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Abstract

In performing arts, such as choreography, dance and theatrical kinesiology, movements of human body
signals and gestures are essential elements used to describe a storyline in an aesthetic and symbolic way.
Although, we, as humans, can inherently perceive and decipher such human body signals in a natural way,
this process is challenging for a computer system. One important aspect in the analysis of a performing
dance is the automatic extraction of the choreographic patterns/elements since these elements provide an
abstract and compact representation of the semantic information encoded in the overall dance storyline.
One salient issue in the analysis of a performing dance is to automatic extract its choreographic patterns
since these elements provide an abstract representation of the semantics of the dance and encodes the
overall dance storytelling. However, application of conventional video summarization algorithms on
dance sequences cannot appropriately retrieve their choreographic patterns since a dance is composed of
an ordered set of sequential elements which are repeated in time. Additionally, the 3D geometry of a
dance is too complicated to be described using only the RGB color information.

This thesis is distinguished into three parts. Part I describes the theoretical background regarding
ICH and the principles with respect to the mathematical modelling of folklore choreographic sequences.
In Chapters 1, 2, 3 the recent trends on choreographic representation in terms of machine learning,
video summarization, pose identification and dance annotation are described. Part II presents the
adopted techniques for content-based sampling of the selected folklore choreographic sequences. This
part is oriented on the semantic compression and the video summarization taking into consideration
the complexity of the spatio-temporal sequences. In particular, Chapter 4 exploited a hierarchical
scheme that implements spatio-temporal variations of the dance features. Chapter 5 describes an
abstract representation of the semantic details of choreographic sequences taking into consideration
a key-frame selection algorithm. Chapter 6 compares the summarization performances taking into
account four sampling algorithms all implemented under a SAE scheme’s projected data. Specifically, a
SAE framework followed by a hierarchical SMRS algorithm implemented to summarize choreographic
sequences. Part III (Chapters 7, 8, 9) focused on modelling and analysis of folklore choreographic
sequences. Chapter 7 explored the feasibility of pattern matching between heterogeneous motion
capturing systems. In this chapter, a trajectory interpretation in folklore sequences is described. The
conducted experiments indicate that if significant levels of precision are ensured during initial data
collection, design, development and fine-tuning of the system, then low-cost and widely popular motion
capturing sensors suffice to provide a smooth and integrated experience on the user end, which would
allow for relevant educational or entertainment applications to be adopted at scale. Chapter 8 focuses on
the enhancement of the learning experience of folklore dances by introducing machine learning tools

with the capability of providing a scalable quantifiable assessment of a choreography at different level of
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hierarchies; yielding a from coarse to fine evaluation. Chapter 9 describes an adaptable autoregressive
and moving average layer (R-ARMA) into a conventional CNN filter to model the dynamic behavior of a
choreography. In addition, to face the choreography dynamics, we introduced an adaptation mechanisms
in a way that the network weights of the fully connected hidden layer is dynamically updated to fit current
environmental characteristics. Experimental results on real-life sequences indicated the efficiency of the
proposed model against conventional deep machine learning filters. Chapter 10 summarizes the thesis by

representing the overall contribution and the future works.



Extetopévn Ieptindn

IoAAég mpoomdieieg Eyouv PEyEL ONUEQX YIVEL TOOXEWEVOU Vo XaTary el ot Var BlaowUel 1) UALXY
ToMTIo T xAnpovouio. AvTrIETwe 1) dukn xAneovould AOYw TG U anthc @UoNS TNS ETLPEREL BUOXOMES
1600 0TV enedepyacio 6Go xar oty xatoryeapr Tne. [lupdin Ty tepdo tia tpdodo tou Eyel emteuy Vel
otnv TeYVvohoyio Tng dnglomoinone, xupiwe 6cov dgopa oTo amTd TOATIG TIXG ayordd oTo eNinedo TNg
Teoddotatng anewovione (3D-COFORM, EPOCH, CARARE, IMPACT, PRESTOSPACE, V-CITY), n
NAEXTEOVIXY| TEXUNEIOOT TWV JLAWY TOMTIOTIXGY Ayt BV elvon TAREMC PAVERT, EWBXOTEQN OTIG
Aoiixéc wop@éc téyvne. Autd ogeileton xuplwe 0TO CUUTAEYUA SLETO TAUOVIXOTNTAC TWV POAXAOE
TORUCTACEWY TOV TUPOUGLALOUV Uial GELRd amd TEOXANCELS TTOU TEQLAUUBAVOLY TN Yopoypaupia, Thy
dnelomolnon, tnv enelepyaota, TV yopoypupixr avdAucr/onueloypapio, TNV pnyavixt| Lddnorn xou
TNV LTOAOYLO TIXY| Gpaon. Eivaw onuoavtind va avagépouue 6TL auth ebvar 1 TpdTn Qopd Tou LAOTOLE-
To TETOLO XoUvVoTOUO TEDLO EpELVAG, TO OTOl0 EYEL WC GTOYO VA AELTOURYOEL WG EVOC TEWTOTOPLAXOG
unyaviouos yia Ty evoroinor tou mepleyouevou e ‘Aving Ioatiotinric Kinpovoude (AIIK) ue
HO1 uTdpyov Pngroroinuévo mepieyouevo and dngloxéc BiBhiodxes (t.y. Europeana), tnv cUvdeon
¢ AIIK pe to medio tng wnyoviniic uddinong odnymvToag o€ TEONYUEVES ETULO TNUOVIXES ONUOCLEVCELS.
Y16Y0¢ NS EMBUWXOUEYNG EPELVNTIXTC EAETNC TN OB TopAC Slate3nic elvon 1 dmglomoinon tng
ATIK, 0mAcdY| T@V YOREUTOY X0 TWV YOREVTIXWY TOUS XLVAGEWY, YOREUTIXMY EXPEACEY, XoIOS X0 1)
QEYELOVETNOT TOV OYETIUDY BEBOUEVWV/UETABEBOUEVWY GE XU TAAANAT brplancd BiBAlo0Yer, TpoxeyE-
vou va datnendel Turua tne AIIK. Emmiéov, tidetan n ovéryxn vo yewwdel i tohumhoxdtnta tng Y-
PLoTOLNoNE TTOL BLETEL TNV XUTAYPUPY|, TNV AUTEXOVLOT, T1] LOVIEAOTIOMNOT X0t TNV EXOVIXY| avaTapdo-
Too1. Ot Tapao TaTinég TEYVES, OTWE 1) yopoyeapia, 0 Yopds xau 1 Veatpxr xvnotohoyid, oL XWVHCELS
oVIPOTIVGDY COUATOY Xl YELROVOUL®Y Efval Bactxd oToLyEld TOU YENOWOTOLOUVTOL Yia Vo TepLypdouy
wa .o topla Ye awoInTnd xon cupBoiixd teoto. Ilapdlo mou eucic, we dvipwnot, UTopolUE EYYEVEKS
VoL avTIAN@UOUUE X0l VoL ATOXEUTTOYRUPTICOUIE TETOL OHUATA AvIPMTIVOU COUATOS UE PULXO TEOTO,
oty 1 dladxaota ebvon BUoXOAN Yo Evar GOoTNUN LTOAOYLGTY. Miar onuoavTixs TTuyh oTny avdAuon
EVOC TTUPAC TATIXOU Y0p0oU VO 1) AUTOUTY ECAYWYT) TWV Y0ROYLEUPLXMY TEOTUTWV/CTOLYEIWY OEdOUE-
VOU OTL AUTE ToL OTOLYELN TTOREYOLY LA APTIENUEVT) UVAUTIURAC TAGT] TWV OTUAGIONOY UMY TANEOPOQLOY
TOU XKOWOTOWLUYTUL 0T axohovdia Tou yopol. Emmhéov éva onuavtind (ATnUa 0TV avdAUoT) €x-
TEAEOTC EVOS Y0POU EIVAL 1) AUTOUATY) EEOYWYT| YOROYRAUPXMDY TROTUTWY TNG, DEDOUEVOU OTL AUTE Tal
OTOLYEl TOPEYOLY ULl APNENUEVT AVATUEAOCTACT] TNG CUAGIOAOYING TOU YOPOU Xl XWOLXOTOLOUY TN
GLUVOALXT) APNYNOT TOU GUYXEXPEVOU Y0poU. (26T600, 1) EQuouoYY| cuuBaTixey alyoplluwy cuvor-
XY Bivteo axohovhov OeV UTOpEL Vo VA TACEL XATIAANAYL TOL Y0ROYRUPIXE TOUG HoTiBo apol Evag

Y0p0¢ amotehelton amd Evor BLUTETAYUEVO GUVORO Dladoyxmy oTolyelwy Ta omola enovoroufdvovTol
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070 Ypovo. Téhog, 1) Telodido Tatr YewUETEio TOU YopoU elvor TOAD TeEpimhoXT Yio Vo TEpLypael yenot-
HOTIOLWVTAS UOVO TG TANPOoQopieg Ypwuatoc RGB.

H uné e&étaon dwtein avantiocoeton avanticoetou o 10 xeqpdiaa:

To Kegdhawo 1 ewodyer tic Bacixég évvoieg tng AlIK, avahler Toug gpeuvntixolc otdyoug, Tny
TEWTOTUTO X0 TNV XaLvoTop{o TN TEOTELVOUEVTS DlaTEU3YC.

To Kegdhowo 2 napouctdlel Tic TpdcQUTES TUCEIC GTY) YOPOYRAUPIXT) AVATURACTACT) 6GOV APoRd
N povtelomoinom, T Brvteomepthnd, TNV onueloYEapio XoL TNV oVOY VOELOT] YOROYEAUPXOY HOTBWY.
Emmiéov, onuovpyriinxay 800 yopoypapxd clvoha dedouevemy. To yopoypeapixd cOvola TepLho-
Bavouv Tpldvta mapadoctoxéc Prpronoinuéves axohovdec yopol Tou xoTorypd@nXaY O GUVERYATTA
ue To Apiototéhclo Ilavemothuo Oecoahovixne oto mhaicto Tou épyou TERPSICHORE. Autd ta
oUVOAQ BEDOUEVWV EUTIEPLEYOUY TEPLOCOTERES amd 83663 eudveg RGB xan 7362 eyypoageg vepoy
ornuelwy (Lopgt| .c3d) cuufatéc ue didpopeg Bdoeig dedouévny (.. Europeana, Bdor dedouévwv CMU,
AMASS).

To Kegdharo 3 meprypdget tn dtadxasta Pnelomoinong yoeoypapxcy SeB0UEVKY, TNV TEQLY PP
TOU GUVOAOL BEBOUEVLY, TNV ENEEERY TN Y 0ROYEAPXMY HOTIBWY XoL TNV XVNCLOAOY X HoVTEROTOMNOT.
Emniéov, neprypdpovtar Tor GUCTHUOTA Xataypaghc xivnong. Xuyxexpiéva, o autéd 1o Kegdioto
TEQLYPAPOVTOL T YUPUXTNELO TE BAUTO TKV UTO €EETACT EAANVIXWY YOPWY TOU £Y0LY XUTOYPPEL
TEOXEWEVOU Vo oy VoY ToL Y0pOYEAUPLXS HOT{BA XAl Ol AVTITPOCWTEVTIXES O TAGEIS/XUVATELC.

To Kegpdhowo 4 npdtetve éva véo oyrfua olvolng yopol (Bivteoneptindng) avagopixd ue o Oe-
OOUEVAL TTOL XUTAY RAPTIHAY YENOYLOTOLOVTAS TO UG TN xataypupric xivong VICON. H npotewvouevn
uéVob0g E€AYWYNE AVTITPOCHTEVTIXOY O TLYUOTUTWV EQUEUOLEL £Va LEPURYIXO TY LA XUTATUNOTG TTOU
EXUETUNAEVETAL TIC YWEOYPOVIXEC TUPUANAYES TWV XVNCLOAOYIXWY PETUBOAGY TWV YOPEUT®Y. Ap-
Y\xd, ot ol ol teprypapeic e€dyovtan Yo v evtonicouv ta Bacixd Bructa evog yopol (Uit yov-
OPOELOTC AvVamaPdoTACT). 1TN CUVEYELR, XEUe TUAU amocUVTIVETOL TEQUUTEPW OE AETTOUEQRT) TUAUOTA
yioo T Bertioon g AVTIITPOCWTELTIXOTNTAS Tou Yopol (Aenth avarapdotact). To oyruc tepop-
YxAg xatdTunong yopeol teonornolel Tov adyodprduo SMRS xatdhhnha mpoxewévou va emittpamnel 1
Yweoyeovx) poviehonolnon civietwy yopeutxav oxohovhov. H mpooéyyior| aliohoyhinxe oc
TELAVTA QOAUAOPIXES Y OREUTIXEC axoloulieg Tou xatarypdpnxay oto Apiototéheto Havemotruio Oco-
cahovixng oto mhaico tou €pyou TERPSICHORE nou avtimpoowrelel TEVTIE BLUPORETIXES Y OQRO-
Yeupleg xar oe cUvVola dedouevey amd to IlavemotAuio Carnegie Mellon, ekeicpa diordeoyda, Tou
anewoviouy Tapao tdoelc ot Yeatpxt| xivnotoloyio.

To Kegdhowo 5 etodryel 600 teyvinéc: Wi pédodo «avedptntn and 1o ypdvox» mou Boaciletal ot oh-
Yoprduo opadonoinone k-means++ yio Ty €0y WY AVTITPOCWTEVTIXWY G TIYILOTOTWY TOU Y0e0U X0l
o ey vixr) o Pocileton 0T EPUNVELN TWYV QUOIXGDY YUPUXTNELO TIXMY TNE XIVNCLoAOY IS OTULOUEY OV-
TG Y POoVIXEC TIERLAYPELC o€ BlapopeTind enineda Aemtopépetag. Ot tpotevoueveg uédodol a&lohoyridnxay
o€ 600 GUVOLa BEBOUEVLY %ivNnomg YopoU.

To Kegdhoo 6 eodyer éva un emBienoyevo mhaiolo Bodidc otolBag autoOUATOU XWiLXOTOMTY
(SAE) axohouloUuevo amd €vay ahyoprduo Lepopynhc XATATUNOTS YLot VoL GUVODICEL TIG Y 0pOYEAUPIXES
oxoloutieg. Mtoyoc tou SAE elvan o meplopiodg Tomv tepttdy Yoplfuwy ota un enclepyacuéva Oe-
douéva xou GUVETKOS 1) BedTinon Tng anddoone Tne yopoyeapnc tepthndne. Autd yiveton eugovég
OToY 500 YOPEUTES XoTaYEdpovTaL TauTOYeova. Alyderduol Bivieo-nepilndne epopudlovTon yio Ty
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eCUYWYT| TV AVTIITPOCKOTEUTIXWY Y0ROYQUPIXMY OTACEWY Yenoylorowwvtac Tov Kennard-Stone, To
ouuPBatixd SMRS xau to epopyind tou oyfua Ttou ovoudletar H-SMRS. To neipopotind anotehéo-
HorTol A€LOAOY AUNUAY OE TEAYUOTIXES YOREUTIXEG aXOAOUDIEG EAANVIXGDY TORAUB0CLUXMDY Y0PV, EVEK Td
anoTEAEOUATO CUYXEIUMNXAY UE YOPOYEoPLIXd Dedopéva Tou eméhegay ol yopol. Ta anoteréopata
oetyvouv 6Tt To H-SMRS mou egapudleton uetd tn yelwong tou YopBou utd tny egapuoyr tou SAE
e&dyet Booind xapé mou amoxAlvouy ce yedvo UxedTepo amtd 0,3 SeutepdAETTA Ad AUTA TOU ETUAE-
yovtow amd Toug Ewo0g xou Ye Tumxt| amoxAon 0,18 deut. 'Etol, to npotevouevo oyfua uropel vo
eEQYEL AVTITPOCMTEVTIXG O TLYILOTUTIOL AMTOTEAEGUOTLXAL.

To Kegdhowo 7 mapoucidlet éva véo mhaloto Baciopévo ot poviehonolnon tne xvnotoloylog ue
Bdomn tor puotxd Yoo TNELG TG (TayUTNTA, ETLTAYLVOT) Yiol TV €AYWYT) AVTITPOCWTEVTIXOY G TLY-
woTOTWY Yenowonowwvtag VE@T onueinv. Ilpoteivovtan 800 mpoceyyloeg: (i) wa uédodog Pacto-
UEVT OE QUTOUUTY) OPABOTOINCT) YLol TNY ETMAOY T TOV BACIXOY TPWTEUVOVTLY oG Y0opoypaupiag xou (ii)
ULt TROGEYYLOT) BACIOUEV OTO XLVNUATIXG YORaXTNRIo TXd TV Yopoypapiwy. To mhaiclo tepthndng
Y0pOU €yl EmUPOVEL EMITUY M OE GOVOAN Y OPOYRUPIXWY BEDOUEVWY UE T1) GUUHETOY Y| ETOY YEAUXTLCV
Y000 X0l EUTELROY VWUOVWV.

To Kegdharo 8 meprypdepet eva dixtuo Maxpdg xan Bpoyetag pvAung (LSTM) pe txavotnto avdAuomg
YOROYRAPUMY OTACEMY AaUBavovTag UTOYLy VEPY GTUEY TPOEPYOUEV amd TNV (n@lonoincT Tev
YopeLT®Y. AuTth 1 Sadixacio Tautonolinong Véomg eivan v vo Tapéyel Lot AeTToUERT| aloAGY o
Tou Yopoypapixol yotiBou. Emmiéov, mpoTelveton Uior apyITEXTOVIXT YOopoYpupixhc TepiAndne mou
Booileton 6NV EQUPUOYT| TNG LEPURYIXNAC XATATUNONG TEOXEWEVOU VoL ECAYEL T Y 0ROYRAPIXWY LOT(BaL.
Téhog avamtiydnxe o Thatpoppa cofapol mowyvidto) uTtoc TNEilovToug TNV OTTIXOT0MOT TNG Y0po-
yeaplog yenowonowwvtoag Laban onucioypagia, tpoxeiuévou npocdlopicel TNy anddooT TG TEOTEWO-
UEVNE TROCEY YOG UE enlomun Texuneiwon.

To Kegdhowo 9 meprypdget Eva autonaiivdpouo xvntol uéoou 6pou (ARMA) @ihteo mou e@apuole-
Tou o€ éval GLPPTNG Luvehxtind Nevpwvind Abxtuo (CNN). Auto onuaiver 6T 1 é€odog Tavounong
EMOTEEPEL 07O ENENESO €16OB0U, PEATIOVOVTAS TN cuvolY| oxplfela Talvounone. Emmiéoy, elodyeton
EVOC TPOCUPUOC TIXOC AhYORWIOC, EXUETUAAEUOUEVOC TNV EMéXTAoT TNG oetpdc Taylor mpdtng Tdéng.
Me awtéVv TOV TP6TO, OL TaEdUETEOL TOL dixTUoUL (T.Y. BdeT) TeoToTolUYTIL BUVAULXY BEATILVOVTOS TN
ouvolur| oxpifeia Tadvounong. Ta telpouatind anoTeAéouaTa O€ TEOYUATIXES YOREUTIXES axohovlieg
OElyYOUY TNV amdBOGCT) TNG TEOTEWOUEVNS TIPOCEYYLONG OE GYEDT] UE TOUS CUUPBATIXOUE UMY OVIGUOUG
Bordidig udinong.

To Kegpdhaio 10 ohoxhnpdyver T Satplft| topodétovtac Tn cuvolxt GUUBOAT TNg xou To JEANOV-
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Chapter 1

Intangible Cultural Heritage

1.1 Introduction

The ICH content encompasses "the practices, representations, expressions, knowledge, skills — as well
as the instruments, objects, artefacts and cultural spaces associated therewith" [11]. Although, the
ICH content and especially the traditional folklore performing arts, are considered to be worthy of
preservation by UNESCO (Convention for the Safeguarding of ICH) and the EU committee, most of
the current research efforts are focused on tangible cultural assets [12], while the ICH content seems to
be underestimated. The primary disadvantage emerges from the complex structure of ICH, its dynamic
composition, the interaction among the objects and the environment, as well as from a variety of emotional
elements (e.g., the way of expression and dancers’ style) [13], [14]. This thesis focuses on analysing,
designing, researching, training and validating a novel framework, that implements machine learning
algorithms, for digitization, modelling, archiving and e-preserving ICH content related to folk dances.
European’s CH is considered to be one of the greatest diversities around the world. The fusion of
these multiple cultural diversities leads to a common place, that draws millions of visitors every year
to cultural heritage sites, as well as to theaters, concert halls, folklore festivals and to other festivities.
This common cultural European underlay merges the accumulation of past artistic achievements with
the dynamical expressions of tradition and creativity, during the 4-th decade of the industrial revolution.
The cultural outcomes are considered as economic triggers that boost activities and job opportunities,
reinforcing the social and political cohesion of the EU [15]. Culture is playing an emblematic role into
supporting the European integration process, attempting to bring people regardless of their different
habits, traditions and languages. Towards this aim, the prosperity and the adequacy of the EU is in its
ability to pay respects to each Member States’ identity and inter-related history and cultures, while forging
mutual understanding and policies that have ensured peace, stability, prosperity and solidarity [16] for
decades. The significance of the European Cultural Heritage is prominent via very important international
decisions, declarations and agreements, such as (a) the adoption of the Commission Communications to
the Council, (b) the EU Lisbon Treaty (article 3) [17], (c) the European Parliament 2006/2040(INT) [18],
(d) the different resolutions of the European Council (such as the 2006/C297/01), (e) the Communication
by the European Commission in 2007 as the famous European agenda for culture, that was later also
endorsed by the Council of Ministers in November 2007. This agenda is structured around three main
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pillars, in order to foster (i) cultural diversity and intercultural dialogue, (ii) culture, as a catalyst for
promoting creativity within the framework of the Lisbon Strategy for EU growth and (iii) to sharpen new
competencies concerning culture as a vital element in the EU foreign affairs.

Furthermore, the European Council Resolution stated in 2008 and in 2010 (8843/10), that “Digi-
tization and online accessibility of cultural material are essential to highlight cultural and scientific
heritage, to inspire the creation of new content and to encourage new online services to emerge. They
assist to help democratize access to culture and knowledge and to develop the information society and
the knowledge-based economy”. Finally, the Commission Recommendations to the Member States
(2011/711/EU") and the report of the "Comite de Sages" on Bringing Europe’s Cultural Heritage Online
are the most important EU policy documents about the e-documentation and e-preservation of the Cultural
Heritage Commons [19].

On the other hand, the UNESCO Convention for the Safeguarding of Intangible Cultural Heritage,
defines that the tangible, along with the intangible cultural assets, determine intellectual, materialistic and
emotional features, that defines a society or a social group. Hence, ICH is considered to be an important
factor in maintaining cultural diversity, in the content of globalization. Its emblematic role is not the
cultural manifestation itself, but rather the wealth of knowledge and skills that are imparted to the next
generations [20].

Cultural expression, in any form, includes fragile intangible live expressions and elements. Such
expressions are built upon certain knowledge, skills and craftsmanship. These manifestations of human
intelligence and creativeness constitute our ICH, a basic factor of local cultural identity and a guaranty
for sustainable development [21],[22]. UNESCO refers that ICH assets (e.g., music, dance, craft) are
of equal importance to the tangible ones. Folk dances are important parts to ICH; they are directly
connected to local culture and identity [23], [24]. Recently, research approaches have been carried out
for digitization, modelling [25], choreographic analysis [26], posture classification [27], documentation
[9], [10] and representation of folklore choreographies [28]. In this context, research projects have been
funded, such as i-TREASURES [11], TERPSICHORE 2 [29], Wholodance [12], WebDANCE [13],
AniAge and projects with the purpose of capturing and modelling ICH. Beyond the political support, the
significant EU investment in the area of cultural heritage, which is more than 1B Euro in the last decade,
has a number of past and currently important active projects’ of this scope.

The study of dance from a computational point of view has been enabled by the development of
heterogeneous sensors, including visual cameras and motion capture devices, on the one hand, and the
advancements in motion analysis fueled by the progress made in machine learning, as well as signal
and image processing [16]. Regarding the part of motion acquisition, characteristic examples of Motion
Capture Systems are Kinect [17], Vicon, and OptiTrak [18], which can be seen as one of the most accurate
motion schemes used to digitize humans’ movements [19], [20], [16]. Now, these systems are being
rapidly incorporated as a critical component to many applications like gaming, 3D animation, education,

Ihttps://ec.europa.eu/digital-single-market/en/news/european-commission-report-cultural-heritage-digitisation-online-
accessibility-and-digital

Zhttp://terpsichore-project.eu/

3e.g. AGAMEMNON, CALIMERA, DELOS, MEMORIES, MICHAEL, MICHAEL+, MINERVA, MINERVA+, 3D-
COFORM, PRESTOSPACE, IMPACT, V-CITY, EPOCH, CULTURA, V-NET, DC-NET, INDICATE, ATHINA, ATHINA+,
DC-NET, INDICATE, EUROPEANALOCAL, APARSEN, AXES, CHESS, PATHS, PrestoPRIME, 4DCH-WORLD, ITN-
DCH
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engineering, rehabilitation and sports industry [9], [16]. In addition, the visualization of the human
body through joint identification and extraction of the dance movement based on motion capture and
Labanotation [30], [31], [32], expand new horizons in several fields such as kinesiology, neuroscience
and computer graphics research.

A choreographic sequence is a time-varying 3D process (4D modeling), which contains dynamic
co-interactions among different actors, emotional and style attributes, and supplementary elements, such
as music tempo, and costumes. Dance analysis is an important research field in the cultural sector
since it constitutes one of the components of ICH. Nowadays, research focuses on the utilization of
motion acquisition sensors, in an attempt to handle kinesiology issues. The extraction of skeleton data,
in real-time, contains a significant amount of information (data and metadata), allowing for various
choreography-based analytics. Analyzing choreographic sequences is a highly complicated task as
it involves the inclusion and processing of many factors such as the dancer’s emotions [14], motion
capturing systems calibration issues, the dancer’s expressions [15] and kinesiology differences. Moreover,
folklore choreographies are very important not only for preserving ethnological aspects but is a different
area in the kinesiology field encompassing the rhythm, the expression, specific postures and the folklore

music.

1.2 Main Research Objectives of the Thesis

ML learning techniques have progressed dramatically over the past decades, from researched curiosity to
a practical technology, in many applications such as Computer Vision, Natural Language Processing,
Bioinformatics, etc., succeeding to provide solutions to difficult research problems, while also leading to
a wide range of exciting applications. In the domain of ICH content, and particularly dance, ML provides
many opportunities for analysis, classification, semantic annotation and emotional understanding of
human choreographic movement. In this thesis, we will present a brief survey of the main approaches
that have been proposed in the literature exploiting ML techniques, to analyze choreographic time
series (see Chapter 2). We focused on three main pillars: (a) the extraction of the key choreographic
postures, taking into consideration time series analysis, i.e. video summarization, (b) the identification
of key posture in dance movement, 1.e. dance pose recognition of choreographic content, and (c) the
semantic representation and notation of dance movements through Laban Movement Analysis. The way
of developing the research plan and the methodology that will be followed for the investigation of the
above mentioned topic, is a complex process and is presented briefly below.

Objective 1: Review and evaluation of the state-of-the-art digitization technologies for decreasing the
capturing complexity, by introducing low cost devices, able to acquire high quality depth information
in real-time and compare such smart sensors with imaging technologies (enhanced through the use of
computer vision tools, data processing and 3D modeling) in order to result in accurate virtual reconstruc-
tions of moving, complex (non-rigid) objects which dynamically interact with each other and with the
environment.

Objective 2: Review, analysis and evaluation of digitization technologies to identify the one that will
provide significantly reduced complexity in recording using motion capturing systems, so that they will
be able to obtain high quality information in real time.
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Objective 3: Comparison among motion capturing sensors utilizing computer vision tools, machine
learning algorithms, time-series analysis and 3D modeling [14], in order to define the most accurate
semantic representations of movements and complex choreographic performances.

Objective 4: Research on data processing, mathematical modelling machine learning and computer
vision techniques, which serve in the automation of 3D/4D digitization. These are tools that allow the
connection of multimodal data, to a common work environment, reducing the complexity of digitization
and enhancing the ability to automate it.

Objective 5: Investigating the ways of extracting semantic and ontological signatures, with the
assistance of 3D computer vision and computational methodologies for modeling human movements and
for measuring human expression. At the same time, advanced methods in the field of video summarization

will be explored, which will be exploited with ML techniques of the recorded choreographic data.

1.3 Originality and contributions of this Thesis

The recent advances in digitization technology as regards tangible cultural assets and especially in the
area of 3D virtual reconstruction and rehabilitation, the e-documentation of ICH assets is not yet evident,
especially of folklore performing arts. This is mainly due to the complex multi-disciplinarity of the
folklore performances which presents a series of challenges ranging from the choreography, the folk
music, the —uniforms, -music and from the digitization and computer vision to spatio-temporal (4D)
dynamic modeling and virtual scene generation as discussed above. Choreographic modeling, that is
identification of key choreographic primitives, is a significant element for Intangible Cultural Heritage
(ICH) performing art modeling. Recently, deep learning architectures, such as LSTM and CNN, have been
utilized for choreographic identification and modeling. However, such approaches present sensitivity to
capturing errors and fail to model the dynamic characteristics of a dance, since they assume a stationarity
between the input-output data. To address the objectives of this thesis, the main contributions to the

research community are summarized follows:

* A key frame extraction framework that implements a hierarchical scheme exploiting spatio-temporal
variations of the dance features is introduced (see Section 4). Initially global holistic descriptors
are extracted to localize the key choreographic steps of a dance (a coarse representation). Then,
each segment is further decomposed into finer sub-segments to improve dance representativity
(fine representation). Dance abstraction scheme exploits the concepts of a Sparse Modeling
Representative Selection (SMRS) appropriately modified to enable spatio-temporal modelling of

the dance sequences through a hierarchical decomposition algorithm.

* A machine learning method exploiting deep learning paradigms is proposed (see Section 8). In
particular, we introduced a LSTM memory network with the main capability of analyzing 3D
captured skeleton feature joints of a dancer into predefined choreographic postures. This pose
identification procedure is capable of providing a detailed (fine) evaluation score of a performing
dance. In addition, this proposed framework proposes a choreographic summarization architecture
based on SMRS in order to abstractly represent the performing choreography through a set of key
choreographic primitives. We have modified the SMRS algorithm in a way to extract hierarchies
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of key representatives. Choreographic summarization provides an efficient tool for a coarse
quantitative evaluation of a dance. Moreover, hierarchical representation scheme allows for a
scalable assessment of a choreography. The serious game platform supports advanced visualization

toolkits using Labanotation in order to deliver the performing sequence in a formal documentation.

* Development of a method to address dynamic limitations of sequences (e.g., stationarity). We
introduced an AutoRegressive Moving Average (ARMA) filter into a conventional CNN model; this
means that the classification output feeds back to the input layer, improving overall classification
accuracy. In addition, an adaptive implementation algorithm is introduced, exploiting a first-order
Taylor series expansion, to update network response in order to fit dance dynamic characteristics.
This way, the network parameters (e.g., weights) are dynamically modified improving overall clas-
sification accuracy. Experimental results on real-life dance sequences indicate the out-performance

of the proposed approach with respect to conventional deep learning mechanisms.

» Development of a deep stacked auto-encoder (SAE) scheme followed by an algorithm proposed to
summarize dance video sequences, recorded using the VICON Motion capturing system. SAE’s
main task is to reduce the redundant information embedding in the raw data and, thus, to improve
summarization performance. This becomes apparent when two dancers are performing simultane-
ously and severe errors are encountered in the humans’ point joints, due to dancers’ occlusions in
the 3D space. Four summarization algorithms are applied to extract the key frames; density based,
Kennard Stone, conventional SMRS and its hierarchical scheme called H-SMRS. Experimental
results have been carried out on real-life dance sequences of Greek traditional dances while the
results have been compared against ground truth data selected by dance experts (see Section 9).

* A method that matches trajectories’ patterns, existing in a choreographic database, to new ones
originating from different sensor types such as VICON and Kinect II. Then, a Dynamic Time
Warping (DTW) algorithm proposed to find out similarities/dissimilarities among the choreographic
trajectories. The goal of this method is to evaluate the performance of the low-cost Kinect II sensor
for dance choreography compared to the accurate but of high-cost VICON-based choreographies.
Experimental results on real-life dances are carried out to show the effectiveness of the proposed
DTW methodology and the ability of Kinect II to localize dances in 3D space (see Section 7).

* Development of two choreographic datasets (see Sections 3.3.1, 3.3.2, 3.5). Our approach en-
compasses thirty folkloric dance sequences recorded at the Aristotle University of Thessaloniki
under the framework of TERPSICHORE project representing five different choreographies. These
datasets encompass more than 83663 RGB images and more than 7362 point clouds records (.c3d
format) compatible with various databases (e.g., Europeana, CMU database, AMASS 4).

1.4 QOutline of the Thesis

The structure of this thesis is divided into ten chapters. The second chapter presents an overview of the

previous works relevant to the choreographic domain describing the state-of-the-art approaches. The

“https://amass.is.tue.mpg.de/en
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third part encompasses the choreographic datasets created within this research taking into consideration

the benchmarked motion databases. The fourth part analyses the fundamentals regarding kinessiological

modelling and the pre-processing state of the training data. The fifth part describes our approach to

analyse choreographic patterns from heterogeneous motion capture systems using DTW algorithm. The

sixth part exploits an hierarchical summmarization schema to decompose the choreographic sequences

taking into consideration the spatio-temporal dependencies.

@)

(ii)

(iii)

(iv)

)

Chapter 2 presents recent trends in choreographic representation in terms of modelling, summariza-
tion and choreographic pose recognition. We survey recent approaches employed for the extraction
of representative primitives of choreographic sequences, the recognition of choreographic pose
and dance movements, as well as for the analysis and semantic representation of choreographic

patterns.

Chapter 3 represents the dataset creation and the components integration and includes the state-
of-the-art solutions, the adopted acquisition process, the TERPSICHORE dataset description, the
data processing and the kinessiological modelling. Moreover, it is described the adopted motion
capturing systems and the adopted acquisition process. In addition, it is introduced the adopted
folklore dances and the description of the adopted choreographies. Specifically, in this Chapter the
adopted folklore Greek dances are annotated in order to extract the choreography patterns and the

most representative key postures.

Chapter 4 proposed a new dance summarization scheme on data being recorded using the Vi-
con motion capturing system. This way, skeleton information of the 3D joints of a dancer is
available. The proposed key frame extraction method implements a hierarchical scheme that
exploits spatio-temporal variations of the dance features. Initially global holistic descriptors are
extracted to localize the key choreographic steps of a dance (a coarse representation). Then, each
segment is further decomposed into finer sub-segments to improve dance representativity (fine
representation). Dance abstraction scheme exploits the concepts of a Sparse Modeling Representa-
tive Selection (SMRS) appropriately modified to enable spatio-temporal modelling of the dance
sequences through a hierarchical decomposition algorithm. Our approach is evaluated over thirty
folkloric dance sequences recorded at the Aristotle University of Thessaloniki under the framework
of TERPSICHORE project representing five different choreographies and on datasets from the

Carnegie Mellon University, freely available, that depict performances on theatrical kinesiology.

Chapter S provides an abstract and compact representation of the semantic information of chore-
ographic sequences using a key-frame selection algorithm. In this chapter two techniques are
introduced: a "time-independent" method based on k-means++ clustering algorithm for the ex-
traction of prominent representative instances of a dance, and a physics-based technique that
creates temporal summaries of the sequence at different levels of detail. The proposed methods are

evaluated on two dance motion datasets.

