elte EpyovTon Pe Eva ueydho Tlunua oe x6cTog enidoorng
[10]. Tt autéd T0 AdYO, OL Unyovixol LTOROYIOTAOY GTEAPNXAY TNV ovalATNoN
o pWlOOTUC TIXWY AVCE®Y, TEOCTAUNOVTNG Vo ETEUBOLY BEUCTIXA GTOV TEOTO
ue Tov omolo elvar Bounuévoc o clYYEOVOS ENECEQYUCTAS XO XOLTWVTAS TEOG
OTN HEELE TOU UAXOU.

"Ewe thpo untdpyouy TeidY 8GOV TEYVIXGY duuvag Tou Bactlovior 0To UAL-
%0: TEYVIES amdxpudPNg, TEYVIXES xaducTEPNONE Xou TEYVIXES avaipeEoTC.

1.5.1 Teyvixéc Andxpudne

Ye authv Ty xorTnyopla avixouy unyoviopol duuvae émwe to InvisiSpec [35],
10 SafeSpec [12] xou to Ghost Loads [24]. To xlplo yapoxtnpiotixd toug
elvon OTL QOPTWVOUV Tal BEDOUEVA OE €O OYEDIUCUEVOUG XUATAYWENTES, TOU
Beloxovtan dimAo amd TNV xpuEY| UVAET, UEYELS OTOU 1) UTOVETIXT| EXTEAEDT) EVTO-
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AV amocapnVIc TEL. LNy Tep(nTeon Tou 1) apyxh) TeOBAedn Aoy owo Ty, T0Te
o Bedouéva (Eavd)PopTdvovTol amd TOUC EWBUE TYESLUCUEVOUS XATAUYWENTES
TNV %xEUQT UVARY. Edv 1 apyue] medBiedn froy Aavdacuévn ToTe Tor SEdoUEVa
Olorypdipovton amd TOug WS OYEDIACUEVOUG XATAYWENTES XAl TO TEOYEUUU
ouveyilel and to onuelo mew yivel 1 Aavioaouévn tedfBiedn. Oa aoyolndolue
eEXTEVESTEQY [UE TOV Unyaviopd Invisispec , xadog Vewpeltar 0 mpTog Unyovi-
oUOC oL TaEEYEL X OAXY| AUV UTtd ETLIETELS TUQATAEURWY XUVAUALDY XEUPTS
UVAUNG AOY® TNG LTOVETIXNC EXTEAEONC EVTOAGDY. XTO oy YA xelUevo unopel
VoL BpEL XOVEIC AETTOUEQIES XOL Yiot GANOUC UNYOVIGHOUS BLOPORETIXMY XOUTNYO-
OLOV.

Avaoxénnon InvisiSpec

(1) Mn aocpaleic evioréc pdpTwong xatd Tr Sidpxela UTO-
Jetinng extéleong: Mo eVviolr) @épTnoNg TEWV QTACEL TNV XOPUPT| TOU
Re-Order Buffer (ROB) dewpeiton we unodetint| eviohr) expdptwone. Autég
ol evioréc oTo InvisiSpec opiCovion ¢ Un ao@oreic LToUETIXEC EVIONES Ex-
poptwone (Unsafe Speculative Loads - USLs) xou 0 awotnedc oplopds Toug
eCoptdton amd To povtédo entdeone. To InvisiSpec napouoidlel duo povtéha
enideong: To Spectre xau to Futuristic. ¥to mpwto, wg USLs Yewpolvto
Ol EVTOAES POPTMGNG TOU 0xohoLYOLY L EVTOAY dhuatog 1) omtola axdur Oev
eyl e&éldel and Tov ROB. Yto Futuristic, w¢ USLs dewpeitoan xdie umode-
TIXT) EVIONT] POPTWONG EXTOC amd aUTEG Tou ebvon adUVATO Vo axupwUoly amd
war Teoryoluevn eviohr. Ou eviolég poptwong yivovtal “aogalelc’, otay otny
TEOTN TEPITTWOT Ol EVIOAESG GAUATOC AMOCAUPNVIGTOVY 1) GTAV GT1) DEVTERT), OL
EVIOMEG POPTLONG O elvon TAEoV uToUEeTIXEC.

(2) Kdvet ta USLs adpator: ‘Onwe avapépdnue xou o, 1 Baotxr tdéa
aUTOU TOL UnyoviopoD ebvon var xdver adpota o USLs oty tepopyeto tng xpugrg
uvAunc. Auté To mETUYlVEL UE TO Vo amoUnXelEL TIC U1 ACQUAEC EVTOAEG
POPTWONS OTOUG EWBXY OYEDIUOUEVOUS XATAYWENTES, ETOL WOTE VA [U1) PUVOLY
X0l Ol TOPATAEVUPES WOLOTNTES TNG UTOVETIXNNG EXTEAEDTC oTOV emTtdéuevo. ‘Otay
1 evToAt] Jewpniel aoqourrc, toTE xan wévo toTE, Vo popTewiel ex veou amd
TOUG €LO0LXd OYEBLACUEVOUS XUTayweNTEG oty uvAun. To onuelo oto omolo
Uiar EVIOAY| popTwoTg YiveTon aopolrc xar €yl eheyyVel 1 eyxupdTNTd TG Wg
TPOC TO AVTIGTOLY O LOVTENO GUVETELNG VARG, ovoudleTon "oruelo opatdTnToc”
(visibility point). To onuelo opatdtnroac eloptdton amd to poviéro enideonc
ToL VewpoLue xdie Yopd.

(3) Awatnpdvrac T cuLvEneld TNg wWvAung: Eiva onuovtixd va
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dloTneelTan 1) GUVETELXL TNG UWVAUNG 0o 1) EVTOAT) QOpTwoNG Yivel acpohhc. [
auT6 T0 AOYO, TO InvisiSpec e LOVUPORTOOEL To DEBOUEVA AT TOUG ELOX
OYEBLAOUEVOUG HATAYWENTEG OTNYV UVIUT], XAVEL TEWTO EVOY EAEYYO EYXUROTI
TUC, WOTE VO IXOVOTIOLE(TOL TO EXACTOTE UOVTEAO GUVETELNG UVAUNG.

1.5.2 Teyvixég Kaduvotépnong

E8¢) avixouy unyoviopol duuvae énwe 1o DOLMA (18], to Speculative Taint
Tracking (STT) [39], o NDA [32] xou to Delay-on-Miss [25]. To xGpto yo-
EUXTNELOTIXG aUTAC TNG xaTnyoplag efvar 6Tl xdmoleg eVTOEG xdTaL Tr) DLdpxeLa
umo¥eTnrc extéheonc Yewpolvial Un aoPoAelS, xATw UTO GUYXEXQUEVES GUY-
Uxee, xou xoduo tepolvTan Uypet Vo amocapnvic tel 1 utodetinr extéreon. e-
Vixd, TeoAaBdvouv TN SLdd0oT TwY “Un acPIAOY’ EVIOA®Y Bacllouevol oTnV
TOEUTAENON OTL Lot ETLTLYNUEVT ETiVEOT TaRdTAEUEMY xovahloY e&antiog UTTo-
Vetnhc extéheonc mpénet vor amotehéiton and duo wéen: (1) And ua tapdvoun
eVIOMY popTwonNg Tou Va €yel tpdcact otny eualcintn ThAnopogopia Tou Yo
uroxhomel xou (2) Wior 1 TEpLocdTERES EVTOAES Tou efvan eEUPTOUEVES omd TNV
mpoavagepleion Tapdvoun EVIOAY QORTWONG %ol DLUUOPPOVEL TO TUPATAELEO
xavdhL Tou ueTapépet TNV euaiodnTn TAnpogopia oTov emTidEuevo. Mohig ol
eviohég Vewpniolv Covd o¢ aoPUAELC, TOTE OL UNyovIoUOL arivouy TNV ot
eXTEAEOTC TOU TROYEAUUTOS Vo cuveyioet. ‘Etol, anogedyeton 1 d1ddocr Toug
X0l 1) UTOXAOTH) TOUG o6 XATOLoV xaxOBOVAO Y eHoTY).

To STT vy napdderyua, “otrypoatilel’ eviohéc npocfacne otny uviun (..
EVIOAEC (POPTWONG TIOL €Y0LY TEOGBacT e xdmoto evaloVnTn TANEoPopia) xou
¢ “xadopiler’ pohic autée Yewpniolv acpareic (dtav .y Ghot o eZupTihuevoL
TEAEGTEOL TNG EVTOAYC Yivouv xan autoL "xomf}ozpoi"). Me autév tov TpoéTO, TO-
EONO TIOU ETUTEETETOL 1) GUVEYLOY TN EXTEAEONC %O TNG OLABOOTG ULIG EVIOATG
POETWONG oL EYEl TPodoPacn oTtny eualoUnTn TAneoopld, 1 EXTEAECT) TWV €-
EAPTOUEVWY EVTOAGDY amd auThv anotpéneton (Uéow tng xaduatéenong) xou dpa
TEOABAVETOL 1) BLOUOEPEOT] TOU TUEATAEUEOU XUVAALO) Tou Yo UETUOOCEL TNV
evaloinTn TAnpogopior otov emtidéuevo. ApxeTd ToEOUOLO OYEBIAOUS UE TO
STT éyel xan 1o DOLMA |, mpoc@épovtag eminiéov mpoctaoia apo) TpocTate-
UEL ATOTEAEGUATING X OO TEQLTTOOELS Tou €youpe Store-to-Load forwarding,
x4t mou dev mpoopepel 10 STT.
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1.5.3 Teyvixéc Avalpeong

Ye autrhv TV xatnyopio avixet o unyaviouds CleanupSpec [23]. Ede axouvhou-
Velton plar evIeh®s DAQORETIXN TROCEYYIOT O OYEOT UE TG TEYVIXES UTOXEL-
Inc. Ebw dev umdpyouv edixd oyYEBLIOUEVOL XATaYWENTES Vo amodnxeboval
Tor OEdOPEVAL YEYELC 6TOL 1) uToVETIXT exTENEOT) amocapnvioTel. AvtideTta, 1 v-
ro¥eTinr) extéheon eviohdy cuveyilel ameplonaocTo TNV oM TNG X UOVO TNV
TEPInTKOoN oL UTdpyel wa Addog TEOBAEdT), TOTE 0 UnyavioUdog avorpel OAo T
TORATAEURA ATOTEAEOHATA TNG UTOVETIXNC EXTEAEOTC Xai cuveyileTal 1) por) Tou
TEOYRAUMATOS A6 TO TEONYOUUEVO 6woTd onuelo TEdBAednC.

1.6 MeYodoloyia

o v e€aywyr| TwV omOTEAEOUATWY YPNOUOTOLACOUE EXTEVS TOV TRPOCO-
wowwtr gemb. To gemd elvor €vag mpocouowthg TeEeutalag TeyvVoloyiag Tou
oiver T duvatdTTa Yo axpieic Tpocouoiwoelc hardware e€apTNUdTWY TOL UL-
TONOYLG TH ovd xUXAO OAOYL0U. XONOWOTOLELTAL EUPEWS GTOV AXUOTUOEXS YO
oAAG xou ot Bropnyavior yior TNV €EELVA XAl AVETTUEY VEWY TEYVOROYLMOY TOU
vAoU. Elvar mpoypappotioyévo otic yYAwooeg C++ xo Python. Trootneilel
eCoupeTind TOMESG apyLTeEXTOVIXES UE xupLdTepeg Tic X86 xou ARM. Emlong,
IXAVOTIOLEL TIC OMOUTACELS UOC YIO TV TEOCOUOIWOT) TV ETIESEWY, TV ap)LTe-
xTtovixwy x86 xaw ARM, tng xpu@ric UVAUNG, TNG EXTEAEOTS EXTOC GELRAS, TWV
TEOPBAETTAOV OAUETWY XAT.

Trdpyouy 6UOo DT TEOGOUOUOCEWY TOU UTOREL Var TREEEL EVag YENOTNG OTOV
gemb mpoooyotwtr: oe System-call Emulation (SE) xo oe Full-System (FS).
To cuyxpltixd TAEOVEXTNUA TOU TE®TOL £ldoug €vavtl Tou OeVTEPOL elval 1
%At TOAD UXEOTERT] YEOViXY| DldEXELd IOV amouTel 1) TEOCOUOIWST), xadde Bev
amoute(Ton 1) TPOCOUOIWGT TOu AglToupYLXoL cusThUaToS. ['evind, po tpocopo-
lwon pmopel va xpatrioel uépeg, EB0OUADES 1| OE axPAleg TEPLTTWOELS Xt UTVES.
Enopévee, i vo umopécoupe Vo TeeEoupe BLdpopol TELRAUATA UPXETES POPES
oe ebhoYo ypovixd didotnua Yo tpotiuricouue v SE mode npocoyolwon. Q-
071600, Ta amoteréopato Tou Yo mdpoue dev Vo elvan To (Blo axelBr| oe oyéon
ue v Full System mpocouolworn 1 omolor TPOCOUOLOVEL XoL TO AELTOUEYLXO
oo TN TapEyovTag eYahiTeRn axpifBeia, dhhar ebvon onuovTd To Y.

