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ABSTRACT 
 

Slamming phenomena are of major concern for Naval Architects and Marine 

Engineers, because they can cause devastating effects if ignored. The present thesis 

focuses on the investigation of the impact pressures and forces exerted on a rigid body, 

when it is hit by a mass of water, briefly and violently. Their enormous magnitude and 

very short duration make the nature of the impact loads completely different from those 

exerted by the regular gravitational waves.  The arising boundary value problems (bvp) 

are of mixed type and are considered within the realm of analytical solutions in marine 

hydrodynamics. This thesis discusses the following two problems: i) the steep wave 

impact on a vertical, circular cylinder and ii) the breaking wave impact on a vertical 

impermeable wall.    

The problem of a steep wave impact, i.e., a rectangular mass of water with a 

completely vertical wave front colliding with a cylinder violently, is considered first. 

This approach is taken in order to simulate the vertical wave front of a breaking wave 

(flip-through impact), which is considered as the worst scenario of impact. The bvp is 

of mixed type, given that a Neumann condition holds on the impacted part of the 

cylinder and a Dirichlet condition holds beyond it. The solution derived is based on the 

small-time approximation. This means that the impact is considered at the very early 

stages. The fundamental assumption of the analysis is that the instantaneous contact 

line is weakly dependent on the vertical coordinate. The problem is solved within the 

original Wagner approach in 3D. Incompressible, inviscid and irrotational flow is 

assumed, so that the solution sought can be determined with the aid of the velocity 

potential. The main results concern the instantaneous contact line and its evolution with 

time, the deformation of the wave front, the slamming force and the impulse exerted on 

the cylinder. The range of validity of the existing 2D theories of von Karman and 

Wagner when applied to real 3D geometries is discussed. To this end, the results 

derived are compared with those anticipated by the implementation of the existing 2D 

theories; significant differences are noticed. CFD results demonstrate the validity of the 

assumption of the almost vertical contact line.  

The second part of this thesis deals with the breaking wave impact on a vertical 

impermeable wall. The scrutiny on this filed is indispensable, owing to the large energy 

dissipation which always accompanies the wave breaking. During the collision, a small 

air pocket is generated between the water and the wall. Hence, an idealized, but rational 

model of a slightly overturning breaking wave is assumed. The bvp is of mixed type, 

since a Neumann condition holds on the impacted part of the wall, while a Dirichlet 

condition holds on the part of the wall occupied by the air. The jet formed at the upper 

part of the air pocket is neglected initially. Nevertheless, it is discussed sufficiently, in 

the last part of Chapter 3. The analysis is performed in 2D. Once again, the small-time 

assumption is employed. Therefore, using the time as a small parameter, a perturbation 

technique is applied in order to fragment the governing hydrodynamic bvp in a 

sequence of subproblems. Firstly, the leading order problem is solved. The method 

applied, demands the solution to a system of dual trigonometrical series. Results are 

presented for the velocity potential and the free-surface elevation. Owing to the 

formation of a splash at the intersection point between the still water level and the wall, 
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a logarithmic singularity for the vertical velocity arises. To this end, the method of 

solution is enhanced with that by King and Needham (1993).   

Subsequently, the higher order problem is considered. The bvp is reduced to a novel 

and very challenging one-dimensional Sturm-Liouville problem with mixed conditions. 

The boundary conditions are far more complicated when compared to the form they are 

encountered usually, since they involve infinite series. Relevant problems have not been 

investigated in the past, at least in the field of analytical hydrodynamics associated with 

slamming phenomena. Interesting corrections to the leading order problem were 

noticed. 

The results of this PhD thesis highlighted the very complicated procedures occurring 

during water impact and enriched the existing literature of analytical solutions in 

slamming phenomena undoubtedly.   
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ΠΕΡΙΛΗΨΗ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ 
 

Τα φαινόμενα που χαρακτηρίζονται από τη βίαιη πρόσκρουση ενός στερεού 

σώματος με έναν όγκο νερού, προκαλούν την εμφάνιση ιδιαίτερα υψηλών πιέσεων 

πολύ μικρής διάρκειας. Ο παλμός που θα ασκηθεί στην κατασκευή μπορεί να επιφέρει 

αστοχίες σε τοπικό αλλά και ευρύτερο πλαίσιο. Γι’ αυτό τον λόγο κρίνεται απαραίτητη 

η διεξοδική μελέτη τέτοιων φαινόμενων. Από μαθηματική σκοπιά, απαιτείται η 

επίλυση προβλημάτων μικτών οριακών τιμών. Αυτό προκύπτει λόγω του γεγονότος ότι 

διαφορετικού τύπου οριακές συνθήκες πρέπει να ισχύουν σε διαφορετικά μέρη του 

ίδιου ορίου (ή της ίδια επιφάνειας): συνθήκη Neumann στο τμήμα του στερεού που 

προσβάλλεται και συνθήκη Dirichlet στο υπόλοιπο. Η μέθοδος επίλυσης των 

προβλημάτων σε αυτή τη διδακτορική διατριβή είναι αναλυτική. Η παρούσα 

διδακτορική διατριβή εστιάζει ενδελεχώς στα ακόλουθα δύο φαινόμενα: i) τη βίαιη 

πρόσκρουση ενός πλήρως κατακόρυφου μετώπου κυματισμού, που κινείται με 

σταθερή ταχύτητα προς έναν άκαμπτο, κατακόρυφο κύλινδρο κυκλικής διατομής και 

ii) την πρόσκρουση ενός θραυόμενου κυματισμού σε έναν κατακόρυφο, αδιαπέρατο 

τοίχο.  

Αρχικά, επιλύθηκε το πρόβλημα της βίαιης πρόσκρουσης ενός κατακόρυφου 

μετώπου κυματισμού με έναν κατακόρυφο κύλινδρο. Επιλέχθηκε το συγκεκριμένο 

στερεό, καθώς είναι γνωστό ότι οι κύλινδροι αποτελούν το βασικό κατασκευαστικό 

στοιχείο των υπεράκτιων πλωτών ή σταθερών κατασκευών. Το πρόβλημα επιλύεται 

κάνοντας την παραδοχή των μικρών χρόνων, δηλαδή εξετάζοντας το φαινόμενο 

αποκλειστικά στα πρώτα στάδια της πρόσκρουσης, καθώς τότε εμφανίζονται τα 

υψηλότερα φορτία. Κάνοντας την υπόθεση ότι η στιγμιαία γραμμή επαφής που 

οριοθετεί το τμήμα του κυλίνδρου που προσβάλλεται από το νερό είναι σχεδόν 

κατακόρυφη (μία υπόθεση που αποδεικνύεται και από αριθμητικά αποτελέσματα CFD) 

λύνουμε το πρόβλημα στο πλαίσιο της κλασική θεωρίας του Wagner, ωστόσο σε 3D. 

Υποθέτοντας ασυμπίεστη, μη συνεκτική και αστρόβιλη ροή, επιλύουμε το πρόβλημα 

με τη βοήθεια του δυναμικού ταχύτητας. Εξάγονται αποτελέσματα για την στιγμιαία 

γραμμή επαφής, την παραμόρφωση του μετώπου του κυματισμού μετά την 

πρόσκρουση, τη δύναμη και τέλος τον παλμό που θα ασκηθούν στον κύλινδρο. 

Συγκρίνονται τα αποτελέσματα με αυτά που προβλέπονται από τις υπάρχουσες θεωρίες 

των Wagner και von Karman στο 2D πεδίο και καταγράφονται οι διαφορές.  

Το δεύτερο φαινόμενο το οποίο μελετήθηκε είναι αυτό της βίαιης πρόσκρουσης 

ενός θραυόμενου κυματισμού σε έναν κατακόρυφο, αδιαπέρατο τοίχο. Γι’ αυτό τον 

λόγο υποτέθηκε ένα ελαφρώς κεκλιμένο μέτωπο θραυόμενου κυματισμού, το οποίο 

εγκλωβίζει έναν μικρό θύλακα αέρα, στον οποίο υποθέτουμε ότι υπάρχει κενό. Η 

επίλυση του προβλήματος βασίζεται και πάλι στην παραδοχή των μικρών χρόνων. 

Ορίζοντας σαν μικρή παράμετρο του προβλήματος το χρόνο, χρησιμοποιούμε την 

μέθοδο των διαταραχών χωρίζοντας το κυρίως υδροδυναμικό πρόβλημα σε επιμέρους, 

διαφορετικής τάξης (ως προς το χρόνο) υπο-προβλήματα. Αρχικά επιλύεται το 

πρωτοτάξιο πρόβλημα. Εξάγονται αποτελέσματα για i) το δυναμικό της ταχύτητας και 

κατ’ επέκταση για την πίεση πάνω στον τοίχο για διάφορα μεγέθη του θύλακα του αέρα 

και ii) την ανύψωση της ελεύθερης επιφάνειας μετά την πρόσκρουση. Σε αυτό το 

σημείο, πρέπει να τονιστεί ο απειρισμός της κατακόρυφης ταχύτητας του νερού, λόγω 

της εμφάνισης ενός πίδακα στο σημείο τομής της αδιατάρακτης επιφάνειας του νερού 
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με τον τοίχο. Γι’ αυτόν τον λόγο απαιτείται μία ασυμπτωτική ανάλυση στη γειτονία 

αυτού του σημείου. Προς αυτή την κατεύθυνση, αξιοποιείται μία παλαιότερη 

δημοσίευση των King and Needham (1993).   

Σε συνέχεια της προηγούμενης ανάλυσης, επιλύεται το τριτοτάξιο πρόβλημα, το 

οποίο εκφράζει επί της ουσίας πιο αργά μεταβαλλόμενα μεγέθη. Η επίλυση του 

προβλήματος μικτών οριακών τιμών ανάγεται στην επίλυση ενός προβλήματος Sturm-

Liouville, μικτών οριακών συνθηκών. Η διαφορά σε σχέση με αντίστοιχα προβλήματα 

έγκειται στην μορφή των οριακών συνθηκών, οι οποίες περιλαμβάνουν απειροσειρές. 

Τέτοιου είδους προβλήματα δεν έχουν μελετηθεί μέχρι τώρα σε φαινόμενα 

υδροδυναμικής που σχετίζονται με αναλυτικές επιλύσεις προβλημάτων βίαιης 

πρόσκρουσης μεταξύ ενός στερεού και ενός όγκου νερού. 

Εν κατακλείδι, η παρούσα διδακτορική διατριβή συνεισφέρει αδιαμφισβήτητα, σε 

ερευνητικό επίπεδο, στην υπάρχουσα έρευνα σε αυτό το σπουδαίο αντικείμενο της 

Ναυπηγικής καθώς και στην μαθηματική βιβλιογραφία που αφορά προβλήματα Sturm-

Liouville.  
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Chapter 1 Literature review 

Slamming in marine applications can be encountered in several forms such as steep 

wave and breaking wave impact, wetdeck slamming, green water slamming, water 

entry and sloshing [Faltinsen et al. (2004), Greco et al. (2012), Swidan et al. (2016)]. 

Moreover, extreme impact conditions are encountered in dam-break flows, tsounamis 

and generally storm surges [Liang et al. (2016)]. In this dissertation we focus on the 

first two cases.  

The problem of water entry, i.e., the violent penetration of the water free-surface by 

a body has already been studied since early 30s of the past century. The two pioneering 

studies, which have established the water entry theory, are those by von Karman (1929) 

and Wagner (1932). The first theory was motivated by the problem of the alighting of 

seaplanes. Calculations were made for a wedge of small and moderate deadrise angle 

penetrating the flat free-surface of the water. The limiting case of a flat-bottom body 

was also discussed. However, the deformation of the free-surface due to the impact was 

not taken into account by von Karman (1929). A few years later, Wagner (1932) 

expanded this theory by considering the pile-up of the water for a blunt body, with small 

deadrise angle. The main idea of his theory was the substitution of the wetted part of 

the body by a time expanding flat disk. Since the free-surface elevation is of the same 

order as the penetration depth, the free-surface boundary conditions and the body 

condition can be linearized and imposed on the undisturbed water surface. 

Undoubtedly, the most widely examined body penetrating violently an initially calm, 

flat water surface is the wedge. The classical study of Dobrovol’skaya (1969) proposes 

a fully nonlinear solution for the self-similar flow concerning the vertical entry of a 

symmetric wedge, with constant speed. The free-surface elevation was calculated 

through the solution to a singular integral equation. Hughes (1972) provided a self-

similar solution using the conformal mapping method. He used the Wagner function to 

map the entire fluid domain into an isosceles triangle. Given that the disturbance of the 

fluid is caused by the wetted part of the body only, he highlighted that each body can 

be considered as “finite”, regardless its shape or dimensions outside the fluid. This fact 

has a direct influence in the calculation of the flow far from the body, as the body may 

be replaced by an equivalent body fully submerged. Watanabe (1986) obtained a 2D 

analytical solution for the wedge water entry problem using asymptotic techniques, by 

calculating an outer solution, an inner one and matching them. Howison et al. (1991) 

derived also a 2D asymptotic solution for the wedge entry problem with small deadrise 

angles. They examined how the air entrapped influences the dynamics of the impact by 

considering a flat-bottom wedge. It was also shown that the flow in the jet region is 

governed by the shallow-water equations. They questioned the relevance of their model 

to water exit problems too. A classical numerical study in 2D is by Zhao and Faltinsen 

(1993) for the water entry of a body with arbitrary cross-section, using a nonlinear 

boundary element method (BEM) and incorporating the jet formed in the intersection 

between the body and the water surface. They presented results for wedges with a wide 

range of deadrise angles and they derived an asymptotic solution for the small deadrise 

angles. Very recently, among the great number of experimental researches, the one by 

Duan et al. (2020) scrutinizes the influence of the most important parameters that affect 

the slamming pressure distribution on a wedge, i.e., the deadrise angle, the drop height 
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and the structural flexibility. Perhaps, the most noticeable outcome of this study is that 

the slamming pressure exhibits propagating features when the deadrise angle is greater 

than the critical value of 0.2°. Wang and Guedes Soares (2020) examined how the 

compressibility affects the dynamics of impact during the water entry problem of a 

wedge cylinder and they inferred that it can be ignored during the slamming stage of 

the water entry process. 

The study of the wedge entry problems has led gradually to more complicated 

models over the years. For example, the entry of a perforated wedge has been studied 

by Molin and Korobkin (2001). The main parameters involved are the deadrise angle, 

the porosity ratio and a discharge coefficient. They highlighted that even a small 

increase in the porosity has a drastic reduction in the impact force. The problem of a 

porous/perforated wedge entry was also studied by Iafrati and Korobkin (2005), who 

considered an intermediate thin layer between the rigid, impermeable body and the free-

surface which modifies the boundary conditions. They solved the bvp by introducing a 

modified velocity potential. Their results were based on the self-similar solution. 

Semenov and Wu (2016) applied an integral hodograph method to study the case of a 

liquid wedge hitting a wedge-shaped permeable body. They considered separately the 

impact on a i) porous body and ii) perforated body. In the first case the relationship 

between the velocity flow and the pressure is linear, whereas in the second case is 

quadratic. They verified that the maximum pressure decreases with the increasing 

permeability ratio, given that fluid particles pass through the body. This effect is more 

pronounced for small deadrise angles. Moreover, they concluded that the jet tip moves 

closer to the centerline, a fact that implies a decrease in the contact area. 

 Considerable effort has been put on the case of asymmetric wedges. Such a study 

was conducted numerically in 2D by Riccardi and Iafrati (2004). Their model was based 

on an initially floating wedge on a still liquid surface. Owing to the asymmetry, a 

singularity occurs in the apex which is removed by introducing viscous effects (as point 

vortices). Later, Semenov and Iafrati (2006)  proposed a nonlinear model for the vertical 

water entry of asymmetric wedge. It is mentioned that, due to the asymmetry, a 

reduction in the pressure peak occurs on the side with the smaller deadrise angle. Shams 

et al. (2015) conducted an experimental study, examining the influence of the heel angle 

(asymmetric impact) on the velocity and the pressure fields, defining a critical value of 

30°. They concluded that the impact force increases as the heel angle increases.  

The research in the water entry problems was expanded further to blunt bodies 

penetrating the flat free-surface of the water. Faltinsen et al. (1977) studied the water 

entry of circular cylinders numerically and experimentally. They examined the cases of 

rigid and elastic cylinders. They obtained the slamming force by using Newton’s second 

law, by time differentiation of the added mass in the vertical direction (for a constant 

velocity). They derived results until the full submergence of the cylinder (penetration 

depth equals to the diameter of the cylinder). The water entry of a sphere was studied 

by Miloh (1981) who derived analytical expressions for the vertical slamming force 

exerted on a sphere, the added mass coefficients and the wetting factor. He commented 

that, contrary to the water entry of a cylinder, the slamming force on a sphere rises 

sharply from zero, at the first contact, to a maximum value and then decreases. 

Meanwhile, Cointe and Armand (1987) investigated the vertical entry of a rigid 

cylinder. They solved the bvp by applying a perturbation method and using the matched 
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asymptotic expansions to obtain valid expressions for the outer and inner solutions. 

Miloh’s (1981) study for the vertical water entry problem of a sphere was later 

expanded, by the same author, for an oblique entry of a sphere. His solution was based 

on the generalized Kirchhoff-Lagrange equations, by exploiting the kinetic energy of 

the fluid. He had to compute the derivatives of the horizontal and vertical added masses 

with respect to the submergence depth. He underlined that a horizontal component of 

the entry velocity tends to reduce the slamming load [Miloh (1991)]. Faltinsen and 

Chezhian (2005) performed a numerical study to calculate the loads acting on an 

idealized but more complicated structure, which consisted of a cylindrical mid-body 

and hemispherical ends. The results anticipated by the numerical simulation were 

compared to experimental results. Lately, the influence of ice and its position in relation 

to the impact point on a rigid body, was examined in detail by Khabakhpasheva et al. 

(2018). 

Typically, the flow region for the water entry problems is subdivided in three 

subdomains: the outer/far-field solution, the jet roots and the jet regions, which are 

generally of different orders [Fontaine and Cointe (1997)]. One of the most classical, 

analytical studies concerning the solution to the water entry problems in 3D in the outer 

field is that due to Scolan and Korobkin (2001). They solved the inverse problem of the 

linearized classical Wagner approach: they assumed the kinematics of the entering body 

and the contact line are known and they consequently searched for the shape of the 

body. In addition, they proved that an elliptic paraboloid penetrating the flat free-

surface of the water with constant velocity or constant acceleration has an elliptic 

contact line.  Thereafter, they extended their study by considering the entry of almost 

axisymmetric bodies. To this end, they introduced a small perturbation parameter which 

accounts for the slight differences relative to the corresponding completely 

axisymmetric body [Korobkin and Scolan, (2002), (2006)]. The case of an elliptical 

paraboloid within the Wagner theory was also studied analytically by Korobkin (2002) 

by making use of the Lamé functions. He concluded that the contact area between the 

body and the liquid is elliptical for any law of penetration. Scolan and Korobkin (2012) 

showed that results for elliptic contact regions can be also obtained using Galin’s 

theorem. The case of elliptical contact regions was studied recently by Chatjigeorgiou 

(2019), who focused on the impact on a prolate spheroid and on an elliptical paraboloid. 

It was found that the solution is detached from the angular dependence.  

The normal (vertical) water entry problem has been extended to the case of oblique 

impact. A preliminary study was carried out by Korobkin (1988) who formed bvp of 

𝑂(𝑡) for blunt bodies penetrating the flat free-surface, by applying asymptotic analysis, 

given that the problem is considered at the very early stages of impact. The solutions 

derived were valid for an outer region, describing properly the flow far from the contact 

points. In later years, the research on the inclined impact was extended to 3D as well. 

Moore et al. (2012) investigated the case of oblique impact, within the Wagner theory, 

for bodies with small deadrise angles, deriving a solution for the splash sheet region 

too. The cavity was not considered. Sun and Wu (2013) examined the oblique water 

entry of a cone. They concluded that the vertical force is not strongly influenced by the 

horizontal component of the velocity. However, for a constant ratio of horizontal to 

vertical velocity, a reduction in the deadrise angle leads to a substantial increase in the 

vertical force. The oblique water entry of an elliptic paraboloid was studied by Scolan 
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(2014). He showed that this configuration slightly differs from the pure vertical entry, 

as well as that the leading order of the vertical force remains unaffected by the 

horizontal kinematics. A similar study by the same author for an elliptic paraboloid 

penetrating obliquely the flat free-surface, discusses that under a proper combination of 

the velocity components, zero pressure could occur on the wetted surface, provided that 

the horizontal velocity is large enough [Scolan (2014)].  

Generally, the water free-surface is assumed flat. The case of a curved free-surface 

and its influence on the impact force has been studied by Cointe (1989) who also 

demonstrated how the results derived can be applied to the impact of spilling breakers 

on marine structures. The case of water entry of an elliptic paraboloid was studied for 

a non-flat free-surface as well. Within the linearized Wagner theory, Scolan (2014) 

considered the case of impact on cylindrical waves. He proved that a proper 

combination of the characteristics of the elliptic paraboloid and the wave’s parameters, 

may lead the contact region to be a circle instead of an ellipse, as generally happens. 

The water entry of a cone in a 5th order Stokes wave was investigated by Sun et al. 

(2019) by means of a BEM. They solved the fully nonlinear problem for different wave 

heights and orientations of the falling cone. Wen et al. (2020) studied the case of the 

wedge entry problem with varying speed to a non-flat free-surface. In their model, the 

initial water surface is curved and has a specific angle far from the impact zone (less 

than 90° -flat case-). They firstly derived the solution for a wedge penetrating a wedge-

shaped free-surface with constant velocity, based on the results for the self-similar 

solution for a wedge penetrating the flat free-surface of the water with constant speed. 

Thereafter, they extended this solution for a wedge with varying speed. 

In water entry problems, it is always assumed that the body penetrates the interface 

between the air and the water. Nevertheless, Yakimov (1973) conducted a study to 

demonstrate the qualitative differences in the flow and the jets formed when the 

standard ratio of the density of the air to the water is changed (~10−3). He particularly 

considered three cases of a cylinder penetrating the liquid free-surface surrounded by 

air of pressure 1 atm, air of pressure 0.13 atm and helium of pressure 1 atm. He 

mentioned that the jet is strongly influenced by the aerodynamic forces acting on it in 

each case.  

Generally, in water entry problems, the gravity and the surface tension are omitted 

and the water is assumed incompressible, inviscid and the flow irrotational. These 

simplifications are mainly owing to the small-time assumption. However, if either the 

gravity is taken into account or the change in the entry speed is significant then non 

self-similar solutions have to be derived. Greenhow (1987) concluded that gravity can 

be ignored if 𝑉 ≥ 2𝑔𝑡, where 𝑉 is the impact velocity, 𝑔 is the gravitational 

acceleration and 𝑡 is the duration of the impact. He also considered the nonlinearities 

of the free-surface. Tyvand (1990) discussed the range of validity of the small-time 

approximations sufficiently. According to Korobkin and Pukhnachov (1988), the 

solution of the problem for an incompressible liquid can be considered as the leading 

asymptotic term of the similar problem for a compressible fluid where 𝑀 → 0 (𝑀 is the 

Mach number). Faltinsen and Zhao (1997) commented that fluid accelerations involved 

in water impact, are typically much higher than the gravitational acceleration. They 

mentioned also that during the water entry of a blunt body with a small deadrise angle, 

hydroelastic effects and air compressibility should be taken into account. Scolan and 
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Korobkin (2003) conducted a study to examine the energy distribution during water 

entry problems. They concluded that when including the jet root and the jet regions for 

a blunt body with an elliptic contact line in the analysis, the energy is equally 

transmitted in the bulk liquid and the jets if the acceleration after impact is zero 

(constant velocity). If the acceleration is negative, which means a reduction in the body 

velocity, most of the energy is transmitted to the jets. Fairlie-Clarke and Tveitnes (2008) 

proposed a model in CFD code, using a finite volume method, to solve the conservation 

of mass and momentum equations. The interface between the air and the water was 

modelled using the Volume of Fluid (VoF) method. They examined how the change in 

the added mass, the flow momentum and the gravity, affect the entry force. For this 

reason, they distinguished three regions in the fluid: the far-field, which was treated as 

undisturbed, the second fluid field within which, the water is displaced due to the wedge 

entry and the third represents the expanding added mass of the fluid, which is 

considered as being attached to the wedge.  

In the last, more or less, twenty years, many researchers have contributed to the 

improvement of the classical model of Wagner (1932), as it was discussed in the first 

paragraph of this Chapter. Zhao et al. (1997) introduced actually the so-called 

generalized Wagner model (GWM). In this model, the body boundary condition is 

imposed on the actual position of the entering part of the body, the free-surface 

conditions are linearized and imposed on the pile-up height -instead of the undisturbed 

free-surface-, which is determined as part of the solution. The hydrodynamic pressure 

is given by the nonlinear Bernoulli equation. Moreover, they discussed how the flow 

separation is correlated to the geometry of the entering body and commented that for a 

concave body the jet generated is able to follow the geometry of the body, contrary to 

a convex one. The GWM was studied later by Mei et al. (1999) using the conformal 

mapping method. This analytical 2D study focuses on the models of a wedge, of a 

circular cylinder and of Lewis-form ship sections, while the body boundary condition 

was imposed on the exact wetted surface. It was shown that the impact force is 

overestimated when is calculated using Newton’s second law, through time 

differentiation of the infinite frequency vertical added mass. In a free-falling wedge, 

similarly to the sphere, the force starts from zero and increases as the impact evolves. 

Korobkin (2004) has worked on improving the classical Wagner model significantly. 

He derived some analytical expressions for bodies with small and moderate deadrise 

angles and discusses the differences in the calculation of the hydrodynamic pressure 

when using i) only the linear term of the Bernoulli equation, ii) the quadratic term and 

iii) the original or iv) modified Logvinovich model (MLM). The MLM was applied to 

ship sections too, by Korobkin and Malenica (2005). They concluded that the results 

obtained by the MLM are very close to those predicted by the GWM, while the 

computational cost of the latter is much greater. The water entry of a symmetric contour 

following the GWM was studied numerically by Khabakhpasheva et al. (2014). In this 

study, particular attention was given to the flow and the pressures close to the contact 

points. In order to calculate the slamming force, they took into account only the positive 

pressures in the contact area. Korobkin et al. (2014) showed that the slamming force 

(calculated using Newton’s second law) can be decomposed in two components, with 

slight proper modifications of the OWM, MLM, GWM: the first component is 

proportional to the entry speed squared and the second, to the body acceleration. The 
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coefficients involved are functions of the penetration depth only, and they can be 

precomputed for a given shape of the body, even for ship sections. 