Chapter 6 introduces a deep stacked auto-encoder (SAE) scheme followed by a hierarchical

Sparse Modeling for Representative Selection (SMRS) algorithm in order to summarize dance
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(vi)

(vii)

(viii)

(ix)

video sequences, recorded using the VICON Motion capturing system. SAE’s main task is to
reduce the redundant information embedding in the raw data and, thus, to improve summarization
performance. This becomes apparent when two dancers are performing simultaneously and severe
errors are encountered in the humans’ point joints, due to dancers’ occlusions in the 3D space. Four
summarization algorithms are applied to extract the key frames; density based, Kennard Stone,
conventional SMRS and its hierarchical scheme called H-SMRS. Experimental results have been
carried out on real-life dance sequences of Greek traditional dances while the results have been
compared against ground truth data selected by dance experts. The results indicate that H-SMRS
being applied after the SAE information reduction module extracts key frames which are deviated
in time less than 0.3 s to the ones selected by the experts and with a standard deviation of 0.18 s.

Thus, the proposed scheme can effectively represent the content of the dance sequence.

Chapter 7 presents a novel framework based on physical modeling for the extraction of salient 3D
human motion data from real-world choreographic sequences. Two approaches are proposed:(i)
a clustering-based method for the selection of the basic primitives of a choreography, and (i1) a
kinematics-based method that generates meaningful summaries at hierarchical levels of granularity.
The dance summarization framework has been successfully validated and evaluated with two

real-world datasets and with the participation of dance professionals and domain experts.

Chapter 8 describes a Long-Short Term Memory (LSTM) network with the main capability of
analyzing 3D captured skeleton feature joint of a dancer into predefined choreographic postures.
This pose identification procedure is capable of providing a detailed (fine) evaluation score of a
performing dance. In addition, the paper proposes a choreographic summarization architecture
based on Sparse Modelling Representative Selection (SMRS) in order to abstractly represent the
performing choreography through a set of key choreographic primitives. We have modified the
SMRS algorithm in a way to extract some hierarchies of key representatives. Choreographic
summarization provides a efficient tool for a coarse quantitative evaluation of a dance. Moreover,
hierarchical representation scheme allows for a scalable assessment of a choreography. The serious
game platform supports advanced visualization toolkits using Labanotation in order to deliver the

performing sequence in a formal documentation

Chapter 9 describes an Auto-Regressive Moving Average (ARMA) filter into a conventional
CNN model; this means that the classification output feeds back to the input layer, improving
overall classification accuracy. In addition, an adaptive implementation algorithm is introduced,
exploiting a first-order Taylor series expansion, to update network response in order to fit dance
dynamic characteristics. This way, the network parameters (e.g., weights) are dynamically modified
improving overall classification accuracy. Experimental results on real-life dance sequences
indicate the out-performance of the proposed approach with respect to conventional deep learning

mechanisms.

Chapter 10 concludes the thesis by representing the overall contribution and the future works.



Chapter 2

Related Works

2.1 Introduction

Performing arts and in particular dance is one of the most important domains of Intangible Cultural
Heritage [14]. However, preserving, documenting, analyzing and visually understanding choreographic
patterns is a challenging task due to technical difficulties it involves. A choreography is a time-varying
3D process (4D) including dynamic co-interactions among different actors (dancers), emotional and
style attributes, as well as supplementary ICH elements such as the music tempo, the rhythm, traditional
costumes etc. Recent technological advancements have unleashed tremendous possibilities in capturing,
documenting and storing Intangible CH content, which can now be generated at a greater volume and
quality than ever before. The massive amounts of RGB-D and 3D skeleton data produced by video and
motion capture devices. The huge number of different types of existing dances and variations dictate
the need for organizing, archiving and analyzing dance-related cultural content in a tractable fashion
and with lower computational and storage resource requirements. Motion capturing devices extract
humans’ skeleton data in terms of 3D points each corresponding to a human joint. This information can
be combined with computer graphics software toolkits for modelling, classification and summarization
purposes. In this chapter, we present recent trends in choreographic representation in terms of modelling,
summarization and choreographic pose recognition. We survey recent approaches employed for the
extraction of representative primitives of choreographic sequences, the recognition of choreographic pose
and dance movements, as well as for the analysis and semantic representation of choreographic patterns
[14].

Works focusing on choreographic acquisition and modelling can be distinguished into those that
deal with 3D digitization and capturing and those that mainly focus on the analysis and processing of
dances. Regarding 3D digitization, the work of [33] is considered as one of the first approaches in the
field. In particular, this work introduces a 3D archive system for Japanese traditional performing arts. The
graph-cuts algorithm is used to reconstruct the 3D model of the scene from multi-view videos. In the same
context, the [34] digitizes Cypriot dances using the Phasespace Impulse X2 motion capture system. In the
same work, a video game is developed for making the teaching of Cypriot dances more attractive. In [26],
the capturing architecture of the i-Treasure European Union funded project is described, mainly focusing

on 3D digitization and analysis of rare European folkloric choreographies. A digitization framework
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suitable for tele-immersive applications of a dance is proposed in [35]. The purpose of this research is to
design a creativity framework for dance choreography based on LMA [30]. Advanced motion captured
architectures for digitizing folklore performing arts presented in [36]. In this work, motion analysis
algorithms are investigated with the main aim to transform the captured motion trajectories of the dancers
into meaningful and semantically enriched LMA features.

Although 3D digitization technologies provide an efficient framework for documentation and preser-
vation of the ICH artifacts of folklore dances, it has the limitation that the delivered 3D data are too
large for processing, storing and archiving. For this reason, skeletonization is first performed, which is a
process that emphasizes the geometrical and topological properties of the motion trajectories, extracting
the medial axis. In this context, Kinect depth senors [37], Phasespace capturing [36] or Vicon [38] motion
interface has been exploited.

Regarding choreographic analysis approaches, classification algorithms have been proposed on data
expressing the human body movements. In this context, the work of [39] proposes a real-time classification
system in detecting choreographed gesture classes. The input data have been acquired using the Kinect
depth sensor [40], extracting a 3D wireframe skeleton of the dancers. Another dance classification
approach is proposed in [41] using again data capturing from the Kinect sensor. In particular, the authors
of [41] combine a PCA , acting as a feature selection process, with two classifiers; a Gaussian mixture
and a hidden Markov model. A combination of principal component and Fisher’s linear discriminant
analysis, which is called fisherdance, is proposed in [42], for classifying Korean pop dances. The inputs
are again from the Kinect sensor.

A dance recognition system is introduced in [43]. The platform compares an unknown move with a
specified start and stop against known dance moves. The recognition method consists of a classification
algorithm and a template matching using a database of model moves. Similarly, in the works of [44],
[37] a markerless tracking system, exploiting the principles of the Kinect sensor, is presented for motion
trajectory interpretation and folklore dance pattern recognition.

Recently, video summarization algorithms have been proposed for choreographic motion trajectories
[8]. This scheme exploits input data from a Vicon motion capturing interface and then applies a k-means
classification algorithm to find out key frame representatives that abstractly model the choreography. In
the broad research area of dance summarization, algorithms focusing on extracting key frames of human
actions can be also considered. More specifically, the works of [45] and [46] introduce a classification
framework for retrieving representative human actions, while the work of [47] proposes a hierarchical
union of sub-spaces for human activity abstraction under a semi-supervised framework. In addition, the
work of [48] proposes Histograms of Grassmannian Points for classifying multidimensional time-evolving
data in dynamic scenes. A stylistic analysis of the variations of dance movements has been recently
proposed in [49]. In addition, in the works of [50] and [51] emotional analysis and characterization of
dance sequences are discussed.
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2.2 Previous Work

2.2.1 Choreographic Summarization

Content summarization is very useful application domain in the multimedia research community in
general. Focusing on choreographic sequences, the automatic extraction of the choreographic elements
is of significant interest, since such elements provide an abstract and compact representation of the
semantic information encoded in the overall dance storyline. A large number of sensors capture the
kinesiology of the dancers around the clock producing huge video sequences. Processing these videos is
a time, energy, hardware and man power consuming progress. Due to the aforementioned parameters
video summarization has an important role in this field enhancing the storage, browsing and retrieval
of large collection of video data without losing important details of the captured subject. One of the
first approaches for extracting the most representative key frames from video programs introduced in
[52]. After that, many approaches used kinesiological features for extraction the most representative
frames. The approach in [53] focuses on the decomposition of the dance movements into elementary
motions. Placing this problem into a probabilistic framework, we propose to exploit Gaussian processes
to accurately model the different components of the decomposition [54]. The proposed framework relies
on Gaussian processes allowing for a flexible representation, from extremely coarse to detailed, capturing
the periodicities of the dance movement.

In [1], the authors focus on segmentation and classification algorithms using depth images and videos
of folkloric dances in order to identify key movements and gestures, compare them against database
instances and determine the dance genres they represent, as well as to provide helpful metadata. A
set of six traditional Greek dances consists the investigated data. A two-step process was adopted. At
first, the most descriptive skeleton data were selected using a combination of density based and sparse
modelling algorithms. Then, the representative data served as training set for a variety of classifiers.
In [55], a segmentation method that can separate cyclic activities and their transitions for a number
of data modalities is presented. This approach tackles the segmentation problem on a general level in
terms of the choice of crucial parameters, e.g. the search radius and the feature offsets for stacking. The
proposed feature bundling is a novel contribution and proves to be especially helpful for processing noisy
data modalities such as EMG, accelerometer and Kinect motion capture. The authors used a five-point
derivation to estimate the direction of movement in the bundling, but when faced with severe noise,
one will need more robust methods. This will further reduce variance in the feature space, with few
implications, as long as one does not try to synthesize new sequences from the feature space.

Furthermore, the spatio-temporal summarization algorithm proposed in [56] considers 3D motion
captured data, instead of RGB information, represented by 3D joints that model human skeleton is
introduced. In particular, the proposed approach, 3D joints are derived from the Vicon motion capture
system. The advantage of directly handling 3D human skeleton points instead of raw depth data is that
few data samples are involved in the processing of the dance sequences, making summarization far more
efficient. The authors describe an hierarchical framework taking into consideration the Sparse Modeling
Representative Selection algorithm [57]. The basic idea behind this approach is that every image frame
of the choreographic sequence can be expressed as a linear combination of one or more representative

samples. A dynamic hierarchical layered structure to represent human anatomy is the core of the method
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proposed in [58], which uses low-level motion parameters to characterize motion in the various layers
of this hierarchy, which correspond to different segments of the human body. This characterization is
used with a naive Bayesian classifier to derive choreographer profiles from empirical data that are used
to predict how particular choreographers segment gestures in other motion sequences. In contrast, the
works of [59], [60] propose two summarization approaches: a “time-independent” method based on
k-means++ clustering algorithm for the extraction of prominent representative instances of a dance, and
a physics-based technique that creates temporal summaries of the sequence at different levels of detail
are presented. The main scope of the proposed framework is to extract the most representative instances
of the dance, its key postures, or, differently put, its basic primitives, regardless of their order in the
sequence. The authors define the selection of the most representative frames as an unsupervised clustering
problem. Since a feature vector is assigned for each frame of a dance frame sequence, the vectors of all
frames form a trajectory in a high dimensional feature space, which expresses their temporal variation. In
the pro-posed work, the authors denote the magnitude of the second derivative of feature vectors for all
frames within a sequence with respect to time as a curvature measure. The second derivative expresses
the degree of acceleration or deceleration of an object that traces out the feature trajectory.
Summarization can also be useful in the context of fast searching of content in large motion databases,
and for efficient motion analysis and synthesis. In [61], the authors demonstrate that identifying locally
similar regions in human motion data can be practical even for huge databases, if medium-dimensional
feature sets are used for kd-tree-based nearest-neighbor searches. Moreover, efficient approaches for
local and global motion matching, which are applicable even to huge databases, have been presented.
Moreover, the authors of [62] present a framework that encompasses a connected set of avatar behaviors
that can be created from extended, free form sequences of motion, automatically organized for efficient
search, and exploited for real-time avatar control using a variety of interface techniques. The motion
is pre-processed to add variety and flexibility by creating connecting transitions where good matches
in poses, velocities, and contact state of the character exist. An approach for performance animation
that employs video cameras and a small set of retro-reflective markers to create a low-cost, easy-to-use
system that might someday be practical for home use is introduced in [63]. The low-dimensional control
signals from the user’s performance are supplemented by a database of pre-recorded human motion.
The system automatically learns a series of local models from a set of motion capture examples that are
a close match to the marker locations captured by the cameras. A framework for synthesizing dance
performance matched to input music, based on the emotional aspects of dance performance is proposed in
[64]. This framework consists of a motion analysis, a music analysis, and a motion synthesis component
based on the extracted features. In the analysis steps, motion and music feature vectors are acquired.
Motion vectors are derived from motion rhythm and in-tensity, while music vectors are derived from
musical rhythm, structure, and intensity. On a different note, the work of [65] focuses on the use of game
design elements for the transmission of ICH knowledge and, especially, for the learning of traditional
dances. More specifically, the authors present a 3D game environment that employs an enjoyable natural
human computer interface, which is based on the fusion of multiple depth sensors data in order to capture
the body movements of the user/learner. Moreover, the proposed framework automatically assesses the
users’ performance by using a combination of DTW with FIS approach providing feedback in a form of a

score as well as instructions from a virtual tutor in order to promote self-learning. Finally, the authors of
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[66] propose ways of comparing two similar dance performances, using the DTW algorithm. The DTW
method is validated for use with dance performance motion tracking data by comparing its results with
‘ground truth’ results obtained from a comparison between videos of two motion tracked performances.
The technique was extended to investigate two processes that affect movement timing-scaling (a fixed
ratio alteration) and lapsing (caused by insertion or deletion of movement material). The authors applied
the method to a comparison of dances performed with a musical soundtrack and without a musical

soundtrack.

2.2.2 Pose Recognition and Dance Movement Classification

The particularities of dance motion make the already challenging computer vision problems of pose
and action recognition even more interesting when explored in a choreographic context. In [27], the
authors scrutinized the effectiveness of a series of well-known classifiers (k Nearest Neighbors, Naive
Bayes, Discriminant Analysis, Classification Trees and Support Vector Machines) in dance recognition
from skeleton data. In particular, the goal was to identify poses which are characteristic for each dance
performed, based on information on body joints, acquired by a Kinect sensor. The datasets used include
sequences from six folk dances and their variations. Multiple pose identification schemes are applied
using temporal constraints, spatial information, and feature space distributions for the creation of an
adequate training dataset. A similar approach for defining choreographic postures from data sequences is
introduced in [67]. The selected classifiers are either probabilistic, linear or non-linear kernels.

A framework for body motion analysis in dance using multiple Kinect sensors is presented in [68].
The proposed method applies fusion to combine the skeletal tracking data of multiple sensors in order to
solve occlusion and self-occlusion tracking problems and increase the robustness of skeletal tracking.
Finally, body part postures are combined into body posture sequences and Hidden Conditional Random
Fields (HCREF) classifier is used to recognize motion patterns. Furthermore, a Convolutional Neural
Network-based approach for 3D human body pose estimation from single RGB images is presented
in [69], addressing the issue of limited generalizability of models trained solely on the starkly limited
publicly available 3D pose data is proposed. Using only the existing 3D pose data and 2D pose data,
the authors show state-of-the-art performance on established benchmarks through transfer of learned
features, while also generalizing to in-the-wild scenes.

A combined approach, involving 3D spatial datasets, noise removal prepossessing and deep learning
regression is presented in [70] aiming at the estimation of rough skeleton data. The application scenario
involved data sequences from Greek traditional dances. In particular, a visualization application interface
was developed allowing the user to load the C3D sequences, edit the data and remove possible noise. The
3D points are selected on the use of a Convolutional Neural Network (CNN) model. Experimental results
on real-life dances being captured by the Vicon motion capturing system are presented to show the great
performance of the proposed scheme.

In [71], the authors introduce a deep machine learning framework that exploits CNN representational
capabilities to identify choreographic postures captured through the RGB channel of a Kinect II capturing
device. To increase the performance, a background subtraction algorithm is utilized for pre-processing,

so as to minimize the captured noise and only consider the motion data. To enhance the classification
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performance, a background subtraction framework was utilized, while the CNN architecture was adapted
to simulate a moving average behavior. The overall system can be used as an Al module for assessing the
performance of users in a serious game for learning traditional dance choreographies. The main scope of
the proposed architecture is to develop a pose identification tool for choreographic educational purposes
in order to define automatically the appropriate dance postures from a video sequence.

A method for classifying 3D dance motions especially selected from Korean POP (K-POP) dance
performance is proposed in [72]. Compared to actions addressed in daily life and existing games, K-POP
dance motions are much more dynamic and vary substantially according to the performers. To cope with
the variation of the amplitude of pose, a practical pose descriptor based on relative rotations between two
body joints in the spherical coordinate system is presented. As a method to measure similarity between
two incomplete motion sequences, subsequence DTW algorithm is explored that supports partial matches.

On a different note, the authors of [73] present an algorithm for real-time body motion analysis
for dance pattern recognition using a dynamic stereo vision sensor. Dynamic stereo vision sensors
asynchronously generate events upon scene dynamics, so that motion activities are on-chip segmented by
the sensor. Using this sensor body motion analysis and tracking can be efficiently performed. For dance
pattern recognition, a machine learning method based on the Hidden Markov Model is used. On the other
hand, in [74], a music-oriented dance choreography synthesis method using a long short-term memory
(LSTM)-autoencoder model to extract a mapping between acoustic and motion features is proposed.
Moreover, the authors improve the proposed model with temporal indexes and a masking method to
achieve better performance.

A novel Spatio-Temporal Laban Feature descriptor (STLF) for dance style recognition based on
Laban theory is proposed in [73]. A novel feature descriptor for dance style recognition and test it on
Indian Classical Dance (ICD) is presented. Using inspirations from Laban theory, the authors formulate
its major entities and model seemingly trivial biological and psychological kinematics of body-motion
into features. At another level, the authors of [75] introduce a Bayesian Optimized Bi-directional Long
Short Term Memory (LSTM) model, called BOBi-LSTM, that automatically estimates dancers’ poses
through 3D skeleton data processing. Bi-directionality models non-causal relationships occurred in a
dance performance, in the sense that future dancer’s steps depend on previous/current steps. Additionally,
long-range dependence correlates choreographic primitives on a long time (memory) window. To model
the aforementioned principles, the authors modify the conventional LSTM networks under a Bayesian
Optimized framework in order to define the best network structure.

Chor-RNN [72] is a recurrent neural network that is trained using a corpus of motion captured
contemporary dance. The system can produce novel choreographic sequences in the choreographic style
represented in the corpus. Using a deep recur-rent neural network, it is capable of understanding and
generating choreography style, syntax and to some extent semantics. Although it is currently limited
to generating choreographies for a solo dancer there are a number of interesting paths to explore for
future work. This includes the possibility of tracking multiple dancers and experimenting with variational
autoencoders that would allow the automatic construction of a symbolic language for movement that goes
beyond simple syntax. A multimodal approach to recognize isolated complex human body movements,
i.e. Salsa dance steps is proposed in [76]. The proposed framework exploits motion features extracted
from 3D sub-trajectories of dancers’ body-joints (deduced from Kinect depth-map sequences) using
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principal component analysis (PCA). These sub-trajectories are obtained thanks to a footstep impact
detection module (from recordings of piezoelectric sensors installed on the dance floor). Two alternative
classifiers are tested with the resulting PCA features, namely Gaussian mixture models and hidden
Markov models (HMM).

Another interesting application is the transfer of motion between human subjects in different dance
videos [53]. Given a video of a source person and another of a target person, the main goal of this
work 1s to generate a new video of the target person enacting the same choreography as the source. To
address this task, the authors divide the proposed framework into three stages — pose detection, global
pose normalization, and mapping from normalized pose stick figures to the target subject. In the pose
detection stage the authors use a pretrained state of the art pose detector to create pose stick figures given
frames from the source video. The global pose normalization stage accounts for differences between
the source and target body shapes and locations within frame. Finally, the authors design a system to
learn the mapping from the normalized pose stick figures to images of the target person with adversarial
training. In order to extract pose keypoints for the body the authors adopt Open-Pose [71]. For the image
translation stage, a framework proposed in the pix2pixHD [75] is provided. Additionally the authors
adopt a single 70x70 Patch Generative Adversarial Networks (GAN) for the face discriminator [77].

The work of [78] presents a method for action recognition using depth sensors and representing the
skeleton time series sequences as higher-order sparse structure tensors to exploit the dependencies among
skeleton joints and to overcome the limitations of methods that use joint coordinates as input signals.
Moreover, the authors estimate their decompositions based on randomized subspace iteration that enables
the computation of singular values and vectors of large sparse matrices with high accuracy. Specifically,
the authors attempt to extract different feature representations containing spatio-temporal complementary
information and extracting the mode-n singular values with regards to the correlations of skeleton joints.
Then, the extracted features are combined using discriminant correlation analysis, and a neural network
is used to recognize the action patterns. The experimental results presented use three widely used action

datasets and confirm the great potential of the proposed action learning and recognition method.

2.2.3 Laban Movement Analysis

Human movement analysis and recognition is an important field in computer vision area, and is of
particular interest in the choreographic domain. Due to the fact that choreographic performances use
complex kinesiology movements is necessary to define the notation of the body joints variations. Laban
Movement Analysis (LMA) or Kinetography [32] encodes the choreographic sequences of the body
joints into dance notations. The Labanotation system encompasses symbols in order to recognize and to
encode the human body movements defining a dance score as a music score respectively. Dance notation
includes a set of scores, symbols and rules for encoding dance (or movement in general), in a similar
way that music notation records music. Labanotation is recognized as one of the most widely used and
accurate notation systems for recording dance highlights.

In [51], the authors present a framework based on the principles of LMA that aims to identify style
qualities in dance motions. The pro-posed algorithm uses a feature space that aims to capture the four

LMA components (Body, Effort, Shape, Space), and can be subsequently used for motion comparison
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and evaluation. The proposed framework is designed and implemented using a virtual reality simulator
for teaching folk dances in which users can preview dance segments performed by a 3D avatar and repeat
them.

A mathematical framework that can automatically extract motion qualities, in terms of LMA entities,
is presented in [79]. The aforementioned approach aims to distinguish motions with different emotional
states. The authors aim to appraise the significance of the proposed features in motion classification
using PCA, where the weight of each feature in separating the performer’s feeling is presented. A new
classification space is introduced based, not only on the basic description of motion such as the posture,
but on the motion qualitative and quantitative characteristics. PCA has been also used for dimensionality
reduction, resulting in a less complex system; the reduced segments (principal components) are used as
input to a SVM classifier, which decides about the segment with respect to emotion.

Moreover, in [80], LabanDance, a serious game for Labanotation is presented. The LabanDance is a
real-time game using the Kinect sensor. The user is asked to perform a sequence of moves at a specific
time as they are recorded in a score displayed on the screen. The game has two modes of operation. The
first is addressed to users with little familiarity with Labanotation and is accompanied by a virtual trainer.
In the second, the user is only required to perform the moves based on the score. The game includes four
levels with hand, foot, jump, and a level with a combination of all moves. A different aspect of the use
of LMA is presented in [81], where the authors describe a framework in order to extract characteristic
poses as well as high-light parts from data of dancing movement obtained by motion capturing technique.
For this, the theory of LMA has been applied, and the physical feature values corresponding to the LMA
components are defined. By observing the change over time of these feature values, body movements
corresponding to the LMA components are extracted. In this approach, the authors focus on effort and
shape components of LMA.

The similarities between various emotional states with regards to the arousal and valence of the
Russell’s circumplex model have also been investigated [S1]. A variety of features that encode, in
addition to the raw geometry, stylistic characteristics of motion based on LMA is presented. Motion
capture data from acted dance performances were used for training and classification purposes. The
experimental results show that the proposed features can partially extract the LMA components, providing
a representative space for indexing and classification of dance movements with regards to the emotion. In
[82], an automatic motion capture segmentation method based on movement qualities derived from LMA
is presented. LMA provides a good compromise between high-level semantic features, which are difficult
to extract for general motions, and low-level kinematic features which, often yield unsophisticated
segmentations. The LMA features are computed using a collection of neural networks trained with
temporal variance in order to create a classifier that is more robust with regard to input boundaries.

Another work [83] proposes a set of body motion features, based on the Effort component of LMA,
that are used to provide sets of classifiers for emotion recognition in a game scenario for four emotional
states: concentration, meditation, excitement and frustration. Experimental results show that, the system
is capable of successfully recognizing the four different emotional states at a very high rate. From the
results achieved the authors conclude that Laban Movement Analysis is a valid and promising approach

for emotion recognition from body movements due to the abstract level of Laban technique. Specifically
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this framework describes that two of Effort’s component motion factors, Time and Space can result to
high emotion recognition rates.

In the context of educational frameworks, a proposal for analysis and visualization of dance kinesiol-
ogy based on Labanotation and embodied learning concepts is presented in [84]. The low-cost Kinect
sensor is employed to extract skeletal data which are then processed and transformed geometrically.
In the sequel, they are analyzed based on the Labanotation system to characterize the posture of the
human limbs. Two modules have been developed. The first module serves for recording, analyzing
and visualizing body movements. The second module is an application in which the user is required to
perform with his upper limbs, a sequence of gestures given by the system in the form of Labanotation
symbols. Dance notation consists of a set of symbols and rules for recording dance (or movement in
general), in a similar way that music notation records music.

Lastly, a motion analysis framework based on LMA is described in [85], which also accounts for
stylistic variations of the movement is presented. Implemented in the context of Motion Graphs, it is used
to eliminate potentially problematic transitions and synthesize style-coherent animation, without requiring
prior labeling of the data. The effectiveness of the proposed method is demonstrated by synthesizing
contemporary dance performances that include a variety of different emotional states. The constructed
LMA-based Motion Graph (MG) by default satisfies posture correlation; in the proposed implementation,
the authors select the transition with the highest LMA correlation. Although the MG algorithm may
encourage transition to frames of other motions where body posture is highly similar, in contrast LMA
MG selects those transitions that motion style is more coherent, despite body posture being less similar.

Kinesiology modelling are distinguished into methods that exploit supervised learning and those
algorithms of using an unsupervised paradigm. In the literature, the works proposed cover human activity
indexing [86], pose identification [87], action prediction [88], emotion recognition [89] and background
subtraction [90]. In [91], an unsupervised approach is proposed for modelling human activities, while in
[7], summarization of folklore dances have been introduced using an hierarchical SMRS algorithm. In this
context, the work of [92] has introduced an action recognition framework exploiting dense trajectories.
Finally, in [93] HMM has proposed for human activity recognition.

Recently deep machine learning methods have been introduced for analysis of folklore sequences. A
brief review of deep learning for computer vision applications one can be found at [94]. In [95], a CNN
neural network model have been introduced for human activity analysis, while the work of [96] uses
RGB-D and skeleton data for activity analysis. In [97], the authors introduce a two-stream convolutional
neural network structure for action recognition in videos. In this context, the work of [98] introduces a
three-stream CNN for action recognition modelling, while the work of [99] proposes CNNs structures
on depth maps and postures for human action recognition. Finally, Makantasis el al. [100] introduces a
behavioural understanding approach for industrial environments, while in [101], the authors introduces a
flexible Deep CNN for detecting spatio-temporal relationships in videos.

Another area of research related with this paper is background modeling and consequently foreground
extraction. Towards this direction salient maps have been proposed in [102] exploiting concepts of visual
attention algorithms. In this context, the work of [103] introduces a background modeling algorithm
using CNN structures. Similarly, in [104], the authors introduce methods of Mixture of Gaussians to face
background dynamics. In [105], the authors proposed a neural network implementation of the ARMA
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filter with a recursive and distributed formulation, obtaining a convolutional layer that is efficient to
train, localized in the node space, and can be transferred to new graphs unseen during training. In [106]
the authors are interested in generalizing CNN from low-dimensional regular grids to high-dimensional
irregular domains, such as social networks, brain connections or words’ embedding, represented by

graphs.

2.2.4 Discussion

The rapid developments in machine learning and computer vision technologies have enabled a variety
of interesting applications in a vast range of domains, including human motion understanding. In this
context, several steps have been made by the research community towards a multifaceted analysis of
dance. The use of appropriately designed and fine-tuned machine learning models on data acquired by
both visual sensors and motion capture devices has led to significant progress in the fields of choreography
summarization, dance pose recognition, as well as further analysis of style and emotion, often using
Laban Movement Analysis notation (a concise list of important milestones attained is given in Table 2.1).
Despite the significant steps already made and, further research is needed towards a deeper understanding
and analysis of dance and related elements, such as style, tradition and affect. The advancements of deep
learning as well as the increasing accuracy and cost-effectiveness of visual and motion capture sensors

are bound to play an important role to this direction in the following years
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Table 2.1 Important milestones in the history of the choreographic analysis

Milestones/Contribution

Motion Capturing

Contributor, Year

Systems
Graphical editor for dance notation Kinect [31], 2002
Real-time control of three-dimensional avatars VICON [62], 2002
Performance Animation Pulnix video cam- | [63], 2005
eras
Dancing-to-Music Character Animation VICON [64], 2006
Real-time body motion analysis for dance pattern | Kinect [73], 2012
recognition (Hidden Markov Model)
Analysis of dance movements using gaussian pro- | Kinect [107], 2012
cesses
Multimodal classification of dance movements using | Kinect [76], 2013
motion trajectories and sound
Hierarchical aligned cluster analysis (HACA) for tem- | VICON [84], 2013
poral segmentation
Motion indexing of different emotional states using | n/a [79], 2013
LMA components
Dance analysis using multiple Kinect sensors Kinect [108], 2014
Dynamic dance warping VICON [66], 2014
Emotion Analysis and Classification VICON [13], 2015
Classification of Dance Motions with Depth Cameras | Kinect [109], 2015
Using Subsequence Dynamic Time Warping
A Game-like Application for Dance Learning Using a | Kinect [65], 2015
Natural Human Computer Interface
Folk Dance Evaluation Using Laban Movement Anal- | VICON [13], 2015
ysis
Unsupervised Temporal Segmentation of Motion Data | Kinect [55], 2017
Key postures identification VICON [110], 2017
CNN-based approach for 3D human body pose estima- | Monocular cam- | [69], 2017
tion era
Hierarchical Sparse Modeling Representative Selec- | VICON [111], 2018
tion
Physics-based keyframe selection for human motion | VICON [112], 2018
summarization
Style-based motion analysis for dance composition VICON [85], 2018
An LSTM-autoencoder Approach to Music-oriented | VICON [74], 2018
Dance Synthesis
Spatio-Temporal Laban Feature descriptor (STLF) for | n/a [113], 2018
dance style recognition
Everybody Dance Now n/a [53], 2018
Human action recognition through third-order tensor | n/a [78], 2019
representation and spatio-temporal analysis
Learning to Generate Diverse Dance Motions with | n/a [114], 2020
Transformer
Al Choreographer: Music Conditioned 3D Dance Gen- | n/a [115], 2021

eration with AIST++




Chapter 3

Motion Digitization and Kinesiology
Modelling

3.1 Introduction

The exploration of the digitization technology , regarding folklore performances, constitutes a significant
aim at an European level. On the one hand, the multi-cultural intangible/tangible heritage of Europe
gets documented, preserved, and accessible. During the 20th century there have been several attempts to
model human creativity in performing arts. Rudolf Laban developed a system of movement notation,
that eventually evolved into modern-day Laban Movement Analysis (LMA) [30], which provides a
language for describing, visualizing, interpreting, and documenting all varieties of human movement,
in an attempt to preserve classic choreographies. More specifically, LMA has been extensively used
for analyzing dance performances and creating digital archives of dancing, in the area of education and
research. Currently, digital technology has been widely adopted, which greatly accelerates efforts and
efficiency of CH preservation and protection. At the same time, it enhances the assimilation of the ICH
in the digital era, creating enriched virtual representations. Although, the aforementioned significant
achievements for improving the digitization technology towards a more cost-effective automated and
semantically enriched representation, protection, presentation and re-use of the CH via the European
Digital Library EUROPEANA !, very few efforts exist in creating breakthrough digitization technology
(i.e. audio, visual and stereoscopic recordings). The core subject of the approaches above, focuses on
improving the e-documentation (3D modelling enriched with multimedia metadata and ontologies), the
e-preservation (standards) and the reuse of ICH traditional artefacts. These efforts are limited to the

following well documented technologies:

* Visual Stereoscopic Recordings have been usually utilized for digitizing choreographic perfor-
mances. It is imperative to declare that the digitization technology through AV recordings is not
spatio-temporaly defined adequately, in the sense that there is no possibility for important symbolic
characteristics, representing human creativity to be extracted. For this reason, it is difficult for the
way (styling) of a dance, the way of expression and the human emotions [116] to be preserved

sufficiently. In addition, 2D AV recordings do not allow the implementation of 3D/4D modelling

Thttps://www.europeana.eu
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and rendering technologies that result in enriched virtual environments, which enhance physical
objects with virtual ones. This enhancement is critical for the preservation of the intangible cultural
content and its integration with additional information. The tremendous advance in hardware engi-
neering, has boosted stereoscopic digitization technologies allowing stereo video data in real-time
to be captured [29].

* Digitization and preservation of folklore performances using RGB/point clouds sequences. The
developed datasets aim to define and exploit new interoperable and compatible to Europeana and
UNESCO MoW Library metadata formats, that permit repositoring, archiving and harvesting ICH
assets to support new forms of representations. This is a very critical perspective for the protection,
preservation and re-use of the CH metadata, since it formulates the framework for archiving the

digitized folklore performances.

* The re-use of the e-Folklore Digital libraries contain large amounts of tangible CH content.
Nevertheless, the corresponding amounts of digitized ICH content lags significantly. This thesis
aims to fill this gap, by providing an open-access and integrated digital CH repository which
includes intangible CH content, in arrange to extend the research impact, the re-use of data and
boost sustainable industrial growth. This holistic digital repository can be a useful tool in the hands
of stakeholders that utilize ML techniques in the domain of ICH.

3.2 The Adopted Motion Capturing Systems

Section 3.2 presents the sensors network that is adopted to obtain the choreographic data and metadata.
Within our research, two of the most popular motion capture systems; Kinect II and Vicon are adopted.
Furthermore, this chapter describes the motion capture workstations, the cameras and each component

for the capturing and the calibration process.

3.2.1 VICON motion capturing system

Motion capturing systems are widely used in biomechanics sports, computer graphics and computer
animation. The effectiveness of motion capturing systems depending on their system setup and are
sensitive against variations. Marker properties, optical projections, video-digital conversion, camera
configuration, lens distortion, calibration procedures. A set of spherical reflective markers are attached
to the research object, in our case is the dancer. The reflective markers are tracked by a number of
grayscale cameras which are placed around the research area and via the Vicon software is calculating
and calibrating the 3D position for each reflective marker. The Vicon system consists both hardware and

software components. The hardware includes 10 high precision and sampling camcorders (Fig 3.1) to

Table 3.1 Comparison of the VICON and Kinect motion capturing systems

Motion Capture System | Cost | Accuracy | Calibration | Camera Resolution
Kinect Low | Low Simple Low
VICON High | High Difficult High
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Figure 3.1 Vicon cameras

record human motion, and an analog data acquisition module. The software includes Vicon Workstation
that collects and processes the motion and analog data.