270l TELRQUOTY UOG, YENOYLOTIO|CUUE TOV TEOCOUOWWTY] gemd UE TIC TP~
#(4Te TopoETEOUS OTWS padvovTon otov ivaxa 1. Erniong yenowonowioaue
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Parameter Value

Architecture 1 core (SPEC) at 2.0GHz

Core (000) 8-issue, out-of-order, no SMT, 32 Load
Queue entries, 32 Store Queue entries, 192
ROB entries, Tournament branch predic-
tor, 4096 BTB entries, 16 RAS entries

Core (in-order) TimingSimpleCPU from gemb

Private L1-1 Cache 32KB, 64B line, 4-way, 1 cycle round-trip
(RT) lat., 1 port

Private L1-D Cache 64KB, 64B line, 8-way, 1 cycle RT latency,
3 Rd/Wr ports

Shared L2 Cache Per core: 2MB bank, 64B line, 16-way,

8 cycles RT local latency, 16 cycles RT
remote latency (max)

Network 4x2 mesh, 128b link width, 1 cycle latency
per hop

Coherence Protocol Directory-based MESI protocol

DRAM RT latency: 50 ns after L2

ITivancag 1: Topduetpol TG TEOCOUOLWUEVNG AEYLTEXTOVIXNAS

™V coulta TV peTponpoypoupdtwy SPEC CPU2006 benchmarks yia tny a-
EloAOYNON TNE ETB0ONGC. LUYXEXQUIEVA, YLol T UETPOTROYPUUUOTA Y ONOLLOTOL-
fioope ta reference input amd T el06d0UC KA eExTEALGUUE TPOGOUOIWOT o8 SE
mode, xdvovtog Topdiern Tic Tpwte 10 Sloexatopplpiol EVIOAES Xall UET O-
(OMOLDYCUUE EXTOC GELRAC EXTENEDT] Yiol TO ETOUEVO 1 BloEXATOUUVPLO EVTONEC.

1.7  Ileipopatixry ASwoloyrnon Enidoong

Eotidloupe o éva unyaviousd amd xdie xatnyopla. SUyxexpiéva, o Tialou-
UE OTO unyoviouod InvisiSpec omd TNV xaTnyopior TwV TEYVIXOV amdoxpudne, To
DOLMA amé tny xatnyopia Tov TeYvixey xaductépnone xo to CleanupSpec
oo TIC TEYVIXEC avalpeomS. 2T0 EAANVIXG XE(UEVO ETAEYOUUE Vol a€loAOYoOL-
UE UOVO TO amMOTEAEOUOTA TOL pnyovioldol InvisiSpec. Ileplocdtepec TAnpogo-
pleg yiot TNV alOAOYNOT| TWV ATOTEAEGUATWY TWY GAANDY SUO UNYAVICUOY UTOPO-
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Yyfuo 3: Me unAe To original amoTeAEoUOTA XL UE HOXAIVO TOL OXEL oG UTTO-
TehéoyoTa

OV va Beedoly 610 ayyAind xeluevo. Mto XyAua 3 BAEmouye Ta aroteAéouaTa
TWY UEYIXOY ATOTEAEOUATOV XAIE Unyoviopo) Tou Bivouv oL GUUYEAPELC TOU UE
TIC UTAE OTHAES %Ol UE XOXXWVO BAETOUYE TOL ATOTENEGUOTA TTOU EEAYOUE EUELS.
Or mpiyteg Téooepelc oTRheS avTimpocwneouy To overhead mou mpoxaheltar yio
mpoctaola Yovo and Spectre TOmOU eMECELS, VG Ol UTOAOITEG EEL apopOLY
T0 overhead mou el0dyouv GTOV EMEEEQYAG TH OL UN)AVIOUOL Yid TEOC TAGEL Ao
emiéoceic Spectre xou Meltdown tOnou.

AZ&lolb6ynon Enidoong Mnyaviopol InvisiSpec

Yuyxplvouue Tov Ypovo exTEAEOTC TV 21 YETPOTPOYEAUUUITLY TG GOou-
trag SPEC CPU2006 vy 5 drapopetixd configurations. Base, civow o anid,
un ac@orfc eneepyacthc ywelc xauio petatponr. O mapoddayés Fe-Sp xan
Fe-Fu tomovetolv amhd éva fence mpwv and xde evtohr] dhpatog 1 mptv and
x(&de evtolr) popTwong, avtiotolya. To configurations IS-Sp xou IS-Fu etvan
oL duo TapaAlayEC TpocTaciog Tou Tpoogépel To InvisiSpec Yo To Spectre at-
tack model xou To Futuristic attack model avtiototya. ‘Olec ol othkeg xde
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configuration efvou ouahomoinuéveg oto Base.

Av ecuidoouye otic fence-based teyvinéc duuvac SlamoTOVOUNE OTL £YOUY
TEPAOTIO XOOTOC OTNV ETUBOCT TNE TAEEWS TV 100% xon 250% vy Toug oYM
TiopoUg Fe-Sp xou Fe-Fu avtiotowya. Ye obyxpion ue tig fence-based Adoeig, 1o
InvisiSpec mpoo@épel cupns Pehtiwuéveg emdooec. O uéoog ypdvog extéhe-
ong v o 21 yeTpompoypdupata Tou yenotpomow|dnxay eivar 7.6% xou 18.2%
vt To IS-Sp xou to IS-Fu configuration, avtictouyo.

AZohoymvtag Ty enidoon tou pnyaviopol InvisiSpec, Topatneolue 6Tl To
UETEOTROYRUUMO TTOU TOEOUGLALEL T UEYUAUTERT emPBdduvoT oTny eTtldoon ot
oyéon e tov anho enelepyaoty eivar To omnetpp. To omnetpp mapoucidlel
emPBpdduvon g téEng Tou 185% xon 200% vyt to IS-Sp xan o IS-Fu, avtictor-
yo. Havotata, o xdptog Adyog mou oupPaiver autd elvon O6TL T0 omnetpp eivou
€va ueTpoTEOY o ue ToAL yeydho TLB Miss Rate. €l¢ yvwotov, ol aotoyleg
oto TLB etvar apxetd x00Tt0B6peC 68 %x0¥A0UC pOAOYIOU Xai €TOL EMNEEGCOUY
UEXETOL TNV GUVOALXY| ATOBOGT) TOU GUYXEXQUEVOL UETPOTOOYOOUUATOS. MUY XE-
xpwéva, oto Base configuration, o TLB misses 6ev xoduc tepotvtat xordohov,
eve ota configurations mou agopoly Tig duo mapalhayEg Tou unyaviopol In-
visiSpec, xaduotepotvton u€yplc MTou gTdoouy oto visibility point. Erniong,
T0 omnelpp €yel YEYIAO TOCOGTO acToylog TEOBAEYNC GTIC EVTOAES dhUaTOC
oA xou peydho mococtd actoyiog otnv Last Level Cache, yeyovota mou
YEWOTEPEVOLY UXOUT) TEPLOCOTERO TNV ETBOOT, TOU omnetpp.

"Eva yetponpdypauua tou napovotdlet e&icou pyeydio slowdown oty enido-
oY) Tou ebvan To libquantum. Avo xatd ™ yvoun pog etvar ol facixdtepol Adyol
mou cudfaiver autd. Apyixa to libquantum €yer Toh) peydAo TOGOGTO AGTO-
xlog otnv L1 D-Cache, oyetind pe ta undhoina HETROTEOY PEUMATA TNE GOULTAC.
O deltepog Aoyog ebvan 6T ) entldoon tou libqguantum BehTudveTon oNUoVTIXd
bty unootneileton xou 1 Asttoupyia NS mpoavdxtnong eviohév (prefetching),
%4t Tou oTo Unyavioud tou InvisiSpec dev oy Letl.

MeAroviixéc KatesudOvoelc

Aoyolndixope extevie xou pe To TLB xoupdtt. Awamotodooue 6Tt 0 mpo-
copolwthc gemd oty SE mode npocouolwor dev povieronotel pe oxpifBeta tig
xaductepoelg 6Tay Eyoule wor eboToyT 1 dotoyn mpdcPacn oto TLB. I
VoL €youpE deyaAlTeRN axpifela amoteheoudtov Yo Enpene v extehovooue Full
System mpocouolwoels, duwe autd Vo Exove TOA) O YEOVOPORES TIC TEOGO-
uoloelc pog. [No owtd 1o Adyo, mpoomadfoous Vo HOVIEAOTOIACOUUE GG T
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xa pEaMo T TI¢ xaduo Teprioelg auTég, xuplwe TNV xaducTépnon Tng acTo-
yloc oto TLB. Auté Va uropel va pog odnyroel oto puéhlov o oxp3éotepa
amoTENEOUATO OTAY 0ELOAOYOUUE To UETPOTROYPAUUATE. LS.
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2 Introduction

Computer architects have been working consistently hard throughout the
decades to improve the performance and the efficiency of processors. Spec-
ulative execution, one of the most fundamental techniques that has been
introduced to achieve higher performance in modern processors, has been
shown to have significant security implications to be considered. The reason
is that speculative execution of instructions causes the micro-architectural
state of the processor to be modified. Afterwards, an adversary exploits the
side effects of speculative execution and the footprint left. Until recently,
this was not thought to have security implications, as incorrect speculation
is guaranteed to be squashed by the hardware. However, the recent disclosure
of Spectre and Meltdown in January 2018 [13],[15], as well as the discovery
of other attacks/sources of vulnerabilities [30], [36], [1], [5], [7], [9], [21], [28],
[14], [22], [26], [33] has uncovered severe vulnerabilities in processors that
systems are still struggling to deal with.

2.1 Motivation

Many software mitigation solutions have been proposed to address that prob-
lem. However, those software-based solutions that currently exist tend to
have incomplete coverage [10], [4]. The main reason that software mitigation
techniques fail to provide complete protection is that Spectre and Meltdown
type attacks exploit some fundamental concepts that the processor is relied
on and they are completely independent from the OS. While software-based
defenses are considered out of scope in this thesis, we briefly discuss them and
outline their limitations that have motivated research community to explore
hardware support (Section 5.4).

As a logical consequence, these attacks have raised a lot of interest, and
motivated computer architects to rethink the way they design modern pro-
cessors and propose a number of hardware mitigation mechanisms. Indeed,
a plethora of hardware-based mitigation mechanisms has been recently pro-
posed. Although they provide a software-transparent approach to address the
problem of speculative execution attacks, they may introduce excessive over-
head affecting the performance of the running applications [39], [32]. There-
fore, it is highly essential for computer architects to propose new defenses—
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mainly at micro-architecture level-that incur low performance overhead, as
well as they maintain the security of the processor.

2.2 Approach

In this diploma thesis we focus on the hardware-based mitigation mecha-
nisms, we classify them based on their mitigation approach, and we evaluate
quantitatively a mechanism from each category. More specifically, we cate-
gorize the proposed hardware mitigation mechanisms into three classes:

« Hiding-based solutions. Namely, InvisiSpec [35], SafeSpec [12] and
Ghost Loads [24] mechanisms are in this category. The common theme
in all these defenses is that they store the speculative data in specially
designed buffers until the speculation is resolved.

« Delaying-based defenses. In particular, DOLMA [18], STT [39], NDA
[32] and Delay-on-Miss [25] are mitigation schemes that are based on
the concept of restricting the forwarding of unsafe data.

« Undoing-based solution. Characteristically, CleanupSpec [23] mecha-
nism follows this approach. The main idea is the permission of specu-
lative execution to proceed unhindered and undo any side-effects in an
event of mis-speculation.

Based on the aforementioned classification, we pick one proposal from
each class and describe/analyze it in more detail. We focus on InvisiSpec
from the first category, STT and DOLMA from the second category, and
CleanupSec from the third one.

For our evaluation, we replicated the statistics results of one defense mech-
anism from each category by using the gem5 Simulator running in SE mode
the SPEC CPU2006 benchmarks. Following the same configuration setup of
the simulator as the authors of the original publications used, our results are
relatively close with those of the original papers.

In summary, the main contributions of this diploma thesis are:

o We summarize and categorize the proposed hardware mitigation mech-
anisms for protecting against side-channel attacks due to speculative
execution.
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o We quantitatively evaluate and compare the performance impact of
three mitigation mechanisms that belong to the three different identi-
fied classes.