The effect of flow separation and air cavity dynamics may be important in later 

stages, as the penetration evolves. The water entry of a blunt body with small deadrise 

angle, has been studied with the entrapment of a cavity between the bottom of the body 

and the water surface, by Korobkin (1996). He assumed that the pressure inside the 

cavity is a function of time only and he considered cases in which, either the cavity is 

filled with air or there is no gas inside it. Tassin et al. (2014) conducted an analytical 

2D study for a wedge. They suggested a correction of the Logvinovich model for 

estimating the force acting on a wedge during the separation stage, i.e., when the jet 

generated, is detached from the body surface. They also applied the concept of the 

“fictitious body continuation”. A 2D analysis for a free-fall wedge with several deadrise 

angles and a wide range of Froude numbers, has been conducted by Wang et al. (2015). 

They focused on the dynamics of impact when separation occurs and on the cavity 

dynamics. To this end, they defined three stages: slamming stage, transition stage and 

collapse stage.   

Typically, in water entry problems the water is assumed of infinite depth and the 

body penetration is small compared to the depth. Korobkin (1995) suggested that in the 

case of a comparable penetration to the water depth, one more subregion should be 

taken into account; this is the region beneath the entering body. Korobkin (1999)  

expanded his previous study for a box-like structure impacting on shallow water. No 

cavity was considered, and the flow region was fragmented in six subregions. The jet 

formed was observed to be inclined towards the body and moving away from it. If the 

penetration is comparable to the water depth, Howison et al. (2002) introduced the so-

called “Korobkin” flow where the influence of the bottom is considered as important. 

With the aid of asymptotic analysis, they studied the cases of convex smooth bodies or 

non-smooth but flat-bottomed bodies. The case of inclined impact of a blunt body was 

studied by Khabakhpasheva and Korobkin (2012). 

In the last years, some researchers have tried to investigate the water entry of a body 

whose shape varies in time. Such a 2D study is carried out by Tassin et al. (2013), 

whose mathematical modelling was based on the  MLM. For the exit stage, they 

modified the von Karman approach. In order to calculate the hydrodynamic pressure 

they applied a Taylor series expansion for the acceleration potential. Scolan and 

Korobkin (2015) examined the case in which a smooth body penetrating the water 

surface changes its shape over time, within the Wagner approach. It is noted that the 

leading order vertical force is independent of the horizontal kinematics. On the other 

hand, they highlighted that the force and the moments are strongly dependent on the 

angles of the body rotation and discussed the existence of negative-pressure zones in 

the contact line. 

Conformal mapping is probably the most common technique for solving the bvp in 

water impact theories. Among others, Malleron et al. (2007) turned the physical body 

contour into a flat plate through consecutive mappings. An alternative solution for the 

mixed bvp in impact problems was given by  Scolan and Korobkin (2012). Conformal 

mapping was initially used to obtain the flat disk within the Wagner theory and the 

solution on the disk was broken down as Fourier series of the azimuthal angle and a 

combination of functions of the radial coordinate.   
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The effect of elasticity in the water impact problems has also been studied. In order 

to simulate the impact on a ship shell, Khabakhpasheva (2005) studied the impact on 

an elastic plate, which is connected with springs to the main structure. The 

hydrodynamic part of the problem was solved within the Wagner theory, while the 

structural part is governed by the Euler’s beam equation. It was found that at the 

beginning of the impact, the edges of the plate move towards the water, independently 

of the spring’s stiffness. A 2D analytical study for an elastic wedge has been carried 

out by Khabakhpasheva and Korobkin (2013). The side of the wedges were modelled 

as Euler beams. The hydrodynamic part of the problem was formulated within the 

context of the classical Wagner theory. The structural part was governed by the typical 

set of differential equations for a beam subjected to bend loading. The two parts of the 

problem are coupled through the added mass matrix. Very recently,  Khabakhpasheva 

and Korobkin (2020) investigated the oblique impact of an elastic plate. They examined 

the possible mechanisms of air entrapment in a thin liquid layer caused by the oblique 

impact of a deformable body. The first study which combined the MLM for the 

calculation of the hydrodynamic loads with a structural model of the impacted body 

was by Sun et al. (2021). The structural part of the problem accounted for the interaction 

between the elastic and the rigid motion modes. The flexible deformation of the body 

was represented by a modal superposition approach, while Lagrangian equations were 

used for the penetration depth and the general coordinates of the problem.  

Studies for the second-order Wagner theory have been performed as well. Korobkin 

(2007) made an extensive asymptotic analysis for a parabola-like shape of water hitting 

a rigid flat plate with a constant velocity. He commented that despite the fact that the 

second-order potential is more complicated than that of the first-order, the 

corresponding hydrodynamic pressure has the same form as in the first-order theory. In 

addition, he mentioned that the second-order theory does not give a contribution to the 

dimension of the contact region as a function of time. Oliver (2007) found that the 

leading order theory overestimates the vertical force relatively to the one predicted by 

the second-order, which is closer to the numerical and experimental results. 

An alternative aspect of the water entry problems, but substantially more 

complicated, is the concept of steep wave impact. This means that a rectangular mass 

of water, with vertical wave front moves towards a fixed body. The idea behind this 

approach is the attempt to simulate a breaking wave in its theoretically more hazardous 

configuration. This concept was introduced for the first time by Korobkin and Malenica 

(2007). They studied the impact of such a wave onto an elastic wall. The analysis was 

conducted in the field of acoustic approximations. Korobkin (2008) considered the 

steep wave impact on a vertical wall. He discussed the special boundary conditions 

which hold on the wall if it is perforated, porous or protected with a soft cover. Both 

studies were in 2D. A few years later, Chatjigeorgiou et al. (2016), who utilized the tool 

of the pressure impulse theory, considered the impact of a steep wave on blunt 

structures, which form time spreading rectangular contact regions. The corresponding 

rectangular plate was treated as a degenerate ellipse with a zero semi-minor axis. This 

assumption allowed the solution of the boundary value problem with the aid of the 

special Mathieu functions, since elliptical coordinates were used. Results were 

presented for a circular cylinder. This study was further expanded by Chatjigeorgiou et 

al. (2017) who introduced an open rectangular section on the plate, which allowed the 
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water to escape from the plate during impact. The bvp needed special treatment, as it 

involved triple trigonometrical series.  

The steep wave impact on a vertical circular cylinder was initially studied by 

Chatjigeorgiou et al. (2016). Their analysis was performed within the linearized 

Wagner theory. They made the fundamental assumption that the contact line between 

the cylinder and the water is weakly dependent on the vertical coordinate 𝑧, so as the 

Laplace equation was not violated. This study was further expanded by Tsaousis et al. 

(2020) who compared the actual results within the 3D Wagner theory with those 

anticipated by the 2D theories of von Karman and Wagner. Moreover, they discussed 

the range of validity of the 2D theories when applied on real 3D blunt geometries. 

Ghadirian and Bredmose (2019) proposed three models within the pressure impulse 

theory in 3D. Specifically, they considered i) a box-shaped volume of fluid impacting 

a vertical wall, ii) an idealized all-directional wave hitting a cylinder and iii) a wedge-

shaped volume of water hitting a cylinder. 

Wave breaking is a highly nonlinear and complicated process. Peregrine et al. 

(1980), in their numerical study, defined three regions for a wave approaching breaking, 

that were supposed to be significant for its dynamics: i) a region at the top of the wave, 

where the velocity of the fluid particles is greater than the phase velocity of the wave, 

ii) a region where the particles’ accelerations are greater than gravity, just under the 

wave crest and iii) a region with low accelerations, at the rear part of the wave. Beyond 

any question, the distinctive features of the breaking waves are the randomness and the 

strongly unsymmetrical profile between the crest and the trough, which was clearly 

demonstrated by Bonmarin (1989). Breaking criteria and categorization of breaker 

types are proposed by Oumeraci et al. (1993), based on a sequence of parameters such 

as the wave steepness, the ratio of the water depth at the breaking point to the still water 

depth and the ratio of the horizontal velocity of the breaker to the vertical velocity of 

the water in front of the wall. Moreover, the reflection of a wave due to the presence of 

a structure may also affect the breaking process. A discussion for the evolution of the 

breaking wave characteristics was made by Chella et al. (2016), with the aid of a 

numerical model. The differences between a plunging and a spilling breaker while 

approaching the shore, were reported. Lubin et al. (2019) focused on the instabilities 

that could occur during wave breaking. They originate mainly from the high-density 

differences between the two fluids (air and water), velocity differences, surface tension, 

pressure perturbations and centrifugal acceleration. They are responsible for jet 

formations and development (for plunging breakers), droplet generation, air entrapment 

and vortices. The characteristics of the velocity and acceleration field of a plunging 

breaking wave in shallow waters were discussed by Scolan and Guilcher (2020), for 

four different points of the free-surface of the breaker. They also proposed a simple, 

complex formula for the velocity field in the plunging jet. It was concluded that the 

inner shape of the breaker determines the kinematics of the free-surface dominantly and 

that the maximum velocity computed along the free-surface is also the maximum 

velocity of the whole velocity field.  

There are many classical studies focusing on the breaking wave impact on walls. 

Bagnold (1939) highlighted the lack of repeatability in the breaking wave impact 

process, since he was the first to observe that the peak pressures change unpredictably 

from one experiment to the other. This is in contrast to the behavior of the total impulse. 
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These deductions led to the concept of the “kinetic mass”, a mass of water of certain 

geometry replacing the actual wave. The issue of the shock pressures was also 

discussed. The pressure impulse concept is a tool which is widely exploited in impact 

problems. In this direction, Cooker and Peregrine (1990a) demonstrated that the 

presence of the wall has a negligible influence on the overturning part of the wave. On 

the other hand, the part of the water in front of the wall, rises up the wall quickly, since 

it cannot pass through it. Due to the high accelerations in the jet (even 6000g) the 

hydrodynamic pressure is significantly greater than the instantaneous hydrostatic 

pressure. Moreover, Cooker and Peregrine (1990b) conducted a study in order to 

discuss the issue of the pressure impulse exerted on a wall, using analytical models. 

They concluded that the impulse on the wall increases as the impact zone increases and 

is non zero even in the sea bed. The impulse on the wall is attributed to the loss of 

momentum from the colliding wave. Given that this loss originates from a narrow zone 

close to the wall, the impulse is practically the same for any shape of the impacting 

wave they examined (triangular or infinite strip). To this end, they also defined the term 

of the “momentum length”. Hattori and Arami (1992) suggested an interesting model 

for the air pocket in the following way: they suggested that the 2D air pocket be 

substituted by a 3D square pillar of specific width, height and length. The compression 

of the air pocket was simulated via a spring of stiffness 𝑘. Results for the profile and 

pressure contours of a tanh wave, have been derived numerically for different 

amplitudes and breaking locations, by Peregrine and Topliss (1994). One year later, 

Cooker and Peregrine (1995) published an analytical study for the liquid-solid and 

solid-solid impact. The pressure impulse in confined spaces increases, a conclusion 

which is of special interest for sloshing of liquids in containers. Since the computations 

are for incompressible, irrotational flow, the energy loss is transmitted to the jet up the 

wall. The idea of a filling flow was adopted by Peregrine and Kalliadasis (1996) and 

was considered proper to describe sloshing phenomena in an almost full container. The 

pressure impulse model was extended later by Wood et al. (2000), who considered that 

during impact the entrapped air firstly decelerates the water and thereafter could cause 

the water to move backwards, a phenomenon called as “bounce back”. They concluded 

that the results anticipated by the bounce back theory are in accord with the 

experimental results when the length of the air pocket is less than half of the wave 

height.  

The wave impact on the wall is strongly affected by many parameters, such as the 

water depth in front of the wall, the special features of the wall (vertical or inclined, 

impermeable or perforated), the exact shape of the breaking wave, the aeration of the 

colliding part of the water and the air pocket entrapment. The role of the entrained air 

has been examined by Peregrine and Thais (1996) with the aid of a compressible model 

that used the state equation for water-air mixtures. A classical study which discusses 

some of these issues was conducted by Peregrine (2003). He discussed and highlighted 

the case of the flip-through impact, which has some special features such as the small 

impacted region of very high pressure and the enormous fluid particles’ accelerations. 

Moreover, he noted that the aeration of the water generally tends to behave as a cushion 

to the most violent impacts. Abrahamsen and Faltinsen (2012) derived analytical 

expressions for the calculation of the natural frequency of a small air pocket exhibiting 

simple geometry. They studied cases in which the air pocket was entrapped during the 
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breaking wave impact on a vertical wall or in the upper corner of a high leveled tank, 

during sloshing phenomena. The impact on a permeable wall was studied by Cooker 

(2013), who derived an expression for the pressure impulse as a function of the barrier’s 

porosity. The analytical study by Chatjigeorgiou et al. (2015) considers a simplified 

geometry for a breaking wave hitting a wall which entraps a small air pocket violently. 

Their case study involved two impacted regions of the wall and mathematically the 

solution of the problem demanded the solution to a system of triple trigonometrical 

series.    

Despite the randomness of the breaking process, experimental studies permit a 

deeper insight of the physical phenomenon. Kirkgöz (1990) analyzed the experimental 

results statistically and concluded that the probability distribution of the maximum 

impact pressures on a vertical wall can be described by the log-normal distribution. 

Perhaps, the most interesting result of his investigation is that the lower and longer 

lasting impact pressures cause larger wall deflections instead of those with high 

magnitude and very short duration. Based on the deflection criterion, he proposed a 

range for the maximum impact pressure, which should be taken into account for design 

purposes. Hattori et al. (1994) studied the impact pressure on a vertical wall for various 

types of breaking waves. They concluded that the highest pressure, characterized by 

very small duration, occurs when a small amount of air pocket is entrapped, while the 

point of the first contact is around the vicinity of the still water level generally. In 

contrast, larger air pockets were found to reduce the pressure peak, while they increased 

the duration of the impact. The pulsation of the air pocket, owing to the compressibility 

of the air, was found to lead to pressure oscillations and to the presence of 

subatmospheric/negative pressures. Given that the aeration levels are higher in sea 

water than in fresh water, the differences in the measured impact pressures within 

experiments were demonstrated by Bullock et al. (2001). They concluded that the 

entrained air tended to reduce the maximum impact pressures, therefore the pressures 

were higher in fresh water. Furthermore, they focused on the Froude and the Cauchy 

scaling laws in order to examine the influence of the scale of the prototype structure in 

the results. A few years later, Bullock et al. (2007) conducted large scale experiments. 

Even though it was found that high aeration tends to reduce the pressure peak, the longer 

rise time along with the fact that the impact is less spatially localized, does not 

necessarily guarantee the reduction of the impulse associated with the impact. A major 

outcome is that the impact impulse on a vertical wall is greater than that on an inclined 

(for nominally identical circumstances of impact) and can reach up to 30% of the total 

impulse on the wall. On the other hand, the total impulse seems to remain independent 

of the wall slope. The extension of the previous study is due to Bredmose et al. (2009) 

who combined experimental and numerical results focusing on the influence of the air 

on pressure shock waves generated by the impact and their interaction with the structure 

and a reflective sea bed. Nevertheless, experimental procedures bear another one 

difficulty, which arises from the fact that the mapping of the impact pressures is 

deteriorated by the effect of the air entrapment. These issues have been discussed in 

detail in the work of Marzeddu et al. (2018). PIV (particle image velocimetry) technique 

was utilized in the work of Jensen (2019) in order to derive the velocity field of a flip-

through and a perfect breaker impact.  



 
 

11 
 

Chan and Melville (1989) deduced that the presence of the wall had a larger 

influence on the dynamics of impact compared to that of a cylinder. They mentioned 

that the impact pressures can be more than ten times greater than the non-impact 

pressures on a wall. In addition, they noticed that the chance of having a breaking wave 

impact (plunging breaker) in a severe sea state is 20%. They also recommended that 

the scaling of the impact loads may be feasible through the impulse, given that it is 

much more consistent in relation to the impact pressures, provided that the structure 

response time is much higher than the time scale of the impulse. Zhang et al. (1996) 

accounted for the initial stage of impact of a plunging breaker on a vertical wall, within 

the theory of oblique impact of a liquid wedge on a wall, which was described with the 

aid of the similarity solution. Their solution was approached numerically, using a mixed 

Eulerian-Lagrangian boundary integral method. The entrapped air was described by a 

polytropic gas law. Besides, they focused on deriving appropriate scaling laws for the 

impact process. They also concluded that the maximum pressure and impact force were 

reduced for an elastic wall by 6% and 8% respectively. The high impact forces along 

with the short rise times, can lead to significant structural vibrations. Cuomo et al. 

(2010) suggested new equations for the calculation of the quasi-static and impulsive 

loads exerted on a structure by a breaking wave, taking into account the reflection 

coefficient of the structure, the significant spectral wave height, the wavelength at the 

toe of the structure, the water depth at the breaking location and the water depth in front 

of the wall.   

More recently, another numerical, multifluid model was proposed by Plumerault et 

al. (2012), who obtained results for a constant breaking distance and different aeration 

levels and vice versa. Particular attention was paid to the pressure fluctuations in two 

different regions: the first region was close to the air pocket. These pressure fluctuations 

were attributed to the air pocket oscillations. The second region was below the air 

pocket, where the pressure was related to acoustic waves. In contrast to the general 

results, they found out that the breaking location had a limited influence on the 

hydrodynamic parameters. In order to capture the local flow characteristics in the 

impact zone more satisfactorily, Song and Zhang (2018) introduced a multi-scale 

algorithm along with a stretched coordinate system and they solved the bvp by means 

of BEM. They found that secondary inner jets could be formed owing to the 

contraction-expansion process of the air pocket. Liu et al. (2019) developed a 2D CFD, 

two-phase model to derive results for the breaking wave impact on a vertical wall. The 

air was considered as an ideal, compressible gas, while the water was treated as an 

incompressible liquid. For this reason, the Ghost Fluid Method was also applied which 

accounts for the discontinuity of the fluid properties. The cases examined were for a 

slightly breaking wave, a flip-through impact, a plunging breaker capturing a small 

and/or large air pocket and a broken wave. They concluded that the largest total forces 

on the wall occurred in the flip-through and in large air pocket cases. Pressure 

oscillations in the air pocket were noticed, owing to its compression and 

decompression. Similarly to the previous results, larger air pockets led to lower 

maximum pressure compared to small air pockets, but of higher duration. Finally, they 

adopted an alternative configuration of the sloping part of the bottom, since the region 

in front of the wall was assumed to have two slopes. Sun et al. (2019) in their numerical 

study, concluded that a compressible model simulates the impact process of a two-phase 
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flow more efficiently and is generally more realistic than an incompressible one. An 

enhanced and more accurate model relative to Smoothed Particle Hydrodynamics 

(SPH) method was developed within the Finite Particle Method (FPM) and it was 

examined in the work of He et al. (2020), for a solitary wave breaking over a slope. 

However, given that their model is single-phase, it cannot capture the air entrapment 

and splash-up stages very satisfactorily.  

There are a few studies examining the breaking wave impact by plunging breakers 

in deep waters. Pressure oscillations were once again observed to exist during the 

breaking wave impact process by Chan and Melville (1988). These oscillations were of 

lower or higher frequency, depending on the amount of the entrapped air. The high 

randomness, which characterizes the breaking process, dictates the difficulty of 

deriving results from scale to prototype conditions. Given that walls and breakwaters 

are situated close to the coast, whereas the offshore structures are in deep waters mainly, 

the experimental study by Chan (1994) showed that when the wave kinematics and the 

impact zone are comparable in the shallow and deep water, so are the impact loads.  

The flip-through impact is a special kind of the breaking wave impact process. It is 

undoubtedly a highly localized phenomenon. An indicative experimental study for the 

role of the flip-through on the impact pressure on a wall is by Lugni et al. (2006). They 

found that the evolution of the flow which leads to the flip-through event, consists 

essentially of the following three steps: i) the wave advancement, ii) the focusing and 

finally iii) the flip-through. The flip-through phenomenon was also studied numerically 

by Scolan (2010), who used a desingularized technique along with a conformal 

mapping method to treat the singularities originating from the Green’s function. The 

flip-through impact on a breakwater placed over a porous rubble mound was studied 

numerically by Martin-Medina et al. (2018), who used a multi-phase Navier-Stokes 

model, without taking the turbulence into account though, along with a VoF technique 

for the interface evolution. They derived results for the pressure distribution, the free-

surface elevation and the acceleration of the fluid particles for different locations of the 

breakwater, which, in substance, implies different shapes of the breaker. They 

concluded that the steeper the wave, the more localized the impact region is, as it was 

proven by the velocity profile. 

The breaking wave impact on a vertical cylinder has been widely examined 

numerically. Such a study is by Chella et al. (2016) who used a CFD model which 

solves the Reynolds-Averaged Navier-Stokes (RANS) equations along with the k-ω 

model for the turbulence and the level set method for the free-surface. They concluded 

that the curve, which demonstrates the pressure distribution, becomes narrower and 

sharper as the distance from the still water level increases, while the contribution of the 

wave impact force to the total force, increases as the wave height increases. Another 

CFD model solving the RANS equations and the continuity equation, along with the 

level set method was developed by Kamath et al. (2016). They examined the effect of 

five different incident wave heights and five different impact scenarios, determined by 

the relative distance between the breaking point and the location of the cylinder. The 

highest force was noticed when the breaking wave impacts the cylinder just below the 

crest level, while the force is increased when the incoming wave height increases too. 

Xie et al. (2017) proposed a novel numerical model with unstructured, adaptive meshes 

in order to capture the complex surface formations during the breaking wave-cylinder 
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interaction (jets, splash-up) more satisfactorily. Tai et al. (2019) conducted an 

experimental study for the impact forces on a vertical cylinder and they discussed two 

decomposition methods that can be used to obtain the quasi-static and the dynamic 

components of the measured force. In order to investigate the characteristics of the 

irregular breaking wave forces on a monopile, through spectral analysis, Aggarwal et 

al. (2019) used a two-phase flow CFD model. 

In the last years, the numerical research for impact problems is moving towards the 

Smoothed Particle Hydrodynamics method (SPH) [Monaghan and Rafiee (2012)]. For 

the time being, the methodology for impact problem is rather immature. It involves 

inherent difficulties due to the selection of the proper kernels and the fragmentation of 

the fluid in particles. They are developed to simulate dam-break flows hitting a column 

or a cylinder violently [Cummins et al. (2012), Yang et al. (2016), Peng et al. (2021)], 

water entry problems [Gong et al. (2009), Lind et al. (2015), Aly and Asai (2018), Shao 

et al. (2019)] and breaking wave impact on walls [Didier et al. (2014), Rafiee et al. 

(2015), Pugliese Carratelli et al. (2016)]. 

Except for simple vertical walls and cylinders, the breaking wave impact process has 

been investigated in alternate models too. Kisacik et al. (2016) examined 

experimentally the impact on a vertical wall with a horizontal cantilever slab just above 

it. Due to the first impact of the breaking wave on the wall, the generated jet escaped 

upwards with great accelerations, impacting the slab directly above the wall. A similar 

study has been conducted by Huang and Chen (2020), who detected three consecutive 

impacts: the first one on the upper position of the vertical wall, the second on the lower 

part of the vertical wall and third in the corner between the cantilever slab and the 

vertical wall. By trying to approximate the vertical section of a FPSO, Hu et al. (2017) 

investigated the impact on a truncated wall, by comparing numerical and experimental 

results. They noticed that the characteristics of the breaking wave impact on a truncated 

wall were similar to those for a full depth vertical wall. Their main outcome was that 

the highest pressures recorded, were associated with the case of a flip-through impact, 

whereas the highest impact force occurred in the impact involving large air pockets. 

Comparisons among numerical models, for several loading conditions, were conducted 

by Park et al. (2018) for a simplified box-shaped structure. The box was elevated, in a 

sense that void existed between its bottom and the still water level. In an attempt to 

model an offshore structure, Yan et al. (2019) examined the case of plunging wave 

impact on a box-shape structure, experimentally and numerically. Contrary to the 

general deduction for the vertical walls, they found that the peak pressure on the 

structure does not change significantly among several experiments. A prototype 

approach to the problem of the discussion of the pressure oscillations was through the 

measurement of the area of the cavity. The classical approach of a breaking wave 

propagating over a sloping beach and impacting a wall has been extended to the 

investigation of an impact on a storm wall for a dike-promenade structure, numerically 

by De Finis et al. (2020). They considered three different locations for the storm wall 

and five different wall heights.  

The continuously increasing needs of renewable energy has led to a remarkable 

progress in the field of offshore wind technology. Wind turbines are established in 

many locations offshore, around the world. However, offshore structures, either 

floating or fixed, must survive extreme environmental loads very often, since they are 
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exposed to slamming loads due to breaking waves, especially from plunging breakers. 

The breaking wave forces exerted on a monopile supporting a wind turbine were 

examined by Aggarwal et al. (2017), who concluded that the peak spectral wave density 

is higher besides the cylinder due to shoaling and the reflected waves by the cylinder. 

Woo et al. (2017) proposed a numerical model for the calculation of slamming loads 

on a jacket structure, by discretizing it using the lumped masses method. Tu et al. (2017) 

mention that for the effective calculation of the slamming loads on offshore wind 

turbines, one should consider the following aspects: i) detection of the breaking waves, 

ii) calculation of the slamming loads and iii) their integration in the fully coupled 

analysis. Guo et al. (2020) calculated the impact loads on a semi-submersible platform 

experimentally, by applying the Froude scaling law.  

Continuing in the field of renewable energy discussed in the previous paragraph, the 

attempt to exploit wave energy, has led to considerable evolution of the oscillating wave 

surge converters (OWSC). Given that they are not protected by the wave action, impact 

pressures may question their survivability. To this end, slamming loads have been 

calculated numerically and experimentally, along with semi-analytical models. 

Similarities with the water entry problem of a wedge (within the Wagner approach) 

have been observed, while the role of the developed jet during the impact has been 

discussed by Henry et al. (2015) and Dias et al. (2017). The spatial-temporal 

distribution showed that the maximum slamming pressure is located at the middle of 

the flap below the mean water level [Wei et al. (2016)]. In any case, since slamming 

pressures are involved in many phenomena associated with Naval and Ocean 

Engineering, it is strongly recommended to be taken into account, especially during the 

design stage of a structure [Dias and Ghidaglia (2018)]. Very recently, the concept of 

pressure impulse was applied, by taking also the aeration of the water into account and 

numerical results were derived for its distribution on the flap of a wave energy converter 

[Renzi et al. (2018)]. 
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Chapter 2 The steep wave impact on a rigid, vertical 

circular cylinder 

2.1 Theoretical modelling 

In this Chapter, we investigate the hydrodynamic problem of a steep wave impact 

on a rigid, vertical circular cylinder. Beyond any question, cylinders are the most widely 

used body in the field of Offshore Engineering. They can be encountered in several 

forms: as trusses of jacket structures, members of semi-submersibles and floating 

platforms generally, as Oscillating Water Column (OWC) devices for the exploitation 

of the wave energy and as monopiles supporting wind turbines.  