A Vicon motion capture area consists of a space surrounded by high resolution Vicon cameras. Each
Vicon camera has a ring of LED strobe lights around the Vicon camera lens. The recorded subject
has a number of reflective markers to their body. The cameras are recording the subject as it moves in
the motion capture space. The Vicon Datastation controls the Vicon cameras and collects the signals,
passing them to the host computer on which the Vicon software suite is installed. Vicon workstation
is the main application of the Vicon software used to collect, filter and process the raw data. This
module processes the 2D data from each Vicon camera, consolidate them reconstruct the 3D motion.
This process is depicted in Vicon Workstation as a virtual 3D motion subject. After the aforementioned
process the extracted data can be passed to other Vicon applications for further analysis. Our Vicon
System consists of the Vicon Datastation, Vicon Workstation, the Vicon Cameras and the Vicon Software
Suite. Specifically, the Vicon cameras and the strobes are collecting the light from the reflective markers.
The strobe send out light at the same time with the Vicon camera, illuminating the reflective markers.
Then, the reflective markers send straight back the light to the Vicon camera. Furthermore, the Vicon
Datastation controls the Vicon cameras and every device is used to capture data. In addition, the Vicon
Workstation is an application software for controlling the Vicon Data station and the motion capturing
process. The heart of the acquisition component adopted for modelling the dancer motion trajectories
in 3D space is based on the VICON Motion System 2, which is a motion capturing framework used in
several application domains, ranging from gaming, film production, clinical research and entertainment.
In our implementation, ten Bonita B3 cameras are included, running the Nexus1.8.5.61009h software.
The movement area is a 6.75 meters square. The origin of the VICON coordinate system is the centre of
the square surface. A calibration wand with markers is used to calibrate the ten cameras. The user’s body
is measured by attaching 35 markers at fixed positions on the body. After sticking all the markers, the
height, the weight and other specific anthropometric characteristics of the user are measured.

The motion capture area of VICON is surrounded by a number of high resolution cameras with LED
strobe light rings (see Fig. 3.1). A setup of VICON workstation is illustrated in Fig.3.2. Reflective
markers facilitate the recording of the moving subject by the cameras, while signal collection is controlled

Zhttps://www.vicon.com/
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Figure 3.2 (a) VICON body joints capturing capabilities. (b) Placement of the passive markers to the
dancers’ body.

Figure 3.3 Vicon workstation
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Figure 3.4 A snapshot from the experiments conducted at the Aristotle University of Thessaloniki for
capturing the folklore dances.

by Data station controls (see Fig.3.3). Signals are then passed to the VICON workstation, equipped with
a specialized software for collection, filtering and processing of raw data. Two-dimensional data from
cameras are processed and combined in order for the three-dimensional motion to be reconstructed. Fig
3.2 presents the topology of the markers used for capturing the motion properties of the dancer.In this
figure, we depict a dancer, participating in the experiment. The markers are exploited by the VICON
component for modelling the 3D dancer attributes and to extract the joints.

3.2.2 Kinect-II motion capturing system

The Microsoft KinectTM SDK sensor has a great potential to be adopted for motion capturing system as
a low-cost motion analysis tool. It allows to capture 3D objects and human movements and export them
to disk for use in 3D packages.In particular, the method applies fusion to combine the skeletal tracking
data of multiple sensors in order to solve occlusion and self-occlusion tracking problems and increase the
robustness of skeletal tracking. The Microsoft KinectTM SDK sensor contains: (a) a depth sensor, (b) a
color camera and (c) a four-microphone array that provide a full body 3D motion capture [117]. More

specifically, the depth sensor consists of the infrared projector with the infrared camera. Moreover, the

KINECT VZ JOINT ID MAP

25JOINTS
6 BODIES

JOINTTYFE_SFINEBASE =0
JOINTTYPE.S| D

Figure 3.5 A list of body joints captured by Kinect. For each joint, position and rotation values are stored
in XML format (source: https://vvvv.org/documentation/kinect).
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Figure 3.6 Kinect-1I workstation

infrared projector is an infrared laser that passes through a diffraction grating and set of infrared dots.
Kinect sensor has been discontinued and replaced by Azure Kinect DK with Al capabilities.

In our research, a Microsoft Kinect sensor II is deployed for 3D skeletonization of a dancer. Microsoft
Kinect sensor II is a markerless motion capturing framework of low-cost [40]. The extracted skeleton is
consisted of twenty joints, each including the 3D coordinates, the rotation parameters and a tracking state
property. The topology of the 3D skeleton joints is depicted in Fig. 3.5. The skeleton tracking exploits
the human variations, generated by the Kinect sensors.

The Kinect innovation depends on the advantages in human tracking. The skeletal tracking is defined
by a number of human joints i.e., head, neck, shoulders and arms. Each identified skeletal joint is
represented by a 3D coordinate system. Kinect determines all the 3D joint variations in real-time allowing
the interactivity between the tracked subject and the Kinect software [118] [37]. Fig. 3.6 shows a snapshot
of the proposed Kinect-II architecture. The tracked skeleton distinguish into twenty five joints with
each one to include the 3D position coordinates, its rotation and a tracking state property: “Tracked”,
“Inferred”, and “UnTracked” [14]. Furthermore, the sensor work in dark and bright environments and
the capture frame rate is 30fps. In parallel, there are some limitations that should be considered: it is
designed to track the front side of the user and as a result the front and back side of the user cannot be

discerned, and that the movement area is limited (approximately 0.7—6 m)[118].
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3.3 3D Captured Datasets

3.3.1 Single Dancer Dataset

Figure 3.7 An indicative sequence of 10 image frames of “Syrtos” dance by Dancer C, along with the
respective skeleton data.

Figure 3.8 Enteka dance performed by dancer I (female) [3].

The first choreographic data set is distinguished into six dances, additionally their execution was in
straight and in circle way. Table 3.5, depicts the investigated dances with a description of the cultural
information and the main choreographic steps. Each dance is described by a set of RGB images. Every
frame (; = 1,...,n), has a corresponding extensible mark-up language (XML), (.C3D) and (.CSV) files
with positions, rotations and confidence scores for N joints on the body, in addition to timestamps (see
Chapter 3.7). The dances in Kinect are described by a matrix, D;, of size bxmxn, where b is the number
of body joints (i.e. 25), m is the number of feature vectors (i.e. 3 coordinates and 4 rotations, plus 2
more binary indicators, explaining if values are measured or estimated), and n is the duration of the
dance. On the other hand, Vicon capturing described by a matrix with 35 passive markers extracted by the
Vicon architecture. Ji=1,. .. k. Subsequently, it is described the six dances with the most representative
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Figure 3.9 Illustration of Syrtos at 2 beat dance [3].

key frames summarizing the choreography pattern. For the teaching/understanding of Greek traditional
dances is important to exercise in special preparatory rhythmical steps which characterize a variety of
dances such as: (a) Gait in three, (b) Gait in both, (c) Crosswise, (d) Hops, (e) Simple-complex steps.
The first folklore dataset encompass the Greek traditional dances performed by 3 dancers. Therefore,
six dances containing these steps were selected for this research, (these steps are included in many
Greek traditional dances). The dances which are proposed to this research are the following: (i) Enteka
(liftings-hops), (ii) Syrtos at two beat (see Fig. 3.9), (iii) Syrtos at three beat, (iv) Makedonikos, (v)
Kalamatianos, (vi) Trehatos (Simple-complex steps / liftings-hops). Fig. 3.8 depicts Enteka folklore
dance performed by dancer I. Table 3.2 presents the list of the redorded dances and their variations as

well as their duration recorded from the Kinectt-II sensor.

Table 3.2 The folklore dances recorded from the Kinect-II sensor [1]

Dance Variation | Duration (frames)
Dancerl | Dancer2 | Dancer3
Enteka Straight | 749 807 858
Kalamatianos | Circular | 655 593 561
Straight | 304 378 455
Makedonikos | Circular | 424 582 409
Straight | 283 367 418
Syrtos 2 beat | Circular | 608 543 352
Straight | 623 639 334
Syrtos 3 beat | Circular | 608 964 947
Straight | 1366 678 511
Trehatos Circular | 991 723 443
Straight | 315 295 355
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Table 3.3 The folklore dances recorded from the Vicon motion capturing system. Those recordings refer
to the first Terpischore dataset.

Dance Variation | Duration (frames)

Dancerl | Dancer2 | Dancer3

Enteka Straight | 3457 4116 1897
Kalamatianos | Circular | 1423 2449 1943
Straight | 844 1256 1542
Makedonikos | Circular | 2160 1980 1529
Straight | 856 1458 1789

Syrtos 2 beat | Circular | 2045 1727 1701
Straight | 1458 1481 1495
Syrtos 3 beat | Circular | 4856 5754 3449
Straight | 2241 2812 1698
Trehatos Circular | 1972 2788 1832
Straight | 1329 1542 1052

(a) Initial Posture (IP)

(c) Right Leg Up (RLU) (d) Left Leg Up (LLU)

Figure 3.10 These representation illustrate Syrtos at 3 beat visualized using SMPL aglorithm [4].
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3.3.2 Two Dancers Dataset

The second recording process took place at the School of Physical Education and Sport Science of the
University of Thessaly in Trikala Greece in January 2019. All sequences are Greek traditional folkloric
dances, the selection of which was made by dance experts of traditional dances of the Schools of Sport
Science of the Universities of Thessaloniki and Thessaly in Greece. The second dataset includes the
aforementioned folklore dances performed by two dancers simultaneously. Figure 3.11 and 3.12 illustrate
an example of the geometric challenges that the presence of two dancers causes to our analysis (see
Section 6.2.2). As we observe, the passive markers of the dancers are very close. In this second dataset
VICON and Kinect II motion capturing systems are utilized. In this dataset we face the occlusion
limitation as explained in Section 6.2.2. The right hand of the left dancer is overlapped with the left hand
of the right dancer.

Figure 3.11 The motion capturing process takes into account the variations of the dancers’ joints
simultaneously [5].

Table 3.4 The folklore dances recorded from the Vicon motion capturing system. Those recordings refer
to the second Terpischore dataset.

Dance Variation | Duration (frames)
Makedonikos | Circular | 5430
Syrtos 2 beat | Circular | 3466
Syrtos 3 beat | Circular | 4835

Three dance sequences have been recorded using the VICON motion capturing platform [119]. These
dance sequences refer to three different performances (dances), each executed simultaneously by two
dancers (one male and one female). The selection fulfils (i) different types of complexities in the dance

main patterns, (ii) circular performances of the dance, (iii) different styles and (iv) different rhythmical
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Figure 3.14 The main choreographic steps of Syrtos (3-beat) dance.

tempos. All dancers are professional actors and each dance was executed twice per actor so as to record

different paths of the same choreography.

3.4 Annotation of the Datasets

The recorded dance sequences refer to five different choreographic sequences (dances), each executed
twice by three dancers (two male and one female). The recording processes took place at the School
of Physical Education and Sport Science of the Aristotle University of Thessaloniki and at the School
of Physical Education and Sport Science of the University of Thessaly in Trikala. All sequences are
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Table 3.5 A brief description of the dances recorded from Vicon.

Type of Dance

Description

Main Choreographic
Steps

Sirtos (3-Beat)

A Greek folklore dance in a
slow three-beat rhythm per-
formed by both women and
men.

1) Initial Posture (IP); 2)
Cross Leg (CL); 3) Ini-
tial Posture (IP); 4) Left
Leg Up (LLU); 5) Initial
Posture (IP); 6) Right
Leg Up (RLU)

Sirtos (5-Beat)

A Greek folkloric circular
dance performed by both
women and men, with a 7/8
musical beat.

1) Initial Posture (IP); 2)
Left Leg Back (LLB);
3) Cross Legs (CL); 4)
Cross Legs (CL); 95)
Cross Legs (CL); 6)
Initial Posture (IP); 7)
Right Leg Back (RLB);

Kalamatianos

A very popular Greek folk-
dance through Peloponnese
and the Greek Islands. The

tempo is at 7/8 beat.

1) Initial Posture (IP);
2) Cross Legs (CL); 3)
Cross Legs (CL); 4)
Cross Legs (CL); 95)
Cross Legs (CL); 6)
Initial Posture (IP); 7)
Cross Legs Backwards
(CLB)

Trehatos

A circle dance, performed by
both women and men.

1) Initial Posture (IP);
2) Cross Legs (CL); 3)
Cross Legs (CL); 4)
Cross Legs (CL); 5) Ini-
tial Posture (IP); 6) Left
Leg Up (LLU); 7) Right
Leg Up (RLU); 8) Left
Leg Up (LLU); 9) Cross
Legs Backwards (CLB)

Enteka

A folkloric dance performed
by women and men by at a
line.

1)Initial Posture (IP); 2)
Right Leg Up (RLU);
3) Dancer’s Right Turn
(DRT); 4) Initial Posture
(IP) 5) Dancer’s Left
Turn (DLT)

Makedonikos

A Greek folkloric circular
dance performed by both
women and men, with a 9/8
musical beat.

1) Initial Posture (IP); 2)
Cross Legs Backwards
(CLB); 3) Cross Legs
(CL); 4) Left Leg Front
(LLF); 5) Right Leg
Back (RLB)
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Greek traditional folkloric dances, the selection of which was made by dance experts from the Aristotle
University of Thessaloniki to fulfill (i) different types of complexities in the dance main patterns, (ii)
linear and circular performances of the dance, (ii1) different styles the choreography and (iv) different
rhythmical tempos. The selection of different human sexes is due to the fact that the main steps of the
dances are slightly different between men and women. For men, the dancing style is proud and imperious
while for women modest and humble. All dancers are professional actors and each dance was executed
twice per actor so as to record different paths of the same choreography. Fig. 3.7 presents a photo of the
environment used for the acquisition of the dance sequences using the Vicon motion interface. In Table
3.5, we show the five choregraphies recorded. In this table, we also present a brief description of the
dance along with its main steps. These steps have been defined by the dance experts who have designed
the whole choreography and refer to the main variations of the dance as acquired through the VICON
and Kinect-1I capturing modules. Thus, the main steps of the dance (see Table 3.5) do not refer to the
steps of the choreography as being taught to a dancer trainee but to the main "activities" of the dance as
being captured by the digitization unit. For instance, the first recorded dance, Sirtos at 3-beat, consists,
in its digital space, of six main choreographic units; 1) Initial Posture (IP)-the dancer faces a forward
position; 2) Cross Leg (CL)- the dancer crosses the legs as she/he is moving, the left leg is in front of
the right; 3) Initial Posture (IP)- again the dancer faces a forward position; 4) Left Leg Up (LLU)- the
dancer rises her/his left leg up; 5) Initial Posture (IP)- after lowering her/his leg, the dancer is again in an
in front position; 6) Right Leg Up (RLU)- the dancer rises her/his right leg up. Then, the main patterns
of the dance stop and the choreography starts from scratch. Different steps are recorded for the other
types of dances. For example, in Sirtos at 5-beat, except for the initial posture (IP) and cross legs (CL)
patterns we also have some leg movements backwards, named as Left Leg Back (LLB). In addition, the
cross legs patterns (CL) are sequentially repeated three times. Thus, each of the three CL pattern should
be considered as a different choreographic element. Similarly, in Kalamatianos and Trehatos dance,
there exists CL patterns repeated sequentially along with cross legs backwards movements. These two
dances have totally different rhythmical tempos. Finally, the Enteka dance includes dancer’s about-face
positions; the dancer is turning around and facing the other position. The proposed methods have been
validated in the context of Terpsichore [29], a European research project that aims to create affordable
tools for the digitization, modeling, analysis, archiving and promotion of ICH content and, in particular,
European folk dances. Fig. 3.7 depicts an example (10 indicative frames along with the respective joints)

of a sequence choreography captured for the Syrtos dance.

3.5 Choreographic Benchmarked Datasets

Over the past decades, researchers in the domain of Computer Graphics, Computer Vision, Robotics and
ICH have worked with large collection of motion sequences to encode human motion applications. The
study and analysis of human body movements and gestures is a core issue in various domains including
sports and performing arts. Although humans can inherently perceive and decipher such human body
signals in an intuitive way, this is a challenging process for artificial computer-based systems. Focusing on
the domain of dance, an important aspect is the automatic extraction of the choreographic patterns, which
can provide a compact, "bird’s eye" representation of the semantic information encoded in the overall
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CMU Graphics Lab Motion Capture Database

Search Help

View All: Browse: SEARCH
Subjects | Motions | Motion Categories | subject number | motion or keyword
(e.g.41) (e.g.run)

Figure 3.15 Carnegie Mellon Motion Capture Database

dance storyline [120]. Such a compact content representation may be useful in a variety of applications
ranging from multimedia systems (e.g., indexing, browsing, content-based search and retrieval) [121]
to education (e.g., teaching/learning of a dance choreography) [122], as well as documentation and
preservation of the Intangible Cultural Heritage (ICH) assets [123], [124], among which dance holds a
prominent spot.

Most of the benchmarked datasets are created taking into consideration specific real-life applications.
Some databases such as NTU RGB+D, Berkley MHAD and KIT 3 # created for kinessiological analysis
of the human movements focus on every-day activities. Databases such as Dance Motion Capture
Database of University of Cyprus, Carnegie Mellon Motion (CMU), ACCAD 7, Let’s Dance® [125] and
HDMO5 7 encompass motion capture data in the context of theatro/choreographic expressions. Table 3.6
encompasses the majority of the benchmarked motion databases. Most of the databases provide the raw
marker data in C3D, BVH, Autodesk FBX and AMC format. Multi-modal datasets (e.g., IEMOCAP 8)
provide also video, audio, RGB images, labels and physiological recordings describing the choreographic
sequences.

3https://motion-database.humanoids.kit.edu/list/motions/
“https://tele-immersion.citris-uc.org/berkeley,, had
Shttps://accad.osu.edu/research/motion-lab
Ohttps://www.cc.gatech.edu/cpl/projects/dance/
"http://resources.mpi-inf.mpg.de/HDMO5/
8https://sail.usc.edu/iemocap/
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Table 3.6 A brief review of the motion capturing databases. This work is an extended version of the [2]

Databases Scope and Content Brief Description Capturing System
Ohio Dataset (ACCAD) [126]  Video Games and Animation 300 sequences Vicon
Motion Capture Production ~ -Locomotion
Intermedia -Martial arts
AffectMe [127] Study of body Collection of datasets: n/a
(UCL Interaction Centre) posture as an -Acted emotions
indicator of human affective  -Non-acted affective states
Carnegie Mellon Dataset [128] General Research -Human Interactions Vicon
Human real-life activities -Interaction with Environment
-Locomotion
-Physical Activities
-Situations and Scenarios
-Test Motions
MoCap Database Unspecified Arm Gestures Markers
of TH K&ln [129] Locomotion
Dance Motion Capture Digital Repository Digitization of Phasespace
Database (CY) of Folklore Dances Cypriot Folk Dances Impulse X2
[34] with 38 markers

HDMO5 [130]

General Research

3 hours of motion captures

70 different classes

Vicon
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Table 3.6 continued from previous page

Databases

Scope and Content

Brief Description Capturing System

HumanEva-I

[131]

TEMOCAP [132]

National University
of Singapore
(NUS) Capture Database [133]

Human movement and pose

estimation from video data

-Recognition and Analysis
of Emotional Expression
-Analysis of Human Dyadic
Interactions

-Sensitive Human
Computer Interfaces and
Virtual Agents

Unspecified

- Locomotion

- Grabbing and Depositing
- Sports

- Sitting and Lying Down
- Dance

- Walking - ViconPeak

- Jogging
- Throw/Catch

- Combinations of the above

- Facial expression Vicon

- Head and hand movements

Audio
recordings of the conversations

- Locomotion Vicon
- Interaction with Obstacles
- Martial Arts
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Table 3.6 continued from previous page

Databases Scope and Content Brief Description Capturing System
- Dance
- Yoga
UPenn Database [134] - Multi-Actor behaviours Collection of multimodal datasets ~ Unspecified

NTU RGB+D [135], [136]

Berkeley Multimodal

Human Action

Database (MHAD)

- Diverse personalities

- The effects of posture and
dynamics on the perception
of emotion

- Study human fatigue

RGB+D human action

recognition

RGB+D human action

recognition

- Walking

- Emotional Actions

- Emotional Body Language

60 action classes

within daily
actions, health-related actions, and

inter-personal actions

11 actions

All the subjects performed

5 repetitions of each action,
yielding about
660 action sequences

Kinect V2 devices

- Impulse

- Video: 12
Dragonfly2 cameras
-Depth: 2

Microsoft Kinect V2
- Acceleration: 6
three-axis wireless

accelerometers
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Table 3.6 continued from previous page

Databases

Scope and Content

Brief Description

Capturing System

KIT [137],[138]

Perception Action
and Cognition (PACO)
[139]

Terpsichore Project [29]

AMASS [4]

Human pose estimation

Human behaviour and brain
activity across a variety of

research domains

Digitization of
Intangible Cultural Heritage

4D Scan
converting mocap data
into realistic

3D human meshes

15 actions within upper body

movement,

full-body upright
variations, walking variations,
sitting on the floor, and

miscellaneous movements

-Ballet

-Indian dances

-Greek Folklore Dances
Multiple Subjects

Transformation from

4D to Mocap coordinates

40 hours of motion data,
300 subjects,
more than 11000 motions

- Mocap: Vicom
T40

- TOF: Mesa
SR4000

- Video: Basler
piA1000

- Body Scan: Vitus
Smart LC3

n/a

Vicon and Kinect

OptiTrak
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Figure 3.18 Transformation of the VICON global coordination system to a local one, the center of which
coincides with the center of mass of the dancer. This is an important aspect of analysing the captured
moving trajectory of the dance, since dancer spatial positioning is compensated.

3.6 Human Body Modelling

In the following, let us denote as J;G = (x,?, y,?,z,?) the k-th joint out of the M extracted by the aforemen-
tioned motion capturing systems. Variables xiG, yl.G and zl.G indicate the coordinates of the respective i-th
joint with respect to a reference point setting by the motion capturing architecture (in our case the center
of the square surface). These joints have been obtained after the application of a density-based filtering
on all the detected joints to remove noise from the acquisition process.

The main problem in directly processing the extracted joints J_)G, k=1,2,...,M is that they refer to the
Vicon/Kinect coordination system which do not reflect the dancer’s position in 3D space and thus the
actual choreography. Thus, we need to transform the J_,;G = (x,?, ykc, z,?) from the Vicon/Kinect coordinate
system to a local coordinate system, the center of which coincides with the center of mass of the dancer.

This is obtained through the application of Eq. (7.5) on the joints coordinates J_)G,

=if-C G.D

where C,,, denotes the center of mass of the dancer with respect to the Vicon/Kinect coordination system

expressed as

J,
(3.2)

NS

M
Con=Y.
k=1

and we recall that M refers to the total number of joints extracted by the Vicon.

Fig. 3.18 presents the approach adopted in this paper to transform the global Vicon coordinates of the
joints Jj? into a local coordinate system ( J%). The adopted local coordinate system coincides with the
center of mass of the dancer. Therefore, the captured skeleton coordinates is transformed with respect to
the dancer movement, making them independent from the spatial location of the dancer. It should be

mentioned that the local coordinate system is dynamically updated as the dancer is moving in the space

throughout the capturing experiment.
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3.7 Kinematic Representation

In order to model the motion of a dancer, we exploit principles from the theory of rigid body dynamics
[140]. In particular, let us denote as J%(t) the coordinates of the k-th joint at time #. Then, the function
u(t) = dj,f (t)/dt expresses the velocity of the k-th joint at time ¢. It is clear that the velocity () is a
vector of three elements, i (1) = (u, uz, ui), where variables u;, uz, uy, refer to the x, y, z coordinates of
the velocity of the k-th joint.

Similarly, the derivative of the velocity expresses the acceleration of a dancer’s joint. Therefore, we
have that % (¢) = du(¢)/dt. Again, the acceleration is a vector of three elements, expressing the x, y, z
coordinates of the %(r). The acceleration % (¢) actually models the force imposed on the k-th joint at
time 7. In particular, assuming that each joint has a mass m=1, the force Fi (t) acting on it at time ¢ equals
the acceleration 7 (¢). That is, we have that Fj.(r) = %(¢). In this way, a state vector S (¢) is constructed
modelling both the joint’s position, velocity and acceleration (i.e., the force) concerning the k-th joint.

Therefore, we have that

it o) o) )
Sk(t) = Lf{%(t) = @) w() u() (3.3)
7() AOREAOIEH0

where again variables ¥}, }f,f , ¥ express the x, y, z coordinates of the acceleration of the k-th joint. It is
clear that Si(¢) is a matrix of 3x3 elements.
In order to represent the kinematics of the whole dancer, we take the contribution of all the M available

joints. Therefore, a 3- M x 3 state matrix is constructed, expressing the kinematics of the dancer at time ¢.

S1(7)
S(t) = : (3.4)
Sum(t)

3.7.1 Training/Test and Validation DataSet Construction

The study and development of algorithms that can learn from and make predictions on data is a popular
task in machine learning [94]. The data used to create the final model usually comes from multiple
datasets. More specifically, the model is first fitted on a training dataset, which is a subset of data used
to suit the model’s parameters (for example, the weights of connections between neurons in artificial
neural networks). A supervised learning approach is used to train the model (e.g., a neural net or a naive
Bayes classifier) on the training dataset, for example, using optimization methods like gradient descent or
stochastic gradient descent. The training dataset is typically made up of pairs of input vectors (or scalars)

and output vectors (or scalars), with the response key being usually denoised.

* Training set is a collection of data used in the learning process to train the parameters (i.e., weights)
of a machine learning algorithm. A supervised learning algorithm for classification tasks examines
the training dataset to assess, or learn, the best combinations of variables that will produce a

successful predictive model. The aim of the training dataset is to create a trained (fitted) model that
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Figure 3.19 Training, Test and Validation datasets. Training dataset consists of sample data (RGB/point
clouds) to fit the model. Validation dataset encompasses sample of data while defining models’ hyper-
parameters. Test dataset used to determine an unbiased evaluation of a final model fit on the training
dataset.

accurate estimate unknown data. The fitted model’s accuracy in classifying new data is estimated
using new examples from the held-out datasets (validation and test datasets). The examples in the

validation and test datasets should not be used to train the model to avoid issues like overfitting.

 Validation dataset is a collection of examples used to fine-tune a classifier’s hyperparameters (or
architecture). The number of hidden units in each layer is an example of a hyperparameter for
neural networks. Validation set should have the same probability distribution as the training dataset,
as should the testing set (as discussed above). When any classification parameter needs to be
modified, a validation dataset, in addition to the training and test datasets, is needed to prevent
overfitting. For example, if the most appropriate classifier for the problem is demanded, the training
dataset is used to train the various candidate classifiers, the validation dataset is used to compare
their outputs and choose which one to use, and the test dataset is used to obtain performance

characteristics such as precision, recall and F1-score.

 Test set is a dataset that is unrelated to the training dataset but has the same probability distribution.
If a model that fits the training dataset accurate also fits the test dataset, there has been limited
overfitting. Overfitting is normally indicated by a better fit of the training dataset compared to the
test dataset.
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Content-based Sampling of Dance Sequences:
Semantic Compression and Summarization



Chapter 4

Hierarchical Sparse Modelling Representation
for Dance sequences Summarization

4.1 Introduction

In performing arts, such as choreography, dance and theatrical kinesiology, movements of human body
signals and gestures are essential elements used to describe a storyline in an aesthetic and symbolic
way. Although, we, as humans, can inherently perceive and decipher such human body signals in a
natural way, this process is challenging for a computer system. One important aspect in the analysis of a
performing dance is the automatic extraction of the choreographic patterns/elements since these elements
provide an abstract and compact representation of the semantic information encoded in the overall dance
storyline [120]. Such an abstract content representation is useful in many applications ranging from
multimedia systems (e.g., indexing, browsing, content-based search and retrieval) [121] and education
(e.g., teaching/learning of a dance choreography) [122], [141] to documentation and preservation of the
ICH assets [123], [124].

Extraction of representative key frames, for an abstract description of a video sequence, is an important
topic in multimedia research [52], [142], [143]. Actually, video summarization algorithms are content-
based sampling procedures that reduce semantically unimportant or redundant content [144]. One of the
first approaches towards video summarization is the extraction of scene (or shot) video segments within
a video [145], [146]. In the following years, many other sophisticated algorithms have been proposed
aiming at finding representative key frames to efficiently model the content of a video, usually through
the application of clustering methods [52], [142], [147], [148], [149], [150] and [151]. These algorithms
take visual data in the RGB or HSV color space and appropriately process them to extract feature-related
transformations.

However, the recent advantages in software and especially hardware engineering have emerged several
devices for capturing, storing and acquiring video content. The innovation of all these acquisition systems
is that they capture, apart from the color, the depth information providing, therefore, new ways for
modelling human body movements and gestures. Examples include Vicon [152], Kinect [40], PhaseSpace
[153] and Xsens [154] architectures which have been used in many diverse application scenarios ranging

from gaming, film, animation and the sports industry [155], [156]. Such devices detect and track in space
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and time a set of key points in order to form a three-dimensional (3D) representation of the human body
motion. Exploiting the capabilities of the aforementioned devices, one could improve the performance
and efficiency of video summarization, especially when it targets to the detection of choreographic

patterns or the analysis of human motion trajectories.

4.1.1 Related Works

Works focusing on choreographic acquisition and modelling can be distinguished into those that deal
with 3D digitization and capturing and those that mainly focus on the analysis and processing of dances.

Regarding 3D digitization, the work of [33] is considered as one of the first approaches in the field.
In particular, this work introduces a 3D archive system for Japanese traditional performing arts. The
graph-cuts algorithm is used to reconstruct the 3D model of the scene from multi-view videos. In the
same context, the [34] digitizes Cypriot dances using the Phasespace Impulse X2 motion capture system.
The architectures uses 8-cameras that are able to capture the 3D motion on modulated LEDs. In the same
work, a video game is developed for making the teaching of Cypriot dances more attractive. In [38], the
capturing architecture of the i-Treasure European Union funded project is described, mainly focusing
on 3D digitization and analysis of rare European folkloric choreographies. A digitization framework
suitable for tele-immersive applications of a dance is proposed in [35]. The purpose of this research is
to design a creativity framework for dance choreography based on LMA (Laban Movement Analysis)
[30]. Advanced motion captured architectures for digitizing folklore performing arts is presented in [36].
In this work, motion analysis algorithms are investigated with the main aim to transform the captured
motion trajectories of the dancers into meaningful and semantically enriched LMA features.

Although 3D digitization technologies provide an efficient framework for documentation and preser-
vation of the ICH artifacts of folklore dances, it has the limitation that the delivered 3D data are too
large for processing, storing and archiving. For this reason, skeletonization is first performed, which is a
process that emphasizes the geometrical and topological properties of the motion trajectories, extracting
the medial axis. In this context, Kinect depth senors [37], Phasespace capturing [36] or Vicon [38] motion
interface has been exploited.

Regarding choreographic analysis approaches, classification algorithms have been proposed on
data expressing the human body movements. In this context, the work of [39] proposes a real-time
classification system in detecting choreographed gesture classes. The input data have been acquired
using the Kinect depth sensor [40], extracting a 3D wireframe skeleton of the dancers. Another dance
classification approach is proposed in [41] using again data capturing from the Kinect sensor. In particular,
the authors of [41] combine a Principal Component Analysis (PCA), acting as a feature selection process,
with two classifiers; a Gaussian mixture and a hidden Markov model. A combination of principal
component and Fisher’s linear discriminant analysis, which is called fisherdance, is proposed in [42], for
classifying Korean pop dances. The inputs are again from the Kinect sensor.

A dance recognition system is introduced in [43]. The platform compares an unknown move with a
specified start and stop against known dance moves. The recognition method consists of a classification

algorithm and a template matching using a database of model moves. Similarly, in the works of [44],
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[37] a markerless tracking system, exploiting the principles of the Kinect sensor, is presented for motion
trajectory interpretation and folklore dance pattern recognition.

Recently, video summarization algorithms have been proposed for choreographic motion trajectories
[120]. These scheme exploits input data from a Vicon motion capturing interface and then applies a k-
means classification algorithm to find out key frame representatives that abstractly model the choreography.
In the broad research area of dance summarization, algorithms focusing on extracting key frames of human
actions can be also considered. More specifically, the works of [45] and [46] introduce a classification
framework for retrieving representative human actions, while the work of [47] proposes a hierarchical
union of sub-spaces for human activity abstraction under a semi-supervised framework. In addition, the
work of [48] proposes Histograms of Grassmannian Points for classifying multidimensional time-evolving
data in dynamic scenes. A stylistic analysis of the variations of dance movements has been recently
proposed in [49]. In addition, in the works of [50] and [157] emotional analysis and characterization of

dance sequences are discussed.

4.1.2 Innovation and Originality

Video summarization algorithms are distinguished into two main categories. The first groups together
video frames according to their similarity in feature space regardless of their temporal interrelations.
Therefore, the extracted key representatives are estimated using only spatial properties of the content by
globally processing a video sequence. Examples of such methods are the works of [52], [147], [151], [57],
[158]. Instead, the second group of algorithms performs the key frame extraction process on the temporal
fluctuations of the frame features focusing more on local, instead of global, properties of the visual
content. An example of this category is the work of [159] that extracts the key frame representatives
exploiting a curvature metric on the time trajectory of the features or the work of [160] that proposes
spatial-temporal activity features or even the [47] that introduces a hierarchical sparse subspace clustering
(HSSC) for human activity summarization. The last method captures the variations or movements of each
human action in different subspaces, which allow them to be represented as sequences of transitions from
one subspace to another.

It is clear that the first group of algorithms is not suitable for a dance analysis since a choreography
involves temporal variations and frame inter-relationships which are lost from a spatial-global processing.
On the other hand, video synopsis focusing only on temporal feature fluctuations makes the derived
summaries highly sensitive to noise and the micro-variations of dancer’s steps. This leads to an over-
representation modelling of the content, that is, to a large number of key frames. To overcome this
problem, temporal-based summarization schemes use low-pass filters to smooth the feature trajectory and
thus rejecting noisy key-frames [159]. However, the bandwidth of the low-pass filter significantly affects
summarization performance and defining its proper value highly depends on the specific properties of the
choreography, the tempo and the dancer’s style.

For this reason, we introduced a spatio-temporal video summarization implemented under a hierarchi-
cal framework. More specifically, for a given dance video segment, initially global holistic descriptors are
extracted to localize the key choreographic steps of the dance. Then, each segment is further decomposed

into more detailed video sub-segments, refining the extracted initial (coarse) key representatives. In this
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way, we combine global features of the choreography with local-based descriptors that better capture
the temporal attributes of a dance. This hierarchical video dance decomposition results in extracting a
pyramid of key frames that provides a complete overview of a choreography, from a coarse to a fine
description. Therefore, the proposed spatio-temporal hierarchical summarization scheme can be useful
for various multimedia and computer graphics applications [28], such as fast browsing, storytelling,
indexing and content-based retrieval.

Our analysis relies on 3D human skeleton points derived from the Vicon motion capturing interface.
The advantage of directly handling 3D human skeleton points instead of raw depth data is that few
data samples are involved in the processing of the dance sequences, making summarization much more
efficient.

4.2 Choreographic Representation

First we extract kinematics attributes representing human body movements. This is performed by
processing the 3D coordinates of the skeleton joints of the dancers. As we have described in Section 3
after the digitization process the RGB visual information has been transformed into discrete skeleton joints
of (x,y,z). These joints are processed using the methodology described in Section 3.6. In particular, for a
joint the velocity, the acceleration are computed for a kinematics modelling of human body movements.
More details about this process are described in Section 3.7. After this transformation, every skeleton

joint is represented by the following attributes:

it xk) ) )
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where again variables ¥}, y,f , ¥ express the x, y, z coordinates of the acceleration of the k-th joint. It is
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clear that Si(¢) is a matrix of 3x3 elements.
In order to represent the kinematics of the whole dancer, we take the contribution of all the M available

joints. Therefore, a 3- M x 3 state matrix is constructed, expressing the kinematics of the dancer at time ¢.

S](t)
s = (4.2)
SM(I)

4.3 Problem Formulation and Notation

The proposed hierarchical decomposition is graphically shown in Fig. 4.1. In this figure, we have
illustrated the hierarchies of the first three layers. In a similar way, one can extend the decomposition to
the next layers.