Organization of the document

In Section 3 we provide a general background of Out-of-Order and spec-
ulative execution. In Section 4 we explain how the attackers can cause sen-
sitive information leakage and we analyze how Spectre and Meltdown work.
In Section 5 we summarize and categorize proposed mitigation mechanisms
into three main classes: hiding-based, delaying-based and undo-based tech-
niques. In Section 6, we present the methodology we followed and in Section
7 we discuss in detail our evaluation results of mitigation schemes from each
category. Finally, this diploma thesis makes conclusions in Section 8 and
discusses possible future directions in Section 9.
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3 Background

We first provide background on speculative execution in modern out-of-order
processors. We then describe how transient (i.e., mis-speculated) execution
can be exploited to potentially leak secrets.

3.1 Out-of-Order Execution

Dynamically-scheduled processors execute data-independent instructions in
parallel, out of program order, and thereby exploit instruction-level paral-
lelism in order to improve performance. While fetching and decoding of
instructions is typically performed in order of the (speculative) program
stream, their execution may be allowed to occur out-of-order, before then
being retired in true program order.

3.2 Speculative Execution

When a program executes on a microprocessor, it has to often wait to get the
information from main memory. However, compared to execution time on
the microprocessor, the fetch time from memory is long. Modern processors
leverage the advantages of speculative execution in order to further improve
their efficiency and their speed. Speculative execution improves performance
by executing instructions whose validity is uncertain instead of waiting to
determine their validity. If such a speculative instruction turns out to be
valid, it is eventually retired; otherwise, it is squashed and the processor’s
state is rolled back to a valid state.

In modern out-of-order cores, if the direction or target of a branch is
mispredicted, then this misprediction may cause a large number of future,
incorrect instructions to be executed before being thrown away.

Strictly speaking, an instruction executes speculatively in an out-of-order
processor if it executes before it reaches the head of the ROB. There are
multiple reasons why a speculatively-executed instruction may end up being
squashed. For instance, one reason is that a preceding branch resolves and
turns out to be mispredicted. This is critical when hardware state can be
impacted by the loading of secret data. If this secret data can be used as
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input to other instructions, it can be indirectly leaked even if only accessed
speculatively. Thus, speculative execution while improves the speed of the
processor, it also renders it vulnerable to various side-channel attacks.

33



4 How The Attackers Work?

Speculative execution attacks exploit the side effects of transient instructions,
i.e., speculatively-executed instructions that are destined to be squashed.

4.1 Side Channel Attacks

Nowadays, security has become a key consideration in modern systems. Mod-
ern systems can be very complicated as software, hardware and host operat-
ing system work synergistically in order the system run efficiently. Attackers
are smart and always try to exploit the weakest point of the system. There-
fore, it is critical to provide full system protection and security at every layer
of the system. There are many defenses at the software level, that make
the program run bug-free or other defenses which the Operating System
provides isolation between different processes and Virtual Machines. How-
ever, side channel attacks can bypass all software security policies and leave
no traces. Generally speaking, in computer security, a side channel attack
leaks information from the side effects of a victim program’s execution on
a computer system by observing how the victim used shared hardware re-
sources (i.e. Floating Point Unit, cache, Network of Chip, branch predictors,
FPGAs). These side effects include timing information, micro-architecture
states, power consumption, electromagnetic leaks, or even sound. Side chan-
nels exist more generally [6], [11], [17] than the speculative attacks we focus
on.

This thesis is concerned with the important type of side channel attack
that exploits the shared cache hierarchies. This attack is called cache-based
side channel attack. Among all the side channels, caches offer one of the
most broad and problematic attack surfaces. In a cache-based side channel
attack, an attacker obtains secret information from a victim based on the
interaction between victim’s execution and cache states. More specifically,
most attacks exploit the difference in the access times of cache hits and
misses. It is extremely challenging to eliminate cache side channels efficiently,
mainly because caches are essential to processor performance, and timing
difference is an inherent property of cache structures.
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4.2 Transient Execution Attacks

The disclosure of recent transient execution attacks have called all software
defense mechanisms into question. In transient execution attacks, attackers
exploit hardware speculation (e.g. by mistraining the branch predictor) to
cause the execution of instructions in incorrect paths. The execution of the
instructions down the incorrect speculated path is called transient execution
because the instructions execute transiently and should ideally disappear
with no side-effects in case of a mispeculation event. When a mispeculation
is detected, the architectural and micro-architectural side effects should be
cleaned up but it is not done so today, leading to a number of publicized
transient execution attacks that leak data across different security boundaries
in computing systems. [7], [36], [21], [28], [5], [1], [30], [22], [14].

Transient execution attacks are defined as attacks that access data during
transient execution and then leverage a covert channel to leak information.
A transient execution attack in order to be successful consists of two parts:
First, a way of bypassing software/hardware barriers to access information
illegally, and second a way of leaking that secret data across the speculation
boundary. The first part depends on the aforementioned property of spec-
ulative execution that allows instructions to execute and access data that
they would normally not be allowed to. Generally, based on the first compo-
nent, such attacks can be split into two broad categories, Spectre-style and
Meltdown-style attacks, depending on how they exploit speculative execu-
tion to illegally access information. However, to leak the data, the second
part is equally necessary as the first one, which takes advantage of micro-
architectural state-changes that are done under speculative execution. It can
be observed by the attacker during or after the speculation has been resolved
and finally form the covert side channel to leak the information to the at-
tacker. Specifically, for the second part, a number of different side-channels
are available, capable of leaking information across software and hardware
barriers These might include side-channels such as memory-timing side chan-
nels, port contention side channels, DRAM, etc [1], [20]. Due to being easy
to exploit and also offering great versatility, memory-timing side channels
(including cache-based timing side channels) are particularly popular [36],
11], [6], [17)

Therefore, from the software development perspective, software defense
solutions become ineffective because speculative execution can cause exe-
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cution to proceed in ways that were not intended by the programmer or
compiler.

4.2.1 Causes of Transient Execution

The following is an exhaustive list of possible causes of transient execution
(i.e., causes of pipeline squashing) [34].

Mis-Prediction: Mis-prediction it is the first possible and most common
cause of transient execution. Modern processors are based heavily on making
various predictions during the execution of a workload in order to achieve
better performance and efficiency by making full use of the pipeline. If the
prediction is correct, the program continues its execution and the predicted
results will be used. In this way, predictions boost performance by executing
instructions earlier. In the case of a mis-prediction, the code executed down
the incorrect path will be squashed. There are three types of predictions:
control flow predictions, address speculation and value prediction.

o Control Flow Prediction: Control flow predictions predict the exe-
cution path that a program will follow. Branch prediction unit (BPU)
stores the history of past branch directions and targets and predicts
whether the upcoming branch is taken or not by using the pattern
history table (PHT) and which is the target address by using branch
target buffer (BTB) or return stack buffer (RSB).

e Address Speculation: Address speculation is a prediction when the
physical address is not fully available yet and it is used to improve the
performance of the memory system. For instance, many modern Intel
processors use the Store-to-Load forwarding technique in order to boost
their performance.

o Value Prediction: In order to further improve performance, while the
pipeline is waiting for the data to be loaded from memory hierarchy
on a cache miss, value prediction units have been designed to predict
the data value and to continue the execution based on the prediction.
While this is not known to be implemented in commercial architectures,
speculative execution based on value prediction had been proposed in
the literature by Gabbay et al. [§]
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Exceptions: The second possible and most common cause of transient
execution to occur are exemptions. If an instruction causes an exception,
the handling of the exception is sometimes delayed until the instructing is
retired, allowing code to (transiently) execute until the exception is handled.

4.2.2 Covert Channels

A covert channel is always required in order for the attacker to obtain the
secret information in architectural states. There are two parties involved in a
covert channel: the sender and the receiver. In the covert channels, the sender
execution will change some micro-architectural state and the receiver will
observe the change to extract information, e.g., by observing the execution
time.

Any sharing of hardware resources between users could lead to a covert
channel between a sender and a receiver. The receiver can observe the status
of the hardware with some metadata from the covert channel, such as the ex-
ecution time, values of registers, system behavior, etc. The most commonly
used observation by the receiver of the covert channels is the timing of exe-
cution. To observe the hardware states via timing, a timer is needed. In x86,
rdtscp instruction can be used to read a high-resolution time stamp counter
of the CPU, and thus, can be used to measure the latency of a chosen piece
of code.

4.2.3 Disclosure Gadget

The covert channel is used in the disclosure gadget to transfer the secret to be
accessible to the attacker architecturally. Disclosure gadget usually contains
two steps:

1. load the secret into a register;
2. encode the secret into a covert channel.

As shown in Figure 1, the disclosure gadget code depends on the covert
channel used. For covert channels in the memory hierarchy (e.g., cache side
channel), it will consist of memory access whose address depends on the
secret value.

The time resolution of the receiver is a critical metric to take seriously
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struct array *arrl = ...;
struct array *arr2 = ...;
unsigned long offset = ...;
if (offset < arrllen) {

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

sec = arrl|offset]; // 1. Load secret
value2 = arr2[sec*c|;} // 2. Encode

Figure 4: Disclosure Gadget

Covert Channel Type || Required Time Resolution of the
Receiver (CPU cycles)

L1 5vs 15

LLC 500 vs 800

TLB 105 vs 130

PHT 65 vs 90

BTB 56 vs 65

STL 30 vs 300

DRAM 300 vs 350

Table 2: Known covert channels and their required time resolution. [34]

into consideration when we compare covert channels. For a timing channel,
the time resolution of the receiver’s clock determines whether the receiver
can observe the difference between the sender sending 0 or 1, or when there
was a cache hit or cache miss. Some channels require a much higher resolu-
tion clock to measure and differentiate cycles than some others. As shown
in Table 1, the covert channel in L1 cache requires a very high resolution
clock to differentiate 5 cycles from 15 cycles, while the LLC covert channel
onyl needs to differentiate 500 cycles to 800 cycles and thus the receiver only
needs a coarse-grained clock.

4.2.4 Recovering the secret

There are two main timing-based techniques for the attacker to recover the
secret that are broadly used. These are Prime+Probe and Flush+Reload.
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These two techniques in most of the cases need to have a shared address space
and target the Last Level Cache (LLC). Prime + Probe measures the time
needed to read data from memory pages associated with individual cache sets.
Flush+Reload is special variant of the more generic Prime+Probe because
it detects the accesses to specified cache lines, while the latter technique
identifies accesses to larger classes of memory locations such as cache sets.
Consequently, Flush+Reload has higher accuracy, does not suffer from false
positives and does not require additional processing for detecting accesses.
The second advantage of Flush+Reload technique is that it focuses on the
Last Level Cache, which is the cache level furthest from the processor cores
(e.g L3 in processors with three cache levels). As it is shown in Table 1,
Last Level Cache requires a lower resolution timer than the L1 requires and
thus it is a covert channel more feasible to be successfully exploited by the
attackers.

The Prime+Probe Technique

Prime and Probe [37] is one of the most general attack strategies because
it does not require shared memory pages with the victim. At high level, the
attacker starts with completely filling (prime) the cache sets he/she wish with
arbitrary data to monitor using a carefully chosen eviction set. When the
victim generates memory references, its accesses replace some of the cache
lines in the eviction set filled by the attacker. The attacker can then access
the eviction set again (probe); whenever an access results in a cache miss, she
can infer that the victim has accessed that cache set resulting in her data
being replaced.

The Flush+Reload Technique

A round of Flush+Reload [38] attack consists of three phases. During the
first phase, the monitored memory line is flushed from the cache hierarchy.
The spy, then, waits to allow the victim time to access the memory line
before the third phase. In the third phase, the spy reloads the memory line,
measuring the time to load it. If during the wait phase the victim accesses the
memory line, the line will be available in the cache and the reload operation
will take a short time (because of a cache hit). If, on the other hand, the
victim has not accessed the memory line, the line will need to be brought
from memory and the reload will take significantly longer.
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4.3 How Meltdown works

Meltdown exploits a race condition between memory access and privilege
level checking while an instruction is being processed. An attempt to access
unauthorized memory will cause an exception and privilege level checks can
be bypassed, allowing access to memory used by an operating system, or
other running processes. For example, assume a user application that tries
to read kernel memory. Although such request will be eventually denied,
the speculatively executed instructions will result in loading of requested
data into caches. Using a side channel, the attacker can effectively read
arbitrary kernel (or hypervisor) memory. This is a very powerful attack,
since typically kernel memory contains a direct mapped region allowing the
attacker to dump the entire physical memory on a given system. Since the
exception eventually will be raised, this attack requires the ability to tolerate
and recover from segmentation faults.