Our purpose is to propose a robust mathematical model which allows us to determine 

with sufficient accuracy the contact area between the liquid and the body at every time 

instant, the 3D fluid flow induced by the impact and consequently the slamming force 

exerted on the cylinder. The method of solution is analytical. The bvp which arises is 

of mixed type. Dirichlet and Neumann boundary conditions should hold simultaneously 

at different portions of the same surface (wave front). The solution obtained within the 

context of this analysis is valid everywhere in the fluid domain except for a small 

vicinity near the jet root and the jet splash. Our analysis relies on the small-time 

assumption and particular attention is given on the initial stage of the impact where 𝑡 →

0. Once we determine the flow, we can calculate several physical quantities including 

the hydrodynamic pressure on the wetted area, using the Bernoulli equation, and 

accordingly the slamming force exerted on the cylinder, the pressure impulse on the 

cylinder and the displacement of the wave front.  

Breaking waves may hit violently a structure either with a vertical wave front, a case 

known as flip-through impact, or inclined, entrapping a small or a larger amount of air. 

Therefore, we simulated this kind of impact in the following manner: a completely 

vertical wave front is assumed, bounded from above by a flat free-surface and extending 

to the semi-infinity. The water is of depth ℎ and the bottom is horizontal and 

impermeable. Without loss of generality, we may assume that ℎ = 1. The wave moves 

along the negative 𝑥-axis with a steady velocity 𝑉, towards a cylinder of radius 𝑅. A 

schematic representation of the physical problem under consideration is shown in Fig. 

2.1.1. 𝛺  is the domain of the liquid, 𝑆𝑢 is the upper free-surface, considered flat, 𝑆𝐵 

denotes the bottom and finally 𝑆𝐹 is the vertical wave front which collides with the 

cylinder. 
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Fig. 2.1.1. 3D configuration of the steep wave impact on a vertical circular cylinder. 

Apart from the modelling of a completely vertical wave front of a breaking wave, 

the steep wave concept can be used to model dam break flows moving against a fixed 

body. The major difference between the physical modelling of a steep wave impact and 

that anticipated when a freak or a rogue wave hit an offshore structure, is that in our 

case the bottom just in front of the cylinder is dry. Besides, the underlying physics is 

completely different in each case. Even though the study of extreme waves impact on 

marine structures is not examined so widely, there are some connections between our 

modelling and that one. It is known that a freak wave may evolve into a plunging 

breaker. Some studies examined the impact pressures from a freak wave taking the 

kinematics and the orientation of the incident wave into account. In their experimental 

study, Luo et al. (2020) generated a freak wave using the focused wave theory assuming 

constant wave amplitude for each wave component of the wave packet. The chosen 

wave celerity was the one prescribed for intermediate water depths, using the middle 

frequency of the corresponding range of the wave packet, as the characteristic one. 

Rudman and Cleary (2013), trying to model the notorious Draupner wave [Clauss 

(2002)], used the SPH methodology to investigate the impact of rogue waves in a TLP. 

Another numerical study by the same authors, proved that a rogue wave impact with an 

angle of 45° was the worst case of loading [Rudman and Cleary (2016)]. In both studies, 

the impact velocity was chosen to be 20m/s. 

At the time instant 𝑡 = 0, the wave front hits the cylinder. For 𝑡 > 0 the cylinder 

penetrates the water by a horizontal distance 𝑉𝑡 and the liquid/body contact area is 

delimited by the contact line 𝑏(𝑧, 𝑡), along the vertical 𝑧-axis, at each time instant. From 

a physical aspect, the contact line denotes the end of the portion of the body that the 

water hits and bounds the wetted surface of the body. Alternatively, from a 

mathematical point of view, the contact line can be contemplated as the boundary which 

divides a surface to two sub-regions, each one governed by a different boundary 
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condition (Dirichlet and Neumann). Under the small-time assumption, which 

fundamentally leads to the linearization of the bvp, the contact area can be 

approximated by its projection on the vertical (𝑦, 𝑧) plane, as shown in Fig. 2.1.2 

[Scolan and Korobkin (2001), Korobkin and Scolan (2006)].  

 

 

Fig. 2.1.2. The contact line 𝑏(𝑧, 𝑡) and the projection of the contact area in the (𝑦, 𝑧) plane. 

 

Fig. 2.1.3. The von Karman, 𝑏0(𝑡), and the Wagner, 𝑏(𝑧, 𝑡), contact lines, at a time instant 

𝑡 > 0. The cylinder penetrates the liquid by a horizontal distance 𝑉𝑡 and the wave front 

displacement is denoted by 𝜂(𝑦, 𝑧, 𝑡). The problem is considered in 3D using a Cartesian 

representation. The coordinate system moves with the wave front. The vertical 𝑧-axis 

increases towards the viewer; the disturbed wave front asymptotes to the 𝑦-axis. 

As already discussed in the literature review, there are two established theories, both 

referring to 2D wedge water entry problems, which determine the width 𝑏(𝑧, 𝑡). von 

Karman’s theory does not account for the pile-up of the water during the collision and 

the contact line is explicitly calculated by a simple geometrical relation. Wagner’s 

theory assumes that, due to the collision, a portion of the water surface, which hits the 
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cylinder, denoted by 𝜂(𝑦, 𝑧, 𝑡), deforms and exhibits an asymptotical behavior along 

the 𝑦-axis, as shown in Fig. 2.1.3. The contact line is slightly displaced compared to 

that described by the von Karman model. As a result, the first theory clearly 

underestimates the actual contact area and consequently the hydrodynamic loading, 

while the second one overestimates it, when considered in 3D. Herein, we deal with the 

3D Wagner impact problem and we prove that the real contact line lies between those 

prescribed by these two theories and has to be determined along with the fluid flow 

after the impact. 

2.2 The mixed boundary value problem of the hydrodynamic 

slamming  

The mathematical formulation of the governing mixed bvp is considered in this 

Section, within the Wagner impact theory. We assume inviscid, incompressible fluid 

and irrotational flow, so the fluid flow after impact can be described by the linear 

potential theory. Surface tension and gravity are ignored. The governing hydrodynamic 

system will be derived using asymptotic analysis of the flow and the pressure 

distribution at the initial stage of the impact. Asymptotic analysis has been performed 

by Korobkin (2004), Miloh (1991) and Howison et al. (1991) among others. Here, the 

asymptotic analysis is implemented under the assumption that the horizontal dimension 

(along 𝑦) of the wetted part of the cylinder starts from zero and grows progressively 

but is less than 2𝑅. Cylinder’s penetration 𝑑 relative to the undeformed wave front 𝑆𝐹 

at the initial stage of the impact is of the order of 𝑓(𝑅) and is very small compared to 

the horizontal dimension of the contact region and accordingly the ratio 𝜖 = 𝑓(𝑅) 𝑅⁄  

can be used as the scaling factor.  

The length scale is represented by the radius 𝑅. Further, 𝜖𝑅 is the displacement scale, 

𝜖𝑅 𝑉⁄  is the time scale, 𝜌𝑉2 𝜖⁄  is the scale of the hydrodynamic pressure, while 𝑅𝑉 is 

the scale of the velocity potential coined 𝜙(𝑥, 𝑦, 𝑧, 𝑡). Following Korobkin (2004) and 

using nondimensional variables, which are denoted by the symbol of the tilde, the 

nondimensional velocity potential 𝜙̃(𝑥̃, 𝑦̃, 𝑧̃, 𝑡̃) should satisfy the following bvp: 

 

 ∇2𝜙̃ = 0, (in Ω̃), (2.2.1) 

 

 
𝜕𝜙̃

𝜕𝑡̃
+ 𝜖

1

2
|∇𝜙̃|

2
= 0, (on 𝑆̃𝐹, 𝑆̃𝑈), (2.2.2) 

 

 
𝜕𝜂̃

𝜕𝑡̃
+ 𝜖

𝜕𝜂̃

𝜕𝑦̃

𝜕𝜙̃

𝜕𝑦̃
=

𝜕𝜙̃

𝜕𝑥̃
, [𝑥̃ = −𝜖𝜂̃(𝑦̃, 𝑡̃)], (2.2.3) 

 

 
𝜕𝜙̃

𝜕𝑧̃
= 0, (on 𝑆̃𝐵), (2.2.4) 

 

 
𝜕𝜙̃

𝜕𝑥̃
= 𝜖𝑓′(𝑦̃)

𝜕𝜙̃

𝜕𝑦̃
+

𝜕𝑑̃

𝜕𝑡̃
, {𝑥̃ = 𝜖[𝑓(𝑦̃) + 𝑑̃(𝑡̃)]}, (2.2.5) 

 

 𝜙̃ → 0, (𝑥̃2 + 𝑦̃2 → ∞). (2.2.6) 
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Eq. (2.2.1) is the Laplace equation which holds in the entire fluid field, Eq. (2.2.2) is 

the dynamic condition on the upper free-surface and the vertical wave front, Eq. (2.2.3) 

is the kinematic condition on the wave front, while Eq. (2.2.4) is the zero-velocity 

condition on the impermeable flat and horizontal bottom. Eq. (2.2.5) is the kinematic 

condition on the wetted part of the cylinder and finally Eq. (2.2.6) is the far-field 

boundary condition, which implies that any disturbance caused by the impact should 

vanish at infinity. Clearly, the underlying system of Eqs. (2.2.1)-(2.2.6) assumes that 

no deformation of the velocity field occurs in the vertical direction, which allows us to 

neglect the 𝜕𝜙̃ 𝜕𝑧̃⁄  terms. Under the specific assumption, the present formulation 

ignores the deformations of the upper free-surface, including the wave run-up on the 

cylinder during impact. Following the same reasoning, no free-surface kinematical 

condition exists on 𝑆̃𝑈. 

We restore the dimensionalized variables, and noting that 𝑑(𝑡) = 𝑉𝑡 is the 

penetration depth of the cylinder to the liquid at the very early stages of the impact, we 

let 𝜖 → 0 and the system of Eqs. (2.2.1)-(2.2.6) is linearized (to the leading order) 

according to 

 

 ∇2𝜙 = 0, 𝑥 ≥ 0, 0 ≤ 𝑦 < +∞, −ℎ ≤ 𝑧 ≤ 0, (2.2.7) 

 

 𝜙 = 0, 𝑥 ≥ 0, 0 ≤ 𝑦 < +∞, 𝑧 = 0, (2.2.8) 

 

 𝜙 = 0, 𝑥 = 0, 𝑏(𝑧, 𝑡) < 𝑦 < +∞, −ℎ ≤ 𝑧 ≤ 0, (2.2.9) 

 

 
𝜕𝜂

𝜕𝑡
=

𝜕𝜙

𝜕𝑥
, 𝑥 = 0, 𝑦 > 𝑏(𝑧, 𝑡), −ℎ ≤ 𝑧 ≤ 0, (2.2.10) 

 

 
𝜕𝜙

𝜕𝑧
= 0, 𝑥 ≥ 0, 0 ≤ 𝑦 < +∞, 𝑧 = −ℎ, (2.2.11) 

 

 
𝜕𝜙

𝜕𝑥
= 𝑉, 𝑥 = 0, 0 ≤ 𝑦 ≤ 𝑏(𝑧, 𝑡), −ℎ ≤ 𝑧 ≤ 0, (2.2.12) 

 

 𝜙 → 0, 𝑥2 + 𝑦2 → ∞. (2.2.13) 

 

Given that the problem is symmetrical relative to the 𝑧-axis for 𝑥 = 0 (Fig. 2.1.2), the 

governing set can be enhanced using the artificial Neumann condition in 𝑦 direction 

 

 
𝜕𝜙

𝜕𝑦
= 0, 𝑥 ≥ 0, 𝑦 = 0, −ℎ ≤ 𝑧 ≤ 0. (2.2.14) 

 

Finally, the hydrodynamic system of wave impact is completed introducing the Wagner 

condition, which literally means that the elevated liquid meets the surface of the 

cylinder. By geometry (Fig. 2.1.3), the Wagner condition is written as 

 

 𝜂[𝑏(𝑧, 𝑡), 𝑧, 𝑡] = 𝑉𝑡 − 𝑅 + √𝑅2 − [𝑏(𝑧, 𝑡)]2. (2.2.15) 
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In the context of the classical Wagner approximation the liquid flow due to the 

impact is described by the set of equations (2.2.7)-(2.2.15). This theory is valid at the 

very early stages of the impact, when the penetration depth is much smaller than the 

horizontal dimension of the wetted body, which in our case means that 𝑉𝑡 ≪ 𝑏(𝑧, 𝑡) 

[Scolan and Korobkin (2001), Korobkin (2002)]. It is important to note that despite the 

linearization of the boundary conditions, the bvp remains nonlinear. This follows from 

the fact that the contact region is unknown in advance and must be determined as a part 

of the solution. Clearly, the associated bvp is of mixed type, given that it involves both 

Neumann and Dirichlet conditions in different portions of the same surface (the wave 

front). In particular, the final system under consideration assumes a zero (total) velocity 

on the liquid/solid contact area [Eq. (2.2.12)] and zero hydrodynamic pressures, i) on 

the entire upper free-surface at 𝑧 = 0 and ii) beyond the contact area on the wave front 

[Eqs. (2.2.8) and (2.2.9)].   

 

2.3 Solution of the mixed boundary value problem 

2.3.1 The contact line and the velocity potential on the contact area  

Using separable solutions of the Laplace equation (2.2.7), we write an expression 

for 𝜙(𝑥, 𝑦, 𝑧, 𝑡) as follows 

 

 𝜙(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝜙𝑛(𝑥, 𝑦, 𝑡) sin(𝜆𝑛𝑧)

∞

𝑛=1

, (2.3.1) 

 

where 

 

 𝜆𝑛 = (𝑛 − 1 2⁄ )𝜋/ℎ, (2.3.2) 
 

which satisfies the boundary conditions (2.2.8) and (2.2.11). Substituting expression 

(2.3.1) in the Laplace equation (2.2.7) yields 

 

 
𝜕2𝜙𝑛

𝜕𝑥2
+

𝜕2𝜙𝑛

𝜕𝑦2
− 𝜆𝑛

2 𝜙𝑛 = 0. (2.3.3) 

 

The separable solutions of Eq. (2.3.3) should construct products of the form  

 

 𝜙𝑛(𝑥, 𝑦, 𝑡)~ cos(𝑢𝑦) 𝑒
−𝑥√𝑢2+𝜆𝑛

2

, (2.3.4) 

 

where 𝑢 denotes an arbitrary variable. In addition to Eq. (2.3.3), Eq. (2.3.4) satisfies 

both the symmetry [Eq. (2.2.14)] and the far-field [Eq. (2.2.13)] conditions. To 

generalize the solution for 𝜙𝑛 relative to the variable 𝑢, and apparently the time 𝑡, we 

write 

 

 𝜙𝑛(𝑥, 𝑦, 𝑡) = ∫ 𝜉𝑛(𝑢, 𝑡)

∞

0

cos(𝑢𝑦) 𝑒
−𝑥√𝑢2+𝜆𝑛

2

𝑑𝑢. (2.3.5) 
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Hence, it follows that the fundamental solution 𝜙(𝑥, 𝑦, 𝑧, 𝑡) is written in the form 

 

 𝜙(𝑥, 𝑦, 𝑧, 𝑡) = ∑ sin(𝜆𝑛𝑧) ∫ 𝜉𝑛(𝑢, 𝑡)

∞

0

cos(𝑢𝑦) 𝑒
−𝑥√𝑢2+𝜆𝑛

2

𝑑𝑢

∞

𝑛=1

, (2.3.6) 

 

where 𝜉𝑛(𝑢, 𝑡) are functions to be determined. Note that the coefficients which should 

multiply the eigenfunction in the 𝑧-direction, originating from the separation of 

variables of the Laplace equation, are actually encompassed in the unknown functions 

𝜉𝑛(𝑢, 𝑡). 

Furthermore, we endeavor to satisfy the Dirichlet and the Neumann conditions of 

Eqs. (2.2.9) and (2.2.12) respectively, that define the concerned bvp as a problem of 

mixed type. Thus, introducing Eq. (2.3.6) into Eqs. (2.2.9) and (2.2.12), one gets  

 

 ∑ sin(𝜆𝑛𝑧) ∫ 𝜉𝑛(𝑢, 𝑡)

∞

0

cos(𝑢𝑦) 𝑑𝑢

∞

𝑛=1

= 0, 𝑏 < 𝑦, (2.3.7) 

 

 ∑ sin(𝜆𝑛𝑧) ∫ 𝜉𝑛(𝑢, 𝑡)

∞

0

√𝑢2 + 𝜆𝑛
2 cos(𝑢𝑦) 𝑑𝑢

∞

𝑛=1

= −𝑉, 0 ≤ 𝑦 ≤ 𝑏. (2.3.8) 

 

The cosine terms in Eqs. (2.3.7) and (2.3.8) are next recast using Abramowitz and 

Stegun (1970) 

 

 cos(𝑢𝑦) = √𝜋𝑦𝑢 2⁄ 𝐽𝜈(𝑢𝑦), 𝜈 = − 1 2,⁄  (2.3.9) 

 

where 𝐽𝜈 is the Bessel function of the first kind with fractional order 𝜈. Subsequently, 

Eqs. (2.3.7) and (2.3.8) form a problem of mixed type that involves integral equations. 

To cope with this problem, we follow the technique suggested by Tranter (1960a) which 

aims to satisfy first the Dirichlet condition via proper selection of the unknown kernel 

𝜉𝑛(𝑢, 𝑡). However, particular attention must be paid on this issue, since the existence 

and convergence of the infinite integrals on 𝑢 ∈ [0, ∞) is not necessarily guaranteed 

for a random choice of the unknown functions 𝜉𝑛(𝑢, 𝑡). Hence, we exploit a relation 

that can be found in Gradshteyn and Ryzhik (2007) 

 

 ∫ 𝑢𝜈+1

∞

0

𝐽𝑚(𝑏√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )𝑚 2⁄

𝐽𝜈(𝑢𝑦)𝑑𝑢 = 0, 𝑏 < 𝑦. (2.3.10) 

 

The only requirement for the validity of Eq. (2.3.10) is that 𝑚 > 𝜈 > −1 [Gradshteyn 

and Ryzhik (2007); p. 693]. The form of Eq. (2.3.10) dictates the following assumption 

for the unknown functions 𝜉𝑛(𝑢, 𝑡) 

 

 𝜉𝑛(𝑢, 𝑡) = ∑ 𝐴𝑚𝑛

∞

𝑚=0

𝐽𝑚(𝑏√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )𝑚 2⁄

.  (2.3.11) 
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The series expansion of Eq. (2.3.11) relative to the order 𝑚 of the Bessel function, 

ensures the generality of the solution. As previously mentioned, the arbitrary 

coefficients 𝐴𝑚𝑛 incorporate the coefficients, which should multiply the sine function 

in Eq. (2.3.6). After introducing Eqs. (2.3.9) and (2.3.11) in Eq. (2.3.7) and recalling 

Eq. (2.3.10), one gets 

 

 √
𝜋𝑦

2
∑ ∑ 𝐴𝑚𝑛 sin(𝜆𝑛𝑧) ∫ 𝑢1/2

∞

0

𝐽𝑚(𝑏√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )𝑚 2⁄

𝐽−1/2(𝑢𝑦)𝑑𝑢

∞

𝑛=1

= 0

∞

𝑚=0

. (2.3.12) 

 

Hence, using Eq. (2.3.11) in Eq. (2.3.7) yields an identity. Nonetheless, it should be 

highlighted that the general consideration of the 3D Wagner wave impact problem, 

requires that the shape of the contact line, represented herein by the width 𝑏, should 

depend on both the time 𝑡 and the vertical coordinate 𝑧, i.e., 𝑏 ≡ 𝑏(𝑧, 𝑡). Consequently, 

although the particular selection of the kernel 𝜉𝑛 satisfies the Dirichlet condition (2.3.7), 

it actually violates the Laplace equation. Thus, the only mathematically acceptable 

option is to consider that the width of the contact area 𝑏 is weakly dependent on 𝑧, 

which in turn allows assuming that the Laplace equation is not being violated. The 

concerned hypothesis implies that both 𝑑𝑏(𝑧, 𝑡) 𝑑𝑧⁄  and 𝑑2𝑏(𝑧, 𝑡) 𝑑𝑧2⁄  should 

approach to zero along the whole interval 𝑧 ∈ [−ℎ, 0], a condition that is satisfied 

assuming that the instantaneous contact line is “nearly” vertical and weakly dependent 

on 𝑧. That ensures that Eq. (2.3.6) still satisfies the Laplace equation. Further, the 

expansion coefficients 𝐴𝑚𝑛 should also be functions of both 𝑧 and 𝑡, i.e., 𝐴𝑚𝑛 ≡

𝐴𝑚𝑛(𝑧, 𝑡), while it is assumed that they are also weakly dependent on 𝑧. 

Having satisfied one of the two mixed conditions, in the next step we proceed to the 

calculation of the unknown expansion coefficients 𝐴𝑚𝑛 by requiring the satisfaction of 

the kinematic condition of Eq. (2.3.8). Introducing Eqs. (2.3.9) and (2.3.11) into Eq. 

(2.3.8) yields 

 

 

∑ ∑ 𝐴𝑚𝑛 sin(𝜆𝑛𝑧) ∫ 𝑢1/2

∞

0

𝐽𝑚(𝑏√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )(𝑚−1) 2⁄

𝐽−1/2(𝑢𝑦)𝑑𝑢

∞

𝑛=1

=

∞

𝑚=0

− 𝑉√
2

𝜋𝑦
, 0 ≤ 𝑦 ≤ 𝑏. 

(2.3.13) 

 

The infinite integral in Eq. (2.3.13) is divergent for 𝑚 = 0 and 𝑚 = 1. It can be verified 

by taking the limits of the Bessel functions for large arguments [Abramowitz and 

Stegun (1970)]. The asymptotic behavior of the Bessel function is like 𝑢−1/2 for 𝑢 →

∞. Therefore, we are allowed to assume artificially that 𝐴0𝑛 = 𝐴1𝑛 = 0 for 𝑛 = 1,2, …. 

It is noted that there is no explicit analytic formula for calculating the infinite integral 

in Eq. (2.3.13). All infinite integrals employed herein, are calculated using MATLAB’s 

built-in function “integral”, which allows the efficient numerical approximation of 

improper integrals such as the integrals included in the present study. Relying further 

on numerical computations, it can be easily shown that the values of the infinite integral 

for 𝑚 ≥ 3,4, . .., are rather negligible compared to the corresponding values for 𝑚 = 2. 

To support this statement, Figs. 2.3.1.-2.3.3 are given, which show graphically the value 
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of the infinite integral of Eq. (2.3.13) as a function of the mode number 𝑛, for a specific 

value of 𝑏 and three random values of 𝑦, provided that 0 ≤ 𝑦 ≤ 𝑏.  

 

 

Fig. 2.3.1. Values of the infinite integral of Eq. (2.3.13) as a function of the mode number n 

for 𝑏 = 0.1581 and 𝑦 = 0.005. 

 

Fig. 2.3.2. Values of the infinite integral of Eq. (2.3.13) as a function of the mode number n 

for 𝑏 = 0.1581 and 𝑦 = 0.09. 
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Fig. 2.3.3. Values of the infinite integral of Eq. (2.3.13) as a function of the mode number n 

for 𝑏 = 0.1581 and 𝑦 = 0.155. 

Therefore, it can be safely assumed that the truncation of the 𝑚 −series does not 

influence the convergence of the left-hand side of Eq. (2.3.13). Using the assumption 

that only 𝐴2𝑛 = 𝐴𝑛 are nonzero, Eq. (2.3.13) is reduced to  

 

 
∑ 𝐴𝑛 sin(𝜆𝑛𝑧) ∫ 𝑢1/2

∞

0

𝐽𝜇(𝑏√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )(𝜇−1) 2⁄

𝐽−1/2(𝑢𝑦)𝑑𝑢

∞

𝑛=1

= −𝑉√
2

𝜋𝑦
,

0 ≤ 𝑦 ≤ 𝑏, 

(2.3.14) 

 

where we assumed 𝜇 = 2. In order to calculate the expansion coefficients 𝐴𝑛, we have 

to make use of the orthogonality property of sin(𝜆𝑛𝑧) in the interval [−1,0]. However, 

this approach cannot be implemented in a straightforward manner, since 𝑏, in the 

argument of the Bessel function of order 𝜇, is also a varying function of 𝑧. Thus, further 

mathematical manipulation of the Eq. (2.3.14) is required. Firstly, we average both 

sides over the defining interval 0 ≤ 𝑦 ≤ 𝑏. In particular we assume that 𝑦 = 𝑏𝑟,  0 ≤

𝑟 ≤ 1.  Next, both sides of Eq. (2.3.14) are multiplied by 𝑟𝜈+1 and are integrated over 

the defining interval of 𝑟. Making use of the result [Gradshteyn and Ryzhik (2007); p. 

676] 

 

 ∫ 𝑟𝜈+1

1

0

𝐽𝜈(𝑏𝑢𝑟)𝑑𝑟 =
1

𝑏𝑢
𝐽𝜈+1(𝑏𝑢), (2.3.15) 

 

Eq. (2.3.14) yields 
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∑ 𝐴𝑛 sin(𝜆𝑛𝑧) ∫ 𝑢−1/2

∞

0

𝐽2(𝑏√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1/2

𝐽1/2(𝑢𝑏)𝑑𝑢

∞

𝑛=1

= −𝑉√
2𝑏

𝜋
,

0 ≤ 𝑦 ≤ 𝑏. 