First, let us consider a choreographic video sequence consisting of K image frames. Variable 7
coincides with first choreographic frame, while variable 7x with the last one. The choreographic video

sequence is divided into sub-sequences (sub-segments) formed by the key frames. In this way, hierarchies
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Figure 4.1 An example of the proposed hierarchical decomposition scheme.
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Representatives

Video sub-segments
time instances

of video sub-sequences are derived. Let us denote as At(/,i) the i-th video sub-sequence at the /-th

decomposition layer. Actually, each video sub-sequence At(l,i) is a time interval defined as

()

where variable ¢; |

instance of the last frame. In case that / = 0 layer only one video segment exits and the ¢;

[t() Z‘K].

set of Nl-(l) key representatives are extracted. We denote these

[(1=0)

ie

For each sub-sequence A’L’(l i) a

representatives as ) j=12,

l]’

segment of this layer and j to the j-th key representative within this segment. Therefore, the 7; ;

()

to the j-th representative of At(/,7). Each representative r; i i

)

Let us consider a set .7,

i,s ie

At(l,i) = [t.(l) g

= tk. Therefore, in this case, we have that A7(0,0) =

that includes all the time instances 1)

|

expresses the time instance of the first frame of the sub-sequence, while 7;

is actually referring to a time instance ¢

()

of the representatives r; i

()

(4.3)
(1)

the time

(1=0) — to and

Ni(l) where we recall that index [ refers to the /-th layer, i to the i-th

()

refers

@,

. Let us also

denote as 9: D an augmented set that also includes the time instances of ti( S) and ti( e) that defines the

sub-sequence At(l,i). Therefore, we have that

and

j():gl()u{ () tﬁl)}

157 ie

4.4)

(4.5)
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Using these time instances, the video sub-sequence At(l,i) can be further decomposed into Ni(l) +1
non-overlapping sub-segments, since the cardinality of the set || 9; 0 | = Ni(l) +2 [see Eq. (4.5)]. Without

loss of generality, we assume that the extracted representatives rl(l]) are sorted with respect to the time

) 0

instances they refer to. That is, we have that #; i<t Vj. This way, an ascending order set is defined

as

Al < << <)

N0 = lie

l
’ N, (4.6)
_ (1) L (1)
={<t) <} j=012,.. N +1
4.3.1 Hierarchical Video Decomposition
Then, the Ni(l) + 1 video sub-segments are defined as follows:
AT(L4+1,m;) = [,Sf) t,(,fi)H,} mi=0,1,2,..., N 4.7)

In Eq.(4.7), notation At(I + 1,m;) refers to the m;-th video sub-segment of the / + 1 layer that the i-th
() _ ()

video segment at the /-th layer, i.e., the At(l,i), is further decomposed into. Variables ,,, =1, mi

0 —,0 ith 7D O ()
D1 = Limer1> With 60 10 € B0

Eq.(4.7) defines a set of Nl.(l) + 1 video sub-spaces over which the interval At(/,i) is further decom-

and

posed into. In the following, we denote as AZ(l,i) a set that contains all video sub-segments AT (I + 1,m;)

that the segment At(l,i) is decomposed into. Therefore, we have that

AD(1,i) = Decomposed {At(l,i)}
or (4.8)
AD(,i) = {---At(I+1,m)--}, mi=0,1,2,... . NP

1
It is clear that the decomposed video segments are mutually exclusive sets and their union equals the
initial video segment AT(l,i).

At(l+1,m;)NAT(l+ l,mj) =0,Vm; # m;
and (4.9)
N
U AT+ 1,m5) = At(L, i)

Example: Fig4.1 presents an example of the proposed video decomposition framework. At the first
layer three representatives are extracted to model the whole video sequence (marked in blue). Therefore,
the initial video sequence is segmented into four further segments, since the first and the last frame are
also considered as representatives. Then, we assume that the third out of the fourth video sub-sequences,
that is the interval At(1,2), is further decomposed. For this reason, the SMRS algorithm is applied within
the interval A7(1,2) for extracting representatives that best fit the frames of this interval. In this example,
two representatives are identified, again marked in blue color at [ = 1. Therefore, the video segment of
A7(1,2) is further decomposed into three more sub-segments (see Fig. 4.1). This procedure is iteratively
applied until the decomposition criterion identifies that no further decomposition is required.
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4.3.2 Hierarchical Sparse Modelling Representation

In this section, we describe the algorithm for the estimation of the key representatives within a video
segment At(l,i). Our approach is based on a sparse representation modeling and it is based on the
principles of the SMRS algorithm. The SMRS algorithm actually extracts a set of representative frames
that can describe well the whole dance sequence. The approach tries to make the coefficient matrix
as sparse as possible so as to achieve reconstruction of the whole dance sequence only from few data
samples (key frames).

4.3.3 Sparse Modelling Representation Selection (SMRS)
(1)

In this section we describe how the representative frames r; ; are estimated using the SMRS algorithm.
The basic idea behind this algorithm is that every image frame of the choreography can be expressed as a
linear combination of one or more representative samples. In the following notation, we have removed
the dependencies on variable / since we refer to a given layer and a given time interval, that is, a video
sub-sequence (sub-segment). Let us first assume that each image frame of the choreography, that is a
posture of the dancer movement, is represented by a feature vector f(¢), where r = 1,2, - - K indicates
the frame index of the choreography. In this paper, the feature vector f(¢) expresses the position and
kinematic properties as describe in Section 3.7 of every joint of the dancer. According to the statements

of this Section, we have that

f(t)=vec{S(t)} (4.10)

where the operator vec(-) transforms matrix S(z) into a vector by stacking up all the matrix rows. Recalling
that S(z) is a 3+ M x 3 matrix (variable M stands for the number of detected joints), and vector f(z) has
sizeof 9-M x 1.

The purpose of the key frame extraction algorithm is to estimate N < K representatives that best
reconstruct all the K image frames of the choreography. For this reason, let us denote as ¢;, i=1,2,...,K
coefficient vectors that approximate the features of the K image frames. Coefficients ¢; are of K x 1
size. The elements of the coefficient vectors c¢; are estimated through the minimization of the following

equation.

K
Y I f(t:)—F-ci||=||F—F-C| (4.11)
=1

where matrix F contains all the feature of the K choreographic frames, that is F = [f(¢;)---f(tx)].
Additionally, matrix C = [¢; - - - ¢k] includes all the coefficient vectors ¢; , i = 1,2,..., K in a matrix form.
Matrix F is of size 9- M x 1, while C of K x K. Each row of matrix C expresses how the features of the
representative corresponding to this row contribute to reconstruct the features of all the K-th frames as a
linear combination. Usually, the Frobenius norm is considered to model || - ||. The Frobenius norm is
defined as the square root of the sum of the absolute squares of the matrix elements.

Eq.(4.11) implies a linear relationship between each image frame and all the others. To choose N < K
representatives that best reconstruct the choreographic data, we enforce the following constraint for the
matrix C.

Cllog <N (4.12)
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where the norm | - [|o, is defined as follows, ||Cllo, = Y&, I(||¢/|| > 0), where ¢ refers to the i-th row
of matrix C. The (-) denotes an indicator function which returns 1 if the condition ||¢/|| > 0 is true and
otherwise it returns 0. In other words ||C||o , counts the number of nonzero rows of C. The indices of the
nonzero rows of C corresponds to the N out of K representatives. The constraint of Eq.(4.12) implies that
matrix C is block-sparse, having only N out of K rows nonzero.

To make the selection of representatives invariant with respect to a global translation of the data, we

set an additional constraint regarding matrix C.

17.c=17 (4.13)

Therefore, we have the following optimization problem,

ming |[F —F-Cl|r
s.t. (4.14)
|Cllog <N and 17-C=17

Minimization of Eq.(4.14) is a NP-hard problem [57]. For this reason, one way to estimate matrix C

is to relax the constraint of ||C||o 4 to ¢;-norm. Therefore, Eq.(4.14) is written as

minc |[F —F-C||r
5.t (4.15)
IClliy,<t and 17-C=1"

where ||C||1, = XX, |/¢/||;- This means that the norm || - ||| , expresses the sum of the ¢, norms of the
rows of matrix C, while scalar T > 0 is an appropriately chosen parameter. In this case, we have selected
7 instead of N since for the N-th optimal representatives the norm || - ||1 4 is not necessarily bounded by
N. in this paper, we have selected g = 2.

The optimization of Eq.(4.15) is performed using the Alternating Direction Method of Multipliers
(ADMM) of [161]. Actually, this method comprises of iterative steps, taking into consideration the
Lagrange multipliers of Eq.(4.15).

4.3.4 Key Frames Estimation

The main difficulty of applying the optimization strategy of the relaxed constraint problem of Eq.(4.15)
instead of Eq.(4.14), is that the estimated matrix C, as derived from the ADMM algorithm [161], has
not only N non-zeros rows out of the K available. This is mainly due to the fact that the constraint
|Co4ll <N of Eq.(4.15) has been relaxed to ||C 4| < 7, that is the £o/¢, norm has been substituted to
¢y /¢4 norm. One way to estimate the most representative key frames is based on the values of the norm
|| - |l4 for every row of C. Particularly, the most important key frame is the one that has larger /,-norm
values of the respective row of the matrix C than the less important representatives. Therefore, the N

representatives are selected as the ones that satisfy the

e g = llellg = - = [le™ ]l (4.16)
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where indices iy, iy, - - -, iy corresponds to those rows of matrix C referring to the N representatives.

4.3.5 Representative Error Modeling

In this section, we discuss the representativity capabilities of the extracted key-frames. As we have
previously stated, each image frame /() with a video segment At ([, i) is represented by the feature vector
f(1), vt € At(1,i) [see Eq.(4.9)]. First, the minimum distance of any image frame within At(/,i), that is

1) Z!is computed. Then, the

VI(t) : t € At(l,i), with respect to the features of the representatives 7, ;

error modeling is defined as follows

&V = min () —f(t!)2, Wt € An(1,) (4.17)
Vt;.]j) ez 7

0
ij
Based on Eq.(4.17), the average minimum representative error over all image frames within At(/,i) is

where we recall that || - || is the £;-norm and ¢;; is j-th representative of the i-th segment at /-th layer.

obtained as
& =Y 60 /a1, vi € Ar(1,i) (4.18)
t

where the operator || - || denotes the cardinality of the video segment At(l,i), that is the number of
frames it has. Actually, Eq.(4.18) expresses a representation metric; the minimum possible error that the
representatives can reconstruct the video segment of At (7, i).

Algorithm 1 shows the main steps of the proposed spatio-temporal hierarchical summarization
algorithm used to model the choreographic attributes of a dance.

4.4 Experimental Results

In this subsection, we define some objective metrics through which the evaluation of the proposed
hierarchical algorithm was performed and compared against other techniques. We also present the way

used to form the ground truth dataset.

4.4.1 Description of the adopted Dance sequences

As we have described in Section 3.5, under the framework of TERPSICHORE project [29], thirty (30)
dance sequences was recorded using the Vicon motion capturing platform [152]. These dance sequences
refer to five different choreographies (dances), each executed twice by three dancers (two male and one
female). The recording process took place at the School of Physical Education and Sport Science of the
Aristotle University of Thessaloniki. All sequences are Greek traditional folkloric dances, the selection
of which was made by dance experts from the Aristotle University of Thessaloniki to fulfill (i) different
types of complexities in the dance main patterns, (ii) linear and circular performances of the dance, (iii)
different styles the choreography and (iv) different rhythmical tempos. The selection of different human
sexes is due to the fact that the main steps of the dances are slightly different between men and women.

For men, the dancing style is proud and imperious while for women modest and humble. All dancers are
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Initialization

Set!/ —0;i— 0;

Set At(l,i) — [to tk];

Set Segment — O JAT(L,i);

while Segment # 0 do

while [ < MaxLayers do

i—0

/* Take a video segment from Segment */
VG(l,i) — Retrieveasegment (Segment, [, i);
while VG(1,i) # 0 do

/* Apply the SMRS algorithm to extract key frames */
T (1,i) = SMRS(VG(L,i)); -see Section 4.3.3
T (1,i) — Augment (7 (1,i),VG(L,i)); -see Eq.(4.5)
/* Order the extracted key representatives */
B(1,i) — Order(7 (1,i)); -see Eq.(4.6)

/* Create Sub-segments of VG */

AD(1+ 1) — Decomposed(VG(L,i));

/* Include AZ into Segment*/

Segment — IncludeSet(AZ(1+ 1), Segment);
/* Take the next segment at layer [ */
I—i+1;

VG(l,i) — Retrieveasegment(Segment,[,i);

end
[ —1+1;

end

end
Algorithm 1: The pseudocode of the proposed spatio-temporal hierarchical decomposition scheme

professional actors and each dance was executed twice per actor so as to record different paths of the
same choreography.

The evaluation was also performed on three sequences recorded from Carnegie Mellon university
and are available for free (at http://mocap.cs.cmu.edu/search.php?subjectnumber=%&motion=%). The
sequences include 3D joint points of a human who performs (i) a long time theatrical kinesiology and (ii)
two characteristic short-time dance pirouettes. The first dataset is adopted to evaluate the performance
of our scheme to different types of movements as the theatrical ones. In this example, the actor is first
walking across the scene. She/he then ascends a ladder, sits on the last ladder rung and performs a
short-term acting on it by moving her/his head and standing up. She/he then descends the ladder and
moving again on the scene. She/he then bends to go beneath an obstacle (e.g., a beam), after passing
the obstacle she/he bends again. Then, she/he makes an about-face, moving below the obstacle and then
walks on the scene again to ascend the ladder for a second time.

The other two datasets from Carnegie Mellow describes an actor performing dance pirouettes. The
first is a dance choreography in which the actor performs a short-time dance including some pirouettes

while the second includes at least three about-faces and rotations across the actor’s axis.
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4.4.2 Evaluation Metrics

The precision and recall metric is used to objectively assess the performance of all the evaluated algorithms.
Precision measures the ratio of all relevant retrieved key frames over the total number of retrieved key
frames by the use of an algorithm. Recall measures the ratio of all all relevant retrieved key frames over
the total number of relevant frames in ground truth set. The main challenge in defining the precision and
recall metrics in our cases is that key frames from a dance sequence should be ordered. This is due to the
fact that the patterns composed of the main steps of a choreography should be specific for a given time
internal depending on the music tempo and the type of the dance. In addition, the steps are ordered so that
after the execution of a certain pattern (step) another specific step should be followed. For this reason,
we define an ordered ground truth set, say $8 = {-- -A‘L’ligt .-+ } that contains the L ordered time internals
within which the i-th representative frame should be in. For example, the set S8 contains time intervals
with starts and ends points that model the main steps of a choreography such as the ones of Table 3.5. We
assume that N key frames have been retrieved by the application of a summarization algorithm, denoting
as r;. Each representative r; corresponds to a time instance ¢;. We have removed variables / and i for
simplicity since we are referring to a given video segment At(l,i). It is clear that N # L meaning that the
number of extracted frames do not coincide with the number of the ground truth choreographic elements.

Then, we define an operator that returns for a given ground truth time interval, say Arlfz 0 if no

retrieved key frame falls within this time interval and 1 if one or more key frames falls within this interval.

0 iffe; AT V)
Lo (AT)) = (4.19)
1 if3; €AY V)

Eq. (4.19) means that if two or more key frames fall within the same ground truth time interval,
only the first is counted as relevant whereas the rest ones are considered as irrelevant. This is due to
the ordered nature of a dance sequence. In other words, many key frames depicting the same step of a
choreography are erroneous since they do not contribute to the overall choreography. In case that some
key frames do not correspond to any time interval, these are also ignore and are not counted as relevant.
Thus, precision is defined as

_ Zi:l Irel (Arlft)
N

Pr (4.20)

and recall as

%:1 Irel (Aflft)
L
where variable N refers to the number of key frames and L to the number of ground truth choreographic

Re = (4.21)

elements.
Ideally, Pr and Re should be 1 for an excellent retrieval. By combining both criteria, we can derived

the F1-score as

PrxRe
Pr+Re

Fl =2+« (4.22)
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Figure 4.2 Thirty images of the video sequence of the dance Sirtos 3-Beat at constant time intervals.
Images with a color frame correspond to the key frames extracted at the initial (coarse) layer using the
proposed hierarchical summarization algorithm. We have used different colors for the image frames to
better distinguish the video sub-segments on which decomposition takes place.

Values of Fl-score close to one yields good retrieval performance, whereas low values indicate a
performance which is not satisfactory.

4.4.3 Ground Truth Dataset

Regarding the Vicon dataset recorded at University of Thessaloniki, ground truth data was created by the
respective dance experts. The ground truth includes the set of desired key frames as being specified by the
experts and time instances of the choreography within which a key frame can be considered as relevant.
The choreographic elements coincides with those of Table 3.5. Regarding the three examined datasets
from Carnegie-Mellon University, we define some characteristic time intervals so as to describe the
kinesiology and the dance patterns. Based on these ground truth time intervals, the objective evaluation
of the proposed hierarchical scheme is carried out through measuring the precision, recall and F1-score.
The same ground truth dataset was used for comparing the proposed algorithm with others proposed in

the literature.

4.4.4 Experiments

Fig. 4.2 depicts thirty images of the dance video sequence of Sirtos 3-Beat from C-Dancer. Each image
corresponds to a constant time interval. In this figure, we have also depicted the respective annotations
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Figure 4.3 The key frames extracted for the first video sub-segment of the dance of Fig. 4.2. In this case,
two key frames are extracted regarding the second layer of representation.
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Figure 4.4 The key frames extracted for the second video sub-segment of the dance of Fig. 4.2. In this
case, five key frames are extracted regarding the second layer of representation.

of the dance, followed the description of Table 3.5. As is observed, the depicted images refer to three
repeated choreography patterns of Sirtos 3-beat dance. Each pattern is composed of six main steps namely:
(1) Initial Posture (IP); (2) Cross Leg (CL); 3) Initial Posture (IP); 4) Left Leg Up (LLU); 5) Initial
Posture (IP); 6) Right Leg Up (RLU) (see Table 3.5). In this figure, we have also illustrated the extracted
key frames at the first (initial-coarse) layer of the proposed hierarchical summarization algorithm. These
key frames are shown with a color frame around each selected image. We have used different colors for
the key frames to better distinguish the video sub-segments created on which decomposition takes place.
In this particular example, six video sub-segments have been created. Figures 4.3 and 4.4 presents the
representative key frames at the second layer of decomposition for the first two video sub-segments. As
is observed, the second layer of representation better models the temporal choreography of the dance.
Instead in the first decomposition layer some choreographic attributes are missing.

To better understand the way that our algorithm works regarding summarization of a dance, let
us focus in the following on the specific choreographic patterns of the dance of Fig. 4.2 as being

executed by Christos. These patterns can be represented in a symbolic form using the same notation
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Initial Posture (IP) Initial Posture (IP) Cross legs (CL) Cross legs (CL) Initial Posture (IP)
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Figure 4.5 Skeleton data for Sirtos at 3-beat dance executed by dancer loanna. Images with a color
frame correspond to the key frames extracted at the initial (coarse) layer using the proposed hierarchical
algorithm. We have used different colors for the image frames to better distinguish the video sub-segments
on which decomposition takes place.

as in Table 3.5: 1P (1), CL(1), IP,(1), LLU(1), IP3(1), RLU(1) (first choreographic pattern); IP;(2),
CL(2),IP,(2), LLU(2), IP3(2), RLU(2) (second choreographic pattern); IP;(3), CL(3), IP(3), LLU(3),
IP3(3), RLU(3) (third choreographic pattern). In this notation, numbering in parentheses refers to the
index of the choreographic pattern (in our case 1-to-3, see also Fig. 4.2). Additionally, subscripts indicate
the first, second and third IP position of the dancer within each choreographic pattern.

At the first layer, the extracted key frames model the following choreography: IP;(1), CL(1),
CL(2), IP3(2), CL(3), LLU(3), and RLU(3). Therefore, some important choreographic elements are
missing. On the contrary, at the second layer the extracted key frames model the following choreography:
IP;(1), CL(1), IP5(1), LLU(1), RLU(1), (first choreographic pattern), IP;(2), CL(2), IP»(2), LLU(2),
IP3(2), RLU(2), RLU(2) (second choreographic pattern); IP;(3), CL(3), IP»(3), LLU(3), IP3(3), IP3(3),
RLU(3) (third choreographic pattern). As is observed, almost all elements of the choreography have been
identified (apart from the IP3(1)), increasing recall close to unity. However, few additional choreographic
elements have been retrieved (e.g. twice the RLU(2) and RLU(3)), slightly decreasing the precision
value. These statements are also verified in Table 4.1.

Fig. 4.5 presents the the choreographic patterns of the same dance (Sirtos at 3-beat) executed by
a women dancer, loanna. In this particular example, instead of depicting the RGB images as we have
done previously, we have illustrated the 3D point joints derived from the Vicon motion capturing system.
This way, one can understand the geometry of the dance and how the extracted features are fluctuated

in time and in 3D geometric space. In this figure, the annotation of the dance is also depicted followed
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The fourth video sub-segment
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Figure 4.6 The key frames extracted for the fourth video sub-segment of the dance of Fig. 4.2. In this
case, eight key frames are extracted regarding the second layer of representation.

the notation of Table 3.5. The extracted key frames at the first layer of hierarchy are marked with a
color frame around them. As previously, we have assigned different colors to the key frames to better
distinguish the video sub-segments over which the decomposition takes place. We can see that using only
the key frames from the first layer of hierarchy, several choreographic patterns are missing. Instead, at
the second decomposed level almost all dance elements are retrieved increasing a lot recall while at the
same time keeping precision as high as possible. This is verified in Fig. 4.6 where the key frames of the

fourth video sub-segment are depicted.

4.4.5 Comparisons with other methods

In Table 4.1, we present the precision, recall and F1-score values for all the recorded dances from the
Vicon motion capturing system at Aristotle University of Thessaloniki under the activities of Terpsichore
project [29]. The results have been obtained by averaging on the three dancers. In the same table, we
also show comparisons against four other summarization methods proposed in the literature; the k-means
clustering as proposed in [120], the conventional SMRS [57], a temporal-based video summarization
scheme as presented in [159] and an hierarchical implementation of the k-means approach of [120].
We observe that the proposed hierarchical approach significantly increases the F1-score compared to
all the other methods. This is due to the fact that recall values reach almost to unity while simultaneously
keeping precision as high as possible. On the contrary, the approach in [120] seems to yield very high
precision values but recall is significantly low meaning that many elements of the choreography cannot
be retrieved. This is mainly due to the fact that temporal choreographic attributes are lost. We also
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Table 4.1 Precision, recall values and F1 score for different summarization methods that use spatial,
temporal or spatio-temporal attributes for the dance sequences recorded at University of Thessaloniki

Type of | Spatial-Driven Summa- Temporal-Drive Sum- | Spatio-Temporal Driven Summa-
Dance rization marization rization
k-means SMRS [57] | Temporal Variations Hierarchical | The proposed
[120] of Feature Vector [159] | k-means Method
Average over three Dancers
Sirtos (3-| Pr=1.0 Pr=0.88 Pr=0.67 Pr=0.36 Pr=0.89
Beat) Re=0.22 Re=0.39 Re=0.44 Re=0.89 Re=0.94
F1=0.36 F1=0.54 F1=0.53 F1=0.52 F1=0.92
Sirtos (5-| Pr=1.0 Pr=0.63 Pr=0.48 Pr=0.30 Pr=0.52
Beat) Re=0.21 Re=0.36 Re=0.71 Re=0.86 Re=0.93
F1=0.35 F1=0.45 F1=0.57 F1=0.44 F1=0.67
Kalamatianos | Pr=0.63 Pr=0.60 Pr=0.63 Pr=0.47 Pr=0.65
Re=0.88 Re=0.88 Re=0.75 Re=1 Re=0.88
F1=0.73 F1=0.71 F1=0.68 F1=0.64 F1=0.75
Trehatos Pr=0.33 Pr=0.67 Pr=0.5 Pr=0.30 Pr=0.74
Re=0.17 Re=0.67 Re=0.28 Re=0.56 Re=0.89
F1=0.22 F1=0.67 F1=0.36 F1=0.39 F1=0.81
Enteka Pr=0.8 Pr=0.89 Pr=0.75 Pr=0.80 Pr=0.87
Re=0.16 Re=0.32 Re=0.36 Re=0.16 Re=0.84
F1=0.27 F1=0.47 F1=0.49 F1=0.27 F1=0.85

notice that for more complicated dances like Trehatos or Kalamatianos, the F1-score takes the lowest
values compared to the simplest dances. This is quite justified since in these dances 3D geometry is very
complicated in space and time, deteriorating summarization performance.

In Table 4.2, we illustrate the average error modelling of the thirty dance sequences captured at
university of Thessaloniki, as obtained using the key frames of the first and of the second layer of
hierarchy (see Section 4.3.5). This error is expressed as the norm of the features of the frames of the
video sequence with the best assigned key frame. The results have been expressed in db while they have
been averaged over all the three dancers. We notice that at the second layer of hierarchy a decrease in the
error values is encountered indicating that the proposed hierarchical summarization better models the
choreography. We also notice that for more complicated dances such as Trehatos and kalamatianos the
error is higher due to the complexity of these dances.

In the following, we present the results for the Carnegie-Mellon university dataset. In particular,
Fig. 4.7 illustrates the skeleton data of a theatrical kinesiology so as to provide an overview of this
sequence. In this figure, we have depicted the results of the key frame extraction process at the first layer
of hierarchy along with the respective annotation of the content. As is observed, the key frames of the
first hierarchy provide a reliable representation of the choreography, though some elements are missing.
These missing elements are detected on the second decomposition layer. Table 4.3 shows the average
precision, recall and F1-score values for the three examined datasets of the Carnegie-Mellon university. In
this table, we have also compared the results against the approach in [120], the conventional SMRS [57],
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Table 4.2 Error modelling (expressed in db) for the thirty dance video sequences obtained using the key
frames of the first and of the second layer of processing

Type of Dance | One Level of Hierarchy(in db) | Two Levels of Hierarchy(in db)
Sirtos (3-Beat) 28.72 25.17
Sirtos (5-Beat) 30.51 26.47
kalamatianos 31.58 27.45
Trehatos 33.42 30.81
Enteka 31.00 9.831

Table 4.3 Precision, recall values and F1 score for different summarization methods that use spatial,
temporal or spatio-temporal attributes for the dance sequences of Carnegie Mellon University.

Type of | Spatial-Driven Summa- Time-Drive Summariza- | Spatial-Time Driven Summa-
Dance rization tion rization
k-means SMRS [57] | Temporal Variations Hierarchical | The proposed
[120] of Feature Vector [159] | k-means Method
Theatrical Pr=0.6 Pr=1.0 Pr=0.8 Pr=0.73 Pr=0.87
Kinesiology | Re=0.22 Re=0.37 Re=0.51 Re=0.60 Re=0.94
F1=0.33 F1=0.54 F1=0.62 F1=0.66 F1=0.90
Dance Pirou- | Pr=0.78 Pr=1.0 Pr=0.75 Pr=0.53 Pr=0.83
ette 1 Re=0.84 Re=0.84 Re=0.53 Re=0.53 Re=1
F1=0.81 F1=0.91 F1=0.62 F1=0.53 F1=0.90
Dance Pirou- | Pr=0.77 Pr=1.0 Pr=0.70 Pr=0.23 Pr=0.80
ette 2 Re=0.77 Re=0.30 Re=0.61 Re=0.69 Re=0.69
F1=0.77 F1=0.47 F1=0.65 F1=0.34 F1=0.74

a temporal-based video summarization scheme as presented in [159] and an hierarchical implementation
of the approach of the [120]. Again, the proposed hierarchical algorithm yields the highest F1-score
meaning that it can effectively model the choreographic patterns of the datasets.

4.5 Discussion

Automatic extraction of a dance main choreographic patterns and steps are very important in performing
arts since they can elicit the main structural components of a dance, identifying its style, assisting trainees
towards a proper learning, and improving dance experts in their work for documenting the dance and
relating it with the intangible components of the culture of a place. These choreographic patterns are
in fact the semantics of a dance. Only the use of RGB color space for describing a dance choreography
cannot properly represent the complicated 3D geometry of a dance. Inevitably, other capturing devices
have been adopted such as Kinect or the Vicon motion system to capture the 3D points of the human
joints forming human skeletons. In this paper, eight choreographies have been exploited. The first five

refer to traditional Greek folkloric dances recorded in the premises of Aristotle University of Thessaloniki
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Initial Posture Circular walk on the plane Walking straight Agending a ladder Sitting on the rung of ladder

5, .
13 N

Sitting on the rung of adder Moving on the rung Standing on the rung Descending from the ladder Walking on the plane

Walking towards an obstacle  Bending beneath the obstacle After the obstacle bending turning

After the obstacle Walking on the plane Asrending the ladder Sitting on the ladder Sicting on the ladder

Figure 4.7 Skeleton data of a theatrical kinesiology of the Carnegie-Mellon University dataset, along with
the estimated key frames at the first layer of hierarchy.

under the aegis of Terpsichore project. The other three are freely available 3D joints datasets from
Carnegie-Mellon University referring to choro-theater performances.

Traditional video summarization algorithms cannot retrieve the choreographic patterns of a dance.
This is due to the fact that these algorithms either spatially cluster together image content [120] or
exploit the temporal fluctuation of the trajectory of the features [159]. Thus, the first category ignores the
ordered sequence of the content while the second is trapped on micro-variations of the choreography. For
this reason, in this paper a spatio-temporal decomposition of dance sequences is proposed based on a
modification of the SMRS algorithm implemented under a hierarchical decomposition framework. The
scheme initially extract global holistic descriptors that give a coarse representation of the choreography.
Then, each video sub-segment is further decomposed to get a finer representation of the content. This
hierarchical video dance decomposition results in pyramid of key frames that provide a complete overview
of the choreography.

Experimental results and comparisons with other traditional summarization approaches indicate that
our proposed hierarchical scheme reaches very high recall values close to one, meaning that almost all
the main choreographic patterns are detected. Similarly, precision is kept as high as possible minimizing
the number of noisy key frames being extracted. The results remain robust even for complicated dances

and theatrical kinesiology performances.



Chapter 5

Physics-based key-frame selection for human
motion summarization

5.1 Introduction

Due to the significance of Intangible Cultural Heritage (ICH) and its preservation, many international
organizations (such as UNESCO) have focused on promoting research to encode, store, analyze and
disseminate related content. Choreographic and kinesiology content holds a substantial position within
ICH. The cultural significance of performing arts, and especially dance, along with the interdisciplinary
interest in the study of ICH makes dance analysis a focal point of research. Several technological
achievements, including pervasive video capturing devices and software, increased camera and display
resolutions, cloud storage solutions, and motion capture technologies have generated advancements in
capturing, documenting and storing ICH content with more efficiency and accuracy. In order to utilize the
full potential of multimodal (text, image, video, 3D, MoCap) ICH data that are becoming increasingly
available, the adaptation of the state-of-the-art technologies is needed to build new ones in the fields of
the artificial intelligence (Al), computer vision, and image processing and connect the aforementioned
scientific fields with the ICH. The adaptation of recent advancements for ICH content and specifically
performing arts provides the opportunity for effective and efficient organization and management, fast

indexing, retrieval and browsing but also automatic recognition and classification.

5.1.1 Related Work

The field of motion analysis has attracted the interest of several researchers. Part of the existing
work focuses on the subfield of dance motion analysis, studying different facets of choreographic
digitization and performing arts analysis. The US National Science Foundation has supported a program
for developing a human/computer environment for tele-immersive dance [162], aiming at designing a
creativity framework for choreography based on Laban Movement Analysis (LMA). In [33], a 3D archive
system for Japanese dances is proposed based on multi-view videos and the graph-cut algorithm. In [163],
motion analysis algorithms are investigated with a view to transforming captured motion trajectories
of dancers into meaningful and semantically enriched LMA features. The skeletonization capability

offered by motion capturing depth sensors (e.g. Microsoft Kinect and Asus Xtion), allows for methods
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that emphasize the geometrical and topological properties of motion trajectories. In [6] a dance motion
analysis and synthesis framework is presented. In [68] a methodology for dance learning and evaluation
using multi-sensors is proposed, where the robustness of skeletal tracking is improved through a fusion
algorithm that splits the skeletal data into different body parts so as to allow view-invariant posture
recognition. In [164], a technique for unexpected impacts into a motion capture driven animation system
through the combination of a physical simulation is introduced, which responds to contact forces and a
specialized routines determining the best plausible re-entry into motion library playback following the
impact.

Regarding pose features, in [165], automated methods for extracting logically related motions from
a data set are introduced converting them into an intuitively parameterized space of motions, whereas
a pose distance metric on 3D motion data is proposed in [166]. In [167], a search algorithm for use
with sampled motion data is proposed; additionally, a representation for motion data using a meaningful
distance metric for poses is introduced. In [168], an approach to performance animation that employs
video cameras and a small set of retro-reflective markers is introduced, in order to create a low-cost,
easy-to-use system to learn pose distance metrics. In [169], efficient approaches for local and global
motion matching, which are applicable even to very large databases, are presented. However, pose feature
estimation, although closely related, cannot provide per se a summarization of choreographic sequences.
In [8] an attempt for extracting representative frames from dance motion is made but the method does not
take into consideration temporal interdependencies, whereas in [170] a comparison of classifiers for pose
identification is performed.

In [171], automated methods for efficient indexing and content-based retrieval of motion capture
data is presented. In [172], new methods for automatic classification and retrieval of motion capture
data are presented facilitating the identification of logically related motions, whereas in [173], [174]
methods for motion pattern classification based on hidden Markov models are proposed. In [175], a
flexible, efficient method for searching arbitrarily complex motions in large motion databases is proposed.
Again, the aforementioned approaches mainly focus on dynamic features and motion content-based
retrieval/indexing, and therefore not on the extraction of key patterns of a choreographic sequence.

In this context, there are works in the literature exploiting motion features for content-based indexing
and retrieval. In particular, in [176], a content-based 3D motion retrieval algorithm is proposed. In
[177], an automatic segmentation of human motion data based on statistical properties of the motion
is proposed as an efficient and robust alternative to hand segmentation. Additionally, in [178], an
efficient method for fully automatic temporal segmentation of human motion sequences and similar time
series is introduced, whereas in [179], a method based on dynamic time alignment of Gaussian mixture
model clusters for matching actions in an unsupervised temporal segmentation is presented. In [180], a
technique for multidimensional trajectory similarity estimation is proposed. Again, the main focus of the
aforementioned works is on motion indexing, retrieval and segmentation, instead of dance summarization.
The problem of learning motion primitives is addressed in [181] as a temporal clustering problem. In
particular, an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis
is presented. However, such an approach is mainly based on the statistical similarities of extracted features

through the application of hierarchical clustering. Instead, in this paper, we consider kinematics-based
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variations of the choreographic trajectories, which take into account the physical attributes of the motion,
e.g., by extracting key elements at key change points of joint velocity, acceleration, etc.

Recently, in the context of dance analysis a series of works have been presented regarding emotion and
style modeling, as well as organization and annotation of motion data collections. In [51], an investigation
through similarity between various emotional states with regard to the arousal and valence of the Russel’s
circumplex model is introduced, whereas a motion stylization technique for expressive mocap data, such
as contemporary dances, is proposed in [182]. In terms of organization of large motion data collections,
in [183], a system for automatically and efficiently annotating large unstructured collections of mocap
data is proposed. In [184], a MotionExplorer was developed as an exploratory search system for large
data collections of motion capture data. Finally, in [185], a scalable method for organizing the collection

of motion capture data for overview and exploration is introduced.

5.1.2 Innovation and Originality

In this context, content summarization is an important and very useful application domain in the mul-
timedia research community. As regards choreographic sequences, the automatic extraction of the
choreographic elements is of significant interest, since such elements provide an abstract and compact
representation of the semantic information encoded in the overall dance storyline.