Meltdown attacks are conducted in three steps:

1. The content of an attacker-chosen memory location, which is inacces-
sible to the attacker, is loaded into a register.

2. A transient instruction accesses a cache line based on the secret content
of the register.

3. The attacker uses Flush+Reload to determine the accessed cache line
and hence the secret stored at the chosen memory location.

4.4 How Spectre works

Spectre induces a victim to speculatively perform operations that would
not occur during strictly serialized in-order processing of the program’s in-
structions, and which potentially leak victim’s confidential information via a
covert channel to the adversary. Spectre-type attacks leverage mis-prediction.
The most common Spectre attack is the Variant 1 Figure (6) which performs
an out-of-bounds array read, exploiting a branch misprediction of the array
bounds check.

As it is shown in Figure 5, Spectre attacks are conducted in three steps:

1. The setup phase, in which the processor is mistrained to make an
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Figure 5: Phases of transient execution attacks

exploitably erroneous speculative prediction. (”Setup Phase”)

2. The processor speculatively executes instructions from the target con-
text into a microarchitectural covert channel. The piece of code that ac-
cesses and transmits secret into the covert channel is called disclosure gadget.
(” Transient Ezecution Phase”)

3. The sensitive data is recovered. This can be done by timing access to
memory addresses in the CPU cache. (”Decoding or Recovering Phase”)

uintd A[10];
uintd B [256-64];
void victim ( size_t addr) {
if (addr < 10) { // mispredicted branch

Mi: uintd val = Afaddr]; // secret is accessed

Mz w. =B[6d » val]; // secret is transmitted
}

}

Figure 6: Spectre Variant 1

For example, Spectre Variant 1, shown in Figure 6, bypasses a bounds
check due to a branch misprediction and transmits secret data behind that
bounds check over a cache-based covert channel. Since the address addr can
take an arbitrary value, val can be any value in program memory, meaning
the covert channel can reveal arbitrary program data. First, a secret value
is speculatively accessed and read into architectural state due to adversary-
controlled speculative execution. For instance, load M1 in Figure 3 reads
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val even if addr > 10 due to a branch misprediction, after the adversary
has mistrained the branch predictor. Second, that secret value is transmitted
over a covert channel (formed using one or more younger instructions). For
example, load M2 in Figure 6 transmits the secret over a cache-based covert
channel.

The sample codes of different variants are shown in Figure 7. Thevic-
tim code should allow a potential mis-prediction or exception to happen.
In Spectre V1, to leverage Prediction History Table (PHT) , a conditional
branch should exist in the victim code followed by the gadget. Similarly, in
Spectre V2 and V5, the victim code should have an indirect jump (or a re-
turn from a function) that uses BTB (or RSB) for prediction of the execution
path. Specifically in Spectre Variant 2, when the CPU encounters an indirect
branch instruction, the branch predictor tries to guess the target address and
the CPU immediately starts speculatively executing instructions at this ad-
dress. The attacker can potentially “poison” the branch target buffer (BTB)
to hijack the speculative execution flow and to redirect it to any code location
containing gadget instructions. In Spectre V4, to use STL, the victim code
should have a store following a load having potential address speculation.
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Spectre V1:
The attacker trains the PHT
to execute disclosure gadget

Spectre V2:
The attacker trains the
BTB to jump to the

Spectre V5:

The attacker pollutes the
RSB, to return disclosure
gadget after Funl.

struct array *arrl = ..;
struct array *arr2 = ...;
unsigned long offset = ...;
if (offset < arrllen) {

sec = arrl[offset];
value2 = arr2[sec*c];}

Spectre V4:

The attacker delays the
address calculation
causing speculation

disclosure gadget

jmp LEGITMATE_.TRGT

TRGT: movzx eax, byte [rdi]
shl rax, 0Ch;
mov al, byte [rax+rsi]

struct array *arrl = ..;
struct array *arr2 = ...;
unsigned long offset = ...;
if (offset < arrllen) {

sec = arrl[offset];

value2 = arr2[sec*c];}

Meltdown:

The attacker accesses the
address in rcx to cause an

exception

char * ptr = sec;
char **slow_ptr = *ptr;
clflush(slow_ptr)
*slow_ptr = pub;

value2 = arr2[(*ptr) *c|;

(rex
exception)

Retry:

shl rax, Oxc
jz retry

address

mov al, byte [rcx]

Mov rbx, qword [rbx + rax]

lead to

Figure 7: Example codes of Spectre variants and Meltdown

4.5 Spectre & Meltdown Diferrencies

The common theme between Spectre and Meltdown is that they adversely
exploit the side effects of transient execution. However, these two attacks ex-
ploit different properties of the CPUs. Spectre relies on misprediction events
to prompt transient instructions. Spectre works only with data accessible
architecturally to an application. In contrast, Meltdown relies on transient
out of order instructions following an exception. Meltdown relies on tran-
sient instructions inaccessible architecturally to an application. Spectre is
considered a harder threat to defeat than Meltdown.
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5 Hardware Mitigation Mechanisms

The simplest and most naive way to defend against side channel attacks
due to speculation is to not execute speculatively. However, in this way,
the in-order processors will eventually come with a huge performance over-
head. On account of this, researchers have implemented novel mechanisms
for defending against side channel attacks (i.e., Spectre and Meltdown), while
exploiting the beneficial effects of speculative execution and maintaining the
security. The main idea is to make invisible the side effects of speculation in
hardware (i.e., caches, predictors, etc.).

In this diploma thesis, we focus on micro-architectural mitigation tech-
niques and we classify them in three main approaches that make the effects of
speculative execution invisible in hardware. These are referred as (i) hiding,
(ii) delaying, and (iii) undoing techniques. Next we describe in detail these
three approaches. For completeness, we also discuss briefly software miti-
gation schemes and other approaches that have been proposed to address
speculative attacks.

5.1 Hiding the side-effects of speculative execution un-
til speculation is resolved

This approach is taken by solutions such as InvisiSpec, SafeSpec and Ghost
Loads [35], [12], [24]. They hide the side effects of transient instructions
in specially designed buffers that keep them hidden until the speculation is
resolved and the side effects can be made visible. Since these approaches have
to wait before they can make the side effects visible, they incur a performance
cost relative to how long the side effects need to be hidden.

5.1.1 InvisiSpec

InvisiSpec proposes the principle of “visibility point” of a load, which indi-
cates the time when a load is safe to cause microarchitectural state changes
that are visible to the attacker. A “speculative buffer” is used to temporar-
ily cache the load, without modifications in the cache. After the “visibility
point” the data will be fetched -securely- into the cache. In addition, for
coherency reasons and for being able to handle multi-threaded workloads,
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the authors have redesigned the cache coherency policies such that the data
needs to be validated when it is fetched from the “speculative buffer”. We
can also call this approach, a Re-do approach.

InvisiSpec Main Ideas

1) Unsafe Speculative Loads: Any load that performs a read before reach-
ing the head of the ROB, it is considered to be a speculative load. In Inwvi-
siSpec, the authors are particularly interested in loads that could potentially
cause security issues due to speculation. These loads are called Unsafe Spec-
ulative Loads (USL). In InvisiSpec, Unsafe Speculative Loads depend on the
threat model. The authors consider two threat models: Spectre and Futur-
istic. In the Spectre attack model, USLs are all speculative loads that follow
an unresolved control flow instruction (e.g. a branch), while in the Futuris-
tic attack model, every speculative load is considered as Unsafe Speculative
Load, except from those speculative loads which are not squashable by an
earlier instruction. As soon as a control flow instruction resolves (for Spectre
model) or a load becomes non-speculative (for Futuristic model), the load
becomes safe.

2) Making USLs Invisible: As mentioned earlier, the main idea of InvisiS-
pec is to make USLs invisible. Thus, any USL would not be able to modify
the cache hierarchy or the microarchitectural states in any way that can be
visible to the attacker. On top of that, InvisiSpec introduces the concept of
Speculative Buffer (SB). When a USL is issued, the data are loaded into the
Speculative Buffer and not into the local caches. When the load is considered
to be safe, InvisiSpec re-loads the data, this time into the local caches and
makes visible all the side effects of the USL in the memory hierarchy (that
is why the "hiding” technique is also called "Re-do” technique).

3) Maintaining Memory Consistency: It is extremely essential to main-
tain memory consistency, while the USL is issued until it becomes safe and
visible to the memory hierarchy (that is called Window of Suppressed Visi-
bility). To solve this issue, InvisiSpec may have to perform a validation-step
by re-loading the data.

4) Validation or Exposure of a USL: Validation is the way to make visible
a USL that would have been squashed during the Window of Suppressed
Visibility (due to memory consistency considerations) if, during that window,
the core had received an invalidation for the line loaded by the USL. However,
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Figure 8: Timeline of a USL with validation (a) and exposure (b)

validations can be expensive. The main reason is that a validation operation
includes comparing the actual bytes used by the USL (as stored in the SB) to
their most up-to-date value being loaded from the cache hierarchy. Therefore,
a USL enduring a validation cannot retire until the transaction finishes, i.e.,
the line obtained from the cache hierarchy is loaded into the cache. Then,
the line’s data is compared to the subset of it used in the SB, and a decision
regarding squashing is made. Hence, if the USL is at the ROB head and the
ROB is full, the pipeline stalls.

InvisiSpec identifies many USLs that could not have violated the memory
consistency model during their Window of Suppressed Visibility, and allows
them to become visible with a cheap Exposure. These are USLs that would
have not been squashed by the memory consistency model during the Window
of Suppressed Visibility, if, during that window, the core had received an
invalidation for the line loaded by the USL. In an exposure, the line returned
by the cache hierarchy is simply stored in the caches without comparison.
Hence, the USL does not stall the pipeline.

To summarize, there are two ways to make a USL visible: validation and
exposure. The memory consistency model determines which one is needed.
Figure 8 shows the timeline of a USL with validation and with exposure.
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InvisiSpec Design

1) Speculative Buffer in L1. InvisiSpec places the Speculative Buffer
(SB) close to the core to keep the access latency low. Authors have designed
the SB with as many entries as the Load Queue (LQ), and a one-to-one
mapping between the LQ and SB entries Figure (9). Therefore, this design
makes several operations easy to support. For example, given an LQ entry,
InvisiSpec can quickly find its corresponding SB entry due to the one-to-one
mapping design. Speculative Buffer stores the data of a cache line plus an
Address Mask that indicates which bytes were read. The Address Mask is
used to compare the data in the SB entry to the incoming data in order to
determine whether to validate an SB entry or not. Each LQ entry has some
status bits: Valid, Performed, State, and Prefetch. Valid records whether
the entry is valid. Performed indicates whether the data requested by the
USL has arrived and is stored in the SB entry. State indicates the state of
the load. It can be “requiring an exposure when it becomes visible” (E),
“requiring a validation when it becomes visible” (V), “exposure or validation
has completed” (C), and “invisible speculation is not necessary for this load”
(N). The latter is used when invisible speculation is not needed, and the
access should go directly to the cache hierarchy. Finally, Prefetch indicates
whether this entry corresponds to a prefetch

2) Supporting Prefetching. InvisiSpec supports software prefetch instruc-
tions. Such instructions follow the same two steps as a USL. The first step
is an “invisible” prefetch that brings a line to the SB without changing any
cache hierarchy state, and allows subsequent USLs to access the data locally.
The second one is an ordinary prefetch that brings the line to the cache
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when the prefetch can be made visible. This second access is an exposure,
since prefetches need not go through memory consistency checks. To sup-
port software prefetches, InvisiSpec increases the size of a core’s SB and,
consequently, LQ. The new size of each of these structures is equal to the
maximum number of loads and prefetches that can be supported by the core
at any given time. InvisiSpec marks the prefetch entries in the LQ with a set
Prefetch bit.

3) Per-Core Speculative Buffer in the LLC. InvisiSpec adds a per-core
LLC-SB next to the LLC. Its purpose is to store lines that USLs from the
owner core have requested from main memory, and to provide the lines when
InvisiSpec issues the validations or exposures for the same loads. It is a
circular buffer with as many entries as the LQ, and a one-to-one mapping
between LQ and LLC-SB entries.

4) Securing the D-TLB. To prevent a USL from observably changing the
D-TLB state, InvisiSpec uses a simple approach. First, on a D-TLB miss,
it delays serving it via a page table walk until the USL reaches the point
of visibility. If the USL is squashed prior to that point, no page table walk
is performed. Second, on a D-TLB hit, any observable TLB state changes
such as updating D-TLB replacement state or access/dirty bits are delayed
to the USL’s point of visibility. It would be possible and would probably
offer better performance if InvisiSpec used an SB structure like the one used
for the caches (like the approach followed in SafeSpec).