(2.3.16) 

 

Nevertheless, additional elaboration on the Eq. (2.3.16) is needed, since we have not 

eliminated the dependence of the Bessel function 𝐽2 on the vertical coordinate 𝑧 yet. To 

this end, it is recalled that the width of the instantaneous Wagner contact region 𝑏 is a 

function of both 𝑧 and 𝑡, but it varies weakly around the vertical so that the Laplace 

equation is not violated. Next, the width 𝑏 is assumed to be of the form 

 

 𝑏(𝑧, 𝑡) = 𝑏0(𝑡)[1 + 𝜖(𝑧, 𝑡)], 𝜖(𝑧, 𝑡) ≪ 1, −1 ≤ 𝑧 ≤ 0. (2.3.17) 
 

The instantaneous contact line 𝑏0(𝑡) denotes the von Karman approach (see Fig. 2.1.3) 

and is determined explicitly by the simple geometrical relation 

 

 𝑏0(𝑡) = √𝑅2 − (𝑅 − 𝑉𝑡)2. (2.3.18) 

 

Having defined the small scaling factor 𝜖 ≡ 𝜖(𝑧, 𝑡), in Section 2.2, we are allowed to 

expand in Taylor series, all the terms of Eq. (2.3.16), which involve the factor 𝑏(𝑧, 𝑡), 

around the known von Karman width 𝑏0(𝑡), as follows 

 

 

𝐽2 (𝑏√𝑢2 + 𝜆𝑛
2 )

= 𝐽2 (𝑏0√𝑢2 + 𝜆𝑛
2 )

+ 𝜖 [−𝑏0√𝑢2 + 𝜆𝑛
2 𝐽3 (𝑏0√𝑢2 + 𝜆𝑛

2 )

+ 2𝐽2 (𝑏0√𝑢2 + 𝜆𝑛
2 )] + 𝑂(𝜖2), 

(2.3.19) 

 

 

𝐽1/2(𝑏𝑢) = 𝐽1/2(𝑏0𝑢)

+ 𝜖[𝑏0𝑢𝐽−1/2(𝑏0𝑢) − (−1/2)𝐽1/2(𝑏0𝑢) − 𝐽1/2(𝑏0𝑢)]

+ 𝑂(𝜖2), 

(2.3.20) 

 

 𝑏1 2⁄ = 𝑏0
1 2⁄

+
𝜖

2
𝑏0

1 2⁄
+ 𝑂(𝜖2). (2.3.21) 

 

The last term of Eq. (2.3.16), which must be uncoupled by the 𝑧 −dependence, is the 

expansion coefficients 𝐴𝑛, which are accordingly expanded in a perturbation series as 

 

 𝐴𝑛(𝑧, 𝑡) = 𝐴𝑛
(0)(𝑡) + 𝜖(𝑧, 𝑡)𝐴𝑛

(1)(𝑡) + 𝑂(𝜖2). (2.3.22) 

 

Thereafter, it is remarked that the coefficients 𝐴𝑛
(𝑘)

, 𝑘 = 0,1,2, …, are solely functions 

of time. Introducing Eqs. (2.3.19)-(2.3.21) in (2.3.16), we segregate like orders of 𝜖 and 

finally exclude the scaling factor from further manipulations. Following this analysis, 

one gets 
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Order 𝑂(𝜖0) 

 

 ∑ 𝐴𝑛
(0)

𝑠𝑖𝑛(𝜆𝑛𝑧) ∫ 𝑢−1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1/2

𝐽1/2(𝑢𝑏0)𝑑𝑢

∞

𝑛=1

= −𝑉√
2𝑏0

𝜋
. (2.3.23) 

 

Order 𝑂(𝜖1) 

 

 

∑ 𝑠𝑖𝑛(𝜆𝑛𝑧) {𝑏0𝐴𝑛
(0)

∫ 𝑢1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1/2

𝐽−1/2(𝑢𝑏0)𝑑𝑢

∞

𝑛=1

− (−1/2)𝐴𝑛
(0)

∫ 𝑢−1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1 2⁄

𝐽1/2(𝑢𝑏0)𝑑𝑢

− 𝐴𝑛
(0)

∫ 𝑢−1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1 2⁄

𝐽1/2(𝑢𝑏0)𝑑𝑢 

− 𝑏0𝐴𝑛
(0)

∫ 𝑢−1 2⁄

∞

0

𝐽3 (𝑏0√𝑢2 + 𝜆𝑛
2 ) 𝐽1/2(𝑢𝑏0)𝑑𝑢 

+ 2𝐴𝑛
(0)

∫ 𝑢−1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1/2

𝐽1/2(𝑢𝑏0)𝑑𝑢 

+𝐴𝑛
(1)

∫ 𝑢−1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1/2

𝐽1/2(𝑢𝑏0)𝑑𝑢} = −
𝑉

2
√

2𝑏0

𝜋
.  

(2.3.24) 

 

The form of Eqs. (2.3.23) and (2.3.24) enables the immediate exploitation of the 

orthogonality property of the 𝑧 −eigenfunctions. It is reminded that  

 

 ∫ sin(𝜆𝑛𝑧) sin(𝜆𝑠𝑧) 𝑑𝑧

0

−1

=
1

2
 𝛿𝑛𝑠, (2.3.25) 

 

where 𝛿𝑛𝑠 is the Kronecker’s delta function. Eqs. (2.3.23) and (2.3.24) are reduced to 

 

 𝐴𝑛
(0)

∫ 𝑢−1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1 2⁄

𝐽1/2(𝑢𝑏0)𝑑𝑢 =
2𝑉

(𝑛 − 1 2⁄ )𝜋
√

2𝑏0

𝜋
,  (2.3.26) 
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𝐴𝑛
(1)

∫ 𝑢−1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1 2⁄

𝐽1/2(𝑢𝑏0)𝑑𝑢

=
𝑉

(𝑛 − 1 2⁄ )𝜋
√

2𝑏0

𝜋

− 𝑏0𝐴𝑛
(0)

∫ 𝑢1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1 2⁄

𝐽−1/2(𝑢𝑏0)𝑑𝑢

+ (−1/2)𝐴𝑛
(0)

∫ 𝑢−1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1/2

𝐽1/2(𝑢𝑏0)𝑑𝑢

+ 𝐴𝑛
(0)

∫ 𝑢−1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1 2⁄

𝐽1/2(𝑢𝑏0)𝑑𝑢 

+ 𝑏0𝐴𝑛
(0)

∫ 𝑢−1 2⁄

∞

0

𝐽3 (𝑏0√𝑢2 + 𝜆𝑛
2 ) 𝐽1/2(𝑢𝑏0)𝑑𝑢

− 2𝐴𝑛
(0)

∫ 𝑢−1 2⁄

∞

0

𝐽2(𝑏0√𝑢2 + 𝜆𝑛
2 )

(𝑢2 + 𝜆𝑛
2 )1 2⁄

𝐽1/2(𝑢𝑏0)𝑑𝑢. 

(2.3.27) 

 

Hence, the coefficients of the perturbation expansion (2.3.22) are easily obtained 

through the simple algebraic relations of Eqs. (2.3.26) and (2.3.27). The involved 

infinite integrals are calculated numerically. Clearly the first-order coefficients 𝐴𝑛
(1)

 

necessitate the computation of the leading, zeroth order coefficients  𝐴𝑛
(0)

.  

 

 

Fig. 2.3.4. Leading order expansion coefficients 𝐴𝑛
(0)

(𝑡) vs time, for the first five modes. 

Here, 𝑅 = 0.5𝑚, 𝑉 = 3𝑚/𝑠. 
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Fig. 2.3.5. First order expansion coefficients 𝐴𝑛
(1)

(𝑡) vs time, for the first five modes. Here, 

𝑅 = 0.5𝑚, 𝑉 = 3𝑚/𝑠. 

Figs. 2.3.4 and 2.3.5 show the behavior of those coefficients, for the first five modes, 

over a short period of time 𝑡 ∈ (0,0.01]. The leading order coefficients are almost 

constant in time. Their values have a clear declining tendency towards zero with 

increasing mode number. In contrast, the first order coefficients, demonstrate a more 

radical reduction, especially in the first moments of the impact. At later stages, they 

seem to obtain a constant value. 

Returning back to the bvp, integration of the kinematic condition, Eq. (2.2.10), of 

the wave front beyond the instantaneous contact line yields 

 

 𝜂(𝑦, 𝑧, 𝑡) = ∫
𝜕𝜙(0, 𝑦, 𝑧, 𝜏)

𝜕𝑥

𝑡

0

𝑑𝜏. (2.3.28) 

 

Clearly, the constant of integration is zero since no disturbance exists at the time instant 

𝑡 = 0 and the wave front is completely flat. 

Having satisfied all boundary conditions and having calculated the unknown 

expansion coefficients, the velocity potential is obtained by combining Eqs. (2.3.6), 

(2.3.9) and (2.3.11) as 

 

 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = √
𝜋𝑦

2
∑ 𝐴𝑛(𝑧, 𝑡) sin(𝜆𝑛𝑧)

∞

𝑛=1

× ∫ 𝑢1/2

∞

0

𝐽2[𝑏(𝑧, 𝑡)√𝑢2 + 𝜆𝑛
2 ]

(𝑢2 + 𝜆𝑛
2 )

𝐽−1/2(𝑢𝑦)𝑒
−𝑥√𝑢2+𝜆𝑛

2

𝑑𝑢. 

(2.3.29) 

 

Lastly, introducing Eq. (2.3.29) in Eq. (2.3.28), differentiating with respect to 𝑥 and 

evaluating on the instantaneous contact line, one gets 



 
 

29 
 

 

𝜂[𝑏0(𝑡) + 𝜖(𝑧, 𝑡)𝑏0(𝑡) , 𝑧, 𝑡] = −√
𝜋[𝑏0(𝑡) + 𝜖(𝑧, 𝑡)𝑏0(𝑡)]

2
 

× ∑ sin(𝜆𝑛𝑧) ∫[𝐴𝑛
(0)(𝜏) + 𝜖(𝑧, 𝜏)𝐴𝑛

(1)(𝜏)]

𝑡

0

∞

𝑛=1

× ∫ 𝑢1/2

∞

0

𝐽2{[𝑏0(𝜏) + 𝜖(𝑧, 𝜏)𝑏0(𝜏)]√𝑢2 + 𝜆𝑛
2 }

(𝑢2 + 𝜆𝑛
2 )1/2

 

× 𝐽−1/2{𝑢[𝑏0(𝜏) + 𝜖(𝑧, 𝜏)𝑏0(𝜏)]} 𝑑𝑢 𝑑𝜏. 

(2.3.30) 

 

Eqs. (2.3.30) and (2.2.15) form a nonlinear algebraic equation to be solved in terms of 

the unknown small parameter 𝜖(𝑧, 𝑡). For this purpose, “fzero” command was used. At 

this point, it is necessary to provide some details about the adopted procedure. For a 

given time 𝑡, the interval [0, 𝑡] was discretized into a sufficient number of nodes (𝜏) to 

secure convergence. For each of these nodes, we calculated the von Karman width 

𝑏0(𝜏) through Eq. (2.3.18).  The double integration in Eq. (2.3.30) was performed 

numerically for every mode 𝑛, each time instant 𝜏, at a fixed position 𝑧. Specifically, 

the time integration was executed using the “trapz” command, while that of the Bessel 

functions with “integral”. All the aforementioned commands are MATLAB’s built-in 

functions. The expansion coefficients 𝐴𝑛
(0)(𝜏) and 𝐴𝑛

(1)(𝜏) are obtained using Eqs. 

(2.3.26) and (2.3.27). Once the parameter 𝜖(𝑧, 𝑡) is calculated, the Wagner 3D 

instantaneous contact line 𝑏(𝑧, 𝑡) can be explicitly determined with the aid of Eq. 

(2.3.17). The last step of the solution is the calculation of the velocity potential through 

Eq. (2.3.29), on the impacted area of the cylinder for 𝑥 = 0. Having calculated 𝜖(𝑧, 𝜏), 

the velocity potential follows from 

 

 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = √
𝜋𝑦

2
∑[𝐴𝑛

(0)(𝑡) + 𝜖(𝑧, 𝑡)𝐴𝑛
(1)(𝑡)] sin(𝜆𝑛 𝑧)

∞

𝑛=1

 

× ∫ 𝑢1/2

∞

0

𝐽𝜇{[𝑏0(𝑡) + 𝜖(𝑧, 𝑡)𝑏0(𝑡)]√𝑢2 + 𝜆𝑛
2 }

(𝑢2 + 𝜆𝑛
2 )

𝐽−1/2(𝑢𝑦)𝑒
−𝑥√𝑢2+𝜆𝑛

2

 𝑑𝑢. 

(2.3.31) 

 

In the following we provide some numerical results for the instantaneous contact 

line and the velocity potential on the impacted area. Two model cases are considered, 

defined by a fixed radius 𝑅 = 0.5m and two distinct velocities 𝑉 = 1m/s and 𝑉 =

3m/s.  
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Fig. 2.3.6. Evolution of the instantaneous contact lines during the impact of a steep wave that 

collides with a steady velocity 𝑉 = 1m/s with a vertical circular cylinder with radius 𝑅 =
0.5m. 

 

Fig. 2.3.7. Evolution of the instantaneous contact lines during the impact of a steep wave that 

collides with a steady velocity 𝑉 = 3m/s with a vertical circular cylinder with radius 𝑅 =
0.5m. 

Figs. 2.3.6 and 2.3.7 depict the motion of the instantaneous contact line between the 

liquid (using the 3D Wagner steep wave impact model elaborated in the present) and 

the vertical cylinder. These snapshots determine essentially the half contact area 

between the liquid and the solid. The first remark is that the contact line is actually 

vertical along nearly the total height of the cylinder, a fact that verifies the accuracy of 

the fundamental assumption employed in the present, according to which the semi-

width 𝑏(𝑧, 𝑡) is weakly dependent on 𝑧, a consideration which maintains the Laplace 
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equation intact. However, one should note the bend of the contact line towards the upper 

free-surface. Finally, it is remarked that the curvature is larger as the phenomenon is 

evolving, while the impact of the collision is more intense at the beginning of the 

phenomenon.   

Moreover, while formulating the governing hydrodynamic bvp, in Section 2.2, we 

noted that the Wagner impact theory holds under the assumption that the penetration 

depth is much smaller than the horizontal dimension of the contact area, so that the 

boundary conditions can be imposed on its projection. This statement can be verified 

e.g., with the aid of Fig. 2.3.7. For the time instant 𝑡 = 0.005s, the penetration depth of 

the cylinder is 𝑑 = 𝑉𝑡 = 0.015m and the width of the contact line, at a section 𝑧 =

−0.4, is 𝑏 = 0.1567. A straightforward comparison gives 𝑉𝑡/𝑏 = 0.096 ≪ 1. 

One of the most important queries that this study intends to answer is the range of 

validity of the 2D Wagner approach when applied to 3D convex geometries such as 

vertical circular cylinders. A credible answer can be given using the results depicted in 

Figs. 2.3.8 and 2.3.9, which show the normalized semi-width of the total impacted area 

of a vertical circular cylinder, again with fixed radius 𝑅 = 0.5m and subjected to a steep 

wave impact with constant velocities 𝑉 = 1m/s and 𝑉 = 3m/s. The time is taken in 

the nondimensional form 𝜏 = 𝑉𝑡 𝑅⁄ . Figs. 2.3.8 and 2.3.9 originate actually from Figs. 

2.3.6 and 2.3.7, if one computes the evolution of a contact point by considering a section 

at a specific height of the cylinder. The results presented are for a section at 𝑧 = −0.7. 

Three basic concepts are considered and compared: the simplified von Karman 

approximation [von Karman (1929)], the 2D Wagner approach [Wagner (1932), Mei et 

al. (1999)] and the present 3D sophisticated solution. The von Karman contact line is 

explicitly determined by Eq. (2.3.18). The corresponding 2D Wagner solid-liquid 

intersection point is obtained by [Korobkin (2004)] 

 

 𝜏 = 1 −
2

𝜋
𝐸 [

𝑏(𝜏)

𝑅
], (2.3.32) 

 

where 𝐸 denotes the complete elliptic integral of the second kind. The 3D Wagner 

solution is approximated by the position of the contact line, that extends vertically 

almost along the complete height of the cylinder. That is, the upper bend of the liquid-

solid intersection is omitted. Nevertheless, even with the employed simplification one 

could draw the conclusion that the von Karman approach underestimates the surface of 

the contact area, while the 2D Wagner approach provides overestimated results given 

that it leads to broader liquid-solid contact regions, which are progressively increased 

with time. The 2D Wagner solution of a circular cross section penetrating a liquid could 

be applied to some extent, in practical 3D problems, for small water impact velocities 

and at the very beginning of the collision. The 2D and 3D Wagner solutions are almost 

identical for a dimensionless time duration of 𝑉𝑡/𝑅 ≈ 0.003 which leads to the real 

time of 𝑡 = 0.0015s, for the first impact scenario, while for the second one, where 

higher impact velocity in considered, this dimensional time leads to the infinitesimal 

time duration of 𝑡 = 0.0005s. Both examples prove that the 2D Wagner solution has 

an extremely limited range of validity, when applied in realistic 3D convex geometries. 

In addition, higher impact velocities lead to larger discrepancies (Fig. 2.3.9), a fact that 

implies that the 2D Wagner solution, when employed to 3D geometries, misses 
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information, especially in the vicinity of the contact point, and unavoidably leads to 

larger hydrodynamic loads. 

 

 

Fig. 2.3.8. Evolution of the position of the intersection point during the impact of a steep 

wave that collides with a steady velocity 𝑉 = 1m/s with a vertical circular cylinder with 

radius 𝑅 = 0.5m. 

 

Fig. 2.3.9. Evolution of the position of the intersection point during the impact of a steep 

wave that collides with a steady velocity 𝑉 = 3m/s with a vertical circular cylinder with 

radius 𝑅 = 0.5m. 

As the impact evolves and the cylinder keeps penetrating the liquid, the contact area, 

evidently, expands continuously. Nevertheless, it is definitely challenging to investigate 

the rate of expansion of the contact area and how this is correlated to the impulsive 
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theory 
𝑡𝑖(s) 

theory 
𝑡𝑖(s) 

nature of the phenomenon. At first, a general idea may be extracted by a careful 

observation of the distance between two consecutive curves, in Figs. 2.3.6 and 2.3.7. 

At later stages, the contact lines are closer to each other. This fact implies that the rate 

of expansion of the contact area decreases with time. Moreover, this conclusion can be 

clearly reached if one estimates the slope of the curves of Figs. 2.3.8 and 2.3.9, at 

several time instants. However, a more consistent answer to this question is required. 

To this end, Tables 2.3.1-2.3.4 and Figs. 2.3.10-2.3.11 are provided, which depict the 

rate of expansion of the contact area between the cylinder and the liquid, as predicted 

by the three theories, against time. In order to calculate these rates, the finite difference 

method was utilized. For the first and the last time instant, the forward and backward 

method of accuracy 1 was applied respectively, whereas for the intermediate the central 

method of accuracy 2 was used.  

  

Table 2.3.1. The evolution of the semi-widths of the contact line according to the three 

theories for a section at 𝑧 = −0.7. A steep wave collides with a steady velocity 𝑉 = 1m/s 

with a vertical circular cylinder with radius 𝑅 = 0.5m. 

 
𝑏0

𝑣𝐾(m) 𝑏𝑊2𝐷(m) 𝑏𝑊3𝐷(m) 

0.001 0.0316 0.0435 0.0432 

0.002 0.0447 0.0613 0.0604 

0.003 0.0547 0.0745 0.0735 

0.004 0.0631 0.0865 0.0845 

0.005 0.0705 0.0970 0.0941 

0.006 0.0772 0.1065 0.1028 

0.007 0.0834 0.1153 0.1108 

0.008 0.0891 0.1234 0.1181 

0.009 0.0944 0.1310 0.1250 

0.01 0.0995 0.1383 0.1315 
 

Table 2.3.2. The rate of expansion of the contact area according to the three theories. for a 

section at 𝑧 = −0.7. A steep wave collides with a steady velocity 𝑉 = 1m/s with a vertical 

circular cylinder with radius 𝑅 = 0.5m. 

 𝑑𝑏0
𝑣𝐾

𝑑𝑡
(m/s) 

𝑑𝑏𝑊2𝐷

𝑑𝑡
(m/s) 

𝑑𝑏𝑊3𝐷

𝑑𝑡
(m/s) 

0.0015 13.10 17.8 17.20 

0.002 11.55 15.50 15.15 

0.003 9.20 12.60 12.05 

0.004 7.90 11.25 10.30 

0.005 7.05 10.00 9.15 

0.006 6.45 9.15 8.35 

0.007 5.95 8.45 7.65 

0.008 5.50 7.85 7.10 

0.009 5.20 7.45 6.70 

0.0095 5.10 7.30 6.50 
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Fig. 2.3.10. The rate of expansion of the cylinder’s contact area relative to the impact velocity 

for a steep wave that collides with a steady velocity 𝑉 = 1m/s with a vertical circular 

cylinder with radius 𝑅 = 0.5m. 

Table 2.3.3. The evolution of the semi-widths of the contact line according to the three 

theories for a section at 𝑧 = −0.7. A steep wave collides with a steady velocity 𝑉 = 3m/s 

with a vertical circular cylinder with radius 𝑅 = 0.5m. 

 
𝑏0

𝑣𝐾(m) 𝑏𝑊2𝐷(m) 𝑏𝑊3𝐷(m) 

0.001 0.0547 0.0815 0.0735 

0.002 0.0772 0.1115 0.1028 

0.003 0.0944 0.1340 0.1250 

0.004 0.1089 0.1540 0.1435 

0.005 0.1216 0.1730 0.1596 

0.006 0.1330 0.1890 0.1740 

0.007 0.1434 0.2050 0.1872 

0.008 0.1530 0.2190 0.1995 

0.009 0.1621 0.2315 0.2093 

0.01 0.1706 0.2435 0.2184 
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Table 2.3.4. The rate of expansion of the contact area according to the three theories. for a 

section at 𝑧 = −0.7. A steep wave collides with a steady velocity 𝑉 = 3m/s with a vertical 

circular cylinder with radius 𝑅 = 0.5m. 

 𝑑𝑏0
𝑣𝐾

𝑑𝑡
(m/s) 

𝑑𝑏𝑊2𝐷

𝑑𝑡
(m/s) 

𝑑𝑏𝑊3𝐷

𝑑𝑡
(m/s) 

0.0015 22.50 30.00 29.30 

0.002 19.85 26.25 25.75 

0.003 15.85 21.25 20.35 

0.004 13.60 19.50 17.30 

0.005 12.05 17.50 15.25 

0.006 10.90 16.00 13.80 

0.007 10.00 15.00 12.75 

0.008 9.35 13.25 11.05 

0.009 8.80 12.25 9.45 

0.0095 8.50 12.00 9.10 
 

 

Fig. 2.3.11. The rate of expansion of the cylinder’s contact area relative to the impact velocity 

for a steep wave that collides with a steady velocity 𝑉 = 3m/s with a vertical circular 

cylinder with radius 𝑅 = 0.5m. 

From Figs. 2.3.10 and 2.3.11, the constantly decreasing rate of expansion of the 

contact area is indeed ascertained, ensuring the impulsive nature of the phenomenon, 

especially at the early stages. Literally, this rate is the corresponding velocity of 

expansion of the contact area. It is interesting to comment that this velocity is many 

times higher than the impact velocity. It is noticed that the rate of expansion of the 

contact area within the 3D Wagner solution is lying between those of the 2D Wagner 

and von Karman approaches. For smaller impact velocities, the rate obtained by the 

presented sophisticated method, is close enough to the one predicted by the 2D Wagner 

solution, while larger deviations occur at later stages, similarly to the results for the 

evolution of the position of the intersection point (Figs. 2.3.8 and 2.3.9). On the other 
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hand, for higher impact velocities, these variations are more intense and the solution 

given by the 3D Wagner theory tends to coincide with the von Karman’s approximation 

at later stages.  

 

 

Fig. 2.3.12. The vertical variation of the absolute, normalized velocity potential for several 

sections along the 𝑦-axis, during the impact of a steep wave that collides with a steady 

velocity 𝑉 = 1m/s with a vertical circular cylinder with radius 𝑅 = 0.5m, at the time instant 

𝑡 = 0.001s. Here 𝑏 = 0.042m. 

 

Fig. 2.3.13. The vertical variation of the absolute, normalized velocity potential for several 

sections along the 𝑦-axis, during the impact of a steep wave that collides with a steady 

velocity 𝑉 = 3m/s with a vertical circular cylinder with radius 𝑅 = 0.5m, at the time instant 

𝑡 = 0.001s. Here 𝑏 = 0.073m. 
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Having calculated the contact area, we can now proceed to the computation of the 

velocity potential, with the aid of Eq. (2.3.31) at a specific time instant and at the 

projection of the contact area at 𝑥 = 0. The boundary conditions dictate that the 

potential must be zero i) on the upper free-surface [Eq. (2.2.8)] and ii) beyond the 

contact area on the wave front [Eq. (2.2.9)]. Figs. 2.3.12 and 2.3.13 show the behavior 

of the absolute, normalized velocity potential in the vertical direction for several 

sections along the horizontal 𝑦 −axis, at the time instant 𝑡 = 0.001s. The values of the 

𝑦-sections are relative to the centerline of the wetted area (𝑦 = 0). The decaying 

tendency of the velocity potential towards zero is obvious, as the section approaches 

the limit of the contact line [𝑦 → 𝑏(𝑧; 𝑡)], while the maximum value is encountered in 

the centerline of the contact area. Moreover, a clear convergence to zero is observed, 

close to the free-surface. 

Next, Figs. 2.3.14 and 2.3.15 demonstrate the behavior of the absolute, normalized 

velocity potential along the horizontal 𝑦- axis, for several 𝑧- sections. Once again, it is 

verified that the potential is indeed zero at the contact line limit, whereas it obtains its 

maximum value at the centerline of the contact area. In addition, the velocity potential 

curves are almost identical as moving farther from the free-surface to the bottom of the 

cylinder. This proves that the velocity potential on the contact area exhibits a specific, 

constant configuration, while the vertical dependence seems to be rather moderate. 

 

 

Fig. 2.3.14. The horizontal variation of the absolute, normalized velocity potential for several 

sections along the 𝑧-axis, during the impact of a steep wave that collides with a steady 

velocity 𝑉 = 1m/s with a vertical circular cylinder with radius 𝑅 = 0.5m, at the time instant 

𝑡 = 0.001s. 
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Fig. 2.3.15. The horizontal variation of the absolute, normalized velocity potential for several 

sections along the 𝑧-axis, during the impact of a steep wave that collides with a steady 

velocity 𝑉 = 3m/s with a vertical circular cylinder with radius 𝑅 = 0.5m, at the time instant 

𝑡 = 0.001s. 