In the literature, there is a large number of video summarization techniques focusing on extracting
representative keyframes to summarize video segments depicting human activity, e.g. [186], [187], [188].
However, video synopsis focusing only on RGB information and temporal feature fluctuations makes
the derived summaries highly sensitive to noise and to micro-variations of dancer steps, which makes
them difficult to apply effectively to dance sequences. This can often lead to an over-representational
modelling of the content, namely to a very large number of keyframes.

This chapter’s contribution lies in the proposal of a framework for the selection of keyframes in 3D
human motion data from real-world folklore choreographic sequences. Folklore dance summarization is
a challenging problem mainly due to the application domain’s particularities. This work is part of the
European initiative “Terpsichore” !, which aims to implement an innovative framework for the affordable
digitization, modeling, analysis, archiving, e-preservation and presentation of ICH content related to
European folk dances. The impact of an effective method for dance summarization is underscore when
one conjunctly considers: the massive amounts of RGB-D and 3D skeleton data produced by video and
motion capture devices; the huge number of different types of existing dances and variations thereof;
the need for organizing, indexing, archiving, retrieving and analyzing dance-related cultural content in a
tractable fashion and with lower computational and storage resource requirements, as well as the need for
flexible and accessible tools for ICH dissemination and education.

In this chapter, we present two basic approaches which rest on different assumptions. The first
approach is “time-independent” and simply extracts the key postures of which a given type of dance
is composed, regardless of time and order of appearance in the dance. This clustering-based approach
determines the salient “primitives” of a dance and helps reveal the basic characteristics of the nature and

physiognomy of the dance. The second “time-involving” approach extracts representative summarized

'www.terpsichore-project.eu
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sequences from long choreographic frame series through the calculation of the local extrema of kinematics-
based feature trajectories. Such summaries can be used in more thorough analyses of dances in a variety
of contexts (e.g. cultural, technical, academic, choreographic, spatial, commercial, educational). As a
rough analogy to the film domain, the first approach would result in acquiring movie production stills, 1.e.
photographs that depict characteristic instances of the film, whereas the second approach would generate
a short video with a plot summary, in other words a brief storytelling trailer. Both approaches are based
on skeleton data and their dynamics and kinematics, but can be otherwise employed independently from

each other according to the scope, goal and context at hand.

5.2 Physics-based Choreographic Movement Representation

The core of the acquisition framework designed for modeling the dancer motion trajectories in 3D space
is Vicon, a motion capturing system used in several application domains, ranging from gaming, film
production, clinical research and entertainment. In our implementation, ten Bonita B3 cameras are
included, running the Nexus1.8.5.6100%h software. The movement area is a 6.75 sq.m. More details
about the Vicon system used is presented in Section 3.2.1.

In the following, let us denote as J ,? = (xiG, yl-G,ziG) the k-th joint out of the N=35 extracted by the
Vicon architecture. Variables xiG,in and zlG indicate the coordinates of the respective joint with respect to
the Vicon’s reference coordination system. We assume that these joints have been obtained after density
based filtering of the detected joints to remove possible noise from the acquisition process.

Our approach is defined as the study of the properties of the kinematics of the performers, consequently
it is necessary to determine the basic modeling concepts and vectors to be used in the sequel. Considering
the motion of each JkG, k=1,2,...N skeleton joint as the motion of a particle, and based on rigid body

physically based modeling theory [189] we let function
si(t) = Ji (1) (5.1)

si(t) = Jl,g(t) denote the particle’s location in local space at any time instance (frame). The function gives

the velocity of the particle at time.

rd
Vi(t) =si(t) = 750 (5.2)
Then,
a . r i - Fk(t)
k(1) =wi(t) = dth(f) = e (5.3)

provides the acceleration of the particle at time 7, Fy(¢) is the is the force acting on the particle and is the
particle’s mass. For a system (dancer skeleton) with N particles, we define the skeleton’s location S(z),

velocity V(t) and acceleration A(t) vectors respectively as:

S() = [s1(0)--sx(0)] (5.4)
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V() = %S(r) = [w) w0 5.5)
A(r) = %V(r) = [ar(0)--ax)]" (5.6)

In the following we will use the above defined physically based vectors for the two types of summa-

rization approaches.

5.3 Clustering-based time-independent representative selection

The main objective is to extract the most representative instances of the dance, its key postures, or,
differently put, its basic primitives, regardless of their order in the sequence. We define our approach
as an unsupervised clustering problem. Initially, we should mention that, depending on the type of
dance to be summarized, it is possible that only a subset of the N joints forming the location vector
S(t) in Eq.(5.1) has to be considered as significant for the particular dance’s moves. For example, in a
choreography sequence where only the motion of the lower limbs is important (there are several such
cases in Greek traditional folk dances, for instance), we will only take into consideration the respective
joints in forming the feature location vector and consequently the velocity and acceleration vectors to
follow. Let g=1,2,...,M denote the joints which are significant for a particular dance (M < N). Then, the
feature vector that represents the dancer motion at time t is given by:

T T
() = A0 Su®)| = [s1(0)-5(0)] (57

Let us now consider a set S containing similar dancing postures. Since a dance posture is represented
by the feature vector f(t;), two dancing trajectories at two different captured time instances [ti, t j] , will

belong to the same set S only if:

el €S if D(f(n), f(tj)) < D(f (1), f(1}))

(5.8)
Vit eS  Vt,t; ¢S]

where D(-) is a distance metric. In our case the Euclidean distance is used. Eq. 5.8 states that two
points #;, ¢; on the dancer motion trajectory will belong to the same cluster only if the distance of the
respective features vectors fi(t) and f;(¢) is smaller than in the case of the two points belonging to a
different cluster. Grouping the points of the dancing moment into L different clusters, we identify the
most salient "primitives", i.e. time instances ¢;, i = 1,2, ..., L that best represent the choreography.

The aforementioned problem is actually an unsupervised clustering problem and can be approached
through various clustering algorithms. Here, we have adopted the k-means++ algorithm [190], as
it specifies a procedure to initialize the cluster centers before proceeding with the standard k-means
optimization iterations, thus improving the clustering performance. Let us now consider as f the centroid

of the i-th formed cluster, that is:
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] Zk S,f(tk)
fi= —ﬁ S (5.9)
where the operator || - || denotes the cardinality of the generated set/cluster S; by the unsupervised

clustering algorithm. Then, we select as the most representative instance z;; among the samples of cluster

the one that has a feature vector of minimum distance from the cluster centroid. Therefore, we have that:

tsi = argmin D(f(t;), f1),¥t; € S; (5.10)

From the above, it becomes clear that we now have L clusters of frames. For each of these groups, a
representative frame (or time instance) is selected, say #,;. Thus, we have eventually extracted L different
frames (or time instances), i.e € = [t,],s, ..., £s1], Which represent suitably the dance sequence. In other
words, % includes the basic primitives of the sequence, or, using the film analogy mentioned earlier, the

characteristic “movie production stills” of the dance.

5.4 Summarization of motion capture sequences based on skeleton

kinematics

We hereby focus on creating a summarized sequence of a dance, i.e. on briefly “telling its story”. Since
a feature vector is assigned for each frame of a dance frame sequence, the vectors of all frames form a
trajectory in a high dimensional feature space, which expresses their temporal variation. Thus, selecting
the most representative frames within a sequence is equivalent to selecting appropriate curve points, able
to represent the corresponding trajectory. Ideally, the selected curve points (summary) should provide
sufficient information about the trajectory, so that it can be reproduced using some kind of interpolation.
This can be achieved by extracting the time instances, i.e., the frame numbers, which reside in extreme
locations of this trajectory. In our case, the magnitude of the second derivative of feature vectors for all
frames within a sequence with respect to time is used as a curvature measure. The second derivative
expresses the degree of acceleration or deceleration of an object that traces out the feature trajectory.
Local maxima correspond to time instances of peak variation of the velocity, i.e., large acceleration or
deceleration.

Eq.(5.5) and Eq.(5.6) define the velocity and acceleration vectors of the dancer skeleton. Since, how-
ever, time t is discrete (frame numbers), the first derivative (velocity) for joint g=1,2,...M is approximated

as the difference of feature vectors between two successive frames:
vo(t) = £, (1) = £,(t + 1) — £,(¢) (5.11)

Similarly, the 2nd derivative (acceleration) is approximated as:

a(t) = v, (t) = vg(t +1) —vy(t) (5.12)

Further, we define the measure to be investigated for local maxima as:
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Figure 5.1 Average acceleration magnitude over time (frame number) for LPF cut-off frequency values
fLPF=0.01, 0.05, and 0.1. As the cut-off frequency increases, the number of local maxima also increases,
leading to longer, more informative summaries. .
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q

The local maxima of I'(¢) are considered as appropriate curve points, i.e. as the representative key
frames that will constitute the summarized sequence of the dance. To obtain a smoother curve and
remove noise, a LPF can be applied to I'(¢).The appropriate value of the LPF’s cut-off frequency varies
according to the dynamics of each type of dance; e.g., a dance with abrupt and large variations in velocity
of the body parts is bound to require a higher cut-off frequency, since these changes are represented in
spectral content of higher frequencies in the frequency domain. Fig. 5.1 shows the diagram of the average
acceleration measure I'(¢). over time for different values of LPF cut-off frequency. As we can see, as the
cut-off frequency increases, the number of local maxima (and therefore of salient frames selected) also

increases, thus leading to longer, more inclusive summaries.
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5.5 Performance Evaluation

5.5.1 Evaluation of the clustering-based time-independent keyframe selection-
method

The acquisition of image and skeleton data is followed by a pre-processing step which removes noisy
joint detections via a modified DBSCAN algorithm [191]. The filtered joints are transformed to a local
coordinate system, and features are extracted representing the motion properties of the dance at each
frame, i.e. time instance. In this particular choreography and without loss of generality, only the legs’
joints are considered. This is due to the fact that in the examined Greek folk dances the arms tend to
remain still with respect to the dancer’s hip joint and are thus not an important attribute of this dance.

The optimal number of clusters for each instance of dance depends on the specific moves and postures
and their variability and cannot be known with certainty in advance, although estimations can be made,
especially by domain experts. Therefore, we have experimented with different numbers of clusters using
the k-means++ method described in Section 4 and have evaluated the acquired results in terms of the
clusters’ consistency to deduce the optimal number of clusters in each case. For this, we have used two
indices: Silhouette [192] and Davies-Bouldin index (DBI) [193]. The Silhouette index measures how
similar an object (in our case, frame, i.e. posture) is to its own cluster (cohesion) compared to other
clusters (separation). Here we calculate the average Silhouette value over all frames. The DBI is another
measure of how well clustering has been done and is based on inherent features of the dataset. Good
clustering solutions are denoted by high Silhouette values and low DBI values.

Fig. 5.2 shows the Silhouette and DBI values for Dancers F, C, and I for two different dances:
Syrtos and Kalamatianos. Regarding Syrtos dance, we can see that both the Silhouette index and the
Davies-Bouldin index indicate that the optimal number of clusters appears to be 4. This result is in
agreement with the estimation of dance experts that the key postures that dominate the particular dance
sequence are indeed four: (1) Left and right feet are opposite; (2) Left and right feet are crossed; (3)
Left foot is raised; (4) Right foot is raised. Naturally, such results are dance-specific and heavily depend
on the complexity and variance of each dance. As can be seen in the bottom of Fig. 5.2, the Silhouette
and Davies-Bouldin indices for Kalamatianos dance indicate that a higher number of clusters, eight (8)
in particular, is optimal in grouping the input data, which corresponds to a respective number of key

postures in the dance.

5.5.2 Evaluation of the summarization of motion capture sequences method

For the evaluation of the kinematics-based summarization method, we have experimented with different
dance sequences, also applying different cutoff frequencies to the employed LPFs. As Fig. 5.1 shows, the
higher the cutoff frequency, the greater the number of key frames extracted and the longer the derived
summary. It is important to note however, that the local maxima obtained for low cutoff frequencies, i.e.
the most salient, important frames, also appear (in some cases with minimal deviations) as local maxima
at higher cutoff frequencies. This allows deriving valid summaries of increasing lengths, by essentially

following a hierarchical decomposition type of paradigm (see Fig. 7).
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Figure 5.2 Evaluation of the clustering-based approach for different numbers of clusters based on the
Silhouette and Davies-Bouldin indices. Top: Syrtos dance. Bottom: Kalamatianos dance.

Moreover, to objectively evaluate the summarization results, we use a ground truth dataset which
consists of a set of characteristic key frames assessed by domain expert users. These target-key frames are
compared against the ones derived by the proposed framework. Then, we calculate, as objective criteria,
the precision and recall values. Since the estimated key frames differ in time w.r.t. the target ones, in this
paper precision and recall are calculated as follows: Each estimated key frame by the summarization
scheme is compared against the targets and the closest in time target is selected as the most suitable.
Then, we evaluate the absolute error of the dance figure between the estimated key frame and the closest
target frame for all joints. This indicates how close (in 3D space) the dance silhouette depicted in the
estimated key frame is to the target frame. If this error is smaller than a threshold, the respective keyframe
is considered as relevant. Otherwise it is considered as irrelevant. So precision is estimated as the ratio
of relevant retrieved keyframes over the total number of retrievals, while recall over the total number
of ground truth data. In our case, the threshold is adaptively estimated taking into account as reference
point the mean square error (MSE) of all estimated key frames with respect to the target ones. More
specifically, the threshold is set to be at 10% of the MSE values so that only truly relevant key frames
in terms of the position of the dancer’s silhouette are retained. Finally, F1-score is calculated as the
harmonic mean of precision (Pr) and recall (Re), i.e. F1 = (2*Pr*Re)/(Pr+Re).

Table 5.1 presents the average precision and recall values for different frequency cut off values. We
should state that higher frequency cut off values correspond to an extraction of a higher number of key
frames. As is observed, recall slightly increases as the frequency cut off values increases, that is, for
a higher number of estimated key frames since it is more probable for some of these key frames to be
among the target ones. However, this increase is saturated, meaning that beyond a certain limit the
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Figure 5.3 Example results of the kinematics-based summarization approach (top: 3D skeleton data —
bottom: image data). Each line is part of a summary of different level of detail, acquired by applying
different cutoff frequency values to the LPF, thus obtaining different numbers of local maxima. A frame
can be hierarchically further decomposed to a larger number of frames, thus creating a longer, more
informative summary.

improvement is actually negligible. On the other hand, precision increases up to a frequency cut off value
of about 0.05 and then it decreases again since extraction of a higher number of key frames also increases
the noise. In the sequel, we have compared the performance of the proposed kinematics-based method
with two techniques in the literature: (i) a hierarchical k-means summarization technique [194], and (ii)
SMRS technique [57]. Table 5.2 presents those results in comparison to the precision, recall and F1-score
[195] of our proposed method (for the cutoff frequency yielding the best results) for three types of dances
of the Terpsichore dataset: Syrtos, Kalamatianos and Trehatos, as well as for four sequences recorded
from Carnegie Mellon University 2. We observe that the proposed method yields a higher F1-score [195]
in almost all cases, remaining satisfactorily robust even in the cases of complex choreographic sequences.

5.6 Discussion

Summarization of choreographic sequences is a little explored research topic, albeit a very challenging
and potentially impactful one in the context of ICH intelligent e-preservation and promotion. Leveraging

the capabilities of state-of-the-art motion capture technologies as well as physically based modeling

Zpublicly available at http://mocap.cs.cmu.edu
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Table 5.1 Summarization performance metrics for different summarization methods (Terpsichore and
CMU datasets). Precision (Pr) is estimated as the ratio of relevant retrieved keyframes over the total
number of retrievals, while Recall (Re) over the total number of ground truth data. Fl-score is the
harmonic means of Precision and Recall.

Sequences Proposed Hierarchical k- | SMRS [186]
Method means [194]
Kalamatianos Pr=0.63 Pr=0.47 Pr=0.59
Re=0.75 Re=0.92 Re=0.79
F1=0.68 F1=0.62 F1=0.67
Syrtos Pr=0.59 Pr=0.36 Pr=0.88
Re=0.65 Re=0.88 Re=0.39
F1=0.62 F1=0.52 F1=0.54
Trehatos Pr=0.69 Pr=0.30 Pr=0.67
Re=0.71 Re=0.56 Re=0.67
F1=0.70 F1=0.39 F1=0.67
Dance Pirouette 1 (CMU) Pr=0.75 Pr=0.51 Pr=0.82
Re=0.53 Re=0.51 Re=0.54
F1=0.62 F1=0.51 F1=0.64
Dance Pirouette 2 (CMU) Pr=0.70 Pr=0.23 Pr=0.98
Re=0.61 Re=0.69 Re=0.32
F1=0.65 F1=0.34 F1=0.47
Dance Pirouette 3 (CMU) Pr=0.77 Pr=0.52 Pr=0.89
Re=0.67 Re=0.47 Re=0.41
F1=0.72 F1=0.49 F1=0.56
Dance Pirouette 4 (CMU) Pr=0.71 Pr=0.59 Pr=0.62
Re=0.63 Re=0.48 Re=0.58
F1=0.67 F1=0.53 F1=0.60

Table 5.2 Summarization performance metrics for different values of the LPF cutoff frequency.

Filter Cutoff Frequency
Performance metrics | 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Precision 28.1% | 453% | 58.9% | 64.4% | 58.8% | 47.1% | 33.2% | 22.3 %
Recall 11.2% | 30.1% | 48.8% | 59% | 65.4% | 69.6% | 74.8% | 77.6%
F1-score 16.01% | 36.2% | 53.4% | 61.6% | 61.9% | 56.2% | 46.0% | 34.6%
Compression Rate 0.4% 0.5% | 0.8% 1.0% 1.6% 1.8% 2.2% 2.5%
MSE 30.3db | 29.8db | 19.1db | 25.9db | 26.0db | 26.3db | 26.62db | 26.9db

principles, we have designed, implemented and validated two approaches: a clustering-based method for

the selection of the basic primitives of a choreography, and a kinematics-based approach that generates

meaningful summaries at hierarchical levels of granularity. Future directions of this work include the

extension of the kinematics model used to account for rotational motion, thus including angular velocity

and acceleration, as well as exploring kinematics-based hierarchical sparse modelling approaches.




Chapter 6

Unsupervised 3D Motion Summarization
Using Stacked Auto-Encoders

6.1 Introduction

One interesting procedure for video visual analysis is video content summarization, a technique which
has received wide research interest in recent years due to its wide application spectrum. The scope of
a video summarization algorithm is to find out a set of the most representative key-frames of a video
sequence, taking into consideration salient events and actions on video content so as to form a short but
meaningful synopsis [196]. The existing video summarization techniques abstract the input data using
three different approaches [197]. The first is the so-called representative key-frame selection that creates
video summaries through a collection of representative key frames [198]. The key subshot-oriented
approach selects the representative subshots of key-frames to form the video synopsis [199]. Finally,
the key object detection method decomposes the whole video sequence into several single frames, each
revealing representative objects in a given video sequence [200].

In the context of performing arts, such as dance sequences, variations of human body signals
and gestures are essential elements describing a storyline or choreography in a symbolic way [7].
One important aspect in the analysis is the extraction of the choreographic motifs since these elements
provide a fine summarization of the semantic information encoded the overall storyline [201],[202],[203].

Automatic summarization of choreographic sequences is an important issue in computer graphics
research due to the following reasons. First, labelling procedures are time-consuming and occasionally
require feedback from experts since motion capturing data are often unlabelled. Second, spatio-temporal
analysis demands the reduction of 3D motion data and thus the automatic definition of all important
features in a dance sequence. Third, implementation of advanced classification algorithms, based for
example on deep learning neural network structures [94] require a large amount of labelled training
data. Therefore, unsupervised summarization methods are necessary of producing representative training

samples especially when large amount of video content is available.
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6.1.1 Related Work

The recent achievements of deep machine learning [94] have been proven to be very effective for
visual recognition especially in the context of motion primitive identification or for object detection and
recognition on benchmarked datasets [204]. The main advance of deep learning compared to traditional
shallow learning approaches is that the former can automatically extract a set of optimal features for
classification (pre-training) by deeply process raw visual content and analyse it on a discriminatory basis.
Instead, the traditional shallow learning methods exploit hand-crafted image descriptors in their analysis
which is application sensitive.

However, few works can be found dealing with the identification of 3D moving subjects and extracting
motion primitives from dance sequences, creating a summarized representation of a choreography. In
general, video summarization within motion content exploits methods that receive as inputs 3D skeleton
data, captured by motion capturing systems (i.e., Kinect, OptiTrak, VICON) representing choreographic
primitives of a dancer’s performance. In particular, the capturing system extracts 3D coordinates of
salient humans’ joints measured them in a global coordination system and then video summarization is
carried out by processing these (x,y,z) data instead of the raw image pixels. Usually, representational
models have been applied for performing the summarization of a dance such as the SMRS algorithm
[186] or its hierarchical implementation [7]. However, since there is a great redundancy both in space and
time (many frames represent similar characteristics), these methods fail to effectively represent dance
video sequences, especially when multiple actors (dancers) are performing.

To address the aforementioned difficulties, we introduce a novel unsupervised-driven summarization
scheme for dance sequences. Our method first exploits a SAE mechanism followed by representational
algorithms for key frame extraction. The purpose of SAE is to compress the raw captured inputs
(containing a significant amount of redundant information both in space and time) in a way that an optimal
reconstruction is achieved from the compressed data. That is, the encoded data (e.g., the compressed
ones) are reconstructed in a way to optimally represent the raw input signals [205]. Data compression can
be achieved using other approaches, apart from SAE. The wavelet transform is one of these approaches
[206]. It can be applied to identify the salient features and reduce the redundancy/irrelevancy in a
deterministic process using a time-frequency decomposition. This yields sufficient results, depending on
the selection of the mother wavelet. However, highly non-linear schemes, like neural networks can be
more effective especially when the statistical properties of the signal are dynamically changed [207, 198].
Yet, SAEs is a deep example of a highly non-linear compression scheme which, through an unsupervised
training phase, can learn all important properties of the dance, handling efficiently variations in spatial
and temporal redundancy.

The 3D skeletal coordinates are used for data sequence representation obtained using the VICON
motion capturing interface. The 3D motion coordinates are propagated into a stacked encoder with the
main purpose to produce a compressed input signal of low redundancy that can optimally characterize the
dance sequence. Then, representational algorithms, such as the hierarchical SMRS, are implemented to
perform the final summarization. This way, the performance is maximized since summaries are extracted
on a compressed input signal instead of the redundant high-dimension input signal data.

Previous works [7, 8, 202] implemented summarization techniques to extract the synopsis of choreo-

graphic sequences. Our work exploits the reduction of the redundant raw input-data to create a fine-grained
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Figure 6.2 This visual sequences depict the motion capturing process. 3D skeletal data are obtained by
the VICON motion capturing system (second and fourth row) and the respective RGB content (first and
third row). This figure refers to Makedonikos dance sequence, executed by two dancers simultaneously.

representation. This is achieved by refining the input data using SAEs, so that any redundant information
is discarded. Such an approach is very important especially when multiple dancers are present in the
dance sequences, unlike to the previous works, which focus on the performance of a single dancer.
The presence of multiple dancers make the analysis much more complicated due to (i) humans’ joint
occlusions (some joints of one dancer are not visible since they are occluded by the other dancers in
the 3D space) and (ii) merging of some joints of the dancers together. Although, the VICON motion
capturing system can extract the labels of the passive markers with respect to the dancers, in our setup,
we have not considered these labels, making the problem more challenging.

Figure 6.1 shows an example of the geometric challenges that the presence of two dancers causes to
our analysis. Looking these two dancers, the right hand of the left dancer is overlapped with the left hand
of the right dancer. Another example is depicted in Figure 6.2. By looking at the fifth and sixth frame of
the sequence, one can notice that only one dense body (dancer) executes the choreography (fourth row)
while as it can be observed from the RGB content the dancers are two (third row). Thus, the application
of conventional video summarization algorithms will yield to a failure. All these bottlenecks, that is, (i)
overlapping of the skeletal joints and (ii) redundancy of the raw input data are addressed in this paper

through the use of a combined SAE scheme followed by a hierarchical implementation of a SMRS.
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Figure 6.3 The proposed architecture for video dance summarization using stacked auto-encoders and
representative algorithms.

6.1.2 Innovation and Originality

As we have previously stated, the main limitation of the aforementioned methods is that they apply
the representational algorithms for dance summarization directly on the raw captured data, containing
a significant amount of redundancy. Therefore, their performance is deteriorated, especially for long-
dance video sequences. The redundancy problem is even more evident when multiple dancers are
presence in a choreography, since the interactions among them may lead to a high confusion, as far as,
the extracted key-frames are concerned. To address these issues, we introduce an SAE scheme prior
to the representational sampling algorithms to reduce redundancy and, therefore, increase the dance
summarization performance.

This chapter compares the summarization performance using four sampling algorithms all applied
over the SAE scheme’s projected data. The results on real-world dance sequences, captured using two
dancers performing, indicate that the proposed SAE-based redundancy reduction scheme can yield an
effective repsentation of the dances sequences which on average deviates less than 0.30 s from the

key-frames selected by dance experts (ground truth data) and with a standard deviation of about 0.18 s.

6.2 The proposed summarization workflow

Figure 6.3 presents the main architecture of the proposed unsupervised approach for dance summarization.
Initially, from each (x,y,z) coordinates of a skeletal dancer’s joint, kinematics attributes are extracted
such as velocity and acceleration [202]. Then, the enhanced 3D motion primitives are forwarded into
a stacked auto-encoder with the main purpose of compressing (encoding) the raw motion captured
attributes into low dimensional representations. Encoding is performed in a way that the decoder is
able to optimally reconstruct the raw input signals from the compressed ones, significantly reducing
spatio-temporal redundancy [94, 205]. The final module of the proposed architecture is the unsupervised
representational algorithm for extracting the most importance key-frames of the dance sequence. The
representational algorithm receives the low dimensional compressed data as inputs instead of the high

redundant (both in space and time) raw signals, improving the overall summarization performance.

6.2.1 Physics-Based Attributes of 3D Motion Primitives

In the following, let us denote as J;G (t) = (x¥(1),y¢(1),z¢ (1)) the k-th joint out of the M extracted by the
Vicon architecture for each dancer for the 7-th frame of the dance sequence. In our case M = 40, that is,
40 joints are extracted per human dancer. Variables x¥ (¢), y¥(¢) and z¥ (¢) indicate the coordinates of the
k-th joint with respect to a reference point setting by the VICON architecture (in our case the center of the

square surface) for the 7-th frame. These joints have been obtained after the application of a density-based
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filtering on all the detected joints to remove noise from the acquisition process (see the third paragraph of
Section 9.3). This noise becomes apparent when multiple dancers are performing in the choreography.

The main problem in directly processing the extracted joints J;G(t) is that they refer to the VICON
coordination system which do not reflect the dancer’s position in 3D space. For this reason, we first
compute the center of the mass for each dancer and then the coordinates of J;b(t) is transformed to
a local coordinate system, the origin of which coincides with the center of mass of a dancer, that is
.f,f(t) = J_ké(t) — Cm(1), where Cy(t) denotes the center of mass of a dancer. As far as the kinematics
attributes is concerned, the velocity and the acceleration are taken into account. In particular, the velocity
is given as i (t) = szJ(t) /dt, while the acceleration as % (¢) = diu(t)/dt for each detected human joint.
Since velocity and acceleration are given through a derivative formula, their calculation is independent
from local/global coordination system and thus they are independent of a global translation. Alternative,
we could use global dancers’ velocity along with small local velocities of the joints to improve the feature
analysis. But in this paper, we prefer to concentrate on simpler features. Gathering all these features
together a vector is constructed as (J%(t), (1), % (). In the aforementioned notation, we focus only on
one dancer and thus we omit indices describing the dancers for clarity purposes.

Figure 6.2 show the humans’ joints extracted both on RGB content (the first and the third row of
Figure 6.2) and on a plane depicting the movement of the dancers in the space (second and fourth row of
Figure 6.2). Since we have two dancers executing the choreography, it is clear that severe occlusions and
merges are encountered, mainly due to the 3D geometry of the dancers. This is the case, for example, of
the fifth and sixth frame of Figure 6.2 where one can notice, by observing the frame content, that only

one dancer appears to perform.

6.2.2 The Proposed Stacked Auto-Encoder (SAE) Module for Dimensionality
Reduction

The core idea of our SAE representation is to capture a meaningful content of the main patterns of the raw
data inputs by discarding any redundant information, that is, any outlier in data samples which will not
be justified well using that representation. The learning process is described simply as minimizing a loss
function over a training set. But since no desired outputs are required, the whole process is unsupervised.
That is, the desired outputs are the same with the inputs. The final results will be a representation of
low dimensionality of the input data. Thus, an SAE works similar to a Principal Component Analysis
(PCA) but under a non-linear framework. Figure 6.4 depicts the proposed SAE approach for input data
dimensionality reduction. In the following Section 6.3, we analyze with more details the SAE structure

adopted in this article.

6.2.3 Unsupervised Representational Sampling Algorithms

The last step of the proposed unsupervised video summarization algorithm employs traditional represen-
tational methods, such as the hierarchical SMRS [7], SMRS [186], K-OPTICS and Kennard Stone [208]
for performing the final dance sequence summarization. K-OPTICS combines density-based and centroid
based approaches [8, 118]. The idea is implemented in a two step process. Start by clustering the

available data using a centroid based approach, for example, k-means. Then, in each cluster run a density
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Figure 6.4 The structure of the proposed auto-encoder used for dimensionality reduction of the raw input
signals.

based approach, that is, OPTICS. The Kennard Stone (KenStone) algorithm applied in order to generate a
training set when no standard experimental design can be implemented. All samples are considered as
candidates for the training set. The selected candidates are chosen sequentially.

Sparse Modelling for Representative Selection (SMRS) estimates correlations among different frames
to extract the key ones. The principle of this scheme is to make the coefficient matrix as sparse as
possible so as to achieve reconstruction of the whole dance sequence only from few data samples, that
is the representative ones. In our recent work [7], a hierarchical implementation of the SMRS, called
H-SMRS has been introduced. This hierarchical approach extracts a set of representative frames using
the compressed input data under a hierarchical manner to take into account dance content complexity and
fluctuations.

6.3 The Proposed SAE Scheme for Dance Sequence Summariza-
tion

The structure of the proposed SAE is depicted in Figure 6.4. As is observed, an SAE includes two modes
of operations; the encoding and decoding mode. The goal of training is to minimize a loss function, say
L(-) over a mean square error criterion. In particular, if x are the input data, then the loss function is
expressed as L(x,g(B(x))). In this notation B(+) is the overall non-linear function of the SAE encoder,
whereas g(-) denotes the non-linear function of the decoder. Therefore the relationship g(B(x))) denotes
the operation of the encoding followed by the decoding.

In our particular implementation, three hidden layers are used for encoding phase. As we are moving
deeper and deeper in the encoding hidden layers, the number of neurons that a hidden layer consists of

is reduced. This forces the encoder to compress the input signals into a lower transformed versions of
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them. The input signal X; € R" of the encoder are the kinematic driven attributes of 3D skeletal human’s
joint points (see Section 6.2.1). Variable n denotes the dimension of the input signal, that is, it is equal to
the number of frames of the dance sequence N, by the number of joints per dance M, by the number of
dancers D. That is, n = N * M = D. In our case, we focus on two dancers and on 40 humans’ joints thus,
M =40 and D = 2. In addition, number N depends on the length of the dance sequence. In the current
notation, we have omitted the dependence of the feature vector Xj on time ¢ just for simplicity purposes.

The X, triggers the first hidden layer to generate a transformed version of it of lower dimension. In

particular, the output of the first hidden layer 71,(:) S T given by

hy = f(W] %% +by), 6.1)

where Wi is the encoding weight matrix, by is the corresponding bias vector and f(-) the sigmoid vector-
valued function. Variable m(!) denotes the dimension of the first hidden layer output signal. It is held that
m) << nin order to yield a compressed version of the input signal Xy.

In a similar way, the output of the second hidden layer transforms the hidden signals of the first layer
(that is the 71,(61) € Rm(l)) into a further dimensionality reduced representation 71% e rm?. Then, the ne
woutput will be given as b = f(W,] * 71,((1) +by),

where W, is the respective weight matrix of the second hidden layer, by the respective bias and again
f(+) the sigmoid vector-valued function. It is held that m® << m, so that a further compression is
carried out. With the same way, the output of the second hidden layer ﬁ% is propagated to the third hidden
layer to produce a new reduced version 712 e R of the input signal with a much lower dimension
mB) << m®,

The parameters of the SAE, that is, the matrices W, as well as the bias b;, are given through a training
procedure minimizing a least square loss function L(-). The unsupervised operation of SAE is to generate
as outputs, signals which are as close as possible to the input signals X;. This is achieved through

minimization of the following loss function.

Q .
min Y L(%,Xc), (6.2)
i=1

where X; denotes the approximate version of the input signal X; as generated by the encoder-decoder. This
means that ¥, = g(B(%)).

Training is performed over a set of Q samples of the same form of X;. Dropout is used to reduce
overfitting in the training process of neural networks. The overfitting problem is faced when the training
dataset is small, which would result in a low accuracy on the test dataset. Dropout can randomly affect
the neurons of the hidden layer to lose power in the training process. Technically, dropout is able to be
achieved by setting the output date of some hidden neurons to 0 and then these neurons cannot be related

to the forward-propagation algorithm.
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Figure 6.5 The architecture of the H-SMRS algorithm [7].

6.3.1 The Hierarchical-Sparse Modelling Representative Selection

A hierarchical implementation of the Sparse Modelling Representative Selection (SMRS) algorithm,
say H-SMRS [7], is adopted in this paper for key-frame extraction. The H-SMRS is applied on the
compressed transformed signals, 71,(:1) of the encoding mode of SAEs instead of our previous works where
this algorithm has been applied directly on the 3D attributes. This way, we discard redundant information
existing in the data samples, a process which is very important especially in case where multiple humans
are dancing in a sequence.

The proposed hierarchical scheme is based on the Sparse Modelling for Representative Selection
(SMRS) algorithm [186] which reconstructs the N total frames of the dance sequence from K repre-
sentatives. The optimization of the algorithm is achieved using the Alternative Direction Method of
Multipliers (ADMM) [161]. Actually, this method comprises of iterative steps, taking into considera-
tion the Lagrange multipliers. The traditional SMRS algorithm is sensitive to temporal redundancies.
Therefore, it fails to model the temporal dependencies of a choreography. To overcome this difficulty, we
have introduced in [7] a hierarchical decomposition scheme of the SMRS algorithm which first detects
time intervals on which further decomposition takes place so as to create hierarchies of the key frame
representatives. Thus, hierarchical SMRS segments the initial feature space into suitable sub-spaces that
better model the choreography. The proposed H-SMRS is able to efficiently describe more complicated
choreographic patterns, since the feature fluctuation within a sub-time interval (sub-space) is less than the
fluctuation of the entire feature space of the sequence. Figure 6.5 presents an example of the hierarchical
decomposition framework (H-SMRS). At the first layer, three representatives are extracted to model the
whole video sequence (marked in green). Therefore, the initial video sequence is decomposed into four
further sub-sequences (intervals), since the first and the last frame are also considered as representatives.
Then, we assume that the third out of the fourth video sub-sequences. that is the interval At(1,2), is
further decomposed. At(1,2) expresses the first layer at the second sub-sequence (interval). For this
reason, the SMRS algorithm is applied within the interval At(1,2) for extracting representatives that
best fit the frames of this interval. In this example, two representatives are identified, again marked in
blue color at layer 1. Therefore, the video segment of At(1,2) is further decomposed into three more
sub-segments. This procedure is iteratively applied until the decomposition criterion identifies that no

further decomposition is required.
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6.4 Experimental results

In this section, we present several experiments to demonstrate the performance of the proposed unsuper-
vised 3D motion summarization framework based on a stacked auto-encoder used to reduce the redundant
information. The proposed stacked auto-encoder scheme is evaluated over three different dance sequences
(see Section 3.3.2). Each choreographic sequence is executed by two humans, dancing simultaneously.
We present several experiments to demonstrate (i) the encoding capabilities and (i1) the similarity of the
automatically selected frames against the ground-truth.