5.1.2 SafeSpec

SafeSpec [12] is a mitigation mechanism in the same category as InvisiSpec.
The general principle of SafeSpec mechanism is to use temporary structures
to store data (referred as shadow states) in order to prevent information
leakage due to speculative execution. For instance, if a speculative load
instruction causes a load of a cache line, instead of loading that cache into
the processor caches, SafeSpec mechanism holds the line into the shadow
structures. SafeSpec is a very similar mechanism to InvisiSpec. Later, if the
load is squashed the cache is not updated and the effects are removed leaving
no traces. Alternatively, if the instruction commits, the cache line is moved
from the temporary structure into the cache and the shadow state is cleared.
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Figure 10: SafeSpec extension to the CPU pipeline

SafeSpec Design

SafeSpec adds shadow states to protect data caches, instruction caches
and TLBs (Figure 10). Regarding data caches, which is the most commonly
used covert channel, SafeSpec adds a shadow structure to hold the cache
lines that have been fetched speculatively. It is an associatively-filled lookup
table to hold speculatively read cache lines. SafeSpec augments the load
store queue with a pointer to the shadow cache line for loads operations
that are speculative. Any instruction dependent on the speculative load
reads the cache line from the shadow structure. Once the load instruction
commits, the shadow cache line is written to the caches and freed in the
shadow structure. If the load is squashed, the value is just cleared from the
shadow structure. If an instruction commits, the cache line is moved from the
shadow structure to the caches. If the instruction is squashed, the shadow
structure entry is marked as available. In this way, replacement states are
not affected or updated by the speculative data that does not commit and
thus mis-speculation side-effects remain invisible.

SafeSpec also considers instruction cache as a potential covert channel,
albeit it is more difficult to be exploited. In addition, the instruction cache
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requires much more effort to protect, since the data dependent branches
use the branch predictor, but the I-cache footprint from this branch is not
data dependent because the value in the BTB is not data dependent either.
Therefore, the authors had to initialize the BTB to a third location and then
to introduce sufficient delay in the pipeline for the data dependent branch to
be resolved such that it registers the data dependent location in the I-cache.

Finally, SafeSpec considers TLBs covert channels as a potential threat of
leaking secrets and thus adding shadow structures to protect D-TLBs and
[-TLBs. For the instruction cache and the TLBs, SafeSpec creates similar
shadow structures and augments the ROB with pointers to the shadow state
entries if the instruction is speculative and the cache line (or TLB entry)
were fetched speculatively.

In order to provide efficient performance to the processor, the shadow
structures should be sized as much as they are needed to accommodate the
speculative states. If the shadow buffers are full, some requests simply will be
dropped leading to loss of some update and thus more performance overhead.
If shadow buffers are sized much more than they are needed, probably the
energy and area cost would be tremendous high. Therefore, it is critical to
measure effectively the size of each shadow structure. For instance, authors
state that for I-cache a shadow structure with about 25 cache lines is sufficient
for all of the SPEC2017 benchmarks. In a similar manner for the TLBs,
less than 10 entries are sufficient for speculative i-TLB misses, but some
benchmarks require more d-TLB entries (up to 25).

5.1.3 Ghost Loads

Another mitigation mechanism, which is also a hiding-based solution, is
Ghost Loads. The main idea of Ghost Loads is to perform speculative loads as
uncacheable accesses that do not access the cache state. The authors of this
work call these uncacheable accesses as "Ghosts”. A "Ghost Load” is a load
operation that it is undetectable in the memory hierarchy and specifically in
the cache hierarchy.

Ghost Loads have the following characteristics:
1. They are issued like any other memory request.

2. They can hit on any level of the memory hierarchy including private
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caches, shared caches, and main memory, in which case the response
data are returned directly to the core. The replacement state in the
cache remains unchanged.

3. In case of a miss, no cache fills are performed with the response data,
and no coherence states are modified.

4. They use a separate set of miss status handling registers (MSHRs)
that are not accessible by regular loads. Coalescing between Ghosts is
allowed only if they belong to the same context, and so is coalescing
Ghosts into in-flight regular loads. Coalescing regular loads into Ghosts
is not allowed.

5. Any prefetches caused by Ghost loads are also marked as Ghosts. This
assures that an attacker will not be able to train the prefetcher and
abuse it as a side-channel.

6. Similarly to the data caches, the relevant translation lookaside buffers
(TLBs) are also not updated during the lookups performed by Ghost
requests.

Ghost Loads Design

The Ghost Loads mechanism relies on two fundamental concepts: The
Ghost Buffer and the Materialization mechanism. In most of the cases, work-
loads have high percentage of load accesses that are considered as Ghosts.
This consideration can lead to a tremendous high performance overhead of
the processor. To regain some of that lost performance, the data used by a
Ghost load can be installed in the cache after the load is no longer specula-
tive. Materialization (Mtz) is a mechanism for achieving that, by performing
all the microarchitectural side-effects of the memory request after the load is
no longer speculative. When a load is ready to be committed, an Mtz request
is sent to the memory system. The request will act as a regular load request,
with the difference that it will not load any data into a CPU register. As
such, it will install the cache line into the appropriate caches and update
the replacement data. Materialization mechanism needs to be fast as regular
accesses to the same cache line follow closely after the Ghosts.

The Ghost Buffer (GhB) is a very small read-only cache that is only
accessible by Ghost and Materialization requests. Any data returned by a
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Ghost request are placed in the GhB instead of the cache. It is also possible
to facilitate prefetching of Ghost requests, by modifying the prefetcher to
recognize Ghost requests and tag prefetches initiated by them as Ghosts.
The prefetched cache lines can later by installed by the GhB into the cache
when the speculation has been resolved.

The point is that while the Ghost Buffer improves by itself the perfor-
mance of the overall mechanism, it is when combined with the Materializa-
tion mechanism that the GhB is thriving. Specifically, when an Mtz request
misses in a cache, it then checks the GhB. If the data are found, then they
are installed in the cache, eliminating the need to fetch them from somewhere
else in the memory hierarchy.

One of the main advantages of Ghost Loads over InvisiSpec is that the
former mitigation scheme can provide safe speculative prefetching. The buffer
utilized by InvisiSpec has a one-to-one correspondence with the entries of
the load queue (LQ). In contrast, the Ghost Buffer functions as a read-
only cache that might contain any random set of cache lines. Because of
this, Ghost can support prefetching that is triggered by speculative loads,
while InvisiSpec can only safely prefetch non-speculatively. In an evaluation
of contribution of each Ghost mechanism (Ghost Buffer, Materialization,
Ghost Prefetching) authors pointed that when the Ghost Buffer and the
Materialization are enabled and Ghost Prefetching is disabled there is a 10%
performance loss compared to the case when processor operates with Ghost
Buffer, Materialization and Ghost Prefetching all enabled. This shows the
extreme importance of providing secure speculative prefetching in processor’s
performance, a feature that was overlooked in InvisiSpec mechanism. Finally,
InvisiSpec does handle the case of TSO memory model (with the trade-off a
much more complex design), while Ghost only supports RC model.

5.1.4 Comparison Summary

InvisiSpec only protects from D-cache based attacks and does not support
safe speculative prefetching. Similarly, SafeSpec adds “shadow buffers” to
caches and TLBs, so that speculative changes in caches and TLBs do not
happen. However, SafeSpec leaves speculative attacks due to multi-threaded
workloads out of scope. Finally, Ghost Loads method’s main advantage is
that it can provide protection for secure speculative prefetching.
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5.2 Delaying speculative execution until speculation
can be resolved

The second class of mitigation techniques refers to delaying-based defenses
and follows a different approach than hiding-based solutions. Solutions such
as Delay-on-Miss with Value Prediction [25], NDA [32], Speculative Taint
Tracking (STT) [39] and DOLMA [18] selectively delay instructions when
they might be used to leak information. The common theme in all of them
is that some speculative instructions are considered unsafe under specific
conditions and need to be delayed until the speculation has been resolved.
NDA and STT focus on preventing the propagation of unsafe values at their
source, based on the observation that a successful speculative side channel
attack consists of two dependent parts, (i) an illegal access instruction (i.e.,
a speculative load) and (ii) one or more instructions that are dependent to
the illegal access and leak the secret (“transmit instructions”). Instead of
waking up instructions as soon as the operands are ready, NDA wakes up
instructions as soon as they are safe. In this way, NDA prevents secrets from
propagating. In a similar manner, STT taints access instructions (instruc-
tions that may access secrets, i.e., loads) and untaints them as soon as they
are considered safe (i.e., if all operands are untainted). While the execution
of load instructions is allowed, the execution of their dependents is delayed.

5.2.1 Speculative Taint Tracking (STT)

Speculative Taint Tracking (STT) [39] selectively restricts the forwarding of
certain instructions.

Here we describe in more detail how STT works.

1) Tainting data. The STT framework classifies instructions capable of
reading secrets under speculative execution as access instructions. STT par-
ticularly focuses on load instruction that can be potentially access instruc-

tions and taints its output and any dependent instructions on the tainted
load.

2) Untainting data. The STT framework specifies, under certain condi-
tions, when a tainted instruction can be considered safe, and thus to untaint
it. The point when a speculative access is no longer considered as a threat, it
is referred as Visibility Point. As it is indicated above provided by prior work
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in InvisiSpec, the visibility point depends on the threat model. In the Spectre
model, an instruction has reached the visibility point if all older control-flow
instructions have resolved. In the Futuristic model, an instruction has only
reached this point if it cannot be squashed. Instructions before and after the
visibility point are called unsafe and safe, respectively, as instructions which
have passed the visibility point are not speculative from a security perspec-
tive. STT untaints the output of an access instruction once it becomes safe.

3) Classification of instructions that can potentially leak secrets. The mi-
croarchitecture classifies certain instructions as transmit instructions. Covert
channels can be explicit or implicit, and implicit channels can be further bro-
ken down based on when they leak and their branch type. For instance, to
block implicit channels, ST'T requires the microarchitect to classify explicit
branch instructions, which affect control-flow, and to identify the implicit
branches that represent additional sources of data-dependent resource usage,
e.g., store-to-load forwarding, memory consistency speculation

STT Design

The key challenge in the implementation that STT addresses and it is
worth to mention is how to implement the automatic untaint operation. In
general, untainting should be fast. Propagating untaint is non-trivial, be-
cause dependency chains can be long and each instruction can have many
data dependencies whose taint status needs to be tracked. ST7T addresses
these challenges with a novel fast untaint algorithm. The key observation
that STT makes is that since instructions reach their visibility point in pro-
gram order to untaint the arguments for an instruction 4, it suffices to wait
for the youngest access instruction that is causing the taint for ¢ to reach
the visibility point. STT calls this instruction the Youngest Root of Taint
(YRoT) of i. Following this approach, STT only tracks the position of the
YRoT of each instruction in the ROB. Then, it broadcasts the ROB posi-
tion of each access instruction as it reaches the visibility point and if each
younger instruction whose YRoT is smaller or equal to the broadcasted value,
it becomes untainted.

STT calculates the Youngest Root of Taint (YRoT) in the processor re-
name stage. It adds two new fields to the entries in the rename table (which
maps logical registers to physical registers): YRoT and the access instruc-
tion ROB index (Accesslnstrldx), both of which require log2(ROBSize) bits.
YRoT tracks the Youngest Root of Taint of the instruction that last produced
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Figure 11: Snapshots of ROB state during the ST'T execution of the Spectre
V1 code, in the Spectre threat model. (Tainted registers are )

mul r rlrC mul r2 rL

each logical register in program order. Accesslnstrldx records the ROB index
of the last producer for each logical register, if that producer was an access
instruction, or -1 otherwise.

STT blocks explicit channels by delaying the execution of any transmit
instruction whose operands are tainted until they become untainted. This
scheme imposes relatively low overhead because it only delays the execution
of transmit instructions if they have tainted operands. For example, a load
that only reads a (potential) secret but does not transmit one—such as load
M1 in Figure 6— executes without delay. Load M2, however, will be delayed
and eventually squashed, thereby defeating the attack.

Figure 8 depicts this scenario in detail. Figure 11(a) shows a sequence of
instructions executing the Spectre V1 code; load M1 is an access instruction.
Figure 11(b), the access instruction has executed, and its output and all
dependencies are tainted. Non-transmit dependent instructions can freely
execute, but any transmit dependent instruction like M2 is stalled Figure
11(c). If the speculation succeeds (i.e., rX < 10), the branch resolves as
correct and the access instruction becomes safe. In this case, its output be-
comes untainted and the transmit instruction is allowed to execute Figure
11(d). Although in this example the transmit instruction becomes safe to-
gether with the access instruction, this is not true in general (e.g., if there is
an unresolved branch between them). Thanks to ST7T’s untaint mechanism,
however, even an unsafe transmitter (i.e., that has not reached the visibility
point) whose input becomes untainted can execute without having to delay
until it reaches the visibility point or head of ROB.