A rational question, which has not been answered yet, is whether the impact is of the 

same intensity in the whole contact area. In other words, where the potential – or 

analogously the hydrodynamic pressure – obtain its maximum value.  

 

 

Fig. 2.3.16. The distribution of the absolute velocity potential on the contact area during the 

impact of a steep wave that collides with a steady velocity 𝑉 = 1m/s with a vertical circular 

cylinder with radius 𝑅 = 0.5m, at the time instant 𝑡 = 0.001s. Here 𝑏 = 0.042m. 
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  Fig. 2.3.17. The distribution of the absolute velocity potential on the contact area during the 

impact of a steep wave that collides with a steady velocity 𝑉 = 3m/s with a vertical circular 

cylinder with radius 𝑅 = 0.5m, at the time instant 𝑡 = 0.001s.  Here 𝑏 = 0.073m. 

The results depicted in Figs. 2.3.16 and 2.3.17 can be considered of paramount 

importance, particularly for designing purposes. They present the absolute values of the 

velocity potential distribution on the contact area, accompanied with a colourbar, 

indicative of the intensity of the impact. Clearly, the potential obtains its higher values 

in a zone extending laterally from the centerline to the one third of the contact area. The 

potential, as expected, tends to zero in a region close to the free-surface and close to the 

contact line. Once again, it is concluded that in the vertical direction, no significant 

fluctuations occur. 

2.3.2 The wave front displacement 

The shapes of the wave front at several fixed sections along the cylinder are depicted 

in Figs. 2.3.18 and 2.3.19. It is shown that they do exhibit the curved shape, as expected 

by the Wagner theory for the water pile-up beyond the contact line. The shape of the 

wave front progressively decays at large distances from the solid until it is practically 

level. Here, the disturbances are eliminated at approximately 5𝑏 from the center of the 

cylinder. The results presented correspond to the time instant 𝑡 = 0.01s. It is noticed 

that the deformation of the wave front is not identical along the cylinder; it enlarges as 

moving from the free-surface to the bottom. Despite the fact that the differences are 

indeed slight (as suggested by the fundamental assumption for the weak vertical 

dependence of the contact line), and recalling in mind Fig. 2.1.3, this fact suggests that 

in the case of a cylinder, the contact point is not constant along its main axis of 

symmetry and varies sideways along the vertical direction, as the water wraps the 

cylinder. Therefore, this statement substantially implies that the contact line is not 

completely vertical, but very small fluctuations occur. 
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Fig. 2.3.18. The wave front displacements, normalized by the instantaneous semi-width of the 

contact line during 3D Wagner steep wave impact, at several positions along the cylinder; 

𝑉 = 1m/s, 𝑅 = 0.5m. 

 

Fig. 2.3.19. The wave front displacements, normalized by the instantaneous semi-width of the 

contact line during 3D Wagner steep wave impact, at several positions along the cylinder; 

𝑉 = 3m/s, 𝑅 = 0.5m. 

2.3.3 The hydrodynamic pressure and the slamming force 

The hydrodynamic pressure at a specific time instant, evaluated on 𝑥 = 0, is 

obtained using the nonlinear Bernoulli equation 

 

 𝑝 = −𝜌
𝜕𝜙

𝜕𝑡
−

1

2
𝜌|∇𝜙|2, (2.3.33) 
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where 𝜌 = 1025kg/m3 is the water density. Accordingly, the slamming force is given 

by direct pressure integration over the instantaneous impacted area 𝑆 of the cylinder as 

 

 𝐹𝑥(𝑡) = ∫ 𝑝(0, 𝑦, 𝑧, 𝑡)

𝑆

𝑑𝑦𝑑𝑧 = ∫ { ∫ 𝑝(0, 𝑦, 𝑧, 𝑡)

𝑏(𝑧,𝑡)

0

𝑑𝑦} 𝑑𝑧.

0

−ℎ

 (2.3.34) 

 

Only a horizontal component of the slamming force is assumed, since the impact is not 

oblique and no rotation of the body occurs as well. For the purposes of the present, the 

operations in (2.3.33) and (2.3.34) are performed numerically reusing the finite 

difference formulae of the time derivative of the linear term and the built-in function of 

MATLAB “gradient” for the nonlinear term. The hydrodynamic pressure and 

accordingly the load, is evaluated at 𝑡 + ∆𝑡 2⁄ . Numerical results for the associated 

slamming forces are shown in Figs. 2.3.20 and 2.3.21. The depicted results provide 

actually half of the total force. Those are normalized by 𝜌𝑅2𝑉2 and are given as 

functions of the normalized time 𝑉𝑡 𝑅⁄ . The calculations that refer to the present method 

show both the load that corresponds to the linear term of Bernoulli’s equation and the 

effect of the quadratic term of Eq. (2.3.33). The lower and the upper envelope curves 

of the 2D von Karman and the 2D Wagner approaches respectively, assume only the 

linear hydrodynamic pressure term and are calculated on the theoretical contact area 

described by these two theories. 

 

 

Fig. 2.3.20. The normalized slamming force during impact of a steep wave onto a vertical 

cylinder; 𝑉 = 1m/s, 𝑅 = 0.5m. 
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Fig. 2.3.21. The normalized slamming force during impact of a steep wave onto a vertical 

cylinder; 𝑉 = 3m/s, 𝑅 = 0.5m. 

Regarding the linear component, it is evident that even small differences in the 

variable (along 𝑧) contact area lead to substantial differences in loading, generating a 

3D solution, which falls between the 2D von Karman and the 2D Wagner 

approximations, as it was truly expected. Once again, the discrepancies between the 2D 

Wagner and the 3D Wagner results are more emphasized with the evolution of time. In 

all cases, the slamming force follows a decreasing trend with small sloping, while the 

3D solution exhibits a faster decrease. The decrease rate of the von Karman approach 

is negligible, especially in the section 𝑉𝑡/𝑅 ∈ (0,0.02]. Moreover, it should be 

remarked that the effect of the quadratic term of Bernoulli’s pressure is not actually 

negligible. Although it does not change the variation particulars of the total slamming 

force significantly, it is reduced by approximately 15%. The depicted results 

demonstrate that the effect of the quadratic term is stronger as the time and/or the 

velocity are increased.  

The strongest impact occurs at the beginning of the collision and accordingly the 

force is monotonically decreased. However, this observation cannot be conceived as a 

general conclusion for water impact problems. For example, the slamming force exerted 

on a sphere, which penetrates violently and vertically the still water surface, has a zero 

initial value, then gradually reaches a maximum and at later stages decreases, reaches 

a minimum and then increases again until the spere is fully submerged [Miloh  (1981)]. 

Finally, it should be recalled that the presented method of investigation of 3D steep 

wave impact refers only to the initial stage; so does the slamming force. As the impact 

evolves, the assumptions made have to be clearly reexamined, as effects of cavity, 

ventilation, viscosity and flow separation cannot be neglected, influencing the force 

exerted on the body.  

At this point, it is useful to examine the effect of the impact velocity and the radius 

of the cylinder on the impact force. Let us examine the loading in the time instant 𝑡 =

0.006s. For a pair of parameters (𝑅, 𝑉) = (0.5, 1) we get a nondimensional time of 
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𝑉𝑡/𝑅 = 0.012 that leads to a nondimensional force of 𝐹̃ = 7 or 𝐹 = 1793.8N. 

However, this force grows very fast for the case of impact (𝑅, 𝑉) = (0.5, 3) and 

becomes 𝐹 = 12684N. We deduce then that an increase on the impact velocity leads 

to a substantial increase in the slamming force, which was actually anticipated. On the 

other hand, for a pair of parameters (𝑅, 𝑉) = (0.2, 1) we get the considerably reduced 

slamming 𝐹 = 241.9N. As a conclusion, smaller radius leads to a reduction of the 

slamming load exerted on the cylinder. 

For validation purposes, the results for the slamming force extracted by the presented 

method are compared to those reported by Chatjigeorgiou et al. (2016), who calculated 

the linear hydrodynamic loading acting on a vertical cylinder impacted by a steep wave. 

The underlying theory relies on the wave impact on a rigid vertical plate with specified 

width but infinitesimal thickness, an approach which enables the assimilation of the 

plate by an elliptical vertical cylinder with zero semi-minor axis. This assumption 

allowed the employment of elliptical harmonics for the solution of the Laplace equation 

and involved the special Mathieu functions. The study was extended to approximate 

the hydrodynamic loading on a vertical cylinder for which, however, a specified wetted 

width was required. The width was determined using the 2D Wagner and the 2D von 

Karman models of the water entry of a circle. The “plate” approximation prespecifies 

a vertical contact line and it is evident therefore that the methodology adopted in the 

present study takes the theory a step further. 

 

 

Fig. 2.3.22. Comparison of solution methodologies for the 3D Wagner steep wave impact 

problem; solid (middle) line: present approach; envelope lines von Karman 3D (dashed line) 

and Wagner 3D (chained line) approaches, taken by Chatjigeorgiou et al. (2016). The 

obtained results correspond to 𝑅 = 0.5m, 𝑉 = 3m/s. 

The solid line of Fig. 2.3.22 corresponds to the linear term of Bernoulli’s hydrodynamic 

pressure so that there is a direct comparison with the assumptions of Chatjigeorgiou et 

al. (2016). Clearly, the present integrated approach, which relies on the assumption of 

a vertical contact line that varies weakly with 𝑧, yields computations that fall within the 
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area specified by the 2D von Karman and the 2D Wagner approaches, extended to 3D 

though. There is an underlying difference between the two approximations contrasted 

in Fig. 2.3.22. The present study assumes that the instantaneous contact line is unknown 

and should be obtained as part of the integrated solution sought, while the approach 

taken by Chatjigeorgiou et al. (2016) is relying on 2D impact models. Again, it is 

remarked that the 2D von Karman and the 2D Wagner models, under- and overestimate 

the actual 3D hydrodynamic loading as suggested by Korobkin (2004) and Mei et al. 

(1999). 

2.3.4 The concept of pressure impulse 

An important issue of concern, associated with hydrodynamic slamming problems, 

is the peak pressure exerted on the impacted solid. As firstly highlighted by Bagnold 

(1939), it is acknowledged that the peak pressures change unpredictably from one 

impact to the next (among repetitions of waves), even for eventually identical 

conditions of impact. However, the component that is often referred as pressure impulse 

is approximately constant at a fixed point on the impacted solid and accordingly, the 

brief collision between a volume of liquid and a rigid body is better quantified by this 

term. Pressure impulse has been mainly used to model flows induced instantaneously 

from rest, i.e., the impact of rigid body striking the surface of still water [Cointe and 

Armand (1987), Cointe (1989)]. Pressure impulse theory applied to the changes in the 

moving liquid domain that collides with a fixed structure was introduced by Cooker 

and Peregrine (1995). At a given time instant, pressure impulse may be defined, 

similarly to the widely known concept of impulse, as  

 

 𝑃(𝑥, 𝑦, 𝑧, 𝑡) = ∫ 𝑝(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑡

t+Δ𝑡

𝑡

, (2.3.35) 

 

where the pressure is approximated by the linear term of the Bernoulli equation. In other 

words, the pressure impulse is expressed by the change in the velocity potential at time 

𝑡 during impact. Calculation of 𝑃(𝑥, 𝑦, 𝑧, 𝑡) allows the computation of the total impulse 

exerted on the structure as a function of time. Accordingly, denoting the total impulse 

by 𝐼(𝑡) it follows that  

 

 𝐼(𝑡) = −𝜌 ∫ 𝜙(0, 𝑦, 𝑧, 𝑡)𝑑𝑦𝑑𝑧

𝑆

= −𝜌 ∫ { ∫ 𝜙(0, 𝑦, 𝑧, 𝑡)𝑑𝑦

𝑏(𝑧,𝑡)

0

} 𝑑𝑧

0

−ℎ

. (2.3.36) 

 

Clearly, Eq. (2.3.36) provides half of the total impulse due to symmetry. Relevant 

calculations of the total impulse exerted on the vertical cylinder during impact are 

shown in Fig. 2.3.23. 
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Fig. 2.3.23. Total pressure impulse exerted on the cylinder during 3D Wagner steep wave 

impact. 

In this Subsection, only the present 3D theory of Wagner impact was employed. The 

results have been normalized by the typical scale of the total impulse, i.e., 𝜌𝑉𝑅3. Three 

different slamming cases are considered, defined by the pair (𝑅, 𝑉), which all show that 

the total impulse increases with time, in contrast to the total hydrodynamic loading. It 

is interesting to observe that a reduction in the cylinder’s radius, while keeping the 

impact velocity constant, leads to an increase of the total impulse exerted on the 

cylinder. This conclusion opposes the one that the slamming force for a decreasing 

radius of a cylinder decreases as well, as already commented in Subsection 2.3.3. On 

the other hand, an increase of the impact velocity, leads to a higher total impulse, as it 

was expected. 

2.3.5 Validation against CFD results 

As already discussed, the fundamental assumption of our analysis is that the contact 

line varies weakly along the vertical direction. To support this assumption and to 

formalize the approach taken, we provide comparisons between the theoretical model, 

as outlined in the previous Sections, and the concerned 3D impact problem which is 

simulated through CFD computations, included in the study of Tsaousis et al. (2020). 

In order to avoid the run-up effect due to the impact, which is also ignored in the 

theoretical model, the CFD computations assume that the height of the cylinder is equal 

to the height of the wave front (ℎ = 1𝑚). The concept of the simulation was as follows: 

a single test case was investigated that considers a cylinder with radius 𝑅 = 0.5m, 

subjected to a steep wave impact that propagates towards the cylinder with constant 

velocity 𝑉 = 1m/s. The computational domain is depicted in Fig. 2.3.24 (a). The 

numerical results are shown in two planes: one that extends in the longitudinal direction 

and one that lies perpendicularly to the axis of the cylinder [Fig. 2.3.24 (b), Fig. 2.3.24 

(c)]. The simulations were performed using a mesh composed by 5,328,864 cells, with 

increasing density close to the contact region, as shown in Fig. 2.3.25. The 
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computations relied on the interDyMFoam algorithm of the OpenFOAM C++ package, 

which combines a dynamic mesh with a Volume of Fluid (VoF) solver. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3.24. a) Geometry of the computational domain and the steep wave formulation. The 

simulation results are depicted on b) the longitudinal plane and c) the plane, which lies 

perpendicularly to the cylinder. 

 

Fig. 2.3.25. Mesh densities close to the cylinder. 

Figs. 2.3.26 and 2.3.27 provide a visual representation of the water impact on the 

vertical cylinder through side and top screenshots at selected time instants. From Fig. 

2.3.26 it is immediately apparent that the instantaneous contact line in nearly vertical, 

which accordingly verifies the validity of the assumption taken in the theoretical model. 

In addition, it is clearly shown that the contact line exhibits a slight bend close to the 

top of the cylinder, which is in accord with the theoretical model (Figs. 2.3.6 and 2.3.7). 

With the evolution of the phenomenon, the contact line loses its cohesion and 

degenerates progressively. This fact validates the basis of the approach developed in 
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this Chapter, which is the small-time assumption. At the time instant 𝑡 = 0.005s, the 

CFD model approximates the semi-width of the contact area 𝑏 to 0.12m (middle 

screenshot in the first row of Fig. 2.3.26), while the theoretical model yields a value of 

~0.1m. 

 

Fig. 2.3.26. Side screenshots of the steep wave impact on the vertical cylinder at selected time 

instants; 𝑅 = 0.5m, 𝑉 = 1m/s. 

 

Fig. 2.3.27. Top screenshots of the steep wave impact on the vertical cylinder at selected time 

instants; 𝑅 = 0.5m, 𝑉 = 1m/s. 
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2.4 Conclusions 

In this Chapter, an analytical model for the steep wave impact on a rigid, vertical 

circular cylinder was formulated. A breaking wave with a completely vertical wave 

front was assumed, in order to simulate the concept of flip-through impact, which for 

some researchers in the literature is considered as the worst case of loading. The 

governing hydrodynamic problem is simplified, in terms of the linearization of the 

boundary conditions, by adopting the small-time assumption, which enables the 

employment of the boundary condition on the projection of the real contact area. 

Nevertheless, the problem remains nonlinear, since the contact line is a priori unknown 

and has to be sought along with the fluid flow. The problem was solved within the 

context of 3D Wagner theory of water impact. The most important assumption for the 

validity of the solution is the weak dependence of the contact line on the vertical 

coordinate, which was indeed verified by the results. The results presented for the 3D 

Wagner problem are directly compared to those expected from the 2D von Karman and 

2D Wagner approximations. Some results of the theoretical model were compared to 

those derived by CFD computations. The main outcomes of this research can be 

summarized as follows: 

I. All the results obtained by the 3D Wagner solution related to the hydrodynamic 

physical quantities of the phenomenon, always lie between those from the 2D 

von Karman and 2D Wagner approximations. This statement is in general well-

known in the literature. However, we commented on these variations and we 

answered the most important question explicitly. This question has to do with 

the range of validity of the 2D theories. The 2D von Karman theory clearly 

underestimates the contact area, even at the initial stage of the impact, and 

cannot be applied safely for 3D impact on convex geometries. On the other 

hand, the 2D Wagner solution gives comparative results to the 3D solution, in 

terms of the contact area, for a dimensionless time of 𝑉𝑡/𝑅 = 0.004. The 

discrepancies are more evident with the evolution of time, as well as for higher 

impact velocities. 

  

II. The contact line is indeed weakly dependent on the vertical coordinate 𝑧, 

especially during the initial stage of impact, in which this study undoubtedly 

focuses. This fact was emphasized clearly by the CFD results. The bend of the 

contact line in the upper part of the cylinder was also verified by the numerical 

results. Nevertheless, small discrepancies do exist along the main axis of the 

cylinder.  

 

III. The rate of expansion of the contact area (or in other words the velocity in which 

the contact area expands) is many times higher than the impact velocity. 

 

IV. An important remark of this research is that we answered straightforwardly 

which portion of the cylinder undergoes the most intense impact. It has been 

proved that the highest impact pressure is localized in an area expanding from 

the centerline of the cylinder to the one third of the total contact area. 
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V. The wave front displacement, which actually reflects the deformation of the 

surface due to the impact, is larger as it moves from the free-surface to the 

bottom.  

 

VI. The maximum of the slamming force is at the beginning of the impact, contrary 

to the impact of a sphere, and then decreases constantly with time, with an 

approximately constant slope. For a prescribed impact velocity and a specific 

time instant, we can reduce the slamming load on the cylinder by decreasing its 

radius.  

 

VII. The normalized slamming force provided by all three methods seems to 

decrease almost linearly with time. Particularly, the force given by the von 

Karman theory is nearly constant, especially at the initial stage of the impact. 

 

VIII. Although the vertical variations of the contact line are small, substantial 

differences in loading, from the 2D theories, occur. 

 

IX. The total impulse exerted on the cylinder increases with time. In contrast to the 

slamming force, reducing the radius of the cylinder leads to a higher impulse. 

 

2.5 Further research 

The investigation conducted for the steep wave impact on a rigid, vertical circular 

cylinder has definitely filled several research gaps, while it has offered an alternative 

approach to the widely examined issue of the body water entry problem. However, 

further research should deal with the following fields: 

I. It would be remarkable to provide an approximate solution for the inner flow 

problem, i.e., a small vicinity close to the contact point, which can be 

encompassed to the outer solution presented in this Chapter, through matching 

techniques. The jet and accordingly the splash which are formed at the contact 

point are reflected to a singularity for the velocity. It would be of particular 

interest to obtain results for the jet thickness, velocity and the pressure 

distribution in it. 

 

II. The cylinder examined herein is rigid, which means no particular deformation 

occurs due to the impact. An approach including the elasticity of the body would 

be useful, in order to examine how the peculiar nature of the slamming force 

affects the body. 

 

III. The model proposed suggests a constant impact velocity and a completely 

vertical wave front of the breaking wave, as we tried to simulate the flip-through 

impact. The model can be enhanced by assuming a vertical variation 𝑉(𝑧) of 

the velocity. This consideration will lead to a change of the breaking wave 

profile which hits the cylinder. This is of great significance, as the most 

important parameters of an impact are the location of the breaking and 

consequently the shape of the breaker. 
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IV. The cylinder was assumed vertical. It would be intriguing to investigate the 

impact of a steep wave to an inclined cylinder and therefore compare the 

slamming forces exerted on the body in each case. 

 

V. In this analysis, the cylinder’s height is supposed to be equal to the water’s 

depth. A next step could be to examine the case of a cylinder higher than the 

water depth and accordingly take the front run-up of the water into account. It 

would be stimulating to derive results for the slamming force in this case, since 

the contact area changes significantly. 

 

VI. A fundamental prerequisite for the validity of the methodology developed, is 

the linearization of the boundary conditions of the 3D Wagner impact problem. 

A more comprehensive solution would be extracted if the Dirichlet condition 

on the wave front was imposed on the real position of the free-surface 𝑥 =

−𝜂(𝑦, 𝑧; 𝑡); by analogy to the Neumann condition on the impacted portion of 

the body.  

 

VII. The effect of air entrapment is always important when examining water impact 

or more generally water entry problems. The air compressibility may affect the 

dynamics of the phenomenon. During the impact, escape of air is expected to 

occur in all possible directions. 

 

VIII. The case of impact between an extreme wave, such as a freak/rogue wave, and 

a cylinder would be intriguing to be discussed, due to their nature and special 

wave characteristics. 

At this point we need to mention that the last two suggestions may require numerical 

solutions which are out of the field of analytical solutions in water impact problems 

established in the present thesis. 
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Chapter 3 Breaking wave impact on a vertical wall. 

Part 1. The leading order problem  

3.1 Theoretical modelling 

Chapter 3 deals with the breaking wave impact on a vertical impermeable wall. The 

purpose of this study is to take the existing analytical researches one step further. To 

this end, a small air pocket is assumed to be entrapped during the collision and the set-

up of the problem takes the free-surface elevation into account. However, we assume 

that air entrapment does not affect the dynamics of the impact significantly. Walls 

(seawalls/breakwaters) are widely examined in Coastal Engineering, since they are 

designed to protect shores from the action of violent waves. Moreover, the approach 

adopted in this part of the thesis, can lead to the development of a simplified model for 

a barge impact loading condition. 

To this end, we contemplate an idealized overturning-like wave, which is close to 

the concept of a plunging breaker. During the collision, a small air pocket is entrapped 

between the wave and the wall. The air pocket width is assumed negligible and 

accordingly compression effects are omitted. The dynamic pressure in the air pocket 

was taken equal to zero, a hypothesis which is valid if we consider that in the volume 

captured by the cavity there is nothing but vacuum. The problem is treated in 2D and is 

considered in a time instant just after impact. The main difference in the modelling 

between this case and the steep wave impact on a cylinder is that in the first case the 

impact is restricted to a part of a wall, whereas in the second the impact occurs along 

the total wave front. This kind of impact simulates also an impact by a focused wave 

generated by a wavemaker. The wave celerity affects the rate of focus of the wave 

definitely. Banks and Abdussamie (2017) investigated the dynamic behavior of a semi-

submersible platform under the influence of extreme unidirectional waves generated by 

a piston type wavemaker. Fang et al. (2020) proposed a methodology to examine impact 

by extreme waves on coastal and offshore structures using first and second order wave 

maker theory. 

The fluid is assumed inviscid, incompressible and the flow irrotational so that the 

tool of the linear potential theory can be utilized. In order to avoid satisfying the free-

surface kinematic and dynamic boundary conditions on the a priori unknown free-

surface elevation due to the collision, a Taylor series expansion around the still water 

level is employed. The hydrodynamic bvp is clearly of mixed type, owing to the 

Neumann and Dirichlet boundary conditions, which hold on different parts of the wall. 

The problem is formulated with nondimensional variables and is examined in its early 

stages. Accordingly, a perturbation method for the velocity potential and the free-

surface elevation is applied, with the dimensionless time playing the role of the small 

parameter. This approach allows the fragmentation of the initial governing 

hydrodynamic problem in orders like of the dimensionless time parameter, a fact which 

actually permits the elimination of the time dependence on the solution sought. In this 

Chapter, we solve only for the leading order problem. The problem obtained requires a 

solution to a system of dual trigonometrical series. Results are presented for the 

distribution of the velocity potential on the wall and in the rest of the liquid domain, as 

well as for the free-surface elevation. The calculation of the free-surface elevation 
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reveals a logarithmic singularity exactly at the point where the undisturbed water level 

meets the wall. This singularity is removed with the aid of the methodology provided 

by King and Needham (1994). 

The physical problem is formulated schematically in Fig. 3.1.1, which shows a 

highly idealized shape of the wave at a time instant immediately after the collision. The 

simplified breaking wave is bounded from the top by the initially undisturbed upper 

free-surface and propagates from right to left with constant velocity 𝑉. At 𝑡 = 0 (𝑡 is 

the time) the volume of water strikes the vertical impermeable wall that is situated at 

𝑥 = 0. The free-surface runs-up the wall and elevates relative to the undisturbed free-

surface by 𝐻 ≡ 𝐻(𝑥, 𝑡). The undisturbed free-surface is situated at 𝑧 = 0. The water 

depth is constant and equal to ℎ. During the brief collision a small air cavity is formed 

and air is entrapped between the liquid and the wall. The air pocket width is assumed 

to be negligible (𝛿 → 0) and it extends between −ℎ ≤ 𝑧 ≤ −𝑎 in the Cartesian 

representation of Fig. 3.1.1. Air compression effects are omitted. 

 

 

Fig. 3.1.1. Schematic representation of the breaking wave impact on a vertical impermeable 

wall situated at 𝑥 = 0. The air pocket extends between −ℎ ≤ 𝑧 ≤ −𝑎 and is assumed of 

infinitesimal width, 𝛿(𝑧) → 0 . The free-surface elevation, immediately after impact, is 

denoted by 𝐻; the water depth is constant and equal to ℎ. 