As input data we use the ones presented in Section 6.2.1. That is, we extract for each human joint
the relative coordinates and its kinematics, that is 5 elements (3 for the joint coordinates and two for the
velocity and acceleration). We recall that we have 40 joints per human dancer. Thus, the total feature
space is of dimension 400 (40 joints by 2 dancers by 3 coordinates per joint plus velocity and acceleration).

Due to the presence of two dancers in the sequences, a severe noise exists. To remove it, we first pre-
process the data to exclude some frames which seem to be noisily represented. This is accomplished by
just thresholding the differences of the joint coordinates among few consecutive frames. If this difference
is greater than a threshold, this implies that a severe difference is noticed among the successive frames
revealing an erroneous performance in 3D data encoding. A dancer (and thus his/her joint coordinates)
cannot be moved long within the grid space during a choreographic performance. Having refined the
captured data from potential noisy inputs, then we feed the features into the proposed SAE scheme to get
a compressed input signal where all redundant information will be discarded.

Once, the stacked auto-encoder (see Equation (6.3)) is trained, we maintain the encoder part and
project the feature values onto a latent space of lower dimension. In our experiments, we keep only
48, out of 400, feature element dimensions. This number has been selected after several experiments
since it gives an acceptable performance while retaining the dimension as low as possible. A set of
summarization approaches are applied, including the adopted unsupervised representational algorithms,
along with other prominent methods such as k-OPTICS and Kennard Stone [208]. The last step of the
analysis involves the calculation of similarity scores and the time divergence between the summarized
frames and a set of selected key-frames by expert users in traditional dances (ground truth data sets). The
former is calculated by the correlation scores between each frame of the original dance sequence to all
the frames, provided by the sampling method. A higher score indicates a better match. Time divergence
is simply calculated by the difference in frames, which is the same as the difference in times (seconds).

In this case, the lower the difference is, the better the summarization performs.

6.4.1 Evaluation Metrics

As we have stated above (see Sections 3.5, 3.3.2), ground truth data have been created by experts of
Greek traditional dances. These experts are affiliated with the schools of sport science of the University
of Thessaloniki and University of Thessaly in Greece. The ground truth data include a set of desired
key frames, as being specified by the experts. Let us denote as g; the selected key frames by the experts,
with [ = 1,2,...,L where L is the number of representative frames as being indicated by the experts.
We also symbolize as G the set containing all these selected frames, that is, G = {g1,---,&r}. Let us also

denote as 7,k = 1,2,.., K the extracted representative frames by any summarization algorithm and as
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R = {7, , 7Pk} the respective set containing all K representatives extracted. Indices /,k are actually the
frame instances of the ground truth key frames and the ones extracted by a summarization algorithm
respectively. Thus, one objective criterion for evaluating the performance of a summarization scheme is
to find, for each of the K extracted frames by an algorithm, the time instance (i.e., the frame index) of the
experts’ selected frame which is closest to the first one and then take the frame index difference of the
ideal (experts’ selected frame) and the extracted one. In other words,

[(k) = in |l—k| VA €R 6.3
(k) argfmrg;lr}wl | V7 €R, (6.3)

where [(k) is the optimal frame index returned over all L selected frames in G for an examined
extracted frame in R, say the k-th. We should notice that different extracted key frames 7; 1,72 with
ki # ky may yield the same selected frame gf(k) meaning that some of the L selected frames may not
correspond to any of the K extracted key frames. Then, the absolute difference |I(k) — k| describes how
close is the k-th representative frame (by a summarization algorithm) to the closest ground truth one. In

particular,

11K -
p= ¥l -k
= 6.4)
Homa = max [1(k) — k],

where u is the average time instance deviation among all K extracted representatives and L,y the
maximum deviation (worst case) among all K extracted frames.

Another criterion is to estimate how well all frames of a dance sequence can be reconstructed
(represented) by the key frames. This is performed in our case by calculating the correlation coefficient
of the feature vector for each frame of the dance sequence X;,i = 1,..., N against all representative frames
,k=1,.. K.

max

pi"™ = max p(X;, %) VX, (6.5)

V7 ER
where p(-) refers to the correlation coefficient of two vectors. The maximum the value p is the better
the matching of that particular feature to a key frame. Thus, by taking the maximum value over all
representative frames 7 as being set by a summarization algorithm, we estimate the best relation of any
frame of the dance sequence to the extracted representatives. If this correlation is high, then the extracted
key frames can well represent all frame sequences. Instead a small maximum correlation for some frames

means that these cannot be reliably reconstructed by the key representatives.

6.5 Choreographic Summarization Experiments

In this section, we present some results of different summarization algorithms on the above-mentioned
dance sequences. In particular, Figure 6.6 demonstrates the results obtained on Syrtos (2 beat) dance

sequence, consisting of more than 5000 frames, using as summarization algorithm the K-OPTICS. More
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K-OPTICS Syrtos (2b) frames comparison to Syrtos (2b) sequence.
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Figure 6.6 The maximum correlation scores p;"** for each frame of the original Syrtos at 2 beat dance
sequence compared to the summarized one using K-OPTICS.

specifically, we extract 32 key-representatives using the K-OPTICS algorithm and then we calculate the
maximum correlation score p;"** for each frame of Syrtos (2 beat) dance sequence against the 32 key
frames extracted [see Equation (6.5)]. As shown in Figure 6.6, the average p;"** for all 5,000 frames
(that is for all i € N) is 0.5 with a variance of 0.25, which is a relatively low score. However, as we have
stated previously, some frames of the dance sequence have been erroneously encoded mainly due to the
simultaneous presence of two dancers in the choreography and the dense occlusions this causes. Thus, if
we refine the frames of the dance sequence by excluding the ones whose the joint coordinates between
two consecutive frames present high differences, greater than a threshold (in our case the threshold is set
to 20% rate of change in joint’s coordinates, for more than 20% of joints), then the correlation score is
significantly improved. In particular, in this case the average p;"** for all 5000 frames becomes more than
0.6, indicating a good summarization ability. Additionally, the majority of excluded frames, shown as
purple crosses in Figure 6.6 can be found bellow the average similarity score. Such an outcome suggests
that the applied rules for corrupted frames removal are adequate for the problem at hand.

Figure 6.7 illustrates the summarization performance when the Kennard Stone sampling algorithm is
applied over Syrtos (3 beat) dance sequence. Again, as in Figure 6.6, the non-corrupted frames achieve
a high average similarity score, close to 0.67, indicating that the summarized sequence can adequate
describe (correlate) most of the originally captured frames. The fluctuations are also limited, and appear
around frame 1500.

Table 6.1 summarizes the maximum correlation coefficients scores before and after the exclusion of
the corrupted frames for all the three dances and the four examined sampling algorithms. It can be seen
that the correlation scores obtained is about 0.6 revealing a satisfactory performance of the key frames



6.5 Choreographic Summarization Experiments 83

KenStone Syrtos (3b) frames comparison to Syrtos (3b) sequence.
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Figure 6.7 The maximum correlation scores p;"** for each frame of the original Syrtos at 3 beat dance
sequence compared to the summarized one using Kennard Stone.

as representatives of the whole dance sequence variation. In this table, we have presented as bold the
highest correlation values.

Figure 6.8 demonstrates the average differences in frames (time instances) between a frame selected
using a specific sampling approach (i.e., a summarization algorithm) and the experts’ selected frames
(ground truth), for a particular dance. Since the frame rate of the system is 120 fps, a value of 50
indicate that the sampling approach generates frames less than half-a-second earlier/latter compared to
the experts’ selection. The impact of using raw against encoded data is, also, assessed. Results indicate
that SMRS based approaches perform better to the other summarization schemes, for both raw and
encoded data, when we have a single dancer sequence. In this figure, we also compare the performance
derived against the four summarization methods; that is, K-OPTICS, Kennard Stone, SMRS, and the
proposed hierarchical SMRS, H-SMRS. As we can observe from Figure 6.8, the H-SMRS gives the
best performance for all dances with a deviation around 50 frames (or, approximately, 0.41 s), when
encoded frames are used as inputs. The H-SMRS scheme also provides much better performance for the
Syrtos(3b) dance, which seems to be more complicated than the other two dances, resulting in higher
time deviations for the rest of the samplers. It is also worth mentioning the complex effect of coupling
different features and samplers. For example, Syrtos(2b) input type does not affect significantly the
performance for all four samplers.

Table 6.2 shows the average time deviation of key frames extracted by the four summarization
algorithms and the ground truth data, that is, the value u, measured, however, in seconds and not in frame
index differences just for clarity. As is observed, the best performance is given for the the H-SMRS
algorithm when the SAE scheme is used. In particular, the highest deviation of the H-SMRS is achieved
for the Syrtos (3b) equal to 0.26 s deviation on average which is in fact a very small deviation value.
Similar performances of 0.23 and 0.24 sec deviations is also noticed for the other two dances. In the same

table, we also present the standard deviation of the time shift to the ground truth data to show how these
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Table 6.1 Maximum correlation coefficient scores (p;"*") for different sampling algorithms and dance se-
quences.

Max Max
Correlation | Correlation | Sampling
Dance . . ..
Sequence Without | with Sumrr.larlzauon
Corrupted | Corrupted | Algorithm
Frames Frames
Makedonikos 0.64 0.52 KenStone
0.61 0.47 K-OPTICS
0.65 0.53 SMRS
0.65 0.53 H-SMRS
Syrtos (2-beats) | 0.30 0.29 KenStone
0.64 0.51 K-OPTICS
0.57 0.43 SMRS
0.57 043 H-SMRS
Syrtos (3-beats) | 0.63 0.50 KenStone
0.60 0.48 K-OPTICS
0.57 0.43 SMRS
0.57 0.43 H-SMRS
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Figure 6.8 Data input type summarization impact when two dancers performed simultaneously for all the
examined dance sequences.
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values vary. Again, H-SMRS yields the smallest standard deviation values which is about 0.18 s using

the SAE, revealing its robustness against the other compared summarization algorithms.

Table 6.2 Average time shift among the summarization outcomes and the experts’ annotations with and
without the Stacked Auto-Encoder (SAE)-based data compression scheme.

Aver. | Average Standard
. ) i Standard o
Summarization Shift | Shift o Deviation
] Dance . . Deviation )
Algorithm With | without ] without
with SAE
SAE | SAE SAE
Makedonikos | 0.46 | 0.38 0.78 0.64
KenStone Syrtos (2b) 0.27 |0.19 0.17 0.12
Syrtos (3b) 0.84 | 1.67 1.4 2.41
Makedonikos | 0.25 | 0.59 0.17 1.21
K- OPTICS Syrtos (2b) 0.19 | 0.23 0.17 0.12
Syrtos (3b) 1.03 | 1.73 2.74 2.35
Makedonikos | 0.53 | 0.65 0.96 1
SMRS Syrtos (2b) 0.34 |0.36 0.23 0.23
Syrtos (3b) 1.28 | 2.29 2.31 391
Makedonikos | 0.24 | 0.54 0.18 1.06
H-SMRS Syrtos (2b) 023 |0.24 0.18 0.12
Syrtos (3b) 026 | 1.44 0.19 2.14

In the same table, we illustrate the results without using the SAE scheme. All summarization ap-
proaches, except KenStone algorithm, provide better results when the SAE-based compression framework
is adopted. We get better scores in both average time shift and standard deviation, compared to the expert’s
annotated frames. For the Kenstone algorithm and only for two out of three dances, the performance
remains, approximately the same, regardless of using or not the SAE.

Table 6.3 shows how much the average time shift of the four examined summarization algorithms and
the ground truth data is improved when the SAE-based compressed scheme is applied on the raw 3D
data in case of Syrtos (3b) dance sequence. The results have been depicted for two different executions
of the dance, one with a single dancer and one with two dancers. It is observed that in case of a two
dancers’ performance the improvement ratio is much greater than the single dancer performance execution.
Moreover, the adoption of the H-SMRS combined with SAE schema exhibits great improvement which
reaches 81.80%.
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Table 6.3 The improvement ratio among the adopted summarization algorithms with and without the
SAE framework for Syrtos (3b) dance sequence. Two different performances of the dance are assumed;
one for a single dancer and one for two dancers.

Aver. Aver. Aver. Aver.

Shift Shift Improvement | Shift Shift Improvement
Summarization | Without | With Ratio Without | With Ratio
Algorithm SAE SAE (Single SAE SAE (Two

(Single | (Single | Dancer) (Two (Two Dancers)

Dancer) | Dancer) Dancers) | Dancers)
KenStone 0.51 0.47 6.96% 1.67 0.84 49.79%
K- OPTICS 0.51 0.51 0.67% 1.28 2.29 79.15%
SMRS 0.47 0.41 11.41% 1.73 1.03 40.55%
H-SMRS 0.45 0.31 31.15% 1.44 0.26 81.80%

Figure 6.9 provides further insights on the similarity among extracted key frames, using summarization
algorithms, and some user annotated (selected) key frames. This allows us to visually judge on the
similarity between the key frames extracted by the summarization algorithms and the ground truth
ones. The results demonstrate five basic postures from Makedonikos dance. Then, for each the four
summarization approaches, we select the closest frame to the user annotated posture of reference. As is
observed, H-SRMS selections are closer to the experts’ defined key frames, compared to K-OPTICS,
SMRS, and KenStone approaches. Figure 6.10 demonstrates the encoding capabilities for the adopted
SAE scheme. Recall that 400 values have been reduced to 48 and then reconstructed back using SAEs.
As shown, the representation of the decompressed data (see Figure 6.10a) are close to the original
skeletal data (see Figure 6.10b) and maintain the two body postures and the general body form while
the great compression (we retain only 48 joints than the 400 total ones). However, upper limps’ joints
positions have been gathered towards the body core. However, a better representation could be feasible
by increasing the training epochs, which due to the limited training samples, that is, dance frames, does
not affect significantly the training times.

Another important criterion is how results vary (fluctuate) from the average values, as depicted in
Figure 6.8. This is also illustrated in Table 6.2 where the standard deviation of the average time shift is
given. But in Table 6.4 we also present the minimum (best) and the maximum (worst) performance (that
1S, Wnax of Equation 6.4) for all the three dances. As we can see, L, reaches 0.72 s for the most difficult
Makedonikos dance in case of H-SMRS. For the other two dances the worst (maximum) deviation
is of about 0.5 s for the H-SMRS indicating an excellent summarization performance which is much
smaller than the other summarization schemes. Regarding the minimum difference, all the summarization

schemes yields excellent performance. This means that the best results obtained are very satisfactory.
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Table 6.4 The minimum (best) and maximum (worst) time deviation (U,,,,) among the key frames
extracted using a summarization algorithm and the ground truth data. The comparison is carried out
using four summarization algorithms, K-OPTICS, Kennard Stone, SMRS and H-SMRS and for the three
dances. The values are in seconds.

.. ) Sampling
Dance Mlnlmum Mammum Summarization
Difference | Difference .
Algorithm
Makedonikos 0.06 s 5.20s KenStone
0.04 s 6.71s K-OPTICS
0.04 s 6.66 s SMRS
0s 0.72 s H-SMRS
Syrtos (2-beats) | 0.008 s 445s KenStone
0.016 s 3.88s K-OPTICS
0.016 s 05s SMRS
Os 0.74 s H-SMRS
Syrtos (3-beats) | 0.041 s 0.54 s KenStone
0.116 s 0.808 s K-OPTICS
0.033 s 0.541 s SMRS
Os 0.55s H-SMRS

6.6 Discussion

In this chapter, we proposed a deep stacked auto-encoder scheme followed by a hierarchical Sparse
Modelling for Representative Selection (H-SMRS) summarization algorithm for performing accurate
synopses of dance sequences. The sequences have been recorded through a motion capturing framework
such as of VICON which produces 3D point joint of the dancers. The originality of this approach lies
in the fact that our recorded dance sequences consist of two dancers performing simultaneously. This
causes severe and intense errors in capturing the humans’ joints in 3D coordination space. Thus, we
adopt a stacked auto-encoder (SAE) scheme to reduce the redundant information of the 3D point joints
and thus improve the performance of the summarization than applying the summary algorithms directly
on the raw captured data. Regarding summarization, this approach compares the results using four key
frame extraction algorithms. The K-OPTICS scheme, the Kennard Stone, the conventional SMRS and its
hierarchical representation called H-SMRS. Our approach has been evaluated over three real-world dance
sequences, each executing by two dancers. The results achieved show that the H-SMRS outperforms
the other three algorithms for all the examined dance sequences. More specifically, the average time
deviation is less than 0.3 s compared to ground truth selected frames being annotated by dance experts.
Even in its worst performance, H-SMRS yields at least 0.72 s time deviations which is an excellent result.
The proposed SAE approach also reduces the time required for executing the summarization algorithms
than applying the summarization schemes directly on the raw data. This way, summarization become

applicable to many engineering scenarios.
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Modelling and Analysis of Dance Sequences



Chapter 7

Choreographic Analysis using Dynamic Time
Warping

7.1 Introduction

Intangible Cultural Heritage (ICH) is a prominent element of people’s cultural identity as well as a
significant aspect for growth and sustainability [38]. The expression of identity through Intangible
Cultural Heritage takes many forms, among which folkloric dances hold a central position [209]. It is
reasonable to consider that analyzing choreographic sequences is essentially a multidimensional modeling
problem, given that both temporal and spatial factors should be taken into account. Research has been
published in the literature pertaining to ICH preservation which focuses on the time element [210], [211],
[212], [22]. Typical preservation acts include digitization, modelling and documentation.

Another important factor in preserving any type of performing arts, would be the development of
an interactive framework that enhances the learning procedure of folklore dances. The recent advances
in depth sensors, which have concluded to the development of low-cost 3D capturing systems, such as
Microsoft Kinect [40] or Intel RealSense [213], permit easy capturing of human skeleton joints, in 3D
space, which are then properly analyzed to extract dance kinematics [112]. The preservation of folk
dances can be facilitated by modern Information and Communication Technologies by levarging recent
developments in a variety of areas, such as storage, image and video processing, machine learning, cloud
computing, crowdsourcing and automatic semantic annotation, to name a few [214].

Nevertheless, the digitization and the modelling of the information remains the most valuable task.
Due to the tremendous growth of the motion capturing systems, depth cameras are a popular solution
employed in many cases, because of their reliability, cost-effectiveness and usability and despite their
limited range. Kinect is one of the most recognizable sensors in this category and in the choreography
context can be used for recording sequences of points in 3D space for body joints at certain moments
in time. Several recent research papers in the literature make use of such sensors for dance analysis,
for example educational dance applications using sensors and gaming technologies [215], trajectory
interpretation [216], advanced skeletal joints tracking [68], action or activity recognition [59, 56, 217—
220, 94], key pose identification [221] and key pose analysis [1]. Apart from Kinect, another popular
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alternative motion capture system is VICON which is significantly more sophisticated and accurate [7],
[112], [54].

7.1.1 Related Work

In [222], a comparison between abilities of the Kinect and VICON for gait analysis is introduced in
the orthopaedic and neurologic field. In [223], the authors focus on the precision of the Kinect and the
VICON motion capturing systems creating an application for rehabilitation treatments. In [224], the
authors propose that the Kinect was able to accurately measure timing of clinically relevant movements
in people with Parkinson disease. Contrary to the linear regression based approaches that have been
carried out in the bio-medical field [223], [222], [224] regarding the similarities/dissimilarities and the
precision of the adopted motion capturing system, in this work we follow a Dynamic Time Warping
(DTW) approach in the kinesiology field. Moreover, the aforementioned approaches pertain to simple
movement sequences i.e., knee flexion and extension, hip flexion and extension instead of our proposed
choreographic dataset which includes more complex movements that combine several joints variations
(see Table 3.5).

In [225], the authors introduce a motion classification framework using DTW. The aforementioned
work utilizes DTW algorithm in order to classify motion sequences using the minimum set of bones (7
body joints). On contrary, our proposed framework uses 25 body joints analyzing the motion sequences
using the DTW and Move-Split-Merge algorithms respectively. In [226], the authors propose an algorithm
for 3D motion recognition which allows extensions of DTW with multiple sensors (view-point-weighted,
fully weighted and motion-weighted) and can be employed in a variety of settings. DTW algorithm has
also adopted in order to extract the kinessiology details from video sequences. In [227], the authors
propose a video human motion recognition approach, which uses DTW to match motion projections
in non-linear manifold space. In [228], the authors present a technique for motion pattern and action
recognition, which employs DTW to match motion projections in Isomap non-linear manifold space.

Our proposed framework focuses on the similarity assessment of folkloric dances, using data from
heterogeneous sources;i.e. data from high-cost devices like VICON and low-cost devices like Kinect II
using predefined choreographic sequences. Research outcomes target on the underlying relationships
among dances captured using the VICON and Kinect systems (see table 3.1).

VICON is a high-cost, motion capturing system, which exploits markers attached on dancers’ joints
to extract motion variations and the trajectory of a choreography. The VICON motion capturing system
requires 1) a properly equipped room of cameras and trackers, ii) experienced staff to manage the VICON
devices, iii) a pre-capturing procedure, which is obligatory to calibrate the whole system. On the
other hand, Kinect II is a low cost depth sensor, which requires no markers to extract the depth and
humans’ skeleton joints. This makes Kinect II applicable to non-professional users (everybody) from any
environment (everywhere) and at any time. However, the captured trajectories are not as accurate as the
ones extracted by the VICON system.

Consequently, the Kinect II device can be used as an in-home learning tool for most of dance chore-
ographies by simple (non-experienced) users. This papers relates dance motion trajectories captured by
the accurate VICON and the non accurate Kinect II system. A Dynamic Time Warping (DTW) methodol-
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ogy is adopted in order to find out similarities/dissimilarities between the two devices, considering as
accurate reference dance motion trajectory the one derived from the VICON system. DTW algorithm can
localize dance steps patterns which can not be accurately represented by the Kinect system and patterns

that Kinect can be sufficiently described.

7.1.2 Contribution and Originality

The contribution of this work can be summarized in the following: Firstly, we present a comparative
study on trajectory similarity estimation approaches, on data obtained by two types of sensors, using a
complex dataset with challenging choreographic sequences, where joint movements are often varied and
unstructured. Furthermore, the conducted experiments indicate that if significant levels of precision are
ensured during initial data collection, design, development and fine-tuning of the system, then low-cost
and widely popular motion capturing sensors, such as Kinect-II, suffice to provide a smooth and integrated
experience on the user end, which would allow for relevant educational or entertainment applications to

be adopted at scale.

7.2 'The Proposed Methodology

In this work we investigate the possibility of utilizing skeleton data points as reference points, for the
identification of dance choreographs. Data originates from professional motion capture equipment. These
instances are used against corresponding skeletal data, recorded using low cost sensors.The proposed
approach consists of the following steps: a)data capturing using high-end motion capture system, b)
feature extraction, c) descriptive frames selection, for the database creation, d) data capturing using
low-cost sensors, €) extraction of corresponding body joints and f) similarity assessment among the dance
patterns between high-end and low-cost sensors.

The idea of spatial-temporal information management [229], [54] is applied, so that recorded dance
sequences are summarized to a sequence of keyframes. This is achieved by employing an iterative
clustering scheme, imposing time constraints. The proposed data managing scheme reduces the dance
sequence to few keyframes, which are selected using density based clustering, in predefined time related
subsets. It is important to note that noise or tempo variations do not affect the proposed approach.
Given as set of keyframe sequences, for different dances, a comparison is performed among them. The
sequences are signals containing information over dancer’s joints’ position and rotation. Signal similarity,
employing the correlation measure is performed. Consequently, variations of the same dance should
be easily identified, due to high similarity scores. Fig 8.1 depicts a block diagram of the proposed
methodology.
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Figure 7.1 A block diagram of our proposed methodology.

7.3 Dynamic Time Warping for Dance Sequences Modelling

7.3.1 Dynamic Time Warping

Dynamic Time Warping [230] calculates an optimal match between two temporal sequences. DTW
generated matching path is based on linear matching, but has specific conditions that need to be satisfied,
in particular the conditions pertaining to continuity, boundary condition, and monotonicity. In the
following a brief description on matching between curve points is provided. If Njand N, are the number
of points in two curves, then i-th point of curve 1 and the j-th point of curve 2 match if:

i—1

«Ny < j < — Ny (7.1)
1 N

It should be mentioned that each point can match with maximum one point of the other curve. The
boundary condition forces a match between the first points of the curve and a match between the last
points of the curve. The continuity condition decides how much the matching can differ from the
linear matching. The aforementioned condition is the heart of DTW. We formulate the aforementioned

assumption as follows:

N N.
]ﬁ*i—c*NzﬁjSﬁ*H—C*Nz (7.2)

In the case that during the process of matching it is concluded that the i-th point of the first curve
should match with the j-th point of the second curve, it is not possible: (i) that any point of the former
with an index greater than i matches with a point of the latter with an index smaller than j, and (ii) that
any point of the former with an index smaller than i matches with a point on the latter with index greater
than j.

7.3.2 Kinect-1I Evaluation using DTW

In our proposed methodology, we denote as reference sequences those are derived by the VICON
motion capturing system. In addition, each choreographic sequence obtained by the low-cost sensor
Kinect-II is contrasted to the VICON sequence. Our scope is to define the similarities/dissimilarities
comparing the choreographic sequence for each dance using the DTW algorithm [230]. Furthermore, each

choreographic sequence is depicted as a curve with different characteristics (e.g., duration, length). Our
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Figure 7.2 Time alignment of two choreographic sequences. Aligned points are depicted by the arrows.

proposed framework is to define the similarities/dissimilarities between the curves of the heterogeneous
motion capturing systems. Every index of the choreographic sequence is matched with one (or more)
indices of the other sequence for each dance. Fig. 7.2 depicts time alignment between two independent
signals, in our framework the signals are obtained by the motion capturing systems. Let us denote, as
X the sequences of the Kinect sensor and Y the sequences of the VICON accordingly. The X and Y
enclosure the kinessiology features (body joints variations) for each dancer creating a motion database
for the heterogeneous capturing system. In order to compare each feature, we define a local cost measure
describing the similarity/dissimilarity of each feature. The cost matrix is defined as P € RV*M
P(n,m)=p(x,,ym). An (N,M) dynamic warping path p= (py,--- ,ps) determines an alignment between
the X and Y vectors by assigning the element x,,; of X to the element y,,; of Y. The vectors X and Y are
denoted as follows:

X = (x1,...,xn) (7.3)

Y=(x1,...,xn), MeN. (7.4)

In the following, we create a space defined by F. Then x,,, y,, € F forn € [1:N] and m € [1:M]. In
our framework, we define as X and Y the features which are obtained by the motion capturing system
indicating every joint of the dancers body. Due to the heterogeneous motion capturing system, we should
define the local coordination system. Fig. 7.3 depicts the transformation from the global coordination
system to a local system for each motion capturing system, which is simultaneously a type of range fix
that takes into consideration body parameters such as limb length. Inevitably, for the aforementioned
constraints we denote as C:kG = (ka, y,?,z,?) the k-th joint out of the M=35 acquired by VICON system
and I;G = (le, ylG, zlG) the [-th out of the L=25 obtained by the Kinect-II sensor respectively. Variables
xiG, in and zlG indicate the coordinates of the respective i-th joint with regard to a reference point setting

VICON architecture (in our case the center of the square surface). We have acquired the aforementioned
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Figure 7.3 VICON global coordination system being transformed to a local coordination system. Its center
is the center of mass of the dancer [8]. This allows for compensation of the dancer spatial positioning.

joints after applying a density-based filtering on the entirety of the detected joints so as to eliminate noise
introduced during the acquisition procedure. The main difficulty in directly processmg the extracted
joints CG, k=1,2,...,M is the coordinates system. Thus, we need to transform the CG = (xk ,yk ' 2f @) from
the VICON coordinate system to a local coordinate system, the center of which is the center of mass of
the dancer. We follow the same procedure for the Kinect-1II architecture. This is obtained through the
application of Eq. (7.5) on the joints coordinates JqG,

CL CG Com (7.5)
E=15-1, (7.6)

where H.,, denotes the dancer’s center of mass with regard to the coordination system expressed as:

B} f L
C.. =Yy =k (7.7)

k=1 M

. L CL
Im=Y Tl (7.8)

[

1
and we recall that M, L refers to the total number of joints extracted by the VICON and Kinect capturing
system respectively.

Let us denote as cost matrix p(X,Y)=p(CE,I") the total cost of a warping path p between CE and IF.

N
pX,Y) = Z (X0, ym)) (7.9)

The DTW distance between the 5,% and IjL is defined ad follows:
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- =

DTW (X,Y) = minp(CF,IF) (7.10)

7.3.3 Kinect-II Evaluation using Move-Split-Merge.

Motivated by the superiority of DTW for motion analysis shown in previous works e.g. against SVM
[227], or approaches based on Locally Linear Embedding (LLE), Locality Preserving Projections (LPP)
and LLP-HMM [228] we adopt DTW as our main reference algorithm. Moreover, we conduct further
comparative experiments to also evaluate against a recent technique called Move-Split-Merge [231]. The
Move-Split-Merge distance algorithm provides a means of measurement that resembles other distance-
based approaches, where similarities/dissimilarities are computed by employing a series of operations
for the transformation of a series "source" into a series "target". Move-Split-Merge algorithm utilizes
as building blocks three fundamental operators. The Move operation is equivalent with a replacement
operation, in which one value substitutes another. Split inserts an identical copy of a value immediately
after its first instance, while Merge erases a value if it directly follows an identical value. Let us assume
Xi=(xj,...,x;) as a finite motion sequence of real numbers x;. The move operation and the cost operation
are defined as follows:

Move; y(X) = (X1, .ee, Xim 1, X + Uy Xig 1, -y X)) (7.11)

Cost(Move; ) = |ul (7.12)

SpLiti(X) = (X1 eeey Xim 15 X0y Xiy Xig 1y oees Xim) (7.13)

Cost(Split;) = ¢ (7.14)

Mergei(X) = (X1, .ues Xim1,Xit 1y eery Xim) (7.15)

Cost(Merge;) = ¢ (7.16)

i 1,y;) = c if xi 1 <x;i<y; or xi12x2>y; (7.17)

c+min(|x; —x;—1|,|x; —yj|) otherwise

7.4 Experimental Results

In our study, for capturing of the dancers’” movement variations, we employ a multi-faceted motion
capture system including one Kinect II depth sensor, the i-Treasures Game Design module (ITGD)

module created in the context of i-Treasures project [38] and VICON motion capturing system. The
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Table 7.1 The considered dances and their variations along with the length of each sequence for each of
the three dancers. These dances were recorded using Kinect-II.

Dance Variation | Short Name Duration
Dancer 1 | Dancer 2 | Dancer 3
Enteka Straight | Syrt11Str8 | 749 807 858
Kalamatianos | Circle KalCirc 655 593 561
Straight | KalStr8 304 378 455
Makedonikos | Circle MakCirc 424 582 409
Straight | MakStr8 283 367 418
Syrtos 2 beat | Circle Syrt2Circ 608 543 352
Straight | Syrt2Str8 623 639 334
Syrtos 3 beat | Circle Syrt3Circ 608 964 947
Straight | Syrt3Str8 1366 678 511
Trehatos Circle TrehCirc 991 723 443
Straight | TrehStr8 315 295 355
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Figure 7.4 The coordinates of the trajectory of the left foot joint, which shows the rhythm of the dance
performed by dancer 1.

ITGD module gives the possibility of recording and annotating mocap data acquired by a Kinect sensor.
The employed algorithms were implemented in MATLAB. A variety of Greek folk dances with varying
levels of complexity have been obtained. Three dancers (two men and one woman) each performed every
dance twice: Once in a straight line and once in a semi-circular curved line. Fig. 7.6 and Fig. 7.7 depict
the most representative postures of the Syrtos at 2 beats and Enteka dance respectively. Fig. 7.8 of Syrtos
dance at 3 beats. Each choreographic posture indicates representative frames that summarizing the whole
choreographic sequence providing the kinessiology patterns. Table 7.1 depicts the different duration of

these dances across three different dancers.
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Figure 7.5 The coordinates of the trajectory of the left foot joint, which shows the rhythm of the dance
performed by dancer 2.

Figure 7.6 Illustration of Syrtos dance (2 beats, circular trajectory).

Figure 7.7 Illustration of Enteka dance performed by dancer 3.
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Figure 7.8 An instance that illustrates seven frames from the Syrtos at 3 beats dance.
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7.4.1 Dataset Description

The dataset comprises six different folklore dances. For the Kinect capturing process, we use a single
Kinect-II sensors placed in the front. Every dance is described by a set of consecutive image frames.
Every frame [;, i = 1,...,[ has a corresponding extensible mark-up language (XML) file with positions,
rotations and confidence scores for 25 joints on the body (see Fig. 3.5) addition to timestamps. In Table
3.5, a brief description of the dances is provided [54]. After a series of processing steps, a skeleton
from the VICON system is represented. In the discussed setting, ten Bonita B3 cameras were used. The
capturing space was a square of 6.75 meters width, and the square’s center constitutes the origin of the
VICON coordinate system. We used a calibration wand with markers in order to optimize the calibration
procedure. The dancers’ movements were captured through the use of 35 markers at fixed positions on
their bodies.

7.4.2 Similarity Analysis

Similarity analysis entails to a dance matching problem. Specifically, given a set of frames, from multiple
body joints, captured using the Kinect, we try to identify the most closely related trajectories from the
choreographic database. Assume that we have n experienced dancers in the database. Then each time
a new user performs a dance, the algorithm calculate the similarity scores among the newly recorded
dance and the existing dances in the DB. Then, for each of the n experienced dancers, we get the top 3
closest trajectories, given a distance metric. Thus, we have a total of n times 3 dance suggestions. In this
study we have 3 experienced dancers. Thus we had 9 dance suggestions every time. The similarity score
(i.e. DTW or MSM) is then used to rank the results. Performance analysis focuses on how accurate the
system is in matching correctly the recorded dance.

At first, we asked the dancer to execute a specific choreography. Since, VICON’s frame rate is 4 times
greater than Kinect, we have consider a sub-sample approach in a ratio 1 to 4; that way the frame rate
matches the Kinect. Then, we exploit the similarity tests with existing entries in the database. Despite the
variations in the trajectories, we expect that the movement itself will be similar among dancers. Thus, the
similarity analysis has a solid base. Fig. 7.5 and 7.4 illustrate the left foot joint movement on the floor for
two different dancers. As we observe, the choreographic pattern of each dance is extracted indicating
not only the kinessiology variation of the dancers’ joints but also the music tempo. The main patterns
appears the same, despite the variations in descriptive characteristics (e.g. length and height).

Proposed approach’s matching performance is displayed in fig. 7.9. Results illustrate the number of
matches, for a specific recorded dance, to the existing dances in data base. There are three performance
classes, denoted as Top3, Top6 and Top 9. Numbers 3, 6, and 9 indicate the number of the closest matched
dances (from the database to the one currently performed). Recall that we have three professional dancers
and each of them performed the same six dances. Thus, the highest possible score in category TopX
is 3. Results indicate that the suggested methodology managed to match correctly at least once all the
investigated dances, despite their complexity, as explained in [232].