In contrast, if the branch is mispredicted (i.e., rX > 10) the transmitter
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remains stalled until it is eventually squashed along with the access instruc-
tions it depends on

5.2.2 Delay-On-Miss with Value Prediction

The technique Delay-On-Miss with Value Prediction (DoM) [25] is based at
the concept of that if we only allow accesses that hit in the L1 data cache
to proceed, then we can easily hide any microarchitectural changes until
after the speculation has been verified. At the same time, authors propose
to prevent stalls by value predicting the loads that miss in the L1. More
specifically:

1. For speculative loads that hit in the L1, they are allowed to proceed
and use the accessed memory, provided that we do not affect the L1
replacement state or perform any prefetches at that time. This keeps
speculative hits invisible.

2. Speculative loads that miss in the L1 level cache are selectively delayed
until the speculation has been resolved and value prediction is used
instead of sending a request deeper in the memory hierarchy. Value
prediction is completely invisible to the outside world, thereby enabling
the load to proceed with a value while keeping its speculation invisible.
When the load is considered safe, a normal request is issued to the
memory system that fetches the actual value. At that point, regardless
the value prediction was correct or not, the access is non-speculative
and cannot be squashed. It is, therefore, safe to modify the memory
hierarchy state.

Delay-On-Miss with Value Prediction Design

For a load marked as "shadowed” (a load under an instruction that can
potentially cause a mis-speculation event) the L.1 behavior is as follows:

(1) In case of an L1 hit, the cache responds to the request but delays
any operations that might cause visible side-effects, such as updating the
replacement state. The CPU will signal the cache to perform these operations
after the speculation has been successfully verified.

(2) In the case of an L1 miss, the request will simply be dropped. These
misses are also referred as shadowed L1 misses.
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If a load has received data from the L1 while under a speculative shadow,
and after it has left that shadow, it will send a release request to the cache,
signaling that the cache can now perform any side-effect causing operations
it might have delayed. On the other hand, if a load has not received any
data after executing under a speculative shadow, it will simply repeat the
initial memory request, this time triggering the normal miss mechanisms in
the cache. In case of a cache hit it only needs to delay the side effects of hits,
such as updating the replacement data and notifying the prefetcher, which
exist outside the critical path of the cache access.

In DoM with Value Prediction mechanism, while the number of delayed
loads has clearly been diminished, it still incurs high overhead when a L1 miss
is encountered. For this reason, authors introduced the concept of Value
Prediction on L1 misses in order to make the mechanism faster and more
efficient. Value prediction it is used to predict only loads and specifically L1
misses. In this context, value predictors have two interesting properties:

(1) The predictor can be local to the core, isolated from other cores or
even other execution contexts. The visible state of the predictor is only
updated after the prediction is validated.

(2) Because the predicted value needs to be validated with a normal mem-
ory access, the predictor can be incorporated into an OoO pipeline with only
small modifications to the L1 cache and no modifications to the remaining
memory hierarchy and the coherence protocol.

Authors used the 13-component VTAGE predictor, with 128 entries per
component. With the VTAGE predictor authors claim that prediction rate
varies significantly between benchmarks workloads and state a value mean
of 16 %. However, significant gains can be achieved with this prediction rate
if this will enabled along with delay-on-miss.

Comparison with InvisiSpec

Delay On Miss with Value Prediction mechanism outperforms InvisiSpec
(at least comparing to Futuristic model) showing an average performance
overhead of 11% relative to Unsafe Baseline processor. InvisiSpec may incur
lower overhead for Spectre model (7.6%) but DoM blocks all covert channels
due to speculation and not only those related to the cache hierarchy like
InvisiSpec does. In fact, DoM due to following a different approach of pre-
venting the leaking of information due to mis-speculation by delaying certain
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instructions offers a more generic solution. Additionally, it performs quite
comparably to InvisiSpec, without the hardware complexity cost of modifying
the memory hierarchy or the coherence protocol.

5.2.3 NDA

NDA [32] is a hardware mitigation technique used to restrict speculative data
propagation in out-of-order processors. NDA only allows instruction outputs
to flow to dependents if the source instruction is considered safe. NDA re-
stricts data propagation by preventing tag broadcast for unsafe instructions,
delaying wake-up of their dependants in the issue queue until the source
instruction becomes safe.

NDA, in order to defeat Spectre-type attacks, considers any instruction
following a predicted branch as unsafe until the branch target and direction
are resolved. NDA also considers loads that follow a store with an unresolved
address as unsafe. To mitigate Meltdown-type attacks NDA introduces a
propagate-on-retire mechanism. With this approach, the value returned by
any load instruction are considered unsafe until the load is ready to retire.

Finally, NDA’s authors are the first to demonstrate in their work a new
type of covert channel that can be exploited even when the cache covert
channel is not available—the BTB.

5.2.4 DOLMA

DOLMA [18] offers two protection policies, based on the processor’s im-
plementation of speculative execution. DOLMA-Default assumes that the
processor inherently mitigates all Meltdown-type attacks by preventing po-
tentially faulty micro-ops from broadcasting (i.e., propagating) their results
to dependent micro-ops. Therefore, DOLMA-Default only addresses Spectre-
type attacks. DOLMA-Conservative assumes that loads and load-like privi-
leged register reads can transiently bypass exception-like conditions, inducing
exception speculation untilthey retire. Thus, in addition to the speculation
considerations of DOLMA-Default, DOLMA-Conservative prevents leakages
stemming from all dependants of a load-like micro-op, until the load-like
micro-op retires.
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DOLMA s key contribution is enforcing a novel principle of transient non-
observability that rendering unnecessary the need to delay execution under
certain conditions. In addition, DOLMA enables protection to scale to reg-
isters for a more complete protection with reasonable performance overhead.
Transient non-observability is achieved by ensuring that the value of a tran-
sient (i.e., destined to squash) operand cannot affect the cycle upon which a
non-transient micro-op commits and thus preventing timing-based leakages.
More precisely, transient operand values must not cause timing variations
in non-transient micro-ops via (a) out-of-order contention for core-local re-
sources, (b) simultaneous uncore/offcore resource access, or (c¢) persistent
state modifications (i.e., modifications that survive the transient window).

Finally, DOLMA is the first defense to provide automatic comprehen-
sive protection against existing transient execution attacks for data in both
memory and registers.

DOLMA Design

DOLMA novelly applies the technique of “delay-on-miss” to speculative
stores, building on prior work that uses delay-on-miss to achieve efficient
protection for speculative loads. At a high level, delay-on-miss allows specu-
lative memory micro-ops that hit in first-level core-local structures (e.g., the
L1 TLB and—in the case of loads—L1 cache) to execute without stalling
until speculation resolves. A speculative memory micro-op that misses in
these structures vacates its execution unit and is placed into a dedicated
stall queue (as can already be done to mask the latency of TLB misses/-
page table walks). Such a design allows other in-flight memory micro-ops
to proceed with execution. When speculation resolves, the stalled memory
micro-op is re-issued without restriction. Importantly, DOLMA ensures that
memory micro-ops do not affect replacement policy metadata or memory
dependency predictions until speculation resolves, thereby eliminating these
potential channels. In addition, if a speculative memory micro-op triggers a
prefetch, the prefetch is likewise constrained to delay-on-miss behavior.

At a high level, DOLMA adds state to track the speculation status of each
micro-op in the re-order buffer (ROB). DOLMA then uses this state to delay
the execution of instructions, such that transient operands cannot observably
affect timing. More specifically, in order to track the speculation status
of each micro-op in the pipeline, DOLMA conceptually extends each ROB
entry with four bits, as shown in Figure 12 : Unresolved, Control-Dependent,
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Data-Dependent, and Pending-Redirect. If a micro-op is squashed, the extra
bits are ignored.

Unresolved: DOLMA marks an inducive micro-op as unresolved until (a)
its associated speculation window resolves, and (b) all elder micro-ops are
also resolved. Assuming all elder micro-ops are resolved, a control micro-op
resolves when it is executed. Under DOLMA-Default, loads are only inducive
if they are issued as a result of a hardware prediction unit (e.g., speculative
store bypass). Thus, such loads resolve when the corresponding prediction
resolves (e.g., the bypassed store executes). Under DOLMA-Conservative, all
load-like micro-ops are assumed to be unresolved until they retire, in order
to handle exception speculation.

Control-Dependent and Data-Dependent: Speculative control dependen-
cies can be easily tracked in DOLMA: any micro-op following an unresolved
branch in the ROB is control-dependent on that branch, until the next branch
introduces a new set of control dependencies. When an unsafe micro-op is
issued, a copy of its issue queue entry is placed into a dedicated unsafe queue
for in-flight unsafe micro-ops. If an unsafe micro-op executes without stalling,
its unsafe queue entry is freed. For unsafe micro-ops that cannot complete for
safety reasons, each queue entry holds the index of its youngest unresolved
inducer. Such a design allows for efficient wake-up when the micro-op be-
comes safe. Specifically, if a stalled micro-op’s youngest inducer is resolved,
the inducer broadcasts its ROB index to this queue such that dependent
micro-ops are marked as ready to issue.

Pending-Redirect: Finally, when a frontend-unsafe micro-op would initi-
ate a fetch redirect, its ROB entry is instead marked as pending-redirect.
Like backend-unsafe micro-ops, the frontend-unsafe micro-op also vacates its
execution unit and awaits a safety broadcast.

Finally, DOLMA only clears micro-ops when they become nonspeculative
in the context of DOLMA’s threat models. For control-dependent micro-
ops, this means that all elder control-flow micro-ops must be resolved. For
data-dependent micro-ops, this means that all elder loads and associated
resolvent micro-ops (e.g., stores) must be resolved. When stalled backend-
unsafe micro-ops are cleared, they are marked as ready to re-issue from the
stall queue.
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micro-ops DOLMA-Default DOLMA-Conservative

a1t load O->r f-|-]-]- U|-|-|- |U:untretirement

2 add 2 |- o - = | - | D - | D:uniil line 1 refires

3 jump Ul - |- - |u: untilexecutedisquashed U| - [D|P|p+P: untiline 1 retires
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Figure 12: Comparing DOLMA-Default’s and DOLMA-Conservative’s han-
dling of speculation status in the ROB in three scenarios. U = Unresolved, C
= Control-Dependent, D = Data-Dependent, and P = Pending-Redirect.
Example (a) shows a non-retired load. Example (b) shows an unresolved
speculative store bypass. Example (c¢) shows an unresolved branch, with a
nested branch blocked due to a speculative fetch redirect (line ¢5)

5.3 Undoing the side-effects of speculative execution
in the case of a mis-speculation:

The main idea of this class is to undo any side-effects in a mis-speculation
event. The only proposal that falls in this approach is the CleanupSpec
mitigation mechanism.

CleanupSpec [23] takes a different approach to the previous solutions by
permitting speculative execution to proceed unhindered and undoing any side
effects in the event of a mis-speculation. When mis-speculation is detected
and the pipeline is squashed, the changes to the L1 cache are rolled back.
The main cost of the mechanism comes from having to undo the side effects
after a mis-speculation.

CleanupSpec Design

CleanupSpec’s design approach is to optimize the design for the common-
case where loads are correctly speculated. To this end, CleanupSpec allows
transient loads to speculatively access the cache and make changes as re-
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quired. To enable security on a mis-speculation event, are studied the changes
a transient load that could make to the data-caches, and delay, reverse or
randomize these changes. Thus, CleanupSpec is focused on how to undo the
side-effects of mis-speculation and in this manner needs to track, protect and
reverse these changes on a mis-speculation in order those not to be visible to
the attacker.

We briefly outline the main changes to the cache hierarchy made in
CleanupSpec:

Address Randomization for L2 Cache. To prevent leaks from L2 evictions
and replacement policy, address randomization (e.g. CEASER [21]) random-
izes the sets that spatially contiguous lines map to, making co-residents of
a line in a set unpredictable. As a result, an eviction leaks no information
about the address of the Install or L1-Writeback that caused it.

Removing L1 or L2 Installs from the Cache. To prevent a transiently
installed line from causing hits on the correct path after a mis-speculation,
CleanupSpec removes the line from the levels of the cache it got installed in by
issuing an invalidation to only those cache levels. This is achieved by tracking
which levels of a load caused an install, propagating this information with
the load-data through its lifetime in the L1/L2-MSHR and the Load-Queue,
till it is retired. This is achieved by tracking the line address of the evicted
line in the L1- MSHR on an install and propagating it with the load-data to
the Load-Queue. After restoring the evicted lines, it is achieved a L1-cache
state such that the unsafe L1-installs and evictions never occurred.