3.2 The governing mixed boundary value problem  

We assume incompressible, inviscid fluid and irrotational flow. Hence, potential 

theory can be employed and the problem is treated in the Laplace domain. The problem 

will be considered in its nondimensional form using the following tilde variables 

 

𝑥̃ =
𝑥

ℎ
, 𝑧̃ =

𝑧

ℎ
 , 𝑎̃ =

𝑎

ℎ
, 𝐻̃ =

𝐻

ℎ
, 𝜙̃ =

𝜙

𝑉ℎ
,   

 

𝑇 =
ℎ

𝑉
 , 𝑡̃ =

𝑡

𝑇
 , 𝑝 =

𝑝

𝜌𝑉2
, 

 

where 𝑎 is the upper point of the air pocket, 𝜙 denotes the velocity potential, 𝑡 is the 

time and 𝑇 is the time scale of the problem, 𝑝 is the hydrodynamic pressure and 𝜌 is the 
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water density. According to our approach, the impact condition is governed by the 

following bvp, expressed in a nondimensional form:  

 

 ∇2𝜙̃ = 0, 𝑥̃ ≥ 0, −1 ≤ 𝑧̃ ≤ 0, (3.2.1) 

 

 
𝜕𝜙̃

𝜕𝑥̃
= 1, 𝑧̃ ∈ 𝐼1, −𝑎̃ < 𝑧̃ < 0, 𝑥̃ = 0, (3.2.2) 

 

 
𝜕𝜙̃

𝜕𝑡̃
= 0, 𝑧̃ ∈ 𝐼2, −1 ≤ 𝑧̃ < −𝑎̃, 𝑥̃ = 0, (3.2.3) 

 

 
𝜕𝜙̃

𝜕𝑧̃
= 0, 𝑧̃ = −1, 𝑥̃ ≥ 0, (3.2.4) 

 

 
𝜕𝐻̃

𝜕𝑡̃
=

𝜕𝜙̃

𝜕𝑧̃
, 𝑧̃ = 𝐻̃, 𝑥̃ ≥ 0, (3.2.5) 

 

 
𝜕𝜙̃

𝜕𝑡̃
+

𝑔ℎ

𝑉2
𝐻̃ = 0, 𝑧̃ = 𝐻̃, 𝑥̃ ≥ 0, (3.2.6) 

 

 𝜙̃ → 0, 𝑥̃ → ∞, −1 ≤ 𝑧̃ ≤ 0. (3.2.7) 

 

Eq. (3.2.1) is the Laplace equation which holds in the entire liquid domain. Eq. (3.2.2) 

is the normalized Neumann condition due to the collision between the wall and the 

corresponding portion of the water, while Eq. (3.2.3) is the air pocket dynamic 

condition, imposed precisely on the wall due to the negligible width of the air pocket. 

The relevant condition is represented by a single term that arises from the Bernoulli’s 

equation after omitting the quadratic velocity component and the hydrostatic term. At 

this point we should note the difference between the present model and the model of 

Eq. (2.2.9). In the first case the pressure is assumed to be zero beyond the contact line, 

whereas in this case the hydrodynamic pressure is zero in the air pocket. The kinematic 

condition in the cavity area is not considered (in this Section), which implies that no 

run-up is expected to occur at the limits of the air pocket. Furthermore, Eq. (3.2.4) holds 

on the impermeable bottom, while Eqs. (3.2.5) and (3.2.6) are the kinematic and the 

dynamic boundary conditions of the upper free-surface, respectively. It should be noted 

that Eq. (3.2.6) takes the hydrostatic term of the Bernoulli’s equation into account, 

because of the free-surface elevation (run-up) immediately after the first impact. Again, 

we have omitted the quadratic terms from both the dynamic and the kinematic boundary 

conditions of the upper free-surface. In completing the presentation of the governing 

bvp, it is mentioned that Eq. (3.2.7) is the far-field boundary condition, which implies 

that any disturbance caused by the collision must vanish at infinity.  

It is interesting to observe that the normalization process introduces the non-

dimensional parameter 𝑘~𝑔ℎ 𝑉2⁄ , which is the square of the inverse Froude number 

based on the depth, 𝐹𝑛 = 𝑉 √𝑔ℎ⁄ , i.e., 
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𝑘 =
𝑔ℎ

𝑉2
= (

1

𝐹𝑛
)

2

. 

 

The parameter introduced, correlates the impact velocity with the gravity acceleration 

and the water depth and is involved in the solution of the higher order problem. It 

particularly means that gravity effects are not important in the leading order approach. 

In the following steps we omit the tilde and we analyze the problem in normalized form. 

 

3.3 Perturbation analysis 

The phenomenon is examined only at the very early stages of the impact (𝑡 → 0). 

Conditions (3.2.5) and (3.2.6) are imposed on the unknown boundary at 𝑧 = 𝐻. In order 

to cope with this difficulty, we apply a Taylor series expansion around the still water 

level at 𝑧 = 0, in accord with the Stokes theory, employed in regular wave 

hydrodynamics. Hence, Eqs. (3.2.5) and (3.2.6) become 

 

 
𝜕𝐻

𝜕𝑡
=

𝜕𝜙

𝜕𝑧
+ 𝐻

𝜕2𝜙

𝜕𝑧2
+ ⋯ , 𝑧 = 0, 𝑥 ≥ 0, (3.3.1) 

 

 
𝜕𝜙

𝜕𝑡
+

𝜕𝐻

𝜕𝑡

𝜕𝜙

𝜕𝑧
+ 𝐻

𝜕2𝜙

𝜕𝑧𝜕𝑡
+ ⋯ + 𝑘𝐻 = 0, 𝑧 = 0, 𝑥 ≥ 0. (3.3.2) 

 

Clearly, the effort put into reducing the original conditions (3.2.5) and (3.2.6) relative 

to the undisturbed free-surface resulted in the nonlinear expansions (3.3.1) and (3.3.2). 

To further simplify the associated relations and make the bvp solvable, we employ the 

method of the Stokes perturbations, first introduced by Stokes himself [Lamb (1932)]. 

In regular wave hydrodynamics, Stokes suggested the expansion of the velocity 

potential and the free-surface elevation in perturbation series using the wave steepness 

as a perturbation parameter, which is by default a very small parameter for gravity 

waves. Here, we employ the same approach using the time as a scaling factor, which 

indeed obtains very small values given that the problem is considered at the very early 

stages of the impact. Accordingly, following the expansion proposed by King and 

Needham (1994), the normalized velocity potential and the upper free-surface elevation 

are written as 

 

 𝜙 = 𝑡𝜙1 + 𝑡3𝜙3 + ⋯, (3.3.3) 

 

 𝐻 = 𝑡2𝜂2 + 𝑡4𝜂4 + ⋯. (3.3.4) 

 

Using Eqs. (3.3.3) and (3.3.4), Eqs. (3.3.1) and (3.3.2) are transformed into 

 

 
2𝑡𝜂2 + 4𝑡3𝜂4 + ⋯ = 𝑡

𝜕𝜙1

𝜕𝑧
+ 𝑡3 (

𝜕𝜙3

𝜕𝑧
+𝜂2

𝜕2𝜙1

𝜕𝑧2
) + ⋯ ,

𝑧 = 0,   𝑥 ≥ 0, 

(3.3.5) 
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𝜙1 + 𝑡2 (3𝜙3 + 2𝜂2

𝜕𝜙1

𝜕𝑧
+ 𝜂2

𝜕𝜙1

𝜕𝑧
+

𝑔ℎ

𝑉2
𝜂2) + ⋯ = 0,

𝑧 = 0,   𝑥 ≥ 0. 
(3.3.6) 

 

Eqs. (3.3.5) and (3.3.6) correspond to the kinematic and the dynamic boundary 

conditions of the free-surface. Equating like powers of 𝑡, we obtain the perturbation 

systems at 𝑂(𝑡) and 𝑂(𝑡3) in terms of the leading- and higher-order potentials 𝜙1 and 

𝜙3. Higher order terms are neglected. Clearly, the derivation of 𝜙3 through the 

associated system dictates the solution of the leading order problem. 

3.3.1 Boundary value problem for the leading order potential 𝝓𝟏 

The bvp for the leading order reads 

 

 ∇2𝜙1 = 0, 𝑥 ≥ 0, −1 ≤ 𝑧 ≤ 0, (3.3.7) 

  

 
𝜕𝜙1

𝜕𝑥
= 1, 𝑧 ∈ 𝐼1, −𝑎 < 𝑧 < 0, 𝑥 = 0, (3.3.8) 

 

 𝜙1 = 0, 𝑧 ∈ 𝐼2, −1 ≤ 𝑧 < −𝑎, 𝑥 = 0, (3.3.9) 

 

 
𝜕𝜙1

𝜕𝑧
= 0, 𝑧 = −1, 𝑥 > 0, (3.3.10) 

 

 𝜙1 = 0, 𝑧 = 0, 𝑥 > 0, (3.3.11) 

 

 𝜙1 → 0, 𝑥 → ∞, −1 ≤ 𝑧 ≤ 0, (3.3.12) 

 

The elevation 𝜂2 is obtained from Eq. (3.3.5) after equating powers of 𝑡 as  

 

 𝜂2 =
1

2

𝜕𝜙1

𝜕𝑧
. (3.3.13) 

3.3.2 Boundary value problem for the higher order velocity potential 𝝓𝟑 

The resulting higher order bvp in terms of 𝜙3 reads 

 

 ∇2𝜙3 = 0, 𝑥 ≥ 0, −1 ≤ 𝑧 ≤ 0, (3.3.14) 

 

 
𝜕𝜙3

𝜕𝑥
= 0, 𝑧 ∈ 𝐼1, −𝑎 < 𝑧 < 0, 𝑥 = 0, (3.3.15) 

 

 𝜙3 = 0, 𝑧 ∈ 𝐼2, −1 ≤ 𝑧 < −𝑎, 𝑥 = 0, (3.3.16) 

 

 
𝜕𝜙3

𝜕𝑧
= 0, 𝑧 = −1, 𝑥 ≥ 0, (3.3.17) 

 

 𝜙3 = −𝜂2

𝜕𝜙1

𝜕𝑧
−

𝑘

3
𝜂2, 𝑧 = 0, 𝑥 ≥ 0, (3.3.18) 
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 𝜙3 → 0, 𝑥 → ∞, −1 ≤ 𝑧 ≤ 0. (3.3.19) 

 

The elevation 𝜂4 is obtained from Eq. (3.3.5) after equating powers of 𝑡3 as  

 

 𝜂4 =
1

4

𝜕𝜙3

𝜕𝑧
+

1

4
𝜂2

𝜕2𝜙1

𝜕𝑧2
. (3.3.20) 

 

3.4 Solution to the leading order problem  

3.4.1 The distribution of the velocity potential on the wall and on the rest of the 

liquid domain 

As already mentioned in Section 3.1, the solution to the leading order problem only, 

will be presented in the analysis of the present Chapter 3. The solution to the higher 

order problem will be discussed in Chapter 4. The solution to the leading order problem 

satisfies Eqs. (3.3.7)-(3.3.12). Applying separable solutions for the Laplace equation 

(3.3.7) it can be shown that the normalized velocity potential is given by  

 

 𝜙1 = ∑ 𝐵𝑛 sin(𝜆𝑛𝑧) 𝑒−𝜆𝑛𝑥

∞

𝑛=1

, 𝜆𝑛 = (𝑛 −
1

2
) 𝜋, (3.4.1) 

 

where 𝐵𝑛 are unknown expansion coefficients to be determined. Eq. (3.4.1) satisfies 

Eqs. (3.3.7) and (3.3.10)-(3.3.12). In order to calculate the expansion coefficients, we 

need to satisfy the boundary conditions (3.3.8) and (3.3.9), which after substitution lead 

to 

 

 ∑ 𝜆𝑛𝐵𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= −1, −𝑎 < 𝑧 < 0, (3.4.2) 

 

 ∑ 𝐵𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= 0, −1 ≤ 𝑧 < −𝑎. (3.4.3) 

 

Both the infinite series of Eqs. (3.4.2) and (3.4.3) are divergent at 𝑧 = −𝑎, owing to the 

fact that no kinematic condition was taken into account at that point. These dual 

trigonometrical series [Tranter (1959), Tranter (1960b)], reveal a singularity for the 

velocity, explicitly at 𝑧 = −𝑎. The singularity for the velocity implies the formation of 

a jet in the upper part of the air pocket. Letting 𝑧 = − 𝓎 𝜋⁄  and 𝑐 = 𝑎𝜋, the system of 

Eqs. (3.4.2) and (3.4.3) becomes identical with the one reported and analyzed by 

Sneddon (1966) [p. 151-152], namely 

 

 ∑(𝑛 − 1 2⁄ )𝐵𝑛 sin[(𝑛 − 1 2⁄ )𝓎]

∞

𝑛=1

= 𝐹̃(𝓎) ≡
1

𝜋
, 0 < 𝓎 < 𝑐, (3.4.4) 
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 ∑ 𝐵𝑛 sin[(𝑛 − 1 2⁄ )𝓎]

∞

𝑛=1

= 0, 𝑐 < 𝓎 ≤ 𝜋, (3.4.5) 

 

for the special case 𝑝 = 1. Note that 𝐹̃(𝓎) herein is a constant. The solution to this 

problem is taken directly from Sneddon (1966) [p. 158]. The solution for 𝐵𝑛 reads 

 

 𝐵1 =
1

√2
∫ ℎ1(𝜏)[1 − 𝑃1(cos 𝜏)]𝑑𝜏,

𝑐

0

 (3.4.6) 

 

 𝐵𝑛 =
1

√2
∫ ℎ1(𝜏)[𝑃𝑛−2(cos 𝜏) − 𝑃𝑛(cos 𝜏)]𝑑𝜏

𝑐

0

, 𝑛 = 2,3, …, (3.4.7) 

 

where 𝑃𝑛 denotes the 𝑛th degree Legendre Polynomial and  

 

 

ℎ1(𝜏) =
1

𝜋

𝑑

𝑑𝜏
∫

𝑑𝜒

√cos 𝜒 − cos 𝜏
∫ 𝐹̃(𝑢)𝑑𝑢

𝜒

0

𝜏

0

−
√2𝛾1

𝜋

𝑑

𝑑𝜏
∫

(1 − cos 𝜒 2⁄ )

√cos 𝜒 − cos 𝜏
𝑑𝜒.

𝜏

0

 

(3.4.8) 

 

The constant 𝛾1 is obtained from 

 

 𝛾1 {1 +
√2

𝜋
∫

(1 − cos 𝜒 2⁄ )

√cos 𝜒 − cos 𝑐
𝑑𝜒

𝑐

0

} =
1

𝜋
∫

𝑑𝜒

√cos 𝜒 − cos 𝑐
∫ 𝐹̃(𝑢)𝑑𝑢.

𝜒

0

𝑐

0

 (3.4.9) 

 

Given than no analytical expressions are available for all the elliptic integrals involved 

in (3.4.8) and (3.4.9), the corresponding calculations are performed numerically using 

MATLAB’s built-in function “integral”, which allows the efficient approximation of 

improper integrals, as already discussed in the Subsection 2.3.1. The integrals involved 

in the expressions of the unknown coefficients 𝐵𝑛, are calculated using MATLAB’s 

command “trapz”, which applies the trapezoidal rule. Similarly, for the differentiations 

in Eqs. (3.4.8) and (3.4.9) the “gradient” command was applied. 
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Fig. 3.4.1. The expansion coefficients 𝐵𝑛, 𝑛 ≥ 1, for the leading order velocity potential. The 

air pocket was assumed to extend between −1 ≤ 𝑧 ≤ −0.7. 

 

Fig. 3.4.2. The normalized Neumann condition 
𝜕𝜙1

𝜕𝑥
 (Eq. 3.3.8) imposed on the wall. The air 

pocket was assumed to extend between −1 ≤ 𝑧 ≤ −0.7. A singularity in noted at 𝑧 = −0.7. 

Fig. 3.4.1 shows that the expansion coefficients exhibit a transient, oscillatory 

behavior, but they decrease to zero relatively fast, which implies a quick convergence 

for the expression of the velocity potential. For the test cases examined herein, 200 

modes were found enough to secure convergence of four significant digits for the 

velocity potential. 
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Fig. 3.4.2 depicts the Neumann condition of Eq. (3.3.8), which is actually the vertical 

distribution of the impact velocity on the wall boundary. The normalized Neumann 

condition dictates that the velocity must be equal to 1 in the impacted area. The 

singularity of the velocity at the upper part of the air pocket 𝑧 = −𝑎 is expressed i) 

from the mathematical point of view, through the divergence of the series of Eq. (3.4.2) 

and ii) through the discontinuity of the graph. Physically, this singularity is attributed 

to the formation of a jet at that point.  

The normalized distribution of the leading order velocity potential on the wall is 

shown in Fig. 3.4.3, where some remarkable results are obtained. To begin with, it is 

immediately noted that the potential is indeed zero i) at the part of the wall captured by 

the air pocket and ii) on the free-surface, as required by the Dirichlet conditions (3.3.9) 

and (3.3.11) respectively. Moreover, recalling Bernoulli’s equation, the most 

interesting outcome from the results depicted in Fig. 3.4.3 is that the maximum 

hydrodynamic pressure is expected to occur in the middle of the impacted area, for each 

test case. Herein, each test case is defined by the air pocket length. Furthermore, it is 

evident that the presence of the air pocket affects the potential explicitly and 

correspondingly the hydrodynamic pressure on the wall. Large deviations are found to 

occur even in the same impacted areas. Particularly, it should be highlighted that 

smaller air pockets lead to higher impact loads in the same part of the wall. In contrast, 

the potential at the upper part of the wall, close to the free-surface, remains rather 

unaffected by the presence of the air pocket. Finally, the semi-elliptical shape of the 

potential verifies its sinus-like dependence.   

 

 

Fig. 3.4.3. The normalized leading order velocity potential on the wall for several air pocket 

positions. 

At this point, invoking the perturbation expansion of Eq. (3.3.3) and the leading 

order bvp of Eqs. (3.3.7)-(3.3.12), it should be mentioned that the results of Fig. 3.4.3 
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depict actually the term 𝑡𝜙1, which means that the results are the same no matter what 

the dimensionless time is. This happens because the time is in its first power and this is 

in contrast to the corresponding term for the free-surface elevation, which will be 

discussed in the following Subsection. In the general case, the expansion coefficients 

𝐵𝑛 are functions of time. Nevertheless, given that the impacting velocity is constant, 

we are allowed to introduce a second time scale and assume that the expansion 

coefficients are weakly dependent on time, i.e., constants. 

 

 

Fig. 3.4.4. Distribution of the magnitude of the velocity potential in a liquid domain of 1 × 1. 

The air pocket was assumed to extend between −1 ≤ 𝑧 ≤ −0.5. 

 

Fig. 3.4.5. Distribution of the magnitude of the velocity potential in a liquid domain of 1 × 1. 

The air pocket was assumed to extend between −1 ≤ 𝑧 ≤ −0.7. 
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The distribution of the magnitude of the normalized velocity potential in the liquid 

domain, restricted in an area of 1 × 1, is shown in the 3D graphs of Figs. 3.4.4 and 

3.4.5, for different air pocket lengths. Once again, the vertical semi-elliptical 

configuration and the zero value for the potential in the air pocket are evident. In 

addition, one can easily observe the exponential decrease of the potential as we move 

further from the wall. The associated colourbar in both graphs, which clearly indicates 

the intensity of the impact, proves that as 𝑥 → ∞ then 𝜙1 → 0, as dictated by the 

expression for the potential through Eq. 3.4.1. 

The projection of the distribution of the velocity potential on the liquid domain of 

1 × 1 is cited in Figs. 3.4.6 and 3.4.7. Clearly, the impact is more intense on the wall 

and in a small region close to the wall. Let us examine the case that the air pocket 

extends between −1 ≤ 𝑧 ≤ −0.7 (see Fig. 3.4.7). It is interesting to observe that for 

distance from the wall 𝑥 > 0.4, the potential diminishes rapidly, approaching to zero. 

This fact implies that the disturbance caused by the collision vanishes. In our simplified 

approach, the impacted zone equals actually to the wave height; in the test case 

discussed this is 0.7. Therefore, we can deduce that for distances greater than half of 

the wave height, the disturbance actually fades. The same conclusion is derived when 

examining the case where the air pocket extends between −1 ≤ 𝑧 ≤ −0.5. This is in 

accord with the conclusion by Cooker and Peregrine (1995), who commented that for 

distances larger than half of the wave height, the wave parameters are not so important. 

This observation suggests that the phenomenon is generally localized. 

 

 

Fig. 3.4.6. Projection of the 3D graph of Fig. 3.4.4 on the 2D liquid domain of 1 × 1. The air 

pocket was assumed to extend between −1 ≤ 𝑧 ≤ −0.5. 
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Fig. 3.4.7. Projection of the 3D graph of Fig. 3.4.5 on the 2D liquid domain of 1 × 1. The air 

pocket was assumed to extend between −1 ≤ 𝑧 ≤ −0.7. 

Some contours of the velocity potential are shown in Figs. 3.4.8 and 3.4.9. The iso-

potential lines demonstrate once again that the phenomenon is more intense in the wave 

impact zone, as it was truly expected. 

 

 

Fig. 3.4.8. Contours of the velocity potential. The air pocket was assumed to extend between      

−1 ≤ 𝑧 ≤ −0.5. 
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Fig. 3.4.9. Contours of the velocity potential. The air pocket was assumed to extend between 

 −1 ≤ 𝑧 ≤ −0.7. 

3.4.2 Validation against available results from other analytical studies 

In order to check the accuracy and validity of the methodology adopted, it is needed 

to compare our results with some existing ones. It should be mentioned that straight 

comparison with other experimental or numerical results would not be representative 

for the accuracy of our method, because we cannot obtain exactly the same impact 

conditions, since analytical studies demand idealizations for the problem under 

consideration. Therefore, with the aim to secure identical conditions for the impact 

problem, we shall compare our results to those derived from the classical analytical 

study of Cooker and Peregrine (1990b). They calculated the pressure impulse exerted 

on a vertical wall, by a semi-infinite, rectangular strip of water.  

To this end, we solve the bvp again, but this time without taking the existence of the 

air pocket into account. Particularly, we simply adjust the portion of the wall that is 

impacted, while the rest is assumed to remain untouched. Consequently, the mixed bvp 

is greatly simplified, since only the modified Neumann condition is valid on the wall. 

In detail, the new Neumann condition on the wall is transformed into 

 

 
𝜕𝜙1

𝜕𝑥
= − ∑ 𝜆𝑛𝐵𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= {
1, −𝑎 < 𝑧 ≤ 0

    0, −1 ≤ 𝑧 < −𝑎.
 (3.4.10) 

 

The rest of the equations which compose the bvp are still the same. The expansion 

coefficients 𝐵𝑛 are now easy to be calculated, by using Fourier analysis. They are 

calculated with the aid of the Eq. (3.4.11) 

 

 𝐵𝑛 = 2
1 − 𝑐𝑜𝑠(𝑎𝜆𝑛)

𝜆𝑛
2

. (3.4.11) 
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The corresponding expression in the study by Cooker and Peregrine (1990b), is given 

by  

 

 𝐵𝑛 =
−2𝜌𝑈0

𝐻

1 − 𝑐𝑜𝑠(𝑎𝜆𝑛)

𝜆𝑛
2

, (3.4.12) 

 

where, 𝜌 is the water density, 𝑈0 is the velocity of the fluid before impact (or equally 

the impact velocity) and 𝐻 is the water depth. 

Fig. 3.4.10 depicts the normalized pressure impulse exerted on the wall, as 

anticipated by i) the analysis described so far and ii) the study by Cooker and Peregrine 

(1990b). The impact region is chosen to be 𝑎 = 0.5 in both cases. Surely, several 

important outcomes can be reached. First of all, it is demonstrated that the results 

provided by the global analysis are qualitatively accurate. The curves exhibit a similar 

pattern in the impacted part of the wall. Additionally, it is deduced that the presence of 

the air pocket reduces the pressure impulse on the wall drastically. Specifically, in case 

1, the maximum value of the pressure impulse is ~0.21, whereas in the second case it 

is ~0.29, which implies an increase of 38%. There is also a displacement in the position 

of the maximum value downwards, from 𝑧 = −0.25 to 𝑧 = −0.35. However, in the 

upper part of the wall, close to free-surface, the curves are almost identical and the 

discrepancies are negligible.  

 

 

Fig. 3.4.10. The non-dimensional pressure impulse exerted on the wall as predicted by the 

following two approaches: i) present study, which assumes the entrapment of a small air 

pocket and ii) work by Cooker and Peregrine (1990b). The air pocket was assumed to extend 

between −1 ≤ 𝑧 ≤ −0.5. 
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Fig. 3.4.11. The non-dimensional pressure impulse exerted on the wall as predicted by the 

following two approaches: i) present study, which assumes the entrapment of a small air 

pocket for five different air pocket heights and ii) work by Cooker and Peregrine (1990b), 

where the impact was assumed to occur along the total height of the wall.  

Fig. 3.4.11 shows a comparison between a group of curves which describe the 

pressure impulse as the air pocket height tends to zero asymptotically and the one 

predicted by the study of Cooker and Peregrine (1990b) where the impact occurs along 

the total height of the wall. At this point, it is useful to remind that the maximum impact 

pressure is expected to occur in the middle of the impacted region (see for example Fig. 

3.4.3). However, the most noticeable feature in this case is that as 𝑎 → 1, the point of 

the wall where the maximum pressure is anticipated to occur moves downwards from 

the middle of the impacted region. This is in complete alignment with the conclusion 

of Cooker and Peregrine (1990b), who concluded that when the total height of the wall 

is impacted, the curve of the pressure impulse changes form and its maximum value is 

anticipated at the lowest part of the wall.  

3.4.3 The free-surface elevation 

Due to the violent collision between the water and the wall, a run-up along the wall 

is immediately observed at a time instant just after impact (Fig. 3.1.1). The parabola-

like shape of the free-surface elevation 𝜂2(𝑥), can be determined explicitly through the 

series of Eq. (3.3.13), in the fluid domain where 𝑥 ≥ 0. It is reminded that Eq. (3.3.13) 

originates from the kinematic condition of the free-surface. Nonetheless, that series is 

divergent when calculated exactly on the wall, i.e., 𝑥 = 0, increasing continuously as 

the number of modes increases to infinity. A deeper insight into the physical problem 

can clearly explain this mathematical observation. At the moment of collision, a spray-

jet is formed exactly at the intersection point of the still water level and the wall, 

(𝑥, 𝑧) = (0,0), which implies infinite vertical velocity at that point. In order to tackle 

this mathematical difficulty, we apply the methodology suggested by King and 

Needham (1994), who treated the problem of a jet caused by the sudden acceleration of 



 
 

66 
 

a vertical plate into an initially stationary fluid analytically. A similar study for the 

impulsive motion of a plate moving towards an initially quiescent fluid was also 

conducted by Chwang (1983) who applied the small-time assumption as well, but rather 

focused on the hydrodynamic pressure on the plate. Roberts (1987) studied the same 

problem analytically as well. 