Fig. 7.9 provides further insights to the similarity between the VICON and the Kinect-II sensors. The x
axis depicts the name of each the dance (see Table 7.1) and the y axis the number of the matches according

to the choreographic database. For example, Makedonikos in circular trajectory (MakCirc) Top9 score
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indicates that among the nine closest trajectory patterns, we have 3 matches with the Makedonikos dance
captured by Kinect-II, one per dancer in the choreographic database. Consequently, Makedonikos dance
captured by VICON system was matched to Makedonikos dance captured by Kinect-II; to an extent,
most of the choreographies were successfully matched, by defining a score using the DTW or MSM
algorithms, despite the differences in employed motion capture technologies.

3 mTop9 u Topb mTop3

25

DTW MsM oTW MSM DTW M5M oTW MSM oTW MSM DTW MSM oTW MSM oW MSM oW MSM oTW MSM oTw MSM

Num of correct matches ta DB entries
in

o
i

KalCirc KalStrg MakCirc Makstrg Syrt115tr8 Syrt2Circ Syrt25tr8 Syrt3Circ Syrt35tr8 TrehCirc TrehStrg
Performed Dance

Figure 7.9 Performance illustration for the matching process.

7.5 Discussion

In this chapter, we explored the feasibility of pattern matching between heterogeneous motion capturing
systems. The case study emphasizes on northern Greek folklore dances, which although complex and
with several variations and particularities in their pattern, are characterized by elements of structure,
contrary to chaotic versions of movement trajectories (e.g. [233]) in which similar explorations are far
more difficult to perform. In this work, a two step process is adopted. The first step utilizes Kinect-1I
sensors, which provide dancer’s skeleton feature values and a database is created. The second step
involves the comparison of the trajectories in the database with a second database, created using VICON.
The employed algorithms calculate similarity scores. According to these scores the algorithm provides a
similar dance suggestion, for each of the dancers, in the choreographic database. The obtained results
suggest that low-cost sensors such as Kinect-II can be utilized in the context of dance-related educational
or entertainment applications, at least as part of the end-user side. Such a setup would however require the
employment of a detailed and highly accurate dataset for training and development of the system, captured
by a high precision system such as VICON. The conducted experiments indicate that if significant levels
of precision are ensured during initial data collection, design, development and fine-tuning of the system,
then low-cost and widely popular motion capturing sensors suffice to provide a smooth and integrated
experience on the user end, which would allow for relevant educational or entertainment applications to
be adopted at scale. Nevertheless, the proposed approach would not be appropriate for tasks that require
great precision and accuracy in measurement of movement and positioning of individual joints, such as

medical or rehabilitation applications.



Chapter 8

Bidirectional Long Short Term Memory for
Dance Sequences Analysis

8.1 Introduction

One important element in preserving folklore performing arts is, apart from digitization, modelling and
documentation, the development of an interactive framework that enhances the learning procedure of
folklore dances. The recent advances in depth sensors which have concluded to the development of
low-cost 3D capturing systems, such as Microsoft Kinect [40] or Intel RealSense [213], have permitted
easy capturing of human skeleton joints in 3D space which are then properly analyzed to extract dance
kinematics [112]. Using the aforementioned low-cost capturing interfaces, we can build interactive
serious-game platforms to allow for the users to achieve a rich learning experience [234], [235]. ML
algorithms are necessary elements in this direction since they offer the technological tools for evaluating
and comparing users’ movement with predefined choreographic structures (patterns). The purpose of an
ML tool is to spatio-temporally analyze the captured 3D human joints (and the respective kinematics
features of them) in order to identify the main choreographic patterns which are then compared against
targeted dance motives. These ML tools can provide robust systems that can identify primitive choreo-
graphic postures and be coupled with serious games platforms as monitoring mechanisms that ensure the
achievement of the serious games’ learning goals.

Towards this context in this chapter, an educational game platform has been deployed where, in real-
time constraints, a Kinect sensor recognizes the dance movements and correlates them to a Labanotation
system. Labanotation is a framework that translates the spatial and temporal fluctuation of 3D human
joints (i.e., 4D dimension, 3D geometry plus time) into predefined signs [30]. Although Laban interactive
platforms have been studied in the literature, the main drawback of them is that they focused on a
dance representation and visualization, failing in providing methods for evaluating a dance performance.
Examples of such Laban-based tools include the LabanEditor [236] that gives the opportunity to non-
experienced users to understand their movements or the [56] where an embodied learning interface
is introduced interweaving Kinect sensing and Labanotation. However, the main limitations of such
methods is that they do not incorporate machine learning tools in order to extract the main choreographic

patterns useful for dance evaluation. In this paper, a deep learning algorithm has been adopted to evaluate
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the performance of a dance in an interactive Laban-based game platform so as to provide to end-users

capabilities of assessing their dance steps (motives) against predefined structures (patterns).

8.1.1 Related Work

The use of computer technology for model and digitization of folklore performing arts has been recently
studied in scientific literature. The works can be distinguished into the ones dealing with 3D digitization,
choreographic analysis, and Labanotation.

Regarding 3D digitization of performing arts, one of the first approaches is presented in [33]. Specifi-
cally, this work introduces a 3D archive system for Japanese traditional dances. In [34], a digitization
approach for Cypriot dances using the Phasespace Impulse X2 motion capture system is proposed. The
architectures utilizes 8-cameras that are able to capture 3D motion on modulated LEDs. In [38], the
capturing architecture schema of the i-Treasure European Union funded project is analyzed targeting on
3D digitization and analysis of rare European folkloric dances. The main limitation of the aforementioned
approaches is that they require a marker capturing framework and the capturing process fails to include
choreographic metadata. The first limitation is addressed in [40], where 3D wireframe skeleton structures
are extracted based on a markerless interface, reducing, however, the overall digitization accuracy. The
second limitation is addressed in [35] and [36] where the captured motion trajectories are transformed
into meaningful and semantically enriched LMA features.

As far as choreographic analysis is concerned, classification algorithms have been proposed in order
to analyze the captured digitized 3D data and then to identify the human body kinessiology entities. More
specifically, the work of [41] combines Principal Component Analysis (PCA) and two classification
schemes (specifically a Gaussian mixture and a hidden Markov model) for dance movement classification.
Additionally, a combination of PCA and Fischer’s linear discriminant analysis, for classifying Korean
pop dances is introduced in [42]. In this context, style analysis algorithms have been proposed in
[237], exploiting principles drawn from Labanotation. The method leverages knowledge from anatomy,
kinesiology and psychology as that is incorporated in the Laban Movement Analysis. Finally, the works
of [44], [37] introduce a markerless tracking system for motion trajectory identification and folklore dance
pattern interpretation, while the [39] proposes a real-time classification system in detecting choreographed
gesture classes.

Recently, summarization methods have been introduced for a more precise and representative chore-
ographic analysis. These methods are capable of abstractly modelling a folklore dance and they are
distinguished into two main categories. The first group spatially analyses motion captured features,
while the second group relies on temporal fluctuations of the descriptors in order to extract the key
choreographic postures. As far as the first group is concerned, the work of [8] introduces a key posture
extraction framework exploiting spatial classification algorithms, such as the k-means. Instead, the
works of [178] and [59] performs selection of the main dancer’s postures using temporal segmentation
algorithms. Particularly, the work of [178] relies on a neighborhood graph to partition a dance sequence
into distinct activities and motion primitives according to self-similar structures, while the work of
[59] detects variations of the kinematic-based motion characteristics. The main limitation of a spatially

based summarization algorithm is that temporal inter-relationships of a dance are lost. On the contrary,



8.1 Introduction 104

temporally analysis algorithms are highly sensitive to noise and dancer’s micro-movement variations.
The aforementioned drawbacks are addressed in [7] where a spatio-temporally enriched summarization
algorithm is considered. Spatio-temporal decomposition of a dance improves precision of extracting the
main choreographic primitives since one the one hand spatial clustering identifies major choreographic
postures, while one the other hand, temporal analysis identifies micro choreographic dancer’s movements.
Spatio-temporal hierarchical algorithms are also considered in [181].

Regarding Labanotation, several methods have been proposed in the literature for transforming the
captured 3D motion into Laban scores [238], [236], [239], [56]. The work of [238] can be considered
as one of the first approaches for automatic Labanotation. Improvements in terms of performance and
accuracy have been considered in the works of [236], [239]. Recently, serious game platforms [240],
[56] have been proposed for providing a friendly interface for educational purposes. These interactive
platforms have two forms of operations; to make the user familiar to the Laban scores and to provide an

educational framework of folklore dances.

8.1.2 Innovation and Originality

In this chapter we enhance the learning experience of folklore dances by introducing machine learning
tools with the capability of providing a scalable quantifiable assessment of a choreography at different
level of hierarchies; yielding a from coarse to fine evaluation. For this reason, initially the choreography
is analyzed into representative 3D skeleton joints and then kinematics features are estimated to efficiently
model these choreographic patterns. Then, pose identification and summarization methods are imple-
mented with the main purpose of categorizing each dance sequence into choreographic primitives or
extracting the main (key) choreographic pattern. Pose identification provides a detailed (fine) assessment
of a dance, which, in the sequel, stimulates an assessment of a dance performance against ground truth
data. On the other hand, summarization creates a coarse representation (and thus assessment) of the
choreography.

Pose identification is implemented using a deep learning Long-Short Term Memory (LSTM) network
with bi-directional functionalities. The objective is to use depth data to create a robust automatic posture
identification system. To this end, only depth information was used, so as to ensure that the classification
performance is only affected by the exprert dancers kinesiological capturing and not by miscellaneous
information such as picture color and texture. Existing methods in modelling a choreography assume
causal signal dependencies. A system is called causal when its outputs depend only on the past and the
current input samples but not on future inputs. It is clear that a choreographic posture depends not only
on the past and current dancers actions (steps) but also on future kinematic activities. For this reason,
bi-directional forms of LSTM networks are adopted allowing both past (backwards) and future (forward)
states to interact with the pose identification outputs.

As far as the choreographic summarization is concerned, the SMRS method is used, appropriately
modified to support a hierarchical modelling of the dance sequence. in this way, the system is capable
to assess the performance of a dancer at different levels of hierarchies. The proposed serious game
platform supports Labanotation. This allows for dance professionals to qualitative evaluate a performance,

to document the whole choreography and finally to recommend correction actions. It is clear that
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Figure 8.1 The proposed system architecture for the interactive serious game platform incorporating
machine learning for educational purposes.

these recommendations take into consideration the scalable quantitative metrics of the machine learning
module. Finally, visualization tools are discussed with the capability of depicting dance performance in

3D skeleton joints and of encoding the dancer movements into Laban scores.

8.2 Educational System Architecture with ML cababilities

Fig.8.1 illustrates the main components of the proposed educational interactive serious game platform that
incorporates machine learning techniques for choreographic postures identification and summarization.

As is observed, the architecture is composed into the following subsystems.

1. Feature Extraction: The purpose of this module is to encode the captured 3D skeleton points
into kinematics descriptors for efficient representation of the choreography. In this approach the

velocity and the acceleration of the dancers’ skeleton joints are taken into account [112].

2. Machine Learning: The use of this subsystem is to analyze the choreographic features, as derived
from the feature extraction module, in order to provide a semantic encoding of the dance sequence.
This module is discerned into two processes; pose identification and choreographic summarization.
Pose identification incorporates deep learning classifiers [94], [219] and particularly bidirectional
LSTM networks in order to classify each choreographic frame into distinct pose entities. The
LSTM classifier feeds as inputs the kinematics features of 3D skeleton joints over a window of p
frames. On the other hand, the choreographic summarization module aims at processing the whole
choreographic sequence and extract the key postures, that abstractly encode the dance. Dance
summarization is performed using the SMRS on the kinematics features of the 3D skeleton joints.
The aforementioned two ML components provide a scale-based representation of the choreography.
In particular, pose identification provides a fine encoding of each choreographic frame instead sum-

marization derives a rough representation of the dance sequence. This scale-based representation is
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very important for educational purposes. Specifically, rough representation (through choreographic
summarization) is actually an indicator of the overall users’ performance to a given (ground truth)
choreography. On the contrary, fine representation (through pose identification) actually provides a

detailed evaluation, depicting additionally micro errors.

3. Evaluation: The main purpose of this module is to incorporate objective metrics for comparing
the test choreographic sequence against the ground truth one. Evaluation is performed over the
classified postures (provided by pose identification), and the summarized choreographic entities
(provided through choreographic summarization). Inevitably, ML techniques provide a high-
level semantic representation of the choreographic sequence eliminating noisy effects in directly

processing 3D skeleton data.

4. Labanotation (Visualization Interface): The final stage of the proposed interactive serious game
platform is a Laban visualization engine with a main objective to transforming the detected
choreographic entities into Laban scores [30]. Labanotation allows documentation and evaluation
the of the whole procedure by the dance experts. Thus, it enables appropriate recommendation

strategies.

8.3 Pose Identification

8.3.1 Feature extraction

Principles from the theory of rigid body dynamics [140] are exploited as far as the feature extraction
process is concerned. In particular, the xyz coordinates of each skeleton joint are transformed into the
respective joint velocity and acceleration. More specifically, we have that ii (1) = d5s%(¢) /dt as regards
the velocity vector and % (¢) = dui,(t)/dr as regards the acceleration vector for the k-th joint. In this
way, each choreographic frame ¢ is represented by M feature vectors each of the form ﬁ(t) = [5% L_t% %]T

[112]. Therefore, the kinematics of the whole choreographic video sequence is given by a matrix

F(t) = [fH(0)- fi(0)-

8.3.2 Pose identification using Long-Short Term Memory (LSTM) Networks

Let us assume that we have L available choreographic poses. Then, each frame 7 is categorized to one, out
of L available, class according to the probabilities values p;(7), with i = 1,..., L. Actually p;(¢) expresses
the probability that frame ¢ belongs to the i-th class. Particularly, we have that

é(t) = arg max  p;(t) (8.1)
i€l,...,L
where é(1) expresses the class (i.e., the specific pose) that the 7 frame belongs to. In the following, we
denote as p(t) = [p1(t)... pL(t)]" a probability vector including all p;(¢) at a image frame ¢.
Pose é(t) is a non-linear relationship of the 3D skeleton joints as the well as of the respective kinematic
features F (t). However, for noise removal purposes and for the making pose identification process robust

and stable with respect to time fluctuations, a non-linear moving average model is adopted. In statistics, a
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Figure 8.2 A feedforward neural network for modelling the unknown relationship of Eq. (8.2).

Moving Average (MA) filter predicts the value of a time series by taking into consideration responses
over a time window 2 - p + 1, expressing the order of the model. It is clear that the choreographic posture
at an image frame ¢ depends not only on the dancer movements at this and past frames but also on
future samples. This means that the future dancer movements affects the current choreographic postures

classification. Therefore, we have that

B =F(F(0),.. . Fle=p) Ft+ 1), F(t+p)) (82)

The main difficulty in implementing Eq. (8.2) is that the non-linear vector valued function g() is
actually unknown. It has been proven, however, that a feedforward neural network with a Tapped Delay
Line (TDL) input filter is able to approximate the model of Eq. (8.2) with any arbitrarily accuracy [241].
Fig. 8.2 presents the architecture of a feedforward neural netowrk for modelling the unknown relationship
of Eq. (8.2). Mathematically speaking, the network models the probability vector p(t) as a relationship
of L hidden (latent) state units ;.

uy (1) tanh(wl - %(t)) (8.3)

ur(t) tanh(w! -X(1))

In Eq. 8.3, vector ¥(r) denotes the input vector generated from the matrices F (1) after being vectorized.
The outputs of the hidden neurons u; refers to a state, hidden vector regarding pose identification.
Variables w; are appropriate weight vectors derived from the training phase. These vectors regulates the
importance of each input element X(¢). Function tanh(-) denotes the hyperbolic tangent function. This
means that each hidden state u; takes value between [—1 + 1]; values +1 indicates that the respective
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Figure 8.3 A bi-directional recurrent architecture unfolded through time to reveal the backward and
forward passes.

hidden state contributes to the pose identification output, while values of -1 refers to no contribution.

Finally, the identification outcome is a linear relationship of the hidden state vector ii weighted by V.
An alternative approach to model the non-linear relationship of Eq. (8.2) is to allow the hidden state

variables to depend on either previous and future state values. In this way, we re-formulate the Eq. (8.3)

in a way

ui(t) = tanh(w! -%(1) +?{b it — 1)+ 7 di(t 4 1)) (8.4)

where variables 7; ;, refers to the weights regulate the backward pass of the network and 7; , the forward
pass.

Fig. 8.3 depicts the structure of a bi-directional recurrent neural network model [242]. In this figure,
we have unfolded the network to reveal the backward and forward passes. It is clear that this type of

network implements the relationship of Eq. (8.4).

8.3.3 Modelling the Long-range dependencies using LSTM architectures

The main limitation of the aforementioned modelling framework is that it fails to represent long-range
dependencies. However, a choreography usually follows repeated patterns spanning over long-time
periods. For this reason, bi-directional LSTM network is adopted for modelling the pose identification
module. LSTMs are of similar structure to the bi-directional recurrent regression models but each node in
the hidden layer is replaced by a memory cell, instead of a single neuron [243]. The structure of a single
memory cell is depicted in Fig. 8.4 .

The memory cell contains the following different components (see Fig. 8.4): 1) the input node, ii) the
input gate, 1ii) the forget gate and v) the output gate. Each component applies a non-linear relationship
on the inner product between the input vectors and respective weights (estimated through the training
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Figure 8.5 The architecture of Bi-directional LSTM used for pose identification.
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process). Some of the components have the sigmoid function, expressed as ¢ in Fig. 8.4 and some other
the tanh.

The forget gate: The purpose of this component is to decide what information is throw out of the
memory cell. The output ranges between 0 and 1, due to the sigmoid activation function. Values close
to 0 means to dispose the incoming information while values close to 1 indicates that this information
should be taken into consideration by the current memory cell.

The input node: The input node performs the same operation as a hidden neuron of a conventional
recurrent regression model does. It appropriately combines (through a set of weights) the current input
data and the previous vector states in order to decide whether the respective hidden state (latent variable)
contributes or not (true or false) to the respective choreographic posture estimate.

The input gate: This gate regulates whether the respective hidden state is significant enough for the
accurate estimation of current choreographic pose. It has the sigmoid function, meaning that its response
range between 0 and 1. Values close to zero mean that this state is not significant at the respective time
interval. The opposite happens for values close to one. This gates actually addresses problem related to
the vanishing of the gradient slope of a tanh operator [243].

The output gate: This regulates whether the response of the current memory cell is “significant
enough” to contribute to the next cell.

Fig. 8.5 illustrates the architecture of the proposed bi-directional LSTM for dance pose identification.
The network includes backward and forward time instances to categorize the poses.

8.3.4 Extraction of dance sequences key-frames

The Sparse Modelling Representative Selection (SMRS) algorithm [57] extended in a way to support hi-
erarchical implementation is adopted for choreographic summarization. The hierarchical implementation
allows for a spatio-temporal extraction of key choreographic postures in contrast with the conventional
SMRS algorithm where only spatial selection is considered. The spatial based modelling algorithms fail

to index the temporal variations and the frame inter-relationships of the dance.

8.3.4.1 The Sparse Modelling Representative Selection

In this section, we briefly describe the SMRS algorithm used as a baseline for key choreographic
postures selection. First, we vectorize the features F (1) by stacking up all rows. Therefore, we have that
d(t) = vec(F(t)). Let us now denote as D = [---d(t) - - -] a matrix that includes all vectorized features
elements d| (t) of the whole choreography (i.e., V¢). The purpose of a summarization algorithm is to select
a set of N < Q representatives that best reconstruct the whole choreography (variable Q refers to the
total number of frames and N to the extracted key postures). This is accomplished using the following

equation.
0
Y ldu)-D-;||=|D-D-C| (8.5)
i=1

In Eq. (8.5), ¢; is a coefficient vector regulates the similarity for every feature vector d (¢) [57]. In
order to estimate the best N choreographic postures, we enforce the following constraint of the matrix

C, that is, ||C|lo < N. Norm | - ||o counts the number of non-zero rows of matrix C. Minimization of
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Figure 8.6 The eleven position of LABAN Motion Analysis used to represent a dancer’s movement at the
horizontal axis.
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Figure 8.7 The three main categories used by the Labanotation interface to model a dancer’s movement
in vertical axis.

Eq. (8.5) subject to the constraint of ||6‘ llo < N is a NP-hard problem [57]. For this reason, we relax the
hard constraint into an ¢;-norm, that is ||C||; < 7. In this case, we select T instead of N, since ¢;-norm is
not necessarily bounded by N. The Alternating Direction Method of Multipliers (ADMM) of [161] is
adopted for solving Eq. (8.5) subject to constraint ||C||; < 7.

8.3.4.2 Hierarchical sparse modelling

A hierarchical implementation of the SMRS algorithm is adopted for key choreographic postures extrac-
tion. In particular, first the SMRS algorithm is applied on the whole choreographic data. In this way,
a set of key representative frames is extracted, expressing specific time instances of the choreography.
Then, the detected time intervals are further decomposed to create hierarchies of key postures. This is
accomplished by applying the SMRS algorithm on the created sub-time intervals (expressed by the key
postures of the previous layer of processing). This results in a spatio-temporal summarization scheme.
More specifically, the first layers of key postures show a coarse (not accurate) representation of the

choreography. Instead, the last layers provide a more detailed (fine) representation [7].

8.4 The Labanotation Interface

8.4.1 A dancer’s movement representation

The Labanotation visualizes the kinessiology variations of a dance. It is like a music score that describes a

song. Laban motion analysis uses pre-determined symbols that model the motion attributes of a dancer. In
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Figure 8.8 The adopted Laban codes combining both the horizontal and vertical axis (3D space). In
particular, this example combines the signs of both Figs. 8.6 and 8.7 respectively [9].
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Figure 8.9 The six different signs adopted for modelling the bending angles of a dancer’s joint.

the proposed Labanotation interface, basic Laban symbols have been created including points of direction
as well as the respective bending (systole) degrees. The symbols of Laban have been created using the
software platform of Inkscape. We have created eleven different positions as far as the horizontal axis is
concerned and regarding a specific human joint out of M available. These positions are depicted in Fig.
8.6. We denote these symbols as follows: the Left (L), Left Diagonal Front (LDF), Left Diagonal Back
(LDB) and the Left Front/Back (LF/LB) positions. In the same manner, we have the Right Front (RF),
the Right Diagonal Front (RDF), the Right (R), the Right Diagonal Back (RDB) and the Right Back (RB)
codes. Apart from the horizontal representation, a dancer’s movement is modelled as far as the vertical
axis 1s concerned (see Fig. 8.7). We have used three main categories for such vertical modelling. Fig. 8.8

illustrates the Laban symbols in 3D space, by combining both the horizontal and vertical axis.

8.4.2 A dancer’s bending (systole) angles representation

Apart from the representation of a dancer’s movements, we need to model the systole angle. The adopted
encoding framework is depicted in Fig. 8.9. In particular, the whole bendable territory, is divided into
equal-sized spaces corresponding to the bending degrees. The first symbols defines zero degree of
bending while the last one 180 degrees. Fig. 8.9 clarifies the bending degrees symbols according to the
humans’ joint systole.

8.5 The Evaluation Interface

As far as the assessment of the choreography is concerned, initially a professional dancer is recorded by
the interactive serious game platform. The extracted 3D skeleton joints as well as the respective features
are fed into the pose identification deep learning module. This way, each image frame is categorized into
one into of the L available postures, ¢, (). In the next step, a non-professional user is recorded. Again 3D

skeleton joints are extracted along with the respective features. This information is then fed into the same
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pose identification architecture for assessing the choreography of the non-experienced user. In particular,
let us denote as ¢,(t) the estimated postures of the user sequence ¢ (test sequence) for every frame ¢.

In this chapter, a scalable evaluation framework for choreography assessment is adopted. In partic-
ular, the output of the summarization module provides an overall (coarse) evaluation of the dancer’s
performance. On the other hand, the pose identification module is responsible for a more detailed dance
assessment. Regarding, the fine assessment process each frame of the test dance sequence is compared
against the professional dance sequence. Therefore, an detailed performance error E; is defined as
follows:

Eq= llep(t) —cu(®)l2 (8.6)

In this same context, we define the coarse performance error from the summarized choreographic
elements. More specifically, the test sequence is fed to the summarization module. This module is
responsible for extracting a set of key postures, ¢, (tll ). In this notation, variable #; refers to the time
instance of the i-th key postures at the / hierarchy. It should be mentioned that the higher a hierarchy is
the more choreographic postures are extracted and therefore a more detailed assessment is considered. In
this case, the coarse performance error is defined as:

El=|lcp(t]) — cult])]2 (8.7)

where tl.l refers to time instances where the extracted key postures are identified at layer /. We recall that
as we increase the level of hierarchy / a more detailed choreography assessment is built (i.e., for large /

the error Ecl is close to the E,;). Therefore, we result to a scalable assessment framework.

8.6 Experiments

In this section, we present the evaluation test-bed used for assessing the proposed interactive serious

game platform for dance learning.

8.6.1 Dataset description

We use data sets of TERPSICHORE project [29]. The data sets contain recordings from Greek traditional
folklore dances, performed by professionals. Five different folklore choreographies have been recorded
each is performed by three experts (two male and one female). We chose male and female expert-dancers
since for those particular dances, the choreographic performance between men and women is different.
Specifically, men dance proud and imperious, while women modest and humble. On the contrary, dance
style differences among professionals of the same gender are slight and mainly due to the personality
of the dancer and how she/he executes the predefined choreographic performance. In all recording a
Kinect-1I sensor has been exploited for creating 3D skeleton joints. In Section 3.5, we presented a detailed

description of the recorded dances.
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8.6.2 Performance Evaluation Metrics

To objectively evaluate dance performance, we adopt four different metrics such as the Accuracy,
Precision, Recall and the combination of Precision and Recall criteria as a single metric, the F/-Score.
Precision measures the ratio of all relevant retrieved key frames over the total number of retrieved key
frames by the use of an algorithm. Recall measures the ratio of all all relevant retrieved key frames over
the total number of relevant frames in ground truth set. The main challenge in defining the precision and
recall metrics in our cases is that key frames from a dance sequence should be ordered. This is due to the
fact that the patterns composed of the main steps of a choreography should be specific for a given time
internal depending on the music tempo and the type of the dance.

True Positive

Precision = 8.8
recision True Positive + False Positive (8.8)

and recall as

True Positive
Recall = 8.9
eea True Positive + False Negative (89)

where variable N refers to the number of key frames and L to the number of ground truth choreographic
elements. Ideally, Pr and Re should be 1 for an excellent retrieval. By combining both criteria, we can
derived the F1-score as

Precision x Recall

Fl1 =2« — (8.10)
Precision + Recall

Similarly, Accuracy is defined as the ratio

Accuracy = 1P, TN (8.11)
TP + FP + TN + FN

8.6.3 Training/Testing Evaluation Methodology

In this section, we present the methodology adopted in this paper to construct the training and the testing
datasets through which the classifiers of section are assessed. The initial dataset consists of 8149 frames
of expert dancers performing the choreographies described in Table 1. This includes all the joints captured
by the Kinect sensor. The Spine Base joint is used to transform of all other body joints from a global
system to a local one, beginning in the Spine Based joint. Thus the position of the joints is not sensitive to
the dancer’s position in respect with the Kinect sensor. To simulate non-expert performances, the dataset
was augmented by adding noise both to the axial and lateral measurements. In particular, the existing data
set was used as base for the creation of an additonal observations by adding random noise. The upper
bound of the noisy data was set as 10 and 20% of the original values respectively. Thus we create a new
syntehtic dataset of both expert and non-expert performances consisting of 24447 frames of Kinect data.
This dataset is broken down in training and test datasets following the 80-20 rule. 20% of each "noisy"
capturing is used for testing while the remaining dataset is used for training. 10% of the training dataset
is used for cross validation purposes. The initial groundtruth dataset includes performance by both men
and women professional dancers. This is due to the fact that the kinesiological capturing of choreography
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Table 8.1 Performance evaluation of the proposed LSTM model for pose identification compared with
other learning methods.In this table, we have provided the effect of memory, that is number of dance
frames feeding the network.

Algorithms | Method Metrics
Accuracy | Precision | Recall F1-score
SVM No Memory 41,34% | 31,04% | 36,33% | 33,48%
5 Frames 50,19% | 39,77% | 46,98% | 43,08%
10 Frames 69,15% | 59,03% | 62,71% | 60,82%
kNN No Memory 21,46% | 13,26% | 16,23% | 14,60%
5 Frames 31,96% | 2494% | 32,78% | 28,33%
10 Frames 3457% | 26,63% | 34,12% | 29,92%
Neural 1 No Memory 57,14% | 46,32% | 51,96% | 48,98%
5 Frames 55,66% | 45,44% | 58,14% | 51,01%
10 Frames 59,68% | 49,08% | 64,67% | 55,81%
Neural 2 No Memory 60.56% | 49,83% | 59,79% | 54,36%
5 Frames 59,09% | 48,53% | 62,26% | 54,55%
10 Frames 62,36% | 51,47% | 63,92% | 57,03%
CNN No Memory 5727% | 49.43% | 60,88% | 54,56%
5 Frames 69,99% | 65,15% | 65,05% | 65,10%
10 Frames 7447% | 72,65% | 65,96% | 69,14%
LSTM No Memory 59,35% | 48,62% | 66,45% | 53,46%
5 Frames 76,20% | 66,98% | 69,74% | 71,30%
10 Frames 81,06% | 7422% | 71,20% | 77,49%

slightly changes (position of hands, horizontal movement in comparison to the Kinect sensor) based on
the gender of the performer.

Regarding the performance of the proposed interactive serious game platform in assessing the
choreography of a non-expert user. For this reason, initially a annotated choreography is loaded by
the system. This choreography has been performed by a professional dancer. Moreover, the main
choreographic elements are available such as the ones depicted in Table 3.5. We assume that each
choreography is associated with a given tempo to avoid synchronization issues. In the following,
evaluation test-bed is performed either for pose identification or for choreographic summarization,

providing, therefore, a scalable assessment framework.

8.6.4 Pose identification

First, a Long Short Term Memory Network (LSTM) is trained to learn a specific choreographic pattern.
In particular, the input of the network is the kinematics features extracted from the 3D-skeleton joints
of Kinect-II. Table 8.1 depicts the performance of the proposed LSTM model for estimating the main
choreographic primitives of a dance. In this table, we have used as evaluation metrics the Precision,
Recall and F1-score used in information retrieval [244]. A comparison with different shallow learning
paradigms is also presented. Particularly, we have compared the proposed bi-directional LSTM with a) a
Support Vector Machine (SVM), b) k-Nearest Neighbor (kNN), c¢) two feedforward neural networks (of
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Table 8.2 The effect of the proposed pose identification for performing a detailed assessment score on a
choreography against a target.

Algorithms | Method Metrics
Accuracy Precision Recall Fl1-score
SVM No Noise 69,15%  59,03%  62,71%  60,82%
10% Noise 55,18%  65,52%  38,85%  48,78%
20% Noise 2587%  25,84% 18,65%  21,67%
kNN No Noise 34,57%  26,63% 34,12%  29,92%
10% Noise 2333%  24,86% 19,52%  21,87%
20% Noise 8,01% 7,80% 6,23% 6,93%
Neural 1 No Noise 59,68%  49,08%  64,67%  55.81%
10% Noise 5221%  58,40%  45,24%  50,99%
20% Noise 32,53%  34,87%  26,23%  29,95%
Neural 2 No Noise 62,36% 5147%  63,92%  57,03%
10% Noise 57,03%  65,18%  46,72%  54,43%
20% Noise 40,64%  44,53%  32,70%  37,72%
CNN No Noise 74,47%  72,65%  6596%  69,14%
10% Noise 60,34%  54,34%  61,51% 57,70%
20% Noise 54,28%  46,50%  59,60%  52,24%
LSTM No Noise 81,06% 7422%  T71,20%  72,69%
10% Noise 75,30%  66,53%  54,31%  59,81%
20% Noise 56,15%  65,61% 42,37% 51,49%

two configurations- one with a single hidden layer of 10 neurons/layer and one with two hidden layers,
each with 10 neurons/layer) and d) on Convolutional Neural Network (CNN) (with 1 convolutional and
one fully connected layer).

As is observed, the proposed bi-directional LSTM model for pose identification outperforms the
compared shallow learning paradigms. In this table, we have also presented the effect of memory in
terms of the number of dance frames that feed the learning model, i.e., the effect of the tapped delay
line filter, on classification performance. As is observed, the tapped delay line filter increases pose
identification performance. It should be mentioned that for the evaluation test-bed framework, we have
used professional dancers. The model has been trained using data from a given dance realization and it
is tested using data from other realizations of the same dancer. It is worth noting that the performance
for the medium memory window (5 frames) slightly decreases for the case of the Feedforward Neural
Networks 1 and 2. These two networks have a rather simple structure therefore this slight degradation
in performance could be put down to their tendency to overfit and their limited ability to generalize as
opposed to the more complex architectures (including deep ones) examined.

Then, a non-expert user performs the given choreographic sequence. Again, the kinematics features,
extracted from the 3D skeleton joints, and their descriptors are the inputs to the LSTM model. The
purpose of the network is to categorize the choreography of a simple user into choreographic basic units
defined by the experts, i.e., the annotated choreography. In order to set-up this experiment, a noise is
added to the 3D skeleton joints of the ground truth data. Specifically, the additive noise models the errors
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Figure 8.10 A schematic representation of the hierarchical summarization approach adopted. As the level
of summarization increases the number of extracted key frames that provides an abstract representation
of the choreography also increases. Thus, a more detailed representation of the dance is derived.

done by the non-expert user as far as the given choreography is concerned. It is clear that the more noise
we add the worse a choreography is. Table 8.2 presents the performance of the pose identification module
versus different levels of noise. As is observed, the more the noise we add, we worse the classification
accuracy is. However, the performance is better for the LSTM model in the sense that it retains a robust
behavior against the noise added. Therefore, it is better for assessing a choreography of non-expert user
against a target choreography of an expert dancer. The bi-directional LSTM model retains a more robust
behavior against noise. Therefore, it better models the mistakes happened in a choreography by non
expert dancers. We also observe better generalization performance over noise compared to other shallow
learning networks. This is an important aspect in evaluating a choreography mainly due to the fact that

the shallow learning modules fails to provide a proportional evaluation score of the choreographic errors.

8.6.5 Comparative results against different feature selections

Three different sets of features were used to evaluate the performance of the proposed classifier. Firstly,
the classifier was tested using only the axial data of the depth sensor. Secondly, only the rotation data
were used, and finally all the features were used. Figure 8.11 depicts the results of such feature selection.
It is clear that selecting both axial and rotation data from the depth sensor is better than using only one of
the depth parameters.

8.6.6 Choreographic Main Primitives Estimation

The aforementioned assessment provides a detailed evaluation of the choreography of a non-expert user
compared to a ground truth dataset, providing an evaluation score per dance frame. However, usually,
a generic assessment is necessary for learning purposes. This way, the system provides an abstract
recommendation of the performance of a sequence. In order to do this generic evaluation, we exploit
results of the choreographic summarization module. This module is able to extract a set of key (main)
choreographic patterns (motives) that best model the whole choreography. The assessment in this case is
performed as follows. First, a non-expert user performs the dance given a choreography. In our evaluation

test-bed, the expert results are corrupted by noise added on the extracted 3D skeleton joints. Then, the
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Figure 8.11 Accuracy of different learning models versus the different feature selection methodologies.

algorithm of Section 8.3.4.2 is applied to detect a set of key frames organized in an hierarchical manner.
These frames are compared against the ones provided by the CNN pose identification module and the
error of Eq.(8.7) is estimated. Fig. 8.10 shows a schematic representation of the proposed hierarchical
dance summarization approach. At level 1, only the most salient dance poses are selected as key frames
to abstractly model the whole choreography. At higher summarization levels, more key dance poses are
selected to refine the choreographic representation through key frame extraction. Table 8.3 depicts the
error achieved, as far as dance assessment is concerned, for different summarization levels. Initially,
only seven frames have been extracted to represent the choreography. The assessment error over all
these seven frames is 100% meaning that the non-professional user has carried out correctly the main
steps of the choreography. At higher levels (level 2, and 3), more key frames are detected, (35 and 70
respectively). In this case, we observe that the performance error is reduced meaning that the non-expert
user makes some mistakes in executing the choreography. Therefore, the summarization module provides
to the interactive serious game platform a coarse to fine assessment useful for learning purposes. This
fine to coarse assessment framework is depicted in Fig. 8.10. Particularly, in this figure, we depict the
extracted key frames along with the pose identification performance. Green cells indicate that the detected
pose is in accordance to the ground truth choreography (no error is accomplished). Instead, red cells
indicates the time instances where mistakes in the choreography are encountered. Using these red cells,
the performance error is computed.