Restoring L1-Fvictions. Without randomizing the L1-cache, it is needed
to prevent evictions from leaking information. Thus, on a mis-speculation,
while removing the installed line, it is also restored the original line that was
evicted.

Random Replacement Policy for L1. To prevent replacement state up-
dates on L1-hits from leaking information, it is used random replacement
policy for the L1 cache.

Delaying Coherence Changes from M/E to S, till correct path. Only tran-
sitions from M/E to S are perceptible due to difference in access-latency and
thus these modifications are delayed till the correct path.
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5.4 Software Based Defenses

Software mitigations prevent speculative access to secrets by unmapping
them (e.g., KAISER [10]) or by disabling speculation in unsafe contexts
(e.g.. Retpoline [4], Memory Fences). Unfortunately, many of these miti-
gations require rewriting Software or OS-changes and are incompatible with
legacy code. Recent studies also show that commercially deployed SW miti-
gations have up to 50% slowdown. In contrast, the proposed hardware miti-
gation mechanisms have significantly lower overheads and require no software
changes.

5.5 Other Mitigation Techniques

At the same time, many secure cache architectures are proposed to use ran-
domization to eliminate cache covert channels in general. For instance, Ran-
dom Fill cache [16] separates the load and the data that is filled into the
cache in order the attacker to be unable to disambiguate the sender’s access
pattern.

Another way to defend against covert channels is to simply degrade the
quality of the channel or make it unusable for a practical attack. For instance,
many timing covert channels require the receiver to have a fine-grained clock
to observe the channel and interpret the results correctly. Therefore, limiting
the receiver’s observation will eventually reduce the bandwidth or even elim-
inate the covert channel. Noise can also be added to the channel to reduce
the bandwidth and prevent the attacker from extracting sensitive informa-
tion [27]. However, recently Skarlatos et al. in his paper MicroScope [29]
demonstrates a new attack class, microarchitectural replay attacks, which
are able to denoise nearly arbitrary microarchitectural side channels with
only a single run of the victim. Thus, again, all the possible covert chan-
nels need to be mitigated to fully mitigate transient execution attacks and
provide a robust and secure system.

5.6 Summary

Figure 13 shows in summary the features that every mitigation mechanism
protects from. For instance, all defense schemes secure the D-Cache but only

63



SafeSpec and delay-based solutions protect the instruction cache. In Invi-
siSpec, Ghost Loads and CleanupSpec mechanisms authors clarify that pro-
tection of the I-Cache side channel is feasible but it requires extra amount
of work and thus they leave it out of scope. In addition, only Ghost Loads
and delay-based solution provide secure speculative prefetching, while all
the other mitigation mechanism only support software prefetching. InvisiS-
pec, CleanupSpec and all delay-based solutions can handle the case of mul-
tithreaded workloads but SafeSpec and Ghost Loads leave this case out of
scope as they do not modify the memory hierarchy or the coherence proto-
cols for simplicity. Furthermore, DRAM accesses can also be utilized as a
side-channel for attacks. Such attacks are outside the scope of hiding-based or
undo-based mechanisms, but they are covered by the delay-based solutions.
Finally, most of the solutions provide protection for the DTLB side channel,
either by adding extra shadow buffer in the TLB hierarchy (SafeSpec, Invi-
siSpec) or restricting the forwarding of the instructions (delay-based). On
top of that, DOLMA, the current state-of-the-art delay-based solution offers
protection for Spectre variants that use speculative stores to transmit the
secret, a feature that the previous delay-based solutions were vulnerable.

Features / Protects from
D-Cache |I-Cache Prefetching  Multithread i (ports?) DRAM TLB [ stores BTB Perf. Overhead
SafeSpec v v v/-
hiding InvisiSpec v v v v/- 5% - 17%
Ghost Loads v v -f- 12%
STT v v v v v v v/- 8.7% - 63.4%
delavi NDA v v v v v v v/- v 10.7% - 125%
lelaying
DoM w/ VP v v v v v v/- 11%
DOLMA v v v v v v viv v 10.2% - 42.2%
undo Cl v v v -f- 5.10%

Figure 13: Table of summarizing the existing mitigation mechanisms that are
reviewed in this thesis and the features that they protect from. Prefetching
refers that processor provides secure speculative prefetching
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6 Methodology

In this section we provide information regarding the experimental methodol-
ogy we followed to evaluate the various mitigation mechanisms that belong
to the three mitigation classes.

6.1 Simulation environment

gem5 [2] is a state-of-the-art cycle-accurate computer simulator, meaning
that it simulates hardware components on a cycle-by-cycle basis, instead of
simulating the instruction-set of an architecture. It is used both in the aca-
demic and industry world for research and development of new hardware
technologies. The gemd simulator can also execute workloads in a number
of ISAs, including today’s most common ISAs, x86 and ARM. We use gemd

because it meets our requirements to simulate our attack model (cycle ac-
curate), x86 and ARM architecture, caches, out-of-order execution, branch
prediction — and is widely used. The authors of the original publications
provide open source code implementations!234

The gemd simulator provides a wide variety of capabilities and compo-
nents which give it a lot of flexibility. These vary in multiple dimensions and
cover a wide range of speed/accuracy trade offs as shown in Figure 14. The
key dimensions of gemd’s capabilities are:

CPU Model. The gemd simulator currently provides four different CPU
models, each of which lie at a unique point in the speed-vs.-accuracy spec-
trum. AtomicSimple is a minimal single IPC CPU model, TimingSimple
is similar but also simulates the timing of memory references, InOrder is a
pipelined, in-order CPU, and O3 is a pipelined, out-of-order CPU model.

System Mode. Each execution-driven CPU model can operate in either
of two modes. System-call Emulation (SE) mode avoids the need to model
devices or an operating system (OS) by emulating most system-level services.

'https://github.com/efeslab/dolma
’https://github.com/mjyan0720/InvisiSpec—1.0
Shttps://github.com/gururaj-s/cleanupspec
“https://github.com/cwfletcher/stt
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Figure 14: Speed VS Accuracy Spectrum.

Meanwhile, Full-System (F'S) mode executes both user-level and kernel-level
instructions and models a complete system including the OS and devices.

Memory System. The gemd simulator includes two different memory sys-
tem models, Classic and Ruby. The Classic model provides a fast and easily
configurable memory system, while the Ruby model provides a flexible in-
frastructure capable of accurately simulating a wide variety of cache coherent
memory systems.

Table 2 shows the parameters of the simulated architecture that we use
in this diploma thesis. When running a SPEC application, we only enable
one bank of the shared cache. For SPEC, we used the reference input size,
and launch detailed simulation for 1 billion instructions after skipping the
first 10 billion instructions. We used the x86 ISA. For both InvisiSpec and
CleanupSpec we used the same configuration setup in gemb, including the
Ruby memory model for the unsafe baseline configuration. DOLMA and
STT were not implemented with the Ruby memory model.
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Parameter

Value

Architecture

1 core (SPEC) at 2.0GHz

Core (000)

8-issue, out-of-order, no SMT, 32 Load
Queue entries, 32 Store Queue entries,
192 ROB entries, Tournament branch
predictor, 4096 BTB entries, 16 RAS
entries

Core (in-order)

TimingSimpleCPU from gem5

Private L1-1 Cache

32KB, 64B line, 4-way, 1 cycle round-
trip (RT) lat., 1 port

Private L1-D Cache

64KB, 64B line, 8-way, 1 cycle RT la-
tency, 3 Rd/Wr ports

Shared L2 Cache

Per core: 2MB bank, 64B line, 16-way,
8 cycles RT local latency, 16 cycles RT
remote latency (max)

Network

4x2 mesh, 128b link width, 1 cycle la-
tency per hop

Coherence Protocol

Directory-based MESI protocol

DRAM

RT latency: 50 ns after L2

Table 2: Parameters of the simulated architecture in gemb5
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7 Evaluation

In this section we discuss in detail the evaluation results of one mechanism
of each category. In addition we compare the advantages and disadvantages
of each mechanism. First, we present and analyze the replicated results of
InvisiSpec mechanism. For the delaying-based category we have replicated
results for both STT and DOLMA mechanisms. Finally, we discuss the
replicated results for the CleanupSpec mechanism which represents the undo-
based solutions.

7.1 InvisiSpec

Figure 15 compares the execution time of SPEC CPU2006 benchmark appli-
cations on 5 different processor configuration schemes. Base, is the conven-
tional insecure processor, Fe-Sp and Fe-Fu puts a fence before every condi-
tional branch/indirect jump or before every load respectively. Finally, IS-Sp
and IS-Fu are the proposed InvisiSpec mechanism regarding the Spectre and
Futuristic attack model respectively. They are modeled for both RC and
TSO memory The results of Figure 15 refer to the TSO memory consistency
model. Each set of bars is normalized to Base.

If we focus on the fence-based solutions, we clearly see that they suffer
from excessive overhead. Under TSO, the average execution time of Fe-Sp
and Fe-Fu is 88% and 246% higher, respectively, than Base. In comparison
to fence-based solutions, InvisiSpec mechanism offers significantly lower per-
formance overhead. Under TSO, the average execution time of I5-Sp and
IS-Fu is 7.6% and 18.2% higher, respectively, than Base.

Evaluating the performance overhead of InvisiSpec mechanism, we can
see that the benchmark with the highest performance overhead is omnetpp.
Replicating the statistics results in gemb with the same parameters, skip-
ping the first 10 billion instructions and then simulating for the next 1 bil-
lion instructions we found that omnetpp suffers from around 185% and 200%
overhead in IS-Sp and IS-Fu, repsectively. The main reason for this is proba-
bly that omnetpp is a very TLB-sensitive benchmark and suffers from many
TLB misses. omnetpp has both a high branch misprediction rate and a high
LLC miss rate. In Base, TLB misses are not delayed, as they are served
speculatively. In contrast, in IS-Sp and IS-Fu, TLB misses are not served
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Figure 15: Normalized execution time of the SPEC applications on the 5
different processor configurations.
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until the corresponding USL reaches its visibility point. In addition, in case
of libquantum (both in IS-Sp and IS-Fu) InvisiSpec shows high overhead.
The main reason for this is that libquantum suffers from excessive high L1
D-Cache miss ratio, comparing to the other SPEC CPU2006 benchmarks. Fi-
nally, the increase in the performance overhead for libquantum is also caused
by the fact that libguantum is a streaming application that benefits greatly
from prefetching, which is disrupted by InwvisiSpec. On top of that, libquan-
tum also suffers from high validation cost due to large number of LLC misses.
However, these results can be often misleading, as when it comes to the actual
number of misses and overall memory accesses happening in the application,
the absolute number might change while the ratio remains the same.

7.2 STT Results

STT incur up to 63.4% slowdown in processors for full protection of data
residing in registers. However, these mechanisms block all covert channels in
contrast with the above mechanisms of hiding the side effects of speculation,
which only protect from cache based attacks. In comparison to Delay-on-
Miss with Value Prediction, NDA and STT only delay transmit instructions,
while the former method works on all data. Our evaluated results show
only 11% perfomance overhead for Spectre attack model compared to the
unsafe baseline processor. The main reason is that only a small portion
of all speculative loads (transmitters) are tainted due to older speculative
loads (access instructions). For the FUturistic attack model we see 29.7%
performance overhead, which differs with the original results of the authors
which is wuite close to the performance of the Spectre model. This makes
sense because Futuristic is a more restrictive model that forces longer delays
before loads can execute.
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Figure 16: STT single thread performance on SPEC2006.

7.3 DOLMA Results

DOLMA provides protection for both memory-only (M) as well as for mem-
ory and registers (M+R). DOLMA-Default (M) in our SPEC2006 evaluation
yields 16,8 % performance overhead comparing to the insecure baseline pro-
cessor. Furthermore, DOLMA-Default (M+R) offers protection for Spectre
attacks to both memory and registers by adding 34,9% overhead to the Base
processor.

To provide additional protection against Meltdown-type attacks DOLMA-
Conservative (M) and (M+R) offer 27,8% and 46,3 % overhead for full pro-
tection against all existing Spectre-type and Meltdown-type attacks on data
in memory-only and both memory and registers, respectively.
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Figure 17: DOLMA’s single thread performance on SPEC2006.

DOLMA is an improved version of the NDA mechanism. DOLMA ad-
dresses two crucial issues that NDA and STT fail to resolve. First, NDA
suffers from very high overhead, especially when it enables protection to reg-
isters. Second, STT is still vulnerable to arbitrary data leakages through
TLB. DOLMA significantly improves the performance overhead that NDA
incurs for protection of data in registers and blocks all covert channels (in-
cluding the TLB side channel). The method incurs 42.2% performance over-
head at worst case scenario (i.e., secret resides in registers), which is 33%
faster than ST'T.