The solution derived from the mathematical manipulation of the physical problem 

in the present investigation, dictates that the free-surface elevation is given by  

 

 𝑡𝜂2(𝑥) =
1

2
∑ (𝑛 −

1

2
) 𝜋𝐵𝑛𝑒−(𝑛−1/2)𝜋𝑥.

∞

𝑛=1

 (3.4.13) 

 

At this point, a brief discussion for the left-hand side of Eq. (3.4.13) is needed. It is 

reminded that the expansion coefficients 𝐵𝑛 of the normalized leading order problem, 

calculated using Eqs. (3.4.6) and (3.4.7), give the leading order velocity potential 

multiplied by the time, 𝑡𝜙1. Consequently, exploiting Eq. (3.3.13), these coefficients 

permit the calculation of the term 𝑡𝜂2(𝑥). The corresponding expression by King and 

Needham (1994) is  

 

 𝜂2(𝑥) =
4𝜎

𝜋
∑

𝑒−(𝑛+1/2)𝜋𝑥

2𝑛 + 1
=

2𝜎

𝜋
ln [coth

𝜋𝑥

4
]

∞

𝑛=0

, (3.4.14) 

 

where σ is a parameter that expresses the ratio between the acceleration of the plate and 

the gravitational acceleration. The series of Eq. (3.4.14) is clearly singular as 𝑥 → 0. 

King and Needham (1994) assumed an outer region (𝑥 > 0) where the series expansion 

for the free-surface elevation is valid and an inner region (𝑥 = 0) where the expansion 

is singular. In order to raise this singularity, they reclaimed the Euler momentum 

equations, by retaining the terms neglected in the outer region. Thus, they actually made 

a correction to the leading order problem. In the inner region they applied the following 

asymptotic expansion   

 

 𝜂𝑖𝑛𝑛𝑒𝑟 = −𝑡2 ln(𝑡) 𝜂1 − 𝑡2𝜂̃2, (3.4.15) 
 

where  𝜂1 and 𝜂̃2 denote the first and the second order free-surface elevation in the inner 

region. The approach taken by King and Needham (1994) can be applied in the present 

analysis as well, provided that the sums of Eqs. (3.4.13) and (3.4.14) are subjected to 

the same behavior at 𝑥 = 0, for an infinite number of modes. To examine this assertion 

Fig. 3.4.12 is provided. Both sums grow indefinitely for increasing number of modes, 

owing to the logarithmic singularity of the sums for 𝑥 = 0. Although evident 

differences are observed, it can be easily deduced that they nearly coincide and become 

practically indistinguishable for large truncation of the sums. The oscillatory behavior 

at the first part of the curve for the sum of Eq. (3.4.13) is attributed to the numerical 

calculation of the coefficients 𝐵𝑛. 
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Fig. 3.4.12. Solid line: shows the behavior of the sum of Eq. (3.4.13). Dashed line: shows the 

behavior of the sum of Eq. (3.4.14). Both sums are calculated for 𝑥 = 0. The air pocket was 

assumed to extend between −1 ≤ 𝑧 ≤ −0.5. 

Accordingly, the mixed bvp methodology discussed in the present, is enhanced with 

King and Needham's (1994) asymptotic analysis formulae explicitly for 𝑥 = 0. We are 

therefore allowed to transform Eq. (3.4.13) in the equivalent form  

 

 𝑡𝜂2(𝑥) =
1

2
∑

𝑒−(𝑛+1/2)𝜋𝑥

2𝑛 + 1
=

1

4
ln [coth

𝜋𝑥

4
]

∞

𝑛=0

. (3.4.16) 

 

Eq. (3.4.14) is written in a more convenient form, for the asymptotic procedure, as 

 

 𝜂2(𝑥) = −
2𝜎

𝜋
ln 𝑥 +

2𝜎

𝜋
ln

4

𝜋
+ 𝑂(𝑥2), 𝑥 → 0. (3.4.17) 

 

Similarly, Eq. (3.4.16) is written in the form 

 

 𝑡𝜂2(𝑥) = −
1

4
ln 𝑥 +

1

4
ln

4

𝜋
+ 𝑂(𝑥2), 𝑥 → 0. (3.4.18) 

 

Following the asymptotic expansion suggested by King and Needham (1994), one gets 

for the inner region  

 

 𝑡𝜂̃2(𝑥) =
1

4
{ln(− ln 𝑡) − ln (

4

𝜋
) + ln (

1

4
) − 1 −

𝛤΄ (
3
2)

𝛤 (
3
2)

+ 𝑥}, (3.4.19) 

 

and 
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 𝑡𝜂1 =
1

2
. (3.4.20) 

 

Expression (3.4.19) has no singularity neither for 𝑥 → 0 nor for 𝑡 → 0.  

   

 

Fig. 3.4.13. The free-surface elevation 𝐻(𝑥, 𝑡) at three different time instants, including only 

the leading order free-surface elevation. The air pocket was assumed to extend between  

−1 ≤ 𝑧 ≤ −0.5. 

 

Fig. 3.4.14. The free-surface elevation 𝐻(𝑥, 𝑡) at three different time instants, including only 

the leading order free-surface elevation. The air pocket was assumed to extend between  

−1 ≤ 𝑧 ≤ −0.7. 

Figs. 3.4.13 and 3.4.14 depict the free-surface elevation given by Eq. (3.3.4) 

retaining only the leading order term, at three different time instants immediately after 
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the first impact. With time passing, the water runs-up the wall at higher heights, as it 

was truly expected. The results from Figs. 3.4.13 and 3.4.14 validate the 

aforementioned deduction, from another perspective, that for 𝑥 > 0.4 the disturbance 

tends to zero (see Subsection 3.4.1). In addition, it is noted that for 𝑥 > 1, the free-

surface remains completely flat and horizontal, unaffected by the collision. 

Fig. 3.4.15 displays the free-surface elevation given by Eq. (3.3.4) for two different 

air pocket lengths at three time instants and is cited to examine how the air pocket length 

affects the free-surface elevation. It therefore offers a straightforward comparison 

between the results of Figs. 3.4.13 and 3.4.14. It manifests that smaller air pockets lead 

to a slightly higher free-surface elevation. A reasonable hypothesis for this observation 

is that the phenomenon is more intense for smaller air pockets. The discrepancies are 

more conspicuous as the impact evolves. They are negligible on the wall, probably 

owing to the fact that the potential close to the free-surface is rather unaffected by the 

air pocket length (see Fig. 3.4.3) Nevertheless, they are more evident farther from the 

wall. 

 

 

Fig. 3.4.15. Comparison of the free-surface elevation for two different air pocket lengths at 

three time instants. 

3.4.4 The singularity on the upper point of the air pocket 

The fundamental solution of the Laplace equation in 2D is  

 

 𝜙1~ log (√𝑥2 + 𝑧2). (3.4.21) 

 

Therefore, the relevant expression at the point of singularity (𝑥, 𝑧) = (0, −𝑎) reads 

 

 𝜙1~ log (√𝑥2 + (𝑧 + 𝑎)2). (3.4.22) 
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Similarly to Eq. (3.3.13), the corresponding expression for the “inner elevation” is 

given by 

 

 𝜁2 =
1

2

𝜕𝜙1

𝜕𝑧
, 𝑥 > 0, 𝑧 = −𝑎. (3.4.23) 

 

Combining Eqs. (3.4.22) and (3.4.23) yields 

 

 𝜁2~
𝑧 + 𝑎

𝑥2 + (𝑧 + 𝑎)2
. (3.4.24) 

 

It is noticed that this expression is singular exactly at the point (𝑥, 𝑧) = (0, −𝑎), as it 

was literally expected. Using Eqs. (3.4.23) and (3.4.1) we obtain the expression for the 

“inner elevation” as 

 

 𝜁2 =
1

2
∑ 𝜆𝑛𝐵𝑛 cos(−𝜆𝑛𝑎) .

∞

𝑛=1

 (3.4.25) 

 

As already discussed, the series of Eq. (3.4.25) is divergent for increasing number of 

modes. However, the aforementioned methodology to tackle the singularity, developed 

in the Subsection 3.4.3, can be utilized again, provided that the sums of Eqs. (3.4.25) 

and (3.4.14) exhibit the same behavior for 𝑥 = 0. To examine this allegation, Fig. 

3.4.16 is provided.  

 

 

 Fig. 3.4.16. Solid line: shows the behavior of the sum of Eq. (3.4.25). Dashed line: 

shows the behavior of the sum of Eq. (3.4.14). Both sums are calculated for 𝑥 = 0. The air 

pocket was assumed to extend between −1 ≤ 𝑧 ≤ −0.5. 

The solid line corresponds to the sum of Eq. (3.4.25) multiplied by a constant number, 

so as to make the two curves coincide. The dashed line holds for the sum of Eq. (3.4.14). 
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Even if there are large discrepancies for the first 100 modes, a convergence of the two 

curves is observed for increasing number of modes and particularly for 𝑛 > 160 they 

become practically identical. Therefore, the methodology described in detail in the 

Subsection 3.4.3 can be exploited again. 

3.5 Solution to the leading order problem assuming linear variation of 

the pressure in the air pocket 

In this Section, we examine the case that the pressure exhibits linear variation in the 

air pocket. Consequently, similarly to the set of Eqs. (3.3.7)-(3.3.12), the bvp will now 

read 

 

 ∇2𝜙1 = 0, 𝑥 ≥ 0, −1 ≤ 𝑧 ≤ 0, (3.5.1) 

 

 
𝜕𝜙1

𝜕𝑥
= 1, 𝑧 ∈ 𝐼1, −𝑎 < 𝑧 ≤ 0, 𝑥 = 0, (3.5.2) 

 

 𝜙1 = 𝑓(𝑧), 𝑧 ∈ 𝐼2, −1 ≤ 𝑧 < −𝑎, 𝑥 = 0, (3.5.3) 

 

 
𝜕𝜙1

𝜕𝑧
= 0, 𝑧 = −1, 𝑥 > 0, (3.5.4) 

 

 𝜙1 = 0, 𝑧 = 0, 𝑥 > 0, (3.5.5) 

 

 𝜙1 → 0, 𝑥 → ∞, −1 ≤ 𝑧 ≤ 0, (3.5.6) 

  

where 𝑓(𝑧) = 𝑚1𝑧 + 𝑚2. The coefficients 𝑚1 and 𝑚2 are constants and are taken as 

known. They incorporate the water density 𝜌 (through the Bernoulli’s equation in the 

air pocket) as well as the impact velocity 𝑉 and the water depth ℎ, owing to the 

nondimensionalization process. 

The solution process is exactly the same as outlined in Subsection 3.4.1. This means 

that the normalized velocity potential has the form 

 

 𝜙1 = ∑ 𝐵𝑛 sin(𝜆𝑛𝑧) 𝑒−𝜆𝑛𝑥

∞

𝑛=1

, 𝜆𝑛 = (𝑛 −
1

2
) 𝜋. (3.5.7) 

 

The only difference lies to the system of the dual trigonometrical series which has to be 

solved. The unknown expansion coefficients must satisfy the following system 

 

 ∑ 𝜆𝑛𝐵𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝐻1(𝑧) ≡ −1, −𝑎 < 𝑧 ≤ 0, (3.5.8) 

 

 ∑ 𝐵𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝛨2(𝑧) = 𝑓(𝑧), −1 ≤ 𝑧 < −𝑎. (3.5.9) 
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In order to find a proper solution, we have to decompose the problem of Eqs. (3.5.8) 

and (3.5.9) in the following two subproblems 

 

 ∑ 𝜆𝑛𝐵𝑛
(1)

sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝐻1(𝑧), −𝑎 < 𝑧 ≤ 0, (3.5.10) 

 

 ∑ 𝐵𝑛
(1)

sin(𝜆𝑛𝑧)

∞

𝑛=1

= 0, −1 ≤ 𝑧 < −𝑎, (3.5.11) 

 

and 

 

 ∑ 𝜆𝑛𝐵𝑛
(2)

sin(𝜆𝑛𝑧)

∞

𝑛=1

= 0, −𝑎 < 𝑧 ≤ 0, (3.5.12) 

 

 ∑ 𝐵𝑛
(2)

sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝛨2(𝑧), −1 ≤ 𝑧 < −𝑎. (3.5.13) 

 

In fact, this is the approach suggested by Sneddon (1966) [p. 158]. The solution to the 

first subproblem is similar to that of the leading order problem. Hence, letting 𝑧 =

−𝜓/𝜋, the unknown coefficients will be given by Sneddon (1966) [p. 158] 

 

 𝐵1
(1)

=
1

√2
∫ ℎ1(𝜏)[1 − 𝑃1(cos 𝜏)]𝑑𝜏,

𝑐

0

 (3.5.14) 

 

 𝐵𝑛
(1)

=
1

√2
∫ ℎ1(𝜏)[𝑃𝑛−2(cos 𝜏) − 𝑃𝑛(cos 𝜏)]𝑑𝜏

𝑐

0

, 𝑛 = 2,3, …, (3.5.15) 

 

where 𝑃𝑛, again, denotes the 𝑛th degree Legendre Polynomial, while 

 

 

ℎ1(𝜏) =
1

𝜋

𝑑

𝑑𝜏
∫

𝑑𝜓

√cos 𝜓 − cos 𝜏
∫ 𝐻1(𝑢)𝑑𝑢

𝜓

0

𝜏

0

−
√2𝛾1

𝜋

𝑑

𝑑𝜏
∫

(1 − cos 𝜓 2⁄ )

√cos 𝜓 − cos 𝜏
𝑑𝜓.

𝜏

0

 

(3.5.16) 

 

The constant 𝛾1 yields from  

 

 𝛾1 {1 +
√2

𝜋
∫

(1 − cos 𝜓 2⁄ )

√cos 𝜓 − cos 𝑐
𝑑𝜓

𝑐

0

} =
1

𝜋
∫

𝑑𝜓

√cos 𝜓 − cos 𝑐
∫ 𝐻1(𝑢)𝑑𝑢.

𝜓

0

𝑐

0

 (3.5.17) 
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Τhe solution to the second subproblem is given by Sneddon (1966) [p. 159] 

 

 𝐵1
(2)

=
1

√2
∫ ℎ2(𝜏)[1 + 𝑃1(cos 𝜏)]𝑑𝜏,

𝜋

𝑐

 (3.5.18) 

 

 𝐵𝑛
(2)

=
1

√2
∫ ℎ2(𝜏)[𝑃𝑛(cos 𝜏) − 𝑃𝑛−2(cos 𝜏)]𝑑𝜏

𝜋

𝑐

, 𝑛 = 2,3, …, (3.5.19) 

 

 ℎ2(𝜏) =
1

𝜋

𝑑

𝑑𝜏
∫

𝐻2(𝜓)𝑑𝜓

√cos 𝜏 − cos 𝜓
.

𝜋

𝜏

 (3.5.20) 

 

However, this classical approach to the bvp was found to provide unreliable results, 

especially in the part of the wall, which is captured by the air pocket. The major problem 

was the numerical instabilities, which do not allow the proper convergence of the 

infinite series of Eq. (3.5.9). In order to tackle this difficulty an alternative approach 

was taken. To this end, we write the function 𝑓(𝑧) in a series-like form as  

 

 ∑ 𝑤𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝑓(𝑧). (3.5.21) 

 

Using orthogonality, the expansion coefficients, 𝑤𝑛, become  

 

 𝑤𝑛 = 2 ∫ 𝑓(𝑧)

0

−1

sin(𝜆𝑛𝑧) 𝑑𝑧.  (3.5.22) 

 

Next, we define 𝐷𝑛 = 𝐵𝑛 − 𝑤𝑛 and accordingly, Eq. (3.5.8) becomes 

 

 

∑ (𝑛 −
1

2
) 𝐷𝑛 sin[(𝑛 − 1 2⁄ )𝜓]

∞

𝑛=1

=
1

𝜋
− ∑ (𝑛 −

1

2
) 𝑤𝑛 sin[(𝑛 − 1 2⁄ )𝜓]

∞

𝑛=1

, 

(3.5.23) 

 

while Eq. (3.5.9) is reduced to  

 

 ∑ 𝐷𝑛 sin[(𝑛 − 1 2⁄ )𝜓] = 0.

∞

𝑛=1

 (3.5.24) 

 

The solution given by Sneddon (1966) can now be applied properly to the bvp of Eqs. 

(3.5.23)-(3.5.24), in terms of the coefficients 𝐷𝑛. Once the coefficients 𝐷𝑛 have been 

determined, it is easy to obtain 𝐵𝑛. 
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Fig. 3.5.1 shows the potential on the wall for two models of linear variation of the 

pressure compared to the case of zero pressure in the air pocket. It is proved that the 

case of linear pressure distribution in the air pocket has a very limited influence on the 

pressure distribution on the wall and on the maximum pressure as well. It is observed 

that once again the maximum pressure is expected to occur in the middle of the 

impacted zone. 

 

 

Fig. 3.5.1. The normalized leading order velocity potential on the wall with linear pressure 

variation in the air pocket relative to the zero-pressure case. The air pocket was assumed to 

extend between −1 ≤ 𝑧 ≤ −0.7. 

3.6 Conclusions 

In this Chapter, the breaking wave impact on a vertical impermeable wall was 

investigated. To this end, a slightly overturning breaking wave was idealized in a logical 

manner, so that an analytical approach is applicable. Specifically, the wave was 

considered as bounded from above by the still water level, while a small air pocket was 

entrapped between the water and the wall. The theory developed was established mainly 

on the assumption that the pressure is zero in the air pocket, a case corresponding to 

pure vacuum. The problem was formulated using nondimensional variables. The fluid 

was assumed to be inviscid, incompressible and the flow irrotational. The bvp is of 

mixed type, due to the Neumann and Dirichlet boundary conditions, which hold on the 

two different parts of the wall. A perturbation expansion was employed, using the 

dimensionless time as the small parameter. After separating like orders of 𝑡, the 

governing bvp was broken into two subproblems; only the leading order problem was 

solved in the present Chapter. Moreover, a Taylor series expansion was used to cope 

with the boundary conditions of the free-surface. Results were derived in terms of the 

velocity potential distribution on the wall and the liquid field as well as the free-surface 

elevation. Results for the velocity potential were also presented assuming linear 

variation of the pressure in the air pocket. The free-surface elevation was found to be 

singular at the point (𝑥, 𝑧) = (0,0), owing to the splash generated due to the collision. 
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To this end, our model was enhanced by encompassing the mathematical solution 

proposed by King and Needham (1994). The main results from this Chapter can be 

itemized as follows:  

I. Gravity is not involved in the leading order problem, but it is explicitly 

introduced in the higher order problem, through the Froude number.  

 

II. The results for the leading order velocity potential are in terms of 𝑡𝜙1, which 

particularly means that they are actually independent of the dimensionless time. 

This happens because the time is in the first power. On the contrary, the results 

for the free-surface elevation which depend on 𝑡2, depend clearly on the time. 

This approach suggests the introduction of a second time scale. 

 

III. The maximum hydrodynamic pressure is expected to occur in the middle of the 

impacted zone. 

 

IV. Judging from the 3D graph for the distribution of the magnitude of the velocity 

potential in the liquid domain as well as the contour results, it is remarked that 

the phenomenon is localized and more intense in the vicinity of the wall. 

 

V. The length of the air pocket was found to affect the distribution of the velocity 

potential on the wall and correspondingly, the hydrodynamic pressure. 

Particularly, smaller air pockets lead to higher impact loads. However, the 

potential seems to remain rather unaffected by the presence of the air pocket at 

the upper part of the wall.   

 

VI. The projection of the magnitude of the velocity potential in the liquid field 

revealed that the disturbance due to the collision practically vanishes if the 

distance from the wall is greater than half of the wave height. 

 

VII. Regarding the case of linear variation of the pressure in the air pocket, it was 

found to have a negligible effect on the pressure distribution on the impacted 

area and on the maximum pressure as well. 

 

VIII. The singularity of the free-surface elevation at the point (𝑥, 𝑧) = (0,0) was 

found to be logarithmic. An inner asymptotic expansion was adopted, as 

suggested by the study of King and Needham (1994).  

 

IX. The run-up along the wall is higher as the phenomenon evolves, as it was 

expected. 

 

X. The free-surface elevation is also affected by the length of the air pocket, even 

if the discrepancies are not that important. It was derived that smaller air pockets 

lead to greater elevations, probably owing to the fact that the impact is more 

intense in that case.  
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3.7 Further research 

The investigation presented in this Chapter, aimed to propose an alternative aspect 

of the breaking wave impact and provide answers to some essential research questions. 

Nonetheless, some improvements of the model considered in this study, would 

probably offer a deeper insight into the phenomenon. Some suggestions are mentioned 

in the following: 

I. The velocity of the breaking wave in the impact zone was considered constant. 

A vertical distribution 𝑉(𝑧) of the impact velocity would bring the approach a 

step closer to the real impact conditions. 

 

II. An air pocket with non-negligible width would be interesting to be examined, 

from a mathematical point of view mainly, since it would claim the solution to 

two bvp: i) in the vertical direction and ii) in the horizontal direction. 

 

III. The pressure in the air pocket, in this approach, was considered either as zero 

(void) or linearly dependent on the vertical coordinate. No time dependence was 

introduced. Obtaining some results for the pressure history record and its 

vertical distribution in the air pocket and introducing them to the bvp herein, 

would be challenging. Experiments would be useful in that respect. Perhaps an 

asymptotic analysis in orders of time would be necessary, in order to fragment 

the governing bvp to subproblems of orders of time.  

 

IV. In order to simulate the wave’s breaking process, while approaching the shore, 

one could take a non-flat bottom into account, by introducing a small inclination 

of the sea bed.   

 

V. It is generally accepted that during impact the air pocket is compressed and then 

expands, leading to pressure oscillations. Escape of air occurs as well. 

Consequently, taking the compression effects into account would take the 

analysis a step further. 

 

VI. Breakwaters are substantial for the protection of the shores or the structures 

located very close to them, from violent waves. Examining the case of a 

permeable wall and/or inclined wall would be interesting to observe whether 

these configurations would increase the safety level.  

 

VII. A concept of oblique impact between the semi-infinite strip of water and the 

wall is definitely a special case that could be examined in the near future. 

 

Similarly to the comment of Chapter 2, it should be mentioned again that some of the 

concepts proposed to be investigated could demand numerical solutions. 
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Chapter 4 Breaking wave impact on a vertical wall. 

Part 2. The higher order problem  

4.1 Theoretical modelling 

Chapter 4 presents the solution of the higher order bvp, for a two-dimensional 

breaking wave impact on a vertical wall. At this point, we shall recall that the general 

bvp, defined by the set of Eqs. (3.2.1)-(3.2.7), was fragmented in subproblems of orders 

of time. To this end, i) a Taylor series expansion around the still water level -so as to 

avoid satisfying the kinematic and dynamic boundary conditions of the free-surface on 

the initially unknown boundary of the free-surface elevation- and ii) a perturbation 

method for the expansion of the normalized velocity potential 𝜙, were employed. The 

dimensionless time 𝑡 was used as the small parameter in our perturbation analysis. 

Besides, the non-dimensionalization process introduced the square of the inverse 

Froude number based on depth. Clearly, the solution of the higher order problem 

dictates the solution of the leading order problem. It also leads to a substantially 

complicated, inhomogeneous Sturm-Liouville problem, with mixed, inhomogeneous 

boundary conditions, which involve infinite series. Consequently, it is required to be 

treated in a sophisticated manner. Furthermore, the results derived for the higher order 

velocity potential distribution on the wall reveal interesting corrections that should be 

made in the leading order theory, so that the results predicted by the developed 

mathematical model will be more accurate. To this end, they are analyzed by a 

mathematical as well as an engineering point of view.  

 

4.2 The higher order boundary value problem 

The higher order bvp is composed of Eqs. (4.2.1)-(4.2.6), as follows 

 

 ∇2𝜙3 = 0, 𝑥 ≥ 0, −1 ≤ 𝑧 ≤ 0, (4.2.1) 

  

 
𝜕𝜙3

𝜕𝑥
= 0, 𝑧 ∈ 𝐼1, −𝑎 < 𝑧 < 0, 𝑥 = 0, (4.2.2) 

 

 𝜙3 = 0, 𝑧 ∈ 𝐼2, −1 ≤ 𝑧 < −𝑎, 𝑥 = 0, (4.2.3) 

 

 
𝜕𝜙3

𝜕𝑧
= 0, 𝑧 = −1, 𝑥 ≥ 0, (4.2.4) 

 

 𝜙3 = −𝜂2

𝜕𝜙1

𝜕𝑧
−

𝑘

3
𝜂2, 𝑧 = 0, 𝑥 ≥ 0, (4.2.5) 

 

 𝜙3 → 0, 𝑥 → ∞, −1 ≤ 𝑧 ≤ 0, (4.2.6) 

 

where 𝑘  is the non-dimensional parameter used for the square of the inverse Froude 

number based on depth. Eq. (4.2.1) is the Laplace equation for the higher order velocity 

potential and Eq (4.2.2) is the normalized Neumann condition on the impacted part of 



 
 

78 
 

the wall, after the implementation of the perturbation method. Eq. (4.2.3) is the dynamic 

boundary condition in the air pocket, after omitting the quadratic and hydrostatic terms. 

Eq. (4.2.4) expresses the impermeability condition of the flat, horizontal bottom, while 

Eq (4.2.5) holds for the dynamic condition of the free-surface applied on the still water 

level, after the employment of the Taylor series expansion. Finally, Eq. (4.2.6) is the 

far-field boundary condition. The higher order free-surface elevation is obtained from  

 

 𝜂4 =
1

4

𝜕𝜙3

𝜕𝑧
+

1

4
𝜂2

𝜕2𝜙1

𝜕𝑧2
. (4.2.7) 

 

4.3 Solution to the higher order problem 

4.3.1 The methodology for the derivation of the expression for the distribution of 

the higher order velocity potential on the wall 

The problem of mixed type herein, determined via Eqs. (4.2.2)-(4.2.3), is defined 

differently due to the zero right-hand side term in both equations. The solution sought 

is not trivial owing to the inhomogeneous dynamic boundary condition of the free-

surface. Specifically, the right-hand side term of Eq. (4.2.5) involves the leading order 

free-surface elevation and the leading order vertical velocity. At this point, it is useful 

to recall Eqs. (3.3.13) and (3.4.13), which dictate that the inhomogeneous term is a 

function of the horizontal coordinate 𝑥, defined as 𝑓(𝑥). Consequently, in order to build 

up the solution process, a different strategy is assumed. Particularly, we aim to satisfy 

initially Eqs. (4.2.4) and (4.2.5). To this end, a proper solution that complies with these 

requirements can be expressed as 

 

 𝜙3 = −𝑓(𝑥)𝑔(𝑧) + ∑ 𝐹𝑛(𝑥) sin(𝜆𝑛𝑧),

∞

𝑛=1

 (4.3.1) 

 

where 𝐹𝑛(𝑥) and 𝑔(𝑧) are functions to be determined. It was also assumed that  

 

 𝑓(𝑥) = 𝜂2

𝜕𝜙1

𝜕𝑧
+

𝑘

3
𝜂2, (4.3.2) 

 

which is properly behaved at infinity. Specifically, 𝑓(𝑥) → 0 as 𝑥 → ∞. The latter 

remark is shown graphically in Fig. 4.3.1. In more detail, the term (4.3.2) converges to 

zero for distances from the wall equal to the water depth (𝑥 = 1). In addition, given that 

the term 𝑓(𝑥) involves the leading order free-surface elevation, it exhibits a singularity 

at the point 𝑥 = 0. To overcome this difficulty and obtain a numerical value exactly on 

the wall, we follow the process outlined in Section 3.4.3. 
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Fig. 4.3.1. The behavior of the term 𝑓(𝑥) (see Eq. (4.3.2)), for the free-surface boundary 

condition of the higher order hydrodynamic problem. It was assumed that 𝑘 = 1.09 (𝑉 =
3m/s), 𝑡 = 0.01 and the air pocket extends between −1 ≤ 𝑧 ≤ −0.5. 