8.7 Visualization interface

The visualization system is responsible for creating a LABAN modelling of a choreography. This is
important for delivering the performance of the simple user to dance experts for further recommendation,

suggestions and corrections. Fig. 8.12 shows the main menu developed for this particular educational
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Table 8.3 Caption Performance error with respect to the number of hierarchical levels used for the

summarization.
Level of Detail Number of | Correctly Performance
Frames Classified (%)
Level 1 7 7 100%
Level 2 35 28 80%
Level 3 70 50 71,43%

game. The visualization system depicts the skeleton and the joints in the 3D space as well as a vector
showing the direction that the user is looking at. The kinetic coordinate system is used in the three-
dimensional Kinect system and the resulting calculated directional vector is placed in the center of the
chest. The axes of the diagram are calculated in meters. This visualization enables 3D viewing, so that
the user can view and comprehend the recorded posture and the form that is visualized into the symbolic
representation of Labanotation.

Fig. 8.13(a) presents the interface regarding the RGB captured image and the respective skeleton as
obtained by the Kinect depth sensor. In this particular scenario, the user raises up his arms. Another
example is depicted in Fig. 8.13(b). In this figure, the user makes another movement, raising his right leg.
It is clear that the Kinect sensor captures the respective movement and encodes it into skeleton data.

The visualization interface provides the capability of viewing the human movement at different views.
This is depicted in Fig. 8.15, where the recorded skeleton is shown in front, side, and top view. In this
visualization, each joint is depicted in a different shade, as defined by the Labanotation. A snapshot of
the proposed interactive serious game platform is presented in Fig. 8.14. In this figure, we illustrate the

captured 3D skeleton joints as well as the Laban symbols as presented in Section 8.4.

4 Main Menu - X

Start recording

[] save

Visualization options

RGB with skeleton display ‘

3D skeleton display

Multiple Views

Direction upper and lower limbs

Bending degrees

Terminate application

Figure 8.12 The main menu of the proposed embodied educational serious game incorporating Kinect-II
sensor and Laban movement analysis for dance training [10].
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Figure 8.13 Two snapshots of the visualization interface depicting human skeleton overlaid on RGB data

for different human postures [10].
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Figure 8.14 A snapshot of the interactive serious game interface [10].
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Figure 8.15 The multiple view interface of the proposed serious game platform, allowing users to depict
the 3D captures human skeletons [10].
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8.8 Discussion

In this chapter we have incorporated Artificial Intelligence (Al) in an interactive serious game platform
for learning choreographies. Specifically, our proposed framework enhances cognitive and kinesthetic
functions through Computer-supported collaborative learning. Additionally, the proposed framework is
useful for simple users who want to enter the kinesiology and choreographic segment. Al is capable of
providing an assessment interface of a performing choreography by being trained in ground truth data.
Two Al modules have been implemented; pose identification and summarization. Pose identification
exploits a bi-directional LSTM model with input data 3D kinematics descriptors (e.g., velocity and
acceleration) of a dancer’s skeleton joints in order to estimate the main choreographic primitives of a
dance. On the other hand, the summarization module is based on the Sparse Modelling Representative
Selection (SMRS) algorithm implemented under a hierarchical framework. The summarization interface
provides a coarse to fine assessment which is important for dance learning. This way, we can assess
a choreography at different representational levels. The coarse levels show the main steps of a dance
while the detailed levels provide an assessment per dance frame. Experimental results indicate that the
proposed LSTM model for pose identification is robust against other shallow learning techniques. In
addition, a visualization interface that supports Laban movements analysis is also adopted to enhance the

interactive communication between the game-like platform and, experienced or not, users.



Chapter 9

Adaptable deep non-linear Autoregressive
Moving Average Filters (ARMA) filter for
choreographic modelling

9.1 Introduction

The domain of Intangible Cultural Heritage (ICH) comprises a vast range of non-material elements,
such as performing arts (e.g., folklore dances), music and oral cultural traditions [245]. It is clear that
ICH elements are of great importance and therefore, these assets have been identified by UNESCO to
ensure an efficient protection and preservation. As far as preservation of performing arts is concerned,
kinesiology analysis and choreographic modeling constitute a very important aspect of folklore dance
modelling. One of the most important elements of choreographic analysis is the identification of the
dancer’s movements and poses (i.e., dancer’s postures). Recently motion capturing digitization systems
are capable of providing 3D measurements of the body parts of a dancer [7]. Then, we can proceed to the
identification of key primitives of a dance.

In general, deep learning models receives as inputs either raw visual signals of a choreographic
sequence or transformed data, that is, 3D features, and then they generate labelled classes corresponding
to dance choreographic primitives. Recently, Long Short Term Memory (LSTM) has proven especially
useful in choreographic modeling [246]. The LSTM networks usually operates on 3D skeleton data
of a dancer, instead of RGB content. This way the complexity of the input data is reduced, increasing
choreographic classification performance. Actually, the main advantage of an LSTM network is its
recurrent characteristics, implemented also in a bi-directional way (e.g., non causal modelling). Non-
causality is necessary since modeling and identification of choreographic primitives depends on both
backward and forward dancer’s steps.

The main drawback of using 3D skeleton data sequences through an LSTM network is that the
choreographic modeling performance is highly sensitive to skeleton signal errors. Missing skeleton
points, as a result of errors of the motion capturing devices, significantly affect the performance of
choreographic primitives classification. Another limitation is the assumption of stationarity between the
input-output data. This means that the network weights of the LSTM model remains constant during
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choreographic modeling. However, a dance sequence presents several dynamics and dancer’s attributes
such as gender, age and personalized style, significantly affect the overall dance performance.

Instead, using RGB content as input to a deep learning network, we face the aforementioned skeleton
error issues. Convolutional Neural Network (CNNs) have proven, recently, to be robust classifiers,
especially of processing high-dimensional RGB visual data [247], [248]. Therefore, CNN networks have
been used for human action recognition [249], [250].

However, issues related with the dynamic nature of a choreographic can not be addressed using
conventional CNN models since model parameters (i.e., network weights) remains constant during the
operation of the model. Additionally, the RGB data alone deteriorate the overall choreographic modeling
performance due to the existence of enormous spatial-temporal information, confusing the classification
due to the following reasons: First, the purpose of the convolutional layer of a CNN is to transform the
raw RGB visual data into low-forms of representations, through the "deep convolutions". In this case, the
convolutional layer transforms the whole input image frame, including the irrelevant visual background
content to the choreographic modeling, into low dimensional forms of representation, which are then
fed to a fully connected neural network. Second, a conventional CNN structure has not the recurrent
characteristics inherently existing in a LSTM model let alone its main bi-directional capabilities. Finally,
network weights are assumed to be constant throughout network operation, failing, therefore, to address

the dynamic characteristics of a dance.

9.1.1 Related Work

Kinesiology modelling are distinguished into methods that exploit supervised learning and those algo-
rithms of using an unsupervised paradigm. In the literature, the works proposed cover human activity
indexing [86], pose identification [87], action prediction [88], emotion recognition [89] and background
subtraction [90]. In [91], an unsupervised approach is proposed for modelling human activities, while in
[7], summarization of folklore dances have been introduced using an hierarchical SMRS algorithm. In this
context, the work of [92] has introduced an action recognition framework exploiting dense trajectories.
Finally, in [93] hidden Markov models (HMM) has proposed for human activity recognition.

Recently deep machine learning methods have been introduced for analysis of folklore sequences. A
brief review of deep learning for computer vision applications one can be found at [94]. In [95], a CNN
neural network model have been introduced for human activity analysis, while the work of [96] uses
RGB-D and skeleton data for activity analysis. In [97], the authors introduce a two-stream convolutional
neural network structure for action recognition in videos. In this context, the work of [98] introduces a
three-stream CNN for action recognition modelling, while the work of [99] proposes CNNs structures
on depth maps and postures for human action recognition. Finally, Makantasis el al. [100] introduces a
behavioural understanding approach for industrial environments, while in [101], the authors introduces a
flexible Deep CNN for detecting spatio-temporal relationships in videos.

Another area of research related with this paper is background modeling and consequently foreground
extraction. Towards this direction salient maps have been proposed in [102] exploiting concepts of visual
attention algorithms. In this context, the work of [103] introduces a background modeling algorithm

using CNN structures. Similarly, in [104], the authors introduce methods of Mixture of Gaussians to face
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background dynamics. In [105], the authors proposed a neural network implementation of the ARMA
filter with a recursive and distributed formulation, obtaining a convolutional layer that is efficient to
train, localized in the node space, and can be transferred to new graphs unseen during training. In [106]
the authors are interested in generalizing CNN from low-dimensional regular grids to high-dimensional
irregular domains, such as social networks, brain connectomes or words’ embedding, represented by

graphs.

9.1.2 Innovation and Originality

To face the aforementioned limitations, in this paper, we introduce a novel CNN model with Autore-
gressive Moving Average (ARMA) capabilities. In addition, we introduce adaptive capabilities into the
proposed non-linear ARMA model in a way that the network weights are dynamically adapted to face
the current choreographic dynamics. We call this model adaptable ARMA-based CNN filer due to its
adaptive and Autoregressive-Moving Average capabilities.

In particular, the proposed network filter feeds back its classification output to the input layer,
implementing an autoregressive triggering mechanism; the output variable depends on its own previous
values. In addition, we introduce a Tapped Delay Line (TDL) input to the CNN model in order to capture
the temporal dependencies of a choreography. The TDL filter implements a moving average [241].

Finally, we introduce a computationally efficient and adaptive algorithm for dynamically modifying
the network weights of the fully connected layer of the CNN model to fit the dynamic nature of a
choreography. The proposed way of adaptation allows to the new ARMA-enriched CNN to automatically
adapt its behavior to the current conditions while simultaneously respecting the already accumulated
knowledge as much as possible. This way, the new model is able to capture the non-stationary behaviors
of a choreography.

In addition, to face the first limitation of using a conventional CNN model for choreographic mod-
eling, we prior to the classification stage. In this context, the irrelevant to the choreographic modeling
background content is isolated, creating an RGB mask of dancers’ postures. In this way, the hierarchies
of convolutions of the CNN transforms the RGB dancers’ postures into low forms of representations,
e.g., kinesiology dancers’ features, which are then used for choreographic modeling. Therefore, the
proposed approach faces the skeleton error sensitive issues of the current LSTM filters and simultaneously
addresses the previous discussed limitations of using conventional CNN models on the raw RGB data
(that is dynamic training and adaptive since the output of a dance pose estimator should affect its own

previous value).

9.2 An Auto Regressive Moving Average-Enriched CNN for Chore-
ography Modeling

Fig. 9.1 indicates our proposed overall architecture for choreographic modeling. As is observed, our
proposed framework encompasses the following components. The first is responsible for the data
acquisition (the motion capturing sensors) that is used to obtain the RGB images of a choreographic

sequence as well as the skeleton data. The second component is related with the background subtraction
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Figure 9.1 The overall proposed architecture adopted in this paper for choreographic modeling.

for reducing the irrelevant to choreographic modeling content. This information is fed as input to the
proposed adaptive ARMA-enriched CNN model (the third component). The adaptive ARMA-enriched
CNN filter is a conventional CNN enriched with an ARMA Filter as well as with adaptive network
weight strategies for dynamically adjust model response to fit dance dynamics. The MA component is
responsible for delaying the input signals into several taps. In addition, the AR filter is responsible to
feed back the classification output to the input in a way that the current choreographic modeling is related
with its own previous values. Finally, the adaptive algorithm is responsible for dynamically modifying
the weights of the fully connected layer of the CNN to face the dynamic nature of a choreography.

9.2.1 The Autoregressive Moving Average Convolutional Neural Network

In the following we assume a non-linear relationship, denoted as g(-). This relationship relates the output
of the neural network model y(n) with input sensorial signals x(n) at a time instance n. Actually, the
purpose of g(-)) is to transform the raw RGB input signals x(n) into labeled choreographic primitives

classes. Therefore, we have that

Y(n) :g(x(n),x(n— 1)7"' 7x<n_‘I)a
y(n=1),---,y(n—p))+e(n)

where g expresses a time window of previous observations affecting the choreographic classification of the

9.1)

current image frame n, while p the order of the previous classification outputs affecting the choreographic
modeling. Error e(n) is an independent and identically distributed (i.i.d) process. In order to approximate
the non-linear function of g(-), we use machine learning methods. The machine learning algorithms
minimizes the error e(n) through training. In particular, it has been proven that a Tapped Delay Line
(TDL) input filter can approximate the non-linear function of (9.1) with any degree of accuracy [241].
The main limitation of using a simple fully connected neural network (e.g., a feedforward one) is the
training procedure are unstable especially in cases where large amount of multi-dimensional data are
used as input signals, such as series of RGB image content. To face these difficulties, CNN models have
been proposed as an alternative classification mechanism for processing RGB input signals compared to
conventional feedforward structures [247]. A CNN model includes a pre-training layer, the convolutional
layer, with the purpose of transforming the high-dimensional RGB data into low forms of representations.
This means that the convolutional layer extracts from the raw visual inputs appropriate features for



9.2 An Auto Regressive Moving Average-Enriched CNN for Choreography Modeling 126

maximizing the overall classification performance. A CNN model have been shown very promising
results in effective feature selection in a high dimensional space for choreographic modeling [251].

However, conventional CNN structures have not designed to approximate a non-linear ARMA filter
as the one of Eq. (9.1). For this reason, in this paper, we extent the conventional CNN models to have
ARMA characteristics.

9.2.2 The Moving Average behavior

A folklore video sequence depends on several previous frames. Therefore, choreographic modeling is
not relationship of only a single folklore input frame. Instead, several dance sequence frames contribute
to the video modeling. For this reason, a moving average operator is adopted to model this temporal
relationship.

To model a MA property into a CNN filter, we include a TDL layer to the network. This is illustrated
in Fig. 9.2. The TDL layer is responsible for delaying the input signal for ¢ discrete time instances.
Therefore, it is responsible for implementing the x(n),x(n—1),--- ,x(n — g) relationship of (9.1). MA
behavior means that identification of a choreographic primitive at a time instance n should not limited to
a single image frame, but rather to a set of ¢ frames. That is, vector y(n) depends on ¢ previous samples

x(n—j), ]:Oaaq_l

9.2.3 The AutoRegressive behavior

On the other hand, the output of the pose estimator should not only depend on external, even cumulative,
input but also on its classification output history, so as to eliminate abrupt spikes in the recognition output.
Therefore, including an additional time window of previous classification outputs in the input of the
model can effect the consideration of previous identification behavior and ensure smoother output. This
is also illustrated in Fig. 9.2, where the classification output feeds back to the input layer. Actually, the
AR behavior implements the second part of (9.1), that is the non linear function of y(n) is related with its
own previous values y(n—1),--- ,y(n— p).

9.2.4 The Convolutional Layer

The purpose of this layer is extract descriptors from the sensorial input signals with a latent way. In the
following, the outputs of the convolutional layer of the CNN is denoted as f1, f2, - -, fr. These outputs
are fed as inputs to the classification layer which is resposible for choreographic modeling. The structure
of the convolutions layer adopted in this paper are the following: It consists of convolutions and RELU ,
max pooling filters. The first layer of convolutions consists of 32 filters of a size of 5x5x3. ON the other
hand, the second layer composes of 64 convolutional filters of a size of 5x5x32. The classification layer
uses the descriptors of the convolutional layer, that is the fi, f»,. .., fr, to provide the final choreographic
modeling. Fig.9.2 depicts the structure of the proposed deep learning model for choreographic modeling.

Therefore, our proposed ARMA-enriched CNN architecture supports both input- and output memory
to the model, thus approximating a Non-linear NARMA filter, functioned with the power of a CNN.
We call this model Autoregressive Moving Average Convolutional Neural Network , named in short
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Figure 9.2 The architecture of the proposed ARMA-CNN used for choreographic modeling in this paper

ARMA-CNN model. Fig. 9.2 presents the proposed ARMA-CNN architecture adopted for choreographic
modeling.

9.2.5 The Adaptive Behavior of the ARMA-Enriched CNN

The main limitation of the aforementioned architecture is that it is assume a stationary input-output
relationship. However, this is not valid in a choreographic modeling since many dynamics are involved.
Therefore, adaptable strategies are required to update the model response in a highly dynamic way.

Let us now denote as wy, the parameters of the fully connected neural layer, that is the network weights,
before the network adaptation. Let us also assume that w, is the network weights are the adaptation. We

assume that these weights are related as follows

Wa = wp +dw (9.2)

In Eq.(9.2) dw refers to a small perturbation of the network weights. Eq. (9.2) means that we only need to
compute the small perturbation of the network weights dw in order to estimate the new network weights
(that is after the adaptation) from the previous ones, wj,. Usually, a choreography consists of a constant
main choreographic pattern. For example, the main choreographic pattern of two different choreographies
are depicted in Fig. 9.3. A frequency domain approach is adopted for estimating the main choreographic
pattern as in [252]. Let us denote that using the method of [252], the main choreographic pattern have

been estimated as

y={ci(ng), - ,cr(ne)} (9.3)

In Eq. 9.3 ¢;(¢) expresses the choreographic primitive that the image frame at time instance ¢ belongs to.
This means that ng and n, refers to the start and end time instance of the main choreographic pattern. In

case that a misclassification occurs within the a choreographic pattern group, network weight adaptation
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is needed. Therefore, the new network weights are estimated in a way that the network response, after the

weight adaption, approximates the main choreographic pattern group sequence.

Y () % ci(n) Vei(n) € ¥ (9:4)

In Eq. (9.4), y,, (n) denotes the response of the network at the time instance n of using the new adapted
weights w,. Eq. (9.4) means that the network response should respect the main choreographic pattern
sequence.

Using the assumption of Eq. (9.2), one can apply first-order Taylor series expansion for estimating

the small weight perturbation dw. In this way, a system of linear equations are derived as follows

ei(n) =A;-dw 9.5)

In Eq. (9.5) matrix A; expresses a matrix that it is derived from the previous network weights, that is wy,
while e;(n) is a scalar expresses the difference of the network response before and after the adaptation.

Therefore,

ei(n) = yw, (1) = yw, (n) (9.6)

Solving Eq. (9.5) one can estimate the the small weight perturbation dw and thus the new weights
wg. The new ways are estimated in a way that the previous behavior of the network is optimized (see Eq.

9.4)).

9.2.6 The Optimization Procedure

The main problem of solving Eq.(9.5) is that we have only one equation whereas the number of weights
are many. This means that dw is a multi-dimensional vector of size equal to the number of network
weights of the fully connected layer of the network (see Fig.9.2). Therefore, there is no a unique solution
of solving Eq. (9.5).

To address this limitation, an additional constraint is introduced in this paper. Particularly, we select
among all possible solutions that satisfy Eq. (9.5), the one that yields a minimum modification of the
small perturbations dw. This means that we have the following constraint optimisation framework

min ||dw||
subject to 9.7)
ciln+1)=A;-dw

Solving Eq. (9.7), we can estimate the small perturbation of dw. An alternative framework is not to
modify the weights in a way to have the minimum possible norm of dw subject to constraint of (9.5).

Instead, the previous network knowledge should be modified as discusses in [241].
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9.2.7 Variational Inference of Gaussian Modeling for Background Subtraction

As far as background modeling is concerned, a a variational inference approach of Gaussian Mixtures
is adopted [253]. The advantages of this algorithm compared to the usage of traditional mixture of
Gaussians schemes is that it substitute scalar parameters with probability distributions. Therefore, more
accurate background modeling is performed. In addition, this approach is less computationally complex
compared to traditional mixture of Gaussians schemes which is an important aspect for folklore analysis.
Initially, every pixel is divided by its intensity in RGB colour space. Each pixel is computed expressing

its probability whether it is included in the Foreground or Background with the following equation:

K
P(Xz> = Za)i,t * n(Xta.ui,taZi,t) (9.8)
i=1

Actually, in a variational inference approach, variable @;, is a probability density function, say
P(X;|w), instead of a scalar value as in a conventional Gaussian Mixture Model. However, in Eq. (9.8),
we have denoted as scalar for simplicity purposes (More information can be found at [253]). In addition,
in Eq. (9.8), X; expresses the current pixel in frame ¢ and K the number of the distributions of the mixture.
The weight of the i-th distribution in frame 7 is expressed as ®;,. Additionally, the mean of the i-th
distribution in frame ¢ is expressed as ;; and the standard deviation of the i-th distribution in frame 7 is
expressed as X; ;. Moreover, the 17(X;, i/, X; ) declares the probability density function and is defined as
following as a Gaussian distribution.

The difference between a Gaussian mixture and a variational inference is that the weights ®;; of
Eq. (9.8) are probability distributions instead of scalar. Therefore, better function approximations are

achieved, improving background/foreground separation performance as it is discussed in [253].

9.3 Experimental Evaluation

9.3.1 Description of the dataset used

For evaluating and comparing the proposed algorithm against state-of-the-art methods folklore video
sequences are used as presented in Table 3.5. A Kinect-II is exploited for the capturing process. it
should be mentioned that in the presented approach the skeleton data of the Kinect-1I sensor have been
disregarded. The motion capturing procedure carried out at the School of Physical Education and Sport
Science of the Aristotle University of Thessaloniki. All video sequences are Greek traditional folkloric
dances, the selection of which was made by dance experts from the Aristotle University of Thessaloniki to
achieve variability in terms of styling, rhythm and gender. The selection of different human sexes is due
to the fact that men and women follow different style in their dance performance. Table 3.5 describes the
folklore dance sequences used in this experiment. For every dance video sequence a small description is
provided for clarification purposes. The adopted frame rate is of about 30 fps. This results in an estimate
of a time window of about 15 to 30 frames, meaning of about 0.5 to 1 sec delay. In this table, we depict
the main choreographic primitives of each dance. It should be mentioned that these primitives does not
refer to the steps of the choreography as being taught to a dancer trainer but to the main “activities” of the

dance in the digitized manner. Fig. 9.3 visually depicts the main choreographic primitives of two dance
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Figure 9.3 Choreographic primitives of two dance sequences.

sequences. As is observed, the choreographic primitives same similarities with each other, imposing
difficulties in the recognition process.

9.3.2 Choreographic Identification Performance

The proposed approach was compared with traditional adopted classifiers such as k-Nearest-Neighbor
(kNN), kernel-based SVM structures, Feedforward Neural Network (FNN1) with 1 hidden layer of 10
neurons, and another FNN2 with 2 hidden layers of 10 neurons/layer. Finally, the CNN classifier was
tested with a normal input layer as well as an input layer with autoregressive moving average behavior as
proposed in this paper. For comparison, we include metrics from information retrieval such as precision
and recall, accuracy and F1-score. During the experiments the dataset was split into a training set and a
test set following an 90 to 10 ratio. Fig. 9.4 presents the aforementioned metrics for different machine
learning configuration networks. As is observed, the proposed method, that is of using Autoregressive
and Moving Average (ARMA), through an adaptive implementation, outperforms the compared machine
learning network structures in terms of choreographic modeling. The effect of background modeling and
therefore foreground separation is depicted in Table 9.1. It is clear that background modeling improves
the overall classification performance. This is mainly due to the fact that irrelevant visual information
(that is the background content) is isolated from the classification process. It should be mentioned that in
Fig. 9.4 the results are obtained using the background separation algorithm.

The effect of the background modeling and therefore, the foreground estimation is depicted in Fig.9.5.
Background removal is very important for choreographic modeling, since irrelevant to the choreography
content is discarded. Fig. 9.6 indicates the effect of the size of a window (e.g., memory of window) as far
as classification performance is concerned. As it is observed the implementation of the Memory Window
in the classification procedure increases the total accuracy in each algorithm (SVM, kNN, FNN1, FNN2,
CNN).



9.3 Experimental Evaluation 131

Performance Evaluation of Different Machine Learning Models
90.00%

80.00%
70.00%

60.00%
50.00%
40.00%
30.00%
20.00%
10.00% I

0.00%
FNN1 FNN2 ARMA-CNN

M Accuracy ™ Precision M Recall ®F1

Figure 9.4 Performance Evaluation of different machine learning network set-ups for choreographic
primitive classification

Figure 9.5 Simulation results regarding background/foreground estimation.

Table 9.1 Performance evaluation of the proposed model for pose identification compared with other
learning methods. In this table, we have provided the effect of background subtraction as a pre-processing
method

Algorithms Method Metrics
Accuracy | Precision | Recall | Fl-score
SVM NoBS | 46,10% | 37,85% | 45,14% | 41,17%
BS 63,51% | 57,05% | 58,94% | 57.98%
kNN NoBS | 2938% | 23,46% | 32,23% | 27,15%
BS 31,76% | 25,07% | 33,38% | 28,63%
Neural 1 NoBS |[51,13% | 43,44% | 55,81% | 48,85%
BS 54,83% | 47,07% | 61,94% | 53,48%
Neural 2 NoBS | 54,28% | 46,50% | 59,60% | 52,24%
BS 5727% | 49,43% | 60,88% | 54,56%
CNN NoBS | 69,99% | 65,15% | 65,05% | 65,10%
BS 7447% | 72,65% | 65,96% | 69,14%
ARMA-CNN | NoBS | 71,44% | 66,06% | 67,31% | 66,68%
BS 76,82% | 73,26% | 70,39% | 71,80%
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9.4 Discussion

This chapter presents an adaptable autogressive and moving average layer (R-ARMA) into a conventional
CNN filter to model the dynamic behavior of a choreography. The proposed architecture improves the
performance of LSTM networks which is currently used for a choreography modeling, receiving as input
3D skeleton points of the dancers. The main issues of using 3D skeleton features is that the classification
performance is quite sensitive to errors of the skeleton. For this reason, an alternative approach is adopted
in this paper based on the capabilities of CNN models.

In particular, we use RGB input data towards choreographic modeling. RGB inputs are less sensitive
to skeleton errors. However, the main drawback of this approach is that a) they can not have the recurrent
characteristics of the LSTM structures, failing, therefore to handle the dynamics inherently presenting
in a choreography, b) the background visual content confuses the classification accuracy since it is
irrelevant to the choreography and c) they assume stationarity between the input-output data which is
contradictory with the dynamic nature of a choreography. To address the aforementioned issues, we
introduce, in this paper, a novel AutoRegressive, Moving Average (ARMA) filter to a CNN model in
order to stimulate recurrent network characteristics. In addition, to face the choreography dynamics, we
introduce an adaptation mechanisms in a way that the network weights of the fully connected hidden
layer is dynamically updated to fit current environmental characteristics. Experimental results on real-life
sequences illustrate the efficiency of the proposed model against conventional deep machine learning
filters.



Part IV

Conclusions and Future Work



Chapter 10

Conclusions of the Thesis

10.1 Summary

This thesis was concerned with the development of (a) new methods for improving the extraction of
choreographic primitives taking into account time series analysis, (b) identification algorithms for
extraction representative postures from choreographic sequences and (c) semantic representation and

notation techniques.

* Part I presented the theoretical background regarding ICH and the principles with respect to the
mathematical modelling of folklore choreographic sequences. Moreover, in Chapters 1, 2, 3 the
recent trends on choreographic representation in terms of machine learning, video summariza-
tion, pose identification and dance annotation are described. Additionally, this part presents the
adopted sensors network (Vicon/Kinect motion capturing systems), the technical specifications,
the kinessiological modelling and the annotation of the Greek folklore dances. It is important
to mention, that our approach encompasses more than thirty folkloric dance sequences recorded
at the Aristotle University of Thessaloniki and at the School of Physical Education and Sport
Science of the University of Thessaly in Trikala under the TERPSICHORE project (see Chapter
3.4). These choreographic datasets encompass more than 83662 RGB images and point clouds
records compatible with various databases.

* Part II presents the adopted techniques for content-based sampling of the selected folklore choreo-
graphic sequences. This part is oriented on the semantic compression and the video summarization
taking into consideration the complexity of the spatio-temporal sequences. In particular, Chapter 4
exploited a hierarchical scheme that implements spatio-temporal variations of the dance features.
Firstly, global holistic descriptors are defined to localize the key choreographic steps of a dance (a
coarse representation). Secondly, each segment is further decomposed into finer sub-segments to
improve dance representativity (fine representation). Chapter 5 describes an abstract representation
of the semantic details of choreographic sequences taking into consideration a key-frame selection
algorithm. Chapter 6 compares the summarization performances taking into account four sampling
algorithms all implemented under a SAE scheme’s projected data. Specifically, a SAE framework
followed by a hierarchical SMRS algorithm implemented to summarize choreographic sequences.
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 Part III (Chapters 7, 8, 9) focused on modelling and analysis of folklore choreographic sequences.
Chapter 7 explored the feasibility of pattern matching between heterogeneous motion capturing
systems. In this chapter, a trajectory interpretation in folklore sequences is described. The
conducted experiments indicate that if significant levels of precision are ensured during initial
data collection, design, development and fine-tuning of the system, then low-cost and widely
popular motion capturing sensors suffice to provide a smooth and integrated experience on the
user end, which would allow for relevant educational or entertainment applications to be adopted
at scale. Nevertheless, the proposed approach would not be appropriate for tasks that require
great precision and accuracy in measurement of movement and positioning of individual joints.
Chapter 8 focuses on the enhancement of the learning experience of folklore dances by introducing
machine learning tools with the capability of providing a scalable quantifiable assessment of a
choreography at different level of hierarchies; yielding a from coarse to fine evaluation. For this
reason, initially the choreography is analyzed into representative 3D skeleton joints and then
kinematics features are estimated to efficiently model these choreographic patterns. Then, pose
identification and summarization methods are implemented with the main purpose of categorizing
each dance sequence into choreographic primitives or extracting the main (key) choreographic
pattern. Pose identification provides a detailed (fine) assessment of a dance, which, in the sequel,
stimulates an assessment of a dance performance against ground truth data. On the other hand,
summarization creates a coarse representation (and thus assessment) of the choreography. Chapter
9 describes an adaptable autogressive and moving average layer (R-ARMA) into a conventional
CNN filter to model the dynamic behavior of a choreography. In addition, to face the choreography
dynamics, we introduced an adaptation mechanisms in a way that the network weights of the
fully connected hidden layer is dynamically updated to fit current environmental characteristics.
Experimental results on real-life sequences indicated the efficiency of the proposed model against

conventional deep machine learning filters.

10.1.1 Innovation and Originality

The work presented in the previous Chapters was achieved with the ultimate goal of highlighting the em-
blematic role of ICH, the effective use of emerging machine learning techniques and the implementation

of image processing algorithms. The main contributions of this thesis are listed below.

1. Development of two folklore choreographic datasets (see Sections 3.3.1, 3.3.2, 3.5). Our ap-
proach included thirty folkloric dance sequences recorded at the Aristotle University of Thessaloniki
under the framework of TERPSICHORE project representing five different choreographies.

2. A method that matches trajectories’ patterns, existing in a choreographic database, to new
ones originating from different sensor types such as VICON and Kinect II. The main objective
of this approach is to evaluate the performance between heterogeneous motion capturing systems
(see Section 7).

3. A key frame extraction framework that implements a hierarchical scheme exploiting spatio-
temporal variations of the dance features is introduced. In Section 4 we introduced a spatio-
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temporal video summarization implemented under a hierarchical framework. This hierarchical
video dance decomposition results in extracting a pyramid of key frames that provides a complete
overview of a choreography, from a coarse to a fine description. The advantage of directly
processing 3D human skeleton points instead of raw depth data is that few data samples are

involved in the processing of the dance sequences, making summarization much more efficient.

4. A machine learning method exploiting deep learning paradigms is proposed (see Section 8).
This proposed framework proposes a choreographic summarization architecture based on SMRS in
order to abstractly represent the performing choreography through a set of key choreographic prim-
itives. We have modified the SMRS algorithm in a way to extract hierarchies of key representatives.
Choreographic summarization provides an efficient tool for a coarse quantitative evaluation of a
dance. Moreover, hierarchical representation scheme allows for a scalable assessment of a choreog-
raphy. The serious game platform supports advanced visualization toolkits using Labanotation in

order to deliver the performing sequence in a formal documentation.

5. Development of a method to address dynamic limitations of choreogpahic sequences (see
Section). We introduced an AutoRegressive Moving Average (ARMA) filter into a conventional
CNN model; this means that the classification output feeds back to the input layer, improving
overall classification accuracy. In addition, an adaptive implementation algorithm is introduced,
exploiting a first-order Taylor series expansion, to update network response in order to fit dance
dynamic characteristics. This way, the network parameters (e.g., weights) are dynamically modified
improving overall classification accuracy. Experimental results on real-life dance sequences
indicate the out-performance of the proposed approach with respect to conventional deep learning

mechanisms.

6. Development of a deep stacked auto-encoder (SAE) scheme followed by a H-SMRS algo-
rithm proposed to summarize dance video sequences (see Section 9). SAE’s main task is to
reduce the redundant information embedding in the raw data and, thus, to improve summarization
performance. This becomes apparent when two dancers are performing simultaneously and severe
errors are encountered in the humans’ point joints, due to dancers’ occlusions in the 3D space.
Four summarization algorithms are applied to extract the key frames; density based, Kennard
Stone, conventional SMRS and its hierarchical scheme called H-SMRS. The results on real-world
dance sequences, captured using two dancers performing, indicate that the proposed SAE-based
redundancy reduction scheme can yield an effective representation of the dances sequences which
on average deviates less than 0.30 s from the key-frames selected by dance experts (ground truth

data) and with a standard deviation of about 0.18 s.

10.1.2 Future Prospects

Although, during this dissertation, many approaches carried out in the areas of digitization, recording
and modeling of ICH. During the completion period of this dissertation, more scientific approaches, new
algorithms and topics of interest for further research have emerged.

Adaptation of Generative Adversarial Networks to create choreographic sequences
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Since the introduction of deep learning, researchers have proposed content generation systems
using deep learning and proved that they are competent to generate convincing motion content and
kinesiological output, including music, rhythm and choreographic patterns [254]. These deep learning-
based algorithms imitate and reproduce patterns with same statistics with the training set [255]. The
framework of Generative Adversarial Networks (GAN) can generate choreographic patterns that imitate
choreographic sequences but do not belong to motion training dataset [53], [256], [257], [258] [259].
Further research on this will facilitate the generation of choreographic sequences of less noisy point
clouds/RGB images.

Emotional style dancers representation and modelling

The dancers’ expressions, the emotions and the style of the performers are crucial to categorize the
choreographic patterns. The research of human behaviour under different emotional states is important to
define different personalities, moods or emotion variations [260].

Implementation of U-Net on choreographic data for classification purposes.

There’s a huge assent that deep networks requires many thousand annotated training samples. Partic-
ularly, within the substance of ICH, folklore choreographic sequences are usually not annotated. The
finding that pre-training a network on a rich source set can offer better performance once fine-tuned on a
usually much smaller target set, has been instrumental to numerous applications [261], [262]. Nowadays,
very little is known about its usefulness in 3D point cloud understanding. I observe this as an opportunity
considering the effort required for annotating data in 3D. At this direction, i aim at facilitating research
on 3D representation learning. Different from previous works focusing on high-level scene understanding
tasks.
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