72



7.4 CleanupSpec

Figure 18 shows the execution time of CleanupSpec, normalized to that of
the Non-Secure baseline. CleanupSpec has one configuration scheme which
protects from both Spectre-type and Meltdown-type attacks. Thus, it is
better to be compared with the Futuristic configuration scheme of InvisiSpec
and STT mitigation mechanisms. The bar ”Average” denotes the geometric
mean over all the 16 workloads.

In our evaluation, we found that on average CleanupSpec incurs a slow-
down of 5.9 %. This is because CleanupSpec allows the loads to speculatively
modify the cache, and incurs no additional overheads for correctly speculated
loads. In Figure 13, we notice that benchmarks with the higher branch mis-
prediction rates have the highest slowdowns (e.g astar (25%), bzip2 (12%)),
whereas benchmarks with lower mis-prediction rates have negligible slow-
down (e.g Ibm, milc). Furthermore, CleanupSpec incurs higher performance
overhead in benchmarks that have higher data cache miss-rates (e.g soplex
(7%) , sphinx3 (11%)).

The main cost of CleanupSpec mechanism is due to the cleanup stalls
that are in progress when a mis-prediction event is occurred. This stall
time depends on the frequency of squashes and the stall-time per squash.
It is necessary during a cleanup stall to wait until the correct path loads to
complete before the cleanup operations start.
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Figure 18: Normalized execution time of the SPEC applications on Cleanup-
Spec design.

7.5 Comparison

STT vs InvisiSpec

These two mitigation mechanisms are difficult to compare because Invi-
sispec blocks only covert channels that are related to the cache hierarchy,
while STT eliminates all covert channels due to the delaying of instructions
under certain circumstances. InvisiSpec has exclusively focused on protecting
the D-cache. However, this mitigation scheme does not mitigate non D-cache
speculative execution attacks [28], [1], [3], [19] [31]. For instance, there has
been demonstrated covert transmission of secrets via the instruction-cache
(I-cache) [19]. Unfortunately, it is not trivial to apply the same D-cache
defense techniques to provide I-cache protection. For example, Sakalis et
al. [25] delay speculative loads on an L1 cache-miss to prevent speculative
D-cache modifications. However, the authors mention it is difficult to apply
the same policy to I-cache misses with low overhead: While d-cache delays

74



do not preclude other in-flight instructions from executing Out-of-Order, I-
cache delays stall the front-end and starve the entire pipeline. Thus, while
the authors hypothesize that a similar method could be applied to the I-
cache, they do not implement or evaluate the performance overhead of such
i-cache protection. In comparison to cache-only defenses, delaying-based so-
lutions (such as STT, NDA, DOLMA) are agnostic to the covert channel
used in the Transmit Phase and blocks all known attacks. In addition, STT
does not prevent leaking secrets which are part of the retired state (and thus
non-speculative), whereas InvisiSpec does handle this case.

InvisiSpec VS STT Average Execution Time (TSO)
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Figure 19: InvisiSpec VS STT average execution time on SPEC2006.

Comparing the overheads of InvisiSpec and STT using Spectre and Fu-
turistic threat models, we find that InvisiSpec and ST'T have 7.6% and 8.5%
performance overhead relative to the Unsafe model regarding Spectre model.
For Futuristic model InvisiSpec and STT show 14.5% and 18.2% overhead
relative to Unsafe, respectively.

DOLMA vs InvisiSpec
DOLMA, similar to Speculative Taint Tracking and NDA, is based on the
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policy of restricting the forwarding of speculative load values. InvisiSpec only
protects selective load-based transmission channels (e.g the Data-Cache) in
contrast to speculative information flow control defenses such as DOLMA.
While the latter approach might lead to higher performance overhead in some
benchmarks than hiding-based solutions, it provides a more overall defense
against any covert channel.

DOLMA vs STT

DOLMA’s ability to provide protection at lower overhead than STT pri-
marily arises from the use of delay-on-miss for memory micro-ops. While
STT insecurely allows all speculative stores to execute, STT conservatively
delays all unsafe loads. In contrast, DOLMA only delays unsafe loads and
stores when they miss in the TLB and—in the case of loads—the L1 cache.

The main difference between these two mitigation mechanisms is that
DOLMA protects from arbitrary information leakages when a speculative
store is used to transmit data through the D-TLB, while STT does not
cover this case. The reason is that STT incorrectly assumes that prohibit-
ing store-triggered speculative cache coherency invalidations is sufficient to
prevent transmission via stores in isolation. However, while stores might
not speculatively modify cache state on many processors, stores can still
leak information via the TLB. As a result of this erroneous assumption,STT
does not comprehensively prevent transient execution attacks that use stores
to transmit a secret-dependent address, whether Spectre-type or Meltdown-
type. In this direction, DOLMA’s contribution is to identify and address
another source of leakage via store-to-load forwarding. ST'T does not handle
the case of a partial hit (i.e., where a strict subset of the load’s address range
is found in the store buffer), instead erroneously assuming that the only two
possible cases are a complete hit or miss. However, in the case of a partial
hit, neither the store buffer nor lower levels of the memory hierarchy hold the
correct data in its entirety. Thus, depending on how the microarchitecture
handles partial hits, the load may stall until the store completes, reveal-
ing information about the store’s address via timing. DOLMA’s approach
is to unconditionally issuing the load to the cache hierarchy, and simply
ignores the response in the event of an unsafe buffer hit. If the hit was
partial (meaning the buffer does not contain all necessary data), the load
re-issues once the store is safe and complete. Finally, DOLMA’s authors
have extended the STT design in order to support optional protection for
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registers (with extra performance overhead). For protection against Spectre-
type attacks, STT provides STT-Spectre configuration scheme. However,
unlike DOLMA-Default, STT-Spectre does not mitigate Spectre-type attacks
exploiting data speculation, such as speculative store bypass, nor various
transmissions via stores. STT-Spectre incurs 11.2% overhead while DOLMA-
default incurs higher overhead, 17.1%, offering greater protection though. To
provide the additional protection against Meltdown-type attacks offered by
DOLMA-Conservative, STT-Futuristic incurs 38.2% overhead but fails to
protect select store-based transmissions. In contrast, DOLMA-Conservative
only incurs 27.9% on data in memory for defeating all existing Spectre-type
and Meltdown-type attacks.

DOLMA vs NDA

The main issue of NDA mechanism is that suffers from excessive high
performance overhead, especially when it comes for enabling protection in
registers (125 % for the full protection scheme). The main reason for this is
that NDA conservatively prohibits speculative micro-ops from propagating
their results to any of their dependent micro-ops until speculation resolves.
DOLMA improves the performance overhead by enforcing the principle of
transient non-observability and mitigates all existing transient execution at-
tacks on data in memory and registers.

CleanupSpec vs InvisiSpec

InvisiSpec and CleanupSpec are two mitigation schemes that represent two
completely different approaches. InvisiSpec is a Re-do approach providing
safe speculation by issuing the load instruction twice: once to the shadow
buffer until the speculation has been resolved and a second time to the cache
states updating the side-effects once the load instruction is considered safe. In
a completely different manner, CleanupSpec mitigation allows the speculation
to proceed and does not need to buffer the data and undoes any side-effects
in an mis-speculation event.

CleanupSpec outperforms InwvisiSpec, as incurs less than 6% slowdown in
average, nearly three times faster than the slowdown incurred by InvisiSpec.
The main reason for this is that CleanupSpec it requires no extra accesses
for correctly speculated loads (which make up the common case), whereas
InvisiSpec has to re-issue even a correctly speculated to load to the cache
hierarchy from the shadow buffers and thus produce higher performance cost.
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However, CleanupSpec mechanism trades off generality for a simpler but
more restrictive solution, since it requires L1 cache replacement policy and
randomized cache design. In addition, CleanupSpec has focused on protect-
ing the D-cache and does not prevent numerous other covert channels from
leaking data during transient execution.

Finally, CleanupSpec allows speculative state to propagate through the
memory system, using rollback techniques to undo changes to the caches.
While this prevents the direct channel from reading the caches once this
rollback is complete, the rollback mechanism is itself timing-dependent on
secrets brought in by an attacker. Thus, as CleanupSpec does not clear
speculative state between protection domains, an attacker with code running
concurrently with the victim’s execution, but before it in program order, can
observe state altered by the victim’s execution.

Comparison of replicated with original results
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Figure 20: Original and replicated results

In Figure 20, blue and red columns represent the original and our repli-
cated results, respectively. We have replicated the statistic results for one
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mechanism of each category. [InvisiSpec from hiding-based solutions, STT
from delaying-based solutions and CleanupSpec from undo-based solutions.
Note that for InvisiSpec the statistic results refer to the TSO memory consis-
tency model. We observe disparities between the original and our replicated
results, although we followed the same configuration setup in gem) simulator
as the authors did. While we cannot directly reason about that, one possible
explanation is that in our evaluation we excluded some of the benchmarks
that the authors used. The mitigation scheme that incurs the highest over-
head is InvisiSpec-Futuristic in both original and replicated results, while the
mechanism with the lower performance overhead is CleanupSpec.
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8 Conclusions

This diploma thesis provided a survey of attacks due to speculative execution
and mitigation techniques. First, in this thesis we explain how the attackers
work and can potentially steal sensitive information. We then present most
of the existing mitigation mechanisms and categorize them into three main
approaches: Hiding-based, Delaying-based and Undoing-based solutions. Fi-
nally, we evaluates the performance of one mitigation mechanism from each
category and then we discuss and compare with each other mitigation scheme.
It is possible to prevent all side-channel attacks in hardware. However, this
involves modification of the entire cache hierarchy and this is not feasible.
To prevent speculative side-channel attacks, it is possible to modify only the
level closest to the CPU, and still achieve strong security properties.
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D-TLB Miss | D-TLB Misses | Total Delay | Total delay/ DolmaMisses /
Rate % ticks simulated | D- TLB Misses
%o %a
soplex 0.68 2745907 1008958256 | 0.08 56.6
cactusADM | 0.02 111137 1069485676 | 0.29 Z28.0
GemsFDTD | 1.19 7493237 1619290894 | 0.18 335
omnetpp 24.54 89210801 1026193691 | 0.04 58.8
astar 2.46 31725503 4127550404 | 0.32 81.5
Zeusmp 0.93 3920471 1034676684 | 0.22 27
bzip2 1.38 9190465 2322630280 | 0.32 ari1

Figure 21: Total Delay = Hit latency + Miss Latency + Page Fault Latency.
DolmaMisses = Misses at L1-DTLB — Restricted and placed into a stall
queue

9 Future Work

All the proposed mitigation mechanisms have been tested on SPEC CPU2006
workloads in System Emulation (SE) of the gem5 simulator. This is an easy
way to evaluate the performance overhead that a mitigation mechanism in-
curs as the simulation time is low. However, if we look forward to higher
precision at the evaluation results we should look to Full System (FS) simu-
lations at gemb5. The trade-off would be much longer simulations and many
other parameters to set up than in SE simulation.

We devoted considerable amount of time researching how the TLB part
affects the overall performance of processor. We noted that in SE mode,
all the authors have not modified the gem5’s infrastructures to measure the
latency of a TLB miss. In general, TLB misses are not modeled in SE mode
at all. Although not modeled, they do have an impact on performance for
the Out-of-Order processor. Upon a TLB miss, the access is considered as
faulty, triggering a pipeline flush and a re-execution. At that point, the SE
page table has been populated and the access gets its translation. Therefore,
if someone wants to experiment with the impact of the TLB misses in overall
performance of processor, it is wiser to run F'S simulations.

In our work, we tried to model the TLB latencies at the SE mode for
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the DOLMA mitigation mechanism. We model 2 clock cycles for the Hit La-
tency, 50 cycles for the TLB L1 Miss Latency and 2000 cycles for the latency
when a page fault occurs. In Figure 21, DolmaMisses refer to the misses at
the L1-DTLB, which are restricted due to the Delay-on-Miss technique that
DOLMA applies. We found out that DolmaMisses are a significant fraction
of the total D-TLB Misses (6th column). We selectively present benchmarks
that are the most TLB-sensitive. For instance, omnetpp, which shows the
highest D-TLB Miss Rate (24.5%), more than half of total D-TLB misses
(58.8%) are DolmaMisses. We expect that the overhead for DOLMA mit-
igation mechanism would be significantly higher if combined with accurate
TLB modelling and measuring the real latencies of a TLB miss or page fault.
Hence, it is crucial to model the real latencies for the D-TLB in SE mode in
order to have more reliable evaluation results in the SE mode simulation.
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