 

Eq. (4.3.1) satisfies both Eqs. (4.2.4) and (4.2.5) provided that 𝑔′(−1) = 0 and 𝑔(0) =
1, where the prime denotes differentiation with respect to the argument. Hence, a proper 

expression for 𝑔(𝑧) reads [Gradshteyn and Ryzhik (2007); p.46] 
 

 𝑔(𝑧) =
4

𝜋
∑(−1)𝑖−1

cos[(2𝑖 − 1)𝜋𝑧]

2𝑖 − 1
.

∞

𝑖=1

 (4.3.3) 

 

 

Fig. 4.3.2. The function 𝑔(𝑧) given by the expression (4.3.3). 
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The function 𝑔(𝑧) is shown graphically in Fig. 4.3.2, which demonstrates that indeed 

𝑔(0) = 1. Moreover, differentiating the relation (4.3.3) with respect to 𝑧, it is very 

simple to show that 𝑔′(−1) = 0. Next, the general expression (4.3.1) for the higher 

order potential is substituted in the Laplace equation (4.2.1), which after employing the 

orthogonality property for sin(𝜆𝑛𝑧) in the vertical domain −1 ≤ 𝑧 ≤ 0 yields the 

simple formula for 𝐹𝑛(𝑥) 

 

 𝐹𝑛
′′(𝑥) − 𝜆𝑛

2 𝐹𝑛(𝑥) = 𝑆𝑛(𝑥), 0 ≤ 𝑥 < ∞, (4.3.4) 

 

where 

 

 𝑆𝑛(𝑥) = 2 ∫[𝑓′′(𝑥)𝑔(𝑧) + 𝑓(𝑥)𝑔′′(𝑧)] sin(𝜆𝑛𝑧) 𝑑𝑧

0

−1

. (4.3.5) 

 

The inhomogeneous component of the differential Eq. (4.3.4) is denoted by 𝑆𝑛(𝑥) and 

can be regarded as the forcing term that excites the system. The factor 2 in (4.3.5) 

originates from the orthogonality property for sin(𝜆𝑛𝑧). The term 𝑆𝑛(𝑥) comprises the 

functions 𝑓(𝑥), 𝑔(𝑧) as well as their second derivatives with respect to their arguments. 

The behavior of the term 𝑆𝑛(𝑥) is depicted in Fig. 4.3.3, for the first four modes. 

Clearly, it obtains much higher values than 𝑓(𝑥) but asymptotes to zero much more 

rapidly. 

 

 

Fig. 4.3.3. The behavior of the inhomogeneous term of Eq. (4.3.4), as described by the Eq. 

(4.3.5). It was assumed that 𝑘 = 1.09 (𝑉 = 3m/s), 𝑡 = 0.01 and the air pocket extends 

between −1 ≤ 𝑧 ≤ −0.5. 

Subsequently, using Eq. (4.3.1) in the mixed, homogeneous conditions (4.2.2) and 

(4.2.3), it follows that 
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 ∑ 𝐹𝑛
′(0) sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝑓′(0)𝑔(𝑧), −𝑎 < 𝑧 < 0, (4.3.6) 

 

 ∑ 𝐹𝑛(0) sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝑓(0)𝑔(𝑧), −1 ≤ 𝑧 < −𝑎. (4.3.7) 

 

Using Eq. (4.2.6) and taking into account that 𝑓(𝑥) → 0 for 𝑥 → ∞, the last 

condition that has to be considered is  

 

 𝐹𝑛(𝑥) → 0, 𝑥 → ∞. (4.3.8) 

 

Eqs. (4.3.4) and (4.3.6)-(4.3.8) determine a novel and challenging one-dimensional, 

boundary value, Sturm-Liouville problem with mixed, inhomogeneous conditions, 

which is even more complicated due to the infinite series involved. Relevant problems 

have not been investigated so far, at least in the field of analytical hydrodynamics 

associated with slamming phenomena. The solution to this problem is considered next. 

4.3.2 An approximate approach for the one-dimensional Sturm-Liouville problem 

with mixed conditions 

In order to solve the Sturm-Liouville problem composed of Eqs. (4.3.4) and (4.3.6)-

(4.3.8) and obtain numerical results, we followed several approaches. In this 

Subsection, we outline briefly two possible, but approximate, methods of solution. 

Typical Sturm-Liouville bvp are solved by means of the governing Green’s function. 

Possible solutions are assumed to be of the form (e.g., for Eq. (4.3.4))  

 

 𝐹𝑛(𝑥) = ∫ 𝑆𝑛(𝑦)𝐺𝑛(𝑥; 𝑦)𝑑𝑦,

∞

0

 (4.3.9) 

 

in which the Green’s function must satisfy the homogeneous field equation (e.g., Eq. 

(4.3.4)), and the same boundary conditions as the unknown function to be obtained. In 

addition, the Green’s function must be continuous at 𝑦 = 𝑥, while the derivative of the 

Green’s function, calculated at the same point, must be discontinuous exhibiting a jump 

singularity [Dettman (1988); p.230, Chatjigeorgiou (2018); p.111]. The problem herein 

arises mainly from the fact that the condition on the known boundary at 𝑥 = 0 is not 

uniform, but each condition holds on a different portion of the wall. In addition, the 

boundary condition is not described by a simple formula (say Neumann or Dirichlet) as 

it involves infinite series. Therefore, once the Green’s function is derived, a first 

approximate solution can be obtained by substituting the general expression (4.3.9) in 

the boundary conditions (4.3.6) and (4.3.7). The expansion coefficients involved in the 

Green’s function can be calculated by the dual trigonometrical series system formed. A 

second approximate solution can be obtained by demanding that the Green’s function 

satisfies exactly the same boundary conditions with the unknown function 𝐹𝑛(𝑥). At 

this point, it should be mentioned that these approximate solutions have been discussed 
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briefly for the completeness of the present thesis. In the next Subsection, we proceed 

with the exact and robust method of solution for the Sturm-Liouville problem. 

4.3.3 The exact solution of the one-dimensional Sturm-Liouville problem with 

mixed conditions 

In this method of solution, we follow a rather straightforward approach, starting from 

the fundamental basic Eq. (4.3.4). Therefore, the solution for 𝐹𝑛(𝑥), that is composed 

by the homogeneous solution and the particular solution, is given by 

 

 

𝐹𝑛(𝑥) = 𝐴𝑛𝑒−𝜆𝑛𝑥

−
1

2𝜆𝑛
{∫ 𝑒−𝜆𝑛(𝑥−𝜉)𝑆𝑛(𝜉)𝑑𝜉 + ∫ 𝑒−𝜆𝑛(𝜉−𝑥)𝑆𝑛(𝜉)𝑑𝜉

∞

𝑥

𝑥

0

}, 
(4.3.10) 

 

where 𝐴𝑛 are unknown expansion coefficients to be calculated. Expression (4.3.10) 

satisfies the Laplace equation and secures convergence as 𝑥 → ∞. Substituting Eq. 

(4.3.10) into the boundary conditions (4.3.6) and (4.3.7) yields the following bvp of 

mixed type 

 

 ∑ 𝜆𝑛𝐴𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝛨1(𝑧), −𝑎 < 𝑧 < 0, (4.3.11) 

 

 ∑ 𝐴𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝛨2(𝑧), −1 ≤ 𝑧 < −𝑎, (4.3.12) 

 

where the inhomogeneous terms are given by the expressions 

 

 𝛨1(𝑧) = −𝑓′(0)𝑔(𝑧) −
1

2
∑ ∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉

∞

0

sin(𝜆𝑛𝑧),

∞

𝑛=1

 (4.3.13) 

  

and  

 

 𝛨2(𝑧) = 𝑓(0)𝑔(𝑧) +
1

2
∑

1

𝜆𝑛
∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉

∞

0

sin(𝜆𝑛𝑧)

∞

𝑛=1

. (4.3.14) 

 

Eqs. (4.3.11) and (4.3.12) form a dual trigonometrical series system which has to be 

solved in terms of the unknown coefficients 𝐴𝑛. The necessary steps are fully developed 

in the analysis that follows. 

 

First approach 

 

In order to find a proper solution, we have to decompose the problem of Eqs. 

(4.3.11), (4.3.12) into the two following subproblems 
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 ∑ 𝜆𝑛𝐴𝑛
(1)

sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝛨1(𝑧), −𝑎 < 𝑧 < 0, (4.3.15) 

 

 ∑ 𝐴𝑛
(1)

sin(𝜆𝑛𝑧)

∞

𝑛=1

= 0, −1 ≤ 𝑧 < −𝑎, (4.3.16) 

 

and 

 

 ∑ 𝜆𝑛𝐴𝑛
(2)

sin(𝜆𝑛𝑧)

∞

𝑛=1

= 0, −𝑎 < 𝑧 < 0, (4.3.17) 

 

 ∑ 𝐴𝑛
(2)

sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝛨2(𝑧), −1 ≤ 𝑧 < −𝑎. (4.3.18) 

 

In fact, this is the approach suggested by Sneddon (1966) [p.158]. The solution to the 

first subproblem is similar to that of the leading order problem [see Eqs. (3.4.4)-(3.4.9)]. 

Hence, letting 𝑧 = −𝜓/𝜋, the unknown coefficients will be given by (Sneddon (1966) 

[p. 158]) 

 

 𝐴1
(1)

=
1

√2
∫ ℎ1(𝜏)[1 − 𝑃1(cos 𝜏)]𝑑𝜏,

𝑐

0

 (4.3.19) 

 

 𝐴𝑛
(1)

=
1

√2
∫ ℎ1(𝜏)[𝑃𝑛−2(cos 𝜏) − 𝑃𝑛(cos 𝜏)]𝑑𝜏

𝑐

0

, 𝑛 = 2,3, …, (4.3.20) 

 

where 𝑃𝑛, again, denotes the 𝑛th degree Legendre Polynomial, while 

 

 

ℎ1(𝜏) =
1

𝜋

𝑑

𝑑𝜏
∫

𝑑𝜓

√cos 𝜓 − cos 𝜏
∫ 𝐻1(𝑢)𝑑𝑢

𝜓

0

𝜏

0

−
√2𝛾1

𝜋

𝑑

𝑑𝜏
∫

(1 − cos 𝜓 2⁄ )

√cos 𝜓 − cos 𝜏
𝑑𝜓

𝜏

0

. 

(4.3.21) 

 

The constant 𝛾1 yields from 

 

 𝛾1 {1 +
√2

𝜋
∫

(1 − cos 𝜓 2⁄ )

√cos 𝜓 − cos 𝑐
𝑑𝜓

𝑐

0

} =
1

𝜋
∫

𝑑𝜓

√cos 𝜓 − cos 𝑐
∫ 𝐻1(𝑢)𝑑𝑢.

𝜓

0

𝑐

0

 (4.3.22) 

  

Τhe solution to the second subproblem is given by (Sneddon (1966) [p. 159]) 

 



 
 

84 
 

 𝐴1
(2)

=
1

√2
∫ ℎ2(𝜏)[1 + 𝑃1(cos 𝜏)]𝑑𝜏,

𝜋

𝑐

 (4.3.23) 

 

 𝐴𝑛
(2)

=
1

√2
∫ ℎ2(𝜏)[𝑃𝑛(cos 𝜏) − 𝑃𝑛−2(cos 𝜏)]𝑑𝜏

𝜋

𝑐

, 𝑛 = 2,3, …, (4.3.24) 

 

while 

 

 ℎ2(𝜏) =
1

𝜋

𝑑

𝑑𝜏
∫

𝐻2(𝜓)𝑑𝜓

√cos 𝜏 − cos 𝜓
.

𝜋

𝜏

 (4.3.25) 

 

However, this classical approach to the bvp was found to provide unreliable results, 

especially in the part of the wall that is captured by the air pocket. This particularly 

means that in the region of the air pocket the series of Eq. (4.3.18) did not converge to 

the required value satisfactorily; the part of the velocity potential which had to be zero 

(in the air pocket region) did not satisfy the corresponding boundary condition and 

clearly deviates from this value. Particularly, this is attributed to the very complicated 

mathematical manipulations concerning the higher order problem. Despite the fact that 

the solution given by Sneddon (1966) is absolutely exact and accurate, it involves the 

calculation of improper, elliptic integrals for which no analytical solutions exist. 

Therefore, these integrals have to be treated numerically. Consequently, in order to 

derive accurate results, a second approach had to be taken, which actually adjusts 

Sneddon’s (1966) suggested solution.  

 

Second approach 

 

We reexamine the main problem of Eqs. (4.3.11) and (4.3.12) and we write the latter 

in the form 

 

 ∑ {𝐴𝑛 −
1

2𝜆𝑛
∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉

∞

0

} sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝑓(0)𝑔(𝑧). (4.3.26) 

 

Next, we define 

 

 𝐶𝑛 = 𝐴𝑛 −
1

2𝜆𝑛
∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉,

∞

0

 (4.3.27) 

 

and we write the right-hand side term of Eq. (4.3.26) in a series-like form 

 

 ∑ 𝑏𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝑓(0)𝑔(𝑧). (4.3.28) 
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Using orthogonality, the expansion coefficients, 𝑏𝑛, become  

 

 𝑏𝑛 = 2𝑓(0) ∫ 𝑔(𝑧)

0

−1

sin(𝜆𝑛𝑧)𝑑𝑧. (4.3.29) 

 

Further, we define 𝐷𝑛 = 𝐶𝑛 − 𝑏𝑛 and accordingly, the unknown coefficients 𝐴𝑛 are 

obtained from  

 

 𝐴𝑛 = 𝐷𝑛 + 𝑏𝑛 +
1

2𝜆𝑛
∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉.

∞

0

 (4.3.30) 

 

By substituting Eq. (4.3.30) into Eq. (4.3.11) yields  

 

 

∑ 𝜆𝑛 {𝐷𝑛 + 𝑏𝑛 +
1

2𝜆𝑛
∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉

∞

0

}

∞

𝑛=1

sin(𝜆𝑛𝑧)

= −𝑓′(0)𝑔(𝑧) −
1

2
∑ ∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉

∞

0

sin(𝜆𝑛𝑧)

∞

𝑛=1

,

−𝑎 < 𝑧 < 0. 

(4.3.31) 

 

Eq. (4.3.31) is transformed in a more convenient form according to  

 

 

∑ 𝜆𝑛 𝐷𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= −𝑓′(0)𝑔(𝑧)

− ∑ {∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉

∞

0

+ 𝜆𝑛𝑏𝑛} sin(𝜆𝑛𝑧)

∞

𝑛=1

,

−𝑎 < 𝑧 < 0, 

(4.3.32) 

 

while Eq. (4.3.12) is reduced to  

 

 ∑ 𝐷𝑛 sin(𝜆𝑛𝑧) = 0

∞

𝑛=1

,               − 1 ≤ 𝑧 < −𝑎. (4.3.33) 

 

The solution given by Sneddon (1966) can now be applied properly to the bvp of Eqs. 

(4.3.32)-(4.3.33), to obtain the coefficients 𝐷𝑛. Once the coefficients 𝐷𝑛 have been 

determined, it is easy to obtain 𝐴𝑛 using Eq. (4.3.30).  
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Fig. 4.3.4. The coefficients 𝐴𝑛 for the higher order problem and 𝑘 = 1.09 (𝑉 = 3m/s). The 

air pocket extends between −1 ≤ 𝑧 ≤ −0.7. 

The solution for the higher order expansion coefficients 𝐴𝑛, is convergent again, as 

manifested in Fig. 4.3.4, for the first 50 modes. The results demonstrate a small 

amplitude oscillatory behavior around zero, which decays rather fast, in a manner 

similar to the coefficients of the leading order problem, but of a greater magnitude. An 

analogous behavior is observed for the infinite integral of Eq. (4.3.32) as a function of 

the mode number. A fast convergence to zero can be easily seen as the number of modes 

grows to infinity. 

 

 

Fig. 4.3.5. The infinite integral of Eq. (4.3.32) for 𝑘 = 1.09 (𝑉 = 3m/s). The air pocket 

extends between −1 ≤ 𝑧 ≤ −0.7. 
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4.3.4 The distribution of the higher order velocity potential on the wall 

This is calculated by expression (4.3.1) explicitly, substituting 𝑥 = 0. Fig. 4.3.6 

depicts the higher order potential on the wall for three different air pocket heights. The 

first point that one notices is the change in the sign of the potential. Recalling the results 

of the leading order solution, it is deduced that the leading order theory slightly 

overestimates the hydrodynamic pressure on the impacted part of the wall (see Fig. 

3.4.3). On the other hand, the corrections due to the higher order solution amplify the 

leading order counterpart on the part of the wall directly above the fluid-air pocket 

intersection point. In addition, the presence of the air pocket seems to have a negligible 

effect on the potential on the upper part of the wall, close to the still water level. Finally, 

Fig. 4.3.6 verifies that 𝜙3 is non-zero on the free-surface, 𝑧 = 0, as dictated by the 

Dirichlet boundary condition (4.2.5). 

 

 

Fig. 4.3.6. The third order velocity potential on the wall for several air pocket heights. It was 

assumed that 𝑘 = 1.09 (𝑉 = 3m/s).  

Figs. 4.3.7 and 4.3.8 show the pattern of 𝜙3 for several values of the parameter 𝑘, 

which correspond to impact velocities 𝑉 = 1, 2, 3 m/s and two different air pocket 

heights. The velocity potential that ignores the hydrostatic term (𝑘 = 0) is shown for 

reference as well. It is observed that the higher the impact velocity is (or equivalently, 

the smaller the dimensionless parameter 𝑘), the smaller the magnitude of the higher 

order potential becomes. Consequently, the corrections that originate from the 

contribution of the higher order term are more limited. Thus, the main outcome from 

Figs. 4.3.7 and 4.3.8 is that the leading order predicts the velocity potential distribution 

on the wall for higher impact velocities more accurately.   
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Fig. 4.3.7. The third order velocity potential on the wall for several values of the parameter 𝑘. 

The air pocket extends between −1 ≤ 𝑧 ≤ −0.7. 

 

Fig. 4.3.8. The third order velocity potential on the wall for several values of the parameter 𝑘. 

The air pocket extends between −1 ≤ 𝑧 ≤ −0.8.  

Nevertheless, the contribution of the higher order potential does not change the 

results of the leading order problem for any impact velocity substantially. To verify this 

allegation, Fig. 4.3.9 is provided. One can easily notice that the shape of the potential 

distribution on the wall, as well as its magnitude, are essentially determined by the 
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leading order solution. Furthermore, small discrepancies are noticed in the upper part 

of the wall and just above the upper point of the air pocket. In the leading order solution, 

the maximum value of the velocity potential is ~ − 0.3 whereas when the correction of 

the higher order problem is involved, it is ~ − 0.28, which corresponds to a reduction 

of 6.7%. Therefore, the hydrodynamic pressure is expected to exhibit the same 

variation. 

 

 

Fig. 4.3.9. The distribution of the total velocity potential on the wall when i) retaining the 

leading order term only and ii) considering the correction from the higher order problem. It 

was assumed that 𝑘 = 1.09 (𝑉 = 3m/s), 𝑡 = 0.01 and the air pocket extends between    

−1 ≤ 𝑧 ≤ −0.7. 

The last remarks herein concern the higher order free-surface elevation 𝜂4. Combining 

Eqs. (3.3.20), (3.4.1) and (4.3.1) and evaluating on 𝑧 = 0 yields 

 

 

𝜂4 =
1

4
∑ 𝜆𝑛 {𝐴𝑛𝑒−𝜆𝑛𝑥

∞

𝑛=1

−
1

2𝜆𝑛
[∫ 𝑒−𝜆𝑛(𝑥−𝜉)𝑆𝑛(𝜉)𝑑𝜉

𝑥

0

+ ∫ 𝑒−𝜆𝑛(𝜉−𝑥)𝑆𝑛(𝜉)𝑑𝜉

∞

𝑥

]} . 

(4.3.34) 

 

Letting 𝑥 = 0 gives the run-up on the wall due to the higher order potential, which is  

 

 𝜂4)𝑥=0  =
1

4
∑ 𝜆𝑛𝐴𝑛 

∞

𝑛=1

−
1

8
∑ ∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉.

∞

0

∞

𝑛=1

 (4.3.35) 
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It can be numerically verified that 𝜂4, calculated on the wall is singular and that is 

due to the first sum, which is divergent on 𝑥 = 0, owing to the expansion coefficients 

𝐴𝑛. The first term exhibits an analogous oscillating behavior with that of Eq. (3.4.13), 

but of greater magnitude, which was totally expected. Particularly, given that the 

expansion coefficients for the higher order problem 𝐴𝑛 are negative (see Fig. 4.3.4), 

this sum tends to negative infinity for increasing number of modes. The second sum 

tends asymptotically to a constant value as 𝑛 grows to infinity. Consequently, a general, 

approximate solution can be derived from the multiplication of the value of the leading 

order free-surface elevation on the wall with a negative constant. The results for the 

higher order free-surface elevation are shown in Fig. 4.3.10. It should be noted that 𝜂4 

is negative, a fact which implies that the leading order slightly overestimates the free-

surface elevation. However, recalling Eq. (3.3.4), 𝜂4 is multiplied by the term 𝑡4, thus 

its contribution for small times is literally negligible. Nonetheless, in order to obtain a 

more accurate solution for research, rather than for practical purposes, an asymptotic 

analysis at 𝑥 → 0 should be conducted. 

 

 

Fig. 4.3.10. The higher order free-surface elevation at 𝑡 = 0.005. It was assumed that the air 

pocket extends between −1 ≤ 𝑧 ≤ −0.5. 

4.4 Conclusions 

In this Chapter, the solution to the higher order bvp was analyzed in detail. After 

several mathematical manipulations, it was reduced to a complicated Sturm-Liouville 

problem, with mixed inhomogeneous boundary conditions, which involved dual 

trigonometrical, infinite series. The difficulties and the numerical instabilities 

encountered during the solution process were also discussed. The main conclusions 

drawn from this part of the research, can be summarized as follows:  

I. The gravity was found to affect the results of the velocity potential when we 

considered the higher order bvp. 
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II. The most noticeable outcome of this analysis was the change in the sign of 

the potential of the third order solution on the impacted portion of the wall. 

This particularly means that the results anticipated by the leading order 

solution are attenuated on the upper part and amplified on the part just above 

the fluid-air pocket intersection point. 

 

III. The presence of the air pocket does not affect the potential and consequently 

the hydrodynamic pressure on the upper part of the wall, close to the free-

surface. 

 

IV. The leading order theory predicts the impact pressures on the wall more 

accurately for large impact velocities. 

 

V. The contribution of the higher order term leads to a reduction of 6.7% in the 

maximum value of the velocity potential on the wall.   

 

VI. The higher order free-surface elevation 𝜂4 was proved to obtain negative 

values, which implies that the corresponding leading order solution slightly 

overestimates the results. In any case, its contribution is considered as 

negligible. 

 

4.5 Further research 

The mathematical analysis we dealt with in this Chapter, prescribed the solution to 

a challenging Sturm-Liouville problem. 

I. The methodology presented was initiated by assuming a general expression for 

the higher order velocity potential [see Eq. (4.3.1)]. It unavoidably demanded 

the selection of the function 𝑔(𝑧). Therefore, it would be interesting to examine 

how any different, but proper, expressions for the function 𝑔(𝑧) would change 

the results. Besides, it is challenging to investigate an alternate general 

expression for the higher order velocity potential 𝜙3. 

 

II. An asymptotic analysis as 𝑥 → 0 for the treatment of the higher order free-

surface elevation singularity could be conducted. 
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Chapter 5 Original contributions of the PhD thesis 

The research conducted within the context of this dissertation has several novel 

features, which aimed to give clear answers to important and unclarified scientific 

queries concerning analytical methods in water impact problems. The scrutiny in this 

field was absolutely indispensable, given that this class of problems inherently 

introduce difficulties in the physical modelling of the phenomenon and the 

mathematical solution as well. Particularly,  

 

⎯ Chapter 2: 

 

• Provided a straightforward comparison between the slamming force 

exerted on the vertical cylinder as calculated by the solution of the 3D 

Wagner bvp, and those anticipated by the corresponding 2D theories. 

• Provided a straightforward comparison between the results concerning 

the evolution with time of the real 3D contact line and those anticipated 

by the 2D theories. 

• Discussed in detail the range of validity of the 2D Wagner theory when 

applied to real 3D geometries. 

• Demonstrated comparative results for the velocity of the expansion of 

the contact area, between the cylinder and the liquid, relative to the 

impact velocity. 

 

⎯ Chapter 3: 

 

• Enhanced the existing analytical models utilized to simulate breaking 

wave impact on vertical walls, based on the concept of pressure-impulse, 

by taking the free-surface elevation and the entrapment of a small air 

pocket into account. 

• Presented for the first time a solution to this type of impact problems 

using dual trigonometrical series system. 

 

⎯ Chapter 4: 

 

• Enriched the available mathematical literature concerning Sturm-

Liouville problems. The solution developed aimed to tackle 

considerable difficulties arising from the inhomogeneous boundary 

conditions of the inhomogeneous Sturm-Liouville problem, which even 

involved infinite series. 

• Examined and discussed the accuracy of the leading order results 

thoroughly. It also discussed the rate of contribution of the higher order 

solution of the velocity potential on the wall. 
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